Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 2585 kayıt bulundu.

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri

Biyolojik Silahlar ve Biyosensörler

Bakterilerin bir kısmı görünmeyen dostlarımızdır; bazıları sindirim sistemimize yardım ederken, bazıları vücudumuzdaki zehirleri yok ederler. Kimi bakteriler ise bizleri hasta eder. Vücudumuzun içinde veya dışında yaşayan bu ilginç mahlukçuklar hayatımızın ayrılmaz parçalarıdır her hâlükârda. Ancak bir de ‘katil’ bakteriler var ki, zalim insanların ellerine geçtiklerinde biyolojik silah olarak kullanılabilirler. Biyolojik silahlar; insanları, hayvanları veya tarımsal ürünleri öldürücü veya ağır derecede hasta edici olan mikroorganizmalar ile, bunlardan üretilen zehirli maddelerdir. Hatta sadece hastalık ve ölüme yol açan mikropların kendileri değil; bunların taşıyıcıları da meselâ böcekler bu sınıfa dahildir. Biyolojik silahlar kitle imha silahları içindeki en problemli ve tehlikeli silahlardır. Nükleer veya kimyasal silahlardan çok daha fazla insanı hedef alırlar. Diğer silahlara göre maliyetlerinin düşük olması, rutin güvenlik sistemleriyle tesbit edilemiyor olmaları gibi değişik nedenlerle insanlık için ciddi tehdit unsurudurlar. Kimyasal silahların aksine hemen tesir etmezler. Yaklaşık 24-48 saatlik bir kerahet devresinden sonra tesirleri ciddi olarak görünür ve o zamana kadar da eğer mikrop kullanıldı ise çoğalarak etrafa yayılmaya devam ederler. Biyolojik silahlar kimyasal olanlara göre çok daha fazla öldürücüdür. Meselâ 10 gr. şarbon sporu, 1 ton sinir gazı Sarin’in öldürebileceği kadar insan öldürebilir. Biyolojik silah tehlikesine karşı yapılması gerekenler ise şöyle özetlenebilir: • Biyosensörler ile tehlikenin tesbiti ve tanımlanması. • Mikrobiyal zehirlere karşı antidotların hazırlanması. • Antibiyotik ve aşı geliştirilmesi. Bakteriler, virüsler ve toksinler biyolojik silah olarak kullanılabilirler ve hepsinin birbirinden farklı özellikleri vardır. Son yıllarda biyoteknolojik metodların hızla ilerlemesi bu bilgi ve teknolojilerin kötü amaçlara âlet edilme tehlikesini de beraberinde getirdi. Genetik mühendisliği çalışmalarındaki ilerlemeye paralel olarak biyolojik silahların etkisini artırıcı ve tesbit edilmelerini zorlaştırıcı gelişmeler ise, bu silahlara karşı yapılan savunmayı daha da güçleştirecektir. Genetik olarak dizayn edilmiş organizmalar, biyo-silah üretiminde kullanılabilir durumdalar ne yazık ki. Örneğin: • Mikroskobik toksin veya biyoregülator fabrikasına dönüştürülmüş mikroorganizmalar, • Antibiyotik, aşı gibi rutin kullanılan ilaçlara bağışıklık kazandırılmış organizmalar. • İmmunolojik profilleri değiştirilerek bilinen tesbit metodları ile tesbit edilemeyen organizmalar. • Antikor bazlı sensör sistemlerinin tesbitinden kaçabilecek organizmalar. Bilimi kötü ve vahşi amaçlarına alet etmeye çalışanlar biyolojik silahların etkisini artırıp tesbitini zorlaştırmaya çalışırken, bizlere de, biyolojik silahların zararlı tesirlerini gidermeye çalışmak ve onların üretiminde kullanılan maddelerin tesbitini kolaylaştıracak metodları bulmak düşüyor. Biyolojik silahlara karşı erken tesbit, uyarı ve tedavi metodlarının geliştirilmesi insanlık için bir zorunluluk haline gelmiş bulunuyor. Tehlikeli biyolojik maddelerin varlığının tesbitinde en önemli unsur biyosensörlerdir. Biyosensörler (biyo-alıcılar, biyolojik dedektörler) biyolojik materyallerin alıcılar ile tesbit edilip ölçülebilir sinyallere dönüştürüldüğü aletlerdir. Alıcılar tarafından tesbit edilen tanımanın sinyale dönüştürülmesinde kullanılan metodlara göre, bu biyosensörleri kabaca (1) optik sensörler ve (2) elektrokimyasal sensörler olarak iki gruba ayırabiliriz. Şu anda ticarî olarak piyasada olan kimyasal ve biyolojik analiz âletleri gözden geçirildiğinde, kimyasal dedektörlerin biyolojik olanlardan daha fazla gelişmiş oldukları görülecektir. Kimyasal dedektörler neredeyse saniyeler ve dakikalar içinde kimyasal maddeler hakkında bilgi verirlerken, biyolojik dedektörler için bu süre genellikle daha uzundur; çünkü daha kompleks ve yavaş çalışan mekanizmaları vardır. Problemlerden biri de, büyük ve ağır olmalarıdır. Bu sorunların çözülmesi gerekmektedir; çünkü artık, kimyasal silahların tesbitinde olduğu gibi, biyo-silahların tesbiti için de küçük boyuttaki robotlar ya da uçaklar kullanılmak istenmektedir. Son yıllarda optik sensörler biraz daha geliştirildi ve biyokimyacılar için çok önemli araçlar haline geldi. Sensörlerde kullanılan biyolojik materyalleri tanıma elementlerini genel olarak şöyle sıralayabiliriz: enzimler, mikroorganizmalar, bitkisel ve hayvansal dokular, antikorlar, reseptörler, nükleik asitler. Tesbit edilmesi gereken materyale ilgisi olan, bağlanabilecek olan alıcı element (veya elementler) biyosensör yüzeyine kimyasal metodlar ile sabitlenir, yani immobilize edilir. Daha sonra ortam içerisinde istenen molekül veya mikroorganizma olan çözelti ilave edildiğinde, alıcı ile bu biyolojik materyal birbirlerine bağlanırlar. Bu bağlanma ise kullanılan sensör cinsine göre elektrik veya optik metodlarla sinyale dönüştürülerek algılanır. Eğer ortamda istenen biyokimyasal yok ise, sinyal gönderilmez. Biyosensörlerin çalışma mekanizması biyolojik elementler arasındaki ilgiye dayanır. Meselâ, hücre içindeki pek çok hayatî faaliyette yer alan proteinler arasında anahtar-kilit ilişkisine benzer ilişkiler vardır. Hücre içindeki faaliyetler hep birbirine bağlanan veya bağlanamayan proteinlerin oluşturdukları biyokimyasal sinyaller ile devam eder. Meselâ, protein ailesinin üyelerinden olan antikorların vazifesi organizmaya giren yabancı molekülleri tesbit edip bunlara bağlanmaktır. Antikorlar vücudun savunma sisteminin en önemli elemanlarıdırlar. Aslında her birimiz mükemmel biyosensörler sahibi olarak yaratılmışız. Meselâ beş duyumuz—görme, işitme, dokunma, koklama, ve tat almamız—yine alıcılar tarafından hissedilen verilerin kimyasal ve elektriksel sinyallere dönüştürülüp, beynin değerlendirilmesine sunulmasıdır. Modern teknoloji biyosensörler ile bir ya da birkaç molekülü tanımaya, algılamaya çalışırken, sizlerin şu anda bir yandan gözleriniz dergiye bakıp her an sinyalleri beyne gönderiyor; diğer yandan kulağınız radyodan gelen hafif müziğin sinyallerini göndermekle meşgul; derginin sayfalarını hisseden parmaklarınız sinirlere uyarılar veriyorlar; burnunuz bardaktaki meyve çayını koklamak ve yine uyarıları beyne göndermekle meşgul; öteki yanda antikorlarınız yabancı madde avında ve buldukları anda gereken bilgileri beyne gönderip savunma mekanizmasını harekete geçirmeye çalışıyorlar. Ama bütün bunlar olurken siz “Ayy, şimdi benim beynim bu verilerin hangisini anlamaya yetişsin?” diye sızlanmak yerine, yazıda okuduklarınızı düşünmekle meşgulsünüz. Biyosensör çalışmalarında yaşanan zorluklar ve eksiklikler bize küçücük hücrelerden büyük organizmalara kadar canlıların muhteşem biyosensörler olarak yaratıldıklarını ve insanoğlunun teknoloji adına yaptığı herşeyin bu muhteşem mekanizmaları taklide çalışmaktan başka birşey olmadığını gösteriyor. Sadece biyo-silahların tesbitinde değil, aynı zamanda biyolojik mekanizmaların, proteinler arası ilişkilerin anlaşılmasında ve insan genom projesinin devamı olan proteomik çalışmalarında da biyosensörlerin büyük önemi vardır. İnsan genom projesi ve patojenik bakteri ve mikroorganizmaların genetik kodlarının ilaç geliştirme çabalari için belirlenmesi, bazı kötü niyetli insanların ilaç yerine zehir yapmasına da yardım etmektedir. Almanya, Fransa, Japonya, İngiltere, ABD, Rusya ve Irak’ın bu silahları üretmek için çalışma yaptıkları söylenmektedir. Birinci ve İkinci Dünya Savaşlarında biyo-silahlar kullanılmıştır. Hatta çok daha önceleri 1763’te İngilizler Kızılderililere çiçek hastalarının kullandıkları battaniyeleri vermiş ve bu hastalığa karşı bağışıklığı olmayan yerlilerin hasta olup ölmelerine sebep olmuşlardır. Görünen o ki, yıkma, yok etme ve zarar verme açısından insana kimse yetişemiyor. Eğer insan olma erdemleri ve Allah korkusu yok ise, insanoğlu en vahşi silahları bile kullanmaktan, insanları yok etmekten geri kalmayan, esfel-i sâfilîne lâyık varlıklara dönüşüyor. Bu tür insanların neden olabileceği biyolojik savaş/terör tehlikesine karşı uyanık olunması ve gereken erken uyarı, tesbit ve savunma sistemlerinin geliştirilmesine ülkemizde de çalışılması gerekmektedir.

http://www.biyologlar.com/biyolojik-silahlar-ve-biyosensorler

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarının en önemli özelliği, canlı ve seçici – geçirgen olmasıdır PASİF TAŞIMA (ENERJİ HARCANMAZ) Difüzyon (Yayılma) Madde moleküllerinin çok yoğun olduğu ortamdan az yoğun olduğu ortama doğru yayılmalarıdır. Difüzyon sırasında enerji harcanmaz ve canlılık şart değildir. Bazı durumlarda difüzyona uğrayacak madde bir taşıyıcı proteinle hücreye alınabilir. Buna ise kolaylaştırılmış difüzyon denir. Hücre zarı korundan geçebilecek maddeler; glikoz, gliserol, yağ asitleri amino asitler, elementler,su ve bazı inorganik bileşiklerdir. Osmoz (Suyun Difüzyonu) Suyun seçici geçirgen bir zardan difüzyonuna denir. Osmozda da enerji harcanmaz ve canlılık şart değildir. Ancak seçici geçirgen zar bulunmak zorundadır. Emme Kuvveti: Yoğun ortamın yoğunluğundan dolayı diğer ortamdan Su emebilme kuvvetine denir. Osmotik Basınç: Yoğun ortama doğru hareket eden su molekülleri zardan geçebilmek için zara uyguladığı kuvvete denir. Turgor Basınç: Yoğun olan hücrelere aşırı su geçişi sonucu dolan hücre hacminin su tutamayacağından suyun dışarı çıkmak için zara yaptığı basınca denir. Plasmolis: Yoğun ortamlara koyulan hücrelerin zamanla su kaybederek büzülmesi olayına denir.Eğer hücre çok yoğun ortama konulursa ölebilir. Deplazmolis:Az yoğun ortama koyulan hücrelerin zamanla su alarak şişmesi olayına denir. Hücrenin konulduğu ortam çok sulu olduğundan şişerek patlayabilir. İzotonik Çözelti: Çözeni ve çözüneni eşit olan çözeltilerdir. Hipertonik Çözelti: Çözeni az çözüneni fazla olan yoğun çözeltilerdir. Hipotonik Çözelti: Çözeni fazla çözüneni az olan sulu çözeltidir. AKTİF TAŞIMA (ENERJİ HARCANIR) Aktif Taşıma Maddelerin az yoğun ortamdan çok yoğun ortama taşınmasına denir. Aktif taşıma ancak canlı hücrelerde gerçekleşir. Çünkü ATP harcanır ve enzimler iş görür. Bu olayda, taşınacak maddelerin porlardan sığabilecek kadar küçük olması gerekir. İyonların çoğu yoğun ortamdan az yoğun ortama aktif olarak geçer. Endositoz Bu olaylarda da enerji harcanır. Her iki olay hayvan hücrelerinde görülmesine karşılık, bitki hücrelerinde Endositoz görülmez. Endositoz, pordan geçemeyecek kadar büyük moleküllerin hücre içerisine alınmasıdır. Alınan madde sıvı ise pinositoz, katı ise fagositoz adını alır. Ekzositoz Ekzositoz, hücre içerisinde oluşturulan enzim, hormon, çeşitli proteinler, bitkilerde reçine ve eterik yağlar, hayvanlarda mukus ve diğer büyük moleküllü salgı maddelerinin golgi yardımıyla, küçük kesecikler halinde taşınarak dışarı atılmalarına denir.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi-1

SÜNGERLER HAKKINDA BİLGİ

SÜNGERLER HAKKINDA BİLGİ

Deniz diplerinin inanılmaz ren ve biçimlerdeki nazlı güzelleridir süngerler. Yüzyıllar boyuna hep biti sanılan bu ilginç hayvanların, sakin görünen yaşantıları gerçekte oldukça renklidir. Bu nedenledir ki çok uzun yıllardır insanların ilgisini çekmişlerdir. Sünger avcılığı günümüzde hala bir meslek olma niteliğini koruyor. Süngerlerle avcılar arasındaki amansız mücadeleye yüzyıllardır tanıklık ediyor denizler. Sünger avcılarının topladığı süngerler önceleri yalnızca banyo ve mutfaklarda temizlik gereci, boya fırçası, zırh ve miğfer astarı, kap, bebek emziği, tıbbi cihaz malzemesi ve tampon olarak kullanılırken, bugün artık biyokimya laboratuvarlarında ve ilaç endüstrisinde önemli araştırmalara da konu oluyor. Süngerler, en ilkel çok hücreli canlı gruplarındandır. Tanımlanmış yaklaşık 5000 türü vardır süngerlerin. Renkleri, vücut yüzeyindeki su alıp veren gözeneklerin büyüklükleri ve dizilişleriyle sivri, mikroskobik çıkıntıları sünger türlerinin tanımlanmasında yardımcı olur. Rengarenk, canlı süngerler laboratuvarlara taşındığında, örnek kavanozlarının dibinde önce renkleri solar sonra da sulu çamur haline dönüşürler. Bazen, süngerlerin kimliğini belirlemek için mikroskobik düzeyde analiz yapmak gerekir. Süngerlerin çok büyük bir bölümü denizlerde, geri kalanlar da tatlı sularda yaşar. Tüm okyanus ve denizlerde, hemen hemen her derinlikte süngerlere rastlamak olasıdır. Kimi yalnızca birkaç cm büyüklükte olan süngerlerin, 2 m olanları da vardır. Yüz milyonlarca yıldır değişmeden kalmış olan bu canlılarda kalp, beyin, ciğer gibi organlar, gerçek dokular ve sinir sistemleri bulunmaz. Karmaşık hareket yetenekleride yoktur. Bütün bu özellikleri ve hiç yer değiştirmiyormuş gibi gözükmeleri nedeniyle çok uzun yıllar hep bitki sanılmıştır süngerler. 1600’lü yıllarda İngiliz bitkibilimciler, “Sünger diye adlandırdığımız ve deniz köpüğünün oyduğu bazı maddelerden bilimsel yayınlarda söz etmek çok fazla yer kaplayacağı gibi, okuyuculara da pek katkısı olmaz” diyorlardı. İlk kez 1765’te hayvanlara özgü yapısal ve fizyolojik özellikleri ortaya çıkarılmış olan süngerler, 1600’lü yıllarda bilim adamlarının düşündüklerinin aksine, bugün birçok bilimsel araştırmaya konu oluyor. Süngerler yaşamlarını daha çok özelleşmiş hücreler yardımıyla sürdürürler, değişik hücreler değişik işlevler üstlenmiştir. İskeletleri kalkerli ya da silisli kristal iğneciklerden (spikül), sponjin denen bir proteinden ya da bunların karışımından oluşur. Por adı verilen gözenekler sayesinde suyu süzerek çekerler ve sonra minik boşaltım deliklerinden geri püskürtürler. Serin ve tuzlu sularda yaşayan süngerler, hareketsiz olduklarından kendi yakınlarına gelen yiyecekleri hidrolik sistemlerinin yardımıyla suhidrolik sistemlerinin yardımıyla sudan süzerler. Süngerler genellikle gözle görülemeyecek kadar küçük organik maddeleri, diatomları ve bazı tekhücreli mikroskobik bitkileri, ölü ya da canlı planktonları ve bakterileri besin olarak alırlar. Kısa bir süre önce Akdeniz’deki sualtı mağaralarında yaşayan bir sünger türünün etobur olduğu ve kabuklu minik hayvanları (Crustacea) yediği saptanmış. Bu etobur sünger, hayvanın dış kabuğuna iğnecikleriyle yaptıktan sonra, korumasız avının etrafında toplanan özel hücreleri sayesinde sindirim yaparlar. Süngerler hem eşeyli hem de eşeysiz üreme yapabilirler. Eşeyli üreyenlerinin çoğunluğu ayrı eşeyli, bir kısmı da hermafrodittir (hem dişi hem de erkek üreme organına sahiptir). Bunlar, yumurta ve spermleri farklı zamanlarda üretirler. Dışarı salınan bu spermler komşu süngerlerce alınır. Eşeysiz üreme yapan süngerlerse tomurcuklanmayla ürerler. Tatlı sularda yaşayan süngerler eşeysiz olarak çoğalırlar. Süngerler, güneş ışığı ve havayla karşılaştıklarında ölseler bile tekrar suya sokulduklarında tomurcukları yaşar ve bunlardan yeni süngerler oluşabilir. sci.ege.edu.tr

http://www.biyologlar.com/sungerler-hakkinda-bilgi

Kan nedir? Kanın bileşimini

Kan nedir? Damarlarımızda dolaşan kan yaşamsal önemi olan bir sıvıdır. Goethe’ye göre “Kan son derece özel bir özsudur” (Faust, Bölüm I, Perde I, Sahne IV, Dize 1740). Kanın bileşimini Kan başlıca iki kısımdan oluşur: 1) Plazma adı verilen sıvı kısmı, 2) Bu sıvıda süspansiyon halinde bulunan kan hücreleri. Plazma: Kanın yaklaşık % 60’ını oluşturur. Açık sarı renktedir. Bileşiminde başta su olmak üzere proteinler, şeker, yağlar, vitaminler, kimyasal elementler, vd  bulunur. Proteinler arasında albumini, hormonları, bağışıklık maddelerini (antikorlar) ve  kanın pıhtılaşmasını sağlayan faktörleri  sayabiliriz. Elementlerden demir, vitaminlerden B6, B12, folik asit, K vitamini, bağışıklık proteinlerinden antikorlar (immunglobulinler) ve çeşitli pıhtılaşma faktörleri hematolojiyi yakından ilgilendirir. Kan hücreleri: Kanın yaklaşık % 40 ını oluşturan kan hücreleri  üç gruba ayrılır: eritrositler (alyuvarlar, kırmızı kan hücreleri), lökositler (akyuvarlar, beyaz kan hücreleri) ve trombositler (pulcuklar). Tüm kan hücrelerinin yapım yeri kemik iliğidir.

http://www.biyologlar.com/kan-nedir-kanin-bilesimini

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2

Cells are crawling all over our bodies, but how?

