Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 216 kayıt bulundu.

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Herbaryumda Örneklerin Düzenlenmesi

Her bitki koleksiyoncusu, belli bir amaçla topladigi malzemenin tasnifine yönelik sorunlarla karsilasabilmektedir. Herbaryum hangi bakimdan kurulmak ve devam ettirilmek isteniyorsa, basit olarak tasarlanmalidir. Iyi düsünülmüs bir yapi ve açik seçik bir düzenleme, her bitkiyi hizli bir sekilde bulmamiza yardimci olur. Her bitki koleksiyonu basit bir alfabetik siralama ile düzenlenir. Çiçekli bitkilerde, familyasina göre düzenleme yapmak yeterli olmaktadir. Fakat pratik nedenlerden dolayi alfabetik siralama tercih edilir. Böylece cinslerin bulunmasi kolaylasir. Cinslerin içinde bulunan türlerin siralamasi da alfabetik olarak yapilir. Familya siralamasin da ise bitki topluluklarina ait eserlerden yararlanila bilinir (Stehli und Brünner, 1981). Toplanan bitkiler, biyolojik sisteme göre (tür, cins, familya, takim, sinif) düzenlenebilir veya akrabalik iliskilerine göre bir arada tutulabilirler. Her iki yöntemin de olumlu ve olumsuz yönleri vardir. Sinifina, takimina, familyasina, cins ve türüne göre biyolojik sirayla düzenlenmis koleksiyon sayesinde biçimsel olarak birbirine benzeyen bitkiler iyi karsilastirila bilinirler. Biyolojik sisteme göre düzenlemenin temel birimi tür dür. Bunu takip eden basamak, genelde daha fazla türü kapsayan cins (genus) tir. Cinsler ise familya'da toplanirlar. Bunlar, biyolojik sistemdeki isaretlere göre benzerlik gösterirler. Tür, ayni atadan gelen ve birbirleriyle çiftleserek fertil döller verebilen bireyler topluluguna denir. Fakat önemli türleri birbirine benzer olabilen bitki topluluklarinin biyolojik sisteme göre tek tek düzenlenmesi yorucu olmaktadir. Eger koleksiyon faaliyetinde daha fazla bitki topluluguna yönelme olursa, bitki sosyolojisine göre tasnif amaca uygun olur. Bunlar disinda herbaryumlar, tedaviye yönelik bitkilerin kurutulmus yapraklarina, çiçeklerine, türüne, bitkinin bünyesindeki alkoloidlere ve glikozitlere göre düzenlene bilinir.

http://www.biyologlar.com/herbaryumda-orneklerin-duzenlenmesi

Limoniidae

Yakın akraba olduğu Tipulidae ve Cylindrotomidae türleri gibi uzun bacaklı, ince ve narin yapılı vücutlu türleri içerir Erginleri Tipulidlerde olduğu gibi halk arasında sivrisineklerle karıştırılır, fakat sokucu iğneleri olmadığı için kan emmezler, sadece bitki özsularıyla beslenirler. Eutonia hariç, küçük ve orta büyüklükteki turna sinekleri olarak da bilinmektedir. Limoniidae dünya genelinde tanımlanmış 11.000 türle Diptera'nın en büyük familyaları arasındadır. Palearktik bölgeden ise 4 altfamilya dahil 88 cins ve 98 altcinse ait 1700'ü aşkın tür ve alttürü bilinmektedir. Avrupa'dan ise yaklaşık 650 türü bilinmektedir. Rostrum kısadır (Elephantomyia, Helius ve Geranomyia'da uzamış). Nasus ve ocelli mevcut değildir. Maksillar palplerin son segmentleri çoğunlukla kısa, yaklaşık önde bulunan iki segmentle aynı uzunluktadır. Antenler genellikle 14-16 segmentlidir. Ancak bazen az (Hexatoma), bazen de fazla (Ludicia) olabilir. Antenin kamçı segmentleri çoğunlukla basit yapılı oval, yuvarlağımsı veya silindirik olabilir. Bazen vücudun tamamı kadardır veya daha da uzundur (Hexatoma ve Rhabdomastix). Rhpidia'da pectinat tip anten görülür. Toraksın mesonotal suturlarda 'V' biçimli ve çapraz şekildedir. Kanatlar uzamıştır ve 2 anal damara sahiptir. Bu anal damarlar kanat kenarına kadar ulaşır. Kanat membranı macrotricha ve microtricha olmak üzere iki farklı yapıda kıl taşıyabilir. Sc1 mevcuttur. Sc daima ya C ile kaynaşır ya da Sc ile C'nın her ikisine bağlanır. Kanatlar bazen indirgenmiş (Niphadobata ve Chionea) olabilir. Bacaklar genellikle çok uzun ve narindir. Eklem yerlerinden kolayca kırılabilir özelliktedir. Tibia'lar 1 veya iki apikal mahmuza sahiptir, ya da hiç bulunmayabilir. Abdomen genellikle uzun ve narindir. Erkek terminali (hypopygium, hypopyg) çoğunlukla türlerin ayrımında kullanılabilen çok çeşitli karakteristik yapılara sahiptir. Genellikle gonostylusların iki parçası mevcuttur; iç ve dış gonostylus, ama bazen bir veya üç parça halinde bulunabilir. Dişi terminali (ovipositor) çok çeşitli şekillerde modifiye olmuştur, ama genelde iki parçalı valve'den oluşur. Cercuslar genellikle uzamış ve sivridir. Tipik olarak hayat döngüsü kısa bir yumurta safhası (6-14 gün), 4 larval safha ile kısa bir pupa safhasından (5-12 gün) oluşur. Ergin safha da genellikle kısa sürer. Hayat döngüsü, çevresel faktörlere, bilhassa sıcaklık ve neme bağlı olmak üzere 6 haftadan kısa olabildiği gibi 4 yıldan da fazla olabilmektedir. Özellikle uzun hayat döngüleri arktik türlerde görülür. Birçok tür sıcaklık ve yüksekliğe bağlı olarak yılda 1 veya 2 nesil verebilir. Yumurtalar suya, bataklığa benzer topraklara, bitki orijinli ayrışmış çeşitli organik çökeltilere (çürümüş odunlar, orman altı bölgeleri vb.) rutubetli yosunlara ve Hymenomycetes mantarlarına bırakılır. Uzun silindirik yapılı olan larvaları, hemicephalic ve metapneustic'tir, nadiren apneustic'dir. Baş kapsülü belli, ön tarafta iyi sertleşmiş, ventralde ve bazen dorsalde derince oyulmuştur. Çoğu Hexatominae ve Eriopterinae'de 6 boylamsal çizgiye indirgenmiş düz, sert kısımlar bulunur. Baş kısmının 2/3'si veya daha fazlası prothorasic segmentlerin içine geri çekilebilir özelliktedir. Abdominal segmentler düz veya hassas kıl sıralarıyla çevrelenmiştir. Bu kıllar birkaç sürünücü şerit içinde veya etimsi bir çıkıntının üzerinde bulunur. Terminal segment posterior kıllara sahiptir. Spiracular disk genellikle 5 veya daha az çeşitli uzunluklarda olabilen lob benzeri çıkıntılarla çevrelenmiştir. Genellikle 4 anal lob mevcuttur. Larvalar genellikle yaşamlarının büyük bir kısmını sucul ve yarı sucul çevrelerde geçirirler. Pupasyon için kenarlara ya da daha kuru ortamlara hareket ederler. Genellikle az çok ıslak, organik toprak ve çürümekte olan vejetasyon içinde veya çaylar, göller, bataklıklar boyunca ya da kütük yüzeylerinde bulunurlar. Diğer habitatları ise kuru topraklar (Dicranoptycha ve Cheilotrichia; Dicranomyia ve Limonia'nın bazı türleri), acı sular (Limoniini'nin bazı türleri), ıslak uçurumlar, alglerle desteklenmiş köprü kemerleri (Limonia, Orimarga, Elliptera, Dactylolabis'in bazı türleri), yosunlar veya ciğerotları (çeşitli Limoniinae mensupları), çayların içinde bulunan larvaların yaygın olarak beslendiği çürümüş odun veya kütükler üzerinde (Gnophomyia, Teucholabis, Lipsothrix), çayların kumlu veya küçük çakıllı, humuslu bölgeleri (bazı Eriopterinae), odunsu veya cıvık mantarlardır (Metalimnobia). Bir çok Limnophilinae türü karnivordur. Larvalar çürümekte olan sebzelerle, yosunlarla nadir olarak mantarlarla beslenirler (Limonia ve Ula). Bazıları ise predatördür (Hexatoma). Pupalar obtecta tipte olup uzun yapılıdır. Gözler çıkıntılıdır. Mesothorasic boynuzlar genellikle basittir ve uzun ya da kısa sensillalar içerir. Antenlere ait kınlar uzundur. Tarsal kınlar kenarlarda düzenlenmiş, üst üste binmemiştir. Abdomen paralel kenarlı veya oyuklar hariç az çok pürüzsüzdür. Anal segment genellikle dikenlere sahiptir. Özellikle Hexatominae'de abdominal dikenler ve kenar çıkıntı dikenleri mevcuttur. Limoniidlere ait bir çok tür, nemli ve sıcak ortamlara uyum göstermiştir. Erginler genellikle akarsu, dere kenarlarında bulunan tek yıllık otsu bitkilerin çalılıklarla karıştığı yerler ya da ormanlık alanlarda otsu bitkilerin ve eğreltilerin bol bulunduğu alanlarda, göl ve akarsu kenarındaki alt vejetasyon arasında bulunur. Ancak birkaç tür açık alanlarda, çayırlarda, kuru habitatlarda, hatta çöllerde yaşayabilirler. Bir çok tür bulundukları ortamlarda çok sayıda bireyle temsil edilirler ve özellikle kuşların, memelilerin, balıkların ve omurgasızların, özellikle örümcek ve predatör böceklerin besini durumundadır.

http://www.biyologlar.com/limoniidae

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Psychodidae

Güve sinekleri olarak da bilinen Psychodidae türleri Palearktik bölgede Phlebotominae, Bruchomyiinae, Trichomyiinae, Sycoracinae, Horaiellinae ve Psychodinae olmak üzere 6 altfamilyaya dahildir. En fazla 5 cm boyunda olabilen küçük sineklerdir. Vücut ve kanatları çeşitli renklerde olan oldukça kalın ve uzun kıllarla örtülüdür. Kanatlarda sadece boyuna damarlar bulunur, enine damarlar bulunmaz. Erginlerin ağız parçaları fonksiyonel değildir. Antenler 14-16 segmentli, bacaklar yoğun kıllar veya seta ile kaplıdır. Kuzey Avrupa'da sadece Trichomyiinae, Sycoracinae ve Psychodinae alt familyaları bulunur. Psychodinae tipik güve sinekleridir. Sycoracinae: Sycorax sinekleri küçük, 1-3 mm vücut uzunluğuna sahip, abdomen üzerinde yatay şekilde uzanan kanatlara sahiptir. Gözler dairesel, anten 15 segmentli, palpus 4 segmentli, dişilerin ağız parçaları sürüngen ve amfibilerden kan emmek için fonksiyoneldir. Kanatlar oval, radius 4, media ise 3 dallıdır. Trichomyiinae: Trichomyia erginleri az bulunur. Palpus 3 veya 4 segmentlidir. Dişilerin ağız parçaları fonksiyonel değildir. Radial kanat damarı sadece 4 dallı, vücut uzunluğu 3-5 m'dir. Psychodinae: 6 mm'den küçük sineklerdir. Başta gözler böbrek şeklinde, anten 14-16 segmentli, ağız parçalrı fonksiyonel değildir. Meso ve metatoraks uzantılı, feromon üreten renkli setalıdır. Kanatlar 10 boyuna damarlıdır ve genellikle çapraz damar bulunmaz. Kanat uzunluğu 1-5 mm'dir. Bacaklar yoğun kıllar ve setalarla çevrilidir. Birinci abdomen sterniti indirgenmiş, erkek genitali ters çevrilmiş, cerci cercopodia içine taşınmıştır. Sycoracinae larvaları küçük ve asesildir. Nehir boyunca kızılagaç içinde gelişir. Trichomyiinae larvaları çürümekte olan veya ölü ağaçlarda yaşarlar. Kızılağaç ve söğütü de tercih ederler. Psychodinae larvaları vermiform tipte olup 26 segmentlidir. Larvaların son distalinde açık stigmata uzanır. Hipostomun şekli ve dişlerin sayısı cinslere göre farklılık gösterir. Sycorax pupaları larvaları gibi aynı çevrede yaşarlar, 5-7 segmentli bir çift ventral vantuza sahiptir. Trichomyiinae pupalarının özellikleri çok az bilinir. 6-8. abdominal segmentlerde accessorial elementlere sahiptir. Psychodinae pupaları larvaları gibi benzer çevrelerde yaşarlar fakat kuru alanları tercih ederler. Psychodidae larvalarının tümü çürümekte olan organik maddeler veya detritusla beslenirler. Psychodini larvaları ötrofik koşulları tercih eder ve birkaç türü karnivordur. Sycorax erginleri sürüngen ve amfibilerden kan emmek suretiyle beslenirler. Larvalar nemli veya sucul habitatları tercih eder. Horaiellinae Himalaya ve Güneydoğu Asya'da nehirlerde bulunur. Sycoracinae larvaları suculdur ve kalkerli suları tercih eder. Phlebotominae ve Bruchomyiinae larvaları karasal ortamları tercih ederler. Phlebotominae erginleri insan dışkıları, mutfak ve çöp artıkları ile beslenir, Phlebotominae dişileri memeli ve kuşların kanı ile beslenirler ve bazı hastalıkların vektörüdürler. Kaynaklar •Vaillant, F., 1978. Psychodidae, pp 378-385. In: Illies, J. (Ed). Limnofauna Europea, (2nd ed.). Gustav Fischer Verlag, Amsterdam. •Vaillant, F., 1971-83. 9. Psychodidae-Psychodinae, pp 1-358. In: Lindner, E. (Ed). Die Fliegen der pal. Region, 3 (1). E.Schweitzerbartsche Verlagsbuchhandlung, Stutgart. •Wagner, R., 1991. Family Psychodidae, pp 11-65. In: Soós, Á., Papp, L. (Eds.). Catalogue of Palaearctic Diptera. 2, Akadémiai Kiadó, Budapest. •Wagner, R., 1997a. Diptera Psychodidae, Moth Flies, pp 133-144. In: Nilsson, A. (Ed). Aquatic Insects of North Europe, A Taxonomic Handbook, Volume 2, Apollo Books, Stenstrup. •Wagner, R., 1997b. Psychodidae, pp. 205-225. In: Papp, L. & Darvas, B. (eds): Contributions to a Manual of Palaearctic Diptera. 2. Science Herald, Budapest. •Wagner, R. 2004: Psychodidae. In: De Jong, H. (ed.) Fauna Europaea: Diptera: Nematocera. Fauna Europea version 1.2,

http://www.biyologlar.com/psychodidae

Tıbbi Mantarlar

Canlı bilimi olarak adlandırılan ve canlılarla uğraş alanı bulan bilim dalına biyoloji adı verilmektedir.Biyoloji bilimi tarih içerisinde çok çeşitli ve ilkelden modern düzeye doğru bir gelişme gösteren bilimler toplamından oluşmuştur.Çok çeşitli diyorum,sadece sistematik bile kendi içerisinde taksonomik inceleme alanları ile birçok alt dala ayrılmış;olay sadece taksonomi ile bitmemiş,farmakoloji,embriyoloji,mikrobiyoloji,genetik vb Bu bilim dalları gibi bir çok alt dala ayrılmış ve bunların inceleme alanları ilkelden modern düzeye doğru olmuştur. İlkelden modern düzeye olmak zorunda zaten…Öyle değil mi?Bir çok aletin gelişimi 16. yy dan itibaren olmamış mıdır?Teknik cihazların olmadığı yada ilkel sayılabilecek aletlerle ne yapılabilir?Bunlar sorgulandığı zaman sorunun cevabı kendiliğinden ortaya çıkmaktadır.İlkel olduğu bilim tarihi incelendiğinde de daha belirgin bir şekilde ortaya çıkmaktadır. Yukarıda belirttiğim gibi,aletlerin gelişimi ile beraber,biyoloji bilimi de daha modern manada gelişim sahası içerisine girmiştir.Peki bu aletler sadece biyoloji bilimi ile meydana getirilmiş aletler midir?Tabi ki hayır…Bu aletlerin geliştirilme safhası içerisinde fizik,kimya,matematik gibi bir çok bilim dalından da istifade edilmiştir.Bu duruma göre “biyoloji bilimi diğer bilim dalları ile de iç içedir” diyebiliriz.Aslında doğru ama bir o kadar dar kapsamlı olan bu söylemi genişletmek istiyorum;”bütün bilim dalları bir biri ile iç içedir” deme ihtiyacını kendi içimde hissediyorum… Biyoloji biliminin alt dalları olduğunu ifade etmiştim…Bu alt dallardan birisi de mikrobiyoloji adı verilen bilim dalıdır.Basit bir tanımlama ile ifade edersek,”mikrobiyoloji, canlı organizmalarda parazit olarak yaşayan canlıların ve bu canlılar ile konak olan canlıların birbiri ile olan etkileşimlerini inceler” diyebiliriz… Mikrobiyoloji,parazit olarak yaşayan ve göz ile görülen bitten pireden tutunda;bakteri,virüs gibi gözle görülemeyen parazitler üzerinde de inceleme yapmaktadır.Bu incelemeyi yaparken,sadece bu canlılar değil,bu canlıların konakçı ile yani üzerinde yaşadığı canlılar ile olan ilişkilerine de eğilmektedir. Mikrobiyolojinin incelediği bir sınıf ise mantarlar olup,bu mantarlar genel olarak gözle görülemeyen ve canlı organizmaya zarar veren tipte mantarlardır.Mantarların gözle görülenleri genel olarak hastalık yapmamakta,ancak amanita gibi mantarların yenmesi sonucu zehirlenmeler meydana gelmektedir ki;bu duruma “misetismus” adı verilmektedir. Mantarlar ökaryotik canlılar olup eşeyli veya eşeysiz üreyen türleri mevcuttur.Hücre duvarları vardır.Cryptococcus neoformans gibi mantarlarda ise kapsül bulunmaktadır.Hücre duvarlarının yapısında kitin,glukan ve manan yer almaktadır. Bazı mantarlar oda ısısında küf şeklinde,insan vücudunda ise maya şeklinde çoğalmaktadır.Bu tip mantarlara dimorfik mantarlar adı verilmektedir. Mantarların neden olduğu rahatsızlıklardan bir kısmını da irdelemeden edemiyeceğim…Bunlardan ilki nezle benzeri reaksiyona neden olmalarıdır.Bazı mantarların neden olduğu bu reaksiyonlar virüslerin neden olduğu nezleden daha uzun süreli ve daha ağırdır. Bazı mantarlar deri dışı yerlerde,örneğin saç,kıllar vb yerlerde rahatsızlıklara neden olur.Bu tip mantarlara örnek olarak Malassezia furfur (yaptığı hastalık;pityriasis versicolor),Exophiala werneckii(yaptığı hastalık;tinea nigra) verilebilinir. Bazı mantarlar deride rahatsılıklara neden olabilir.Bu tip mantarlara örnek olarak Microsporum canis(yaptığı hastalık;tinea capitis) verilebilinir. Bu tip mantarların yanı sıra iç organlarda rahatsızlık veren mantarlarda vardır.Menenjit gibi rahatsızlıklara neden olabilen bu tip mantarlar ise daha çok vücudun zayıf kaldığı durumlarda etkilidirler. Mantarlardan korunmak için bazı tedbirler mevcuttur.Vücut hatlarının kuru tutlması,ayağın koruyucu bir ayakkabı ile kapatılması ve alerjen olunan şeylerden kaçınılması söylenebilir…

http://www.biyologlar.com/tibbi-mantarlar

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

ÇEVRE TAHRİBATININ NEDENLERİ

Çağımızda Çevre kelimesinin yepyeni bir anlamı doğmuş ve insanlığın hal ve özellikle geleceği üzerinde sonsuz etki yapabilir bir durum ortaya çıkmış bulunmaktadır. Hızlı gelişme ile beraber meydana gelen Çevre kirlenmesinden söz edildiği zaman bunun önemini dimağına yerleştirilmiş kimseler derin , derin düşünmektedirler, zira gelecekte çok önemli ekolojikdeğişikliklerin görülebileceğini tahmin edebilmektedirler. Çevre kirlenmesinin önemi sanayileştirme faaliyeti ile orantılı olarak insanlar, hayvanlar ve bitkiler için durmadan artmakta ve dünyamızdaki hayat zincirini ciddi bir şekilde tehdit etmektedir. Bugün dünyamızın her hangi bir bölgesinde canlı varlıklar dengesi bozuluyorsa, yani üreme miktarı tahrip olandan az ise ve oradaki canlı varlıklar zorlanıyor ise * Çevre sorunu * var demektir. O bölgedeki çevre kirlenmesi sürekli ve aynı zamanda etrafa durmadan yayılıyor ise, oradaki çevre sorunu vahimdir. Acil önlem almak gerekir. İnsanlar etkisi olmadan da canlı varlıklar arasında varolan dengeler az veya çok bozulabilirler, yani çevre sorunu meydana gelebilir. Bu olaylar genellikle o kadar yavaş meydana geliyor ki, çoğu zaman insan ömrü bunları görmeye yetmiyor. Nedeni insan olmayan pek çok çevre sorunu yani hayat zincirindeki bozulmalar, doğa tarafından kısa veya uzun sürede düzeltilebilir. Başka türlü ifade edelim : Doğa alışık olduğu olayların yaralarını rahatlıkla tedavi edebiliyor. Tahribat yaparak çevre sorunlarına neden olabilen tabii olaylar arasında, seller, yıldırımlar, yıldırımların sebep oldukları yangınlar, depremler, kasırgalar, kuraklıklar, büyük sıcaklık değişmeleri vs. sayılabilir. Bunlar ve bunlara benzeyen çevre sorunlarında çok fazla etkili önlem alamayız. Bu gibi değişiklikler insan iradesinin dışındadırlar. İnsanların sayısız etkinliklerinden dolayı dünyadaki sular toprak ve diğer katı maddeler ile bunları çevreleyen atmosfer hızla kirlenmektedirler. Dünyamızda mevcut olan hayat zinciri, çeşitli etkinlikler sonucunda meydana gelebilen pek çok madde daha önce mevcut olmadıklarından, doğa bunları ya hiç yok edemiyor veya uzun yıllar sonra yok edebilecektir. Bu gibi suni maddelerin çevreyi gittikçe daha fazla kirletmelerinin nedeni budur. Denebilir ki, güzel dünyamızın, insanların faaliyetlerinden dolayı şimdiye kadar maruz kaldığı bütün kirlenme veya bu kirlenmenin büyük bir kısmı çağımız dediğimiz son bir buçuk yüzyıl içinde meydana gelmiştir. Yani, dünyadaki çevre kirlenmesinin tek sorumlusu çağımızda yaşamış ve yaşamakta olan birkaç insan jenerasyonudur. Dünyamızda mevcut olan milyarlarca ton fosil madde (petrol,doğalgaz,çeşitli maden kömürü vs.) milyonlarca yıldan beri hemen, hemen hiç azalmadan oldukları gibi duruyorlardı. Parçalanınca bol miktarlarda enerji verebilen uranyum ve radyum gibi radyoaktif madenlere de çağımıza kadar iltifat eden kimse yoktu. Dünyamız da bunların kullanılmasından ve parçalanmasından dolayı her hangi bir kirlenmeye maruz kalmıyordu. Bugün ise bir çok kıymetli yer altı hazinelerinin ne zaman bitebileceğinin hesabı yapılmakta ve insanları ciddi bir şekilde düşündürmektedir. Bu gibi maddelerin gerek enerji üretimine kullanılması ve gerekse diğer amaçlar için işlenilmesi, çevre kirlenmesinin en önemli kaynağını teşkil etmektedirler. Kuşkusuz çağımız, dünya tarihinde en hızlı gelişme ve ilerlemelere sahne olmaktadır. Beşeriyetin sanayileşme ve tekniğin her alanında gelişmesinin azami noktası yaşamakta olduğumuz zaman içindedir. Bu hızlı gelişme durmadan artmaktadır. Bu arada, insanların doğal zenginlik kaynaklarını hızla tüketmeleri ve çevreyi pek çok yer ve şekilde hızla kirletmelerine çağımızda rastlanmaktadır. Etkili ve geniş kapsamlı önlemler alınmaz ise dünyamızdaki tüm canlı varlıklar için yaşama şartları durmadan bozulmaya mahkumdur. Çevre kirlenmesinin önemi hızlı sanayileşme ile beraber (on dokuzuncu yüzyılın ikinci yarısından itibaren) anlaşılmış ve takdir edilmiş, dolayısı ile gerekli önlemler alınmış olsaydı, dünyamız bugün bu çapta büyük bir tehlike ile karşı karşıya bulunmazdı. Hızlı sanayileşme ile beraber çevrenin hızla kirlenmesi ve bu durumun doğurabileceği sınırsız tehlike, ancak son çeyrek yüzyılda yeterince anlaşılabildi. Gerekli etkili çalışmalara da bundan dolayı çok geç başlanıldı. Bir madde veya enerji üretirken çevrenin kirlenmemesine çaba göstermek, kirlenmiş çevreyi temizlemek insanların ve tüm canlı yaratıkların geleceği bakımından şarttır. Madde üretmek, yeni , yeni ürünleri bulup insanların hizmetine sunmak, bu ürünleri elde etmek için çeşitli yollardan değişik şekillerde enerji elde etmek, insanların refah ve saadetlerini ve konforlarını artırıcı girişimlerde bulunmak bütün insanların başlıca uğraşlarıdır. Bu etkinlikler insanlık tarihi ile başlar ve sonuna kadar da devam edecektir. Ama tabiatı bozacak, çevreyi kirletecek, dolayısı ile dünyadaki tüm canlı varlıkları tehlikeye sokabilecek faaliyette bulunmak hiç kimsenin, hiçbir toplumun hakkı değildir. Bu işler cinayet sayılmalıdır. Bu gibi faaliyetlerin doğurduğu kirlilik, önlemler alınmaz ise zamanla birikir ve mevcut hayatın tükenmesine neden olur ki, bunu hiç bir mantık ve sağduyu hoş görmez. Bu gün ilim ve teknik o kadar gelişmiştir ki, insanların her sıkıntıları ve arzularına olduğu gibi çevrenin kirlenmesine veya kirlenmiş çevrenin temizlenmesine de çare bulunabilir, yeter ki gerekli olan ek külfete katlanılsın ve mevcut olan imkanlar hoyratça harcanmasın. Bundan çeyrek yüzyıl kadar önce Çevre mefhumu o kadar yaygın değildi. Bugün bütün dünyada bu konunun üzerinde önemle durulması ve çevre temizliğini korumak için gittikçe artan miktarda çaba harcanması, aslında çok önemli ve olumlu bir gelişmedir. Bunun nedenlerini kısaca şu şekilde özetlemek mümkündür. Her alanda olduğu gibi çevre konusunda da sanayileşmiş ilkelerde bilgi ve tecrübe birikimi vardır. Bu gibi ülkelerde sanayi ve enerji üretme tesislerinin bol olmasından dolayı çevre kirlenmesi o oranda fazla olmaktadır. Kuşkusuz her türlü sanayi artığı, radyoaktif maddelerin radyasyonu ve gürültüyü meydana getiren ses titreşimleri de mevcut olan tesisler ile az çok orantılıdır. Gelişmiş ülkenin insanları sağlık bakımından hastalıklara karşı daha duyarlıdır, zira gelişmiş ülke insanı bolluk içimdedir, temiz çevreye alışkındır, fazla sıkıntıya pek dayanıklı değildir. Kirlenmiş çevre bu gibi insanları daha kolay ve çabuk etkileyebilir. Gelişmemiş ülke insanları içinde çevre kirlenmesinin önemi büyüktür. Nedenlerini kısaca özetleyelim. Gelişmemiş ülkelerde de az çok sanayi tesisleri bakımından zengin olan bölgeler vardır. Örneğin Türkiye, gelişmekte olan bir ülke olmakla beraber Kocaeli, İstanbul ve Bursa gibi sanayi tesisleri bakımından zengin m olan bölgelerimiz vardır. Gelişmiş ülkelerin nükleer enerji tesislerinin etkisi sınır tanımadan uzaklara kadar yayılabilmektedir. Dolayısı ile bu tesislerin etkisi uzakta bulunan pek çok gelişmemiş ülke halkını da rahatsız edebilir. Atmosfer gibi sular da (kapalı sular hariç) insanların ortak malıdır ve suların yardımı ile birçok ülke birbirine bağlanmaktadır. Akdeniz de sahili olan bir ülke diğer ülkelerin denizi kirletici etkinliklerinden zarar görebilir. Şirin İzmit Körfezimizin, özen gösterilmediğinden ne hale geldiği meydandadır. Bu körfezin hiç bir canlı varlığın barınamayacağı kadar kirlenmesine ve ‘ölü bir deniz parçası ‘ haline gelmesine çok az kaldı. Gerekli etkili önlemler alınırsa İzmit körfezi bu korkunç sonuçtan kurtarılabilir. Başkentimiz Ankara dahil olmak üzere bazı büyük şehirlerimiz, kalitesiz yakıttan dolayı kış mevsiminde öldürücü derecede kirli bir gaz tabakası ile kaplanmaktadır. Sanayileşmek, ilerlemek ve daha konforlu ve rahat bir hayat seviyesine ulaşabilmek her insan topluluğunun tabii hakkıdır. Ancak bu gibi faaliyetleri yaparken olumsuz etkilere sebep olmamak veya hiç değilse meydana gelebilecek çevre kirlenmesini en aza indirmek de insanların kaçınılmaz görevidir. Tabiatta yaşayan her türlü canlı varlıklar arasında beslenme kaynaklarında bir denge hüküm sürer. Her canlı varlık bu dengede yerini alır. Ezelden beri bu iş böyle süregelmiş. Bu sistemdeki değişiklikler, insanın müdahalesi olmazsa çok yavaş vuku buluyor. İnsanın ömrü, hatta bazen pek çok milletlerin ömrü dahi bu değişiklikleri yaşamaya, müdahale etmeye yetmiyor. Çağımıza değin (19.yüzyılın ikinci kısma ve 20.yüzyıl) insanların faaliyeti hayat zincirinin üzerinde hissedilir etki yapmamıştır denebilir. Fakat maden kömürü, petrol, tabii gaz bulununca, buhar kuvveti ile elektrik keşfedilince, maddenin mahiyeti ve onun yapı taşları ( atom, molekül, nötron, proton vs.) biraz açıklık kazanınca, hızlı devir başladı ve bu hıza paralel olarak dünyayı tüketme işi de devreye girdi. Şimdiden bilhassa gelişmiş ülkelerde her türlü canlı varlıklar için kullanılmaz hale gelen pek çok arazi ve su adacıkları vardır. Buralardaki bozuklukların sınırı gittikçe genişlemektedir. İnsanların girişimleri olmasa idi canlılar arasındaki alışveriş sessiz sedasız sürüp gidecekti. Şimdilik C rumuzu ile gösterdiğimiz kömürün hayat dengesindeki durumunu gözden geçirelim. Karbon ( C ), ister yakılsın ister gıda olarak kullanılsın oksijen alıp okside oluyor ve karbondioksit meydana geliyor. C + O2 = CO2 (kömür,petrol, (oksijen) (karbondioksit) odun,gaz vs.) Bu da tipik bir kimyasal reaksiyondur. Yakıt yakılınca bacadan, vs. karbon, karbondioksit (şayet iyi yanma olmamış ise kısmen de karbon monoksit ) olarak atmosfere karışır. Karbonu ihtiva eden çeşitli gıda maddeleri insanlar ve hayvanlar tarafından yenilince gene aynı şekilde karbon, karbondioksit haline gelir ve atmosfere karışır. C + O2 = CO2 gıda maddelerindeki oksijen yavaş yanma karbondioksit karbon Demek ki insanlar ve hayvanlar yaşamlarını sürdürdükçe havayı karbondioksit bakımından zenginleştirir.halbuki bitkiler bu reaksiyonun tam tersini yaparlar, kısacası : (güneş ışını) CO2 + H2O = CH2O + O2 (foto sentez) (foto aldehit) oksijen Form aldehit klorofil < k a t a l i z a t ör l ü ğ ü n de > meydana gelen en basit organik madde ve karbonhidratların en basit yapı taşıdı ve daha sonra pek çok önemli organik gıda maddelerini meydana getirir. Şematik olarak kısaca : Form aldehit = glikoz = sakaroz = nişasta = selüloz Karbon, güneş enerjisi yardımı ile redüksiyona uğrayıp organik maddelerin bünyelerine girmek sureti ile adeta tekrar değerli ve kullanışlı hale gelir. Karbon yanınca veya gıda maddesinde iken sindirilince kullanışsız olan CO2 haline gelir. Fotosentez ile organik madde haline gelince kaybetmiş olduğu enerjiyi güneşten tekrar tamamlamış olur. Hayvanların en geniş gıda maddesi kaynağı hiç şüphesiz bitkilerdir. Fakat istisnasız her hayvan dışarıya attığı çeşitli maddelerle ve öldükten sonra çürüyecek olan maddeleri ile bitkilere bir bakıma gıda olur, çünkü ; bu bakiyeler bitki yetiştiren topraklar için değerli birer gübredirler. Kimya sanayiinin çevreye yapabileceği kötü etkilere birkaç örnek verelim : İnsanların çeşitli faaliyetleri neticesinde bu düzenli devir ciddi bir şekilde bozulmaktadır. Örneğin zirai mücadelede bir zamanlar çok yaygın halde kullanılan DDT’ yi ele alalım DDT değerli bitkiler için zararlı olan birçok haşereyi kısa zamanda yok eder. (zamanla bazı haşere türünün DDT’ ye karşı bağışıklık kazandığı da malumdur.) ölen haşere leşlerindeki DDT kalıntıları kolayca çürümediğinden bunları yiyen kümes hayvanları dahil pek çok kuş türü bir müddet sonra insanlara zehirli gıda olarak ulaşabilirler. DDT kullanılmasının bu mahsuru 15-20 yıl sonra anlaşılmış ve üretimi ile kullanılışı düşmeye başlamıştır. Bu gibi tarım mücadele ilaçlarının en kötü tarafı tabii koşullarda çok uzun ömürlü olmalarıdır. Bu maddeler daha önce dünyamızda mevcut değillerdi. Onun için tabiat bunları sindiremiyor, kusuyor. Hülasa: Kimyasal faaliyetlerin çevreye olumsuz etkilerinin hepsini saymak mümkün değildir. Kimyasal proses, maddenin derin bir şekilde değişmesi, yepyeni maddelerin meydana gelmesidir. Kısaca madde mahiyet değiştirir. Yeni meydana gelen madde tabiatta daha önce mevcut ise etkili ve sürekli çevre sorunu pek meydana gelmez. Mesela tuz ruhunun kireç taşına etkisi gibi. Genel bir ifade ile, çevre ya maddi olarak kirlenir, yani gaz, sıvı veya katı haldeki maddeler etrafa sıçrar, veya maddi olmayan hava titreşimi (gürültü) ve yene maddi olmayan çeşitli ışın yayılması ile kirlenir. İnsan faaliyeti veya tabii olaylar sonucunda kıymetli arazinin bozulmasına da çevre kirlenmesi denilebilir. Çevreyi en fazla etkileyen, dolayısı ile kirleten maddeler daha önce mevcut olmayıp insanlar tarafından imal edilenlerdir. Tabiat kendi ürünü olan maddeleri, artıkları sindirip zararsız hale getirmesini bilir. Ama ekolojik dengeyi bozmaya neden olan maddeler yani insanların imal ettikleri yapay maddeler tabiat tarafından kolaylıkla sindirilemiyorlar. Bundan dolayı suni madde artıklarının kirleticiliği uzun, belki de çok uzun zaman sürecektir. Örneğin tabiatta yetişmekte olan herhangi bir bitkisel veya hatta hayvansal madde arttığı etrafa saçılınca kuşkusuz çevreyi kirletiyor, lakin bu madde fermantasyon vs. olaylarından veya herhangi bir canlı mahluk yem veyahut gübre olarak kullanılmasından dolayı bir müddet sonra parçalanıp çevreyi kirletme niteliğini kaybedecektir. Fakat sonradan insanlar tarafından imal edilip etrafa saçılarak çevreyi kirleten maddelerin bir kısmı oksit tas yon ve fermantasyona mukavim oldukları gibi canlı varlıklara yem ve gübre olma görevini de kolay, kolay yerine getiremiyorlar. KISACASI Tabiatta mevcut her türlü madde bu arada bitki ve hayvan artıkları genellikle uzun vadeli çevre sorunlarına sebep olmadan canlı varlıklar arasındaki dengelerde yerlerini bulup şekil değiştirerek yok olmakta ve zararsız şekil e girmektedirler. Bu durumu şöyle ifade edebiliriz : Her canlı varlık, tabiat tarafından parçalanıp tekrar değerlendirilir. Ama mesela insan yapısı olan pek çok kimyasal madde ve bu arada plastik türleri bozulmadan uzun zaman dayanabilmektedirler. Bu suni maddeler her türlü etkenlere karşı çok dirençli olduklarından, çevre için olumsuz etkileri de uzun ömürlüdür. ÇEVRE TAHRİBADINA KARŞI ALINACAK ÖNLEMLER İnsanlar daha rahat, daha konforlu, daha hızlı velhasıl daha uygar ve daha yüksek bir hayat düzeyine kavuşabilmeleri için hammadde kullanarak mamul madde üretirler. Şüphesiz burada istenilen sonuç, madde ve malzeme yerine enerji çeşitleri de olabilir. İşte bu işlemlerde % 100 dönüme olamıyor. Çoğu zaman madde veya enerji olarak artıklar meydana gelmektedir. Bu artıkların çıkmasını mümkün mertebe azaltmak, etrafa saçılmalarını önlemek, bu artıkları yararlı hale getirmek üzere başka şekildeki madde ve enerjiye çevirmek, her ne suretle olursa olsun yayılmayı ve saçılmayı önlemek, bu artıkların insan, hayvan ve bitki üzerindeki olumsuz etkilerini yok etmek ve azaltmak, çevreyi koruma faaliyetinin önemli kısmını teşkil eder. Ayrıca hava titreşiminden (gürültü) etrafın rahatsız olmaması için her türlü önlemi almak da, bu ana amaçlar arasında yer alır. Doğada bütün canlı varlıklar da mevcut denge ve düzeni korumaya yardım etmek, bozulmuş olanı tekrar onarmak, insan faaliyetinden ve tabii olaylardan ötürü kıymetli kültür arazisini bozulmaya karşı korumak ve bozulmuş olan bölgeleri onarmak ve eski ekolojik şartları tekrar geri getirmek de çevre faaliyetlerinde önemli bir yer işgal eder. Sıralanan bütün bu amaçlara varmak için her ülke için gerekli organizasyon ve teşkilatı kurmak, tedbir almak, mevzuat hazırlamak, gerekli ölçümleri yapmak, kirlilik standartları ve koruyucu önlemler tespit etmek ve icabında müeyyide uygulamak çevreyi koruma faaliyetinin çerçevesi içinde yer almaktadır. Şu hale göre nerede ve ne isimde kurulmuş olursa olsun çevre organizasyon ve kuruluşları, burada anlatılan esaslara uygun ve paralel olarak hareket etmelidirler. Çevre korunması için harcanan çabalar netice itibariyle işletmelerin randımanının da artmasını sağlayabilirler. Yani başlangıçta yük gibi görünen işler sonuçta ürünlerin maliyetinde indirici etkiler de yapabilirler. Bu hususu kısaca şöyle izah etmek de mümkündür : Etrafı ve dolayısı ile çevreyi kirleten her şey aslında kontrolden kaçmış bir şeydir. Bu kayıp hem ara ve son madde veya enerji olabilir. Çoğu zaman etrafa yayılması ile rahatsız etme vasfını taşır hale gelen bu gibi artık madde ve enerjiyi toplamak sureti ile kullanmak veya bir veya birkaç işlemden geçirdikten sonra kullanılır hale getirmek çoğu zaman mümkündür. Şu hale göre çevreyi kurtarmaya hizmet etmek iki yönden yarar sağlar. Birincisi, çevrenin temiz tutulmasının sağlanmasıdır. İkinci yarar ise artıkların işe yarar hale getirilmesinin temin edilmesidir. Çevre faaliyetini teşkil eden işlerin en önemli adımı, ülkelerin bu işin önemini vakit geçirmeden takdir etmeleri ve gerekli mevzuatı bir an önce hazırlayıp yürürlüğe koymalarıdır. Çevrenin önemini anayasalarında belirleyen ülkeler mevcuttur ve bunların adedi artmaktadır.

http://www.biyologlar.com/cevre-tahribatinin-nedenleri

Lichenes, Lichenophyta

Likenler (Osmanlıca: şeybiye) ya da likenleşmiş mantarlar (lichenized fungi), mantar (mikobiyont) ve suyosunlarından (fotobiyont) kurulu kararlı ve sürekli ototrofik mutualistik (ya da daha çok kontrollü parazitik) simbiyotik organizma birlikteliği olup görünüşçe nispeten karayosunlarına benzer ve Türk halk dilinde (ve diğer birçok dilin halk ağzında) daha çok yosun adıyla anlırlar. Likenler, teknik olarak taksonomik açıdan «yosun mantarı» olsalar da pratikte görünüm açısından «mantar yosunu» olarak algılanırlar. Mikobiyontların (mycobiont) % 98'ini asklı mantarlar (Ascomycota), % 2'sini de bazitli mantarlar (Basidiomycota) oluşturur. Fotobiyont ya da fikobiyontların (photobiont, phycobiont) % 90'ı bitkiler (dar anlamıyla) içinde değerlendirilen ökaryotik yeşil suyosunlarından (Chlorophyta) oluşurken geriye kalan % 10'u bitkiler dışında tutulan ökaryotik sarı-yeşil suyosunları (Xanthophyta) ile eski adları mavi-yeşil suyosunları olan prokaryotik siyanobakterilerdir (Cyanobacteria). Liken oluşturan yeşil suyosunlarının % 40'ını Trebouxia cinsi oluştururken bunu ikinci sırada Trentepohlia cinsi izler. Siyanobakteriler içinde daha çok Nostoc cinsi liken oluşumuna katılır. Mantarların yaklaşık beşte biri likenleşmiş (lichenized) hâldedir ve karbon kaynağı elde etme bakımından likenleşme (lichenisation) iyi bir beslenme stratejisidir. Liken birlikteliğinde mantarların çıkarı suyosunlarına göre daha fazladır. Likenler oldukça yavaş büyürler (yılda birkaç milimden bir iki santime kadar). Görünümüne göre kabuksu, yapraksı ya da dalsı olabilen likenlerin yaklaşık dörtte üçü kabuksu görünümlü kayacıl likenlerdir. Likenler laboratuvar ortamında bileşen organizmalarına (mantar ve suyosunu) ayrılabilmektedir. Taksonomik incelemesi ilk olarak İsveçli botanikçi ve «liken biliminin babası» (father of lichenology) Erik Acharius (1757-1819) tarafından yapılan likenleri araştıran bilim dalına liken bilimi ya da likenoloji (lichenology) adı verilir. 1897 yılında yayımlanan kitabında Albert Schneider, zamanına göre likenolojiyi yedi döneme ayırmıştır: (< Schneider 1897) I. Period: from Theophrastus (371-286 B. C.) to Tournefort (1694) II. Period: from Tournefort (1694) to Micheli (1729) III. Period: from Micheli (1729) to Weber (1779) IV. Period : from Weber (1779) to Wallroth and Meyer (1825) V. Period: from Wallroth and Meyer (1825) to Schwendener (1868) VI. Period: from Schwendener (1868) to Reinke (1894) VII. Period: feginning with Reinke (1894) Bütün dünyada yaklaşık 25.000 liken türü vardır. Türkiye'den kaydedilen takson sayısı 2.000 (< Çobanoğlu & Sevgi & Tecimen & Yılmaz & Açıkgöz 2011) olmasına rağmen Türkiye Liken Florası henüz yazılmamıştır

http://www.biyologlar.com/lichenes-lichenophyta

Alabalık Hastalıkları

Balık hastalıklarının teşhisi özel bir bilgi ister. Hastalık çıktığında konu üzerinde tecrübeli bir veteriner çağırılması en doğru davranış olur. Üreticiler bakımından hastalıkların çıkmasını önleyici koruyucu tedbirlerin önceden ele alınması ve düşünülmesi temel sağlık prensibi olmalıdır. Hastalıklardan korunmak için iyi, düzenli ve dengeli bir besleme, balıkları normalden fazla sık bulundurmama, su olanaklarının devamlı şekilde yeterli olmasının sağlanması, diğer işletmelerden balık satın alındığında karantina da tutularak hastalık getirmelerinin engellenmesi gibi bir çok konuda tedbirli olmak gerekir Solungaç Hastalığı: Solungaçlar şişmiş ve üzerleri mukoza ile kaplanmıştır ileri dönemde hastalıklı yerler kanar ve ağız etrafı yaralar ile kaplanır Balıkların hareketi azalmıştır, yem almak istemezler Solungaçlar soluklaşmıştır. Daha çok küçük yavru balıklarda görülen ve tahripkâr olabilen bir hastalıktır. Tedavi için, 1/200'lük bakır sülfat eriyiğinde 2 dakikalık daldırma banyosu, 1/15000 oranındaki malahit yeşilinde 2 saniyelik daldırma banyosu ve 100 kg. balık için günlük yeme 2 gr. sülfamerazin katılarak balıkların bir hafta süreyle yemlenmesi önerilmektedir Vibriosis: Vücut üzerinde iç kısmı irin ile dolu şişkinlikler belirir Yüzgeç bağlantılarında kan birikimleri görülür. Anüs çıkıntılı bir durum alır ve gözlerde patlak durumundaki şişkinlikler görülebilir. Vücudun genel renginde bir kararma izlenir. İç organlarda ise dalağın şiştiği, böbreğin erimeye başladığı ve sindirim organlarının sarımsı bir mukoza ile kaplandığı görülür. Balık yemlerine binde 3 terramisin veya %02 furazolidone katılarak bir haftalık yemleme önerilmektedir. Kostiasis:Bir parazit hastalığıdır. Vücut ve yüzgeçlerde pas renginde lekeler görülmesi ile anlaşılır. Malahit yeşili banyosu veya formaldehit banyosu (l/500'lük) önerilir. İchthyaphthiriasis hastalığı:Balıklarda parlaklık artmıştır. Vücut üzerinde beyaz küçük kesecikler görülür. Solungaçlarda da yığıntı şeklinde beyazlıklar belirir. 1/4000 oranındaki formaldehit eriyiğinde 1-2 saatlik banyo önerilmektedir. Devamlı temizlik, ölü balıkların hemen atılması, havuz değiştirilerek balıkların bol su akıntılı diğer bir havuza alınması tedaviyi hızlaştıncı etkilerde bulunabilir. Oktomitus:Sindirim organlarında görülen bir hastalıktır. Balıklar aşırı zayıflar ve çoğunlukla ishal görülür. Bazı vücut bölgelerinde deri üzerinin siyahlaştığı izlenir. Kesin teşhis mikroskop kontrolü ile yapılır. Yemlere %02 oranında fumagill'in veya %02 Carborsane karıştırılması bildirilmektedir. Dönme hastalığı (Whirling):özellikle küçük yavrularda görülür. Hasta balıklar kendi kendilerine oldukları yerde dönerler. Bu balıklar veya hastalık görülen havuzda yavru sayısı az ise balıkların tümünün imha edilmesi bile düşünülmelidir. Viral septisemi:Bir yaşını aşmış balıklarda görülen bu hastalığın kesin tedavisi bilinmemektedir. Hasta balıklarda vücudun siyahlaştığı ve gözlerin dışarı fırladığı görülür. Daha sonra balık su da daireler çizerek yüzer ve zayıfladığı izlenir. Troid tümörleri:Balıklarda troid bezlerinin şişmesinin izlenmesi ile.teşhis edilir. Yemlere iyotlu tuz katılması yolu ile iyot eksikliğinden ileri gelen bu hastalık önlenebilir. Diğerleri:Balık hastalıkları çok geniş konuları kapsamaktadır, özellikle yemlerin kalitesinin düşük olması bir çok hastalıklara neden olabilmektedir. Bu nedenle kaliteli yem kullanmak ve temiz bir yetiştirme ortamı sağlıklı bir üretim için temel şartlardır. Rasyonlarda protein oranının düşük olması çeşitli solungaç hastalıkları ve sindirim bozukluklarına neden olabilir. Bozuk yemler ile hazırlanmış rasyonlar karaciğerlerde beklenmeyen arazlara neden olabilmektedir. Beslenme yetersizlikleri anemi ve zayıflama hastalıklarının başlıca amili olabilir. Mineral ve vitamin eksikliklerinin yapacağı bir çok arazlar çoğu kez bilinmeyen hastalıklar görünümünü yaratabilir. Çünkü her türlü vitamin noksanlığının kendine göre vücutta meydana getirdiği zararlar mevcuttur. Aşırı yağlı yemler ile beslenme karaciğerlerde yağlanmaya neden olabilir ve kısırlık meydana getirebilir. Küflü yemler visceral granuloma adı verilen ve böbreğin şişmesi ve açık gri renkli modüllerin böbrekte oluşmasına neden olan hastalık amili olabilmektedir. Uzun süren açlık zayıflama ve neticede ölüme varan sonuçlara götürebilir. Suya karışacak deterjanlar ve diğer artık maddelerinde sağlık ve hastalıklar üzerinde çok önemli etkileri vardır. Hastalıkların önlenmesinde kullanılan formol, metilen mavisi, malahit yeşili gibi maddelerinde normal dozlardan fazla kullanılması ve suya karışması da çok tehlikeli ve toplu ölümlere neden olabileceği unutulmamalıdır. Kireç, çimento ve boya artıkları, oksijen yetersizliği, suyun sertliğinde ani artış veya eksilişler, pH durumundaki kritik değişmeler gibi bir çok konularda hastalık ve ölüm nedeni olabilir. Sonuç olarak çevre koşullarının en iyi düzeyde tutulması, yemlemenin çok iyi planlanması ve balık sıklığının iyi düzenlenerek gerekli oksijeni devamlı sağlayacak temiz suyun kesintisiz havuzlara verilebilmesi, hastalıkları tedavi etme yerine gerekli korunmaların düzenlenmesi ile başarılı bir yetiştiriciliğin mümkün kılınabileceği hiç bir zaman unutulmamalıdır. KAYNAK;www.tarimsal.com/alabalik.htm

http://www.biyologlar.com/alabalik-hastaliklari

Biyoloji Eğitiminde Evrim ve Yaratılışcılık

Biyolojik bilimlerin temeli olan evrim kurami çagimizin belki de en önemli bilimsel devrimlerinden biridir. Yeryüzündeki canli türlerinin ortak bir atadan evrimleserek ortaya çiktigini, yeryüzündeki yasamin ortak bir geçmisi paylastigini öne süren evrim kurami, insanin kendine ve dogaya bakis açisini degistirmistir. Sayet insan bugünkü konumuna evrim sonucu geldiyse evrimin yasalarini ögrenebilir ve kendinin ve diger canli türlerinin evrimini yönlendirebilir (1). Canli türlerinin bir evrim sonucunda olustugu ortaya atilincaya kadar dogadaki tüm canli türlerinin insanligin yarari için varoldugu, insanin da dogadan yararlanmak, dogaya egemen olmak üzere yaratildigi düsüncesi geçerli idi. Evrim kurami ise insani bu özel konumundan indirmis ve insanin diger canli türleri gibi biyolojinin yasalarina tabi oldugunu, doganin bir parçasi oldugunu, diger canli türleri ile ortak bir biyolojik bir geçmisi paylastigini öne sürmüstür. Diger bir deyisle biyologlarin, ekologlarin kuslar, böcekler, baliklar, yosunlar üzerinde çalisarak ortaya koydugu ilkeler insan için de geçerlidir. Evrim kuraminin ortaya attigi görüsler insanin ve diger canli türlerinin ortak bir atadan evrimlestikleri görüsü, yaratilisin kutsal kitaplardaki öyküsü ile çelisir görünümdedir. Bu nedenledir ki canli türlerinin olusumunu bilimsel olarak açiklayan evrim kuramina kutsal kitaplari harfi harfine yorumsuz olarak kabul eden bazi kökten dinci çevrelerce sürekli olarak karsi çikilmistir. Dünyanin evrenin merkezi olmadigi sadece günesin çevresinde dolanan küçük bir gezegen oldugu görüsü de ilk kez ortaya atildigi zaman kutsal kitaplarin anlatimi ile çelistigi için büyük bir direnisle karsilasmisti. Günümüzde Copernicus, Kepler, Galileo'nun günes sistemi konusundaki buluslari artik tartisma konusu degildir. Ancak incili harfi harfine tartisilmaz bir tanri kelami olarak kabul eden kökten dinci hiristiyan gruplar evrime karsi bagnazca savaslarini halen sürdürmektedirler. Evrim karsiti kampanyada merkezleri ABD'de bulunan Yaratilisi Arastirma Enstitüsü (Institution for Creation Research) ve Yaratilisi Arastirma Dernegi (Creation Research Society) adli iki örgüt basi çekmektedir (2, 9). Kökten dinciler daha 1920'lerde ABD'nin bazi eyaletlerinde evrim kuraminin ögretilmesini yasaklayan yasalar çikmasini saglayabilmislerdir. Biyoloji ögretmeni John Scopes 1925 yilinda biyoloji dersinde evrim anlattigi için yargilanmis ve mahkum edilmisti. Bunun sonucu olarak 1960'lara kadar Amerika'nin bazi eyaletlerinde evrim kurami pek deginilmeyen bir konu olarak kalmistir. 1957 yilinda gerçeklesen bir olay Amerikalilarin biyoloji egitiminde evrimi yasaklayan tutumunu degistirmelerine neden olmustur. Sovyetler Birligi ilk kez uzaya bir yapay uydu olan Sputnik'i firlatmistir. Bunun üzerine Amerikalilar teknoloji yarisinda Sovyetler Birliginin gerisinde kaldiklarini farkederek fen egitimini yeniden gözden geçirip fen dersleri müfredatinda köklü degisikliklere gitmeye karar vermislerdir. Fen dersleri müfredati çagdas bilimin gerektirdigi sekilde yeniden düzenlenmis ve biyoloji ders kitaplarinda Darwin'in evrim kuramina da yer verilmistir. Bundan sonra evrim karsiti tüm yasalar Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Bunun üzerine kökten dinciler dinsel inançlari Yaratilis bilimi olarak öne sürmüsler ve okullarda bu sözde bilimin de evrimle birlikte okutulmasi için çalismaya baslamislardir. Bunun sonucu olarak 1981 yilinda Arkansas eyaletinde evrim kuramina karsi görüsleri içeren yaratilis biliminin de evrim kurami ile birlikte ögretilmesi yasalasmistir. Daha sonra bu yasa da Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Mahkeme kararina göre evrim kuramina karsi görüsleri savunan ve dinsel bir inanci temsil eden yaratilisçilik ögretisi bir bilim degildi ve fen bilimleri egitiminde evrim kuramina karsi bilimsel bir alternatif sayilamazdi. Amerika Birlesik Devletleri Ulusal Bilimler Akademisi de yaratilis görüsünün evrim ile birlikte ögretilmesine karsi çikmis ve yayinladigi bir kitapçikta su görüse yer vermistir (3) : " Din ile bilim insan düsüncesinin iki ayri ve birbirini dislayan alanidir; bu yüzden ayni yerde ikisinin birlikte verilmeye çalisilmasi hem bilimsel teorinin hemde dinsel inancin yanlis anlasilmasina yol açacaktir." Amerika Birlesik Devletleri Ulusal Bilimler Akademisi yayinladigi Bilim ve Yaratilisçilik (3) adli kitapçikda bu görüslere de yer vermistir : "Ulusal egitim sistemimize ve bilimin zorluklarla kazanilan, somut kanitlar üzerine kurulu yapisinin bütünlügüne ve etkinligine karsi girisilen böyle bir saldiri karsisinda Ulusal Bilimler Akademisi sessiz kalamazdi, çünkü sessiz kalmak, akademik ve düsünsel özgürlüge ve bilimsel düsüncenin temel ilkelerine olan sorumlulugumuzu ihmal etmek olurdu. Bilimsel ugrasinin tarihsel temsilcisi ve Federal hükümet'in bilimsel sorunlardaki danismani olarak Akademimiz bilinmesini ister ki; Yaratilis bilimi ilkeleri bilimsel bir kanitla desteklenmemektedir ve yaratilisçiligin ögretim programinda hiçbir düzeyde yeri yoktur. Günümüzün bilgili ve bilinçli fen dersi ögretmenlerinin de önerilen ögretimi yapmalari mümkün degildir. Ayrica böyle bir ögretim, ülkenin gereksinim duydugu bilimsel gelismeleri izleyebilen bir vatandas ve bilinçli bir bilimsel-teknik personel kitlesinin olusmasini engelleyecektir." Bugün insanin en temel sorunlarindan biri, nüfusunun artmasi ve çevre sorunlari karsisinda yer yüzündeki varligini sürdürebilmesi sorunudur. Bunun için ise insanin diger canlilar gibi biyolojik bir varlik oldugunun, diger canlilar ile ortak bir geçmisi paylastiginin, doganin bir parçasi oldugunun, diger canlilar gibi biyoloji yasalarina, ekoloji yasalarina tabi oldugunu bilinmesi gerekir. Bu da ancak kapsamli bir biyoloji egitimi ile gerçeklesebilir. Liselerimizdeki fen egitimi ise ne yazik ki gençleri önümüzdeki yüzyilin bilimine, biyolojiye hazirlamaktan uzaktir. Biyoloji ders kitaplarinda evrim kuramina karsi bir görüs olarak yaratilis görüsü konulmustur. Böylece ögrenciler dünyanin hiç bir çasdas ülkesinde görülmeyen bir uygulama ile karsi karsiya kalmislardir. Bir fen dersi olan biyolojide yeryüzündeki canli türlerinin çesitliligini açiklamak için kaynagini dinden alan yaratilis öyküsüne de yer verilmistir. Buna göre Biyoloji kitaplarinda (4) "Islama göre kainat ve kainattaki bütün varlıklar ALLAH tarafindan yaratilmistir. Dünyanin ilk yaratilisi insanlar tarafindan gözlenemeyen ve tekrarlanamayan bir olaydir. Yaratilis görüsünde bir de dünyayi saran tufandan söz edilmektedir... Dinozorlarin yeryüzünden bir anda silinmis olmasi buna güzel bir örnektir" seklinde bilimsel olmayan ifadeler yer almaktadir. Ayrica din derslerinde bir biyoloji konusu olan evrim kurami islenmektedir. Lise I Din Kültürü ve Ahlak Kitabinda (5) biyoloji ile hiç bir ilgisi olmayan yazarlar Darwin'in evrim kuramini alabildigince elestirmektedirler. Evrim kuraminda canli türlerinin ortak bir atadan türediklerini, bu nedenle birbirine yakin türlerin genetik açidan da benzer oldugu görüsünü yalanlamak amaci ile su savi ileri sürmektedirler. "Yapilan kan muayenelerinde kurbaga, fare ve yilan kanlarinin evrimcilerin iddialarinin aksine maymununkinden insana daha yakin oldugu tespit edilmistir". Bu sav bilimsel temelden tamamen yoksun ve gerçek disidir (6). Yazarlar hangi bilimsel kaynaga dayanarak bu savi ileri sürmektedirler ? Kan ile neyi kastetmektedirler ? Yapildigi öne sürülen kan muayenelerinde kanin hangi ögesi veya ögeleri incelenmistir ? Kaldi ki insan kani ile maymun kani arasinda büyük bir benzerlik vardir. Örnegin 287 aminoasitten olusan hemoglobin A molekülü insan ve sempanzede tipatip aynidir. Ayni molekül bakimindan insan ve goril kani arasindaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19, koyunda 26, tavukta 45, sazan baliginda 95 aminoasit ile insan hemoglobin A molekülünden ayrilmaktadir. Görüldügü gibi kanin bir ögesi olan hemoglobin A molekülü bakimindan insana en yakin canli olan sempanzede hiç fark yok iken insandan uzaklastikça farkliliklar artmaktadir. Daha bir çok protein üzerinde yapilan çalismalarda ayni yönde sonuçlar elde edilmistir. Bu yakinlik uzaklik iliskileri daha önce bilim adamlarinin morfoloji, anatomi, gelisme biyolojisi, paleontoloji, sistematik gibi dallarda elde edilen kanitlara dayanarak yaptigi siniflandirmalardaki yakinlik uzaklik iliskileri ile paraleldir. Bunun disinnda kalitimin kimyasal temelinin evrenselligi yani tüm canlilar için ayni kalitsal mekanizmanin geçerli olmasi canlilarin ortak bir geçmiii paylaitiklarinin yadsinamaz bir kanitidir (7). Amerika Birlesik Devletlerinde ögretilmesi mahkemece anayasanin laiklik ilkesine aykiri bulunan yaratilis görüsü (8) 1985 yilinda Türkiye Cumhuriyeti Milli Egitim Bakanliginin onayi ile Lise Biyoloji ve Din Kültürü ve Ahlak kitaplarına girebilmistir. Böylece laiklige aykiri oldugu bilinen ve dünyanin hiçbir çagdas ülkesinde görülmeyen bir uygulama 20. yüzyilin son çeyreginde devletin egitim politikasi haline gelmistir. Bilim adamlari günümüzde evrimin olup olmadigini degil evrimin nasil oldugunu tartismaktadirlar. Yaratilis bilimcileri evrimciler arasindaki evrimin mekanizmalari üzerindeki bilimsel tartismalari çarpitarak evrim kuraminin yanlis oldugunu kanitlamak için kullanmaktadir. Bilim kendi kendini düzeltici bir nitelige sahiptir ve bilim adamlari arasinda bazen çok siddetli olabilen tartismalar özelestiriler bilimin saglikli yanini gösterir. Bize de Amerika Birlesik Devletleri'nden ithal edilen yaratilis görüsü biyoloji kitaplarinda "Islama göre kainat ve kainattaki bütün varliklar Allah tarafindan yaratilmistir" seklinde yer almaktadir. Bu görüsün tartisilmasi olanaksizdir. Dahasi bu görüsün deney ve gözlem ile dogrulanmasi ya da yanlislanmasi söz konusu degildir. Din derslerinde ögrencilere Darwin'in evrim kuramini çürütmeleri için ödev vermek olagan bir uygulama haline gelmistir. Bilimsel bir kuram öngörüleri deney ve gözlem sonuçlari ile çelistigi zaman çürütülebilir. Deney ve gözlem sonuçlari kuramin öngörüleri ile uyum içinde ise kuramin desteklendigi söylenir. Bilimsel bir kuramin ispat edilmesi söz konusu degildir. Bilimin yöntemleri ile biyologlarin sayisiz deney ve gözlem yaparak 130 yildir çürütemedikleri, yanlislayamadiklari evrim kuramini din dersinde ögrencilere ödev vererek çürütmeye çalismak bilimsellikten tamamen uzak bir yaklasimdir. Bu çabalarin arkasinda gençlerimizin beyinlerini dinsel görüslerin dar kalibina uydurmaya, bu kalip içerisinde hapis etmeye, ögrencilerin bilimsel düsünebilme, sorgulayabilme, elestirebilme yeteneklerini körletmeye çalismak gibi bir amaç yatmaktadir. Evrimi arastiran bilim adamlarinin çabalari dogayi anlama ve açiklama amacina yöneliktir. Bunun disinda tanrinin varligini reddetmek veya kanitlamak gibi bir amaçlari yoktur, olamaz da. Dinsel konular pozitif bilimlerin yöntemleri ile arastirilamazlar. Çagimizda dünya ülkelerinin bilim ve teknoloji alanindaki yarisi hizla sürerken ülkemizin ayakta kalabilmesi gençlerimizin bilimi bir anlayis sistemi olarak benimsemelerine, kavrayabilmelerine baglidir. Sayet gençlerimiz bilimi bir anlayis sistemi olarak benimsemezler ise dinsel inaçlarina bagli fakat tutsak bir ulus olmamiz kaçinilmazdir. Dünyada çesoitli kültürlerde, çesitli dinlerde çok çesitli yaratilis görüsleri vardir. Fakat bu görüslerin hangisinin dogru oldugunu sinama da ise bilim yetkili degildir. Zira bu yaratilis görüsleri bilimsel degildir. Evrim kurami ise evrenseldir, yani dünyanin her yerinde ayni kuram geçerlidir, dinden dine, kültürden kültüre, bölgeden bölgeye degismez. Bir yanda binlerce kez sinamadan geçmis deney ve gözlemler ile defalarca dogrulanmis bilimsel bir kuram diger yanda ise elestirilemeyen, sorgulanamayan, tartisilamayan, kaynagini kutsal kitaplardan alan yaratilis öyküsü. Yaratilisçilar evrim kuraminin da bilimsel olmadigini iddia etmektedirler. Bir kuramin bilimsel olabilmesi için deney ve gözlemler ile yanlislanma olanaginin bulunmasi gerekir. Evrim kurami deney ve gözlemler ile yanlislanabilir. Örnegin, kambriyan katmanlarinda bir insan, bir çiçekli bitki, bir memeli, bir kus fosili bulunabilirse bu bulgulardan bir tanesi bile evrim kuramini geçersiz kilabilir. Bu yaklasim, biyoloji derslerinde fen derslerinde dinsel bir ögreti ile bilimsel bir kuramin birbirinin karsito iki kuram gibi ele alinarak ögretilmesi ögrencileri büyük bir ikilem içine itmektedir. Ögrenci ya bilimi ya da dini tercih etmeye zorlanmaktadır. Ögrenci ya evrim kurami sadece bir kuramdir kutsal kitaplarda yazilanlar dogrudur diyerek bilimi reddedecek ve yaratilis ögretisini kabul edecek, ya da yaratilis öyküsünü de bilimsel bir kuram gibi sorguya çekerek, irdeleyerek bilimsel bir yaklasimi tercih edecektir. Örnegin yaratilis öyküsündeki Nuh tufani olayini bilimsel bir irdelemeden geçirerek Su anda yeryüzünde bulunan 2 milyon canli türünün her birinden birer çift alarak, Nuh peygamberin bu hayvanlari 40 gün boyunca gemisinde nasil yasatabildigini, dinazorlarin bu gemiye sigmadigi için mi yok oldugunu, tüm dünyayi saran bir tufanda Agri daginin zirvesine kadar sularin nasil yükseldigini, ya da bu hacimde su kütlesinin nereden çiktigini sorabilecektir. Simdi de fen derslerinde evrim kuramini tümden kaldirmak egilimi vardir. Evrim kurami biyolojinin tek birlestirici kuramidir. Bugün evrim kurami olmadan biyolojideki bir çok olay birbiri ile ilgisi olmayan, ilginç fakat pek fazla anlam tasimayan bilgiler yigini olacaktir. Bu bakimdan evrim kurami olmayan bir biyolojiyi düsünmek mümkün degildir. Fen derslerinden, biyoloji derslerinden evrim kurami çikarildigi takdirde fen egitimimiz Amerika Birlesik Devletlerinin bazi eyaletlerinde 1950' lerdeki fen egitimine benzeyecektir. Fen egitiminde bazi konular dinsel inanislarimiz ile bagdasmiyor diyerek o konulari fen egitimi müfredati disinda tutamayız. Bilim bir bütündür. Evrimi müfredat disi birakirsak, biyoloji egitimi, fen egitimi anlamin tamamen yitirir. Bilimin verileri isiginda dinsel görüslerin yorumunu yapmak din adamlarinin görevidir. Fakat bu görüslerin bir fen dersinde bilimsel bir kuram ile birlikte, bilimsel kuramin seçenegi gibi islenmesi fen egitiminde istenilen amaçlara ulasilmasini engelleyecektir. Türkiye'nin gelecegi yetistirdigimiz bilim adamlarinin niteligi ve niceligi ile dogrudan iliskilidir. Bilim adami adaylarinin özgür, elestirel, ve bagimsiz düsünebilme diger bir deyisle bilimsel düsünebilme aliskanligini kazanmis olmalari gerekir. Bilim adami arastiracagi konuya hiç bir önyarginin tutsagi olmadan özgürce yaklasabilmeli, konuyu özgürce sorgulayabilmeli, ve deney ve gözlemlerinin sagladigi kanitlari sonuna kadar, kanitlar nereye götürürse götürsün izleyebilmelidir. Türkiye'nin kalkinmasi, bilimde, teknolojide çagdas ülkeler arasinda yerini alabilmesi için özgür, kosullandirilmamis, elestirel düsünebilen beyinlere ihtiyaci vardir. Bunun için de fen egitiminde bilimin dogasina aykiri olan din konularina yer vermemek gerekir. Türkiye'de bilimin gelisebilmesi için egitimde anayasamizin laiklik ilkesine uyulmasi son derece gereklidir. KAYNAKLAR : 1) Dobzhansky, T., Ayala, F.J., Stebbins, G.L., Valentine, J.W. 1977. Evolution. W.H.Freeman and Company. 2) Kence, A. 1985. Evrim kurami ve yaratilisçilik. Cumhuriyet 24 Nisan 1985. 3) Akkaya, E.U.(Çev.).1985. Bilim ve Yaratilisçilik ABD Ulusal Bilimlar Akademisi'nin görüsü. Gözlem Matbaacilik, 80 s, Istanbul. 4) Güven, T., Köksal, F., Öncü, C., Erdogan, I., Acar, Ö., Demirci, C., Togral, A., Simsek, S. 1994. Liseler için Biyoloji I. Milli Egitim Bakanligi Yayinlari 602, Ders Kitaplari Dizisi 223. 5) Ayas, M.R., Tümer, G. 1994. Liseler için Din Kültürü ve Ahlak Bilgisi I. Milli Egitim Bakanligi Yayinlari 118, Ders Kitaplari Dizisi 100. 6) Kence, A. 1994. Biyoloji egitimi ve laiklik. Cumhuriyet Bilim ve Teknik, 367: . 7) Futuyma, D.J. 1983. Science on Trial. Panteon Books, New York. 8) Creationism in Schools: The decision in McLean versus the Arkansas Board of Education. 1982. Science, 215: 934-943. 9) Morris, H.M. 1985. Yaratilis Modeli. Milli Egitim Bakanligi, Bilim ve Kültür Eserleri Dizisi. (TUBA KONUSMASI) Aykut KENCE ODTU Biyoloji Bölümü, Ankara

