Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 174 kayıt bulundu.
<b class=red>Popüler</b> Bilim ve Gelecek &quot;Ayna Nöronlar&quot;

Popüler Bilim ve Gelecek "Ayna Nöronlar"

Ayna Nöronlar: Beyindeki bu hücreler, sadece bir hareket ortaya koyduğumuzda değil ayrıca aynı hareketin başkaları tarafından gerçekleşmesini gözlemlediğimizde de ateşlenmektedir.

http://www.biyologlar.com/populer-bilim-ve-gelecek-ayna-noronlar

Filogenetik ağaç yapımı

Evrim bir dallanma süreci olarak düşünülebilir. Topluluklar zaman içinde değişime uğrar ve bunun sonucu farklı dallar halinde türleşir, birbiriyle melezlenir veya tükenerek son bulur. Bu süreçler bir filogenetik ağaç olarak gösterilebilir. Filogenetiğin çözmeye çalıştığı sorun, genetik verilerin sadece bugüne ait olması, fosil kayıtlarının (osteometrik verilerin) ise tesadüfi ve güvenilmez olmasıdır. Tüm ağacın çizilebilmesi içine evrimin nasıl çalıştığı hakkındaki bilgiler kullanılır. Dolayısıyla filogenetik ağaç, evrimsel olayların meydana gelme sırasıyla ilgili bir hipoteze bağlıdır. Kladistik, canlı gruplarının birbiriyle paylaştığı özelliklere göre sınıflandırma yapması nedeniyle filogenetik ağaçlar hakkında çıkarım yapmak için hâlen tercih edilen yöntemdir. Filogenik çıkarımları yapmak için kullanılan en yaygın yöntemler arasında parsimoni, maksimum olasılık ve Markov zinciri Monte Karlo-temelli Bayes çıkarımı sayılabilir. Yirminci yüzyıl ortalarında popüler olan ama günümüzde geçerliliğini yitirmiş olan fenetik, uzaklık matrisine dayalı yöntemler kullanarak toplam benzerliğe dayalı ağaçlar inşa etmekte kullanılır, bunların filogenetik ilişkilere karşılık geldiği varsayılır. Tüm bu yöntemler sözkonusu biyolojik türlerde gözlemlenen özelliklerin evrimleşmesini betimleyen matematik modellere dayalıdır ve genelde moleküler filogenetikte uygulanırlar. Moleküler filogenetik durumunda kullanılan biyolojik özellikler, nükleotit veya amino asit dizileridir.

http://www.biyologlar.com/filogenetik-agac-yapimi

Bezelye <b class=red>Popüler</b> Genetik Bilim Dergisi 2. Sayı Çıktı

Bezelye Popüler Genetik Bilim Dergisi 2. Sayı Çıktı

İÇERİK BAŞLIKLARI Kök Hücrelere Genel Bakış 3Sağlık ve Biyolojideki Problemlere Hesapsal Cözümler: Biyoenformatik Neden İmmünoloji Çalışıyoruz? Kişiye Özel Tıp: GENTESTRöportaj: Kistik Fibrozis Hastalığı Değil Hastayı Tedavi Edelim 21. Yüzyıl Genetik Çağı Olacak Sinirbilim: Nörogenetik ve Amyotrofil Lateral Skeroz (ALS) Spor ve Bağımlılık Genetik Cerrahi (DNA Ameliyatı) CRISPR-Cas9 Sistemi Biliyor Muydunuz? Sıradışı Bir Kariyer, Bilime Adanmış Bir Ömür: Jane Goodall Kitap Yorumu:Yaşamın Sırrı DNA Film Yorumu:GATTACA Nobel Ödülü Nedir? Demek Mezun Oldunuz, ya Sonra? (Amerika) Etkinlikler Kaynakça   E.Oğuzhan AKYILDIZ Bezelye Dergisi İmtiyaz Sahibi   E-Dergi 2.Sayı: PDF indir veya OKU 2. Sayı : Alternatif ling

http://www.biyologlar.com/bezelye-populer-genetik-bilim-dergisi-2-sayi-cikti

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler

Mikrodizi (Microarray) Nedir

Bu kavramı birçok yerde "mikrodizin" olarak da görmüşsünüzdür, o ayrı bir yazı konusu. Bu yazıda, daha önce detaylı bir şekilde bahsedeceğimi söylediğim mikrodizi teknolojisine giriş yapacağım. Mikrodizi veri analizi yerine, bu teknolojinin nasıl bir şeye benzediğinden bahsedeceğim. Bu teknoloji fazlasıyla popüler ülkemizde (dünyada artık Yeni Nesil Sekanslama konuşuluyor), bir süre daha devam edeceğe de benziyor. Temel birkaç sebepten birisi bu teknolojiyi uygulamayı bilen insan sayısı göreceli olarak hayli fazla, her yerde (evet, neredeyse her yerde) mikrodizi cihazı var, ve bu teknolojiyi kullanarak yayın çıkarmak göreceli olarak kolay. Bu durum da beraberinde gereğinden yüksek beklentileri ve uygunsuz teknoloji kullanımlarını getiriyor. Önce neden böyle bir teknolojiye ihtiyaç duyulduğundan başlayalım. Klasik bilimsel yaklaşım belirli bir vakit diliminde belirli bir faktörü incelemek üzerine kurulu. Bu nedenle p53 üzerine binlerce yayın var; ancak p53'ün tam olarak nasıl çalıştığına ilişkin elimizde tam bir bilgi yok, çünkü etkileşim mekanizmasını tam olarak anlayabilmiş değiliz. Buradaki anahtar kelime, "etkileşim" [interaction]. Yani klasik yaklaşımla, direksiyonun bir otomobil için çok önemli olduğunu anlayabiliyoruz. Hatta direksiyonun türler arasında (kamyon, otobüs, vapur, uçak vb.) korunduğunu ve bazen farklı şekillere büründüğünü ve buna rağmen aynı etkiyi yaptığını da kavrayabiliyoruz. Ama direksiyonun tam olarak nasıl çalıştığını klasik yaklaşımla anlayamıyoruz; çünkü bir başka deneyde direksiyonu sabit tutup gaza basıyoruz, bir başkasında otomobilin krank milini çıkarıp etkisine bakıyoruz, ve benzeri şeyler. Bu sıkıntı bilimin birçok dalında kendini gösteriyor, fakat özellikle de birden fazla faktörün işin içine girdiği alanlarda içinden çıkılmaz bir hal alıyor bu durum. Psikoloji bilimsel olarak geç kabul gören fakat hızlı ilerleyen bir dal. Klasik bilimsel yaklaşımla çözülemeyen bazı problemleri çözmek adına farklı bir yaklaşım ortaya çıkıyor. Gestalt psikolojisi denilen bu yaklaşım diyor ki: "Bütün, onu oluşturan parçaların toplamı değil, daha fazlasıdır." Yani deniyor ki, bir ormanı anlamak istiyorsanız teker teker her bir ağacı araştırmanız yetersizdir. Ormanı oluşturan şey, ağaçlar ve onların birbiriyle etkileşimidir. Yani p53'ün ne işe yaradığı çoğu zaman anlamsızdır; önemli olan, p53'ün diğer moleküllerle etkileşimini ortaya koymaktır. Yani direksiyonu çevirdiğimizde tekerlerin nasıl hareket ettiğini keşfetmek, belirli hızlarla giderken her bir derecelik direksiyon açısındaki değişmenin kaç metrelik sapmalara denk geldiğini görmek, her bir lastiğin aşınmışlığının bu sapmaları nasıl etkilediğini keşfetmek, direksiyon boşluğu denen şeyin aracın yönünü ayarlamayı nasıl etkilediğini bulmak tüm resmi görmektir. Elbette direksiyonun şekli, yapıldığı materyal vb. şeyler kıymetlidir ama, bütün resmin sadece ufak bir parçasıdır. Gestalt psikolojisini detaylı bir şekilde araştırmanızı öneririm; sistem biyolojisini anlamak için çok güzel bir başlangıç noktası bence. 1977 yılında Northern Blot adı verilen bir yöntem geliştirildi. Amaç, gen ifade miktarını hedef bir gen/transkript için belirleyebilmekti. Örneğin, p53 gen ifade miktarını bu yöntemle tayin edebiliyordunuz ve sadece bir veya birkaç gen ifade miktarını kendi aralarında farklı durumlar (hastalıklı - sağlıklı vb.) için kıyaslayabiliyordunuz. Burada önemli bir detay var; ilgilendiğiniz gen veya transkriptin DNA dizilimini, en azından bir kısmını bilmeniz gerekiyor ki ona göre probu tasarlayabilesiniz. Aslında bu durum aynı zamanda çok büyük bir kısıtlayıcı etkiye sahip; henüz keşfedilmemiş genler için bu yöntemi kullanabilmek mümkün değil. Hücredeki süreçleri daha iyi anlayabilmek için mümkünse hücredeki her detaya ilişkin veriye ihtiyacımız var. Genetik alanındaki araştırmalar ilerledikçe ve moleküller arası etkileşimin önemi farkedildikçe aynı anda onlarca gene ait özelliklere bakabilmenin daha faydalı olabileceği düşüncesi yaygınlaşmaya başladı; gestalt yaklaşımının biyoloji versiyonu gibi düşünebilirsiniz bu gelişme sürecini. Yeni bir teknolojinin geliştirilmesi biraz uzun sürdü; SAGE (Serial Analysis of Gene Expression) yöntemi bu arayışlar doğrultusunda ortaya çıktı, sene 1995. Henüz İnsan Genom Projesinin çıktıları bilinmiyordu ve araştırmacılar mümkün olduğu kadar çok gen ifade değişimini aynı anda gözlemleyebilmek istiyordu. Böylece, bir hastalık durumunda gen ifade miktarlarının sağlıklı bireylerin gen ifade miktarlarına göre nasıl değiştiği ve böylelikle hastalığa neyin neden olduğu, veya hastalığın neleri etkilediği/değiştirdiği anlaşılabilecekti. Yandaki şekil SAGE metodunu kısaca özetliyor. SAGE yönteminin bir diğer avantajı ise, hücredeki transkriptlerin ne olduğunu önceden bilmenizi gerektirmeyen ve yeni genlerin keşfine olanak sağlayan bir yaklaşıma sahip olması. Daha doğrusu, yeni bir genin ufak bir dizisini keşfetmekten bahsediyoruz, yine de bu o zamanlar için büyük bir keşif olarak düşünülebilir (Bir yazımda EST'lerden kısaca bahsetmiştim). SAGE metodu DNA dizilimlemeye dayanır ve o dönemde elimizdeki en iyi yöntem Sanger yöntemiydi. Eğer dizilimlemek istediğiniz DNA bölgesi fazlasıyla uzunsa bu hem uzun süreler, hem de yüksek maliyetler anlamına geliyor. Bu nedenle, yine aynı dönemde geliştirilen mikrodizi teknolojisi düşük maliyetler vadettiği için bir anda popüler hale geldi ve SAGE metodunun pabucunu dama attı. Oysa iki metodun karşılaştırmalarına baktığımızda, SAGE yöntemi mikrodizi teknolojisine göre çok daha kesin ve nicel sonuçlar verebiliyor. Maliyet avantajı fazlasıyla baskın gelmiş anlaşılan. Peki mikrodizi teknolojisi ne getirdi, temel farkı neydi? Bu yeni teknolojiyi, aynı anda gerçekleştirilen Northern Blot'lar gibi düşünebiliriz; binlerce ve bazen on binlerce Northern Blot, tek seferde, çok daha az sarf maliyetiyle. Yaklaşım aynı; önceden tasarlanmış ve bir transkripti tanımlayabilecek en az bir prob tasarlayın. Prob lafı biraz korkutucu geliyor başta ve bir kavram kargaşasına da yol açabiliyor. Kastettiğimiz şey, 20 ila 500 baz arasında uzunluğu olan tek zincirli bir DNA molekülü (ülkemizde yaygın olarak kullanılan Affymetrix teknolojisinde DNA molekülünün uzunluğu 25 baz olarak belirlenmiş). Olay tamamen hibridizasyon temelli ve bu nedenle tek zincirli DNA parçaları, eşlenecekleri diğer molekülleri bekliyorlar; onlar da hedef transkriptler. Bir video yüzlerce kelimeye bedel, buradan teknolojinin nasıl işlediğini izleyebilirsiniz. Birçok farklı mikrodizi teknolojisi ve yine birçok uygulaması var; yani aslında mikrodizi teknolojisi dediğimizde ortada yine ufak bir kavram kargaşası var ancak sistemin çalışması yukarıda bahsettiğimiz gibi. Peki sonra ne oluyor? Problara bağlanması için hücrelerden elde ettiğimiz DNA veya mRNA parçaları floresan moleküllerle işaretleniyor (kafamda, her bir nükleik asit molekülünün ucunda birer LED veya ampül varmış gibi hayal ediyorum). Problar sabit olduğu ve her bir pozisyonda hangi transkripti hedeflediği bilindiği için, o bölgelerdeki floresan ışımaya bakılıyor ve bu ışıma miktarının hücredeki gen ifadesi miktarıyla paralel olduğu varsayılıyor. Buradaki paralel olma ifadesi şu demek; elimizde sayısal veriler var ancak bunlar mutlak rakamlar değil. Çok ışıma varsa hücrede bu gen çok miktarda ifade ediliyor diye düşünüyoruz, az ışıma varsa az gen ifadesi var diye düşünüyoruz. Bu az veya çok olma durumu hücrede gerçekte kaç kopya transkript olduğu bilgisini vermiyor. Bu nedenle mutlaka bir referansa veya bir referans grubuna ihtiyacımız var. Mikrodizi ne değildir, tam da bu noktada başlıyor. Tek bir mikrodizi deneyiyle bir gene ait ifade değerini mutlak olarak söyleyemezsiniz, herhangi bir tespit yapamazsınız. Aynı değer grubuna ait örneklerle yapacağınız mikrodizi deneyleriyle de bunu yapamazsınız. Yani, 10 tane hasta bulup bunlardan alacağınız örneklerle yaptığınız mikrodizi deneyi, pratikte neredeyse hiç bir işe yaramaz, çünkü bu teknoloji böyle kullanılmaya uygun değil; mutlaka birden fazla referans çalışmaya ihtiyacınız var. Böylece elde ettiğiniz hasta örneklerine ait verilerin "çok" veya "az" olduğunu söyleyebileceğiniz bir referans noktası elde edebilirsiniz. Model organizma çalışırken referans veya kontrol grubu bulmak çok daha kolay ancak konu insan olduğunda sağlıklı bireylerden kontrol örneklerini nasıl bulabilirsiniz? Örneğin, sağlıklı bir bireye karaciğer biyopsisi yapmanın veya o bireyin beyninden parça almanın hem etik hem de yasal bir çok problemi var. O zaman bu dokulardan elde edilen örneklerle mikrodizi deneyleri yapılmayacak mı? Referansınız yoksa, evet, çalışmanın bir anlamı yok. Yeterince örnek toplayamıyorsanız, yine burada bir problem var. Elinizdeki değerler mutlak değerler değil ve bu değerlerin kendi içlerinde de sapmalar var, bu nedenle birçok örneğe ihtiyacınız var. Bütçeniz kısıtlıysa ve her bir deney grubu için sadece bir örnek çalışabilecekseniz, mikrodizi teknolojisine başvurmanın yine neredeyse hiç bir anlamı yok. Veya referans olarak kullanacağınız kontrol örnekleri gerçekten de kontrol değilse (deney grubu örnekleriyle aynı dokudan ve aynı şartlarda alınmadıysa vb.), o zaman yine yapacağınız çalışma tehlikeye giriyor. Yukarıda saydığım nedenlerden ötürü bir mikrodizi deneyi tasarlamadan önce bir biyoinformatik uzmanına veya bir biyoistatistikçiye danışmakta çok büyük faydalar var; bu sayede birçok hatanın ve verimsizliğin önüne geçilebilir. Her bir farklı üreticinin geliştirdiği mikrodizi teknolojileri de birbirinden farklı, bu nedenle bu konuda da bilgi sahibi olmak gerekiyor. Gözünüz korkmasın, Wikipedia'da ufak bir gezinti farklı mikrodizi teknolojileri hakkında fikir sahibi olmanız için yeterli.

http://www.biyologlar.com/mikrodizi-microarray-nedir

Biyolojik Silahlar

Kimyasal ajanlar gibi, biyolojik silahlar da neyse ki popüler kültürdeki şöhretlerine yakışır şekilde kullanılmış değiller henüz. 1971′de Kazakistan’daki bir iaboratuvardan kaçan ve silah olarak kullanılmak üzere hazırlanan çiçek hastalığı mikrobu yüzünden ölenlerin sayısı yalnızca 3. Üstelik hastalık salgın halinde ilerleme de göstermemiş. 1979′da şimdiki adı Ekaterinburg oian Sverdiovsk’taki bir fabrikadan sızan şarbon mikrobu içeren bir biyolojik silah yüzünden 68 kişi yaşamını yitirdi ve yine hastalık yayılmadı. İnsanların bu yüzden yaşamlarını yitirmeleri çok acı ama, yine de yaşam kaybı tek bir bombanın neden olacağından daha fazla değil. 1989′da Washington’da birkaç kamu işçisi kaza sonucu Ebola virüsüne maruz kaldı. Durum fark edilene kadar, birkaç gün boyunca bu işçiler sosyal yaşamlarını sürdürmüş, aile ve arkadaşlarıyla birlikte olmuşlardı. Buna karşın, bu olayda kimse yaşamını yitirmeden gerekli önlemler alınabildi. Gerçek şu ki, evrim milyonlarca yıl boyunca memeiilere, mikroplara karşı direnç gösterme özettiği kazandırdı. Örneğin kara veba, tarihte bilinen en kötü hastalıklardan biriydi; yetersiz sağlık hizmetleri ve kötü yaşam koşullarının hakim olduğu Orta Çağ Avrupası’nda at koşturdu. Ama salgın, insanlığı yok edemedi: birçok kişi hastalığı yendi. Bu senaryoların korku saçtığı günümüz batı toplumlarındaysa, hangi mikrop ya da virüs ortaya çıkarsa çıksın, daha sağlıklı insanlarla, gelişmiş sağlık hizmetleriyle ve biyoajanları yok etmek üzere geliştirilmiş ilaçlarla karşılaşacağı kesin. Belki günün birinde, bağışıklık sistemimizi ek-tisiz hale getirecek bir virüs üretebilen bir deli ortaya çıkar. Aslında mümkün olduğundan bir “süper hastalık” yaratılabilir ya da çiçek gibi, zaten var olan bir hastalık, mikrobun genleriyle oynanarak daha zararlı hale getirilebilir. Üstelik, zamanla biyoîeknolojinin gelişip, denetiminin daha güç olacağı düşünülürse, birtakım kişi ya da grupların, zararlı mikrop ya da virüsleri kolaylıkla üretebileceklerini de kabul edebiliriz. Ancak, yine de bilim adamları daha önce hiçbir korkunç hastalığın insanlığı ortadan kaldırmayı başaramadığı gibi, gelecekte de bunun pek olası olamayacağını söylüyorlar. Biyolojik silahlar diğer canlılar üzerinde zararlı etkiler yaratmak maksadıyla kullanılan bakteri, virüs, mikrobiyal toksinler, vb. ajanlardır. Bu tanım genellikle biyolojik olarak elde edilen toksinleri ve zehirleri de kapsayacak şekilde genişletilir. Biyolojik savaş araçları, yaşayan mikroorganizmaları (bakteri, protozoa, riketsia, virüs ve mantar) içerdiği gibi mikroorganizmalar, bitkiler ve hayvanlar tarafından üretilen toksinleri (kimyasallar) de kapsar. Yaşayan biyolojik maddeler kokusuz, tatsız ve havaya bulutu halinde atıldığı zaman 1 ila 5 mikron boyutunda son derece küçük parçacıklardan oluştuğundan insan gözüyle görülemez. Silah olarak kullanılabilecek biyolojik ajanlar şu şekilde sıralanabilir; Bakteriler: Küçük-serbest yaşayan organizmalar olup çoğunluğu katı veya sıvı kültür ortamında üretilebilirler. Bu organizmalar sitoplazma, hücre zarı ve nükleer materyaller içeren bir yapıya sahiptir. Basit bölünme ile ürerler. Oluşturdukları hastalıklar genellikle spesifik antibiyotik tedavilerine cevap verirler. Virüsler: İçlerinde çoğalabilecekleri canlı organizmalara ihtiyaç duyan organizmalardır. Bundan dolayı da enfeksiyoz etkileri büyük oranda konak hücrelere bağımlıdır. Virüsler genellikle antibiyotik tedavilere cevap vermeyen fakat antiviral bileşimlerin bir kısmına ve sınırlı kullanıma uygun preparatlara cevap veren hastalıklara neden olurlar. Riketsialar: Hem bakterilerin hem de virüslerin genel karakterlerini taşıyan mikroorganizmalardır. Bakteriler gibi metabolik enzimler ve hücre zarından oluşurlar ve oksijen kullanırlar ve geniş çaplı antibiyotiklere karşı duyarlıdırlar. Yaşayan hücreler içinde üremelerinden dolayı da virüsleri andırırlar. Klamidya: Kendi enerji kaynaklarını üretemediklerinden zorunlu hücre içi parazitlerdir. Bakteriler gibi geniş spekturumlu antibiyotiklere cevap verirler. Çoğalmak için virüsler gibi yaşayan hücrelere ihtiyaç duyarlar. Mantarlar: Fotosentez yapamayan, çürüyen bitkisel olgulardan besin ihtiyaçlarını sağlarlar. Toksinler: Yaşayan bitkiler, hayvanlar veya mikroorganizmalardan elde edilen zehirli maddelerdir. Bazı toksinler kimyasallara da dönüştürülebilirler. Toksinlere özel antiserum ve seçilmiş farmakolojik ajanlarla karşı konulabilir Literatürde çok sayıda biyolojik savaş ajanı belirtilmektedirler. Bunların arasında; Bacillus anthraksis (Şarbon Etkeni) Botulinum Toksinleri (Konserve Zehiri) Brucelloz (“Malta Humması” Etkeni) Vibrio Cholera ( Kolera Etkeni) Clostridium perfirenges (Gazlı Gangren Etkeni ) Salmonella typhi (Tifo Etkeni) Psoudomanas psoudomallei (Melioidozis hastalığı Etkeni) Psoudomanas mallei (Ruam hastalığı Etkeni) Yersinia pestis (Veba Etkeni) Francisella tularensis (Tularemi Etkeni) Coxiella burnetti ( Q Ateşi Etkeni) Smallpox virüs (Çiçek Hastalığı Etkeni) Congo-Crimean Hemorajik Ateşi Virüsü Ebola Virüsü Stafilokoksik Enterotoksin B Rift Valley Ateşi Virüsü Trichothecene mycotoxins Venezüella At Ensefaliti Plazmodium vivax (Sıtma Etkeni) Saxitoksin (predominant olarak doğada deniz dinoflajellileri tarafından üretilir) Kaynak:www.genbilim.com

http://www.biyologlar.com/biyolojik-silahlar

Primer Tasarımı ve Biyoinformatik

Primer tasarımı hakkında daha detaylı bilgi almak ve Primer-BLAST adlı web tabanlı primer tasarım aracını öğrenmek için bu yazının yanı sıra yeni hazırladığım Primer Tasarımı yazı dizisine de bir göz atabilirsiniz. Primer tasarımı her ne kadar birçok kişi için korkutucu olsa da, aslında birkaç noktaya dikkat edildiğinde gayet kolayca başarılabilen kolay bir tasarım. Primer3Plus gibi ücretsiz ve çevrimiçi araçların varlığında ise neredeyse çocuk oyuncağı. Temel sıkıntı, iyi bir primer tasarımında olması gereken şeylerin tam olarak bilinmeden bu işe kalkışılması; yardım sayfalarını ve varolan örnek dersleri okumadan primer tasarımı yapmaya kalkınca sonuç bir facia olabiliyor. Türkçe kaynaklar sınırlı ancak yine de hızlı bir Google aramasıyla bulunabiliyor. Bu haliyle primer tasarımı artık biyoinformatik açısından popülerliğini yitirdi diyebiliriz; artık bu işi yapan bir çok yazılım geliştirildi ve bahsettiğim gibi çevrimiçi ve ücretsiz olanlara da kolaylıkla ulaşılabiliyor. Primer tasarımını ilgi çekici bir biyoinformatik projesi haline getirebilecek ihtiyaçlardan biri, birçok farklı primeri aynı anda aynı PCR cihazında çalışabilir hale dönüştürmek; bunu yapan yazılımlar da mevcut ancak ücretli olarak sunuluyor. Eğer çalıştığınız laboratuvarda sınırlı sayıda örnekle ve ara sıra PCR deneyi yapıyorsanız, belki tüm primerlerin aynı sıcaklıkta optimum olarak çalışıp çalışmaması sizin için pek de önem ifade etmiyor olabilir. Ancak rutin olarak PCR çalışılan, PCR cihazlarının yoğun bir şekilde kullanıldığı ve mümkün olduğunca yüksek verimli bir şekilde kullanılması gerektiği durumlarda tüm primerlerin neredeyse aynı sıcaklıkta çalışıyor olması büyük oranda zamandan kazandırabilir ve iş yükünü gayet azaltabilir. Peki bu nasıl yapılabilir? Herhangi bir primer tasarım yazılımını incelediğimizde (bu durumda Primer3Plus'tan bahsediyor olacağım) otomatik olarak hesaplanan primerin sıcaklığının (Tm) sadece bazlara göre değişmediği, ortamda bulunan anyon ve katyonların da büyük oranda Tm değerine etki ettiğini kolaylıkla farkedebiliriz. Hatta bunun pratik bir etkisi de var. Bir dizi primer sipariş ettiğinizde bu primerlerin bazı durumlarda hesapladığınız sıcaklıklarda çalışmadığını farkedersiniz. Bunun nedeni çoğu zaman şudur: primer tasarımı yaptığınız yazılımın varsaydığı sodyum (Na) ve potasyum (K) konsantrasyon değerleriyle (genelde bu değerleri bulmak için birkaç tıklama fazla yapmanız gerekir) kullandığınız PCR karışımının (master mix) sodyum ve potasyum konsantrasyon değerleri birbirinden oldukça farklıdır ve bu bazı durumlarda 4-5 °C farklılığa neden olur. İşin arkasında yatan nedeni farkedemediğiniz için de ya fazladan deney yaparsınız, ya da yeniden primer sipariş etmek zorunda kalırsınız. Konumuza dönelim; primer tasarlarken belirli bir sıcaklık aralığında etkin bir şekilde çalışabilmeleri için nasıl bir tasarım yapabiliriz, ve nasıl bir programa ihtiyacımız var? Öncelikle Tm değerinin hesaplanması için kullanılan formüllere bakalım. Kabul gören birkaç formül var; bunlardan en basit olanı şu: Tm (°C) = (4 x GC) + (2 x AT) Bu formül 13'den fazla nükleotitlik primerler için tavsiye edilmiyor; yani pratik bir primer tasarımında kesin sıcaklık değerlerini bu formülle hesaplayabilmek mümkün değil. Ancak programlama açısından baktığımızda, primerler için önerilen 52-58 °C lik bir Tm aralığında primer tasarlayabilmek için kolay bir programlama projesi olabilirdi. Gelelim gerçek hesaplamaya. Primer3 ve NCBI Primer BLAST web araçlarında kullanılan formül (referans makaleye buradan ulaşabilirsiniz) ise biraz daha karışık ve daha gerçekçi; bu formüller deneydeki sodyum ve potasyum değerlerini de hesaplamaya katıp daha kesin Tm değerleri sunuyor. Formül biraz karışık ve ilk gördüğümde biraz gözüm korkmuştu, ancak formülü "insani" bir şekilde görebilmek için kolay bir yol var. Bu kolay yola geçmeden önce, bahsedilen formülün yer aldığı bir web sitesinden detayları görebilirsiniz. Kolay yol şu: bu hesaplamayı daha önce bir web aracı yapmış ve kullandığı formülü de Perl programlama dilinde kodlayarak kaynak kodlarını sunmuş. Perl kodu da herhangi bir programlama diline kolaylıkla uyarlanabilir durumda. Tam olarak yerini söylemeyeceğim ancak ilgilenenler Primer3 web aracının kaynak koduna göz atarak hızlıca hesaplamayı bulabilir. Peki ya sonrası? Otomatik primer tasarlayabilmek için seçilen hedef bölgelerden belirli şartları sağlayan primer dizilimlerini hesaplayabilmek için kullanılabilecek bazı eklenti ve paketler var; özellikle Matlab ve R'da ilgili fonksiyonlara kolaylıkla ulaşabilirsiniz. Matlab'daki "Bioinformatix Toolbox"da primer tasarımıyla ilgili örnek bir çalışma dahi mevcut. Yukarıda bahsettiğim Tm hesaplamasını da çalışmanıza dahil ettiğinizde ortaya gayet kullanışlı bir yazılım çıkarabilirsiniz. Böylece kullanıcının FASTA formatında gireceği DNA dizilimlerinin içerisinde belirli hedef Tm değerleri ve çoğaltılacak olan bölgenin uzunluk aralıkları şartlarını sağlayan bir dizi primeri otomatik olarak saniyeler içerisinde üretebilir, aynı zamanda bazı zor primerler için de yine otomatik olarak sodyum ve potasyum değerleriyle oynayarak primer diziliminin yanı sıra sodyum ve potasyum konsantrasyon değerleri de önerebilirsiniz.

http://www.biyologlar.com/primer-tasarimi-ve-biyoinformatik

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

Kanser Tedavisinde Yeni Silahlar

Kanser Tedavisinde Yeni Silahlar

İnsanlık, bildiğimiz kadarı ile, yazılı tarih boyunca kendi tarihi kadar eski ve bir o kadar da ürkütücü kanserle mücadele etmiş ve hala bu mücadelesine devam etmekte. M.Ö. 3000 yıllarında yazıldığı tahmin edilen eski Mısır metinlerinde meme ülserlerinin (o zaman henüz kanser kelimesi literatürde yoktu) koterle yakılarak alındığı anlatılıyor. Günümüzde ise kanser hastaları radyoterapi, kemoterapi ve cerrahi müdahaleler ile tedavi edilmeye çalışılmakta. Bu tedavi yöntemlerinin kanserli hücre kadar sağlıklı hücrelere de saldırması nedeni ile kusma, saç dökülmesi, enfeksiyon riskinin artması gibi istenmeyen etkiler hastalarda sıklıkla görülüyor. Kanser araştırmacıları, sağlıklı hücrelere zarar vermeyecek, ancak kanserli hücreleri öldürecek ilaçlar ve tedavi yöntemleri geliştirmeye çalışmaktalar. Sağlıklı hücreler ile kanser hücrelerini birbirinden ayırmak için kanser hücrelerinin genetik yapısının anlaşılması önemli olduğu biliniyor. Nitekim, 2010 yılında yapılan bir meta-analiz çalışması, kanser araştırmacıları arasında tümör biyolojisi ve kanser genetiği araştırmalarının popüler olduğunu gösteriyor [1]. Meme ülserlerinden bahseden eski Mısır metinlerinin üzerinden 5000 yıl, Hipokrat’ın “karsinoma” terimini kullanarak çeşitli kanser türlerini tanımlamasından 2400 yıl sonra kanser araştırmaları on beş yıldır umut vaat eden yeni bir alanda seyrini sürdürüyor: Kanser kök hücreleri (KKH). Şekil 1: KKH’lerin kendilerini yinelemeleri ve farklılaşmaları. (A) karesi içerisinde mavi renkle gösterilen KKH kendini sınırsız yineleyebilme özelliğine sahiptir. Bu özellik dönümlü ok ile temsil edilmiştir. KKH kendini yinelerken (B) karesi içerisindeki gibi kendinin aynısı kanser kök hücrelerini üretebilir. Bu KKH’ler de hem sınırsız kök hücre üretme, hem de farklılaşma yetisine sahiptir. (A) karesindeki KKH farklılaşırken ise önce (C) karesinde açık mavi ile gösterilen hücreyi üretir. Bu hücre bir miktar (soru işaretinin gösterdiği üzere) kendini tekrar üretme yetisine sahipken bu hücreden bölünerek farklılaşan diğer hücreler artık sınırsız kendilerini yineleme ya da farklılaşma yetisine sahip değildir. Kanser, basitçe anlatımı ile hücrelerin kontrolsüz büyümesi nedeni ile oluşan yüzden farklı hastalığa verilen genel bir isimdir. Ancak bu kadar basitçe tanımlanabilmesi kanserlerin basit, kolay anlaşılır hastalıklar olduğu anlamına gelmiyor. Kanserli bir dokuda farklı kanser hücreleri bulunuyor. KKH hipotezine göre bu hücrelerin bir kısmı tedavi süresince ilaçlara dayanıklılık geliştirebilen kanser kök hücreleri. Kök hücreleri bölünmeleri sırasında kendilerinin birebir aynısı iki kopya yapmazlar. Oluşan yavru hücrelerin bir tanesi ana hücrenin tıpkı kopyası iken diğer hücre (Şekil C) planlanan işleve göre farklılaşır. Kanser kök hücreleri de benzer bir şekilde asimetrik olarak bölünür. Bu hücrelerin bölünmesi sırasında oluşan hücrelerden bir tanesi standart kanser hücresi olarak yaşamına devam ederken diğer hücre  (Şekil B)kanser kök hücresi olarak kalır ve daha fazla kanser hücresi üretmeye devam eder [Şekil 1]. Yavru kök  hücrelerinin kendilerini yeniden üretme yetilerine sahip oldukları kadar radyoterapiye ve kanser ilaçlarına direnç kazandıkları da gözlemlenmiştir. Kanser araştırmalarında kök hücre fikrinin aslında çok yeni bir fikir olmadığı söylenebilir. Tümörlerin heterojen histolojik (histoloji: doku ve hücrelerin mikroskobik anatomilerinin incelenmesi bilimi) özellikler gösterdiği 19. yüzyıldan bu yana araştırmacılar tarafından biliniyor. Ancak kanser kök hücrelerinin varlıkları akut myeloid lösemi (AML) üzerinde yapılan araştırmalar sonucunda ortaya çıkarılmış. AML hücrelerinin sık bölünmediğini gören araştırmacılar “temel” bir hücre tipinin AML hücrelerini ürettiği fikrini test etmek amacı ile fareler üzerinde çeşitli deneyler yapmışlar. Bu deneyler sırasında araştırmacılar insan kökenli AML hücrelerini fareye nakil etmişler ve bir tip hücrenin kemik iliğine yerleşerek lösemi hücreleri ürettiğini gözlemlemişler. Gözlenen bu hücreler kanser kök hücreleri olarak adlandırılmış. Daha sonraki çalışmalar meme ve kalın bağırsak kanseri başta olmak üzere pek çok katı tümörde de KKH’lerin bulunduğunu gösteren sonuçlara ulaşmış. Önceleri tümörlü bir yapı içerisinde kanser kök hücrelerinin oranının çok düşük (binde birden daha az) olduğu varsayılmaktaymış ama 2007 yılında yapılan bir çalışma farelere enjekte edilen lösemi ve lenfoma hücrelerinin %10 kadarının in vivo (canlı organizma içinde yapılan araştırmalar) ortamda kanser geliştirme yetisine sahip olduğunu göstermiş. Başka bir çalışma ise ileri derece melanomlardan (oldukça saldırgan bir cilt kanseri türü) toplanan hücrelerin %25’inin bağışıklık yetmezliği olan fareler üzerinde kanser hücreleri oluşturduğunu belirlemiş [2]. Tümörler içerisindeki KKH miktarı konusunda hala tartışmalar devam etmekte olsa da yapılacak çalışmalar ile önümüzdeki yıllarda bu sorunun yanıtına ulaşılacak gibi gözükmekte. Şekil 2. Kanser Kök Hücreleri – Olası tedavi hedefleri Kansere karşı etkili, tümör oluşturan hücreleri hedefleyen tedavi yöntemleri geliştirilerek tümörleri yok etmek için [Şekil 2], kanserli doku içerisindeki oranları ne olursa olsun KKH hipotezinin test edilmesinin gerekli olduğu araştırmacılar tarafından vurgulanıyor. Konu ile ilgili bilim insanları KKH’lerin kanser hücresi üretme yetilerine yol açan özel biyolojik ve genetik yapıları ile uyumlu olarak bu hücrelerin antitümör ilaçlarına karşı duyarlılıklarının da diğer kanser hücrelerinden farklı olabileceğini düşünmekteler. Bu hücrelerin nasıl yok edileceği sorusu ise bilim dünyasını meşgul eden diğer bir soru. Ama bu soruya yanıtlar gelmeye başlamış. Bilim insanları, KKH’lerin bölünmesi sırasında kullandıkları üç farklı moleküler yolağı tanımlamayı başarmışlar: Notch yolağı, Hedgehog yolağı ve Wnt/beta-katenin yolağı. Bu üç yolağı kullanarak kanser kök hücrelerinin tümör üretim aktivitelerini durduracak tedavi yöntemleri üzerine çalışmaların devam ettiği çeşitli kaynaklarda bildiriliyor. Her ne kadar tümör içindeki oranları, her bireyde ve kanserli yapıda gösterdikleri farklılıklar hala tartışmaya açık olsa da KKH hipotezi gelecekte kanser tedavileri için bir umut ışığı yakmış gibi görünmektedir. Üniversiteler ve araştırma kuruluşları AML hücrelerinde kanser kök hücrelerinin tanımlanmasından bu yana KKH araştırmalarına yüksek miktarlarda yatırım yapmışlardır. A.B.D. Ulusal Kanser Enstitüsü tarafından yönetilen Kanser Genom Atlası Projesi kapsamında binlerce tümör örneğinin gen dizilimlerinin belirlenmesi çalışmalarına önümüzdeki beş yıl içerisinde 1 milyar dolar harcanması planlanmaktadır. Bu çalışmaların kanser kök hücreleri ve kanser biyolojisine ait bilgilerimizi arttıracağı tartışma götürmezken, kanser tedavisinde yeni çığırlar açma olasılığı da hem bilim dünyası hem de kanser hastaları için heyecan vericidir. Kaynaklar 1. “A close look at cancer”, Allison Farrell, Nature Medicine, March 2011, Vol. 17, Number 32. “Solving an age-old problem”, Barbara Dunn, Nature, March 2012, Vol. 4833. “The cancer stem cell: premises, promises and challenges”, Hans Clevers, Nature Medicine, March 2011, Vol. 17, Number 34. “Recent advances in cancer stem cells”, Robert W Cho and Michael F Clarke, Current Opinion in Genetics & Development , 2008, 185. “Cancer stem cell: target for anti-cancer therapy”, Carol Tang, Beng T. Ang, and Shazib Pervaiz, The FASEB Journal, December 2007, Vol. 21 Bahadır Ürkmez http://www.acikbilim.com/2012/11/dosyalar/kanser-tedavisinde-yeni-silahlar.html

http://www.biyologlar.com/kanser-tedavisinde-yeni-silahlar

Biyolojik Silahlar

Kimyasal ajanlar gibi, biyolojik silahlar da neyse ki popüler kültürdeki şöhretlerine yakışır şekilde kullanılmış değiller henüz. 1971′de Kazakistan’daki bir iaboratuvardan kaçan ve silah olarak kullanılmak üzere hazırlanan çiçek hastalığı mikrobu yüzünden ölenlerin sayısı yalnızca 3. Üstelik hastalık salgın halinde ilerleme de göstermemiş. 1979′da şimdiki adı Ekaterinburg oian Sverdiovsk’taki bir fabrikadan sızan şarbon mikrobu içeren bir biyolojik silah yüzünden 68 kişi yaşamını yitirdi ve yine hastalık yayılmadı. İnsanların bu yüzden yaşamlarını yitirmeleri çok acı ama, yine de yaşam kaybı tek bir bombanın neden olacağından daha fazla değil. 1989′da Washington’da birkaç kamu işçisi kaza sonucu Ebola virüsüne maruz kaldı. Durum fark edilene kadar, birkaç gün boyunca bu işçiler sosyal yaşamlarını sürdürmüş, aile ve arkadaşlarıyla birlikte olmuşlardı. Buna karşın, bu olayda kimse yaşamını yitirmeden gerekli önlemler alınabildi. Gerçek şu ki, evrim milyonlarca yıl boyunca memeiilere, mikroplara karşı direnç gösterme özettiği kazandırdı. Örneğin kara veba, tarihte bilinen en kötü hastalıklardan biriydi; yetersiz sağlık hizmetleri ve kötü yaşam koşullarının hakim olduğu Orta Çağ Avrupası’nda at koşturdu. Ama salgın, insanlığı yok edemedi: birçok kişi hastalığı yendi. Bu senaryoların korku saçtığı günümüz batı toplumlarındaysa, hangi mikrop ya da virüs ortaya çıkarsa çıksın, daha sağlıklı insanlarla, gelişmiş sağlık hizmetleriyle ve biyoajanları yok etmek üzere geliştirilmiş ilaçlarla karşılaşacağı kesin. Belki günün birinde, bağışıklık sistemimizi ek-tisiz hale getirecek bir virüs üretebilen bir deli ortaya çıkar. Aslında mümkün olduğundan bir “süper hastalık” yaratılabilir ya da çiçek gibi, zaten var olan bir hastalık, mikrobun genleriyle oynanarak daha zararlı hale getirilebilir. Üstelik, zamanla biyoîeknolojinin gelişip, denetiminin daha güç olacağı düşünülürse, birtakım kişi ya da grupların, zararlı mikrop ya da virüsleri kolaylıkla üretebileceklerini de kabul edebiliriz. Ancak, yine de bilim adamları daha önce hiçbir korkunç hastalığın insanlığı ortadan kaldırmayı başaramadığı gibi, gelecekte de bunun pek olası olamayacağını söylüyorlar. Biyolojik silahlar diğer canlılar üzerinde zararlı etkiler yaratmak maksadıyla kullanılan bakteri, virüs, mikrobiyal toksinler, vb. ajanlardır. Bu tanım genellikle biyolojik olarak elde edilen toksinleri ve zehirleri de kapsayacak şekilde genişletilir. Biyolojik savaş araçları, yaşayan mikroorganizmaları (bakteri, protozoa, riketsia, virüs ve mantar) içerdiği gibi mikroorganizmalar, bitkiler ve hayvanlar tarafından üretilen toksinleri (kimyasallar) de kapsar. Yaşayan biyolojik maddeler kokusuz, tatsız ve havaya bulutu halinde atıldığı zaman 1 ila 5 mikron boyutunda son derece küçük parçacıklardan oluştuğundan insan gözüyle görülemez. Silah olarak kullanılabilecek biyolojik ajanlar şu şekilde sıralanabilir; Bakteriler: Küçük-serbest yaşayan organizmalar olup çoğunluğu katı veya sıvı kültür ortamında üretilebilirler. Bu organizmalar sitoplazma, hücre zarı ve nükleer materyaller içeren bir yapıya sahiptir. Basit bölünme ile ürerler. Oluşturdukları hastalıklar genellikle spesifik antibiyotik tedavilerine cevap verirler. Virüsler: İçlerinde çoğalabilecekleri canlı organizmalara ihtiyaç duyan organizmalardır. Bundan dolayı da enfeksiyoz etkileri büyük oranda konak hücrelere bağımlıdır. Virüsler genellikle antibiyotik tedavilere cevap vermeyen fakat antiviral bileşimlerin bir kısmına ve sınırlı kullanıma uygun preparatlara cevap veren hastalıklara neden olurlar. Riketsialar: Hem bakterilerin hem de virüslerin genel karakterlerini taşıyan mikroorganizmalardır. Bakteriler gibi metabolik enzimler ve hücre zarından oluşurlar ve oksijen kullanırlar ve geniş çaplı antibiyotiklere karşı duyarlıdırlar. Yaşayan hücreler içinde üremelerinden dolayı da virüsleri andırırlar. Klamidya: Kendi enerji kaynaklarını üretemediklerinden zorunlu hücre içi parazitlerdir. Bakteriler gibi geniş spekturumlu antibiyotiklere cevap verirler. Çoğalmak için virüsler gibi yaşayan hücrelere ihtiyaç duyarlar. Mantarlar: Fotosentez yapamayan, çürüyen bitkisel olgulardan besin ihtiyaçlarını sağlarlar. Toksinler: Yaşayan bitkiler, hayvanlar veya mikroorganizmalardan elde edilen zehirli maddelerdir. Bazı toksinler kimyasallara da dönüştürülebilirler. Toksinlere özel antiserum ve seçilmiş farmakolojik ajanlarla karşı konulabilir Literatürde çok sayıda biyolojik savaş ajanı belirtilmektedirler. Bunların arasında; Bacillus anthraksis (Şarbon Etkeni) Botulinum Toksinleri (Konserve Zehiri) Brucelloz (“Malta Humması” Etkeni) Vibrio Cholera ( Kolera Etkeni) Clostridium perfirenges (Gazlı Gangren Etkeni ) Salmonella typhi (Tifo Etkeni) Psoudomanas psoudomallei (Melioidozis hastalığı Etkeni) Psoudomanas mallei (Ruam hastalığı Etkeni) Yersinia pestis (Veba Etkeni) Francisella tularensis (Tularemi Etkeni) Coxiella burnetti ( Q Ateşi Etkeni) Smallpox virüs (Çiçek Hastalığı Etkeni) Congo-Crimean Hemorajik Ateşi Virüsü Ebola Virüsü Stafilokoksik Enterotoksin B Rift Valley Ateşi Virüsü Trichothecene mycotoxins Venezüella At Ensefaliti Plazmodium vivax (Sıtma Etkeni) Saxitoksin (predominant olarak doğada deniz dinoflajellileri tarafından üretilir) BİYOLOJİK AJANLARIN ETKİLERİ Biyolojik ajanlar ya yaşayan organizmalar ya da ölüm veya hastalıklara sebep olan toksin gibi türevlerden oluşur. Yaşayan organizmalar etkilerini gösterene kadar yaşayan hedeflerde çoğalırlarken, toksinlerini üremezler. Toksinler genellikle daha öldürücüdür, birkaç dakika veya saat gibi çok çabuk ölüm veya saf dışı bırakmaya neden olurlar. Yaşayan organizmalar enfeksiyon ve hastalık belirtileri görünmesi arasında 24 saat ila 6 hafta arasında kuluçka devri gerektirir. Biyolojik silahlar ilk bulaşmadan sonra birkaç hafta sonra dikkate değer bir etki bırakmaya devam edebilir. Benzer şekilde geciktirilmiş kuluçka periyodu bulaştığı yerde ajanın tamamen örtülü olarak gelişmesini sağlar ve etkisi ortaya çıktığında hastalığın tabii olarak geliştiği fikrini oluşturabilir. Bir biyolojik saldırı, bir bölgeyi birkaç saat ile birkaç hafta boyunca kirletir, teçhizatı kirletir ve birlikleri harekatı son derece sınırlayan, koruyucu elbise giymeye zorlar ve/veya koruyucu yan etkileri büyük ölçüde bilinmeyen antimikrobiyaller almak zorunda bırakırlar. Bu ajanların bazıları ölümcüldürler, diğerleri genellikle kapasite düşürücü olarak kullanılırlar. Literatürde klasik tedavi yöntemlerinin etki edemediği veya belli etnik gruplar üzerinde kullanılabilen genetik mühendisliği ürünü ajanlardan bahsedilmektedir. Kimyasal silahların bütün korkunçluğuna rağmen, biyolojik organizmanın çok küçük bir örneği bile çok daha ölümcül olabilir. Örneğin; Bacillus antraksis basilinin yol açtığı şarbon hastalığında solunum yoluyla havadan alınan dayanıklı sporlar akciğerler içerisinde açılarak çoğalmakta, başlangıçta soğuk algınlığı semptomlar ile kuluçka devresini geçirerek kısa sürede öldürücü tablolar ile karşımıza çıkabilir. Genetik mühendisliği öldürücülüğü artırmak için daha fazla patojen veya toksin üreten genlerin geliştirilmesi için potansiyel yaratmıştır. Bu şekilde normal halinden 100 defa daha fazla patojen olan ve toksin üreten hücreler elde edilmiştir. Enfeksiyonu yayarken etkinliği geliştirebilmek ancak genetik olarak güçlendirilmiş ajanlarla mümkündür. Bu şekilde kurumaya, ultraviyole ışınlarına, ısınmaya karşı patojenlerin dirençli olmaları sağlanarak sağlık üzerine olumsuz etkinlikleri artırılabilir. Belirli biyolojik ajanlara besleyici katkı maddesi kullanılması tutulduğu ortamda hayatta kalmalarını kuvvetlendirir. Bazı patojenlerin belli çevre şartları içinde kontrollü olarak mevcudiyetlerinin sağlanması bile mümkündür. Koşullara bağlı kendini yok eden genler adı verilen gelişme ile organizmalar belirli bir çevrede önceden belirlenen miktarlarda kopyalandıktan sonra tamamen yok olacak şekilde programlanabilmektedir. Böylece, enfekte olmuş arazi belirli bir zaman sonra zarara uğramış olur. SINIRLAMALARI 1- Biyolojik ajanlar, kimyasal silahların aksine etkilerinin tahmin edilmesi ve kontrolü son derece zordur. Etkileri, kimyasal ajanlardan daha fazla ısı, hava şartları ve topografik yapıya bağlıdır. 2- Böylece, her zaman yalnız hedefi kirletme riski vardır. 3- Bir çok biyolojik ajan etkili olabilmesi için solunum veya sindirim yoluyla alınmalıdır. Kimyasal ajanlarda olduğu gibi deri ile temas sonunda enfeksiyon yaratması mümkün değildir. Bu durumda, eğer biyolojik ajanlar doğru bir şekilde tespit edilebilirse buna karşı savunma kimyasal ajanlara karşı savunmadan daha kolaydır. 4- Anthraks sporları ve bazı toksinler gibi kuru ajanlar kalıcı olmalarına rağmen, bir çok biyolojik ajanın etkisi zamanla çok çabuk azalır. 5- Anthraks sporları toprakta ölümcül etkilerini onlarca yıl muhafaza ederler. Buna benzer ajanlar uzun vadede tehlikelerini sürdürürler. Bu şekildeki ajanların kullanım durumunda taarruzu gerçekleştiren tarafın işgal etmek veya geçmek istediği harekat alanı kirletilmiş olur ve koruyucu elbise kullanma ihtiyacı ile ciddi tekrar kontaminasyon gereksinimlerini beraberinde getirir. 6- Biyolojik silahlanmanın getirdiği depolama ve kullanma her zaman teknik zorlukları beraberinde getirir. BİYOLOJİK SİLAHLARDAN KORUNMA Biyolojik silahlardan korunma birbiriyle bağlantılı beş aşamadan oluşmaktadır; Önleme. Biyolojik silahların kullanılmasını engellemek için çeşitli çalışmalar yapılmaktadır. Uluslararası silahsızlanma ve teftiş rejimleri biyolojik ajanların biyolojik savaş durumunda üretimini ve kullanımını caydırmaktadır. İstihbarat çalışmaları sonucunda potansiyel tehlikeler belirlenerek gerekli önleyici tedbirler alınabilir. Doğal olarak ortaya çıkan ajanlara karşı aşılama önemli bir tedbirdir, ancak genetik mühendisliği ile bu aşıların etkisini sınırlayan ajanlar üretilmiştir. Korunma. Biyolojik ajanlara karşı korunma yöntemleri sınırlıdır. Koruyucu elbiseler, maskeler kısa süreli koruma sağlayabilirler. Bununla beraber, şarbon gibi etkinliğini uzun süre koruyabilen kimi ajanlar için bu tedbirler sadece ilk aşamada faydalı olabilirler. Herhangi bir şekilde yediğimiz yiyeceklerin biyolojik ajanlarla bulaşmış olabileceğini düşündüğümüz anda o yiyeceğin yenmemesi gerekir. Biyolojik tehlikenin olabileceği zamanlarda gıdalarımızın temizliğine özellikle yıkanmasına her zamankinden daha fazla özen gösterilmeli. Yıkama işlemi önemli ölçüde mikrobiyal yükü azaltır. Bunun yanında sebze türü yiyeceklerin 1 %’lik hipoklorit içerisinde iki üç dakika tutulması canlı mikroorganizmaların öldürülmesine yeterlidir, bu işlemden sonra mutlak surette iyice yıkanmalılar. Solunum kaynaklı bulaşmalar söz konusu olduğunda ıslak bir mendil gibi eşyaların ağız ve buruna tutularak o anda hava yoluyla oluşacak bulaşma engellenebilir. Herkesin koruyucu elbise giyemeyeceğine göre insanlar özellikle yiyeceklerinin, eşyalarının ve çevrelerinin temizliğine dikkat etmeli. Herhangi bir durumda bir bulaşmaya maruz kaldığını hisseden kişi hemen doktora başvurmalı. Çünkü biyolojik ajanın bulaşmasından sonra kişinin kendi başına tedavi olması mümkün değildir. Pişirilecek yemeklere yeterli ısısal işlem uygulanmalı, özellikle yüz dereceye varan ısı uygulanmalı. Biyolojik silah olarak kullanılabilen bazı bakteri sporları yüz derecelik ısıtmada 20-30 dakika canlı kalabilmektedir. Belirleme: Tedavi: Tedaviyi yukarda belirtildiği gibi kişi kendi yapamaz, biyolojik ajanlara karşı tedaviyi ancak bir hekim uygulayabilir. Tedavi yöntemleri enfeksiyon gelişen kişilerde maruz kalınan ajanın belirlenebilmesine bağlıdır. Eğer belirlenemiyorsa hekim farklı yöntemlerle tedaviyi sağlamaya çalışır. Ajanın tespiti durumunda ise duyarlı antibiyotikler tercih edilerek tedaviye başlanır. Örneğin şarbon etkeni tespit edilmişse; her iki saatte bir , iki milyon ünite penisilin tedavisi uygulanabilir. Toksinlere karşı uygun antiserumlar varsa kullanılır, yoksa destek tedavisi uygulanır. Bunların hepsi o anki hastanın durumuna göre gerekli tedaviyi hekim kararlaştırır. Dekontaminasyon-temizleme. Zamanla dağılarak etkilerini kaybeden kimyasal silahların tersine biyolojik silahlar zaman geçtikçe etkilerini artırıp çoğalabilirler. Şarbon toprakta en az kırk yıl aktif olarak kalır ve çevre şartlarına karşı dirençlidir. Bu sebeple biyolojik savaş ajanlarının etkilerinin ortadan kalkması yıllar alabilir. Biyolojik Savaş Ajanlarının gelişmesi ile beraber dünyada bu silahların kullanım ve üretimini sınırlamak maksadı ile 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. İnsanların bu tür silahların yapımını düşünmeleri bile ürkütücüdür. Ancak bunun artık bir düşünce olmanın ötesine, bazı ülkelerde bu silahların yüksek miktarlarda stoklandığı da bir gerçektir. Bunu gelişmiş ülkelerdee gelişmemiş ülkelerde yapmaktadır. Gelişmemiş ülkelerin kontrolü gelişmiş ülkelerce sağlanabilmekte ama gelişmiş ülkelerin kontrolünü şu anda sağlamak imkanı yoktur. Çünkü bir süper güç anlaşmaları göz ardı edebiliyor ve kimse buna sesini çıkaramıyor. Bu nedenlerle biyolojik silah tehlikelerden insanlığın arındırılması mümkün değildir. Bu durumda ona karşı gerekli önlemler alınmalı ve insanları bu konuda bilinçlendirilmeli. Dünya klonlanma etiğini tartışırken asıl sorun olan genetik mühendislik yöntemi ile geliştirilmiş biyolojik silahlar gözden uzak kalmıştır. Olası bir biyolojik silah saldırısına karşı, yüksek teknik eğitim almış ekiplerin kurularak ulusal ve uluslar arası işbirliği ile potansiyel biyolojik silah üretici ve kullanıcılarının yakından takip edilmesi, hastanelerde bu tip saldırılar için özel donanımlı servisler oluşturulması, yapılacak olan ulusal felaket planlarının bir parçası olmalıdır. Dünya Tabipler Birliği 1990 yılında, 42. oturumunda Kimyasal ve Biyolojik Silahlar Konulu Bildirgeyi kabul etmiş, Tokyo bildirgesiyle de sağlık hizmeti vermesi beklenen hekimlerin, kimyasal ve biyolojik silahların araştırılmasına katılmasını, kişisel ve bilimsel bilgilerini bu silahların keşfi ve üretiminde kullanmalarının etik olmadığını bildirmiştir. (Alıntıdır) STARWARS21

http://www.biyologlar.com/biyolojik-silahlar-1

PALEONTOLOJİ

Arkeobiyolojinin bir dalı olan paleontoloji, çeşitli jeolojik devirlerde yaşamış olan insan, hayvan ve bitki türlerine ait fosiller üzerinde araştırmalar yapar ve jeolojik devirlerde yaşayan canlılar hakkında bilgi sahibi olunmasına yardımcı olur. Paleontoloji, fosil bilim ya da taşıl bilim olarak da bilinir. Bir başka tanımlamayla, soyu tükenmiş organizmaların fosillerini ve biyolojisini inceleyen bilim dalıdır. İlk paleontoloji araştırmaları 19. yüzyılda yapılmaya başlanmıştır. Paelontolojide günümüzdeki büyük kaya parçalarının içerdiği bitki ve hayvan fosilleri incelenir, bu yolla jeolojik geçmişte egemen olan yaşam biçimleri belirlenir. Bu bilim dalı eski canlı türlerini bütün yönleriyle (biçimleri, yapıları, günümüzdeki canlı türleriyle taksonomik ilişkileri, coğrafi dağılımları ve çevreyle ilişkileri) inceler. Yer katmanlarının jeolojik tarihinin açığa çıkartılmasında da paleontoloji çalışmalarından elde edilen verilerden yararlanılır. Evrim teorisi günümüzde en çok paleontoloji alanındaki çalışmalarla gündeme gelir. Çünkü fosil bulguları evrimciler açısından çarpıtmaya, taraflı yorumlara ve sahtekarlıklara son derece uygun bir alan oluşturmuştur. Nitekim bilim tarihi evrim teorisine sözde delil bulma arayışlarıyla yapılmış çok sayıda sahtekarlık örneğiyle doludur. Paleontolojinin evrim teorisini desteklediği yönündeki yanlış imaj, Science dergisindeki bir makalede şöyle açıklanır: Evrimsel biyoloji ve paleontoloji alanlarının dışında kalan çok sayıda iyi eğitimli bilim adamı, ne yazık ki, fosil kayıtlarının Darwinizm'e çok uygun olduğu gibi bir yanlış fikre kapılmıştır. Bu büyük olasılıkla ikincil kaynaklardaki olağanüstü basitleştirmeden kaynaklanmaktadır; alt seviye ders kitapları, yarı-popüler makaleler vs... Öte yandan büyük olasılıkla biraz taraflı düşünce de devreye girmektedir. Darwin'den sonraki yıllarda, onun taraftarları bu yönde (fosiller alanında) gelişmeler elde etmeyi ummuşlardır. Bu gelişmeler elde edilememiş, ama yine de iyimser bir bekleyiş devam etmiş ve bir kısım hayal ürünü fanteziler de ders kitaplarına kadar girmiştir. Önde gelen evrimcilerden, N. Eldredge ve I. Tattersall ise bu konuda şu önemli yorumu yaparlar: Ayrı türlere ait fosillerin, fosil kayıtlarında bulundukları süre boyunca değişim göstermedikleri, Darwin'in Türlerin Kökeni'ni yayınlamasından önce bile paleontologlar tarafından bilinen bir gerçektir. Darwin ise gelecek nesillerin bu boşlukları dolduracak yeni fosil bulguları elde edecekleri kehanetinde bulunmuştur... Aradan geçen 120 yılı aşkın süre boyunca yürütülen tüm paleontolojik araştırmalar sonucunda, fosil kayıtlarının Darwin'in bu kehanetini doğrulamayacağı açıkça görülür hale gelmiştir. Bu, fosil kayıtlarının yetersizliğinden kaynaklanan bir sorun değildir. Fosil kayıtları açıkça söz konusu kehanetin yanlış olduğunu göstermektedir. Türlerin şaşırtıcı bir biçimde sabit oldukları ve uzun zaman dilimleri boyunca hep bu şekilde kaldıkları yönündeki gözlem, 'kral çıplak' hikayesindeki tüm özellikleri barındırmaktadır: Herkes bunu görmüş, ama görmezlikten gelmeyi tercih etmiştir. Darwin'in öngördüğü tabloyu ısrarla reddeden bir fosil kaydı ile karşı karşıya kalan paleontologlar, bu gerçeğe açıkça yüz çevirmişlerdir. Amerikalı paleontolog S. M. Stanley, fosil kayıtlarının ortaya koyduğu bu gerçeğin bilim dünyasına hakim olan Darwinist dogma tarafından nasıl göz ardı edildiğini ve ettirildiğini şöyle anlatır: Bilinen fosil kayıtları kademeli evrimle uyumlu değildir ve hiçbir zaman da uyumlu olmamıştır. İlgi çekici olan, bir takım tarihsel koşullar aracılığıyla, bu konudaki muhalefetin gizlenmiş oluşudur... Çoğu paleontolog, ellerindeki kanıtların Darwin'in küçük, yavaş ve kademeli değişikliklerin yeni tür oluşumunu sağladığı yönündeki vurgusuyla çeliştiğini hissetmiştir... ama onların bu düşüncesi susturulmuştu.

