Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 188 kayıt bulundu.

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni bir araştırmaya göre, D vitamini takviyesi soğuk algınlığı ve grip de dahil olmak üzere akut solunum yolu enfeksiyonlarına karşı özellikle çok eksik kişilerde korunmaya yardımcı olabilir.

http://www.biyologlar.com/yeni-calisma-sonuclarina-gore-d-vitamini-soguktan-ve-gripten-koruyor

Patoloji'nin Gelişiminde Teknoloji

Hücresel ve moleküler patoloji, özellikle optik sanayisindeki gelişmeler olmaksızın ilerleyemezdi. Mikroskopun ve optik sanayisinin gelişimi hücrenin ve hastalıkların yol açtığı hücre değişikliklerinin görülmesine olanak sağlamış, günümüzde hastalıklarla ilgili bilgiler moleküler düzeyde anlaşılır duruma gelmiştir.1270 yılında Roma'da ilk kez okumak için mercek kullanıldığı bildirilmektedir. İlk mikroskop ise Hollanda'da 1600'lü yılların başında Leuvenhook tarafından kullanıldı. G. Adams, 1770'te ilk kez mikrotomu kullanarak ince doku kesitleri elde etti. 1884 yılında Jena'da optik cam sanayi kuruldu. HG Harrison, 1907'de doku kültürünü yaptı. Mikroskoplardaki gelişmeler 20. yüzyıl başında hızlandı. Polarizasyon mikroskopu 1924'te, Floresan mikroskop 1929'de, Elektronmikroskopu 1931'de, Faz kontrast mikroskopu ise 1932'de kullanıma girdi. 20. yüzyılın ikinci yarısında ise moleküler biyoloji ve genetik alanındaki gelişmeler hastalıkların tanı ve tedavisi konusunda patolojiye yeni ufuklar açtı. DNA akım sitometrisi, floresanla işaretli veya çeşitli boyalarla işaretli antikorların kullanıldığı immünohistokimya ve immünofloresan inceleme yöntemleri, özellikle tümörlerin, immünolojik mekanizmalarla ve genetik bozukluklarla ortaya çıkan hastalıkların tanısında giderek daha sık kullanılmaktadır. Türkiye'de patolojinin gelişimi Ülkemizde patolojinin tarihi 19. yüzyılın başına kadar uzanmaktadır. Kısa sayılabilecek bu tarihi dört dönemde incelemek mümkündür: a. Osmanlı dönemi b. 33 reformu öncesi (Hamdi Suat dönemi) c. 1933 Reformu sonrası (Patoloji'de Alman etkisi) d. 1945 sonrası (İstanbul ve Ankara Tıp Fakülteleri) e. 1960 sonrası (Çok merkezli dönem)

http://www.biyologlar.com/patolojinin-gelisiminde-teknoloji

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

Bilim Adamları Yağ Yakmayı Tetikleyen Beyin Sinyalizasyon Molekülünü Buldu !

ScrippsAraştırma Enstitüsü Dr. SupriyaSrinivasan liderliğindeki bir araştırma ekibi, bağırsakta yağ yakmayı tetikleyen bir beyin hormonunu tespit etti.

http://www.biyologlar.com/bilim-adamlari-yag-yakmayi-tetikleyen-beyin-sinyalizasyon-molekulunu-buldu-

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar. 4. KAYNAKLAR  Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi  Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY  Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY  www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Canlıların Ortak Özellikleri

Canlı ve cansızların aynı kimyasal ve fiziksel yasalara bağlı olduğuna inanan felsefeye Materyalizm ya da mekanik görüş, buna karşılık canlıların farklı yasalar altında hareket ettiğini ve canlılığın mistik bir güç ile meydana geldiğini benimseyen görüşe de Vitalizm ya da kadercilik denir. Her iki görüşün de temelinde belirli kimyasal ve fiziksel ilkelerin yattığı bir gerçektir. Canlılk ile cansızlığı virüslerde birbirinden ayırmak oldukça zordur (uygun koşullarda canlı özelliği, uygun olmayan koşullarda ise kristal hale geçerek cansız özelliği gösterir). Daha ileriki kademelerde canlılık özelliği belirgin hale geçerken, o zaman da canlının bitki mi yoksa hayvan mı olduğu konusunda bazı sorunlar ortaya çıkar. Nitekim birhücreli bazı hayvan grupları bugün hem botanikçiler hem de zoologlar tarafından incelenmektedir. (Örneğin; kamçılılardan öglenanın karanlıkta hayvansal, ışıkta bitkisel davranması, evrimsel gelişimde her iki grubun bu kademede ortak bir organizasyona ve ataya sahip olduğu fikrini güçlendirmektedir.) Bu aşamadaki ortaklık, daha sonraki kademelerde "bu bir canlıdır"yargısını açıkça verdirecek ortak özellikleri beraberinde vermiş; uyuma göre bu özellikler sonradan geliştirilmiştir. A. ÖZEL BİR KİMYASAL DİZİLİME SAHİP OLMALARI Cansızlar, kimyasal bağların izin verdiği ölçüler içerisinde bir bileşime sahiptirler. Canlılar ise bu kimyasal bağların dizilimini özel bir şekilde saptarlar. Tüm canlılar genleri oluşturan çekirdek asitlerini -genellikle DNA (bazı virüslerde RNA)- içerirler. Gensiz bir canlılık düşünemeyiz. Çünkü genler değişik yaşam formlarının sentez ve replikasyonundan (eşlenmesinden) sorumludur. Tüm genler aynı birimlerden; fakat değişik dizilimlerden oluşmuştur. Dolayısıyla tüm canlıların yapısına giren protein, bu genlerin yapısal değişikliğine uygun olarak, her hücrede farklı amino asit dizilimine sahip olurlar. İlave olarak karbonhidrat, yağ, ve su içerirler. Tüm bu maddelerin özel karışımı protoplazmayı meydana getirir. B. HÜCRESEL DİZİLİM Canlıların büyük bir kısmı (kural olarak çokhücreliler) hücre olarak bilinen birimlerden yapılmıştır. Her hücre çok ince zarla (plazma zarı) çevrilmiştir. Bu zar erimiş maddelerin ve suyun hücre içerisine girip çıkmasına izin verir. Her iki yönde de geçirim bakımından çok özelleşmiş seçici bir yeteneği vardır. Hücre bir çok kimyasal değişimin yapılabilmesi için değişik enzimleri ve en önemlisi yalnız başına kendinin aynını üretebilecek yeteneğe sahiptir. C. ORGANİZASYON Canlıların vücut kısımlarının görev bölümüne ve belirli kurallar içerisinde canlılık etkinliğini devam ettirmelerine organizasyon denir. Bütün hayvan ve bitkilerin vücudu, yapısal ve işlevsel olarak birim kabul edilen hücrelerden yapılmış olmasına karşın homojen değildir. Farklılaşmış vücut kısımları değişik görevleri üzerine almıştır. Hatta birhücreli canlılarda, ergin evrede, boy ve şekil sabit olmakla beraber, hücrenin farklı kısımları farklı görevleri üzerine almıştır. D. UYARILMA Bütün canlıların çevrelerindeki fiziksel ve kimyasal koşulların değişmesine karşı tepkileri kalıtsaldır. Basit organizmalarda uyarı, genel olarak bütün vücutla algılandığı halde, yüksek organizmalarda duyu organlarının yeri merkezileşmiştir. Örneğin; ışık gözle, koku burunla, tat dille, basınç ve sıcaklık deriyle vs. Uyarının alınması ve gerekli tepkinin gösterilmesi, canlının evren içerisinde en uygun yerde ve koşullarda yaşamasını sağlamayı yaratmaktadır. E. HAREKET Beslenme, korunma, üreme, yayılma, en rahat edebileceği bölgeyi bulma vs. gibi yaşamın temel işlevlerini yürütebilmek için, ilkel organizmalarda ya vücudun tamamıyla protoplazmik hareket ya bir kısmıyla sil ve kamçı hareketi ya da yüksek organizmalarda görülen, yürüme, yüzme, ve uçmanın sağlanması için belirli organ oluşumları görülür. Birçok canlı tüm yaşamı süresince belirli bir yere bağlı kalmasına karşın, vücudun değişik kısımlarının çevre koşullarına göre değişimi de hareket olarak kabul edilir. Örneğin; bitkilerde ışığa (fototropizm), yerçekimine (geotropizm), neme (higrotropizm), vs. ye yönelim bir hareket kavramı içerisinde değerlendirilir. F. ENERJİ KULLANIMI Canlılığın en önemli öğelerinden biri büyüme, üreme, yenilenme vs. için enerjiye olan gereksinimleridir. Hücre kendi başına enerji üretemez; dışarıdan kaynak sağlamak zorundadır. Hayvanlar enerji bağları içeren molekülleri yıkmak (katabolik tepkimeler) suretiyle gerekli enerjiyi sağlarlar. (karbonhidrat, yağ ve proteinden). Küçük molekülleri büyük moleküller halinde bağlayarak (anabolik tepkimeler) yapı taşlarını ve enerji depolanmasını da yapabilirler. Bu tepkimelerin tümüne birden biyoenerjitik denir. Bir moleküldeki enerjinin büyük bir kısmını kullanma oksijen kullanmakla olur; yani tamamıyla oksitlenmelidir (aerobik solunum=oksijenli solunum). İlkel canlıların bir kısmı (bazı mikroorganizmalar, özellikle mayalar) ve bazı endoparazitler (bağırsak solucanları gibi) bu kaynak maddeleri oksijensiz yıktığı için enerjinin pek az bir kısmından yararlanabilir (anaerobik solunum=oksijensiz solunum). Pek az bir organizma grubu da bazı inorganik maddeleri yıkmak suretiyle enerji elde eder; azot, demir ve kükürt bakterileri bunlara tipik örneklerdir. Dünyada serbest oksijenin olmadığı devirlerde, canlılar enerjilerini bu yollarla sağlıyorlardı. Bitkiler ise (saprofit ve parazit olanların bir kısmı hariç) enerji kaynağı olarak güneş ışınlarını kullanır. Güneş ışınlarının kuantlarındaki enerjiyi kimyasal bağlar halinde (nişasta) tutarlar ve bu kimyasal bağlar tüm adrıbeslek (heterotrof) canlıların enerji kaynağını ve yapı maddelerini oluşturur. İlk evrelerde (bitkiler oluşmadan önce) enerji kaynağı olarak UV ışınlarının katalizlediği bazı ilkin organik moleküller kullanılmıştır. Ozon perdesi oluştuktan sonra bu kaynak büyük ölçüde kurumuştur. G. ÇEVREYE UYUM Canlılar kural olarak yaşadığı ortamın koşullarına uyum yapabilecek yeteneğe sahiptir. Bu durum homeostatik tepki olarak bilinir. Değişik koşulların bulunduğu ortamda en uygun yeri seçmeye çalışır; şayet tam anlamıyla uygun ortam bulamazsa, yapısal değişikliklerle (mutasyonların yardımıyla) bu uyum sağlanmaya çalışılır. Günlük uyumlardan binlercesini farkında olmadan yaparız. Örneğin gözün karanlığa ve aydınlığa uyum yapması gibi. Çevre koşullarının değişmesi canlı bünyesine en az etki bırakacak şekilde iletilmeye çalışılır (özellikle sıcakkanlılarda); örneğin çölde ve kutuplarda insan kanı her zaman aynı sıcaklıktadır. Canlı, uyum yapabildiği oranda hayatta kalma şansına sahiptir. Bu oran ise kalıtsal yapı ile saptanmıştır. Bu sınırların dışındaki uyumlar ancak mutasyonlarla sağlanabilir. H. ÜREME Hiçbir canlı sonsuz olarak yaşamını devam ettiremez. Herhangi bir şekilde, üremeyle, kalıtsal materyal gelecek kuşaklara aktarılır. Birhücrelilerde bölünme aynı zamanda çoğalmayı sağlamasına karşın, çokhücrelilerde üreme belirli vücut kısımlarına özgü bir yetenek olarak ortaya çıkmıştır. Bazı canlı gruplarında gen değişimi olmaksızın (eşeysiz) üreme görülmesine karşın (birhücrelilerde mitoz bölünme; çokhücrelilerde tomurcuklanma, dallanma, partenogenez çoğalma, bitkilerde çeliklenme vs.) kural olarak eşeyli üreme çok daha sıktır. Bu şekilde değişik gen kombinasyonları ortaya çıkarak daha başarılı döllerin meydana gelmesini sağlar. Bu, evrim mekanizmasının en önemli ögelerinden biridir. İ. EVRİMSEL UYUM VE VARYASYONLARIN KALITIMI Tüm canlılar genlere sahiptir ve genlerin tümü de mutasyonla değişebilir. Bu, aynı türün farklı bireylerinin kalıtsal olarak değişmesini sağlar. Dolayısıyla o anda faydalı olan mutasyonları taşıyan bireyler seçilir, zararlı olanlar uyum yapamadığı için ortadan kaldırılır ve evrimsel bir yönlendirme ortaya çıkar. Bu, zamanla türün değişmesine neden olur; özellikle çevre koşulları değiştiği zaman. Kalıtsal uyumlar meydana gelmeseydi, hiçbir tür yaşamını sürdüremeyecekti; çünkü çevre koşulları devamlı olarak değişmektedir. I. BÜYÜME Çevresindeki anorganik (ham) maddeleri kendi protoplazma yapısına çevirme, büyüme olarak bilinir. Bitkilerde (çok yıllık) kural olarak sınırsız bir büyüme görülmekle beraber, hayvanlarda her türün kendine özgü şekil ve büyüklüğe ulaşmasına kadar devam eder. Çok hücreli hayvanlarda genellikle bir büyüme evresi vardır. Bu evrede büyüme hızlıdır. Daha sonraki evre olgunluk evresidir, büyüme yoktur; fakat protoplazmanın yenilenmesi için devamlı besin yadımlaması (asimilasyonu) vardır. Protoplazma, metabolik tepkimeler sonucu sürekli olarak yıkılır, eğer yaşam devam edecekse bu protoplazmanın yenilenmesi gerekir. Birhücrelilerde büyüme, çoğalma ile sonuçlanmasına karşın; çokhücrelilerde vücudun gelişmesini ve irileşmesini sağlar. Yaşlılık evresinde protoplazmanın yenilenmesi gittikçe azalır; hücre yavaş yavaş işlevini; ilerlemiş ve yaygınlaşmış durumlarda da yaşamını yitirir. Bu bozulma herhangi bir yaşta, yeterince besin alınmadığında veya nitelik bakımından doyurucu olmadığında da ortaya çıkabilir. Yenilenmenin kusursuz olması protoplazmanın içerdiği maddelerin eksiksiz olmasıyla sağlanabilir. Büyüme her türde kalıtsal yapıyla sınırlandırılmıştır. Bunun alt ve üst sınırları çevre koşullarıyla belirlenmistir.

http://www.biyologlar.com/canlilarin-ortak-ozellikleri-2

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Toplu Sözleşme Sağlık Personeline Neler Getiriyor

2012-2013 dönemini kapsayan kamu görevlileri toplu sözleşme görüşmeleri neticesinde sağlık personelinin de önemli kazanımları olmuştur.  Bu çerçevede konu ile ilgili Sağlık Bakanlığı Strateji Geliştirme Başkanlığımız tarafından bir çalışma gerçekleştirilmiştir. Bu çalışma ile sağlık çalışanlarımızın ek ödeme ve mali haklarına yönelik getirilen önemli düzenlemeler aşağıda başlıklar halinde özetlenmiştir: 1- Yemek yardımı; 01/07/2012 tarihinden geçerli olmak üzere sözleşmeli personel de diğer memurlar gibi Devlet Memurları Yiyecek Yardımı Yönetmeliğinden yaralanacaktır. Buna göre sözleşmeli personel de yataklı tedavi kurumlarında ücretsiz yemek yiyebilecektir. Bu düzenleme ile sözleşmeli personele aylık yaklaşık 80 TL katkı sağlanmaktadır. 2- 112 acilde şoförlük de yapan acil teknisyenlerine ilave performans puanı; 01/07/2012 tarihinden geçerli olmak üzere, Sağlık Bakanlığı 112 acil sağlık hizmetleri kapsamında sağlık teknikeri (acil tıp teknikeri) ve sağlık memuru (acil tıp teknisyeni, toplum sağlığı teknisyeni) olarak görev yapan ve asli görevlerinin yanında süreklilik arz edecek şekilde ambulans şoförlüğü görevini de yürüten personelin performans puanlarına 10 puan daha ilave edilecektir. Budüzenlemenin personele aylık getirisi yaklaşık 50 TL olacaktır. 3- Mesleki üst öğrenimi tamamlayan sözleşmeli personelin ücretlerinin artırılması; 01/07/2012 tarihinden geçerli olmak üzere, sözleşmeli personel pozisyonlarında görev yapan sağlık personeli sağlık hizmetleri sınıfına atanılabilecek mesleki bir üst öğrenimi bitirirse sözleşme ücretleri, hizmet yılları dikkate alınarak aynı pozisyon unvanındaki üst öğrenimliler için öngörülen sözleşme ücreti esas alınarak ödenir. Bu düzenleme ile lise mezunu iken 4 yıllık yükseköğrenim tamamlayan sözleşmeli personelin ücretinde 180 TL civarında artış sağlanacaktır. 4- Tabip dışı personelin ek ödemelerinin aylıklarla birlikte ödenmesi; 01/06/2012 tarihinden geçerli olmak üzere tabip dışı personelin ek ödemesi her hangi bir katkıya bağlı olmaksızın aylıklara ilişkin hükümler uygulanmak suretiyle her ay aylıklarıyla birlikte ödenecektir.  Uygulama ile her ay maaş ödemesi ile birlikte denge tazminatı tutarı peşin olarak ve herhangi bir şarta bağlı olmaksızın yapılacaktır. Yıllık izin, rapor gibi nedenlerle döner sermaye gelirine herhangi bir katkıda bulunmasa bile, anılan personele bu tutar peşin olarak verilmeye devam edilecektir. Böylece anılan personelin eline her ayın 15’inde maaş ile denge tazminatı tutar garanti olarak geçecektir. Ödenen bu tutar takip eden ayda ödenecek performans ek ödemesi tutarından düşülecek ve kalan kısım personele performans ek ödemesi olarak ödenecektir. Mayıs ayı ek ödemesi ile birlikte hekim dışı personel Haziran ayında en az 2,5 aylık sabit ek ödeme alacaktır.  Örneğin 10. derece hemşire, ebe veya sağlık memurunun Haziran ayı içerisinde çalışmış olduğu dönem olan 1-31 Mayıs için en az 584 TL, 1 Haziran-14 Haziran dönemi için 272 TL, 15-Haziran-14 Temmuz dönemi için ise 584 TL olmak üzere asgari 1.440 TL ek ödeme yapılacaktır. Bunun dışında Mayıs ayına ait varsa performans ödemesi ayrıca ödenecektir. Bu uygulama üniversiteler ve adli tıp kurumu için de geçerlidir. 5- 112 acil sağlık hizmeti personelinin ek ödeme tavanının artırılması; 01/07/2012 tarihinden geçerli olmak üzere 209 sayılı kanuna göre daha önce ek ödeme tavanı % 150 olan 112 acil sağlık hizmeti personeli için bu oran % 200’e çıkarılmıştır.  Bu tavan artışı ile bir hemşirenin veya sağlık memurunun ortalama net ek ödemesi 250 TL civarında artacaktır. 6-        Dini bayramlarda nöbet ücretinin artırılması; Nöbet ücretleri dini bayram günleri için % 20 artırımlı ödenecektir. Örneğin normal günlerde lise ve dengi mesleki öğrenim görmüş hemşirenin saatlik nöbet ücreti 3,31 TL iken  %20 (0,68 TL) oranında arttırılarak dini bayram günlerinde 3,97 TL ye yükseltilmiştir. Normal günlerde saat başına 6,20 TL nöbet ücreti alan bir pratisyen hekim dini bayramlarda 7,44 TL nöbet ücreti alacaktır. 7-Pratisyen hekim ve diş hekimlerinin garanti ek ödeme miktarının yükseltilmesi; 01/07/2012 tarihinden geçerli olmak üzere, pratisyen hekim ve diş hekimlerinin ek ödemesi 375 sayılı Kanun Hükmünde Kararnamenin ek 9 uncu maddesi uyarınca kadro ve görev unvanı veya pozisyon unvanı itibarıyla belirlenmiş olan ek ödeme net tutarından az olamaz. Buna göre örneğin 4. derece pratisyen tabiplerin garanti ek ödemesi 400 TL civarında diş hekimlerinin garanti ek ödemesi 370 TL civarında artacaktır. 8- Vekalet eden personelin ek ödeme matrahının artırılması; 15/07/2012 tarihinden geçerli olmak üzer uygulama ile artık sağlık müdür yardımcısı, şube müdürü, hastane müdürü veya hastane müdür yardımcılığına vekalet edenlere yapılacak ek ödemeler vekalet edilen kadronun matrahı üzerinden hesaplanacaktır. Uygulama ile örneğin bir sağlık memurunun şube müdürlüğüne vekâlet etmesi durumunda ortalama net 350 TL civarında, il sağlık müdür yardımcılığına vekalet etmesi halinde 400 TL civarında ek ödemesi artacaktır. 9- Vergi yükünden dolayı yıllık geliri emsali personelden düşük gerçekleşen personele fark ödemesi yapılması; Uygulama ile sağlık personeline bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağın; 375 sayılı KHK’dan yararlanan emsali personele bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağdan az olması durumunda aradaki fark mali yılın sonunda döner sermaye bütçesinden ödenir. Bu durumda olan personelin yıllık 200-250 TL civarındaki mali kayıpları telafi edilmiş olacaktır. 10- Taşınır kayıt kontrol yetkilisine mali sorumluluk tazminatı; Mali sorumluluk zammı almayan aynı zamanda taşınır kayıt kontrol yetkilisi olarak görevlendirilenlere kadro veya görevleri itibarıyla öngörülen mali sorumluluk zammı ödenecektir. Uygulama ile memur, hemşire, ebe, sağlık memuru vb. kadrolarda bulunan personelden taşınır kayıt kontrol yetkilisi olarak görev yapanlar mali sorumluluk zammı almazken bu uygulama ile aylık net 12 TL civarında tazminat alacaklardır. 11- Sosyologların zam ve tazminatlarının yükseltilmesi; Uygulama ile Sağlık Bakanlığında sosyolog olarak görev yapanların maaşları 300 TL civarında artırılmaktadır. 12-Burs alan veya Devletçe okutulan çocuklar için aile yardımı ödeneği verilmesi; 15/07/2012 tarihinden geçerli olmak üzere devletçe okutulan veya burs verilen çocuklar için aile yardımı ödeneği verilecektir. 13- Maaş farkı (5,5 aylık ) ve geç ödeme farkının ödenmesi; Uygulama ile yeni belirlenen katsayı, artış oranı ve ücret tavanları uyarınca kamu görevlileri ve emeklilerine 01/01/2012-14/06/2012 dönemi için yapılması gereken fark ödemeleri, hesaplanmaları müteakiben ödenecektir. Söz konusu artışların geç ödenmiş olması nedeniyle fark ödemesi yapılacak kamu görevlileri ve emeklilerine, söz konusu döneme ilişkin toplam fark ödemesinin % 2,25'i oranında geç ödeme farkı ayrıca ödenir. Buna göre 4. derecedeki bir uzman hekim gecikme zammı dahil 420 TL, 4. derece bir pratisyen hekim 370 TL ve 8. derece bir hemşire, ebe veya sağlık memuru 240 TL civarında fark alacaktır. Aile hekimleri ve aile sağlığı elamanlarına da fark ödemesi yapılacaktır.  Ayrıca varsa nöbet ücret farkları da ödenecektir. 14-Emekli olanlara ödenen tazminatın artırılması; 01/07/2012 tarihinden geçerli olmak üzere emeklilik tazminatı 100 TL artırılacaktır. Kamuoyunun bilgisine saygıyla duyurulur. http://www.saglik.gov.tr

http://www.biyologlar.com/toplu-sozlesme-saglik-personeline-neler-getiriyor

Bitkilerde Davranış

Bitkilerde çimlenme,çiçek açma,yaprak dökme,tropizma ve nasti bitkilerde görülen önemli davranışlardır.Uyaran ışık,ısı,su,kimyasallar ve travmalar olabilir.Tepkilerin verilmesinde hormonlar düzenleyicidir. Tepki ise mitoz,turgor değişimi veya asimetrik büyüme ile gerçekleşir. Yapılan çalışmalar bitkilerinde belli bir alanda ürettikleri özel salgılarla birbirlerinin metabolizmalarını kontrol ettikleri görülmüştür.Ayrıca etilenin etkisinde unutmamak gerekir. Bitkilerde nasti ve tropizma kalıtsal davranışlardır. 1-Tropizma(Yönelim):Asimetrik büyümeler sonucu gelişir.Hormonların dağılımında görülen asimetri sonucu, dengesiz turgor ve hücre bölünmeleri ile gerçekleşir.Yavaş gerçekleşen davranıştır. Bu durum bitkinin farklı kısımlarının hormonlara farklı cevap vermesinden kaynaklanır. Tropizmada daha çok uç meristeminden salgılanan oksin hormonu etkilidir. Örneğin uç kısımdaki oksin hormonu ışık varlığına göre farklı dağılım gösterir Bu durum bitkide yönelmeyi gerçekleştirir. Oksinlerin dağılımı karanlıkta ve ışığın tepeden geldiği durumlarda dengelidir. Bu yüzden bitkide her hangi bir yönelme görülmez, ancak eğer ışık bir yönden geliyorsa ışığın geldiği yönde oksin miktarı az, ışığın geldiği tarafın karşısında oksin miktarı fazladır a-Fototropizma (Uyaran: ışık) Gövde pozitif tepki kök ise negatif tepki verir. b-Jeotropizma (Uyaran:Yerçekimi) Gövde negatif kök ise pozitif tepki verir. Bataklık ve sulak ortam bitkilerinin bazı kökleri negatif jeotropizma gösterir. Bu tip kökler havalandırma kökleri olarak adlandırılır ve bataklık toprağında O 2 nin az olmasından dolayı köklerin gaz alış verişinde rol alırlar. c-Hidrotropizma (Uyaran :Su) Kökler pozitif hidrotropizma göstererek suyun fazla olduğu ortamlara doğru yönelirler. d-Kemotropizma (Uyaran:Kimyasallar=asitler,bazlar,gübre) Kökler kimyasallara karşı pozitif (Gübre) veya negatif (Asit) tropizma gösterirler. e-Travmatropizma (Uyaran:Yaralanma) Kökler yaralanmaya neden olan faktörlere karşı negatif tropizma gösterir. f-Haptotropizma (Uyaran:Temas) Sarmaşık ve fasulyenin sülük gövdelerinde değmeye karşı pozitif tropizma gösterir. 2-Nasti(İrkilme):Bazı bitkiler ise uyartıların yönüne bağlı olmaksızın çok hızlı tepki gösterebilirler. Bu tür davranışlarında etken olan faktör turgor olayıdır. Örnek:Küstüm otunun duyarlı yaprak¬ları dokununca hemen kapanır. Örnek: Böcek yiyen bitkilerin çiçeğine böcek konunca çiçeğin yaprakları hemen kapanır. Bu hareketler turgor basıncındaki değişmelerle düzenlenir ve nasti hareketleri adını alır.Uyaranın yönüne bağlı olmaksızın gerçekleşen tepki tarzındaki hareketlerdir.Uyarana göre adlandırılır. a-Fotonasti.......(Uyaran:ışık):Papatya çiçeklerinde b-Termonasti....(Uyaran:Isı):Çiğdemin yaprak hareketlerinde c-Sismonasti....(Uyaran:Sarsıntı,Değme):Küstüm otunda d-Tigmonasti....(Uyaran okunma):Böcek kapan bitkilerde

http://www.biyologlar.com/bitkilerde-davranis

TESPİT EDİLMİŞ DOKULARI BOYAMADAKİ GENEL FAKTÖRLER

1-Fiksasyonun Boyama Üzerine Etkileri: Fiksasyon, dokularla boyaların etkileşimine yardım eder. Formaldehit ve civa klorür, bazik boyaları tercih ederken, trikloroasetik asit, pikrik asit ve krom bileşikleri asidik boyaların hareketini kolaylaştırır. Etil alkol veya asetik asitle fiksasyondan sonra hem asidik hem de bazik boyalar dokular tarafından kolaylıkla alınır.Çekirdek boyası olan carmalum, civa klorür fiksasyonundan sonra daha çok, formalinden sonra ise daha az boyar. Bazen tespit edici ajan, özel bir doku bileşeni ve boya arasında direkt olarak hareket eder. Bu durumda iken fiksatifin bir mordant olarak hareket ettiği söylenir. Örnek olarak, hematoksilenle miyelinin gösterilmesinde başlangıç basamağı olarak dokunun potasyum dikromatla muamelesi verilebilir. 2-Progressif ve Regressif Boyama: Progresif boyama tekniği, dokulardaki farklı elementlerin sıra ile renklendiği ve boyama solusyonunda uygun sürenin sonunda dokuların tatmin edici differensiyel renklenmesinin başardığı bir tekniktir.Regressif teknikte ise dokular önce fazla boyanırlar, hücresel ayrıntılar yok olur. Sonra dokunun istenmeyen kısımlarından fazla boyanın uzaklaştırılması ile boyanın alındığı veya differensiye edildiği bir tekniktir. Regressif boyama eski progressif yöntemlerden daha çok uygulanmaktadır. Çünkü diğer hücre yapılarının bir miktar boyanması olmaksızın bir hücrenin bir kısmının yeterli yoğun progressif boyanması olmaksızın hücre bölümlerini yeterli yoğun progressif boyanmasını elde etmek zordur. Regressif boyama ise ayrıntıları örten diffüz sonuç verir. Differansiyasyonla daha açık renkte boyanmış alanlardan boyaların uzaklaştırılması olasıdır. Differansiyasyondan sonra hala diğer yapılarda seçici ve açık biçimde ayrıntılı sonuçlar için yeterli miktarda boya kalmaktadır.3- Direkt ve İndirekt Boyama: Anilin boyaların bir çoğu ( metilen mavisi, eozin gibi) boyanın basit sulu veya alkolik solusyonlarına konursa dokuları mükemmel olarak boyar ve direkt boyama olarak bilinir (Şekil a). Hematoksilen gibi birçok boya ise dokularda tatmin edici bileşimin oluşması için mordant olarak bilinen ara bir maddeye gereksinim duyarlar. Bu olay indirekt boyama olarak bilinir.Boya ve mordant ünitesi renkli bir göl şekillendirmek için ve mordantlanmış boya, bir doku-mordant-boya kompleksini oluşturmak üzere doku ile birleşirerek sonraki zıt boyamanın ve dehidrasyonun kolaylıkla yapılmasına izin verir. Histolojik boyama yöntemlerinde boya ve mordant ya birlikte (örn/ Erlich hematoksileninde hematoksilen potasyum alum ile) veya mordant doku boya solusyonuna aktarılmadan önce ( örn; Heidenhein hematoksileninden önce iron alum banyosu) kullanılabilir. Demir, alimünyum ve krom bileşikleri boyalarla bazik boyalar oluşturmak üzere birleşen mordantlardır. Metalik mordant; kimyasal bağlarla kendini hem boyaya hem de dokuya bağlar.Accentuator-Vurgulayıcılar: Mordantlardan farklıdırlar ve kullanıldıkları boyanın boyama gücünü artırırlar. Boyalarla göller oluşturmazlar ve boyanın doku ile kimyasal birleşmesi için esasi değildirler. Loeffler' in metilen mavisindeki potasyum hidroksit ve karbol thionin ve karbol fuksindeki fenol; boyanın yoğunluğunu ve seçiciliğini artırarak accentuator olarak hareket ederler. Accentuatorlar sırası ile anyonik (asidik) ve katyonik (bazik) boyalara eklendiklerinde sıklıkla asit ve alkalidirler. Bir anyonik boyaya asidin eklenmesiyle; dokuların bazik gruplarının iyonlaşmasının artmasıyla boyama yoğunlaşır. Eğer bir katyonik boyaya alkali eklenirse, asidik gruplarının iyonizasyonu artar. Fenol, karbol thionin ve karbol fuksinde accentuator olarak kullanılır fakat hareket tarzı tam olarak anlaşılamamıştır. a- Direkt boyamab- Mordant ile indirekt boyamac- Accetuator ile indirekt boyama Sinir sistemi için metalik impregnasyon yöntemlerini de kullanılan Acceleratörlerin (hızlandırıcılar) (örn/ Cajal yöntemlerindeki chloral hidrat ve veronal) de aynı zamanda accentuatorlar gibi aynı yolla hareket ettikleri görülmektedir. Trapping(tuzağa düşüren ajanlar), boyaları dokularla ve bakterilerle birarada tutar; tannik asit ve iodin örnek olarak verilebilir. Metilen mavisi/ eozinle seçici olarak boyanan bir kan smeari, tannik asitle muamelesinden sonra krornatindeki metilen mavisini tutar. Gentian viyole ve iodin ile boyanan bakterilerin ve alkolik deklorizasyona dayanması da aynı zamanda bakteri-boya kompleksine iodinin trapping hareketi yüzündendir. İodinin boyanın bakteriler ile reaksiyona girme kapasitesini değiştirmediğine, fakat boyayı tutmaya meyilli olduğuna ve differansiyasyon sırasında dokudan kaçışına engel olduğuna inanılmaktadır.4-Differansiyasyon: Regressif bir teknikteki aşırı boyanmış dokunun differansiasyonu veya boyanın geri alınımı (de-staining), basit solusyonlarda yıkama ile veya asitler ve oksitleyici ajanların kullanımı ile sağlanabilir. Mordantlar ve bazı boyalar aynı zamanda differansiasyon ajanları gibi hareket edebilirler. Suda veya alkolde yıkama, differensiasyonun temelidir ve boyanın içinde çözünebileceği herhangi bir solvent de kullanılabilir; differensiasyon sıvısı basit çözünebilirlikle hareket eder. Dokularla sıkı kimyasal birleşme ile birleşen boyalar, bu yolla kolaylıkla differansiye olamazlar fakat onların doku-boya linkajları asitlerin hareketi ile parçalanabilir. Differansiasyon ajanı ya doku ve mordant arasındaki birleşimi ya da mordant ve boya arasındaki bağları koparır. Asitlerle hematoksilen boya göllerinin differansiasyonu; mordantla birleştiğinde kaybolan boyadaki hidroksil grubun yeniden oluşumu ile mordant-boya hattını kırar; asit aynı zamanda dokulardaki asidik grupların iyonizasyonunu baskılar. Doku-mordant bağı da kırılır. Oksitleme ajanları farklı olarak hareket ederek boyayı renksiz bir bileşiğe oksitlerler. Differensiasyon için kullanılan mordantlar; çözünmeyen boya mordant doku kompleksini, bir boya olarak dokuda boyanın sadece bir bölümünü bırakarak, boyanın kismi redistribution yolu ile differensiasyon sıvısında dağılan çözünebilir boya-mordant gölüne dağıtır. Boyalar, kullanılan boyalardan doku kompenentleri için daha kuvvetli bir affiniteleri olduğunda differentiatör olarak işlev görürler. Orange G gibi daha kuvvetli bir boya, diğer daha az hırslı boyayı yerinden çıkarır ve basit de-staining gibi aynı etkiyi yaratır.Boyama Solusyonlarının Olgunlaşması: Bazı boyama solusyonları sadece haftalarca veya aylarca havaya, ışığa ve (sıklıkla) ısıya maruz kaldıktan sonra etkilidir. Hematoksilen iyi bilinen bir örnektir. Taze hazırlandığında nukleus boyası için kullanışsızdır fakat stoklandıktan birkaç hafta sonra aktifleşir. Hematoksileni hemateine okside olur. Oksitleme ajanlarının (sodyum iodat, merküri oksit, potasyum permanganat gibi) eklenmesi ile hızlandırılabilir. Hematoksilenin bir kısmının boyama solusyonunda suni olarak fazla hematoksilenin ise doğal olarak olgunlaştırılmasının mümkün kılınması önerilmektedir. Bu, boyanın bir kerede kullanılmasına izin verir fakat devam eden oksidasyon boyanın aktivitesinin birkaç ay sürmesini sağlar; yoksa tamamen olgunlaşmış solusyon daha ileri oksidasyonla inaktif bileşiklere dönüşerek hızla etkisiz hale gelir. Boyaların hazırlandığı günün tarihini etiketle belirlemek akıllıca olacaktır.

http://www.biyologlar.com/tespit-edilmis-dokulari-boyamadaki-genel-faktorler-2

Tüp Bebek Yöntemi Doğumsal Anomali Riskini Artırmıyor

Tüp Bebek Yöntemi Doğumsal Anomali Riskini Artırmıyor

İnfertilite tedavisi sonrası oluşan doğumsal anomalilerin ne ölçüde ebeveynlere ait faktörlerle açıklanabileceği net olarak bilinmiyor. Avusturalya’da gerçekleştirilen bir çalışmada, IVF ile ilişkili doğum anomalisindeki risk artışının istatistiksel olarak anlamlı olmadığı gözlendi. Çalışmada, üremeye yardımcı teknolojilerle yapılan tedavilerin kaydı ile doğumlar ve en az 20 haftalık gestasyon süresi veya en az 400 gr doğum ağırlığı ile sonlandırılmış gebelikler ile doğum anomalisi (serebral palsi ve gestasyonun herhangi bir evresinde anomali nedeniyle sonlandırmaları da içerecek şekilde) kayıtları ilişkilendirildi. Bu çalışmada,  doğumsal anomali riski (bebeklerin beşinci doğum gününden önce tanı konmuş) yönünden, yardımcı üreme teknolojileri ile tedavi alınmış hamilelikler, daha önceki doğumunu yardımcı konsepsiyonla yapmış kadınlardaki spontan (yardımcı konsepsiyon olmaksızın) hamilelikler, infertilite kaydı olan fakat yardımcı üreme teknolojileriyle tedavi alınmamış hamilelikler ve hiçbir infertilite kaydı olmayan hamilelikler arasında karşılaştırma yapıldı. Kayıtlarda 308.974 doğumun 6163’ünün yardımcı konsepsiyon sonucu oluştuğu tespit edildi. Yardımcı konsepsiyon içeren hamileliklerdeki doğum anomalisinin (513 anomali, %8.3) yardımcı konsepsiyon içermeyen hamilelikler (17.546 anomali, %5.8) ile karşılaştırılmasındaki uyarlanmamış risk oranının 1.47 (%95 güven aralığı, 1.33 ile 1.62 arasında) ve çok değişkenli uyarlanmış risk oranının ise 1.28 (%95 güven aralığı, 1.16 ile 1.41 arasında) olduğu görüldü. Karşılık gelen risk oranları; in vitro fertilizasyon (IVF) (165 doğum anomalisi, %7.2) için 1.26 (%95 güven aralığı, 1.07 ile 1.48 arasında) ve 1.07 (%95 güven aralığı, 0.90 ile 1.26 arasında) iken, intrasitoplazmatik sperm enjeksiyonu için (ICSI) (139 anomali, %9.9)  1.77 (%95 güven aralığında, 1.47- 2.12) ve 1.57 (%95 güven aralığında, 1.30 ile 1.90 arasında) olarak bulundu. Sonuç olarak, infertilite öyküsünün yardımcı konsepsiyon olsun veya olmasın doğum anomalisi ile anlamlı düzeyde ilişkili olduğu bulundu. Fakat IVF ile ilişkili doğum anomalisindeki risk artışının, ebeveynlere ait faktörler uyarlandıktan sonra istatistiksel olarak anlamlı olmadığı gösterildi. Diğer bir yöntem olan ICSI için ise çoklu uyarlama yapıldıktan sonra bile doğum anomalisi riski yüksek olarak belirlendi.http://www.medical-tribune.com.tr

http://www.biyologlar.com/tup-bebek-yontemi-dogumsal-anomali-riskini-artirmiyor

MİLLİ PARKLAR YÖNETMELİĞİ

Tarım Orman ve Köyişleri Bakanlığından: R.G. Tarihi: 12/12/1986 R.G. Sayısı: 19309 BİRİNCİ BÖLÜM : Amaç, Kapsam ve Tanımlar Amaç Madde 1 - Bu Yönetmeliğin amacı, 2873 sayılı Milli Parklar Kanunu ile 6831 sayılı Orman Kanununun 25 inci maddesinin uygulanmasını düzenlemektir. Kapsam Madde 2 - Bu Yönetmelik, 2873 sayılı Milli Parklar Kanununun 22 nci maddesi ile 2896 sayılı Kanunla 6831 sayılı Orman Kanununa eklenen EK 5 inci maddesine göre hazırlanmış olup; Milli Parkların, Tabiat Parklarının, Tabiat Anıtlarının, Tabiatı Koruma Sahalarının ve Orman İçi Dinlenme Yerlerinin ayrılması, planlanması, geliştirilmesi, korunması, yönetilmesi ve tanıtılmasına ilişkin iş ve işlemleri kapsar. Kısaltmalar Madde 3 - Bu Yönetmelikte yer alan; a) Kanun: 2873 sayılı Milli Parklar Kanununu, b) Bakanlık: Tarım Orman ve Köyişleri Bakanlığını, c) Genel Müdürlük: Orman Genel Müdürlüğünü, d) Daire Başkanlığı: Milli Parklar Dairesi Başkanlığını, e) Müdürlük: Milli Parklar Müdürlüğünü, f) Fon: Milli Parklar Fonu'nu, ifade eder. Tanımlar Madde 4 - Bu Yönetmelikte yer alan; a) Milli Parklar, Tabiat Parkı, Tabiat Anıtı ve Tabiatı Koruma Alanı; Kanunun 2 nci maddesinde tarif edilen tabiat parçalarını, b) Ekosistem; belli bir yaşama muhiti içindeki canlı organizmalar ile cansız çevrenin meydana getirdiği karakteristik bir ekolojik sistemi, c) Tabii Kaynak; biyolojik tabii değerler; flora, fauna, habitatlar, ekosistemler, tabiat tarihinin ve tabii mirasın müstesna özellikleri ve bunlara dair ilmi değerler ile fiziki tabii değerler; coğrafi konum, jeolojik ve jeomorfolojik teşekküller, hidrolojik ve limnolojik özellikler, klimatik özellikler ve bunlara dair ilmi değerleri, d) Estetik Kaynak; insanın psikolojik yapısına ve bedii zevklerine hitap eden üstün, bakir ve tabii manzara özelliklerini, e) Kültürel Kaynak; tarihi, arkeolojik, mitolojik, antropolojik, etnografik, sosyolojik olayları belgeleyen ve bu olayların izlerini taşıyan sitler ve yöreler ile tarihteki büyük olayların ve kişilerin izlerini ve hatıralarını taşıyan, mimarlık ve güzel sanatların örneklerini bünyesinde toplayan yerler objeler ve kültürel mirasın olağanüstü örnekleri ve bunlarla ilgili ilmi değerleri, f) Teknik İzahname; bu yönetmeliğin uygulanmasına açıklık getiren, Yönetmelikte yer almayan hususları ihtiva eden Bakanlık emrini, g) Rekreasyonel Kaynak; tabii ve kültürel çevrenin, özellikle açık hava rekreasyonu yönünden potansiyeli, taşıma kapasitesi ve hitap ettiği demografik çevreyi, h) Rekreasyon; insanın eğlenme, dinlenme, kendini yenileme fonksiyonunu, ı) Orman İçi Dinlenme Yeri (Orman Mesire Yeri); rekreasyonel ve estetik kaynak değerlerine sahip ormanlık alanı, ifade eder. İKİNCİ BÖLÜM : Temel İlkeler ve Kriterler Temel İlkeler Madde 5 - Bu yönetmeliğin uygulandığı yerlerde; A) Genel olarak; 1 - Kanunun 14 üncü maddesi ile yasaklanan faaliyetler yapılamaz. 2 - Kaynak değerleri ile koruma ve kullanma esaslarının belirlenmesinde, ilmi ve teknik araştırmalara en geniş ölçüde yer verilir. 3 - Kaynakların tabii karakterinin mutlak korunması ve devamlılığı sağlanır. 4 - Tabii kaynakların işletilmesi yasaktır. 5 - Tabii denge ve manzara bütünlüğünü bozacak ve tabii çevrenin bakir karakteri ile bağdaşmayacak hiçbir faaliyete izin verilmez. 6 - Bu yerler sadece koruma, yönetim, araştırma, ziyaretçi, tanıtım tesis ve hizmetleri ile donatılır; bu tesisler ile kaynak amenajmanı ve restorasyon esasları planlarında belirtilir. 7 - Kullanma ve yararlanma şartları ve seviyesi idarece belirlenir ve taşıma kapasitesinin dışına çıkılmaz. 8 - Tabii ve kültürel kaynaklara, kaynak değerini bozmayacak, ancak tamamlayıcı ve restorasyon amaçlı müdahalelerde bulunulabilir. 9 - Tabiatı mutlak koruma zonlarında, tabii kaynaklar insan etkisi olmaksızın tabii haline bırakılır. 10 - Devlet mülkiyeti ve yönetimi ile kaynak, manzara, mülkiyet ve yönetim bütünlüğü esastır. Ancak milli parklarda devlet mülkiyeti aranmayabilir. 11 - Kamulaştırma ve Tahsisler Kanunun 5 inci ve 6 ncı maddelerine göre yapılır. 12 - Planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir.   B) Özel hallerde; 1 - Düzenli tarım ve mevcut iskan alanları ile bunları çevreleyen kırsal manzara dokusu, kültürel ve tabii kaynakların korunması ve değerlendirilmesinde tezat teşkil etmemesi halinde bu arazi kullanımlarının devamlılıklarını temin etmek üzere planlarında gerekli hükümler getirilir ve bu hükümlere göre özel mülkiyet tasarruflarına izin verilebilir. 2 - Milli parklar ve tabiat parklarında gerçek ve tüzel kişiler lehine verilecek izinlere dair esaslar, bu Yönetmeliğin 22 inci maddesinde belirtilmiştir. 3 - Üretim, otlatma ve avlanma faaliyetlerine ve kaynakların korunması geliştirilmesi ve devamlılığını sağlayacak teknik faaliyetlere, Kanunun 13 üncü maddesinde belirtilen esaslar dahilinde ve mutlak koruma zonları dışında izin verilebilir. 4 - Kamu yararı açısından vazgeçilmez ve kesin bir mecburiyet doğması halinde, planda yer almayan herhangi bir yatırım projesinin uygulanmasına, projenin çevreye yapacağı tesir etüd edilerek, çevre ve kaynak koruma politikalarıyla kabul edilemez bir tezat teşkil etmeyeceğinin tespit edilmesi halinde, planda gerekli değişiklikler yapıldıktan sonra Bakanlıkça izin verilebilir. Milli Park ve Tabiat Parkı Kriterleri Madde 6 - A) Milli Park olarak ayrılacak yerlerde; 1 - Tabii ve kültürel kaynak değeri ile rekreasyonel potansiyeli, milli ve milletlerarası seviyede özellik ve önem taşımalıdır. 2 - Kaynak değerleri, gelecek nesillerin miras olarak devralacakları ve sahip olmaktan gurur duyacakları seviyede önemli olmalıdır. 3 - Kaynak değerleri tahrip olmamış veya teknik ve idari müdahalelerle ıslah edilebilir durumda olmalıdır. 4 - Saha büyüklüğü, kaynak değerleri kesafeti yönünden, özel haller ve adalar dışında, en az 1000 hektar olmalı ve bu alan bütünüyle koruma ağırlıklı zonlardan meydana gelmelidir. İdari ve turistik amaçlı geliştirme alanları bu asgari saha büyüklüğünün dışındadır. B) Tabiat parkı olarak ayrılacak yerlerde; 1 - Milli veya bölge seviyesinde üstün tabii fizyocoğrafik yapıya, bitki örtüsü ve yaban hayatı özelliklerine ve manzara güzellikleri ile rekreasyon potansiyeline sahip olmalıdır. 2 - Kaynak ve manzara bütünlüğünü sağlayacak yeterli büyüklükte olmalıdır. 3 - Bilhassa açık hava rekreasyonu yönünden farklı ve zengin bir potansiyele sahip olmalıdır. 4 - Mahalli örf ve adetlerin, geleneksel arazi kullanma düzeninin ve kültürel manzaraların ilgi çeken örneklerini de ihtiva edebilmelidir. 5 - Devletin mülkiyetinde olmalıdır. Tabiat Anıtı ve Tabiatı Koruma Alanı Kriterleri Madde 7 - A) Tabiat anıtı olarak ayrılacak yerler ve tabii objeler; 1 - Tabiat ve tabiat olaylarının meydana getirdiği tek veya nadir olmaları sebebiyle ilmi ve estetik yönden milli öneme sahip, bir veya bir kaç jeolojik ve jeomorfolojik formasyon ve bitki türleri gibi müstesna değerleri barındırmalıdır. 2 - Özellikle insan faaliyetlerinden çok az zarar görmüş veya hiç zarar görmemiş olmalıdır. 3 - Saha büyüklüğü milli parkları küçük, fakat koruma yönünden bütünlüğü sağlayacak yeterlikte olmalıdır. 4 - Devletin mülkiyetinde olmalıdır. B) Tabiatı koruma alanı olarak ayrılacak yerler; 1 - Milli veya milletlerarası seviyede tipik, emsalsiz, nadir, tehlikeye maruz veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği veya gizlediği tabii ve geleneksel arazi kullanım şekillerine ait örnekleri barındırmalıdır. 2 - Genellikle hassas ekosistemlere, habitatlara veya hayat şekillerine, biyolojik veya jeolojik önemli çeşitliliklere, zengin genetik kaynaklara sahip olmalıdır. 3 - Bu özellikleri ve farklılıkları; bilim, eğitim, araştırma kurumları veya ilgili kuruluşlar tarafından tesbit edilmiş olmalıdır. 4 - Saha büyüklüğü, korunması gerekli değerlerin hayatlarını uzun süreli olarak devam ettirmelerine yeterli olmalıdır. 5 - Devletin mülkiyetinde olmalıdır. Orman İçi Dinlenme Yeri Kriterleri Madde 8 - Orman içi dinlenme yeri olarak ayrılacak yerler; a) Mahalli seviyede açıkhava rekreasyonu yönünden değişik ve zengin özelliklere sahip olmalıdır. b) Alt yapı imkanlarına sahip olmalıdır. c) Kaynak bütünlüğünü sağlayacak büyüklükte olmalıdır. d) Orman rejimine tabi olmalıdır. ÜÇÜNCÜ BÖLÜM : Tayin, Tesbit ve Planlama Tayin ve Tesbit Madde 9 - Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları Kanunun 3 üncü maddesinde açıklanan esaslara göre tayin ve tesbit edilen yer ve yörelere dair uygulama statüleri ve sınırları mahallen duyurulur. Orman İçi Dinlenme Yeri Kriterlerine sahip olduğu tesbit edilen sahalar; 2896 sayılı Kanunla değişik 6831 sayılı Orman Kanununun 25 inci maddesi hükümlerine göre, Genel Müdürlüğün onayı ile orman içi dinlenme yeri olarak belirlenir. Planlama Esasları Madde 10 - Bu yönetmeliğin uygulanacağı yerlerin; etüd, envanter ve araştırması ile Milli Park Planlaması ve kaynak amenajmanı planlarıyla ilgili usul ve esaslar teknik izahnamede açıklanır. Uzun Devreli Gelişme Planları Madde 11 - Milli Park uzun devreli gelişme planları, ilgili Bakanlıkların olumlu görüşleri ve gerektiğinde fiili katkılarıyla hazırlanır. Bakanlıkça onaylanarak yürürlüğe konur. İmar Uygulama Planları Madde 12 - Milli Park uzun devreli gelişme planı uyarınca iskan ve yapılaşmaya konu olan yerler için, mahalli gelişme planı karakterindeki, imar mevzuatına uygun imar uygulama planları, milli park uzun devreli gelişme planı hüküm ve kararlarına uygun olarak, hazırlanır veya hazırlattırılır, Bayındırlık ve İskan Bakanlığının onayı ile yürürlüğe girer. Tabiat Parkı, Tabiat Anıtı, Tabiatı Koruma Alanı ve Orman İçi Dinlenme Yeri Planları Madde 13 - Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı olarak tesbit edilmiş yerler için hazırlanacak planlar; milli park planlama usul ve teknikleriyle, uygulanan statünün amaçları, kriterleri, genel politika ve ilkeler ile uyumlu olarak ve planlanan sahanın kaynak değerleri ve özellikleri gözönünde bulundurularak, Kültür ve Turizm Bakanlığının görüşü alınarak hazırlanır ve Bakanlıkça onaylanarak yürürlüğe konur. Orman içi dinlenme yeri planları, orman içi dinlenme yeri kriterleri ile sahanın rekreasyonel ve estetik değerlerinin yıpratılmadan kullanılması, statü uygulamasının o yer için amaçları gözönünde bulundurularak Dairesince hazırlanır ve Genel Müdürlükçe onaylanarak yürürlüğe konur. Uygulama Projeleri Madde 14 - Uzun devreli gelişme planı, mahalli gelişme planı ve yatırım projeleri uyarınca Dairesince hazırlanan veya hazırlattırılan uygulama projeleri, Genel Müdürlükçe onaylanarak yürürlüğe konur. Kültür Varlıklarının Korunması ve Turizm Yatırımlarına Dair Plan Kararları Madde 15 - Bu yönetmelik uygulamasına konu olan yerlerde; a) Kültür varlıklarının korunması, tahkimi, restorasyonu ve değerlendirilmesine dair plan kararları, 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümlerine göre ve Kültür ve Turizm Bakanlığı ile işbirliği içinde tesbit edilir. b) Turizm bölge, alan ve merkezlerinde, turizm yatırımlarına dair plan kararları Bakanlığın görüşü alınarak sonuçlandırılır. DÖRDÜNCÜ BÖLÜM : Kuruluş ve Yönetim Kuruluş Madde 16 - Bu Yönetmelik kapsamına giren hizmetlerin taşradaki uygulaması bölge müdürlüklerince yürütülür. Koruma Madde 17 - Bu Yönetmeliğin uygulandığı yerlerde; a) Sınırlar uygun fiziki elemanlarla veya yeşil çitlerle yer yer belirlenir. Bunun dışında kalan sınırlar uygun aralıklı ve kolay görülebilir işaret ve levhalarla belirtilir. b) Koruma amacı ile yol, patika, haberleşme ağı; telsiz ve telefon gözetleme kule ve kulübeleri geliştirilir; deniz-hava ulaşım ve kontrol imkanları, ekipman ve araçlarıyla donatılır. c) Yangınlar, özellikle orman yangınlarıyla mücadele yönünden bu Yönetmeliğin 10 uncu maddesinde açıklanan esaslar dahilinde her türlü tedbir alınır. Mücadelede su ve çevreye zararlı olmayan kimyevi madde kullanımına yer verilir. Yangınların tesbit ve söndürülmesine ilişkin her türlü müdahale kalifiye ekiplerce sağlanır. Geniş uygulama alanları için özel yangınla mücadele projeleri hazırlanır ve uygulanır. d) Planlar uyarınca gerçekleştirilecek her türlü tesisin, idarenin koyacağı esaslar dahilinde, çevre sorunu yaratmayacak şekilde, atık su arıtma sistemiyle donatılması ve tesisle birlikte bitirilmesi, tesisi yapan kuruluş veya şahıslarca sağlanır. Yapım sırasında meydana gelen moloz döküntüleri yatırımcı tarafından kaldırılır ve kullanım alanının tabii peyzaja uygun çevre tanzimi idarenin belirleyeceği esaslara göre yapılır. İdarece gerçekleştirilecek müşterek alt yapı tesislerine, kamu ve özel tesis sahiplerinin, belirlenecek katılım payları ile iştiraki temin edilir. e) Çevreyi ve ziyaretçileri rahatsız edecek seviyede gürültülü faaliyetlerde bulunulamaz, yüksek sesle müzik yayını yapılamaz. f) Yapı ve tesislerde çevre ve hava kirliliği yaratan yakıt kullanılamaz, kullanılması gerektiğinde idarenin koyacağı kirlenmeye karşı tedbirlerin alınması zorunludur. g) Ziyaretçiler, idarece konan esaslar dahilinde bu yerlerden yararlanabilirler. h) Yasaklanan fiillere, arazi kullanma şekillerine ve plan dışı yapılaşmaya fırsat verilmez. Aksi hareket edenler hakkında kanuni işlem yapılır. ı) Genel peyzajda göze çarpan bozulmaları gidermek üzere, yörenin tabii arazi yapısı, tabii bitki örtüsü ve tabii peyzaj özellikleri dikkate alınmak ve o yörenin tabii türleri kullanılmak suretiyle ağaçlandırma, peyzaj restorasyonu ve tesislerin yakın çevre peyzaj düzenlemeleri yapılır. Koruma Görevlileri Madde 18 - Bu Yönetmeliğin uygulandığı yerler ve yörelerde; Yönetmelikte belirtilen her türlü koruma hizmetleri ve yasaklara karşı işlenen suçların takibi 6831 sayılı Orman Kanununun 5 inci fasıl dördüncü bölümünde yer alan suçların takibi ile ilgili hükümlere, 2872 sayılı Çevre, 1380 sayılı Su Ürünleri ve 3167 sayılı Kara Avcılığı Kanunları hükümlerine, genel hükümlere ve Muhafaza Memurları Görev ve Çalışma Yönetmeliğine uygun olarak orman muhafaza memurlarınca sağlanır. Mülkiyet ve Kamulaştırma Madde 19 - Milli park, tabiat parkı, tabiat anıtı, tabiatı koruma alanlarının devlet mülkiyetinde ve Genel Müdürlüğün intifa ve denetiminde olması esastır. Ancak Milli parklarda devlet mülkiyeti aranmayabilir. Bunu sağlamak üzere gerekli kamulaştırma işlemleri, Kanunun 5 inci maddesi hükmüne göre yapılır. Kamulaştırma bedelleri Fon'dan karşılanır. Taşınmazların tahsisi ise Kanunun 6 ncı maddesi hükümlerine göre yapılır. Tesis ve Düzenleme Madde 20 - Kanun kapsamına giren yerlerde planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir. Bu hizmetler içinde yer alan, lokanta, kafeterya, büfe, kır gazinosu ve benzeri tesisler idarece fon kapsamında işletilebileceği gibi, mevsimlik olarak işletmeciye de verilebilir. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları yatırımları için gerekli ödenekler, fon yönetmeliği esasları dahilinde kullanılır. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları içindeki mevcut yerleşim merkezlerinde ikamet edenler dışında bu yerlere gelen ziyaretçiler; giriş kontrol merkezlerinde veya sahalar içindeki idare ve ziyaretçi merkezlerinde, Bakanlıkça tesbit edilecek ücreti öderler. Bu ücretler fon'da toplanır. Kamu Kurum ve Kuruluşlarına Verilecek İzinler Madde 21 - Milli park ve tabiat parklarında, planlarına uygun olması şartıyla kamu kurum ve kuruluşları tarafından yapılacak her türlü plan, proje ve yatırımlara Bakanlıkça izin verilebilir ve uygulamalar Kanun ve Yönetmelik hükümlerine göre denetlenir. Ancak bu yerlerdeki tarihi ve arkeolojik sahalarda kazı, restorasyon ve ilmi araştırmalar, Bakanlığın bilgisi içinde olmak şartıyla, Kültür ve Turizm Bakanlığının iznine tabidir. Gerçek ve Tüzel Kişilere Verilecek İzinler Madde 22 - Milli Park ve tabiat parklarında, kamu yararı olmak şartıyla, o yer planlarının hükümleri dahilinde turistik amaçlı bina ve tesisler yapmak üzere gerçek ve özel hukuk tüzel kişileri lehine, Maliye ve Gümrük Bakanlığının görüşü alınarak ve Bakanlık tarafından öngörülen şartlar yerine getirilmek kaydıyla izin verilebilir. Müteşebbis, o yere ait mevcut planlarındaki şartlarla, Bakanlığın belirleyeceği esaslar dahilinde projelerini hazırlar ve turizm mevzuatına uygun olarak Kültür ve Turizm Bakanlığından belge almak sureti ile Bakanlıktan intifa hakkı tesisi talebinde bulunur. Turizm belgesi ve ekli projeleri ile keşif özetlerini Bakanlığa getiren müteşebbis adına, Maliye ve Gümrük Bakanlığının görüşü alınarak, Bakanlıkça usulüne ve proje ekonomisi ile amortisman müddetine uygun olarak kırkdokuz yılı geçmemek kaydıyla intifa hakkı tesis edilir. İntifa hakkı tesis edildiğinin Bakanlıkça müteşebbise tebliğini takip eden bir ay içinde Bakanlıkça verilen örneğe uygun noter tasdikli taahhüt senedi Bakanlığa verilir. Takiben, tahsis edilen yer, Bakanlıkça müteşebbise mahallen düzenlenen bir tutanakla teslim edilir. Müteşebbis, Bakanlığa taahhüt ettiği şartlara kesinlikle uymak zorundadır. İntifa hakkı süresinin uzatılması ve devri Kanunun 8 inci ve 9 uncu maddeleri hükümlerine göre yapılır. İzin Verilmeyecek Yerler ve Haller Madde 23 - a) Milli Park ve tabiat parklarında gelişme planları kesinleşmeden Kanun ve Yönetmelikte sözü edilen izinler verilemez. b) Tabiat anıtları ve tabiatı koruma alanlarında; 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla izin verilmez veya intifa hakkı tesis edilemez. c) Bu yönetmelik kapsamına giren yerlerde, Maden ve Petrol Kanunları gereğince araştırma, işletme ruhsatnamesi ve imtiyazı 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla, Bakanlar Kurulu Kararıyla verilir. Araştırma, işletme faaliyetlerinde bu yerlerin korunması amacıyla riayet edilecek hususlar Bakanlıkça belirlenir. Bu yönetmelikte yer alan izin işleriyle ilgili hususlar dışında 6831 sayılı Orman Kanununun ilgili hükümleri ve buna bağlı mevzuata göre hareket edilir. BEŞİNCİ BÖLÜM : Suçların Takibi ve Cezalar Suçların Takibi Madde 24 - Kanunda belirlenen yasaklar ve bu Yönetmelikteki açıklamalar ile 6831 sayılı Orman, 3167 sayılı Kara Avcılığı, 1380 sayılı Su Ürünleri, 6785 ve 1605 sayılı İmar, 2872 sayılı Çevre, 2634 sayılı Turizmi Teşvik ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu gibi Kanunlar ile bu Kanunların ek ve değişiklikleri ve bunlara dayalı mevzuatın getirdiği yasaklara uyulmaması ve suç sayılan fiillerin işlenmesi Kanun ve bu yönetmelik hükümlerinin uygulandığı yerlerde görevli orman muhafaza memurları tarafından bu memurların görevlerine ilişkin mevzuat çerçevesinde önlenir veya suç işlenmesi halinde gerekli kanuni işlem yapılır. Cezalar Madde 25 - 6831 sayılı Orman Kanunu, 3167 sayılı Kara Avcılığı Kanunu ve 1380 sayılı Su Ürünleri Kanunu ile bu kanunların ek ve değişikliklerinde yasaklanan fiillerin, Kanunun uygulandığı yerlerde işlenmesi halinde Kanunun 20 ve 21 inci maddeleri uygulanır. ALTINCI BÖLÜM : Son Hükümler Yürürlükten Kaldırma Madde 26 - 08/02/1973 gün ve 6304-586/9 Sayılı Milli Parkların Ayrılma, Planlama Uygulama ve Yönetimine Ait Yönetmelik yürürlükten kaldırılmıştır. Geçici Maddeler Geçici Madde 1 - Kanunun yürürlüğe girmesinden önce 6831 sayılı Orman Kanununun ilgili maddelerine göre Milli Park olarak ayrılan yerler ile Devlet Orman İşletmesi ve Döner Sermayesi Yönetmeliğinin ilgili hükümleri uyarınca orman içi dinlenme yeri (mesire yeri) olarak ayrılan yerler, Kanun ve bu Yönetmelik hükümlerine uygun olarak yeniden tasnif ve değerlendirmeye tabi tutulur. Milli Park kriterlerine haiz olan yerlerde; tamamı veya belirli bir kısmı evvelce Bakanlar Kurulu Kararı ile orman rejimine alınıp milli park olarak ayrılmış olanlarında; Kanun ve bu Yönetmelik hükümleri başkaca bir işleme gerek kalmaksızın uygulanır, diğerlerinin Milli Park olarak kabul edilmesi için Bakanlar Kurulu Kararı istihsal edilir. Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı kriterlerine haiz yerlerde ise Kanun ve bu Yönetmelik hükümlerinin uygulanmasına belirleme işlemi ile birlikte başlanır. Geçici Madde 2 - Kanun ve bu Yönetmelik kapsamına giren yerlerde evvelce verilmiş kullanma izni, irtifak ve intifa hakları; geçerlilik süresi bitimine kadar başka bir işleme gerek kalmaksızın sahibi tarafından kullanılır. Yürürlük Madde 27 - Bu yönetmelik Resmi Gazetede yayımı tarihinden yürürlüğe girer. Yürütme Madde 28 - Bu yönetmelik hükümlerini Tarım Orman ve Köyişleri Bakanlığı yürütür.

