Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1632 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir

Biyocoğrafya Nedir

Biyocoğrafya, bitki ve hayvan türlerinin dağılımını ve bu dağılımın nedenlerini inceleyen bilim dalıdır. Biyocoğrafya araştırmaları yürütülebilmesi için yeryüzü, özellikle kıtalar ve adalar, öbür bölgelerden değişik ama kendi sınırları içinde ortak özellikte bitki ve hayvan varlığını barındıran belirli bölgelere ayrılmıştır. Bitki ve hayvan topluluklarının özelliklerini dağılışlarını ve insan yaşamı üzerine etkilerini inceleyen fiziki coğrafya alt dalıdır. Biyoloji, botanik, zooloji ve tıp canlılar biliminin yardımcı bilim dallarıdır.. Bitki coğrafyası bölgeleri Kuzey bölgesi Paleotropikal bölge Neotropikal bölge Güney Afrika bölgesi Avustralya bölgesi Antarktika bölgesi Hayvan coğrafyası bölgeleri Palearktik bölge Oryantal bölge Avustralyen bölge Etiyopyen bölge Nearktik bölge Antarktika bölgesi Neotropikal bölge

http://www.biyologlar.com/biyocografya-nedir

Doku <b class=red>Nedir</b> ?

Doku Nedir ?

Doku, bitki, hayvan ve insan organlarını meydana getiren, şekil ve yapı bakımından benzer olup, aynı vazifeyi gören, birbirleriyle sıkı alâkaları olan aynı kökten gelen hücrelerin topluluğu. İlkel canlılar bütün hayatları boyunca bir tek hücre olarak kaldıkları halde yüksek organizmalar çok sayıda hücrelerin biraraya gelmesi ile meydana gelmiştir. Bitkisel organizmaları meydana getiren çok sayıdaki hücrelerin protoplastları birbirinden cansız hücre çeperleriyle ayrılmış olmakla beraber aralarında sıkı bir ilişki göstermektedir. Böyle hücre çeperi içinde bulunan, birbiriyle sıkı ilişki gösteren, aynı kökenden gelmiş protoplast topluluklarına doku, dokuların özelliklerini konu eden morfoloji biliminin dalına da histoloji (doku bilimi) denir. Dokuyu meydana getiren hücreler genellikle aynı ödevi görmekteyseler de doku tarifinde ön görülen temel düşünce fizyolojik olmaktan çok morfolojikseldir. Eğer fizyolojiksel bakımdan dokunun tarifi yapılacak olursa, kökenleri ayrı olsa bile aynı ödevi gören hücre toplulukları olarak yapılabilir ki, böyle daha geniş anlamda hücre topluluklarına doku sistemi denilmektedir. Doku hücre bölünmesi sonucu meydana gelir. Tek hücreli organizmalarda bölünen hücreler birbirinden ayrılarak yeni birer birey vücuda getirdikleri halde, çok hücreli organizmalarda bölünen hücrelerden meydana gelen hücrelerin birbirinden ayrılmaması, geçit ve plasmodesma (plasmatik köprüler) gibi madde ve uyartı iletimini kolaylaştıran yapılar ile proplastları arasında sıkı ilişki kurulan hücre toplulukları bireyi meydana getirmektedir. Bazı tek hücreliler bölündükten sonra çevrelerinde meydana getirdikleri müsilaj bir kın ile bir arada tutulan hücre grupları ve bazı mantarlardaki zengin dallanma gösteren ipliksi hücrelerin bir örgü meydana getirmek üzere sık sık kümeler halinde olmaları, dış görünüş bakımından dokuyu andırsalar bile gerçek doku değil, yalancı dokulardır. Dokular bitkisel ve hayvansal dokular olmak üzere ikiye ayrılarak incelenmektedir.

http://www.biyologlar.com/doku-nedir-

Göç nedir ?

Kuşlarda göç, tanımlanmış iki coğrafi bölge arasında düzenli tekrarlanan nüfus hareketi olarak tanımlanabilir. Pek çok kuş türünde görülen ve üreme sonrası genç bireylerin çevreye yayılmalarını tanımlayan “saçılma” ve besin kaynaklarının bazı yıllarda yetersizliği sonucu baykuşlarda ve çaprazgagalarda olduğu gibi güneye ani hareketlenme ile tanımlı “işgal” göç sayılmazlar. Neredeyse her göçmen tür için farklı olan göç rota ve yordamları, kuş topluluğunun tarihçesine, geniş engelleri aşabilme yeteneklerine, topoğrafik engellerin konumlarına ve kışlama ve üreme alanlarının birbirlerine göre konumlarına bağlı. Son elli yılda sürdürülen kapsamlı halkalama ve işaretleme programları sayesinde yüzlerce türün göç ayrıntıları bilinmekte. Örneğin, Kuzey Amerika kuşlarının başlıca göç rotası kıyı ve dağ sıralarının aynı yönde uzanması nedeniyle kuzey-güney doğrultusunda. Avrasya'da ise sonbaharda kuşlar önce doğu-batı doğrultusunda hareketlendikten sonra, ancak Akdeniz ve Büyük Sahra'yı geçerlerken kuzey-güney hattına dönerler. Genel olarak söylemek gerekirse, Güney Yarımküre'de üreyen kuşlar Kuzey Yarımküre'deki benzerleriyle karşılaştırıldıklarında pek göç hareketi göstermezler. Bazı kırlangıçlar ve sinekkapanlar kışları kuzeye, tropikal Amerika'ya yönlenseler de hep küçük bir azınlık olarak kalırlar. Bunun başlıca nedeni, Kuzey Yarımküre'deki kara parçalarının kutuplara daha yakın kesimlerde geniş yüzölçüme sahip olmaları. Göç rotaları, çoğu zaman kuş türlerinin uzak geçmişteki yayılma hareketlerini yansıtırlar. Örneğin Grönland'ın ve Alaska'nın tundra çayırlarını Avrasya'nın iki farklı ucundan gelerek kolonize eden Kuyrukkakanlar (Oenanthe oenanthe), kışlamak için çok daha yakın olmasına karşın Kuzey Amerika yerine okyanusu aşarak atalarının bir zamanlar geldiği Avrupa kıtası üzerinden Afrika'ya gitmeyi yeğlerler. Kuzeybatı yayılışının ucu İskandinavya'ya ulaşan Kutup Çıvgını (Phylloscopus borealis) ise Asya'yı boydan boya çapraz bir rotada katederek kışın Güneydoğu Asya'ya ulaşır. Günümüzde izlediğimiz göç hareketleri, son buzul çağı bitiminde buzulların geri çekilmesi ile şekillenmiş. Buzulların en güneye, Anadolu’ya ulaştığı dönemde bugünkü Sahra Çölü tundra ve tayga içeren büyük bir bataklıktı. Buzulların geri çekilmesi ile vejetasyon kuşakları da kuzeye doğru hareket etti ve kuzeye yaklaştıkça kış ve yaz arasında çevre koşulları giderek daha aşırı hale geldi. Kendi uygun habitatlarını, örneğin tundrayı izleyen kuş türlerinin dağılımları kuzeye doğru ilerlerken giderek kış ve yaz arasındaki farklar belirginleşti ve hep biraz daha güneyde “beklemek” durumunda kaldılar. Elbette bu uzun süreç boyunca “bekleme” ve üreme alanları arasında giderek artan mesafeyle baş edebilmek için pek çok adaptasyon evrimsel olarak gelişti.

http://www.biyologlar.com/goc-nedir-

Kan nedir? Kanın bileşimini

Kan nedir? Damarlarımızda dolaşan kan yaşamsal önemi olan bir sıvıdır. Goethe’ye göre “Kan son derece özel bir özsudur” (Faust, Bölüm I, Perde I, Sahne IV, Dize 1740). Kanın bileşimini Kan başlıca iki kısımdan oluşur: 1) Plazma adı verilen sıvı kısmı, 2) Bu sıvıda süspansiyon halinde bulunan kan hücreleri. Plazma: Kanın yaklaşık % 60’ını oluşturur. Açık sarı renktedir. Bileşiminde başta su olmak üzere proteinler, şeker, yağlar, vitaminler, kimyasal elementler, vd  bulunur. Proteinler arasında albumini, hormonları, bağışıklık maddelerini (antikorlar) ve  kanın pıhtılaşmasını sağlayan faktörleri  sayabiliriz. Elementlerden demir, vitaminlerden B6, B12, folik asit, K vitamini, bağışıklık proteinlerinden antikorlar (immunglobulinler) ve çeşitli pıhtılaşma faktörleri hematolojiyi yakından ilgilendirir. Kan hücreleri: Kanın yaklaşık % 40 ını oluşturan kan hücreleri  üç gruba ayrılır: eritrositler (alyuvarlar, kırmızı kan hücreleri), lökositler (akyuvarlar, beyaz kan hücreleri) ve trombositler (pulcuklar). Tüm kan hücrelerinin yapım yeri kemik iliğidir.

http://www.biyologlar.com/kan-nedir-kanin-bilesimini

Kongo Nehri Balıklarının Hızlı Evrimi

Kongo Nehri Balıklarının Hızlı Evrimi

Fotoğrafta bir çift akvaryum çiklet balığı türü olan Telegramma brichardi bulunmaktadır. Fotoğraf:Oliver Lucanus

http://www.biyologlar.com/kongo-nehri-baliklarinin-hizli-evrimi

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotik Kıyameti Ve Bilinmesi Gerekenler

Antibiyotiklerin direnci bizler antibiyotikleri sıklık ve hevesle kullanmadan çok önce başlamıştır. Modern bakterilerin antibiyotiklere karşı kendilerini korumak için kullandıkları genler, 30.000 yıldan uzun bir süredir Arctic permafrost'ta donmuş antik bakterilerde bulunmuştur. (Credit: Alamy)

http://www.biyologlar.com/antibiyotik-kiyameti-ve-bilinmesi-gerekenler

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

HİSTOLOJİDE KULLANILAN MİKROSKOP TÜRLERİ VE MİKROSKOBİK YÖNTEMLERİ

Klasik ışık mikroskobunun bulunmasından bu yana bilim ilerledikçe yeni mikroskop türleri histolojinin hizmetine girmiştir. Elektron mikroskoptan sonra daha da hızlı gelişen yöntemlere yenileri eklenmekle beraber eski yöntemler ve mikroskop türleri hala kullanılmaktadır. 1. Işık Mikroskobu İmmersiyon yönteminin yardımına rağmen büyültmesi ikibinin altında olan optik cihazlardır. Mekanik kısım büyütülmüş görüntünün foküsünü yapmak için optik tüpü ya da preparat tablasını hareket ettirmeye yarar. Optik kısımda görüntüyü sağlayan iki ayrı büyültücü mercek sistemi vardır. Değişik büyültmeler sağlayabilmek için dönen bir rovelver üzerinde 3-5 objektif bulunur. İkinci büyültücü mercek sistemi, büyültülmüş görüntünün araştırıcının retinasına düşmesini sağlar ve oküler adını alır. Bir mikroskobun büyültmesi oküler ve objektif büyültmelerinin çarpılmasıyla elde edilir. 2. Faz-Kontrast Mikroskobu Görülmeyen, boyanmamış dokuların yeterli kontrast ile ayrıntılı olarak görülmelerini sağlayan mikroskop türüdür. Böylece tespit ve boyama yapılmadan canlı hücre ve dokuların incelenmesini sağlar. 3. Polarizasyon Mikroskobu Bu mikroskop ışığı çift kırma yani anizotropi özelliği gösteren yapıların (kas lifleri, silya, kollajen lifleri) incelenmesinde kullanılır. Işık Nikol prizmasından ya da poloroid filtreden geçerken tek yönde kırılır. Polarizör ve analizör olarak birbirine dik olarak konulan iki nikol prizması karanlık alan meydana getirir. İki prizma arasına konan cisim anizotropi özelliği gösteriyorsa karanlık alan içinde parlak olarak görülür. Bir ışık mikroskobunda büyütme nasıl hesaplanır? Faz-kontrast mikroskubunda ne tür incelemeler yapılır? Anizotropi nedir? Hangi yapılar polarizasyon mikroskobunda incelenmeye uygundur? 4. Ultraviyole Mikroskobu Nükleik asitler gibi ultraviyole ışığını absorbe eden yapıların araştırılmasında kullanılır. Ultraviyole çıplak gözle görülmediği için ya bir floresans ekran ya da fotoğraf plağı üzerinde görüntü alınır. Alanda ultraviyole ışınlarını absorbe eden yapıları varsa bunların yoğunluk derecelerine göre griden siyaha varan koyu alanlar şeklinde görüntü verir. 5. Floresans Mikroskobu Bazı maddeler dalga boyu kısa, yüksek enerjili ışınlarla aydınlatılırlarsa daha büyük dalga boylarında ışınlar salarlar. Bu olaya floresans denir. Bu floresans bazen canlı bir yapının (Riboflavin, Noradrenalin) kendi özelliğidir. Buna doğal floresans denir. Ya da floresans özelliği olan boyalar dokuya çöktürülür. Buna da yapay floresans adı verilir. Ultraviyole ışık veren kaynağın önüne normal ışığı geçirmeyen, sadece ultraviyole ışığın geçişine izin veren filtreler konur. Oluşacak floresans karanlık alanda incelenir. Ultraviyole ışıklar gözle görülmemelerine rağmen bu ışıkları kesecek filtreler oküler bölgesine yerleştirilmelidir. Çünkü ultraviyole ışık gözler için zararlıdır. Floresans nedir? Kaç türlü floresans vardır? 6.İmmersiyon Mikroskobu Normalde ışık mikroskopta objektif ile preparat arasında hava vardır. Lamelden maksimum açı ile çıkan kenar ışınları kırma indisi farklı bir ortam olan havaya geçerken kırılırlar ve büyültme gücü yüksek olan objektifler tarafından alınamazlar. Eğer preparat ile objektif arasına kırma indisi camınkine yakın bir sıvı konulursa preparattan çıkan ışık havada olduğu gibi fazla yayılmadan objektif içine girer. İmmersiyon sıvısı olarak sedir yağı ya da bazı sentetik immersiyon yağları kullanılmaktadır. 7. Elektron Mikroskobu Işık mikroskopta ışık kaynağı olarak kullanılan foton yerine elektron kullanılan bir yüksek teknoloji ürünüdür. Bir fitilden salınan elektron demeti ışık mikroskoptaki mercekler yerine elektrostatik ve elektromanyetik alanlardan geçilerek saptırılır ve genişletilir. Angström düzeyinde yapıları inceleyecek büyültmeler sağlar. Kesitlerde atom ağırlığı yüksek metal tuzları dokularda kendisiyle ilgili kısımlar üzerine çöktürülerek boyama yapılır. Görüntü floresan bir ekrandan izlenir. İki türü vardır. Dokuları, hücrelerin içini kesitler halinde inceleyen türüne transmisyon elektron mikroskubu denir. Hücre ve dokularda yüzey özelliklerini üç boyutlu bir görüntü tarzında sağlayan türüne ise scanning elektron mikroskop denir.

http://www.biyologlar.com/histolojide-kullanilan-mikroskop-turleri-ve-mikroskobik-yontemleri

AIDS'in Belirtileri

AIDS ve aynı virüs tarafından meydana getirilen diğer hastalıkların belirtileri hemen hemen aynıdır. Aynı soğuk ve gribin birbirleriyle özdeşleştirlmesi gibi.Fakat AIDS'e ya da ilgili hastalıklarından birine yakalanmış bir kişi için bu belirtiler çok ısrarcıdır ve nedeni yok gibi görünür. Kişi hiçbir zaman kendisini neyin hasta ettiğini bulamaz ve hastalığın üstesinden gelemez. Çünkü sadece doktorlar ve konu ile ilgili araştırma yapan bilim adamları bu belirtileri teşhis edebilirler. Bu belirtilerin doktor tarafından açıklanan bir kısmı şöyledir: Fiziksel ve zihinsel aktiviteleri etkileyen sebebi açıklanamayan aşırı bir yorgunluk Zayıflama yada diyet gibi herhangi bir aktivite söz konusu olmadan iki aydan kısa bir sürede 7-10 kilo kaybı Birkaç haftanın sonunda ateşin açıklanamayacak bir şekilde 39 derecenin üstüne çıkması Uyku sırasında kişinin üstünü sırılsıklam edecek derecede terleme Sebebi bilinmeyen bir şekilde vücuttaki salgı bezlerinin kabarması (Özellikle boğazda boyunda ve koltuk altında bulunan lenf bezlerinin kabarak en geniş halini alması) Dilin üzerinde ve ağız içinde beyaz noktalar yada lekelerin oluşması Israrla devam eden ishal Herhangi bir solunum enfeksiyonuyla meydana gelen ve çok uzun süren kuru öksürük Özellikle öksürükle birlikte oluşan nefes darlığı Deri üstünde ya da altında oluşan kat kat yada yükselen bir şekilde leke ve şişliklerin meydana gelmesi. Başlangıçta çürükmüş gibi algılanabilir fakat bunlar zamanla kaybolmazlar ve genellikle etraflarındaki derilerden çok daha serttirler. aidsnedir.comdan alıntı

http://www.biyologlar.com/aidsin-belirtileri

VARYASYON NEDİR

Bir tür içinde pek çok karakterleri bakımından önemli ölçüde faklılıklar bulunmaktadır. Yani tür içinde aynı gen havuzunu paylaşan bireyler arasında farklılıklar mevcuttur. Başka bir deyişle, aynı türün değişik alanlarda yaşayan populasyonları (populasyonlar arası) ve aynı yöredeki bir populasyonun bireyleri arasında (populasyonlar içi) pek çok özellikleri bakımından bir çeşitlilik vardır. Populasyon içinde her bir karakter, ya da karakter kümeleri bakımından farklı morfolojiye sahip bireyler bulunmaktadır. Nitekim, Linnaeus dahil, birçok taksonomist geçmişte bu hatayı yapmışlardır. Örneğin, atmacagillerden çakın kuşu adı verilen kuşun genç bireyleri ile ergin bireylerinin fenotipleri arasında, tüy deseni bakından önemli morjolojik farklılıklar bulunmaktadır. Linnaeus, başlangıçta bunları iki ayrı tür içinde yerleştirmiştir. Erginlere Accipiter palumbanus L., Genç bireylere A. gentilis L. adını vermiştir. Fakat, türün biyolojisi hakkında bilgiler artıkça, ergin ve genç bireyler arasındaki “morfolojik” farkı anlaşılmış, hepsi artık, doğru olarak, A.gentilis içine konulmuştur. Bugün dahi, -genetik, ekolojik, evrim ve populasyon biyolojisi bilgileri ile yeteri ölçüde donatılmamış olan – bazı taksonomistler, benzer hataları tekrar yapmaktadırlar. Bir populasyon içerisinde bireylerin taşıdıkları özellikler birbirinin hiçbir zaman aynı değildir. Boy, renk ve desen gibi kalitatif ve kantitatif özelliklerde az ya da çok değişkenlik görülür. Bu değişime varyasyon diyoruz. Sistematikte varyasyonlar iki grupta ele alınmalıdır. Genetik yapıyla ilgili olmayan ve ilgili olan varyasyonlar. Genetik olmayan varyasyonların ayırdedici özellikleri olmadığından sınıflandırma çalışmalarında önemli yoktur. Buna karşılık taksonların genetik yapısına işlenmiş, nesilden nesile taşınabilen genetik varyasyonlar sınıflandırmada ve sistematikte önemlidir. Bunlar; • I. Genetik olmayan varyasyonlar • A. Bireysel Varyasyonlar • a. yaş, b. mevsimsel, c. nesillere ait • B. Toplumsal varyasyonlar • C. Ekolojik varyasyonlar • a. habitat varyasyonu, b. iklimsel varyasyon, c. konukçu varyasyonu, • d. populasyon yoğunluğuna bağlı varyasyon, e. allometrik varyasyonlar • D. Traumatik varyasyonlar • a. parazit nedeniyle, b. çeşitli anormallikler • II. Genetik Varyasyonlar A. Cinsiyetle ilgili varyasyonlar • a.Primer eşey özellikleri, b.Sekonder eşey özellikleri, c. Gynandromorph’lar B. Cinsiyet ile ilgili olmayan varyasyonlar • a. Devamlı varyasyonlar www.sistematiginesaslari.8m.com

http://www.biyologlar.com/varyasyon-nedir

Balıklarda Üreme

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs

http://www.biyologlar.com/baliklarda-ureme

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

Laboratuvarda Donör Organ Üretimi Gerçekleştirildi

Laboratuvarda Donör Organ Üretimi Gerçekleştirildi

Bir domuz embriyosuna, gelişiminin ilk safhalarında insan hücreleri enjekte edildi ve dört haftadır gelişimini sürdürüyor. Fotoğraf: Juan Carlos Izpisua Belmonte

http://www.biyologlar.com/laboratuvarda-donor-organ-uretimi-gerceklestirildi

Bezelye Popüler Genetik Bilim Dergisi 2. Sayı Çıktı

Bezelye Popüler Genetik Bilim Dergisi 2. Sayı Çıktı

İÇERİK BAŞLIKLARI Kök Hücrelere Genel Bakış 3Sağlık ve Biyolojideki Problemlere Hesapsal Cözümler: Biyoenformatik Neden İmmünoloji Çalışıyoruz? Kişiye Özel Tıp: GENTESTRöportaj: Kistik Fibrozis Hastalığı Değil Hastayı Tedavi Edelim 21. Yüzyıl Genetik Çağı Olacak Sinirbilim: Nörogenetik ve Amyotrofil Lateral Skeroz (ALS) Spor ve Bağımlılık Genetik Cerrahi (DNA Ameliyatı) CRISPR-Cas9 Sistemi Biliyor Muydunuz? Sıradışı Bir Kariyer, Bilime Adanmış Bir Ömür: Jane Goodall Kitap Yorumu:Yaşamın Sırrı DNA Film Yorumu:GATTACA Nobel Ödülü Nedir? Demek Mezun Oldunuz, ya Sonra? (Amerika) Etkinlikler Kaynakça   E.Oğuzhan AKYILDIZ Bezelye Dergisi İmtiyaz Sahibi   E-Dergi 2.Sayı: PDF indir veya OKU 2. Sayı : Alternatif ling

http://www.biyologlar.com/bezelye-populer-genetik-bilim-dergisi-2-sayi-cikti

BOTANİK PDF SUNUMLAR

BİTKİLER ALEMEİ: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2281/unite03.pdf BİTKİ GENETİK KAYNAKLARININ TOPLANMASI: [url][/url] BİTKİ NEDİR?: http://oynaogrenegitimi.com/odev/bitki.pdf TÜRKİYE’NİN FLORİSTİK YAPISI; http://dogaokulu.net/notlar/floristik.pdf CANLILARIN SINIFLANDIRILMASI: http://www.weberji.com/dosya/canlilarinsiniflandirilmasi.pdf

http://www.biyologlar.com/botanik-pdf-sunumlar

Turner Sendromu Nedir?