http://www.biyologlar.com/biyoloji-egitiminde-evrim-ve-yaratiliscilik

Davranışlarımızdaki kalıtım mirasının alt-yapısı

Bir tür olarak genetik yapımızı kromozom adını verdiğimiz insanı oluşturan en küçük birim olan hücrenin çekirdeğinde yar alan 46 adet düz bir şekilde sıralanmış gen veya kalıtım ünitesi oluşturur. Bu gen topluluğunun sayı ve yapısı hem tür içinde hem de türler arasında farklılıklar gösterir. Türler arasındaki farklılıklardan ayrı olarak tür içindeki farklılıklar da, belli ölçülerde genetik etkenlere bağlıdır; yani örneğin insan türündeki her bireyin cinsiyet, boy, zeka gibi birçok fiziksel ve ruhsal eğilimi en azından şu ya da bu ölçüde genetik kontrol altındadır. İnsanlar arasında sadece tek yumurta ikizlerinde bu genetik yapı birbirinin aynısıdır. Genlerin varlığını ilk kez 1865'de Moravya'lı bir rahip olan Gregor Mendel adlı bilim adamı ortaya attı. Mendel, bitkilerin melezleşmesiyle ilgili gözleme dayalı deneyler yapana kadar, soyaçekim, anababa özelliklerinin çocuklarda ve sonraki nesillerde rastgele aktarıldığı bir durum olarak biliniyordu. Mendel'in ünlü deneyleriyle birlikte, soyaçekimin gen adı verilen birimlerin belli bir uygunlukta bir araya gelmesinden oluştuğu anlaşıldı. Ancak tür özelliklerinin nesilden nesile aktarılmasının ayrıntılı mekanizmalarının bilinmesi oldukça yenidir. Mendel'in bu fikri yaklaşık 35 yıl unutulduktan sonra 1900'lerin başında önemi farkedilmeye başlandı. 20. Yüzyılın başında öncelikle genleri taşıyan renkli cisimler, kromozomlar saptandı. Özellikle insan genetiğiyle ilgili bilgilerin gelişiminde ise, 1956'da J.H. Tijo ve A. Levan'ın insanda 23 çift kromozom olduğunu belirlemeleri önemli bir rol oynadı. Bugün artık bilinmektedir ki, nesilden nesile geçiş, gen adı verilen, kromozomlar üzerinde yerleşmiş organik birimler aracılığıyla olmaktadır ve kromozom sayıları türlere göre değişiklik göstermektedir. Kromozom sayısının türün gelişmişliği ve karmaşıklığıyla bir ilişkisi yoktur. Örneğin tavuklarda 78 kromozom vardır. Yine artık, yeni bir organizmanın cinsiyetinin ve saç ve göz rengi gibi fiziksel özelliklerinin genetik kurallara göre olduğu; bu geçişin kromozomlardaki DNA moleküllerinin içerdiği aminoasitlerin kendi aralarında değişik biçimlerde bir araya gelerek oluşturdukları genetik şifreye göre sağlandığı; genetik geçiş sırasında kromozom hatalarının ve bazı sakat genlerin geçişine bağlı olarak genetik hastalıkların ortaya çıkabilecekleri bilinmektedir. Normalde genler aşırı derecede sağlam ve değişmez niteliktedir ve hücre bölünmesi esnasında tam bir kopyalarını üretirler. Bu kopyalama esnasında olabilecek değişiklikler genellikle zararlıdır. Evrim kuramı kopyalama esnasında nadiren olabilen bu değişikliklerin (mutasyon) olumlu olanlarına dayanmaktadır. Genler, kimyasal olarak deoksiribonükleik asit (DNA) denilen yapılardan oluşurlar. Bu DNA yapılarında insan bedeninde yer alan çeşitli yapısal proteinlerin kalıpları bulunur. Yani proteinler, bu DNA dizileri aracılığıyla üretilirler. Yalnız işin ilginç yanı, herhangi bir anda bir insanda DNA'lardan oluşan genlerdeki bu materyalin yaklaşık %1' i protein sentezine aracılık etmektedir. Yani insanın genetik materyalinin hepsi kullanılmamakta, bir kısmı belli özel koşullar altında çalışmaya ve ifade edilmeye başlamaktadır. İnsanın davranışlarıyla ilgili ana biyolojik sistem olan merkezi sinir sisteminin gelişimini düzenleyen genlerin kesin sayısı bilinmese de bazı bilim adamları insandaki tüm genetik materyalin yaklaşık 1/3 ünün bu iş için ayrılmış olduğunu saptamışlardır. Bunun anlamı, insan kromozomlarında yer alan yaklaşık 50 bini aşkın genin en az 15 bin ila 20 bininin merkezi sinir sisteminin oluşumu ve işlev görebilmesi için çalıştığıdır. Yani davranışın meydana gelmesinde aracılık eden sinir hücrelerinin hem oluşumu hem de aralarındaki iletişiminin sağlanması, sürekliliği ve düzenlenmesi için gerekli proteinlerin sentezini, sonsuz sayıda değişkenlikle dizilmiş DNA birimlerinden oluşan genlerin bir kısmı yönetmektedir. Moleküler biyolojideki son gelişmeler davranışın genler tarafından bire bir kodlanmadığını ortaya çıkarmış; "tek gen=tek davranış" şeklinde bir bağlantı olmadığı anlaşılmıştır. Genler, davranışın ortaya çıkmasından sorumlu sinir hücresi topluluğunun hem yapısal hem de metabolik işleyişinden sorumlu olan proteinlerin sentezi için gerekli kodları içermektedirler. Belli genleri dönüştürülerek, yapısı değiştirilmiş hayvanların öğrenilmiş davranış kalıplarında bozukluklar ortaya çıktığı bugün bilinen bir gerçektir. Yapılan incelemelerde, o genin veya genlerin yapımından sorumlu oldukları biyolojik bakımdan aktif maddelerin eksikliğine veya hatalı işleyişlerine bağlı olarak ilgili sinir hücrelerinde metabolik ve fonksiyonel bozukluklar saptanmıştır. Sinir hücreleri arasındaki kavşaklarda davranışın boyutunu belirleyen biyolojik olarak aktif moleküllerin (serotonin, dopamin, norepinefrin vb..) sentezi, yıkımı, miktarları, genler tarafından kodlanan enzimler sayesinde olmaktadır. Ayrıca genler hormonlar ve hormon benzeri düzenleyici moleküllerin kodlarını da taşımaktadırlar.

http://www.biyologlar.com/davranislarimizdaki-kalitim-mirasinin-alt-yapisi

Zehirli Bitkiler

Tarihin ilk çağlarından günümüze kadar insanlar bitkilerden besinlerini sağlamış ve şifa aramışlardır ve beslenmelerinin yanında önemli hastalıklarını da şifalı bitkilerle tedavi edebilmişlerdir. Ancak her bitkinin düşüldüğü kadar yararlı olmadığı ya da yararlı etkilerinin yanında zararlı olabilen başka etkilerinin de olduğu görülmüştür. Günümüzde de devam eden her ottan şifa arama geleneği özellikle kırsal yörelerde birçok kaza zehirlenmelerinin ortaya çıkmasına neden olmaktadır. Merak sonucu özellikle çocukların bilmedikleri bir bitkinin yemiş, yaprak ya da başka bir kısmının tadına bakmaları ya da zararsız başka bitkilere benzetip toksik bitkiyi yemeleri sonucu sık sık zehirlenmeler olmaktadır. Birçok bitki çok toksik olmalarına karşın kontrollü kullanıldıklarında tedavide yararlı olabilmektedir. Örneğin Digitalis (yüksük otu) afyon (haşhaş), belladon alkaloidleri, veratrum alkaloidleri, vinca alkaloidleri, ipeka vb, gibi birçok bitkisel toksik Madde günümüzde doğal ya da yarı sentetik türevler şeklinde tedavide kullanılmaktadırlar. Ancak bilinçsiz bir şekilde supraterapötik (aşırı) dozlarda uygulandıklarında çok ağır zehirlenme tablolarının ortaya çıkmasına yol açabilirler. Rönesans döneminin ünlü Alman hekimlerinden Paracelsus (l493-1541)’un ‘yalnız miktar zehiri belirler’ (Dosis sola facit venonum) cümlesi bitkisel maddeler için de geçerlidir. Zehirli mantarlar başta olmak üzere diğer toksik bitkilerle akut zehirlenmelerin şiddetini yenilen miktar belirlenmektedir. Bitkilerle zehirlenmeler daha çok kabuklu yemiş ya da meyve kısmıyla olmaktadır. Örneğin Akdiken (Rhamni cathartica) yılan yastığı (Dracunculus vulgaris), güzel avrat otu (Atropa belladonna), hanımeli (Lonicera japonica), yaban yasemini (Solanum dulcamara), taflan (Prunus laurocerasus), ardıç (Juniperus sp.) ökse otu (Viscum album), çoban püskülü (İlex aquifoİiıım) porsuk ağacı (Taxus bacata), sarmaşık (Parthenocissus sp.), it üzümü (Solanum, nigrum) vb, gibi bitkiler kabuksuz ya da kabuklu meyvelerinde bulunan aktif toksik kısımlarıyla zehirlenmelere neden olmaktadırlar. Buna karşılık, birçok bitki diğer kısımlarıyla ya da tüm bitki olarak toksiktirler. Dikenleri ya da keskin kenarlı yapraklarıyla mekanik olarak. özellikle ciltte irritasyon şeklinde toksik etkilere yol açmaktadırlar. Günlük gıda olarak kullandığımız bazı sebzelerin az ya da çok toksik olabildiklerini unutmamak gerekir. Örneğin patatesin toprak üstündeki yeşil kısımları orta şiddette sindirim bozukluklarına neden olmaktadır. Buna karşın,birçok taze sebzenin kurutulmasıyla içerdikleri toksik maddeler aktivitesini kaybetmektedir. Bazı bitkiler aynı cinsten olmalarına karşın toksik etkileri büyük ölçüde değişebilmektedir. Örneğin Aconitum napellus tehlikeli bitkiler içinde en zehirli olanıdır. Buna karşın aynı cinsten Aconitum septentrionale Eskimolar tarafından sebze olarak yenmelerine karşın hiçbir zehirlenmeye neden olmamaktadır. Aynı şekilde Digitalis purpurea güçlü kardiyotoksik etkisi olmasına karşı aynı cinsten olan Digitalis jaune aynı oranda toksik değildir. Bu nedenle, gerek tedavide gerekse gıda olarak kullanılmalarında bitki cins ve türlerinin tanınması gerekir. Bitkilerin içerdikleri toksik maddelerin kaynağı çeşitlidir. Bazıları alkaloid (Protein), bazıları da glikozid ya da heterosid (Saponinli steroidik yapılı siyanojenli vb.) içerebildikleri gibi birçoğunda olduğu gibi karmaşık kompleks yapılı bir toksik madde de içerebilmektedirler. Zehirli bitkilerde bulunan bu toksik maddeler insan ve hayvanlarda iç organlarda meydana getirdikleri lezyonlar sonucu metabolizmayı bozabildikleri gibi deri ve mukozalarda irritasyonlar yaparak hafif ya da ağır bazı zehirlenme belirtilerinin ortaya çıkmasına neden olmaktadırlar. Ancak, farklı hayvan türlerinin ve insanın zehirli bitkilere verdikleri reaksiyon her zaman aynı şiddette ve özellikte olmayabilir. Örneğin. salyangozlar belladonla beslendikleri halde zehirlenmezler, halbuki bu gibi hayvanları yiyen insan ya da memeli hayvanlarda belladon zehirlenme belirtileri görülebilmektedir. 1. ZEHİRLİ BİTKİLERİN TOKSİK UNSURLARI Bitkisel zehirlerin toksik bileşenleri kimyasal yapılan yönünden önemli farklılıklar gösterir. Toksik unsurların çoğu organik karakterdedir. Kimi bitkiler ise, bazı mineral maddeleri, bünyelerinde toksik dozlarda akümüle edebilirler.Alkaloitler ve protidler azotlu organik; glikozitler, tanenler, laktonlar ve benzerleri azotsuz organik zehirlerdir. Selenyum, nitrat-nitrit gibi mineral zehirler ile kimyasal yapılarından çok, etki mekanizmaları daha iyi bilinen östrojenik etkili özdekler, antiVitaminik faktörler ve fotodinamik ajanlar zehirli bitkilerin başlıca toksik unsurlardır. 1.1. Alkaloidler Alkaloitler güçlü farmakolojik etki ve toksisiteye sahip olan, moleküler yapılarında azot bulunan alkali karakterde bitkisel kökenli özdeklerdir. Azot, çoğunlukla heterosiklik bir halkada ya da lateral zincirde bulunur. Genellikle katı ve renksizdirler. Baz halde iken suda çözünmezler; asitlerle oluşturdukları tuzlar suda çözünür. Alkaloitlerin tannat ve iyodür tuzları suda çözünmez. Bu özellik nedeniyle, alkaloit içeren bitkilerle zehirlenmelerde tanenli bileşikler ve iyodürler, sindirim kanalından alkoloit emilimini engellemek için kimyasal antidot olarak kullanılırlar. Alkaloitlerin etki mekanizmaları çok farklıdır Çoğu sentral sinir sistemi (opium alkaloitleri) ve otonom sinir sistemi (antikolinerjik solanase alkaloit ve alfa adrenolitik ergot alkaloitleri) aracılığıyla etkir. Kolşisin ve benzerleri emeto katartik; pirolizidin alkaloitleri de hepatotoksik olarak etkirler. 1.2. Glikozitler (Heterositler) Hidroliz (enzimatik ya da asit ortamda) sonucu bir ya da birkaç molekül şeker (glikoz) ile karbonhidrat olmayan ve aglikoz (genin) olarak adlandırılan ve toksik etkiden sorumlu olan bir madde veren özdeklerdir. Glikoz ve aglikoz arasındaki bağın karakterine göre 0 - glikozitler (Oksijen atomu eterik bağ) ve S - glikozitler (kükürt atomu) olmak üzere iki gruba ayrılırlar. 1.2.1. O-Glikozitler 1.2.1.1. Siyanogenetik Glikozitler Aglikozları, çoğunlukla nitrilli bir alkoldür. Enzimatik hidroliz sonucu şeker molekülleri, siyanhidrik asit (HCN) ve bir keton ya da aromatik aldehit oluşur. Toksiditeden sorumlu olan hidroliz ürünü siyanhidrik asittir. Farklı ailelere ait çoğu yem bitkisi ve yabani türlerde bulunan siyanogenetik glikozitler özellikle ruminantlarda selüler respirasyondan sorumlu enzim sistemini inhibe ederek, akut formda ve yüksek mortaliteyle seyreden zehirlenmeye neden olurlar. Hidroliz, aynı bitkide bulunan özel enzimler ( lineaceae; keten tohumu, emulsin; acı badem) tarafından katalize edildiği gibi, ruminantlarda retikülo-rumen mikroflorası tarafından salgılanan enzimlerle de gerçekleştirilebilir. Vejetasyonun ilk dönemlerinde yüksek olan glikozit düzeyi vejetasyon ilerledikçe azalabilmektedir. Kuraklık, donma ve çiğnenme gibi bitkilerin normal büyüme hızını bozan faktörler HCN düzeyinde artışa neden olur. Silaj glikozitlerin hidrolizini hızlandırır. Böylelikle serbest hale geçen HCN silajın havalandırılmasıyla giderilebilir. Ancak, bu işlem sırasında çalışanların kendileri için önlem almaları gerekir. - Bitki hormonu herbisitler uygulandıkları yörelerde yetişen bitkilerde siyanogenetik glikozit düzeyinin artışına (fitohormonların dolaylı toksisitesi) neden olurlar. HCN düzeyinde fosfatlı gübreler azalmaya azotlu gübreler ve bitki parazitleri ise artışa neden olur. Siyanogenetik glikozit taşıyan bitkilerin toksisitesi değinilen koşullara göre değişkenlik gösteren HCN düzeyi ve glikozit yanında tüketilen bitki miktarı ve tüketim süreci, HCN’in sindirim kanalında liberasyon hızı ile emilim ve dokularda detoksikasyon düzeyine bağımlıdır. Bu nedenle, toksik dozu belirlemek zordur. Siyanogenetik glikozitlere karşı en duyarlı hayvanlar ruminantlardır. Koyun ve keçi muhtemelen enzimatik farklılık nedeniyle sığıra oranla daha dayanıklıdırlar. Tek midelilerde, midenin asit ortamında glikozidi hidrolize eden enzim, kısmen de olsa yıkımlanabilir. HCN, karaciğerde spesifik bir enzim (rodanaz) tarafından tiyosiyanata dönüştürülerek metabolize edilir. Ancak, özellikle sığırda başka metabolik olayların olduğu da düşünülmektedir. Serbest HCN’in ruminantlarda letal dozu 2-2.3 mg/kg dolayındadır. Bu miktar HCN’i glikozit formunda (4-4.5 mg/kg) kısa sürede tüketen ruminantlarda ağır zehirlenme tablosu şekillenir. Otlakta bir hayvan saatte 4 mg/kg düzeyde glikozide saatlerce tolore edebilir. Koyun, günde (gün boyu) 15-20 mg/kg HCN´i detoksike edebilir. Genelde 100 gramında 20 mg (200 ppm) HCN içeren bitkiler, hayvanlarda zehirlenmeye neden olur. Sindirim ya da solunum yoluyla emilen HCN ve siyanürler, selüler respirasyon (hücre solunumu) enzim sistemini (sitokrom a3) bloke ederek histotoksik anoksiye neden olurlar. 1.2.1.2. Steroidik Glikozitler kalp yetmezliğinin etkin ilaçları olan ve çok küçük dozlarda kardiyotonik olarak kullanılan kalp glikozitlerini (dijitalikler) kapsayan bu grup moleküllerin aglikozu, asteroit (siklopentano-perhidrofenantren) halka sistemi ve bunun 17 no’lu karbonuna bağlanan beşgen ya da altıgen bir lakton halkasından ibarettir. Majör glikozit kaynağı olan bitkilerden yüksük otu türleri (Digitalis cariensis, D. davisiana, D. ferruginea D. grandiflora, D. lanata, D. trojana D. viridiflora) ile ada soğanı (Urginea maritima) yanında glikozit kaynağı olarak kullanılmayan, ancak toksik unsur olarak kardiyotonik etkili glikozit içeren inci çiçeği (Convallaria majalis) adonis türleri (A. aestivalis -keklikgözü, A. flammea - kandamlası), zakkum (Nerium oleander) ve kimi Helleborus türleri (Bohça otu, H. orientalis, H. vesicarius) de Anadolu ve Trakya’da yaygın olarak yetişmektedir. Bununla birlikte anılan bu bitkilerle evcil hayvanlarda zehirlenme insidensi azdır.Kimi kaynaklarda saponinler (saponositler) de bu grupta gösterilmektedir. Saponinlerin aglikozu (sapogenin) steroidik ya da triterpenik (oleanan çekirdekli) yapıdadır. Sistemik toksiditeleri az olan saponinler yem bitkilerinde de yaygın olarak bulunurlar. Yaklaşık 80 aileye ait 500’ü aşkın bitki türünden Saponin izole edilmiştir. Ruminantlarda meteorizasyonun temel nedenleri arasındadırlar; kanatlılarda ise, gelişme ve yumurta verimini inhibe ederler. Antrasenik glikozitlerin aglikozları ise, antrasen halkalı bir polifenoldür. Işkın, kara akçaağaç gibi bitkilerde bulunan bu glikozitler yüksek dozda şiddetli purgasyona neden olurlar. 1.2.2. S - Glikozitler (Glusinolatlar) Özellikle Cruciferae (turpgiller) ailesine ait bitkilerin yaprak gövde kök ve özellikle tohumlarında bulunan ve genellikle uçucu olan, S - glikozitler, enzimatik (myrosinase) hidroliz sonucu glikoz ve organik aglikoz oluşturur. Organik aglikoz bir izotiyosiyanat (senevol) bir tiyosiyanat ya da bir organik nitril ve kükürttür. Glusinolatların hidroliz ürünlerinden izotiyosiyanatlar, deri ve mukozalarda irkiltici etkiye (gastro-intestinal, respiratuvar ve renal lejyonlar) sahiptirler. Ayrıca, guatrojenik (proguatrin) etkileriyle tiroid bozukluğuna neden olurlar. Tiyosiyanatlar ise, tiroid bezinde iyot düzeyini düşürürler; böylelikle iyot uygulamasıyla sağaltılabilen bozuklukları oluştururlar. Brassica türü bitkilerde (kolza, lahana, ot lahanası, şalgam) bulunan 5-glikozitler hidrolizle stabil olmayan izotiyosiyanat’a, bu da kristalizasyonla goitrine dönüşür. S-glikozitlerin hidroliz ürünü izotiyosiyanatlar irritan ve antitroit; goitrin ise guatrojen etkilidir. Bu nedenle s-glikozit içeren bitkilerle zehirlenme klinik yönden farklı seyreder 1. Akut zehirlenme izotiyosiyanatların irritan etkisinden kaynaklanan bu sendrom sindirim, solunum bozuklukları ile renal lezyonlar ve nefritle karakterizedir (hardal, turp). 2. Tiroit bozuklukları Bitkilerin yeşil kısımlarında bulunan glusinolatların hidroliz ürünü inorganik izotiyosiyanatlar, dönüşümlü kompetisyonla, tiroitte iyot akümülasyonunu önleyerek iyot yönünden fakir rasyonla beslenen- hayvanlarda guatr şekillenmesine neden olurlar. Bu sendrom iyotla sağaltılabilir. Proguatrinin son ürünü olan goitrin ise tiroksin formasyonunu inhibe ederek iyot kullanımıyla sağaltılamayan tiroit bozukluğuna neden olur. Glusinolatların hidroliz ürünleri plasenta engelini geçer ve sütte de atılırlar. Bu nedenle, gebeliği döneminde glusinolatlı bitkilerle beslenen hayvanların yavrularında (keçi) ve süt emenlerde de tiroit bozuklukları görülür. Glusinolat içeren kimi bitkiler, özellikle kolza ve Lahana etyolojisi tam bilinmeyen, anemi ve hemoglobinüriyle karakterize olan zehirlenmeye de neden olabilirler. 1.3. Saponinler (Saponositler) Kalıcı köpük oluşturmaları ve acı lezzetleriyle karakterize olan saponinler, azotsuz nötr ya da hafif asit karakterli, glikozit benzeri maddelerdir. Aglikon ya da sapogeninleri steroit veya oleanan çekirdekli triterpenik yapıdadır. Soğukkanlı (poiklioterm) hayvanlar için çok toksiktirler. Yerel olarak irkiltici etki oluşturur; eritrositlerin hemolizine neden olurlar. Bitkiler aleminde oldukça yaygındırlar; 500’ü aşkın bitki türünden saponin izole edilmiştir. Kaba yonca (Medicago sativa), karamuk (Agrostemma githago), sabun otu (Saponaria officinalis), gazel boynuzu (Lotus corniculatus), tırfıl (Trifolium repens, T. fragiferum), at kestanesi (Aesculus hippocastanum), bohçaotu (Helleborus orientalis), yılan yastığı (Arum maculatum) yüksek düzeyde saponin içeren bitkilerdir. Saponinlerin toksisitesi kaynak bitkiye, yapılarına ve alınan miktara bağımlıdır. Acı lezzette oluşları tüketimi sınırlandırabilir. Tanen ve kolesterol bağlanmayla saponinleri inaktive edebilirler. Toksisite saponinden çok hidroliz ürünü sapogeninle ilgilidir. Bu nedenle, saponinlerin hidrolizini gerçekleştirebilen sindirim kanalı mikroflorası da (Butryrivibrio) toksisiteyi etkiler. Saponin içeren yem bitkileri ruminantlarda meteorizasyonun başlıca nedenleridir. Rumen içeriğinin yüzeysel tansiyonunu azaltarak stabil köpük oluştururlar. Böylelikle, fermantasyon gazları geğirmeyle (erukasyon) vücut dışına çıkarılamaz. Meteorizasyon oluşumunda kuşkusuz diğer faktörlerin, özellikle sitoplazmik proteinlerin (kaba yoncada % 4) de rolü vardır. Öte yandan, saponin ve sitoplazmik proteinler yanında, bunlarla inaktif kompleks oluşturabilen taneni de içeren bitkilerin (gazel boynuzu) meteorizasyon oluşturma insidensi düşüktür. Kimi saponinler, sindirim kanalından salgılanan enzimleri, özellikle kimotripsini inhibe ederler. Bu özellikteki saponinler sindirim kanalında irritasyona neden olurlar. Saponinler kanatlılarda gelişme ve yumurta verimini inhibe ederler piliç rasyonlarına % 5 oranında katılan kaba yonca unu, içerdiği saponinler nedeniyle, piliçlerde büyümeyi geciktirir. Yumurta tavuğu yemlerine katılan kaba yonca unu (% 10) yumurta verimini düşürür. Saponinlerin bu etkisi, rasyona kolesterol ilavesiyle giderilebilir. Saponinli bitkilerle zehirlenmeye karşı profilaktik önlemler alınmalıdır Bitkilerin pek çoğunda kendilerini savunmaları için bir miktar zehir bulunur. Sonuçta onlar bitki ve bir tehlike anında kaçacak yerleri yok. Bazılarını şirin görüntüsüne aldanmayın çünkü öldürücü olabilirler. Hint baklası Hint yağını bilen ya da kullanan herkes yağı oluşturan maddelerden birinin yani hint baklasındaki bir bileşenin kişiyi birkaç dakikada öldürecek zehre sahip olduğunu tahmin etmez. Meyankökü Bu meyankökü bitkisinin şirin bir görüntüsü var ancak aslında dünyanın en zehirli maddelerinden birisi eğer çiğnenir ya da yutulursa hemen ardından kişinin ölümü gerçekleşir. Boğanotu Canlı mor rengine aldanıp sakın zararsız olduğunu düşünmeyin zira bu bitki en ölümcül bitkilerden bir tanesi. Bushman zehri Afrika’da yaşayan ve oklarının ucuna taktıkları zehirli bitkilerle avlanan bushman insanları bu zehirli bitkiyi özellikle avlanmak için kullanırlar. Çan çiçeği Bu çiçeği salladığınızda çıkan güzel ses sizi aldatmasın. Bir keresinde tadını merak ettiği için bu bitkiden çay yapan 18 yaşındaki bir genç zehirlenerek komaya girdi. Su baldıranı Zehirli baldıran Sokrates tarafından içildiği için çok bilinen bir zehirli bitkidir. Ama su baldıranı da en az onun kadar zehirlidir. İngiliz porsuğu Dünyadaki en zehirli ağaçlardan birisidir. Muhteşem görüntüsü böylesi bir zehri taşıyabileceğini göstermese de panzehiri olmayan ve çabuk etki yapan bir zehirli bitkidir. Loğusa otu Bu bitki daha çok inekler ve koyunlar için tehlikelidir çünkü beyaz çiçeğine ve yemyeşil gövdesine aldanan hayvanlar bitkiyi yerler ve ne yazık ki bu hayvanların ürünlerini tüketen insanlar da zehirlenirler. Kargabüken özü Kloepatra emrindeki hizmetkârlarına bu bitkiyle intihar etmelerini söylemiştir. Çünkü kendisi de intihar etmek istediğinden zehrin etkili olup olmadığını görmek istemiştir. Menispermum bitkisi Bu bitki kuşlar için zehirli olmamasına rağmen insanlar yediğinde ölümcül bir zehre dönüşüyor. Nergis Zehirli bileşenleri olsa da eski zamanlardan beri bu bitki bir şifa bitkisi olarak da kullanılır. Hatta bazı kültürlerde kelliğe iyi geldiği de düşünülür. Zakkum Zakkumun bir yaprağı bile bir kişiyi öldürmeye yeter. Ama ölümler daha çok atlarda ve besi hayvanlarında görülür. Funda Çiçeklerin en güzeli olan funda bitkilerin de en zehirlilerinden birisidir. Yabani acı kiraz Bu kirazlar küçük ama asla yenmezler. Zehir öncelikle solunum sistemini etkiler ve ardından zehirlenme gerçekleşir. Köpeküzümü Bu bitki baştan aşağıya kara zehir taşır. Bunun bir parçasını bile yiyen insanlar görecekler ki öncelikle sesleri kısılacak çünkü bu bitki öncelikle solunumu etkiler

http://www.biyologlar.com/zehirli-bitkiler

Tiroid Hastalıklarının Tanısında Kullanılan Testlerin Yorumlanması

Tiroid Hastalıklarının Tanısında Kullanılan Testlerin Yorumlanması

Tiroid bezi hastalıklarının tanısında kullanılan testler serbest T3, serbest T4 ve TSH testleridir.TSH testinin normalden düşük olması tiroid bezinin aşırı çalıştığını ( hipertitoidi) gösterir.TSH testinin normalden yüksek çıkması ise tiroid bezinin az çalıştığını ( hipotiroidi) gösterir.T4 ve T3 hormonlarının normal sınırın altında veya üstünde olması ise tiroid bezinin fonksiyonlarının normal olmadığını gösterir.Doktorlar, tiroid testi sonuçlarını yorumlarken hipertiroidi tanısı için kanda tiroid hormonlarının(ST4 ve ST3) ve TSH değerlerini incelerler.Kanda ST4 ve ST3 düzeyleri yüksek, TSH ise düşük bulunursa hipertiroidi tansı akla gelir.TSH düzeyinin normalin üstünde çkması halinde ise bu sefer hipotiroidi tanısı düşünülür. Bu durumda ST4 düzeyi ise düşük bulunur.ST4 düzeyi düşük, TSH düzeyi yüksek bir hastada ise belirgin hipotiroidi vardır.Sadece TSH testinin yüksek fakat ST4 ve ST3 değerlerinin normal olduğu klinik tablo ise subklinik hipotiroididir. Bu durumda hasta tedavi edilmelidir.TSH Testi Değerleri Tiroid Bezi Hastalıkları Tanısında Çok Önemlidir.Hipertiroidi ve hipotiroidide, ilk bozulan ve tedavi sonrası son düzelen kan testi TSH’dır. Bu nedenle,tiroid bezi hastalıklarında tanı koymada en değerli test TSH testidir.Anti-TPO ve anti-Tiroglobulin testleri de tiroid bezi hastalıklarının tanısında önemli testlerdir. Bu testlerin pozitif olması tiroid bezi hastalığının otoimmün kökenli hastalık olduğunu gösterir.Otoimmün hastalıklarda, insan vücudu kendi dokusunu yabancı bir doku olarak algılayıp ona karşı reaksiyon göstermektedir.Hashimoto tiroiditi olarak da bilinen, tiroid bezinin otoimmün hastalığında tiroid bezinde tiroid hormonlarının yapımındaki kullanılan protein yapısındaki tiroglobulin (TG) ve enzim yapısındaki Tiroid peroksidaz (TPO) yabancı bir doku olarak algılanmaktadır. Bağışıklık sistemi yabancı bir doku olarak tanıdığı bu yapılara savaş açar ve onları yoketmek için antikor salgılar. Bu hastaların kanlarında anti-TPO ve anti-Tiroglobulin antikorları normalden yüksek olarak bulunur.Bu hastalarda hipotiroidi hastalığının klinik belirtileri bulunmaktadır.Tiroid bezinin diğer otoimmün hastalıkları ise hipertiroidiye neden olan Graves Hastalığı ve geçici tiroidite sebep olabilen sessiz tiroidittir.Hashimato, Graves ve Sessiz Tiroidit yıllar içinde birbirine dönüşebilirler. Yani daha önce hipertiroidi olan birisinde yıllar sonra hipotiroidi gelişebilir.Bu nedenle klinik takipleri de büyük önem taşımaktadır. http://tahlil.com

http://www.biyologlar.com/tiroid-hastaliklarinin-tanisinda-kullanilan-testlerin-yorumlanmasi


Mikroorganizmalarda Sınıflandırma ve yapı

Mikroorganizmalar gezegenimiz üzerindeki yaşamın taksonomisine ait herhangi bir yerde bulunabilir. Çoğu protistleri, bazı mantarları, aynı zamanda bazı mikro hayvanları ve bitkileri da içine alan belli sayıda ökaryotlar mikroskobik iken, bakteri ve arkeaların çoğunluğu mikroskobiktir. Virüsler, mikrobiyolojinin çalışma alanında olmasına rağmen, genellikle cansız sayılır ve dolayısıyla mikroorganizma olarak kabul edilmez. Prokaryotlar Prokaryotlar ya da Prokaryota; bakteriler, mavi-yeşil algler, riketsiyalar, aktinomisetler, ve mikoplazmaların gruplarının dahil olduğu; gerçek çekirdek zarları ve membrana bağlı organelleri olmayan, fosfolipid barındıran hücre duvarı ve tek helezonlu DNA molekülü hücre içinde serbest halde bulunan mikroorganizmaları kapsayan canlılar üstalemdir. Halk arasında mikrop diye adlandırılan mikroorganizmalar, hücresel yapılı olanlar ve hücresel yapıda olmayanlar olmak üzere ikiye ayrılır. Hücresel yapıda olanlar Bakteriler, mantarlar, protistlerdir. Hücresel yapıda olmayanlar ise Virüsler, viroidler, prionlardır. Canlıların bilimsel sınıflandırması içinde çok çeşitli grupları içerdiği için genel geçer özellikler belirtmek zordur. Bakteriler Bakteriler tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardır. Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadan biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır. Arkea Arkeler, Arkea  veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin (İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı-alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Ökaryotlar Ökaryotlar (Latince: Eukaryota), hücrelerinin yapısından dolayı beraber gruplandırılmış bir canlılar grubudur. Bilimsel sınıflandırmada Ökaryotlar, Bakteriler ve Arkeler, tüm canlıları kapsayan üç ana gruptur. Ökaryotların tanımlayıcı özelliği genetik malzemelerinin zarla çevrili bir (veya birkaç) çekirdek içinde yer almasıdır. Bu nedenle kelime, Eski Yunanca eu, gerçek ve karyon, çekirdek sözcüklerinden türetilmiştir. Sıfat hali ökaryotiktir. Bakteri ve arkeler çekirdeksiz olduklarından beraberce prokaryot olarak adlandırılırlar (Eski Yunanca pro-, evvel ve karyon çekirdek sözcüklerinden). Çekirdeğin yanı sıra, ökaryotların mitokondri veya kloroplast gibi zarla çevrili çeşitli organelleri vardır, bu tür hücre içi karmaşık yapılar da prokaryotlarda bulunmaz. Ökaryotların ortak bir atası olduğu için bir üst alem (domain) olarak tanımlanmışlardır. Üst alem sisteminde ökaryotların, prokaryotlara kıyasla, arkelerle daha çok ortak özellikleri vardır ve bu yüzden arkelerle beraber Neomura kladı içinde gruplandırılırlar. Protistler Protistler (Protista, bazen Protoctista), ayrışık (heterojen) bir canlı grubudur ve hayvan, bitki ya da mantar olarak değerlendirilemeyen ökaryot canlılardan oluşur. Protistler bilimsel sınıflandırma açısından âlem olarak değerlendirilse de tek soylu (monophyletic) değil, kısmi soylu (paraphyletic) bir gruptur. Protistler içinde değerlendirilen canlıların da görece basit yapılı (tek hücreli ya da ileri düzeyde özelleşmiş dokuları olmayan çok hücreli) olmak dışında ortak özellikleri pek yoktur. Beslenmeleri fotosentez, absorbsiyon ya da fagositoz ile, çoğalmaları ise eşeyli ya da eşeysiz üreme ile gerçekleşen protistlerin hareketsiz olanları olabildiği gibi, kamçı, siller ya da yalancı ayaklarla hareket ederleri de bulunur. Yaklaşık olarak 60.000 yaşayan, 60.000 kadar da soyu tükenmiş fosil türü bilinmektedir. Protistalar canlılar dünyasının ökaryot hücreli en ilkel organizma grubudur. Çoğunlukla tek hücre halinde yaşamakla birlikte koloni halinde yaşayanları da vardır. Protistalar kamçılılar, silliler, kökayaklılar, sporlular, cıvık mantarlar ve algler olmak üzere gruplara ayrılırlar. Mikro Hayvanlar Mantar Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır. Halk arasında küf, pas, rastık, maya, mildiyö, şapkalı mantar, kav mantarı, puf mantarı gibi çeşitli isimlerle anılan bütün mantarlar, mantarlar (Fungi) alemi içersinde incelenirler. Latince Fungi mantarlar, Fungus ise mantar anlamındadır. Dünyanın heryerinde bulunurlar. Fazla nemli yerlerde daha çokturlar. Yeryüzünde 1,5 milyon kadar mantar türü olduğu düşünülmekte ise de günümüzde sadece 69.000 kadar türü tanımlanmıştır. Çoğu insan, mantarların bitki olduğunu düşünmektedir, ancak mantarlar bitki değildir. Çünkü, mantarlar kendi besinlerini üretemezler. Bitkiler Bitkiler (Plantae), fotosentez yapan, ökaryotik, ağaçlar, çiçekler, otlar, eğreltiotları, yosunlar ve benzeri organizmaları içinde bulunduran çok büyük bir canlılar alemidir. Bitkiler, topluluk halinde yaşarlar. Bitkilerin bir bölgede oluşturdukları örtüye bitki örtüsü denir. Flora, bir bölgede yetişen bütün bitki türlerinin hepsine denir. Herhangi bir bölgenin yaşam koşullarında gelişen, benzer ekolojik yapı içeren bitki topluluğuna vejetasyon denir. Bunlar 4 sınıftır: Ormanlar (her zaman yeşil tropikal yağmur, subtropikal, orta kuşak, sert yapraklı, iğne yapraklı, kışın yaprak dökenler, muson ormanları, tropikal kuru, mangrov, galeri, bataklık), Çalılar (maki, garig, psödomaki), otlar (savan, step, çöl), tundra. Bitkilerin yetişmesini etkileyen bir çok faktör vardır. Bunlar; ekvatora uzaklık, denizden yükseklik(rakım), arazi eğimi, ışık, sıcaklık, nem, yıllık yağış miktarı, toprak içeriği, canlı faktörler(insan, hayvan, diğer bitkiler, mikroorganizmalar)'dir Bitkiler, fotosentezle ekolojik dengeyi sağlamada temel rol oynadıklarından, canlılar dünyasında çok önemli yere sahiptirler. Bitkiler aleminin 350.000'e yakın türü mevcuttur. 2004 itibariyle 287.655 bitki türü tanımlanmıştır. Bunlardan 258.650'si çiçekli bitkilerden, 15,000'i de yosunlardan olarak tanımlanmıştır. Bitkiler genelde ototrof (özbeslek) organizmalardır ve enerjilerini güneş ışığından alırlar. Birçok bitki kloroplastları sayesinde fotosentez ile organik bileşiklerini üretir. Bitki hücreleri genellikle kareye benzer şekildedir. Habitat ve Ekoloji [değiştir]Habitat, bir organizmanın yaşadığı ve geliştiği yer. Bu yer, fiziksel bir bölge, yeryüzünün özel bir parçası, hava, toprak ya da su olabilir. Habitat, bir okyanus ya da bir çayırlık kadar büyük olabileceği gibi, çürümüş bir ağaç kütüğünün altı ya da bir böceğin bağırsağı kadar küçük de olabilir. Bununla beraber, her zaman tanımlanabilen ve fiziksel olarak sınırlı bir bölgedir. Birden fazla hayvan ya da bitki özel bir habitatta yaşayabilir. Ekoloji, canlıların birbirleri ve çevreleriyle ilişkilerini inceleyen bilimdir. Ekosistem ise canlı ve cansız çevrenin tamamıdır. Ekosistemi de abiotik faktörler (toprak, su, hava, iklim gibi cansız faktörler) ve biyotik (üreticiler, tüketiciler ve ayrıştırıcılar) faktörler olmak üzere iki faktör oluşturur. Ekstremofil [değiştir]Ekstremofiller çoğunlukla tek hücreli olup ekstrem koşullarda yaşama gereksinim duyan ve bu koşullarda optimum olarak gelişen organizmalara denir.Ekstremofiller karasal mezofilik organizmaların büyümeleri ve üremeleri için gerekli optimal koşullardan çok farklı olan ekstrem çevrelerde gelişirler.Çoğu ekstremofiller(ekstrem koşulları seven) mikroorganizmalardır.Archaea domaini ekstremofillerin geniş dağılımlı olduğu bir domain olarak bilinmesine karşın,ekstremofiller hem bakterilerin hem de archaeaların içinde sayısız ve farklı genetik hatlarda yer almaktadır.Archaea ve ekstremofil terimleri ara sıra kendi içerisinde yer değiştirmesine karşın,pek çok mezofilik archaeaların ve pek çok ekstremofilik bakterilerin olduğu bilinmektedir.Yine,tüm ekstremofiller tek hücreli değildir.Çok hücrelilere örnek olarak ekstremofilik metazoalardan Pompeii kurdu ,psikrofilik(soğukta yaşamı seven) Grylloblattodea(böcek),artartik kabuklular(crustacea)ve Tardigrade(mikroskobik canlı) verilebilir. Mikrop terimi, bilim dünyasına ilk defa 1878'de Fransız cerrahı Charles Sédillot tarafından getirilmiştir. Sédillot, mikropların kendilerine has apayrı bir dünyası olduğunu savunmuştur. Mikrobiyoloji ilim dalı beş ana kısma ayrılmıştır: Viroloji, bakteriyoloji, protozooloji, algoloji ve mikoloji. Bunlara ilaveten moleküler ve hücresel biyoloji, biyokimya, fizyoloji, ekoloji, botanik ve zoolojiyle de yakından ilgilidir.

http://www.biyologlar.com/mikroorganizmalarda-siniflandirma-ve-yapi

Mantarlar

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır. Halk arasında Küf mantarı, Pas mantarı, Rastık mantarı, Maya mantarı, Mildiyö mantarı, Şapkalı mantar, kav mantarı, Puf mantarı gibi çeşitli isimlerle anılan bütün mantarlar, mantarlar (Fungi) alemi içersinde incelenirler. Latince Fungi mantarlar, Fungus ise mantar anlamındadır. Dünyanın heryerinde bulunurlar. Fazla nemli yerlerde daha çokturlar. Yeryüzünde 1,5 milyon kadar mantar türü olduğu düşünülmekte ise de günümüzde sadece 69.000 kadar türü tanımlanmıştır. Çoğu insan, mantarların bitki olduğunu düşünmektedir, ancak mantarlar bitki değildir. Çünkü, mantarlar kendi besinlerini üretemezler. Bu yüzden mantarlar üretici değil, ayrıştırıcıdırlar. Mantarlar Makroskobik ve mikroskobik mantarlar. Bilimsel sınıflandırma Üst alem: Ökaryot Alem: Fungi(Mantarlar)L., 1753 Bölümler Ascomycota Basidiomycota Chytridiomycota Deuteromycota Glomeromycota Zygomycota Tarihçesi Mantarlarla ilgili sistematik çalışmalar 250 yıllık bir geçmişe dayansa da, bazılarının özellikleri yüzyıllardır bilinmektedir. Ekmek hamurunun kabartılmasında, şarap yapımında insanlık tarihinde hep kullanılmışlardır. Meksika ve Guatemala halkları bazı halüsinojenik mantarları dini ve mitolojik törenlerde kullanmışlardır. Yine bazı mantarlar Kuzey Amerika yerlileri ve Çinliler tarafından tıbbi amaçla kullanılmışlardır. Şapkalı mantarların ilk olarak Proterozoik Çağ’da (4 milyar – 570 milyon yıl önce) ortaya çıktıkları düşünülüyor. İnsanların şapkalı mantarları kullanımıysa paleolitik döneme (yontma taş çağına) değin uzanır. Tarihsel kayıtlar, şapkalı mantarların pek de iyi niyetleri olmayan amaçlar için kullanıldıklarını ortaya koymaktadır. II. Claudius ve Papa VII. Clement’in düşmanları tarafından zehirli bir mantar türü olan Amanita’yla zehirlendiği yazılmıştır. Bir efsaneye göre de Buddha, bir köylünün ona sunduğu, toprak altında yetişen bir mantarı yediği için ölmüştür. Üremeleri Mantarlar eşeyli üreme ve eşeysiz üremeyle çoğalırlar. Her iki durumda da spor oluşturular. Sporlar "humenium" adı verilen yapılarda meydana gelir. Eşeyli üremeleri iki haploid hücrenin birleşmesini içerir. Toprağa dökülen sporlar rüzgarla ya da böceklerle çevreye dağılır ve toprakta yıllarca yaşayabilir. Mantarlar nemli ortamlarda gelişirler, bu nedenle yağmurlardan sonra topraktaki sporlar çimlenerek mantarları oluştururlar. Tek hücreli mantarlar ise tomurcuklanarak çoğalabilirler. Suda yaşayanlarda eşeysiz üreme daha hareket organeli ( yani flagellum) bulunan zoosporlar ile olur. Yaşam döngülerinde iki safha bulunmaktadır. Bunlar: Somatik safha ; mantarın beslenme ve besinsel aktivitelerini yerine getirdiği safha, Üreme safhası ; sporların üretimi, somatik yapıların diğer üreme yapılarında kullanıldığı safha. Üç değişik somatik yapı görülebilir. Bunlar; Plasmodium ya da pseudoplasmodium denilen çok nukleuslu bir yapı, Bir hücereden ibaret bir yapı, hifsi bir yapıdadırlar. Hifler, renksiz,ince,uzun iplikler olup yanyana gelerek miselyum adı verilen dokuyu miselyumlarda tallus adı verilen yapıyı oluşturur... Mantarların yaşam döngüsü her şekilde spor oluşumuyla sonuçlanan eşeyli ve eşeysiz üremeyi kapsamaktadır. Hem eşeyli hem eşeysiz üreme safhalarını içeren tüm yaşam döngüsü "holomorf" diye bilinir. Eşeysiz üreme sporları ve ilgili üreme yapılarının gözlendiği evre "anamorf" (imperfect) evredir. Eşeyli üreme yapılarının gözlendiği evre ise "telemorf" (perfect) evre adını alır. Yenilebilen mantarlar Mantarlar genellikle çayırlarda yetişir ama yenebilen mantarlar olarak Kültür mantarını örnek verebiliriz.Bu mantarlar mantar yatağından satılan yerlere gelir.Doğal mantarların çoğu zehirli olduğundan özel yetiştirilen kültür mantarlarını yiyecek olarak kullanmak daha güvenlidir..Kültür mantarı yenebilen mantardır.Peki neden? Şapkalı Mantarlar grubunda dersek bunun nedeni mantar yataklarında bütün zehirlerinin alınması içindir... Önemleri Mantarlar insanlık tarihi açısından büyük öneme sahiptirler. Ekosistemin önemli parçalarıdır. Son 2 milyar yıldır bitki ve hayvansal yapıları çürüttükleri bilinmektedir. Bu yapılardaki elementlerin serbest bırakılmaları mantarlar tarafından sağlanır. Orman ekosistemlerinde karbondioksit salınımı gerçekleştirmektedirler. Ayrıca toprağın yapısını bitki gelişimi için uygun hale getirirler. "Mikoriza" denilen ortaklıklar oluşturarak bitkilerin köklerine tutunurlar ve bitki köklerinden karbonhidrat alırlar, bu sırada bitkide mantarın hifleri yardımı ile topraktan su ve suda çözünen tuzları absorblar. Bazı eklembacaklı türlerinde "mycangium" denen yapılar olarak bulunurlar ve selüloz sindirimine yardımcı olurlar. Mantarlar nemli olan heryerde yetişebilirler. Alglerle birleşerek ekosistem için çok önemli olan likenleri oluştururlar. Bazı parazitik mantarlardan tarım zararlıları ve hastalıklarıyla biyolojik mücadelede yaralanılmaktadır. Bazı marketlerde "Collego" adıyla satılan ürün, yabancı otlarla mücadelede kullanılan Colletotrichum gloeosporoides türünden elde edilen bir mikoherbisitdir. Gerçek mantarlardan olan mayalar, fırıncılık ve fermantasyon endüstrisinin temelini oluştururlar. Alkollü içki endüstrisinin temelini de mantarlar oluşturmaktadır. Bununla beraber, sitrik asidin endüstriyel olarak üretilmesinde ve bazı peynir tiplerinin hazırlanmasında da (rokufor, gorgonzola, kamembert gibi) kullanılırlar.Penisilin gibi birçok yararlı antibiyotiğin, thiamin, biyotin, riboflavin gibi bazı vitaminlerin; ergotamin, kortizon gibi önemli ilaçların kullanılmasında yine mantarlardan yaralanılmaktadır. Amilaz, pektolaz gibi enzimler; gibberellin gibi bazı hormonlar da mantarlardan yararlanılarak üretilmektedir. Ayrıca genetik çalışmalarda kullanılan Neurospora cinsi yine bir mantardır. Mantarlardan insanların çeşitli amaçlarla yararlandıkları cinslerden bazıları; fermantasyon yaparak alkollü içkilerin hazırlanmasında ve ekmek yapımında kullanılan Saccharomyces türleri, antibiyotik eldesinde kullanılan Penicillium türleri ve ergot alkaloitlerinin elde edildiği Claviceps purpureadır. Yetiştiriciliği Ustilago maydis mantarı Şili gibi bazı ülkelerde mısır bitkisinde yetiştirilir ve gıda olarak kullanılır. Avrupa, Amerika, Çin ve Japonya'da gıda olarak mantar yetiştirme bir endüstri halini almıştır. Çin'de mantar yetiştiriliciği 600 yıl öncesine kadar dayanır. Avrupa'da ise1650'li yıllarda Fransa'da kültür mantarı yetiştiriciliği başlamıştır. Şili gibi bazı Güney Amerika ülkelerinde Aztekler zamanından beri bilinen mısır rastığı (Ustilago maydis), bazı mısır tarlaları özellikle bu mantar ile enfekte edilerek üretimi yapılmakta ve yenilmektedir. Mantarlar gelişmek için; nem, sıcaklık, 4-7 arası pH, oksijen, az miktarda ışığa ihtiyaç duyarlar. Zararları ve zehirlenme Mantarlar bitkilerde çoğunlukla hastalığa neden olurlar. Birçok yabani mantar doğadan toplanıp yenebilir ve çoğunun kültür türlerinden daha lezzetli olduğu söylenir. Fakat doğal yetişmiş mantarları toplayan kişi bu konuda uzman olmadığı takdirde zehirlenme ve ölümlerle karşılaşılabilir. Çünkü bazı mantarların çok küçük bir miktarı bile insanı öldürecek kadar zehirlidir. Zehirli mantarları zehirsizlerden ayırmak için genel bir kural yoktur. Yenebilen ve zehirli, mantarlar yan yana yetişebilirler. Bazı yenebilen ve zehirli türler birbirine o kadar benzer ki bunu ancak bir mantarbilimci ayırt edebilir. Zehirli mantarların tadı yenebilen mantarlarınkinden farklı değildir. Etinin rengi, kokusu ve tadı ile bir mantarın zehirli olup olmadığı anlaşılamaz. Mantarların insan ve hayvanlarda oluşturduğu hastalıklara genel anlamıyla "mikoz" denir. Tropikal ülkelerde mikozlar yaygındır. AIDS, kanser, şeker hastalıkları, organ nakli gibi durumlarda doğal veya yapay olarak bağışıklık sistemi baskılandığı için mantar enfeksiyonları ortaya çıkabilir. Mantar sporları havaya karışarak insanda alerji ve astıma sebep olabilirler. Bitkilerde parazitik mantarlar hastalıklara neden olurlar.Bazı mantar türleri bitkiler üstünde yaşar ve besinini bitkilerden sağlar.Bitki öldüğündeyse kendi besinini üreterek yaşamını sürdürür. Özellikle tek cins ürüne dayalı tarımda (patates, pirinç gibi) büyük kayıplara yol açabilirler. Örneğin 1840'lı yıllarda İrlanda'da baş gösteren kıtlığa patates mildiyösü (Phytophthora infestans) neden olmuştur. Bu felaketten dolayı bir milyondan fazla insan ölmüştür. 1943'de ise Bengaldeş'de Helminthosporium oryzae diye bilinen tür, pirinç ürününü yok ederek kıtlığa neden olmuştur. Ayrıca, mantarlar hakkındaki yanlış inançlar da zehirlenme olaylarını arttırıcı etki yapar. Zehirli mantarları salyangozların yemediği, ağaçlarda yetişen mantarların zehirsiz olduğu, mantarı yoğurtla yemenin zehirlenmeyi önlediği, zehirli mantarların iç kısmının koparılınca mavileştiği ve kurutulmuş mantarların zehirlemediği gibi bilgiler yanlıştır. Bu bilgilere güvenerek mantar yemek kesinlikle doğru değildir. Mantarlar, ılıman iklimlerde elbiselerin, kameraların, teleskopların, mikroskopların ve diğer optik malzemelerin küflenerek zarar görmesine neden olurlar. Petrol ürünleri, deri gibi organik maddeler de mantarların besin olarak kullandığı ürünlerdir. Çürükçül mantarlar aynı zamanda tomruk ve kerestelerin, ağaçtan yapılmış eşyaların çürüyerek kullanılamaz hale gelmesinden de sorumludurlar. Ayrıca evlerde, marketlerde besinleri bozarak milyarlarca dolarlık zarara neden olurlar. Gıdalarda oluşturdukları mikotoksinlerle toksik zehirlenmeler yol açabilirler. Özellikle okratoksinler ve aflatoksinler, böbreklerde ve karaciğerde hasarlara neden olurlar. "Çavdar mahmuzu" diye bilinen mantar, çavdarın ununa karışıp yenmesiyle ergotizm denilen hastalığa neden olmaktadır. Bu hastalık hayvanlarda ve insanlarda yavru düşüklüğüne neden olmakta ve ölümlerede yol açabilmektedir. Bazı mikotoksik mantarlar Vietnam ve Afganistan'da biyolojik silah olarak kullanılmıştır. Sınıflandırmaları Mikroskobik bir mantarın hifleri ve sporları Sınıflandırmada bitkiler alemi içinde ele alınmaları bilim adamları arasında uzun yıllar tartışma konusu olmuştur. Her ne kadar Uluslararası Botanik Nomenklatür Kodunun kurallarına göre adlandırılıp sınıflandırılsa da, bitkilerden farklı bir alem olarak ele alınmışlardır. İlk taksonomik gruplandırılma eşeysel sporlarına göre yapılmıştır. Günümüze kadar mantarlar, gamet, gametangia, sporokarp ve sporlarının özelliklerine, hayat döngülerindeki sitolojik ve morfolojik özelliklerine göre sınıflandırılmıştır. Mantarlara ait ilk sınıflandırma Linnaeus tarafından yapılmıştır. "Species Plantarum" adlı kitabında mantarları Cryptogamia Fungi sınıfında toplamıştır. İlk modern mikolog ve mikolojinin kurucusu olan Antonio Micheli, mantarları 1719'da yayımladığı "Nova Genera Plantarum" adlı eserinden toplamıştır. Carl Woese (1981), sınıflandırmasını filogenetik kurallara göre yapılmıştır. Monofiletik grup olarak düşünülmüş olan mantarlar, artık üç farklı grup olarak düşünülmektedir. Bu sınıflandırma fungi olarak bilinen organizmaların birbirleriyle sıkı bir ilişki içinde olmadıklarını kabul eder. Buna gore mantarlar,; Alem : Fungi Bölüm : Chytridiomycota Bölüm : Zygomycota Bölüm : Ascomycota Bölüm : Basidiomycota Alem : Stramenopila Bölüm : Oomycota Bölüm : Hypochytiridiomycota Bölüm : Labyrinthulomycota Alem : Protista Bölüm : Plasmodiophora Bölüm : Dictyosteliomycota Bölüm : Acrasiomycota Bölüm : Myxomycota Yenilebilen mantar türleri Boletus edulis Coprinus comatus Bir yer yıldızı - Geastrum saccatum Morchella esculenta Agaricus campestris Amanita caesarea Armillaria mellea Boletus badius Boletus bovinus Boletus edulis Boletus elegans Boletus luteus Cantharellus cibarius Chroogomphus rutilus Coprinus comatus Craterellus cornucopioides Fistulina hepatica Hydnum coralloides Hydnum repandum Hygrophorus chrysodon Lactarius deliciosus Lactarius salmonicolor Lactarius volemus Lepiota procera Morchella conica var. deliciosa Morchella esculanta var. rotunda Phlegmacium variecolor Pleurotus cornucopiae Pleurotus ostreatus Polyporus squamosus Polyporus sulphureus Rhizopogon luteolus Russula delica Sparassis crispa Tricholoma terreu Mikoloji Mikoz Aflatoksin Halüsinojen mantarlar Zehirli mantarlar

http://www.biyologlar.com/mantarlar

Mantar Nedir? Mantar Hakkında Bilgi

Bilimsel sınıflandırma Alem: Fungi L., 1753 Bölümler Ascomycota Basidiomycota Chytridiomycota Deuteromycota Glomeromycota Zygomycota Mantar, çok hücreli ve tek hücreli olabilen ökaryotik canlılardır. Hayvanlar gibi aktif hareket edemezler ama bitkiler gibi Klorofil de taşımazlar. Yani heterotrofdurlar. Besinlerini dış ortamdan alırlar. Sınıflandırmada bitkiler alemi içinde ele alınmaları bilim adamları arasında uzun yıllar tartışma konusu olmuştur. Mantarlar parazit olarak, çürükçül (saprofit) veya simbiyotik olarak yaşayabilirler. Makroantarların üremesi sporlar yoluyla gerçekleşir. Toprağa dökülen sporlar rüzgarla ya da böceklerle çevreye dağılır ve toprakta yıllarca yaşayabilir. Mantarlar nemli ortamlarda gelişirler, bu nedenle yağmurlardan sonra topraktaki sporlar çimlenerek mantarları oluştururlar. Tek hücreli mantarlar ise tomurcuklanarak çoğalabilirler. Mantarlar arasında insanların çeşitli amaçlarla yararlandıkları türler vardır. Fermantasyon yaparak alkollü içkilerin hazırlanmasında ve ekmek yapımında kullanılan Saccharomyces türleri, antibiyotik eldesinde kullanılan Penicillium türleri ve ergo alkaloitlerinin elde edildiği Claviceps purpurea mantarı gibi. Mantar cinsleri içinde 60 kadar tür ile temsil edilen Amanita cinsi ayrı bir öneme sahiptir. Amanita türleri içinde yenebilen bir mantar olan Amanita caesarea’nın yanı sıra, zehirli ve halüsinojen etkili Amanita muscaria ve Amanita pantherina ve öldürücü zehirli olan Amanita phalloides, Amanita verna ve Amanita virosa türleri yer alır. Amanita türleri diğer mantarlardan, şapkasının altında beyaz renkte ışınsal perdeler, yani lameller olması, sapın ortaya yakın kısmında sapı saran bir halka taşıması ve sapın alt kısmında yumurta kabuğu biçiminde bir çanakçık bulunması gibi özellikleri ile ayırt edilirler. Yenebilen Amanita caesarea mantarında ise lameller ve sap altın sarısı rengindedir. Türkiye'nin Yenen Mantar Türleri Önemli not Yenebilen ve zehirli mantarlar yan yana yetişebilirler. Bazı yenebilen ve zehirli türler birbirine o kadar benzer ki bunu ancak bir mantarbilimci ayırt edebilir. Zehirli mantarların tadı yenebilen mantarlarınkinden farklı değildir. Etinin rengi, kokusu ve tadı ile bir mantarın zehirli olup olmadığı anlaşılamaz. Agaricus campestris Amanita caesarea Armillaria mellea Boletus badius Boletus bovinus Boletus edulis Boletus elegans Boletus luteus Cantharellus cibarius Chroogomphus rutilus Coprinus comatus Craterellus cornucopioides Fistulina hepatica Hydnum coralloides Hydnum repandum Hygrophorus chrysodon Lactarius deliciosus Lactarius salmonicolor Lactarius volemus Lepiota procera Morchella conica var. deliciosa Morchella esculanta var. rotunda Phlegmacium variecolor Pleurotus cornucopiae Pleurotus ostreatus Polyporus squamosus Polyporus sulphureus Rhizopogon luteolus Russula delica Sparassis crispa Tricholoma terreum