http://www.biyologlar.com/milli-parklar-yonetmeligi

GÜVERCİN HASTALIKLARI

CİRCOVİRÜS Son yıllarda saptanan bu hastalık oldukça yenidir. Bu nedenle hastalık ve sonuçları hakkında bilinenler fazla değildir. Hastalığa Circovirus adı ile bilinen bir virüs türü neden olmaktadır. Bu virüs daha çok genç kuşları ve yeni yavruları etkilemektedir. Hastalık ilk başlarda solunum yolları sorunları şeklinde kendini gösterir. Ağırlık kaybı ve ishal vardır. Daha ileri aşamalarda tüylerin büyümesinde karakteristik anormallikler ve vücut dokularının özellikle de iç organların gelişiminde anormallikler gözlenebilir. Virüsün vücuttaki en önemli etkisi. Dalak, Bursa Fabrici ve Thymus üzerindedir. Thymus (timüs) göğüs kemiğinin arkasında bulunan bir iç salgı bezidir. Bursa Fabrici ise kloak’ın urodaeum adı verilen orta kısmında yer alan çıkıntı şeklinde bir organdır. Bunların işlevleri vücudun savunma mekanizması ve bağışıklık sisteminin gelişmesi ve işlemesini sağlamaktır. Virüs bu organlarda hücreleri tahrip ederek organlara zarar verir ve kuşun bağışıklık sistemini olumsuz etkiler. Böylelikle kuşlarımız hastalıklara karşı savunmasız hale gelirler. Kuşlarımızın bildiğimiz bütün güvercin hastalıklarına yakalanmaları çok daha kolay olur. Hastalığa yakalanan kuşlarımız ise daha zor tedavi edilebilir hale gelirler. Virüsün güvercinlerdeki etkisi AİDS’in insanlardaki etkisine benzetilebilir. Circovirus başlı başına bir hastalık gibi görünmemekte ve her zaman ikincil derece kliniksel belirtiler veren bir enfeksiyon olarak değerlendirilmektedir. Bunun nedeni bu virüsün kendi başına belirgin bir hastalık tablosu sunmaması ancak daha çok diğer hastalıklarla birlikte olduğunda fark edilebilmesidir. Circovirus’ün vücuda girmesinin ardından özellikle Chalamydia, Ornithosis, Pasteurella, PMV1, Trichomonas, Aspergillus gibi hastalıklar ortaya çıkma eğiliminde olurlar. Virüsün bulaşma şeklinin temas sonucu olduğu genel kabul görmektedir. Hijyenik koşullara dikkat edilmesi virüsün bulaşmasını engelleyici olacaktır. Bilinen bir tedavi şekli yoktur. İlaç tedavisi sadece bu hastalıkla birlikte görülen yan hastalıklar için uygulanabilir. Ancak güvercinimizin savunma sistemini güçlendirici vitamin ve mineral takviyeleri yararlı olacaktır. E-COLİ “Eshericia coli” adı verilen bir bakterinin neden olduğu hastalıktır. Kısaca E. Coli adı ile anılmaktadır. İnsanda ve hayvanlarda bağırsaklarda bulunan bu bakteri aslında bağırsak florasının bir parçasıdır. Ancak normalden fazla miktarda bulunması sonucu hastalık kendini gösterir. Güvercinlerde hastalığın en belirgin göstergesi ishaldir. Bu hastalığa yakalanan kuşlarımız süratli ve şiddetli bir şekilde su ve elektrolit kaybına uğrarlar. Özellikle genç kuşları çabuk etkiler. Genç kuşlarda şiddetli vakalar ani ölümle sonuçlanabilir. Yetişkin kuşlarda ölüm pek görülmez ancak, kuşlarımızın gücünü kaybetmesine bağlı olarak diğer hastalıkların ortaya çıkışı hızlanabilir. Çabuk bulaşan ve kolay yayılan bir hastalıktır. BELİRTİLERİ En belirgin belirtisi sulu ishal şeklinde dışkıdır. Dışkının rengi yeşil ve sarımsı bir tondadır. Hasta kuşlarda bağırsak iltihabı oluştuğu için dışkının kokusu normalden daha kötü kokuludur. Hasta kuşlarda performans tamamen düşer. Genel bir kayıtsızlık hali gelir. Yeme karşı isteksizlik vardır. Aşırı ve çabuk zayıflama saptanabilir. Hastalığa neden olan bakteri, kan dolaşımına girerek kuşun vücudunun herhangi bir organına yerleşebilir. Bu durum sonucu kuşta sistematik bozukluklar gözlenebilir. Mikrobun yerleştiği vücut bölgesine göre kuş değişik belirtiler verebilir. Örneğin mikrop kanatlara yerleşirse, kanatlarda tutulma olur ve buna bağlı olarak kuş kanadını taşıyamıyormuş gibi davranabilir. Kanat düşürür, kanatlarını yerde sürüklemeye başlar. Mikrop ayaklara yerleşirse topallama veya yürüyememe gibi sorunlarla karşılaşılabilir. Benzer belirtiler güvercinlerde Salmonella, Cocidiosis ve Hexamitiasis gibi hastalıklarda da vardır. Kuşun sorunlarının hangi hastalıktan kaynaklandığının doğru tespit edilmesi gerekmektedir. Hastalığın kesin tanısı dışkının mikroskobik analizi ile yapılabilir. BULAŞMA ŞEKLİ Hasta kuşların dışkılarında hastalık mikrobu bol miktarda bulunur. Kuşlarımızın yediği yem ve içtiği sulara bu dışkıların bulaşması yolu ile hastalık yayılır. Ayrıca coli mikrobu salmalarımızın içinde bulunan ve güvercin tozu dediğimiz beyaz toza, karışarak solunum yolu ile de alınabilir. Salma içi temizliğine dikkat edilmesi, hijyenik koşullara uyulması gibi önlemler alarak hastalığı engellemek mümkündür. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri kökenli bir hastalık olduğu için tedavisinde antibiyotikler kullanılmaktadır. İlaçla tedavi edilebilen bir hastalıktır. Amoxycilin, Trimetoprim ve Sulfadiazin, Furazolidon etken maddeli ilaçlar hastalığın tedavide kullanılmaktadır. Bu etken maddeleri taşıyan bazı ilaçlar şunlardır. ALFOXİL 20 GR TOZ Abfar firmasının üretimi olan ilaç, toz şeklindedir. Etken madde olarak 100 gr poşette 20 gr amoxycilin bulundurur. Güçlü bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde özellikle CRD ve E. Coli enfeksiyonlarında etkilidir. Ticari şekli 100 gramlık 10 aleminyum poşetten oluşan bir kutu şeklindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 10 mg ilaç vermektir. (bu yarım poşet ilacın binde biri kadardır) İlaç kuşların içme sularına her gün taze olarak karıştırılıp verilir. İlaç uygulamasına 3 gün devam edilir. ATAVETRİN ORAL SÜSPANSİYON Atabay ilaç firmasının üretimi olan ilaç, bir şurup şeklindedir. Etken madde olarak her ml’de, 80 mg Trimetoprim ve 400 mg sulfadiazin bulundurur. Geniş spektrumlu ve kesin tesirli bir antibiyotiktir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Salmonella, E.Coli gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, kuş başına 7.5 mg etken maddedir. Bunu sağlayabilmek için 5 litre suya 0.5 ml ilaç karıştırmak gerekmektedir. Tedaviye 5 gün süre ile devam edilir. 4-5 gün ilaca ara verilip iyileşme sağlanmamışsa aynı doz tekrar edilebilir. Ticari şekli 50 ve 200 ml’lik şişeler halindedir. 1 Ölçek 40 cc’dir. Burada dikkat edilmesi gereken önemli bir nokta, sulfa grubu ilaçları kuşlarımızda kullandığımızda kuşlarımızın kalsiyum kaynaklarından uzak tutulması gerektiğidir. Kalsiyum içeren ilaçlar, gaga taşları, gritler, ahtapot kemikleri, kursak taşı gibi materyallerin salmadan uzaklaştırılması gerekmektedir. FURAVET TOZ Vilsan ilaç firmasının bir üretimidir. İlaç toz şeklinde olup her gramı 250 mg Neomcine ve 200 mg Furazolidon bulundurur. İlaç piyasada 20 ve 100 gramlık ambalajlar halinde satılmaktadır. Bu ilaç kombinasyonu geniş etkili bir anti - bakteriyeldir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerin Streptococcosis, Salmonella, E.Coli, Pasteurelosis (kolera) ve CRD gibi bakteriyel hastalıklarına iyi gelir. Güvercinler için kullanılabilecek doz, 2 litre içme suyuna yarım gram ilaç koyarak tedaviye her gün yenilenecek sularla 5 gün kadar devam etmektir. HAEMOPHILLUS Bu hastalığın nedeni Haemophillus adlı bir bakteridir. Bu bakteri güvercinlerimizin solunum yollarına yerleşerek burada çeşitli sorunlara yol açar. Hastalığın en önemli belirtisi kuşun her iki göz kapağında belirgin şişme ve göz sulanması ile birlikte gözlerde ve burunda akıntı gözlenmesidir. Bu hastalığı, diğer CRD hastalıklarına bağlı göz sorunlarından ayıran en önemli özellik hastalığın her iki gözde aynı anda görülmesidir. Ayrıca gözün iç dokusunda şişme vardır. Bunun yanı sıra solunum yollarında çeşitli problemler vardır. Nefes alma güçlüğü, aksırma vb. Hastalık doğrudan temas veya hastalık mikrobunu taşıyan göz ve burun akıntılarının salma tabanında biriken toz ve dışkılara bulaşarak, kuşlarımızın yedikleri yem ya da içtikleri sulara taşınması yolu ile yayılır. Hastalığın tedavisinde antibiyotikler olumlu sonuç vermektedir. Özellikle Tetracyline grubu antibiyotikler kullanılmaktadır. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. Haemoproteus adı verilen protozonun neden olduğu bir hastalıktır. Bu protozonun, Haemoproteus Columbae, Haemoproteus Sacharrovi, Haemoproteus Maccallumi adı ile bilinen üç türü güvercinleri etkilemektedir. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hastalığın yayılabilmesi için bu protozonun, güvercinin vücuduna girmeden önce ara konak görevi görecek bir canlının içinde gelişim göstermesi gerekmektedir. Bu canlı, bütün güvercin yetiştiricilerinin çok iyi tanıdığı atsineğidir. Hippobosca Equina veya Pseudolynchia Canariensis bilimsel adı ile tanılan atsineği, Haemoproteus hastalığının taşıyıcı ve bulaştırıcısıdır. Hastalık bu nedenle daha çok yaz aylarında karşımıza çıkar. Yabani güvercinlerin büyük bir yüzdesi bu mikrobu ( protozonu ) taşımaktadır. BELİRTİLERİ Hastalığın belirtileri Plasmodiosis ( sıtma ) hastalığına çok benzer. Hatta tamamen aynı belirtilere sahip olduklarını da söyleyebiliriz. Bu nedenle her iki hastalığı birbirinden ayırabilmek oldukça zordur. Bu konuda kesin tanı kan analizleri sonucu verilebilmektedir. Ateş yükselir 43 dereceye kadar çıkar ve nöbetler halinde tekrarlanır. Sarımtırak renkli ve beyaz posalı ishal şeklinde bir dışkı gözlenebilir. Hasta kuşlarda genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Alyuvarların oksijen taşıyıcı gücü azalır. Solunum sıklığı artar. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Haemoproteus’da ölüm pek görülmez ancak yan hastalıklara karşı uyanık olmak gerekmektedir. BULAŞMA ŞEKLİ Atsinekleri aracılığı ile bulaşan bir hastalıktır. Atsineği hastalığı taşıyan bir güvercinden kan emer ve bu işlem sonrası mikrobu alır. Mikrop sineğin vücudu içinde bir gelişim seyri izler ve son olarak sineğin tükürük bezlerine ulaşır. Yeni bir kan emme seansı sırasında ise buradan başka bir güvercine bulaştırılır. Güvercinin vücuduna giren mikrop 6 hafta kadar sürecek bir süreç sonucu olgunlaşır ve hastalığı bulaştırabilecek konuma gelir. Ancak güvercinde hastalık belirtileri mikrobun alınmasını takiben 15 – 30 gün sonra görülmeye başlar. Hastalıktan korunabilmek için özellikle yaz aylarında atsineklerine karşı önlemler alınmalıdır. Salmanın tel kafesle kapatılarak sineklerin girişi engellenebilir. Kuşlarınızın yabani güvercinlerle olan temasını tamamen kesmeniz gerekmektedir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bu hastalığın tedavisinde kullanılan ilaçlar, Plasmodiosis ( sıtma ) hastalığında kullanılan ilaçların aynısıdır. Bu ilaçlar, quinin ( kinin ) türevleri olan Clorquine, Primaquine ve Quinacrine etken maddesine sahip ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. TUBERCULOSIS (VEREM) GENEL BİLGİLER Güvercinlerde görülen verem hastalığıdır. Mycobakterium avium adlı bir bakterinin neden olduğu bu hastalık, yaygın ve bulaşıcı bir özellik taşır. Söz konusu bakterinin 20 kadar çeşidi bulunmakla birlikte yaygın olarak 3 tipi ile karşılaşırız. Bunlar insanda, sığırlarda ve kuşlarda hastalığa neden olan türlerdir. İnsanda ve sığırlarda görülen türü kuşlarda görülmez ancak bazı papağanlar bu durumun istisnasıdır. Kuşlarda görülen türü ise insanda ve sığırlarda da görülür. Bu nedenle kuşlardan insana ve diğer bazı memeli hayvanlara bulaşabilen bir hastalıktır. Hatta yabani güvercinlerin hastalığın ciddi birer taşıyıcısı olduğunu ve hastalığı hayvanlara bulaştırmada önemli bir rol oynadıklarını söyleyebiliriz. Yavaş gelişen sinsi bir hastalıktır. Kuşlarımız hastalığı bir süredir taşıyor olmakla birlikte belirtileri oldukça geç fark edilmeye başlar. Zamanla belirginleşen ağırlık kaybı, solgunluk hastalığın dikkat çekici özelliğidir. Tedavisi olmayan bir hastalık olup genellikle ölümle sonuçlanmaktadır. BELİRTİLERİ Ağırlık kaybı ve ciddi zayıflama ile birlikte, gözlerde, tüylerde solgunluk ve matlaşma, ağız içi mükozasında belirgin renk kaybı gözlenir. Kansızlık, ishal, baş tüylerinin kısmen dökülerek kelleşmesi, elle yoklandığında göğüs kemiğinin keskin kenarının kolayca hissedilmesi gibi belirtilerin yanı sıra, mikrop bölgesel lenf bezlerinde şişme ve yerel yaralara neden olabilir. Güvercinin iç organlarında özellikle karaciğer ve dalakta sarı – yeşil peynirimsi yumrular şeklinde doku yapısı değişiklikleri meydana gelir. Bunlar ölü kuşlar üzerinde yapılacak inceleme ile tespit edilebilirler. Ayrıca yaşayan kuşlarda yapılacak kan analizi hastalığın kesin teşhisini sağlar. BULAŞMA ŞEKLİ Hasta kuşların dışkıları hastalık mikrobunu taşır. Bunların sağlıklı kuşlarımızın tükettikleri yem ve içme sularına karışması hastalığın yayılmasını sağlar. Mikrobun salmalarımızdaki güvercin tozu dediğimiz beyaz toza bulaşarak solunum yolu ile de alınması mümkündür. Kuşlarımızın bu mikrobu toprak, mineral taşları ve grit gibi kaynaklarını yerken de alabilir. Kötü hijyenik koşullar, salmaların güneş ışığı görmemesi örneğin bodrum, depo gibi güneş görmeyen kapalı alanlarda kuş yetiştirilmesi gibi olaylar hastalık için uygun ortam yaratırlar. Salmanızın serçe, sığırcık, yabani güvercin gibi kuşlara açık olması kuşlarınıza hastalık bulaşma riskini artırır. TEDAVİSİ Ne yazık ki tedavisi olmayan bir hastalıktır. Hasta kuştan insana da mikrop geçme durumu olduğu için tedaviye çabalamak anlamsız ve zararlı olabilir. Eğer kuşunuzun hastalığının Tuberculosis ( verem ) olduğuna eminseniz bu kuşu hemen ayırmak ve söylemeye de dilim varmıyor ama imha etmek yapılacak en doğru yoldur. Çünkü hastalığı iyileştirme ihtimalimiz yoktur ve ölüm kaçınılmaz sondur. İmha yöntemi olarak öldürmek ve yakarak yok etmek önerilmektedir. HEXAMİTİASİS GENEL BİLGİLER Güvercinlerde Hexamit columbae adı verilen bir protozonun neden olduğu hastalıktır. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Hexamitiasis hastalığına güvercinlerin yanı sıra tavuklar, hindiler, bıldırcınlar, keklikler, ördekler ve bazı kuş türlerinde de rastlanmaktadır. Ancak diğer türlerde hastalığa neden olan Hexamit protozonu daha farklıdır. Hastalığın karakteristik özelliği bağırsak iltihabına bağlı olarak gelişen ishal ve özellikle de kanlı ishaldir. Hastalık daha çok yaz aylarında yaygınlık kazanmakta ve özellikle genç kuşlarda daha fazla görülmektedir. Hastalığın yayılmasını önlemek için salma içi hijyenik koşullara dikkat edilmesi çok önemlidir. BELİRTİLERİ Hastalık ilk belirtisini kusma ile gösterir. Yenilen yemlerin kusulması hastalığın bir başlangıç belirtisi olmakla birlikte, mutlak değildir. Yani bu hastalığa yakalanan kuşlar mutlaka kusacak diye bir koşul yoktur. Ayrıca bu kusma başka nedenlerle olabilecek kusmalarla karıştırılabilir. Bu nedenle kusmayı takip eden günlerde yapılacak gözlemler önemlidir. Hasta kuşlarda ilk dikkati çeken özellik dışkılarının sulu ve köpüklü oluşudur. Daha sonraki aşamalarda gelişen bağırsak iltihabına bağlı olarak dışkıda kan gözlenebilir. Dışkının diğer bir özelliği de normalden daha fazla kötü bir kokuya sahip olmasıdır. Hasta kuşların ağız içi incelemesinde ağız içi mükozasında yara saptanabilir. Hastalığın gelişimine bağlı olarak, kuşlarda kayıtsızlık, bir kenara çekilip tüy kabartma ve düşünme hali ortaya çıkar. Kuşun yeme karşı ilgisi azalır ve hasta kuş daha az yem tüketmeye başlar. Buna karşın su tüketiminde bir artma vardır. Hastalığın tedavisine geç başlanması durumunda kuşlarımızda belirgin bir kilo kaybı gözlenir. Kilo kaybı özellikle genç kuşları fazlasıyla etkiler ve ölümler gelebilir. Ölüm öncesi kuşlarda titreme hali gibi bir durum saptanabilir. Aşırı kilo kaybına uğrayan kuşlarımızın tedavisini yapıp bu hastalığı ortadan kaldırsak bile kilo kaybından kaynaklanan gelişim noksanlığı bu kuşlarımızı kalan ömürleri boyunca etkiler. BULAŞMA ŞEKLİ Hastalık mikrobu, hasta kuşların dışkıları yolu ile yayılır. Dışkıda bol miktarda bulunan mikrop, bir şekilde kuşlarımızın yediği yemlere veya içtiği sulara bulaşabilir. Mikrop bulaşmış yiyeceği yiyen ya da içen kuş mikrobu alır. Mikrop vücuda girdikten sonra kuluçka süresi 4 – 5 gün kadardır. Yani mikrobun alınmasını takiben 5 gün kadar sonra hastalık belirtileri kendini göstermeye başlar. HASTALIĞIN TEŞHİSİ Hexamitiasis hastalığında hastalık belirtileri diğer güvercin hastalıklarından, Salmonella, E. Coli, Coccidiasis ve PMV1’e benzerlik gösterir. Bu nedenle kesin teşhis önemlidir. Hasta kuşların dışkılarında yapılacak mikroskobik inceleme sonucu hastalığın kesin tanısı yapılabilir. HASTALIĞIN TEDAVİSİ İlaçla tedavi edilebilen bir hastalıktır. Hexamitiasis tedavisinde, Ronidazole, Metranizadol, Dimetridazole etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeleri taşıyan güvercinler için özel üretilmiş ilaçlar yalnız yurt dışında bulunmaktadır. Yurdumuzda bunlardan sadece metronizadol etken maddeli olan bazı ilaçlar beşeri ilaç ( insanların tüketimi için hazırlanan ) olarak bulunmaktadır. Dozaj ve kullanım biçimi ayarlanarak bu ilaçlardan yararlanılabilir. Aşağıda ilk önce yurt dışında bulunan şekilleri tanıtıldıktan sonra ülkemizde bulabileceğimiz türleri hakkında da bilgi verilecektir. Bu iki ilaç Ronidazole etken maddesine sahiptir: RİDZOL-S : Toz şeklinde olan ilaç, Jeeds European firmasının bir üretimidir. %10’luk konsantreye sahip olan ilaç 4.5 litre suya bir çay kaşığı karıştırılarak 7 gün süre ile kullanılır. Yurtdışı fiyatı 20 –60 Dolar’dır. DACZAL TABLET : Dac Firmasının bir üretimi olan ilaç 5 mg’lık tabletler şeklindedir. Güvercin başına 1 tablet düşecek şekilde 7 gün süre ile verilir. Yurtdışı satış fiyatı 11.95 Dolar’dır. Bu iki ilaç Metranidazole etken maddesine sahiptir: FİSHZOLE TABLET : Thomas lab firmasının bir üretimi olan ilaç, tablet başına 250 mg ilaç bulundurmaktadır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Yurtdışı satış fiyatı 15.95 Dolardır. FLAGYL : Jeeds European firmasının bir üretimi olan ilaç, toz şeklindedir. 4.5 litre suya bir çay kaşığı kadar karıştırılarak 8 gün kadar kullanılır. Yurtdışı fiyatı 20 – 55 Dolardır. Bu ilaç, Dimetridazole etken maddesine sahiptir: HARKANKER SOLUB : Harkanker firmasının üretimi olan ilaç,toz şeklinde olup kuşların içme sularına karıştırılarak kullanılmaktadır. Bir poşet ilaç 4.5 litre suya karıştırılarak kuşlara 7 gün süresince verilir. Yurtdışı satış fiyatı 12.95 Dolar’dır. Ülkemizde bu etken maddelere karşılık gelen beşeri ilaçlar : Ülkemizde yukarda belirtilen 4 etken maddeden sadece Metranidazol içeren beşeri ilaç (insanların tüketimi için hazırlanmış) bulunmaktadır. Bu etken maddeyi taşıyan ilaçlar arasında Metrajil, Flagly ve Nidazol sayılabilir. METRAJİL : 250 mg’lık tablet şeklindedir. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. FLAGLY SÜSPANSİYON : 125 mg’lık toz halindedir. Su ile karıştırılıp şurup haline getirildikten sonra, kuşların içme sularına bir litre suya günlük olarak 5 ml karıştırılır. Tedaviye 3 gün süre ile devam edilir. NİDAZOL : 250 mg’lık tablet şeklinde olanı kullanılmalıdır. Kuş başına yarım tablet 3 gün süre ile verilebilir ya da 4.5 litre suya 8 tablet atılarak 5 gün süre ile kuşlara içirilir. Tabletler suya atılmadan önce havanda dövülüp toz haline getirilmelidir. PARAMYXOVİRÜS (SALLABAŞ) PMV-1 kısa ismiyle tanınan bu hastalık güvercin hastalıkları içinde en bulaşıcı ve ağır olanlarından birisidir ve Paratifo ile beraber en fazla güvercin ölümüne yol açan hastalıktır.. Ülkemizde genelde "sallabaş" adı ile bilinmesine rağmen, aslen sallabaş bir çok hastalıklardan dolayı güvercinlerimizde baş gösterebilen bir hastalık belirtisidir. Paratifo, zehirlenme, bakterisel enfeksiyonlar bu hastalıkların başında gelir ve hepsi kuşta sallabaş hareketinin görünmesine neden olur. Bu hastalıklardan bazıları ötekilerine göre daha kolay tedavi edilebilir ve bazılarının tedavisi yoktur. Fakat duymuş olabileceklerinizin aksine sahte sallabaş diye bir hastalık yoktur. Bu nedenle baş dönmesi dışında baska belirtilere bakılmadan her hangi bir tedavi yöntemine geçmek yanlış olabilir. PMV-1 kümes hayvanları hastalığı olan "Newcastle" hastalığı virüsünün yakın akrabasıdır. Fakat çeşitli kaynaklarda belirtildigi gibi "Newcastle" hastalığı değildir. PMV-1 tavuklara bulaşmıyacağı gibi "Newcastle" da güvercinlere bulaşmaz. Bu nedenle PMV işaretleri gösteren güvercinlere "Newcastle" hastalığı ilaçları kullanmak faydasızdır. (PMV 1 aşılarında Newcastle virüs kullanımı, bu virüsün paramyxovirosis ile yakın akrabalılığından istifade etmek amacıyla olup, tedavi amaçlı ilaçların bu ilişki kurularak kullanılmamasını belirtmek isterim. Not: Makaleye bu nokta veteriner arkadaşlardan gelen uyarılar sonucu eklemiştir) PMV-1'in bulaşma yolları doğrudan temas veya patojen taşıyan tozdur. Bu toz (salmalarımızda olan beyaz toz) hava yoluyla bulaşıma neden olabileceği gibi at sineği, sivri sinek, sinek, fare veya insanlar tarafındanda bir sonraki kuşa geşebilir. Bu nedenle salmaların havalandırma koşullarının ideal olması büyük derecede önemlidir. Salmalara sineklerin ve farelerin girmesini engelleyici önlemler alınması sadece bu hastalığa karşı değil bir çok hastalığa karşı etkin bir önlemdir. Bütün bu nedenlerin yanında bence en büyük tehlike insanlardan gelmektedir. Ziyaret ettiğimiz salmalarda dokunduğumuz kuşlardan veya elbiselerimize (özellikle ayakkabı tabanına) tutunan tozlardan en büyük zarar gelmektedir. Kuslarımızı görmeye gelen kuşçularda bu riske dahildir. Güvercin beslemenin sosyal bir hayat tarzı olduğunu düşünürsek bu riskleri ortadan kaldırmanın mümkün olmadığını fakat önlemler alınabileceğini görürüz. Bu önlemleri düşünürken aklımızda bulundurmamız gereken bir gerçek sadece gözle görünür belirtileri taşıyan kuşların bu tür hastalıklara sahip olmadığıdır. Başı dönmüş bir kuşun bu hastalığın son aşamalarında olduğu ve büyük bir olasılıkla aynı salmada daha bir çok kuşun bu hastalığı taşıdığı (hasta veya taşıyıcı durumunda) başka bir gerçektir. Bu tür riskleri olabildiğince azaltmak için bence yapılabilecek şeyler şunlardır: * Ziyaret eden kişilerin kuşlarınıza dokunmalarına izin vermeyin. Eğer ziyaretciniz usta bir kuşçuysa nedenlerini anlıyacaktır. * Salmalarınıza yürüyerek girilebiliyorsa, ziyaretcilerinizi ya dışarıda tutun yada kullanmaları için bir iki çift terlik bulundurun. * Ziyaret ettiğiniz bir kuşçudan geri geldiğinizde salmanıza gitmeden ellerinizi dezenfekte edici bir sabunla yıkayıp elbiselerinizi ve ayakkabınızı değiştirin. * Satın aldığınız kuşları kendi kuşlarınızın yanına almadan en az 30 gün ayrı bir salmada tutup gözleme alın. Çoğu virüs ve bakterilerin yaşam devri 30 gün olduğu için kendisini göstermemiş hastalıkların kuşlarınızı etkilemeden ortaya çıkmalarını sağlamış olursunuz. * Salmanızın havalandırmasına büyük önem verin. Bu kuşların dışında sizin sağlığınız içinde önemli. * Yemlik, suluk ve banyoluklarınızı salmanın dışında tutmayın. Vahşi hayvanların bunları kullanmasını engelleyin. * Serçe, kumru gibi vahşi kuşların salmanıza girmesini engelleyin. Kuşlarımızı etkileyecek bakteri, virüs ve parazitlerin vahşi hayvanlarda doğal olarak olabileceğini ve bu hayvanları sizin gözlemliyebileceğiniz şekilde etkilemiyebileceğini unutmayın. * Kuşlarınızı taşıdıkları parazitlerden arındırın. Bunların kuşlarınızın zayıf düşüp hastalıklara kolay hedef olmasına yol açacağını bilin. * Kuşlarınızı yerde yemlemeyin. Yemlik kullanmak çoğu hastalık risklerini elemine edecektir. * Kuslarınıza her gün taze su verin. * Suluk ve yemliklerinizi temiz tutup içlerine dışkı ve toz girmesini engelleyin. * Salmalarınızı temiz tutun. * Salmaların zemininin her zaman kuru olmasına dikkat edin (bakteri ve virüsler bu ortamda yaşamlarını sürdüremez ve çoğalamazlar). Dışkıları devamlı temizleyin. Çoğu hastalıkların ve kurtların bu yolla bulaştığını unutmayın. * Hastalık belirtileri gösteren kuşlarınızı hemen ötekilerinden ayırın. Bunlar benim yapmaya çalıştığım ve tavsiye ettiğim şeyler. Bunlardan her yapılan kuşlarınızın hastalanma olasılığını biraz daha azaltır. Kuşlara dokunmanın bu hastalıkla ilgisini ben kötü bir anı ile biliyorum: Yıllar önce Atlanta'dan ziyaretime gelen arkadaşım Eran'la beraber Afganistanlı bir arkadaşın kuşlarını seyretmeye gittik. Güzel bir gün geçirdik. Beraber kuşlarını uçurduk, yeni çıkan yavrularına baktık. Akşam üzeri bizim eve geldik. Eran daha ilk defa benim kuşları görüyordu. Ona ilk gösterdiğim kuş benim dumanlıların yavrusuydu. Övüne övüne gösterdim ve yavruyu anlata anlata bitiremedim. Kuş Eran'ında bayağı hoşuna gitti. Ondan sonra ergen kuşları uçurup seyrettik. Onlarda inmeden benim dumanlı yavruyu havaya attım. Daha ikinci uçuşu olduğu halde beni mahcup etmedi. Bir iki kere kuyruğunun üstünde kaydı ve ilk taklasını attı. Nasıl ama dedim. Kuş böyle olur. Daha sarı sarı tüyleri var. İki tur daha atabilse oyuna girecek. Benim gurur kaynağım. Kuşları içeri soktuk. Aksam yemeğini yiyip Eran'ı hava alanına götürdüm ve yolcu ettim. Ertesi gün akşam üzeri yine kuşlara gittigimde her zamanki gibi gözlerimin ilk aradığı kuş dumanlı yavruydu. Fakat bu sefer hafif bir halsizliği vardı. Pek uçmakta istemedi. Bende zorlamadım. Bundan sonra her gün dahada kötüye gitti ve bir süre sonra kafasıda dönmeye başladı. Ne kadar uğrastıysam nafile. Ben bunları yaparken bir gün Afganistanlı arkadaştan e-mail geldi. Halim kötü diyordu. Kuşlarım teker teker dökülüyor. Her gün bir iki tanesi ölüyor. Ne yapacağımı bilmiyorum. Birden ziyaret ettiğimiz gün aklıma geldi. Söylediğine göre ilk ölen kuş biz gittiğimizde ilk gösterdiği kuştu ve bende elime alıp incelemiştim. Eve geri geldigimde arkadaşıma kusları göstereceğim diye heyecanla ellerimi yıkamadığımıda hatırladım. İlk dokunduğum kuşumda gözüm gibi baktığım dumanlı yavrumdu. Bazen böyle hatalarımızla öğreniyoruz. Umarım benim öğrendiklerimde başkalarının hata yapmadan öğrenmesine katkıda bulunur. PMV-1'e geri dönelim: Bu hastalığın işaretleri ilk olarak kuşların fazla su içmeye başlaması ve sulu dışkularuyla başlar. Kısa zamanda kuşlarda sinir sistemi sorunları görülür. Felç, boyun titremesi, fazla ürkeklik ve klasik vücudun (özellikle boyun) dönmesi veya kıvrılması. Sinir sistemi bozukluklarının başlamasından önce bu hastalığı teşhis edebilmek için şüphelendiğiniz kuşu sırtının üzerinde yere bırakarak veya aniden yanında elinizi çırparak korkutup havalanmasını sağlıyabilirsiniz. Sinirsel bozukluk gözle görünmese dahi bu hastalığı taşıyan kuşda etkisi başlamışdır ve kuş sağlıklı olduğunda yapabileceği gibi korkutulduğunda normal bir kalkış yapamaz. Uçuşa kalkışında bir bozukluğa şahit olabilirsiniz. Sırt üstü pozisyondan ayağa kalkmasıda sorunlu olabilir. Şüphelendiğiniz kuşu gözlem altına aldığınızda yemini yerde verirseniz, yem yemekte güçlük çektiğini görebilirsiniz. Tam yeme gaga atarken başının kenara çekmeside klasik bir işaret. Hastalık ilerledikce bu hareket dahada ağırlaşacak ve kafasının tamamen dönmesine kadar gidecektir. Bu kuşları beslemek için kenarları alçak olan tabak şeklinde yemlikler ve suluklar kullanabilirsiniz. Fakat hastalık ilerledikce yem yemek ve su içmek kuş için imkansızlaşacaktır. Bu durumda elle beslemeye geçmeniz gerekebilir. Hastalıkları bu seviyeye gelen kuşların bazıları hemen ölürler ve bazılarıda yaşadıkları halde hayatlarının sonuna kadar hafif sinir sistemi bozuklukları gösterirler. Sonuçta bu hastalıktan kuşların kurtulması mümkün değildir. Yaşayanlarda taşıyıcı haline gelirler. Boyun dönmesinin ve öteki sinirsel bozuklukların bir çok hastalığa özellikle Paratifo'yada özgü olduğunu düşünürsek bu hastalığa kesin teşhis koymanın tek yolu alınacak kanın labaratuarda analize edilmesidir. PMV-1 taşıyan kuş iki üç hafta içinde antikor (kana dışarıdan giren maddelere karşı savunmaya geçen madde) üretmeye başlar ve bu antikorlar labaratuarda teşhis edilebilir. Çoğunlukla PMV-1'e yakalanan kuşlarda Paratifoda mevcuttur. Paratifo kendisini ilk iki üç gün içinde gösterdiği için test sırasında bu hastalığıda aramak yerindedir. İlk teşhisden sonra kuş paratifo için tedavi edilirse ve iyileşme gösterirse bu PMV-1 virüsüne karşı vücudun savunmasını kolaylaştırır. Dolayısıyla, anlıyacağınız gibi PMV-1'in antibiyotiklerle veya her hangi başka bir ilaçla tedavisi mümkün değildir. Yapılabilecek tek şey bu hastalığa karşı sağlıklı kuşları her yıl aşılamaktır. Konuıtuğum bazı kişiler bu aşının sadece 6 ay vücuda yararlı oldugunu ve 6 ay sonra tekrarlanması gerektiğini savunuyor. PMV-1 aslında tek başına kuşları öldürmez. Kuşların ölüm nedenlerinin başında yem ve su alamamaları gelir. Bunun yanında PMV-1 kuşun vücut savunma sistemini aşırı derecede yıprattığı için aynı zamanda kuşda baska hastalıklarda mevcuttur. Bunların başında daha önce dediğim gibi paratifo gelir. Pamuk ve Coccidiosis bunu takip eder. Hastalanan kuşlarınızın tedavi edilemiyeceği ve ölmiyenlerin bile taşıyıcı hale geleceği düşünülürse, istemesekde bir ilaç bulunana kadar tek çözüm bu kuşların imha edilmesidir. Ne olursa olsun, bu hastalığı taşıyan kusları satmak veya başkalarına vermek yapılmaması gereken bir şeydir. Bulaşıcılık özelliği çok fazla olduğu için PMV-1 salgınına yol açacak bir harekettir. Umarım kimse kendi kuşlarında yaşadığı duyguları başka bir kuşçunun veya kuşçuların yaşamasını istemez. Eğer hasta kuşlarınız sizin için çok değerliyse ve imha edemiyecekseniz, öteki kuşlarınızdan her zaman ayrı tutulmalı ve öteki kuşlarınızında devamlı aşılarının yapılması gerekmektedir. Bu hastalığı geçiren kuşların aşılanması mümkün değildir. Eğer kuşlarınız aşılanmamışsa ve bu hastalığın bir kuşunuzda mevcut olduğunu düşünüyorsanız, acil olarak geri kalan kuşlarınızı aşılıyabilirsiniz. Fakat aşıyı vurduktan sonra antikorun iki üç hafta içinde üretilmeye başlamasından dolayı bu süre içinde hastalığa yakalanan başka kuşlarınızda olabilir. Hasta kuşları imha ettikten veya salmadan çıkarttıktan sonra arta kalan yemlerin ve dışkıların her gün temizlenmesi ve salmanın bir ucundan öteki ucuna kadar dezenfekte edilmesi şarttır. Dezenfekte etmek için "SANICOOP" gibi hazır temizleyiciler kullanabileceğiniz gibi kloraklı çamaşır suyuda kullanabilirsiniz. Bundan bahsetmişken bu tür dezenfekte işlemlerini gelenek haline getirip en az haftada bir bütün yemlik ve sulukları dezenfekte etmenizi ve buna yapabildiğiniz kadar bütün salmayı eklemenizi tavsiye ederim. PMV-1 hastalığı süresince kuşlarınıza genel antibiyotik vererek yan hastalıklarla başa çıkmanız ve B vitamini takviyesiyle kuşunuza yardımcı olmanız, değerli kuşlarınızın kendilerini en kısa zamanda toparlamalarına yardımcı olur. PLASMODİOSİS (SITMA) GENEL BİLGİLER Bu hastalık, malaria ya da sıtma adı ile bildiğimiz hastalığın güvercinlerde görülen türüdür. “Güvercin Sıtması” olarak adlandırabileceğimiz bu hastalığa neden olan mikrop, plasmodiasis ( plasmodium ) adı verilen tek hücreli bir protozondur. Sınıflamada hayvanlar grubuna dahil olan Protozonlar, basit yapılı mikroskobik canlılardır. Binlerce türü bulunan bu canlılar, insanda ve hayvanlarda çeşitli hastalıklara neden olabilmektedirler. Güvercin sıtmasının bulaşma ve yayılmasına neden olan en önemli etken sivrisineklerdir. Bu hastalık yaz aylarında hızlı bir şekilde yayılır ve bir çok güvercini etkiler. Yabani güvercin türlerinde oldukça yaygındır. Yapılan bir araştırmaya göre yaz aylarında yabani güvercinlerin % 35’inde bu hastalığa rastlanmıştır. SİVRİSİNEKLER Sürekli güvercinlerin üzerinde yaşama eğiliminde olmadıklarından güvercinlerin bir dış paraziti olarak adlandırılmamakla birlikte sivrisinekler, zaman zaman güvercinlerden de kan emmektedirler. Özellikle bazı türleri kuşları ve güvercinleri tercih etme eğilimindedirler. Sivrisinekler, güvercin sıtmasına neden olan başlıca mikrop taşıyıcı canlılardır. Bataklık alanlar, su birikintileri, dere ve nehir kenarları, gibi sulak alanlar sivrisineklerin üreme ve gelişme alanlarını oluşturur. Dişi sinek buralara larvalarını bırakarak çoğalır. Sivrisinekler kan emerek yaşayan birer canlıdırlar. Ancak sadece dişi sivrisinekler kan emerler. Dişilerin yumurta geliştirebilmeleri için kana ihtiyaçları vardır. Erkek sivrisinekler ise su ya da bitki özsularıyla karınlarını doyururlar. Dişi sineğin kan emdikten sonra bu kanı sindirme işlemi ortalama üç – dört gün sürer. Bu süre içinde yumurtalar olgunlaşır. Daha sonra kan emme işlemi tekrarlanır. Yumurtalar 3 gün içersinde açılır ve 20 – 22 derece sıcaklıktaki bir su da 15 günlük bir sürenin sonunda erginleşirler. Dişi sivrisineklerin ömrü, yaz aylarında fazla aktiviteden dolayı 2 ay kadardır. Buna karşın kış aylarında 9 ay kadar yaşarlar. Erkek sivrisinekler ise çok daha az ömürlüdürler. Çoğu, çiftleşmeden hemen sonra ölürler. Sivrisinekler kan emmek için genellikle geceyi beklerler. Kanını emeceği canlıyı bulmasında kısa mesafelerde sıcaklık ve nem gibi uyarılar, gelişmiş duyu organları sayesinde kolayca algılanabilir. Sivrisinek kan emeceği canlının çıplak bir noktasına konar ve kan emmek için özelleşmiş hortumu sayesinde bu işi gerçekleştirir. Ağız parçaları deriyi delebilecek tarzda sokucu bir yapıdadır. Her sokuşta yaraya tükürük akıtılır böylelikle kan emilmese bile hastalık taşıyan mikroplar bulaştırılabilir. Sivrisinek türleri içersinde, Culidae familyasına dahil olan Anopheles, Culex ve Aedes türleri yaygın olarak gözlenen ve gerek insan ve gerekse hayvanlardan kan emen türlerdir. Bu türler kuşlar ve güvercinlerden de kan emerler. Özellikle Culex pipiens’i adı ile bilinen tür özellikle kuşları tercih etmektedir. Ancak bu türler içinde sadece Anopheles türü üyeleri sıtma mikrobunu taşırlar. Ülkemizde sıtma mikrobu taşıyan Anopheles türleri arasında Anopheles sacharovi ile Anopheles maculipenis en yaygın rastlananlardır. Anopheles türlerini diğer sivrisineklerden ayırt etmenin en kolay yolu bir yere konduğunda duruş şekline bakmaktır. Anopheles türleri kondukları zemine vücutları dar açı yapacak şekilde dururlar. Diğer türlerin vücutları zemine paralel konumdadır. Ayrıca Anopheles türlerinin uzun ayakları, yuvarlaklaşmış pulları ve hafif benekli kanatları bulunur. Bu özelliklere bakarak uzman olmayan birisi bile hastalık taşıyıcısı Anopneles’i diğerlerinden ayırt edebilir. HASTALIĞIN BELİRTİLERİ En dikkat çekici özellik nöbetler halinde tekrarlayan ateş yükselmesidir. Kuşu etkileyen plasmodium türüne göre ateş süreleri ve tekrarlanma sıklıkları değişebilir. Bu dönemlerde kuş birden durgunlaşır, bir kenara çekilip düşünmeye ve tüy kabartmaya başlar. Nöbet geçtiğinde kısmen düzelmiş gibi bir görüntü sunar ancak genel olarak bir güçsüzlük hali vardır. Uçma isteği azalır, performans tamamen düşer. Hastalık yapıcı mikrop kuşlarımızın kan hücrelerine saldırarak bu hücrelerin bozulmasına neden olur. Kanda alyuvarların içine giren mikrop burada çoğalır ve alyuvarların bozulup patlamasına neden olur. Buna bağlı olarak kuşlarda anemi ( kansızlık ) gözlenir. Kuşlarımızın diğer bütün hastalıklara karşı direnci azalır ve başka hastalıklar kendini göstermeye başlayabilir. Böyle bir durumda ölümcül sonuçlar doğurabilir. Hastalığın kesin teşhisi kan analizi ile yapılabilir. Tedavi edilmemesi durumunda hastalık kronikleşme eğilimi gösterir ve zamanla böbrekleri tahrip ederek kuşun ölümüne neden olabilir. HASTALIĞIN TEDAVİSİ VE KULLANILAN İLAÇLAR İlaçla tedavi edilebilen bir hastalık olmakla birlikte hastalığın teşhisinde gecikilmesi ve tedaviye geç başlanması sonucu tedavisi zor hale gelebilir. Hastalıktan kaçınabilmek için özellikle salmalarınızın içine sivrisineklerin girmesini engellemek gerekmektedir. Uygun gözenekli bir kafes teli kullanılabilir. Kuşlarımızın diğer yabani güvercinlerle ve başka kuşlarla olan temasını engellemek yerinde olur. Quinie ( kinin ) etken maddeli ilaçlar hastalığın tedavisinde kullanılmaktadır. Bu ilaçlar, Clorquine, Primaquine ve Quinacrine etken maddelerine sahip olan çeşitli ticari isimlerdeki ilaçlardır. Güvercinler için üretilmiş bu etken maddeleri taşıyan ilaçlar yurdumuzda bulunmamaktadır. Beşeri ( insanlar için üretilmiş ) ilaçlar ise ticari biçimde eczanelerde satılmamaktadır. Bu tür ilaçlar sadece İl Hıfzıssıhha Müdürlüklerinden temin edilebilmektedir. Yurtdışında bu amaçla üretilmiş ilaçlar arasında en bilinenleri şunlardır. ARALEN TABLET Primaquine etken maddelidir. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. 1.5 litre içme suyuna 1 tablet atmak uygundur. Tedaviye her gün yenileyeceğiniz sularla 10 – 30 gün kadar devam etmek gerekmektedir. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1 – 2 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. ATABİRİN TABLET Quinacrine HCL etken maddeli bir ilaçtır. Güvercinlerde sıtma ( plasmodiosis ) ve Haemoproteus tedavisinde kullanılmaktadır. Bu ilaç daha çok posta güvercini yetiştiricileri tarafından yarış öncesi hastalıktan korunabilmek ve eğer bir hastalık varsa bunun etkilerini yok edebilmek amacı ile kullanılmaktadır. Bu amaçla daha düşük doz uygulanmaktadır. Bu doz hastalığı tedavi edici değildir. Bu amaçla kullanılan doz, yarış dönemi öncesi 4.5 litre suya 1.5 – 3 tablet karıştırmak ve 10 – 21 gün süre ile vermektir. Bu doz, 4.5 litre başına 200 mg etken madde içermektedir. Yarış dönemi sonrasında ise koruyucu amaçlı olarak haftada 1 – 2 gün aynı doz tekrarlanabilir. JEDDS QUİNİE POWDER Kinin etken maddelidir. Toz halinde olan ilaç kuşların içme sularına karıştırılarak kullanılır. 2 litre suya yarım çay kaşığı kadar karıştırmak uygundur. Tedaviye 10 gün devam edilmelidir. İçme suları her gün taze olarak hazırlanmalıdır. Her çay kaşığı ( 5 gr ) 150 mg kinin bulundurur. Pox (Frengi - Çiçek) Frengi, halk arasında bazen çiçek olarakta geçer, "borreliota avium" virüsünün neden olduğu bir hastalıktır. Özellikle posta güvercinlerinde olmak üzere çoğunlukla sıcak havalı bölgelerde ortaya çıkar. Çoğu virüs nedenli hastalıkların aksine bulaşıcılığı dışkılardan değil, kan emici parazitlerden (sivri sinek, kene, sakırga, uyuz böceği etc.) dolayıdır. Parazitler taşıyıcı görevi yapıp hastalığı güvercinden güvercine bulaştırır. Bu virüs temasla bulaşabileceği gibi içme suyunda günlerce yaşayabilir. Virüs hasta kuşlar tarafından salya ve sümük ile vücuttan atılabilir. Bu sıvılar yerde kuruduktan sonra tozlaşarak hava yoluyla bulaşıma neden olabilir. Virüsün bu yolla vücuda girebilmesi için güvercinin vücudunda yaranın (kavga sırasında göz ve gaga kenarındaki yaralanmalar gibi) mevcut olması lazımdır. Virüs vücutta bulduğu yaralardan kan sistemine geçip burada çoğalır ve bu safhadan sonra yeniden deri yüzeyine gelip burada tomurcuklanır. Tomurcuklanma insanlarda görülen çiçek hastalığına benzer (hastalık isminide buradan almıştır). Tomurcuklanma çoğunlukla derinin tüylerle kaplı olmadığı kısımlarda baş gösterir. Göz çevresi, gaga başlangıcı ve bacaklar tomurcuklanmanın kabuklaşmış bir şekilde görülebileceği bölgelerdir. Hastalık hızla ilerler ve ve tamurcuklar irin üretmeye başlarlar. Hastalığı öldürücü yapanda bu özelliğidir. Virüs burun, ağız veya boğaza yerleşip irin üretmeye başladığında kuşların nefes alması ve yem yemesi büyük derecede zorlaşır. Hasta kuşun boğazına bakıldığında sarı ve sert irin parçaları görülebilir. Bu parçalar tomurcuk yaralarından çıkarak oluştuğundan sıyrılması veya deriden koparılması oldukca zordur. Bu safhada akılda bulundurulması gereken en önemli şey görülen belirtilerin pamuk (trichomoniasis) ile aynı olmasıdır. Pamuk tedavisi altında bulunan bir kuşun tedaviye cevap vermemesi halinde frengi tedavisine geçilmesinde fayda vardır. Bu iki hastalığın aynı zamanda bir kuşda mevcut olma olasılığıda yüksektir. Frengiyi pamuktan ayırmanın en kolay yolu tomurcuklanmanın bacaklarda veya pamuğun olmıyacağı bir şekilde göz çevresinde bulunmasıdır. Bunun yanında mikroskop altında teşhis konulabilir. Frengi daha çok genç kuşlarda ortaya çıkar. Yavruların derisinde kahverengimsi renklenmeler görülebilir. Frengili bir kuşun nefes alma ve yeme sorunlarının dışında yan hastalıklara karşı açık olması başka bir sorundur. Bu konuda yardımcı olabilmek için A vitamini takviyesi yaparak derinin dayanıklılığını arttırıp tomurcuk yaralarının hızla iyileşmesini sağlıyabilirsiniz. Frengi geçiren kuşlar hayatlarının sonuna kadar bu hastalığa bağımsızlık kazanır (Burada frenginin değişik varyasyonlarının var olduğu unutulmamalı. Bağımsızlık sadece kuşun atlattığı varyasyona karşı oluşur). Yıllık frengi aşısı (İğne yerine kuşun baldırından yolunan bir kaç tüyle derinin tüy deliklerinden kanamasını sağlayıp buraya sürülecek süngerimsi bez parçaları ile veriliyor) bu hastalığa karşı kuşlarınızın en sağlam savunması olur. Colombovac'ın frengi ve paratifo karışım aşısı kullanılarak iki hastalığa karşı birden aşılıyabilirsiniz. Bu aşı iğneyle her kusa 0.02cc ölçüsünde boyundan verilir. 6 haftalıktan küçük kuşlara aşı yapmamanız ve bir kere açılan aşı paketini bir daha kullanmak üzere elinizde tutmamanız önemlidir. Frengi tek başına kuşları zor öldüreceği için tek yapacağı şey kuşların çirkin bir görünüşte olmalarını saşlamasıdır. Asıl sorun yan hastalıklardan gelmektedir. Bunun dışında pamukla beraber baş göstermesi bir çok kuşunuzu kaybetmenize neden olabilir. Hastalık sırasında 1/4 Carnidazole tabletini kuşlara ağızdan 6 gün süresince verip bunu 7 gün süresiyle Albon vererek takip etmek bu yan hastalıkların etkisini ortadan kaldırır. Bunların dışında Pox Dry ilacını hem frengi hemde pamuk yaraları üzerine sürerek hızlı bir şekilde kurumalarını sağlıyabilirsiniz. Bu hastalığın bulaşmasının en büyük nedeni parazitler olduğu için salmanızda kuşlara değmiyecek yerlerde parazit (sinek?) kağıdı kullanabilirsiniz. Belli bir süre sonra bu kağıtların güvercin tozu nedeniyle etkisiz hale gelmesi doğal. Bu durumda kağıtları sıcak suda sabunla hafifce yıkayıp yeniden kullanabilirsiniz. Bunu yaparken pilastik eldiven takmanız iyi olur. Eğer bu kağıtları kullanmak zor geliyorsa (kuşlara sert bir şekilde yapışırlar) boş bir cam kavanoza beş altı tane kağıt şeridini koyup salmada geceleri ağzını açabilirsiniz. Böylece kuşlarınıza zarar vermesini ve tozlardan etkilenmesini engellemiş fakat sinek, sivri sineklerden kurtulmuş ve öteki parazitleride salmadan uzaklaştırmış olursunuz. Kronik Solunum Yolu Hastalıkları Chronic Respiratory Disease İngilizce adından kısaltılarak CRD adı ile anılan ve Türkçe’ye “kronik solunum yolları hastalıkları” olarak çevirebileceğimiz bu hastalık tek bir hastalığın adı değil, solunum yollarında görülen bütün hastalıkları kapsayan ortak bir adlandırmadır. Güvercinlerde görülen CRD hastalıkları 3 tanedir. Bu yazı kapsamında söz konusu 3 hastalık hakkında bilgi verilecektir. Bu hastalıklar şunlardır ; 1 ) Ornithosis 2 ) Coryza 3 ) Mycoplasmosis Solunum yollarında görülen bu hastalıklar güvercinlerde çok yaygındır. Kış aylarında havanın soğumasına paralel olarak bu hastalıklarda da artma gözlenir. Bu hastalıklar aslında pek çok faktörün karşılıklı etkileşimi sonucu gelişmektedir. Kuşlarımız için öldürücü bir hastalık görünümü sunmamakla birlikte bazı ağır vakalar ölüm riski taşımaktadırlar. Ancak asıl sorun CRD hastalıklarının, başka hastalıklarla birlikte görülme eğiliminde olmasıdır. Bu durum kuşlarımızda ciddi güç kaybı yaratmakta ve hayati risk tehlikesi artmaktadır. Kuşlarımızda görülen uçuş yeteneklerinin azalmasının en önemli nedenleri arasında CRD hastalıkları gelmektedir. Stres etmenleri, kötü hijyenik koşullar vb. hastalığın gelişmesinde çok önemli rol oynarlar. Bu etkenler yok edilmediğinde hastalık geçmiş gibi görünse bile her zaman tekrarlama eğilimindedir. Şimdi bu hastalıkları tek tek ele almak istiyoruz. ORNİTHOSİS GENEL BİLGİLER Chlamydia Psittaci adı verilen bir bakterinin neden olduğu hastalıktır. Psittacosis adı ile de bilinen bu hastalığa, bazen etken olduğu mikrop nedeni ile Chlamydia hastalığı da denilmektedir. Aslında bir solunum yolları hastalığıdır. Güvercinlerde dikkat çekici belirtisi gözlerde olduğu için bir göz hastalığı olarak algılanır. Güvercinler arasında yaygın olarak gözlenen hastalıklardan biridir. Bir çok kuş türünde gözlenen bu hastalık dünya çapında yayılmıştır. Diğer evcil olmayan kuş türleri hastalığı taşıyıcı rol oynamaktadırlar. Kuşların yanı sıra insan ve diğer memeli hayvanlarda da görülmektedir. Yaygın olarak papağanlar, güvercinler, hindiler ve ördeklerde rastlanır. Chlamydia Psittaci kendi içinde hem RNA hem de DNA bulunduran bir bakteri olmakla birlikte üreyebilmek için içinde bulunduğu vücuttan bu maddeleri almak durumundadır. Bunun sonucu olarak vücut hücrelerinde bozulmalara neden olur. BELİRTİLER Hastalık uzun süre belirgin bir belirti vermeyebilir. Bu nedenle gözden kaçar ve dikkat edilmez. Ancak kuşun güç kaybına bağlı olarak kendini birden ortaya koyabilir. İlk aşamalarda kuşlarımızdaki performans eksikliğinin yaygın sebebi olabilir. İyi uçan bir kuşumuzun belirgin başka bir neden olmaksızın uçuş gücünün düşmesi dikkatimizi çekmelidir. Yavru kuşlarda yavaş gelişme durumu dikkat çekicidir. Hastalık, sonraki aşamalarda iştahsızlık, tüy kabartma, kilo kaybı, karışık tüyler, titreme, gerginlik hali, yeşilimsi ishal ve solunum yolları sorunları ile kendini gösterir. Daha ağır vakalarda mikrop karaciğere yayılır ve burada iltihaba neden olur. Bu aşamada hastalık ölümcül olabilir. Hastalığı geçiren ve tedavi olan kuşlar kısmen bu mikroba karşı güç kazanırlar ve tekrar bu hastalığa yakalanma riskleri azalır. Mikrop vücuda girdikten bir süre sonra gözlerde ve özellikle de tek gözde yaşarma ve akıntı ile kendini belli eder. Aslında başka belirtileri olmakla birlikte bunlar genellikle dikkatten kaçmaktadır. Böyle olduğu için Ornithosis sanki bir göz hastalığı gibi algılanmakta ve bir çok kaynakta Ornithosis ( one eye cold ) olarak belirtilmektedir. ONE EYE COLD ( TEK GÖZ SOĞUK ALGINLIĞI ) Chlamydia Psittaci mikrobun gözlere yayılması durumunda ilk belirtiler gözde yaşarma ve akıntıdır. Daha sonra kuşun gözünün etrafı tam yuvarlak bir halka şeklinde hafif şişer ve kızarır. Su toplamış gibi bir görünümü vardır. Genellikle tek gözde ortaya çıkar. Bu nedenle hastalığa İngilizce “One Eye Cold” denilmektedir. Tedavi edilmediği taktire bu kızarıklık gözün etrafına doğru yayılır ve genişler. Gözdeki yaşarma ve akıntı mikropludur ve mikrobun etrafa bulaşmasına yol açar. Güvercinlerde gözlerde belirti veren diğer bir hastalık olan Coryza ile karıştırılmamalıdır. Bazı durumlarda gözdeki enfeksiyon körlük ile sonuçlanabilir. BULAŞMA ŞEKLİ Kuşların mikrop taşıyan göz akıntıları salmalarımızın içinde bulaşmaya neden olurlar. Mikrop salma içindeki güvercin tozu dediğimiz beyaz toza bulaşarak taşınır. Solunum yolu ile diğer kuşlara geçer. Hasta kuşlarla aynı banyo suyunda yıkanan diğer kuşlar hastalığı kapabilirler. Bu hastalığın önemli bir özelliği insana da bulaşmasıdır. Eğer güvercininizden mikrop kapmak istemiyorsanız dikkat etmeniz ve hasta kuşlarınızı süratle tedavi etmeniz gerekmektedir. Güvercin tozunun solunması yolu ile mikrop insana geçebilmektedir. Hastalık mikrobu güvercin tarafından bırakıldıktan sonra 48 saat kadar salma içinde aktif konumdadır. Bu süre içinde mikrop alınırsa mikrobu alan insanın hassaslığına bağlı olarak 5 – 14 gün arasında hastalığın ilk belirtileri görülmeye başlar. İnsandaki belirtiler gribe benzer. Ateş, baş ağrısı, göğüs ağrısı, yorgunluk, kuru öksürük ve bazı vakalarda mide bulantısı ve kusma görülür. HASTALIĞIN TEŞHİSİ Hastalığın kesin teşhisi kan tahlili ile yapılabilir. Ölü kuşlar üzerinde yapılacak otopside karaciğerde yapılacak inceleme ile belirlenebilir. HASTALIĞIN TEDAVİSİ VE KULLANILABİLECEK İLAÇLAR Bakteri nedenli bir hastalık olduğundan antibiyotiklerle tedavi edilebilmektedir. Antibiyotik uygulaması oldukça olumlu sonuçlanmaktadır. Çeşitli antibiyotikler bu amaçla kullanılabilir. Yurt dışında bu hastalık için üretilmiş olan güvercin ilaçlarında yaygın olarak Chlortetracyline ve Doxycyline etken maddeli ilaçlar kullanılmaktadır. Ayrıca kuşların multivitamin takviyesine gereksinimleri vardır. Tedavi sırasında kuşların kalsiyum kaynaklarından ( grit taşları, gaga taşları vb) uzak tutulması gerekmektedir. Çünkü kalsiyum Chlortetracyline’nin ve Doxycyline’nin etkisini azaltmaktadır. Yumurtlama dönemlerinde olan kuşlarda bu ilaçlar kullanılmamalıdır. DEVAMİSİN OBLET Chlortetracyline Hydrochloride etken maddeli bir ilaçtır. Her oblette 500 mg etken madde bulunur. 12 Obletlik ambalajlar halinde piyasada satılmaktadır. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Vetaş ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur, Güvercinler için kullanılabilecek doz, kuş başına günde 15 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ¼ tablet karıştırmak uygun olabilir. DOXİVET –10 SOLÜSYON Doxycyline Hiklat etken maddeli bir ilaçtır. Farmavet ilaç firmasının bir üretimidir. 1 ml ilaçta 100 mg etken madde bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Veteriner ilaçları satan eczane ve ilaç depolarında bulunur. Ticari şekli 1 ve 5 litrelik ambalajlar halindedir. Güvercinler için kullanılabilecek doz, kuş başına günde 25 Mg’dır. Bu dozu sağlayabilmek için 2 litre suya ½ ml karıştırmak uygun olabilir. TERRAMYCİN GÖZ MERHEMİ Beşeri ( insanlar için üretilmiş) bir ilaçtır. Pfizer firmasının bir üretimi olup, eczanelerde bulunur. Etken maddesi, Oxytetracyline ve B vitaminidir. Antibakteriyel etkili bu merhemin deri ve göz için olan iki tipi bulunmaktadır. Göz için olanı güvercinlerde One eye cold hastalığında haricen yani dışarıdan sürülmek sureti ile kullanılabilir. Günde 1 – 2 kez dıştan göze sürülür. Ticari şekli 3.5 gr’lık tüpler halindedir. BAVİTSOLE ORAL SOLÜSYON Bayer ilaç firmasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. A, D3, E ve C vitaminleri bulunduran kompleks bir ilaçtır. Güvercinlerde her türlü vitamin eksikliklerinde, çeşitli hastalıkların tedavisinde takviye olarak ve sulfa grubu ilaçlar ile antibiyotiklerin yanında destekleyici olarak kullanılabilir. Bu ilacı tercih etmemin önemli bir nedeni içinde kalsium bulundurmamasıdır. Böylece sulfa grubu ilaçlar ile bazı antibiyotiklerin yanında kullanılması gayet uygundur. Ticari şekli 1 litrelik solüsyon halindedir. Güvercinler için 1 litre içme suyana 10 kuş hesabıyla 1 cc ilaç katılarak kullanılabilir. İlaç kullanımına 5 gün devam edip bir süre ara verdikten sonra tekrar başlanabilir. CORYZA ( CATARRH ) GENEL BİLGİLER “Akut Nezle” adı ile Türkçeleştirebileceğimiz bu hastalığa Hemophilus İnfluenzae adlı bir bakteri neden olmaktadır. Kış aylarında daha çok görülen bir hastalıktır. Hastalığın mikrobu güvercinin üst solunum yollarına yerleşir ve çeşitli rahatsızlıklar yaratır. Çoğu zaman Ornithosis ve mycoplasmasis ile bağlantılı olarak gelişir. Hızlı bir gelişme gösterir. Hassas bazı kuşlarda mikrobun vücuda girişinden itibaren 3 gün içinde hastalığın belirtileri görülmeye başlar. BELİRTİLER Başlangıçta kuşun boğazda sümük salgısı vardır. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Kuşta solunum zorluğu, hırıltılı soluma, ses çıkartırken hırıltılı tonlar gözlenebilir. Sulu yeşilimsi bir ishal ile birlikte ağırlık kaybı, uçma isteksizliği ve yavru veriminde düşme vardır. En belirgin özellik, burun akıntısı ve her iki gözde de yaşarmaların olmasıdır. Burun akıntısı ve sümük kokuludur. Sinüslerde şişme gözlenir. Buna bağlı olarak kuşun yüzünde ve özellikle göz altlarından buruna doğru olan bölümlerde, alın kısmında hissedilir bir şişme oluşur. Öldürücü bir hastalık değildir. Bu hastalıktan ölüm oranı oldukça düşüktür. Ancak güvercinlerde ciddi strese neden olan bu durum diğer hastalıkların ortaya çıkma ihtimalini hızlandırır. BULAŞMA ŞEKLİ Diğer evcil olmayan kuşlarla her türlü temasın kesilmesi gerekir. Bu kuşlar mikrobu taşıyıcıdırlar. Hasta kuşların akıttıkları göz yaşı ve sümük gibi salgılar mikropludur. Bu salgıların kuruyup toz haline gelmesi ve bu tozun solunması yolu ile hastalık bulaşabilir. Ayrıca aynı salgıların içme suyuna bulaşması ile bu suları içen kuşlarda hastalanabilirler. Doğrudan temas ise başka bir bulaşma yoludur. Eğer salmanızda bir güvercin hastalandıysa mikrobun bütün salmaya yayıldığını düşünerek önlem almanız gerekmektedir. Temizlik, salma içinde havadar bir ortam yaratılması rutubetin önlenmesi ve hijyenik koşullara uyulması hastalık riskini azaltacaktır. HASTALIĞIN TEŞHİSİ Kesin olarak teşhis edebilmek için burun veya göz akıntısının laboratuvar analizi gereklidir. HASTALIĞIN TEDAVİSİ Bakterilerin neden olduğu bir hastalık olduğu için antibiyotiklerle tedavi edilebilmektedir. Antibiyotiklerin yanı sıra vitamin takviyesi de önemlidir. Ornithosis için kullanılan ilaçlar aynen Coryza için de kullanılabilir. Farklı olarak Tylosin ve Eritromycin etken maddeli antibiyotikler ilave edilebilir. Vitamin olarak yukarda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. TYLAN SOLUBE Tylosin etken maddeli bir antibiyotiktir. Lilly - Ellanco fimasının bir üretimidir. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. Kullanılacak doz 10 güvercin için 1 gram ilaç 2 litre içme suyuna karıştırılarak verilebilir. İlaç tedavisi 2 gün sonra kesilmelidir. Ağır durumlarda tedavi 5 güne kadar uzatılabilir. ERİTROM TOZ Eritromycin etken maddeli bir antibiyotiktir. 1 gram ilaç 55 mg etken madde içerir. Ticari şekli 50 ve 225 gr’lık cam kavanoz halindedir. Vetaş ilaç firmasının bir üretimi olup veteriner ilaçları satan eczane ve ecza depolarında bulunur. Güvercinlerde tüm CRD hastalıklarında kullanılabilir. 1 litre içme suyuna 1 ölçek ilaç ( 2.5 gr ) karıştırılarak 5 gün süre ile kullanılır. kullanılır. MYCOPLASMOSİS ( MYCOPLASMA ) GENEL BİLGİLER “Kronik Nezle” olarak adlandırabileceğimiz bir hastalıktır. Hastalık genellikle diğer solunum yolları hastalıklarının ( Ornithosis ve Coryza ) bir devamı şeklinde kendini gösterir. Hastalığın etkeni mycoplasma denilen bakteri kökenli bir organizmadır. BELİRTİLERİ Hastalık belirti olarak diğer solunum yolları hastalıkları ile benzer bir görüntü sunduğu için ayırt edilmesi oldukça zordur. Boğaz, gırtlak ve burunda sümük benzeri bir balgam oluşur. Bu oluşum gaga üzerinde ya da kenarında gözlenebilir. Kuşun gagası açıldığında bu balgam, dil ve damak arasında, tel gibi şerit halinde uzanır. Burunun dış deliklerinde sümük şeklinde oluşum vardır. Burun akıntısı gözlenebilir. Aksırma vardır. Sinüslerdeki şişmeye bağlı olarak yüzde ve özelliklede alın bölgesinde şişlik görülebilir. Kuşun ateşinde yükselme saptanabilir. Özellikle geceleri hırıltılı soluma, hırıltılı ses çıkarma ve nefes alıp verme zorlukları gözlenebilir. Kuş nefes alırken burnu tıkalı olduğu için gagasını açma ihtiyacı hisseder. Solunum yetersizliğine bağlı olarak kandaki oksijen miktarı azalır ve kuşun derisinin rengi mavimsi bir görünüm kazanabilir. Kuşun karın ya da göğüs bölgesindeki tüyler aralanıp deri rengi kontrol edilebilir. Güvercinlerimizin uçuş performansını ve yumurta üretimini olumsuz etkiler. Bu hastalıktan ölüm olayı görünmez ancak bu hastalığın en önemli özelliği diğer bazı hastalıklarla birlikte seyretmesidir. Böyle olduğunda kuşumuz için ölümcül risk yaratır. BULAŞMA ŞEKLİ Bu mikroorganizma sadece canlı vücutlarda yaşayabilir. Kuşun vücudunun dışında yaşam süresi 15 – 20 dakika ile sınırlıdır. Bu nedenle fazla bulaşıcı bir hastalık değildir. Bulaşma daha çok direk temas yolu ile olmaktadır. Evcil olmayan diğer kuş türleri mikrobu taşıyıcıdırlar. Hastalığın yayılmasını sağlayan en önemli etkenler arasında, olumsuz hijyenik koşullar, salma içinde rutubetli ve havasız ortam başta gelmektedir. HASTALIĞIN TEŞHİSİ Kesin tanı hasta kuşun kan analizi ile olabilir. Kuşun salgıladığı balgamın tahlili ise hastalığın aşamaları ve seyri konusunda bir fikir vermektedir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın tedavisinde antibiyotikler ve vitaminler kullanılmaktadır. Ancak genellikle başka hastalıklarla birlikte görüldüğü için ilaç seçimi buna göre değişebilir. Enrofloxacin, Oxytetracyline, Chlortetracyline ve Doxycyline, Tyolisin etken maddeli ilaçlar tercih edilmektedir. Vitamin olarak yukarıda bahsettiğimiz Bavitsol oral solüsyon verilmelidir. BAYTRİL % 2.5 ORAL SOLÜSYON : Bayer ilaç firmasının bir üretimidir. Kuvvetli bir anti – bakteriyeldir. Etken maddesi Enrofloxacin’dir. 1 cc ilaç 25 mg etken madde içerir. Aynı ilacın % 10 konsantrasyona sahip olanı da vardır. Ancak %2.5’luk olan güvercinler için daha uygundur. Hem de fiyat olarak daha ucuzdur. Veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 25 ve 100 gr’lık ambalajlar halindedir. Kanatlı hayvanlarla birlikte güvercinlerde de kullanılabilir. Güvercinlerde kısa adı CRD olan kronik solunum yolları hastalıklarında ve Salmonella’da kullanılmaktadır. Kullanılacak doz, güvercin için, kuş başına 5 mg’dır. Bu dozu sağlayabilmek için, 2 litre suya 0.5 cc ilaç karıştırmak uygundur. Tedaviye 5 gün süre ile devam edilmelidir. Ticari şekli 20, 50, ve 100 ml’lik şişeler halindedir. Salmanızda yumurtlamak üzere olan kuşlarınız ya da bir aydan küçük yavrularınız varsa bu ilacı kullanmayınız. Yavrularda sakatlıklara neden olabilmektedir. GEOSOL TOZ Oxytetracyline etken maddeli bir ilaçtır. Vetaş ilaç firmasının bir üretimi olup, veteriner ilaçları satan eczane ve ecza depolarında bulunur. Ticari şekli 20 ve 100 gr’lık kavanozlar halindedir. Güvercinler için 2 litre içme suyuna yarım ölçek karıştırılarak kullanılabilir. İlaç 5 gün süre ile uygulanır. CADİDİASİS(TERS KURSAK) GENEL BİLGİLER Sour crop İngilizce adından Türkçe’ye çevirerek “ters kursak” olarak adlandırabileceğimiz bu hastalığın bir diğer adı da Candida’dır. Ancak hastalık Mycosis, Muget, Yeast ve Trush adları ile de bilinmektedir. Fungal bir hastalıktır. Fungal ( mikotik ) hastalıklar, toplumda yaygın adı ile mantar hastalıkları olarak bilinirler. Cadidiasis de sindirim bölgesinde özelliklede üst sindirim bölgesinde görülen müzmin formlu bir mantar hastalığıdır. Mantar mikrobunun yerleşerek hastalığa neden olduğu bölge, proventriculus olarak da adlandırılan ve kursaktan sonra yemlerin geçtiği ilk durak olan bezlimidedir. Kümes hayvanları, serçeler, su kuşları ve güvercinler gibi bir çok kuş türünde yaygın olarak gözlenen bir hastalık türüdür. Hastalığa neden olan mikrop Candida abbicans adı verilen bir mantar organizmasıdır. Bu mikrop daha çok bozuk yem üzerinde bulunmaktadır. Güvercinlere bayat ve küflü yem verilmesi hastalık riskini çok artırmaktadır. Güvercinlere verdiğimiz yemlere mutlaka dikkat etmemiz gerekmektedir. Verilen yemlerin taze olduğunun göstergesi bu yemlerin çimlenme yeteneğini kaybetmemiş olmasıdır. Yem olarak “kısır tohum” kullanımı doğru değildir. HASTALIĞIN SEYRİ VE BELİRTİLERİ Mantar mikrobu, bezlimide de küçük yaralara neden olmaktadır. Bu yaralar ufak boğumlar oluşturarak zaman zaman bir aşağıda yer alan ve taşlık adı ile bilinen kaslımideye yemlerin geçişini engellemektedir. Bu durum bezlimide de yemlerin birikerek buranın şişmesine neden olur. Bu şişlik bezlimideyi çevreleyen kan damarlarına basınç yapar ve yer yer bu damarların patlayarak kanamasına neden olur. Bu kanama güvercinin ağzından kan gelmesi şeklinde kendini gösterir. Bazen yuva içinde yerde gördüğümüz ve anlam veremediğimiz kan birikintilerinin nedeni bu tür bir kanama olabilir. Bezlimidenin bu şekilde tıkanması aynı zamanda kursakta şişmeye de neden olur ve kuş ara sıra kusarak bu birikintiyi atmaya çalışır. Kusmuğun kokusu, normalden daha kötüdür. Özet olarak kursakta şişme ve zaman zaman tahıl içeriğinin kusulması ile birlikte ağızdan kan gelmesi gibi durumlar bize kuşumuzda Cadidiasis hastalığının bulunduğunu göstermektedir. Bunun yanı sıra ağız içinde veya damakta görülen küçük beyaz mantar oluşumları hastalığı belirlememizi sağlar. Daha net olan bu göstergelerin yanı sıra, kayıtsızlık, iştah kaybı, ağırlık kaybı, kuşun performansında düşme, genç kuşlarda yavaş büyüme, yetişkin kuşlarda telek çürümesi ve tüy yarılması gibi durumlar bu hastalığın diğer belirtileridir. Boğazdan alınacak örnekler üzerinde yapılacak kültür testi ile hastalığa kesin teşhis koyulabilir. TEDAVİ VE KULLANILABİLECEK İLAÇLAR Hastalığın deri enfeksiyonu ve tüy çürümesi şeklinde seyretmesi durumunda, banyo sularına karıştırılacak Bakır sülfat sorunun çözümü için yararlıdır. Bakır sülfat için 1 / 2000 oranında sulandırma uygundur. Bunun için 4.5 litre banyo suyuna yarım çay kaşığı ilaç karıştırmak gerekir. Bakır sülfat, sülfürik asidin bakır II okside etkimesi ile oluşan bir tuzdur. Parlak mavi kristaller halindedir ve piyasada “göz taşı” adı ile satılmaktadır. Kimyasal madde satan yerlerde bulunabilir. Ankara’da Ulus’ta Modern Çarşı’nın üst katında var. Hastalığın bezlimide de görülmesi durumunda Nystatin etken maddeli ilaçlar kullanılmaktadır. Bu etken maddeyi bulunduran güvercinler için üretilmiş özel bir ilaç ülkemizde yoktur. İçinde bu etken maddeyi bulunduran beşeri bir ilaç eczanelerde bulunabilir. Bu ilaç veteriner hekim kontrolünde gerekli doz ayarlaması yapılarak güvercinlere kullanılabilir. Bu ilaç hakkında kısa bilgiler aşağıda verilmiştir. MİKOSTATİN SÜSPANSİYON Her ml de 100.000 IU etken madde bulunmaktadır. Bristol-Myers squibb firmasının bir üretimidir. Anti fungal etkilidir. Canker (Pamuk) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Pamuğun nedeni "Trichomonas Columbae" diye bir organizmadır. Bu organizma (protozon- mikrop diyelim) düşük güçlü bir mikroskobun altında bile görülebilecek büyüklüktedir ve bizim güvercinlerimizin dışında yabani güvercinlerde ve kumrularda 75% oranında bulunmaktadır. Pamuğun bulaşımı temas dolayısıyla olmaktadır. Kuşlar öpüşürken, çiftleşirken veya yavrularını beslerken bulaşır. Bunun dışında içme suyu dolayısıyla (Pamuğun suda uzun süre yaşıyabilmesi nedeniyle) salgın haline gelebilir. Ergen kuşlar pamuğa karşı yavrulara oranla daha dayanıklıdırlar. Ergen kuşlar hastalandıklarında dillerinde veya gaganın birleşim noktalarında uçuklar ve yaralar görülür. Damakta sarı peynirimsi bir madde ortaya çıkabilir. Bu madde büyüyerek kuşun yem yemesine ve su içmesine zorluk çıkartabileceği gibi nefes alma zorluklarıda yaratabilir. Bu akılda tutularak nezle gibi görülen kuşların boğazlarına bir göz atmakta fayda vardır. Göbek pamuğu ergen kuşlarda görülmez. Güvercinler hasta oldukları halde belirti göstermiyebilirler. Usta kuşçuların başkalarının çiftleşmiyor yavru alamıyorum diye elden çıkardıkları kuşları alıp pamuk için tedavi ettikten sonra hemen yavru almaya başladıkları olmuştur. Çoğu usta kuşçular kuşlarını üreme sezonunun başında ve sonunda olmak üzere iki kere pamuk için tedaviye sokarlar. Bunun gerekli olup olmadığına karşı benim düşüncelerim biraz karışık. Salmada pamuk olan yavru olduğunda bütün kuşların tedaviye girmesi konusunda hiç şüphem yok. Nede olsa yavru beslenirken ebeveynlerinden bu hastalığı kapmış ve ebeveynleride su içerken bu hastalığı bulaştırma olasılığı yaratmışlardır. Önlem olarak hastalık tedavisi yapmak benim aklıma yatmıyan bir şey olsada bunun pamuk için usta kuşçular tarafından yapıldığı bir gerçek. Ergen kuşlara pamuk çoğunlukla hasar vermesede aşırı sitres zamanlarında etkisi ciddi bir duruma gelebilir. Sitres paratifo gibi ağır hastalık geçiren kuşlarda olacağı gibi, iç parazitler tarafındanda ortaya çıkabilir. Fakat sitresin en genel nedenleri aşırı üretim ve tüy değişimidir. Bu nedenle yaz aylarının sonlarına doğru damızlık kuşlar aralıksız üç dört seri yavru vermiş durumdayken veya tüy değiştirme zamanında vücutları zayıf düştüğünde başta pamuk olmak üzere çeşitli hastalıklar salgın olarak ortaya çıkmaya başlar. Sonuç olarak kuşlarımız ne kadar zayıf olursa vücutlarının savunma sistemi ne kadar yorgun olursa daha az miktarda mikrop ve bakteriler tarafından hastalanabilirler. Bu nedenle aşılamak, kaliteli yem ve temiz su vermek dışında vitamin takviyesi ve her iki seri yavrudan sonra kuşları dinlendirmek sağlıkları için gerekli takviyelerdir. Bu durumlar yavrular için geçerli değildir. Yavrular yumurtadan çıktıklarında bu hastalığa karşı savunmasızdırlar. Ergen kuşlar pamuk taşıdıkları halde vücut savunma sistemlerinin bununla başa çıkabilmesi sonucunda hastalıktan kurtulmasalarda ufak tefek yaraları uzun süre rahatsız olmadan taşırlar. Bunun yarattığı sorun beslenme sırasında pamuğun kolayca yavruya bulaşmasıdır. Özellikle yavrular sütten kesilip tohumlarla beslenmeye başlandığında tohumların sivri kısımları kolayca yavruların dillerinde ve boğazlarında gözle görülmiyecek kadar bile olsa yaralar-çizikler açabilir. Bu yaralar pamuğun yavruya geçmesi için rahat bir ortam yaratır. Daha önce göbek pamuğundan bahsetmiştim; bu hastalıkda yavrular yumurtadan çıkar çıkmaz ortaya çıkmaya başlıyabilir. Yavruların göbekleri yumurtadan ayrılmadan sonra daha tamamen iyileşmeden yuvanın tabanından pamuk kapabilir. Pamuğun yuvanın tabanında olmasının nedeni ise beslenme sırasında dökülen sütlerdir. Ağır hasta kuşlar bir hafta içinde halsiz düşüp tüylerini kabartarak bir kenara çekilirler. Bu safhada ishal, kusma, aşırı su içme ve yeme karşı iştahsızlık gözlenebilir. Pamuğun böyle ileri safhalarında yavrularda ölüm kısa sürede olsada ergen kuşlarda iki üç hafta sürebilir. Ergen kuşlarin ölmesine neden olacak kadar ilerliyen pamuk bu safhada kuşun iç organlarına özelliklede karaciğerine yayılmıştır. Ölü kuşun karaciğerine bakıldığında içinde dışından bile görülebilecek sarı maddeler olur. Tedavi sırasında pamuk yaralarının frengi (çiçek) yaralarına benzerliği unutulmamalıdır. Ağızdaki sarı maddeler frenginin aksine zorda olsa koparılabilir fakat bu sorun yaratacak şekilde bir kanamaya neden olabilir. Tedavi için benim kullandığım ilaç "Fishzole" (haplar, 1 hap 1 litre suda eritilerek verileceği gibi kuşların durumuna bağlı olarak 1/4 veya 1/2 hap ağızdan 6 ile 10 gün arası verilebilir) olduğu gibi Avrupada "Gabbrocol" (poşet halinde gelmektedir ve 1 poşeti bir litre suya karıştırıp ortaya çıkan sıvıyı yumuşak bir fırça ile yaralara sürdükten sonra 3-5 mililitre sıvıda ağızdan bir şırıngayla verilir) yaygın olarak kullanılır. Kullandığınız ilaçta dikkat etmeniz gereken şey içindeki maddelerin hem pamuğa karşı (Dimetrizol gibi) hemde yan hastalıklara karşı (Aminosidine gibi) olması. Bu ilaçların dışında Trichovet (kuş basina 2.5 gr) diye hazır ilaçlı yemde kullanabileceğiniz gibi Cooci-Geelmix ve Dacoxsine de kullanılabilir. Not: Son yıllarda ortaya çıkan ve sadece güvercinler için hazırlanmış olan ilaçların eklemesi: Spartrix ve Trichocure (Şu an piyasada bulunan en kuvvetli pamuk ilaçlarından ikisi, hasta kuşa yutturulacak tek hap hastalığı ortadan kaldırıyor. Ağır hasta kuşlara bir gün sonra verilecek ikinci hap kalan hasarıda tedavi edebilecek güçte.) Kaynak: veterinerhekimiz.com

http://www.biyologlar.com/guvercin-hastaliklari

FİKSATİFLER VE HAZIRLANIŞLARI

Fiksatifler kullanımlarına göre iki gruba ayrılabilir.l-Mikro-anotomik fiksatifler: Bu fiksatifler doku tabakaları arasındaki bağlantıları ve geniş hücre kümelerinin diğeri ile bağlantılarını tam olarak korumak amaçlandığında kullanılır. Normal ve patolojik histolojinin rutin çalışmalarının çoğu bu tip fiksatiflerle yapılmaktadır. 2-Sitolojik fiksatifler: Hücreyi oluşturan elementleri korumak istendiğinde kullanılırlar. Penetre olma gücü, büyük doku kütleleri ile çalışma yeteneği, kesit almayı veya boyamayı engellememeli. Şöyleki Flemming fiksatifinde ara zon çok güzel fikse olurken en dış ve iç parçalar kötü fikse olabilirler. % 10’luk FormalinFormalin 100 ccÇeşme Suyu 900 cc %10'luk Formal SalinFormalin 100 ccNaCl 8.5 grÇeşme suyu 900 cc %10' luk Tamponlanmış Formalin (pH=7.0)Formalin 100 ccÇeşme suyu 900 ccNaH2P04 : H20 4 gr .Na2HP04 6.5 grFormalini nötralize etmek için %2' lik kalsiyum asetat birçok araştırıcı tarafından tavsiye edilmiştir. Fakat yumuşak dokularda artifakta benzer alanlar oluşturabilir. %10' luk formal-salin histolojik fiksatiflerin ençok kullanılanıdır. Aşırı bir sertleşme olmaksızın dokuyu sertleştirir. Fiksasyon süresine dayanıklıdır. Genellikle formalin fiksasyonundan sonra dokuların doğal rengini kısmen veya tamamen korumak mümkündür. Bu fiksatif, müze örneklerinin hazırlanmasında özel bir değere sahiptir. Özellikle nötral tamponlanmış olarak kullanıldığında kırmızı kan hücrelerinin korunması içeren iyi fiksatiftir.Formalinde uzun süre kalma (aylarca-yıllarca) dokunun kesit alma niteliğini bozmaz. Dokunun bazik boyalarla boyanmasında biraz kayba yol açabilir. Bazı gümüş çöktürme tekniklerindeki sonuçlar daha iyiye gidebilir. İnce bloklar % 10'luk formal-salinle 24-48 saatte iyi şekilde fikse olurlar fakat optimum fiksasyon süresi 7-10 gündür. Formalin fiksasyonundan sonra, değişen miktarlarda kan içeren dokular bir artifakt pigmenti (formalin pigmenti) gösterebilirler. Bu, kahverengi, granüler, ekstraselüler bir materyeldir. Çoğunlukla post-mortem dokularda bulunur, saklandıkca artar ve sıklıkla formaline daldırdıktan birkaç saat sonra yoktur fakat birkaç gün sonra dokularda çok geniş ve fazla olarak depo edilir. Kanla asit formalin pigmente yol açar ve nötral tamponlu solusyonlar kullanarak bunlardan kurtulabilir. Pikrik asidin alkolde doymuş solusyonunda 20 dakika ya da daha fazla tutarak kesitlerden uzaklaştırılabilir. Pigmentin görünümü ve özellikleri malarya pigmentine benzemektedir fakat malarya pigmenti intraselülerdir.% 10' luk formal-saline mikroanotomik bir fiksatiftir. Birçok boyama yöntemi için uygundur. Hematoksilenle iyi sonuçlar verir. Nadiren belirli hiçbir neden olmaksızın formal-salinle tespit edilip, H+E ile boyanmış kesitlerde garip bir artifakt görüIür. Nukleusların hematoksilen ile kısmen veya tamamen boyanmamasına, bunun yerine eozini almasına sonuçta ise çekirdek kenarlarının kaybına yol açar. Ençok lenfoid ve epitel dokusunda göze çarpan artifakt, dağılımında aşırı olarak bozuktur ve garip bir şekilde fiksasyonu iyi yapılmış dokularda ortaya çıkar. Nadiren otolize olmasına rağmen, postmortem dokularda da görülür. Bu artifakt "pembe hastalık" olarak açıklanmıştır ve ortaya çıkmaması için %1O'luk formalindeki %2' lik asetik asit kullanımı ile korunur veya olduğunda parafini alınmış kesitlerin hematoksilenle boyanmasından önce absolu alkoldeki %l'lik HCl ile 1 saat bırakarak uzaklaştırılır. Formalin fiksasyonundan sonra hiçbir şeye gereksinim yoktur ve dokular gömmeden önce direkt % 70'lik alkole alınabilir veya dondurma yöntemi ile kesit alınabilir .ALKOL-FORMALİN SOLUSYONU: Nötralize edilmiş formalin 10 cc %95 Alkol 90 cc , Bu fiksatifte parçalar 2-4 saat içinde çabucak tespit olur. Eğer doku parçaları kalın olursa, bu solusyon içinde buzdolabında 24 saat kalmalıdır. Bilhassa polisakkaridlerin gösterilmesi için kullanılan fiksatiflerden biridir. ALKOL FİKSATİFLERİ: Absolu alkol (%99) özellikle hücrelerde glikojenin gösterilmesinde kullanılan bir fiksatiftir. Eğer buzdolabında veya daha düşük derecede kullanılmazsa dokuda büzülmelere sebep olur. Doku parçaları absolü alkolde 20C'de iki gün bırakılacak olursa en elverişli şekilde, büzülrne meydana gelmeden tespit olurlar. %80 alkol fiksatif ise 5C'de 24-48 saat arasında dokuyu büzmeden tesbit etme özelliğine sahiptir. Bu solusyon alkaline phosphatasın gösterilmesinde kullanılır. Alkol fiksatifleri oda ısısında kullanıldiklarında bunların %65-%70' lik solusyonları kullanılmalıdır. Aksi halde dokuda çok fazla büzülme ve değişikliklere sebep olurlar. LİSON VOKAER' İN GLİKOJEN TESPİT ÇÖZELTİSİ: %96' lık alkolde doymuş picricasit çözeltisinden 85 ml; 10 ml formalin, 5 ml asetik asit. Küçük parçaları buzdolabında 5-10 saatte tespit eder. Glikojen için iyi tespit edicidir. Tespitten sonra absolu alkolden geçirilerek gömme işlemi yapılmalıdır. Çünkü gıikojen suda erir. MERKÜRİK KLORİD-FORMALİN (FORMAL-SUBLİMATE)Suda doymuş merkürik klorid 900ccFormalin 100 cc Mükemmel bir mikro-anotomik fiksatiftir. Formal-salindeki distorsion olmadan dokuyu büzer. Asit boyalarla çok parlak boyadığı gibi mükemmel bir sitoplazma korunması sağlar ve metakromaziyi artırır.Formal-saline göre sinir fibrilleri ve hücreler için gümüş çöktürme tekniklerinde daha az elverişli olmasına rağmen mükemmel retiküler fibril impregnasyonu elde edilebilir. Bloklar 12-24 saat tespit edilir fakat uzun süre işlem kesit almayı zorlaştıran bir sertlik yaratmaz. Formal-sublimat özellikle formal-salinle birinci fiksasyondan sonra ikinci fiksatif olarak yararlıdır. En büyük dezavantajı pahalı olması ve metallere korosiv olmasıdır. Dokular fiksasyondan sonra %70-90' lık alkole aktarılmalı ve mercury pigmenti kesitlerden daha önce açıklandığı gibi uzaklaştırılmalıdır. SUSA FİKSATİFİ ( HEİDENHAIN 1916)Merkürid klorid 45 grSodyum klorid 5 grTrikloroasetik asit 20 grAsetik asit 40 ccFormalin 200 ccDistile su 800 cc Özellikle biopsi materyelleri için uygun bir fiksatiftir. İyi bir mikro-anotomik fiksatiftir. Nedeni açık olmamakla birlikte Susa' dan sonra elastik fibriller Weigert'in (1898) elastik fibril boyası ile zayıf boyanırlar. Hazırlanması için gerekli maddelerin çokluğu dezavantajdır. Ancak karışım bir önceki formal-sublimata göre biraz daha avantajlıdır.Bloklar 3-24 saatte fikse olurlar ve direkt olarak % 95' lik etil alkole aktarılırlar. Daha sulu solusyonlara aktarma kollajen fibril1erin şişmesine yol açmaktadır. ZENKER FİKSATİFİ ( ZENKER 1894)Merkürik klorid 5 grPotasyum dikromat 2.5 grSodyum sülfat 1 gr .Distile su 100 ccAsetik asit 5 cc (kullanımdan hemen önce eklenir) Asetik asitsiz stok solusyon iyi korunur. Zenker etkili bir mikro-anotomik fiksatiftir ve özellikle sitoplazmik ve fibril boyaları üzerine çok yararlı etkisinden dolayı kullanılmaktadır. Taze materyelde post-mortem dokulara göre daha yararlıdır. Alyuvarları iyi korumazlar. Bloklar 3-8 saatte fikse olurlar ve fazla dikromatı uzaklaştırmak için çeşme suyuyla yıkanırlar. Mercury pigmenti ise daha önceki yöntemle uzaklaştırılır. HELLY SIVISI ( VEYA ZENKER-FORMAL, HELLY 1903) Zenkerdeki asetik asit yerine 5 cc formalin kullanmadan hemen önce eklenir. Helly sıvısı bir oksitleyici ajan (potasyum dikromat ve bir indirgeyici ajan (formalin) içermesine rağmen rnükemmel bir fiksatiftir. Helly özellikle kemik iliği, dalak, lenf bezleri, hipofiz ve pankreas için çok yararlıdır. Bloklar 6-24 saat tespit edilmeli ve mercury pigmenti Zenkerdeki gibi uzaklaştırılmalıdır. Helly hem mikro-anotomik hem de sitolojik (sitoplazmik) fiksatif olarak kullanılabilir ve formal-sublimat gibi % 10' luk formal-salinden sonra ikinci fiksatif olarak da uygulanabilir. BOUİN FİKSATİFİ ( BOUİN l897) Suda doyurulmuş pikrik asit 75 cc Formalin 25 ccAsetik asit 5 cc Bouin, alyuvarların kısmen veya tamamen lizisine yol açar ve kollajen fibrilleri şişebilir. Aşırı sertleşmeye yol açmaz. Sitoplazmik boyalarla parlak boyanma sağlar. Glikojen çok iyi korunur (özellikle yukardaki karışımın alkolik varyantı ile) fakat böbrek iyi korunamaz. Bazı sitoplazmik granüller çözünebilir. Bouin, bir mikro-anotomik fiksatif veya kromozomların gösterilmesi için kul1anıldığında da sitolojik (nükleer) fiksatiftir. Bloklar 6-24 saat fikse edilirler ve % 70 lik alkole aktarılırlar. Dokuların sarı boyanması çok küçük örnekler için avantaj oluşturur. Fakat kesitlerden bu boya, alkolü takiben bazik anilin boyaları kullanmadan önce % 2.5 lik sodyum thiosulfat kullanarak uzaklaştırılmalıdır, aksi takdirde precipat oluşacaktır. CARNOY FİKSATİFİ (CARNOY, 1887)Absolü alkol 60 ccKloroform 30 ccAsetik asit 10 cc Carnoy, hızla penetre olan ve hareket eden bir fiksatiftir. Acil teşhis için dokuların hızlı tespit edilmesi ve kısmi dehidrasyonu için kullanılır. Kromozom çalışmaları için kullanılır fakat alyuvarların lizisine ve fazla büzülmeye yol açar. Glikojen korunur fakat bazı sitoplazmik granüller çözünebilir. 3 mm' den kalın olmayan dokular 30-90 dakikada fikse edilmeli ve % 95'lik ya da % 100' lük alkole transfer edilmelidir. Bir mikro-anotomik veya sitolojik (nükleer) fiksatifdir. SANFELİCE FİKSATİFİ (SANFELİCE, 1918)Çözelti A Çözelti BFormalin 128 cc %l'1ik kromik asit 100 ccAsetik asit 16 cc Karışım: Kullanmadan az önce hazırlanır. 9 cc A +16 cc B Genellikle mitotik figürler ve kromozomlar için mükemmel bir fiksatifdir. 3 mm den kalın olmayan küçük parçalar 12-24 saatte tespit edilmeli ve sonra akarsu ile yıkanmalıdır. Sitolojik (nükleer) fiksatiftir. FLEMİNG FİKSATİFİ (FLEMMİNG, 1884) % l'1ik kromik asit 15 cc%2' lik OSO4 4 ccAsetik asit 1 cc ya da daha az Kullanmadan önce hazırlanmalıdır. Penetrasyon eşit olmayabilir ve tam olmayan fiksasyonla yüzeyel tabakaların aşırı kararmasına neden olabilir ve sonradan en içteki hücrelerin zayıf boyanmasına yol açabilir. Page (1970), Flemming sıvısını formalin fiksasyonunu takip eden ikinci fiksatif olarak kullanarak miyelini .başarılı şekilde göstermiştir. İki mm kalınlığındaki küçük parçalar 12-48 saat tespit edilmeli ve sonradan akarsuda yıkanmalıdır. Asetik asit içeriği ile bir nükleer fiksatiftir. Lipidler OSO4 ile siyahlaşır. Bu fiksatiften sonra alum hematoksilen nükleer boyaları kolaylıkla alınmaz, bunun yerine safranin kullanılmalıdır.FLEMİNG SIVISlNIN LEWITSKY-BAKER MODIFIKASYONUFlemming sıvısını asetik asitsiz fakat % O.75'lik sulu NaCl solusyonunu distile su yerine çözücü olarak ekleyerek hazırlanır. 12-24 saatlik fiksasyondan sonra dokular akarsuya aktarılır. Sitolojik (sitoplazmik) fiksatif, bu ve diğer krom-osmium karışımlar omurgasız ve alt omurgalıların dokuları ile çok iyi sonuçlar verirler. Helly sıvısı memeli dokuları için tavsiye edilmemektedir. ORTH FİKSATİFİ ( ORTH 1896) Formalin 10 ccMüller sıvısı (Potasyum dikromat 2.5 gr +sodyum sülfat 1 gr+distile su 100cc) 100 cc Taze olarak hazırlanmalıdır. Formalin ve Müller sıvısını karıştırma mitokondri gibi sitolojik yapılar üzerine ve kromaffin reaksiyonundaki mordantlama özelliği nedeni ile çok yararlıdır. Bloklar çeşme suyuyla yıkanmadan veya distile sudaki %2.5'lik potasyum dikromatla ileri kromasyondan önce 24-48 saat tespit edilmelidir.Bazen potasyum dikromatla uzun süre muamele etme hemen hemen kaçınılmaz olarak kırılganlıkta artış ve parafin kesitlerden kesit alma zorluğu ile (özellikle yumuşak dokularda, dalak ve beyin gibi) sonuçlanmaktadır.

http://www.biyologlar.com/fiksatifler-ve-hazirlanislari-1

Dünya ve Veri Analizi

Bu yazı zihnimde olgunlaşırken bir saat kadar önce bir konuşma izledim ve bunu da bu yazıya dahil etmem gerektiğini düşündüm. Konumuz, dünyanın ilerlediği yön ve veri analizinin dünyada nasıl algılandığı/geliştiği. O'Reilly tarafından yürütülen kapsamlı bir anket çalışmasının sonuçları birkaç gün önce yayınlandı. Konu, veri analizi odaklı veya veri analizini içeren kariyerlere sahip profesyonellerin ortalama ne kadar maaş aldıkları, hangi programlama araçlarını kullandıkları ve trendler. Bu çalışmanın iki açıdan çok önemli olduğunu düşünüyorum. İlki, mevcut durum tespiti yapması. İkincisi ise, gelecekte veri analiziyle bağlantılı bir kariyere sahip olmak isteyenlerin (evet, biyoinformatik de veri analiziyle doğrudan bağlantılı bir kariyerdir) ne tür yetenekler geliştirmesi gerektiği hakkında önemli ipuçları vermesi. Bu raporu mümkün olduğunca özetlemeye çalışacağım, orjinaline buradan ulaşabilirsiniz. İşin magazinsel ve ilgi çekici kısmından başlayayım: ABD'de veri analiziyle uğraşan ve kullandığı veri analizi aracı çeşidi 10'a kadar çıkan bir çalışanın elde ettiği brüt yıllık kazanç ortalama 100.000 $. Yani ortalama aylık 6.000 $'lık bir net maaştan söz ediyoruz. Bu ortalama kazanç, daha yeni ve özelleşmiş diğer programlama araçlarının da kullanılmasıyla 150.000 $'a kadar çıkıyor, yani aylık ortalama 9.000 $'dan bahsedebiliriz. Alım gücü farkı göz önüne alındığında, bu rakamların TL muadillerini elde etmek için 1,5 ile çarpmak yaklaşık bir fikir verecektir bizlere. Peki ne tür programlama/analiz araçlarından söz ediyoruz? Yapılan çalışma, veri analizinde kullanılan araçları iki sınıfa ayırmış: açık kaynaklı (R ve Python gibi) ve ticari (Excel ve SAS gibi) analiz araçları. Açık kaynaklı araçlar geleneksel ticari araçların önüne geçmeye başlamış ve daha yoğun ve etkin bir şekilde kullanılıyor. Ayrıca, ticari analiz araçlarından kaç tanesini bilebildiğiniz ve kullandığınızın kazancınız üzerindeki etkisinin çok az olmasına rağmen, mevzu açık kaynaklı araçlar olduğunda bildiğiniz ve kullandığınız programlama araçlarının sayısı arttıkça kazancınız ticari araçlara oranla büyük miktarda artıyor. Yani, açık kaynaklı araçları kendi bilgi ve beceri dağarcığınıza dahil ettikçe yaptığınız işlerin de kapsamı ve değeri de o oranda artıyor. Anket sonucunda ortaya çıkan programlama/analiz araçlarının kullanım oranını yanda görebilirsiniz. Şöyle enteresan bir sonuç çıkmış: R kullananlar Python da kullanıyor, ancak Excel kullanımlarına ilişkin pozitif veya negatif bir bağlantı yok. Buradan hareketle tüm katılımcıların kullandıkları araçların birbirleriyle olan bağlantıları üzerine bir bağlantı haritası oluşturmuşlar (3 farklı programlama/analiz aracı grubu farklı renklerle gösterilmiş. 16 Ocak 2014 PerşembeDünya ve Veri Analizi Bu yazı zihnimde olgunlaşırken bir saat kadar önce bir konuşma izledim ve bunu da bu yazıya dahil etmem gerektiğini düşündüm. Konumuz, dünyanın ilerlediği yön ve veri analizinin dünyada nasıl algılandığı/geliştiği. O'Reilly tarafından yürütülen kapsamlı bir anket çalışmasının sonuçları birkaç gün önce yayınlandı. Konu, veri analizi odaklı veya veri analizini içeren kariyerlere sahip profesyonellerin ortalama ne kadar maaş aldıkları, hangi programlama araçlarını kullandıkları ve trendler. Bu çalışmanın iki açıdan çok önemli olduğunu düşünüyorum. İlki, mevcut durum tespiti yapması. İkincisi ise, gelecekte veri analiziyle bağlantılı bir kariyere sahip olmak isteyenlerin (evet, biyoinformatik de veri analiziyle doğrudan bağlantılı bir kariyerdir) ne tür yetenekler geliştirmesi gerektiği hakkında önemli ipuçları vermesi. Bu raporu mümkün olduğunca özetlemeye çalışacağım, orjinaline buradan ulaşabilirsiniz. İşin magazinsel ve ilgi çekici kısmından başlayayım: ABD'de veri analiziyle uğraşan ve kullandığı veri analizi aracı çeşidi 10'a kadar çıkan bir çalışanın elde ettiği brüt yıllık kazanç ortalama 100.000 $. Yani ortalama aylık 6.000 $'lık bir net maaştan söz ediyoruz. Bu ortalama kazanç, daha yeni ve özelleşmiş diğer programlama araçlarının da kullanılmasıyla 150.000 $'a kadar çıkıyor, yani aylık ortalama 9.000 $'dan bahsedebiliriz. Alım gücü farkı göz önüne alındığında, bu rakamların TL muadillerini elde etmek için 1,5 ile çarpmak yaklaşık bir fikir verecektir bizlere. Peki ne tür programlama/analiz araçlarından söz ediyoruz? Yapılan çalışma, veri analizinde kullanılan araçları iki sınıfa ayırmış: açık kaynaklı (R ve Python gibi) ve ticari (Excel ve SAS gibi) analiz araçları. Açık kaynaklı araçlar geleneksel ticari araçların önüne geçmeye başlamış ve daha yoğun ve etkin bir şekilde kullanılıyor. Ayrıca, ticari analiz araçlarından kaç tanesini bilebildiğiniz ve kullandığınızın kazancınız üzerindeki etkisinin çok az olmasına rağmen, mevzu açık kaynaklı araçlar olduğunda bildiğiniz ve kullandığınız programlama araçlarının sayısı arttıkça kazancınız ticari araçlara oranla büyük miktarda artıyor. Yani, açık kaynaklı araçları kendi bilgi ve beceri dağarcığınıza dahil ettikçe yaptığınız işlerin de kapsamı ve değeri de o oranda artıyor. Anket sonucunda ortaya çıkan programlama/analiz araçlarının kullanım oranını yanda görebilirsiniz. Şöyle enteresan bir sonuç çıkmış: R kullananlar Python da kullanıyor, ancak Excel kullanımlarına ilişkin pozitif veya negatif bir bağlantı yok. Buradan hareketle tüm katılımcıların kullandıkları araçların birbirleriyle olan bağlantıları üzerine bir bağlantı haritası oluşturmuşlar (3 farklı programlama/analiz aracı grubu farklı renklerle gösterilmiş): Gruplarla kazanç arasında kurulabilen bağlantı ise aşağıdaki şekilde sunulmuş: Tahmin edilebileceği gibi, R ve Python gibi programlama dillerini analizlerinde kullananların, herhangi bir programlama dili yerine Excel gibi hazır yazılımları kullananlara kıyasla daha fazla gelir elde ettikleri sonucu ortaya konmuş. Bahsedilen kazancın yüksekliği, aslında ortaya konan işin değerine ve potansiyeline işaret ediyor, bu rapora bu gözle de bakmak lazım. Özetle, açık kaynaklı programlama araçlarını öğrenmek için yapacağınız her türlü (zaman, eğitim, kitap, ders vb.) yatırım, size orta ve uzun vadede fazlasıyla olumlu olarak geri dönecektir. Peki dünya nereye gidiyor? Buna ilişkin bir fikir sahibi olmak çok kıymetli, çünkü aynı zamanda veri analizinin ve biyoinformatik gibi veri analizi odaklı alanların da gelecekte dünyada nasıl bir yerinin olacağını ancak bu şekilde kavrayabiliriz. Bu sıralar gündem hayli karışık, ve maalesef bir o kadar da karmaşık. Herkes birbirinin sarfettiği sözlere veya davranışlarına bakarak mevcut gündemde herhangi bir şeyin karşısına yerleştiriyor, ve bu maalesef zehirli ve tehlikeli bir ortam. Yine de, herhangi bir yere ait olma dürtüsüne sahip olmaksızın aşağıda yer alan videoya zaman ayırmanızı rica ediyorum. Bu videoya tamamen doğru veya tamamen yanlış olarak bakmak yerine, gri alanlarda dolaşabilen bir tespitler dizisi olarak bakın lütfen.

http://www.biyologlar.com/dunya-ve-veri-analizi

Vitaminlerin görevleri nelerdir

Vitaminler vücutta pek çok fizyolojik olayın sürdürülmesi için gereklidir. Pek çok enzim reaksiyonunda koenzim ya da kofaktör gibi rol alırlar. Bunun dışında antioksidan etkileri vardır. Bazı vitaminler de hormon olarak etki ederler. Vitaminler ve görevleri A Normal görme ve karanlığa adaptasyonda, sağlıklı cilt, saç, diş ve diş etlerinde önemlidir. D Kuvvetli diş ve kemikler için. Eksikliğinde kemik deformasyonu görülür. E Güçlü antioksidan özelliği ile hücre yıpranmasını ve yaşlanmayı yavaşlatır. Kalp ve damar hastalıkları riskini azaltır. B1 (Tiamin) Kalp, sinir sistemi ve kasların normal fonksiyonu için gereklidir. Eksikliğinde sindirim bozuklukları, aşırı hassasiyet (iritabilite), iştahsızlık gibi bozukluklar olabilir. B2 Sağlıklı cilt ve iyi görme için gereklidir. Eksikliğinde vücut direnci düşer, dudak çatlaklıkları, ağızda yaralar, egzama gibi cilt bozuklukları görülür. NIASIN Merkezi sinir sistemini destekler. Eksikliğinde çeşitli sinirsel hastalıklar ve deri hastalıkları olabilir. B5 (Pantotenik asit) Sinir sistemi, deri ve saç sağlığı için gereklidir. B6 (piridoksin) Sinir siteminin düzenli çalışmasına yardımcıdır. Hormonların fonksiyonlarında rolü vardır.Eksikliğinde gelişme geriliği, cilt bozuklukları, sinirsel bozukluklar görülür. B12 Kırmızı kan hücrelerin ve kemik iliğinin oluşumu ile sinir sisteminin normal fonksiyonları devam ettirmeleri için gereklidir. Eksikliğinde kansızlık, yorgunluk ortaya çıkabilir. FOLIK ASIT Hücrenin yapı taşlarının, kırmızı kan hücrelerinin, sinir dokularının oluşumunda etkilidir. Gebelikte görülen kansızlığın en büyük sebebi folik asit eksikliğidir. Folik asit ihtiyacı bebek gelişimine bağlı olarak yaklaşık 3 kat artar. Eksikliğinde kansızlık, hamilelikte bebeklerde gelişim bozuklukları söz konusudur. C Bağışıklık sistemini destekler. Kemiklerin, dişlerin, kan damarlarının sağlıklı kalmasına yardımcıdır. Eksikliğinde vücut direncinin azalması, diş eti kanaması ve skorbüt oluşur.   Kiraz: B1, B2, A, C vitaminleri ve malik asit. Hindistan cevizi: A, C vitaminleri. Kestane: A, B, C vitaminleri. Lahana: A, B1, B2, B6, C, E, K, P vitaminleri. Bakla: A, B1, B2, C, E, K vitaminleri İncir: A, B vitaminleri Çilek: A, B1, B2 C vitaminleri Mısır: A, B1, B2, E, K vitaminleri. Ağaç çileği: A, B, vitaminleri. Limon: B1, C, P vitaminleri Mandalina: A, B, C vitaminleri Kayısı: C vitamini Ananas: A, B1, B2, C vitaminleri Badem: B1, B2 vitaminleri Elma:A, B1, B2, C vitaminleri Nar: B1, C vitaminleri Kavun: A, B1, B2, C vitaminleri Arpa: B vitamini. Patates: A, B1, C vitaminleri Şeftali: A vitamini Domates:v A, B1, B2, C vitaminleri Maydanoz: A, C, K vitaminleri Erik: A, B1, B2, C vitaminleri Frenküzümü: C vitamini ve malik asit. Kereviz: A, B1, B2, C, K vitaminleri Ispanak: B1, B2, C, P, K vitaminleri Üzüm: A, C vitaminleri Enginar: C vitamini Su teresi: A, C, D vitaminleri Havuç: B, C, D, E vitaminleri Semizotu: C vitamini Roka: C vitamini Ayva: C vitamini Mercimek: Tüm B vitaminleri Ayı üzümü: A, C vitaminleri Avakado: A, D, e vitaminleri Pazı: A, C vitaminleri Biber: C (çok miktarda), B, B2, E vitaminleri   Fiziksel ve zihinsel sağlığımızı korumak için bilinen 30 vitamin ve minerale gereksinimimiz vardır.Çoğu kişi gerekli vitamin ve mineralleri besinlerden alabiliyor. Bu maddelerin normal beslenme yoluyla alınamadığı durumlar ise oldukça nadir. Dünya Sağlık Örgütü ve diğer sağlık kuruluşlarının, önerilen günlük alım (RDA) ile ilgili olarak, üzerinde görüş bildirdiği bir liste bulunmaktadır. RDA, RNI (besin alımı için referans) olarak da tanımlanmaktadır. Beslenme uzmanları ise bu listede yer alan miktarların çoğu kişi için minimum gereksinimi yansıttığını dile getirmektedirler. Gerçek anlamda sağlıklı olabilmek için belli besinlere daha yüksek miktarlarda ihtiyaç duyabilirsiniz ancak tam olarak ne kadar gerektiği tartışmaya açık bir konudur. Belli vitamin ve mineralleri almanız gerektiği, fiziksel ve zihinsel sağlık durumunuzun yanı sıra yaşamınıza ve cinsiyetinize bağlıdır. Bedeniniz vitaminler olmaksızın işlev göremez. Küçük miktarlarda gerekli olmalarına karşın enzim işlevlerinin tetiklenmesi açısından bedenle yaşamsal bir görevi yerine getirirler. Enzim işlvleri de bedendeki diğer faaliyetleri harekete geçirmektedir. B kompleksi vitaminlerine bu vitaminler belli bir grup oluşturur) C vitamini suda eriye vitaminlerdir. Bu vitaminler sadece B12 bedende depolanabilme özelliğine sahiptir. Antibiyotikler, alkol ve stres bu vitaminlerin emilimini azaltmaktadır. A,D,E ve K vitaminleri yağda eriyen vitaminlerdir ve bedende depolanabilirler. En fazla sıvı ve katı yağ içeren yiyeceklerde bulunurlar. İyi emilebilmeleri için safra işlevinin yeterli düzeyde olması gerekir. Vitaminlerin Görevleri: VİTAMİN A: D ve E vitaminleri gibi yağda çözülen bu vitamin, hücre büyümesi için önemli. Mukoza tabakaları ile gözlerin faaliyetini sağlıyor. Cilt ve vücut dokularının sağlıklı olmasını, bağışıklık sisteminin güçlenmesini sağlar. Birçok kanser türüne karşi koruyucudur, antioksidandır ve karanlıkta görmeyi sağlar. Karaciğer, böbrek, yumurta, buğday, mantar, baklagiller, fasulye, fıstık, ceviz VİTAMİN B1: Karbonhidratlardan enerji üretimi, beyin fonksiyonları ve sindirim sistemi için gerekli. Vücudun proteinleri kullanabilmesini sağlar VİTAMİN B6: Protein sindirimi, beyin fonksiyonları, hormonların üretimi için gerekli. Seks hormonlarını dengeler. Deprosyana karşı etkili. Alerjik reaksiyonları engeller VİTAMİN K: Kanın pıhtılaşmasını sağlar VİTAMİN C: Vücudun direncini artırıyor, diş, kemik ve kan damarlarının sağlıklı olmasını sağlıyor. Hücre solunumuna etki ediyor. Ayrıca demirin vücutta değerlendirilmesine yardımcı oluyor. Özellikle kış aylarında ve ateşli hastalıklarda, kronik ishallerde vücudun C vitamini artıyor. VİTAMİN D: Kemikler için vazgeçilmez bir vitamin. Eksikliği raşitizme yol açıyor. VİTAMİN E: Vücudun su ve yağ birikimini ayarlıyor. İşlemden geçmemiş yağlar, buğday, mısır, ayçiçeği, fıstık, susam, soya yağları, zeytin yağı, balık yağı, fındık, badem, ton balığı, sardalya, somon, patates, yumurta sarısı, domates, koyu yeşil renkli sebzelerde bulunur. B-2 vitamini: Protein, yağ ve karbonhidratların bünyede işlenmesini sağlıyor; yani enerji açısından önemi çok büyük. Ayrıca alyuvarların oluşumu için de çok yararlı. Bu vitamin gözlere ve deriye de sağlık veriyor. B-6 vitamini: Tüm metabolizma için vazgeçilmez bir vitamin. Özellikle sinir sistemi üzerinde etkili. Proteinin vücutta değerlendirilmesini de sağlıyor. Folik asit: Hamilelikte bebeğin beyin ve sinir sistemi gelişimi için hayati önem taşır. Yetişkinlerde beyin ve sinir sistemi fonksiyonları, protein kullanımı ve kan hücreleri yapımı için gerekli. Kalsiyum: Dişlerin ve kemiklerin güçlü olmaları için öncelikle kalsiyum gereklidir. Kalsiyum aynı zamanda kalp atışlarını düzenler, kanın gerektiği gibi pıhtılaşmasını sağlar, kaslar ve sinirler için yararlıdır. Kalsiyum kan basıncının yükselmesini ve kalın bağırsak kanserini önleyebilir. Ancak yapılan araştırmalara göre her on kadından sekizi, bol miktarda kalsiyum içeren yiyeceklerle beslenmek istemiyor. Hamilelik, bebeği anne sütüyle emzirme, menopoz, kafeinli içecekler vücuttaki kalsiyum miktarını azaltır süt ve sütlü besinler, mısır, sardalya balığı, kalamar, ıstakoz ve brokkoli bol miktarda kalsiyum içeren besinlerdir.      