http://www.biyologlar.com/paleontoloji-1

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip, Influenza adı verilen bir virüs tarafından oluşturulan, ani olarak 39 derece üzerinde ateş, şiddetli kas ve eklem ağrıları, halsizlik, bitkinlik, titreme, baş ağrısı ve kuru öksürük gibi belirtiler ile başlayan bir infeksiyon hastalığıdır. Gribe neden olan influenza virüsü; hasta veya taşıyıcı kişilerin hapşırması ya da öksürmesi yoluyla kolaylıkla bulaşabilir. Grip virüsünün temas ettiği kişilerle temas etmek veya öpüşmek de grip virüslerinin bulaşmasına neden olur.Grip hasta veya taşıyıcı kişinin tuttuğu kapı kolu, telefon veya havlu gibi ortak kullanım eşyalarından da bulaşabilmektedir.. Hasta kişilerden çevreye saçılan virüs parçacıklarının adeta bir balon gibi havada asılı kalabilme yeteneği olması, bulaşıcılığı daha da arttırmaktadır.Grip enfeksiyonu ;ev, iş yeri, okul, kreş,kapalı alış veriş merkezi ve toplu ulaşım araçları gibi kapalı mekanlarda da kolaylıkla bulaşabilmektedir. Grip virusünün önemli bir bulaş yolu da, hastalığa yakalanmış ancak henüz belirgin yakınmaları olmayan taşıyıcı kişilerdir.Bu kişilerle aynı ortamda olmak da gribe yakalanma nedeni olabilir.Grip, bağışıklık sistemi güçlü olan insanlarda genellikle sağlığı ciddi olarak tehdit etmez. . Gribe yakalanan kişide yaşam kalitesinde bozulma, rahatsızlık ve kimi zaman iş gücü kaybı ortaya çıkmaktadır. Ateş,kas ağrısı,halsizlik sıkça görülür. Gribal enfeksiyonda yatak istirahatı yararlıdır.Ayrıca ateş düşürücü ilaçlar verilebilir, kas veya eklem ağrılarını gidermek amacıyla ağrı kesicilerden yararlanılabilir.Bol sıvı tüketimi ve C vitamini alınması da hastalığı kolay atlatmada yararlıdır. Grip virüslerin yol açtığı bir enfeksiyon olduğundan bakterilere etki eden antibiyotiklerin gripte kullanılması fayda sağlamaz.Grip, dikkat edilmediği takdirde larenjit, farenjit, sinüzit ve orta kulak iltihabına dönüşebilir. Sonbahar ve kış aylarında çocuklarda görülen orta kulak iltihaplarının yaklaşık yüzde 30-35‘inin nedeni geçirilmiş griptir. Ayrıca zatüree (pnömoni) menenjit, ansefalit gibi yaşamı tehdit eden veya ölümle sonuçlanan hastalıklar da gribe bağlı oluşabilir. Gripte tahlile gerek var mıdır? Genellikle Grip tanısı hekim tarafından hastanın belirtileri ve fizik muayene bulgularına göre konulur.Bu nedenle çoğu zaman tahlil yaptırmaya gerek yoktur.Ancak genel bir bilgi olması nedeniyle grip tanısında yapılan tahlilleri sizler için hazırladık. Grip Tanısı ve Tahliller Grip tanısında birçok tahlil ve tanı yöntemi vardır. Direkt virus antijen tayini, virus hücre kültürü ve serolojik yöntemlerdir.Genellikle pahalı olduklarından mecbur kalmadıkça yaptırılmaları tercih edilmez. İnfluenza(Grip) testleri için uygun örnekler boğaz sürüntüsü, burun yıkama suyu, burun veya bronş aspiratı ve balgamdır. Örnekler hastalığın ilk dört gününde alınmalıdır. Grip TahlilleriHücre Kültürü:Salgın dönemlerinde etken virüsün tayini için kültür gereklidir. Zaman veemek gerektiren bir yöntemdir.Viral antijenlerin tayini: Antijen tayini hızlı tanı testleriyle yapılabilmektedir. Bu testlerin duyarlılığı %70’in üzerindedir. Özellikle salgın dönemlerinde hızlı tanı amacıyla kullanılan testlerdir.Güvenilirliği tam değildir.Moleküler tanı:Son yıllarda önemi ve popülerliği giderek artmıştır.Güvenilirliği çok yüksektir.:Polimeraz zincir reaksiyonu (PCR) ile örneklerde viral RNA aranabilir. Grip Aşısı Nedir? Grip aşısı inaktive edilmiş(etkisizleştirilmiş) influenza virüslerinden veya antijenlerinden yapılıyor.Yani grip virüsüne karşı ı yine bizzat kendisinin aktif olmayan hali kullanılıyor. Aşı uygulandıktan sonra bağışıklık sistemi aşıdaki inaktif virüse karşı antikorlar oluşturuyor. Daha sonra,insan vücudu aktif virüsle karşılaşıldığında, önceden oluşmuş antikorlar enfeksiyon oluşumunu önlüyor veya ağır hastalık riskini azaltıyor. Grip Aşısı Ne Zaman Yapılmalıdır? Grip aşısının mutlaka salgın başlamadan önce yapılması gerekiyor. Aşının etkisinin ortaya çıkması için aşağı yukarı 2-3 haftalık bir süreye ihtiyaç duyuluyor. Dolayısıyla, grip aşısı için en uygun zaman sonbahar aylarıdır. Grip Aşısı Kimlere Yapılmalıdır? Grip aşısı, 6 aydan küçük bebekler, hamileliğin ilk 3 ayı içerisindeki anne adayları, yumurta ve tavuk proteinlerine alerjisi olan kişiler dışında herkese yapılabilir.. Ayrıca, 38 derece üstünde ateşi olan hasta kişilerde ve ağır enfeksiyon geçirenlerde, aşı uygulamasının ateş düştükten sonra ve genel durum düzeldikten sonra yapılması önerilmektedir.Grip aşısı, ülkemizde sosyal güvencesi olan 65 yaş ve üstü yaşlılara hekim reçetesi ile yazılabilmekte ve aşının önemli bir kısmı devlet tarafından karşılanmaktadır.Ancak özellikle ve öncelikle grip aşısı yaptırılması önerilen kişiler ise aşağıda belirtilmiştir.1) 65 yaşından büyükler, astım ve diğer kronik solunum sistemi hastalığı olanlar,2) Kronik metabolik hastalığı olanlar(Diabet gibi)3) Hemoglobinopatisi olanlar, uzun süreli aspirin tedavisi alan bebek ve çocuklar,4) İmmünosupresif tedavi alanlar(kanser tedavisi veya organ nakli gibi nedenlerle)5) HIV infeksiyonu (AİDS) olanların grip aşısı yaptırmaları önerilmektedir.6)6) Yüksek riskli kişilere grip hastalığını taşıyacak ya da bulaştıracaklara da aşı yapılması önerilmektedir, bunlar da sağlık personeli, kronik hastalık bakım üniteleri veya yaşlı bakım evlerinde çalışanlar ile evinde yüksek riskli kişi olanlar şeklinde sıralanabilir.7) Sıkça yurt dışı seyahatlerde bulunanlar,sporcular Grip Aşısı Dozu Grip aşısında tek doz yeterlidir. Daha önce hiç grip aşısı yaptırmamış olan 8 yaşından küçük çocuklarda ise aradan en az 4 hafta geçtikten sonra ikinci doz aşılama yapılması önerilmektedir. Grip aşısının her yıl tekrarlanması gerekiyor. Bunun nedeni ise, virüslerin her yıl kendilerini değiştirdikleri için, bir önceki yılın aşısının sonraki yıl koruyucu özelliğini yitirmesi. Genellikle 2 -3 hafta sonra etkili olmaya başlayan grip aşısının koruyuculuk süresi de 6 – 12 ay sürüyor. Aşının koruyuculuğu ise karşılaşılan virüsle aşının içerdiği antijenik yapının uyumuyla ilişkili. Aşıdaki antijenler virüsle ne kadar uyumluysa, korumanın da o kadar iyi sağlandığını belirtiyor. Grip Aşısının Koruyuculuğu Grip aşısı ile koruyuculuk, 65 yaş altındaki sağlıklı erişkinlerde yüzde 70-90 gibi yüksek oranlarda seyrediyor. İleri yaşlarda bu etki yüzde 30-40 oranında azalmakla birlikte, hastalığın hafif geçirilmesi sağlanıyor. Yapılan kısıtlı sayıdaki çalışmalara göre, grip aşısının çocuklar üzerindeki koruyuculuk oranı ise yüzde 22-91 arasında değişiyor. Ancak antijenik yapıda büyük değişiklikler meydana gelmişse koruma etkisi tüm yaş gruplarında azalıyor veya aşı tamamen etkisiz hale geliyor. Grip Aşısının Yan Etkileri Var mı?Grip aşısının damar yoluyla verilmemesi gerekiyor. Aşı sonrası nadiren hafif geçen nezle türü bir tablo oluşabiliyor. Aşı yapıldıktan sonra enjeksiyon bölgesinde ender görülse de; kızarıklık, şişlik, morarma, ateş, kırıklık, titreme, yorgunluk, baş ağrısı, terleme, kas ve eklem ağrıları gibi yan etkiler ortaya çıkabiliyor. Çok rahat tolere edilebilen bu yan etkiler de 1-2 gün içinde kendiliğinden geçiyor. http://tahlil.com

http://www.biyologlar.com/grip-nedir-grip-belirtileri-grip-tanisi-ve-asisi

Bilim, İnanç ve Eğitim

Bilim müfredatında herhangi bir tür yaratılışcılığın bulunmasına karşı çıkan biyologlar ve diğerleri ifade özgürlüğüne karşı değillerdir ve dinsel inancı ortadan kaldırmaya çalışmıyorlar.Onlar yaratılış öykülerinin sadece tarih ya da çağdaş toplum gibi derslerinde öğretilmesini kabul edilebilir bulsalar da bu inançların geçerli bilimsel hipotezler olmadığını bilim derslerinde yeri olmadığını savunmaktadır.Malesef,bilim dersleri almış olsalarda çoğu insanın bilimin ne olduğu ve nasıl işlediğine dair anlayışı çok sınırlıdır.Oysaki evrim yaratılış tartışmasında tam da bu anlayışın çok önemli bir yeri vardır.Popüler inancın aksine,bilim bir olgular toplamı değil doğal fenomenler hakkında bir anlayış edinim sürecidir.Bu süreç,hipotezlerin öne sürüldüğü ve gözlemsel ve deneysel kanıtlarla test edildiği bir süreçtir.Hipotezlerin kanıtlanması gibi konuşmaların aksine bilimcilerin çoğu hipotezlerin mutlak anlamda kanıtlanamayacağı konusunda bilim felsefecileriyle aynı görüştedir.Diğer bir deyişle,bilimciler matematikte olduğu gibi mutlak ve garantili bir kanıt elde edemez.Daha ziyade,var olan verileri o anda en iyi açıklayan hipotez geçici olarak kabul edilir çünkü bu hipotezin değişebileceği,genişleyebileceği ya da yeterli kanıt bulursa ya da henüz düşünülmemiş daha iyi bir hipotez kurgulanabilirse reddedilebileceği görüşü bilimciler arasında egemen görüştür.Bazen gerçekten de tamamen yeni bir paradigma eskisinin yerini alır;mesala 1950 lerde levha tektoniği kıtaların yerlerinin sabit olduğu inancının yerini alarak jeolojide devrim yapmıştır.Daha sık rastlanan ise eski hipotezlerin zaman içinde kademeli bir şekilde değişmesi ve genişlemesidir.Söz gelimi modern genetiğe yol açan Mendelin ayrışım ve bağımsız ayrılma yasaları,bağlantı ve indirgemeli bölünme itkisi (meiotic drive) gibi olaylar keşfedildiğinde değiştirilmiş ama parçacıklara(genler) bağlı kalıtımın altında yatan ilke bugün de geçerliliğini korumaktadır. Bu süreç bilimin en önemli ve değerli özelliklerinden birini yansıtmaktadır:eğer bireysel olarak bilimciler bir hipoteze inanıyor olsalar bile bir grup olarak bilim insanları değiştirilemez bir biçimde kendilerini hiçbir inanca adamayacak ve ikna edici aksine aksine kanıtlar olduğunda bu hipoteze olan inançlarını sürdürmeyeceklerdir.Eğer kanıtlar aksini gösterirse düşüncelerini değiştirmek zorundadırlar ve değiştirirler.Gerçekten de, bilim yerleşik düşüncelerdeki küçük zayıflıkların araştırılmasından oluşmaktadır ve bir bilim insanının şöhretine önemli bir hipotezin yetersiz ya da hatalı olduğunu göstermekten daha fazla katkıda bulunabilecek başarı türü sadece birkaç tanedir.Bu nedenle bilim sosyal bir süreç olarak bir denemedir;inanç ve otoriteyi sorgular ;öne sürülen görüşleri kanıtlar aracılığıyla sürekli bir şekilde test eder.Bilimsel iddialar gerçektende doğal bir seçilim sürecinin ürünleridir çünkü düşünceler (ve bilimciler) birbirleriyle yarış halindedir ve böylece bir bilim alanındaki düşüncelerin toplamı açıklama içeriği ve gücü bakımından sürekli büyür(Hull , 1988). Bilim bu açıdan iddialarını test etmek için kanıtlara başvurmayan,belli inançlara,deney ve gözleme dayanmayan bağlılıklarını sarsmak için kanıtlara izin vermeyen ve doğal dünyayı açıklama kapasitesi artmayan yaratılışçılıktan ayrılır. Bu nasıl olabilir ? Bir akıllı tasarım,yandaşının şöyle dediğini kabul edelim : çok hücreli canlılar tek hücreli canlılarla karşılaştırıldığında o kadar karmaşıktır ki bunlar mutlaka zeki bir tasarımcının müdahalesi sonucu ortaya çıkmıştır.Eğer bu akıllı tasarım yandaşı dünya dışı varlıkların bu işten sorumlu olduğunu iddia etmiyorsa,bu tasarımcı maddi bir varlık değil doğa üstü bir varlık olmak zorundadır. Bu durumda ,bu tasarımcı nedir,canlıları yeni özelliklerle nasıl donattı,bunu yapması ne kadar zaman aldı ve bunu neden yaptı ? Doğa bilimleri en azından bu tür sorulara yanıt vermeyi hayal edebilir (söz gelimi filogenetik aratürleri araştırabiliriz,ilinti özellik farklılıklarını şifreleyecek genlerdeki farklılıkları analiz edebilir,taşıl arayabilir,çok hücreliliğin seçim açısından yararı hakkında deney yapabiliriz).Fakat AT hipotezi bu tür araştırma fikirleri ortaya koyamaz. Bilimsel araştırma,deneysel ve gözlemsel verilere dayanarak hipotezleri sınamanın bir yolunu bildiğimizi şart koşar.Bilimsel hipotezlerin en önemli özelliği onların en azından ilkece-test edilebilir olmasıdır.Bazen bir hipotezi doğrudan gözlemle sınayabiliriz,fakat çoğu zaman bir süreci ya da nedeni doğrudan göremeyiz.(örneğin,elektronlar,atomlar,hidrojen bağları,moleküller ve genler doğrudan gözlemlenebilir değildir ve DNA kopyalaması sırasında bir mutasyonun oluşumunu seyredemeyiz).Bu tür süreçleri gözlem ya da deneylerin sonuçlarını çekişen hipotezlerce ortaya atılmış kestirimlerle (prediction) karşılaştırarak çıkarsarız.Bu tür çıkarımlar yapabilmek için,bu süreçlerin doğa yasalarına belli koşullar geçerliyken belli tür olayların daima meydana geleceğini belirten ifadeler uyduğunu kabul etmek zorundayız.Diğer bir deyişle bilim (fizik ve kimya yasalarında örneğini gördüğümüz gibi) doğal fenomenlerin tutarlılığına ya da (en azından istatiksel olarak) kestirebilirliğine dayanır.Doğa üstü olay ya da varlıkların kabulü , doğa yasalarının varlığını askıya aldığı ya da ihlal ettiği için bilim bunlar hakkında çıkarımda bulunamaz ve daha doğrusu bu tür varlık ve olayları kabul eden hipotezlerin geçerliliğini sınayamaz. Dinin doğal olaylar hakkında bilimsel,mekanistik bir açıklama sağlayamaması gibi,biliminde doğal fenomenler hakkında olmayan sorulara yanıt veremeyeceğini anlamak önemlidir.Bilimin bize neyi güzel ya da çirkin , iyi ya da kötü,ahlaka uygun ya da ahlak dışı olduğunu söyleyemez.Bilim bize yaşamın anlamının ne olduğunu ve doğa üstü bir varlık olup olmadığını da söyleyemez(bkz. Gould 1999;Pigluicci 2002). Bilim insanları dünya çapında bir tufanın varlığını ya da dünyanın tüm canlıların yaşının 10.000 yıldan daha az olduğu gibi bazı özel yaratılışçı savları sınayıp yanlışlayabilir ama bilimciler tanrının var olduğunu ya da tanrının herhangi bir şeyi yarattığı gibi hipotezleri sınayamazlar çünkü bu tür hipotezlerin ne gibi oluşumları kestirebileceğini bilemeyiz.(Bu doğaüstü olanıklılıkları kesin olarak yanlışlayabilecek bir gözlem düşünmeye çalışın).Bu nedenle bilim,doğal dünya hakkında açıklamayı arzu ettiğimiz her şeyden doğal nedenlerin sorumlu olduğunu kabul etmek zorundadır.Bu zorunlu olarak METAFİZİK DOĞACILIK her şeyin gerçekten doğa üstü değil doğal nedeni olduğu ön kabulü görüşünü kabul ettiğimiz anlamına gelmez ,sadece YÖNTEMSEL DOĞACILIK bilimsel açıklamalar aradığımızda sadece doğal nedenleri dikkate almamızı söyleyen işlevsel ilke görüşünü kabul etmeyi gerektirir.Yaratılışcılığın temel iddiası olan biyolojik çeşitlilik doğa üstü güçlerin bir sonucudur iddiası ise sınanamaz. Bu akıllı tasarım kuramı içinde aynı şekilde doğrudur.Bu kuram bilimin yöntemleri ile değerlendirilemez. Hipotez,kuram ve olgu gibi terimleri kullandığımız için bunların ne anlama geldiğini anlamamız zorunludur.Hipotez bir önerme,bir kabuldür.1944den önce,çok az kanıtın desteklediği genetik maddenin DNA olduğu düşüncesi makul bir hipotezdi.1944den bugüne,destekleyen kanıtlar arttıkça bu hipotez giderek daha da güçlendi.Bugün bu görüşü bir olgu olarak kabul ediyoruz.Basit bir şekilde söyleyecek olursak,olgu kanıtlarla çok fazla desteklenerek artık doğruymuş gibi kabul etmemizde hiçbir sakıncası olmayan bir hipotezdir.Diğer bir deyişle,neredeyse hiçbir kuşkuya yer vermeyecek şekilde doğru olduğu kanıtlanmıştır.Ama sadece neredeyse. Yoksa akla gelebilecek herhangi bir kuşkuya yer vermeyecek şekilde kanıtlanmış değildir. Bilimde kullanıldığı biçimde kuram(teori) ise , desteklenmeyen bir spekülasyon ya da (popüler kullanıldığı biçimde) bir hipotez değildir. Tersine,bir kuram diğer düşünceleri ve hipotezleri kapsayan ve onları bağdaşık bir doku şeklinde ören büyük bir düşüncedir.Kuram,olgun,akıl yürütme ve çok çeşitli gözlemleri açıklayan kanıtlara dayalı birbiriyle bağlantılı bir tümceler bütünüdür.Oxford English Dictionary tarafından verilen tanımlardan biri şudur : bir grup düşünce ya da olayın açıklamasını sağlayan düşünce ve ifadeler bütünü;bilinen ya da gözlenen bir şeyin genel yasaları,ilkeleri ya da nedenleri olarak bilinen bir anlatım. Böylece atom kuramı,kuantum kuramı ve levha tektoniği kuramı sadece spekülasyon ya da fikirler değil,çok çeşitli kuralları açıklayan ve kuvvetli bir şekilde desteklenen düşüncelerdir. Biyolojide birkaç kuram vardır ve kesinlikle evrim bunlardan en önemli olanıdır. Bu durumda evrim bir olgu mudur yoksa kuram mı ? Bu tanımların ışığı altında evrim bilimsel bir olgudur.Diğer bir deyişle,ortak atalardan değişim yoluyla tüm türlerin türeyişi 150 yılda çok sayıda kanıtla desteklenmiş ve tüm testleri başarıyla geçmiş bir hipotezdir,yani bir olgudur.Fakat evrimsel değişimin tarihçesi,canlıların geçirdiği(mutasyon,seçilim,genetik sürüklenme,gelişimsel sınırlamalar vb. hakkındaki) çeşitli değişimleri açıklayabilen bir ifadeler bütünü olan evrim kuramı tarafından açıklanır. Canlıların çeşitliliği ve özellikleri için sunulan yaratılışcı açıklamalar bilimin yöntemleri ile değerlendirilemeyeceğinden bu görüşe bilim sınıflarında eşit süre verilmemelidir.Ayrıca bilimsel olmayan ya da yanlışlığı gösterilmiş olan hipotezlere de eşit süre verilmemelidir.Kimya öğretmenleri simya kurşun gibi bir elementin büyü yoluyla altın gibi başka bir elemente dönüştürülebileceği hakkındaki eski bir düşünce öğretmez ve öğretmemelidir ; yerbilimleri sınıfları Yerkürenin düz olduğu hipotezinden bile söz etmemelidirler;tarih ve psikoloji öğretmenleri tarihsel olayları ya da kişilik özelliklerini açıklayan astrolojiyi dikkate almamalıdır her e kadar bu tür bilim dışı düşüncelere inanan insanlar varsa da.İdeal demokrasi bazen yanlış olan ve tamamen pratik nedenlerle bu şekilde anlamamızın zorunlu olduğu düşünceleri kapsayacak kadar genişletilemez.Günlük hayatta,doğa üstü değil doğal açıklamaları benimser onlara göre yaşarız.1962de Massachussets eyaletinin Salem kasabasında insanları cadılıktan mahkum etmiş Püritanlardan farklı olarak biz,artık bir kişinin cadının büyüsünden etkileneceği ya da şeytani güçlerce ele geçirebileceği düşüncelerini ciddiye almayız. Bir suçlu Şeytan benim bunları yapmama neden oldu diyerek serbest kalabilseydi bu bizi çileden çıkarırdı.Kaderinin tanrı tarafından belirlendiğine canı gönülden inanmış birisi bile uçağın motorları çalışmasaydı paniğe kapılırdı.Bilimsel açıklamalara bağlı yaşıyoruz ve bilimin kendisini kanıtlamış olduğunu biliyoruz-çükü bilim işe yarar. ALINTI KAYNAĞI : PALME YAYINCILIK 1.BASKI Evrim Douglas J.Futuyma Çeviri Editörleri : Prof.Dr.AYKUT KENCE Prof.Dr.A.NİHAT BOZCUK Bölüm : 22 Sayfa 525 526 - 527 Gönderi:Onur Doğan  

http://www.biyologlar.com/bilim-inanc-ve-egitim

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York Testi ve Gıda İntoleransı Nedir ? York Testi Bilgileri

York test, bir gıda intoleransı testidir .Günümüzde popüler testler olarak sıkça gündeme gelen gıda intolerans testleri, besin intolerans veya gıda duyarlılık testleri olarak da adlandırılmaktadır. Piyasada ve sağlık kuruluşlarında gıda (besin ) intoleransını saptayan bir çok test vardır. York Test de, bu testler arasında bilinirliği yüksek olan bir testdir. Hatta bazı kişiler, besin intolerans testlerini , genel bir ifadeyle York testi olarak adlandırmaktadır. York testin kullanılma amacı, işlevi ve etkinliğini daha iyi anlayabilmek için, kuşkusuz gıda ( besin) intoleransı kavramını da anlamak gerekmektedir. Gıda ( besin) İntoleransı Nedir? Gıda intoleransı, bir çok kişide ortaya çıkan bir sağlık sorunudur. Gıda intoleransı olan kişilerde, toleransın olduğu gıdaya karşı insan vücudu normal olmayan tepkiler verir.Sağlıklı ve normal olarak bilinen bir gıda, tüketildiğinde insan vücudunda istenmeyen reaksiyonlara yol açarak, çeşitli sağlık sorunlarına yol açar. Oluşan reaksiyonların ve rahatsızlıkların ana sebebi ise, sindirim sisteminizde tolerans yani duyarlılık oluşturan gıdaların tam olarak sindirilememesidir. Sindirimi tam olarak olmayan gıdalar ise insan vücudunca yabancı bir madde olarak algılanmaktadır. Yabancı madde olarak algılanan bu gıdalara karşı da vücudumuz tepki vermekte bu durum da sağlık sorunlarına yol açmaktadır. Günümüzde doktorlar, geçmeyen sindirim sistemi rahatsızlıkları olan hastalarına, gıda intolerans testlerini daha sık istemektedirler. Gıda ( besin) İntoleransı Belirtileri Nelerdir? Gıda intolernsı, bir çok gıdanın tetikleyebildiği bir sağlık sorunu olduğu için buna bağlı olarak ortaya çıkan sağlık sorunları ve belirtiler de geniş bir yelpaze içinde değerlendirilir. Gıda intoleransı belirtilerinin başlıcalarını birlikte inceleyelim. * Hazımsızlık, kabızlık,şişkinlik, gaz, ishal, mide krampları gibi sindirim sistemi şikayetleri * Yorgunluk ( sürekli hale gelen bir yorgunluk), vücütta farklı bölgelerde görülebilen ödem (şişkinlik) * Migren, uyku bozukluğu ve romatizmal hastalıklar * Sindirim sistemi şikayetleri ile birlikte çeşitli barsak hastalıkları * Çeşitli deri hastalıkları ( sivilce, döküntüler gibi) York Test Ne Amaçla Yapılmaktadır? York Test, test yapılan kişide, herhangi bir gıdaya karşı intolerans yani duyarlılık varsa bunu ortaya çıkarmaktadır. York Test Nedir? York Test, gıda intoleransı varlığında, vücudumuzun buna yol açan gıdalara karşı verdiği reaksiyonları ortaya çıkaran ve sorun yaratan gıdaları öğrenmemeizi sağlayan bir testdir. olan bir testdir.. York Test için parmaktan alınan kan örneği yeterlidir.Kan örneği bir sağlık merkezinde alınabileceği gibi, testi yaptıracak kişinin adresine gönderilen test kiti aracılığı ile, evde de alınabilmektedir. Alınan test numuneleri ise, uygun koşullarda yurt dışındaki York Test laboratuarlarına gönderilmekte ve sonuçlar bu merkezlerde analiz edilmektedir. Test sonuçlarına göre, eğer bir gıda intoleransı varsa, buna göre kişiye bir beslenme programı önerilmektedir.Uygun beslenme ve diyet programıyla hastaların gıda intoleransına bağlı şikayetleri önemli oranda iyileşmektedir. York test, ideal olarak hasta,hekim ve diyetisyen işbirliği ile en yararlı sonucu verecektir. York Test’in En Sık Kullanım Alanları Nelerdir? Gıda ( besin) intoleransı araştırılması Özellike gıda intoleransı kaynaklı obesite ( şişmanlık) sorunlarında diyetisyen ve hekim işbirliği ile obesite tedavisine destek sağlanması York Test Nerelerde Yapılmaktadır? York Test çeşitli sağlık merkezlerinde ve İstanbul Ortaköy’de bulunan York Test Türkiye merkez ofisinde yapılmaktadır. http://tahlil.com

http://www.biyologlar.com/york-testi-ve-gida-intoleransi-nedir-york-testi-bilgileri

Bakterilerde Sınıflandırma ve kimlik tespiti

Bakterilerde Sınıflandırma ve kimlik tespiti

Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar.

http://www.biyologlar.com/bakterilerde-siniflandirma-ve-kimlik-tespiti

Türkiye Zootekni Bölümlerinde Hayvan Davranışları Bilimi

Hayvan davranışları bilimi bakımından Türkiye’de son yıllarda sevindirici gelişmeler yaşanmaktadır. Lisans ve lisansüstü ders olarak hayvan davranışları, zootekni bölümü olan neredeyse tüm üniversitelerde okutulmaya başlanmıştır. Genellikle lisansta zorunlu ders olarak genel hayvan davranışları verilmekte, lisansüstünde ise seçmeli ders olarak türlere özgü davranış dersleri yer almaktadır. Ülkemizde davranış derslerinin türlere özgünleşmesi ilginçtir. Zira ülkemize kıyasla hayvan davranışları biliminin çok daha eski bir geçmişi olmasına rağmen batı ülkelerinde türlere ilişkin ayrı derslere neredeyse rastlanmamaktadır. Zootekni öğretiminin yapılanması ve bu konudaki ulusal alışkanlıklarımız ile ilişkilendirilebilecek bu oluşum aynı zamanda ülkemizde temel davranış çalışmalarına olan ilginin yetersizliğini de açıklamaktadır. Ülkemiz zootekni bölümlerinde hayvan davranışları konusunda yapılan ve Science Citation Index tarafından değerlendirmeye alınan dergilerde yayınlanan çalışmalara bakıldığında ilk yayının 1999 tarihli olduğu görülmektedir (Çam ve ark., 1999). Aynı yazarların daha sonraları davranış konularında yayınlarına rastlanmamaktadır. Bu çalışmayı, güncel değerlendirme makalesinin yazar(lar)ının da içerisinde bulunduğu 2001, 2002 ve 2003 tarihli üç araştırma makalesi izlemektedir (Savaş ve ark, 2001; Yurtman ve ark., 2002; Karaağaç ve ark., 2003). Kasım 2007 tarihi itibarıyla SCI tarafından taranan dergilerde hayvan davranışları konusunda yayınlanan Türkiye adresli toplam makale sayısı 21’dir. Makale sayıları bakımdan, Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Savaş ve ark., 2001; Yurtman ve ark., 2002; Uğur ve ark., 2004; Savaş ve ark., 2007; Tölü ve Savaş, 2007; Atasoglu ve ark., 2007), Mustafa Kemal Üniversitesi Ziraat Fakültesi Zootekni Bölümü (Keskin ve ark., 2004; Keskin ve ark., 2005; Tapkı ve Şahin, 2006, Tapkı ve ark., 2006) ve Atatürk Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nden (Yanar ve ark., 2006; Metin ve ark., 2006; Güler ve ark., 2006) araştırma gruplarının çalışmaları dikkat çekmektedir. Anılan çalışmaların yarıya yakın bir bölümü pür uygulamalı etolojik çalışmalar olarak değerlendirilebilirler. Diğer çalışmalarda ise davranış özellikleri daha ziyade ikincil, yada destekleyici biyolojik göstergeler olarak kullanılmışlardır. Söz konusu çalışmalar türler bazında incelendiğinde küçükbaş hayvanların ağırlıklı olduğu, bunları sığırların izlediği gözlenmektedir. Türkiye adresli ve SCI indeksli yayınlar içerisinde kanatlı türlerde, biri yumurtacı tavuk diğeri güvercin özdekli olan yalnızca iki çalışmaya rastlanmıştır (Karaağaç ve ark., 2003; Savaş ve ark., 2007). Bununla birlikte, ulusal dergilerde yayınlanmış olan bazı araştırma makaleleri ile (Savaş ve Şamlı, 2000) yine bu konuda yürütülen tez çalışmalarına (Köse, 2004) da ulaşmanın mümkün olabileceği düşünülmektedir. Her ne kadar TÜBİTAK ULAKBİM bu konuda önemli adımlar atmış olsa da, ne yazık ki, ulusal paylaşım ağımızın yetersizliği nedeni ile çalışmalara ulaşmak son derece güç olabilmektedir. Bu nedenlerle değerlendirmede sadece uluslararası paylaşım kolaylığına sahip süreli yayınlar dikkate alınmıştır. Bilim insanlarının çalışma alanlarının belirlenmesinde ulusal nitelikli bilimsel toplantılar iyi birer araçtır. Zira bilimsel projeler, proje başladıktan çok kısa sonrasında bu tip toplantılarda sunulurlar. Halbuki bu çalışmaların makaleye dönüşmesi çok daha uzun bir süre alabilir. Bu bağlamda hayvan davranışları bilim alanındaki çalışmaların gelişimini takip etmek açısından Ulusal Zootekni Bilim Kongrelerinde sunulan bildiriler iyi birer araç olabileceği düşünülmüş ve 2000 yılından sonra yapılan üç Ulusal Zootekni Bilim Kongresi (2002 Ankara, 2004 Isparta ve 2007 Van) incelenmiştir. Ankara Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nce organize edilen III. Ulusal Zootekni Kongresi’ne toplam 167 bildiri sunulmuş olup, Hayvansal Üretim bunlardan biri küçükbaş diğeri balarısı özdeğinde olmak üzere, yalnızca iki tanesinin hayvan davranışları konusunu içerdiği gözlenmiştir. Süleyman Demirel Üniversitesi Ziraat Fakültesi Zootekni Bölümü’nün gerçekleştirdiği IV. Ulusal Zootekni Kongresi’nde ise toplam bildiri sayısı 174, hayvan davranışları konulu bildiri sayısı 13 e ulaşmıştır. Son yapılan Van Kongre’si değerlendirildiğinde, bir önceki kongreye göre %13,2’lik bir artışla (Ankara ile Isparta arasındaki toplam bildiri sayısı artışı %4,2) toplam bildiri sayısının 197, hayvan davranışlarını konu alan bildiri sayısının ise 17 olduğu görülmektedir. Kongrelere göre hayvan davranışlarını konu edinen bildiri sayısının toplam bildiri sayısına oranı sırasıyla %1,2, %7,5 ve %8,6’dır. Bu gelişme hayvan davranışları bilim dalı bakımından sevindiricidir. Zootekni, veteriner hekimlik ve biyoloji öğrencileri için önemli bir Türkçe kaynak durumunda olan ve Ege Üniversitesi Ziraat Fakültesi Zootekni Bölümü öğretim üyesi Prof. Dr. Erdinç Demirören tarafından kaleme alınan “Hayvan Davranışları” kitabı da, bu konuda bir ilk olması nedeniyle anılmadan geçilemez (Demirören, 2007). Ancak bir tek kitabın bilim dalı için yeterli olmadığı, hayvan davranışları alanında Türkçe kaynak sıkıntısı çekildiği de bir gerçektir. Sonuç Hayvan davranışları bilimi, hayvanların çevresel düzenlemelerinde yararlı bir araç olarak görülmektedir. Bu yararlanma, çevrenin hayvanın davranışlarına göre şekillendirilmesi yanında davranış bakımından mevcut çevre koşullarına uyum sağlayabilecek hayvanların ıslah edilmesi şeklinde iki yönlüdür. Sözkonusu bilim dalından yararlanmanın anılan her iki yönünün de birlikte ele alınması ön koşuldur. Zira hayvan bilimi içerisinde bu güne değin yapılan çalışmalar göstermiştir ki, ne tek başına çevreyi ne de tek başına hayvanın genetik yapısını “yetiştiricinin arzuları doğrultusunda” optimize etmek mümkün olmuştur. Dolayısıyla optimizasyon bütüncül bir yaklaşımı gerektirir. Bu bilim dalından üretilecek bilgi hayvanların yaşamlarını daha sağlıklı sürdürmelerini, üremelerini ve üretmelerini sağlayacaktır. Bunların ötesinde hayvanlarla ilgili hukuki düzenlemelerde de bu bilim dalının vazgeçilmez katkısı bulunmaktadır. Hayvan refahının gözetilmesi anlamında Hayvanları Koruma Kanunu’nda hayvan davranışları bilim dalına doğrudan atıfta bulunulmaktadır (Kanun No: 5199; Madde 3, 5, 8 ve10). Ancak çevresel düzenlemeleri insan kontrolünde olan hayvanların davranışlarının yalnızca uygulamaya dönük olarak ele alınması, hayvan davranışları bilim dalının gelişmesini olumsuz olarak etkiler. Bilim dalının sağlıklı olarak gelişmesi için, yetiştirme olgusu altında hayvanların davranışlarına yönelik temel çalışmalara da gereksinim vardır. İlgili davranışların ortaya çıkışında etkili mekanizmaların aydınlatılabilmesi için fizyolojiden genetiğe, gelişme biyolojisinden patolojiye kadar davranışa temel oluşturan alanların kapsamı içerisinde çalışmak kaçınılmaz gözükmektedir. Söz konusu yaklaşım tarzı aynı zamanda bu konuda yetişecek genç bilim insanlarının temel etolojiyi ve ilgili alt dallarını iyi öğrenmelerini de sağlayacak niteliktedir. Zootekni açısından hayvan davranışları bilim dalının Türkiye’de son yıllarda sergilediği gelişimin niteliği sevindirici ve umut vericidir. Ancak ve ne yazık ki, zootekni bilim camiası içerisinde yapılan sohbetlerden takip edilen bir şekilde, özellikle davranışın sayısallaştırılması ve akabinde istatistiksel değerlendirilmesi konusunda bilimcilerimizin sorunlar yaşadıkları, kimi zaman bu güçlüklerin araştırmacıları söz konusu alandan vazgeçmenin eşiğine getirdiği izlenimi, çalışmaların sürekliliği açısından endişe yaratmaktadır. Öncelikle belirtmek gerekir ki tüm Dünya’da bu konuda çalışmalar yetersizdir. Bu durum söz konusu alanda bilimsel çalışma yapmaktan vazgeçmeyi değil ilgili sorunların üzerine gitmeyi ve araştırma yapmayı gerektirir. Nitekim hayvan davranışları bilimi alanında yöntem konusunda da çalışmalara gereksinim vardır. Kaynaklar Ataşoğlu, C., Yurtman, İ. Y., Savaş, T., Gültepe, M., Özcan, O. 2008. Effect of weaning on behavior and serum parameters in dairy goat kids. Animal Science Journal 79(4): 435-442. Bessei, W. 1983. Die Bedeutung der Lorenzschen Instinktlehre in der Diskussion um eine verhaltensgerechte Unterbringung von Legehennen. Züchtungskunde 55: 222-232. Çam, M., Kuran, M., Selçuk, E. 1999. Effects of time spent near mothers postpartum on the behaviour of ewes and lambs and on the growth performance of lambs in Karayaka sheep. Turk. J. Vet. Anim. Sci. 23: 335-342. Darwin, C. 1990. Türlerin kökeni. (Çev. Öner Ünalan) Onur Yayınları, Şahin Matbaası, Ankara, ss 392. Dietl, G., Nürnberg, G., Reinsch, N. 2006. A note on a quantitative genetic approach for modeling of differentiation tasks. Appl. Anim. Behav. Sci. 100: 319–326. Demirören, E. 2007. Hayvan davranışları. II. Baskı. Ege Üniversitesi Ziraat Fakül. yayınları No:547, İzmir. Hayvansal Üretim 49(2), 2008 Hayvan Davranış Bilimi ve Zootekni: Tanım ve İzlem 41 Güler, O., Yanar, M., Bayram, B., Metin, J. 2006. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. African J. Anim. Sci. 36: 149-154 Immelmann, K., Ekkehard, P., Sossinka, R. 1996. Einführung in die Verhaltensforschung. Blackwell Wissenschafts-Verlag Berlin, Wien, pp 287. Karaağaç, F., Özcan, M., Savaş, T. 2003. Verlauf von aggressivem Picken und einigen Verhaltensmerkmalen in rangordnungsinstabilen Käfiggruppen bei Legehennen. Arch. Tierz. 46: 391-396 Keskin, M., Şahin, A., Biçer, O., Gül, S. 2004. Comparison of the behaviour of Awassi lambs in cafetaria feeding system with single diet feeding system. Appl. Anim. Behav. Sci. 85: 57-64. Keskin, M., Şahin, A., Biçer, O., Gül, S., Kaya, S., Sarı, A., Duru, M. 2005. Feeding behaviour of Awassi sheep and Shami (Damascus) goats. Tr. J. Vet. Anim. Sci. 29: 435-439. Köse, K.,2004. Devriye köpeği amaçlı kullanılan alman çoban köpeği ile Belçika çoban köpeği (Malinois) ırkı köpeklerin eğitim sürelerini etkileyen faktörler. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Çanakkale, 56 s. Lorenz K. 1982 Vergleichende Verhaltensforschung. Grundlagen der Ethologie DTV Wissenschaft: München, pp 399. Lund, V., Coleman, G., Gunnarsson, S., Appleby, M. C., Karkinen, K. 2006. Animal welfare science—Working at the interface between the natural and social sciences. Appl. Anim. Behav. Sci. 97: 37-49. Metin, J., Yanar, M., Güler, O., Bayram, B., Tüzemen, N. 2006. Growth, health and behavioural traits of dairy calves fed acidified whole milk. Indian Vet. J. 83: 976-979 Millman, S.T., Duncan, I.J.H., Stauffacher, M., Stookey, J. M. 2004. The impact of applied ethologists and the international society for applied ethology in improving animal welfare. Appl. Anim. Behav. Sci. 86: 299-311. Mormede, P. 2005. Molecular genetics of behaviour: research strategies and perspectives for animal production. Livestock Production Science 93: 15–21 Sambraus, H.H. 1998. Applied ethology-it’s task and limits in veterinary practice. Appl. Anim. Behav. Sci. 59: 39-48. Sambraus, H.H. 2002. Aufgaben der Angewandten Ethologie bei Landwirtschaftlichen Nutztieren früher und heute. Gumpensteiner Tagung “Nutztierhaltung im Wandel der Zeit”, Bundesanstalt für alpenländische Landwirtschaft, Gumpenstein, A-8952 Irdning: 17-20. Sandilands, V. 2004. David Wood-Gush, the biography of an ethology mentor. Appl. Anim. Behav. Sci. 87: 173-176. Savaş, T., Şamlı, E. 2000. Tavuklarda agresyon ile sosyal hiyerarşinin yumurta verimi ve bazı davranış özelliklerine etkisi. Tarım Bilimleri Dergisi 6: 11-15. Savaş, T., Yurtman, I.Y., Karaağaç, F., Köycü, E. 2001. Einfluss der intensiven Gruppenhaltung und Geschlecht auf Oral-Stereotypien und einige Verhaltensmerkmale bei Mastlämmern. Arch. Tierz. 44: 313-322 Savaş, T., Konyalı, C., Daş, G., Yurtman, İ.Y. 2007. Effect of beak length on feed intake in pigeons (Columba livia f. domestica). Animal Welfare 16: 79-86. Smidt, D., Schlichting, M.C., Ladewig, J., Steinhardt, M. 1995. Ethologische und verhaltensphysiologische Forschung für tiergerechte Nutztierhaltung. Arch. Tierz. 38: 7-19. Steiger, A. 1993. Schlussbetrachtung zur 25. Freiburger Tagung und kritische Gedanken zur Stellung der angewandten Ethologie. Aktuelle Arbeiten zur artgemäßen Tierhaltung, Vorträge anlässlich der 25. Internationalen Arbeitstagung Angewandte Ethologie bei Nutztieren der Deutschen Veterinärmedizinischen Gesellschaft e.V. KTBL-Schriften-Vertrieb im Landwirtschaftsverlag GmbH, Münster-Hiltrup: 274-284 Tapkı, İ, Şahin, A. 2006. Comparison of the thermoregulatory behaviours of low and high producing dairy cows in hot environment. Appl. Anim. Behav. Sci. 99: 1-11. Tapkı, İ., Şahin, A., Önal, A.G. 2006. Effect of space allowance on behaviour of newborn milk-fed dairy calves. Appl. Anim. Behav. Sci. 99: 12-20. Tembrock, G. 1992. Verhaltensbiologie. 2. Auflage. Gustav Fischer Verlag, Jena, pp 386. Tinbergen, N. 1979. Tiere und ihr Verhalten. (Überstz. Hans-Heinrich Wellmann und Wolfgang Vilwock) Rowohlt Taschenbuch Verlag GmbH, Reinbek bei Hamburg, pp 191. Todes, D. 2003. İvan Pavlov: Hayvan makinesini araştırırken. (Çev. Ebru Kılıç), TÜBİTAK Popüler Bilim Kitapları, Ankara, ss. 118. Tölü, C., Savaş, T. 2007. A brief report on intra-species aggressive biting in a goat herd. Appl. Anim. Behav. Sci. 102: 124-129. Uğur, F., Savas, T., Dosay, M., Karabayır, A., Atasoglu, C. 2004. Growth and behavioral traits of Turkish Saanen kids weaned at 45 and 60 days. Small Ruminant Research 52: 179-184. Hayvansal Üretim

http://www.biyologlar.com/turkiye-zootekni-bolumlerinde-hayvan-davranislari-bilimi

XXIV.Ulusal Biyokimya Kongresi

XXIV.Ulusal Biyokimya Kongresi

Değerli Meslektaşlarım, Sizleri 25 - 28 Eylül 2012 tarihlerinde, tarih öncesi dönemden beri pek çok Anadolu Medeniyetine beşik olmuş, kucak açmış Konya’da, Hazreti Mevlana’nın kentinde yapılacak olan XXIV.Ulusal Biyokimya Kongresi ve Kongre öncesinde ve sonrasında gerçekleştirilecek olan çalıştaylara katılmaya davet etmekten onur duyuyorum. Açılış Konferansı, kongremizin de ana konusunu oluşturan Tıbbi Laboratuvarlarda İzlenebilirlik – Standardizasyon – Harmonizasyon üzerine Prof. Dr. Lothar Siekmann tarafından yapılacaktır. Prof. Siekmann, Joint Commission for Traceability in Laboratory Medicine (JCTLM) Yönetim Kurulu Üyesi, kuruluşun IFCC Temsilcisi ve JCTLM Reference Measurement Laboratories Çalışma Grubu Başkanı olup, izlenebilirlik – standardizasyon - harmonizasyon alanında en yetkin bilimcilerden biridir. Konuşmasının meslektaşlarımız için ilgi çekici olacağını düşünüyoruz. Kongre bilimsel programında bu yıl çok sayıda genel konferans da bulunmaktadır. Bunların başında “keynote” konuşmacılarımızdan Prof. Dr. Sevil Atasoy’un yapacağı Kepçe Kulaktan Kesik Kulağa Biyokriminolojinin Önlenemez Yükselişi başlıklı konuşma tüm katılımcılarımızın dikkatini çekecektir. Ayrıca, son zamanlarda yeniden canlanan Kolesterol, Dislipidemiler ve Statinler konusundaki tartışmalara klinisyenlerin nasıl baktığına yönelik olarak Kardiyolog Prof. Dr. Sinan Aydoğdu tarafından Klinisyen Gözüyle Kolesterol Tartışmalarına Güncel Bakış başlıklı bir genel konferans verilecektir. Son zamanlarda gerek tıp alanında, gerekse özel olarak tıbbi laboratuvar alanında önemli gelişmelerin olduğu Nanoteknoloji konusunda ise başarılı genç bilim insanlarımızdan Dr. Selman Yavuz tarafından Nanoteknoloji, Tıp ve Laboratuvar başlıklı bir genel konferans verilecektir. Bunlara ek olarak Prof. Dr. Reşat Apak, oksidatif stres, antioksidan aktivite/kapasite çalışmalarında kullanılan CUPRAC yöntemi konusunda Antioksidan Aktivite/Kapasite Tayin Yöntemleri, CUPRAC Yöntemi ve İnsan Sağlığındaki Önemi başlıklı, Prof. Dr. Sema Genç ise gene güncel bir konu olan osteoporoz üzerine Osteoporoz: Klinik ve Laboratuvar Yaklaşım başlıklı birer genel konferans vereceklerdir. Kongre bilimsel programında her zaman olduğu gibi Laboratuvar Yönetimine yönelik oturumlar bulunmaktadır. Bunlardan birisi tıbbi laboratuvarlarda ISO 15189 akreditasyon süreci ve hizmet kailte standartları üzerine düzenlediğimiz bir panel olup, panelde Sağlık Bakanlığı ve TÜRKAK’ın katkılarıyla birlikte akreditasyon alanında önemli yol kat etmiş meslektaşlarımız tarafından aktarılacak bilgilere ulaşacağız. Laboratuvar Yönetimi alanındaki diğer oturum ise, yakın zamanda kaybettiğimiz, derneğimizin kurucu üyesi Uzm. Dr. M. Engiz Tezcan anısına düzenlediğimiz Yalın Laboratuvar Yönetimi, Klinisyen Laboratuvarcı İlişkisi, Hasta Güvenliği, Kritik Değerlere Yaklaşım, Risk Yönetimi ve Kaliteye Etkisi, Biyolojik Varyasyon ve Laboratuvar Sonuçlarına Katkısı, Sağlık Bakanlığı’nın Laboratuvar Hizmetleri Dairesi’nin Güncel Çalışmaları ve Hedefleri konularının işleneceği bir paneldir. Laboratuvar Yönetimi ile ilgili diğer bir panelde, IFCC Referans Aralık Komitesi Başkanı Prof. Dr. Kiyoshi Ichihara’nın yürüttüğü Küresel Referans Aralık Çalışması ve bununla bağıntılı olarak ülkemizde yapılan çok merkezli referans aralık çalışmalarının sonuçları Prof. Dr. Yahya Laleli ve Prof. Dr. Yeşim Özarda’nın katkılarıyla tartışılacaktır. Bilimsel programda yer alan dikkat çekici oturumlardan tüm katılımcıların ilgisini çekeceğini düşündüğümüz ve birisi Prof. Dr. Mustafa Gültepe moderatörlüğünde yapılacak olan Tek Karbon Metabolizması ve Nörokimya üzerine, diğeri Prof. Dr. Arzu Seven moderatörlüğünde yapılacak olan Endoplazmik Retikülum Stresi ve Metabolik Homeostaz üzerine, bir diğeri ise Prof. Dr. Ali Ünlü moderatörlüğünde yapılacak olan, güncel ve popüler bir konu olan Gıda, Vitamin ve Eser Element Destekleri üzerine konuşmalar içeren üç paneldir. Programda her zaman olduğu gibi tıbbi laboratuvar alanında yeniliklere iki panelde yer verildi. Bunlardan birisi son zamanların gözde konusu MikroRNA’lar ve Tıbbi Laboratuvar üzerine olup yakın zamanda kaybettiğimiz Hocamız Prof. Dr. Yavuz Taga anısına düzenlenmiştir, diğeri ise bizzat uygulayıcıları tarafından aktarılacak olan moleküler tanıya yönelik çalışmalar üzerinedir. Tıbbi biyokimyada özel konular kapsamında yer verdiğimiz ve bizzat uygulayıcılar tarafından verilecek olan Adipokinler ve Alkolik Olmayan Yağlı Karaciğer, Lizozomal Depo Hastalıklarında Otofaji, Siklik Nükleotid Fosfodiesterazlar ve Klinik Önemi, Gen Klonlanması ve İfade Seviyesinin Belirlenmesinde Yenilikler konulu konferansların da ilgi çekeceğini düşünüyoruz. Eğitim hemen her kongremizin bilimsel programında yer verdiğimiz bir alandır. Bu kapsamda programda iki panel bulunmaktadır. Bu panellerin birisinde lisans düzeyinde biyokimya laboratuvar eğitimi her yönüyle tartışılacaktır. Diğeri ise tarihçesiyle birlikte biyokimya uzmanlık eğitiminin, ülkemiz gerçeklerinin ve özellikle Avrupa’daki durumun tartışılacağı Uzmanlık Eğitimi Panelidir. Eğitim alanında ayrıca tüm katılımcıların ilgisini çekeceğini düşündüğümüz ve Türk Biyokimya Dergisi Baş Editörü Prof. Dr. Yahya Laleli moderatörlüğünde yapılacak olan Bilimsel Makale Yazımı konusundaki panelin de çok yararlı olacağına inanıyoruz. Bu yıl 11-12 Mayıs tarihinde Ankara’da düzenlediğimiz, çok ilgi çekmesi ve istek gelmesi üzerine Kongre öncesinde yapacağımız bir günlük Kalite Kılavuzları Temelinda Laboratuvar Hesaplamaları Kursu ve Kongre sonrasında yapacağımız, gene bir günlük LC-MS/MS ve GC-MS/MS uygulamalarının yer aldığı Laboratuvarların Yeni Gözdesi Kütle Spektrometreleri ve Klinik Uygulamaları Kursu ile ilgili bilgilere kongre sitemizden ulaşabilirsiniz. Sınırlı sayıda katılımcının yer alacağı bu kurslar için çok gecikmeden başvuru yapmanızı öneririz. Bu Kongre’de yukarıda aktardıklarımızın yanı sıra sözlü sunumlar için de önemli bir zaman ayrılmıştır. Ayrıca, genç katılımcılar için kısmi yol ve kalacak yer desteği sağlamak üzere TUBITAK’a başvuru yapılacaktır, lutfen şimdiden Dernek’e başvurunuzu yapınız. Kapanış sırasında, Bilimsel Komite tarafından seçilmiş on poster arasından, kura ile belirlenen bir katılımcıya, bir diz üstü bilgisayar, diğer dokuz katılımcıya ise kitap hediye edilecektir. Ayrıca, orada bulunan katılımcılar arasından, kura ile belirlenecek, beş meslektaşımız TBD 2013 yılı Kongresine katılım ücreti ödemeden katılabileceklerdir. Kongre’de sunulan tüm çalışmalar, SCI Expanded, Journal Citation Reports/Science Edition, Chemical Abstracts, Directory of Open Access Journals, Index Copernicus, EmbaseScopus, indekslerinde indekslenen "Turkish Journal of Biochemistry-Türk Biyokimya Dergisi", özel sayısında yer alacaktır. Bu yıl kongrede önceki yıllara göre sosyal programa daha geniş yer ayrılmıştır. Bu kapsamda 25 Eylül'de Dedeman Otel'de gerçekleşecek Açılış Kokteyli ile başlayan, 26 Eylülde yer alacak Panoramik Konya Turu ve sonrasında gerçekleştirilecek olan Semazen Gösterisi ve Akşam Yemeği ve 27 Eylül akşamı tarihi Zazadin Han’da verilecek olan yerel yemeklerin sunulacağı akşam yemeği ile devam eden programa hepinizi davet ediyoruz. Kongremiz, her zaman olduğu gibi, 28 Eylül akşamı yapılacak olan Kapanış Töreni ve Gala Yemeği ile sonuçlanacaktır. Değerli Meslektaşlarım, Hepinizi bu zengin bilimsel ve sosyal programı paylaşmaya, kongremize katılmaya davet ediyoruz. Kongremize gösterdiğiniz ilgiden dolayı şimdiden teşekkür ederiz. Ek olarak, biyokimya ve ilgili tüm alanlarda yeni bilimsel gelişmelerin paylaşılacağı bu bilimsel toplantıların gerçekleştirilebilmesi için maddi desteklerini esirgemeyen ve teknolojik gelişmeleri standlarına taşıyarak laboratuvarlarımızın çağdaşlaşmasına katkıda bulunan diyagnostik firmalarını da 24. Ulusal Biyokimya Kongresi’nde, tüm meslektaşlarımızla birlikte aramızda görmekten mutluluk duyacağımızı belirtmek isterim. Saygılarımla,Prof. Dr. Nazmi ÖzerTürk Biyokimya Derneği Başkanı   Resmi Web Sitesi: http://www.biyokimyakongresi.org/kayit-ve-konaklama/konaklama-bilgileri/

http://www.biyologlar.com/xxiv-ulusal-biyokimya-kongresi

BİYOLOJİK SİLAH NEDİR ?

BİYOLOJİK SİLAH NEDİR ?

Biyolojik silah kavramını açıklayabilmek için "biyoloji" ve "silah" kavramlarının tanımlanması gerekmektedir.

http://www.biyologlar.com/biyolojik-silah-nedir-

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

Tıbbi Atıklara Çözüm

Mikro dalgalar, buhar, sıcak hava ve gaz yıkayıcılar biyomedikal artıkları temizlemektedir. Çevre Koruma Kurumu'na göre Amerika Birleşik Devletleri'ndeki hastane ve klinikler her yıl 600.000 ila bir milyon ton atık üretmektedir ve bunun yüzde 15 kadarı potansiyel bir enfeksiyon tehlikesi içermektedir. Uzun yıllar boyunca, hastaneler tüm patojenlerin yok edilmesini sağlamak üzere kontamine şırıngalar, iğneler, kağıt, plastik, cam, bez ve insan dokularını ya sahada yakmış, ya da yakılmak üzere kendi alanlarının dışına göndermiştir. 1990 Tarihli Temiz Hava kanunu tarafından öngörülen - ancak üç sene önce yürürlüğe giren - tıbbi atık yakma emisyonlarına ilişkin yönetmelikler bu uygulamanın ekonomisini değiştirmiştir. ABD hastaneleri, anılan yönetmeliklerin şartlarını karşılamak üzere çöp fırınlarını, hidrojen klorit, sülfür dioksit, nitrojen oksit ve ağır metallerden kurşun, kadmiyum ve civanın arındırılmasını veya nötrleştirilmesini sağlayan pahalı gaz yıkayıcıları ile donatmak zorunda kalmıştır. Hastane ve tıp merkezlerinin büyük çoğunluğu, sahadaki çöp fırınlarının, başta mikro dalga sistemleri veya buhar otoklavları olmak üzere, alternatif atık arıtma teknolojileri ile değiştirilmesinin veya atıkların dezenfeksiyon teknolojileri ile donatılmış olan arıtma şirketlerine gönderilmesinin daha ekonomik olduğunu tespit etmişlerdir. West Caldwell, N.J.'deki Sanitec International Holding, alternatiflerin tıbbi atık çöp fırınlarında sebebiyet verdiği engellemeyi göstermektedir. Ticareti geliştirme müdürü Mark Taitz "Mikro dalga dezenfeksiyon sistemlerimizin yarısını hastanelere ve yarısını da atık arıtma firmalarına satmaktayız" demektedir. Sanitec dezenfeksiyon sistemi tüm hava şartlarına karşı dayanıklı bir çelik muhafaza içinde bulunmaktadır ve hastanenin elektrik ve su sistemlerine bağlıdır. Hastane çalışanları, toplanan atığı el arabaları ile otomasyonlu kaldırma ve yükleme sistemine getirmekte ve bu sistem el arabasını kaldırarak iç besleme hunisine boşaltmaktadır. Daha sonra huni kapatılarak parçalayıcı çalıştırılmaktadır. Parçalama işlemi atık hacmini yüzde 80 indirgemekte ve aynı oranda önemli olarak daha düşük sıcaklıklarda etkin şekilde arındırılabilecek daha düzenli bir atık akışı sağlayarak, sistemin topyekün güç tüketimi ile birlikte zararlı hava emisyonlarının serbest bırakılma potansiyelini asgari düzeye getirmektedir. PARÇALAMA İLE İLGİLİ ZORLUKLAR Tıbbi atıkların tanımı itibariyle heterojen bir karışım olması nedeniyle, tıbbi atık için parçalayıcı mekanizmasının tasarlanması lastik veya ağaç kütüklerini parçalayan bir mekanizmaya kıyasla daha zordur. Taintz "Sanitec sisteminin yumuşak bez örtüleri, önlük ve bandajları, kırılgan cam, plastik şırıngalar ve sert çelik iğne, bisturi ve kenetleri parçalamak zorundadır" açıklamasını yapmaktadır. "Önceleri başka imalatçılar tarafından imal edilen parçalayıcılara güvenmekteydik, ancak geçen sene tescilli bir parçalayıcıyı piyasaya sürdük. Bu, düzenlenmiş her tip hastane atığını, sıkı toleranslı bir elek içinden bir sonraki aşamaya geçmesini sağlamak üzere öğüten dişlilere sahip iki döner şafttan oluşmaktadır." Bir fan ile hava bir dizi filtre içinden, iç besleme hunisi üzerinden çekilmektedir. Yüksek yeterlilikte bir partiküllü hava veya HEPA ile filtrelenmekte ve bir karbon filtresi ile işlem sırasında koku kontrolü sağlanmakta ve zararlı emisyonların kaçması engellenmektedir. Paslanmaz çelik helezon konveyör ile parçalanmış atık, atığın nemlendirilmesi amacıyla saatte yaklaşık 8 galon suyu kullanan bir elektrikli buhar üretecinin içinden geçirilmektedir. Nemlendirilen atık daha sonra, Reggio Emilia, İtalya'da bulunan Alter tarafından imal edilen yarım düzine 1.400 watt mikro dalga birimi dizisinden geçmektedir. Mikro dalgalar, atık partikülleri içindeki su moleküllerini harekete geçirerek bir sürtünme yaratmakta ve atığın sıcaklığının 25 dakika süresince 205 ila 212 ¡F'ye yükseltilmesini sağlamaktadır. Yüksek sıcaklık ve rezidans süresi kombinasyonu patojenlerin imha edilmesi için yeterli olup bu işlem, hastane dezenfeksiyon sistemlerinin kontrolünde kanıtlanmış tekniklerin kullanıldığı düzenli nokta kontrolleri ile doğrulanmıştır. Taitz "3 m dahil olmak üzere şirketler tarafından yapılan, Bacillus subtilis bakteriyel sporları bulunan tüpler içeren küçük zarfları, zarfların buhar ve mikro dalga aşamalarından geçmesini sağlamak üzere, parçalayıcının mansabında olan bir besleme portundan sisteme besliyoruz." ifadesinde bulunmuştur. "Zarfları çıkarıp, tüpleri bakteryal büyüme açısından kontrol ediyoruz. Bakteryal sporların öldürülmesi hepatit veya tüberküloz gibi patojenlere göre daha zor olduğundan, herhangi bir bakteryal büyüme tespit edilmediğinde, bu komple bir patojen imhası anlamına gelmektedir." Belediye katı atık programındaki nihai konumuna bırakılmadan önce, ikinci bir helezoni konveyör ile arıtılan atık Sanitec biriminden alınarak standart bir atık kompaktörü veya bir atık kabına yerleştirilmektedir. İsteğe bağlı bir granülatör ile hastaneye atık hacmini daha da indirgeme imkanı sağlanmaktadır. Sanitec işleminin tamamı, atığın boşatılmadan önce dezenfeksiyonun tamamlanmasını sağlamak üzere rezidans süresi ve sıcaklık parametrelerini denetleyen bir bilgisayar programı ile donatılmış bir Bradley mikro işlemcisi tarafından denetlenmektedir. MERI’NİN KURULMASI Madison Wis'de bulunan Wisconsin Üniversitesi Hastane ve Klinikleri, Meteriter Hastanesi, Methodist Hastanesi ve St. Mary Hastanesi Tıp Merkezi' olmak üzere dört hastaneden oluşan bir grup, maliyetleri indirgemek amacıyla ortak bir tıbbi atık işlem tesisi oluşturmak üzere 1986 yılında güç birliği yapmışlardır. Son teknoloji çöp fırını ile donatılmış olan tesisin işletilmesi için hastaneler Madison Energy Recovery Inc. Şirketini (MERI) kurmuşlardır. 1994 yaşına geldiğinde, daha sıkı çevre yönetmelikleri çöp fırınının, maliyeti 500,000 Doları aşması muhtemel olan yeni kirlilik kontrol ekipmanı ile donatılması anlamına gelmiştir. Seçenekleri inceledikten sonra, MERI kurulu Sanitec dezenfeksiyon sistemini seçmiştir. MERI genel müdürü John Crha şu ifadede bulunmuştur "Sanitec sisteminin oldukça sessiz, temiz ve atık dezenfeksiyonu açısından oldukça yeterli olduğunu gördük." Sağlık bakım tesislerinin büyük çoğunluğu buna katılmaktadır ve günümüzde MERİ Sanitec sistemi, Janesville'deki Mercy Sağlık Sistemleri ve Fond du Lac'daki St. Agnes Hastanesi dahil olmak üzere eyalet çapında 12 ek hastane ve klinik tarafından üretilen, düzenlenmiş tıbbi atığın yılda 1,5 milyon libreden daha fazlasını arındırmaktadır. Her gün, özel olarak tahsis edilmiş olan MERI kamyonları 250 konumdan kırmızı torbalar veya plastik kaplar içinde paketlenmiş atıklar ile dolu plastik el arabalarını toplamaktadır. El arabalarının Sanitec sistemine boşaltılmasından sonra, hastanelere geri gönderilmeden önce bu el arabaları yıkanıp, temizlenerek dezenfekte edilmektedir Her el arabası, ilgili hastanenin faturalandırılmasında da kullanılan, işaretler ile işaretlenmiştir. İşlenmiş atıklar belediye katı atık depolama tesislerine gönderilmektedir. GEZİCİ TESİSLER Atığın bir dezenfeksiyon sahasına taşınması yerine, Charlotter, N C'de bulunan N.C SafeWest Inc. Şirketi, dört adet kamyon montajlı mobil birim ile Sanitec İşlemini kendi eyaleti ve Virginia'da hastanelere getirmektedir. Safe Waste'in Sanitec kamyonları Charlotte'daki Carolina Tıp Merkezi ve Fairfax, Va'daki Fairfax hastanesi dahil olmak üzere yaklaşık olarak 40 hastanenin atıklarını toplamakta ve her bir hastanenin kendi su ve güç bağlantılarını kullanarak bunları sahada işleme tabi tutmaktadır. Şirket doktor muayenehaneleri, taşra klinikleri, laboratuvarlar ve veteriner dahil olmak üzere 400'ü aşkın daha küçük tıbbi tesisin atığının arındırılmasında daha küçük kamyonetleri kullanmaktadır. Toplam olarak SafeWaste yılda 10 milyon libre potansiyel tehlikeli atığı arındırmaktadır. Sanitec hedefini, mikro dalga dezenfeksiyon sistemlerinin hastanelere ve atık arıtma şirketlerine satılmasına ilişkin olan geleneksel uygulamasının ötesinde belirlemiştir. Taitz, "Şimdi bizler Florence, Ky'deki Kentucky Sanitec ve Honolulu'daki Hawaii Sanitec gibi ortak girişimlerin kurulması ile kendi servis şirketlerimizi kurma konusunda odaklanmaktayız." diyerek söyle devam etmektedir: "Biz ortak girişime ekipmanlar temin ediyoruz ve gelirlere iştirak ediyoruz böylece, son kullanıcının sterilizasyon ekipmanına erişimini daha da genişletiyoruz. Tüm tıbbi atık üreticileri için gelecekte ulusal çapta bir arıtma yaratmayı ümit ediyoruz." Taitz ayrıca, Amerika Birleşik Devleti dışında da Sanitec sistemi için parlak bir gelecek görmektedir. "En büyük satış artışımız Brezilya, Japonya, Kore, Suudi Arabistan, Birleşik Kraliyet, Filipinler ve Kuveyt dahil olmak üzere uluslararası pazardadır." Hastane atığını arındırma sorunu sınır tanımamaktadır. Merkezi Valbonne'de bulunan Fransız Çevre ve Enerji Kontrol Kurumunun tıbbi atık departmanın sorumlu mühendisi olan Didier Gabarda Oliva'ya göre, 3,400 Fransız hastanesi ve kliniği yılda 700,000 metrik ton tıbbi atık üretmektedir. Fransa'da yaklaşık olarak 140,000 metrik ton kontamine hastane atığı yakılmaktadır ve ABD'de olduğu gibi burada da ağır metal partiküller ve bunların türevlerinin bir sağlık tehlikesi oluşturduğu yönünde haklı bir çevre endişesi mevcuttur. Yakma tesislerinin genellikle uzakta olması nedeniyle, biyomedikal atıkların yakılması Fransız hastaneleri açısından daha karmaşık bir işlemdir. Ülkenin tümünde sadece yaklaşık 50 hastanede yakma tesisleri işletilmekte ve buna ilaveten potansiyel olarak enfeksiyon riskli tıbbi atıkları yakma konusunda yetkili 24 adet saha dışı tesis bulunmaktadır. Burgundy, Franche-Comte, Picardy ve Poitou-Charentes gibi komple bölgelerin atıklarının yakılmak üzere önemli bir mesafeye sevk edilmesi gerekmektedir. Bu nedenlerle, Fransız şirketleri biyomedikal atıkların arındırılması için yakma içermeyen, özel teknikler geliştirmektedir. Oliva, "Söz konusu olan atığın mikrobiyal kontaminasyonun indirgenmesi ve fizyolojik nedenler ve emniyet unsurları için görünümünün değiştirilmesi ile ilgilidir." şeklinde açıklama yapmaktadır. Arıtılan atıklar mevcut atık depolama tesislerine ve ev atıklarını arıtan yakma tesislerine gönderilmektedir. PATOJENLERİN BUHARLA ARINDIRILMASI Fransız Sağlık ve Çevre Bakanlıkları potansiyel enfeksiyon riskli atıkların arındırılması konusunda, merkezi Roubaix'de bulunan Ecodas tarafından geliştirilen bir buhar sistemi de dahil olmak üzere çeşitli yakma içermeyen işlemi onaylamıştır. Oliva'ya göre, bu şirket alternatif biyomedikal atık arındırma işlemler konusunda lider sağlayıcıdır. Ecodas, tekstil endüstrisi için buharlı otoklavlar imalatına ilişkin 20 yıllık deneyimini, bir tıbbi atık arıtma sisteminin tasarımında kullanmıştır. Ecodas'ın idari müdürü Jaafar Squali, "Yenilik, bir yüksek kuvvetli öğütücünün güçlü bir sterilizör ile birleştirilmesinde yatmaktadır." ifadesini kullanmıştır. Ecodas arıtmanın birinci aşaması, kontamine atığın 20 döner bıçağa sahip bir öğütücüyü besleyen, hava geçirmez şekilde yalıtımlı bir bölmeye yüklenmesi ile başlatılmaktadır. Bu bıçaklar, bazen yanlışlıkla diğer klinik atıkları ile birlikte atılan paslanmaz çelik cerrahi cihazlarının parçalanmasını sağlayabilecek mukavemette bir alaşımdan imal edilmektedir. Öğütücü, sıkışmanın engellenmesi için belli aralıklarla rotasyonunu ters yöne çevirmektedir. Atık yükleri, otoklavı besleyen bir yükleme bölmesine boşaltılmaktadır. Otoklav içinde atık, atığın sterilizasyonu için 10 dakika süresince 280¡F sıcaklık ve beher inç için 55 libre basınçta buhara tabi tutulmaktadır. Sıcaklığın ayarlanması için atık içinde bulunan, otoklav merkezindeki bir sıcaklık mili tarafından bilgisayar kontrol sistemine sinyaller gönderilmektedir. Dezenfeksiyon tamamlandığında operatörler, işlenmiş atığın bir konteynıra boşaltılması için otoklavın alt kapağını açmaktadırlar. Tek bir yükün işlenmesi için gerekli olan işlem süresi yaklaşık bir saattir. Çeşitli atık hacimleri ve tesisat kurulumu için gerekli alana uyum sağlamak üzere Ecodas atık arıtma makinelerinin üç farklı sürümünü tasarlamıştır. TDS 300, 10 feet uzunluğunda olup saatte 35 ila 55 libre, TDS 1000 saatte 110 libre ve TDS 2000 ise saatte 132 libre işlem kapasitesine sahip bulunmaktadır. Fransa'da Ajaccio, Aurillac, Nevers ve Roubaix kamu hastaneleri atıklarını Ecodas otoklavları ile dezenfekte etmektedir. Danimarka Odense, İspanya Mayorka ve Macaristan Budapeşte'de bulunan hastanelerde aynı yöntemi kullanmaktadır. Ecodas sistemini kullanan arıtma şirketleri arasında Fransa'da Cosmolys ve Tecmed, Arjantin'de Tecsan, Brezilya'da Matmed ve Meksika'da Tremesa bulunmaktadır. SICAK HAVA SEÇENEĞİ En yeni klinik atık arıtma teknolojilerinden biri, parçalanmış hastane atıklarının dezenfekte edilmesinde sıcak havayı kullanmaktadır. Bu teknoloji, Dallas'tan KC MediWaste tarafından geliştirilerek pazarlanmaktadır. İlk MediWaste sistemi, geçen yaz, Teksas Laredo'da Sisters of Mercy Sağlık Sisteminde kurulmuştur. KC MediWaste şirket başkanı Keith Cox tarafından icat edilmiş olan kuru bir sterilizasyon sistemi ile Birleşik Kraliyet Reading'de bulunan Torftech Ltd.'nin ruhsatlı akışkan yataklı teknolojisini birleştirmektedir. Mercy Sağlık Sistemi yerel şebeke Merkezi ve Güney Batı Hizmetleri, yan kuruluşu Central Power & Light ve Palo Alto, Calif'de bulunan Elektrik Enerjisi Araştırma Kurumunun Sağlık Bakım Birimi tarafından sponsorluğu üstlenilen ortak bir projenin bölümü olarak Laredo hastanesinde kurulan ileri düzey, elektrik tabanlı teknolojilerden birini teşkil etmektedir. Bu teknolojiler, hastanelerin maliyetleri indirgemesine, işletme yeterliliklerini iyileştirmesine ve hasta hizmetlerini geliştirmesine yardımcı olacak şekilde tasarlanmıştır. Laredo tesisatının makina mühendisi ve proje mühendisi olan Sue Herbert, "İlk MediWaste sisteminin tasarlanmasında en zor olan husus, plastik atıklardan serbest bırakılabilecek olan uçucu organik bileşenleri engelleyecek kadar soğuk ancak atığın sterilizasyonu için yeterli sıcaklığa ulaştırılmasının sağlanması konusunda ortaya çıkmıştır." demiştir. "Hastane atık akışında bulunabilecek her şeyin numunelerini topladık ve en iyi ısı sıcaklığının tespit edilmesi için farklı plastik bileşenlerin flaş noktaları üzerinde çalışmalar yaptık." Mercy Sağlık Sistemi çalışanları MediWaste ünitesine atık malzemelerinin taşınmasında kapalı el arabaları kullanmaktadır. Her el arabası bir hidrolik kaldırma sistemi ile sistemin besleme hunisine boşaltılmaktadır. Dahili egzoz fanları, kokunun kontrol altında tutulması için MediWaste sistemi içinde ters basınç oluşturmaktadır. Birimin içinde ısıl işlemli paslanmaz çelikten mamul, yakın ara kilitlemeli dört şafttan oluşan bir parçalayıcı birimi bulunmaktadır. Parçalayıcı, atıkların işlemciye gitmeden önce öğütülmesini sağlamaktadır. Elektrikli rezistans ısıtıcıları ile 302¡F'ye ısıtılan hava sabit bıçaklı bir halka üzerinden yüksek hızla işlemci içine enjekte edilmektedir. Yer atığının işlemciye girmesi ile birlikte türbülanslı hava, siklonik bir karıştırma işlevi ve yüksek oranlarda ısı ve kütle transferi sağlayan bir akışkan yatak yaratmaktadır. Boşaltıma kapısının açılmasından önce, atık beş dakika kadar akışkanlı yatak içinde tutulmakta ve hacmin yüzde seksen oranında indirgenmesini sağlayan bir kompaktöre itilmektedir. Laredo hastanesi arındırılmış atığını bir konvansiyonel belediye atık depolama alanına göndermektedir. MediWaste sisteminden çıkan işlenmiş hava, atmosfere bırakılmadan önce üç aşamalı bir filtrasyondan geçmektedir. Önce iki fabrik ön filtre ile büyük partiküller ayrılmakta ve sonrasında yüksek yeterlikte partikül hava filtresi metal çerçeve içinde bulunan bir membran- ile daha küçük partiküller çıkarılmaktadır. Kömür filtreler ile hava akımındaki kokular giderilmektedir. Laredo'daki MediWaste sistemi, saatte 200 libreye kadar işlem yapabilecek kapasitededir ki, bu da günde üretilen 700 ila 800 libre arasındaki atığın arındırılması için fazlasıyla yeterlidir. Herbert, "Halen, saatte 1,000 libre malzeme dezenfekte edilebilecek bir üniteyi geliştirmekteyiz" demiştir. YAKMA İSTEĞİ Yakma alternatiflerinin popülerlik kazanıyor gibi görünmesine rağmen, klinik atıklarının çoğunun dezenfekte edilmesinde ve indirgenmesinde hala yakma kullanılmaktadır. Orlanda, FLA'daki Crawford Equipment and Engineering Co., saatte 20 ila 3,000 libre biyolojik tehlikeli atık işleme kapasitesine sahip tıbbi çöp fırınını tasarlayıp, pazarlamaktadır. Bu birimler, Temiz Hava Kanununun hükümlerinin karşılanmasını sağlamak üzere gaz yıkayıcılarla bağlantılı olacak şekilde tasarlanmaktadır. Crawford Equipment çöp fırınları tipik olarak doğal gaz ateşlidir ancak hali hazırda mevcut veya daha ekonomik olması halinde propan veya akaryakıt da kullanabilmektedir. Çöp fırınlarından her biri, yanmadan kaynaklanan yoğun sıcaklığa dayanacak şekilde refraktör kaplamalıdır. Hastane çalışanları atığı kırmızı torbalar veya plastik kaplar içinde ya el ile ya da hidrolik olarak, ana bölme kapısından yüklemektedir. Çalışanlar kapıyı kapatarak yakma işlemini başlatırlar. Önce, ana bölmeye paralel veya ana bölmenin altında bulunan ikincil bölme içindeki brülörler ateşlenir. Isı sonra, ana bölmenin sıcaklığının artırılması için refraktör malzeme üzerinden yayılır veya böylece artan oranda enerji tasarrufu sağlanır. Ana bölmede asgari 1.800¡F sıcaklık elde edildiğinde, atığın yakılması için bir sensör ana bölmenin brülörünü yakacaktır. Crawford Equipment Şirketi katı ve sıvı atık bertaraf sistemleri müdürü ve kimya mühendisi olan Luis Llorens "1.800¡ sıcaklık patojenlerini öldürüp, tüm organik atıkları oksidize ederek, bunları karbon dioksit ve su haline çevirmektedir" açıklamasını yapmaktadır. "Yanmadan kaynaklanan tüm duman ve kokular ikincil bölmeye aktarılmakta ve 1.800¡ ısı bunları yok edene kadar orada bir veya iki saniye tutulmaktadır." İkinci bölmeden gelen hava asitler ve kurşun, kadmiyum ve civa gibi ağır metallerden arındırılmak üzere, özel bir hava çıkışı üzerinden standart bir kirlilik kontrol sistemine yönlendirilmektedir. Sistem, baca gazları ile etkileşime girerek asit gaz emisyonlarının engellenmesi için su ve kaustik solüsyon gibi bir ayıraç ile püskürtme yapan ıslak gaz yıkayıcılarını kullanmaktadır. İlk hacminin yüzde doksanını aşacak şekilde tıbbi atık hacminin indirgenmesinin yanı sıra, Crawford çöp yakıcılarının ağırlığı da yüzde 95 ila yüzde 97 arasında indirgediği ve bunun da mikro dalga ve buhar otoklav sistemleri tarafında yapılamadığı Llorens tarafından bildirilmektedir. YİNE DE EN İYİ ÇÖZÜM Çöp fırını bölme duvarları tuğla, yalıtım, bir çelik kaplama ve ikinci bir dış çelik kaplamadan oluşmaktadır. Llorens, "Çöp fırınının dış duvarlarının soğuk tutulması için yan duvarların içinde fan ile hava dolaşımı sağlanmaktadır" ifadesinde bulunmuştur. Ek olarak Crawford, çöp fırınının refraktör kaplamalı bacasına bir hava akımının sağlanması için bir fan monte etmiştir. Bu, çöp fırınının daha temiz çalışmasına yardımcı olmakta ve gazların tam olarak yanmasının sağlanması için tutuşma sürelerini artıracak şekilde ikinci bölmede tutulmasını sağlamaktadır. Lorrens, "mikro dalga gibi başka, iyi tıbbi atık arıtma teknolojileri mevcuttur ancak yakma, doğru koşullar altında yine de en iyi seçenektir." demiştir. "Hastanenin seçimi topluluklarına ve ihtiyaçlarına bağlıdır." Örneğin, West Palm Beach, Fa'da bulunan Emekli İşleri Tıp Merkezi atıkları ile birlikte ve federal adli yetkililer tarafından el konan yasadışı uyuşturucu ve silahların işleme tabi tutulması için 1995'ten bu yana bir Crawford çöp fırınını kullanmaktadır. "West Palm Beach'te bulunan V.A. Tıp Merkezinin makina mühendisi ve tesisler yönetim şefi Wally Thompson, "Tüm malzemeleri sessiz ve etkin şekilde imha etmesi ve ön işlemli atığın yüzde 5 ila 10'u arasında ağırlıkta bir kül yaratması ve bunun da katı atık depolama alanlarında kullanılabilmesi nedeniyle Crawford çöp fırınını seçtik." demiştir. Crawford ünitesinin başarısının altında yatan anahtar, gaz yıkayıcısıdır. Saatte 500 libre atık işlem kapasitesine sahip bir çöp fırınının tasarımı konusunda. West palm Beach'deki V.A. temsilcileri Visalia, Calif'ten Emcotek ile birlikte çalışmıştır. Çöp fırınından 1.900 ila 2.100¡F sıcaklıkta çıkan sıcak gazlar Emcotek'in gaz yıkayıcısının ana söndürme tankına girmektedir. Püskürtme nozülleri, gazların yaklaşık olara 200¡F'ye soğutulması ve yakma sırasında üretilen hidroklorik asidin nötrleştirilmesi için su ve sodyum hidroksit püskürtmektedir. Gaz daha sonra püskürtme işleminin tekrarlandığı ikinci bir söndürme tankına girmekte ve böylece gazlar 120¡ ila 140¡F'ye soğutulmakta ve asitler daha fazla sodyum hidroksit ile tamponlanmaktadır. ASİT ATIĞIN NÖTRLEŞTİRİLMESİ Boru tesisat sistemi, bir programlanabilir lojik kontrolörüne (PLC) bağlı pH sondalarını içermektedir. PLC, asitli atıkların nötrleştirilmesi için gerekli olan sodyum hidroksit miktarını enjekte eden iki artı aktarma pompasını kontrol etmektedir. Söndürülmüş gazlar, radyal bir su perdesinin yaratılması için dönen bir disk merkezine bir dişli kutusu tarafından suyun pompalandığı rotari bir atomizör odasına girmektedir. Bu perde, partikülleri beher kuru standart kübik foot havayı yaklaşık 0.015 gram veya daha iyi bir değere indirgeyen, yüksek enerji ıslak gaz yıkayıcı işlevini görmektedir. Gaz akımının bacadan dışarıya bırakılmasından önce, çeşitli ağır metalleri ve partiküllü maddeleri taşıyabilecek olan fazla su damlaları bir buğu önleyici filtreler dizisi ile arındırılmaktadır. Emcotek gaz yıkayıcısı gaz akımından asitler, ağır metaller, dioksin ve çeşitli organik bileşenleri yüzde 95 ila 99 oranında arındırmaktadır. Gaz yıkayıcısının performansı tahliye bacası içinde bulunan çeşitli numunelendirme sondaları ile kontrol edilmektedir. Palm Beach Bölgesi'ndeki emisyon standartları nedeniyle V.A., ağır metallerin arındırılmasının optimize edilmesi için rotari atomizörü besleyen suyun sıcaklığını 80 veya 85¡F'ye indirgemek üzere bir titanyum ısı eşanjörünün eklenmesini Emcotek'ten istemiştir. Çevre şartnamelerine uygun birçok çöp fırınında olduğu üzere, West Palm Beach tesisi estetik hususlarını da dikkate almıştır. Thompson, "Ayrıca, zararsız ancak çirkin bir görünüme neden olan tüysü bulutun da ortadan kaldırılması için, soğuk gaz akımını yeniden ısıtmak üzere gaz yıkayıcı bacasına Emcotek tarafından bir titanyum buhar bobini ilave edilmesini sağladık." demiştir. Kaynak: Gen Bilim

