Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1460 kayıt bulundu.

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Aids

AİDS insan vücudunun immün sistemini yok eden ve bir dizi belirtilerle karakterize olan bır immün (bağışıklık) yetersizlik sendromudur. ""Normal olarak immün sistemi beyaz kan hücreleri ve vücuda mikroplar girdiğinde bunları etkisiz hale getirmek üzere oluşan antikorlar meydana getirir. Bu hücrelere T hücre lenfositleri adı verilir. Aids Belirtileri: Uzun süreli açıklanamayan yorgunluk. Lenf nodüllerinin açıklanamayan şişliği On günden daha uzun süren ateş Gece terlemesi Açıklanamayan kilo kaybı Derideki renk bozulumu ve iyileştirilemeyen mukoz membran iltihapları ilerleyen açıklanamayan öksürük ve boğaz ağrısı. Nefes darlığı ilerleyen üşüme Devamlı ishal. Ağızda mantar enfeksiyonu Kolay yaralanma ve açıklanamayan kanama Zihinde karışıklık ve sonunda koma. AIDS'Iİ kişilerde HIV-I denilen virüs tipi bu T hücrelerinin içine girer ve çoğalmaya başlar. Daha sonra da bu hücreleri öldürür. AİDS'ti kişilerde bt. imha immün sistemi zayıf bir hale getirir. Bu durumda ayrıca değişik enfeksiyonların ve tümörlerin ortaya çıkışı da kolaylaşır. HIV-I virüsüne ayn zamanda HTLV-III LAV ARV virüsleri de denilir Virüs değişik yollarla örneğin damardan kirli iğne-lerle yapılan iğneler cinsel ilişkiler veya anneder çocuğa olmak üzere vücuda girerler. Virüs T hücrelerinin içine girer ve çoğalır. Birkaç ay içinde vücut bu virüse karşı antikor üretir. Kan testleri bu yüzden pozitif bir sonuç verir. Semptomlar 1-2 haftada gelişir. Bunlar virüs vücuda girdikten birkaç ay sonra başlar. Bu sırada kanda antikor oluştuğu için ELİSA ve VVestern Blot gibi tahlillerle teşhis konulabilir. Semptomlar enfeksiyöz mononükleozu andırır ve lenf nodüllerinde şişme ağrılı boğaz ateş sıkıntı ve deri döküntüsü gibi durumları içerir. Semptomlar bir süre sonra azalabilir ve birkaç yıl hiç görülmeyebilir. Bu zaman zarfında vücuttaki virüs miktarı önceleri yavaş sonraları ise hızlı bir şekilde artar. Bu artışa paralel olarak T hücreleri azalır. Kişi bundan sonra AİDS'e sebep olan virüs enfeksiyonuna yakalanmış demektir. Fakat henüz AİDS tam meydana gelmez. Bununla birlikte kişi diğer insanlara bu virüsü bulaştırabilir. T hücreleri ortadan kalktığında immün sistem çöker ve vücutta çok kolay enfeksiyon ve tümörler meydana gelir. Lenf bezleri şişmesi düşük dereceli ateş gibi immün sistemin zayıflamasının işareti ola-rak bilinen semptomlar meydana geldiğinde hastalık AİDS Related Complex (ARC) adını alır. İmmün sistemin büyük çapta zayıflamasından sonra tüm belirtilerin tamamen belirmesi durumu ortaya çıkar ki bu da fırsatçı enfeksiyon durumunu içerir. (Fırsatçı enfeksiyon vücudun immün sistemi şiddetli bir şekilde bozulduğunda vücuda istila edebilen bakteri veya virüsler tarafından oluşturulur.) AİDS'in bütün etkileri virüs enfeksiyonunu takiben 5-10 yıl içinde gelişir. Ölüm ortalama 2-3 yıl içinde bu etkiler nedeniyle meydana gelebilir. Bu hastalık yeni tanımlanabilmiştir ve doğal yapısı konusundaki bilgilerimiz birkaç yıl içinde değişebilir. AİDS şu anda büyük bir salgındır. On yıl önce bu ülkede AİDS bilinmiyordu. Bugün halkın ilgi alanına giren büyük bir olaydır. Ocak 1981'den Ocak 1990'a kadar 140.00 Amerikalıya AİDS teşhisi konmuştur. Bu grubun yarısından fazlası semptomların ortaya çıkmasını takip eden 4 yıl içinde ölmüştür insanların bir çoğu da kanlarında AİDS virüsü taşımakta olup sonunda AİDS gelişecektir. Dünya Sağlık Organizasyonunun tahminlerine göre dünyadaki AlDS'li hasta sayısı 500.000 civarındadır. Diğer taraftan Amerika'da 1-1.5 milyon diğer ülkelerde 5-10 milyon AİDS virüsü taşıyan insan vardır. Muhtemelen bu insanların sayısı da gittikçe artmaktadır. AlDS'li hastalar ikiye ayrılır. Homoseksüel ve biseksüel erkekler ve iğne ile uyuşturucu kullanan erkekler ve kadınlar. Riskli olan diğerleri ise AlDS'liyle cinsel ilişkide bulunanlar AİDS virüsü taşıyan kadınların çocukları ve 1977-1985 Nisan'ı arasında çeşitli nedenlerle kan nakli yapılmış kişilerdir. Bu hastalığın kadından erkeğe erkekten kadına cinsel ilişkiyle geçebildiğini vurgulamak istiyoruz. Prezervatif kullanarak virüs geçişini azaltmak mümkün olabiliyorsa da tam korunma sağlanamaz.

http://www.biyologlar.com/aids

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

Biyolojinin Önemi

Doğumdan ölüme kadar yasamin her evresinde bilinçli ve saglikli yasama , ekonomik gelismeyi sürekli kilma , çevreyi bozulmadan tutma , üretimin kalitesini ve miktarini artirmada biyoloji bilimi önemli yer tutar. Temel bilim olan biyoloji , canli ve doga ile ilgili her konuyu içine almaktadir , bu bakimdan arastiran düsünen insana sinirsiz sayida çalisma olanagi saglar. Burada basarili olmanin en önemli sirri, düsünerek dogayi izlemektir . Doganin bilinçsiz kullanilmasi , insan ve diger canlilarin yasami için tehlikeli sonuçlar ortaya çikarir . Çevre kirlenmesi , erozyon , madde kaybi , yesil alanlarin azalmasi , hizli nüfûs artisi , plânsiz kentlesme , biyolojik zenginliklerin ortadan kalkmasi bu sorunlarin basinda gelir. Örnegin orta Anadolu'nun çöllesme tehlikesi ile karsi karsiya kalmasi , nehirlerin kirlenmesi , kiyi güzelliklerimizin bozulmasi , dogal kaynaklarimizin iyi kullanilmamasi sonucunda ortaya çikan sorunlardir . Biyoteknoloji alanindaki çalismalarla , atik maddelerin temel yapilarina kadar parçalayabilen mikroorganizmalar kullanilarak daha temiz bir çevrenin yaratilmasi saglanacaktir . Biyoteknolojinin amaci , bir canlinin belirli özelliklerini sifreleyen genetik bilginin bir baska canliya nakledilmesidir . Böylece nakledilen bilginin geregi , ikinci canli tarafindan yerine getirilir . DNA molekülünün yapisi üzerinde yapilan bu degisiklikle amaca yönelik üretim yapilir . Biyoloji ; uygulama alanlarin olan tip , tarim , hayvancilik , ormancilik , endüstri ve diger alanlardaki çalismalar sayesinde , insanlarin gelecege daha umutla bakmalarini saglayan genis bir bilim dali olmustur . Biyoloji ile ilgili bilgilerin eksikligi , ne yazik ki basta çevrenin bozulmasi , önlenmesi mümkün olmayan saglik sorunlarinin ortaya çikmasi , dogal kaynaklarin sürekli ve verimli olarak kullanilmamasi , biyolojik zenginliklerden yeterince yararlanilamama gibi sorunlar dogmustur . Biyoloji ile bireyin kendisini ve çevresini tanimasi , çevresini koruma bilincini kazanmasi hedeflenmistir . Biyoloji bilgisine sahip olmanin bireyin yasamina getirecegi yararlar çevresini tanima , sagligini koruma biyolojik zenginlikleri tanima ve onlardan yararlanma , canlilarin temel yapisini ögrenme olabilir . Çevrenin bozulmasi ve kirlenmesine iliskin bilgi ve bilinci gelistirme , arastirma duygusunu ve kisiligini gelistirme , son gelismeleri tanima ve 21. yüzyila hazirlanma biyolojinin saglayacagi diger yararlarindandir . Biyoloji bilimine yeterli önemin verilmemesi sonucunda ortaya çikan sorunlar sunlardir : Çevrenin bozulmasi ile ilgili sorunlar : Erozyon , sulak alanlarin kurutulmasi , denizlerin ve göllerin kirlenmesi , ormanlarin ve meralarin tahrip edilmesi , Birçok canli türünün ortadan kalkmasiyla biyolojik çesitliligin azalmasi ve doga dengesinin bozulmasi , Canlilarin asiri ve yanlis tüketiminden dolayi , dogal kaynaklarin tahrip edilmesi , gibi sorunlar çevrenin bozulmasina sebep olurlar . Saglikla ilgili sorunlar : Yanlis beslenmeye bagli birçok hastalik , Akraba evliligine bagli anomalilerin artmasi , Kalitsal bozukluklarin zamaninda tanimlanamamasina bagli olarak sagliksiz soylarin ortaya çikmasi ve bunlar gibi birçok sorunlar . Ekonomiyle ilgili sorunlar Dünyanin en önemli kültür bitkilerini ve hayvanlarini barindiran ülkemizde , islah çalismalarinin yapilmamasi ve üretimin gereken sekilde artirilmamasi , ekonomik sorunlardandir . Sosyal yapiyla ilgili sorunlar : Çevre bozulmasina yada yaslanabilir bir çevre olusturulmamasina bagli olarak göçe sürüklenme , Saglikli ve güzel ortamlarda çocuklarin yetistirilmemesine bagli olarak , bedensel ve ruhsal yetersizlikler , sosyal yapiyla ilgili sorunlardir . Biyolojinin Gelecegi Dünyamizin kaynaklari , sürekli çogalan ve tüketimi gittikçe artan ,nsan topluluklarina yeterli olmayacak duruma gelmistir . Denizler , iç sular ve atmosfer kirlenmis , toprak yapisi yer yer yenilenemeyecek kadar bozulmustur . Tüm dünya yasam tehlikesine dogru sürüklenmektedir . Çözüm yolu , bazi yöntemlerle birlikte biyoloji bilimine dayanmaktadir. Önümüzdeki yüzyilin basinda su gelismelerin olmasi beklenmektedir . Insan topluluklarinda kalitsal hastaliklara neden olan genler , döllenme sirasinda saglamlariyla degistirilecek kanser , düsük ve yüksek tansiyon, seker hastaligi , cücelik v.b. hastaliklar önlenebilecekler . Canlilarin ömür uzunlugunu kalitsal olarak denetleyen genler kontrol altina alinarak yada degistirilerek , uzun bir yasam saglanabilecektir . 1996 yilindan bu yana ana karnindaki bir fetusun ne kadar yasayacagi artik tahmin edilebilmektedir . Bir canlida özelligi bir özelligi ortaya çikaran gen yada genler , diger canlilarin kalitsal yapisina eklenerek bazi eksikler bu yolla giderilebildigi gibi fazladan bazi özelliklerinde kazanilmasida saglanacaktir . Örnegin ; C vitamini karacigerde sentezlettirilecegi için vitamin olmaktan çikacaktir . Bitki ve hayvanlarin islahinda olaganüstü atilimlar gerçeklesecek , verim artirilacak bir çok maddenin sentezi özellikle büyük miktarda mikroorganizmalarda yaptirilabilecektir . Genlerdeki degisiklikler sonucu yeni hayvan ve bitki türlerinin ortaya çikmasi saglanacaktir . Yenilenme mekanizmasi aydinlatilacagindan kismi doku ve organ yitirilmeleri yerine konulabilecektir . Bugüne kadar doku ve organ nakli tekniginde , doku uyusmazligi nedeniyle basarisizliklar olmustur , ancak bu sorun doku ve organ nakli teknigindeki gelismelerle asilmaktadir . Bunun için simdiden organ bankalarinda çesitli organlar gerektiginde kullanilmak üzere korunmaktadir . Su anda genellikle sperm , kemik , deri ve bazi özel dokular saklanabilmektedir . Yakin gelecekte ise çesitli doku ve organlar , bir bütün olarak yapilari bozulmadan saklanabilceklerdir . Canlilardaki genlerin bütünü kataloglanabilecek , bunlarla ilgili bankalar kurulacak . Ilaç sanayii biyoteknolojik yöntemleri genis oranda kullanilacagi için birçok ilacin etkili ve ucuza üretilmesi saglanacaktir . Bütün bunlarin yaninda tehlikeli olabilecek mikroorganizmalari üretmek , dogal yasam görüntüsünü kismen de olsa bozma gibi biyolojik gelismelerin dogurabilecegi sakincalarida vardir.

http://www.biyologlar.com/biyolojinin-onemi

Doku Kültürü Histoloji

Canlıdan alınan hücreleri uygun ortamda invitro olarak yaşatıp üretmek ve bunlar üzerinde inceleme yapmak esasına dayanır. Kültür ortamı olarak fizyolojik sıvılarla beraber kan plazması ya da embriyonal doku sıvıları kullanılır. Doku kültürü lamlarının ortası oyuk olup kültür sıvısı ve taze doku parçası buraya konur. Koyduğumuz doku içindeki canlı hücreler kültür sıvısında, 37°C ısıda canlılıklarını korurlar ve kısa bir süre sonra üremeye başlarlar. Bu hücreler canlı olarak faz kontrast mikroskobu ile incelenebilirler, vital boyalarla boyanabilirler.Ayrıca kültür sıvısına bazı maddeler eklenerek bu maddelerin canlı hücreler üzerine etkileri araştırılabilir.Otoradyografi Organik ya da inorganik bileşikler halinde organizmaya verilen radyoaktif elementler vücutmetabolizmasına katılır. Özellikle o maddenin sürekli ve hızlı kullanıldığı yerlerde kısa sürede o elementin yerini alır (iyotun tiroid bezlerinde tutulması gibi). O dokuya ait histolojik kesitlerde radyoaktif elementin saldığı ışınların bir fotoğraf plağını etkilemesiyle ortaya çıkan görüntünün incelenmesi bu yöntemin esasını oluşturur. Otoradyografide kullanılmaya elverişli radyoizotoplar, radyoakitf karbon, trityum, fosfor, kükürt ve iyottur.Histokimya Çeşitli organik ve inorganik maddelerin doku içindeki varlığını, miktarını, yerleşme özelliklerini ortaya koyan bir çalışma yöntemidir. Bu yöntem, aradığımız madde üzerine bu madde ile reaksiyona giren renkli bir maddenin çöktürülmesi esasına dayanır. Ya da başka bir ifade ile sadece aradığımız maddenin bulunduğu yerlerin kullandığımız boya ile boyanıyor olmasıdır. Örneğin, Prusya mavisi ile doku içindeki demirin, PAS (periyodik Asit Schiff) ile polisakkaritlerin varlığını, hatta miktarını ortaya koymak mümkündür. Renkli maddenin koyuluğu o bölgede aradığımız maddenin yoğunluğu hakkına bilgi verir. Daha kantitatif sonuçlar elde etmek için fotometrik çalışmalar bu yönteme eklenebilir.Kaynaklar: Aykaç İ., Histolojik ve Histoşimik Boya Teknikleri, Atatürk Üniversitesi Yayınları, Erzurum, 1977.Bancroft J.D., Stevens A., Theory and Practice of Histological Techniques, Churchil Livingstone, Edinburg, London and New York, 1977.Biological stain commision, Stainin Procedurs, Second Ed., The William Wilkins Comp., Baltimore, 1960.Bloom W., Fawcet D.W., A Texbook of Histology, IIth Ed., Sounders Compi Philadephia, 1986.Buck H.C., Histologishe Technic, Georg Thieme Verlag, Stuttgart, 1933.Erkoçak A., Genel Histoloji, Ankara Üniversitesi Yayınları, Ankara, 1978.Gabe M., Histological Techniques, Masson Springer Verlag, Paris, 1976.Johnson K.E., Histology and Cell Biology, Williams Wilkins Comp., Baltimore, Maryland, 1991.Kayalı H., Genel Histoloji, Taş Matbaası, İstanbul, 1985.Knoche H., Leitfaden der Histologischen Technik, Gustav Fischer Verlag Stuttgart, 1979.