http://www.biyologlar.com/vitaminlerin-gorevleri-nelerdir

Büyük Beyaz Köpekbalığı - Carcharodon carharias

Büyük Beyaz Köpekbalığı Nedir? Büyük beyaz köpekbalığı,(Carcharodon carharias),genellikle soğuk kıyı sularında yaşayan,çok büyük ve hızlı yüzücü,yırtıcı bir balık türüdür.Hakkındaki ilk bilimsel araştırma,1554 yılında çıkardığı bir kitaptaki tanım ve çizimleriyle Rönesans dönemi araştırmacılarından Guillaume Rondelet’e aittir.1785’te Carolus Linnaeus çıkardığı katoloğunda (Systema Naturae),bu türü bilimsel olarak Carolus Linnaeus olarak isimlendirmiştir.Yüzyıllar boyu bu yanlış anlaşılmış balık ta Afrika’da yaşayan diğer yırtıcı kediler gibi,birazda popüler medya ve yanlış bilgilendirilen insanlar yardımıyla,bir korku kaynağı oluşturmuştur.Fakat biz burada bu köpekbalığının dünyasını inceleyip,denizler aleminde hakettiği rolü anlamaya çalışacağız. 2- İsimler ve Sınıflandırma Linnaeus’un sınıflandırma sistemi bütün türleri isim üzerinden adlandırır,genel ve spesifik olarak.Linnaeus’un kitabının onuncu baskısı,bilimsel isimler hakkında en eski yayın olarak seçilmiştir,dolayısıyla Squalus carharias büyük beyaz köpekbalığının kabul edilen en eski ismidir.Büyük beyaz köpekbalığı değişik bir genel isim altında olmalıydı,çünkü Linnaeus’tan sonraki bilim adamları farkattiler ki “Squalus” daha birçok değişik köpekbalığı temsil ediyordu.1833’te Sir Andrew Smith “Carcharodon” isminin genel (cenerik) isim olarak verilmesini önerdi,fakat Linnaeus’un verdiği spesifik ismin Sir Andrew’un verdiği genel isimle birlikte kabul edilmesi ancak 40 yıl sonra olabild Büyük beyaz köpekbalığı Lamnidae uskumru köpekbalıkları familyası grubunda yer alır.Bu familyada iki mako ve iki de porbeagle köpekbalığı türü olmak üzere dört tür daha yer alır.Bunların sadece biri shortfin mako,Güney Afrika açıklarında yaygındır.Büyük beyaz köpekbalığı için kullanılan lokal (yerel) isimler dil gruplarına göre değişiklik gösterir.Fakat ingilizce konuşulan ülkelerde “white shark (beyaz köpekbalığı) ismi yaygın olarak kullanılır.Daha az yaygın olarak ta daha eski bir kelime olan “man-eater”(insan yiyici) kelimesi kullanılır.Avustralya’da “white pointer”(beyaz değnek)kelimesi yaygındır.Daha az yaygın olarak ta “white death”(beyaz ölüm).Güney Afrika’da da bu terimler kullanılır,fakat “blue pointer”(mavi değnek) bazı büyük beyazların arkası mavimsi renkte olduğu için veya Britanya ordusundaki askerlere verilen eski bir takma isim olan “tommy” kelimesi de kullanılır.Afrikalıların kullandığı (witdoodshaai)kelimesi daha az kullanılan ingilizce isimlerin birinden gelmiştir. En çok aşina olduğumuz köpekbalıkları büyük beyaz köpekbalığı gibi,torpido benzeri ve diğer köpekbalıkları ile karşılaştırıldığında oldukça kalın,bir gövdeye sahiptir.Büyük beyaz köpekbalığının burnu kısa ve koniseldir.Gözler yuvarlak ve zifiri siyahtır.Dişler özellikle üst çenedekiler küçük testere dizilimsi keskin kenarlardan oluşan oldukça üçgensel bir yapıya sahiptir.İki metreden küçük olan bazı gençler(yetişkin olmayanlar) düz diş yüzeylerine(kenarlarına) sahip olabilirler.Beş solungaç yarığı(yırtmacı) uzundur ve hepsi göğüs yüzgeçlerinin önünde yer alır.Yetişkinlerdeki anal ve ikinci sırt yüzgeçleri neredeyse dikdörtgensel bir yapıya sahiptir ve çok küçüktür.Kuyruk yüzgeci hilal biçimindedir(üst ve alt uçlar yaklaşık olarak aynı büyüklüktedir).Kabaca göze ve pelvis yüzgecine doğru uzanan bir çizgi üzerinde yer alan vücudun üst kısmı siyahtan açık griye değişir.Bunun altında,gövde beyazdır.Taze yakalanmış olanları genellikle zamanla suyun dışında(havada)solan pirinç kaplama renginde bir parlaklık gösterirler.Göğüs yüzgecinin vücuda bağlandığı yerde genellikle siyah bir nokta mevcuttur. Shortfin mako köpekbalığı görünüş olarak büyük beyaz köpekbalığına benzer.Gövde üzerinde ve yanlardaki parlak mavi renkle diğerlerinden farklılık gösterir.(Gövde üzerinde ve yanlardaki parlak mavi ona ait belirgin bir özelliktir).Daha büyük gözleri vardır.Dişleri daha dar ve düz yüzeylidir.Büyüdüğünde 4 metreye kadar ul Şekil 2:177cm olgunlaşmış dişi(Kwazulu-Natal) WHITE SHARK Sistematik Order:Lamniformes Family:Laminidae Genus:Carcharodon Species:carharias 3-Yetişme Ortamı Büyük beyaz köpekbalığı en çok kıta Avrupası sularında görülen ılıman denizlerin yakın kıyı balığıdır.Tropikal kuşaktan tamamen kaçınmak(özellikle büyük olanları),fakat özellikle Orta Amerika,tropikal Güney Amerika ve merkezi Pasifik adaları gibi bazı bölgelerde çok sık ta görülmez.Issız sulardan gelen birçok rapor,bu türün geniş bir alana yayılabilme ve hatta okyanus havzalarını karşıdan karşıya geçebilme yeteneğinde olduğunu gösterir.Büyük beyaz köpekbalıkları çoğunlukla yakın yüzey(üst) sularda bulunurlar,özellikle avlanırken,fakat istisnai bir olayda bir büyük beyaz 1280 metre derinlikte bir oltaya takılmıştır. Büyük beyaz köpekbalığı açısından zengin olarak bilinen bölgeler, muhtemelen bu bölgelerde insanla8spor balıkçıları,denize girenler,akuba dalgıçları,sörfçüler gibi)daha fazla bir etkileşimi yansıtır.Bu bölgeler Kaliforniya,ABD’nin Orta-Atlantik Federe Devletleri,Güney Afrika ve Doğu Avustralya,Yeni Zelanda ve bazı Pasifik adaları gibi yerlerdir. 4-Beyaz Köpekbalığı Ekolojisi ve Korunması Yetenekli olduğu kadar etkileyici de olan beyaz köpekbalığı(diğer deniz canlılarından ayrı)bir ortamda kalamaz.O, karmaşık kuralları olan karşılıklı bir dayanışmanın hüküm sürdüğü deniz canlılarının gerekli bir üyesidir(parçasıdır). Kıyı şeridindeki bütün ekosistemler,güneşin ışık enerjisini yakalayıp,diğer canlıların kullanabileceği bir formda paketleyen fotosentetik organizmalarla başlar.Bu bitkiler çok geniş bir otçul tarafından yenir(bu bitkiler çok geniş bir otçul hayvan kitlesini besler).Bu otçul hayvanlar etçil hayvanlar tarafından yenir(bu otçul hayvanlar etçil hayvanları besler).Bu etçil hayvanlarda daha büyük etçil hayvanlara yem olur.Bu sayede,enerji,besin zincirinin daha uzak noktalarında yer alan,çok daha büyük hayvanlara iletilir(geçer). Enerji,bir beslenme seviyesinden,bir sonraki beslenme seviyesine geçerken,yaklaşık %90’ını kaybeder.Bu nedenle ,her beslenme seviyesi,bir alttaki beslenme seviyesinin ancak 1/10(onda biri)kadar canlı madde içerir.(Bir seviyedeki bütün canlı varlıkların toplam madde miktarı,bir alttaki seviyeye göre 10 kat daha azdır).En yukarıdaki beslenme seviyesinde büyük beyaz köpekbalığı gibi en zirvedeki yırtıcılar yer alır.sayısal olarak çok nadir olmalarına rağmen,bu en zirvedeki yırtıcılar,bütün ekosistemin üzerinde bulunan bir başlıktır.Nerdeyse okyanusta olup biten her şey büyük beyaz köpekbalığını beslemek içindir.Oldukça yakın geçmişe kadar,büyük beyaz köpekbalığının ne kadar yediği hakkında çok az fikir sahibi olduk.Son zamanlarda Kuzey Atlantik’in batısında yapılmış çok önemli bir deney,büyük beyaz köpekbalığının,keskin ısı farklarındaki ortamlarda yüzüşünden kaslarındaki ısı değişimini inceledi.Bu ölçümler temel alınarak yapılan ılımlı bir tahmine göre,45 kilogram balina yağı yemiş yaklaşık 5 metrelik bir büyük beyaz köpekbalığı,1.5 ay başka hiç bir şey yemeye ihtiyacı olmaksızın yaşayabilir.Ortalama bir kütle ve yağ içeriğine sahip olan bir Kuzey deniz Fili yavrusu temel alındığında,bir yavrunun bir büyük beyaz köpekbalığına 3 ay yeteceği tahmin edilmektedir. Sonuç olarak gözüküyor ki,büyük beyaz köpekbalığı çok az bir sıklıkta bu gibi deniz memelileri ile beslenme ihtiyacındadır ve muhtemelen deniz Fillerinin beyaz köpekbalıklarınca ölümü hastalıklar,boğulmalar ve kendi aralarındaki kavgalar gibi sebeplerdeki ölüm oranı oldukça düşüktür. Zirvede bir yırtıcı olmasına rağmen,beyaz köpekbalığının da korktuğu yırtıcılar mevcuttur.1997 yılında Farallon adası açıklarında,bir öldürülen balinanın(Orcinus orca) 10-12 foot(yaklaşık 3-3.5 metre)uzunluğundaki bir beyaz köpekbalığını öldürüp yemesi gözlenmiş ve filme alınmıştır.Bu saldırıdaki öldürülen balina belki kendi yavrularını koruyordu,belki de bu atak tamamen kendisiyle av konusunda rekabet halinde olan bir rakibi devre dışı bırakma vakası idi.Bu gibi aşırı derecede ilgi çeken bazı olayların olmasına rağmen,büyük beyaz köpekbalığını yiyen doğal yırtıcılar nadirdir.Bu güne kadar büyük beyazların en göze çarpan öldürücüleri insanlar olmuştur.Bu türün eti sıkı(sertçe),beyaz ve lezzetlidir.Belki de bundan daha önemlisi,büyük beyazın çenesi ve dişleri nadir bulunan bir ganimet ve hatıra eşyası olarak dünya çapında aşırı derecede gözdedir(değerlidir).Kaliforniya açıklarında her yıl 10-20 büyük beyaz öldürülür.Yakın geçmişte bu rakama erişmedeki pay,büyük ölçüde spor için balık avlayan Kaliforniyalılara ait olmuş çene ve dişleri tutup geri kalanı atmışlardır.Bu günlerde ise,büyük beyazların büyük çoğunluğu ticari balıkçılar tarafından yanlışlıkla tutulmaktadır.Bunların bir kısmı bilimsel araştırma kurumlarına bağışlanmakta,diğerleri de genellikle internet üzerinden açık arttırmayla satılmaktadır.1993’ün ekiminde,Kaliforniya büyük beyaz köpekbalığını korunması gereken canlı türlerine dahil eden ilk Amerikan federe devleti olmuştur.1994’ün ilk gününden itibaren bütün Amerika Birleşik Devletleri sularında büyük beyaz köpekbalığının ticari ve spor amaçlı avlanması yasaklanmıştır.Büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir gemi Amerika Birleşik Devletleri suları dışında yakalanmış büyük beyaz köpekbalığının bir parçasını veya tümünü taşıyan herhangi bir geminin,Kaliforniya limanına yanaşmasına izin verilmez.İzin verilen yegane yakalamalar,sınırlı sayıdaki ticari balıkların yanlışlıkla yakaladıkları ile bilimsel araştırma ve eğitim amaçlı yakalamalardır. En azından Kaliforniya suları sınırları içinde,büyük beyaz köpekbalığı kanun tarafından korunmaktadır.Fakat Pasifik kıyı şeridi boyunca uzanan diğer sularda,bu muhteşem köpekbalığı tehlikeleri göze almak zorundadır.Büyük beyaz köpekbalığının aşırı derecede sınırlı olan üreme kabiliyeti göz önüne alındığında,bir yok edilme oranı bile,bu türün soyunun tamamen tükenmesi sonucunu doğurması yüksek derecede olasıdır. Kişi,büyük beyaz köpekbalığını korumak için,çok sağlam delillere dayanan bütün tavrını oluşturabilir.Büyük beyaz köpekbalığının deniz ekosistemindeki rolünü tam olarak anlamamamıza rağmen,onun çevresel önemini örnek olarak verebiliriz.Bu hayvanı ahlaksal yükümlülüklerimizden dolayı korumamız gerektiğinden bahsedebiliriz,fakat daima ahlaksal aciliyetler ve öncelikler konusunda bir tartışma söz konusu olacaktır.Muhtemelen okuyucular,büyük beyaz köpekbalığının korunması için ileri sürülen aşağıdaki sade fikri en doyurucu bulacaklardır.Büyük beyaz köpekbalığı,dünyamıza zenginlik,ilgi çekici bir farklılık,efsaneler ve gizemler katan nadir bir yabani hayvandır. 5- Boyut ve Yaş Köpekbalıklarının yaşlanması basit bir proses değildir.Bunun ana sebepleri,büyümenin beslenmeyle olan ilgisi,coğrafi alanı ve bazı türlerdeki erkek ve dişi büyüme oranının,ki yaşla yavaşlar,değişiklik göstermesidir.Araştırmacılar,ağaç tabakalarında olduğu gibi,omurga kemiğindeki kireçlenme tabakasının büyük beyaz köpekbalığının yaşını yansıttığını gösterdiler.Bu temelde Doğu Pasifik büyük beyaz köpekbalıkları 13-14 yaşında 16 ft (4.75m)’ye ulaşırlarken,Kuzey Atlantik köpekbalıklarının aynı uzunluğa 20 yaşlarında ulaşabildiğini bulmuştur. Yeni doğmuş büyük beyaz köpekbalıklarının boyu 109-129cm civarındadır.Büyüklük ve cinsel olgunluk balıktan balığa değişkenlik gösterir.Erkekler yaklaşık 9 yaşlarında,3.5-4.5m boyutlarında olgunlaşır.Dişilerse 12-14 yaşlarında,4.5-6m civarlarındayken olgunlaşırlar.Görülmüş olan en büyüklerin (5m üzerinde)çoğu dişi olmasına rağmen,bugün hala erkeklerin dişilerden daha büyük bir maksimum boyuta ulaşıp ulaşmadığı bilinmiyor.Geçtiğimiz yıllarda birçok doğru olmayan maksimum boyutlar rapor edilmiştir,bir rapordaki on yıllar boyunca tartışılmış olan 36 feet(11m)’lik bir boyutun,aslında 16 feet olduğu fakat yazım hatasına maruz kaldığı düşünülmektedir.Son yıllarda yakalanan en büyük köpekbalığı ölçülmemiştir,fakat araştırmacıların biri Malta diğeri de South Avustralya’dan olan büyük beyaz köpekbalıklarının 7m’den büyük olduğu hakkında çok az şüpheleri vardır.Bu köpekbalıkları 30 yaşına yaklaşıyorlardı.Yakın zamanlarda Gans Bay’da yakalanmış ve Cape Town’daki shark Research Centre’de incelenmiş 6m’lik bir dişinin,bir omurga bandının bir yıla eşit olduğu varsayımıyla,yaklaşık 22 yaşında olduğu tahmin edilmiştir. 6-Üreme ve gelişim Büyük beyaz köpekbalığında döllenme dahilidir ve dişiler yavruları canlı olarak dünyaya getirirler(onlar ovovovipar’dır).Kur yapma davranışları “tam olarak”bilinmez,fakat bilim adamları yaralı bireylerin,erkek erkeğe olan saldırganlığın veya çiftleşmeden önceki erkeklerin dişileri hafifçe ısırmalarının sonucu olduğuna inanırlar.Embriyolar,kendi yumurtalarının bütün sarısını tükettikten sonra,ana içindeki yumurtadan hatta diğer embriyolarla beslenmeye başlar.Büyük beyaz köpekbalığının akrabalarında da görülen bu olayı “intrauterine cannibalism”(döl yatağı yamyamlığı) olarak adlandırılır.Yavrulu dişiler belgelenmemiştir,fakat diğer köpekbalıklarında olduğu gibi,büyük dişiler küçüklerden daha fazla yavru taşırlar.Bir Avustralya dişisi 11 yavruyla bulunmuştur.Gebelik süresinin kesin olarak bilinmemesine rağmen,büyük boyutta olan dişilerde yaklaşık 1 yıl veya daha fazla olduğu tahmin edilmektedir.Cape Town’daki Shark Research Centre(Köpekbalığı Araştırma Merkezi)’nde çalışan Dr. Leonardo Compago çok sayıda değişken ve bilinmeyeni de göz önünde bulundurarak,ortalama bir dişinin üreme potansiyelini izlemiştir.15 yaş ve 5 metrede olgunlaşan 30-31 yaşlarında 7.2m’lik maksimum boyuta ulaşan doğumdan sonraki bir yıllık dinlenme süresiyle birlikte her 3 yılda ortalama olarak 9 yavru doğuran ortalama bir dişinin,ölümünden önceki seneye kadar 45 yavru dünyaya getireceği tahmin edilmiştir.Bununla beraber,doğal ölümler,nispi sağlık ve çiftleşme mevcudiyeti gibi nedenlerle,dişilerin çoğu,özellikle insan etkisinin çok fazla olduğu bölgelerde,muhtemelen daha az yavru dünyaya getiriler. Bazı araştırmacılar büyük beyaz köpekbalıklarının,ılıman denizlerin kıyı sularında,kendi kendini soyutlamış yavrusunu beslemeyen dişiler tarafından dünyaya getirildiğine ve daha sonra büyüdükçe daha geniş sıcaklık ortamlarına adapte olduklarına inanırlar.Bu da büyük köpekbalıklarının açık okyanus alanlarına doğru açılmayı göze alabilmelerini sağlayan ve tropikal orta-okyanus adalarında görülmelerini açıklayan bir teoridir.Bilim adamları genç büyük beyaz köpekbalıklarının (iki yaş veya daha küçük) bilinen dağılımları ve büyüme tahminleri sonuçlarından yola çıkarak,su sıcaklıklarına karşı toleranslarının gelişimine kadar,coğrafi olarak dar sıcaklık değişimli alanların içine sınırlandırabileceklerine dikkat çekmişlerdir. 7-Yiyecek ve Beslenme Alışkanlıkları Büyükbeyaz köpekbalığının zirvede bir yırtıcı olduğu,denize çıkışı olmayan bölgelerde yaşayan insanlar arasında bile bilinir. Bu yaratığın sırf görünüşü , gücü ve korku veren çeneleri böyle bir gözlemi gerekli kılar. Fakat sürpriz bir şekilde, beyaz köpekbalıkları aynı zamanda leş ve çöp süpürücülerdir (yiyicileridir). Araştırmacılar şu aşağıdaki şeyleri mide içeriklerinde bulmuş ve kayıtlara geçirmişlerdir:Sardalya’dan mersin balığına kadar her çeşit ve büyüklükteki kemikli balıklar, diğer daha büyük köpekbalığı dahil kıkırdaklı balıklar, deniz kaplumbağaları, sümsük kuşu martı ve penguenler dahil çeşitli kuşlar, yunus, domuzbalığı, fok, ölü balina gibi deniz memelileri,abalon, diğer deniz salyangozları, kalamar,supya, denizyıldızı,yengeç dahil çeşitli omurgasızlar. Fok kolonilerinin bulunduğu alanlarda,3 m. ve daha büyük boyutlardaki büyük beyaz köpekbalıkları,çoğunlukla balıktan oluşan diyetlerini gözle görülür bir şekilde foklara doğru kaydırırlar.Jackass penguins zaman zaman ısırılmalarına rağmen çok nadiren büyük beyaz köpekbalığının midesinde görülmüştür.Özellikle önemli beslenme alanları Bird Island(Kuş Adası),Doğu Cape,Pyer ve Robben Adaları,Batı Cape gibi yerlerdir.Bununla beraber,büyük beyaz köpekbalığı,fokların bulunmadığı veya çok nadir olduğu tropikal alanlarda,kemikli balıkları diğer köpekbalıkları ve deniz memelileriyle çok rahat bir şekilde hayatta kalma yeteneğine haizdir.Şu noktaya dikkat etmekte yarar vardır ki,uzmanlaşmış bir yırtıcı,bir alanda bulabildiği bir tercihi başka bir alanda bulamayabilir,dolayısıyla büyük köpekbalıkları deniz içinde yüzen neredeyse her şeyi pusuya düşürme veya yakalama yeteneğine sahiptir. Büyük canlı fokların büyük beyaz köpekbalıklarının en zor avları arasında olduğu düşünülmektedir.Bu foklar,onları tamamen suyun dışına fırlatabilen, “ısır”ve “bırak” taktiğiyle,genellikle yüksek hızla ani bir hamleyle öldürürler.Bu eylem bilim adamlarınca savunarak öldürme olarak nitelendirilir,bir başka deyişle,köpekbalıkları bu sayede kendilerini,korku ve heyecan içindeki yaralı bir hayvanın diş ve pençelerinden korurlar.Güney Afrika açıklarında,penguenlerin bu şekilde defalarca havaya fırlatıldıkları görülmüştür.Bu davranış şekli,gerçek bir beslenme çeşidinin bir parçası olmasından çok,avıyla oynama veya avını test etme amacına yönelik olabilir.Yaralı,ölmek üzere olan av,köpekbalığı tarafından yeterince zayıf hale düşene kadar kuşatma altında tutulur ve en sonunda tüketilir. 8- Yaşayan(hala var olan)Fosil Akrabalar Yaşayan büyük beyaz köpekbalığı Carcharodon cinsi içinde sınıflandırılan beş türden biridir.Diğer dördünün nesli tükenmiştir.Şu andaki araştırmacılar inanırlar ki bugünkü büyük beyaz köpekbalığının en eski atası kabul edilen bir tür,Carcharodon landanensis,Paleocene çağında (65-57 milyon yıl önce) ortaya çıkmış ve yaklaşık aynı çağlarda bu kökten iki değişik grup(sülale,soy,nesil)oluşmuştur.Bugünkü yaşayn büyük beyazın da içinde bulunduğu birinci grup,göreceli olarak daha küçük olan C. landanensis(2-3m uzunluğundadır)ile bağlantısı (akrabalığı)olan orta dereceli fosil türlerine sahiptir.Ayrı bir cins olarak kabul edilen ikinci grup,Carcharocles,bazı araştırmacılara göre,izleri yaklaşık 50 milyon yıl öncelerine kadar gelen devasa akrabaları da kapsar.Bu kocaman köpek balıklarının evrimi vücut büyüklüğünün artmasıyla karakterize edilmiştir ve oldukça yakın zamanlara kadar yaşamış olabilir. Modern büyük beyaz köpekbalığı yaklaşık 20 milyon yıl önce Miyosen çağlarda evrim geçirmiştir(evrimleşerek bugünkü halini almıştır).Aynı zamanlarda,ikinci paralel gruptan (sülaleden) gelen (evrimleşmiş olan)Carcharodon megalodon ve C.angustidens isimlerini verdiğimiz çok daha büyük diğer iki kardeş tür dünya denizlerinde varlığını sürdürüyordu.Peru’da C. megalodon’a ait 17cm uzunluğunda dişler bulunmuştur.Bu bize gösterir ki,bu tür 13m veya daha büyük bir uzunluğa ve yaklaşık 20 ton ağırlığa erişmiştir.Bu dev yırtıcı,en azından büyük boyutta olanları muhtemelen çoğunlukla balinalarla beslenmiştir.Bazı araştırmacılar,balinaların evrimleşip,kutup sularında bol miktarda bulunan planktonlarla beslenmek için bu sulara doğru göç etme eğilimi göstermesinin bu köpekbalığı türünün neslinin tükenmesine neden olduğunu varsayalar.Bu dev köpekbalıklarının değişik sıcaklıklara adapte olamaması ve buzlu sulara göç eden balinaları takip edememesi,ana yiyecek kaynağını yılın büyük bir bölümü için kaybetmesi sonucunu doğurmuştur. Güney Afrika’da Carcharodon’un üç türünün fosilleşmiş dişleri bulunmuştur.Uloa yakınlarındaki KwaZulu-Natal’daki Miyosen tortusundan anlaşılmıştır ki modern büyük beyaz köpekbalığı C.angustidens’e ait olan fosil dişler 15 milyon yıllıktır.Daha büyük C.angustidens’lerin 15cm’yi bulan dişleri,Kwa-Zulu-Natal bölgesinde,Doğu Cape’deki Eocene yatağında ve Namibya’da bulunmuştur.Pürtüksüz dişlere sahip olan(Otodontidae familyası)Paleocene devasa köpekbalıklarına başka bir yakın grup ta Carcharodon türüyle paralel olarak evrime uğramış ve bugün hayatta olan porbeagle köpekbalıklarının (Lamna cinsi)oluşumuna yol açmıştır. 9- İnsana Karşı Saldırılar İnsanın en büyük korkularından biri,yabani bir hayvan tarafından canlı canlı yenmektir.Muhtemelen büyük beyaz köpekbalığı endişelerinin esrarı,büyük ölçüde onun uzun zamanlar boyunca sadece bu amaçla insanlara saldırması olmuştur. Rapor edilen büyük beyaz köpekbalığı saldırıları,öteki köpekbalığı saldırılarından daha fazladır.Bununla beraber rapor edilmiş bütün köpekbalığı saldırılarının %80’i büyük beyaz köpekbalıklarının nadir olduğu tropikal bölgelerde meydana gelmiştir.Bu bölgelerdeki ataklardan genellikle çekiç balıkları (bir tür köpekbalığı) ve requiem köpekbalığı sorumlu tutulmuştur.Gerçekten de Durban’daki Oceanographic Research Institute’un(Okyanus Araştırmaları Enstitusu)eski yöneticisi Dr.Davies daha1964’lerde Güney Afrika’da 7 tehlikeli türden bahsetmektedir.Bugün hala köpekbalığı saldırılarından daha fazla insan boğulmalar,arı sokmaları,şimşek çarpmaları veya yılan sokmaları gibi nedenlerle yaralanır veya ölür.Buna rağmen,büyük beyaz köpekbalıkları su içinde insan için tehlikelidir ve bazı bölgelerden diğer bazı bölgelere göre daha fazla saldırı olayı rapor edilmiştir. Amerikalı araştırmacılar 1926’dan 1991’e kadar bütün dünya çapında vuku bulmuş 115 büyük beyaz köpekbalığı saldırısı belgelemişlerdir.Güney Afrika açıklarında,altısı ölümle sonuçlanan,29 saldırı meydana gelmiştir.Güney Afrika’da 1940’tan bu yana toplam olarak 28’i ölümle sonuçlanan 89 köpekbalığı saldırısı rapor edildiği düşünüldüğünde,bu saldırıların bazılarının diğer türler tarafından yapıldığı sonucuna varılabilir. Niçin Büyük Beyaz Köpekbalıkları Tehlikelidir? Bazı popüler iddiaların tersine,biz karada yaşayanlar,okyanus ortamına doğal olarak uyamadığımız için bu büyük,hızlı,yırtıcılar insanları potansiyel av olarak görürler ve bu yüzden tehlikelidir.Aynı zamanda,sudaki, insanlara,takip edilip dışarıya atılması gereken bölgesel işgalciler olarak kabul ettikleri için de tepki gösterebilirler.Bu teori büyük beyaz köpekbalıklarını atfedilmiş,kurbanların hayatta kaldığı,tek ısırıklı saldırıları da muhtemelen açıklar.Özellikle geçmiş dönemde bir kısım film ve kitapta yapılan bazı sansasyonel köpekbalığı tasvirleri içimize korku salmak için çılgınca bir yok etme ve intikam alma karalılığı içinde olan nefret dolu canavarlar çizmiş ve onun doğal yırtıcı davranışlarını çarpıtmıştır.Hiçbir şey hakikatten öteye gidemez. 10- Denize Girenler,Sörfçüler ve Dalgıçlara Tavsiyeler Bütün önlemlere rağmen,olası bir saldırı durumunda bilinmesi gereken birkaç şey vardır. 1-En önemli şey kanı mümkün olduğunca çabuk durdurmaktır.Kol bacak gibi uzuvlardaki yaralarda çok ta fazla sıkı olmamasına dikkat ederek,sıkıca bir sargı sarılması kanı durdurmaya yardımcı olacaktır.Yumuşak ve esnek herhangi bir şeyi(kumaşı)sıkıştırıp bandaj olarak yara üzerine yerleştirin.Yaralıyı hareketsiz ve mümkün olduğunca sıcak tutun,küçük ve önemsiz bir yara gibi bile gözükse hemen tıbbi acil yardım çağırın. 2-Denize girenlerin veya sörfçülerin büyük ve önemli yaralanmalarında,yaralıyı kum üzerinde denize paralel bir şekilde yatırıp başa doğru kan akışını desteklemek için ayaklarını yukarıya kaldırın.Yaralıyı başı su tarafına gelecek şekilde yatırmayın.Gerekirse yaralının nefes almasına yardımcı olun. 3-Tıbbi yardımın gelmesini beklerken,yaralıyla rahatlatan bir edayla konuşarak onu sakin ve ayık tutun.Yaralıyı hastaneye yetiştirmek amacıyla sahilden uzağa veya bir araca taşımaya teşebbüs etmeyin.Bu yaralıyı şoka sokabilir. 4-Vücut iç sıcaklığını düşürüp yaralıyı şoka sokmasına yardım etme ihtimali olduğundan,hiçbir içecek özellikle alkollü içecek vermeyin.Yaralının dudaklarını ıslatmak amacıyla su kullanılabilir. 11- Kaynaklar: Weidnfield & Nicolson, London, 222pp. Cliff, G., S.F.J. Dudley & B. Davis. 1989. Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark, Carcharodon carcharias. S. Afr. J. Mar. Sci., 8:131-144. Compagno, L.J.V. 1981. Legend versus reality: the Jaws image and shark diversity. Oceanus 24 (4); 5-16 -1984. Sharks of the World. FAO Species Catalogue, vol. 4,2 parts, Rome. -D.A. Ebert & M.J. Smale. 1989. Guide to the Sharks and Rays of Southern Africa. Struik Publishers, Cape Town, 160pp. Condon, T. (ed.). 1991. Great white Sharks - a Perspective. Underwater, no.17. Ihlane Publications, Durban: 1-130. Cousteau, J. -Y. & P. Coustea. 1970. The Shark: Splendid Savage of the Sea. Doubleday & Co., Garden City, 277 pp. Davies, D.H. 1964. About Sharks and Shark Attack. Shuter & Shooter, Pietermaritzburg, 237pp Ellis, R. & J.E. McCosker. 1991. Great White Shark. Stanford University Press, Harper Collins, New York, 270pp. Sibley, G. et al (eds.). 1985. Biology of the white shark. Mem. So. Calif. Acad. Sci. 9, 150pp Smith, M.M. & P.C. Heemstra (eds.). 1986. Smiths’s Sea Fishes. Macmillan South Africa, Johannesburg, 1047pp. Springer, V.G.& J.P Gold. 1989. Sharks in Questions. Smithsonian Institution Press, Washington, D.C., 187pp. Van der Elst, R. 1986. Sharks and Stingrays. Struik Publishers, Cape Town, 64 pp. Not:Alıntıdır ayrıca karakter sınırlaması olduğu için parça parça yollayabildim kusura bakmayın arkadaşlar

http://www.biyologlar.com/carcharodon-carhariasbuyuk-beyaz-kopekbaligi

Evrim ve Yeni Türlerin Oluşumu

Günümüzde türleşme,ayrı bir bilim dalı haline gelmiştir.Sınıflandırmada zorunlu bir rolü olmamakla beraber,türleşme bilimi,taksonominin bir alt birimi olarak kabul edilebilir.Türleşme çeşitleri: 1) Irklardan yeni türlere:Genel olarak bir türün,birbirinden belirgin şekilde farklı olan populasyonları ırk olarak nitelendirilir.Taksonomistler ırk kavramı yerine,bir türün içerisinde farklı populasyonları nitelendirmek için alttür,varyete ve subvaryete kavramlarını kullanırlar.Bu değişik terimler arasındaki evrimsel ve biyolojik farkları belirlemek zor olduğundan evrimciler ırk kavramını tercih eder. 2) Ani ve dereceli türleşme:Bu terimleri ilk VALANTINE(1949) ifade etmiştir. Ani ekotür:Kromozom sayısı ile birbirinden ayrılan,aralarında belirgin ekolojik ve coğrafik farklar olduğundan sınırlı gen değişimi olan gruplardır. Dereceli ekotür:Aynı kromozom sayına sahip,aralarında çok iyi tanımlanan morfolojik,ekolojik ve coğrafik farklar bulunan,yapay ve doğal koşullarda sınırlı gen değişimi kapasitesine sahip gruplardır. Ani ekotür kavramından türetilen ani tür oluşumu,kromozom sayısındaki ani değişimlerin sonucu olarak ortaya çıkar.Kromozom sayısı değişmeleri,populasyonlar arasında,geriye dönüşü olmayan bariyerlerin ortaya çıkmasını ve izolasyonu sağlar.Bu ani kromozom değişiklikleri çoğunlukla poliploididir. Birçok araştırmacı ani ve dereceli türleşme yerine Allopatrik türleşme,Parapatrik türleşme ve Simpatrik türleşme ayrımını tercih eder. - Allopatrik türleşme:Bir türün yayılış alanı,fiziksel ayrılırsa,bu tür zamanla iki ayrı türe farklılaşır. -Parapatrik türleşme:Parapatrik türleşmede yeni türler,tamamen ayrılmış populasyonlardan değil,bitişik populasyonlardan meydana gelir.İki populasyonun arealinin çakıştığı kesime hibrit zonu denir.Hibrit zonu,bir türün,önemli derecede farklı iki formu arasında hibritleşmenin meydana geldiği temas alanıdır. Hibrit zonunun her iki tarafındaki formlar,ayrı tür olarak sınıflandırılacak kadar farklıdır. - Simpatrik türleşme:Bir türün coğrafik alnında herhangi bir ayrılma olmaksızın iki ayrı türe farklılaşmasıdır.Simpatrik türleşmenin bir şekli ani türleşmedir.Simpatrik türleşme,dereceli türleşme şeklinde de gerçekleşebilir.Farklı besine yönelme,farklı habitata uyum,üreme zamanının ayrılması gibi etkenlerle simpatrik türleşme gerçekleşir. 3) İzolasyon çeşitleri: a) Coğrafik İzolasyon:Populasyonun çeşitli coğrafik engellerle ayrılması ve gen değişiminin önlenmesidir. b) Ekolojik İzolasyon:Populasyonlar ve türler aynı alanda bulunabilirler.Ancak farklı habitatları işgal ederek ekolojik olarak ayrılır. c) Mevsimsel İzolasyon:Aynı alanı işgal eden yakın akraba türlerin,yılın farklı zamanlarında eşeyli üreme evresine geçmesidir. d) Zamansal İzolasyon:Aynı zamanda çiçek açan yakın akraba türlerin polenleri günün farklı saatlerinde anterden ayrılır ya da stigma farklı saatlerde polen kabul eder. e) Mekanik İzolasyon:Yapısal olarak yapay yöntemlerle döllenmenin engellenmesidir. f) Davranış İzolasyonu:Bitkilerin ve hayvanların yakın akraba türlerinin bireyleri aynı lokalitede bir arada bulunabilirler.Bu gibi türler arasında çiftleşme mümkün olsa bile davranış farklı döllenmeyi etkiler. Bu gibi türlerin kur yapmaları ve sevişmeleri çok farklı olduğundan farklı türlerin bireyleri ile çiftleşemezler g) Gametofit İzolasyonu:Erkek(polen) ve dişi(ovül) gametofitin uyumsuzluğudur. h) Gamet İzolasyonu:Bir türün poleni,başka bir türün stigmasında çimlenip,polen tüpü embriyo kesesine ulaşsa bile gametler ve endosperm çekirdekleri birleşemez. i) Tohum Uyuşmazlığı:Türler arasında melez oluşur,tohum meydana gelmez. j) Hibritlerin Yaşayamaması: k) F1 Hibritlerinin Sağlıksız Oluşu: l) F1 Hibritlerinin Kısırlığı: m) F2 Hibritlerinin Yaşayamaması Ya da Kısırlığı: n) F2 Hibritlrinin Sağlıksız Oluşu: Bu maddelerden a-g arası dışsal,h-n arası ize içsel mekanizmadır. First Zone Finished

http://www.biyologlar.com/evrim-ve-yeni-turlerin-olusumu-1

Mikroorganizmaların Tarihçesi

Mikroorganizmaların Tarihçesi

Tek hücreli mikroorganizmalar, yeryüzünde yaklaşık olarak 3-4 milyar yıl önce oluşmuş ilk canlı biçimleridir. Daha sonraki evrim süreci yavaştı ve yaklaşık olarak 3 milyar yıl boyunca Kambriyen öncesi devirde tüm canlılar mikroskobikti.

http://www.biyologlar.com/mikroorganizmalarin-tarihcesi

Tıbbi Laboratuvarlar Yönetmeliği Resmi Gazetede Yayınlandı

Uzun zamandır çıkacağı konusunda beklentiler olan Tıbbi Laboratuvarlar Yönetmeliği 25 Ağustos 2011 tarihli ve 28036 sayılı Resmi Gazete’de yayınlandı.Yönetmelik, kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenliyor, kaliteli ve verimli hizmet sunmalarını sağlamayı amaçlıyor.Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilecekler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alacaklar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilecek. Tıbbi Laboratuvarlar Yönetmeliği’ni Tümünü Aşağıda Bulabilirsiniz: TIBBİ LABORATUVARLAR YÖNETMELİĞİ BİRİNCİ BÖLÜM Amaç, Kapsam, Dayanak, Tanımlar ve Kısaltmalar Amaç MADDE 1 – (1) Bu Yönetmeliğin amacı; kamu ve özel sağlık kurum/kuruluşlarındaki tıbbi laboratuvarların planlanması, ruhsatlandırılması, açılması, faaliyetlerinin düzenlenmesi, sınıflandırılması, izlenmesi, denetlenmesi ve kapatılmasına ilişkin usul ve esasları düzenlemek, kaliteli ve verimli hizmet sunmalarını sağlamaktır. Kapsam MADDE 2 – (1) Bu Yönetmelik; doping, adli tıp, veteriner hekimlik, doku tipleme, genetik ve araştırma amaçlı kurulmuş laboratuvarlar dışındaki, Devlet ve vakıf üniversiteleri, kamu kurum/kuruluşları ile özel hukuk tüzel kişilerine ve gerçek kişilere ait tıbbi laboratuvarları kapsar. Dayanak MADDE 3 – (1) Bu Yönetmelik; 19/3/1927 tarihli ve 992 sayılı Seriri Taharriyat ve Tahlilat Yapılan ve Masli Teamüller Aranılan Umuma Mahsus Bakteriyoloji ve Kimya Laboratuvarları Kanununun 7 nci maddesi, 7/5/1987 tarihli ve 3359 sayılı Sağlık Hizmetleri Temel Kanununun 3 üncü maddesi ile 9 uncu maddesinin birinci fıkrasının (c) bendi ve 13/12/1983 tarihli ve 181 sayılı Sağlık Bakanlığının Teşkilat ve Görevleri Hakkında Kanun Hükmünde Kararnamenin 43 üncü maddesine dayanılarak hazırlanmıştır. Tanımlar ve kısaltmalar MADDE 4 – (1) Bu Yönetmelikte geçen; a) Ana dal: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmelik kapsamındaki tıbbi laboratuvar dallarını, b) Bakan: Sağlık Bakanını, c) Bakanlık: Sağlık Bakanlığını, ç) Başkan: Tıbbi Laboratuvar Bilimsel Danışma Komisyonu Başkanını, d) Başkanlık: Refik Saydam Hıfzıssıhha Merkezi Başkanlığını, e) Dış kalite değerlendirme: Laboratuvarların test sonuçlarının güvenilirliğini sağlamak veya yükseltmek amacıyla laboratuvarın dışındaki bir sistem/kurum/kuruluş tarafından düzenlenen içeriği veya konsantrasyonu bilinen ya da bilinmeyen örneklerle yapılan izleme ve değerlendirme çalışmasını, f) Genel Müdür: Tedavi Hizmetleri Genel Müdürünü, g) Genel Müdürlük: Tedavi Hizmetleri Genel Müdürlüğünü, ğ) Hizmet alımı: Laboratuvarın kendisi dışındaki ruhsatlı bir laboratuvar/laboratuvarlardan test kapsamında hizmet alımını, h) Hizmet Kalite Standartları (HKS): Bakanlıkça sağlık kuruluşları ve laboratuvarların hizmet birimleri ve iş süreçlerini değerlendirmek, iyileştirmek üzere yayımlanan standartları, ı) İç kalite kontrol: Analitik sürecin kalitesini değerlendirmek ve sonuçların güvenirliğini yükseltmek amacıyla laboratuvar tarafından yapılan kalite kontrol çalışmasını, i) Komisyon: Tıbbi Laboratuvar Bilimsel Danışma Komisyonunu, j) Laboratuvar: İnsanlarda; sağlığın değerlendirilmesi, hastalıkların önlenmesi, tanısı, takibi, tedavinin izlenmesi ve prognoz öngörüsü amacı ile insana ait biyolojik örneklerin veya dolaylı olarak ilişkili olduğu örneklerin incelendiği, sonuçların raporlandığı, gerektiğinde yorumlandığı ve ileri incelemeler için önerileri de içeren hizmetlerin sunulduğu tıbbi laboratuvarları, k) Laboratuvar dışı testler: Muayenehane testleri (basit ve mikroskopik testler), hasta başı testler ile klinik veya servisde yapılan testleri, l) Laboratuvar merkezi: Birden fazla uzmanlık dalında kurulan laboratuvarı, m) Müdürlük: İl sağlık müdürlüğünü, n) SKYS: Sağlık Kuruluşları Yönetim Bilgi Sistemini, o) Test: Laboratuvara gelen veya laboratuvarda alınan bir örnekte bir veya daha fazla parametrenin aynı anda çalışılabilmesine olanak sağlayan ve pre-analitik, analitik, post-analitik tüm evreleri kapsayan süreci/çalışmaları, ö) Tıbbi atık: 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbi Atıkların Kontrolü Yönetmeliğinde yer alan tıbbi atık tanımını, p) Uzman: Tıpta uzmanlık mevzuatına göre bir laboratuvar ana dalı veya yan dallarından birinde uzmanlık eğitimini tamamlayarak o alanda sanatını uygulama hakkı ve uzman unvanını kullanma yetkisi kazanmış ve uzmanlık alanında müstakilen bir laboratuvarı yönetmeye yetkili olan kişiyi, r) Uzmanlık Derneği: Tıpta uzmanlık mevzuatında yer alan, bu Yönetmeliğin kapsamındaki laboratuvarlarla ilgili tıpta uzmanlık ana dal ve yan dallarını temsilen kurulan meslek örgütlerini, s) Yan dal: Tıpta uzmanlık mevzuatında yer alan, laboratuvar alanına ait tıpta uzmanlık yan dallarını, ifade eder. İKİNCİ BÖLÜM Tıbbi Laboratuvarlar Bilimsel Danışma Komisyonunun Teşkili, Görevleri, Çalışma Usul ve Esasları Komisyonun teşkili MADDE 5 – (1) Komisyon, laboratuvar hizmetlerinin geliştirilmesi ve kalitesinin artırılmasında Bakanlığa bilimsel destek verilmesini sağlamak üzere, ilgili uzmanlık dallarından seçilen yirmi beş üyeden oluşur. (2) Komisyon, Refik Saydam Hıfzıssıhha Merkezi Başkanı veya Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı Başkanlığında toplanır. (3) Komisyonun sekretarya görevini Başkanlık yürütür. (4) Komisyon üyeleri aşağıda belirtilen temsilcilerden, Başkanın teklifi ile Bakan tarafından görevlendirilir. a) Başkanlığı temsilen iki uzman ve Refik Saydam Hıfzıssıhha Merkezi Başkanlığı Salgın Hastalıklar Araştırma Müdürlüğünün bağlı olduğu Başkan Yardımcısı, b) Genel Müdür veya görevlendireceği bir temsilci, c) Genel Müdürlüğün performans yönetimi ve kalite geliştirme daire başkanlığı ile laboratuvar hizmetleri daire başkanlığından birer temsilci, ç) Üniversite hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından anabilim dalı/bilim dalı başkanları veya en az doçent olmak üzere akademisyenleri arasından birer temsilci olmak üzere dört uzman, d) Eğitim ve araştırma hastane laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından klinik şefi veya şef yardımcıları arasından birer temsilci olmak üzere dört uzman, e) Özel kurum/kuruluş laboratuvarlarını temsilen enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji ana dallarından birer temsilci olmak üzere dört uzman, f) Uzmanlık derneklerinden enfeksiyon hastalıkları ve klinik mikrobiyoloji, tıbbi biyokimya, tıbbi mikrobiyoloji, tıbbi patoloji, hematoloji, temel immünoloji ana dal veya yan dallarında uzman olan birer temsilci olmak üzere altı uzman. (5) Bir uzmanlık alanında birden fazla derneğin olması halinde, komisyon üyeliği, bu dernekler arasında iki yılda bir üye sayısı fazla olan dernekten başlamak üzere dönüşümlü olarak sağlanır. (6) Komisyon üyelerinin görev süresi iki yıldır. Süresi dolan üyeler tekrar görevlendirilebilir. Herhangi bir sebeple boşalan üyelik için kalan süreyi tamamlamak üzere dördüncü fıkraya uygun aynı niteliklere sahip yeni üye seçilir. (7) Komisyon toplantılarına mazeret belirtmeksizin iki defa üst üste katılmayan üyenin üyeliği sona erer. Bu üye sonraki dönemlerde tekrar komisyon üyesi olamaz. Komisyonun görevleri MADDE 6 – (1) Komisyonun görevleri aşağıda belirtilmiştir: a) Laboratuvarların sınıflandırılması, 25/3/2010 tarihli ve 27532 mükerrer sayılı Resmî Gazete’de yayımlanan Sosyal Güvenlik Kurumu Sağlık Uygulama Tebliğine yönelik test listelerinin hazırlanması ve güncellenmesi konularında Bakanlığa görüş bildirmek, b) Laboratuvarların sınıflarına uygun olarak sağlamaları gereken asgari standartların tespiti, güncellenmesi, HKS’nin oluşturulması ve hazırlanmasında Bakanlığa destek olmak, gerektiğinde bu konularla ilgili görüş bildirmek, ilgili mevzuatta değişiklik önerilerini Bakanlığa sunmak, c) Bilimsel ve mesleki kuruluşların laboratuvarlar ile ilgili olarak Bakanlığa önermiş olduğu standart, kılavuz ve benzeri dokümanları değerlendirmek ve görüş bildirmek, ç) Dış kalite değerlendirme programlarıyla ilgili Bakanlığa görüş ve öneriler sunmak, d) Laboratuvar test listelerinde yer alan testlerin en son bilimsel terminolojiye göre adlandırılmalarına ve maliyet analizlerine yönelik Bakanlığa önerilerde bulunmak, e) Referans hizmet laboratuvarı başvurusunun değerlendirilmesinde Bakanlığa görüş bildirmek, f) Bakanlıkça talep edilmesi halinde bu Yönetmelik çerçevesinde düzenlenen eğitici toplantılara bilimsel katkı sağlamak, g) Bakanlık tarafından toplanan dış kalite kontrol değerlendirme verilerinin değerlendirilmesi ve gerektiğinde rapor haline getirilmesine katkı sağlamak, ğ) Gerektiğinde laboratuvarlar tarafından kullanılan yöntemlere ilişkin görüş vermek. Komisyonun çalışma usul ve esasları MADDE 7 – (1) Komisyon, Başkanın daveti üzerine, yılda en az bir kez üye tam sayısının üçte ikisinin katılımı ile toplanır. Bakanlık gerekli hallerde, Komisyonu olağan toplantıları dışında da toplantıya davet edebilir. (2) Toplantı tarihi, yeri ve gündem taslağı sekretarya aracılığı ile toplantı tarihinden bir ay önce, olağan dışı toplantılarda ise en geç on gün öncesinde yazılı olarak veya elektronik posta ile üyelere duyurulur. Üyeler tarafından ayrıca gündeme alınması talep edilen konular değerlendirilmek üzere, toplantıdan en geç onbeş gün önce sekretaryaya bildirilir. (3) Kararlar toplantıya katılan üyelerin oy çokluğu ile alınır. Oyların eşitliği halinde Başkanın oy verdiği taraf çoğunluğu sağlamış kabul edilir. Komisyon kararları, karar defterine yazılır ve toplantıya katılan üyelerce imzalanır. Karara muhalif olanlar, şerh koymak suretiyle kararları imza ederler. Muhalif görüş gerekçesi, karar altında veya ekinde belirtilir. (4) Başkan tarafından gerek görülmesi halinde yurt içinden veya yurt dışından uzman veya uzmanlar toplantıya davet edilir ve yazılı ya da sözlü görüşleri alınır. Toplantıya davet edilen katılımcılar Komisyon çalışmaları ile ilgili oylamaya katılamazlar. (5) Komisyon, ilk toplantısını görevlendirmeler yapıldıktan sonraki bir ay içinde yapar. Gerekli durumlarda komisyon, görev alanlarıyla ilgili konularda çalışmalar yapmak ve görüş hazırlamak üzere, görev süresinin ve üye sayısının komisyon tarafından belirlendiği alt komisyonlar veya çalışma grupları oluşturulabilir. (6) Toplantı karar ve tutanaklarını yazmak, tüm yazışmaları yapmak ve bunları muhafaza etmek sekretaryanın görevidir. ÜÇÜNCÜ BÖLÜM Laboratuvarların Kuruluşu, Dalları, Sınıflandırılması, Görev Tanımları, Referans Hizmet Laboratuvarı Ölçütleri, Laboratuvar Dışında Uygulanan Testlere İlişkin Hususlar ve Laboratuvarların Çalışma Esasları ile Fiziki Şartları Laboratuvarların kuruluşu MADDE 8 – (1) Laboratuvarlar kurum/kuruluş bünyesinde veya bağımsız olarak kurulabilir ve işletilebilirler. Laboratuvarların dalları MADDE 9 – (1) Bu Yönetmelik kapsamında kurulacak laboratuvarlarda ruhsata esas alınan dallar; tıbbi mikrobiyoloji, tıbbi biyokimya veya tıbbi patolojidir. Laboratuvarların sınıflandırılması MADDE 10 – (1) Laboratuvarlar aşağıdaki şekilde beş sınıfa ayrılır: a) Basit Hizmet Laboratuvarı, b) Kapsamlı Hizmet Laboratuvarı, c) İleri Düzey Hizmet Laboratuvarı, ç) Referans Hizmet Laboratuvarı, d) Ulusal Referans Laboratuvarı. Laboratuvarların görev tanımları MADDE 11 – (1) Yataklı ve/veya ayakta teşhis ve tedavi yapılan kurum veya kuruluş bünyesinde olmak şartıyla Basit Hizmet Laboratuvarında aşağıdaki basit testler çalışılabilir. a) Şerit veya tablet halinde reajenler ile otomatize olmayan idrar analizi, b) Dışkıda gizli kan, c) Kan glikozu – spesifik olarak ev kullanımı için onaylanmış glikoz izleme cihazlarıyla, ç) Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla, d) Eritrosit sedimantasyon hızı (otomatize olmayan), e) Mikrohematokrit (otomatize olmayan), f) İdrarda hCG (gebelik testleri), g) Doğrudan ARB Mikroskobi (Aside Dirençli Boyama, tüberküloz tanısına yönelik). Ancak, hasta örneği teksif yöntemiyle boyama ve kültür yapılmak üzere tüberküloz tanısı yapan laboratuvara gönderilir. (2) Kapsamlı Hizmet Laboratuvarı; her bir anadal için en az bir sorumlu uzmanın bulunduğu ve uzmanlık alanı ile ilgili laboratuvar testlerini uygulayabilen laboratuvardır. (3) İleri Düzey Hizmet Laboratuvarı; her bir anadal için en az iki uzmanın bulunduğu ve uzmanlık alanı ile ilgili kapsamlı laboratuvar testleri ile birlikte gerektiğinde ileri teknikleri uygulayabilen ve alanıyla ilgili uzmanlık, ön lisans, lisans veya lisansüstü eğitimleri veren laboratuvardır. (4) Referans Hizmet Laboratuvarı; referans olunan testin doğrulamasını yapan, gerektiğinde yeni yöntemlerin geçerli kılınmasını sağlayan, Bakanlık tarafından oluşturulan laboratuvar ağı içinde yer alan ve ulusal referans laboratuvarına karşı sorumlu olan laboratuvardır. (5) Ulusal Referans Laboratuvarı; referans olduğu tanı testi ile ilgili olarak kalite kontrol, laboratuvarlar arası karşılaştırma testleri, eğitim, denetim yapan ve laboratuvar ağı içinde yer alan diğer laboratuvarların verilerini değerlendiren, ulusal düzeyde strateji oluşturan ve uluslararası düzeyde ülkeyi temsil eden laboratuvardır. Referans hizmet laboratuvarı ölçütleri MADDE 12 – (1) Referans Hizmet Laboratuvarı, aşağıdaki her bir bent için en az bir ölçütün karşılanması durumunda belirlenebilir: a) Teknoloji kullanımı ölçütü: 1) Tanımlayıcı ve/veya referans yöntem kullanıyor olmak, 2) Henüz rutine girmemiş öncü/ileri teknolojiyi kullanıyor olmak. b) Eğitim ve araştırma-geliştirme-yenilik kapasitesi ölçütü: 1) Lisans, lisansüstü veya tıpta uzmanlık eğitimi verme kapasitesine sahip olmak, 2) Araştırma, geliştirme kapasitesine sahip olmak; bunun için özel birim oluşturmak ve/veya araştırma personeli bulundurmak. c) Kalite ölçütü: 1) Referans olunmak istenen test kapsamında ISO 15189 standardı gereklerini sağlayarak akreditasyon belgesine sahibi olmak, 2) Referans olunmak istenen test kapsamında dış kalite kontrol/yeterlilik testlerine en az iki yıl süre ile katılmak ve başarılı olmak, 3) Ulusal Referans Laboratuvarı tarafından düzenlenen laboratuvarlar arası karşılaştırma testlerine son bir yıl içinde katılmak ve başarılı olmak. ç) Tıbbi bir önem veya öncelik arz eden bir durumla ilgili olma ölçütü: 1) Durumun halk sağlığı açısından önem taşıması veya bulaşıcı hastalıklar bildirim sistemi içinde yer alması, 2) Durumun fiziksel, kimyasal veya biyolojik olarak yüksek risk grubunda olması, 3) Durumun nadir ancak yüksek mortalite ve morbidite hızına sahip olması. d) Spesifik tıbbi bir uygulama gereksinimi olması ölçütü: 1) Duruma ilişkin olarak henüz standardize bir bilimsel yöntemin geliştirilmemiş olması ve konuyla ilgili araştırma, geliştirme veya yenilik gereksiniminin oluşması, 2) Yöntem hiyerarşisine göre ilgili uygulama ve tarama yöntemlerine ilave olarak tanımlayıcı veya referans yöntem niteliğinde olan bir veya birden fazla yöntemin kurulum ya da kullanım gerekliliğinin olması. e) Referans laboratuvar ölçütü: 1) Laboratuvarlar arası karşılaştırma ve/veya dış kalite kontrol testleri düzenlemek, 2) Alanıyla ilgili yeni yöntemlerin geçerli kılınması veya yeni metot geliştirmesi için çalışmalar yapmak. Laboratuvar dışında uygulanan testlere ilişkin hususlar MADDE 13 – (1) Laboratuvar dışında yapılabilecek klinik/servis testleri, hastabaşında ve muayenehanede yapılabilecek tıbbi testler ile ilgili hususlar aşağıda belirtilmiştir. a) Hastabaşı testleri; 1) Kalıcı ve özel bir alan gerektirmeksizin, hastanın bulunduğu yerin yanında veya hemen yakınında, hemşire, hekim veya Ek-1’de belirtilen teknik personel tarafından gerçekleştirilen, elde taşınabilen veya hastabaşına geçici olarak getirilebilen kit, cihaz veya aygıtlar ile yapılabilen testlerdir. 2) İlgili HKS kurallarına uygun olarak yapılır ve kayıt altına alınır. 3) Ek-2’de yer alan Hastabaşı Testlerinden oluşur. b) Muayenehane Testleri; 1) Hekimin yalnızca muayene ettiği hastaya yönelik tanıyı güçlendirmek amacıyla yapmış olduğu testlerdir. 2) Muayenehane mikroskopisi sınıfında yer alan testler; bu testlerin eğitimini almış hekim veya test ile ilgili alanda uzman olan hekim ya da bu testlerin eğitimini almış Ek-1’de belirtilen personel tarafından hekim gözetiminde yapılır. 3) Muayenehanede yapılabilecek tıbbi testler 11 inci maddenin birinci fıkrasında verilen basit testler ile Ek-2’de yer alan Muayenehane Mikroskopisi testlerinden oluşur. c) Klinik/Servis Testleri; 1) Yataklı tedavi kurumlarında, ilgili klinik uzmanı tarafından yapılan mikroskopla incelenen boyalı veya boyasız örnekler ile bu Yönetmelikte tanımlanan laboratuvar uzmanlık ana dallarında yapılan testler dışındaki testlerdir. 2) Bu testlerin yapılabilmesi için ilgili klinik/servis sorumlusunun talebi ve başhekimin onayı gereklidir. Laboratuvarların çalışma esasları MADDE 14 – (1) Laboratuvarlar valilik tarafından belirlenen mesai saatlerine uygun olarak hizmet sunarlar. Ancak kurum/kuruluş bünyesindeki laboratuvarlar mesai saatleri dışında hizmet bütünlüğünü bozmayacak şekilde gerekli tedbirleri alırlar. (2) Laboratuvarlar, bu Yönetmeliğe ve Bakanlık tarafından yayımlanan HKS’de belirlenen ölçütleri sağlayacak ve gereklerini yerine getirecek şekilde hizmet sunarlar. (3) Laboratuvarda analiz raporlarının klinisyen/kullanıcıya sunulması, donanım, bilgisayar veya otomatize sistemlerin kullanımı, izlenmesi, verilerin toplanması, kayıt ve muhafaza edilmesi ve verilere tekrar erişimi sağlamak üzere yazılı düzenlemeler oluşturulur ve laboratuvar buna uygun olarak çalıştırılır. (4) Laboratuvarda testlerin ulusal ve/veya uluslararası standartlara uygun, geçerliliği kabul edilmiş yöntemler kullanılarak yapılması esastır. Ulusal veya uluslararası yöntem bulunmadığında bilimsel geçerliliği komisyon tarafından uygun bulunan yöntemler kullanılır. (5) Laboratuvarda test sonuçlarının güvenilir ve doğru olarak zamanında verilmesi amacıyla etkili ve verimli hizmet sunumunu sağlamak için gereken şartlar ve donanım sağlanır. (6) Laboratuvar, 30/5/2007 tarihli ve 26537 sayılı Resmî Gazete’de yayımlanan Bulaşıcı Hastalıklar Sürveyans ve Kontrol Esasları Yönetmeliğinde yer alan bildirimleri, laboratuvar verilerini ve gerektiğinde Bakanlığın istediği diğer verileri belirlenen formata uygun şekilde Bakanlığa gönderir. (7) Laboratuvarda raporlar ve kayıtlar en az yirmi yıl, elektronik kayıtlar yedekleme ile birlikte süresiz, örnekler ve lamlar bozulmayacak şekilde uygun şartlarda sonuç raporlanıncaya kadar muhafaza edilir. Ancak tıbbi patoloji laboratuvarlarında örnekleme yapılan dokular rapor çıktıktan sonra en az bir ay, lamlar en az on yıl, bloklar ise en az yirmi yıl muhafaza edilir. (8) Uzmanlık eğitimi verilen kurumlarda uzmanlık eğitimi ile ilgili tüm laboratuvar alanları rutin çalışmalar yanında eğitim ve araştırma amacı ile de kullanılır ve kullandırılır. (9) Laborutavarda tutulan kayıt defterleri yedekleme ve tekrar erişime açık olmak şartıyla bilgisayar ortamında da tutulabilir. Laboratuvarların fiziki şartları MADDE 15 – (1) Laboratuvarın yerleşim planı; laboratuvar teknik alanı, destek alanları ve ofis alanları olmak üzere üç temel kısımdan oluşur. Bu alanlar aşağıda tanımlanmıştır. a) Laboratuvar teknik alanı; laboratuvar hizmetlerinin gerçekleştirilmesinde gerekli bütün donanım ve uygun şartların sağlandığı ve çalışma aşamalarının yürütüldüğü yerdir. b) Destek laboratuvar alanları; en az bir örnek kabul birimi, örnek alma odası ve malzeme depolanması için uygun alandan oluşur. Bu alanlar, laboratuvar teknik alanı ile fonksiyonel bir bütün oluşturacak şekilde düzenlenir. Laboratuvar yerleşim planında aynı anadal laboratuvar alanları bitişik komşuluk düzeninde olacak şekilde yerleştirilir. Kurum/kuruluş bünyesinde olan laboratuvarlarda örnek alma odası poliklinik katında da bulunur. c) Ofis alanları; hasta kabul, bekleme yeri, sekretarya, tuvaletler, uzman odası ve personel dinlenme bölümleri gibi bölümleri içerir. Ofis alanlarındaki bölümler bir bölgede toplanabilir ve ortak kullanılabilirler ancak bu bölümler laboratuvar teknik alanının içinde yer alamazlar. (2) Laboratuvarlar sınıflarına uygun aşağıdaki fiziki şartları yerine getirecek şekilde yapılandırılır: a) Basit hizmet laboratuvarında, teknik alan en az 10 metrekare olmalıdır. Destek laboratuvar alanları ve ofis alanları toplamı en az 10 metrekareden oluşur. b) Referans, ileri düzey ve kapsamlı hizmet laboratuvarında, laboratuvar teknik alanı tıbbi patoloji laboratuvarları hariç olmak üzere; her bir laboratuvar dalının ayrı konumlanması durumunda her biri için en az 30 metrekare, ofis ve destek laboratuvar alanları toplamı ise en az 20 metrekare olmalıdır. Laboratuvar merkezlerinde laboratuvar teknik alanı en az 40 metrekare, ofis ve destek laboratuvar alanları toplamı ise 30 metrekare olmalıdır. Tıbbi patoloji laboratuvarları için ise, laboratuvar teknik alanı en az 50 metrekare, ofis ve destek alanları en az 30 metrekare olmalıdır. Tıbbi patoloji dahil referans, ileri düzey veya kapsamlı hizmet laboratuvarların teknik alanlarının toplamı 100 metrekareyi aşması durumunda, bu alanın en az % 30’u kadar ofis ve destek laboratuvar alanları tahsis edilir. 1) Tıbbi mikrobiyoloji laboratuvarları besiyerini kendisi yapması durumunda ayrıca besiyeri hazırlama odası bulundurur. 2) Tıbbi biyokimya laboratuvarlarında; idrar ve gaita testleri için havalandırması olan en az 7.5 metrekare ayrı bir oda/alanda veya çeker ocak içersinde çalışılır. 3) Tıbbi patoloji laboratuvar teknik alanı; boyama/özel işlem odası, doktor mikroskopi inceleme odası/alanı, arşivlenme odası ve kimyasal buhar veya gazlar için özel olarak havalandırma sistemi bulunan makroskopi odasından oluşur. 4) Laboratuvarda özel ve ileri teknik gerektiren testler için gerekmesi durumunda uygun alan ayrılır. (3) Laboratuvar ayrıca aşağıdaki şartlara sahiptir; a) Laboratuvarın, lavabo ve tuvaletleri engelli kullanımına uygun olarak düzenlenir. b) Laboratuvar, hizmetin sürekliliğini sağlamak üzere gerekli enerji, güç kaynağı, su, iletişim, bilişim gibi ortam destek sistemlerini içerecek şekilde yapılandırılır. c) Laboratuvar teknik alanların kapıları, giriş ve acil durumda çıkışa engel olmayacak şekilde otomatik kayar kapı veya dışarı doğru açılabilen ve şifreli veya yetkisiz girişlere engel olacak şekilde düzenlenir. (4) Laboratuvarda uygun bir aydınlatma sağlanır ve çalışan sağlığını olumsuz etkileyen gürültü düzeyini aşmayacak önlemler alınır. (5) Tüberküloz tanısı yapan laboratuvarlar aşağıdaki şartları taşır; a) Doğrudan mikroskopi yöntemiyle Aside Dirençli Boyama yapan basit hizmet laboratuvarı için sadece bu amaca yönelik olmak üzere en az 10 metrekarelik ayrı teknik bir alan, b) Tıbbi mikrobiyoloji laboratuvarında, örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlar için bu amaca yönelik en az 20 metrekarelik negatif basınçlı ayrı bir alan, c) Sadece örnek işleme, mikroskopi, kültür, tür tanımlama ve ilaç duyarlılık testleri çalışan tüberküloz tanısı yapan laboratuvarlarda en az 20 metrekare negatif basınçlı ayrı bir teknik alan ile en az 20 metrekare ofis ve/veya destek laboratuvar alanlar. (6) Tüberküloz tanısı yapan laboratuvarlara ilişkin bu Yönetmelikte tanımlanmayan diğer şartlar Bakanlıkça belirlenir. DÖRDÜNCÜ BÖLÜM Laboratuvar Uzman Kadrosu ve Çalışma Şekli, Laboratuvar Personeli, Personelin Görevlendirilmesi ile Görev ve Sorumlulukları, Eğitimi ve Değerlendirilmesi Laboratuvar uzman kadrosu ve çalışma şekli MADDE 16 – (1) Laboratuvarın uzman kadroları aşağıdaki hususlar dikkate alınarak belirlenir ve planlamaya uygun olarak ilan edilir: a) Laboratuvarın hizmet sunmasına izin verilen her uzmanlık dalı için en az bir uzman kadrosu bulunur. b) Laboratuvarın kadrosunda çalışan uzmanlar, laboratuvarın bulunduğu il içinde ve 11/4/1928 tarihli ve 1219 sayılı Tababet ve Şuabatı Sanatlarının Tarzı İcrasına Dair Kanunun 12 nci maddesine uygun olması ve hizmetin nitelikli sürdürülmesi kaydıyla en fazla iki laboratuvarda çalışabilirler. c) Bakanlığın Eğitim ve Araştırma Hastanelerinde her bir ana dal için asgari olmak üzere dört laboratuvar uzman kadrosu bulunur. ç) Bakanlığa bağlı diğer hastanelerde standart kadro ve personel dağılım cetvelinde belirtilen kapasiteye göre kadrolar belirlenir. d) Diğer kamu kurum veya kuruluş hastanelerine ise her dal için en az birer uzman kadrosu verilir. Laboratuvar personeli MADDE 17 – (1) Laboratuvarda, en az aşağıdaki sayı ve özelliklere sahip personel bulundurulur. a) Basit hizmet laboratuvarında Ek-1’de belirtilen en az bir teknik personel bulundurulur. b) Kapsamlı hizmet laboratuvarında her bir laboratuvar dalı için, ilgili uzmanın yanında Ek-1’de belirtilen en az bir teknik personel ile bir yardımcı personel ve/veya sekreter bulundurulur. Tıbbi patoloji laboratuvarında otopsi yapılması durumunda ayrıca bir teknisyen veya tekniker bulundurulur. Laboratuvar merkezinde yardımcı personel ve/veya sekreter ortak çalışabilir. c) İleri düzey hizmet laboratuvarında her bir laboratuvar dalı için en az iki uzman yanında Ek-1’de belirtilen en az üç teknik personel ile bir yardımcı personel ve sekreter bulundurulur. ç) Referans hizmet laboratuvarında son iki yıl laboratuvarda fiilen çalışan en az bir uzman ve Ek-1’de belirtilen en az iki teknik personel bulundurulur. Laboratuvar personelinin görevlendirilmesi ile görev ve sorumlulukları MADDE 18 – (1) Tıbbi mikrobiyoloji laboratuvarlarında enfeksiyon hastalıkları ve klinik mikrobiyoloji uzmanları ve/veya tıbbi mikrobiyoloji uzmanları, tıbbi biyokimya laboratuvarlarında tıbbi biyokimya uzmanları ve tıbbi patoloji laboratuvarlarında tıbbi patoloji uzmanları çalışmaya yetkilidir. (2) Laboratuvarda, ruhsatta belirtilen uzmanlık alanına uygun olarak aşağıda belirtilen nitelikte personel görevlendirilir: a) Laboratuvar sorumlu uzmanı; laboratuvar merkezlerinde birim sorumluları arasından laboratuvarlar arası koordinasyonu sağlamak ve aşağıda belirtilen hususları yerine getirmek üzere Başhekim tarafından görevlendirilir. Ancak üniversitelerin laboratuvar merkezlerinde laboratuvar sorumlu uzmanı başhekimin teklifi ile rektör tarafından görevlendirilir. Yalnızca bir birim sorumlusunun bulunduğu laboratuvarlarda birim sorumlusu aynı zamanda laboratuvar sorumlusu olarak görev yapar. 1) Kurum veya kuruluştaki laboratuvar birim sorumlularından oluşturulan bir komisyon marifetiyle laboratuvarların ihtiyaçlarının tespitini, laboratuvar testlerinin maliyet etkin yürütülmesini ve HKS’ye uygun çalışılmasını sağlamak, 2) İlgili uzmanlık eğitim içeriğini dikkate alarak, kurum veya kuruluş bünyesindeki laboratuvarlarda farklı ana bilim dalı/yan dallarında hangi testlerin yapılacağını belirlemek, 3) Laboratuvarda çalışan uzmanların değişmesi, ayrılması veya işe başlaması durumunda bu değişikliği beş iş günü içinde Müdürlüğe bildirmek. b) Laboratuvar birim sorumlusu; birden fazla uzmanının bulunduğu dallarda, bu uzmanlardan birisi başhekim tarafından birim sorumlusu olarak görevlendirilir. Eğitim araştırma hastaneleri ve üniversitelerde ise, laboratuvar birim sorumlu uzmanlığı görevi ilgili anabilim dalı başkanı veya klinik şefi tarafından veya görevlendireceği uzman tarafından yürütülür. Birim sorumlu uzmanı aşağıdaki görevleri yerine getirir: 1) Laboratuvar güvenliği de dâhil, laboratuvarın yönetimi ve tüm faaliyetleri ile bu Yönetmeliğe, ilgili mevzuata ve kalite yönetim sistemine göre yürütülmesini ve bu iş ve işlemlerin yürütülmesi için uygun kişilerin görevlendirilmesini yapar. 2) Laboratuvarın ihtiyaçlarının tespitini, sonuçlarının güvenilirliği ve izlenebilirliği ile laboratuvarda HKS’nin yerine getirilmesini sağlar. 3) İç kalite kontrol ve dış kalite değerlendirme sonuçlarının uygun periyotlarda yapılması ve değerlendirilmesi ile gerekli düzeltici ve önleyici faaliyetlerinin yapılması veya yaptırılmasından sorumludur. 4) Testlerin zamanında yapılması ve sonuçlarının kayıt altına alınmasını ve hizmet talebinde bulunan kişi/kurum/kuruluşa zamanında rapor edilmesini sağlar. 5) Laboratuvar personelinin tüm faaliyetlerini izler, eğitim almalarını sağlar ve yeterliliklerini değerlendirir. 6) Teknik personele iç kalite kontrol, dış kalite kontrol değerlendirme ve HKS konusunda eğitim verir. 7) Uzmanlık eğitimi veren kurum/kuruluşlarda eğitimle ilgili sorumluluklarını varsa eğitim sorumlusu ile birlikte yerine getirir. c) Eğitim ve araştırma hastanelerinde başhekimlik/dekanlık tarafından eğitim faaliyetlerini yürütmek üzere bir eğitim sorumlusu atanabilir. ç) Laboratuvar, ihtiyacına uygun ve kadrosunda olmak kaydıyla diğer uzman/uzmanlar bulundurabilir. Bu uzmanlar birim sorumlu uzmanının koordinasyonunda personel eğitimi/uzmanlık eğitimi de dâhil olmak üzere laboratuvardaki tüm faaliyetlerin yürütülmesinden sorumludurlar. Gerektiğinde testi isteyen hekime test süreci, sonuçları, yorumlanması ve ileri tetkik yapılması ile ilgili bilgi ve danışmanlık hizmeti verirler. d) Laboratuvar ihtiyacına uygun olarak aşağıda belirtilen görevleri yerine getirmek üzere Ek-1’de belirtilen teknik personel çalıştırabilir: 1) Gerektiğinde laboratuvara başvuran kişilerden usulüne uygun olarak klinik örnekleri almak, teste uygun hale getirmek üzere hazırlamak, 2) Laboratuvar ortamını ve cihazları, analizin preanalitik ve analitik evrelerine hazır hale getirmek, 3) Laboratuvarın görev kapsamındaki işleri ve testleri yazılı düzenlemelere göre yapmak ve değerlendirilmek üzere uzmana sunmak, 4) Dekontaminasyon işlemlerini ve atıkların güvenli şekilde bertaraf edilmesini sağlamak, 5) Uzman tarafından verilen diğer görevleri yerine getirmek. e) Destek hizmetler ve/veya idari işler personeli; laboratuvarda genel temizlik, örneklerin taşınması ve diğer ofis işlerinin yerine getirilmesinden sorumludurlar. Ayrıca uzman tarafından verilen benzeri diğer görevleri yerine getirmekle yükümlüdürler. (3) Hastalık, ölüm ve doğal felaket gibi mücbir sebepler dışında bir yılda iki aydan az olmak şartıyla sorumlu uzmanın veya birim sorumlusunun görevinden ayrılması durumunda, aynı nitelikleri taşıyan bir uzman, kurum/kuruluş yetkilisi tarafından vekâleten görevlendirilir. Bu durum beş iş günü içinde Müdürlüğe bildirilir. İki aydan uzun süre sorumlu uzmanın/birim sorumlusunun mücbir sebeplerle görevine dönmemesi halinde bu süre altı aya kadar uzatılabilir. Personelin eğitimi ve değerlendirilmesi MADDE 19 – (1) Laboratuvar sorumlu uzmanı laboratuvar personelinin mesleki becerilerini geliştirmek, teknolojik gelişmelerden haberdar olmaları ve laboratuvar hizmet standartlarını yerine getirmelerini sağlamak üzere, yılda en az bir hizmet içi eğitim düzenler veya laboratuvar personelinin düzenlenen en az bir hizmet içi eğitime katılımını sağlar. (2) Laboratuvar personelinin aldığı eğitimin değerlendirilmesi; personelin kendi görev ve sorumluluk alanı ile ilgili konularda, laboratuvarın HKS’de belirlenen ölçütleri sağlamasına olan katkısı ve laboratuvardaki sorumluluklarını yerine getirmesine göre yapılır ve kayıt altına alınır. BEŞİNCİ BÖLÜM Laboratuvarların Planlaması ve Yatırım İzni Laboratuvarların planlanması ve yatırım izni MADDE 20 – (1) Özel laboratuvar açmak isteyenler ruhsat başvurusunda bulunmadan önce Bakanlıkça belirlenen planlamaya ve aşağıdaki şartlara uygun olarak yatırım izni alırlar. a) Bakanlıkça yeni açılmasına izin verilecek laboratuvarlara ilişkin yatırım listesi, her yıl Ekim ayında Bakanlık internet sitesinde ilan edilir. İlanda, istenecek belgeler, laboratuvarda bulundurulması gereken uzmanlık dalları ve sınıfı belirtilir. Laboratuvar açmak isteyenler, Kasım ayı sonuna kadar Bakanlığa başvurur. Kasım ayına kadar başvuru olmaması halinde, takip eden yılın Ağustos ayına kadar başvuruda bulunulabilir. b) Başvurular ilgili yılın Kasım ayının sonuna kadar ya da başvuru olmaması halinde izleyen yılın Ağustos ayının sonuna kadar toplanır ve takip eden ayın ilk haftasında birden fazla istekli olması halinde aralarında noter huzurunda kura çekilerek hak sahibi belirlenir; tek istekli bulunması halinde o kişiye hak sahibi olduğu bildirilir. c)Yatırım izni için başvurularda aşağıdaki belgelerin aslı veya müdürlük tarafından onaylanmış sureti istenir: 1) Laboratuvar açmak için ekonomik ve mali yeterliliğinin olduğunu gösteren belgeler, 2) Hak sahipliğinin iki yıl başkasına devredilmeyeceğine dair taahhütname, 3) Laboratuvar açtıktan sonra işletme hakkının bir yıl süreyle başkasına devredilmeyeceğine dair taahhütname, 4) (a) bendi gereği yapılacak ilanda belirtilen diğer belgeler. ç) Yatırım izni verilen yatırımcı, bir yıl içinde laboratuvar ruhsatnamesini alarak faaliyetine başlar. Bu süre içinde yatırıma başlamış ancak ruhsatname alamamış yatırımcıya müracaat etmesi halinde altı ay ek süre verilebilir. Bu sürede de ruhsat alarak faaliyete başlayamayan yatırımcının yatırım izni iptal edilir. d) Yeni açılan hastanelerin ruhsatlandırılmasına esas olan laboratuvara hastane planlaması ile birlikte Bakanlıkça izin verilir. (2) Gerekli hallerde yapısı ve işlevi Bakanlık tarafından belirlenen ulusal laboratuvar ağları oluşturulabilir. ALTINCI BÖLÜM Başvuru ve Başvurunun İncelenmesi, Ruhsatlandırma, Referans Hizmet Laboratuvarı Başvurusu ve Belgelendirilmesi, Ruhsat Yenileme, Faaliyetin Geçici Olarak Kısmen Durdurulması, Ruhsatın Askıya Alınması ve İptali ile Çalışan Uzman Değişikliğinin İşlenmesi Başvuru ve başvurunun incelenmesi MADDE 21 – (1) Yeni laboratuvar açacaklar veya taşınma/birleşme gibi nedenlerle yeni bir fiziki alanda yeniden ruhsatlandırma gerektiren durumlarda yatırım izni verilen yatırımcı ile kamu sağlık kurum/kuruluş yöneticisi, aşağıda belirtilen belgelerin olduğu dosya ile Müdürlüğe başvurur. Dosya, dizi pusulası ile kabul edilir. Dosyada; a) Ek-3’e uygun olarak doldurulan ruhsat başvuru dilekçesi, b) Bu Yönetmelikte belirtilen şartlara uygunluğunun yazılı beyanı ve laboratuvarın faaliyette bulunacağı yerin adresi, yerleşim planı ve mimar onaylı ölçekli krokisi, c) Laboratuvardaki kimyasal maddelerin, araç, gereç, donanımın ve uzmanlık alanına uygun olarak yapılan test listesi, ç) Her yıl Maliye Bakanlığı tarafından tespit edilen miktarlar üzerinden yatırılacak ruhsat harç makbuzunun aslı veya Müdürlükçe onaylı örneği, bulunur. (2) Başvuru; Müdürlüğe hazırlanan bir dosya ile ve/veya SKYS’ye kaydedilerek yapılır. Başvuru SKYS üzerinden de yapılmış ise geçici kurum kodu ve ruhsat işlemlerinin aşamalarını izleyebilmek ve yazışmaya gerek olmaksızın eksiklik ve uygunsuzlukları bildirmek için müracaat sahibine geçici şifre düzenlenir ve imza karşılığı verilir. Başvuru, Müdürlük tarafından bu Yönetmelik hükümlerine uygun olup olmadığı Ek-4 ile Ek-5’e göre değerlendirilir ve başvuru tarihinden itibaren yedi iş günü içinde incelenir. Dosyada eksiklik ve/veya uygunsuzluk tespit edilir ise, başvuru sahibine eksiklikler on iş günü içinde bildirilir. (3) Dosyada eksiklik ve/veya uygunsuzluk olmaması halinde denetim ekibi tarafından onbeş iş günü içinde laboratuvar yerinde denetlenir. Eksiklik olmayan dosya Bakanlığa gönderilir. (4) Eksiklik ve/veya uygunsuzluk bulunması halinde, bunlar beş iş günü içinde ilgilisine geri bildirilir ve eksikliklerin giderildiğine dair müracaat üzerine ilgili inceleme ekibi tarafından onbeş iş günü içinde tekrar yerinde denetim yapılır. Eksikliklerin giderilmiş olduğunun tespit edilmesi halinde dosya Bakanlığa iletilir. Ruhsatlandırma MADDE 22 – (1) Bakanlığa intikal ettirilen başvuru, Genel Müdürlükçe dosya ve/veya SKYS kaydı üzerinden incelenir. Dosyada eksiklik ve/veya uygunsuzluk varsa eksiklikler SKYS üzerinden onbeş gün içinde veya yazışmayla onbeş iş günü içinde giderilir. Bu süre sonunda eksikliği giderilmeyen dosya Müdürlüğe iade edilir. (2) Genel Müdürlük başvuruyu Ek-5’te belirtilen ruhsat denetimi hizmet kalite ölçütleri ile bu Yönetmeliğin ilgili hükümlerine uygunluğu açısından değerlendirir. (3) Genel Müdürlük eksiklik ve/veya uygunsuzluğu bulunmayan laboratuvara en fazla otuz gün içersinde Ek-6’ya göre ruhsatname düzenler ve Müdürlüğe gönderir. (4) Bakanlık, laboratuvarlara ruhsatname düzenleme yetkisini gerekli görmesi halinde valiliklere devredebilir. (5) Başvuru dosyası ve düzenlenen belgelerin bir örneği Müdürlükte muhafaza edilir. Düzenlenen ruhsatın aslı sorumlu uzmana imza karşılığında verilir. (6) Ruhsatname alan laboratuvar altı ay içerisinde faaliyete geçmek zorundadır. Bu süre içerisinde faaliyete geçmeyen laboratuvarın ruhsatı Bakanlıkça iptal edilir ve planlama hükümleri uygulanır. Referans hizmet laboratuvarı başvurusu ve belgelendirilmesi MADDE 23 – (1) Referans hizmet laboratuvarı olarak hizmet sunabilmek için 12 nci maddede verilen ölçütleri karşıladığını belirten bir dosya ile Genel Müdürlüğe başvurulur. Başvuru, Genel Müdürlük tarafından dosya üzerinden on iş günü içinde incelenir. İncelenen dosya belgelerinde eksiklik varsa Referans hizmet laboratuvarı olma talebinde bulunan ilgililere bildirilir. Başvuru dosyasında eksiklik yoksa, başvuru Başkanlığa gönderilir. Başkanlık dosyayı üç ay içinde komisyonda görüşerek raporunu Genel Müdürlüğe bildirir. (2) Genel Müdürlükçe uygun bulunanlara Ek-7’ye göre bir ay içerisinde Referans hizmet laboratuvarı belgesi düzenlenir. (3) İhtiyaç durumunda aynı test için birden fazla referans hizmet laboratuvarı belirlenebilir. Başkanlık bünyesinde yer almayan testlerle ilgili olarak Bakanlık, kamu kurum veya kuruluş bünyesindeki referans hizmet laboratuvarından birisini Ulusal Referans Laboratuvarı olarak belirler. Referans hizmet laboratuvarı/laboratuvarları veri gönderme, ilgili ulusal ağlara ve kalite kontrol çalışmalarına katılma konusunda Ulusal Referans Laboratuvarına karşı sorumludur. Ruhsat yenileme MADDE 24 – (1) Aşağıdaki hususlardan herhangi birindeki değişiklik durumunda ruhsat yenilenir: a) Sorumlu uzman, b) Ruhsata esas kadrolu uzman, c) Laboratuvarın faaliyette bulunduğu uzmanlık dalı, ç) Adres/fiziki mekan değişikliği, d) Kurum/kuruluş veya laboratuvar adı. (2) Uzmanlık dalı, adres/fiziki mekân, kurum/kuruluş veya laboratuvar adı değişikliği yapacak laboratuvar, değişikliklerle ilgili dosya hazırlayarak en az onbeş gün öncesinde Müdürlüğe başvurur. (3) Laboratuvar sorumluluğunu yürüten uzmanın ayrılması ve yerine başka bir uzmanın başlaması durumunu en az onbeş gün öncesinde Ek-3’e uygun ruhsat başvuru dilekçesi ile birlikte Bakanlığa bildirilir. (4) Laboratuvar ruhsatının herhangi bir nedenle askıya alınması halinde, buna neden olan durum altı ay içerisinde düzeltilmemişse ruhsatın yenilenmesi gerekir. Faaliyetin geçici olarak kısmen durdurulması MADDE 25 – (1) Laboratuvarda uygulanan testlerle ilgili olarak, iç kalite kontrol veya dış kalite değerlendirilmesi sonucunda, varsa Bakanlık tarafından belirlenen uygunsuzlukların giderilmediğinin veya bu testin/testlerin hizmet alımıyla karşılanmadığının tespit edilmesi durumunda, bu test veya testlere yönelik faaliyetler geçici olarak kısmen durdurulur. Bu süre altı ayı geçemez. Ancak laboratuvar kendi isteği ile; kapsamı değişmemek ve Müdürlüğe bildirmek şartıyla bu test/testleri yapmaktan tamamen vazgeçebilir. Ruhsatın askıya alınması ve iptali MADDE 26 – (1) Laboratuvarın ruhsatının askıya alındığı veya iptal edildiği durumlar aşağıda belirtilmiştir: a) Faaliyeti geçici olarak kısmen durdurulan ve 25 inci maddede belirtilen süre sonunda eksiklikleri hâlâ devam eden laboratuvarın ruhsatı en fazla altı ay süreyle askıya alınır. Bu süre sonunda da eksiklikleri tamamlamayan laboratuvarın ruhsatı iptal edilir. b) Laboratuvar faaliyetlerine ara vermek istediğinde en fazla altı ay süre ile ruhsat askıya alınır. Bu süre içinde laboratuvar, faaliyete başlamak istediğini belirten bir dilekçe ile Müdürlüğe başvurmamış ise ruhsat iptal edilir. c) Faaliyeti geçici olarak kısmen durdurulduğu halde faaliyeti durdurulan testin çalışmasına devam eden veya ruhsatın askıya alındığı halde faaliyetine devam eden laboratuvarın ruhsatı iptal edilir. ç) Laboratuvarın faaliyetine son verilmek istendiğinde, Müdürlüğe ekinde ruhsatın yer aldığı bir dilekçe ile başvurulur ve Müdürlükçe ruhsat iptal edilir. d) Bakanlık tarafından belirlenen verileri düzenli olarak Bakanlığa göndermeyen laboratuvarlar üçer ay ara ile iki kez uyarılır. Altı aylık süre sonunda veri göndermeyen laboratuvarın ruhsatı iptal edilir. e) Ruhsatın tanzim edilmesinden itibaren altı ay içinde faaliyete geçmeyen laboratuvarın ruhsatnamesi iptal edilir. f) Değerlendirmelerde, laboratuvarda bulunduracağını belirttiği, kimyasal maddeler, araç, gereç, donanımında eksikliği tespit edilen laboratuvara, bunları tamamlaması için en fazla üç ay süre verilir ve bu süre içinde eksikliklerini tamamlayamayan laboratuvarın ruhsatnamesi askıya alınır. Bu durumun üç ay daha devamı halinde ruhsat iptal edilir. g) Ek-8’e göre yıllık değerlendirme sonunda %50 -%70 arasında HKS puanı alan laboratuvarlardan tekrar değerlendirilenlerin %70 puana ulaşamayanlarının ruhsatları altı ay süre ile askıya alınır. Bu süre sonunda %70’e ulaşamayanların ruhsatı iptal edilir. ğ)Yıllık değerlendirmelerde laboratuvarın fiziki şartlarının ruhsat için belirtilen asgari ölçütleri karşılamayacak şekilde değişiklik yapıldığının tespiti halinde ruhsatı askıya alınarak, uygunluk sağlanmasına yönelik en fazla altı ay süre tanınır. Bu süre sonunda uygunsuzluğun devamı durumunda ruhsatı iptal edilir. h) Ek-8’e göre değerlendirilen laboratuvarlardan %50 HKS puanına ulaşamayanların ruhsatları altı ay süreyle askıya alınır. Bu süre sonunda yapılan değerlendirme sonucuna göre %50 veya üzerinde puan alamayan laboratuvarın ruhsatı iptal edilir. Çalışan uzman değişikliğinin işlenmesi MADDE 27 – (1) Çalışan uzman değişikliği durumunda laboratuvar SKYS kaydının yapılması için müdürlüğe başvurur. Müdürlük SKYS kaydını yapar ve bir çıktısını ilgilisine verir. Çalışan uzmanların diploma aslı veya onaylı suretleri laboratuvarda görülebilecek yerde asılır. YEDİNCİ BÖLÜM Denetim ve Değerlendirme Ekibi, Laboratuvarın Değerlendirilmesi ve Yaptırımlar Denetim ve değerlendirme ekibi MADDE 28 – (1) Ruhsata esas denetimlerde denetim ekibi, ilin sağlık müdürünün görevlendireceği ilgili müdür yardımcısı veya şube müdürü, denetlenen laboratuvar dallarında en az birer uzman ile HKS eğitimi almış olan bir üye olmak üzere en az üç kişiden oluşur. Tüm HKS değerlendirmelerinde il performans ve kalite koordinatörlüklerinin sorumluluğunda laboratuvar dallarından en az birer uzman ile HKS eğitimi almış olan iki üye olmak üzere en az üç kişiden oluşan değerlendirme ekibi görev alır. Genel Müdürlük lüzumu halinde benzer niteliklere sahip il dışı denetim veya değerlendirme ekibi görevlendirebilir. Denetim ve değerlendirme ekibindeki üyeler kendi çalıştığı laboratuvarın denetim ve değerlendirmesinde yer alamazlar. Laboratuvarın değerlendirilmesi MADDE 29 – (1) Laboratuvar, Ek-8’e ve bu Yönetmeliğin diğer hükümlerine göre en az yılda bir kez değerlendirilir. Bakanlık HKS puan durumlarına uygun olarak aşağıdaki sürelerde laboratuvarı ayrıca değerlendirir veya değerlendirilmesini sağlar: a) %70-%90 arasında puan alanlar altı ay sonunda, b) %50 -%70 arasında puan alanlar üç ay sonunda, tekrar değerlendirilir. (2) Değerlendirme ekibi tarafından düzenlenen rapor en fazla beş iş günü içinde Müdürlük aracılığı ile Genel Müdürlüğe iletilir. Müdürlük, değerlendirme raporunda yer alan hususlara veya işlemlere yönelik beş iş günü içinde ilgili laboratuvarı yazılı olarak bilgilendirir. Yaptırımlar MADDE 30 – (1) Laboratuvarlar bu Yönetmelik hükümlerine aykırı olarak açılamaz ve işletilemez. (2) Laboratuvar, ruhsat başvurusunda bulunduğu sorumlu uzman ve yer/adres değişikliklerini Müdürlüğün bilgisi ve Bakanlığın onayı olmaksızın yapamaz. (3) Laboratuvar, tıbbi üretim, pazarlama firmalarıyla ortaklıklar kuramaz, çıkar birlikteliği oluşturamaz. (4) Laboratuvar açma yetkisine sahip olmayıp da, laboratuvar açanlar veya izinle açmış oldukları laboratuvarları yetkisi olmayanlara terk edenler ile laboratuvarın usulüne uygun olmayan yöntemlerle çalıştığı ve bu Yönetmelik hükümlerine uymadığı tespit edilenler hakkında 992 sayılı Kanunun 9 uncu ve 10 uncu maddelerindeki hükümler uygulanır. (5) Bu Yönetmeliğin ilgili hükümlerine uygun çalışmayan referans hizmet laboratuvarları Bakanlık tarafından eksikleri hususunda yazılı olarak uyarılır ve üç ay süre tanınır. Bu süre içerisinde eksikliklerini gidermeyen referans hizmet laboratuvarının belgesi iptal edilir. (6) Faaliyetleri geçici olarak kısmen durdurulan testi çalışmaya devam edenler ile ruhsatsız veya ruhsatı askıda iken faaliyet gösteren laboratuvarlar iki yıl süresince yeniden ruhsat başvurusunda bulunamaz. (7) Bakanlığa veri göndermediği için ruhsatı iptal edilen laboratuvarlar iptal tarihi itibariyle altı ay süresince yeniden ruhsatlandırılmaz. (8) Sadece araştırma amaçlı üretilmiş test ve kitler laboratuvarda tanı amacıyla kullanılamaz. SEKİZİNCİ BÖLÜM Laboratuvarın Kalite Kontrol ve Değerlendirme Sistemi, Güvenliği, Atık Yönetimi, Bilgi Sistemiyle Verilerin Korunması ve Etik İlkeler Laboratuvarın kalite kontrol ve değerlendirme sistemi MADDE 31 – (1) Laboratuvarlarda Bakanlık tarafından hazırlanan hizmet kalite standartları gereklerini sağlamak üzere bir kalite yönetim sistemi kurulur. (2) Laboratuvarda rapor edilen testler için uygun bir iç kalite kontrol, test doğrulama ve/veya geçerli kılma programı uygulanır ve kayıt altına alınır. (3) Laboratuvar Bakanlık tarafından belirlenen testler için dış kalite değerlendirme programlarına katılır ve bu katılım belgelenerek sonuçları kayıt altına alınır. (4) Hizmet alımı ile diğer bir laboratuvara hizmet sunan laboratuvarlar, Bakanlık tarafından belirlenen testlerle ilgili katıldıkları dış kalite değerlendirme programına katılımlarına ait belge ve sonuçlarını hizmeti alan laboratuvara bildirirler. (5) Laboratuvar; test sonuçlarının güvenilirliğini sağlamak amacıyla kalite kontrol ve değerlendirme sistemi kapsamında yöntemlerini ve faaliyetlerini gözden geçirmek ve gerekli önemleri almak zorundadır. (6) İç kalite kontrol ile dış kalite değerlendirme sonuçları laboratuvarda en az beş yıl muhafaza edilir. Laboratuvar güvenliği MADDE 32 – (1) Laboratuvarın biyogüvenlik düzeyi TS EN 12128 standardında belirtilen en az “fiziksel korunma düzeyi 2” şartlarına uygun olmalıdır. Ancak, Ek-9’da yer alan mikroorganizmalardan risk grubu 3 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları “fiziksel korunma düzeyi 3” , risk grubu 4 olanlarıyla çalışan tıbbi mikrobiyoloji laboratuvarları ise “fiziksel korunma düzeyi 4” şartlarına uygun olmalıdır. (2) Korunmaya yönelik alınan tedbirler; laboratuvar personelinin ve yakın çevresinin kimyasal radyolojik veya enfeksiyöz ajana maruz kalma olasılığını azaltıcı veya önleyici olmalıdır. (3) Laboratuvarda ilk yardım kiti ve mevcut tehlikelere uygun yangın söndürücü ile alev söndürme örtüsü güvenlik donanımı bulundurulur. (4) Laboratuvarda risklere uygun dekontaminasyon ve/veya nötralizasyon kiti bulundurulur ve etkin kullanımı için önlemler alınır. (5) Laboratuvarda kimyasal, radyoaktif ve/veya potansiyel enfeksiyöz riskten korunmak için personele yeterli kişisel koruyucu donanım ve diğer gerekli güvenlik donanımları temin edilir ve kullanılması sağlanır. (6) Personele, işindeki potansiyel tehlikeler bildirilir, güvenli laboratuvar teknikleri eğitimi verilir ve aldığı eğitimler kayıt altına alınır. Personelin, çalıştığı örnekler veya testlerden dolayı aşı ile önlenebilir hastalıklara neden olan enfeksiyöz etkenlere maruziyet riski ile karşı karşıya ise bu personelin aşılanması sağlanır. (7) Laboratuvar teknik alanında el yıkama için lavabo ile acil duş ve göz yıkama işlevi görecek ünite bulunur. (8) Laboratuvarda kendine özgü ve personelinin kolayca erişebileceği bir güvenlik dokümanı oluşturulur. Kullanılan kimyasalların ürün güvenlik bilgi formları temin edilir. (9) Laboratuvar içerisinde bulunan tehlike ve risklere ilişkin olarak, giriş kapısı ile gerekli olduğu durumlarda cihaz, donanım veya aygıt üzerine ilgili işaretleme veya etiketleme yapılır. (10) Laboratuvarda uygun sıklıkta hava değişimi sağlanır. Bu değişim kimyasal veya toksik dumanların veya enfeksiyöz ajanların yayılmasını engelleyecek şekildedir. (11) Laboratuvara giriş sınırlaması uygulanır. Laboratuvarda biyolojik ajanların, örneklerin, ilaçların, kimyasalların ve hastalara ait bilgilerin yanlış kullanılması, tahrip edilmesi ve çalınma tehlikesine karşı gerekli önlemler alınır. (12) Laboratuvarda korunma amacıyla kurulu cihazların ve donanımların ait oldukları standartlara uygun olarak düzenli bakım ve kontrolleri yapılır. (13) Laboratuvarda giriş ve çıkış noktaları ile varsa yangın çıkışları uygun şekilde işaretlenir. Laboratuvar güvenliği ile ilgili tüm işaretlemeler ulusal veya uluslararası kabul gören simgeler kullanılarak yapılır. (14) Tıbbı atıklar laboratuvarın biyogüvenlik düzeyine uygun olarak dekontamine edilir. Laboratuvar atık yönetimi MADDE 33 – (1) Laboratuvara ait tıbbi atıklar ile ilgili işlemler, 22/7/2005 tarihli ve 25883 sayılı Resmî Gazete’de yayımlanan Tıbbî Atıkların Kontrolü Yönetmeliğine uygun olarak yürütülür. Laboratuvar bilgi sistemiyle verilerin korunması MADDE 34 – (1) Laboratuvarda test sonuçları ve kişisel verilerin mevzuata uygun bir şekilde gizliliğini ve güvenliğini sağlayacak bilgi sistemi kurulur ve işletilir. Etik ilkeler MADDE 35 – (1) Laboratuvar hizmetleri etik kurallara ve kanıta dayalı laboratuvar tıbbı ilkelerine uygun olarak, güncel bilimsel ve teknolojik gerekleri yerine getirecek şekilde yürütülür. (2) Laboratuvarda, toplum sağlığını tehdit eden salgın durumları veya hayatı tehdit eden acil durumlar hariç olmak üzere 1219 sayılı Kanunun 70 inci maddesine göre seçme ve ayırt etme kabiliyeti bulunan hastalarda kendisinin, kısıtlılarda ve çocuk hastalarda ise kanuni temsilcisinin başvurusu/rızası olmaksızın hastadan test için örnek alınamaz ve test yapılamaz. (3) Test için alınan örneklerin araştırmalarda kullanılmasında klinik araştırmalarla ilgili mevzuat hükümleri uygulanır. Ancak toplum sağlığını korumaya yönelik Bakanlıkça yapılacak çalışmalar ile laboratuvarların kalite kontrol analizlerinde bu örnekler kör numune olarak kullanılabilir. DOKUZUNCU BÖLÜM Çeşitli ve Son Hükümler Hizmet alımı MADDE 36 – (1) Kamuya ait laboratuvarlar 7/2/2009 tarihli ve 27134 sayılı Resmî Gazete’de yayımlanan Sağlık Hizmeti Sunan 4734 sayılı Kamu İhale Kanunu Kapsamındaki İdarelerin Teşhis ve Tedaviye Yönelik Olarak Birbirlerinden Yapacakları Mal ve Hizmet Alımlarına İlişkin Yönetmelik uyarınca birbirlerinden veya 4/1/2002 tarihli ve 4734 sayılı Kamu İhale Kanunu uyarınca özel laboratuvarlardan hizmet alabilir. Hizmet alımı kararını kurum/kuruluş yönetimi ile birlikte laboratuvar sorumlusu verir. (2) Hizmetin satın alma yoluyla gördürülmesi halinde, hizmeti alan sağlık kurum/kuruluşu ile hizmeti veren sağlık kurum/kuruluşu, bu uygulamadan ve sonuçlarından müştereken sorumludur. Örneklerin taşınması MADDE 37 – (1) Örnekler 25/9/2010 tarihli ve 27710 sayılı Resmî Gazete’de yayımlanan Enfeksiyöz Madde ile Enfeksiyöz Tanı ve Klinik Örneği Taşıma Yönetmeliğine uygun olarak taşınır. Mevcut ruhsatlı laboratuvarlar GEÇİCİ MADDE 1 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce ilgili mevzuata uygun olarak açılan laboratuvarlar, iki yıl süre ile mevcut durumları ile faaliyete devam edebilirler. Bu süre içinde bu Yönetmelikte belirlenen ölçütlere uygun olarak ruhsat alırlar. Belirtilen süre içinde ruhsat almayan laboratuvarın faaliyetine son verilir. Ruhsat için başvuru yapmış olan laboratuvarlar GEÇİCİ MADDE 2 – (1) Bu Yönetmelik yürürlüğe girmeden önce 15/2/2008 tarihli ve 26788 sayılı Resmî Gazete’de yayımlanan Ayakta Teşhis ve Tedavi Yapılan Özel Sağlık Kuruluşları Hakkında Yönetmeliğe göre ruhsat almak üzere başvuruda bulunmuş olan laboratuvarların ruhsat başvuruları anılan Yönetmelik kapsamında değerlendirilerek sonuçlandırılır. Ancak bu laboratuvarlar da bu Yönetmeliğin yürürlük tarihinden itibaren iki yıl içinde ruhsatlarını yenilemek zorundadır. Mevcut referans laboratuvarları GEÇİCİ MADDE 3 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce Bakanlık tarafından belirlenmiş Referans Hizmet Laboratuvarları bu Yönetmeliğin yürürlüğe girdiği tarihten itibaren iki yıl içinde durumunu bu Yönetmeliğe uygun hale getirmekle yükümlüdürler. Aksi halde referans olma durumları herhangi bir işleme gerek olmaksızın iptal olunur. Laboratuvar uzman kadroları GEÇİCİ MADDE 4 – (1) Bu Yönetmeliğin yürürlüğe girdiği tarihten önce, faaliyette bulunan laboratuvarlara bir uzman kadrosu verilir. Birden fazla uzman çalışan laboratuvarlarda 1219 sayılı Kanunun 12 nci maddesine uygun olmak kaydıyla, çalışan diğer uzmanları belgelemeleri halinde bu uzmanlar kadrolara eklenerek laboratuvar kadrosu olarak belirlenir. Yürürlük MADDE 38 – (1) Bu Yönetmelik yayımı tarihinde yürürlüğe girer. Yürütme MADDE 39 – (1) Bu Yönetmelik hükümlerini Refik Saydam Hıfzıssıhha Merkezi Başkanlığının bağlı olduğu Bakan yürütür. TEKNİK PERSONEL a) Tekniker; meslek yüksekokullarının tıbbi laboratuvar veya patoloji laboratuvar teknikleri programlarından mezun olan sağlık teknikeridir. b)Teknisyen; sağlık meslek liselerinin tıbbi laboratuvar programından mezun olan sağlık teknisyenidir. c) Laboratuvarlar hizmet çeşitliliği ve kapasitesine göre; laborant ve astsubay teknikerleri ile veteriner sağlık yüksek okulu (ön lisans), meslek liselerinin kimya, gıda analizi ve su ürünleri analizi bölümü mezunları toplam en az bir yıl süreyle, sorumlu uzmanı bulunan laboratuvar veya laboratuvarlarda staj yaptığını ya da çalıştığını belgelemek kaydıyla laboratuvarda görev alabilirler. Üniversitelerin biyoloji, kimya, gıda, su ürünleri, veteriner hekimlik bölüm veya fakültelerinin mezunları toplam en az üç ay süreyle, sorumlu uzmanı bulunan laboratuvarda staj yaptığını ya da çalıştığını belgelemek kaydıyla tıbbi laboratuvarlarda görev alabilirler. ç) Aside Dirençli Boyama Mikroskopisi yapacak teknik personelin uzmanı bulunan tüberküloz laboratuvarında en az beş gün eğitim aldığını ve başarılı olduğunu belgelendirmesi zorunludur. LABORATUVAR DIŞINDA UYGULANAN TESTLER 1. Muayenehane Mikroskopisi (MM): Hekimin muayenehanesinde tanı koyabilmek için hastadan aldığı örneklere hemen uygulayabildiği mikroskopik işlemler olup aşağıda listelenmiştir; - Lam-lamel arası (ıslak) preparatlar - vajinal, servikal sürüntü veya deri örnekleri dahil - Bütün potasyum hidroksit (KOH) ile hazırlanan preparatlar - Fern test - Vajinal veya servikal mukusun post-coital direkt, kalitatif incelemeleri - Semen analizi; Huhner hariç - sperm motilitesinin varlığı veya yokluğunun tespiti düzeyinde - İdrar analizi: yalnız mikroskopik - Fekal lökosit incelemesi - Eozinofillerin tespiti için nazal smear incelemesi - ARB (Aside Dirençli Boyama, Tüberküloz tanısına yönelik) - Kalın damla ve ince yayma (Sıtma tanısına yönelik) 2. Hasta-Başı Testleri (HBT): Kalıcı ve özel bir alan gerektirmeksizin hastanın bulunduğu yerin yanında veya hemen yakınında yapılabilen testler olup aşağıda listelenmiştir; - Kan glukozu – spesifik olarak ev kullanımı için onaylanmış glukoz izleme cihazlarıyla - Hemoglobin – otomatik olmayan tekniklerle veya doğrudan sonuç veren basit cihazlarla - Protrombin zamanı, aPTT (yarı otomatik) - İdrarda hCG (gebelik testleri) - Alkol tayini–kanda veya tükürükte - Kan gazları