http://www.biyologlar.com/mantar-nedir-mantar-hakkinda-bilgi


EVRİM KURAMI ve TEORİLERİ 1

Evrim kuramının özü maymun sorunu mudur? Darwin,maymundan geldiğimizi mi söyledi? Maymundan geliyor olmakla kurttan geliyor olmak neyi fark ettirir? Darwin,Evrim kuramını hangi araştırmalar sonucu ortaya koydu? Doğal seçilim nedir? Yaşamın ortaya çıkışında rastlantının rolü var mıdır? Bugün yaşamın nasıl oluştuğu konusunda sağlam bir kurama sahip miyiz? Yaratılış kuramları ile Evrim kuramının farkı nedir?Erzurumlu İbrahim Hakkı,Darvin’den yüz yıl önce maymundan geldiğimizi nasıl söyledi? İslam toplumlarındaki bilimin parlak yüzyılları olan 8. ve 12. yy'larda evrim kuramının pırıltılarını savunan İslam bilgeleri var mıdır? Evrim kuramını reddetmek,bizlere Türkiye'mize neler kaybettirir? Zümrütten Akisler : Charles Darvin’den bilimsel düşünme dersleri... A. M. C. Şen gör 27 Aralık 1831'de Majestelerinin Gemisi Beagle, dünyanın etrafını dolaşmak üzere İngiltere'nin Plymouth limanından demir aldığı zaman yolcuları arasında bulunan "geminin doğa bilimcisi" Charles Darwin henüz 22 yaşında, teşebbüs ettiği tıp ve ilâhiyat eğitimlerinin her ikisinde de pek bir varlık gösterememiş, yaşamında tutacağı yol pek de belli olmayan gencecik bir adamdı. Gitmesine baştan razı olmayan babasına gemide harçlığından fazlasını harcayabilirse iki misli akıllı sayılacağını söylediğinde, yetenekli ve deneyimli taşra doktoru Robert Darwin oğluna gülümseyerek "ama herkes bana senin çok akıllı olduğunu söylüyor!" cevabını vermişti. "Herkes" haklı çıktı. Bu gencecik adam, 1837'de İngiltere'ye geri geldiğinde birinci sınıf bir doğa bilimci olup çıkmıştı. Evrim kuramı onun bilimin kalıcı hazinelerine kattığı tek mücevher değildir. Pasifik Okyanusunda yol alırken karşılaşılan sayısız atoller (dairemsi mercan adaları) genç adamın dikkatini çekmişti. Bu garip yapılar nasıl oluşuyordu? Mercanların küçük hayvancıklar oldukları, yaşayabilmek için mutlaka güneş ışığına ihtiyaçları olduğu, bu nedenle de yaklaşık 200 metrenin altında yaşayamayacakları biliniyordu. Atollerin dairesel şekilleri, bunların deniz altı yanardağlarının kraterlerinin kenarlarında büyümüş mercan kolonileri olduğu fikrini doğurmuştu. Geminin küpeştesinden yanindan geçtikleri atollerin ve içlerindeki turkuvaz la günlerin doyulmaz güzelliklerinin büyüsü içinde Darwin, bu teoriyi düşünüyordu: Her bir atol, bir krater! Iyi de niçin tüm kraterler "tesadüfen hep deniz seviyesinden yalnizca iki yüz metre derinlikteki alan içinde bulunsunlar?" Haydi diyelim ki deniz dibinin engebelerinden ötürü bu böyle olsun. Peki, ya set resifleri denilen ortada bir kara parçasini çevreleyen atol benzeri mercanlar? Ya saçak resifleri adi verilen ortadaki bir karaya dogrudan bagli gelişenler? Hele set resiflerinin açiklanmasi için herkesin kabul ettigi kurama göre ortadaki karanin etrafinda bir de krater bulunmasi geregi? Ya Avustralya'nin tüm kuzeydogu sahili boyunca uzanan o binlerce kilometrelik dev set resifi? Onun da mi krateri var? Bazilari mercanlarin sualti dag zirvelerinde oluştugunu savunuyor bu tür dümdüz mercan setlerini veya atol siralarini görünce: O dag siralarinin tepeleri hep ayni seviyede miydi? Nerede böyle bir dag silsilesi görülmüş ki? Kafasında bu sorular uçuşan genç, diyor ki, atollerin hepsinin deniz seviyesinde bulundukları açık, daha yukarı tırmanmıyorlar. Bazı yerlerde yükselmiş resifler var: Onlardaki mercanlar ölmüş. Bugünkü dairesel mercan adalarında deniz dış kısımda hızla derinleşiyor, atol lagünleri ise hep sığ. Diyelim ki bunlar tepe yükseklikleri çeşitli olabilen bir dağ silsilesinin yavaş yavaş deniz dibine çökmesiyle oluşmuş olsunlar. O zaman ne olacak? Denizin içine dalan tepenin çevresine önce saçak resifleri oluşacak; tepenin çökmesi devam ettikçe bunlar sırayla önce set sonra da tepe tamamen sular altında kalınca atol resiflerine dönüşecekler. Çökme ne kadar devam ederse etsin, resif yalnız 200 metre derinlikte yaşayabildiğine göre her mercan nesli bu derinliğin altına çöken ve ölenlerin kalıntıları üzerinde yaşamağa ve kireçtaşından iskeletlerini yapmağa devam edeceklerdir. Bu yeni teoriyi geliştiren genç, hemen önüne haritalari aliyor. Bir de bakiyor ki atollerin oldugu yani kendi kuramina göre çökme olan yerlerde faal volkanlar yok denecek kadar az, halbuki daha önce gördügü, Güney Amerika Andlari gibi yükselen yerlerde yanardagdan geçilmiyor. Hemen bir yükselen ve alçalan alanlar haritasi hazirliyor ve yanardaglarin dagilimiyla birlikte bunlarin yer kabugunun dinamizmine işaret ettigini vurguluyor. Darvin’in mercan adalarinin köken ve gelişimleri hakkindaki kurami 1960'li yillarda gelişen levha tektonigi kuramiyla yepyeni ve büyük bir destek daha kazandi. Birkaç gözlem ve bunlarin çok siki bir mantiksal analizinden türeyen bu kuram Darvin’e "bütün imkânsiz şiklari temizlersen, geriye kalan ne derece olanaksiz gibi görünse de dogrudur" diye ifade edilebilecek olan "dişlama kurali"ni ilham etmişti. Ama yillar sonra kendisinin deniz taraçalari diye yorumladigi Glen Roy 'un "paralel yollari" denen taraçalarinin aslinda buzul gölleri tarafindan oluşturuldugunu Agassiz kanitlayinca, Darwin bilimde "dişlama ilkesine" de güvenmenin dogru olmadigini anladi ve bunu açik kalplilikle itiraf etti: "Insan dogada hiç kimsenin o ana kadar görmedigi süreçlerin olabilecegini asla unutmamali." İşte biyolojik evrim kuramı, böyle deneyimli bir düşünce ustasının, gelmiş geçmiş en büyük doğa bilimcilerden biri olmakla kalmayıp, aynı zamanda büyük de bir bilim felsefecisi olan bir kişinin ürünüdür. Darvin’in düşünce berraklığını ben geçmişte düşüncesini yakından tanıdığımı sandığım yalnız iki insanda bulabildim: Al bert Einstein ve Mustafa Kemâl. (Cumhuriyet Bilim Teknik, 9 Aralık 2000) İnsanlar ve Hayvanlar: Konuşma ve Düşünce “ Platon, diyaloglarından birinde, Protagoras' ın ağzına, insanın kökeni üzerine bir masal verir: İnsanlar, canlı yaratıklar, tanrılarca ateşten ve topraktan yapılmışlardı. Yaratıldıktan sonra, Prometheus ve erkek kardeşi Epimetheus, her tür, kendini savunacak araca sahip olabilsin diye, tırnak, kanat ya da yer altında barınaklar vererek kendi yeteneklerini bağışladı onlara. Soğuğa karşı korunmak için hayvan kürklerine, derilerine sardı onları; bazılarına, diğerlerinin doğal avı olma yazgısını verdi, ama aynı zamanda onları son derece doğurgan yaparak yaşamı sürdürmelerini sağladı. Bütün bunlar, kardeşinin yönetimi altında Epimetheus tarafından yapıldı, ama görevinin sonunda farkına vardı ki, eldeki bütün yetenekleri istemeyerek (hayvanlara) bağışlamış, insanlara hiçbir şey kalmamıştı. Prometheus da insanı yok olup gitmekten korumak için ateşi verdi ona… Bu örnekte,insan ateşi Prometheus’tan ya da başka bir tanrıdan hediye olarak almamıştır kendi us gücüyle kendi içi bulmuştur onu. Yunanlıların kendi de biliyordu bunu çünkü Prometheus figürünü insan zekasının bir simgesi olarak yorumluyorlardı. Ayrıca zekanın bir başka yetenekten,aynı zamanda özellikle insanın konuşma yeteneğinden ayrılmaz olduğunu da biliyorlardı. İnsan,logosa sahip olmakla hayvanlardan ayrılır;ustur bu, anlayıştır ve konuşmadır. Onu yaratıkların efendisi,doğanın sahibi,kartaldan daha hızlı,aslandan daha güçlü yapan da budur. Nasıl elde etti bunu? Mitin verdiği yanıta göre,öteki hayvanların sahip olduğu saldırı ya da savunmaya yarayan bedensel gelişmelerde yetersiz olduğu için elde etti onu. Bunlar olmayınca,yok olup gitme tehlikesiyle yüz yüze geldi ve böylece,görüldüğü gibi onları geliştirmeye zorlandı. Bu mitin özü bilimsel bir hakikat tır. Genel olarak hayvansal yaşamin çeşitli biçimleri dogal ayiklanmayla çok uzun bir süre içinde evrimleşmiştir; bu yolla, kendilerini az ya da çok başariyla farkli ortamlara ve birbiri ardindan gelen ortam degişikliklerine uydurarak farklilaşmişlardir. Iklim koşullari yeryüzünün farkli yerlerinde farkli olmakla kalmayip,her yerde, bir takim daha küçük ya da daha büyük degişikliklere de ugramiştir. Çevre degiştigi için hiçbir hayvan türü hiçbir zaman çevresine tam olarak uyamaz;kendisini belli bir dönemin koşullarina kusursuz bir biçimde uydurmuş olan bir tür, daha az özelleşmiş diger türler artar ve çogalirken,ayni nedenle bir süre sonra güçsüz duruma gelebilir. İnsan, hayvanların en yüksek sınıfı olan kendisinden başka insansıları ve maymunları da içine alan primatlardan biridir. Diğer memeli sınıfları,kedi ve köpeği içine alan etoburlarla,at ve sığırı içine alan toynaklılardır. (G. Thomson, İlk Filozoflar s: 25-27) Atalarımız İnsanın, hatta bütün yaşamın köklerini nasıl biliyoruz? Alan Moorehead, Charles Darvin’in 1835'te HMS Beagle ile yaptığı uzun yolculuk sırasında evrimle ilgili kuramının ın ilk tohumlarının kafasında belirlediği yer olan Galapagos Adaları'nı ziyaretini sürükleyici bir dille anlatır: Pasifik’teki bütün tropik adalar arasında Tahiti’den sonra en ünlüsü Galápagos adalarıydı Ancak bu adalarda insanı beğenebileceği pek bir şey yoktu. Tahiti takımadası gibi bereketli ve güzel olmadıkları gibi,denizde izlenen alışılmış yolların da çok dışındaydı. Adaların ünü tek bir şeyden kaynaklanıyordu; dünyadaki öteki adalardan farklı olarak son derece ilginçtirler. Beagle için çok uzun bir yolculukta sığınılacak limanlardan biriydi yalnızca, ama Darwin için bundan daha fazlaydı;çünkü burası,onun yaşamın evrimiyle ilgili taşladığ ğı yerlerdi. Kendi sözleriyle “Burada,gizemler gizemi o büyük olgunun,bu dünyada yeni varlıkların ortaya çıkışının gizine zamanda ve uzamda daha yaklaştığımızı hissediyoruz.” Fakat Beagle’ın mürettebatı için adalar daha çok bir cehennemi andırıyordu. Gemi, takımadanın en doğusunda yer olan Chatham Adası’na yaklaşırken,kıvrılıp bükülerek çevreyi kaplayan korkunç lavlardan oluşmuş,taşlaşıp kalan fırtınalı bir denizi andıran bir kıyı gördüler. Hemen hemen yeşil tek bir şey bile yoktu;iskelete benzeyen zayıf çalılar adeta yıldırımla kavrulmuş gibiydiler ve ufalanmış kayalar üzerinde tembel tembel iğrenç kertenkeleler yürüyordu.Kaararan sıkıntılı gök havada asılı duruyor,baca şapkaları gibi dikilmiş küçük volkanik koni ormanı Darvin’e doğup büyüdüğü Staffordshire’daki dökümhaneleri anımsatıyordu. Havada bir yanık kokucusu bile vardı. Beagle’ın kaptanı Robert Fitzroy’un yorumu “Cehenneme yaraşır bir kıyı” biçiminde oldu. Beagle, bir aydan uzun bir sare Galapagos’ta dolaşip ilginç bir noktaya her ulaştiginda bir kayik dolusu adami keşif yapmalari için birakti. Bizi ilgilendiren grup James Adasi’nda karaya birakilan gruptur. Darwin burada iki subay ve iki gemiciyle birlikte,yanlarinda bir çadir ve erzak,karaşa ayak basti, Fitzroy da bir haftadan sonra geri gelip onlari aylaşa söz verdi. Deniz kertenkeleleri açık kocaman ağızları,boyunlarında keseleri ve uzun düz kuyruklarıyla yaklaşık bir metrelik minik birer ejder olup çıkmışlardı; Darwin onlara “karanlığın minik şeytanları” diyordu. binlercesi bira araya toplanmıştı ve gittiği her yerde önünden kaçışıyorlardı. Üzerinde yaşadıkları ürkütücü kaya kayalardan bile daha karaydılar. Sahildeki öteki yaratıkların da farklı tuhaflıkları vardı: Uçamayan karabataklar,ikisi de soğuk deniz yaratığı olan ve hiç tahmin edilemeyeceği halde burada tropik sularda yaşayan penguenler ve ayı balıkları,bir de kertenkelededir üzerinde kene avlayan bir kızıl yengeç. Adanın iç kısımlarında yürüyen Darwin, dağınık bir öbek kaktüsün arasına vardı; burada da iki koca kaplumbağa karınını doyurmaktaydı. küp gibi sağırdılar,ancak burunlarının dibine kadar yaklaşınca onu 1farkettiler. sonra da yüksek sesle tıslayıp boyunlarını içeri çektiler. Bu hayvanlar o denli büyük ve ağırdılar ki yerlerinden kaldırmak ya da yana çevirmek olanaksızdı-bir insan ağırlığını da hiç zorlanmadan taşıyabiliyorlardı.(s: 138) Kaplumbağalar daha yukarıdaki bir tatlı su kaynağına yöneldiler; birçok yönden gelene geniş patikalar tam orada kesişiyordu. Darwin, çok geçmemişti ki kendini iki sıralı garip bir geçit töreninin ortasında buldu. Bütün hayvanlar ağır ağır ilerliyor,arada bir yol boyunca rastladıkları kaktüsleri yemek için yürüyüşlerine ara veriyorlardı. Bu geçit töreni bütün gün ve gece devam etti durdu. sanki çok uzun çağlardır sürüp gidiyordu. Bu dev hayvanlar çok savunmasızdılar. Balina avcıları gemilerine erzak sağlamak içir bir kerede yüze yakınını alıp götürüyordu. Darvin’in kendisi de bunların yavru olanlarından üçünü yakalıd, sonrada da Beagle’a yükleyip canlı canlı İngiltere’ye kadar götürdü. Doğal tehlikeler de onları bekliyordu. Yavru kaplumbağalar daha yumurtadan çıkar çıkmaz leş yiyici bir tür şahinin saldırısan uğruyorlardı. Buradaki başka garip yaratik da kara iguanalariydi. Bunlar hemen hemen deniz iguanalari kadar-bunlarin 1.5 metre olanlari hiç de az degildi- iri, onlardan biraz daha çirkindi. Bütün sirtlarin kaplayan dikenleri,sanki üzerlerine yapişmiş gibi görünen portakal rengi ve tugla kirmizisi ibikleri vardi. karinlarini,daha etli parçalara ulaşmak için çok yükseklere tirmanarak,yaklaşik 9 metre boyundaki kaktüs agaçlari üzerinde doyuruyorlardi;çogu zaman da kurt gibi aç görünüyorlardi. Darwin bir gün onlarin bir öbegin üzerine bir dal firlattiginda bir kemik çevresinde dalaşan köpekler gibi dala saldirmişlardi. Yuvalari o kadar çoktu ki yürürken Darvin’in ayagi sürekli birine giriyordu. Topragi bir ön bir art pençelerini kullanarak şaşirtici bir hizla kazabiliyorlardi. Keskin dişleri ve tehdit kar bir havalari vardi;ama hiç de isiracakmiş gibi görünmüyorlardi. “aslinda yumuşak ve uyuşuk canavarlardi” kuyruklariyla karinlarini yerde sürükleyerek yavaş yavaş yürüyorlardi ve sik sik kisa bir tavşan uykusu için duruyorlardi. Bir keresinde Darwin onlardan birini topragi kazip tamamen altina girene kadar bekledi, sonra da kuyrugundan tutup çekti. kizmaktan çok şaşiran hayvan birden döndü ve “Kuyrugumu neden çektin?” der gibi öfkeyle Darvin’e bakti. Ama saldirmadi. Darwin,James Adası’nda,hepsi de eşsiz,26 kara-kuşu türü saydı. “Çok nadir olduklarını tahmin ettiğim kuşları da dikkatle inceledim” diye yazdı[eski hocası] John Henslow’a.İnanılmaz ölçüde uysaldılar. Darvin’i büyük ve zararsız başka bir hayvan olarak gördüler ve yanlarından her geçtiğinde çalıların içerisinde kımıldamadan oturdular. Darwin,Charles adasında bir pınarın başına elinde bir değnek oturmuş, su içmeye gelen güvercinlerle ispinozları avlayan bir çocuk gördü; çocuk öğle yemeklerini bu basit yöntemle çıkarma alışkanlığındaydı. Kuşlar hiç de yaşadıkları tehlikenin farkında görünmüyorlardı. “Yerli sakinler çevreye yeni gelen bir yabancının beceri ya da gücüne alışana kadar, yeni gelen bu yırtıcı hayvanın çevrede çok büyük bir tahribat yaratacağı sonucuna varabiliriz” diye yazdı Darwin. Büyülü bir hafta böyle geçti; Darvin’in kavanozları bitkilerle, deniz kabuklarıyla, böceklerle, kertenkelelerle ve yılanlarla doldu. Herhalde cennet bahçesi böyle olamazdı;yine de adada “bir zamandışılık ve bir masumluk” vardı. Doğa büyük bir denge içindeydi;orada bulunan tek davetsiz misafir insandı. Bir gün tam bir daire oluşturan bir krater gölünün etrafında yürüyüşe çıktılar. Göl yaklaşık bir metre derinliğindeydi ve parlak beyaz bir tuz tabanın üzerinde kımıltısız uzanıyordu. kenarlarında pırıl pırıl yeşil bir perçem oluşmuştu. Bu doğa harikası yerde alina avına çıkmış bir geminin isyancı tayfaları kısa bir süre önce kaptanlarını öldürmüştü. Ölen adamın kafatası hala toprağın üzerinde duruyordu. Beagle orada Darvin’in arzuladığı kadar çok kalmadı. “Bir bölgede en ilgi çekici şeyin n olduğunu bulur bulmaz oradan aceleyle ayrılmak çoğu yolcunun yazgısıdır.” Geminin arka tarafında topladığı örnekleri seçip ayırmaya başladığında,birden, çok önemli bir şey dikkatini çekti: Çoğu yalnız bu adalarda bulunan,başka hiçbir yerde bulunmayan eşsiz türlerdi bunlar ve bu, bitkiler için olduğu kadar sürüngenler,kuşlar,balıklar kabuklular ve böcekler için de doğruydu. Güney Amerika’da karşılaşılan türlere benzedikleri doğruydu;ama aynı zamanda çok da farklılardı. “En çarpıcı olanı” diye yazdı (s:140) dana sonra Darwin, “bir yandan yeni kuşlarla,yeni sürüngenlerle,yeni kabuklularla,yeni böceklerle,yeni bitkilerle, bir yandan da kuşların ses tonları,tüy renklerinin tonları gibi ufak tefek sayısız yapı özelliğiyle kuşatılmış olmak;hem patagonya’nın ılıman ovalarını hem de Kuzey Şile’nin kavurucu çöllerini çok hatırlatan yerlere sahip olmak.” Başka bir keşfi daha oldu: Birçok ada birbirinden yalnizca 50-60 mil uzakliktaydi;ama türler adadan adaya bile farklilik gösteriyordu. Bu, ilk kez çeşitli adalarda vurulmuş alayci-ardiçkuşlarini karşilaştirirken dikkatini çekti,daha sonra da takimadanin vali yardimciligini yapan Bay lawson bir kaplumbaganin kabuguna bakinca onun hangi adadan geldigini bilebilecegini söyledi .. Küçük ispinozlarda bu çok daha belirgindi. İspinozlar sönük görünüşlü,kulağa hoş gelmeyen kötü ötüşleri olan kuşlardı; hepsi kısa kuyrukluydu;çatılı yuvalar yapıyorlar, bir kerede pembe benekli dört yumurtanın üstüne kuluçkaya yatıyorlardı. tüylerini rengi belli ölçülerde değişiklik gösteriyordu.: Yaşadıkları adaya göre lav karası ile yeşil arasında değişiyordu (Bu denli donuk görünümlü olan yalnız ispinozlar değildi;sarı göğüslü çıt kuşu ile kızıl sorguçlu sinekçil dışında kuşların hiçbirinde tropik bölgelerin o bilinen parlak renkleri yoktu.). Ama Darvin’i en çok şaşırtan şey ispinozların farklı türlerinin sayısı ve gagalardaki çeşitlilikti. İspinozlar bir adada fındıkları ve tohumları kırmak için güçlü ve kalın gagalar geliştirmişlerdi;bir başkasında gaga böcek yakalamasını sağlamak için küçüktü;yine bir başkasında meyve ve çiçeklerle beslenmeye uygun bir hale gelmişti. Hatta bir kaktüs iğnesiyle deliğindeki kurdu çıkarmayı öğrenmiş bir kuş bile vardı. Belli ki ispinozlar farkı adalarda farklı yiyecekler buldular ve birbirini izleyen kuşaklar boyunca kendilerini buna uyarladılar. kendi aralarında başka kuşlarla karşılaştırıldığında bu kadar çok farklılaşmaları,bu kuşların ilkin Galapagos adalarında ortaya çıktıklarını düşündürdü., Bir dönem, büyük bir olasılıkla oldukça uzun bir dönem, belki yiyecek ve yurt konusunda hiç rakipleri olmadı, bu da onların(s:141) başka türlü olsaydı onlara kapalı olacak yönlerde evrimleşmelerine izin verdi. Örneğin ispinozlar olağan koşullarda,ortalıkta zaten etkili ağaçkakanlar dolaştığı için türler gibi ağaçkakan yönünde evrime uğramazlar; sonra küçük bir ağaçkakanı Galapagos’a yerleşmiş olsaydı büyük bir olasılıkla ağaçkakan ispinozu hiç evrimleşmezdi. Aynı şekilde,fındık yiyen ispinozlar,böcek yiyen ispinozlar ve meyve ve çiçekle beslenen ispinozlar kendi tarzlarını geliştirmeleri için kendi hallerinde bırakılmışlardı. Yalıtım yeni türlerin kaynağı olmuştu. Burada büyük bir ilke gizliydi. Doğal olarak Darwin onun bütün sonuçlarını birden kavramadı. Günlükçünü yayımlanan ilk basıksında ispinozlardan çok az söz etti;ama çeşitliklileri ve uğradıkları değişiklikler daha sonra doğal seçme ile ilgili kuramının büyük kanıtları oldu. Fakat o zamana kadar olağanüstü ve tedirgin edici bir buluşun kıyısında olduğunu anlamadı. Bu noktaya gelene kadar,değişikliğe uğramayan türlerin yaratıldığı yollu geçerli inanca asla açık açık karşı çıkmadı,ama bu konuda gizli bir takım kuşkularının olması da pek ala olasıdır. Fakat burada,Galapagos’ta,farklı adalarda farklı alaycı kuş,kaplumbağa ve ispinoz biçimleriyle,aynı türün farklı biçimleriyle karşı karşıya gelince,çağının en temel kuramlarını sorgulamak zorunda kaldı. Aslında iş bu kadarla da kalmıyordu;şimdi kafasını kurcalayan fikirlerin doğru olduğu kanıtlanırsa,Yeryüzü’nde yaşamın kaynağı ile ilgili olarak kabul edilen bütün kuramlar yeniden gözden geçirilmek zorunda kalınacak,Tekvinin -Adem ile Havva ve Tufanla ilgili öykülerin-kendisinin de bir boş inançtan başka bir şey olamadigi gösterilmiş olacakti. Bir şeyler kanitlamak için yapilacak araştirmalar ile soruşturmalar yillarca sürebilirdi;ama en azindan kuramsal olarak yap-bozun bütün parçalardi yerli yerine konmuş görünüyordu. Düşüncelerini geçici ve varsiyyimsal olarak bile Fitzoy’a kabul ettiremedi. Iki adamin daha sonraki yazişmalarina bakarak aralarindaki tartişmayi yeniden canlandirmak,Galapagos’tan uzaklaşirken kah dar kamaralarinda ,kah (s: 142) gecenin ayazinda kiç güvertesinde, büyük bir anatla birbirlerini ikna etmeye çalişan genç insanlara özgü bir güçle savlarini ileri sürüşlerini gözümüzün önüne getirmek olanakli. Darvin’in savı ana hatlarıyla şuydu: Bildiğimiz dünya tek bir anda birden yaratılmadı;son derece ilkel bir şeyden yola çıkarak evrimleşti ve hala değişmekte. Bu adalar olup bitenlerle ilgili harika bir örnekti. Çok yakın zamanlarda volkanik bir patlama sonucunda denizin üzerinde belirdiler. İlk zamanlarda üzerinde hiçbir yaşam yoktu. Bir süre sonra kuşlar geldi. Gübrelerinde bulunan, hatta büyük bir olasılıkla da ayaklarındaki çamura yapışmış tohumlara toprağa bıraktılar. Deniz suyuna dayanıklı başka tohumlar da Güney Amerika anakarasından yüzerek geldi. Yüzen kütklerin ilk kertenkeleleri buralara kadar taşımış olması olasıdır. Kaplumbağalar denizin kendisinden gelip kara kaplumbağalarını geliştirmiş olabilirler. her tür geldikten sonra kendisini adada bulunan yiyeceğe-bitkilere ve hayvansal yaşama- uyarladı. Bunu yapamayanlar ile kendilerini öteki türlere karşı koruyamayanların ise soyları tükendi. kemikleri daha önce Patagonya’da bulunan dev yaratıklara olan da buydu;düşmanlarının saldırısına uğradılar ve ortadan kalktılar. Her yaşayan şey bu süreçten geçmiştir. İnsan,çok ilkel, hatta maymundan bile çok daha ilkel bir yaratık olduğu zamanlarda bile rakiplerinden daha hünerli ve daha saldırgan olduğu için, yaşamını devam ettirip büyük bir başarı kazandı. Aslında Yeryüzündeki bütün yaşam biçimlerinin tek bir ortak atadan çıkmış olması da olasıdır. Fitzroy, bütün bunların, Kutsal Kitapla tam bir çelişki içinde oldukları için,kafir saçmalıkları olduğunu düşünmüş olmalı. İnasan. orada kesin bir biçimde belirtildiği gibi, Tanrının kendi suretinde, mükemmel olarak yaratıldı; her tür, hayvanlar kadar bitkiler de ayır ayrı yaratıldı ve hiç değişmedi. Bazılar ı yok olup gitti, hepsi o kadar. Hatta Fitzroy,ispinozların gagaları sorununu kendi kuramlarının destekçisi yapacak kadar ileri gitti: “Bu, her yaratılmış şeyin amaçlandığı yere uyum sağlamasını sağlayan Sonsuz Bilgelik’in o hayranlık uyandırıcı işlerinden biriymiş gibi görünüyor.” Fitzroy’un Kutsal Kitapla uyumlu düşünceleri yolculuk süresince gittikçe daha da katilaşti. O, anlamaya çalişmamiz gereken kimi şeler olduguna inaniyordu;evrenin ilk kaynagi, bütün bilimsel araştirmalarin erişimi dişinda bulunmasi gereken bir giz olarak kalmaliydi. Fakat Darwin çoktandir bunu kabul etmekten çok uzakti; Kutsal Kitap’a takilip kalamazdi,onun ötesine geçmek zorundaydi. Uygar insan bütün sorularin en can alicisini-"biz nereden geldik?” sorusunu- sormaya, soruşturmalarini kendisini götürdügü yere kadar götürmeye devam etmekle yükümlüydü. Bu tartışmaya bir son vermek mümkün olmayacaktı. Tartışma, biri bilimsel ve araştırmalara açık, öteki dinsel ve tutucu, karşıt iki görüşün 25 yıl sonra Oxford’da yapılan o sert toplantıdaki çatışmasının bir ön hazırlığıydı.” Ne var ki bir grup insan, yani Kilise, Darvin’in kuramına şiddetle karşı çıktı. Darvin’in Türlerin Kökeni adlı kitabının yayımlanması bilim ile din arasında sert bir tartışmaya yol açtı. Darvin’in çekingenliği kendisinin bu tartışmada yer almasını engelledi;ama evrimle ilgili kavgacı savunmalarıyla “Darwin’in Buldoğu” lakabını alan dostu Thomas Huxley’in sözünü sakınmak gibi bir özelliği yoktu. Huxley ile Piskopos Wilberforce arasındaki kavga, Ronald Clark’in Darwin biyografisinde şöyle anlatılır: “Britanya İleri Araştırmalar Kurumu’nun 1860 yazında Oxford’da yaptığı yıllık toplantıda[ Darwin’in kuramı konusundaki] kuşkular boşlukta kaldı. Kurum üyeleri 19. yy bilim tarihinin en parlak sahnelerinden birine tanık olacaklardı. Bu, Oxford Piskoposu Samuel Wilberforce ile Thomas Huxley’in bir tartışma sırasında karşılıklı atışmalarından oluşan bir sahneydi. Çağının öteki kilise adamları gibi Wilberforce da bilimsel bakımdan tam bir karacahildi.(s: 144). Tartışma beklendiği için salon tıka basa doluydu. Wilberforce’un, Huxley’in de daha sonra yazacağı gibi “birinci sınıf bir tartışmacı” olmak gibi bir ünü vardı: “kartlarını uygun oynasaydı evrim kuramını yeterince savunma şansımız pek olmazdı.” Wilberforce, akıcı ve süslü bir konuşmayla, kendisini yenilgiye uğratmak üzere olduğunu belirttiği Huxley’e övgüler düzdü. Ardından ona döndü ve “soyunun büyük annesi mi yoksa büyük babası tarafından mı maymundan geldiğini” öğrenmek istedi. Huxley rakibine döndü ve haykırdı: “Tanrı onu ellerime teslim etti.” “Eğer” dedi [kürsüden], “bana bir büyük baba olarak zavallı bir maymunu mu yoksa doğanın büyük bir yetenek ve güç bahşedip bunlarla donattığı;ama bu yetenekleriyle gücünü yalnızca birtakım eğelnceli sözleri ağırbaşlı bilimsel bir tartışma gibi sunmak amacıyla kullanan bir insanı mı yeğlersin? diye soracak olsalar, hiç duraksamadan tercihimin maymundan yana olduğunu söylerdim.” Huxley bildiği en güçlü darbeyle karşılık vermişti.Bir piskoposu küçük düşürmek,bundan bir ya da birkaç yüzyıl önce pek rastlanır bir şey değildi;hele halkın önünde, kendi piskoposluk bölgesinde küçük düşürmek neredeyse hiç görülmemişti. Dinleyiciler arasında oranın ileri gelenlerinden bir hanım şok geçirip bayıldı Dinleyicilerin çoğu alkışladı. Fakat Robert Fitzroy oturduğu yerden kalktı ve otuz yıl önce Darwin’le gemide yaptığı bir tartışmayı hatırlattı. Kutsal Kitap’ı Huxley’e salladı ve süslü sözlerle bütün doğruların kaynağının bu kitap olduğunu söyledi.” Bu öykünün birinci elden bir anlatımı yoktur. Harvardlı biyolog Stephen Jay Gould diyaloğun çoğu bölümünü yaklaşık 20 yıl sonra Huxley’in kendisinin uydurduğu inancındadır. Fakat bu konuşmalardan kimsenin bir kuşkusu olmadığı yollu bir dip notu da vardır. Huxley Wilberforce’a duyduğu nefreti 1873'e, Piskopos atından düşüp kafasını bir taşa çarparak öldüğü yıla dek sürdü. “Kafası” dedi Huxley bunun öğrenince kıs kıs gülerek “gerçeğe bir kez daha tosladı;ama bu kez sonuç ölümcül oldu." (Adrian Berry, Bilimin Arka Yüzü, TÜBİTAK yay, s: 137-146) İnsan:Bir Geçiş Hayvanı Bir geçiş “hayvani” olmak! Degil bir hayvan, bir geçiş hayvani olak bile anilmak incitici duygular uyandiriyor! Yeniden hayvan sinifina sokulmak beni de rahatsiz ediyor; ama inanin bizimde herhangi bir hayvandan çok fazla farkimiz hem var, hem yok. Sinirlenmeyin. Açıklayacağım.“Beş milyar yıl önce Güneş, ilk kez dönmeye başladığında, mürekkep karası bir siyaha gömülü Güneş Sistemi bir ışık seline boğuldu. Güneş sisteminin iç kısımlarındaki ilk gezgenler,Güneş’in patlarcasına tutuşmasından sonra bile fırlayıp gitmeyen maddelerden kaya ve metal karışımı ilk bulutunu küçük birimlerinden oluştu. Bu gezgenler oluşurken isi yaydilar.Iç kisimlarindaki hapsedilmiş gazlar kurtuldu ve sertleşip atmosferi oluşturdu. Gezgenlerin yüzeyleri erimişti ve volkanlar oldukça çoktu. İlk dönemlerin atmosferi, bol bulunan atomlardan oluşmuştu ve hidrojen bakımından zengindi. Erken dönem atmosferine düşen Güneş ışığı, molekülleri uyararak bunların hızlanıp; çarpışmalarına yol açtı,sonuçta daha büyümk moleküller ortaya çıktı. Kimya ve fiziğin değişez kanunları uyarınca bu moleküller birbirleriyle etkileşti,okyanuslara düştü ve gelişerek daha büyük moleküllere dönüştü. kendilerini oluşturan ilk atomlardan çok daha karmaşık moleküller oluşmuştu;ancak hala bir insanın algılayabileceğinden çok küçük,mikroskopik boyutlardaydılar.(s:15) Bu moleküller, bizim de yapıtaşlarımızdır: Kalıtımsal biliyi taşıyan nükleik isatlerin ve hücrenin görevini sürdürmesini sağlayan proteinlerin birimleri, dünya’nın erken devirlerindeki atmosfer ve okyanuslardan üretildi. Günümüzde o ilkel koşulları yeniden yaratarak, bu molekülleri denesel olarak ortaya çıkarabiliyoruz. Sonunda, milyarlarca yıl önce,belirgin bir yeteneği olan molekül oluştu. çevredeki sularda bulunan molekülleri kullanarak kendisinin bir kopyasını üretebilecek yetenekteydi. Bu moleküler sistemin sahip olduğu yönergeler dizisi,moleküler kod sayesinde, büyük bir mkolekülü oluşturan yapı taşlarının dizilişi bilinebilir. Kazayla dilişte bir hata oluşursa,kopya da aynı olmayacaktır. Böyle, replikasyon, mutasyon ve mutasyonlarının replikasyonu( yeniden üretemi) yeteneğine sahip moleküler sistemlere “canlı” diyebiliriz. Bu moleküller topluluğu, doğal seleksiyona açıktır. Daha hızlı türeyen ya da çevresindeki yapıtaşlarını daha uygun bir şekilde kullanabilen moleküller rakiplerinden daha etkin türediler ve sonunda baskın nitelik kazandılar. Ancak koşullar degişmeye başladi. Hidrojen çok hafif oldugu için uzaya kaçti Yapitşalarinin oluşumu yavaşladi. Daha önce rahatça temin edilen gida maddeleri bulunmaz oldu. Moleküler Cennet Bahçesi’nde hayat tükeniyordu. Sadece çevresindekileri degiştirebilen,basitten karmaşik moleküllere geçişi saglayan moleküler mekanizmayı yeterli kullanabilen molekül toplulukları yaşama devam etti. çevresi zarlarla çevrili,ortamdan kendini soyutlayabilmiş,ilk dönemlerin saflığını sürdürebilen moleküller avantajlıydı. Böylece ilk hücreler oluştu. Yapıtaşları artık kolay bulunamadından organizmalar bunları üretmek zorunda kaldı. Bunun sonucu bitkiler oluştu. bitkelir hava, su Güneş ışığı ve minerallere alarak karmaşık moleküler yapıtaşları (s: 16) oluşturur. İnsanlar gibi hayavanlar da bitkiler üzerinde parazit yaşam sürdüler. İklim koşullarının değişmesi ve rekabet nedeniyle çeşitli organizmalar daha da uzmanlaşmaya,işylevlerini geliştirmeye ve biçim değiştiremeye zonrlandı. Zeingin bitki ve hayvan türleri Dünya’yı kaplamaya başladı. Yaşam, okyanusta başlamıştı. Oysa şimdi toprak ve havayı da içeriyordu. Günümüzde,Everest’in tepebsinden denizlerin derinliklerine kadar her yerde yaşayan organizmalar var. sıcak,yoğun sülfürik asit çözeltilerinde ve Antartika’nın kuru vadilerinde organizmalar yaşıyor. tek bir tuz kristaline emdirilmiş suda organizmelar yaşam sürdürebiliyor. =Özgün çevresine hassasiyetle bağlı ve uyarlanmış yaşam biçimyleri gelişti. Ancak çevre koşulları değişmişti.Organizmalar aşırı özelleşmişti,bunlar öldüler. Daha az uyarlanmış ancak daha genele özelliklere sahip olanlar da vardı. değişen koşullara,iklim farklarına rağmen bu organizmalar hayatta kalabildi. Dünya tarihinde, yok olan organizma cinslerinin sayısı bugün canıl olanlarndan çok daha fazladır. Evrimin sırrı, zaman ve ölümdür. Adaptasyonların içinde faydalı olanlardan birisi de zekadır. çevreyi kontrol etme eğilimi şeklinde,zeka, en basit organizmada bile görülebilir. kontrol eğilimi yeni nesillere kalıtım ile aktarıldı: Yuva yapma, düşmekten,yılanlardan veya karanlıktan korkma,kışın güneye uçma gibi bilgiler nesilden nesile nükleik asitlerle taşındı. Anca zeka tek bireyin ömrü içerisinde uyarlanmış bilgileri öğrenmesini gerektirir. dünyadaki organizmalarınbir kısmı zekaya sahiptir, yunuslar ve maymunlar gibi. Fakat zeka en fazla İnsan adlı organizmada belirgindir. İnsan, adaptasyon için gerekli olan bilgileri kitaplar ve eğitim yoluyla da öğrenir. İnsanı bugünkü durumuna Dünya’da kontrolü elinde tutan organizma haline getiren en önemli etken öğrenme yeteneğidir.(s:17) Biz, 4.5 milyar yıl süren rastlantısal, yavaş bir biyolojik evrimin ürünüyüz. Evrimin artık durmuş olduğunu düşünmek için hiç bir neden yoktur. İnsan, bir geçiş hayvanıdır. Yaratılışın doruğu değildir. Dünya ve Güneş’i daha milyarlanca yil yaşayacagi tahmin ediliyor. Insanin gelecekteki gelişimi kontrol altinda biyolojik çevre,genetik mühendislik ve organizmalar ile zeki makeneler arasinda yakin ilişkinin ortak ürünü olabilir. Ancak bu gelecekteki evrimi kimse şimdiden kesinlikle bilemez. Her şeye karşin duragan kalamayacagimiz açiktir. Bildiğimiz kadarıyla, tarihimizin ilk dönemlerinde, on ya da otuz kişiyi geçmeyen ve grup bireylerinin hepsinin arasında kan bağı olan kabileler halinde yaşıyorduk. Zaman ilerledikçe, daha büyük hayvanları ve daha geniş sürülüre avlayabilmek, tarım yapabilmek, şehirler kurabilmek için gittikçe büyüyen gruhplar içinde yaşamaya başladık. Dünyanın yaratıylışından 4.5 milyar yıl ve insanın ortaya çıkışından milyonlarca yıl sonra, bugün, millet dediğimiz grupların içinde yaşayoruz (ancak en tehlikeli politik sorunlardan birçoğu hala etnek çatışmalardan kaynaklanıyor). İnsanların bağlılığının sadece milletine ,dinine,ırkına ya da ekonomik grubuna değil ama tüm insanlığa olacağı devrin yakın olduğunu söyleyenler var. Yani on bin kilometre uzakta farklı cinsiyet, ırk,din ya da politik eğilimde olan birinin çıkarı,bizi komşumuza ya da kardeşimize bir iyilik yapılmış gibi sevindirecek. Eğilim bu yöndedir fakat tehlikeli şekilde yavaştır. Yukarıda sözeü edilen tutuma ulaşmadan zekamızın ürünü teknolojik güçler türümüzü yok etmemeli. İnsanı, daha fazla nükleik asit türetmek için nükleik asitlerden kurulmuş bir makinaya benzetebiliriz. En güçlü dürtülerimiz,en asil girişimlerimiz, en zorlayıcı (s: 18) gereksinmelerimiz ve sınırsız arzularımız aslında genetik materyalimizde kodlanmış bilgilerin sonucudur. Bir yerde nükleik astlerimizin geçici ve hareketli deposuyuz. Bu neden yüzünden insancıllığımızı-iyiyi, doğruyu ve güzeli aramayı- inkar edemeyiz. Ancak nereye gittiğimizi bilmek için nereden geldiğimizi anlamamız gerekir. kuşku yoktur ki yüzbinlerce yil önce avci-toplayiciyken taşidigimiz içgüdü mekanizmamiz biraz degişmiştir. Toplumumuz, o günlerden bu yana dev adimlarla gelişmiştir. Içgüdülerimiz bazi şeyleri kalitim-dişi ögrenmeyle edindigimiz bilgiler, başka şeyleri yapmamizi söylüyor,sonuçta çatişma doguyor. Bir dönem sonra tüm insanlara karşi ayni özeleştirici duygulari besliyor duruma gelebilmemiz bile ideal olmayacak. Eger tüm insanlari dünyanin 4.5 milyar yillik tarih ortak ürünü olarak görebileceksek, neden ayni tarihi paylaşan diger organizmalara da ayni özeleştirici duygulari beslemeyelim. Yeryüzünde bulunan organizmalardan çok azini gözetiriz-köpekler,kediler,sigirlar gibi- çünkü bu canlilar bize faydalidir ya da dalkavukluk yaparlar. Ancak örümcekler, kertenkeleler, baliklar, ayçiçekleri de eşit derecede kardeşlerimizdir. Bence tümünün yaşadigi özeleştirici duygu yoksunlugunun nedeni kalitimdir. Bir karinca sürüsü diger bir karinca grubu ile öldüresiye savaşabilir. Insanlik tarihi deri rengi farki, inanç degişiklikleri,giyim ya sac modeli ayircaliklari gibi ufak degişiklikler nedeniyle çikmiş savaşlar,baskinlar ve cinayetlerle doludur. Bize oldukça benzeyen ama ufak farkları-örneğin üç gözü ya da burnunda ve alnında mavi tüyleri-bulunan bir yaratık yakınlık duygularımızı hemen frenler. bu tür duygular bir zamanlar küçük kabilemizi düşmanlar ve komşular arasinda koruyabilmek için gerekli uyarlanmiş degerler olabilirdi. Ancak şimdi az gelişmişlik örnegidir ve tehlikelidir.(s:19) Artık yalnızca tüm insanlara değil bütün canlılara saygı duyma devri gelmiştir. Nasıl bir başyapıt heykele ya da zarif bir şekilde donatılmış makinalara hayranlık ve saygı duyuyorsak.. Ancak elbette, bizim yaşamımızı tehdit eden şeyleri görmezlikten gelemeyiz. Tetanoz basiline saygı göstermek için gövdemizi ona kültür yeri olarak sunamayız. Ancak, bu organizmanını biyokimyasının gezegenimizin tarihinin derinlerine uzandığını hatırlayabiliriz. Bizim serbestçe solduğumuz oksijen,tetanoz basilini zehirler. Dünyanın ilk dönemindeki oksijensiz ve hidrojence zengin atmosferin altında bizler yokken tetanoz basili yaşıyordu. Yaşamin tüm örneklerine saygi Dünyadaki dinlerin birkaçinda örnegin Hindu dininin bir kolunda ("Jain’ler) vardir. Vejeteryanlar da buna benzer br duygu taşirlar. Ama bitkileri öldürmek hayvanlari öldürmekten niye daha iyidir? İnsan, yaşayabilmek için diğer canlıları öldürmek zorundadır. Fakat buna karşılık, başka organizmaları yaşatarak doğada bir denge sağlayibiliriz .Örneğin, ormanları zenginleştirebiliriz;endüstireylm ya da ticari değeri olduğu sanılan fokların ve balinaların katledilmesini önleyebiliriz;yararlı olmayan hayvanların avlanmasını yasaklayabilir;doğayı tüm canlılar için daha yaşanabilir duruma getirebiliriz. (Carl Sagan, Kozmik Bağlantı(1975), e yay: s: 15 -20, 1986) En Az İki Bin Yıllık Yanlış Eskiden insanlar, evrenin merkezi olarak Dünyayı düşünüyordu. Sağduyu Ay ve Güneş’in Dünya çevresinde döndüğün gösteriyordu. Peki canlı varlıkların yapısı neydi? 1828 yılında Alman kimyacı F. Wöhler’in idrarda bulunan üreyi, anorganik bir madedler yoluyla elde etmesi, insanoğlunun düşüncesinde yeni aydınlıkların ilk habercisiydi. Çünkü Tanrı’nın emrindeki doğa laboratuvarının ürettiği şeyi insanolğlunu emrindeki laboratuvarın da üretebileciği anlaşılmıştı! Bu sezgi, insanoğlunun dine karşı duyduğu bilimsel şüphenin en büyük kanıtı oldu aslında. Canlılar dünyasına bakarsanız, benzer olanlarla birlikte birbiriyle hiç ilgisi olmayan görüntülerdeki canlıları görürsünüz. Tilkiyle yılanın ne gibi ortak bir geçmişi olabilir? Dinlerin yaratılış kuramları, birkaç bin yıldan öteye gitmez. Darwin ise tüm canlı organizmaların, çok geniş bir zaman sürecinde ortak bir kökenden ortaya çıkarak geliştiğini önesürdü.

http://www.biyologlar.com/evrim-kurami-ve-teorileri-1

Algler

Algler, gerek yapısal olarak gerekse de dış görünüşleri bakımından oldukça farklı görünümdedirler. Yapısal olarak eukaryotik (gelişmiş hücre tipi) ve prokaryotik (basit yapılı hücre tipi) olmak üzere iki büyük gruba ayrılırlar. Buna göre Mavi-Yeşil algler göstermiş oldukları hücre organizasyonları bakımından prokaryot hücre özelliği taşımaktadırlar. Belirgin bir hücre çekirdeğinin olmaması ve çok basit olan kromatofor yapısındaki pigmentlerin dağılımı ve prokaryotik hücre özellikleri bakımından diğer alglerden ayrılırlar. Dış görünümleri bakımından tek hücreli ve ipliksi formlardan karışık olarak gelişmiş bireylere kadar değişik biçimlerde gözlenebilmektedirler. Ekolojik olarak algler, karlı alanlar, tamamen buzla kaplı alanlar da bulunabilirler. Fakat % 70′nin dağıldığı asıl yayılım alanı sulardır. Bu ortamlarda organik karbon bileşeklerinin major primer üreticisidirler. Mikroskobik fitoplankton formunda meydana gelebilirler. Makroskobik ve mikroskobik formların her ikisi de kara ve su hattı boyunca ve bu ortamların her ikisinde meydana gelir. Gövde ya da benzer işlevlere sahip yapıları ile derelerin alt kısımları ve sedimenlere, toprak partiküllerine ya da kayalara tutunurlar. Yukarıda da belirtildiği gibi buzla kaplı alanlarda bulundukları gibi 70 0C ya da daha yüksek sıcaklıktaki kaynak sularında da yaşayabilirler. Bazıları çok tuzlu su ortamlarında bile gelişebilirler. Göllerde ve denizlerde yüzeyden 100 m aşağıda ya da daha düşük ışık yoğunluğu ve yüksek basınç altında yaşayabilirler. Denizlerde yüzeyden 1 km aşağıda da yaşayabildikleri görülmüştür. <!--[if !supportLineBreakNewLine]--> <!--[endif]--> Algler su ortamında primer üretici canlılardır. Yapılarındaki pigmentleri sayesinde karbondioksit ve suyu ışığın etkisi ile karbonhidratlara çevirirler, böylece su ortamındaki besin değerinin ve çözünmüş oksijen oranının artmasını sağlarlar. Sonuçta kendi gelişimlerini sağlayarak besin zincirinin ilk halkasını oluştururlar. Bu şekilde üretime olan katkıları ve üst basamaktaki canlılarla olan ilişkileri açısından önem taşımaktadırlar. Alglerin üretimleri çevresel faktörlerle sınırlanmıştır. Bunlar ışık, sıcaklık ve besindir. Bu sınırlayıcı faktörler iyileştirilirse, üretim düzeyi artar. Üretim artışının belli bir düzeyi aşmasının doğal bir sonucu olarak da çevresel denge bozulur ve bu gelişeme eutrofikasyon adı verilir. Eutrofik bir ortamda besin madde girdisinin fazlalığından dolayı, (özellikle azotlu bileşikler ve fosfat gibi alglerin gelişimini arttıran bileşikler) alg ve bakteri faliyetleri ile bulanıklık artar ve ışığın suyun alt kısımlarına geçmesi engellenir. Oksijen dip kısımlarda sınırlayıcı bir özellik kazanır. Bu da bentik bölgede yaşayan canlılar için ölümle sonuçlanabilir. İnsan faaliyetleri, evsel, endüstriyel ve tarımsal atıklar son yıllarda ötrofikasyon direkt etkide bulunmaktadır. Bunun yanısıra atmosferden difüzyon ile suya karışan azot, yağmur sularının alıcı ortamlara taşıdığı besin maddeleri, drenaj yoluyla ortama taşınan maddeler kirlenme sürecini hızlandıran doğal gelişimlerdir. Eutrofikasyonun sonuçlarından birisi de aşırı alg patlamalarının görülmesidir. Bunun anlamı, fitoplankton (alglerin serbest yüzen formları) populasyonlarının suyun rengini, kokusunu ve ekolojik dengesini bozacak yeterli yoğunluğa ulaşmasıdır. Bunun yanı sıra alglerin aşırı gelişmesi, sucul ortamdaki bir çok canlı için toksik etkilere neden olduğu için ölümler görülebilmektedir. Örneğin, Dinoflagellatlardan Gymnodinium ve Gonyanlax’a ait türler aşırı çoğalma sonucu, hayvanların sinir sistemlerini etkileyen, yüksek oranda suda çözünebilen toksik madde üretirler. Diğer patlamalara ise Mavi-Yeşil alglerden Microcystis, Anabaena, Nostoc, Aphanizomenon, Gloeotrichia ve Oscillatoria, Chrysophyte’den Prymnesium parvum neden olmaktadır. Alglerin sınıflandırılmasında içerdikleri pigmentler, biyokimyasal özellikleri, depoladıkları maddeler ve kamçı gibi organellerinin yapıları ve hayat devreleri göz önüne alınır. Eşeyli üremeleri, gametlerinin yapı ve biçimlerine göre üç tiptedir: morfolojik olarak aynı, fizyolojik olarak farklı gametlerin birleşmesi izogami olarak tanımlanır. Şekilleri aynı ancak büyüklükleri farklı gametlerin birleşmesine anizogami; küçük ve hareketli bir gamet (spermatozoid) ile büyük ve hareketsiz bir gametin (yumurta hücresi) birleşmesine ise oogami denir. Divisio Chlorophyta (Yeşil Algler): Tek hücreli, ipliksi, şeritsi ve elsi tallusa sahip alglerdir. Klorofil a ve b, karotin, lutein ve ksantofil içerirler. Asimilasyon ürünleri nişasta ve yağlardır. Çoğunlukla ototrof yaşamakla beraber, mantarlarla birlikte liken oluşturan türleri de vardır. Genellikle tatlı (% 90) bazıları da tuzlu sularda yaşarlar. Üremelerinde izo-, anizo- ve oogami görülür. Scenedesmus, genellikle dörtlü ve sekizli koloniler oluşturan bir cinstir ve besin elde etmek için kültürü yapılan türleri vardır. Volvox, bu bölümün en iyi tanınan örneklerindendir. Volvox koloni-sindeki bireyler birbirlerine plazma köprüleri ile bağlanmışlardır. Üreme ve asimile hücrelerinin ayrı kutuplarda yer alması, bu kolonideki bireyler arasındaki işbölümünü gösterdiği için dikkat çekicidir. - Hareket halinde bir Volvox kolonisi - Yeşil Alglerin Kavuşur Algler (Conjugatophyceae) sınıfında ise konjugasyon adı verilen özel bir üreme tipi görülür. Spirogyra cinsi bu sınıftadır ve üremesinde karşılıklı gelen iki hücreden birinin içeriğinin diğerine akması ile zigot oluşur. Zigot mayoz bölünme geçirerek yeni bir ipliği oluşturur. Divisio Chrysophyta (Altın Sarısı Algler): Tek hücreli ya da koloni oluşturan formları vardır. Klorofil a ve c, β karotin ve ksantofil içerirler. Asimilasyon ürünleri krizolaminarin ve vakuol içindeki yağlardır. Eşeyli ve eşeysiz ürerler. Bu bölümün en tanınmış sınıfı Bacillariophyceae (Diatomae)’dir. Diatomae üyelerinin hücre çeperi iç içe geçmiş iki kapak şeklindedir. Kapaklarında amorf silis birikimi nedeni ile öldükten sonra bulundukları suyun dibinde diatome toprağı adı verilen katmanı oluştururlar. Bu toprak dinamitin ana maddesi olarak kullanıldığı gibi birçok sanayi dalında filtrasyon işleminde yararlanılır. Uzun, iğne şeklindeki yapıların her biri Cylindrothecia (Silindir kabuklu anlamına geliyor) adı verilen bir diatom, ek olarak belirgin parmak şeklinde uzantılar birer siyanobakter (mavi-yeşil alg olarak adlandırılıyor yanlış bir şekilde), orta kısımlarda oval, hareketli silli (protist) canlılar görülmekte. Büyütme oranı yaklaşık 200. Divisio. Phaeophyta (Kahverengi Algler): Çoğunluğu tuzlu sularda yaşayan alglerdir. Çok küçük boyutlu disklerden tallusu 100 metre ya da daha fazla uzunlukta olabilen formlara kadar değişik şekillerde olabilirler vardır. Derin sularda gelişebi-lirler. Hücre çeperleri içte selüloz, dışta pektin içerir. Laminarin ve fukoidin gibi polisakkarit yapısındaki bileşikler asimilasyon ürünleri arasındadır. Tallusun parça-lanması ya da sürünücü organlar oluşturarak vejetatif üremelerinin yanında eşeysiz üremeleri iki kamçılı zoosporlarla gerçekleşir. Hayat devrelerinde sporofit ve gametofit döllerin birbirine morfolojik olarak benzeyip benzememesi gözönüne alınarak bu bölüm üç altsınıfta incelenir. Ectocarpus gibi izomorf döl almaşı gösteren kahverengi algler Izogeneratae; Laminaria gibi heteromorf döl almaşı gösterenler Heterogeneratae alt sınıfına dahil edilirler. Cyclosporae altsınıfında ise Fucus gibi sporofit neslin hakim olduğu algler bulunur. Divisio. Rhodophyta (Kırmızı Algler): Tallusları genellikle ipliksi yapıdadır. Kloroplastları bant veya yıldız şeklindedir. Klorofil ve karotenoidlerin yanında fikoeritrin ve fikosiyanin içerirler. Hücre çeperleri dışta pektin, içte selülozdur. Florideophycidae alt sınıfında hücre içerikleri plazmodezmler (plazma köprüleri) ile birbirine bağlanmıştır. Çok sayıda parazitik ve epifitik (başka bitkiler üzerinde yaşayan) türleri vardır. Kırmızı ve Kahverengi Alglerden elde edilen ürünlerin oldukça büyük ekonomik önemi vardır. Alginat, agar agar, karragen gibi adlar taşıyan bu ürünler pastacılık-tan ilaç sanayiine, kozmetikten tekstil endüstrisine kadar çok geniş alanlarda kullanılmaktadır. Ekonomik Değerleri: Besin maddesi olarak: Çoğunluğu Phaeophyceae ve Phodophycea olan 100′den fazla tür içerdikleri protein, karbonhidrat, vitamin ve minerallerin varlığından dolayı dünyanın çeşitli yerlerinde insanlar tarafından besin kaynağı olarak kullanılırlar. Agar: Kırmızı alglerin hücre duvarlarında bulunan, jelimsi bir özelliğe sahip olan bir polisakkarittir. Bazı algler ve bakterilerle ve birçok fungus’un kültürü için laboratuarda hazırlanan farklı kültür ortamlarında temel olarak kullanılır. Ayrıca önceden hazırlanmış yiyeceklerin paketlenmesi, kabızlığın tedavisi, kozmetik, deri, tekstil ve kağıt endüstrilerinde kullanılmaktadır (Sharma, 1986). Carrageenin: Kırmızı alglerin hücre duvarlarından elde edilen başka bir polisakkarittir. Bu madde mayalama, kozmatik, tekstil, boya, endüstrilerinde ve tıp alanında kan pıhtılayıcısı olarak kullanılmaktadır. Alginatlar: Alginat türevleri ve alginik asit, kahverengi alglerin hücre duvarlarından extre edilen bir karbonhidrattır. Alginatlar kauçuk endüstrisi, boyalar, dondurma, plastik dondurucularda kullanılıyorlar. Ayrıca kanamaları durdurmak için alginik asit kullanılıyor. Funori: Kırmızı alglerden elde edilir. Kağıt ve elbiseler için yapıştırıcı olarak kullanılır. Kimyasal olarak sülfat ester grubu’n içermesi dışında agar-agar’a benzemektedir. Mineral Kaynağı Olarak: Bazı yosunlar demir, bakır, manganez, çinko bakımından zengin kaynaklardır. Hayvan Yemi Olarak: Phaeophyceae, Rhodophyceae ve bazı yeşil algler besin kaynağı olarak bir çok hayvan yemi için kullanılır. Bunun yanısıra Protozoa, Crustacea’ler, balıklar va diğer sucul canlıların en büyük besin kaynağı planktonik alglerdir. Diatomite: Diatomite, diatomların hücre duvarı materyalidir. Diatom kabuklarının üst üste birikmesiyle geniş yüzey alanları oluştururlar. Diatomite’ler, şeker rafinerisi ve bira sanayisi, ısı yalıtımı, temizleme sanayi, cam bardak fabrikaları’nda kullanılırlar. Gübre Olarak: Dünyanın birçok sahil yöresindeki yosunlar, fosfor, potasyum ve bazı iz elementlerin varlığından dolayı gübre olarak kullanılırlar. Antibiyotikler: Chlorellin adındaki bir antibiyotik, yeşil alglereden olan Chlorella’dan elde edilir. Ayrıca gram negatif ve gram pozitif bakterileri karşı efektif olan bazı antibakterial maddeler Ascophyllum nodosum, Rhodomela larix, Laminaria digitata, Pelvetia ve Polysiphonia’nın bazı türlerinden elde edilmektedir. Bunların yanısıra kahverengi ve diğer alglerden elde edilen bir çok ilaç tıp alanında kullanılmaktadır. Atıkların Arıtılmasında: Evsel ve endüstriyel kaynaklardan gelen atıklar, çözünmüş ya da askıdaki organik ve inorganik bileşikleri içerir. Bu atıkların temizlenme prosesleri oksijenli bir ortamda gerçekleşir ve bu oksijenlendirme bazı algler tarafından sağlanır. Ayrıca, temizlenmesi güç olan azot ve fosfor gibi bileşikler alglerin bulunduğu tanklara alınarak, algler tarafından besin kaynağı olarak kullanılmaları suretiyle ortamdan uzaklaştırılabilmektedirler.