http://www.biyologlar.com/doku-kulturu-histoloji

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

Bitkilerde Su İletimi

Yukarıda incelenmiş olan temel mekanizmalar ile topraktan su ve mineral madde alarak gene bu mekanizmalarla kabuk parankiması hücrelerine iletirler. Kabuk parankimasında da benzeri mekanizmalarla hücreden hücreye iletilen su ve mineral maddeler merkez silindirdeki cansız ksilem elementlerine, trake veya trakeidlere girerek kılcallık ve özellikle yaprakların stomalarındaki terlemenin sağladığı negatif basınçla, emişle yerüstü organlarına iletilir. Ancak uyku dönemi sonunda çok yıllık bitkilerde ilk yapraklar oluşuncaya kadar su yürümesi adı verilen ve tümüyle depo karbohidratlarının sindirimi ve solunumla yakılmasından elde edilen enerjiye dayalı kök basıncı ve kılcallıkla su iletimi görülür. Bitki yeni yapraklar fotosentez yapar hale gelinceye kadar da depolarının çok büyük kısmını eritir. Emici tüylerin sıklığı ve yenilenme hızı köklerin beslenme etkinliğinde önemli yer tutar ve bitki taksonları arasındaki rekabette çok önemli yer tutarsa da suberinleşmiş bölümler de lentiseller aracılığı ile bu kapasiteye önemli oranda katkıda bulunur. Toprak çok kuru veya soğuk olduğunda kök büyüme hızı çok büyük oranda düşer ve kök sisteminin süberinleşmemiş, hızlı büyüyerek toprağın nemi kullanılmamış kısmına doğru yürüyen kısmın oranı çok azalır. Buna karşılık kurak yaz aylarında ve herdem yeşil bitkilerde kış aylarında da terleme sürer, bu dönemlerde gerekli su alımının lentiseller ile çatlak ve yaralardan yayınımın oranı artar. Ölü kökler de suya karşı hiç direnç göstermediklerinden önemli katkıda bulunurlar. Özellikle odunlu bitkilerin köklerinin su ve suda çözünmüş besin elementi alınımında mikorhiza adı verilen mantarlar önemli rol oynar. ve ekto-mikorhiza şeklinde ikiye ayrılan, Korteks hücrelerinde misel ve kök yüzeyinde hif oluşturan endo- ve dışta gelişip korteks hücreleri arasına giren ekto- mikorhiza tipleri beraber gelişebilir ve toprağın su miktarına göre oranlarında değişim görülür veya kök sisteminin ana kök dışında ince köklerden oluştuğu sistemlerde yalnız endomikorhiza gelişir. Abietinae, Salicaceae, Betulaceae ve Mimosoidae familyaları ağaçları uzun ve kısa köklerden oluşan kök sistemlerine sahiptir. Hızlı büyüyen ve çok yıllık uzun köklerde mikorhiza gelişmezken 1 yıl ömürlü lateral kısa köklerde gelişir ve dallı yapıları ile kökün emici yüzeyinin çok artmasını sağlarlar. Özellikle verimsiz topraklarda ağaçların beslenmesine büyük katkı sağlarlar. Bu nedenle de erozyona uğramış toprakların ağaçlandırılmasında köklendirilmiş çeliklere mikorhiza inokülasyonu yapılması önerilir. Mikorhizanın gelişimi için toprak suyunun tarla kapasitesine yakın ve köklerdeki karbohidrat oranının yüksek olması gerekir, toprak fosfor ve azotça fakir olduğunda büyüme yavaşlar kökte karbohidrat birikebilir ve mikorhiza hızla gelişir. Bu da erozyona uğramış fakir topraklarda sık görülen bir durumdur. Epidermisden kortekse kadar enine iletimin bir kısmı plazmodezmler aracılığı ile olur ve bu enterkonekte sitoplazma sistemine simplazm adı verilir. Kaspari şeridine kadar olan su ve mineral iyonlarının iletiminin önemli bölümü ise korteks hücre çeperleri üzerinden gerçekleşir. Kaspari şeridi hücrelerinin çeperleri yağ asitleri polimeri olan süberinli ve sellülozik olmayan, pektin gibi polisakkaritler yanında az miktarda protein ve sağlam bir yapı oluşturmalarını sağlayan Ca ve diğer bazı makroelementler yanında silikatlar içeren çeperlerdir. Pektin esas olarak 1,4-bağlı a-D-galakturonik asitten oluşur ve karboksil gruplarının ( - ) yükleri Ca kelasyonu ile çok sıkı bağlı zincirli sağlam yapının oluşmasını sağlar. Bu anyonik yapı katyon / anyon alım dengesini katyonların lehine çeviren ve plazmalemmadan çok daha etkili şekilde iyonlar ve diğer maddelerin alımını sağlayan yapıyı oluşturur. İyonların hücre çeperlerini enine olarak geçmelerini ve plazmalemmaya da ulaşmalarını sağlayan ana mekanizma çeper porlarını dolduran su kanallarında gerçekleşen yayınımdır. Hücre çeperlerinin ve çepere bitişik GSA yayınım sabiteleri plazma membranlarınınkinden 10 - 100 000 kat daha fazladır ve plazmalemma kanalları genelde hücrelerin yüzey alanının ancak %0.1 - 0.5 kadarını oluşturur. Ksilemdeki iletim hücrelerinin hücre çeperlerindeki geçitler üzerinden de benzer şekilde enine iletim olur. Ksilem parankiması hücreleri de depo parankiması görevine sahip olan canlı hücrelerdir. Kökteki canlı hücrelerin canlılıklarını sürdürebilmeleri, büyüme, gelişme ve bölünmeleri, aktif alım ile iletim gibi enerji gerektiren etkinlikleri için organik madde sağlarlar. Yeşil yerüstü organlarında üretilen bu maddeler floem tarafından sağlanır. Terleme - transpirasyon su ekonomisinde ve dolayısı ile de mineral beslenmesinde çok önemli yer tutarsa da terleme olayı fotosentezle de çok yakından ilişkili olduğundan fizyolojisi daha sonra incelenecektir. Terlemenin yarattığı su potansiyeli farkı ile sağladığı emiş gücü yanında kılcallık ve suyun yüksek yüzey geriliminin sağladığı kohezyon kuvvetiyle su ağaçlarda toprağın derinliklerinden taçlarına kadar iletilmektedir.

http://www.biyologlar.com/bitkilerde-su-iletimi

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

Balıklarda Üreme

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs

http://www.biyologlar.com/baliklarda-ureme

Biyologlar Hakkında Kanun Teklifi Maddelerinin Gerekçeleri

BİRİNCİ KISIM BİRİNCİ BÖLÜM Amaç,Kapsam ve Tanımlar MADDE 1- Bu madde ile bu kanunun amacı Biyologların yetki ve sorumluluklarının belirlenmesi ve Biyolog Odaları ile Türkiye Biyologlar Birliğinin kurulması,işleyişi ve faaliyetlerine ilişkin esas ve usuller belirtilmiştir. MADDE 2- Bu madde ile kamu ve özel kurum ve kuruluşlarında çalışan biyologlar ile gerçek ve tüzel kişileri kapsadığı belirtilmiştir. MADDE 3- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir. İKİNCİ BÖLÜM Biyolog Unvanının Kazanılması, Görev, Yetki ve Sorumluluklar MADDE 4- Biyologların mesleki görevlerini düzenli, sürekli, verimli bir şekilde yürütebilmeleri için görev yetki ve sorumluluklarının belirlenmesi amaçlanmıştır. Ayrıca Türkiye'de mevcut Fen ve Fen-Edebiyat Fakültelerinin ve ayrıca Eğitim Fakültelerinin de biyoloji bölümlerinden değişik lisanslarla lisans diploması verilmesi kavram kargaşası yaratmaktadır. Bu nedenle bu meslek grubunun tarifine ihtiyaç duyulmuştur. MADDE 5- Biyologların çalışma alanları ve bu alanlarda neler yapabilecekleri genel olarak belirlenmesi amaçlanmıştır. Ayrıca resmi kurum ve kuruluşlarda çalışan biyologların mesai saatleri dışında da mesleklerini serbestçe yapabilmeleri amaçlanmıştır. MADDE 6- Biyologların yetkili olarak çalıştıkları alanların tarifi amaçlanmıştır. MADDE 7- Değişik hizmet sektörlerinde çalışan biyologların çalışma alanlarına göre yetki ve sorumluluklarının tek tek belirlenmesi amaçlanmıştır. MADDE 8- Özellik arz eden birim ve alanlarda çalışacak olan biyologların yeterlilik belgesi almalarının gerektiğini açıklamak için düzenlenmiştir. MADDE 9- Biyologların sahip oldukları belgelerle çalışabilecekleri alanlar tarif edilmiştir. MADDE 10- Biyologlara kanun ve yönetmeliklerde verilmemiş görev ve sorumluluklar ile başka adlar altıda çalıştırılamayacakları ifadede edilmek istenmiştir. ÜÇÜNCÜ BÖLÜM Meslekte Yeterlilik, Danışma Kurulu MADDE 11- Biyolog unvanını kullanan kişiler, gelişen bilim, teknoloji,yeni uygulamalar ve ülkenin gereksinimleri doğrultusunda mesleki bilgi ve becerilerini ilgili bakanlıkların,meslek birliklerinin, üniversite ve diğer ilgili kurum ve kuruluşların birlikte belirliyecekleri esaslar çerçevesinde sürekli geliştirmekle yükümlüdürler. Bu konu çeşitli eğitim düzeylerinden mezun olan biyologlar açısından da çok önemlidir. Biyologların eksik ve yanlış uygulamalarının önüne geçilebilmesi amacıyla bu madde düzenlenmiştir. MADDE 12- Avrupa Birliği Konseyi kararları doğrultusunda Biyolog eğitim seviyesinin yükseltilmesi,verilen hizmetlerin kalitesinin artırılması için çalışmalar yapmak, önerilerde bulunmak, mesleki alanda Ülke içinde ve uluslararası kurum ve kuruluşlar arasında mesleki bilgi alışverişinde bulunabilmek için bu madde düzenlenmiştir DÖRDÜNCÜ BÖLÜM Serbest Çalışma MADDE 13- Mesleğin serbestçe yapılabilmesi için gerekli koşulların sağlanması amacıyla bu madde düzenlenmiştir. Biyologların lisans ve uzmanlık alanlarına göre çalışma alanlarına açabilecekleri işyerleri ve alabilecekleri sorumluluklara açıklık getirilmek istenmiştir. BEŞİNCİ BÖLÜM Çeşitli Hükümler MADDE 14- Diğer meslek gruplarının haklarının korunması amaçlanmıştır. MADDE 15- Biyologların çalışma alanlarında halen çalışmakta olanların haklarının korunması amaçlanmıştır. MADDE 16- Biyolog mesleğinin ve unvanının yanlış kişiler tarafından kullanılmasının önlenmesi amaçlanmıştır. MADDE 17- Mesleki yetkilerin, hangi durumlarda kullanılmayacağı açıklanmaya çalışılmıştır. MADDE 18- Hazırlanması gereken yönetmelik ve tüzükler için düzenlenmiş bir maddedir MADDE 19 ve MADDE 20 yürürlük maddeleridir İKİNCİ KISIM Türkiye Biyologlar Birliği Kanunu Amaç ve Kapsam MADDE 1- Türkiye sınırları içinde meslek ve sanatlarını kullanmaya yetkili olan biyologların üye olmak zorunda oldukları Biyolog Odaları ile Türkiye Biyologlar Birliğinin nitelik, amaçlarının ve kapsamlarının neler olduğu açıklanmak istenmiştir. MADDE 2- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir BİRİNCİ BÖLÜM Odalar MADDE 3- Biyologların üye olacakları Biyolog Odaların tanımı amaçlanmıştır. MADDE 4-Bu madde ile odaların kuruluş usulleri,temsilciliklerin açılışına ilişkin hükümler düzenlenmiştir. MADDE 5- Bu madde ile Oda organlarının neler olduğu belirtilmiştir. MADDE 6- Bu madde ile Oda Genel Kurulunun oluşumu düzenlenmiştir. MADDE 7- Bu madde ile Oda Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 8- Bu madde ile Oda Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 9- Bu madde ile Oda Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 10- Bu madde ile Oda Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 11- Bu madde ile Oda Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 12- Bu madde ile Oda Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 13- Bu madde ile Oda Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 14- Bu madde ile Oda Disiplin Kurulunun görev ,toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 15- Bu madde ile Oda Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 16- Bu madde ile Oda Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 17- Bu madde ile Biyologların mesleklerini icra edebilmek için Biyolog Odalarına kayıt olma zorunluluğu açıklamak amacıyla düzenlenmiştir. MADDE 18- Bu madde ile odaların çalışmalarının sürdürebilmek için edinecekleri gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. İKİNCİ BÖLÜM Türkiye Biyologlar Birliği MADDE 19- Bu madde ile Türkiye Biyologlar Birliğinin kuruluşu, amaçları ve nitelikleri açıklanmaya çalışılmıştır. MADDE 20- Bu madde ile Birliğin organları tarif edilmiştir. MADDE 21- Bu madde ile Birliğin Kurulunun oluşumu düzenlenmiştir. MADDE 22- Bu madde ile Birlik Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 23- Bu madde ile Birlik Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 24- Bu madde ile Birlik Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 25- Bu madde ile Birlik Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 26- Bu madde ile Birlik Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 27- Bu madde ile Birlik Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 28- Bu madde ile Birlik Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 29- Bu madde ile Birlik Disiplin Kurulunun görev, toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 30- Bu madde ile Birlik Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 31- Bu madde ile Birlik Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 32- Bu madde ile Birliğin çalışmalarının sürdürebilmek için edinebileceği gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. ÜÇÜNCÜ KISIM Ortak Hükümler BİRİNCİ BÖLÜM MADDE 33- Bu madde ile Oda ve Birlik organlarına seçilebilme yeterliliği için gerekli düzenlemeler açıklanmaya çalışılmıştır. Bu madde düzenlenirken 765 sayılı Türk Ceza Kanunundan istifade edilmiştir. MADDE 34- Bu madde ile Odalar ve Birliğin organlarının seçiminde yargı gözetimi,gizli oy açık tasnif esaslarının uygulanacağı,genel kurul toplantılarına katılacakların listesinin İlçe Seçim Kurulu Başkanlığına verilişine ilişkin usul ve esaslar ile listelere yapılacak itirazların incelenmesine ilişkin esas ve usuller düzenlenmeye çalışılmıştır. MADDE 35- Bu madde ile Odalar ve Birlik organlarının denetimin Başbakanlıkça hazırlanacak yönetmelikler doğrultusunda yapılacağı anlatılmıştır. MADDE 36- Bu madde ile uluslar arası toplantılara katılımın koşulları düzenlenmiştir. MADDE 37- Bu madde ile Oda ve Birlik organlarının seçim dönemleri düzenlenmiştir. İKİNCİ BÖLÜM Çeşitli Hükümler MADDE 38- Biyologluk mesleği üzerine yaptığı çalışma ve yayımladığı eserler dolayısıyla onur üyeliği verilecek olanlara ilişkin olarak bu madde düzenlenmiştir. MADDE 39- Bu madde ile Oda ve Birlik toplantılara katılma oy kullanma zorunluluğu düzenlenmiştir. MADDE 40- Bu madde ile Biyologların açtıkları laboratuarlarda yapılacak tahlil ücretlerinin düzenlenmesi amaçlanmıştır. MADDE 41 Bu madde Oda ve Birlik organlarında görev alacaklara verilecek olan ödeneklerin cins ve miktarının Genel Kurullarca kararlaştırılacağı düzenlenmiştir. MADDE 42- Bu madde ile Biyologların ikinci görev yasağı ve bildirim için yönetim kurullarının yetki ve sorumlulukları düzenlenmeye çalışılmıştır. MADDE 43- Biyologların kayıtlı bulunduğu odalar tarafından üyeleri için bir sicil dosyası tutulacağı, bu dosyanın özelliği, biyologların nakil, tayin, işten ayrılma ve benzeri değişiklikleri en geç bir ay içinde bulundukları yerin odalarına bildirme zorunluluğu bu madde ile düzenlenmiştir. MADDE 44- Bu madde ile verilecek disiplin cezaları,meslek mensubu hakkında savunma almadan disiplin cezası verilemeyeceği, disiplin cezalarına itirazın usul ve esasları ve cezaların tebliğinin nasıl yapılacağı düzenlenmiştir. ÜÇÜNCÜ BÖLÜM Ceza Hükümleri MADDE 45- Mesleği ile ilgili işlerde simsar kullanmak, simsarlık yapmak ve yetkisi olmadığı halde mesleği icra edenlere verilecek cezalar düzenlenmiştir. MADDE 46- Bu madde ile yasaklara ve bildirim mecburiyetine uymayanlara karşı yaptırımlar düzenlenmeye çalışılmıştır. DÖRDÜNCÜ BÖLÜM Yönetmelik MADDE 47- Bu kanunda çıkarılması öngörülen tüzük ve yönetmeliklerin kanunun yayımı tarihinden itibaren bir yıl içinde çıkarılması bu madde ile düzenlenmiştir. BEŞİNCİ BÖLÜM Kayıt Zorunluluğu MADDE 48- Bu madde ile Serbest çalışan biyologların çalıştıkları bölgede kurulu olan odalara en geç bir içinde üye olmaları düzenlenmiştir. ALTINCI BÖLÜM Geçici Hükümler Geçici Madde 1- Bu kanuna göre seçilmeye engel bir hali olmayan Biyologlardan Oda kurucusu olmak isteyenlerin tabi olacak kurallar düzenlenmiştir. Geçici Madde 2- Bu kanunun kapsadığı diğer biyologlar tarif edilmiştir MADDE 49- Yürürlük maddesidir. MADDE 50- Yürütme maddesidir. Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/biyologlar-hakkinda-kanun-teklifi-maddelerinin-gerekceleri