http://www.biyologlar.com/tibbi-atiklara-cozum

Evrim Kuramı ve Maymun Sorunu

"Evet,insanlar gerçekten de bir evrim geçirdi;ancak yalnızca maymunlardan hatta diğer memeli hayvanlardan türemedi. Bizler, en uzağı ilk bakteriler olan uzun bir atalar soyundan evrildik" Lynn Margulis (Ortak yaşam Gezegeni, Türkçesi:Ela Uluhan,Varlık/Bilim s:10) İnsan kanı ile maymun kanı arasında büyük bir benzerlik vardır. Örneğin 287 aminoasitten oluşan hemoglobin A molekülü insan ve şempanzede tıpatıp aynıdır. Aynı molekül bakımından insan ve goril kanı arasındaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19,koyunda 26,tavukta 45,sazan balığında 95 aminoasit ve insan hemoglobin A molekülünden ayrılmaktadır. Görüldüğü gibi kanın bir öğesi olan hemoglobin A molekülü bakımından insana en yakın canlı olan şempanzede hiç fark yok iken insandan uzaklaştıkça farklılıklar artmaktadır. Daha bir çok protein üzerinde yapılan çalışmalarda aynı yönde sonuçlar elde edilmiştir. Prof.Dr.Aykut Kence (ODTÜ,Fen-Edebiyat Fak) TÜBA Bilimsel Toplantı Serileri 2 Şimdi size bir başka büyük kuramı sunmaya çalışacağım: Evrim Kuramı. Bugün bilime karşı büyük bir düşünsel saldırı var. Şu güzel ülkemiz ve insanlarımız,bilim ve teknolojinin olanaklarından daha tam olarak yararlanamazken bilimin en genel geçer kuramlarını tartışarak zaman öldürmek ne acı. Bilim belki her zaman onu "savunmayı" gerektirdi. Ama gerek 20. yüzyılın büyük savaşları,sosyalist sistemin çatırdayarak çökmesi,teknolojinin yanlış ya da yıkım için kullanılması,gerekse ülkemizdeki,siyasi,ekonomik ve ahlaki bunalım,bilim düşmanlarının saldırılarını kolaylaştırıcı bir zemin hazırlıyor. Bu konuda evrim kuramının da çok iyi anlaşılması ve anlatılması gerekiyor.2000 Mayıs ayında Sabancı Üniversitesi'ne konuk öğretim üyesi olarak gelen Harvard Ünversitesi'nden Andrew Berry, doğal seçimle rastlantı için güzel bir örnek verdi: "Bütün sarışın insanlar cilt kanserinden ölürse burada doğal seçim sürecinin işlediğini söyleyebiliriz;ama tüm sarışınların bir gemiye binip boğulması bir rastlantıdır." Ben iyi bir derleme yaptığıma inanıyorum,ustalara söz vererek bunu da sizinle paylaşmak istiyorum. Ayrıca Erzurumlu İbrahim Hakkı'nın Marifetname adlı eserinden uzun alıntılar veriyorum. Hayvan Deyip Geçmeyelim! Evrim Kuramına itiraz edenlerin en büyük kaygısı, atalarının herhangi bir hayvana bağlanamayacağı noktasındadır. Niye Hayvan? Çünkü, iddiaya göre evrim kuramının en temel noktalarından biri, insanın maymundan türediğidir. Darwin, aslında insanın maymundan geldiğini söylemedi. Darwin, bütün canlıların, birbiriyle akraba olduğunu söyledi. En yakın komşumuz, en yakın yeğenimiz maymunlardır; ama biz, maymunlardan gelmiyoruz; bize söyleyebildikleri kadarıyla maymunlar da bizim atamız olduğunu inkar ediyorlar ve bize bir yakınlık duymuyorlar! Onlar, kendi dünyalarını tercih ediyorlar! Hayvanoğlu Hayvan! Maymun sorununa döneceğim,ama önce genel olarak hayvanlarla ilgili birkaç eğlencelik yazacağım. Belediye otobüsünde mi, yoksa lüks bir baloda mı olmuş bilmiyorum; ama şu olay olmuş: Adamın biri, otobüsteki bir hanımefendinin ya da başka bir adamla dans eden hanımefendinin ayağına basmış... Hanımefendi, önce ses çıkarmamış. Ama adamın paldır küldür, hiç de dans etmeden sallandığını ve yeniden ayağına bastığını gördükten sonra: " Beyefendi, ayağıma basıyorsunuz. Biraz dikkat etsenize!" diye çıkışmış. Bizim maganda yine pek oralı olmamış. Bunun üzerine hanımefendi,sessizce, ama onun duyacağı şekilde "Hayvan!" demiş. Bizimki hayvanlığı da hiç üzerine almamış. Bunun üzerine hanımefendi öfkelenmiş. "Bakınız bey, bakınız! " Hayvan! dediysek, herıld(herhalde’nin kısaltılmışı ve İngilizcesi!) kuş, bülbül, serçe demek istemedik; ayı, öküz, domuz gibi bir şey demek istedik !" demiş. Ama söylentiye göre adam, bu nazik hanımefendiyi yine anlamamış! Bu öykü bana anlatılınca pek sıkılmıştım. Çünkü, pistlerdeki durumum, anlatılan “Anadolu Evladından” hiç de farklı değildi. Kadın, sanki bana konuşuyormuş gibi kıpkırmızı olmuştum. Bunun için , dansetmek mecburiyetinde bırakıldığım zamanlarda(!)pist alanın seyrelmesini dört gözle bekler(!) ve dans ederken de eşime ilk kez sarılıyormuşçasına sarılırım! Böylece hem dans eden çiftlerden, hem de komşuların rahatsız edici konuşmalarından uzak dururum! İnsanlar,genellikle hayvanları bir bütün olarak kendisinden aşağı yaratıklar olarak görür. Bazı insanlar,bazı insanları da aşağı yaratıklar olarak görür de konumuz şimdilik birincisi üzerine. Kızdığımız birine sık sık "hayvan oğlu hayvan " demez miyiz?Bu hayvanlıktan en çok nasibini alan hayvanlar eşek ile öküzdür. Oysa ikisi de insanların öyle çok kahırlarını çeker ki anlatamam. Bir de bunu ayıları ekleyebiliriz. Bu arada savaşçı bir kabile annesi oğlu için "benim kartal pençeli oğlum" der. Kızını pazarlayan(afedersiniz) gösterişçi anne şöyle demez mi: “Ay kardeş, kendi kızım diye söylemiyorum. Görüyorsun işte boy onda bos onda. Ceylan gibi kız. O görgüsüzler, benim ahu (ceylan) gözlü kızımdan daha güzelini nerede bulabilir?” Oğlunu pazarlayan (yine afedersiniz) bir anne ya da babanın “benim oğlum Aslan gibidir” derken, oğlunun Aslandan daha güçsüzlüğünün altını çizmez mi? Şimdi konumuza dönelim. Hayvanlarla bir ilgimiz ve ilişkimiz var mı? Anlattığım gibi var. Kartal var, köpek var, tazı var, kedi var, tavuk var... Şimdi ilginç bir soru: karalara önce bitkiler mi, yoksa hayvanlar mı çıktı? Umarım insanlık onurunuz incinmez, çünkü karalara bizden önce bitkiler çıkmış. Bitki dediysek, güller, sümbüller, kaynana dili değil belki; ama bitki işte... 400 milyon yıl önce karalara ilk olarak "bitkiler " çıktı. 350 milyon yıl önce ilk çift yaşamlı hayvanlar (amfibiler) göründü. 320 milyon yıl önce ilk sürüngenler arşınlamaya başladı karaları. Evrim Kuramının İlk Soruları Bu kuram, her çocuğun, her ergenin, her düşünen insanın yaşamı boyunca zaman zaman kendine sorduğu soruların yanıtını araştırır. Bu sorular ,hepimizin aklını kurcalayan sorulardır: Nereden geldik, nereye doğru gidiyoruz? İnsanoğlunun yaşamında yanıtını bilmek istediği soru böyle özetlenebilir. Ama biz yine de basit sorularla olayı deşmeye çalışalım: Bundan diyelim ki bin yıl, milyon yıl, milyar yıl önce de insan, insan mıydı, tavuk tavuk muydu, kedi kedi miydi? Çam ağacı çam ağacı mıydı?Yani canlılığın tarihinin “filmini” bugünden geriye doğru sarsak neler görebiliriz? Bu film, nereye kadar ve hangi bilgilerle geriye sarılabiliyor? Evrim Kuramı, çok basit olarak “hayvanlar ve bitkiler, bugünlere gelirken değişikliklere uğrayarak mı geldi; yoksa her şey, bir dahi vuruşuyla başladı ve hiç değişmeden sürüp gidiyor mu?” sorularına bilimin verdiği yanıtları kapsıyor. Doğal olarak bilimin verdiği yanıtlar deyince akan sular durmuyor ve bu konuda insan aklının çağdaş düşmanları da boş durmuyor; oldukça inceltilmiş biçimiyle bilime saldırılarını sürdürüyorlar. Bunun yalnız geri kalmış ülkelerde sürdürüldüğünü sanmayınız. En başta ABD olmak üzere,hemen tüm gelişmiş ülkelerde de bilimin düşmanları boş durmuyor. Evrim kuramına karşı yürütülen kampanya, ülkemizde özellikle 20. yy biterken doruk noktasına çıktı. Bunu basit bir inanç kayması olarak görmeyelim. Bu, yalnızca özgür düşünceye değil, başta tıp olmak üzere doğal bilimlere ve daha da geniş anlamıyla bilimsel felsefeye saldırıdır. Evrim kuramına saldıranların ilk ve ilkel saldırılarıyla konuya girmek istiyorum. Bu, maymun sorunudur. Maymun Sorunu: Ünlü Tartışma! İnsanın, “en uyumlunun yaşaması” ilkesiyle, daha ilkel canlılardan evrimleştiği hakkındaki Darwin kuramı, Türlerin Kökeni ’nin yayımlandığı 1859 yılından beri müthiş tepkiler almıştır. Özellikle 1860 Haziran’ında Darwin’i savunan biyolog T.H. Huxley ile Tanrı’yı savunan Oxford başpiskoposu Wilberforce arasında halka açık bir tartışma yapılıyor. Bu tartışmada Piskopos, Darwin’in tezinin çok saçma olduğunu savunuyor ve konuşmasını alaylı bir biçimde Huxley’in büyükanne tarafından mı yoksa büyükbaba tarafından mı maymundan geldiğini sorarak bitiriyordu. Huxley ise evrimin kanıtlarını ustaca ortaya koymuş ve atasının bir maymun olmasının, piskoposunki gibi entellektüel bir fahişe olmasından daha iyi olduğunu söyleyerek bitirmiştir. Bu sırada Lady Brewester baygınlık geçirmiş, dışarı taşınırken hakkın rahmetine kavuşmuştur.”(John Taylor, Kara Delik, e yayınları s: 39) Kaptan Fitzroy’un Kutsal Kitap’la uyumlu düşünceleri yolculuk süresince gittikçe daha da katılaştı. O, anlamaya çalışmamız gereken kimi şeler olduğuna inanıyordu;evrenin ilk kaynağı, bütün bilimsel araştırmaların erişimi dışında bulunması gereken bir giz olarak kalmalıydı. Fakat Darwin çoktandır bunu kabul etmekten çok uzaktı; Kutsal Kitap’a takılıp kalamazdı,onun ötesine geçmek zorundaydı. Uygar insan bütün soruların en can alıcısını-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarını kendisini götürdüğü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darwin’in kuramına şiddetle karşı çıktı. Darwin’in Türlerin Kökeni adlı kitabının yayımlanması(1859) bilim ile din arasında sert bir tartışmaya yol açtı. Darwin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğlenceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti. Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi. Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu kanısındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) Bozkurt Güvenç, olayı değişik sözlerle şöyle anıyor: Huxley soruyu ciddiye alıyor (oysa Darwin aldırmıyor) diyor ki: “Gerçeklere saygısız bir insan soyundan gelmektense, gerçeklere saygılı bir maymun soyundan geldiğimi kabul ederim.” Gazeteciler- o zaman telefon yok- hemen koşuyor, gazete yönetim merkezlerine “ Evrimciler, maymundan geldiklerini kabul ettiler” haberini yetiştiriyorlar. Tabi biz, 120 yıldır değerli dinleyenlerim, gazete haberleriyle Darwin’i ve bilimi yargılıyoruz. Fen fakültelerimizin biyoloji bölümleri dahil. Çünkü kimse, Darwin’in, Türlerin Kökenini, İnsanın Yücelişini okumuyor. Mesele, Darwin konusu, maymun meselesi değil. Dünyayı algılama meselesi. İşte bu konuda, yalnız biz değil, bütün dünyada büyük sorunlar var.” (Prof. Dr. Bozkurt Güvenç,TÜBA, Bilimsel Toplantı Serileri: 2, Bilim ve Eğitim s: 68) Maymun sorunu,maymunları bile rahatsız edecek kalitesizlikle reddediliyor. Neden mi? Size birileri “Efendim size dedenizin dedesi ve onun da dedesi hüdavendigar Murat han hazretlerinden selam ve muhabbetler getirdik. Sizin durumunuzu sorarlar. Sülalem aynı geleneklerle devam etmede midir? Yoksa bazı boylar birliğimizi bozmuş mudur?..” diye soruyor diyelim. Şimdi siz de bu soruyu yanıtlayın. Sanırım şöyle olabilir: “ Benim dedemin dedesinin dedesi Rumeli Beylerbeyi falanca beymiş. Ya da “benim bugünkü durumuma bakmayın. Bendeniz Fatih Sultan Mehmet Han hazretlerinin onüçüncü göbekten torunu olurum” diyebilirsiniz. Ve de torunluğa uygun görev isterim!...” Bu da sizin ne kadar köklü, ne kadar akıllı, ne kadar sabırlı, ne kadar alçakgönüllü(!) olduğunuzu gösterir. İLK İNSANLAR İnsan nasıl insan oldu? “Homo sapiens ’in dil, gelişmiş teknolojik beceriler ve ahlaki yargılara varabilmek gibi özel nitelikleri antropologları uzun zamandır hayranlığa sürüklüyor. Ama yakın zamanlarda antropolojide yaşanan en önemli değişikliklerden biri, bütün bu niteliklere karşın, Afrikalı insansımaymunlarla çok yakın bir bağlantımız olduğunu anlaşılmasıdır. Bu önemli görüş değişikliği nasıl gerçekleşti? Bu bölümde, Charles Darwin’in en eski insan türlerinin özel doğası hakkındaki fikirlerinin antropologları nasıl etkilediğini, yeni araştırmaların Afrikalı insansımaymunlarla evrimsel yakınlığımızı nasıl ortaya çıkardığını ve doğadaki yerimiz hakkında farklı bir bakış açısı geliştirmemizi gerektirdiğini tartışacağım. 1859'da Türlerin Kökeni adlı yapıtında Darwin, evrimin insanlar açısından ne anlama geldiği konusuna girmekten kaçınmıştı. Sonraki baskılara ise çekinceli bir cümle eklendi: “İnsanın kökeni ve tarihi aydınlatılacaktır.” Darwin bu kısa cümleyi, 1871'de yayınlanan İnsanın Türeyişi adlı kitabında ayrıntılandırdı. Hala çok hassas olan bir konuyu ele alarak, antropolojinin kuramsal yapısına iki sütun dikti. Bunlardan ilki, insanların ilk nerede evrildikleriyle (ona zamanında çok az kişi inanmıştı, oysa haklıydı), ikincisi ise, bu evrimin şekli ya da biçimiyle ilgiliydi... Darwin’in evrimimizin şekli hakkındaki görüşleri antropoloji bilimini birkaç yıl öncesine dek etkiledi ve sonra, yanlış olduğu anlaşıldı. Darwin, insanlığın beşiğinin Afrika olduğunu söylüyordu. Bu sonuca basit bir mantıkla varmıştı: Dünyanın her büyük bölgesinde hayatta olan memeliler, aynı bölgede evrilmiş türlerle yakın bağlantı içindedirler. Dolaysıyla, Afrikada bir zamanlar, goril ve şempanzelerle yakından bağlantılı ve günümüzde nesli tükenmiş olan insansımaymunlar yaşamış olabilir: bu iki tür insanın en yakın akrabaları olduğuna göre, ilk atalarımızın Afrika kıtasında yaşamış olma olasılığı, başka bir yerde yaşamış olmaları olasılığından daha yüksektir. Darwin’in bu satırları yazdığı sıralarda hiçbir yerde erken insan fosillerinin bulunmadığını unutmamalıyız; vardığı sonuç tamamen kurama dayandırılmıştı. Darwin’in zamanında bilinen tek insan fosilleri Avrupalı Neandertal insanına aitti ve bunlar, insan gelişiminin görece yeni bir aşamasını temsil ediyorlardı. Afrika'nın Sihiri Antropologlar, Darwin’in yorumundan hiç hoşlanmadılar; bunun en önemli nedenlerinden biri, tropik Afrika’ya sömürgeci gözüyle, küçümseyerek bakılmasıydı: Kara Kıta, Homo sapiens gibi soylu bir yaratığın kökeni için hiç de uygun bir yer olarak görülmüyordu. Yüzyıl başında Avrupa ve Afrika’da yeni insan fosillerinin bulunmasıyla birlikte, Afrika kökenli olma fikrine duyulan küçümseme arttı ve bu tutum onyıllarca sürdü.” Yazar(R.Leakey) 1931'de Camridge’deki hocalarına insanın kökenini Doğu Afrika’da aramayı planladığında kendisine Asya’ya yönelmesi istendi. “Bu olay, bilimcilerin mantık kadar duygularından da etkilenebildiklerini gösteriyor.”(s:16) Darwin’in İnsanın Türeyişi ’nde ulaştığı ikinci önemli sonuç, insanların önemli ayırıcı özelliklerinin-iki ayaklılık, teknoloji ve büyük bir beyin- birbirleriyle uyum içinde gelişmiş olmasıydı: Kollarının ve ellerinin serbest kalması ve ayakları üstünde sağlamca durabilmesi insan için bir avantaj olmuşsa... insanın ataları için daha dik ya da iki ayaklı hale gelmenin daha avantajlı olmaması için bir neden göremiyorum. Eller ve kollar bedenin tüm yükünü taşımak için kullanılıdıkça... ya da ağaçlara tırmanmaya uygun oldukça, silah yapmak ya da taş ve mızrakları hedefe atmak için gerekli şekilde gelişemezdi. Burada Darwin, alışılmadık hareket tarzımızdaki gelişimin, taştan silah yapımıyla doğrudan bağlantılı olduğunu savunmaktadır. Daha da ileri giderek bu evrim değişimlerini, insanlardaki, insansımaymunların hançere benzeyen köpekdişleriyle karşılaştırıldığında son derece küçük olan köpekdişlerinin kökeniyle ilişkilendirmiştir. İnsanın Türeyişi’nde şöyle demekteydi: “İnsanın ataları büyük olasılıkla, büyük köpekdişlerine sahiptiler; ama düşmanları ya da rakipleriyle savaşırken taş, sopa ya da diğer silahları kullanma alışkanlığını geliştirmeleriyle birlikte, çenelerini ve dişlerini daha az kullanmaya başladılar. Bu durumda çene ve dişler küçülecekti.” Silah yapabilen bu iki ayaklı yaratıklar Darwin’e göre, daha çok zeka gerektiren yoğun bir sosyal etkileşim geliştirdiler. Atalarımızın zekalarının gelişmesiyle birlikte, teknolojik ve sosyal gelişmişlik düzeyleri de yükseldi ve bu da, daha gelişmiş bir zeka gerektirdi. Böylece her yeni özellik, diğer özelliklerin gelişmesini sağladı. Bu bağlantılı evrimi hipotezi insanın kökeni konusunda açık seçik bir senaryo sunuyordu ve antropoloji biliminin gelişimine merkez oluşturdu. Bu senaryoya göre ilk insan türü, iki ayaklı bir insansımaymundan öte bir şeydi: Homo sapiens ’te takdir ettiğimiz özelliklerden bazılarına daha o zamandan sahipti. Bu öylesine güçlü ve akla yakın bir imgeydi ki, antropologlar uzun bir süre, bu imgenin etrafında inandırıcı hipotezler dokuyabildiler. Ama senaryo, bilimin ötesine geçti: İnsanların insansımaymunlardan evrimsel farklılaşmaları aniden ve çok eski bir dönemde gerçekleşmişse, bizimle doğanın geri kalan kısmı arasına büyük bir uzaklık girmiş demekti. Homo sapiens’in tamamen farklı bir yaratık olduğuna inananlar için bu bakış açısı son derece rahatlatıcıydı. Bu inanç hem Darwin’in döneminde hem de yüzyılımızda bilim adamları arasında oldukça yaygındı. Söz gelimi, 19.yy İngiliz doğa bilimcisi-ve Darwin’den bağımsız olarak doğal seçim kuramını yaratmış olan- Russel Wallace bu kuramı, insanlığın en çok değer verdiğimiz yönlerine uygulamak istemedi. İnsanları, yalnızca doğal seçimin ürünü olarak görülemeyecek denli akıllı, incelmiş ve gelişmiş buluyordu. İlkel avcı-toplayıcıların biyolojik açıdan bu özelliklere gereksinim duymayacaklarını ve dolaysıyla, doğal seçim sonucu gelişmiş olamayacaklarının düşünüyordu. İnsanların bu denli özel yaratıklar olmalarını doğaüstü bir müdahale sağlamış olmalıydı. Wallace’ın doğal seçim gücüne inanmaması, Darwin’i son derece rahatsız ediyordu. 1930'lar ve 1940'larda Güney Afrika’da gerçekleştirdiği öncü çalışmalarla Afrika’nın insanlığın beşiği olarak kabul edilmesine katkıda bulunan İskoç paleontolog Robert Broom da insanın ayrıcalıklı olduğuna inanıyordu. Homo sapiens ’in evrimin nihai sonucu olduğunu ve doğanın geri kalan kısmının insanın rahat etmesi için şekillendirilmiş olduğunu düşünüyordu. Wallace gibi Broom da türümüzün kökeninde doğaüstü güçler arıyordu. Wallace ve Broom gibi bilimciler, biri entellektüel ve diğeri de duygusal olmak üzere iki çatışan güçle savaşıyorlardı. Homo sapiens’in evrim süreci sayesinde doğadan geliştiği gerçeğini kabul etseler de, insanın tinselliğine ya da aşkın özüne dair inançları, onları evrim konusunda insanın ayrıcalığını kanıtlayan açıklamalar oluşturmaya yönlendiriyordu.(s:18) Darwin’in 1871'deki evrim “paketinde” böyle bir rasyonelleştirme vardı. Darwin doğaüstü müdahale aramıyordu gerçi, ama evrim senaryosu, insanları daha başlangıçtan itibaren insansımaymunlardan ayırıyordu. Darwin’in tezi yaklaşık on yıl öncesine dek(kitabın yazılış tarihi 1996) etkisini sürdürdü ve insanın ne zaman ortaya çıktığı konusunda önemli bir çatışma yaşanmasına neden oldu.Darwin’in bağlantılı evrim hipotezinin çekiciliğini göstermesi nedeniyle, bu çatışmayı kısaca anlatacağım. Çatışma aynı zamanda, hipotezin antropolojik düşünüşteki etkisinin sona ermesine de işaret eder. 1961'de, o dönemde Yale Üniversitesinde olan Elwyn Simons çığır açıcı bir bilimsel bildiri yayınlayarak, bilinen ilk insangil türünün Ramapithecus adı verilen küçük bir insansımaymun benzeri yaratık olduğunu savundu. O dönemde bilinen tek Ramapithecus fosil kalıntıları, Yale’den G. Edward Lewis adlı genç bir araştırmacının 1931'de Hindistan’da bulduğu üst çene parçalarıydı. Simons, yanak dişlerinin (azı dişleri ve küçük azı dişleri), insansımaymunların dişleri gibi sivri değil, düz olmaları açısından insanlardakilere benzediğini görmüştü. Köpek dişleri de insansımaymunlara göre daha kısa ve düzdü. Simons, eksik haldeki üst çenenin yeniden oluşturulması durumunda, şeklinin insanlardakine benzeyeceğini de iddia ediyordu; yani modern insansımaymunlardaki gibi “U” şeklinde değil, arkaya doğru hafifçe genişleyen bir kemer biçiminde. Cambridge Üniversitesi’nden İngiliz antropolog David Pilbeam bu dönemde Yale’de Simons’a katıldı ve birlikte, Ramapithecus çenesinin insansı olduğu iddia edilen anatomik özelliklerini tanımladılar. Ama anatomiden de öteye geçtiler ve yalnızca çene parçalarının güçlülüğüne dayanarak, Ramapithecus’un iki ayağı üstünde dik yürüdüğünü, avcılık yaptığını ve karmaşık bir sosyal ortamda yaşadığını öne sürdüler. Onalrın usavurumları Darwin’inki gibiydi: İnsansı olduğu varsayılan bir tek özelliğin (diş yapısı) varlığı, diğer özelliklerin de varolduğunu gösteriyordu. Sonuçta, ilk insangil türü olduğu varsayılan şey, kültürel bir hayvan- yani kültürsüz bir insanmaymundan çok, modern insanların ilkel bir değişkeni-olarak görülmeye başlandı. İlk Ramapithecus fosillerinin bulunduğu ve ardından, Asya ve Afrika’daki benzer keşiflerin yapılddığı tortular eskiydi. Dolaysıyla Simons ve Pilbeam, ilk insanın en az 15 milyon ve belki de 30 milyon önce ortaya çıktığı sonucuna vardılar ve antropologların büyük çoğunluğu bu görüşü kabul etti. Dahası, kökenin bu kadar eski olduğu inancı insanlarla doğanın geri kalan kısmı arasına büyük bir uzaklık koyarak, pek çok kişiyi rahatlatıyordu. 1960'larda Berkeley’deki California Üniversitesinden iki kimyacı Allan Wilson ve Vincent Sarich, ilk insan türlerinin ne zaman ortaya çıktığı konusunda çok farklı bir sonuca ulaştılar. Fosiller üstünde çalışmak yerine, yaşayan canlılarla Afrikalı insansımaymunlardaki bazı kan proteinlerinin yapısını karışlaştırdılar. Amaçları, insan ve insansımaymun proteinleri arasındaki yapısal fark düzeyini saptamaktı; mutasyon nedeniyle bu fark zaman içinde hesaplanabilir bir hızla artmış olmalıydı. İnsanlar ve insansımaymunrlar ne kadar uzun süre önce iki ayrı tür haline gelmişlerse, biriken mutasyon sayısı da o kadar fazla olacaktı. Wilson ve Sarich mutasyon hızını hesapladılar ve böylece , kan proteini verilerini bir moleküler saat olarak kullanabildiler. Bu saate göre ilk insanlar, yalnızca yaklaşık 5 milyon yıl önce ortaya çıkmış olmalıydılar; bu, egemen antropoloji kuramındaki 15 ile 30 milyon yıllık tahminle çarpıcı oranda çelişen bir bulguydu. Wilson ve Saricn’in verileri ayrıca, insanların şempanzelerin ve gorillerin kan proteinlerinin birbirlerinden aynı derecede farklı olduğunu gösteriyordu. Yani 5 milyon yıl önce gerçekleşen bir evrim olayı ortak bir atanın aynı anda üç ayrı yöne gitmesine neden olmuştu; bu bölünme, modern insanların yanısıra, modern şempanze ve modern gorillerin de gelişmelerini sağlamıştı.(s:20). Bu da çoğu antropolgun inançlarına aykırıydı. Geleneksel düşünceye göre şempanzelerle goriller birbirlerinin en yakın akrabalarıdır ve insanlarla aralarında büyük bir uzaklık vardır. Molekül verileri hakkındaki yorumların geçerli olması durumunda antropologlar, insanlarla insansımaymunlar arasında çoğunun inandığından daha yakın bir biyolojik ilişki olduğunu kabul etmek durumunda kalacaklardı. Çok büyük bir tartışmma doğdu ve antropologlarla biyokimyacılar birbirlerinin mesleki tekniklerini şiddetle eleştirmeye başladılar.Wilson ve Sarich’in vardıkları sonuç, molekül saatlerinin hatalı olduğu ve dolaysıyla, geçmişteki evrim olayları hakkında bir zaman saptamasının güvenilir olmayacağı iddiasıyla eleştiriliyordu. Wilson ve Sarich ise antropologların küçük ve parçalanmış anatomik özelliklere çok fazla önem verdiklerini ve dolaysıyla, geçersiz sonuçlara ulaştıklarını savunuyorlardı. Ben (R.Leakey) o dönemde Wilson ve Sarich’in hatalı olduklarını düşünerek, antropolog topluluğunun yanında yer almıştım. Bu tartışma on yılı aşkın bir süre boyunca devam etti ve bu dönem içinde Wilson’la Sarich ve birbirlerinden bağımsız başka araştırmacılar giderek daha çok sayıda yeni moleküler kanıta ulaştılar. Bu yeni verilerin büyük çoğunluğu, Wilson ve Sarich’in ilk tezlerin destekliyordu. Kanıtlar antropologların fikirlerini değiştirmeye başladı, ama bu yavaş bir değişimdi. Sonunda 1980'lerin başlarında Pilbeam ile ekibinin Pakistan’da ve Londra Doğa Tarihi Müzesinden Peter Andrews ’un Türkiye’de daha eksiksiz durumda Ramapithecus benzeri fosiller bulmaları, sorunun çözüme kavuşmasını sağladı. İlk Ramapithecus fosilleri gerçekten de bazı yönlerden insana benziyorlardı; ama bu tür, insan değildi. Aşırı derecede parçalanmış kanıtları temel alarak bir evrim bağlantısı oluşturma işi çoğu kişinin sandığından çok daha zordur ve dikkatsiz davrananların düşebileceği pek çok tuzak vardır. Simons ve Pilbeam bu tuzaklardan birine düşmüşlerdi: Anatomik benzerlik, mutlaka evrimsel bağlantı olduğu anlamına gelmez.(s:21) Pakistan ve Türkiye’de bulunan daha eksiksiz durumdaki örnekler, insansı olduğu varsayılan özelliklerin yapay olduğunu gösterdi. Ramapithecus’ un çenesi kemerli değil, V şeklindeydi; bu ve diğer özellikler, ilkel bir insansımaymunların türü olduğunu gösteriyordu (modern insansımaymunların çenesiU şeklindedir). Daha sonraki akrabası orangutan gibi, Ramapithecus da ağaçlarda yaşıyordu ve ne iki ayaklı bir insansımaymun ne de ilkel bir avcı-toplayıcıydı. Yeni kanıtlar, Ramapithecus’un insangillerden olduğuna inanan en inatçı antropologları bile yanıldıklarına ve Wilson’la Sarich’in haklı olduklarına ikna etmişti(s:22): İnsan ailesinin kurucu üyesi olan ilk iki ayaklı insansımaymun, sanıldığı kadar eski bir dönemde değil, görece yakın bir zamanda ortaya çıkmıştı. Wilson ve Sarich ilk yayınlarında, 5 milyon yıl öncesini bu olayın tarihi olarak göstermişlerdi; ama günümüzde moleküler kanıtlar, tarihi yaklaşık 7 milyon yıl öncesine atıyor.Ancak insanlarla Afrikalı insansımaymunlar arasında olduğu öne sürülen biyolojik yakınlık fikrinden vazgeçilmedi. Hatta bu ilişki, öne sürüldüğünden de yakın olabilir. Kimi genetikçilerin, molekül verilerinin, insanlarla şempanzeler ve goriller arasında birbirine eşit üç yollu bir ayırma işaret ettiğini düşünmelerine karşın, başka şekilde düşünenler de var. Onlara göre insanlar ve şempanzeler birbirlerinin en yakın akrabalarıdır ve gorillerle aralarındaki evrimsel uzaklık danha fazladır. Ramapithecus olayı antropolojiyi iki şemkilde değiştirmişti. İlk olarak, ortak bir anatomik özellikten ortak bir evrimsel bağlantı çıkarmanın tehlikelerini gösterdi. İkinci olarak, Darwinci “paket”e körü körüne bağlı kalmanın budalalık olduğunu kanıtladı. Simons ve Pilbeam köpek dişinin şeklini temel alarak, Ramapithecus’a eksiksiz bir yaşam tarzı atfetmişlerdi: bir insangil özelliği bulunduğunda, bu türden tüm özelliklerin de bulunduğu varsayılıyordu. Ramapithecus’un insangil statüsünü yitirmesinin sonucunda, antropologlar Darwin paketinden kuşku duymaya başladılar. Bu antropolojik devrimin gelişimini izlemeden önce, ilk insangil türünün nasıl ortaya çıktığını açıkmlamak için çeşitli dönemlerde öne sürülmüş bazı hipotezlere de kısaca göz atmalıyız. Popülerlik kazanan her yeni hipotezin, döneminin sosyal iklimini yansıtması çok ilginç bir nokta. Sözgelimi Darwin, taş silahların geliştirilmesinin, teknoloji, iki ayaklılılık ve beyin boyutunun büyümesini içeren evrim paketinin başlangıcında önemli olduğunu düşünmüştü(s:23) Hipotez hiç kuşkusuz, yaşamın bir savaş olduğuna ve ilerlemenin girişimcilik ve çabayla sağlandığına dair yaygın fikri yansıtıyordu. Victoria çağının bu etosu, bilime işlemiş ve insan evrimi de dahil olmak üzere evrim sürecine bakış açısını belirlemişti. Yüzyılımızın ilk on yıllarında, Edward dönemine özgü iyimserliğin en enerjik günlerinde, bizi biz yapan şeyin beyin ve düşünce olduğu söylendi. Bu yaygın sosyal dünya görüşü antropolojide, insan evrimine başlangıçta iki ayaklılığın değil, beynin büyümesinin ivme kazanrdırdığı fikrinde ifade buldu. 1940'larda dünya, teknolojinin büyüsüne ve gücüne kapıylmışı; dolaysıyla ,”Alet Yapan Adam” hipotezi popülerlik kazandı. Londra Doğa Tarihi Müzesi’nden Kenneth Oakley’in öne sürdüğü bu hipotezde-silah değil- taş alet yapımı ve kullanımının evrimimiz için gerekli dürtüyü sağladığı savunuluyordu. Ve dünyanın İkinci Dünya Savaşının gölgesine girdiği dönemlerde, insanlarla insansımaymunlar arasındaki daha karanlık bir fark vurgulanmaya başlandı: bireyin kendi türüne karşı şiddet uygulaması. İlk kez Avusturalyalı anatomi bilimci Raymond Dart’ın öne sürdüğü “Katil Maymunadam” fikri, belki de savaşta yaşanan korkunç olayları açıklıyor (ya da hatta, mazur gösteriyor) olması nedeniyle, yaygın kabul gördü. 1960'larda antropologlar, insan kökeninin anahtarı olarak avcı-toplayıcı yaşam tarzına yöneldiler. Pek çok araştırma ekibi, özellikle Afrika’da olamak üzere, teknolojik açıdan ilkel modern insan nüfularını inceliyorlardı. Bunların arasından en kayda değerlerden biri (hatalı olarak Bushmen de denen! Kung San halkıydı. Burada doğayla uyum içinde, doğayı karmaşık yöntemlerle kullanan ve doğaya saygı gösteren bir halk imgesi ortaya çıktı. Bu insanlık görüşü dönemin çevreciliğiyle uyum içindeydi; ama antropologlar, karma avvcıllık ve toplayıcılık etkonomisinin karmaşıklığından ve ekonomik güvenliğinden de etkilenmişlerdi. Yine de asıl üstünde durulan avcılıktı. 1966'da Chicago Üniversitesinde, “Avcı Adam” başlıklı önemli bir antropoloji konferansı gerçekleştirildi.(s:24) Toplantıya egemen olan akım oldukça yalındı: İnsanı insan yapan, avcılıktır. Teknolojik açıdan ilkel toplumlarda avcılık genellikle, erkek sorumluluğudur. Dolaysıyla, 1970'lerde kadın sorunu konusundaki bilincin gelişmesiyle birlikte, insanın kökenine dair bu erkek merkezli açıklamanın sorgulanmaya başlanması son derece normaldi. “Toplayıcı Kadın” olarak bilinen alternatif bir hipotezde, tüm primat türlerindeolduğu gibi, toplumun merkezinin dişiyle çocukları arasındaki bağ olduğu savunuluyordu. Karmaşık bir insan toplumunun oluşturulmasını, teknoloji yaratan ve herkes tarafından paylaşılmak üzere (en başta gece) yiyecek toplayan insan dişilerinin insayatifi sağlamıştı. Ya da öyle olduğu savunuluyordu. Bu hipotezler insan evrimini asıl başlatan şey konusunda farklı fikirler getirmekle birlikte, hepsi de Darwin’in değer verilen belli insan özellikleri paketinin daha ilk baştan oluşmuş olduğunu söylüyorlardı: Hala, ilk insangil türünün belli bir düzeyde iki ayaklılık, teknoloji ve büyük beyin özelliklerine sahip olduğu düşünülüyordu. Dolaysıyla insangiller, daha başlangıçtan itibaren kültürel yaratıklardı; bu nedenle de, doğanın geri kalan kısmından farklıydılar. Oysa son yıllarda bunun doğru olmadığını anlamaya başladık. Arkeolojik kalıntılarda, Darwinci hipotezin doğru olmadığını gösteren sağlam kanıtlar görülüyor. Darwin paketi doğru olsaydı, arkeolojik lkalıntılarda ve fosil kalıntılarında iki ayaklılığa, teknolojiye ve büyük beyine dair kanıtları aynı anda görürdük. Ama görmüyoruz. tarihöncesi kalıntılarının tek bir yönü bile, hipotezin yanlış olduğunu göstermeye yetiyor: Taş alet kalıntıları. Çok enders olarak fosilleşen kemiklerin tersine, taş aletlerin yok olması neredeyse olanaksızdır. Dolaysıyla, tarihöncesi kalıntılarının büyük bölümünü taş aletler oluşturur ve en başından itibaren teknolojinin gelişimi bu aletlere dayanılarak yeniden oluşturulur (s:25) Bu tür aletlerin ilk örnekleri-çakıl taşlarından birkaç yonga çıkarılarak yapılan kaba yongalar, kazıma araçları ve baltalar- yaklaşık 2.5 milyon yıl önce ortaya çıkar. Molekül kanıtları doğruysa ve ilk insan türü yaklaşık 7 milyon yıl önce ortaya çıktıysa, atalarımızın iki ayaklı olmalarıyla taş alet yapmaları arasında yaklaşık 5 milyon yıl geçmiş olmalı. İki ayaklı bir insansımaymun yaratan evrim gücü her neyse, alet yapma ve kullanma becerisiyle bağlantılı değildi. Ama pek çok antropolog, 2.5 milyon yıl önce teknolojinin gelişmesinin, beyindeki büyümeyle aynı döneme denk geldiğine inanıyor. Beyindeki büyümeyle teknolojinin, insanın kökeniyle aynı zamanda oluşmadığının anlaşılması, antropologları yaklaşımlarını yeniden düşünmeye zorladı. Sonuçta yeni hipotezler, kültürden çok biyoloji terimleriyle oluşturuldu. Ben bunu, mesleğimizdeki sağlıklı bir gelişme olarak görüyorum; özellikle de fikirlerin, diğer hayvanların ekolojisi ve davranışı hakkında bildiklerimizle karşılaştırılarak sınanmasını sağladığı için. Bu yaklaşımda, Homo sapiens ’in pek çok özel niteliğe sahip olduğunu yadsımamız gerekmiyor. Bu niteliklerin gelişimini, tamamen biyolojik bir bağlamda inceliyoruz. Bu anlayış oluştuktan sonra, antropolgun insanın kökenlerini saptama işi yeniden iki ayaklılığın kökeni üzerinde yoğunlaştı. Evrimsel dönüşüm, bu tek olaydan soyktlandığında bile (ABD’deki) Kent Eyalet Üniversitesi’ nden anatomi bilimci Owen Lovejoy’un da belirttiği gibi, önemsiz değildir: Lovejoy, 1988'de yazdığı popüler bir makalede, “İki ayaklılığa geçiş, evrim biyolojisinde görebileceğiniz en çarpıcı değişimlerden biridir” demişti. “Kemiklerde, kemiklere güç sağlayan kasların düzeninde ve kollarla baca değişimler görülmektedir.” İnsanlarla şempanzelerin leğen kemiklerine bakmak bu gözlemi doğrulamaya yetiyor: Leğen insanlarda kısa ve kutu gibi, şempanzelerdeyse uzundur. Kol ve bacaklarla gövdede de önemli farklılıklar vardır. İki ayaklılığın gelişimi önemli bir biyolojik dönüşüm olmaktan öte, aynı zamanda önemli bir uyarlanma dönüşümüdür. Önsözde de savunduğum gibi, iki ayaklı hareket öylesine önemli bir uyarlanmadır ki, tüm iki ayaklı insansımaymunlara “insan” demekte haklıyız. Bu, ilk iki ayaklı insansımaymun türünün belli bir düzeyde teknolojiye, gelişmiş bir zekaya ya da insanlığın kültürel niteliklerine sahip olduğu anlamına gelmiyor.Bu niteliklere sahip değildi. Ben-kolların günün birinde ellerin kullanılabileceği şekilde serbest kalmasını sağlayan- iki ayaklılık uyarlanmasının son derece önemli bir evrim potansiyeli taşıdığını ve bu nedenle öneminin terminolojimizde yer alması gerektiğini söylüyorum. Bu insanlar bizim gibi değillerdi; ama iki ayaklılık uyarlanması olmasa bizim gibi olamazlardı. Bir Afrikalı insansımaymunda bu yeni hareket şeklinin gelişmesini sağlayan evrim faktörleri nelerdir? İnsanın kökenine dair popüler imgelerde çoğunlukla, ormanı terk edip açık savanlara yönelen insansımaymun benzeri bir yaratık görürüz. Bu, kuşkusuz çarpıcı bir imge olsa da, Harvard ve Yale üniversitelerinden Doğu Afrika’nın pek çok bölgesinde toprak kimyasını inceleyen araştırmacıların da yakın zamanlarda kanıtladıkları gibi, kesinlikle yanlıştır. Büyük göçebe sürülerin dolaştığı Afrika savanları, oldukça gençtir; 3 milyon yıldan daha az bir süre önce, ilk insan türünün ortaya çıkmasından uzun süre sonra gelişmişlerdir. 15 milyon yıl öncesinin Afrikasına bakarsak, batıdan doğuya uzanan ve aralarında çeşitli maymun ve insansımaymun türlerinin de bulunduğu pek çok primata barınaklık eden bir orman örtüsü görürüz. Günümüzün tersine o dönemde insansımaymun türlerinin sayısı, maymun türlerinin sayısından çok daha fazlaydı. Ama sonraki birkaç milyon yıl içinde bölgede ve sakinlerinde çarpıcı değişiklikler yaratacak olan jeolojik güçler gelişmekteydi(s:27). Kıtanın doğu kısmında yerkabuğu, Kızıl Deniz’den günümüzün Etiyopya, Kenya ve Tanzanya’sından Mozambik’e doğru bir hat halinde yarılmaktaydı. Sonuçta Etiyopya ve Kenya’da toprak kabardı ve 3000 metreyi aşkın yükseklikte geniş dağlık alanlar oluştu. Bu büyük kubeler kıtanın topografyasından öte, iklimini de değiştirdi. Eski tekdüze batıdan-doğuya hava akışını bozan kubbeler, doğuda kalan toprakları yağış alanının dışında bırakarak ormanları beslenme kaynaklarından yoksun bıraktılar. Aralıksız ağaç örtüsünün bölünmeye başlamasıyla birlikte orman parçacıklarından, ağaçlık alanlardan ve çalılıklardan oluşan mozaik benzeri bir çevre oluştu. Ama açık otluk alanlar hâlâ enderdi. 12 milyon yıl önce süregiden tektonik güçler çevreyi daha da değiştirdi ve kuzeyden güneye doğru uzanan uzun, dolambaçlı bir vadi oluştu: Büyük Yarık Vadisi. Bu vadinin ortaya çıkışı iki biyolojik etki yaratmıştır: hayvan topluluklarına doğudan batıya uzanan zorlu bir engel yaratmakta ve zengin bir ekolojik koşullar mozayiğinin gelişmesini teşvik etmektedir. Fransız antropolog Yves Coppens, doğu-batı bariyerinin, insanlarla insansımaymunların birbirlerinden ayrı olarak evrilmesinde büyük önem taşıdığına inanıyor. “Aynı atadan gelen (insan) ve (insansımaymun) toplulukları koşulların etkisiyle... ayrıldılar. Bu ortak ataların batıdaki torunları, yaşama uyarlanmalarını nemli, ağaçlık ortamlarda sürdürdüler; bunlar (insansımaymular)dır. Aynı ortak ataların doğudaki torunlarıysa açık bir çevredeki yeni yaşamlarına uyarlanmak için yepyeni bir repertuar yarattılar: Bunlar(insanlar)dır.” Coppens bu senaryoya “Doğu Yakasının Hikayesi” adını veriyor. Vadinin serin, ormanlık platolar içeren çarpıcı dağlık alanları ve sıcak, kurak alanlara 1000 metre irtifadan birden iniveren dik bayırları vardır. Biyologlar bu tür, çok sayıda farklı habitat sunan mozaik çevrelerin evrimsel yeniliği teşvik ettiğini fark ettiler. Bir zamanlar yaygın ve birbirine benzer olan bir (s: 29) türün toplulukları birbirlerinden ayrılabilir ve doğal seçim sürecinin yeni etkilerine maruz kalabilirler. Bu, evrimsel değişim reçetesidir. Böylesine bir değişim kimi zaman, yaşama uygun çevrelerin yok olmasıyla, yok oluşa uzanır.Afrikalı insansımaymunların çoğ u bu kader yaşadı; günümüze yalnızca üç tür kalabildi: goril, bayağı şempanze ve cüce şempanze. Ama çoğu insansımaymun türünün çevre değişiminden olumsuz etkilenmesine karşın, içlerinden biri, hayatta kalmasını ve gelişmesini sağlayacak yeni bir uyarlanma şansını yaşadı. Bu, ilk iki ayaklı insansımaymundu. İki ayaklılık hiç kuşkusuz, değişen koşullarda hayatta kalması için önemli avantajlar sağlamıştı. Antropologların görevi, bu avantajların neler olduğunu bulmaktır. Antropologlar iki ayaklılığın insan evrimindeki önemini genellikle iki şeklide değerlendirirler:Bir düşünce, ön ayakların serbest kalarak taşıma özelliği kazanmasını vurgular; diğer düşünceyse, iki ayaklılığın enerji açısından daha etkin ir hareket şekli olması üzerinde durur ve taşıma yeteneğini yalnızca dik duruşun raslantısal yan ürünlerinden biri olarak görür. Bu iki hipotezden ilkini, Owen Lovejoy öne sürdü ve 1981'de Science ’taki önemli bildiride yayımlanmıştır. Lovejoy’a göre iki ayaklılık etkin olmayan bir hareket şeklidir ve dolaysıyla taşıma amacıyla geliştirilmiş olmalıdır. Taşıma yeteneği iki ayaklı insansımaymunlara, diğer insansımaymunlara göre nasıl bir rekabet avantajı sunmuş olabilir? Evrimsel başarı, sonuçta, hayatta kalacak nesiller üretmeye bağlıdır ve Lovejoy’a göre yanıt, bu yeni yeteneğin erkek insansımaymunlara, dişi için yiyecek toplayarak üreme oranını artırma fırsatını sağlamasıdır. Lovejoy, insansımaymunların yavaş ürediklerini ve dört yılda bir tek yavru yaptıklarını vurgular. İnsan dişileri de daha çok enerjiye-yani daha çok yiyeceğe- ulaşabilmeleri durumunda daha çok nesiller üretebilirler. Erkeğin dişi ve yavruları için yiyecek toplayarak dişiye daha çok enerji sağlaması durumunda dişi, üreme çıktısını artırabilecektir.(s:30) Erkeğin bu eyleminin, bu kez sosyal alanda olmak üzere, bir diğer biyolojik sonucu daha olacaktır. Erkeğin kendi çocuklarını ürettiğine emin olmadıkça dişiyi beslemesinin Darwinci açıdan erkeğe yararlı olmaması nedeniyle Lovejoy, ilk insan türünün tekeşli olduğunu ve üreme başarısını artırıp diğer insansımaymınlara baskın gelme yöntemi olarak çekirdek ailenin ortaya çıktığını öne sürdü. Bu tezini başka biyolojik benzetmelerle destekledi. Sözgelimi, primat türlerinin çoğunda erkekler, mümkün olduğunca çok dişi üzerinde cinsel denetim kazanmak için birbirleriyle rekabet eder. Bu süreç sırasında genellikle birbirleriyle dövüşürler ve silah olarak kullanabilecekleri büyük köpek dişleri vardır. Gibonlar erkek-dişi çiftleri oluşturmak gibi ender rastlanan bir özellik gösterirler ve - her halde birbirleriyle kavga etmeleri için bir neden olmamasından dolayı- erkeklerin köpek dişleri küçüktür. Erken insanlarda köpekdişlerinin küçük olması Lovejoy’a göre, gibonlar gibi erkek-dişi çiftleri oluşturduklarının kanıtı olabilir. Yiyecek sağlama düzenlemesinin sosyal ve ekonomik bağları da beynin büyümesini sağlayacaktır. Lovejoy’un büyük ilgi ve destek gören hipotezi, kültürel değil temel biyolojik konulara hitap etmesi nedeniyle güçlürün. Ama zayıf noktaları da vardır; öncelikle, teknolojik açıdan ilkel halklarda tekeşlilik yaygın bir sosyal düzenleme değildir.(Bu tür toplumların yalnızca yüzde 20'si tekeşlidir). Hipotez bu nedenle, avcı toplayıcıların değil, Batı toplumunun bir özelliğine dayandığı iddiasıyla eleştirilmektedir.belki de bundan daha önemli bir eleşiri ise, bilinen en erken insan türlerinde erkeklerin, dişilerden yaklaşık iki kat büyük olmalarıdır. Beden boyutundaki iki biçimlilik (dimorfizm) olarak bilinen bu büyük farklılık, incelenen tüm primat türlerinde çokkarılılıkla ya da erkeklerin dişilere ulaşmak için aralarında rekabet etmeleriyle çakışır; tekeşil türlerde iki biçimliliğe rastlanmaz. Bence bu gerçek bile, umut verici bir kuramsal yaklaşımı çökertmeye yetmektedir ve köpeksdişlerinin küçük olbsanıa tekeşlilikten (s: 31) başka bir açıklama aranmalıdır. Belki de yiyecekleri çiğneme mekanizması, kesmeden çok öğütme hareketini gerektiriyordu; köpek dişlerinin büyük olması bu hareketi zorlaştıracaktı. Lovejoy’un hipotezi günümüzde, on yıl öncesine göre daha az destek görmektedir. İkinci önemli iki ayaklılık kuramı, kısmen basitliği sayesinde çok daha imna edicidir. Davis, California Üniversitesinden antropolog Peter Rodman ve Henry McHenry’nin öne sürdükleri hipotezde, iki ayaklılığın daha etkin bir hareket şekli sunması nedeniyle, değişen çerre koşullarında daha avantajlı olduğu savunulur. Ormanların küçülmesiyle birlikte ağaçlık habitatlardaki meyve ağaçalrı gibi yiyecek kaynakları, klasik insansımaymunların etkin şekilde yararalanamayacakaları kadara dağınıktır. Bu hipoteze göre, ilk iki ayaklı insansımaymunlar yalnızca hareket şekilleriyle insandırlar.Diyetlerinin değil, yalnızca yiyecek toplama şekillerinin değişmiş olması nedeniyle elleri, çeneleri ve dişleri insansımaymunlardaki gibi kalmıştır. Pek çok biyolog bu düşünceyi başlangıçta olanaksız görmüştür; Harvard Ünivresitesi'nden araştırmacılar yıllar önce, iki ayak üstünde yürümenin dört ayak ütünde yürümekten daha az etkin olacağını göstermişlerdi. (kedisi ya da köpeği olanlar için bu hiç de şaşırtıcı bir durum değil; her iki hayvan da sahiplerini utandıracak derecede daha hızlı koşar.) Ama Harvard araştırmacıları insanlardaki iki ayaklılığın etkinliğini at ve köpeklerdeki dört ayaklılığın etkinliğiyle karşılaştırmışlardı. Rodman ve McHenry, karşılaştırmanın insanlarla şempanzeler arasında yapılması gerektiğini vurguladılar. Bu karşılaştırma yapıldığında, insanlardaki iki ayaklılığın şempanzelerdeki dört ayaklılıktan çok daha etkin olduğu görülüyor. Dolaysıyla, iki ayaklılık yararına bir doğal seçim gücü olarak enerji etkinliği tezinin akla yatkın olduğu sonucuna vardılar. İki ayaklılık evrimin teşvik eden, bir yandan avcıları izlerken bir yandan da yüksek otların üstünden bakabilme ve gündüz saatlerinde yiyecek toplarken serinleyebilmek için daha (s: 32) etkin bir duruşa geçme zorunlulukları gibi başka etkenler de olduğu öne sürüldü. Ben tüm bu düşüncelerin arasında en inandırıcısının, sağlam bir biyolojik temeli olması ve ilk insan türlerinin evrildiği dönemde gelişen ekolojik değişimlere uyması nedeniyle, Rodman ve McHenry’ninki olduğunu düşünüyorum. Bu hipotez doğruysa, ilk insan türünün fosillerini bulduğumuzda, hangi kemikleri bulduğumuza bağlı olarak, bu fosillerin ilk insana ait olduğunu fark edemeyebiliriz. Leğen ya da bacak kemiklerini bulmamız durumunda iki ayaklı hareket şekli görülür ve “insan “ diyebiliriz. Ama kafatasının ve çenenin bazı parçalarını ya da bazı dişleri bulmamız durumunda bunların bir insansımaymuna ait olduğunu düşününebilirz. Bunların iki ayaklı bir insansımaymuna mı, yoksa klasik bir insansımaymunna mı ait olduğunu nasıl anlayacağız? Bu, son derece heyecan verici bir savaşım. İlk insanların davranışlarını gözlemek için 7 milyon yıl öncesinin Afrika’sına gidebilseydik, insanların davranışlarını inceleyen antropologlardan çok, maymun ve insansımaymunların davranışlarını inceleyen primatologlara tanıdık gelecek bir modelle karışlaşırdık. İlk insanlar modern avcı-toplayıcılar gibi göçmen gruplarda aile toplulukları olarak yaşamaktan çok, büyük olasılıkla, savan babunları( habeş maymunları) gibi yaşıyorlardı. Yaklaşık otuz bireyden oluşan gruplar geniş bir arazide koordinasyon içinde yiyecek avına çıkıyor ve geceleri tepeler ya da ağaç kümeleri gibi uygun uyku yerlerine dönüyorlardı. Grubunu büyük bölümünü yetişkin dişilerle çocukları oluşturuyordu ve aralarında yalnızca birkaç yetişkin erkek bulunuyordu. Erkekler sürekli çiftleşme olanakları arıyor ve egemen bireyler daha başarılı oluyordu. Yetişkinliğe erişmemiş ya da düşük seviyelerdeki erkekler, grubun ancak çevresinde er alıyor ve kendi başlarına yiyecek avına çıkıyorlardı. Grubun bireyleri iki ayaklı yürümeleriyle insani bir özellik taşıyor, ama (s: 33) savan primatları gibi davranıyorlardı. Önlerinde, 7 milyon yıl sürecek ve ileride de göreceğimiz gibi son derece karmaşık ve kesin olmayan bir evrim modeli vardı. Çünkü doğal seçim uzun vadeli bir hedefe doğru değil, anlık şartlara göre işler. Homo sapiens sonuçta, ilk insanların torunu olarak ortaya çıktı; ama bunun kaçınılmaz bir gelişme olduğu da söylenemezdi. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim s:15-34 ) Yaşamın Gizi Kökleri 19. yy’a dayanan Evrim Kuramı, gerçekte 20. yy’ın geliştirilen büyük kuramlarından biridir. İnsanın kendi yapısını araştırmaya yönelmesinin bilimsel bir niteliğe bürünmesi oldukça yenidir. Biyoloji, genç bir bilimdir. Biyoloji, özellikle Evrim Kuramı ile genç bir bilimin büyük kuramlar üretebileceğini kanıtladı. Nobel Ödüllü(1965) bilim adamı Jacques Monod Rastlantı ve Zorunluluk adlı eserinde şöyle diyor: “ Biyolojinin bilimler arasındaki yeri, bir bakıma merkezi, bir bakıma da ikincil önemdedir. İkincildir, çünkü canlılar dünyası bilinen evrenin pek önemsiz ve “özel” bir bölümü olduğuna göre, canlıların irdelenmesiyle, canlılar dünyasının dışına da uygulanabilecek genel yasalara varılamaz gibi görünür. Fakat bütün bilimlerin son amacı, eğer benim sandığım gibi, insanla evren arasındaki bağıntıyı aydınlatmaksa, o zaman biyolojiye merkezi bir yer tanımak gerekir; çünkü biyoloji, bütün bilim kolları arasında, henüz “insanın doğası” sorunun metafizik terimler kullanılmadan ortaya konması olanaksızken, çözülmesi gereken sorunların yüreğine en dolaysız yoldan girmeye çalışanıdır. Bu nedenle biyoloji, insan için bilimlerin en anlamlısıdır; felsefe, din, ve politika gibi bütün alanlarda temelden sarsılmış ve açıkça yaralı olan modern düşüncenin biçim kazanmasında, özellikle Evrim Kurramı’nın ortaya çıkışıyla, kuşkusuz bütün öteki bilimleri aşan katkıları olmuştur. Ancak, 19. yy’ın sonlarından bu yana biyolojinin bütününe egemen olmakla birlikte ve fenomeolojik açıdan geçerliliğine ne denli inanılmış olursa olsun, Evrim Kuramı, kalıtımın fiziksel bir kuramı geliştirilmedikçe yine askıda kalıyordu. Bu sonuca ulaşılması ise, klasik genetiğin bütün başarılarına karşın, otuz yıl öncesine dek boş bir kuruntu gibi görünüyordu. Oysa bugün, kalıtım yasası molekül kuramının getirdiği şey budur. Burada “kalıtım yasası kuramı”nı yalnızca kalıtımsal gereçlerle onların taşıdığı bilginin kimyasal yapısına ilişkin kavramlar olarak değil, ayrıca bu bilginin fizyolojik ve morfogenetik anlatımının moleküler düzeneğini de içerecek biçimde, geniş anlamıyla kullanıyorum. Böyle tanımlandığında kalıtım yasası kuramı biyolojinin temel kuralını oluşturur Doğal olarak bu, organizmaların karmaşık yapı ve işlevlerinin bu kuramdan çıkarılabileceği ya da bunların her zaman doğrudan moleküler düzeyde çözümlenebileceği anlamına gelmez.(Kimyanın evrensel temelini kuşkusuz kuantum kuramının oluşturmasına karşın, kimyadaki her şey bu kurama göre ne bilinebilir, ne çözülebilir). Fakat yasanın moleküler kuramı günümüzde (kuşkusuz ileride de) biyoloji alanındaki her şeyi önceden bilip çözemese de daha şimdiden canlı sistemlerin genel bir kuramını oluşturuyor. Moleküler biyolojinin ortaya çıkışından önce, bilimi alanında böyle bir şey yoktu. O zamanlar “yaşam gizi”, ilkesi gereği ulaşılamaz görünürdü. Günümüzde bu giz büyük ölçüde açıklanmıştır. Öyle görünüyor ki bu önemli olay, kuramın genel anlamı ve kapsamı uzmanlar dışında da anlaşılıp değerlendirilebildiği zaman, modern düşüncede ağırlığını büyük ölçüde duyuracaktır. Bu denemin buna yardımcı olacağını umuyorum. Gerçekten ben, modern biyolojinin kavramlarının, kendilerinden çok “biçim”lerini açığa çıkarmaya, düşüncenin başka alanlarıyla mantıksal bağlantılarını göstermeye çalıştım. Günümüzde bir yapıtın adında bilim adamının, “doğal” nitemiyle birlikte de olsa, “felsefe” sözcüğünü kullanması tehlikelidir. O yapıtı, bilim adamlarının güvensizlikle, filozofların ise olsa olsa bir gönül indirmeyle karşılayacakları önceden görülebilir, Tek, fakat haklı olduğuna inandığım bir mazaretim var: Bilim adamlarına düşen ve bugün her zamankinden daha çok kendini duyuran ödev, kendi bilim kollarını çağdaş kültürün bütünü içinde değerlendirmek, onu yalnız teknik bilgilerle değil, aynı zamanda bilimin kazandırdığı, insansal açıdan önemli gördükleri düşüncelerle de zenginleştirmektedir. Yeni bir bakışın (biliminki hep böyledir) arılığı, kimi kez sorunlar üzerine yeni bir ışık serpebilir. Doğal olarak geriye, bilimin esinlediği düşüncelerle, bilimin kendi arasındaki her türlü karışıklıktan kaçınmak kalıyor. ama işte bu nedenle de, bilimin ortaya koyduğu sonuçların tüm anlamını açıklayabilmek için, bunların son sınırına dek götürmek gerekiyor. Zor bir uygulama. Bunu eksiksiz yaptığımı öne sürmüyorum. Önce bu denemenin salt biyolojik bölümünün hiçbir özgün yanı bulunmadığını belirteyim. Modern bilimce saptandığı kabul edilen düşünceleri özetlemekten başka bir şey yapmadım. Örnek seçiminde olduğu gibi, değişik gelişmeleri verilen önemin de kişisel eğilimleri yansıttığı doğrudur. Biyolojinin kimi önemli bölümlerinin burada sözü bile edilmedi. Fakat bu deneme, biyolojinin tümünü açıkladığını kesinlikle savunmuyor. Yalnızca sistemin moleküler kuramının özünü elde etmek yolunda bir girişimdir. Bundan çıkarabildiğim ideolojik genellemelerden sorumlu olduğum açıktır. Fakat bilgi kuramı alanı içinde kaldıkları sürece bu yorumları çağdaş biyolojistlerin büyük bölümünün kabul edeceğini söylerken yanılmış olacağımı sanmıyorum. Ben burada, siyasal değilse bile etik(ahlaksal) düzeyde, gelişmelerin bütün sorumluluğunu yüklendiğimi belirtmeden geçmek istemem; bunlar ne denli tehlikeli olursa olsunlar, ne denli naif ya da benim isteğim dışında, ne denli aşırı görünürse görünsünler bilim adamı alçak gönüllü olmalı, fakat taşıdığı ve savunmak zorunda olduğu düşünceler pahasına değil. Ancak burada da kendimi, yapıtları büyük saygınlık kazanmış kimi çağdaş biyolojistlerle tam bir uyum içinde bulmanın yüreklendirici güvenini duyuyorum....Nisan, 1970"(Kitabın Önsözü’nden) (Jacques Monod, Rastlantı ve Zorunluluk(1970), s:11-13) Evrim Kuramı ve Değişim Evrim Kuramı,canlıların değişimini içerir. Tutucu insanların bu kuramı anlamak istemeyişi ya da reddedişi bu değişimi kabul etmemelerinin bir sonucudur. Evrim kuramına karşı çıkmayı küçümsemeyin. Evrim Kuramına karşı çıkanlar, arkalarında “dine inanan” aydınları ve kitleleri bulur. Değişimi savunmak kadar değişime karşı çıkmak, insan aklının çok önceden bulduğu en tehlikeli silahlardandır. Onu, felsefe temelinde en iyi ve en eski savunan da Platon’dur. Platon, biz erkeklerin kadınlardan nasıl da fersah fesah üstün olduğunun altını pek güzel çiziyor! Bayanların pek sevmeyeceği bir öykü olsa da anlatacağım. Platon’da değişim “kötü”, durağanlık ise “iyi”dir. Karl Popper bunu şöyle belirtir: “Çünkü bütün değişimin çıkış noktası yetkin iyi ise değişiklik ancak yetkin ve iyiden uzaklaşan bir hareket olmak gerekir;bu hareket yetkin olmayana ve kötüye doğru yönelmelidir.” Platon, Kanunlar ’da değişim doktrinini şöyle özetler:" Kötü bir şeyin değişmesi bir yana bırakılırsa, her nasıl olursa olsun değişiklik, bir şeyin uğrayabileceği bütün kötü tehlikelerin en başında gelir,- değişiklik şimdi ister mevsimin ya da rüzgârın olsun, ister beden dişyetinin yahut ruh karakterinin.” Israrını belirtmek için de eklemektedir: “Bu söz her şeye uygundur,tek ayrık, demin söylediğim gibi, kötü bir şeyin değişmesidir.” Kısacası Platon, değişimin kötü ve durulmanın tanrılık olduğunu öğretmiştir... Platon’un Timaios ’taki türlerin kökeni üzerine öyküsü bu genel teoriyle bir uyuşma içindedir. Bu öyküye göre hayvanların en yükseği erkek-insandır,tanrılar tarafından türetilmiştir;öteki türler,bir bozulma ve soysuzlaşma süreciyle ondan -aşağıya- inerler. Önce bazı erkekler-korkak ve rezil olanları-soysuzlaşıp kadın olmuştur. Bilgeliği olmayanlar, adım adım daha aşağı hayvanlara doğru soysuzlaşmıştır. Kuşlar, zararsız deniyor oysa duyumlarına çok güvenen fazla yumşak insanların dönüşümüyle varolmuşlardır; "kara hayvaları,felsefeyle hiç ilgilenmeyen insanlardan gelmiştir”; balıklar, -midye ve sitiridye gibi kabuklu deniz hayvanları da dahil olmak üzere- bütün insanların “en aptal, salak... ve değersiz olanlarından soysuzlaşmayla çıkmıştır” Bu teorinin insan toplumuna ve tarihine de uygulanabeleceği açıktır. (Karl Popper, Açık Toplum Ve Düşmanları s: 49-50) İNSAN NASIL İNSAN OLDU? İnsan nedir? Biz neyiz? Nereden geldik? Sokrates ' e yakıştırılan bir öykü vardır. Sokrates, Atina Agorası' ndaki gönüllü öğrencilerine verdiği ders sırasında "İnsan nedir?" diye sormuş. Onlar da soruyu küçümseyerek " bunu bilmeyecek ne var, iki ayaklı ve tüysüz bir canlıdır" yanıtını vermişler. Ertesi gün Sokrates, elinde tüyleri yolunmuş bir tavukla öğrencilerinin karşısına çıkmış. Tüysüz tavuğu havaya kaldırarak " yani böyle bir şey mi insan dediğiniz?" demiş. Öğrenciler nasıl bir şaşkınlık geçirdi bilmiyoruz; ama insan tanımının öyle basit bir iş olmadığını anlamış olmalılar. İnsan "düşünen varlık", " gülen canlı", "üretim yapan canlı", "alet kullanan canlı" gibi değişik sıfatlarıyla tanımlanmaya çalışılmıştır. Sorunun yanıtı basit değil. Gelin biraz gerilere gidelim. Önce "insan her şeyin ölçüsüdür" diyen eski Yunan filozofunu anımsayalım. Protagoras'ı yani. Onun ne demek istediğini size anlatmaya çalışmıştım. 19. yüzyılın ikinci yarısından itibaren insan konusunda bilimsel düşünceler ortaya konmaya başlandı. İnsanın doğaüstü güçlerce yaratılmadığı ve tüm canlılar gibi evrimsel bir sürecin bugünkü aşaması olduğu düşünülmeye başlandı. Evrim, değişikliği ifade eder. " Evrim, biyolojik bir gerçektir; en geniş anlamı ile organizmaların zaman süreci içinde değişen ortama gösterdikleri fiziksel tepki olarak da tanımlanabilir... "Her canlı bir canlıdan gelir " gerçeği, evrimin temel özelliklerinden biridir." Bununla birlikte konuyla ilgili saptırmalar da başladı." Bu saptırmaların en ünlüsü de insanın maymundan türemiş olduğu, başka bir deyişle bu iki canlı türü arasında bir ata- torun ilişkisi bulunduğu, yani maymunların insanın atası olduğu saptırmasıdır. C. Darwin' in Türlerin Kökeni adlı yapıtının doğurduğu yankılara karşı, özellikle o dönem Anglo- Sakson Kilisesi' nce başlatılan, geliştirilen, desteklenen ve savunulan bu saptırma, üzülerek belirtmek gerekir ki bugün bile kamuoyunda evrensel anlamda belirli bir ağırlığa sahiptir. Olaya bilimsel bir yaklaşımla ve tarafsız olarak bakıldığı zaman, kuşkusuz, insan ile yakın soydaşları olan primatlar arasında bir evrimsel ilişki olduğu görülür. Zaten, evrim bakımından eskiye gidildikçe tüm canlıların oluşumları itibariyle ortak evrim ağacının farklı dalları oldukları ve bu nedenle de tüm canlılar arasında (uzak veya yakın) bir ilişki bulunduğu da bilinmektedir. Ancak bu ilişki, "maymun ile insan arasında bir ata-torun ilişkisi vardı ve insanlar da zaman içinde maymunlardan türemiştir" anlamına tabii ki gelmez. Maymun ve insan türlerinin birlikte oluşturdukları zoolojik takım olan primatlar arasında evrimsel bir ilişi olması demek, bu iki farklı türün ortak bir kökten türemiş olmaları ve / fakat zamanla bunların her ikisinin de değişerek bugünkü hallerini almış olması demektir. Başka bir deyişle, bu iki canlı türünden her biri kendi yönünde evrimleşmiş, zaman içinde insan daha "insanlaşmış" ve buna karşılık maymun daha da "maymunlaşmıştır". Gelecekte, evrim sürecinin bir gereği olarak aynı olayın devam edeceği, insan ile maymun arasında var olan makasın daha da açılacağı kuşkusuz. " Sahi, insanla maymun arasında ne gibi farklar vardır? İnsanı insan yapan nedir? " Yüzyılımızın başlarında insanın çevresine uyum yeteneği, daha sonraları düşünce, İkinci Dünya Savaşı' nı izleyen dönemde araç-gereç yapımı, 1960' lı yıllarda ilkönce lisan ve hemen sonra da avcılık insanı " insan " yapan "insansı" özellikler olarak görülüyordu. Bugün ise durum hayli farklı." "İnsan denen canlıyı ele aldığımız zaman onun bir Homo erectüs (dik yürüyen), bir Homo faber (alet yapan), bir Homo lingua (konuşan/ dili olan), bir Homo symbolicus (soyutlayabilen), bir Homo curiosus (araştıran) ve bir Homo sapiens (akıl sahibi, zeki) olduğunu görüyoruz. Bunların tümü insana özgü. İlginç olan ve özellikle vurgulanması gereken husus, insan dışı