http://www.biyologlar.com/algler-2

Umudun Genleri

Umudun Genleri, Tunus asıllı Fransız bilimci Daniel Cohen'in(1951-...) kitabının adı. Bir bilimadamının hoş anılarını ve genlerin umudunu açıklayan bu kitaptan ilginç bölümler aktaracağım.Daniel Cohen,1978'den itibaren Profesör Jean Dausset(Nobel,1980) ile birlikte çalışmaya başladı.Daniel Cohen, insanın genetik yap-bozununun ortaya çıkarılma serüvenine katılmış ve bu serüveni bize hoş bir dille anlatıyor. Yeşim Küey'in,çok başarılı bir şekilde Türçe'ye kazandırdığı kitabı,Kesit Yayıncılık yayımlamıştır. Bir Bilim Adamının Anıları :Daniel Cohen Jean Dausset, 1960'lı yıllarda, tüm hücrelerimizin yüzeyinde varolan proteinleri kodlayan genler bütününü keşfetmişti. O zamanlar bu proteinlerin rolü oldukça gizemliydi. Dausset ’nin çalışmaları organ naklini sağladı ve onun sayesinde milyonlarca yaşam kurtarıldı halen de kurtarılıyor... Ben, Nobel Ödülü’nü almasından (1980) bir yıl önce yoluma onunla devam etmeye karar vermiştim. O sıralarda bunun nedenlerini çözümlemeyi hiç düşünmediysem de herhalde çok iyi gerekçelerim vardı. İMKANSIZ denen şey, beni tam da çok heyecanlandıran şeydi. Ben kuşkucuların, fazlasıyla sakınımlı olanların ve bıkkınların düşüncelerinin iflas etmiş olmasından kuşkulanıyordum. Elbette Jean Dausset’nin durumu kesinlikle bu değildi! Benim onda asıl değer verdiğim şey, başkalarının eleştirdikleri şeydi. Düşünüş biçimi rahatsız ediyordu O sıralarda, onu bir naif, bir hayalci, bir garip olarak görüyorlardı. Jean Dausset, klasik düşünce biçimiyle hiç ilgisi olmayan bir düşünce biçimine sahiptir. Onun akıl yürütmeleri alışılmış mantık yollarını izlemez. Yüzeyde görünmediği için bazılarının “yavaş” bulduğu, kendine özgü bir düşünme ritmi vardır. Bunun nedeni, Dausset’nin etkilemek için uğraşmamasıdır. O acele etmemeyi ve sorunların derinlerine inmeyi sever. karşısındakini asla çürütülemez kanıtların yığını altında ezmez. Konuya beklenen yerinden girerek bir mantık çerçevesinde ilerlemek yerine, o, sorunları bir başka yandan ele alır. Bu, çalışma arkadaşlarının ve meslektaşlarının düşünmediği bir yandır. Sorunu bir köşesinden yakalar, sorunlu konunun içine sakince yerleşir ve kafasında, alışılmış düşünce sistemlerinin yolundan gitmeyen bir kavrayış şeması kurar. Kimi zaman şaşırtıcıdır. Size, Kutsal Kitap’takiler kadar basit görünen bir sorunda kilitlenir. Herkesin anlayabileceği ve anladığı bu sorunu, o, anlamaz. Açıklarsınız. Yine anlamaz. tıpkı bir çocuk gibi! Ve sonra, o anlamaya çalışırken bir de bakarsınız ki, sorunu bütünüyle farklı bir biçimde aydınlatmış. konuya yakın olanlar, uzmanlar, böylece hata yaptıklarını anlarlar. Meğer yanlış yoldaymışlar, sorunun temelini görmemişler. O, görü sahibidir. Tümüyle. Onunla tartışan biri, görüşlerini ne kadar dirençle savunursa savunsun, bu özgün kafanın sorunlar her zaman derinlemesine doğru bir tarzda yaklaştığını kabul etmekten kendini alamaz. Onunla aynı düşüncede olmasanız, onunkilerden farklı seçimler yapsanız da bu böyledir. Üstelik, ondaki mizah duygusu yaşama sevinci ve isteği bulaşıcıdır. Onu görmek ve tanımak gerekir. Neşe saçan bir adamdır. Bu estet, bir modern resim tutkunudur. Her şey onun ilgilendirir her şey onun memnun eder. En olağanüstü yanı da tartışma ve düşünce alışverişindeki rahatlığıdır. Jean Dausset mandarinlerin, kendilerin ezip geçmesinler diye çevresine düşünce sahibi olmayanları toplayan büyük patronların tam tersidir. Onun tutumu daima bunun karşıtı olmuştur. Asla kimseyi engellemez. Birinin bir düşüncesi mi var? Onunla birlikte bunu çözümler: “Tamam...Çok iyi..” Güvenir. Ve özellikle de gece demeden, pazar günü demeden, her zaman sizinle birlikte düşünür. Onun hoşuna giden şey budur. Çevresinde düşünce sahibi insanların olmasına gereksinim duyar. Bu onun düşüncelerini zenginleştirir. Aksi takdirde, nasıl “eğlenebilir ki”? Başka konularda olduğu gibi araştırmada da gerçek mutluluklar yalnız yaşanmaz. Aslında, bir büyük patronun, bir gence uyan tutuma sahip olması, hiç de kolay değildir. Sorun, gencin düşünce üretebilmesi için ne yapmak gerektiğini bilmek değil ( böyle şeyler siparişle olmaz) ama daha çok, onun düşüncelerini yansıtması için nasıl davranılacağını bilmektir. Dausset, iş arkadaşların öne çıkarmasını bilir. Asla onların yetkinliklerinden kuşkulanmaz. tersine! “Onu yetiştiren benim, her şeyini bana borçlu... “ biçimindeki bir söylem ona tamamen yabancıdır. Kafasının açıklığı, ona araştırmacıları yönetmede eşsiz bir yaklaşım kazandırır. Onun yaklaşım tarzını anlamadan da kendisinden yararlanmış olabilirdim. Bu tarzı, çözümlenmesinin önemini görecek kadar kavramış ve örnek alabilmiş olmaktan dolayı çok mutluyum. Bizler birbirimizden çok farklıyız. ama ben, kendi öğrencilerime ve kendi ekip üyelerime karşı gösterdiğim belli bir davranış tarzını ona borçluyum. son derece etkili bir tarz. 1979. Onun ekibinde, bağışıklık genetiğine alışarak geçirdiğim bir yıl. Kalıtımın kimyasal desteğini temsil eden, kromozomlarımızı ve genlerimiz oluşturan uzun DNA molekülünü kullanma teknikleriyle birlikte, moleküler biyolojide bir dönüm noktası belirmeye başlıyordu.(s: 23-25) Belli bir anda, bilimcilerden biri, dikkatini, yeni bir yol açabilecek küçük bir şeye yöneltir. Gerçekten yeni düşüncelere gelince, bunlar son derece enderdir. İnsan bunlardan birini bulduğunu sandığında, olağanüstü bir şeylere el atmış olduğunu umduğunda, inceleme ve çözümlemelerden sonra, aynı alanda on kişinin daha çalıştığını ya da aynı şeyi çok önceden düşündüklerini fark eder! O halde sorun, varsayımını sürüncemede bırakmamak, onu deneysel olarak kanıtlamaktadır. Varsayımını doğrulayan, öne geçer. Elbette o her şeyi alt üstü eden düşüncelere sahip biri de çıkabilir, tıpkı Jean Dausset’de olduğu gibi. Ama bu pek nadirdir. Binde bir, bir araştırmacı, kimi kez bir deha özelliği olan, tamamen kendine ait bir esine, bilimde nitel bir sıçrama yaptıracak bir buluşa sahiptir. Buna da ancak on yılda bir rastlanır, rastlanabilirse. Araştırmacının bugünkü üstünlüğü, kafasındaki fikirlerden çok, bunları gerçekleştirmek için ortaya koyduğu yeteneğe .. ve zorunlu araçları bir araya getirmek üzere sürekli dilencilik yapmaya harcadığı enerjiye, sonra da düşüncelerini kanıtlamak için sergilediği yaratıcılığa dayanır. Yeniliklerin çoğunlukla teknolojik olmasının nedeni budur. Bu bir yana, Jean Dausset, DNA üzerinde çalışma önerisine ne kadar olumlu karşıladıysa, ekibinin çoğunluğu da bir o kadar karşıydı. Esasen Cohen (yazarımız), bu toy delikanlı, moleküler genetik konusunda ne biliyordu ki? Neredeyse hiçbir şey! İşin kötüsü bu gerçekten doğruydu.(s:28)..İnsanın Jean Dausset gibi bir patronu olmasının üstünlüğü, onun hiçbir yolu araştırma dışında tutmamasıydı; ister genç ister çok genç olsun, yeter ki, kanıtları olan ve bunlara karşı biraz heyecanla yaklaşan biri çıksın. Bana gelince, benden daha deneyimli olduklarını söyleme gereken arkadaşlarım tarafından pek de iyi gözle bakılmıyordum. Kabul etmeliyim ki, dayanılmaz, tam anlamıyla çekilmez bir kibir içindeydim. Ama bir genç, kesinlikle doğru olduğu önsezisiyle iz sürerken ve deneyimsizlik ona kendinden kıdemlilerin karşı çıkmalarına aldırmama cesaret ve küstahlığı verirken, ister istemez çekilmezdir. Ve ayrıca, o, her zaman bilimsel itirazlarla değil, ama öncelikler ve kazanılmış konumlarla da karşılaştığı duygusuna sahipse, kendine nefret ettirmekten belli bir haz da alır. Gerçekte, ünlü bile olsa, hiçbir araştırmacı kendinden daha genç olanların itirazlarından korunamaz. Eğer gençlerle arasında sorun yoksa ne ala. Ama ilk anlaşmazlık patlak verir vermez, kendi kendini, hemen sorgulama ve ısrarla haklı olduğunu düşünmekten vazgeçme anı gelmiş demektir. Sonuca bağlayıp karar vermezden önce, çoğu zaman kendi kendime, benim yerimde Jean Dausset gibi biri olsa ne yapardı diye sorarım. Onun da Mendes France, Robert Debre ya da Jean Bernard’ı anma alışkanlığı vardı. Herkesin kendi başvuru kaynakları var; ama miras da budur işte. Üstelik bilimcilerin dünyası da kutsal değildir. Her yerde olduğu gibi orada da, neden orada olduklarını unutmuş insanlar vardır; bilimle gerçekten ilgilenmeyen bir grup profesyonel, kendi nüfuzlarını küçük alanını desteklemek için bilimi kullanır. Alınan sonuçlar, onları iktidar oyunundan ve ünlerini artırmaktan daha az coşkulandırır mali açıdan yeterince doyum olmadığından, hepsi de salt bilim ve insanlık yararına tutkulardan kaynaklanmayan doyumlar peşinde koşarlar. Tanınmış olmak isteyenler de vardır. Yoo ille de toplum tarafından, onları çalıştıranlar ve adlarına çalıştıkları insanlar tarafından değil, ama beş on rakip meslektaş tarafından. Neler yaptıklarını anlayan on kişiden fazla insan olmadığı için böyledir bu! Araştırmacının gündelik davranışında, adının, gerginlik içinde bilimsel yayınlarda kovalanması vardır. Bir kongre sırasında, bir bilimci ne bekler? Neyi kollar? -Benden söz edilecek mi? A, benden alıntı yapıldı! Elbette senden de.. Alıntılanmak bir saplantıdır! Bir yayın mı çıktı? Hemen metnin kaynakçasına saldırılır: -Benden alıntı yapmamış! sonra, bilimsel bir makaledeki isimlerin ve imzalayanların sırası! Geleneksel olarak sonuncu ya da birinci sıra, araştırma yöneticisinindir. Ya ikinci imzayı kim attı, üçüncüyü, sonuncuyu... Bu konuda, araştırmacılar üzerine bir antoloji, bir sosyoloji kitabı yazılabilirdi. Bir küçük alem içindeki toplumsal ürünün dayanağı! En gülüncü de bu tür tanınmışlığın yalnızca geçici olması değil, sonuç olarak gönülsüzce verilmiş olmasıdır. Bir gün sizden alıntı yaparlar, hemen sonra unuturlar, çünkü yarışma süreklidir. Ama böylesi bir didişme içinde insanların özsaygısı yaralanır ve kemirilir. Bundan hiç kimse tümüyle kaçamaz; ama bundan kurtulmayı öğrenmek gerekir. Bütün bunları keşfetmek, beni şaşkına çevirmiş ve çileden çıkarmıştı. Jean Dausset bu tür kaygıların çok üstünde ve uzağındaydı. O, bir yaratıcıdır. Hiç durmadan düşün ve üreten bilimcilerden biridir. Düşüncelerinden birinin çalınması, bu insanlar için pek de önemli değildir. Bu da, onların başkalarına karşı alabildiğince açık olmalarını, gerçek anlamda tartışabilmelerin sağlar. Dausset’ye gelince o, hepimize karşı muhteşem bir iyi niyetlilik içindeydi. Bu tutumundan herkesten çok ben yararlandım ve de aşırı ölçüde yararlandım; ama onun bundan ötürü yakındığını asla duymadım. Her koşulda o bana açık çek verdi. Başka yerlerden gelen iki araştırmacı da bana katılmıştı. Biri, diploma sıvanı geçmek zorunda olan, çok zeki, yirmi beş yaşında bir Venezüellalıydı: Luis Ascano. Diğeri, Howard Cann, Amerikalıydı. Elli beş yaşındaydı ve Amerika Birleşik Devletlerinde sağlam bir üne sahipti... Böylece üçümüz birlikte çalıştık. Bir yıl boyunca. Gece ve gündüz!. Aslında biz çalışmıyorduk. Her akşam gece yarılarına ya da sabahın ikisine dek sözcüğün tam anlamıyla bata çıka gidiyorduk. Moleküler genetiği iyi bilmiyorduk ve onu el yordamıyla öğreniyorduk... Gezip durduk, rasgele yürüdük ve olabilecek bütün hataları yaptık. Laboratuvarımız küçücüktü; üç metreye iki metre. Tezgah üstünde çalışacak yer bulamadığım için, araçlarımı lavobanın içine yerleştirmiştim! İlerlemiyorduk, bunalmış durumdaydık. Oldukça gergin dönemlerden geçiyorduk. Bulduğumuz tek rahatlama anı sabahın birine doğruydu: Saint Louis Hastanesi’nin yakınındaki Belleville’den Tunus usulü sandviç ve kuskus getirtirdik... Bizim hikaye uzadıkça uzuyordu. Aylar geçiyor ve hiç bir şey çıkmıyordu. Sekiz ayın sonunda, bizi bunca uğraştıran konu üzerinde Oxford’da bir kongre oldu: HLA bölgesinin, doğrudan DNA düzeyinde çözümlenmesi mümkün müdür? Biz sonuçlarımızdan söz etmek üzere çağrılmıştık Elimizde hiçbir sonuç yoktu. Kesinlikle hiç. Hiç. Yüze yakın insanın önünde konuşmamız bekleniyordu. ve bizimde söz almak için birbirimizle savaştığımız söylenemezdi. -Howard, sen konuşursun. En deneyimlimiz sensin. -Hayır sen! -Evet ama sen İngilizce konuşuyorsun. Oraya gittiğimizde, sonuçta, konuşması gereken bendim. Niyetlerimiz dışında, sunulacak somut bir şey kesinlikle yoktu. Kongrelerde bazen böyle şeyler olur; ama bu asla çok iyi bir şey değildir elbette. Biz hemen bir taktik geliştirdik. kendimizi kurtarmak üzere, tebliğimizi iptal ettirmek iç kongre başkanına şöyle dedik: -Biliyorsunuz, biz herkesle tartıştık. Onlar sonuçlarımızın hepsini bilmektedir, bunları sunmaya gerçekten de gerek yok... Başkan bize inanma inceliğini gösterdi. Onurumuz, şimdilik kurtulmuştu.” Derken aradan dört ay geçiyor. “İlk makaleyi yazıyoruz. çalışmamız olağanüstü bir yol açıyordu. çünkü biz, HLA sistemindeki çeşitliliğin, mutlak bir kesinlikle DNA düzeyinde ayrıştırılabileceğini ileri sürüyorduk. Makaleyi okuduktan sonra, Dausset yalnızca “müthiş” diye mırıldanmıştı.” “Buluş, genellikle Arşimet’in “Eureka!” sındaki gibi yaşanmaz. Bu, mitolojidir. Gerçekte, bir ekip bazı şeyler bulduğunda, bunların çok da fazla farkında değildir. Sonuç o denli beklenmiştir ki, insanlar ona alışmışlardır. Ortaya konduğu zaman, hanidir bilinmektedir ve kimse şaşırmaz. yalnızca, bir dahaki kongrede lafı gevelemek zorunda kalınmayacağı düşüncesiyle rahatlanır. Yeni sonuç, yalnızca onu beklemeyen kişilere gösterdiğiniz zaman bomba etkisi yapar (eğer yapacaksa). (Danile Cohen, Umudun Genleri, Kesit Yayıncılık-1995 s:28-33) “Bu kitapta anlatılan bilimsel serüvenin temel amacı olan genom nedir? Mümkün olan birçok tanımı vardır. Yalınlaştırmak için, işlevsel bakış açısından, genomun hücrelerin çekirdeğinde içerilen bilişimlerin (informations) bütünü olduğunu söyleyelim. Hücreler bölünür, bu bilişim bilgi hücreden hücreye aktarılır. canlı varlıklar ürere ve bu bilişim kuşaktan kuşağa aktarılır. Yapısal bakış açısından genom, her hücrenin çekirdeğindeki birkaç metrelik DNA’dır. DNA, gerçekten de, bu bilişimin elle tutulabilir, fizik kanıtıdır. Bizim bir yumurta ile bir sperm hücresinin karşılaşmasından doğduğumuzu herkes bilir Genetik, en çok insanlığı ilgilendiren bu ilk perdeyle başlar. İnsanın, evrimin ilerlemesine katkıda bulunması için hazzın işe karışması gerekiyordu. Bu birleşmenin sonucu bir başlangıç hücresidir, annenin karnına büzülmüş, döllenmiş bir yumurta. Bu hücrenin ikiye, dörde, sekize, on altıya.. erkek ya da dişi olarak gebelik sırasında türümüzün biçimini almak üzere bir araya gelecek olan milyarlarcasına bölündüğünü göreceğiz. Çünkü şaşırtıcı olan, bireysel farklılıklarımızı ortaya çıkaran şey olduğu kadar, ayaklarımızla, ellerimizle, duyarlı el ve ayak parmaklarımızla, yüz ifadelerimizle, ağlama ve gülme yetilerimiz ve benzerleriyle, hepimize benzer kılan şeydir. Ontogenez ’in (insanın döllenmiş yumurtadan yetişkin oluncaya kadarki gelişimini tanımlar) bu mucizesinin milyonlarca yıldan beri hep aynı biçimde gerçekleşmesi için, bir şeylerin bu üreyebilirliği YÖNETTİĞ İ Nİ kabul etmektedir. İnsan gibi karmaşık bir canlının her kuşakta aynı biçimde üremesine olanak sağlayan şey, bir programın, yani imgelemimizi oldukça aşabilecek keskinlik ve ustalıktaki büyük bir yönerge bütününün içindedir. Bu program genom ‘dur. Genom, bir bilgisayar disketinin ya da dilerseniz, çok uzun bir manyetik bantın rolünü üstlenmiştir. Daha kesin bin anlatımla, biri babadan gelen sperm hücresi diğeriyse anneden gelen yumurta ile dolu olan ve aynı temel yönergeleri taşıyan bir çift disket ya da bir çift manyetik bant gibi iş görür. Ama şu iyi anlaşılmalıdır: anneden gelen ve örneğin kafamız ve kollarımızla ilgili olan, genomumuzun bir yarısı; babadan gelen ve örneğin kalbimiz ve bacaklarımızla ilgili olanı da diğer yarısı değildir. Hayır. Sahip olduğumuz genomun yönergelerinin tümü de çifttir: kafa için iki program, bacaklar, kollar, kalp vb için ikişer program. Bu da sonuçta, oldukça pratik olan bir şeydir. İki yönergeden biri hata yaptığında ya da kötü yazılmış olduğunda, diğeri bu eksikliği giderir. Böylece, iki benzeşik yönerge aynı zamanda zarar görmedikçe bozukluk genellikle dramatik değildir. Çoğu zaman bir çaresi vardır. Yüz milyonlarca yıldan beri bu tip bir genetik düzenleme kendini kanıtlamıştır(eşeyli üreyen canlılara ait, yaklaşık bir milyar yıl öncesinin kalıntıları bulundu.). Yaşamın güvenilebilirliği yinelemelerden geçer gibi görünmektedir. Birey ölçeğinde bu genom, daha doğrusu, genomun neredeyse birbirinin eşi olan iki kopyası, aslında, organizmadaki bir hücrenin bölünmek üzere olduğu her kez kendini milyarlarca kez çoğaltır. Her hücre, yağlı bir kılıfı olan bir keseden oluşmuştur. Bu kese bir başka kese içerir; bu da çekirdektir. Anne ve babadan gelen her genom örneği hücre çekirdeği içinde tek bir sürekli iplikçik biçiminde değil, genellikle birbirine dolaşmış ve gözle fark edilemeyen iplikçik parçaları yığını halinde bulunur. Açıldıklarında, bu parçalardan her birinin uzunluğu birkaç santim kadardır. En büyüğü en küçüğünden beş kez daha uzundur. İpekten bin kat daha ince olan bu iplikçik parçaları uç uca eklenirse, bir metre elli santim olacaktır( ana ve babadan gelen örnekleri birlikte hesaba katarsak, bunun iki katı). Bu iplikçikler çok basit bir molekül olan DNA’dan oluşur. Bunu upuzun bir inci kolyeye benzetebiliriz: ana ve babadan gelen birer örnek için 3'er milyar inciden, her hücre başına topla 6 milyar. Her inci, “baz “diye adlandırılan bir kimyasal maddeye karşılık gelmektedir. Her biri kendi baş harfi ile gösterilen dört tip baz vardır: A (adenin), T ( timin), C (sitozin) ve G (guanin); bunlar genetik alfabenin dört harfini oluşturur. Bölünme anının hemen öncesinde hücre bir biçimde şişmeye ve hem anneden hem de babadan gelen genetik materyalin tümünü ikileştirmek için gerekli maddeleri yapmaya başlayacaktır. İşte tam bu anda, iplikçik yığınının, insan türünde 23 çifti bulunan ve optik mikroskop atında X şeklinde oldukça iyi görülebilen kromozomlar halinde düzeneğe girdiği görülür. Böylece her bir çiftte, bir kromozom anneden, diğeri babadan gelir. Bireyin organizmasındaki tüm hücreler, başlangıç genomunun, yani ana ve babadan gelen ilk yönergelere uygun olarak, embriyon, cenin, sonra da yetişkin organizma halinde farklılaşacak olan yumurta genomunun iki örneğinin de tam bir kopyasına sahiptirler. Böylece insan, çekirdekleri bu küçük iplikçikleri, yani yalnızca hücresel bölünme öncesinde ayrımsanabilen kromozomları içeren yüz milyarlarca hücreden oluşmuştur. Ve genomun her bir kopyası, gördüğümüz gibi, 3 milyar baz içerir. Birkaç on binlik baz içeren tikel bir parça, o sayıdaki harflerden kurulu bir sözcük oluşturur ve buna gen adı verilir. Bu sözcüklerin bütünüyse programı oluşturur. Bunlar, ileride göreceğimiz gibi, kuralları insan dilindekilere tuhaf bir şekilde yakınlık gösteren bir dilin öğeleridir. Dört harfli bir alfabe için 30 000 karakterli sözcükler Genomun bir örneği yaklaşık yüz bin sözcüğe sahiptir, biz yüz bin gen diyelim. Bunların her birinin kendi benzeri, diğer örnek üzerinde yer almaktadır. A,T,C ve G’den oluşan dört bazlı genetik alfabenin gerçekten de yalnızca dört harfi vardır. Ama yalnızca bu dört harfiyle, bizim 26 harfli alfabemizinki kadar zengin bir sözcük dağarcığı oluşturur. On harfli bir sözcük oluşturmak için kuramsal olarak 26 üzeri on birleşim olanaklıdır. Dört harften ibaret bir alfabeyle on harfli bir sözcük oluşturmak için bu kez yalnızca 4 üzeri 10, yani yaklaşık bir milyon olabilirlik vardır. Ne iyi ki, ne milyarlarca Fransızca sözcük ne de milyarlarca gen var! Doğa gibi kültür de daha makul. Alfabetik yazıya sahip insan dilleri, alfabelerinin birleşim potansiyellerinin tümünü kullanmaktan çok uzaktır. Elimin altındaki Petit Larousse’un, en kısasından en uzununa, içerdiği tüm sözcükler sonuçta yalnızca 83 500 gibi oldukça alçak gönüllü bir sayıya (özel isimler dahil) ulaşıyor! Buna, tekniklere, mesleklere ve argoya ilişkin, kullanımı sınırlı, farklı sözcük dağarcıkları da eklense 200 000 sözcükten fazlasına pek ulaşılmaz. İlginç bir rastlantıyla, genomun sözlüğü de benzer sayıda sözcük içermektedir: uzunluğu birkaç bin ile birkaç milyon karakter arasında değişen,50 000 ile 100 000 arasında gen. Genomun inci dizen oyuncuları her türlü şıkta çok fazla sabır göstermek zorundadırlar. Önemi yok. sonuç ortada.: A,T, C ve G harflerinden oluşan on binlerce bireşimiyle ortaya çıkan genom dili, en azından kendi yarattıklarının dili kadar inceliklidir. Her bir gen, hücrenin yaşamını düzenleyen ve bizim kendisinden sıkça söz edeceğimiz gerçek işçi olan bir molekülün, yani proteinin, üretimini harekete geçirecek olan bir komut verir. Bir insan yapmak için yüz bin gen yeterlidir; becerebildiğimiz milyonlarca şeye kıyasla bu sayı azdır ama besbelli ki yeterlidir. Garip ve onur kırıcı olan şey, farenin ve maymunun da bizimki kadar gene sahip görünmeleridir; hayvanlar dünyasının aşamalı-düzeni (hiyerarşi) içinden yükselen bu nanik, gizinin keşfedilmesini bekliyor. Yazım Hataları ve Hoşgörüleri Genlerin, yani genomun sözcüklerinin yazımı, hiçbir gevşekliğe yer bırakmayan Fransız dili yazımının tersine, bir insandan diğerine hafifçe değişiklik gösterebilir. Ama ne de olsa, genomun örneğini izleyen, daha az bütünlükçü başka diller de vardır. Fransız Akademisi 17. yy’da yazım kurallarını düzenlenmesinden önce Fransız dili de esasen bu durumdaydı... Ama elbette her gevşekliğin sınırları vardır. Esnek olmak için ileti yine de anlaşılır kalmak zorundadır. Genomun kabul edilebilir yazım değişiklikleri vardır;saçlara rengini, yüzlere taşıdıkları ifadeyi, dış görünümlere heybetini... yani yaşamı güzelleştiren bütün o çeşitlilikleri, bu yazım değişiklikleri sağlar. Ve hastalıkların kaynağında bulunan, dramatik sonuçlar doğuran yazım değişiklikleri de vardır. Bu iki tip değişikliğin arasındaki sınır, tıpkı normali patolojikten ayıran sınır gibi bulanık hareketlidir. Genlerin yazılışındaki gerçek yazım yanlışları nelerden oluşur? Diyelim ki bir sözcüğün o 30 000 harfinden biri (bazen bir çoğu), genetik alfabenin diğer üç harfinden biriyle yer değiştirebilir ya da ortadan kaybolabilir ya da çiftleşebilir(merhaba’nın merhapa, merhaba, mehaba olması gibi). Bu, mutasyon olarak adlandırılan şeydir(bunun nasıl ortaya çıktığını göreceğiz) ve sonuçları değişkendir: mutlu, iyi huylu, nötr ya da trajik. Mutasyon, genin kendi anlamını kaybettirecek derecedeyse ileti artık yoktur ya da anlaşılmamıştır. Diyeceksiniz ki sorun değil, genomun diğer örneği üstünde yedek bir genim var. Kuşkusuz. Ama göreceğimiz gibi, bu bazen sonuç vermez, bazen verir. Çoğu kez proteindeki değişikliğin zararlı etkisi yalnızca beslenmeye, yaşam tarzına ya da diğer etkenlere bağlı belli bir ortam içinde görülür. Bir bakıma her şey, yanlış yazılmış, bağlamına göre şu ya da bu ölçüde anlaşılan bir sözcükle karşılaşıldığındaki gibi cereyan eder. Özetlersek, mutasyonlar kimi kez iyi bir sağlıkla uyumlu farklılıklara eşlik ederler ve canlıların olağanüstü çeşitliliği böylece ortaya çıkar. Kimi kez bu mutasyonlar özellikle duyarlılık taşıyan noktaları değiştirirler ve gerçek aksaklıklara, amansız hastalıklara neden olurlar; sonuçta kimi kez de mutasyonlar bir şeyleri değiştirirler ama bu, yalnızca belli ortamlarda hastalık etkenidir ve hastalık, ancak ortam uygun olduğunda ortaya çıkar. Biyologların gelecek kuşakları hiç şüphesiz bu mekanizmanın olağanüstü ustalıklarını ve çevreyle etkileşimlerini inceleme olanağı bulacaklardır. Bugün için, biz hala, neredeyse anlaşılmaz olan ama yine de dört harfli alfabesini bildiğimiz ve ne mutlu ki, sözcüklerinin yaklaşık yüzde 1'in de tanıdığımız bir yabancı dile, yani genomun diline ulaşmak zorundayız. Üstelik, o birkaç bin sözcüğün anlamını da hiç şüphesiz kısmen biliyoruz. Bir genin bir işlevinin tanımlanmış olması, onun yalnızca bir işleve sahip olmasını gerektirmiyor. Ama her şeyden önce daha bu dilin sentaks ve gramerini bilmiyoruz, edebiyatından hiç söz etmeyelim! Yine de şimdiden erişebildiğimiz bir şey var: bu dilin sözcüklerinin belli yazım değişiklikleriyle iyice tanılanmış hastalıklar arasındaki bağlantıları kurup, saptamayı giderek daha iyi öğreniyoruz ve gerçekleştirebiliyoruz. Gerçekten de diyabetten kansere, allerjiden romatizmaya dek neredeyse bütün hastalıklar mutasyonlarla ilişkilidir. Bu hastalıklara yol açan genetik değişikliklerin bilinmesi, hastalıkların mekanizmalarının daha iyi anlaşılmasına, önlenmelerine ve hastaların tedavi edilmelerine olanak sağlayabilecektir. İşte günümüz genetiği için ulaşılabilecek hedef en azından budur. Bu, yalnızca bir başlangıç olabilir. Ama şimdiden çok coşku vericidir. (Daniel Cohen, Umudun Genleri, s:36-42) HAYVAN VE İNSAN KOPYALAMA Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyalamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetikçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosundan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yıldır, genetikçilerin uluslararası küçük topluluğu, bilimsel perhiz, sakınımlılık, otosansür, kendini sınırlama, erteleme, yanı kısacası, Watson’ın bu bölümün epigrafı olan sözlerini kendisinden aldığım, rasyonalizmin canlandırıcısı Fransız filozof Pierre- Andre Taguieff’in güzel bir biçimde söylediği gibi, araştırmaların gönüllü olarak kesilmesini buyuran bir entellektüel baskıyla karşı karşıyadır. Taguieff’in dediği gibi: Fransız usulü bilim karşıtı vahiycilik, birçok açıdan, 60'lı yılların sonunda ABD’de başlatılan büyük “acemi büyücü” avının küçük ve gecikmiş bir yansımasından başka bir şey değildir. Belki gecikmiş yansıma; ama şu son yıllarda Avrupa’da, şimdi de bizi yüzyıl sonu korkularımızdan kurtarmaya yazgılı, ahlaki uzmanlığını tuhaf bir biçimde biyoloji ve tıbba bakmış tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ıvır zıvır”ı- yaratan, bu gecikmiş yansımadır. Sırası gelmişken, tüm sanayileşmiş ülkelerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştırmalar gibi diğer gerçek tehlike ve sapmalar konusunda bu komitelere danışmayı düşünen var mı? Oysa bana, insanlığın gen sağaltımından çok askeri elektronikten kaygı duyması gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştırılmasındaki bu yeni akım amacına ulaşamıyor; perhize çağrı, doğum kontrolünde olduğu gibi bilimsel kontrol için de zavallı bir yöntemdir. Ama gelin de, Taguieff’in terimleriyle, yalnızca kuşkunun mantığına boyun eğen, kaygan zeminden başka kanıt tanımayan ve sapmaları önleme adına, mutlak tutuculuğun biyoloji sapağına, hatta bilimin totaliter denetimine doğru bizzat sapan yeni lanetçilere laf anlatın. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yeni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, tek model olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenebilir: -Şimdilik bize yalnızca hastaların iyileştirilmesinin söz konusu olduğunu söylüyorsunuz. Çok iyi. Buna karşı çıkmak zor. Ama, siz genetikçilerin az ya da çok yakın bir gelecekte, insanı kendi kararınıza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayıflardan, üstün zekalı ya da ilkel kölelerden oluşacak “ırklar” yaratma erkine sahip olmayacağınızı bize kim garanti ediyor? Megalomaniniz ya da itaatkarlığınız sonucu, davranış genlerimizle, hatta zeka genlerimizle “oynama” eğilimi duymayacağınızı bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapıyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı. Bu iki biyolojik gerçekten bir parçacık haberdar olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşık tahrip edilebilir; ama onu kolaylaştırmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi değildir. İnsanlığın genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsızlıktır. Bunu istesek bile yapamazdık. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileştirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykırımın sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliyetçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyılın bu son çeyreğinde biyoloji, insan düşüncesini çeşitlilik ve karmaşıklığın mantığına alıştırmak için hiç şüphesiz en fazla uğraşmış olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliliğin Genetiği Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonların hepsi (bu ortalama olarak her 300 bazda bir değişiklik noktası, yani genomun bütününde yaklaşık on milyon polimorf nokta eder) hastalıklara yol açmaz. Çok şükür. Kalıtımla aktarılan bu mutasyonların büyük çoğunluğunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazı arasından, ortalama olarak 300 bazdan biri insandan insana değişir. Bunlar mutasyon noktalarıdır.Bu noktalırn herbirinde baz “değişir”; ama yine de, genetik alfabenin yalnızca dört harfi olduğundan, seçim yalnızca dört olasılık arasında yapılır: A,T,C,G. Örneğin A harfi yerinde bir T, bir C, ya da bir G olacaktır. Her bir değişiklik bölgesi için, topluluk içinde en fazla yalnızca dört allel vardır..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenebildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar bileşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalıarın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır. Bu temel gözlem verisi Darwin’in ilk esin kaynağı oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanması”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü aynı büyük izleği üzerindeki farklı birer değişikliğiz. Şu son yirmi otuz yıllık biyolojik araştırmanın en şaşırtıcı keşiflerinden biri (60'lı yıllarda Jean Dausset’nin öncülüğünü yaptığı HLA sisteminin aydınlatılmasıyla), yalnızca protein düzeyinde değil, genlerimiz düzeyinde de söz konusu olduğu anlaşılan bu olağanüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonları bizim en iyi korumalarımız, normalleştirici heveslerimizin karşısındaki en etkili engellerdir. Farklılığa ve dolaysıyla bireye saygı içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: haklılığını genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı. Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitleştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir. Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinekten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkekler av için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, Vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktan geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parmak bastığına inanıyorum. Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimiz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evet. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamıik düzenlenişini oluşturan on binlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayrıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik aynı kültür içindeki bireyler arasında da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekası matematikçinin zekasıyla belli bir benzerliğe sahip görünür;ama matematikçilerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamın zekası yöneticinin, organizatörün, diplomatın, düzenbazın,filozofun, deneycinin,çalgı yapımcısının,icatçının, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! Çevre ve kültür her şeyi açıklamaz,sonuçta genlere de başvurmak gerekir. Bir zeka biçiminde mükemmel ve ne yapılırsa yapılsın,öğrenmeye ne kadar çalışılırsa çalışılsın,bir diğerinde düz ahmak olunabilir. Kuşkusuz kültürel çevreme de eğitimime de borçlu olmadığım kendime ait bir sorun karşısında,uzun süre ben de çılgına döndüm:çabuk anlayamama sorunum var;askere çağrılan lise mezunlarının IQ ortalaması 100 görünürken,o dönem bana söylenene göre 80 civarında,çok kötü bir IQ ile değerlendirilmeme yol açan bir tür yavaşlıktan şikayetçiyim! Tıp eğitiminin sonuna gelmiş tecilli bir öğrenci olarak,keyfim yerindeydi! Ve bunu bir dram haline getirdiysem de,bazılarının,olayın anlamını kavramak için çok zaman harcadığım için böyle davrandığımı söyleyeceklerini biliyorum. (Daniel Cohen, Umudun Genleri'1993),Çeviri: Yeşim Küey,Kesit yayıncılık(1995) s:236-247)

http://www.biyologlar.com/umudun-genleri

MANTARLARIN BAZI ÖZELLİKLERİ

Mantarlar; filamentli yapıda nadiren de bir hücreli olabilen canlılardır.Genellikle karada, tatlı sularda, nadiren denizlerde yaşarlar. Yüksek mantarların şapkalı olanlarının büyük bir kısmı yenir; diğer bir kısmı ise zehirlidir. Yaşamlarının hiçbir döneminde kamçı ve sil bulunmaz. Mantarların tamamının hücre duvarının yapısında kitin vardır.Yapılarındaki bazı özelliklerden dolayı mantarlar, alglere benzeseler de kloroplast bulundurmadıkları için onlardan ayrılırlar. Maya mantarları gibi birkaçı hariç çoğunluğu hifsi yapı gösterir. Hifler renksiz,ince uzun iplikler olup, yan yanaylece zigot oluşur ve gelerek misel adı verilen dokuyu , bu da tallus adı verilen yapıyı oluşturur. Talluslu mantarların her tarafı aynı yapıya sahiptir. Miselyum, vejetatif üremeyi ve beslenmeyi sağlar.Yedek besin maddesi olarak nişasta oluşmaz.Bunun yerine yağ ve glikojen meydana gelir. Çoğalma döngülerinde hem eşeyli hem de eşeysiz üreme görülür; çoğu haploittir; yalnızca zigot diploittir. Mantarlar sporlar ile eşeysiz üreme yaparlar. Eşeyli üremede ise iki hif birbirine doğru uzanır.Uçtaki hücreler şişkinleşir ve birleşerek kaynaşır.Böylece zigot oluşur ve eşeyli üreme sağlanmış olur. Besin, hava, nem gibi ortam şartları uygunsa eşeysiz ürerler.Uygun değilse eşeyli üreme ile ürerler. Mantarlar çürükçül (saprofit) ya da besinlerini emilimle alan parazitik hetetroflardır. Hayvan ve bitkilerde parazit olarak yaşayan mantarlar hastalık meydana getirirler. Mantarların sirke ve alkol asidi fermantasyonu yapan türleri bulunur. Bazı türlerden ise antibiyotik elde edilir. Mavi yeşil algler, yeşil algler ve bazı mantarlar birlikte likenleri meydana getirirler.

http://www.biyologlar.com/mantarlarin-bazi-ozellikleri

Phylum (Şube): Silicoflagellata

Bu şubenin üyeleri, hem fotosentetik hem de heterotrofik olabilen, denizel alglerdir. Bazı kaynaklarda, Chrysophyta şubesi altında incelenirler. Silis yapıdaki iç iskeletleri, radyolaryalara benzemekle birlikte, onlardan çok daha basit yapılıdır. Denizel tortularda bulunan silis kayaçlarının oldukça küçük bir bölümü, bu canlıların iskeletlerinin kalıntılarından oluşur. Okyanuslarda geniş bir dağılıma sahiptirler. Ökaryot yapıdaki kamçıları (undulipodium), hareket organelleridir. İskeletlerinde ayrıca, batmalarını engelleyen dikenler bulunur. Üremeleri eşeysiz tiptedir.

http://www.biyologlar.com/phylum-sube-silicoflagellata

Karbonhidrat Fermentasyon Testi

Bu test, mikroorganizmaların çeşitli spesifik karbonhidratları ayrıştırma yeteneklerini (sakkarolitik aktivite) belirlemek amacı ile yapılmaktadır. Mikroorganizmalar karbonhidratları, kendileri tarafından sentezlenen hidrolase (karbohidrase) enzimleri yardımı ile ayrıştırırlar. Ancak bu yetenek mikroplar arasında oldukça fazla değişiklik gösterdiği gibi, bir türe ait mikroorganizmalar arasında da ayrı fermentasyon özelliği gösteren variant suşlar da meydana çıkmaktadır. Bazı mikroorganizmaların fermentasyon özelliği yok denecek kadar az olmasına karşın Enterobacteriaceae familyasına ait olanlarda bu aktivite oldukça yüksektir. Karbonhidratlar (monosakkarid, polisakkarid ve alkoller), bakteriler tarafından değişik tarzda (aerobik ve anaerobik) ayrıştırılarak çeşitli ürünler, organik asitler (asetik asit, butirik asit, formik asit, laktik asit, propionik asit, suksinik asit, vs.), nötral ürünler (Asetilmetilkarbinol, 2,3-butilenglikol, aseton, etil alkol, isopropil alkol, butil alkol, vs.) ve gazlar (hidrojen, oksijen, metan, karbondioksit) meydana gelirler. Bu maddeler çeşitli testler yardımı ile ortaya konabilir ve mikroorganizmaların identifikasyonunda önemli göreve sahip olurlar. Enerji ve karbon kaynağı olarak, karbonhidratların önemi fazladır. Metabolize olabilenlerin üreme üzerine olumlu etkileri vardır. Ancak, ayrışma sonu oluşan organik asitler, besi yerinin pH sını düşürerek belli bir süre sonra üremeyi sınırlar ve durdururlar. Bu yönden de zararlı etkisi olur. Karbonhidratların aerobik ayrışması sonu çok fazla enerji ortaya çıkmasına karşın anaerobik ayrışmada (fermentasyon) enerji daha az çıkmakta ve organik asit oluşumu daha fazla görülmektedir. Laboratuvarlarda kullanılan besi yerleri ve diğer koşulların etkisi altında, mikroorganizma türlerine göre değişmek üzere, karbonhidratların ayrışması, genellikle, 1-10 gün arasında değişmektedir. Bazen daha uzun bir süreye gereksinim duyulabilir. Ayrışmayı ortaya koyabilmek için besi yerlerine üreme üzerine olumsuz etkisi olmayacak yoğunlukta bazı indikatörler (Andrade, bromkrezol moru, brom timol mavisi, fenol kırmızısı, vs.) katılır. Bunların özelliklerine göre renklerinde meydana gelen değişmeler ayrışmayı ve derecesini belirtir. Bu indikatörler besi yerlerine, yukarıdaki sıraya göre, % .005, % 0.0025, % 0.001 son konsentrasyonda olacak tarzda ilave edilirler. Andrade hariç olmak üzere diğerleri asit ortamlarda sarı renk meydana getirirler. Besi yerlerinde gaz oluşumunu saptamada, tersine yerleştirilmiş küçük Durham tüplerinden yararlanılır. Gaz, bu tüpün üst tarafında birikir. Bu amaçla özel Smith tüpleri de kullanılabilir. Nötral ürünlerden asetoin'i (asetil metilkarbinol) saptamada Voges Proskauer (VP) reaksiyonu laboratuvarlarca benimsenmektedir.Materyal1) İçinde % 1 oranında çeşitli karbonhidratları içeren indikatörlü ve Durham tüplü steril peptonlu su veya uygun bir sıvı besi yeri (4-5 ml). Durham tüpleri genelilkle glikoz'lu besi yerine konmaktadır (Salicin % 0.5, olarak hazırlanır).2) Muayenesi yapılacak mikroorganizmanın taze saf kültürü.Metotİyi üremiş saf kültürlerden 0.1 ml kadar alınarak ayrı ayrı karbonhidrat içeren tüplere ekilir ve iyice karıştırıldıktan sonra tüpler 37 °C de inkubasyona (1-10 gün) bırakılırlar. Tüpler her gün sabah-akşam, gaz ve asit oluşumu önünden muayene edilerek, kontrollerle birlikte, gözle değerlendirilirler. Gerektiği hallerde okuma süresi uzatılabilir.DeğerlendirmeKullanılan indikatörün özelliğine göre aşağıdaki tarzda karar verilir:İndikatörAsitNötrAlkali AndradekırmızısarırenksizBromtimol mavisisarıhafif mavimavi – koyu maviBromkresol morusarımsımorumsumorFenol KırmızısısarırenksizpembeYukarıda bildirilen renk değişmeleri pH durumlarına göre oldukça fazla farklılıklar göstermektedir. Bunları dikkate almak gereklidir. Dikkat edilecek noktalar1) Bazı peptonlar bileşimlerinde karbonhidrat içerdiğinden, bu test için uygun değildirler. Bu yönden dikkatli bulunmak gerekir.2) Test için kullanılacak ortamlarda nitrat da bulunamamalıdır. Bu maddenin varlığı gaz podüksiyonunu önleyebilir.3) Karbonhidratlar filtrasyonla sterilize edildikten sonra tavsiye edilen miktar ve konsentrasyonlarda besi yerlerine katılırlar.4) Durham tüpleri gerek görülürse, glikoz'lu tüp yanı sıra diğer karbonhidratlar için de kullanılabilir.5) Sonuçlar, uygun bir süre sonra, kontrol tüplerle, karşılaştırılarak değerlendirilir. Mikroorganizma ekilmemiş, indikatörlü ve karbonhidratlı tüpler de denemeye iştirak ettirilmelidir.6) Sonuçlar, pozitif (+) veya negatif (-) olarak belirtilmelidir.7) Mikroorganizmaları iyi üretmek için besi yerlerine katılan serumlarda bulunan enzimler, maltoz'u glikoz'a ayrıştırabilir. Bu nedenle, serumların inaktive edilmesinde yarar vardır.8) Anaerobik mikroorganizmalar için anaerobik koşullar sağlanmalı ve yeterli süre ayrılmalıdır.9) Katı besi yerleri de aynı amaçlar için kullanılabilirse de sıvı ortamlar laboratuvarlarca daha fazla tercih edilmektedir. Son yıllarda çeşitli karbonhidratlara emdirilmiş steril kağıt disklerden de yararlanılmaktadır.10) Değerlendirilmelerde kullanılan indikatörün pH limitlerine göre aldığı renk değişimlerini çok iyi bilmek gerekir.

http://www.biyologlar.com/karbonhidrat-fermentasyon-testi-1

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve metabolik olarak sentezlenen organik asitlerden bazik karakterli metal hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksekse verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır metal toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi-1

Topraktan Mineral Madde Alımı

Bitki kökleri toprak çözeltisinden daha önce belirtilen mekanizmalarla su ve mineral madde alırlar, toprağın havasını kök solunumu için kullanırlar. İdeal olan tarla kapasitesindeki toprağın por hacminin su ve hava tarafından yarı yarıya paylaşılması ideal durumdur. Nemli ortamlarda toprak havalanmasına porozite artışı yolu ile solucanlar gibi hayanlar önemli katkıda bulunur. Toprağın yapısını bitkiler kökleri ile destekler, ölü kökler toprakta çeşitli çaplarda kanallar oluşturarak poroziteyi ve permeabiliteyi arttırdığı gibi organik madde oluşumuna katkı sağlar. Bu açıdan derin ve yaygın kök sistemleri ile yüzeysel kök sistemi olan türleri içeren ekosistemler sürdürülebilir özellik kazanır. Bu açıdan toprak sıcaklığı da önemlidir. Mikrobiyal aktivite yanında evaporasyon ve bunun serinletici etkisi gibi etkilerin karmaşık ilişkileri söz konusudur. Toprak mikrobiyolojisi özellikle bitkilerin azot beslenmesi ve organik madde içeriği açısından çok önemlidir. Toprak organik maddesinin yaklaşık yarısına kadar olan kısmını mikro canlılar oluşturur. Topraktan alınan su miktarı ile iyon miktarı paralellik göstermez, yani bitki iyon alımını denetimi altında tutar. Kökler katyonları özellikle protonla iyon değişimi yaparak alırlar, azot NH4 katyonu ve NO3 anyonu, P özellikle H2PO4 ve S de SO4 halinde alınır. Tuzları halinde bulunan iyonların alım oranları farklıdır, örneğin NaCl çözeltisinden aynı miktarda Na ve Cl alınmaz, bu oran da denetim altında tutulur. Fosforun toplam miktarı ile bitkilerin kullanabildiği fosfor miktarı paralellik göstermediğinden faydalı fosfor analizi ile sonuca gidilir. Toprakta bulunan elementlerden monovalent Li, Rb ve Cs, iyon yapılarının Na ve K a, divalent Ba un Ca a, Br un Cl a, trivalent Al ve Zr+4 ün Ferrik demire benzerliği nedeniyle canlı yapısında çok düşük miktarlarda bulunabilir. Türlerin mineral madde alımları seçicidir ve tümüyle aynı koşullarda yetiştirilen farklı türler arasında 60 kata kadar farklılıklar görülmüştür. Bu farklılıklar özellikle makroelementlerden Na ile mikroelementlerden Mn, Zn, Al, Se, Si gibi elementlerde görülür. Örneğin Astragalus türleri arasında Se alımı 600 kata kadar farklılık gösterir. Bu nedenle bazı bitki türleri toprakların kimyasal kompozisyonlarının göstergesi olabilir ve bu türlere indikatör türler denir. Örneğin asidik topraklarda çözünür Al, Fe ve Mn derişimi bitkiler için toksik düzeye kadar artabilir ve ancak bu yüksek derişimlere dayanıklı türler yaşamlarını sürdürebilir. Alkalinitesi çok yüksek topraklarda ise özellikle faydalı fosfor ve demir ile mangan çok azalır ve bu ortama adapte olabilen bitkiler yaşayabilir. Topraktaki alıma müsait durumdaki iyonların derişiminin artışı bir noktaya kadar absorpsiyonunu arttırırsa da derişimin daha fazla yükselmesi etkilemez. Toprak pH değerinin 5.5 - 7.0 arasında olması genelde en uygun beslenme ortamını oluşturur. Bitki örtüsü sıklığı artışı toprak organik maddesini arttırırsa da kökleri ile sürekli olarak daha yüksek oranlarda K, Ca ve Mg ile Na çekerek toprağın asitleşmesi yönünde etki yaparlar. Hasatla organik maddenin uzaklaştırılması zamanla toprağın asidikleşmesine neden olur. Toprakta bolca bulunan Al ve Fe ile yüksek miktardaki Si çözünme hızı da asitleşme sonucu artar ve taban suyunda, akarsu ve göllerde birikir. Azot Beslenmesi: Leguminosae ve Mimosoidae mensuplarnın köklerinde ortak yaşayarak nodül oluşturan Rhizobium bakterileri kök emici tüylerine yerleşerek çoğalır ve hücrelerin hacim artışı ile nodüller oluşturmasını sağlar. Nodüller de havanın serbest azotunu nitrata çevirir. Rhizobium türleri konukçul seçicidirler. Bitkiler azotu nitrat ve amonyum tuzları halinde alırlar ve cinsler arasında azot kaynağı tercihi, seçiciliği farkları vardır. Ayrıca aynı tür bitkilerin gelişme evrelerinde de seçicilik değişimleri görülür. Leguminosae ve Mimosoidae türleri genelde hafif asidik ve özellikle nötr topraklarda daha iyi büyür ve toprağa azot sağlarken yüksek oranda Ca ve Mg alırlar. Bazı türleri asidik topraklara adapte olabilir. Yulaf gibi bazı Graminae cinsleri ise asidik topraklarda iyi büyürler. Bitkilerin azot alımı fosfor beslenmesinde olduğu gibi aktif büyüme ve gelişme dönemlerinde yüksektir ve sonra azalır, bir bitkideki %N oranı da olgunlaşma, çiçeklenme, yaşlanma ile azalır. Bunun nedeni karbohidrat depolanmasının oransal olarak artışıdır. Tohum ve tomurcuk gibi organlarda ise depolanma olur. Genel bir ortlama değer olarak bitkilerde toplam azot/kuru ağırlık yüzdesi değişimlerinin %0.2-6.0, nitrat azotu yüzdesinin ise %0.0 - 3.5 arasında olduğu görülür. Toprakta müsait azot artışı bitki büyümesini hızlandırırken toplam karbohidrat oranını azaltır, protein oranında artışa neden olur. Ayrıca hücrelerin daha büyük hacimli ve protoplazmalı, ince çeperli olması, su oranının da yüksek olmasına neden olur. Azot azlığında kök/ gövde oranı artar, kökler kısa ve kalın, çok dallı bir yapı gösterir, iyi gelişir. Bunun nedeni fotosentezle elde edilen karbohidratların öncelikli maddeler olan proteinlere dönüştürülememesidir. Azot / karbohidrat dengesinin yüksek oluşunun önemli bir sonucu da vejetativ büyümeyi arttırarak çiçeklenmeyi geciktirmesidir. Fosfor Beslenmesi özellikle H2PO4- primer orto fosfat ve çok daha az oranda HPO4-2 sekonder orto fosfat alımı ile olur. Çok daha az miktarlarda piro ve metafosfatlar ile organik fosfatlar da alınabilmektedir. Gene çok büyük oranlarda çözelti fosfatından beslenme olur, bu fosfat da iyon değişim dengesi ile topraktaki organik ve mineralojik katı maddelerdeki depo fosfat kapasitesi ile ilişkidedir. Toprak pH değeri alkaliye kaydığında organik fosfat / mineralojik fosfat dengesi küçülür. Humat halindeki fosfor tuzu oluşumu çözünmez Fe ve Al fosfatların oluşumunu engelleyerek yararlı fosfat deposuna katkıda bulunur. Topraktaki ana fosfat kaynağı mineral Ca3PO4 içeren ve suda çok az çözünen, ancak çözünürlüğü organik madde bozulumu sonucu artan asidite ile yükselen apatittir. Bu nedenle de toprak organik maddesi fosfat beslenmesinde çok önemli rol oynar ve erozyon bitkilerin kullandığı fosfatın üç katına kadarının organik maddeyele birlikte kaybına neden olur. Doğal olarak toprak nemi artışı fosfat alımını arttırır. Toprak çözeltisinde nitrat derişiminin artışı ise fosfat alımını kısar, sülfat da aynı yönde fakat daha az etkilidir. Bunun nedeni aralarındaki rekabettir. Topraktaki toplam P %0.15 - 5 oranındadır. Yararlı fosfor düzeyi ise pH 6.5 - 7.5 arasında maksimum olur ve A horizonunda 10 kat farklılık gösterebilir, çünkü ortalama olarak %25 - 75 oranındaki kısmı organik maddedeki organik bileşikleri ve özellikle fosfo - humat bileşikleri halindedir. Bu nedenle de pratik olarak yıkanma ile kaybı önemsiz düzeydedir. Organik fosfat bileşikleri parçalanınca bitkilere yararlı Fe, Al, Ca, Mg, Na ve K ile fosfat tuzları yaptığı oranda kullanılabilir. Bu nedenle de topraktaki azot ve fosfor oranları değişimi paralellik gösterir. Yaşlı ve bitki örtüsü olan topraklarda alt horizonlarda azalır, çünkü bitki köklerince tüketilen kısmı yenilenemez. Toprak organik maddesinde fitin, fosfolipid, nükleik asit gibi bitki artığı ve mikrobiyal kökenli maddeler halinde bulunur ve mineralize olmaları ile yarayışlı hale gelirler. Bu olay da organik maddenin C / P oranı ile ilişki gösterir. Oran < 200 - 300 aralığında olduğunda mineralizasyon hızı yükselir, > 300 olduğunda ise mineral fosfat özellikle asidik topraklarda bol bulunan kolloidal Fe, Al ve Mn oksitleri tarafından tuzları halinde, veya silikat killerine adsorbe olarak immobil hale geçer, fikse edilir ve yararlı fosfor azalır. Fiksasyon%98 - 99.9 gibi yüksek oranlara kadar çıkabilir. Kireçli alkalin topraklarda da çözünmez Ca fosfat halinde çökelir. Kükürt Beslenmesi özellikle sülfat iyonu alımı ile olur, zararlı derişime ulaşmamış SO2 gazı halinde havadan da alınabilir. S eksikliği N eksikliğine benzer şekilde özellikle yaşlı yapraklarda sararma ve kuruma ile dökülme, protein kaybı ve karbohidrat birikmesi görülür. Kök gelişimi geriler, nodüler N2 fiksasyonu azalır. Toprakta -SO3, trioksit olarak ölçülür ve fosfor gibi organik madde ile yakından ilişkilidir. Toprak organik maddesinin bozunması ile H2S olarak açığa çıkar, bakterilerin aktif olduğu topraklarda okside edilerek tutulur ve sülfatları halinde bitkilerce alınır. Fosfattan farklı olarak tuzlarının yıkanma ile kaybı ve kurak veya yarı - kurak iklimlerde B tabakasında birikimi söz konusudur, bu nedenle de tarımda fosfat gübresi içine katılarak takviyesi gerekir. Derin köklü bitki örtüsünün biyomas artığı ormanlarda çevrimi sağlar. Günümüzde asit yağmurları da bu çevrime katkıda bulunmaktadır. Potasyum Beslenmesi farklılık gösterir, çünkü K inorganik anyonlarla veya organik asitlerle yaptığı tuzları halinde özsuda veya adsorbe durumda kalır. Bu nedenle de bitki artıklarından hızla toprağa karışır. Genelde bitkilerin ve özellikle gramine türlerinin K gereksinimi N gereksinimine yakındır, N2 fikse eden baklagillerde ise tüketilen Ca > K dur ve bu ilişki türler arası rekabette önemli yer tutar. K büyük oranlarda vejetativ organlarda bulunduğundan eksikliği önce yapraklarda kendini gösterir e lekelere, renklenmelere neden olur. Toprakta bol olması halinde ise gereksiz tüketimi söz konusudur, bu nedenle de büyüme mevsimi erken başlayan türler geç olanlara karşı K üzerinden rekabet gücü kazanır. Bu gereksiz tüketim eğilimi bitki içinde de dengesizliğe yol açabilir, çünkü K tercihi bitkinin özellikle Ca gereksinimini karşılama kapasitesini düşürür. Bitkilerde toprakta olduğu gibi bu açıdan sabit bir katyon eşdeğeri kapasitesi vardır ve K, Na, Ca ve Mg tarafından paylaşılır.