http://www.biyologlar.com/tibbi-laboratuvarlar-yonetmeligi-resmi-gazetede-yayinlandi

FİKSATİFLER VE HAZIRLANIŞLARI

Fiksatifler kullanımlarına göre iki gruba ayrılabilir. l-Mikro-anotomik fiksatifler: Bu fiksatifler doku tabakaları arasındaki bağlantıları ve geniş hücre kümelerinin diğeri ile bağlantılarını tam olarak korumak amaçlandığında kullanılır. Normal ve patolojik histolojinin rutin çalışmalarının çoğu bu tip fiksatiflerle yapılmaktadır. 2-Sitolojik fiksatifler: Hücreyi oluşturan elementleri korumak istendiğinde kullanılırlar. Penetre olma gücü, büyük doku kütleleri ile çalışma yeteneği, kesit almayı veya boyamayı engellememeli. Şöyleki Flemming fiksatifinde ara zon çok güzel fikse olurken en dış ve iç parçalar kötü fikse olabilirler. % 10’luk Formalin Formalin 100 cc Çeşme Suyu 900 cc %10'luk Formal Salin Formalin 100 cc NaCl 8.5 gr Çeşme suyu 900 cc %10' luk Tamponlanmış Formalin (pH=7.0) Formalin 100 cc Çeşme suyu 900 cc NaH2P04 : H20 4 gr . Na2HP04 6.5 gr Formalini nötralize etmek için %2' lik kalsiyum asetat birçok araştırıcı tarafından tavsiye edilmiştir. Fakat yumuşak dokularda artifakta benzer alanlar oluşturabilir. %10' luk formal-salin histolojik fiksatiflerin ençok kullanılanıdır. Aşırı bir sertleşme olmaksızın dokuyu sertleştirir. Fiksasyon süresine dayanıklıdır. Genellikle formalin fiksasyonundan sonra dokuların doğal rengini kısmen veya tamamen korumak mümkündür. Bu fiksatif, müze örneklerinin hazırlanmasında özel bir değere sahiptir. Özellikle nötral tamponlanmış olarak kullanıldığında kırmızı kan hücrelerinin korunması içeren iyi fiksatiftir. Formalinde uzun süre kalma (aylarca-yıllarca) dokunun kesit alma niteliğini bozmaz. Dokunun bazik boyalarla boyanmasında biraz kayba yol açabilir. Bazı gümüş çöktürme tekniklerindeki sonuçlar daha iyiye gidebilir. İnce bloklar % 10'luk formal-salinle 24-48 saatte iyi şekilde fikse olurlar fakat optimum fiksasyon süresi 7-10 gündür. Formalin fiksasyonundan sonra, değişen miktarlarda kan içeren dokular bir artifakt pigmenti (formalin pigmenti) gösterebilirler. Bu, kahverengi, granüler, ekstraselüler bir materyeldir. Çoğunlukla post-mortem dokularda bulunur, saklandıkca artar ve sıklıkla formaline daldırdıktan birkaç saat sonra yoktur fakat birkaç gün sonra dokularda çok geniş ve fazla olarak depo edilir. Kanla asit formalin pigmente yol açar ve nötral tamponlu solusyonlar kullanarak bunlardan kurtulabilir. Pikrik asidin alkolde doymuş solusyonunda 20 dakika ya da daha fazla tutarak kesitlerden uzaklaştırılabilir. Pigmentin görünümü ve özellikleri malarya pigmentine benzemektedir fakat malarya pigmenti intraselülerdir. % 10' luk formal-saline mikroanotomik bir fiksatiftir. Birçok boyama yöntemi için uygundur. Hematoksilenle iyi sonuçlar verir. Nadiren belirli hiçbir neden olmaksızın formal-salinle tespit edilip, H+E ile boyanmış kesitlerde garip bir artifakt görüIür. Nukleusların hematoksilen ile kısmen veya tamamen boyanmamasına, bunun yerine eozini almasına sonuçta ise çekirdek kenarlarının kaybına yol açar. Ençok lenfoid ve epitel dokusunda göze çarpan artifakt, dağılımında aşırı olarak bozuktur ve garip bir şekilde fiksasyonu iyi yapılmış dokularda ortaya çıkar. Nadiren otolize olmasına rağmen, postmortem dokularda da görülür. Bu artifakt "pembe hastalık" olarak açıklanmıştır ve ortaya çıkmaması için %1O'luk formalindeki %2' lik asetik asit kullanımı ile korunur veya olduğunda parafini alınmış kesitlerin hematoksilenle boyanmasından önce absolu alkoldeki %l'lik HCl ile 1 saat bırakarak uzaklaştırılır. Formalin fiksasyonundan sonra hiçbir şeye gereksinim yoktur ve dokular gömmeden önce direkt % 70'lik alkole alınabilir veya dondurma yöntemi ile kesit alınabilir . ALKOL-FORMALİN SOLUSYONU: Nötralize edilmiş formalin 10 cc %95 Alkol 90 cc , Bu fiksatifte parçalar 2-4 saat içinde çabucak tespit olur. Eğer doku parçaları kalın olursa, bu solusyon içinde buzdolabında 24 saat kalmalıdır. Bilhassa polisakkaridlerin gösterilmesi için kullanılan fiksatiflerden biridir. ALKOL FİKSATİFLERİ: Absolu alkol (%99) özellikle hücrelerde glikojenin gösterilmesinde kullanılan bir fiksatiftir. Eğer buzdolabında veya daha düşük derecede kullanılmazsa dokuda büzülmelere sebep olur. Doku parçaları absolü alkolde 20C'de iki gün bırakılacak olursa en elverişli şekilde, büzülrne meydana gelmeden tespit olurlar. %80 alkol fiksatif ise 5C'de 24-48 saat arasında dokuyu büzmeden tesbit etme özelliğine sahiptir. Bu solusyon alkaline phosphatasın gösterilmesinde kullanılır. Alkol fiksatifleri oda ısısında kullanıldiklarında bunların %65-%70' lik solusyonları kullanılmalıdır. Aksi halde dokuda çok fazla büzülme ve değişikliklere sebep olurlar. LİSON VOKAER' İN GLİKOJEN TESPİT ÇÖZELTİSİ: %96' lık alkolde doymuş picric asit çözeltisinden 85 ml; 10 ml formalin, 5 ml asetik asit. Küçük parçaları buzdolabında 5-10 saatte tespit eder. Glikojen için iyi tespit edicidir. Tespitten sonra absolu alkolden geçirilerek gömme işlemi yapılmalıdır. Çünkü gıikojen suda erir. MERKÜRİK KLORİD-FORMALİN (FORMAL-SUBLİMATE) Suda doymuş merkürik klorid 900cc Formalin 100 cc Mükemmel bir mikro-anotomik fiksatiftir. Formal-salindeki distorsion olmadan dokuyu büzer. Asit boyalarla çok parlak boyadığı gibi mükemmel bir sitoplazma korunması sağlar ve metakromaziyi artırır.Formal-saline göre sinir fibrilleri ve hücreler için gümüş çöktürme tekniklerinde daha az elverişli olmasına rağmen mükemmel retiküler fibril impregnasyonu elde edilebilir. Bloklar 12-24 saat tespit edilir fakat uzun süre işlem kesit almayı zorlaştıran bir sertlik yaratmaz. Formal-sublimat özellikle formal-salinle birinci fiksasyondan sonra ikinci fiksatif olarak yararlıdır. En büyük dezavantajı pahalı olması ve metallere korosiv olmasıdır. Dokular fiksasyondan sonra %70-90' lık alkole aktarılmalı ve mercury pigmenti kesitlerden daha önce açıklandığı gibi uzaklaştırılmalıdır. SUSA FİKSATİFİ ( HEİDENHAIN 1916) Merkürid klorid 45 gr Sodyum klorid 5 gr Trikloroasetik asit 20 gr Asetik asit 40 cc Formalin 200 cc Distile su 800 cc Özellikle biopsi materyelleri için uygun bir fiksatiftir. İyi bir mikro-anotomik fiksatiftir. Nedeni açık olmamakla birlikte Susa' dan sonra elastik fibriller Weigert'in (1898) elastik fibril boyası ile zayıf boyanırlar. Hazırlanması için gerekli maddelerin çokluğu dezavantajdır. Ancak karışım bir önceki formal-sublimata göre biraz daha avantajlıdır. Bloklar 3-24 saatte fikse olurlar ve direkt olarak % 95' lik etil alkole aktarılırlar. Daha sulu solusyonlara aktarma kollajen fibril1erin şişmesine yol açmaktadır. ZENKER FİKSATİFİ ( ZENKER 1894) Merkürik klorid 5 gr Potasyum dikromat 2.5 gr Sodyum sülfat 1 gr . Distile su 100 cc Asetik asit 5 cc (kullanımdan hemen önce eklenir) Asetik asitsiz stok solusyon iyi korunur. Zenker etkili bir mikro-anotomik fiksatiftir ve özellikle sitoplazmik ve fibril boyaları üzerine çok yararlı etkisinden dolayı kullanılmaktadır. Taze materyelde post-mortem dokulara göre daha yararlıdır. Alyuvarları iyi korumazlar. Bloklar 3-8 saatte fikse olurlar ve fazla dikromatı uzaklaştırmak için çeşme suyuyla yıkanırlar. Mercury pigmenti ise daha önceki yöntemle uzaklaştırılır. HELLY SIVISI ( VEYA ZENKER-FORMAL, HELLY 1903) Zenkerdeki asetik asit yerine 5 cc formalin kullanmadan hemen önce eklenir. Helly sıvısı bir oksitleyici ajan (potasyum dikromat ve bir indirgeyici ajan (formalin) içermesine rağmen rnükemmel bir fiksatiftir. Helly özellikle kemik iliği, dalak, lenf bezleri, hipofiz ve pankreas için çok yararlıdır. Bloklar 6-24 saat tespit edilmeli ve mercury pigmenti Zenkerdeki gibi uzaklaştırılmalıdır. Helly hem mikro-anotomik hem de sitolojik (sitoplazmik) fiksatif olarak kullanılabilir ve formal-sublimat gibi % 10' luk formal-salinden sonra ikinci fiksatif olarak da uygulanabilir. BOUİN FİKSATİFİ ( BOUİN l897) Suda doyurulmuş pikrik asit 75 cc Formalin 25 cc Asetik asit 5 cc Bouin, alyuvarların kısmen veya tamamen lizisine yol açar ve kollajen fibrilleri şişebilir. Aşırı sertleşmeye yol açmaz. Sitoplazmik boyalarla parlak boyanma sağlar. Glikojen çok iyi korunur (özellikle yukardaki karışımın alkolik varyantı ile) fakat böbrek iyi korunamaz. Bazı sitoplazmik granüller çözünebilir. Bouin, bir mikro-anotomik fiksatif veya kromozomların gösterilmesi için kul1anıldığında da sitolojik (nükleer) fiksatiftir. Bloklar 6-24 saat fikse edilirler ve % 70 lik alkole aktarılırlar. Dokuların sarı boyanması çok küçük örnekler için avantaj oluşturur. Fakat kesitlerden bu boya, alkolü takiben bazik anilin boyaları kullanmadan önce % 2.5 lik sodyum thiosulfat kullanarak uzaklaştırılmalıdır, aksi takdirde precipat oluşacaktır. CARNOY FİKSATİFİ (CARNOY, 1887) Absolü alkol 60 cc Kloroform 30 cc Asetik asit 10 cc Carnoy, hızla penetre olan ve hareket eden bir fiksatiftir. Acil teşhis için dokuların hızlı tespit edilmesi ve kısmi dehidrasyonu için kullanılır. Kromozom çalışmaları için kullanılır fakat alyuvarların lizisine ve fazla büzülmeye yol açar. Glikojen korunur fakat bazı sitoplazmik granüller çözünebilir. 3 mm' den kalın olmayan dokular 30-90 dakikada fikse edilmeli ve % 95'lik ya da % 100' lük alkole transfer edilmelidir. Bir mikro-anotomik veya sitolojik (nükleer) fiksatifdir. SANFELİCE FİKSATİFİ (SANFELİCE, 1918) Çözelti A Çözelti B Formalin 128 cc %l'1ik kromik asit 100 cc Asetik asit 16 cc Karışım: Kullanmadan az önce hazırlanır. 9 cc A +16 cc B Genellikle mitotik figürler ve kromozomlar için mükemmel bir fiksatifdir. 3 mm den kalın olmayan küçük parçalar 12-24 saatte tespit edilmeli ve sonra akarsu ile yıkanmalıdır. Sitolojik (nükleer) fiksatiftir. FLEMİNG FİKSATİFİ (FLEMMİNG, 1884) % l'1ik kromik asit 15 cc %2' lik OSO4 4 cc Asetik asit 1 cc ya da daha az Kullanmadan önce hazırlanmalıdır. Penetrasyon eşit olmayabilir ve tam olmayan fiksasyonla yüzeyel tabakaların aşırı kararmasına neden olabilir ve sonradan en içteki hücrelerin zayıf boyanmasına yol açabilir. Page (1970), Flemming sıvısını formalin fiksasyonunu takip eden ikinci fiksatif olarak kullanarak miyelini .başarılı şekilde göstermiştir. İki mm kalınlığındaki küçük parçalar 12-48 saat tespit edilmeli ve sonradan akarsuda yıkanmalıdır. Asetik asit içeriği ile bir nükleer fiksatiftir. Lipidler OSO4 ile siyahlaşır. Bu fiksatiften sonra alum hematoksilen nükleer boyaları kolaylıkla alınmaz, bunun yerine safranin kullanılmalıdır. FLEMİNG SIVISlNIN LEWITSKY-BAKER MODIFIKASYONU Flemming sıvısını asetik asitsiz fakat % O.75'lik sulu NaCl solusyonunu distile su yerine çözücü olarak ekleyerek hazırlanır. 12-24 saatlik fiksasyondan sonra dokular akarsuya aktarılır. Sitolojik (sitoplazmik) fiksatif, bu ve diğer krom-osmium karışımlar omurgasız ve alt omurgalıların dokuları ile çok iyi sonuçlar verirler. Helly sıvısı memeli dokuları için tavsiye edilmemektedir. ORTH FİKSATİFİ ( ORTH 1896) Formalin 10 cc Müller sıvısı (Potasyum dikromat 2.5 gr +sodyum sülfat 1 gr+distile su 100cc) 100 cc Taze olarak hazırlanmalıdır. Formalin ve Müller sıvısını karıştırma mitokondri gibi sitolojik yapılar üzerine ve kromaffin reaksiyonundaki mordantlama özelliği nedeni ile çok yararlıdır. Bloklar çeşme suyuyla yıkanmadan veya distile sudaki %2.5'lik potasyum dikromatla ileri kromasyondan önce 24-48 saat tespit edilmelidir.Bazen potasyum dikromatla uzun süre muamele etme hemen hemen kaçınılmaz olarak kırılganlıkta artış ve parafin kesitlerden kesit alma zorluğu ile (özellikle yumuşak dokularda, dalak ve beyin gibi) sonuçlanmaktadır.

http://www.biyologlar.com/fiksatifler-ve-hazirlanislari

Meyve ve Meyve tipleri

Meyve, çiçeğin dişi organının, döllenme sonucunda farklılaşıp, yumurtalığın gelişmesiyle meydana gelen ve tohumları taşıyan organa denir. Olgunlaşma esnasında çiçeğin ovaryumundan başka, diğer kısımları genellikle dökülür ve ovaryum olgunlaşarak meyveyi teşkil eder. Ovaryumu meydana getiren karpeller (meyve yaprağı), meyve kabuğu (perikarp) haline ve ovaryum içindeki tohum taslakları da tohum haline döner. Döllenme meydana gelmeden meyve teşekkülüne partenokarpi, böyle meyvelere de partenokarp meyve denilir. Meyveleri basit meyveler, küme (agregat) meyveler ve bileşik meyveler olmak üzere üç kısma ayırmak mümkündür. Basit meyveler bir çiçeğe ait bir tek ovaryumun gelişmesiyle meydana gelir. Agregat meyveler, bir çiçeğe ait birbirinden ayrı ovaryumlardan, mesela böğürtlen, çilek gibi; bileşik meyveler ise birden fazla çiçeğe ait ovaryumların bir bütün olarak gelişmesiyle meydana gelir, mesela dut ve incirde olduğu gibi. Meyveyi teşkil eden meyve kabuğu (perikarp), üç kısımdan meydana gelmektedir. Dıştan içe doğru dış kabuk (ekzokarp), orta tabaka (mezokarp) ile iç kısımdır ve çoğunluk sertleşmiştir (endokarp). Basit meyveler, kuru ve etli meyveler olmak üzere ikiye ayrılırlar. Fındık, buğday, ayçiçeği, keçiboynuzu, bakla ve fasulye kuru meyvelere misal verilebilir. Etli meyveler de üzümsü (bakka) ve eriksi (drupa) olmak üzere ikiye ayrılır. Üzümsü meyvelerde dış kabuk (ekzokarp) ince ve zarımsıdır. Orta (mezokarp) ve iç (endokarp) kısım etlidir. Bu tip meyvelere üzüm, portakal, limon, kabak misal gösterilebilir. Eriksi meyvelerde ise iç kısım (endokarp) sertleşmiştir; erik, kiraz, şeftalide olduğu gibi. Meyve, bitkilerin tohum taşıyan organıdır. Meyve dendiğinde hemen herkesin aklına muz, kiraz, erik, elma gibi çiğ olarak yenen genellikle tatlı besin maddeleri gelir. Oysa bu yaygın meyve anlayışına uymasa da patlıcan, kabak, fasulye ve domates gibi sebzeler ile meşe palamudu, ceviz, fındık, haşhaş kapsülü hatta karahindibanın uçuşan paraşütçükleri (tüylü tohum başları) bile botanik açısından gerçek birer meyvedir. Çünkü bunların tümü ileride ana bitkiye benzeyen yeni bitkileri oluşturacak tohumları taşır. Çiçeklerde tozlaşma sonucunda tohum taslakları gelişerek tohuma, bunları barındıran yumurtalık da değişime uğrayarak meyveye dönüşür. Meyvelerdeki tohum sayısı tek bir taneden yüzlercesine kadar değişebilir. Bazı bitkilerde, çiçeğin çanak yaprakları ve bürgüler (brakte), çiçek solduktan sonra dökülmeyip sapın üzerinde kalır ve birbirine kaynaşa­rak gelişen meyveyi örter (örneğin meşe palamudu ve kayın meyvesi). Meyvelerin en temel görevlerinden biri tohumların olabildiğince uzak bir alana yayıl­masını sağlamaktır; böylece tohumların ana bitkinin dibine düşerek onun besinini bölüş­mesi ve burada çimlenen fidelerin sıkışık bir biçimde, yani uygunsuz koşullar altında büyü­mesi önlenir. Nitekim çoğu bitkide meyvenin yapısına, biçimine ve hatta rengine bağlı olarak tohumlar birkaç metreden yüzlerce kilometreye kadar varan uzaklıklara sürük­lenir. Bazı meyve tipleri tohumlarına yapışık "kanatlar"ın ya da paraşüte benzeyen "tüy demetleri"nin yardımıyla, gerçek anlamda uçarak bitkiden uzaklaşır. Örneğin akçaağaç ve karaağaç tohumlarının zarsı ya da kâğıtsı kanatlan tohumların rüzgârda dönerek uçma­larını sağlar. Karahindibada olduğu gibi bazı bitkilerin bir ucunda ipeksi tüy demeti taşıyan küçük ve hafif tohumları ise aynı bir paraşüt gibi en hafif bir esintide bile havada süzülerek uçuşur. Çok sayıda tohum içeren bazı kuru meyve­ler (örneğin menekşe meyveleri) kendiliğin­den yarılıp açılır ve bitki rüzgârda sallandıkça tohumlar çevreye saçılır. Yuvarlak bir tuzluğu andıran haşhaş kapsüllerinde tohumlar tepe­deki deliklerden dökülür. Baklagillerden bazı bitkilerin badıçları (ince uzun tohum kılıfı) ise birdenbire patlayarak tohumlarını hızla çev­reye fırlatır. Günün sıcak saatlerinde kırda dolaşırken, bu bitkilerin yakınındaysanız pat­lamaların sesini bile duyabilirsiniz. Doğada meyveler genellikle başta kuşlar olmak üzere çeşitli hayvanlar tarafından çev­reye yayılır. Örneğin sincaplar sonbahar gel­diğinde fındık, kestane ve meşe palamudu gibi kabuklu meyveleri toplayıp kışın yemek üzere toprağa gömerler. Bunların tüketilmeyip yerde kalan bir bölümü çimlenerek yeni bitkiler verir. Kiraz, böğürtlen, kuşburnu ve üvez gibi bazı meyveler parlak renkleri, hoş kokuları ve tatları yüzünden hayvanların dikkatini çeker. Hayvanlar yedikleri bu meyvelerin etini sindi­rip, sert çekirdeklerini (tohum) dışkılarıyla atarlar. Örneğin, böğürtlen yiyen bir kuş, dışkısını kilometrelerce uzakta bırakarak to­humların çok uzaklara yayılmasına neden olur. Bazı bitkilerin çengelsi dikenlerle kaplı meyveleri ise hayvanların postlarına takılarak uzaklara taşınır. Örneğin pıtrak bu tip bir bitkidir. Böyle bitkilerin yetiştiği yerlerde dolaşacak olursanız siz de farkında olmaksızın üstünüze yapışan meyvelerin başka yerlere taşınmasına aracı olursunuz. Meyve Çeşitleri Doğada çok çeşitli meyve tiplerine rastlanır. Günlük yaşantımızda hepimizin yaygın olarak tükettiği, ortasında tek bir tane taş gibi sert tohum bulunan derimsi bir kabukla örtülü yumuşak ve etli meyveler bilimsel olarak "eriksi meyve" adı altında toplanır. Erik, kiraz, kayısı ve şeftali bu tür meyvelerdendir. Dış bölümü yenmediği halde yarıldığında içinden sert kabuklu iri birer tohum çıkan ceviz ve badem meyveleri ile dış çeperi kalın bir lif katmanıyla kaplı hindistancevizi de eriksi meyveler arasında yer alır. Böğürtlen ve ahududu gibi meyveler ise çok sayıda minik eriksi meyvenin bir araya toplanmasıy­la oluşmuştur (bileşik meyve). Birden çok tohum içeren ve tohumları etli bir özün içine gömülü olan meyvelere "üzümsü meyve" denir. Bu tür meyvelerde yumurta­lığın çeperleri etlenip kalınlaşmıştır. Üzüm, bektaşiüzümü, domates ve hıyar birer üzümsü meyvedir ve hepsinde de zarsı ya da derimsi bir dış kabuğun içinde sulu ve etli bir öz bulunur. Ayrıca, inanılması zor ama, muz da bu tür meyvelerdendir. Görül­düğü gibi küçük, yuvarlak bir meyveyi çağrış­tıran üzümsü meyve terimi aslında üzüme hiç benzemeyen değişik biçimli başka meyveleri de kapsar. Fındık ve kestane gibi bazı sert kabuklu, kuru meyveler olgunlaştığında kendiliğinden açılmaz. "Fındıksı meyve" adı altında sınıf­landırılan bu meyve çeşitlerinin çoğu yağ ya da nişastaca zengin tohumlarından ötürü in­sanlar ve hayvanlar için değerli bir besin kaynağı oluşturur. Bu temel meyve gruplarının dışında bir de botanikçilerin "yalancı meyve" olarak adlan­dırdıkları bir meyve grubu daha vardır ki, bu gruptaki meyvelerin etli bölümü yumurtalığın değil çiçek sapının ucundaki çiçek tablasının, örtü yapraklarının ya da bürgülerin gelişme­siyle oluşmuştur. Nitekim yalancı meyvelerin en tipik örneği olan çileğin yediğimiz hoş kokulu ve yumuşak etli bölümü gerçek bir meyve olmayıp, meyve biçiminde gelişmiş çiçektablasıdır; gerçek meyveler ise bu yalan­cı meyvenin yüzeyindeki küçük, esmer sarı çekirdekçiklerdir. Buruk lezzetinden ötürü çok sevilen ve çoğu kez marmelat yapılarak değerlendirilen kuşburnu (yabani gülün meyvesi) iç yüzeyindeki çok sayıda küçük meyve­yi örten etli bir kılıftan başka bir şey değildir. Elma ve armutta ise yediğimiz sulu ve tatlı bölüm şişkinleşmiş çiçektablasıdır; asıl meyve elma ya da armutun tam ortasında bulunan ve içinde çekirdekleri barındıran ince, derimsi bir örtüyle çevrili bölümdür. Dış görünüşüyle böğürtlene çok benzeyen dut ise aslında bir yalancı meyve çeşididir. Bir arada kümeler oluşturan çok sayıda çiçeğin örtü yapraklarının düşmeyip, etlenip gelişmesiyle oluş­muştur. Çiçeklerin dişi üreme organı olan yumurta­lık normal olarak yalnızca döllendikten sonra gelişerek meyveye döner. Ama bazen tozlaş­ma olsa bile döllenme gerçekleşmez ve sonuç­ta tohumları olgunlaşmamış ya da hiç tohum içermeyen meyveler gelişir. İşte doğada kendiliğinden ortaya çıkan bu olay insan eliyle yani yapay olarak da gerçekleştirilebilir. Örneğin, çekirdeksiz üzüm döllenmemiş üzüm çiçeklerinin meyvesidir. Meyvecilikte bu yolla üzüm dışında hıyar, muz, ananas, portakal ve greyfurtun da çekirdeksiz çeşitleri yetiştirilir. Bitkilerde döllenme sırasında doğal olarak, meyvelerin gelişmesini sağlayan bir hormon salgılanır. Günümüzde, meyvesi için yetiştiri­len pek çok tarım ürününün (örneğin doma­tes) çiçeklerine, daha nitelikli ürün elde etmek amacıyla özel olarak yapay büyüme hormonları püskürtülmektedir.

http://www.biyologlar.com/meyve-ve-meyve-tipleri

Biyologlar Odası Kanunu Taslağı

BİRİNCİ BÖLÜM Amaç, Kapsam, Tanımlar Amaç Madde 1- Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili olup da sanatını serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologları teşkilatı içinde toplayan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşu olan Biyologlar Odası kurulmuştur. Madde 2- Odanın kuruluş amacı; Türkiye sınırları içerisinde meslek ve sanatlarını kullanmaya yetkili serbest olarak yapan veya meslek diplomasından istifade etmek suretiyle resmi veya özel görev yapan biyologlar arasında mesleki dayanışmayı kurmak, biyologluğun kamu ve kişi yararına uygulanıp geliştirilmesini sağlamak ve meslek mensuplarının hak ve yararlarını korumak amacıyla kurulacak olan kamu kurumu niteliğindeki Biyologlar Odası kurulmasına, teşkilat, faaliyet ve denetimlerine, organlarının seçimlerine dair esas ve usulleri düzenlemektir. Kapsam Madde 3- Türkiye hudutları dahilinde meslek ve sanatlarını icraya yasal olarak salahiyeti olup, dört yıllık fakültelerin Biyoloji bölümlerinden lisans diploması alarak mezun olanları kapsar. Tanımlar Madde 4- Bu yönetmelikte geçen; Oda: Biyologlar Odasını, Şube: Biyologlar Odası Şubesini, Temsilcilik: Biyologlar Odası Temsilciliğini, Üye: Biyologlar Odası üyesini, ifade eder. İKİNCİ BÖLÜM Biyolog Odaları görev, yetki, organ ve çalışma esasları Madde 5- Odalar, bu Kanunda yazılı esaslar dahilinde Biyolog mesleği mensuplarının ortak ihtiyaçlarını karşılamak, mesleki faaliyetlerini kolaylaştırmak, bu mesleğin kamu yararına uygun olarak gelişmesini sağlamak, meslek mensuplarının birbirleri ve meslekle ilgili ilişkilerinde dürüstlüğü ve güveni hakim kılmak üzere meslek disiplini ve ahlakını korumak maksadı ile kurulan tüzel kişiliğe sahip kamu kurumu niteliğinde meslek kuruluşlarıdır. Oda temel görev ve yetkileri; Madde 6- Odaların temel görev ve yetkileri, Biyologların mesleki gereksinmelerini karşılamak amacıyla çalışmalar yapmak, Mesleki faaliyetlerini kolaylaştırmak, Mesleğin gelişmesini sağlamak, Meslektaşları birbirleri ile hizmet verdikleri alanlardaki kişi ve gruplarla ilişkilerinde dürüstlüğü ve güveni hakim kılmak, Meslek disiplinini, ahlakını ve onurunu korumaktır. Oda Organları Madde 7- Odaların organları şunlardır: a) Oda Genel Kurulu b) Oda Yönetim Kurulu c) Oda Denetleme Kurulu d) Oda Disiplin Kurulu Oda Genel Kurulu Madde 8- a) Oda Genel Kurulu; Odanın amaç, ilke, işleyiş, görev ve yetkiler açısından en yetkili organdır. b) Oda Genel Kurulu, Odaya kayıtlı üyelerden oluşur. c) Oda Genel Kurulu, iki (3) yılda bir Nisan ayı içerisinde, Oda Yönetim Kurulunun belirleyeceği günlerde ve adreste toplanır. Toplantı tarihinin, görüşmeler Cumartesi akşamına kadar tamamlanacak ve eğer varsa Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Oda Genel Kurulu üye tam sayısının çoğunluğu ile toplanır. Birinci toplantıda çoğunluk sağlanamaması halinde ikinci toplantı için çoğunluk aranmaz. Toplantı yeter sayısının sağlanamaması halinde Oda Genel Kurulu ancak bir kez altmış (60) günü geçmemek üzere ertelenir. Bu durumda, Yönetim Kurulu yeni Oda Genel Kurul tarihini ve yerini, gündemin seçim olması halinde görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce, bir gazetenin Türkiye baskısında ilan eder ve üyelere duyurur. d) Oda Yönetim Kurulu, Genel Kurul toplantısından en az onbeş (15) gün önce, Genel Kurula katılacak üyelerin üçer kopya olarak hazırlanmış listelerini, toplantının gündemini, yerini, gününü, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazıyla birlikte, görevli İlçe Seçim Kurulu Başkanlığına iletir. Gerekli incelemeden sonra hakim tarafından onaylanan listeler ve toplantıya ilişkin diğer hususlar Odanın ilan yerlerinde asılmak suretiyle ve üç gün süre ile ilan edilir. Yasal sürecin tamamlanması ve listelerin kesinleşip, Genel Kurula ilişkin diğer hususların onaylanmasını izleyen üç (3) gün içinde, Yönetim Kurulu, Genel Kurulu üyelere duyurur ve bir gazetenin Türkiye baskısında ilan eder. Çalışma Yöntemi Madde 9- Oda Genel Kurulu aşağıdaki şekilde toplanır; a) Genel Kurul toplantı yeter sayısının sağlanmasıyla, Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içinden belirleyeceği bir üye tarafından, açılır ve gündemin birinci maddesi gereğince Başkanlık Divanı seçilir. b) Başkanlık Divanı, bir Başkan ve iki Yazmandan oluşur. Başkanlık Divanı üyeliklerinin tespiti için ayrı ayrı oylama yapılır. c) Genel Kurul görüşmeleri, Yönetim Kurulunca hazırlanıp, duyurulmuş gündem maddelerine göre yapılır. Ancak, toplantıya katılan üyelerin yazılı önerisi ve Genel Kurul kararı ile gündeme madde eklenebilir ya da maddelerin sırası değiştirilebilir. ç) Oda Genel Kurulu gündeminde aşağıdaki maddelerin bulunması zorunludur; 1) Başkanlık Divanı seçimi, 2) Çalışma raporu, mali rapor ve denetleme raporunun okunması, görüşülmesi ve Oda Yönetim Kurulunun aklanması, 3) Oda Yönetim Kurulu, Denetleme Kurulu ve Disiplin Kurulu delege adaylarının ve Birlik Yönetim Kurulu aday adaylarının belirlenmesi ve duyurulması, d) Oda Genel Kurulunda bulunmak, görüşmelere katılmak, oy kullanmak ve organlara aday olmak için, Oda Yönetim Kurulu tarafından hazırlanıp, görevli hakim tarafından kesinleştirilmiş üye listelerinin imzalanması yoluyla alınmış Genel Kurul giriş kartının ve Oda kimlik kartının gösterilmesi zorunludur. Sadece oy verme sırasında, Oda kimlik kartı yerine, resmi kuruluşlarca verilmiş kimlik kartları da kullanılabilir. e) Genel Kurul, kararlarını çoğunlukla alır. Oylarda eşitlik olursa, Divan Başkanının kullandığı oy yönünde çoğunluk sağlanmış sayılır. Ancak, Bu Yönetmelikte değişiklik yapılabilmesi için görüşmelere katılanların üçte ikisinin olumlu oyu gereklidir. f) Genel Kurul görüşmeleri ve kararları bir tutanağa bağlanarak, Divan Başkanı, ve Yazmanlar tarafından imzalanıp, dosyasında saklanmak üzere Oda Yönetim Kuruluna verilir. Olağanüstü Genel Kurul Madde 10- Olağanüstü Genel Kurul, a) Odaya kayıtlı üye sayısının beşte birinin Oda Yönetim Kuruluna yazılı başvurusu ile, b) Oda Denetleme Kurulunun, Oda hesap işleriyle ilgili olarak gerek görmeleri durumunda ve oybirliği ile alacakları karar ile, c) Oda Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Boşalan Oda Yönetim Kurulu üyeliğine davet edilecek yedek kalmadığı durumda, yukarıdaki durumlardan herhangi birisinin oluşması üzerine, Oda Yönetim Kurulu tarafından toplantıya çağrılır. Olağanüstü Genel Kurul Toplantısı Madde 11- Bu Yönetmeliğin 10 uncu maddesinin (a), (b) ve (ç) bendinde belirtilen durumlardan herhangi birinin oluşması halinde, Oda Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Olağanüstü Genel Kurul için karar almak ve Genel Kurulun tarihini saptamak zorundadır. Olağanüstü Genel Kurul, karar tarihinden itibaren bir (1) ay içinde toplanır. Olağanüstü Genel Kurul Çalışma Yöntemi Madde 12- Olağanüstü Genel Kurul toplantısı da, Olağan Genel Kurul toplantısı gibi yapılır. Ancak, sadece önceden duyurulan gündemdeki maddeler görüşülüp karara bağlanır. Olağanüstü Genel Kurul toplantılarında gündeme madde eklenemez. Oda Genel Kurulunun Görev ve Yetkileri Madde 13- Oda Genel Kurulunun görev ve yetkileri şunlardır; a) Odanın çalışma alanları ile ilgili konularda ve Oda amaçlarının gerçekleşmesine ilişkin kararlar almak, b) Toplumun, mesleğin ve Odanın gelişmesi için gerekli etkinlik alanlarını ve esaslarını saptamak, c) Oda Yönetim Kurulu raporlarını incelemek, bu raporlar hakkında karar almak ve Oda Kurullarına görev, yetki ve sorumluluklar vermek, ç) Oda ve Şube hesaplarını, bilanço, gelir-gider cetvellerini, Denetleme Kurulu çalışmalarını ve raporlarını incelemek ve hakkında kararlar almak, d) Oda Yönetim Kurulunun önerileri doğrultusunda, yeni dönem gelir ve gider bütçelerini, geçici ya da sürekli ücretleri, ücretli kadroları incelemek, bu inceleme sonucunda değiştirerek ya da olduğu gibi onaylamak, e) Oda Yönetim Kurulu, Oda Disiplin Kurulu, Oda Denetleme Kurulu Üyelerinin oturum ücretlerini tespit etmek, f) Oda işlerinin yürütülmesini ve kanunların Odalara verdiği görev ve yetkilerin kullanılmasını, üyelerin mesleki onur ve çıkarlarının korunması için Oda Yönetim Kurulunca önerilen Yönetmelikleri incelemek, değişiklik teklifi yapmak ve onaylamak; gerektiğinde yönetmelik hazırlama yetkisini Oda Yönetim Kuruluna geçici süreler ile devretmek, g) Oda Yönetim Kurulunun yedi (7) asil ve yedi (7) yedek, Oda Disiplin Kurulunun beş (5) asil ve beş (5) yedek, Oda Denetleme Kurulunun üç (3) asil ve üç (3) yedek üyeliklerini, 3 yıl süre ile belirlemek ve duyurmak, ğ) Odanın sahip olduğu, ya da olacağı taşınmaz mallar hakkında karar almak, ya da bu konularda Oda Yönetim Kurulunu yetkilendirmek, h) Oda amaçlarının gerçekleştirilmesi ve Oda işlevlerinin yerine getirilmesi amacıyla yardımcı organları oluşturmak, ı) Oda Yönetim Kurulunun veya üyelerin gerekçeli önergeleri ile Şube kurmak, kapatmak, bunların yetki ve sorumluluklarını ve etkinlik alanlarını belirlemek, Oda Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 14- Oda Yönetim Kurulu; a) Oda Genel Kurulu tarafından üç (3) yıllık bir süre için seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Oda Genel Kurulundan sonra yapacağı ilk toplantıda üyeler arasından bir (1) Başkan, bir (1) İkinci Başkan, bir (1) Sekreter Üye ve bir (1) Sayman Üye seçerek, Oda Yürütme Kurulunu oluşturur ve diğer Yönetim Kurulu üyeleri için görev bölümü yapar, c) Ayda en az bir (1) kez ve çoğunlukla toplanır. Toplantıyı Başkan, Başkan bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkan bulunmadığı zamanlarda Sekreter Üye yönetir. ç) Kararlarını çoğunlukla alır. Oylarda eşitlik olması halinde, toplantı yöneticisinin kullandığı oy yönünde sağlanmış sayılır. Oda Yönetim Kurulu Üyeliğinin Düşmesi Madde 15- Her nedenle olursa olsun, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya on beş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Yedek Yönetim Kurulu Üyesi Kalmaması Madde 16- İstifa eden ya da çekilmiş sayılan Oda Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda, Oda Yönetim Kurulu, Başkan ve İkinci Başkan, tarafından Olağanüstü Oda Genel Kurulu toplantısı çağrısı yapılır. Olağanüstü Oda Genel Kurul toplantısında yeniden seçim yapılır ve seçilen Oda Yönetim Kurulu ilk Olağan Genel Kurul toplantısına kadar görev yapar. Oda Yönetim Kurulu Görev ve Yetkileri Madde 17- Oda Yönetim Kurulu, Odanın amaçları doğrultusunda aşağıdaki görevleri yerine getirmekle yükümlüdür; a) Oda Genel Kurulu tarafından kendisine verilen görev ve yetkileri kullanır, Oda Genel Kurulunda alınan kararları uygular, Oda işlerini Genel Kurulun kararları çerçevesinde yürütür. b) Oda üyelerinin, Oda Yönetmelikleri içinde hak ettiği yetkilerini iyi bir biçimde kullanmalarını gözetir, üyelerinin mesleki onur ve çıkarlarını korur ve bu konuda önlemler alır, gerekli girişimlerde bulunur. c) Mesleğin ilerlemesi için gerekli incelemeleri ve çalışmaları yapar ya da yaptırır ve bunlara ilişkin raporları Oda Genel Kurulunun değerlendirmesine sunar. ç) Resmi işlerde ve istek üzerine özel işlerde bilirkişilik, hakemlik, jüri üyeliği, danışmanlık gibi görevlere atama yapmak üzere, üyeleri arasından adaylar saptar veya görevlendirme yapar. d) biyoloji biliminin çalışma alanları ile ilgili diğer meslek kuruluşları ile ilişki kurar ve gerekli girişimlerde bulunur. Üyesi bulunduğu ya da üyelik olanağı doğan dış ülkelerdeki uzmanlığını ilgilendiren mesleki kuruluşlarla iletişim kurar ve bu ortamlarda Odanın temsil edilmesini sağlar, kongrelere katılmak için delege gönderir, yurt içi kongreler yapar. Gerekirse Birliğin ve birlik üyelerinin maddi ve manevi yardımını alır. e) Üyelerin gerek kamu kuruluşları ve gerek diğer kurum ve kişilerle olan bütün mesleki ilişkilerinde ortaklaşa uyulacak kanuni esasları hazırlar, bunlara uyulmasını sağlar ve uygulanmasını denetler. f) Üyelerin çalışma koşulları ve her türlü mesleki hizmetleri karşılığında alacağı asgari ücretleri saptar, ilgili yönetmelik, yönerge ve ücret tarifelerini hazırlar ve yayınlar, ilgililere duyurur, bunlara uyulmasını sağlar ve denetler. g) Her türlü mesleki ve teknik kitap, broşür, dergi, bülten ve benzeri yayını yayımlar. Üyelerin ve diğer ilgililerin yararına sunmak üzere, kütüphane ve arşiv kurar ve oda yayınlarının sürekli ve düzenli çıkmasını sağlar. ğ) Üyeler arasında haksız rekabeti önleyecek önlemleri önceden alır, gerekli yaptırımları uygular. h) Yasama ve yürütme organlarında Odanın amaçları ile ilgili olarak yapılacak kanun, tüzük, kararname, yönetmelik, yönerge ve genelge hazırlama veya değişikliği çalışmalarına ve uygulamalarına katılır, görüş verir ve önerilerde bulunur. ı) Mesleki, teknik eğitim ve öğretim konularında incelemelerde bulunur, ilgili kurumlarla işbirliği yapar, Oda görüşlerini oluşturur ve uygulanması için gerekli çalışmalarda bulunur. i) Odanın açacağı ve/veya Odaya karşı açılan davalarda, Odayı temsil eder, sav ve savunmada bulunur ve bu konularda vekil atar. l) Gerekli gördüğü konularda sürekli veya geçici kurul, komite, komisyon, çalışma grubu ve benzeri oluşturur, çalışmalarını yürütür ve yönetir. m) Oda Genel Kurulu hazırlıklarını ve duyurularını yapar. Oda Genel Kuruluna sunulmak üzere çalışma raporunu ve bilançoyu, yeni yıl gelir ve gider bütçelerini hazırlar, geçici ve sürekli ücretliler kadrolarını saptayarak bunları Oda Denetim Kurulu Raporu ile birlikte delege sayısına yetecek kadar çoğaltarak Oda Genel Kurulundan onbeş (15) gün öncesine kadar delegelere gönderir. n) Gerektiğinde Oda Genel Kurulunu olağanüstü toplantıya çağırır. o) Oda Genel Kurulu kararlarını ve yapılan seçim sonuçlarını üyelerine ve ilgili kurum ve kuruluşlara bildirir. ö) Oda Danışma Kurulunun eğilim kararı ile Bölge, İl ve İlçe Temsilcilik Yönetim Kurullarını atar ve bu birimlerin Oda işleyişine uygun faaliyetler yürütmesini sağlar. Gerektiğinde Oda Disiplin Kurulu ve/veya Oda Denetleme Kurulunun görüşlerine başvurarak Bölge, İl ve İlçe temsilciliklerini görevden alır. p) Odanın sahip olduğu taşınmaz malları, demirbaşları ve Oda bütçesini yönetir. Taşınmaz mallar ve demirbaşlar Oda adına satın alınır ve/veya satılır, tescil ettirilir. Taşınmaz malların alım, satım, bağış ve tescil işlemleri için Oda Genel Kurul kararı gerekir. Demirbaş malların alım, satım ve bağışı için Oda Genel Kurulunda kabul edilen bütçe esasları çerçevesinde Oda Yönetim Kurulunca verilecek görev ve yetki kapsamında ilgili birim yönetim kurulu kararı gerekir, ancak tescil işlemleri Oda Yönetim Kurulunca yapılır. Ayrıca Oda Yönetim Kurulu Odanın her türlü hizmet alımı ve diğer iş ve işlemleri ile ilgili ihale açmaya, teklif almaya, ihale vermeye, teklif ihale reddetmeye ve pazarlık yapmaya yetkilidir. r) Oda birimlerinden gelen üye kayıtlarını yapar ve belli bir düzende tutar. Üyelerin vasıf kaybetme işlemlerini yapar. ş) Oda görevlilerinin atama, yer, görev ve yetki, değiştirme, görevden alma, sicil ve benzeri özlük işlerini Yönetmelikler uyarınca düzenler. t) Gerekli gördüğünde veya başvuru üzerine söz konusu Oda üyeleri hakkında soruşturma yapar, gerek gördüğünde Oda Onur Kurulunu toplantıya çağırır. ü) Gerekli gördüğünde veya başvuru üzerine Oda Denetleme Kurulunu toplantıya çağırır. v) Şube Genel Kurulları için yeterli sayıda gözlemci seçer ve görevlendirir, gözlemcinin Şube Genel Kurul toplantısına katılmasını sağlar. y) Oda Yönetim Kurulu gerekli gördüğü hallerde, Şube Genel Kurulunun olağanüstü toplanması için Disiplin ve Denetleme Kurullarını ortak toplantıya çağırır. z) Oda Denetleme Kurulunun raporuna istinaden Şube Genel Kurulunu olağanüstü toplantıya çağırır. Oda Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 18- Oda Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Biyologlar Odasını Yönetim Kurulu Başkanı temsil eder. Başkanın bulunmadığı zamanlarda İkinci Başkan, Başkan ve İkinci Başkanın bulunmadığı zamanlarda Sekreter Üye, Başkan, İkinci Başkan ve Sekreter Üyenin bulunmadığı zamanlarda Sayman Üye Odayı temsil eder. Gerektiğinde Odayı temsil yetkisi Yönetim Kurulu kararı ile seçilen üye ya da kurullara devredilebilir. b) Oda Başkanı; Odayı temsil etmek, Oda Yönetim Kurulunu, Danışma Kurulunu ve Oda Organlarını yönetmek ve Oda kurullarının Oda amaçları doğrultusunda düzenli olarak çalışmasını sağlamakla yetkili ve sorumludur. Odanın çıkardığı tüm yayınların sahibidir. Oda İkinci Başkanı; Oda Başkanı olmadığı zamanlarda Oda Başkanının görev ve yetkilerini sürdürmekle, Odayı temsil etmekle ve birimler arası koordinasyonu sağlamakla yetkili ve sorumludur. Sekreter Üye; Odanın sözcüsüdür. Oda işlerini Oda amaçlarına ve Oda Yönetim Kurulu kararlarına uygun olarak yürütmekle görevli ve sorumludur. Oda Yönetim Kurulu toplantılarının gündemini hazırlar ve Oda Yönetim Kurulu kararlarının uygulanmasında gerekli tüm önlemleri alır. Odanın yazışma işlemlerini yürütür ve imza eder. Tüm Oda örgütündeki üyelerin özlük işlerini yürütür. Odanın geçici ve sürekli personelinin görev amirliğini yapar. Oda Saymanı; Odanın mali işlerinin yürütülmesini, oda bütçesinin uygulanmasını, aylık olarak gönderilen şube bütçelerinin incelenmesini sağlar, gerekli önlemleri alır ve önerilerde bulunur. c) Oda Başkanı, İkinci Başkanı, Sekreter Üye ve Saymana Yönetim Kurulu kararı ile belirli bir miktara kadar harcama yetkisi verilebilir. Banka işlemlerinde Oda Yönetim Kurulu üyelerinden herhangi ikisinin imzasının bulunması gereklidir. ç) Oda Yönetim Kurulu bu maddenin (c) bendinde belirlenmiş yetkilerinin bir bölümünü, Yönetim Kurulunun diğer üyeleri ile Şube ve Temsilcilik Yönetim Kurullarına ve Temsilcilerine ve Oda çalışanlarına kendi denetim ve sorumluluğunda olmak üzere görev olarak verebilir. d) Oda Sekreter Üye ve Saymanı, yürütme görevlerinden dolayı Oda Yönetim Kuruluna karşı sorumludur. e) Oda evraklarında imza yetkisi Oda Yönetim Kurulu üyelerine aittir. Ancak bu yetki, Oda Yönetim Kurulu kararı ile belirli konularda kullanılmak üzere Oda organları üyelerine devredilebilir. Oda Disiplin Kurulunun Oluşumu MADDE 19- Oda Disiplin Kurulu, Genel Kurulca üç yıllık bir dönem için oda üyeleri arasından seçilen 5 asil ve 5 yedek üyeden oluşur. Disiplin Kuruluna seçilebilmek için bu kanuna göre genel seçilme yeterliği yanında Türkiye'de en az bilfiil 5 yıl Biyologluk yapmış olmak şarttır. Hizmet süresi bakımından yeterli sayıda aday bulunmazsa sırasıyla daha az hizmeti olanlar da aday olabilir. Disiplin Kurulu asil üyeleri ilk toplantıda gizli oyla kendi aralarında bir Başkan ve bir raportör seçerler. Oda Disiplin Kurulunun Görev ve Toplantıları MADDE 20- Oda Disiplin Kurulunun görevi, Oda Yönetim Kurulunun disiplin soruşturması açılmasına dair kararı üzerine inceleme yaparak disiplinle ilgili kararları ve cezaları vermek, Kanunla verilen diğer yetkileri kullanmaktır. Oda Disiplin Kurulu toplantıya, Yönetim Kurulu tarafından, asil üyelere toplantı tarihinden en az 3 hafta önceden taahhütlü mektup gönderilmek suretiyle çağırılır. Geçerli bir mazeret nedeniyle toplantıya katılamayacak üyelerin toplantıdan bir hafta önce durumlarını belirtmeleri üzerine yerleri yedek üyelerle doldurulur. Mazereti olmaksızın üst üste iki toplantıya katılmayan, asil üyelerin üyelikleri düşer, yerlerine sırasıyla en fazla oy alan yedek üye getirilir. Disiplin Kurulu toplantılarında Disiplin Kurulu Başkanı bulunmazsa o toplantıyı yönetmek üzere katılanlar arasından bir başkan seçilir. Seçim gerçekleşmezse kurula, toplantıya katılanların en yaşlısı başkanlık eder. Oda Disiplin Kurulu üye tam sayısının salt çoğunluğu ile toplanır. hazır bulunanların salt çoğunluğu ile karar verir. Oylarda eşitlik halinde Başkanın Bulunduğu taraf üstün sayılır. Oda Denetleme Kurulunun Oluşumu MADDE 21- Oda Denetleme Kurulunca üç yıllık bir dönem için oda üyeleri arasından seçilen üç asil ve yedek üyeden oluşur. Denetleme Kurulu'na seçilebilmek için bu Kanuna göre seçilme yeterliliğine sahip olmak şarttır. Denetleme Kurulu üyeleri ilk toplantılarında kendi aralarından bir başkan seçerler. Oda Denetleme Kurulunun Görevleri MADDE 22- Denetleme Kurulu üyeleri gerek birlikte ve gerekse ayrı ayrı Odanın işlem ve hesaplarını incelemekle görevlidirler; Oy hakları olmaksızın Yönetim Kurulu toplantılarına katılabilirler. Denetleme Kurulu hesap ve işlemlerde gördüğü aksaklıkları en geç on gün içinde Yönetim Kurulu'na ve üç yıllık denetleme sonuçlarını da bir rapor halinde Oda Genel Kurulu'na sunar. Denetleme Kurulu yılda en az bir defa kendi başkanlarının başkanlığında toplanarak, Kurul halinde denetlemede bulunurlar. ÜÇÜNCÜ BÖLÜM Üyelik Üyelik Madde 23- Türkiye Cumhuriyeti uyruğunda olup, biyologluk mühendislik mesleğini yürütmeye yetkili; yurtiçi ya da yurtdışındaki denkliği Yükseköğretim Kurulunca kabul edilmiş Biyoloji Bölümlerinden mezun olarak Biyoloji lisans diplomasına sahip; biyologlar, mesleklerinin gerektirdiği işlerle uğraşabilmek ve mesleki öğretim yapan kuruluşlarda çalışabilmek için Odaya kayıtlı olmak ve üyeliğin gereklerini yerine getirmek, kimlik bilgilerini onaylatarak üyeliklerini korumak zorundadır. Geçici Üyelik Madde 24- Türkiye’de mesleklerini uygulamalarına yasal olarak izin verilen yabancı uyruklu biyologlar ya da denkliği Yükseköğretim Kurulunca kabul edilmiş bölümlerin lisans diplomasına sahip biyologlar Odaya geçici üye olarak kaydolmak zorundadırlar. Geçici üyelik çalışma izni süresi ile sınırlıdır. Geçici üyeler Oda asil üyelerinin bütün haklarına sahiptir ve sorumluluklarını taşır, ancak Oda Genel Kuruluna katılamaz ve Oda organlarında görev alamaz. Öğrenci Üyeliği Madde 25- Biyoloji bölümü öğrencileri Odaya öğrenci üye statüsünde üye olabilirler. Öğrenci üyelerin ödenti zorunlulukları yoktur, ancak Odanın amaçları doğrultusunda faaliyet yürütmekle yükümlüdürler. Üye Yükümlülükleri Madde 26- Odaya kayıt olan üyeler; a) Mesleki örgütlenme amaçlarına uygun olarak bu kanun gereğince, kamu yararı esasına dayanarak ve kanuni mevzuata uygun olarak, mesleki etkinliklerde bulunur, b) Mesleklerini uygularken, ülke ve toplum yararı ile insan onuruna yakışır hareket etmekle yükümlüdür. İnsan ve mühendis topluluğunun onuruna aykırı biçimde mesleki rekabet yapamaz. Odayı, yetkili organlarını ve üyelerini küçük düşürücü, rencide edici davranış, hareket ve açıklamalar yapamaz, c) İlgili mevzuat çerçevesinde tanımlı makamlar ile kendilerine verilen görevleri, hakemlik, tanıklık, bilirkişilik, eksperlik ve benzeri ile bu Yönetmelik kapsamında yer alan görevleri kabul etmek ve gerçekleştirmek ve üyelik sorumluluklarını yerine getirmekle yükümlüdür, ç) Oda amaçlarına uygun olarak, ilgili düzenlemeler kapsamında, Oda Genel Kurulları, organları, kurulları, komisyonları, seçimleri ve benzeri çalışmaları içinde yer alır, d) Oda kurullarınca belirlenen yıllık ödentilerinin zamanında ödenmesiyle ve ödeme belgelerinin üyeye ait kopyalarının saklanması ile yükümlüdür, e) Odaya bildirdikleri üyelik bilgilerinin doğru olmasından sorumludur, f) Üye kimlik kartını, kimlikte yer alan bilgilerden en az birinin değişmesi sonrasında bir (1) ay içerisinde değişikliğin belgesi ile yazılı olarak bağlı bulundukları Oda birimine bildirmek, bilgilerin değişmemesi durumunda ise beş (5) yılda bir, yeni üye kimlik kartı almak zorundadır. Üyelerin bilgileri güncellenmemiş olan ve son kullanma tarihini geçen kimlik belgesi geçersizdir, bu durumun sebep olacağı tüm hukuki ve mali sorumluluk üyeye aittir. g) Adres değişikliklerini bir (1) ay içerisinde Odaya bildirmekle yükümlüdür. Üyelik Vasfının Kaybolması Madde 27- Üyelik vasfının kaybolması aşağıdaki koşullarda gerçekleşir: a) Oda Disiplin Kurulunun kararı ile Odadan ihraç cezası alan üyelerin cezası kesinleşir ve karar ile ilgili işlemlerin Oda Yönetim Kurulu tarafından uygulamaya konulması ile birlikte, üyelik vasfı kaybolur. b) Herhangi bir nedenle mesleki etkinliğini sürdürmek istemeyen, kamu kurum ve kuruluşlarında, kamu iktisadi kuruluşlarında asli ve sürekli görevde çalışırken üyelikten ayrılmak isteyen üyeler, bu durumu Oda Yönetim Kuruluna yazılı olarak bildirmek, gerektiğinde belgelemek, Oda üye kimlik kartını geri vermek ve o tarihe kadar olan üyelik ödentilerinin tümünü ödemek koşuluyla ayrılabilir. Ayrılma isteği kabul edilmeyen üyenin, Oda Genel Kuruluna itiraz hakkı vardır. Üyelikten çıkarılan ya da ayrılan üyeler, Oda süreli yayınları ile duyurulur. Yeniden Üye Olma Madde 28- Üyelikten çıkarılan üyelerin tekrar Odaya kaydolması, Oda Onur Kurulunun olumlu görüşü ve Oda Yönetim Kurulu kararı ile gerçekleşir. Her ne sebeple olursa olsun üyelik vasfı kaybolan üyenin, yeniden üyelik için başvurması durumunda, Odaya kayıt işlemleri yeni bir üye kaydı gibi yapılır. Üyelik Ödentileri Madde 29- a) Üyelik ödentileri ve üyelik ile ilgili tüm ücretler, mevcut olanak ve koşullara göre Oda Genel Kurulu tarafından veya Oda Yönetim Kurulu tarafından belirlenir. Üye yıllık ödentisi üyelerden peşin ya da Oda Yönetim Kurulunca belirlenecek esaslara göre taksitler halinde alınabilir. b) Oda Genel Kurulu ya da Oda Genel Kurulunca yetkilendirilen Oda Yönetim Kurulu, yeni üye kaydı sırasında bir defaya mahsus olmak üzere üye kayıt ücreti alınmasını kararlaştırabilir ve bu ücreti belirleyebilir, bu ücrete Üye Kimlik bedeli dahil olur. Aynı koşullarda kimlik yenileme işlemleri için kimlik bedeli alınmasını kararlaştırabilir ve Oda Yönetim Kurulu bu ücreti belirleyebilir. c) Yurtiçinde yüksek lisans öğrenimlerini gerçekleştiren üyeler için öğrenimleri süresince üye yıllık ödentisinin yarısı alınır. Üyenin bu koşuldan faydalanabilmesi için yazılı başvurusu, okul kimliği fotokopisi ve/veya öğrenci belgesi ile bağlı bulunduğu birime başvurması ve her yıl bu belgeleri yenilemesi gerekir. Başvuru ya da yenileme yapılmamış yıla ait aidat normal bedeli üzerinden alınır. ç) Yurt dışına eğitim ya da çalışma amaçlı çıkan üyelerin üyelikleri önceden yazılı başvuru yapmak ve dönüşlerini belgelendirmek koşuluyla, yurt dışında kalış süreleri boyunca askıya alınır ve yıllık üyelik ödentisinden muaf tutulurlar. Söz konusu üyelerin üyeliklerinin askıya alınabilmesi için üyeliğin askıya alınması tarihi itibariyle varsa borçlarını kapatmaları ve oda kimliklerini teslim etmeleri gerekmektedir. d) Oda üyesi olup da askerlik yükümlülüğünü yerine getirmekte olan yedek subaylar ile er ve erbaşlar önceden haber vermek ve dönüşlerinde belgelendirmeleri kaydıyla askerlik süresince üyelik ödentilerinden muaf tutulurlar. e) Tüm Oda alacaklarının tahsilatında gerekli işlemler yapıldıktan sonra başkaca bir yol kalmaması durumunda 9/6/1932 tarihli ve 2004 sayılı İcra ve İflas Kanunu hükümleri uygulanır. DÖRDÜNCÜ BÖLÜM Şubeler ve Temsilcilikler Şubeler Madde 30- Belirli illerde çalışan üyelerin sayısı, mesleki çalışmaların daha verimli bir şekilde yürütülmesi ve Odanın yükümlü bulunduğu görevleri nedeniyle gerekiyorsa, Oda Genel Kurulunun kararı ile il merkezi ve etkinlik alanına giren iller belirtilerek şube açılabilir. Şubeler, etkinlik alanında bulunan illerdeki üye toplam sayısının üçte ikisi (2/3)nin yazılı başvurusu, Şube Genel Kurulunun iki (2) kez toplanamaması ya da Olağan/Olağanüstü Şube Genel Kurulunda Şube Yönetim Kurulunun oluşamaması durumunda, Oda Yönetim Kurulunun önerisi ve Oda Genel Kurulu kararı ile kapatılabilir. Şube Organları Madde 31- Şubelerin organları şunlardır: a) Şube Genel Kurulu b) Şube Yönetim Kurulu c) Şube Danışma Kurulu Şube Genel Kurulu Madde 32- a) Şube Genel Kurulu üç yılda bir Ocak ayı içinde toplanır. Bu toplantıya katılacak üyelerin listesi Genel Kurul tarihinden otuz beş (35) gün öncesinden belirlenir. Bu tarihten otuz beş (35) gün öncesi itibariyle şubeye kayıtlı üye sayısının çoğunluğu ile toplanır. Belirtilen süre içerisinde işyerlerini ya da evlerini ilgili etkinlik alanına taşıyan üyeler ile yeni kaydolan üyeler Şube Genel Kurul toplantısına katılamaz ve şube organlarına aday olamaz. Oturma ve çalışma yerleri ayrı şubelerin etkinlik alanında bulunan üyeler yalnız ve ancak işyerlerinin bulunduğu birimin genel kurullarına katılır. b) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun şubeye kayıtlı olmayan üyeleri ile diğer şubelerin yönetim kurulu üyeleri de Şube Genel Kurulunun doğal delegeleridir. Söz alır, görüş belirtir ancak oy kullanamaz. c) Şube Genel Kurullarının tarihleri Oda Danışma Kurulunun önerisi ile ilk Şube Genel Kurulu tarihinden en az kırkbeş (45) gün önce Oda Yönetim Kurulunca saptanır ve aynı gün tüm Oda birimlerine bildirilir. Şube Genel Kurulu şube merkezinin bulunduğu kentte toplanır. Şube Genel Kurulunun birinci toplantısında çoğunluk sağlanamaması durumunda ikinci toplantıda çoğunluk aranmaz. Toplantı tarihinin; görüşmeler cumartesi akşamına kadar tamamlanacak, Pazar günü seçimler yapılacak şekilde saptanması zorunludur. ç) Şube Genel Kurulu tarihinden en az otuz (30) gün önce, Şube Genel Kuruluna katılacak üyelerin listesi, Oda sicil numaralarına göre sıralanarak listelenmiş vaziyette Oda Yönetim Kuruluna gönderilir. Oda Yönetim Kurulu birden fazla Oda biriminde kaydı olduğu görülen üyelerin durumunu inceleyerek gönderilen listelerde gerekli düzeltmeler yapar ve on (10) gün içerisinde Şubeye yazılı olarak bildirir. Şube yapılan düzeltmeleri esas alarak işlem yapar. d) Şube Yönetim Kurulu, Genel Kurul toplantısından en az on beş (15) gün önce, Genel Kurula katılacak üyelerin sicil numarası sırasına göre Oda Yönetim Kurulu tarafından düzeltilmiş listelerini, toplantı gündemini, yerini, saatini ve çoğunluk sağlanamadığı takdirde yapılacak ikinci toplantıya ilişkin hususları belirten bir yazı ile birlikte görevli İlçe Seçim Kurulu Başkanlığına iletir. e) Gerekli incelemeden sonra, hakimce onaylanan listeler ile toplantıya ilişkin hususlar söz konusu şubenin ilan yerine asılarak üç (3) gün süre ile duyurulur. f) Genel Kurula katılacak üye listesi hakim tarafından kesinleştirildikten sonra, Şube Genel Kurul gündemi, toplantı yeri, günü ve saati ile, çoğunluk sağlanamazsa ikinci toplantı için aynı bilgiler toplantı gününden en az on (10) gün önce Şube Yönetim Kurulu tarafından, bir gazetenin Türkiye baskısında ilan edilir. Oda Yönetim Kurulu Şube Genel Kurulunun düzenli bir biçimde yapılamayacağının anlaşılması durumunda, toplantı başlamadan önce Şube Genel Kurulunu yalnız bir kez olmak ve on beş (15) günü geçmemek koşuluyla erteleyebilir. Bu durumda Oda Yönetim Kurulu, Şube Genel Kurulunun yeni tarihini ve yerini, görevli hakimin onayını da alarak belirler ve toplantı tarihinden en az on (10) gün önce , bir gazetenin Türkiye baskısında üyelere duyurur. g) Oda Yönetim Kurulu tüm Şubelerin genel kurullarına ilişkin bilgileri Oda süreli yayınlarında duyurur. ğ) Şube Yönetim Kurulu değiştirilmesi için zorunlu bir gerekçe olmadıkça aşağıdaki gündeme uygun olarak Genel Kurulun toplantısını ilan eder. Gündemdeki değişiklik Şube Genel Kurulu Kararı ile olur. 1) Açılış, 2) Başkanlık Divanı seçimi, 3) Oda Yönetim Kurulu ve Şube Yönetim Kurulu adına konuşmalar, 4) Şube Yönetim Kurulu raporunun incelenmesi ve karar alınması, 5) Yeni dönem çalışmaları için ilkelerin saptanması, 6) Yeni dönem bütçesinin görüşülerek Oda Yönetim Kuruluna önerilecek şeklinin sunulması, 7) Yönetim Kurulu seçimi için adayların belirlenmesi ve duyurulması, 8) Seçim. Çalışma Yöntemi Madde 33- Şube Genel Kurulu aşağıdaki şekilde toplanır; a) Şube Genel Kurulu; Şube Yönetim Kurulu Başkanı, İkinci Başkanı ya da Yönetim Kurulunun kendi içerisinden görevlendireceği bir üye tarafından gerekli çoğunluğun oluşması ve Oda Gözlemcisinin salonda hazır bulunması ile ilan edilen gündemle açılır. b) Şube Genel Kurulu Başkanlık Divanı bir (1) Başkan ve iki (2) yazmandan oluşur. c) Toplantıya katılan her üyenin gündemde değişiklik ve ekleme önerme yetkisi vardır. Ancak bu konuda karar verme hakkı Şube Genel Kurulunundur. ç) Şube Genel Kurulunda bulunarak görüşmelere katılmak, oy kullanmak ve organlara aday olmak için ilçe seçim kurulu tarafından askıya çıkartılmış ve onaylanmış listede kayıtlı olmak, Oda kimlik kartını taşımak ve göstermek zorunludur. d) Şube Genel Kurulu görüşmeleri ve kararları tutanakta saptanarak Şube Yönetim Kuruluna teslim edilir. Görev alan Şube Yönetim Kurulu bu belgelerin bir örneğini Oda Yönetim Kuruluna sunar. Olağanüstü Şube Genel Kurulu Madde 34- Şube Genel Kurulu aşağıda belirtilen koşullarda olağanüstü toplantıya çağrılır; a) Şube Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, b) Şubeye kayıtlı üyelerin en az beşte birinin (1/5) Şube Yönetim Kuruluna yazılı olarak başvurması durumunda, c) Oda Yönetim Kurulu, Oda Onur Kurulu ve Oda Denetleme Kurulunun ortak toplantısında üye tam sayısının üçte iki (2/3) çoğunlukla alacağı karar ile, ç) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak zorunlu görmeleri durumunda oy birliğiyle alacağı karar ile, d) Oda Denetleme Kurulunun Şube mali işleriyle ilgili olarak vereceği denetim raporuna istinaden Oda Yönetim Kurulunun üçte iki (2/3) oy çoğunluğuyla alacağı karar ile, e) Oda Danışma Kurulu Üyelerinden en az yarısının yazılı ve gerekçeli başvurusu üzerine toplantıya katılan üyelerin dörtte üç (3/4) oy çokluğuyla yapacağı öneri doğrultusunda Oda ve/veya Şube Yönetim Kurulunun üçte iki (2/3) çoğunlukla alacağı karar ile, f) İstifa ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda. Bu maddenin (b), (c), (ç), (d), (e) ve (f) bendinde belirtilen durumlardan herhangi birinin oluşması durumunda, Şube Yönetim Kurulu, başvuru tarihinden itibaren bir hafta içinde Şube Olağanüstü Genel Kurulu için karar almak ve Şube Olağanüstü Genel Kurulunun tarihini saptamak zorundadır. Şube Olağanüstü Genel Kurulu, karar tarihinden itibaren bir (1) ay içinde toplanır. Şube Yönetim Kurulunun herhangi bir nedenle belirtilen sürelerde karar almaması, ya da Şube Olağanüstü Genel Kurulunu toplamaması durumunda, Şube Olağanüstü Genel Kurulu Oda Yönetim Kurulu tarafından toplanır. Olağanüstü Şube Genel Kurulu Toplanma Şekli Madde 35- Şube Olağanüstü Genel Kurulu toplantısı Şube Olağan Genel Kurulu gibi yapılır. Ancak Şube Olağanüstü Genel Kurulunun toplantıya çağrılış nedeni dışında gündem maddesi eklenemez, görüşme yapılamaz ve karar alınamaz. Şube Genel Kurulu Görev ve Yetkileri Madde 36- Şube Genel Kurulunun görev ve yetkileri şunlardır: a) Oda Genel Kuruluna önermek üzere Oda amaçları ile ilgili kararlar almak, b) Şube Yönetim Kurulu raporlarını incelemek, hakkında karar almak, gelecek yıl çalışmaları için Şube Yönetim Kurulunu yönlendirici kararlar almak, c) Şube hesaplarını, bilanço ve gelir-gider cetvellerini, Oda Denetleme Kurulunun Şube ile ilgili raporunu incelemek; Şube Yönetim Kurulunun önerdiği yeni dönem gelir planını ve gider bütçesini; geçici ve/veya sürekli personel kadro çizelgelerini incelemek, olduğu gibi ya da değiştirerek Oda Genel Kurulunun onayına sunmak, ç) Şube Yönetim Kurulunun yedi (7) asil, yedi (7) yedek üyesini seçmek. Şube Yönetim Kurulu, Oluşumu ve Çalışma Yöntemi Madde 37- Şube Yönetim Kurulu; a) Şube Genel Kurulunca seçilen yedi (7) asil ve yedi (7) yedek üyeden oluşur, b) Seçimlerin yapılmasından sonra en geç yedi (7) gün içinde yapacağı ilk toplantıda bir (1) başkan, bir (1) sekreter ile bir (1) sayman üye seçerek Yürütme Kurulunu oluşturur diğer üyeleri arasında görev bölümü yapar, c) En az on beş (15) günde bir çoğunlukla toplanır. Toplantıyı Şube Yönetim Kurulu Başkanı, Başkanın bulunmadığı zamanlarda Şube Sekreter Üyesi yönetir. ç) Şube Yönetim Kurulu salt çoğunlukla toplanır ve kararlarını oy çokluğu ile alır. Oylarda eşitlik olursa başkanın kullandığı oy yönünde çoğunluk sağlanmış sayılır. Şube Yönetim Kurulu Üyeliğinin Düşmesi Madde 38- Herhangi bir nedenle, üç (3) ay süreyle toplantılara gelmeyen ya da, herhangi bir altı (6) aylık süre içerisinde yapılan olağan toplantıların üçte birinden (1/3) daha azına katılmış olan Şube Yönetim Kurulu Üyesi çekilmiş sayılır ve yerine Şube Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Çekilen veya çekilmiş sayılan Şube Yönetim Kurulu Üyesinin yerine Yönetim Kurulu tarafından davet edilen Yedek Yönetim Kurulu Üyesi daveti yazılı olarak kabul veya reddeder. Yedek üyenin görevi kabul etmesi durumunda, ilk Yönetim Kurulu toplantısında göreve başlama kararı alınır. Davet edilen Yedek Üyenin görevi reddetmesi veya çağrıya onbeş (15) gün içerisinde yanıt vermemesi durumunda bu üye çekilmiş sayılır ve ilk Yönetim Kurulu toplantısında yerine Yönetim Kurulu tarafından sıradaki Yedek Yönetim Kurulu Üyesi yazılı olarak davet edilir. Şube Genel Kurulunun Oda Yönetim Kurulunca Olağanüstü Toplanması Madde 39- İstifa eden ya da çekilmiş sayılan Şube Yönetim Kurulu üyeliğine davet edilecek yedek üye kalmadığı durumda; Şube Genel Kurulu, Şube Yönetim Kurulu Başkanı ve Sekreteri, bunlar yoksa Oda Yönetim Kurulu tarafından olağanüstü toplantıya çağrılır. Şube Olağanüstü Genel Kurul toplantısında yeniden seçim yapılır ve yeni seçilenler ilk Olağan Genel Kurul toplantısına kadar görev yapar. Şube Yönetim Kurulu, Görev ve Yetkileri Madde 40- Şube Yönetim Kurulunun görev ve yetkileri şunlardır: a) Şube etkinlik alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Şube etkinlik alanı içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Oda Genel Kurulunca alınacak kararları uygulamak, şube işlerini Genel Kurul kararlarına göre yönetmek, d) Şube Genel Kurulunca alınan kararları Oda Yönetim Kuruluna iletmek, e) Oda üyelerinin hak ve yetkilerinin 6235 sayılı Türk Mühendis ve Mimar Odaları Birliği Kanunu ve TMMOB Ana Yönetmeliği ile bu Yönetmelik içinde gereğince kullanılmasını gözetmek; üyelerin mesleki onur, hak ve çıkarlarını koruyacak önlemleri almak ve bu konuda Oda Yönetim Kurulunun onayı ile gerekli girişimlerde bulunmak, f) Mesleğin gelişmesini sağlayacak çalışmaları yapmak, yaptırmak ve buna ait raporları Oda Genel Kurulunun onayına sunmak, g) Şubeye kayıtlı üyelerin kayıtlarını tutmak, ayrıca büro tescil ve diğer mesleki denetim kayıtlarını düzenlemek, ğ) Oda Disiplin Kurulu ile ilgili işleri zamanında Oda Yönetim Kuruluna iletmek, h) Bilirkişilik ve hakemlik yapacak üyeleri belirlemek ve bu listeleri Oda Yönetim Kuruluna sunmak, ı) Şube Yönetim Kurulunun ilk toplantı tarihinden başlayarak en çok on beş (15) gün içerisinde, bütçe uygulamasını da kapsayan Şube yeni dönem çalışma programını hazırlayarak Oda Yönetim Kuruluna sunmak, i) Her yılın Aralık ayının 25 inci gününe kadar o yıla ait mali unsurları da içeren çalışma raporunu ve yeni dönem bütçe önerisini Oda Yönetim Kuruluna sunmak, j) Şube Genel Kuruluna sunulacak çalışma raporunu, geçmiş dönem bütçe uygulamasını da kapsayacak biçimde hazırlayarak, Şube Genel Kurul toplantısından en az bir hafta önce bölgesindeki üyelere duyurmak, k) Şube Genel Kurulu toplantısı için gerekli diğer bütün işlemleri tamamlamak, l) Şube Danışma Kurulunu oluşturmak ve düzenli olarak toplanmasını sağlamak, m) Etkinlik alanları içerisinde bulunan il ve ilçe merkezlerinde temsilcilik açılması için gerekli inceleme ve araştırmaları yapmak, yeni açılacak ve mevcut temsilciliklerin üye eğilimlerini alarak oluşturdukları Yönetim Kurullarının atanması teklifini Oda Yönetim Kuruluna sunmak, n) Etkinlik alanları içerisinde bulunan temsilcilik çalışmalarının, bu kapsamdaki iş ve işlemlerin bu Yönetmelik ve ilgili mevzuat gereğince ve Oda Yönetim Kurulu kararlarına göre yapılmasını sağlamak, denetlemek ve bu konuda Oda Yönetim Kurulunca verilen görevleri yerine getirmek, o) Gerekli gördüğü işyerlerinde, İşyeri Temsilcilikleri açmak, ö) Gerekli gördüğü konularda uzmanlık komisyonları oluşturmak ve bunların düzenli çalışmalarını sağlamak, p) Oda Yönetim Kurulunun vereceği diğer görevleri yürütmek, r) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. Şube Yönetim Kurulu, çalışmaları ve hesapları yönünden Oda kamu tüzel kişiliğini temsil eden Oda Yönetim Kuruluna karşı sorumludur. Şube Yönetim Kurulu Üyelerinin Görev ve Yetkileri Madde 41- Şube Yönetim Kurulu Üyelerinin görev ve yetkileri şunlardır; a) Şube Başkanı; Şubeyi temsil etmek ve sözcülüğünü yapmak, Şube Yönetim Kurulunu yönetmek ve Oda amaçları doğrultusunda çalışmasını sağlamakla sorumludur. b) Şube Sekreter Üyesi; Başkanın olmadığı hallerde Yönetim Kurulunun yürütme öğesi ve sözcüsüdür. Şube işlemlerini zamanında ve odanın amaçlarına uygun olarak yürütmekle görevli ve sorumludur. Şube Yönetim Kurulu toplantı gündemini hazırlar. Üyelerin önerisi ile gündeme yeni maddeler eklenebilir. Oda görevlilerine ait sicillerin tutulması ve Yönetim Kurulu kararlarının uygulanması için gerekli tüm önlemleri alır. Şubenin işlemlerini yürütür ve imzalar. c) Şube Sayman Üyesi; Oda ve Şube Yönetim Kurulları kararları çerçevesinde Oda mali işleyişinin zamanında yürütülmesi, gerekli defterlerin tutulması ve demirbaşların en iyi şekilde kullanılmasından görevli ve sorumludur. Yönetim Kurulu Sayman Üyenin sorumluluğuna ortaktır. ç) Şube Başkanı, Sekreteri ve Saymanı, bu Yönetmelik ve ilgili mevzuat çerçevesinde ve bütçe olanakları içinde, Şube Yönetim Kurulunca alınan kararlara göre harcama yaparlar. Şube Mali İşleyişi Madde 42- Şubelerin her türlü gelirleri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. Yapacakları bütün tahsilatları Oda hesabına yatırırlar. Şube giderleri Oda Genel Kurulunca kabul edilen Şube bütçesine göre ayrılan ödenekten karşılanır. Şube Yönetim Kurulu, kendi bütçesine göre gerekli harcamalarda bulunur. Bütçe kalemleri arasında yüzde onu (%10) aşmamak üzere aktarım yapabilir. Şube Mali Raporları Madde 43- Şube Yönetim Kurulu, her ayın ilk haftası içerisinde geride kalan aya ait şube mali raporunu Oda Yönetim Kuruluna bildirir. Bölge Temsilcilikleri Madde 44- Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile bölgelerden gelen somut taleplere bağlı olarak kurulur. Bölge temsilciliklerinin kuruluşu ve etkinlik alanı coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak Oda Yönetim Kurulu tarafından belirlenir. Bölge Temsilciliği Yönetim Kurulunun Oluşumu Madde 45- Bölge Temsilciliği, o bölgede bulunan üyelerin eğilim seçimi ve Oda Yönetim Kurulunun ataması ile belirlenen beş (5) veya yedi (7) üyeden oluşan Bölge Temsilciliği Yönetim Kurulu tarafından yönetilir. Oda Yönetim Kurulu atamasını takiben yapılan ilk Bölge Temsilcilik Yönetim Kurulu toplantısında bir (1) başkan, bir (1) sekreter üye ve bir (1) sayman üyeden oluşan yürütme kurulu seçilir. Bölge Temsilciliği Yönetim Kurulunun Görev Süresi Madde 46- Bölge Temsilciliği Yönetim Kurulu görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. Bölge Temsilciliği Yönetim Kurulunun Görevden Alınması Madde 47- Bölge Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da Bölge Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin Bölge Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. Bölge Temsilciliklerinin Görev ve Yetkileri Madde 48- Bölge Temsilciliklerinin görev ve yetkileri şunlardır: a) Bölge Temsilciliği çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) Bölge Temsilciliği çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek, bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Çevre sorunlarının çözümü için uygulanan projelerin niteliğini geliştirmek, üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) Bölge Temsilciliği çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içinde Oda Yönetim Kuruluna sunmak, ğ) Bölge Temsilciliğine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve bu isimleri içeren listeyi Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, İl ve İlçe Temsilcilikleri Madde 49- İl ve İlçe Temsilcilikleri, Oda faaliyetlerinin etkin bir şekilde yürütülmesi ve Oda örgütlenmesinin yaygınlaştırılması amacı ile il ve ilçelerden gelen somut talepler, coğrafi yapı ve örgütsel gereksinimler göz önünde tutularak ve Şube Yönetim Kurullarının önerileri doğrultusunda kurulur. Oda Yönetim Kurulu İl ve İlçe Temsilciliği kurulmasına ve kurulan temsilciliğin hangi Oda birimine bağlı olarak faaliyet yürüteceğine karar verir ve Temsilcilik Yönetim Kurulunun atamasını yapar. Temsilciliğin kurulduğunu yörenin en büyük mülki amirine, belediye başkanlığına, cumhuriyet savcılığına ilgili kurum ve kuruluşlara bildirir. İl ve İlçe Temsilcilikleri Oluşumu Madde 50- İl ve İlçe Temsilciliğinin oluşum çalışmaları o yöredeki yerel gazetelerde duyurulur. Toplantı/toplantılar düzenlenerek eğilim seçimine gidilir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oda Yönetim Kurulu kararı ile atanır. İl ve İlçe Temsilcilikleri Yönetim Kurulu Oluşumu Madde 51- İl ve İlçe Temsilciliği Yönetim Kurulu en fazla yedi (7) en az üç (3) tek sayıda üyeden oluşur. Ancak Oda Yönetim Kurulu tarafından gerekli görülmesi halinde bir (1) üye temsilci olarak atanabilir. İl ve ilçe Temsilciliği Yönetim Kurulu atamasını takiben en geç 15 gün içinde toplanarak, kendi aralarından bir (1) Temsilci, bir (1) Sekreter ve bir (1) Sayman seçerek yürütme kurulunu oluşturur, eğer bir Şubeye bağlı ise Şube Yönetim Kuruluna, değilse Oda Yönetim Kuruluna bildirir. İl ve İlçe Temsilcilikleri Yönetim Kurulu Görev Süresi Madde 52- İl ve İlçe Temsilciliklerinin Yönetim Kurullarının görev süresi Oda Yönetim Kurulunun dönem görev süresi ile sınırlıdır. Oda Yönetim Kurulunun atama ve görevlendirmesi ile başlayan görev süresi, görevden alınma ya da istifa gibi nedenlerin dışında bir Oda Genel Kurulundan diğerine kadar olan süredir. İl ve İlçe Temsilcilikleri Yönetim Kurulunun Görevden Alınması Madde 53- İl ve İlçe Temsilciliği Yönetim Kurulu Oda işleyişine ve Oda çalışma ilkelerine aykırı bir tutum aldığında ya da İl ve İlçe Temsilciliğine kayıtlı üyelerin üçte iki (2/3) sinin İl ve İlçe Temsilciliği Yönetim Kurulunun görevden alınması yönündeki Oda Yönetim Kuruluna yaptıkları yazılı başvuru ve bu başvurunun Oda Danışma Kurulu ve sonrasında Oda Yönetim Kurulunda değerlendirilmesi ile Oda Yönetim Kurulunca görevden alınabilir. İl ve İlçe Temsilcilikleri Görev ve Yetkileri Madde 54- İl ve İlçe Temsilciliklerinin görev ve yetkileri şunlardır: a) İl ve İlçe Temsilcilikleri çalışma alanı içinde özel ve kamu kesiminde çalışan üyelerin mesleki sorunlarının çözümü için çalışmak, Üye, Temsilcilik, Şube ve Oda ilişkilerini geliştirmek ve Oda politikaları çerçevesinde gerekli girişimlerde bulunmak, b) İl ve İlçe Temsilcilikleri çalışma sınırları içinde çevre sorunları ve bunların çözümü yolundaki uygulamalarla ilgili bilgi ve görüşleri Oda Yönetim Kuruluna ileterek bu konularda Oda politikası doğrultusunda ülke ve meslek çıkarlarını gözeten etkinlik ve girişimlerde bulunmak, c) Üyelerin hak ve çıkarlarını korumak amacıyla sürdürülen mesleki denetim uygulamasını yürütmek ve Oda Yönetim Kurulunun vereceği yetkiyle mesleki projelere vize uygulamak, ç) Odaya karşı görevleri ile ilgili konularda üyeleri uyarmak, d) Oda Yönetim Kurulunca verilen görevleri yerine getirmek ve yetki aldığı konularda Odayı temsil etmek, e) Üyelerin mesleki bilgi ve tecrübelerini arttıracak konularda eğitim çalışması yapmak veya girişimde bulunmak, f) Çalışma sınırları içindeki üyelerin Oda Yönetim Kurulunca belirlenen şekilde kayıtlarını tutmak ve Oda Yönetim Kuruluna iletmek, üye aidatlarını toplamak, g) İl ve İlçe Temsilcilikleri çalışma sınırları içinde yapılan faaliyetler ve gelişmelerle ilgili bir faaliyet raporunu her ayın ilk haftası içersinde Oda Yönetim Kuruluna sunmak, ğ) İl ve İlçe Temsilciliklerine ait mali durumu gösteren bilançoyu aylık periyotlar halinde Oda Yönetim Kuruluna sunmak, h) İhtiyaç duyulması halinde bilirkişilik, hakemlik, danışmanlık gibi görevler için üyeler belirlemek ve Oda Yönetim Kuruluna sunmak, ı) Mesleki sorunların çözümü ve eğitim etkinliklerinin hızlandırılması için komisyonlar kurmak ve bu komisyonların çalışmasını sağlamak, i) Bülten, faks bülten, bölgesel/yerel sorunlara ya da yerele özgü çevre sorunlarına yönelik araştırma raporları, broşür ve kitapçık gibi çalışmalar yapmak, arşiv ve kütüphane oluşturmak. İl ve İlçe Temsilcilikleri bütün çalışmalarında Oda Yönetim Kurulunca belirtilen konularda, kendilerine verilen yetki sınırları içinde hareket eder. İl ve İlçe Temsilciliklerinin Mali İşleyişi Madde 55- İl ve İlçe Temsilciliklerinin her türlü geliri Odaya aittir. Kendi adlarına makbuz bastıramaz ve para toplayamazlar. İl ve İlçe Temsilcilikleri Oda Yönetim Kurulunun onayı ile kabul edilen yıllık bütçeye uygun olarak hareket etmek durumundadırlar. Bu bakımdan yıllık bütçelerini gösteren raporu Aralık ayının 25 inci gününe kadar Oda Yönetim Kuruluna sunmak zorundadırlar. Odaya Kayıt Zorunluluğu Madde 56- Bir Oda sınırları içinde Mesleğini icra edecek Biyologlar bir ay içinde o il veya bölge Odasına üye olmak ve üyelik görevlerini yerine getirmekle yükümlüdürler. Mesleklerini serbest olarak icra etmeksizin kamu kurum ve kuruluşları ile kamu iktisadi teşebbüslerinde asıl ve sürekli görevlerde çalışan Biyologlar ile herhangi bir sebeple mesleğini icra etmeyenler, istedikleri takdirde Odalara üye olabilirler. Özel Kanunlarında üye olamayacaklarına dair hüküm bulunanlardan mesleklerini serbest olarak icra edenler, mesleki hak, yetki, disiplin ve sorumluluk bakımından bu Kanun hükümlerine tabidirler. İkinci fıkra dışında kalan Biyologlar Odalara kaydolmadıkları takdirde meslek ve sanatlarını serbest olarak icra edemezler. Oda Gelirleri Madde 57- Odanın gelirleri şunlardır; a) Odaya kayıt ücreti, b) Üye aidatı, c) Biyologlara temin edilecek basılı belgelerden elde edilecek gelirler, d) Görevleri içine giren onaylamalardan alınacak ücretler, e) Kültürel ve sosyal faaliyetlerden elde edilecek gelirler, f) Disiplin Kurullarınca verilip kesinleşen para cezaları, g) Bağış veya yardımlar, h) Araştırma, proje çalışmaları ve bilimsel çalışmaların gelirleri, i) Danışma hizmeti gelirleri, j) Kendi içinde yapacakları sürekli eğitim çalışmaları için ilgili kişi,kurum ve kuruluşların ödeyeceği ücretler, k) Türkiye'deki ve diğer ülkelerdeki ulusal ve uluslar arası mesleki ve çalışma alanları ile ilgili kurumların veya diğer kurum ve kuruluşların bu kapsama giren konulardaki işlerinin yürütülmesine yönelik bağış, yardım ve hizmet satın alma gelirleri, l) Yarışma veya ödüllü çalışmalardan elde edilecek gelirler, m) Diğer gelirler Odaya kayıt ücreti ile üye aidatının yıllık miktarı ve ödeneceği tarihler o yıl uygulanan memur maaş katsayısının üç yüz mislinden az beş yüz mislinden fazla olmamak üzere Oda Merkez Yönetim Kurulunun önerisi üzerine Oda Genel Kurulunca kararlaştırılır. Yıllık aidatlar her yılın Mart ve Ekim ayları sonuna kadar iki taksitte ödenir. Zamanında ödenmeyen yıllık aidatlar ve her türlü cezalar ile diğer alacaklar 6183 sayılı Amme alacaklarının Tahsil Usulü Hakkında kanun hükümleri uyarınca işlem görürler. Üyenin bir Odadan başka bir Odaya naklinde kayıt ücreti ve üye aidatı yeniden alınmaz. Oda yönetim kurulu, hastalık, yaşlılık veya yoksulluk gibi nedenlerle aidatlarını ödeyemeyecek durumda olanlardan geçici veya sürekli olarak aidat alınmamasına Oda yönetim kuruluna bilgi vermek koşuluyla karar verebilir. BEŞİNCİ BÖLÜM Çeşitli Hükümler Onur Üyeliği Madde 58- Genel Sağlık, Çevre ve Biyologluk ile ilgili meslek üzerinde yaptığı çalışmalar ve yayınladığı eserler dolayısıyla ülke ve dünya çapında üne kavuşmuş veya Biyolog mesleğine Odalar maddi ve manevi yardımda bulunmuş kimselere; Oda Merkez Yönetim Kurulunun, Oda Yönetim Kurulunun teklifine dayanarak veya doğrudan doğruya isteği uyarınca, ile onur üyeliği payesi verilebilir. Onur üyeliği payesi verilebilmek için Biyolog olmak şart değildir. Onur üyeleri oy hakkı olmaksızın Oda Genel Kurul toplantılarına katılabilirler. Asgari laboratuar Tahlil Ücretlerinin Tespitinin Yöntemi Madde 59- Oda Merkez Yönetim Kurulu her yıl Aralık ayı içinde biyologların uygulayacağı laboratuar tahlil ücretlerinin asgari haddini oluşturacağı ihtisas komisyonları vasıtasıyla tespit ederek hazırlayacağı tarifeyi Oda Merkez Yönetim Kurulunun onayına sunar. Yeni tarife yürürlüğe girinceye kadar eski tarife hükümleri devam eder. Disiplin Cezaları Madde 60- Biyologluk vakar ve onuruna veya meslek düzen ve geleneklerine uymayan fiil ve hareketlerde bulunanlar ile mesleğini gereği gibi uygulamayan veya kusurlu olarak uygulayan veyahut görevin gerektirdiği güveni sarsıcı davranışlarda bulunan meslek mensupları hakkında; fiil ve hareketin niteliği ve ağırlık derecesine göre aşağıdaki disiplin cezaları verilir. Uyarma; Biyologa görevinde ve davranışlarında daha dikkatli davranması gerekliliğinin yazı ile bildirilmesidir. Kınama; Biyologu görevinde ve davranışlarında kusurlu sayıldığının yazı ile bildirilmesidir. Para cezası; bölgesinde o yıl uygulanan memur maaş katsayısının iki yüz katından az beş yüz katından fazla olmamak üzere verilecek para cezalarıdır. Meslekten geçici men; Oda bölgesinde bir aydan altı aya kadar serbest meslek yapmaktan alı konmaktır. Meslekten sürekli men; Oda bölgesinde iki defa serbest meslek yapmasından alıkoyma cezası olanların Oda bölgesi içinde serbest meslek uygulamasından sürekli olarak alı konmasıdır. Cezai takibat ve mahkumiyet kararı disiplin soruşturması yapılmasına ve disiplin cezası uygulanmasına engel değildir. Meslek mensubu hakkında savunma alınmadan disiplin cezası verilemez. Yazılı Bildirime rağmen on beş gün içinde savunmasını yapamayanlar savunma hakkından vazgeçmiş sayılırlar. Disiplin cezaları kesinleşme tarihinden itibaren uygulanır. Disiplin cezalarını gerektiren fiiller ve bu fiillere uygulanacak disiplin cezaları; bir derece ağır veya hafif disiplin cezaların uygulanacağı haller, disiplin soruşturması yapılması konusunda karar verecek merci; disiplin cezalarını vermeye yetkili merciler; disiplin cezalarına karşı yapılacak itirazın usul ve şartları; Disiplin Kurullarının çalışma usulü ve esasları; disiplinle ilgili diğer işlemler odaca düzenlenecek bir yönetmelikle gösterilir. ALTINCI BÖLÜM Ceza Hükümleri Simsar Kullanmak, Simsarlık Yapmak ve Yetkisiz Meslek İcrası Madde 61- Mesleği ile ilgili işlerde herhangi bir menfaat karşılığında aracılık yapanlar veya bu kişileri aracı olarak kullanan Biyologlar üç aydan bir yıla kadar hapis ve yüz bin liradan üçyüzbin liraya kadar ağır para cezası ile cezalandırılırlar. Meslek diplomasını herhangi bir menfaat karşılığı Biyolog mesleğini uygulama yetkisine sahip olmayan kişi veya kişilere kullandıranlar veya kendisine ait olmayan diplomayı kullanarak menfaat sağlayanlar veya yargı mercilerince ya da Oda Disiplin Kurulları tarafından haklarında, serbest meslek uygulamasından geçici veya sürekli alı konma cezası verilenlerden serbest meslek uygulamasına devam edenler, fiilleri daha ağır bir cezayı gerektirmediği taktirde birinci fıkra hükümleri uyarınca cezalandırılır. YEDİNCİ BÖLÜM Yönetmelikler Madde 62- Bu Kanunda çıkartılması öngörülen ve Kanunun uygulanması için gerekli görülecek yönetmelikler kanunun yürürlüğe girmesinden sonra en geç bir yıl içinde Oda tarafından çıkarılacaktır. SEKİZİNCİ BÖLÜM Geçici Hükümler Geçici Madde 1- Bu Kanuna göre seçilmeye yeterliliği biyologlar, Oda kurucusu olmak istedikleri takdirde, Kanunun yürürlük tarihinden itibaren üç ay içinde, mesleklerini icra etmekte oldukları valiliklerine başvurarak birer kuruculuk belgesi alırlar. Kuruculuk belgesi alan Biyologların 2/3ün bilfiil 5 yıl mesleğini icra etmesi şartı aranır. Kuruculuk belgesi alan biyologlar yedi kişiden oluşan birer geçici Yönetim Kurulu seçerler ve Valiliğe bildirirler. Bu Kanunun 4. Maddesinin birinci fıkrası kapsamına giren illerdeki Kurucu Yönetim Kurulları bu yasa hükümleri uyarınca üye kayıt işlemlerini tamamlayarak en geç bir ay içinde ilk genel kurullarını toplantıya çağırırlar ve Oda organlarının seçimini gerçekleştirirler. Bu Madde kapsamındaki Odalar, tüzel kişilik kazanır ve durum Yönetim Kurulunca ilgili Bakanlığa bildirilir. Geçici Madde 2- Bu kanun, tababet ve Şua batı Sanatlarının Tarzı İcrasına Dair 1219 sayılı Kanun ve halen yürürlükte olan yasalara göre meslek icrasına hak kazanmış Biyologlar için de uygulanır. Madde 63- Bu Kanun yayını tarihinde yürürlüğe girer. Madde 64- Bu Kanunun hükümlerini Bakanlar Kurulu yürütür.