http://www.biyologlar.com/evrim-kurami-ve-maymun-sorunu

ARKELERİN SİSTEMATİĞİ HAKKINDA BİLGİ

ARKELERİN SİSTEMATİĞİ HAKKINDA BİLGİ

Arkeler, Arkea ( Yunanca αρχαία, "eskiler" 'den türetme; tekil olarak Arkaeum, Arkaean, veya Arkaeon), veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin ( İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı- alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Tarihçe 1977'de Carl Woese ve George Fox, prokaryotları 16S rRNA dizinlerine göre sınıflandırdıkları filojenetik ağaçdaki diğer bakterilerden ayrı kümelenmelerinden dolayı arkaeleri tanımlanmışlardır. Bu iki canlı grubu başlangıçta birer âlem veya alt âlem olarak görülmüş, Arkaebakteriler ve Öbakteriler olarak adlandırılmışlardır. Woese bu grupların canlıların temel düzeyde birbirinden farklı birer kolu sayılması gerektiğini savunmuştur. Daha sonra bu kavramı daha belirginleştirmek için grupları Arkeler ve Bakteriler olarak yeniden adlandırmış ve bunların, Ökarya ile beraber canlıların üç bölgesini oluşturduğunu öne sürmüştür. (Woese'nin bu gruplara İngilizce 'bölge' anlamında domain olarak adlandırmıştır; Türkçe üst-âlem olarak da adlandırılırlar.) Biyolojik bir terim olarak Arkea ile jeolojideki Arkean veya Arkeozoik dönemin bir ilişkisi yoktur. Arkeozoik dönem, Yer tarihinde Arke ve Bakterilerin gezegende yaşayan tek canlılar olduğu bir dönemin ismidir. Bu canlılara ait muhtemel fosiller 3,8 milyar yıl öncesine tarihlenmişlerdir. Moleküler biyolojide temel rolü olan genetik transkripsiyon ve translasyon mekanizmaları bakterilere pek benzemeyip, çoğu bakımdan ökaryotlara benzemektedir. Örneğin arke translasyonu ökaryotik-benzeri başlatma (initiation) ve uzatma (elongasyon) faktörleri kullanır, trankripsiyonda ökaryotlardaki gibi TATA-bağlanma proteinleri ve TFIIB rol oynar. Çoğu arke tRNA ve rRNA genlerinde arkelere has intronlar bulunur ki bunlar ve ökaryotik intronlara, ne de bakteryel intronlara benz farklı kılan çeşitli başka özellikler vardır. Bakteri ve ökaryotlarda olduğu gibi arkaelerde de gliserollu fosfolipitlere sahiptirler. Ancak arke lipitlerinin üç özelliği değişiktir: Arke lipitlerindeki gliserolun stereokimyası bakteri ve ökaryotlardakinin tersidir. Bu, farklı bir biyosentetik yol olduğuna işarettir. Çoğu bakteri ve ökaryotun hücre zarları gliserol-lipit esterlerinden oluşur, oysa arkelerin zarları gliserol-lipit eterlerinden oluşur. Bakterilerde eter bağlantılı lipitler olsa dahi bunlardaki gliserol sterokimyası bakteriyel biçimdedir. Arke lipitleri izoprenoid birimlerden. Bu beş karbonlu bileşik bakteri ve ökaryotlardaki bazı vitaminlerde yer almasına rağmen, yalnızca arkeler onu lipitlerinin inşasında kullanırlar. Çoğunlukla bu lipitler 20 karbonlu (4 monomerden oluşmuş) veya 40 karbonlu (8 monomer) olurlar. Kırk karbonlu lipitlerin uzunluğu hücre zarının kalınlığı kadar olduğu için bazı arkelerin hücre zarında bu lipit zincirinin iki ucunda gliserol fosfat grupları bağlıdır, zar başka canlı türlerinde olduğu gibi iki lipit tabakasından değil, tek bir tabakadan oluşur. Tek tabakalı zar özellikle ısısever (termofilik) arkelerde yaygındır. Arke hücre duvarları da bakteri ve ökaryotlarda ender görülen özelliklere sahiptir. Örneğin, çoğu arkenin hücre duvarı S-tabakası olarak adlandırılan yüzey proteinlerinden oluşur. S-tabakası bakterilerde de görülür, bazı canlılarda hücre duvarının tek bileşenidir (örneğin Planctomyces) veya peptidoglikanlı canlılarda bir dış tabaka oluşturur. Metanojenlerin bir grubu haricinde arkelerde peptidoglikan duvar yoktur. Metanojenlerde olan peptidoglikan dahi bakterilerdekinden çok farklıdır. Arkelerin flagellası, bakteri flagellasına yüzeysel olarak benze#redirect Habitatları Çoğu arke, aşırıseverdir ( ekstremofil). Bazısı yüksek sıcaklıklarda, geyzerlerde veya deniz dibi sıcak su kaynaklarında oluğu gibi, çoğu zaman 100 °C'nin üstünde yaşarlar. Diğerleri çok soğuk ortamlarda, veya aşırı tuzlu, asit veya alkali ortamlarda bulunurlar. Buna karşın başka arkeler ılıman şartlarda yaşarlar (mezofil), bataklık, deniz suyu, toprak ve atık sularda bulunmuşlardır. Çoğu metanojenik bakteri geviş getiren hayvanların, insanların ve termitlerin sindirim sisteminde bulunur. Arkeler genelde diğer organizmalar için zararsızdır ve hastalık etmeni olarak bilineni yoktur. Arkeler tercih ettikleri habitatlarına göre üç gruba ayrılırlar. Bunlar tuzsevenler ( halofiller), metanojenler ve ısısevenlerdir ( termofiller). Halofiller aşırı tuzlu ortamlarda yaşar. Metanojenler anaerobik ortamda yaşarlar ve metan üretirler. Bunlar tortu tabakalarında ve hayvanların bağırsaklarında bulunurlar. Termofiller sıcak su kaynakları gibi yüksek sıcaklıklı yerlerde yaşarlar. Bu gruplar mutlaka moleküler genetik yöntemlerle belirlenmiş filojenilere uymayabilirler, tüm arkeleri kapsamayabilirler ve birbirlerini dışlamayabilirler. Gene de, daha ayrıntılı çalışmalara başlangıç olarak faydalı sayılırlar. Şekil Arke hücrelerin çapları 0.1 μm ila 15 μm'nin üstü arasında değişir. Bazıları öbekleşir veya 200 μm'ye varan iplikçikler oluşturabilir. Çok çeşitli şekillere sahip olabilirler, küresel, çubuk, spiral, yumrulu, yassı kare şekilli veya dikdörtgen olabilirler. Metabolizma Metabolizmaları çok çeşitlidir. Halobakteriler ATP üretmek için ışık kullanırlar. Ama başka gruplar gibi, elektron taşıma zinciri kullanarak fotosentez yapan bir arkae yoktur. Evrim ve sınıflandırma Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri bir çok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır. Üst alem: Archaea Woese, Kandler & Wheelis, 1990 Bölüm / Sınıf Bölüm Crenarchaeota Bölüm Euryarchaeota Halobacteria Methanobacteria Methanococci Methanopyri Archaeoglobi Thermoplasmata Thermococci Bölüm Korarchaeota Bölüm Nanoarchaeota Arkeler üzerinde çalışmış biyologlar Aled Edwards, Ph.D., University of Toronto Carl Woese, Ph.D., University of Illinois at Urbana-Champaign Karl Stetter, Ph.D., University of Regensburg, Germany John N. Reeve, Ph.D., Ohio State University Kaynaklar Howland, John L. (2000). The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press. ISBN 0-19-511183-4}} Giovannoni, S.J. and Stingl, U. (2005). Molecular diversity and ecology of microbial plankton. Nature 437: 343-348. Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546. Lake, J.A. (1988). Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186. Woese, Carl R.; Fox, George E. (1977). Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74 (11): 5088–5090. Woese, Carl R., Kandler, Otto, Wheelis, Mark L (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and

http://www.biyologlar.com/arkelerin-sistematigi-hakkinda-bilgi

Ginseng Nedir? Faydaları Nelerdir?

Ginseng Nedir? Faydaları Nelerdir?

Ginseng, ginseng bitkisinin köklerinden elde edilen oldukça popüler bir bitkisel ilaçtır. Tarihçilere göre ginseng bitkisi ilk olarak 5000 yıl önce, Kuzey Çin’in dağlık bölgelerinde keşfedildi.Başlangıçta bu bitki yemek pişirme amaçlı kullanılırken, daha sonra tedavi edici özellikleri tespit edilmiştir. Ginsengin en az 3000 yıldır popüler olarak kullanıldığı düşünülmektedir. Bir çok hastalığın tedavisinde kullanılan ginseng, geleneksel Çin tıbbında çok önemli bir yere sahiptir. Ginseng bitkisinin köklerinin insan vücuduna olan benzerliği, bu bitkinin tedavi edici özelliklerine olan inancı güçlendirdi. Tıbbi özellikleri için esas kullanılan parçası etli kökleri de olsa, yaprakları da kullanılır. Ginseng yapraklarının kökleri kadar etkili olmadığı gözlemlenmiştir bu kökler aynı zamanda oldukça pahalıdır.Yabani ginseng Asyanın dağlık bölgelerinde, özellikle de Çin’de bulunur. “Panax” cins ve “Araliaceae” ailesine ait 11 ginseng türü vardır. Etli köklere sahip bu yavaş büyüyen bitkiler soğuk iklime sahip bölgelerde yetişmektedir. Çok çeşitli ginseng bitkileri arasında en değerlileri Amerikan ginsengi olarak da bilinen Panax quinquefolius ve Asya ginsengi olarak da bilinen Panax ginseng’dir. Kore ginsengi, tüm ginseng türleri arasında en etkili olarak kabul edilir. Panax kelimesi Yunanca’da her derde deva anlamındaki “panakos” kelimesinden, ginseng ise Çince insan suretinde anlamına gelen “jen-shen” kelimesinden köken almaktadır.Fiziksel Özellikleri:Bir çok ginseng türü olmasına rağmen, Amerikan ve Asya ginsengi en değerli olanlardır ve yaygın olarak kullanılmaktadırlar. Asya ve Amerikan ginsengi görünüm olarak hemen hemen aynıdır. Bu yavaş büyüyen bitkiler genellikle dağ geçitlerinin yamaçlarında ve iyi drene olan dağlık ormanlarda yetişir.Kullanımı:Tıbbi özellikleri nedeniyle çok popüler olan ginseng, ticari olarak dünyanın birçok yerinde yetiştirilmektedir. Ginseng için gittikçe artan talep dolayısıyla yabani ginseng oldukça azalmıştır hatta tehlikeli denebilecek bir hal almıştır. Ginseng bitkisi ağırlıklı olarak tedavi edici özellikleri nedeniyle kullanılır. Yaygın bir bitkisel ilaç olarak kabul edilir ve geleneksel Çin tıbbında önemli bir bileşendir. Diyabet tedavisinde, erkeklerde cinsel fonksiyon bozukluklarında, kan şekerini düşürmede ve kan kolestrolünü azaltmada kullanılır. Aynı zamanda afrodizyak ve uyarıcı olarak etkili olduğu ve oldukça popüler bir anti-aging maddesi olduğu bilinmektedir. Ginsengin faydaları kozmetiği ve enerji içeceklerini de kapsar. Çorbalara da eklenebilir.Ginseng kökleri genellikle kurutulmuş olarak satılır. Bunları bütün ya da dilimler halinde satın alabilirsiniz. Sayısız kozmetiğin ve bitkisel takviyenin içinde bulunan bir aktif maddedir aynı zamanda ginseng çayı olarak da çay poşetleri satılmaktadır. Ginsengi medikal amaçlar için kullanmaya başlayan antik Çinlilerdir. Gözlere parlaklık vermek, güç kazanmak ve pek çok hastalık için kullanmışlar ve bu durum bir ticarete dönüşmüştür. Çinliler bu bitkiyi Kore’den ve bazı Kuzey Amerikan ülkelerinden satın almaya başlamışlardır.Ginsengin Faydaları:- Ginseng kökleri stres, anksiyete, bulantı, kusma, baş ağrısı, hazımsızlık, ishal, akciğer sorunları, artrit, astım, Crohn hastalığı, tümörler, yorgunluk, şeker hastalığı, depresyon, diş ve diş eti hastalıkları gibi hastalıklara faydalıdır.-Mide sorunlarına faydalıdır. Bir yumuşatıcı ve bir uyarıcı olarak çalışır ve sindirim sisteminin sorunsuz ve verimli çalışmasını sağlar.-Ginseng kökleri afrodizyaktır. Cinsiyet ve doğurganlıkla ilgili problemlerin düzeltilmesi için çalışır. Üreme hormonlarının üretimini düzenler ve bu hormonları arttırır.-Kökler yorgunluk, sinirlilik ve travma gibi çeşitli stres faktörlerine karşı vücudun direncini artırır. -Menstruasyonu düzenlemek, doğum ağrılarını azaltmak için kullanılabilir.-Bağışıklık sistemini güçlendirir ve enfeksiyonlara karşı vücudu güçlendirir.-Ginseng hafızayı arttırarak öğrenme yeteneklerini geliştirebilir.-Ginseng kökleri karaciğer ve kalbin sorunsuz çalışmasını sağlayarak kan şekeri ve kolestrol seviyelerini düzenler.-Düzenli olarak tüketildiğinde kanser riskini azaltır.-Solunum sisteminin verimli çalışmasına yardımcı olur.-Ginseng kökleri tüm vücudu güçlendirir, canlandırır bu nedenle bir anti-aging maddesi olarak çalışır.Uzun süreli kullanımları, fazla miktarda kullanımları, diğer ilaçlarla etkileşimleri ve alerjik insanlarda kullanımları yan etkilere neden olabilir. Ancak doğru şekilde kullanıldığında ginsengin sayısız faydaları vardır.Ginsengin Yan Etkileri:Konsantrasyon azalması, sinirlilik, çarpıntı, bulantı, kusma, şişkinlik, karın ağrısı, uykusuzluk, göğüste ağırlık, deri döküntüleri, ödem, sindirim bozuklukları ve astım ginseng köklerinin en sık görülen yan etkilerinden bazılarıdır. Yan etkiler kullanan kişinin genel sağlık durumuna göre değişebilir. Bazı kişilerde düşük kan şekerine neden olabilirken, bazılarında hipertansiyona neden olabilir. Aşırı kullanımları baş ağrısı, ishal, burun kanaması, göğüs ağrısı ve vajinal kanamaya neden olabilir. Hızlı kalp atışları ve kas krampları ile birlikte yüksek tansiyon gibi bazı nadir yan etkiler Sibirya ginsenginin bir yan etkisi olarak görülebilmektedir.İleride yapılacak olan çalışmalar ginsengin faydaları ve yan etkileri konusunda daha net bilgiler verecektir. Ginsengin yararlarıyla ilgili yapılan çalışmalar genellikle kemirgenler üzerinde yapıldığından insanlar üzerindeki etkileri çok net bilinmemektedir. Buna rağmen düzenli olarak ginseng kullananlar, bu bitkinin sağlıkları üzerine olumlu etkiler yaptığından oldukça eminler.Kaynakça:http://www.buzzle.com/articles/ginseng-plant.htmlhttp://www.buzzle.com/articles/ginseng-root.htmlYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/ginseng-nedir-faydalari-nelerdir

Kan Tahlili Nedir? Doktorlar Hangi Kan Tahlillerini En Çok İster?

Kan Tahlili Nedir? Doktorlar Hangi Kan Tahlillerini En Çok İster?

Kan tahlili hasta muayenesi sonrası hekimlerin her koşulda başvurduğu vazgeçilmez tahlillerin genel adıdır. Hergün tüm dünyada milyarlarca kan tahlili yapılmakta ve birçok hastalığa tanı koyma aşamasında kullanılmaktadırlar.Kan tahlili, hematoloji,biyokimya ve seroloji tahlillerini kapsar. Hematoloji tahlilleri ; Tam Kan Sayımı (Hemogram), Sedimentasyon ve Koagülasyon testleridir.Tam kan sayımı anemi(Kansızlık) ve enfeksiyonlar başta olmak üzere çeşitli hastalıklar hakkında bilgi verir.Kan kanseri (Lösemi) hastalıklarında da tanı koydurucudur.Sedimentasyon tahlili de başta enfeksiyon hastalıkları olmak üzere birçok hastalıkta yol göstericidir.Kogülasyon testleri (PTZ,APTT,Fibrinojen gibi) kanama ve pıhtılaşma bozukluklarında hekimlere hastanın tanısı konusunda bilgi vermektedir. Biyokimya Tahlilleri ise çok daha geniş bir panelde yer alır. -Rutin Biyokimya Tahlilleri:Açlık kan şekeri,kolesterol,trigliserit ,üre,kreatin,SGOT,SGPT,GGT,CPK,LDH gibi sıkça istenen tahlillerdir.Şeker hastalığından,böbrek yetmezliği ve karaciğer bozukluğuna kadar birçok hastalık hakkında bilgi verir. -Hormon Tahlilleri: Tiroid hastalıklarından,üreme ile ilgili bozukluklara,adet düzensizliklerinden gelişme geriliğine kadar bir çok hormonal hastalığın tanısında kullanılırlar.Örnek vermek gerekirse ; FSH,LH,TSH,GH,Progesteron,Prolaktin,Testesteron sıkça istenen hormon tahlillerinin başlıcalarıdır.Seroloji tahlillerinin en popüler olanları ise: ELİSA testleri olarak da bilinen Hepatit B tahlili olan HBsAG ve antikoru gösteren Anti HBs,Hepatit C’yi gösteren Anti HCV ve AİDS hastalığı tanısında kullanılan Anti HIV testleridir.Hepatitle ilgili kan tahlilleri yorumlanırken karaciğer fonksiyonlarında bozulma olup olmadığını gösteren biyokimya testleri de değerlendirilmelidir.AİDS tanısı koyarken kan tahlili yorumlanmasında ise ELİSA testleriyle birlikte Western Blot adlı doğrulama testi de tanı koymada belirleyicidir. Ayrıca ASO,CRP ve RF ise romatizmal hastalıklarda sıkça istenen kan tahlilleridir.  Kan tahlilleri hakkında çok daha fazla bilgi almak için tahliller ve anlamları bölümüne başvurabilirsiniz.Kan Tahlili Nasıl Yapılır? Kan Tahlili Çeşitleri Nedir? Kan tahlili tercihen sabah aç karına alınan kandan yapılır.Alınan kan, istenen tahlilin cinsine göre farklı tüplere koyulur ve tahlili çalışacak ilgili laboratuvara gönderilir. Farklı amaçlarla ve yöntemlerle yapılan kan tahlilleri bulunmaktadır.Örneğin kan sayım tahlili pıhtılaşmayı önleyen bir madde bulunan özel tüplerde alınmış kanla yapılır. Sedimentasyon , APTT ve PT dediğiniz pıhtılaşma fonksiyonlarını araştıran tahliller için alınan kanlar da pıhtılaşmayı önleyen kimyasal maddelerin bulunduğu tüplere koyularak tahlile gönderilir.Bu tahlilleri çalışacak laboratuara gelen kanların pıhtılaşmamış olmasına çok dikkat etmelidir.Aksi takdirde pıhtılaşmış kanla yapılan Hemgram (Tam Kan Sayımı) ,Sedimentasyon ve PTZ,APTT tahlilleri yanlış sonuçlar çıkmasına yol açmaktadır. Genel Biyokimya tahlili dediğimiz glukoz (şeker), kolesterol, trigliserit, üre, kreatin gibi rutin biyokimyasal incelemeler ve hormonla ilgili testler ise boş ve katkısız tüplere koyularak tahlil için laboratuvara gönderilir. Aynı şekilde tümörü olan veya tümör şüpheli hastalara yapılan Tümör Belirteç testleri de katkısız tüplerle çalışmaya alınır. Bu tahliller için alınan kanın laboratuvara gönderilmesinde , tüpte bulunan kanın pıhtılaşmış olmasının hiçbir sakıncası yoktur. Laboratuvara gelen içi kan dolu tüpler,  santrifüj denen yüksek devirli cihazlarla uygun sürelerde çevrilerek tüpte bulunan kanın şekilli elemanları çöktürülür  ve tüpün üstünde kalan serum dediğimiz sıvıdan alınan örnekle kan tahlili yapılır.Günümüzde kan tahlilleri modern cihazlarla ve tahlil sırasında çoğunlukla el değmeden otomatik olarak yapılmaktadır.Bilgisayar teknolojisinin ilerlemesiyle birlikte birçok hastanede tahliller yapıldıktan sonra kağıda basmadan doğrudan doktorun bilgisayar ekranından sonuçlar görülmektedir.Kan Tahlili Nasıl Yorumlanır ? Kan Tahlili BilgileriKan tahlil sonuçları, uygun koşullar ve süreçte verilen tahlillerde en doğru şekilde yorumlanır. Bu konuda Tahlil Yaptırmadan Önce Uymanız gereken Altı Altın Kural size yol gösterici olacaktır. Lütfen bu altı kuralı uygulamaya dikkat edin. Temel kan tahlilinde hematoloji,biyokimya ve seroloji tahlilleri yer alır.Tahlil isteyen hekimin tahlili istemesi sırasında kafasından geçirdiği ön tanıya göre daha farklı kan tahlilleri de istenebilir.Kan tahlilleri konusunun uzmanı hekimler tarafından en doğru şekilde yorumlanır. Hastanın kullandığı ilaçlar,yaşı ,cinsiyeti,aç veya tok olarak kanın verilip verilmediği de kan tahlili yorumlanmasında önemlidir. Önemli ve sık istenen tahlilleri sırasıyla inceleyelim. Önemli Hematoloji tahlilleri ; Tam Kan Sayımı (Hemogram), Sedimentasyon ve Koagülasyon testleridir. Tam kan sayımı anemi (Kansızlık) ve enfeksiyonlar başta olmak üzere çeşitli hastalıklar hakkında bilgi verir.Kan kanseri (Lösemi) hastalıklarında da tanı koydurucudur. Sedimentasyon tahlili de başta enfeksiyon hastalıkları olmak üzere birçok hastalıkta yol göstericidir. Kogülasyon testleri ise(PTZ,APTT,Fibrinojen gibi) kanama ve pıhtılaşma bozukluklarında hekimlere hastanın tanısı konusunda bilgi vermektedir. Sitemizde yer alan Tahliller ve Anlamları  bölümünde alfabetik sırayla tüm kan tahlilleri hakkında detaylı bilgiler yer almaktadır. Biyokimya Tahlilleri ise bir çok parametreden oluşan geniş kapsamlı tahlillerdir. En çok kullanılan ve popüler olanlar aşağıda belirtilmiştir.Bu tahliller ve çok daha geniş kapsamlı olan diğer biyokimya tahlilleri açıklayıcı bilgileri,kullanımları ve normal değerleri ise sitemizde yer alan Tahliller ve Anlamları bölümünde ayrıntılı olarak belirtilmiştir. Başlıca kullanılan ve popüler kan tahlilleri ise aşağıda bilgilerinize sunulmuştur. Şeker Hastalığında(Diabet) Glukoz(AKŞ) ,  Tiroid Haslıklarında ST3,ST4 ve TSH ,  Kalp Hastalıkları ve Genel Check up’ta kullanılan Kolesterol ve Trigliserit,  Böbrek Hastalıklarında Üre, Kreatin,  Karaciğer Hastalıklarında çalışılan ALT,AST,GGT dir. Ayrıca FSH, LH, Testesteron ve Prolaktin gibi üreme ile ilgili hormonlar da kısırlık ve üreme ile ilgili sorunlarda sıkça istenmektedir. Bayanlarda bu hormonlar adet döneminin günü ile de ilişkili olduğundan kanın verildiği güne göre de tahlil yorumlanmalıdır. Seroloji tahlillerinin en popüler olanları ise: ELİSA testleri olarak da bilinen Hepatit B tahlili olan HBsAG ve antikoru gösteren Anti HBs, Hepatit C’yi gösteren Anti HCV ve AİDS hastalığı tanısında kullanılan Anti HIV testleridir. Hepatitle ilgili kan tahlilleri yorumlanırken karaciğer fonksiyonlarında bozulma olup olmadığını gösteren biyokimya testleri de değerlendirilmelidir. AİDS tanısı koyarken kan tahlili yorumlanmasında ise ELİSA testleriyle birlikte Western Blot adlı doğrulama testi de tanı koymada belirleyicidir. Ayrıca ASO,CRP ve RF ise romatizmal hastalıklarda sıkça istenen kan tahlilleridir.http://tahlil.com

http://www.biyologlar.com/kan-tahlili-nedir-doktorlar-hangi-kan-tahlillerini-en-cok-ister

Genel Görelilik Teorisi

Özel görelilik, bir cismin belli bir gözlemciye göre sabit bir hızla ve sabit bir yönde hareket ettiği durumlarda tümüyle yeterlidir. Ne var ki, pratikte hareket asla sabit değildir. Hareketli cismin hızında ve doğrultusunda değişimlere yol açan kuvvetler her zaman söz konusudur. Atomaltı parçacıklar kısa mesafelerde muazzam hızlarla hareket ettiğinden, daha fazla hızlanacak zamanları yoktur ve bu parçacıklara özel görelilik uygulanabilir. Bununla birlikte, gezegenlerin ve yıldızların hareketinde, özel göreliliğin yetersiz kaldığı görülmüştür. Burada devasa kütleçekim alanlarının neden olduğu büyük ivmelerle ilgileniriz. Bir kez daha söz konusu olan şey nicelik ve nitelik sorunudur. Atomaltı düzeyde, kütleçekim, diğer kuvvetlerle karşılaştırıldığında önemsiz büyüklüktedir ve ihmâl edilebilir. Gündelik yaşamdaysa, tersine, kütleçekim hariç diğer tüm kuvvetler ihmâl edilebilir. Einstein, göreliliği yalnızca sabit hızlı harekete değil, genel olarak harekete uygulamaya girişti. Böylelikle kütleçekimi ele alan genel görelilik teorisi ortaya çıktı. Bu teori yalnızca Newton’un klasik fiziğinden, onun mutlak mekanik evreninden değil, aynı zamanda Eukleides’in mutlak klasik geometrisinden de bir kopuşa işaret etmektedir. Einstein, Öklid geometrisinin yalnızca ideal olarak düşünülmüş bir soyutlama olan “boş uzaya” uygun olduğunu gösterdi. Gerçekte, uzay “boş” değildir. Uzay, maddeden ayırt edilemez. Einstein, uzayın kendisinin maddi cisimlerin varlığıyla koşullandığını iddia etti. Bu düşünce, genel görelilik teorisinde, görünüşte paradoksal bir iddiayla dile getirilir; ağır cisimlerin yakınlarında “uzay eğrilir”. Gerçek, yani maddi evren, hiç de, kusursuz çemberleriyle, dümdüz doğrularıyla, vs. Öklid geometrisinin dünyası gibi değildir. Gerçek dünya düzensizliklerle doludur. Düz değildir, tastamam “çarpık”tır. Diğer taraftan, uzay, maddeden ayrı ve onun yanı sıra varolan bir şey değildir. Uzayın eğriliği, uzayı “dolduran” maddenin eğriliğini dile getirmenin yalnızca bir başka biçimidir. Örneğin, ışık ışınlarının uzaydaki cisimlerin kütleçekim alanlarının etkisiyle büküldüğü kanıtlanmıştır. Genel görelilik teorisi özü itibariyle geometrik bir karakterdedir, ancak klasik Öklid geometrisinden tamamen farklı bir geometridir bu. Öklid geometrisinde, örneğin, paralel doğrular asla birbirine yaklaşmaz ya da uzaklaşmazlar, ve örneğin bir üçgenin iç açılarının toplamı her zaman 180ºdir. Einstein’ın uzay-zamanı (aslında ilk olarak bir Rus-Alman matematikçisi ve Einstein’ın öğretmenlerinden biri olan Hermann Minkowski tarafından 1907’de geliştirilmişti) üç boyutlu uzayın (yükseklik, genişlik ve uzunluk) zaman ile bir sentezini temsil eder. Bu dört boyutlu geometri, eğrilmiş yüzeylerle (“eğri uzay-zaman”) ilgilenir. Burada bir üçgenin iç açılarının toplam 180º etmeyebilir ve paralel doğrular kesişebilir ya da uzaklaşabilirler. Engels’in de işaret ettiği gibi, Öklid geometrisinde gerçek dünyaya dayanmayan bir dizi soyutlamayla karşı karşıya kalırız: boyutsuz bir nokta, düz bir çizgi haline gelir, bu da kusursuz bir düz yüzeye dönüşür, vs. Tüm bu soyutlamalar arasında hepsinin en boşu olan bir soyutlamayla karşılaşırız; “boş uzay” soyutlaması. Uzay, Kant’ın inandığının aksine, kendisini dolduracak bir şey olmaksızın varolamaz, ve bu şey tam da maddedir (ve aynı şey demek olan enerji). Uzayın geometrisi, içerdiği madde tarafından belirlenir. “Eğri uzayın” gerçek anlamı budur. Bu kavram aslında sadece maddenin gerçek özelliklerini bir dile getirme tarzıdır. Einstein’ı popülerleştirmek için kullanılan alâkasız metaforlar konuyu karıştırmaktan başka bir şey yapmamıştır: “Uzayı esnek bir çarşaf gibi düşünelim” ya da “uzayı bir bardak gibi düşünelim” vb. Gerçekte, her zaman aklımızın bir köşesinde saklı tutmamız gereken fikir; zaman, uzay, madde ve hareketin çözülmez birliğidir. Bu birlik unutulduğu anda, derhal idealist mistifikasyona kayarız. Eğer uzayı bir Kendinde-Şey olarak, Öklid geometrisindeki gibi boş uzay olarak düşünürsek, açıktır ki uzay eğrilemez. “Hiçlik”tir. Ne var ki, Hegel’in ortaya koyduğu gibi, evrende, hem oluşu hem de olmayışı içermeyen hiçbir şey yoktur. Uzay ve madde taban tabana zıt, karşılıklı birbirini dışlayan iki olgu değildir. Uzay maddeyi içerir, madde de uzayı. Bunlar birbirinden hiçbir şekilde ayrılamaz şeylerdir. Evren tam da madde ile uzayın diyalektik birliğidir. Genel görelilik teorisi, uzay ve maddenin birliği diyalektik düşüncesini çok derin bir tarzda açığa vurur. Aynı şekilde matematikte de, sıfırın kendisi, “hiçlik” olmayıp, gerçek bir niceliği ifade eder ve belirleyici bir rol oynar. Einstein kütleçekimi, cisimleri etkileyen bir “kuvvet” olmaktan ziyade, uzayın özelliklerinden biri olarak ifade eder. Bu görüşe göre, uzayın kendisi, maddenin varlığının bir sonucu olarak eğrilir. Bu görüş, uzay ve maddenin birliğini dile getirmenin hayli istisnai bir biçimidir ve ciddi yanlış anlamalara da açıktır. Uzayın kendisi, eğer “boş uzay” olarak anlaşılırsa, şüphesiz eğrilemez. Mesele şu ki, uzayı maddesiz tasavvur etmek imkânsızdır. Bu ayrılmaz bir birliktir. Düşündüğümüz şey, uzayın maddeyle belli bir ilişkisidir. Yunan atomcuları uzun zaman önce “boşlukta” atomların varolduklarına işaret etmişlerdi. İkisi birbirleri olmaksızın varolamazlar. Uzaysız madde, maddesiz uzayla aynı şeydir. Bütünüyle boş bir boşluk yalnızca hiçliktir. Fakat sınırsız madde de öyledir. Uzay ve madde, demek ki, her biri diğerini ön varsayan, her biri diğerini tanımlayan, birbirlerini sınırlayan ve biri olmaksızın diğerinin de olmayacağı karşıtlardır. Genel görelilik teorisi, Newton’un klasik teorisi tarafından açıklanamayan hiç değilse bir olguyu açıklamaya hizmet etti. Merkür gezegeni, yörüngesinin güneşe en yakın noktasına yaklaştıkça dönüşleri tuhaf bir düzensizlik sergiler, bu düzensizlikler daha önceleri diğer gezegenlerin kütleçekiminin neden olduğu karışıklıklara bağlanmıştı. Ne var ki, bu etkiler dikkate alındığında bile söz konusu olgu açıklanamamıştı. Merkür’ün güneş etrafındaki yörüngesinin sapması (“günberi”)* çok küçüktü, ama yine de astronomların hesaplamalarını altüst etmeye yetiyordu. Einstein’ın genel görelilik teorisi, dönen her cismin günberisinin Newton yasalarının tanımladığının dışında bir harekete sahip olacağını öngördü. Bu öngörünün önce Merkür sonra da Venüs için doğru olduğu görüldü. Einstein aynı zamanda kütleçekim alanının ışık ışınlarını bükeceğini de öngörmüştü. Bu nedenle, güneş yüzeyine yakın geçen bir ışık ışınının, düz bir doğrudan 1,75 saniyelik bir açıyla büküleceğini iddia etti. 1919’da bir güneş tutulması gözlemi sırasında yapılan astronomik hesaplar, bunun doğru olduğunu göstermişti. Einstein’ın parlak teorisi pratikte kanıtlanmıştı. Bu teori, güneşe yakın yıldızların konumundaki görünür kaymayı onlardan gelen ışığın bükülmesiyle açıklayabildiği gibi, Newton’un teorileri tarafından açıklanamayan Merkür gezegeninin düzensiz hareketlerini de izah edebiliyordu. Newton, cisimlerin hareketini yöneten yasaları incelemişti, buna göre kütleçekimin büyüklüğü kütleye bağlıdır. Newton aynı zamanda, bir cisme uygulanan her kuvvetin, o cismin kütlesiyle ters orantılı bir ivme yarattığını savunmuştu. İvmeye, yani hız değişimine karşı gösterilen direnç, eylemsizlik olarak adlandırılır. Tüm kütleler ya kütleçekim etkisiyle ya da eylemsizlik etkisiyle ölçülür. Doğrudan gözlemler göstermiştir ki, eylemsizlik kütlesi ve kütleçekim kütlesi, gerçekte, trilyonda birlik bir farkla özdeştirler. Einstein, kendi genel görelilik teorisine, eylemsizlik kütlesinin ve kütleçekim kütlesinin tam olarak eşit olduğu kabulüyle başlar, çünkü bunlar özde aynı şeylerdir. Görünüşte hareketsiz olan yıldızlar muazzam hızlarla hareket ederler. Einstein’ın 1917’deki kozmik denklemleri, evrenin tüm zamanlarda sabit olmadığını, genişliyor olabileceğini ima ediyordu. Galaksiler bizden saniyede yaklaşık 700 millik bir hızla uzaklaşmaktadırlar. Yıldızlar ve galaksiler sürekli olarak değişirler, oluş ve yok oluş içerisindedirler. Tüm evren, yıldızların ve galaksilerin doğum ve ölüm dramlarının ebediyete kadar oynandığı uçsuz bucaksız bir arenadır. Bunlar sahiden de devrimci olaylardır! Patlayan galaksiler, süpernovalar, yıldızlar arasında felâkete yol açan çarpışmalar, tüm yıldız kümelerini iştahla yiyip yutan, bizim güneşimizden milyarlarca kat daha yoğun kara delikler. Bunlar, şairlerin hayal güçlerini bile gölgede bırakıyor.

http://www.biyologlar.com/genel-gorelilik-teorisi

Bilkent Evrimde Yeni Ufuklar Sempozyumu

Bilkent Evrimde Yeni Ufuklar Sempozyumu

Bilkent Genetik Topluluğu (BilGenT) olarak okulumuzda bir ilk olacak Bilkent Evrimde Yeni Ufuklar Sempozyumu’nu duyurmaktan gurur duyarız. 22 Mart Cumartesi 2014 – 23 Mart Pazar 2014 tarihlerinde gerçekleştirilecek olan etkinliğimize konularında uzman 8 değerli bilim insanının katılımını gerçekleştireceğiz. Evrim konseptine gerek doğa bilimleri, felsefe, tıp ve antropoloji gibi çeşitli disiplinlerin gerek popüler bilimin perspektifinden bakacağımız bu ulusal sempozyumumuzda amacımız genel olarak ülkemizce ü...zerinde birçok bilgi eksikliği ve yanılgılar olan “Evrim Teorisi” ni BilGenT olarak bilimsel metot ve gerçeklere dayandırarak bütünüyle ve başarılı bir şekilde sunmaktır. Tüm Türkiye’ye açık olarak gerçekleştireceğimiz bu iki günlük etkinliğimizde siz, tüm değerli katılımcılarınızın hem olabildiğince yararlanmasını hem de güzel bir haftasonu geçirmesini dileriz. ETKİNLİK PROGRAMI CUMARTESİ1. Oturum: 10.00-11.00 Konuk: Prof. Dr. Aslı Tolun Konu: Evrimin Genetik Temeli Prof. Dr. Aslı Tolun, lisans derecesini fizik alanında 1971 yılında Robert Kolej’de; yüksek lisans derecesini de biyofizik alanında 1973’te Pennsylvania Eyalet Üniversitesi’nde almıştır. Daha sonra 1979 yılında Uppsala Üniversitesi’nde bilimsel mikrobiyoloji alanında doktorasını tamamlamıştır. Doktora sonrası Kaliforniya Üniversitesi’nde çalışan Prof. Dr. Aslı Tolun, daha sonrası Boğaziçi Üniversitesi Moleküler Biyoloji ve Genetik Bölümü’nde doçentlik yapmış ve 1989’dan beridir aynı bölümde profesör olarak çalışmalarını sürdürmektedir. Aynı zamanda 1996-2002 yılları arası bölüm başkanlığı görevini yerine getirmiş olan Prof. Dr. Aslı Tolun TÜBİTAK Teşvik Ödülü, Boğaziçi Üniversitesi Kıdemli Araştırıcı Ödülü gibi ödüllerin sahibi ve birçok akademik etkinlik ve kurulun üyesidir. Prof. Dr. Aslı Tolun’un çalışma alanları arasında yeni nörolojik ve nörodejeneratif hastalık genlerini arama, insan genomu ve toplum genetiği gibi konular bulunmaktadır. 11.00-11.15 Kahve Molası2.Oturum: 11.15-12.30 Konuk: Doç. Dr. Ergi Deniz Özsoy Konu: Biyolojik Değişkenlik ve Evrimsel Biyoloji Doç. Dr. Ergi Deniz Özsoy, lisans derecesini 1993 yılında Hacettepe Üniversitesi Biyoloji Bölümü’nden almıştır. Daha sonra yine aynı bölümde, 1996 yılında master tezini tamamlamış ve 2002 yılında doktorasını tamamlamıştır. 2007 yılında doçent ünvanını aldıktan sonra doktorası sırasında Groningen Üniversite’sinde ve daha sonra NCSU Genetik ve UCSD Evrimsel Biyoloji bölümlerinde çalışmıştır. Yurt içinde ve yurt dışında Biogerontology, Nature Genetics ve Turkish J. Zool gibi dergilerde birçok makalesi yayınlanmış olan Doç. Dr. Ergi Deniz Özsoy’un çalışma alanları arasında genetik, evrimsel genetik, kantitatif genetik, genomik, evrimsel biyoloji ve istatistiksel genetik yer almaktadır. Ayrıca kendisi çalışma hayatı boyunca birçok akademik danışmanlık ile jüri üyeliği yapmış ve uluslararası sözlü bildirilere katılmıştır. _________________________________________________ Öğle Arası_________________________________________________3.Oturum: 13.30-14.30 Konuk: Doç. Dr. Ömür Dilek Erdal Konu: Ana Hatlarıyla İnsan Evrimi Doç. Dr. Ömür Dilek Erdal, lisans eğitimini A.Ü. D.T.C.F. Paleoantropoloji Bölümü’nde bitirmiş ve master tezini Hacettepe Üniversitesi Antropoloji Bölümü’nde tamamlamıştır. Daha sonra yine aynı bölümde doktorasını tamamlayarak 2012’de Hacettepe Üniversitesi Antropoloji Bölümü’nde doçentlik ünvanını almıştır. Aşıklı Höyük, Heraion Teichos, Demre/Aziz Nikolaos Kilisesi, Perge, Ani ve daha birçok kazı çalışması ve projesinde çalışmış ve çalışmakta olan Doç. Dr. Ömür Dilek Erdal’ın çalışma alanları arasında eski toplumların yaşam biçimlerinin analizi, bu topluluklarda görülen çeşitli hastalıklar, davranış biçimleri ve iskelet anatomileri gibi konularda antropolojik, paleoepidemiyolojik ve demografik analizler bulunmaktadır. Şu an biyolojik antropoloji, insan evrimi, paleodemografi ve kültürel değişim gibi dersler veren Doç. Dr. Ömür Dilek Erdal’ın birçok ulusal ve uluslararası yayını bulunmaktadır. 14.30-14.45 Kahve Molası4.Oturum: 14.45-15.45 Konuk: Op. Dr. Metin Berberoğlu Konu: Evrimsel Tıp Op. Dr. Metin Berberoğlu, 1981 yılında Ankara Üniversitesi Tıp Fakültesi’nden mezun olup 1983-1987 yılları arasında Ankara Numune Hastanesi’nde cerrahi ihtisasını yapmıştır. Daha sonraları 1994 yılında Menlopark California’da (A.B.D.) temel laparoskopik cerrahi temel eğitimlerini alıp 1995 yılında İ.T.E.M. Laparoskopik Cerrahi Eğitim Merkezi’ni kurmuştur. 2008 yılından itibaren Ankara Akropol Hastanesi’nde Laparoskopik Cerrahi uygulamalarını sürdürmekte olan Op. Dr. Metin Berberoğlu’nun, Türk Cerrahi Derneği, Türkiye Endoskopik Laparoskopik Cerrahi Derneği, EAES, SAGES ve FACS gibi kuruluşlarda üyelikleri bulunmaktadır. Ulusal ve uluslararası alanlarda yayınları bulunan Op. Dr. Metin Berberoğlu’nun çalışma alanları arasında endoskopik ve laparoskopik cerrahi bulunmaktadır. Kendisi, etkinliğimizde insan evriminin bir sonucu olarak anatomik ve fizyolojik temelde ortaya çıkan hastalıklardan örnekler verecek ve evrimsel tıp alanındaki bilgileriyle evrim konseptine ışık tutacaktır. PAZAR 1. Oturum: 10.00-11.00 Konuşmacı ve konusu en kısa zamanda açıklanacaktır. 11.00-11.15 Kahve Molası2.Oturum: 11.15-12.30 Konuk: Prof. Dr. Namık Kemal Pak Konu: Büyük Patlama ve Evrenin Evrimi Prof. Dr. Namık Kemal Pak, lisans eğitimini TÜBİTAK Şeref Bursiyeri olarak Ankara Üniversitesi Fen Fakültesi Fizik Bölümü'nden 1968 yılında mezun olarak bitirdikten sonra 1972 yılında Berkeley-Kaliforniya Üniversitesi Fizik Bölümü’nde doktorasını tamamlamıştır. Daha sonra 1977 yılında Hacettepe Üniversitesi Fizik Bölümü’nden doçentlik ve 1988 yılında ODTÜ Fizik Bölümü’nden de profesörlük ünvanını almıştır. Şu an halen bu bölümde profesörlük görevini sürdürmekte olan Prof. Dr. Namık Kemal Pak’ın çalışma alanları arasında kuantum mekaniği ve anomalileri, bilim felsefesi ve tarihi, Hosoani mekanizması, baryogenez ve kuantum dolaşıklığı gibi konular bulunmaktadır. Kendisi CERN, SLAC ve ICTP gibi kuruluşlarda çalışmalarda bulunmuş olmakla birlikte TWAS, TÜBA, TÜBİTAK (Başkan), JRC ve ICTP gibi kurumlarında üst düzey üyelikleri bulunmaktadır. Ulusal ve uluslararası alanda yaklaşık 1000 alıntılanma sayısına ulaşmış 100 kadar makalesi bulunan Prof. Dr. Namık Kemal Pak, aynı zamanda Bilim ve Ütopya gibi popüler bilim dergilerinde de yazmakta ve TÜBİTAK Teşvik ve TÜBİTAK Bilim ödüllerinin de sahibidir. _________________________________________________ Öğle Arası_________________________________________________3.Oturum: 13.30-14.30 Konuk: Prof. Dr. H. Tuğrul Atasoy Konu: Dilin Evrimi Lisans eğitimini 1991 yılında Hacettepe Üniversitesi Tıp Fakültesi’nden mezun olan Prof. Dr. H. Tuğrul Atasoy, 1992-1997 yılları arasında Ankara Eğitim ve Araştırma Hastanesi Nöroloji Kliniği'nde ihtisasını tamamlamıştır. 2006 yılında Gazi Üniversitesi Tıp Fakültesi Nöroloji Bölümün’den doçent ünvanını aldıktan sonra 2012 yılında da Zonguldak Karaelmas Üniversitesi Nöroloji Bölümü’nde profesör olmuştur. Şu an da Bülent Ecevit Üniversitesi Tıp Fakültesi Nöroloji Kliniği'nde profesör olarak çalışmaya devam eden Prof. Dr. H. Tuğrul Atasoy’un çalışma alanları arasında nörofizyoloji, başağrıları ve davranış fizyolojisi bulunmaktadır. Ayrıca kendisinin, European Journal of Pain, Neurol. India, Headache ve Neurol Psychiatry & Brain Research gibi ulusal ve uluslararası dergilerde yayınlanan birçok makalesi bulunmaktadır. 4.Oturum: 14.45-15.45 Konuşmacı ve konusu en kısa zamanda açıklanacaktır.İLETİŞİM Bilkent Genetik Topluluğu BaşkanıAli Cihan Usluel 0531 505 72 97 Bilkent Ulusal Evrim Sempozyumu Genel Koordinatörü Onur Özer 0538 565 33 27 Bilkent Genetik Topluluğu Başkan Yardımcısı İlker Ali Deniz 0537 252 27 32 ÖNEMLİ BİLGİ VE DETAYLAR * Salon: Bilkent Üniversitesi Mithat Çoruh Amfi Tarih: 22-23 Mart 2014 Saat: 09.30-16.00 GE250/251: 160 PUANDIR!!! *Etkinliğimiz tüm Türkiye çapında ilgilenen herkese açıktır. *Etkinlik ücreti 15 TL'dir. Kontenjan 180 kişi ile sınırlıdır. *Bilkent dışından katılanlar için bilet alımı aşağıdaki linkten yapılabilir. Kampüs içinde A Binası’nın önünde etkinlik haftası boyunca; yani 17-21 Mart 2014 tarihleri arası bilet satışı olacaktır. Cumartesi ve Pazar günü etkinlik sırasında da Bilkent Üniversitesi Mithat Çoruh Amfi kapısı önünde de biletler alınabilecektir. Kayıt Formu Linki: http://goo.gl/1eoPSQ Banka İsmi: Yapı Kredi BankasıHesap Sahibi: İlker Ali Deniz IBAN Numarası: TR480006701000000090664164 Hesap Numarası: 90664164Şube Kodu: 641 - BİLKENT ŞUBESİ İnternet Sitemiz: http://www.bilgent.net/

http://www.biyologlar.com/bilkent-evrimde-yeni-ufuklar-sempozyumu

Mach ve Pozitivizm

“Bununla birlikte, nesne gerçek hakikattir, temel gerçekliktir; onun bilinip bilinmemesi hiç önemli değildir, bilinmese de vardır ve öylece kalmaya devam eder; oysa bilme, eğer nesne yoksa yoktur.”[15] (Hegel) Geçmişin, şu anın ve geleceğin varlığı, insan bilincine derinden kazınmıştır. Şu anda yaşarız, fakat geçmiş olayları hatırlarız ve belli ölçüde gelecekteki olayları önceden görürüz. Bir “önce” ve bir “sonra” vardır. Yine de bazı filozof ve bilimciler bunu reddediyorlar. Zamanı aklın bir ürünü olarak, bir yanılsama olarak değerlendiriyorlar. Onlara göre, bir gözlemci yoksa, ne zaman vardır, ne geçmiş, ne şu an, ne de gelecek. Bu öznel idealizmin bakış açısıdır, geçen yüzyıllar boyunca özü itibariyle mistik bir dünya görüşüne saygınlık kazandırmak için kendisini fiziğin keşiflerine dayandırma çabası içinde olan bütünüyle akıl dışı ve bilim karşıtı bir bakıştır. 20. yüzyıl bilimi üzerinde en büyük etkiye sahip olan felsefe ekolünün, yani mantıksal pozitivizmin, tam da öznel idealizmin bir dalı olması ironik gözüküyor. Pozitivizm, bilimin kendisini “gözlenmiş olgulara” dayandırması gerektiğini savunan dar bir görüştür. Bu ekolün kurucuları, teorileri doğru ya da yanlış olarak nitelemekten kaçınırlar, bunun yerine onları daha çok ya da daha az “kullanışlı” olarak tanımlamayı tercih ederlerdi. Ernst Mach’ın, yeni-pozitivizmin bu gerçek manevi babasının, fizik ve kimyanın atom teorilerine karşı çıktığına işaret etmek ilginç olacaktır. Pozitivist bakışın dar ampirizminin doğal sonucuydu bu. Atom görülemediğine göre nasıl varolabilirdi ki? Atom, bunlar tarafından, en iyisinden, kullanışlı bir kurgu olarak, en kötüsünden ise, kabul edilemez bir dışsal hipotez olarak değerlendirildi. Mach’ın düşünsel ortaklarından Wilhelm Ostwald, temel kimya yasalarını atom hipotezinin yardımı olmaksızın türetmeye girişmişti! Boltzmann, kuantum fiziğinin babası olan Max Planck’ın da yaptığı gibi, Mach’ı ve Pozitivistleri keskin bir şekilde eleştirdi. Lenin, Mach’ın ve ampiryo-kritisizm okulunun kurucusu olan Richard Avenarius’un görüşlerini, Materyalizm ve Ampiryo-Kritisizm (1908) adlı kitabında yerle bir eden bir eleştiriye tâbi tuttu. Yine de, Mach’ın görüşlerinin büyük bir etkisi vardı ve başkalarının yanı sıra genç Albert Einstein’ı da etkilemişti. Tüm düşüncelerin “verili” olandan, yani duyularımız tarafından doğrudan sağlanan bilgilerden türetilmesi gerektiği şeklindeki görüşü temel alarak, insanın duyusal algısından bağımsız bir doğal evrenin varlığını reddetme noktasına çıktılar. Mach ve Avenarius fiziksel nesnelerden “duyu kompleksleri” olarak bahsederler. Böylece, meselâ, bu masa, sertlik, renk, kütle vesaire gibi duyu-izlenimleri toplamından başka bir şey değildir. Bunlar olmaksızın, geriye hiçbir şeyin kalmayacağını savunurlar. Bu nedenle, madde düşüncesinin (felsefi anlamda, yani duyusal algı olarak edindiğimiz nesnel dünya anlamında) anlamsız olduğu ilân edildi. Daha önce de işaret ettiğimiz gibi, bu düşünceler doğrudan tekbenciliğe (solipsizm) –yalnızca “Ben”in varolduğu düşüncesine– götürür. Eğer Ben gözlerimi kaparsam, dünyanın varlığı sona erer. Mach, Newton’un uzay ve zamanın mutlak ve gerçek varlıklar olduğu şeklindeki düşüncesine saldırdı, ama bunu öznel idealist bir kalkış noktasından yaptı. İnanılmaz bir şekilde, modern felsefenin en etkili (ve bilimciler üzerinde en büyük etkiye sahip) ekolü, Mach ve Avenarius’un öznel idealizminden türetilmiştir. Tüm 20. yüzyıl teorik fiziğinin ortak paydası olan “gözlemci” saplantısı, Ernst Mach’ın öznel idealist felsefesinden türetilmektedir. “Tüm bilgimizin doğrudan duyusal algıdan türediği” şeklindeki ampirist argümanı kendisine kalkış noktası olarak alan Mach, nesnelerin bizim bilincimizden bağımsız olarak varolamayacağını ileri sürdü. Bunu mantıksal sonuçlarına götürdüğümüzde, örneğin, dünyayı gözleyecek insanların ortaya çıkmasından önce dünyanın varolamayacağını söylemek zorunda kalırız. Aslında dünya, Ben ortaya çıkmadan önce varolamazdı, çünkü Ben yalnızca kendi algılarımı bilebilirim ve bu nedenle de herhangi bir başka bilincin oluğundan emin olamam. Burada önemli olan şey, bizzat Einstein’ın da başlangıçta bu argümanın etkisinde kalmış olmasıdır, bu anlayış Einstein’ın görelilik üzerine kaleme aldığı erken yazılara sinmiştir. Hiç kuşku yok ki, bunun en zararlı etkileri modern bilim üzerinde olmuştur. Einstein kendi yanlışını kavrama yeteneğindeyken ve bu yanlışı düzeltmeye girişirken, efendileri kölece izleyen diğerleri sapla samanı birbirinden ayırmaktan acizdiler. Çoğu kez olduğu gibi, hevesli çömezler dogmatikler haline gelirler. Papadan çok Papacıdırlar! Otobiyografisinde Karl Popper, Einstein’ın son yıllarında daha önceki öznel idealizminden ya da doğal süreçleri belirlemek için bir gözlemcinin varlığını gerektiren “işlemciliğinden” büyük pişmanlık duyduğunu açıkça gösterir: Bizzat Einstein’ın yıllar boyunca dogmatik bir pozitivist ve bir işlemci olması çarpıcı bir olgudur. Daha sonra bu yorumu reddetmişti: 1950’de bana, yaptığı yanlışlardan hiçbirinden bu yanlış kadar pişman olmadığını anlatmıştı. Bu yanlış, popüler olan Görelilik: Özel ve Genel Teori adlı kitabında gerçekten de ciddi bir biçime bürünür. Orada, “bu noktaya ikna oluncaya dek okuyucunun daha fazla ilerlememesini rica edeceğim” diye yazar. Sözü edilen nokta, kısaca, “eşzamanlılık”ın tanımlanmış olması –ve işlemsel bir tarzda tanımlanmış olması– gerektiğidir, çünkü aksi takdirde “eşzamanlılık ifadesine bir anlam yükleyebildiğimi hayal ettiğimde ... kendimi aldatmama izin vermiş olurum”. Ya da diğer bir deyişle, bir kavram işlemsel olarak tanımlanmak zorundadır, aksi takdirde anlamsızdır. (Buradaki fikir, az ve öz olarak, daha sonraları Viyana Çevresince, Wittgenstein’ın Tractatus’unun etkisi altında ve oldukça dogmatik bir tarzda geliştirilen pozitivizmdir). Bu önemlidir, çünkü Einstein’ın en sonunda görelilik teorisinin öznel yorumunu reddettiğini gösterir. Belirleyici bir faktör olarak “gözlemci” hakkındaki tüm saçmalıklar teorinin özsel bir parçası değil, Einstein’ın da dürüstçe doğruladığı gibi, felsefi bir yanlışın yansımasıydı sadece. Ne yazık ki bu, Einstein’ın takipçilerini yanlışları devralmaktan ve bu yanlışların göreliliğinin temel köşe taşı olarak sunulduğu bir noktaya kadar götürmekten alıkoymadı. Heisenberg’in öznel idealizminin gerçek kaynağını da burada buluyoruz. Şöyle devam ediyor Popper:: Ama birçok mükemmel fizikçi, (tıpkı Einstein’ın da uzun bir süre yaptığı gibi) göreliliğin bütünsel bir parçası olarak ele aldıkları Einstein’ın işlemciliğinden büyük ölçüde etkilenmişlerdi. Ve böylece işlemcilik, Heisenberg’in 1925’teki makalesinin ve yaygın kabul gören iddiasının, yani bir elektronun izlediği yolun, ya da onun klasik konum-momentumunun anlamsız olduğu iddiasının ilham kaynağı haline gelmişti. [16] Zamanın, doğadaki nesnel süreçleri yansıtan nesnel bir olgu olduğu gerçeği, ilk olarak, 19. yüzyılda geliştirilen ve modern fizikte halen merkezi bir rol oynayan termodinamik yasaları tarafından gösterilmişti. Özellikle Boltzmann’ın geliştirdiği biçimiyle bu yasalar, zamanın yalnızca nesnel olarak varolduğu düşüncesini değil, onun tek yönde, geçmişten geleceğe doğru aktığını da kesin olarak saptar. Zaman ne geriye çevrilebilir ne de herhangi bir “gözlemci”ye bağlıdır.