Cells are crawling all over our bodies, but how?

For better and for worse, human health depends on a cell's motility –– the ability to crawl from place to place. In every human body, millions of cells –are crawling around doing mostly good deeds ––– though if any of those crawlers are cancerous, watch out.

http://www.biyologlar.com/cells-are-crawling-all-over-our-bodies-but-how

Function of mysterious RNAs may often lie in their genes

Function of mysterious RNAs may often lie in their genes

Scientists from Penn Medicine and other institutions unlock a mystery about 'long non-coding RNAs'. A new genetic clue discovered by a team co-led by a researcher at the Perelman School of Medicine at the University of Pennsylvania is shedding light on the functions of the mysterious "long non-coding RNAs" (lncRNAs). These molecules are transcribed from genes and are often abundant in cells, yet they do not code for proteins. Their functions have been almost entirely unknown--and in recent years have attracted much research and debate.

http://www.biyologlar.com/function-of-mysterious-rnas-may-often-lie-in-their-genes-haber-8132

Gene therapy fully restores vision in mouse model of Leber congenital amaurosis

Gene therapy fully restores vision in mouse model of Leber congenital amaurosis

Mice lacking the protein retGC1, which is deficient in humans suffering Leber congenital amaurosis-1 (LCA1), a disorder that causes severe visual impairment beginning in infancy, received gene therapy to replace retGC1 and showed fully restored visual function that persisted for at least 6 months. The success of this approach strongly support clinical testing of a gene therapy targeted to the retinas of LCA1 patients, conclude the authors of the study published in Human Gene Therapy. The article is available free on the Human Gene Therapy website until September 30, 2015.

http://www.biyologlar.com/gene-therapy-fully-restores-vision-in-mouse-model-of-leber-congenital-amaurosis-haber-8761

Monterey Körfezin’de bir asır sonra yeniden bulunan canlı

Monterey Körfezin’de bir asır sonra yeniden bulunan canlı

Bilim adamları, 1900 yılında ilk kez tarif edildiğinden beri kesin olarak görülemeyen garip ve zor bulunan bir yaratığın bulgularını doğruladılar.

http://www.biyologlar.com/monterey-korfezinde-bir-asir-sonra-yeniden-bulunan-canli


Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Brattas ve ark. ERV'lerin insan sinir öncü hücrelerinde TRIM28 ile bağlandığını bildirmiştir. Bu, gelişmekte olan insan beynindeki transkripsiyonel ağların kontrolünde ERV'ler için bir rol teşkil ederek, yakın gen ekspresyonunu etkileyen yerel heterokromatin oluşturulmasına neden olur.

http://www.biyologlar.com/genomda-insan-beyni-icin-onemli-endojenik-retrovirusler

 DNA izolasyon Analiz Yöntemi

DNA izolasyon Analiz Yöntemi

Tıbbi Biyoloji laboratuarında yaygın olarak kullanılan amonyum asetat yöntemi ile DNA izolasyonu aşağıda açıklanmıştır.

http://www.biyologlar.com/dna-izolasyon-analiz-yontemi

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Bir araştırma ekibi, arkeal ve ökaryotik hücrelerin genetik materyalini nasıl paketlediğini ve depoladıklarını gösteren çarpıcı paralellikler buldu. Credit: Santangelo and Luger Labs

http://www.biyologlar.com/sonucta-o-kadar-da-farkli-degiliz-insanlardaki-hucreler-ve-saglam-mikroplar-ortak-bir-atayi-paylasiyor


Biyoinformatik

"Biyoinformatik, biyolojik bilgilerin yaratılması ve saklanması için veritabanlarının oluşturulmasıdır. Bu konudaki çalışmaların çoğu biyolojik verilerin analizi ile ilgilidir. Artan sayıdaki projelerde biyolojik bilgilerin organizasyonu gerekmektedir. Bu alanda oluşturulan veritabanlarının büyük bir kısmını nükleik asitler oluşturmaktadır. Milyonlarca nükleotidin depolanması ve organizasyonu için veritabanlarının oluşturulması, araştırıcıların bu bilgilere ulaşabilmeleri ve yeni veriler girebilmeleri için ilk aşamadır. Biyoinformatik’te nükleotid dizi bilgilerinin organizasyonu ve depolanması görevini üstlenmiş üç kuruluş vardır. Genbankası (GenBank), Avrupa Moleküler Biyoloji Laboratuvarı (EMBL) ve DNA Japonya veritabanıdır (DDBJ). Bu üç kuruluş, araştırıcıların yararlanmasına açık, nükleotid dizi bilgilerinin toplanması ve yayılmasında işbirliği içinde çalışmaktadır. Gen Bankası ABD’de Maryland, Bethesda’da, Avrupa Moleküler Biyoloji Laboratuvarı, İngiltere’deki Hinxton’da ve DNA Japonya veritabanı ise Japonya’da Mishima’da yeni dizi bilgilerinin alışverişinde,İnternet üzerinde günlük olarak e-mail, ortak kullanılan ftp ve www üzerinden hizmet sunmaktadırlar. Protein dizi verileri ile ilgili başlıca hizmet sağlayıcılar ise GenBank, EMBL, PIR International ve Swiss-Prot’tur. NIH’in National Center for Biotechnology Information merkezi, biyoinformatik gereci sunan başlıca web sayfalarından biridir. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pek çok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kullanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pek çok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır. Veritabanlarındaki bazı sorunlar; vektöriyel dizilerle kirlilik, bir gene ait dizi parçaçıklarının veritabanına birden çok kez girilmesi ile ortaya çıkan kalabalık, aynı gene ait birden fazla EST (Ekspressed Sequence Tag) içeren EST veritabanlarının olması gibi durumlardır. Bu durumlar; genom projelerinin ileri aşamalarını oluşturan UNIGENE, VecScreen gibi projelerle ortadan kaldırılmaya çalışılmaktadır. Biyoinformatiğin ikinci özelliği; saklanan biyolojik bilgilerin analizidir. Analiz kapsamına giren konular; 1-Çeşitli organizmalardaki DNA dizilerinin hangi genlere ait olduğunun belirlenmesi 2-Yeni keşfedilen proteinlerin ve RNA dizilerinin yapı işlev ilişkilerinin belirlenebilmesi için yöntem geliştirilmesi 3-Protein dizilerinin ilgili gen ailelerine kümelernmesi ve protein modellerinin geliştirilmesi 4-Benzer proteinlerin sıralanarak evrimsel ortaya çıkaracak filogenetik ailelerin oluşturulmasıdır."

http://www.biyologlar.com/biyoinformatik-1

Bitkilerde Su İletimi

Yukarıda incelenmiş olan temel mekanizmalar ile topraktan su ve mineral madde alarak gene bu mekanizmalarla kabuk parankiması hücrelerine iletirler. Kabuk parankimasında da benzeri mekanizmalarla hücreden hücreye iletilen su ve mineral maddeler merkez silindirdeki cansız ksilem elementlerine, trake veya trakeidlere girerek kılcallık ve özellikle yaprakların stomalarındaki terlemenin sağladığı negatif basınçla, emişle yerüstü organlarına iletilir. Ancak uyku dönemi sonunda çok yıllık bitkilerde ilk yapraklar oluşuncaya kadar su yürümesi adı verilen ve tümüyle depo karbohidratlarının sindirimi ve solunumla yakılmasından elde edilen enerjiye dayalı kök basıncı ve kılcallıkla su iletimi görülür. Bitki yeni yapraklar fotosentez yapar hale gelinceye kadar da depolarının çok büyük kısmını eritir. Emici tüylerin sıklığı ve yenilenme hızı köklerin beslenme etkinliğinde önemli yer tutar ve bitki taksonları arasındaki rekabette çok önemli yer tutarsa da suberinleşmiş bölümler de lentiseller aracılığı ile bu kapasiteye önemli oranda katkıda bulunur. Toprak çok kuru veya soğuk olduğunda kök büyüme hızı çok büyük oranda düşer ve kök sisteminin süberinleşmemiş, hızlı büyüyerek toprağın nemi kullanılmamış kısmına doğru yürüyen kısmın oranı çok azalır. Buna karşılık kurak yaz aylarında ve herdem yeşil bitkilerde kış aylarında da terleme sürer, bu dönemlerde gerekli su alımının lentiseller ile çatlak ve yaralardan yayınımın oranı artar. Ölü kökler de suya karşı hiç direnç göstermediklerinden önemli katkıda bulunurlar. Özellikle odunlu bitkilerin köklerinin su ve suda çözünmüş besin elementi alınımında mikorhiza adı verilen mantarlar önemli rol oynar. ve ekto-mikorhiza şeklinde ikiye ayrılan, Korteks hücrelerinde misel ve kök yüzeyinde hif oluşturan endo- ve dışta gelişip korteks hücreleri arasına giren ekto- mikorhiza tipleri beraber gelişebilir ve toprağın su miktarına göre oranlarında değişim görülür veya kök sisteminin ana kök dışında ince köklerden oluştuğu sistemlerde yalnız endomikorhiza gelişir. Abietinae, Salicaceae, Betulaceae ve Mimosoidae familyaları ağaçları uzun ve kısa köklerden oluşan kök sistemlerine sahiptir. Hızlı büyüyen ve çok yıllık uzun köklerde mikorhiza gelişmezken 1 yıl ömürlü lateral kısa köklerde gelişir ve dallı yapıları ile kökün emici yüzeyinin çok artmasını sağlarlar. Özellikle verimsiz topraklarda ağaçların beslenmesine büyük katkı sağlarlar. Bu nedenle de erozyona uğramış toprakların ağaçlandırılmasında köklendirilmiş çeliklere mikorhiza inokülasyonu yapılması önerilir. Mikorhizanın gelişimi için toprak suyunun tarla kapasitesine yakın ve köklerdeki karbohidrat oranının yüksek olması gerekir, toprak fosfor ve azotça fakir olduğunda büyüme yavaşlar kökte karbohidrat birikebilir ve mikorhiza hızla gelişir. Bu da erozyona uğramış fakir topraklarda sık görülen bir durumdur. Epidermisden kortekse kadar enine iletimin bir kısmı plazmodezmler aracılığı ile olur ve bu enterkonekte sitoplazma sistemine simplazm adı verilir. Kaspari şeridine kadar olan su ve mineral iyonlarının iletiminin önemli bölümü ise korteks hücre çeperleri üzerinden gerçekleşir. Kaspari şeridi hücrelerinin çeperleri yağ asitleri polimeri olan süberinli ve sellülozik olmayan, pektin gibi polisakkaritler yanında az miktarda protein ve sağlam bir yapı oluşturmalarını sağlayan Ca ve diğer bazı makroelementler yanında silikatlar içeren çeperlerdir. Pektin esas olarak 1,4-bağlı a-D-galakturonik asitten oluşur ve karboksil gruplarının ( - ) yükleri Ca kelasyonu ile çok sıkı bağlı zincirli sağlam yapının oluşmasını sağlar. Bu anyonik yapı katyon / anyon alım dengesini katyonların lehine çeviren ve plazmalemmadan çok daha etkili şekilde iyonlar ve diğer maddelerin alımını sağlayan yapıyı oluşturur. İyonların hücre çeperlerini enine olarak geçmelerini ve plazmalemmaya da ulaşmalarını sağlayan ana mekanizma çeper porlarını dolduran su kanallarında gerçekleşen yayınımdır. Hücre çeperlerinin ve çepere bitişik GSA yayınım sabiteleri plazma membranlarınınkinden 10 - 100 000 kat daha fazladır ve plazmalemma kanalları genelde hücrelerin yüzey alanının ancak %0.1 - 0.5 kadarını oluşturur. Ksilemdeki iletim hücrelerinin hücre çeperlerindeki geçitler üzerinden de benzer şekilde enine iletim olur. Ksilem parankiması hücreleri de depo parankiması görevine sahip olan canlı hücrelerdir. Kökteki canlı hücrelerin canlılıklarını sürdürebilmeleri, büyüme, gelişme ve bölünmeleri, aktif alım ile iletim gibi enerji gerektiren etkinlikleri için organik madde sağlarlar. Yeşil yerüstü organlarında üretilen bu maddeler floem tarafından sağlanır. Terleme - transpirasyon su ekonomisinde ve dolayısı ile de mineral beslenmesinde çok önemli yer tutarsa da terleme olayı fotosentezle de çok yakından ilişkili olduğundan fizyolojisi daha sonra incelenecektir. Terlemenin yarattığı su potansiyeli farkı ile sağladığı emiş gücü yanında kılcallık ve suyun yüksek yüzey geriliminin sağladığı kohezyon kuvvetiyle su ağaçlarda toprağın derinliklerinden taçlarına kadar iletilmektedir.

