Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 6 kayıt bulundu.
Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip Nedir? Grip Belirtileri , Grip Tanısı ve Aşısı

Grip, Influenza adı verilen bir virüs tarafından oluşturulan, ani olarak 39 derece üzerinde ateş, şiddetli kas ve eklem ağrıları, halsizlik, bitkinlik, titreme, baş ağrısı ve kuru öksürük gibi belirtiler ile başlayan bir infeksiyon hastalığıdır. Gribe neden olan influenza virüsü; hasta veya taşıyıcı kişilerin hapşırması ya da öksürmesi yoluyla kolaylıkla bulaşabilir. Grip virüsünün temas ettiği kişilerle temas etmek veya öpüşmek de grip virüslerinin bulaşmasına neden olur.Grip hasta veya taşıyıcı kişinin tuttuğu kapı kolu, telefon veya havlu gibi ortak kullanım eşyalarından da bulaşabilmektedir.. Hasta kişilerden çevreye saçılan virüs parçacıklarının adeta bir balon gibi havada asılı kalabilme yeteneği olması, bulaşıcılığı daha da arttırmaktadır.Grip enfeksiyonu ;ev, iş yeri, okul, kreş,kapalı alış veriş merkezi ve toplu ulaşım araçları gibi kapalı mekanlarda da kolaylıkla bulaşabilmektedir. Grip virusünün önemli bir bulaş yolu da, hastalığa yakalanmış ancak henüz belirgin yakınmaları olmayan taşıyıcı kişilerdir.Bu kişilerle aynı ortamda olmak da gribe yakalanma nedeni olabilir.Grip, bağışıklık sistemi güçlü olan insanlarda genellikle sağlığı ciddi olarak tehdit etmez. . Gribe yakalanan kişide yaşam kalitesinde bozulma, rahatsızlık ve kimi zaman iş gücü kaybı ortaya çıkmaktadır. Ateş,kas ağrısı,halsizlik sıkça görülür. Gribal enfeksiyonda yatak istirahatı yararlıdır.Ayrıca ateş düşürücü ilaçlar verilebilir, kas veya eklem ağrılarını gidermek amacıyla ağrı kesicilerden yararlanılabilir.Bol sıvı tüketimi ve C vitamini alınması da hastalığı kolay atlatmada yararlıdır. Grip virüslerin yol açtığı bir enfeksiyon olduğundan bakterilere etki eden antibiyotiklerin gripte kullanılması fayda sağlamaz.Grip, dikkat edilmediği takdirde larenjit, farenjit, sinüzit ve orta kulak iltihabına dönüşebilir. Sonbahar ve kış aylarında çocuklarda görülen orta kulak iltihaplarının yaklaşık yüzde 30-35‘inin nedeni geçirilmiş griptir. Ayrıca zatüree (pnömoni) menenjit, ansefalit gibi yaşamı tehdit eden veya ölümle sonuçlanan hastalıklar da gribe bağlı oluşabilir. Gripte tahlile gerek var mıdır? Genellikle Grip tanısı hekim tarafından hastanın belirtileri ve fizik muayene bulgularına göre konulur.Bu nedenle çoğu zaman tahlil yaptırmaya gerek yoktur.Ancak genel bir bilgi olması nedeniyle grip tanısında yapılan tahlilleri sizler için hazırladık. Grip Tanısı ve Tahliller Grip tanısında birçok tahlil ve tanı yöntemi vardır. Direkt virus antijen tayini, virus hücre kültürü ve serolojik yöntemlerdir.Genellikle pahalı olduklarından mecbur kalmadıkça yaptırılmaları tercih edilmez. İnfluenza(Grip) testleri için uygun örnekler boğaz sürüntüsü, burun yıkama suyu, burun veya bronş aspiratı ve balgamdır. Örnekler hastalığın ilk dört gününde alınmalıdır. Grip TahlilleriHücre Kültürü:Salgın dönemlerinde etken virüsün tayini için kültür gereklidir. Zaman veemek gerektiren bir yöntemdir.Viral antijenlerin tayini: Antijen tayini hızlı tanı testleriyle yapılabilmektedir. Bu testlerin duyarlılığı %70’in üzerindedir. Özellikle salgın dönemlerinde hızlı tanı amacıyla kullanılan testlerdir.Güvenilirliği tam değildir.Moleküler tanı:Son yıllarda önemi ve popülerliği giderek artmıştır.Güvenilirliği çok yüksektir.:Polimeraz zincir reaksiyonu (PCR) ile örneklerde viral RNA aranabilir. Grip Aşısı Nedir? Grip aşısı inaktive edilmiş(etkisizleştirilmiş) influenza virüslerinden veya antijenlerinden yapılıyor.Yani grip virüsüne karşı ı yine bizzat kendisinin aktif olmayan hali kullanılıyor. Aşı uygulandıktan sonra bağışıklık sistemi aşıdaki inaktif virüse karşı antikorlar oluşturuyor. Daha sonra,insan vücudu aktif virüsle karşılaşıldığında, önceden oluşmuş antikorlar enfeksiyon oluşumunu önlüyor veya ağır hastalık riskini azaltıyor. Grip Aşısı Ne Zaman Yapılmalıdır? Grip aşısının mutlaka salgın başlamadan önce yapılması gerekiyor. Aşının etkisinin ortaya çıkması için aşağı yukarı 2-3 haftalık bir süreye ihtiyaç duyuluyor. Dolayısıyla, grip aşısı için en uygun zaman sonbahar aylarıdır. Grip Aşısı Kimlere Yapılmalıdır? Grip aşısı, 6 aydan küçük bebekler, hamileliğin ilk 3 ayı içerisindeki anne adayları, yumurta ve tavuk proteinlerine alerjisi olan kişiler dışında herkese yapılabilir.. Ayrıca, 38 derece üstünde ateşi olan hasta kişilerde ve ağır enfeksiyon geçirenlerde, aşı uygulamasının ateş düştükten sonra ve genel durum düzeldikten sonra yapılması önerilmektedir.Grip aşısı, ülkemizde sosyal güvencesi olan 65 yaş ve üstü yaşlılara hekim reçetesi ile yazılabilmekte ve aşının önemli bir kısmı devlet tarafından karşılanmaktadır.Ancak özellikle ve öncelikle grip aşısı yaptırılması önerilen kişiler ise aşağıda belirtilmiştir.1) 65 yaşından büyükler, astım ve diğer kronik solunum sistemi hastalığı olanlar,2) Kronik metabolik hastalığı olanlar(Diabet gibi)3) Hemoglobinopatisi olanlar, uzun süreli aspirin tedavisi alan bebek ve çocuklar,4) İmmünosupresif tedavi alanlar(kanser tedavisi veya organ nakli gibi nedenlerle)5) HIV infeksiyonu (AİDS) olanların grip aşısı yaptırmaları önerilmektedir.6)6) Yüksek riskli kişilere grip hastalığını taşıyacak ya da bulaştıracaklara da aşı yapılması önerilmektedir, bunlar da sağlık personeli, kronik hastalık bakım üniteleri veya yaşlı bakım evlerinde çalışanlar ile evinde yüksek riskli kişi olanlar şeklinde sıralanabilir.7) Sıkça yurt dışı seyahatlerde bulunanlar,sporcular Grip Aşısı Dozu Grip aşısında tek doz yeterlidir. Daha önce hiç grip aşısı yaptırmamış olan 8 yaşından küçük çocuklarda ise aradan en az 4 hafta geçtikten sonra ikinci doz aşılama yapılması önerilmektedir. Grip aşısının her yıl tekrarlanması gerekiyor. Bunun nedeni ise, virüslerin her yıl kendilerini değiştirdikleri için, bir önceki yılın aşısının sonraki yıl koruyucu özelliğini yitirmesi. Genellikle 2 -3 hafta sonra etkili olmaya başlayan grip aşısının koruyuculuk süresi de 6 – 12 ay sürüyor. Aşının koruyuculuğu ise karşılaşılan virüsle aşının içerdiği antijenik yapının uyumuyla ilişkili. Aşıdaki antijenler virüsle ne kadar uyumluysa, korumanın da o kadar iyi sağlandığını belirtiyor. Grip Aşısının Koruyuculuğu Grip aşısı ile koruyuculuk, 65 yaş altındaki sağlıklı erişkinlerde yüzde 70-90 gibi yüksek oranlarda seyrediyor. İleri yaşlarda bu etki yüzde 30-40 oranında azalmakla birlikte, hastalığın hafif geçirilmesi sağlanıyor. Yapılan kısıtlı sayıdaki çalışmalara göre, grip aşısının çocuklar üzerindeki koruyuculuk oranı ise yüzde 22-91 arasında değişiyor. Ancak antijenik yapıda büyük değişiklikler meydana gelmişse koruma etkisi tüm yaş gruplarında azalıyor veya aşı tamamen etkisiz hale geliyor. Grip Aşısının Yan Etkileri Var mı?Grip aşısının damar yoluyla verilmemesi gerekiyor. Aşı sonrası nadiren hafif geçen nezle türü bir tablo oluşabiliyor. Aşı yapıldıktan sonra enjeksiyon bölgesinde ender görülse de; kızarıklık, şişlik, morarma, ateş, kırıklık, titreme, yorgunluk, baş ağrısı, terleme, kas ve eklem ağrıları gibi yan etkiler ortaya çıkabiliyor. Çok rahat tolere edilebilen bu yan etkiler de 1-2 gün içinde kendiliğinden geçiyor. http://tahlil.com