http://www.biyologlar.com/topraktan-mineral-madde-alimi-1

Su ve Mineral Madde Metabolizması

Bitki hücresine alınan su canlılığı sağlayan tüm olayların yürümesi için gerekli ortamı sağlar. Bilindiği gibi su yarıkovalent, elektron çiftlenmesi ile oluşan O - H bağlarının 105 derecelik açı yapması ve daha çok -2 yüklü oksijene yakın olan elektron çiftlerinden oluşması nedeniyle çift kutuplu, dipol bir moleküldür. Bu nedenle su reverzibl olarak H(3)O +, hidroksonyum ve hidroksil şeklinde iyonlarına ayrılabilir. Mineral iyonları çevrelerine zıt yüklü uçlarını çekerek moleküler su moleküllerinden su zarfı oluşturur ve. Bu şekilde de hem doymuş hidrokarbonlar ve lipidler dışındaki tüm küçük moleküllü organik maddeleri, hem de kuvvetli asidik ve bazik maddelerden polar tuzlara kadar iyonik karakterli maddeleri değişen oranlarda çözebilir. Bu sayede de çözelti ortamında termik hareketlilik kazanan maddelerin moleküllerinin çarpışarak kimyasal tepkimeye girmesi ve canlılık için gerekli biyokimyasal tepkimelerin yürümesine uygun ortam sağlar. Dipol karakteri nedeniyle su molekülü makromoleküller ve polimerler zincirleri üzerindeki iyonik gruplara tutunarak zincirlerin arasına girer ve uzaklaşmalarına neden olur. Bu boşluklara girme olanağı bulan enzim proteinleri gibi suda çözünür maddeler de canlılık olaylarının sürmesini sağlar. Tüm bu nedenlerle su canlılığın en temel maddelerindendir. Ayrıca gene dipol özelliği ve iyonlaşabilir oluşu, kinetik tanecikler oluşturması nedeniyle birçok madde ile kolayca tepkimeye girebilir ve canlılık olaylarının büyük çoğunluğunda kimyasal ajan olarak rol oynar. Oksitlenme tepkimelerine elektron sağlar, redüklenme tepkimelerinde de proton kaynağı görevi yapar. Dipol kutupları elektriksel iletken olması ve iyonlaşma oranının tersinir olarak içinde çözünmüş olan iyonik maddelerin hakim yüküne bağlı oluşu biyoelektriksel olayların sağladığı canlılıkla ilgili işlevlerin gerçekleştirilebilmesi olanağını verir. Termik hareketliliğinin yüksek olması nedeniyle yaptığı basınçla organel ve hücrelerin dış basınç etkisi ile ezilmesini önler. Su metabolizması adı altında toplanabilecek tepkimelerin canlılıkla ilgili her tepkime zinciri ve devrelerine yayılmış olması, bu tepkimelerin birbirinden çok farklı ve bağımsız işlevlerinin yüksek sayıda oluşu bu konunun bir bütün halinde ele alınmasını engeller. Bunun yerine diğer konular içinde yeri geldikçe söz edilmesi daha kolay ve anlaşılabilir bir yaklaşımdır. Mineral elementlerinin canlılıktaki rolleri ise daha kolay sınıflandırılabilir: Esas elementler belli bir derişim aralığında sağlıklı, normal yaşamın sürdürülebildiği, bunun altındaki ve üstündeki derişimlerinde önce geçici olabilen, daha sonra da kalıcı arazlar bırakan eksiklik ve toksik etkileri, bu sınırların dışında da ölümcül etkileri görülen elementlerdir. Bu derişim aralıkları açısından da makro ve mikro elementler ayrılır. Herbir elementin metabolizmadaki ve canlılıktaki rolleri farklı olduğundan canlı türleri arasında ve bir canlının yaşam devrelerine, içinde bulunduğu ekolojik koşullara göre gereksinimleri farklılıklar gösterir. Bu açıdan hem biyokimyasal, hem fizyolojik, hem de ekofizyolojik açılardan incelenmeleri sonucunda doğru değerlendirmelere ulaşılabilir. Önemli bir konu da bir elementin derişimindeki değişimlerin diğer elementlerden yararlanılması, kullanılması üzerindeki sinerjistik ve antagonistik etkileridir. Bu etkileşimler sonucu hem iyonik matrikste hem de organik metabolizmada çeşitli değişiklikler meydana gelir. Azot, P, Ca ve Mg ile Na ve K, Fe, Zn, u ve B elementlerinin tümü arasında bu tür ilişkiler ağı vardır. Örneğin P, K ve Zn ile Cu ile sinerjistik etkiye sahiptir, Mg ile hem antagonistik hem sinerjistik ilişkisi vardır. Azot Mg üzerinde antagonistik, K ve B üzerinde sinerjistik etkilidir. Bu tablo da P ile N arasındaki dolaylı ilişkiyi ortaya koyar vs. Antagonistik ilişki aynı bağlayıcı uç , kök için rekabete dayanan Zn+2, Cd+2 ilişkisi şeklinde olabildiği gibi Cu+2 ile S-2 tepkimesi sonucunda çözünmeyen CuS oluşumu gibi deaktivasyon ilişkisi de olabilir. Türler arasındaki seçici beslenme farklılıkları yanında elementler arası metabolik ilişkiler matriksi populasyonlar arasında davranış farklılıklarına yol açarak rekabetsel ilişkiler üzerinde etkili olur. Mineral iyonlarının genelde çok önemli olan bir özellikleri organik maddelerin ve temelde onların oluşturdukları yapıların oluşumu, sağlamlığı ve işlevleri üzerindeki etkileridir. Membranlar yanında nükleik asitlerin helislerindeki fosfat gruplarının aralarındaki katyonlar sayesinde bilinen yapılarına sahip olmaları Ca, Mg, P, S elementlerinin yapısal işlevlerini gösterir. İz elementler pH 7 civarında yürüme durumunda olan hidrolitik ve sentetik tepkimelerin enzimlerinin aktivatörü olarak rol oynarlar. Bu işlevlerini de Lewis asit ve bazlığı yolu ile su da dahil, sübstratları polarize ederek yaparlar. Lewis asitleri elektron çifti alabilen, bazları da verebilen maddeler olarak tanımlar. Klasik asit - bazlar için geçerli olduğu gibi de maddelerin elektron çifti alma - verme potansiyellerinin büyüklüğüne göre bir madde çiftinin asitlik - bazlık ilişkisini belirler. RNA polimeraz, nükleazlar, fosfatazlar, esterazlar gibi bir çok enzimin Zn+2, Mn+2 gereksinimleri buna örnektir. İz elementlerin aynı mekanizma ile yürüyen önemli bir rolleri de elektron transfer zincirlerindeki rolleridir. Fizyolojik pH aralığında yürümesi zor olan bu tepkimelerde de Fe+2/ Fe+3/Fe+4, Cu+/Cu+2, Mn+2/ Mn+3/Mn+4, Mo+4/ Mo+5/Mo+6, Co+/Co+2/Co+3 ve Ni+/Ni+2/Ni+3 iyonları rol alır. Moleküler azotun fiksasyonu ile amonyağa dönüştürülmesinde de Fe, Mo ve V çiftlenmemiş elektron kaynağı ve donörü olarak iki aşamalı şekilde rol alırlar ve enerjetik açıdan fizyolojik pH aralığında yürümesi zor olan tepkimenin gerçekleşmesini sağlarlar. Mineral iyonlarının organik madde metabolizmasındaki en belirgin rollerinden bir diğeri de klorofil, hemoglobin gibi canlılığın sürmesini sağlayan büyük moleküllerin yapısında molekülün stabilitesini sağlayan koordinasyon merkezi olmalarıdır. Eşlenmemiş elektron çifti paylaşımı ile oluşan doğal bileşikler renkli ve suda çözünmeyen bileşiklerdir. Metal iyonlarının koordinasyon bağı sayısı değerliklerinden farklı değerlerdir. Amino asitlerin yan zincirlerindeki fonksiyonel grupların protonları yerine metal bağlanması ile de koordinasyon bileşikleri oluşabilir. Özellikle histidin, metionin, sistein,, tirozin, glutamat ve aspartat yanında serin, treonin, lizin ve treptofan amino asitlerinin hidroksi veya amino grupları aracılığı ile koordinasyon bileşikleri yapmaları peptid ve proteinlerin bu yolla sağlam yapılar oluşturmalarına neden olur. Bu açıdan amino asitler ile katyonlar arasında seçicilik ilişkilewri vardır, örneğin Tirozin yanlızca Fe+3 ile bağlanabilir. Sisteinin ise monovalent Cu, divalent Zn ve Cu ile Fe, trivalent Fe ve Ni +1-3, Mo+4 -6 ile koordinasyonu mümkündür. Cu + ve +2, Zn+2 ile Fe+3 amino asitlerle sağlam koordinasyon bağları yaparken, diğerlerinin bileşiklerinin stabilitesi düşüktür. Global proteinlerin metal iyon komplekslerinin enzimatik aktivitede rol oynayabilmesi için 4 veya 6lı koordinasyon bağ kapasitelerinin doymamış olması gerekir. Bu açık uca geçici olarak su gibi bir molekül bağlanır ve sübstratla yer değiştirdiğinde kataliz başlayabilir. Ancak proteinden elektron transferinin doğrudan gerçekleştiği, metal iyonunun elektron alışverişi yapmadığı sistemlerde buna gerek yoktur. Temelde metalik koordinasyon protein molekülünün sterik geometrisini sübstratın adsorpsiyonu ile sterik yapısını tepkimeye uygun hale getirerek sağlar. Azot bilindiği gibi nükleik asit, protein, peptid, amid ve amino asitlerin önemli bir bileşenidir. Bunların yanında birçok sekonder metabolizma ürününün de sentezi ve gereksinim duyan bitki grubunun normal yaşam devrini sağlıklı şekilde sürdürmesi için gereklidir. Topraktan alınan nitrat ve amonyum ksilemden aynı şekilde tuzu halinde iletilir, ancak fotosentetik dokularda elde edilen karbohidratlarla tepkime zincirlerine girebildikleri hücrelerde redüklenerek -NH2, amino grubu içeren organik azotlu bileşiklere dönüşürler. Nitratın da amonyuma dönüştürülmesinden sonra glutarik asit gibi iletilebilir organik asitler üzerinden yağ asitlerine amino grubunun katılması ile amino asitler meydana gelir. Aromatik a - amino asitlerin sentezinde ve özellikle birbirlerine dönüşümlerinde hidroksillenme tepkimesi önemlidir, örneğin fenilalaninin hidroksillenmesi ile tirozin oluşur. C -, O - ve N – metillenmeleri de önemlidir ve örneğin homosisteinden sağlanan metil grupları metiyonin, glisin veya serin metili ile de tüberin metaboliti sentezlenir. Aromatik amino asitlerin mikroorganizmalar ve bitkilerdeki temel sentez yolu , adını ilk bulunduğu şikimi-no-ki bitkisinden alan ve benzen halkalı şikimik asidin biri açılmış çift halkalı korizmik asitin L – fenilalanin, tirozin veya triptofana dönüştüğü şikimik asit veya şikimat yoludur. Fosfoenol piruvat ile eritroz – 4 – P tetrozunun kondansasyonundan sentezlenen ara maddeler üzerinden şikimik asit korizmik asite ve sonra üç farklı organik asite dönüşerek aromatik amino asitleri verdiğinden sonraları korizmik asit yolu adını alan sentez yoludur. Bakterilerde salisilik asit gibi maddeler, yüksek bitkilerde linyin ve alkaloidler, flavonoidler bu aromatik amino asitlerden ve özellikle triptofandan sentezlenir. Linyinler sinnamik asitlerin alkollerinin ürünüdür. Azot eksikliği azotun klorofil yapısındaki 4 pirol halkasındaki yeri nedeniyle klorofil oluşumunu engeller ve fotosentez eksikliği nedeniyle büyüyüp, gelişmesini önler. Doğal olarak protein, enzim ve nükleik asit metabolizmalarını yavaşlatır, durdurur ve yaşlı doku ve organlardan başlayan boşalma ile ihtiyarlama - senesans ve ölüme neden olur. Azot bileşiklerinin yapısal proteinler gibi taşınamayan formlarının proteolitik enzimler gibi hidroliz enzimlerince parçalanarak iletilebilir formlara dönüştürülebilmesi genç ve büyüyen dokular ile organların olabildiğince korunması olanağını sağlar. Fosfor bilindiği gibi enerji metabolizmasında çok önemli yer tutar. Yeşil bitkilerin güneşten, bazı bakterilerin ise inorganik bileşikleri parçalayarak elde ettiği fiziksel enerjiyi yüksek enerjili kimyasal bağ enerjisi halinde saklayıp, gerektiğinde açığa çıkartılması ile kimyasal ve fiziksel işlerin yapılmasında kullanmasını sağlar. Bu konu fotosentez ve kemosentez, solunum ve sindirim metabolizmaları içinde incelenecektir. Burada elementel fosforun enerji metabolizmasındaki kilit rolünün nedenleri üzerinde durmak yeterli olabilir. Nükleik asit sentezinde organik bazlar fosfatları halinde sübstrat olarak kullanılıp tepkime sırasında fosfatın açığa çıkması, solunumda elde edilen enerjinin ATP kazancı olarak hesaplanması iyi birer örnektir. ATP su ile tepkimeye girdiğinde üç fosfat grubundan biri açığa çıkarken bu fosfat bağında yoğunlaşmış olan enerji açığa çıkar. Bu enerji diğer bağ enerjilerine göre yüksek olduğundan yüksek enerjili, enerjice zengin bağ adını alır. Bunun nedeni de bu bağın oluşturulmasında yüksek enerji kullanılmasına gerek oluşudur. ATP ve NADP.H2 enerji metabolizmasının kilit maddeleridir. Bunun temel nedeni oluşumlarının sübstratları olan maddelerin kinyasal potansiyeli ile bu tepkime ürünlerinin kimyasal potansiyel farkının yüksek oluşudur. Adenin de fosfat gibi eksi yüklüdür, bu nedenle adenine 3 fosfatın bağlanması ile ATP sentezlenebilmesi için yüksek enerji kullanılması gerekir, serbest enerji önemli miktarda artar. Organik bileşiklerin fosforilasyonu, yani ATP veya benzeri bir fosfat kaynağından grup transferini kinaz enzimleri sağlar. Fosfat, ADPve ATP sulu çözeltilerinde farklı değerlikli formlarda bulunabilen, Mg ve Ca iyonları başta olmak üzere katyonlarla kelasyon tepkimesine girebilen maddelerdir. Bu nedenle de pH gibi etmenlere bağlı olarak ATP değişik yollardan sentezlenebilir. Nötr pH civarında divalent katyonlara gerek olmadan ADP + HPO4 + H3O ® ATP + H2O tepkimesiyle, ATP sentetaz enziminin etkisiyle sentezlenir. Bu molekülün hidroliz denge sabitesi diğer fosfat bileşiklerinden çok daha yüksektir, bu nedenle de diğer organik bazların trifosfatları oluşturulamaz. Bu pHa bağlı denge durumu sayesinde ATP, ATPaz izoenzimlerinin etkisiyle ve büyük oranda ADP ve fosfata hidroliz olabilir. PH 7 civarında ADP moleküllerinin yaklaşık yarısı -2, diğer yarısı ise -3 değerlikli iken ATP molekülleri de yarı yarıya -3 ve -4 değerliklidir. Mg+2 veya Ca+2 ve diğer katyonlar aynı moleküldeki fosfat köklerinin (-- O -1) yüklü oksijenleri arasında elektrostatik olarak tutularak kelatlaşmayla moleküllerin form sayılarının artışına neden olur. Bu çeşitlilik değişik özelliklerdeki izoenzimlerin aktiviteleri ile ATP enerji deposunun kontrollu şekilde farklı metabolik olaylarda kullanılabilmesini sağlar. Yani önemli bir konu da açığa çıkan ADP molekülünün serbest halde kalabilmesi ve başka bir tepkimeye girmemesidir. NADP.H2 dışındaki difosfatlar ise başka tür tepkimelere de girebilir. Hidrolizlerinin kinetik denge sabiteleri düşük olduğundan hidrolizleriyle çıkan enerji de düşüktür. Bu nedenle de enerji depolanmasında tekrar kullanılamazlar. ATP ve NADH2 nin enerji metabolizması açısından önemli bir özellikleri de membranlardan kolay geçebilmeleri ile enerji dağılımını sağlayabilmeleridir. Fotosentezde kloroplastlardaki devresel olmayan elektron iletimi sırasında oluşan NADP.H2 NADPnin redükte formudur ve bu iki form bir redoks çifti olarak eşit miktarlarda birarada bulunur. NADP molekülünün yanlızca NAD kısmı 2 e- alarak NADPH2 oluşturur. Bu elektron alışverişi zinciri elektron akımını sağlar ve bu şekilde ışık enerjisi elektron iletimi yoluyla enerji kazancına, depolanmasına yol açar. Bu konu fotosentez incelenirken görülecektir. Fosfatazlar fosfat grubu olan organiklerden fosfat gruplarını ayıran enzimler olarak metabolizmada önemli bir yer tutarlar. Optimum pH değerlerine göre asit ve alkalin fosfatazlar olarak ikiye ayrılırlar. Bu mekanizmalar hücrenin endojen tepkimeleri başlatma ve yürütmesi için gereken yeni kimyasal bağ oluşumuna dayanan sentez ve dönüşüm tepkimelerine enerji sağlar. Gerek duyulduğunda enerji denetim altında yüksek enerjili fosfor bağının ATP sentetaz ile sentez ve ATPaz ile hidrolizi ile biyolojik iş için enerji sağlanır. Fosfor fotosentezle güneş enerjisinin önce şekerler ve sonra polisakkaritler halinde karbohidratlarda kimyasal bağ enerjisi halinde bağlanarak depolanması, gerektiğinde sindirimleri ve solunumla açığa çıkarılan bu enerjiyle tüm metabolizmanın yürümesini sağlar. Tüm bu nedenlerle fosfata sürekli gereksinim duyulduğundan toprak çözeltisinde çok az miktarda bulunan faydalı fosforun sürekliliği gerekir. Toprak çözeltisindeki fosfatın mineralojik ve organik fosfatla denge halinde olması da bunu sağlar. Dengeyi sağlayan ana etmen bakteriyolojik etkinliktir. Fakat toprak tiplerine göre toplam fosfat miktarı geniş açılım gösterir. Bekleneceği üzere bitkilerde fosfor özellikle aktif büyüme ve gelişme gösteren doku ve organlarda yoğunlaşır. Kökler sürekli büyüyüp, gelişen organlar olduğundan organik fosfat bileşiklerine bağımlıdırlar. Yani köklerle yerüstündeki fotosentetik dokular arasındaki karşılıklı bağımlılık bitkilerin yaşam devirlerinde çok önemli yer tutar. Bu nedenle de yeni gelişen tek yıllık veya ilkbaharda yeniden büyüyüp gelişmeye başlayan çok yıllık bitkiler Organik posfat bileşikleri tohum ve tomurcuk gibi büyüme potansiyeli yüksek olan organların dokularında da depolanır. İndirgenmiş formu hiç görülmez ve %75 -80 oranında çözünür bileşikleri halindedir. Özsuda Doku ve organlarda fikse edilen kısmı düşük olduğundan gereksinime göre floemden ve parankimadan iletilir. Bu nedenle de fosfat beslenmesi eksikliğinde önce yaşlı organlarda eksiklik arazları görülür. Bu organlardaki fosfatlı bileşiklerin sindirimi ve fosfatazlar etkisiyle parçalanmaları sonucunda serbest hale geçerek iletilirler. Fosfor eksikliğinde azot metabolizması yavaşlar, inorganik azot asimilasyonu azalınca nitrat birikimi olur ve bu da yaşlı organların koyu yeşil bir renk almasına neden olur. Bitkiler bodur kalır, kök gelişimi zayıf olur. Domates bitkisi iyi bir fosfor eksikliği indikatörüdür ve özellikle yapraklarının alt tarafında asimile olmayan şekerler ve nitrat birikimi nedeniyle mor lekeler görülür. Genelde bitkide P, N ve K dan daha azdır ve yaşlı organlardan tohumlara doğru artan % 0.0X -% 1.X oranları arasında bulunur ve yarısından fazlası çözünür formdaki organik bileşikleri halindedir. Yani ortalama olarak azot gereksiniminin beş - onda biri kadar fosfor alırlar. Kükürt özellikle yapısal proteinler ile protein yapısına girmeyen amino asit ve bazı peptidlerin yapısına girer. Yapısal protein zincirleri arasında kuvvetli S - S, S - H bağları oluşturarak zincirler arasına su moleküllerinin girmesini önler, termik stabilitelerini arttırarak çok sağlam yapılar oluşturmalarını sağlar. Proteinlerdeki oranı proteinin işlevine göre tipik olarak 3.10-5 - %7 arasında değişir, bazı türlerde sülfat halindeki S/ toplam S oranı > %50 olabilir. Toplam S açısından da familyalar arasında önemli farklar görülür, Graminae < Leguminosae < Cruciferae fam.larındaki açılım %0.1 - 1.5 / k. ağ. gibi yüksek bir orandadır ve bu fark tüm bitki düzeyindedir. Mikroorganizmalardan yüksek bitkilere kadar dağılım gösteren diğer sülfürlü bileşiklerin kimyasal çeşitliliği çok yüksek düzeydedir e bu nedenle kemotaksonomik karakterler arasında önemli bir yer tutar. Metabolizmalarının tam olarak incelenmiş olduğu söylenemez. Sistein, metionin ve çeşitli vitaminler ile koenzimler gibi bazı sülfürlü bileşiklerin hücre yaşamında, büyüme, gelişme ve çoğalmasındaki önemi bilinmektedir.. Bu yaşamsal organik sülfür bileşiklerinin çoğu en redükte formları halindedir, sülfit bağı ile bağlıdırlar. Örneğin sistein, metionin amino asitleri, glutation peptidi, ergotiyonein tiolü, koenzimlerden tiamin pirofosfat, Co-A ve biyotinde durum böyledir. Sülfidril kofaktörü halinde bir çok enzimin aktivitesinde de önemli rol oynar. Sülfat ksilemde iyonik bileşiği halinde iletildikten sonra ATP de sübstrat olarak kullanılarak sülfürilaz ve kinaz enzimlerince katalizlenen tepkimelerle fosfat grupları ile yer değiştirerek adenozin difosfosülfat halinde metabolizmaya girer. Mobilitesi yüksekse de metabolik etkinliği, kolay dönüşebilir oluşu nedeniyle iletimine pek gerek duyulmaz. Normal olarak alınan sülfatın büyük kısmı protein sentezinin yüksek olduğu genç dokulara gider ve büyüme potansiyeli olan organlarda depolanır. Eksikliği halinde protein sentezinin azalması nedeniyle çözünür azotlu maddelerin biriktiği görülür. Elektron iletiminde çok önemli rolü olan negativ red-oks potansiyeline sahip demirli proteinlerin bir kısmındaki Fe/ S prostetik grup merkezleri özel işleve sahiptir: fotosentez, azot fiksasyonu, sülfit ve nitrit red-oks tepkimeleri ve DNA tamir edici endonükleaz aktivitesi. Tipik olarak Fe iyonları R-S halindeki sistein sülfürü ile koordinasyon yapar. Elektron iletim sistemi oluşturan ferredoksinler gibi bazıları bağımsız iken flavoproteinler, S bakterilerinin sülfüraz, kinaz gibi bazıları Ni, V e Mo gibi diğer prostetik elementlerle beraber etkinlik gösterebilir. Ferredoksinler, mitokondrilerin sitokromlu membran proteinlerinde ve ileride görülecek olan fotosistem II fotosentez sisteminde iki sisteinat yan zincirinde 2 Fe - 2 S merkezi içerir ve bu iki merkez -S - S- bağı ile dianyon oluşturur ve Fe+2 Ö Fe+3 dönüşümleri elektron iletimini sağlar. Kötü ve / veya keskin kokular salgılayan bitkilerin kokulu uçucu bileşikleri genellikle küçük moleküllü olan tiyoller ile sülfitlerdir ve öncü bazı maddelerin enzimatik veya kimyasal parçalanma ürünleridir. Merkaptanların tipik kokuları birçok Crucifereae türlerinde karakteristik olup bazı tiyoglikozitler veya amino asitlerin dönüşümü ile ortaya çıkarlar. Çeşitli alifatik ve aromatik sülfitler mikroorganizmalarda yaygın olarak bulunur ve bunlardan en iyi bilinenleri penisilin, gliotoksin, basitrasin gibi antibiyotiklerdir. Bu maddeler algler ve funguslarla yüksek bitkilerde de bulunur. Proteinik olmayan amino asitlerin hemen hepsi sisteinden S-sübstitüsyonu ile oluşur ve sistein ile benzeri öncülerden sentezlenirler. Yüksek bitkiler kükürtlü amino asitlerden ancak sisteini öncü madde olarak kullanabilir ve bu nedenle de sisteinin bu metabolizmanın merkez maddesi olduğu söylenebilir. İzotiyosiyanat oluşturan tiyoglikozitler kolayca enzimatik hidrolize uğrayabilirler ve yeni bir moleküler düzen kazanarak hardal yağlarını, glükoz ve sülfatı oluştururlar. Kemotaksonomik karakter olarak da önemli veriler sağlarlar. İzotiyosiyanatların çoğu keskin tadları ile kendilerini belli ederler ve baharat olarak kullanılırlar. Glükozitler glükozun R- yan zincirinde farklılık gösteren ve izotiyosiyanat oluşturan elliden fazla üyesi olan bir madde grubudur. Düz veya dallanmış alkil yan zincirleri ile çeşitli şekillerde hidroksillenmiş veya düz zincirli türevleri vardır. Bu türevlerin büyük bir kısmı a-amino asit ve a-keto-asit metabolizmalarında rol alır. Potasyum 138 pikometre iyon çapına karşılık tek yükü ve 239300 pm2 yüzey alanı nedeniyle şişirici etkisi, 6-8 koordinasyon sayısı ile 60 kadar enzimin kofaktörü oluşu, özellikle Na+/ K+ - ATPaz membrana bağlı iyon pompası enzimi üzerindeki ve membran porlarını şişirici etkisi ile hücre düzeyindeki iletim düzenleyici rolü sayesinde metabolizmayı genel olarak etkiler. Hücre özsuyunda bol olarak bulunması ve kolay taşınması nedeniyle osmotik basıncı düzenlediğinden de organik madde metabolizması e iletiminde rol oynar. Tüm bu temel özellikleriyle bitkilerde tipik olarak %0.2 - 11 / k. ağ. oranında bulunan K miktarının eksilmesi ile fotosentez hızı ve ürünlerinin yapraklardan iletiminin azalması, organik asitler ve yağ asitleri sentezinin yetersiz kalması, serbest amino asit birikmesi ve protein sentezinin azalması, yumrular gibi karbohidrat deposu organlarda gelişememe, nitrat indirgenmesi ve azot metabolizmasının yavaşlaması ve protein sentezinin düşmesi ve protein azalması, hücre çeperi polisakkaritlerinin sentezinin azalması, kök sistemi gelişiminin aksaması, dona dayanıklılığın düşmesi, büyüme ve gelişme, olgunlaşma gecikmesi ile gelişmenin anormallik göstermesi gibi çok yönlü etkiler görülür. Potasyum eksikliği önce yaşlı daha sonra genç yaprakların sararma ve kuruması, ışık enerjisi azalması halinde fotosentez hızının normalden çok daha fazla düşmesi görülür. ATP metabolizmasının aksaması nedeniyle klorofil azalmasından daha hızlı şekilde fotosentez hızı düşer. NO3 indirgenmesinin azalması sonucu amino asit sentezi azalması ve daha da hızlı olarak protein sentezi hızının düşmesi ile büyüme durur. 14C izotoplu CO2 içeren atmosferden kökler dahil bitkide metabolize edilen izotop oranı düşer, karbohidrat sentez ve iletimi düşüşü N aimilasyonunun azalmasına neden olur. Bunun sonucunda çözünür karbohidratların sağladığı osmotik basınç düşer, hücre çeperleri zayıflar. Sonuç olarak K, N ve P kadar önemli bir besin elementidir. Kalsiyum +2 yüküne karşılık 138 pm çapı, 130700 pm2 alanı ile iyon kanallarını büzücü etkisi olan, 6 - 8 koordinasyon sayısı ile örneğin orta lamellerde pektatlar, vaküollerde oksalat kristalleri gibi sağlam bağlı tuzlar oluşturan elementtir. Bu özelliği ile organik asitlerin ph üzerindeki etkilerini dengelediği gibi toksik etkilerini de önler. Meristematik dokularda sürekli bölünen hücreler arasında oluşan orta lameller nedeniyle boldur. Ayrıca nitrat indirgenmesi ve, karbohidrat ve protein iletimi üzerindeki olumlu etkileri, amino asit ve ATP metabolizmasında önemli rolü olan adenil kinaz, arjinin kinaz gibi enzimler için gerekli oluşu gibi etkileri ile temel elementlerdendir. Hayvanlarda olduğu gibi büyük oranda immobilize edilen ve ancak yaşlanma, olgunlaşma, senesans - ihtiyarlama ile katabolik metabolizma hızlandığında serbest hale geçebilen Ca++ eksikliği halinde ilk etkileri yaşlıorganlarda görülür.

http://www.biyologlar.com/su-ve-mineral-madde-metabolizmasi

Tohumlu Bitkiler Soruları

S.1)İlkel vasküler bitkileri tanımlatınız. C.1)Algler,mantarlar,ciğerotları ve karayosunlarında gerçek iletim demeti yoktur.Gerçek iletim demetlerine sahip bitkiler ilkel vasküler bitkiler olarak tanımlanır.Bu bitkilerin sporofitleri topraktan alınan su ve mineral maddeleri ,sentezlenen besinleri taşıyan bir iletim sistemine sahiptir. S.2)Vasküler bitkiler kaç divisiodan meydana gelir? C.2)Vasküler bitkiler 7 divisioda incelenir.Bunlardan Rhyniophyta,Psilophyta,Lycophyta,Sphenophyta ve Pteridophyta ilkel vasküler bitkiler;Conipherophyta ve Magnoliophyta ileri vasküler bitkiler olarak tanımlanır. S.3)Vasküler bitkilerin Genel özellikleri nedir? C.3) Habitat:Karasal,bir kısmı epifittir. Pigmentler:Klorofil a ve b,Karotenoidler(en fazla karoten),Ksantofiller(en fazla lutein). Yedek Besin:Nişasta,az miktarda yağ ve inülin gibi hidrokarbonlar,protein. Hücre çeperi:Selüloz,hemiselüloz,lignin. Üreme:Heteromorfik yaşam döngüsü,sporofit baskın evre,seks organları steril kılıfla örtülü, döllenme oogamiktir. S.4)Rhyniophyta divisiosunu açıklayınız. C.4)Siluriyende yaşamış olan köksüz,yapraksız.çıplak gövdeli ve çatalsı dallı bitkilerdir.Sporangiyumlar verimli dalların ucunda bulunur.Türlere göre sporangiyumların şekli yumurtamsı ya da elipsoiddir. S.5)Cooksonia cinsinin sistematiğini yaparak açıklayınız. C.5)Divisio:Rhyniophyta Class:Rhyniopsida Ordo:Rhyniales Fam:Rhyniaceae Genus:Cooksonia Bilinen en eski ve en basit vasküler bitkilerdir.Kök ve yaprakları yok,çatalsı dallı,zayıf 10 cm kadar boyunda bir gövdeden ibarettir.Dallarından bir kısmı steril ve muhtemelen fotosentez görevini üstlenmiştir. Fertil dalların ucunda sporangiyumlar bulunur.Küresel şekilde olan sporangiyumlar da meydana gelen sporlar günümüzde yaşayan bitkilerin sporlarına benzemektedir. S.6)Psilophytales ordosunun Rhyniales ordosundan hangi özellikleriyle ayrılmaktadır? C.6)  Ana gövde de dikotom dalların yanında spiral dallanmada vardır.  Uçta bulunan küçük dallar trikotom (üçlü çatal) dallıdır.  Verimli dallar çok çatallıdır ve uçlarında sporangiyumlar vardır.  Ksilem elemanları daha kuvvetlidir. S.7)Equisetum(At Kuyrukları) cinsine ait vasküler bitkileri açıklatınız. C.7)Karboniferden günümüze kadar yaşabilmiş tek cinstir.Avustralya hariç diğer kıtaların hepsinde yayılış gösteren 23 türü vardır.yurdumuzda ise 7 türü bulunmaktadır. Equisetum türlerinin hemen hepsinin sporofitleri nemli ve gölgelik alanları seven çok yıllık otsu bitkilerdir.Yalnız güney Amerika’da yetişen Equisetum giganteum’un boyu 10 metreye ulaşır.Bu karboniferde yaşayan çok yaygı bir türdü.Sporofitin toprak altında bulunan rizomlarından kökler ve toprak üstü gövdeleri çıkar.Türlerin çoğunda fertil ve steril gövdeler şekil ve renk bakımından farklıdır. S.8)Pteridophyta(Eğreltiler) divisiosunun En belirgin özelliği nedir? C.8)Eğreltilerin en belirgin kısımları yapraklarıdır.Bazı eğreltilerde vejetatif ve üretken yapraklar farklıdır. Bazılarında ise aynı yaprak hem üreme hem de vejetatif görevleri yapar.Bir kısım türlerde bir yaprağın uç kısmı spor oluştururken alt kısmı fotosentez yapar.Çiçekli bitkilerin yapraklarından farklı olarak üreme görevi de yaptıkları için eğrelti yapraklarına FROND denir. S.9)Eğreltilerin sporangiyumları hakkında bilgi veriniz. C.9)Eğreltilerin sporofitleri belli bir olgunluğa ulaştığı zaman yaprakların alt yüzeyinde sporangiyumlar oluşur.Sporangiyumlar genelde kahverengidir ve gruplar halinde çıkarlar.Bu sporangiyum topluluklarına SORUS denir.Soruslar genç evrede indizyum adı verilen zarsı bir kılıf ile örtülüdür.Sporangiyumbir sap ve bir baş kısmından oluşur.Baş kısmı,dışta örtü hücreleri içte ise spor ana hücrelerinden oluşur.Spor ana hücreleri mayoz bölünme ile sporları verir.Örtü tabakası farklı hücrelerden oluşur.Bir tarafta iç ve dış çeperleri kalınlaşmış.Dış çeper ince hücrelerden oluştuğu için özel bir hücre grubu vardır.tek sıralı hücrelerden oluşan bu özel tabakaya ANNULUS adı verilir.Annulus hücrelerinin karşı kutbunda ise ince çeperli hücre grubu vardır.Bu hücre grubuna da STOMIYUM denir. S.10)Cyataceae (Ağaç Eğreltiler) hakkında bilgi veriniz. C.10)Tropik ve subtropiklerde yaşayan ağaç formunda eğreltilerdir.Boyları 20 m’ye ulaşır.Gövdelerin ucunda,boylaarı 4-5 m’ye kadar olabilen frondlar vardır.Verimli ve verimsiz yapraklar ayrılmamıştır. Sporangiyumlar Frondların alt yüzeyinde soruslar şeklinde toplanmıştır.Juradan(180 milyon yıl)günümüze dek gelebilmiştir. S.11)Platycerium cinsini diğer cinlerden ayırt eden özellik nedir? C.11) Bunlarda iki tip yaprak vardır.Yuvarlar olan dip yaprakları ile ağaca tutunur.Çok parçalı ve dipten uca doğru genişleyen ikinci tip yaprakların uç kısımlarında soruslar bulunur. S.12)Açık tohumluların eğreltilerle kapalı tohumlular arasında geçit oluşturan özellikleri nedir? C.12)  İlkel gimnospermlerin yaprakları eğreltilere ,İleri gimnospermlerin ağsı damarlı yaprakları ise angiospermlere benzer.  Eğreltilerle ilkel gimnospermlerde yalnız trakeid vardır.İleri gimnospermler ve angiospermlerde hem trake hem de trakeid vardır.  Polenlerin gelişimi,eğreltilerden angiospermlere kadar bir süreklilik gösterir.  Eğrelti arkegonyumlarının,gimnosperm arkegonyumlarının atası olduğu kesin olarak ispatlanmıştır.  İlkel gimnospermlerde ovüller tamamen açıkta iken,gelişmiş gruplarda kapalı tohumlulara benzer çiçekler vardır.  Döllenme eğreltilerde 1,kapalı tohumlularda 2 spermle olmaktadır.Açık tohumluların ilkel gruplarında 1,ileri gruplarında 2 spermle döllene olur.  Eğreltilerde döllenme kamçılı spermatozoidlerle olmaktadır.Aynı özellik ilkel gimnospermlerde de vardır.Gelişmiş gimnospermlerde ise döllenmede,angiospermlere benzer polen ve polen tüpü oluşumu vardır.  Fosil kayıtlarına göre gimnospermler,eğreltilerden yeni,angiospermlerden eskidir.Eğreltiler Silürien(430 öilyon yıl),gimnospermler Devoniyen(345 milyon yıl),Angiospermler ise Triyas ve Jura (200 milyon yıl) yaşındadır.Angiospermlerden daha eski olan gimnospermler,henüz evrimini tamamlamamıştır. Günümüzde bile eğreltilerden uzaklaşan bir evrim geçirmektedirler. S.13)Tohumun Evrimi hakkında bilgi veriniz C.13)Tohumu evrimi tamamen heterospori ile ilgilidir.İlkel vasküler homosporiktir.Sporlar çimlenerek gametofiti verir.Cooksonia gibi ilk vasküler bitkilerin gametofitleri bilinmemektedir.Günümüzde yaşayan Lycopodiuam,Psilotum gibi bitkilerde de homosporik olup gametofitler çok iyi bilinmektedir. Heterospori ilk kez 360 milyon yıl önce ortaya çıkmış ve bunu takip eden ilk 10 milyon yıl içinde gerçek tohum evrimleşmiştir.Heterosporik bitkilerde mikrosporangium mikrosporlar,megasporangiyum içerisinde megaspor oluşur.Mikrospor erkek gametofiti,megaspor da dişi gametofiti verdiği için ,heterospori eşey farklılaşmasından sorumludur. S.14) Cycadales takımının (Div:Coniferophyta) erkek gametofit teşekkülünü anlatınız. C.14)Erkek sporofitlerde oluşan mikrosporofiller(mikrofil=mikrosporangiyumları taşıyan yapılar)sıkı dizilmiş kozalak şeklindedir.Kozalakların büyüklüğü cinsine göre 2-45cm arasında değişir.her mikrosporofilin abaksiyal(alt) yüzeyinde çok sayıda mikrosporangiyumlar oluşur.Sporangiyumlar,Eğreltilerden Angiopteris’in sporangiyumuna benzer.3-4 sporangiyum bir araya gelerek soruslar şeklinde gruplar oluşturmuştur.Diploit mikrospor ana hücresinin mayoz bölünmesi ile haploid mikrosporlar oluşur.Her mikro spor,sporangiyum içerisinde 3 hücreli erkek gametofite dönüşür.polenler gibi serbest kalan erkek gametofitler ,rüzgar ve böceklerle ovülün mikropiline taşınır. S.15)Zosterophyllum cinsinin özellikleri nedir? C.15)Bu cinse ait tirlerin sucul bitkiler olduğu tahmin edilmektedir.Yatay dallar rizomları oluşturur.Dikey dallar ise su üzerinde yükselir.Kısa verimli dalların ucunda bulunan sporangiyumlar,günümüzde yaşayan kibrit otlarının sporangiyumlarına çok benzer. S.16)Lycopodium’ların önemini açıklayınız. C.16)Bunları ekonomik ve tıbbi önemi vardır.Toprak üstü kısımları mayıs-haziran aylarında toplanıp kurutulur.Alkoloidler,yağ,reçine ve zamk içerirler.Mesane iltihabında,diüretik,emanagog,laksatif,karminatif ve haricen antiromatizmal olarak kullanılır. S.17)Lepidodendrales (pullu Ağaçlar) takımının önemini açıklatınız. C.17)Lycophyta divisiosunun en önemli takımıdır.Ordoya dahil edilen bitkilerin tümü fosollerden bilinmektedir.Bu bitkiler Devoniyen’den Triyas’a kadaar yaşamıştır.Büyük kömür çağında gelişimlerinin en üst düzeyine ulaşmış ve daha sonra soyları tükenmiştir.Bugün bilinen kömür yataklarının çoğu bu ordoya dahil bitkilerden oluşmuştur. S.18)Açık tohumluların genel özellikleri nelerdir? C.18)Odunlu bitkiler,herdem yeşil ağaç ve çalılar,ileri gruplarda sarılıcı formlara rastlanır,bazıları yaprak döker.Yaprakları iğnemsi ya da pulsu,ilkel gruplarda yapraklar eğrelti yapraklarına benzer,ileri gruplarda angiospermlere benzer,yapraklar genelde bir mevsimden fazla yaşadıkları için bitki her zaman yapraklıdır.Polen ve tohum oluşturan yapılara kozalak adı verilir.Kozalaklar daima tek eşeyli,türleer monoik ya da dioiktir.kozalakların yapısı basittir.Bir sınıfı hariç çiçek örtüsü yoktur.Karpeller yapraksıdır ve üzerinde çıplak 2 tohum taslağı bulunur.Karpeller pistil oluşturmadığından stigma,stilus ve ovaryum yoktur.Polen doğrudan ovulün tepesindeki polen odasına gelir ve orada çimlenir.Anemofildirler,ileri gruplar hariç polenlerde uçmayı kolaylaştıran hava keseleri vardır.Bitkilerde genellikle reçine kanalı bulunur.Ksilemde yalnız trakeid vardır.Kotiledon sayısı,ilkelden gelişmişe doğru 18-2 arasında gelişir.Tozlaşmadan sonra tohumlar en erken 1 yılda olgunlaşır. S.19)Yurdumuzda bulunan Pinaceae familyasındaki cinsleri nasıl ayırt ederiz? C.19) 1.Bitkilerde kısa ve uzun sürgün var,yapraklar kısa sürgünlerde iki ya da çok. 2.Kısa sürgünler iki yapraklı,yaprakların tabanı bir kın tarafından sarılmıştır...Pinus(Çam) 2.Kısa sürgünler 30-40 yapraklı,yaprak tabanında kılıf yok...Cedrus(Sedir) 1.Bitkilerde yalnız uzun sürgün var,yapraklar uzun sürgünlerden tek tek çıkar. 3.Yapraklar yassı,altta iki stoma çizgisi var,döküldüğünde çukur izler kalır,kozalak dik,olgunlukta pullar tek tek dökülür...Abies(Köknar) 3.Yapraklar 4 yüzeyli,her yüzeyde bir stoma çizgisi var.döküldüğünde çıkıntı kalır,kozalaklar sarkık,olduğu gibi düşer...Picea( Ladin) S.20)Türkiye’deki Pinus’ların latince isimlerini yazarak hangi bölgelerde görüldüğünü yazınız. C.20)P.sylvestris:Avrasya’da çok geniş yayılışı olmalarıyla beraber,yurdumuzda Karadeniz ve kuzeydoğu Anadolu’da bulunmaktadır.Kesintili olarak Bursa,Eskişehir ve Kütahya yörelerine kadar yayılır. P.nigra:Ülkemizde çok geniş bir yayılışa sahiptir.Toros’larda 1000 metrenin altına inmez.Ege ve Marmara bölgelerinde 400 m’ye kadaar iner P.brutia:Genel yayılışı Akdeniz,Ege ve Marmara bölgelerinde 800 m’ye kadar ormanlar oluşturmuşlardır. P.halepensis:Türkiye’deki yayılışı lokaldir.Kadirli(Osmaniye) yöresinde kızıl çam ile karışık,Milas Bodrum arasında Kızılçam ile karışık ya da saf ormanlar oluşturur. P.pinea:yayılışı lokaldir.Maraş,Antalya,Aydın,Muğla,Bergama,Bursa.Trabzon,Artvin illerinde lokal olarak bulunur. S.21)Pinus’da Türkiye türlerinin ayrım anahtarı? C.21) 1.Tomurcukları reçineli,yapraklar sert.glaukus ya da koyu yeşil 2.Genç dallar kırmızımsı,yapraklar glaukus,kıvrık,kozalaklar sarkık....sylvestris 2.Genç dallar siyahımsı,yapraklar koyu yeşil.kıvrık değil,kozalaklar dik....nigra 1.Tomurcuklar reçinesiz,yapraklar yumuşak,kolay bükülür,açık yeşil. 3.Bitkinin taç kısmı şemsiye şeklinde,tohumlar kanatsız.....pinea 3.Bitkinin taç kısmı düzensiz.tohumlar kanatlı 4.Kozalaklar  sapsız,yatay durur........brutia 4Kozalaklar belirgin olarak saplı,sarkık durur......halepensis S.22)Çamların ekonomik önemi nedir? C.22)Diğer bitkilerle oluşturduğu bitki örtüsü ile doğal güzelliklerin kaynağı olan çamların odunu kağıt sanayi ve inşaat sektöründe kullanılmaktadır.P.pinea’nın tohumları yenir.P.brutia ile P.halepensis’in gövdelerinden reçine elde edilir.Reçine disitlasyonu ile Terebentin esansı ve Kolofon elde edilir.Bu maddeler boya ve ilaç sanayisinde kullanılır.Flaster yapımı.bağırsak parazitleri düşürücü,idrar yolları hastalıklarında diüretik olarak,bronşit ve solunum yolları hastalıklarının tedavisinde ekspektoran olarak kullanılır.Çam kabukları tanen içerir.Özellikle P.brutia’nın kabuklarından elde edilen tanen deri sanayisinde kullanılır.P.sylvestris tomurcukları di üretik ve balgam sökücü olarak kullanılır.P.succinifer eskiden yaşamış ve soyu tükenmiş bir türdür.Fosilleşmiş reçinesi kehribar olarak bilinir ve süs eşyası yapımında kullanılır. S.23)liliopsida ile magnoliopsida arasındaki farklar? S.24)Laboratuarda görülen çiçek familyalarının genel özellikleri?

http://www.biyologlar.com/tohumlu-bitkiler-sorulari

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarı,seçici geçirgen bir yapıya sahiptir.Molekülün büyüklüğüne,yağda veya suda çözünmesine,polaritesine, ortamdaki yoğunluğuna veya türüne göre zar üzerinden madde taşınmasını dört farklı şekilde gerçekleştirir. Hücre zarından madde geçişi • Pasif Taşıma • Difüzyon • Kolaylaştırılmış Difüzyon • Osmoz • Plazmoliz • Deplazmoliz • Diyaliz • Aktif taşıma • Endositoz • Fagositoz • Pinositoz • Ekzositoz Pasif taşıma Maddelerin enerji harcanmadan,yoğunluk farkından dolayı hücre zarındaki porlardan veya fosfolipid tabakadan doğrudan geçmesidir.Hücrelerde pasif taşıma üç şekilde görülür. Difüzyon Difüzyon,bir maddenin konsantrasyonunun yüksek olduğu yerden düşük olduğu yere doğru hareketine denir.Örnek olarak bir kokunun bütün odaya yayılması veya bir damla mürekkebin bir bardak suya atılınca bütün bardağı boyaması gibi.Aynı kural hücre için de geçerlidir.Örneğin sitoplazmada glikoz sürekli olarak tüketilmekte ve artık maddelerin yoğunluğu artmaktadır.Dış ortamda glikoz arttığında,iç ve dış ortam arasındaki yoğunluk farkı glikozun enerji harcamaksızın çok olduğu yerden az olduğu yere doğru hareketine sebep olur.Bu hareket her iki taraftaki glikoz yoğunluğu dengeleninceye kadar devam eder.Bir tarafta artı veya eksi yöndekibir değişiklik difüzyonu yeniden başlatır. Por içinden difüzyonla taşınacak maddenin porlardan geçecek kadar küçük olması ve suda çözünebilir olması gerekir.Büyük moleküller pordan geçemezler.Örneğin glikoz difüzyonla taşınırken,nişasta taşınamaz.Por sayısının fazla olması difüzyon hızını artırır.Yağda çözülen maddelerin difüzyonla taşınması için büyüklük sınırı veya por kullanma gereği yoktur.Hücre zarı lipid (yağ) yapısında olduğundan,bu maddeler zarın herhangi bir yerinden geçebilirler. Kolaylaştırılmış Difüzyon Su ve yağda erimeyen maddelerin (klor iyonları) ve glikoz,galaktoz,fruktoz gibi şekerlerin zardan geçişi,kolaylaştırılmış difüzyon denilen bir yolla olur. Taşınacak madde zarda bulunan taşıyıcı proteinle birleşir.Madde,birleştiği taşıyıcı proteinle “substrat-enzim” gibi yüzey uygunluğu gösterir (taşıyıcı protein taşınacak maddelerin yapısına göre şeklini değiştirir).Madde geçişi gerçekleştikten sonra taşıyıcı protein tekrar önceki orijinal şeklini alır.Geçişme yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama doğru olur.Por sayısındaki artış kolaylaştırılmış difüzyonu hızlandırır. Kolaylaşırılmış difüzyon,taşıyıcı sistemden ötürü aktif taşımaya benzerse de ikisi arasındaki en büyük fark;difüzyonda enerji kullanılmaması ve yüksek konsantrasyondan düşük konsantrasyona doğru olmasıdır. Osmoz Osmozu tanımlamadan önce yoğunluk kavramını iyi bilmek gerekir. Bir maddenin yoğunluğu, birim hacimde bulunan çözücü içindeki madde miktarıdır. Çözünenin çok olması durumunda ortam çok yoğun, az olması durumunda ise az yoğun olur. Ortamın yoğunluğu çözücünün miktarı ile ters orantılıdır. Yani çok yoğun ortamdaki çözücünün oranı,az yoğun ortamdaki çözücü oranından daha düşüktür. Örneğin, yarı geçirgen bir zarla ayrılmış iki ortamdaki nişasta çözeltilerini ele alalım. A kolunda, nişasta çok yoğun ise, birim hacimdeki su miktarı daha azdır. B kolunda, birim hacimdeki nişasta daha az, su ise daha fazladır. Doğal olarak bu konsantrasyon farkının dengelenmesi gerekir. Nişasta porlardan geçemeyecek kadar büyük olduğundan, su molekülleri nişastanın çok, suyun az olduğu ortama doğru geçer. A kolundaki toplam hacim koluna göre daha fazladır. Buna göre suyun, yarı geçirgen bir zar üzerinde çok olduğu ortamdan, az olduğu ortama doğru geçişine osmoz denir. Bu olayı canlılarda görmek de mümkündür.canlılarda,kapalı ortam,hücre zarıyla sınırlandırılmış olan sitoplazmadır.Sitoplazma içerisinde organik asitler, şekerler,organik ve inorganik tuzlar gibi maddeler bulunur(bu maddelerin potansiyel değerine osmotik değer denmektedir).Sitoplazma ve dış ortamın yoğunluğuna göre her iki ortam arasında su geçişi olur. Osmoz sonucu iki değişik olay gözlenir: • Plazmoliz:Hücre kendisinden yoğun (hipertonik) bir ortama konduğunda, yoğun ortama su vererek zarın her iki tarafındaki yoğunluğu dengelemek ister.Dolayısıyla su kaybederek büzülür.hücrenin daha yoğun bir ortama konulduğunda büzülmesine plazmoliz denir.bitki hücreleri hücre çeperleri bulunduğu için hayvan hücrelerine göre daha yavaş su kaybederler.deniz suyu içildiğinde dokular su kaybederek ölür.bunun nedeni deniz suyunun tuz oranının dokulardakine oranla çok daha fazla olmasıdır. • Deplazmoliz:Hücre kendisinden daha az yoğun (hipotonik) bir ortama konulursa ortamdan hücreye su girişi olur.dolayısıyla su alarak şişer.hücrenin ortamdan su alarak şişmesine deplazmoliz denir. Osmotik kuvvetler:plazmoliz ve deplazmoliz esnasında osmotik basınç ve turgor basıncı ortaya çıkar: • Osmotik Basınç:hücre içindeki maddelerin yoğunluğundan dolayı sıvıların hücreye girerken zara dıştan yaptıkları basınç şeklinde tanımlanır.Osmotik basıncı oluşturan maddeler çeşitli şekerler, organik asitler, organik ve inorganik tuzlardır.Dolayısıyla hücre içinde bu maddelerin yoğunluğuyla hücrenin osmotik basıncı doğru orantılıdır. Örneğin bitkinin köklerindeki emici tüylerde osmotik basınç yüksek olduğundan su topraktan kök hücrelerine geçer. Osmotik basınç atmosfer birimi ile ifade edilir.Osmotik basınç, plazmoliz halindeki hücrelerde yüksek deplazmoliz halindeki hücrelerde düşüktür.Hücrenin kendisi ile aynı yoğunlukta (izotonik) ortama konulduğunda osmotik basınç, iç basınçla denge halinde olur. • Turgor basıncı:Deplazmoliz esnasında sitoplazma sıvısının zara yaptığı basınçtır (iç basınç) . Hayvan hücreleri bu yüksek basınca dayanamaz, parçalanır. Mesela alyuvarlar kendilerinde daha az yoğun bir ortama konulursa, ortamdan alyuvar hücrelerine su girişi olur:daha sonra zarları parçalanır, hücre ölür (hemoliz). Bitki hücrelerinde selüloz çeper olduğundan turgor basıncından hayvan hücrelerine göre daha az etkilenirler.Ayrıca turgor basıncının bitkilere sağladığı bazı avantajlar da vardır.Bu avantajları; • Otsu bitkilerde destekliği, • Stomaların açılıp kapanması, • Küstüm otu gibi bitkilerde hareketi sağlaması şeklinde sıralayabiliriz. Emme Basıncı, Turgor Basıncı ve Osmotik Basınç Arasındaki İlişki Emme basıncı hücrenin osmotik basıncının oluşturduğu bir çekici kuvvettir.Diğer bir deyişle emme basıncı osmotik basıncın iç basınca üstün olduğu sürece hücreye su girişini sağlayan bir kuvvettir.Osmotik değer, osmotik basıncı meydana getiren eriyiğin çekim gücüne denir.Böyle bir değer her hücrenin kofulunda gizli olarak bulunur. Genel olarak emme basıncı (EB) bir hücre için, hücrenin osmotik değeri (OD) ile iç (turgor) basıncın (TB)arasıdaki farka eşittir. EB=OD-TB Diyaliz Diyaliz, çözünmüş maddelerin seçici geçirgen zardan difüzyonudur. Örneğin içi glikoz molekülleri ile dolu bir bağırsak saf su içerisine konursa glikoz molekülleri, zardan su içerisine iki tarafta da yoğunluk eşit oluncaya kadar geçer. * Bu prensip, suni böbrek aletinde (diyaliz kullanılır.Hastanın her seferinde 500ml kadar kanı bir diyaliz tüpünden geçirilir.Diyaliz tüpünün dışında, kanda bulunan ve difüzyon olabilen aynı yoğunlukta maddeleri taşıyan bir sıvı bulunur. Bu sıvı sadece uzaklaştırılacak maddeyi taşımamaktadır. Böylece kana gerekli olan maddeler dıştaki sıvıya geçmez.Uzaklaştırılması istenen madde (üre gibi) dış sıvıda bulunmadığı için,bu madde kandan dış sıvıya difüzyonla geçer ve kan bu maddeden temizlenmiş olur. Moleküllerin Pasif Olarak Taşınmasını Etkileyen Faktörler: Canlı hücrelerde hücre zarının her iki yönünde devamlı bir molekül hareketi gözlenir.Bu moleküller hücre zarından doğrudan veya porlar yardımıyla geçerler.Geçiş türü veya hızı aşağıdaki faktörlere göre değişmektedir. • Moleküllerin Büyüklüğü:Oksijen, su, iyot, karbondioksit gibi küçük moleküller hücre zarından rahatlıkla geçebilir.Mesela 6 karbonlu glikoz;oksijen, su ve karbondioksitten daha zor geçer. • Moleküllerin elektrik yükü:Hücre zarının iyonik yapısından dolayı, nötr moleküller iyonlardan daha kolay geçer. • Yağda çözünen maddeler:Hücre zarının yapısında yağ olduğu için yağda çözünen maddeler hücre zarından rahatlıkla geçebilir. • Yağı eriten maddeler:Yağı eriten maddeler de hücre zarından rahatlıkla geçebilir. • Zardaki por sayısı:hücre zarında por sayısı ne kadar fazla olursa madde girişi o kadar hızlı olur. • Konsantrasyon farkı:Yüksek konsantrasyonlu ortamdaki moleküllerin birbirine çarpma hızı, düşük konsantrasyonlu ortamlara göre daha hızlıdır.Bu ortamdaki potansiyel enerji, yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama madde geçişini hızlandırır. • Sıcaklık:Moleküller sıcak ortamda daha hızlı hareket ederler. Dolayısıyla yüksek sıcaklıkta difüzyon hızlıdır. • Hücre zarının deformasyonu:Hücre zarı alkol, eter, çeşitli zehirler ve kloroform gibi maddelere karşı aşırı duyarlıdır.Bu maddeler hücre zarına girerken veya çıkarken hücre zarını tahrip ederler. AKTİF TAŞIMA Bir maddenin konsantrasyonun düşük olduğu yerden yüksek olduğu yere doğru, enerji (ATP) harcanarak taşınmasına aktif taşıma denir.Bir başka ifade ile;aktif taşıma maddelerin yokuş yukarı hareketidir. Aktif taşıma, canlı zarlar üzerinde enzim ve taşıyıcı proteinlerle gerçekleştirilir. Aktif taşımada mutlaka enerji harcanır.Enerji yetersizliğinde aktif taşıma durur, pasif taşıma devam eder.Bu durumda bazı maddelerin hücre içi ve hücre dışı yoğunluk farkları ortadan kalkar ve bunun sonucu hücrede hayatsal faaliyetler durur,yani hücre ölür.Örneğin; büyüme ve protein sentezi için mutlaka gerekli olan potasyum hücre içinde hücre dışına göre 40 misli daha fazla bulunmak zorundadır.Eğer bu miktar azalacak olursa, hücre yeterli şekilde fonksiyonlarını gerçekleştiremez. Aktif taşımaya en güzel örnek,çeşitli hücrelerde görülen ”Sodyum-Potasyum Pompası”dır. Normal şartlarda sodyum hücre dışında,potasyum da hücre içinde yoğundur.Sodyum-potasyum pompası ile yoğunluk farkından dolayı hücre dışına çıkan potasyum hücre içine, hücre içine sızan sodyum da hücre dışına ATP enerjisi kullanılarak pompalanır. ENDOSİTOZ Pasif taşıma ve aktif taşıma ile taşınan moleküller doğrudan hücre zarından veya porlardan geçerken, büyük moleküllerden olan yağ,, nişasta, glikojen, protein vs geçemezler.Bu moleküller zarın değişikliğe uğraması ile enerji harcanarak hücre içine alınırlar.Bu olaya “endositoz” denir. Endositozla hücre içme alınan besinler, sitoplazmada besin kofulu şeklinde bulunurlar. Hücrelerde endositozla besin alınımı fagositoz ve pinositozla sağlanır. Fagositoz Endositozla katı yapıların hücre içine besin kofulu şeklinde alınmasıdır. Katı madde yalancı ayak yardımıyla oluşturulan cep içerisine alınır. Daha sonra içeri çekilen besin kofulu lizozomla birleşerek sindirilir. Akyuvarların mikropları yemesi, amiplerin beslenmesi buna örnektir. Pinositoz Sıvı maddelerin besin kofulu şeklinde hücreye alınmasına denir. Pinositoz olayında, sıvı maddelerin hücre zarına değmeleri sonucunda, sitoplazma içine doğru cep ya da kanal şeklinde yapılar oluşur.bu yapılardan pinositoz keseleri meydana gelir.Bu şekilde hücre içine alınan sıvı maddeler lizozomla birleşerek sindirilir. Fagositoz ve pinositoz genellikle hayvan hücrelerinde görülür. EKZOSİTOZ Daha önce de açıklandığı gibi hücrelere endositozla alınan maddeler lizozom enzimleri ile küçük moleküllere parçalanır (hücre içi sindirim). Kesecik içerisinde sindirim sonucu oluşan artık maddeler ve dışarı salgılanması gereken bazı metabolik ürünler hücreden dışarıya atılır.Bu olaya “ekzositoz” denir. Ekzositozda kesecik hücre zarına tutunur ve tutunan kısımları içeriğini dışarı boşaltır. Endositozda olduğu gibi ekzositozda da enerji harcanır. HÜCRE YÜZEYİNDE FARKLILAŞMALAR Hücrenin Serbest Yüzeyindeki Farklılaşmalar:Bu tür farklılaşmalara örnek olarak mikrovillus, oyuklar, silleri örnek verebiliriz. Mikrovillus Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır. Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki "Kaide Zarı" hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar. Oyuklar Oyuklar,mikrovilluslar arasında hücre zarının, hücre içine doğru torba şeklinde mağaramsı girintiler yapmasıyla oluşur.Bu oyuklar, hücre yüzeyini artırarak hücre içerisine büyük miktarda sıvı girişini sağlar (pinositoz); daha büyük oyuklara fagositik hücreler (makrofajlar) ve bazı salgı yapan hücrelerde rastlanabilir. Siller Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara "Kinetosilia", hareketsiz olanlara "Stereosilia" denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Sillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır. Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2'li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Sillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Siller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Sillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir. Hücreler Arası Bağlantılar (Juncturae Cellularum) İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır. Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir. Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler. Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4' + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır. Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar. Hücrelerin Taban Yüzeylerindeki Farklılaşmalar Bazı hücrelerin tabanında plazma zarı birçok katlanmalar meydana getirerek yüzey genişletirler.Bu oluşumlar, kan damarı olmayan çok katlı hücre tabakalarının beslenmesini sağlar. SİTOPLAZMA Sitoplazma; hücre zarı ile çekirdek zarı arasıda bulunan, hücre iskeleti, organeller ve sitozol adı verilen sıvıdan oluşan kısımdır.Sitoplazmadaki canlı yapıyı organeller, cansız yapıyı ise organik ve inorganik bileşikler oluşturur.Cansız yapı;katı sıvı arası yarı akışkan bir özellik gösterir. Sitoplazma,Ektoplazma ve endoplazmadan oluşur.Hücre zarının hemen altındaki yoğun kısma ektoplazma, ektoplazmayla çekirdek arasındaki daha az yoğun kısma endoplazma denir.Hücre organellerinin çoğu endoplazmada yer alır. HÜCRE İSKELETİ Bütün yüksek yapılı organizmalarda olduğu gibi hücrenin de bir iskeleti vardır.Bu iskelet hücrenin belirli bir şekle sahip olmasını ve hücre organellerinin gerekli olduğu bölümlerde bulunmasını sağlar.Aynı zamanda hücrenin değişik şekillerdeki hareketini, iğ iplikçiklerinin oluşturulmasını ve sitoplazma hareketini hücre iskeleti sağlar. Hücre sitoplazması , mikrotübül ve mikrofilamentlerden meydana gelmiş ağsı bir yapıyla doludur.Bu ağsı yapı hücrenin iskeletini meydana getirir. Aktin, miyozin ve tropomiyzinden meydana gelen mikrofilamentler, kasılıp gevşeyerek hücre hareketini sağlarlar. Hücre iskeletinin arası sitoplazma sıvısı (sitozol) ile doludur.Bu kısım özellikle glikoz enzimlerini taşır ve protein sentezinin basamakları bu kısımda gerçekleşir. Sitoplazma Hareketleri Sitoplazma durgun bir yapı göstermeyip canlı hücrelerde hareket halinde bulunur.Bu hareketleri iki şekilde ortaya çıkar: Rotasyon Hareketi:Rotasyon hareketi genellikle su bitkilerinde görülür.Örnek, elodea, nitella bitkilerindeki sitoplazma hareketleri.Bu harekette sitoplazma, hücre çeperine paralel olarak hareket eder.Sitoplazma ile birlikte çekirdek ve kloroplastlar da hareket edebilir. Sirkülasyon Hareketi:Genellikle kara bitkilerinde, özellikle tüy hücrelerinde kolaylıkla görülebilir.Sitoplazma hareketi çeşitli yönlerde olur. Hücre çeperine paralel olduğu gibi,düzensiz olarak çeşitli yönlere doğru da olabilir. Bu hareketler sitoplazmadaki yüzey gerilimi veya yoğunluğundaki değişiklikler sonucu ortaya çıkar sitoplazma hareketlerinde mikrotübül ve mikrofilamentlerin de rol oynadığı belirtilmiştir.sitoplazma hareketleri sonucu hücrenin belli bölgelerinde meydana gelen metabolik ürün ve artıklar hücrenin her tarafına dağılır.Böylece hücrenin belli bir bölgesinde oluşan artık maddelerden zarar görmesi engellenir. SİTOZOL (SİTOPLAZMA SIVISI) Sitozolun büyük kısmını (%90) su oluşturur.Bu oran bazı canlılarda %98’e kadar yükselebileceği gibi, sporlarda ve tohumlarda %5-15’e kadar düşebilir.Sitozolda organik ve inorganik (kuru madde) maddelerin oranı %10-40 arasında değişir.Kuru maddelerin %90’ını organik,%10’unu da inorganik maddeler oluşturur.Sitozolda en çok bulunan kuru madde protein molekülleridir.Bitki hücrelerinde ise karbonhidratlar daha çok bulunur.Ayrıca sitozolda; yağ, vitamin, hormon, organik ve inorganik asitler bulunur. Sitozolda bulunan önemli inorganik maddeler Na, Ca, K, P, Mg Fe’dir.Bu elementlerin hücredeki fonksiyonlarını şöyle özetleyebiliriz: • Bazı moleküllerin yapısına girerler.Örneğin Mg klorofilin, Fe hemoglobinin yapısına katılır. • Osmotik basıncın oluşmasını yani hücrede belli bir yoğunluk oluşturarak, suyun hücreye girmesini sağlar. • Düzenleyici olarak görev yaparlar. Sitoplazma yukarıda söylendiği gibi yarı akışkan,yoğun bir maddedir. Hücre sudan yoğun olup suyun içine atıldığında dibe çöker.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi

BÖCEKLERIN KÖKENLERI VE EVRIMSEL GELIŞMELERI

Böceklerin Soyağacı (Mandibulata, Tracheata, Myriapoda ile Olan İlişkisi): Paleozoyik’ten beri, yani yaklaşık 400 milyon yıldan beri mevcut olan böceklere ait ilk belirgin fosillere, Amerika’da Karbonifer’in Pennsylvanien katmanında (yaklaşık 300 milyon’yıl öncesine ait), Avrupa’da İskoçya’nın Orta Devon katmanlarında (vücut ve çene kalıntıları olarak) rastlanmıştır (Rhyniella ve Rhyniognatha). Büyük bir olasılıkla Prekambriyum’dan önce Mandibulata ile Tracheata monofiletik ikiz grup oluşturuyordu. Prekambriyum’da bu iki grup yani Crustacea (kabuklular) ile Tracheata (Myriapoda ve Insecta) birbirinden ayrılmıştır. Çünkü Alt Kabriyum’da karapakslı ve bileşik gözlü gerçek yengeçler görülmeye başlamaktadır. Arthropoda’nın homonom segmentli formlardan (Articulata) monofiletik dallanması yeterince açık kanıtlarla gösterilememiştir. Mandibulata’nın ana kökü büyük bir olasılıkla suda yaşıyordu ve bugünkü yengeçlerin taşıdığı gibi yarık üyelere sahipti. Yani, bacağın üçüncü segmentinin epipoditi (basipoditi), bacak şeklinde segmentli eksopodite dönüşmesine karşın, her iki kaide segmenti (1. ve 2. segmentler), yani prekoksopodit ve koksopodit yaprak şeklinde kalarak solunum işlevini yürütmekteydi, ilk üç bacak çifti besin alınımına ayrılmıştır. Bu ana kökte, büyük bir olasılıkla, spermalar bir spermatofor içinde toplanmaktaydı. Ana kök daha sonra ikiye ayrılmıştır; bir grubu sularda kalarak Crustacea’yı (kabukluları), ikinci grubu karaya çıkarak Tracheata’yı (trakeli hayvanları) meydana getirmiştir. Bu geçiş sırasında ikinci maksil, labium halinde kaynaşarak bir ağız önboşluğu meydana gelmiştir, ikinci eksopodit ve ikinci antenler yitirilmiş, buna karşın her bacağın iki kaide segmentinin epipoditi dışarıya doğru pörtleyen bir koksa keseciğine dönüşmüştür (bugünkü Symphyla ve Apterygota’da görüldüğü gibi). Bu kesecikler bugün artık solunum işlevlerini yürütmez, bunun yerine yerin yüzünde içilemeyecek kadar ince bir tabaka halinde olabilen su filminden su kazanılmasını sağlar. Gövde segmentlerinin sayısı, telsonsuz, 14 kadar olabilir. Sırt tarafındaki kaslarını yitirmiş olan pretarsusta, bu aşamada tırnakların oluşup oluşmadığı bilinmemektedir. Gövde segmentlerinin çoğunda, birer çift stigma ile birlikte trake sistemi oluşmuştur (tamamen yeni oluşum). Spermatoforun yardımı ile iç döllenme, yani spermaların dişi eşey deliğine akıtılması, yeni bir işlev olarak ortaya çıkmıştır. Spermaların dışarıya akmaması için, dişinin genital açıklığı çiftleşmeden hemen sonra kapanma özelliği kazanmıştır. Boşaltım organlarında değişiklik meydana gelerek nefridiyumlara geri dönüş olmuş, anten ve kabuk bezleri körelmiş, onların yerine bağırsak çıkıntılarından oluşan Malpiki tüpleri meydana gelmiştir. Tracheata için özgül olan yağ cisimciği hücreleri (özünde boşaltım atıklarını biriktiren depolayıcı böbreklere dönüşmüş) bir zamanların nefridiyumlarından başka birşey değildir. Her iki kardeş grup (Myripoda ve Insecta) ayrıldıklarında, başlangıçtaki temel yapılarını hâlâ büyük ölçüde göstermekteydiler (mandibul eklemleri, labialbez, bacak segmentleşme- si, abdominal üye kalıntıları, trake sistemi). Nitekim bir tarafta Symphyla (Myriapoda) diğer taraftan Diplura ve Thysanura (Apterygota) bu ortak özellikleri göstermektedir. bu ayrılmadan kısa bir süre sonra, hızla, saklanarak yaşamaya uyum yaptığı için, bileşik gözlerini yitirmeye başlamış ve keza saklanmaya uyum yapacak yassı vücut şeklini kazanmıştır. Daha sonraki aşamada, vücut segment sayısı artmış ve büyük bir olasılıkla bu artış Opisthogoneata ve Progoneata da konverjent olarak ortaya çıkmıştır. Buna karşın böcekler serbest yaşamaya uyum yapmış ve böylece Tracheata’daki birçok temel yapıyı yitirmiştir; örneğin bileşik gözlerini (böceklerdeki bileşik, yani faset gözden farklı yapı ve anlamda kullanılan). Diğer önemli sapmalar, gövdenin, üç göğüs, 11 abdomen (artı telson) segmentinden meydana gelmiş olması, göğüsteki kasların harekete, abdomendekilerin sindirime hizmet verecek şekilde yoğunlaşmasıdır. Göğüsteki paranotal loblardan kanat oluşmuştur. Abdomen bacakları körelmiştir. Bu körelme sırasında, bacaklar, büyük bir olasılıkla, ilk olarak, abdomen segmentlerini, yere sürtünmeden koruyacak stiyluslar haline dönüşmüş; daha sonra da 11. abdominal segmentteki çok segmentli serkuslar hariç tamamen körelmiştir. Sekizinci ve dokuzuncu abdominal segmentlerdeki eşey organlarının bunlardan türeyip türemedikleri çok kesin olarak bilinmemektedir. Bu durumda, büyük bir olasılıkla, ilkin böcekler, Chilopoda benzeri bir atadan türemiştir. Myriopoda ile birlikte Tracheata monofiletik bir grup altında toplanmıştır. Üç çift göğüs segmenti ve yine bu bölgede üç çift göğüs üyesi vardır; abdomen üyeleri muhtemelen yoktu ya da körelmişti. Bu evrede kanatlar oluşmamıştı. Birincil olarak kanadı olmayan bu gruplar (bugün dört takım altında toplanmış) Apterygota altsınıfını oluşturmuş­tur. En ilkel takımı Diplura’dır; Collembola ve Protura da bunlarla ortak atadan türemiş olabilir. Bu takımların tibia ve tarsusları kaynaşmış, stigmaları körelmiştir. Ortak özellikleri olmasına karşın, Collembola ve Protura farklı yönlerde gelişmişlerdir. Protura’da anten körelmiş, ön bacaklar bir çift anten şeklinde gelişmiştir. Collembola- ‘da ise abdomen segmentleri sayıca dumura uğramıştır ve 4. abdomen segmentine ait bacak zıplama organı şeklinde gelişmiştir. Bu üç takımda da ağız çukurunun yanları kaynaşarak gelişmiş ve ağız parçalarının etrafını çeviren bir boşluk meydana getirmiştir. Diğer iki Apterygota takımı, yani, Microcoryphia ve Thysanura daha basit olmalarına karşın, kanatlı böceklerin atasını oluşturmuş olabilirler. Microcoryphia, abdomen segmentlerinin tümünde stilus taşımasına karşın, Thysanura’da ilk 6 abdomen segmentin- de körelmiştir. Tentoriyumları gelişmiş olan Thysanura’ya yakın bir atadan (zaman zaman değişik şekillerde, genişlemiş notum uzantıları ile uçma denemesi yapan) kanatlı böcekler türemiştir. Yelpaze gibi katlanabilir alt ve sert üst kanatlara sahip bu böcekler, bugünkü hamamböceklerine benzeyen “Paleoptera” grubudur.