http://www.biyologlar.com/biyologlar-odasi-kanunu-taslagi

Bir Zamanlar "Hurda DNA" Masalı Vardı

Bir önceki bölümde incelediğimiz "hatalı" veya "körelmiş" yapılar iddiasının son dayanağı, Hurda DNA (Junk DNA) kavramıydı. Yeni bir konu olduğu -ve çok kısa bir süre önce çöktüğü- için bu kavramı ayrı bir bölüm içinde incelemekte yarar vardır. Körelmiş organlar efsanesi, bir önceki bölümde incelediğimiz gibi, 20. yüzyılın ikinci yarısından itibaren çökmeye başladı. İşlevsiz denen organların önemli işlevleri olduğu keşfedildikçe, bu efsane de savunulamaz hale geldi. Ama bu efsanenin propaganda gücünden mahrum kalmak istemeyen evrimciler bunun yeni bir versiyonuna sarıldılar. Bu yeni versiyon, vücuttaki organların değil, ama organların genetik şifresini içeren genlerin bir kısmının "körelmiş" olduğu şeklindeydi. Kullanılan kavram ise "körelmişlik" değil, "hurdaya çıkmışlık"tı. Söz konusu "hurda" (junk) nitelemesi, tüm canlıların genetik bilgisini kodlayan dev DNA molekülünün bazı kısımları için kullanıldı. Evrimci iddiaya göre DNA'nın oldukça büyük bir bölümü işlevsizdi. Evrimciler bu işlevsiz kısımların, geçmişteki sözde evrim sürecinde bir işe yaradığını ama zamanla "hurdaya çıktığını" ileri sürdüler. İddianın Darwinizm'le olan paralelliği çok belirgindi ve bu nedenle de "Hurda DNA" (Junk DNA) kavramı, kısa sürede bilim literatürünün sık tekrarlanan terimlerinden biri haline geldi. Ancak körelmiş organlar hikayesinin bu yeni versiyonunun ömrü de fazla uzun olmadı. Özellikle 2001 yılında sonuçları açıklanan İnsan Genomu Projesi'yle birlikte, "Hurda DNA" kavramının bir yanılgı olduğu bilim dünyası içinde yüksek sesle ifade edilmeye başlandı. Cleveland Üniversitesi'nden evrimci bilim adamı Evan Eichler "Hurda DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil" itirafında bulunuyordu. 82 Bunun nedeni, Hurda DNA denen kısımların da işlevlerinin olduğunun yavaş yavaş anlaşılmasıydı. Şimdi, Hurda DNA efsanesinin nasıl doğduğunu ve çöktüğünü inceleyelim. Kodlamayan DNA'nın Hurda Sanılışı Evrimcilerin bu yanılgısının anlaşılması için öncelikle DNA'nın yapısı hakkında bilgi vermek gerekir. Tüm canlı hücrelerinde yer alan dev bir moleküler zincir olan DNA molekülü, içerdiği genetik bilgiler yüzünden çoğu zaman "bilgi bankası" olarak anılır. Molekül aynı zamanda bu bilgilerin bedensel faaliyetlerde kullanımını düzenleyen bir genetik koda sahiptir. Daha önceki bölümlerde incelediğimiz gibi, DNA molekülünün kökenini açıklama amacıyla yapılan tüm evrimci girişimler sonuçsuz kalmış, bu moleküldeki bilginin rastlantısal olarak oluşamayacağı ortaya çıkmıştır. DNA molekülü ancak bilinçli tasarımla açıklanabilmektedir. DNA üzerinde fiziksel özelliklerimizin ve fizyolojik faaliyetlerimizin bilgisini kodlayan belirli kısımlara "genler" denir. Bu genler farklı farklı proteinlerin kodlanmasında rol oynar ve yaşamımızın devamını sağlar. Ancak genlerimizin tamamı, DNA'mızın yaklaşık %10'unu oluşturur. DNA'nın geriye kalan daha büyük kısmı, protein kodlamadığı için "kodlamayan DNA" olarak isimlendirilir. Kodlamayan DNA'yı da kendi içinde bazı kategorilere ayırmak mümkündür. Kodlamayan DNA, bazen genler arasına sıkıştırılmış vaziyette bulunur ve bunlara "intron" adı verilir. Bir diğer kısım kodlamayan DNA, aynı nükleotid dizisinin art arda sıralanmasıyla oluşmuş daha uzun zincirler meydana getirir. Bunlara "tekrarlı (repetitive) DNA" ismi verilir. Eğer kodlamayan DNA üzerindeki nükleotidler, tekrarlayan diziler yerine, genlerdeki karmaşık dizilimi andıracak şekilde sıralanmışlarsa, bu defa "sahte gen" (pseudogene) olarak isimlendirilirler. Evrimciler protein kodlamayan bu bölümleri genel olarak "Junk DNA" (Çöplük ya da Hurda DNA) adı altında toplamış ve bunların sözde evrimsel süreçten aktarılan gereksiz yığınlar olduğunu ileri sürmüşlerdir. Oysa bunun mantıksal açıdan hatalı bir yaklaşım olduğu açıktır. Çünkü bu DNA yapılarının protein kodlamıyor olması, bunların işlevsiz olduğunu göstermez. Bunların fonksiyonlarını öğrenmek için üzerinde yapılacak araştırmaların sonuçlarını beklemek gerekir. Bilimsel yaklaşım bunu gerektirir. Ancak evrimci önyargılar bu mantığın devreye sokulmasını engellemiş, toplumu yıllarca Hurda DNA iddialarıyla yanıltacak haberlere yol açmıştır. Ancak özellikle son on yılda yapılan araştırmalar bu iddiaların hayalden başka birşey olmadığını göstererek evrimcileri yalanlamıştır. Çünkü kodlamayan DNA kısımlarının, evrimcilerin iddia ettiği gibi "çöplük" değil, tam aksine "genomik hazine" olduğu anlaşılmıştır.83 Chicago Üniversitesi'nden doktora sahibi ve bilinçli tasarım hareketinin önde gelen savunucularından biri olan Dr. Paul Nelson, "Hurdacı Artık Hurda Satmıyor" (The Junk Dealer Ain't Selling That No More) başlıklı makalesinde, evrimcilerin çöplük DNA iddialarının çöküşünü şu cümlelerle açıklar: "[Ateizmin savuncularından]Carl Sagan, Shadows of Forgotten Ancestors (Unutulmuş Ataların Gölgeleri) isimli kitabında, "genetik hurdalığın", DNA'daki "fazlalıkların, kekelemelerin (gereksiz tekrarlar) ve kopya edilemez saçmalıkların", hayatın temelinde derin kusurlar bulunduğunu kanıtladığını öne sürmüştü. Bu tür yorumlara biyoloji literatüründe giderek daha az rastlanmaktadır. Neden mi? Çünkü artık genetikçiler, genetik enkaz olarak bilinen kısımların fonksiyonlarını keşfediyorlar."84 Şimdi 'Hurda DNA'nın aslında hiç de hurda olmadığının nasıl keşfedildiğini inceleyelim.. 1. Kodlamayan DNA'nın nükleotid diziliminde lisan yeteneği ile ilgili bir kodlama kriteri bulundu. 1994 yılında Harvard Tıp Fakültesi moleküler biyologları ile Boston Üniversitesi'nden fizikçilerin gerçekleştirdiği ortak çalışmada kodlamayan DNA ile ilgili çarpıcı bir sonuç elde edildi. Araştırmacılar, çeşitli canlılardan alınan ve 50.000 baz çifti içeren 37 DNA dizilimini incelemiş ve nükleotidlerin sıralamasında belirli kuralların olup olmadığını araştırmışlardı. Bu çalışma sonucunda, insan DNA'sında %90 yer tutmakta olan sözde Hurda DNA'nın, insan diline has bir özelliğe sahip olduğu ortaya çıktı.85 Buna göre, yeryüzünde konuşulmakta olan tüm dillerde görülen ortak bir kodlama kriterine insan DNA'sında sıralanan nükleotidlerde de rastlanmıştı. Şüphesiz bu bulgu sözde Hurda DNA'daki bilginin tesadüfen biriktiği tezine değil, yaşamın temelinde bilinçli tasarım olduğu tezine destek sağlıyordu. 2. Tekrarlı heterokromatin şaşırtıcı bir fonksiyonellik ortaya koydu: Kendi başlarına anlamsız gibi görünen nükleotidler birarada önemli görevleri yerine getiriyor ve mayotik bölünmede rol oynuyor. Yakın bir geçmişte, Hurda DNA olduğu zannedilen, ancak bilim adamlarının fonksiyonlarını yeni keşfetmeye başladığı DNA dizilimlerinden biri heterokromatindir. Bu, DNA'da fazlaca tekrar edilen bir koddur. Herhangi bir proteinin üretiminden sorumlu olduğu tespit edilemediği için uzun zaman "Hurda DNA" olarak tanımlanmıştır. Renauld ve Gasser (İsveç Deneysel Kanser Araştırma Enstitüsü) heterokromatin için şu yorumu yaparlar: Genomda dikkat çekecek şekilde temsil ediliyor olmasına rağmen, (insan hücrelerinin %15'i ve sinek hücrelerinin yaklaşık %30'u), heterokromatin her zaman 'Hurda DNA', yani hücreye hiçbir faydası olmayan DNA olarak kabul edilmiştir.86 Ancak, son çalışmalar heterokromatinin de önemli fonksiyonel görevleri olduğunu ortaya koydu. Moleküler Tıbbi Bilimler Enstitüsü'nden Emile Zuckerland bu konuda şunları söyledi: Tek başına fonksiyonel olmayan nükleotidleri biraraya getirdiğinizde, fonksiyonel hale gelen nükleotidler topluluğu elde edebilirsiniz. Kromatine ait olan nükleotidler ise bunun bir örneğidir. Geçmişte heterokromatinin hurda olduğunu iddia eden görüşlere rağmen, bugün bu alanda aktif olarak çalışan birçok kişi, DNA'nın bu bölümünün çok önemli fonksiyonel görevleri olduğundan şüphe etmiyor... Nükleotidler tek başlarına hurda olabilirler, ancak birarada iken altınlar.87 Heterokromatinin bu tür "kollektif" fonksiyonlarından biri mayotik bölünmede tespit edildi. Aynı zamanda yapay kromozom çalışmaları da, DNA'nın bu bölümünün farklı fonksiyonları olduğunu ortaya çıkardı.88 3. Araştırmacılar kodlamayan DNA ile hücre çekirdeği arasındaki ilişkiyi ortaya çıkardılar. Bu gelişmelerin "Hurda DNA" iddiasını çürüttüğünü ifade ettiler. 1999 yılında yapılan bir çalışma, ökaryot hücrelerdeki protein kodlamayan-DNA'nın (diğer adıyla sekonder DNA) çekirdek içinde işlevsel bir yapı olduğunu ortaya çıkardı. Bu çalışmada, Crytomonad isimli fotosentez yapan tek hücreli canlılar incelendi. Bu canlıların özelliği, boyut açısından geniş bir çeşitlilik ortaya koyuyor olmalarıydı. Ancak hücreler farklı boyutlarda olsalar da, çekirdek büyüklüğü ile hücrenin (canlının) büyüklüğü arasında daima doğrusal bir orantı bulunuyordu. Araştırmacılar kodlamayan DNA'nın miktarının, çekirdeğin büyüklüğüne oranlı olduğunu gördüler ve bu durumu, kodlamayan DNA'nın daha büyük çekirdek için yapısal olarak gerekli olduğuna dair bir gösterge olduğu sonucuna vardılar. Bu yeni araştırma, tasarımı reddeden Hurda DNA -hatta Dawkins'in öne sürdüğü "bencil DNA" 89- gibi kavramlara çok önemli bir darbe oluşturdu. Araştırmacılar yazılarını şöyle bitiriyorlardı: "Dahası, sekonder DNA [kodlamayan DNA] nükleomorfun önemli ölçüde eksik oluşu,... sekonder DNA ile ilgili 'bencil' ve 'çöplük' DNA tezlerini çürütmektedir". 90 4. Kodlamayan DNA'nın, kromozom yapısı için gerekli olduğu ortaya çıktı. Kodlamayan DNA'nın son yıllarda ortaya çıkarılan bir başka önemli rolü de kromozom yapısı ve işlevinde "kesinlikle gerekli" olmasıydı. Bu alanda yapılan çalışmalar, kodlamayan DNA'nın, DNA'nın birçok işlevi yerine getirmesini mümkün kılan yapıyı sağladığını gösterdi. Öyle ki forma sokulmuş bir yapı olmaksızın bu işlevlerin gerçekleştirilmesi imkansızdı. Bilim adamları bira mayasının kromozomlarından birinde, telomerleri (telomerler kromozomların her iki ucunda bulunan ve her hücre bölünmesi sonrası belli ölçüde kısalan DNA-protein kompleksleridir) ortadan kaldırdıklarında hücre bölünmesinin kesintiye uğradığını gördüler.91 O halde telomerler hücrenin, sağlam kromozomları, hasar görmüş DNA'dan ayırmasına yardımcı oluyordu. Bu kesinti halinden kurtulan hücrelerde kromozom sonunda kaybediliyordu. Bu da kodlamayan DNA'ya ait telomerlerin, hücrenin kromozom sabitliğinin korunmasında gerekli olduğunu gösteriyordu. 5. Kodlamayan DNA'nın embriyonun gelişimindeki rolleri ortaya çıkarıldı. Kodlamayan DNA'nın, gelişim sırasında gen ifadesinin (gendeki bilginin okunarak protein üretimi yapılması işleminin) düzenlenmesinde de önemli rol oynadığına dair kanıtlar elde edildi.92 Çeşitli çalışmalarda, kodlamayan DNA'nın, fotoreseptör hücrelerinin 93, üreme bölgesinin 94 ve merkezi sinir sisteminin 95 gelişiminde rol oynadığı gösterildi. Tüm bunlar, kodlamayan DNA'nın gelişim ve embriyojenez (embriyonun gelişimi) sırasında hayati rolleri düzenlediğini gösterdi. 6. Hurda DNA kategorisine dahil edilen intronların hücre faaliyetlerinde hayati roller oynadığı ortaya çıktı. Evrimcilerin uzun yıllar Hurda DNA zannettiği ancak önemli rolleri daha sonra keşfedilen bir başka tür kodlamayan DNA ise intronlardır. İntronların özelliği, fonksiyonel genlerin içine sıkıştırılmış olmalarıdır. İntronlar, protein üretimi ve işlevleri sırasında ayrıştırılarak elenirler. Evrimciler, intronların ilk bakışta protein üretiminde rol oynamamasına aldanmış, bunları Hurda DNA kabul etmişlerdi. Oysa yapılan araştırmalar intronların çok önemli yaşamsal faaliyetlerde rol oynadığını ortaya çıkardı. Günümüzde intronlar artık farklı DNA'lardan meydana gelen ve hücrenin yaşamı açısından hayati derecede önemli rol oynayan kompleks bir karışım olarak kabul ediliyor.96 Ünlü The New York Times gazetesinin bilim köşesinde yayınlanan bir yazı, intronlarla ilgili evrimci yanılgıları ortaya koyması açısından ilgi çekiciydi. C. Claiborne Ray tarafından hazırlanan ve "DNA: Hurda mı, Değil mi?" başlığını taşıyan kısa yazıda, intronlar üzerinde yapılan araştırmaların sonucu şu cümlelerle özetleniyordu: "Yıllar boyu yapılan çalışmalar, intronların hurda olmadığını, bunların aslında genlerin çalışma şeklini etkilediklerini ortaya çıkardı. ...intronlar, şüphesiz, aktif roller oynuyorlar."97 New York Times gazetesindeki bu yazıda, son bilimsel gelişmeler ışığında, intronlar gibi "sözde çöplük DNA"nın gerçekte organizmalara "faydalı" olduğu vurgulanıyordu. Maddeler halinde ele aldığımız tüm bu gelişmeler kodlamayan DNA hakkında yepyeni bilgiler ortaya koymakla birlikte önemli bir gerçeği de açığa çıkarmış oluyordu. Evrimcilerin Hurda DNA kavramı, bilgisizlikten kaynaklanan, uydurma bir kavramdı. Case Western Reserve Üniversitesi'nden Evan Eichler 2001 yılında Science'da yayınlanan bir makalede, durumu şu sözlerle özetliyordu: "Çöplük DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil."98 Hurda DNA Efsanesinin Son Dayanağı da Çöktü: Bir "Sahte Gen"in Fonksiyonel Olduğu Ortaya Çıktı 90'lı yıllardan itibaren yaşanan tüm bu önemli bilimsel gelişmeler, Hurda DNA iddiasının bilgisizlikten kaynaklanan bir evrim yanılgısı olduğunu ortaya koydu. Genlerin içine sıkışmış intronlar ve daha uzun sıralar halinde birarada bulunan tekrarlı DNA gibi "kodlamayan DNA"ların aslında işlevsel olduğu gösterilmiş oldu. Bununla birlikte, geriye fonksiyonel olup olmadığı tam bilinmeyen tek bir tür "kodlamayan DNA" kalıyordu: "Sahte genler" anlamına gelen "pseudogenler" (pseudogenes). Nature, 1 Mayıs 2003 Nature dergisinde yayınlanan ve "Pseudogene" adı verilen sözde "işlevsiz" DNA bölümlerinin, mesajcı RNA'yı düzenlediğini anlatan bilimsel makale. Pseudogen, görünürde, mutasyona uğramış fonksiyonel genlerin işlevlerini kaybederek ortaya çıkardıkları DNA parçalarına evrimcilerce verilen isimdir. "Pseudo" kelimesi de İngilizcede "sahte, yanıltıcı" anlamında kullanılır. Pseudogenlerin evrimciler açısından özel bir önemi olduğu söylenebilir. Çünkü mutasyonların evrim meydana getireceği iddiasının geçersizliğini içten içe kabullenmiş, pseudogenlere bir tür göz boyama aracı olarak sarılmışlardır. Kısaca hatırlayacak olursak, canlılar üzerinde yapılan sayısız deneyde, mutasyonların, etkili oldukları zaman canlılarda daima genetik bilgi kaybına neden oldukları görülmüştür. Bir saate yapılan rastgele çekiç darbelerinin saati geliştirmeyeceği gibi, mutasyonlar da organizmaları asla geliştirmemiş, bir diğer deyişle evrimleştirmemişlerdir. Evrim teorisi genetik bilgide artış gerektirdiği halde mutasyonlar hep genetik bilgiyi azaltır, tahrip ederler. Teorilerine destek gösterebilecekleri bir mekanizmadan dahi yoksun olan evrimciler, pseudogenleri hayali evrim sürecinin "hayalet" mekanizmasının işlediğine kanıt gösterdiler. Evrimciler, protein kodlamayan bu DNA parçalarının sözde evrimin moleküler fosilleri olduğunu iddia ettiler. Bu iddianın tek dayanağı, bu genlerin herhangi bir fonksiyonunun bilinmeyişiydi. Ta ki 2003 Mayısı'na kadar. Pseudogenlerin fonksiyonel olduğunu gösteren bir çalışma, ünlü Nature dergisinin 1 Mayıs 2003 tarihli sayısında yayınlandı. Araştırmacılar, "İfade Edilmiş Bir Pseudogen, Homolog Kodlayan Geninin Mesajcı RNA Kararlılığını Düzenliyor" (An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene) başlıklı yazılarında, bir deneye hazırlanan farelerde gözlemledikleri bir durumu haber veriyorlardı.99 Buna göre bir dizi farenin, Makorin1-p1 ismi verilen pseudogenlerinin, genetik olarak değiştirilmesi sonucu farelerde ölümcül mutasyonlar meydana gelmişti. Farelerin böbrek ve kemiklerinin anormal şekilde geliştiği gözlemlenmişti. Pseudogendeki dizilimde meydana gelen bir değişimin farenin organlarını etkilemesinin açıklaması basitti: Bu pseudogen işlevsiz değil, gerekliydi. Nature dergisinde bu araştırmayı yorumlayan bir makalede bu çalışmanın, evrimin "moleküler fosilleri" gözüyle bakılan pseudogenler hakkındaki yaygın görüşlere meydan okuduğu yazılıyordu.100 Yani, bir evrim efsanesi daha yıkılıyordu. Pseudogenlerle ilgili bir fonksiyon ortaya çıkarıldıktan yalnızca üç hafta sonra, bir diğer ünlü bilim dergisi Science'da yayınlanan bir araştırma, Hurda DNA kavramına bir başka ağır darbe vurdu.101 Derginin 23 Mayıs 2003 tarihli sayısında yayınlanan bir araştırma, kodlamayan DNA ile ilgili yeni bir işlev daha ortaya çıkarıyordu. Yukarıda aktardığımız tüm gelişmelerin farkında olan evrimciler için, uzun süre gündemde tuttukları "Çöplük DNA" kavramının anlamsızlığını açıkça kabul etmekten başka seçenek kalmıyordu. Çöplük DNA kavramının çöpe atılma vakti gelmişti. Pensylvannia Eyalet Üniversitesi'nden Wojciech Makalowski tarafından kaleme alınan yazının başlığı bu değişimi gösterir nitelikteydi: "Not Junk After All" (Artık Hurda Değil). Makalowski durumu şöyle özetliyordu: Özellikle tekrarlayan elemanlarla ilgili olan Hurda DNA görüşü 1990'lı yıllarda değişmeye başladı... Şimdilerde giderek daha fazla sayıda biyolog tekrarlayan elemanlara genomik hazine olarak bakıyor. Bu rapor gösteriyor ki tekrarlayan elemanlar 'Hurda DNA değil', ökaryotik genomların önemli, birleştirici bileşenleri. O halde tekrarlayan DNA "Hurda DNA" olarak isimlendirilmemeli…". 102 Bir zamanlar Hurda DNA kavramını ve buna dayalı evrimci spekülasyonları sık sık duyabilirdiniz. Ama, burada özetlediğimiz gibi, Darwinistlerin son "körelmişlik" iddiası olan Hurda DNA kavramı da tarihe karıştı. Darwinizm'in bu son çırpınışları da boşa çıktı.

http://www.biyologlar.com/bir-zamanlar-hurda-dna-masali-vardi

TESPİT EDİLMİŞ DOKULARI BOYAMADAKİ GENEL FAKTÖRLER

1-Fiksasyonun Boyama Üzerine Etkileri: Fiksasyon, dokularla boyaların etkileşimine yardım eder. Formaldehit ve civa klorür, bazik boyaları tercih ederken, trikloroasetik asit, pikrik asit ve krom bileşikleri asidik boyaların hareketini kolaylaştırır. Etil alkol veya asetik asitle fiksasyondan sonra hem asidik hem de bazik boyalar dokular tarafından kolaylıkla alınır. Çekirdek boyası olan carmalum, civa klorür fiksasyonundan sonra daha çok, formalinden sonra ise daha az boyar. Bazen tespit edici ajan, özel bir doku bileşeni ve boya arasında direkt olarak hareket eder. Bu durumda iken fiksatifin bir mordant olarak hareket ettiği söylenir. Örnek olarak, hematoksilenle miyelinin gösterilmesinde başlangıç basamağı olarak dokunun potasyum dikromatla muamelesi verilebilir. 2-Progressif ve Regressif Boyama: Progresif boyama tekniği, dokulardaki farklı elementlerin sıra ile renklendiği ve boyama solusyonunda uygun sürenin sonunda dokuların tatmin edici differensiyel renklenmesinin başardığı bir tekniktir. Regressif teknikte ise dokular önce fazla boyanırlar, hücresel ayrıntılar yok olur. Sonra dokunun istenmeyen kısımlarından fazla boyanın uzaklaştırılması ile boyanın alındığı veya differensiye edildiği bir tekniktir. Regressif boyama eski progressif yöntemlerden daha çok uygulanmaktadır. Çünkü diğer hücre yapılarının bir miktar boyanması olmaksızın bir hücrenin bir kısmının yeterli yoğun progressif boyanması olmaksızın hücre bölümlerini yeterli yoğun progressif boyanmasını elde etmek zordur. Regressif boyama ise ayrıntıları örten diffüz sonuç verir. Differansiyasyonla daha açık renkte boyanmış alanlardan boyaların uzaklaştırılması olasıdır. Differansiyasyondan sonra hala diğer yapılarda seçici ve açık biçimde ayrıntılı sonuçlar için yeterli miktarda boya kalmaktadır. 3- Direkt ve İndirekt Boyama: Anilin boyaların bir çoğu ( metilen mavisi, eozin gibi) boyanın basit sulu veya alkolik solusyonlarına konursa dokuları mükemmel olarak boyar ve direkt boyama olarak bilinir (Şekil a). Hematoksilen gibi birçok boya ise dokularda tatmin edici bileşimin oluşması için mordant olarak bilinen ara bir maddeye gereksinim duyarlar. Bu olay indirekt boyama olarak bilinir. Boya ve mordant ünitesi renkli bir göl şekillendirmek için ve mordantlanmış boya, bir doku-mordant-boya kompleksini oluşturmak üzere doku ile birleşirerek sonraki zıt boyamanın ve dehidrasyonun kolaylıkla yapılmasına izin verir. Histolojik boyama yöntemlerinde boya ve mordant ya birlikte (örn/ Erlich hematoksileninde hematoksilen potasyum alum ile) veya mordant doku boya solusyonuna aktarılmadan önce ( örn; Heidenhein hematoksileninden önce iron alum banyosu) kullanılabilir. Demir, alimünyum ve krom bileşikleri boyalarla bazik boyalar oluşturmak üzere birleşen mordantlardır. Metalik mordant; kimyasal bağlarla kendini hem boyaya hem de dokuya bağlar. Accentuator-Vurgulayıcılar: Mordantlardan farklıdırlar ve kullanıldıkları boyanın boyama gücünü artırırlar. Boyalarla göller oluşturmazlar ve boyanın doku ile kimyasal birleşmesi için esasi değildirler. Loeffler' in metilen mavisindeki potasyum hidroksit ve karbol thionin ve karbol fuksindeki fenol; boyanın yoğunluğunu ve seçiciliğini artırarak accentuator olarak hareket ederler. Accentuatorlar sırası ile anyonik (asidik) ve katyonik (bazik) boyalara eklendiklerinde sıklıkla asit ve alkalidirler. Bir anyonik boyaya asidin eklenmesiyle; dokuların bazik gruplarının iyonlaşmasının artmasıyla boyama yoğunlaşır. Eğer bir katyonik boyaya alkali eklenirse, asidik gruplarının iyonizasyonu artar. Fenol, karbol thionin ve karbol fuksinde accentuator olarak kullanılır fakat hareket tarzı tam olarak anlaşılamamıştır. a- Direkt boyama b- Mordant ile indirekt boyama c- Accetuator ile indirekt boyama Sinir sistemi için metalik impregnasyon yöntemlerini de kullanılan Acceleratörlerin (hızlandırıcılar) (örn/ Cajal yöntemlerindeki chloral hidrat ve veronal) de aynı zamanda accentuatorlar gibi aynı yolla hareket ettikleri görülmektedir. Trapping(tuzağa düşüren ajanlar), boyaları dokularla ve bakterilerle birarada tutar; tannik asit ve iodin örnek olarak verilebilir. Metilen mavisi/ eozinle seçici olarak boyanan bir kan smeari, tannik asitle muamelesinden sonra krornatindeki metilen mavisini tutar. Gentian viyole ve iodin ile boyanan bakterilerin ve alkolik deklorizasyona dayanması da aynı zamanda bakteri-boya kompleksine iodinin trapping hareketi yüzündendir. İodinin boyanın bakteriler ile reaksiyona girme kapasitesini değiştirmediğine, fakat boyayı tutmaya meyilli olduğuna ve differansiyasyon sırasında dokudan kaçışına engel olduğuna inanılmaktadır. 4-Differansiyasyon: Regressif bir teknikteki aşırı boyanmış dokunun differansiasyonu veya boyanın geri alınımı (de-staining), basit solusyonlarda yıkama ile veya asitler ve oksitleyici ajanların kullanımı ile sağlanabilir. Mordantlar ve bazı boyalar aynı zamanda differansiasyon ajanları gibi hareket edebilirler. Suda veya alkolde yıkama, differensiasyonun temelidir ve boyanın içinde çözünebileceği herhangi bir solvent de kullanılabilir; differensiasyon sıvısı basit çözünebilirlikle hareket eder. Dokularla sıkı kimyasal birleşme ile birleşen boyalar, bu yolla kolaylıkla differansiye olamazlar fakat onların doku-boya linkajları asitlerin hareketi ile parçalanabilir. Differansiasyon ajanı ya doku ve mordant arasındaki birleşimi ya da mordant ve boya arasındaki bağları koparır. Asitlerle hematoksilen boya göllerinin differansiasyonu; mordantla birleştiğinde kaybolan boyadaki hidroksil grubun yeniden oluşumu ile mordant-boya hattını kırar; asit aynı zamanda dokulardaki asidik grupların iyonizasyonunu baskılar. Doku-mordant bağı da kırılır. Oksitleme ajanları farklı olarak hareket ederek boyayı renksiz bir bileşiğe oksitlerler. Differensiasyon için kullanılan mordantlar; çözünmeyen boya mordant doku kompleksini, bir boya olarak dokuda boyanın sadece bir bölümünü bırakarak, boyanın kismi redistribution yolu ile differensiasyon sıvısında dağılan çözünebilir boya-mordant gölüne dağıtır. Boyalar, kullanılan boyalardan doku kompenentleri için daha kuvvetli bir affiniteleri olduğunda differentiatör olarak işlev görürler. Orange G gibi daha kuvvetli bir boya, diğer daha az hırslı boyayı yerinden çıkarır ve basit de-staining gibi aynı etkiyi yaratır. Boyama Solusyonlarının Olgunlaşması: Bazı boyama solusyonları sadece haftalarca veya aylarca havaya, ışığa ve (sıklıkla) ısıya maruz kaldıktan sonra etkilidir. Hematoksilen iyi bilinen bir örnektir. Taze hazırlandığında nukleus boyası için kullanışsızdır fakat stoklandıktan birkaç hafta sonra aktifleşir. Hematoksileni hemateine okside olur. Oksitleme ajanlarının (sodyum iodat, merküri oksit, potasyum permanganat gibi) eklenmesi ile hızlandırılabilir. Hematoksilenin bir kısmının boyama solusyonunda suni olarak fazla hematoksilenin ise doğal olarak olgunlaştırılmasının mümkün kılınması önerilmektedir. Bu, boyanın bir kerede kullanılmasına izin verir fakat devam eden oksidasyon boyanın aktivitesinin birkaç ay sürmesini sağlar; yoksa tamamen olgunlaşmış solusyon daha ileri oksidasyonla inaktif bileşiklere dönüşerek hızla etkisiz hale gelir. Boyaların hazırlandığı günün tarihini etiketle belirlemek akıllıca olacaktır.

http://www.biyologlar.com/tespit-edilmis-dokulari-boyamadaki-genel-faktorler

Umudun Genleri

Umudun Genleri, Tunus asıllı Fransız bilimci Daniel Cohen'in(1951-...) kitabının adı. Bir bilimadamının hoş anılarını ve genlerin umudunu açıklayan bu kitaptan ilginç bölümler aktaracağım.Daniel Cohen,1978'den itibaren Profesör Jean Dausset(Nobel,1980) ile birlikte çalışmaya başladı.Daniel Cohen, insanın genetik yap-bozununun ortaya çıkarılma serüvenine katılmış ve bu serüveni bize hoş bir dille anlatıyor. Yeşim Küey'in,çok başarılı bir şekilde Türçe'ye kazandırdığı kitabı,Kesit Yayıncılık yayımlamıştır. Bir Bilim Adamının Anıları :Daniel Cohen Jean Dausset, 1960'lı yıllarda, tüm hücrelerimizin yüzeyinde varolan proteinleri kodlayan genler bütününü keşfetmişti. O zamanlar bu proteinlerin rolü oldukça gizemliydi. Dausset ’nin çalışmaları organ naklini sağladı ve onun sayesinde milyonlarca yaşam kurtarıldı halen de kurtarılıyor... Ben, Nobel Ödülü’nü almasından (1980) bir yıl önce yoluma onunla devam etmeye karar vermiştim. O sıralarda bunun nedenlerini çözümlemeyi hiç düşünmediysem de herhalde çok iyi gerekçelerim vardı. İMKANSIZ denen şey, beni tam da çok heyecanlandıran şeydi. Ben kuşkucuların, fazlasıyla sakınımlı olanların ve bıkkınların düşüncelerinin iflas etmiş olmasından kuşkulanıyordum. Elbette Jean Dausset’nin durumu kesinlikle bu değildi! Benim onda asıl değer verdiğim şey, başkalarının eleştirdikleri şeydi. Düşünüş biçimi rahatsız ediyordu O sıralarda, onu bir naif, bir hayalci, bir garip olarak görüyorlardı. Jean Dausset, klasik düşünce biçimiyle hiç ilgisi olmayan bir düşünce biçimine sahiptir. Onun akıl yürütmeleri alışılmış mantık yollarını izlemez. Yüzeyde görünmediği için bazılarının “yavaş” bulduğu, kendine özgü bir düşünme ritmi vardır. Bunun nedeni, Dausset’nin etkilemek için uğraşmamasıdır. O acele etmemeyi ve sorunların derinlerine inmeyi sever. karşısındakini asla çürütülemez kanıtların yığını altında ezmez. Konuya beklenen yerinden girerek bir mantık çerçevesinde ilerlemek yerine, o, sorunları bir başka yandan ele alır. Bu, çalışma arkadaşlarının ve meslektaşlarının düşünmediği bir yandır. Sorunu bir köşesinden yakalar, sorunlu konunun içine sakince yerleşir ve kafasında, alışılmış düşünce sistemlerinin yolundan gitmeyen bir kavrayış şeması kurar. Kimi zaman şaşırtıcıdır. Size, Kutsal Kitap’takiler kadar basit görünen bir sorunda kilitlenir. Herkesin anlayabileceği ve anladığı bu sorunu, o, anlamaz. Açıklarsınız. Yine anlamaz. tıpkı bir çocuk gibi! Ve sonra, o anlamaya çalışırken bir de bakarsınız ki, sorunu bütünüyle farklı bir biçimde aydınlatmış. konuya yakın olanlar, uzmanlar, böylece hata yaptıklarını anlarlar. Meğer yanlış yoldaymışlar, sorunun temelini görmemişler. O, görü sahibidir. Tümüyle. Onunla tartışan biri, görüşlerini ne kadar dirençle savunursa savunsun, bu özgün kafanın sorunlar her zaman derinlemesine doğru bir tarzda yaklaştığını kabul etmekten kendini alamaz. Onunla aynı düşüncede olmasanız, onunkilerden farklı seçimler yapsanız da bu böyledir. Üstelik, ondaki mizah duygusu yaşama sevinci ve isteği bulaşıcıdır. Onu görmek ve tanımak gerekir. Neşe saçan bir adamdır. Bu estet, bir modern resim tutkunudur. Her şey onun ilgilendirir her şey onun memnun eder. En olağanüstü yanı da tartışma ve düşünce alışverişindeki rahatlığıdır. Jean Dausset mandarinlerin, kendilerin ezip geçmesinler diye çevresine düşünce sahibi olmayanları toplayan büyük patronların tam tersidir. Onun tutumu daima bunun karşıtı olmuştur. Asla kimseyi engellemez. Birinin bir düşüncesi mi var? Onunla birlikte bunu çözümler: “Tamam...Çok iyi..” Güvenir. Ve özellikle de gece demeden, pazar günü demeden, her zaman sizinle birlikte düşünür. Onun hoşuna giden şey budur. Çevresinde düşünce sahibi insanların olmasına gereksinim duyar. Bu onun düşüncelerini zenginleştirir. Aksi takdirde, nasıl “eğlenebilir ki”? Başka konularda olduğu gibi araştırmada da gerçek mutluluklar yalnız yaşanmaz. Aslında, bir büyük patronun, bir gence uyan tutuma sahip olması, hiç de kolay değildir. Sorun, gencin düşünce üretebilmesi için ne yapmak gerektiğini bilmek değil ( böyle şeyler siparişle olmaz) ama daha çok, onun düşüncelerini yansıtması için nasıl davranılacağını bilmektir. Dausset, iş arkadaşların öne çıkarmasını bilir. Asla onların yetkinliklerinden kuşkulanmaz. tersine! “Onu yetiştiren benim, her şeyini bana borçlu... “ biçimindeki bir söylem ona tamamen yabancıdır. Kafasının açıklığı, ona araştırmacıları yönetmede eşsiz bir yaklaşım kazandırır. Onun yaklaşım tarzını anlamadan da kendisinden yararlanmış olabilirdim. Bu tarzı, çözümlenmesinin önemini görecek kadar kavramış ve örnek alabilmiş olmaktan dolayı çok mutluyum. Bizler birbirimizden çok farklıyız. ama ben, kendi öğrencilerime ve kendi ekip üyelerime karşı gösterdiğim belli bir davranış tarzını ona borçluyum. son derece etkili bir tarz. 1979. Onun ekibinde, bağışıklık genetiğine alışarak geçirdiğim bir yıl. Kalıtımın kimyasal desteğini temsil eden, kromozomlarımızı ve genlerimiz oluşturan uzun DNA molekülünü kullanma teknikleriyle birlikte, moleküler biyolojide bir dönüm noktası belirmeye başlıyordu.(s: 23-25) Belli bir anda, bilimcilerden biri, dikkatini, yeni bir yol açabilecek küçük bir şeye yöneltir. Gerçekten yeni düşüncelere gelince, bunlar son derece enderdir. İnsan bunlardan birini bulduğunu sandığında, olağanüstü bir şeylere el atmış olduğunu umduğunda, inceleme ve çözümlemelerden sonra, aynı alanda on kişinin daha çalıştığını ya da aynı şeyi çok önceden düşündüklerini fark eder! O halde sorun, varsayımını sürüncemede bırakmamak, onu deneysel olarak kanıtlamaktadır. Varsayımını doğrulayan, öne geçer. Elbette o her şeyi alt üstü eden düşüncelere sahip biri de çıkabilir, tıpkı Jean Dausset’de olduğu gibi. Ama bu pek nadirdir. Binde bir, bir araştırmacı, kimi kez bir deha özelliği olan, tamamen kendine ait bir esine, bilimde nitel bir sıçrama yaptıracak bir buluşa sahiptir. Buna da ancak on yılda bir rastlanır, rastlanabilirse. Araştırmacının bugünkü üstünlüğü, kafasındaki fikirlerden çok, bunları gerçekleştirmek için ortaya koyduğu yeteneğe .. ve zorunlu araçları bir araya getirmek üzere sürekli dilencilik yapmaya harcadığı enerjiye, sonra da düşüncelerini kanıtlamak için sergilediği yaratıcılığa dayanır. Yeniliklerin çoğunlukla teknolojik olmasının nedeni budur. Bu bir yana, Jean Dausset, DNA üzerinde çalışma önerisine ne kadar olumlu karşıladıysa, ekibinin çoğunluğu da bir o kadar karşıydı. Esasen Cohen (yazarımız), bu toy delikanlı, moleküler genetik konusunda ne biliyordu ki? Neredeyse hiçbir şey! İşin kötüsü bu gerçekten doğruydu.(s:28)..İnsanın Jean Dausset gibi bir patronu olmasının üstünlüğü, onun hiçbir yolu araştırma dışında tutmamasıydı; ister genç ister çok genç olsun, yeter ki, kanıtları olan ve bunlara karşı biraz heyecanla yaklaşan biri çıksın. Bana gelince, benden daha deneyimli olduklarını söyleme gereken arkadaşlarım tarafından pek de iyi gözle bakılmıyordum. Kabul etmeliyim ki, dayanılmaz, tam anlamıyla çekilmez bir kibir içindeydim. Ama bir genç, kesinlikle doğru olduğu önsezisiyle iz sürerken ve deneyimsizlik ona kendinden kıdemlilerin karşı çıkmalarına aldırmama cesaret ve küstahlığı verirken, ister istemez çekilmezdir. Ve ayrıca, o, her zaman bilimsel itirazlarla değil, ama öncelikler ve kazanılmış konumlarla da karşılaştığı duygusuna sahipse, kendine nefret ettirmekten belli bir haz da alır. Gerçekte, ünlü bile olsa, hiçbir araştırmacı kendinden daha genç olanların itirazlarından korunamaz. Eğer gençlerle arasında sorun yoksa ne ala. Ama ilk anlaşmazlık patlak verir vermez, kendi kendini, hemen sorgulama ve ısrarla haklı olduğunu düşünmekten vazgeçme anı gelmiş demektir. Sonuca bağlayıp karar vermezden önce, çoğu zaman kendi kendime, benim yerimde Jean Dausset gibi biri olsa ne yapardı diye sorarım. Onun da Mendes France, Robert Debre ya da Jean Bernard’ı anma alışkanlığı vardı. Herkesin kendi başvuru kaynakları var; ama miras da budur işte. Üstelik bilimcilerin dünyası da kutsal değildir. Her yerde olduğu gibi orada da, neden orada olduklarını unutmuş insanlar vardır; bilimle gerçekten ilgilenmeyen bir grup profesyonel, kendi nüfuzlarını küçük alanını desteklemek için bilimi kullanır. Alınan sonuçlar, onları iktidar oyunundan ve ünlerini artırmaktan daha az coşkulandırır mali açıdan yeterince doyum olmadığından, hepsi de salt bilim ve insanlık yararına tutkulardan kaynaklanmayan doyumlar peşinde koşarlar. Tanınmış olmak isteyenler de vardır. Yoo ille de toplum tarafından, onları çalıştıranlar ve adlarına çalıştıkları insanlar tarafından değil, ama beş on rakip meslektaş tarafından. Neler yaptıklarını anlayan on kişiden fazla insan olmadığı için böyledir bu! Araştırmacının gündelik davranışında, adının, gerginlik içinde bilimsel yayınlarda kovalanması vardır. Bir kongre sırasında, bir bilimci ne bekler? Neyi kollar? -Benden söz edilecek mi? A, benden alıntı yapıldı! Elbette senden de.. Alıntılanmak bir saplantıdır! Bir yayın mı çıktı? Hemen metnin kaynakçasına saldırılır: -Benden alıntı yapmamış! sonra, bilimsel bir makaledeki isimlerin ve imzalayanların sırası! Geleneksel olarak sonuncu ya da birinci sıra, araştırma yöneticisinindir. Ya ikinci imzayı kim attı, üçüncüyü, sonuncuyu... Bu konuda, araştırmacılar üzerine bir antoloji, bir sosyoloji kitabı yazılabilirdi. Bir küçük alem içindeki toplumsal ürünün dayanağı! En gülüncü de bu tür tanınmışlığın yalnızca geçici olması değil, sonuç olarak gönülsüzce verilmiş olmasıdır. Bir gün sizden alıntı yaparlar, hemen sonra unuturlar, çünkü yarışma süreklidir. Ama böylesi bir didişme içinde insanların özsaygısı yaralanır ve kemirilir. Bundan hiç kimse tümüyle kaçamaz; ama bundan kurtulmayı öğrenmek gerekir. Bütün bunları keşfetmek, beni şaşkına çevirmiş ve çileden çıkarmıştı. Jean Dausset bu tür kaygıların çok üstünde ve uzağındaydı. O, bir yaratıcıdır. Hiç durmadan düşün ve üreten bilimcilerden biridir. Düşüncelerinden birinin çalınması, bu insanlar için pek de önemli değildir. Bu da, onların başkalarına karşı alabildiğince açık olmalarını, gerçek anlamda tartışabilmelerin sağlar. Dausset’ye gelince o, hepimize karşı muhteşem bir iyi niyetlilik içindeydi. Bu tutumundan herkesten çok ben yararlandım ve de aşırı ölçüde yararlandım; ama onun bundan ötürü yakındığını asla duymadım. Her koşulda o bana açık çek verdi. Başka yerlerden gelen iki araştırmacı da bana katılmıştı. Biri, diploma sıvanı geçmek zorunda olan, çok zeki, yirmi beş yaşında bir Venezüellalıydı: Luis Ascano. Diğeri, Howard Cann, Amerikalıydı. Elli beş yaşındaydı ve Amerika Birleşik Devletlerinde sağlam bir üne sahipti... Böylece üçümüz birlikte çalıştık. Bir yıl boyunca. Gece ve gündüz!. Aslında biz çalışmıyorduk. Her akşam gece yarılarına ya da sabahın ikisine dek sözcüğün tam anlamıyla bata çıka gidiyorduk. Moleküler genetiği iyi bilmiyorduk ve onu el yordamıyla öğreniyorduk... Gezip durduk, rasgele yürüdük ve olabilecek bütün hataları yaptık. Laboratuvarımız küçücüktü; üç metreye iki metre. Tezgah üstünde çalışacak yer bulamadığım için, araçlarımı lavobanın içine yerleştirmiştim! İlerlemiyorduk, bunalmış durumdaydık. Oldukça gergin dönemlerden geçiyorduk. Bulduğumuz tek rahatlama anı sabahın birine doğruydu: Saint Louis Hastanesi’nin yakınındaki Belleville’den Tunus usulü sandviç ve kuskus getirtirdik... Bizim hikaye uzadıkça uzuyordu. Aylar geçiyor ve hiç bir şey çıkmıyordu. Sekiz ayın sonunda, bizi bunca uğraştıran konu üzerinde Oxford’da bir kongre oldu: HLA bölgesinin, doğrudan DNA düzeyinde çözümlenmesi mümkün müdür? Biz sonuçlarımızdan söz etmek üzere çağrılmıştık Elimizde hiçbir sonuç yoktu. Kesinlikle hiç. Hiç. Yüze yakın insanın önünde konuşmamız bekleniyordu. ve bizimde söz almak için birbirimizle savaştığımız söylenemezdi. -Howard, sen konuşursun. En deneyimlimiz sensin. -Hayır sen! -Evet ama sen İngilizce konuşuyorsun. Oraya gittiğimizde, sonuçta, konuşması gereken bendim. Niyetlerimiz dışında, sunulacak somut bir şey kesinlikle yoktu. Kongrelerde bazen böyle şeyler olur; ama bu asla çok iyi bir şey değildir elbette. Biz hemen bir taktik geliştirdik. kendimizi kurtarmak üzere, tebliğimizi iptal ettirmek iç kongre başkanına şöyle dedik: -Biliyorsunuz, biz herkesle tartıştık. Onlar sonuçlarımızın hepsini bilmektedir, bunları sunmaya gerçekten de gerek yok... Başkan bize inanma inceliğini gösterdi. Onurumuz, şimdilik kurtulmuştu.” Derken aradan dört ay geçiyor. “İlk makaleyi yazıyoruz. çalışmamız olağanüstü bir yol açıyordu. çünkü biz, HLA sistemindeki çeşitliliğin, mutlak bir kesinlikle DNA düzeyinde ayrıştırılabileceğini ileri sürüyorduk. Makaleyi okuduktan sonra, Dausset yalnızca “müthiş” diye mırıldanmıştı.” “Buluş, genellikle Arşimet’in “Eureka!” sındaki gibi yaşanmaz. Bu, mitolojidir. Gerçekte, bir ekip bazı şeyler bulduğunda, bunların çok da fazla farkında değildir. Sonuç o denli beklenmiştir ki, insanlar ona alışmışlardır. Ortaya konduğu zaman, hanidir bilinmektedir ve kimse şaşırmaz. yalnızca, bir dahaki kongrede lafı gevelemek zorunda kalınmayacağı düşüncesiyle rahatlanır. Yeni sonuç, yalnızca onu beklemeyen kişilere gösterdiğiniz zaman bomba etkisi yapar (eğer yapacaksa). (Danile Cohen, Umudun Genleri, Kesit Yayıncılık-1995 s:28-33) “Bu kitapta anlatılan bilimsel serüvenin temel amacı olan genom nedir? Mümkün olan birçok tanımı vardır. Yalınlaştırmak için, işlevsel bakış açısından, genomun hücrelerin çekirdeğinde içerilen bilişimlerin (informations) bütünü olduğunu söyleyelim. Hücreler bölünür, bu bilişim bilgi hücreden hücreye aktarılır. canlı varlıklar ürere ve bu bilişim kuşaktan kuşağa aktarılır. Yapısal bakış açısından genom, her hücrenin çekirdeğindeki birkaç metrelik DNA’dır. DNA, gerçekten de, bu bilişimin elle tutulabilir, fizik kanıtıdır. Bizim bir yumurta ile bir sperm hücresinin karşılaşmasından doğduğumuzu herkes bilir Genetik, en çok insanlığı ilgilendiren bu ilk perdeyle başlar. İnsanın, evrimin ilerlemesine katkıda bulunması için hazzın işe karışması gerekiyordu. Bu birleşmenin sonucu bir başlangıç hücresidir, annenin karnına büzülmüş, döllenmiş bir yumurta. Bu hücrenin ikiye, dörde, sekize, on altıya.. erkek ya da dişi olarak gebelik sırasında türümüzün biçimini almak üzere bir araya gelecek olan milyarlarcasına bölündüğünü göreceğiz. Çünkü şaşırtıcı olan, bireysel farklılıklarımızı ortaya çıkaran şey olduğu kadar, ayaklarımızla, ellerimizle, duyarlı el ve ayak parmaklarımızla, yüz ifadelerimizle, ağlama ve gülme yetilerimiz ve benzerleriyle, hepimize benzer kılan şeydir. Ontogenez ’in (insanın döllenmiş yumurtadan yetişkin oluncaya kadarki gelişimini tanımlar) bu mucizesinin milyonlarca yıldan beri hep aynı biçimde gerçekleşmesi için, bir şeylerin bu üreyebilirliği YÖNETTİĞ İ Nİ kabul etmektedir. İnsan gibi karmaşık bir canlının her kuşakta aynı biçimde üremesine olanak sağlayan şey, bir programın, yani imgelemimizi oldukça aşabilecek keskinlik ve ustalıktaki büyük bir yönerge bütününün içindedir. Bu program genom ‘dur. Genom, bir bilgisayar disketinin ya da dilerseniz, çok uzun bir manyetik bantın rolünü üstlenmiştir. Daha kesin bin anlatımla, biri babadan gelen sperm hücresi diğeriyse anneden gelen yumurta ile dolu olan ve aynı temel yönergeleri taşıyan bir çift disket ya da bir çift manyetik bant gibi iş görür. Ama şu iyi anlaşılmalıdır: anneden gelen ve örneğin kafamız ve kollarımızla ilgili olan, genomumuzun bir yarısı; babadan gelen ve örneğin kalbimiz ve bacaklarımızla ilgili olanı da diğer yarısı değildir. Hayır. Sahip olduğumuz genomun yönergelerinin tümü de çifttir: kafa için iki program, bacaklar, kollar, kalp vb için ikişer program. Bu da sonuçta, oldukça pratik olan bir şeydir. İki yönergeden biri hata yaptığında ya da kötü yazılmış olduğunda, diğeri bu eksikliği giderir. Böylece, iki benzeşik yönerge aynı zamanda zarar görmedikçe bozukluk genellikle dramatik değildir. Çoğu zaman bir çaresi vardır. Yüz milyonlarca yıldan beri bu tip bir genetik düzenleme kendini kanıtlamıştır(eşeyli üreyen canlılara ait, yaklaşık bir milyar yıl öncesinin kalıntıları bulundu.). Yaşamın güvenilebilirliği yinelemelerden geçer gibi görünmektedir. Birey ölçeğinde bu genom, daha doğrusu, genomun neredeyse birbirinin eşi olan iki kopyası, aslında, organizmadaki bir hücrenin bölünmek üzere olduğu her kez kendini milyarlarca kez çoğaltır. Her hücre, yağlı bir kılıfı olan bir keseden oluşmuştur. Bu kese bir başka kese içerir; bu da çekirdektir. Anne ve babadan gelen her genom örneği hücre çekirdeği içinde tek bir sürekli iplikçik biçiminde değil, genellikle birbirine dolaşmış ve gözle fark edilemeyen iplikçik parçaları yığını halinde bulunur. Açıldıklarında, bu parçalardan her birinin uzunluğu birkaç santim kadardır. En büyüğü en küçüğünden beş kez daha uzundur. İpekten bin kat daha ince olan bu iplikçik parçaları uç uca eklenirse, bir metre elli santim olacaktır( ana ve babadan gelen örnekleri birlikte hesaba katarsak, bunun iki katı). Bu iplikçikler çok basit bir molekül olan DNA’dan oluşur. Bunu upuzun bir inci kolyeye benzetebiliriz: ana ve babadan gelen birer örnek için 3'er milyar inciden, her hücre başına topla 6 milyar. Her inci, “baz “diye adlandırılan bir kimyasal maddeye karşılık gelmektedir. Her biri kendi baş harfi ile gösterilen dört tip baz vardır: A (adenin), T ( timin), C (sitozin) ve G (guanin); bunlar genetik alfabenin dört harfini oluşturur. Bölünme anının hemen öncesinde hücre bir biçimde şişmeye ve hem anneden hem de babadan gelen genetik materyalin tümünü ikileştirmek için gerekli maddeleri yapmaya başlayacaktır. İşte tam bu anda, iplikçik yığınının, insan türünde 23 çifti bulunan ve optik mikroskop atında X şeklinde oldukça iyi görülebilen kromozomlar halinde düzeneğe girdiği görülür. Böylece her bir çiftte, bir kromozom anneden, diğeri babadan gelir. Bireyin organizmasındaki tüm hücreler, başlangıç genomunun, yani ana ve babadan gelen ilk yönergelere uygun olarak, embriyon, cenin, sonra da yetişkin organizma halinde farklılaşacak olan yumurta genomunun iki örneğinin de tam bir kopyasına sahiptirler. Böylece insan, çekirdekleri bu küçük iplikçikleri, yani yalnızca hücresel bölünme öncesinde ayrımsanabilen kromozomları içeren yüz milyarlarca hücreden oluşmuştur. Ve genomun her bir kopyası, gördüğümüz gibi, 3 milyar baz içerir. Birkaç on binlik baz içeren tikel bir parça, o sayıdaki harflerden kurulu bir sözcük oluşturur ve buna gen adı verilir. Bu sözcüklerin bütünüyse programı oluşturur. Bunlar, ileride göreceğimiz gibi, kuralları insan dilindekilere tuhaf bir şekilde yakınlık gösteren bir dilin öğeleridir. Dört harfli bir alfabe için 30 000 karakterli sözcükler Genomun bir örneği yaklaşık yüz bin sözcüğe sahiptir, biz yüz bin gen diyelim. Bunların her birinin kendi benzeri, diğer örnek üzerinde yer almaktadır. A,T,C ve G’den oluşan dört bazlı genetik alfabenin gerçekten de yalnızca dört harfi vardır. Ama yalnızca bu dört harfiyle, bizim 26 harfli alfabemizinki kadar zengin bir sözcük dağarcığı oluşturur. On harfli bir sözcük oluşturmak için kuramsal olarak 26 üzeri on birleşim olanaklıdır. Dört harften ibaret bir alfabeyle on harfli bir sözcük oluşturmak için bu kez yalnızca 4 üzeri 10, yani yaklaşık bir milyon olabilirlik vardır. Ne iyi ki, ne milyarlarca Fransızca sözcük ne de milyarlarca gen var! Doğa gibi kültür de daha makul. Alfabetik yazıya sahip insan dilleri, alfabelerinin birleşim potansiyellerinin tümünü kullanmaktan çok uzaktır. Elimin altındaki Petit Larousse’un, en kısasından en uzununa, içerdiği tüm sözcükler sonuçta yalnızca 83 500 gibi oldukça alçak gönüllü bir sayıya (özel isimler dahil) ulaşıyor! Buna, tekniklere, mesleklere ve argoya ilişkin, kullanımı sınırlı, farklı sözcük dağarcıkları da eklense 200 000 sözcükten fazlasına pek ulaşılmaz. İlginç bir rastlantıyla, genomun sözlüğü de benzer sayıda sözcük içermektedir: uzunluğu birkaç bin ile birkaç milyon karakter arasında değişen,50 000 ile 100 000 arasında gen. Genomun inci dizen oyuncuları her türlü şıkta çok fazla sabır göstermek zorundadırlar. Önemi yok. sonuç ortada.: A,T, C ve G harflerinden oluşan on binlerce bireşimiyle ortaya çıkan genom dili, en azından kendi yarattıklarının dili kadar inceliklidir. Her bir gen, hücrenin yaşamını düzenleyen ve bizim kendisinden sıkça söz edeceğimiz gerçek işçi olan bir molekülün, yani proteinin, üretimini harekete geçirecek olan bir komut verir. Bir insan yapmak için yüz bin gen yeterlidir; becerebildiğimiz milyonlarca şeye kıyasla bu sayı azdır ama besbelli ki yeterlidir. Garip ve onur kırıcı olan şey, farenin ve maymunun da bizimki kadar gene sahip görünmeleridir; hayvanlar dünyasının aşamalı-düzeni (hiyerarşi) içinden yükselen bu nanik, gizinin keşfedilmesini bekliyor. Yazım Hataları ve Hoşgörüleri Genlerin, yani genomun sözcüklerinin yazımı, hiçbir gevşekliğe yer bırakmayan Fransız dili yazımının tersine, bir insandan diğerine hafifçe değişiklik gösterebilir. Ama ne de olsa, genomun örneğini izleyen, daha az bütünlükçü başka diller de vardır. Fransız Akademisi 17. yy’da yazım kurallarını düzenlenmesinden önce Fransız dili de esasen bu durumdaydı... Ama elbette her gevşekliğin sınırları vardır. Esnek olmak için ileti yine de anlaşılır kalmak zorundadır. Genomun kabul edilebilir yazım değişiklikleri vardır;saçlara rengini, yüzlere taşıdıkları ifadeyi, dış görünümlere heybetini... yani yaşamı güzelleştiren bütün o çeşitlilikleri, bu yazım değişiklikleri sağlar. Ve hastalıkların kaynağında bulunan, dramatik sonuçlar doğuran yazım değişiklikleri de vardır. Bu iki tip değişikliğin arasındaki sınır, tıpkı normali patolojikten ayıran sınır gibi bulanık hareketlidir. Genlerin yazılışındaki gerçek yazım yanlışları nelerden oluşur? Diyelim ki bir sözcüğün o 30 000 harfinden biri (bazen bir çoğu), genetik alfabenin diğer üç harfinden biriyle yer değiştirebilir ya da ortadan kaybolabilir ya da çiftleşebilir(merhaba’nın merhapa, merhaba, mehaba olması gibi). Bu, mutasyon olarak adlandırılan şeydir(bunun nasıl ortaya çıktığını göreceğiz) ve sonuçları değişkendir: mutlu, iyi huylu, nötr ya da trajik. Mutasyon, genin kendi anlamını kaybettirecek derecedeyse ileti artık yoktur ya da anlaşılmamıştır. Diyeceksiniz ki sorun değil, genomun diğer örneği üstünde yedek bir genim var. Kuşkusuz. Ama göreceğimiz gibi, bu bazen sonuç vermez, bazen verir. Çoğu kez proteindeki değişikliğin zararlı etkisi yalnızca beslenmeye, yaşam tarzına ya da diğer etkenlere bağlı belli bir ortam içinde görülür. Bir bakıma her şey, yanlış yazılmış, bağlamına göre şu ya da bu ölçüde anlaşılan bir sözcükle karşılaşıldığındaki gibi cereyan eder. Özetlersek, mutasyonlar kimi kez iyi bir sağlıkla uyumlu farklılıklara eşlik ederler ve canlıların olağanüstü çeşitliliği böylece ortaya çıkar. Kimi kez bu mutasyonlar özellikle duyarlılık taşıyan noktaları değiştirirler ve gerçek aksaklıklara, amansız hastalıklara neden olurlar; sonuçta kimi kez de mutasyonlar bir şeyleri değiştirirler ama bu, yalnızca belli ortamlarda hastalık etkenidir ve hastalık, ancak ortam uygun olduğunda ortaya çıkar. Biyologların gelecek kuşakları hiç şüphesiz bu mekanizmanın olağanüstü ustalıklarını ve çevreyle etkileşimlerini inceleme olanağı bulacaklardır. Bugün için, biz hala, neredeyse anlaşılmaz olan ama yine de dört harfli alfabesini bildiğimiz ve ne mutlu ki, sözcüklerinin yaklaşık yüzde 1'in de tanıdığımız bir yabancı dile, yani genomun diline ulaşmak zorundayız. Üstelik, o birkaç bin sözcüğün anlamını da hiç şüphesiz kısmen biliyoruz. Bir genin bir işlevinin tanımlanmış olması, onun yalnızca bir işleve sahip olmasını gerektirmiyor. Ama her şeyden önce daha bu dilin sentaks ve gramerini bilmiyoruz, edebiyatından hiç söz etmeyelim! Yine de şimdiden erişebildiğimiz bir şey var: bu dilin sözcüklerinin belli yazım değişiklikleriyle iyice tanılanmış hastalıklar arasındaki bağlantıları kurup, saptamayı giderek daha iyi öğreniyoruz ve gerçekleştirebiliyoruz. Gerçekten de diyabetten kansere, allerjiden romatizmaya dek neredeyse bütün hastalıklar mutasyonlarla ilişkilidir. Bu hastalıklara yol açan genetik değişikliklerin bilinmesi, hastalıkların mekanizmalarının daha iyi anlaşılmasına, önlenmelerine ve hastaların tedavi edilmelerine olanak sağlayabilecektir. İşte günümüz genetiği için ulaşılabilecek hedef en azından budur. Bu, yalnızca bir başlangıç olabilir. Ama şimdiden çok coşku vericidir. (Daniel Cohen, Umudun Genleri, s:36-42) HAYVAN VE İNSAN KOPYALAMA Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyalamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetikçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosundan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yıldır, genetikçilerin uluslararası küçük topluluğu, bilimsel perhiz, sakınımlılık, otosansür, kendini sınırlama, erteleme, yanı kısacası, Watson’ın bu bölümün epigrafı olan sözlerini kendisinden aldığım, rasyonalizmin canlandırıcısı Fransız filozof Pierre- Andre Taguieff’in güzel bir biçimde söylediği gibi, araştırmaların gönüllü olarak kesilmesini buyuran bir entellektüel baskıyla karşı karşıyadır. Taguieff’in dediği gibi: Fransız usulü bilim karşıtı vahiycilik, birçok açıdan, 60'lı yılların sonunda ABD’de başlatılan büyük “acemi büyücü” avının küçük ve gecikmiş bir yansımasından başka bir şey değildir. Belki gecikmiş yansıma; ama şu son yıllarda Avrupa’da, şimdi de bizi yüzyıl sonu korkularımızdan kurtarmaya yazgılı, ahlaki uzmanlığını tuhaf bir biçimde biyoloji ve tıbba bakmış tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ıvır zıvır”ı- yaratan, bu gecikmiş yansımadır. Sırası gelmişken, tüm sanayileşmiş ülkelerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştırmalar gibi diğer gerçek tehlike ve sapmalar konusunda bu komitelere danışmayı düşünen var mı? Oysa bana, insanlığın gen sağaltımından çok askeri elektronikten kaygı duyması gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştırılmasındaki bu yeni akım amacına ulaşamıyor; perhize çağrı, doğum kontrolünde olduğu gibi bilimsel kontrol için de zavallı bir yöntemdir. Ama gelin de, Taguieff’in terimleriyle, yalnızca kuşkunun mantığına boyun eğen, kaygan zeminden başka kanıt tanımayan ve sapmaları önleme adına, mutlak tutuculuğun biyoloji sapağına, hatta bilimin totaliter denetimine doğru bizzat sapan yeni lanetçilere laf anlatın. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yeni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, tek model olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenebilir: -Şimdilik bize yalnızca hastaların iyileştirilmesinin söz konusu olduğunu söylüyorsunuz. Çok iyi. Buna karşı çıkmak zor. Ama, siz genetikçilerin az ya da çok yakın bir gelecekte, insanı kendi kararınıza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayıflardan, üstün zekalı ya da ilkel kölelerden oluşacak “ırklar” yaratma erkine sahip olmayacağınızı bize kim garanti ediyor? Megalomaniniz ya da itaatkarlığınız sonucu, davranış genlerimizle, hatta zeka genlerimizle “oynama” eğilimi duymayacağınızı bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapıyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı. Bu iki biyolojik gerçekten bir parçacık haberdar olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşık tahrip edilebilir; ama onu kolaylaştırmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi değildir. İnsanlığın genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsızlıktır. Bunu istesek bile yapamazdık. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileştirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykırımın sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliyetçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyılın bu son çeyreğinde biyoloji, insan düşüncesini çeşitlilik ve karmaşıklığın mantığına alıştırmak için hiç şüphesiz en fazla uğraşmış olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliliğin Genetiği Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonların hepsi (bu ortalama olarak her 300 bazda bir değişiklik noktası, yani genomun bütününde yaklaşık on milyon polimorf nokta eder) hastalıklara yol açmaz. Çok şükür. Kalıtımla aktarılan bu mutasyonların büyük çoğunluğunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazı arasından, ortalama olarak 300 bazdan biri insandan insana değişir. Bunlar mutasyon noktalarıdır.Bu noktalırn herbirinde baz “değişir”; ama yine de, genetik alfabenin yalnızca dört harfi olduğundan, seçim yalnızca dört olasılık arasında yapılır: A,T,C,G. Örneğin A harfi yerinde bir T, bir C, ya da bir G olacaktır. Her bir değişiklik bölgesi için, topluluk içinde en fazla yalnızca dört allel vardır..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenebildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar bileşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalıarın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır. Bu temel gözlem verisi Darwin’in ilk esin kaynağı oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanması”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü aynı büyük izleği üzerindeki farklı birer değişikliğiz. Şu son yirmi otuz yıllık biyolojik araştırmanın en şaşırtıcı keşiflerinden biri (60'lı yıllarda Jean Dausset’nin öncülüğünü yaptığı HLA sisteminin aydınlatılmasıyla), yalnızca protein düzeyinde değil, genlerimiz düzeyinde de söz konusu olduğu anlaşılan bu olağanüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonları bizim en iyi korumalarımız, normalleştirici heveslerimizin karşısındaki en etkili engellerdir. Farklılığa ve dolaysıyla bireye saygı içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: haklılığını genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı. Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitleştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir. Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinekten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkekler av için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, Vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktan geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parmak bastığına inanıyorum. Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimiz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evet. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamıik düzenlenişini oluşturan on binlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayrıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik aynı kültür içindeki bireyler arasında da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekası matematikçinin zekasıyla belli bir benzerliğe sahip görünür;ama matematikçilerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamın zekası yöneticinin, organizatörün, diplomatın, düzenbazın,filozofun, deneycinin,çalgı yapımcısının,icatçının, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! Çevre ve kültür her şeyi açıklamaz,sonuçta genlere de başvurmak gerekir. Bir zeka biçiminde mükemmel ve ne yapılırsa yapılsın,öğrenmeye ne kadar çalışılırsa çalışılsın,bir diğerinde düz ahmak olunabilir. Kuşkusuz kültürel çevreme de eğitimime de borçlu olmadığım kendime ait bir sorun karşısında,uzun süre ben de çılgına döndüm:çabuk anlayamama sorunum var;askere çağrılan lise mezunlarının IQ ortalaması 100 görünürken,o dönem bana söylenene göre 80 civarında,çok kötü bir IQ ile değerlendirilmeme yol açan bir tür yavaşlıktan şikayetçiyim! Tıp eğitiminin sonuna gelmiş tecilli bir öğrenci olarak,keyfim yerindeydi! Ve bunu bir dram haline getirdiysem de,bazılarının,olayın anlamını kavramak için çok zaman harcadığım için böyle davrandığımı söyleyeceklerini biliyorum. (Daniel Cohen, Umudun Genleri'1993),Çeviri: Yeşim Küey,Kesit yayıncılık(1995) s:236-247)

http://www.biyologlar.com/umudun-genleri

Akıllı Tasarım: Bilim mi Din mi?