Hastalarda normal bir dişide bulunması gereken 46 XX kromozomu yerine, yalnızca 46 X kromozomu vardır. Dolayısıyla, bir X kromozomları eksiktir ve bu anormallik bir yumurtalık oluşum bozukluğuna yol açar. Turner sendromu ya da yumurtalık gelişim bozukluğu, cüceliğe eklenmiş çeşitli oluşum bozuklukları bütünüyle nitelenir. Kötü oluşmuş ve yumurta oluşumuna varacak olgun folikül yapma yeteneğinden yoksun bir yumurtalık varlığına bağlıdır. Bu oluşum bozukluğunun kökeni aydınlatılmıştır. Bir kromozom kusuruna bağlıdır. Hastanın kromozom yapısı (karyotip) incelendiğinde, taşıması gerektiği X kromozomlarından birinin eksik olduğu görülür. Normal bir dişinin kromozom formülünün 44 XX olduğu bilinmektedir. Turner sendromunda formül 46 X O'dır. Çocuk, doğduğunda belirgin olarak kızdır ve aile ancak ergenliğe doğru kaygılanmaya başlar. Gerçekten, yıllar geçmekte ve ergenlik olmamaktadır. 15-16 yaşlarında boy son derece kısadır (ortalama 1,40 m). Çocuksu görünümünü korur. Memeler gelişmemiş, kıllarıma belirmemiştir. Kadın dış üreme organı çocuksu kalır. Dölyolunun yukarısında dölyatağı fındık kadar küçüktür. Dikkatli muayeneyle az ya da çok belirgin bir oluşum bozuklukları bütünü saptanır. Çok belirgin olmaları, bazı hastaların görünümlerini oldukça biçimsizleştirir ve toplumsal yaşama uyumlarını güçleştirir.Bazı hastalardaysa bu oluşum bozuklukları daha gizlidir. En özel belirti, boynun tepesinde omuzlan birleştiren üçgen biçiminde, enine 2 etli kanatçık varlığıyla nitelenen, perdeli kısa boyundur. Göz ve alt-çene oluşum bozuklukları da vardır. Elde 4. tarak kemiğinin kısalığı, kaval kemik düzlüğünün örs biçiminde olması gibi bu sendroma özgü çeşitli kemik oluşum bozukluklarına da rastlanır. Ayrıca kalp, böbrek oluşum bozuklukları gibi çeşitli iç organ bozuklukları görülür. Dolayısıyla, bu gibi anormallikleri sistemli olarak aramak için tam bir bilanço gerekir. Biyolojik bilançoda, adet kanamaları kesilmiş kadınlarınkine benzer bir hipofiz salgılamasıyla birlikte toptan yumurtalık yetmezliği saptanır. Karın içine bakma muayenesinde, üstünde ne bir olgunlaşan folikül, ne de sarı cisim nedbesi bulunan, parlak sedefimsi iki şeride dönüşmüş, gelişmemiş yumurtalıklar gözlenir. Kromozom yapısının incelenmesi. 44 X O formülü biçiminde bir X cinsellik kromozomunun eksik olduğunu gösterir. Tedavi, bu oluşum bozukluklarını önleyebilmekten uzaktır. Ama ergenlik yaşı olan 12-13 yaşından başlanarak verilen östrojenlerin, etkinliği olmayan yumurtalıkların yerini doldurmasına ve belirli bir boy uzamasına, özellikle bir kız ergenliğine, yani memelerin, kadın tipinde kıllanmanın, kadın dış üreme organının, dölyolunun ve dölyatağınm gelişmesine, âdet kanamalarının başlamasına olanak sağlaması açısından, tedavi ilginçtir. Böylece, bu kadınlar evlenebilecekler ve normal bir cinsel yaşamları olabilecektir. Ama çok özel birkaç kuraldışı durum bir yana bırakılırsa, yumurtalıklarının yumurta üretmekten yoksun olması nedeniyle kısır kalacaklardır. 45,X/46,X,i(Xq) Karyotipe Sahip İki Mozaik Turner Sendromu Olgusu PDF sunum içim tıklayın http://tipdizini.turkiyeklinikleri.com/download_pdf.php?id=50369

http://www.biyologlar.com/turner-sendromu-nedir

HİSTOLOJİDE KULLANILAN MİKROSKOP TÜRLERİ VE MİKROSKOBİ YÖNTEMLERİ

Klasik ışık mikroskobunun bulunmasından bu yana bilim ilerledikçe yeni mikroskop türleri histolojinin hizmetine girmiştir. Elektron mikroskoptan sonra daha da hızlı gelişen yöntemleri yenileri eklenmekle beraber eski yöntemler ve mikroskop türleri hala kullanılmaktadır.Işık Mikroskobuİmmersiyon yönteminin yardımına rağmen büyültmesi ikibinin altında olan optik cihazlardır. Mekanik kısım büyütülmüş görüntünün foküsünü yapmak için optik tüpü ya da preparat tablasını hareket ettirmeye yarar. Optik kısımda görüntüyü sağlayan iki ayrı büyültücü mercek sistemi vardır. Değişik büyültmeler sağlayabilmek için dönen bir rovelver üzerinde 3-5 objektif bulunur. İkinci büyültücü mercek sistemi, büyültülmüş görüntünün araştırıcının retinasına düşmesini sağlar ve oküler adını alır. Bir mikroskobun büyültmesi oküler ve objektif büyültmelerinin çarpılmasıyla elde edilir.Faz-Kontrast MikroskobuGörülmeyen, boyanmamış dokuların yeterli kontrast ile ayrıntılı olarak görülmelerini sağlayan mikroskop türüdür. Böylece tespit ve boyama yapılmadan canlı hücre ve dokuların incelenmesini sağlar.Polarizasyon MikroskobuBu mikroskop ışığı çift kırma yani anizotropi özelliği gösteren yapıların (kas lifleri, silya, kollajen lifleri) incelenmesinde kullanılır. Işık Nikol prizmasından ya da poloroid filtreden geçerken tek yönde kırılır. Polarizör ve analizör olarak birbirine dik olarak konulan iki nikol prizması karanlık alan meydana getirir. İki prizma arasına konan cisim anizotropi özelliği gösteriyorsa karanlık alan içinde parlak olarak görülür.Bir ışık mikroskobunda büyütme nasıl hesaplanır?Faz-kontrast mikroskubunda ne tür incelemeler yapılır?Anizotropi nedir? Hangi yapılar polarizasyon mikroskobunda incelenmeye uygundur?Ultraviyole MikroskobuNükleik asitler gibi ultraviyole ışığını absorbe eden yapıların araştırılmasında kullanılır. Ultraviyole çıplak gözle görülmediği için ya bir floresans ekran ya da fotoğraf plağı üzerinde görüntü alınır. Alanda ultraviyole ışınlarını absorbe eden yapıları varsa bunların yoğunluk derecelerine göre griden siyaha varan koyu alanlar şeklinde görüntü verir.Floresans MikroskobuBazı maddeler dalga boyu kısa, yüksek enerjili ışınlarla aydınlatılırlarsa daha büyük dalga boylarında ışınlar salarlar. Bu olaya floresans denir. Bu floresans bazen canlı bir yapının (Riboflavin, Noradrenalin) kendi özelliğidir. Buna doğal floresans denir. Ya da floresans özelliği olan boyalar dokuya çöktürülür. Buna da yapay floresans adı verilir. Ultraviyole ışık veren kaynağın önüne normal ışığı geçirmeyen, sadece ultraviyole ışığın geçişine izin veren filtreler konur. Oluşacak floresans karanlık alanda incelenir. Ultraviyole ışıklar gözle görülmemelerine rağmen bu ışıkları kesecek filtreler oküler bölgesine yerleştirilmelidir. Çünkü ultraviyole ışık gözler için zararlıdır.Floresans nedir? Kaç türlü floresans vardır?İmmersiyon MikroskobuNormalde ışık mikroskopta objektif ile preparat arasında hava vardır. Lamelden maksimum açı ile çıkan kenar ışınları kırma indisi farklı bir ortam olan havaya geçerken kırılırlar ve büyültme gücü yüksek olan objektifler tarafından alınamazlar. Eğer preparat ile objektif arasına kırma indisi camınkine yakın bir sıvı konulursa preparattan çıkan ışık havada olduğu gibi fazla yayılmadan objektif içine girer. İmmersiyon sıvısı olarak sedir yağı ya da bazı sentetik immersiyon yağları kullanılmaktadır.Elektron MikroskobuIşık mikroskopta ışık kaynağı olarak kullanılan foton yerine elektron kullanılan bir yüksek teknoloji ürünüdür. Bir fitilden salınan elektron demeti ışık mikroskoptaki mercekler yerine elektrostatik ve elektromanyetik alanlardan geçilerek saptırılır ve genişletilir. Angström düzeyinde yapıları inceleyecek büyültmeler sağlar. Kesitlerde atom ağırlığı yüksek metal tuzları dokularda kendisiyle ilgili kısımlar üzerine çöktürülerek boyama yapılır. Görüntü floresan bir ekrandan izlenir. İki türü vardır. Dokuları, hücrelerin içini kesitler halinde inceleyentürüne transmisyon elektron mikroskubu denir. Hücre ve dokularda yüzey özelliklerini üç boyutlu bir görüntü tarzında sağlayan türüne ise scanning elektron mikroskop denir.

http://www.biyologlar.com/histolojide-kullanilan-mikroskop-turleri-ve-mikroskobi-yontemleri

Sempatik sinir sisteminin <b class=red>nedir</b>

Sempatik sinir sisteminin nedir

Sempatik sinir sistemi, vücudu gerilime hazırlar. Stresli bir durum sırasında etkindir.

http://www.biyologlar.com/sempatik-sinir-sisteminin-nedir

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Davranış nedir ?

Davranış, bireyin yapabileceği veya deneyebileceği herşeydir. Demek ki davranış bir organizmada yer alan ve organizma tarafından yapılan her türlü eylemdir. Buna örnek verecek olursak, konuşmak, yürümek, televizyon seyretmek, yemek, okumak, dans etmek gibi organizma tarafından yapılan her türlü eylem de davranış olarak kabul edilmektedir. Organizmanın yürümek, yemek gibi başkaları tarafından görülebilir davranışları olduğu kadar; düşünme, hissetme, sevilme, üzülme, hatırlama, unutma, öğrenme, rüya gibi tümüyle bireyin içinden geçen ve başkaları tarafından doğrudan görülemeyecek olan iç yaşantıları vardır. Bunların tümü davranıştır. Kaç tür davranış vardır? Davranışları üç grupta toplayabiliriz. 1 - Bunlardan ilki doğrudan gözlenebilen davranışlardır. Jestler, mimikler, konuşma buna örnek gösterilebilir. Bu davranışlar gözlenebilir ve sayısal olarak ifade edilebilirler. 2 - İkincisi dolaylı olarak gözlenebilen davranışlardır. Bu gruptaki davranışlar doğrudan gözlenemez ancak sadece tahmin edilir, hissedilir. Örneğin, sevilme, anlama, unutma gibi davranışlar. 3 - Üçüncüsü de sinir sistemi nedeniyle meydana gelen davranışlardır. Bunlar kaslar aracılığıyla duyu organlarında meydana gelir.

http://www.biyologlar.com/davranis-nedir-

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Aids Cinsel ilişkiyle nasıl bulaşır ?

AIDS virüsü HIV korunmasız cinsel ilişkiyle kadından erkeğe ya da erkekten kadına bulaşabilir. Erkekler arası eşcinsel ilişkide bulaşma sık kadınlar arası eşcinsel ilişkide ise daha seyrektir. HIV kanda spermde ya da vajina salgısında bulunur. Vajina penis ya da ağızdaki gözle görülemeyecek kadar küçük bile olsa yara ve sıyrıklarda vücuda girebilir. Cinsel eşte görünür hiçbir hastalık belirtisi olmasa bile HIV taşıyıcısı olması bulaşma için yeterlidir. Bu nedenle ne kadar farklı kişiyle cinsel ilişki kurulursa hastalık virüsü kapma olasılığı o kadar fazla olur. Cinsel yolla virüs kapmaktan korunmak için doğru ve sağlam kondom (prezervatif) kullanmak gerekir. Batı ülkelerindeki en yaygın bulaşma yollarından biri enjektör iğnelerinin birden fazla kişi tarafından kullanılmasıdır. Özellikle uyuşturucu bağımlılarının enjektör iğnesine bulaşan virüs aynı enjektörün başkası tarafından kullanılmasıyla ona da bulaşır. Döğme yapımında ya da kulak delmede kullanılan iğneler de bulaşma yolu olabilir. Bunun için kullanılan her türlü iğnenin imha edilmesi gerekiyor. Tek kullanımlık iğnelerle risk ortadan kalkmaktadır. aidsnedir.comdan alıntı

http://www.biyologlar.com/aids-cinsel-iliskiyle-nasil-bulasir-

TÜR NEDİR ?

Türlerin sınıflandırılmasında uluslararası ikili adlandırma sistemi benimsenmiştir. Bu sisteme göre her yeni türe Latince bir Cins birde tür adı verilir. Bu adlardan ilki tanımlanan türe, Akraba olan öbür türleride içeren cinsi belirtir; ikincisi yalnızca bu türe özgü bir addır. Cinsin ismi daima büyük, türün ismi ise daima küçük harflerle italik yazılır. Örneğin Mavi ladinin bilimsel adı Picea pungens tir. Böylece yeryüzünün herhangi bir yerindeki bir bilim adamı bu türün, Türkiyede bulunan Picea orientalis (doğu ladini) ile yakın akraba olduğunu kolayca anlayabilir. Türlerin birbirinden farklı oluşunu onların kalıtsal yapısı saptar. Bunlar yapısal, biyokimyasal, fiziksel ve davranışsal ayrıcalıklar olabilir. Tüm bunlara Diagnostik özellikler denir. Birbirine yakın türler, belirli bir coğrafik bölgede birbirinden yalıtılmakta ya da çiftleşme zamanlarının farklılaşmasıyla, farklı davranışlara sahip olarak birbirinden kopmuş, fakat önceden aynı Gen havuzuna sahip olan populasyonlardır. Bu yakın türler yapay koşullar altında birbiriyle çiftleşerek yavru elde edilebilir. Türler sabit olmayıp kendi içinde daha alt birimlere ayrılabilir. Eğer bir tür iki veya daha çok alt tür veya varyete gibi alt taksonlara ayrılıyorsa bu türlere, Politipik tür eğer hiçbir alttüre ayrılmıyorsa buna monotipik tür, denilir. Kimi durumlarda iki tür morfolojik bakımdan tamamen birbirinden ayrılmışlardır. Morfolojik bakımdan birbirinin benzeri olmasına karşın, üreme bakımından tamamen birbirinden ayrılmışlardır. Morfolojik bakımdan birbirinin aynı olduğu halde aralarında üreme engeli olan türlere ikiz tür adı verilir Alttür (subspecies): Bir tür içerisinde populasyonları farklı coğrafik alanları işgal eden (allopatrik), morfolojik bakımdan % 70’in üzerinde bir oranda ayırdedici karakterler taşıyan ve ara bölgelerde birbirleriyle çiftleşerek melezler oluşturan topluluklardır. Bir türün alttürleri arasında üreme engeli bulunmaz. Ancak izole olduklarından sürekli kendi içinde ürerler ve daha sonraları yeni bir takson ortaya çıkabilir. Varyete: Aynı bölgedeki genetik olmayan faklılıklar sonucu oluşan tür içi populasyonlardır. Bazen varyeteler için ırk terimi de kullanılır.

http://www.biyologlar.com/tur-nedir--1

Ptychopteridae

İnce ve uzun vücutlu (7-15 mm) Ptychopteridae türleri, geniş enli kanatlara sahip olmaları ve çok uzun bacaklı olmalarından dolayı titrek sinekler adıyla da bilinmektedir. Görünüş olarak tipulidlere benzemektedirler. Renkleri çoğunlukla siyah, bazen sarı veya kırmızımsı olabilmektedir. Makrosetaları genellikle kısa veya tüy benzeridir. Sadece antenleri, tarsusları ve cinsel organları sert kıllıdır. Erginler göl, gölcük, hendek ve nehir kenarlarındaki bataklık gibi vejetasyonlarda ve diğer nemli zeminlerde bulunur. Larvalar dere, göl ve gölcüklerin sığ kenarları boyunca detritus ve çamur içinde gelişirler. Larva suyun ıslattığı çamurlu alanlarda yaşar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Larvalar saprofagdır ve detrituslarla beslenirler. Erginlerin beslenmesiyle ilgili fazla bilgi bulunmamaktadır. Baş küçük, uzunluğundan daha geniş, semiferikal bileşik gözlüdür. Osel gözler yoktur. Anten filiform tipte olup 16 segmentlidir. Ağız parçalarının sadece uzun 5 segmentli maksillar palpi ve büyük labelli kısa labium hariç çoğu indirgenmiştir. Toraks genişliğinden daha uzun fakat uzunluğundan daha yüksektir. Toraks siyah, scutellum ise türlerde sarıdır. Kanatlar çok iyi gelişmiştir, kahverengimsi kanat membranı bazı kısımlarda özellikle daha dış yarısına doğru kısa makrotichia ile microtichia tarafından çevrilmiştir. Bazı türlerde koyu kahverengi ile siyahımsı kanat benekleri vardır, diğer benekler birkaç tanedir veya solgundur. Costa bütün kanatta belirgin olup ayrıca 5 radial damar bulunur. R2 çok kısadır ve R1'de sonlanır. RS uzun veya kısadır. Bacak segmentlerinden koksa, trochenter ve femur çok iyi gelişmiş olup kısa kıllıdır. Metatarsus uzun olup diğer tarsus segmentleri kadar uzundur. Abdomen 7 segmentidir. Her segment çok iyi gelişmiş tergum ve sternuma sahiptir. Tergum ve sternum arasındaki membran stigmalıdır. Sternum 2 iki kitinleşmiş yapı içerisine ayrılmıştır. 1. ve 2. segmentler dar, ikinci segment uzundur. Larva uzun, silindirik, 25-45 mm uzunluğunda ve eucephalic başa sahiptir. Arka tarafında uzun veya kısa bir solunum tüpü veya sifonu vardır. Üçgen şeklindekj baş dorsalinde büyük bir üçgen şeklinde kitinsi bir yapı, alın, anterioründe erimiş clypeusa sahiptir. Vücut 3 kısa torasik segmentten oluşur. 8 abdominal segment daha uzun 9. segment ise kısadır. 1-5 abdominal segmentlerin her biri çıkıntılı bir halka tarafından takip eden segment ile birleştirilmiştir. 6. segment konik şekilli, 7-8 segmentler ise dardır. 9. apikal segmentte bulunan anal 2 parmak benzeri yapıdadır. Geri çekilebilir anal papilla ve trake solungaçları solunum fonksiyonlarını veya boşaltım fonksiyonunu yerine getirir. 7. segmentin posterioründen solunum tüpü çıkar. Pupalar genellikle çamur içerisinde dikey olarak bulunur. Düz toraksik solunum deliği kısadır fakat soldaki solunum deliği su yüzeyine ulaşabilmek için uzun bir sifon içerisine doğru gelişmiştir. Pupasyon dönemi Ptychoptera albimana için su sıcaklığına bağlı olarak 6-31 gün arasında değişir. Kaynaklar •Andersson, H., 1997. Diptera Ptychopteridae, Phantom Crane Flies, pp. 193-207. In: Nilsson, A. (Hrsg.): Aquatic Insects of North Europe. A Taxonomic Handbook. Volume 2. Odonata - Diptera. Apollo Books, Stenstrup. •Peus, F., 1958. 10b. Liriopeidae, pp.10-44. In: Lindner, E. (Hrsg.): Die Fliegen der palaearktischen Region, II 1; Stutgart: E. Schweitzerbartsche Verlagsbuchhandlung. •Rozkosny, R., 1992. Family Ptychopteridae (Liriopeidae), pp 370-373. In: Soós, Á., Papp, L. & Oosterbroek, P. (Eds.). Catalogue of Palaearctic Diptera. 2, Akadémiai Kiadó, Budapest. •Rozkosny, 1997. Family Ptychopteridae. pp. 291-297. In: Papp, László Darvas, Béla. Contributions to a manual of Palaearctic Diptera 2. Science Herald. Budapest. •Wagner, R., 1978. Familie Ptychopteridae, p. 386. In: Illies, J. (Ed). Limnofauna Europea, (2nd ed.). Gustav Fischer Verlag, Amsterdam. •Zwick, P., 1988. Contribution to the Blephariceridae and Ptychopteridae. Mitt. schweiz. ent. Ges., 61: 123-129. •Zwick, P. 2004: Fauna Europaea: Ptychopteridae. In: De Jong, H. (Ed.) Fauna Europaea: Diptera: Nematocera. Fauna Europaea version 1.2, www.faunaeur.org

http://www.biyologlar.com/ptychopteridae

Histoloji Preparatlarının Hazırlanması

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim.Tespit (Fiksasyon)Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir.Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki  depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz.Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz.Otoliz nedir? Fiksasyon hangi amaçla yapılır?Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenenözelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi).Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır.Birleşik tespitten ne anlıyorsunuz?Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir:- Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir.- Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır.- Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir.- Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır.- Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır.- Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır.- Ayrıca SAĞLIĞIMIZ AÇISINDAN:Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz.Tespitte uyulması gereken kurallar nelerdir?Tespit işlemleri ne tür yerlerde yapılmalıdır, neden?DehidratasyonTespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçlakullanılan maddelere örnektir.Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir.Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılırElektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir.Bloklama (Gömme)Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafinintersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.Bloklama işleminde ne tür maddeler kullanılır?Kesit AlmaBlokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımızultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar.Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir.Mikrotom ve Ultramikrotom neye denir?Boyama (Kolorasyon)Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasalyapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır.Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, AsitFüksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir.Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir.Asidofili ve bazofili neye denir?Birleşik boyama neye denir?Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır.Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir.Ortokromazi ve metakromazi nedir?Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterdevital boyalardır.Vital boyamanın diğer boyama yöntemlerinden farkı nedir?Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır.Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi-1

Orta beyin - Mesencephalon <b class=red>Nedir</b>

Orta beyin - Mesencephalon Nedir

Orta beyin ya da mesencephalon (Grekçe: mesos - orta, enkephalos - beyin), merkezi sinir sisteminin; görme, işitme, motor kontrol, uyku/uyanma, uyarılma (tetiklik) ve sıcaklık regülasyonu ile ilgili bir parçasıdır.

http://www.biyologlar.com/orta-beyin-mesencephalon-nedir

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

Regresyon Analizi Nedir

Regresyon Analizi “Minority Report” filmini seyredenler hatırlarsa; kurguda işlenen konu üç insanın geleceği görebilme yetenekleriyle ilgiliydi. Bu yetenekler kullanılarak suçların daha işlenmeden öngörülebiliyor ve polisler tarafından daha olay gerçekleşmeden engellenebiliyordu. Daha günümüze yakın benzer bir örnek Amerikan yapımı bir dizi olan “Person of Interest”. Kurgu yine benzer olmakla birlikte doğa üstü yeteneklerden farklı olarak dayanağı olan “veri” kullanılıyor. Son teknoloji bir bilgisayar ve suçluları bulacak bir algoritma kullanılarak hukuk dışı müdahaleler bulunularak suçların daha işlenmeden engellenmesi kurgusu etrafında dönen bir dizi. Bu tarz bir geleceğin çok uzakta olmadığına eminim. Etik açısından da ayrıyetten çok tartışılacak bir konu. Günümüzde şuan bu teknolojiye sahip değiliz. Fakat farklı alanlarda buna benzer büyük boyutlu veriler toplanarak gerek pazar araştırmalarında gerek biyoloji, tıp alanında göreceli büyük boyutlu verilerdan yararlanılarak ve bir kaç regresyon tekniği uygulanarak hali hazırda bir azınlık raporu yazmak mümkün. Regresyon analizi, araştırmak istediğimiz bağımlı değişkenin yada değişkenlerin üzerinde bağımsız değişkenlerin etkisi olup olmadığını ve aralarındaki ilişkiyi araştıran bir yöntemdir. Veriden öğrenerek stokastik bir model kurulur. Verinin yapısına göre regresyon yöntemleride değişmektedir. Araştırılacak bağımlı değişken kategorikte olabilir, aralıklı sayılardanda oluşabilir. Kanser ve kanser değil (0=kanser ve 1=kanser değil) kategorik bir değişkendir. Mikrodizi çipinde üretilen aralıklı (154,5; 151,1;..) bir değişken gibi de olabilir. Regresyon analizi yapılmasının amacı iki önemli soruyu cevaplamak içindir. Birincisi değişkenlerim asıl araştırmak istediğim değişkenimi veya değişkenlerimi yada var olan durumu açıklayacak düzeyde bir model kurabiliyor muyum? Eğer kurabiliyorsam doğru araştırma üzerindeyim demektir. İkincisi ise, elimde ki yeterli bilgiyi(veriyi) kullanarak bir sonraki gözlemin ne durumda olacağını tahmin edebilir miyim sorusudur? Bu son sorunun cevabı zaman zaman çözülmesi imkansız hale gelebiliyor. Çözülememesinin bir kaç nedeni olabilir. Veriyi açıklayacak yeterli değişken elde edilememiş olabilir. Yanlış değişkenler seçilmiş olabilir. Veri elde edilirken yapılmış hatalar olabilir. Regresyon yöntemlerinin algoritmasına bağlı olarak bazı varsayımlarının sağlanamamasından kaynaklanıyor olabilir yada kontrol altında tutulamayan olağanüstü (dış faktörler) durumlar olabilir. Kur, hisse senedi gibi şeylerin tahminin büyük oranda sapmasının sebebi bu diyebiliriz. Regresyon problemlerinde kullanılan bir çok algoritma vardır. Regresyon yöntemlerini birbirinden ayıran noktalardan biriside burasıdır. Bunlardan en bilinir ve yaygın olanı en küçük kareler (EKK) olarak bilinen yöntemdir. Gerçek duruma en yakın fonksiyon eğrisi oluşturmamızı sağlar. Gözlemlerin rastgeleliğinden kaynaklanan hatayı küçülterek uygun denklem katsayılarını ve uygun eğriyi çizmemizi sağlar. Bu işleme optimizasyon da denebilir. Aşağıda ki grafik üzerinde 3 farklı model görebiliriz. Kırmızı olan doğrusal regresyon modeliyle çizilmiş bir grafiktir. Siyah olan polinomik ve mavi olan ise kübik bir regreson eğrisidir. Hangi modelin veriyi daha iyi açıkladığını anlamak için birkaç kritere bakılarak karar verilebilir. Model kurulmadan önce de mutlaka keşfedici veri analizi yaparak varsayım hatalarını giderildikten sonra model kurulması daha doğru bir adım olacaktır. İstatistiksel olarak anlamlı bir regresyon modeli kurulup kurulmadığı t-testi, anova gibi hipotez testleri ile hızlıca test edilebilir. Fakat anlamlı bir model kurulsa bile analizi bitiremeyiz. Çoklu bağlantı, artıkların(hataların) etkileri, tahmini değerlerin en düşük ve en yüksek aralıkları, modelde ki katsayıların etkileri incelenmesi kesinlikle gerekmektedir. Son analiz aşamasında ekstrem bir durum bulunursa bu etkilerin giderilmesi için farklı yöntemler kullanılması gerekmektedir. Gerekirse model değiştirilebilir yada parametrik olmayan yöntemler seçilerek tekrar regresyon modeli kurulmaya çalışılabilir. Çoğu çalışmalar maalesef model kurulduktan sonra bitiriliyor ve model sonrası analiz yapılmadan yorum yapılmaya çalışılıyor.

http://www.biyologlar.com/regresyon-analizi-nedir

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

HİSTOLOJİ PREPARATLARININ HAZIRLANMASI

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim. Tespit (Fiksasyon) Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir. Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz. Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz. Otoliz nedir? Fiksasyon hangi amaçla yapılır? Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenen özelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi). Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır. Birleşik tespitten ne anlıyorsunuz? Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir: - Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir. - Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır. - Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir. - Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır. - Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır. -Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır. - Ayrıca SAĞLIĞIMIZ AÇISINDAN: Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz. Tespitte uyulması gereken kurallar nelerdir? Tespit işlemleri ne tür yerlerde yapılmalıdır, neden? Dehidratasyon Tespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçla kullanılan maddelere örnektir. Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir. Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılır Elektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir. Bloklama (Gömme) Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafin intersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.  Bloklama işleminde ne tür maddeler kullanılır?  Kesit Alma Blokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımız ultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında  genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar. Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir. Mikrotom ve Ultramikrotom neye denir? Boyama (Kolorasyon) Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasal yapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır. Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, Asit Füksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir. Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir. Asidofili ve bazofili neye denir? Birleşik boyama neye denir? Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır. Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir. Ortokromazi ve metakromazi nedir? Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterde vital boyalardır. Vital boyamanın diğer boyama yöntemlerinden farkı nedir? Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır. Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi

Omurilik soğanı <b class=red>nedir</b> İşlevleri nelerdir?

Omurilik soğanı nedir İşlevleri nelerdir?