http://www.biyologlar.com/boceklerin-kokenleri-ve-evrimsel-gelismeleri

Sivrisinekler ve Beslenme Biyolojileri

Sivrisinekler ve Beslenme Biyolojileri

Sivrisinekler, bilhassa bizim gibi sıcak veya sıcağa yakın ılık bir iklime sahip ülkelerde çeşitli şekillerde kendini hissettiren bir mesele olagelmişlerdir. Biz bu yazıda sivrisinekler hakkında kısa ve umumî bir malumat verip daha çok beslenmeye dönük faaliyetleri üzerinde duracağız. Yaklaşık olarak üçbin tür sivrisinek bulunmaktadır. Isırmaları oldukça rahatsız edicidir. İnsanları kaçırtabilmekle beraber çoğu zararsızdır. Ancak 100 kadar sivrisinek türü insanlar için kesin olarak zararlı hususiyettedir. Sıtma, San Humma ve bazı parazitik hastalıklar (Filariasis) insanlara sadece belirli türde sivrisineklerin ısırmasıyla geçmektedir. Sivrisinekler böcekler sınıfındandır. Umumiyetle bir cm uzunluğunda narin vücutları aerodinamik (havada harekete uygun) bir yapıdadır. Altı ayaklan vardır. Vücudunun başlıca bölümleri hortum, baş ve karındır. Halk arasında "iğne" denilen hortum, aslında basit bir şırınga olmayıp mükemmel bir şekilde yapılmış bir makine parçasına benzeyen komplike (karmaşık) bir beslenme cihazıdır. Hortum başın ön tarafından çıkar; tüylü., yumuşak yapılı üst kısmına dudak (Labium) denir. Hortumun ucunda labella denilen duyarlı, tüylü, iki bölüm (lob) bulunmaktadır. Dudağın içinde U şeklinde bir boşluk bulunmakta ve bu boşlukta fasikül denilen ve sivrisineğin sokması sırasında deriye giren minicik bir organ demeti yer almaktadır. Fasikül veya yaygın adıyla iğne kanın emildiği ters çevrili bir oluk şeklinde olan bir üst bölüm (labrum), bıçağımsı iki altçene (mandible), ürerinde destere dişlerine benzeyen küçük çıkıntılar bulunan iki üst çene (maxilla) ile tabanı meydana getiren ve içinde tükürük kanalı bulunan düzleşmiş bir alt yutaklar (hyopharynx) ibarettir. Bütün bu parçalar birbirine oldukça kuvvetli bir şekilde yapıştırılmış gibi bir arada bulunmaktadır. Fasikül hem delici alet hem de besin kanalı vazifesini görmektedir. Hortumun hemen üstünde tüylü, kısa iki çene duyargaları (maxillary palp) bulunmaktadır. Başta ise oldukça geniş bir alan kaplayan ve bu suretle de sivrisineğe çok geniş bir sahayı görme imkânı veren petek gözler yer almakta, bu gözlerin biraz altından ise duyarlı kıllarla kaplı iki anten çıkmaktadır. Antenler bir nevi burun vazifesi yapan, sivrisinek için çok mühim organlardır. Karın ise birbiri üzerinde kiremit gibi oturmuş dış iskelet vazifesi gören kitin levhalarla kaplıdır. Hemen hortumun bittiği yerde ağzın başlangıcındaki bir pompa fasikül (iğne) tarafından emilen besini daha büyükçe, fanus şeklindeki bir başka bölüme, yani yutak pompasına {pharyngeal pump) aktarmaktadır. Pompada bulunan ince tüylerin geçen sıvının miktarını ölçtüğü ve daha başka organcıkların da bu sıvının cinsini, yani kan mı yoksa şekerli su mu olduğunu tespit ettikleri ileri sürülmektedir. Yutak pompası (pharyngeal pump) sivrisineğin boynundaki kısa yemek borusuna açılmaktadır. Yemek borusu da sırt keselerine (dorsal sac) kursağa veya kalın bir kapak vasıtasıyla doğrudan doğruya mideye (midgut = orta barsak) açılmaktadır. Sivrisineklerin anatomilerine kısaca temas ettikten sonra şimdi de beslenme faaliyetlerinden bahsedelim. Henüz bir günlük iken yavru, yumurtanın şansını yemektedir. Larva (kurtçuk) halinde ise içinde bulunduğu suyu süzerek burada bulunan bakteri, çiçek tozu (polen) ve tek hücreli bitkiler gibi besinleri yemektedir. Larva, zamanın yaklaşık olarak % 95'ini suyu süzüp iç in de kilerin i yemekle geçirmektedir. Sivrisineklerin pis suların bulundukları bölgelerde çok çabuk çoğalmalarının sebebi de bu sularda larvalara besin vazifesi gören bakterilerin sonsuza yakın sayıda olmasıdır. Genç, erişkin bir sivrisinek haline gelmeden önceki pupa devresinde yavru, suyun üst seviyesine yapışık olarak yüzmekte ve üzerine herhangi bir gölge düştüğünde bir nevi savunma refleksi olarak derhal dibe dalmaktadır. Pupa devresinde ağız ve anüs kapandığından dolayı sivrisinek yavrusu dışarıdan beslenmek veya artık maddeleri dışarı atmak gibi faaliyetlerde bulunamaz. Fakat bu yüzden çoğunun öldüğü zannedil memelidir. Çünkü larvanın midesi (midgut = orta barsak) yeni teşekkül eden normal sivrisinek midesinin ortasında kalarak bu yeni midenin ilk besinini teşkil etmektedir. Bu sırada hayvanın emmeğe başladığı normal hava mideye giderek şişirmekte ve böylece meydana gelen kaldırma kuvveti de pupa devresinden genç, erişkin sivrisinek devresine geçişi kolaylaştırmaktadır. Genç sivrisinek pupa devresinden çıkar çıkmaz hemen karnını doyurmaya çalışmamakta, diplerinde çiçek, şekerli su ve hatta insan bile olsa ilk 24 saat içinde herhangi bir beslenme faaliyetinde bulunmamaktadır. 24 saat kadar sonra ise birdenbire alarma geçip yiyecek aramaya başlamaktadır. Aç sivrisinekler her ne kadar şekerli su ile karınlarını duyurabilmekte iseler de şekerli su ile kan arasında bir tercih yapmak durumu ile karşı karşıya kaldıklarında dişi sivrisinekler daima kanı, erkek sivrisinekler ise daima şekerli suyu tercih etinektedirler. Erkek sivrisinekler de insanın cazibesine kapılıp deriye konabilir, üzerinde gezinebilir ve hatta hortumunun ucuyla deriyi yoklayabilirler. Ancak katiyen deriyi delip kan emmeye teşebbüs etmezler. Dişilerin de sadece erişkin olanlar kan aramaktadır. Bazı sivrisinek türlerinin dişileri de insan yerine hayvanların kanını tercih etmektedirler (memeliler, kuşlar, sürüngenler ve hatta diğer böcekler). İnsanı hayrete düşüren bir husus da şekerli su emmiş olan dişi bir sivrisineğin artık 3 saat kadar bir müddet kan aramamasıdır. Bu müddet zarfında sivrisineğin kana, özellikle de insan kanına yönelmesini engelleyen mekanizmanın ne olduğu henüz bilinmemektedir. Sivrisinekler şekerli su ararken rastgele hareket etmedikleri, çiçekleri birbirlerinden ayırt edebildikleri ve sadece belirli türde çiçeklerin bal özlerini topladıkları tespit edilmiştir. Bu yüzden, sivrisinekler beslenmeleri sırasında bazı bitki türlerinin tozlaşmalarım da sağlamış olmaktadırlar, Sivrisineklerin görme kabiliyetleri iyi olmakla beraber onları insana celbeden unsur, daha ziyade insanın kendine has kokusudur. Koku, sivrisineğin antenlerin de ki hassas duyu organcıkları vasıtasıyla alınmaktadır. Antenleri kesilmiş olan aç, bir dişi sivrisineğin insanın eli üzerine konulduğu zaman kan emmek için herhangi bir teşebbüste bulunmadığı görülmektedir. Hangi tip kokuların çekici oldukları tam olarak bilinmemekle beraber laktik asid, sabom, amino asidler, karbondioksit, sıcaklık, nem ve hareketli uzuvların sivrisinekleri cezp etmekte mühim tesirleri oldukları ileri sürülmektedir. Yapılan deneylerden elde edilen neticeler, sivrisineklerin ılık eli soğuk veya çok sıcak bir ele, kuru eli de ıslak bir ele tercih ettiklerini; ancak sadece soğuk bir el bulduklarında bu eli reddetmediklerini de göstermiştir. Birçok kişinin bulunduğu bir odada sivrisinekler pek şahıs ayırımı yapmamakta ve en yakındaki insan eline yönelmektedirler. Bir sivrisinek iki kimseye eşit uzaklıkta olduğunda tereddütte kaldığı da görülmektedir. Sivrisineklerin insan kokusunu, daha doğrusu kendilerini cezbeden maddelerin kokularım, camın arkasından bile hissedebildikleri de tesbit edilmiş bulunmaktadır. Sivrisineğin beslenme faaliyeti anten ve gözleri yardımıyla yakın mesafede besin bulunduğunu anlamasıyla başlar. Sivrisinek seçtiği hedefe kuş uçuşu şeklinde değil de dolambaçlı, kavisli bir uçuş hareketi ile yaklaşmaktadır. Harekete geçmesi ile hedef seçtiği yere konması yaklaşık olarak 5-30 saniye sürmektedir. Ayaklarındaki duyu organları ile besinin sıcaklığı veya şeker konsantrasyonu (yoğunluğu) ile ilgili bilgiler edinebilmektedir. Duyu organları yeteri kadar uyarıldıkları zaman sivrisineği hortumunu indirmeye şevk ederler. Hortumun ucunda bulunan tüyler şekere, belki de çeşitli tuzlar ile ATP'ye dokunmaya karşı hassastırlar. Hortumun ucu şekere dokunduğunda sivrisinekte şekerin türüne ve konsantrasyonuna bağlı bir tepki meydana gelmektedir. Şekerin konsantrasyonu ne kadar fazla ise sivrisinekler o kadar çok hoşlanmaktadırlar. Sivrisinek deriyi delmeye başlamadan önce hortumunun iki yanında bulunan duyu organlarını (çene dokungaçları) hortumla yaklaşık 75 derecilik bir açı yapacak şekilde kaldırdığı için bir sivrisineğin deriyi ne zaman delmeye başladığını tahmin etmek kolaydır. Fasikül dediğimiz delici cihazın, basit ifadesi ile iğnesinin, yansını sokup kan emmeye başlayacak hale gelmesi yaklaşık olarak 50 saniyeye; kan emmesi ise şayet bazarı da öldürülerek- mani olunmadığı takdirde yaklaşık 150 saniye (2,5 dakika) kadar sürmektedir. Fasikülün çıkarılması ise daha kısa sürmektedir (5 saniye kadar). Ancak gerek sokma gerek çıkarma esnasında hastabakıcılar gibi doğrusal bir hareket söz konusu olmamakta, daha ileri bir teknikle fasikül düz değil de ileri-geri hareketlerle girip sağa-sola salınmalarla çıkmaktadır. Bazı sivrisinekler deriye tükürük salgılamakta ve böylece de emilme sırasında kanın pıhtılaşmasını önlemektedirler. Tükürük, alt yutak (hypopharynx) kanalıyla akıtılmaktadır. Bununla beraber tükürük kanalları kesilen sivrisineklerin yine de kan emebildikleri görülmüştür. Şekerli bir sıvı emildiğinde ciberial pompadaki alıcı organcıklar bu sıvının kursağa gitmesini sağlarlar. Kursaktaki sıvı arada sırada azar azar çıkarılıp mideye gönderilir. Oysa kan emildiği zaman liberal pompadaki alıcılar muhtemelen bir mesaj göndermek suretiyle beynin mideye giden kapağı açmasını sağlamaktadırlar. Böylece kan kursağı atlayarak doğruca mideye (midgut) geçmektedir. Sivrisineğin kamının dolduğu, karında bulunan alıcıların gerilmesi suretiyle karın siniri kordonu tarafından beyine bildirilir ve böylece de emilme kesilip fasikül çıkarılır. Sivrisineğin altı ayağı birden kesildiğinde genellikle beslenmeyi başaramamaktadır. Üçayakla beslenmesini, sürdürebilmekte; bir veya iki ayağı kaldığında ise mucitlik kabiliyetini göstererek kamını ve kanatlarından birini destek yaparak beslenmeyi başarabilmektedir. Sivrisinek ısırmasında kaşıntıya sebep olan faktör tam olarak bilinmemektedir. Ancak, İngiliz araştırmacı Dr. Gillett kaşıntının ısırmadan 3 dakika sonra başladığını ortaya koymuştur. Kaşıntı umumiyetle bir saat kadar sonra sona ermektedir. Bununla beraber arada bir tekrar başlayıp günlerce devam ettiği de vakidir. Kaşıntı alerjik olup şiddeti kişiden kişiye, yaşa, cinsiyete, ısırılma sayısına, ısırılmalar arası zaman aralıklarına, ısıran sivrisineğin tür ve yaşına, sivrisineğin fasikülünü (iğne) tam olarak doyuncaya kadar tutup tutmadığına bağlı olarak büyük ölçüde değişmektedir. Sivrisineğin sokma sırasında deriye ifraz ettiği tükürük vasıtasıyla protozoa ve virüsler vücuda geçebilmektedir. Fakat bu sırada daha ziyade, daha iri olan fılarial kurtçukların iğne yarası yoluyla kanı emilen canlıya geçtikleri görülmektedir. Aedes Aegypti parlak gümüşümsü rengi ve siyah çizgileriyle kaplam andıran bir görünüşe sahip bir sivrisinek türüdür. Bu sivrisinekler san humma dâhil birçok hastalığı taşıyabilmektedir. Bu türün dişileri insan kanını tercih etmektedirler. İnsanı ne kadar çok "sevdikleri" bir insan eline küçük, parlak san renkli, sıcak bir civcivi alıp san hummaya sebep olabilen bu sivrisineklerin bulunduğu bir odaya girdiğinde bütün sivrisineklerin doğruca insana yönelmelerinden anlaşılabilir. Sivrisineklerin beslenme faaliyetleri bir türden diğerine çok değişmektedir. San humma sivrisineğinin (Aedes Aegypti) beslenmesi diğer türlerden çok daha iyi bilinmektedir. Çünkü bu sivrisinekler insanı hissettiklerinde çok çabuk ve homojen bir şekilde reaksiyon gösterirler. Diğer türlerin reaksiyonları ise yavaş olmaktadır. . Kapalı bir sahada, normal ev sivrisineklerinin (Culex) davranışları o kadar düzensizdir ki bu türler hakkında araştırma yapmak çok zor olmakta, hatta akıntıya kürek çekmekten farksızdır. Kapalı bir sahada -mesela bir odada- bulunan dişi ev sivrisineklerinden sadece bir-ikisi insan derisine konup kendine göre deriyi araştırabilmektedir. Ev sivrisineklerinin bazı ırklarında dişilerin açlıktan ölseler bile (laboratuar araştırmalarıyla) katiyen insan kanı emmedikleri görülmüştür. Sivrisineklerin nasıl beslendiklerini ortaya çıkararak elde edilen bu bilgilerle, sivrisineklerin insanları rahatsız etmelerinin, hastalık yaymalarının nasıl önlenebileceğini göstermek için yapılması elzem olan daha birçok iş vardır. İnsan sivrisineklere bakınca bunların, henüz tek-tük görebildiğimiz kompüterli (elektronik beyin veya bilgisayar) pilotsuz uçaklardan ne kadar daha ileri bir tekniğe sahip olduklarını hayretle görerek büyük bir âlimin "Sivrisinekteki sanat-ı ilahi fildekinden çok olmasa da az da değildir" deyişini daha iyi idrak etmekte ve Yaratıcı'nın sanatı karşısında büyük bir huşu içinde eğilmekten kendini alamamaktadır.

http://www.biyologlar.com/sivrisinekler-ve-beslenme-biyolojileri

Su ve Mineral Madde Metabolizması

Bitki hücresine alınan su canlılığı sağlayan tüm olayların yürümesi için gerekli ortamı sağlar. Bilindiği gibi su yarıkovalent, elektron çiftlenmesi ile oluşan O - H bağlarının 105 derecelik açı yapması ve daha çok -2 yüklü oksijene yakın olan elektron çiftlerinden oluşması nedeniyle çift kutuplu, dipol bir moleküldür. Bu nedenle su reverzibl olarak H(3)O +, hidroksonyum ve hidroksil şeklinde iyonlarına ayrılabilir. Mineral iyonları çevrelerine zıt yüklü uçlarını çekerek moleküler su moleküllerinden su zarfı oluşturur ve. Bu şekilde de hem doymuş hidrokarbonlar ve lipidler dışındaki tüm küçük moleküllü organik maddeleri, hem de kuvvetli asidik ve bazik maddelerden polar tuzlara kadar iyonik karakterli maddeleri değişen oranlarda çözebilir. Bu sayede de çözelti ortamında termik hareketlilik kazanan maddelerin moleküllerinin çarpışarak kimyasal tepkimeye girmesi ve canlılık için gerekli biyokimyasal tepkimelerin yürümesine uygun ortam sağlar. Dipol karakteri nedeniyle su molekülü makromoleküller ve polimerler zincirleri üzerindeki iyonik gruplara tutunarak zincirlerin arasına girer ve uzaklaşmalarına neden olur. Bu boşluklara girme olanağı bulan enzim proteinleri gibi suda çözünür maddeler de canlılık olaylarının sürmesini sağlar. Tüm bu nedenlerle su canlılığın en temel maddelerindendir. Ayrıca gene dipol özelliği ve iyonlaşabilir oluşu, kinetik tanecikler oluşturması nedeniyle birçok madde ile kolayca tepkimeye girebilir ve canlılık olaylarının büyük çoğunluğunda kimyasal ajan olarak rol oynar. Oksitlenme tepkimelerine elektron sağlar, redüklenme tepkimelerinde de proton kaynağı görevi yapar. Dipol kutupları elektriksel iletken olması ve iyonlaşma oranının tersinir olarak içinde çözünmüş olan iyonik maddelerin hakim yüküne bağlı oluşu biyoelektriksel olayların sağladığı canlılıkla ilgili işlevlerin gerçekleştirilebilmesi olanağını verir. Termik hareketliliğinin yüksek olması nedeniyle yaptığı basınçla organel ve hücrelerin dış basınç etkisi ile ezilmesini önler. Su metabolizması adı altında toplanabilecek tepkimelerin canlılıkla ilgili her tepkime zinciri ve devrelerine yayılmış olması, bu tepkimelerin birbirinden çok farklı ve bağımsız işlevlerinin yüksek sayıda oluşu bu konunun bir bütün halinde ele alınmasını engeller. Bunun yerine diğer konular içinde yeri geldikçe söz edilmesi daha kolay ve anlaşılabilir bir yaklaşımdır. Mineral elementlerinin canlılıktaki rolleri ise daha kolay sınıflandırılabilir: Esas elementler belli bir derişim aralığında sağlıklı, normal yaşamın sürdürülebildiği, bunun altındaki ve üstündeki derişimlerinde önce geçici olabilen, daha sonra da kalıcı arazlar bırakan eksiklik ve toksik etkileri, bu sınırların dışında da ölümcül etkileri görülen elementlerdir. Bu derişim aralıkları açısından da makro ve mikro elementler ayrılır. Herbir elementin metabolizmadaki ve canlılıktaki rolleri farklı olduğundan canlı türleri arasında ve bir canlının yaşam devrelerine, içinde bulunduğu ekolojik koşullara göre gereksinimleri farklılıklar gösterir. Bu açıdan hem biyokimyasal, hem fizyolojik, hem de ekofizyolojik açılardan incelenmeleri sonucunda doğru değerlendirmelere ulaşılabilir. Önemli bir konu da bir elementin derişimindeki değişimlerin diğer elementlerden yararlanılması, kullanılması üzerindeki sinerjistik ve antagonistik etkileridir. Bu etkileşimler sonucu hem iyonik matrikste hem de organik metabolizmada çeşitli değişiklikler meydana gelir. Azot, P, Ca ve Mg ile Na ve K, Fe, Zn, u ve B elementlerinin tümü arasında bu tür ilişkiler ağı vardır. Örneğin P, K ve Zn ile Cu ile sinerjistik etkiye sahiptir, Mg ile hem antagonistik hem sinerjistik ilişkisi vardır. Azot Mg üzerinde antagonistik, K ve B üzerinde sinerjistik etkilidir. Bu tablo da P ile N arasındaki dolaylı ilişkiyi ortaya koyar vs. Antagonistik ilişki aynı bağlayıcı uç , kök için rekabete dayanan Zn+2, Cd+2 ilişkisi şeklinde olabildiği gibi Cu+2 ile S-2 tepkimesi sonucunda çözünmeyen CuS oluşumu gibi deaktivasyon ilişkisi de olabilir. Türler arasındaki seçici beslenme farklılıkları yanında elementler arası metabolik ilişkiler matriksi populasyonlar arasında davranış farklılıklarına yol açarak rekabetsel ilişkiler üzerinde etkili olur. Mineral iyonlarının genelde çok önemli olan bir özellikleri organik maddelerin ve temelde onların oluşturdukları yapıların oluşumu, sağlamlığı ve işlevleri üzerindeki etkileridir. Membranlar yanında nükleik asitlerin helislerindeki fosfat gruplarının aralarındaki katyonlar sayesinde bilinen yapılarına sahip olmaları Ca, Mg, P, S elementlerinin yapısal işlevlerini gösterir. İz elementler pH 7 civarında yürüme durumunda olan hidrolitik ve sentetik tepkimelerin enzimlerinin aktivatörü olarak rol oynarlar. Bu işlevlerini de Lewis asit ve bazlığı yolu ile su da dahil, sübstratları polarize ederek yaparlar. Lewis asitleri elektron çifti alabilen, bazları da verebilen maddeler olarak tanımlar. Klasik asit - bazlar için geçerli olduğu gibi de maddelerin elektron çifti alma - verme potansiyellerinin büyüklüğüne göre bir madde çiftinin asitlik - bazlık ilişkisini belirler. RNA polimeraz, nükleazlar, fosfatazlar, esterazlar gibi bir çok enzimin Zn+2, Mn+2 gereksinimleri buna örnektir. İz elementlerin aynı mekanizma ile yürüyen önemli bir rolleri de elektron transfer zincirlerindeki rolleridir. Fizyolojik pH aralığında yürümesi zor olan bu tepkimelerde de Fe+2/ Fe+3/Fe+4, Cu+/Cu+2, Mn+2/ Mn+3/Mn+4, Mo+4/ Mo+5/Mo+6, Co+/Co+2/Co+3 ve Ni+/Ni+2/Ni+3 iyonları rol alır. Moleküler azotun fiksasyonu ile amonyağa dönüştürülmesinde de Fe, Mo ve V çiftlenmemiş elektron kaynağı ve donörü olarak iki aşamalı şekilde rol alırlar ve enerjetik açıdan fizyolojik pH aralığında yürümesi zor olan tepkimenin gerçekleşmesini sağlarlar. Mineral iyonlarının organik madde metabolizmasındaki en belirgin rollerinden bir diğeri de klorofil, hemoglobin gibi canlılığın sürmesini sağlayan büyük moleküllerin yapısında molekülün stabilitesini sağlayan koordinasyon merkezi olmalarıdır. Eşlenmemiş elektron çifti paylaşımı ile oluşan doğal bileşikler renkli ve suda çözünmeyen bileşiklerdir. Metal iyonlarının koordinasyon bağı sayısı değerliklerinden farklı değerlerdir. Amino asitlerin yan zincirlerindeki fonksiyonel grupların protonları yerine metal bağlanması ile de koordinasyon bileşikleri oluşabilir. Özellikle histidin, metionin, sistein,, tirozin, glutamat ve aspartat yanında serin, treonin, lizin ve treptofan amino asitlerinin hidroksi veya amino grupları aracılığı ile koordinasyon bileşikleri yapmaları peptid ve proteinlerin bu yolla sağlam yapılar oluşturmalarına neden olur. Bu açıdan amino asitler ile katyonlar arasında seçicilik ilişkilewri vardır, örneğin Tirozin yanlızca Fe+3 ile bağlanabilir. Sisteinin ise monovalent Cu, divalent Zn ve Cu ile Fe, trivalent Fe ve Ni +1-3, Mo+4 -6 ile koordinasyonu mümkündür. Cu + ve +2, Zn+2 ile Fe+3 amino asitlerle sağlam koordinasyon bağları yaparken, diğerlerinin bileşiklerinin stabilitesi düşüktür. Global proteinlerin metal iyon komplekslerinin enzimatik aktivitede rol oynayabilmesi için 4 veya 6lı koordinasyon bağ kapasitelerinin doymamış olması gerekir. Bu açık uca geçici olarak su gibi bir molekül bağlanır ve sübstratla yer değiştirdiğinde kataliz başlayabilir. Ancak proteinden elektron transferinin doğrudan gerçekleştiği, metal iyonunun elektron alışverişi yapmadığı sistemlerde buna gerek yoktur. Temelde metalik koordinasyon protein molekülünün sterik geometrisini sübstratın adsorpsiyonu ile sterik yapısını tepkimeye uygun hale getirerek sağlar. Azot bilindiği gibi nükleik asit, protein, peptid, amid ve amino asitlerin önemli bir bileşenidir. Bunların yanında birçok sekonder metabolizma ürününün de sentezi ve gereksinim duyan bitki grubunun normal yaşam devrini sağlıklı şekilde sürdürmesi için gereklidir. Topraktan alınan nitrat ve amonyum ksilemden aynı şekilde tuzu halinde iletilir, ancak fotosentetik dokularda elde edilen karbohidratlarla tepkime zincirlerine girebildikleri hücrelerde redüklenerek -NH2, amino grubu içeren organik azotlu bileşiklere dönüşürler. Nitratın da amonyuma dönüştürülmesinden sonra glutarik asit gibi iletilebilir organik asitler üzerinden yağ asitlerine amino grubunun katılması ile amino asitler meydana gelir. Aromatik a - amino asitlerin sentezinde ve özellikle birbirlerine dönüşümlerinde hidroksillenme tepkimesi önemlidir, örneğin fenilalaninin hidroksillenmesi ile tirozin oluşur. C -, O - ve N – metillenmeleri de önemlidir ve örneğin homosisteinden sağlanan metil grupları metiyonin, glisin veya serin metili ile de tüberin metaboliti sentezlenir. Aromatik amino asitlerin mikroorganizmalar ve bitkilerdeki temel sentez yolu , adını ilk bulunduğu şikimi-no-ki bitkisinden alan ve benzen halkalı şikimik asidin biri açılmış çift halkalı korizmik asitin L – fenilalanin, tirozin veya triptofana dönüştüğü şikimik asit veya şikimat yoludur. Fosfoenol piruvat ile eritroz – 4 – P tetrozunun kondansasyonundan sentezlenen ara maddeler üzerinden şikimik asit korizmik asite ve sonra üç farklı organik asite dönüşerek aromatik amino asitleri verdiğinden sonraları korizmik asit yolu adını alan sentez yoludur. Bakterilerde salisilik asit gibi maddeler, yüksek bitkilerde linyin ve alkaloidler, flavonoidler bu aromatik amino asitlerden ve özellikle triptofandan sentezlenir. Linyinler sinnamik asitlerin alkollerinin ürünüdür. Azot eksikliği azotun klorofil yapısındaki 4 pirol halkasındaki yeri nedeniyle klorofil oluşumunu engeller ve fotosentez eksikliği nedeniyle büyüyüp, gelişmesini önler. Doğal olarak protein, enzim ve nükleik asit metabolizmalarını yavaşlatır, durdurur ve yaşlı doku ve organlardan başlayan boşalma ile ihtiyarlama - senesans ve ölüme neden olur. Azot bileşiklerinin yapısal proteinler gibi taşınamayan formlarının proteolitik enzimler gibi hidroliz enzimlerince parçalanarak iletilebilir formlara dönüştürülebilmesi genç ve büyüyen dokular ile organların olabildiğince korunması olanağını sağlar. Fosfor bilindiği gibi enerji metabolizmasında çok önemli yer tutar. Yeşil bitkilerin güneşten, bazı bakterilerin ise inorganik bileşikleri parçalayarak elde ettiği fiziksel enerjiyi yüksek enerjili kimyasal bağ enerjisi halinde saklayıp, gerektiğinde açığa çıkartılması ile kimyasal ve fiziksel işlerin yapılmasında kullanmasını sağlar. Bu konu fotosentez ve kemosentez, solunum ve sindirim metabolizmaları içinde incelenecektir. Burada elementel fosforun enerji metabolizmasındaki kilit rolünün nedenleri üzerinde durmak yeterli olabilir. Nükleik asit sentezinde organik bazlar fosfatları halinde sübstrat olarak kullanılıp tepkime sırasında fosfatın açığa çıkması, solunumda elde edilen enerjinin ATP kazancı olarak hesaplanması iyi birer örnektir. ATP su ile tepkimeye girdiğinde üç fosfat grubundan biri açığa çıkarken bu fosfat bağında yoğunlaşmış olan enerji açığa çıkar. Bu enerji diğer bağ enerjilerine göre yüksek olduğundan yüksek enerjili, enerjice zengin bağ adını alır. Bunun nedeni de bu bağın oluşturulmasında yüksek enerji kullanılmasına gerek oluşudur. ATP ve NADP.H2 enerji metabolizmasının kilit maddeleridir. Bunun temel nedeni oluşumlarının sübstratları olan maddelerin kinyasal potansiyeli ile bu tepkime ürünlerinin kimyasal potansiyel farkının yüksek oluşudur. Adenin de fosfat gibi eksi yüklüdür, bu nedenle adenine 3 fosfatın bağlanması ile ATP sentezlenebilmesi için yüksek enerji kullanılması gerekir, serbest enerji önemli miktarda artar. Organik bileşiklerin fosforilasyonu, yani ATP veya benzeri bir fosfat kaynağından grup transferini kinaz enzimleri sağlar. Fosfat, ADPve ATP sulu çözeltilerinde farklı değerlikli formlarda bulunabilen, Mg ve Ca iyonları başta olmak üzere katyonlarla kelasyon tepkimesine girebilen maddelerdir. Bu nedenle de pH gibi etmenlere bağlı olarak ATP değişik yollardan sentezlenebilir. Nötr pH civarında divalent katyonlara gerek olmadan ADP + HPO4 + H3O ® ATP + H2O tepkimesiyle, ATP sentetaz enziminin etkisiyle sentezlenir. Bu molekülün hidroliz denge sabitesi diğer fosfat bileşiklerinden çok daha yüksektir, bu nedenle de diğer organik bazların trifosfatları oluşturulamaz. Bu pHa bağlı denge durumu sayesinde ATP, ATPaz izoenzimlerinin etkisiyle ve büyük oranda ADP ve fosfata hidroliz olabilir. PH 7 civarında ADP moleküllerinin yaklaşık yarısı -2, diğer yarısı ise -3 değerlikli iken ATP molekülleri de yarı yarıya -3 ve -4 değerliklidir. Mg+2 veya Ca+2 ve diğer katyonlar aynı moleküldeki fosfat köklerinin (-- O -1) yüklü oksijenleri arasında elektrostatik olarak tutularak kelatlaşmayla moleküllerin form sayılarının artışına neden olur. Bu çeşitlilik değişik özelliklerdeki izoenzimlerin aktiviteleri ile ATP enerji deposunun kontrollu şekilde farklı metabolik olaylarda kullanılabilmesini sağlar. Yani önemli bir konu da açığa çıkan ADP molekülünün serbest halde kalabilmesi ve başka bir tepkimeye girmemesidir. NADP.H2 dışındaki difosfatlar ise başka tür tepkimelere de girebilir. Hidrolizlerinin kinetik denge sabiteleri düşük olduğundan hidrolizleriyle çıkan enerji de düşüktür. Bu nedenle de enerji depolanmasında tekrar kullanılamazlar. ATP ve NADH2 nin enerji metabolizması açısından önemli bir özellikleri de membranlardan kolay geçebilmeleri ile enerji dağılımını sağlayabilmeleridir. Fotosentezde kloroplastlardaki devresel olmayan elektron iletimi sırasında oluşan NADP.H2 NADPnin redükte formudur ve bu iki form bir redoks çifti olarak eşit miktarlarda birarada bulunur. NADP molekülünün yanlızca NAD kısmı 2 e- alarak NADPH2 oluşturur. Bu elektron alışverişi zinciri elektron akımını sağlar ve bu şekilde ışık enerjisi elektron iletimi yoluyla enerji kazancına, depolanmasına yol açar. Bu konu fotosentez incelenirken görülecektir. Fosfatazlar fosfat grubu olan organiklerden fosfat gruplarını ayıran enzimler olarak metabolizmada önemli bir yer tutarlar. Optimum pH değerlerine göre asit ve alkalin fosfatazlar olarak ikiye ayrılırlar. Bu mekanizmalar hücrenin endojen tepkimeleri başlatma ve yürütmesi için gereken yeni kimyasal bağ oluşumuna dayanan sentez ve dönüşüm tepkimelerine enerji sağlar. Gerek duyulduğunda enerji denetim altında yüksek enerjili fosfor bağının ATP sentetaz ile sentez ve ATPaz ile hidrolizi ile biyolojik iş için enerji sağlanır. Fosfor fotosentezle güneş enerjisinin önce şekerler ve sonra polisakkaritler halinde karbohidratlarda kimyasal bağ enerjisi halinde bağlanarak depolanması, gerektiğinde sindirimleri ve solunumla açığa çıkarılan bu enerjiyle tüm metabolizmanın yürümesini sağlar. Tüm bu nedenlerle fosfata sürekli gereksinim duyulduğundan toprak çözeltisinde çok az miktarda bulunan faydalı fosforun sürekliliği gerekir. Toprak çözeltisindeki fosfatın mineralojik ve organik fosfatla denge halinde olması da bunu sağlar. Dengeyi sağlayan ana etmen bakteriyolojik etkinliktir. Fakat toprak tiplerine göre toplam fosfat miktarı geniş açılım gösterir. Bekleneceği üzere bitkilerde fosfor özellikle aktif büyüme ve gelişme gösteren doku ve organlarda yoğunlaşır. Kökler sürekli büyüyüp, gelişen organlar olduğundan organik fosfat bileşiklerine bağımlıdırlar. Yani köklerle yerüstündeki fotosentetik dokular arasındaki karşılıklı bağımlılık bitkilerin yaşam devirlerinde çok önemli yer tutar. Bu nedenle de yeni gelişen tek yıllık veya ilkbaharda yeniden büyüyüp gelişmeye başlayan çok yıllık bitkiler Organik posfat bileşikleri tohum ve tomurcuk gibi büyüme potansiyeli yüksek olan organların dokularında da depolanır. İndirgenmiş formu hiç görülmez ve %75 -80 oranında çözünür bileşikleri halindedir. Özsuda Doku ve organlarda fikse edilen kısmı düşük olduğundan gereksinime göre floemden ve parankimadan iletilir. Bu nedenle de fosfat beslenmesi eksikliğinde önce yaşlı organlarda eksiklik arazları görülür. Bu organlardaki fosfatlı bileşiklerin sindirimi ve fosfatazlar etkisiyle parçalanmaları sonucunda serbest hale geçerek iletilirler. Fosfor eksikliğinde azot metabolizması yavaşlar, inorganik azot asimilasyonu azalınca nitrat birikimi olur ve bu da yaşlı organların koyu yeşil bir renk almasına neden olur. Bitkiler bodur kalır, kök gelişimi zayıf olur. Domates bitkisi iyi bir fosfor eksikliği indikatörüdür ve özellikle yapraklarının alt tarafında asimile olmayan şekerler ve nitrat birikimi nedeniyle mor lekeler görülür. Genelde bitkide P, N ve K dan daha azdır ve yaşlı organlardan tohumlara doğru artan % 0.0X -% 1.X oranları arasında bulunur ve yarısından fazlası çözünür formdaki organik bileşikleri halindedir. Yani ortalama olarak azot gereksiniminin beş - onda biri kadar fosfor alırlar. Kükürt özellikle yapısal proteinler ile protein yapısına girmeyen amino asit ve bazı peptidlerin yapısına girer. Yapısal protein zincirleri arasında kuvvetli S - S, S - H bağları oluşturarak zincirler arasına su moleküllerinin girmesini önler, termik stabilitelerini arttırarak çok sağlam yapılar oluşturmalarını sağlar. Proteinlerdeki oranı proteinin işlevine göre tipik olarak 3.10-5 - %7 arasında değişir, bazı türlerde sülfat halindeki S/ toplam S oranı > %50 olabilir. Toplam S açısından da familyalar arasında önemli farklar görülür, Graminae < Leguminosae < Cruciferae fam.larındaki açılım %0.1 - 1.5 / k. ağ. gibi yüksek bir orandadır ve bu fark tüm bitki düzeyindedir. Mikroorganizmalardan yüksek bitkilere kadar dağılım gösteren diğer sülfürlü bileşiklerin kimyasal çeşitliliği çok yüksek düzeydedir e bu nedenle kemotaksonomik karakterler arasında önemli bir yer tutar. Metabolizmalarının tam olarak incelenmiş olduğu söylenemez. Sistein, metionin ve çeşitli vitaminler ile koenzimler gibi bazı sülfürlü bileşiklerin hücre yaşamında, büyüme, gelişme ve çoğalmasındaki önemi bilinmektedir.. Bu yaşamsal organik sülfür bileşiklerinin çoğu en redükte formları halindedir, sülfit bağı ile bağlıdırlar. Örneğin sistein, metionin amino asitleri, glutation peptidi, ergotiyonein tiolü, koenzimlerden tiamin pirofosfat, Co-A ve biyotinde durum böyledir. Sülfidril kofaktörü halinde bir çok enzimin aktivitesinde de önemli rol oynar. Sülfat ksilemde iyonik bileşiği halinde iletildikten sonra ATP de sübstrat olarak kullanılarak sülfürilaz ve kinaz enzimlerince katalizlenen tepkimelerle fosfat grupları ile yer değiştirerek adenozin difosfosülfat halinde metabolizmaya girer. Mobilitesi yüksekse de metabolik etkinliği, kolay dönüşebilir oluşu nedeniyle iletimine pek gerek duyulmaz. Normal olarak alınan sülfatın büyük kısmı protein sentezinin yüksek olduğu genç dokulara gider ve büyüme potansiyeli olan organlarda depolanır. Eksikliği halinde protein sentezinin azalması nedeniyle çözünür azotlu maddelerin biriktiği görülür. Elektron iletiminde çok önemli rolü olan negativ red-oks potansiyeline sahip demirli proteinlerin bir kısmındaki Fe/ S prostetik grup merkezleri özel işleve sahiptir: fotosentez, azot fiksasyonu, sülfit ve nitrit red-oks tepkimeleri ve DNA tamir edici endonükleaz aktivitesi. Tipik olarak Fe iyonları R-S halindeki sistein sülfürü ile koordinasyon yapar. Elektron iletim sistemi oluşturan ferredoksinler gibi bazıları bağımsız iken flavoproteinler, S bakterilerinin sülfüraz, kinaz gibi bazıları Ni, V e Mo gibi diğer prostetik elementlerle beraber etkinlik gösterebilir. Ferredoksinler, mitokondrilerin sitokromlu membran proteinlerinde ve ileride görülecek olan fotosistem II fotosentez sisteminde iki sisteinat yan zincirinde 2 Fe - 2 S merkezi içerir ve bu iki merkez -S - S- bağı ile dianyon oluşturur ve Fe+2 Ö Fe+3 dönüşümleri elektron iletimini sağlar. Kötü ve / veya keskin kokular salgılayan bitkilerin kokulu uçucu bileşikleri genellikle küçük moleküllü olan tiyoller ile sülfitlerdir ve öncü bazı maddelerin enzimatik veya kimyasal parçalanma ürünleridir. Merkaptanların tipik kokuları birçok Crucifereae türlerinde karakteristik olup bazı tiyoglikozitler veya amino asitlerin dönüşümü ile ortaya çıkarlar. Çeşitli alifatik ve aromatik sülfitler mikroorganizmalarda yaygın olarak bulunur ve bunlardan en iyi bilinenleri penisilin, gliotoksin, basitrasin gibi antibiyotiklerdir. Bu maddeler algler ve funguslarla yüksek bitkilerde de bulunur. Proteinik olmayan amino asitlerin hemen hepsi sisteinden S-sübstitüsyonu ile oluşur ve sistein ile benzeri öncülerden sentezlenirler. Yüksek bitkiler kükürtlü amino asitlerden ancak sisteini öncü madde olarak kullanabilir ve bu nedenle de sisteinin bu metabolizmanın merkez maddesi olduğu söylenebilir. İzotiyosiyanat oluşturan tiyoglikozitler kolayca enzimatik hidrolize uğrayabilirler ve yeni bir moleküler düzen kazanarak hardal yağlarını, glükoz ve sülfatı oluştururlar. Kemotaksonomik karakter olarak da önemli veriler sağlarlar. İzotiyosiyanatların çoğu keskin tadları ile kendilerini belli ederler ve baharat olarak kullanılırlar. Glükozitler glükozun R- yan zincirinde farklılık gösteren ve izotiyosiyanat oluşturan elliden fazla üyesi olan bir madde grubudur. Düz veya dallanmış alkil yan zincirleri ile çeşitli şekillerde hidroksillenmiş veya düz zincirli türevleri vardır. Bu türevlerin büyük bir kısmı a-amino asit ve a-keto-asit metabolizmalarında rol alır. Potasyum 138 pikometre iyon çapına karşılık tek yükü ve 239300 pm2 yüzey alanı nedeniyle şişirici etkisi, 6-8 koordinasyon sayısı ile 60 kadar enzimin kofaktörü oluşu, özellikle Na+/ K+ - ATPaz membrana bağlı iyon pompası enzimi üzerindeki ve membran porlarını şişirici etkisi ile hücre düzeyindeki iletim düzenleyici rolü sayesinde metabolizmayı genel olarak etkiler. Hücre özsuyunda bol olarak bulunması ve kolay taşınması nedeniyle osmotik basıncı düzenlediğinden de organik madde metabolizması e iletiminde rol oynar. Tüm bu temel özellikleriyle bitkilerde tipik olarak %0.2 - 11 / k. ağ. oranında bulunan K miktarının eksilmesi ile fotosentez hızı ve ürünlerinin yapraklardan iletiminin azalması, organik asitler ve yağ asitleri sentezinin yetersiz kalması, serbest amino asit birikmesi ve protein sentezinin azalması, yumrular gibi karbohidrat deposu organlarda gelişememe, nitrat indirgenmesi ve azot metabolizmasının yavaşlaması ve protein sentezinin düşmesi ve protein azalması, hücre çeperi polisakkaritlerinin sentezinin azalması, kök sistemi gelişiminin aksaması, dona dayanıklılığın düşmesi, büyüme ve gelişme, olgunlaşma gecikmesi ile gelişmenin anormallik göstermesi gibi çok yönlü etkiler görülür. Potasyum eksikliği önce yaşlı daha sonra genç yaprakların sararma ve kuruması, ışık enerjisi azalması halinde fotosentez hızının normalden çok daha fazla düşmesi görülür. ATP metabolizmasının aksaması nedeniyle klorofil azalmasından daha hızlı şekilde fotosentez hızı düşer. NO3 indirgenmesinin azalması sonucu amino asit sentezi azalması ve daha da hızlı olarak protein sentezi hızının düşmesi ile büyüme durur. 14C izotoplu CO2 içeren atmosferden kökler dahil bitkide metabolize edilen izotop oranı düşer, karbohidrat sentez ve iletimi düşüşü N aimilasyonunun azalmasına neden olur. Bunun sonucunda çözünür karbohidratların sağladığı osmotik basınç düşer, hücre çeperleri zayıflar. Sonuç olarak K, N ve P kadar önemli bir besin elementidir. Kalsiyum +2 yüküne karşılık 138 pm çapı, 130700 pm2 alanı ile iyon kanallarını büzücü etkisi olan, 6 - 8 koordinasyon sayısı ile örneğin orta lamellerde pektatlar, vaküollerde oksalat kristalleri gibi sağlam bağlı tuzlar oluşturan elementtir. Bu özelliği ile organik asitlerin ph üzerindeki etkilerini dengelediği gibi toksik etkilerini de önler. Meristematik dokularda sürekli bölünen hücreler arasında oluşan orta lameller nedeniyle boldur. Ayrıca nitrat indirgenmesi ve, karbohidrat ve protein iletimi üzerindeki olumlu etkileri, amino asit ve ATP metabolizmasında önemli rolü olan adenil kinaz, arjinin kinaz gibi enzimler için gerekli oluşu gibi etkileri ile temel elementlerdendir. Hayvanlarda olduğu gibi büyük oranda immobilize edilen ve ancak yaşlanma, olgunlaşma, senesans - ihtiyarlama ile katabolik metabolizma hızlandığında serbest hale geçebilen Ca++ eksikliği halinde ilk etkileri yaşlıorganlarda görülür. ENERJİ ve KARBON METABOLİZMASI Bilindiği gibi canlıların birincil enerji kaynağı güneş enerjisidir. Besin zinciri ototrof - kendibeslek yeşil organizmaların güneş enerjisini kullanarak inorganik CO2 gazının karbonunu suyun protonu ile redükleyip - indirgeyip organik bileşikler sentezlemesi ile başlar. Canlılık ışığın fiziksel enerjisinin kimyasal bağ enerjisine dönüştürülerek canlılık ve sürdürülmesi için gerekli işlerde kullanımı ile yürür. Bu işlemler ve işlerin toplamına metabolizma, yapımla ilgili olan sentez ve depolama işlerine anabolizma ve sindirimle solunumu içeren yıkım işleri toplamına da katabolizma denir. Bilindiği gibi indirgenme bir atom veya molekülün elektron kaybetmesidir ve tersi de yükseltgenme, yani oksidasyondur. Elektron alışverişi için birisi elektron verici (donör), diğeri alıcı (akseptör) olan en az iki atom veya molekül gerektiğinden bu iki olay birlikte yürür ve redoks tepkimesi olarak adlandırılır. Canlılarda da kemosentez ve fotosentez dışındaki tüm anabolik olaylar oksitlenme yani solunumla paralel yürür. Sentez veya başka bir iş yapılması ile ilgili tüm olaylar hızlandıkça solunum hızı artar ve fotosentez veya kemosentezle solunumun enerji gereksinimi karşılanamadığında gene katabolik olan sindirim, yani kimyasal bağların parçalanması ile enerji açığa çıkışı olur. Sindirim ve solunum olayları termodinamik açıdan kendiliğinden yürüyebilen olaylar olduğundan ölüm halinde kendiliğinden olur ki bu olaya otoliz denir. Hücrelerdeki membranların sağladığı kompartmanlar, seçici membranlar bu tür tepkimelerin kendiliğinden başlayıp yürümesi riskini ortadan kaldırır. Bir maddenin bir tepkimede elektron alıcı veya verici rol üstlenmesi redoks tepkimesine konu olan diğer maddeye oranla elektron çekiciliğinin daha yüksek veya düşük olmasına bağlıdır. Yani sabit, sınıflandırmaya uygun bir özellik değildir. Buna karşılık ölçülebilir olan bu özellik bilindiği gibi redoks potansiyeli ile tanımlanır ve bir skala halinde kullanılır. Bitkilerde anabolizma iki indirgenme olayından birisi ile başlar: fotosentez ve kemosentez. Fotosentezde ışık kuantlarından alınan enerji ile inorganik formdaki CO2 molekülünün yarı kovalent bağlarla bağlı C atomu indirgenerek kovalent bağlı organik bileşiklerine dönüştürülür. Bu bileşikler canlıların %15 - 18ini oluşturur. Elementel karbonun en dış okted tabakasında 4 elektron olduğundan bileşik oluşturması yüksek enerji ister ve zordur. Bu nedenle de havada yalnızca % 0.2 - 0.3 oranında bulunur ve tek doğal kaynağı canlılardır. İyonik bileşiklerde iki atom arasındaki elektron alışverişi tam olduğu, elektron yörüngesinde düşük sayıda duplet veya okted açığı olan atomun diğer atomun en dış yörüngesindeki elektron kapasitesinin yarısından az sayıda olduğundan dengesiz durumdaki elektron veya elektronları tam olarak alması sonuu kararlı bir bağ olan iyonik bağ oluşur ve sert kristal yapılanma olur. Su gibi yarıkovalent bağlarla oluşan molekülerde bağ enerjisi daha düşüktür, yapı daha zayıftır. Daha yüksek enerjili ve kuvvetli olan bağın enerjisi düşürülmüş ve daha kolay bozunabilen, daha kararsız organik bileşikler elde edilir. Termodinamik açıdan ise termik hareketliliği yani entropi enerjisi yüksek olan CO2 gazı serbest, işe çevrilebilir enerjisi daha yüksek olan organik moleküle dönüşmüş olur.

http://www.biyologlar.com/su-ve-mineral-madde-metabolizmasi-1

Topraktan Mineral Madde Alımı

Bitki kökleri toprak çözeltisinden daha önce belirtilen mekanizmalarla su ve mineral madde alırlar, toprağın havasını kök solunumu için kullanırlar. İdeal olan tarla kapasitesindeki toprağın por hacminin su ve hava tarafından yarı yarıya paylaşılması ideal durumdur. Nemli ortamlarda toprak havalanmasına porozite artışı yolu ile solucanlar gibi hayanlar önemli katkıda bulunur. Toprağın yapısını bitkiler kökleri ile destekler, ölü kökler toprakta çeşitli çaplarda kanallar oluşturarak poroziteyi ve permeabiliteyi arttırdığı gibi organik madde oluşumuna katkı sağlar. Bu açıdan derin ve yaygın kök sistemleri ile yüzeysel kök sistemi olan türleri içeren ekosistemler sürdürülebilir özellik kazanır. Bu açıdan toprak sıcaklığı da önemlidir. Mikrobiyal aktivite yanında evaporasyon ve bunun serinletici etkisi gibi etkilerin karmaşık ilişkileri söz konusudur. Toprak mikrobiyolojisi özellikle bitkilerin azot beslenmesi ve organik madde içeriği açısından çok önemlidir. Toprak organik maddesinin yaklaşık yarısına kadar olan kısmını mikro canlılar oluşturur. Topraktan alınan su miktarı ile iyon miktarı paralellik göstermez, yani bitki iyon alımını denetimi altında tutar. Kökler katyonları özellikle protonla iyon değişimi yaparak alırlar, azot NH4 katyonu ve NO3 anyonu, P özellikle H2PO4 ve S de SO4 halinde alınır. Tuzları halinde bulunan iyonların alım oranları farklıdır, örneğin NaCl çözeltisinden aynı miktarda Na ve Cl alınmaz, bu oran da denetim altında tutulur. Fosforun toplam miktarı ile bitkilerin kullanabildiği fosfor miktarı paralellik göstermediğinden faydalı fosfor analizi ile sonuca gidilir. Toprakta bulunan elementlerden monovalent Li, Rb ve Cs, iyon yapılarının Na ve K a, divalent Ba un Ca a, Br un Cl a, trivalent Al ve Zr+4 ün Ferrik demire benzerliği nedeniyle canlı yapısında çok düşük miktarlarda bulunabilir. Türlerin mineral madde alımları seçicidir ve tümüyle aynı koşullarda yetiştirilen farklı türler arasında 60 kata kadar farklılıklar görülmüştür. Bu farklılıklar özellikle makroelementlerden Na ile mikroelementlerden Mn, Zn, Al, Se, Si gibi elementlerde görülür. Örneğin Astragalus türleri arasında Se alımı 600 kata kadar farklılık gösterir. Bu nedenle bazı bitki türleri toprakların kimyasal kompozisyonlarının göstergesi olabilir ve bu türlere indikatör türler denir. Örneğin asidik topraklarda çözünür Al, Fe ve Mn derişimi bitkiler için toksik düzeye kadar artabilir ve ancak bu yüksek derişimlere dayanıklı türler yaşamlarını sürdürebilir. Alkalinitesi çok yüksek topraklarda ise özellikle faydalı fosfor ve demir ile mangan çok azalır ve bu ortama adapte olabilen bitkiler yaşayabilir. Topraktaki alıma müsait durumdaki iyonların derişiminin artışı bir noktaya kadar absorpsiyonunu arttırırsa da derişimin daha fazla yükselmesi etkilemez. Toprak pH değerinin 5.5 - 7.0 arasında olması genelde en uygun beslenme ortamını oluşturur. Bitki örtüsü sıklığı artışı toprak organik maddesini arttırırsa da kökleri ile sürekli olarak daha yüksek oranlarda K, Ca ve Mg ile Na çekerek toprağın asitleşmesi yönünde etki yaparlar. Hasatla organik maddenin uzaklaştırılması zamanla toprağın asidikleşmesine neden olur. Toprakta bolca bulunan Al ve Fe ile yüksek miktardaki Si çözünme hızı da asitleşme sonucu artar ve taban suyunda, akarsu ve göllerde birikir. Azot Beslenmesi: Leguminosae ve Mimosoidae mensuplarnın köklerinde ortak yaşayarak nodül oluşturan Rhizobium bakterileri kök emici tüylerine yerleşerek çoğalır ve hücrelerin hacim artışı ile nodüller oluşturmasını sağlar. Nodüller de havanın serbest azotunu nitrata çevirir. Rhizobium türleri konukçul seçicidirler. Bitkiler azotu nitrat ve amonyum tuzları halinde alırlar ve cinsler arasında azot kaynağı tercihi, seçiciliği farkları vardır. Ayrıca aynı tür bitkilerin gelişme evrelerinde de seçicilik değişimleri görülür. Leguminosae ve Mimosoidae türleri genelde hafif asidik ve özellikle nötr topraklarda daha iyi büyür ve toprağa azot sağlarken yüksek oranda Ca ve Mg alırlar. Bazı türleri asidik topraklara adapte olabilir. Yulaf gibi bazı Graminae cinsleri ise asidik topraklarda iyi büyürler. Bitkilerin azot alımı fosfor beslenmesinde olduğu gibi aktif büyüme ve gelişme dönemlerinde yüksektir ve sonra azalır, bir bitkideki %N oranı da olgunlaşma, çiçeklenme, yaşlanma ile azalır. Bunun nedeni karbohidrat depolanmasının oransal olarak artışıdır. Tohum ve tomurcuk gibi organlarda ise depolanma olur. Genel bir ortlama değer olarak bitkilerde toplam azot/kuru ağırlık yüzdesi değişimlerinin %0.2-6.0, nitrat azotu yüzdesinin ise %0.0 - 3.5 arasında olduğu görülür. Toprakta müsait azot artışı bitki büyümesini hızlandırırken toplam karbohidrat oranını azaltır, protein oranında artışa neden olur. Ayrıca hücrelerin daha büyük hacimli ve protoplazmalı, ince çeperli olması, su oranının da yüksek olmasına neden olur. Azot azlığında kök/ gövde oranı artar, kökler kısa ve kalın, çok dallı bir yapı gösterir, iyi gelişir. Bunun nedeni fotosentezle elde edilen karbohidratların öncelikli maddeler olan proteinlere dönüştürülememesidir. Azot / karbohidrat dengesinin yüksek oluşunun önemli bir sonucu da vejetativ büyümeyi arttırarak çiçeklenmeyi geciktirmesidir. Fosfor Beslenmesi özellikle H2PO4- primer orto fosfat ve çok daha az oranda HPO4-2 sekonder orto fosfat alımı ile olur. Çok daha az miktarlarda piro ve metafosfatlar ile organik fosfatlar da alınabilmektedir. Gene çok büyük oranlarda çözelti fosfatından beslenme olur, bu fosfat da iyon değişim dengesi ile topraktaki organik ve mineralojik katı maddelerdeki depo fosfat kapasitesi ile ilişkidedir. Toprak pH değeri alkaliye kaydığında organik fosfat / mineralojik fosfat dengesi küçülür. Humat halindeki fosfor tuzu oluşumu çözünmez Fe ve Al fosfatların oluşumunu engelleyerek yararlı fosfat deposuna katkıda bulunur. Topraktaki ana fosfat kaynağı mineral Ca3PO4 içeren ve suda çok az çözünen, ancak çözünürlüğü organik madde bozulumu sonucu artan asidite ile yükselen apatittir. Bu nedenle de toprak organik maddesi fosfat beslenmesinde çok önemli rol oynar ve erozyon bitkilerin kullandığı fosfatın üç katına kadarının organik maddeyele birlikte kaybına neden olur. Doğal olarak toprak nemi artışı fosfat alımını arttırır. Toprak çözeltisinde nitrat derişiminin artışı ise fosfat alımını kısar, sülfat da aynı yönde fakat daha az etkilidir. Bunun nedeni aralarındaki rekabettir. Topraktaki toplam P %0.15 - 5 oranındadır. Yararlı fosfor düzeyi ise pH 6.5 - 7.5 arasında maksimum olur ve A horizonunda 10 kat farklılık gösterebilir, çünkü ortalama olarak %25 - 75 oranındaki kısmı organik maddedeki organik bileşikleri ve özellikle fosfo - humat bileşikleri halindedir. Bu nedenle de pratik olarak yıkanma ile kaybı önemsiz düzeydedir. Organik fosfat bileşikleri parçalanınca bitkilere yararlı Fe, Al, Ca, Mg, Na ve K ile fosfat tuzları yaptığı oranda kullanılabilir. Bu nedenle de topraktaki azot ve fosfor oranları değişimi paralellik gösterir. Yaşlı ve bitki örtüsü olan topraklarda alt horizonlarda azalır, çünkü bitki köklerince tüketilen kısmı yenilenemez. Toprak organik maddesinde fitin, fosfolipid, nükleik asit gibi bitki artığı ve mikrobiyal kökenli maddeler halinde bulunur ve mineralize olmaları ile yarayışlı hale gelirler. Bu olay da organik maddenin C / P oranı ile ilişki gösterir. Oran < 200 - 300 aralığında olduğunda mineralizasyon hızı yükselir, > 300 olduğunda ise mineral fosfat özellikle asidik topraklarda bol bulunan kolloidal Fe, Al ve Mn oksitleri tarafından tuzları halinde, veya silikat killerine adsorbe olarak immobil hale geçer, fikse edilir ve yararlı fosfor azalır. Fiksasyon%98 - 99.9 gibi yüksek oranlara kadar çıkabilir. Kireçli alkalin topraklarda da çözünmez Ca fosfat halinde çökelir. Kükürt Beslenmesi özellikle sülfat iyonu alımı ile olur, zararlı derişime ulaşmamış SO2 gazı halinde havadan da alınabilir. S eksikliği N eksikliğine benzer şekilde özellikle yaşlı yapraklarda sararma ve kuruma ile dökülme, protein kaybı ve karbohidrat birikmesi görülür. Kök gelişimi geriler, nodüler N2 fiksasyonu azalır. Toprakta -SO3, trioksit olarak ölçülür ve fosfor gibi organik madde ile yakından ilişkilidir. Toprak organik maddesinin bozunması ile H2S olarak açığa çıkar, bakterilerin aktif olduğu topraklarda okside edilerek tutulur ve sülfatları halinde bitkilerce alınır. Fosfattan farklı olarak tuzlarının yıkanma ile kaybı ve kurak veya yarı - kurak iklimlerde B tabakasında birikimi söz konusudur, bu nedenle de tarımda fosfat gübresi içine katılarak takviyesi gerekir. Derin köklü bitki örtüsünün biyomas artığı ormanlarda çevrimi sağlar. Günümüzde asit yağmurları da bu çevrime katkıda bulunmaktadır. Potasyum Beslenmesi farklılık gösterir, çünkü K inorganik anyonlarla veya organik asitlerle yaptığı tuzları halinde özsuda veya adsorbe durumda kalır. Bu nedenle de bitki artıklarından hızla toprağa karışır. Genelde bitkilerin ve özellikle gramine türlerinin K gereksinimi N gereksinimine yakındır, N2 fikse eden baklagillerde ise tüketilen Ca > K dur ve bu ilişki türler arası rekabette önemli yer tutar. K büyük oranlarda vejetativ organlarda bulunduğundan eksikliği önce yapraklarda kendini gösterir e lekelere, renklenmelere neden olur. Toprakta bol olması halinde ise gereksiz tüketimi söz konusudur, bu nedenle de büyüme mevsimi erken başlayan türler geç olanlara karşı K üzerinden rekabet gücü kazanır. Bu gereksiz tüketim eğilimi bitki içinde de dengesizliğe yol açabilir, çünkü K tercihi bitkinin özellikle Ca gereksinimini karşılama kapasitesini düşürür. Bitkilerde toprakta olduğu gibi bu açıdan sabit bir katyon eşdeğeri kapasitesi vardır ve K, Na, Ca ve Mg tarafından paylaşılır. Dr. A. Ergin DUYGU

http://www.biyologlar.com/topraktan-mineral-madde-alimi-2

Balıklarda Sindirim sistemi

Diğer omurgalılarda olduğu gibi, balıklarda da sindirim ağızda, başlar, farinks (yutak), özofagus (yemek burusu), mide ve bağırsaklarda devam ederek anüste son bulur. Aşağı yukarı bütün tatlısu balıklarında esas yapıda pek büyük farklılıklar yoktur. Fakat beslenme tarzının değişik olmasına göre (herbivor veya karnivor) özellikle barsak uzunluğunda önemli farklar göze çarpmaktadır. Ağız ve Dişler Morfoloji bahsinde anlatıldığı gibi, balıklarda ağız tipleri beslenme tarzına göre çok değişik şekillerde olabilmektedir. Ağız boşluğu içersinde, glossum'un üzerini bir derinin örtmesiyle meydana gelmiş ve kaslı kısımları fazla gelişmemiş bir dil mevcuttur. Diğer omurgalılardan farklı olarak ağız cidarında veya ağız boşluğuna açılan sindirim bezleri bulunmaz. Buna karşın ağızda çeşitli şekillerde olabilen dişler yer almaktadır. Sindirimle ilgili olan bu dişler genellikle bulundukları yere bağlı olarak başlıca 3 grupta incelenebilirler. • Çeneler üzerinde bulunan dişler : Bunlar üst çenenin premaxil ve maxil kemikleri ile alt çenenin dental kemiği üzerinde yer alan genellikle zayıf köklü ve içleri boş olan dış iskelet elementleridir. Fonksiyonlarına göre çeşitli şekillerde olabilen kesici, köpek ve azı dişleri olarak isimlendirilmektedirler. • Ağız boşluğunda bulunan dişler : Genellikle ağız boşluğunu çevreleyen Vomer, Palatin ve Ektopterigoid kemikleri ile dil üzerinde bulunurlar. Eğer ağzın arka tarafında olurlarsa Vomer, damakta olurlarsa Palatin, dil üzerinde bulunurlarsa Lingual dişler adını alırlar. Dil üzerinde bulunan dişler Esox lucius, Salmo trutta, Lampetra fluviatilis'de; Palatin üzerinde bulunan dişler Esox lucius, Salmo trutta, Perca fluviatilis ve Cottus gobio'da; Vomer üzerinde bulunan dişler Salmo salar, Perca fluviatilis, Salmo trutta ve Lota lota'da.; solungaç yayları üzerinde bulunan dişler Esox lucius ile Perca fluviatilis'de; Farinksin iç cidarında bulunan dişler ise Cyprinidae familyası üyelerinde görülmektedir. Bunlar arasında özellikle Cyprinidler'e has olan Farinks dişleri ile Salmonid'lerde karakteristik olan vomer dişleri türlerin ayrılmasında taksonomistler için büyük önem arzeden ayırıcı özelliklerdir. Farinks ve özofagus Bazı balıklarda (özellikle Cobitid ve Cyprinid'lerde), üzerinde farinks dişlerinin yer aldığı iki kemik yaydan ibaret çok kısa bir yutak kısmı bulunur. Yutak bölgesinde yer alan, sayıları ve diziliş tarzları türlere göre büyük değişiklikler gösteren farinks dişlerinin şekilleri ve fonksiyonları da türlere göre değişir. Örneğin, Cyprinus carpio ve Carassius auratus'da, besinleri öğütmek için tıpkı bir değirmen taşına benzer; Nemacheiliis cinsinde çamuru filtre etmek için bir kalbur vazifesi görür; Scardinius erythrophthalmus''da böcek larvalarını parçalamak için bir testere gibi iş görür, nihayet Leuciscus cephalus'da ise, böceklerin kabuğunu çıkarmak için bir seri kancalar gibi vazife görür.. Farinksten sonra gayet kısa ve dışarıdan bakıldığında mideden pek ayırt edilemeyen bir özofogus (yemek borusu) gelir. Burada, ağıza alınan suyun mideye girmesini önleyici ve büzücü karakterde olan bir kas mevcut olup, bu kas solunum esnasında yemek borusunu kapatmaktadır. Mide Özofagusun devamında pek iyi bir gelişme göstermemiş olan mide kısmı bulunur. Mide genellikle iki kısımdan ibaret olup birinci kısım genellikle besinlerin sindirilmemiş halde toplandığı Kardiyak bölgesi, ikinci kısım ise sayısı türlere göre değişik olan ve parmaksı görünüşte bulunan divertikulumların (plorik çekum = kör barsak) açıldığı Pilor bölgesi'dir. Mide genel olarak kuvvetli kaslardan meydana. gelmiş olup, özellikle Mugilidae familyası mensuplarında çok kalın çeperlidir ve tıpkı kuşların katı midesine benzer şekilde fonksiyon görmektedir. Yırtıcı balıklarda (örneğin, Esox lucius'da.} mide çok şiddetli etki yapan sindirim enzimleri içerdiğinden bütün halinde yutulan balıklar kısa zamanda ve kolayca sindirilebilirler. Midenin şekli balıklarda çok değişik olabilmektedir. Örneğin, Coregonus'da. (U) harfi sekilinde, Cottus gobio'da. düz bir kese şeklinde, Esox lucius'da ise, bir torba şeklindedir. Bazı balıklarda; Örneğin, Cyprinidac familyasında gerçek mide yoktur, onun için özofagus iyi gelişmiş olup, doğrudan doğruya bağırsağa bağlanır. Genel olarak denilebilir ki, balıklarda karnivorluk derecesi arttıkça mide gelişimi de artar. Bağırsaklar Mideden sonra gelen ve anüse kadar devam eden en uzun sindirim cihazı bağırskklardır. Bağırsak gelişimi balıkların beslenme rejimleri ile ilgili olup, genellikle karnivor formlarda (Esox lucitis) çok kısa; buna karşın, otla beslenen herbivor formlarda (Cyprinns carpio) çok uzundur. Sindirimin son bulduğu açıklık ise, Anüs olarak isimlendirilir. Anüsün konumu çeşitli balık, türlerinde değişik durumlar gösterdiği halde, kemikli balıklarda genellikle Anal yüzgecin hemen önündedir. Anüsün şekli bazı türlerde (örneğin, Cyprintts carpio'da.} sexleri ayırıcı karakter olarak kullanılabilir, örneğin, dişi sazanda anüs konvex veya kabarık durumda olduğu halde, erkekte konkav yani çukur görünüştedir. Buraya kadar açıklanan ve sindirim borusunun esasını teşkil eden organlardan başka yardımcı sindirim bezleri de mevcuttur. Bunların başlıcaları Karaciğer ve Pankreas olup, özsularını mide ile bağırsağın birleştiği bölgeye akıtırlar. Genel olarak çok hacimli yapıya sahip karaciğer iki büyük loptan meydana gelmiştir. Yüksek dozda A ve D vitaminleri içerir. Pankreas ise, balıklarda iyi gelişmemiştir. Birçoklarında dışardan farkedilmeyecek derecede küçülmüş olup, dağınık bir durum arz etmektedir.  