http://www.biyologlar.com/bitkilerde-su-iletimi

Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

ÖRÜMCEĞİN HAYAT HİKAYESİ

Latince örümcek anlamına gelen arakne kelimesinin kökeni, Ovid'in Metamorfozlar adlı eserindeanlattığı mitolojik bir hikayedir. Buna göre, bilgelik tanrıçası Atene, çok güzel örgüler ören köylü kızı Arakne'yi kıskanır; onu bir örgü örme yarışmasına davet eder. Yarışma yapılır. Atene, güzel örgüsünde, olimpiyatlarda intikam tanrıçası Nmesis'in, tanrılara meydan okuyan ölümleri taşımasını tasvir etmiştir. Lakin, Arakne'nin örgüsü daha güzel olmuştur. Arekne örgüsünde ölümlere adaletsiz ve haksız davranışlarda bulunan tanrıları tasvir etmiştir. Yenilgiyi hazmedemeyen Atene, Arekne'nin örgüsünü yırtar ve Arekne'nin başına örgüde kullandığı mekikle vurur. Üzüntüyle oradan kaçan Arekne, bir ağacın dalına kendisini asar. Bunu gören Atene, Arekne'yi bir örümceğe çevirir; böylece tanrılara meydan okuyan Arekna hem cezalandırılmış olur, hem de örgü örmeye devam eder. Bu ilginç hikayeden sonra örümceklerin genel özelliklerini açıklayalım. Örümcekler böcek değildir. İkisinin en önemli farkı, böceklerin altı bacağı varken örümceklerin sekiz bacağı olmasıdır. Ayrıca böceklerin vücudu üç bölütlü, örümceklerinki ise iki bölütlüdür. Son olarak genelde böceklerin binlerce minik gözden oluşan bileşik gözleri vardır, örümceklerin ise genelde tane basit gözü vardır. Örümceklere duyulan aşırı tiksinti ve korkuya araknofobi denir. Aksine çoğu zararsızdır ve birçok zararlı böcekleri avlayarak tabiatı temizleyen bir yaratıktır. Antaktika dışında bütün kıtalarda, çok çeşitli iklim şartlarında ve çöllerde yaşayabilirler. Birçok örümcek türü, özellikle sonbaharın ılık günlerinde, ürettikleri iplikçikleri paraşüt gibi kullanarak, rüzgar yardımıyla kıtalardan çok uzak okyanus adalarına kadar yayılabilirler. 4500 metre yükseklikte bu şekilde uçmakta olan örümcekler görülmüş, en yakın karaya 1500 kilometre uzaklıktaki bir gemide bu tip örümcekler bulunmuştur. Örümcekler farklı kalitede ipekler üreten fabrikalar gibidirler. Karın bölgelerinin alt kısmında meme şeklindeki konik çıkıntılardan salgılanan ipeğimsi maddeyi çok çeşitli amaçlar için kullanırlar. Çoğu örümcekte salgısı ve yapısı farklı en az iki çeşit ipek bezi vardır. Bu bezlerin ürettiği ipliği kimyasal özelliklerine göre farklı işlerde kullanırlar. Her ipliğin esnekliği, dayanıklılığı, kalınlığı ve yapışkanlığı farklı olduğundan, hangi iplik hangi işe daha uygunsa orada kullanılır. Bazı ipleri av yakalamak için tuzak ağları kurmada, bazı ipleri yuvalarının içini döşemede, bazı ipleri de yumurta ve sperm topaklarını korumak için kullanırlar. Milimetrenin binde birinden daha ince olan bu iplik aynı kalınlıktaki çelik telden daha sağlamdır. Bu iplik kendi uzunluğunun dört katı kadar esneyebilir. Ayrıca çokta hafiftir; dünyanın çevresine sarılacak bu ipliğin ağırlığı sadece 320gr'dır. Örümceğin ipliği ve kurduğu yuva kendisi için çok uygundur. Fakat aynı yuva avları için bir tuzaktır. Örümceğin ağı büyüklüğüne göre çok geniş bir sahayı işgal eder ama bu görüntü aldatıcıdır. Asıl yuvası ortada küçük bir yerdir. Gerisi ise avlar için tuzaktır. Örümcek İpliğinin Yapısı Sentetik ve tabii liflerden daha güçlü olan örümcek ipeğinin üretimi, sentetik iplik üreten fabrikalardakine kısmen benziyor. İpek yapımında kullanılan keratin isimli protein; tırnak ve saçlarımızda, kuşların tüylerinde, memelilerin boynuzlarında, yılanların pullarında bulunan çok yaygın bir proteindir. İçinde birçok protein bulunan sıvı ipek maddesi, iplik haline gelmeden önce fışkırtılmak üzere bez kanalında ilerlerken, bu kanalın duvarını teşkil eden hücreler tarafından çok hızlı bir şekilde suyu çekilir; diğer kanaldaki hücrelerde hidrojen atomlarıyla bu suyu aside dönüştürürler. Yoğunlaşmış proteinler asit havuzuna girince, köprülerle birbirine bağlanarak iplik haline dönüşür. Bu sürecin alt birimlerinde, farklı iplik çeşitlerine göre farklı keselerde, farklı yollara sokularak daha değişik iplikler meydana getirilir. Farklı kimyevi maddeler, farklı oranlarda ihtiyaca göre karıştırılarak çok farklı çeşitte ip üretilmesine olanak sağlar. Böylece avlanmada kullanılan iplikler yapışkan, avlanma sonunda avla yuvaya dönerken örümceğin üzerinde yürüdüğü ipler daha sağlam ve esnektir. Ayrıca avın sarıldığı ipler şerit şeklinde ve hareket ettikçe sertleşen özellikte, yumurta keselerini koruyan ipler mikroplara karşı antibiyotikli, asansör olarak kullandığı ipler kaygan, yuvanın ilk kuruluşundaki temel ipler ayrı kalınlıkta, aralarındaki atkılar ise daha incedir. Bütün bu iplikleri örümcek, ayaklarının estetik hareketleriyle yönlendirir ve yerli yerine yapıştırır. Bazı iplikleri örümcek ayağındaki tarakla tarayarak düzeltir. İpliklerin gerilime maruz kaldığında üzerinde çatlaklar oluşmaması için her tarafı sıvı bir malzeme ile kaplanır. Estetik cerrahları bazı örümcek türlerine ait ipliği, hassas tendon ve eklem ameliyatlarında kullanmaya başlamışlardır. Örümcekler ağlarını kurmada iplerini yapıştırdığı noktaları aralarındaki açıları, dengeli ve gerginliğin hesaplarını da yapar. Örümcekler genelde böceklerle beslenirler. Aklımıza gelmeyecek taktiklerle birçok böceği yiyerek, ekolojik dengede önemli görevleri vardır. Böylece böceklerle baş etmemize yardımcı olurlar. Aksi halde böceklerin çokluğu ve mahsüllere verdiği zarar karşısında pes ederdik. Bunun yanında balık, hatta kuş ile beslenen örümcek türleride vardır. Alıntı Yapılarak hazırlanmıştır

http://www.biyologlar.com/orumcegin-hayat-hikayesi

Kuşlar neden göç ederler?

Bu sorun, hala ornitolojide en zorlu sorulardan birisi. Genellikle kuş göçleri üreme ve üreme dışı dönemlerin aynı bölgede geçirilmesinin avantajlı ya da mümkün olmadığı durumlarda görülür. Ancak, bazen daha yakında elverişli kışlama alanları varken türün neden binlerce kilometre öteye göç ettiğini açıklamak her zaman kolay değil. Göç, olanca risklerine karşın hala vazgeçilmediğine göre kuşlara hatırı sayılır yararlar sağlıyor olmalı. Uzun göç yolculuğu, tamamlamak için harcanan enerjinin yanısıra yorgunluk, kaybolma, yırtıcılara yem olma gibi riskleri nedeniyle tehlikeli bir girişim. Kuzey Yarımküre'den güneye göçen küçük kuşların yarısından fazlası asla geri dönmüyor. Örneğin diğer akrabalarının aksine çok daha geç, Ağustos ayında yuva yapan Ada Doğanı (Falco eleonorae) bu gibi küçük göçmenlerle beslenerek yaşamak için evrilmiş bir yırtıcı. Buna, insanoğlunun ve olumsuz hava koşullarının etkilerini eklersek göç ve kışlama sırasında ölüm oranının yüksekliği bizi şaşırtmamalı. Kuşların, kış aylarının olumsuz çevre koşullarından güneye kaçmaları kolay anlaşılsa da belki de daha ilginç bir soru neden uygun koşullar tropikal bölgelerde yıl boyu hüküm sürdüğü halde tekrar kuzeye döndükleri. Burada önemli nokta, her ne kadar kış boyunca düşmanca koşullar hüküm sürse de, kuzey enlemlerinde ilkbahar ve yaz ayları boyunca üremek için tropikal bölgelere göre daha uygun özelliklerin bulunması. Tropikal enlemlerde gece-gündüz uzunluğu neredeyse sabit olduğu halde, ilkbahar ve yaz boyunca kuzey enlemlerinde gündüzler gecelerden belirgin derecede uzun. Diğer taraftan ılıman ve tropikal bölgelerde yerli kuş populasyonlarının yoğunluğu özellikle üreme sırasında yüksek rekabet oluştururken, daha az türe sahip sahip kuzey enlemlerinde bu rekabet daha düşük. Bu bakış açısına göre, kuzey enlemlerdeki çoğu göçmen kuş türleri (kuzeyin zorlu kışından kaçıp tropik bölgeye tahammül eden ılıman kökenli kuşlar değil) kuzeydeki geçici yaz bolluğundan faydalanan tropikal kökenli kuşlardır. Aynı türün farklı coğrafyalarda yaşayan toplulukları göç davranışını sonradan kazanabilir ya da kaybedebilirler. Örneğin Küçük İskete (Serinus serinus) son yüzyıl içinde Akdeniz havzasından kuzeye, Avrupa'ya yayıldı. Atasal Akdeniz toplulukları yerliyken, yeni kuzey populasyonları artık göçmen oldular. Tam tersi bir gelişme, Güney Afrika'da kışlayan Kara Leylek (Ciconia nigra) ve Arıkuşu (Merops apiaster) gibi bazı göçmen türlerin bir kısmının artık orada üreyen yerli türlere dönüşmeleri. Genel olarak, tropikal bölgeye göç eden kuşlar geride ılıman bölgede kalanlara göre kışı daha iyi atlatırken, geride kalan yerli türler üreme açısından göçmenlerden daha başarılı olurlar. Tropikal bölgedeki yerli türler ise uzun yaşamayı düşük üremeye feda ederler. Kurdukları yuvaların pek azı başarılıdır, yavru sayıları düşüktür ve her çift yılda birçok kere üremeyi dener, ama erginler uzun ömürlüdürler. Göç, yerel koşullar yakındaki yörelere fırsatçı hareketleri teşvik ettiği durumlarda evrilir. Populasyonun sadece bir kısmında başlayan bu davranış eğer avantajlı ise, bir süre sonra göç etmeyen toplulukların yeryüzünden silinmesi sonucunda o türün tüm bireyleri için bir kural haline gelir. Farklı göç şekilleri Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarını izleyerek gündüzleri uçarlar ve denizleri karaların birbirlerine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcun ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleri göç ederler. Bazı durumlarda ilkbahar ve sonbahardaki göç rotası aynı olmaz. Örneğin, Sibirya’da üreyen Kara Gerdanlı Dalgıç (Gavia arctica) toplulukları sonbaharda doğrudan bir uçuşla Karadeniz’e iner, ancak ilkbaharda aynı rotadan geri dönmek yerine önce batıya Baltık Denizi’ne, sonra doğuya uçar. Havalanabilmek için donmamış su yüzeyine gerek duyan dalgıçların, buzu geç çözülen gölleri ilkbaharda kullanamaması nedeniyle bu tip bir göçün ("halka göç") daha avantajlı olduğu sanılıyor. Pek çok ötücü kuş türünde erkek bireyler, dişilere göre daha kısa mesafe göç eder. Bu durumun, erkeklerin ilkbaharda en iyi üreme alanlarını ele geçirmek için giriştikleri yoğun rekabetin sonucu olduğu sanılıyor. Yine muhtemelen aynı nedenden dolayı sonbahar göçü neredeyse aylar süren bir sürede gerçekleştiği halde, ilkbahar göçü çok daha dar bir zaman aralığında gerçekleşir. Süper yakıt: İçyağı Göç eden kuşların büyük çoğunluğu bir seferde uzun mesafeleri aşabilmek için deri altında yağ depolar. Yağ parçalandığında, aynı miktarda karbonhidrat veya proteinle karşılaştırılırsa onların iki katı enerji ve su üretir. Biriktirilen yağ, bazen vücut ağırlığının iki katına çıkmasına neden olabilir. Bu denli çok yağın kısa sürede biriktirilebilmesi için uygun metabolik ve davranışsal değişiklikliklerin oluşması gerekiyor. Bu değişiklikler arasında aşırı yeme (hiperfagi), metabolizmalarının nitelik değiştirmesi, iç organların bazılarının küçülmesi sayılabilir. Yağ, normal zamanlarda küçük kuşların vücutlarının %3 ila %5'ine karşılık gelir. Oysa göç sırasında bu değer %25'e, bazı kıyı kuşlarında % 45'e ulaşabiliyor. Ötücü kuşlar tipik olarak bir seferinde birkaç yüz kilometre uçtuktan sonra 1 ila 3, bazı durumlarda daha da uzun süre dinlenip azalan rezervlerini yeniden tamamlarlar. Uzun mesafeler kateden kıyıkuşları da göçlerini üç veya dört ayakta gerçekleştirirler. Her yolculuk ayağı sırasında dinlendikleri bu mola noktaları birçok tür için yaşamsal önem taşır. Yapılan araştırmalar, küçük kuşların bir saatlik bir uçuş sırasında vücut ağırlıklarının yaklaşık %1'ini kaybettiklerini göstermiş. Ünlü göç araştırmacısı Peter Berthold, ağırlığının %40'ı yağ olan bir göçmen kuşun 100 saat boyunca durmadan uçabileceğini ve bu süre zarfında 2500 km. yol katedeceğini hesaplamış. Yakıtı tasarruflu kullanma açısından hiçbir insan yapısı motor kuşların metabolizmasıyla baş edemez!

http://www.biyologlar.com/kuslar-neden-goc-ederler

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

Serum lipitlerinin kalitatif ve kantitataif tayini

Bol miktarda C, H ve O nin yanı sıra az miktarda P, N gibi elementleri de taşıyan lipidler, suda çözünmeyen ancak eter, kloroform ve aseton gibi nonpolar organik çözücülerde çözünen bir grup organik biyomoleküldür. İnsan plazmasında bulunan başlıca lipidler kolesterol, kolesterol esterleri, triaçilgliseroller, fosfolipidler ve serbest yağ asitleridir. Dolaşımda lipoproteinler şeklinde bulunurlar. Lipoproteinler lipidler ile proteinlerin birleşmesinden meydana gelirler. ( Şilomikronlar, çok düşük yoğunluklu lipoproteinler, düşük yoğunluklu lipoproteinler, yüksek yoğunluklu lipoproteinler ) Serbest yağ asitleri plazmada albuminebağlanarak taşınır.Lipidlerin organizmada bir çok görevi vardır. Bunlardan yapısal eleman oluşu, enerji kaynağı oluşu, enerjinin uzun süreli depo şekli oluşu, vitaminlerin bazıları için çözücü oluşu ve önemli bazı bileşiklere ( safra asitleri, hormonlar vs ) kaynaklık edişleri en önemlileridir.1- 1- Zeytinyağının çözünürlüğü ve çift bağların doyurulması deneyi : Gliserol vedoymuş-doymamış yağ asitlerinden meydana gelen zeytinyağının kloroformda çözündüğünü ve çift bağların halojen katılarak doyurulması renk değişiminin incelenmesi ile izlenebilir. Bu amaçla 2 ml kloroform üzerine 3-4 damla zeytinyağı ilave edilerek çözünmesi sağlanır. Üzerine bromlu kloroformdan ( 1 ml/ 20 ml kloroform ) 1-2 damla ilave edilir. Örnek içerisinde doymamış yağ asidi bulunuyorsa ortamın rengi yavaş yavaş kaybolacaktır. Bu renk kaybı, bromun çift bağlara katılmasından dolayıdır. Sonuç, zeytinyağı damlatılmamış tüple ( kloroform ) karşılaştırılarak kontrol edilir.2- 2- Ester oluşturma deneyi : Esterler yağ asitleri ile alkollerin birleşmesinden meydana gelir. Bu reaksiyonu izlemek için bir deney tüpüne 1 ml etil alkol, 1 ml asetik asit ve 1 ml derişik H2SO4 konup birkaç dakika beklenir. Karışım, içerisinde su bulunan bir behere dökülürse asetik asidin iğneleyici kokusunun yerine asetik asidin etil esterlerinin hoş, meyve esansı kokusu meydana gelir. 3- 3- Serumda total lipid tayini : Total lipid tayini ile serumda mevcut tüm lipidler ( trigliserit, fosfolipid, kolesterol, yağ asdi vs ) tayin edilmiş olur. Trigliserid tayinin yapıldığı laboratuvarlarda total lipid tayinine gerek yoktur. Çünkü total lipid seviyelerinde meydana gelen değişiklikler genellikle trigliserid seviyesindeki değişiklikleri yansıtır. Fosfovanilin metodu ile total lipid tayinin prensibini, lipidin sülfürik ve fosforik asitli ortamda vanilin ile pembe renkli kompleks meydana getirmesi oluşturur. Reaktifler :1- Derişik H2SO44- 4- Renk reaktifi : 1 gr vanilin ısıtılarak distile suda eritilir, sonra çeşme suyu altında soğutmak sureti ile 400 ml ortofosforik asit ( % 84 ) karıştırılarak ilave edilir. Soğutulduktan sonra oda ısısında renkli şişede saklanır. Bu çözelti birkaç hafta stabildir.5- 5- Standart : 1 gr ( % 1000 mg ) saf zeytinyağı mutlak etanolde eritilir, son hacmi etanol ile 100 ml.ye tamamlanır. Bu hazırlanan çözeltiden % 600 mg lık çalışma çözeltisi hazırlanır. Deneyin yapılışı : Standart ve numune olarak işaretlenen tüplere aşağıdaki gibi pipetlemeler yapılır.Standart Numune Serum - 0.1Der H2SO4 2.0 2.0Standart ( % 600 mg ) 0.1 -Hazırlanan bu tüpler ağızları kapatılarak kaynar su banyosunda 10 dakika bekletilir. Musluk suyu ile soğutulur. Daha sonra standart, numune ve kör olarak işaretlenen tüplere aşağıdaki pipetlemeler yapılır.Kör Standart NumuneStandart karışımı - 0.1 -Numune karışım - - 0.1Der H2SO4 0.1 - -Renk reaktifi 2.5 2. 2.530 dakika oda sıcaklığında bekletilir. 560 nm de absorbanslar okunur. Aşağıdaki formüle göre total lipid miktarı hesaplanır.Total lipid miktarı : ( numune absorbansı / standart absorbansı )X standart konsantrasyonuTotal lipid miktarı hiperlipidemiler, diyabet, kronik pankreas hastalığı, hipotiroidizm,gut, hipofiz yetmezliğinde artarken, akut enfeksiyonlar, hipertiroidizm, hepatit ve bazı anemilerde azalır.