Omurilik soğanı veya medulla oblongata, beyin ile omurilik arasında yer alır. Böylece beyin ve diğer vücut organları arasındaki bağlantıyı sağlar.

http://www.biyologlar.com/omurilik-sogani-nedir-islevleri-nelerdir

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

PH-Tuzluluk- Kireç ve Bitkiler için Önemi

Toprak Reaksiyonu (pH) Nedir? Toprak pH'sı, bir toprak çözeltisindeki asitliği veya alkaliliği tanımlayan bir ölçüdür. Asitliğin miktarı öncelikle H+ ve OH ֿ iyonlarının konsantrasyonlarına bağlıdır. Toprak daha fazla asidik olurken H+ iyonları konsantrasyonu artar, bunun sonucunda pH azalır. pH=7'de H+ ve OH ֿ iyonlarının konsantrasyonları birbirine eşittir. Toprak pH'sı doğrudan ve/veya dolaylı olarak toprak içerisinde meydana gelen birçok fiziksel, kimyasal ve biyolojik olayı etkiler. Toprak reaksiyonu ile toprak canlıları arasında sıkı bir ilişki mevcuttur; örneğin mantarlar 4-5, bakteriler ise 6-8 pH derecelerinde daha etkindir. Ayrıca pH derecesi, toprakta mevcut bitki besin maddelerinin bitki için yarayışlılığında önemli rol oynamaktadır. Örneğin; azot, fosfor ve potasyumun bitkiler tarafından alımı açısından en uygun değerler 6,5-7,5 arasıdır. Fosfor, 6.0'dan düşük pH değerlerinde Al ve Fe ile, 7,5'den büyük değerlerde ise Ca ile bağlanır. Bu nedenle bitkiler tarafından alınması zorlaşmaktadır. 5,0'dan küçük değerlerde, Al ve Mn bitkiler için toksik etki yapmaktadır. 7,5 den büyük değerlerde ise; Fe, Cu, Zn, Mn gibi mikro elementler çözünemez forma geçtiğinden, bitkiler için yarayışlılığı yüksek oranda azalmaktadır. Kısacası toprak tepkimesi; pedogenetik bakımdan, toprak oluşumu ve gelişimi; ekolojik açıdan da besin maddeleri ekonomisi üzerinde önemli rollere sahiptir Yukarıda aktarılmaya çalışılan nedenlerden dolayı toprak pH'sının bilinmesi ve düzenlenmesi, bitki beslenmesi açısından büyük önem taşımaktadır. Genellikle alkali karakterli topraklarda; ortamdaki H+ iyonları konsantrasyonunu arttırmak ve/veya mevcut H+ iyonlarını aktif hale geçirmek için, toprağa toz kükürt ve organik madde ya da jips uygulaması yapılır. Toprak tepkimesinin düşük olduğu durumlarda ise, kireçleme yapmakta yarar vardır (Bkz. Kireç) Tuzluluk Toprak tuzluluğu kavramı, birim hacımdaki toprakta bulunan çözünebilir tuzların miktarını belirtir. Genellikle Cl ֿ ve SO4 ֿֿ anyonlarının iki değerlikli katyonlarla, özellikle Ca++, Toprağın tuz içeriği laboratuvar koşullarında, elektriki geçirgenlik ölçüm cihazıyla belirlenir ve elde edilen verilerin değerlendirmesi aşağıdaki sınıflandırmaya göre yapılır. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. KİREÇ Topraktaki kireç miktarı bitkiler için önemlidir. Temel kireç bileşikleri; kalsiyum ile magnezyum karbonatlar ve dolomittir. Laboratuvar koşullarında, karbonat miktarı nicel olarak belirlenerek % toplam CaCO3 miktarı cinsinden ifade edilir. Toprak kireç içeriği sınıflaması genel olarak aşağıdaki gibi yapılmaktadır Kireç miktarının artmasıyla birlikte toprak pH'sı da yükselir. Kireç oranı yüksek olan topraklarda, pH 8,5'e kadar Ca++ katyonu başat durumdadır. Toprakta Ca++ katyonu konsantrasyonu yükseldikçe ortamdaki alınabilir fosfor ve demir iyonları kalsiyum ile çözünemez formda bileşikler oluşturur. Yüksek kireç içeriğine sahip topraklarda, bitkilerde kireç klorozu olarak adlandırılan ve demir noksanlığından kaynaklanan sararmalar meydana gelir Kireç miktarının yüksek olması kadar, çok düşük olması da bitki beslenmesi açısından sakıncalıdır. Çünkü kalsiyum bitki hücre duvarlarının yapısında yer almaktadır. Ayrıca topraktaki kalsiyum karbonat; toprak kırıntılılığını, biyolojik aktiviteyi arttır ve toprak profilinin yıkanmasını güçleştirir. Bu nedenlerden dolayı kireç miktarı çok düşük olan topraklarda kireçleme yapılması gerekir. Kireçleme materyali olarak CaO, CaOH2, CaCO3 ve dolomit kullanılmaktadır BU ÖLÇÜTLERİN ARAZİDEKİ UYGULAMALARI pH ve Tuzluluk Ölçümü Ön etüd çalışmalarında, pH ve tuzluluk ölçümü için arazi kitleri yaygın olarak kullanılmaktadır. Ancak, bu kitlerle yapılan ölçümler yaklaşık olarak sonuç vermektedir. İdeal sonuçların elde edilebilmesi ise laboratuvar analizleriyle mümkündür .Cep ph-metre ve kondüktometreleriyle 1:1 vb. oranlarda toprak-saf su karışımların pH ve elektriki geçirgenliği ölçülebilir. Ayrıca özel olarak hazırlanmış "indikatör çözeltileri veya kağıtları"ndan da yararlanılabilir. Kitlerin üzerinde ya da kullanma kılavuzunda verilen sınıflandırma bilgileri veyahut renk skalaları ile değerlendirm yapılır. Kireç Ölçümü Arazide topraktaki kireç miktarının belirlenmesi için genellikle 1/10 seyreltik HCl kullanılır. Bir saat camı üzerine alınan ince toprak örneği üzerine 5-6 damla asit damlatılır. Meydana gelen kabarmanın şiddetine ve süresine göre toprağın kireç içeriği kabaca aşağıdaki tablodan belirlenir. TOPRAĞIN pH, TUZ, KİREÇ DURUMU ve TÜR SEÇİMİ Tür seçimi konusunda; toprağın pH'sı, tuzluluğu ve kireç miktarı mutlaka göz önünde bulundurulması gereken önemli ölçütlerdir. Ancak Bitkilerin yaşamında tüm ekolojik faktörler birbirleriyle sıkı bir ilişki içerisinde bulunmakta ve her biri önem taşımaktadır. Bu nedenle bir toprağın pH, tuzluluk ve kireç miktarı değerleri irdelenirken değerlendirme, mutlak surette diğer ekolojik faktörler ve toprak özellikleri de göz önünde bulundurularak yapılmalıdır Toprak pH'sı, tuzluluğu ve kireç miktarı bakımından türlerin isteklerinin belirlenmesi amacıyla pek çok bilimsel çalışma gerçekleştirilmiştir. Ancak elde edilen araştırma sonuçları, çalışmanın yapıldığı yörenin içinde bulunduğu ekolojik koşullar için geçerlidir. Bu nedenle literatür incelemelerinden elde edilen bilgilerin, söz konusu ekolojik şartlarda ya da benzeri koşullar altında geçerli olabileceğini kesinlikle unutmamak ve buna göre değerlendirme yapmak gerekir. Ayrıca ön etüd çalışmalarında, incelemesi yapılan sahadaki birtakım özelliklere dikkat etmek suretiyle toprağın pH, tuzluluk ve kireç miktarı ile ilgili bazı fikirler edinmek mümkündür. Örneğin orman altındaki diri örtü pH'ye daha duyarlı olduğundan, bitki örtüsüne bakılarak da pH konusunda bir yargıya varılabilir. Örneğin, karaçam sahalarında bu türe eşlik eden defne yapraklı laden (Cistus laurufolius) ile kızılçam sahalarında bulunan diğer laden türü (Cistus creticus), birer müşir (indikatör) bitki niteliğindedir. Tuzlu toprakların olduğu sahalarda, ılgın (tamariks) gibi halofit yani tuzcul Bitkilerin dışında başka türlere rastlamak mümkün değildir. Ancak Halepçamı, okaliptus, iğde, palmiye ve hurma gibi bazı türlerin tuza dayanıklılığının diğer türlere göre daha fazla olduğu bilinmektedir. Nusret DİRENÇ( Ziraat Mühendisi ) Dr. Rabia ŞİŞANECİ ( Ziraat Mühendisi )

http://www.biyologlar.com/ph-tuzluluk-kirec-ve-bitkiler-icin-onemi

BAĞIŞIKLIK SİSTEMİNİ NEDİR

İnsan vücudu, hastalıklara karşı bir savunma sistemi ile donatılmıştır ve bu yüzden de kendi kendini iyileştirme yeteneğine sahiptir. Hastalığa yol açan maddeler tarafından uyarıldığında bu sistem hemen harekete geçer. Bu bazen adaptasyon tepkisi olarak adlandırılır. Sistem, yabancı olarak algıladığı bir mikroorganizma ile karşılaştığında, belirli hücreler bundan kurtulmak için savaşmaya başlar. Aşılama bağışıklık kazanmanın suni şeklidir. İşlemden geçirilmiş ya da ölü organizma aşı içinde vücuda enjekte edilir. Her gelişmiş sistemde olduğu gibi,sistem kötü işlediğinde sonuçlar ciddidir. Bağışıklık Sisteminde Dengeyi Korumak; Bağışıklık sistemini dengede tutmak önemlidir. Güçsüz bağışıklık sistemi gibi aktif olan sistemde sorun oluşturabilir. Bağışıklık sistemini dengede tutmak için anti-oksidan mikro besin maddeleri sağlayabilir. Dengede tutmak için ilk önce C ve E vitamini betakaroten ve selenyumun vücut tarafından alınması çok önemlidir. Bunun dışında taze meyve ve sebze yemeyi ihmal etmemek gerekir. Bağışıklık Sistemini Olumsuz Etkileyen Besinler... 1.FLÜORİD: Bağışıklık sistemini yavaşlatır,beyaz hücrelerin yabancı hücreleri yok etme gücünü azaltır. 2.CIVA: Vücudun enfeksiyonla savaşma gücünü olumsuz etkiler,antikorlarınkendi hücrelerinin zehirlenmesine yol açar. 3.KADMİYUM: Antikor içeren bazı enzimlerin fonksiyonlarını baskılar. 4.ALÜMİNYUM: Kalsiyum kullanımını engeller,hemoglobin üretimini etkiler. Etkin Bir Bağışıklık Sistemi... * Enfeksiyonların şiddetini azaltacaktır. * Soğuk algınlığı,nezle ve diğer enfeksiyonlara yakalanma riskini azaltacaktır. * Kanser hücrelerinin yok edilmesini en yüksek seviyeye çıkaracaktır. * Canlılığı azaltan toksit kimyasalların birikmesini önleyerek,enerji düzeylerini arttıracaktır. * Vücudu çevredeki radyasyon ve kirlerden koruyacaktır. * Yaşlanma sürecini yavaşlatacaktır. Bağışıklıkla İlgili Yaygın Hastalıkların Bazıları... * AIDS(Kazanılmış bağışıklık eksikliği sendromu) * Kanser ve tümörler * Alerjiler * Yiyeceklere karşı hassasiyet Bozulmuş Bağışıklık Sistemi Belirtileri... * Hazımsızlık * Şiş ve ağrılı bezler * Koku alamama,salgı yokluğu,solunum güçlüğü * Saç dökülmesi ve donuk saç rengi * Kırışık ve kuru cilt * Sertleşmiş ve şiş eklemler * Dikkat bozukluğu,ilgisizlik,isteksizlik ve halsizlik * Depresyon ve irritabilite

http://www.biyologlar.com/bagisiklik-sistemini-nedir

Fenotip Nedir ?

Fenotip ya da Dışyapı, genetik (genotip) ve çevresel etkenlerin yarattığı özelliklerin canlının dış görünüşündeki yansıması Fenotip çoğunlukla genler tarafından belirlenir ancak bazı koşullarda diğer etkenler, fenotipin genotipe yüzde yüz uymasını engelleyebilir Bu duruma hipomorfizm denir Fenotip, zaman içinde değişebilir Birden çok genle kontrol edilen özelliklerin fenotipleri de karmaşıklık gösterir Genlerin durumuna göre çeşitlilik gösteren fenotip sınıflarına pleitropik fenotipler denir Biyolojik sınıflandırmanın ilkel aşamasında kullanılan sınıflandırma yöntemi, canlıların görünüşleri; yani fenotipleri üzerine kurulmuştu Ancak genetik biliminin gelişmesi sonucunda moleküler düzeyde sınıflandırmaya geçilmiştir Ortak fenotipe sahip canlılar, her zaman evrimsel olarak ortak atadan gelmezler Yakınsak evrim, fenotiplerin birbirlerine benzemesini doğurabilir Modern genetik terminolojisinde, herhangi bir mutasyonun yarattığı degişime de mutant fenotip denmektedir

http://www.biyologlar.com/fenotip-nedir-

NanoTeknoloji <b class=red>Nedir</b>?

NanoTeknoloji Nedir?

1974 yılında Tokyo Üniversitesinde Norio Taniguchi tarafından ortaya atılan nanoteknoloji mevcut teknolojilerin daha ileri düzeyde duyarlılık ve küçültülmesine dayalı olarak hızla ortaya çıkan teknolojilerdir. Gelecekte bu teknoloji muhtemelen Moleküler Nanoteknolojisi (MNT) adıyla nano büyüklüğündeki boyutlarıyla yapı makineleri ve mekanizmalarını da içerecektir.Nanoteknoloji ölçü olarak nanometre adı verilen(kısa şekli nm) bir ölçme birimini kullanılır. Her bir ölçüde 1 milyar nm vardır. Her bir nm sadece üç ile 5 atom genişliğindedir yani ortalama bir insan saç kalınlığından yaklaşık 40,000 kez daha küçüktür. Natoteknolojinin bir yönü de süper küçük bilgisayarlar (bakteri büyüklüğünde) ya da milyarlarca dizüstü bilgisayar gücünde küp şeker büyüklügünde süper bilgisayarlar yada günümüzün bilgisayarlarindan trilyonlarca daha güçlü belirli bir büyüklükte masaüstü modelleri gibi nano boyutunda yapılabilmesidir. Nanoteknolojinin yüksek potansiyeli Kuantum fiziğinin kanunları sayesinde açığa çıkmakdatır. Bu aşamada ve nano ölçülerde kuantum fizik yasaları devreye girer ve optik, elektronik, manyetik depolama, hesaplama, katalist ve diger alanlarda yeni uygulamalara olanak sağlar. Nanoteknolojisi genellikle genel-amaçlı teknoloji olarak adlandırılır. Çünkü gerçeklestirildiği zaman nanoteknoloji neredeyse bütün sektörlerde ve toplumun her alanında önemli bir yeri olacaktır. Daha iyi yapılmış, daha uzun süre dayanan, daha temiz, güvenli ve akıllı ürünleri evde, iletişimde, tıpta, ulaşımda, tarım ve endüstrinin her alanında kullanabileceğiz. İnsan vücudunda dolaşarak kanser hücrelerini yayılmadan bulup yok eden tibbi bir araç düşünün; ya da çelikten çok daha hafif ama ondan on kat daha güçlü materyali gözünüzde canlandırın. Neden nanoteknolojisi duyarlı kullanılmalı? Elektrik veya bilgisayarlar gibi nanoteknoloji de hayatımızın her aşamasında daha iyi olanaklar sunacak. Fakat her yeni teknolojinin olduğu gibi nanoteknolojinin de iki yönlü kullanımı var, yani ticari kullanımı ve askeri alanda nanoteknoloji sayesinde çok daha güçlü silahlar ve gözetleme araçları yapılabilecek. Bu yüzden nanoteknoloji insanlar için yararları ile birlikte aynı zamanda bazı riskleride getirmektedir. Nanoteknolojinin önemli yanlarından biri de sadece daha iyi ürünler değil, aynı zamanda daha gelismişmiş üretim araçları sunmasıdır. Bir bilgisayar veri dosyalarını kopyalayabilir mi? Özellikle de çok düşük bir maliyetde yada ücretsiz olarak istediğiniz kadar kopya yapabilirsiniz. İşte nanoteknolojide aynı bilgisayar örneğinde olduğu gibi herhangi bir şeyi üretmeyi aynı dosyaların kopyalanması kadar kolay ve ucuz hale getirebiliyor. Bu yüzden nanoteknoloji bir çoğuna göre bir sonraki sanayi devrimi olarak adlandırılmaktadır. Nanoteknoloji sadece çok düşük maliyetle birçok yüksek kalitede ürünün yapılmasına olanak saglamayacak, aynı zamanda düşük maliyette ve aynı yüksek hızda yeni nano fabrikalarının da yapılmasını sağlayacaktır. Nano teknolojisisin hızla artan bir teknoloji olarak adlandırılmasının nedeni kendi üretim araçlarını yeniden üretebilme yeteneğidir. Nanoteknoloji; daha hızlı, düşük maliyetli ve temiz üretim sistemi getirmektedir. Üretim araçları katlanarak yeniden üretilebilecektir, böylece birkaç hafta içersinde birkaç nano fabrikası milyarlarca fabrikayı üretecektir. Bu bir devrimsel, yenilikçi, güçlü ve potansiyel olarak da çok tehlikeli- ya da faydalı bir teknolojidir. Tüm bu gelişmeler ne kadar kısa zamanda gerçekleşebilir? Genel tahminler bunun 20 ila 30 yıl arasında, hatta daha da geç olabileceği yönündedir. Fakat optik, nano litografi, mekanik kimya ve 3D prototip teknolojileri konusundaki kaydedilen hızlı ilerlemeler bu süreyi kısaltabilir. Burada önemli olan sadece böyle bir gelişmenin ne kadar kısa bir zamanda yapılabileceği değil aynı zamanda bizim bu yeni teknojiye ne kadar hazır olabileceğimizdir. Belki kendimize aşağıdaki sorulardan bazılarını sorduğumuzda bu konuyu daha iyi algılayabiliriz.Bu teknolojiye kim sahip olacak? Bu çok sınırlı mı olacak yoksa herkes erişebilecek mi? Fakir ve zengin arasındaki farki kapatmak için ne yapacak? Tehlikeli silahlar nasil kontrol altina alinacak ve tehlikeli kisilerin eline geçmesi engellenecek? Bu soruların çogu 10 yıl önce ortaya atılmasına rağmen hala pek bir cevap bulmuş gibi görünmüyor. Bu teknolojinin ne zaman hayata geçirileceğini tam olarak söylemek zor, bunun bir nedeni de gizli askeri veya endüstriyel geliştirme programlarının normal bir vatandaşın bilgisi dışında ve büyük bir gizlilikle yürütülüyor olmasıdır.Tam ölçekli olarak nanoteknolojinin önümüzdeki beş veya on yıl içersinde geliştirilip geliştirilmeyeceğini kesin olarak söyleyemeyiz. Fakat şimdiden ihtiyatı elden bırakmayıp bütün senaryolara karşı hazırlıklı olup nanoteknoloji ve gelişimini yakından takip etmeliyiz. Kaynak: bilgiustam.com

http://www.biyologlar.com/nanoteknoloji-nedir

Genotip Nedir ?

Genotip, Soyyapı ya da Kalıtyapı organizmanın genetik yapısına verilen ad. Bir hücrede birden fazla gen DNA vardır. Aynı DNA üzerindeki genlere bağlı genler, ayrı DNA'lar üzerindeki genlere ise bağımsız genler denir. Genler, enzim ve protein sentezini yöneterek, bireyin dışyapısını (fenotipini) ortaya çıkartırlar. Baskın (dominant) genler, bireyin fenotipinde kendi varlığını her zaman gösterirken çekinik (resesif) genler, bireyin fenotipinde kendi varlığını sadece homozigotken gösterirler.

http://www.biyologlar.com/genotip-nedir-

Varroa <b class=red>Nedir</b>?

Varroa Nedir?

Çalışkanlıklarıyla bilinen ve binbir güçlükle yaptıkları balları her derde deva olan arıları çeşitli hastalıklar beklemektedir. Bu hastalıklardan bir tanesi de “varroa”’ dır. Varroa; arılarda kanat ve bacaklarda deformasyon, kısa bacaklılık gibi vücut anormallikleri ve yetişkin arılarda verim düşüklüğüne neden olan, hatta kovanın tamamen sönmesine bile sebep olabilecek tehlikeli bir hastalıktır. Bir kovandan diğer kovana kolayca bulaşabilecek, önlem alınması gereken önemli bir hastalıktır.Varroa hastalığına karşı, arı yetiştiricilerimizi emeklerinin zayi olmaması için bilgilendirmeliyiz. Arılar için çok önemli bir tehdittir. Hastalığın bulaştığı kovan müdahale edilmezse tamamen sönebilmekte ve diğer kovanlara da kolaylıkla bulaşabilmektedir. Önlem alınmadığı takdirde tüm arı kovanlarının sönmesine sebep olabilmektedir. Bu durum arı yetiştiricilerinin asla karşı karşıya kalmayı istemeyecekleri bir durumdur. Bu durumla karşı karşıya kalmamak için arı yetiştiricilerinin, Varroa hastalığını, belirtilerini ve mücadele yöntemlerini öğrenmeleri gerekmektedir.Varroa, koyu kahve rengindedir ve uzunluğu 1.3 mm. civarı, eni ise 1.6 mm. civarındadır. Varroa’’nın, vücudunun çevresinde 4 çift bacağı vardır. Varroalar, arının kanını emerek beslenirler. Varroa’’nın dişi ve erkeği mevcuttur. Erkekleri, dişi ile çiftleşme sonrası ölürler. Kışı yalnızca dişi erginler geçirir. Hastalığın bulaştığı kovanda; yavru arılar gelişemez, ergin arılar ise güçsüzdürler ve uçamazlar. Huzursuzdurlar, kurtulmaya çalışırlar ama kendi çabaları ile bunu gerçekleştiremezler. Arılar güçsüz kaldıkları için, çiftleşme yetenekleri azalır. Kovandaki arı sayısı gittikçe azalmaya başlar.Çalışan arılar gelişemedikleri için küçük olurlar. Kovandaki arıların herhangi bir hastalığa yakalanıp yakalanmadığını anlamak için, arıların uçuşlarını gözlemlemeliyiz ve kovandaki arıları dikkatli gözlemlemeliyiz. Eğer kovanda arılara yetecek kadar yiyecek varsa, buna rağmen kovanın önünde çok sayıda ölü arı mevcutsa, arılar büyük bir ihtimalle bir hastalığa yakalanmışlardır. Kovanın çevresinde küçük ve kanatsız arılar geziniyorsa “varroa hastalığı” var demektir. Arıları iyi gözlemlemeliyiz çünkü tehlikeli bir hastalıktır. Belirtilerini gördüğümüzde acilen müdahale etmeliyiz.Varroa ile mücadele gerçekten zordur. Varroa ile fiziksel, biyolojik ve kimyasal mücadele yöntemleri mevcuttur. Arıların bal yaptığı dönemde fiziksel ve biyolojik mücadele; bal alındıktan sonra kimyasal yöntemlerle mücadele edilir.Yazar: Hamza Hatipoğluhttp://www.bilgiustam.com

http://www.biyologlar.com/varroa-nedir


Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Mikrodizi (Microarray) Nedir