Serum lipitlerinin kalitatif ve kantitataif tayini

Bol miktarda C, H ve O nin yanı sıra az miktarda P, N gibi elementleri de taşıyan lipidler, suda çözünmeyen ancak eter, kloroform ve aseton gibi nonpolar organik çözücülerde çözünen bir grup organik biyomoleküldür. İnsan plazmasında bulunan başlıca lipidler kolesterol, kolesterol esterleri, triaçilgliseroller, fosfolipidler ve serbest yağ asitleridir. Dolaşımda lipoproteinler şeklinde bulunurlar. Lipoproteinler lipidler ile proteinlerin birleşmesinden meydana gelirler. ( Şilomikronlar, çok düşük yoğunluklu lipoproteinler, düşük yoğunluklu lipoproteinler, yüksek yoğunluklu lipoproteinler ) Serbest yağ asitleri plazmada albuminebağlanarak taşınır.Lipidlerin organizmada bir çok görevi vardır. Bunlardan yapısal eleman oluşu, enerji kaynağı oluşu, enerjinin uzun süreli depo şekli oluşu, vitaminlerin bazıları için çözücü oluşu ve önemli bazı bileşiklere ( safra asitleri, hormonlar vs ) kaynaklık edişleri en önemlileridir.1- 1- Zeytinyağının çözünürlüğü ve çift bağların doyurulması deneyi : Gliserol vedoymuş-doymamış yağ asitlerinden meydana gelen zeytinyağının kloroformda çözündüğünü ve çift bağların halojen katılarak doyurulması renk değişiminin incelenmesi ile izlenebilir. Bu amaçla 2 ml kloroform üzerine 3-4 damla zeytinyağı ilave edilerek çözünmesi sağlanır. Üzerine bromlu kloroformdan ( 1 ml/ 20 ml kloroform ) 1-2 damla ilave edilir. Örnek içerisinde doymamış yağ asidi bulunuyorsa ortamın rengi yavaş yavaş kaybolacaktır. Bu renk kaybı, bromun çift bağlara katılmasından dolayıdır. Sonuç, zeytinyağı damlatılmamış tüple ( kloroform ) karşılaştırılarak kontrol edilir.2- 2- Ester oluşturma deneyi : Esterler yağ asitleri ile alkollerin birleşmesinden meydana gelir. Bu reaksiyonu izlemek için bir deney tüpüne 1 ml etil alkol, 1 ml asetik asit ve 1 ml derişik H2SO4 konup birkaç dakika beklenir. Karışım, içerisinde su bulunan bir behere dökülürse asetik asidin iğneleyici kokusunun yerine asetik asidin etil esterlerinin hoş, meyve esansı kokusu meydana gelir. 3- 3- Serumda total lipid tayini : Total lipid tayini ile serumda mevcut tüm lipidler ( trigliserit, fosfolipid, kolesterol, yağ asdi vs ) tayin edilmiş olur. Trigliserid tayinin yapıldığı laboratuvarlarda total lipid tayinine gerek yoktur. Çünkü total lipid seviyelerinde meydana gelen değişiklikler genellikle trigliserid seviyesindeki değişiklikleri yansıtır. Fosfovanilin metodu ile total lipid tayinin prensibini, lipidin sülfürik ve fosforik asitli ortamda vanilin ile pembe renkli kompleks meydana getirmesi oluşturur. Reaktifler :1- Derişik H2SO44- 4- Renk reaktifi : 1 gr vanilin ısıtılarak distile suda eritilir, sonra çeşme suyu altında soğutmak sureti ile 400 ml ortofosforik asit ( % 84 ) karıştırılarak ilave edilir. Soğutulduktan sonra oda ısısında renkli şişede saklanır. Bu çözelti birkaç hafta stabildir.5- 5- Standart : 1 gr ( % 1000 mg ) saf zeytinyağı mutlak etanolde eritilir, son hacmi etanol ile 100 ml.ye tamamlanır. Bu hazırlanan çözeltiden % 600 mg lık çalışma çözeltisi hazırlanır. Deneyin yapılışı : Standart ve numune olarak işaretlenen tüplere aşağıdaki gibi pipetlemeler yapılır.Standart Numune Serum - 0.1Der H2SO4 2.0 2.0Standart ( % 600 mg ) 0.1 -Hazırlanan bu tüpler ağızları kapatılarak kaynar su banyosunda 10 dakika bekletilir. Musluk suyu ile soğutulur. Daha sonra standart, numune ve kör olarak işaretlenen tüplere aşağıdaki pipetlemeler yapılır.Kör Standart NumuneStandart karışımı - 0.1 -Numune karışım - - 0.1Der H2SO4 0.1 - -Renk reaktifi 2.5 2. 2.530 dakika oda sıcaklığında bekletilir. 560 nm de absorbanslar okunur. Aşağıdaki formüle göre total lipid miktarı hesaplanır.Total lipid miktarı : ( numune absorbansı / standart absorbansı )X standart konsantrasyonuTotal lipid miktarı hiperlipidemiler, diyabet, kronik pankreas hastalığı, hipotiroidizm,gut, hipofiz yetmezliğinde artarken, akut enfeksiyonlar, hipertiroidizm, hepatit ve bazı anemilerde azalır.

http://www.biyologlar.com/serum-lipitlerinin-kalitatif-ve-kantitataif-tayini

CANLILAR NASIL OLUŞTU VE GELİŞTİ

Yakın geçmişteki atalarımız acaba nasıl bir canlıydı?Daha önce neydik? Oksijenli ortamdaki yaşam nasıl bir canlıyla başladı? Bilim çevrelerinde, insanların ve hayvanların atasının, bir barsak paraziti (giardia)ne benzer bir canlıdan türediği görüşü ağırlıkta. Dünya var olduğundan beri üzerinde milyarlarca canlı, yaşam sürdü. Bu gün de en az 30 milyon tür yaşamını sürdürüyor. Elbette tüm canlıları birer birer sayma ve sınıflandırma olanağı yok. 18. yüzyılda Linnaeus, 10 000 canlıyı sınıflayabilmişti. Daha sonraları canlıların nasıl sınıflandırılacağı konusu gündeme geldi. Bir yol, organizmaları gözle görülebilir özelliklerine göre sınıflamaktı( Taksonomi). Darwin' le birlikte bu bakış açısı değişti. Canlılar soy ağaçlarına göre sınıflandırılmaya başlandı. Bu sınıflandırma, evrimsel ortaya çıkışın izini sürer. Güneş Sistemi' nin yaşi yaklaşik 4.5 milyar yil. İlk canlıların oksijensiz ortamda, 4.5 milyar yıl önce türediklerini biliyoruz. O zamanlarda atmosfer, büyük oranda azot ve daha az oranlarda karbon dioksit, metan, amonyak gazlarıyla ve az miktarda su buharından oluşmuştu. Oksijen yoktu. Ozon da yoktu. Ozon tabakası olmayınca Güneş' ten gelen morötesi ışınlar, yeryüzünü tüm şiddetiyle bombalıyordu. Bu morötesi ışınlar, yüksek enerjili ışınlardı. Moleküllerin Yaşam Savaşi Morötesi ışınlar, bol miktarda çakan şimşek ve yıldırımlar, milyonlarca yıl boyunca, mevcut basit molekülleri parçaladı. Parça birimler, birleşerek yeni moleküller oluşturdu. Bazı moleküller, başka moleküllerin oluşmasını kolaylaştırdı. Böylesi maddelere katalizör diyoruz. Bazı moleküller, kendinin aynısı olan moleküllerin oluşmasını da kolaylaştırır ( kendi kendinin katalizörü, otokatalizör). " Bugün artık kopyalama (çoğalma) işleminde belli protein ve enzimler aracı oluyor. İkinci olarak, "kendinin tıpkısı" bir molekül yaratmak, özelliklerini "yeni kuşak" moleküle aktarmak demek oluyor ki, bu da "kalıtım" mekanizmasının müjdecisidir. Kopyalama işlemi sırasında arada bir hatalar oluyordu. Yeni yaratılan moleküllerin büyük bölümü, bu hatadan ötürü bulundukları ortama uyamıyor, hemen parçalanıyordu; ya da ortama uysa bile çoğalabilme özlelliğini kaybediyor ve çoğalamıyordu. Ancak, çok nadiren de olsa, bazı hatalı moleküller hem ortama uyabiliyor hem de çoğalma yeteneğini kaybetmiyordu. Ortalığı dolduran bu değişik moleküller yeni bir tür oluşturuyorlardı. Bu da canlıların çeşitliliğini sağlayan" mütayon" mkanizmasının başlangıcını oluşturdu." Bu değişik moleküller, canlı çeşitliliğinin başlangıcıydı. Bazı moleküller sıcağa, yüksek enerjiye dayanıklıydı; onlar "hayatta" kalıyordu. Bunlar diğerlerinin dayanamayacağı ortamlarda çoğalabiliyordu. Kimileri sıcaktan parçalanıyor ve "ölüyor" du.(Prof. Dr. Orhan Kural, Bilim ve Teknik 343. sayı) Sudan Doğan Yaşam Moleküllerin yaşam savaşi suda, deniz ve göllerde kök salmişti. Suyun dişindaki moleküller, morötesi işinlarin bombardimaniyla paramparça oluyordu. Su ise bu işinlarinin bombardiman ateşini kesiyordu. Denizlere ve göllere siginmiş moleküller, uzaylilarin saldirisina ugramiş dünyalilar gibi adeta bir siginaktaydilar. Su, sicakligi sabit bir ortamdi; ayrica moleküllere hareket ve yaşama olanagi taniyan iyi bir akişkandi."Yaşayan" moleküller, giderek daha karmaşik yapilar geliştirdi. teel yapilari, " çift sarmal" olarak bildigimiz DNA idi. Bu moleküller, çevrelerine bir zarf yaparak kendilerini diş etkilerden bir ölçüde korumayi başardilar ve böylece ilk bakteriler oluştu. Bu noktaya gelme, yaklaşik yarim milyar yil aldi. Bakteriyi Küçümsemeyelim! Bakteriler bir anlamda en ilkel canlılar. Ama bakterileri küçümsemeyelim. " Biz, her zamanki insan merkezli bakışımızla "en başarılı yaratık insandır" der ve bunu hiç sorgumlamayız. Oysa ki, bizim türümüz olan homo sapiens sapiens' in bilemediniz en fazla 100 bin yıllık bir geçmişi var, geleceği de pek parlak görünmüyor. Bakteriler 3.5 milyar yıldır var, heryere yayıldılar, değil insan, başka hiçbir canlının yaşayamayacağı koşullar altında dahi yaşamaya uyum sağladılar ve insanlar yok olduktan sonra da, hiçbir şey olmamışçasına varlıklarını sürdürecekleri kesin. Üstelik bakterilerin olmadığı bir dünyada başka hayatın olması da pek düşünülemez. şimdi siz söyleyin, gerçek başarı kiminki? Bir süre sonra bazı bakteriler, işbirliğine giderek yeteneklerinde özdeşleştiler, bu küçük bakteriler toplumu da ilk hücrelerei yarattı. Bu hücrelerin bazıları çoğalma sırasında bölünürken birbirinden ayrılmadılar ve zamanla çok hücreli organizmalar oluştu. Bu da yaklaşık olarak 3 milyar yıl önce oldu....." "Derken, yaklaşik 2 milyar yil önce, doga en büyük keşfini yapti: Cinsiyet.... O zamana kadar, bakteriler ve hücreler tek başlarina bölünerek çogaliyorlardi. Bölünme sirasinda kendileri ile ilgili yapisal ve davranişsal her türlü bilgiyi (yani genetik kodu) taşiyan DNA' lar kopyalaniyor ve iki yeni varlik arasinda paylaşiliyordu. Bu temel işlem, hiç degişmemişti..... Derken, bazi hücreler çogalirken kendi DNA' larina bir başka hücrenin DNA' larini katarak genetik kodlari kariştirmayi keşfettiler. Sonuçta her iki hücreden farkli bir hücre meydana geliyordu. Birden bire, mütasyon çok büyük bir hiz kazandi ve çeşitlilikte bir patlama oldu. Bunun önemi şöyle anlaşilabilir: Ilk 2 milyar yilda evrim, ancak bazi basit organizmalar yaratabildi. Cinsiyetin keşfinden sonraki 2 milyar yilda ise bugün çeremizde gördügümüz bu inanilmaz çeşitliligi yaratti." Kendini, Türünü Koru ve Çoğal "Bu sıralarda orada bulunnsaydınız, deniz ve göllerin içindeki bakterileri, tek ve çok hücreli canlıları görebilseydiniz aklınıza gelecek cümlecik mutlaka şu olurdu: " Bir faaliyet, bir faaliyet...!" Gerçekten de bu canlı-ların adeta oraya buraya koştuklarını, hızla çoğaldiklarını, bazılarının diğerlerini yediğini, bazılarının ise ortaklıklar kurup bir takım üstünlükler sağladıklarını görecektiniz. Bütün bunlar taa başından beri süregelen 1 numaralı genitik emrin uygulanmaları idi : "Kendini, türünü koru ve çoğal ". Bunu yerine getirmek için bütün türler kendilerine uygun taktik ve stratejiler geliştiriyor, bunlardan en başarılı olanların sahipleri ortama egemen oluyor, diğerleri yok oluyordu. Bu amansız mücadele hiç dinmeden bugüne kadar geldi. Cinsiyetin keşfinden 500-600 milyon yil sonra önemli bir adim daha atildi. Bazi bakteriler atik olarak oksijen üretmeye başladilar. Başlangiçta, varolan canlilar için bir zehir olan bu yeni gazi kullanarak enerji üretmeyeyi ögrenen canililar büyük üstünlük sagladilar, çünkü yeni enerji üretim mekanizmasi eskiye göre çok daha verimli idi." ( Bilim ve Teknik,TÜBITAK, 343. sayi s: 29 ; Prof. Dr. Orhan Kural) “Atmosferdeki oksijen miktarının ancak % 1' e ulaşması yaklaşık 2 milyar yıl önce gerçekleşmiştir." Bugünkü yaşamın sürdüğü ortamın büyük bir kısmı oksijenli kara ortamı olduğu, ve insanoğlu da bu ortamın bir üyesi olduğu için, oksijensiz yaşamın önemi gözden kaçabilir. Oysa oksijensiz ortamın canlıları, yakından tanıdığımız gelişmiş, çok hücreli canlıları incelerken değerli açılımlar sunabilir. 3-4 milyar yıl öncesinin oksijensiz ortam canlılarının yaşadığı ortamda ancak iz miktarda oksijen vardı. Canlıların evriminde oksijenin rol oynamaya başlamasından çok önce, 500 milyon yıl boyunca, oksijensiz ortam canlılarının hükümranlığı sürmüştü. Bu sürecin ortalarında bir yerde, Güneş enerjisini kullanarak fotosentez yapan bir prokaryot türü; siyanobakteriler türemişti.... Büyük olasılıkla, bugün soluduğumuz oksijen moleküllerinin bir kısmı da, yaklaşık 2 milyar yıl önce, siyanobakterilerce üretilmiştir." Atmosferdeki oksijen miktarı arttıkça oksijene bağımlı bakteriler türedi. Bunlar, hücre zarı, hücre çekirdeği, bağımsız organeller gibi öğelerle donatılmış canlı türleriydi. Oksijen enerji metebolizmasında olağanüstü bir verimlilik artışı sağlamıştı. Öte yandan oksijenin zehir (toksik) özlelliğini gidermek için canlılar enzim (biyolojik katalizör) üretmeliydi Ayrıca oksijene dayanmayan fotosentez sistemlerinin, oksijen kullanan sistemlerden mekanik bakımdan çok daha basit oluşu, oksijenli fotosentezin evrim tarihinin ileri bir aşamasında ortaya çıktığını gösteriyor." Zamanla atmosferde çoğalan oksijen, ozon tabakasını yarattı, bu da morötesi ışınları önemli ölçüde kestiği için artık canlıların sudan çıkmalarına engel kalmadı. Sonuçta karalar, hızla artan bir bitki ve hayvan çeşitliliği ile doldu. Bitkiler oksijeni üretiyor, hayvanlar tüketiyor, hayvanlar karbon dioksit üretiyor, bitkiler tüketiyordu. Bitkiler enerjilerini Güneş' ten alıyor, hayvanların bazıları bitkilerin bu hazır enerjilerini, onları yiyerek alıyor, bazıları ise daha yoğun bir enerji almak için diğer hayvanları yiyorlardı.Daha sonra da ölen hayvanlar, yapı maddelerini, çürüyen vücutları ile toprağa geri veriyor, bu da bitkiler tarafından alınıyor, çıkar zinciri tamamlanıyordu. Herkes gül gibi geçiniyordu. Bu, o kadar iyi işleyen bir mekanizma idi ki günümze kadar değişmeden geldi. Bütün bu gelişmeler sırasında, her adımda genetik bilgilere sürekli yenileri ekleniyordu. Genellikle eski bilgiler kalıyor, yeni edinilenler ekleniyordu. Buna örnek olarak, virüslerin (yalnızca bir parazit olarak yaşayabilen en basit canlıdır) genetik kodunda yaklaşık 10 bin "bit" vardır (Buradaki "bit", parazit değil, "bilgi taneciği" diye tanımlanabilecek olan bilgi ölçüsü). Bir bakterininkinde 1 milyon, bir amibinkinde 400 milyon ve bir insanınkinde yaklaşık 5 milyar bit vardı. Hemen gözünüze çarpmıştır, bir amip ile bir insan arasında genetik bilgi olarak yalnızca 10 kadar bir katsayı var, bu çok aşağılayıcı değil mi? Değil aslında, o fazla bitlerin bir kısmı çok önemli bir gelişme için kullanılmış: Bir yazılım üretme ve depolama organı, yani beyni geliştirmeye." (Orhan Kural, Bilim ve Teknik 343. sayı) Fotosentez, yalnız oksijenle olmaz. Örneğin, elektron vericisi olarak su yerine hidrojen sülfürü kullanan fotosentez sistemleri, atık olarak oksijen yerine kükürt salar. Oksijensiz ortamın canlıları bu yolla yakıt olarak yalnız Güneş enerjisini kullanabilir. Tek hücreli bu ilk hayvanlar, giderek oksijen kullanmaya başladı. Organizmaların, oksijenli yaşama görece hızlı bir biçimde uyum sağladıkları düşünülüyor. Bu kurama göre, organizmalar oksijenle beslenen küçük organizmaları bünyelerine almıştı. Bu küçük organizmaların mitokondri organelinin atası olduğu düşünülüyor. Mitokondri, hem kendisi, hem de konakladığı hücre için oksijeni ATP enerjisine dönüştürüyordu. Buna karşılık büyük hücre de mitokondri için protein sentezliyordu. Günümüz hücrelerindeki mitokondri organeli, işte bu bakteri benzeri atadan türemiştir. mitokondriye bitki ve hayvan hücrelerinde, ayrıca bitkilerin kloroplastlarında rastlanır. Mitokondri, kendi DNA sına sahiptir ve hücre bölünürken bağımsız biçimde kendi kendini kopyalayabilir. Elde edilebilen en eski mitokondrili fosil 850 milyon yıl öncesine ait. ( Bilim ve Teknik 332. sayı, Özgür Kurtuluş)