http://www.biyologlar.com/serum-lipitlerinin-kalitatif-ve-kantitataif-tayini

Cell stress inflames the gut

Cell stress inflames the gut

Over 3.5 million people in Europe and the US suffer from Crohn's disease or ulcerative colitis – the two most common forms of IBD. Chronic bowel inflammation is caused by an overreaction of the immune system to the bacteria which naturally occur in the gut. "This overreaction can come about if, for example, the anti-stress mechanism in the cells of the intestinal mucosa does not function correctly," explains Prof. Dirk Haller of the TUM Chair of Nutrition and Immunology. What Prof. Haller is referring to is the unfolded protein response (UPR) – a sequential chain of signals in the cell, the role of which is to protect the cells against stress. "The UPR is a kind of cell repair mechanism that kicks in when proteins are not properly folded when they are produced – a major cause of cell stress," Haller continues. Any disturbance of the signaling cascade can lead to inflammation and cell death. This damages the cells of the intestinal mucosa, a pre-condition for the development of IBD. The C/EBP homologous protein (CHOP) plays a major role in activating the UPR. It seems, however, that the CHOP is also involved in the inflammatory process. The research team decided to take a closer look at the CHOP protein. Using a new mouse model, the scientists examined the role of the protein in the development of chronic bowel inflammation. They modified the DNA so that the intestinal epithelial cells of the mice produced larger amounts of the protein. Damaged cells recover at a slower rate The higher CHOP protein count made the mice more susceptible to intestinal inflammation. In addition, the inflammation was slower to abate and the intestinal mucosa subsequently required more time to regenerate. "But contrary to what was previously assumed, the higher CHOP concentration is not actually what causes the epithelial cells to die," Haller explains. "Rather, the CHOP proteins inhibit cell division, thus slowing the regeneration of the mucosa following injury." Such injuries, which can be caused by an infection, are often the first step to chronic inflammation of the bowel. The researchers' findings provide further confirmation that a properly functioning UPR signaling cascade is an essential condition for healthy intestinal mucosa. Regulatory disturbance can seriously impair the protective function of the intestinal epithelium and play a role in the development of chronic intestinal inflammation. http://www.biologynews.net

http://www.biyologlar.com/cell-stress-inflames-the-gut

Highly efficient CRISPR knock-in in mouse

Highly efficient CRISPR knock-in in mouse

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without embryonic stem cells. In contrast to the ease of targeted gene deletion, the complementary application, called targeted gene cassette insertion or knock-in, in fertilized mouse eggs by CRISPR/Cas mediated genome editing still remains a tough challenge. Professor Kohichi Tanaka and Dr. Tomomi Aida at Laboratory of Molecular Neuroscience, Medical Research Institute, TMDU has now overcome this issue by developing innovative highly efficient CRISPR/Cas system, which resulted in targeted insertion of long gene cassette including enhanced green fluorescent protein (EGFP) into mouse genome in fertilized eggs with efficiency up to approx. 50%. The team reproduced the natural state of CRISPR/Cas system, which consists of three components: Cas9 protein, CRISPR RNA (crRNA), and trans activating crRNA (crRNA), instead of commonly used two-component system which consists of Cas9 mRNA and single guide RNA (sgRNA), leading to extremely high efficiency. The improved CRISPR/Cas system further provides highly convenient and accurate gene modification, and its successful transmission to the next generations. The new work was published in the open access journal Genome Biology as an article entitled "Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice" on April 29, 2015. This improved CRISPR/Cas system will be useful for a variety of applications, including creation of humanized mice for modeling of genetic diseases, drug metabolisms, immunity, and infectious diseases. Further, accurate targeted insertion will improve the safety of gene therapy in human patients in the future. The new system can be also applied to other purposes such as production of livestock, fishes, plants, and microorganisms carrying useful traits. Source: Tokyo Medical and Dental University http://www.biologynews.net

http://www.biyologlar.com/highly-efficient-crispr-knock-in-in-mouse

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Nörotransmitter

Nörotransmitter

Nöronlar arasında veya bir nöron ile başka bir (tür) hücre arasında iletişimi sağlayan kimyasallara nörotransmitter (uyarıcılara tepki) denir. Sinir sistemi boyunca sinirsel sinyaller bu kimyasal taşıyıcılar yardımıyla iletilir.

http://www.biyologlar.com/norotransmitter

Kanserle hayatta kalma konusundaki yeni atlas, yeni tedavilerin bulunmasını sağlayabilir.

Kanserle hayatta kalma konusundaki yeni atlas, yeni tedavilerin bulunmasını sağlayabilir.

Yeni atlas, bazı hastaların neden bu hastalıkla diğerlerine göre daha uzun yaşadığını açıklamaya yardımcı olabilir. Photo: Shutterstock

http://www.biyologlar.com/kanserle-hayatta-kalma-konusundaki-yeni-atlas-yeni-tedavilerin-bulunmasini-saglayabilir-

CANLILAR NASIL OLUŞTU VE GELİŞTİ

Yakın geçmişteki atalarımız acaba nasıl bir canlıydı?Daha önce neydik? Oksijenli ortamdaki yaşam nasıl bir canlıyla başladı? Bilim çevrelerinde, insanların ve hayvanların atasının, bir barsak paraziti (giardia)ne benzer bir canlıdan türediği görüşü ağırlıkta. Dünya var olduğundan beri üzerinde milyarlarca canlı, yaşam sürdü. Bu gün de en az 30 milyon tür yaşamını sürdürüyor. Elbette tüm canlıları birer birer sayma ve sınıflandırma olanağı yok. 18. yüzyılda Linnaeus, 10 000 canlıyı sınıflayabilmişti. Daha sonraları canlıların nasıl sınıflandırılacağı konusu gündeme geldi. Bir yol, organizmaları gözle görülebilir özelliklerine göre sınıflamaktı( Taksonomi). Darwin' le birlikte bu bakış açısı değişti. Canlılar soy ağaçlarına göre sınıflandırılmaya başlandı. Bu sınıflandırma, evrimsel ortaya çıkışın izini sürer. Güneş Sistemi' nin yaşi yaklaşik 4.5 milyar yil. İlk canlıların oksijensiz ortamda, 4.5 milyar yıl önce türediklerini biliyoruz. O zamanlarda atmosfer, büyük oranda azot ve daha az oranlarda karbon dioksit, metan, amonyak gazlarıyla ve az miktarda su buharından oluşmuştu. Oksijen yoktu. Ozon da yoktu. Ozon tabakası olmayınca Güneş' ten gelen morötesi ışınlar, yeryüzünü tüm şiddetiyle bombalıyordu. Bu morötesi ışınlar, yüksek enerjili ışınlardı. Moleküllerin Yaşam Savaşi Morötesi ışınlar, bol miktarda çakan şimşek ve yıldırımlar, milyonlarca yıl boyunca, mevcut basit molekülleri parçaladı. Parça birimler, birleşerek yeni moleküller oluşturdu. Bazı moleküller, başka moleküllerin oluşmasını kolaylaştırdı. Böylesi maddelere katalizör diyoruz. Bazı moleküller, kendinin aynısı olan moleküllerin oluşmasını da kolaylaştırır ( kendi kendinin katalizörü, otokatalizör). " Bugün artık kopyalama (çoğalma) işleminde belli protein ve enzimler aracı oluyor. İkinci olarak, "kendinin tıpkısı" bir molekül yaratmak, özelliklerini "yeni kuşak" moleküle aktarmak demek oluyor ki, bu da "kalıtım" mekanizmasının müjdecisidir. Kopyalama işlemi sırasında arada bir hatalar oluyordu. Yeni yaratılan moleküllerin büyük bölümü, bu hatadan ötürü bulundukları ortama uyamıyor, hemen parçalanıyordu; ya da ortama uysa bile çoğalabilme özlelliğini kaybediyor ve çoğalamıyordu. Ancak, çok nadiren de olsa, bazı hatalı moleküller hem ortama uyabiliyor hem de çoğalma yeteneğini kaybetmiyordu. Ortalığı dolduran bu değişik moleküller yeni bir tür oluşturuyorlardı. Bu da canlıların çeşitliliğini sağlayan" mütayon" mkanizmasının başlangıcını oluşturdu." Bu değişik moleküller, canlı çeşitliliğinin başlangıcıydı. Bazı moleküller sıcağa, yüksek enerjiye dayanıklıydı; onlar "hayatta" kalıyordu. Bunlar diğerlerinin dayanamayacağı ortamlarda çoğalabiliyordu. Kimileri sıcaktan parçalanıyor ve "ölüyor" du.(Prof. Dr. Orhan Kural, Bilim ve Teknik 343. sayı) Sudan Doğan Yaşam Moleküllerin yaşam savaşi suda, deniz ve göllerde kök salmişti. Suyun dişindaki moleküller, morötesi işinlarin bombardimaniyla paramparça oluyordu. Su ise bu işinlarinin bombardiman ateşini kesiyordu. Denizlere ve göllere siginmiş moleküller, uzaylilarin saldirisina ugramiş dünyalilar gibi adeta bir siginaktaydilar. Su, sicakligi sabit bir ortamdi; ayrica moleküllere hareket ve yaşama olanagi taniyan iyi bir akişkandi."Yaşayan" moleküller, giderek daha karmaşik yapilar geliştirdi. teel yapilari, " çift sarmal" olarak bildigimiz DNA idi. Bu moleküller, çevrelerine bir zarf yaparak kendilerini diş etkilerden bir ölçüde korumayi başardilar ve böylece ilk bakteriler oluştu. Bu noktaya gelme, yaklaşik yarim milyar yil aldi. Bakteriyi Küçümsemeyelim! Bakteriler bir anlamda en ilkel canlılar. Ama bakterileri küçümsemeyelim. " Biz, her zamanki insan merkezli bakışımızla "en başarılı yaratık insandır" der ve bunu hiç sorgumlamayız. Oysa ki, bizim türümüz olan homo sapiens sapiens' in bilemediniz en fazla 100 bin yıllık bir geçmişi var, geleceği de pek parlak görünmüyor. Bakteriler 3.5 milyar yıldır var, heryere yayıldılar, değil insan, başka hiçbir canlının yaşayamayacağı koşullar altında dahi yaşamaya uyum sağladılar ve insanlar yok olduktan sonra da, hiçbir şey olmamışçasına varlıklarını sürdürecekleri kesin. Üstelik bakterilerin olmadığı bir dünyada başka hayatın olması da pek düşünülemez. şimdi siz söyleyin, gerçek başarı kiminki? Bir süre sonra bazı bakteriler, işbirliğine giderek yeteneklerinde özdeşleştiler, bu küçük bakteriler toplumu da ilk hücrelerei yarattı. Bu hücrelerin bazıları çoğalma sırasında bölünürken birbirinden ayrılmadılar ve zamanla çok hücreli organizmalar oluştu. Bu da yaklaşık olarak 3 milyar yıl önce oldu....." "Derken, yaklaşik 2 milyar yil önce, doga en büyük keşfini yapti: Cinsiyet.... O zamana kadar, bakteriler ve hücreler tek başlarina bölünerek çogaliyorlardi. Bölünme sirasinda kendileri ile ilgili yapisal ve davranişsal her türlü bilgiyi (yani genetik kodu) taşiyan DNA' lar kopyalaniyor ve iki yeni varlik arasinda paylaşiliyordu. Bu temel işlem, hiç degişmemişti..... Derken, bazi hücreler çogalirken kendi DNA' larina bir başka hücrenin DNA' larini katarak genetik kodlari kariştirmayi keşfettiler. Sonuçta her iki hücreden farkli bir hücre meydana geliyordu. Birden bire, mütasyon çok büyük bir hiz kazandi ve çeşitlilikte bir patlama oldu. Bunun önemi şöyle anlaşilabilir: Ilk 2 milyar yilda evrim, ancak bazi basit organizmalar yaratabildi. Cinsiyetin keşfinden sonraki 2 milyar yilda ise bugün çeremizde gördügümüz bu inanilmaz çeşitliligi yaratti." Kendini, Türünü Koru ve Çoğal "Bu sıralarda orada bulunnsaydınız, deniz ve göllerin içindeki bakterileri, tek ve çok hücreli canlıları görebilseydiniz aklınıza gelecek cümlecik mutlaka şu olurdu: " Bir faaliyet, bir faaliyet...!" Gerçekten de bu canlı-ların adeta oraya buraya koştuklarını, hızla çoğaldiklarını, bazılarının diğerlerini yediğini, bazılarının ise ortaklıklar kurup bir takım üstünlükler sağladıklarını görecektiniz. Bütün bunlar taa başından beri süregelen 1 numaralı genitik emrin uygulanmaları idi : "Kendini, türünü koru ve çoğal ". Bunu yerine getirmek için bütün türler kendilerine uygun taktik ve stratejiler geliştiriyor, bunlardan en başarılı olanların sahipleri ortama egemen oluyor, diğerleri yok oluyordu. Bu amansız mücadele hiç dinmeden bugüne kadar geldi. Cinsiyetin keşfinden 500-600 milyon yil sonra önemli bir adim daha atildi. Bazi bakteriler atik olarak oksijen üretmeye başladilar. Başlangiçta, varolan canlilar için bir zehir olan bu yeni gazi kullanarak enerji üretmeyeyi ögrenen canililar büyük üstünlük sagladilar, çünkü yeni enerji üretim mekanizmasi eskiye göre çok daha verimli idi." ( Bilim ve Teknik,TÜBITAK, 343. sayi s: 29 ; Prof. Dr. Orhan Kural) “Atmosferdeki oksijen miktarının ancak % 1' e ulaşması yaklaşık 2 milyar yıl önce gerçekleşmiştir." Bugünkü yaşamın sürdüğü ortamın büyük bir kısmı oksijenli kara ortamı olduğu, ve insanoğlu da bu ortamın bir üyesi olduğu için, oksijensiz yaşamın önemi gözden kaçabilir. Oysa oksijensiz ortamın canlıları, yakından tanıdığımız gelişmiş, çok hücreli canlıları incelerken değerli açılımlar sunabilir. 3-4 milyar yıl öncesinin oksijensiz ortam canlılarının yaşadığı ortamda ancak iz miktarda oksijen vardı. Canlıların evriminde oksijenin rol oynamaya başlamasından çok önce, 500 milyon yıl boyunca, oksijensiz ortam canlılarının hükümranlığı sürmüştü. Bu sürecin ortalarında bir yerde, Güneş enerjisini kullanarak fotosentez yapan bir prokaryot türü; siyanobakteriler türemişti.... Büyük olasılıkla, bugün soluduğumuz oksijen moleküllerinin bir kısmı da, yaklaşık 2 milyar yıl önce, siyanobakterilerce üretilmiştir." Atmosferdeki oksijen miktarı arttıkça oksijene bağımlı bakteriler türedi. Bunlar, hücre zarı, hücre çekirdeği, bağımsız organeller gibi öğelerle donatılmış canlı türleriydi. Oksijen enerji metebolizmasında olağanüstü bir verimlilik artışı sağlamıştı. Öte yandan oksijenin zehir (toksik) özlelliğini gidermek için canlılar enzim (biyolojik katalizör) üretmeliydi Ayrıca oksijene dayanmayan fotosentez sistemlerinin, oksijen kullanan sistemlerden mekanik bakımdan çok daha basit oluşu, oksijenli fotosentezin evrim tarihinin ileri bir aşamasında ortaya çıktığını gösteriyor." Zamanla atmosferde çoğalan oksijen, ozon tabakasını yarattı, bu da morötesi ışınları önemli ölçüde kestiği için artık canlıların sudan çıkmalarına engel kalmadı. Sonuçta karalar, hızla artan bir bitki ve hayvan çeşitliliği ile doldu. Bitkiler oksijeni üretiyor, hayvanlar tüketiyor, hayvanlar karbon dioksit üretiyor, bitkiler tüketiyordu. Bitkiler enerjilerini Güneş' ten alıyor, hayvanların bazıları bitkilerin bu hazır enerjilerini, onları yiyerek alıyor, bazıları ise daha yoğun bir enerji almak için diğer hayvanları yiyorlardı.Daha sonra da ölen hayvanlar, yapı maddelerini, çürüyen vücutları ile toprağa geri veriyor, bu da bitkiler tarafından alınıyor, çıkar zinciri tamamlanıyordu. Herkes gül gibi geçiniyordu. Bu, o kadar iyi işleyen bir mekanizma idi ki günümze kadar değişmeden geldi. Bütün bu gelişmeler sırasında, her adımda genetik bilgilere sürekli yenileri ekleniyordu. Genellikle eski bilgiler kalıyor, yeni edinilenler ekleniyordu. Buna örnek olarak, virüslerin (yalnızca bir parazit olarak yaşayabilen en basit canlıdır) genetik kodunda yaklaşık 10 bin "bit" vardır (Buradaki "bit", parazit değil, "bilgi taneciği" diye tanımlanabilecek olan bilgi ölçüsü). Bir bakterininkinde 1 milyon, bir amibinkinde 400 milyon ve bir insanınkinde yaklaşık 5 milyar bit vardı. Hemen gözünüze çarpmıştır, bir amip ile bir insan arasında genetik bilgi olarak yalnızca 10 kadar bir katsayı var, bu çok aşağılayıcı değil mi? Değil aslında, o fazla bitlerin bir kısmı çok önemli bir gelişme için kullanılmış: Bir yazılım üretme ve depolama organı, yani beyni geliştirmeye." (Orhan Kural, Bilim ve Teknik 343. sayı) Fotosentez, yalnız oksijenle olmaz. Örneğin, elektron vericisi olarak su yerine hidrojen sülfürü kullanan fotosentez sistemleri, atık olarak oksijen yerine kükürt salar. Oksijensiz ortamın canlıları bu yolla yakıt olarak yalnız Güneş enerjisini kullanabilir. Tek hücreli bu ilk hayvanlar, giderek oksijen kullanmaya başladı. Organizmaların, oksijenli yaşama görece hızlı bir biçimde uyum sağladıkları düşünülüyor. Bu kurama göre, organizmalar oksijenle beslenen küçük organizmaları bünyelerine almıştı. Bu küçük organizmaların mitokondri organelinin atası olduğu düşünülüyor. Mitokondri, hem kendisi, hem de konakladığı hücre için oksijeni ATP enerjisine dönüştürüyordu. Buna karşılık büyük hücre de mitokondri için protein sentezliyordu. Günümüz hücrelerindeki mitokondri organeli, işte bu bakteri benzeri atadan türemiştir. mitokondriye bitki ve hayvan hücrelerinde, ayrıca bitkilerin kloroplastlarında rastlanır. Mitokondri, kendi DNA sına sahiptir ve hücre bölünürken bağımsız biçimde kendi kendini kopyalayabilir. Elde edilebilen en eski mitokondrili fosil 850 milyon yıl öncesine ait. ( Bilim ve Teknik 332. sayı, Özgür Kurtuluş)