Bu kavramı birçok yerde "mikrodizin" olarak da görmüşsünüzdür, o ayrı bir yazı konusu. Bu yazıda, daha önce detaylı bir şekilde bahsedeceğimi söylediğim mikrodizi teknolojisine giriş yapacağım. Mikrodizi veri analizi yerine, bu teknolojinin nasıl bir şeye benzediğinden bahsedeceğim. Bu teknoloji fazlasıyla popüler ülkemizde (dünyada artık Yeni Nesil Sekanslama konuşuluyor), bir süre daha devam edeceğe de benziyor. Temel birkaç sebepten birisi bu teknolojiyi uygulamayı bilen insan sayısı göreceli olarak hayli fazla, her yerde (evet, neredeyse her yerde) mikrodizi cihazı var, ve bu teknolojiyi kullanarak yayın çıkarmak göreceli olarak kolay. Bu durum da beraberinde gereğinden yüksek beklentileri ve uygunsuz teknoloji kullanımlarını getiriyor. Önce neden böyle bir teknolojiye ihtiyaç duyulduğundan başlayalım. Klasik bilimsel yaklaşım belirli bir vakit diliminde belirli bir faktörü incelemek üzerine kurulu. Bu nedenle p53 üzerine binlerce yayın var; ancak p53'ün tam olarak nasıl çalıştığına ilişkin elimizde tam bir bilgi yok, çünkü etkileşim mekanizmasını tam olarak anlayabilmiş değiliz. Buradaki anahtar kelime, "etkileşim" [interaction]. Yani klasik yaklaşımla, direksiyonun bir otomobil için çok önemli olduğunu anlayabiliyoruz. Hatta direksiyonun türler arasında (kamyon, otobüs, vapur, uçak vb.) korunduğunu ve bazen farklı şekillere büründüğünü ve buna rağmen aynı etkiyi yaptığını da kavrayabiliyoruz. Ama direksiyonun tam olarak nasıl çalıştığını klasik yaklaşımla anlayamıyoruz; çünkü bir başka deneyde direksiyonu sabit tutup gaza basıyoruz, bir başkasında otomobilin krank milini çıkarıp etkisine bakıyoruz, ve benzeri şeyler. Bu sıkıntı bilimin birçok dalında kendini gösteriyor, fakat özellikle de birden fazla faktörün işin içine girdiği alanlarda içinden çıkılmaz bir hal alıyor bu durum. Psikoloji bilimsel olarak geç kabul gören fakat hızlı ilerleyen bir dal. Klasik bilimsel yaklaşımla çözülemeyen bazı problemleri çözmek adına farklı bir yaklaşım ortaya çıkıyor. Gestalt psikolojisi denilen bu yaklaşım diyor ki: "Bütün, onu oluşturan parçaların toplamı değil, daha fazlasıdır." Yani deniyor ki, bir ormanı anlamak istiyorsanız teker teker her bir ağacı araştırmanız yetersizdir. Ormanı oluşturan şey, ağaçlar ve onların birbiriyle etkileşimidir. Yani p53'ün ne işe yaradığı çoğu zaman anlamsızdır; önemli olan, p53'ün diğer moleküllerle etkileşimini ortaya koymaktır. Yani direksiyonu çevirdiğimizde tekerlerin nasıl hareket ettiğini keşfetmek, belirli hızlarla giderken her bir derecelik direksiyon açısındaki değişmenin kaç metrelik sapmalara denk geldiğini görmek, her bir lastiğin aşınmışlığının bu sapmaları nasıl etkilediğini keşfetmek, direksiyon boşluğu denen şeyin aracın yönünü ayarlamayı nasıl etkilediğini bulmak tüm resmi görmektir. Elbette direksiyonun şekli, yapıldığı materyal vb. şeyler kıymetlidir ama, bütün resmin sadece ufak bir parçasıdır. Gestalt psikolojisini detaylı bir şekilde araştırmanızı öneririm; sistem biyolojisini anlamak için çok güzel bir başlangıç noktası bence. 1977 yılında Northern Blot adı verilen bir yöntem geliştirildi. Amaç, gen ifade miktarını hedef bir gen/transkript için belirleyebilmekti. Örneğin, p53 gen ifade miktarını bu yöntemle tayin edebiliyordunuz ve sadece bir veya birkaç gen ifade miktarını kendi aralarında farklı durumlar (hastalıklı - sağlıklı vb.) için kıyaslayabiliyordunuz. Burada önemli bir detay var; ilgilendiğiniz gen veya transkriptin DNA dizilimini, en azından bir kısmını bilmeniz gerekiyor ki ona göre probu tasarlayabilesiniz. Aslında bu durum aynı zamanda çok büyük bir kısıtlayıcı etkiye sahip; henüz keşfedilmemiş genler için bu yöntemi kullanabilmek mümkün değil. Hücredeki süreçleri daha iyi anlayabilmek için mümkünse hücredeki her detaya ilişkin veriye ihtiyacımız var. Genetik alanındaki araştırmalar ilerledikçe ve moleküller arası etkileşimin önemi farkedildikçe aynı anda onlarca gene ait özelliklere bakabilmenin daha faydalı olabileceği düşüncesi yaygınlaşmaya başladı; gestalt yaklaşımının biyoloji versiyonu gibi düşünebilirsiniz bu gelişme sürecini. Yeni bir teknolojinin geliştirilmesi biraz uzun sürdü; SAGE (Serial Analysis of Gene Expression) yöntemi bu arayışlar doğrultusunda ortaya çıktı, sene 1995. Henüz İnsan Genom Projesinin çıktıları bilinmiyordu ve araştırmacılar mümkün olduğu kadar çok gen ifade değişimini aynı anda gözlemleyebilmek istiyordu. Böylece, bir hastalık durumunda gen ifade miktarlarının sağlıklı bireylerin gen ifade miktarlarına göre nasıl değiştiği ve böylelikle hastalığa neyin neden olduğu, veya hastalığın neleri etkilediği/değiştirdiği anlaşılabilecekti. Yandaki şekil SAGE metodunu kısaca özetliyor. SAGE yönteminin bir diğer avantajı ise, hücredeki transkriptlerin ne olduğunu önceden bilmenizi gerektirmeyen ve yeni genlerin keşfine olanak sağlayan bir yaklaşıma sahip olması. Daha doğrusu, yeni bir genin ufak bir dizisini keşfetmekten bahsediyoruz, yine de bu o zamanlar için büyük bir keşif olarak düşünülebilir (Bir yazımda EST'lerden kısaca bahsetmiştim). SAGE metodu DNA dizilimlemeye dayanır ve o dönemde elimizdeki en iyi yöntem Sanger yöntemiydi. Eğer dizilimlemek istediğiniz DNA bölgesi fazlasıyla uzunsa bu hem uzun süreler, hem de yüksek maliyetler anlamına geliyor. Bu nedenle, yine aynı dönemde geliştirilen mikrodizi teknolojisi düşük maliyetler vadettiği için bir anda popüler hale geldi ve SAGE metodunun pabucunu dama attı. Oysa iki metodun karşılaştırmalarına baktığımızda, SAGE yöntemi mikrodizi teknolojisine göre çok daha kesin ve nicel sonuçlar verebiliyor. Maliyet avantajı fazlasıyla baskın gelmiş anlaşılan. Peki mikrodizi teknolojisi ne getirdi, temel farkı neydi? Bu yeni teknolojiyi, aynı anda gerçekleştirilen Northern Blot'lar gibi düşünebiliriz; binlerce ve bazen on binlerce Northern Blot, tek seferde, çok daha az sarf maliyetiyle. Yaklaşım aynı; önceden tasarlanmış ve bir transkripti tanımlayabilecek en az bir prob tasarlayın. Prob lafı biraz korkutucu geliyor başta ve bir kavram kargaşasına da yol açabiliyor. Kastettiğimiz şey, 20 ila 500 baz arasında uzunluğu olan tek zincirli bir DNA molekülü (ülkemizde yaygın olarak kullanılan Affymetrix teknolojisinde DNA molekülünün uzunluğu 25 baz olarak belirlenmiş). Olay tamamen hibridizasyon temelli ve bu nedenle tek zincirli DNA parçaları, eşlenecekleri diğer molekülleri bekliyorlar; onlar da hedef transkriptler. Bir video yüzlerce kelimeye bedel, buradan teknolojinin nasıl işlediğini izleyebilirsiniz. Birçok farklı mikrodizi teknolojisi ve yine birçok uygulaması var; yani aslında mikrodizi teknolojisi dediğimizde ortada yine ufak bir kavram kargaşası var ancak sistemin çalışması yukarıda bahsettiğimiz gibi. Peki sonra ne oluyor? Problara bağlanması için hücrelerden elde ettiğimiz DNA veya mRNA parçaları floresan moleküllerle işaretleniyor (kafamda, her bir nükleik asit molekülünün ucunda birer LED veya ampül varmış gibi hayal ediyorum). Problar sabit olduğu ve her bir pozisyonda hangi transkripti hedeflediği bilindiği için, o bölgelerdeki floresan ışımaya bakılıyor ve bu ışıma miktarının hücredeki gen ifadesi miktarıyla paralel olduğu varsayılıyor. Buradaki paralel olma ifadesi şu demek; elimizde sayısal veriler var ancak bunlar mutlak rakamlar değil. Çok ışıma varsa hücrede bu gen çok miktarda ifade ediliyor diye düşünüyoruz, az ışıma varsa az gen ifadesi var diye düşünüyoruz. Bu az veya çok olma durumu hücrede gerçekte kaç kopya transkript olduğu bilgisini vermiyor. Bu nedenle mutlaka bir referansa veya bir referans grubuna ihtiyacımız var. Mikrodizi ne değildir, tam da bu noktada başlıyor. Tek bir mikrodizi deneyiyle bir gene ait ifade değerini mutlak olarak söyleyemezsiniz, herhangi bir tespit yapamazsınız. Aynı değer grubuna ait örneklerle yapacağınız mikrodizi deneyleriyle de bunu yapamazsınız. Yani, 10 tane hasta bulup bunlardan alacağınız örneklerle yaptığınız mikrodizi deneyi, pratikte neredeyse hiç bir işe yaramaz, çünkü bu teknoloji böyle kullanılmaya uygun değil; mutlaka birden fazla referans çalışmaya ihtiyacınız var. Böylece elde ettiğiniz hasta örneklerine ait verilerin "çok" veya "az" olduğunu söyleyebileceğiniz bir referans noktası elde edebilirsiniz. Model organizma çalışırken referans veya kontrol grubu bulmak çok daha kolay ancak konu insan olduğunda sağlıklı bireylerden kontrol örneklerini nasıl bulabilirsiniz? Örneğin, sağlıklı bir bireye karaciğer biyopsisi yapmanın veya o bireyin beyninden parça almanın hem etik hem de yasal bir çok problemi var. O zaman bu dokulardan elde edilen örneklerle mikrodizi deneyleri yapılmayacak mı? Referansınız yoksa, evet, çalışmanın bir anlamı yok. Yeterince örnek toplayamıyorsanız, yine burada bir problem var. Elinizdeki değerler mutlak değerler değil ve bu değerlerin kendi içlerinde de sapmalar var, bu nedenle birçok örneğe ihtiyacınız var. Bütçeniz kısıtlıysa ve her bir deney grubu için sadece bir örnek çalışabilecekseniz, mikrodizi teknolojisine başvurmanın yine neredeyse hiç bir anlamı yok. Veya referans olarak kullanacağınız kontrol örnekleri gerçekten de kontrol değilse (deney grubu örnekleriyle aynı dokudan ve aynı şartlarda alınmadıysa vb.), o zaman yine yapacağınız çalışma tehlikeye giriyor. Yukarıda saydığım nedenlerden ötürü bir mikrodizi deneyi tasarlamadan önce bir biyoinformatik uzmanına veya bir biyoistatistikçiye danışmakta çok büyük faydalar var; bu sayede birçok hatanın ve verimsizliğin önüne geçilebilir. Her bir farklı üreticinin geliştirdiği mikrodizi teknolojileri de birbirinden farklı, bu nedenle bu konuda da bilgi sahibi olmak gerekiyor. Gözünüz korkmasın, Wikipedia'da ufak bir gezinti farklı mikrodizi teknolojileri hakkında fikir sahibi olmanız için yeterli.

http://www.biyologlar.com/mikrodizi-microarray-nedir

Bakteriyofaj Nedir ?

Bakteri yiyen canlı bakterilerin büyümesine engel olan onları eriten ve ancak elektron mikroskopla görülebilen bir ültravirüs. Süzgeçlerden geçen ve kültürden kültüre nakledilmesi mümkün olan bu ultra- virüs bakteri kolonilerinde görülebilen değişiklikler yapabilmekte ve bakteri hücrelerini hiç bir artık bırakmadan eritebilmektedir. bakteriyofajlar ın bilhassa zararlı bakterilerden meydana gelen çeşitli salgınlarda bakterileri yok etmek suretiyle önemli rolleri vardır Synechococcus bakterisinin fajı S-PM2 elektron mikroskobu fotoğrafı Bakteriyofaj bakteri ve Yunanca phagein yemek fiilinden tÜretme bakterileri enfekte eden bir virüstür. Terim genelde kısaltılmış hali olan faj olarak kullanılır. Ökaryotları hayvan bitki ve mantarları enfekte eden virüsler gibi fajlarda da büyük bir yapısal ve işlevsel çeşitl ilik vardır. Tipik olarak proteinden oluşan bir kabuk ve içinde yer alan genetik malzemeden oluşurlar. Genetik malzeme dna veya RNA olabilir ama genelde 5 – 500 kilo baz çifti uzunluğunda çift sarmallı dnadan oluşur. Bakteriyofajlar genelde 20 ila 200 nm arası büyüklükte olurlar. Fajlar her yerde mecutturlar ve bakterilerin yaşadığı ortamlarda örneğin Toprakta veya hayvan bağırsaklarında bulunabilirler. Faj ve diğer virüslerin en yoğun doğal kaynaklarından biri deniz suyudur. Deniz yüzeyinde mililitrede 109 etkin faj taneciği virion bulunmuştur ve deniz bakterilerinin %70i fajlar tarafından enfekte olmuş olabilirler Tarihçe 1913te Britan yalı bakteriyolog Frederick Twort bakterileri enfekte edip öldüren bir etmen keşfetmiş ama konuyu daha fazla ta kip etmemiştir. Fransız-Kanadalı mikrobiyolog Felix dHérelle 3 eylül 1917de dizanteri basilinin düşmanının görünmez bir mikrobunu keşfettiğini açıklayıp ona bakteryofaj adını verdi Çoğalması bakteriyofajların, litik veya lizogenik hayat döngüleri olabilir bazılarında her ikisi de olur. T4 fajı gibi öldürücü fajlarda görülen litik döngüde virionun çoğalmasının hemen ardından konak hücre parçalanır ve ölür. Hücre ölür ölmez virionların kendilerine yeni bir konak bulmaları gerekir. Lizo genik döngü buna tezat olarak konak hücrenin parçalanmasına neden olmaz. Lizogenik olabilen fajlara ılımlı fajlar temperate phage denir. Viral genom konak genoma dahil olur ve oldukça zararsız bir şekilde onunla beraber eşlenir. Konak hücrenin sağlığı yerinde olduğu sürece Virüs sessiz bir şekilde varlığını sürdürür ama konağın şartları bozulursa örneğin besin kaynaklarının tükenmesi durumunda endojen fajlar profaj olarak adlandırılırlar etkinleşirler. Bir çoğalma süreci başlar sonucunda konak hücre parçalanır. ilginç bir şekilde lizogenik döngü konak hücrenin çoğalmasına izin verdiği için hücrenin yavrularında da virüs varlığını devam ettirir. Bazen profajlar inaktif oldukları dönemde bakteri genomuna yeni işlevler kazandırarak konak bakteriye fayda sağlarlar bu olguya lizogenik dönüşüm lysogenic conversion denir. Bunun iyi bilinen bir örneği Vibrio cholera nın zararsız bir suşunun bir faj tarafından enfekte edilerek kolera hastalığı etmenine dönüşümüdür. Bağlanma ve giriş T4 bakteriyofajının yapısı. 1. baş 2. Kuyruk 3. Nükleik asit 4. Kapsit 5. Yaka 6. Kın 7. Kuyruk lifleri 8. Ekserler 9. Taban plakası.Konak hücreye girmek için bakteryofajlar bakterinin yüzeyindeki öz gül reseptörlere bağlanırlar bunlar arasında lipoPolisakkaritler teikoik asitler proteinler sayılabilir. Bu nedenle bir bakteryofaj ancak bağlanabileceği reseptörler taşıyan bakterileri enfekte edebilirler. Faj virionları kendiliklerinde hareket etmediklerinden dolayı kendi reseptörleriyle solüsyondayken rassal olarak buluş up bağlanırlar. Karmaşık bakteryofajlar örneğin T-çift fajları genetik malzemelerini hücrenin içine enjekte etmek için şırınga benzeri bir hareket kullanırlar. Uygun reseptörle temas kurduktan sonra kuyruk lifleri taban plakasını hücre yüzeyine yaklaştırırlar. iyice bağlandıktan sonra kuyruk büzülür bu da genetik malzemenin dışarı itilmesine neden olur. Bazı fajlar nükleik asiti hücre zarından içeri iter bazıları hücre yüzeyine birakır. Başka yöntemlerle genetik malzemlerini içeri sokan bakterifajlar da vardır. protein ve Nükleik asit sentezi Kısa süre bazen Dakikalar içinde bakteri ribozomları viral mrnanın Proteine çevirimine translasyonuna başlarlar. RNA-fajlarında RNA-replikaz bu sürecin başlarında sentezlenir. Erken sentezlenen proteinler ve virionla gelen bazı proteinler bakterinin RNA polimerazını modifiye edip onun viral mrnayı tercihen çevirmesine neden olabilirler. Konağın kendi Protein ve nükleik asit sentezi de bozularak viral ürünlerin sentezine yönlendirilir. Bu ürünler ya hücreyi parçlamaya yarayacaklaklar ya yeni virionların oluşmasına yardımcı olacaklar veya yeni virionları oluşturacalardır. Virion oluşumu T4 fajları durumunda yeni fajların inşası özel yardımcı molekülleri gerektiren karmaşık bir süreçtir. Önce taban plakası oluşur kuyruk onun üzerinde büyür. kafa kapsidi ayrı olarak oluşup kendiliğinden kuyruk ile birleşir. Henüz bilinmeyen bir şekilde dna kafanın içine sıkı bir şekilde yerini alır. Bütün süreç yaklaşık 15 dakika alır. Virionların salınımı Fajlar ya hücre parçalanması lizis veya salgılanma yoluyla salınırlar. T4 fajları durumunda hücre içine girmelerinden 20 Dakikadan biraz sonra hücre parçalanması yoluyla sayıları 300ü bulabilen faj salınır. Bunun gerçekleşmesi hücre duvarındaki peptidoglikanı parçalayan endolizin adlı enzim sayesinde olur Bazı virüler ise parazite dönüşüp konak hücrenin sürekli olarak yeni virüs tanecikleri salgılamasına neden olabilirler. Yeni virionlar hücre zarından tomurcuklanarak koparlar beraberlerinde hücre zarının bir kısmını da götüren bu fajlar örtülü virüse olarak ortama salınırlar. Salınan virionların her biri yeni bir bakteriyi enfekte edebilir. Faj terapisi Bir bakteriyi enfekte etmek üzere ona bağlanmakta olan bakterilerin şematik gösterimiKeşiflerinin ardında fajlar anti-bakteriyel etmen olarak denenmişlerdir. Ancak antibiyotikler keşfedilince bunların fajlardan daha kullanışlı oldukları görülmüştür ve Batıda faj tedavisi üzerine yapılan araştırmalar bırakılmıştır. Bun karşın Sovyetler Birliğinde 1940lardan beri antibiyotiklere alternatif olarak kullanımı devam etmiştir. Bakteri suşlarında doğal seleksiyon yoluyla antibiyotik direncinin oluşması bazı tıbbi araştırmacıları faj tedavisini antibiyotik tedavisine bir alternatif olarak tekrar değerlendirmeye sevketmiştir. Antibiyotiklerden farklı olarak fajlar milyonlarca yıldır süregeldiği gibi bakterilerle beraber evrimleştikleri için sürekli bir direncin oluşma olasılığı yok sayılabilir. Ayrıca etkili bir faj özgül bakterisini tamamen bitene kadar enfekte etmeye devam edecektir. Belli bir faj genelde ancak belli bir bakteri tipini enfekte edebildiği için ki bu birkaç bakteri türü olabileceği gibi bir türün sadece bazı alt türleri de olabilir bakteri tipinin doğru tanımlandığından emin olmak gerekebilir bu da 24 saat sürebilir. Faj terapisinin bir diğer avantajı başka bakterilere zarar gelmeyeceğinden dar spektrumlu antibiyotik terapisine benzemesidir. Ancak sıkça olduğu gibi birden fazla bakterinin beraberce neden oldukları enfeksiyonlarda bu bir dezavantaj oluşturabilir. Bakteryofajların bir diğer sorunu vücudun bağışıklık sisteminin saldırısına uğramalarıdır. Fajlar enfeksiyonla doğrudan temas durumunda etki gösterirler onun için açık bir yaraya uygulanmaları en iyi Sonuç doğurur. Sistemik enfeksiyonlarda bu pratik olarak mümkün değildir. Sovyetler birliğinde diğer tedavilerin çalışmadığı durumlarda gözlenen başarılı sonuçlara rağmen çoğu araştırmacı faj terapisinin tibbi bir geçerliliğe ulaşacağına şüphe ile bakmaktadır. Faj tedavisinin etkinliğini belirlemek için büyük ölçekli klink testler yapılmamıştır ama antibiyotik dirençli bakteri türlerinin çoğalmasından dolayı bu konuda araştırmalar sürmektedir. Ağustos 2006da ABD gıda ve ilaç idaresi Food and Drug Administration bazı etlerde Listeria monocytogenes bakterisinin öldürülmesi için bakteryofaj kullanımını onaylamıştır.  

http://www.biyologlar.com/bakteriyofaj-nedir-

“Dinlerin evrimi” mi “Evrimin dini” mi?

Sık sık duyarsınız bu iki kelimeyi “Dinlerin Evrimi.” Öyle ki pekçok kaynakta neredeyse bilimsel bir gerçeklik gibi sunulur. Nedir bu “dinlerin evrimi” meselesi? 19.yüzyılıın sonundan itibaren darwinizm, büyük bir hızla kabul gördü ve biyolojiden başlayıp ekonomi, psikoloji, sosyoloji, antropoloji ve tarih gibi hemen her alanı yaygın bir biçimde etkiledi. Bu, “din” olgusuna da “dinlerin evrimi” olarak yansıdı. Böylelikle de insanlığın son derece kısa bir zamanını kapsayan yazılı tarihine ve eldeki kısıtlı arkeolojik bulgulara dayanarak, evrim fikrinin a priori kabul görüldüğü hakim materyalist bakışla “dinlerin evrimi” düşüncesi ortaya çıkmış oldu. Bu düşünceye göre insanlığın ilk dönemlerinde hiçbir dini inanç yoktu. İlk dinler ise ölülere tapınmayla başlamıştı. Bu konuda farklı görüşler de vardı, bunlardan bazılarına göre dinin kaynağı animizme (doğaya canlılık atfetme, onda ruh olduğuna inanma), bazılarına göre ise totemizme (sembol olarak seçilen bir insan, grup ya da eşyaya tapma) dayanıyordu. Bu evrim tarihi içinde de insanlık, inanç sistemleri olarak sırayla animizm, manizm, politeizm (çok tanrıcılık) aşamalarını geçmiş son olarak da monoteizme (tek tanrıcılık) demir atmıştı. Bu temelle ilişkili olarak, pozitivizmin fikir babası A. Comte’de insanlığın inanç tarihini kategorize ederken mitolojik çağ ve metafizik çağ olarak sınıflandırma yapmış, son aşama olarakta pozitivizmi öngörerek dinlerin bu yeni dönemde ortadan kalkacağını iddia etmişti. (Zaman, Comte’nin yanıldığını açıkça gösterdi, ama bu başka bir konu.) Dinlerin evrimi düşüncesini desteklemek için kullanılan bulgularla, biyolojik evrim için gösterilen bulguların kullanım mantığı arasında büyük bir benzerlik görüyoruz. Nasıl ki biyolojik evrimde canlıların yapıtaşlarındaki benzerlikler homoloji ve anoloji gibi kavramlarla “common descent”e (ortak ata) kanıt olarak gösteriliyorsa, dinlerin evrimi düşüncesinde de aradaki benzelikler evrimlerine kanıt olarak gösteriliyor. Özetle, tek tanrılı dinlerle önceki inanışların gerek bazı ritüelleri, gerek tarihsel hikayeleri, gerekse metafizik öğeleri arasındaki benzerliklerden hareketle, zaman içinde birbirlerinden evrimleştikleri öne sürülüyor. Peki bu sonuca varılmasını sağlayan nedir? Yani bu ortak noktalar birbirlerinden evrimleşmeye mi kanıttır yoksa İlahi mesajın sürekliliğine ve zamanla bozuldukça tekrarlandığına mı? Yoksa bu ortak noktalar her iki görüş için de bakılan yere göre değişen kanıt sunabilir mi? Tarih öncesi çağlara dair elimizde çok az bulgu olduğu gerçeğini de dikkate alarak şu söylenebilir; bu benzerlikler her iki düşünceyi de desteklemek için kullanılabilir. Elbetteki a priori kabullerle başlanarak. Hangi görüşü daha kuvvetli desteklediğini görmek için ise yetersiz de olsa elimizdeki bulgulara bakmalıyız. Dinlerin evrimi düşüncesi, “bilimsellik” bağlamında düşünürsek önkabullerden ve arkeolojik kanıtların bu önkabule uygun bir biçimde yorumlanmasından başka bir şey ifade etmiyor. Bu önkabul materyalizm elbette. Bu materyalist önkabulün olmadığı bir bakışla incelendiğinde ise yaklaşık bir yüzyıldır ele geçirilen antropolojik ve arkeolojik bulgular, tarih boyunca toplumlarda önce tek Tanrı inancının var olduğunu, ancak bunun zamanla bozulduğunu gösteriyor. Bazı dinler tarihi yorumcularına göre başlangıçta herşeyi yoktan var eden, herşeyi gören ve bilen, tüm alemlerin sahibi olan tek Yaratıcı’ya inanan toplumlar, zamanla Yaratıcı’nın sıfatlarını ayrı ayrı ilahlar olarak düşünme yanılgısına düşüyor ve birden fazla ilaha tapınmaya başlıyorlar. Birkaç alıntı ile eldeki bulguların ne ifade ettiğine bakalım. Stephen H. Langdon, The Scotsman adlı dergide şunları yazmış: Tüm deliller, kesinlikle başlangıçta bir “tek Tanrı” inancının bulunduğunu gösteriyor. Semitik kökenli halkların arkeolojik ve edebi kalıntıları da en eski zamanlarda bile bir “tek Tanrı” inancının var olduğunu gösteriyor. Yahudi dininin ve diğer Semitik kökenli dinlerin, totemistik, putlara dayanan bir kökeni olduğu teorisinin tamamen geçersiz olduğu bugün anlaşılmış durumda. Axel W. Persson da “Tarih Öncesi Yunan” isimli eserinde şöyle demiş: (1) İlk baştan beri var olan tek Tanrı inancı, daha sonra Yunan dinsel mitlerinde gördüğümüz sayısız önemli önemsiz tanrısal kişiliklere dönüşmüştür. Benim görüşüme göre bu birçok ilahın varlığı, tek ve bir olan bir Tanrı’yı tanımlayan değişik isimlerin zamanla değişik yorumlanmasına bağlıdır. Antropolog Sir Flinders Petrie de bu konuda şöyle diyor:(2) Eğer ruhlara tapmak tek bir İlah’a tapmaya uzanan bir evrim sürecinin ilk basamağı olsaydı, bu durumda çok tanrılılığın gittikçe tek tanrılılığa evrimleşmesinin kanıtlarını görmemiz gerekirdi… Bunun tam aksine tek görebildiğimiz, tek Tanrı inancının her zaman ilk basamak olduğudur…[….] Çok tanrı inancını ilk oluşumuna kadar izleyebildiğimiz her yerde, bunun tek Tanrı inancının bir çeşitlemesi olduğunu görüyoruz Alıntılar çoğaltılabilir. Yani bakışa göre değişir diyorum ama darwinist önkabulden sıyrılıp nesnel bir bakış yaptığımızda da “İlahi mesajın sürekliliği ve zamanla bozuldukça tekrarlandığı” yaklaşımının daha makul olduğu ve delillerle de desteklendiği görülüyor. Hele ki çıkışından 300 yıl sonra tanınamayacak hale getirilen Hristiyanlık örneği de elimizde iken bu bozulmanın mümkün olduğunu ve çeşitli öğretilerdeki sembolizmanın ifade ettiği anlamların benzerliği sebebiyle tek ilahi köken yaklaşımının çok daha makul olduğunu düşünüyorum. Tüm kadim medeniyetlerin ve toplulukların dini öğretilerinde ilahi bir öz vardır. Büyük İslam düşünürü Seyyid Hüseyin Nasr bunu “gelenek” olarak tanımlar. Bu, bizim bildiğimiz anlamda gelenek-görenek tanımlamasına giren adet, alışkanlık, düşünce ya da motiflrin kuşaktan kuşağa aktarımı değildir. Nasr bu “gelenek” ile, Vahy-i İlahi ile inen, kaynaklarında İlahi olanın özel bir tezahürü ile özdeşleşen ilkeler dizisini ve bu ilkelerin farklı zaman birimlerinde ve farklı koşullarda belli bir insan topluluğuna indirilmesini ve uygulanmasını kasteder. (3) Hulasa edersek; bu İlahi mesaj farklı zamanlarda farklı toplumlara farklı form ve sembolizma ile indirilmiş olabilir. Bir Hindunun dini ritueli, bir Brahmanın ahlakî yaklaşımı bu mesajın o toplum için sembolize edilmiş bir tezahürü olabilir. Bu konuda S.Hüseyin Nasr ve ünlü metafizikçi düşünürlerden Frithjof Schuon, Rene Guenon, A.K. Coomaraswamy gibi isimlerin eserlerine bakılabilir. Bu eserlerde İlahi mesajın insanlığın başlangıcından bu yana iletildiği zamana ve muhatap topluma göre nasıl bir sembolizmayı kullandığına, farklı farklı formlara büründüğüne ilişkin kıyaslamalara ve mesajın tekliğine ilişkin çok detaylı bilgiler var. (4) Bu yaklaşım her ne kadar bulgularla desteklense de nihayetinde a priori kabule dayanır; ve adı üstünde bu bir inançtır. Müslümanlar ya da diğer inanç sahipleri bunun bir “inanç” olduğunu kabul ederler. Bu teolojik olarak da kendi inanç sistemleri içinde tutarlı bir bakıştır. Fakat yukarıda da bahsettiğim nedenlerle dinlerin evrimi gibi bir düşünce de inançtır. Eldeki bulgular her ne kadar çoğunlukla aksini gösterse de, yine de bu düşünce lehine yorumlanabilir. Fakat bu yorum da -tıpkı İlahi köken yaklaşımında da olduğu gibi- önkabule dayanır, mevcut bilimsellik kriterlerine göre de bilimsel bir bakış değildir. O halde “dinlerin evrimi” gibi bir yaklaşımı, bilimsel gerçeklik gibi sunmaya çabalayan bazı materyalistlerin daha dikkatli konuşması gerekiyor. Notlar: (1) Tarihi Yalan:Kabataş Devri. Alıntı: Axel Persson, The Religion of Greece in Prehistoric Times, University of California Press (2) Age. Alıntı: Sir Flinders Petrie, The Religion of Ancient Egypt, Constable, London (3) İslam and The Plinght of Modern Man. S. Huseyn Nasr. (4) Bununla ilişkili bir yazım için bakınız: Kaynak: www.derindusunce.org

http://www.biyologlar.com/dinlerin-evrimi-mi-evrimin-dini-mi

Sinir Sistemi <b class=red>Nedir</b>, Nasıl Çalışır, Yapısı Nelerden Oluşur ?