http://www.biyologlar.com/canlilar-nasil-olustu-ve-gelisti

Likenlerin Özellikleri

Likenler başlıbaşına birer organizma değildirler. Mantarlar ile alglerin birleşerek morfolojik ve fizyolojik bir bütün halinde meydana getirdikleri simbiyotik birliklerdir (Güner 1986). Likenlere katılan alg ve mantar genellikle serbest yaşayan akrabalarından farklı formda ve tutumdadırlar (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Renksiz bir mantar hifinde oluşan tallusun yapısına algin katılması sonucu ortaya renkli klorofili olan yepyeni ototrof bir bitki çıkar (Güner 1986). Likendeki alg ve mantar kendilerini çoğaltabilecek bir form oluşturmak için bir araya gelirler Diğer türlü tutunamadıkları habitatlarda birliktelik oluşturur ve yayılırlar Likenler, alg ve mantarların nadir oldukları yerlerde yayılmışlardır Mantar hifleri, liken tallusunun ihtiyacı olan su, CO2 ve mineral maddeleri temin eder. Alg hücreleri ise mantara, klorofili vasıtasıyla sentezlediği organik maddeleri ve oksijeni sağlar Mantar bu besinleri alg hücrelerinin içerisine kadar uzanan boruları sayesinde emer. Özgül yaşam şekilleri sayesinde likenler ekstrem koşullarda yaşam şansı kazanır (Güner 1986). Alg hücreleri mantar dokularıyla kaplanmıştır, böylece mantar onları şiddetli ışık, kuraklık ve ısıdan korur Likenlerin yapısına katılmada en çok rastlanan alg türleri özellikle Cyanophycea (mavi-yeşil algler) veya Chlorophycea (yeşil algler) üyeleridir. Mantarlardan ise çoğunlukla Ascomycetes nadir olarak ise Basidiomycetes cinsleri katılır (Güner 1986). Likenler mantarların sistematik bir grubu değildir, bir biyolojik gruptur. Liken birlikteliğini yalnızca mantar ile alg veya mantar ile siyanobakteri oluşturmaz. kidenfazla organizmadan oluşmuş likenler de vardır ve bunlar içerdikleri canlı sayısı veya çeşidine göre Hawksworth tarafından farklı gruplara ayrılmışlardır (Hawksworth1976). Likenler sistematikçiler tarafından değişik şekillerde sınıflandırılmıştır. Sınıflandırma yapılırken; tallus yapıları, morfolojik yapıları, üzerinde büyüdükleri bitki substratları, likeni oluşturan mantarın sınıfı dikkate alınmıştır. 1.1.1 Likenlerin sınıflandırılması 1.1.1.1 Tallus yapılarına göre likenler Alg ve mantarın birbiri ile karışımı değişik şekillerde olabilir. Eğer alg ve mantar tallus yapısında homojen bir dağılım gösteriyorsa böyle likenlere ‘Homeomerik’ liken, alg ve mantar türleri arasında farklı dağılım varsa bu tiplere ‘Heteromerik’ liken adı verilir. Homeomerik tip talluslu likenlerde tallus, jelatini andıran müsilajımsı yapıdadır. Alg ve mantar türleri ayrı bir tabaka oluşturmaksızın birbirleri ile karışmışlardır (Güner1986). Mantar miselyumu, algin salgıladığı müsilaj içerisinde homojen olarak dağılmıştır. Likenin şekli alg tarafından belirlenir (Yurdakulol ve Yıldız 2002). Heteromerik tipi talluslu likenlerde algler üst kabuk tabakası ile orta kısım arasında bir tabaka oluşturur (Şekil 1.1). Diğer kısımlar sıkı veya gevşek olarak mantar hiflerinden oluşmuş dokular halindedir. Likenlerin çoğu bu tipe dahildir. Üst kabuk tabakasının altında alglerin oluşturduğu ‘gonidiyum’ tabakası bariz olarak ayırt edilebilir (Güner1986). Bunun altında mantar hiflerinden oluşmuş ‘medulla’ isimli tabaka bulunur. Örnek olarak Hypogymnia cinsini verebiliriz. Heteromerik likenlerde, likenin şekli içerisinde alg içeren zonları olan mantar tarafından belirlenir (Yurdakulol ve Yıldız 2002). Likenler bulundukları ortama ve beraber yaşadıkları bitkilerin durumlarına göre değişik şekillerde olabilirler. Onlar dış görünüşlerindeki değişikliklere göre de çeşitli tiplere ayrılırlar. 1.1.1.2 Dış görünüşlerine göre likenler 1.1.1.2.1 Kabuksu (Crustose) likenler Üzeri boyanmış tahta görünümündedirler (www.ipcc.ie/infolichens.html, 2004). Kayalar üzerinde gelişirler (Güner 1986). Yassı tallusları kabuk şeklindedir ve tüm altyüzeyi ile ortama sıkı sıkıya bağlanarak yaşadıkları yüzeyde kabuk oluştururlar. Bu kabuk oldukça kalın ya da yüzeyin içine doğru gömülüdür. Substratından kazıyarak ayrılabilir (www.mdc.mo.gov /conmag/1998/10/20.htm, 2004). Salgıladıkları liken asitleriyle bazen kayaları eriterek içine kadar girerler. Bunlara endolitik likenler denir. Liken asitleri, değişik karakterdedirler; parlaktırlar hiflerin ve tallusun yüzeyini örterler, kristalimsi yapıları andıran pulcuklar halinde göze çarparlar (Güner 1986). 1.1.1.2.2 Yapraksı (Foliose) likenler Toprak istekleri çoktur. Çıplak kayaların üzerinde görülmezler. ki koruyucu mantar tabakaları vardır. Tallusları küçük veya büyük loplara ayrılmıştır (Güner 1986). Kökyapıları sayesinde yaşadıkları yüzeyden biraz yüksekte dururlar. Büyüdükleri ortamlara rizoid şeklinde hifler gönderirler Substratlarına hafifçe bağlıdırlar (www.ipcc.ie/infolichens.html, 2004). Çoğu foliose tipler yılda 2 veya 5 mm büyürler (Armstrong 2004). Parmelia, Lobaria, Hypogymnia cinsleri yapraksı likenlere örnek olarak verilebilir. 1.1.1.2.3 Dalsı (Fruticose) likenler Tıpkı çalıya benzer, oldukça büyük likenlerdir. Yaşadıkları yüzeylere tek bir noktadan bağlıdırlar. Ağaçlar üzerinde gelişirler. pliksi veya şeritsi tallusları diktir. Likenler üzerlerinde büyüdükleri zemine göre de isimlendirilirler. Toprakta büyür sterrikolous, kayalarda büyürse saksikolous, ağaçlarda büyürse lignikolous, ağaç kabuklarında büyürse kortikolous, karayosunları üzerinde büyürlerse musikolous, likenlerin üzerinde yetişirlerse likenikolous likenler olarak isimlendirilirler. Tallusları çok sık dallanmıştır (Güner 1986). Kolayca substratlarından ayrılırlar Usnea cinsi likenler dalsı likenlere örnek olarak verilebilir. 1.1.1.3 Yapısına katılan mantarın cinsine göre likenler Likenler yapısına katılan mantarların sınıfına uygun olarak başlıca iki sınıfa ayrılırlar. 1.1.1.3.1 Ascolichenes (Aksuslu likenler) Alglerin askuslu mantarlarla birlikte oluşturdukları bir simbiyoz yaşamlı bitkilerdir. Likenlerin çoğu bu gruba dahildir. 1.1.1.3.2 Basidiolichenes (Bazidiyumlu likenler) Genellikle tropikal bölgelerde rastlanır. Likenler, deniz kıyısından en yüksek dağlara, sıcak bölgelerden kutuplara kadar geniş bir yayılım alanına sahiptirler, en kötü şartlar altında dahi gelişebilmektedirler. Tallusları çok yavaş büyür (Güner 1986). Toprakta, kayalarda, taşlarda, ağaçlarda, ağaç kabuklarında dallarda, kemiklerde, deride, yünde, kerestelerde, evlerin duvarlarında, anıtlarda, kiremitlerde, mezar taşlarında, camlarda ve eski demir alet ve eşyalarda büyüyüp gelişebilirler (Yurdakulol ve Yıldız 2002). Likenler yağmurdan hatta likenle çok kısa süre temasa geçen çok seyreltik bir akıntıdan bile besin sağlayabilirler, biriktirebilirler. Bazı likenler sadece özgül habitatlarda bulunurlar mesela yalnız bir çeşit ağaç veya kaya üzerinde. Aynı zamanda bir ağaç gövdesinde 30 dan fazla liken çeşidine rastlamak da mümkündür. Dar habitat koşullarında yaşayan likenler habitat şartlarına karşı oldukça hassasdırlar, mesela bazı türler hava kirliliğine hassasdırlar ve hava kalitesinin ölçülmesinde kullanılırlar. Bu hassasiyetlerine karşı çok sert doğa koşullarına karşı dayanıklıdırlar (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Çok yavaş büyürler ancak çok yaşlanabilirler, 6000 yıldır yaşayanları tespit edilmiştir ve büyük ihtimalle dünyada yaşayan en yaşlı organizmadır (Ulrik 1999). 1.1.2 Likenlerin çoğalması Likenler iki şekilde çoğalırlar. Mantar kısmı keselerde spor üretir ve bu sporlar likenden salınır. Hafif olan bu sporlar belli bir mesafe taşınabilir ve uygun alg veya bakteri partnerini bulursa yeniden bir liken oluşturabilir. Bulamazsa yaşayamaz, ölür. İkinci şekil ise daha güvenlidir; çoğu likenin yüzeyinde, ‘soredia’ adı verilen hem alg hem de mantardan materyal taşıyan, kahverengi veya siyah diskler bulunur Likenin yüzeyinde toz yumağı gibi görünürler, rüzgar, yağmur veya otlayan hayvanlarca taşınan soredialar yayılır ve yeni likenler oluştururlar (Şekil 1.5). 1.1.3 Likenlerin önemi Kayalar üzerinde gelişen kabuksu likenler oluşturdukları liken asitleri yardımı ilekayaları parçalayarak ortamda toprak oluşumuna neden olurlar. Liken asidi kalkerli ve granitik kayaları kademeli olarak parçalar. Zamanla buralarda parçalanma sonucu oluşan ufak taşcıklar üzerinde az toprağa ihtiyaç gösteren yapraklı kara yosunları gelişmeye başlar. Daha sonraları da parçalanmanın ilerlemesi ve karayosunlarının artıklarının birikmesi ile toprak miktarı çoğalmaya ve böyle yerlerde yüksek bitkiler büyümeye yönelir (Güner 1986). Böylece likenler bitki örtüsünün gelişim sürecinde öncü bitkiler olmuş olurlar (Yurdakulol ve Yıldız 2002). Likenler, genellikle acı kimyasallar içerdiklerinden yaban hayatın ana besin kaynağını oluşturmazlar ancak besin zincirinde önemli yere sahiptirler (www.mdc. mo.gov/conmag/1998/10/20.htm, 2004). Tırtıllar, solucanlar, sümüklüböcekler, salyangozlar likenlerle beslenirler. Likenle kaplı ağaçlar üzerinde yetişkin güveler mimikri yaparak dinlenirler (www.ipcc.ie/infolichens.html, 2004). Ağaç kabukları ve rutubetli ortamlardaki kayalar üzerinde gelişen yapraksı ve dalsı likenler hayvan besini olarak kullanılmaktadır. Bunların başında arktik bölgelerde bol gelişen ve ren geyiklerinin önemli besinlerini oluşturan Cladona rengiferina ve Cetraria islandica türleri gelmektedir. Ayrıca bu tip likenlerden alkol de elde edilmektedir (Güner 1986). Çoğu kuş likenleri yuva yapımında kullanır, Missouri’nin en renkli ötücü kuşu Parula yuva yapımında Usnea likenini ya da spanyol yosununu tercih eder. İnsanlar, yüzyıllardır likenleri boyamada kullanmışlardır, Romanlar mor boyasını likenlerden elde etmişlerdir, iskoçya’daki geleneksel erkek eteklikleri liken ekstratlarıyla boyanmıştır (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Hintliler kilimlerinde liken boyalarını kullanmışlardır. Ressamlar vivid morunu elde edebilmek için likenlerden faydalanmışlardır (www.mdc.mo.gov/conmag/1998/10/20.htm, 2004). Likenlerden yapılan çay ve merhemler tüm dünyada geleneksel ilaç olarak kullanılmıştır. Likenler ayrıca modern ilaç, antibiyotik ve kremlerde kullanılmıştır. Parfüm endüstrisinde, fiksatif olarak kullanılırlar, parfümün kokusunun yavaşça dağılmasını sağlarlar (Ulrik 1999). Liken asitlerinin bazı maddelerle reaksiyon vermeleri, ayrıca bazı boya maddelerini içermeleri ve antibiyotik içeren cinslerinin olması likenlerin önemini arttırmaktadır. Roccella türlerinden asit/baz indikatörü olarak kullanılan turnusol elde edilir. Afrika ve Arabistan’da yetişen Aspicilia esculanta (Manna likeni)’ dan ekmek yapılmaktadır. Çalımsı yapıda ve sert olan türlerin üretimi yapılarak evlerde ve benzeri yerlerde dekorasyon işlerinde kullanılmak üzere pazarlarda satılmaktadır. İskandinav ülkelerinde bu türler mezarlarda çiçek yerine tabutun başına konmaktadır (Güner 1986). Bazı liken türleri kumlu topraklarda oldukça yaygındır. Rüzgara karşı toprağa iyitespit olarak erozyonu önlerler. Amerika’nın doğusunda kullanılmayan yollarda Baeomyces roseus killi topraklara iyi tutunarak su erozyonunu önler (Yurdakulol ve Yıldız 2002). Likenler kirliliğin belli bir seviyesine sülfürdioksitten dolayı hassastırlar, Bu yüzden çevreciler tarafından hava kirliliğinin ölçümünde kullanılırlar. Likenler sünger gibi kirletici maddeleri emerler, onların kimyasal analiziyle araştırıcılar havada ne olduğunu söyleyebilirler (www.ipcc.ie/infolichens.html, 2004) 1.1.4 Hypogymnia Cinsi Bu çalışmada Türkiye’nin değişik yörelerinden toplanmış Hypogymnia cinsine ait liken türleriyle çalışılmıştır. Bu çalışmada kullanılan Hypogymnia cinsine ait örneklerden bazıları Şekil 1.6’da gösterilmiştir. Hypogymnia’lar, uzun süre çok fazla benzer özellik taşıdığı Parmeliceae familyasının üyesi olarak kabul edilmiştir. 1960 yılında Nylander tarafından rizoidlerinin bulunmayışı ile Parmelia cinsinden ayrılmış (Nylander 1896) ve Poelt tarafından Hypogymniaceae familyası olarak tanımlanmıştır (Poelt 1973). Sonrasında Hypogymnia cinsinde tallusun şişkin ve iç kısmını boş olduğu göz önüne alınarak tallusları dolu bireyleri, Goward tarafından Brodoa cinsi olarak ayrı bir familya altında toplanmıştır (Zeybek vd. 1993a). Bitter Hypogymnia türlerinin sınıflandırmasında soralia morfolojisinin iyi bir karakter olduğunu savunmuştur (Bitter 1901). Modern liken sistematiğinde Hypogymnia cinsi, Hypogymniacea familyası, Lecanorales ordosu altındadır (Zeybek vd. 1993a). Sonraki dönemlerde bu cins üzerine Krog ve Elix’in çalışmaları olmuştur. Krog Artrik ve Boreal Kuzey Yarımküredeki türlere yoğunlaşırken (Krog 1968), Elix Avusturalya ve Doğu Asya’daki bireyleriyle ilgilenmiştir (Elix 1979). Ülkemizde ise bu cins üzerine çalışan araştırmacılar Ulvi Zeybek ve Volker John’dur. Bu araştırmacılar, Türkiye’deki Hypogymnia türleri üzerine yaptıkları taksonomik çalışmada türlerin morfolojik özelliklerine göre ayrımını sağlayan bir tür tayin anahtarı oluşturmuşlar ve Türkiye'deki yayılış alanlarını açıklamışlardır (Zeybek vd. 1993a). Başka bir çalışmalarında ise yalnızca morfolojiyle tanımlamalarının zor olduğunu söyledikleri Hypogymnia bireylerinin farklılıklarını kimyasal analizler yaparak ortaya koymuşlardır. Bu çalışmalarında likenlerin ikincil metabolitlerini tanımlamışlardır (Zeybek vd. 1993b). Hypogymnia cinsi, içi boş şişkin loplara sahip birbirine morfolojik ve anatomik olarak oldukça benzeyen türlere sahip bir taksondur. Tallusları iyi gelişmiştir. Rizoidleri yoktur. Lobların kenarları siyah buruşuk, üst kısımları ise beyaz-beyazımsı gridir, bazı türlerinde uçları ince kahverengi veya siyah çerçevelidir. Lopların kenarları içe kıvrık ve iç kısımları bağlantısızdır (hypo:alt, gymnia:çıplak ) Türlere göre başsı, dudaksı, yüzeysel veya yüksük şeklinde soralleri vardır. Apotesiyum bulunan türlerinde sorallerin ender oluşu tipiktir. Tallusun anatomik yapısı heteromeriktir. Apotesiyumda gelişen askosporangiyumlar 8 sporludur. Sporlar renksiz, uç kısımlarında iyod ile maviye boyanan yüksük bulunur (Zeybek vd .1993a). Bu cinsin taşıdığı en önemli karakteristik özellikleri; Sorelia lokasyonu, kısa yan lopların varlığı veya yokluğu, lobların renklenmesi, lop çapları ve dallanma şekilleri, şişkin, topuz-boğum tipi lopların varlığı, yassı veya yassı olmayan büyüme şeklidir. Ancak bu özellikler de türlerin birbirinden ayrımında bazen yeterli olamamaktadır(www.blm.gov/or/plans/surveyandmanage/MR/...2/Lichens-346949.pdf., 2004). Hypogymnia cinsine ait bireyler, küçük yüzeyler üzerinde büyüyebilme yeteneklerinden dolayı genç dallar ve kökler üzerinde bulunabilmektedirler. Kırlarda nemli koşullarda genellikle çalılıkların köklerinde bulunmaktadırlar. Yaygın olarak asit habitatlarında yaşarlar. Ağaçlık alanlarda huş gibi düşük pH’lı kabuklu ağaçlar ya da Picea gibi korniferler üzerinde yetişmektedirler (www-biol.paisley. ac.uk/bioref/Fungi_lichens/ Hypogymnia_physodes.html, 2004). Asidik koşullara dayanıklılığından dolayı sülfürdioksit kirliliğinin yüksek seviyelerinde yaşayabilirler ve bu özellikleri sayesinde biyoindikatör olarak da kullanılmaktadırlar. Ayrıca Fransa’da, Kuzey Avrupa ve Güney Afrika meşelerinden elde edilen Hypogymnia cinsi liken ekstraktları parfüm endüstrisinde kullanılmaktadır. Bu çalışmada Türkiye’de bulunan Hypogymnia cinsine ait türlerin rDNA ITS bölgesi dizi analizi ile çeşitliliklerinin tanımlanması amaç edinilmiştir. Çalışmaya bu cinse ait dört farklı türün farklı lokalitelerden toplanmış örenekleriyle başlanmıştır. Bu türlerin isimleri ve morfolojik özellikleri aşağıdaki şöyledir. Hypogymnia farinacea Zopf Sinonimleri: Parmelia farinacea Bitter, Hypogymnia bitteriana (Zahlbr.) Krog, Parmelia bitteriana Zahlbr. Tallusları gri renkli, rozet durumludur, 1-3mm eninde dar loplu ve yatıktır. Yukarı kalkık lop uçlarında başsı soralleri sıktır. breli ve iri yapraklı orman ağaçları kabuklarında yoğun birlikler oluşturur. Odun ve taşlar üzerinde seyrek bulunurlar. Ülkemizde zmir, Muğla, Hatay illerinde yaygındır. Hypogymnia laminisorediata D. Hawksw. et Poelt Tallusları gri renkli, parlak değildir. Lopları 2-5 mm eninde geniştir. Uçları çoğunlukla siyah çerçevesiz, ender olarak çerçevelidir. Tallus yüzeyinde siğilimsi isidiyuma benzer çıkıntılar vardır. Apotesiyumları irili ufaklı gruplar halinde ve kalın saplıdır. Ülkemizde zmir, Manisa illerinde dağılım göstermektedir. Hypogymnia physodes, (L.) Nyl. Sinonimi: Parmelia physodes (L.) Ach. Talluslarının morfolojik yapısı ortama göre değişkendir, gri renklidir, parlak değildir.