http://www.biyologlar.com/grip-nedir-grip-belirtileri-grip-tanisi-ve-asisi

Özel görelilik kuramı konusunda çok sık sorulan bazı soruları

Soru 1. : Camda ışık hızı düşüktür. Görelilik kuramı camda değişir mi? Bu türden sorular genel olarak ışığın görelilik kuramındaki rolünün abartılmasından kaynaklanıyor. Görelilik kuramında “ışıktan” ziyade “ışığın boşluktaki hızı” önemli. Kuram aslında uzay ve zaman hakkında. Fakat, uzunluk ve zamanı “metre” ve “saniye” olarak, farklı birimlerle ifade ediyoruz. Bu nedenle, bunların bir arada kullanabilmesi için hız birimine sahip bir sabit sayının kuramda belirmesi gayet doğal. Kısaca “ışık hızı” dediğimiz nicelik bu sabit sayı. Kuram ayrıca kütlesiz olarak nitelendirilen parçacıkların boşlukta sadece bu hızla yol alabileceği sonucunu içeriyor. Işık fotonları da kütlesiz olduğundan, ışığın boşlukta bu hızla yayıldığını söylüyoruz. Bunun dışında, ışığın bir ortam içinde yayılırken neler yaptığının kuram açısından hiçbir önemi yok. Dahası, böyle ortamlarda görelilik kuramındaki tipik sonuçlara benzemeyen durumlar oluşabiliyor. Örneğin çok hızlı parçacıklar su gibi bir ortama girdiğinde, ışığın o ortamdaki hızını geçebilir. Bu görelilik kuramına aykırı değil. Eğer parçacık yüklüyse, bu defa sesten hızlı giden uçakların yarattığı ses patlamasına benzer bir etki oluşur. Yani, parçacığı takip eden bir koni üzerinde yayılan güçlü bir ışıma meydana gelir. Çerenkov ışıması adı verilen bu ışıma, nükleer reaktörlerdeki tipik mavi ışığın temel nedeni. Üstelik bir ortamda yayılan ışığın hızı gözlemciden gözlemciye değişir. Yani, görelilik kuramının dayandığı temel varsayımlardan birincisi bu tip durumlarda sağlanmıyor. Hatta gözlemcinin bu ışıkla aynı hızda veya daha hızlı gitmesi de olası. İlk durumda gözlemci ışığın kendisine göre durduğunu, ikincisinde de geriye gittiğini görür. Bunlar da görelilik kuramı açısından sorun değil. Aslında bu sonuçlar, yani ışığın bize göre hareket eden ortamlardaki hızının değişiyor olması, 19. yüzyılın ortalarından beri biliniyordu. Soru 2. : Hızı 0,9c olan bir rokette yolculuk etmekteyken ileriye doğru 0,9c hızıyla bir taş fırlatıyorum. Taş ışıktan hızlı gitmez mi? Özetle, roketin yere göre hızı 0,9c; taşın rokete göre hızı da 0,9c. Öyleyse taşın yere göre hızı nedir? Cevap, beklendiği gibi 1,8c değil. Burada göz ardı edilen şey, roketteki ve yerdeki gözlemcilerin uzay ve zamanı algılayışlarındaki farklılık. Bu farklılıktan dolayı, taşın yere göre hızını 0,995c buluruz. Yani taş rokete göre çok hızlı gidiyor; ama buna karşın yerdeki gözlemci taşın roketten sadece biraz daha hızlı olduğunu görüyor. Hızların toplanması kuralı artık burada işlemiyor. Roketteki gözlemci taşı 0,9c hızıyla fırlatırken hiçbir zorluk hissetmez. Yani, bu gözlemci aynı taşı yerde fırlatırken ne kadar zorlanıyorsa, rokette de fırlatırken aynı derecede zorlanır. Görelilik ilkesi de zaten bunu gerektiriyor. Kısacası, roket ne kadar hızlı olursa olsun, rokete göre çok büyük hızlarla giden taşlar var. Ama bu taşlar hiçbir gözlemciye göre hız sınırını aşamaz. Soru 3. : Işık hızında gitsek dünya nasıl görünür? Işık hızına çok ama çok yaklaşabiliriz, fakat hiçbir zaman bu hıza tam olarak erişemeyiz. Dolayısıyla gerçekleşmeyecek bir durum hakkında yorum yapmak da anlamsız. Aslında, ışık hızında yol alan bir gözlemci fikri bir çok sorun içeriyor. Bunlardan birincisi, böyle bir gözlemciyi bu derece hızlandırmak için vermemiz gereken enerjiyle ilgili. Tam ışık hızına erişmek için sonsuz enerji gerekiyor. Buradaki “sonsuz” ifadesi “çok büyük” anlamında değil, tam olarak sonsuz anlamında. İçinde yaşadığımız enerji darboğazını biliyoruz. Buna ek olarak, Dünya’da, Samanayolu’nda hatta evrenin görünen kısımlarında bile sadece sonlu miktarda enerji var. Elimizde bulunan kaynaklarla, böyle bir işi başarmak için ihtiyacımız olan sonsuz enerjiyi hiçbir zaman denkleştiremeyiz. Buna ek olarak, uzunluk büzülmesi ve zaman genleşmesi etkileri de böyle bir gözlemci için sorun yaratıyor. Bu gözlemcinin hareket doğrultusundaki boyu tam olarak sıfır olmalı. Benzer şekilde gözlemcideki saat durarak hiç ilerlememeli. Bir bakıma, bu tip sorunlar, kuramı öngöremediği bir duruma uyarlamaya çalışmaktan kaynaklanıyor. Soru 4.: Işık hızıyla gitsem camdan geçebilir miyim? Işığın camdan geçebilmesi, ışığın bu malzemenin atomlarıyla etkileşmesi sonucunda meydana gelen özel bir durum. Bu özel etkileşme nedeniyle camdaki atomlar görünen ışığı soğurmuyor. Bu sonuç, malzemeye bağlı olduğu kadar, ışığın dalgaboyuna da bağlı. Örneğin, bazı kızılötesi ışıklar cam tarafından soğurulur. Bizse, atomlardan yapılmış olduğumuz için maddeyle daha farklı bir şekilde etkileşiriz. Yani camın bize verdiği tepki, ışığa verdiği tepkiden çok farklı. Bu etkileşim doğal olarak bizim hızımıza bağlı. Ama bu madde-madde ve madde-ışık etkileşmeleri arasındaki farklılığı ortadan kaldırmaz. “Çok hızlı gidersek, ışığa daha çok benzeriz” gibi yorumlar bu açıdan anlamsız. Sonuç olarak, ışık hızında zaten gidemeyiz. Bunun dışında, ne kadar hızlı gidersek gidelim, cama çarptığımızda camı deleriz. Çok hızlı giden parçacıklar cama girdiğinde, cam parçalanmaz; çünkü bunun için yeterli enerjileri yok. Ama, parçacığın hangi türden olduğuna bağlı olarak, bunlar camla özel bir etkileşime girer. Örneğin nötronlar çoğunlukla camdan geçip gider. Ama proton gibi yüklü parçacıklar, camdaki elektronlarla olan etkileşmeleri nedeniyle kısa sürede yavaşlar ve cama hapsolur. Soru 5. : Hızlandıkça kütle artıyorsa, fazladan eklenen madde nereden geliyor? Bir cisim hızlandırıldığında dışarıdan madde eklenmesi gibi bir şey söz konusu değil. Yani, cisimde en başta kaç tane proton, nötron ve elektron varsa, ne kadar hızlanmış olursa olsun bu parçacıkların sayısı yine aynı olur. Bu yanılgı, “hıza bağımlı kütle” kavramının yarattığı sorunlardan bir tanesi. Bilim insanları kütleyi değişmez bir nicelik olarak kullanmayı tercih ediyor. Yani, durağan haldeki kütlesi 1 kg olan bir cismin, ışık hızına çok yakın hızlarda hareket etse bile hala 1 kg kütlesi olduğunu söylüyoruz. Bu anlamda, kütle hıza bağımlı olarak değişmez. Fakat hız arttıkça, kütleyle ilişkili bir takım fiziksel niceliklerin değişmesi söz konusu. Örneğin ağırlık, kısaca Dünya’nın cisme uyguladığı çekim kuvveti. Veya (eylemsizlikle bağlantılı olarak) bir kuvvetin etkisi altında cismin ivmesi. Bu fiziksel nicelikler, cismin hızına bağlı olarak değişir. Ama bu etkileri sadece değişen bir kütle düşüncesiyle açıklamaya çalışmak pek mümkün değil. Çünkü bahsedilen etkiler yönlere bağlı olarak değişir. Örneğin cisim yere paralel hareket ediyorsa ağırlığı farklı, dik hareket ediyorsa farklıdır. Bu tip etkileri görelilik kuramını tam anlamıyla uygulayarak incelemek daha doğru. Kaynak: vergidunyasi.blogcu.com

http://www.biyologlar.com/ozel-gorelilik-kurami-konusunda-cok-sik-sorulan-bazi-sorulari