http://www.biyologlar.com/canlilar-nasil-olustu-ve-gelisti

Biyoinformatik ve dna dizi analizi

DNA dizi analizi Dizi analizinde homoloji (benzerlik) araştırması; yeni bulunan bir dizinin bilinen tüm diğer dizilerle karşılaştırılması ve bunun sonucunda benzerlerdeki veritabanında ya da literatürde tanımlanmış bazı biyolojik işlevlerin yeni bulunan diziye yakıştırılması olarak tanımlanabilir. Bu yöntemi, genomik DNA içinden hızla ekson bulma çabasında olan pozisyonel klonlama yapan araştırma grupları tercih ederler. Bu yöntemle, dizi; benzerlikler ve protein kodlama potansiyeli yönünden araştırılarak genler belirlenir. Ve gendeki mutasyonlar ortaya konulur. İntrinsik dizi özelliklerinin araştırılması yaklaşımı ise en çok öncelikli hedefi genom dizilerini belirlemek ve üstüste çakışan dizileri (contig) birleştirmek olan dizi analizcileri tarafından kullanılır. Amaç çakışan dizilerin birleştirilmesiyle tüm gen yapısının modellenmesidir. Çoğu zaman her iki yaklaşım birlikte kullanılır. Benzerlik analizinde veritabanı araştırmaları ve dizi sıralamaları yapılırken, intrinsik analizde istatiksel özelliklerden yararlanarak eksonların belirlenmesinden protein yapısının ortaya konmasının ilk aşamalarına kadar geniş yelpazede bulgular elde edilir. Dizi bilgileri veritabanlarında iki formda bulunur Bunlardan birincisi; yazarlar/diziyi veritabanına ilk işleyenler, kaynak gösterimleri, biyolojik atıflar ve dizinin kendisiyle; intronlar, eksonlar, başlangıç ve bitiş kodonları vb bilgiyi içeren bir tablodan oluşan tam bilgi İkincisi ise; hızlı benzerlik araştırmaları için kullanılan ve sadece diziyi içeren FASTA formatıdır. Accession (ulaşma) numaraları, herbir diziyi belirleyen özgün kimliklerdir ve dizi veritabanına ilk kez girildiğinde verilir. Dizi bilgileri, patent ofisleri gibi çeşitli kaynaklardan veritabanına ulaştığından, örneğin, NCBI; non redundant (yinelenmeyen) nr (nükleotid/protein) verikümeleri oluşturmaktadır. BLAST program ailesi Veritabanlarında araştırma yapabilmek için tasarlanmış pekçok bilgisayar programı vardır. Bunlardan birisi de BLAST (Basic Local Aligment Search Tool) programıdır. Veritabanında homoloji araştırması için öncelikle uygun BLAST programının seçilmesi gerekir. BLASTN bir nükleotid dizisi ile komplementer diziyi ele alarak nükleotid dizisi veritabanlarıyla karşılaştırır. Hız amacıyla tasarlanmıştır. Yüksek duyarlılık aranan durumlar için uygun değildir. BLASTN ve BALSTX; EST verilerinin analizi, ekson yakalama yöntemi ve genomik dizi örneklemlerinin incelenmesinde kulanılır. NCBI’nın sunduğu diğer bir servis ENTREZ servisidir. ENTREZ servisinin en önemli özelliği veritabanları arasında çapraz gezinme olanağı sunmasıdır. Örneğin, bir dizi için BLAST araştırması yaptıktan sonra, ilgili gen ile ilgili literatür bilgileri MEDLINE’dan elde edilebilir. Daha sonra ilgili grafik programlarının yüklenmesi sonrasında protein yapısıyla ilgili veritabanları kullanılarak, proteinin iki veya üç boyutlu yapısı izlenebilir. Protein dizilerindeki işlevsel motifleri araştırmak amacıyla kullanılan bazı veritabanları ise PROSITE ve BLOCKS’tur. NCBI’nin bir başka alt hizmeti olan OMIM, genler ve genetik hastalıklarla ilgili ayrıntılı biyoteknolojik ve tıbbi bilgilerin bulunduğu servistir. Bu servis altında pekçok gende bugüne kadar tanımlanmış mutasyonlar ve ilgili klinik ilişkiler özetlendiğinden çok yararlıdır. Mikroarraylerle genomik yaklaşımlarda en kapsamlı proje ABD Ulusal İnsan Genom Araştırmaları Enstitüsünün Microarray projesidir (µAP). Microarray bulgularının yorumu da diğer yüksek çıktılı (highthroughput) genomik teknikler gibi biyoinformatik yöntemlerin kullanımına ihtiyaç yaratmıştır. Biyoinformatik Türkiye’de de yeni bir daldır. TUBITAK bünyesinde, Marmara Araştırma Merkezi (MAM) Gen Mühendisliği ve Biyoteknoloji Araştırma Enstitüsü diğer kuruluşlar ve uluslararası kuruluşlar arasında köprü görevi görerek ülkemizde biyoteknoloji alanında bir sanayi oluşmasına ve genişlemesine yardımcı olmaktadır.

http://www.biyologlar.com/biyoinformatik-ve-dna-dizi-analizi

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

Virüslerin Yapısı

Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir.

http://www.biyologlar.com/viruslerin-yapisi

Mutasyon

Mutasyon, canlının genetik yapılarında meydana gelen değişmelerdir. Bireyin kalıtsal özelliklerinin ortaya çıkmasının sağlayan genetik şifre herhangi bir nedenden dolayı (X ışını, radyasyon, ultraviyole, bazı ilaç ve kimyasal maddeler, ani sıcaklık değişimleri ) bozulabilir. Bu durumda DNA’nın sentezlediği protein veya enzim bozulur. Böylece canlının, proteinden dolayı yapısı, enzimlerinden dolayı metabolizması değişebilir. Mutasyonlar spontan ya da uyarılmış olarak oluşabilir. Spontan mutasyonlar genellikle doğada kendiliğinden oluşan mutasyonlar olup bir bazın yer değiştirmesi şeklindedirler. Uyarılmış mutasyonlarda ise bir X ışını gibi yapay bir faktör bulunur. Bununla birlikte mutasyonun en önemli sonuçlarından biri, bir sonraki kuşağa farklı genetik özellikler aktarılmasına neden olmasıdır. Bu ise farklı fiziksel özelliklere sahip bireylerin üremesidir. Çekinik olan mutasyonlar ileriki döllerde ortaya çıkabilir. Dominant olanları fenotip yapıda hemen ortaya çıkabilir. Mutasyonun diğer bir sonucu da hücre bölünmesindeki kontrol mekanizmasını ortadan kaldırabilmesidir. Bunun bilinen en tehlikeli sonucu ise hücrenin kontrolsüz bölünmesi yani kanserdir. Mutasyon (değişim) Yeni döllere aktarılacak kalıtsal bilgide,genellikle fiziksel ya da kimyasal dış etkenlerin uyarısıyla,bazen de kendiliğinden ortaya çıkan değişiklik. Mutasyon, hücredeki kalıtsal bilgiyi taşıyan, çift nükleotid zincirinden oluşan, DNA (deoksiribo nükleik asit) molekülündeki GEN adı verilen ve belirli bir özelliği kodlayan bölümündeki değişiklikten kaynaklanır. Mutasyonlar, bir DNA zincirindeki bazın (A, T, G, C) başka bir bazla yer değiştirmesi sonucunda ortaya çıkabileceği gibi, zincire bir ya da daha çok bazın eklenmesi veya zincirdeki bazların eksilmesi sonucunda da ortaya çıkabilir. DNA zincirindeki tek bir baz çiftinin(A-T veya G-C) değişmesiyle oluşan mutasyonlara nokta mutasyonu(nokta değşinimi) denir. Bu tür mutasyonlar: Karşılıklı olan bir pürin-pirimidin (örn. A-T) çiftiyle başka bir pürin-pirimidin (örn. G-C) çiftinin yer değiştirmesiyle oluşabileceği gibi, bir pirimidin-pürin (örn. C-G) ile bir pürin-pirimidin (örn. G-C) bazının çaprazlama olarak yer değiştirmesiyle de oluşabilir. Bu tür mutasyonlar kendiliğinden oluşabileceği gibi, bazı bazların benzerleriyle yer değiştirmesiyle de ortaya çıkabilir. Nokta mutasyonları genellikle tek bir kodonu etkilediğinden çok büyük değişimlere yol açmaz. Örneğin: Mutasyona uğramış kodon aynı aminoasidi kodlamaya devam eder ya da proteinin işlevini değiştirmeyen başka bir aminoasit kodlanabilir. Ama bazı durumlarda, DNA molekülündeki tek bir nükleotidin değişmesi bile çok önemli sonuçlar doğurabilir. Örnek olarak orak hücreli kansızlık verilebilir. Bu hastalık kalıtsaldır. Eğer bu hastalık böyle bir nokta mutasyonu nedeniyle meydana geliyorsa ve eğer çocuk mutasyona uğramış geni iki ebeveyninden de alıyorsa bunun sonuçları kötü olabilir. Bir aminoasidi kodlayan bir kodonu hiçbir a.a’yı kodlamayan bir kodona, örneğin bir sonlama kodonuna (stop kodonu) dönüştüren mutasyonlara “Anlamsız Mutasyon” denir. Bu tür mutasyonlar, protein sentezinin normalden önce sonlanmasına, dolayısıyla genin biyolojik işlevini görememesine yol açar. Bir a.a.’yı kodlayan kodonun, başka bir a.a.’yı kodlayan kodona dönüşmesine ise “Yanlış Anlamlı Mutasyon” denir. Eksilme ya da eklenme mutasyonları, nokta mutasyonlarından çok daha önemli değişikliklerin sorumlusudur. DNA zincirinde bir ya da birden fazla bazın eksilmesi ya da eklenmesi, genellikle eklenme ya da eksilmenin olduğu noktadan başlayarak kod okuma çerçevesinin kaymasına yol açar. Bu yüzden gen yapısında önemli değişiklikler meydana getirir. Örneğin: TAG GGC ATA ACG ATT dizisinde, ilk kodonda oluşan bir mutasyonla bir A bazının eklendiği varsayılırsa, bu yeni dizi TAA GGG CAT AAC GAT T şeklinde okunmaya başlanacak ve bu farklı dizi, okuma çerçevesindeki kayma nedeniyle bambaşka bir aminoasidi kodlayacaktır.Birden fazla kodonda ortaya çıkan bu tür değişikliklerin daha önemli ve ciddi sonuçlar doğurması doğaldır. Mutasyona uğramış DNA dizileri de tıpkı normal DNA dizileri gibi eşlenir,çoğalır ve dölden döle normal diziler gibi aktarılır. Mutasyon geçirmiş kalıtsal bilgi ancak yeni bir mutasyonla eski durumuna dönebilir. Geri dönüşlü mutasyon denen ikinci mutasyon özgün genin yapısını onarır ve yeniden normal işlevini kazandırabilir; bazen de, ilk mutasyonun oluştuğu bölgeden başka bir bölgede ortaya çıkan baskılayıcı mutasyon denen ikinci bir mutasyonun ilk mutasyonun etkisini tamamen ya da bir ölçüde yok edebilir. Eşeyli olarak üreyen insanda ve diğer tüm üstün yapılı canlılarda mutasyonlar, oluştukları hücreleri cinsinden iki grupta incelenebilir. Eşey hücrelerinde oluşan mutasyonlara “Tohumsal Mutasyon”, bunların dışındaki tüm diğer hücrelerdeki mutasyonlara ise “Somatik Mutasyon” denir. Somatik mutasyonların en çarpıcı örneği mavi gözlü insanlarda gözlenebilir. Mavi göz, bir pigmentin eksikliğinden ileri gelen çekinik(resesif) bir karakterdir. Ortaya çıkabilmesi için hem anneden hem de babadan çekinik karakter genini (b) alması gerekir. Baskın karakter geninden (B) bir tane bile alan insanlar kahverengi gözlü (Bb) olurlar. Bazen ender olarak, mavi gözlü insanların -genelde bir- gözünde kahverengi bir bölge görülür. Bu özellik büyük olasılıkla, göz hücrelerinde oluşan ve b genini B’ye değiştiren bir somatik mutasyonla oluşur. Ancak bu tür mutasyonlar eşey hücrelerini etkilemediğinden kuşaklara aktarılamaz. Ama mavi gözlü iki insanın kahverengi gözlü çocuklarının olması ancak eşey hücrelerindeki bir mutasyon sonucunda ortaya çıkar. Özellikle tohumsal mutasyonlar, kalıtımın incelenmesinde ve insan evriminin gelecekteki yönünü belirleyen ipuçları olarak da incelenmeye değer olgulardır. Yeni oluşan mutasyonların çoğu doğal dengeyi bozduğu için zararlı, hatta kalıtsal hastalıkların birçoğunda olduğu gibi ölümcüldür. Bu zararlı genlerin toplumda yayılmasını önleyebilmek, ancak mutasyona uğramış kalıtsal bilgiyi taşıyan canlının üreme yeteneğinin azalmasına ya da yok olmasına bağlıdır. Mutasyonun gözlenebilen bir etki olmadan ortaya çıkması çok az gözlenen bir olgudur. Daha çok çevreden gelen kimyasal ya da fiziksel etkiler nedeniyle olur. Bir dış etkinin mutasyona yol açabilmesi (mutajen olması) için hücre içine girip etkinliğini gösterebilmesi gerekir. Örneğin Güneş’in morötesi ışınları, girim gücü düşük olduğu için yalnızca deri hücrelerinde somatik mutasyona yol açabilirken, girim gücü yüksek olan X ışınları ya da atom bombası ışımaları tohumsal mutasyona yol açabilen çok güçlü etkenlerdir. Bu tür mutasyonların bir çok örneği yakın zamanda Çernobil patlaması sonucunda çevredeki bir çok canlı türünde gözlenmiştir. Günümüzde bile bu patlama sonrası etrafa saçılan radyoaktif maddelerin neden olduğu somatik mutasyonların görünür sonuçları vardır. Halen Rusya ve Karadeniz Bölgesi’ndeki kanser oranları çok yüksektir.

http://www.biyologlar.com/mutasyon

Kanın Fizyolojisi

Kan, hücrelerden ve “plazma “ adı verilen bir sıvıdan oluşmuştur. Hücreler eritrositler (kırmızı kan hücreleri), lökositler (beyaz kan hücreleri) ve trombositlerdir. Hücrelerin % 99’undan fazlasını eritrositler oluşturur. Eritrositler kanın oksijen taşıyan hücreleridir.Lökositler vücudu enfeksiyonlara ve kanserekarşı koruyan hücrelerdir. Trombositler ise kanın pıhtılaşmasında görev alırlar. Eğer kan santrifüj edilirse, hücreler plazmadan ayrılır. Hücreler daha ağır oldukları için dibe çökerken daha hafif olan plazma üstte kalır. Kan, içi heparin ile sıvanmış “mikropipet” denilen küçük tüplerde santrifüj edilir. Bu tüpün en alttaki kısmında eritrositler toplanır, bunun hemen üstünde ise çok ince bir tabaka halinde lökositler bulunur, en üstte ise plazma bulunur. Hematokrit, eritrositlerin oluşturduğu kan hacminin toplam kan hacmine oranıdır. Hematokrit tayini için kan heparinize özel tüplerde santrifüj edilir, eritrositler en altta toplanır, onun üstünde lökosit ve trombositlerin oluşturduğu çok ince bir tabaka oluşur, en üstte ise plazma adı verilen açık saman sarısı-beyaz renkte sıvı toplanır. Hematokriti hesaplamak için eritrositlerle dolu olan tüpün uzunluğu kanla dolu tüpün uzunluğuna bölünüp, çıkan sonuç 100 ile çarpılır.Hematokrit pipetinde eritrositler 36 mm lik bir sütun oluştururken, lökosit ve trombositler birlikte yaklaşık 1-2 mm lik bir sütun oluşturmalarının sebebi, bu hücrelerin sayılarından kaynaklanmaktadır. 1 mm3 kanda 4,6-6,2 milyon eritrosit varken, 5.000-10.000 lökosit ve 200.000-400.000 trombosit vardır. Doğal olarak, sayıca fazla olan eritrositler hemotokrit pipetinde daha uzun bir sütun oluşturacaklardır.Hematokrit oranı erkeklerde % 40-50 arasında değişirken, bu oran kadınlarda % 35-45 arasında değişir. Erkeklerde hematokrit oranının yüksek olmasının sebebi, erkeklerdeki toplam kan hücresi sayısının kadınlarınkinden daha fazla olmasından kaynaklanmaktadır. Erkeklerde 1 mm3 kanda ortalama 5,1-5,8 milyon kan hücresi varken kadınlarda 1 mm3 kanda 4,3-5,2 milyon kan hücresi vardır. Eritrositlerin sayısının azaldığı durumlara anemi (kansızlık) denirken, eritrosit sayısının arttığı durumlara ise polisitemi denir. Plazma kanın sıvı kısmıdır, su içinde çözünmüş çok sayıda organik ve inorganik maddelerden oluşur. Bu maddelerden en önemlisi proteinlerdir. Proteinler plazmanın toplam ağırlığının yaklaşık yüzde 7 sini oluşturur. Plazma proteinleri 3 ana gruba ayrılır. Bunlar, albüminler, globülinler ve fibrinojendir. Bu proteinlerin kandaki konsantrasyonu, sırasıyla 4,5 g/100mL , 2,5 g/100 mL ve 0,3 g/100mL dir. Proteinler içinde miktar olarak en fazla olan albüminlerdir. Bu proteinler, hücreler tarafından kullanılmak üzere plazmadan ayrılmazlar. Hücreler kendi proteinlerini yapmak için plazma amino asitlerini kullanırlar fakat hiçbir zaman plazma proteinlerini kullanmazlar. Plazma proteinleri plazmanın içinde yada interstisiyel sıvıda fonksiyon yaparlar. Kısacası, plazma proteinleri, hücreler tarafından kullanılmak üzere plazmayı terk etmezler. Eğer kanın pıhtılaşmasına izin verilirse, tüpün üstünde kalan sıvıya plazma değil serum denir. Serumda fibrinojen ve pıhtılaşma ile ilgili diğer proteinler, pıhtılaşmada kullanıldığı için yoktur.