http://www.biyologlar.com/likenlerin-ozellikleri

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

BİYOLOJİK DOZİMETRİ VE İLGİLİ GELİŞMELER

Radyasyonun Biyolojik Etkileri Radyasyonun organizmaya olan etkileri akut ve kronik şekilde olmaktadır. Akut etkiler insanda radyasyona maruz kalındıktan kısa bir süre sonra klinik bulgular ile ortaya çıkmaktadırlar. Bunlar merkezi sinir sistemi (100 Sv ve üzeri), gastrointestinal (10-100 Sv) ve hemato­poietik (2-10 Sv) sendromlardır. Sendromların ortaya çıkışı absorbe edilen dozla ilişkilidir.4 Bu sendromlar bir süre sonra bireyi ölüme götürür. Radyasyonun kronik etkileri ise hücrenin ölümüne yol açmayan ancak genetik materyallerinde onarılamayan bozukluklara neden olan olaylar sonucunda ortaya çıkarlar. Kanser yapı­cı etkisi, genetik etkisi ve ömür kısaltıcı etkisi bunlara örnektir. Canlıların somatik ve genetik özellikleri kromozomlarda taşındığı için radyasyonun kromozomlarda meydana getirdiği zararlı etkiler günümüzde ve gelecekte toplum sağlığı açısından oldukça önemlidir. Dozimetri Çeşitleri ve Biyolojik Dozimetri Toplu halde veya bireysel olarak radyasyona maruz kalan bireylerin absorbe ettikleri radyasyon dozu; fiziksel veya biyolojik yöntemlerden biri ile yada her ikisiyle birlikte belirlenebilir. Bu işlem dozimetri olarak adlandırılır. Meslekleri gereği radyasyonla çalışanların fiziksel dozimetri çeşidi olan Film, Cep ve Termolüminesan dozimetrilerden birini taşımaları gerekir. Ancak fiziksel dozimetrenin vücut üzerindeki konumu nedeni ile yetersiz kalması, büyük kitlelerin zarar gördüğü toplumsal radyasyon kazalarında ise bireylerde fiziksel dozimetrenin bulunamaması ve biyolojik çeşitlilik nedeniyle kişilerin radyo duyarlılığının farklı olması biyolojik dozimetriye üstünlük sağlamakta bu nedenle de fiziksel ölçümlerin biyolojik metotlarla desteklenmesi gerekmektedir. Uluslararası Atom Enerjisi Ajansı(IAEA) radyasyon kazası durumlarında, fiziksel dozimetri ile birlikte biyolojik dozimetrinin de absorbe edilmiş dozun belirlenmesinde bağımsız olarak kullanılmasını önermiştir. Şekil 1’de dozimetri çeşitleri özetlenmiştir. Biyolojik dozimetri, genel anlamı ile kişilerin absorbe ettikleri radyasyon dozunun biyolojik indikatörler (belirleyiciler) kullanılarak ortaya çıkarılmasına denir. Biyolojik Dozimetri için ideal koşullar; 1-Dozları tahmin etmek için seçilen etkiler iyonizan radyasyonlara özgü olmalı (dientrik aberasyonları gibi), 2-Radyasyona maruz kalma sonucu oluşan etki kalıcı olmalı, eğer kalıcı değilse zamana bağlı olarak oluşan değişiklikler bilinmeli, 3-Oluşturulan kontrol doz-cevap eğrilerinde dozların aralığı mesleki ışınlamalarda olduğu gibi çok küçük dozları ve kaza durumlarında olduğu gibi birkaç Gy’e varan dozları da içermeli, 4-Farklı radyasyon kalitelerinde uygulanabilmeli (Co, X-ışını, nötron v.b), 5-Biyolojik materyal kolay elde edilebilmeli (kan gibi), 6-Ölçümler kolay ve hızlı olmalı kısa sürede sonuç elde edilmeli, 7-Kronik ve homojen olmayan ışınlamalara da uygun olmalı. Yukarıdaki özellikleri taşıyan ideal bir biyolojik dozimetri yöntemi bilinmemektedir. Fakat, insan periferal kanından lenfosit kültüründen kromozom analizinin yapılması bugün için bilinen en iyi biyolojik dozimetri yöntemidir. Biyolojik dozimetri çeşitlerinden olan kromozom dozimetrisi (sitogenetik dozimetri), kişilerin absorbe ettikleri radyasyon dozu ile insan lenfositlerinde oluşan kromozom aberasyonları arasındaki kantitatif ilişki esasına dayanır. İyonizan radyasyonların kromozomlarda oluşturdukları hasar 20.yy başlarından beri bilinmektedir. İlk olarak X-ışınlarının Drosophila'da kromozom aberasyonu oluşturduğunun bulunması ve takip eden yıllarda araştırıcıların yaptıkları çalışmalar sonucunda ilk olarak 1962 yılında kromozom aberasyonları, radyasyona maruz kalan bireylerde absorbe edilen radyasyon miktarını tespit etmek için kullanılmıştır. Kromozom aberasyonlarının absorbe radyasyon dozunun belirlenmesinde kantitatif biyolojik indikatör olarak kullanılmasından bu yana radyasyon kazaları sonunda absorbe edilmiş olan doz tayininde standartlaşmış bir yöntem olarak kullanılmaktadır. Radyasyonun canlılarda oluşturduğu etkileri değerlendirmek için başka biyolojik indikatör sistemler de geliştirilmiştir. Elekton spin rezonans, Biyokimyasal indikatörler (kıl, tükürük, saç, sperm vs), Retikülosit sayımı, Mutasyon noktalarının analizi, Monoklonal antibodyler vs. Bu tür sistemlerin çoğu örnek almadaki güçlükler, hücrelerin asenkron popülasyon (hücre siklusunun farklı evrelerinde) şeklinde bulunması ve hücrelerin yaşam sürelerinin kısa olması, yöntemin belli dozlarda etkili olması ve bazen de ışınlanma süresinin önemi nedeniyle dozimetri amacıyla rutin olarak kullanılamazlar. Biyolojik Dozimetri Amacıyla Kullanılan Kromozom Aberasyonları Unstabil (kalıcı olmayan) asimetrik kromozom aberasyonlarından olan disentrik aberasyonlar ve eşdeğerleri (trisentrik ve sentrik halka) absorbe radyasyon dozunun indikatörü olarak diğer aberasyonlara göre daha çok güvenilirdirler. Çünkü disentrik kromozom aberasyonları radyasyona özgüdürler yalnızca özel birkaç radiomimetik kimyasal (bleomisin, endoksan vs) tarafından oluşturulabilir. Doğal görülme sıklıkları (back-ground) düşüktür (1/2000) ve kolay belirlenirler. Bazı araştırıcılar doz tahminlerinde disentrik eşdeğeri kabul edilen sentrik halka (ring) kromozomları da disentriklerle birlikte kullanmaktadırlar. Sentrik halka oluşumu unstabil kromozomlarının oluşum yüzdesi içinde %5-10 civarında olduğundan doz hesaplamalarında kullanılmamaları önemli bir kayıp değildir. Serbest asentrikler, disentrik, trisentrik ve sentrik halka gibi kromozom aberasyonlarına eşlik etmez ve onlardan bağımsız olarak bulunurlar. Bu aberasyonlar radyasyon dışıetkenlerle de oluşturulabildikleri için tek başına doz tahmininde kullanılmamaktadırlar. Disentrik, trisentrik ve sentrik halka kromozom aberasyonlarının oluşumu Şekil 2’de şematize edilmiştir. Translokasyon olarak adlandırılan iki kro­mozom arasındaki simetrik değişimler de son yıllarda geliştirilen floresan boyama teknikleri (fluorescens in situ hybridisation; FISH) sayesinde biyolojik dozimetri amacıyla kullanılmaktadır. Kromatid tipi kırıklar büyük oranda kimyasal ajanlar tarafından oluşturulduğundan biyolojik dozimetri amacıyla kullanılmamaktadır. Son yıllarda yine insan periferal lenfositleri kullanılarak absorbe edilen radyasyon dozunun belirlenmesi amacıyla Mikronukleus testi çalışmaları yapılmaktadır. Mikronukleuslar sitoplazma içinde ana nukleusun dışında fakat nukleus ile şekil, yapı ve boyanma özellikleri bakımından aynı olan küçük küresel yapılardır. Radyasyona maruz kalmış lenfositlerde hasar gören kromozomlar ve onların asentrik parçaları veya mitotik iğdeki hatalar sonucu kromozomun tamamının kutuplara çekilememesi sonucu oluşurlar. Şekil 3 A’da bölünmekte olan binukleat bir hücrede kutuplara çekilemeyen bütün bir kromozom ve asentrik fragmentten mikronukleus, B’de ise yine binukleat bir hücrede disentrik köprüden nukleoplazmik köprü ve mikronukleus oluşumu şematize edilmiştir. Binukleat hücrelerdeki hücre başına düşen mikronukleus sıklığının mononukleat hücrelerdekinin iki kat olması nemlidir. Kromozom aberasyonlarının doğal oluşum sıklığı konusunda, farklı populasyonlar ile yapılan araştırmalarda özellikle disentrik sıklığında farklılıklar gözlenmiştir. Doğal disentrik oluşum sıklığının farklı bulunması, laboratuva koşulları, sayıcı ve değerlendiriciler arasındaki farklılıklar nedeniyle her biyolojik dozimetri laboratuarının kendi koşullarında, çeşitli radyasyon kalitelerinde ve farklı radyasyon dozlarında oluşturacakları kontrol doz-cevap eğrilerine sahip olmasını gerekli kılmıştır. Olası bir radyasyon kazasında alınacak radyas­yonun tipine göre, absorbe radyasyon dozunun miktarı o tipteki kontrol doz-cevap eğrilerin­den faydalanılarak bulunmaktadır. Kontrol doz-cevap eğrileri daha önce radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış sağlıklı bireyler­den alınan kanların akut ve homojen ışınlanmaları sonucunda oluşturulur. Biyolojik dozi­ metri amacıyla yapılan kontrol doz-cevap eğri­leri genellikle 50 mGy ile 4 Gy arasında yapılır. Eğriler oluşturulurken 0 ve 1 Gy arasında en az 5 doz noktasının olmasına özen gösterilir. Çünkü radyasyon kazaları genelde bu dozlar arasında meydana gelir.10 Standart eğri oluşturulurken çok küçük doz (<0.5 Gy) nokta­larında doz-cevap ilişkisini ortaya koymak için çok fazla hücre saymak gereklidir. Kalibras­yon eğrisini oluşturmak için toplam 10.000­15.000 hücre, bireysel doz tahmini yapmak için ise 500-1000 hücre saymak yeterli­dir. Elde edilen aberasyon verimi dikka­te alınarak %95 güvenilirlik sınırları içinde kontrol doz-cevap eğrisi çizilir. Aynı laboratuvar koşullarında 200 kV X-ışını ve Co­60 gamma radyasyonu ile ışınlanma sonucu oluşturulan kontrol doz-cevap eğrileri birlikte Şekil 4’de görülmektedir. GEREÇ VE YÖNTEMLER Materyalin Elde Edilmesi, Işınlanması Kontrol doz-cevap eğrilerini oluşturmak amacıyla elde edilen kan örnekleri genç, sağlıklı, sigara içmeyen, radyasyonla çalışmamış yada herhangi bir şekilde radyasyona maruz kalmamış bireylerden alınır. Kontrol grubu ve birinci mitozun (M1) ikinci mitoza (M2) oranını belirlemek için alınan kanlar ayrılır. Kan örnekleri steril, içleri heparin kaplı tüpler içine alınır. Eğriyi oluştururken, kullanılan doz noktalarına ait kan örnekleri radyasyon kalitesine uygun şekilde, doz hızı, dozun homojenitesi gibi kriterlere özen gösterilerek 370C’da ışınlanır. Kültür ve Tespit İşlemleri Kontrol doz-cevap eğrileri oluşturmak için ışınlanmış kan örnekleri ve radyasyona maruz kalmış bireylerde absorbe dozun tayini için alınan (~5 ml) kan örnekleri steril şartlarda, Moorhead ve arkadaşlarının mikrokültür tekniğine uygun olarak kültüre alınır. Bu yöntemde genellikle kültür stok medyumu olarak RPMI-1640+L-Glutamin, Penicilin ve Streptomicin kullanılır. Kültür ortamına mitojen olarak PHA (phytohemaglutinin) ve hücrelerin metafazda durmaları için Kolsemid kullanılır. Kültür süresi sonunda (toplam 48 saat) 0,075M KCL ile hipotonik şok uygulanır. Bu işlem sonunda 1:3 oranında asetik asit/metanol karışımı ile tespit işlemleri tamamlanır ve metafaz kromozomlarının lamlar üzerinde iyi bir şekilde dağılmaları sağlanır. % 5 Giemsa boyası ile boyanarak incelenecek duruma getirilir. Uygulanan kültür metodu Şekil 5’­de kısaca özetlenmiştir. M2/M1 Oranı ve Biyolojik Dozimetride Önemi İnsan vücudunda yaklaşık 5.2x1012 lenfosit dolaşır. Lenfositlerin % 70’i T- lenfositlerdir ve bunların yaklaşık %98’i ufak, hücre siklusunun bölünmeyen bir fazında (G0) bulunur. G0 fazında olmaları dolayısı ile biyolojik ömürleri uzundur. Metabolik olarak inaktiftirler. T-lenfositlerin kolay elde edilebilmeleri, radyasyona duyarlı olmaları, biyolojik ömürlerinin uzun olması (%90’nın yaşam süresi ortalama 3 yıl) (38) ve akut vücut ışınlamalarından 3 yıl sonra dahi lenfositlerdeki kromozom aberasyonlarının %50 sinin hala korunuyor olması, kaza üzerinden uzun yıllar geçse bile absorblanan dozun belirlenmesine olanak tanır. İnsan periferal kanında bulunan lenfositler stimüle edilerek G0 fazından çıkıp hücre siklusunda ilerlemeye başlarlar. Siklusta ilerleme hızı hücreler arasında farklılık gösterdiğinden periferal kanda senkronize olan lenfositler bölünmeye teşvik edildikleri invitro ortamda asenkron hücre popülasyonu haline gelirler. Bu yüzden bazı lenfositler M1 bölünmede iken siklusta hızlı ilerleyen bazı lenfo­sitler M2 da olurlar. Radyasyona maruz kalındıktan sonraki ilk bölünme (M1) de lenfositlerde oluşan disentrik kromozom aberasyonlarının %50’si kaybolur. Bu yüzden doz tahmini yapılırken, M1 lenfositlerde bulunan disentrik kromozom aberasyonlarının sayımı esas alınır. M2/M1 belirlenmesi için kültür ortamına BrdU (bromodeoksiüridin) ila­ve edilir. Timidin analogu olan BrdU, DNA replikasyonu esnasında timidinin yerini alır. DNA’nın yapısına girer. Floresan Plus Giemsa (FPG) boyama tekniği32 ile boyanan metafaz kromozomları Floresan mikroskopta incelenerek M2 ve M1’de olan hücreler ayırt edilir. Metodun iyi çalıştığının göstergesi olarak, M2 de olan hücreler M1den %10 daha az olmalıdır. Bu değerlerin üzerinde bulunduğunda absorbe radyasyon dozunun hesaplanmasında bazı düzeltme faktörleri kulanılır. Kültür ortamına BrdU ilave edildikten sonra DNA replikasyonu sırasında BrdU’nun DNA’nın yapısına girişi, M1 ve M2’deki hücrelerde BrdU almış kromozomların görünüşü Şekil 6’da gösterilmiştir. Kromozomların değerlendirilmesi Hazırlanan preparatlar değerlendirilirken kromozomları birbirinden belirgin olarak ayrılmış, görünüşleri düzgün ve iyi boyanmış diploid metafazlar dikkate alınır. Kromozomlar sayılırken sayıları 2n=46 ve üzeri olanlar değerlendirmeye alınır. Hücrede kararsız aberasyonlar (disentrik, sentrik halka ve serbest asentrik) bulunduğunda kromozom sayıları ile belirlenen aberasyonların birbirini dengelemesine özen gösterilir. Örneğin, hücrede bir disentrik aberasyonun varlığında ona eşlik eden bir asentrik ile sayının 46 da tutulması; bir sentrik halka bulunduğunda yine eşlik eden bir asentrik ile sayının 47 olması, bir trisentrik bulunduğunda ona eşlik eden 2 adet asentrik ile sayının 46 olması gibi durumlara dikkat edilir. Değerlendirmelerde bir trisentrik 2 disentriğe, bir sentrik halka bir disentriğe eşdeğer olarak kabul edilmektedir. 4 Gy 200 kv X-ışını uygulanan ve yukarıda anlatılan metoda uygun olarak hazırlanan ve değerlendirilen bir me­tafaz plağında disentrik ve asentrik kromozom aberasyonları Şekil 7’de görülmektedir. İstatistiksel ve Matematiksel Yöntemler Farklı iyonlaştırıcı radyasyonların eşit dozlarının birim uzaklıkta bıraktıkları enerjilerinin ve dolayısıyla oluşturdukları iyonlaşma yoğunluklarının farklı olması nedeniyle oluşturdukları kromozom aberasyonları verimleri de farklıdır. Düşük Lineer Enerji Transfer (LET)’li radyasyonların herhangi bir dozunda iyonizasyon rastgele dağılır. Kromozom hasarının da aynı olasılıkla ger­çekleştiği düşünülürse aberasyon dağılımı da rast gele olacaktır. Bu rast gele dağılımın düşük fre kanslarda meydana gelmesi Poisson dağılımı ile uygunluk gösterir. Bu bilgilere dayanarak X-ışınları ve γ gibi düşük LET’li radyasyon ile akut ve homojen ışınlanma sonucunda oluşan kromozom aberas­yonlarının Poisson dağılımına uygunluk gösterdiği belirlenmiştir. Yüksek LET’li radyasyonlarda ise iyonizasyon yoğunluğu fazla olduğundan iyonizasyon hücreler arasında rast gele dağılmaya­caktır. Yüksek LET’li radyasyonların absorblanması sonucu birbirine yakın hücrelerde birden fazla aberasyonlu hücre oluşacak ve bu oluşum Poisson dağılımından uzaklaşacaktır. Homojen olmayan ışınlamalarda ve kronik ışınlamalarda disentriklerin hücrelere dağılımlarının Poisson dağılımından sapmaları büyük olacağından Poisson’a uygunluk göstermez. Bu yüzden kontrol doz-cevap eğrileri oluşturulurken ışınlama homojenitesini kontrol etmek için disentriklerin Poisson dağılımına uygunluklarının belirlenmesi gerekir. Elde edilen aberasyon dağılımının (disentrik) Poisson'a uygunluğunu araştırmak için ilk önce her doz noktasına ait varyanslar (σ²) hesaplanır. Daha sonra varyansların aberasyon (disentrik) frekanslarına (Y) oranından elde edilen dağılım oranı (σ²/Y) bulunur. Bu dağılım oranları U testi formülünde yerine konularak her doz noktasına ait U değerleri hesaplanır. U testi sonuçlarının –1,96 ve +1,96 arasında olması dağılımların Poisson’a uygunluğunu ispatlar. Çoşkun M, Coşkun M. Biological dosimeter and related developments. Cerrahpaşa J Med 2003  