TRİPLET YAPIDAKİ NÜKLEOTİDLERİN SIRALANIŞI

Nasıl ki bir sanat sanatkâr sahibini gösteriyorsa bir harfte elbette ki kâtibine işaret eder. Dolayısıyla amino asitlerin dizilişi DNA’nın varlığını ortaya koymaktadır. Buradan hareketle nükleotid dizilişinin anlam kazanabilmesi için DNA ile birlikte incelenmesi gerekmektedir. Nitekim triplet yapıda nükleotidlerin dizilişi hakkında Nrenberg, Mathei ve Khorona birbirlerinden bağımsız olarak çalışmışlar ve birbirlerini destekleyen sonuca ulaşmışlardır. Nrenberg, tripletin ribozom içerisinde belirli bir cins amino asidi özel şekilde zincire bağlamalarından hareket ederek bir liste çıkarmıştır. Bilindiği üzere amino asit molekülleri birbirleriyle peptit bağlarıyla bağlanarak protein yapılı polipeptit zincirleri oluştururlar. Zaten birbirinden farklı protein moleküller değişik sayıda veya değişik cins amino asitlerin farklı şekillerde dizilmesiyle meydana gelmektedir. Khorona ise bu bilgilerden hareketle yapay RNA’lar elde edip, bunların şifrelendiği amino asitleri bulmuştur. Derken bu verilere dayanarak yine aynı listede verilen DNA kelimelerin karşılığı olan aminoasitler elde edilmiştir. Anlaşılan listedeki tablo incelendiğinde bir amino asidin 4 harf, bazen 6 değişik harfle şifrelendiği görülecektir. Örneğin; S-U-G triplet kodu lösini şifrelemekte, U-S-G ise serini şifrelemekte. Dahası var; bunlardan başka valin, treonin, alanin, anjinin ve glisin 4 değişik tipte şifrelenirler. Ayrıca bazı şifreler aminoasitlere yönelik değil başka anlamları belirtmek için görev yapmaktadır. Şurası muhakkak 20 çeşit amino asidi bağrında taşıyan 100 amino asitlik bir proteinin tesadüfen meydana gelme ihtimali 1 rakamının arkasına 100 tane sıfır koymak gibi bir hesapla karşı karşıya kalmak demektir. Hatta bu iş ayrıca atom seviyesinde hesaplandığında tüm hesapların altüst olacağı muhakkak, artık rakamların bile gücü yetmeyeceği bir tablo görülecektir. Bazı araştırıcılar genetik kodların birbiri üzerine taşan şifrelerden söz etmişlerdir. Neyse ki bu fikri çürüten doneler Wıllıam Wıttman’ın Tütün mozaik virüsü üzerinde yaptığı denemelerle gün yüzüne çıkmıştır. Şöyle ki; virüs RNA’sındaki bazı nükleotidler kimyasal işlemlerle değiştirildiğinde protein yapımında yalnız bir aminoasidin değiştiği görülmüştür. Proteinlerde 2 amino asit değiştiğinde ise bunların kesinlikle yan yana bulunmadıkları tespit edilmiştir. Birbiri üzerine taşan üçlü grubun herhangi bir nükleotidi yanında diğer bir üçlü gruba ait yan yana iki aminoasidin değişmesi beklenirken, tam tersi böyle bir şey olmadığı gibi şifrelerin birbiri üzerine taşması olayı da gerçekleşmemiştir. Netice itibariye DNA’da 64 adet üçlü kodonluk kader yazısı DNA enformasyonun bir kelimesine denk düşüp, böylece hücre enformasyon bakımdan herhangi bir darlık veya kıtlık çekmemektedir. Kıtlık bir yana aksine bolluk, cömertlik diyebileceğimiz kendinden gayet emin, garanti içerisinde yüzmektedir. Maalesef evrimciler farklı canlı türlere ait DNA şifrelerin veya protein yapıların birbirine benzer olduğundan dem vurup, kendilerince kod dünyasını evrime uyarlama çaba içerisine giriyorlar. Hatta maymun DNA’sının insan DNA’sıyla uyumlu olduğundan bahsedip insanın atası diye sunmaya çalışıyorlar. Oysa insanda 46 kromozom, şempanze ve gorilde ise 48 kromozom vardır. Şayet DNA bazında uyumluluğu evrime delil olarak gösterilecekse maymundan ziyade bunun için daha çok patates iyi örnek olabilirdi. Çünkü patatesin kromozom sayısı insanın kromozom sayısına eşit olup, her ikisi de 46 kromozomdur. İşte bu örnekten de anlaşıldığı üzere bu tip benzetmeleri evrime delil olarak sunmak büyük bir hata olduğunu gösteriyor. Hakeza Adli Tıp ve Polis kriminal laboratuarlarında gerek olay yeri incelemeleri gerekse nesep davalarıyla ilgili davalarda STR gen bölgelerinin tespitine yönelik çalışmalar sonucunda; tek tipte erkek ve kadın karakterli DNA tiplemelerin yanı sıra cinayet ve tecavüz gibi konularla alakalı karışım halde (mix) DNA profilleri(genomları) elde edilmektedir. Elde edilen STR gen dizilimi sayesinde kişilerin profilleri ortaya çıkabiliyor. İşte bu gen dizilimleri sayesinde nesep davalarında çocuğun ebeveynleri belirlenebilmekte, ayrıca cinayet ve tecavüz gibi olaylarda şüpheli şahıslara ait DNA profillerin karşılaştırılmasıyla birlikte birçok olay aydınlatılabiliyor. Yani dünyada ne kadar insan varsa bir o kadar kişiye has DNA tiplemeleri söz konusudur. Zira tek yumurta ikizlerin haricinde hiç kimsenin DNA tiplemesi bir başkasının DNA tiplemesi ile tıpa tıp aynı olmaz. Dolayısıyla DNA tiplemelerinde kaç gen bölgesiyle çalışılırsa çalışılsın mutlaka kişinin kendine özgü bir DNA tiplemesi mevcuttur. Bu tipleme kişinin aynı zamanda aidiyet kimliğidir. Nitekim kişiye has DNA diziliminin bir başka kişiyle aynı olma ihtimali yok denecek kadar azdır. Madem canlılık için belli bir dizilim gerektiriyor o halde tüm evrende yaşayan tek bir canlıya özgü (bir defaya mahsus) bir dizilim mevcuttur. Bu nedenle bir kişiye ait DNA tipleme rakamlarını tesadüfen dizilimini oluşturma ihtimali, bir maymunun bilgisayar klavye tuşlarına bastığında hiç hata payına meydan vermeden iki satır cümle yazma ihtimali kadar zayıftır diyebiliriz. DNA CÜMLELERİ (Genler) VE CİLTLER (Kromozomlar) Canlı sistem son derece kompleks bir yapıya sahip. Dolayısıyla herhangi bir sistemin tesadüfen kendi kendine oluştuğunu söylemek akla ziyan bir tavırdır. Madem harflerin dizilişinden kelimeler, kelimelerden cümleler meydana geliyor, o halde bu misalden hareketle hücre içerisinde birtakım biyokimyasal faaliyetler DNA molekülü üzerinde şifrelenmiş kodlara göre sıralanacaktır. Bu yüzden DNA’ya bilgisayar gözüyle bakılmaktadır. Çünkü artık Sibernetik çağda cümleler ikili sistemle çalışıp, 0 ve I sembollerle(evet-hayır) karşılık bulmakta. Böylece bu ikili sistem sayesinde ciltler dolusu eser bir anda bilgisayar ekranına yansıyabiliyor. Hatta yabancı dilin çevrimi bile bu ikili sistem vasıtasıyla anında yazılıma çevrilebiliyor. Anlaşılan hiçbir sistem kendi kendine çoğalamadığı gibi aynı zamanda hiçbir sistem kendi kendine çarkını döndürememekte, mutlaka sistemin işlemesi için yönetici bir gene ihtiyaç vardır. Nitekim canlı organizma DNA molekülü tarafından yönetilip, başsız değildir. İşte bu hiyerarşik düzen içerisinde DNA üzerinde dizili birçok kodon daha büyük çapta enformasyon (bilgi) birimine dönüşüp bir başka geni meydana getirebiliyor. Diğer taraftan insan DNA’sında bir milyondan fazla gen var olup, mevcut genlerin çoğu uzun veya kısa bir protein moleküllerle temsil edilir. Bazı genler ise daha başka görevler için kullanılır. Bu yüzden her bir ayrı protein şifresi taşıyan genlere strüktürel gen denmektedir. Dolayısıyla mRNA bu şekilde strüktürel genlerin birer komplamenter kopyası olarak iş görür. Ayrıca DNA’nın kontrolünde belli bir vazifeye yönelik iş gören binlerce enzim adeta seferber olup her biri DNA zincirinde bir gene karşılık kodlanmaktadır. Şimdi bu gerçekler ortada iken hala DNA molekülün tesadüfen sentezlendiği söylenebilir mi? Bu kadar komplike işleyen mekanizmaya hala tesadüfi deniyorsa, bu kadarına da pes doğrusu demekten başka daha ne diyebiliriz ki. Evrimciler yukarıda bahsi geçen hususlarda iddialarını ispatlayamayacaklarını fark etmiş olsalar gerek ki bu sefer kompleks yapıların ansızın değil, aşama aşama zaman içerisinde ortaya çıkabileceklerini ileri sürmeye başlamışlardır. Yani sıkıştıklarında işi zamana havale etmeyi yeğliyorlar. Daha da işi ileri götürerek bir sistem birinci basamaktan ikinci basamağa, daha sonra üçüncü basamağa doğru ilerlediğini söylemekteler. Daha da hızını alamayıp her basamakta çevresine uyum sağlayanların ayakta kalıp yoluna devam edebileceklerini, her hangi bir basamakta takılanlar ise zararlı kabul edilip bir üst basamağa terfi edemeyeceklerini, böylece basit konumda kalacaklarını dillendirirler. Bu arada ön kabullerine dayanak teşkil etsin diye mutasyon ve tabii seleksiyonu tezlerini güçlendirmek adına kurtarıcı temel esas alırlar. Oysa kendi ön yargılarını doğru kabul etsek bile seleksiyonla iki faydalı mutasyon taşıyan kuşağı oluşturmak hiçte kolay bir iş değil. Bir kere bu iş için takriben bir milyon yeni kuşak geçmesi gerekir ki; bu havanda su dövmek gibi bir şeydir. Maalesef evrimciler mutasyon ve doğal seleksiyona olduğundan fazla misyon yüklemiş gözüküyorlar. Yale üniversitesinden Dr. Harold J. Morowitz en basitinden bir canlının hayatını idame ettirebilmesi için minimum 239 çeşit proteine gerek olduğunu ortaya koymuştur. Hatta bugün itibariyle bilinen en küçük bakteri cinsi olan Mycoplasma hominis (H 39’un) için 60 çeşit amino aside ihtiyaç olduğu artık bir sır değil. Üstelik DNA’nın toplam uzunluğu canlıdan canlıya değişebiliyor da. Örneğin bir bakteriofaj DNA’sı 10 mikro litre uzunluğunda olup, bakterilerde 1 mm, memelileri de ise 10 cm olarak hesaplanmıştır. Keza bazı araştırmacılara göre insan DNA’sı 100 cm uzunluğunda olduğu belirlenmiştir. İşte bu sıraladığımız rakamlardan hareketle 10 mikro litre uzunluğunda bir bakteriofaj DNA’sında 3x104 nükleotid’in (harf) var olacağı hesaplanmaktadır. Ortaya çıkan bu veri normal bir kitap için 3x103 harfli bir sayfaya tekabül eden bir rakamdır. Yani bir bakteriofaj DNA’sı 1000 sayfalık 1 cilt demektir. Bir başka ifadeyle canlıların