Akıllı Tasarım (AT) hareketinin neyi savunduğunu, hangi iddialarda bulunduğuna geçmeden önce bu hareketin kökenleri, nasıl ve ne zaman ortaya çıktığıyla ilgili biraz bilgi vermek istiyorum. Akıllı Tasarım hareketi, merkezi ABD’de Washington eyaletinin Seattle şehrinde bulunan DI (Discovery Institute yani Keşif Enstitüsü)’nin CSC (Center for Science and Culture yani Bilim ve Kültür Merkezi) bölümünü tarafından ortaya koyulmuştur. DI, 1990 yılında Hristiyanlığı savunma amacıyla, kâr amacı gütmeyen bir düşünce (think tank) kuruluşu olarak kurulmuştur. CSC bölümü ise 1996 yılında Akıllı Tasarım hareketiyle ilgili araştırmalar yapmak ve yayılmasını sağlamak amacıyla kurulmuştur. CSC’nin kısa ve uzun dönemli planlarını ve hedeflerini anlatan Kama Belgesi (Wedge Document)’nde Kama Stratejisi anlatılıyor. Bu belgede temel hedef olarak şu iki madde yer alıyor:Türkçe’ye çevirmek gerekirse aşağı yukarı amaçlarını şöyle ifade edebiliriz: To defeat scientific materialism and its destructive moral, cultural and political legacies. To replace materialistic explanations with the theistic understanding that nature and human beings are created by God. Türkçe’ye çevirmek gerekirse aşağı yukarı amaçlarını şöyle ifade edebiliriz: Bilimsel materyalizmi ve yıkıcı manevi, kültürel ve politik mirasını yenilgiye uğratmak Materyalist açıklamaları, doğanın ve insanların Tanrı tarafından yaratıldığı teistik (tanrısal) anlayışı ile değiştirmek. Ayrıca bu belgede temel hedeflerin dışında 5 yıllık ve 20 yıllık hedefler de koyulmaktadır. Bunların arasında Akıllı Tasarımın; “bilim dünyasında baskın olarak kabul gören bir teori haline getirilmesi”, “dini, manevi, kültürel ve politik hayatın içine iyice işlemesi” gibi bazı hedefler de mevcut. Daha ayrıntılı bilgi isteyenler bu Kama Belgesine buradan ulaşabilir. Bu arada bu stratejinin adının neden “kama” olduğunu merak edenler olabilir. Kama belgesinde bu şöyle açıklanıyor: “Materyalist bilimi dev bir ağaç kabul edersek stratejimiz bir kama gibi görev görmesi için tasarlandı. Bir kama görece küçük olmasına rağmen, en zayıf noktasına vurulduğunda bir ağaç gövdesini ikiye ayırabilir.” Bu strateji belgesi DI’nın temel amacının bilimde hakim olduğunu söyledikleri materyalist bakış açısının yok edilmesi ve yerini dinsel, tanrısal bir bakış açısının alması olduğunu açıkça ortaya koyuyor. Burada materyalist bakış açısı olarak gördükleri şey aslında doğada olmuş veya olmakta olan olayların doğal sebepleri olması gerektiği görüşüdür. Bu görüşün yerine doğal olaylara doğaüstü açıklamalar getirilmesini yani ‘tanrı’ kavramının bilimin içine girmesini istiyorlar. Yani kısaca DI’nın temel amacı evrenin ve canlıların tamamının tanrı tarafından aniden yaratıldığı fikrinin bilim tarafından kabul edilmesidir. Bu fikilerin lise ve üniversitelerde öğretilmesi de bu hareketin en önemli ve kritik amaçlarından biridir. Ama önlerinde Birleşik Devletler Anayasa Mahkemesi’nin 1987 yılında yaratılış bilimine (creation science) karşı aldığı “belli bir dini inancı empoze etmeye yönelik eğitim yapılamaz” kararı bir engel teşkil etmektedir. Bu sebeple Akıllı Tasarım hareketini anlatırken ‘tanrı’ kelimesini kullanmamaya özen gösteriyorlar. İşte zaten bu sebeple hareketin adı ‘Akıllı Tasarım’dır. Bu tasarımı yapan şeye de ‘Akıllı Tasarımcı’ diyorlar ve bu tasarımcının tanrı olmak zorunda olmadığını söyleyerek yaratılışçılıktan farklı bilimsel bir hareket olduklarını göstermeye çalışıyorlar. Bu sayede Akıllı Tasarımın ortaokul, lise ve üniversitelerde öğrencilere anlatılmasını sağlamaya çalışıyorlar. Of Pandas and People (Pandalar ve İnsanlar) İşte bu noktada sahneye “Of Pandas and People” kitabı çıkıyor. Bu kitap ilk baskısı 1989, ikinci baskısı ise 1993 yılında yapılmış, okullarda biyoloji ders kitabı olarak okutulmak için yazılmış bir kitaptır. Kitabın içinde akıllı tasarım düşünceleri anlatılıyor. Canlıların bir anda bugünkü halleri ile ortaya çıktıkları ve akıllı bir tasarımcı tarafından tasarlandıkları anlatılıyor. 15 yıl boyunca bu kitabın okutulduğu birçok eyaletteki okullarda tartışmalar oldu. Bazıları bu kitabın okutulmasını kabul ederken bazıları tepkiler nedeniyle bu kitabı değiştirdiler. Bu tepkilerin en büyüğü ise 2004 yılında Pennsylvania eyaletindeki Dover kasabasında bölge okul kurulunun “Of Pandas and People” kitabını referans kitap olarak onaylaması ve 9. sınıftaki öğrencilere okutmasıyla ortaya çıktı. Başını Tammy Kitzmiller’in çektiği 11 ebeveyn okul aleyhine dava açtı. Dava 26 Eylül 2005′te başladı. Davaya 2002 yılında George W. Bush (bilindiği gibi kendisi önemli bir AT destekleyicisidir) tarafından görevlendirilmiş olan Yargıç John E. Jones baktı. Davada 21 gün boyunca iki tarafın tanıkları da dinlendi (davadaki tüm ifadelere buradan ulaşabilirsiniz). Dava sırasında ilginç bazı şeyler ortaya çıktı. “Of Pandas and People” kitabınının basılmadan önceki taslakları davada delil olarak sunuldu. Kitabın önceki taslak versiyonlarının adları şöyle: Creation Biology (1983) Biology and Creation (1986) Biology and Origin (1987) Of Pandas and People (1987, yaratılışçı versiyonu) Of Pandas and People (1987, akıllı tasarım versiyonu) Tüm bu kitaplar incelendiğinde çok ilginç bir şekilde ‘yaratılış’ ile ‘akıllı tasarım’, ‘akıllı yaratıcı’ ile ‘akıllı tasarımcı’, ‘yaratma’ ile ‘tasarlama’ kelimelerinin yer değiştirdiği görülüyor. En son basılan versiyonların ise tüm ‘yaratma’, ‘yaratıcı’ gibi direk olarak dini çağrıştıran kelimeler ‘tasarlama’ kelimesi ve türevleriyle değiştirilmiş olarak karşımıza çıkıyor (bununla ilgili dokümanlara buradan ve buradan ulaşabilirsiniz). Henüz davanın sonucu belli olmadan 8 Kasım’da Dover okul kurulu seçimi yapıldı ve AT yanlıları kurula seçilemedi. Böylece kuruldaki 9 kişiden tamamı AT yanlısı olan 8′i değişti. Daha sonra 20 Aralık 2005′te Yargıç Jones kararını 139 sayfalık oldukça ayrıntılı bir metin olarak açıkladı (açıklamanın tam metnine buradan ulaşabilirsiniz). Yargıç Jones’un kararındaki bazı önemli noktalar şöyle özetlenebilir (aşağıdakiler tam çeviri değildir): Savunma tanıklarının itirazlarına rağmen AT dini bir argüman olarak tanımlanıyor. Davadaki kanıtlar AT’nin yaratılışçılığın soyundan olduğunu göstermektedir. Davada elde edilen kanıtlar ezici bir şekilde AT’nin dini bir görüş, yaratılışçılığın yeniden etiketlenmiş hali olduğu ama bilimsel bir teori olmadığını göstermektedir. AT’nin bilim olup olmadığı sorusuyla da ilgilendik ve bilim olmadığı, kendini yaratılışçı yani dini seleflerinden ayıramadığı sonucuna vardık. Akıllı Tasarımın Temel Argümanları Neler? Aslında yukardaki bölüm tahminimden çok uzun sürdü. Zor da olsa AT’nin argümanlarına gelebildik. Bu bölümde AT’nin başka bir savunucusu olan Intelligent Design Network yönetim kurulu üyelerinden Mustafa Akyol’un sitesinde yazmış olduğu bir yazıdan alıntılar yaparak AT’nin argümanlarını anlatmaya çalışacağım: [...] Pek çok bilim adamı, canlılığın sadece bu gibi amaçsız ve bilinçsiz faktörlerin ürünü olamayacağını, hayatın kökeninde “tasarlayıcı bir aklın” olduğunu savunuyorlar. Bu anlayış son yıllarda yeni bir teoriyi de beraberinde getirdi: “Akıllı Tasarım” (Intelligent Design) teorisi. Time dergisinin 12 Ağustos 2005 sayısının da kapak konusunu oluşturan teori, halen ABD’de ateşli bir tartışmanın odak noktası. Bilim dünyasında Akıllı Tasarım’ı kabul edenlerin sayısı artarken, bazı eyatler de teoriyi ders kitaplarına Darwinizm’in alternatifi olarak koymayı tartışıyorlar. Bu teori, 1990′lı yıllarda bir grup Amerikalı bilim adamı tarafından ortaya atıldı. Teorinin ilk büyük çıkışı, Pennsylvania’daki Lehigh Üniversitesi’nden biyokimya profesörü Michael J. Behe’nin “Darwin’in Kara Kutusu: Evrime Karşı Biyokimyasal Başkaldırı” adlı kitabı oldu. Behe, kitabında canlı hücresinin Darwin zamanında içeriği bilinmeyen bir “kara kutu” olduğunu, hücrenin detayları anlaşıldığında ise, burada çok kompleks bir “tasarım” bulunduğunun ortaya çıktığını anlatıyordu. Behe’ye göre, canlılardaki kompleks sistemlerin doğal seleksiyon ve mutasyonla, yani bilinçsiz mekanizmalarla ortaya çıkması imkansızdı ve bu durum hücrenin “bilinçli bir şekilde tasarlandığını” gösteriyordu. [...] Akıllı tasarım teorisini savunanların en çok vurgu yaptıkları kavramlardan biri, “indirgenemez komplekslik” (irreducible complexity). [...] Darwinizm canlıların kökenini iki bilinçsiz doğa mekanizması ile açıklıyor: Doğal seleksiyon ve rastlantısal değişiklikler (yani mutasyonlar). Darwinist teoriye göre, bu iki mekanizma, canlı hücresinin kompleks yapısını, kompleks canlıların vücut sistemlerini, gözleri, kulakları, kanatları, akciğerleri, yarasaların sonarını ve daha milyonlarca karmaşık tasarımlı sistemi meydana getirmiş durumda. Ancak son derece kompleks yapılara sahip olan bu sistemler, nasıl olur da iki bilinçsiz doğal etkenin ürünü sayılabilir? İşte bu noktada Darwinizm’in başvurduğu kavram, “indirgenebilirlik” kavramı. Teori, sözkonusu sistemlerin çok daha basit hale indirgenebileceklerini ve sonra da kademe kademe gelişmiş olabilecekleri iddia ediyor. [...] Ancak Akıllı Tasarım teorisyenleri, bu klasik hikayede çok önemli bir yanılgı olduğunu savunuyorlar. Dikkat edilirse, Darwinist teori, bir noktadan bir başka noktaya (örneğin kanatsız canlıdan kanatlı canlıya) doğru giden aşamaların hepsinin tek tek “avantajlı” olmasını öngörüyor. A’dan Z’ye doğru gidecek bir evrim sürecinde, B, C, D… U, Ü, V ve Y gibi tüm “ara” kademelerin canlıya mutlaka avantaj sağlaması gerekiyor. Doğal seleksiyon ve mutasyonun bilinçli bir şekilde önceden hedef belirlemeleri mümkün olmadığına göre, tüm teori canlı sistemlerinin avantajlı küçük kademelere “indirgenebileceği” varsayımına dayanıyor. İşte Darwin bu nedenle “eğer birbirini takip eden çok sayıda küçük değişiklikle kompleks bir organın oluşmasının imkansız olduğu gösterilse, teorim kesinlikle yıkılmış olacaktır” demişti. Akıllı Tasarım teorisyenleri, işte bu noktayı vurguluyorlar ve 20. yüzyıl biliminin, Darwin zamanında yeterince bilinmeyen pek çok “indirgenemez kompleks” yapı ortaya çıkardığını belirtiyorlar. Michael Behe’nin kitabında indirgenemez kompleks sistemlere verdiği ilginç örneklerden biri, bakteri kamçısı. “Kamçı” olarak Türkçe’ye çevrilen “flagella” isimli organ, bazı bakteriler tarafından sıvı bir ortamda hareket edebilmek için kullanılır. Organ, bakterinin hücre zarına tutturulmuştur ve canlı ritmik bir biçimde dalgalandırdığı bu kamçıyı bir palet gibi kullanarak dilediği yön ve hızda yüzebilir. [...] Bakteri kamçısını kitabında detaylı olarak anlatan Michael J. Behe, sadece bu kompleks yapısının dahi, evrimi “yıkmak” için yeterli olduğunu savunmaktadır.(4) Çünkü kamçı hiç bir şekilde basite indirgenemeyecek bir yapıdadır. Kamçıyı oluşturan moleküler parçaların tek bir tanesi bile olmasa, kamçı çalışmaz ve dolayısıyla bakteriye hiç bir faydası olmaz. Bakteri kamçısının ilk var olduğu andan itibaren eksiksiz olması gerekmektedir. Bu gerçek karşısında evrim teorisinin “kademe kademe gelişim” modeli anlamsızlaşmaktadır. [...] Peki bir yapının tasarım ürünü olduğu nasıl anlaşılıyor? William Dembski The Design Inference: Eliminating Chance through Small Probabilities (Dizayn Çıkarımı: Küçük Olasılıklar Yoluyla Şans Faktörünü Elimine Etmek) adlı kitabında bu soruyu cevaplıyor.(8) Dembski’ye göre, doğada var olup da doğal faktörlerle ortaya çıkma olasılığı aşırı derecede küçük olan yapılar, bilinçli bir tasarımın bilimsel kanıtını oluşturuyor. Örneğin fonksiyonel bir protein molekülünün, doğadaki 20 farklı aminoasitin rastlantısal biraraya gelmesiyle oluşma ihtimali, matematikte “imkansız”ın başladığı nokta sayılan 10 üzeri 50′de 1′den bile çok çok daha (trilyarlar kere trilyarlarca kat) küçük. Bu durum, proteinin rastlantısal bir sürecin ürünü olmadığını, “tasarlanmış” bir yapı olduğunu gösteriyor. Daha kolay anlaşılır bir örnek ise şöyle: Balta girmemiş bir ormanda bir heykele rastlarsanız, bundan çıkardığınız sonuç ne olur? Doğal faktörlerin bu heykeli oluşturmuş olmaları ihtimali çok çok küçük olduğu (yani böyle bir alternatif “imkansız” olduğu) için, heykelin tasarlanmış olduğu sonucuna varırsınız. Akıllı Tasarım teorisyenleri, canlıların kompleks mekanizmalarının, bir ormanda bulunan heykelden çok daha açık birer “tasarım kanıtı” olduğunu savunuyorlar. İşte AT argümanlarını yukardaki gibi özetlemek mümkün. Bu argümanlar bilim dünyasında çok önemli eleştiriler almaktadır. Özellikle Michael Behe’nin indirgenemez kompleks olduğunu iddia ettiği yapıların aslında Behe’nin tanımladığı şekilde indirgenemez kompleks olmadıkları iddia ediliyor. İndirgenemez komplekslik ve indirgenemez kompleks olduğu iddia edilen bazı yapıların evrimi ile ilgili ayrıntılı bilgi edinmek isteyenler için bazı linkler vermek istiyorum: Bunlar şimdiye kadar yapılmış eleştirilerin ve verilen bilimsel yanıtların sadece ufak bir bölümü. Elbette AT savunucularının da bunlara verdikleri cevaplar ve dönüşünde aldıkları cevaplar var. İnternette bunların hepsine ulaşmak mümkün. Ama eğer bu yazıları ve bunlara verilen cevapları incelerseniz aslında karşı cevapların pek de içi dolu şeyler olmadığını görürsünüz. Irreducible Complexity Demystified, Pete Dunkelberg The Flagellum Unspun - The Collapse of “Irreducible Complexity”, Kenneth R. Miller Answering the Biochemical Argument from Design, Kenneth R. Miller A Biochemist’s Response to “The Biochemical Challenge to Evolution”, David Ussery Evolution in (Brownian) space: a model for the origin of the bacterial flagellum, Nicholas J. Matzke Evolution of the Bacterial Flagella, Ian Musgrave The Evolution of Vertebrate Blood Clotting, Kenneth R. Miller Darwin v. Intelligent Design (Again), H. Allen Orr Bunların dışında genel olarak AT düşüncesini eleştiren yazıları incelemek isteyenler olabilir, onlar için de bazı linkler vermek istiyorum: Akıllı Tasarım, N. Emrah Aydınonat Design Yes, Intelligent No, Massimo Pigliucci Neither Intelligent nor Designed, Bruce and Frances Martin No Free Lunch: Why Specified Complexity Cannot Be Purchased without Intelligence, H. Allen Orr Bunlar şimdiye kadar yapılmış eleştirilerin ve verilen bilimsel yanıtların sadece ufak bir bölümü. Elbette AT savunucularının da bunlara verdikleri cevaplar ve dönüşünde aldıkları cevaplar var. İnternette bunların hepsine ulaşmak mümkün. Ama eğer bu yazıları ve bunlara verilen cevapları incelerseniz aslında karşı cevapların pek de içi dolu şeyler olmadığını görürsünüz. Akıllı Tasarımı savunmak için ortaya koyulan argümanlara baktığımızda hep Darwinizme karşı eleştiri olduğunu görüyoruz. Yani sanki sadece Darwin’in ortaya koyduğu düşünceleri çürütebilmek için argüman üretiliyormuş gibi görünüyor. Bu özelliğiyle AT, Darwinizme karşı bir negatif argüman olarak karşımıza çıkıyor. Yani yaşamın veya canlı türlerinin nasıl oluştuğunu açıklamaya çalışmaktan çok Darwinizme dayalı evrimin yanlışlığını göstermeye çalışma amaçlı ortaya çıkmış gibi gözüküyor. Aslında canlıların nasıl ortaya çıktığı, tüm canlı türlerinin nasıl oluştuğunu açıklamaya çalışmak yerine çok karmaşık oldukları için ancak tasarlanmış olabileceklerini ve bu tasarım işini de akıllı tasarımcının yaptığını iddia ediyor. Ama bu tasarımcının tasarlama işini nasıl, ne zaman, niçin yaptığıyla ilgili hiçbir şey söylemiyor. Sadece canlılığın ve canlı türlerinin doğal olaylarla yani hiçbir doğaüstü gücün etkisi olmaksızın oluşamayacağını iddia ediyor. Ayrıca bu akıllı tasarımcının kim veya ne olduğuyla ilgili de hiçbir tez ileri sürmüyor. Ama hepimiz AT’yi savunan herkesin akıllı tasarımcı olarak “Tanrı”yı düşündüğünü biliyoruz. Kısaca şunu söyleyebilirim: Akıllı Tasarım “neo-yaratılışçılık”tır. Yani yaratılışçılığın evrim geçirmiş halidir diyebiliriz. Mevcut çevre koşullarında “Tanrı yarattı” argümanı ile bilimsel platformda yaşayamayan yaratılışçılık yıllar içinde evrim geçirerek “akıllı tasarımcı tasarladı” argümanı ile karşımıza çıkmaya başladı. Ama buna rağmen, yazımın ortalarında anlatmış olduğum Pennsylvania’daki davada, dini görüşlere dayandığı gerekçesiyle yenilgi almış olması pek de başarılı olmadıklarını gösteriyor diye düşünüyorum. Ama bu konu burda kapanacak gibi durmuyor çünkü AT savunucuları pes edecek gibi gözükmüyor. Belki de bu hareket de evrim geçirerek yeni argümanlar üretir ve kendini geliştirir kim bilir. Herşeyi zaman gösterektir. İzleyelim ve görelim.

http://www.biyologlar.com/akilli-tasarim-bilim-mi-din-mi

Doğurganlık - Fertilite Nedir

Kadında Doğurganlık Kadınlarda doğurganlık, gebe kalabilme ve bebek sahibi olabilmektir. Bir kadında doğurganlık13 yaş civarında adetlerin başlamasıyla başlar ve genellikle bu 45 yaş civarında sonlanır. Fakat potansiyel olarak doğurganlık yaklaşık 51 yaş civarına dek yani menapoza kadar sürer. Kız çocuğunun anne karnında 5 aylıkken sahip olduğu yumurta sayısı yaklaşık 6-7 milyondur, bu sayı doğumda 1-2 milyona düşer, çocukluk çağında yavaş yavaş azalarak ergenlik döneminden itibaren ayda bir yumurta yumurtlamak suretiyle bu azalma menopoza kadar aylık ortalama 350-400 yumurta harcayarak devam eder. Bu yumurtalar yumurtalıklar içerisinde follikül denen içi sıvı ile dolu boşluklarda saklanırlar. Küçük kız doğurganlık çağına girdiğinde aylık menstrual sikluslar (adet) başlar. Her siklus sırasında yumurtalık bir yumurta geliştirir. Nadiren birden çokta olabilir. Bu yumurta erkekten gelen sperm hücresi ile birleşirse gebelik oluşur. Yumurta hücresinin gelişimi beyinde hipotalamus ve hipofiz denen bölgelerden ve yumurtalıklardan salgılanan bazı hormonların ve kimyasalların ince dengesine bağlıdır. Erkekte Doğurganlık Erkekte doğurganlık. Kadını hamile bırakabilme yetisi anlamına gelir. Bunu sağlayabilmek için. Erkeğin üreme sisteminin sperm üretebilme ve depolayabilmesi ayrıca depolanan bu spermlerin vucut dışına taşınabilmesi gereklidir. Kadının hayatı boyunca üreteceği yumurta hücreleriyle doğmasına karşın erkek hayatı boyunca sürekli yeni sperm üretebilme yeteneğine sahiptir. Erkek. Puberteye eriştikten sonra . sperm depoları yaklaşık her 72 günde bir yenilenmektedir. Doğurganlık (fertilite) Terimleri: Fertilizasyon: Sperm ve ovumun birleşmek üzere biraraya gelmesi Konsepsiyon: Gebeliğin oluşması (döllenme) Gebelik: Ovum ve spermin birleşmesinden sonra. Kadın üreme sisteminde embriyo veya fetusun gelişmesi. Hayatın Temeli İnsanlar hayata tek bir hücre, döllenmiş yumurta ya da zigot olarak başlarlar. Bu hücrelerin herbirinin çekirdekciklerinde DNA denilen (deoxyribonucleic acid) ve biraraya gelerek genleri oluşturan bilgi kodları vardır. Bu genler'de kromozomlar olarak adlandırılan yapıları oluştururlar. Bir insan zigotu 23 çiftten oluşan 46 adet kromozom içerir. Bunların yarısı babadan diğer yarısı ise anneden gelir. DNA bilgi ile depolu olması yanında kendini kopyalama yeteneğine de sahiptir. Bu kopyalama yeteneği olmaksızın hücreler çoğalamazlar ve bilgileri kuşaklar boyunca iletemezler. Gebelik Şansını (Doğurganlığı) Artırmak İçin Neler Yapılabilir? Sigara Sigara kadınlarda fertiliteyi düşürebilir. Pasif içicilik de aynı şekilde etki eder. Sigara içimi ile alınan nikotin, yumurtalıklardaki hücreleri etkileyerek, kadının yumurtasının genetik anomalilere daha fazla eğilimli olmasına neden oluyor. Nikotin, yumurta hücrelerini bozmasının yanında menopozun beklenenden erken gelmesine de yol açabiliyor. Menopoz öncesinde de sigara içen kadınların yumurtalıkları sağlıklı yumurtalar üretmeye direnç gösterir hale gelir. Sigara kullanımı doğal gebe kalmayı zorlaştırırken, düşükleri hızlandırır. Gebelikte sigara ve alkol kullanan kadınlarda düşük oranının yüksek olduğu bildiriliyor. Erkeklerde de sigara içmekle sperm kalitesinin düşüşü arasindaki bağ gösterilmiş olup bunun fertilite üzerindeki etkisi henüz çok açık değildir. Sigaranin bırakılmasının genel olarak sağlık kalitesini yükselteceği açıktır. Eğer sigara kullanıyorsanız, tüm yaşantınız ve üreme sağlığınız için bırakmanızı öneririz. Stres Stresin infertilite üzerine etkisi belirgindir. Örneğin stres nedeniyle kadında anovulasyon (yumurtlamanın oluşmaması) olabilir. Çok açıktır ki Kısırlık tedavisi, ister klasik ister tüp bebek yöntemleri ile olsun, çiftler üzerinde büyük stres, kaygı, gerginlik, korku, uykusuzluk, iç sıkıntısı, depresyon gibi değişik derecelerde psikolojik baskılara neden olabilmektedir. Bazı kısırlık vakalarında çok kısa tedavi süresi veya ilk denemede gebe kalma gerçekleştiğinde bu tür psikolojik sıkıntılar daha hafif atlatılabiliyor. Diğer taraftan, uzun süredir tedavi görmelerine rağmen gebe kalamayan çiftlerde sorunlar daha ağır hale gelebiliyor. Tedavi süresince merkezimizde psikoloğumuzdan bu konuda destek almanız bu stresi yenmekte önemli katkı sağlayacaktır. Yapılan çalışmalar, stresi azaltmanın başarı şansınızı artırabileceğini göstermiştir. Kafein Yapılan çalışmalar günlük kafein alımının günde 50mg’ın altında tutulması gerektiğini göstermiştir. Böylece kafeinin gebelik şansını düşürücü etkisinden kaçınılabilir. Kafein, kahve, kola. çay ve çikolatada değişik miktarlarda bulunmaktadır. Kilo Kadının kilosunun boyu ile uyumlu olup olmadığını belirlemek için ‘vücut kitle indeksi (BMI)’ kullanılır. Bir kadının BMI’sı 20-24 arasındaysa normal, 25-29 arasındaysa kilolu, 30-39 arasındaysa yüksek kilolu, 40 ve üzerindeyse aşırı kilolu olarak değerlendirilir. Vücut-kütle indeksi (BMI) 30’un üzerinde olan bayanlara kilo vermeleri gebelik şansını artıracağı gibi gebe kalınması durumunda oluşacak aşırı kiloların sebep olduğu kilolu bebek doğurma, zor doğum ve sezeryanla doğuma gerek duyulma eğilimi gibi olumsuzluklar da önlenmektedir. Bunun yanısıra kilonun aşırı düşük oluşu da doğurganlığı olumsuz etkileyen faktörlerdendir. BMI’I 20nin altında olan bayanlarda menstrual siklus bozulabilmekte hatta bazı beslenme bozuklukları ve aşırı egzersiz ile oluşan ileri derecede kilo kayıplarında adetler tamamıyla kaybolmaktadır. Yapılan çalışmalar, düşük kilolu kadınların, ortalama 2.700 ila 3.600 kg aldıktan sonra yarısından fazlasınınkendiliğinden gebe kaldıklarını göstermiştir. Vitamin Desteği Yapılan çalışmalar, gebelik oluşmadan önce folik asit kullanımının, bebeklerde nöral tüp defekti görülme olasılığını neredeyse %50 azalttığını göstermiştir. Bu nedenle Gebe kalmayı planlayan kadınların Gebelikten 1-2 ay önce her gün en az 0.4 mg folik asit almalarını tavsiye ediyoruz. Marul, avocado. dere otu, ceviz, badem, brokoli, bezelye, ıspanak, kavun, , muz, portakal, lahana, yeşil biber, unlu mamuller ve ekmek çok iyi birer folik asit kaynağıdır. Yeterli folik asit alındığından emin olamıyorsanız, folik asit içeren multivitamin preparatlarını kullanabilirsiniz. Cinsel İlişki Planı Yirmisekiz günde adet gören bir hasta için ortalama yumurtlama günü 14. gün, 30 günde bir adet gören hasta için 16. gündür. Yani yumurtlama sonrası dönem sabit olup, genellikle 14 gündür. Bu nedenle yumurtlama dönemi düzenli adet gören hastalarda iki adet arası dönemden 14 çıkarılarak bulunabilir. Ancak yumurtlama günü +/- 3 gün değişiklik gösterebilir. Bu nedenle gebelik şansını artırmak için aktif cinsel ilişki dönemi uzatılmalıdır. Düzenli ve 28 günde bir adet gören hastalarda adetin 10-17 günlerinde (kanamanın 1.gününden saymak gerekir) iki günde bir ilişkide bulunulduğu takdirde sorun yoksa 6 ayın sonuunda çiftlerin %75’i gebe kalır.

http://www.biyologlar.com/dogurganlik-fertilite-nedir

BİTKİLERDE HAREKET FİZYOLOJİSİ

Bitkilerde hareket, hayvanlarda olduğu gibi yer değiştirme şeklinde değil zaman içinde durum ve pozisyon değiştirme şeklindedir. Bitkiler aleminde yer alan bir hücreli algler ile funguslar ve sperm hücreleri gibi özel hücreler, "taksis" adı verilen bir yerden başka bir yere göçme şeklinde ışık ve kimyasal madde gibi uyartılara karşı yer değiştirme hareketi yapabilirler. Bunlar hariç tutulursa bitkiler belli bir yere bağlı olduklarından yer değiştiremezler. Ancak bulundukları yerde bazı organlarının pozisyonunu değiştirmek suretiyle durum değişim hareketi yaparlar. Durum değiştirme hareketleri ya asimetrik büyüme veya asimetrik turgor sonucu meydana gelir. Ne şeklide meydana gelirse gelsin bitki hareketleri genellikle bitkilerin bulundukları ortamdan en iyi şekilde yararlanması ve uyum sağlaması amacına yöneliktir. Durum değiştirme hareketleri iki çeşittir. 1- Tropizmalar (Tropik hareketler) 2- Nastiler (Nastik hareketler) Uyartının geliş yönüne bağlı olarak meydana gelen hareketlere tropik, buna mukabil uyartı yönüne bağlı olmaksızın devamlı aynı yönde yapılan hareketlere de nastik hareket denir. Her iki hareket de ya asimetrik büyüme yada asimetrik turgor farkına dayanır. Ancak genelde tropistik hareketlerde büyüme asimetrisi, nastik hareketlerde ise turgor asimetrisi hakimdir.

http://www.biyologlar.com/bitkilerde-hareket-fizyolojisi

Evrim ve Yeni Türlerin Oluşumu

Günümüzde türleşme,ayrı bir bilim dalı haline gelmiştir.Sınıflandırmada zorunlu bir rolü olmamakla beraber,türleşme bilimi,taksonominin bir alt birimi olarak kabul edilebilir.Türleşme çeşitleri: 1)      Irklardan yeni türlere:Genel olarak bir türün,birbirinden belirgin şekilde farklı olan populasyonları ırk olarak nitelendirilir.Taksonomistler ırk kavramı yerine,bir türün içerisinde farklı populasyonları nitelendirmek için alttür,varyete ve subvaryete kavramlarını kullanırlar.Bu değişik terimler arasındaki evrimsel ve biyolojik farkları belirlemek zor olduğundan evrimciler ırk kavramını tercih eder. 2)      Ani ve dereceli türleşme:Bu terimleri ilk VALANTINE(1949) ifade etmiştir.             Ani ekotür:Kromozom sayısı ile birbirinden ayrılan,aralarında belirgin ekolojik ve coğrafik farklar olduğundan sınırlı gen değişimi olan gruplardır.             Dereceli ekotür:Aynı kromozom sayına sahip,aralarında çok iyi tanımlanan morfolojik,ekolojik ve coğrafik farklar bulunan,yapay ve doğal koşullarda sınırlı gen değişimi kapasitesine sahip gruplardır.             Ani ekotür kavramından türetilen ani tür oluşumu,kromozom sayısındaki ani değişimlerin sonucu olarak ortaya çıkar.Kromozom sayısı değişmeleri,populasyonlar arasında,geriye dönüşü olmayan bariyerlerin ortaya çıkmasını ve izolasyonu sağlar.Bu ani kromozom değişiklikleri çoğunlukla poliploididir.             Birçok araştırmacı ani ve dereceli türleşme yerine Allopatrik türleşme,Parapatrik türleşme ve Simpatrik türleşme ayrımını tercih eder. àAllopatrik türleşme:Bir türün yayılış alanı,fiziksel ayrılırsa,bu tür zamanla iki ayrı türe farklılaşır. àParapatrik türleşme:Parapatrik türleşmede yeni türler,tamamen ayrılmış populasyonlardan değil,bitişik populasyonlardan meydana gelir.İki populasyonun arealinin çakıştığı kesime hibrit zonu denir.Hibrit zonu,bir türün,önemli derecede farklı iki formu arasında hibritleşmenin meydana geldiği temas alanıdır. Hibrit zonunun her iki tarafındaki formlar,ayrı tür olarak sınıflandırılacak kadar farklıdır. àSimpatrik türleşme:Bir türün coğrafik alnında herhangi bir ayrılma olmaksızın iki ayrı türe farklılaşmasıdır.Simpatrik türleşmenin bir şekli ani türleşmedir.Simpatrik türleşme,dereceli türleşme şeklinde de gerçekleşebilir.Farklı besine yönelme,farklı habitata uyum,üreme zamanının ayrılması gibi etkenlerle simpatrik türleşme gerçekleşir. 3)      İzolasyon çeşitleri: a)     Coğrafik İzolasyon:Populasyonun çeşitli coğrafik engellerle ayrılması ve gen değişiminin önlenmesidir. b)     Ekolojik İzolasyon:Populasyonlar ve türler aynı alanda bulunabilirler.Ancak farklı habitatları işgal ederek ekolojik olarak ayrılır. c)    Mevsimsel İzolasyon:Aynı alanı işgal eden yakın akraba türlerin,yılın farklı zamanlarında eşeyli üreme evresine geçmesidir. d)    Zamansal İzolasyon:Aynı zamanda çiçek açan yakın akraba türlerin polenleri günün farklı saatlerinde anterden ayrılır ya da stigma farklı saatlerde polen kabul eder. e)Mekanik İzolasyon:Yapısal olarak yapay yöntemlerle döllenmenin engellenmesidir. f)    Davranış İzolasyonu:Bitkilerin ve hayvanların yakın akraba türlerinin bireyleri aynı lokalitede bir arada bulunabilirler.Bu gibi türler arasında çiftleşme mümkün olsa bile davranış farklı döllenmeyi etkiler. Bu gibi türlerin kur yapmaları ve sevişmeleri çok farklı olduğundan farklı türlerin bireyleri ile çiftleşemezler g)      Gametofit İzolasyonu:Erkek(polen) ve dişi(ovül) gametofitin uyumsuzluğudur. h)    Gamet İzolasyonu:Bir türün poleni,başka bir türün stigmasında çimlenip,polen tüpü embriyo kesesine ulaşsa bile gametler ve endosperm çekirdekleri birleşemez. i)        Tohum Uyuşmazlığı:Türler arasında melez oluşur,tohum meydana gelmez. j)        Hibritlerin Yaşayamaması: k)      F1 Hibritlerinin Sağlıksız Oluşu: l)        F1 Hibritlerinin Kısırlığı: m)    F2 Hibritlerinin Yaşayamaması Ya da Kısırlığı: n)      F2 Hibritlrinin Sağlıksız Oluşu:             Bu maddelerden a-g arası dışsal,h-n arası ize içsel mekanizmadır.                                                       First Zone Finished Taksonomi ve Sistematik Hakkında Genel Bilgiler             Taksomoni adını verdiğimiz bilim dalı,çok sayıda zengin olan canlı türlerini bir düzen içerisine sokmaya ve bu görevi başarabilmek için de yöntem ve ilkeler geliştirmeye çalışır.             Bazı kişiler taksonominin sinonimi yani anlamdaşı olarak kabul edilen,fakat gerçekte tamamen ayrı bir terim olan sistematik sözcüğü de Yunanca olup,organizmaların farklılıklarını,isimlendirilmelerini, deskripsiyonlarını,sıralanmalarını ve akrabalıklarını inceleyen bilim dalıdır.             Taksonominin anatomi,morfoloji,fizyoloji,genetik,ekoloji,coğrafya,meteoroloji,matematik ve istatistik gibi bilim dallarıyla yakın ilişkisi vardır. Taksonomik Kategoriler Türkçesi Bilimsel ismi Hayvanlar Alemi Regnum animale               ANIMALE Kol,Dal,Şube Phylum                               CHORDATA Altkol,Altdal,Altşube Subphylum Üstsınıf Superclassis Sınıf Classis                                 MAMMALIA Altsınıf Subclassis Cohort Cohort Üsttakım Superordo Takım Ordo                                         PRIMATES Alttakım Subordo Üstfamilya Superfamilia(-OIDEA) Familya Familia(-IDAE)                     HOMMIDAE Altfamilya Subfamilia(-INAE) Aşiret,Kabile Tribus(-INI) Cins Genus                                      HOMO Altcins Subgenus Tür Species                                   SAPIENS Altcins Subspecies               A)Yüksek kategoriler:Genel olarak familyanın üstünde bulunan takım,sınıf,şube gibi yüksek kategorilerin her şeyden önce sabit olduklarını belirtmeliyiz.Son yıllara kadar bu kategorilerden sadece 1-2 tanesi değişti.Yüksek kategoriler çok iyi bilinmekte olup tam olarak tarif edilmişlerdir.Yüksek kategoriler kıyaslamalı bilgilerle belirlenir.             B)Familya:Alttür,tür,altcins,cins,tribü ve alt familyaların bağlı bulunduğu bir yüksek kategoridir. Her familya Type genus adı verilen bir cinsle temsil edilir.Familya ismi,Type genusun sonuna –idae eki getirilmesi ile yapılır.Familyayı,bağlı bulunuduğu takımın diğer familyalarından bir cins veya orijinli cinsler tarafından ayrılabilen taksonomik bir kategoridir.             Familyalar kendine bağlı cins sayısına göre 2’ye ayrılır:Bir familyayı tek bir cins temsi ediyorsa “monotipik familya” (Joppeicidae),birçok cinsle temsil ediliyorsa “politipik familya” (Curculionidae).             Familya kavramı kendi içerisinde ayrımlarda vardır: o ÜstfamilyaàBir takım çok sayıda familya içeriyor ve bu familyaların teşhisinde bu yüzden zorluklar çıkıyorsa birbirine çok benzeyen familyalar bir araya getirilerek oluşturulur.Tip cinsin sonuna –oidae eki getirilerek elde edilir.Homoptera takımına bağlı Aphidoidae,Psylloidae,Coccoidae. o AltfamilyaàBir familya çok sayıda cins içeriyor ve bu cinslerin teşhisinde bu fazlalıktan dolayı zorluklar çıkıyorsa birbirine çok benzeyen cinsler bir araya getirilerek yapılır.Tip cinsin sonuna –inae eklenerek yapılır.Miridae familyasına bağlı Mirinae,Dicyphinae. o TribüàAlt familya çok sayıda cins içeriyorsa çok benzeyen cinsler bir araya getirilerek oluşturulur. Tip cinsin sonuna –ini getirilir.Mirinae alt familyasına bağlı Mirini,Capsodini.

http://www.biyologlar.com/evrim-ve-yeni-turlerin-olusumu

NASTİLER

Nastik hareketler, bitki organlarının uyartı yönüne bağlı olmaksızın uyartıya karşı daima aynı yönde yaptıkları hareketlere denir. Nastik hareketler genellikle turgor asimetrisine dayanır. Bazıları da büyüme asimetrisinden kaynaklanır. Büyüme asimetrisine dayanan nastik hareketlere en tipik örnek "epinasti" ve "termonasti" hareketleridir. Turgor asimetrisinden kaynaklananlara ise "niktinasti" ve "tigmonasti" örnek verilebilir. Turgor asimetrisiyle meydana gelen hareketler büyüme asimetrisiyle oluşanlara göre daha hızlıdır. Ayrıca turgor asimetrisine dayanan hareketlerde "turgorinler" adı verilen ve hormon oldukları tahmin edilen kimyasal maddelerin rol oynadıkları ileri sürülmektedir. BÜYÜME ASİMETRİSİNE DAYANAN NASTİLER Epinasti Yaprak sapı petiolün aşağıya doğru kıvrılmasına epinasti denir. Bunun sebebi önceleri yerçekimine bağlanıyordu. Fakat sonradan yapılan klinostat deneyleri epinastinin geotropistik bir hareket olmadığını göstermiştir. Çünkü klinostata konulan bitki de ve konulmayan da epinastik cevap göstermektedir. Epinastide rol oynayan hormonun oksin olduğu anlaşılmıştır. Oksin fazlalığında etilen oluşumuyla izah edilen olayda petiolün dorsaline göre ventralinde daha çok oksin ve bundan kaynaklanan etilen oluşur. Bu durumda alt kısım büyüme inhibisyonuna uğrayarak üst kışını lehine bir büyüme asimetrisi oluşur ve yaprak sapı aşağıya bükülür.Dolayısıyla oksin fazlalığına veya etilen artışına sebep olan her türlü dış ve iç uyartı epinastik hareketin uyaranıdır. Bazen epinastinin tersine yaprak sapının yukarı kıvrılarak yaprağı yukarı kaldırdığı da görülür. Buna da hiponasti denir. Hiponastide giberellin hormonlarının rol oynadığı tahmin edilmektedir. Termonasti Lâle (Tulipa) bitkisinde tipik olarak görüldüğü gibi diğer bazı Liliaceae familyası bitkilerinde de görülen çiçeklerin sıcaklığa bağlı olarak açılıp kapanması büyüme asimetrisine dayanan termonastik bir harekettir. Gece-gündüz sıcaklık farkından dolayı bu çiçekler gündüz açık gece kapalıdır. Özellikle lâle bitkisinde yoğun olarak araştırılan bu hareket, tepallerin dış ve iç yüzey dokularının sıcaklıktan farklı etkilenmesi sonucu meydana gelir. 10°C'nin altındaki sıcaklıklar tepallerin dış yüzey hücrelerinin büyümesine ve çiçeğin kapanmasına sebep olur. 17°C ve yukarısındaki sıcaklıklar ise tepallerin iç yüzey hücrelerinin büyümesine ve çiçeğin açılmasına sebep olur. Diğer bir ilginç sıcaklık mdikatörü, orman gülü (Rhododendrori) bitkisinin yapraklarıdır. Bitkinin daimi yeşil olan yapraklan, kışın sıcaklık -15°C civarına düştüğünde aşağıya doğru gövdeye kapanırken, sıcaklık 0°C üzerinde olduğunda yukarı doğrularak horizontal pozisyona geçer. TURGOR ASİMETRİSİNE DAYANAN NASTİLER Niktinasti (Uyku Hareketi) Bazı Leguminaceae familyası bitkilerinde görülen bu harekette yapraklar ritmik olarak gündüz horizontal pozisyonda açık iken geceleyin dikey pozisyonda kapalı bir pozisyon gösterir. Bu yüzden insanların gece uyuması gündüz uyanmasına benzetilerek uyku hareketleri adı da verilmiştir. Bu tanımdan da anlaşıldığı gibi bu harekette uyarıcı faktör ışıktır. Yaprağın hareketini sağlayan yapı yaprak veya yaprakçıkların sap veya gövdeye birleştikleri yerde bulunan pulvinus'tur. Yaprak hareketleri, pulvinusun motor hücreleri adı verilen subepidermal korteks hücrelerindeki turgor değişimine bağlıdır. Dorsal motor hücrelerindeki suyun ventral motor hücrelerine geçmesi sonucu dorsaldeki hücreler turgorunu kaybederken ventraldekiler turgor durumuna geçer ve bu durumda yaprak açılır. Tersi durumda ise dorsaldeki hücrelerin turgor haline geçmesiyle yaprak kapanır. Yaprağın kapanma yaptığı tarafı ventral, aksi tarafı ise dorsaldir. Uyku hareketleri en tipik olarak akasya ağacı ve ipek ağacı (Albizzia julibrissin) yapraklarında görüldüğünden bu bitkiler üzerinde daha çok çalışılmıştır. Bu bitkilerin yapraklan bileşik yaprak tipinde olup her bir yaprak üzerinde çok sayıda karşılıklı yaprakçıklar yer alır. Lâle çiçeğinin açılıp kapanmasında değişen sıcaklığın etkisi. Solda kapalı çiçek ve dış yüzey dokusunu gösteren ok, sağda ise açık çiçek ve iç yüzey dokusunu gösteren ok yer almaktadır Albizzia julibrissin yapraklarının solda gündüz sağda ise geceleyinki durumları. Alttaki şekiller her iki durumda yaprakçıklann anatomisinden birer kesit göstermektedir (Salisbury ve Ross, 1985). Niktinastik harekette uyartının alınmasında fitokrom pigmentinin rol oynadığı tahmin edilmektedir. Yaprakların açılmasında ışığın mavi ve kırmızı ötesi dalga boylarının etkili oldukları deneylerle gösterilmiştir. Fitokrom ışığı aldıktan sonra pulvinuslardaki motor hücrelerinin zar geçirgenliğini etkileyebilir. Zardaki aktif transporttan sorumlu ATPaz gibi enzimleri kontrol etmek suretiyle bu iş başarılmış olabilir. Böylece hücreler arasında K+ iyonlarının geçişi ve dağılımı sağlanır. Gerçekten yapılan deneylerde motor hücrelerinin turgor veya plazmoliz durumuna geçmelerinde K+ iyonlarının rol oynadığı belirtilmiştir. Hücrelere K+ girişi turgora, K+ çıkışı ise plazmolize sebep olmaktadır. Bu hareketin ilginç bir yönü de bir günlük sürelerle ritmik olarak meydana gelmesidir. Coleus bitkisinde yapılan araştırmalarda bitkinin devamlı karanlık veya devamlı ışık gibi şartlara konulması durumunda dahi 24 saatlik sürelerde yaprakların açılıp kapanma ritmi gösterdikleri belirlenmiştir. Bu da olayda ışığın rolü olmakla birlikte esas olarak iç ritm adı da verilen biyolojik saatin rol oynadığını gösterir. Tigmonasti Tigmonastik hareketler dokunma ve benzeri uyartılara karşı bazı bitkilerin gösterdikleri nastik cevaptır. Mekanik bir uyartıyla meydana gelen asimetrik turgor değişimi sonucu hareket ortaya çıkar. Bu olay en tipik olarak Mimosa pudica küstüm otu bitkisinde görüldüğünden bu bitki üzerinde çalışmalar yoğunlaşmıştır. Bir uyartı verildiğinde bu bitkinin bileşik yapraklarının önce yaprakçıklan sonra da yaprakların kendisi hızla kapanır. Bu hareket birkaç saniyede tamamlanan en hızlı bitki hareketidir. Mimosa'daki bu hareket sadece dokunmaya değil sarsıntıya karşı da meydana geldiği için bu harekete aynı zamanda "sismonasti" adı da verilmiştir. Tek bir yaprak uyarıldığında dahi bu uyartı bitkinin her tarafına yayılıp diğer yaprakların da kapanmasına sebep olur. Tigmonasti hareketinin mekanizması da niktinastide olduğu gibidir. Pulvinustaki ventral motor hücrelerinin K+ iyonu ve buna bağlı su büzülmesi ile yaprak kapanır. 15-20 dakika sonra K+ iyonları ventral motor hücrelerine tekrar geri dönerek hücrelerin su almasına ve şişmesine sebep olur. Böylece yaprak açılır. Mimosa'daki hareketin dokunma ve sarsıntı dışında ısınma, elektrik ve kimyasal uyartılara karşı da meydana geldiği belirlenmiştir. Uyartının sadece yapraklarda değil bütün bir bitkinin her tarafında 50cm/sn hızla taşındığı anlaşılmıştır. Bitkide uyartının bu kadar hızlı nasıl taşındığı hale bir sırdır. Bazı fizyologlara göre hayvanlarınkine benzer bir sinir sisteminin varlığından söz edilir. Bazı araştırıcılara göre hormon taşınımıyla iletilmektedir. Ancak hormon taşınımı bu kadar hızlı değildir. Tigmonastik hareketin bitkiye faydası muhtemelen sinek ve böcekleri ürkütüp kaçırmak içindir. Tigmonastik hareketin başka bir çeşidini böcek kapan bitkilerde görmekteyiz. Bu bitkilerin yapraklan, sinek ve böcekleri yakalamak üzere tuzak adı verilen özel yapılarla donatılmıştır. Genellikle böcek, yaprak ayasına konduktan sonra yaprak sineğin üzerine kapanarak onu hapseder ve salgıladığı enzimlerle onu sindirir. Hususan Dionaea bitkisinin yaprak ayası kurt kapanı şeklinde iki parçalı olup yaprak kenarlarının çıkıntıları birbiri arasına geçen özelliktedir. Böcek yaprağa konduğunda dokunma uyartısı aya üzerindeki küçük tüyler vasıtasıyla alınmakta ve ayanın iki parçası karşılıklı kenetlenmektedir. Dionaea muscipula bitkisinin böcek kapan yapraklan. Sol öndeki yaprağa böcek konmuş, sağ önde kapanmış yaprak. Drosera genusuna giren böcekçil bitkilerde yapraklar yapışkan uçlu tentaküllerle donatılmıştır. Tentaküllerin hareketi böceklerin tentakiillere dokunnıasıyla uyarılır ve böcek buraya yapışarak yaprağın merkezine alınır ve burada sindirilir. Droseradaki hareket daha yavaştır. Ancak böcek yapıştığı için kaçamıyacaktır. Hidronasti Bir çok otsu bitkide yapraklar kuraklık stresine maruz kaldığında rulo şeklinde yaprağın uzun ekseni boyunca katlanır. Bu sırada stomalar da kapanır. Hareketin mekanizması, Şekil'de görüldüğü gibi yaprağın ana damarının iki tarafında dizilmiş bulliform adı verilen motor hücreleriyle ilgilidir. Kuraklık durumunda bu hücreler komşu hücrelere su vererek büzülürler ve yaprak kapanır. Normal şartlarda turgor durumuna geçerler ve yaprak açılır. Bu hareketin uyaranı kuraklıktır amacı ise yaprak yüzeyini küçülterek su kaybını azaltmaktır. DİĞER HAREKETLER Buraya kadar gördüğümüz tropistik ve nastik hareketler bir düzlemde meydana gelen hareketlerdir. Oysa nadir de olsa iki düzlemde oluşan ve burulma şeklinde ortaya çıkan "torsiyon hareketleri" de vardır. Bu tür hareketlerin mekanizması dokunmaya bağlı tigmotropistik özellikte ise de esasen çok daha karmaşıktır. Bu sayede bitkiler iki hatta üç düzlemde devam eden burulma ve sarılma hareketleri yaparlar. Fasulye gibi sarılıcı bitkilerde görülen bu hareket, organların tek tarafında değil, ön, arka, sağ yan, sol yan gibi farklı kısımlarında beliren büyüme farklılığı sonucu meydana gelir. Bu harekette farklı kısımlardaki büyüme farkının büyüme hormonlarının farklı konsantrasyonundan kaynaklandığı tahmin edilmektedir. Bazı bitkilerde özel görevlerin yerine getirilmesi amacıyla patlama ve fırlatma şeklinde beliren ve o organda ancak bir defa meydana gelen hareketler görülür. Ecbalium ve Impatiens balsamına bitkilerinde tohumların fırlatılmasını sağlayan patlama hareketleri turgor değişimiyle meydana gelir. Anterlerin patlamasında, eğreltilerde sporangiumların açılmasında iş gören mekanizmanın bu organlardaki su kohezyon kuvvetlerindeki değişmeyle ilgili olduğu ileri sürülmüştür. Ayrıca bitkilerin cansız dokularında şişme asimetrilerinden meydana gelen hidratasyon hareketleri de vardır. Ancak bu hareketler canlılıkla ve büyümeyle ilgili olmayıp, sadece belli organlardaki cansız yapılarda farklı su alışverişiyle ortaya çıkan şişme derecelerinden kaynaklanan fiziki olaylardır. Çeşitli kuru meyve kısımlarında görülen kıvrılma, eğilme, spiralleşme gibi değişmeler halinde ortaya çıkan bu hareketler meyvalann açılmasında ve tohumların yayılmasında görev yapar.

http://www.biyologlar.com/nastiler

IŞIK SOLUNUMU (FOTORESPİRASYON)

Kloroplastlarda CO2 RuBP karboksilaz enzimi katalizörlüğünde RuBP tarafından yakalanarak PGA oluşturulup C3 yoluna katılır. Ancak O2 yokluğunun çok fazla olması durumunda aynı enzim RuBP ile O2’in birleşmesini sağlar. Bu durumda enzime RuBP oksijenaz denir. Esasen RuBP oksijenaz ve karboksilaz aynı enzim olup Rubisko olarak adlandırılır. Böylece 1 molekül fosfoglikolik asit (P-glikolat) ile 1 molekül PGA meydana gelir. Glikolik asit, peroksizomlarda taşınır. Burada glikolik asit ile O2, glikolat oksidaz enzimi katalizörlüğünde birleştirilerek glioksilik asit oluşturulur. Dolayısıyla fotorespirasyona glikolik asit yolu da denir. Bu esnada oluşan hidrojenperoksit (H2O2) zehirli bir madde olduğundan peroksizomlarda katalaz enzimiyle suya parçalanır. Daha sonra da glioksilattan glisin ve serin gibi amino asitler sentezlenir ve CO2’in bir kısmı serbest bırakılır. Bu olay ışıkta meydana geldiği ve olayda O2 kullanıldığı için ışık solunumu denilmiştir. Burda amaç ATP sentezlemek olmadığından, bu gerçek bir solunum değildir. Işıklandırılmış bir yaprakta fotosentezin aleyhine çalışan bir olaydır. Bu olayın fotosentezin verimini yarı yarıya azalttığı tesbit edilmiştir. Ancak bu sırada bazı aminoasitlerin sentezlenmeside bir avantajdır. Bütün bitkiler ışık solunumu yapmazlar. C3 bitkilerinin tümü ışık solunumu yaparken C4 bitkileri ya hiç yapmazlar veya çok az yaparlar. Çünkü C4 bitkilerinde glikolat oksidaz enzimi ya hiç yok veya çok azdır. Bu da C4 bitkilerinde fotosentez veriminin yüksek olmasının bir diğer sebebidir. Işık solunumu sırasıyla kloroplast, peroksizom ve mitokondride gerçekleşir. Serin amino asitten gliserat ve PGA oluşarak C3 yoluna entegrasyon oluyorsa fotosentezin aleyhine bir durum meydana gelmez. Ancak bitkinin amino asitlere ihtiyacı varsa amino asitler sentezlenecektir ve C3 yolu ile entegrasyon geçişi olarak kalkacaktır. KEMOSENTEZ Ototrof yaşayan sadece yeşil bitkiler değiller bazı bakterilerde ototrofturlar. Ancak bu bakteriler ışığı kullanarak değil kimyasal maddeleri okside ederek açığa çıkardıkları enerji kullanılarak CO2’di karbonhidratlara indirgerler. Bu olaya kemosentez adı verilir. Kemosentez bakterileri bu yaşam biçimleriyle doğada madde döngüsüne katkı sağlarlar. Bir çok toksik maddeyi etkisiz hale getirirler ve erimeyen bazı maddeleri eriterek kullanılır hale koyarlar. Başlıca kemosentez tipleri: Azot oksidasyonu : Toprakta bitki ve hayvan kalıntılarından oluşan NH (amonyak) Nitrosomans cinsi bakteriler tarafından nitrite (NO) çevrilir. Bu reaksiyonda açığa çıkan enerji nitrosomanslarca kemosentezde kullanılır. Ortaya çıkan HNO’lerde diğer bir bakteri grubu olan Nitrobakteriler tarafından nitrata dönüştürülürler ve bitkilere azot sağlamış olurlar. Kükürt oksidasyonu : Beggiatoa, Thiospirillum gibi kükürt bakterileri HS ve S okside ederek enerji sağlarlar ve kemosentez yaparlar. Demir oksidasyonu: Leptotrhrix, spirophyllum gibi bakterileri iki değerli demiri (Fe)üç değerli demire (Fe) demire okside ederek kemosentez yaparlar(PAS). Kemosentezde KH sentezinin nasıl seyrettiği pek bilinmemektedir. SOLUNUM Tüm canlı hücrelerin yapmak zorunda olduğu bir yıkım olayıdır. Amaç hücrenin kendine yetecek enerjiyi temin etme isteğidir. Bu enerji bilindiği gibi sentez ürünlerinde ki kimyasal bağlarda saklıdır. Karbonhidratlar, yağlar ve proteinler başlangıçta güneşten aldıkları enerjiyi solunum reaksiyonlarıyla ATP olarak dışarı vererek canlıların metabolik, büyüme, gelişme, vücut ısısı ayarlama ve eylemlerini gerçekleştirme gibi aktivitelerde kullanmalarında olanak sağlar . Temel organik maddelerin solunum reaksiyonları yolunda parçalanıp kimyasal bağ enerjilerini ATP’ ye dönüştürmeleri için öncelikle yapı taşlarına ayrışmaları gerekmektedir. Örneğin; Nişatanın → glikoza yağ moleküllerinin → yağ asitleri ve gliserol’a proteinlerin → amino asitler’e hidroliz olmaları ve hücrelere kadar taşınmaları şarttır. Solunum sistemli bir yanma olayıdır. Organik moleküller, başta şeker olmak üzere hücrelerde kademe kademe yıkılarak, karbon iskeletlerindeki bağlardan çıkan enerji mitokondri kristalarında yerleşmiş ETS (Elektron Taşıma Sistemi) vasıtasıyla ATP’ye dönüştürülür. Buna oksidatif fosforilasyon yada biyolojik yanma denir. Petrol, odun, kömür gibi fosil yolla organik yakacakların yanması durumunda ise C iskeletlerdeki bağlardan hızla salınan enerjide ısı, ışık olarak etrafa yayılır. Bu bir kimyasal yanmadır. Solunumdaki yanmadan farklıdır. Solunumda esas amaç enerji temini yani ATP üretimi olsada, bu sırada metabolizma için gerekli bir çok yan üründe meydana gelmektedir. Örneğin; çeşitli organik asitler, amino asitler, nükleotidler, pigmentler v.s. oluşmaktadır. Solunum için kullanılan öncelikli molekül glukoz’dur. Glukoz un bulunduğu hücrede daima yıkıma uğrayan bu 6 C’lu molekül olmaktadır. Solunum sitoplazmada başlayıp mitokondride devam eden bir çok biyokimyasal olayın ard arda seyrettiği bir döngüdür. Bütün yüksek bitkiler ve organizmalar solunum (aerobik solunum) yaparlar ama bazı mikroorganizmalar oksijen kullanmadan Enzimleri sayesinde oksijensiz olarak solunum(anaerobik solunum) yaparlar, buna fermentasyon denir. Oksijenli solunum glukoz kullanıldığında başlıca üç aşamada gerçekleşir. 1 - Glikoliz Safhası (sitoplazmada gerçekleşir) 2 - Krebs Döngüsü (mitokondri matriksinde gerçekleşir) 3 - Elektron Taşınım Sistemi (mitokondri kristalarında gerçekleşir) GLİKOLİZ Hücre sitoplazmasında glukozun oksijene gereksinim duyulmadan iki pirüvik asite (pirüvat) kadar parçalanması olayıdır. Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır Bu reaksiyon zincirinde öncelikle 2 ATP kullanılır. Bu ATP’ler ve enzimler sayesinde öncelikle iki 3C’lu aldehite dönüşen glikoz molekülü bir inorganik fosfat (Pi) girişi, 2 H+ ve 4 ATP çıkışı sağlayan bir dizi reaksiyondan sonra 2PA’ te dönüşür ve bu pirüvik asitler normal yolda mitokondrilere taşınırlar. Olağan dışı durumlarda ise Laktik Asit (LE)’e dönüşmek suretiyle 4ATP çıkışının devam etmesini sağlar (anaerobik solunum). KREBS ÇEMBERİ Mitokondri matriksinde PA (3C) ’ tin Asetil CoA (2C)’ya dönüşmesiyle başlayan bu reaksiyonlar döngüsünde 3C’lu molekülün tüm karbonları CO2’te dönüşür. Sonuçta 4 NADH2, bir FADH2 ve substrat reaksiyonu ile bir ATP ortaya çıkmaktadır. 1 glukoz molekülü için bu çıktılar ikiye katlanacaktır. Bu çemberde meydana gelen organik asitler üç karboksil grubu ihtiva ettiği için bu çembere Trikarboksilik Asit Çemberi (TCA)’de denir ELEKTRON TAŞINIM SİSTEMİ Bu sistem mitokondri kristalarında bulunur. ETS’de elektron ve hidrojen taşıyan özel maddeler vardır. Elektron taşınırken ATP sentaz (moleküler değirmen) enziminin aktivasyonuyla ATP sentezi olur. Buna oksidatif fosforilasyon adı verilir. Taşınan elektronlar en son akseptorden (sitokrom a3) ayrılınca matriksteki 2H+ ve O2 ile birleşerek H2O teşkil eder. Buna da terminal oksidasyon denir. Mitokondride cereyan eden bütün bu olaylar (TCA, oksidatif fosforilasyon ve terminal oksidasyon) için O2 gereklidir. O2 yokluğunda meydana gelmezler. ETS’de ATP sentezi, kemiozmotik teoriye göre , oksidatif fosforilasyon ile şöyle olmaktadır; ETS’de yeralan bazı akseptörler H+ ve elektron alarak indirgenir. Bunlar, flavinmononükleotid (FMN) ve ubikinon (UQ) dur. Bunlar hidrojenleri zarlar arası boşluğa pompalarken elektronları elektron akseptörlerine (sitokromlar ve Fe-S proteinleri) verirler. Elektronlar bu şekilde H2O’a kadar taşınırlar. Matriksdeki TCA’dan veya sitoplazmadaki glikolizden gelen hidrojenler bu şekilde zarlar arası boşluğa bırakıldıkça burası asitleşir ve zar potansiyeli oluşur. Bu durumda ATP sentaz enzimi aktive olarak hidrojenleri matrikse geçirir. Bu sırada enzimin katalizörlüğünde ATP sentezi olur. Hidrojen ve elektronlar krista zarındaki ETS’ye NADH2 veya FADH2 halinde getirilerek ETS’ye katılırlar. TCA’nın NADH2’leri ETS’nin başından itibaren zincire katıldığından ve üç yerde hidrojen pompalanması olduğundan NADH2 başına 3 ATP sentezlenir. Oysa TCA’nın FADH2’leri ve glikoliz NADH2’leri ETS’ye UQ’dan itibaren katıldıklarından iki yerde hidrojen pompalanması olur ve 2 ATP sentezlenir. Glikolizden gelen NADH2’ler başına 2ATP sentezlendiğinin sebebi şudur; sitoplazmadan mitokondriye geçişte mitokondri zarında bulunan ve gliserol fosfat mekiği denilen özel bir transport sistemiyle NADH2’lerin H+’leri mitokondri içine geçirilir ve bir flavoprotein (FAD) üzerinden UQ’a aktarılır. Yani sitoplazmadan gelen H+’ler ETS’ye ortadan katıldığı için iki yerde H+ pompalanmasına ve dolayısıyla 2ATP sentezine sebep olur. SOLUNUMDA ENERJİ BİLANÇOSU Glikoliz ve TCA’dan ayrılan Hidrojenleri NAD veya FAD yakalar ve NADH2 veya FADH2 halinde ETS’ ye getirirler. Yapılarındaki hidrojen ve elektronları ETS’ye verip tekrar iş başına dönerler. Şekil’de NADH2 ve FADH2’lerin hangi reaksiyonlardan kaynaklandığı ve her birisi için kaç ATP sentezlendiği belirtildi. Bunları toplarsak 16 ATP eder. Fakat bu reaksiyonlar iki defa meydana geldiğinden 16 x 2 = 32 ATP yapar. Şu halde oksidatif fosforilasyon yoluyla solunumda 32 ATP sentezlenir. Bir de 2 tane glikolizden 2 tane de TCA’dan fosforilatif yolla direkt ATP sentezi vardı. Bunları da eklersek 36 ATP eder. Yani glikoz molekülünün solunuma girip okside olmasıyla 36 ATP sentezlenir. Yapılan hesaplamalarda bir glikozun yıkımıyla esasında 686 Kkal’lik bir enerji çıkmaktadır. Oysa bir ATP’nin hidroliziyle 7,4 Kkal’lik bir enerji açığa çıkar ve 36 x 7,4 = 266,4 Kkal’lik bir enerji solunumda ATP halinde tutulmuş olur. Geriye kalan 420 Kkal2lil enerji ısı olarak yayılır. Yani glikozdan açığa çıkarılan enerjinin % 40 kadarı ATP halinde tutulabilmektedir. SOLUNUM SIRASINDA MEYDANA GELEN YAN ÜRÜNLER Solunumun esas amacı ATP sentezi yapmaktır. Fakat bu esnada değişik basmaklardan kaynaklanan çeşitli organik maddelerin sentezi de yapılır. Bu yüzden solunum bir taraftan yıkılma ve parçalanma iken diğer taraftan organiklerin sentezine sebep olan bir merkezdir. SOLUNUM KATSAYISI Solunumun ölçülmesi, bitkilerin solunumla tükettiği O2’nin ve dışarı verdiği CO2’nin ölçülmesine dayanır. Bu bakımdan solunumda oluşan CO2’in tüketilen O2’e oranı solunum katsayısı olarak adlandırılır ve RQ sembölü ile gösterilir. Solunumda KH’ların kullanılması durumunda bu katsayı 1’dir. Yani KH’ların solunumunda verilen CO2 alınan O2’e eşittir. Mesela; Solunumda yağlar gibi oksijence fakir organik maddeler okside edildiğinde oksidasyon için daha çok O2’e ihtiyaç olduğudan CO2 / O2 oranı düşük olacağından solunum katsayısıda 1’den azdır. Mesela; Yapısında bol oksijen ihtiva eden organik maddelerin oksidasyonu için az oksijen gerekli olduğundan bunların solunum katsayıları 1’den büyüktür. Mesala organik asitler bu şekilde oksijence zengindir. Oksijence fakir olan proteinlerinde solunum katsayıları 1’den azdır. Görüldüğü gibi, solunum yapan bir bitki dokusunda solunum katsayısını ölçerek o dokunun solunumda kullandığı organik madde grubunun ne olduğu hakkında genel bir bilgi sahibi olabiliriz. Normal koşullarda bitkiler ve hayvanlar solunumda öncelikle KH’ları kullanırlar. Ancak depo maddeleri tükenince diğer indirgenmiş maddeleri (yağlar, proteinler gibi) solunum substratı olarak kullanmaya başlarlar. Yağların ve proteinlerin solunuma katkısı KH’ın katkısından farklıdır. Bu maddelerin yıkımında glikoliz safhası yoktur. FERMANTASYON Oksijen olmaksızın besinler nasıl okside edilir? Oksidasyon, elektronların sadece oksijene değil, elektronların herhangi bir elektron alıcısına verilmesidir. Glikoliz, gulukozu iki molekül pirüvata oksitler. Glikolizin oksitleyici ajanı oksijen değil, NAD+’dır. Özet olarak, glikoliz ekzergonik olup, açığa çıkan enerjinin bir kısmı substrat – seviyesinde fosforilasyon ile net olarak 2 ATP üretmek için kullanılır. Eğer oksijen varsa, gulukozdan uzaklaştırılan elektronları taşıyan NADH bu elektronları elektron taşıma zincirine verdiğinde, oksidatif fosforilasyon ile ek ATPler üretilir. Ancak oksijen olsa da olmasa da, yani koşullar aerobik de anaerobik de olsa glikoliz 2 ATP üretir. (aer hava ve bios canlılık demektir; “an” olumsuzluk belirtir) Organik besinlerin anaerobik yıkımı, fermantasyon ile gerçekleşir. Fermantasyon glikolizin uzantısı olup, glikolizin oksidasyon basamağında ortaya çıkan elektronları kabul edecek yeterli NAD+ sağlandığı sürece, substrat seviyesinde ATP üretebilir. NADH dan NAD+ oluşturacak bir mekanizma olmaksızın, hücrenin NAD+ havuzu glikoliz sırasında tükenir ve oksitleyici bir ajan olmadığı için glikoliz durur. Aerobik koşullarda elektronların elektron taşıma zincirine aktarılmasıyla, NADH dan NAD+ oluşturulması sürer. Bu işlemin anaerobik alternatifi, NADH dan glikolizin son ürünü olan pirüvata elektron aktarımıdır. Fermantasyon, glikoliz ile elektronların NADH’dan pirüvata ya da pirüvat türevlerine aktarılmasıyla yeniden NAD+ üreten tepkimeleri kapsar. Bu NAD+ glikoliz ile şekerin okside edilmesi için tekrar kullanılır ve substrat seviyesinde fosforilasyon aracılığı ile net olarak 2 ATP üretilir. Pirüvattan oluşturulan son ürünlere göre bir çok fermantasyon tipi vardır. Alkolik Fermantasyonda pirüvat 2 basamakta etanole dönüştürülür. İlk basamakta pirüvattan CO2 uzaklaştırılır ve 2 karbonlu bir bileşik olan asetaldehit oluşur. İkinci basmakta ise, asetaldehit NADH ile etanole redüklenir. Böylece glikoliz için gerekli olan NAD+ yenilenmiş olur. Laktik Asit Fermantasyonu sırasında pirüvat NADH tarafından doğrudan doğruya redüklenir. Bu sırada CO2 salınmaz. Genelde mikroorganizmalar fermantasyon yapar. Ancak oksijen yetersizliğinde, su stresinde (fizyolojik kuraklık) yüksek bitkilerde biraz yapar. Fazlası bitkiler için toksiktir. Bazı tohumlarda tohum çimlenmesinin ilk basamaklarında da olabilir. Fermantasyon yapan bakterilerin bazısı oksijensiz ortamda yaşar (obligat anaeroblar). Mesela, Basillus botilinus. Bazı mikroorganizmalar ise hem oksijenli hem de oksijensiz ortamda yaşayabilirler (fakültatif anaeroblar). Mesela, Saccharomyces cerevisia mantarı. PENTOZ FOSFAT YOLU Yaşlı ve hasta bitkilerde görülen bu yolda genellikle 5C’lu şekerler sentezlendiği için bu yola pentoz fosfat yolu adı verilir. Pentoz fosfat yolu sitoplazmada cereyan eder ancak karanlıkta kloroplastlarda da meydana gelir. Bu yol glikolizden ayrılıp tekrar ona bağlanan bir yan yoldur. Glikoz-6-Fosfat tan itibaren başlar ve riboz gibi 5 C’lu şekerler sentezlenir. İki önemli ürün nükleik asitlerin yapısında bulunan 5C’lu şekerler ve indirgenme reaksiyonlarının vazgeçilmezi olan NADPH2 sentezlenir. Bu yol bitki hücrelerinde glikoliz ve TCA reaksiyonları ile birlikte yürür. Dışarı verilen CO2’in ¼ nin bu yolla sentezlendiği hesaplanmıştır. GLİOKSİLAT YOLU: Bitkilerde yağlar şekerlere dönüştürülemez. Ancak endospermlerinde yağ depolayan tohumlarda (ay çiçeği, hint yağı, soya gibi) çimlenme sırasında yağlar şekere dönüştürülebilmektedir. Çimlenme sonucu meydana gelen plumula, radikula gibi organalara besin gerektiğinde, endospermadan yağ taşınımı mümkün olmadığı için bu sırada yağlar şekere çevrilerek bu organlara taşınmaktadır. Bu yola glioksilat yolu denir. Reaksiyonlar endosperm hücrelerinde buluna glioksizom adı veilen organellerde gerçekleşmektedir. Bu reaksiyonların yürümesini sağlayan malat sentataz ve izositraz enzimleri sadece glioksizomlarda bulunur. Glioksizomlarda sadece yağ depolayan endosperm hücrelerinde bulunduğu için bu olay başka dokularda görülmez. Glioksilat yolu hem mitokondrideki TCA çemberiyle hem de sitoplazmadaki glikoneogenaz youluyla irtibatlı olarak çalışır. ALTERNATİF SOLUNUM YOLU Siyanür (CN-), azid (N3-) ve karbon monoksit (CO) gibi inhibitörler şekilde gösterilen solunumun ETS safhasını inhibe ederek solunumu engeller. Bu inhibisyon, ETS’nin son basamağında görev yapan sitokrom oksidaz enziminin bloke olmasıyla meydana gelir. Bitkilerde siyanüre dirençli bir alternatif solunum yolu bulunduğu anlaşılmış ancak henüz detaylı bilgi elde edilememiştir. Mevcut bilgilere göre, normal solunumda elektron taşınımı elektronlar 1. ubikinon ’dan sitokrom b ’ye değil kısa yoldan henüz mahiyeti tam bilinmeyen ve terminal oksidaz adı verilen siyanüre dirençli bir enzim üzerinden oksijene taşınır. Dolayısıyla alternatif solunum yolunda ATP sentezi ya hiç olmaz ya da çok az olur. Çünkü ETS’de elektron akışı sağlanamadığı için yeterli bir H+ pompalanması ve zar potansiyeli oluşmaz. Dolayısıyla solunumda açığa çıkan enerji ortama ısı enerjisi olarak dağılır.

http://www.biyologlar.com/isik-solunumu-fotorespirasyon

BİTKİLERDE SU ALINIMI

Su bitkileri tüm yüzeyden osmosla su alırken, kara bitkileri kökleriyle su almaktadırlar. Kara bitkilerinde su alınımının nasıl gerçekleştiği bu bölümde izah edilmeye çalışılacaktır. •Kökler toprak içinde suyun bulunduğu derinliğe ve yöne göre uzama gösterirler. Kök uçları kaliptra sayesinde toprak içinde rahatlıkla ilerleyip ihtiyaca cevap verecek suyu bulmaktadır. •Kök sisteminde suyun en çok alındığı bölge emici tüylerin bulunduğu kısımdır. Emici tüyler, epiderma hücrelerinin farklılaşarak uzaması sonucu meydana gelmişlerdir. Emici tüy hücrelerinin sayesinde köklerin toprağa temas yüzeyi en az 10 kat artmış olacaktır (Kocaçalışkan, 2001). Bir emici tüyün uzunluğu birkaç mm, kalınlığı ise 0,01 mm. kadardır. •Mısır bitkisinde ise mm2’ de 400, bezelyede ise 250 adet tüy sayılmıştır. •Emici tüylerle birlikte kök uzunluğu kabakta 25 km, buğdayda 67 km, yulafta 82 km. •Bir çavdar bitkisinin kökünün tamamında 14 milyar emici tüyün varlığı tespit edilmiştir. •Suyun topraktan alınımı, toprak içinde en küçük zerreler. arasına giren emici tüylerin osmotik basınç farkı sayesinde toprak suyunu emmeleri ile gerçekleşir. Hücrelere giren bu su moleküllerinin izlediği yol ise şöyledir; tüy ve epiderma hücresinden içeri alınan su korteks tabakasındaki hücrelerden ve hücre arası boşluklarda ilerler. Su molekülleri boşluk ve hücreleri geçerek endoderma tabakasına gelir. Bu tabakanın hücrelerinin çeperleri aşırı kalın ve ligninleşmiş olduğu için geçirimsizdirler. Ancak aralarında bazı hücreler ligninleşmemiş ve ince çeperli oldukları içn suyu geçirirler ve bunlara geçit hücreleri denir. Geçit hücrelerinden geçen su periskle tabakasını da geçerek ksileme ulaşır. Buradaki trake ve trakeidlere gelen su yukarı doğru çekilerek yapraklara kadar taşınır. •Suyun hücreden hücreye taşınımına simplastik yol, hücre arası boşluklardan taşınımına ise apoplastik yol adı verilir. •Emici tüy hücrelerinin çeperleri ince, stoplazmaları boldur. Bir bitkinin su alma kapasitesi birim alandaki emici tüy sayılarıyla ölçülür. Buna kök tüyü indeksi denir. Şöyle formülüze edilebilir: • Kök tüyü indeksi = Emici tüy hücresi sayısı x 100 Epidermis hücre sayısı SU ALINIMI MEKANİZMALARI •1- Pasif Su Alınımı: •Osmoz olayına bağlı olarak ve enerji kullanılmaksızın yapılan su alınımıdır. Kök hücreleri osmometre gibi çalışarak topraktaki suyu emerler. Bunun için topraktaki su potansiyelinin köktekinden yüksek olması veya tersi bir ifadeyle kök hücrelerinin OB’ larının toprak çözeltisininkinden yüksek olması gerekir. Bir hücrede OB iki farklı yolla ortaya çıkar: •a) Hücre suyunun azalması •b) Hücrede çözünen madde miktarının artması •Her iki olay, birlikte cereyan ederse OB çok daha hızlı yükselecektir. •Kök hücrelerinde su alınımında (pasif) en etkili yol birinci yol yani hücre suyunun azalması olayıdır. Çünkü yapraklardan sürekli transpirasyondan dolayı su kaybının doğurduğu emme kuvvetiyle köklerden yukarıya doğru devamlı olarak su çekilecektir. Böylece kök hücrelerinin su kaybıyla OB’ ları artacak ve topraktan su emilimi osmozla devam edecektir. Bu mekanizma adeta bir emme- basma tulumba gibi iş görür. Enerji harcanmadığı için pasif su alınımı denir. 2- Aktif Su Alınımı: •Kökün direk ve dolaylı olarak enerji kullanmak suretiyle su almasına aktif su alınımı denir. Ancak bitkiler genelde pasif yolla su alırlar. Fakat stomaların kapalı olması, toprakta su potansiyelinin düşük olması veya pasif yolla su alınımının yeterli olmadığı durumlarda aktif mekanizmayla da su alınımına giderler. Aktif su alınımının iki şekli vardır: •a) Osmotik aktif su alınımı: Toprakta su potansiyeli düşük olduğunda OB yüksektir. Bu durumda osmotik mekanizma bitkinin lehine çalışmaz. Ancak bazı bitkiler (halofitler ve kserofitler) böyle durumlarda topraktan aktif yolla iyon alarak kök hücrelerinin OB’ nı arttırırlar. Böylece osmozla kısmen su almayı başarırlar. İyon alınımı sırasında enerji kullanıldığı için osmotik aktif su alınımı adı verilmiştir. Buna osmoregülasyon (osmotik düzenleme) denir. •b) Osmotik olmayan aktif su alınımı: Kök hücreleriyle toprak çözeltisi arasındaki OB gradiyentine bağlı olmaksızın gerçekleşen su alınımıdır. Su molekülleri topraktan hücre zarlarındaki taşıyıcı proteinler yardımıyla enerji kullanılarak içeriye alınırlar. Buna aktif transport adı verilir. Bu iş için gerekli enerji kök hücrelerinin solunumuyla sağlanır. Özellikle pasif su alınımının gerçekleşemediği durumlarda aktif su alınımı devreye girerek bitkinin susuz kalması kısmen önlenmiş olur. Pasif Su Alınımında Etkili Olan Faktörler •1- Torağın yapısı ve su tutma kapasitesi: Her toprak farklı özellik ve büyüklükte taneciklerden oluştuğu için toprağın su tutma kapasitesi de buna göre değişir. Örneğin balçığı meydana getiren kum partiküllerinin (2- 0, 02 mm), silt partiküllerinin (0, 02- 0, 002 mm) ve kil partiküllerinin (0, 002 < mm) su tutma kapasiteleri birbirinden farklıdır. Ancak birlikte oluşturdukları (balçık) toprakta olumlu bir düzeydedir. •Toprakta organik madde miktarı su tutma kapasitesinin etkileyen önemli bir faktördür. Bitkinin kökünün hükmettiği toprak ortamına rizosfer denir. Burası organik madde bakımından zengindir. Organik maddeler önce humusa sonrada minarilizasyonla en küçük parçalara ayrışarak kolloidal özellik kazanarak toraktaki katyonları absorbe ederler. Su molekülleri bu katyonlar tarafından bağlandığı için toprağın su tutma kapasitesi artmış olur. •Yağmur yağmasından sonra suyun topraktaki hareketinin durmasıyla toprakta kalan su miktarına tarla kapasitesi denir. Killi topraklar ve humuslu topraklar kumlu topraklara göre daha çok su tutma kapasitesine sahiptirler. Fakat su potansiyelleri düşüktür. Bitkinin topraktan su alabilmesi için EK’ nın yüksek olması gerekir. Topraktaki su bitkinin solmasına sebep olacak düzeyde ise buna daimi solma noktası adı verilir. Bu durumdaki topraktan bitki su alamaz, bir süre sonra ölür. 2- Toprak çözeltisinin yoğunluğu: Toprak partikülleri arasındaki boşluklarda su ve suda erimiş mineraller ve organik maddeler vardır. Yani toprak bir çözelti ortamıdır. Bitkinin OB’ nın bu çözelti ortamından daha yüksek olması gerekir ki bitki su alabilsin. Bu durum, tuzcul ortamlarda bitkilere göre yüksektir. Ancak halofit bitkilerin OB’ ı ortama göre daha yüksektir. Halofitik ortamlarda glikofit bitkilerin yaşaması mümkün değildir. Halofitik ortamın OB’ ı 10- 15 atm. Halofitik bitkinin ise 20- 25 atm. dir. Hatta çöl bitkilerinde bu değer 100 atm kadardır. Glikofit bitkide OB: 4- 10 atm. OB’ larını değişik ortamlara göre değiştirebilen bitkiler mevcuttur. •3- Toprağın havalanma durumu: Topraktaki tüm boşlukların tamamen su ile dolması durumunda bitkilerin su alması engellenir. Çünkü kök hücrelerinin oksijen alması engellenmiştir. Özellikle yazın yağışla sel oluşması toprağın hava ile dolu olmasındandır. Su ile dolup havasızlıktan dolayı su alamayan bitkiler fizyolojik kuraklık çekiyor demektir. •4- Toprak sıcaklığı: Düşük sıcaklık hem su moleküllerinin kinetik enerjilerinin azalmasına hem hücre çeperinin geçirgenliğinin azalmasına neden olur. Dolayısıyla su girişi azalır. •5- Bitkisel faktörler: Kök yapısı, kök tüyü indeksi, transpirasyon kapasitesi, metabolik olaylar bitkinin su alınımını etkiler.

http://www.biyologlar.com/bitkilerde-su-alinimi

Genel Görelilik Teorisi

Özel görelilik, bir cismin belli bir gözlemciye göre sabit bir hızla ve sabit bir yönde hareket ettiği durumlarda tümüyle yeterlidir. Ne var ki, pratikte hareket asla sabit değildir. Hareketli cismin hızında ve doğrultusunda değişimlere yol açan kuvvetler her zaman söz konusudur. Atomaltı parçacıklar kısa mesafelerde muazzam hızlarla hareket ettiğinden, daha fazla hızlanacak zamanları yoktur ve bu parçacıklara özel görelilik uygulanabilir. Bununla birlikte, gezegenlerin ve yıldızların hareketinde, özel göreliliğin yetersiz kaldığı görülmüştür. Burada devasa kütleçekim alanlarının neden olduğu büyük ivmelerle ilgileniriz. Bir kez daha söz konusu olan şey nicelik ve nitelik sorunudur. Atomaltı düzeyde, kütleçekim, diğer kuvvetlerle karşılaştırıldığında önemsiz büyüklüktedir ve ihmâl edilebilir. Gündelik yaşamdaysa, tersine, kütleçekim hariç diğer tüm kuvvetler ihmâl edilebilir. Einstein, göreliliği yalnızca sabit hızlı harekete değil, genel olarak harekete uygulamaya girişti. Böylelikle kütleçekimi ele alan genel görelilik teorisi ortaya çıktı. Bu teori yalnızca Newton’un klasik fiziğinden, onun mutlak mekanik evreninden değil, aynı zamanda Eukleides’in mutlak klasik geometrisinden de bir kopuşa işaret etmektedir. Einstein, Öklid geometrisinin yalnızca ideal olarak düşünülmüş bir soyutlama olan “boş uzaya” uygun olduğunu gösterdi. Gerçekte, uzay “boş” değildir. Uzay, maddeden ayırt edilemez. Einstein, uzayın kendisinin maddi cisimlerin varlığıyla koşullandığını iddia etti. Bu düşünce, genel görelilik teorisinde, görünüşte paradoksal bir iddiayla dile getirilir; ağır cisimlerin yakınlarında “uzay eğrilir”. Gerçek, yani maddi evren, hiç de, kusursuz çemberleriyle, dümdüz doğrularıyla, vs. Öklid geometrisinin dünyası gibi değildir. Gerçek dünya düzensizliklerle doludur. Düz değildir, tastamam “çarpık”tır. Diğer taraftan, uzay, maddeden ayrı ve onun yanı sıra varolan bir şey değildir. Uzayın eğriliği, uzayı “dolduran” maddenin eğriliğini dile getirmenin yalnızca bir başka biçimidir. Örneğin, ışık ışınlarının uzaydaki cisimlerin kütleçekim alanlarının etkisiyle büküldüğü kanıtlanmıştır. Genel görelilik teorisi özü itibariyle geometrik bir karakterdedir, ancak klasik Öklid geometrisinden tamamen farklı bir geometridir bu. Öklid geometrisinde, örneğin, paralel doğrular asla birbirine yaklaşmaz ya da uzaklaşmazlar, ve örneğin bir üçgenin iç açılarının toplamı her zaman 180ºdir. Einstein’ın uzay-zamanı (aslında ilk olarak bir Rus-Alman matematikçisi ve Einstein’ın öğretmenlerinden biri olan Hermann Minkowski tarafından 1907’de geliştirilmişti) üç boyutlu uzayın (yükseklik, genişlik ve uzunluk) zaman ile bir sentezini temsil eder. Bu dört boyutlu geometri, eğrilmiş yüzeylerle (“eğri uzay-zaman”) ilgilenir. Burada bir üçgenin iç açılarının toplam 180º etmeyebilir ve paralel doğrular kesişebilir ya da uzaklaşabilirler. Engels’in de işaret ettiği gibi, Öklid geometrisinde gerçek dünyaya dayanmayan bir dizi soyutlamayla karşı karşıya kalırız: boyutsuz bir nokta, düz bir çizgi haline gelir, bu da kusursuz bir düz yüzeye dönüşür, vs. Tüm bu soyutlamalar arasında hepsinin en boşu olan bir soyutlamayla karşılaşırız; “boş uzay” soyutlaması. Uzay, Kant’ın inandığının aksine, kendisini dolduracak bir şey olmaksızın varolamaz, ve bu şey tam da maddedir (ve aynı şey demek olan enerji). Uzayın geometrisi, içerdiği madde tarafından belirlenir. “Eğri uzayın” gerçek anlamı budur. Bu kavram aslında sadece maddenin gerçek özelliklerini bir dile getirme tarzıdır. Einstein’ı popülerleştirmek için kullanılan alâkasız metaforlar konuyu karıştırmaktan başka bir şey yapmamıştır: “Uzayı esnek bir çarşaf gibi düşünelim” ya da “uzayı bir bardak gibi düşünelim” vb. Gerçekte, her zaman aklımızın bir köşesinde saklı tutmamız gereken fikir; zaman, uzay, madde ve hareketin çözülmez birliğidir. Bu birlik unutulduğu anda, derhal idealist mistifikasyona kayarız. Eğer uzayı bir Kendinde-Şey olarak, Öklid geometrisindeki gibi boş uzay olarak düşünürsek, açıktır ki uzay eğrilemez. “Hiçlik”tir. Ne var ki, Hegel’in ortaya koyduğu gibi, evrende, hem oluşu hem de olmayışı içermeyen hiçbir şey yoktur. Uzay ve madde taban tabana zıt, karşılıklı birbirini dışlayan iki olgu değildir. Uzay maddeyi içerir, madde de uzayı. Bunlar birbirinden hiçbir şekilde ayrılamaz şeylerdir. Evren tam da madde ile uzayın diyalektik birliğidir. Genel görelilik teorisi, uzay ve maddenin birliği diyalektik düşüncesini çok derin bir tarzda açığa vurur. Aynı şekilde matematikte de, sıfırın kendisi, “hiçlik” olmayıp, gerçek bir niceliği ifade eder ve belirleyici bir rol oynar. Einstein kütleçekimi, cisimleri etkileyen bir “kuvvet” olmaktan ziyade, uzayın özelliklerinden biri olarak ifade eder. Bu görüşe göre, uzayın kendisi, maddenin varlığının bir sonucu olarak eğrilir. Bu görüş, uzay ve maddenin birliğini dile getirmenin hayli istisnai bir biçimidir ve ciddi yanlış anlamalara da açıktır. Uzayın kendisi, eğer “boş uzay” olarak anlaşılırsa, şüphesiz eğrilemez. Mesele şu ki, uzayı maddesiz tasavvur etmek imkânsızdır. Bu ayrılmaz bir birliktir. Düşündüğümüz şey, uzayın maddeyle belli bir ilişkisidir. Yunan atomcuları uzun zaman önce “boşlukta” atomların varolduklarına işaret etmişlerdi. İkisi birbirleri olmaksızın varolamazlar. Uzaysız madde, maddesiz uzayla aynı şeydir. Bütünüyle boş bir boşluk yalnızca hiçliktir. Fakat sınırsız madde de öyledir. Uzay ve madde, demek ki, her biri diğerini ön varsayan, her biri diğerini tanımlayan, birbirlerini sınırlayan ve biri olmaksızın diğerinin de olmayacağı karşıtlardır. Genel görelilik teorisi, Newton’un klasik teorisi tarafından açıklanamayan hiç değilse bir olguyu açıklamaya hizmet etti. Merkür gezegeni, yörüngesinin güneşe en yakın noktasına yaklaştıkça dönüşleri tuhaf bir düzensizlik sergiler, bu düzensizlikler daha önceleri diğer gezegenlerin kütleçekiminin neden olduğu karışıklıklara bağlanmıştı. Ne var ki, bu etkiler dikkate alındığında bile söz konusu olgu açıklanamamıştı. Merkür’ün güneş etrafındaki yörüngesinin sapması (“günberi”)* çok küçüktü, ama yine de astronomların hesaplamalarını altüst etmeye yetiyordu. Einstein’ın genel görelilik teorisi, dönen her cismin günberisinin Newton yasalarının tanımladığının dışında bir harekete sahip olacağını öngördü. Bu öngörünün önce Merkür sonra da Venüs için doğru olduğu görüldü. Einstein aynı zamanda kütleçekim alanının ışık ışınlarını bükeceğini de öngörmüştü. Bu nedenle, güneş yüzeyine yakın geçen bir ışık ışınının, düz bir doğrudan 1,75 saniyelik bir açıyla büküleceğini iddia etti. 1919’da bir güneş tutulması gözlemi sırasında yapılan astronomik hesaplar, bunun doğru olduğunu göstermişti. Einstein’ın parlak teorisi pratikte kanıtlanmıştı. Bu teori, güneşe yakın yıldızların konumundaki görünür kaymayı onlardan gelen ışığın bükülmesiyle açıklayabildiği gibi, Newton’un teorileri tarafından açıklanamayan Merkür gezegeninin düzensiz hareketlerini de izah edebiliyordu. Newton, cisimlerin hareketini yöneten yasaları incelemişti, buna göre kütleçekimin büyüklüğü kütleye bağlıdır. Newton aynı zamanda, bir cisme uygulanan her kuvvetin, o cismin kütlesiyle ters orantılı bir ivme yarattığını savunmuştu. İvmeye, yani hız değişimine karşı gösterilen direnç, eylemsizlik olarak adlandırılır. Tüm kütleler ya kütleçekim etkisiyle ya da eylemsizlik etkisiyle ölçülür. Doğrudan gözlemler göstermiştir ki, eylemsizlik kütlesi ve kütleçekim kütlesi, gerçekte, trilyonda birlik bir farkla özdeştirler. Einstein, kendi genel görelilik teorisine, eylemsizlik kütlesinin ve kütleçekim kütlesinin tam olarak eşit olduğu kabulüyle başlar, çünkü bunlar özde aynı şeylerdir. Görünüşte hareketsiz olan yıldızlar muazzam hızlarla hareket ederler. Einstein’ın 1917’deki kozmik denklemleri, evrenin tüm zamanlarda sabit olmadığını, genişliyor olabileceğini ima ediyordu. Galaksiler bizden saniyede yaklaşık 700 millik bir hızla uzaklaşmaktadırlar. Yıldızlar ve galaksiler sürekli olarak değişirler, oluş ve yok oluş içerisindedirler. Tüm evren, yıldızların ve galaksilerin doğum ve ölüm dramlarının ebediyete kadar oynandığı uçsuz bucaksız bir arenadır. Bunlar sahiden de devrimci olaylardır! Patlayan galaksiler, süpernovalar, yıldızlar arasında felâkete yol açan çarpışmalar, tüm yıldız kümelerini iştahla yiyip yutan, bizim güneşimizden milyarlarca kat daha yoğun kara delikler. Bunlar, şairlerin hayal güçlerini bile gölgede bırakıyor.