http://www.biyologlar.com/baliklarda-sindirim-sistemi

Arı Hastalıkları ve Sınıflandırılması

Arının gelişme dönemi pek çok hastalık etmeni ve zararlı için uygun ortam oluşturduğundan arılarda çok sayıda hastalık ve zararlı görülmektedir. Bununla birlikte, dünyadaki hızlı ulaşım, kıtalar ve ülkelerarası arı, arı ürünleri ve arıcılık malzemeleri ticareti arı hastalıklarının kısa sürede tüm ülkelere yayılmasına neden olmaktadır. Benzer şekilde, gezginci arıcılık da hastalık ve zararlıların ülke içindeki hızlı yayılışında önemli bir etkendir. Arı hastalıkları genellikle ilkbahar aylarında görülür. Bunun başlıca nedeni ilkbahar aylarında özellikle yavru yetiştirme faaliyetinin büyük hız kazanmış olması ve beklenmeyen soğuk ve yağışlı havalardır. Bu nedenle bu kritik dönemde arıların özellikle yavru hastalıklarına karşı korunması için, koloni kontrollerinde koloninin üşütülmemesine özen gösterilmelidir Arı hastalıkları, hastalığı oluşturan etmene göre; bakteriyel (Amerikan ve Avrupa Yavru Çürüklüğü, Septisemi), fungal (Kireç ve Taş hastalığı), viral (Kronik ve Akut Arı Felci), paraziter (Varroa jacobsoni ve Acarapis voodi) ve Protozoan (Nosema ve Amoeba) ya da hastalığın oluştuğu konukçuya göre; Ergin ve Yavru Arı Hastalıkları olarak sınıflandırılabilir. Pek çok patojen arıların gerek gelişme gerekse yetişkin dönemlerinde hastalık oluşturabilir. Ancak bu patojenlerin hepsi aynı derecede tehlikeli değildir. Amerikan yavru çürüklüğü ve varroa gibi çok tehlikeli ve hızlı yayılıcı bazı arı hastalık ve zararlılarının kontrolünde "Ulusal Kontrol Programları"na ihtiyaç duyulur. Halihazırda ülkemizde mevcut olup ve ülkemiz arıcılığı için önemli bulunan bazı arı hastalık ve zararlıları aşağıda verilmiştir. 1. Yavru Hastalıkları a) Amerikan Yavru Çürüklüğü Ülkemizde ihbarı zorunlu yavru hastalıklarından olan bu hastalığın etmeni Paenibacillus larvae adlı bir bakteridir. Değişik çevre şartlarında uzun bir yaşam süresi olan sporları besleme görevi yapan bakıcı arılar tarafından larvaya bulaştırılır. Hastalığın yayılmasını sağlayan sporlar kovanın herhangi bir yerinde, peteklerde, bal ve balmumunda veya herhangi bir ortamda 35-60 yıl canlı kalıp bu süre sonunda bile hastalık oluşturabilirler. Bu nedenle bu hastalığa karşı gerekli hassasiyetin gösterilmesi ülkemiz arıcılığının geleceği yönünden hayati önem taşımaktadır. Amerikan yavru çürüklüğü görüldüğünde veya şüpheli durumlarda Tarım ve Köyişleri Bakanlığının İl ve İlçe Müdürlüklerine veya Ankara Etlik ve İzmir Bornova'da bulunan Veteriner Kontrol ve Araştırma Enstitülerine ya da Ek.1'de adresleri verilen arıcılık konusunda uzmanlaşmış kurumlardan birine başvurularak teknik yardım istenmelidir. Ayrıca, bu hastalığın ihbar edilmesi kanuni bir zorunluluktur. Hastalıklı kolonilerin nakilleri de yasaktır. Arıcı her şeyden önce kendi geleceği için bu kurallara uymalıdır. Hastalığın Belirtileri Yavrulu petekler incelendiğinde öncelikle düzensiz yavru görünümü dikkat çeker. Kapalı yavrulu hücreler arasına dağılmış düzensiz açık yavru ya da boş hücreler gözlenebilir. Dışbükey görünümünde olması gereken kapalı yavru hücreleri içe çökmüş, çukurumsu görüntü sergiler ve üzerleri deliktir. Hastalıklı yavru beyazdan sarıya daha sonra da kahverengine dönüşür, bir çöple dışa çekildiğinde iplik şeklinde uzar ve tutkal gibi kokar. Çürüyerek ölmüş yavrunun kalıntısı hücre yan duvarı ve tabanına yapıştığından arılarca temizlenmesi zordur. Mücadelesi Bu hastalıkla en kesin ve en etkili mücadele yöntemi, hastalıklı kolonilerin tümüyle yakılarak yok edilmesidir. Böylece, hastalığın diğer kolonilere bulaşması önlenmiş olur. Bazı ülkelerde hastalıklı kolonilerin yakılması yasal bir zorunluluktur. Bakteri sporları antibiyotiklerle öldürülemediği için hastalıkla mücadelede antibiyotik uygulamasının fazla bir yararı olmaz. Antibiyotik uygulaması hastalığı baskı altına alabilir ancak uygulamadan vazgeçildiği anda hastalık tekrar görülür. Daha önemlisi, bu tür koloniler arılıktaki diğer sağlıklı koloniler ve bölge için sürekli hastalık kaynağı olurlar. Arıları ve petekleri yakılmış koloninin, boş kovanı ve kovan kapağı pürümüzle en ince detaylarına kadar yakılıp 40 lt suya 400 gr sodyum hidroksit katılarak elde edilen sıvı ile yıkandıktan sonra tekrar kullanılabilir. Diğer alet ve ekipmanlar da bu sıvı ile yıkanmalıdır. Hastalıktan uzak kalmak için arı satın almalarda ve temel petek kullanımında dikkatli olunmalıdır. Temel petek kullanırken temel peteğin hiçbir zaman hastalık geçirmemiş kolonilerden elde edilmiş balmumundan üretilmiş olmasına özen gösterilmelidir. Temel petek mutlaka sterilize edilmiş balmumundan üretilmiş olmalıdır. Hükümlerine uyulması zorunlu olan "Arıcılık Yönetmeliği"ne göre de temel petek yapımında kullanılacak balmumu 110 oC'da 12 saat süre ile sterilize edilmelidir. b) Avrupa Yavru Çürüklüğü Dünyada en yaygın görülen hastalıklardan biridir. Hastalığın etmeni en son yapılan sınıflandırmaya göre Melisococcus pluton adında bir bakteridir. Hastalıkta diğer bazı (sekonder) bakteri türleri de görülür ancak bunlar doğrudan hastalık oluşturmazlar fakat ölü larvanın kokusu ve kıvamı üzerinde etkili olurlar. Hastalığın Belirtisi Hastalığın kendine özgü kokmuş et ya da balık kokusunu andıran kokusu kovan açıldığında algılanabilir. Açık yavru döneminde ölmüş larvalar koyu kahverengi ve siyaha yakın renktedir ve larvadaki renk değişimi önemli bir belirtidir. Hastalığın çok şiddetli seyrettiği durumlarda kapalı yavru gözlerinde de görülebilir. Ölmüş larva bir çöple çekildiğinde Amerikan yavru çürüklüğünde görülen ipliksi uzama görülmez, kolayca petek hücresinden çıkartılabilir. Genellikle, Amerikan yavru çürüklüğü kapalı yavrularda görülürken Avrupa yavru çürüklüğü açık yavrularda görülür. Mücadelesi Amerikan yavru çürüklüğündeki uygulamanın aksine şiddetli durumlar hariç, bu hastalıkta arıların ve yavru peteklerin imhasına gerek yoktur. Koloninin ana arısı bir süre kovan içerisinde kafeslenerek yumurta atması engellenir. Oxytetracycline, erythromycin veya diğer antibiyotik uygulamaları ile tedavi edilebilir. Ancak, antibiyotik kullanımı konusunda mutlak surette bir uzmanın görüş ve önerileri alınmalıdır. Çünkü antibiyotikler belli aralıklarla, belli dozlarda ve belli bir süre için kullanılması gereken maddelerdir. Aksi halde arı kolonisine, aile bütçesine ve balın kalitesine zarar verilir. Antibiyotik verilen kovanın balı uzun bir süre tüketilmemelidir. Örneğin bu sürenin oxytetracycline grubu için en az 8 hafta olmasına karşın diğer antibiyotik grupları için 1 yıla kadar çıkabilir. Arılıkta kullanılan ekipman ve hastalıklı kolonilerin boş kovanları 50 lt suya 1 kg soda veya 1/1'lik amonyum klorid eriyiği ile dezenfekte edilmelidir. Yavru Çürüklüğü Hastalıklarından Korunma Gerek Amerikan yavru çürüklüğü gerekse Avrupa yavru çürüklüğü hastalıklarından korunmak için; * Arılık her zaman temiz ve düzenli olmalıdır. * Arı ve ana arı satın alırken alımlar, sağlık belgesi veren ve güvenilir kurumlardan yapılmalıdır. * İkinci el alet-ekipman alındığında bunlar dezenfekte ve sterilize edilmelidir. * Amerikan yavru çürüklüğü hastalığının bulaşmasını ve yayılmasını sağlayan bakteri sporları bal içinde yıllarca yaşayabildiğinden arılar kaynağı belli olmayan ya da hastalık geçirmiş arılıklardan elde edilen ballarla beslenmemelidir. * Kaynağı belli olmayan oğullar arılığa alınmamalıdır. * Arılıkta yağmacılığa meydan verilmemelidir. Kovanların yerleşme düzeni arıların yanlış kovanlara girmelerini önleyecek şekilde olmalıdır. Bunun için kovanların uçuş delikleri farklı yönlere bakmalı ve kovanlar arası mesafe 1-2 m'den az olmamalıdır. Mümkünse bu mesafe artırılmalıdır. * Koloniler arasında petek alış-verişi yapılırken dikkatli davranılmalıdır. * Mümkün olduğunca eski petek kullanmaktan kaçınılmalıdır. * Koloniler nektar ve polen kaynağı yönünden zengin bölgelerde tutulmalı, hastalık riski bulunan yerlere arı götürülmemelidir. * Koloniler sürekli kontrol edilmeli, hastalığın yayılmasını önleyen en etkili yolun erken teşhis olduğu unutulmamalıdır. c) Kireç Hastalığı Etmeni Ascosphaera apis adlı bir fungus (mantar) olan yavru hastalığıdır. Hastalıklı larvalar mumyalaşmış olup siyahımsı, gri veya beyaz renktedirler. Hastalığın ilk dönemlerinde beyazlaşmış larvalar iki parmak arasında ezilebildiği halde ileri dönemde pirinç tanesi gibi sertleşerek arılar tarafından kovan önüne ve uçuş tahtası üzerine atılırlar. Hastalığın etmeni olan sporlar toprak altında ve değişik ortamlarda 15 yıl etkinliğini sürdürebildiğinden ve rüzgarla sürüklenebildiğinden bu hastalıkla daha çok kültürel önlemlerle mücadele edilerek başarılı sonuçlar alınabilir. Hastalığa neden olan fungus, yeterli havalandırmanın olmayışı sonucu kovanda biriken CO2 ve nemli ortamda gelişir. Bu nedenle kovanlar sehpalar üzerine yerleştirilerek havalandırma sağlanmalı ve nemden korunmalıdır. Kireç hastalığına karşı alınabilecek bir başka önlem, hastalığa yakalanan kolonilerin ana arılarının hastalığa yakalanmayan kolonilerden üretilen yeni ana arılarla değiştirilmesidir. Zayıf koloniler hastalığa daha hassastırlar. Bunun için güçlü kolonilerle çalışmak en iyi kültürel yöntemdir. Kolonilerin beslenmesi ve arılara doğal nektar kaynağı sağlanması da bu hastalığa karşı etkin bir mücadele yöntemidir. Kolonide stres oluşturan açlık, üşütme ve rahatsız etme gibi durumlar yanında bölme yaparak koloni işçi arı varlığının azaltılması, gereksiz ve yanlış antibiyotik kullanarak larvanın sindirim sistemindeki faydalı floranın tahrip edilmesi kireç hastalığının ortaya çıkmasına veya şiddetinin artmasına neden olan uygulamalardır. Bu uygulamalardan kaçınmak, güçlü koloniler ve genç ana arılarla çalışmak alınabilecek en iyi koruma tedbirleridir. Kireç hastalığının tedavisinde koloni şartlarında uygulanan ilaçlı mücadele denemelerinden bugüne kadar tatmin edici olumlu sonuçlar alınamamıştır. 2. Ergin Arı Hastalıkları a) Nosema Nosema apis adı verilen tek hücreli bir mikroorganizmanın neden olduğu, oldukça tehlikeli sayılan ergin arı hastalığıdır. Hastalığa yakalanmış kolonilerde davranış değişimi ve hızlı yaşlanma görülür. Hastalığın kesin olarak tanınması için hasta arı midesinin makroskobik veya mikroskobik incelenmesi gerekir. Normalde saman rengi olan sağlam arı midesi hasta arıda katı, kirli ve beyaz renktedir. Hastalık yıl içerisinde çeşitli zamanlarda görülebilmekle beraber en yüksek düzeyde ilkbaharda, ikinci derecede ise sonbaharda ortaya çıkar. Nosemaya yakalanmış kolonilerde; çerçevelerin, peteklerin, kovan kapağı ve uçuş tahtası üzerinde turuncu ve beyaz renkte arı pisliği görülür. Hastalığın yayılması besin yoluyla olur. Hasta arılar bakıcılık gücünü kaybederler, uçamazlar ve kovan etrafında sürünürler. Nosema hastalığının önlenmesi ve tedavisinde fumagillin uygulaması yapılır. İlaç ilkbahar ve sonbaharda şerbetle birlikte verilir. Özellikle sonbaharda şurupla birlikte verilen fumagillin iyi bir tedbirdir. Kolonilerin polen dışında polen yerine geçen kek karışımları ve kış aylarında salgı ballarıyla beslenmesi hastalığa sebep olabilen uygulamalardır. Hastalık daha çok besleme hataları sonucu ortaya çıkar. Bu hastalıkla ilişkili olarak, arıların bal ve polen dışında herhangi bir maddeye ihtiyaç duymadıkları unutulmamalıdır. 3. Paraziter Hastalıklar a) Varroa Bu hastalık, Varroa jacobsoni adlı bir dış parazitin sebep olduğu, hem yetişkin arıda hem de yavruda zarar oluşturan, çok hızlı gelişmesi ile tüm dünya üzerine yayılan ve mücadele edilmediği taktirde kolonilerin sönmesine neden olan tehlikeli paraziter bir hastalıktır. Varroanın dişisi oval görünümde ve koyu kahve renktedir. Vücut uzunluğu 1.1-1.3 mm, eni ise 1.5-1.7 mm arasında değişmektedir. Vücudun alt kenarı 4 çift bacak ile çevrilidir. Ağız yapısı sokucu ve emicidir. Gerek ergin gerekse larva ve pupa döneminde arının kanını emerek beslenir. Bu nedenle arıya her dönemde zarar verir. Erkek varroa, sarı-gri renkte yuvarlak görünümlü, dişi varroaya oranla daha yumuşak bir kitin ile kaplıdır. Erkek varroalar dişi ile çiftleşme sonrası öldüklerinden yetişkin arı üzerinde görülmezler. Varroanın kolonilerde üremesi ilkbahar kuluçka faaliyetiyle birlikte başlar. Sonbaharda bu faaliyetin sona ermesine kadar sürer. Kışı yalnızca ergin dişiler geçirir. Varroanın üreme ve gelişmesi kapalı yavru gözlerinde gerçekleşir. Ergin dişiler yavru gözlerinin kapanmasından hemen önce bu gözlere girerek iki gün sonra yumurta bırakmaya başlarlar. İlk 24 saatte yumurtalardan 6 bacaklı larvalar çıkar ve tüm gelişim erkeklerde 6-7 günde, dişilerde ise 8-10 günde tamamlanmaktadır. Gelişimini tamamlayan varroalar kapalı yavru gözü içinde çiftleşirler. Çiftleşmeden hemen sonra erkek ölür. Dişiler ise beslenmeyi sürdürerek arıların gözden çıkması ile birlikte gözü terk ederler. Ergin dişi varroalar kışın 5-6 ay yazın ise 2-3 ay yaşarlar. Ergin dişi varroanın yavru gözüne 5 ve daha fazla yavru bırakması durumunda arı gelişmesini tamamlayamaz ve siyahımsı-gri renkte kanatsız olarak çıkar. Ancak bir görüşe göre kanatsızlığın doğrudan varroaya bağlı olmadığı parazitin varlığında etkisini gösterebilen bir virüse bağlı olduğu belirtilmektedir. Varroa parazitinin gerek larva ve pupa gerekse ergin dönemde arının kanını emerek gelişme ve çalışma aktivitesini zayıf düşürmesi başka hastalıkların da ortaya çıkmasına neden olmaktadır. Mücadelesi Kimyasal Mücadele Varroanın dünyada ve ülkemizde ilk görüldüğü yıllarda mücadele için uygun olan veya olmayan bir çok ilaç varroa mücadelesinde kullanılmıştır. Günümüzde varroa mücadelesi için piyasada 20 civarında ruhsatlı ilaç bulunmasına rağmen bazı arıcılar ruhsatsız ilaç ve karışımlar kullanabilmektedir. Varroa mücadelesi için ruhsatlandırılmamış hiçbir ilaç hiçbir zaman; ruhsatlı olanlar da kullanılma dönemleri dışında özellikle de bal üretim dönemlerinde kullanılmamalıdır. Aksi halde, bu ilaçların bal ve balmumundaki kalıntıları insan sağlığını olumsuz yönde etkileyecektir. Varroa mücadelesinde bir başka önemli nokta mücadele dönemidir. Erken ilkbaharda kolonilerde kapalı yavrunun olmadığı veya en az olduğu, sonbaharda ise kapalı yavrunun sona erdiği son bal hasadından sonraki dönem en etkin mücadele dönemidir. Varroa mücadelesinde altın kural; mücadelenin uygun zamanda, uygun ilaçla uygun dozda yapılmasıdır. Bahsedildiği üzere varroa ile en iyi mücadele zamanı erken ilkbahar ile geç sonbahardır. Kapalı yavru dönemindeki kimyasal mücadeleden olumlu sonuç almak mümkün değildir. Çünkü hiçbir ilaç kapalı yavru içindeki varroalara ulaşamamakta ve öldürememektedir. Fiziksel Mücadele Bilindiği gibi dişi varroalar ilkbahar döneminde yumurta atmak için erkek arı gözlerini tercih ederler. Bu dönemde kolonilere üzerinde erkek arı gözü bulunan petekler verilerek dişi varroaların erkek arı gözlerinde toplanması sağlanır. Bu gözler kapandıktan sonra kovandan çıkartılarak imha edilir. Böylece dişi varroanın bu dönemde attığı yumurtalar ve kendisi erkek arı pupaları ile birlikte yok edilmiş olur. Bu dönemde koloniye yarısı kesilmiş petekli çerçeve verildiğinde, arılar peteğin alt kısmına erkek arı gözlü yeni petek örerek tamamlarlar. Varroalar erkek arı gözlerinde çoğalmayı tercih ettiklerinden gözlerin kapanmasından hemen önce bu gözlere girerler. Bu gözlerin kapanmasından sonra erkek arı gözlü petek kesilerek imha edilir. Bu yöntemle kolonideki varroa miktarını azaltmak mümkündür. Ancak aynı zamanda işçi arı gözlerinde de çoğalan varroalar etkinliğini sürdürür. Bir başka mücadele yöntemi, nektar akımı döneminde işçi arı gözleri içerisine bırakılan varroa yumurtalarını yok etmeye yönelik çalışmadır. Bu yöntemde, koloninin ana arısı ana arı ızgarası kullanılarak bir çerçeveye hapsedilir ve böylelikle bütün varroa yumurtalarının bir petekte toplanması sağlanır. Bu petek kapalı yavru döneminde kovandan çıkartılarak imha edildiğinde kovandaki varroa yumurtalarının tamamı yok edilmiş olur. Bu yöntemin dezavantajı her dönemde uygulanamaması ve koloni gelişimini kısmen engellemesidir. B- Arı Zararlıları a) Petek Güvesi Büyük Petek Güvesi (Galleria mellonella) ve Küçük Petek Güvesi (Achroia grisella) olmak üzere iki türü vardır. Büyük petek güvesi daha zararlıdır. Petek güvesi özellikle sahil şeridindeki arılıklarda daha sık görülür ve ciddi tahribatlar oluşturur. Güvenin larvası zayıf kolonilerin peteklerinde ve balı süzülmüş peteklerin saklanması sırasında, peteklerdeki balmumu ve polenle beslenerek petekleri tahrip eder. Koloni güçlü olduğu ve tüm petekler arılarla sarılı olduğu sürece koloni içinde zarar veremez. Bu yönüyle koloni içinde bulunan peteklerin tümünün arılarla sarılmış olması güvenin çoğalmasını önler. Güve sorunu ve tahribatı daha çok balı süzülmüş peteklerin saklanması sırasında görülür. Balı süzülmüş peteklerin korunmasında fiziksel, kimyasal ve biyolojik metotlar kullanılabilir. Peteklerin 10 oC'nin altında örneğin soğuk hava depolarında saklanması peteklerde bulunan güve yumurtalarının açılımını ve larva gelişimini engeller. Peteklerin 12 oC'da 3 saat veya 15 oC'da 2 saat bekletilmesi petekte bulunan yumurta da dahil olmak üzere bütün gelişme dönemlerindeki güveyi öldürür. Kimyasal mücadele olarak peteklerin saklandığı muhafazalı odalarda 1 m3 hacim için 50 g toz kükürt yakılarak peteklerde bulunan güve larvaları, pupaları ve yetişkinleri öldürülebilir. Bu uygulamada güve yumurtaları ölmediği için uygulamanın sıcaklığa bağlı olarak tekrarlanması gereklidir. Kimyasal mücadele olarak arıcılar arasında sıkça görülen naftalin kullanılmamalıdır. Kanserojen ve petrol ürünü olan naftalin bal ve balmumunda kalıntı bırakmaktadır. Biyolojik mücadele olarak uygulanan Bacillus thuringiensis'in temel peteklere katılması dış ülkelerde uygulanmakta olup ülkemizde bu uygulama henüz yapılmamaktadır. b) Eşek Arıları Ülkemizde Vespa orientalis ve Vespa crabro adlı türleri oldukça yaygındır. Yavru yetiştirme dönemlerinde bal arılarını arazide besin toplarken veya kovan uçuş tahtası üzerinden yakalayarak yuvalarına götürürler. Bazı yıllarda arılara ciddi zarar verirler. Eşek arıları ile kesin bir mücadele yöntemi olmamakla birlikte; yuvaların tahrip edilmesi, içine et, balık, ciğer konan tuzaklarla sayılarının azaltılması, kovan giriş deliğinin daraltılması, böcek öldürücü ilaç ve kıymadan yapılacak zehirli yem ile yuvalarındaki yavrularının öldürülmesi faydalı olabilecek bazı uygulamalardır. En iyi yol, eşek arısı sayısının çok arttığı dönemlerde kolonilerin bu bölgeden taşınmasıdır.

http://www.biyologlar.com/ari-hastaliklari-ve-siniflandirilmasi

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

Bakteriyofaj Nedir

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion Oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların Salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300′ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj Terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı’da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği’nde 1940′lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006′da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır. Model Bakteriyofajlar Aşağıda ayrıntılı olarak üzerinde çalışılmış olan bakteryofajların bir listesi bulunmaktadır: * λ faj * T4 fajı * T7 fajı * R17 fajı * M13 fajı * MS2 fajı * P1 fajı * P2 fajı * N4 fajı * Φ6 fajı * Ф29 fajı

http://www.biyologlar.com/bakteriyofaj-nedir

EVREN, EVRİM VE İNSAN

Dünya Toprağın anası olan sıcak, kıvamlı çorba: Kimyasal evrimin son aşamaya ulaşması ve biyolojik evrimin başlaması için uygun ortam... Viroyitler ile virüsler: Organik maddeyle canlı yaşam arasındaki geçiş ürünleri mi? Canlılar, ilyarlarca yıl süren bir gelişmenin ardından 600 bin yıl önce Kambriyen Patlaması’yla çeşitlenmişler. İnsanla maymunun ortak atası olan primatlar ise epi topu 70 milyon yıl önce ortaya çıkmışlar. Ve 5 milyon yıl önce başdöndürü bir gelişme: Önce insansılar, sonra Homo Habilis, Homo Erectus, Homo Neanderthalis ya da Homo Sapiens ve 50 bin, yalnızca 50 bin yıl önce de Homo Sapiens Sapiens: İşte insan!.. İnsanın çamurdan yaratıldığını anlatan dinsel efsanelerle, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığını söyleyen evrime ilişkin bilimsel bulgular arasındaki tek ayrım, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı... Bugün üstünde yaşadığımız gezegen, hiçliğin içindeki bir noktada meydana gelerek evreni oluşturmaya başlayan Büyük Patlama’dan 15 milyar dünya yılını aşkın bir süre sonra, bağrından koptuğu yıldızın etrafında yörüngeye ilk girdiğinde, herhalde, alev alev yanan bir top gibiydi. Bu alev topunun son kalıntıları, Dünya’nın çekirdeğinde, dışarı akacak mecra bulmak için hala ayaklarımızın altındaki zemini yoklayıp duruyor. Varoluşundan tam 4 milyar 570 milyon yıl sonra bile Dünya’da yanardağlar, arasıra da olsa hala lav püskürtüyorlar. İlk başlarda dünyanın hidrojen, su buharı, amonyak, metan ve hidrojen sülfitten oluştuğu düşünülüyor. Laboratuvarda böyle bir gaz karışımına dışardan enerji verildiğinde bir süre sonra kahverengi bir bulamaç elde ediliyor. Dünya’nın da böyle bir süreçten geçerek en dış kabuğundan itibaren önce sıcak, kıvamlı bir çorba halini aldığı, sonra ağır ağır katılaştığı varsayılıyor. Toprağın anası olan bu sıcak, kıvamlı çorba, Güneş’in aşırı sıcağında gelişen kimyasal evrimin son aşamaya ulaşması için uygun bir ortam oluşturmuşa benziyor. Ve kimyasal evrim tamamlandığında; yani evrenin veri olan koşullarında varolabilecek bütün gelişme basamaklarında, giderek artan farklı sayılarda elektron ve protondan oluşan atomlar ile izotopları kararlılık kazandıklarında, niteliksel bir sıçramayla biyolojik evrim aşamasına geçilmiş olması gerekiyor. İnorganik maddeden organik maddeye... Aminoasitler ile nükleik asitlere... Ve cansız maddeden canlı maddeye... Bilinen en basit canlılara viroyit adı veriliyor. Bunlar yaklaşık 10 bin atomdan oluşuyorlar. Viroyit, 250 m. uzunlukta bir RNA dizisinden başka birşey değil... Ve kendi kendisini üretebiliyor. Bazı virüsler de yine bir RNA dizisiyle bunu çevreleyen bir protein tabakasından oluşuyorlar; ama bazılarında da hem RNA hem DNA bulunuyor. Elbette virüsler de kendi kendilerini üretebiliyorlar. Ama viroyitlerle virüslerin canlı sayılıp sayılamayacağı hala tartışmalı... Zira en ilkelinden en gelişmişi olan insana kadar bütün canlı türlerinin hücrelerinde RNA’nın yanısıra bir de, viroyitlerle bazı virüslerde bulunmayan ve çok önemli olan DNA molekülü mutlaka var... Ve her canlı türünün DNA molekülü farklı... DNA moleküllerindeki farklılık, basitten karmaşığa doğru tırmanan bir farklılık... En basiti virüsler, sonra tek hücrelilerde, en karmaşığı insanda... DNA molekülü bir şifre... Sözkonusu canlının bütün özelliklerini belirleyen şifre... Hücreler, bu şifrenin RNA vasıtasıyla taşınan talimatları doğrultusunda örgütleniyorlar ve birbirlerinden farklılaşıyorlar. DNA molekülü kendi etrafında dolanan uzun bir ip merdivene benziyor ve hücre bölünmesiyle gerçekleşen üreme sürecinde düşey olarak ikiye ayrılarak ilk hücreden üreyen iki yeni hücrede kendi yarımından kendisini yeniden üretebiliyor. Döllenmeyle gerçekleşen üreme sürecinde de, eşlerden her birinin DNA molekülleri yine düşey olarak ikiye ayrılıyor ya da çözülüyorlar. Döllenme gerçekleştiğinde, erkeğin yarım DNA’sıyla dişinin yarım DNA’sı birleşerek yeni bir DNA molekülü oluşturuyorlar. Ve biyolojik evrim hep DNA bazında gerçekleşiyor. Gerek kendi yarısından kendini üretmesi esnasında, gerekse iki yarımın birleşmesi esnasında çoğu zaman hiçbir mesele çıkmıyor ama, arasıra da DNA’yı oluşturan bazı moleküller tam yerine oturmuyorlar. Ya da ortamda bulunan başka bazı moleküller tam birleşme sırasında gelip DNA’ya katılıyorlar. Böylece şifre, bir ayrıntıda değişmiş oluyor. Ve ayrıntıda değişen bu şifre, doğan yeni canlının, anababasından bir ya da birkaç ayrıntıda farklı olmasına yol açıyor. Bu olaya mutasyon/değşinim, bu değişik canlıya da mutant/değşinik deniyor. Her döllenmede bir değşinim olması olasılığı yok değil... Ama işin içine olasılıklar girince, yani döllenme sayısı olasılık kurallarının işleyeceği kadar büyük olunca, muhtemelen çan eğrisi biçiminde bir dağılım sözkonusu oluyor. Yani, döllenmeler sırasında çoğu DNA kendisini tıpatıp ya da tıpatıpa çok yakın bir durumda üretmeyi başarıyor. Böylece çoğu döllenme, anababasından farksız yavrular üremesiyle son buluyor. Ama yine her döllenme kuşağında, bir kısmı olumlu, bir kısmı da olumsuz değşinikler de mutlaka ortaya çıkıyor. Bunlar, çan eğrisinin iki ucuna doğru yayılıyorlar. Eğrinin iki en uç kısmında aşırı olumlu değşinikler ile aşırı olumsuz değşinikler bulunuyorlar. Kalıcı olması için bir değşinimin resesif/çekinik değil, dominant/başat özellikte olması; yani değşinik bir başkasıyla ilişkiye girip döl verdiğinde yavrusuna aktarılacak ölçüde güçlü olması gerekiyor. Tabii döl verecek hale gelmesi için sözkonusu değşiniğin öncelikle çevre koşullarına uyum sağlaması, açıkçası hayatta kalmayı başarmış olması koşulu da var... Taşıdıkları farklı özellikler ister olumlu ister olumsuz olsun değşiniklerden çoğu yaşama ayak uyduramayıp ölüyorlar. Buna doğal ayıklama süreci deniyor. Dolayısıyla her değşinim, evrim sürecinde önemli bir yer tutuyor değil... Ancak çevre koşullarıyla uyum sağlayıp doğal ayıklamaya karşı koyan ve kalıcı olabilen ve olumlu değşinimler evrim sürecinde bir gelişmeye neden olabiliyorlar. Ve böyle bir değşinik, ancak uzun, çok uzun bir zaman geçince yeni bir türün ortaya çıkmasına neden olabiliyor. Ayrıntısal değişiklikler üstüste gelip de ilk değşiniğe döl vermiş olan türden çok farklı bir türün çoğalıp kendine Dünya’da yer edinebileceği kadar uzun bir zaman... Bazen milyarlarca, milyonlarca, hiç değilse yüzbinlerce yıl uzunluğunda bir zaman... Carl Sagan ya da Isaac Asimov gibi bazı bilim yazarları, Dünya üstündeki biyolojik evrimi şöyle özetliyorlar: 4 milyar yıl önce dünyada yalnızca moleküller varmış. Zamanla özel işlevli bir takım moleküller biraraya gelerek bir molekül ortaklığı kurmuşlar. Bu, ilk hücreymiş. 3 milyar yıl kadar önce bir değşinim, tek başına varlığını sürdürmekte olan bir hücrenin, bölündükten sonra ikiye ayrılmasını engellemiş. Bunun sonucunda tek hücreli bitkilerden bazıları biraraya gelmişler. Bunlar ilk çok hücreli organizmaları oluşturmuşlar. 2 milyar yıl kadar önce cinsler ortaya çıkmış. Böylelikle aynı cinsten iki organizma DNA’ların ikiye ayrılmasıyla döl vermeye başlamışlar. 1 milyar yıldır bitkiler öyle çeşitlenmişler ve öyle yayılmışlar ki dünyanın çevre koşullarını inanılmayacak kadar değiştirmişler. Çünkü yeşil bitkiler oksijen üretiyorlar. Ve oksijen üreten bitkiler dünyanın okyanuslarını kapladıkça hidrojen ağırlıklı ilk yapı ortadan kalkmış. Hidrojen yerini oksijene bırakmış. 600 milyon yıl önce Kambriyan Patlaması adı verilen bir olgu gerçekleşmiş ve yeşil bitkilerin yanısıra birdenbire bir dizi yeni canlı türü ortaya çıkmış. Önce ilk balıklar ve omurgalılar... Bu arada önceleri yalnızca okyanuslarda yaşayan bitkiler kara parçalarını işgal etmeye başlamışlar. İlk böcekler gelişmiş. Bunlardan üreyen yavrular karalara çıkmışlar. Kanatlı böceklerle hem karada hem suda yaşayabilen böcekler üremiş. Yine hem karada hem suda yaşayabilen balıklar görülmeye başlamış. Bunun ardından, 300 milyon yıl önce, ilk ağaçlar ve ilk sürüngenler ortaya çıkmış. Bunları dinozorlar izlemiş. Sonra sıra memelilere gelmiş. Tam o sırada ilk kuşlar da uçmaya, ilk çiçekler de açmaya başlamışlar. 70 milyon yıl kadar önce, yunus balıklarıyla balinaların ataları olan ilk balıklar... Ve aynı dönemde, maymunun, orangutanın ve insanın atası olan primatlar... İlk maymunlar 40 milyon yıl önce görünmüş. Ve 5 milyon yıldan beri de başdöndürücü bir gelişme yaşanmaya başlanmış. Önce hominidler/insansılar çıkmış ortaya: Australopithecus Afarensis; sonra, 3 milyon yıl kadar önce Australopithecus Africanus ve türevleri; 2 milyon yıl önce çeşitli hünerleri olan, ellerini tam anlamıyla kullanan ve artık maymundan çok insana benzemeye başlayan Homo Habilis, 1 milyon 6 yüz bin yıl önce ayakta duran ve beyni de büyümüş olan Homo Erectus; 3 yüz bin yıl önce bize iyice benzemeye başlayan ve geride bıraktıklarıyla akıllı olduğunu belli eden Homo Nearderthalensis ya da Homo Sapiens ve yalnızca elli bin yıl kadar önce de akıllının akıllısı ilk gerçek atalarımız: Homo Sapiens Sapiens... İşte insan!.. Bilim henüz, biyolojik evrimin dünya üstündeki gelişmesini de, bilime yakıştırılan türden bir kesinlikle ispatlayabilmiş değil... Bunun birkaç gerekçesi var... Bunlardan bir tanesi, bilimsel kesinliğe ulaşmak için toplanması gereken veri ya da birim bilgi miktarının, Aydınlanma Çağı’da umulandan çok fazla olması... Toplanması gereken birim bilgi miktarının yoğunluğu anlaşıldığı için biz, günümüzde, bilimin giderek daha küçük alanları kapsayacak biçimde bölünmesine, parçalanmasına ve yabancılaşmasına tanık oluyoruz. Bugün 2 bin 5 yüz farklı bilimsel disiplinin varlığından sözediliyor. Bu disiplinler yanyana açılan bir takım kuyular gibi kendi içlerinde giderek derinleşiyorlar, ama hiç değilse şimdilik birbirleriyle pek ilişki kurmuyorlar. Dolayısıyla bir disiplin tarafından elde edilen bilgilerin ve geliştirilen yorumların diğer disiplinler tarafından kullanılması şimdilik pek mümkün olamıyor. İkinci gerekçe, bazı bilgilere ulaşılamaması ve hiç ulaşılamayacak olması... Mesela Kambriyen Patlaması’ndan önceki dönemde yaşamış olduğu varsayılan canlı türlerinin bir kısmının hiçbir iz bırakmadan ortadan kaybolacak bir yapıya sahip olmaları... Bir başka önemli gerekçe ise, bilimle uğraşanların da sonuç itibariyle birer insan olması... Özellikle evrim konusunda, dinsel ve siyasal inançların etkisinden sıyrılamayan bilim insanları, kısıtlı da olsa ellerindeki bilgiyi yorumlarken bazen, eldeki verileri dinsel efsanelere uydurmak için fazlasıyla zorlanmış yorumlar yapabiliyorlar. Halbuki insanın çamurdan yaratıldığını anlatan dinsel efsanelerle bilimin evrime ilişkin bulguları arasında çok da büyük ayırımlar yok... Sonuç olarak bilimsel veriler de, insanın, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığına işaret ediyorlar. Yani bilim, çamurdan yoğrulmuş iki bedene can üflendiğini anlatan efsaneleri bir anlamda doğruluyor. Arada yalnızca, insana önemli görünse de, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı var... Hepsi o!.. Bilimsel açıklamalar kesinlik taşımıyor olsalar da, mantık, eldeki verilerin, evrim sürecinin gerçekliğine inanmaya yeterli olduğunu söylüyor. Ve tam bu noktada insan, kendi soyunun biyolojik evrim sürecinin, hatta fiziksel ve kimyasal aşamalarıyla birlikte bütün evrim sürecinin en son aşaması olup olmadığını merak ediyor.

http://www.biyologlar.com/evren-evrim-ve-insan

Tohumsuz Bitkiler

Bitkiler, fotosentez yapan ökaryotik organizmalar olarak tanımlanırlar. Bitkiler Alemi'nin şekil, büyüklük, yapı, organizasyon, ekolojik istekler açısından büyük farklılıklar gösteren çok sayıda üyesi bulunur. Bitkiler Alemi, Tohumsuz Bitkiler (Cryptogamae) ve Tohumlu Bitkiler (Spermatophyta) olmak üzere iki büyük gruba ayrılır. Tohumsuz Bitkiler, diğerlerinden daha ilkel olarak nitelendirilirler ve sporlarla çoğalmaları nedeni ile Sporlu Bitkiler olarak da adlandırılırlar. Bu gruptaki bitkilerin büyük bir kısmı kök, gövde, yaprak gibi belirgin organ farklılaşması göstermezler. Bitkinin tümü yapraksı ya da şeritsi bir yapıdadır ve bu yapı tallus olarak isimlendirilir. Tallus yapısına sahip olan tüm bitkilere "Thallophyta" (Tallofita) adı verilir. Vejetatif organ farklılaşması gösteren bitkilere ise "Kormophyta" (Kormofita) adı verilir, bu tip yapıya da kormus denir. 1. Algler Suda yaşayan, tek hücreliden koloniye, hatta parankimatik tallusa kadar çok değişik formlardadırlar. Bazımikroskopik algler, suyun hareketi ile pasif olarak hareket ederler, bu nedenle yaşama ortamları suyun serbest bölgesidir. Bu tip alglere fitoplankton adı verilir. Sargassum gibi büyük makroskopik algler de aynı şekilde suda serbest olarak yüzerler. Suyun zemininde yaşayanlarda ise, tutunma organı vardır. Bu tip algler ışığın uygun miktarda ulaşabildiği derinliklerde gelişirler. Alglerin sınıflandırılmasında içerdikleri pigmentler, biyokimyasal özellikleri, depoladıkları maddeler ve kamçı gibi organellerinin yapıları ve hayat devreleri gözönüne alınır. Eşeyli üremeleri, gametlerinin yapı ve biçimlerine göre üç tiptedir: morfolojik olarak aynı, fizyolojik olarak farklı gametlerin birleşmesi izogami olarak tanımlanır. Şekilleri aynı ancak büyüklükleri farklı gametlerin birleşmesine anizogami; küçük ve hareketli bir gamet (spermatozoid) ile büyük ve hareketsiz bir gametin (yumurta hücresi) birleşmesine ise oogami denir. Chlorophyta (Yeşil Algler): Tek hücreli, ipliksi, şeritsi ve elsi tallusa sahip alglerdir. Klorofil a ve b, karotin, lutein ve ksantofil içerirler. Asimilasyon ürünleri nişasta ve yağlardır. Çoğunlukla ototrof yaşamakla beraber, mantarlarla birlikte liken oluşturan türleri de vardır. Genellikle tatlı (% 90) bazılarıda tuzlu sularda yaşarlar. Üremelerinde izo-, anizo- ve oogami görülür. Scenedesmus, genellikle dörtlü ve sekizli koloniler oluşturan bir cinstir ve besin elde etmek için kültürü yapılan türleri vardır (Şekil 3.1.a). Volvox, bu bölümün en iyi tanınan örneklerindendir (Şekil.31.b). Volvox kolonisindeki bireyler birbirlerine plazma köprüleri ile bağlanmışlardır. Üreme ve asimileme hücrelerinin ayrı kutuplarda yer alması, bu kolonideki bireyler arasındaki iş bölümünü gösterdiği için dikkat çekicidir. Yeşil Alglerin Kavuşur Algler (Conjugatophyceae) sınıfında ise konjugasyon adı verilen özel bir üreme tipi görülür. Spirogyra cinsi bu sınıftadır ve üremesinde karşılıklıgelen iki hücreden birinin içeriğinin diğerine akmasıile zigot oluşur. Zigot mayoz bölünme geçirerek yeni bir ipliği oluşturur. Chrysophyta (Altın Sarısı Algler): Tek hücreli ya da koloni oluşturan formları vardır (Şekil.3.2). Klorofil a ve c, β karotin ve ksantofil içerirler. Asimilasyon ürünleri krizolaminarin ve vakuol içindeki yağlardır. Eşeyli ve eşeysiz ürerler. Bu bölümün en tanınmış sınıfı Bacillariophyceae (Diatomae)'dir. Diatomae üyelerinin hücre çeperi iç içe geçmişiki kapak şeklindedir. Kapaklarında amorf silis birikimi nedeni ile öldükten sonra bulunduklarısuyun dibinde diatome toprağı adı verilen katmanı oluştururlar. Bu toprak dinamitin ana maddesi olarak kullanıldığı gibi birçok sanayi dalında filtrasyon işleminde yararlanılır. Phaeophyta (Kahverengi Algler): Çoğunluğu tuzlu sularda yaşayan alglerdir. Çok küçük boyutlu disklerden tallusu 100 metre ya da daha fazla uzunlukta olabilen formlara kadar değişik şekillerde olabilirler vardır. Derin sularda gelişebilirler. Hücre çeperleri içte selüloz, dışta pektin içerir. Laminarin ve fukoidin gibi polisakkarit yapısındaki bileşikler asimilasyon ürünleri arasındadır. Tallusun parçalanması ya da sürünücü organlar oluşturarak vejetatif üremelerinin yanında eşeysiz üremeleri iki kamçılı zoosporlarla gerçekleşir. Hayat devrelerinde sporofit ve gametofit döllerin birbirine morfolojik olarak benzeyip benzememesi gözönüne alınarak bu bölüm üç altsınıfta incelenir. Ectocarpus gibi izomorf döl almaşı gösteren kahverengi algler Izogeneratae; Laminaria gibi heteromorf döl almaşı gösterenler Heterogeneratae alt sınıfına dahil edilirler. Cyclosporae altsınıfında ise Fucus gibi sporofit neslin hakim olduğu algler bulunur. Rhodophyta (Kırmızı Algler): Tallusları genellikle ipliksi yapıdadır. Kloroplastları bant veya yıldız şeklindedir. Klorofil ve karotenoidlerin yanında fikoeritrin ve fikosiyanin içerirler. Hücre çeperleri dışta pektin, içte selülozdur. Florideophycidae alt sınıfında hücre içerikleri plazmodezmler (plazma köprüleri) ile birbirine bağlanmıştır. Çok sayıda parazitik ve epifitik (başka bitkiler üzerinde yaşayan) türleri vardır. Kırmızı ve Kahverengi Alglerden elde edilen ürünlerin oldukça büyük ekonomik önemi vardır. Alginat, agar agar, karragen gibi adlar taşıyan bu ürünler pastacılıktan ilaç sanayiine, kozmetikten tekstil endüstrisine kadar çok genişalanlarda kullanılmaktadır. 2. Bryophyta (Karayosunları) Karayosunları, karasal hayata uyum sağlayan organizmalardır. Bununla birlikte su alışverişini düzenleyen organlarıyeterince gelişmediği için çok nemli ortamları tercih ederler. Hücre çeperleri selülozdan yapılmıştır. Gelişmiş olanlarında, kök, yaprak, gövdeye benzer organları vardır. Tüm dünyada çok geniş yayılım alanına sahiptirler. Bryophyta bölümü üç sınıfa ayrılır. Bunlardan ilki Anthoceratae (Boynuzsu Karayosunları) olup yuvarlak, ince, yapraksı tallusa sahiptirler. Hücrelerinde birer adet kloroplast vardır. Hepaticae (Ciğerotları), toprağa paralel gelişen yapraksı yapıda olup hücrelerinde çok sayıda kloroplast içerirler. Ciğerotlarında sporofit nesil çok küçüktür ve gametofitin üzerinde parazit olarak yaşar. Gametofitin üst yüzünde hava ve su alış verişini sağlayan gözenekler vardır. Bu sınıfın vejetatif üremesi tallusun üzerinde bulunan gemma çanaklarının içindeki pulcuklarla sağlanır. Bu pulcuklara gemma adı verilir. Gemma çanaklarının şekli türlere özeldir. Eşeyli üreme organları ise, ilk ve sonbaharda gametofit üzerindeki şemsiye şeklindeki yapıların üzerinde gelişirler. Musci (Yapraklı Karayosunları) bu bölümün üçüncü ve en gelişmiş sınıfıdır. Üyelerinde mnium tip stomalara rastlanması karasal hayata uyum ile ilgili önemli özelliklerden biridir. Bu sınıfın üyelerinde hayat devresi sporun çimlenmesi ile başlar. Protonema adı verilen bu yapının gelişmesi ile gametofit oluşur. Gametler gametofitin ya uç ya da yan kısımlarında gelişen anteridium ve arkegoniumların içinde oluşturulur. Döllenme için suya ihtiyaç duyulur ve spermatozoid, kimyasal çekimle arkegonium içindeki yumurta hücresine ulaşır. Sporofit (Sporogon) zigotun mitoz bölünmeleri ile şekillenir; genellikle bir sap ve ucunda spor kapsülünden meydana gelmiştir. Sporlar, kapsül içinde bazıhücrelerin mayoz bölünme geçirmesi ile oluşturulup kapsülün açılması ile etrafa yayılırlar. 3. Pteridophyta (Eğrelti Otları) Sporlu Bitkilerin en gelişmiş olanlarıdır. Karasal hayata uyum sağlamışlardır. Oldukça iyi gelişmiş iletim demetlerine sahiptirler. Gametofitleri çok indirgenmiştir. Sporofitlerinde ise kök, gövde ve yaprakları gelişmiştir. Pteridophyta üyelerinde trofofil ve sporofil adı verilen iki tip yaprak bulunur. Trofofiller özümleme yapan yapraklardır. Sporofiller ise, sporangiumları taşıyan özelleşmiş yapraklardır. Eğrelti Otlarının günümüzde yaşamayan çok sayıda fosil formları vardır. Rhynia, Asteroxylon gibi cinsleri bunlara örnek olarak verilebilir. Günümüzde yaşayan cinslerden ise Lycopodium, Selaginella, Isoetes, Equisetum, Asplenium, Adianthum ülkemizde de doğal yayılış alanına sahiptirler. Karayosunlari=bryophyta Genel özellikleri Sucul yaşamdan karasal yaşama geçişi oluşturaan bu bitki grubu üyeleri genellikle nemli bölgelerde yayılış gösterirler. Bu ortamlarda gelişmelerinin nedeni üreme evrelerinde muhakkak suya gereksinim duymalarıdır. İlkel tipleri bulunduğu gibi, çiçekli bitkilere benzer yapılar gösterecek kadar gelişmiş olanları da varolan karayosunlarının çoğunda, ince bir gövde ve bunun üzerinde tek sıralı hücre katmanlarından oluşan ilkel bir yaprak ve ortama tutunmayı sağlayan rizoidleri görmek her zaman olasıdır. Üremeleri genellikle eşeylidir. Ancak bazı Hepaticea üyelerinde gametofit bireyler üzerinde gemma çanakları oluşmuştur. Bu çanaklar üzerinde oluşan gemmalar eşeysiz üremeyi sağlamaktadır. Eşeyli üremelerinde her zaman antitetik döl almaşı (haploid nesli diploid sporofit neslin izlemesi) görülür.Gametofit döl haploid olup monoik ya da dioik olabilmektedir. Erkek organlar anteridium, dişi organlar ise arkegonium olarak isimlendirilir. Anteridiumlarda oluşan spermatazoidler suda yüzerek kemotaksis ile dişi organa ulaşır. Döllenmde sonucu ana bitki üzerinde gelişimini sürdüren ve sporogon adı verilen diploid sporofit bitki oluşur. Sorogonun iç dokusunun farklılaşması ile oluşan sporogenik doku (Arkespor) meosise(mayoza) uğrayarak haploid spor tetratlarını verir. Bu sporlar çimlendiğinde zayıf yada iyi gelişen oldukça uzun ömürlü protonema(ön çim) oluştururlar. Protonema da gelişerek üzerinde erkek ve dşi üreme organı bulunan gametofit bireyleri oluşturur. Bryophyta üyeleri sporangium ve gametangiumlarının çok hücreli oluşu ile bu yapılarının dış bölümlerinin bir sıra kısır kenar hücre katmanıyla çevrilmşi olması gibi nedenlerle Tallophyta'dan ayrılır. Birkaçı dışında genellikle kara yaşamına uyum sağlamış olan türleri içeren karayosunları, nesillerinin haplo ve diplo fazlarındaki farklı özellikleri nedeni ile üç sınıfa ayrılır. 1. Classis: Hepaticae (=Ciğerotları=Marchantiopsidia) 2. Classis: Musci (=Yapraklı karayosunları=Bryopsida) 3. Classis: Anthocerotopsida(=Boynuzlu Ciğerotları)

http://www.biyologlar.com/tohumsuz-bitkiler

Salmonella enfeksiyonuna dikkat

Salmonella enfeksiyonuna dikkat

Kurban Bayramı’nın yaklaşması ile kurban kesimi sırasında bulaşabilecek hastalıklara yakalanma riski de artıyor. Doğada yaygın olarak bulunan bakteriler içerisindeki Salmonella cinsine ait bazı türde kan zehirleyiciler, insanlar ve pek çok hayvan türünde hastalık meydana getirebiliyor. Suriye’nin başkenti Şam’ın Doğu Ğuta bölgesinde tifo hastalığının baş göstermesiyle hastalığa yakalananların sayısının giderek arttığı kaydedilirken gündelik hayatımızda bulaşıcı hastalıklara karşı alınacak önlemler dikkati çekiyor. Kurban Bayramı’nda kurban kesme geleneği ile birlikte hem kesilecek kurbanın hem de kesim koşullarının sağlıklı olması konusunda dikkati çeken uzmanlar ciddi hastalıkların bulaşma riskine karşı uyarıyor. Bulaşıcı hastalıkların başında gelen Salmonella, insanlarda ishalli hastalığa neden olan bir bakteri grubu olarak tanımlanıyor. Az Pişmiş Et, Çiğ Sebzeler ve Hijyensiz Ortam Risk Oluşturuyor Salmonella Enfeksiyonunun mikroplu (özellikle de kanalizasyonun karıştığı) yemek ve suyun tüketilmesi ile bulaştığını belirten Elab Laboratuvarları Yönetim Kurulu Başkanı Dr. Aytaç Keskineğe; “Salmonella cinsi bakterilerin  şebeke suyuna, kanalizasyon sularının karışması sonucu kontamine sularla yıkanmış salatalar, meyveler, içecekler, iyi pişmemiş sebzeler, kontamine eşyalar, süt, süt ürünleri, kümes hayvanlarının et ve yumurtaları, balık, midye, istiridye, istakoz gibi deniz ürünleriyle bulaşabiliyor”  dedi. Yaklaşan Kurban Bayramı ile birlikte kurban kesimlerinde yaşanacak basit çizik ya da kesikler genelde önemsenmediğini kaydeden Dr. Keskineğe temizliğe dikkat edilmediğinde bu tür küçük kesiklerin enfeksiyon kapacağı ve intihap oluşturacağının unutulmaması gerektiğini kaydetti. Salmonella Türleri ve Belirtileri Enterik Ateş Tablosu etken türüne göre Tifo adı verilen ve Sapmonella typhi türünün etken olduğu enfeksiyon ya da paratifo adı verilen ve Salmonella paratyphi türünün etken olduğu bulaşıcıdan sonra hastada 40 °C’yi bulan, gece ve gündüz devam eden ateş görüyor. Kuluçka süresi 8-72 saat olan Gasroenterit Tablosu ise ateşin 38-39 °C civarında olduğu, karın ağrısı ve ishalin ön planda olduğu bir klinik formu olarak tanımlanıyor. Lokal enfeksiyonlar ve sepsise de sebep olabilen Salmonella etkenleri ayrıca taşıyıcılığa sebep olabiliyor. Genellikle hastanın safrakesesine yerleşen Salmonella cinsi bakteriler ile yeni ortaya çıkan taşıyıcılarda  bir yıldan kısa süreyle, kronik taşıyıcılarda ise bir yıldan daha uzun süreyle dışkı yoluyla atılıyor.  Tanı ve Tedavi Yöntemleri Dört farklı klinik durumun muayene bulguları, laboratuar tanıları ve de tedavisinin birbirinden farklı olduğunu dile getiren Dr. Keskineğe; “Doğru öykü muayene ve gerekli laboratuvar testlerinin ivedilikle yapılması ve gereken tedavinin gecikilmeden uygulanması gerekiyor. Laboratuvar tanısında dışkı mikroskobisinin ve dışkı kültürünün çalışılmasıyla, benzer klinik sergileyen diğer bakteriyel, viral ve paraziter enfeksiyonlardan ayırt ediliyor. Kan kültürü ve enfeksiyon odağı olduğundan kuşkulanılan doku ve organları ilgilendiren alanlardan aspirasyonla alınan eklem sıvısı, Beyin omirilik sıvısı, prostat sıvısı gibi biyolojik sıvılardan kültür antibiyogram testlerinin çalışılması gerekmektedir” dedi. Tanı her zaman antibiyotik kullanımını gerektirmeyebiliyor. Bazı klinik durumlarda, örneğin kişinin prematüre, yeni doğan, yaşlı ya da bağışıklık sistemi baskılanmış bir hasta olmadığı halde gereksiz ve ya da yanlış antibiyotik kullanımı ile kişi kendi kendine iyileşebilecekken, hastalık safra kesesine yerleşerek kronik taşıyıcı haline dönüşmesine sebep olabiliyor. Hastalığa zamanında tanı konulması, klinik tedavi uzmanının gözetiminde tedavi edilmesi gerektiğini belirten Dr. Keskineğe; Hastalığın önlenmesi için el yıkama, dezenfeksiyon ve diğer hijyen kurallarına uyulmasının, sanitasyon önlemleri ile şehir kanalizasyonlarının alt yapı ve bakım çalışmalarının titizlikle yerine getirilmesi gerektiğinin altını çizdi.

http://www.biyologlar.com/salmonella-enfeksiyonuna-dikkat

Alglerin içerikleri ve insanlar üzerine etkileri

ALGLERİN EKONOMİK VE EKOLOJİK ÖZELLİKLERİ, SINIFLANDIRILMASI VE ÜREME TİPLERİ

http://www.biyologlar.com/alglerin-icerikleri-ve-insanlar-uzerine-etkileri

Bakterilerde Solunum ve Beslenme

BAKTERİLERİN SOLUNUMLARI a. Anaerob Bakteriler Bakteriler organik besinleriparçalayarak enerjilerini elde ederken genellikle oksijen kullanmazlar. Bunlar havasız yerlerde de yaşayarak çoğalırlar. ( Konservelerde olduğu gibi) Bunlardan bazıları oksijenin olduğu yerde hiç gelişemezler. Örnek: Clastrodium tetani (Tetanoz bakterisi) b. Aerob Bakteriler Bazı bakteri grupları (Escherichia coi, Zatürre ve Yoğurt Bakterisi gibi) ancak oksijenli ortamda yaşayabilir. Bunlarda mitokondri olmadığı için solunum hücre zarının iç kısmındaki kıvrımlarda (mezozom) gerçekleştirilir. Örnek: Azot Bakterileri. c. Geçici Aerob veya Geçici Anaerob Olanlar Asıl solunumları oksijensiz olduğu halde kısa süre için aerob olanlara “Geçici Aerob” denir. Normal solunum şkli aerob olanlar ise havasız kalınca fermentasyona başvururlar. Bunlara “Geçici Anaerob” denir. BAKTERİLERİN BESLENMELERİ Bazı bakteriler ototrof olup, fotosentez veya kemosentez yaparlar. Çoğunluğu ise heterotrof olup, saprofit veya parazit yaşarlar. a. Saprofit Bakteriler: Bakterilerin çoğunluğunu oluşturur. Besinlerini bulundukları ortamlardan hazır sıvılar olarak alırlar. Nemli, ıslak ve çürükler üzerinde yaşarlar. en çok amino asit, glikoz ve vitamin gibi besinleri ortamdan alırlar. Bu tür bakteriler dış ortama salgıladıkları enzimlerle bitki ve hayvan ölülerini daha basit organik maddelere parçalayarak onların çürümesini sağlarlar. Böylece hem toprağın humusunu artırırlar, hem de kendilerine besin sağlarlar. çürütme sonucu çeşitli kokular meydana gelir. Bu yüzden bu olaya kokuşmadenir. Bazı saprofit bakteriler, sütün yoğurt ve peynir olarak mayalanmasını sağlarlar. Saprofitler, dünyada madde devrinin tamamlanmasında önemli rol oynadıklarından hayat için mutlaka gereklidir. b. Parazit Bakteriler: Besinlerini cansız ortamdan değil de üzerinde yaşadıkları canlılardan temin ederler. Çünkü sindirim enzimleri yoktur. Bunların bazıları konak canlıya fazla zarar vermeden yaşayabilirler. Sadece onun besinlerine ortak olurlar. Kalın bağırsağımızdaki Escherichia coli bunun en iyi örneğidir. Bazı parazit bakteriler ise konak canlının ölümüne bile sebep olabilen hastalıklara yol açarlar. Bunlara Patojen Bakteriler denir. Patojenler ya toksin çıkararak ya da konak canlının enzim ve besinlerini kullanarak zarar verirler. toksinler ya dışarı atılır (Ekzotoksin), ya da Bakterinin içinde kalır (Endotoksin). İçinde kalan toksinler bakteriler ölünce zararlı hale geçerler. Canlıların patojen bakterilere ve toksinlerine karşı oluşturdukları savunmaya “Bağışıklık” denir. Parazit bakterilerinin üremeleri oldukça hızlıdır. c. Fotosentetik Bakateriler: Stoplazmalarında serbest klorofil taşırlar. Fotosentezlerinde elektron kaynağı olarak H2O yerine H2S ve H2 kullanırlar. CO2 + H2O ——> Besin + O2 (Mavi-yeşil algler) CO2 + H2S ——> Besin + S + H2O (Kükürt bakterileri) CO2 + H2 ——> Besin + H2O (Hidrojen Bakterileri) d. Kemosentetik Bakteriler Bu bakteriler de madde devrinde çok önemlidirler. Bazı inorganik maddeleri oksitleyerek onları zararsız hale getirirler. oluşan maddeler ise bitkilerce mineral tuzlar olarak lullanılır. bu oksitlem sonucunda açığa kimyasal enerji çıkar. Bu enerjiyle de CO2 indirgemesi yaparakbesinlerini sentezlerler. ışık ve klorofil gerekli değildir. Oksijen kullanılır. Kemosentetik bakteriler en çok azotlu, kükürtlü, demirli maddeleri oksitlerler. NH3 + O2 ———> HNO2 + H2O + Kalori (Nitrosomanas) HNO2 + O2 ———> HNO3 + Kalori (Nitrobacter) H2S + O2 ———> H2O + S + Kalori (Kükürt Bakterileri FeCO3 + O2 + H2O ———> Fe(OH)3 + CO2 + Kalori (Demir Bakterileri) N2 + O2 ———> NO2 + Kalori (Azot bakterileri) Kemosentez sonucu: Bazı zararlı maddeler ortadan kaldırılmış, Bitkilerin alabileceği tuzlar oluşturulmuş, Kimyasal enerji kazanılmış Organik besin sentezlenmiş olmaktadır.  

http://www.biyologlar.com/bakterilerde-solunum-ve-beslenme

Bakterilerde Sınıflandırma

Bakteriler çeşitli özellikleri bakımından gruplandırılırlar. Bu özelliklerin başlıcaları ; şekilleri, solunumları, beslenmeleri ve boyanmaları olarak sayılabilir. *Şekillerine Göre Bakteriler Bakteriler ışık mikroskobuyla bakıldığında başlıca şu şekillerde görünürler. a)Çubuk Şeklinde Olanlar (Bacillus): Tek tek veya birbirlerine yapışmışlardır. Tifo, tüberküloz ve şarbon hastalığı bakterileri bu şekildedir. b)Yuvarlak Olanlar (Coccus): Genellikle kamçısızdırlar. Zatürree ve bel soğukluğu bakterileri bunlara örnektir. c)Spiral Olanlar (Spirillum): Kıvrımlı bakterilerdir. Frengi bakterileri ve dişlere yerleşen Spiroket'ler bunlara örnektir. d)Virgül Şeklinde Olanlar (Vibrio): Virgül biçiminde tek kıvrımlılardır. Kolera bakterisi gibi. * Boyanmalarına Göre Bakteriler Danimarkalı bakteriyolog GRAM tarafından geliştirilen boyalarla boyanan bakterilere Gram (+), boyanmayanlara Gram(-) bakterileri denir. *Beslenmelerine Göre Bakteriler Bazı bakteriler ototrof olup; fotosentez yada kemosentez yaparlar. Çoğunluğu ise heterotrof olup saprofit yada parazit yaşarlar. a)Saprofit Bakteriler: Bakterilerin büyük çoğunluğunu oluşturur. Besinlerini bulundukları ortamdan hazır sıvılar olarak alırlar. Nemli, ıslak ve çürükler üzerinde yaşarlar. En çok amino asit, glikoz ve vitamin gibi besinleri ortamdan alırlar. Bu tür bakteriler dış ortama salgıladıkları enzimlerle bitki ve hayvan ölülerini daha basit organik maddelere parçalayarak onların çürümesini sağlarlar. Böylece hem toprağın humusunu arttırırlar, hem de kendilerine besin sağlarlar. Çürütme sonucu çeşitli kokular meydana gelir. Bu yüzden bu olaya "kokuşma" denir. Bazı saprofit bakteriler, sütün yoğurt ve peynir olarak mayalanmasını sağlar. Saprofitler, dünyada madde devrinin tamamlanmasında önemli rol oynadıklarından hayat için mutlaka gereklidir. b) Parazit Bakteriler: Besinlerini cansız ortamdan değil de, üzerinde yaşadıkları canlılardan temin ederler. Çünkü sindirim enzimleri yoktur. Bunlardan bazıları konak canlıya fazla zarar vermeden yaşayabilirler. Sadece onun besinlerine ortak olurlar. Kalın bağırsaklarımızdaki "Escherichia coli" bunun en iyi örneğidir. Bazı parazit bakteriler ise konak canlının ölümüne bile sebep olabilen hastalıklara yol açarlar. Bunlara "Patojen bakteriler" denir. Patojenler ya toksinler çıkararak ya da konak canlının enzim ve besinlerini kullanarak zarar verirler. Toksinler ya dışarı atılır (Ekzotoksin), ya da bakterilerin içinde kalır (Endotoksin). İçeride kalan toksinler, bakteriler ölünce zararlı hale geçerler. Canlıların patojen bakterilere ve toksinlerine karşı oluşurduğu savunmaya "Bağışıklılık" denir. Parazit bakterilerin üremeleri hızlıdır. c)Foto sentetik Bakteriler: Sitoplazmalarında serbest klorofil taşırlar. Fotosentezlerinde elektron kaynağı olarak H2O yerine H2S ve H2 kullanırlar. * CO2 + H2O ----- Besin + O2 (Mavi-yeşil Algler) * CO2 + H2S ----- Besin + S + H2O (Kükürt Bakterileri) * CO2 + H2 ------ Besin + H2O (Hidrojen Bakterileri) d)Kemosentetik Bakteriler: Bu bakteriler de madde devrinde çok önemlidirler. Bazı organik maddeleri oksitleyerek onları zararsız hale getirirler. Oluşan maddeler ise bitkilerce mineral tuzları olarak kullanılır. Bu oksitleme sonucu ortaya açığa kimyasal enerji çıkar. Bu enerjiyle de CO2 indirgemesi yaparak besinlerini sentez ederler. Işık ve klorofil gerekli değildir. Oksijen kullanılır. Kemosentetik bakteriler en çok azotlu, kükürtlü, demirli maddeleri oksitlerler. * NH3 + O2  HNO2 + H2O + Kalori (nitrosomonas) * HNO2 + O2  HNO3 + Kalori (nitrobacter) * H2S + O2  H2O + S + Kalori (Kükürt Bakterileri) * FeCO3+O2+H2O  Fe(OH)3+ CO2 + Kalori (Demir Bakterisi) * N2 + O2  NO2 + Kalori (Azot Bakterileri) Kemosentez Sonucu, Bazı zararlı maddeler ortadan kaldırılmış Bitkilerin alabileceği tuzlar oluşturulmuş Kimyasal enerji kazanılmış Organik besinler sentezlenmiş olmaktadır. *Solunumlarına Göre Bakteriler a)Anaerob Bakteriler: Bakteriler organik besinleri parçalayarak enerji elde ederken genellikle oksijen kullanmazlar. Bunlar havasız yerlerde de yaşayıp çoğalırlar (Konservelerde olduğu gibi). Bunların bazıları oksijen olduğu ortamlarda hiç gelişemezler. Örnek;Clostridium tetani (tetanos bakterisi). b)Aerob Bakteriler: Bazı bakteri grupları (Escherichia coli, Zatürre ve yoğurt bakterisi gibi) ancak oksijenli ortamda yaşayabilirler. Bunlarda mitokondri olmadığı için, solunum, hücre zarının iç kısımlarında (mizozom) gerçekleştirilir. Örnek; azot bakterileri. c)Geçici Anaerob veya Geçici Aerob Olanlar: Asıl solunumları oksijensiz olduğu halde, oksijenli ortamlarda kısa süre için aerob olanlara "Geçici aerob" denir. Normal solunum şekli aerob olanlar ise havasız kalınca fermantasyona baş vururlar. Bunlara "Geçici anaerob" denir.