http://www.biyologlar.com/kanin-fizyolojisi-1

Kan grupları ve değişik kalıtım biçimleri

A. KAN KARAKTERLERİ1. ABO KarakteriA geni, B geni, O geni olmak üzere üç ayrı alel genle kalıtılır. A ve B genleri O genine baskın, kendi aralarında ise eşbaskındır.Kan grubu, kan alış verişinde çok etkilidir. Bireylerin kan grubunu belirleyen, alyuvarlarında bulunan antijenler (aglütinojen)'dir. Kan plazmasında (serum) ise antijenlere karşı oluşturulmuş antikorlar (aglütinin) bulunur.•* Kan Alış - Verişi Her grubun kendi grubuyla yaptığı alış-verişler idealdir. Yandaki şekilde gösterilen noktalı oklar ise, yarı çökelmeli kan nakilleridir. Ancak acil durumlarda uygulanabilir.•* Aglutinasyon (Çökelme)Uygun olmayan kan nakillerinde kan serumunda bulunan antikorlar alyuvarları birbirine yapıştırıp bağlayarak çökelmelerini sağlarlar. Buna aglütinasyon denir.A antijeni + a antikoru = ÇökelmeAlıcının antikor üreticisi olduğu durumlar kan nakli için uygun değildir. Çünkü, tam çökelme olur.2. Rh KarakteriBu karakter kan grubunun pozitif (+) veya negatifliğini (–) belirler. Pozitiflik geni negatiflik genine baskındır.•* Rh Uyuşmazlığı (Eritroblastosis fetalis)Anne Rh– ve baba Rh+ olduğu zaman, ikinci ve sonraki Rh+ çocuklarda görülebilir. Böyle çocuklar gelişmenin erken evresinde düşük olarak atılabilir veya gelişmesini tamamlayarak doğarlar.İlk gebelikte çocuk Rh+ bile olsa annenin kanı çocuğun kanını tanımaz. Doğum esnasındaki yaralanmalarla tanımış olur ve annenin kanı çocuğun Rh proteinine karşı Rh antikorunu oluşturur. Sonraki gebeliklerde bu antikorlar plasentadan geçerse çocuğun kanını çökeltir ve tahrip edebilir.B. DEĞİŞİK KALITIM BİÇİMLERİ1. Çok AlellikDeğişik canlı türlerinin bazı karakterlerinde alel gen çeşidi ikiden fazladır. Buna çok alellik denir. Ancak, bu durumda da bir birey iki adet alel gen bulundurabilir.Bu durumda bireylerin genotip çeşidi formülüyle bulunabilir.Bireylerin fenotip çeşidinin ne kadar olacağı hakkında kesin bir şey söylenemez. Çok alelliğe en iyi örnekler, insan kan grubu ve tavşanlarda post rengidir.2. Eş Baskınlık (Ekivalentlik)Bir karakteri belirleyen iki farklı gen birbirlerine baskınlık sağlayamazlarsa veya eşit değerde baskınlık oluştururlarsa, dış görünüş (fenotip) iki genin de etkisiyle ortaya çıkar. Böylece heterozigot bireyler üçüncü bir fenotipi göstermiş olurlar. Böyle karekterlerde genotip çeşidi değişmez. Fenotip çeşidi (3) genotip çeşidine eşit (3) olur.3. Çok Genli Kalıtımİnsanlara ait, boy uzunluğu, vücut iriliği, zekilik, deri rengi; hayvanlarda süt verimi, yumurta verimi, meyvelerde büyüklük, tavuklarda ibik şekli gibi birçok karakter bir’den fazla alel gen çifti ile aktarılır. İnsanda deri rengi 2 ayrı gen çiftiyle kalıtılır.Tam bir zenci AABB genotipindedir. Tam bir beyaz ise aabb’dir. Her ikisi çaprazlandığında AaBb genotipli F1 melez olacaktır. F2 de ise tam siyah zenciden beyaza doğru geniş bir açılıma rastlanır.4. Ayrılmama OlayıMayoz bölünme ile gametler meydana gelirken, bölünmenin I. anafaz safhasında homolog kromozomlar, II. anafaz da ise kardeş kromatidler birbirlerinden ayrılamayarak aynı hücreye gidebilirler.Sonuçta kromozom sayısı bir fazla ve bir eksik gametler meydana gelir. Bu anormal gametlerin normal gametlerle döllenmesiyle ise (2n + 1) ve (2n - 1) kromozomlu bireyler meydana gelir.5. Kontrol ÇaprazlamasıBaskın fenotipteki bir bireyin, heterozigot mu, yoksa homozigot mu olduğunu anlamak için yapılır. Bunun için, baskın birey, fenotipine bakıldığında genotipi tahmin edilebilen bireyle (genellikle çekinikle) çaprazlanır. Oluşan bütün bireyler baskın ise, incelenen canlı homozigottur. Ancak çekinik bireyler de oluşursa incelenen canlı heterozigottur.

http://www.biyologlar.com/kan-gruplari-ve-degisik-kalitim-bicimleri-2

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

ScrippsAraştırma Enstitüsü Dr. SupriyaSrinivasan liderliğindeki bir araştırma ekibi, bağırsakta yağ yakmayı tetikleyen bir beyin hormonunu tespit etti.

http://www.biyologlar.com/bilim-adamlari-yag-yakmayi-tetikleyen-beyin-sinyalizasyon-molekulunu-buldu-

Zika Enfeksiyonunun İnsan Hücresini Nasıl Değiştirdiğini Görün...

Zika Enfeksiyonunun İnsan Hücresini Nasıl Değiştirdiğini Görün...

Bu görsel özet, hem insan hepatomu hem de nöronal progenitör hücrelerde Zika virüsü enfeksiyonunun hücresel mimarinin önemli yapısal değişikliğe neden olduğunu gösteren Cortese ve arkadaşlarının bulgularını göstermektedir.

http://www.biyologlar.com/zika-enfeksiyonunun-insan-hucresini-nasil-degistirdigini-gorun-

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Farklı Çeşitteki Patojenleri Tanıma Rehberi

Protozoa olan Giardia, giardiyaz adı verilen ishal hastalığına sebep olur. Giardia türleri serbest yaşayan (flamotin aracılığıyla) trofozitler ve yumurta şeklindeki kistler olarak bulunur.

http://www.biyologlar.com/farkli-cesitteki-patojenleri-tanima-rehberi

Veritabanı ve Veritabanları

Biyoinformatiğe yeni başlayanlar veya kendini geliştirmek isteyenler genelde genom veya proteom veritabanlarıyla başlarlar; biz de eğitimlerimizde bu yolu izliyoruz ve bu kaynakları bir araya getiren veritabanları veritabanlarından sonlarda bahsediyoruz. Ancak bir süredir bunun çok da etkin olmadığını farketmeye başladım. Temel sıkıntı, bu yaklaşımla birçok veritabanına aynı anda bakmak pek de pratik olmadığı için her bir veritabanının güçlü ve zayıf yönlerini anlamak mümkün olmuyor. Yani bu şuna benziyor; bir çamaşır makinası almak istiyorsunuz ancak her bir markayı ayrı ayrı gezdiğinizde kafanız karışıyor ve hızlı bir kıyaslama imkanı bulamıyorsunuz; bir teknoloji mağazasında aynı markaları bir arada gördüğünüzde ise karar verme süreciniz kolaylaşıyor. GeneCards'la başlayalım. Kısaca şunu yapıyor GeneCards; her bir gen için birçok veritabanındaki veriyi otomatik olarak toplayıp aynı sayfada sınıflandırarak gösteriyor. Bunu hatırlar mısınız bilmiyorum ama, eskiden (daha bilgisayarlar piyasada yokken) kütüphanelerde dizin kartlarından oluşan bir sistem vardı. Bir kitap hakkındaki tanımlayıcı her bilgi ve bazen de kısa bir özet bir kart üzerinde sunulurdu ve bu kartlar alfabetik olarak dizilip dar uzun çekmecelerde muhafaza edilirdi [geçmişten bahsettiğim için kelime seçimlerim bile değişti, korunmak yerine muhafaza'ya geçtim. Kolay kolay karşılaşamayacağınız veya bir başkasının yönlendirmesi olmadan keşfedemeyeceğiniz birçok kıymetli veritabanı GeneCards'da yer alıyor. Örneğin MDM2 üzerinden gidelim [Lisans'ta ilk ciddi raporumu bu gen için hazırlamıştım, neden seçtiğimi bilmiyorum, ismi hoşuma gitmişti sanırım]. GeneCards'ta bu geni aradığınızda bu genin kelime olarak bir şekilde ilişkilendirilebileceği birçok seçenek karşınıza çıkıyor, ardından genin kendisine tıklayıp devam edebiliyorsunuz. En önemli kısım, "Jump to Section" menüsünde yer alan ve web sayfasında da kutularla ayrılan başlıklar. Her bir başlığın altında, akademik olarak güvenilir ve referans kabul edilen veritabanlarının isimleri ve buralardan elde edilen verileri buluyorsunuz. Bir gen veya protein hakkında araştırma veya ödev yapıyorsanız, bu konuda bulabileceğiniz ve mutlaka başvurmanız gereken neredeyse tüm kaynaklar burada, tek bir sayfada. GeneCards'ı bir kez keşfedince vaz geçemeyeceksiniz. GeneCards hakkında ufak bir konudan daha bahsetmek istiyorum. Güneş tutulmasının ülkemizden çok iyi gözlenebildiği bir sene (galiba 2006'da) Antalya'da ICGEB etkinliğinde bu servisi kuran ve yürüten kişi ile tanışmıştım. 5 tam zamanlı, bir o kadar da yarı zamanlı çalışandan oluşan bir ekipten bahsetmişti; büyük kısmı öğrenciydi diye hatırlıyorum. O zaman içimden geçirmiştim, böyle bir şeyi neden biz yapamayalım diye. Ancak bizdeki kritik kütle o zaman daha oluşmamıştı, bir türlü de oluşamadı nedense. Bir diğer kritik veritabanları veritabanı ise Pathguide. Toronto'dan Gary Bader'in [BIND veritabanını hayata geçiren zât-ı muhterem] meydana getirdiği bu kaynak o kadar değerli ki, nasıl ifade etmek lazım bilemedim. Buradaki temel fayda şu: piyasadaki birçok yolak [pathway] veritabanı veya bu bilgiyle ilişkili veritabanları teker teker taranmış ve bazı özellikleri özetlenmiş. Yani yaptığınız araştırma yolak bilgisini veya sistem yaklaşımını içeriyorsa, kesinlikle başvurmanız gereken bir kaynak; hayatınızı çok kolaylaştıracak. Lisans yaz stajımda yer aldığım laboratuvar Bader ve ekibiyle ortak işler yapıyordu ve ben de tanışma ve birlikte çalışma şansına sahip olmuştum. Türkiye'den ve Bilkent'ten geldiğimi öğrenmiş ve öğrenir öğrenmez benim yanıma gelmişti, ve hemen PATIKA'yı sormuştu. PATIKA bizde çok bilinmez ancak yurtdışındaki etkisi hakikaten çok büyük. Son olarak bir eksiklikten bahsetmek istiyorum. Kaynaklarımızın neredeyse tamamı metin tabanlı, ancak biz insanlar metin yerine şekilleri algılamakta daha uzmanlaşmış durumdayız. Bu nedenle, verilerin -nasıl olacağını tam olarak kestiremiyorum ama- şekillerle temsil edilebileceği bir yaklaşıma ihtiyacımız var; büyük ihtimalle bunu keşfedebildiğimiz zaman bazı şeyler çok daha hızlanacak. Cytoscape bu bağlamda sahip olduğu eklentiler [plug-ins] ve Google Chart entegrasyonu ile büyük bir potansiyele sahip. Yapılacak ve yapılabilecek çok şey var. biyoinformatiktr.blogspot.com

http://www.biyologlar.com/veritabani-ve-veritabanlari

Kambriyen Öncesi

"Kambriyen öncesi" yeryüzünün oluşumundan Kambriyene kadar geçen dört milyar yıllık zaman dilimidir. Yeryüzü tarihinin 7/8'lik bölümü, Kambriyen öncesinde geçer. Dünyanın yüzeyinin soğuyup, katılaşması, kıtasal levhaların, atmosferin ve okyanusların oluşması. Yaşamın jeobiyokimyasal süreçler sonucu ortaya çıkması, bakterilerin evrimi, atmosferin oksijence zenginleşmesi, ökaryotların evrimi ve ilk hayvanların ortaya çıkması hep Kambriyen öncesinde gerçekleşir. Ne var ki Kambriyen öncesine ait bilgileriniz son derece sınırlı ve tartışmalı. Yeryüzünde bilinen en eski kayaçlar 3.8 milyar yıl öncesine ait. Bu zamandan önceki kayaçlar jeolojik olaylar sırasında aşınarak ya da yeniden magmaya karışarak yok olmuş. Dünyanın 4,5 milyar yıl olarak biçilen yaşı, jeolojik etkinliğin olmadığı Ay'dan getirilen taşların ve yeryüzüne düşen meteorlar üzerinde yapılan çalışmalarla bulunmuştur. Dünyanın ilk oluşumu sırasında (Hadeyan) ilk atmosfer ve okyanuslar oluşmuştur. Bu dönemde yeryuvarı çok sayıda meteor düşmesine hedef olmaktaydı ve volkanik etkinlik çok yüksekti. Dünyamız, volkanların püskürttüğü metan, amonyak, su buharı, hidrojen sülfür, karbon mono ve dioksit, azot, fosfor ve kükürt gibi gazlardan oluşan ilkel ve bugünkü canlılar için zehirli bir atmosferle çevriliydi. Henüz ozon tabakası oluşmadığından güneşin mor ötesi ışınları yeryüzüne kolaylıkla ulaşıyordu. Maddelerin yüksek enerji altında sentezlenmesi sonucu yeni moleküller oluştu ve okyanusların korunaklı yerlerinde birikti. Bu şekilde başlayan ve uzun süre devam eden kimyasal evrim süreci ile moleküllerden bir kısmı değişime uğradı ve canlılığın temel maddesi olan DNA ve RNA molekülleri haline geldi. Daha sonraki dönem (Arkeyan) Biyolojik evrimin başlangıcı kabul edilmekte ve ilkel oksijensiz yaşamın ortaya çıktığı varsayılmaktadır. Bu devirdeki ilk okyanuslarda oksijen yoktu. Daha önceki devirde oluşan DNA molekülleri, canlılığın çeşitlenmesinde "protein sentezinin denetlenmesi" gibi önemli bir rol üstlendi. Böylelikle, yaklaşık 3-4 milyar yıl önce "bir gen + bir enzim" şeklinde ya da 1989 ‘da Sidney Altman ve Thomas Cech tarafından keşfedilen RNA’dan yapılmış enzim (Ribozim) benzeri bir molekülün oluştuğu ve bunlarında kendi eşitini yapabilen ilk canlı moleküller meydana geldiği öne sürülmüştür. Bu ilk hücreydi ve biyolojik evrim süreci başlamış oluyordu. Oksijensiz solunum yapabilen ilk canlılar (protobiyota) çevrelerinde birikmiş besin maddelerini kullanarak kendi enerjilerini ürettiler. İlkel hücrelerin çekirdekleri, hücre zarları ve özelleşmiş aygıtları (organelleri) yoktu. Hücre proteinden yapılmış bir zar ile çevriliydi ve içinde genetik kodun bulunduğu DNA zinciri (kromozom) yer alıyordu. Prokaryotik bakteriler adı verilen bu canlılar, yaklaşık 3.3 milyar yıl önce güneş enerjisini kullanarak "fotosentez yapma" özelliği kazandılar. Fotosentez yapabilen yeni tip bakteriler (siyanobakteriler), o zamana kadar oksijensiz olan okyanuslara oksijen aktarmaya başladılar. Kambriyen öncesi dönenim son zamanlarında (Proterozoyik) kompleks çok hücreliler ortaya çıkmıştır. Bunun dışında oksijenli atmosfer oluşmuş, bakteriler yaygınlaşmış,çekirdekli hücreler (ökaryotların) gelişmiş ve nihayetinde çok hücreli bir fauna (edikara faunası= yaklaşık 700 milyon önce ortaya çıkan hayvan faunası) oluşmuştur. Dünyanın ilk oluşumu sırasında dünya coğrafyasına daha çok denizler denizler ve ufak kara parçaları egemendi. Ancak, yaklaşık 3.5 - 3 milyar yıl önce bu levhacıklar konveksiyon akımları nedeniyle süratle çarpışarak birbirine eklendi ve yeryuvarının ilk kıtaları oluşmaya başladı. Proterozoyik sırasında devam eden kıtasal hareketlerle dev boyutlu kıta "Rodinia" oluşmuştur.