Sinir Sistemi Nedir, Nasıl Çalışır, Yapısı Nelerden Oluşur ?

Sinir sistemi veya sinir ağı, canlılarların içsel ve dışsal çevresini algılamasına yol açan, bilgi elde eden ve elde edilen bilgiyi işleyen, vücut içerisinde hücreler ağı sayesinde sinyallerin farklı bölgelere iletimini sağlayan, organların, kasların aktivitelerini düzenleyen bir organ sistemidir. Sinir sistemi iki bölümden oluşur. Merkezi sinir sistemi (MSS) ve çevresel sinir sistemi (ÇSS). MSS, beyin ve omurilikten

http://www.biyologlar.com/sinir-sistemi-nedir-nasil-calisir-yapisi-nelerden-olusur-

Patolojinin Tarihçesi

İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. Giovanni Baptista Morgagni (1682-1771), Valsalva'nın öğrencisidir. İtalya'da Padua Üniversitesinde 50 yıldan uzun süre görev yapmış ünlü bir hekim olan Morgagni, 1761 yılında, 80 yaşındayken De Sedibus adlı kitabını yayımlamış ve burada 700'den fazla olguda klinik bulgular ile otopsi bulgularını karşılaştırmıştır. Tanımladıkları arasında; mitral darlığı, endokardit, angina pektoris, siroz, spina bifida, patent duktus arteriosus, foramen ovale bulunmaktadır. Kolposkobu bulan, parasentezi ilk gerçekleştiren hekimdir. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Rudolph Ludwig Karl Virchow (1821-1902), günümüzdeki anlamı ile patolojinin babası olarak kabul edilir. Mikroskobun hastalıkların tanısında etkin biçimde kullanımını savunmuştur. Döneminin pek çok ünlü hekimi (Rokitansky dahil), mikroskobik incelemenin önemine inanmıyor ve bu yaklaşımı küçümsüyorlardı. Virchow; tromboz, atrofi, hiperplazi ve iskemi terimlerini ilk kez kullanmış, pek çok hastalığı bu gün bildiğimiz biçimleriyle ilk kez tanımlamıştır. Yaşadığı dönem için devrim niteliğinde olan -hemen tümünde haklı olduğu zamanla anlaşılan- görüşleri nedeniyle zorluklarla karşılaşmıştır. Daha 30 yaşına gelmeden fibrinojen, lökositoz ve lökemiyi tanımlamış; yerel lezyonlara cerrahi girişim yapılmasının anlamsız olduğunu düşünenlere karşı çıkmıştır. İnfarktüs, amiloid, kalsifikasyon ilk kez Virchow tarafından doğru biçimde açıklanmıştır. Lösin ve tirozin amino asitleri Virchow tarafından tanımlanmıştır. Her hücrenin bir hücreden meydana gelmesi gerektiğini (omnis cellula a cellula) yüksek sesle ve inatla söyleyen ilk doktordur. (Bu görüş, o zamanlar çoğunluk tarafından gülünç bulunuyordu). Art arda verdiği 20 konferansın ardından 1858'de yayımlanan Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji kitabı, hastalıkların mikroskobik incelenmesi yaklaşımının temeli olarak kabul edilir. Anatomik patolojinin tıp fakültelerinde zorunlu bir ders olarak kabul edilmesi de Virchow sayesindedir. Politik radikalliği ile de bilinen Virchow'un 2000 kadar makalesi ve kitabı bulunmaktadır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Patolog, aşağıda ayrıntılı olarak sıralanan işlevleri yerine getirirken özel laboratuar yöntemlerinden sürekli olarak yararlanır; bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır. Tanı: Patologdan en çok beklenen, hastalıklı olduğu düşünülen doku ve organları inceleyerek hastaya belli bir hastalık tanısı koyması veya konulmuş olan bir tanının doğruluğunu değerlendirmesidir. Doku ve organlar vücuttan değişik biçimlerde alınır ve patoloğun incelemesine sunulurlar. (Örnekler: Lenf düğümü biyopsisi ile lenfoma adlı kötü huylu tümörün tanısının konulması; endoskobik yolla alınmış bir mide biyopsisi örneğinde gastrit mi, peptik ülser mi, kanser mi bulunduğunun saptanması...) Tedavi: Patolog, koyduğu tanıyla tedavinin biçimini belirleyebilir.(Örnek: Lenf düğümü biyopsisinde tüberküloz tanısı anti tüberküloz ilaçların, lenfoma tanısı ise antineoplastik ilaçların kullanılacağını belirler). Gittikçe daha yaygınlaşan bir diğer işlev ise, dokuda tedavinin yol açtığı değişikliklerin incelenmesiyle tedavinin etkinlik derecesinin belirlenmesidir. Bu uygulama, hastalığın gidişi konusunda tahmin yapmaya da olanak verir. (Örnek: Kemoterapiden sonra osteosarkoma dokusunun tümüyle ortadan kalkmış olması hastanın kullanılmış olan ilaçlardan yararlandığını gösteren bir bulgudur). Transplantasyon uygulamalarının yaygınlaşmasıyla, patologların transplante edilecek organı transplantasyondan önce ve sonra incelemeleri istenmektedir. Bir organın transplantasyona uygun olup olmadığı hemen yalnızca patolojik inceleme ile belirlenebilir. Fonksiyonları bozulmaya yüz tutan transplante bir organdaki sorunlar da patolojik inceleme yapılmadan tam olarak anlaşılamaz. Bulunacak çözüm yolları patolojik inceleme ile belirlenir. Patologların hastaların tedavisindeki rolü, her zaman dolaylıdır. Tarama: Görülme sıklığı yüksek olan hastalıkların belirgin bozukluklara yol açmadan saptanabilmesi için, risk altındaki kişilerin olabildiğince kolay ve ucuz yollarla incelenmesi anlamında kullanılır. Patoloji pratiğinde bu, ya kendiliğinden dökülen veya küçük bir travmayla dökülmesi sağlanabilen hücrelerin (doku veya organ değil !) incelenmesiyle (sitolojik inceleme) yapılır. (Örnek: Yakınması olmayan orta yaşlı bir kadın hastada tarama amacıyla yapılan vaginal yaymada normal olmayan hücrelerin saptanması ve çok kötü gidişli olabilecek bir tümörün henüz gelişme sürecindeyken yok edilebilmesinin sağlanması). Öte yandan, sitolojik yöntemlerin önemli bir kısmı "tarama" değil "tanı" amaçlıdır. Bunların kullanım alanı hızla genişlemektedir. Dünyanın pek çok ülkesinde olduğu gibi, ülkemizde de böyle sitolojik incelemeler patoloji uzmanları tarafından yapılmaktadır. Otopsi: Tıp eğitiminin en önemli öğelerinden biri olan otopsi, öğrencilere ve doktorlara derslerin ve kitapların sağlayabileceğinin çok ötesinde yarar sağlayan bir eğitim yöntemidir. Tıp teknolojisinin ve buna dayalı tanı/tedavi yöntemlerinin çok gelişmiş olduğu ülkelerde bile hastanede ölen hastaların otopsilerinde, hasta yaşarken tanısı konulamamış pek çok hastalık saptanmaktadır. Bunların bazıları, hastanın tedavi biçiminin değiştirilmesini gerektirebilecek niteliktedir. (Örnek: Metabolik hastalığı olduğu düşünülen bir olguda kötü huylu tümör saptanması). Kitap sayfalarında kalan veya ezberlenen bilgilerin morfolojik karşılıklarının görülmesi, edinilen bilgilerin özümlenmesini sağlamaktadır. Bu nedenle, bir doktorun otopsi eğitimi olmadan yetişmesi bağışlanamaz bir eksikliktir. Çoğu patoloji anabilim Dalında yılda 1-2 tıbbi otopsi bile yapılmamaktadır. Bu sayı kabul edilemeyecek kadar düşüktür. Patolojik yöntem ve yaklaşımlar Patolojinin bir tıp dalı olarak yöntemleri ve işleyişi diğer dallardan kısmen farklıdır. Klinik bir dal olmamasına rağmen, patoloji, çoğu kez klinik çalışmaların ya içinde yer alır veya çalışmalarından elde ettiği verilerle hastaların tanı ve tedavilerine doğrudan katkılarda bulunur. Patolojinin çalışma alanı hastalıklı organ ve dokuların incelenmesiyle sınırlı değildir. Deneysel, teorik ve teknik pek çok konuda patolojik çalışmalar yapılmaktadır. Patolojik inceleme ve çalışmalar ancak yeterli anatomi, histoloji ve fizyoloji bilgisine sahip kişilerce yürütülebilir. Patolog, ilgili uzmanların bulunabildiği akademik ortamlar dışında, çoğu kez bu konulardaki klinik soruları en kolay cevaplayabilecek kişi konumundadır. Bir hastanenin işleyişi içinde patoloji bölümünün katkısı; hastalardan tarama veya tanı amacıyla hücre/doku örneklerinin alınmasıyla veya organların çıkarılmasıyla başlar. Bu örneklerin önce dış görünümleri (makroskobi) değerlendirilir ve mikroskop altında incelenmesi gerekli görülen kısımlar seçilerek ayrılır. Patolojik incelemenin en kritik ve en çok deneyim gerektiren aşamasının bu olduğu kabul edilebilir. Patolojiyi en iyi yansıttığı düşünülen kısımlar örneklenip, çok ince (4-5 mikron kalınlıkta) kesitlerin alınabilmesine olanak verecek işlemlerden (doku takibi) geçirilir ve hazırlanan kesitler rutin olarak "hematoksilen-eosin" yöntemiyle boyanır. (Hücre çekirdekleri mavi, sitoplazmalar kırmızı boyanır). Daha sonra, bu boyanmış kesitlerin ışık mikroskobunda incelenmesiyle morfolojik bir değerlendirme yapılır. Bu değerlendirmenin birtakım kuralları olmakla birlikte, temelde, morfolojik incelemeler subjektiftir. Bu subjektifliğin asıl nedeni, canlı organizmaların özellikleri için 'normal'in kesin sınırlı olarak tanımlanamamasıdır. (Normal saç rengi nedir? Normal boy kaç santimetredir?) Dolayısıyla; belli bir organ veya hücrenin görünümünün normalden ne kadar sapmış olduğu sorusunun yanıtı, kaçınılmaz olarak kişisel ve subjektiftir. Patolojik incelemenin sonuçta subjektif olması, onun kuralları ve sistematiği olmasına engel değildir. Tıbbi bir değerlendirmenin işe yararlılığının ve güvenilirliğinin ölçüsü, hastanın tanı ve tedavisine yapılan katkıdır. Bir dokudaki bütün atomların adlarını ve miktarlarını objektif, bilimsel (ve pahalı!) yollarla saptamak mümkündür ancak, bunun bir lenfoma olgusunun tanı ve tedavisine katkısı yoktur! Subjektif morfolojik değerlendirme, patoloğun tanıya ulaşmada kullandığı yollardan yalnızca birisidir. Patolog, yeri geldiğinde biyokimyasal, farmakolojik, mikrobiyolojik, genetik, moleküler biyolojik verileri kullanabilir; özel yöntem ve düzeneklerin yardımıyla dokular üzerinde nitel (kalitatif ) veya nicel (kantitatif) incelemeler yapabilir. Bunlar arasında histokimya, immunohistokimya, in situ hibridizasyon, DNA sitometrisi, digital görüntü analizi gibi yöntemler sayılabilir. Bu yöntemlerin hemen tümü, GATA Patoloji Anabilim Dalı'nda da kullanılmaktadır. Ülkemizde patolojik değerlendirmelerin objektif, ölçülebilir, yinelenebilir biçimde yapılmasına olanak veren ilk Nicel Patoloji Laboratuvarı Gülhane'dedir. Patoloğun en sık kullandığı düzenek ışık mikroskobudur. Işık mikroskobu ile sağlanabilecek büyültme yaklaşık x 1000 ile sınırlıdır ve görünür ışığın dalga boyundan kaynaklanan bu sınırın teknolojik ilerleme ile aşılması mümkün değildir. Laser, X ışını, ultrasound kullanarak veya digital yöntemlerle değişik mikroskoplar yapılmakta ve bunların kendilerine özgü kullanım alanları bulunmaktadır. Günümüzde, tek tek atomların görüntülenmesine izin veren özel mikroskoplar (scanning tunneling microscope) bile geliştirilmiştir. 'Elektronmikroskop' ise, temel olarak "tarayıcı" (scanning) ve "geçişimsel" (transmission) adlı iki biçimde kullanılmaktadır. Bunların ilki, çok çarpıcı "üç boyutlu" görüntüler sağlayabilmesine rağmen, dar bir kullanım alanına sahiptir ve sık görülen hastalıkların tanısında hemen hemen hiç rolü yoktur. "Transmission" elektronmikroskopi ise daha çok araştırma amacıyla kullanılmakta, nadiren tanısal açıdan da gerekli olabilmektedir. Bu mikroskopların büyültme gücü ışık mikroskobundan yüzlerce kere fazladır. Ancak, büyültme ne kadar fazlaysa tanının o kadar kolay ve doğru olacağını düşünmek yanlış olur. Her inceleme yönteminin olduğu gibi, elektron mikroskobinin de kendine özgü bir kullanım alanı vardır. Önünüzdeki sayfayı okumak için bir dürbün veya teleskop kullanmaya çalışırsanız, elektron mikroskobunun ne zaman işe yarayabileceği konusunda sağlıklı bir görüşe ulaşabilirsiniz! Çok pahalı ve emek-yoğun olan elektronmikroskopla rın yerine (onlardan çok daha ucuz olmayan!) "lazer taramalı konfokal mikroskoplar" da kullanılmaya başlanmıştır. Işık kaynağı lazer olan bu mikroskoplarda büyültme elektronmikroskopla rdakine yakındır. Lazer taramalı konfokal mikroskopları özel yapan, kesit kalınlığından etkilenmemeleri, daha az emek-yoğun olmaları ve sağladıkları verilerin tümüyle digital olmasıdır. Bu sayede hiçbir boya maddesi kullanmadan hücre organellerini değişik renklerde göstermek ve üç boyutlu görüntüler elde etmek mümkün olmaktadır. Bu mikroskopların henüz rutin patolojik incelemede yeri yoktur. Patoloji; doku kültürü, in situ hibridizasyon, immunohistokimya, akım sitometrisi, digital görüntü analizi gibi daha pek çok yöntemi tanısal veya araştırma amaçlı olarak kullanır. Bunların kullanımı gittikçe artmakta ve patolojik incelemede morfolojinin rolü yıldan yıla azalmaktadır. Bu, Virchow ekolünün yerini artık moleküler yaklaşımların almakta olduğunun göstergesidir; buna göre, hastalıkların değerlendirileceği temel birimler artık "hücre altı" yapılardır... Patolog, yukarıdaki yöntemlerden biri veya birkaçı ile yaptığı incelemesinin sonunda bir rapor düzenler. Bu rapor yalnızca bir tanı içerebileceği gibi, bir ayırıcı tanı veya öneriler listesi biçiminde de olabilir. Patolog, tıbbi konsültasyon ve danışma mekanizmasının bir parçasıdır; bu nedenle, bir hasta ile ilgili düşüncesi sorulduğunda (kendisine organ veya doku örneği gönderildiğinde) bütün klinik bulgular ve değerlendirmelerden haberdar edilmelidir. Patologdan herhangi bir hastanın herhangi bir yerinden alınmış herhangi bir örneğe tanı koymasını istemek, bir doktorun ellerini, gözlerini bağlayıp kulaklarını tıkayarak bir hastaya tanı koymasını ve onu tedavi etmesini istemekten farksızdır. Patolojik incelemenin en çok bilinen yolu 'sorular zinciri'dir. Bu yol, özellikle patolojik inceleme yöntemleri konusunda kısıtlı bilgi ve deneyimi olanlar tarafından izlenir. Deneyim arttıkça, tanı adeta otomatikleşir ve tanılar milisaniyelerle belirtilen süreler içinde konulabilir. Sorular zincirine (basitleştirilmiş) bir örnek: Sıra Soru Karşılık 1 Bu bir lenf düğümü mü? Evet 2 Bu görünüm normal mi? Hayır 3 Burada olmaması gereken türde hücreler var mı? Hayır 4 Hücrelerin birbirine oranı değişmiş mi? Evet 5 Hücreler atipik mi? Evet 6 Bu bir lenfoma mı? Evet Yukarıdaki sıra ile yapılan bir akıl yürütme sonucunda ulaşılan tanı lenfoma olacaktır. Yukarıdaki tabloda anlatılan, öğrencilerin laboratuar çalışmaları sırasında inceleyecekleri bütün hematoksilen-eosin boyalı kesitler (preparatlar) karşısında izlemeleri gereken yoldur. Örnek: Bu appendiks vermiformis mi ? 'evet' ; mukozada ülserasyon var mı? 'evet' ; düz kas tabakasında nötrofil lökosit infiltrasyonu görülüyor mu? 'evet' ; tanı: akut appendisit. Deneyimli patologlar sorular zincirine ek olarak "patern (örnek, model, biçim) tanıma" yöntemini de (çoğu kez farkında olmadan) kullanırlar. Bu yöntem, patoloğun mikroskoptaki görüntü ile karşılaştığı anda lezyona tanı koyması biçiminde özetlenebilir. Saptanan görüntü ile o patoloğun daha önce karşılaştığı ve adını bildiği bir görüntü arasında yeterli derecede benzerlik varsa, bu süreç çok kısa süre içinde tanı ile sonlanır. "Cognitive" (bilişsel) psikolojinin alanına giren bu çok karmaşık ve ilgi çekici sürecin ayrıntıları bilinmemektedir. Rutin histopatolojik uygulamalar Tespit (fiksasyon) Dokular insan vücudundan ayrıldıkları anda canlıdırlar ve taşıdıkları hastalığın (varsa) morfolojik bulgularını sergilerler. Tespit, dokuların o andaki görünümünün ısı, nem ve enzimlerin etkisiyle değişmesini, bozulmasını önlemek amacıyla yapılır. Tespit edilmeyen dokulardaki hücreler bir süre sonra bakterilerin ve içerdikleri sindirici enzimlerin etkisiyle otolize uğrar, morfolojik özelliklerini yitirir ve tanısal amaçlı incelemelerde kullanılamayacak duruma gelirler. Tespit işlemi için genellikle özel sıvılar kullanılır. Doku ve organlar kendi hacimlerinin 10-20 katı kadar tespit sıvısı içine bırakılırlar. Patolojide rutin amaçlar için en yaygın olarak kullanılan tespit sıvısı formalindir. Bu, seyreltik bir formaldehit (H-CHO) solüsyonudur. Tespit işlemi dokunun türü ve kalınlığına göre birkaç saat (karaciğer iğne biyopsisi) ile birkaç hafta (beyin) arasında değişen sürelerde olabilir. Yüzde seksenlik etil alkol, Bouin solüsyonu, Zenker solüsyonu, B5 solüsyonu, Carnoy solüsyonu ve glutaraldehit gibi başka tespit sıvıları da yeri geldikçe kullanılabilir. Sitolojik örneklerin havada kurutulmaları veya ısıtılmaları da tespit yöntemleri arasındadır. Bu tür tespit yöntemlerine daha çok hematolojik ve mikrobiyolojik boyalar kullanılacaksa başvurulur. Takip (doku işleme) Tespitten sonraki aşamaların hemen hepsi otomatik makinelerde yapılabilir. İlk aşama, çoğunluğu sudan oluşan tespit sıvısının ve dokunun kendisinin başlangıçta içerdikleri suyun uzaklaştırılmasıdır (dehidratasyon). Bu, dokunun sertleşmesine yardım eder. Sert dokuların sonraki aşamalarda çok ince kesilebilmesi mümkün olur. (Bayat ekmekle taze ekmeğin kesilmeleri arasındaki fark gibi). Alkol, dokunun kırılganlığını artıran bir maddedir. Onun da ksilol yardımıyla ortamdan uzaklaştırılması gerekir. Daha sonra da, dokuda başlangıçta su içeren, sonra sırasıyla alkolle ve ksilolle infiltre olan aralıklara ısıtılarak sıvılaştırılmış parafinin girmesi sağlanır. Kullanılan parafin oda sıcaklığında katılaşır. Takibe alınan bütün örnekler numaralanır. Bu numaralar sonraki bütün aşamalarda dokuların üzerinde, bloklarda, preparatlarda ve raporlarda yer alır. Takip işlemleri, oda sıcaklığı ile 60 C arasındaki sıcaklıklarda yapılır. Negatif basınç (vakum) uygulanması ile, dokuların daha iyi ve daha kısa sürede işlenmeleri sağlanabilir. Ayrıca, özel mikrodalga fırınlar kullanılarak, normal olarak 8-16 saat süren bu işlemlerin süresini belirgin olarak kısaltmak ve 2 saatin altına indirmek mümkündür. Otomatik doku işleme aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Formalin (3 saat), alkoller (4 saat), aseton (30 dakika), ksilol (1,5 saat), parafin (2 saat). Program, akşam başlatılmakta; sabah, dokular bloklanmaya hazır olmaktaBloklama Parafinle infiltre edilmiş dokular, dikdörtgen prizma biçimindeki kalıplara konulur ve üzerlerine ısıtılmış parafinin dökülüp soğutulmasıyla bloklar elde edilir. Bu durumdaki dokuların çok ince kesilebilmeleri mümkün olu Kesme Parafin bloklar; "mikrotom" adlı aygıt ile istenilen kalınlıkta (genellikle 4-5 mikron) kesilir, kesitler ılık su banyosuna, oradan da lamlar üzerine alınırlar. Bu kesitler önce ısıtılıp sonra bir solvent olan ksilole konularak deparafinize edilir, daha sonra da giderek daha sulu hale gelen alkollerden geçirilerek hidrate edilir ve istenilen boyanın uygulanmasına geçilir. Sayfa başına dön! Boyama Rutin olarak kullanılan boya hematoksilen (mavi) ve eosindir (kırmızı). Kısaca "HE" veya "H&E" denilir. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program şöyledir: Ksiloller (6 dakika), alkoller (3 dakika), su (2 dakika), hematoksilen (6 dakika), su (1 dakika), asit-alkol (10 saniye), su (1 dakika), amonyak (5 saniye), su (1 dakika), eozin (45 saniye), su (1 dakika), alkoller (1 dakika), ksiloller (5 dakika). "Frozen section" ve intraoperatif konsültasyon Yukarıdaki rutin histopatolojik işlemlerin sağlıklı olarak yapılabilmesi için en az 10-15 saatlik bir süreye (mikrodalgalı yöntemler dışında) gereksinme vardır. Bu da, rutin patolojik incelemeye alınan bir örneğin tanısının en iyi olasılıkla ancak bir gün sonra verilebileceği anlamına gelir. Oysa, ameliyat sırasında hastada ameliyatın gidişini değiştirebilecek bir durumla karşılaşıldığında, dakikalar içinde verilecek bir tanıya gereksinme duyulabilir. Hastanın anestezi alma süresini uzatmamaya ve yeniden ameliyata alınmasına engel olmaya yönelik bir uygulama olarak "frozen section"a (dondurarak kesme) büyük hastanelerde sıkça başvurulur. Bu yöntem, dokuların istenilen incelikte kesilebilmeleri için dondurulmaları temeline dayanır. Özel bir aygıt ("cryotome") yardımıyla dokular -20 C sıcaklıkta kesilir ve hazırlanan kesitler hızlandırılmış yöntemle boyanırlar. Patolog, bu kesitleri inceleyerek vardığı sonucu ameliyatı yapan cerraha bildirir. Bütün bu işlemler, ameliyathaneye komşu bir patoloji bölümünde yapıldığında, 10-15 dakika kadar sürer. Bazı patoloji bölümlerinin ameliyathane içinde bu amaçla çalışan bir birimi bulunmaktadır. Dondurarak kesme yöntemiyle hazırlanan kesitlerin değerlendirilmesi güçtür ve bu işlem ancak deneyimli patologlar tarafından yapılabilir. Cerrahlar patologlardan "intraoperatif histolojik inceleme" istediklerinde, bu isteklerini mümkünse operasyondan önce, değilse operasyon sırasında ve hasta hakkındaki tüm önemli bilgileri sunarak iletmelidirler. İletişim eksikliği, intraoperatif histolojik incelemeden istenilen verimin alınmasını engeller ve bu uygulamanın hastaya zarar vermesine bile yol açabilir. Sitolojik yöntemler Dokuların insan vücudundan hiç can yakmadan alınması mümkün değil gibidir. Hastalar, seçme şansları olduğunda, tanılarının canları yakılmadan konulmasını tercih ederler. Gelişmiş ülkelerde hastaların bilinçlenmesine ve tıp teknolojisinin gelişmesine paralel olarak, doku almadan da morfolojik değerlendirme yapılabilmesini sağlayan yöntemler hızla yaygınlaşmaktadır. Romanyalı Dr. Aurel Babes tarafından 1927'de ilk kez bildirilen, 1950'lerde George Papanicolaou tarafından yaygınlaştırılan 'servikovaginal yayma' yöntemiyle, uterus boynundan (cervix uteri) kendiliğinden dökülen hücrelerin morfolojik olarak incelenmesiyle, bir kanserin daha klinik bulgu vermeden yakalanabileceği ilk kez ve kesin olarak gösterilmiştir. Bu yöntemin uygulanması sayesinde, bugün kadınların serviks kanserinden ölmelerine seyrek rastlanmakta ve çoğu kanser daha oluşma aşamasındayken tam olarak çıkarılabilmektedir. Kapladıkları yüzeyden dökülen hücrelerin sitolojik olarak incelenmelerine 'eksfolyatif sitoloji' denilmektedir. (Servikovaginal yayma ve idrar sitolojisi gibi). Ayrıca, bu yöntemle birlikte veya ondan ayrı olarak, deri ve mukozayı kazıyarak hücre elde etmek mümkündür (kazıma yöntemi). Gittikçe yaygınlaşmakta olan 'aspirasyon sitolojisi' yöntemi ise, ulaşabileceği doku ve organların hemen hemen sınırsız olmasıyla diğer bütün sitolojik yöntemlerden ayrılmaktadır. Bu yöntemle, palpe edilebilen bütün organlardaki lezyonlara anesteziye ve özel aletlere gerek duyulmadan ince (dar çaplı) bir enjeksiyon iğnesiyle girilmekte ve aspire edilen hücreler lamlara yayılmaktadır. Derindeki organlara da ultrasound veya bilgisayarlı tomografi gibi görüntüleme yöntemleri eşliğinde girilebilmektedir. Elde edilen hücrelerin değerlendirilmesinde, her organ için ayrı bir bilgi birikimine ve deneyime gereksinme vardır. Bu nedenle, yöntemin yaygınlaşmasının önündeki en büyük engel, bu konuda yetişmiş patolog sayısının azlığıdır. Bir sitolojik incelemenin sonucu değişik koşullarda değişik anlamlar taşıyabileceği için, bu yöntemi uygulamak isteyen klinik doktorlarının patolog ile yakın ilişkide olmaları zorunludur. Dünyada ve ülkemizde pek çok birimde, yüzeysel lezyonların aspirasyonu da patolog tarafından yapılmaktadır. Bu yolla; örneklerin daha iyi alınması, gerekirse aspirasyonun hemen tekrarlanabilmesi ve tanının hem daha çabuk hem daha doğru konulması mümkün olmaktadır. Otomatik boyama aygıtlarında yaygın olarak uygulanmakta olan program (Papanicolaou boyası) şöyledir: Hematoksilen (8 dakika), su (3 dakika), alkol (1 dakika), orange-G (5 dakika), su (1 dakika), alkol (15 saniye), EA-50 (5 dakika), su (2 dakika), alkoller (2 dakika), ksiloller (6 dakika). Sayfa başına dön! Sonuç Patoloji; anatomi ve fizyolojide öğrenilen bilgilere, hastalıklı organların çıplak gözle veya mikroskop altındaki anormal görünüşlerini ekleyerek hastalıkların daha kolay anlaşılmasını sağlar. Görünüşlerin karar vermeye çok yardımcı olduğu alanlarda, patolojik incelemenin tanıya ve uygun tedavi yönteminin belirlenmesine katkısı da çok büyüktür. Günümüzde, tümörlerin tanısı başta olmak üzere, pek çok hastalığın kesin tanısı için patolojik inceleme gereklidir.