http://www.biyologlar.com/bakterilerde-siniflandirma

Bakteri ve Virüslerin Karşılaştırılması

Bakteriler ve Virüsler Monera alemini oluşturan prokaryot canlıların en yaygın ve en çok bilinen grubu bakterilerdir. O kadar yaygındır ki bugün dünyamızda bakterinin bulunmadığı yer yoktur diyebiliriz. En çok organik atıkların bol bulunduğu yerlerde ve sularda yaşarlar. Bununla beraber, -90 0C buzullar içinde ve +80 0C kaplıcalarda yaşayabilen bakteri türleri de vardır. Hava ile ve su damlacıkları ile çok uzak mesafelere taşınabilirler. Deneysel olarak ilk defa 17. yüzyılda bakterileri gözleyebilen ve onların şekillerini açıklayan Antoni Van Lövenhuk olmuştur. Bakteriler bütün hayatsal olayların gerçekleştiği en basit canlılardır. Hepsi mikroskobik ve tek hücrelidirler. Büyüklükleri normal ökaryotik hücrelerin mitokondrileri kadardır. HÜCRE YAPISI Prokaryot olduklarından zarla çevrili çekirdek, mitokondri, kloroplast, endoplazmik retikulum, golgi gibi organelleri yoktur. Ribozom bütün bakterilerin temel organelidir. DNA, RNA, canlı hücre zarı ve sitoplazma yine bütün bakterilerin temel yapısını oluşturur. Bunlara ek olarak bütün bakterilerde hücre, cansız bir çeperle (murein) sarılıdır. Çeperin yapısı, bitki hücrelerinin çeperinden farklıdır. Selüloz ihtiva etmez. Bazı bakterilerde hücre çeperinin dışında kapsül bulunur. Kapsül bakterinin dirençliliğini ve hastalık yapabilme (patojen olma) özelliğini artırır. Bazı bakteriler kamçılarıyla aktif hareket edebilirken, bazıları kamçıları olmadığı için ancak bulundukları ortamla beraber pasif hareket edebilirler. Buna göre bakteriler, kamçısız, tek kamçılı, bir demet kamçılı, iki demet kamçılı ve çok kamçılı olarak gruplandırılır. Bazı bakteriler "mezozom" denilen zar kıvrımları bulundurur. Burada oksijenli solunum enzimleri (ETS enzimleri) vardır. Oksijenli solunum yapan, ancak mezozomu bulunmayan bakterilerde ise solunum zinciri enzimleri hücre zarına tutunmuş olarak bulunur. bakterilerde genel yapının % 90′ı sudur. suda çözünmüş maddeler hücre zarından giriş-çıkış yaparlar. DNA’lar sitoplazmaya serbest olarak dağılmıştır. Bakteriler ökaryot hücrelere göre daha çok ve daha küçük ribozom içerirler. bu sayede protein sentezleri çok hızlıdır. Bakteriler çeşitli özellikleri bakımından gruplandırılırlar. Bu özelliklerin başlıcaları; şekilleri, kamçı durumları, beslenmeleri ve boyanmaları olarak sayılabilir. ŞEKİLLERİ ve BOYANMALARI Bakteriler ışık mikroskobunda bakıldığında başlıca şu şekillerde görülürler. a. Çubuk şeklinde olanlar (Bacillus):Tek tek veya birbirlerine yapışmışlardır. Tifo, tüberküloz ve şarbon hastalığı bakterileri bu şekildedir. b. Yuvarlak olanlar (Coccus): Genellikle kamçısızdırlar. Zatürre ve bel soğukluğu bakterileri bunlara örnektir. c. Spiral olanlar (Spirullum): Kıvrımlı bakterilerdir. Frengi bakterileri ve dişlerde yerleşen Spiroketler bunlara örnektir. d. Virgül şeklinde olanlar (Vibrio): Virgül biçiminde tek kıvrımlıdırlar. Kolera bakterisi gibi. Bakterilerin boyanmaları: Danimarkalı bakteriyolog Gram tarafından geliştirilen boyalarla boyanan bakterilere Gram (+), boyanmayanlara ise Gram (-) bakteriler denir. BAKTERİLERİN BESLENMELERİ Bazı bakteriler ototrof olup, fotosentez veya kemosentez yaparlar. Çoğunluğu ise heterotrof olup, saprofit veya parazit yaşarlar. Saprofit Bakteriler: Bakterilerin çoğunluğunu oluşturur. Besinlerini bulundukları ortamlardan hazır sıvılar olarak alırlar. Nemli, ıslak ve çürükler üzerinde yaşarlar. en çok amino asit, glikoz ve vitamin gibi besinleri ortamdan alırlar. Bu tür bakteriler dış ortama salgıladıkları enzimlerle bitki ve hayvan ölülerini daha basit organik maddelere parçalayarak onların çürümesini sağlarlar. Böylece hem toprağın humusunu artırırlar, hem de kendilerine besin sağlarlar. çürütme sonucu çeşitli kokular meydana gelir. Bu yüzden bu olaya kokuşma denir. Bazı saprofit bakteriler, sütün yoğurt ve peynir olarak mayalanmasını sağlarlar. Saprofitler, dünyada madde devrinin tamamlanmasında önemli rol oynadıklarından hayat için mutlaka gereklidir. Parazit Bakteriler: Besinlerini cansız ortamdan değil de üzerinde yaşadıkları canlılardan temin ederler. Çünkü sindirim enzimleri yoktur. Bunların bazıları konak canlıya fazla zarar vermeden yaşayabilirler. Sadece onun besinlerine ortak olurlar. Kalın bağırsağımızdaki Escherichia coli bunun en iyi örneğidir. Bazı parazit bakteriler ise konak canlının ölümüne bile sebep olabilen hastalıklara yol açarlar. Bunlara Patojen Bakteriler denir. Patojenler ya toksin çıkararak ya da konak canlının enzim ve besinlerini kullanarak zarar verirler. toksinler ya dışarı atılır (Ekzotoksin), ya da Bakterinin içinde kalır (Endotoksin). İçinde kalan toksinler bakteriler ölünce zararlı hale geçerler. Canlıların patojen bakterilere ve toksinlerine karşı oluşturdukları savunmaya "Bağışıklık" denir. Parazit bakterilerinin üremeleri oldukça hızlıdır. Fotosentetik Bakteriler: Sitoplazmalarında serbest klorofil taşırlar. Fotosentezlerinde elektron kaynağı olarak H2O yerine H2S ve H2 kullanırlar. CO2 + H2O ——> Besin + O2 (Mavi-yeşil algler) CO2 + H2S ——> Besin + S + H2O (Kükürt bakterileri) CO2 + H2 ——> Besin + H2O (Hidrojen Bakterileri) Kemosentetik Bakteriler: Bu bakteriler de madde devrinde çok önemlidirler. Bazı inorganik maddeleri oksitleyerek onları zararsız hale getirirler. oluşan maddeler ise bitkilerce mineral tuzlar olarak kullanılır. bu oksitleme sonucunda açığa kimyasal enerji çıkar. Bu enerjiyle de CO2 indirgemesi yaparak besinlerini sentezlerler. ışık ve klorofil gerekli değildir. Oksijen kullanılır. Kemosentetik bakteriler en çok azotlu, kükürtlü, demirli maddeleri oksitlerler. NH3 + O2 ———> HNO2 + H2O + Kalori (Nitrosomanas) HNO2 + O2 ———> HNO3 + Kalori (Nitrobacter) H2S + O2 ———> H2O + S + Kalori (Kükürt Bakterileri) FeCO3 + O2 + H2O ———> Fe(OH)3 + CO2 + Kalori (Demir Bakterileri) N2 + O2 ———> NO2 + Kalori (Azot bakterileri) Kemosentez sonucu: Bazı zararlı maddeler ortadan kaldırılmış, Bitkilerin alabileceği tuzlar oluşturulmuş, Kimyasal enerji kazanılmış Organik besin sentezlenmiş olmaktadır. BAKTERİLERİN SOLUNUMLARI a.Anaerob Bakteriler Bakteriler organik besinleri parçalayarak enerjilerini elde ederken genellikle oksijen kullanmazlar. Bunlar havasız yerlerde de yaşayarak çoğalırlar. ( Konservelerde olduğu gibi) Bunlardan bazıları oksijenin olduğu yerde hiç gelişemezler. Örnek: Clastrodium tetani (Tetanos bakterisi). b. Aerob Bakteriler Bazı bakteri grupları (Escherichia coli, Zatürree ve Yoğurt Bakterisi gibi) ancak oksijenli ortamda yaşayabilir. Bunlarda mitokondri olmadığı için solunum hücre zarının iç kısmındaki kıvrımlarda (mezozom) gerçekleştirilir. Örnek: Azot Bakterileri. Geçici Aerob veya Geçici Anaerob Olanlar Asıl solunumları oksijensiz olduğu halde kısa süre için aerob olanlara "Geçici Aerob" denir. Normal solunum şekli aerob olanlar ise havasız kalınca fermantasyona başvururlar. Bunlara "Geçici Anaerob" denir. BAKTERİLERİN ÜREMELERİ Bölünerek Çoğalma Bütün bakteri türlerinin esas üreme şekli bölünmedir. bölünme eşeysiz üreme biçimidir. Su, besin maddesi ve sıcaklığın uygun olduğu ortamlarda çok hızlı bölünürler. bu bölünmeler her 20 dakikada bir gerçekleşir. Böylece geometrik olarak artmaya başlarlar. ancak bu artış sürekli değildir. Çünkü zamanla ortam sıcaklığı artar, asitler ve CO2 birikir, besin maddeleri tükenir. Bunlar bakteriler için öldürücü doza ulaşınca geometrik artış bozulur. belli değerden sonra artış yerine azalma görülür. Böylece bakteri populasyonları da dengelenmiş olur. Bakterilerin bölünmeleri mitoza benzer. ancak çekirdek zarı ve belli bir kromozom sayısı olmadığı için tam bir mitoz değildir. Buna Amitoz Bölünme denir. Sporlanma Bazı bakteri türleri yaşadıkları ortam şartları bozulunca endospor oluşturarak kötü şartları geçirirler. Endosporlar, kalıtım materyalinin çok az bir sitoplazmayla beraber çevrilmiş halidir. ortam şartları normale dönünce çeper çatlar, endospor gelişerek normal bakteriyi meydana getirir. Endosporlarda metabolik faaliyetler minimum seviyededir. bu şekilde uzun yıllar yaşayabilirler. olumsuz şartlar olan yüksek ısıdan, kuraklıktan, donmadan ve besinsizlikten etkilenmezler. 60 yıl canlı kalan bakteri sporları tespit edilmiştir. Normal bakteri hücrelerinin tamamı 100OC’de ölürken endosporlar ancak 120OC’de 15-20 dakika kalırsa ölürler. Soğuk ortamlarda da aynı oranda dayanıklıdırlar. Bazı türlerde bir bakteriden birden çok endospor meydana gelebilir. Eşeyli Üreme (Kojugasyon) Bakteriler bölünerek çok hızlı üremelerine, olumsuz şartları da endospor oluşturarak geçirmelerine rağmen, düzensiz de olsa eşeyli üremeyi gerçekleştirirler. Çünkü bu sayede kalıtsal çeşitliliklerini artarak değişen ortamlara uyum yapma imkanı bulurlar. Bu çeşitliliğe ise Kalıtsal Varyasyon denir. Konjugasyon (kavuşma) esnasında DNA yapısı farklı iki bakteri yan yana gelerek aralarında geçici bir zardan köprü oluştururlar. bu köprü aracılığı ile DNA parçalarını değiştirirler. Sonra ayrılarak bölünmelerine devam ederler. Dikkat edilirse çok hücreli canlılarda görülen eşeyli üremeden çok farklı bir eşeyli üreme oluşmaktadır. Bunlarda gamet oluşumu ve döllenme yoktur. Bakteriler diğer canlılara göre daha kolay mutasyona uğrarlar. Mutasyon genellikle zararlı ve öldürücü olmakla beraber, bakterilerde bazen olumlu sonuçlar veren faydalı mutasyonlar oluşabilmektedir. Bugün bakteriler besin (kültür) ortamlarında yetiştirilerek incelenmektedir. En iyi geliştikleri kültür ortamı et suyudur. YARARLI BAKTERİLER Bakteri ismini duyduğunuzda aklınıza nasıl bir canlı türü geliyor? Elbette birçoğumuzun aklına bu isim duyulduğunda mikroplar, hastalıklar ve uzak durulması gerekilen küçük yaratıklar gelmektedir. Ancak bunun yanında yine birçoğumuz hergün mutfağımızı, banyomuzu sterilize etmek için uğraşırken yok ettiğimiz milyonlarca bakteri türünün hayatımızdaki olmazsa olmaz dedirtecek faydalı özelliklerinden de bihaberiz. Aslında işte bu monera aleminin küçük canlıları olan bakteriler olmasaydı, ne dünya şimdiki olduğu gibi olabilirdi ne de insanlar şimdi göründükleri gibi olurdu. Dünyamızın bu mikroskopik canlıları sadece insandaki bazı zararlı canlıları öldürmekle kalmaz, dünyamızın üzerine kurulduğu kimyasal döngülerde de önemli yerler edinirler. Bakterilerin en önemli faydası olarak dünyamızda biriken artık maddelerin ana biyolojik monomerlerine ayrıştırılması olarak gösterebiliriz. Eğer çürükçül bakteriler olmasaydı ölü insan bedenleri ve canlılığını yitirmiş bitki parçacıkları öldükleri bedende kalacaklardı ve bunların ana organik maddelere dönüşümü olmayacaktı. Böylece karbon döngüsünün önemli bir parçası yerine getirilmemiş olacaktı. Bu çürükçül bakteriler yaptıkları bu parçalama işlemiyle aynı zamanda toprakları da beslerler ve verimli hale getirirler. Bazı bakterilerin çürütücü göreviyle doğaya katkılarda bulunmasının yanında kimi bakterilerde aşı veya antibiyotik olarak tıp sektöründe insanlara daha sağlıklı bir hayat sunmak için kullanılırlar. Bilindiği üzere öldürülmüş veya zayıflatışmış bakteriler insan vücuduna enjekte edildiğinde, vücut bu bakterilere karşı antikor üretmeye başlar ve bu zayıflatılmış veya ölü olan bakterilere karşı bir üstünlük sağlar. Bu olaya tıp alanında bağışıklık denmektedir. Vücut güçsüz bakterilere karşı benzetme yerindeyse bir antreman yapmış olur ve güçlü, sağlam bakterilerle karşılaştığında nasıl davranması gerektiğini öğrenmiş olur. Bildiğiniz gibi günümüzde de tetanoz olsun verem olsun bir çok hastalığı önlemek için çok çeşitli bakteriler kullanılır ve bir önlem olarak sayılırlar. Yine benzer şekilde bazı bakteriler de yine tıp sektöründe antibiyotik yapımında kullanılırlar. Streptomycin adı verilen bir bakteri türü Bacitracin,Polymyxin, ve Erythromycin adı verilen antibiyotikler üretmektedir ve bu antibiyotikler hastalık önleyici olarak çok zaman insanlar tarafından kullanılmaktadır. Bakteriler kimi zamanda besin yapımında sıkça kullanılmaktadır. Birçok bakteri türü fermantasyon adı verilen süreç sonucunda kimyasal değişikliklere sebep olmaktadır. Örneğin peynir ve yoğurt bu tür kimyasal değişikliklerin sonucu ortaya çıkmış yararlı besinlerdendir. Ayrıca yine Clostridium bacterium adı verilen bir bakteri türünün fermantasyonu süreci sonunda ortaya çıkan bütül alkol ve asetone kimya sektöründe çok kullanılan değerli kimyasal maddelerdendir. Yine benzer şekilde insan kanının plazmasında bulunan Dextran adlı yararlı bir madde de yine Leuoconostoc adlı bir bakteri tarafından yapılmaktadır. Saymakla tükenmeyecek faydaları olan bakterilerin son bir yararından da bahsetmek gerekirse, bazı bakteri türleri bazı hayvanların bağırsaklarında özellikle selülöz sindiriminde kullanılmaktadır ve bu selülözün karbonhidratların temel taşı olan glikoza indirgenmesini sağlar ve böylece hücreler için gerekli olan enerji de bulunmuş olur. Aslında hep kafamızda zararlı yaratıklar olarak yer edinmiş olan bakterilerin faydaları sayılacak gibi değildir ama bu kadarı bile insanları şaşırtmaya yetmektedir. Bizim zararlı olarak nitelendirdiğimiz bu monera aleminin nerdeyse 1 mikrondan küçük bu savaşçıları, bizim onları zararlı ve yok edilmesi gerekilen küçük yaratıklar olarak nitelendirmelerimize aldırış etmeden hep bizim yararımıza çalışmaktadırlar ve ileride de bizim emrimizde çalışacaklardır; her ne kadar biz onların faydaların farkında olmasak da… VİRÜSLER Çok küçük mikroorganizmalardır. Uzun süre bilim adamlarının dikkatini çekmemiştir. Meydana getirdiği hastalıklar hep bakterilerden bilinmiştir. Elektron mikroskobunun bulunmasıyla ancak virüslerin farkına varılmıştır. İlk olarak tütün bitkisinin yapraklarında hastalık meydana getiren virüs bulunmuştur. Daha önce tütnlerde bu hastalığın bakteriler tarafından meydana getirildiği sanılıyordu, fakat incelemelerin hiç birisinde bakteriye rastlanmıyordu. Hasta tütün yapraklarından elde edilen özütün elektron mikroskobuyla incelenmesinden sonra hastalığın bakteri dışında yeni bir mikroorganizma tarafından meydana getirildiği görüldü. Bu mikroorganizmalarda daha önce hiç rastlanılmayan ve bilinmeyen bir yapı ortaya çıktı. Normal hücre yapısına benzemeyen virüslerde sadece dış tarafında bir protein kılıf ve içerisinde nükleik asit vardı. Bunların dışında stoplazma, organel gibi yapılar bulunmuyordu. Bu yapıda onların zorunlu parazit yaşamalarını gerektiriyordu. Evet, bir virüsün yapısı sadece dışta bir protein kılıf ve içerisinde nükleik asitten meydana gelir. Herhangi bir organeli ve enzimleri olmadığı için normal bir hücre gigi yaşamlarını sürdürebilmeleri olanaksızdır. Yaşamsal faliyet (üreme gibi) gösterebilmek için mutlaka canlı bir hücreye girmeleri gerekir. Hücre dışında ise kristal halde bulunurlar. Bu yüzden bilim adamları tarafından cansızlık ile canlılık arasında geçiş formu olarak kabul edilirler. Virüsler küre, çubuk ve elips şeklinde olabilirler. Bulundurdukları nükleik asit tek çeşittir. Yani ya sadece DNA yada sadece RNA bulundururlar. Aynı zamanda çok ta spesifiktirler. Sadece belirli hücrelere girerler. Bir kuduz virüsü sadece beyin hücrelerine, uçuk virüsü sadece ağız civarındaki epitel doku hücrelerine bir bakteriyofaj sadece belirli bakteri türlerine, AIDS virüsü sadece kandaki akyuvar hücrelerine gibi. Virüs hücreye tutunduğunda ilk önce hücrenin zarını eritir. Daha sonra bu delikten içeriye kendi nükleik asitini akıtır. Hücreye giren virüs nükleik asiti derhal yönetimi ele geçirerek hücreyi kendi hesabına çalıştırmaya başlar. İlk önce kendi nükleik asitlerinin kopyalarını arkasından da protein kılıflarını sentezlettirir. Daha sonra bunları birleştirerek yüzlerce virüs oluşmasını sağlar. Hücre içerisindeki virüsler hücreyi patlatarak dışarı çıkar ve yeni hücrelere saldırırlar. Yapılarından dolayı ve hücre içerisinde bulunduklarından antibiyotik türü ilaçlardan etkilenmezler. Virüsler ile bakteriler arasındaki fark nedir? Virüslerle bakteriler arasındaki farklar sayısızdır. Virüsler bilinen en küçük ve en basit canlı formlardır. Bakterilerden 10 ila 100 kat daha küçüktürler. Virüslerle bakteriler arasındaki en büyük fark virüslerin çoğalabilmesi için bitki ya da hayvan gibi canlı bir yapıya ihtiyaç duymalarıdır. Bakteriler ise cansız yüzeylerde de gelişebilirler. Ayrıca, bakteriler vücuda meydan savaşındaki askerler gibi saldırırken, virüsler gerilla savaşçıları gibidir. İçeri sızmak için çok saldırmazlar. İnsan hücrelerini tam olarak istila ederler ve hücrenin genetik materyalinin normal fonksiyonunu virüs üretecek şekile dönüştürürler. Buna ek olarak, bakteriler gelişmeleri ve çoğalmaları için gerekli bütün mekanizmayı taşırken, virüsler başlıca bilgiyi taşırlar. Örneğin DNA veya RNA bir protein ve/veya zarımsı bir kaplama içerisinde paketlenmiş haldedir. Virüsler çoğalmak için konak hücrelerinin mekanizmasını kullanırlar. Bir anlamda, virüsler gerçekte “canlı” değillerdir, fakat aslında bilgi (DNA veya RNA), uygun bir canlı konakçı ile karşılaşıncaya kadar havada süzülmeye devam eder

http://www.biyologlar.com/bakteri-ve-viruslerin-karsilastirilmasi

Su ve Mineral Madde Metabolizması

Bitki hücresine alınan su canlılığı sağlayan tüm olayların yürümesi için gerekli ortamı sağlar. Bilindiği gibi su yarıkovalent, elektron çiftlenmesi ile oluşan O - H bağlarının 105 derecelik açı yapması ve daha çok -2 yüklü oksijene yakın olan elektron çiftlerinden oluşması nedeniyle çift kutuplu, dipol bir moleküldür. Bu nedenle su reverzibl olarak H(3)O +, hidroksonyum ve hidroksil şeklinde iyonlarına ayrılabilir. Mineral iyonları çevrelerine zıt yüklü uçlarını çekerek moleküler su moleküllerinden su zarfı oluşturur ve. Bu şekilde de hem doymuş hidrokarbonlar ve lipidler dışındaki tüm küçük moleküllü organik maddeleri, hem de kuvvetli asidik ve bazik maddelerden polar tuzlara kadar iyonik karakterli maddeleri değişen oranlarda çözebilir. Bu sayede de çözelti ortamında termik hareketlilik kazanan maddelerin moleküllerinin çarpışarak kimyasal tepkimeye girmesi ve canlılık için gerekli biyokimyasal tepkimelerin yürümesine uygun ortam sağlar. Dipol karakteri nedeniyle su molekülü makromoleküller ve polimerler zincirleri üzerindeki iyonik gruplara tutunarak zincirlerin arasına girer ve uzaklaşmalarına neden olur. Bu boşluklara girme olanağı bulan enzim proteinleri gibi suda çözünür maddeler de canlılık olaylarının sürmesini sağlar. Tüm bu nedenlerle su canlılığın en temel maddelerindendir. Ayrıca gene dipol özelliği ve iyonlaşabilir oluşu, kinetik tanecikler oluşturması nedeniyle birçok madde ile kolayca tepkimeye girebilir ve canlılık olaylarının büyük çoğunluğunda kimyasal ajan olarak rol oynar. Oksitlenme tepkimelerine elektron sağlar, redüklenme tepkimelerinde de proton kaynağı görevi yapar. Dipol kutupları elektriksel iletken olması ve iyonlaşma oranının tersinir olarak içinde çözünmüş olan iyonik maddelerin hakim yüküne bağlı oluşu biyoelektriksel olayların sağladığı canlılıkla ilgili işlevlerin gerçekleştirilebilmesi olanağını verir. Termik hareketliliğinin yüksek olması nedeniyle yaptığı basınçla organel ve hücrelerin dış basınç etkisi ile ezilmesini önler. Su metabolizması adı altında toplanabilecek tepkimelerin canlılıkla ilgili her tepkime zinciri ve devrelerine yayılmış olması, bu tepkimelerin birbirinden çok farklı ve bağımsız işlevlerinin yüksek sayıda oluşu bu konunun bir bütün halinde ele alınmasını engeller. Bunun yerine diğer konular içinde yeri geldikçe söz edilmesi daha kolay ve anlaşılabilir bir yaklaşımdır. Mineral elementlerinin canlılıktaki rolleri ise daha kolay sınıflandırılabilir: Esas elementler belli bir derişim aralığında sağlıklı, normal yaşamın sürdürülebildiği, bunun altındaki ve üstündeki derişimlerinde önce geçici olabilen, daha sonra da kalıcı arazlar bırakan eksiklik ve toksik etkileri, bu sınırların dışında da ölümcül etkileri görülen elementlerdir. Bu derişim aralıkları açısından da makro ve mikro elementler ayrılır. Herbir elementin metabolizmadaki ve canlılıktaki rolleri farklı olduğundan canlı türleri arasında ve bir canlının yaşam devrelerine, içinde bulunduğu ekolojik koşullara göre gereksinimleri farklılıklar gösterir. Bu açıdan hem biyokimyasal, hem fizyolojik, hem de ekofizyolojik açılardan incelenmeleri sonucunda doğru değerlendirmelere ulaşılabilir. Önemli bir konu da bir elementin derişimindeki değişimlerin diğer elementlerden yararlanılması, kullanılması üzerindeki sinerjistik ve antagonistik etkileridir. Bu etkileşimler sonucu hem iyonik matrikste hem de organik metabolizmada çeşitli değişiklikler meydana gelir. Azot, P, Ca ve Mg ile Na ve K, Fe, Zn, u ve B elementlerinin tümü arasında bu tür ilişkiler ağı vardır. Örneğin P, K ve Zn ile Cu ile sinerjistik etkiye sahiptir, Mg ile hem antagonistik hem sinerjistik ilişkisi vardır. Azot Mg üzerinde antagonistik, K ve B üzerinde sinerjistik etkilidir. Bu tablo da P ile N arasındaki dolaylı ilişkiyi ortaya koyar vs. Antagonistik ilişki aynı bağlayıcı uç , kök için rekabete dayanan Zn+2, Cd+2 ilişkisi şeklinde olabildiği gibi Cu+2 ile S-2 tepkimesi sonucunda çözünmeyen CuS oluşumu gibi deaktivasyon ilişkisi de olabilir. Türler arasındaki seçici beslenme farklılıkları yanında elementler arası metabolik ilişkiler matriksi populasyonlar arasında davranış farklılıklarına yol açarak rekabetsel ilişkiler üzerinde etkili olur. Mineral iyonlarının genelde çok önemli olan bir özellikleri organik maddelerin ve temelde onların oluşturdukları yapıların oluşumu, sağlamlığı ve işlevleri üzerindeki etkileridir. Membranlar yanında nükleik asitlerin helislerindeki fosfat gruplarının aralarındaki katyonlar sayesinde bilinen yapılarına sahip olmaları Ca, Mg, P, S elementlerinin yapısal işlevlerini gösterir. İz elementler pH 7 civarında yürüme durumunda olan hidrolitik ve sentetik tepkimelerin enzimlerinin aktivatörü olarak rol oynarlar. Bu işlevlerini de Lewis asit ve bazlığı yolu ile su da dahil, sübstratları polarize ederek yaparlar. Lewis asitleri elektron çifti alabilen, bazları da verebilen maddeler olarak tanımlar. Klasik asit - bazlar için geçerli olduğu gibi de maddelerin elektron çifti alma - verme potansiyellerinin büyüklüğüne göre bir madde çiftinin asitlik - bazlık ilişkisini belirler. RNA polimeraz, nükleazlar, fosfatazlar, esterazlar gibi bir çok enzimin Zn+2, Mn+2 gereksinimleri buna örnektir. İz elementlerin aynı mekanizma ile yürüyen önemli bir rolleri de elektron transfer zincirlerindeki rolleridir. Fizyolojik pH aralığında yürümesi zor olan bu tepkimelerde de Fe+2/ Fe+3/Fe+4, Cu+/Cu+2, Mn+2/ Mn+3/Mn+4, Mo+4/ Mo+5/Mo+6, Co+/Co+2/Co+3 ve Ni+/Ni+2/Ni+3 iyonları rol alır. Moleküler azotun fiksasyonu ile amonyağa dönüştürülmesinde de Fe, Mo ve V çiftlenmemiş elektron kaynağı ve donörü olarak iki aşamalı şekilde rol alırlar ve enerjetik açıdan fizyolojik pH aralığında yürümesi zor olan tepkimenin gerçekleşmesini sağlarlar. Mineral iyonlarının organik madde metabolizmasındaki en belirgin rollerinden bir diğeri de klorofil, hemoglobin gibi canlılığın sürmesini sağlayan büyük moleküllerin yapısında molekülün stabilitesini sağlayan koordinasyon merkezi olmalarıdır. Eşlenmemiş elektron çifti paylaşımı ile oluşan doğal bileşikler renkli ve suda çözünmeyen bileşiklerdir. Metal iyonlarının koordinasyon bağı sayısı değerliklerinden farklı değerlerdir. Amino asitlerin yan zincirlerindeki fonksiyonel grupların protonları yerine metal bağlanması ile de koordinasyon bileşikleri oluşabilir. Özellikle histidin, metionin, sistein,, tirozin, glutamat ve aspartat yanında serin, treonin, lizin ve treptofan amino asitlerinin hidroksi veya amino grupları aracılığı ile koordinasyon bileşikleri yapmaları peptid ve proteinlerin bu yolla sağlam yapılar oluşturmalarına neden olur. Bu açıdan amino asitler ile katyonlar arasında seçicilik ilişkilewri vardır, örneğin Tirozin yanlızca Fe+3 ile bağlanabilir. Sisteinin ise monovalent Cu, divalent Zn ve Cu ile Fe, trivalent Fe ve Ni +1-3, Mo+4 -6 ile koordinasyonu mümkündür. Cu + ve +2, Zn+2 ile Fe+3 amino asitlerle sağlam koordinasyon bağları yaparken, diğerlerinin bileşiklerinin stabilitesi düşüktür. Global proteinlerin metal iyon komplekslerinin enzimatik aktivitede rol oynayabilmesi için 4 veya 6lı koordinasyon bağ kapasitelerinin doymamış olması gerekir. Bu açık uca geçici olarak su gibi bir molekül bağlanır ve sübstratla yer değiştirdiğinde kataliz başlayabilir. Ancak proteinden elektron transferinin doğrudan gerçekleştiği, metal iyonunun elektron alışverişi yapmadığı sistemlerde buna gerek yoktur. Temelde metalik koordinasyon protein molekülünün sterik geometrisini sübstratın adsorpsiyonu ile sterik yapısını tepkimeye uygun hale getirerek sağlar. Azot bilindiği gibi nükleik asit, protein, peptid, amid ve amino asitlerin önemli bir bileşenidir. Bunların yanında birçok sekonder metabolizma ürününün de sentezi ve gereksinim duyan bitki grubunun normal yaşam devrini sağlıklı şekilde sürdürmesi için gereklidir. Topraktan alınan nitrat ve amonyum ksilemden aynı şekilde tuzu halinde iletilir, ancak fotosentetik dokularda elde edilen karbohidratlarla tepkime zincirlerine girebildikleri hücrelerde redüklenerek -NH2, amino grubu içeren organik azotlu bileşiklere dönüşürler. Nitratın da amonyuma dönüştürülmesinden sonra glutarik asit gibi iletilebilir organik asitler üzerinden yağ asitlerine amino grubunun katılması ile amino asitler meydana gelir. Aromatik a - amino asitlerin sentezinde ve özellikle birbirlerine dönüşümlerinde hidroksillenme tepkimesi önemlidir, örneğin fenilalaninin hidroksillenmesi ile tirozin oluşur. C -, O - ve N – metillenmeleri de önemlidir ve örneğin homosisteinden sağlanan metil grupları metiyonin, glisin veya serin metili ile de tüberin metaboliti sentezlenir. Aromatik amino asitlerin mikroorganizmalar ve bitkilerdeki temel sentez yolu , adını ilk bulunduğu şikimi-no-ki bitkisinden alan ve benzen halkalı şikimik asidin biri açılmış çift halkalı korizmik asitin L – fenilalanin, tirozin veya triptofana dönüştüğü şikimik asit veya şikimat yoludur. Fosfoenol piruvat ile eritroz – 4 – P tetrozunun kondansasyonundan sentezlenen ara maddeler üzerinden şikimik asit korizmik asite ve sonra üç farklı organik asite dönüşerek aromatik amino asitleri verdiğinden sonraları korizmik asit yolu adını alan sentez yoludur. Bakterilerde salisilik asit gibi maddeler, yüksek bitkilerde linyin ve alkaloidler, flavonoidler bu aromatik amino asitlerden ve özellikle triptofandan sentezlenir. Linyinler sinnamik asitlerin alkollerinin ürünüdür. Azot eksikliği azotun klorofil yapısındaki 4 pirol halkasındaki yeri nedeniyle klorofil oluşumunu engeller ve fotosentez eksikliği nedeniyle büyüyüp, gelişmesini önler. Doğal olarak protein, enzim ve nükleik asit metabolizmalarını yavaşlatır, durdurur ve yaşlı doku ve organlardan başlayan boşalma ile ihtiyarlama - senesans ve ölüme neden olur. Azot bileşiklerinin yapısal proteinler gibi taşınamayan formlarının proteolitik enzimler gibi hidroliz enzimlerince parçalanarak iletilebilir formlara dönüştürülebilmesi genç ve büyüyen dokular ile organların olabildiğince korunması olanağını sağlar. Fosfor bilindiği gibi enerji metabolizmasında çok önemli yer tutar. Yeşil bitkilerin güneşten, bazı bakterilerin ise inorganik bileşikleri parçalayarak elde ettiği fiziksel enerjiyi yüksek enerjili kimyasal bağ enerjisi halinde saklayıp, gerektiğinde açığa çıkartılması ile kimyasal ve fiziksel işlerin yapılmasında kullanmasını sağlar. Bu konu fotosentez ve kemosentez, solunum ve sindirim metabolizmaları içinde incelenecektir. Burada elementel fosforun enerji metabolizmasındaki kilit rolünün nedenleri üzerinde durmak yeterli olabilir. Nükleik asit sentezinde organik bazlar fosfatları halinde sübstrat olarak kullanılıp tepkime sırasında fosfatın açığa çıkması, solunumda elde edilen enerjinin ATP kazancı olarak hesaplanması iyi birer örnektir. ATP su ile tepkimeye girdiğinde üç fosfat grubundan biri açığa çıkarken bu fosfat bağında yoğunlaşmış olan enerji açığa çıkar. Bu enerji diğer bağ enerjilerine göre yüksek olduğundan yüksek enerjili, enerjice zengin bağ adını alır. Bunun nedeni de bu bağın oluşturulmasında yüksek enerji kullanılmasına gerek oluşudur. ATP ve NADP.H2 enerji metabolizmasının kilit maddeleridir. Bunun temel nedeni oluşumlarının sübstratları olan maddelerin kinyasal potansiyeli ile bu tepkime ürünlerinin kimyasal potansiyel farkının yüksek oluşudur. Adenin de fosfat gibi eksi yüklüdür, bu nedenle adenine 3 fosfatın bağlanması ile ATP sentezlenebilmesi için yüksek enerji kullanılması gerekir, serbest enerji önemli miktarda artar. Organik bileşiklerin fosforilasyonu, yani ATP veya benzeri bir fosfat kaynağından grup transferini kinaz enzimleri sağlar. Fosfat, ADPve ATP sulu çözeltilerinde farklı değerlikli formlarda bulunabilen, Mg ve Ca iyonları başta olmak üzere katyonlarla kelasyon tepkimesine girebilen maddelerdir. Bu nedenle de pH gibi etmenlere bağlı olarak ATP değişik yollardan sentezlenebilir. Nötr pH civarında divalent katyonlara gerek olmadan ADP + HPO4 + H3O ® ATP + H2O tepkimesiyle, ATP sentetaz enziminin etkisiyle sentezlenir. Bu molekülün hidroliz denge sabitesi diğer fosfat bileşiklerinden çok daha yüksektir, bu nedenle de diğer organik bazların trifosfatları oluşturulamaz. Bu pHa bağlı denge durumu sayesinde ATP, ATPaz izoenzimlerinin etkisiyle ve büyük oranda ADP ve fosfata hidroliz olabilir. PH 7 civarında ADP moleküllerinin yaklaşık yarısı -2, diğer yarısı ise -3 değerlikli iken ATP molekülleri de yarı yarıya -3 ve -4 değerliklidir. Mg+2 veya Ca+2 ve diğer katyonlar aynı moleküldeki fosfat köklerinin (-- O -1) yüklü oksijenleri arasında elektrostatik olarak tutularak kelatlaşmayla moleküllerin form sayılarının artışına neden olur. Bu çeşitlilik değişik özelliklerdeki izoenzimlerin aktiviteleri ile ATP enerji deposunun kontrollu şekilde farklı metabolik olaylarda kullanılabilmesini sağlar. Yani önemli bir konu da açığa çıkan ADP molekülünün serbest halde kalabilmesi ve başka bir tepkimeye girmemesidir. NADP.H2 dışındaki difosfatlar ise başka tür tepkimelere de girebilir. Hidrolizlerinin kinetik denge sabiteleri düşük olduğundan hidrolizleriyle çıkan enerji de düşüktür. Bu nedenle de enerji depolanmasında tekrar kullanılamazlar. ATP ve NADH2 nin enerji metabolizması açısından önemli bir özellikleri de membranlardan kolay geçebilmeleri ile enerji dağılımını sağlayabilmeleridir. Fotosentezde kloroplastlardaki devresel olmayan elektron iletimi sırasında oluşan NADP.H2 NADPnin redükte formudur ve bu iki form bir redoks çifti olarak eşit miktarlarda birarada bulunur. NADP molekülünün yanlızca NAD kısmı 2 e- alarak NADPH2 oluşturur. Bu elektron alışverişi zinciri elektron akımını sağlar ve bu şekilde ışık enerjisi elektron iletimi yoluyla enerji kazancına, depolanmasına yol açar. Bu konu fotosentez incelenirken görülecektir. Fosfatazlar fosfat grubu olan organiklerden fosfat gruplarını ayıran enzimler olarak metabolizmada önemli bir yer tutarlar. Optimum pH değerlerine göre asit ve alkalin fosfatazlar olarak ikiye ayrılırlar. Bu mekanizmalar hücrenin endojen tepkimeleri başlatma ve yürütmesi için gereken yeni kimyasal bağ oluşumuna dayanan sentez ve dönüşüm tepkimelerine enerji sağlar. Gerek duyulduğunda enerji denetim altında yüksek enerjili fosfor bağının ATP sentetaz ile sentez ve ATPaz ile hidrolizi ile biyolojik iş için enerji sağlanır. Fosfor fotosentezle güneş enerjisinin önce şekerler ve sonra polisakkaritler halinde karbohidratlarda kimyasal bağ enerjisi halinde bağlanarak depolanması, gerektiğinde sindirimleri ve solunumla açığa çıkarılan bu enerjiyle tüm metabolizmanın yürümesini sağlar. Tüm bu nedenlerle fosfata sürekli gereksinim duyulduğundan toprak çözeltisinde çok az miktarda bulunan faydalı fosforun sürekliliği gerekir. Toprak çözeltisindeki fosfatın mineralojik ve organik fosfatla denge halinde olması da bunu sağlar. Dengeyi sağlayan ana etmen bakteriyolojik etkinliktir. Fakat toprak tiplerine göre toplam fosfat miktarı geniş açılım gösterir. Bekleneceği üzere bitkilerde fosfor özellikle aktif büyüme ve gelişme gösteren doku ve organlarda yoğunlaşır. Kökler sürekli büyüyüp, gelişen organlar olduğundan organik fosfat bileşiklerine bağımlıdırlar. Yani köklerle yerüstündeki fotosentetik dokular arasındaki karşılıklı bağımlılık bitkilerin yaşam devirlerinde çok önemli yer tutar. Bu nedenle de yeni gelişen tek yıllık veya ilkbaharda yeniden büyüyüp gelişmeye başlayan çok yıllık bitkiler Organik posfat bileşikleri tohum ve tomurcuk gibi büyüme potansiyeli yüksek olan organların dokularında da depolanır. İndirgenmiş formu hiç görülmez ve %75 -80 oranında çözünür bileşikleri halindedir. Özsuda Doku ve organlarda fikse edilen kısmı düşük olduğundan gereksinime göre floemden ve parankimadan iletilir. Bu nedenle de fosfat beslenmesi eksikliğinde önce yaşlı organlarda eksiklik arazları görülür. Bu organlardaki fosfatlı bileşiklerin sindirimi ve fosfatazlar etkisiyle parçalanmaları sonucunda serbest hale geçerek iletilirler. Fosfor eksikliğinde azot metabolizması yavaşlar, inorganik azot asimilasyonu azalınca nitrat birikimi olur ve bu da yaşlı organların koyu yeşil bir renk almasına neden olur. Bitkiler bodur kalır, kök gelişimi zayıf olur. Domates bitkisi iyi bir fosfor eksikliği indikatörüdür ve özellikle yapraklarının alt tarafında asimile olmayan şekerler ve nitrat birikimi nedeniyle mor lekeler görülür. Genelde bitkide P, N ve K dan daha azdır ve yaşlı organlardan tohumlara doğru artan % 0.0X -% 1.X oranları arasında bulunur ve yarısından fazlası çözünür formdaki organik bileşikleri halindedir. Yani ortalama olarak azot gereksiniminin beş - onda biri kadar fosfor alırlar. Kükürt özellikle yapısal proteinler ile protein yapısına girmeyen amino asit ve bazı peptidlerin yapısına girer. Yapısal protein zincirleri arasında kuvvetli S - S, S - H bağları oluşturarak zincirler arasına su moleküllerinin girmesini önler, termik stabilitelerini arttırarak çok sağlam yapılar oluşturmalarını sağlar. Proteinlerdeki oranı proteinin işlevine göre tipik olarak 3.10-5 - %7 arasında değişir, bazı türlerde sülfat halindeki S/ toplam S oranı > %50 olabilir. Toplam S açısından da familyalar arasında önemli farklar görülür, Graminae < Leguminosae < Cruciferae fam.larındaki açılım %0.1 - 1.5 / k. ağ. gibi yüksek bir orandadır ve bu fark tüm bitki düzeyindedir. Mikroorganizmalardan yüksek bitkilere kadar dağılım gösteren diğer sülfürlü bileşiklerin kimyasal çeşitliliği çok yüksek düzeydedir e bu nedenle kemotaksonomik karakterler arasında önemli bir yer tutar. Metabolizmalarının tam olarak incelenmiş olduğu söylenemez. Sistein, metionin ve çeşitli vitaminler ile koenzimler gibi bazı sülfürlü bileşiklerin hücre yaşamında, büyüme, gelişme ve çoğalmasındaki önemi bilinmektedir.. Bu yaşamsal organik sülfür bileşiklerinin çoğu en redükte formları halindedir, sülfit bağı ile bağlıdırlar. Örneğin sistein, metionin amino asitleri, glutation peptidi, ergotiyonein tiolü, koenzimlerden tiamin pirofosfat, Co-A ve biyotinde durum böyledir. Sülfidril kofaktörü halinde bir çok enzimin aktivitesinde de önemli rol oynar. Sülfat ksilemde iyonik bileşiği halinde iletildikten sonra ATP de sübstrat olarak kullanılarak sülfürilaz ve kinaz enzimlerince katalizlenen tepkimelerle fosfat grupları ile yer değiştirerek adenozin difosfosülfat halinde metabolizmaya girer. Mobilitesi yüksekse de metabolik etkinliği, kolay dönüşebilir oluşu nedeniyle iletimine pek gerek duyulmaz. Normal olarak alınan sülfatın büyük kısmı protein sentezinin yüksek olduğu genç dokulara gider ve büyüme potansiyeli olan organlarda depolanır. Eksikliği halinde protein sentezinin azalması nedeniyle çözünür azotlu maddelerin biriktiği görülür. Elektron iletiminde çok önemli rolü olan negativ red-oks potansiyeline sahip demirli proteinlerin bir kısmındaki Fe/ S prostetik grup merkezleri özel işleve sahiptir: fotosentez, azot fiksasyonu, sülfit ve nitrit red-oks tepkimeleri ve DNA tamir edici endonükleaz aktivitesi. Tipik olarak Fe iyonları R-S halindeki sistein sülfürü ile koordinasyon yapar. Elektron iletim sistemi oluşturan ferredoksinler gibi bazıları bağımsız iken flavoproteinler, S bakterilerinin sülfüraz, kinaz gibi bazıları Ni, V e Mo gibi diğer prostetik elementlerle beraber etkinlik gösterebilir. Ferredoksinler, mitokondrilerin sitokromlu membran proteinlerinde ve ileride görülecek olan fotosistem II fotosentez sisteminde iki sisteinat yan zincirinde 2 Fe - 2 S merkezi içerir ve bu iki merkez -S - S- bağı ile dianyon oluşturur ve Fe+2 Ö Fe+3 dönüşümleri elektron iletimini sağlar. Kötü ve / veya keskin kokular salgılayan bitkilerin kokulu uçucu bileşikleri genellikle küçük moleküllü olan tiyoller ile sülfitlerdir ve öncü bazı maddelerin enzimatik veya kimyasal parçalanma ürünleridir. Merkaptanların tipik kokuları birçok Crucifereae türlerinde karakteristik olup bazı tiyoglikozitler veya amino asitlerin dönüşümü ile ortaya çıkarlar. Çeşitli alifatik ve aromatik sülfitler mikroorganizmalarda yaygın olarak bulunur ve bunlardan en iyi bilinenleri penisilin, gliotoksin, basitrasin gibi antibiyotiklerdir. Bu maddeler algler ve funguslarla yüksek bitkilerde de bulunur. Proteinik olmayan amino asitlerin hemen hepsi sisteinden S-sübstitüsyonu ile oluşur ve sistein ile benzeri öncülerden sentezlenirler. Yüksek bitkiler kükürtlü amino asitlerden ancak sisteini öncü madde olarak kullanabilir ve bu nedenle de sisteinin bu metabolizmanın merkez maddesi olduğu söylenebilir. İzotiyosiyanat oluşturan tiyoglikozitler kolayca enzimatik hidrolize uğrayabilirler ve yeni bir moleküler düzen kazanarak hardal yağlarını, glükoz ve sülfatı oluştururlar. Kemotaksonomik karakter olarak da önemli veriler sağlarlar. İzotiyosiyanatların çoğu keskin tadları ile kendilerini belli ederler ve baharat olarak kullanılırlar. Glükozitler glükozun R- yan zincirinde farklılık gösteren ve izotiyosiyanat oluşturan elliden fazla üyesi olan bir madde grubudur. Düz veya dallanmış alkil yan zincirleri ile çeşitli şekillerde hidroksillenmiş veya düz zincirli türevleri vardır. Bu türevlerin büyük bir kısmı a-amino asit ve a-keto-asit metabolizmalarında rol alır. Potasyum 138 pikometre iyon çapına karşılık tek yükü ve 239300 pm2 yüzey alanı nedeniyle şişirici etkisi, 6-8 koordinasyon sayısı ile 60 kadar enzimin kofaktörü oluşu, özellikle Na+/ K+ - ATPaz membrana bağlı iyon pompası enzimi üzerindeki ve membran porlarını şişirici etkisi ile hücre düzeyindeki iletim düzenleyici rolü sayesinde metabolizmayı genel olarak etkiler. Hücre özsuyunda bol olarak bulunması ve kolay taşınması nedeniyle osmotik basıncı düzenlediğinden de organik madde metabolizması e iletiminde rol oynar. Tüm bu temel özellikleriyle bitkilerde tipik olarak %0.2 - 11 / k. ağ. oranında bulunan K miktarının eksilmesi ile fotosentez hızı ve ürünlerinin yapraklardan iletiminin azalması, organik asitler ve yağ asitleri sentezinin yetersiz kalması, serbest amino asit birikmesi ve protein sentezinin azalması, yumrular gibi karbohidrat deposu organlarda gelişememe, nitrat indirgenmesi ve azot metabolizmasının yavaşlaması ve protein sentezinin düşmesi ve protein azalması, hücre çeperi polisakkaritlerinin sentezinin azalması, kök sistemi gelişiminin aksaması, dona dayanıklılığın düşmesi, büyüme ve gelişme, olgunlaşma gecikmesi ile gelişmenin anormallik göstermesi gibi çok yönlü etkiler görülür. Potasyum eksikliği önce yaşlı daha sonra genç yaprakların sararma ve kuruması, ışık enerjisi azalması halinde fotosentez hızının normalden çok daha fazla düşmesi görülür. ATP metabolizmasının aksaması nedeniyle klorofil azalmasından daha hızlı şekilde fotosentez hızı düşer. NO3 indirgenmesinin azalması sonucu amino asit sentezi azalması ve daha da hızlı olarak protein sentezi hızının düşmesi ile büyüme durur. 14C izotoplu CO2 içeren atmosferden kökler dahil bitkide metabolize edilen izotop oranı düşer, karbohidrat sentez ve iletimi düşüşü N aimilasyonunun azalmasına neden olur. Bunun sonucunda çözünür karbohidratların sağladığı osmotik basınç düşer, hücre çeperleri zayıflar. Sonuç olarak K, N ve P kadar önemli bir besin elementidir. Kalsiyum +2 yüküne karşılık 138 pm çapı, 130700 pm2 alanı ile iyon kanallarını büzücü etkisi olan, 6 - 8 koordinasyon sayısı ile örneğin orta lamellerde pektatlar, vaküollerde oksalat kristalleri gibi sağlam bağlı tuzlar oluşturan elementtir. Bu özelliği ile organik asitlerin ph üzerindeki etkilerini dengelediği gibi toksik etkilerini de önler. Meristematik dokularda sürekli bölünen hücreler arasında oluşan orta lameller nedeniyle boldur. Ayrıca nitrat indirgenmesi ve, karbohidrat ve protein iletimi üzerindeki olumlu etkileri, amino asit ve ATP metabolizmasında önemli rolü olan adenil kinaz, arjinin kinaz gibi enzimler için gerekli oluşu gibi etkileri ile temel elementlerdendir. Hayvanlarda olduğu gibi büyük oranda immobilize edilen ve ancak yaşlanma, olgunlaşma, senesans - ihtiyarlama ile katabolik metabolizma hızlandığında serbest hale geçebilen Ca++ eksikliği halinde ilk etkileri yaşlıorganlarda görülür.

http://www.biyologlar.com/su-ve-mineral-madde-metabolizmasi-2

Bakteriyofajlar Hakkınmda Bilgi

Bakteriyofaj (bakteri ve Yunanca phagein, ‘yemek’ fiilinden türetme), bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları (hayvan, bitki ve mantarları) enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitlilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme DNA veya RNA olabilir, ama genelde 5 - 500 kilo baz çifti uzunluğunda çift sarmallı DNA’dan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda, örneğin toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği (virion) bulunmuştur ve deniz bakterilerinin %70′i fajlar tarafından enfekte olmuş olabilirler. Tarihçe 1913′te Britanyalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla takip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix d’Hérelle 3 Eylül 1917′de “dizanteri basilinin düşmanının, görünmez bir mikrobunu” keşfettiğini açıklayıp ona bakteryofaj edını verdi. Çoğalması Bakteriyofajların litik veya lizogenik hayat döngüleri olabilir, bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizogenik döngü, buna tezat olarak, konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar (temperate phage) denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür, ama konağın şartları bozulursa, örneğin besin kaynaklarının tükenmesi durumunda, endojen fajlar (profaj olarak adlandırılırlar) etkinleşirler. Bir çoğalma süreci başlar, sonucunda konak hücre parçalanır. İlginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar, bu olguya lizogenik dönüşüm (lysogenic conversion) denir. Bunun iyi bilinen bir örneği Vibrio cholera ‘nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve Giriş Renklendirilmiş bir elektron mikrografında yanyana dizilmiş bakteriyofajlar Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki özgül reseptörlere bağlanırlar, bunlar arasında lipopolisakkaritler, teikoik asitler, proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluşup bağlanırlar. Karmaşık bakteryofajlar, örneğin T-çift fajları, genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. İyice bağlandıktan sonra, kuyruk büzülür, bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter, bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. Protein ve Nükleik Asit Sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA’nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA’yı tercihen çevirmesine neden olabilirler. Protein ve Nükleik asit sentezi Kısa süre, bazen dakikalar içinde, bakteri ribozomları viral mRNA'nın proteine çevirimine (translasyonuna) başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mRNA'yı tercihen çevirmesine neden olabilirler. Konağın kendi protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar, ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur, kuyruk onun üzerinde büyür. Kafa kapsidi, ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde DNA kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması (lizis) veya salgılanma yoluyla salınırlar. T4 fajları durumunda, hücre içine girmelerinden 20 dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300'ü bulabilen faj salınır. Bunun gerçekleşmesi, hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur. Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar, beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Keşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batı'da faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliği'nde 1940'lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar, milyonlarca yıldır süregeldiği gibi, bakterilerle beraber evrimleştikleri için, sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca, etkili bir faj, özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için, ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir, bakteri tipinin doğru tanımlandığından emin olmak gerekebilir, bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak, sıkça olduğu gibi, birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler, onun için açık bir yaraya uygulanmaları en iyi sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006'da ABD Gıda ve İlaç İdaresi (Food and Drug Admnistration) bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır

http://www.biyologlar.com/bakteriyofajlar-hakkinmda-bilgi

Sularda Bulunan ve Hastalık Yapıcı Mikroorganizmalar

Suda bulunan mikroorganizmalar, üç grupta toplanabilir. a) Suda doğal olarak bulunan canlıların mikroorganizmaları: Spirillum, Vibrio, Pseudomanas, Achromobacter, Chromobacter türleri ile Micrococcus ve Sarcina 'nın bazı türleri. Bu bakterilerin optimum üreme sıcaklığı 25 °C veya daha azdır. b) Toprakta yaşayan mikroorganizmalar; toprağın yıkanması sonucu suya karışırlar. Bunlar; Bacillus, Streptomyces ve Enterobacteriacea 'nın saprofit üyeleridir. Bunlarında optimum üreme sıcaklıkları 25 °C veya daha azdır. c) Normal olarak insan ve hayvanların barsaklarında bulunanlar: Başlıcaları; Esherichia coli, Streptococcus faecalis, Clostridium perfiringens ve muhtemelen bağırsak patojenleridir (Salmonella ve Vibrio comma gibi). Enfeksiyonların bulaşmasında bir çok etken rol oynamasına rağmen, büyük salgınların çıkmasında ve yayılmasında doğal çevre ve özellikle su büyük önem taşır. Hijyenik koşullara sahip suyun sağlanması sosyo-ekonomik ve sosyo-kültürel faktörler ile sıkı sıkıya bağlantılıdır. Alt yapı yokluğu ya da yetersizliği sonucunda patojen mikroorganizmaların sulara karışması ve bu suların içme suyu olarak kullanılması sonucunda da enfeksiyonlar ortaya çıkmaktadır. Bakteriler Patojenik Bakteriler Su ve atık sularda patojenik bakteriler oldukça bol miktarda bulunabilirler. Su kirliliğinde en önemli etken, mikrobiyal kirlilik özellikle de patojenik mikroorganizmalardır. Su kirliliğinin en tehlikeli şekli ise sulu ortama insan dışkısının girmesidir. Birçok hastalık; insan veya bazen hayvanların patojen saçan dışkılarının su veya gıdaları kontamine etmesiyle ve daha sonra bunların tüketilmesiyle Fekal-oral rotalı bir yolla bulaşmaktadır. Enterik patojenler tipik olarak suyoluyla bulaşan hastalıkların sebepleridir. Bu patojen bakteriler, virüsler ve parazitleri (protozoa ve helmintler) kapsamaktadır. Bu organizmalar çevreye salgılandığında uygun çevresel koşullarda, sucul ortamlarda uygun zaman periyotları boyunca yani aylarca ve hatta yıllarca bile canlı kalabilmektedirler. Bundan başka, patojenlerin hepsi oral olarak alındığında hastalığa sebep olmayıp, helmit bir hastalık olan "Schistosomiasis" insan atıklarıyla kontamine olmuş sularda yüzen veya çıplak ayakla yürüyen insanlar arasında yaygındır. Bu enfektif patojenler genellikle yutma yoluyla değil, ciltte burgu yoluyla delik açan serbest yüzücülerdir. Tehlikeli su epidemilerine sebep olabilen Salmonella, Vibrio, Shigella Anthrax, Brucella, Ruam ve diğer birçok patojen bakteriler ve viruslar, portörlerin dışkıları ile sulara karışabilir. Su ile yayılan salgınlara su epidemileri denir. Başlıcaları kolera, tifo, dizanteri ve enfeksiyöz hepatitistir. Salmonella: Genellikle mide krampları ve diyare ile birlikte akut gastroenteritidisi içerir. S. typhi 'nin neden olduğu tifo en bilinen etkendir. S. typhi, dışkı ile atılmaktadır. Suda yaşaması değişken olup düşük sıcaklık ve bol besin koşulları uygun bir ortam oluşturur. Shigella: Basilli dizanteri olarak da adlandırılan hastalığın etmenidir. Etken, dışkı ile atılmaktadır. Çoğunlukla akut diyareye neden olur. Shigellosis, sudan kaynaklanan salgınlara neden olmasına karşın tifodan daha az rastlanır. Vibrio cholerae: Diyare, kusma, hızlı su kaybı, kan basıncının azalması, düşük vücut sıcaklığı ile karakterizedir. Hastalık, hasta kişilerin dışkıları ile yayılır. Yüzeysel sularda bu bakterinin yaşama süresi 1 saatten 13 güne kadar değişmektedir. Kolera salgınları genelde şebeke sularının kirlenmesiyle ortaya çıkar Enteropatojenik E. coli: Atık sularda bol miktarda bulunan bu bakterinin patojenik türü diyareye neden olmaktadır. Leptospira: Leptospirosis'e neden olan bu bakteri, kan dolaşımına derideki sıyrıklardan veya mukozadan girmekte börek, karaciğer ve merkezi sinir sistemini etkileyen akut enfeksiyonlara neden olmaktadır. Bu bakteri idrarla atılır. Suda yaşama süresi bir kaç günden 3 haftaya kadar değişir. Tularemia: Leptospira'da olduğu gibi etken kan dolaşımına deri sıyrıkları ve mukozalar yoluyla girmekte; üşüme, ateş, lenf düğümlerinde şişme ve halsizlik gibi durumlarla ortaya çıkmaktadır. Hastalık; dışkı, idrar ve hasta hayvan ölülerinin su kaynaklarını kirletmesi sonucu yayılmaktadır. Bu mikroorganizmaların suda yaşama süreleri düşük sıcaklıklarda uzamaktadır. Tüberküloz: Hastalık çoğunlukla solunum yoluyla bulaşmasına karşılık etkene idrar ve dışkıda da rastlanılmaktadır. Su ile tüberküloz yayılması pek yaygın değildir. Tüberküloz basilinin suda yaşama süresi birkaç hafta olabilir. Virüsler Enfektif hepatitis: Sarılık olarak bilinen bu hastalık genellikle su ile yayılmakta ve diğer kirlilik etkenleri ile bir arada bulunmaktadır. Polimyelitis: Çocuk felcinin kirli sularla da yayıldığı bildirilmektedir. Temelde kişiden kişiye temasla bulaşmasına karşın kirli sularla da bulaşma bildirilmiştir. Su ile geçebilen virüslerin sebep olduğu hastalıklar: Çocuk felci, enfeksiyöz hepatit, enterisit, şap hastalığı, sığır vebası, domuz vebası, Newcastle, çiçek. Protozoa Bazı protozoon türleri normal olarak insan da dahil olmak üzere sıcak kanlı hayvanların barsaklarında yaşamaktadırlar. Bu protozoon türlerinin büyük bir kısmı insanlar için tamamen zararsız olup sağlıklı ve hasta insanların dışkılarında sürekli olarak bulunurlar. Ancak bazı protozoonlar patojendir. Entameoba histolika: Amebiosis'e neden olan bu protozoon, dışkı ile kistler halinde atıldığından suda uzun süre kalabilir. Protozoa barsak çeperinde delik aşar ve bazı durumlarda barsakta çatlamaya neden olur. Naegleria gruberi: Amibin patojen cinsi olan N. gruberi menenjite neden olmaktadır. Patojen vücuda burundan girmekte, daha sonra beyine,omurilik sıvısına ve kan dolaşımına ulaşmaktadır. Semptomlar su ile temas edildikten 4-7 gün sonra görülmeye başlar. Ölüm genellikle semtomlar görüldükten 4-5 gün sonra şekillenir. Hastalık kirli sularda yüzme ile geçer. Parazitler Taenia saginatta: İnsanlar, bu parazitin yumurtasını taşıyan suları ağız yoluyla almak suretiyle hastalanırlar. Ascaris lumbricoides: Ascariasis denilen hastalığa neden olan bu parazit, daha çok çocuklarda görülür. Dışkı ile atılan yumurtalar toprak ve suda uzun süre canlı kalabilirler. Atık su tasfiye tesislerinde çalışanların %2'sinde, atık su ile sulama yapan çiftçilerin %16'sında hastalık görülmektedir. Shistosoma: Shistomiasis'e neden olup, hastanın idrar veya dışkısı ile kirlenmiş sularda görülür. Su ile geçebilecek parazitlerin sebep olduğu hastalıklar: a) Su ile geçebilen trematode'ların sebep olduğu hastalıklar: Dicrocoeliasise, Distomatose, Schistosomiasise b) Su ile geçebilen Cestode'ların sebep olduğu hastalıklar: Eschinococcose, Taeniasise, Cysticercoae, Sparganose c) Su ile geçebilen Nematode'ların sebep olduğu hastalıklar: Ascariasise, Dracunculose, Oxyurose, Anguillulose, Ankylostomiasise, Necatorose, Trichostrongylose, Haemonchose, Trichurose d) Su ile geçebilen protozoon'ların sebep olduğu hastalıklar: Amipli dizanteri, Lambliese, Trichomeniasis, ishal, balantidium dizanterisi, Coccidiose e) Su ile geçebilen leptospiraların sebep olduğu hastalıklar: Icterus septic haemorrhagicus, yedi gün humması f) Su ile geçebilen diğer parazitler: Bu hususta en önemli olarak sülükleri söyleyebiliriz. Bunlar kan emerek canlı organizmayı zayıf düşürürler. Kaynak: sumikrobiyolojisi.org

http://www.biyologlar.com/sularda-bulunan-ve-hastalik-yapici-mikroorganizmalar

Rektum Nedir? Anatomisi ve Fonksiyonu Nedir?

Rektum Nedir? Anatomisi ve Fonksiyonu Nedir?

Rektum, dışkının geçici bir süre depolanmasını sağlayan sindirim sisteminin alt parçasıdır. Bu makalede rektumun anatomisi ve fonksiyonu hakkında bazı bilgiler vereceğiz.Biliyor Muydunuz?Bağırsak hareketlerinin sıklığı konusunda hiç bir kural yoktur. Ancak, sağlıklı bir birey için sıklık haftada üç kez veya günde üç kez arasında değişmektedir.İnsan sindirim sistemi, sindirim sürecinden sorumludur. Sindirim sürecinin her biri son derece önemli olan bir çok aşamaları bulunmaktadır. Böyle önemli aşamalardan biri de vücuttan sindirilmemiş gıda ve atık ürünlerinin kaldırılmasını içeren aşamadır. İşte bu aşamada rektum devreye girmektedir. Rektum Nedir?Sindirim kanalının sigmoid fleksuradan anüse kadar olan parçasına rektum denilmektedir. Ayrıca anüste son bulan kalın bağırsağın son bölümü olarak da ifade edilebilir.Rektum Anatomisi:Sindirim sistemi ağızdan anüse kadar, uzunluğu yaklaşık 8.3 metre olan boru şeklinde bir yapıdır. Sindirim sisteminin son bölümü çekum, kolon, rektum, anüs bölümlerini içeren yaklaşık 1,8 metre uzunluğundaki kalın bağırsaktır. İnsanlarda rektum yaklaşık 10-12 cm arasında ortalama bir uzunluğa sahiptir. Yukarıda bahsedildiği gibi sigmoid kolonu anüse bağlamaktadır. Rektumun dış duvarı boylamasına kaslarla çevrelenmiştir. Pankreas, dalak, karaciğer gibi organların yanı sıra üreme organları ve idrar yolları rektuma yakın yer almaktadır. Bu nedenle kolorektal kanser (hem kolon hem de rektumu ilgilendiren kanser türü) gibi durumlar kalın bağırsağın dışına çıktığı takdirde komşu organları etkileyebilir.Rektumun Fonksiyonları:Rektumun fonksiyonu, dışkılamaya kadar dışkıyı geçici bir süre depolamaktır. Bir kişi bir yiyeceği ilk kez çiğnediği andan itibaren sindirim sürecinin bir parçası olarak, sırasıyla mide, ince bağırsak ve son olarak kalın bağırsaktan geçmelidir. Sindirim işlemi sırasında biriken sindirilmemiş gıda ve atık maddeler, dışkı maddesi şeklinde rektum içine doğru hareket eder. Bu dışkı maddesini toplamak ve dışkılama sürecine kadar geçici olarak saklamak rektumun fonksiyonudur. Böylece dışkı anüsten atılana kadar, rektum içinde saklanmaktadır.Rektum Nasıl Çalışır?Sindirilmemiş yiyecekler ve diğer artık maddeler dışkı formunda rektuma ulaşıp, rektumu doldurduğunda sensörler bu durumu beyine bildirir. Daha sonra beyin dışkılamanın uygun olup olmadığına karar verir. Sinyaller beyin ile birlikte, dışkı tahliyesi için, kişiyi hazır hale getirmek için karın duvarı kasları, anal kanal, göğüse gönderilir. Eğer beyin dışkılamanın mümkün olduğuna karar verirse, sfinkter gevşer ve rektum kasılır böylece dışkılama gerçekleşir. Eğer beyin dışkılama için uygun olmadığına karar verirse sfinkter kasılır, rektum dışkıyı daha uzun bir süre tutar ve bir süre için tuvalete gitme dürtüsünün uzaklaşmasını sağlar.Rektum ile ilişkili olabilen belirli hastalıklar veya sorunlar olduğunda rektal muayene teşhis için yapılabilir. Bu durumlar arasında erkeklerde prostat kanseri ve benign prostat hipertrofisi, fekal inkontinans ve basur bulunmaktadır. Kolonoskopi veya sigmoidoskopi rektumu görüntülemek için rehberli kamera kullanılan endoskopinin türleridir. Bu tetkikler gerekirse biyopsi almak için de kullanılabilmektedir ve kanser gibi hastalıkları teşhis etmek için de kullanılabilir. Örneğin rektal kanser endoskopi yardımı ile tespit edilebilmektedir.Vücut sıcaklığı rektumdan ölçülebilmektedir. Cıvalı termometre 3- 5 dakika boyunca, dijital termometre bip sesi gelene kadar vücutta tutulmalıdır. Normal rektum sıcaklığı genel olarak 36 ile 38 ° C arasında değişmektedir ve ağızdan ölçülen sıcaklıktan 0.5 °C, koltuk altından ölçülen sıcaklıktan 1 °C kadar daha yüksektir. Çocuk hekimleri bebeklerin ve küçük çocukların vücut sıcaklıklarının rektumdan ölçülmesi gerektiğini önermektedir. Bunun nedeni rektal sıcaklığın çekirdek vücut sıcaklığına en yakın olmasıdır ve küçük çocuklarda vücut sıcaklığının doğruluğu çok önemlidir. Oysaki son zamanlarda ortaya çıkan timpanik ve alın termometreleri kullanımlarının daha kolay olması sebebiyle aileler ve doktorlar tarafından daha sık kullanılmaya başlanmıştır ve rektumdan ateş ölçümünün önemi unutulmaya başlamıştır.Kaynakça: http://www.buzzle.com/articles/anatomy-and-function-of-the-rectum.html<br />http://en.wikipedia.org/wiki/RectumYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/rektum-nedir-anatomisi-ve-fonksiyonu-nedir

 
3WTURK CMS v6.03WTURK CMS v6.0