büyüyüp çoğalmaları için gereken bilgi yığını veri tabanı görevi yüklenmiş nükleik asit moleküllerinde muhafaza edilmektedir. Dolayısıyla bu bilgi yığını sayesinde nükleik asitler kromozomları oluşturmak üzere bir çift heliks şeklinde birbirlerine kenetlenip bağlanırlar. Memeli hücrelerinde durum daha farklıdır. Nitekim 100 ciltlik insanda yaklaşık her biri 1000 sayfa olmak üzere hücrelerinde 1000 ciltlik enformasyon taşırlar. Gerçekten de insan DNA’sı 1000 ayrı ciltlik 46 ayrı kromozoma pay edilmiştir. Anlaşılan tüm organizmaya ait hayatsal faaliyetler belli bir plan çerçevesinde kimyasal, fiziksel, psikolojik yönden işlerlik kazanması genetik enformasyon liderliğinde ve denetimi altında vuku bulmaktadır. Hatta bu muazzam enformasyon deposu bilim adamlarınca bir canlının alın yazısı olarak kabul görür. Ayrıca hücreyi yöneten genetik enformasyon; “—Bireysel enformasyon —Toplumsal enformasyon” diye kategorize edilmektedir. Hücre kendi organellerinin işleyişinde bizatihi yine kendisinin ürettiği beslenme, büyüme ve bölünme gibi unsurlar etken olup, bu tür kendi ihtiyaçlarına hükmeden faktöre bireysel enformasyon denmektedir. Zira bireysel ve bağımsız yaşama karakterinde olan hücreler mikroplara has özgü bir durumdur. Ancak gelişmiş yapıda canlıların bünyesinde bazen doku nizamının bilincine uymayan bir takım hücreler var ki, bunlar hepimizin korkulu rüyası diye algıladığımız kanser hücresinden başkası değildir. Toplumsal bilinç ise insan, bitki ve hayvanların hücrelerine özgü bir yaşama tarzıdır. Zira bir başka hücrenin diğer hücrelere ve çok hücreli organizmanın bütünü ile ilişki kurması bir tür sosyal dayanışma örneğidir. İşte sosyal dayanışmanın gereği tüm organizma hiyerarşik yönetime itaat edip gerektiğinde ona katkıda bulunmak için canhıraş çalışmaktadır. Bu yüzden genetik enformasyon grubunda hücrenin taşıdığı ortak model toplumsal enformasyon olarak sahne almaktadır. Ancak burada toplumsal enformasyonun bir bitki hücresiyle beyin hücre arasında kimyasal yönden kısmi bir farkın olmasından hareketle her ikisi de aynı orijinlidir deme handikap’ına düşmemelidir. Şayet böyle bir yanlışa düşersek hücre arasındaki asıl farkın her hücre yapısında kodlu olan matematik programıyla ayırt edildiğinden habersiziz demektir. Hücrenin yaşlanma sürecine girdiğinde her iki grup enformasyona ait genler gerektiğinde eylemli gruba alınıp çalıştırılır da. Fakat sırası geldiğinde işi bitenler eylemsizleştirilip yok edilirler. Yeter derecede büyüyen ve yapısı tamamlanan bir organda ise hücre bölünmeleri yavaşlar ve ancak ölen hücrelerin bıraktığı boşluk yenileriyle doldurulur. Demek ki hücreler organizmaların verdiği sinyallere asla duyarsız kalmayıp hiyerarşik düzene mümkün mertebe itaat etmekteler. Tabiî ki bu durum toplumsal enformasyon sayesinde olmaktadır. Ancak bir de unutkanlık denen olay var ki, bu tamamen vücudun protein sentezleme kabiliyetinin hız kesmesi veya yitirmesiyle ilgili bir husus olsa gerektir. Nitekim protein sentezi durağanlaşmaya başladıkça yeni işlemler eskilerden daha çabuk unutulur hale gelmektedir. Canlı denen varlık kendi iç mekanizmasını belli limitler içerisinde koruyabilen ve kapalı sistemden oluşan ve aynı zamanda denge ayarına göre tanzim edilmiş homeostasis bir yaratıktır. Dolayısıyla canlı kendini dış etkenlerden bağımsız olarak soyutlayıp değişkenliğini dengede tutabilen bir donanıma sahip özelliktedir. Zaten kan basıncı, vücut sıcaklığı, nabız atım sayısı, kan şekeri gibi belli sabit değerler denge durumunun bir göstergesidir. Şayet bu denge ayarları normal değerler arasında seyretmezse vücut alarm vermeye başlamış demektir. Mesela vücut hararetinin 36,5 santigrat derecede olması gerekirken 40 santigrat derecelere çıkması veya kan şeker düzeyinin % 90–110 mili gram olması lazımken 250 miligram seviyelere yükselmesi gibi arızalar (semptomlar) normal homeostatik sınırların aşılması anlamına gelir ki, bu hastalık demektir. Dahası enformasyon kayıtlarında bir hücrede bağımsız bireysel enformasyon kaybedilmiş bozulmuşsa o artık hücrenin ölümcül hastalığa yakalanması an meselesidir. Neyse ki bu arızı durum tüm organizmaya sirayet etmemekte, bilakis ölen hücrenin yerine bir başkası devreye girmektedir. Şayet bir hücrenin toplumsal enformasyonu kaybolmuşsa çoğu kez kontrolsüz üremeler baş gösterir. Bunun sonucunda organizma içerisine hücre anarşizmi doğup (sarkom) kanser hücresinin oluşumuna kapı aralar. Kanser hücresi de tıpkı bir bağımsız hücre gibi doku sorumluluğundan uzak başıboş bir hücre görünümü sergiler. Canlılarda şifrenin universal olması ( genetik şifre tüm canlılarda ortaktır) Hücrelerdeki genetik şifrelerin nasıl meydana geldiği, ne şekilde değişikliğe uğradığı konusunda evrimciler cevap vermekten aciz durumdadırlar. Zaten onlar matematikle pek barışık sayılmadıklarından şifre ismi geçtiği anda belli ki yüzleri solmakta. Her şeyi program veya şifre dâhilinde açıklamak onlar için kâbustur adeta. Bu yüzden biyolojik hadiselere tesadüfî demek işlerine geliyor. Çünkü analitik çaba gerektirmiyor. Genetik şifre her canlı türü için aynı olmayıp, ancak belirli bir organizma için sabit kabul edebiliriz. Bazı araştırıcılar birbiriyle yakınlığı olmayan canlılara ait şifreleri karşılaştırmak amacıyla birtakım deneyler yapmışlarda. Şöyle ki; —Hayvansal virüslerin nükleik asitlerden hazırlanan preparatlarla bakterileri enfekte etmeyi denemişler. Bu durumda bakteri hücresi tıpkı bir bakteri virüsü tesiri altındaymış gibi virüse ait polipeptit sentez ettiği gözlemlenmiştir. Fakat bu deneyle yeni bir tür ortaya çıkmamaktadır. Yüce yaratıcının yarattığı orijinal malzemeyle ortaya birtakım şeyler koyma çabası olmaktan başka hiç bir işe yaramayan bir denemeden öteye geçememiştir. — Bitkilerde hastalık yapan virüslere ait nükleik asitleri bakteri virüslerin özütlerinden hazırlanan yapay unsurlarla karıştırıldığında normal biyolojik fonksiyonlarına devam etmekle beraber biyolojik donanım aynı kalıp evrimleşme söz konusu değildir. Belli ki kendi keyfince üreme denilen bir hadise yok ortada. Var olan bir gerçek var, o da tüm canlı hücrelerde biyolojik nizamı âlem orijinal halde yoluna devam etmesidir. — Çok değişik kökenli elemanların bir araya getirilmesiyle hazırlanmış yapay ortamlar sanki tek bir türe ait hücre yapısı gibi davranmakla birlikte, şu da bir gerçek Yüce Yaratıcı benzer fonksiyonlar için benzer yapılar yaratmış olabiliyor. Dolayısıyla her tür kendi içinde genleri değişmeyeceğine göre aynı canlıdan asla farklı canlı meydana gelmeyecektir. —Değişik organizmaların hücrelerinden hazırlanan ortamlara yapay bir mRNA aktarılınca birbirlerine uyan sonuçlar alınsa da yine asla yeni bir tür canlının meydana gelmesi söz konusu değildir. Kaldı ki deney metodunu evrime uygulamak hiçte öyle kolay gözükmemektedir. Nitekim Evrimci Theodosius Dobzhansky; deney metoduyla milyonlarca sürebilecek bir olayın açıklanmasına yetecek sürenin bir araştırmacının ömrünü aşabileceğini itiraf etmek zorunda kalmıştır. Matthaei ve Schoek iki bilim adamı insan plasentasından hazırladıkları hücresiz yapay ortamda 64 kod sözcüğün en az 27’sinin hem insan, hem de E. Coli için müşterek (ortak) gibi gözüksede elde edilen bu tür bulgularla tüm canlıları kapsayan bir universal (müşterek) aidiyet kodun var olduğu anlamı çıkmaz. Her şeyden öte embriyolojik süreç her canlıda farklı seyretmektedir. Dolayısıyla embriyonun gelişmesi esnasında ne ceninin (fetus) geçirmiş olduğu embriyolojik safhalar (ontogeni) ne de bir başka canlıya ait embriyolojik benzerlikler evrime delil olamaz. Üstelik ortada homolog canlılara ait ortak ata fosilleri yok ki, böyle bir iddia da bulunulabilsin. Çünkü birçok müşterek kombinezonlardan hareketle aynı atadan geldiğimiz varsayımına delil teşkil etmediği gibi bütüncül durum ortaya koyamamaktadır. Zira ne kurbağa insan DNA’sı, ne de insan kurbağa DNA’sıdır. Dolayısıyla evrim varsayımları hep görüş olarak kalacaktır. Dahası canlılar dünyasında türler arasında benzerliklerin varlığı ortak atadan meydana geldikleri anlamına gelmez. Üstelik benzerliklere balıklamasına dalıp mal bulmuşçasına sevinenler her nedense canlılar arasında bariz bir şekilde görülen farklılıkları gördüklerinde teğet geçmektedirler. Şayet birbirine benzer iki canlı veya birçok benzer canlılar aynı atadan gelmişlerse bunların birbirine dönüşünü gösteren bir silsile serisi, aynı zamanda birbirleri arasında geçişlerin nerede noktalandığı ve terfi ettiği kademeye nerede başladığını gösteren bir delil ortaya koyulmalıdır. Madem canlılar arasındaki üniversallıktan (birliktelik) söz ediyorlar o halde aminoasitlerin tRNA’daki seçme (kodon tanıma) alanlarını uzaysal yapıları arasındaki uygunluk tanımı mı yapmak lazım, yoksa canlıların evrimleşmesi ile ilgili olduğuna dair görüş mü belirtmek gerekir. Elbette bu tür varsayımlarla bir yere varılamaz. Zira genetik kodon anlamını değiştiren mutasyonlar hemen hemen öldürücü olduklarından evolosyon sırasında eklendikleri varsaysak bile baskın halde gün yüzüne çıkamayacaklardır. O halde tüm bu anlatımlardan yola çıkarak biyolojik şifreyi şöyle özetliyebiliriz: —Her bir şifre bir üçlü nükleotid grubundan meydana gelmiştir. —Her üçlü kodon müstakil (özeldir) olup, nükleotidlerin üst üste birikmesi söz konusu değildir. — Birçok aminoasitler