http://www.biyologlar.com/patolojinin-tarihcesi

110 Soruda Yaratılış ve Evrim Tartışması

Evrim Teorisi ve Yaratılış inancı arasındaki ideolojik kavganın sorularına bu kitapta cevap bulabileceksiniz... Klavyenin tuşlarına saniyede bir defa rast gele basan birinin, yalnızca bir defa `evrim hipotezi` yazabilmesi için yaklaşık 317 milyar yıl uğraşması gerekir... ` diyor Prof. Dr. Arif Sarsılmaz ve bugüne dek bilimselliği tartışılan evrim karşıtı eserlerin tersine evrim dayatmasını bilimsel verilerle sorgulayarak bilime rağmen evrim teroisinin doğruluğunu savunmanın yobazca bir inanç dayatması olduğunu işaret ediyor. Bu kitap niçin yazıldı? Dünyadaki ilmî gelişmeleri yakından takip edenlerin bilebileceği gibi, evrim hipotezi karşısındaki düşünce ve akımlar, bilhassa son 20 yıldır giderek artan bir hızla yükseliştedir. ABD başta olmak üzere birçok ülkede ateist ve materyalist anlayışın elinde, biyolojik vasfından çok ideolojik bir hususiyet kazanan evrim düşüncesine karşı, seslerini yükseltmeye başlayan bilim adamları, vakıflar ve dernekler vasıtasıyla çeşitli yayınlar yapmaktadırlar. Materyalist ve pozitivist bir anlayışla dogma hâline getirilerek insanlara dayatılan evrim teorisinin en katı şekilde okutulduğu ülkemizde bu yüzden yıllarca mağdur edilen öğretim üyeleri tanıyorum. Derslerinde evrimi sorguladığı için meslekten atılanı biliyorum. Buna rağmen sanki mağdur edilenler kendileriymiş gibi `evrim daha fazla okutulsun` diye, yavuz hırsızın ev sahibini bastırmasına benzer şekilde imza kampanyası açanlara karşıbir şeyler söylemenin gerektiğini düşündüm. Otuz yıldan beri çeşitli vesilelerle yazmaya niyetlenip derlediğim notlarımı geniş bir kitap hâlinde sunma düşüncesindeydim. Ancak talebelerimden gelen aşırı talepler, bilhassa lise talebelerinin zaman zaman üniversiteye kadar gelerek sorular sormaları, çeşitli yerlerde konferans tarzında konuşma isteklerine yetişememem gibi unsurlar, bu şekilde bir soru-cevap tekniği ile temel bilgilerin acil olarak yazılması gerektiğini hissettirdi. Evrim hususunda kendi talebeliğimden beri yaşadığım gel-gitlerimin, `sıcak yarada kezzap, beyin zarında sülük` olduğu yıllarda, hakikate giden yolda elimden tutan, îmân-ı tahkiki ile müşerref olmamıza vesile olduğu gibi, her gün yeni bir güzellikle tabiat kitabına bakışımızı tashih eden Muhterem Fethullah Gülen Hocaefendi`nin devamlı olarak üzerinde durduğu bu mühim meselenin daha fazla sürüncemede kalmaması için derhal yazma faaliyetimi hızlandırdım. Bugüne kadar nasıl olsa piyasada bu konuda boşluk yok, birileri nasıl olsa yazıyorlar ve insanlara faydalı oluyorlar diye düşünüyordum. Ancak meslekten ve bizzat bu mevzuyu ders olarak okutmuş birinin yazacağı kitabın getireceği bakış açısının çok daha tesirli olacağını söyleyen arkadaşlarımın istişarî tekliflerine uyarak, yazdım. Biyolojinin temel taşı olarak görülen ve bir dünya görüşü olarak in¬sanlara dayatılan evrim konusunda yazılacak bir kitapta ister istemez bütün fen dallarından hatta sosyoloji ve ekonomi gibi sosyal dallardan bile bahsetmek mecburiyetinde kalmanız kaçınılmazdır. Çok geniş çaplı, bir kitabın ele alınması için birlikte çalıştığımız arkadaşların da kabulüyle daha fazla beklemeden acil olan kısmın hemen çıkarılması düşüncesi bu kitabı ortaya çıkardı. Bununla beraber farklı ilim dallarındaki arkadaşların ortak çalışması olarak sunulacak eser de inşallah tamamlanmak üzeredir. Kitapta ele alınan sorular, değişik zamanlarda karşı karşıya kaldığım hususlardır. Derslerimi hiçbir zaman tek taraflı vermedim ve talebelerimi notla korkutarak, onlara baskı ile hiçbir düşünceyi empoze etme yoluna gitmedim. Çünkü bu yolun çıkmaz olduğunu biliyordum. Ders esnasında şahsıma tevcih edilen sorular karşısında hep talebeliğim sırasında, evrim fırtınası olanca şiddetiyle eserken, sadece merak için sorduğumuz sâfiyâne sorularımızın bile `Sus! Böyle soru mu olur? Evrim artık kesin bir kanundur, ispatlanmıştır, hangi yobazdan öğrendiniz bu soruları?` denerek cevapsız bırakılduğı devirler aklıma gelmiştir. Benzer bir basitliği ve `bilim yobazlığını` kendime yediremediğim için ne kadar saçma olursa olsun talebelerimin sorularını dinledim ve bilebildiğim kadarıyla da cevap verdim. Fıtratımda olmadığı hâlde bu yolu gösteren Muhterem Hocamın hoşgörü telkinlerinin de hep faydasını gördüm. Neticesinde derslerimi dinleyen talebelerim arasındaki ateistler bile gelip takdir ettiler ve şer odaklarının hakkımda kurdukları tuzakları haber verdiler. Kandırdıkları ateist namzedi birkaç öğrenciye teyp verip dersime soktular; çünkü benim objektif bir ders anlattığıma inanmıyorlardı. Fakat bütün planları Allah`ın (c.c.) izniyle akim kaldı. Çünkü aleyhimde konuşacak talebe bulamadılar. Ancak isimsiz mektuplarla YÖK`e ihbarda bulundular. Bütün bunlar evrimin ne kadar ideolojik bir hâle geldiğinin apaçık bir göstergesi değil mi? İşte, bu yüzden kitabımın alt başlığını `Bitmeyen Bir İdeolojik Kavganın Hikâyesi` koydum. Bu kitapta yazılanlar da bu kavgayı bitiremeyecek, zaten bitmesini de beklememeli, ancak insanları yalan yanlış, dayatma ve korku ile sindirerek ateist bir ideolojiyi bilim adına eğitimin temeline koyma teşebbüslerine karşı da sessiz kalamazdım. Ülkemizde giderek güçlenme yoluna giren demokratik ortamın geliştirdiği akademik hürriyetler, zaman içinde her türlü felsefî ve ideolojik düşüncenin sorgulanmasını da gündeme getirecektir. Başta ABD olmak üzere birçok Batı ülkesinde ister `Evrim` başlığı altında, isterse `Biyoloji Felsefesi` adı altında, biyolojinin laboratuara girmeyen ve tekrarlanabilen deneylerle gösterilemeyen, spekülatif yorumlara da¬yanan iddialarının, giderek yaygınlaşan bir süreç içinde aklı selim sahibi ilim adamlarının tenkit sahasına girmemesi mümkün değildir. Aklını ve beş duyusunu kullanan, kalbinin ve vicdanının sesini duyabilen her ilim adamının kaçamayacağı bazı temel soruların artık ülkemizde de sorulması gerekmektedir. `Bu dünyaya nereden ve nasıl geldik, nereye gideceğiz?` sorusu herhâlde düşünen insanların en çok merak ettiği soruların başında gelir. Semavî dinlerin bildirdiği `Yaratılış` bilgileri dışında insanlığın bu sorusunun sadece birinci kısmına cevap olmak üzere ileri sürülmüş ve dünyayıen çok meşgul etmiş düşüncelerin başında da herhâlde `evrim` hipotezi ilk sırada gelir. Yukarıdaki sorular `düşünen insan` olmanın gereğidir. Bu soruların ortaya çıkmasına sebep, insandaki `merak hissi`dir. Bütün icat ve keşif¬lerin, arkasında yatan itici güç, merak hissinden kaynaklanan araştırma ve inceleme aşkıdır. İçinde bulunduğumuz dünyayı ve kâinatı bu merak hissiyle incelemeye koyulur, bilgiler toplar, bunları akıl ve mantık süz¬gecinden geçirerek değerlendiririz. Bu şekilde elde edilen bilgilerin bir kısmı bizim için çok mühim olmayan, hayatımızda müspet veya menfî bir tesiri görülmeyecek, sadece o mevzuda ihtisas yapanları alâkadar edecek mâlumâtlar olabilir. Mesela, radyo dalgalarının nasıl yayıldığı veya uydu antenlerinin nasıl çalıştığı, bir gıda mühendisi için çok önemli değildir. Aynışekilde bir elektronik mühendisi de gıdalarda üreyen bir bakterinin hangi toksinleri salgıladığını çok merak etmez, ancak gıda zehirlenmesine maruz kalırsa tedavi için hekime gider ve ilaçlarını alır. Ancak insan olan herkesi ilgilendiren, bu dünya`daki varlık sebebimiz, nasıl var olduğumuz ve gelecekte ne olacağımız gibi sorular hiçbir zaman gündemimizden düşmez. Değişik zamanlarda farklışekillerde hep karşımıza çıkan bu sorulara karşı verilen cevapları vicdanımızın derinliklerinden gelen çok kuvvetli bir merciye tasdik ettirerek, akıl ve kalb gibi bütün latifelerimizle bir itminan duygusu bekleriz. Vicdanımızla birlikte, aklımızıve mantığımızı kullanarak bütün bir ruh huzuruna kavuşmamız için yuka¬rıdaki soruların sorulması ve doyurucu cevaplar alınması gereklidir. Müsait vasatını bulamadığı için bu tip mevzulara uzak kalmış ve tahsil görmemiş birisi bu sorulara karşı çok fazla merak duymayabilir, büyük¬lerinden duydukları bilgiler kendisine yetecek kadar bir tatmin hissi hâsıl edebilir. İman ettiği kadar huzur bulur. Dininden şüphe etmez, Allah`ın (c.c.) her şeyi istediği gibi yaratıp yok edebileceğine iman eder ve rahat¬lar. Ancak dünyayı küçük bir köy hâline dönüştüren haberleşme vasıtaları, her türlü ilmî tartışmayı ve soruları en ücra köylere kadar yaygınlaştıran eğitim faaliyetleri, bu tip bir insana rastlama ihtimalimizi azaltmaktadır. Artık her türlü bilgi, yalan veya doğru, başta TV olmak üzere her türlü medya vasıtasıyla insanlara ulaşmaktadır. Tabii bu medya bombardımanıaltında bazı sorularımız cevaplanırken, çok hayatî olan ve dünya görüşü¬müzü şekillendirecek, temel düşünce dinamiklerimizle ilgili pek çok yanlışbilgi ve peşin hükümlü yorumlarla da kafalarımız karıştırılmakta, düşünce dünyalarımız altüst edilmektedir. Bütün dünyayı tesiri altına almış bu medya bombardımanının hasıl ettiği havayla birçok insanın zihin dünyası karışmış, temel inanç dinamikleri sarsılmıştır. Aldatıcı propagandalar tesiriyle zihinlerde oluşturulan `Din ve Bilim`in çatıştığı, insan dahil olmak üzere bütün varlıkların kendi kendine, tesadüfen oluştuğu ve evrimleştiği düşüncesi, dünyayı büyük bir çöküşün eşiğine getirmiştir. İnsanoğlunun dünyaya gelişiyle başlayan teizm-ateizm mücadelesinde `bilim ve teknoloji` gibi iki önemli silah, hâkim materyalist felsefî akımlar öncülüğünde, medyanın da desteği ile ateizm için kullanıl¬maktadır. Ateizmin en temel iddiaları olan maddecilik, tesadüf ve tabiat gibi kavramlar Antik Yunan`dan bugüne hiç değişmedi. Sadece `bilim` ile yaldızlanıp kılık değiştirilerek insanlar aldatılmakta, nesiller iman ve inanç boşluğuna atılmakta, neticede bütün bir cemiyet bu inanç bunalımlarıiçine girerek dünyayı felakete sürükleyecek bir sona doğru koşmaktadır. Biyolojik bir hipotez olduğu hâlde bugün tamamen bir dünya görüşü hâline getirilen ve inanmaları için kitlelere dayatılarak bütün bir toplumu sarsan `evrim düşüncesinin` ne kadar ilmî olup olmadığı, içindeki yalanlar ve gerçekler, yapılan çarpıtmalar ve taraflı yorumlar kitabımızda sırasıyla sorular hâlinde ele alınacaktır. Prof. Dr. Arif SARSILMAZ İŞTE KİTAPTA ELE ALINAN KONU BAŞLIKLARI • YARATILIŞ VE EVRİM TARTIŞMASI NİÇİN İMÂN-İNKÂR VEYA TEİZM-ATEİZM TARTIŞMASINA YOL AÇIYOR? • EVRİM BİR BİLİM Mİ, YOKSA BİR İNANÇ KONUSU MUDUR? • EVRİM BİR DİN GİBİİNANÇ MEVZUU İSE, BİLİM KİTAPLARINA NASIL GİRMİŞ VE NASIL SAVUNULMAKTADIR? • EVRİMİN BU DERECE ÖNE ÇIKARILMASINDA DARWİN`İN ROLÜ NE OLDU? • EVRİMİN TEMEL İDDİALARI NELERDİR? • EVRİM DÜŞÜNCESİ, YAPISI BAKIMINDAN BİR HİPOTEZ Mİ, BİR TEORİ Mİ, YOKSA İSPATLANMIŞ BİR KANUN MUDUR? • EVRİM `BİLİMSEL` BİR TEORİ MİDİR? • EVRİM, BİLİMSEL DEĞİLSE, YERYÜZÜNDEKİ HAYATI NASIL İZAH EDEBİLİRİZ? • HAYATIN ORTAYA ÇIKIŞINI İZAH İÇİN ORTAYA ATILAN BİRİNCİİDDİA HANGİSİDİR? • DARWİN`DEN ÖNCE EVRİM DÜŞÜNCESİNİ GÜNDEME GETİRENLERİN BAŞINDA LAMARCK GELİYOR. LAMARCK`IN DÜŞÜNCE ÇERÇEVESİNİ NEREYE KOYABİLİRİZ? • ÇIKIŞINDAN BUGÜNE KADAR EVRİM DÜŞÜNCESİ, TOPLUM KESİMLERİNDE KABUL GÖRMESİ VEYA KARŞI ÇIKILMASI AÇISINDAN HANGİ SAFHALARDAN GEÇMİŞTİR? • EVRİMİN OLDUĞUNU İDDİA EDENLERİN DAYANDIĞI BİYOLOJİK MEKANİZMALAR NELERDİR? • TABİİ SELEKSİYON`UN HAKİKATİ VE MÂHİYETİ NEDİR? • TABİİ SELEKSİYON DÜŞÜNCESİ DARWİN`DE NASIL DOĞMUŞ OLABİLİR? • BİR ORGANİZMADAKİ MİLYONLARCA GENDEN BAZISININ HUSUSİ OLARAK SEÇİLİP MUTASYONA MARUZ KALMASI MÜMKÜN OLABİLİR Mİ? • KALITIM DEDİĞİMİZ, BİYOLOJİK VE FİZİKÎ ÖZELLİKLERİN GENLER VASITASIYLA AKTARILMASI, EVRİME SEBEP OLABİLİR Mİ? • EVRİMCİLERCE ÇOK SIK KULLANILAN`MUTASYON` NEDİR? • MUTASYONLAR EVRİME SEBEP OLABİLİR Mİ? • BAZI MUTASYONLARIN FAYDALI VE EVRİME KATKISI OLABİLECEĞİ İDDİALARI NE DERECE DOĞRUDUR? • MUTASYONLA BAKTERİLER YENİ BİR CANLI TÜRÜNE Mİ DÖNÜŞÜYOR; YOKSA TÜR İÇİNDE YENİ IRKLAR MI MEYDANA GELİYOR? • MEYVE SİNEKLERİİLE YAPILAN DENEYLER HANGİ ÖLÇÜDE BAŞARILI OLMUŞTUR? • MAKROMUTASYONLARLA EVRİM MEYDANA GELEBİLİR Mİ? • DARWİN ZAMANINDA MUTASYONLAR BİLİNMEDİĞİNE GÖRE, TÜRLERDE DEĞİŞİKLİK ORTAYA ÇIKABİLECEĞİ DÜŞÜNCESİNİN SEBEBİ NE OLMUŞTUR? • TABİİ SELEKSİYONLA EVRİMİN İZAHINDA İLERİ SÜRÜLEN DELİLLER NE KADAR İNANDIRICIDIR? • TABİİ SELEKSİYON İLE `İNDİRGENEMEZ KOMPLEKSLİK` ANLAYIŞI TELİF EDİLEBİLİR Mİ? • TABİİ SELEKSİYONUN YARATILIŞ İNANCINA GÖRE YORUMU NASILDIR? • HAYATTA KALANLAR SAHİP OLDUKLARI DEĞİŞİK ÖZELLİKLERİYLE YENİ BİR TÜRE DÖNÜŞEMEZLER Mİ? • SELEKSİYONLA BİRLİKTE İŞ GÖRDÜĞÜ İLERİ SÜRÜLEN ADAPTASYONUN MÂHİYETİ NEDİR? • BİR CANLI GRUBUNUN BELLİ BİR FORMA SAHİP OLUŞU, ONUN DEĞİŞMEDİĞİNİGÖSTERİR Mİ? • BAZI CANLILARDA ZAYIFLARIN DA YAŞAMASINI VE FEDAKÂRLIK DAVRANIŞINI TABİİ SELEKSİYONLA NASIL İZAH EDERİZ? • BUGÜNKÜ GENETİK BİLGİLERİMİZ IŞIĞINDA TABİİ SELEKSİYON VE ADAPTASYO¬NUN EVRİMCİ YORUMU DIŞINDAKİ GERÇEK BİYOLOJİK DEĞERİ NEDİR? • ADAPTASYON VE TABİİ SELEKSİYON MEKANİZMALARI İLE BİRLİKTE İŞLEYEN İZOLASYONUN MAHİYETİ VE CANLILARIN DEĞİŞMESİNE KATKISI NEDİR? • DARWİN`İN İSPİNOZLARI EVRİME DELİL OLABİLİR Mİ? • BİYOLOJİK DEĞİŞMENİN SINIRLARI NEDİR? • MEKANİZMA OLARAK İLERİ SÜRÜLEN BİYOLOJİK PRENSİPLERLE BİR `EVRİM` OLMADIĞINA GÖRE`EVRİME DELİL` OLARAK GÖSTERİLENLER NEDİR? • EVRİMCİLERİN DELİL ADINA EN ÇOK KULLANDIKLARI HUSUSLAR FOSİLLER OLDUĞU İÇİN PALEONTOLOJİ BU HUSUSTA NE DİYOR? • BİRBİRİNDEN TÜREDİĞİİDDİA EDİLEN FARKLI GRUPLAR ARASINDA GEÇİŞ FOSİLLERİ BULUNDU MU? • GEÇMİŞ JEOLOJİK DÖNEMLERE AİT TABAKALARDA DEVAMLILIK VE TÜRLERİN ARDI ARDINA TÜREYİŞİ Mİ, YOKSA KESİKLİKLER VE ÇEŞİTLİ GRUPLARIN BİR ARADA ÂNİYARATILIŞI MI GÖZE ÇARPIYOR? • FOSİL KAYITLARI BİTKİLER HAKKINDA NE SÖYLÜYOR? • BALIKLARIN ORTAYA ÇIKIŞI VE AMFİBİLERLE ORTAK BİR ATADAN GELDİKLERİ HUSUSUNDA FOSİL KAYITLARI YETERLİ Mİ? • KARADAN SUYA VEYA SUDAN KARAYA GEÇİŞ MÜMKÜN MÜ? • KARA HAYATI İLE SU HAYATI ARASINDA GEÇİŞ TÜRLERİ NİÇİN MÜMKÜN OLMASIN? • OMURGASIZLARDAN OMURGALILARA GEÇİŞ MÜMKÜN MÜ? • SADECE KEMİKLERİN FOSİLİ BÜTÜN BİR BİYOLOJİYİİZAHA YETERLİ MİDİR? • FOSİLLERİN TEDRİCİ BİR ŞEKİLDE BİRBİRİNİ TAKİP ETTİĞİNİ SÖYLEYEBİLİR MİYİZ? • SÜRÜNGENLERLE KUŞLAR ARASINDA GEÇİŞ FOSİLİ OLARAK BAHSEDİLEN ARCHAEOPTERYX`İN DURUMU NEDİR? • BAZI FOSİLLERİN MEMELİİLE SÜRÜNGEN ARASI GEÇİŞ OLDUĞU SÖYLENTİSİGERÇEĞİ NE ÖLÇÜDE YANSITMAKTADIR? • ATIN KÖPEK BÜYÜKLÜĞÜNDE BİR HAYVANDAN EVRİMLEŞTİĞİ SÖYLENTİSİGERÇEĞİ NE ÖLÇÜDE YANSITMAKTADIR? • `SIÇRAMALI EVRİM` (PUNCTUATED EQUILIBRIUM) NE DEMEKTİR? • SIÇRAMALI EVRİMİN YANLIŞ OLDUĞUNU NASIL ANLATABİLİRİZ? • KLADİZM VE SIÇRAMALI EVRİM ANLAYIŞI NE GETİRMİŞTİR? • BU DURUMDA TÜRLERİN ÂNİDEN ORTAYA ÇIKIŞI GİBİ DÜŞÜNCEYE GELİNMİYOR MU? • `TÜRLERİN ÂNİDEN ORTAYA ÇIKIŞI` TEORİSİ MARKSİST BİR DÜŞÜNCENİN ÜRÜNÜ MÜ? • EVRİMİİSPAT İÇİN YAPILAN PALEONTOLOJİK ÇALIŞMALAR BİLİMİN ÖLÇÜLERİNE UYUYOR MU? • İNSAN MAYMUN ARASINDAKİ EVRİM TARTIŞMALARININ DURUMU NE GÖSTERİYOR? • HOMİNİD, PRİMAT, HOMO SAPIENES GİBİ TABİRLERİİNSAN İÇİN KULLANMAK NE DERECE DOĞRUDUR? • BİR HOMİNİD`İ DİĞER PRİMATLARDAN AYIRAN HUSUSİYETLER NELERDİR? • İNSANIN MUHAKKAK BİR MAYMUNLA AKRABA OLMASI PEŞİN FİKRİNDEN HAREKETLE YAPILAN YORUMLAR HADDİNİ AŞAN BİR GENELLEME OLMUYOR MU? • DÜNYA`NIN YAŞI EVRİM SÜREÇLERİYLE İNSAN GİBİ BİR TÜRÜN MEYDANA GELİŞİNE İMKÂN VERECEK KADAR UZUN MUDUR? • SIK SIK YENİİNSAN MAYMUN FOSİLLERİ BULUNDUĞU İDDİA EDİLİYOR, BU DURUM BİR KARIŞIKLIK MEYDANA GETİRMİYOR MU? • MOLEKÜLER BİYOLOJİ VE GENETİK NE DİYOR? • AKRABA OLDUĞU İDDİA EDİLEN CANLILAR ARASINDA KROMOZOM SAYISI VE DNA MİKTARLARI BAKIMINDAN BİR YAKINLIK VEYA BENZERLİK OLDUĞU, DOLAYISIYLA BİRBİRİNDEN TÜREYEBİLECEĞİİDDİASI DOĞRU MUDUR? • SON YILLARDA HURDA DNA`LAR VE PSEUDOGENLER(YALANCI GEN) GÜNDEME GELİYOR VE BUNLARIN GEÇMİŞ ATALARDAN KALAN, FAKAT KULLANILMAYAN DNA PARÇALARI OLDUĞUNDAN BAHSEDİLİYOR. BU HUSUSTAKİ BİLGİLER NE DERECE DOĞRUDUR? • CANLILARIN FARKLI ORGANLARININ, GENLERİNİN VEYA PROTEİNLERİNİN BİRBİRİNE BENZER OLMASI NE MÂNÂYA GELİYOR? BUNLAR, BÜTÜN CANLILARIN ORTAK BİR ATADAN GELDİĞİNİ SAVUNAN DARWİNİZM İÇİN BİR DELİL SAYILABİLİR Mİ? • OMURGALI EMBRİYOLARINDA SOLUNGAÇ YARIKLARININ BULUNDUĞU ÖNE SÜRÜLEREK İNSANIN SOYAĞACININ BAŞINDA BALIKLARIN OLDUĞU, DAHA SONRA DA, AMFİBİ, SÜRÜN-GEN VE KUŞ SAFHALARINDAN GEÇTİĞİMİZ İDDİASI NE KADAR DOĞRUDUR? • EMBRİYOLOJİK GELİŞME SIRASINDA MEVCUT BAZI ORGANLARIN KULLANILMADIĞI İÇİN KÖRELDİĞİİDDİALARI HAKKINDA NE DENİLEBİLİR? • KARŞILAŞTIRMALI ANATOMİDE, ATIN AYAĞI İLE İNSANIN AYAĞI, KUŞUN KANADI İLE YARASANIN KANADI VEYA YUNUS BALIĞININ YÜZGECİ HOMOLOG OLARAK BİRBİRİNDEN TÜREMİŞ BİÇİMDE ANLA¬TILIRKEN; BÖCEK KANADI BUNLARLA ANALOG ORGAN OLARAK ANLATILIYOR BU NE DEMEKTİR? • FOSİLLERİN YAŞ TAYİNLERİ HUSUSUNDA ZAMAN ZAMAN FARKLILIKLAR GÖRÜLMEKTEDİR. BUNUN SEBEPLERİ NELERDİR? • HANGİ YAŞ TAYİN METOTLARI VARDIR VE BUNLARIN GERÇEKLİKLERİ NE ÖLÇÜDE DOĞRUDUR? • DİĞER YAŞ TAYİN METOTLARINDAKİ EKSİKLİKLER NELERDİR? • KARBON -14 METODU İLE YAPILAN YAŞ TAYİNLERİ TAMAMEN YANLIŞ MIDIR, YOKSA ÇOK YAKIN TARİHLERİ BELİRLEMEK İÇİN DE KULLANILABİLİR Mİ? • KARBON -14 METODUYLA YAPILAN YAŞ TAYİNLERİ 50.000 YILDAN DAHA GEÇMİŞ DÖNEMLER İÇİN NE KADAR GÜVENİLİRDİR? BİZE GEÇMİŞLE İLGİLİ NE ÖLÇÜDE SIHHATLİ BİLGİ VERMEKTEDİR? • AĞAÇLARIN BÜYÜME HALKALARININ KARBON-14 METODUNU DESTEKLEDİĞİ İDDİASI NEREDEN KAYNAKLANMAKTADIR? • POZİTİF BİR BİLİM OLAN JEOLOJİ, KİMYA VEYA ASTROFİZİK GİBİ KONULAR¬DA ÇARPITMA VEYA SENARYOYA GÖRE ISMARLAMA YAŞ TAYİNLERİNASIL YAPILABİLİR? • DARWİNCİLER YERYÜZÜNDEKİ HAYATIN ORTAYA ÇIKIŞINI DEVAMLI VE KESİKSİZ BİR SÜREÇ OLARAK KABUL ETTİKLERİNDEN `TESADÜFEN` DE OLSA, YAVAŞ YAVAŞ BİR EVRİMLEŞMEYİMÜMKÜN GÖRÜYORLAR. YARATILIŞIN GERÇEKLEŞMESİNDE BİR DEVAMLILIK MI MEVCUT¬TUR? YOKSA KESİKLİKLER VE TOPLU YARATILIŞLAR MI GÖRÜLMEKTEDİR? • TOPLU YOK OLUŞLARIN OLDUĞUNU VE SEBEPLERİNİ GÖSTEREN BİLGİLER MEVCUT MU? • EVRİM HİPOTEZİ SADECE CANLILAR ÂLEMİNDE GEÇERLİ OLARAK GÖRÜLEN BİR DÜŞÜNCE MİDİR? • KÂİNAT TELAKKİSİİLE EVRİM DÜŞÜNCESİ ARASINDA BİR MÜNASEBET VAR MIDIR? • CANLILARIN YARATILMASINDAN ÖNCE CANSIZ TABİATIN BİR ORGANİK EVRİM GEÇİRDİĞİİDDİASININ İSPATI İÇİN UĞRAŞAN EVRİMCİLERİN, KÂİNATIN İLK YARATILMAYA BAŞLAMASINDAN İTİBAREN ORTAYA ÇIKAN BÜTÜN GELİŞMELERİİNCELEYİP HÜKÜM VERMELERİ GEREKMEZ Mİ? • `BİG-BANG` TEORİSİNİN YARATILIŞI DESTEKLEDİĞİ DÜŞÜNCESİNE NASIL VARIYORUZ? • İLK ATOM ÇEKİRDEĞİNİN YARATILIŞI VE ATOMUN DOĞUŞU HANGİ SAFHADA GERÇEKLEŞİYOR? • İLK ATOMLARIN YARATILMASINDAN SONRAKİ TAHMİNİ SÜREÇTE NELER OLDUĞU DÜŞÜNÜLÜYOR? • AMİNOASİT VE PROTEİN GİBİ HÜCREYE GÖRE ÇOK BASİT SAYILABİLECEK MOLEKÜLLER BİLE ŞUURSUZ VE AKILSIZ EVRİM MEKANİZMALARIYLA KENDİKENDİNE ORTAYA ÇIKAMAYACAĞINA GÖRE HÜCRENİN ALT BİRİMLERİ OLAN, ORGANELLER VE HÜCRE NASIL OLUŞABİLİR? • EVRİM TARTIŞMASININ TEMELİ AĞIRLIKLI OLARAK İHTİMAL VE TESADÜF KAVRAMLARI ETRAFINDA MI ŞEKİLLENİYOR? • ACABA MEVCUT CANLILARIN TESADÜFÎ MUTASYONLARLA DEĞİŞME İMKÂNI OLAMAZ MI? • DARWİNİZM`İ BİYOLOJİNİN REDDEDİLEMEZ BİR PARÇASI GİBİ GÖSTERME GAYRETLERİNİN SEBEBİ NEDİR? • DARWİNİZM`E KARŞI ÇIKIŞLAR KARŞISINDA, BU HİPOTEZİ SAVUNANLARIN DA BOŞ DURACAĞI DÜŞÜNÜLEBİLİR Mİ? NE GİBİ YENİ ÇIKIŞLAR YAPABİLİRLER VE KARŞILAŞABİLECEKLERİ EN BÜYÜK SIKINTILARI NELERDİR? • `DARWİNİZM`İ ÇÜRÜTÜYORSUNUZ FAKAT YERİNE BİR MODEL KOYMUYORSUNUZ. EVRİM, VAR OLUŞA DAİR ŞÖYLE VEYA BÖYLE BİR ŞEYLER SÖYLÜYOR; SİZ SADECE YIKIYOR FAKAT YARATILIŞ ADINA BİR MEKANİZMA TESİS ETMİYORSUNUZ!` ŞEKLİNDEKİ TENKİTLERE NASIL CEVAP VERİLEBİLİR? • EVRİME KARŞI ÇIKMA ANLAYIŞININ DÎNÎ KAYNAKLI OLDUĞU, İLMÎ ARAŞTIRMA¬LARDA VE MEDENİYETİN GELİŞMESİNDE ENGELLEYİCİ GÖRÜLDÜĞÜ, İNSANLARI TEMBELLİĞE İTTİĞİ GİBİİDDİALAR NE KADAR GEÇERLİDİR? • EVRİM - YARATILIŞ KAVGASI, İLK ÖNCE BATIDA MUKADDES KİTAP OLAN İNCİL İLE BİLİM ADAMLARI ARASINDA ÇIKMIŞTIR. İSLAM`IN BU AÇIDAN FARKLI YÖNLERİ VE VAAD ETTİKLERİ VAR MI? • BİLHASSA ABD`DE BİRÇOK ÖZEL VAKIF VE ARAŞTIRMA ENSTİTÜSÜNÜN EVRİM DÜŞÜNCE-SİNE KARŞI OLARAK ÇIKARDIĞI CİDDİ BOYUTLARA ULAŞAN BİLGİ VE BELGELER KARŞISIN¬DA DARWİNİZM İNANCI ŞU ANDA TARAFTAR MI TOPLUYOR, YOKSA TERK Mİ EDİLİYOR? • OBJEKTİF VEYA NÖTR OLMASI GEREKEN BİLİMİN ATEİZM İÇİN KULLANILDIĞINI, `YARATILIŞVE EVRİM` TARTIŞMALARININ ALTINDA, İDEOLOJİK VE FELSEFÎ BİR TABANA YASLANAN DÜNYA GÖRÜŞLERİ OLDUĞUNU ANLAMIŞ BULUNMAKTAYIZ. BUNUN YANINDA; ACABA`EVRİM HİPOTEZİ`NİN BİLİM VE DÜŞÜNCE TARİHİ BAKIMINDAN VEYA BİYOLOJİK PRENSİPLER AÇISINDAN BİR KATKISI VAR MIDIR? HİÇ FAYDASI OLMAMIŞTIR DENİLEBİLİR Mİ? • ÜNİVERSİTELERİN BİYOLOJİ BÖLÜMLERİNDE VE ORTA ÖĞRETİMDE EVRİM KONUSU HANGİ AĞIRLIKTA İŞLENMELİ, EVRİMDEN HİÇ Mİ BAHSEDİLMEMELİ? TÜRKİYE`DE BU HUSUSTA SIKINTILAR VAR MI, VARSA SEBEBLERİ NELERDİR VE NE ŞEKİLDE DÜZELTİLEBİLİR?  