http://www.biyologlar.com/mach-ve-pozitivizm

MİKROBİYAL LİÇİNG

Mikroorganizmalar mineral kaynaklarının oluşması ve çözülmesinde önemli rol oynar. Mineral aranması ve zenginleştirilmesinde biyoteknolojik yöntemlerin kullanılması popüler hale gelmiştir. Mikrobiyal liçing; mikroorganizmalar yaratımıyla maden cevherlerinden metallerin kazanılması işlemidir. Düşük kaliteli cevherlerden metallerin geri kazanımın da kullanılan kimyasal metodlar ekonomik olmamaktadır. Dünya genelinde yüksek oranlarda bulunan düşük kaliteli, bakır cevherlerinin göreneksel kimyasal metodlarla elde edilmesi zor ve pahalı olduğundan, bunların eldesinde mikrobiyal liçing kullanılır. Son yıllarda geliştirilen mikrobiyal liçing yöntemleri metalik hammaddeler için çok önemlidir. Klasik yöntemler ile çözünürleştirilmeyen veya parçalanamayan fakir cevherler ve endüstri atıkları mikoorganizmalar ile ekonomik biçimde geri kazanılmaktadır. Bakterilerin yaptığı iş suda çözünmeyen filizleri suda çözünür hale getirmektir. Bakteriyal liçing daha çok uranyum ve bakır kazanımın da kullanılır. Dünya yüzeyinde kayda değer ölçülerde bulunan Ni, Zn, Cd, ve Co eldeleri içinde bir dizi liçing yöntemleri geliştirilmiştir. Bu yöntem bir asidik su içiren bir maden yatağına boru hattı döşeme sırasında meydana gelen bir patlama sonucu ortaya çıkmış ve geliştirmeler sonucunda düşük dereceli maden cevherlerinin geri kazanımı sağlanmıştır. LİÇİNGDE KULLANILAN ORGANİZMALAR Mikrobiyal liçingde kullanılan en yaygın 2 tane bakteri Thiobacillus thiooxidans ve Thiobacillus ferrooxidans’tır. Ayrıca Thiobacillus concretivoru, Thiobacillus concretivorus, Pseudomonas fluorescens, P. putida, Achromobacter, Bacillus licheniformis, B. Cereus, B. luteus, B. polymyxa, B. megaterium ve birçok termofilik bakterilerden Thiobacillus thermophilica, Thermothrix thioparus, Thiobacillus TH1, ve Sulfolobus acidocaldarius kullanılmaktadır. Heterotrafik mikroorganizmaların kullanımı gelişmektedir. Termofilik bakterilerin liçing uygulamalarını hızlandırmasının en büyük etmeni hızlı gelişim oranının varolmasıdır. MİKROBİYAL LİÇİNG KİMYASI Thiobacillus ferrooxidans çok pahalı çalışmayı gerektiren bir bakteridir. Bu bakteri mezofil, spor oluşturmaz, hareketli Gr(-), çubuk şeklinde olup C,5-C,8 m X 1,0-2,0 m boyutlarındadır. Ototrofik aerap olup C ihtiyacını havadaki CO2’in fixasyonundan sağlar. Enerji kaynağı olarak ise Fe2+  Fe3+’ya oksidasyonunudan veya elementel kükürt veya indirgenmiş kükürt bileşiklerinden sağlar. En yaygın kullanılan mikrobiyal liçing proseslerinin amacı az çözünen veya çözünmeyen metal bileşiklerini metal sülfatlar haline getirip çözünürleştirmektir. Bunun için 2 şekilde uygulama çeşidi varadır: Direkt ve indirekt mikrobiyal liçing. 1. Direkt Mikrobiyal Liçing: 4 FeSO4 + 2H2 SO4 + O2  2Fe2(SO4)3 + 2H2O [1] 2S0 + 3O2 + 2H2O  2H2SO4 [2] 2FeS2 + 7O2 + 2H2O  2FeSO4 + 2H2SO4 [3] Çözünmez haldeki sülfürün sülfirik aside aksidasyonu, sülfürle direkt kontak halindeki T.ferroxidans sayesinde gerçekleştirilir. T. ferooxidans tarafından gerçekleştirilen [3] nolu reaksiyon direkt mikrobiyal liçing: göstermektedir. Demir cevherinin yanında bakır, kurşun, nikel, kobalt, molibden ve çinko cevherleride T.ferroxidans sayesinde oksitlenebilirler. MeS + 2O2  Me SO4 2. İndirekt Mikrobiyal Liçing İndirekt liçingde, mikoorganizmalar liçing reaktifini üretir veya rejenere ederler. Örneğin metal sülfür cevherleri mikrobiyal bir etki olmaksızın Fe3+ iyonları tarafından oksitlenip liçing gerçekleştirilebilir. MeS + Fe2 (SO4) MeSO4+S0 Reaksiyonda indirgenen demirin tekrar Fe3+ haline dönüştürülmesi T.ferroxydans tarafından sağlanır. Bakteri bu prosese doğrudan karışmayıp bir katolitik fonksiyon görür. Bakteriyel oksidasyon kimyasal oksidasyondan yaklaşık 1 milyon kat hızlıdır. [2] nolu reaksiyonun oksitlenmesi T.thiooydans tarafından çok daha hızlı oksitlenirler. Bu tepkimeden de anlaşılacağı üzere sülfirik asit oluşumu katalizlediğinden, liçing için asidik koşulların sağlanması önemlidir. Bakteri Aktivitesine Etki Eden Etmenler 1. Besi Ortamı Besi ortamının kimyasal ve minerolojik bileşimi çok önemlidir. Liçing koşulları ve bakteriyel büyüme koşulları çakışıyorsa maksimum metal verimine ulaşır. Enerji veren demir ve kükürt bileşiklerinden başka magnezyum ve amonyum tuzları, fosfatlar ve sülfatlar esansiyel mineral bileşenleridir. Anorganik bileşiklerin bazıları liçing çözeltisinde bulunur. Eğer ortamda yeterli değillerse bir miktar katılırlar. Pirit(FeS2) ilave edilirse indirekt liçing hızlanır. Çok yüksek konsantrasyonda Fe3+ varlığı kompetitif bir inhibisyona neden olur. Tiyobasiller besi ortamı için problemlidir. Mikrobiyal liçingden maksimum verim elde etmek için liçing sırasında O2 transportu yeterli hızla sağlanmalı ve bu transportu etkileyen faktörlere dikkat edilmelidir. 2. pH ve Redoks Potansiyeli Optimum büyüme koşullarındaki pH’nın liçing çalışma koşullarına uyması idealdir. En uygun pH 2-2.5 arasıdır, kükürt ve Fe2+ oksidasyonu da bu pH lara uygundur Eğer pH 2’nin altına inerse T. ferroxydans aktivitesi düşer. Aerobik bir bakteri olduğu için T.ferroxydans pozitif bir redoks potansiyeline ihtiyaç duyar. Redoks potansiyeli logaritmik büyüme fazı sonuna doğru 600 mV a ulaşır. 3. Sıcaklık Fe+2 ve kükürdün mikrobiyal oksidasyonu için optimum sıcaklık 28-35oC arasıdır. T.ferrooxydans’ın büyümesi için de bu sıcaklık aralığı uygundur. Daha düşük sıcaklıkta büyüme yavaşlar, daha yüksek sıcaklıklarda ise termofil bakteriler kullanılır. 4. Liçing Materyalinin Kimyasal ve Mineralojisi Materyal yüksek oranda karbonat içerirse pH artar ve dolayısı ile liçing aktivitesi düşer ve giderek durur. Bunu engellemek için ortama asit ilavesi gereklidir. Mineral bileşimi büyüme ortamının ihtiyacını tam olarak karşılayamaz bazı mineraller dışarıdan ilave edilir. 5. Substrat Konsantrasyonu ve Partikül Büyüklüğü Liçing hızı liçing edilecek substratın yüzey büyüklüğü ile orantılıdır. Partikül boyutu ne kadar küçük ise toplam partikül yüzey o derece yüksektir, spesifik partikül yüzeyi artar, böylece liçing verimi de artar. Bu bilgiler kükürtlü cevherler için geçerli olup düşük tenörlü cevherleri kapsamaz. Substrat konsantrasyonunu artırarak da partikül toplam yüzeyi büyütülebilir. Bu durumda paktikül kütlesi de artar. Fakat substrat konsantrasyonunun artırılması belirli bileşiklerin konsantrasyonlarının artmasına neden olur ki bunların bazılar tiyobasillerin üremesi için toksik etki veya inhibisyon gösterebilir. Pratikte her liçing denemesi için partikül büyüklüğünün ve substrat konsantrasyonunun optimize edilmesi gerekir. 6. Yüzey Aktif Maddeler ve Ekstrasksiyon Maddeleri Eskiden bu maddelerin ilavesinin liçingi hızlandırdığına yani tiyobasillerin üremesini artırdığına inanılırdı. Fakat 1975 ten sonra yapılan çalışmalarda bunun tamamen yanlış olduğu tesbit edilmiştir. Yüzey gerilimi çok düşeceği için O2 kütle transferi çok yavaşlar. Bunun sonucunda bakteriyel gelişme sürekli olarak inhibe olur. Benzer bir etki ekstraksiyonda kullanılan organik çözgenler için de geçerlidir. Organik fazdan metal iyonunun geri alınması yeniden sulu faza çekme şeklinde olur. Eğer bakteriyel liçing ve çözgen ekstaksiyonu birlikte uygulanır ise problem çıkabilir. En önemli problem organik çözgen fazının tam olarak ortamdan ayrılmamasıdır. Sulu fazdan kalan organik çözgen bakterinin büyümesini inhibe eder. 7. Ağır Metaller Birçok ağır metal iyonu çok düşük konsantrasonlardan bile toksik etki gösterebilir. Tiyobasiller ağır metallere çok toleranslıdır. Bununla birlikte bu etkilerin daha önceden bilinmesi gerekir. 8. Işık Tiyobasiller ışığa çok duyarlıdır. Özellikle UV ve görünür ışığın ultraviyoleye yakın bölgesi tiyobasillere çok etkilidir. Mikrobiyal Liçing Prosesleri Optimumu liçing koşulları sadece laboratuar koşulları için tespit edilmiştir. Liçing koşullarının optimizasyonu pilot tesislerde tespit edilir ve daha sonra endüstriyel boyutta uygulanır. Optimizasyon da kullanılan parametreler; - O2 ve CO2 temini - Materyalin nem oranı - pH gradienti - Sıcaklık gradienti - Fe3+ tuzu çöktürmeleri - Partikül büyüklüğü - Partikül parçalanması ve partikül göçü - Geçirgen olmayan tabakaların oluşup, oluşmadığı. Mikrobiyal liçingin teknik uygulamalarının esas işlem sırası şöyle gerçekleşir; 1- Cevherlerin öğütülmesi 2- Cevherlerin bakteri süspansiyonu ile uygun şekilde sulandırılması 3- Sıvının biriktirilmesi 4- Çözünmüş metalin extraksiyonu NOT: Mikrobiyal liçing sonucu oluşan atık sular boş arazilere boşaltılmamalıdır. Mikrobiyal liçing uygulandığı yüze şekillerine göre 3’e ayrılır a) Meyilli yüzeyde liçing b. Kümesel yüzeyde liçing c. İn-situ liçing Mikrobiyal Liçingin Teknik Uygulamaları 1. Bakır Cevherinin Biyoliçingi Günümüzde dünya bakır üretiminin yaklaşık %10’u bakteriyel düşük kalite cevherlerin bakteriyel liçingi ile gerçekleştirilir. Bütün bakır işleticileri bir entegre yığma-boşaltma veya onların maden çıkarma veya porsesleme aktivitesini artıran in-situ liçing porseslerini uygular. En önemli bakır cevherlerinden biri olan kalkosit aşağıdaki denkleme göre bakteri tarafından çözünürleştirilir. Cu2S + 5/2 O2 +H2SO4 Bakteri 2CuSO4 + H2O Bu denklem iki basamakta gerçekleşir. a) Cu2S + ½ O2 + H2SO4 bakteri CuS + CuSO4 + H2O b) CuS + 2O2 bakteri CuSO4 Diğer bakır sülfür cevherleri bornit (Cu5FeS4), kubanit (CuFe2S3) ve kalkopirit (CuFeS2), enargit (Cu3AsS4) ve kovellittir (CuS). 2.Uranyum Cevherlerinin Biyoliçingi Mikrobiyal uranyum liçingi daha çok terk edilmiş uranyum ocaklarında uygulanır. Endüstriyel olarak bakteriyel liçing prosesleri ile cevherlerden uranyum ekstrakte edilir. Ekstraksiyonun kimyası çözünmeyen dört değerlilikli uranyum oksitlenerek çözünen altı değerlikli durumuna değişimi ile ifade edilir. UO2 + Fe2 (SO4)3+2H2SO4 U4[UO2(SO4)3] + 2 FeSO4 FeSO4 daha önce belirtildiği gibi bakteriyel oksidasyon ile Fe2(SO4)3 a dönüştürülür. SONUÇ Mikrobiyal liçing düşük kalitedeki cevherlerden metal kazanımın da kullanılan ve klasik yöntemlere göre ekonomik olan bir uygulama çeşididir. Bu yöntemle özellikle altın, gümüş gibi pahalı ve uranyum gibi stratejik elementlerin eldesinde büyük önem taşımaktadır. Bakır ve uranyum eldesinde özellikle in-situ liçing yöntemi uygulanmaktadır. Endüstriyel olarak Çinko, Nikel Cobalt ve Molibden üretimi için mikrobiyal liçing uygulamalarının yaygınlaştırılacağı kesin gibi gözükmektedir. Ayrıca mikrobiyal liçingle atıklardan metallerin geri kazanımı için alternatifsiz bir yöntemdir. Mikrobiyal liçing tesisleri maden yataklarının yanına kurulmalıdır. Böylece transport masrafları indirgenmiş olur. Mikrobiyal yöntem klasik yöntemlerden daha ekonomiktir. Detaylı teknik bilgi gerektirmez, ayrıca yüksek teknolojiye gerek yoktur. Bu nedenlerden dolayı yer altı kaynakları bakımından zengin ve gelişmekte olan ülkeler için çok iyi bir yöntemdir.

http://www.biyologlar.com/mikrobiyal-licing

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

Şeker Hastalığı ve Diyabet

Şeker Hastalığı ve Diyabet

Diyabet, kan şekeri yüksekliği ile seyreden bir metabolizma hastalığıdır. Ülkemizde yaklaşık 40 milyon diyabetli olduğu biliniyor.Pankreastan insülin hormonunun salgılanmasının azalması veya salgılanan insülinin yeterli etkiyi gösterememesi durumunda kan şekeri yükselerek diyabet ortaya çıkar.Diyabetin nasıl bir hastalık olduğunu anlayabilmek için öncelikle insan vücudunun işlevlerini yerine getirirken gerekli olan enerjiyi nasıl sağlayacağını bilmek gerekir. İnsan vücudunun enerji ihtiyacı yiyeceklerdeki karbonhidrat (şeker), protein ve yağlardan sağlanır. Sindirim sisteminde parçalanarak kan dolaşımına geçen bu besin öğelerinin en önemlisi glukoz adı verilen basit şekerdir. Glukoz başta beyin olmak üzere vücuttaki tüm organların enerji kaynağıdır. Gülukozun enerji sağlayabilmesi için kan akımından ayrılarak vücut hücrelerinin içine girmesi gerekmektedir. Glukozun kanı terk ederek hücrelerin içine girmesini pankreas adı verilen organdan salgılanan insülin hormonu sağlamaktadır.Pankreastan insülin hormonunun salgılanmasının azalması veya salgılanan insülinin yeterli etkiyi gösterememesi durumunda kan şekeri yükselerek diyabet ortaya çıkar.Diyabeti sadece kan şekeri yüksekliği olarak düşünmek hastalığı çok basite almak olur. Çünkü diyabet, zamanında teşhis ve düzenli takip tedavi edilmezse birçok organda hastalıklara yol açar.Diyabet veya daha bilindik adıyla şeker hastalığı günümüzde yeme alışkanlıkların kötü yönde değişmesi ile artık hemen hemen herkesi tehdit eden rahatsızlıkların başında geliyor. Yapılan araştırmalarda şehirleşmelerin artması ile beraber  fast-food gibi tüketimi artan gıdaların, aşırı şişmanlık ve obezliğin en önemli nedenlerinden olduğu yönde. Obezliğin büyük bir oranda diyabet  hastalarının sayısının artışında önemli bir faktör olduğu yapılan gözlemler ile anlaşılmıştır. Bugün başını ABD’nin çektiği ve Türkiye’ninde içinde bulunduğu büyük bir coğrafik alanda insanların diyabet veya benzeri hastalıklara yakalanma riski çok yüksek seviyelerde. diyabet-şeker-indigodergisiTsukuba’da Uluslararası bütünleşik uyku problemleri ve ilişkili hastalıklar (WPI-IIIS) enstitüsünün organize ettiği 29. WPI-IIIS seminerleri kapsamında Dr.Yoshimi Nakagawa şeker hastalığının arkasındaki bulmacayı ve hocası Prof. Shimano ile uzun yıllar yürüttükleri çalışmaların sonuçlarını bizimle paylaştılar. Bu sunumlarında moleküler biyolojinin en popüler konularından birini oluşturan transkripsiyon faktörlerin nasıl oluyor da kan şekerimizi olması gerektiği seviyede tuttuğunu anlattılar. Transkripsiyon bir organizmanın kendisi için gerekli biyolojik moleküllerin üretilmesi için DNA üzerinden yazılımının yapılıp hazır hale gelmesi sürecine verilen isimdir. Doğal olarak böyle önemli bir süreci kontrol eden bazı faktörler bulunmaktadır. Bu faktörlerin birbirleri ile olan ilişkide bir canlı organizma kendisine gerekli olan proteinleri üretmenin yanısıra, tehlike anında bazılarının da üretilmesini durdurmaya yardımcı oluyor. Canlı bilimi için proteinler ve yaptıkları mucizevi işler her zaman bir çok araştırmacının dikkatini çekmiştir. Bu alanda bulunan bir çok kişinin de bildiği gibi insülin yani kandaki şeker oranını düşürerek dengeli hale getiren molekül de bu proteinlerden biridir. Şeker hastalağı da bu moleküllün çeşitli nedenlerle yeterli oranda organizmada işlev görememesinden kaynaklanıyor.Bu molekülünün salgılanmasını kontrol eden perde arkasındaki oyuncular bir çok araştırmacı gibi Dr. Nakagawa ve çalışma arkadaşlarının da dikkatini çekmiş.  Yaptıkları araştırmada Transkiripsiyon Faktör E3 (TFE3)’nin insülinin düzenlenmesinde önemli bir rol oynadığını bulmuşlar. Her ne kadar TFE3’nin miktarının hücrede artması hücre yüzeylerinde daha fazla insülin algılayıcılarının oluşmasını sağlamasa da insülin algılayıcılarının alt molekülü olan IRS2’nun ve takip eden trafikteki moleküllerin miktarında artış sağlayarak insülün sinyallerinin düzenlenmesi ve vücuttuaki yağlanmanın önlemesini aktive ettiğini gözlemlemişler. Bunun yanı sıra insülin problemleri yaşayan fare modelleri üzerinde TFE3’nin hücredeki miktarının artmasının, bu problemin ortadan kalkmasına iyileştirici etki yaptığı görülmüş.Bunun yanısıra Dr. Nakagawa çalışmalarında bir başka faktör olan CREB3L3 (CREBH)’nin de diyabet problemlerinde önemli rol oynadığını belirlemiş. CrebH’ın fazla miktarda hücrede üretilmesinin farelerde kilo kaybını sağladığını görmüş. Bu molekülün ortak çalıştığı diğer moleküllerin organizamada glükoz ve yağ metabolizmalarını kontrol ettiğini belirlemiş. Özellikle CrebH’ın hücrelerdeki yağ yakımını artırıcı etki yaptığı araştırmalarda gözlemlenmiş.Sonuç olarak yakın bir gelecekte transkiripsiyon faktörlerini daha akıllıca kullanmayı öğrenecek insanoğlu; şeker hastalıkları, obezite, kolestrol, damar sertleşmeleri gibi önemli problemlere çözümler oluşturabilecek ve onları kontrol altına almayı başarabilecek gibi gözüküyor.Kaynaklar:1. Fujimoto, Yuri; Nakagawa, Yoshimi; Satoh, Aoi; et al. “TFE3 Controls Lipid Metabolism in Adipose Tissue of Male Mice by Suppressing Lipolysis and Thermogenesis” ENDOCRINOLOGY  Volume: 154   Issue: 10   Pages: 3577-35882. Iwasaki, Hitoshi; Naka, Ayano; Iida, Kaoruko Tada; et al. “TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice.” AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM  Volume: 302   Issue: 7  Pages: E896-E902http://indigodergisi.com

http://www.biyologlar.com/seker-hastaligi-ve-diyabet


EVREN, EVRİM, İNSAN ve DÜŞÜNCE

Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık yok... Düşünsel olasılıkların, yani düşüncede çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Bu evren bir çeşitlilikler ve dolayısıyla bir olasılıklar evreni... Ve bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Bugün, biraz uzaktan bakıldığında, bilimin ilgi alanlarını kabaca ama net olarak sınıflandırmak mümkün: Fizik, enerjiyi ve ilk halinden başlayarak maddeyi alıyor atom sınırına kadar getirip bırakıyor; kimya, atomdan başlıyor inorganik ve organik madde sınırına kadar gidiyor; biyoloji ise yalnız canlılarla ilgileniyor. Biyolojinin alanı terkettiği noktada da devreye yalnızca insanla ve insan topluluklarıyla ilgilenen sosyal bilimler; felsefe, tarih, sosyoloji, ekonomi, psikoloji vb. giriyor. Pozitif bilimlerde, hiç olmazsa, sınır bölgelerinde disiplinlerarası bir kaynaşmadan sözedilebileceği görülüyor. Sözgelimi atom, hem fiziğin hem kimyanın; canlılar aleminin temel taşı olan organik madde de hem kimyanın hem biyolojinin ilgi alanı içine giriyor. Öte yandan, pozitif bilimlerle sosyal bilimler arasındaysa, kaynaşma bir yana, bir uçurumun varlığı hissediliyor. Sosyal bilimler alanında, psikolojinin çok kısıtlı ilgisi dışında hiçbir disiplin, hiç değilse biyoloji ile ilgilenme gereğini bile duymuyor. Üstelik bu disiplinlerin hemen hemen hiçbiri, tarihi, yazının keşfedildiği altı bin yıl öncesinden daha geriye götürmeye de yanaşmıyor. Bizzat tarih bilimi bile, evrimin şimdilik son aşaması sayılan modern insanın ilk ortaya çıktığı 50 bin yıllık sürece egemen olmayı dahi reddediyor ve yazının keşfedilmesinden bu yana geçen 6 bin yılla iktifa ediyor. Gerekçe, kuşkusuz, bilimsel bir disiplin olarak tarihin tahmine değil belgeye dayandırılması zorunluluğu... Bu gerekçenin elbette haklı bir yanı da var. Ama bir gerçek daha var: Bütün o atomaltı tanecikler, atomlar, moleküller ve madde; elementler, inorganik ve organik madde; hücreler; bunların oluşturduğu bileşikler ve tek hücrelisinden çok hücrelisine kadar bütün canlılar; bunların hepsi, hepsi bizatihi birer belge... Hatta yorumsuz oldukları ve bir bütünlük taşıdıkları için, evrendeki yegane ‘gerçek belgeler’ oldukları da söylenebilir. Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Ve eğer böyleyse, bu belgelerin hepsi birden gözden geçirilmeden, şu son altı bin yılın da sağlıklı bir biçimde çözümlenmesi mümkün olabilir mi? Ve eğer evrenin tarihi, dünü olduğu kadar bugünü ve yarını da kapsayan ve hiç değilse başına, bugüne kadarki gelişmesine ve sonuna dair bir kısım olasılıkların belli olduğu bir bütünlük arzediyorsa ve eğer evrim, 20 milyar yıl öncesinden bugüne uzanan ve bugünden de belki 20, belki 80 milyar yıl ötesine uzanacak olan kesintisiz bir süreçse; henüz birleşik bir kuram haline getirilmemiş olsalar bile, pozitif bilimler alanında saptanmış olan temel yasaların, tıpkı Marki de Laplace’ın bir zamanlar düşünmüş olduğu gibi, evrimin son halkası olan insanı ve insan topluluklarını konu alan sosyal bilimler alanında da geçerli olması gerekmez mi? Ve insan da atomlardan ve hücrelerden oluştuğuna, yani nevzuhur bir yaratık değil de büyük bir evrim sürecinin son halkası olduğuna göre, fizik, kimya ve biyoloji bilmeden (ve kuşkusuz fizik, kimya ve biyoloji kadar ekonominin ve hatta müziğin de ortak dili olan matematik bilmeden); enerji ile maddenin tarihini ve enerji ile maddenin yapısını bilmeden ve bu yeni bilgilerin felsefesini yapmadan; evrenin, kozmosu ve kaosu aynı anda kucakladığını, dolayısıyla bir olasılıklar evreni olduğunu ve bu durum gözönüne alınmadığı takdirde evrendeki ister psikolojik ister sosyal, ister siyasi ister ekonomik hiçbir oluşumun doğru değerlendirilemeyeceğini anlamak sözkonusu olabilir mi? Dahası, insan kendi kendisini böyle bir gerçekliğin içinde değerlendirerek, evreni tanımlayacak birleşik bir kuram oluşturmak için çırpınıp duran astrofizikçilere de yardım etmiş olmaz mı? Hayır, hiç de zor değil!.. Artık bu ve benzeri bilgilere ulaşmak hiç de zor değil!.. Yepyeni bilgilerle zenginleşmiş olan bilime ilişkin yepyeni yorumları aktaran popüler bilim kitapları artık, Türkiye’de dahil birçok ülkede neredeyse her köşebaşında satılıyor. Bilimkurgu kitapları ise daha da yaygın... Ve bilim yazarlarına oranla daha özgür davranan bilimkurgu yazarları, 20. yüzyılda felsefenin boş bıraktığı yeri dolduruyorlar. En son bilimsel gerçekleri özgürce, cesaretle yorumlayarak geleceğe ilişkin ve olup bitenin nedenlerine ilişkin kuramlar oluşturuyorlar. Üstelik yine Türkiye dahil Dünya’nın her tarafında çok da ilgi çekiyorlar. Ama şunu da unutmamak gerekiyor: Oluşturulan kuramların hepsi de yalnızca bir takım olasılıklardan ibaret... Mesela Mars konusunda, yıllardan beri insanoğlunu oyalayan ve sonunda göz yanılgısından başka birşey olmadığı anlaşılan çizgisel Mars kanallarının etkisi altında kaldıkları için olacak ki, ilk kuşak bilimkurgu yazarlarının çok yanlış düşüncelere kapıldıkları görülüyor. O ilk kuşak bilimkurgu yazarlarının hemen hepsi Mars’ta canlıların yaşadığını, hiç değilse bir zamanlar yaşamış olduğunu düşünüyorlar. Bu varsayımsal canlıların bir kısmı çok sevimli, çok gelişmiş; Mars’ı sömürgeleştiren saldırgan insanlarla başa çıkmaya çalışıyorlar; bir kısmı ise, dünyayı istila etmeye kalkışan birer canavar ve insanlara acımasızca saldırıyorlar. Tabii Mars’a ilişkin yanlış kanılardan yalnız bilimkurgu yazarları sorumlu değil... Sir Fred Hoyle gibi çok ciddi bir bilim adamı da, muhtemelen dinsel inançları yüzünden geliştirdiği evrende durağan hal kuramına aşırı bağlılığından ötürü, dünyaya düşen göktaşlarından bazılarının Mars’tan geldiği inancının yayılmasında rol oynuyor. Sir Hoyle, büyük evrim sürecinin cansız maddeden canlı yaşama geçişi de sağlamış olabileceğini kabul edemediği için olsa gerek ki, dünyada canlıların varlığını, Mars’tan gelen göktaşları üstünde bulunan canlı hücrelere bağlamak istiyor. Ama bu arada, o canlı hücrelerin Mars’ta nasıl varolmuş olabileceği sorusu da yine açıkta kalıyor. Açıkta kalan bir başka soru da, milyarlarca yıl önce dünyaya düşmüş oldukları söylenen göktaşlarının üstünde, bu taşların Mars’tan geldiklerine dair ne gibi bir kanıt bulunduğu... Yani eğer taşların üstünde “made in Mars” yazısı yoksa, bu taşların Mars’tan geldiğinin nasıl kanıtlanabileceği (aslına bakılırsa bu konu biraz tuhaf; dünyaya milyarlarca yıl önce düşmüş ve yıllarca önce de bulunmuş olan taşlar, geçen yaz, neden birdenbire, hem de inanılmaz yoğunlukta bir ilgi konusu oluverdiler, hiç anlaşılamadı) ... Carl Sagan ile Sojourner adı verilen araçların, bugünlerde Mars yüzeyinde yaptıkları çalışmalar bile tuhaf sonuçlara varılmasına neden olabiliyor. Kimi insanlar, Mars’ı bir zamanlar sellerin götürmüş olduğunu duyduklarında, bu sellerle Nuh Tufanı arasında ya da bu sellerle kayıp Atlantis ve Mü kıtaları arasında bir bağ kurulabileceğini düşünüyorlar. Amaç yine aynı: Yeter ki canlı yaşam dünya üstünde kendiliğinden başlamamış olsun!.. Başlamamış olsun da varsın atalarımız Marslı olsun!.. Aslına bakılırsa bu da bir olasılık elbette... Ama gerçekleşmiş olması zor bir olasılık... Çünkü evrensel yasalar gereği Mars’ın Dünya ile yaklaşık aynı zamanlarda ve benzer koşullarda gelişmiş olması gerekiyor. Yani bundan yaklaşık 4,5 milyar yıl kadar önce ve adım adım... Eğer Mars’taki seller, bundan 4 milyar yıl kadar önce değil de 3-5 yüz milyon yıl önce olmuş olsaydı, o takdirde evrimin Mars’ta da aynı biçimde, ama biraz daha hızlı geliştiği düşünülebilirdi. Ve karşı koyamadıkları bir sel felaketiyle yüzyüze gelen Marslılar’ın bir uzay aracına doldurdukları değişik türden çift çift hayvanlarla birlikte gelip Dünya’ya yerleştikleri... Halbuki 4 milyar önce oluştuğu anlaşılan seller, Dünya’da evrim süreci gelişip dururken Mars’ta evrim sürecinin hiç başlamamış olduğunun kanıtı gibi görünüyor. Zaten aynı yıldız sisteminde, yanyana iki gezegende birden aynı sürecin yaşanması da pek olası görünmüyor. Öte yandan 100 milyar galakside 100 milyar yıldız da, evrendeki tek canlı türünün insan olamayacağını gösteriyor. Böyle bir iddia da olasılık kurallarına hiç uymuyor. Dolayısıyla mitolojik ya da dinsel efsanelerin bir bölümünün, dünyaya gelip giden uzaylılarla ilgisi olması olasılığı hala var... Ama bu olasılık, ağır basan diğer olasılığı, insanı evrimin yaratmış olabileceği yönündeki olasılığı hiçbir şekilde bertaraf etmiyor. Zaten bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık da bulunmuyor. İşin güzel yanı şu: Böyle düşünsel olasılıkların, yani çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Büyük evrim sürecinin son halkası olan düşünsel evrimin sürebilmesi için, çeşitlenmenin, yani çok sayıda değişiklik olasılığının ortaya çıkması lazım... Evrim, şimdilik hala, bu olasılıklardan, evrensel yasalarla en iyi uyum sağlayabilen yönünde ilerliyor. Ve adım adım ilerliyor. Ama günün birinde düşüncenin evriminde ileri aşamalara ulaşılabilirse, evrensel yasalara egemen olacak olasılıkların çoğaltılması da mümkün olabilir. Ve tek bir adım yerine birkaç adım birden atılabilir. Bu da bir olasılık... Hatta evrendeki kaçınılmaz yaşlanmanın, düşüncenin de sonu olmasının önüne geçmesi bile sözkonusu olan bir olasılık... Bu evren bir çeşitlilik ve dolayısıyla bir olasılıklar evreni... Ama bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Belli sınırlar içinde kalmak kaydıyla... Çünkü öyle görünüyor ki insan, kendi doğumunu nasıl belirleyemiyorsa, evrenin doğumuna ilişkin bir irade kullanma hakkına da sahip değil... Bu zamandan sonra böyle birşey olması, zaten mantık açısından da mümkün değil... Ve insan, kendi ölümünün önüne nasıl geçemiyorsa, muhtemelen evrenin ölümünün önüne geçme konusunda da herhangi bir şansı yok... Ama eğer işler böyle gittiği taktirde, insan, belli bir yaştan sonra kendi hayatına ilişkin kararlar alma ve uygulama şansına nasıl sahip oluyorsa, insanlık da, belli bir aşamadan sonra, kendi yaşamına ilişkin ortak kararlar alma ve uygulama şansına sahip olacak gibi görünüyor. Tabii bu, yine yalnızca bir şans olacak... Bu şansı kullanıp kullanmamak, bu olasılığı değerlendirip değerlendirmemek ise insanlığa kalacak. Bu durumda, karamsarlık üretip eylemsizliği artırmak yerine, düşünsel evrimin sürmesini sağlayacak çeşitlenmelerin önünü açmak, evrimi daha da ileriye taşıyacak olasılıkların ortaya çıkmasına şans tanımak daha doğru değil mi? Ve düşünce özgürlüğü asıl bu demek ve bu nedenle de çok önemli demek değil mi? KAYNAK: www.historicalsense.com      

http://www.biyologlar.com/evren-evrim-insan-ve-dusunce

Evrimi Yanlış Anlamak

Biyolojik evrim kuramı, günümüzde bütünüyle, 1809-1882 arasında yaşamış olan Charles Darwin’e ait bir kuram olarak kabul ediliyor. Ama bunca yıl sonra, bu kurama inandığını beyan edenler bile, evrim üstüne fikir yürütürken, Darwin’in o zamanlar dahi asla kabul etmeyeceği hatalar yapıyorlar. Bunun bir nedeni şu olabilir: Her bilim dalı gibi biyolojide de kuramlar, öğrencilere, tarihsel bir gelişme çizgisi çerçevesinde aktarılıyorlar. Dolayısıyla, her bilimsel konuda olduğu gibi evrim konusunda da, adım adım gerçeğe doğru yol alma sürecinde, saptanmış olan doğrular gibi yapılmış olan yanlışlar ve o yanlışlar çerçevesinde geliştirilmiş olan hatalı varsayımlar da öğrencilere anlatılmış oluyor. Öğrencilik yıllarında edinilen çoğu bilgiyi, beyin kabuğunun derinliklerine gömen zaman, geride yalnızca bir tortu, bilginin bir izini bırakıyor. Ve eğer beyin kabuğu sürekli olarak yeni bilgilerle takviye edilmezse bu iz, doğruyla yanlışın bir arada harmanlandığı bir kanıya, bir dogmaya dönüşüyor. Böylece, evrim kuramının geliştirilmesinde önemli bir payı bulunmakla birlikte, temel varsayımlarından büyük bölümü eksik, hatta yanlış olan Lamarck’ın fikirleri de, Darwin’e malediliveriyor. O yüzdendir ki bilgileri tazelemekte yarar var: Evrim düşüncesi ilk kez 18. yüzyılda ortaya çıkmış. 1774 yılında Charles Darwin’in büyükbabası Erasmus Darwin, Zoonomia adlı uzun bir şiir yazarak, gerek bitkilerin gerekse hayvanların evrimleştiğine dair inancını açıklamış, ama ortaya bir kuram koyamamış. Ama, tam da Charles Darwin’in dünyaya geldiği 1809 yılında, Jean Baptiste Lamarck, Zoological Philosophy adlı bir kitap yayınlamış. Lamarck’ın evrim kuramı iki varsayım üstüne oturuyor. Bunlardan ilki, fazlaca kullanılan beden bölümleri gelişirken kullanılmayanların güdük kaldığı; ikincisi ise, kazanılmış bedensel özelliklerin kalıtım yoluyla döllere aktarıldığı... Yani Lamarck mealen şunu söylüyor: Zürafaların boynu başlangıçta kısaydı. Ama diğer hayvanlarla rekabet edemeyecek kadar donanımsız olan bu hayvanlar, kendilerine besin bulmak amacıyla, diğerlerinin pek ilgilenmediği ulu ağaçların yükseklerdeki yapraklarına ulaşmak çabasıyla gere gere boyunlarını uzattılar. Uzun boyunlu olduktan sonra da bu özelliklerini döllerine geçirdiler. Böylece sonunda bütün zürafalar uzun boyunlu oldular. Halbuki Charles Darwin bambaşka birşey söylüyor ve diyor ki: Evet, zürafalar başlangıçta kısa boyluydular. Evet, zürafaların yaşadığı ortamlarda, beslenmek için onlara, kala kala ulu ağaçların yüksek dallarındaki yapraklar kalıyordu. Bu arada, her türde olduğu gibi zürafaların her döl kuşağında da bir takım değşinik/mutant zürafalar dünyaya geliyordu. Sonuçta, günün birinde, kısa boyunlu bir zürafa, uzun boyunlu, değşinik bir yavru doğurdu. Ve bu uzun boyunlu, değşinik yavru, ortama, kısa boyunlu büyüklerinden daha iyi uyum sağladı. Dolayısıyla onun dölü sürerken, kısa boyunlu zürafalar, her döl kuşağında ortaya çıkan diğer değşiniklerle birlikte doğal ayıklanma sonucu birer birer ortadan kalktılar. Ve zürafalar da böylelikle, upuzun bir sürecin sonunda evrimleşmiş oldular. Darwin’in kuramı altı tane varsayım üstüne oturuyor: 1. Bütün organizmalar geometrik dizi halinde çoğalma eğilimindedirler. 2. Bir türün her döl kuşağındaki birey sayısı hemen hemen hiç değişmez. 3. O halde yaşamak için bir mücadele yapılıyor olmalıdır. 4. Her türün bireyleri arasında, kalıtsal olabilecek ufak tefek farklılıklar vardır. 5. Bu farklılıklar, özel bir çevredeki organizmaların, o çevreye uyum sağlama ve sayıca çoğalma şansını artırabilir. Yaşamayı başaran organizmalar, kalıtsal farklılıklarını döllerine aktarabilirler. 6. Farklılıklar zaman içinde büyür ve eski türlerden yeni türler ortaya çıkar. Bu kuramı geliştirken Darwin, 20 yıla yakın bir süre çalışmış. 1831 yılında, yani 22 yaşındayken Beagle adlı bir gemiyle İngiltere’den ayrılıp doğa bilimcisi olarak Atlas okyanusundaki adalarda ve Güney Amerika’nın bilinmeyen kıyılarında gözlemler yapmış. Ayrıca, kuramını geliştirirken, yakın dostu olan Charles Lyleel’in Jeoloji’nin Prensipleri adlı eserinden, Thomas Malthus’un nüfus artışlarıyla ilgili bir makalesinden, Gregor Mendel’in kalıtımla ilgili buluşlarından, vb. yararlandığını da saklamıyor. Dahası, Alfred Russel Wallace’ın 1858 yılında yazdığı ve doğal ayıklanmadan sözettiği makale de Darwin’in düşünceleriyle büyük benzerlikler taşıyor; öyle ki Darwin, doğal ayıklanma varsayımının Wallace’a maledilmesini istiyor. Ama bilim çevreleri, hem Darwin’in hem Wallace’ın adlarının geçtiği bir makale yayınlayarak bu sorunu çözüyorlar. Ve Darwin, sonunda büyük tartışmalara yolaçan Türlerin Kökeni adlı kitabını yayınlıyor. Bundan 12 yıl sonra da İnsanın Evrimi adlı kitabını... Hem de genetik bilimi, hücre bilimi gibi bilim dalları henüz ortada bile yokken... Ve bugün evrim kuramı denince, entellükteller de dahil olmak üzere birçok insanın aklına yalnızca Charles Darwin geliyor; ama Darwin’i doğru okumak için de kimse zahmete girmiyor. Herhalde bu yüzden olacak ki, sıradan insanlara da, hiç değilse bazı açılardan yetersiz bilgiyle donanmış ya da tembel bir takım zihinlerde, bir taşın birdenbire canlandığı, dinozorların birdenbire kertenkelelere dönüştüğü, bir maymunun birdenbire bir insan haline geldiği tuhaf bir dogmaya dönüşmüş olan bir evrim kuramına inanmak çok zor geliyor. Halbuki evrim bu değil... Bu olasılıklar evreninde, belki milyarda, trilyonda, hatta katrilyonda bir böylesi gariplikler olma olasılığı da olsa bile evrim, bu türden aykırılıkları anında silip süpüren zorlu, ağır bir süreç... Entropi Isaac Asimov diyor ki, “Evrendeki bütün değişiklikleri... Enerji meydana getirir. Enerji, bir yerden bir başka yere, bir cisimden bir başka cisme akar ve bunu yaparken de arasıra biçim değiştirir. Öyleyse enerjiyi bu şekilde harekete geçiren şeyin ne olduğunu sormamız gerekiyor. Görünüşe göre bunun nedeni, enerjinin evrende düzgün bir şekilde dağılmamış olmasıdır; bazı yerlerde daha yoğun, bazı yerlerde ise daha az yoğundur... Bir yerden bir başka yere, bir cisimden bir başka cisme, bir türden bir başta türe enerji akışı o şekildedir ki, eğilim, enerji dağılımının, evrenin her yanında aynı olması (eşitlenmesi) yönündedir... Bu akış kendiliğinden meydana gelmektedir. Enerji akışını sağlamak için hiçbir dürtüye gerek yoktur. Bu, kendiliğinden oluşur... Kendilğinden değişim, farklı enerji dağılımından eşit enerji dağılımına doğrudur ve değişimin hızı, farklılığın miktarına bağlıdır. Enerji eşit dağıldığında değişim sona erer... Enerji üstüne yapılan çalışmalar genellikle ısı akışı ve sıcaklık değişimleriyle ilgilidir; çünkü laboratuvarda üstünde en kolay çalışılabilecek olan enerji, ısı enerjisidir... Bu nedenle, enerji değişimi, enerji akışı ve enerjinin işe döndürülmesi konularını ele alan bilim dalına, Yunanca’da ‘ısı hareketi’ anlamına gelen ‘termodinamik’ adı verilmiştir... Termodinamiğin ikinci yasası 1824’de, Fransız fizikçisi Nicolas L.S. Carnot’un buhar makinalarında ısı akışını ayrıntılarıyla incelediği günlerde belirlenmiştir. Bununla birlikte, ancak 1850 yılında, Alman fizikçi Rudolf J.E. Clausius, eşitlenme sürecinin enerjinin bütün biçimlerine ve evrendeki bütün olaylara uygulanabilir olduğunu ileri sürmüştür. Bundan dolayı Clausius, genellikle termodinamiğin ikinci yasasını bulan kişi olarak anılmaktadır. Clausius, herhangi bir cisimde, toplam ısının sıcaklığa oranın, eşitlenme süreci bakımından önemli olduğunu göstermiş ve bu miktara ‘entropi’ adını vermiştir. (Bir ortamda) entropi ne kadar düşükse, enerji dağılımı o kadar farklı olmaktaydı. Entropi arttıkça, enerji dağılımı da eşitleniyordu... Bu durumu şöyle ifade edebiliriz: Termodinamiğin birinci yasası der ki, evrende enerji miktarı sabittir. Termodinamiğin ikinci yasasına göre ise, evrenin entropisi sürekli artmaktadır... Termodinamiğin birinci yasası, evrenin ölümsüz olduğunu ima eder gibi görünüyorsa da, ikinci yasa da, bu ölümsüzlüğün bir bakıma değersiz olduğunu göstermektedir. Enerji her zaman mevcut olacak, ama her zaman değişim oluşturması, harekete yol açması, iş yapması mümkün olmayacaktır. Birgün evrenin entropisi doruk noktasına ulaşacak ve tüm enerji eşit düzeye gelecektir. O zaman... Yaşam ve zeka duracaktır. Evren, donmuş bir heykel halini alacaktır...” Önce, böylesine korkunç bir tablo çizen Asimov, daha sonra, içinde yaşadığımız ve anlamaya çalıştığımız evrenin bir olasılıklar evreni olduğunu hatırlatarak şunları da söylüyor ve yüreklere su serpiyor: “Bu, basit bir olasılık yasası sorunudur; kör talihin işbaşında olmasının bir sonucudur. Gerçekte entropinin evrende sürekli olarak artmasının nedeni budur. Enerji dağılımının düzgün hale gelmesi olasılığı, enerji dağılımının (giderek) farklılaşması olasılığından daha çok olduğundan, değişim, entropinin artması doğrultusunda olmaktadır ve bu, kör talihten başka bir şey değildir. Bir başka deyişle, termodinamiğin ikinci yasası, neyin olması gerektiğini değil, ama neyin meydana gelme olasılığının ağır bastığını söylemektedir. Bu iki arasında önemli bir fark vardır. Eğer entropinin mutlaka artması gerekiyorsa, o zaman hiçbir zaman azalması sözkonusu olamaz. Ama eğer entropi büyük olasılıkla artma eğilimindeyse, o zaman küçük olasılıkla azalması da sözkonusudur. Ve sonuçta, yeteri kadar beklenirse, düşük olasılıklı durum da gerçekleşebilir. Gerçekte, yeteri kadar beklendiğinde, gerçekleşmek zorundadır da...” Popüler Bilim Kitaplarından Bazıları · Kozmos, Prof. Dr. Carl Sagan, Altın Kitaplar. · İnsanlığın Geleceği, Isaac Asimov, Cep Kitapları. · Bilinmeyen Tehlike, I. Asimov, İnkilap Kitapevi. · Zamanın Kısa Tarihi, Stephen W. Hawking, Milliyet Yayınları. · Kara Delikler ve Bebek Evrenler, S.W. Hawking, Sarmal Yayınevi. · Gezegenler Kılavuzu, Patrick Moore, Tübitak Yayınları. · Güneş Diye Bir Yıldız, George Gamow, Yazko Bilim. · Modern Bilimin Oluşumu, Richard S. Westfall, Tübitak Yayınları. · Hayatın Kökleri, Mahlon B. Hoagland, Tübitak Yayınları. · Rastlantı ve Kaos, David Ruelle, Tübitak Yayınları. Sir Fred Hoyle. Evrende durağan hal kuramının sahibi... Buluşlar aksini kanıtlayıp durduğu halde o, hala herşeyi bu kurama uydurmaya çalışıyor. Mars’tan gelen göktaşları efsanesinin ardında da o var... Bahar Öcal Düzgören KAYNAK: www.historicalsense.com

http://www.biyologlar.com/evrimi-yanlis-anlamak

Big Bang Teorisi (Büyük Patlama)

Büyük Patlama ya da Big Bang, evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan evrenin evrimi kuramı ve geniş şekilde kabul gören kozmolojik model. İlk kez 1920’lerde Rus kozmolog ve matematikçi Alexander Friedmann ve Belçikalı fizikçi papaz Georges Lemaître tarafından ortaya atılan, evrenin bir başlangıcı olduğunu varsayan bu teori, çeşitli kanıtlarla desteklendiğinden bilim insanları arasında, özellikle fizikçiler arasında geniş ölçüde[4]kabul görmüştür. Teorinin temel fikri, halen genişlemeye devam eden evrenin geçmişteki belirli bir zamanda sıcak ve yoğun bir başlangıç durumundan itibaren genişlemiş olduğudur. Georges Lemaître’in önceleri “ilk atom hipotezi” olarak adlandırdığı bu varsayım günümüzde “büyük patlama teorisi” adıyla yerleşmiş durumdadır. Modelin iskeleti Einstein’ın genel görelilik kuramına dayanmakta olup, ilk Big Bang modeli Alexander Friedmann tarafından hazırlanmıştır. Model daha sonra George Gamow ve çalışma arkadaşları tarafından savunulmuş ve ilk nükleosentez olayı eklenmek suretiyle geliştirilerek sunulmuştur. 1929’da Edwin Hubble’ın uzak galaksilerdeki (galaksilerin ışığındaki) nispi kırmızıya kaymayı keşfinden sonra, bu gözlemi, çok uzak galaksilerin ve galaksi kümelerinin konumumuza oranla bir "görünür hız"a sahip olduklarını ortaya koyan bir kanıt olarak ele alındı. Bunlardan en yüksek "görünür hız"la hareket edenler en uzak olanlarıdır. Galaksi kümeleri arasındaki uzaklık gitgide artmakta olduğuna göre, bunların hepsinin geçmişte bir arada olmaları gerekmektedir. Big Bang modeline göre, evren genişlemeden önceki bu ilk durumundayken aşırı derecede yoğun ve sıcak bir halde bulunuyordu. Bu ilk hale benzer koşullarda üretilen "parçacık hızlandırıcı"larla yapılan deney sonuçları teoriyi doğrulamaktadır. Fakat bu hızlandırıcılar, şimdiye dek yalnızca laboratuvar ortamındaki yüksek enerji sistemlerinde denenebilmiştir. Evrenin genişlemesi olgusu bir yana bırakılırsa, Big Bang teorisinin, ilk genişleme anına ilişkin bir bulgu olmaksızın bu ilk hale herhangi bir kesin açıklama getirmesi mümkün değildir. Kozmozdaki hafif elementlerin günümüzde gözlemlediğimiz bolluğu, Big Bang teorisince kabul edilen ilk nükleosentez sonuçlarına uygun olarak, evrenin ilk hızlı genişleme ve soğuma dakikalarındaki nükleer süreçlerde hafif elementlerin oluşmuş olduğu tahminleriyle örtüşmektedir.(Hidrojen ve helyumun evrendeki oranı, yapılan teorik hesaplamalara göre Big Bang'den arta kalması gereken hidrojen ve helyum oranıyla uyuşmaktadır. Evrenin bir başlangıcı olmasaydı, evrendeki hidrojenin tümüyle yanarak helyuma dönüşmüş olması gerekirdi.) Bu ilk dakikalarda, soğuyan evren bazı çekirdeklerin oluşmasına imkan sağlamış olmalıydı.(Belirli miktarlarda hidrojen, helyum ve lityum oluşmuştu.) Big Bang terimi ilk kez İngiliz fizikçi Fred Hoyle tarafından 1949’da, “Eşyanın Tabiatı” adlı bir radyo (BBC) programındaki konuşması sırasında kullanılmıştır. Hoyle, hafif elementlerin bazı ağır elementleri nasıl meydana getirebilecekleri konusunda katkıları olmuş bir bilim insanıdır. Bilim insanlarının çoğu, evrenin başlangıcında, bir Big Bang olayının cereyan etmiş olduğuna ancak 1964/1965’te, evrenin sıcak ve yoğun döneminin kanıtı olarak kabul edilen “kozmik mikrodalga arkaplan ışıması"nın ya da Georges Lemaître’in kullandığı terimlerle « Big Bang’ın soluk ışıklı yankısı»nın keşfinden sonra ikna oldular. Big Bang modeli temelde iki kabule dayanır: Albert Einstein'in genel görelilik kuramı ve kozmolojik prensip. Genel görelilik kuramı tüm cisimlerin çekimsel etkileşimini hatasız olarak açıklar. Albert Einstein tarafından 1915’te genel göreliliğin keşfi, evrenin aşamalı evrimi genel görelilikle tanımlandığından, evreni bir fiziksel sistem gibi bütünlüğü içinde tanımlamayı mümkün kılan modern kozmolojinin başlangıcı sayılır. Einstein aynı zamanda,uzayı bütünlüğü içinde tanımlamada, genel görelilikten doğan bir çözümü (“Einstein evreni”) önermesiyle genel göreliliği bu yolda kullanan ilk kişi olmuştur. Bu model o dönemde Einstein’in gözüpek girişimiyle yeni bir kavramın doğmasını sağlamıştı: Kozmolojik prensip. Kozmolojik prensibe göre, insanoğlu evrende ayrıcalıklı bir konuma sahip değildir, evren homojen ve izotroptur. Yani insanın baktığı yer ve yön neresi olursa olsun evren uzay (mekan) bakımından homojendir; daha açık bir deyişle, evrenin genel görünümü gözlemcinin konumuna ve baktığı yöne bağlı değildir. Bu, o dönem için çok cüretkar bir hipotez sayılırdı; çünkü henüz, sonradan “Büyük Tartışma” adı verilen, Samanyolu dışında cisimler olup olmadığı tartışmasının sürdüğü o dönemde hiçbir inandırıcı gözlem, Samanyolu dışındaki cisimlerin varlığını doğrulama imkanını sağlayamıyordu. "Kozmolojik prensip" evrenin makro özelliklerini açıklamakla birlikte, evrenin sınırı olmadığını, bu nedenle Big Bang'ın boşlukta belirli bir noktada değil, aynı anda tüm boşluk boyunca gerçekleştiğini ima eder. Makro ölçekte evren homojen ve izotroptur.  Bu iki kabul, evrenin Planck zamanından sonraki tarihini hesaplamayı mümkün kılmıştır. Bilim insanları halen "Planck zamanı"ndan önce gerçekleşen çok önemli olayları saptamaya çalışmaktadır. Einstein 1915 yılında ortaya attığı genel görelilik kuramıyla yaptığı hesaplamalarda evrenin durağan olamayacağı sonucunu çıkarmıştı. Fakat o dönemlerde genel kabul, evrenin statik olduğu yönündeydi; bu yüzden Einstein vardığı sonucu düzeltmek üzere denklemlerine “ kozmolojik sabite ” etkenini ekledi. Böylece, Einstein kozmolojik prensibe üstü kapalı biçimde, günümüzde doğrulanma derecesi açıkça azalmış görünen bir başka hipotez ekledi; bu, evrenin statik olduğu, yani zamanla evrim geçirmediği hipoteziydi. Bu da kendisini, denklemlerine “ kozmolojik sabite ” terimini eklemek suretiyle ilk çözümünü değiştirme yoluna götürdü. Fakat gelecekteki gelişmeler, yanılmış olduğunu ortaya koyacaktı. Örneğin 1920’lerde Edwin Hubble günümüzde galaksi dediğimiz bazı “nebülöz”lerin galaksimiz dışında olduklarını, ayrıca onların galaksimizden uzaklaştıklarını ve uzaklaşma hızlarının galaksimize uzaklıklarıyla orantılı olduğunu (Hubble Yasası ya da Hubble Sabiti) keşfetti. Bu keşiften beri Einstein’ın “statik evren hipotezi”ni doğrulayacak hiçbir veriye rastlanmamıştır. Zaten Hubble’ın bu keşfinden daha önce Willem de Sitter, Georges Lemaître ve Alexandre Friedmann gibi birçok fizikçi bir “evren genişlemesi”ni tanımlayan başka “genel görelilik” çözümleri bulmuş bulunuyorlardı. Onların ortaya koymuş oldukları modeller evrenin genişlemesi keşfedilir keşfedilmez derhal kabul edildiler. Böylece milyarlaca yıldır genişleme halinde olan bir evren tanımlanmıştı. Big Bang ve karşısındaki durağan hal teorisi Evrenin genişlediğinin keşfi, evrenin statik olmadığını ortaya koymakla birlikte, "maddenin sakınımı yasası"nı gözünde bulunduran ve bulundurmayan birçok farklı görüşün ortaya atılmasına imkan vermişti. Bu görüşlerden başlangıçta maddenin yaratılışının sözkonusu olduğunu varsayan görüş, ilk zamanlar en popüler olanıydı. Bu başarıdaki sebeplerden biri, “durağan hal (sabit durum) teorisi” denilen bu modelde evrenin sonsuz kabul edilmesiydi. Fred Hoyle tarafından ortaya atılan "durağan hal teorisi"ne göre evrenin yaşı ile bir gök cisminin yaşı arasında bir çelişki olamazdı. Buna karşılık Big Bang hipotezinde evrenin, genişleme oranından yola çıkılarak hesaplanabilecek belirli bir yaşı vardı. 1940’lı yıllarda evrenin genişleme oranı hakkındaki tahminler bir hayli abartılıydı, bu da evrenin yaşı hakkındaki tahminlerin gerçeğin bir hayli altında olarak yapılmasına neden olmuştu. Öyle ki, Dünya’nın yaşını belirleyen farklı tarihlendirme yöntemlerinin bildirdiği değerlere göre Dünya evrenden daha yaşlı kalıyordu. Bu, önceleri, Big Bang tipi modellerin çeşitli gözlemler karşısında içine düştüğü güçlüklerden yalnızca biriydi. Fakat bu tür güçlükler evrenin genişleme oranının kesin biçimde belirlenmesiyle tarihe karıştılar. Gözlemsel kanıtlar Sonradan iki kesin gözlemsel kanıt Big Bang modellerine tümüyle hak verdi: Evren tarihinin sıcak devrinin kalıntısı denilebilecek enerji ışıması (mikrodalga sahası) olan "kozmik mikrodalga arkaplan ışıması"ın keşfi ve hafif elementlerin salınmasının ölçülmesi, yani ilk sıcak evre sırasında oluşmuş hidrojen, helyum, lityumun farklı izotoplarının bırakılmasının ölçülmesi. Bu iki gözlem, 20. yy.’ın ikici yarısının başlarında gerçekleşti ve Big Bang’ı kozmolojide, kesin biçimde, gözlemlenebilir evreni tanımlayan model olarak yerleştirdi. Bu modelin kozmolojik gözlemlerle hemem hemen mükemmel biçimde örtüşmesinin yanı sıra, modeli doğrulayan başka kanıtlar da ortaya koyulmaya başlandı: Galaktik kümelerin gözlemi ve "kozmik arkaplan soğuması"nın ölçülmesi (birkaç milyar yıl öncesiyle günümüzdeki ısı farkının ölçülebilmesi). Kozmik arkaplan Genişleme, doğal olarak bize evrenin geçmişte daha yoğun olduğunu bildirmektedir. Evrenin geçmişte daha sıcak olması olasılığından ilk kez 1934’te Georges Lemaître’in söz etmiş olduğu görülüyor; fakat bunun gerçek anlamda araştırılmasına ancak 1940’lı yıllardan itibaren başlanmıştır. Uzak astrofiziksel cisimlerin ışımasındaki kırmızıya kaymaya benzer bir tarzda, evrenin genişleme olayıyla enerji kaybeden bir ışımayla dolu olması gerektiği konusundaki ilk düşünceler George Gamow’dan gelmiştir. Gamow aslında, ilksel evrendeki güçlü yoğunlukların, atomlar arasında bir termik dengenin kurulmasına ve ardından bu atomlarca bırakılan bir ışımanın varlığına imkan sağlamış olması gerektiğini anlamıştı. Gamov, 1940'lı yıllarda Lemaitre'in hesaplamalarını geliştirdi ve Big Bang'e bağlı olarak bir tez ortaya attı. Big Bang'dan arta kalan, belirli oranda bir ışımanın var olması gerekiyordu. Ayrıca bu ışıma evrenin her yanında eşit olmalıydı. Bu ışımanın evrenin yoğunluğu oranında bir yoğunlukta olması ve dolayısıyla, bu ışımanın, yoğunluğu artık son derece azalmış olsa da halen mevcut olması gerekiyordu. Gamow, Ralph Alpher ve Robert C. Herman’la birlikte, evrenin yaşından, maddenin yoğunluğundan ve helyumun salınmasından yola çıkılarak bu ışımanın günümüzdeki ısısının hesaplanabileceğini anlayan ilk kişi oldu. Bu ışımaya günümüzde « fosil ışıma » diyenler de bulunmakla birlikte, genellikle, “ kozmik mikrodalga arkaplan (ya da kozmolojik mikrodalga artalan) ışıması” denir. Bu ışıma, Gamow’un öngörülerine uygun olarak, düşük ısıdaki bir "karanlık cisim" ışımasına (2,7 °K) denktir. Biraz rastlantı sonucu olan bu keşfi Arno Allan Penzias ve Robert Woodrow Wilson’a borçluyuz: 1960’larda New Jersey'deki Bell Laboratuvarı’ndan Arno Penzias ve Robert Woodrow Wilson, Samanyolu’nun dış kısımlarından gelen belirsiz radyo dalgalarını ölçmeye çalışıyorlardı. Fakat bunun yerine gökyüzünün her tarafından gelen bir radyasyon saptadılar. Bu ışıma ya da ışınımın bütün yönlerdeki parlaklığı aynı idi ve yaklaşık 3 °K sıcaklığında bir ortamdan geldiği anlaşılıyordu.1978’de bu buluşları için Nobel Fizik Ödülü sahibi olan Penzias ve Wilson ilginçtir ki, ileride, Fred Hoyle gibi, Big Bang teorisine muhalif olan bilim insanları safına katılacaklardı. 1965’te keşfedilen "kozmik arkaplan" Big Bang’ın en açık kanıtlarından biridir. Bu keşiften sonra kozmik arkaplan dalgalanmaları COBE (1992) ve WMAP (2003) uzay uydularınca incelenmektedir.Bir "kara cisim" ışımasının varlığı Big Bang modeli çerçevesinde kolayca açıklanabilmektedir: Geçmişte evren sıcaktı ve yoğun bir ışımaya maruz kalıyordu. Geçmişin çok yüksek yoğunluktaki bu evreninde madde ve ışıma arasında çok çeşitli etkileşimler olmaktaydı. Bunun sonucunda ışıma termalize olmuştur, yani elektromanyetik tayfı bir "kara cisim"in elektromanyetik tayfıdır. Buna karşılık "durağan hal teorisi"nde böyle bir ışımanın varlığı hemen hemen doğrulanamaz durumdadır (Az sayıdaki bazı savunucuları aksini belirtmekteyse de…) Düşük ısıdaki ve az enerjetik bir ışımaya denk olmakla birlikte, kozmik arkaplan, yani kozmik mikrodalga arkaplan ışıması hiç de evrenin en büyük elektromanyetik enerji biçimi olarak görünmüyor: Enerjinin yaklaşık %96’sı sözkonusu ışımadaki fotonlar biçiminde mevcutken, kalan % 4’ü "görünür tayf"taki [14]yıldızların ışınımından ve galaksilerdeki soğuk gazdan kaynaklanmaktadır (kızılötesi halde). Bu diğer iki kaynak kuşkusuz daha enerjetik, fakat daha az sayıda fotonlar yaymaktadır. "Durağan hal teorisi"nde "kozmik arkaplan"ın varlığı mikroskobik demir parçacıklarının bırakılmasıyla oluştuğu varsayılan yıldızsal ışımanın termalizasyonunun bir sonucu olduğu varsayılır. Fakat bu model, gözlemsel verilerle çelişki halindedir. (Ayrıca bu takdirde "kozmik arkaplan" bir karanlık cisim olarak da açıklanamaz.) Sonuç olarak denilebilir ki kozmik arkaplanın keşfi, tarihsel olarak Big Bang'ın kesinleştirici kanıtı olmuştur.