birden fazla üçlü kodon tarafından yönetilir. —Belirli bir üçlü kodon birden fazla amino asidi yönetemez. Üçlülerin sadece bir amino asidi yönettiği bulunmuştur. İstisna olarak U-U-U üçlüsünün fenil alaninden başka pek az miktarda lösini de yönettiği belirlenmiştir. —Bazı şifreler aminoasitleri kodlayamadığı durumlarda bunlar protein sentezinin başlatılması ve sonlanması gibi diğer işlerde kullanılır. — Her canlı organizmada aynı aminoasitler aynı üçlü kodonlar tarafından yönetilir. Hatta yapılan araştırmalar sonucu E. Colinin de diğer canlıların aminoasitleri gibi kendine özgü üçlü kodonlu olduğu belirlenmiştir. Hücre çekirdeğine giren ve DNA’ya katılan yeni birimler Mutasyonlar Canlılarda gen kombinasyonlarının dışındaki diğer sebeplerle ve ani olarak meydana gelen kalıtsal değişmelere mutasyon denmektedir. Yani mutasyon terimi genellikle kromozom yapısı değişmeleri veya kromozom sayısı değişmeleri, ya da genlerin yapısındaki fiziksel ve kimyasal değişmeleri ifade etmek için kullanılmaktadır. Fakat gel gör ki evrimciler tarafından mutasyona olduğundan daha fazla misyon yüklenip yeni bir canlı türün doğuşuna neden olan bir hadise gözüyle bakılmaktadır. Bir başka ifadeyle mutasyon gibi arızalı bir yapıya bilge kavramının bile yetişemeyeceği bir anlam yüklemekteler. Hâsılı her canlı tipin genetik yapısı kendine özgü olup mutasyonla ne bir canlı eksilmiş ne de yenisi türemiştir. Üstelik kendi keyfince üreme denilen bir hadise de yok zaten, tam aksine tüm canlı hücreler biyolojik nizamı çerçevesinde iş görmektedir. Kromozom yapısı değişmeleri Kromozom yapısı değişmeleri kendiliğinden meydana geldiği gibi radyometrik sebeplere bağlı olarak x ışınları, ultraviole ışınları, gama ışınları ve çeşitli kimyasal maddeler kullanılmak suretiyle suni olarak ta oluşabiliyor. Söz konusu bu etkenlerden herhangi birisine maruz kalan hücre kromozomu enine veya daha fazla noktadan kopabiliyor. İşte bu kopmalar kromozom üzerinde bir takım yapısal değişmeler doğurmaktadır. Ancak mutasyona bağlı olarak meydana gelen bu tür kopmalar milyonda bir görülen ani değişiklikler olup asla evrime delil teşkil etmez. Çünkü söz konusu mutasyona uğramış genetik yapı bütünüyle değişikliğe uğramadığı gibi ortaya yeni bir canlı tür koyamamakta. Defisiyens ve Delesyon Her ikisinin de ortak noktası kopma olup, aynı zamanda kromozomların parça (segment) kaybetmesi olayı olarak bilinmekteler. Yani herhangi bir nedenle kromozomun ucundan bir parça kopar veya kaybolursa bu olaya defisiyens, aradan bir parça kopar ve kaybolursa buna da delesyon adı verilir. Defisiyensle kromozomun tek yerden kopan kısmın aradan çıkmasıyla birlikte kalan uçlar tekrar birleştiği gözlemlenmiştir. Dolayısıyla her iki halde de sentromer ihtiva etmeyen kısımlar hücre içerisinde görev yapamaz konumuna düşüp ortamdan kaybolurlar. İngiltere kıyılarındaki Man adasında yaşayan kuyruksuz kedi (Manx) evrimcilerin dikkatini çekmiş olacak ki onun adeta kuyruksuz oluşundan medet ummuşlardır. Oysa söz konusu bu kedi birileri tarafından kuyruğu kesilmesi sonucunda kuyruksuz hale dönüşmüş değil. Belli ki kuyruğa has bir genin kopması veya kaybetmesiyle alakalı bir durum var ortada. Bir kere mevcut geni kaybetmeye dur, elbet bu durumda Manx kedisinin kuyruksuz doğmasından gayet tabii bir olay daha ne olabilir ki. Çünkü ortada kaybedilmiş gen söz konusudur. Bu olayda asla evrimleşme süreci yoktur. Malum olduğu üzere evrimciler öteden beri hem insan, hem de kuyruksuz maymunların (apes) bundan takriben 3 milyon önce ortak bir atadan türedikleri iddiasında bulunmuşlardır. Bu yüzden fosil hominoidler kuyruksuz maymun ve insan için söylenile geldi, hominoidler ise yarı insan bir yaratık için kullanılan bir kavram olarak dile getirildi hep. Oysa bu tür kavramlarla evrimciler insanı insanlıktan çıkarıp hem atasını hem de kendisini hayvanlaştırmak isteseler de böyle bir ortak atayı gösteren herhangi bir fosilin yokluğu değim yerindeyse uykularını kaçırıyor. Kısaca evrimcilerin insanın atası diye ilan ettikleri maymunların kuyruklarının zamanla körelerek insanda kuyruk sokumu halinde oluştuğunu söylemek büyük bir yanılgıdır. Kaldı ki; maymun kuyruğu sayesinde bir fındık tanesinden küçük yiyecekleri bile toplayabiliyor. Yani bir noktada kuyruk parmak görevi yapmaktadır. Ayrıca bazı maymunlarda apandisitin olmaması da evrim açısından başka bir handikap teşkil etmektedir. Inversiyon Bir kromozomdan kopan bir parçanın koptuğu yerde 180 derece dönmesinin ardından yapışmasına inversiyon denmektedir. İnversiyonun delesyondan farkı kopan segmentin ters bir dönüşle eski yerine dönmesidir. Yani orijinal kromozomda genlerin dizilişi A, B, C, D, E, F, G şeklinde olduğu halde inversiyon neticesinde A, B, C, F, E, D, G halini alırlar. Duplikasyon Bir kromozomun belli bir kısmında gen sayısını iki veya daha fazla artırması olayıdır. Yani duplikasyon delesyonun aksine bir parça çoğalması demektir. Dahası duplikasyonla homolog kromozomların herhangi bir noktasının birbirine temas etmesinden sonra o noktada bir kopmayla birlikte yeniden birleşip ilave parçalar eklenmektedir. Translokasyon Translokasyon homolog olmayan kromozomlara ait kaybolan kromozom parçasının taşınıp veya yer değiştirmesiyle birlikte başka bir kromozoma yapışma olayıdır. Demek ki farklı homolog çiftlerine ait kromozomların birbirini kat etmesi bu temas noktasında bir kopmaya sebep olabiliyor. Yani bu kopan parçalar bir translokasyon sürecinden geçip sonunda anomali halde birleşebiliyor. KROMOZOM DEĞİŞMELERİ Bitki ve hayvanlar âleminde kromozom sayısı cinsten cinse, hatta türden türe değişiklik göstermekle beraber her türün kendi içerisinde kromozom sayısı sabit kalmaktadır. Genellikle her canlı hücresi kendi türü için karakteristik özellik göstermektedir. Bu yüzden eşeyli üreme gösteren canlılarda gametlerin ihtiva ettiği kromozomlara takım veya genom adı verilmektedir. Genomların sayısı “n” ile gösterilip haploit (monoploit) özelliktedir. Somatik hücrelerin gametleri ise iki misli kromozom ihtiva ettiğinden kromozom sayısı 2n olmaktadır. Yani diploittirler. Fakat bir kısım canlılarda diploid (2n) kromozom sayısının değişebildiği belirlenmiştir. O halde bu arızi değişmeleri muhtelif kısımlara ayırarak inceleyebiliriz. Euploidi Bir takımda yer alan kromozomların birden başlayıp tam katlı yükselmesi ya da tam tersi o kromozom takımının organizmada tek bir defa bulunması olayı euploidi diye tanımlanır. Bir başka ifadeyle kromozomlar bu olayla birlikte hem monoploid hem de poliploid şeklinde sahne alabiliyor. Dolayısıyla bu iki tipi şöyle izah edebiliriz: Monoploidi Nadiren bazı hayvan ve bitki hücrelerinde sadece bir takım veya n kromozom ihtiva edip buna monoploid denmektedir. Örneğin bal arılarında erkek fertler döllenmemiş yumurtaların gelişmeleriyle meydana gelir. Keza deneysel olarak temparetür şartlarına maruz kalan Tritirus yumurtaları ise gelişme kaydedip monoploid fertler meydana getirirler. Poliploidi Bir takımda yer alan kromozomlar sayıca 3 veya daha fazla kata yükselmesi olayı poliploidi adını alır. Bu olay neticesinde 3n, 4n, 5n gibi artış kaydeden n katlarda kromozomlu fertler meydana gelebiliyor. Bunlar sırasıyla triploid, tetraploid, pentaploid vs. diye tanımlanır. Poliploidi fertler; Mayoz bölünme sonucu kromozom sayısının yarıya indirgenmesiyle birlikte en az somatik hücrelerin sayısı kadar genoma sahip gametlerin teşekkül etmesiyle oluşan fertlerdir. Aynı zamanda bu tip fertler zigotun ilk bölünmesi esnasında enine çeperin teşekkülüne mani olmak suretiyle kromozom sayısı iki kat yükselmesi sayesinde meydana gelirler. Bu arada Poliploidi fertlerde kendi içerisinde birtakım türlere ayrılmaktadır. Şöyle ki; —Autopoliploidi (Autoploidi) Autopoliploidi de mevcut olan genlerin hepsi aynı türden meydana gelir. Şayet bir diploid ferdin toplam genomu AA ise autopoliploid fertler 4A, 6A, 8A, 10A şeklinde tezahür edecektir. Yine autopoliploidi de mevcut genlerin bir kısmı aynı türden diğer bir kısmı ise başka türden meydana gelebiliyor. Mesela AA ve BB genomları taşıyan iki fert çaprazlanırsa AB genomu taşıyan bir zigottan diploit bir fert hâsıl olacaktır. Şayet bu zigotun kromozom sayısı 2, 3, 4 katına çıkarılırsa 2AB (AA BB), 4AB(AAAABBBB) gibi alloploid fertler oluşacaktır. — Endopoliploidi Endopoliploidi endomitoz adı verilen olayın bir neticesinde doğmaktadır. Nitekim bazen farklılaşmış ya da bölünme yeteneğini kaybetmiş hücrelerde çekirdek zarı kaybolmadığı halde kromozomların uzunlamasına bölünerek sayılarını 2 veya daha fazla kat sayıya yükselttikleri görülmüştür. Ancak bu olayda iğ iplikleri teşekkül etmez. Bu yüzden endomitozla oluşan kromatidler birbirinden ayrılarak bağımsız kromozom halini alırsa bu olaya endopoliploidi (polisomati) denir. Şayet birbirine yapışık kalıp kromatid paketlerinden ibaret dev kromozom haline dönüşürlerse bu olaya ise politeni denmektedir. Zira Politeni, Dipter (örneğin Drosophila) larvalalarının tükürük bezlerinde sık sık görülebiliyor. — Autopoliploidy Bir takımda yeralan kromozomlardan birinin veya birden fazla türün genom sayısının artırması autopoliploidly adını alır. Dolayısıyla bu tip fertler autopoliploidy gametlerin normal haploid sayıdan daha fazla veya eksik sayıda kromozom ihtiva eden gametlerin ürünü olarak ortaya