http://www.biyologlar.com/kambriyen-oncesi

Anne sütündeki vitaminler ve miktarları

Anne Sütünün Antienfektif Öğeleri: • Laktoferrin: Demiri bağlayarak patojen mikroorganizmaların üreme­sini engelleyen bakteriostatik etkisi olan bir proteindir. Bağışıklık sistemini güçlendirir ve büyüme etmenidir. • Bifidus Faktörü: Barsak pH’sını düşürerek, diyareye neden olan mik­roorganizma ve mantarların üremesine engel olan Laktobasillus bifidus adlı yararlı bakterinin oluşumunu sağlar. • Lizozim: Bakterisidal etkisi olan bir enzimdir. • İnterferon, Laktoperoksidaz: Antiviral et­kili ve bakteriostatik etkisi olan bir proteindir. • İmmünoglobülinler: Sekretuvar IgA bak­terilerden E Coli, vibrio kolera, H influenza, dif­teri, pnömoni, salmonella, shigella ve virüsler­den polio, rotavirüs, HIV ve sitomegalovirusa karşı etkilidir. • Hücre ve Antikorlar: T ve B lenfositler, makrofajlar, nötrofiller, epitelyal hücreler • Komplemanlar, Fibronektin: Özellikle C3 opsonin (antijenle birleşe­rek onu fagositoza hassas kılan antikor) olarak görev alır. • Nükleotidler • Sitokinler: Anne sütünde bulunan sitokinlerden interlökin 1β, T hücrelerini aktive eder; interlökin 6, IgA yapımını, tümör nekrozis faktör α (TNFα) komplamen salgılanmasını ve dönüştürücü büyüme etmeni (transforming growth factor β; TGFβ) ise T hücrelerine dönüşümü arttırmaktadır. • Lenfositler: E. Coli’ye karşı etkindir. • Oligosakkaritler: Bakterilerin epitel dokuya bağlanmasını önlerler. Vitaminler Miktar (mg/L) Yağda Eriyen Vitaminler A Vitamini Karotenoidler 0.53 Tokoferol (E vitamini) 0.24 K Vitamin 0.015 Kolekalsiferol (D vitamini) 0.001 Suda Eriyen Vitaminler Tiamin (B1 vitamini) 0.15 Riboflavin (B2) 0.37 Pridoksin (B6) 0.10 Niasin (B3) 1.70 Kobalamin (B12) 0.0003 Folik asit (B9) 0.043 Askorbik Asit (C vitamini) 47 Enerji ve Besin Öğeleri / Anne Sütündeki Miktar (100mL) Enerji (kkal) 69 Protein (g) 1.3 Laktoz (g) 7.0 Yağ ( g) 4.1 Protein (%) 7.0 Laktoz (%) 42.0 Yağ (%) 51.0 Vitaminler Retinol (μg) 60 β karoten (μg) 27 D (IU) 0.42 E (mg) 0.34 K (μg) 0.21 Tiamin (mg) 0.02 Riboflavin (mg) 0.03 Nikotinik asit (mg) 0.22 B12 (μg) 0.10 B6 (mg) 0.01 Folat (μg) 5.0 Pantotenik asit (mg) 0.25 Biotin (μg) 0.7 C (mg) 3.7 Mineraller Sodyum (mg) 14 Potasyum (mg) 58 Klor (mg) 42 Kalsiyum (mg) 34 Fosfor (mg) 14 Magnezyum (mg) 3.0 Demir (mg) 0.07 Bakır (mg) 0.04 Çinko (mg) 0.28 İyot (μg) 3.0 Manganez (μg) 0.1 Selenyum (mg) 14 Taurin (mg) 4.6 Kükürt (mg) 14 Böbrek solüt yükü (mmol/lt) 75-80

http://www.biyologlar.com/anne-sutundeki-vitaminler-ve-miktarlari

Bitkilerde Çimlenme ve Gelişim

a-Bitkilerde gelişim olaylarından hücre bölünmesi,büyüme ve farklılaşma olayları görülür b-Çiçeksiz bitkilerde sporların çimlenmesi ile gametofit gelişir c-Çiçeksiz bitkilerde Sperm ve ovumun döllenmesi ile oluşan zigotun mitoz bölünmeleri ile sporofit gelişir d-Vegetatif üreyen bitkilerde dal,yaprak,tomurcuk vb. vücud kısımlarından yeni bitki gelişir e-Çiçekli bitkilerde tohumdan yeni bitki gelişir. Tohum A-Yapısı: a-Kabuk: 1-Tohumu örter 2-Kabuğu oluşturan hücrelerin çeperleri mantarlaşmış ve odunlaşmıştır 3-Tohumu su kayıbından,mekanik etkilerden,kimyasal ve biyolojik etkilerden korur 4-Kalınlığı şekli ve yapısal özellikleri türe göre değişir 5-Kabuğu oluşturan hücreler 2n kromozomludur b-Endosperm: 1-Açık tohumlularda sadece polar nucleuslardan döllenmeden gelişir ve n kromozomlu hücrelerden oluşur 2-Kapalı tohumlularda polar nucleusların döllenmesi ile oluşan triploid 3n kromozomlu hücrelerden oluşur 3-Türe göre farklı yoğunluklarda olmak üzere karbonhidrat,yağ ve protein depolar 4-Çimleninceye kadar hetotrof olan bitki embriyosunun madde ihtiyacını karşılar 5-Çimlenince endospermin görevini yapraklar üstlenir c-Embriyo: 1-Ovumun spermle döllenmesi ile oluşur ve 2n kromozomludur 2-Embriyonik gövde ve kök taşır 3-Tohum çimleninceye kadar yavaşca gelişir d-Çenekler (Kotiledonlar): 1-Embriyoya bağlı olarak gelişir 2-Endospermden besin alarak bitki çimleninceye kadar onu besler 3-Çimlenmeden sonra bir süre fotosentezde yapar(Dikotillerde) 4-Soğan,zambak vb.de tek çenek, sebzeler,çalılar,ağaçlar vb.de iki çenek, çamgillerde çok çenek bulunur Tohumda uyku hali: 1-Tohumda metabolizma yavaş fakat devam etmektedir 2-Süre tohum kabuğuna ve besin miktarına bağlıdır 3-Kuru ve soğuk koşullarda uyku halinde kalarak canlılığı korumakta ve neslin devamını garanti altına almaktadır 4-Tohumlarda uyku halinin devamı sağlayan hormon absisik asittir 5-Tohumlarda canlı ve çimlenme yetenekli kalma süresi türe göre değişir Çimlenme gücü: a-Tohum kabuğu kalınlığına b-Tohumdaki su miktarının azlığına c-Depo besinlerden yağ yerine nişastanın varlığına bağlı olarak artar. Tohumda çimlenme: Gerekli şartlar: 1-Su: Kabuğun çatlaması,embriyonun serbest kalması ve enzimatik reaksiyonlar için gereklidir 2-Oksijen:Artan metabolizma için gerekli enerji oksijenli solunumla karşılanır 3-Sıcaklık:Artan enzim etkinliği uygun sıcaklıklarda gerçekleşir 4-Işık:Bazı türlerde (Tütün) çimlenmede ışığa ihtiyaç duyulur. Çimlenme mekanizması: 1-Şartlar uygun olduğunda tohum su alarak şişer ve tohum kabuğu çatlar 2-Alınan su tohumda absisik asit etkinliğini kırar 3-Alınan suyun etkisi ile endosperm hücreleri giberillin üretir. 4-Giberillin absisik asidin etkinliğini azaltırken amilaz etkinliğini artırırı 5-Amilaz etkisi ile nişasta glikoza parçalanır 6-Oluşan glikoz çatlayan kabukla beraber alınan fazla miktardaki O2 kullanılarak solunumda harcanır 7-Çimlenme ile beraber tohumda ağırlık azalması gerçekleşir 8-Metabolizmanın hızlanması ile beraber hücre bölünmesi hızlanır 9-Meristem etkisi ile bitkiye yeni hücre ve dokular katılır 10-Bitki uç meristemi ile boyca,kambiyum ile ence kalınlaşarak büyür. Bitki gelişmesinde rol alan faktörler: A-Su: 1-Turgor oluşumu 2-Madde taşınımı 3-Fotosentezde organik madde sentezi 4-Terleme ile ısı düzenlenmesi 5-Stomaların çalışması 6-Enzimatik reaksiyonlar için ortam 7-Hidroliz reaksiyonlarının gerçekleşmesi B-Sıcaklık: 1-Enzim etkinliği ve metabolizmada etkendir 2-Terleme üzerine etkendir 3-Topraktan su alınımıda etkendir C-Işık: 1-Klorofil sentezinde gereklidir 2-Fotosentezde gereklidir 3-Bazı türlerde çimlenmede gereklidir D-pH,Tuz ve Mineral: 1-Enzim etkinliği için gereklidir 2-Bazı moleküllerin (Enzim,hormon,pigment vb.) yapısına katılır E-Hormonlar: Bitkisel hormonlar bitkinin büyümesi,yaprak-çiçek açması, yönelim, meyva oluşumu,Tohumda uyku ve çimlenme vb. yaşamsal olayların gerçekleşmesinde rol alırlar Not:Bu faktörlerin etkinliği farklı türler için değişebilir.Değişik türlerde özel adaptasyonlar görülür.

http://www.biyologlar.com/bitkilerde-cimlenme-ve-gelisim

Moleküler filogenetik

Organizmalar arasındaki evrimsel bağlantıların grafik gösterimi filogenetik ağaçlarla yapılır. Evrim doğrudan gözlemlenemeyen uzun süreler içinde meydana geldiği için, biyologlar filogenileri inşa edebilmek için günümüz organizmaları arasındaki evrimsel ilişkiler hakkında çıkarımlar yapmak zorundadır. Fosiller filogenilerin inşasında yardımcı olabilir; ama fosil kalıntılar çoğu zaman faydalı olamayacak derecede seyrektir. Eskiden fenotiplere, genellikle anatomik karakteristiklere bakılarak filogenetik ilişkiler belirlenmekteyken, günümüzde filogenetik ağaçları inşa etmek için moleküler veriler (örneğin protein ve DNA dizileri) kullanılmaktadır.

http://www.biyologlar.com/molekuler-filogenetik

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

New discovery in living cell signaling

New discovery in living cell signaling

A breakthrough discovery into how living cells process and respond to chemical information could help advance the development of treatments for a large number of cancers and other cellular disorders that have been resistant to therapy. An international collaboration of researchers, led by scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have unlocked the secret behind the activation of the Ras family of proteins, one of the most important components of cellular signaling networks in biology and major drivers of cancers that are among the most difficult to treat. "Ras is a family of membrane-anchored proteins whose activation is a critical step in cellular signaling, but almost everything we know about how Ras signals are activated has been derived from bulk assays, in solution or in live cells, in which information about the role of the membrane environment and anything about variation among individual molecules is lost," says Jay Groves, a chemist with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Chemistry Department. "Using a supported-membrane array platform, we were able to perform single molecule studies of Ras activation in a membrane environment and discover a surprising new mechanism though which Ras signaling is activated by Son of Sevenless (SOS) proteins." Groves, who is also a Howard Hughes Medical Institute (HHMI) investigator, is the corresponding author of a paper in Science that reports this discovery. The paper is titled "Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics." The lead authors were Lars Iversen and Hsiung-Lin Tu, both members of Groves' research group at the time of the study. See below for a complete list of co-authors and their institutional affiliations. The cellular signaling networks of living cells start with receptor proteins residing on a cell's surface that detect and interact with the environment. Signals from these receptors are transmitted to chemical networks within the cell that process the incoming information, make decisions, and direct subsequent cellular activities. "Although cellular signaling networks perform logical operations like a computer microprocessor, they do not operate in the same way," Groves says. "The individual computational steps in a standard computer are deterministic; the outcome is determined by the inputs. For the chemical reactions that compose a cellular signaling network, however, the molecular level outcomes are defined by probabilities only. This means that the same input can lead to different outcomes." For cellular signaling networks involving large numbers of protein molecules, the outcome can be directly determined by the process of averaging. Even though the behavior of an individual protein is intrinsically variable, the average behavior from a large group of identical proteins is precisely determined by molecular level probabilities. Ras activation in a living cell, however, involves a relatively small number of SOS molecules, making it impossible to average the variable behavior of the individual molecules. This variation is referred to as stochastic "noise" and has been widely viewed by scientists as an error a cell must overcome. "Our study showed that, in fact, an important aspect of the SOS signal that activates Ras is encoded in the noise," says Groves. "The protein's dynamic fluctuations between different states of activity transmit information, which means we have found a regulatory coupling in a protein signaling reaction that is entirely based on dynamics, without any trace of the signal being seen in the average behavior." The Ras Enigma Ras proteins are essential components of signaling networks that control cellular proliferation, differentiation and survival. Mutations in Ras genes were the first specific genetic alterations linked to human cancers and it is now estimated that nearly a third of all human cancers can be traced to something going wrong with Ras activation. Defective Ras signaling has also been cited as a contributing factor to other diseases, including diabetes and immunological and inflammatory disorders. Despite this long history of recognized association with cancers and other diseases, Ras proteins have been dubbed "un-druggable," largely because their activation mechanism has been poorly understood. A roadblock to understanding Ras signaling is that the membranes to which Ras proteins are anchored play a major role in their activation through SOS exchange factors. SOS activity in turn was believed to be allosterically regulated through protein and membrane interactions, but this was deduced from cell biological studies rather than direct observations. For a better understanding of how Ras activation by SOS is regulated, scientists need to observe individual SOS molecules interacting with Ras in a membrane environment. However, membrane environments have traditionally presented a stiff experimental challenge. __IMAGE_3 Groves and his research group overcame this challenge with the development of supported membrane arrays constructed out of lipid layers embedded with fixed patterns of metal nanostructures and assembled onto a silica substrate. The metal structures allow for the controlled spacing of proteins and other cellular molecules placed on the membranes. This makes it possible for the membranes to serve as a platform for assays that can be used to observe in real-time the activity of single molecules. "In this case, our supported membrane allowed us to corral individual SOS molecules into nanofabricated patches that trapped all the membrane-associated Ras molecules they activated," Groves says. "This in turn allowed us to monitor the individual contribution of every molecule in the ensemble and reveal how the dynamic transitions of individual molecules encoded information that is lost in the average." What the collaboration discovered is that SOS regulation is based on the dynamics of distinct stochastic fluctuations between different activity states that last approximately 100 seconds but do not show up in ensemble averages. These long-lived fluctuations provide the mechanism of allosteric SOS regulation and Ras activation. "The allosteric regulation of SOS deduced from cell biological and bulk biochemical studies is conspicuously absent in direct single molecule studies," Groves says. "This means that something that was inferred to exist proved to be missing when we did an experiment that explicitly measured it. The dynamic fluctuations we observed within the system correlated with the expected allosteric regulation, and subsequent theoretical modeling confirmed that such stochastic fluctuations can give rise to known bulk effects." Understanding the role of stochastic dynamic fluctuations as signaling transduction mechanisms for Ras proteins, could point the way to new and effective therapies for Ras-driven cancers and other cellular disorders. In their Science paper, the collaborators also express their belief that the dynamic fluctuations mechanism they discovered is not unique to Ras proteins but could be applicable to a broad range of other cellular signaling proteins. "The reason this mechanism has not been reported before is that no previous experiment could have revealed it," Groves says. "All previous experiments on this system - and most others for that matter - were based on average behavior. Only single molecule measurements that can look at all the molecules in the system are capable of revealing this type of effect, which we think may prove to be very important in the function of living cell signaling systems." Source : lcyarris@lbl.gov http://www.biologynews.net

http://www.biyologlar.com/new-discovery-in-living-cell-signaling

Magnetic nanoparticles could be key to effective immunotherapy

Magnetic nanoparticles could be key to effective immunotherapy

In recent years, researchers have hotly pursued immunotherapy, a promising form of treatment that relies on harnessing and training the body's own immune system to better fight cancer and infection. Now, results of a study led by Johns Hopkins investigators suggests that a device composed of a magnetic column paired with custom-made magnetic nanoparticles may hold a key to bringing immunotherapy into widespread and successful clinical use. A summary of the research, conducted in mouse and human cells, appears online July 14 in the journal ACS Nano.   The Johns Hopkins team focused on training and rapidly multiplying immune system white blood cells known as T cells because of their potential as an effective weapon against cancer, according to Jonathan Schneck, M.D., Ph.D., a professor of pathology, medicine and oncology at the Johns Hopkins University School of Medicine's Institute for Cell Engineering. "The challenge has been to train these cells efficiently enough, and get them to divide fast enough, that we could use them as the basis of a therapy for cancer patients. We've taken a big step toward solving that problem," he says. In a bid to simplify and streamline immune cellular therapies, Schneck, Karlo Perica, a recent M.D./Ph.D. graduate who worked in Schneck's lab, and others worked with artificial white blood cells. These so-called artificial antigen-presenting cells (aAPCs) were pioneered by Schneck's lab and have shown promise in activating laboratory animals' immune systems to attack cancer cells. To do that, Perica explains, the aAPCs must interact with naive T cells already present in the body, awaiting instructions about which specific invader to target and battle. The aAPCs bind to specialized receptors on the T cells' surfaces and "present" them with distinctive proteins called antigens. This process activates the T cells to ward off a virus, bacteria or tumor, as well as to make more T cells. In a previous study in mice, Schneck's team found that naive T-cells activated more effectively when multiple aAPCs bound to different receptors on the cells, and then were exposed to a magnetic field. The magnets brought the aAPCs and their receptors closer together, priming the T cells both to battle the target cancer and divide to form more activated cells. But naive T cells are as rare in the blood as a "needle in a haystack," Perica says. Because the ultimate goal is to harvest a patient's T cells from a blood sample, then train them and expand their numbers before putting them back into the patient, Schneck's research team looked to magnets as a potential way to separate the naive T cells from others in the blood. The team mixed blood plasma from mice and, separately, humans with magnetic aAPCs bearing antigens from tumors. They then ran the plasma through a magnetic column. The tumor-fighting T cells bound to aAPCs and stuck to the sides of the column, while other cells washed straight through and were discarded. The magnetic field of the column activated the T cells, which were then washed off into a nourishing broth, or culture, to grow and divide. After one week, their numbers had expanded by an estimated 5,000 to 10,000 times. Because numbers of these cells could be expanded quickly enough to be therapeutically useful, the approach could open the door to individualized immunotherapy treatments that rely on a patient's own cells, says Perica. Schneck says that the use of naive T cells could make the new technique useful for more patients than another immunotherapy now being tested, which relies on other white blood cells called tumor-infiltrating lymphocytes. Those cells are already "trained" to fight cancer, and researchers have shown some success isolating some of the cells from tumors, inducing them to divide, and then transferring them back into patients. But, Schneck says, not all patients are eligible for this therapy, because not all have tumor-infiltrating lymphocytes. By contrast, all people have naive T cells, so patients with cancer could potentially benefit from the new approach whether or not they have tumor-infiltrating lymphocytes. "The aAPCs and magnetic column together provide the foundation for simplifying and streamlining the process of generating tumor-specific T cells for use in immunotherapy," says Juan Carlos Varela, M.D., Ph.D., a former member of Schneck's laboratory who is now an assistant professor at the Medical University of South Carolina. The researchers found that the technique also worked with a mixture of aAPCs bearing multiple antigens, which they say could help combat the problem of tumors mutating to evade the body's defenses. "We get multiple shots on the goal," Schneck says. While the team initially tested the new method only on cancer antigens, Schneck says it could also potentially work for therapies against chronic infectious diseases, such as HIV. He says that if further testing goes well, clinical trials of the technique could begin within a year and a half. Source: Johns Hopkins Medicine http://www.biologynews.net

http://www.biyologlar.com/magnetic-nanoparticles-could-be-key-to-effective-immunotherapy