http://www.biyologlar.com/big-bang-teorisi-buyuk-patlama

MİKROBİYAL LİÇİNG NEDİR

Mikroorganizmalar mineral kaynaklarının oluşması ve çözülmesinde önemli rol oynar. Mineral aranması ve zenginleştirilmesinde biyoteknolojik yöntemlerin kullanılması popüler hale gelmiştir. Mikrobiyal liçing; mikroorganizmalar yaratımıyla maden cevherlerinden metallerin kazanılması işlemidir. Düşük kaliteli cevherlerden metallerin geri kazanımın da kullanılan kimyasal metodlar ekonomik olmamaktadır. Dünya genelinde yüksek oranlarda bulunan düşük kaliteli, bakır cevherlerinin göreneksel kimyasal metodlarla elde edilmesi zor ve pahalı olduğundan, bunların eldesinde mikrobiyal liçing kullanılır. Son yıllarda geliştirilen mikrobiyal liçing yöntemleri metalik hammaddeler için çok önemlidir. Klasik yöntemler ile çözünürleştirilmeyen veya parçalanamayan fakir cevherler ve endüstri atıkları mikoorganizmalar ile ekonomik biçimde geri kazanılmaktadır. Bakterilerin yaptığı iş suda çözünmeyen filizleri suda çözünür hale getirmektir. Bakteriyal liçing daha çok uranyum ve bakır kazanımın da kullanılır. Dünya yüzeyinde kayda değer ölçülerde bulunan Ni, Zn, Cd, ve Co eldeleri içinde bir dizi liçing yöntemleri geliştirilmiştir. Bu yöntem bir asidik su içiren bir maden yatağına boru hattı döşeme sırasında meydana gelen bir patlama sonucu ortaya çıkmış ve geliştirmeler sonucunda düşük dereceli maden cevherlerinin geri kazanımı sağlanmıştır. LİÇİNGDE KULLANILAN ORGANİZMALAR Mikrobiyal liçingde kullanılan en yaygın 2 tane bakteri Thiobacillus thiooxidans ve Thiobacillus ferrooxidans’tır. Ayrıca Thiobacillus concretivoru, Thiobacillus concretivorus, Pseudomonas fluorescens, P. putida, Achromobacter, Bacillus licheniformis, B. Cereus, B. luteus, B. polymyxa, B. megaterium ve birçok termofilik bakterilerden Thiobacillus thermophilica, Thermothrix thioparus, Thiobacillus TH1, ve Sulfolobus acidocaldarius kullanılmaktadır. Heterotrafik mikroorganizmaların kullanımı gelişmektedir. Termofilik bakterilerin liçing uygulamalarını hızlandırmasının en büyük etmeni hızlı gelişim oranının varolmasıdır. MİKROBİYAL LİÇİNG KİMYASI Thiobacillus ferrooxidans çok pahalı çalışmayı gerektiren bir bakteridir. Bu bakteri mezofil, spor oluşturmaz, hareketli Gr(-), çubuk şeklinde olup C,5-C,8 m X 1,0-2,0 m boyutlarındadır. Ototrofik aerap olup C ihtiyacını havadaki CO2’in fixasyonundan sağlar. Enerji kaynağı olarak ise Fe2+  Fe3+’ya oksidasyonunudan veya elementel kükürt veya indirgenmiş kükürt bileşiklerinden sağlar. En yaygın kullanılan mikrobiyal liçing proseslerinin amacı az çözünen veya çözünmeyen metal bileşiklerini metal sülfatlar haline getirip çözünürleştirmektir. Bunun için 2 şekilde uygulama çeşidi varadır: Direkt ve indirekt mikrobiyal liçing. 1. Direkt Mikrobiyal Liçing: 4 FeSO4 + 2H2 SO4 + O2  2Fe2(SO4)3 + 2H2O [1] 2S0 + 3O2 + 2H2O  2H2SO4 [2] 2FeS2 + 7O2 + 2H2O  2FeSO4 + 2H2SO4 [3] Çözünmez haldeki sülfürün sülfirik aside aksidasyonu, sülfürle direkt kontak halindeki T.ferroxidans sayesinde gerçekleştirilir. T. ferooxidans tarafından gerçekleştirilen [3] nolu reaksiyon direkt mikrobiyal liçing: göstermektedir. Demir cevherinin yanında bakır, kurşun, nikel, kobalt, molibden ve çinko cevherleride T.ferroxidans sayesinde oksitlenebilirler. MeS + 2O2  Me SO4 2. İndirekt Mikrobiyal Liçing İndirekt liçingde, mikoorganizmalar liçing reaktifini üretir veya rejenere ederler. Örneğin metal sülfür cevherleri mikrobiyal bir etki olmaksızın Fe3+ iyonları tarafından oksitlenip liçing gerçekleştirilebilir. MeS + Fe2 (SO4) MeSO4+S0 Reaksiyonda indirgenen demirin tekrar Fe3+ haline dönüştürülmesi T.ferroxydans tarafından sağlanır. Bakteri bu prosese doğrudan karışmayıp bir katolitik fonksiyon görür. Bakteriyel oksidasyon kimyasal oksidasyondan yaklaşık 1 milyon kat hızlıdır. [2] nolu reaksiyonun oksitlenmesi T.thiooydans tarafından çok daha hızlı oksitlenirler. Bu tepkimeden de anlaşılacağı üzere sülfirik asit oluşumu katalizlediğinden, liçing için asidik koşulların sağlanması önemlidir. Bakteri Aktivitesine Etki Eden Etmenler 1. Besi Ortamı Besi ortamının kimyasal ve minerolojik bileşimi çok önemlidir. Liçing koşulları ve bakteriyel büyüme koşulları çakışıyorsa maksimum metal verimine ulaşır. Enerji veren demir ve kükürt bileşiklerinden başka magnezyum ve amonyum tuzları, fosfatlar ve sülfatlar esansiyel mineral bileşenleridir. Anorganik bileşiklerin bazıları liçing çözeltisinde bulunur. Eğer ortamda yeterli değillerse bir miktar katılırlar. Pirit(FeS2) ilave edilirse indirekt liçing hızlanır. Çok yüksek konsantrasyonda Fe3+ varlığı kompetitif bir inhibisyona neden olur. Tiyobasiller besi ortamı için problemlidir. Mikrobiyal liçingden maksimum verim elde etmek için liçing sırasında O2 transportu yeterli hızla sağlanmalı ve bu transportu etkileyen faktörlere dikkat edilmelidir. 2. pH ve Redoks Potansiyeli Optimum büyüme koşullarındaki pH’nın liçing çalışma koşullarına uyması idealdir. En uygun pH 2-2.5 arasıdır, kükürt ve Fe2+ oksidasyonu da bu pH lara uygundur Eğer pH 2’nin altına inerse T. ferroxydans aktivitesi düşer. Aerobik bir bakteri olduğu için T.ferroxydans pozitif bir redoks potansiyeline ihtiyaç duyar. Redoks potansiyeli logaritmik büyüme fazı sonuna doğru 600 mV a ulaşır. 3. Sıcaklık Fe+2 ve kükürdün mikrobiyal oksidasyonu için optimum sıcaklık 28-35oC arasıdır. T.ferrooxydans’ın büyümesi için de bu sıcaklık aralığı uygundur. Daha düşük sıcaklıkta büyüme yavaşlar, daha yüksek sıcaklıklarda ise termofil bakteriler kullanılır. 4. Liçing Materyalinin Kimyasal ve Mineralojisi Materyal yüksek oranda karbonat içerirse pH artar ve dolayısı ile liçing aktivitesi düşer ve giderek durur. Bunu engellemek için ortama asit ilavesi gereklidir. Mineral bileşimi büyüme ortamının ihtiyacını tam olarak karşılayamaz bazı mineraller dışarıdan ilave edilir. 5. Substrat Konsantrasyonu ve Partikül Büyüklüğü Liçing hızı liçing edilecek substratın yüzey büyüklüğü ile orantılıdır. Partikül boyutu ne kadar küçük ise toplam partikül yüzey o derece yüksektir, spesifik partikül yüzeyi artar, böylece liçing verimi de artar. Bu bilgiler kükürtlü cevherler için geçerli olup düşük tenörlü cevherleri kapsamaz. Substrat konsantrasyonunu artırarak da partikül toplam yüzeyi büyütülebilir. Bu durumda paktikül kütlesi de artar. Fakat substrat konsantrasyonunun artırılması belirli bileşiklerin konsantrasyonlarının artmasına neden olur ki bunların bazılar tiyobasillerin üremesi için toksik etki veya inhibisyon gösterebilir. Pratikte her liçing denemesi için partikül büyüklüğünün ve substrat konsantrasyonunun optimize edilmesi gerekir. 6. Yüzey Aktif Maddeler ve Ekstrasksiyon Maddeleri Eskiden bu maddelerin ilavesinin liçingi hızlandırdığına yani tiyobasillerin üremesini artırdığına inanılırdı. Fakat 1975 ten sonra yapılan çalışmalarda bunun tamamen yanlış olduğu tesbit edilmiştir. Yüzey gerilimi çok düşeceği için O2 kütle transferi çok yavaşlar. Bunun sonucunda bakteriyel gelişme sürekli olarak inhibe olur. Benzer bir etki ekstraksiyonda kullanılan organik çözgenler için de geçerlidir. Organik fazdan metal iyonunun geri alınması yeniden sulu faza çekme şeklinde olur. Eğer bakteriyel liçing ve çözgen ekstaksiyonu birlikte uygulanır ise problem çıkabilir. En önemli problem organik çözgen fazının tam olarak ortamdan ayrılmamasıdır. Sulu fazdan kalan organik çözgen bakterinin büyümesini inhibe eder. 7. Ağır Metaller Birçok ağır metal iyonu çok düşük konsantrasonlardan bile toksik etki gösterebilir. Tiyobasiller ağır metallere çok toleranslıdır. Bununla birlikte bu etkilerin daha önceden bilinmesi gerekir. 8. Işık Tiyobasiller ışığa çok duyarlıdır. Özellikle UV ve görünür ışığın ultraviyoleye yakın bölgesi tiyobasillere çok etkilidir. Mikrobiyal Liçing Prosesleri Optimumu liçing koşulları sadece laboratuar koşulları için tespit edilmiştir. Liçing koşullarının optimizasyonu pilot tesislerde tespit edilir ve daha sonra endüstriyel boyutta uygulanır. Optimizasyon da kullanılan parametreler; - O2 ve CO2 temini - Materyalin nem oranı - pH gradienti - Sıcaklık gradienti - Fe3+ tuzu çöktürmeleri - Partikül büyüklüğü - Partikül parçalanması ve partikül göçü - Geçirgen olmayan tabakaların oluşup, oluşmadığı. Mikrobiyal liçingin teknik uygulamalarının esas işlem sırası şöyle gerçekleşir; 1- Cevherlerin öğütülmesi 2- Cevherlerin bakteri süspansiyonu ile uygun şekilde sulandırılması 3- Sıvının biriktirilmesi 4- Çözünmüş metalin extraksiyonu Bakteriyel liçing porsesinin ana şeması NOT:Mikrobiyal liçing sonucu oluşan atık sular boş arazilere boşaltılmamalıdır. Mikrobiyal liçing uygulandığı yüze şekillerine göre 3’e ayrılır a)Meyilli yüzeyde liçing b. Kümesel yüzeyde liçing c. İn-situ liçing Mikrobiyal Liçingin Teknik Uygulamaları 1. Bakır Cevherinin Biyoliçingi Günümüzde dünya bakır üretiminin yaklaşık %10’u bakteriyel düşük kalite cevherlerin bakteriyel liçingi ile gerçekleştirilir. Bütün bakır işleticileri bir entegre yığma-boşaltma veya onların maden çıkarma veya porsesleme aktivitesini artıran in-situ liçing porseslerini uygular. En önemli bakır cevherlerinden biri olan kalkosit aşağıdaki denkleme göre bakteri tarafından çözünürleştirilir. Cu2S + 5/2 O2 +H2SO4 Bakteri 2CuSO4 + H2O Bu denklem iki basamakta gerçekleşir. a) Cu2S + ½ O2 + H2SO4 bakteri CuS + CuSO4 + H2O b) CuS + 2O2 bakteri CuSO4 Diğer bakır sülfür cevherleri bornit (Cu5FeS4), kubanit (CuFe2S3) ve kalkopirit (CuFeS2), enargit (Cu3AsS4) ve kovellittir (CuS). 2.Uranyum Cevherlerinin Biyoliçingi Mikrobiyal uranyum liçingi daha çok terk edilmiş uranyum ocaklarında uygulanır. Endüstriyel olarak bakteriyel liçing prosesleri ile cevherlerden uranyum ekstrakte edilir. Ekstraksiyonun kimyası çözünmeyen dört değerlilikli uranyum oksitlenerek çözünen altı değerlikli durumuna değişimi ile ifade edilir. UO2 + Fe2 (SO4)3+2H2SO4 U4[UO2(SO4)3] + 2 FeSO4 FeSO4 daha önce belirtildiği gibi bakteriyel oksidasyon ile Fe2(SO4)3 a dönüştürülür. SONUÇ Mikrobiyal liçing düşük kalitedeki cevherlerden metal kazanımın da kullanılan ve klasik yöntemlere göre ekonomik olan bir uygulama çeşididir. Bu yöntemle özellikle altın, gümüş gibi pahalı ve uranyum gibi stratejik elementlerin eldesinde büyük önem taşımaktadır. Bakır ve uranyum eldesinde özellikle in-situ liçing yöntemi uygulanmaktadır. Endüstriyel olarak Çinko, Nikel Cobalt ve Molibden üretimi için mikrobiyal liçing uygulamalarının yaygınlaştırılacağı kesin gibi gözükmektedir. Ayrıca mikrobiyal liçingle atıklardan metallerin geri kazanımı için alternatifsiz bir yöntemdir. Çizelge : Mikrobiyal Liçingin Potansiyel Uygulama Alanları Mikrobiyal liçing tesisleri maden yataklarının yanına kurulmalıdır. Böylece transport masrafları indirgenmiş olur. Mikrobiyal yöntem klasik yöntemlerden daha ekonomiktir. Detaylı teknik bilgi gerektirmez, ayrıca yüksek teknolojiye gerek yoktur. Bu nedenlerden dolayı yer altı kaynakları bakımından zengin ve gelişmekte olan ülkeler için çok iyi bir yöntemdir.

http://www.biyologlar.com/mikrobiyal-licing-nedir

Etnobotanik Alan Çalışma Teknikleri

Etnobotanik, bir yörede insanların kullandığı her türlü bitkinin araştırılması demek olduğuna göre, o yörede kullanılan tüm bitkilerin saptanması ve örneklemesi gerekmektedir. Elbette bu öneri, kısa dönemli ya da dar bütçeli bir araştırmada bir tek bitki grubu (örneğin tıbbi bitkiler ya da boyamada kullanılan bitkiler gibi) ile de sınırlandırılabilir. Ancak, çalışılan bölgeyi dar tutup, örneğin bir ya da iki köy ile sınırlandırıp, hazır o bölgeye ulaşım ve çalışma olanakları sağlanmışken diğer bitki gruplarındaki kullanımları da derlemek çok daha yararlı bir yöntem olarak önerilebilir. Botanikçilerin uyguladığı bitki toplama, presleme ve kurutma tekniklerinin öğrenilmesi bu alanın kaçınılmaz ön koşuludur. Araştırmacının botanik eğitimi olsa bile Türkiye florasındaki her türü tanımlayabilmek tek kişinin işi değildir, bir grup botanikçi ile ortak çalışmak ve belirli türlerde o türün uzmanlara danışmak gereklidir. Bir alanda çalışmaya karar verildiğinde birkaç farklı disiplinden uzmanın katılacağı küçük bir ekip oluşturmak yine önerilebilecek en iyi yoldur. Ancak yine de uzmanlık derecesinde olmasa da her araştırmacının bitki toplama- presleme yöntemlerini uygulayabilmesi gereklidir. Etnobotanik araştırmaları uzun vadeli bir çalışma gerektirir. Kış ve bahar ayları, beslenmede kullanılan bitkilerin saptanabileceği ve kaynak kişilerle en rahat söyleşilerin yapılabileceği dönemdir. Yaz ve sonbahar ise, bitki preslemeleri için olduğu kadar tohum örnekleri alımında ve ekin biçimi, harman ve sonrası işlemleri izleme, kışlık yakacak, hayvan yemi için ot toplama gibi değişik etkinliklerin sürdüğü bir dönem olarak önemlidir. Kısacası en az bir yıl boyunca alanda çalışmak gereklidir. Birçok durumda bir yılın yeterli olmadığı, süre uzadıkça yeni bilgilerin edinildiği de unutulmamalıdır. Etnobotanikçileri botanikçilerden ayıran en önemli yan, alan çalışmasında yoğun kaynak kişi kullanımıdır. Kaynak kişilerin seçimi ve onlarla söyleşi teknikleri çok önemlidir. Geçmiş kuşakların bilgilerini devralmış kişileri bulmak ve onlarla birlikte alana çıkmak, onların bitkilere ilişkin gözlemlerini not etmek ve bu bilgileri başka deneklerle sınamak önerilebilecek etkili bir yoldur. Kırsal kesimde genellikle araştırmacılara rehberlik etmek erkeklerin işidir. Oysa besin ve ilaç olarak kullanılan otların toplanması, boyar maddeler ve bahçe tarımı Anadolu'da da, dünyanın birçok yerinde olduğu gibi, kadınların uzmanlık alanıdır. Kadınların gıda-ilaç toplama ve hazırlanmasında, çeşitli el sanatlarında (dokuma, hasır gibi) çok önemli kaynak kişiler oldukları unutulmamalıdır. Bununla birlikte mantar, meyve ve bazı yumrulu bitkileri erkekler ve özellikle erkek çocuklar toplar. Yaşları nedeniyle çocukları kaynak kişi olarak önemsememek hatadır. Hayvanların yediği ya da yemediği zehirli otları en iyi bilenlerse çobanlardır. Belirli bitkilerin adıyla anılan ve o bitkiyi kullanarak bir hastalığı iyi ettiğine inanılan ‘Ocak' tabir edilen kişiler de araştırmacıların kaçırmaması gereken kaynak kişilerdendir. Yörede ip, sepet, hasır örenlere ve dokumacı kadınlara, kullandıkları bitkileri, bitkisel boya maddelerini ve bunlardan nasıl yararlandıklarını danışmak gerekir. Bir başka kaynak kişi grubu ziraatçiler, veterinerler ve sağlık memurlarıdır. Etnobotanik araştırmalarında oldukça yeni bir teknik de sayısal (quantitative) çalışmalardır ve bu araştırmaların katkısı giderek artmaktadır. Özellikle koruma ve sürdürülebilir kullanım ile sürdürülebilir kalkınmaya yönelik çalışmalarda sayısal araştırmaların önemi büyüktür. İstatistiksel ve çok seçenekli (multivariate) uygulamalarla sahada elde edilen verilerin değerlendirilmesi ve ileriye dönük koruma-projelerinin tasarlanması olası hale gelmektedir. 1987'de Sir G. Prance tarafından etnobotanik çalışmalarında kullanılması önerilen bu yöntem, bilgisayar teknolojisinin yardımı ve istatistik programlarının kolay uygulanabilir hale gelmesiyle giderek daha çok araştırmacının kullandığı etkin bir araştırma aracı olmuştur. Sayısal tekniğin uygulanabileceği çalışmalara birkaç örnek vermek gerekirse: bir bölgede farklı sosyal, kültürel grupların yararlı bitki kullanımlarındaki farklılıklar; bitki kullanım tercihlerinin değerlendirilmesi; belirli bir çevredeki bitki örtüsüne insan kullanımının etkilerinin değerlendirilmesi; farklı tarımsal yöntemlerin belirli bitki türlerinde yarattığı etki (boy, yaprak özelliği, vb.); yararlı bitkilerin bir alanda ne kadar bulunduğu; bulunan bitkilerin ne kadarının insanlarca yararlı sayıldığı gibi örnekler düşünülebilir. Fotoğraf ve video ile belgeleme de gereklidir. Fotoğrafla her bitkinin doğal ortamını, bu çevrede bulunma sıklığını, hangi türlerle bir arada olduğunu belgeleyebiliriz. Ekin/ürün isleme, harman, öğütme ya da kekik suyu çıkarma gibi uzun bir süreci gerektiren işlemlerin fotoğrafla belgelenmesinin yanı sıra videoya çekilmesi de gözden kaçabilecek ayrıntıların belgelenmesi için çok yararlıdır. Alan çalışmaları sırasında ya da hemen ertesinde bitki tanımlamaları yapıldıktan, bitkinin türü ve varsa varyetesi öğrenildikten sonra, bilimsel yayınlar taranarak önce yayılım alanı, yayınlarda belirtilen kullanımlarla uyumlu bilgiler edinilip edinilmediği araştırılmalıdır. Yayın taramaları, henüz alan çalışması sırasında gerçekleştirilebilirse bize alanda yeni sorular sorma olanağını sağlar. Ancak çalışma sonunda, gerek çalışılan alanda, gerekse tüm Türkiye'de her bir bitkinin farklı ya da benzer kullanımlarının varlığının araştırılması çok önemlidir. Genellikle Türkiye'de yapılan etnobotanik yayınlarda göze çarpan en önemli eksikliklerden biri bu konuda gözlenmektedir. Kaynaklar oldukça dağınık olduğundan ve bu konuda başvurulabilecek bir merkezi kütüphane, veri tabanı, vb. olmadığından yayınlar taranmamakta ve bulunan bilgiler yeterince değerlendirilememektedir. Yurtiçi kaynaklar ve yayınlar kadar özellikle komşu ülkelerdeki (Yakin Doğu ve Akdeniz bölgesi) etnobotanik çalışma verilerine, kaynaklarına erişim de gereklidir. Özellikle Yakın Doğu konusunda önerebileceğim en iyi veri tabanı İngiltere'de KEW Botanical Garden'in Economic Botany bölümünde hazırlanmış ve bu alanda çalışanlara açık olan SEPASAL (Survey of Economic Plants for Arid and Semi Arid Lands) veri tabanıdır. MEDUSA (Mediterranean Network) gibi Akdeniz uluslarının bitki kullanımlarına ait veri tabanları da henüz tümüyle yeterli olmamakla birlikte taranmalıdır. Ayrıca özellikle Yunanistan, İtalya gibi ülkelerde gıda ve ilaç olarak kullanılan bitkilerle ilgili giderek artan yayınlar göz ardı edilmemelidir. Uzun vadeli ve çok yönlü bir alan çalışmasıyla elde edilen bilgiler, disiplinler arası bir anlayışla ve farklı uzmanların katkısıyla değerlendirildiğinde, bitki listelerinden oluşan alışılagelen etnobotanik raporlardan çok daha fazla katkı sağlayacak ve halkın bilgi birikiminin ülkemiz yararına kullanımı mümkün olacaktır. Eğitime ve yerel kalkınmaya yönelik olduğu kadar halktan alınan bilgileri onlara derli- toplu bir biçimde sunmaya yönelik popüler yayınlar da etnobotanik alanında düşünülmesi gereken önemli çalışmalardandır.

http://www.biyologlar.com/etnobotanik-alan-calisma-teknikleri

Arkelerde Sistematik Yapı

Üst alem: Archaea Bölüm / Sınıf Crenarchaeota Euryarchaeota Korarchaeota Nanoarchaeota Arkeler, Arkea (Yunanca αρχαία, "eskiler" 'den türetme; tekil olarak Arkaeum, Arkaean, veya Arkaeon), veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin (İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı-alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Evrim ve sınıflandırma Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri bir çok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır. Arkelerin keşfi bilim dünyasındaki ilk etkisini canlıların sınıflandırılması ve gerçek bir soy ağacının oluşturulmasında göstermiştir.Bu konular özellikle biyolojik evrim ile yakından ilgili olduğu için çok önemlidir Gerçek akrabalık ilişkilerini ve ortak atayı bulmak için insanlar antik çağın büyük doğa bilgini Aritotales'ten beri ,canlıları sınıflandırmaya çalışmakta ve bunda da bir sorun yaşanmaktadır.Bunu nedeni sınıflandırmada kullanılan ölçütlerin kimi zaman canlılar arasındaki gerçek evrimsel bağların,yani akrabalık ilişkilerinin ortaya çıkarılmasında yardımcı olmamasıdır.Yani kim kimden önce evrimleşti,hangi canlı, hangi başka canlıyla ortak atayı paylaşıyordu;bu durum birçok noktada belirsizlik taşıyordu.Gözle görünür özelliklere dayalı sınıflandırma, özellikle yüzbinlerce tür içeren mikroskobik canlılarda pek yararlı olmamaktaydı.Bu nedenle 20.yüzyılın ortalarına denk mikroorganizmalar,sınıflandırma güçlüğü olan basit bitki ve hayvan alt grupları olarak kabul ediliyordu. 1957'ye kadar prokaryotlar iki alemli bir sistematik modelin(Carolous Linnaeus'a göre) parçası olarak günümüzde bile bir referans olarak kabul edilen Dr.David Hendricks Bergey'in "Bergey's Manual Of Determinative Bacteriology(Bergey'in tanımlamalı Bakteriyoloji El Kitabı)"nın 7. Baskısında olduğu gibi tek hücreli bitkiler olarak kabul edildi,ki bugün bu değişmişdir ve bu sistematik içinde bugün arke grubuna dahil edilmiş türlerde vardı;yani arke oldukları bilinmeselerde bakteri olarak adlandırılsalarda geçmişte arkeler bakteri olarak sınıflandırılmışlardı(örneğin Halobacterium salinarum türü ve Methanobacteriaceae ailesi). 1956'da ise bakteriler ve arkeler(ki 1956'da bakteri olarak biliniyorlardı) bugün bile kulanılan şekliyle monera içindeki yerlerini mavi-yeşil alglerle(yada siyanobakterilerle) beraber almışlardır(Lynn Margulis ve H.F. Copeland'ın yaptığı dörtlü sistematiğe göre). Arkeler bütün yaşamın bölündüğü üç domeynden birini oluşturur. Geri kalan iki domeynden birini bitkileri,hayvanları,protistaları ve mantarları içeren ökaryota grubu oluşturur.Protistalar hariç çoğunlukla tanıdık olduğumuz diğer ökaryotlar Aristotales zamanından beri bilinmekte ve araştırılmaktaydı.Son domeyn(ing.;domain:klasik taksonomideki karşılığı regnum(alem) yada regnumdan daha geniş bir grup olarak kabul edilir) olan bakteriler ilk defa 17.yy'da Hollandalı doğa bilimci Anthony Van Leeuwenhoek tarafından mikroskop altında gözlendi. Prokaryotların çok küçük olan boyutları onları çalışılması çok zor bir grup haline getirmişti.İlk sınıflandırma prokaryot hücrelerin şekline, labarotuvar kültürlerindeki kolonilerin görünüşüne ve diğer fiziksel karakterlere dayanıyordu.Biyokimya modern bir bilim dalı olarak gelişince,kimyasal karakterler prokaryot türlerin sınıflandırılmasında kullanıl-dı.Fakat buna rağmen bu bilği küçük mikropları güvenilir bir şekilde tanımlamak ve sınıflandırmak için yeterli olmamıştı. Çünkü hala,keşfedilmiş olan birçok arke türü bakterilerin içinde sınıflandırılmaya devam ediyordu.Örneğin metanojenler,oksijenin bunları öldürdüğü,olağan dışı enzimler üretmeleri ve hücre duvarlarının bilinen tüm bakterilerden farklı olmasıyla mikrop dünyasındaki kimyasal bir farklılık olarak zaten çoktan biliniyorlardı(arke diye farklı bir grup bulunmadan da öncede).Çoğu arkeon mikroskop altında bakteriden pek farklı görünmüyordu ve birçok türün olağandışı ko-şullarda yaşaması kültürlerinin yapılmasını zorlaştırıyordu (bilim insanları şimdilerde arkeyi okyanus yüzeyi,derin okyanus çamurları,antartika ve derin petrol yatakları gibi artan bir habitat düzeyi içinde bulmaya başladılar).Bu nedenle onların yaşayan organiznalar arasındaki yerleri çok uzun zamanlar keşfedilemedi. Prokaryotların güvenilir ve tekrar edilebilir deneylerle(örnegin bazı prokaryotlar değişen bazı ortam koşulu parametrelerine göre farklı gram boyama reaksiyonları verir)sınıflandırılması 20.yy'ın sonlarına,taki moleküler biyolojinin polinükleotid dizi sıralarının çıkarılmasına olanak verene kadar mümkün olmadı. 1950'lerde Sanger'in proteinleri yapıtaşları olan aminoasitlere ayırma metodlarıdan ilkini(ki daha birçok metod vardır) bulmasıyla diğer araştırmacılarda boş durmadı vede bu yöntemi diger moleküller de uygulamaya başaladılar.Buarada 1960'larda Wisconsin-Madison Üniversitesinde çalışmakta olan Thomas D.Brock,biyologların hayatın 80 santigrad üstündeki derecelere dayanamacağını düşündüğü bir ortamda araştırmalarına devam etti vede A.B.D.'de Yellowstone Ulusal Parkında(büyük bir bölümü Wyoming eyaletinde olan,tektonik yeryüzü hareketlerinin sürdüğü,gayzerleriyle ünlü bir bölgedir),sıcak su kaynaklarında Thermus aquaticus adınıverdiği,aşırı sıcak sever(hipertermofilik) bir bakteri buldu.Her ne kadar Brock'un bulduğu organizma arke olmasada termofilik arkelerin keşfedilmelerinde önemli role sahiptir.Çünkü hayatın varolamayacağı düşünülen habittlarda da yaşamarama çabaları başlamış ve birçok aşırı sıcak sever arke keşfedilmişdir. Yakın bir zamana kadar arke domeyni yaşamın ana bir domayni olarak farkedilemedi.20.yy'a kadar çoğu biyolog tüm canlıları bitkliler ve hayvanlar olarak düşündü.Fakat 1950'lerde ve 1960'larda çoğu biyolog mantar,protista ve bakterilere yer açmak için bu sınıflandırmanın yetersiz kaldığı gerçeğinin farkına vardı.1970'lerde beş alemli sistematik tüm canlılrın sınıflandırılabileceği bir model olarak kabul gördü(1969daki Whittaker yaptığı sınıflandırmaya göre).Temel ayrım bir prokaryota ve dört ökaryotik(bitki,hayvan,mantar,protista) grup arasında yapıldı.Ökaryotik organizmaların prokayotlardan ayrımı ortak özellikleri olan nükleus,sitoiskelet ve hücre içi zar sistemini gibi yapıları paylaşıyor olmalarıydı. Araştırmacılar 1960'lı yıllardan başlayarak canlıların sınıflandırılmasında protein,deoksikarboksilik asit(DNA) ve ribonükleik asit(RNA) molekülleri kullanmaya başladı.Çünkü ortak bir atadan evrimleştikleri için tüm canlılar ortak bir moleküler kalıtı paylaşmaktadırlar.Milyarlarca yıldır süre gelen evrimleşme süreci içinde bu moleküllerin yapısında birçok kalıcı değişme (mutasyon) meydana geldi ve hala gelmekte. Fakat bu moleküller her canlıda farklı bir öykü yaşadıkalrı için,geçirdikleri değişmenin boyutuda farklı oluyor.Doğal ola-rak birbirine yakın(akaraba) canlıların molekülleri arasındaki fark daha az,uzak olanlarda ise daha fazla.Bu durumu insanlardan bir örnek vererek açıklamak gerekirse,bir bireyin sahip olduğu küçük ve büyük kan grupları en fazla ana,baba ve kardeşlerine benzemekte,diğer insanlarla olan benzerlikse,akrabalık derecesine bağlı olarak azalmakta. DNA molekülleri canlı hücrelerde bulunur ve hücrelerin ihtiyaç duyduğu proteinlerin ve diğer hücresel komponentlerin yapımı için gerekli bilğiyi taşır.Ribozom ise DNA daki bilgiyi kimyasal bir ürüne çeviren,hücrenin en önemli bileşenlerinden biri olan büyük ve karmaşık bir moleküldür.Ribozomun kimyasal kompozisyonu DNA'ya çok benzer ve kendine özgü bir yapıtaşı sırasına sahip olan RNA ve proteindir.Dizi tanımlama teknikleriyle bir moleküler biyolog RNA'nın yapı taşlarını tek tek ayırarak tanımlayabilir. Ribozomlar(DNA mesajını kimyasal bir ürüne çevirir) canlıların fonksiyonları açısından kiritik derecede önemliydi,onlar çabuk evrimleşmeye meğilli değillerdi. Ribozamal dizideki büyük bir değişme,ribozomun hücre için yeni proteinler inşa etme görevini yerine getirememesine neden olabilirdi ve bunun ilk sonucuolarakda canlının yaşaması mümkün olmazdı.Yani bugün yaşayan canlılardaki ribozamal RNA'nın(özellikle de 16s RNA) diğer moleküllere göre çok daha az değişmesinin en büyük kanıtı bu canlıların hala hayatta olmalarıdır!Bunedenle araştırıcılar ribozal dizilerin sıralarının korunduğunu fazla değişmediğini söylüyorlar.Bu yavaş moleküler evrim oranı ribozomal sırayı bakteriyel evrim sırlarının gizli kalmaması için iyi bir seçenek yaptı.Geniş bir çeşitliliğe sahip olan bakteriler(hatta tüm canlılar) arasında ribozomal sıradaki az sayıdaki farklılıkları karşılaştırarak benzer dizi sıralarına sahip gruplar bulunabildi ve ilişkili gruplar olarak kabul edildi. Bilim dünyası 1970'lerin sonlarında arke denen tamamen yeni bir organizma grubunun keşfiyle anlaşılmaz bir şekilde şok oldu.1970'lerin sonunda Dr.Carl R. Woese Illinois üniversitesindeki meslektaşlarıyla beraber yürüttüğü prokaryotlar arasındaki evrimsel ilişki üzerine olan bir çalışmanın başkanıydı vede bakteriyel ilişkinin daha iyi bir resmini geliştirebilmek amacıyla bakterilerdeki moleküler dizi sıralarını arştırmaya başladılar.Dr.Carl R. Woese mikropların birbiriyle nekadar yakından ilişkili olduklarını bulmak için RNA dizi sıralarıyla özelliklede moleküler saat(evrim süresince tıpkı bir saat gibi sabit aralıklarla değişen) ve evrim boyunca geçirilen değişmeyi yansıtabilecek bir molekül olarak seçtiği 16S ribozamal RNA(ökaryotlardaki işlevsel karşılığı endoplazmik retikulumun zarına bağlı ve sitoplazmada serbest olarak bulunan ribozomlardaki(yani kısaca sitoplazmik ribozomlardaki) 18S vede kloroplast ve mitokondrideki ribozomlardaki 16S rRNA) -ne 23S rRNA(ökaryotlardaki işlevsel karşılığı 28S ve yine kendisi) kadar mutasyonlara açık ve gereksiz baz dizisine sahip olma olasılığı vardı ne de 5S rRNA(ökaryotlardaki karşılığı aynısı yani yine) gibi karşılaştırmaya yetmeyecek kadar az baz dizisine sahipti- ile çalıştı ve prokaryotların aslında bakteri ve onun arke dediği,yeni farkedilen iki çok farklı gruptan oluştuğunu farketti (tabiki DNA dizi sıraları ve klasik taksonominin kriterleriyle destekleyerek!). Bu grupların herbiri birbirinden ökaryotadan oldukları kadar farklıydılar. Bunula birlikte biyokimyasal olarak sizden ne kadar farklıysalar bakterilerden de o kadar farklıydı-lar.Bulgularını DNA vede protein dizileriyle destekledi.Bulguları 1977'de Proceedings of the National Academy of Sciences(PNAS)'ın Ekim 1977 sayısında yayınlandı (Carl R. Woese,Ralph Wolfe ve arkadaşları tarafından) ve çok büyük bir süprizle karşılandı.Bütün küçük yapılı mikroplar birbirleriyle yakından ilişkili değillerdi.Analizlerde bakteriler ve ökaryotlara ek olarak metan üreten mikropların üçüncü bir grubu daha vardı.O bu müthiş ayrımı farkederek,öbakterilerden (gerçek bakteriler) ayırdetmek için bu gruba arkebakteriler(eski bakteriler) adını verdi.Vede tüm canlıları:Öbakteriler,Ökaryotlar ve Arkebakteriler olarak üç domeyn altında topladı.Zaten beşli sistematik modelde bir prokaryot ve dört ökaryot olmak üzere prokaryotlar ve ökaryotlar ayrı guruplarda toplanmıştı fakat Woese'un çalışması bu iki ana gruba ek olarak Arkebakterileride(Arke) içeren üç ana grup ortaya çıkarmıştı!Kısacası bu genetik yapılarındaki farklılıktan dolayı Woese hayatın üç domeyne bölüneceğini ö-nerdi;Ökaryot,Öbakteri,Arke.Bugün ise bir otorite olarak kabuledilen Bergey'in Tanımlamlı Bakteriyoloji El Kitabı Arkebakterileri metanojenler,sülfat indirgeyiciler,aşırı tuzcullar,hücre duvarı olmayanlar ve aşırı sıcak severler(sülfür metabolize edenler) olarak beş gruba ayırmakta (Bergey'in Tanımlamalı Bakteriyoloji El Kitabı'ndan farklı olarak ilk defa 1984'de çıkan Bergey'in Bakteri Sistematiği adlı eserin 2001 yılındaki ikinci basımın birinci cildinde). Woese'un çalışmasının önemi,onun bu garip mikropların biyolojilerinin en temel düzeyinde bile farklı olduklarını göstermesidir.Onların RNA dizi sıraları bilinen bakterilere bir balık yada çiçekten daha benzer değildi.O bu müthiş farklılığı farkederek, bakterilerdenayırtetmek için bu gruba arkebakteriler(eski bakteriler) adını verdi.Bu organizmalar arasındaki doğru basamaksal ayrım kesinleşmeye başladıkça,Woese insanların arkebakterileri basit bir bakteriyal grup olarak düşünmemeleri için onların adını arke olarak kısalttı. Hatta kendisi 1998'de o zamanki Başkan Bill Clinton'dan,Amerika Birleşik Devletlerinde her yıl bilime katkılarından dolayı bilim adamlarına verilen bir ödül de almıştır. Arkeon filogenisinde(biyolojide birbirinden türeyen canlıların üreyerek birbirini izlemesi) DNA'larındaki moleküler dizi sıralarından dayararlanılır.DNA dizi sıralarının tayini (16S rRNA dizi sıraları,proteinlerin amino asit sıraları,klasik taksonomideki kriterlerden biyokimyasal ve fizyolojik özellikler,morfoloji gibi verilerle desteklenerek) arke içinde öyarkeota,krenarkeota ve korarkeotaolarak üç farklı grup olduğunu gösterir.Örneğin, krenarkeota ve öyarkeota DNA replikasyon mekanizmaları ve hücre döngüleri ve translasyonel araçları bakımından belirgin bir şekilde birbirlerinden farklıdırlar.Klasik taksonomi ölçütleriyle desteklenmiş olan filogenetikçalışmalara göre çıkarılmış yeni soy ağacı;bilgisayar simülasyonları, gen bankalarından gelen bilgiler,genetik allogoritma denen bir matematiksel modelleme kullanılarak tasarlanmıştır.Vede bu ağacın dallarının köküne olan uzaklığı,dallarının birbirine olan uzaklığı rastgele değildir,bu hesaplamalar sonucunda ortaya çıkarılmıştır. Arke domeyninin kendi içinde ayrıldığı gruplar. Metan üreticileri ve tuz seven arkeleri içine olan öyarkeota neredeyse en iyi bilinenidir.Hatta öyarkeota grubunda sülfonojen ve demir redükleyen aşırı sıcak sever türlerde keşfedilmişdir. Krenarkeota bilinen tüm canlılardan daha yüksek sıcaklıklarda yaşayan türleri içersede,toprağın içinde ve daha ılımlı sıcaklıklarda birçok türü keşfedildi.Korarkeota grubu ise en ilgincidir.Çünkü bu grubun bildiğimiz anlamda herhangi bir üyesi daha henüz canlı olarak izole edilememiştir.Sadece arkelerin habitatlarından izole edilen nükleik asit dizileri (PCR metoduyla amplifiye edilip,elektroforez yöntemiyle jelde yürütülerek)ve aminoasit dizilerine göre farklı bir grup oluşturulmuş ve korarkeota adını almıştır.Bu grubun işaret ettiği en önemli nokta ise,artık canlıları sınıflandırmak için canlının izoleedilmesede,o canlıya ait bulunan moleküllerinin yetebilecegidir!Ayrıca,bazı kaynaklara göre bu üç gru-ba(krenarkeota,öyarkeota,korarkeota) girmeyen vede toluen bozan ve metanojenlere benzeyen sınıflandırılmayı bekleyen arkeler de vardır. Yukarıda da görüldüğü gibi,metanojenlerin bakterilere değilde arkelere ait olduğu keşfedildiğinden beri(1970'lerde Woese'un çalışmasıyla),diğer birkaç arke grubu daha keşfedildi.Bunlar aşırı tuzcul sularda hayatını sürdüren ve suyun kaynama derecesine yakın sıcaklıklarda yaşayan bazı gerçekten garip arkeleri içerirler.Arke sadece 25 yılda belirsizlik-ten,anlaşılmazlıktan neredeyse tam bir düzene girmiştir. Arkeonlar artan bir şekilde bilimsel araştırmaların konusu oldu. Arekeal hücreler bir yandan bakteri hücrelerini andırabilir fakat önemli sayıdaki neden bakımından ökaryal hücrelere daha çok benzerler.Bu noktadaki önemli soru ise arkelerin bizimde içinde bulunduğumuz grup olan ökaryotanın mı yoksa bakteryanın mı yakın akrabası oduğudur.Bu cevaplanması oldukça zor bir soru çünkü,bizburada hayat ağcının en alt dalları hakkında konuşuyoruz,bugünhayatta karşılaştırmak için o kadar eski atalarımız yok.Bu soruya hitap eden ilğinç bir yaklaşım ise eş genlere bakılması yönündedir.Bazı DNA dizileri her hücrede bir kopyadan daha fazla bulunurlar.Çünkü tahminlere göre geçmişte fazladan kopyalar yapıldı. Hücrelerdeki bazı eş kopya olarak bulunduğu bilinen genler,eş kopya yapımının yaşamın üçüncü domeyni ayrılmadan önce meydana geldiğini des-tekler.Bilimadamları iki diziyi karşılaştırarak arkenin bizeve diğer ökaryotlara bakteriden daha yakın ilişkide olabileceğini buldular. Moleküler tekniklerin kullanılması,evrim sürecinin erken zamanlarında prokaryotların arke ve bakteri(yada öbakteri) olarak ayrıldığını kanıtladı(16S ve 18S ribozomal alt birimlerindeki ribozomal RNA sıralarındaki kanıt).Birincil özellikleri;hücre duvarlarının peptidoglikandan yoksun olması,plazma membranın kendilerine özgü bir lipit kompozisyonuna sahip olması ayrıca RNA polimeraz ve ribozomal proteinlerinin bakterilerden çok ökaryotlara benzemesi olarak sıralayabiliriz.

http://www.biyologlar.com/arkelerde-sistematik-yapi

Darwin’in evrim teorisine alternatif çıkmadı

Yaşamın nasıl ortaya çıktığı hala tartışılan bir konu. Ancak bilim adamı Darwin’in onlarca yıldır tartışılan Evrim Teorisi, bilimsel kabul görmeyen yaradılışçılık teorilerinin yanında alternatifsiz konumunu sürdürüyor. İngiliz bilim adamı Charles Darwinİngiliz bilim adamı Charles Darwin Eski Ahit, ‘Tanrı insanı kendi suretinde yarattı. Böylece insan Tanrı suretinde yaratılmış oldu. İnsanları erkek ve dişi olarak yarattı’ der. İnsanlar, yüzyıllar boyunca, canlıların oluşumunu açıklamak için, İncil’de geçen ‘Yaratılış Teorisi’ne başvurmuşlardı. Bunun yanısıra Kur’an-ı Kerim’de de yine Allah’ın tartışmasız bir şekilde kainatı, insanları ve diğer varlıkları yaratan tek güç olduğu belirtiliyor. Bunun karşısındaysa Charles Darwin’in ‘Türlerin Kökeni’ kitabında ortaya attığı ‘Evrim Teorisi’ yer alıyor. Modern doğa bilimlerinin şu anki şeklini almasına öncülük eden kişi olarak kabul edilen Charles Darwin’in doğumunun 200′üncü yıl dönümü bu yıl tüm dünyada özel etkinliklerle kutlanıyor. Bu konuda araştırmalar yapan Konstanz Üniversitesi Evrim Biyolojisi Profesörü Axel Meyer’le yapılan söyleşiyi sunuyoruz. - Darwin’in doğumunun 200′üncü yıldönümü sizce gerçekten kutlanması gereken bir gün mü? Meyer: Evet, elbette. Dün derste bir parti düzenledik. Ve bu özel anı pasta ve şampanyayla kutladık. - Modern bir doğa bilimci olarak, bugün sizce Darwin ve onun Evrim Teorisi nasıl bir öneme sahip? Charles Darwin'in Evrim Teorisi hala tartışılıyorCharles Darwin’in “Evrim Teorisi” hala tartışılıyor Meyer: Bu teori, modern evrim biyolojisinin temelini oluşturuyor. Darwin’in bundan 150 yıl önce, bugün neler olacağını tahmin etmesi mümkün değildi. Ancak yine de yazdıkları, evrimin işleyişinin temel mekanizmasını içeriyor. - Darwin’in yeniçağın en önemli bilim adamlarından biri olduğunu savunanlar var. Bu yargıya katılıyor musunuz? Meyer: Kesinlikle. Sahip olduğu popülerlik ancak Freud veya Einstein ile karşılaştırılabilir. - Sayın Meyer, daha önce İncil’de geçen “Yaratılış Teorisi” insanın oluşumunu temellendirmek için kullanılıyordu. Darwin bundan 150 yıl önce teorisini ortaya koyarken ne gibi zorluklarla yüz yüze geldi. Meyer: Görüşlerinin din ve insanın anlamıyla ilgili çekeceği tepkileri tahmin etmesi, kitabını yayımlamak için neden bu kadar beklediği konusuna bir miktar açıklık getirebilir. Eşinin koyu bir dindar olması gibi bir takım ailevi nedenler de söz konusu. - Darwin bilinçli olarak ilk hücrenin, ilk canlının nasıl ortaya çıktığı konusuna açıklık getirmemiş. Meyer: Bu konuda çok fazla bir şey söylememiş. Yaşamın nasıl ortaya çıktığı, hala çok tartışılan bir konu… Bir kez canlılar oluştuktan sonra, tüm bilim adamları Darwin’in açıklamış olduğu türlerin dönüşümü ve doğal seleksiyon yoluyla, şu anki karmaşıklık ve çeşitliliğe kavuşulduğu konusunda birleşiyorlar. - Darwin, doğa bilimlerinin kendilerine, evrim teorisi sonrasında net bir sınır çizeceklerini, kendilerini din bilimden ve inançtan tamamen ayıracaklarını tahmin ediyor muydu? Darwin, çok sayıda kitabın yanı sıra yaklaşık 7 bin 500 mektup kaleme aldıDarwin, çok sayıda kitabın yanı sıra yaklaşık 7 bin 500 mektup kaleme aldı Meyer: Bu yanıtlaması zor bir soru. Darwin biricik kızını kaybettikten sonra, tanrıya inanmaktan vazgeçmiş. Belki de bu, kitabını yayımlamayı geciktirmesindeki bir diğer nedendi. Sanırım bu olaydan sonra, kendisinin agnostik olduğunu söylemiş. Ancak tanrı inancı ile dünyaya bilimsel açıdan bakmak arasında aşılamaz bir aykırılık olduğunu düşünüyor muydu, emin değilim. - Peki, semavî dinlere inanan biri de aynı zamanda “evrimci” olabilir mi? Meyer: Kişisel görüşüme göre hayır. Bence birbirleriyle çelişiyorlar. Bir yandan evrim biyoloğu olup diğer yandan dindar olmak pek alışılageldik bir durum değil. - Darwin’in evrim teorisine karşı ortaya atılmış bilimsel bir alternatif var mı? Meyer: Hayır yok. Yeni yaratılışçılık veya yaratılışçılık teorileri var ancak bunlar bilimsel olarak kabul gören teoriler değil. Darwin’in evrimle ilgili görüşlerine bilimsel bir alternatif oluşturmuyorlar. - İnsanın maymundan türediği tezine sizin yaklaşımınız nasıl? Meyer: İnsan maymundan geliyor derken bahsedilen, primatlarla aynı soydan geldiğimiz. Bazı evrim biyologları, tüm farklılıklarına rağmen insanı varoluşun tepe noktası olarak değil, sadece var olan başka bir tür olarak görürler. Darwin devrim yaratacak keşfini, ispinozgiller familyasına ait küçük kuşlara borçluyduDarwin devrim yaratacak keşfini, ispinozgiller familyasına ait küçük kuşlara borçluydu - Darwin’in bundan 150 yıl önce ortaya attığı görüşleri hala sağlam bilimsel bir temele dayanıyor mu, yoksa yeni araştırmalar sayesinde durum değişti mi? Meyer: Darwin bazı şeyleri anlamamış ya da yanlış anlamış. Örneğin Alfred Wegener, kıtaların kayması kuramını, Darwin’in evrim teorisinden çok sonra ortaya attı. Bu yüzden Darwin’in, türlerin kıtalar üzerindeki coğrafi olarak yayılması ile ilgili bazı görüşleri yanlış. Bu gayet doğal… Genin ve genetiğin henüz keşfedilmediği bir çağda yaşıyordu. O zamanlar ne Mendel yasaları, ne molekülerbiyoloji ne de genomik vardı. Ancak bu yeni disiplinler evrim biyolojisine, Darvin’in evrim teorisini destekleyen açılımlar getirdi. - Sayın Meyer, bilindiği gibi “çevrenin değişen koşullarına uyum sağlamak için türler değişiyor ve yeni türler oluşuyor fikri” evrim teorisinin çekirdeğini oluşturuyor. Küresel ısınmayla ilgili olarak da Charles Darwin’in evrimle ilgili fikirlerini göz önünde bulundurabilir miyiz? Meyer: Bu ne açıdan baktığınıza bağlı… Bu bir yandan belli canlılar için bir doğal seleksiyon nedeni. Ancak diğer yandan iklim değişikliği, insanın dünyayı değiştirmesi yüzünden ortaya çıkan bir durum… Asya’daki veya Güney Amerika’daki dev yağmur ormanlarının nasıl katledildiğini düşünün. Canlıların yaşam alanlarına verilen zarar, tüm dünya tarihinde belki de ancak dördüncü veya beşinci kez bu kadar şiddetli bir şekilde türlerin yok oluşuna sebep oluyor. - Yani evrim değişen çevre koşullarına rağmen devam eden bir süreç… Meyer: Elbette. Ancak bir hızlanma söz konusu. Kürsel ısınmayı tetiklediğimiz için değişim daha çabuk olacak. Dünyanın soğuduğu ve ısındığı jeolojik devirler daha önce de yaşandı. Sadece o zaman hızlandırıcı olarak insan faktörü ortada yoktu. Söyleşi: Stefan Heinlein/ Çeviren: Banu Ertek Editör: Nihat Halıcı Evrimsel biyolog Axel Meyer Kaynak: Deutsche Welle

http://www.biyologlar.com/darwinin-evrim-teorisine-alternatif-cikmadi

KAVRAM OLARAK EKOTURİZM

Ülkeler ekonomisinde oldukça önemli bir konuma sahip olan turizmin boyutları giderek daha da artmaktadır. Turizm sektöründe yapılan her türlü harcama, ekonomide bir hareketlilik, canlılık oluşturmakta ve ülke ekonomilerini değişik şekillerde etkilemektedir. Turizmin ülke ekonomisine sağladığı etkilerin düzeyi aynı zamanda turizm sektörünün gelişme düzeyini de göstermektedir. Dünyadaki hızlı, ekonomik, siyasal ve teknolojik gelişmelere paralel olarak, turizm tüketim kalıplarında da son yıllarda önemli bir değişim gözlenmektedir. Zamanla daha da belirginleşen yeni tip turistlerin beklentileri, deniz-güneş-kum üçgeninin hakim olduğu alışılmış turizm merkezlerinden uzak, doğa ile iç içe, abartılı olmayan tesislerde iyi bir oda, iyi hizmet ve tüm bunların başında bozulmamış ve temiz bir çevrede aktif bir tatil olarak özetlenebilir. Ülkemizin turizm potansiyelinin temel bileşenleri sahip olduğu doğal, kültürel ve tarihi değerlerdir. Bu değerler, uzun vadede korunabildikleri sürece uluslar arası turizm pazarındaki payımız hızla büyümeye devam edecektir. Bunun için özellikle turizm yörelerindeki arazi kullanma ve altyapı kararlarının gerek yerel, gerekse merkezi yönetimlerce doğru olarak verilmesi gereklidir. Altyapılarda kapasite üstü zorlamalar, doğal değerlerin yok olması tehlikesini de beraberinde getirecektir. Bu kararların verilmesi aşamasında turizmin en önemli görevinin doğal, kültürel ve tarihi değerlerin koruyarak kullanılması gerekliliğinin anlaşılmalıdır. KAVRAM OLARAK EKOTURİZM Ekoturizm kavramı, turizm çevre ilişkilerinin önem kazanması ve sürdürülebilirlik tartışmaları ile birlikte gündeme gelip popüler olmuş, son yıllarda sıkça kullanılmaya başlanmıştır. Eko turizm doğa severler ve çevre duyarlılığı olan turistlerin hareketlerinden daha geniş kapsamlı bir konudur. Gerçekte bu olgu, çevresel, ekonomik ve sosyal ilişkiler bütünüdür. (www. turcev.org/mavi bayrak/ekoturizm) Uluslar arası Doğa Koruma Birliği’nin tanımına göre ekoturizm, doğayı ve kültürel kaynakları anlayarak korumayı destekleyen, düşük ziyaretçi etkisi olan ve yerel halka sosyo-ekonomik fayda sağlayan, bozulmamış doğal alanlara çevresel açıdan sorumlu seyahat ve ziyarettir(Kurdoğlu, 2001, s: 4). Uluslar arası Ekoturizm Topluluğu TIES (The International Ecotourism Society); “ekoturizm, çevreyi koruyan ve yerel halkın refahını gözeten, doğal alanlara karşı duyarlı seyahattir” olarak tanımlamıştır. Her iki tanıma da bakıldığında ekoturizm, doğal ve kültürel değerlerin korunarak turizme açılmasıdır. Ekoturizm kavramında, yeşil turizm, alternatif turizm, doğa turizm, yabanıl turizm, macera turizmi, kültürel turizm gibi terimler kullanılmaktadır. Ekoturizm, genellikle küçük gruplar halinde, ailelerin işlettiği küçük tesislerde, geleneksel mimarinin ve yerel kaynakların kullanımını hedef almaktadır. Ekoturizm amacına uygun gerçekleştirildiği taktirde, hassas ekosistemlerin korunması ve bu bölgelerin içersinde ve çevresinde yaşayan nüfusun sosyo-ekonomik gelişmesi için kaynak yaratabilen bir araçtır. Önemli ekoturizm potansiyeli olan dağlık ve ormanlık bölgelerdeki köylerde yaşayan halkın yoksulluğu göz önüne alındığında , ekoturizmin sosyal sınıflar arasındaki dengesizliği azaltabilecek bir etken olduğu anlaşılabilir (Altıparmak, 2002, s: 276). Birleşmiş Milletler Sürdürülebilir Kalkınma Komisyonu 2002 yılını Uluslararası Eko Turizm Yılı ilan etmiş ve bu konuyla ilgili olarak Dünya Turizm Örgütünü görevlendirmiştir. Yine 1998 yılında Birleşmiş Milletlerin aldığı bir kararla 2002 yılı Uluslar arası Dağlar Yılı ilan edilmiştir Dünya Turizm Örgütüne göre ekoturizmin bileşenleri, -Biyolojik çeşitliliğin korunmasına katkıda bulunması, - Yerel halkın refahını gözetilmesi, turistlerin ve yerel halkın bilinçlendirilmesinin sağlanması, - Küçük ölçekli işletmeler tarafından küçük turist gruplarına hizmet verilmesi, - Turistlerin ve yerel halkın turizm endüstrisi hakkında sorumlu hareket etmesinin sağlanması, -Geri dönüşü olmayan kaynakların en düşük düzeyde tüketilmesi, -Turizm yönetimine yerel düzeyde katılımın önemsenmesi, -İş fırsatlarının ve mülkiyetin yerel halk lehinde gelişmesinin gözetilmesi Olarak tanımlanmaktadır.(UNWTO). Yine Dünya Turizm Örgütüne göre ekoturizmin amacı; -Turizmin doğal ve geleneksel çevreye verdiği tahribatın en alt düzeye indirilmesi, -Turistlere ve yerel halka doğanın ve geleneksel sosyo-kültürel çevrenin korunmasına yönelik eğitim verilmesi, -Turizmin yerel halkın ihtiyaçlarının karşılayan, yerel yönetim ve halkla işbirliği içinde gelişen sorumlu bir ticaret olarak özendirilmesinin sağlanması, -Koruma kapsamındaki (doğal ve sosyo-kültürel) alanların yönetim için kaynak ayrılması, -Turizmin negatif etkisinin en alt düzeye indirilmesi amacıyla sosyo-kültürel ve doğal çevreye yönelik uzun vadeli takip ve değerlendirme programlarının desteklenmesi -Turizmin yerel halkın geçimine katkıda bulunmasını sağlayacak şekilde geliştirilmesinin temin, -Turizmin gelişiminin yörenin sosyal ve çevresel kapasitesini artıracak şekilde gelişmesinin temini, -Çevreyle uyumlu, doğal ve geleneksel sosyo-kültürel yaşamla iç içe geçen, yöresel bitki örtüsünü ve yaban hayatını koruyan turizmin alt yapı yatırımlarının gerçekleştirilmesidir.(www. world-tourism.org). Ekoturizm kitle turizminin aksine, turizmi yıl içine yaymak, doğal çevreye yapılan baskıyı azaltmak, tahribatı düzeltmeye değil, önlemeye yönelik planlama ve uzun vadeli ekonomik çıkarı gözetmektedir. (Öztunalı-Kayır, 1998, s: 304) Ekoturizm hareketinin olumlu sosyal ve çevresel etkisi olsa da, iyi planlanmadığı durumlarda, kitle turizmi kadar çevresel tahribata sebebiyet verebilmektedir. Bunun nedeni ekoturizm destinasyonlarının hassas ekosistemler olması ve bu bölgelerde yapılacak herhangi bir turizm hareketinin doğal kaynakların yok edilmesi, hatta çevresel kirliliğin yaratılmasına neden olabilmektedir. Uluslar arası ekoturizm yılı çerçevesinde Dünya Turizm Örgütü tarafından Almanya, Kanada, İspanya, İtalya ve İngiltere’de yapılan araştırmalarda; ekoturizm pazarındaki turist profili 30-59 yaş arası, yüksek gelir sahibi ve yüksek eğitimli, gastronomi ve kültüre ilgi duyan kişiler olarak belirlenmiştir (www. turizm.gov.tr). TÜRKİYE’DE EKOTURİZM Dünyada artık keşfetmek amaçlı olarak yapılan eko turizm, son yıllarda ülkemizde de sık sık gündeme gelmekte, fakat sadece yayla turizmi olarak düşünülmektedir. Oysa bir bütün olarak ele alınması gereken eko turizm, sosyal ve kültürel faaliyetleri de içine alan, geniş alanlarda bir çok aktiviteyi kapsayan bir etkinliktir. Turizm Bakanlığı ekoturizmi; yayla turizmi, ornitoloji (kuş gözleme) turizmi, foto safari, akarsu sporları (kano-rafting) çiftlik turizmi, botanik (bitki inceleme) turizmi, bisiklet turları, atlı doğa yürüyüşü, kamp-karavan turizmi, mağara turizmi, dağ turizmi ve doğa yürüyüşü, botanik (bitki inceleme) gibi başlıklar altında değerlendirmektedir. Ülkemizin, Akdeniz’deki en önemli turizm alanlarından birisi olduğu açıktır. Yaklaşık 8000 km. uzunluğundaki sahilleri, çeşitli uygarlıklardan kalan zengin tarihi ve kültürel mirasın yanı sıra iklimsel çeşitliliği nedeniyle olağan üstü bir bio çeşitliliğe sahiptir ve tek başına bütün bir Avrupa kıtası ile karşılaştırılabilir. Örneğin, tüm Avrupa’da 500 kuş türü bulunmasına karşılık, Türkiye’de 420 civarında kuş türü tespit edilmiştir. Ayrıca Avrupa’da tespit edilen yaklaşık 12.000 bitki türünden yaklaşık 9.000’i ülkemizdedir. Türkiye, gerek dağları, ormanları, yaylaları, kıyıları, gölleri, akarsuları gibi doğal varlıkları; gerek flora ve faunası ve gerekse mağaraları ve kanyonları gibi ilginç jeolojik oluşumları açısından diğer ülkelerle kıyaslanamayacak düzeyde bir zenginliğe sahiptir ve bu zenginlikler ülkemizi gündemde olan eko turizm için oldukça ilgi çekici bir ülke konumuna getirmektedir. Bilindiği üzere, her türlü doğal zenginliğin kullanımındaki temel ilke, koruma kullanma dengesinin sağlanmasıdır. Bu dengenin sağlanması, turizm sektörü için de büyük önem taşımaktadır. Turizm sektörü, doğal varlıkların sergilendiği güzellikler, dinlenme, sağlık, spor, bilim ve eğlence faaliyetlerine uygun ortamlardır. Ekonomik, sosyal, kültürel pek çok yararı olan turizm sektörünün iyi kontrol edilememesi halinde, aşırı doğal kaynak kullanımı ve yanlış yer seçimleri nedeniyle doğal alanların, tarihsel değerleri ve kıyı alanlarının tahrip edilmesi gibi olumsuz çevresel etkileri olabilmektedir. Nitekim ülkemizde giderek büyüyen turizm sektöründe doğal yaşam alanları modern tatil sitelerine, nesli tehlike altındaki deniz kaplumbağaları üreme kumsalları da turistik tesislere dönüştürülmüşlerdir. Denizlere daha fazla atık su boşaltılmış, bu da ekosistemdeki dengeleri bozmuştur. Son 30 yılda sahildeki insan baskısı üç katına çıkmış, kıyıların büyük bölümü insan müdahalesi ile değişim göstermiş, kıyı alanlarındaki araziler büyük rant kazanırken, pek çok turizm alanında yerel halk ve endüstriyi olumsuz etkileyen önemli boyutlarda su sıkıntısı yaşanmaya başlanmıştır. Henüz milli ya da bölgesel olarak ekoturizm bilincinin olmaması ya da eko turizmin anlaşılamaması nedeniyle, çirkin ve denetimsiz yapılaşmalar olmakta, yaban hayatı gelişigüzel kullanılmakta, flora ve fauna tanınmadan ve bölgenin taşıma kapasitesi bilinmeden turlar düzenlenmektedir. Yapılan turların her ne kadar düzenli ve çevreye saygılı yapıldığı iddia edilse de plansız, denetimsiz ve bölgenin taşıma kapasitesi bilinmeden yapılan bu turizmin eko-turizm olamayacağı bir gerçektir. Ülkemizde, çalışmaları sürdürülen Doğal Kaynak Envanteri’nin tamamlanması halinde ekolojik taşıma kapasiteleri belirlenecek, ekolojik verimliliğe ilişkin çalışmalar daha sağlıklı bir hale gelebilecektir. Dünya Turizm Örgütü tarafından hedeflenen ve ülkemiz tarafından da kabul gören hedefler şunlardır: a)Doğal ve kültürel mirasın korunma statüsü geliştirilmelidir. b)Bakanlık tarafından da yürütülen turizm çeşitlendirme politikasının ana hedeflerinden birisi olan kırsal alanlarda ve korunmuş alanlar civarında bulunan yerel toplumların yaşam düzeyi geliştirilmelidir. c)Doğa, yerel kültürler ve onların çeşitliliği hakkında daha iyi bilgi ve saygı teşvik edilmelidir. SONUÇ Ülkemizin de içinde bulunduğu Akdeniz çanağı ülkeleri, yaz aylarında ve belli yörelerde yoğunlaşan deniz-güneş-kum turizmi ile tanımlanır. Ancak günümüzde turist profili giderek değişmekte, turizm geleneksel destinasyonlardan uzaklaşmaktadır. Eko turistlerin 35-54 yaş grubunda, yüksek eğitimli, ortanın üzerinde geliri olan ve doğa, kültür ve gastronomiye ilgi duyan kişiler oldukları dünyada yapılan araştırmalardan anlaşılmaktadır. 2002 yılında uluslar arası turizmde, geleneksel turistlerin %62 si tatil amaçlı seyahat ederken, eko turizm amaçlı seyahat edenlerin oranı %4 olarak belirlenmiştir. Buna karşılık toplam turizm gelirleri içindeki harcama payları %7 dir. Ayrıca eko turizm gelirlerinin büyük ölçüde yöre insanına döndüğü ve bu insanların daha çok toplumun en yoksul kesimini oluşturan dağ ve orman köylüleri ve pansiyon çalıştıran aile grupları düşünüldüğünde, bu kesimin ekonomik olarak iyileşme gösterebileceği açıktır. Üstelik, eko turizm gelirlerinin bir kısmı da doğal değerlerin korunması ve geleneksel kültürlerin yaşatılmasında kullanılmaktadır. Tüm bu bakış açıları ile, turizmin ve eko turizmin temel hammaddelerini oluşturan doğal, tarihi ve kültürel değerlerin sürekliliğinin sağlanması ile turizm pazarlamasındaki en önemli tanıtımın çevre duyarlılığına dayanması, koruma-kullanma dengesine dayalı “turizmin fiziksel planlaması” ile mümkün olmasını öngörmektedir. Çevreye duyarlı turizmin gelişebilmesi için, doğal zenginliklerin, sit alanlarının, özel çevre koruma alanlarının, doğrudan turizm alanı olarak kullanılması yerine bu alanların özelliklerini dikkate alarak bütünleşik diğer alanlarla veya koruma esasları eko turizmin geliştirilmesi önemlidir. Ayrıca doğa koruma ile ilgili kuruluşların çalışmaları esas alınarak, sürdürülebilir kullanımların dikkate alınması ile taşıma kapasitelerine bağlı turizm sektörünün gelişmesini sağlayacak planlamalar yapılmalıdır. Ülke genelinde bir arazi kullanım planı hazırlanarak, yatırımcıların planları yönlendirmesi yerine, planların yatırımcıları yönlendirmesi sağlanmalıdır. Ülkemizde değişik kamu kurumları tarafından hazırlanan planlama mevzuatı, bu konuda çok sayıda yetkili otorite yaratmıştır. Çok sayıda yetkili, doğal olarak sahipsizlik ve sorumsuzluk ortamı getirmektedir. Kentlerde, kırsal alanlarda ve kıyılarımızda yaşanılan çevre kirlenmesi yaşamımızı olumsuz yönde etkileyen bir boyuta ulaşmış olup, bu durum da planlama alanındaki mevzuat karmaşasının bir sonucudur. Bunun için yerleşme kararlarına esas olarak planlamayla ilgili yasal düzenlemeler arasında bütünsellik sağlanarak belirli bir sistem ve sürece göre yeniden tutarlı hukuki düzenleme yapılması gerekmektedir. Çevreyi tahrip eden parçacıl yaklaşımlar yerine bütüncül planlama kapsamında çevreyi koruyan, doğal, kültürel ve tarihi değerleri koruma-kullanma dengesi içersinde sürdürülebilir kılan bir planlama anlayışı getirilmelidir. KAYNAKLAR: Altıparmak, M. (2002), “Turizmin Çeşitlendirilmesi, Sürdürülebilir Turizm ve Planlama”, II. Turizm Şurası Bildiriler Kitabı, s: 275. Kurdoğlu,O. (2001), “Koruma Alanları ve Ekoturizmin Karadeniz Bölgesi Açısından İrdelenmesi” Türkiye Ormancılar Derneği Yayını, Orman ve Av, Sayı 4, s: 4. Oztunalı-Kayır, G. (1998), “Batı Akdeniz Kıyıları Taşıma Kapasitesi ve Ekoturizm”, Türkiye Kıyıları 98, Türkiye’nin Kıyı ve Deniz Alanları II. Ulusal Konferans Bildirileri Kitabı, s: 317. Yunis, E. (2001), “Sürdürülebilir Turizm Kalkınması”, Ekoturizm Gelişim Konferansı, 2-4/11/2001, Selanik, Yunanistan. www.world -tourism.org/abautwto.html www. turizm.gov.tr Turcev.org - turcev Resources and Information. This website is for sale! bayrak/ekoturizm Yard.Doç.Dr. Esin ÖZKAN YÜRİK Ege Üniversitesi Çeşme Meslek Yüksekokulu Dalyanköy/Çeşme/İZMİR

http://www.biyologlar.com/kavram-olarak-ekoturizm

Bakteri nedir?

Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardırbakteri Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. İnsan vücudunda bulunan bakteri sayısı, insan hücresi sayısının on katı kadardır, özellikle deride ve sindirim yolu içinde çok sayıda bakteri bulunur. Bunların çok büyük bir çoğunluğu bağışıklık sisteminin koruyucu etkisisiyle zararsız kılınmış durumda olsalar, ayrıca bir kısmı da yararlı (probiyotik) olsalar da, bazıları patojen bakterilerdir ve enfeksiyöz hastalıklara neden olurlar; kolera, frengi, şarbon, cüzzam ve veba bu cins hastalıklara dahildir. En yaygın ölümcül bakteriyel hastalıklar solunum yolu enfeksiyonlarıdır, bunlardan verem tek başına yılda iki milyon kişi öldürür, bunların çoğu Sahra altı Afrika'da bulunur. Kalkınmış ülkelerde bakteriyel enfeksiyonların tedavisinde ve çeşitli hayvancılık faaliyetlerinde antibiyotikler kullanılır, bundan dolayı antibiyotik direnci yaygınlaşmaktadır. Endüstride bakteriler, atık su arıtması, peynir ve yoğurt üretimi, biyoteknoloji, antibiyotik ve diğer kimyasalların imalatında önemli rol oynarlar. Bir zamanlar bitkilerin Schizomycetes sınıfına ait sayılan bakteriler artık prokaryot olarak sınıflandırılırlar. ökaryotlardan farklı olarak bakteri hücreleri hücre çekirdeği içermez, membran kaplı organeller de ender olarak görülür. Gelenekesel olarak bakteri terimi tüm prokaryotları içermiş ancak, 1990'lı yıllarda yapılan keşiflerle prokaryotların iki farklı gruptan oluştuğu, bunların ortak bir atadan ayrı ayrı evrimleşmiş oldukları bulununca bilimsel sınıflandırma değişmiştir. Bu üst alemler Bacteria ve Archaea olarak adlandırılmıştır. Bakteriyolojinin tarihçesi Bakteriler ilk defa 1676'da Antonie van Leeuwenhoek tarafından, kendi tasarımı olan tek mercekli bir mikroskopla gözlemlenmiştir. Onlara "animalcules" (hayvancık) adını takmış, gözlemlerini Kraliyet Derneği'ne (Royal Society'ye) yazılmış bir dizi mektupla yayımlamıştır. Bacterium adı çok daha sonra, 1838'de Christian Gottfried Ehrenberg tarafından kullanıma sokulmuş, eski Yunanca "küçük asa" anlamına gelen bacterion -a'dan türetilmiştir. Latince kullanımıyla Bacteria, bakteri sözcüğünün çoğulu, bacterium ise tekilidir. Louis Pasteur 1859'da fermantasyonun mikroorganizmaların büyümesi sonucu meydana geldiğini ve bu büyümenin yoktan varoluş yoluyla olmadığını gösterdi. (Genelde fermantasyon kavramıyla ilişkilendirilen maya ve küfler, bakteri değil, mantardır.) Kendisiyle ayni dönemde yaşamış olan Robert Koch ile birlikte Pasteur, hastalık-mikrop teorisi'nin erken bir savunucusu olmuştur. Robert Koch tıbbi mikrobiyolojide bir öncü olmuş, kolera, şarbon ve verem üzerinde çalışmıştır. Verem üzerindeki araştırmalarında Koch mikrop (germ) teorisini kanıtlamış, bundan dolayı da kendisine Nobel Ödülü verilmiştir.Koch postülatları'nda bir canlının bir hastalığın nedeni olduğunu belirlemek için gereken testleri ortaya koymuştur; bu postülatlar günümüzde hala kullanılmaktadır. On dokuzuncu yüzyılda bakterilerin çoğu hastalığın nedeni olduğu bilinmesine rağmen, antibakteriyel bir tedavi mevcut değildi. 1910'da Paul Ehrlich Treponema pallidum 'u (frengiye neden olan spiroket) seçici olarak boyamaya yarayan boyaları değiştirerek bu patojeni seçici olarak öldüren bileşikler elde etti, böylece ilk antibiyotiği geliştirmiş oldu. Ehrlich, bağışıklık üzerine yaptığı çalışmasından dolayı 1908 Nobel ödülünü kazanmış, ayrıca bakterilerin kimliğini tespit etmek için boyaların kullanılmasına öncülük etmiştir; çalışmaları Gram boyası ve Ziehl-Neelsen boyasının temelini oluşturmuştur. Bakterilerin araştırılmasında büyük bir aşama, Arkelerin bakterilerden farklı bir evrimsel soya ait olduklarının 1977'de Carl Woese tarafından anlaşılmasıdır. Bu yeni filogenetik taksonomi, 16S ribozomal RNA'nın dizilenmesine dayandırılmış ve üç alanlı sistem'in parçası olarak prokaryot alemini iki evrimsel alana (üst aleme) bölmüştür. Köken ve erken evrim Modern bakterilerin ataları, yaklaşık 4 milyar yıl önce, dünyada gelişen ilk yaşam biçimi olan tek hücreli mikroorganizmalardı. Yaklaşık 3 milyar yıl boyunca tüm canlılar mikroskopiktiler, bakteri ve arkeler yaşamın başlıca biçimleriydi. Bakteri fosilleri, örneğin stromatolitler, mevcut olmakla beraber, bunların kendine has morfolojilerinin olmaması, bunlar kullanılarak bakteri evriminin anlaşılmasına veya belli bakteri türlerinini kökeninin belirlenmesini engellemektedir. Ancak gen dizileri bakteri filogenetiğinin inşası için kullanılabilir, bu çalışmalar bakterilerin arke/ökaryot soyundan ayrılmış evrimsel bir dal olduğunu göstermiştir. Bakteri ve arkelerin en yakın zamanlı ortak atası muhtemelen yaklaşık 2,5-3,2 milyar yıl önce yaşamış bir hipertemofil'di. Bakteriler, evrimdeki ikinci büyük ayrışmada, ökaryotların arkelerden oluşmasında da yer almışlardır. Bunda, eski bakteriler, ökaryotların ataları ile endosimbiyotik bir ilişki kurmuşlardır. Bu süreçte, proto-ökaryotik hücreler, alfa-proteobakteriyel hücreleri içlerine alıp mitokondri veya hidojenozomları oluşturdular. Bu organeller günümüz ökaryotlarının tümünde hala bulunmaktadır ("mitokondrisiz" protozoalarda dahi aslında son derece küçülmüş olarak mevcutturlar). Daha sonraki bir dönemde, farklı bir olay sonucu, bazı mitokondrili ökaryotların, siyanobakteri-benzeri canlıları içlerine alması sonucunda, bitki ve yosunlardaki kloroplastlar oluştu. Hatta bazı yosun gruplarında bu olayı izleyen başka içe almalar meydana gelmiş, bazı heterotrofik ökaryotik konak hücrelerin, ökaryotik bir alg hücresini içine alması sonucunda "ikinci kuşak" bir plastid oluşmuştur. Morfoloji Bakteriler, morfoloji olarak adlandırılan, şekil ve boyutları bakımından büyük bir çeşitlilik gösterir. Bakteriyel hücreler ökaryotik bir hücrenin yaklaşık onda biri boyundadır, tipik olarak 0,5-5,0 mikrometre uzunluktadırlar. Ancak, bir kaç tür, örneğin Thiomargarita namibiensis ve Epulopiscium fishelsoni yarı milimetre boyunda olabilir ve çıplak gözle görülebilir. En küçük bakteriler arasında Mikoplazma cinsinin üyeleri bulunur, 0,3 mikrometre olan bu bakteriler en büyük virüsler kadar küçüktür. Bazı bakteriler daha da küçük olabilirler ama bu ultramikrobakteriler henüz iyi tanımlanmamıştır. Çoğu bakteri türleri ya küresel ya da çubuksu şekilli olur. Küresel olanlar kokus (veya coccus; Eski Yunanca tohum anlamında kókkos 'tan), çubuksu olanlar basil (Latince çubuk anlamlı baculus 'tan) olarak adlandırılır. Vibrio olarak adlandırılan bazı çubuksu bakteriler biraz eğri veya virgül şekillidir; diğerleri spiral şekillidir, spirillum olarak adlandırılır, veya sıkıca sarılı olur, spiroket olarak adlandırılırlar. Az sayıda bazı türler tetrahedron veya küp benzeri şekilde olabilirler. Yakın zamanda keşfedilen bazı bakteriler uzun çubuk şeklinde büyür ve yıldız şekilli bir kesite sahiptir. Bu morfolojinin sağladığı yüksek yözölçümü-hacim oranı bu bakterilere az besinli ortamlarda bir avantaj sağladığı öne sürülmüştür. Hücre şekillerindeki bu büyük çeşitlilik bakterinin hücre duvarı ve hücre iskeleti tarafından belirlenir. Hücre şekli, bakterinin gıda edinmesine, yüzeylere bağlanmasına, sıvı içinde yüzmesine ve doğal avcılarından kaçmasına etki eder. Çoğu bakteriyel tür tek hücre halinde varlığını sürdürür, diğerleri ise kendilerine özgü biçimlerle birbirlerine bağlanır: Neisseria diploitler (ikililer) oluşturur, Streptokok zincir, Stafilokok üzüm salkımı gibi kümeler oluşturur. Bazı bakteriler iplik (filament) oluşturacak şekilde uzayabilir Actinobacteria'da olduğu gibi. İpliksi bakterilerde çoğu zaman içinde pek çok hücre bulunan bir kın vardır. Bazı tipleri, örneğin Nocardia cinsine ait bazı türler, hatta karmaşık, dallı iplikçikler oluşturur, bunlar küflerdeki miselyuma benzer. Bakteriler yüzeylere bağlanıp biyofilm denen yoğun kümeler oluştururlar. Bu filmler birkaç mikrometre kalınlıktan yarım metre derinliğe kadar değişebilir, ve birden çok bakteri, protista ve arke türü içerebilir. Biyofilmlererde yaşayan bakteriler, hücre ve hücre dışı bileşenler ile karmaşık bir düzen oluştururlar. Meydana gelen ikincil yapılar arasında mikrokoloniler de sayılabilir, bunların içinde bulunan kanal şebekleri gıdaların daha kolay difüzyonunu sağlar. Doğal ortamlarda, örneğin toprak ve bitkilerin yüzeyinde, bakterilerin çoğunluğu biyofilim aracılığıyla yüzeye bağlanır. Biyofimler tıpta da önemlidir, çünkü bu yapılar kronik bakteriyel enfeksiyonlarda ve vücut içine yerleştirilmiş tıbbi cihazlarda bulunurlar. Biyofilmler içinde kendini koruyan bakterilerin imhası, tek başına ve izole durumda olan bakterilerinkinden çok daha zordur. Daha karmaşık morfolojik değişiklikler de bazen mümkündür. Örenğin amino asitlerden yoksun kalınca Myxobacteria'lar civarlarındaki diğer hücreleri algılamak için yeter çoğunluk algılaması (İng. quorum sensing) denen bir süreç kullanırlar. Bu süreçte bakteriler birbirlerine doğru hareket eder ve yaklaşık 100.000 bakteri içeren 500 mikrometre büyüklüğünde tohum yapıları (İng. fruiting bodies) oluştururlar. Tohum yapılarında bulunan bakteriler farklı görevler yerine getirir; böylesi bir kooperasyon, çok hücreli organizasyonun basit bir tipini meydana getirir. Örneğin, her on hücreden biri bu tohum yapılarının tepesine göç eder ve miksospor adında özelleşmiş uyuşuk (dormant) bir yapı oluştururlar. Miksosporlar normal hücrelere kıyasla kurumaya ve diğer olumsuz çevresel şartlara daha dayanıklıdır. Hücresel yapı Hücre içi yapılar: Bakteri hücresi hücre zarı olarak adlandırılan bir lipit zarla çevrilidir. Bu zar, hücrenin içindekiler içine alıp, besinler, protein ve sitoplazmanın diğer gerekli bileşenlerini hücrenin içinde tutar. Bakteriler prokaryot olduklarından dolayı sitoplazmalarında ender olarak zar kaplı organeller bulundururlar, içlerinde büyük boylu yapılardan az sayıda olur. Bakterilerde hücre çekirdeği, mitokondrisi, kloroplast ve ökaryotlarda bulunan, Golgi aygıtı ve endoplazmik retikulum gibi diğer organellerden yoktur. Bir zamanlar bakterilerin sadece sitoplazmadan içeren basit torbalar olduğu düşünülürdü ama artık karmaşık bir yapıları olduğu bilinmektedir, örneğin prokaryotik hücre iskeleti, ve bazı proteinlerin bakteriyel sitoplazmanın belli konumlarında stabil olarak konuşlanması gibi. Hücre içi organizasyonun bir diğer seviyesi mikrokompartımanlaşma ile sağlanır. Bunun bir örneği olan karboksizom, lipit membran yerine, polihedral bir protein kabukla çevrili olan bir bölmedir. Bu polihedral organeller, ökaryotlardaki zar kaplı organellere benzer bir şekilde, bakteri metabolizmasının bölümlerinin hücre içinde konuşlanmasını ve birbirlerinden ayrı tutulmasını sağlar. Çoğu önemli biyokimyasal tepkime, örneğin enerji üretimi, membran aşırı bir konsantrasyon gradyanı ile, bir bataryadakine benzer şekilde, potansiyel fark oluşması sonucu meydana gelir. Bakterilerde genelde dahili zarlı yapıların olmaması nedeniyle, elektron taşıma zinciri gibi bu tür tepkimeler, hücre zarının iki yanı arasında, yani sitoplazma ile periplazmik aralık veya hücre dışı arasında oluşur. Ancak, çoğu fotosentetik bakteride plazma zarı çok kıvrımlıdır, hücrenin çoğunu ışık enerjisi toplayan membran tabakaları ile doldurur. Yeşil kükürt bakterilerinde bu ışık toplayıcı komplekslerin kimisi klorozom adlı lipit örtülü yapılar oluşturur. Başka proteinler hücre zarından içeri besin ithal eder, veya atık maddeleri sitoplazmadan dışarı atar. Bakterilerin genetik malzemeleri tipik olarak tek bir dairesel kromozomdan oluşur. Bakterilerde zar kaplı bir çekirdek yoktur ve kromozom tipik olarak sitoplazmada yer alan, nükleoit olarak adlandırılan düzensiz şekilli bir cismin içinde yer alır. Nükleoitte DNA, onunla ilişkili proteinler ve RNA bulunur. Planctomycetes ordosu, bakterilerde dahili zarlı yapıların bulunmadığı kuralının bir istisnasını oluşturur, bunlarda bulunan nükloit zar çevrilidir, ayrıca bu bakteriler başka zar çevrili hücresel yapılara da sahiptirler. Tüm canlılar gibi bakterilerde de protein üretimi için ribozomlar bulunur, ancak bakteriyel ribozomların yapısı arke ve ökaryot ribozomlarınınkinden farklıdır. Bazı bakteriler, hücre içinde glikojen, polifosfat, kükürt veya polihidroksialkanoat gibi besinler için depo granülleri oluştururlar. Bu granüller bakterinin daha sonradan kullanması için bu bileşikleri depolamasını sağlar. Bazı bakteri türleri, fotosentetik siyanobakteriler gibi, dahili gaz vezikülleri oluştururlar, bunlar aracılığıyla hafifliklerini ayarlarlar, farklı miktarda ışık ve besin bulunan su seviyeleri arasında alçalıp yükselebilirler. Hücre dışı yapılar: Hücre zarının dışında bakteriyel hücre duvarı bulunur. Bakteriyel hücre duvarları peptidoglikan (eski metinlerde mürein olarak adlandırılırdı)'dan oluşur. Peptidoglikan, peptit zincirlerle birbirine çapraz bağlanmış polisakkarit zincirlerden oluşur, bu peptitler, hücredeki diğer protein ve peptitlerden farklı olarak, D-amino asitler içerir. Bakteri hücre duvarları bitki ve mantar hücre duvarlarından farklıdırlar; bitki hücre duvarları selülozdan, mantarlarınkiler ise kitinden oluşur. Bakteri hücre duvarları arkelerinkinden de farklıdır, bunlarda peptidoglikan bulunmaz. Hücre duvarı çoğu bakterinin varlığını sürdürmesi için gereklidir, bu yüzden bir antibiyotik olan penisilin tarafından peptidoglikan sentezinin engellemesi bakterilerin ölümüne neden olur. Bakterilerde başlıca iki tip hücre duvarı olduğu söylenebilir, bunlar Gram-negatif ve Gram-pozitif olarak adlandırılır. Bu adlar, hücrelerin Gram boyasıyla tepkimesinden kaynaklanır. Bu, bakterilerin sınıflandırılmasında çok eskiden beri kullanılan bir testtir. Gram-pozitif hücreler, pek çok peptidoglikan ve teikoik asit tabakasından oluşan kalın bir hücre duvarına sahiptir. Buna karşın, Gram-negatif bakteriler birkaç peptidoglikan tabakası bulunur, bunun etrafını ikinci bir hücre zarı sarar, bu zarda lipopolisakkaritler ve lipoproteinler bulunur. Çoğu bakteri Gram-negatif bir hücre duvarına sahiptir, sadece Firmicutes ve Actinobacteria'lar (bunlar daha evvel düşük G+C ve yüksek G+C Gram pozitif bakteriler diye bilinirdi) Gram-pozitif, düzene sahiptirler. Bu yapısal farklılık, antibiyotiklere duyarlılıkta farklılık yaratabilir; örneğin vankomisin Gram-pozitif bakterileri öldürmesine karşın, Haemophilus influenzae veya Pseudomonas aeruginosa gibi Gram-negatif patojenlere karşı etkisizdir. Çoğu bakteride hücrenin dışını proteinlerden oluşmuş sert bir bir S-tabakası kaplar. Bu tabaka, hücre yüzeyine kimyasal ve fiziksel bir koruma sağlar ve makromoleküllerin difüzyonuna karşı bir engel oluşturur. S-tabakalarının çeşitli ama az anlaşılmış işlevleri vardır. Kampilobakter'lerde virülans faktörü olarak etki ettikleri ve Bacillus stearothermophilus 'ta yüzey enzimleri içerdikleri bilinmektedir. Kamçılar (flagellum, çoğul hali flagella), sert protein yapılardır, çapları yaklaşık 20 nanometre olup uzunlukları 20 mikrometreyi bulabilir, hareket etmeye yararlar. Kamçının hareketi için gereken enerji, hücre zarının iki yanı arasındaki bir elektrokimyasal gradyan boyunca iyonların taşınması sonucu elde edilir. Fimbrialar ince protein iplikçiklerdir, sadece 2-10 nanometre çaplı olup uzunlukları birkaç mikrometreyi bulabilir. Hücrenin yüzeyine dağılıdırlar, elektron mikroskobunda ince saçlara benzerler. Fimbriaların, sert yüzeylere veya başka hücrelere bağlanmakla ilişkili oldukları sanılmaktadır, ve bazı bakterilerin virülansı için gereklidirler. Piluslar fimbrialardan biraz daha büyük hücresel uzantılardır, konjügasyon denen bir süreç ile bakteri hücreleri arasında genetik malzeme aktarılmasını sağlarlar. Çoğu bakteri kapsül veya sümük tabakaları üreterek kendilerini bunlarla çevreler. Bu yapılar farklı derecede karmaşıklık gösterir: hücre dışı bir polimer olan sümük tabakası tamamen düzensizdir, kapsül veya glikokaliks ise çok düzenlidir. Bu yapılar, bakterileri makrofaj gibi ökaryotik hücreler tarafından yutulmaya karşı korur. Bunlar ayrıca antijen olarak etki edip hücre tanınmasında rol oynayabilir, ayrıca yüzeylere bağlanmak ve biyofilm oluşmasına yardımcı olabilir. Bu hücre dışı yapıların biraraya gelmesi salgı sistemlerine dayalıdır. Bunlar proteinleri sitoplazmadan periplazmaya veya hücre dışı ortama aktarırlar. Çeşitli salgı sistemleri bilinmektedir ve bu yapılar virülans için gerekli olduğu için yoğun bir sekilde araştırılmaktdadır. Endosporlar Bazı Gram-pozitif bakteri cinsleri, örneğin Bacillus, Clostridium, Sporohalobacter, Anaerobacter and Heliobacterium, endospor adlı çok dayanıklı, uyuşuk ('dormant') yapılar oluşturabilir. Hemen her örnekte üremeyle ilişkili olmayan bir süreç sonucunda bir hücreden bir endospor oluşur; ancak Anaerobacter durumunda bir hücrenin içinde oluşabilecek endospor sayısı yediyi bulabilir. Endosporların merkezinde, içinde DNA ve ribozomlar olan bir sitoplazma, bunun etrafında ise korteks tabakası, en dışta ise su geçirmez ve sert bir örtü bulunur. Endosporlar bir metabolizma belirtisi göstermezler, aşırı kimyasal ve fiziksel baskılara dayanıklıdırlar, örneğin, morötesi ışın, gama ışınları, deterjanlar, dezenfektanlar, ısı, basınç ve kurutulma. Bu uyuşuk halde bu organizmalar milyonlarca yıl boyunca tekrar yaşama geri dönebilirler. Endosporlar bakterilerin uzaydaki boşluk ve radyasyona dayanmalarını sağlar. Endospor oluşturan bakterilerin bazıları hastalık da yapar: örneğin şarbon hastalığı Bacillus anthracis endosporlarının teneffüsüyle kapılabilir, derin saplanma yaralarının Clostridium tetani endosporları ile kontamine olması da tetanoza yol açar. Metabolizma Bakterilerde karbon metabolizması ya heterotrofiktir, organik bileşikler karbon kaynağı olarak kullanılır veya ototrofiktir, yani hücresel karbon, karbon dioksitin karbon fiksasyonu elde edilir. Tipik ototrofik bakteriler arasında fototrofik siyanobakteriler, yeşil kükürt bakterileri ve bazı mor bakteriler sayılabilir, ama pekçok kemolitrofik türler de, örneğin azotlayıcı ve kükürt yükseltgeyici bakteriler de bu grupta yer alır. Bakterilerin enerji metabolizması ya fototrofiye, yani ışığın fotosentez yoluyla kullanımına, ya da kemotrofiye, yani enerji için kimyasal bileşiklerin kullanımıdır ki bu bileşiklerin çoğu oksijen veya ona alternatif başka elektron alıcıları yoluyla yükseltgenir (aerobik veya anaerobik solunum). Nihayet, bakteriler ya inorganik ya da organik bileşikler elektron vericileri kullanmalarına göre, sırasıyla, litotrof veya organotrof olarak siniflanirlar. Kemotrofik organizmalar, hem enerji korunumu (solunum veya fermantasyon ile) hem de biosentetik tepkimeler için bu elektron vericilerini kullanır, buna karşın fototrofik organzmalar onları sadece biyosentetik amaçla kullanırlar. Solunum yapan organizmalar enerji kayanğı olarak kimyasal bileşikler kullanırlar, bunun için elektronlar bir yükseltgenme-indirgenme (redoks) tepkimesi ile indirgenmiş bir substrattan bir son elektron alıcısına taşınır. Bu tepkimenin açığa çıkardığı enerji ile ATP sentezlenir ve metabolizma yürütülür. Aerobik organizmalarda oksijen elektron alıcısı olarak kullanılır. Anaerobik organizmalarda nitrat, sülfat veya karbon dioksit gibi başka inorganik bileşikler elektron alıcısı olarak kullanılır. Bunlar sonucunda ekolojide büyük önem taşıyan denitrifikasyon, sülfat indirgenmesi ve asetogenez süreçleri meydana gelir. Kemotroflarda, bir elektron alıcısının yokluğu halinde, bir diğer olası yaşam yolu fermantasyondur, bunda indirgeniş substratlardan elde edilen elektronlar yükseltgenmiş ara ürünlere aktarılarak fermantasyon ürünleri meydana getirir, örneğin laktik asit, etanol, hidrojen, butirik asit gibi. Substratların enerji seviyesi ürünlerinkinden daha yüksek olması sayesinde fermantasyon mümkün olur, böylece organizmalar ATP sentezler ve metabolizmalarını çalıştırırlar. Bu süreçler, çevre kirlenmesine olan biyolojik tepkilerde de önemlidirler: örneğin sülfat indirgeyici bakteriler, cıvanın çok toksik şekillerinin (metil- ve dimetil-cıva) üretiminden büyük ölçüde sorumludur. Solunum yapmayan anaeroblar fermantasyon yoluyla enerji üretip indirgeyici güç elde ederler, bu sırada metabolik yan ürünleri (biracılıkta etanol gibi) atık olarak salgılarlar. Seçmeli anaeroblar (fakültatif anaeroblar), içinde bulundukları çevresel şartlara göre fermantasyon ile farklı elektron alıcıları arasında seçim yaparlar. Litotrofik bakteriler enerji kaynağı olarak inorganik bileşikler kullanırlar. Yaygın kullanılan elektron vericileri hidrojen, karbon monoksit, amonyak (nitrifikasyona yol açar), feröz demir ve diğer indirgenmiş metal iyonları, ve bazı indirgenmiş kükürt bileşikleridir. Metan gazı metanotrofik bakteriler tarafından hem bir elektron kaynağı hem de karbon anabolizmasında bir substrat olarak kullanılması bakımından dikkat çekicidir. Hem aerobik fototrofi hem de kemolitotrofide, oksijen nihai elektron alıcısı olarak kullanılır, anaerobik şarlarda ise inorganik bileşikler kullanılır. Çoğu litotrofik organizma otortorfiktir, buna karşın organotrofik organzmalar heterotrofiktir. Karbon dioksitin fotosentezle fiksasyonuna ek olarak bazı bakteriler, nitrojenaz enzimini kullanarak azot gazını sabitlerler (azot fiksasyonu). Çevresel olarak önemli olan bu özellik, yukarıda sayılmış metabolik tiplerin herbirindeki bazı bakterilerde görülür ama evrensel değildir. Büyüme ve üreme Çok hücreli organizmalardan farklı olarak, tek hücreli organizmalarda büyüme (hücre büyümesi) ve hücre bölünmesi yoluyla üreme sıkı bir sekilde birbirine bağlıdır. Bakteriler belli bir boya kadar büyür ve sonra eşeysiz üreme şekli olan ikili bölünme ile ürerler. En iyi şartlarda bakteriler büyük bir hızla büyür ve ürerler; bakteri topluluklarının sayısı her 9,8 dakikada ikiye katlanabilir. Hücre bölünmesinde birbirinin aynı iki yavru hücre meydana gelir. Bazı bakteriler, eşeysiz üremelerine rağmen, daha karmaşık yapılar oluştur, bunlar yavru hücrelerin yayılmasını kolaylaştırır. Buna örnek myxobacteria'larda tohum yapıları ve Streptomyces'te hif oluşumudur. Bazı bakterilerde ise tomurcuklanma olur, hücre yüzeyindeki meydana gelen bir uzantı kopunca bir yavru hücre meydana gelir. Laboratuvarda bakteriler çoğu zaman katı veya sıvı ortamda büyütülürler. Katı büyüme ortamı olarak agar kapları kullanılır, bunlar aracılığıyla bir bakteri suşunun saf bir kültürü elde edilir. Ancak, büyümenin hızının ölçülmesi veya büyük miktarda hücrenin eldesi gerektiğinde sıvı büyüme ortamları kullanılır. Karıştırılan bir ortam içinde büyüyen bakteriler homojen bir hücre süspansiyonu olştururlar, böylece kültürün eşit olarak bölünmesi ve başka kaplara aktarımı kolay olur. Ancak sıvı ortamda tek bakteri hücrelerinini izole edilmesi zordur. Seçici ortam (belli besin maddeleri eklenmiş veya eksik bırakılmış, veya antibiyotik eklenmiş ortam) belli organizmaların kimliğinin tespitine yardımcı olur. Bakteri büyütmek için kullanılan çoğu laboratuvar tekniğinde, çok miktarda hücrenin hızlı ve ucuz olarak üretilmesi için bol miktarda besinler kullanılır. Ancak, doğal ortamlarda besinler sınırlı miktradadır, bu yüzden bakteriler ilelebet üremeye devam edemez. Besin sınırlaması farklı büyüme stratejilerinin evrimleşmesine yol açar. Bazı organizmalar besinler mevcut olunca son derece hızlı çoğalır, örneğin yaz aylarında bazı göllerde yosun ve siyanobakteriyel büyümelerinde olduğu gibi. Başka bazı organizmalar sert çevresel şartlara adaptasyonları vardır, örneğin Streptomyces'in rakip organizmaları engellemek için çoklu antibiyotik salgılaması gibi. Doğada çoğu organizma besin teminini kolaylaştıran ve çevresel streslere karşı koruyucu topluluklar halinde (biyofilm gibi) yaşar. Bu ilişkiler belli canlı veya canlı gruplarının büyümesi için şart olabilir (sintrofi). Bakteriyel büyüme üç evre izler. Bir bakteri topluluğu yüksek besin bulunduran bir ortama ilk girdiğinde hücrelerin yeni ortamlarına adapte olmaları gerekir. Büyümenin ilk evresi bekleme aşamasıdır (latent dönem veya lag fazı), bu yavaş büyüme döneminde hücreler yüksek besili ortama adapte olup hızlı büyümeye hazırlanırlar. Hızlı büyüme için gerekli olan proteinler üretilmekte olduğu için bekleme döneminde biyosentez hızı yüksektir. Büyümenin ikinci evresi logaritmik faz (log fazı) veya üssel faz olarak adlandırılır. Bu evrede üssel büyüme olur. Bu evrede hücrelerin büyüme hızı (k), hücre sayısının iki katına çıkma süresi de jenerasyon zamanı (g) olarak adlandırılır. Besinlerden biri tükenip sınırlayıcı olana kadar süren log fazı sırasında besinler en yüksek hızla metabolize olur. Büyümenin son evresi durağan faz olarak adlandırılır, ve besinlerin tükenmiş olmasından kaynaklanır. Hücreler metabolik etkinliklerini azaltır ve gerekli olmayan hücresel proteinlerini harcarlar. Durağan faz, hızlı büyümeden bir strese tepki haline geçiş dönemidir, DNA tamiri, antioksidan metabolizması, ve besin taşıması ile ilişkili genlerin ifadesinde bir artış olur. Genetik Çoğu bakteride tek bir dairesel kromozom bulunur, bunun büyüklüğü endosimbiyotik bir bakteri olan Candidatus Carsonella ruddii de 160.000 baz çiftinden, bir toprak bakterisi olan Sorangium cellulosumda 12,200,000 baz çiftine kadar uzanır. Borrelia cinsine ait spiroketler bu genel özelliğin bir istisnasıdır, Borrelia burgdorferi (Lyme hastalığı etmeni) gibi türlerde tek bir doğrusal kromozom bulunur. Bakteriyel kromozomlardaki genler genelde tek bir sürekli DNA parçasından oluşur, bazı bakterilerde intronlar bulunmuşsa da bunlar ökaryotlarda olduğundan çok daha enderdir. Bakteriler aynı zamanda plazmidler de bulunabilir, bunlar kromozomdan ayrı DNA parçalarıdır, antibiyotik direnç genleri veya virülans faktörleri içerebilirler. Bir diğer tip bakteriyel DNA, kromozoma entegre olmuş virüslere (bakteriyofajlara) aittir. Çeşitli bakteriyofaj türleri vardır, bazıları sadece konak bakterilerini enfekte edip onu parçalar, diğerleri ise hücre içine girdikten sonra DNA'larını bakteriyel kromozoma dahil ederler. Bir bakteriyofaj konak hücresinini fenotipine katkıda bulunan genler taşıyabilir: örneğin Escherichia coli O157:H7'nin evrimi sırasında entegre olmuş bir fajın toksin genleri, zararsız bir atasal bakteriyi ölümcül bir patojene dönüştürmüştür. Bakteriler, eşeysiz organizmalar olarak, ana hücrelerinin genlerinin kopyalarını devralırlar. Ancak tüm bakteriler, DNA'larındaki değişikliklerin (mutasyon ve genetik rekombinasyonun) seçilimi ile evrimleşir. Mutasyonlar DNA ikileşmesi sırasında meydana gelen hatalar veya mutajenlerden kaynaklanır. Mutasyon hızları farklı bakteri türleri ve hatta aynı bakterinin farklı suşları arasında büyük farklılıklar gösterir. Bazı bakteriler ayrıca genetik malzemelerini hücreler arasında aktarabilirler. Bu üç yolla meydana gelebilir. Birincisi, bakteriler ortamlarıdaki yabancı DNA'yı içlerine alabilirler, buna transformasyon denir. Genler ayrıca transdüksiyon yoluyla, bir bakteriyofajın yabancı bir DNA parçasını kromozomun içine yerleştirmesiyle aktarılabilir. Gen aktarımını üçüncü yolu bakteriyel konjügasyondur, bunda DNA doğrudan hücresel temas yoluyla aktarılır. Başka bakteri veya ortamdan gen edinimine yatay gen transferi denir ve doğal şartlarda bu yaygın olabilir. Gen transferi özellikle antibiyotik direncinin oluşmasında önemlidir, çünkü bu, farklı patojenler arasında direnç genlerinin transferini sağlar. Hareket Hareketli (motil) bakteriler Kamçı (Biyoloji), bakteriyel kayma, seğirmeli hareket ve batmazlık (buoyuans) değişmesi yoluyla hareket ederler. Seğirmeli hareketlilikte bakteriler tip IV piluslarını bir kanca olarak kullanır, tekrar tekrar onu uzatır, bir yere saplar ve büyük bir kuvvetle (>80 pN) geri çeker. Bakteriyel türler kamçılarının sayı ve düzenine göre farklılık gösterirler; bazılarının tek bir kamçısı vardır (tek kamçılı veya monotrik), bazılarının iki uçta birer kamçısı (iki kamçılı veya amfitrik), bazılarının uçlarında kamçı kümeleri (iki demet kamçılı veya lofotrik), diğerlerinin ise tüm yüzeylerine yayılmış kamçıları vardır (çok kamçılı veya peritrik). Bakteri kamçısı yapısı en iyi anlaşılmış hareketlilik yapısıdır, 20 proteinden oluşur, ayrıca onun düzenlenmesi ve inşası için yaklaşık 30 diğer protein gereklidir. Kamçının tabanında bulunan motor, membranın iki yanı arasındaki elektrokimyasal gradyanı güç için kullanır. Bu motor, bir pervane gibi çalışan iplikçiği döndürür. Çoğu bakterinin (E. coli gibi) iki farklı hareket biçimi vardır: ileri hareket (yüzme) ve yuvarlanma (tumbling). Yuvarlanma sayesinde bakteri yönünü değiştirir ve izlediği yol üç boyutlu bir rassal yürüyüş şeklini alır. Spiroketlerin kamçısı periplamik boşlukta iki zar arasında bulunur. Bu bakterilerin kendilerine has sarmal bir gövdeleri vardır ve hareket ederken kıvrılırlar. Hareketli bakteriler belli uyaranlar tarafından çekim veya itime uğrarlar, bunun neden olduğu davranışlara taksis denir: bunların arasında kemotaksis, fototaksis ve manyetotaksis bulunur. Myxobacterialerde, bireysel bakteriler beraber hareket ederek hücre dalgaları oluşturur, bunlar farklılaşıp içinde sporlar bulunduran tohum yapıları oluşturur. Myxobacteria'lar yalnızca katı ortam üzerindeyken hareket ederler, buna karşın E. coli hem sıvı hem katı ortamda hareketlidir. Birkaç Listeria ve Şigella türü, konak hücreler içinde hareket ederken, normalde organellerin hücre içinde taşınmasını sağlayan hücre iskeletini kullanırlar. Kendi hücrelerinin bir kutbunda aktin polimerizasyonunu sağlayarak bir cins kuyruk oluştururlar, bu onları konak hücre sitoplazması içinde iter. Sınıflandırma ve kimlik tespiti Sınıflandırma, bakterileri benzerliklerine göre gruplandırıp adlandırarak onlardaki çeşitliliği betimlemeye yarar. Bakteriler hücre yapısı, hücresel metabolizma veya hücresel bileşenlerindeki (DNA, yağ asitleri, pigment, antijen ve kinonlar gibi) farklılıklara göre sınıflandırılabilirler. Bu yöntemler bakteri suşlarının kimliklerinin tespitini ve sınıflandırılmasına olanka sağlasa da, bu farklılıkların farklı türler arasındaki varyasyonları mı yoksa aynı tğr içindeki varyasyonları mı yansıttığı belli değildi. Bu belirsizliğin nedeni, çoğu bakteride ayırdedici yapıların olmaması, ayrıca birbiriyle ilişkisiz türler arasında yatay gen transferi olmasıydı. Yatay gen trasnferi yüzünden birbirine akraba sayılabilecek bazı bakteri türleri çok farklı morfoloji ve metabolizmaya sahip olabilirler. Bu belirsizliğin üstesinden gelebilmek için modern bakteri sınıflandırması moleküler sistematiğe ağırlık verir, guanin sitozin oranının ölçümü, genom-genom hibridizasyonu, ayrıca yatay gen transferine uğramamış genlerin (ribozomal RNA gibi) dizilenmesi gibi genetik teknikler kullanır. Bakteri sınıflandırması International Journal of Systematic Bacteriology (Uluslarası Sistematik Biyoloji) dergisi ve Bergey's Manual of Systematic Bacteriology kitapçığında yayımlanarak resmileşir. "Bakteri" terimi bir zamanlar tüm mikroskopik, tek hücreli prokaryotlar için kullanılırdı. Ancak moleküler sistematik sayesinde prokaryotik yaşamın iki ayrı sahadan oluştuğu gösterildi. Önceleri Eubacteria ve Archaebacteria diye adlandırılan, ama artık Bacteria and Archaea olarak adlandırılan bu iki canlı grubu, ortak bir atadan ayrı ayrı evrimleşmişlerdir. Arkeler ve ökaryotlar arasındaki yakınlık, her birinin bakterilerle olan yakınlığından daha çoktur. Bu iki saha (üst alem), Eukarya ile birlikte, günümüzde mikrobiyolojide en yaygın kullanılan sınıflandırma sistemi olan üç saha sisteminin temelini oluşturur. Ancak, moleküler sistematiğin yakın zamanda kullanıma girmesi ve genom dizileri elde edilmiş canlıların sayısındaki hızlı artış nedeniyle bakteri sınıflandırması halen hızle değişen ve gelişen bir bilim dalıdır. Örneğin, bazı biyologlar arke ve ökaryotların Gram-pozitif bakterilerden evrimleştiğini iddia etmektedirler. Laboratuvarda bakteri kimlik tespiti özellikle tıpta çok önemlidir, çünkü doğru tedavi, enfeksiyona yol açan bakteri türüne bağlıdır. Dolayısıyla insan patojenlerinin kimliğinin tespiti, bakterilerin tanımlanma tekniklerinin gelişmesinin başlıca dürtüsü olmuştur. 1884'te Hans Christian Gram tarafından geliştirilmiş Gram boyama, bakterileri hücre duvarlarının yapısal özelliklerine göre tanımlamakta kullanılır. Bazı organizmalar Gram boyasından başka boyalarla en iyi tanınabilirler. Özellikle mikobakteriler ve Nocardia Ziehl–Neelsen ve benzeri boyalarla asit eşliğinde boyanır. Başka organizmalar özel ortamlarda büyümeleriyle tanınırlar veya seroloji gib başka teknikleri gerektirirler. Kültür teknikleri, bakterilerin büyümesini sağlamak ve belli bakterilerin kimliğini tespit etmek, aynı zamanda da nümenede bulunan başka bakterilerin büyümesini sınırlamak için tasarlanmıştır. Çoğu zaman bu teknikler belli nümune türleri göz önüne alınarak geliştirilmiştir; örneğin bir tükürük örneği pnömoniye yol açan organizmaları ortaya çıkaracak şekilde işleden geçirilir, bir dışkı örneği ise ishale yol açan organizalar tanımak için seçici ortamda kültürlenir, bu ortamda patojen olmayan bakteriler büyümez. Normal olarak steril olan örnekler, örneğin kan, idrar veya omurilik sıvısı, tüm organizmaların büyümesini sağlayan şartlarda kültürlenir. Patojen bir organizma izole edildikten sonra, morfolojisi, büyüme özellikleri (aerobik veya anaerobik büyüme, hemoliz şekilleri gibi) ve boyama ile daha ayrıntılı olarak karakterize edilebilir. Bakteri sınıflandırmasında olduğu gibi, bakteri kimlik tespiti de gittikçe daha sık olarak moleküler yöntemlerle yapılmaktadır. DNA'ya dayalı yöntemler, örneğin polimeraz zincir reaksiyonu, özgüllükleri ve çabuklukları nedeniyle, kültür yapmaya dayalı tekniklere kıyasla artarak popülerleşmektedir. Bu yöntemler sayesinde "yaşayan ama kültürlenemeyen", yani metabolik olarak aktif olan ama bölünmeyen hücrelerin kimliklerini tespit etmek mümkün olmaktadır. Ancak bu gelişmiş yöntemlerle dahi, bakteri türlerinin toplam sayısı bilinmemektedir ve bu sayı belli güven sınırları içinde tamin dahi edilememektedir. Mevcut sınıflandırmaya göre bilinen bakteri türlerinin (siyanobakteriler dahil) sayısı 9000'inin altındadır, ama bakteriyel çeşitliliğin büyüklüğü hakkındaki tahminlerde toplam tür sayısı 107'den 109'a kadar uzanır ve hatta bu tahminlerinlerin dahi birkaç büyüklük mertebesi kadar hatalı olabileceği düşünülmektedir. Diğer organizmalarla etkileşimler Görünür basitliklerine rağmen, bakteriler diğer canlılarla karmaşık etkileşimler içindedir. Bu simbiyotik ilişkiler parazitizm, mutualizm ve komensalizm olarak üçe ayrılırlar. Komensal bakteriler her yerde bulunur, hayvan ve bitkiler üzerinde büyümeleri başka yüzeyler üzerinde büyümeleri ile aynıdır (ancak sıcaklık ve ter bunların büyümesini hızlandırabilir); insanlarda bu organizmalardan çok sayıda olması vücut kokusunun nedenidir. Mutualistler Bazı bakteriler varlıklarının devamı için gerekli olan, mekansal olarak yakın ilişkilere girerler. Bu tür mutualist ilişkilerden biri olan türler arası hidrojen transferi olarak adlandırılır, butirik asit veya propiyonik asit tüketip hidrojen tüketen anaerobik bakteriler ile, hidrojen tüketen metanojenik arkeler arasındadır. Bu ilişkide yer alan bakteriler kendi başlarına bu organik asitleri kullanamazlar çünkü bu reaksiyon sonucu aşığa çıkan hidrojen çevrelerinde birikir. Hidrojen tüketici arkelerle yakın ilişkileri sayesinde hidrojen konsantrasyonu yeterince düşük kalır ve bakteriler büyüyebilir. Toprakta, rizosferde (kökün yüzeyi ve kökü bağlı olan topraktan oluşan bölgede) mikroorganizmalar azot fiksasyonu yaparlar, yani azot gazını azotlu bileşiklere dönüştürürler. Bu süreç sonucunda bitkilerin (ki onlar azot fiksasyonu yapamazlar) kolayca absorbe edebildiği bir azot kaynağı meydana gelir. Pekçok başka bakteri, insan ve başka canlılarda simbiont olarak bulunurlar. Örneğin normal insan bağırsağındaki bağırsak florasındaki 1000'den fazla bakteri, bağırsak bağışıklığına, bazı vitaminlerin (folik asit, K vitamini ve biyotin) sentezine, süt proteinlerinin laktik asite dönüştürülmesine (bkz. Laktobasiller) katkıda bulunur, ayrıca sindirilmemiş kompleks karbonhidratların fermantasyonunu sağlar. Bu bağırsak floarası ayrıca potansiyle patojen bakterilerin büyümesini engellediği için (genelde yarışmalı dışlama ile) bu faydalı bakterilerin probiyotik besin katkısı olarak alınmasının olumlu etkileri bulunmuştur. Patojenler Eğer bakteriler başka organizmalarla parazitik ilişkiler kurarlarsa patojen olarak sınıflandırılırlar. Patojen bakteriler insan larda ölüm ve hastalığın başlıca nedenidir; neden oldukları enfeksiyonlar arasında tetanoz, tifo, tifüs, difteri, frengi, kolera, besin kaynaklı hastalıklar, cüzzam ve verem sayılabilir. Bilinen bir hastalığın patojenik kaynağının keşfi yıllar sürebilir, örneğin mide ülseri hastalığı ve Helicobacter pylori durumunda olduğu gibi. Bakteryel hastalıklar tarımda da önemlidir, bakteriler bitkilerde yaprak beneği, ateş yanıklığı ve solmaya, çiftlik hayvanlarında da paratüberküloz, mastit, salmonella ve şarbona neden olur. Her patojen türün insan konağı ile etkileşimlerinin karakteristik bir spektrum oluşturur. Bazı organizmalar, örneğin Stafilokok veya Streptokok, deri enfeksiyonu, pnömoni, menenjit ve hatta sistemik sepsis (şok, masif vazodilasyon ve ölümle sonuşlanan sistemik bir enflamasyon tepkisi) neden olur. Lakin bu oganizmalar aynı zamanda normal insan florasına aittir, genelde insan derisi ve burununda bulur ve hiç bir hastalığa yol açmazlar. Buna karşın bazı başka organizmalar her durumda insanda hastalık yaparlar. Örneği Rickettsia, ancak başka canlıların hücrelerinin içinde büyüyüp çoğlabilen, zorunlu bir hücreiçi parazittir. Rickettsia'nin bir türü tifüse, bir diğeri ise Kayalık Dağlar benekli hummasına neden olur. Klamidya, zorunlu hücre içi paraziti bir diğer takımı içinde bulunan bazı türler pnömoni, veya idrar yolu enfeksiyonuna neden olabilir, ayrıca koroner kalp hastalığı ile de ilişkili olabilirler. Nihayet, bazı bakteri türleri, Pseudomonas aeruginosa, Burkholderia cenocepacia, ve Mycobacterium avium gibi, fırsatçı patojendirler ve sadece immün yetmezlik çeken veya kistik fibrozlu kişilerde hastalık yaparlar. Bakteriyel enfeksiyonlar antibiyotikle tedavi edilebilirler, bu antibiyotikler bakterileri öldürürse bakteriosidal, sadece onların çoğalmasını engelliyorsa bakteriostatik olarak sınıflandırılır. Pekçok antibiyotik vardır ve bunların her sınıfı patojende olup konağında olmayan bir süreci engeller. Antibiyotiklerin nasıl seçici toksiklik gösterdiğine bir örneği kloramfenikol ve puromisindir, bunlar bakteri ribozomlarını engellerler, ama yapısal olarak farklı olan ökaryotik ribozomlara etki etmezler. İnsan hastalıklarını tedavide kullanılan antibiyotiklerin hayvancılıkta da hayvanlarının büyümesini hızlandırmak için kullanılması, bakterilerde antibiyotik direnci gelişmesine neden olabilir. Enfeksiyonları engellemek için antiseptik önlemler alınır, örneğin deri bir iğne ile delinmeden evvel sterilize edilir. Cerrahi ve dişçilik araçları da kontaminasyon ve bakteriyel enfeksiyonu önlemek için sterilize edilir. Çamaşır suyu gibi dezenfektanlar, eşya yüzeylerinde bulunan bakteri ve diğer patojenleri öldürüp kontaminasyonu önlemek ve enfeksiyon riskini daha da azaltmak amacıyla kullanılır. Teknoloji ve endüstride önemi Bakteriler, çoğu zaman laktobasil türleri, maya ve küflerle beraber, fermante edilmiş gıdaların (peynir, turşu, soya sosu, sauerkraut, sirke, şarap ve yoğurt gibi) hazırlanmasında binlerce yıldır kullanılmaktadır. Bakterilerin çeşitli organik bileşikleri parçalayabilme yetenekleri dikkate değerdir ve atıkların işlenmesi ve değerlendirilmesinde (bioremediation) kullanılmıştır. Petroldeki hidrokarbonları sindirebilen bakteriler çoğu zaman petrol saçılmalarının temizlenmesinde kullanılır. 1989'da meydana gelen Exxon Valdez tanker kazasının ardından Prince William Sound kıyılarına gübre dökülerek bu doğal bakterilerin büyümesi teşvik edilmişti. Bu yöntem, çok fazla petrol kaplanmamış kıyılarda etkili olmuştu. Bakteriler ayrıca endüstriyel toksik atıkların değerlendirilmesinde de kullanılırlar. Kimya endüstrisinde, enantiyomerik olarak saf kimyasalların üretilmesinde (bunlar ilaç ve tarımsal kimyasalların hammadesidir) bakteriler önemli rol oynarlar. Bakteriler ayrıca biyolojik haşare kontrolünde haşare ilaçlarının yerine kullanılabilirler. Bunun en yaygın örneği, Gram pozitif bir toprak bakterisi olan Bacillus thuringiensisdir (BT olarak da adlandırılır). Bu bakterinin alt-türleri kelebeklere (Lepidoptera türlerine) özgül bir böcek öldürücü olarak kullanılır. Spesifik olmalarından dolayı bu böcek öldürücüler çevre dostu olarak kabul edilir; insanlara, yabani hayvanlara, polinasyon yapan ve diğer faydalı böceklere etkileri çok az veya hiçtir. Hızlı büyüme ve kolaylıkla manipüle edilebilmelerinden dolayı bakteriler moleküler biyoloji, genetik ve biyokimyada birer araç olarak kullanılırlar. Bakteri DNA'sında mutasyon yapıp bunun fenotipini inceleyerek bilimciler genlerin, enzimlerin ve metabolik patikaların işlevlerini belirleyebilmekte, sonra edindikleri bilgileri daha karmaşık canlılara uygulayabilmektedirler. Muazzam miktarda enzim kinetiği ve gen ifadesi verileri, canlıların matematiksel modellerinde kullanılarak hücrenin biyokimyasının anlanması amaçlanmaktadır. Çok çalışılmış bazı bakterilerde bu mümkündür, Escherichia coli metabolizmasının modelleri üretilmekte ve denenmektedir. Bakteri metabolizması ve genetiğinin bu seviyede anlaşılır olması sayesinde bakterilerin biyoteknoloji kullanılarak yeniden tasarımı mümkün olmakta, böylece onların tedavi amaçlı proteinleri (insülin, büyüme faktörleri veya antikorlar gibi) daha verimli sekilde üretmesi sağlanabilmektedir. Kaynak: bakteri.nedir.com/#ixzz2gQ80yt60