çıkmaktadır. (Non-dujuntion olayı ile meydana gelen gametlerde birinde kromozom sayısı n+1, diğerinde ise n–1 şeklindedir) Bu arada Autopoliploidy kendi içerisinde, monozomi, nullisomi ve polisomi olarak tasnif edilir. Şöyle ki; —Monozomi Monozomi; diploid bir fertte tek bir kromozomun tamamlanmamış veya eksik olması olayıdır. Böyle bir fert non-dısjunctıon olması dolayısıyla bir kromozom eksik olan bir gametin (n–1), normal bir gametle birleşmesi neticesinde meydana gelir. Böylece n–1 x n = (2n–1) şeklinde formüle edilen monosomik durum turner sendromu olarak sahne alır. —Nullisomi Nullisomi; bir canlıda bir kromozom sayısının homologu ile beraber eksik olması olayıdır. Böyle oluşan diploit fertler 2n–2 ile gösterilir. Dahası Nullisomik fertler nondısjunctıon olayı sonucu aynı çeşit kromozomunu kaybetmiş olan 2 gametin birleşmesiyle meydana gelip, bu durum n–1 x n–1 = (2n–2) şeklinde formüle edilir. —Polisomi Polisomi; bir takımda yer alan kromozomlardan bir veya birkaçının sayısını yükseltmesi olayıdır. Tabiî ki polisominin de trisomi, tetrasomi, hiperploidi ve hipoploidi çeşitleri vardır. Şöyle ki; Trisomide diploit fertte bulunan kromozomlardan bir tanesi daha fazladır. Yani 2n+1 şeklinde formüle edilip mesela insanda trisomik fertler n+1 =24 ve n =23 kromozomlu gametlerin birleşmesiyle meydana gelmektedir. Dolayısıyla genel itibariyle trisomik fertlerde kromozom sayısı 47 olmaktadır. Tetrasomide diploid bir ferdin kromozomundan bir tanesi 4 kez sahne almaktadır. Nitekim böyle fertler 2n+2=48 formülü ile gösterilir. Hipoploidi polisomi olayının yüksek katsayı poliploidlerinde yer alan kromozomlardan bir tanesinin diğerlerine nazaran daha az yansıması şeklinde tezahür etmektedir. Böylece bu durum 4n–1, 5n–1 diye kategorize edilir. Fazla olanı ise hiperploidi adını alır.Nitekim hiperploidiyetrizomiler, hipoploidiye de turner sendromu örnek gösterilebilir. Gen Mutasyonları Her ne kadar DNA yazısı kromozom âlemi içerisinde sıkıca paketlenmiş, ayrıca protein kılıflarlara sarılmış moleküler nükleotid bazların çift zincirin karşılıklı kutuplarına birbirlerine sıkıca tutunup korunmuş durumda olsalar bile yine de bizim bilmediğimiz birçok bozucu, dağıtıcı ve yıkıcı faktörlerin risk oluşturması muhtemeldir. Yani nükleotid moleküllerin gerek kendine özgü termik titreşimleri, gerek kimyasal ve elektriksel etkenler, gerekse başka moleküllerle çarpışması veya ortamdan geçen radyasyon etkisi gibi birtakım sebepler DNA üzerinde bazı kayıplara yol açabiliyor. Mesela buna benzer daha nice etkiler sonucunda kanatsız sinek veya şekli bozulmuş bitki meydana gelebiliyor. Tabii bu demek değildir ki evrimleşme sonucu yeni bir canlı meydana gelmiştir. Belli ki bu tip istisnai durumlar kurulu programa zarar vermekten öteye geçemiyor. Sonuçta genler mikro âlemde öyle harükülade işler yapıyorlar ki aradan kaç nesil geçerse geçsin canlının tümünde değişiklik oluşturmadan orijinal haline sadık kalabiliyorlar. Zaten genler hücrelerin başkomutanı olup, onların direktifleriyle canlılar kararlılıklarını sürdürebiliyor. Maazallah balık baştan kokarsa vay o hücrenin haline. Beynimizin en kolay yaptığı iş belki de olumsuz olan her ne varsa onu derhal programlayabilmesidir. Madem öyle beynimize olumlu sinyal gönderip kendimize pekâlâ pozitif bir bakış açısı kazandırabiliriz. Bunun için evvela kendimizi olumlu düşünmeye veya her şeye güzel bakmaya alıştırmak, sonra dilimizi olumlu cümleler kurmaya alıştırmak gerekmektedir. Çünkü tatlı söz yılanı bile deliğinden çıkarabiliyor. Bundan da öte eline, diline, beline sahip olan isterse kâinata meydan okuyabiliyor da. O halde kul olmanın idrakiyle dua ederken “Allah’ım hayırlı değilse üniversiteyi bana kazandırmayı nasip etme” yerine “Allah’ım bana hayırlı üniversiteler kazanmayı nasip eyle” tarzında hiçbir kayda ve şarta bağlı kalmaksızın ümit dolu bir dil kullanmakla beyin programını olumlu kılabiliriz. Yani siz siz olun kullanacağınız cümlelerinizde asla olumsuz ve karamsar kelimelere yer vermeyin. Hani bir söz vardır ya “Güzel gören güzel düşünür, güzel bakan güzel görür, güzel rüya gören mutlu olur” diye. İşte bu tür akıl dolu sözler hepimizin kulağına küpe olsun ki, bak o zaman gerçek hayat nedir farkına varabilelim. Bir DNA zincirin halkasında herhangi sebepten ötürü bir harf kaybının olması kayda değer önemli zarar sayılmaz. Çünkü hemen o noktada iki şerit birbirinden ayrılıp, sağlam olan zincir kendisine bir komplamenter kopya imal edebiliyor. Böylece eski komplementer DNA şeride karşılık gelen yeni şeridin yardımıyla tekrar kayıplar giderilmiş olur. Fakat öyle istisnai durumlar var ki; DNA rejenerasyonunu (yenilenmesi) imkânsız kılan bozulmalar sonucu DNA’nın her iki halkasında cereyan eden kopma veya kaymalar düzeltilememektedir. Dahası rejenerasyona hizmet edecek orijinal enformasyon her iki şeritte izini kaybedebiliyor. İşte bu rejenere edilmeyen kısım ya da aslına çevrilemeyen değişmiş bölüm kendi başına arızalı şekliyle kalıp hücrenin hayatını sonlandıracak noktaya kapı aralayabiliyor. Derken bu arızalı durum hücreden hücreye nesiller boyu ilerleyip adına mutasyon deriz. Şurası muhakkak genetik kodlarda meydana gelen değişmeler istisnai türden değişmeler olup, bu tip durumlar daha çok arızı yapıların birbirini tetiklemesiyle ortaya çıkmaktadır. Anlaşılan genler üzerindeki ardı ardına cereyan eden zincirleme kazalar mükemmel bir yapı ortaya koyamadığından adeta evrimi can evinden vurmaktadır. Her ne hikmetse tabiat ana veya onların putlaştırdığı tesadüf tanrısı genetik kodlarla rasgele kumar oynayıp bir dizi felaketlere kapı açamaması bir başka gerçeği ortaya koymaktadır. Şöyle ki; bu hepimizin bildiği, fakat evrimcilerin bilmediği ilahi nizamın kolay kolay tarumar edilemeyeceği gerçeğidir. Gerçekten biyolojik nizamın tepesinde bu denli kompleks canlı varlıkları oluşturan genetik kodların kararlılıklarını sürdürmesi kayda değer bir olaydır. İşte bu yüzden her an her saniye sessiz ve derinden etkileyecek denilen tarayıcı doğal ayıklamanın ( doğal seleksiyonun) hışmına uğramadan biyolojik nizamın yoluna devam etmesi evrimcileri şaşkına döndürmektedir. Tüm bu şaşkınlıklarına rağmen hala tabii seleksiyonu piramidin tepesine oturtup güya faydalı değişiklikleri muhafaza eden ya da zarar verici faktörleri ayıklayan bilinçli bir varlıkmış gibi ilan etmekten geri kalmıyorlar. Onlar bildiklerini okuya dursunlar, Japonyalı bilgin Motoo Kimura bir insanda hücre molekülünün birkaç senede bir kez farklılaşma geçirebileceğini hesaplamıştır. İngiliz genetik bilim adamı John Burdon Sanderson Halden ise insan neslinin ancak ve ancak 1000 senede bir molekül değişikliğine uğrayabileceğini ortaya koymuştur. Tabii bu hesaplamalar evrimcileri üzmektedir. Şöyle ki; bu tür hızlı değişimin tabii seleksiyonla olduğunu varsaydığımızda insan türünün dünya sahnesinden kalkması demektir. Dolayısıyla böylesine mutasyondan bile hızlı bir şekilde işleyen bu süreç beklentilerine cevap vermemektedir. Yani bu durumda ya mutasyon denilen mekanizma bir şekilde tetiklenip hızlı işletilecek, ya da faydalı mutasyonu faydasız mutasyondan ayırabilecek kabiliyette olduğu söylenilen tabii seleksiyona dur denip ara sıra ona tatil yaptırılacak. Belli ki evrimciler mutasyon, seleksiyon derken gel-gitler içerisinde kıvranarak iki arada bir derede sıkışmış şaşkın ördeğe dönüşmüş durumdalar. İsterseniz kromozom üzerinde anlık değişmeleri tiplendirip kısaca göz gezdirebiliriz. Bilindiği üzere bir genin kromozom üzerindeki yeri değiştirmeksizin onun (A-G) baz moleküllerinde meydana gelebilen değişmelere gen mutasyonu (nokta mutasyon veya mikro mutasyon) denmektedir. O halde bu tariften hareketle moleküler seviyedeki bu tür mutasyonları 4 grupta incelemek mümkündür. Şöyle ki; —Transversiyon (çapraz aktarmalar) Mutasyon sonucu bir pürin bazının yerini bir pirimidin, bir pirimidin bazının yerini ise bir pürin almışsa bu tip tek bazlık değişkenlik gösteren mutasyonlara transversiyon denir. Mesela A = T veya G=S çifti yerine T= A veya S= G çiftinin geçmesi birer transversiyon örneğidir. —Transisyon(geçiş) Bir genin herhangi bir yerindeki A=T çifti yerine G=S çifti, ya da T=A çifti yerine S=G çifti geçmesi şeklinde tek bazlık değişmeye (nokta mutasyon) transisyon denir. Bu tip mutasyonlarda bir pürin bazının (A,G) yerini başka bir pürin bazı alırken, bir primidin bazının yerini de başka bir pirimidin bazı alabiliyor. —Delesyon Bir veya daha fazla nükleotid çiftinin DNA molekülünden koparak eksilmesi şeklinde tezahür eden mutasyondur. Eksilme yalnız molekülün uç kısmında değil orta kısmın herhangi bir yerinde olabiliyor. Hatta kopan kısım aradan çıktıktan sonra kalan uçlar tekrar birleşebiliyor. Bu arada nükleotid eksilmesi herhangi bir gende oluşmuşsa o gene ait şifre olumsuz yönde etkilenebiliyor. —Inversiyon Delesyonun tersi bir mutasyon şekli olup, DNA molekülüne fazladan bir veya birkaç nükleotid çift girebiliyor. Böylece bu tip eklenme hangi gende olmuşsa o genin şifresinde hasara yol açması kaçınılmazdır. Ayrıca yukarda bahsettiğimiz 4 tip gen mutasyonun varlığı genetik çaprazlamalar ışığında açıklığa kavuşmuş olup, mikroskobik olarak şimdiye kadar gözlenememiştir. MUTAGENLER (DNA’yı mutasyona uğratan genler) Çeşitli ışınlar, bazı kimyasal maddeler, temparetür şoklar