http://www.biyologlar.com/110-soruda-yaratilis-ve-evrim-tartismasi

Çıkmış biyoloji soruları

A. Doğru şıkkı işaretleyiniz. ( 12*3 puan= 36 ) 1. İnsanlarda besin ve enerji tüketimi fazla olan dokulardaki kılcal kan damarı oranı , diğerlerine göre daha fazladır. Buna göre aşağıdaki dokulardan hangisindeki kılcal damar oranı diğerlerinden daha fazladır? a- Epitel doku ve kas doku c- Yağ dokusu ve epitel doku c- Kas dokusu ve sinir doku d- Kıkırdak doku ve yağ doku 2. Kemiklerin sağlığını korumak için, I. Yeterli ve dengeli olarak beslenmek. II. Sportif hareketler yapmak. III. Aşırı ve ağır yük taşıma . Şeklindeki faaliyetlerden hangilerinin yapılması gereklidir? a. Yalnız 1 b. Yalnız 2 c. 1 ve 2 d. 1,2 ve 3 3. Bol miktarda köfte yiyen bir insanın kanına hangi besinden en fazla gider? a. Glikoz b. Vitamin c. Aminoasit d. Mineral 4. Kalın bağırsaktan hangisi kana geçemez? a. Su b. Vitamin c. Mineral d. Selüloz 5. Vücut ağırlığının artmasında aşağıdakilerden hangisi etkilidir? a- Normalden fazla solunum yapılması b- Şekerlerin yağa çevrilerek depolanması c- İskelet kasların fazla miktarda etkinlik göstermesi d- Vücuttaki artıkların dışarıya boşaltılması 6. Kandaki şeker miktarını hangi hormonlar ayarlar? a- Adrenalin ve insülin b- Tiroksin ve hipofiz c- Hipofiz ve glukagon d- İnsülin ve glukagon 7. Aşağıdakilerden hangisi sindirim sisteminin görevidir? a- Havadaki oksijenin vücuda alınıp kana karışmasını sağlar. b- Besinlerin parçalanıp kana karışmasını sağlar. c- Besinleri dişler ve kaslar yardımıyla parçalar. d- Sistemlerin çalışmasını denetler. 8. Aşağıdakilerden hangisi vücudun engellerindendir? a- Ter b-Deri c- Solunum yolları d- Hepsi 9. Aşağıdakilerden hangisinde oynar eklem vardır? a- Boyun b- Kalça c- Kafatası d- Bel 10. Aşağıdaki hangi olay beyin kabuğundaki merkezler tarafından kontrol edilmez? a. Hareket b. Görme c- Düşünme d- Denge 11. Aşağıdakilerden hangisinin görevi kanın pıhtılaşmasını sağlamaktır? a- Alyuvar b- akyuvar c- kan pulcukları d- kalp 12. Kandan zararlı ve atık maddeleri hangi organ ayırır? a- Böbrek b- Akciğer c- Karaciğer d- akyuvar B-Aşağıdaki boşlukları doldurunuz. (7*2 puan=14) 1- Eklemleri oluşturan kemiklerin ucu __________________kaplıdır. Kemiklerin sürtünmesini engeller. 2- Böbreğimizde kanı temizleyen 1.000.000 tane küçük filtre _____________vardır. 3- Boşaltım sistemi üzerine uzmanlaşmış doktorlara ___________ denir. 4- Kolumuzdaki kaslar ______ _______________ kaslardır. 5- Kemiklerin birleştiği yere ______________denir. Hareketi kolaylaştırırlar. 6- Nezle, kabakulak ve AIDS hastalığına _____________ neden olur. Kolera , difteri, verem hastalığına __________________neden olur. 7- Akciğerleri ________________, beyni ________________ dıştan korur. C-. Aşağıdaki soruları yanıtlayınız.(20*2.5 puan=50) 1- Kimyasal sindirim ve mekanik sindirimi anlatınız. 2- Sindirimin izlediği yolu yazınız. 3- Dolaşım sistemini oluşturan yapıları yazınız. 4- Kalbin görevi nedir? 5- Büyük ve küçük kan dolaşımını açıklayınız. 6- Kan hücrelerini yazınız.Görevlerini açıklayınız. 7- Kan grupları hakkında bilgi veriniz. 8- Lenf sistemini açıklayınız. Önemini belirtiniz. 9- Aşı ve serumun farkı nedir? 10- Nefes alıp- verme nasıl olur? Solunumla farkı nedir? 11- Alveollerin görevi nedir? 12- Eklem çeşitlerini birer örnek vererek açıklayınız. 13- Böbreğin görevi nedir? 14- Sinir sisteminin kısımlarını açıklayınız. 15- Beyin kabuğunda hangi merkezler yer alır? 16- Omurilik, beyin ve beyinciğin görevlerini yazınız. 17- Adrenalin hormonu nereden salgılanır? Görevi nedir? 18- Vücudumuzda şeker ayarlamasını hangi hormonlar yapar? 19- İskeletin görevi nedir? 20- Kalp kası , düz ve çizgili kası açıklayınız. A. Doğru şıkkı işaretleyiniz.(8*4 puan= 32) 1- Gözde göz yuvarlağının içine ulaşabilecek ışık miktarını aşağıdakilerden hangisi ayarlar? a. Retina b. Kornea c. İris d. Optik sinir 2-Gözde ışığa duyarlı hücreleri içeren en iç tabaka aşağıdakilerden hangisidir? a.Retina b. Kornea c. İris d. Optik sinir 3- İç kulakta denge duyusunu algılamamızı sağlayan hangi yapılardır? a. Kohlea b. Kulak kemikçileri c. Yarım daire kanalları d. Östaki borusu 4. Aşağıdakilerden hangisi kulak kemikçiklerinden değildir? a. Çekic b. Örs c. Östaki d. Üzengi 5.Retinanın ışığa en duyarlı bölgesine ne denir? a. kör nokta b. Sarı leke c. Ağ tabaka d. Kornea 6. Retinada oluşan görüntü nasıl bir şekilde olur? a. Başaşağı ve 3 boyutlu b. Başaşağı ve 2 boyutlu c. Yukarı doğru ve 2 boyutlu d. Yukarı doğru ve 3 boyutlu 7. Hipermetrop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Dışbükey d. İnce lens 8. Miyop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Boşbükey d. İnce lens B. Boşlukları doldurunuz. (4*2 puan=8) 1. Gözün farklı mesafelerdeki cisimleri odaklayabilmesine ________ __________ denir. 2. Ortamda az ışık varsa _________________ büyür. Ortamda çok ışık varsa gözbebeği küçülür. 3. _________ ___________ orta kulak ile dış ortam arasındaki basıncı dengeleyip kulak zarının zarar görmesini engeller. 4. Göz kapakları gözün dış kısmını ____________, göz yaşı gözün dış kısmını ______________. C -Aşağıdaki soruları yanıtlayınız.( 15*4 puan=60) 1- Duyu organları nelerdir? 2- Konjanktiva nerede bulunur? Görevi nedir? 3- Uzaktaki ve yakındaki cismi nasıl görebiliyoruz? 4- Hipermetrop göz ve miyop göz hakkında bilgi veriniz. 5- Derinin görevi nedir? 6- Dilde hangi tatları alırız? Şekil üzerinde gösteriniz. 7- Deride bulunan duyu alıcıları nelerdir? 8- Burunda sarı bölge nereye denir? Görevi nedir? 9- Pacini cissimciği nedir? 10- Kulak kaç bölümde incelenir, isimleri nelerdir? 11- İşitme olayını açıklayınız. 12- Görme olayını açıklayınız. 13- Renkli görmemizi sağlayan yapılar nelerdir? 14- Katarakt nedir? 15- Gözdeki kör nokta, optik sinir ve kirpiksi kasların özelliklerini yazınız.

http://www.biyologlar.com/cikmis-biyoloji-sorulari

Balık hastalıklarında kullanılan tedavi yöntemleri

Balık hastalıklarında kullanılan tedavi yöntemleri sekiz tanedir.Bunlar aşağıda belirtilmiştir: 1.Fizyoterapi 2.Psikoterapi 3.Ameliyat 4.Diyet ve Beslenme Tedavisi 5.Çevrenin düzenlenmesi 6.Bağışıklık Kazandırma (Aşı) 7.Hormon tedavisi 8.Hastalıktan korunma usulü Fizyoterapi: Balık hastalıklarında fizyoterapi başlıca kullanım şekli, patojenik organizmaların hayat döngüsünü hızlandırmak için temparatürün yükselmesi,öyle ki bir ilaç parazitin hayat döngüsünün özel bir döneminde etki edebilir.Buna zıt olarak bir patojenik ajanın hayat döngüsünü yavaşlatmak için temparatürü düşürmekte önemli bir tedavi olabilir.Vücut kısımlarına masaj balıkta genellikle hiç yapılmaz. Bunun bir istisnası yumurta taşıyan bir dişinin sağılmasıdır.Isı darbesi nedeniyle oksijensizlik veya beyin hasarını önlemek için aşırı ısınma akvaryumda plastik bir torbada buz atılabilir.Bazı hastalıkların belirtisini gösteren her gün hasta balığa birkaç saat uzun dalgalı ultraviole ışık altına koyarak hafifletilebilir. Psikoterapi : Psikoterapi genellikle mümkün olan bir şey olarak düşünülmez veya tedavide sınırlı bir ilişkisi vardır; buna rağmen bir balığın psikolojik gereksinimleri için hazırlıklar tedavi edici veya koruyucu olabilir.Saklanacak uygun yerler sağlamak veya özel tip bitkiler temin etmek için kargaşadan oluşan şok ve/veya katı objeler veya cam duvarlara balığın vurduğu zaman oluşan doku incinmelerini önlemek için fazlasıyla önemli olabilir.Bazı ilaç tüpleri bir balığın normal davranış modellerine etki edebilmesi veya değiştirmesi de mümkündür.Işığı kapatmak ve balığın karanlıkta dinlenmesine müsaade etmek veya tank etrafına opak bir elek geçirmek akut şoktan iyileşmesi için gerekli olabilir. Ameliyat : Balık ameliyatı şu anda vücut yüzeyi ile sınırlıdır.Bir pensle dış parazitin alınması veya hasarlı veya hastalıklı yüzgecin ucundan kesilme işlemi yapılabilmektedir.Buna karşın vücut boşluğu içindeki bir ameliyat deneysel olarak başarıyla yapılmaktadır. Ameliyatta tümör alınması şimdilik yaygın değildir.Viral hastalık sonucu oluşan nodüller ameliyatta kesip alınabilir ve bu durum için tek etkili tedavi olarak bilinir. Diyet ve Beslenme Tedavisi : Diyet veya beslenme, tedavisi uygulamanın diğer bir yönüdür.Hastalık şartlarının düzeltilmesi veya önlenmesi yönünde bir yol olarak kabul edilmemektedir.Beslenmeye bağlı hastalıklar ve rahatsızlıklar özellikle A vitamini eksikliği, kuvvetten kesici ve sonra öldüren olduğu gibi patolojik organizmalar tarafından hastalık çıkışına yol açan dayanıklılığının azalması için büyük bir nedendir.Teknik olarak vitaminlerin kendileri ilaçtır.Yem ve beslenme ile anlaşılması güç ilişkiler sebebiyle bu çalışmaya dahil edilmemiştir ve diğer kaynaklar baştan yazılması için asıl gerekli detayın sağlayacağı gözükmektedir.Buna karşın beslenmeye bağlı rahatsızlıklar bu çalışmada özellikle karaciğer hastalıklarında ihmal edilemeyecektir. Çevrenin düzenlenmesi : Tedavi olarak çevrenin düzenlenmesi başlıca su kalitesi ve suyun fiziksel ve kimyasal veya mekanik yolla yönetimini gerektirir. Karbon veya odun kömürlü veya bunlar olmadan yeterli ve iyi düzenlenmiş filtrasyon sistemleri bu konu kapsamındadır.Hastalığın yayılmasının önlenmesi konusundaki önemi belirtilmemiştir.Diyatomeli toprak filtreler akvaryumda bakterileri yok eder.Bazı tip bakteriler aktive olmuş granüllerine absorbe dipte bambu kazıklar saplamak ve balıkların parazitlerden kurtulmaları için kendilerini sürteceklerini yerler oluşturmaktadır.Hepsi fiziksel kullanarak yapılan tedavi şekilleridir.Su kirliliği ve toksinlerde balık hastalıkları ve rahatsızlıkların devamlı gözlenerek yapılan bir tedavi şekli olarak değerlendirilebilir. Aşı : Aşılama balık hastalıklarının tedavisinde yararlanılan çok önemli bir araçtır.Antijenler ve antikorların doğal üretimleri ve onların aşılar ve serumların kullanımına doğru üretimine yönlendirilmesi enteresan bir çalışmadır.Bu sahada birçok şey (özellikle besin olarak kullanılan Salmonidae’nin viral hastalıklarında) yapılmalıdır.Metot ve işlemler balık bakım ve ummunizasyonu diğer sahalarda yavaş ve adım adım ilave ederek ilerisi için umut vermektedir. Hormon Tedavisi : Hormon tedavisi teknik olarak sınıflandırabilecek bir diğer tedavi tipidir.Bu tedavi daha çok balık yumurtlamada tercih ediliyor. Hastalıktan Korunma Usulü : Kullanılan tedavi yöntemleri içinde en önemli olanıdır.Su kalitesindeki bozulmayı, toksik maddeleri ve kirleticileri önleyerek hastalıklı veya rahatsızlığın kaynağını yok etmiş oluruz. Bir çok kanser yapıcı madde de buna benzer işlemlerle ortadan kaldırılır.Virüsler, bakteriler, tek hücreliler, mantar sporları ve helminthlerde krustaselerin larva formları UV sterilazyon birimleri kullanılarak elimine edilecektir.Ozon hem patojenleri öldürmede hem de fenoller, azotlu atıklar ve sudaki diğer organik toksinleri yok etmek için kullanılabiliriz. Kaynak: bakterim.com