http://www.biyologlar.com/biyolojik-dozimetri-ve-ilgili-gelismeler

ZAK METODU İLE SERUM KOLESTEROL TAYİNİ

ZAK METODU İLE SERUM KOLESTEROL TAYİNİ

( TOTAL-ESTER- SERBEST KOLESTEROL )Prensip : Asetik asit ile eritilmiş kolesterolün demir-3 klorür ve sülfürik asit ile verdiği ve miktarla orantılı olan kırmızı menekşe renk reaksiyonuna dayanır.Reaktifler :1-) FeCl3 ( 84 mg FeCl3 bunun yerine 140 mg FeCl36H2O alınır, 100 ml glasial asetik asit içinde eritilir. Koyu renkli cam kapaklı şişede saklanır. )2-) Sülfirik asit d:1,84 p.a.3-) Dijitonin çözeltisi, %0.5 gr. ( 0.5 gr dijitonin %50’ lik alkolde eritilir.)4-) Alkol- aseton karışımı ( eşit hacimde etil alkol %95 ve aseton karışımı)5-) Saf aseton6-) Kolesterol ana çözeltisi % 100 ( 100 mg saf kolesterol asetik asitde çözünür ve 100 ml’ye tamamlanır )7-) Kolesterol çalışma çözeltisi ( 10 ml ana çözelti + 90 ml asetik asit )8-) Glasial asetik asitDeneyin yapılışıA-) TOTAL KOLESTEROLBir santrifüj tüpüne, 0.1 ml serum ve 4 ml FeCl3 konur ve karıştırılır, 30 dakika kendi halinde bırakılır. Bundan sonra santrifüj edilir.Bir deney tüpüne,2 ml santrifüj tüpündeki süpernatan kısımdan alınarak konur.2 ml asetik asit2 ml sülfirük asit konur ve karıştırılır.Aynı anda başka bir deney tüpüne kör deney olarak,2 ml FeCl3 2 ml asetik asit2 ml sülfirk asit konur ve karıştırılır. 30 dakika beklenir. 560 nm de okunur. Standart eğri grafiğinde serumda kolesterol miktarı % mg olarak okunur. B-) SERBEST KOLESTEROLBir deney tüpüne4 ml alkol- aseton karışımı0.5 ml serum konur. Kaynayan bir su banyosuna daldırılarak birkaç saniye tutulur. Çıkarılıp soğutulduktan sonra alkol- aseton karışımı ile 5 ml ye tamamlanır.Karıştırılıp, süzülür.Bir santrifüj tüpüne1 ml yukarda ki süzüntüden1 ml dijitonin çözeltisi konur, karıştırılır. 10 dakika bekledikten sonra santrifüj edilir. Üstteki sıvı atılır, dipteki çökelti üzerine 2 ml aseton konur, karıştırılarak ümülsiyon haline getirilir. Tekrar santrifüj edildikten sonra üstteki sıvı kısım atılır.Çökelti üzerine 4 ml FeCl3 konur ve eritilir. Bir deney tüpüne,2 ml yukarıda anlatılan eriyik2 ml asetik asit2 ml sülfirik asit konur, karıştırılır. 30 dakika beklenir. Kör deney total kolesterolde anlatıldığı gibi hazırlanır.560 nm de okunur.C-) ESTER KOLESTEROLEster kolesterol : Total kolesterol – Serbest kolesterolStandart eğri grafiğinin hazırlanması30 dakika oda sıcaklığında beklenir, köre karşı 560 nm de okunur. Logaritmik kağıda standart eğri grafiği çizilir.Yorumlama : Normal değerler %150-190 mg ( Total kolesterol )Ester kolesterol : Totalin %65-75Ağır karaciğer yetersizlikleri, ağır enfeksiyon hastalıklarında kolesterol düzeyinde artış görülür. Lipoid nefroz, retansiyon ikteri, miksödem, diyabet, ateroskleroz ve ksantomatozda kolesterol düzeyinde artış görülür.Karaciğer koması ve sirozda ise kolesterol ester düzeyinde azalma gözlenir.