veya diğer etkenler genler üzerinde mutasyona neden olduklarından bu tür faktörlere mutagen denmektedir. Şöyle ki mutagenler; “—Sıcaklık — PH —Radyasyon —Kimyasal Bileşikler” diye dört grupta toplanır. Sıcaklık Yüksek sıcaklık moleküllerin kinetik enerjisini artırmak suretiyle mutasyona sebep olabiliyor. PH derecesi Ortamın PH derecesi moleküller arası etkileşimlerde ve özellikle tautomerik (pronitron değişmesi) dönüşümlerde önem arz ettiğinden, PH derecesinin mutasyon hızını etkilemesi gayet tabiidir. Her şeye rağmen şu da bir gerçek; moleküllerin hızla hareket edip birbirleriyle çarpıştıkları bir ortamda bile moleküler kazalar ve yanlışlıkların olma ihtimali sıfır denecek kadar düzeyde seyretmektedir. Radyasyon Mor ötesi ve X ışınları gibi kısa dalga boylu ışınlar enerji yönünden yüksek radyasyonlu moleküllere çarptıklarında birtakım arızı değişiklikler oluşturabiliyor. Nitekim bu tip ışınlar DNA molekülü üzerinde delesyon ve inversiyona yol açan kopmalar sebep olduğu gibi, baz çifti dönüşümler (tautomerik oluşumlar) görülebiliyor. Kimyasal Bileşikler Kimyasal maddelerden bir kısmı DNA molekülü üzerinde transisyona (Nıtroz asit, 5 Brom urasil, 2 amino purin, hidroksiamin gibi) neden olurken bazıların da transversiyona yol açmaktadır (etiletan, sülfanot gibi). Diğer bir kısmında ise delesyon veya inversiyona neden olmaktadır (Akridin türevleri gibi). Tautomerik dönüşümler DNA zincirinde A=T ve G=S’in karşılıklı bir plan dâhilinde eşlemesi fiziko kimyasal bakımdan uygunluk göstermektedir. Yani adenin-timin arasında eşleşme 2 hidrojen bağıyla gerçekleşirken, guanin-sitozin arasında gerçekleşecek eşleşme içinse 3 hidrojen bağı devreye girmektedir. Ancak keto grubu taşıyan guanin ve timin ile amino grubu taşıyan adenin ve sitozinin eşleşme esnasında bir molekül bağ değişik formatta bulunabiliyor. Buna göre tautomerizasyon dönüşüm sonucunda bir molekülün proton ve elektronları yeniden dizildiklerinde alışılagelen A, G, S, T formun dışında başka bir form teşekkül edebiliyor. Bu durumda tautomerik formda 1 hidrojen atomunun bağlandığı noktada yerinin değişmiş olduğu görülecektir. Hatta bir hidrojen atomunun yerinin değişmesiyle birlikte karbon üzerindeki tek bağların çift bağ, bazı çift bağların ise tek bağ haline dönüşmesini beraberinde getirdiği gözlenmiştir. Bir an için DNA replikasyonu sırasında tautomerik yapıdaki bazı nükleotidlerin ortamda bulunduğunu düşünelim. Böyle bir durumda nükleotidler arasındaki eşleşmeler ister istemez değişecektir. Normal şartlarda DNA replikasyonu A=T, G=S şeklinde veya T=A, S=G şeklinde eş yaparak gerçekleşir. Fakat tautoremik oluşumlarda bu böyle değildir. Şöyle ki sitozinin tautomerik formu adeninle eşleşir, timinin tautomerik formu guaninle, adenin tautomerik formu sitozinle, guaninin tautomerik formu ise timin ile eş yapar. Derken normal formda bulunan bir adenin karşısına bir sitozin geçmiş olur. Daha sonraki aşamalarda ise sitozin normal formuna geçerek yeniden guaninle eş yapar. Böylece tilkinin dolanıp dolaşacağı kürkü dükkanı misali başlangıçta DNA molekülünün bir noktasında kopan A=T, G=S baz çiftleri yine S=G ve A=T şeklinde aslına dönüşmüş olurlar. Kimyasal Mutagenlerin etkileri Kimyasal mutagenler DNA baz molekülleri üzerinde değişikliklere yol açan maddelerdir. Mesela molekül yapısında bir bazlık değişim meydana geldiğinde söz konusu molekül doğrudan bir baz çifti oluşturamamaktadır. Baz analogları Baz analogları DNA baz moleküllerine benzeyen moleküller olması hasebiyle DNA eşleşmesi sırasında normal bazlara oranla çok daha kolay tautomerik dönüşüme neden olabiliyor. Böylece DNA yapısında bu durum mutasyon ihtimalini artıracaktır. Bu arada kimyasal mutagenleri örneklendirebiliriz. Şöyle ki; Nitröz Asit (HNO2) Özellikle Nitröz Asitbakteri, maya ve faj gibi mikroorganizmaların DNA baz molekül yapısında değişiklik yapan bir madde olup, aynı zamanda HNO2 amino grubu taşıyan bazları oksidatif deaminasyona uğratabiliyor. Yani DNA’daki amino grupları (NH2) yerine hidroksil (OH) grupları devreye girmektedir. Eğer bir DNA molekülü Nitröz asitle muamele edilirse örneğin halkanın altıncı karbonunda bir amino grubu hipoksantin haline çevrilebiliyor. Böylece Keto grubu taşıyan hipoksantin üzerinde mutasyon meydana gelmiş olur. Aynı şekilde yine HNO2 vasıtasıyla DNA’nın sitozin değişimi gerçekleşebiliyor. Keza oksidatif deaminasyon sonucu urasil guaninle eşleşmeyip adeninle çift yapacağından mutasyona sebep olabiliyor. 5- urasil -brom bazı Baz analoğu olarak kabul edilen bu gibi bileşiklerin kimyasal yapısı bazların genel yapısına çok benzediğinden böyle moleküller DNA’daki bazların yerine rahatlıkla alabiliyorlar. Örneğin 5-Brom urasil timine benzediğinden DNA ikileşmesi sırasında timin yerine kullanılabiliyor. Bu bileşiğin timinden tek farkı, timinin beşinci karbona bağlı olan metil grubu yerine brom atomunun bulunmasıdır. Urasilde ise aynı yerde hidrojen (H) atomu bulunur. İşte urasil üzerinde hidrojen atomunun brom ile yer değiştirmesiyle birlikte 5-brom urasil bazı meydana gelmektedir. Zaten bundan dolayı 5-Brom urasil olarak adlandırılır. Anlaşılan 5-Brom urasil timine benzediğinden adeninle eş yapabilmenin yanı sıra, tam olarak timinin yerini tuttuğunda ise mutasyona sebep olabiliyor. Belli ki bu tip bileşikler ancak normal durumunda iken enol form haline geçebiliyor. Mutasyon Hücrenin hayatını nasıl etkiler? Evrimciler ne akla hizmet ediyorlarsa mutasyonun hayat verdiğine inanmaktalar. Oysa kazın ayağı hiçte öyle değil. Düşünsenize bir örümceğin (Tarantula’nın) gayet kendini iyi koruyabilecek yeteneğe, hatta bazen arıları bile zehriyle öldürebilecek donanıma sahip olduğu halde kendisine yaklaşan eşek arısının kendisini uyuşturup yararlanmasına izin verebiliyor. Ya eşek arısına ne dersiniz, baksanıza o da avını nokta atışı diyebileceğimiz isabetle sinir merkezlerinin yerini belirleyip kendisinden iki kat daha üstün zehre sahip örümcek üzerinde operasyon yapabiliyor. Anlaşılan ortada hem Tarantula, hem de eşek arısı açısından doğal seleksiyona katkıda bulunacak bir durum gözükmemektedir. O halde bu durumda güçlü örümcek karşısında eşek arısının soyunun tükendiğini söyleyebilir miyiz? Elbette hayır. Çünkü her iki halde de canlı kompleks yapı kendine özgü bir tarzda muhafaza edilerek evrime meydan okumakta. Zaten her şeye evrim mantığından bakarsak bir kere doğal seleksiyonun başarılı olması için mutlaka faydasız (zararlı) mutant genlere karşı baskın olması icap eder. Bu da yetmez faydalı mutant genler az sayıda üreyip, ekonomik kullanılmaları icap etmektedir. Kaldı ki bir bireyin faydalı mutasyona maruz kaldığını varsaysak bile, o fert önce genetik yapısında oluşan öldürücü genleri yok etmesi gerekir. Daha sonra o birey çiftleşen alt grubun popülâsyonun da üstün konuma geçmesini sağlayacak bir üreme kabiliyeti sergilemesi lazım ki, mutant özellikler popülâsyona transfer edilebilsin. Maalesef uygulamaya baktığımızda faydalı zannedilen mutasyonun kendisine faydası yok ki başkasına faydalı olabilsin. Canlıların bir kısmı değişik şartlara ayak uydurma yeteneklerini yitirdiklerinde ya nesli kesilmekte ya da sınırlı değişiklikle hayatını devam ettirmekte. Keza mutasyona uğramış DNA zinciri eski zincirden 1 nükleotidlik bakımdan farklı olsa bile bu küçük değişiklik ancak hücre üzerinde etkili olabiliyor. Dahası böyle değişmeye maruz kalan bir hücre diğer hücrelerle yarışma yeteneğini ya artırır ya da azaltmaktadır. Şayet mutasyon yararlı bir mutasyonsa diğer organizmalardan daha büyük yaşama şansına sahip olacağından, bu durum oğul döllere aktarılırken bir baz ileri veya bir baz geri olacak şekilde geçmektedir. Şu bir gerçek popülasyon içerisinde varlığını hissettirecek, hatta tüm popülasyonu daha da mükemmel hale getirecek bir mutasyon hadisesinin gerçekleşmesi mümkün gözükmemektedir. Üstelik faydalı değişmelerin faydasızlara üstün hale geçmesi için bir plan ve bir program gerektirir ki evrimcilerin zaten plan ve programla hiçbir zaman işi olmamıştır. Zira onların işbirlikçisi kafalarında putlaştırdıkları tesadüf mitidir. Oysa en basitinden bir canlının kendisinden bir üst canlıya evrimleşmesi için trilyon rakamların üstünde birbiri ardına gerçekleşen mutasyon aşamalarına ihtiyaç vardır. Ne var ki en ilkel canlıdan daha yüksek canlılara gidildikçe işler daha da karmaşık hale gelip, bu karmaşık ritmi artmasıyla birlikte yeni bir türün ortaya çıkma ihtimalini diskalifiye etmektedir. Zaten düşünen bir insan için karmaşıklık keşmekeş değil, tam aksine mükemmeliyet demek, dogmatik kafa için ise tam bir kargaşa ve tesadüfî olay demektir İçerisinde enzim, nükleik asit, şeker vs. karışımın bulunduğu steril ortamda hazırlanmış bir organik bileşikler ekstraktı düşünelim. Sonra bu karışımı katalizleyecek dışardan elektrik kıvılcımıyla oluşabilecek bir enerji kaynağını varsayın, işte önünüzde duran bu malzemeye hangi metodu uygularsanız uygulayın asla yeni bir canlı ortaya çıkmayacaktır. Nitekim bu tür denemelerin geçmişten günümüze kadar uzun yıllar denendiği artık bir sır değil. Gelinen nokta itibariyle protein moleküllerinin en ilkelinde bile yaklaşık 1500 parçanın varlığı tespit edilmiştir. Dolayısıyla organik çözelti içeren bir kazana bu proteini karıştırdığımızda bu ortamda 1500 parçayı hem toplayıp sentezleyecek,