http://www.biyologlar.com/bakteri-nedir

KALITSAL HASTALIKLAR

I- Hücre Bölünmesi Esnasındaki Hataya Bağlı Olanlar : A. NONDİSJUNCTİON : Kromozom anomalilerinden en önemlisi olup, mayozda gametlere az veya çok sayıdaki kromozom gitmesi olayıdır. 2 şekilde olur. 1. Ayrılamama 2. Anafazda gecikme Mayotik bölünme sırasında oluşan nondisjunction olayı; 2 ayrı hücreye gitmesi gereken bir kromozom çiftinin heriki üyesinin birbirinden ayrılmayıp yeni hücreye gitmesi şeklindedir. Böylece gametlerden birinde adı geçen kromozomdan hiç bulunmazken; diğerinde normalde 1 tane olması gerekirken 2 tane olacaktır. Bu gamet, sözkonusu kromozomdan normal olarak 1 tane taşıyan karşı cins gametle birleşince normalde zigotta 2 kromozom bulunurken ; bu zigotta 1 adet bulunacaktır. Böyle bir hücreye monozomik diyoruz. 2 kromozom içeren gamet karşı cins normal gametle birleşince, zigotta bu kromozomdan 3 adet bulunacaktır. Buna da trizomi diyoruz (Mongolizm-trizomu 21; Klinefelter sendromu XXY ve triple XXX sendromu). Monozomik olanların başlıcaları monozomi G ve Turner sendromu 45 X0 gelir. Monozomik durum otozomal (vücut kromozomlarında) meydana gelmişse hayatla bağdaşmaz. Buna istisna olarak monozomi G gösterilebilir. Otozomal trizomiler ise çok sıktır. Klasik Down sendromu (mongolizm), Edwards sendromu (trizomi 18), Patau sendromu (trizomi 13) buna iyi bir örnek olabilir. B-ANAFAZ LAG (Anafazda geri kalma): Hücre bölünmesi ve kromozomların eşit olarak 2’ye ayrılması normal olarak seyreder. Fakat ayrılmayı izleyen; kromozomların kutuplara göçü hatalıdır. Kromozomlardan 1 tanesi yeni meydana gelen yavru hücrenin dışında kalır, ortadan kaybolur veya diğer grup kromozomlar ile diğer hücre içine katılır. Normal fertilizasyon sonunda meydana gelecek zigot ya bu kromozom için monozomik veya trizomik olacaktır. Olayın sonucu bakımından nondisjunctiondan farkı yoktur. Bazı hallerde geri kalan kromozom hiçbir hücreye giremiyecek ve ortadan kaybolacaktır. Bu halde oluşan hücrelerden biri normal, diğeri monozomik olacaktır. 2. Mozaisizm : Mozaisizm; bir organizmada aynı zigottan menşe almış fakat kromozom yapıları farklı olan birden fazla hücre grubunun birlikte bulunmasıdır. Ayrılamama veya anafazda geri kalma olayı zigotun ilk bölünmesinden sonra meydana gelir. O ana kadar normal olarak bölünen hücreler ve bunlardan meydana gelecekler, orijinal zigotun karyotipinde olacaklardır. Hücreler ya monozomik veya trizomik olacaklardır. Monosizme benzeyen ve organizmada kromozom yapısı farklı birden fazla hücre grubunun bulunması ile kendini gösteren diğer bir durum chimerismdir. Mozaisizmde değişik karyotipte hücre toplulukları, tek bir zigottan menşe almışlardır. Oysa kimerizmde, kromozom yapıları farklı olan hücre grupları, ayrı ayrı zigotlardan menşe almışlardır (Dizigotik ikizlerde plasentadaki anastamozlar sonucu 2 ayrı kan hücresinin bulunuşu). 3. Kromozomların sayı anomalileri : A. Euploidi B. Aneuploidi A. Euploidi: Hücrelerdeki kromozom sayısı; o organizma türü için normal olan haploid sayının tam katı şeklinde artmıştır. İnsanda haploid sayı 23, diploid 46'dır. Haploid sayının 3 kat artmasına triploidi (69 kromozom), 4 kat artmasına tetraploidi (92 kromozom ) denir. 46 kromozomdan fazla olan ve kromozomların, haploid sayının tam katı şeklinde artmış bulunduğu durumlara poliploidi denir. Poliploidiye sebep; bir hücrede çekirdek bölünmesi olduğu halde sitoplazma bölünmesinin (sitokinaz) olmayışıdır. (Habis tümör dokuları ve spontan düşük materyali) B.Aneuploidi : Kromozom sayısı, normal diploid sayıdan (46) bir veya birkaç adet az veya fazladır. Az oluşu hipoploidi, fazlalığı hiperploidi olarak adlandırılır. Hiperploidiye en iyi örnek trizomiler, hipoploidiye Turner sendromu verilebilir. 4. Kromozomların Şekil Anomalileri A. Translokasyon : Kırılma gösteren 2 ayrı kromozomdan birinin kırılan parça üzerine yapışmasına translokasyon denir. Sağlam kromozom uçları birbirine yapışmaz. Yapışmayan bir sonraki mitozda bölünmeye katılamaz ve ortadan kaybolur. a- Karşılıklı translokasyon (Reciprocal trans********) b- Sentriolde birleşme B. Delesyon: Kromozomun küçük bir segmentinin kopması demektir; bu olayın da sebebi kromozomlardaki kırılmalardır. Terminal delesyondan kromozomun bir ucundan bir parça kaybolur. Böyle bir delesyonun meydana gelmesi için kromozomun bir ucuna yakın bir bölgede 2 kırık gerekir. Sonuçta kırıklar arasındaki kısım kaybolmakta ve uçlar tekrar kaynamaktadır (Rension). Cri du chat hastalığında 5. kromozomun kısa kolunda delesyon vardır. C. İnversiyon Bir kromozomda meydana gelen 2 kırık arasındaki segmentin kendi etrafında 180o dönüp tekrar kaynaması ile inversiyon adı verilen anomali oluşur. Sentromerin 2 tarafında 2 ayrı kırık oluşup kırıkları sentromere olan uzaklıkları eşit değilse gen sırası değişmekle kalmayacak; aynı zamanda kromozomun morfolojisi de değişecektir. Buna perisentrik inversiyon denir (Down ve Patau sendromları) D. Duplikasyon: Kırılma sonucu kromozomdan kopan bir segment kendi homolog kromozomuna yapışırsa, duplikasyon meydana gelir. Bunun sonunda da gen sırasında da duplikasyon olur. Buna tandem (ardarda dizilmiş) duplikasyon denir(12343456). Ters tendon duplikasyonda ise 12344356 şeklindedir. E. Halka (Ring) kromozomu Bir kromozomun 2 ucunda 2 kırık olursa bu 2 uç yapışkan bir hal alır ve birbirleri ile birleşip halka şekilini oluştururlar. F. İzokromozom: Sentromerin bölünmesindeki hataya bağlıdır. Normalde 2 kromatide ayrılan kromozom longitidunal olarak 2 ye bölünür. KROMOZOM ANOMALİLERİ I- OTOZOMAL KROMOZOM HASTALIKLARI A- TRİZOMİK SENDROMLAR 1. Mongolizm (Down sendromu) 2. Trizomi 18 sendromu (Edwards sendromu) 3. Trizomi 13 sendromu (Patau sendromu) 4. Trizomi C sendromu 5. Trizomi 22 sendromu B. DELESYON SENDROMLARI 1. Kedi miyavlaması sendromu (Cri-du chat) 2. 4 No'lu kromozomun kısa kolunun delesyonu (Wolf-Hirschhorn sendromu) 3. 18 No'lu kromozomun kısa ve uzun kollarının delesyonları 4. Monozomi G sendromu (G Delesyon sendromu) 5. Halka (Ring) kromozomu sendromu C. PARSİYEL TRİZOMİ SENDROMLARI Trizomi G a. Anne yaşı ileridir b. Genellikle ailevi değildirler, sporadik görülürler. c. Prenatal (intra uterin) ve postnatal (ekstrauterin) büyüme ve gelişme geriliği vardır. d. Çoklu konjenital malformasyonlar bulunur. e. Zeka geriliği görülür f. Mikrosefali mevcut olabilir. h. Kafa kemiklerinde malformasyon ve buna bağlı olarak değişik yüz görünümü vardır. i. Merkezi sinir sistemi anormaldir. l. Adele defektlerine sık rastlanır. k. Hemen hepsinde tipik dermatojik bulgulara rastlanır. MONGOLİZM (TRİZOMİ 21, DOWN SENDROMU) Otozomal kromozom hastalıklar içinde en sık görülenidir. Popülasyonda 1/600 -1/700 sıklıkta görülür. Monozigotik ikizlerde çoğu zaman; dizigotik ikizlerde nadiren görülmesi ve mongol kadınların bebeklerinde de %50 rastlanması hastalığın etyolojisinde genetiği düşündürür. 1932'de Waardenburg genetik bozukluğun nondisjunction olabileceğini ileri sürmüştü. 1959'da Jerome Lejense normalden 1 fazla olan kromozomun G grubuna ait olduğunu göstermiştir. Büyüme ve gelişimleri geridir; bu gerilik intrauterin gelişme geriliğine bağlıdır. Boyları kısa olup; daima %3 persentilin altına düşer. Baş şekli ve yüz görünümü tipiktir. Oksipital bölgenin yassı oluşu; yenidoğanlarda tanıya yardım eder. Hipertelorizm vardır. Dil ağızdan dışarı sarkar ve yüzeyi fissürlerle kaplıdır (Skrotal dil). Burunda aşırı sekresyon ve ağız köşelerinde ragadlar vardır. Dişler geç çıkar ve düzensiz görünümdedirler. Göz kapağı aralığı (palpabral fissür) obliktir, yani göz kapakları aralığının uzun ekseni dışarı ve yukarı yönde olup; çekik badem gözlü görünümü verir. Mongol ırkında kıvrım, üst göz kapağının üzerinden içe ve aşağı doğru kesilmeden iner. Mongol hastalarda ise bu kıvrım hakiki epikantus denilen ve daha içte bulunan, oldukça dikey olarak içe ve aşağı doğru inen 2. bir kıvrımla kesilir. Gözlerde sıklıkla strabismus ve katarakt görülür. İriste Brushfield lekesi denilen ve iris stromasının ön tabakasındaki bağ dokusunun yer yer kalınlaşmasına bağlı beyaz lekeler bulunur. Boyun kısa ve geniştir. Yenidoğanlarda ensede gevşek bir deri kıvrımı bulunur, bebeklik devrinde kaybolur. Eller kısa ve geniş, parmaklar künttür. %50 vakada avuçta normalde 2 tane olan çizgiler birleşerek tek avuç çizgisini (Simian çizgisi) yapar. Elde 5. parmak kısa ve içe doğru kıvrıktır (klinodaktili). Ayaklarda başparmak ve 2. parmak arasındaki mesafe geniştir. Zeka geridir. Konuşma ve yürüme normalden çok geç başlar. Nöromüsküler sistemde görülen en önemli bulgu hipotonisitedir. Yenidoğanların %50 sinde moro reflexi yoktur. Son yıllarda hastaların kanında seratonin maddesinin eksik olduğu tesbit edilmiştir. Hastalarda ÜSYE'na sık rastlanır. İlk yaştaki ölüm sebeplerinden biri pnömonidir. Vakaların %40 kadarında olan konjanital kalp hastalığı ilk yaştaki ölüm sebeplerindendir. Atrio-ventricularis communis, VSD, ostium sekundum tipi ASD en sık rastlananlardır. İlk yaştaki ölüm nedenlerinden bir diğeri de GIS malformasyonlarıdır. (T-E fistül, duodenal atrezi, megakolon, imperfore anüs) Dişilerde fertilite normaldir. Normal bir erkekle evlenen mongol kadının çocuklarının % 50 si mongol olacaktır. Erkek mongol hastalar ise infertildirler. Mongollarda lösemi insidansı yüksek, lösemili hastalarda mongolizmin birlikte görülme oranı normal popülasyondan 15-20 defa daha fazladır. Mongol yenidoğanlarda IgG'nin düşük olduğu bildirilmiştir. Mongolizmde insidans anne yaşının ilerlemesi ile doğru orantılı olarak artar. Sitogenetik bulgular: Esas aberasyon 21 No'lu kromozomun fazlalığı olmakla birlikte; mevcut kromozom aberasyonunun tipine göre mongolizm 3 grupta incelenebilir. a. Mutad tip mongolizm (trizomi 21) G grubuna ait 21 nolu kromozomdan normalde 2 adet bulunması gerekirken bu hastalarda 3 tane bulunur. b. Translokasyon tipi mongolizm : Fazla olan 21 nolu kromozom diğer bir kromozom üzerine eklenir; kromozom materyalinde 1 fazla 21 nolu kromozomun mevcudiyetine rağmen total kromozom sayısı 46 dır. 2 akrosentik kromozomun uzun kollarının birbiri üzerine translokasyonu söz konusudur. Bu tip translokasyona sentriolde yapışma (centric fusion) tipi translokasyon veya "Robertsonian trans********" denir. Bu durumda hem kromozom sayısında azalma olacaktır; hem de 2 akrosentrik kromozomdan 1 submetasentrik kromozom oluşacaktır. 2. tipte translokasyonda kromozomlar arası segment alışverişi vardır. Bu halde kromozomun sayısı değişmemekte ve yer değiştiren segmentlerin boyları eşit ise kromozomların şekillerinde de değişiklik olmayacaktır. c. Mozaik Mongolizm : Hücrelerin bir kısmı normal, bir kısmı ise 21 nolu kromozom için trizomiktir. 1. şahısta ortak bir zigottan çıkarılan fakat kromozom yapıları birbirinden farklı olan 1 den fazla hücre grubunun bulunması haline mozaisizm denir. TRİZOMİ-18 (EDWARDS SENDROMU, TRİZOMİ E) Oldukça enderdir ve prognozu kötüdür. 18 numaralı kromozom 2 yerine 3 adettir. a) İntrauterin ve extrauterin gelişme geriliği b) S.S.S. de gelişme yetersizliğine bağlı defektler c) Belirgin occiput ve mikrosefali d) Şekil bozukluğu gösteren düşük kulaklar ve çökük burun kökü, e) Küçük ağız ve küçük çene (mikrognati) f) Parmaklar flexion pozisyonda, index parmağı- orta ve 5.parmak 4. parmağın üzerine binmiş. g) Tipik dermatografik bulgular h) Kısa sternum ve hipoplastik kaburgalar i) Küçük ve dar pelvis kriptorşidizm k) Konjenital kalp hastalığı (PDA) l) Apgar skorunun düşük oluşu; konvülsiyonlar l) Böbrek anomalileri, inguinal ve umbilical herniler. İnsidans : 1/4500 -1/15000 Anne yaşının ilerlemesi ile orantılı olarak insidans artar. Kız/erkek: 150/42 Prognoz : Çok kötü %70 ilk 13 ayda ex, %20 ilk 12 ayda ex Yaşıyanlarda şiddetli motor-mental gerilik TRİZOMİ-13 (Bartholin-Paton Sendromu Trizomi D) : Anoftalmi, tavşan dudağı ve kurt ağzı, polidaktili ve çoklu malformasyon görülebilir. 13 numaralı kromozom trizomiktir. a- İntrauterin ve extrauterin gelişme geriliği b- Yenidoğan periyodunda apne, siyanoz ve konvülsiyon, c- S.S.S. defekti, (bulbus olpatinus agenezisi orinensefali). d- Arkaya doğru eğilimli olan, belirgin occupit ve burun kökü e- Mikrosefali, retina ve lens kolobomu, hipertelorizm mikroftalmi veya anoftalmi. f- Düşük ve şekil bozukluğu gösteren kulaklar, göz kapaklarında hemanjiom g- Yarık dudak ve damak, orta hat defektleri h- Polidaktili j- Konjenital kalp hastalığı k- Kriptorşidizm İnsidans 1/4600 - 1/14500 TRİZOMİ 8 Genel Özellikleri : Mental retardasyon, kısa boy, kilo azlığı, vertebral anomaliler Kafa-yüz görünümü : Dismorfik kafa, alın çıkıklığı, displazik kulaklar, strabismus, düşük kulaklar, alt dudak sarkıklığı, yüksek damak, yarık yumuşak damak, mikrognati. Toraks : Konjenital kalp hastalığı Abdomen ve pelvis : Üriner yol anomalisi, dar pelvis Extremiteler : Patellar displazi, eklem hareketlerinde kısıtlılık, el ayası ve ayak tabanlarında derin fleksiyon katlantıları TRİZOMİ 9 Mental retardasyon Mikrosefali, anormal kranial sütürler, alın çıkıklığı, çıkıntılı kulaklar, sivri burun, balıkağzı, mikrognati Konjenital kalp hastalığı Üriner yol anomalisi Konjenital kalça/diz çıkıklığı, klinodaktili, dijital hipoplazi, tırnak hipoplazisi, sindaktili. TRİZOMİ C SENDROMU C grubu (6,12) kromozomlar sayısı 1 fazladır. Daima anormal mozaik halde bulunur; klinik bulgular çok değişir. TRİZOMİ 22 Aynen mongolizmde olduğu gibi G grubunda 1 fazla kromozom vardır. 22. kromozom trizomiktir. Mental-motor gerilik, mikrosefali, dış kulak kanalının olmayışı, lakrimal kanal stenozu, ptozis, strabismus, kulak malformasyonu, yarık dudak, konjenital kalp hastalığı. B-DELESYON SENDROMLARI 1- Cri du Chat Syndrome : B grubundaki kromozomlardan birinin kısa kolundaki kopmaya bağlıdır. 5 nolu kromozomun kısa kolu delesyona uğramıştır. Hastalarda ağlama karakteristiktir, zayıf-tiz-yakınır gibidir ve kedi miyavlamasını andırır. 2- 4 Nolu kromozomun kısa kolunun delesyonu : (Wolf-Hirschhorn Sendromu) :Klinik bulgular; olasılıkla kromozomdan kopan segmentin büyüklüğünün vakadan vakaya farklı oluşu sonucu değişiklikler göstermektedir. a. İleri derecede intrauterin gelişme geriliği (Bütün kromozom hastalıkları içinde en düşük doğum ağırlığına sebep olanıdır). b. Vücut orta çizgisi üzerinde defektler c. Hipoplazik dermal çizgiler d. Mikrosefali, hipertelorizm, kolobom, tavşan dudağı ve kurt ağzı, konjenital kalp hastalıkları, hipospadias 3- 18 No'lu kromozomun kısa ve uzun kollarının delesyonu: 18 nolu kromozomun kısa kolundaki delesyon sonucu ortaya çıkan sendrom klinik bulgularının nonspesifik olmasına karşın; kromozomun uzun kolundaki delesyona bağlı olanın klinik bulguları oldukça spesifiktir. K/E:8/6 a. Zeka geriliği b. Mikrosefali, nistagmus c. Hipotoni d. Mid fasiyal hipoplazi (yüzün orta bölgesinin hipoplazisi) e. Öne doğru çıkıntılı çene f. Kulakta belirgin anti helix g. Dışkulak yolu dar veya atrezik olup; işitme kaybı h. Omuz ve ellerde deri çöküntüsü i. İğ biçiminde parmaklar j. Vertikal talus ve parmak uçlarındaki düşümlerde artma 4- Monozomi G (G Delesyon Sendromu) G grubu kromozomlarından birinde delesyon vardır. Hasta mozaik olup; hücrelerinden bir kısmında 45 kromozom, bir kısmında 46 kromozom vardır. a. Hipertoni b. Gözlerin aşağı ve dışa doğru çekik oluşu (antimongoloid slant) c. Burun kökünün belirgin oluşu d. Küçük çene e. İskelet anormallikleri f. Zeka geriliği 5- Halka kromozomu Sendromları : Normal bir kromozomun 2 ucunda meydana gelen birer kopma sonucu bu iki ucun ucuca gelerek yapışmalarıyla ortaya çıkar. Vakadan vakaya uçlarda delesyona uğrayan materyalin miktarı değişeceğinden fenotip ve genotipin birbirine uymaları güç olmaktadır. 5 nolu kromozoma ait halka kromozomu Cri-du Chat sendromunu meydana getirir. 18. kromozomda meydana gelen halka kromozom ise; bazı vakalarda 18. kromozomun uzun kolunun kopması sendromu oluşturur. En çok halka kromozomlar büyük akrosentrik (D grubu) kromozomlarında meydana gelir. C-PARSİYEL TRİZOMİ SENDROMLARI : Total kromozom sayısı 47 dir. Fazla olan kromozom G grubu kromozomlarının yarısı büyüklüğünde metasentrik ufak bir kromozomdur. Normal insan kromozomlarının en küçüğünden de ufaktır; bu kromozomun vakaların çoğunda satellitli oluşu D veya G grubundan menşe almış delesyon olduğunu düşündürür; bu da sendromun trizomik değil, parsiyel trizomik olarak adlandırılmasına yol açar. a.Lens kolobomu b. Anal atrezi c. Hipertelorizm d. Antimongoloid katlantı e. Preoriküler fistül ve deri çıkıntısı f. Umbilical herni g. Böbrek malformasyonları h. Mental gerilik i. Konjenital kalp hastalığı j. Sitogenetik anomalinin sıklıkla mozaik halde oluşu. KLİNEFELTER SENDROMU İlk kez 1942 de Klinefelter ve arkadaşları tarafından tariflenmiştir. Görülme sıklığı 1/500 civarındadır. Küçük sert testis, jinekomasti, idrarda gonadotropin seviyesinin yüksek oluşu kardinal bulgulardır. Bundan başka hastalar genellikle enükoid görünümdedirler. Skrotum normalden küçüktür, pigmentasyonu ve kıllanması azalmıştır. Pubik kıllanma kadın tipidir ve mons pubisin hemen üzerinde sonlanır. Testislerin küçük oluşu en önemli tanısal kriteri teşkil eder. Yüzde sakal azdır, ses incedir ve hastalarda erken osteoporoz görülür. Mozaik vakalar dışında hastalar fertil değildirler. Bir dereceye kadar mental gerilik hemen her hastada görülür. Yaş ilerledikçe psikolojik bozukluklar artar Sitogenetik: Vakaların %80 inde cinsiyet kromatini (Y) dir. Geri kalan %20 Y de ya teknik sebeplere bağlı olarak veya mozaisizmden dolayı cinsiyet kromatini yoktur. En önemli sitogenetik bulgu fazladan bir X kromozomunun bulunuşudur. Bundan dolayı klasik vakalarda 47 kromozom bulunur. (47, XXY). Söz konusu karyotipin ortaya çıkması için ya 2 X'li yani 24 kromozomlu bir ovumun normal yani 23 kromozomlu sperm tarafından veya 23 kromozomlu normal bir ovumun, 24 kromozomlu (XY) bir spermle fertilize olması gerekir. Gametlerin 24 kromozomlu olması hali meiotik bölünme sırasında kromozomun ayrılamama (non disjunction) veya ana fazda geri kalma (anafaz lag) olayı sonucu ortaya çıkar. Bu kromozom hatası zigotun teşekkülünden sonra ortaya çıkarsa mozaisizm durumuyla karşılaşılır. 46,XY(47, XXY). Bunlar fertil olabilirler. 46, XY vakalarında bugün eldeki metodlarla tesbit edemediğimiz kadar küçük bir Y kromozomu parçası diğer bir kromozom üzerine binmiştir (translokasyon) Bazılarında ise Y kromozomu, intrauterin yaşamda kritik bir dönemde mevcutken sonradan ortadan kaybolması şeklinde açıklanabilir. TURNER SENDROMU (Gonadal disgenesis) Boy kısalığı, fibröz bant şeklinde gonadlar (streak gonadlar), sexuel immatürite ve diğer çeşitli malformasyonlar vardır. Fenotipik olarak kadın görünümündedirler. Boyunda yeleleşme, meme uçları arasındaki mesafenin geniş, göğüs kafesinin yassı oluşu ve kubitus valgus deformitesi görülür. Turner sendromlu hastaların idrarında pubertede gonadotropinlerin yüksek oluşu karakteristik laboratuvar bulgusunu teşkil eder. Overler makroskobik olarak fibröz bant şeklindedir, mikroskobik olarak da hemen tamamen kollagen dokudan ibarettir. İç ve dış genital organlar kadın tipindedir. Genellikle uteruslar küçük ve dış genital organlar da gelişmemiş bir durumdadır. Yenidoğan devresindeki bir kız bebekte ensede deri kıvrımının oluşu, kalpte başta aorta koarktasyonu, el ve ayaklarda dorsal yüzlerde gode bırakmayan ödemin bulunuşu Turner Sendromu için klasik işaretleri teşkil eder. Daha ileri yaşlarda ise göğüs kafesinin yassı ve ensede saç hattının düşük olması, gözde strabismus, epikantüs, pitozis, yüksek damak, 4. ve 5. metakarpın kısalığı ve deride pigmente nevüslerin varlığıdır. Hemen her yaşta boy kısadır ve 150 cm nin üzerine çıkmaz. Buna karşın kemik yaşı oldukça normale yakındır. Pubertede primer amenore, östrojen eksikliğine ait bulgular ortaya çıkar. Meme teşekkülü mevcut değildir. Vaginal yaymada östrojen eksikliğine bağlı kornifiye epitellerin mevcut olmayışı dikkati çeker. Uterus ve dış genital organlar gelişmemiştir. Mozaikler dışındakiler fertildir. Turner Sendromlularda X kromozomu üzerinde taşınan mutant bir gene bağlı olarak renk körlüğünün bulunuşu X kromozomundaki bir anomalinin sendroma sebeb olabileceğini düşündürmüştür. Sitogenetik : Bir hücrede total olarak 45 kromozom bulunup; eksik olan kromozom 2X kromozomundan biridir. Vakaların yarısında X kromozomunda çeşitli sitogenetik anomaliler bulunmuştur. Bu anomaliler 2 çeşittir. a) 2. X kromozomun morfolojik anomalliği, b) Aynı zigottan menşe almış normal ve anormal kromozomlu hücre gruplarının aynı kişide birlikte bulunması halidir. Sitogenetik varyantlar A. 45 XO B. X kromozomunda yapısal anomali (delesyon veya uzun kolun izokromozomu) C. Mozaisizm. 47 XXX Kız: 1/1000 dişi doğumda bir görülür. Karakteristik bir fenotipi yoktur ve tutulan dişiler X-kromozomu tarama programlarında, yenidoğan araştırmalarında, amniosentezde, şans eseri tanınırlar. Gonadal fonksiyonlar genellikle normaldir ve fertildirler, fakat çocuklardan anormal sex kromozomu komplemanına sahip olabilirler. 47 XXX dişilerinde motor gelişme ve konuşma geriliği olabilir, hafif derecede entellektüel defisit, kişilerle ilişkilerinde bozukluk olabilir. Bazen 3 den fazla X kromozomuda bulunabilir. Şimdiye kadar en fazla 5 kromozom bulunmuştur. X kromozomun sayısı arttıkça mental retardasyon veya psikiatrik anormalliklerin sıklığı da artmaktadır. XYY Erkek: Agressif antisosyal davranış yönünden hapishanelerde yapılan araştırmalar sırasında saptanmıştır. XYY erkeklerinin diğer saptanan bir özelliği kısa boylu oluşlarıdır. Bir diğer araştırmada suç fazlalığı hızı ile agresyona iten suç davranışı arasında ilişki bulunamamıştır. ATİPİK Sex kromozomu karyotipleri : Fenotipik olarak erkek 46 XX karyotipi Fenotipik olarak erkek görünümünde 46 XX oluşu erkek sex farklanması ve karşılaştırılmasında Y kromozomun gerektirdiği inancına ters düşer. Olası mekanizmalar : 1- Saptanamamış 46 XX/46 XY kimerizm veya 46 XX/47 XXY mozaisizmi 2- Erkek sex karşılaştırıcı segmenti olan Y’in X kromozomuna veya bir otozoma translokasyonu 3- Olasılık saptanmıştır, ancak 1. olasılık da ekarte edilememiştir. Y’nin X’e translokasyonu X kromozomu inaktusisyon mekanizmasıyla XX erkeği oluşturacaktır. Fenotipik Kadın 46 XY XY sex kromozomu varlığı erken embriyo devresinde gonadlar, iç ve dış genital organların erkek tipine farklanmalarına yol açmaktadır; aksi halde embriyo dişi olarak farklanacaktır. XY nin varlığının esas olarak testiküler farklanmayı sağladığını düşünülmektedir. Daha sonra testiküler leydik hücreleri testosteron salgılarlar ve periferde dihidrotestosterona dönüşür. Hedef organlar testosteron ve dihidrotestosterona yanıt verme yeteneğindedirler. Eğer bu basamaklar yetersiz kalırsa; embriyoda maskülinizasyon oluşamayacaktır ve çocukta dişi genital farklanma olacaktır. 46 XY bebeklerde dişi fenotipin oluş mekanizmaları : 1- Target organın androjene tam duyarsızlığı (testiküler feminizasyon) 2- Luteinizan hormona testiküler yanıtsızlık, human chorionic gonadotropine yanıtsızlık (Leydig cell aplasis) 3- Testosteron sentezinde şiddetli defekt 4- XY pure gonadal disgenesis sendromu (Swyer sendromu) GENETİK ÖĞÜTLEME Genetik danışım bir ailede genetik bozukluğun oluşun riski veya oluşuyla birlikte insanın problemlerini ilgilendiren bir karşılıklı bağlantı iletişim işlevidir. Genetik danışım verilenlerin büyük çoğunluğu risklerinin farkında değillerdir, ancak genetik bilgi ve danışım için gelmişlerdir. Diğerleri evlilik öncesi veya çocuk yapmazdan evvel, akrabalarında tibbi problemlerle karşılaşıldığı icin sırf meraklarını karşılamak için gelirler. Doktora burada düşen tıbbi problemler ve doğum defektli doğanların problemlerinin herediter ve tüm aileler için genetik bilgi vermesidir, bunu sadece isteyenlere değil, gereken herkese vermeleri gereklidir. Prenatal tanının açıklanması veya taşıyıcıların saptanmasında genetik öğütleme biraz daha komplex hale geçer. Genetik Öğütlemenin Prensipleri 1. Tanının doğru olduğundan emin olunmalıdır. Burda doktorun izole yarık damak ve dudağı (multifaktöryel kalıtım); otozomal-dominant kalıtımlı yarık dudak ve damaktan ayırdetmesi gerekir. Tanı konduktan sonra: 1. Her iki ebeveyni tartışma için çağırınız (adölesan çocuk ayrı çağırılmalıdır) 2. Defektin tıbbi sonuçlarını tartışınız 3. Her bir ebeveynin aile hikayesini araştırmanın ve anlaşılamamış herhangi bir genetik risk varsa tanımlayınız. 4. Ailenin verdiği açıklamalar veya başkalarının verdiği bilgileri değerlendiriniz. 5. Problem için genetik temeli tanımlayınız bu iş için mümkün olduğu kadar görsel araçlar kullanınız. Örneğin problemle ilgili fenotipik veya diğer görüntüleri,kromozom resimlerini, kalıtım şekillerini gösteren diyagramları gösteriniz. 6. Genetik riskleri ailenin anlayabileceği şekilde açıklayınız. 7. Olasılıkları özetleyiniz; örneğin çocuk yapmama, çocuk yapma ve risklerini kabullenme, evlat edinme, artifisyel inseminasyon özellikle otozomal resesif bozukluklarda ve ciddi otozomal dominant bozukluklarda; eğer prenatal tanı mümkünse not ediniz. 8. Tartışılan konuları danışan kışileri destekleyiniz ve mümkünse kendileri için en uygun olasılığın ne olacağına karar vermek için biraraya geliniz. 9. Önceden danışım yapan ailelerle bağlantıda kalınız ve ebeveynde taşıyıcılık veya prenatal tanı konusunda yeni metodlar geliştiğinde aydınlatınız. Genellikle aileler bir defektli çocuk doğurduktan sonra genetik risk taşıdıklarının farkına varırlar. Bu durum kabul edilene dek reddetme, öfke-kızgınlık ve depresyon periyotları birbirini izleyebilir. Herbir ailenin durumu farklıdır ve danışma reaksiyonlar tektir. Aileler için sık bir problem genetik anormalliği kabullenme konusundadır, tek mutant gen, anormal kromozom veya multifaktöryel kalıtımda olduğu gibi birçok genlerin etkileşimi ve çevresel faktörler birarada olabilir. Kromozom anomalilerinde anormal karyotip normallerle karşılaştırılabileceği için işi biraz kolaylaşır. Bir diğer problem genetik bozukluğu olan çoğu bebek veya çocuk ailenin ilk etkilenen üyesidir; bundan dolayı aile diğer akrabalarda olmadığından; ailenin bunu herediter kabul etmeyip hafife almasıdır. Aileye bazı herediter bozukluklarda ebeveynlerin veya akrabaların sağlıklı olabilecekleri kuvvetle vurgulanmalıdır. TAŞIYICILARIN saptanması mümkün olan durumlarda genetik danışım : Taşıyıcılık durumu laboratuvar testleriyle saptanabiliyorsa genetik öğütleme basitce, daha spesifik ve daha etkilidir. Riskte olanlar tanınabilir, test yapılan akrabalar taşıyıcı değilse doğru olarak ikna edilebilir. Bazı biyokimyasal bozukluklarda ve kromozom anormalliklerinde taşıyıcı saptanması mümkündür. Biyokimyasal bozukluklar : Doğuştan metabolizma hastaları için heterozigot kişilerin tanınması gerekir. * Hb S ve C * Thalassemiler * Tay-Sachs Hast *  ı-antitripsin eksikliği Heterozigotlarda taramada bir diğer sınırlama da heriki ebeveyn heterozigot ise prenatal tanının kolay olmamasıdır. Özellikle hemoglobin anormalliklerinde plasental vene girip tetkik yapılması sadece birkaç merkezde olasıdır. X-e bağlı resesif metabolik hastalıklar G-6-PD eksikliği Fabry hastalığı (a-galaktosidaz eksikliği) Hypoxanthine-guanine phosphoribosyl transferaz PRENATAL TANI mümkünse genetik öğütleme : Birçok çift prenatal tanı hakkında daha çok şey öğrenmek için başvururlar.Prenatal tanının önemli olduğu durumların başında anne yaşının ileri olması, daha evvelden Down sendromlu veya ansefalomeningomiyeloselli çocuğa sahibolma gelir. Genel olarak 35 yaş üzerindeki tüm kadınlarda amniyosentezle prenatal tanı konması tercih edilir. Çünkü bu annelerin bebeklerinde kromozomal anomali riski en az %1 dir. Yine yeni bir bulgu Down sendromlu çocukların en az 1/4 ünde extra 21 kromozomun babadan geldiği bilinmektedir. Eskiden daima anneden geldiği düşünülürdü. Metabolik hastalıklı çocuk sahibi olma riski olan durumlar daha az fakat daha komplexdir. Bu grupta : 1. Amino asit metabolizma bozuklukları 2. Karbonhidrat metabolizma bozuklukları 3. Pürin ve pirimidin metabolizma bozuklukları 4. Enzim ve proteinlerde defektler 5. Eritrosit metabolizma defektleri 6. Kanın diğer şekilli elemanlarına ait bozukluklar 7. Lipid metabolizma defektleri 8. Pigment metabolizma bozuklukları 9. Vitamin metabolizma bozuklukları 10.Renal tübüler transport mekanizmasında primer bozukluklar 11.İntestinal malabsorbsiyonla sonlanan defektler 12. Mineral metabolizma defektleri Prenatal tanı genellikle 15-16 haftalık gebelikte uterus, pelviste amniosenteze uygun düzeye yükselince yapılır. Plasentayı lokalize etmekte veya 1 den yüksek fetus saptanmasında ultrasound kullanılabilir, ikiz gebelik şansı 1/80’dir. Aseptik teknik ve lokal anestezi kullanarak 22 nolu iğne ile abdomende en uygun yerden girilir (ultrasonogramla saptanır). Amniotik boşluğa ilerletilir. Trokar çıkartılır ve 2 ml sıvı alınarak (anne hücreleri ile kontaminasyonundan sakınılır) atılır; daha sonra 2. bir enjektörle 10-30 ml amniotik sıvı alınır ve direkt laboratuvara gönderilir. Spesimen kan varlığı yönünden incelenir, daha sonra santrifüjle hücreler amniotik sıvıdan ayrılır ve doku kültürüne ekilerek uygun koşullarda inkübatöre konur. Amniosentezle fetus kaybı riski: %0,5 Gebede geçici kramplar ve amniotik sıvı sızması:: %3 Olguların %5-10 unda amniosentezin tekrarlanması gerekir. Amniosentezden 14-21 gün sonra objektif sonuçlar alınabilir. Eğer sonuçlar fetusun anormal olduğunu gösteriyorsa ve ebeveynler düşüğü tercih ediyorlarsa çoğu doğumcu gebeliği 20. haftanın bitiminden evvel sonlandırır. Prenatal tanıda kullanılan dokular ve teknik işlemler : 1. Amniotik sıvı hücreleri : Kromozom analizi veya biokimyasal deneylerde kullanılabilirler. Hücrelerin yeterli sayıda çoğalması ve testler için yeterli sayıya ulaşması için 2-3 hafta gerektirir. 2. Amnion mayii:  -fetoporotein (AFP) Bu protein fetal karaciğer, gastrointestinal yol, yolk kesesinde sentezlenir ve anensefali, meningomyelosel, ensefalosel, omfalosel durumlarında artar. AFP ölçümü daha sonraki gebeliklerde bu bozukluğun herediter olup olmadığının saptanması için yapılır . Yine Meckel Sendromu (ensefalosel, pölikistik böbrek, polidaktili, yarık dudak ve damak, genital ve göz anomalileri, otozomal resesif kalıtımlı), konjenital nefroz'da artar. AFP düzeyleri en yüksek 14-18 hafta gebeliktedir. Amniosentezden evvel gebelik yaşının tayini önemlidir. Nöral tüp defektlerinde birlikte asetilkolin esteraz düzeylerinin de ölçümü gerekir. Eğer defektin üzeri deri ile kaplıysa AFP normal düzeylerde ölçülebilir. 3. Sekretuar substance : Myotonik distrofilerde dominant gen loküsünün saptanması için yapılabilir. 4. Hormonlar: Amniotik sıvıda steroid hormonlar ölçülebilir. Konjenital adrenal hiperplazi (21-hidroxylase eksikliğine bağlı) saptanabilir. 5. Ultrasound : Gebelik yaşının tayininde, plasentanın lokalizasyonunda, çoğul gebeliklerin ekarte edilmesinde kullanılır. - Kondrodistrofilerde - Uzun kemiklerin eksikliklerinde - Böbrek genişlemelerinde (Infantil polikistik böbrek ) ultrasound yararlıdır. 6. Amniografi: AFP anormal yüksek ise amnion mayisine suda eriyen bir boya enjekte edilerek incelenir. 7. Fetoskopi : Fetusun direkt inspeksiyonudur. Şiddetli Hb bozukluklarında, plasenta damarlarından kan almak için kullanılır. 8. Radyografi : Fetusun röntgen filmi uzun kemik eksikliklerinde, radial aplazi ile birlikte otozomal resesif trombositopenide kullanılabilir. Son zamanlarda ultrasonografi daha popüler hale geçmiştir.

http://www.biyologlar.com/kalitsal-hastaliklar

Arkealerde Evrim ve sınıflandırma

Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri birçok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır.

http://www.biyologlar.com/arkealerde-evrim-ve-siniflandirma

Klonlama

Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştirmaci, Dolly’nin eski yaşaminda ne gibi bir kabahat işleyip de bu yaşama klonlanmiş olarak gelmeyi hak ettigi üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir.

http://www.biyologlar.com/klonlama

Stephen Jay Gould ile Söyleşi

Stephen Jay Gould ile Söyleşi Beycan Mura tarafından yazıldı Pazartesi, 28 Nisan 2008 19:14 21 Aralık 1999, Claudia Dreifus, Çeviri: Beycan Mura Stephen Jay Gould S. Kansas Eğitim Kurulu’nun biyoloji derslerinde evrim öğretimini seçmeli hale getireceğini öğrendiğindiğinizde ilk tepkiniz ne oldu? Y. Tüm Kansas’lıların bu kararın aptallığı yüzünden utanca boğulacağını ve gelecek yıl oylarıyla bu okul kurulunu görevden uzaklaştıracaklarını düşündüm. Kansas Okul Kurulu’nun kararı düpedüz saçma. Bu “İngilizce öğretmeye devam edeceğiz ama bundan sonra dilbilgisi öğretmek zorunda değilsiniz” demeye benziyor. Ama geçmişteki Yüksek Mahkeme kararlarından dolayı, yaratılışçılar, yapmak istedikleri şeyleri yapamazlar. Yasal olarak savunulabilir bir duruş seçenekleri çok kısıtlı. Yapmış oldukları, muhtemelen yapabilecekleri tek şey Bunun olmasının tek nedeni artık kimsenin okul kurulu seçimlerinde oy kullanmıyor olması. Bu nedenle kararlı azınlıklar yönetimi ele geçirebiliyorlar. Bu köktenci grubun Kansas’ı ele geçirmesi için üç seçim dönemi gerekti. Yalnızca tek oyluk (altıya dört) bir çoğunlukları var. Kurulun dört üyesi gelecek yılki seçimlerde yenilenecek. Asıl büyük tehlike, bu yasal manevralarda değil. Tehlike, binlerce –pek çok insan gibi– olması gerekenden daha az cesur olan ve evrimi daha az öğreten binlerce öğretmen. Bunu ölçemezsiniz bile. S. Yaradılışçılık Amerikaya özgü bir görüngü mü? Y. Bunun böyle olduğunu görmek zor değil. Batı dünyasının başka bir yerinde böyle bir şey olmuyor. Avrupalılar bizde niye böyle bir sorun olduğunu anlayamıyor. Avrupalı entellektüellerin Amerikalılar hakkında anlamadığı iki şey olduğunu görüyorum. Birisi Bill ve Monica, ya da bizim kafayı bu konuya takmış olmamız. İkincisi bilimsel, modern bir toplumda da evrim karşıtı bir hareketin nasıl olabildiği. S. Sosyal bilimlerde, toplumsal sorunların neo-Darwinist açıklamalarına yönelmek gibi yeni bir eğilim var: On dokuzuncu yüzyılın sosyal darwinizminin bir tür mutant dirilişi. Bu niye şimdi oldu? Y. Bu dönem muhafazakar bir dönem. “Şimdi içinde bulunduğumuz durum insan doğasının doğal durumunu yansıttığına göre siz ne diye değişim veya eşitlenme istiyorsunuz?” düşüncesini ileri sürmenin muhafazakarlar açısından çok çekici olduğunu düşünüyorum Günümüzde Darwin’i kötüye kullandığımızı da düşünüyorum, En kötü özelliklerimizle ilgili hayal kırıklıklarımızı hafifletmek için. Demek istediğim, hoşnut olmadığımız saldırganlığımızı ya da cinsiyetçiliğimizin sorumluluğunu “Oh, biz böyle yapılmışız, bunu değiştiremeyiz” diyerek başımızdan atmayı deneyebiliyoruz. S. Peki neo-Darwinizmin kendi özelliklerinden memnun olan insanlara çekici gelmesine ne diyorsunuz? Örneğin biyolojik “bunun nedeni bir gen” açıklmasının eşcinsel hakları savunucuları arasında giderek popüler olması hakkında. Y. Ah, evet. Genellikle, yanlış biçimde genetik açıklamaların düşünüldüğü ve tercih edildiği bir çağdayız. Ama bunun iki başlı bir akıl yürütme olduğunu düşünüyorum. Çünkü diyelim yumurtalarınızı bu sepete koydunuz. Ya yanıldığınız ortaya çıkacak olursa? Çeşitliliğimizin savunulabilir bir parçasının savunusunu, varsayımsal biyolojik doğamıza dayandırmak istemezsiniz. Bunun biyoloji ile bir ilgisi olmadığı görüşünü benimsemeyi tercih ederim. Bu etik bir sorundur. S.Hem bilimsel hem de popüler yayınlar yapan biri olarak, akademik yayının kalitesi hakkındaki görüşünüz nedir? Y. Neye kıyasla? Akademik yazının her hangi bir dönemde olağanüstü iyi olduğunu düşünmüyorum. Ama bir zamanlar bilim çok daha az uzmanlaşmıştı. Çok teknik terminoloji yoktu. O zamanlar akademisyenlerin çoğu yazma konusunda eğitim almamışlardı. Şimdi bir de giderek büyüyen bir mesleki jargon var ki, sanırım en kötüsü de bu. Bunun da cehaletten çok korkudan kaynaklandığını düşünüyorum. Pek çok genç araştırmacı bu jargona kayıyor çünkü böyle yapmazlarsa hocalarının ya da ilerlemelerine karar verecek olanların onları ciddiye almayacaklarını düşünüyorlar. Hiç kimsenin bu biçimde yazmayı İSTEYECEĞİNE inanamam. S. Tüm korkuların en büyüğünü gerçekleştirip çok satanlar listesine giren birkaç kitap yazdığınız için –meslektaşlarınızın zaman zaman size garez beslediklerini düşündüğünüz oluyor mu? Y. Tabi. Genele yönelik yazma konusunda başarılı olan herkes kıskanılır. Göethe 1832’de öldü. Bildiğiniz gibi Göethe bilimde oldukça etkindi. Aslına bakarsanız bitki morfolojisi ve mineroloji konularında çok başarılı bilimsel çalışmalar yaptı. Bir şair olduğu, dolayısıyla bu konuda ciddi olamayacağı düşünesiyle pek çok bilimcinin onu dinlemeyi reddetmesi Göethe’yi derinden etkilemişti. Bu yeni bir görüngü değil. S. Kolaylıkla mı yazarsınız? Y. Yazar engeli denen şeyin ne olduğunu bilmem. S. Yazmak size ne kazandırıyor? Y. Yazmak, düşünceleri düzene koymak ve her şeyi yapabildiğiniz en eksiksiz ve zarif yolla ifade etmek için en iyi yol. Pek çok bilimci yazmaktan nefret eder. Pek çok bilimci labaratuvarda olmayı ve işi yapmayı sever. Bu iş bittiğinde, yapacaklarını bitirmiş olurlar. Yazmak bir chore’dır. İşin kendi dışlarına çıkmasını sağlamak için yapmaları gereken bir şeydir. Bunu resentment ile yaparlar. Ama onlar için yazmak, kavramsal olarak, yaratma sürecinin bir parçası değildir. Ben ise sonuçları aldığımda onları yazmak için sabırsızlanırım. Bu sentezdir. Anlamın ve sonuçların araştırılmasıdır. S. Rhonda Roland Shearer ile evlendiğinizden beri hayatınızın yarısını New York’ta, yarısını ise Cambridge’de geçiriyorsunuz. Bu yeni hayat, ne ölçüde bölünmüş hissetmenize yol açıyor? Y. En sinir bozucu olan şey, Boston ile New York arsında iyi tren hizmetinin başlamasını beklemek Ama, New York’ta yaşamayı seviyorum, hiç bir zaman burayı terk etmiş olduğumu düşünmüyorum. Fresh Meadows’da büyüdüm ve Jamaica Lisesi’ne gittim. S. Bronx Fen Lisesi’ne gitmediniz mi? Y. Çok uzaktı. Otobüse ve metroya binmem gerekiyordu ve oraya gitmek iki saat alıyordu. “Gelecek üç yıl boyunca günde dört saati metroda geçirmeyeceğim” diye düşündüm. Dolayısıyla Jamaica Lisesi’ne gittim. Biliyorsunuz bir zamanlar New York’un kamu okul sistemi çok iyiydi, inanıyorum gelecekte de öyle olacak. Jamaica Lisesi’nde çok iyi bir eğitim gördüğümü düşünüyorum. Ondan önce de P.S. [muhtemelen public school, yani kamu okulu] 26’da. Halen o eski mahalle çocuğundan başka bir şey değilim. S. Yeni kitabınız Binyılı Sorgulamak başka şeylerin yanında 2000 yılıyla ilgili uzun bir araştırmaydı. Rhonda ile birlikte, saatler değiştiğinde olacaklardan korktuğunuz için gizlice su şişeleri ve yakacak odun depoluyor musunuz? Anlatın bize. Y. Hayır. Y2K’ye çok dikkat edildi. Pek çok deneme yapıldı. Herhangi bir şey beklemiyorum. Aslında yılbaşında Boston’da bir konserde Haydn’ın “Yaratılış” yapıtını söylüyor olacağım. Provalar için buradan oraya gidip gelmem gerecek. Neyse ki arabayla gideceğim. Kayda değer bir şey olacağına inanmıyorum. Küresel ölçekte kimi endişeler olsa da benim endişeleneceğim şeyler Rusya’nın kuzeyi gibi gerçekten soğuk kimi yerlerde elektrik ve ısınmada aksama olması gibi şeyler. Bu işle ilgili söylenebilecek en komik şey, binyılın farkında olan insanların, 1000 yılı civarında şimdikinden daha da büyük korku duymuş olması . Vahiy’in kıyamete dair söylediklerinin ortaya çıkmasından korktular. Gerçekten de İsa’nın gökten ineceğine, Şeytan’ın ortaya çıkacağına ve bildiğimiz haliyle dünyanın sonunun geleceğine inandılar. Seküler bir çağda insanların başlıca korkusunu, 30 yıl kadar önceki bazı programcıların dar görüşlülükleri nedeniyle bilgisayarların tarihi yanlış okumasına dayanan teknik bir aksaklığın oluşturuyor olması çok eğlenceli. Son Güncelleme ( Cuma, 09 Mayıs 2008 20:36 ) Alıntı Kaynağım : http://evrimcalismagrubu.org/soylesiler/41-soeyleiler/50-stephen-jay-gould-ile-soeylei.html

http://www.biyologlar.com/stephen-jay-gould-ile-soylesi

Genetik ve Evrimin Modern Sentezi

Birçok insan evrimle ilgili günümüzde geçerli olan düşünceleri anlamıyor. Burada anlatacaklarım günümüzde evrimsel biyologların fikir birliği içinde olduğu düşüncelerin bir özetidir. Dünya üzerindeki yaşamın evrimleştiği düşüncesi Avrupa’da 1700′lerin sonları ve 1800′lerin başlarında yaygın olarak tartışıldı. 1859′da Charles Darwin, doğal seçilim adını verdiği, evrimin nasıl oluştuğunu açıklayan bir mekanizma ortaya koydu. Darwin’in doğal seçilim teorisi çoğu insanın yaşamın evrimleştiğine ikna olmalarına yardımcı oldu ve böylece geçtiğimiz 130 yıl boyunca bu düşünceye ciddi olarak karşı çıkılmadı. Darwin’in “Türlerin Kökeni” kitabının yaptığı iki şey vardır. Tüm organizmaların modifikasyonlarla birlikte ortak bir atanın soyundan geldiği yönündeki düşünceyi destekleyen tüm kanıtları özetledi ve böylece evrim için güçlü bir dayanak oluşturdu. Buna ek olarak evrimin bir mekanizması olarak doğal seçilimi savundu. Biyologlar artık evrimin olup olmadığını sorgulamıyorlar. Darwin’in kitabının bu kısmı öyle karşı konulamaz bir şekilde ispatlanmış olarak görülüyor ki çoğunlukla evrim GERÇEĞİ olarak dile getiriliyor. Ama evrimin MEKANİZMASI hâlâ tartışılmaktadır. Darwin’in zamanından beri çok şeyler öğrendik. Evrimsel biyologların, Darwin’in Doğal Seçilim teorisinin evrimin mekanizmalarını açıklayan teorilerin en iyisi olduğunu düşündüklerini söylemek artık uygun değil. bilim adamı olmayan ortalama birinin bu durumu neden hoş karşılamayacağını anlayabiliyorum çünkü doğal seçilimi yüzeysel olarak anlamak kolaydır. Popüler medyada genişçe reklamı yapıldı ve “uygun olanın hayatta kalması” görüşü çok kuvvetli ve kullanışlı. 20. yüzyılın ilk bölümünde genetik ve popülasyon biyolojisinin evrim çalışmalarına katılması, mutasyon ve popülasyon için varyasyonların öneminin farkına varan Neo-Darwinci bir evrim teorisinin ortaya çıkmasını sağladı. Böylece doğal seçilim bir popülasyondaki gen frekansını değiştiren bir işlem haline geldi. Bu bakış açısı onlarca yıl boyunca hakim oldu ama daha sonra Neo-Darwinci görüş, doğal seçilime ek olarak birkaç başka mekanizmayı da içeren yeni bir düşünce ile değiştirildi. Evrimle ilgili güncel düşünceler genellikle Modern Sentez olarak adlandırılır. Futuyma, Modern Sentezi şöyle tanımlar: Evrimsel sentezin temel ilkeleri şöyleydi: Popülasyonlar, rasgele (yönlendirilmemiş) mutasyon ve rekombinasyon sonucu oluşan genetik çeşitlilikler içerir; Popülasyonlar, rasgele oluşan genetik sürüklenme, gen akışı ve özellikle doğal seçilim sonucu gen frekansında oluşan değişikliklerle evrimleşir; Adaptasyona yönelik çoğu genetik varyantın bireysel olarak küçük fenotip etkileri vardır bu sebeple fenotip değişiklikleri kademelidir (her ne kadar, farklı etkileri olan bazı aleller avantajlı olsa da); Çeşitlilik, popülasyon içinde üremeye dayalı izolasyonun kademeli olarak evrimini gerektiren türleşme ile gerçekleşir; Bu işlemler yeteri kadar uzun süre devam eder ve daha yüksek taksonomi seviyelerinin (cins, aile vb.) belirlenmesini temin edecek kadar büyük öneme sahip değişmlere yol açar. -Futuyma, D.J., Evolutionary Biology, Sinauer Associates, 1986; p.12 Bu tanımlama Darwin tarafından anlaşılamazdı çünkü kendisi genler ve genetik sürüklenmeden habersizdi. Evrimin mekanizmalarıyla ilgili modern teori Darwinizmden üç önemli noktada farklılaşır: Doğal seçilime ek olarak evrimin başka mekanizmalarını da kabul eder. Bunlardan biri olan genetik sürüklenme, doğal seçilim kadar önemli olabilir. Karakteristik özelliklerin gen denilen birimlerle gelecek nesillere aktarıldığını kabul eder. Bir popülasyondakı çeşitlilik, bir genin birden fazla alelininvarlığına bağlıdır. Türleşmenin genelde, küçük genetik değişikliklerin kademeli birikimi ile oluştuğunu varsayar. Bu şu anlama gelir: makroevrim, çok fazla sayıda mikroevrimdir. Diğer bir deyişle: Modern Sentez evrimin genler, fenotipler ve popülasyonlar seviyesinde nasıl çalıştığıyla ilgili bir teori iken; Darwinism temelde organizmalar, türleşme ve bireylerle ilgilenmektedir. Bu temel bir paradigma kaymasıdır ve bunu hoş karşılamayanlar kendilerini evrimsel biyologların düşüncelerinden farklı bir eksende buluyorlar. Buna benzer karmaşalar burda haber grubunda, popüler medyada ve evrim karşıtlarının yazılarında görülebiliyor. Günümüzde evrimciler arasındaki temel anlaşmazlık 3. maddenin geçerliliğiyle ilgilidir. Herhangi bir yerdeki fosil kaıytlarının kademeli değişim göstermediğini, bunun yerine uzun süren bir hareketsizliğin ardından gelen hızlı türleşme gösterdiğini düşünen birçok kişi var. Bu model Noktalanmış Denge (Punctuated Equilibrium) olarak adlandırılmaktdır ve en azından bazı durumlar için geniş bir şekilde doğru olarak kabul edilmektedir. Tartışma, noktalanmış değişime karşı kademeli değişimin göreceli katkıları, noktalanmaların ortalama büyüklüğü ve mekanizması üzerinedir. Tartışma asıl olarak terimlerin ve tanımların kullanımıyla ilgili, teorinin temelleriyle ilgili değil. Bu modeli açıklamak için yeni bir evrim mekanizmasına ihtiyaç yok. Bazı bilim adamları evrimle ilgili modern düşünceyi Neo-Darwinci olarak adlandırmaktadır. Bazı durumlarda bu bilim adamları alanın değiştiğini anlamıyorlar, ama diğer durumlarda benim Modern Sentez dediğim teoriyi kastediyorlar ama eski adı kullanmayı tercih ediyorlar. (Bu yazı, biyokimya Profesörü Laurence A. Moran'ın Talk Origins sitesindeki The Modern Synthesis of Genetics and Evolution başlıklı yazısının çevirisidir.) Kaynak:http://www.evrimteorisi.org

http://www.biyologlar.com/genetik-ve-evrimin-modern-sentezi

Proteom

DNA’nın kimlik kartı, ana hatlarıyla çıkartıldı. Bu işin kolay yanı. Şimdi sıra genlerin ürettiği proteinlerin gizini çözmeye geldi. Esas zor kısım şimdi başlıyor. İnsanın genetik yapısını deşifre etmeye çalışan bilim adamları konularında ne kadar uzman olursa olsunlar, daha işin başında olduklarını kabul ediyorlar. Son birkaç yıldır bir düzineden fazla genomu çözümleyen uzman ekipler, bulgularının tahminleriyle örtüşmemesi üzerine gelecek hakkında daha temkinli konuşma kararı aldılar. İnsanlarda 100.000 civarında gen olduğu yolunda tahminlerde bulunan bilim adamları, bu sayının 34.000 civarında seyrettiğini görünce tahminlerinde ne denli yanıldıklarını anladılar. Halkalı solucanda 19.099, meyve sineğinde 13.601, hardal bitkisinde bile 25.000 gen bulunduğunu öğrenmek bilim dünyasında farklı bir tartışmayı gündeme getirdi: ”Bu kadar az sayıda gen ile bu kadar karmaşık bir yapıya sahip olmamızın altında ne yatıyor?” İnsan genomu üzerinde uzun yıllardır çalışmalarını sürdüren kuruluşlar, (biri Amerikan Hükümeti’nin finanse ettiği konsorsiyum, diğeri ise Celera adlı özel biyoteknoloji şirketi) son bulgularını geçtiğimiz hafta, dünyanın 5 büyük kentinde düzenledikleri basın konferanslarıyla dünya kamuoyuna duyurdular. Sanayi kuruluşları ve bilim adamları, insan genomu projesinin bir bilgi hazinesi olduğunu kabul etmekle birlikte, projenin su yüzüne çıkarttığı beklenmedik sonuçlar karşısında şaşkınlıklarını gizlemiyorlar. En şaşırtıcı olanı, yüzlerce genin uzun süren bir süreç sonucunda bir bakteri vasıtasıyla insan genomuna karışması. Büyük bir olasılıkla söz konusu bakteri, omurgalı bir atamızı enfekte etmekle işe başlamış olabilir. Bu yabancı genler artık bizim bir parçamız; bunların bazıları çok önemli işlevler yüklenirken, bazıları hiçbir işe yaramıyor. Whitehead Enstitüsü’nden David Page, insan genomunun incelenmesi sonucu, spermdeki mutasyon katsayısının, yumurtadakinin iki misli olduğuna dikkat çekiyor. Mutasyonun, evrimin hammaddesi olduğunu düşünürsek, insanoğlunun bir yarısının ilkellikten kurtulmanın tüm sorumluluğunu yüklendiğini söylemek mümkün ve genomdaki 3 milyar kimyasal harfin (ünlü A’lar, T’ler, C’ler ve G’ler) içinde çok fazla varyasyon olduğunu söylemek de çok zor. Bu da bir Sumo güreşçisi ile Britney Spears’ın yüzde 99.95 oranında benzeştiği anl¤¤¤¤¤ geliyor. Bu temel bulguların yarattığı karmaşa içinde şimdi sıra genomun ikinci basamağında. Yeni oyunun adı ”proteom”. Genom sözcüğünün bir organizmadaki DNA’ların tümünü tanımlaması gibi, proteom da proteinlerin tümünü ifade ediyor; proteom bilimi ise proteinleri bütün olarak inceleyen bilim dalı anl¤¤¤¤¤ geliyor. Genomun çok karmaşık bir yapıya sahip olduğunu düşünüyorsanız, bir de proteomu görmeniz gerekecek. ”İnsan genomu ile karşılaştırıldığında proteom bilimi, bunun 1.000 misli daha fazla veri içeriyor”diye konuşan IBM Doğa Bilimleri Bölümü’nden Caroline Kovac, ”Karaciğer hücresindeki bir DNA, deri hücresindeki veya beyin nöronundaki DNA’ya benzer. Oysa proteinler birbirine benzemez. İşleri biraz daha ilginç kılan, hücre proteinlerinin (ki bunlar hemoglobin veya insülin gibi moleküller, serotonin ve dopamin gibi beyin kimyasalları, östrojen veya testosteron gibi hormonlar veya vücudumuzun işlevselliğini sağlayan diğer enzimlerden oluşur) hücrenin tipinden bağımsız olarak değişiklik göstermesidir. Bir hücrenin içerdiği proteinler sağlıklı veya hastalıklı olduğuna, yaşına, stres düzeyine, hatta günün saatine bağlı olarak değişir. Bilim adamlarına göre vücudumuz, 500.000 ile 1 milyon arasında protein içeriyor. Sayının büyüklüğüne karşın bilim adamları proteom konusunu çözmeye kararlı; çünkü proeinler hakkında elde edilecek en ufak bir bilgi hastalıkların teşhisine, tedavisine ve nedenlerinin ortaya çıkmasına yardımcı olacak. Rockefeller Üniversitesi’nden Brian Chait, bu konuda şöyle konuşuyor: ”Genom daha işin başlangıcı. Esas peşinde olduğumuz insandaki 100 milyar hücrenin hangi proteinleri ürettiği. Ne var ki bu bağlamda genom yeterli değil. Genom proteinlerin üretimi için gerekli olan direktifleri veriyor. Ancak direktifleri bilmek bizi fazla uzağa götürmez. Çünkü insan hücresindeki 34.000 gen sipariş formu gibi birşey. Bazı siparişler proteinlerimizi üreten hücresel fabrikalara kadar ulaşmaz bile. Fabrikaya ulaşanların bazıları ise üretim bandını terkeder etmez parçalara ayrılır, kullanılmaz hale gelir. Oysa bazı mallar o kadar popülerdir ki, fabrika bunlardan milyonlarca üretmek zorunda kalır. Bütün bunları sipariş formlarına bakıp söyleyemezsiniz. Üç gen, kurye vazifesi görerek protein A, protein B veya protein C için sipariş formunu taşır. Ancak fabrika bunları kabul etmek kibarlığını göstererek, Protein A,B ve C’yi üretir, ancak işi ilerleterek AB, AC, BC, AAB, ABC gibi daha gelişmiş ve hi-tech modelleri de üretir. Bu karıştırma ve birleştirme yeteneği insan genomunu diğer canlılarınkinden ayrırır.” California Institute of Technology’den John Richards, tek bir genden 10′dan fazla sayıda farklı protein elde edebileceğimizi söylüyor. Bu durumda genom analizi tek başına hangi proteinin üretileceği konusunda yeterli bilgiyi sağlamaz. Proteinleri teşhis etmenin ana gerekçesi hastalığa hasarlı genlerin değil, hasarlı proteinlerin yol açması. Ciphergen adındaki biyoteknoloji şirketinin yetkililerinden William Rich, ”Bir hastalık hakkında bilgi edinmek istiyorsanız, proteinlere bir gözatmanız gerekiyor”diye konuşuyor. Alzheimer hastalığı, proteom biliminin, genomdan ne kadar üstün olduğunu göstermesi açısından çok önemli bir örnek. Yaklaşık yarım düzine gen alzheimera yakalanma eğlimine yolaçıyor. Beta amiloid parçaları denilen yapışkan proteinlerin varlığı, hastalığın kesin teşhisi için yeterli. Ciphergen, ProteinChip’lerinin kısa süre sonra bu katil amiloidleri teşhis edebileceğini umut ediyor. Ancak beta amiloid geni diye bir gen olmadığı için alzheimer, bir DNA çipi ile teşhis edilemiyor. Halihazırda Merck&Co., Ciphergen’in çipleriyle alzheimer hastalığını tedavi edecek ilacı geliştirmeye çalışıyor. Çip, ilacın beta amiloid parçaları yok ettiğini kanıtlarsa, şirket bu işten kârlı çıkacak. Molecular Staging adında bir başka biyoteknoloji şirketi, kanser ve artrit gibi hastalıkların seyrini izleyen bir çip geliştirdi. Bu çip, proteinlerin değişken düzeylerini izleyerek hastalığın tehlikeli bir boyuta ulaşıp ulaşmadığını bildiriyor. Millennium Predictive Medicine isimli bir diğer şirket ise teşhisi zor olan yumurtalık kanserini teşhis ediyor. ABD’de hükümetin finanse ettiği bir kuruluş, normal akciğer, yumurtalık, göğüs ve kolon dokusundan alınan proteinleri, kanserli dokudaki protein ile karşılaştırıyor. Benzer şekilde PSA prostat kanserine ilişkin ilk bulguları gün ışığına çıkartıyor. Eğer proteinler hücrelerin kontrolsüz bir şekilde bölünmesine izin veriyorsa, proteini etkisiz hale getiren bir antikor etkin bir kanser ilacı olarak çözüm üretebilir. Large Scale Proteomics Corp. (LSP) ve Johns Hopkins Üniversitesi şimdiden depresyon, iki kutuplu psikolojik bozukluk ve şizofreniye yol açan proteinlerin bir listesini hazırladı. Geçen ay LSP, insan proteinleri üzerine ilk veritabanını açıkladı. 157 dokuda 15.693 protein olduğunu açıkladı. LSP’nin başkanı Leigh Anderson, bu açıklamanın bütün ile karşılaştırıldığında çok küçük bir parça olduğunu ileri sürüyor. ABD Enerji Bakanlığı’na bağlı Joint Genome Institute’dan Trevor Hawkins, protein bilimi konusunda iyimser: ”Protein bilimi şu anda insan genom projesinin sırtında gelişimini sürdürmeye çabalıyor. Bir süre sonra bağımsız bir bilim dalı olarak 21.yüzyılın temel taşlarından birini oluşturacak.” Kaynak: turksite.eu

http://www.biyologlar.com/proteom

HÜCRE KÜLTÜRÜ BESİYERİ VE SOLUSYONLAR

Hücre kültürü besiyerleri laboratuar ortamında hücrelerin normal metabolik aktivitelerini sürdürebilmeleri için gerekli olan mikroçevreyi sağlayan besleyici solusyonlardır. Hücre kültürü besiyerleri içeriklerindeki aminoasit, karbonhidrat, vitamin ve iyonlarla hücrelerin gelişimini desteklerler. Laboratuar ortamında hücrelerin çoğaltılabilmesi için uygun pH sıcaklık ve nemin sağlanması çok önemlidir. Hücre kültürü besiyerleri içeriklerindeki iyonlarla gerekli ozmolarite ve pH’ı da sağlarlar. Besiyeri ihtiyacı hücrelerin tipine, adaptasyon kabiliyetine ve hücre kaynağı organizmanın türüne göre farklılık gösterir. Hücreler farklı besiyerlerinde farklı davranabilirler. Bu yüzden çalışmanın amacına göre hücrenin besiyeri ihtiyaçlarının belirlenmesi gerekir. Hücrelerin canlılıklarının devamı ve çoğalmaları için aminoasitler, karbonhidratlar, lipidler, vitaminler, iyonlar ve proteinlerin ortamda bulunması şarttır. Standart bir besiyerinde yukarıdaki bileşenlerin sağlanması için iki temel solusyon uygulanır: 1) Dulbecco’s Modified Eagle Media (DMEM) Hücre kültürlerinde olması gereken temel aminoasit kombinasyonu ilk defa Eagle tarafından 1955’de tanımlanmıştır. Kendi ismini taşıyan Minimum Eagle’s Medium (MEM) isimli besiyeri bazı modifikasyonlarla bugüne kadar gelmiştir. Dulbecco tarafından modifiye edilen MEM solusyonu bugün somatik hücre kültürlerinde en sık kullanılan besiyeri bileşenidir. DMEM hücrelerin beslenebilmeleri için gerekli glukoza, canlılıklarını sürdürebilmeleri için uygun ozmolarite ve pH’a, fonksiyonlarını görebilmeleri için gerekli aminoasitlere ve vitaminlere sahiptir. Ancak tek başına hücre gelişimi için yeterli değildir. 2) Fetal Bovine Serum Serum hücrelerin tutunabilmeleri ve çoğalmaları için kullanılan ve içeriği tam olarak tanımlanmamış zengin bir protein çözeltisidir. Bu protein çözeltisinin içinde hormonlar, enzimler, hücrenin büyümesi ve çoğalmasını sağlayan büyüme faktörleri, yüzeylere tutunabilmesini sağlayan hücrelerarası matris proteinleri bulunur. Hücre çeşidine ve uygulamalara göre besiyerindeki serum oranı değişebilir. Standart bir somatik hücre kültüründe serum oranı %10 ‘dur. Serum üretimi pahalı ve zahmetli bir süreçtir. Sığır embriyolarının kanlarının toplanmasıyla hazırlanan serumların üretiminde bir standart yoktur. Farklı hayvanlardan elde edilen serumlar birbirlerinden farklılık gösterirler. Bu da deneylerin sonuçlarını etkilemektedir. Bu dezavantajlarından dolayı bazı laboratuarlar serumsuz besiyerlerini kullanmaktadırlar. Serum kullanılmayan bir besiyerinin çeşitli büyüme ve tutunma faktörleriyle desteklenmesi gerekir, bu da çalışmaya göre serumdan daha pahalı olabilir. Dulbecco’s Phosphate Buffered Saline (dPBS) Hücre içi ve dışındaki ozmotik basıncı dengede tutan bir tuz solusyonudur. İçeriğindeki inorganik tuzlar ve su, hücre metabolizmasını destekler. pHı tamponlayarak hücreler için uygun bir ortam sağlar. Tripsin Tripsin hücre pasajlamalarında kullanılan temel enzimdir. Tripsin, bir serin proteaz tipi enzimdir, lizin ve arjinin aminoasitlerinden peptidleri yıkar. Laboratuarımızda %0,25 EDTA’lı tripsin solusyonu kullanılmaktadır. Tripsin kullanımında dikkat edilmesi gereken bazı noktalar şunlardır: 1) -20 ºC’de saklanır, daha yüksek sıcaklıklarda bekleyen tripsinin aktivitesi düşer, bu yüzde oligotlanarak saklanması en uygunudur. 2) Serum tripsin inhibitörlerini içerir, hücrelere tripsin uygulanmadan önce mutlaka bir kere Ca ve Mg içermeyen PBS ile yıkanmalı ve yüzeylerindeki serum uzaklaştırılmalıdır. 3) Tripsin hücrelerin yüzeyini örtecek kadar uygulanır. Laboratuarımızda 100 mm’lik petriler için 2 ml; 60 mm için 1ml; 35 mm için 0,5 ml tripsin uygulanır. 4) Tripsin sıcaklık arttıkça daha etkili çalışır. Tripsin uygulanan hücreler inkübatöre konduklarında daha çabuk yüzeylerden ayrılırlar, oda sıcaklığındaysa daha yavaş ayrılırlar. 5) Hücreler yüzeyden ayrılır ayrılmaz tripsinin inhibe edilmesi önemlidir. Tripsin hücreleri yüzeyden ayırdıktan sonra hücre membranlarına zarar vermeye başlar. 6) Hücrelerin yüzeylerden ayrılma hızı değişebilir. Besiyerindeki serum oranı, hücre tipi, petrideki hücre yoğunluğu, tripsinin aktivitesi ve son pasaj üzerinden geçen zamana göre hücreler farklı zamanlarda kalkarlar. 7) Farklı şişelerdeki tripsinler birbirlerine her zaman eş değer olmayabilir. 8) Tripsini inhibe etmek için tripsin hacminin en az iki katı kadar %10 FCS’li besiyeri uygulanmalıdır. Daha sonra hücreler pipetlenerek birbirlerinden ayrılırlar. HÜCRE KÜLTÜRÜ Hücre kültürü, hücrelerin kontrollü şartlar altında yetiştirilmesi sürecidir. Pratikte hücre kültürü terimi, çok hücreli ökaryotlardan özellikle hayvan hücrelerinden kaynaklanan hücrelerin kültürlenmesi için kullanılmaktadır. Hücre kültürleriyle yapılan çalışmalar günümüzde popüler araştırma konularında önemli bir kısmı oluşturmaktadır. Örneğin, kanser gibi çeşitli patolojik durumlarda belli bir maddenin etkilerini ya da bir hücre veya dokuda üretilen belli bir maddenin işlevlerini belirlemek amacıyla hücre kültürleri yapılabilmektedir. Hücre kültüründe belirli bir hücre hattından çoğaltılan hücrelerde çeşitli çalışmalar yapılarak canlı ortamında (in vivo) yapılamayan denemeler yapılabilir ve burdan yola çıkılarak sonuçlara ulaşılabilir. Hücre kültürü çalışmalarının gelişimi ve yöntemleri, organ ve doku kültürü çalışmalarıyla yakından ilişkilidir ve onlarla benzer nitelikler taşımaktadır. Doku ve hücre kültürü çalışmaları yüz yılı aşkın bir süredir yapılmaktadır. Hayvansal hücre kültürü teknikleri 1900'lerin ortalarında laboratuvarda rutin olarak uygulanmaya başlanmış[1] fakat asıl doku kaynaklarından ayrılan sürdürülebilir yaşayan hücre hatları kavramı 19. yüzyılda ortaya konmuştur.[2] 19. yüzyılda İngiliz fizyolog Sydney Ringer sodyum, potasyum, kalsiyum ve magnezyumlu klorürler içeren tuz çözeltilerinin, vücut dışında yaşayan bir hayvan kalbinin atışını sürdürebilmesi için uygun olduğunu deneysel olarak göstermiştir. 1885'de Wilhelm Roux bir tavuk embriyosu nöral plağının bir kısmını ayırmış ve ılık bir tuzlu su çözeltisinde dokuyu birkaç gün yaşatarak doku kültürünün temellerini de atmıştır.[3] Ross Granville Harrison, 1907 ve 1910 yıllarında yaptığı deneyleri doku kültürünün metodolojisini de belirleyerek yayımlamıştır.[4] 1913’te Carrel aseptik (steril) koşullar altında düzenli olarak beslenmeleriyle hücrelerin kültür ortamında uzun süre hayatta kalıp çoğalabildiklerini göstermiştir. Earle ve arkadaşları ise, 1948’de L hücre hattından saflaştırdıkları hücrelerin kültüre alındıklarında koloniler oluşturduklarını göstemişlerdir. Hücre kültürü teknikleri 1940 ve 50'lerde viroloji araştırmalarıda desteklemek amacıyla önemli ölçüde geliştirilmiştir. 1952’de de Gey ve arkadaşları günümüzde oldukça bilinen HeLa hücre hattını, bir insan servikal karsinomasından türeyen hücrelerin sürekli serisi şeklinde gözlemlemişlerdir. 1986’da Martin ve Evans ile arkadaşları, fareden pluripotent embryonik kök hücrelerini saflaştırarak kültürünü yapmışlardır. 1998’de Thomson ve Gearhart ile yardımcıları ise, insan embryonik kök hücrelerini izole etmeyi başarmışlardır. Hücre kültüründe virüslerin gelişmesi saflaştırılmış virüs aşılarının hazırlanıp üretilmesine olanak sağlamıştır. Örneğin, Polio aşısı hücre kültürü teknikleri kullanılarak yapılan ilk ürünlerden biridir. Bu aşı, maymun böbreği hücre kültüründe virüsü yetiştirmek için bir yöntem bulan ve bundan dolayı Nobel Ödülü alan John Franklin Enders, Thomas Huckle Weller ve Frederick Chapman Robbins'in araştırmalarıyla mümkün kılınmıştır.

http://www.biyologlar.com/hucre-kulturu-besiyeri-ve-solusyonlar

İnsan Genom Projesi

İnsan Genom Projesi

Bir organizmayı oluşturmak için gerekli bilgilerin toplamına genom diyoruz. Bir diğer tarifle, bir hücredeki genetik materyalin tamamı o organizmanın genomunu oluşturur.

http://www.biyologlar.com/insan-genom-projesi

 
3WTURK CMS v6.03WTURK CMS v6.0