http://www.biyologlar.com/zak-metodu-ile-serum-kolesterol-tayini

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

BİYOTEKNOLOJİK ÜRÜNLER, ORGANİK ÜRÜNLER VE ULUSLARARASI TİCARETTEKİ GELİŞMELER

Modern biyoteknoloji ifadesi, genel olarak, modern bilgi ve tekniklerin uygulanması ile yapılan, genetik mühendisliğine dayalı tekniklerle gerçekleştirilen biyoteknolojiyi tanımlamakta kullanılmaktadır. Günümüzde özellikle tarım ve eczacılık sanayi alanlarında, modern biyoteknoloji yöntemleri kullanılarak çeşitli özelliklere sahip yeni canlı türleri elde etmek mümkün hale gelmiş, bu şekilde üretilen tarım ürünleri ve bunları içeren işlenmiş ürünler ile eczacılık sanayi ürünleri uluslararası ticarete giderek artan oranda konu olmaya başlamıştır. Pahalı ve ileri teknoloji altyapısını gerektiren bu ürünler bünyelerinde birtakım riskleri de barındırmaktadırlar. Çeşitli çevrelerde, bu ürünlerin doğal canlı çeşitliliğine, insan sağlığına ve sosyo-ekonomik yapıya zarar verebileceği öngörüleri bulunmakta, ancak bu zararın boyutları tahmin edilememektedir. Bu nedenle bir çok ülke, bu alandaki ulusal politikalarını tespit ederek, anılan ürünlerin ticaretini, doğaya salımını ve kullanımını disiplin altına almışlardır. Organik ürün ifadesi, üründen çok ilgili ürünün üretim sürecini öne çıkaran bir anlam içermektedir. Uluslararası Gıda Kodeksi tanımına göre, organik tarım; “topraktaki biyolojik hareketi, biyolojik dönüşümü ve biyolojik çeşitliliği de içeren tarımsal eko sistem sağlığını artıran ve zenginleştiren bir üretim ve işletim sistemidir”. Organik tarım denildiğinde, sentetik girdilerin kullanımının yasaklandığı, toprağın doğal zenginliğini artıran bir ürün ekim sıralamasına göre üretimin esas alındığı, insan ve çevre sağlığı üzerinde zararlı etkileri olmayan doğal girdilerin kullanımının gerekli tutulduğu bir üretim süreci anlaşılmaktadır. Son zamanlarda, özellikle gelişmiş ülkelerde organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları ortaya çıkarmıştır. Buna bağlı olarak, belirli ülkelerdeki organik ürün üretimi ve ihracatında büyük bir gelişme kaydedilmiştir (Örneğin: AB’- deki bebek gıda sanayiinin talebini karşılamak üzere üretilen tropik meyveler, Güney Afrika pazarı için üretilen Zimbabwe baharatları, AB pazarı için altı Afrika ülkesinde üretilen pamuk, vs.). Bu açıklamalar ışığında, bu çalışmada genelde tarım ürünlerinin, özelde modern biyoteknoloji yöntemleriyle üretilen ürünler ve organik ürünlerin uluslararası ticaretinde kaydedilen gelişmeler; uygulanan çok taraflı ticaret kuralları; Dünya Ticaret Örgütü (DTÖ)’ nde tarım ürünleri ticaretini ilgilendiren yeni müzakere sürecinde bu ürünlerle ilgili olarak ortaya çıkabilecek gelişmeler ve bu ürünlere yönelik tüketici yaklaşımları konusuna yer verilmektedir. I. Küreselleşme, Dünya Ticaretindeki Gelişmeler, Biyoteknolojik ve Organik Ürünler: Dünya ticaret hacmindeki gelişmeler, uluslararası sermaye hareketlerindeki artış, çok uluslu şirketlerin gün geçtikçe daha fazla büyümesi ve güçlenmesi küreselleşmede etkili olan unsurlardır. Bu unsurlar aynı zamanda tarım ve gıda sektöründeki gelişmelerde ve teknolojik ilerlemelerde de etkili olmuştur. Küreselleşme ve iletişim olanaklarındaki gelişmeler dünya ticaretinde değişikliklere yol açmış, yeni ürünleri ve kavramları ortaya çıkarmıştır. Modern biyoteknolojideki gelişmelere bağlı olarak biyoteknolojik ürünlerin ve ayrıca, refah ve bilinçlenme düzeyindeki artışa bağlı olarak organik ürünlerin ticareti konusu gündeme gelmiştir. Uruguay Round çok taraflı ticaret müzakereleri sonucunda kabul edilen anlaşmaların 1995 yılında hayata geçmesiyle birlikte tarım sektörünün küresel ekonomiye entegrasyonu hızlanmış ve çok taraflı ticaret sisteminde tarım ürünleri ticaretine uygulanacak kurallar hükme bağlanmış; teknik engel ve sağlık önlemi olarak yapılacak uygulamalar belirli bir disiplin altına alınmış; fikri mülkiyet hakları alanında uygulanacak kurallar belirlenmiş; yeni bir kurumsal yapıyla etkin olarak çalışan bir uluslararası kuruluşa -Dünya Ticaret Örgütü (DTÖ)- hayat verilmiştir. Günümüzde, genel olarak, konvansiyonel ürünler olarak tanımlanan geleneksel ürünler ile modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünler ve organik ürünlere uygulanan çok taraflı ticaret kuralları arasında farklılıklar bulunmamaktadır. Çok taraflı ticaret sisteminin bütün bu ürünler için geçerli olan en temel prensipleri; yerli ve yabancı ürünler arasında ayırım yapmamayı öngören milli muamele kuralı, bir ülke ürünlerine yönelik lehteki uygulamanın bütün diğer üye ülkelerin ürünlerine yönelik olması gerektiği konusundaki MFN kuralı ve ayrıca, dış ticaret uygulamalarında açıklığı öngören şeffalık kuralıdır. İlgili DTÖ Anlaşmalarına -Ticarette Teknik Engelller Anlaşması (TBT) Sağlık ve Bitki Sağlığı Önlemleri Anlaşması (SPS)- göre ticarette sağlık önlemi veya teknik önlem olarak yapılmasına izin verilen uygulamalarda, modern biyoteknoloji yöntemleriyle üretilen ürünler için özel düzenlemelere yer verilmemiştir. Fakat, ilgili Anlaşmalara göre, bilimsel temellerinin olması ve uluslararası standartlara dayanması koşuluyla, bu ürünlerin dış ticaretinde teknik önlem veya sağlık önlemi alınması mümkün bulunmaktadır. Diğer taraftan, DTÖ Ticaretle Bağlantılı Fikri Mülkiyet Hakları (TRIPS) Anlaşması, sanayide uygulanabilir olması ve bir yeniliği de beraberinde getirmesi koşuluyla teknolojik gelişmelerin patente bağlanabileceği hükmünü içermektedir. Bu kapsamda biyoteknolojik üretimdeki gelişmeler de patent konusu olabilmektedir. Modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretinde uygulanacak kurallar konusu 1999 yılının başlarında DTÖ gündemine gelmiştir. Bu ürünlerin büyük bir ticari potansiyel olarak ortaya çıkması, Biyolojik Çeşitlilik Sözleşmesi kapsamında hazırlanan ve Cartagena’da yapılan Biyogüvenlik Protokolü taraflar toplantısının başarısızlıkla sonuçlanması ve bunu izleyen dönemde çeşitli DTÖ üyesi ülkelerin biyoteknolojik yöntemlerle üretilen çeşitli ürünlerin ticareti, üretimi ve kullanımında bu ürünleri doğal ürünlerden ayıran kontrol mekanizmalarını oluşturduklarına ilişkin (izin, risk değerlendirme veya etiketleme zorunluluğu) bildirimlerini DTÖ’ ne iletmeleri sonucunda konu özellikle tarımla bağlantılı olarak DTÖ gündemine girmiştir. DTÖ’nün Seattle Bakanlar Konferansı hazırlıkları sırasında ABD, Japonya ve Kanada gündeme getirdikleri bir öneri ile, genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin ticaretindeki uygulamalar ve bunların ilgili DTÖ Anlaşmaları kapsamında incelenmesi amacıyla, bir çalışma grubu kurulmasını istemişlerdir. Dünya ticaretindeki diğer konuların yanısıra, tarım ürünleri ticaretinde de geniş kapsamlı yeni bir serbestleşme hareketini ve daha ileri bir entegrasyonu başlatması beklenen ve Millenium Round olarak tanımlanan ticaret müzakereleri; geçtiğimiz yıl Aralık ayında Seattle’da yapılan DTÖ’ nün III. Bakanlar Konferansında, gündemdeki konular üzerinde uzlaşmaya varılamaması nedeniyle başlatılamamıştır. Biyoteknolojik ürünler ve organik ürünlere uygulanacak kurallar konusu sadece DTÖ’ de değil, aynı zamanda farklı uluslararası kuruluşlarda da ele alınmaktadır. Temel gıda güvenliğini kontrol amacıyla uygulanacak genel standartları oluşturma görevi, Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) ile Dünya Sağlık Örgütü (WHO) tarafından, ortak gıda standart programını uygulamak üzere kurulan "Codex Allimentarious Commission"a verilmiştir. Bu kapsamda anılan Komisyon, biyoteknolojik yöntemlerle üretilen ürünler ve organik ürünler için uygulanacak temel gıda standart programlarını oluşturmaktadır. Konuyla ilgili diğer uluslararası kuruluşlar ise; Birleşmiş Milletler Sanayi Kalkınma Teşkilatı (UNIDO), Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO), Dünya Sağlık Örgütü (WHO), Uluslararası Genetik Mühendisliği ve Biyoteknoloji Merkezi (ICGEB), Ekonomik İşbirliği ve Kalkınma Teşkilatı (OECD), Birleşmiş Milletler Çevre Programı (UNEP), Biyolojik Çeşitlilik Sözleşmesi (CBD), Uluslararası Hayvan Hastalıkları Ofisi (OIE), Uluslararası Organik Tarım Hareketleri Federasyonu (IFOAM)dır. II.Gelişme Yolundaki Ülkeler, Seattle Konferansı ve Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretini yönlendiren kuralların belirlendiği tek uluslararası kuruluş olan DTÖ’ nün toplam 136 üyesinin %80’nden fazlası; gelişme yolundaki ülkeler, en az gelişmiş ülkeler ve pazar ekonomisine geçiş sürecini yaşayan ülkelerden oluşmaktadır. Günümüzde, çok taraflı ticaret kurallarının gelişmiş ülkelerin tekelinde şekillenmediğini belirtmek mümkündür. Dünya ticaretinde büyük beklentilere yol açan ancak, başarısızlıkla sonuçlanan Seattle Bakanlar Konferansı sırasında, gelişmiş ülkelerin dünya ticaretindeki gelişmeleri tek başlarına yönlendiremeyecekleri ve gelişmekte olan ülkelerin çıkarlarını da dikkate almak zorunda oldukları anlaşılmıştır. Seattle görüşmelerinin yeni çok taraflı ticaret müzakerelerini başlatmaktaki başarısızlığının altında yatan en önemli iki nedenden birincisi, gündemdeki konular üzerinde, özellikle de çevre, sağlık, tarım, kültürel çeşitlilik, tekstil, fikri mülkiyet hakları, sosyal standartlar, rekabet gibi hassas konularda, gelişmiş ve gelişme yolundaki ülke çıkarları ve beklentileri arasında önemli farklılıkların bulunması ve her iki tarafın da taviz vermemesidir. İkinci neden ise, kamuoyu baskısıdır. Küreselleşmeyle birlikte birçok konunun birbiriyle bağlantılı olarak ele alınması gerekliliği ortaya çıkmış ve kamuoyu kendisini ilgilendiren alanlardaki gelişmelere karşı duyarlılığını sivil toplum kuruluşları kanalıyla, yoğun bir biçimde ortaya koymuştur. Gelişme yolundaki ülkelerin ve kamuoyunun, modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretiyle ilgili olarak, üzerinde önemle durdukları ve hassas oldukları konular şunlardır: Modern biyoteknolojinin tarım sektöründeki eski sorunlara yeni çözümler üreterek kırsal kalkınmaya katkı sağlayabileceği belirtilmektedir. Ancak, biyoteknolojik araştırma yöntemleri geleneksel yöntemlere göre daha pahalıdır ve daha zor uygulanabilmektedir. Bu nedenle araştırmalar az sayıdaki ülkede, belirli firmalar tarafından sürdürülmektedir. Geleneksel yöntemlere göre sürdürülebilir gıda üretimi iklim, toprak ve su koşullarına bağlıdır. Modern biyoteknolojik yöntemlerle yapılan üretimde bunlardan bağımsız olarak üretim yapabilme olanağı bulunmaktadır. Ancak bu tür bir üretimin biyolojik çeşitlilik, insan, hayvan ve bitki sağlığı üzerinde kısa, orta ve uzun dönemde oluşturabileceği olumsuzlukların bilinmesi ve önlenmesi gerekmektedir. Modern biyoteknoloji yöntemleriyle yapılacak üretimde, kullanılan teknolojinin ne kadarının dışarıdan ithal edileceği, ne kadarının içeride üretileceği önemlidir. Bu yöntemlere başvurulduğunda sadece ürünün alınması yeterli olmayacak, teknolojinin de alınması gerekecektir. Modern biyoteknoloji alanındaki pek çok yenilik patente bağlanmıştır. Patent uygulaması, teknolojiyi üretmeyen ancak kullanmak durumunda olan ülkeler açısından ağır bir bedel ödenmesi anlamına gelmektedir. Çok uluslu şirketlerin zengin biyolojik çeşitliliğe sahip gelişme yolundaki ülkelerdeki canlı türlerinin genetik materyallerini patente bağlamaları ve ticari ürün olarak kullanmalarının önüne geçilmesi gerekmektedir. III. DTÖ Tarım Müzakereleri ve Biyoteknolojik Ürünlerin Ticareti: Her nekadar, DTÖ Seattle Bakanlar Konferansı yeni ticaret müzakerelerini başlatmak konusunda başarısızlıkla sonuçlanmış ise de, bu durum DTÖ Tarım Anlaşması kapsamında yapılması gereken tarım müzakerelerinin başlatılmasına engel olamamıştır. DTÖ Tarım Komitesi’nin 23 Mart 2000 tarihinde başlayan toplantısında tarım ürünleri ticaretindeki çok taraflı ticaret müzakerelerinin başlatılmasına karar verilmiştir. Tarımdaki reform sürecinin devamı ile ilgili olarak, DTÖ Tarım Anlaşmasının 20. Maddesi kapsamında yapılması öngörülen ticaret müzakerelerinde: tarımsal desteklemelerde azaltma, tarımdaki korumaların azaltılması, doğrudan ticaretle ilgili olmayan konular (tarımın çok yönlülüğü), başlıkları altında; pazara girişin kolaylaştırılması, iç destekler ve ihracat desteklerinin azaltılması, “peace clause” olarak tanımlanan sulh hükmünün gözden geçirilmesi, tarımın çok yönlü etkilerinin tartışılması, gıda güvenliği ve kalitesi konularının ele alınması beklenmektedir. Müzakereler sırasında, gıda güvenliği ve tarım ürünleri ticaretindeki engellerin kaldırılması başlıkları altında, belirli ülkelerin, özellikle de ABD'nin, modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünlerin ticaretini kolaylaştırmaya yönelik uluslararası çerçevenin oluşturulması konusunda ısrarlı davranmaları beklenmektedir. Bu doğrultuda, DTÖ’de, yeni tarım müzakereleri döneminde, üzerinde önemli pazarlıkların yapılabileceği alanlardan birinin modern biyoteknoloji ile üretilen tarım ürünlerinin ticaretinde uygulanacak kurallar olduğunu belirtmek yanlış olmayacaktır. IV.Tüketici Eğilimleri ve Organik Ürünlerin Ticareti: Son zamanlarda, özellikle gelişmiş ülkelerdeki tüketici talebi refah ve bilinçlenme düzeyindeki artışa, iletişim ve ulaşım olanaklarındaki gelişmeye bağlı olarak organik ürünlere yönelmektedir. Tarım ürünü üreticisi ve ihracatçısı bazı gelişmekte olan ülkeler, bu talebi karşılamak üzere, organik tarım ürünlerinin üretimi ve ticareti üzerine yoğunlaşmaktadırlar. Organik tarımın öneminin sürekli arttığını belirtmek mümkündür. Ancak, organik ürün ve pazarlarla ilgili araştırmalar sınırlı, geleceğe ilişkin tahminler ise yetersizdir. Diğer taraftan, Dünya ticaretinde, organik ürünlerin ticareti biyoteknolojik ürünlerin ticareti kadar hızla artmamaktadır. Organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları yaratmıştır. Ancak, organik tarım ürünlerinin, organik olmayan ürünlere göre daha pahalıya üretilmesi ve satılması; organik tarım işletmeciliğine geçişin belirli bir zamanı gerektirmesi; organik üretimin sertifikayla belgelenmek durumunda olması ve organik ürün ve pazarlarla ilgili araştırmaların sınırlı olması organik ürün ticaretinin yaygınlaşmasının önündeki en önemli nedenlerdir. 1997 yılı itibariyle dünyada 10.455 milyon dolar tutarında olduğu belirlenen organik ürün perakende satışlarının % 50'sinden fazlası Avrupa ülkelerinde gerçekleşmiştir. Avrupada en gelişmiş organik gıda ve içecek pazarına sahip olan ülkeler Almanya, Fransa, İtalya ve İngiltere'dir. 1997 yılındaki satışların yaklaşık % 40'ı ABD'de, %10'u ise Japonya'da yapılmıştır. V. Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretinde biyoteknolojik ürünlerin pazar payı hızla artmaktadır. Bu yöntemle büyük ölçekli üretim yapılabilmesi ve ayrıca, biyoteknolojik ürünlerin üretilmesi için gerekli teknolojik gelişmenin patent haklarının saklı tutulabilmesi nedenleriyle ticari kazancın boyutları da hızla artmaktadır. Modern biyoteknoloji yöntemleriyle elde edilen ürünlerin yaklaşık %74'ü ABD'de, geriye kalanı ise Arjantin (%15); Kanada (%10); Avustralya, Meksika, İspanya, Fransa Güney Afrika ve Çin Halk Cumhuriyeti'nde (%1) üretilmektedir. Bugün için, modern biyoteknoloji yöntemleriyle üretilen yaklaşık 80 adet genetik ürünün uluslararası ticarete konu olduğu bilinmektedir. Yapılan araştırmalar, 1998 yılında biyoteknolojik yöntemlerle üretilen bitkilerin tüm satışlarının 1,5 milyar dolar civarında olduğunu, bu ürünlerin 1995-1998 dönemindeki satış gelirlerinin % 20 oranında arttığını göstermektedir. Bu trendin devam etmesi halinde, sözkonusu bitkilerin tüm satışlarının bu yıl 3 milyar dolara, 2005 yılında 8 milyar dolara, 2010 yılında ise 25 milyar dolara ulaşabileceği tahminleri yapılmaktadır. Biyoteknolojik ürünlerin tamamında, orta ve uzun dönemde, 100-150 milyar dolarlık potansiyel bir ticaret hacminden söz edilmektedir. VI. Tüketici Tercihleri ve Uluslararası Ticaret: Uluslararası ticareti yönlendiren unsurlardan biri tüketici tercihleridir. Tüketiciler bilimsel ve teknolojik gelişmeler karşısında daha bilinçli davranmak durumunda olan kesimdir. Bu kesim konuya sağlık, çevre ve etik kurallar olmak üzere üç farklı açıdan yaklaşmaktadır. Genel olarak tüketiciler, teknolojik gelişmelerin çok yönlü etkilerinin bulunduğunu ve bu etkilerin bazılarının olası riskleri de beraberinde getirdiğini bilirler ve kararlarını bilinçli olarak vermek isterler. Ayrıca, bunları bilimsel ve etik değerlendirmelerin gerektirdiği kritik kararlar olarak görürler. Yapılan araştırmalar, OECD ülkeleri arasında, Kuzey Amerika ülkeleri ile Avrupa ülkeleri arasında, biyoteknolojik ürünlere yaklaşım şeklinde önemli farklılıklar bulunduğunu ortaya koymaktadır. Bir kesim -Amerikalılar- gıda üretimi için modern biyoteknolojinin kullanımına olumlu yaklaşır ve modern biyoteknolojinin gıda üretimi açısından olduğu gibi, çevrenin de yararına olduğunu belirtirken, diğer kesim -Avrupalılar- bu düşüncenin aksine konuya şüpheyle yaklaşmaktadır. Amerika ve Avrupa ülkeleri arasındaki bu yaklaşım farklılığı mevzuat düzenlemelerine de yansımıştır. AB genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin onaylanması konusunda ABD'den farklı bir süreç izlemekte ve uygulamaları "ihtiyatlılık" ilkesine dayanmaktadır. AB'nin Yeni Gıdalar Yasası, biyoteknolojik yöntemlerle üretilen ürünlerin etiketlenmesini gerektirmektedir. Biyoteknolojik ürünlerin ticaretinde uygulanacak kurallar konusunda, AB ile ABD arasında ciddi görüş farklılıkları bulunmaktadır. AB uluslararası kuruluşlardaki çalışmalarda, biyoteknolojik ürünlere yönelik etiket uygulamasının yaygınlaşması için çalışmaktadır. ABD ise, bu ürünlerin besin değeri, sağlık üzerine etkileri ve alerjik özellikleri bakımından incelendiğini ilgili kuruluşlar tarafından onaylanan genetik ürünlerin geleneksel benzerlerinden farklı bir sağlık riski taşımadığının kanıtlandığını belirtmekte, AB'yi ticarette korumacı uygulamalar yapmakla suçlamaktadır. Her iki taraf konuyu Transatlantik Ekonomik Ortaklığı, Transatlantik İş Diyaloğu ve OECD bünyesinde ve ayrıca, DTÖ tarım müzakereleri kapsamında görüşmektedir. Tüketiciler açısından esas olan kaygı, gıda üretiminde genetik biliminin kullanılmasının olası bilinmeyen riskleridir. Bu durum sağlık ve çevre açısından kabul edilebilir risk düzeyinin tanımlanmasını da güçleştirmektedir. Bu kaygılar tüketicileri, modern biyoteknoloji yöntemleriyle üretilen ürünlerin etiketlenmesi veya bu ürünlerin orta ve uzun dönemli etkileri konusunda risk değerlendirmesinin yapılması yönünde talepte bulunmaya yönlendirmektedir. VII. Etiketleme Uygulaması ve Uluslararası Ticaret: Çoğu kez, modern biyoteknoloji yöntemleriyle üretilen ürünler ile geleneksel yöntemlerle üretilen ürünleri birbirinden ayırt edebilmek mümkün değildir. Ancak, etkin pazar çözümlerine ulaşabilmek için, tüketicilerin aldıkları ürünle ilgili her türlü bilgiye ulaşabilmeleri gerekir. Bu doğrultuda etiketleme, uluslararası ticarette sıkça karşılaşılan ve tartışılan bir uygulamadır. Uluslararası ticarette önemli olan etiketleme uygulamasının ne şekilde yapılacağıdır. Uygulama gönüllü mü olmalıdır, yoksa zorunlu mu? Etikette ürünün içeriği mi tanımlamalıdır, yoksa üretim süreci mi? Etiketlerde yer verilecek bilginin kapsamı ne olmalıdır? Uluslararası ticarette yaygın olarak karşılaşılan uygulama, ürünün içeriğinin tanımlandığı etiket uygulamalarıdır. Genel olarak, üretim ve işleme yöntemleri (production and process methods) etiket programlarına konu olmamıştır. Genetik ürünlerin dış ticarete konu olmasıyla birlikte, OECD ve DTÖ'de, ticarette teknik engeller ve çevre ile bağlantılı ticaret önlemleri kapsamında, üretim ve işleme yöntemlerine ilişkin bilginin de etiketlemeye konu olabilmesi tartışılmaya başlanmıştır. Bu konu üzerinde henüz bir uzlaşmaya varılamamıştır. 1999 yılı içerisinde Japonya, Avustralya, Yeni Zelanda, AB, İsviçre, Norveç gibi ülkeler biyoteknolojik ürünlerle ilgili ulusal etiket programlarını devreye sokmuşlardır. Modern biyoteknoloji yöntemleriyle üretilen ve ayrıca, herhangi bir işlemden geçmeyen ürünlerde doğrudan etiketleme yapılabilmekte ancak, bunların işlenerek kullanılması durumunda etiketleme uygulamasında güçlük bulunmaktadır. Yapılan çeşitli araştırmalarda, bütün dünyada tüketiciye sunulan işlenmiş gıda maddelerinin yarısında modern biyoteknoloji yöntemleriyle üretilen genetik ürünlerin bulunduğu tahminleri yapılmaktadır. Ürünün çiftlikten alınıp nihai ürün olarak tüketiciye sunulmasına kadar geçen her aşamada, kullanılan girdilerin tanımlanmasını gerektiren ve üretici ve tüketiciler için gıda zincirindeki bütün ürünleri izleyebilme olanağı veren bir yöntem olan ve organik ürünler için de uygulanabilen "identity preservation" sisteminin getirdiği yüksek maliyet nedeniyle biyoteknolojik yöntemler kullanılarak üretilen ürünlere uygulanmasında güçlük bulunmaktadır. Genel olarak, ürünün paketi ile ilgili olan etiketleme uygulaması, ürünün niteliğini ilgilendiren ve sağlık önlemi olarak uygulanan ürün standartlarına göre ticareti daha az bozucu uygulamalar olarak kabul edilmektedir. Ayrıca biyoteknolojik yöntemlerle üretilen ürünler için tüketicinin satın alma kararını olumsuz yönde etkileyen bu uygulama, organik ürünlerin ticaretinde teşvik edici bir etki yaratmaktadır. VIII. Türkiye'de, Biyoteknolojik Ürünlerin İthalatı, Organik Ürünlerin İhracatı: Ülkemiz İthalat Rejimi kapsamında kamu ahlakı, kamu düzeni ve kamu güvenliği ile insan, hayvan ve bitki sağlığının korunması veya sınai ve ticari mülkiyetin korunması amacıyla ilgili mevzuat hükümleri çerçevesinde önlem uygulanan ürünler kapsamı dışındaki tüm ürünlerin ithali serbesttir. Ayrıca, bütün tarım ve gıda maddelerinin ithalatında Tarım ve Köyişleri Bakanlığı'ndan, eczacılık sanayi ürünlerinin ithalatında ise Sağlık Bakanlığı'ndan kontrol belgesi alınması gerekmektedir. Dış ticaretle ilgili veriler arasında, ülkemize modern biyoteknoloji yöntemleriyle üretilen tarım ve gıda maddelerinin ithal edildiği yönünde bir bilgi bulunmamaktadır. Ancak, önümüzdeki dönemde kaydedilecek gelişmelere bağlı olarak, bu konunun gündeme gelmesi kaçınılmaz olacaktır. Bu nedenle, modern biyoteknoloji yöntemleriyle üretilen ürünler için geçerli olacak çok taraflı ticaret kurallarının oluşturulmasından önce, bu alanı düzenleyen ulusal düzenlemelerin yapılmasında yarar bulunmaktadır. Ancak, ulusal düzenlemeler yapılırken, modern biyoteknoloji alanındaki gelişmelerin de düzenli bir şekilde izlenmesi ve bunun sonuçlarının ulusal düzenlemelere yansıtılması gerekmektedir. Bu kapsamda, çağdaş sistemlerde geçerli bir uygulama olan ve tüketicilere almak istedikleri ürünle ilgili her türlü bilgiye ulaşabilmeleri imkanını veren etiketleme uygulamasına geçilmesi etkin pazar çözümlerine ulaşabilmek bakımından yararlı olacaktır. Diğer taraftan, Türkiye'de 1997 yılı sonu itibariyle 18 000 hektar alanda organik tarım üretimi yapılmaktadır. 1998 yılı sonuna kadar bu miktarın % 25 oranında artması beklenmektedir. Türkiye'deki organik tarım üretimi ağırlıklı olarak ihracata yöneliktir ve en önemli ihracat pazarları AB ve ABD'dir. Tarım sektörünün geleceği ile ilgili stratejik değerlendirmeler kapsamında organik tarımın Türkiye'nin dış ticaretinde yeni açılımlar sağlayabilecek önemli bir üretim alanı olarak görülmesi mümkündür. Ancak, bu durumda organik tarım yöntemleriyle yapılacak üretimin gerektirdiği altyapının (bilgi, belgelendirme ve kurumsal yapı, vs.) oluşturulması ve desteklenmesi gerekmektedir. DTÖ'nde yeni başlayan tarım müzakereleri kapsamında bu konulara ilişkin olarak gündeme getirilen önerilerin dikkatle izlenmesi ve bu ürünlerin uluslararası ticaretinde uygulanacak prensipleri de içerebilecek yeni çok taraflı ticaret kurallarının ülkemiz şartları ve önceliklerine göre şekillendirilmesine çalışılmasında yarar görülmektedir. Kaynakça: DTÖ Belgeleri. OECD Belgeleri. FAO Belgeleri. Codex Allimentarious Commission Belgeleri. ITC, Organic Food and Beverages:World Supply and Major European Markets. Center For International Development at Harvard university (CID), Biotechnology in International Trade Gernot Brodnig; Weatherhead Center for International Affairs, Harvard University. DPT 8. Beş Yıllık Kalkınma Planı, Biyoteknoloji ve Biyogüvenlik Özel İhtisas Komisyonu Taslak Raporu İGEME Dış Ticaret Bülteni- Şubat 2000.