http://www.biyologlar.com/triplet-yapidaki-nukleotidlerin-siralanisi

Kellik ve Nedenleri

Androgenetik saç dökülmesi erkeklik hormonlarının genetik yatkınlığa sahip saç kökleri üzerindeki etkilerinin bir sonucudur. Erkeklik hormonlarının bir diğer adı androjenlerdir androgenetik saç dökülmesinin tanımı bundan kaynaklanmaktadır. Androgenetik saç dökülmesinde rol oynadığı düşünülen üç önemli faktör vardır vebunlar birbirleriyle yakından ilişkilidir. 1. GENLER Androgenetik saç dökülmesi kişinin kromozomlarında belli bir genetik kodun olmasına bağlıdır. Bir veya daha fazla gen üzerinde taşınan bu kod anne veya babadan kalıtılabilir. Toplumda kelliğin anne tarafından aktarılan bir genin erkek çocuklarda tanımlanmasıyla ortaya çıktığı şeklinde yaygın bir inanış vardır. Androgenetik saç dökülmesi olan hastaların kromozomlarının genetik incelemesi bu inanışın iki bakımdan yanlış olduğunu ortaya koymuştur: Öncelikle, androgenetik saç dökülmesi otozomal dominant olarak kalıtılmaktadır, yani sorumlu gen(ler) anneden veya babadan gelebilmektedir. İkinci olarak, bu genetik kod hem erkeklerde, hem de kadınlarda tanımlanabilmekte, dolayısıyla hem kız, hem de çocuklar ileride bu tip saç dökülmesine maruz kalabilmektedir. Üzerinde ısrarla durulması gereken bir nokta da sorumlu gen(ler)i taşıyan herkeste androgenetik saç dökülmesinin gerçekleşmeyeceğidir. Bir genin aktif olabilmesi için kişinin vücudunda "tanımlanması" gerekir. Belli bir genin anımlanması ise hormonlar, yaş, stres düzeyi vs. gibi pek çok faktöre bağlıdır. Dolayısıyla eğer bir kişinin saçı dökülmüyorsa bunun iki sebebi olabilir: Ya o kişi saç dökülmesinden sorumlu gene sahip değildir, yahut varolan gen tanımlanmamıştır. Androgenetik saç dökülmesinden tek başına sorumlu olan gen veya gen kümesi henüz keşfedilememiştir. Fakat bilim adamları bu gen(ler)in erkeklik hormonlarının, 5-alfa redüktaz enziminin ve saç köklerindeki androjen reseptörlerinin sentezinde etkili olduğundan şüphe duymamaktadırlar. Bunlar erkek tipi saç dökülmesinde rol oynadığı bilinen üç ana faktördür. 5-Alfa redüktaz enzimi bir erkeklik hormonu olan testosteronu daha aktif bir formu olan dihidrotestosterona (DHT) çevirir. DHT de saç köklerindeki androjen reseptörlerine bağlanarak etkisini gösterir. Genetik mühendisliği ve tıbbi genetikteki gelişmeler sayesinde erkek tipi saç dökülmesinden sorumlu olan gen(ler) fazla uzak olmayan bir gelecekte bulunacaktır. Bu buluş bize sadece androgenetik saç dökülmesini tedavi etme imkanı değil, aynı zamanda bunun ileride ortaya çıkma riskini yeni doğan bir bebekte bile tespit etme olanağı verecektir. 2. HORMONLAR Androgenetik saç dökülmesinin oluşum mekanizmalarında rol oynayan hormonlar androjenler olarak da adlandırılan erkeklik hormonlarıdır. "Androjenler nasıl kellik yapar?" sorusunun cevabını vermek çok da kolay değildir. Androjenler pek çok yaşamsal mekanizma üzerinde önemli etkilere sahiptirler. Etkilerini diğer hormonlar gibi hücre zarı üzerindeki veya hücre içindeki reseptörlere bağlanarak gerçekleştirirler. Bir saç kökünü farklı türden androjenler etkileyebilir ve vücudun farklı bölgelerindeki saç kökleri aynı androjene farklı cevaplar verebilir. Örneğin, koltuk altındaki kılların büyümesini sağlayan androjenler, kafa derisindeki saçların dökülmesine neden olmaktadır. Saç dökülmesi sürecinde iki tip androjen rol oynar. Bunlar testosteron ve dihidrotestosterondur (DHT). Dihidrotestosteron adından da anlaşılacağı üzere bir testosteron türevidir. 5-Alfa redüktaz enziminin görevi göreceli olarak inaktif olan testosteronu, daha aktif bir formu olan dihidrotestosterona çevirmektir. DHT saç kökleri üzerindeki her tip androjen reseptörüne kolaylıkla bağlanıp kuvvetli etkisini gösterebilir. Testosteronun da saç kökleri üzerinde etkisi vardır, fakat bu DHT''''ninkinden çok daha zayıf bir etkidir. Dolayısıyla saç köklerinin içinde ve çevresinde, özellikle dermal papillada çok sayıda bulunan 5-alfa redüktazın androgenetik saç dökülmesi sürecinin anahtar enzimi olduğu söylenebilir. Bu iki hormonun saç köklerindeki reseptörleriyle etkileşmeleri kafa derisini kaplayan saçlarda bir takım değişimlere neden olur. Zaman içinde terminal saçların büyüme (anajen) evreleri kısalır. Katajen (ara) ve telojen (dinlenme) evrelerinin sürelerinde bir değişiklik olmadığından, sonuç olarak dinlenme dönemindeki saç köklerinin sayısı ve oranı artar. Katajen ve telojen dönemindeki köklerin normalde %10 olan oranı %20''''ye çıkar. Daha fazla saçın dinlenme döneminde olması da, daha fazlasının dökülmesi sonucunu doğurur. Etkilenen saç kökleri kısalır ve incelir. Bunun sonucu olarak buralardan daha ince, kısa ve zayıf saçlar çıkar. Her erkek ve kadında androjen hormonları ve bunların reseptörleri mevcut olduğu halde niçin herkeste saç dökülmesi görülmediği sorulabilir. Bu sorunun gerçekten tatmin edici bir cevabı yoktur. Yine de bazı fikirler öne sürülmektedir ve bunların başlıcalarına aşağıda kısaca değinilmektedir: Androgenetik saç dökülmesi olan kişilerin saç köklerindeki androjen reseptörlerinin sayısı normalden fazladır. Bunun sonucu olarak kanlarındaki androjen düzeyi normal olmasına rağmen, androjenler bu kişilerin saç folikülleri üzerinde daha belirgin bir etki yaratmaktadırlar. Saçı dökülen kişilerin saç köklerindeki androjen reseptörleri normalden daha hassastır. Bu da kanda normal düzeyde bulunan androjenlerin saç köklerini daha fazla etkilemesine neden olmaktadır. Saçların döküldüğü bölgelerde 5-alfa redüktaz enziminin aktivitesi daha yüksektir. Dolayısıyla buralarda daha fazla testosteron dihidrotestosterona çevrilmektedir. DHT''''nin testosterona oranı ne kadar büyük olursa saç dökülmesi de o kadar hızlı olur. YAŞLANMA Unutulmamalıdır ki, yukarıda bahsi geçen faktörlerin ikisi birden mevcut olsa dahi, bu, androgenetik saç dökülmesinin başlaması için yeterli olmamaktadır. Saçların dökülmeye başlaması için saç köklerinin belli bir süre boyunca androjenlerin etkilerine maruz kalmaları gerekir. Bu süre kişiden kişiye, genetik tanımlamaya ve kandaki androjen düzeyine bağlı olarak değişebilir. Bunun yanında, kişi yaşlandıkça belli orandaki saçı kısalır ve incelir. Androgenetik saç dökülmesine yatkınlık olsa da, olmasa da, sadece yaşa bağlı olarak gerçekleşen bu sürece minyatürizasyon denir. Bunun sonucunda minyatürizasyona uğrayan saçlar dökülür ve işlevsel saç köklerinin sayısında bir azalma olur BİTKİSEL TEDAVİ –4 hafta boyunca her gün, 1 avuç dolusu ince kıyılmış ısırgan otu kökü 8–10 saat boyunca 1–2 litre suda bekletilir, sonra 3-4 avuç ısırgan otu yaprağı eklenir, kaynama derecesine kadar ısıtılır ve 10 dk. boyunca üstü kapalı olarak demlenmeye bırakılır ve süzülür. Bu suyla kafa derisine saçlar 5 dk. boyunca yıkanır ve kafa derisine masaj yapılır. Ama her yıkamadan önce, kafa derisine, İsveç şurubu ve ısırgan otu tentürü ile dönüşümlü olarak friksiyonlar yapılır. Daha ilk haftada saç dökülmesi durur ve tedavi süresinin sonuna doğru yeni saçlar çıkmaya başlar. Daha sonra bu tedavi 3-4 günde bir uygulanırsa saç dökülmesi uzun vadede önlenmiş olur ve saçlar, esneklik ve parlaklık kazanarak, sağlıklı bir görünüme sahip olurlar. FARKLI ÇÖZÜMLER Elbette gür ve sağlıklı saçlara sahip olmak güzel bir şey. Ama bir gün gelir, istemeden o güzelim saçlarınıza veda etmek zorunda kalırsanız paniklemeyin. Çünkü günümüz yöntemleriyle tekrar eskisi gibi güzel saçlara kavuşmak mümkün. Kadınların yüzde 40'ı, erkeklerin ise yaklaşık yüzde 50'si yaşamlarının bir bölümünde saç dökülmesi sorunu yaşıyor. Aslında saç dökülmesinin çeşitli sebepleri bulunuyor. Ancak bunları genel olarak iki grupta toplamak mümkün. Birincisi; dış çevreyle, ikincisi ise; insanın yapısıyla ilgili. Kalıtsal faktörler, hormon bozuklukluğu, sağlıksız beslenme nedeniyle vücutta ihtiyacı olan maddelerin eksikliği ya da fazlalığı iç etkenler arasında sıralanabilir. Mevsimsel şartlar, hava kirliliği, uygunsuz saç bakımı, stres gibi faktörler de dış şartlar grubuna dahil edilebilir Uzmanlar, 40 - 50 yaşları arasında her 10 erkekten 4'ünde belirgin bir saç kaybı bulunduğunu, yaş ve genetik özellikler sonucu ortaya çıkan (androgenetik) saç dökülmesinin 10, 20 ya da 30'lu yaşlarda da başlayabildiğini belirtiyor. Kadınlarda ve erkeklerde saç kaybının farklı şekillerde ortaya çıkabileceğini belirten uzmanlar, erkeklerde alın köşeleri ve tepe bölgelerinde saç dökülmesi görülürken, kadınlarda tepe bölgesinde kısmi bir saç dökülmesi ile karşılaşıldığını anlatıyor. Kadın ve erkek arasındaki fark Erkeklerde: Saç dökülmesi daha çok hormonal sorunlardan kaynaklanıyor. Çok daha hızlı seyrettiği için tedavide çabuk davranmak önemli. Çünkü saç dökülmesine sebep olan enzimler, normalde 3 - 4 yıl olan saçın yaşam süresini 1 - 2 yıla indiriyor. Bu yüzden yeni saçların oluşum süreleri kısalıyor ve onlar da sağlıklı olmuyor. Bu sürecin sonucunda saç dokusu giderek güçsüzleşiyor ve sonunda ölüyor. Erkeklerde saç dökülmelerini önlemek için lokal tedaviler, uygun vitaminler ve ek olarak stresi azaltacak ilaçlar tercih ediliyor, hormon tedavisi ise özel durumlar dışında önerilmiyor. Kadınlarda: Kadınlardaki erkek tipi saç dökülmesi çoğunlukla 18 - 44 yaşları arasında görülüyor. Dökülmeyi başlatan nedenin temelinde genellikle büyük bir stres ya da gerginlik yatıyor. İlk belirtileri; saçların güçsüzleşmesi, incelmesi ve tepeden yavaş yavaş başlayan dökülmelerdir. Ancak kadınlarda erkeklerdeki gibi tam bir kellik çok nadir görülür. Saç dökülmesinin yanı sıra deride yağ bezlerinin çalışmasını bozan bir hastalık oluşabilir. Bu durumda bir hormon ölçümü yaptırmak gerekir. Saç nakli ameliyat gerektiriyor Saç dökülmesinden kaynaklanan hafif kelliklerde, cerrahi yöntemlerle saç nakli yapılabiliyor. Uzman kişi, ameliyatı yaptırmak isteyen kişiye önceden geçirilen hastalıklar, yaşam koşulları, aile hikayesi gibi kişisel bilgilerden oluşan çeşitli sorular soruyor. Ardından saç derisi muayene edilerek, ameliyatın yapılıp yapılmayacağına karar veriliyor. Ameliyat lokal anestezi altında uygulanıyor. Ameliyat esnasında ense bölgesinden bir şerit halinde, üzerinde çok sayıda saç kökü bulunan ince bir kesit alınıyor ve saçın olmadığı bölgelere mikrocerrahi uygulamayla dağıtılarak ekiliyor. İşlem kolay uygulanıyor ve acı vermiyor. Şeridin alındığı yer sonra cerrahi yöntemle kapatılıyor. Fakat ekilebilen saç miktarı kısıtlı olduğundan, eğer kellik fazlaysa, birden fazla ameliyat gerekebiliyor. Burada amaç, saçlara herhangi bir sunilik olmadan, gür bir görüntü kazandırmak. Ameliyattan sonra ilk bir ay içinde, ekilen saçlar dökülüyor. Ancak ortalama 3 ay gibi bir süre sonra saç köklerinden yeni ve kalıcı saçlar çıkmaya başlıyor. Bunlar da, normal saçlar gibi ayda ortalama 1 cm uzuyor. Bu saçlar da ömür boyu kalıyor. Ekilen saçların bakımı veya kesimi, normal saçlardan farklı olmuyor. Saç nakli her yaşta uygulanabiliyor. Ancak ameliyat yoluyla uygulanan saç nakli, şeker hastalığı, diyaliz gerektiren böbrek rahatsızlığı, karaciğer ya da ağır kalp hastalığı olan kişilere uygulanmıyor. Bunların dışında herhangi bir kısıtlama bulunmuyor. Protez saçlar ameliyatsız uygulanır Ameliyat olmak istemeyenler, protez saçı tercih edebilir. Protez uygulamasına başlamadan önce, uygulamanın yapılacağı bölge inceleniyor ve saçların dökülme riskinin devam ettiği yerler de gözden geçiriliyor. Ardından başın kalıbı ve saçtan örnekler alınıyor. Bunlar, yurtdışına protezin hazırlanacağı merkeze gönderiliyor. Burada suni, hava ve suyu geçiren, gözenekleri olan ikinci bir deri hazırlanıyor. Saç bankalarından temin edilen numune saçlar, hazırlanan bu deriye saçların çıkış yönüne göre tek tek ekiliyor. Sorunlu bölgeyi tamamen kamufle edecek özelliklere sahip olan bu protez, özel odalarda ve ortalama 2 saat süren işlemle uygulanıyor. Protezin deriye yerleştirilmesi özel bir yapışkanla veya mikro tüplerle gerçekleşiyor. Ardından kişinin istediği modele göre saç kesimi yapılıyor ve saçlar şekillendiriliyor. Protezin altındaki saçlar, hava ve suyu geçirdiği için canlılığını kaybetmiyor. Bir tek seansla istenilen gürlükte saçlara sahip olunabiliyor. Saç protezi yaptırdıktan sonra kişi herhangi bir hareket kısıtlamasıyla karşılaşmıyor. Yani banyo yapabiliyor, saçını tarayabiliyor ya da denize girebiliyor. Protez saçları diğer saçlardan ayırt etmek mümkün olmuyor. Saç bakımı ihmal edilmemeli Protezin yerleştirildiği bölgedeki saçlar düzenli olarak kesilmezse, bir potluk görüntüsü oluşabiliyor. Bu nedenle mutlaka kuaför bakımı yapılması gerekiyor. Bu bakım protezin uygulandığı merkezde yapılmalı. Çünkü protezin çıkarılıp tekrar yerleştirilmesi gerekiyor. Ardından saçlara bakım uygulanıyor. Normal saça yapılan tüm bakım ve uygulamalar protez saça da yapılabiliyor. Ancak tercih edilen malzemelerin iyi olması gerekiyor. Doğal yöntemlerle saçlarınızı canlandırın Sıcak yağ tedavisi Çabuk kırılan saçlar için: 2 çorba kaşığı zeytinyağını ısıtın. Yavaş yavaş tüm saç derinize yedirin. Sıcak suda ıslattığınız bir havluyu sıktıktan sonra başınıza sarın. Havlu soğurken bu işlemi iki veya üç defa tekrarlayarak, başın yağı iyice emmesini sağlayın. Sonra saçlarınızı yıkayıp durulayın. Hintyağı tedavisi İnce, çabuk kırılan, kuru saçlar için: Yarım çay fincanı hintyağını ısıttıktan sonra baş derinizi ovarak saçınızın yağı emmesini sağlayın. Yavaş yavaş tarayacağınız saçlarınızı kaynar suya batırırıp sıktığınız havluya sarın. Bu işlemi yaptıktan sonra yarım saat kadar bekleyip şampuanla yıkayın. Mayonez tedavisi Baş derisine nem kazandırmak ve kuru saçlar için: Bir yumurtayı, 1 çorba kaşığı sirkeyi, 2 çorba kaşığı bitkisel yağı karıştırarak çırpın. Bu karışımı baş derinize ovarak iyice yedirin. Ardından saçlarınızı tarayarak bütün karışımın saçlarınıza eşit yayılmasını sağlayın. 15 dakika böyle bekledikten sonra saçlarınızı yıkayıp durulayın

http://www.biyologlar.com/kellik-ve-nedenleri

İşte insan bedeninde yaşadığı saptanan 2 kg’lık yeni organ! Mikrobiyom

İşte insan bedeninde yaşadığı saptanan 2 kg’lık yeni organ! Mikrobiyom

İnsan vücudumuzda toplam ağırlığı yaklaşık 2 kiloyu bulan bir bakteri kitlesiyle yaşıyor. Mikrobiyom denilen bu mikroorganizmalar, yeni bir ‘organ’ olarak tanımlanmaya başlandı.

http://www.biyologlar.com/iste-insan-bedeninde-yasadigi-saptanan-2-kglik-yeni-organ-mikrobiyom

Hücre-içi Genetik Mücadeleler Sonucunda Yeni Türler <b class=red>Oluşabiliyor</b>

Hücre-içi Genetik Mücadeleler Sonucunda Yeni Türler Oluşabiliyor

Bir hücrenin çekirdeğindeki genler ile mitokondrisindeki genler arasındaki mücadele (mitonükleer çatışma), bazen bir türü ikiye bölebilir. Görsel Telif: Ryan Garcia / Quanta Magazine

http://www.biyologlar.com/hucre-ici-genetik-mucadeleler-sonucunda-yeni-turler-olusabiliyor

 
3WTURK CMS v6.03WTURK CMS v6.0