http://www.biyologlar.com/genel-gorelilik-teorisi

Mach ve Pozitivizm

“Bununla birlikte, nesne gerçek hakikattir, temel gerçekliktir; onun bilinip bilinmemesi hiç önemli değildir, bilinmese de vardır ve öylece kalmaya devam eder; oysa bilme, eğer nesne yoksa yoktur.”[15] (Hegel) Geçmişin, şu anın ve geleceğin varlığı, insan bilincine derinden kazınmıştır. Şu anda yaşarız, fakat geçmiş olayları hatırlarız ve belli ölçüde gelecekteki olayları önceden görürüz. Bir “önce” ve bir “sonra” vardır. Yine de bazı filozof ve bilimciler bunu reddediyorlar. Zamanı aklın bir ürünü olarak, bir yanılsama olarak değerlendiriyorlar. Onlara göre, bir gözlemci yoksa, ne zaman vardır, ne geçmiş, ne şu an, ne de gelecek. Bu öznel idealizmin bakış açısıdır, geçen yüzyıllar boyunca özü itibariyle mistik bir dünya görüşüne saygınlık kazandırmak için kendisini fiziğin keşiflerine dayandırma çabası içinde olan bütünüyle akıl dışı ve bilim karşıtı bir bakıştır. 20. yüzyıl bilimi üzerinde en büyük etkiye sahip olan felsefe ekolünün, yani mantıksal pozitivizmin, tam da öznel idealizmin bir dalı olması ironik gözüküyor. Pozitivizm, bilimin kendisini “gözlenmiş olgulara” dayandırması gerektiğini savunan dar bir görüştür. Bu ekolün kurucuları, teorileri doğru ya da yanlış olarak nitelemekten kaçınırlar, bunun yerine onları daha çok ya da daha az “kullanışlı” olarak tanımlamayı tercih ederlerdi. Ernst Mach’ın, yeni-pozitivizmin bu gerçek manevi babasının, fizik ve kimyanın atom teorilerine karşı çıktığına işaret etmek ilginç olacaktır. Pozitivist bakışın dar ampirizminin doğal sonucuydu bu. Atom görülemediğine göre nasıl varolabilirdi ki? Atom, bunlar tarafından, en iyisinden, kullanışlı bir kurgu olarak, en kötüsünden ise, kabul edilemez bir dışsal hipotez olarak değerlendirildi. Mach’ın düşünsel ortaklarından Wilhelm Ostwald, temel kimya yasalarını atom hipotezinin yardımı olmaksızın türetmeye girişmişti! Boltzmann, kuantum fiziğinin babası olan Max Planck’ın da yaptığı gibi, Mach’ı ve Pozitivistleri keskin bir şekilde eleştirdi. Lenin, Mach’ın ve ampiryo-kritisizm okulunun kurucusu olan Richard Avenarius’un görüşlerini, Materyalizm ve Ampiryo-Kritisizm (1908) adlı kitabında yerle bir eden bir eleştiriye tâbi tuttu. Yine de, Mach’ın görüşlerinin büyük bir etkisi vardı ve başkalarının yanı sıra genç Albert Einstein’ı da etkilemişti. Tüm düşüncelerin “verili” olandan, yani duyularımız tarafından doğrudan sağlanan bilgilerden türetilmesi gerektiği şeklindeki görüşü temel alarak, insanın duyusal algısından bağımsız bir doğal evrenin varlığını reddetme noktasına çıktılar. Mach ve Avenarius fiziksel nesnelerden “duyu kompleksleri” olarak bahsederler. Böylece, meselâ, bu masa, sertlik, renk, kütle vesaire gibi duyu-izlenimleri toplamından başka bir şey değildir. Bunlar olmaksızın, geriye hiçbir şeyin kalmayacağını savunurlar. Bu nedenle, madde düşüncesinin (felsefi anlamda, yani duyusal algı olarak edindiğimiz nesnel dünya anlamında) anlamsız olduğu ilân edildi. Daha önce de işaret ettiğimiz gibi, bu düşünceler doğrudan tekbenciliğe (solipsizm) –yalnızca “Ben”in varolduğu düşüncesine– götürür. Eğer Ben gözlerimi kaparsam, dünyanın varlığı sona erer. Mach, Newton’un uzay ve zamanın mutlak ve gerçek varlıklar olduğu şeklindeki düşüncesine saldırdı, ama bunu öznel idealist bir kalkış noktasından yaptı. İnanılmaz bir şekilde, modern felsefenin en etkili (ve bilimciler üzerinde en büyük etkiye sahip) ekolü, Mach ve Avenarius’un öznel idealizminden türetilmiştir. Tüm 20. yüzyıl teorik fiziğinin ortak paydası olan “gözlemci” saplantısı, Ernst Mach’ın öznel idealist felsefesinden türetilmektedir. “Tüm bilgimizin doğrudan duyusal algıdan türediği” şeklindeki ampirist argümanı kendisine kalkış noktası olarak alan Mach, nesnelerin bizim bilincimizden bağımsız olarak varolamayacağını ileri sürdü. Bunu mantıksal sonuçlarına götürdüğümüzde, örneğin, dünyayı gözleyecek insanların ortaya çıkmasından önce dünyanın varolamayacağını söylemek zorunda kalırız. Aslında dünya, Ben ortaya çıkmadan önce varolamazdı, çünkü Ben yalnızca kendi algılarımı bilebilirim ve bu nedenle de herhangi bir başka bilincin oluğundan emin olamam. Burada önemli olan şey, bizzat Einstein’ın da başlangıçta bu argümanın etkisinde kalmış olmasıdır, bu anlayış Einstein’ın görelilik üzerine kaleme aldığı erken yazılara sinmiştir. Hiç kuşku yok ki, bunun en zararlı etkileri modern bilim üzerinde olmuştur. Einstein kendi yanlışını kavrama yeteneğindeyken ve bu yanlışı düzeltmeye girişirken, efendileri kölece izleyen diğerleri sapla samanı birbirinden ayırmaktan acizdiler. Çoğu kez olduğu gibi, hevesli çömezler dogmatikler haline gelirler. Papadan çok Papacıdırlar! Otobiyografisinde Karl Popper, Einstein’ın son yıllarında daha önceki öznel idealizminden ya da doğal süreçleri belirlemek için bir gözlemcinin varlığını gerektiren “işlemciliğinden” büyük pişmanlık duyduğunu açıkça gösterir: Bizzat Einstein’ın yıllar boyunca dogmatik bir pozitivist ve bir işlemci olması çarpıcı bir olgudur. Daha sonra bu yorumu reddetmişti: 1950’de bana, yaptığı yanlışlardan hiçbirinden bu yanlış kadar pişman olmadığını anlatmıştı. Bu yanlış, popüler olan Görelilik: Özel ve Genel Teori adlı kitabında gerçekten de ciddi bir biçime bürünür. Orada, “bu noktaya ikna oluncaya dek okuyucunun daha fazla ilerlememesini rica edeceğim” diye yazar. Sözü edilen nokta, kısaca, “eşzamanlılık”ın tanımlanmış olması –ve işlemsel bir tarzda tanımlanmış olması– gerektiğidir, çünkü aksi takdirde “eşzamanlılık ifadesine bir anlam yükleyebildiğimi hayal ettiğimde ... kendimi aldatmama izin vermiş olurum”. Ya da diğer bir deyişle, bir kavram işlemsel olarak tanımlanmak zorundadır, aksi takdirde anlamsızdır. (Buradaki fikir, az ve öz olarak, daha sonraları Viyana Çevresince, Wittgenstein’ın Tractatus’unun etkisi altında ve oldukça dogmatik bir tarzda geliştirilen pozitivizmdir). Bu önemlidir, çünkü Einstein’ın en sonunda görelilik teorisinin öznel yorumunu reddettiğini gösterir. Belirleyici bir faktör olarak “gözlemci” hakkındaki tüm saçmalıklar teorinin özsel bir parçası değil, Einstein’ın da dürüstçe doğruladığı gibi, felsefi bir yanlışın yansımasıydı sadece. Ne yazık ki bu, Einstein’ın takipçilerini yanlışları devralmaktan ve bu yanlışların göreliliğinin temel köşe taşı olarak sunulduğu bir noktaya kadar götürmekten alıkoymadı. Heisenberg’in öznel idealizminin gerçek kaynağını da burada buluyoruz. Şöyle devam ediyor Popper:: Ama birçok mükemmel fizikçi, (tıpkı Einstein’ın da uzun bir süre yaptığı gibi) göreliliğin bütünsel bir parçası olarak ele aldıkları Einstein’ın işlemciliğinden büyük ölçüde etkilenmişlerdi. Ve böylece işlemcilik, Heisenberg’in 1925’teki makalesinin ve yaygın kabul gören iddiasının, yani bir elektronun izlediği yolun, ya da onun klasik konum-momentumunun anlamsız olduğu iddiasının ilham kaynağı haline gelmişti. [16] Zamanın, doğadaki nesnel süreçleri yansıtan nesnel bir olgu olduğu gerçeği, ilk olarak, 19. yüzyılda geliştirilen ve modern fizikte halen merkezi bir rol oynayan termodinamik yasaları tarafından gösterilmişti. Özellikle Boltzmann’ın geliştirdiği biçimiyle bu yasalar, zamanın yalnızca nesnel olarak varolduğu düşüncesini değil, onun tek yönde, geçmişten geleceğe doğru aktığını da kesin olarak saptar. Zaman ne geriye çevrilebilir ne de herhangi bir “gözlemci”ye bağlıdır.

http://www.biyologlar.com/mach-ve-pozitivizm

MİNERAL (İYON) METABOLİZMASI

Bitkilerin kimyasal kompozisyonu: Bitkilerin % 75 su ve % 25 kuru madde Kuru maddenin % 90’ ı organik % 10’ u inorganik Organik maddelerin başlıcalarını karbonhidrat, yağ ve protein olduğu, yağ ve karbonhidratların C, H, O ve N’ dan oluştuğu yani organik maddelerin 4 temel elementten meydana geldiği bilinmektedir. Bu 4 elementi sırasıyla P, S, K, Ca ve Mg izler. Yapılan analizlerde bitkilerde 60’ dan fazla elementin bulunduğu test edilmiştir. Bunlardan 16 elementin bitki için mutlak gerekli olduğu da saptanmıştır. Bunlara esas elementler denir. Esas elementlerin bir kısmı bitkilerde bol miktarda bulunur. Bunlara makro elementler (C, H, O, N, P, S, K, Ca, Mg), bir kısmı da az miktarda bulunur ki bunlara da mikro elementler (Fe, Cu, Zn, Mn, Mo, B, Cl) adı verilir. Mikro elementlerin az olması onların önemsiz olduğunu göstermez. Mikro elementlerde makro elementler kadar bitkiler için önemlidirler. Ancak az bulunmaları gerekir, fazlası toksiktir. Bitkilerde bunların dışında bulunan elementlere iz elementler ( Na, Al, Li, Si, Se, V, Co) adı verilir. Bu elementler de değişik amaçlar için bitkiler tarafından kullanılırlarsa da eksikliğinde belirgin aksaklıklar yaşanmaz. Esas elementler bitkide başlıca yapısal, elektrokimyasal ve katalitik olmak üzere üç role sahiptirler. Her element bunlardan en az birini yapmakla yükümlüdür. Yapısal olarak organiklerin yapısına katılırlar. Elektrokimyasal olarak; iyon dengesini, zar geçirgenlini, tamponluğu, osmotik regülasyonu, makro moleküllerin sabitlenmesini sağlarlar. Katalitik olarak; enzimlerin kofaktörü olarak görev yapmaktadırlar. Bitkilerde Mineral Madde Eksikliği Bitkiler O2 ve C’ u gaz olarak (CO2, O2) havadan ve H’ i ise sudan temin etmektedirler. Diğer elementler ise çeşitli iyonlar halinde (katyon ve anyon olarak) topraktan su ile beraber alınmaktadır. Hangi mineral maddenin eksikliğinde hangi bitki büyüme ve gelişme kusurlarının ortaya çıktığı, su kültürleri ve kum kültürleri deneyleri ile test edilmiş olup ve tablolar halinde yayınlanmıştır. Bitkilerde elementlerin görevleri ve eksikliğinde gözlenen olumsuzluklar tablo halinde yanda verilmiştir. Faydalı Toksik Elementler : Bazı toksik elementler (ör. Na, Se, Si, Co, Ti), değişik ortam şartlarında yetişen bitkilerde faydalı olabilmektedirler. Ör: Halofit bitkiler için Na, osmotik basıncı arttırarak su alınımını kolaylaştırır. Bitkilerin çoğu için toksik olan Se, Astragalus sp. (Geven) bitkilerinde bol miktarda bulunmaktadır. Yapılan araştırmalar fosfora hassas olan bitkilerin Se sayesinde fosfor toksitesinden kurtulduklarını göstermiştir. Ayrıca Atkuyruğu, buğday gibi silisyum içeren bitkilerin bu element sayesinde Fe ve Mn toksitesini azalttıkları test edilmiştir. Bazı yosunlar B12 vitamini sentezi için Co ve Ti gibi toksik maddelere ihtiyaç duymaktadırlar. Madensel Tuzların Alınması ve Kullanılması (Bitkilerde Mineral Madde (İyon) Alınımı) Bitkiler yaşadıkları sürece su ve suda çözünmüş maddeleri birlikte almak zorundadırlar. Bitki kökleri topraktaki mineralleri ancak iyonlar halinde alabilirler. Bitkilerde iyon alınımı su alınımı kadar basit olmayıp daha karmaşıktır. İyon alınımını bazı prensiplerin ışığında pasif ve aktif iyon alınımı mekanizması şeklinde izah etmek mümkündür: 1- Madensel Tuzların kaynağı olan toprak: Toprak irili ufaklı parçacıklarla kolloid çaptaki partiküllerden oluşur. Bu karışımın ısınması, su tutması, besin tuzlarını tutması gibi fizikokimyasal özellikleri toprağın daha çok kolloidal durumundaki bileşiklerine bağlıdır. Birçok toprakta toprağın inorganik kolloidal kısmını kil parçacıkları oluşturur. Ölmüş bitki ve hayvan artıklarından oluşan maddelerde toprağın organik kolloidal kısmını oluşturur. Kil mineralleri genellikle (-) yüklüdürler. Bundan dolayı dış yüzeylerinde (+) yüklü iyonlar absorbe edilirler (Ca++, Mg+, H+, K+ vs.) 2- Kökler tarafından madensel tuzların alınması mekanizması: Pasif iyon alınımı : Herhangi bir metabolik olaya bağlı olmaksızın sadece difüzyon gibi olaylarla gerçekleşen iyon alınımıdır. Yapılan araştırmalarla köklerin (kaliptra hariç) emici tüy bulunmayan en uç kısımları tarafından madensel tuzları aldığı gösterilmiştir. Özellikle meristematik bölge bu bakımdan çok aktiftir. Bu absorbsiyonun kök hücrelerince nasıl yapıldığını iki ayrı mekanizma ile açıklamak mümkündür. a) Kitle akımı : Bitkide transpirasyon hızlandığında beliren bir iyon alınımıdır. Olay, transpirasyon etkisiyle ksilemdeki tuzların yukarı çekildiği, dolayısıyla ksilemde tuz konsantrasyonunun azalması sebebiyle köklerin iyon alma kapasitesinin arttığı şeklinde izah edilmektedir. b) İyonik Değişim Mekanizması (iyon alış-verişi): Hücreler katyonları iyon alış-verişi ile sağlarlar. Hücre alış-veriş dengesini, fazla aldığı katyonun yerine kendininkilerden aynı miktarda dışarı vermekle sağlamaktadır. Eğer katyon içeri fazla alınırsa dış ortam asitleşir, anyon fazla alınırsa dış ortam bazlaşır. Örneğin; bir bitkiye (NH4)2SO4 verilirse solunum sonucu ortamda fazlalaşan H+ iyonu dışarı verilirken, NH4 katyonları içeri alınır. Bu durumda dış ortam, H+ ve SO4- iyonlarına bağlı olarak asit özelliği gösterir. Buna fizyolojik asitleşme denir. Eğer bitkiye KNO3 verilirse NO3 anyonu zardan geçer. Ama içerden dışarı bir katyon verilmez. Ortamda kalan K+ suyun OH’ nı bağlayarak KOH oluşturur ve ortamın baz olmasına neden olur. Bu olaya da fizyolojik bazlaşma denir. c) Donnan Dengesi: Hücrede madde alış-verişinde rol oynayan ve difüzyon edemeyen iyonların etkilerine dayanan elektriksel bir olaydır. Ör: Çözelti ortamındaki hücre içinde negatif yüklü ve büyük, difüzyon edemeyen bir iyon bulunsun. Diğer katyon ve anyonlar hücrenin her iki tarafına geçebilsinler. Bu durumda iyonların difüzyonu sonucunda bir potansiyel gradiyenti oluşur. Elektrokimyasal denge kurulduğunda iyonların konsantrasyonu hücre içinde ve dışında aynı olmayacaktır. Bu durum difüzyon edemeyen iyonların elektriksel dengesizliğine dayalı bir konsantrasyon dengesizliğidir. Donnan dengesi eşitliğine göre pozitif yüklü iyonlardan içerdekilerin dışarıdakilere oranı, negatif yüklü iyonlardan dışarıdakilerin içerdekilere oranına eşit olması gerekir. İçerdeki pozitif iyonlar = Dışarıdaki negatif iyonlar Dışarıdaki pozitif iyonlar İçerideki negatif iyonlar Örneğin bir hücrede 6 tane zarı geçemeyen anyona 6 potasyum iyonu bağlı olsun. Bu hücreyi KCl çözeltisine koyduğumuzda içte ve dışta iyon dağılımı değişecektir. Bu değişim Donnan dengesiyle şöyle açıklanır: dışarıda da 6 KCl bulunduğunu farz edersek yukardaki eşitliğe göre hücreye 2 K ve 2 CL iyonu alındığında Donnan dengesi sağlanmış olur. İçteki K (8) = Diştaki Cl (4) Dıştaki K (4) = İçteki Cl (2) Buna göre yukarıdaki eşitliği sadeleştirdiğimizde 2=2 sonucu ortaya çıkar. Donnan dengesi ile hücre içindeki bir maddenin konsantrasyonu dışarıdaki yada çevredeki konsantrasyonun 30 katına çıkabilir. Pasif iyon alınımında hücre zar yapısının seçici geçirgen özelliği ve moleküler dizayeni de önemli iş görmektedir. Hücre zarının transport yeteneği zar yapısına ve filogenetik orijinine göre değişir. Ör: Bakteri membranı Ca+ ve K+ iyonlarını kolay geçirmesine karşın maya hücreleri membranı bu iyonları geçirmezler. Çeşitli moleküllerin ve madensel tuz iyonlarının hücre zarlarından geçişine ilişkin şu aktiviteler de bilinmektedir. d) İyon Birikimi: Bazı bitkilerde bir iyonun bitkinin bulunduğu ortamdan daha fazla biriktiği görülür. Ör: Deniz alglerinde K deniz suyundakinden yüzlerce kat daha fazla bulunmaktadır. Bunun sebebi hücre bünyesinde bulunan maddelerce iyon molekülleri absorbe edilmekte veya çözünmeyen maddelerle birleşerek çökelmektedir. e) İyon antagonizması : Farklı değerlere sahip iyonların bitki tarafından alınmasında iyonların birbirine zıt etki göstermeleri olayıdır. Ör. Na , K, gibi bir değerlikli iyonlar hücrelerde fazla miktarda bulunmaları halinde toksik etki gösterirler. Bu karşın ortama az miktarda çok değerlikli iyonlar ( Ca, Mg) ilave edildiğinde bu iyonlar hücre zarının koloidal yapısını değiştirerek geçirgenliğini arttırırlar ve toksik etkiden hücreyi kurtarırlar. Ör: buğdayda yapılan bir araştırmada 0.12 m NaCl bulunan bir ortamda toksik etki görülürken, ortama 0.0012 m CaCl ilave edilmesi toksik etkinin giderilmesi için yeterli olmuştur. f) Zar potansiyeli : Zarın her iki tarafında bulunan iyonların eşit olmayan dağılımı nedeniyle ortaya çıkan bir durumdur. Bu olay basit ve kolaylaştırılmış difüzyonla ortaya çıkar. Basit difüzyon: Su, Oksijen, CO2 ve etanol gibi küçük ve elektrik yükü taşımayan bazı moleküller stoplazmik zarı kolaylıkla geçerler. Buna basit difüzyonla geçiş denir. Basit difüzyonla geçişte moleküller kendi kinetik enerjileri sayesinde difüzyon kurallarına göre hareket ederler. Kolaylaştırılmış difüzyon: Glikoz ve diğer bazı büyük moleküllü, suda çözünebilen fakat elektrik yükü taşımayan molekülerle çeşitli madensel tuz iyonları (H+, Na+, K+, Ca++, Cl-, CO3-, HCO3- …) ve ayrıca lipitlerde çözünebilen maddeler stoplazmik zar sisteminden difüzyonla geçebilirler. Ancak bu geçiş basit difüzyonda olduğu gibi sadece moleküllerin kinetik enerjileri ile olmaz. Çünkü hücre zarı lipitte erimeyen moleküllerin geçişine izin vermez. Ancak stoplazmik zardaki membran proteinleri (integral protein) lipitte çözünemeyen moleküllerin geçişini sağlarlar. İşte stoplazmik zardaki bu proteinler aracılığı ile yapılan bu difüzyon yada taşınma olayına pasif transport adı verilir. Buna kolaylaştırılmış difüzyon da denilmektedir. Bu difüzyon olayı protein tipine bağlı olarak iki şekilde gerçekleşir: 1- Kanal proteinleriyle 2- Taşıyıcı (carrier) proteinlerle Aktif taşıma konsantrasyon gradiyentine karşı yapılır. Yani aktif transporta moleküller yada iyonlar az yoğun olarak bulundukları bir ortamdan daha çok yoğun olarak bulundukları bir ortama doğru taşınırlar. Bu taşınım sayesinde hücre içinde bulunduğu ortama göre daha fazla iyon birikir (Na+, K+..) Hücredeki en önemli aktif transport sistemi Na-K pompasıdır. Bu pompa hücre içinde K+ oranının yüksek, Na+ oranının düşük tutulmasını sağlar. Aktif metabolizmanın nasıl olabileceğini açıklayan çeşitli hipotezler mevcuttur. Bunlardan en çok ilgi göreni taşıyıcı (carrier) hipotezidir. Bu hipoteze göre: a) Önce hücrede taşıyıcı (carrier) molekülleri sentezler. b) Sonra her iyon kendi taşıyıcısı ile kompleks yapar. c) Bu iyon-taşıyıcı kompleksi hücre zarının dış yüzeyinden iç yüzüne yani vakuole doğru hareket eder. d) Stoplazmik zarın iç yüzüne (tonoplast) giden iyon-taşıyıcı kompleksi parçalanır. e) Parçalanan kompleks iyonu vakuole serbest bırakır ve taşıyıcı yüksüz olarak dış yüzeye geri döner. Bu hipotezi daha iyi anlayabilmek için iyon taşıyıcı kompleksinin hareket mekanizmasını açıklayan görüşleri de değerlendirmek gerekir. a) Bu kompleks lipitlerde çözünebilen bir yapı gösterdiği için lipoprotein zardan kolayca geçer. b) Taşıyıcı iyon kompleksi sitoplazmik zar içinden yarım rotasyon hareketi ile geçer. c) Taşıyıcı yüzeye sıkıca yapışmış olabilir. Ancak kayma hareketi ile iç yüzeye ilerler. d) Taşıyıcı proteinlerin bir miktar kontraksiyon hareketi ile ilerler. e) Zarda küçük veziküller (vakuol oluşumu) yardımı ile iyonlar içeri alınırlar.

http://www.biyologlar.com/mineral-iyon-metabolizmasi

MİKROBİYAL LİÇİNG

Mikroorganizmalar mineral kaynaklarının oluşması ve çözülmesinde önemli rol oynar. Mineral aranması ve zenginleştirilmesinde biyoteknolojik yöntemlerin kullanılması popüler hale gelmiştir. Mikrobiyal liçing; mikroorganizmalar yaratımıyla maden cevherlerinden metallerin kazanılması işlemidir. Düşük kaliteli cevherlerden metallerin geri kazanımın da kullanılan kimyasal metodlar ekonomik olmamaktadır. Dünya genelinde yüksek oranlarda bulunan düşük kaliteli, bakır cevherlerinin göreneksel kimyasal metodlarla elde edilmesi zor ve pahalı olduğundan, bunların eldesinde mikrobiyal liçing kullanılır. Son yıllarda geliştirilen mikrobiyal liçing yöntemleri metalik hammaddeler için çok önemlidir. Klasik yöntemler ile çözünürleştirilmeyen veya parçalanamayan fakir cevherler ve endüstri atıkları mikoorganizmalar ile ekonomik biçimde geri kazanılmaktadır. Bakterilerin yaptığı iş suda çözünmeyen filizleri suda çözünür hale getirmektir. Bakteriyal liçing daha çok uranyum ve bakır kazanımın da kullanılır. Dünya yüzeyinde kayda değer ölçülerde bulunan Ni, Zn, Cd, ve Co eldeleri içinde bir dizi liçing yöntemleri geliştirilmiştir. Bu yöntem bir asidik su içiren bir maden yatağına boru hattı döşeme sırasında meydana gelen bir patlama sonucu ortaya çıkmış ve geliştirmeler sonucunda düşük dereceli maden cevherlerinin geri kazanımı sağlanmıştır. LİÇİNGDE KULLANILAN ORGANİZMALAR Mikrobiyal liçingde kullanılan en yaygın 2 tane bakteri Thiobacillus thiooxidans ve Thiobacillus ferrooxidans’tır. Ayrıca Thiobacillus concretivoru, Thiobacillus concretivorus, Pseudomonas fluorescens, P. putida, Achromobacter, Bacillus licheniformis, B. Cereus, B. luteus, B. polymyxa, B. megaterium ve birçok termofilik bakterilerden Thiobacillus thermophilica, Thermothrix thioparus, Thiobacillus TH1, ve Sulfolobus acidocaldarius kullanılmaktadır. Heterotrafik mikroorganizmaların kullanımı gelişmektedir. Termofilik bakterilerin liçing uygulamalarını hızlandırmasının en büyük etmeni hızlı gelişim oranının varolmasıdır. MİKROBİYAL LİÇİNG KİMYASI Thiobacillus ferrooxidans çok pahalı çalışmayı gerektiren bir bakteridir. Bu bakteri mezofil, spor oluşturmaz, hareketli Gr(-), çubuk şeklinde olup C,5-C,8 m X 1,0-2,0 m boyutlarındadır. Ototrofik aerap olup C ihtiyacını havadaki CO2’in fixasyonundan sağlar. Enerji kaynağı olarak ise Fe2+  Fe3+’ya oksidasyonunudan veya elementel kükürt veya indirgenmiş kükürt bileşiklerinden sağlar. En yaygın kullanılan mikrobiyal liçing proseslerinin amacı az çözünen veya çözünmeyen metal bileşiklerini metal sülfatlar haline getirip çözünürleştirmektir. Bunun için 2 şekilde uygulama çeşidi varadır: Direkt ve indirekt mikrobiyal liçing. 1. Direkt Mikrobiyal Liçing: 4 FeSO4 + 2H2 SO4 + O2  2Fe2(SO4)3 + 2H2O [1] 2S0 + 3O2 + 2H2O  2H2SO4 [2] 2FeS2 + 7O2 + 2H2O  2FeSO4 + 2H2SO4 [3] Çözünmez haldeki sülfürün sülfirik aside aksidasyonu, sülfürle direkt kontak halindeki T.ferroxidans sayesinde gerçekleştirilir. T. ferooxidans tarafından gerçekleştirilen [3] nolu reaksiyon direkt mikrobiyal liçing: göstermektedir. Demir cevherinin yanında bakır, kurşun, nikel, kobalt, molibden ve çinko cevherleride T.ferroxidans sayesinde oksitlenebilirler. MeS + 2O2  Me SO4 2. İndirekt Mikrobiyal Liçing İndirekt liçingde, mikoorganizmalar liçing reaktifini üretir veya rejenere ederler. Örneğin metal sülfür cevherleri mikrobiyal bir etki olmaksızın Fe3+ iyonları tarafından oksitlenip liçing gerçekleştirilebilir. MeS + Fe2 (SO4) MeSO4+S0 Reaksiyonda indirgenen demirin tekrar Fe3+ haline dönüştürülmesi T.ferroxydans tarafından sağlanır. Bakteri bu prosese doğrudan karışmayıp bir katolitik fonksiyon görür. Bakteriyel oksidasyon kimyasal oksidasyondan yaklaşık 1 milyon kat hızlıdır. [2] nolu reaksiyonun oksitlenmesi T.thiooydans tarafından çok daha hızlı oksitlenirler. Bu tepkimeden de anlaşılacağı üzere sülfirik asit oluşumu katalizlediğinden, liçing için asidik koşulların sağlanması önemlidir. Bakteri Aktivitesine Etki Eden Etmenler 1. Besi Ortamı Besi ortamının kimyasal ve minerolojik bileşimi çok önemlidir. Liçing koşulları ve bakteriyel büyüme koşulları çakışıyorsa maksimum metal verimine ulaşır. Enerji veren demir ve kükürt bileşiklerinden başka magnezyum ve amonyum tuzları, fosfatlar ve sülfatlar esansiyel mineral bileşenleridir. Anorganik bileşiklerin bazıları liçing çözeltisinde bulunur. Eğer ortamda yeterli değillerse bir miktar katılırlar. Pirit(FeS2) ilave edilirse indirekt liçing hızlanır. Çok yüksek konsantrasyonda Fe3+ varlığı kompetitif bir inhibisyona neden olur. Tiyobasiller besi ortamı için problemlidir. Mikrobiyal liçingden maksimum verim elde etmek için liçing sırasında O2 transportu yeterli hızla sağlanmalı ve bu transportu etkileyen faktörlere dikkat edilmelidir. 2. pH ve Redoks Potansiyeli Optimum büyüme koşullarındaki pH’nın liçing çalışma koşullarına uyması idealdir. En uygun pH 2-2.5 arasıdır, kükürt ve Fe2+ oksidasyonu da bu pH lara uygundur Eğer pH 2’nin altına inerse T. ferroxydans aktivitesi düşer. Aerobik bir bakteri olduğu için T.ferroxydans pozitif bir redoks potansiyeline ihtiyaç duyar. Redoks potansiyeli logaritmik büyüme fazı sonuna doğru 600 mV a ulaşır. 3. Sıcaklık Fe+2 ve kükürdün mikrobiyal oksidasyonu için optimum sıcaklık 28-35oC arasıdır. T.ferrooxydans’ın büyümesi için de bu sıcaklık aralığı uygundur. Daha düşük sıcaklıkta büyüme yavaşlar, daha yüksek sıcaklıklarda ise termofil bakteriler kullanılır. 4. Liçing Materyalinin Kimyasal ve Mineralojisi Materyal yüksek oranda karbonat içerirse pH artar ve dolayısı ile liçing aktivitesi düşer ve giderek durur. Bunu engellemek için ortama asit ilavesi gereklidir. Mineral bileşimi büyüme ortamının ihtiyacını tam olarak karşılayamaz bazı mineraller dışarıdan ilave edilir. 5. Substrat Konsantrasyonu ve Partikül Büyüklüğü Liçing hızı liçing edilecek substratın yüzey büyüklüğü ile orantılıdır. Partikül boyutu ne kadar küçük ise toplam partikül yüzey o derece yüksektir, spesifik partikül yüzeyi artar, böylece liçing verimi de artar. Bu bilgiler kükürtlü cevherler için geçerli olup düşük tenörlü cevherleri kapsamaz. Substrat konsantrasyonunu artırarak da partikül toplam yüzeyi büyütülebilir. Bu durumda paktikül kütlesi de artar. Fakat substrat konsantrasyonunun artırılması belirli bileşiklerin konsantrasyonlarının artmasına neden olur ki bunların bazılar tiyobasillerin üremesi için toksik etki veya inhibisyon gösterebilir. Pratikte her liçing denemesi için partikül büyüklüğünün ve substrat konsantrasyonunun optimize edilmesi gerekir. 6. Yüzey Aktif Maddeler ve Ekstrasksiyon Maddeleri Eskiden bu maddelerin ilavesinin liçingi hızlandırdığına yani tiyobasillerin üremesini artırdığına inanılırdı. Fakat 1975 ten sonra yapılan çalışmalarda bunun tamamen yanlış olduğu tesbit edilmiştir. Yüzey gerilimi çok düşeceği için O2 kütle transferi çok yavaşlar. Bunun sonucunda bakteriyel gelişme sürekli olarak inhibe olur. Benzer bir etki ekstraksiyonda kullanılan organik çözgenler için de geçerlidir. Organik fazdan metal iyonunun geri alınması yeniden sulu faza çekme şeklinde olur. Eğer bakteriyel liçing ve çözgen ekstaksiyonu birlikte uygulanır ise problem çıkabilir. En önemli problem organik çözgen fazının tam olarak ortamdan ayrılmamasıdır. Sulu fazdan kalan organik çözgen bakterinin büyümesini inhibe eder. 7. Ağır Metaller Birçok ağır metal iyonu çok düşük konsantrasonlardan bile toksik etki gösterebilir. Tiyobasiller ağır metallere çok toleranslıdır. Bununla birlikte bu etkilerin daha önceden bilinmesi gerekir. 8. Işık Tiyobasiller ışığa çok duyarlıdır. Özellikle UV ve görünür ışığın ultraviyoleye yakın bölgesi tiyobasillere çok etkilidir. Mikrobiyal Liçing Prosesleri Optimumu liçing koşulları sadece laboratuar koşulları için tespit edilmiştir. Liçing koşullarının optimizasyonu pilot tesislerde tespit edilir ve daha sonra endüstriyel boyutta uygulanır. Optimizasyon da kullanılan parametreler; - O2 ve CO2 temini - Materyalin nem oranı - pH gradienti - Sıcaklık gradienti - Fe3+ tuzu çöktürmeleri - Partikül büyüklüğü - Partikül parçalanması ve partikül göçü - Geçirgen olmayan tabakaların oluşup, oluşmadığı. Mikrobiyal liçingin teknik uygulamalarının esas işlem sırası şöyle gerçekleşir; 1- Cevherlerin öğütülmesi 2- Cevherlerin bakteri süspansiyonu ile uygun şekilde sulandırılması 3- Sıvının biriktirilmesi 4- Çözünmüş metalin extraksiyonu NOT: Mikrobiyal liçing sonucu oluşan atık sular boş arazilere boşaltılmamalıdır. Mikrobiyal liçing uygulandığı yüze şekillerine göre 3’e ayrılır a) Meyilli yüzeyde liçing b. Kümesel yüzeyde liçing c. İn-situ liçing Mikrobiyal Liçingin Teknik Uygulamaları 1. Bakır Cevherinin Biyoliçingi Günümüzde dünya bakır üretiminin yaklaşık %10’u bakteriyel düşük kalite cevherlerin bakteriyel liçingi ile gerçekleştirilir. Bütün bakır işleticileri bir entegre yığma-boşaltma veya onların maden çıkarma veya porsesleme aktivitesini artıran in-situ liçing porseslerini uygular. En önemli bakır cevherlerinden biri olan kalkosit aşağıdaki denkleme göre bakteri tarafından çözünürleştirilir. Cu2S + 5/2 O2 +H2SO4 Bakteri 2CuSO4 + H2O Bu denklem iki basamakta gerçekleşir. a) Cu2S + ½ O2 + H2SO4 bakteri CuS + CuSO4 + H2O b) CuS + 2O2 bakteri CuSO4 Diğer bakır sülfür cevherleri bornit (Cu5FeS4), kubanit (CuFe2S3) ve kalkopirit (CuFeS2), enargit (Cu3AsS4) ve kovellittir (CuS). 2.Uranyum Cevherlerinin Biyoliçingi Mikrobiyal uranyum liçingi daha çok terk edilmiş uranyum ocaklarında uygulanır. Endüstriyel olarak bakteriyel liçing prosesleri ile cevherlerden uranyum ekstrakte edilir. Ekstraksiyonun kimyası çözünmeyen dört değerlilikli uranyum oksitlenerek çözünen altı değerlikli durumuna değişimi ile ifade edilir. UO2 + Fe2 (SO4)3+2H2SO4 U4[UO2(SO4)3] + 2 FeSO4 FeSO4 daha önce belirtildiği gibi bakteriyel oksidasyon ile Fe2(SO4)3 a dönüştürülür. SONUÇ Mikrobiyal liçing düşük kalitedeki cevherlerden metal kazanımın da kullanılan ve klasik yöntemlere göre ekonomik olan bir uygulama çeşididir. Bu yöntemle özellikle altın, gümüş gibi pahalı ve uranyum gibi stratejik elementlerin eldesinde büyük önem taşımaktadır. Bakır ve uranyum eldesinde özellikle in-situ liçing yöntemi uygulanmaktadır. Endüstriyel olarak Çinko, Nikel Cobalt ve Molibden üretimi için mikrobiyal liçing uygulamalarının yaygınlaştırılacağı kesin gibi gözükmektedir. Ayrıca mikrobiyal liçingle atıklardan metallerin geri kazanımı için alternatifsiz bir yöntemdir. Mikrobiyal liçing tesisleri maden yataklarının yanına kurulmalıdır. Böylece transport masrafları indirgenmiş olur. Mikrobiyal yöntem klasik yöntemlerden daha ekonomiktir. Detaylı teknik bilgi gerektirmez, ayrıca yüksek teknolojiye gerek yoktur. Bu nedenlerden dolayı yer altı kaynakları bakımından zengin ve gelişmekte olan ülkeler için çok iyi bir yöntemdir.

http://www.biyologlar.com/mikrobiyal-licing

Zaman Nedir ?

Çok az sayıda düşünce insan bilincine zaman kadar derin bir şekilde nüfuz etmiştir. Zaman ve uzay fikri, insan düşüncesini binlerce yıl işgal etmiştir. Bunlar, ilk bakışta basit ve kavranılması kolay şeylermiş gibi görünebilirler, çünkü günlük deneyimimizle çok sıkı bağları vardır. Her şey uzay ve zaman içinde varolur, bu nedenle de bu kavramlar tanıdık kavramlar gibi görünürler. Ne var ki, tanıdık olan şeyin mutlaka kavranmış olması gerekmez. Daha yakından bakıldığında, zaman ve uzay, kavranması o denli kolay olan şeyler değildirler. 5. yüzyılda, St. Augustine şunu fark etmişti: “O halde nedir zaman? Eğer bana birileri sormazsa, zamanın ne olduğunu bilirim. Ama eğer bana onun ne olduğunu soran birine zamanı açıklamak istersem, bilmiyorum.” Sözlükler de bu noktada pek yardımcı olmuyor. Zaman, “bir süre” olarak tanımlanıyor ve süre de “zaman” olarak. Bu bizi bir adım bile ileri götürmez! Gerçekte, zaman ve uzayın doğası, oldukça karmaşık bir felsefi sorundur. İnsanlar geçmiş ve geleceği birbirinden açık bir şekilde ayırt ederler. Fakat zaman duygusu, insanlara ve hatta hayvanlara özgü bir şey değildir. Gündüz bir yöne, gece başka yöne dönen bitkiler gibi organizmalar da, genellikle bir çeşit “iç saate” sahiptirler. Zaman, maddenin değişen durumunun nesnel bir ifadesidir. Ondan bahsetme biçimimizde bile bu ortaya çıkar. Zamanın “aktığından” söz etmek yaygındır. Aslında, sadece nesnel sıvılar akabilirler. Tam da bu metaforun seçilmesi, zamanın maddeden ayırt edilemez olduğunu kanıtlar. Zaman yalnızca öznel bir şey değildir. Fiziksel dünyada varolan gerçek bir süreci dile getiriş biçimimizdir. Zaman bu nedenle, tüm maddelerin sürekli bir değişim durumunda oldukları gerçeğinin ifadesidir aslında. Tüm nesnel varlıkların oldukları şeylerden başka bir şeye dönüşme kaderi ve zorunluluğudur. “Varolan her şey yok olmayı hak eder.” Her şeyin altında bir ritim duyusu yatar: Bir insanın kalp atışları, konuşma ritmi, yıldız ve gezegenlerin hareketi, gelgitin yükselişi ve alçalışı, mevsimlerin değişimi. Bunlar insan bilincine, keyfi hayaller olarak değil, evren hakkındaki esaslı bir hakikati dile getiren gerçek bir olgu olarak derin bir şekilde kazınmıştır. Bu noktada insan sezgisi yanılgı içinde değildir. Zaman, tüm biçimleriyle maddenin ayrılmaz özellikleri olan hareket ve durum değişikliğini ifade etme tarzıdır. Dilde kullandığımız zamanlar vardır, gelecek, şimdiki ve geçmiş zaman. Aklın bu muazzam keşfi, insanlığın, kendisini zamanın esaretinden kurtarabilmesini, somut durumun ötesine geçebilmesini ve yalnızca burada ve şu anda değil, en azından zihnimizde, geçmişte ve gelecekte de “var” olmasını mümkün kıldı. Zaman ve hareket birbirinden ayrılmaz kavramlardır. Bunlar, yaşamın tümüne ve, düşünme ve hayal gücünün her dışavurumu da dahil, dünya hakkındaki tüm bilgimize esas teşkil eder. Ölçme, ki tüm bilimin köşe taşıdır, zaman ve uzay olmaksızın imkânsız olurdu. Müzik ve dans zamana dayanır. Sanatın kendisi, yalnızca fiziksel enerjinin sunuluşunda değil tasarımda da mevcut bulunan bir zaman ve hareket hissi taşımaya çabalar. Bir tablonun renkleri, şekilleri ve çizgileri, göze yüzey üzerinde belli bir ritim ve tempoyla kılavuzluk ederler. Sanat faaliyetiyle iletilen bu özel ruhsal durumu, düşünceyi ve duyguyu ortaya çıkaran şey budur. Zamansızlık, sanat faaliyetini tanımlamakta sıklıkla kullanılan bir sözcüktür, ama bu sözcük amaçlananın gerçekten de tam tersini ifade eder. Zamanın yokluğunu tasarlayamayız, çünkü zaman her şeyde vardır. Zaman ve uzay arasında bir fark vardır. Uzay aynı zamanda konum değişimi olarak değişimi de ifade edebilir. Madde uzayda varolur ve onun içinde hareket eder. Ancak bunun gerçekleşme biçimi sonsuz sayıdadır: İleri, geri, yukarı, aşağı, şu ya da bu derecede. Uzayda hareket tersinirdir.* Zamanda hareket ise tersinmezdir. Bunlar maddenin aynı temel özelliğini, yani değişimi dile getirmenin iki farklı (ve aslında çelişik) yoludur. Mevcut yegâne Mutlaklık budur. Uzay, Hegel’in terminolojisini kullanırsak, maddenin “başkalığı”dır, zaman ise, maddenin (ve aynı şey olan enerjinin) onun aracılığıyla, olduğu şeyden bir başka şeye sürekli değiştiği süreçtir. Zaman –“içinde hepimizin tükendiği ateş”– çoğunlukla yıkıcı bir etken olarak görülür. Ancak zaman bir o kadar da, sürekli öz-oluşum sürecinin ifadesidir, ki bu süreç vasıtasıyla madde sürekli olarak sonsuz bir biçimler dizisine dönüşüp durur. Bu süreç, organik olmayan maddede, her şeyden önce de atomaltı düzeyde çok açık bir biçimde görülebilir. Değişim fikri, zamanın geçmesinde dile geldiği şekliyle, insan bilincine derin bir şekilde nüfuz eder. Edebiyattaki trajik unsurun, yaşamın geçip gitmesindeki keder duygusunun temelidir bu. Zamanın durmak bilmez hareketi hissini canlı bir biçimde ele alan Shakespeare’in sonelerinde en güzel ifadesine ulaşır bu duygu: Çakıllı sahillere yol alan dalgalar gibi, Kendi sonlarına koşuşturur dakikalarımız da; Geçip gidenin yerine gelen her biri, Hepsi ilerleyen bir yürüyüş kolunda. Zamanın tersinmezliği yalnızca canlı varlıklar için mevcut değildir. Yalnızca insanlar değil, yıldızlar ve galaksiler de doğar ve ölürler. Değişim her şeyi etkiler ama yalnızca olumsuz bir biçimde değil. Ölümün yanı başında yaşam vardır, ve düzen kaostan kendiliğinden çıkagelir. Çelişkinin iki tarafı birbirinden ayrılamaz. Ölüm olmaksızın yaşamın kendisi de mümkün olmazdı. Her insan yalnızca kendisinin değil, kendi olumsuzlanmasının ve kendi sınırlarının da farkındadır. Doğadan geliyoruz ve doğaya geri döneceğiz. Ölümlü varlıklar, birer fani varlık olarak kendi yaşamlarının ölümle sonuçlanmak zorunda olduğunu anlarlar. Eyüp Kitabı’nın hatırlattığı gibi: “İnsan ki, kadından doğmuştur. Günleri kısadır ve sıkıntıya doyar. Çiçek gibi çıkar ve solar; ve gölge gibi kaçar ve durmaz.”[1] Hayvanlar ölümden aynı şekilde korkmazlar, çünkü onun hakkında bir bilgileri yoktur. İnsanoğlu, ölümden sonra hayali bir doğaüstü varoluşa sahip ayrıcalıklı bir mezhep oluşturmakla, kendi kaderinden kaçmaya girişmiştir. Sonsuz yaşam fikri neredeyse tüm dinlerde şu veya bu biçimde vardır. Bu günahkâr dünyadaki “Gözyaşı Vadisi” için bir teselli sağlayacağı varsayılan Cennetteki hayali ölümsüzlüğe bencilce susamışlık duygusunun ardındaki itici güç budur. Böylece yüzyıllardır insanlara, öldüklerinde mutlu bir yaşam beklentisiyle dünyadaki sıkıntılara ve acılara uysalca boyun eğmeleri öğretilmiştir. Her bireyin göçüp gitmek zorunda olduğu iyi bilinir. Gelecekte, insan yaşamı kendi “doğal” uzunluğunun çok ötesine geçecektir; yine de bu yaşamın sonu gelmek zorundadır. Ancak tek tek insanlar için geçerli olan şey türler için geçerli değildir. Çocuklarımız sayesinde, dostlarımızın anıları sayesinde ve insanlığın çıkarlarına yaptığımız katkılar sayesinde yaşayacağız. Arzu etme hakkına sahip olduğumuz yegâne ölümsüzlük budur. Kuşaklar ölür gider, ama yerine insan eyleminin ve bilgisinin alanını geliştiren ve zenginleştiren yenileri gelir. İnsanlık dünyayı fethedebilir ve ellerini göklere uzatabilir. Gerçek ölümsüzlük arayışı, insanlar kendilerini öncekinden daha yüksek bir düzeyde yeniledikçe, insan gelişiminin ve mükemmelleşmesinin bu sonu gelmez sürecinde somutlanır. Bu nedenle, önümüze koyabileceğimiz en büyük hedef, öteki dünyadaki hayali bir cennetin hasretini çekmek değil, bu dünyada bir cennet inşa etmenin gerçek toplumsal koşullarını elde etmek için mücadele etmektir. İlk deneyimlerimizden, zamanın önemini kavrama noktasına gelmişizdir. Bu nedenle, birilerinin, zamanı bir yanılsama, aklın bir icadı olarak düşünmüş olması şaşırtıcıdır. Bu fikir günümüze kadar inatla sürdürülmüştür. Gerçekte, zamanın ve değişimin salt birer yanılsama olduğu düşüncesi yeni değildir. Bu fikir, Budizm gibi antik dinlerde ve Pythagoras, Platon ve Plotinus’un idealist felsefelerinde de mevcuttur. Budizmin özlemi, zamanın son bulduğu nokta olan Nirvana’ya ulaşmaktı. “Her şey hem kendisidir hem de değildir, çünkü her şey akar” ve “aynı nehre iki kere girilmez” derken zamanın ve değişimin doğasını doğru bir şekilde anlamış olan, diyalektiğin babası Herakleitos idi. Devirsel bir değişim fikri, mevsimlerin değişimine mutlak bağımlı olan tarım toplumunun bir ürünüdür. Eski toplumların üretim tarzına kök salan durgun yaşam tarzı, ifadesini durgun felsefelerde bulur. Katolik Kilisesi Copernicus ve Galileo’nun kozmolojisini içine sindiremezdi, çünkü bu kozmoloji, dünya ve topluma mevcut bakış açısına meydan okumuştu. Eski, ağır aksak köylü yaşamını ancak kapitalist toplumda sanayinin gelişimi altüst etmişti. Üretimde yerle bir edilen şey yalnızca mevsimler arasındaki fark değil, aynı zamanda, makineler günde 24 saat, haftada yedi gün, yılda elli iki hafta yapay ışıkların göz kamaştırıcı parlaklığı altında çalıştığına göre, gece ve gündüz arasındaki farktır da. Kapitalizm üretim araçlarını ve onunla birlikte insanın aklını da devrimcileştirmiştir. Ne var ki, bu sonuncusunun ilerleyişinin ilkinin ilerleyişinden çok daha yavaş olduğu da kanıtlanmıştır. Aklın muhafazakârlığı, fazlasıyla eskimiş düşüncelere, miadını çoktan doldurmuş eski kesinliklere, ve nihayet ölümden sonra yaşam umuduna dört elle sarılmaya dönük çabalarda açığa çıkar. Son onyıllarda, evrenin bir başlangıcı ve bir sonu olması gerektiği fikri kozmolojik büyük patlama teorileri tarafından yeniden canlandırıldı. Bu yaklaşım, evreni birtakım sırrına vakıf olunmaz planlara göre hiçlikten yaratan ve kendisi gerekli gördükçe onu sürdürmeye devam eden bir doğaüstü varlığı kaçınılmaz olarak içerir. Musa, İsa, Tertullian ve Platon’un Timaeusu’nun eski dini kozmolojisi, bazı modern kozmologların ve teorik fizikçilerin yazılarında inanılmaz bir şekilde tekrar baş gösteriyor. Bunda yeni olan hiçbir şey yok. Geri dönüşsüz bir çöküş aşamasına giren her toplumsal sistem, kendi ölümünü her zaman dünyanın ya da dahası evrenin sonu olarak sunar. Yine de evren, dünyadaki şu ya da bu geçici toplumsal formasyonun kaderinden bağımsız olarak varolmaya devam eder. İnsanlık, yaşamaya, mücadeleye ve tüm aksiliklere rağmen gelişmeye ve ilerlemeye devam eder. Böylece her dönem bir öncekinden daha yüksek bir düzeyde varolur. Ve genel olarak bu sürecin bir sınırı yoktur.

http://www.biyologlar.com/zaman-nedir-

BİTKİLERDE İÇTEN VE DIŞTAN GELEN SİNYALLERE VERİLEN YANITLAR

Bitki yaşamının her evresinde, çevreye duyarlılık ve yanıtlarında koordinasyon vardır. Bitkinin bir kısmından, diğer kısımlarına sinyaller gönderilebilmektedir. Örneğin; bir sürgün ucundaki tepe tomurcuğu birkaç metre uzaklıktaki yanal tomurcukların büyümesini baskı altına alabilir. Bitkiler, zamanı günlük ve yıllık olarak izlemektedirler. Yer çekimini ve ışığın yönünü algılarlar. Bitkinin morfolojisi ve fizyolojisi, çevresindeki değişkenlere göre sürekli olarak ayarlanır; bu çevresel uyartılar ve içsel sinyaller arasındaki kompleks ilişkilerle sağlanır. SİNYAL İLETİMİ VE BİTKİ YANITLARI Bitkiler dahil tüm organizmalar, özgül çevresel sinyalleri ve içten gelen sinyalleri alma ve bu sinyallere yanıt verme yeteneğindedir; organizmaların bu sinyallere yanıt vermesi, bir bakıma , yaşama ve üreme başarılarını artırır. Bitkiler de çevrelerindeki önemli değişiklikleri saptamak için hücresel reseptörlerini kullanırlar; bu değişiklik büyüme hormonunun konsantrasyonundaki bir artışı, yapraklar üzerinde beslenen bir çekirgenin verdiği zararı yada kış yaklaştıkça gün uzunluğunun azalmasını kapsayabilir. İç yada dış kaynaklı uyartının bir fizyolojik yanıtı başlatabilmesi için, organizmadaki belirli hücrelerin, uygun bir reseptöre sahip olması gerekir. Bir reseptör, özel bir uyartıya duyarlı ve ondan etkilenen bir moleküldür. Reseptör, bir uyartıyı alır. Bundan sonra iletim, bir dizi özel biyokimyasal basamağı, yani; sinyal iletim yolunu başlatır. Sinyal iletim yolu, uyartının algılanmasını organizmanın yanıtıyla eşleştirir. Sinyal iletimi, içten ve dıştan (çevreden) gelen sinyalleri hücresel yanıtlara bağlar Bir sürgün, güneş ışığına ulaşınca çok önemli morfolojik ve biyokimyasal değişiklikler geçirir. Bu değişiklikler yeşillenme olarak adlandırılır. Yeşillenme sırasında gövdelerin uzama hızı yavaşlar, yapraklar genişler, kökler uzamaya ve toprak üstü kısımlar klorofil üretmeye başlar; kısaca sürgün tipik bir bitkiye benzemeye başlar. Bu yeşillenme nasıl olur? Bu soruya cevap ararken; bir sinyalin (örn, ışık) bir bitki hücresi tarafından nasıl alındığını ve bu algılamanın bir yanıta (yeşillenme) nasıl dönüştürüldüğünü göreceğiz. İncelemelerimiz sırasında, mutantlarla yapılan çalışmaların, hücrede sinyal oluşumunun üç farklı evresinde (algılama, iletme ve yanıt verme) çeşitli moleküllerin oynadığı rollere nasıl ışık tuttuklarını göreceğiz Sinyal iletim yollarının genel bir modeli. Özel bir reseptöre bağlanan bir hormon (veya çevreden gelen diğer bir sinyal), sekonder mesajcılar üretmek için hücreyi uyarır. Sekonder mesajcılar, orijinal sinyale karşı hücrenin çeşitli tepkimeler üretmesini sağlar. Yukarıdaki şekilde reseptör, hedef hücrenin yüzeyinde görülmektedir. Diğer durumlarda, hormonlar hücreye girer ve hücre içinde özel reseptörlere bağlanır. Sinyalin Alınması Sinyaller ister içten ister dıştan gelsin, ilk olarak reseptörler tarafından saptanır. Reseptörler, özel bir uyartıya yanıt olarak yapısal değişiklikler geçiren proteinlerdir. Bitkilerde yeşillenmede yer alan reseptör fitokrom olarak adlandırılır. Fitokrom özel bir proteine bağlanmış, ışık absorblayan bir pigmentten oluşmuştur. Plazma zarındaki pek çok pigmentin aksine, yeşillenmede iş gören fitokrom sitoplazmada bulunur. Araştırmacılar, yeşillenme sürecinde fitokromun gerekli olduğunu, aurea isimli bir domates mutantıyla yaptıkları çalışmalarda ortaya çıkarmıştır. Normal düzeyden daha düşük miktarda fitokroma sahip olan bu mutant, ışığa maruz bırakılınca yabani tip domatesten daha az yeşillenmektedir. (Latince aurea altın-renkli anlamındadır. Klorofil yokluğunda, karetenoyit denilen sarı bitki pigmentleri, daha fazla belirginleşirler). Araştırmacılar, diğer bitkilerden elde ettikleri fitokromu mikro iğnelerle (mikro enjeksiyon yoluyla) aurea‟nın yaprak hücrelerine enjekte ettikten sonra bu bitkiyi ışığa maruz bırakarak normal bir yeşillenme yanıtının oluşmasını sağlamışlardır. Bu tür denemeler, yeşillenme sürecinde, ışığın algılanmasında fitokromun iş gördüğü varsayımını desteklemiştir. Sinyal İletilmesi Yeşillenme süreci, çok düşük düzeydeki ışık tarafından başlatılır. Örneğin; birkaç saniyelik ay ışığına eşdeğer ışık düzeyleri, karanlıkta büyüyen çavdar fidelerinin gövde uzamasının yavaşlatmaya yeter. Fitokrom gibi reseptörler, çok zayıf çevresel ve kimyasal sinyallere duyarlıdır. Bu çok zayıf çevresel ve kimyasal sinyallerden gelen bilgi nasıl çoğaltılmakta ve bitki tarafından bu algılama özel bir yanıta nasıl dönüştürülmektedir? Bu sorunun yanıtı, sekonder mesajcılardır (sekonder messenger veya ikincil mesajcılar). Bunlar bitkide üretilen küçük kimyasal maddeler olup sinyali çoğaltarak reseptörden proteine nakleder; bu proteinler özel bir yanıta neden olur. Örneğin; yeşillenmenin ortaya çıkması sırasında etkileşen her bir fitokrom, yüzlerce sekonder mesaj taşıyıcı molekül oluşturabilir. Bunlar da yüzlerce özel enzim molekülünü aktifleştirebilir. Sinyal iletim yolundaki bir sekonder mesajcı, bu tür mekanizmalarla sinyalin hızlı bir şekilde çoğalmasını sağlar. Şimdi, özel olarak sekonder mesajcıların oluşumunu ve yeşillenmenin ortaya çıkmasındaki işlevlerini inceleyelim. Bitkilerde sinyal iletimine bir örnek; yeşillenmede fitokromun rolü. Işık sinyali fitokrom reseptörü tarafından alınır. Daha sonra reseptör G-proteinlerini içeren iki sinyal iletim yolunu aktifleştirir. 1) yollardan biri, bir protein kinaz serisini aktifleştiren bir sekonder mesengera götürür. 2) diğer yol, özel bir protein kinazı aktifleştiren bir Ca+2 – kalmodulin kompleksinin oluşumuna götürür. 3) her iki yol yeşillenmede iş gören proteinlerle ilgili genlerin ifade (yeşillenmede iş görmek için dizilmesini) olmasını sağlar. Pek çok reseptör guanin-bağlı proteinlerle (G-proteinleri) ilişkiye girer. Fitokrom böyle bir reseptördür. Işık fitokromda konformasyonal bir değişikliğe neden olur. Daha sonra fitokrom, özel G-proteini ile ilişkiye girer. Aktifleşme sırasında, inaktif G-proteinine bağlı olan guanozin difosfat (GDP), guanozin trifosfat (GTP) ile yer değiştirir. Böylelikle, aktif hale gelen G-proteini, yeşillenmeyi sağlayan sinyal iletim yolundaki diğer enzimleri aktifleştirir. Örneğin; fitokromun aktifleştirdiği G-proteinleri, ikincil (sekonder) bir mesaj taşıyıcı olarak siklik-GMP‟ı (cGMP) oluşturan enzim olan guanil siklazı aktifleştirir. G-proteini inhibitöreleri, aurea domates hücrelerine, fitokromun mikroenjeksiyon yoluyla verilmesinden sonra yeşillenmeyi durdurur; buna karşılık G-proteini aktivatörleri, yanıtı uyarır. Siklik adenozin monofosfat (cAMP, siklik AMP) ve siklik guanozin monofosfatın (cGMP) dahil olduğu siklik nükleotidler özel protein kinazları (diğer proteinleri fosforlayarak aktifleştiren proteinler) aktifleştirir. Denemeler cGMP‟nin yeşillenme sürecinde yer aldığını göstermektedir. cGMP‟nin aurea domates hücrelerine mikroenjeksiyonu, fitokrom ilavesi olmaksızın bile, yeşillenme işlemini kısmen teşvik etmektedir. Sitoplazmadaki (sitosol) Ca+2 düzeyleri genel olarak çok düşüktür (yaklaşık 10-1M). Bununla bilikte, çok çeşitli hormonal ve çevresel uyartı, sitosoldeki Ca+2 düzeyinde küçük bir artışa sebep olabilir. Daha sonra, Ca+2, kalmodulin olarak isimlendirilen küçük bir proteine doğrudan bağlanır. Bundan sonra Ca+2-kalmodulin kompleksi birkaç enzime bağlanarak, onları aktifleştirir. Protein kinazlar, bu enzimlerin en belirginleridir. Şekilde yeşillenme mekanizması sırasında fitokromun aktifleşmesinin, sekonder mesenger olarak hem cGMP hem de Ca+2-kalmodulinle sonuçlandığına dikkat ediniz. Yanıtın Oluşması Sonuçta, sinyal-dönüştürme yolları, hücrede bir yada daha fazla aktivitenin düzenlenmesine yol açar. Çoğu durumda, özelliklede gelişimdeki değişiklikler söz konusu olduğu zaman, uyartıya (sinyale) karşı verilen bu yanıtlar belirli enzimlerin aktivitesini artırır. Sinyal oluşturan bir yol, bir enzimi iki ana mekanizma ile aktifleştirebilir. Bu mekanizmalardan biri, o enzimle ilgili mRNA‟nın transkripsiyonunun uyarılmasıdır, diğeri ise mevcut enzim molekülünün aktifleştirilmesidir (yani translasyon sonrası modifikasyon). Transkripsiyon: DNA kalıbı üzerinden RNA sentezlenmesi. Translasyon: Bir mRNA molekülü üzerinde kodlanmış genetik bilgiyi kullanarak bir polipeptidin sentezlenmesi. Transkripsiyon faktörü: DNA‟ya bağlanarak özgül genlerin transkripsiyonunu uyaran, düzenleyici protein. Transkripsiyon başlatma kompleksi: Promotere bağlanan RNA polimeraz ve transkripsiyon faktörlerinin tümünün oluşturduğu birlik. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Transkripsiyon Evresinde Düzenleme Trankripsiyon faktörleri doğrudan özel DNA bölgesine bağlanır ve özel genlerin transkripsiyonunu kontrol eder. Fitokromun teşvik ettiği yeşillenmede, uygun ışık koşullarına yanıt olarak birkaç transkripsiyon faktörü, fosforilasyonla aktifleştirilir. Bu transkripsiyon faktörlerinin bazısı cGMP‟a, buna karşılık diğerlerinin aktifleşmesi ise Ca+2-kalmodulin‟e gereksinim duyar. Bir sinyalin yeni bir gelişim sürecinin başlamasını sağladığı mekanizma, pozitif transkript faktörlerine (özel genlerin transkripsiyonunu artıran faktörler) yada negatif transkript faktörlerinin (transkripsiyonu azaltan proteinler) etkisizleşmesine yada her ikisine birden bağlıdır. Karanlıkta büyütüldüklerinde mat renkli olmalarının dışında, ışıkta büyütülmüş gibi morfolojik özelliklere (geniş yapraklar, kısa ve sağlam gövdeler) sahip Arabidopsis mutantları mevcuttur (bu mutantlar yeşil renkli değildir. Çünkü klorofil üretiminin son basmağında doğrudan ışığa gereksinim duyulur). Bu mutantların bir negatif transkripsiyon faktöründe bozukluklar bulunur. Bu transkripsiyon faktörü, normalde ışık tarafından aktifleştirilen diğer genlerin ifadesini engellemektedir. Negatif faktör, mutasyonla ortadan kalkınca, onu durduran yol aktifleşmektedir. Proteinlerde Translasyon Sonrası Oluşan Değişimler Transkripsiyon ve translasyonla yeni proteinlerin sentezi, yeşillenme ile ilgili önemli moleküler olaylar olmalarına karşın, mevcut proteinlerin translasyon sonrası değişimleri de önemlidir. Bu mevcut proteinlerin çoğu sıklıkla fosforilasyonla, yani proteine bir fosfat grubunun katılmasıyla, değişime uğramaktadır. Protein kinazlar olarak isimlendirilen belirli proteinler hedef proteinlerin fosforilasyonunu katalizlemektedir. cGMP ve bazı fitokrom formları dahil, bazı reseptörlerin kendileri doğrudan protein kinazları aktifleştirir. Tüm bitki genlerinin yaklaşık % 2-3‟ü protein kinazları kodlayabilir. Çoğunlukla bir protein kinaz başka bir protein kinaza, daha sonra diğerine, o da başkalarına fosfor kazandırır. Böylece kinazların ard arda harekete geçirilmesi, sonuçta başlangıçtaki uyartıya gen ifadesi düzeyinde yanıt verilmesini sağlar. Bu, genellikle transkripsiyon faktörlerinin fosforlanmasıyla gerçekleşir. Pek çok sinyal iletim yolu, bu tür mekanizmalarla yeni proteinlerin sentezini düzenler. Bunu, çoğunlukla özgül genlerin açılıp kapanmasını sağlayarak yapar. Fosforilasyon şelalesi. Bir fosforilasyon şelalesinde yer alan farklı moleküller, bu yolda sırasıyla fosforile edilirler. Dizideki her molekül, kendinden sonraki moleküle bir fosfat grubu ekler. Burada gösterilen fosforilasyon şelalesi, protein kinaz 1 olarak adlandırdığımız bir enzimin bir aktarım molekülü tarafından aktive edilmesinden sonra başlar. 1) Aktif protein kinaz 1 bir fosfat grubunu ATP‟den inaktif protein kinaz 2‟ye aktarır. Böylece ikinci kinaz aktifleşir. 2) Aktif protein kinaz 2 daha sonra protein kinaz 3‟ün fosforilasyonunu (ve aktivasyonunu) katalizler. 3) Sonuçta, aktif protein kinaz 3, sinyale verilecek hücresel cevabı ortaya çıkaracak olan proteini (pembe) fosforile eder. Kesikli çizgi ile gösterilen oklar fosforile olmuş proteinlerin inaktivasyonunu temsil etmektedirler. Fosfotaz enzimleri fosfat gruplarının proteinlerden uzaklaştırılmasını katalizler. Böylece bu proteinler yeniden kullanılamazlar. Aktif ve inaktif proteinler farklı yapılarda temsil edilmektedirler. Bunun nedeni, aktivasyonun genellikle molekülün biçim değiştirmesiyle birlikte cereyan ettiğini hatırlatmaktır. Sinyal iletim yolları, başlangıç sinyali ortadan kalkınca kapanma mekanizmasına da sahip olmalıdır. Özgül proteinlerin fosfor yitirmelerini sağlayan fosfataz enzimleri, bu kapama sürecinde yer alır. Herhangi bir anda bir hücrenin aktivitesi, pek çok proteinkinaz ve protein fosfataz enziminin aktivitesindeki dengeye bağlıdır. Yeşillenmeyi Sağlayan Proteinler Yeşillenme sürecinde hangi proteinlerin transkripsiyonu gerçekleşmekte yada fosforilasyonla aktifleştirilmektedir? Bu proteinlerin çoğu doğrudan fotosentezde iş gören enzimlerdir; diğerleri ise klorofil üretimi için gerekli kimyasal öncüllerin temin edilmesinde yer alır; bunların dışındaki enzimler ise, büyümeyi düzenleyen bitkisel hormonların düzeylerini etkiler. Örneğin gövde uzamasını artıran iki hormonun düzeyi sitokromun aktifleşmesinden sonra azalır. Bu nedenle, yeşillenmeyle birlikte gövde uzaması azalır. Yeşillenme gibi yalnızca bir tek sürecin altında yatan biyokimyasal değişikliklerin bile ne denli karmaşık olduğunu açıklamak için bitki yeşillenmesinde yer alan sinyal iletimini ele aldık. Her bitki hormonu ve her bir çevresel uyartı, karmaşık, bir yada daha fazla sinyal iletim yolunu başlatır.

http://www.biyologlar.com/bitkilerde-icten-ve-distan-gelen-sinyallere-verilen-yanitlar

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

BİTKİ HORMONLARI ( fitohormonlar )

Bilimsel Süreç 1880 yılı başlarında, Julius Sachs araştırmaları sonucunda bitkinin farklı parçaları arasındaki gelişimin düzenlenmesini sağlayan “kimyasal mesajcıların” (chemical messengers) varlığını ileri sürmüştür. Ancak, Sachs‟ın düşüncesinin esası Charles Darwin tarafından yazılmış olan “The Power of Movements in Plants” (Bitkilerde Hareketlerin Kaynağı) isimli bir kitaptan gelmektedir. Charles Darwin ve oğlu Francis Darwin tarafından yapılmış olan, kuş yemi (Phalaris canariensis) koleoptillerinde fototropik hareketler üzerinde bazı gözlemleri bu kitapta birleştirmişlerdir. Bu kitap, bitki hormonlarının tanımlanmasına yol gösteren, bir sıçrama tahtası gibi sunulmuştur. Sachs, bitkilerin belli yerlerinde kök, gövde, yaprak, çiçek gibi organların oluşumunda etkili olan kimyasal maddelerin sentezlendiğini ve bunların her birinin, tek bir organın büyümesinden sorumlu olduğunu ileri sürmüştü. Ancak bu gün bir bitki organındaki belli bir kısmın büyümesinde bile çeşitli hormonların birlikte etki ettikleri ve bir hormonun bitkide bir çok fizyolojik olayda rol oynadığı bilinmektedir. (Örneğin; sitokininler, sitokinezi yada hücre bölünmesini uyarırlar. Gövdeden alınan bir parankima doku parçası sitokininler olmaksızın kültüre alındığında, hücreler çok fazla büyürler fakat bölünemezler. Sitokininler tek başlarına etki gösteremezler fakat oksin ile birlikte uygulandıklarında hücreler bölünürler.) Metabolizma, bitki yaşamı için gücü ve yapı taşlarını sağlarken, fitohormonlar (bitki hormonları) ise özel kısımlardaki gelişimin ilerleme hızını düzenlemekte ve bizim bitki olarak tanımlayacağımız yapıyı (formu) üretmek üzere bu kısımları tümleştirmektedir. Ayrıca, fitohormonların bilimsel tarihi günümüzde de ilerlemektedir. Yakın zamana kadar, bitki büyüme ve gelişmesinin oksinler, giberellinler, sitokininler, absisik asit ve etilen olarak adlandırılan, sadece bu beş grup fitohormon tarafından düzenlendiği düşünülmekteydi. Bununla birlikte bu gün, ilk kez kolza bitkisi (Brassica napus L.) poleninden izole edilmiş ve steroidlerin bir grubu olan brassinosteroidleri fitohormonların altıncı bir grubu olarak kabul etmekteyiz. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. Bilimsel süreçte geçmişten bu güne gelen gelişmeleri incelerken, Arabidopsis genomunun sekansının çıkartılmasıyla bu gün ve gelecekte olacak çarpıcı gelişmelere değinerek, süreci tamamlıyacağız. Bitki biyoteknolojisinde kobay fareleri gibi kullanılan bitki Arabidopsis „tir. Şu an Arabidopsis genomu sekanslanmıştır. Bir sonraki aşama ise, yaklaşık 26.000 gen bulunan Arabidopsis‟te, bu genlerin ne yaptıklarının bulunmasıdır. Bu plan, 2010 yılına kadar 26,000 Arabidopsis geninin işlevini belirleme amaçlarını ve stratejilerini kapsamaktadır. Plan, bitkinin yaşam döneminde her bir genin ne zaman ve hangi tip hücrelerde ifade olacağını kapsamaktadır. Sonuçta her şeyi bilinen gerçek bir bitkiye sahip olunacaktır. Burada, gerçek bir bitki elde etmek için Arabidopsis kullanılmasının bir çok sebebi vardır; Yaşam döngüsü çok hızlıdır. Tohumdan tohuma yedi haftada geçebilir. Ayrıca, kendine dölektir. Her bir bitki 10.000 ila 50.000 tohum üretebilir. Bu, kalıtsal olarak aynı olan çok sayıda bitki üretebileceğimiz anlamına gelebilir. Arabidopsis aynı zamanda iyi bir araştırma bitkisidir. Çünkü bilinen en küçük bitki genomuna sahiptir. Çok sayıda gereksiz DNA‟ya sahip değildir. Meyve olgunlaşmasında etilen hormonunun nasıl iş gördüğü, bir Arabidopsis mutantından öğrenilmiştir. Arabidopsis‟te etilen yolundan sorumlu olan aynı genler, domateste de bulunmuştur; ve bu genlerin nasıl çalıştığını anlamak olgunlaşma sürecini kontrol etmeyi sağlamaktadır. Diğer bir uygulama ise; Arabidopsis‟te genlerin belirlenmesi sayesinde kültür bitkisi ıslahçıları, yararlı varyetelerin seçici olarak üretilmesi işleminde belirli mutasyonları nasıl kullanacaklarını anlayacaklardır. Örneğin; yabani darı normalde Texas‟ta yetişmez. Ancak ıslahçılar, Arabidopsis araştırmasına dayalı olarak, bitkide fotoreseptörü etkileyen bir mutasyonu seçmişlerdir. Bu, yabani darının, Texas‟taki tarlalarda yaşam döngüsünü tamamlamasına izin verecektir. Yani, bir referans bitkisi ve kültür bitkileri arasında bu tür bağlayıcı bilgiler çok kullanışlıdır. Dünya nüfüsunun 2050 yılında 10 milyara ulaşacağı düşünülmektedir. Şu an bile, 6 milyar insandan 800 milyonu, kronik yetersiz beslenme ile karşı karşıyadır. Dünyadaki beslenmeyi artırmanın tek yolu kültür bitkisi ırklarının ıslahından geçmektedir. Verimlilik artışı, ya daha etkili ıslah yapmak yada genetiksel olarak değişime uğratılmış (mutant) bitkiler üretmek suretiyle, moleküler genetik uygulamalara bağlı olacaktır. İleriki yıllarda bu gibi bilimsel verilerin geliştirilmesiyle moleküler ve genetik düzeyde bilmeceler çözülecek ve insan yaşamındaki sorunlara çözümler bulunacaktır. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi. Sitokinez: Mitozdan hemen sonra, iki kardeş hücre meydana getirmek üzere sitoplazmanın bölünmesidir. Steroid: Çeşitli fonksiyonel grupların bağlandığı dört halkından oluşmuş bir karbon iskelet ile karakterize edilen lipit çeşiti. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Mutasyon: Bir genin DNA‟sında ortaya çıkan değişiklik, bu değişiklik sonunda genetik çeşitlilik meydana gelir. Mutant fenotip: Yabanil tipe alternatif olan özellik. Katalizör: Kendisi harcanmaksızın tepkime hızını değiştiren bir kimyasal ajandır. Enzim: Katalitik bir proteindir. Bir Bitki Hormonunun Tanımı Hormon kelimesi uyarma anlamındadır. Tüm çok hücreli organizmalarda bulunan hormonlar, organizmanın kısımlarını kontrol eden kimyasal sinyallerdir. Salisbury ve Ross tarafından 1992‟de yazılan Bitki Fizyolojisi (Plant Physiology) kitabının 4‟üncü baskısında bir bitki hormonu için şu tanım yapılmaktadır; “Bir bitki hormonu, bitkinin belirli bir kısmından sentezlenen organik bir bileşiktir ve çok düşük konsantrasyonlarda bitkinin başka bir kısmına taşınabilir, ve taşındığı yerde fizyolojik etkilere neden olabilir.”

http://www.biyologlar.com/bitki-hormonlari-fitohormonlar-

Bitki Hormonlarının Sınıflandırılması

Bitki hormonlarına, yapıca benzeyen kimyasal maddeler laboratuvarda sentetik yollarla elde edilmekte ve bunlar bitkiye dıştan uygulandığında bitki hormonu gibi fizyolojik etkiler göstermektedirler. Fakat bunlar, bitkide doğal olarak sentezlenmediğinden ve hormon tanımına girmediğinden büyümeyi düzenleyici maddeler olarak sınıflandırılır. Bitki hormonlarının (fitohormonların) bazı grupları büyümeyi teşvik edici etki gösterirken, bazıları ise engelleyici etki gösterirler. Fakat, bitkide düzenli bir büyüme için, büyümeyi teşvik eden ve engelleyen, her iki tip hormona da ihtiyaç vardır. Bitki hormonları; oksin, sitokininler, giberellinler, absisik asit, etilen ve brassinosteroidler olmak üzere altı gruba ayrılır. Büyümeyi teşvik edenler: oksin, sitokininler, giberellinler, etilen, brassinosteroidler Büyümeyi engelleyenler: absisik asit, etilen Hormon Bitkide Üretildiği Yer Ana İşlevler Oksin (IAA)----Tohumun embriyosu, apikal tomurcukların meristemleri, genç yapraklar.----Gövde uzamasını (yalnızca düşük konsantrasyonda), kök büyümesini, hücre farklılaşmasını ve dallanmayı teşvik eder; meyve gelişimini düzenler; apikal dormansiyi artırır; fototropizma ve gravitropizmada iş görür. Sitokininler (Zeatin)---Köklerde sentezlenir ve diğer organlara taşınırlar. ----Kök büyüme ve farklılaşmasını etkiler; hücre bölünmesi ve büyümesini teşvik eder; çimlenmeyi teşvik eder; senesensi geciktirir. Giberellinler (GA3)---Apikal tomurcukların ve köklerin meristemleri, genç yapraklar, embriyo.----Tohum ve tomurcuk çimlenmesini, gövde uzamasını ve yaprak büyümesini artırır; çiçeklenmeyi ve meyve gelişimini teşvik eder, kök büyümesini ve farklılaşmasını etkiler. Absisik asit---Yapraklar, gövdeler, kökler, yeşil meyve.----Büyümeyi engeller; su stresi esnasında stomalar kapanır; dormansinin kırılmasını engeller. Etilen----Olgunlaşan meyve dokuları, gövdelerin nodyumları, yaşlanan yaprak ve çiçekler.---Meyve olgunlaşmasını artırır; oksinin bazı etkilerini bastırır; türe bağlı olarak, köklerin, yaprakların ve çiçeklerin büyümesini artırır veya engeller. Brassinosteroidler (Brassinolid)----Tohumar, meyveler, gövdeler, yapraklar ve çiçek tomurcukları. ----Kök büyümesini engeller, yaprak absisyonunu engeller, ksilem farklılaşmasını artırır. OKSİN : Büyüme Hormonu Charles Darwin ve oğlu Francis, 19. yüzyılın sonlarında fototropizma üzerindeki ilk denemeleri gerçekleştirmiştir. Bu araştırmacılar, fototropik uyartının kuş yemi (Phalaris canariensis) koleptilinin ucunda oluştuğunu ve belli bir mesafede etki ettiğini gözlemiştir. Fototropizma üzerinde yapılan ilk deneyler. Sadece koleoptilin ucu ışığı algılayabilir; fakat kıvrılma uçtan belli bir uzaklıkta oluşur. Bir sinyal çeşidinin, uçtan aşağıya taşınması gerekir. Sinyal, geçirgen bir engelden (jelatin blok) geçebilir, fakat katı bir engelden (mika) geçemez bu, fototropizma sinyalinin taşınabilir bir kimyasal olduğunu göstermektedir. Koleoptilin ucu kesildiğinde, koleoptilin kıvrılmadığı gözlenmiştir. Koleoptilin ucu ışık geçirmeyen bir kapla örtüldüğünde de fideler ışık yönünde büyüyememişlerdir; buna karşılık, ne koleoptilin ucu şeffaf bir kapla örtüldüğünde, ne de koleoptilin alt kısmı ışık geçirmez bir kapla sarıldığında fototropizmanın oluşması önlenememiştir. Darwin, ışığın algılanmasından koleoptilin ucunun sorumlu olduğunu düşünmüştür. Bununla birlikte, gerçek büyüme yanıtı, yani koleoptilin kıvrılması, uçtan belirli uzaklıkta gerçekleşmekteydi. Darwinler, koleoptilin ucundan uzama bölgesine bazı sinyaller gönderildiğini ileri sürmüşlerdir Koleoptil: Bir yulaf (çim) tohumu embriyosunun genç kökünün örtüsü. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi Birkaç on yıl sonra, Danimarka‟dan Peter Boysen–Jonsen, bu varsayımı sınamış ve sinyalin hareketli bir kimyasal madde olduğunu göstermiştir. Araştırmacı, koleoptil ucunu, hücreler arasındaki teması kesen, fakat kimyasalların geçişine izin veren jelatin bir blokla koleoptilin diğer kısımlarından ayırmıştır. Bu fideler, ışığa doğu kıvrılarak normal davranış göstermişlerdir. Buna karşın uç, koleoptilin alt kısmından geçirimsiz bir engelle ayrıldığında, fototropik yanıt oluşmamıştır 1926‟da Hollandalı bir lisans üstü öğrencisi olan Frits W. Went, Boysen-Jonsen‟in denemelerinde değişiklik yaparak fototropizmada iş gören kimyasal mesaj taşıyıcı elde etmeyi başarmıştır. Bu araştırmacı, koleoptil ucunu çıkartarak agara yerleştirmiştir, daha sonra agarı bloklara ayırarak koleoptillerin tek tarafına yerleştirmiştir Şöyle ki; agar blokları, karanlıkta tutulmuş ucu kesik koleoptillerin üzerine yerleştirmiştir Koleoptil tepesinin ortasına yerleştirilen bir blok, gövdenin dik büyümesine neden olmuştur. Fakat blok, merkezin uzağına yerleştirildiğinde (asimetrik olarak tek tarafa), koleoptil ucu, ışığa doğru büyümesinde olduğu gibi, agar bloğun bulunduğu tarafın aksi yönünde kıvrılmaya başlamıştır. Went’in Deneyleri. Ucun yerine bir blok konulduğunda, koleoptilden agar bloğa geçebilen bir kimyasal, kök koleoptilinin uzamasını teşvik eder. Eğer blok, karanlıkta tutulan ve ucu kesilmiş bir koleoptilin ucunun uzağına yerleştirildiğinde, organ, tek taraftan ışık alıyormuş gibi kıvrılır. Bu kimyasal, bir hormon olan oksindir. Oksin, sürgünde hücrelerin uzamasını teşvik etmektedir. NOT: Went deneylerinde Avena sativa (yabani yulaf) koleoptillerini kullanmıştır. Went, agar bloğun, koleoptil ucunda üretilen bir kimyasalı içerdiği sonucuna varmıştır. Went‟e göre, bu kimyasal koleoptile geçtikçe büyümeyi uyaran ve artıran bir kimyasaldı ve koleoptilin ışık almayan tarafında daha yüksek bir konsantrasyonda biriktiğinden koleoptil ışığa doğru büyüyordu. Wenti bu kimyasal mesaj taşıyıcı yada hormona, oksin (auxein = artmak) ismini verdi. Daha sonra oksin, Kaliforniya Teknoloji Enstitüsünden Kenneth Thimann ve arkadaşları tarafından izole edilmiş (saflaştırılmış) ve yapısı aydınlatılmıştır. Darwinler‟in ve Went‟in çalışmalarına dayalı olarak, koleoptillerin ışığadoğru büyümelerine neyin neden olduğu yönündeki klasik varsayım, oksinin, koleoptil ucundan aşağıya taşınarak asimetrik olarak dağılmasına ve ışık almayan taraftaki hücrelerin ışık alan taraftaki hücrelerden daha hızlı büyümesine neden olduğudur. Oksin Biyosentezi ve Metabolizması Kenneth Thimann ve arkadaşları tarafından izole edilen oksinin, indolasetik asit(IAA, indol-3-asetik asit) olduğuna karar verildi. Daha sonra bitkilerde çeşitli oksinlerin bulunduğuda anlaşıldı. Bunlar fenil asetik asit (PAA), indol butirik asit (IBA) ve 4-kloro indol-3-asetik asit (4-Cl-IAA) gibi maddelerdir. Bunlar gibi etki gösteren fakat doğal olmayan sentetik oksinlerde vardır; naftelen asetik asit (NAA), 2,4-dikloro fenoksi asetik asit (2,4-D), ve 2,4,5-trikloro fenoksi asetik asit (2,4,5-T), 2-metoksi-3,6-dikloro benzoik asit. Üç doğal oksinin yapısı. IAA, bütün bitkilerde; 4-Cl-IAA, bezelyede; IBA, hardal ve mısırda görülür. IAA, triptofan amino asitinden sentezlenir. IAA‟in bütün sentez yollarında başlangıç maddesi genelde triptofandır. IAA, gövde ve dal uçlarında sentezlenmekle beraber, tohumlarda ve genç yapraklarda da sentezlenir. Oksinin floem yoluyla yukarıdan aşağıya doğru taşınımı saatte 0,5-1,5 cm arasındadır. Oksinin, floem yoluyla az da olsa aşağıdan yukarıya taşındığı radyoaktif izleme yöntemiyle (C14 ile işaretlenmiş oksin kullanılarak) belirlenmiştir. Oksinin taşınımı sentetik bir madde olan 2,3,5-triiyodo benzoik asit (TIBA) ile engellenmektedir. Bunun dışında da doğal ve sentetik oksin inhibitörleri de vardır. Oksinin sürgün ucundan aşağıya, gövdeye doğru taşınma hızı saatte 10 mm dir. Bu taşınım hızı floem yoluyla taşınım hızından daha düşüktür. Oksin, bir hücreden diğerine, doğrudan parankima dokusundan taşınır. Taşınma sadece sürgün ucundan kaideye doğru gerçekleşir. Bunun aksi yönünde bir taşınım görülmez. Oksinin, bu tek yönlü taşınımı polar taşınım olarak adlandırılır. Polar taşınımın yer çekimiyle ilgisi yoktur. Bir gövde yada koleoptil parçası baş aşağı konumlandırıldığında oksin yukarı doğru taşınır. Şekil 10‟da plazma zarında ATP ile çalışan proton pompalarının oksin taşınımı için nasıl metabolik enerji sağladıkları gösterilmiştir (Oksin taşınma mekanizması, kemiozmozis ile hücrenin iş yapmasına diğer bir örnek teşkil eder. Kemiozmozis, proton pompalarının yarattığı H+ gradiyentlerini kullanır). Polar oksin taşınımı (kemiozmotik model). Oksin, büyüyen sürgünlerde, sürgün ucundan aşağı doğru tek yönde taşınır. Bu yol boyunca, hormon, hücrenin apikal ucundan girer ve basal ucundan çıkar. Bu esnada çeperden geçer ve bir sonraki apikal uçtan girer. 1) Oksin hücre çeperinin asidik ortamı ile karşılaşınca, elektriksel olarak nötrleşmek için bir hidrojen alır. 2) Nispeten küçük olan molekül plazma zarından geçer. (oksin hücreye girerken; yüksüz formda (AH), difüzyonla veya anyon (A-) olarak sekonder aktif taşımayla girer.) 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 4) ATP ile çalışan proton pompaları hücrenin içi ve dışı arasındaki pH farkının sürmesini sağlar. 5) Oksin yalnızca hücrenin basal ucundan dışarı çıkar. Hücrenin basal ucunda yer alan zarda, özel taşıyıcı proteinler bu çıkışı sağlar. 6) Proton pompaları, zarın iki yanında bir zar potansiyeli (voltaj) oluşturarak oksin çıkışına katkı yapar. Bu, anyonların hücre dışına çıkmasını sağlar. Kemiosmozis: ATP sentezi gibi, hücresel bir olayı yerine getirmek için zarın karşı tarafında hidrojen iyonu gradiyenti oluşturmakla ortaya çıkan, depolanmış enerjiyi kullanan bir enerji elde etme mekanizması. Hücrede sentezlenen ATP‟nin çoğu, kemiosmozis yoluyla sentezlenir. Proton pompası: Zar potansiyeli meydana getirme işleminde, ATP kullanarak hidrojen iyonlarını hücrenin dışında tutan, hücre zarındaki aktif taşıma mekanizması. Apikal meristem: Kökün uç kısmında ve gövdenin tomurcuklarında bulunan embriyonik bitki dokusu; bitkinin uzunlamasına büyümesi (uzaması) için bitkiye hücre sağlar. Oksin düzeyi bitkide her zaman sabit değildir; mevsim ve çevre şartlarına göre azalıp çoğalabilir. Dolayısıyla oksinin bitkide sentezlendiği gibi parçalandığı sonucuna ulaşırız. IAA hormonu iki şekilde etkisiz hale gelir: birisi çeşitli maddelerle bir enzim aracılığıyla birleştirilerek oksinin inaktif edilmesidir; diğeri ise IAA oksidaz enziminin kataliziyle indol asetaldehit ve CO2‟e parçalanmasıdır. Ayrıca kuvvetli ışıkta da oksin parçalanabilir. Oksinlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Büyümesinde Oksinin Rolü Oksin, esas olarak bir sürgünün apikal meristeminde sentezlenir. Oksin sürgün ucundan hücre uzaman bölgesine taşındıkça, hücrelerin büyümesini uyarır. Bu etki, olasılıkla, oksinin plazma zarındaki bir reseptöre bağlanmasıyla gerçekleşir. Oksin büyümeyi sadece 10-8 ila 10-4 M‟lık konsatrasyon aralığında uyarır. Daha yüksek konsantrasyonlarda hücre büyümesini (uzamasını) engelleyebilir. Bu engellemeyi muhtemelen etilen üretimini teşvik ederek yapar(etilen, bu gibi oskin özelliklerini bastırabilir). Oksin aynı zamanda gen ifadesini hızla değiştirir. Gen ifadesinin değişmesi, dakikalar içinde hücrenin uzama bölgesinde yeni proteinlerin oluşmasını sağlar. Bu proteinlerin bazıları, diğer genleri baskı altına alan yada aktifleştiren kısa ömürlü transkripsiyon faktörleridir. Bu başlangıç hamlesinden sonra büyümenin sürmesi için hücrelerin daha fazla sitoplazma ve çeper maddesi alması gerekir. Oksin, aynı zamanda büyümeyle ilgili bu yanıtın devam etmesini sağlar. Oksine yanıt olarak hücre büyümesi (uzaması); asit büyüme hipotezi. Asit büyüme hipotezi olarak adlandırılan bir görüşe göre, proton pompaları hücrelerin oksine yanıtında büyük bir rol oynamaktadır. Oksin, bir gövdenin uzama bölgesinde plazma zarındaki proton pompalarını uyarır. Bu etkileşim sonucu dakikalar içinde zarın iki yanında zar potansiyeli oluşur (voltaj artar) ve hücrenin pH‟sı düşer (Şekil 11). Çeperin asitleşmesi, ekspansin olarak isimlendirilen enzimleri aktifleştirir. Ekspansinler çeperde selüloz mikrofibrillerin arasındaki bağlantıları (hidrogen bağları) koparır. Bunun sonucunda çeper gevşer. Zar potansiyelindeki artış hücreye iyon alınımını artırır. Bu da, suyun osmozla alınmaına neden olur. Çeperlerin esnekliğinin artışıyla birlikte olan su girişi, hücrenin uzamasını (büyümesini) sağlar. Yan Kök ve Adventif Kök oluşumu Oksinler, ticari olarak bitkilerin çeliklerle vejetatif olarak üretilmesinde kullanılmaktadır. Oksin içeren köklendirme tozu ile bir kesik yaprak yada gövdenin muamele edilmesi çoğunlukla kesik yüzeyin yakınında adventif kök oluşumuna neden olur. Oksin aynı zamanda köklerin dallanmasında da yer alır. Araştırmacılar, yan kökleri aşırı çoğalan bir Arabidopsis mutantının normalden 17 kat daha fazla oksin içerdiğini bulmuşlardır. Ayrıca oksin, apikal dominansinin sürdürülmesinde , absisyonun engellenmesinde, kambiyal faaliyetleri artırarak dikotillerde enine büyümenin teşvikinde, tohum çimlenmesinde, meyve gelişiminde, fototropizma, gravitropizma gibi olaylarda da rol alır. Oksin, primer büyüme için hücre uzamasını uyarmasının yanında, sekonder büyümeyi de etkiler. Bunu, demet kambiyumunda hücre bölünmesini teşvik ederek ve sekonder ksilemin farklılaşmasını etkileyerek yapar. Gelişmekte olan tohumlar oksin sentezlerler. Bu oksin, meyvelerin büyümesini artırır. Domates fidelerine oksin püskürtülmesi, tozlaşmaya gerek duyulmaksızın meyve gelişimini teşvik eder. Bu, normalde gelişmekte olan tohumlar tarafından sentezlenen doğal oksin yerine, sentetik (yapay) oksin kullanılarak, tohumsuz domates yetiştirilmesine olanak sağlar. Oksinlerin zirai amaçlı kullanımında aşağıdaki yöntemler kullanılır: 1) Yapraklara püskürtme. 2) Sulama suyuna karıştırma. 3) Kesik yüzeylere lanolin macunu içinde sürme. 4) Bitki organlarını hormon içeren çözeltiye batırma. 5) Belirli bir dokuya enjeksiyon yapma. Sentetik oskinler, daha ucuz olduğundan, bunları tanıyan yıkıcı enzimlerin bitkide bulunmadığından, bazılarının doğal olanlara göre daha etkili olduğundan pratik olarak daha çok kullanılırlar. Gravitropizma: Bitki yada hayvanların, yer çekimiyle ilişkili olarak verdikleri yanıt. Herbisit Olarak Oksinler 2,4-Dinitrofenol (2,4-D) gibi sentetik oksinler, yaygın bir şekilde herbisit (yabani ot öldürücü) olarak kullanılmaktadır. Mısır gibi monokotiller süratle bu sentetik oksinleri, etkisizleştirirken, dikotiller bunu yapamaz. Bu nedenle aşırı hormon dozları bu bitkileri öldürür. Tahıl tarlalarına 2,4-D püskürtülmesi, karahindiba gibi dikotil otları ortadan kaldırır. Böylece tahıllardan daha çok mahsul alınır. IBA ve NAA, çeliklerin köklendirilmesinde kullanılır. Çelikler bu maddelerin çözeltilerinde bir süre batırılarak köklendirilir. NAA seracılıkta domates ve salatalık gibi sebzelerde çiçeklenme ve meyve gelişimini artırmak için, elma ve armut gibi meyve ağaçlarında meyva tutumunu artırmak için kullanılır. Bu uygulamalar püskürtme ile yapılmaktadır. Bunların dışında, oksinler doku kültürü çalışmalarında kök geliştirilmek üzere besi ortamına ilave edilerek kullanılır. SİTOKİNİNLER : Hücre Büyüme Düzenleyicileri Doku kültüründe bitki hücrelerinin büyüme ve gelişimini artıran kimyasal katkı maddelerini bulmak için gösterilen çabalar, sitokininlerin keşfine yol açmıştır. New York‟ta Cold Spring Harbor Laboratuvarında çalışan, Johannes van Overbeek, 1940‟lı yıllarda, kültür ortamına, Hindistan cevizi tohumunun sıvı endosperminin (hindistancevizi sütü), bitki embriyolarının büyümesini uyardığını buldu, fakat bu madde tanımlanamadı. Bu maddeyi, 1974‟te Letham zeatin olarak tanımladı (ayrıca Letham mısır endosperminde de zeatin elde etmiştir). Daha sonra, t-RNA‟nın antikodon bölgesine yakın bir yerde bulunan izopentenil adenin (IPA) homonu keşfedildi. Bunlar bitkilerde sentezlenen-doğal- sitokinin hormonlarıdır. 1950‟de Wisconsin Üniversitesinden Folke Skoog ve Carlos O. Miller, kültür ortamına ilave ettikleri parçalanmış DNA örneklerinin, tütün hücrelerinin bölünmesini artırdığını gözlemlemişlerdir. Burada rol alan madde otoklavlanmış DNA‟da aydınlatılmış ve kinetin olarak adlandırılmıştır. Kinetin sentetik bir sitokinindir. Sentetik sitokinlere diğer bir örnek ise benzil adenin (BA)‟dir. Sitokininlerin aktif bileşeni, nükleik asitlerin bir elemanı olan adenin (amino pürin) bazının değişime uğramış formlarıdır. Sitokinezi yada hücre bölünmesini uyarması nedeniyle bu büyüme düzenleyicileri, sitokininler olarak isimlendirilmiştir. Bitkilerde doğal olarak oluşan sitokinin çeşitlerinden en yaygın olanı zeatindir. Zeatin, ilk kez mısır (Zea mays) bitkisinde keşfedildiği için bu isim verilmiştir. Sitokininlerin Biyosentezi ve Metabolizması Sitokininlerin sentezi amino pürin yani adeninden başlar. fakat yan grupların sentezi tam bilinmemektedir. Zaten sitokininlerin hormon aktivitesi gösteren kısmı yan gruplara bağlıdır. IPA, t-RNA‟nın yapısındayken hormon aktivitesi göstermez fakat t-RNA‟nın parçalanmasıyla serbest hale geçtiğinde aktivite gösterir. Büyük çabalara rağmen ne sitokininleri oluşturan enzimler bitkilerden izole edilebilmiş ne de onu kodlayan genler tanımlanabilmiştir. Hatta Salisbury Devlet Üniversitesinden Mark Holland, bitkilerin kendi sitokininlerini üretemeyebileceklerini ileri sürmüştür. Bu araştırmacıya göre, sitokininler bitki dokularında simbiyotik oalrak yaşayan ve metilobakteriler olarak isimlendirilen prokaryotlar tarafından üretilmektedir. Bu bakteriler in vitro kültürlerde bile aktif olarak büyüyebilmektedirler. Gerçekten metilobakteriler yok edilince normal gelişme süreci engellenmektedir. Bu süreç, metilobakterilerin yeniden uygulanması yada sitokininlerin yeniden verilemsiyle düzelmektedir. Bu kışkırtıcı varsayımın destek bulup bulmamasına bağlı olmaksızın, varacağımız yer şudur; genom sekanslanması bizi gerçek bilgiye götürecektir. Şu an Arabidopsis‟in gen dizisi analizi tamamlanmıştır. Dolayısıyla, eğer bir sitokinin üreten enzim mevcut ise bunun kolaylıkla tanımlanması gerekir. Bitki hücreleri sitokininlerin kaynağına bağlı olmaksızın sitokinin reseptörlerine sahiptir. Bazı kanıtlar, biri hücre içi, diğeri hücre yüzeyinde olmak üzere iki farklı sitokinin sınıfının varlığını göstermektedir. Sitoplazmik reseptör, sitokinine doğrudan bağlanır ve izole nukleusta transkripsiyonu uyarabilir. Sitokininler bazı bitki hücrelerinde plazma zarındaki Ca+2 kanallarını açarak, sitosolde Ca+2 artışına neden olur. Sitokinin sentezi ve sinyal iletimi hakkında tam olarak bilimsel veriler bulunamamıştır. Fakat bitki fizyolojisi ve gelişimi üzerindeki ana etkileri bilinmektedir. Sitokininlerin yıkımı, sitokinin oksidaz enzimi ile yan grupların uzaklaştırılması ve amino pürin kalmasıyla gerçekleşir. Amino pürin tek başına hormon etkisi gösteremez. Diğer bir yollada; sitokininler şekerlerle birleştirilerek glikozitlerin oluşmasıyla inaktif hale getirilebilir. Turpta rafanatin adı verilen glikozit (glikozil zeatin) bu şekilde meydana gelir. Sitokininlerin bitkide başlıca sentez yerleri tohumlar, genç yapraklar ve en çok kök uçlarıdır. Kök uçlarında sentezlenen sitokininler ksilem yoluyla gövdeye ordanda etki gösterecekleri hedef dokulara taşınırlar. Yaprak, tohum ve meyve gibi organlara sitokininlerin başlangıçta kökten taşınarak geldikleri kabul edilmektedir. Sitokininlerin yukarıdan aşağıya doğu taşınımları ile ilgili veriler çeşitlidir. Yapraklarda uygulanan sitokininler ağaç gibi bazı bitkilerde hiç taşınmayıp yaprakta biriktiği, ancak çilek gibi bitkilerde yavaşta olsa yapraktan diğer organlara taşındığı belirtilmiştir. Sitokininlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Bölünmesi ve Farklılaşmanın Kontrolü Sitokininler, özellikle kökler, embriyolar ve meyvelerde olmak üzere, aktif olarak büyüyen dokularda üretilirler. Kökte üretilen (sentezlenen) sitokininler ksilem öz suyunda taşınarak hedef dokulara ulaşır. Sitokininler, oksin ile birlikte hareket ederek hücre bölünmesini teşvike eder ve farklılaşmayı etkiler. Doku kültüründe büyüyen hücreler üzerinde sitokininlerin etkileri, bu hormonun bütünlüğü bozulmamış bir bitkideki işlevi hakkında ipucu verir. Gövdeden alınan bir parankima dokusu parçası sitokinler olmaksızın kültüre alındığında hücreler çok fazla büyürler fakat, bölünmezler. Sitokininler tek başlarına etki göstermezler, oksin ile birlikte uygulandıklarında hücreler bölünürler. Sitokininin oksine olan oranı ise hücre farklılaşmasını kontrol eder. Bu iki hormonun konsantrasyonları dengelenince, hücre kütlesi büyümeyi sürdürmekle birlikte, farklılaşmaz ve küme oluşturur. Farklılaşmamış bu hücre kümesi, kallus olarak isimlendirilir. Eğer sitokinin oranı artırılırsa kallustan gövde tomurcukları gelişir. Oksin düzeylerinin artırılması halinde ise kökler oluşur. Simbiyoz: Birbirleriyle doğrudan temas halinde olan iki farklı türe ait organizma arasındaki ekolojik ilişki. Endosperm: Çifte döllenme sırasında bir sperm hücresinin iki kutup hücresi çekirdeği ile birleşmesiyle oluşan besince zengin doku; angiospermlerin tohumu içerisinde gelişen embriyoya besin sağlar. In vitro: Hücelerin, dokuların, organların ait oldukları organizmaların dışında yapay ortamlar içinde yetiştirilmeleri veya bulunmaları. Apikal Dominansinin Kontrolü Apikal dominansinin kontrolü için sitokininler oksin ve diğer faktörlerle etki gösterirler. Apikal dominansi, tepe tomurcuğunun yanal tomurcukların gelişimini baskı altına almasıdır. Son zamanlara kadar, apikal dominansinin hormonlar tarafından düzenlenmesi ile ilgili başlıca varsayıma göre (doğrudan engelleme varsyımı) yanal tomurucuk büyümesinin düzenlenmesinde oksin ve sitokinin antagonistik(birbirinin tersi etki göstermek) etki gösterir. Bu görüşe göre; tepe tomurcuğundan sürgünün alt kısımlarına taşınan oksin yanal tomurcukların büyümesini doğrudan engeller. Böylece gövde uzar, fakat yan dallar oluşmaz. Aynı zamanda, kök sisteminden gövde sistemine giren sitokininler büyümenin başlaması için yanal tomurcuklara sinyal göndererek oksin etkisini ortadan kaldırır. Buna göre; yanal tomurcuk engellenmesinin kontrolünde oksinin sitokinine oranı kritik bir etmendir. Pek çok gözlem doğrudan engelleme varsayımı ile uyumludur. Eğer başlıca oksin kaynağı konumundaki tepe tomurcuğu uzaklaştırılırsa (kesilirse), yanal tomurcuklar engellenmez ve bitki çalımsı görünüm alır. Ucu kesilmiş fidelerin kesik yüzeylerine oksin uygulanması yanal tomurcukların büyümesini baskı altına alır. Aşırı sitokinin üreten yada sitokininle muamele edilen bitkiler, normalin üstünde çalımsı görünüm alırlar. Doğrudan engelleme varsayımına göre, başlıca oksin kaynağı durumundaki tepe tomurcuğunun kesilmesi yanal tomurcukların oksin düzeyinde bir azalmaya neden olacaktır. Fakat, biyokimaysal çalışmalar bunun tersini göstermektedir. Ucu kesilen bitkilerin yanal tomurcuklarında oksin düzeyleri artmıştır. Böylece, doğrudan engelleme varsayımı tüm deneysel bulgular tarafından desteklenememektedir. Bu halen bir bilmecedir. Yaşlanmayı Önleyici Etkileri (senesensi geciktirme) Sitokininler, protein parçalanmasını (yıkımını) engelleyerek, RNA ve protein sentezini teşvik ederek ve etraftaki dokulardan besin elementlerini hareketlendirerek bazı bitki organlarının yaşlanmasını geciktirir. Eğer bir bitkiden alınan yapraklar bir sitokinin çözeltisine daldırılırsa, uzun süre yeşil kalırlar. Ayrıca sitokininler bütünlüğü bozulmamış bitkilerde yaprak bozulmasını yavaşlatır.Bu yaşlanmayı engelleyici etkisi nedeniyle, çiçek satıcıları kesilmiş çiçekleri taze tutmak için sitokinin spreyleri kullanırlar. Ayrıca sitokininler kloroplast gelişiminde, boy kısalığında, vasküler kambiyum faaliyetini artırıcı etkilerde etmendir. Kloroplast gelişiminde; karanlıktaki etiyole bitkiye sitokininle muamele edildiğinde, lamellere sahip kloroplastların meydana geldiği fakat klorofil oluşmadığı belirlenmiştir. Işık ve sitokinin etiyole bitkiye birlikte uygulanmasında ise, sadece ışık uygulanan bitkiye göre kloroplastların ve klorofilk sentezinin daha iyi ve hızlı oluştukları görülür. Kök ve gövdeye dıştan yüksek dozda uygulanan sitokinin enine büyümeyi artırarak boy kısalığına sebep olur. Etilende bu etkiye sahip olduğuna göre, sitokininlerde oksinler gibi bitkide etilen artışına sebep olurlar? Bu soruya cevap olarak; bu etkinin hücre çeperinde yeni sentezlenen (üretilen) mikrofibrillerin diziliş yönlerini değiştirmeleri öne sürülmüştür. Sitokininler oksinler gibi vasküler kambiyum faaliyetini artırıcı etkiye sahip olduklarından oksinlerle birlikte aşı macununa karıştırılarak aşı tutmayan bitkilerde aşılamayı kolaylaştırmada kullanılırlar. NOT: Sitokininler bazen oksinin tamamlayıcısı (büyüme), bazen de antagonisti (kök ve tomurcukların farklılaşması) gibi görünmektedir. Etki mekanizmaları bilinmemesine rağmen bu iki tip hormon arasındaki dengenin büyümeyi belirleyici faktörlerden biri olduğu açıktır. Apikal dominansi: Büyüme olayının, bitkinin gövdesinin uç kısmında yoğunlaşması ve buradaki terminal tomurcuğun, lateral tomurcukların büyümesini kısmen engellemesi. Senesens: Bitkilerde yaşlanma ile birlikte gerçekleşen ve bir dokunun, bir organın veya bir bikinin ölümüne yol açan katabolik olaylar dizisi. Kallus: Bitkilerde sürgünlerin kesilen ucunda yer alan, bölünme özelliği gösateren farklılaşmamış hücre kümesi. Dormansi: Büyümenin ve gelişmenin askıya alındığı, son derece düşük metabolik hız ile kendisini gösteren durum. Vernalizasyon: Bazı bitkilerinçiçeklenmesi için sadece uygun fotoperyod yeterli olammakta, belli bir süre düşük sıcaklığa maruz kalması gerekir. Absisyon: Yaprak, çiçek ve meyve gibi organların bitkiden koparak dökülmeleridir.