http://www.biyologlar.com/balik-hastaliklarinda-kullanilan-tedavi-yontemleri

TOHUMLU BİTKİLER SINAV SORULARI

1.Temel ilgi alanı taksonomi olan botanik dalı…………………………………..dir. 2.Bitki taksonomisibitkilerin………………..,………………………içeren bir bilim dalıdır 3.Bir kategoriye girecek şekilde diğerlerinden ayrılmış olan gruplar ………………..olarak tanımlanır. 4.Populasyon................................................................................................................. ...................................................................bireyler topluluğudur 5.Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 6.Cins isimleri, tekil bir ……………..veya……………… olarak kabul edilen kelimedir. 7.Bir tür 2 latince kelimeden oluşmuştur. İkince kelimeye……………… denir. Buda bir…………….veya………….. olabilir 8.Bitki türlerinin ……..latince kelime ile adlandılmasına…………………isimlendirme denir. 9.Latince ismin arkasına yazar isminin eklenmesi bitki isminde ……………. sağlamak içindir. 10. Hiçbir taksonun………….yoktur. Ancak isimlerin ………. vardır. Bu isimde bitkinin ………......örneğidir. 11. Tür epitetleri ………….,…………….,ve…………… takılar içerir. 12. Vicia caesarea Boiss et Ball altı çizili kısım a) Bitkiyi ilk bulanlar b) Bitkiyi ilk toplayanlar c) Bitkiyi ilk isimlendirenlerdir. 13. Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………dür. 14. Sınıflandırma kuramları diye bilinen görüşler 5 ayrılır. Bunlar………………..,…………….,…………………,………………..ve ……………………………………dır 15- Tohumlu bitkilere……………………,……………………,………………..,………….. adları da verilir 16- Polen taneleri Gymnospermlerde………… Andiospermlerde……………… üzerine taşınırlar. 17- ……………dan zamanımıza değin Angiospermler in çağıdır 18- YurdumuzdakiPINACEAE familyasına ait cinsler a)................................b)...................... c)...................................... d)..................................................dir. 19- Türkiyedeki pinus türleri a-………………b…………….c……………..d……………e….. 20-Ülkemizde Abies in..................alt türü vardır. A.........................ssp.......................................... .köknarı endemik olup Kazdağında 1200-1300 m’ler de yayılış gösterir. 21-Angiosperm çiçeğinde …………….ve……………. büyük oranda güvence altındadır 22- Ülkemizde yaşayan ….. juniperus türü vardır. Bunlardan yaprakları iğnemsi olanlara 3 örnek J……………………, J………………..J…………………………dir 23- Kuzey Anadolu’nun en geniş yayılışlı çam türü………………………………………’dır 24- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………… Uludağ Köknarı:……………………….. Karaçam………………………….. Adi Ardıç (Cüce Ardıç)………………… Mazı…………………………. 25- Angiosperm çiçeğinde …………………ve…………….. büyük oranda güvence altındadır 26- Yaprak sapının dibindeki yaprakçığa………………, çiçek sapının dibindekine……………… denir. 27- ………… taslağının…………. gelişmesi sonucu oluşan yapıya……………….denir. Döllenmeden sonra ………………. gelişimi sonucu oluşan yapıya……………..adı verilir 28- Tipik bir meyve başlıca 3 kısımdan oluşmuştur. Dışta………………,ortada……………….. .ve içte………… 29- Apokarp ovaryum dan meydana gelmiş meyveler…………………… meyvelardır. 30- Tohum başlıca 3 kısımdan meydana gelmişti.Dışta………………,içte………………… ve ………… 31- Ülkemizde park ve bahçelerde yetişen manolya …………………………………dır. 32-……………………. un meyveları …………………….. kurutulursa karabiber elde edilir. 33-……………………………..(haşhaş)’ın kültürü yapılır ve ……………….adı verilen çeşitli…………………………….oluşan bir drog içerir. 34- Hamamelidaceae familyasından…………………………………..türünde yapraklar derin loplu meyveleri…………adettir. 35- (Girit ladeni)………………………özellikle Batı ve Güney Anadolu’da maki ve friganada yaygındır. 36- Ficus …………….da meyve oluşumu…………………… arısı ile oluşur. 37- Bougainvillea spectabiliste mor, kırmızı, pembe renkte olan ……………çok gösterişlidir 38- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- Caryophyllaceae d- Ranunculaceae e.Berberidaceae 39-Ülkemizde………Quercus türü vardır. Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 40- Consalida da foliküller…….adet Delphinium da ise………. adettir. 41- …………………(kardikeni)dağların yükseklerinde yastıkçıklar oluştururlar. 42- Halk arasında…………………..(ıhlamurun)………...ve…………..kulanılmaktadır 43- ………………(kebere) in………………. ları turşu yapılarak yiyeceklere lezzet verir 44- ………… …………….(koca yemiş) in meyveleri etli bir……….. olup yenebilir. 45-……………………. ………………….(abtesbozan) alçak boylu dikenli çalılardır. 46- Çiçek enine kesiti çizin kısımlarını belirtiniz 47- 10 tane maki elementi yazınız 48- 5 tane sanayi de kullanılan bitki ismi (latince –türkçe) yazınız 49- 5 tane sebze bitkisi (Latince-türkçe) yazınız 50- 5 tane süs bitkisi (Latince-türkçe) yazınız 51- Sistematik botanik ………..kuralları içinde …… ……….. …….. …………kadar tüm bitkileri …………. ile ……………….sınıfları içinde gruplamaktır. 52- Ficus carica bir ……………dur. …………. ……….. ………. … grubunu ifade etmektedir. 53- Türün başlıca 3 özelliği bulunmaktadır 1)…. …………………………,2)…………… ………………………..3)………………………………….. 54- ......................................... ve…………………………..tür altı kategorileridir. 55- Aile adı,isim gibi kullanılan………………….tır ve sonuna………….ekinin eklenmesi ile yapılır. 56- Pinus nigra da pinus…………..ismidir nigra ise ……. ……………….dir 57- Medicago polymorpha L. Buradaki L. …………………........................................dir 58- Bir yazarın bir……… tanıtırken ..…. olarak seçtiği bitki örneğine……………….denir. 59- Bitkilerin isimlerini bilmek istemenin 3 tanesini yazınız a- b- c- 60- Tohumlu bitkilerdeki aşağıda belirtilenlerin tohumsuz bitkilerdeki karşılıkları stamen……………………….. anterler………………karpeller……………….. polen ana hücresi……………….. polen tanesi……………………. 61- Koniferler……………. bitkilere verilen isimdir. 62- Pinaceae nin yurdumuzda bulunan cinsleri a- b- c d- 63- Abies in 2 endemik taksonu a- b- 64- Boyları 100m. çapları 25 m olan k Amerika da yaşayan taxodiaceae türü… ……………………………………….dir 65- Epigin çiçekte ovaryum……. hipogin çiçekte…….perigin çiçekte……...durumludur 66- …………………………. döllenip gelişmesi sonucu oluşan yapıya…………….. adı verilir . ……kısımdan meydana gelmiştir. Bunlar: 66- Sarı nilüfer (……………………….) ve beyaz nilüfer(…………………………)ara sındaki ayırt edici fark …………………………….. 67- Ranunculus larda meyve ……………..dir. 68- …………………………….. dan afyon adı verilen drog elde edilir. 69- Doğu çınarı (……………………………..) de meyvelar…….. adet Sığlada (……………………………………..) meyvelar………adettir. 70- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir …………………………………, belirli bir yerde bulunan ve aralarında…………………… olan bireyler topluluğudur 71- Mezozoik’te ……………………………………..günümüze kadar gelen tek örnektir 72-Holotipin benzeri veya eşi olan etiketinde holotipin kayıtlarını taşıyan örneği………………..denir 73- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 74- Gymnospermlerde çiçekler .......................... ve ...................... dişi kozalaklarda toplanmasına karşın, Angiosperm’lerde çiçekler ................................ çeşitliliğe sahiptir. 75- Juniperus............................................nun yaprakları iğnemsi. J....................................................................... nun ise pulsudur 76- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. 77- Embriyonun çeneklerine…………………………………ilk vejetasyon noktasına …………………………….kökçüke…………………………’de adı verilir 78- Siliqua tipi meyveda………………………………………………………..’dır. 79- Stoma bantları Abies’te…………………………., Picea’da ………………….adettir 80- Makinin baskın türünü oluşturan meşe türü;……………………………………..’dir. 81- Brakte …………………….yaprakcığıdır. 82- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Laurus nobilis………………………… Nuphar lutea………………………. Anemone blanda……………………….Papaver roheas …………………. Cannabis sativa……………………….. 83- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız Kızıl ağaç………………. ……….. Demir ağacı…………………………… Gürgen…………………………….Kayın…………………………………. Kara ağaç …………………………………………………………………… 84- 2 şer tane yaprakları tüysüz ve tüylü meşeleri yazınız. 85- Angiospermlerde döllenmeyi anlatınız? 86- Bitki taksonomosibitkilerin ....................................................... ..........................................................................içeren bir bilimdir. Yunanca taxis............ ............................nomos............................................................................kelimelerinden oluşmuştur. 87- Herbaryum en kısa ve açık tanımı ile ............................................................................... ............................................bitki örnekleri............................................dur. Ancak belirli....... .....................................ve..........................................göre toplanmış olması gerekmektedir. 88- Pinus un ülkemizde ............türü bulunmaktadır. Bunlar P....................................................... ...................................................................................................................................................... 89- Angiosperm’lerde içinde.........................yanında çok sayıda................................... üyelerde bulunmaktadır. Gymnosperm’lerin yaşıyan tüm üyeleri ...................................bitkilerdir. 90- Yeni bir bitkiyi verecek olan embriyo 4 Farklı kısımdan meydana gelmiştir. a)........................................ b).............................................. c)................................................ ..............................d).................................................................................................................... 91- Meyvelar 3 grup halinde toplanır. 1.................................. 2............................................... ....................... meyvelar 92- Tozlaşma şekilleri diye bilinen taşınma şekilleri 1................................................................ 2.......................................................................... 3...................................................................... 93- Gymnosperm ....................................... tohumlar Angiospermler ise ................................... ................... tohumlular demektir. 94- Aşağıdakilerin latincelerini yazınız Manolya .............................................. Doğu ladini ........................................ Lübnan Sediri ...................................... Sekoya ................................................. Mazı ..................................................... Adi Servi .............................................. Karabiber .............................................. Defne .................................................... Dağ lalesi .............................................. Haşhaş ................................................... 95- Aşağıda verilen latince bitki isimlerinin türkçelerini yazınız Platanus orientalis ............................................... Liguidumbar orientalis ........................................ Morus alba ........................................................... Ficus carica .......................................................... Papaver rhoeas ..................................................... Nuphar lutea ......................................................... Araucaria excelsa .................................................. Taxus baccata ........................................................ Ulmus .................................................................... Ficus elastica .......................................................... 96- K ( 5 ) K5 A 4+2 C ( 2 ) formülü ne demektir diyagramını çiziniz. 97- Bir çiçeğin dış halkadan içe doğru isimlerini yazınız ve kısımlarını yazınız? 98- Pinus nigra Arn. Altı çizili kısım; a-Tür b-Tür epitepi c- Otör d-Angram 99- Aile adı, cins isminin sonuna……………………………..ekinin eklenmesi ile yapılır 100-Aile (Familya) adı nasıl oluşturulur? Binomial veriniz……………………………………… 101- Doğada sadece bireylerin varlığını, türün insanoğlunun buluşundan başka bir şey olmadığını savunan………………………………………………..tür kavramıdır. 102-…………………………………, belirli bir yerde bulunan ve aralarında……………………olan bireyler topluluğudur. 103-Bir yazarın türü tanıtırken………………….olarak seçtiği bitki örneğine…………………… 104- Binomial isimlendirme bir …………………….ve bir…………………..den ibarettir. 105- Binomial isimlendirme;…………………………………………………………………… …………………………………………………………………………………..denir. 106- Bir herbaryum etiketinde ……………………………………......................................... ………………………………………………………………………………………………. ………………………………………………………………………………………………………………………………………………………………………bilgileri bulunmalıdır 107-Abies cilicia’nın Batı Toroslarda yayılış gösteren alt türü (ssp.)……………………………………………..’dır. 108- ………………………..larda yapraklar uzun sürgünler üzerinde …………………… ………………………………….kısa sürgünler üzerinde ise………………….halinde bulunur 109-Yurdumuzda doğal yayılış gösteren tek Cupressaceae türü……………………………’dır. denir. 110- Herhangi bir basamaktaki taksonomik gruplara ve birimlere ………………………….adı verilmektedir. 111- Yurdumuzda yayılış gösteren Juniperus türlerinin ikisini yazınız:………………………, ………………………………. 112- Angiospermlerde tipik bir çiçek iç içe şu halkalardan meydana gelmiştir; ……………….., …………………, …………………, ………………….. 113- Bitki tek eşeyli çiçeklere sahip ise……………………………………’dir. Bir çiçek dıştan içe doğru…………………………………halkadan meydana gelmiştir 114- Angiospermlerde ……………….olayına karşılık Gynospermlerde …………… …………….olayı gerçekleşmektedir 115- Anter………tekadan ibarettir. Bunların her biri……………………içerir. 116- Perigin bir çiçekle ovaryum…………………………………………….’dır. 117- Park ve bahçelerde kullanılan menekşe…………………………………………’dır. …………………………………….ve………………………..dere içlerinde görülen türlerdir. 118- Yol kenarlarında meyvesi basınçla patlayan ve tohumlarını fırlatan tür……………………...............................dır. 119- Turnagagası (………………) ile dönbaba (………………) arasındaki fark a –çiçeklerinden b-meyveden c-gövdeden d- yapraklarındaki özelliklerinden ayırt edilir 120-Apiaceae familyasında ……………...,bazen rasemus,korimboz dur. 121-Nicotianum,Capsicum,Atropa ,………..……………… familyası üyeleridir. 122-Boya elde edilen 3 bitki……………………………………………………………….. 123-Tomurcukları yiyeceklere lezzet veren bitki………………………………(dikenli kebere)dir 124-Brassicaceae familyasından……………………….(çobançantası)da meyveler üç köşelidir. 125-……………………………….(ormangülü)de zehirli bir alkoloid olduğundan balda deli bal oluşur. 126- ………………………(dam koruğu) sukkulent otsudur. 127- Rosaceaden böğürtlen diye bilinen tür……………………………..dir. 128- Isparta ve Budur’da Rosaceae den………………………………….nın kültürü yapılır Oleum Rosal gül yağı elde edilir. 129- Aşağıda Türkçe isimleri verilen türlerin Latincelerini yazınız. Ayva……………………………………. Söğüt…………………………….. Çilek……………………………………..Kavak……………………………. Funda…………………………………….Kocayemiş………………………. Kebere……………………………………Çay………………………………. Binbirdelikotu…………………………….Pamuk 130- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum………………………………… Vitis vinifera …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena…………………Papaver roheas……………………………… 131- Genista,Spartium,Lupinus, Colutea ……………………….. familyası üyeleridir 132- ……………………………..nın hem liflerinden hem de uyuşturucu drogundan faydalanılır. 133-Cinnamomum zeylanicum,………………………………………………familyasına aittir. 134-Havuzlardasüs bitkileri olarak kullanılan sucul türler;…………………………………….. ………………………………………………………………’dır. 135- Ranunculaceae’nin ülkemizde…………………….cins………………….. türü yayılış gösterir. 136- Ranunculus kozmopolit olup, ülkemizde ……………..tür içerir. R…………………………R………………………………..R……………………örneklerdir. 137- Ginkoales ordosunu günümüzde yaşayan tek türü,………………………………….’dır. 138- Taxaceae familyasının ………………………cins ve yaklaşık………………..türü vardır. 139- Angiospermlerle Gymnospermler arasındaki farklar dan 3 ünü yazınız. 140- Aşağıdaki familyaların hangisinde ovaryum apokarptır? Papaveraceae b-Cruciferae c- caryophyllaceae d- Ranunculaceae e.Berberidaceae 141- Üyelerinin yumrularından salep elde edilen aile; …………………………………’dir. 142- Fabaceae üyelerinde meyve;……………………………………………………….’dir. 143- Türkiye’de yayılış gösteren ladinin Latince tür ismi,………………………………’dir. 144- Üyelerin çoğunu uçucu (eterik) yağ içermesi ile önemli familya hangisidir? Capparaceae b-Lamiaceae c-Cruciferae d-Boraginaceae e-Dipsacaceae 145- Tetradinamus durumlu stamenleri, bilateral simetrili ve 4 petalli çiçekleri, silikua veya silikula meyvesı ile kolayca ayrılan aile……………………………………………..’dir. 146- Citrullus lanatus, a-kabak b-kavun c-salatalık d-karpuz’dur. 147- Ovaryum içindeki tohum taslaklarının düzenlenişine………………………denir. 148-Rosaceaefamilyasına ait iki bitki türü yazınız……………………………………………... 149- Yaprakları vertisillat dairesel çıkışı ile tanınan …………………..familyasıdır. 150-Monodelfus ……………………diadelfus……………….andrekeum demektir 151- Euphorbiaceae’nin çiçekleri spika, panikula veya………………………..durumlarında toplanmıştır. 152- Boraginacea familyasında stilus çoğunlukla……………………tir. 153- Lamiaceae’de stilus……………………………………………..özelliktedir. 154-Liliaceae’de ekonomik olarak kullanılan iki bitki……………………………………….dır. 155- Gymnospermler…………………………………….embriyo taşımaktadır. 156- Poaceae’de yaprak ayasının kın ile birleştiği yerde çoğunlukla küçük, zarsı dik bir ………………………….bulunur. 157- Aşağıdaki bitkilerin Türkçe isimlerini yazınız: Brassica oleracea:………………………… Capsicum annuum:………………………. Fragaria vesca……………………… Helianthus annus:……………………….. Coffea arabica:…………………………… 158- Papaveraceae familyasının iki önemli özelliğini yazınız. a-…………………………………………………………………… b- …………………………………………………………………… 159- Yurdumuzda Cupressaceae familyasına ait…………………………………ve …………………………………….cinsleri yayılış gösterir. 160- Paris quadrifolia botanik isminde epitet, bitkinin; a- Paris’te bulunduğunu b-Dört yapraklı oluşunu c-Dört çiçekli oluşunu d- Hem Paris’te bulunduğunu hem de dört yapraklı oluşunu belirtmektedir. 170-Yurdumuzda en çok tür içeren Gymnosperm cinsi, 8 türü bulunan…………………………’dir. 171- Rosaceae familyasına ait bir çok ağaçsı türün a. Meyveları b. Tohumları c. Çiçekleri d. Tomurcukları gıda maddesi olarak çok önemlidir. 172- Aşağıdakilerden hangisi Pinaceae familyası üyesi değildir? A. Cedrus b.Picea c.Abies d. Sequoia 173- Abies nordmanniana subsp bormülleriana……………………..’de yayılış gösterir. 174- Aşağıdaki bitkilerin Latince isimlerini yazınız: Buğday:……………………… Çiğdem:………………………. Arpa:………………………… Hindistan Cevizi:……………. Papatya:……………………… 175- Cocos nucifera:………………………………………………..familyasının bir üyesidir. 176- Liquidambar orientalis……………………………..familyasına dahil olup, tıpta kullanılan…………………………yağı elde edilir. 177- Monokatil ve dikotil arasındaki farkları (3) yazınız. 178- ………………familya üyeleri uçucu ve aromatik yağ içermelerinden dolayı parfümeri sanayinde önemlidir. 179- Aktinomorf simetri………………………………..demektir. 180- Bilabiat, korollanın kaliksin ……………………………bölünmüş olması demektir. 181- Caryophyllaceae familyasının en belirgin özelliği……………………………..olmasıdır. 182- Ginobazik, stilusun ……………………………..çıkmasıdır. 183- Kapitulum çiçek durumunu………………….familyasınının ayırt edici özelliğidir. 184- Monoik bitki……………………………. ……………………demektir. 185- …………………………………..(hurma) da yapraklar……………….dir. 186- Irıdacea üyelerinde stamenler …. tane, Colchicumlar da ise………..tanedir. 187- Orchis …………………familyası üyesidir ve yumrularından…………elde edilir. 188- ………………… familyası çok tüylü ve korolalarındaki ……………….......dan ayırt edilir. 189- Lamiacea familyasında gövde……….. …,çiçek ……………….tır 190- Monocotyledon larda yaprak damarlanması………………. Kök………………….tır. 191 a-Luzula b-Schoenoplectus,c- Carex, d-Tradescantia Juncaceae familyasındandır. 192-Genellikle bataklık yerlerde yaşıyan a-Panicum b- Phragmites c- Cyperus d-Urginia 193- a- Crocus b-Pancartium c- Narcissus d-Cynodon Liliacea familyasındandırlar 194- a-Allium b- Fritillaria c- Muscari d-Scilla süs bitkisi olarak yetiştirilir. 195- Arecacea familyasından……………….. nun meyvesından Hindistan cevizi yağı elde edilen tür 196- Boya bitkisi olarak bildiğiniz 3 bitki ismi yazınız 197- Cichona,Asperula ……………………..familyasındandır 198- Aslan ağzı olarak bilinen…………………………., ve sığırkuyruğu Scrophulariaceae üyesidir. 199- Kalp kuvvetlendirici glikositler taşıyan bitki a- Scrophularia b- Veronica c- Digitalis d Euphasia dır 200- Oleaceae familyasının 3 üyesini yazınız. 201- Coridothymus, Stachys, Marrubium…………………… familyası üyeleridir. 202- Yapraklarını çay baharat olarak kullandığımız 3 tane bitki ismi yazınız 203- Alkollü içki yapımında kullanılan Apiaceae üyesi…………………….dir 204- Havuç……………………….. kültürü yapılan bir bitkidir. 205-İzmir Çeşmede gövdesi yaralanılarak sakız elde edilen bitki türü………………………..dır. 206-Fabalesin3 familyası 1-…………………..2……………………..3……………………..dır 207- Gövdeleri dikenli çalı olan böğürtlen (………………………………….) dir 208- Spata yı ……………….. familyasında görebiliriz. 209- Yucca ……………………..familyasındandır. 210- Taksonomik olarak farklı ve coğrafik olarak sınıflandırılmış populasyonların oluşturduğu kategori;…………………………………………..dür. 211- Aşağıda Türkçe isimleri verilmiş bitkilerin Latincelerini yazınız: Doğu Ladini:…………………………… Lübnan Sediri…………………….. Uludağ Köknarı:……………………….. Karaçam………………………….. Ardıç (Cüce ardıç)……………………… 212- Türkiye’de………meşe türü vardır bunlardan 3 ü aşağıdakilerdir …………………….. …………………… 212- Hypericum perforatum………………. …..familyasındandır 213- Ihlamur (……………….) nın………………. ve ………………. den çay yapılır. 214- Dere içlerinde yayılış gösteren 3 bitki yazınız 215- 5 tane maki 5 tane orman bitkilerimize örnek veriniz 216- Bir fabaceae çiçeğini çiziniz? 5 tane bu familyaya ait örnek veriniz 217- Boraginaceae familyası tanıtan 2 özelliğini yazınız a…………………………………………… b…………………………. 218- Lamiacea üyelerini tanıtıcı 2 özelliği belirtiniz a…………………. b…………………………………… 219- Aşağıdaki bitkilerin Latince isimlerini yazınız Buğday…………………….Papatya…………….Nohut………….. Portakal……………………Ebegümeci………………….Hardal…………….. Ihlamur…………………….Funda ……………Karabaş……………Karanfil 220- Aşağıda Latinceleri verilen türlerin Türkçe isimlerini yazınız. Hypericum…………………………………Verbascum …………………. Juglands regia…………………………….Astragalus …………………………. Pimpinella ……………………….. Pistacia lentiscus …………………….. Prunus domestica…………………………Quercus cocifera………………….. Solanum melongena………………… Papaver roheas 221- Salvialarda anterlerin özelliği nedir? (Şekil le de anlatabilirsiniz) 222- Yüksük otu (…………………….) familyasın dandır 223- Arum larda …………….. ….in altında dişi üst kısmında erkek çiçekler bulunur 224- ……………. lerin yumrularından sahlep elde edilir. 225- Bir gramineae çiçeği çiziniz ve kısımlarını belirtiniz? 226- Angiosperm lerle Gymnosperm ler arasındaki 3 farkı yazınız?

http://www.biyologlar.com/tohumlu-bitkiler-sinav-sorulari

 
3WTURK CMS v6.03WTURK CMS v6.0