Stem-cell approach shows promise for Duchenne muscular dystrophy

Stem-cell approach shows promise for Duchenne muscular dystrophy

Researchers have shown that transplanting stem cells derived from normal mouse blood vessels into the hearts of mice that model the pathology associated with Duchenne muscular dystrophy (DMD) prevents the decrease in heart function associated with DMD. Their findings appear in the journal Stem Cells Translational Medicine. Duchenne muscular dystrophy is a genetic disorder caused by a mutation in the gene for dystrophin, a protein that anchors muscle cells in place when they contract. Without dystrophin, muscle contractions tear cell membranes, leading to cell death. The lost muscle cells must be regenerated, but in time, scar tissue replaces the muscle cells, causing the muscle weakness and heart problems typical of DMD. The U.S. Centers for Disease Control and Prevention estimates that DMD affects one in every 3,500 males. The disease is more prevalent in males because the dystrophin mutation occurs on the X chromosome; males have one X and one Y chromosome, so a male with this mutation will have DMD, while females have two X chromosomes and must have the mutation on both of them to have the disease. Females with the mutation in one X chromosome sometimes develop muscle weakness and heart problems as well, and may pass the mutation on to their children. Treatment with stem cells derived from blood vessels spurred nestin-positive stem cells already present in the heart to form new cardiac muscle cells (see arrows). Although medical advances have extended the lifespans of DMD patients from their teens or 20s into their early 30s, disease-related damage to the heart and diaphragm still limits their lifespan. "Almost 100 percent of patients develop dilated cardiomyopathy," in which a weakened heart with enlarged chambers prevents blood from being properly pumped throughout the body, said University of Illinois comparative biosciences professor Suzanne Berry-Miller, who led the study. "Right now, doctors are treating the symptoms of this heart problem by giving patients drugs to try to prolong heart function, but that can't replace the lost or damaged cells," she said. In the new study, the researchers injected stem cells known as aorta-derived mesoangioblasts (ADM) into the hearts of dystrophin-deficient mice that serve as a model for human DMD. The ADM stem cells have a working copy of the dystrophin gene. This stem cell therapy prevented or delayed heart problems in mice that did not already show signs of the functional or structural defects typical of Duchenne muscular dystrophy, the researchers report. After injecting dystrophin-deficient mouse hearts with normal, blood-vessel-derived stem cells, researchers saw an increase in cell division among nestin-positive stem cells (shown in green) in the heart. Berry-Miller and her colleagues do not yet know why the functional benefits occur, but proposed three potential mechanisms. They observed that some of the injected stem cells became new heart muscle cells that expressed the lacking dystrophin protein. The treatment also caused existing stem cells in the heart to divide and become new heart muscle cells, and the stem cells stimulated new blood vessel formation in the heart. It is not yet clear which of these effects is responsible for delaying the onset of cardiomyopathy, Berry-Miller said. "These vessel-derived cells might be good candidates for therapy, but the more important thing is the results give us new potential therapeutic targets to study, which may be activated directly without the use of cells that are injected into the patient, such as the ADM in the current study," Berry-Miller said. "Activating stem cells that are already present in the body to repair tissue would avoid the potential requirement to find a match between donors and recipients and potential rejection of the stem cells by the patients." Despite the encouraging results that show that stem cells yield a functional benefit when administered before pathology arises in DMD mouse hearts, a decline in function was seen in mice that already showed the characteristics of dilated cardiomyopathy. One of these characteristics is the replacement of muscle tissue with connective tissue, known as fibrosis. This difference may occur, Berry-Miller said, as a result of stem cells landing in a pocket of fibrosis rather than in muscle tissue. The stem cells may then become fibroblasts that generate more connective tissue, increasing the amount of scarring and making heart function worse. This shows that the timing of stem cell insertion plays a crucial role in an increase in heart function in mice lacking the dystrophin protein. She remains optimistic that these results provide a stepping-stone toward new clinical targets for human DMD patients. "This is the only study so far where a functional benefit has been observed from stem cells in the dystrophin-deficient heart, or where endogenous stem cells in the heart have been observed to produce new muscle cells that replace those lost in DMD, so I think it opens up a new area to focus on in pre-clinical studies for DMD," Berry-Miller said. Source : University of Illinois at Urbana-Champaign

http://www.biyologlar.com/stem-cell-approach-shows-promise-for-duchenne-muscular-dystrophy

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

LİKENLERİN BESİN OLARAK KULLANIMI

Özellikle de kıtlık zamanlarında boreal ve subarktik bölgelerdeki insanlar tarafından likenlerin yerel olarak kullanıldıklarına dair birçok kayıt vardır. Likenler un ile karıştırılabilir veya jelatinlerini çıkartmak için kaynatılabilir. Batı Kanada ve ABD’de bazı kabilelerin bol bir konifer likeni olan Bryoria fremontii’yi ( fruticos bir liken ) ektikleri bilinmektedir. Liken; acı maddelerin süzülmesi için önce suya bırakılır, bekletilir, buharlı kayalarda pişirilir, kurutulur ve daha sonra küçük parçalara kesilir, ihtiyaç duyulduğunda ise parçalar suya bırakılır ve yenilirdi. Bu gibi belirgin türlerin % 24.8 karbohidrat ve % 5.5 protein içeriği vardır. Bugün Japonya’da kaya fungusu olarak bilinen Umbilicaria gibi bazı yapraksı türler dağlık alanlardan toplanır ve salatalarla yenilir veya yağda kızartılarak yenilir, bunların lezzetli olduğu söylenir. İzciler için boreal ve sıcak alanlarda bulunan kaya likenleri acil durumlarda yemek için iyi bir kaynaktır. Toprakta büyüyen Cladonia, Cetraria islandica ve diğer likenler özellikle protosetrarik asit gibi acı ve tadı çok kötü olan asitler içerebilir. Bu gibi asitler zehirli değildir fakat soda içinde kaynatılarak uzaklaştırılmalıdır. Tabi ki likenler hiçbir zaman insanlar tarafından büyük ölçüde besin kaynağı olmayacaktır. Besinsel değeri diğerleri ile karşılaştırıldığında avantajlı olsa bile bunların çok yavaş büyümesi insanların bunları kültüre alması için bir dezavantajdır Likenler tundra ve subarktik bölgelerde yaşayan rengeyikleri için önemli bir besin kaynağıdırlar. Bulunan ürüne bağlı olarak bu hayvanların toplam kış besinin % 30-60’ını teşkil edebilirler. En yaygın otlatılan likenler Cladonia ve Cetraria cinsleridir. Bunlara halk dilinde ren geyiği likenleri denir. Themnolia vermicularis ve Peltigera cinsine ait likenlerde geyikler tarafından önemli ölçüde tüketilirler. Eğer kar örtüsü kalın ise rengeyiği Bryoria, Usnea gibi epifitik likenleri de yiyecektir. Kuzey ABD’de rengeyikleri kar kaplaması otlara ulaşmayı engellediği zamanlarda bu likenlerden şiddetli bir şekilde yararlanır. Kanada’da bazı hayvan yemi olan likenler rengeyiğinin tahmin edilen besin gereksinimlerine nazaran protein, kalsiyum ve fosfor açısından fakirdir ama yinede bunlar için önemli bir besin kaynağıdır. Muhtemelen likenlerin en yaygın biçimde hayvan yemi olarak kullanılması Laponyalılar tarafından gerçekleştirilir. Bunlar bu likenleri ekerler ve biçtikten sonra depo ederler. Günümüzde çok fazla otlatmanın Laponya’daki liken ürünü miktarını ciddi şekilde azalttığı belirlenmiştir. Normal olarak otlanan bir alanın rejenere olması için yaklaşık 15 yıl gerekir ama burada kontrollerin yetersiz olmasından dolayı bu alanların kendini yenilemesi için çok az zaman verilmektedir ve bu yüzden likenlerde önemli azalmalara yol açmaktadır. Libya çöllerinde otlayan koyunlar yoğun biçimde Aspicilia esculenta üzerinden beslenmektedir. Bu liken toprak ve kayalara ince ve yumuşak bir biçimde bağlanır ve koyun tarafından kolayca yenir, ama dişlerinin aşınmasından dolayı koyun henüz olgunlaşmamış dişlerini kaybeder. Aspicilia esculenta’nın aynı zamanda eski İsraillilerin masallarına konu olan kudret helvası olduğundan şüphe edilmektedir 

http://www.biyologlar.com/likenlerin-besin-olarak-kullanimi

Hangi vitamin ne işe yarar, Hangi vitamin hangi besinde bulunur?

A vitamini: Enfeksiyonlara karşı direnci arttırır normal büyüme, üreme, kemik ve diş gelişimi, görme için gereklidir. Cildin tırnakların ve saçların sağlıklı kalmasını sağlar. Diş ve dişetleri için büyük önem taşır . Yalnızca hayvanlarda bulunan ve yağda eriyen doymamış bir alkoldur. Sütte, yumurta sarısında, ton ve morina balıklarının karaciğer yağında (balık yağı) bulunur. Havuç ve havuç benzeri sarı-turuncu renkli sebzelerde A vitamininin ön maddeleri vardır (alfa karoten). Yaşlılıkta etkinliği çok artan kolajenaz enziminin indirgeyici etkisini önlediği saptanmıştır. Bu vitamin ayrıca protein bileşimine katılır ve tümerlerde görülen hücrelerin kontrolsüz biçimde çoğalmasını önler. A vitamini eksikliğinde gözde ve deride keratoz, kseroftalmi (göz akı ve kormeanın parlaklığını kaybederek kuruması), foliküler hiperkeratoz (bir deri hastalığı) ve gece körlüğü görülür. Bulunduğu Yiyecekler: Kayısı,kuşkonmaz,maydanoz,ıspanak, havuç,kereviz, marul, portakal, erik, domates D vitamini: İnce bağırsaklardan kalsiyumun emilmesine yardımcı olur, kalsiyumun kemiklerde ve dişlerde tutulmasını sağlar . Bulunduğu Yiyecekler: Balık yağı, balık, yumurta, tereyağı, karaciğer, et, sebzeler, güneş E vitamini Antioksidan etkilidir. Alzheimer hastalığının ilerlemesini yavaşlatıyor yaşlı kişilerde bağışıklık sistemini güçlendirir. Hücrelerin daha uzun yaşamasını ve yenilenmesini sağlar . Fitol ve metil hidrokinon türevidir. İnsanda karaciğerin yanı sıra yağlı dokularda, böbrekte, kalpte, kaslarda ve böbrek üstü bezi kabuğunda depolanır. A vitamini, doymamış yağ asitleri ve C vitamini gibi maddelerin oksidasyonunu önleyerek antioksidan özellik gösterir. Nükleik asitler ve değişik enzim sistemlerinin metabolizmasına katılır.E vitamini eksikliği ender görülür ve kansızlık biçiminde ortaya çıkar. Başta tahılllar olmak üzere yeşil sebzelerde bol miktarda bulunur… Bulunduğu Yiyecekler: Buğday, tohumlu besinler, soya fasülyesi yağı, arı sütü, ceviz, marul, tere, kereviz, maydanoz, ıspanak, lahana, mısır yağı, mısır, yulafta K vitamini: Karaciğere gelen Kvitamini burada üretilen bazı pıhtılaşma faktörlerinin yapımında rol alır. Kvitamini takviyesi yanlızca kanamalı hastalarda verilir. Bulunduğu Yiyecekler:Ispanak,kabak, marul, yeşil domates, yeşil biber, inek sütü, peynir, tereyağı, yumurta, kırmızı et, pirinç, karaciğer, mısır, muz, şeftali, çilek B1 vitamini: Kasların ve sinir sisteminin faliyeti için gereklidir.Yetersizliğinde iştahsızlık, huzursuzluk, bellek zayıflığı ve dikkat azalması görülür. Bulunduğu Yiyecekler: Buğday, kepek, bira mayası, taze sebze meyve, koyun eti, sığır eti, balık eti, yumurta, süt B2 vitamini: Eksikliğinde dilde kızarma, yanma hissi, ağız çevresi ve dudaklarda kızarma, tahriş, çatlaklar, gözlerde kaşıntı, yanma hissi, katarakt oluşumu, saçların dökülmesi, çocuklarda büyüme yavaşlaması, kilo kaybı, sindirim sorunları oluşur . Bulunduğu Yiyecekler:Karaciğer, böbrek, buğday unu, patates, et, süt, yumurta, peynir, kepek, yeşil sebzeler, havuç, fındık, yer fıstığı, mercimek B3 vitamini: Yetersiz beslenme sonucu deriyi sinir sistemini tutan pellegra adlı hastalık ortaya çıkar. Hücrelerin oksijeni kullanabilmeleri için gereklidir. Midede sindirimin temel taşları olan asitlerin üretimini sağlar. Bulunduğu Yiyecekler: Bira mayası, kepek, yer fıstığı, sakatat, kırmızı et, balık, buğday, baklagiller, un, yumurta, süt, limon, kabak, incir, portakal, hurma B5 vitamini: Doğada bol olduğu için eksikliğine rastlanmaz. Ayrıca bir miktar bağırsaklarda da yapılmaktadır. Eksikliği kan şekerinde düşme, ellerde titreme, kalp çarpıntıya neden olur . Bulunduğu Yiyecekler:Karaciğer, kırmızı et, tavuk, yumurta, ekmek, sebzeler B6 vitamini: Sinir sistemi ve hormonların çalışmasını düzenler.Vücudun savunmasında antikor ve akyuvar oluşumunda rol oynar. Eksikliğinde migren tipi baş ağrısı, kansızlık, ciltte kuruluk, görme problemleri, uyuşukluk, adele zayıflığı ve krampları oluşur . Bulunduğu Yiyecekler: Karaciğer, böbrek, kırmızı et, balık, yumurta, ekmek, sebzeler B11 vitamini: Kırmızı kan hücreleri ve sinir dokularının oluşumunda aktif rol oynar. Hücre bölünmesi için gereklidir. Bu etkisi ile büyümeyi de sağlar. Anne karnındaki bebeğin sinir sisteminin gelişimi için de gereklidir. Eksikliğinde iştahsızlık, kilo kaybı, bulantı, kusma, ishal, baş ağrısı, unutkanlık, çarpıntı gibi bazı kalp sorunları oluşabilir . Bulunduğu Yiyecekler:Karaciğer, böbrek, kırmızı et, ıspanak, marul, yumurta, ekmek, portakal, muz B12 vitamini: Besinlerle veya sigara gibi alışkanlıklarla vücuda giren siyanürü etkisiz hale getirir. Eksikliğinde dilde hassasiyet, şişme, kızarma, hayal görme, depresyon, adalelerde kasılmalar, sinir iltihaplarına bağlı olarak el ve ayaklarda uyuşma, karıncalanma, yanma şikayetleri oluşur . Bulunduğu Yiyecekler:Karaciğer, yürek, böbrek, kırmızı et, tavuk, balık, süt, peynir, yumurta C vitamini: Etkin biçimi L-askorbik asittir.C vitamininin başlıca rolü doku bağlarını tutan ana protein maddesi olan kollageni üretmektir. Bağışıklık sistemi, sinir sistemi, hormonlar ve besinlerin emilimi fonksiyonlarına (E vitamini ve demir gibi )destek olur.Göz merceği ve akciğer gibi yapılarda antioksidan olarak çalışır. C vitamini ayrıca antioksidan yapıda olan E vitaminine dönüşebilir. C vitamini turunçgillerde bol miktarda, ayrıca taze sebzelerde, maydanozda, kabakta ,soğanda ve domateste bulunur.Vücudumuz C vitaminini üretemez bitkiler ve bazı hayvanlar bu vitamini üretebilmektedir. Besinlerle alınan vitamin 2 saat içersinde kullanılır 4 saat sonunda kandan uzaklaşır. Yaraların iyileşmesini, damarların sağlıklı olamalarını sağlar.Vücudun savunma sistemini artırıcı etkisi vardır. Histamin yapımını azaltarak allerjik olayların şiddetini düşürür. Eksikliğinde diş eti kanamaları ve çekilmeleri olur. Bulunduğu Yiyecekler:Siyah üzüm, narenciye, çilek, kavun, karpuz, yeşil biber, maydanoz, brokoli, havuç, soğan, bezelye

http://www.biyologlar.com/hangi-vitamin-ne-ise-yarar-hangi-vitamin-hangi-besinde-bulunur

 
3WTURK CMS v6.03WTURK CMS v6.0