http://www.biyologlar.com/bitki-hormonlarinin-siniflandirilmasi

Öd (Safra) Kesesi Nedir?

Öd (Safra) Kesesi Nedir?

Safra kesesi,karaciğerin alt yüzünde bulunan, 7-10 cm uzunluğunda, en geniş yeri 3 cm kadar olan, 30-50 mİ kadar öd denilen yeşil sarı renkli acı salgıyı salgılayan organ. Fundus, gövde ve boyun olmak üzere üç bölümden oluşur. Üst yüzü bağdokusuyla karaciğere bağlıdır. Alt yüzü ise peritonla örtülüdür. Bu periton karaciğeri örten peritondan uzanmıştır. Karaciğer hücrelerince üretilip salgılanan ödün, onikiparmak bağırsağına dökülmemiş olan fazlalık bölümünü öd kesesi depolar. Gerektiğinde öd kanalı aracılığıyla ödü onikiparmak bağırsağına boşaltır.Karaciğer hücrelerinde üretilip, Remac plakaları içindeki öd kanalcıkları içine salgılanan öd, daha sonra karaciğer içi öd kanallarına ulaşır. Karaciğer içi safra kanalları birbirleriyle birleşerek iki büyük öd kanalı oluşturur. Bunlar sağ hepatik duktus ve sol hepatik duktustur. Sağ ve sol hepatik duktuslar birleşerek, karaciğeri posta hepatisten tek bir öd yolu olarak terk ederler. Bu yeni kanala ortak hepatik duktus denir. Ortak hepatik duktusa, duktus sistukus denilen bir öd yolu açılır. Bu kanal öd kesesini orta hepatik duktusa bağlar. Duktus sistikus ile ortak hepatik duktusun birleşmesiyle oluşan yeni kanala ise, öd kanalı ya da koledok kanalı denir. Öd kanalı ise, pankreas kanalı ile birleşerek hepatopankreatik ampula denilen yapıyı oluşturur. Hepatopankreatik ampula, onikiparmak bağırsağının inen bölümünün arka duvarına pilordan 8-10 cm’’lik bir uzaklıkta açılır. Burada büyük duodenal papilla ya da vater papillası denilen bir kabartı yapar.Öd kesesinin duvarı üç tabakadan oluşur. Mukoza, fibromüsküler tabaka, seroza tabakasıyla örtülü perimüsküler bağdokusu. Muzoka tabakası epitel ve bunun altındaki lamina propria tabakasından oluşur. Epitel tek katlı kolumnar epitel hücreleridir. Lamina propria ise, gevşek bağ dokusu yapısındadır ve içinde lenf damarları bulunur. Fibromüsküler tabaka, halka dizilişli düz kas liflerinden, bağdokusunun elastik liflerinden zengin bir gevşek bağdokusudur. Bu tabakada ince kan damarları da bulunur. Perimüsküler bağdokusu tabakası da gevşek bağdokusu yapısındadır. Bu tabaka en dıştan seroza ile kaplıdır, içinde kan damarları, lenf damarları ve sinir lifleri bulunur. Tek fark, hepatopankreatik ampula bölgesinde fibromüsküler tabakadaki düz kas lifleri sayıca çoğalarak bir büzgen oluştururlar. Bu büzgene oddi sfinkter adı verilir. Oddi sfinkter gevşediğinde, öd ve pankreas salgısı onikiparmak bağırsağına akar.Öd, glikoz, öd tuzlan, üre, kolesterol, bilirubin gibi karışık maddelerle bir miktar proteinin sudaki eriyiğidir, Öd, kısmen yağların sindirimine yarayan bir salgı, kısmen de eskimiş alyuvarların yıkıma uğraması sonucunda oluşmuş bir atılma ürünüdür. Ödle atılan birçok madde, bağırsaklarda yeniden emilime uğrar ve yeniden öde atılır. Öd kesesinde ve kanallarında önemli birçok hastalık oluşabilir. Bunların en önemlisi, öd kanallarının herhangi bir nedenle tıkanması sonucunda oluşan sarılıktır. Böylece bağırsakta yağ sindirimi ve emilimi bozulur. Bir başka öd kesesi hastalığı da taş oluşumudur. Öd kesesi taşları kendiliğinden hareket ederek bağırsaklara geçemeyecek kadar büyükse, öd kesesinin ameliyatla alınması gerekir.Öd kesesinin alınması yaşamsal bir tehlike oluşturmaz. Kişi hekimlerin yasakladığı yiyecekleri yemezse, normal yaşamını sürdürebilir. Öd kesesindeki bir başka hastalık da, iltihaplanmadır. Diğer bir adıyla safra kesesi kanseri.Hekim denetiminde tedavi edilebilir bir hastalıktır.Bu dönemde alınan anamnez fazla bilgi vermemektedir. Olguların %30′’unda sağ üst kadranda ağrı mevcuttur. Az sayıda olguda ise ateş, lökositoz, lokal ağrı, hassasiyet ile seyirli akut safra kesesi iltihabı mevcut olabilir. Laboratuvar tetkiklerde bilirubin seviyesi ve alkali fosfataz yükselmiştir. Fakat bu bulgular, iyi huylu hastalıktan ayırt edilmesi için yeterli değildir. Oral ve intravenöz kolanjiografi yetersiz bilgi vermektedir. Sindirim sisteminin baryumlu kontrast incelenmesinde indirekt olarak on iki parmak bağırsağı, distal midede ve transvers kolonda kompresyon bulguları görülebilir. Endoskopik retrograd kolanjiopankreatikografi (ERCP) tanıda çok az olguda faydalıdır. Yine anjiyografi erken olgularda, hiçbir şey vermezken, geç olgularda hastalığın yaygınlığı hakkında fikir verebilir. Safra kesesi kanseri tanısında non invazif bir yöntem olan ultrasonografinin büyük değeri vardır. Yine bilgisayarlı tomografi de hemen hemen kesin tanıyı koydurmaktadır. Bu her iki tanı, yönteminde de safra kesesi duvarında kalınlaşma, kesede taş ve sınırlandırılmış tümör invazyonu tespit edilebilir. İleri olgularda yapılacak eksploratris laparoskopi, laparotomiye gerek olmaksızın tanıyı sağlamaktadır. Yine bu hastalarda yükselmiş CEA değeri şüpheden öteye gitmemektedir. Tüm bu modern tanı yöntemlerine rağmen olguların ancak %5’inde tanı konulabilmektedir. Hemen hemen tüm olgularda kesin tanı ameliyat ile patolojik inceleme neticesinde konulabilmektedir.Tedavide, Patolojik olarak tanı konulan hastalar oldukça şanslı olabilir. Çünkü yapılmış olan safra kesesi ameliyatı bu olgularda yeterli olmaktadır. Fakat olguların çok azında tümör, kese duvarında sınırlı olarak tespit edildiği görülmektedir. Bu olgularda safra kesesi iltihabına ilave olarak, kese yatağının çıkartılması ve çevre lenf nodüllerinin çıkartılması gerekir.İlaç ve ışın tedavisinin etkisi az olduğu söylenmektedir.Kaynakça: www.medicalpark.com.tr/safra-kesesi-taslari-tedavisi www.zaman.com.tr › HABERLER › AİLE-SAĞLIKYazar: Ceylan Gençayhttp://www.bilgiustam.com

http://www.biyologlar.com/od-safra-kesesi-nedir

Kuşların göç rotası

Ülkemiz kuş varlığı bakımından Avrupa'nın birçok ülkesinden çok daha zengin. Türkiye'nin kuş varlığı ise yakın zamanda soyu tükenmişler de dâhil, 70 familyaya mensup 469 türden oluşuyor. Batı palearktik bölgenin en önemli göç yollarından bazıları Türkiye üzerinden geçiyor. Süzülerek göç eden kuşlar denizler üzerinden geçmemek için belli dar boğazları seçtiklerinden buralarda gözlenebilirler. Böyle dar boğazların ülkemizde en tanınmışı İstanbul Boğazı. Orta ve Doğu Avrupa'dan yola çıkan binlerce kartal, şahin ve on binlerce leylek özellikle sonbahar göçü sırasında Üsküdar-Çamlıca ile Beykoz-Toygartepe arasındaki sırtlardan izlenirler. Bu kuşlar güneyde Afrika kıtasında kışladıktan sonra ilkbaharda da Sarıyer sırtlarından kuzeye doğru göç ederler. Daha az bilinen bir dar boğaz olan Borçka-Artvin ise Türkiye'nin öteki ucunda, Doğu Avrupa'nın doğusundan ve Kazakistan bozkırlarından gelen yırtıcılar için yaşamsal önem taşır. Bu türler güney sınırımızdan çıkarken ise Belen Geçidi (Hatay) semalarında yoğun sürüler halinde görülebilir. Durum sadece yırtıcılar için değil, pek çok ötücü kuş türü için de benzer. Her yıl çok sayıda türden pek çok birey kuzey-güney ya da güney-kuzey göçlerini Türkiye üzerinden gerçekleştirir. Küçük Orman Kartah'nın (Aquila pomarina) neredeyse tüm populasyonu İstanbul Boğazı üzerinden göç ediyor. Leylek (Ciconia ciconia) popülasyonunun çok büyük bir kısmı yine göç yolu olarak istanbul'u tercih ediyor. Özellikle Doğu Avrupa'nın göçmen kuşları yoğun olarak Türkiye'den geçiyor. Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarlarını izleyerek gündüzleri uçarlar ve denizlerin karalara birbirine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcu ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleyin göç ederler. Boğazdaki kuşların göçü İstanbul, Batı Palearktik biyocoğrafya bölgesindeki en önemli göç yollarından biri. Avrupa'daki diğer göç yolları arasında Cebelitarık Boğazı ve Malta Adası-italya bölgeleri geliyor. İstanbul, hem ilkbaharda, hem de sonbaharda leylekler ve yırtıcı kuşların göçüne ev sahipliği yapıyor. Bunun dışında su kuşları ile ötücü kuşlar da istanbul üzerinden göç ediyor. 3. Köprü ve 3. Havalimanı proje alanları, İstanbul kentinin kuzey batısında yer alıyor. Terkos Gölü ve Belgrad Ormanı'nda yapılan çalışmalarda (son 10 yılı kapsayan) kuş göçünün bu alanlar üzerinden geçtiği tespit edildi. Dolayısıyla 3. Köprü ve bağlantı yolları ile 3. Havalimanı proje alanı kuş göç yolu üzerinde bulunuyor. Proje alanından 800 bin kuş göçüyor İstanbul'da yapılan kuş göç çalışmalarına göre, ilkbaharda ve sonbaharda yaklaşık 400.000 leylek, yaklaşık 200.000 yırtıcı kuş ve yüz binlerce ötücü kuş türü, su kuşu ve kıyı kuşu göç ediyor. Süzülen kuşlar karalar üzerinden, diğer kuşlar ise karalara bağlı olmaksızın farklı yerlerden göç ederler. Süzülen kuşlar için göç dönemleri, ilkbaharda Mart, Nisan ve Mayıs ayları boyunca, sonbaharda ise Ağustos, Eylül ve Ekim ayları boyunca yoğunlaşıyor. Su kuşları için kış dönemi başlangıcı ve kış dönemi sonu, ötücü kuşlar ve kıyı kuşları ilkbahar ve sonbahar aylarında türe bağlı olarak farklı zamanlarda yoğunlaşıyor. Belgrad Ormanı'nda 160 kuş türü görülür. Proje alanında yaklaşık 200 kuş türünden söz etmek doğru olacaktır. Süzülen kuş türü sayısı 30'un üzerinde olup, leylekler hariç tamamı yırtıcı kuş türlerinden oluşuyor. Kabaca yıllık 800.000 kuşun alandan süzülerek göç ettiğini söylemek doğru. Bern sözleşmesinde koruma altındalar Yapılan gözlemlerde özellikle İstanbul'un kuzeyinde bulunan ormanlar üzerinden geçen kuşların, buralarda geceledikleri ve beslendikleri tespit edildi. Bu yüzden daha alçaktan uçmayı tercih edebiliyorlar. Rüzgâr durumuna göre değişmekle beraber genel olarak yükseklikleri 50­800 metre arasında değişiyor. Rüzgârın yoğun olduğu günlerde genel olarak daha alçaktan geçtikleri gözlendi. Süzülerek göç eden kuşların ilkbahar göçleri İstanbul'un kuzeyinde yoğunlaşıyor. (Şekil 3). Belirgin bir şekilde sonbaharda da özellikle yırtıcı kuşlar kuzeyden geçme eğilimindeler. Proje alanında yaşayan yerli ve göçmen kuşlar Bern sözleşmesi ile korunacağı Türkiye tarafından bu sözleşmeye imza atılarak taahhüt edildi. Bu sözleşmeye göre özellikle süzülerek göç eden yırtıcı kuş türleri ve leylekler, EK II Kesin Koruma Altına Alınan Fauna Türleri listesinde yer alıyor. stanbul'da yapılmaya başlanan bu projelerden ilki 3. Köprü projesidir. Bu projenin başlamasıyla ilk etapta yaklaşık 80-100 m enindeki yol güzergâhında yüz binlerce ağaç kesilmeye başlandı. Yolu genişletme çalışmaları ise sürüyor. Yol güzergâhının dışında yolun hemen kenarlarında ormanlık alan içerisinde yolun dolgu işlemleri için dev çukurlar açılıyor. Bu şekilde ormanlık alanlar tahrip ediliyor. 3. Köprü projesi ilk bakışta süzülen kuşlar başta olmak üzere diğer göçmen kuşlar açısından doğrudan zararı yokmuş gibi algılanabilir. Öncelikle kesilen yüz binlerce ağaç o ormanda yaşayan yaklaşık 100 ile 200 tür arasında değişen kuş türlerine ait popülasyonların yuvalanma, beslenme ve saklanma alanı. Bu alan tamamen yok oluyor. Göçmen kuşların dinlenme ve konaklama alanları tahrip ediliyor. Kuş Göçleri ve 3. Köprü arasında oluşacak tehditler ve bu tehditlerin kuşlara etkileri Tablo l'de verildi. Kuş göçlerinin 3. havalimanı ile ilişkisi İstanbul'un Kuzey bölgesine, Arnavutköy Ormanları'nı da içerisine alan orman arazisine yapılacak olan 3. Havalimanı proje alanın %81'i orman, 9'u göl ve %4'ü mera, kuru tarım ve fundalıklardan oluşuyor. Proje alanının %94'ü kuşlar için uygun doğal yaşam ortamı. Aynı zamanda proje alanı kuş göç yolu üzerinde. (Şekil 2). Süzülen kuşlardan leylekler ve yırtıcılar oluşan yaklaşık 400 bin kuş ilkbaharda bu alanı kullanıyor. Sonbahar da ise yaklaşık 200 bini yine bu göç rotası üzerinden göç ediyor. 3. Havalimanı, Avrupa'nın ikinci büyük havalimanı olarak düşünülüyor. Bu havalimanındaki uçak trafiği ve süzülen kuşların kütlesi ile sürü büyüklükleri dikkate alınırsa uçak kazaları açısından ne denli büyük riskleri taşıyacağı ortada. Bu kuşların ağırlıkları 1-4 kg arasında değişiyor. Alandan en fazla sayıda göç eden leyleklerin ağırlıkları 3-3,5 kg arasında. Süzülerek göç eden kuşların göç rotaları on binlerce yıldır aynı güzergâh üzerinden geçiyor. Bu yolun değiştirilmesi mümkün değil. Uçakların trafiği ile kuş sürülerinin radarlarla kontrol edilmesi hem masraflı hem de riskli. Bir taraftan bu kuşlar Bern sözleşmesiyle korunması gerekirken diğer taraftan olabilecek uçak kazası risklerinin de düşünülmesi zorunlu görülüyor. Yoğun hava trafiği olacağı düşünülen böyle bir havalimanında uçakların havada bekletilmesi de çok masraflı bir uğraş. Havalimanının yapılacağı alanda Nihai ÇED raporuna göre 12 kuş türünün görüleceğinden bahsediliyor. (Nihai ÇED Raporu, 2013). Gerçekte ise proje alanında yaklaşık 150-200 kuş türünden bahsetmek gerekiyor. Bu da ÇED raporunun ne denli gerçekçi hazırlandığının bir göstergesi. Su kuşlarının da göç yolu üstünde Havalimanı sadece süzülen kuşlar açısından değil, su kuşlarının göçü açısından da tehlike oluşturuyor. Terkos Gölü'nde yaşayan su kuşlarının göç dönemleri, bu kuşların beslenmek için proje alanı üzerinden geçişleri de risk oluşturuyor. Su kuşlarının büyük çoğunluğu kaz, ördek, balıkçıl gibi iri kütleli kuşlardan oluşuyor. Ayrıca Karadeniz üzerinden bıldırcın göçleri, yine deniz tarafından martı sürülerinin geçişleri de aynı şekilde risk oluşturacak. Ötücü kuşların göçleri kuş-uçak çarpmaları açısından düşük risk faktörü taşıyor. Ancak bu kuşların biyolojik çeşitlilik açısından önemli olduğu da unutulmamalı. Kuş Göçleri ve 3. Havalimanı arasında oluşacak tehditler ve bu tehditlerin kuşlara etkileri Tablo 2'de verilmiştir. Kuş göçlerinin Kanal İstanbul ile ilişkisi İstanbul, doğal yapısı olarak istanbul Boğazı'yla Avrupa ve Asya kıtalarına ayrılmıştır, istanbul Boğazı Karadeniz ile Ege Deniz arasında bir bağlantı oluşturur. Kanal Projesi ise, istanbul'un doğal olarak ayrılmış Avrupa yakasında kalan tarafını Trakya'dan da ayırarak adeta dört tarafı denizlerle çevrili bir adaya dönüştürme projesi. (Şekil 4). Böyle bir izolasyon bu kara parçasında yaşayan tüm canlılar açısından tehdit oluşturur, insanlar genellikle büyük bir deprem gibi doğal afetlerle oluşan çevre değişimlerini doğal karşılıyor. Kanal Projesinin ekolojik açıdan neler getireceği ve neler götüreceği hesap edilmiyor. Doğal yaşama ve biyolojik çeşitliliği azaltıcı etkisi bulunuyor. Ada ekosistemi haline getirilecek olan Kanal istanbul'la İstanbul Boğazı arasındaki kara parçasında yaşayan canlıların popülasyonları azalacak. Zaman içinde büyük bir kısmı yok olacak. Şehir yaşamına uyum sağlayan türler için fırsatlar oluşacak. Büyük bir alanın biyolojik çeşitliliğin azalması demek, oranın bitkiden hayvana kadartüm canlılar alemindeki gruplarının azalması demek. Kuş göçleri açısından ise leyleklerin Afrika'ya göçleri sırasında daha da güneye geçmesi zorlanacağından, bu rotayı izlemeye çalışan leylekler Marmara Denizini aşmakta zorlanacaklar. Ayrıca, durumun sadece kuşlar açısından değil, denizler arasındaki su akışları, balık göçleri gibi diğer konular açısından da irdelenmesi gerektiği ortada. Sonuç İstanbul'da yapılacak projelerin kuşlara olan etkileri yukarıda sıralandı. Görüldüğü üzere gerek göçmen gerekse yerli kuşlar bu projelerden olumsuz etkileniyor. En fazla zararı ise karasal yaban hayvanları görecek. Böyle bir değerlendirme henüz yapılmadı. 3. Köprü projesi için ÇSED (Çevresel ve Sosyal Etki Değerlendirmesi) final raporu köprü inşaatı başladıktan sonra 2 Ağustos 2013 tarihinde tamamlandı. Final ÇSED raporunda 60,5 m genişliğindeki proje inşaatı etki değerlendirilmesi için dikkate alınmış olup kuş türlerine ait liste eksik verildi. Köprü ve otoyol güzergâhının geçtiği alanlarda yaklaşık 200 kuş türü yaşarken, raporun ekli listesinde 21 kuş türünün isimleri yer alıyor. Bu kuş türlerinin ne şekilde etkileneceklerine dair bilgi bulunmuyor. Raporun içerisinde İstanbul'da yaşayan kırmızı listeye dâhil 22 kuş türü listelenmiş. (Anonim 2014-ÇSED Final Raporu). Bu türlerden 13'ü ekli listeden farklı. Listede türlere ait kırmızı liste statüleri örneğin Alaca sinekkapan'da (Ficedula semitorquata) NT (Tehdite yakın] olması gerekirken LC (Düşük riskli) statüde yanlış verilmiş. 3. Havalimanı için hazırlanan Nihai ÇED raporunda ise, söz konusu alanda 200 kuş türü yaşarken sadece 12 kuş türünden bahsediliyor. Ayrıca ÇED raporları yanıltıcı sonuçlar da veriyor. Süzülerek göç eden kuşların göçlerinin olmadığı bir dönemde örneğin Kasım-Aralık gibi bir zamanda yapılacak arazi çalışması göç hakkında yeterli veri oluşturamaz. Ya da 3. Köprü'nün bağlandığı oto yollarının sadece eni (100-150 metre] genişliğindeki alanın çevresel etki değerlendirilmesi de aynı yanıltıcı sonucu verecektir. Yani sınırlandırılmış 100 metre enindeki bir koridorun göreceği zarardan öteye gitmeyecek. Çevresel etki değerlendirme raporunda ornitoloji çalışmaları kısa süreli yapılan çalışmalardır. Bu açıdan bakıldığında verilen bilgiler yetersiz ve yanıltıcı. Söz konusu projeler için sadece kuş göçünün mevsimsel olarak dağılımı ve yoğunluğunu tespit edebilmek için alanın düzenli olarak en az iki yıl boyunca izlenmesi gerekiyor. Böyle bir çalışma sonrasında elde edilecek bulgular daha gerçekçi olacak. Kuşların dışında istanbul Boğazı üzerinde yarasa göçleri gerçekleşiyor. Bu göçler de düzenli olarak izlenmeli. Sonuç olarak doğa bir bütün olup, yapılacak olan projelerin her şeyden önce ekolojik bir yaklaşımla ele alınması hem ülke çıkarları hem de gelecek nesillere daha sürdürülebilir bir çevre bırakma açısından gerekli. (SA/NV) * Doç Dr. Zeynel Arslangündoğdu, İstanbul Üniversitesi Orman Fakültesi öğretim üyesi, ornitolog. ** Bu yazı TEMA Vakfı'nın 3. Köprü, 3. Havalimanı ve Kanal İstanbul’un kente olası sonuçlarını 17 bilim insanının yazıları ile ele aldığı bilimsel raporunda yer aldı. Kaynakça Anonim, 2013. İstanbul Bölgesi 3. Havalimanı, istanbul ili, Arnavutköy ve Eyüp ilçeleri Nihai ÇED Raporu, T.C. Ulaştırma Denizcilik ve Haberleşme Bakanlığı Altyapı Yatırımları Genel Müdürlüğü. Anonim, 2014. Kuzey Marmara Otoyolu (3.Boğaz Köprüsü dâhil) Projesi için Çevresel ve Sosyal Etki Değerlendirmesi (ÇSED), AEC0M Turkey, Ankara. Arslangündoğdu, Z. 2D05. istanbul-Belgrad Ormanı'nın Ornitofaunası Üzerinde Araştırmalar. İ.Ü. Fen Bilimleri Enstitüsü, Doktora Tezi (Yayımlanmamıştır). Arslangündoğdu, Z. 201İD. Autumn-2007 Migration of Soaring Birds across the Bosphorus, Turkey. Journal of the Faculty of Forestry, İstanbul University, 61 (2): 32-42. Arslangündoğdu, Z., Dalyan, C, Bacak, E., Yardım, Ü., Gezgin, C, Beşkardeş, V. 2011b. Spring migration of the White Stork, Ciconia ciconia, andthe Black Stork, Ciconia nigra, over the Bosphorus. Zoology in theMiddle East S3: 2-13. Bilgin, C. 2000. Gökyüzüne Dargın Kuşlar, Gezi Traveler Dergisi, Yıl: 3, Sayı: 29, Şubat, 92-99. Bilgin, C. 2004. Kuşların Gizemli Yolculuğu Göç, Bilim ve Teknik Dergisi, Gökyüzündeki Yollar Özel Eki, Mayıs 5, 5-9. Can, 0. 2002. Kuş Göçlerinin izlenmesi, Kuş Araştırmaları ve Doğa Koruma Ulusal Sempozyumu Bildirileri, 2-8 Şubat 2002, Ankara, 9-12. Can, 0.2004. Süzülen Kuşların Göç Rotaları, Bilim ve Teknik Dergisi, Gökyüzündeki Yollar Özel Eki, 5. Cırık Ö., Smith L. 200S. Spring Raptor Migration At TheBosphorus, Turkey, Towards Conservation Of Asian Raptors Through Science & Action The 4th Symposium On Asian Raptors - Malaysia 2005, 28 - 31 October 200S. Eken, G., Bozdoğan, M., isfendiyaroğlu, S., Kılıç, D. T., Lise, Y. 2006. Türkiye'nin Önemli Doğa Alanları, Doğa Derneği, Ankara, ISBN: 928-925-98901-3-1. Ertan, A., Arslangündoğdu, Z. 2013. Belgrad Ormanı'nın Kuşları. [İn: Çolak, A. Belgrad Ormanı -Bir Doğa ve Kültür Mirası-). Orman Bakanlığı, 1. Bölge Müdürlüğü, istanbul. Forsman D. 1998. The Raptors of Europe and the Middle East: A Handbook to Field Identification, Poyser Natural History Princeton University Press, ISBN: 928-0856610981, 608 s. Heinzel H., Fitter R., Parslow J. 2001. Türkiye ve Avrupa'nın Kuşları (Kuzey Afrika ve Ortadoğu dâhil), [Çeviri: Kerim Ali Boyla), Doğal Hayatı Koruma Derneği, istanbul, 2001, 925-940-9828.

http://www.biyologlar.com/kuslarin-goc-rotasi

Kuru Distilasyon Yöntemi

Bitki kısımlarında mevcut maddeler çeşitli yöntemlerle belirlenirler.Çünkü;her elelment belirli deneysel etkilerle kendisini ortaya çıkartır.Bir tüpe buğday ve bezelye taneleri konulur.Tüp üç yıkama şişesine bağlanır. 1.I.şişede,CoCl’ye batırılmış mavi renkli süzgeç kağıdı ile Pb(CH3CO)2 eriyiğine batırılmış veyaz renkli süzgeç kağıdı vardır. 2.II.şişede,Nessler ayıracı bulunur. 3.III.şişede ise,Ba(OH)2 eriyiği mevcuttur. Buğday ve bezelye tanelerinin bulunduğu tüp ısırtıldığında çıkan dumanın yıkama şişelerini dondurmasından sonra şu değişiklikler gözlenir: 1.Molekül rengi mavi olan CoCl su ile tepkimeye girdiğinde iyonlarına ayrılır ve pembe renk verir. 2.Beyaz renkli Pb(CH3CO)2’li kağıt,kükürtün etkisiyle siyahlaşır. 3.Azot(N),Nessler ayracında turuncu bir renk tepkimesi verir. 4.Ortamda karbon varlığında,CO2 çıkışından ve CO2 + Ba(OH)2 BaCO3 + H2O reaksiyonu sonucu beyaz renkli BaCO3 çökeleğinin oluşmasından anlaşılır.Tepkime İlk Renk Son RenkCoCl + H2O Mavi PembePb(CH3Co)2 Beyaz SiyahK2HgI4x2H2O + N Beyaz TuruncuBa(OH)2 + CO2 Saydam Beyaz(Çökelek) Kuru distilasyon yöntemiyle böylece C,H,O,N ve S’nin varlığı ispatlanmış olur.Ancak bitkilerdeki bütün elementler bunlar değildir.Deney tüpünün tabanında belirli derecede yanmadan kaynaklanan siyah kısım kalmıştır.Bunun nedeni ortamdaki karbonun bir kısmının serbest halde bulunmasından ileri gelir.Eğer 1000 oC’lik bir fırında ısıtılırsa ve ortamda yeteri kadar oksijen varsa,bu kez siyahlık yerini gri renge bırakır. Çeşitli derecelerce yanma sonucu elde edilen grimsi artık madde kül olarak kabul edilir. Gerçek anlamda kül,kuru bitki materyalinin 700 oC’ye kadar belirli bir süre fırında bırakılmasıyla elde edilen artık maddedir.Kül miktarını etkileyen çeşitli faktörler vardır.Bunlardan en önemlileri;bitkinin türü, gelişme durumu,yaşı,organları ve gelişme ortamının şartları gibi etkenlerdir.Genel olarak;a. Fazla su kullanan bitkilerin yapraklarında % 15-30 kadar kül bulunur. Örneğin;Eucalyptus,çınar ve söğüt.b. Az su kullananlarda ise bu miktar yaklaşık %25’dir.Örneğin;Coniferae.c. Aşırı su kullanan bitkilerde kül oranı daima %30’un üzerindedir.Örneğin;Beta vulgari (Şeker Pancarı)d. Ayrıca aynı bitkinin farklı organlarındaki kül miktarı da farklıdır.Örneğin;kültür bitkilerinin gövdeleri %5-10,yaprakları %10-20,Yabani bitkilerde gövdede %1-2,Kök %3-6 arasında küle sahiptir. Halofitlerde genel olarak %10-20’dir.Genel duruma normal olarak,kül en fazla yaprakta bulunur.Bu durumun çeşitli nedenleri vardır.En önemlisi köklerden yapraklara kadar taşınan madensel maddeler isteğe bağlı olmaksızın su ile birlikte alınır. Yapraklar-da metabolizma sonucu su transprasyon ile buharlaşınca bu maddeler birikirler.Yine yapraklarda madde değişimi,bitkinin diğer organlarına göre en fazladır.O yüzden yapraklarda zaten madensel madde bulunuyor demektir. Bitki külünün hemen hemen tamamı bitkilerin geliştikleri ortamdan aldıkları mineral maddelerden oluşmuştur.C,H,O ve N en düşük dereceli bir yanmada kaybolduğu için hiçbir külde bulunmaz.Mineral maddeler,külde element halinde değil,çoğunlukla oksitleri halinde bulunur.Gerek külün gerekse içerdiği mineral maddelerin gerçek miktarı külün eldesi anında uygulanan sıcaklık derecesiyle yakından ilgilidir. Yanma için gerekli sıcaklık daha da artırılırsa C,H,O ve N’nin tamamı,Cl ve S’nin büyük bölümü,Ca,K ve P vb. elementlerin de bir kısmı uçup gider.Ekolojik şartlara bağlı olarak,bitki külünde çok değişik maddeler bulunur.Günümüze kadar yapılan değişik şartlarda birçok farklı bitkinin külündeki analizler 60 kadar mineral maddenin varlığı ispatlanmıştır.Deneyler sonucu bitki gelişimi için,bunların tamamına tam bağımlı değildir. Ancak C,H,O,N,Ca,K,P,Mg,Fe,S,Mn,Mo,B,Cu,Zn,Cl ve Na elementleri mutlaka gerekli elementler olarak kabul edilmişlerdir. Bitki külünün gerek miktar gerekse içerdiği mineral madde miktarı üzerine etki eden ortam şartlarının en önemlisi su,sonrada ışıktır.Ayrıca zirai ortamları da dikkate aldığımızda gübrelemeyi üçüncü faktör olarak düşünebiliriz.Bunlardan suyun habitattaki miktarı kül ve külde bulunan elementleri miktarı üzerine önemli etki yapar.Su kapsamı yüksek topraklarda yetiştirilen patates yumrularında Cl,Ca ve S’nin önemli miktarda arttığı görülmüştür.Ancak ilginç bir durum yapraklarında Cu ve Cl’nin azaldığı yönündedir.Yulafta fazla su K ve P’nin artmasına,Ca’nin azalmasına neden olmuştur.Toprağa verilen su miktarının da artması buğday toprağında yapılan bir deneyde kül miktarını artırdığı gözlenmiştir.Toprağın 12,5-87,5 cm arasında su muhteviyatı kül miktarını kademeli olarak artırdığı ancak 87,5 cm’den daha fazla verilen sulama suyun kül üzerine etkisi zıt yönde olmuştur. Bilindiği gibi ışıksız ortamda yetiştirilen bitki her ne kadar kökleriyle topraktan mineral madde alarak kül miktarını artırır ise de bu maddelerin çok az bir kısmı organik madde yapımında kullanılır.Büyük bölümü ise yani ihtiyaç fazlası elementler,bitki bünyesinde doğrudan sekonder olarak birikir.Böylece bünyelerindeki kül miktarı artar.Oysa bol ışık karşısında yetişen bitkiler fotosentez yoluyla mineral maddeleri organik madde yapımında kullandığı için doğrudan sekonder birikim söz konusu değildir. Böylece ışık ortamındaki bitkilerin biriktirdiği anlamda yüksek oranda kül oluşturmazlar. Yapılan deneyler gübrelemenin bitki külü üzerine en fazla etkisi bilhassa baklagiller ve çapa bitkileri üzerinde görülmüştür.Arpa ve buğdayda az,çavdar da ise en az etkilidir.Toprağa verilecek gübre miktarı belirli bir düzeye kadar bitkilerde külün artmasına neden olurken bu miktardan sonrası kül miktarını etkilemez (Minimum Yasası). Külde bulunan mineral maddeler arasında da dikkate değer ilişkiler görülmüştür.Genellikle küldeki K ve Na arasında orantı değişiktir.Fakat bitkiler arasında belirli bir ayırım görülmemekle beraber Ca ile K arasında belli bir ilişki vardır.Bunlardan birisi arttığında diğeri azalır.Kimi bitki külünde Na ve Cl arasında da bir ilişki belirlenmiştir.Bu ilişki daha çok Na’nın artması durumunda Cl miktarında azalma şeklindedir. Bitkilerin küllerinde yapılan çok çeşitli analizlerle,doğada bulunan elementlerin hemen hemen tümünün bitkilerde mevcut olacağı ihtimali uyanmıştır.Burada deneye tabi tutulan her farklı bitki türünün bir öncekinden farklı elementleri kapsadığı görülmüştür.Analizlerin en önemli dayanağı bazı elementlerin her bitki türünde mutlaka mevcut olduğu,bazılarının ise genelde çok az bulundukları yine bir kısmının da tamamen iz durumda olduğu belirlenmiştir.Buna göre bitki bünyelerindeki elementleri makro elementler ve mikro elementler olmak üzere 2 grupta toplamak mümkündür: 1)Makro(Esas) Elementler:Yapılan deneysel araştırmalara göre,bitkilerin normal büyüme ve gelişmeleri için hangi miktarda alınmaları gerektiğine ve buradaki etkinliklerine göre elementler hassas bir şekilde belirlenmiştir.Buna göre makro elementler; a)Bitkideki miktarı 30.000-60.000µ/gr kuru ağırlığı ya da % 0,1-6,0 kuru ağırlık oranında bulunmalıdır. b)Bitkilerde büyüme ve çoğalma için temel olmalıdır.Mevcut olmaması halinde bitkide büyüme ve çoğalma meydana gelmemelidir. c)Bitkilerdeki etkisi spesifik ve kesin olmalıdır.Kendine öz etkisi başka bir element tarafından telafi edilmemelidir. d)Bitkilerdeki etkisi doğrudan olmalıdır.Dolaylı yollardan sağlanmamalıdır. Birçok araştırmacı tarafından bu dört kritere uygunluk gösteren C,H,O,N,P,K,Fe,Mg,Ca ve S diye ifade edilen on element,bitki için esas element olarak kabul edilmiştir. 2)Mikro(İz) Elementler:Bu elementler bitkiler için mutlaka gerekiyor ise de yukarıdaki kriterlere tam olarak uymadığı için makro elementler sınıfına girmezler.Çünkü bu grup elementlerin diğer bir özelliği de eksiklikleri kadar fazlalıkları da zararlıdır.Üstelik fazla miktarda bulunmaları toksik etki yapar.En önemlileri; Cu,Mn,Zn,B ve Mo’dur.Ayrıca I,Li,Arsenik,Sl,Ba,Br,Se,Cr,Cl,Co,Ni,Si,St,Sn,Ti ve Va elementleri de diğer grup elementleridir.Günümüzde yapılan hassas deneyler bu elementlerin varlığı ve miktarının bitki türüne göre değiştiğinin,her yeşil bitki için özellikle son grubun gerekli olmadığını göstermiştir.Ancak;B,Mn,Cu,Zn ve Mo gibi 5 elementin genellikle bütün yeşil bitkiler için gerekli olan iz element oldukları kabul edilmiştir. Sonuç olarak;ister mikro isterse de makro elementler olsun bitkilerdeki rollerin esas oluşun tespiti için su kültürleri denilen deneyin yapılması gerekmektedir. Su kültürleri deneyinde bitkiler doğrudan farklı minerallerin eriyiklerinde yetiştirilir.Böylece deney bitkilerinde hangi mineralin daha önemli,hangisinin daha az önemli ya da önemsiz olduğu belirlenmiş olur. Su kültürleri deneyi sonucunda on tane makro elementin bitkilere kesin olarak verilmesi kararlaştırılmıştır.Su kültürlerinde bir veya birkaç elementin eksik olması bitkinin yetişmesine imkan vermez.Su kültürlerinde eksik olan elementlerin etkilerini göstermek için yulaf bitkisindeki deney şu sonuçları vermiştir:Çözelti Kuru Ağırlığın ArtışıTam Çözelti 138 defaMg Eksik 5 defaK Eksik 9 defaCa Eksik 1 defaFe Eksik 7 defaP Eksik 6 defaS Eksik 5 defaTütünde yapılan çalışmalarda; N noksanlığında üst yaprakların açık sarı,orta yaprakların sarı ve alt yaprakların ise kuru olduğu gözlenmiştir. P eksikliğinde de yapraklar koyu yeşil bir renk almaktadır. K eksikliğinde ise;yaprak uç ve kenarlarında klorozis(sararma),yer yer kuruma ve tamamen kuruyup dökülme görülür. Ca eksikliğinde yapraklarda normal yeşil renk olmasına rağmen yapraklar biçimsiz ve kırıntılı bir yapı gösterir. Mg eksikliğinde;bitkinin alt yaprakları tamamen sararır.sadece yaprak damarı yeşil kalır. Fe yeterli olmadığı topraklarda yetişen bitkilerin genç yaprakları tamamen sarı-beyaz bir renk alır. Fakat damarlar yeşildir.Su kültürleri,gübreleme tekniğinin ilk ve temel ilkelerini vermesi bakımından çok önemlidir.Çünkü bu teknikte gübrelerin tarımsal değeri,hangi bileşimdeki gübrelerin verilmesi gerektiğini ortaya koyuyor.Her bitki yaşadığı ortamdan bazı mineral maddeler alarak azaltır.Bu maddelerin hangi oranda azaldığının bilinmesi ve habitata o oranda verilmesi gerektiğini ortaya koyar.Aksi taktirde ürün miktarı gittikçe azalır. Zira bir bitkinin iyi bir büyüme-gelişme göstermesi ve bol ürün vermesi gerekli elementlerin tamlık (yeterlilik) derecesine bağlıdır.Liebig’in Minimum YasasıBir bitkinin büyüme,gelişme ve ürün verimi habitatın mevcut elementlerinin en az olanına bağlıdır. Buradaki az deyimi,bitkinin isteğine göre anlaşılan bir deyimdir.Yani genel olarak canlıların yaşayabilmesi için hücresel metabolizma gereği alınması zorunlu besin maddelerinin en azından minimum miktarda karşılaması gerekir.Buna göre habitattaki makro elementlerin hangisi en az ise,o az olan madde sınırlayıcıdır. Diğer maddeler yeterli olsa bile en az olan kadar diğer besin maddelerinden de faydalanırlar.Örneğin bitki için zorunlu makro elementlerden Ca,Fe,Mg ve N’den Ca bitkinin isteğine karşılık vermezse diğerlerinden de az yararlanır.Bitkilerin gelişmeleri buna göre düzenlenir.Yapılan araştırmalara göre;özellikle ekolojik toleransları yüksek olan bitkiler iz elementlerden eksik olanın yerine ona yakın özellik gösteren diğer elementi kullanarak eksik olan elementin sakıncalarını gidermektedir.Fakat bu durumun makro elementlerde yapılması mümkün değildir.Minimum yasasında iz elementlerin durumları daha farklıdır.Çünkü;ilk grup iz elementleri olan B,Mn,Mo,Cu ve Zn bitkilerin hatta aynı tür bitkinin farklı habitatlarda yetişenlerini farklı şekilde etkilemektedir.Örneğin aynı bitkinin (Dactylis glomerata) gölgede yetişeni güneşte yetişenlerine nazaran daha az Zn’ye ihtiyaç duyar.Aynı cinsin türlerinde de durum böyledir.O halde Zn elementi aynı bitkinin gölgede yetişen fertlerine güneşte yetişen fertlere nazaran daha az sınırlayıcı etki yapar. İzah:Bitkinin nişinde bulunan Ca,N,P ve K elementlerinin miktarına göre,bitkinin boyu;1. durumda 8 birim, 2.durumda 7 birim,3. durumda 5 birim ve 4.durumda 10 birimdir(birim oranı elementin önemini göstermektedir).Bitkinin boyu ile elementin önemi paralellik gösterir.BİTKİLERDE AZOT KAPSAMAYAN ORGANİK BİLEŞİKLER1)Karbonhidratlar 2)Lipitler Bunlar da karbonhidratlar,bitkide kuru maddenin yaklaşık %50-80’ini oluşturur.Kimi karbonhidratlar yaygın bulunmalarına rağmen,kimileri daha özeldir(Zarda olanlar).Yani türe özel,zar ve sitoplazmaya özel veya serbest ve depo maddesi şeklinde faaliyet göstermekte olan özel karbonhidratlar vardır.Karbonhidratların en ilginç yönü moleküllerin hızlı ve sürekli olarak birinin diğerine dönüşmesidir.Fizyolojik olarak aktif hücrelerde görülen bu dönüşüm ve parçalanma sonucu açığa çıkan enerji bitki hücrelerinde çeşitli sentez olaylarında kullanılır.Bitkilerde karbonhidrat dönüşümünü çok sayıda faktör etkiler:a) Sıcaklık:Düşük sıcaklık bitki hücrelerinde nişastanın şekere dönüşmesi için uygun bir ortamdır. Örneğin tüm yıl yeşil kalan bitkilerin yapraklarında soğuk aylarda çözünebilir karbonhidratlar birikirken,sıcak aylarda ise nişasta biriktirmektedir.Çok düşük sıcaklıklarda (donma noktasının biraz üstünde -2oC) saklanan patates yumrularında nişasta miktarı azalırken şeker miktarı (asal olarak sakaroz) artmaktadır.İşte kışın pazarlanan patateste görülen tatlı lezzetin nedeni bu açıklamadır.Yapılan araştırmaya göre patates yumrularında nişastanın şekere dönüşümü esasen fosforilizasyon sonucu ortaya çıkar.Düşük sıcaklıklarda saklanan patates yumrularında glikoz-1-fosfat yüksek iken normal şartlarda saklananlarda yok denecek kadar azdır.Bunlarda ise glikoz-6-fosfat fruktoz-6-fosfat bulunmaktadır.Nişastanın sentezi ve hidrolizi üzerine sıcaklığın etkisi bitki türüne göre önemli değişiklik gösterir.Olgunlaşan muz meyvelerinde nişastanın hidrolizi 21-26 oC’de hızlanırken 10 oC’de pratik olarak durmaktadır.b) Su:Solma noktasında su kapsayan bitki yapraklarında hemen hemen nişastanın tamamı şekere dönüşür. Genellikle bitkilerde suyun yeterli düzeyde bulunması ise nişasta sentezini olumlu yönde etkiler.O nedenle büyüme ve gelişme için bütün bitkilerde su muhteviyatı daima solma nokatsının üzerinde olmalıdır.c) Hidrojen iyonu konsantrasyonu (pH):Ortamın pH’sı enzimlerin faaliyetleri üzerine etkili olmak suretiyle karbonhidratların dönüşümlerini dolaylı olarak etkiler.Kuşkusuz ortamın pH’sı sadece enzimatik tepkimeler üzerinde değil,aynı zamanda da tepkimenin yönü üzerinde de etkili olmaktadır.Geri dönüşü olan karbonhidrat dönüşüm reaksiyonları daha çok stoma hücrelerinde görülmektedir.d) Şeker konsantrasyonu:Bitki hücrelerinde şeker konsantrasyonunun yüksek olması kural olarak nişasta sentezinin fazla olmasını,az olmasını da nişasta sentezinin yavaş olması sağlar.Fotosentezin yüksek düzeyde olduğu ve dolayısıyla bitkide fazla miktarda şekerin oluştuğu şartlarda artmaktadır.karşıt durumda azalmaktadır.Karanlık ortamda bırakılan bitkilerde nişasta miktarı süratle azalır.Çünkü fotosentez yapamadığı için su alıp nişastayı glikoza çevirip harcar.     Günümüzden 4000 yıl önce Mısırlılar sedir ağacının kuru distilasyonu ile sedir katranı elde etmişlerdir. Benzer üretim tekniği antik çağlarda Çinliler, Hintliler, Persler, Yunanlı ve Romalılar tarafından da kullanılmıştır. Orta çağda ilk olarak İbni Sina tarafından uygulanan su buharı distilasyonu tekniği ile uçucu yağ üretimi daha da geliştirilmiş ve ürün çeşitliliğinde de büyük artmalar gözlenmiştir. Özellikle 19. yüzyıldan başlayarak içerdikleri kimyasal bileşiklerin aydınlanması ve önemli ekonomik değerleri nedeniyle uçucu yağ üretiminde çok hızlı bir artış gerçekleşmiştir. Günümüzde 3000'den fazla uçucu yağın bileşimi bilinmekte ve 150'den fazla uçucu yağ ticari amaçla üretilmektedir. Bir deney tüpüne Triticum sp. meyveleri ve azot miktarını çoğaltmak için birkaç tane bezelye tanesi konur. Ayrıca tepkimeyi hızlandırmak için bıçak ucu kadar Ca(OH) 2 ilave edilir. Bu deney tüpü içinde mavi renkli kobalt klorürlü (CoCl2) ve beyaz renkli kurşun asetatlı (PbC4O4H6) filtre kağıdı bulunan I. yıkama şişesine bağlanır. Birbirine bağlı olan II. yıkama şişesine Nessler belirteci (K2HgI4) ve III. yıkama şişesine de baryum hidroksit konur. Nessler Reaktifi: Birinci Çözelti: 100 g civa iyodür (HgI2) ve 70 g potasyum iyodür (Kl) az miktarda amonyaksız saf suda çözülür. İkinci çözelti: 100 g sodyum hidroksit (NaOH) 500 ml amonyaksız saf suda çözülür. Birinci ve ikinci çözeltiler karıştırılıp 1000 ml’ye seyreltilir. Filtre edilir. Koyu şişede saklanır. Tüp bir ispirto ocağı ya da başka bir ısı kaynağı ile ısıtılır. Çıkan duman bu tüpe seri halde bağlı olan yıkama şişelerinden geçerken şişeler ya da belirteçlerde şu değişikler gözlenebilir. Sonuç: I. Yıkama şişesinde: a) Molekül rengi mavi olan CoCl2'lü kâğıdı dumanda bulunan su buharı etkisiyle iyon rengi olan ....................................... renge dönüştürür. Böylece H ve O varlığı kanıtlanmış olur. b) Beyaz renkli kurşun asetatlı kağıdın S'den dolayı PbS oluşmasıyla ................................ renk gözlenir. II. yıkama şişesinde: Bu kaptaki Nessler belirtecinin rengi gaz karışımı geldiğinde ........................ olur. Bu da bize N'un varlığını gösterir. III. yıkama şişesinde: Bu kapta bulunan Ba(OH) 2'de gazın gelmesi ile reaksiyona girer ve ..............................renkli BaCO3 oluşur. Bu sonuç ta C varlığını kanıtlamış olur.      

http://www.biyologlar.com/kuru-distilasyon-yontemi

Big Bang Teorisi (Büyük Patlama)

Büyük Patlama ya da Big Bang, evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan evrenin evrimi kuramı ve geniş şekilde kabul gören kozmolojik model. İlk kez 1920’lerde Rus kozmolog ve matematikçi Alexander Friedmann ve Belçikalı fizikçi papaz Georges Lemaître tarafından ortaya atılan, evrenin bir başlangıcı olduğunu varsayan bu teori, çeşitli kanıtlarla desteklendiğinden bilim insanları arasında, özellikle fizikçiler arasında geniş ölçüde[4]kabul görmüştür. Teorinin temel fikri, halen genişlemeye devam eden evrenin geçmişteki belirli bir zamanda sıcak ve yoğun bir başlangıç durumundan itibaren genişlemiş olduğudur. Georges Lemaître’in önceleri “ilk atom hipotezi” olarak adlandırdığı bu varsayım günümüzde “büyük patlama teorisi” adıyla yerleşmiş durumdadır. Modelin iskeleti Einstein’ın genel görelilik kuramına dayanmakta olup, ilk Big Bang modeli Alexander Friedmann tarafından hazırlanmıştır. Model daha sonra George Gamow ve çalışma arkadaşları tarafından savunulmuş ve ilk nükleosentez olayı eklenmek suretiyle geliştirilerek sunulmuştur. 1929’da Edwin Hubble’ın uzak galaksilerdeki (galaksilerin ışığındaki) nispi kırmızıya kaymayı keşfinden sonra, bu gözlemi, çok uzak galaksilerin ve galaksi kümelerinin konumumuza oranla bir "görünür hız"a sahip olduklarını ortaya koyan bir kanıt olarak ele alındı. Bunlardan en yüksek "görünür hız"la hareket edenler en uzak olanlarıdır. Galaksi kümeleri arasındaki uzaklık gitgide artmakta olduğuna göre, bunların hepsinin geçmişte bir arada olmaları gerekmektedir. Big Bang modeline göre, evren genişlemeden önceki bu ilk durumundayken aşırı derecede yoğun ve sıcak bir halde bulunuyordu. Bu ilk hale benzer koşullarda üretilen "parçacık hızlandırıcı"larla yapılan deney sonuçları teoriyi doğrulamaktadır. Fakat bu hızlandırıcılar, şimdiye dek yalnızca laboratuvar ortamındaki yüksek enerji sistemlerinde denenebilmiştir. Evrenin genişlemesi olgusu bir yana bırakılırsa, Big Bang teorisinin, ilk genişleme anına ilişkin bir bulgu olmaksızın bu ilk hale herhangi bir kesin açıklama getirmesi mümkün değildir. Kozmozdaki hafif elementlerin günümüzde gözlemlediğimiz bolluğu, Big Bang teorisince kabul edilen ilk nükleosentez sonuçlarına uygun olarak, evrenin ilk hızlı genişleme ve soğuma dakikalarındaki nükleer süreçlerde hafif elementlerin oluşmuş olduğu tahminleriyle örtüşmektedir.(Hidrojen ve helyumun evrendeki oranı, yapılan teorik hesaplamalara göre Big Bang'den arta kalması gereken hidrojen ve helyum oranıyla uyuşmaktadır. Evrenin bir başlangıcı olmasaydı, evrendeki hidrojenin tümüyle yanarak helyuma dönüşmüş olması gerekirdi.) Bu ilk dakikalarda, soğuyan evren bazı çekirdeklerin oluşmasına imkan sağlamış olmalıydı.(Belirli miktarlarda hidrojen, helyum ve lityum oluşmuştu.) Big Bang terimi ilk kez İngiliz fizikçi Fred Hoyle tarafından 1949’da, “Eşyanın Tabiatı” adlı bir radyo (BBC) programındaki konuşması sırasında kullanılmıştır. Hoyle, hafif elementlerin bazı ağır elementleri nasıl meydana getirebilecekleri konusunda katkıları olmuş bir bilim insanıdır. Bilim insanlarının çoğu, evrenin başlangıcında, bir Big Bang olayının cereyan etmiş olduğuna ancak 1964/1965’te, evrenin sıcak ve yoğun döneminin kanıtı olarak kabul edilen “kozmik mikrodalga arkaplan ışıması"nın ya da Georges Lemaître’in kullandığı terimlerle « Big Bang’ın soluk ışıklı yankısı»nın keşfinden sonra ikna oldular. Big Bang modeli temelde iki kabule dayanır: Albert Einstein'in genel görelilik kuramı ve kozmolojik prensip. Genel görelilik kuramı tüm cisimlerin çekimsel etkileşimini hatasız olarak açıklar. Albert Einstein tarafından 1915’te genel göreliliğin keşfi, evrenin aşamalı evrimi genel görelilikle tanımlandığından, evreni bir fiziksel sistem gibi bütünlüğü içinde tanımlamayı mümkün kılan modern kozmolojinin başlangıcı sayılır. Einstein aynı zamanda,uzayı bütünlüğü içinde tanımlamada, genel görelilikten doğan bir çözümü (“Einstein evreni”) önermesiyle genel göreliliği bu yolda kullanan ilk kişi olmuştur. Bu model o dönemde Einstein’in gözüpek girişimiyle yeni bir kavramın doğmasını sağlamıştı: Kozmolojik prensip. Kozmolojik prensibe göre, insanoğlu evrende ayrıcalıklı bir konuma sahip değildir, evren homojen ve izotroptur. Yani insanın baktığı yer ve yön neresi olursa olsun evren uzay (mekan) bakımından homojendir; daha açık bir deyişle, evrenin genel görünümü gözlemcinin konumuna ve baktığı yöne bağlı değildir. Bu, o dönem için çok cüretkar bir hipotez sayılırdı; çünkü henüz, sonradan “Büyük Tartışma” adı verilen, Samanyolu dışında cisimler olup olmadığı tartışmasının sürdüğü o dönemde hiçbir inandırıcı gözlem, Samanyolu dışındaki cisimlerin varlığını doğrulama imkanını sağlayamıyordu. "Kozmolojik prensip" evrenin makro özelliklerini açıklamakla birlikte, evrenin sınırı olmadığını, bu nedenle Big Bang'ın boşlukta belirli bir noktada değil, aynı anda tüm boşluk boyunca gerçekleştiğini ima eder. Makro ölçekte evren homojen ve izotroptur.  Bu iki kabul, evrenin Planck zamanından sonraki tarihini hesaplamayı mümkün kılmıştır. Bilim insanları halen "Planck zamanı"ndan önce gerçekleşen çok önemli olayları saptamaya çalışmaktadır. Einstein 1915 yılında ortaya attığı genel görelilik kuramıyla yaptığı hesaplamalarda evrenin durağan olamayacağı sonucunu çıkarmıştı. Fakat o dönemlerde genel kabul, evrenin statik olduğu yönündeydi; bu yüzden Einstein vardığı sonucu düzeltmek üzere denklemlerine “ kozmolojik sabite ” etkenini ekledi. Böylece, Einstein kozmolojik prensibe üstü kapalı biçimde, günümüzde doğrulanma derecesi açıkça azalmış görünen bir başka hipotez ekledi; bu, evrenin statik olduğu, yani zamanla evrim geçirmediği hipoteziydi. Bu da kendisini, denklemlerine “ kozmolojik sabite ” terimini eklemek suretiyle ilk çözümünü değiştirme yoluna götürdü. Fakat gelecekteki gelişmeler, yanılmış olduğunu ortaya koyacaktı. Örneğin 1920’lerde Edwin Hubble günümüzde galaksi dediğimiz bazı “nebülöz”lerin galaksimiz dışında olduklarını, ayrıca onların galaksimizden uzaklaştıklarını ve uzaklaşma hızlarının galaksimize uzaklıklarıyla orantılı olduğunu (Hubble Yasası ya da Hubble Sabiti) keşfetti. Bu keşiften beri Einstein’ın “statik evren hipotezi”ni doğrulayacak hiçbir veriye rastlanmamıştır. Zaten Hubble’ın bu keşfinden daha önce Willem de Sitter, Georges Lemaître ve Alexandre Friedmann gibi birçok fizikçi bir “evren genişlemesi”ni tanımlayan başka “genel görelilik” çözümleri bulmuş bulunuyorlardı. Onların ortaya koymuş oldukları modeller evrenin genişlemesi keşfedilir keşfedilmez derhal kabul edildiler. Böylece milyarlaca yıldır genişleme halinde olan bir evren tanımlanmıştı. Big Bang ve karşısındaki durağan hal teorisi Evrenin genişlediğinin keşfi, evrenin statik olmadığını ortaya koymakla birlikte, "maddenin sakınımı yasası"nı gözünde bulunduran ve bulundurmayan birçok farklı görüşün ortaya atılmasına imkan vermişti. Bu görüşlerden başlangıçta maddenin yaratılışının sözkonusu olduğunu varsayan görüş, ilk zamanlar en popüler olanıydı. Bu başarıdaki sebeplerden biri, “durağan hal (sabit durum) teorisi” denilen bu modelde evrenin sonsuz kabul edilmesiydi. Fred Hoyle tarafından ortaya atılan "durağan hal teorisi"ne göre evrenin yaşı ile bir gök cisminin yaşı arasında bir çelişki olamazdı. Buna karşılık Big Bang hipotezinde evrenin, genişleme oranından yola çıkılarak hesaplanabilecek belirli bir yaşı vardı. 1940’lı yıllarda evrenin genişleme oranı hakkındaki tahminler bir hayli abartılıydı, bu da evrenin yaşı hakkındaki tahminlerin gerçeğin bir hayli altında olarak yapılmasına neden olmuştu. Öyle ki, Dünya’nın yaşını belirleyen farklı tarihlendirme yöntemlerinin bildirdiği değerlere göre Dünya evrenden daha yaşlı kalıyordu. Bu, önceleri, Big Bang tipi modellerin çeşitli gözlemler karşısında içine düştüğü güçlüklerden yalnızca biriydi. Fakat bu tür güçlükler evrenin genişleme oranının kesin biçimde belirlenmesiyle tarihe karıştılar. Gözlemsel kanıtlar Sonradan iki kesin gözlemsel kanıt Big Bang modellerine tümüyle hak verdi: Evren tarihinin sıcak devrinin kalıntısı denilebilecek enerji ışıması (mikrodalga sahası) olan "kozmik mikrodalga arkaplan ışıması"ın keşfi ve hafif elementlerin salınmasının ölçülmesi, yani ilk sıcak evre sırasında oluşmuş hidrojen, helyum, lityumun farklı izotoplarının bırakılmasının ölçülmesi. Bu iki gözlem, 20. yy.’ın ikici yarısının başlarında gerçekleşti ve Big Bang’ı kozmolojide, kesin biçimde, gözlemlenebilir evreni tanımlayan model olarak yerleştirdi. Bu modelin kozmolojik gözlemlerle hemem hemen mükemmel biçimde örtüşmesinin yanı sıra, modeli doğrulayan başka kanıtlar da ortaya koyulmaya başlandı: Galaktik kümelerin gözlemi ve "kozmik arkaplan soğuması"nın ölçülmesi (birkaç milyar yıl öncesiyle günümüzdeki ısı farkının ölçülebilmesi). Kozmik arkaplan Genişleme, doğal olarak bize evrenin geçmişte daha yoğun olduğunu bildirmektedir. Evrenin geçmişte daha sıcak olması olasılığından ilk kez 1934’te Georges Lemaître’in söz etmiş olduğu görülüyor; fakat bunun gerçek anlamda araştırılmasına ancak 1940’lı yıllardan itibaren başlanmıştır. Uzak astrofiziksel cisimlerin ışımasındaki kırmızıya kaymaya benzer bir tarzda, evrenin genişleme olayıyla enerji kaybeden bir ışımayla dolu olması gerektiği konusundaki ilk düşünceler George Gamow’dan gelmiştir. Gamow aslında, ilksel evrendeki güçlü yoğunlukların, atomlar arasında bir termik dengenin kurulmasına ve ardından bu atomlarca bırakılan bir ışımanın varlığına imkan sağlamış olması gerektiğini anlamıştı. Gamov, 1940'lı yıllarda Lemaitre'in hesaplamalarını geliştirdi ve Big Bang'e bağlı olarak bir tez ortaya attı. Big Bang'dan arta kalan, belirli oranda bir ışımanın var olması gerekiyordu. Ayrıca bu ışıma evrenin her yanında eşit olmalıydı. Bu ışımanın evrenin yoğunluğu oranında bir yoğunlukta olması ve dolayısıyla, bu ışımanın, yoğunluğu artık son derece azalmış olsa da halen mevcut olması gerekiyordu. Gamow, Ralph Alpher ve Robert C. Herman’la birlikte, evrenin yaşından, maddenin yoğunluğundan ve helyumun salınmasından yola çıkılarak bu ışımanın günümüzdeki ısısının hesaplanabileceğini anlayan ilk kişi oldu. Bu ışımaya günümüzde « fosil ışıma » diyenler de bulunmakla birlikte, genellikle, “ kozmik mikrodalga arkaplan (ya da kozmolojik mikrodalga artalan) ışıması” denir. Bu ışıma, Gamow’un öngörülerine uygun olarak, düşük ısıdaki bir "karanlık cisim" ışımasına (2,7 °K) denktir. Biraz rastlantı sonucu olan bu keşfi Arno Allan Penzias ve Robert Woodrow Wilson’a borçluyuz: 1960’larda New Jersey'deki Bell Laboratuvarı’ndan Arno Penzias ve Robert Woodrow Wilson, Samanyolu’nun dış kısımlarından gelen belirsiz radyo dalgalarını ölçmeye çalışıyorlardı. Fakat bunun yerine gökyüzünün her tarafından gelen bir radyasyon saptadılar. Bu ışıma ya da ışınımın bütün yönlerdeki parlaklığı aynı idi ve yaklaşık 3 °K sıcaklığında bir ortamdan geldiği anlaşılıyordu.1978’de bu buluşları için Nobel Fizik Ödülü sahibi olan Penzias ve Wilson ilginçtir ki, ileride, Fred Hoyle gibi, Big Bang teorisine muhalif olan bilim insanları safına katılacaklardı. 1965’te keşfedilen "kozmik arkaplan" Big Bang’ın en açık kanıtlarından biridir. Bu keşiften sonra kozmik arkaplan dalgalanmaları COBE (1992) ve WMAP (2003) uzay uydularınca incelenmektedir.Bir "kara cisim" ışımasının varlığı Big Bang modeli çerçevesinde kolayca açıklanabilmektedir: Geçmişte evren sıcaktı ve yoğun bir ışımaya maruz kalıyordu. Geçmişin çok yüksek yoğunluktaki bu evreninde madde ve ışıma arasında çok çeşitli etkileşimler olmaktaydı. Bunun sonucunda ışıma termalize olmuştur, yani elektromanyetik tayfı bir "kara cisim"in elektromanyetik tayfıdır. Buna karşılık "durağan hal teorisi"nde böyle bir ışımanın varlığı hemen hemen doğrulanamaz durumdadır (Az sayıdaki bazı savunucuları aksini belirtmekteyse de…) Düşük ısıdaki ve az enerjetik bir ışımaya denk olmakla birlikte, kozmik arkaplan, yani kozmik mikrodalga arkaplan ışıması hiç de evrenin en büyük elektromanyetik enerji biçimi olarak görünmüyor: Enerjinin yaklaşık %96’sı sözkonusu ışımadaki fotonlar biçiminde mevcutken, kalan % 4’ü "görünür tayf"taki [14]yıldızların ışınımından ve galaksilerdeki soğuk gazdan kaynaklanmaktadır (kızılötesi halde). Bu diğer iki kaynak kuşkusuz daha enerjetik, fakat daha az sayıda fotonlar yaymaktadır. "Durağan hal teorisi"nde "kozmik arkaplan"ın varlığı mikroskobik demir parçacıklarının bırakılmasıyla oluştuğu varsayılan yıldızsal ışımanın termalizasyonunun bir sonucu olduğu varsayılır. Fakat bu model, gözlemsel verilerle çelişki halindedir. (Ayrıca bu takdirde "kozmik arkaplan" bir karanlık cisim olarak da açıklanamaz.) Sonuç olarak denilebilir ki kozmik arkaplanın keşfi, tarihsel olarak Big Bang'ın kesinleştirici kanıtı olmuştur.

http://www.biyologlar.com/big-bang-teorisi-buyuk-patlama

Patoloji'nin Gelişimi ve Teknoloji

Hücresel ve moleküler patoloji, özellikle optik sanayisindeki gelişmeler olmaksızın ilerleyemezdi. Mikroskopun ve optik sanayisinin gelişimi hücrenin ve hastalıkların yol açtığı hücre değişikliklerinin görülmesine olanak sağlamış, günümüzde hastalıklarla ilgili bilgiler moleküler düzeyde anlaşılır duruma gelmiştir. 1270 yılında Roma'da ilk kez okumak için mercek kullanıldığı bildirilmektedir. İlk mikroskop ise Hollanda'da 1600'lü yılların başında Leuvenhook tarafından kullanıldı. G. Adams, 1770'te ilk kez mikrotomu kullanarak ince doku kesitleri elde etti. 1884 yılında Jena'da optik cam sanayi kuruldu. HG Harrison, 1907'de doku kültürünü yaptı. Mikroskoplardaki gelişmeler 20. yüzyıl başında hızlandı. Polarizasyon mikroskopu 1924'te, Floresan mikroskop 1929'de, Elektronmikroskopu 1931'de, Faz kontrast mikroskopu ise 1932'de kullanıma girdi. 20. yüzyılın ikinci yarısında ise moleküler biyoloji ve genetik alanındaki gelişmeler hastalıkların tanı ve tedavisi konusunda patolojiye yeni ufuklar açtı. DNA akım sitometrisi, floresanla işaretli veya çeşitli boyalarla işaretli antikorların kullanıldığı immünohistokimya ve immünofloresan inceleme yöntemleri, özellikle tümörlerin, immünolojik mekanizmalarla ve genetik bozukluklarla ortaya çıkan hastalıkların tanısında giderek daha sık kullanılmaktadır. Türkiye'de patolojinin gelişimi Ülkemizde patolojinin tarihi 19. yüzyılın başına kadar uzanmaktadır. Kısa sayılabilecek bu tarihi dört dönemde incelemek mümkündür: a. Osmanlı dönemi b. 33 reformu öncesi (Hamdi Suat dönemi) c. 1933 Reformu sonrası (Patoloji'de Alman etkisi) d. 1945 sonrası (İstanbul ve Ankara Tıp Fakülteleri) e. 1960 sonrası (Çok merkezli dönem)

http://www.biyologlar.com/patolojinin-gelisimi-ve-teknoloji

Virüslerin Anatomisi Hakkında Bilgi

Tabiattaki tüm varliklar canli form ve cansiz form olarak iki gruba ayrilmislardir.Cansiz forma dahil olan varliklar, üreyemeyen, solunum yapmayan beslenmeye ihtiyaci olamayan tüm varliklardir. Örnegin denizler, göller, kayalar, bulutlar, daglar vs. ekosistem içerisinde sürekli bir dönüsüm içerisinde olmasina ragmen canli sayilmazlar. Bir varligin canli sayilabilmesi için, az öncede belirttigimiz gibi üreyebilmesi, beslenebilmesi, solunum yapabilmesi ve diger canlilarla sürekli bir iliski içerisinde olmasi gerekirki ancak böyle bir varliga canli denebilir. Bugün bilim adamlari, canlilari sistematik olarak siniflandirirken virüsün hangi kategoriye konacagi konusunda hala bir ittifak kuramamistir. Çünki virüsler bazi hallerde canli gibi davranirken diger bazi hallerde tam bir " inorganik " madde gibi davranir.Dolayisiyla ortaya büyük bir tezat çikmaktadir.Virüslerin nasil olupta hem canli gibi davrandiklarini hemde cansiz gibi göründüklerini, düsündürücü yasam döngülerini inceleyerek anlamaya çalisalim. Virüsün anatomisi: Virüs, dogadaki en basit canli türlerinden bile daha basit bir yapiya sahiptir.Bildiginiz gibi bakterilerin vücudu yanlizca tek bir hücreden olusan yalin bir anatomiye sahiptir.Fakat virüslerin vücudu bir hücreden bile olusmaz.Yanlizca hücreyi olusturan temel yapitaslarinin çok az bir miktarinin yine kompleks bir yapi olusturmalarindan meydana gelmistir. Bir hücre proteinlerden, nükleik asitlerden, hücre zarindan, kompleks organellerden (mitekondri, endoplazmik retikulum, golgi aygiti, ribozomlar vs.), nukleus (çekirdek) den ve daha birçok enzim ve sayamadigimiz kimyasal moleküllerden olusan oldukça karmasik bir yapiya sahiptir. Virüsler ise yukarida saydigimiz hücre yapitaslarindan yanlizca üç tanesinin kompleks olusturmasiyla meydana gelir.Bu yapitaslari protein, enzim ve nükleik asitlerdir.Bazi virüslerde ise yag moleküllerinede rastlanilir.Virüs, yanlizca bu üç yapitasindan olusan basit bir yapiya sahip olmasina karsin ne amaç uguruna kendini çogaltmaya çalistigini ve canli - cansiz formlari arasinda nasil gidip geldigi çözülememis mühim bir problemdir. Virüsler ancak " elektron mikroskobu " ile görülebilirler.Isik mikroskoplari ile görülmeleri imkansizdir.Öyleki bir virüs bakteriyle kiyaslandiginda, bakterinin yaninda çok küçük kalan bir boyuta sahiptir ve boyu ancak " nm " (nanometre, yani metrenin milyarda biri) uzunluk birimi ile ölçülebilir. Virüslerin anatomisi yanlizca bu moleküler yapilardan ibarettir.Fakat buradaki en büyük soru isareti ise bu moleküllerin neden kendilerini çogaltmak istedikleridir. Moleküller atomlardan olusan maddelerdir.Maddenin ise suuru ve akli yoktur.Fakat gördügünüz gibi yanlizca bir molekül yigini olan virüsler dogada kendilerini çogaltmak için sürekli bir canli hücre arayisi içerisine girmislerdir.Bu esrarengiz yapilar üreseler bile ne beslenebilirler nede soluk alip verebilirler. Bir bakteri bile disaridan aldigi molekülleri isleyerek hayatini sürdürür, solunum yapar ve vücudunda olusan artik maddeleri disari atabilir, fakat virüslerin buna benzer fonksiyonlarida yoktur. Bakteriler besin ve diger hayati moleküllerin yoklugunda hayatlarini kaybederken virüslerin ölmesi diye birsey söz konusu degildir. Virüslerin hem cansiz hemde canli özellik gösterdiklerinden bahsetmistik.Virüsü canli yapan özellik üreyebilmesidir.Fakat cansiz olarak görünmesinin sebebi ise, içine yerlesip onu üreme amaciyla kullanacagi bir hücre bulamadigi zaman " Kristal " bir yapiya dönüsmeleridir.Bu sekilde virüs tipki havada süzülen bir toz zerrecigi gibi bir partikül halinde dogada serbest olarak dolanir.Ta ki canli bir hücreye rastgelip onu üreme amaciyla kullanincaya kadar. Bakterinin içerisinde dolanan RNA molekülü bakteriye ait DNA molekülünün belli bir bölgesine yerlesir.Bu yerlesme belirli genler arasinda konumlanarak gerçeklesir.Örnegin bakteride A geni ile B geni yanyana ise virüs RNA si bu iki genin arasina yerlesir.Yani A geninin içerisinde yada B geninin içerisinde herhangi bir yere yerslesmez.Bakterinin virüs RNA sini içeren sekline ise " Lizogen bakteri " adi verilir. Bakteri, üremek için DNA sini replike ederken farkinda olmadan virüsün RNA sinida replike eder.Bakteri çogalmaya devam ederken bir yandan da virüsün RNA sinin bir kopyasini üretir.Bu kopyalanan RNA nin içerisinde ise virüsün tüm genetik bilgileri saklidir.Mesela virüsün üzerini örten kilif proteinin aminoasit sifreleri bu RNA da bulunur.Bakteri replikasyonla ürettigi virüs RNA sindan ayni zamanda virüsün örtüsü için gerekli proteinleride translasyon yoluyla yani protien üretim mekanizmalari yoluyla üretir. Virüs bakteriyi tipki bir köle gibi çalistirarak kendisini çogaltmaya baslar.Bakteri öyle bir duruma gelirki ürettigi virüsleri tasiyamaz olur ve parçalanir.Bu olaya ise " Liziz " denir.Asagidaki sekilde bu olayin meydana gelisi sematize edilmistir. Insanin karsilastigi mühim problem ise, yanlizca bir RNA ve proteinden olusan virüslerin ne amaçla üredikleri ve bu zekice tasarlanmis üreme planini nasil uygulamaya koyduklaridir.Bir molekül grubundan olusan virüslerin bu plani düsünüp uygulamaya koymasi mümkün degildir, ancak üstün gücün emri dogrultusunda hareket edebilirler. Virüslerin ortak yönü, bir canli grubuna rastlamasiyla kendini çogaltmaya baslamasidir.Bir virüsün canli bir hücre olmaksizin kendini çogaltmasi ise mümkün degildir.Yani virüs ancak ve ancak canli bir hücre vasitasiyla kendini çogaltabilir.Çünki virüsün sahip oldugu RNA sini kopyalayip desifre edecek bir mekanizmasi yoktur. Sitemizin " Genlerin dünyasi " bölümünde hücrenin kendini üretmek için kullandigi mekanizmalar üzerinde durmustuk.Bu mekanizmalarin parçalari ise DNA kopyalayici enzimler, tamir edici enzimler, protein üretiminden sorumlu olan ribozomlar, transfer RNA (tRNA) lar, aminoasitler vs. dir.Fakat bir virüste RNA ve bazi eritici enzimler disinda bu mekanizmalarin parçalarindan hiçbirisi yoktur. Dolayisiyla virüs kendini çogaltamaz fakat bu mekanizmalara sahip bir hücreyi kullanma gibi bir kurnazlik gösterir. Virüsün kullandigi hücreler yanlizca bakteri hücreleri degildir.Bunun yaninda insan ve diger birçok canlinin hücrelerine girerek bu hücreleri kendi dogrultusunda çalistirmaya baslar.Bazi virüsler vardirki yanlizca belirli hüceler içerisinde çogalabilir. Buna en iyi örnek " Kuduz " virüsüdür.Kuduz virüsü bir köpek veya bir kedinin vücudunun içerisine girdigi zaman hemen ilk rastladigi hücreye girmez.Kuduz virüsünün çogalabilecegi hücre " Beyin " hücresidir.Bu yüzden bu virüsün beyine kadar ulasmasi gerekmektedir.Dolayisiyla virüs bulastigi hayvani derhal öldürmez.Beyine ulasan virüs beynin belirli bir bölgesindeki hücrelerin içine yerleserek derhal kendini üretmeye baslar. Bu üreme zamanina kuluçka zamani denir.Ve zamani geldiginde köpek veya kedinin beyninde agir bir tahribat meydana gelirki buda hayvanin ölümüne sebep olur. Bunun yaninda dogada binlerce tip virüs vardir ve herbiri kendine has özelliklerde olup degisik tiplerde hastaliklara neden olurlar.Yazimizin ilerleyen bölümlerinde AIDS virüsünede deyinecegiz. Bazi virüs türleri ise insan ve hayvanlara zarar verebildigi gibi bitkilerede zarar verebilmektedir.

http://www.biyologlar.com/viruslerin-anatomisi-hakkinda-bilgi

 
3WTURK CMS v6.03WTURK CMS v6.0