http://www.biyologlar.com/biyoteknolojik-urunler-organik-urunler-ve-uluslararasi-ticaretteki-gelismeler

Doku Kültürü

Canlıdan alınan hücreleri uygun ortamda invitro olarak yaşatıp üretmek ve bunlar üzerinde inceleme yapmak esasına dayanır. Kültür ortamı olarak fizyolojik sıvılarla beraber kan plazması ya da embriyonal doku sıvıları kullanılır. Doku kültürü lamlarının ortası oyuk olup kültür sıvısı ve taze doku parçası buraya konur. Koyduğumuz doku içindeki canlı hücreler kültür sıvısında, 37°C ısıda canlılıklarını korurlar ve kısa bir süre sonra üremeye başlarlar. Bu hücreler canlı olarak faz kontrast mikroskobu ile incelenebilirler, vital boyalarla boyanabilirler. Ayrıca kültür sıvısına bazı maddeler eklenerek bu maddelerin canlı hücreler üzerine etkileri araştırılabilir. Otoradyografi Organik ya da inorganik bileşikler halinde organizmaya verilen radyoaktif elementler vücut metabolizmasına katılır. Özellikle o maddenin sürekli ve hızlı kullanıldığı yerlerde kısa sürede o elementin yerini alır (iyotun tiroid bezlerinde tutulması gibi). O dokuya ait histolojik kesitlerde radyoaktif elementin saldığı ışınların bir fotoğraf plağını etkilemesiyle ortaya çıkan görüntünün incelenmesi bu yöntemin esasını oluşturur. Otoradyografide kullanılmaya elverişli radyoizotoplar, radyoakitf karbon, trityum, fosfor, kükürt ve iyottur. Histokimya Çeşitli organik ve inorganik maddelerin doku içindeki varlığını, miktarını, yerleşme özelliklerini ortaya koyan bir çalışma yöntemidir. Bu yöntem, aradığımız madde üzerine bu madde ile reaksiyona giren renkli bir maddenin çöktürülmesi esasına dayanır. Ya da başka bir ifade ile sadece aradığımız maddenin bulunduğu yerlerin kullandığımız boya ile boyanıyor olmasıdır. Örneğin, Prusya mavisi ile doku içindeki demirin, PAS (periyodik Asit Schiff) ile polisakkaritlerin varlığını, hatta miktarını ortaya koymak mümkündür. Renkli maddenin koyuluğu o bölgede aradığımız maddenin yoğunluğu hakkına bilgi verir. Daha kantitatif sonuçlar elde etmek için fotometrik çalışmalar bu yönteme eklenebilir. Kaynaklar: Aykaç İ., Histolojik ve Histoşimik Boya Teknikleri, Atatürk Üniversitesi Yayınları, Erzurum, 1977. Bancroft J.D., Stevens A., Theory and Practice of Histological Techniques, Churchil Livingstone, Edinburg, London and New York, 1977. Biological stain commision, Stainin Procedurs, Second Ed., The William Wilkins Comp., Baltimore, 1960. Bloom W., Fawcet D.W., A Texbook of Histology, IIth Ed., Sounders Compi Philadephia, 1986. Buck H.C., Histologishe Technic, Georg Thieme Verlag, Stuttgart, 1933. Erkoçak A., Genel Histoloji, Ankara Üniversitesi Yayınları, Ankara, 1978. Gabe M., Histological Techniques, Masson Springer Verlag, Paris, 1976. Johnson K.E., Histology and Cell Biology, Williams Wilkins Comp., Baltimore, Maryland, 1991. Kayalı H., Genel Histoloji, Taş Matbaası, İstanbul, 1985. Knoche H., Leitfaden der Histologischen Technik, Gustav Fischer Verlag Stuttgart, 1979.

http://www.biyologlar.com/doku-kulturu

Bitkilerde Çimlenme ve Gelişim

a-Bitkilerde gelişim olaylarından hücre bölünmesi,büyüme ve farklılaşma olayları görülür b-Çiçeksiz bitkilerde sporların çimlenmesi ile gametofit gelişir c-Çiçeksiz bitkilerde Sperm ve ovumun döllenmesi ile oluşan zigotun mitoz bölünmeleri ile sporofit gelişir d-Vegetatif üreyen bitkilerde dal,yaprak,tomurcuk vb. vücud kısımlarından yeni bitki gelişir e-Çiçekli bitkilerde tohumdan yeni bitki gelişir. Tohum A-Yapısı: a-Kabuk: 1-Tohumu örter 2-Kabuğu oluşturan hücrelerin çeperleri mantarlaşmış ve odunlaşmıştır 3-Tohumu su kayıbından,mekanik etkilerden,kimyasal ve biyolojik etkilerden korur 4-Kalınlığı şekli ve yapısal özellikleri türe göre değişir 5-Kabuğu oluşturan hücreler 2n kromozomludur b-Endosperm: 1-Açık tohumlularda sadece polar nucleuslardan döllenmeden gelişir ve n kromozomlu hücrelerden oluşur 2-Kapalı tohumlularda polar nucleusların döllenmesi ile oluşan triploid 3n kromozomlu hücrelerden oluşur 3-Türe göre farklı yoğunluklarda olmak üzere karbonhidrat,yağ ve protein depolar 4-Çimleninceye kadar hetotrof olan bitki embriyosunun madde ihtiyacını karşılar 5-Çimlenince endospermin görevini yapraklar üstlenir c-Embriyo: 1-Ovumun spermle döllenmesi ile oluşur ve 2n kromozomludur 2-Embriyonik gövde ve kök taşır 3-Tohum çimleninceye kadar yavaşca gelişir d-Çenekler (Kotiledonlar): 1-Embriyoya bağlı olarak gelişir 2-Endospermden besin alarak bitki çimleninceye kadar onu besler 3-Çimlenmeden sonra bir süre fotosentezde yapar(Dikotillerde) 4-Soğan,zambak vb.de tek çenek, sebzeler,çalılar,ağaçlar vb.de iki çenek, çamgillerde çok çenek bulunur Tohumda uyku hali: 1-Tohumda metabolizma yavaş fakat devam etmektedir 2-Süre tohum kabuğuna ve besin miktarına bağlıdır 3-Kuru ve soğuk koşullarda uyku halinde kalarak canlılığı korumakta ve neslin devamını garanti altına almaktadır 4-Tohumlarda uyku halinin devamı sağlayan hormon absisik asittir 5-Tohumlarda canlı ve çimlenme yetenekli kalma süresi türe göre değişir Çimlenme gücü: a-Tohum kabuğu kalınlığına b-Tohumdaki su miktarının azlığına c-Depo besinlerden yağ yerine nişastanın varlığına bağlı olarak artar. Tohumda çimlenme: Gerekli şartlar: 1-Su: Kabuğun çatlaması,embriyonun serbest kalması ve enzimatik reaksiyonlar için gereklidir 2-Oksijen:Artan metabolizma için gerekli enerji oksijenli solunumla karşılanır 3-Sıcaklık:Artan enzim etkinliği uygun sıcaklıklarda gerçekleşir 4-Işık:Bazı türlerde (Tütün) çimlenmede ışığa ihtiyaç duyulur. Çimlenme mekanizması: 1-Şartlar uygun olduğunda tohum su alarak şişer ve tohum kabuğu çatlar 2-Alınan su tohumda absisik asit etkinliğini kırar 3-Alınan suyun etkisi ile endosperm hücreleri giberillin üretir. 4-Giberillin absisik asidin etkinliğini azaltırken amilaz etkinliğini artırırı 5-Amilaz etkisi ile nişasta glikoza parçalanır 6-Oluşan glikoz çatlayan kabukla beraber alınan fazla miktardaki O2 kullanılarak solunumda harcanır 7-Çimlenme ile beraber tohumda ağırlık azalması gerçekleşir 8-Metabolizmanın hızlanması ile beraber hücre bölünmesi hızlanır 9-Meristem etkisi ile bitkiye yeni hücre ve dokular katılır 10-Bitki uç meristemi ile boyca,kambiyum ile ence kalınlaşarak büyür. Bitki gelişmesinde rol alan faktörler: A-Su: 1-Turgor oluşumu 2-Madde taşınımı 3-Fotosentezde organik madde sentezi 4-Terleme ile ısı düzenlenmesi 5-Stomaların çalışması 6-Enzimatik reaksiyonlar için ortam 7-Hidroliz reaksiyonlarının gerçekleşmesi B-Sıcaklık: 1-Enzim etkinliği ve metabolizmada etkendir 2-Terleme üzerine etkendir 3-Topraktan su alınımıda etkendir C-Işık: 1-Klorofil sentezinde gereklidir 2-Fotosentezde gereklidir 3-Bazı türlerde çimlenmede gereklidir D-pH,Tuz ve Mineral: 1-Enzim etkinliği için gereklidir 2-Bazı moleküllerin (Enzim,hormon,pigment vb.) yapısına katılır E-Hormonlar: Bitkisel hormonlar bitkinin büyümesi,yaprak-çiçek açması, yönelim, meyva oluşumu,Tohumda uyku ve çimlenme vb. yaşamsal olayların gerçekleşmesinde rol alırlar Not:Bu faktörlerin etkinliği farklı türler için değişebilir.Değişik türlerde özel adaptasyonlar görülür.

http://www.biyologlar.com/bitkilerde-cimlenme-ve-gelisim

Balıklarda solunum fizyolojisi

Solunum terimi, bir organizmanın hücresi ile çevresi arasındaki gaz (genellikle oksijen ve karbondioksit) alışverişini ifade eder. Tek hücreli canlılarda, gerekli gaz alışverişi pasif difüzyon ile sağlanabilir. Balık gibi komplex organizmalarda, dokulara yeteri miktarda O2 sağlamak ve CO2’i ortadan kaldırmak için, hem gaz alışverişi için gelişmiş bir yapı (solungaç), hem de bir gaz transfer sistemi (kan ve dolaşım sistemi) gerekir. Su ve dokular arasında osmoregülasyon ve asit-baz dengesini sağlamak gibi, balık solungacının başka fonksiyonları da vardır. Solunum sisteminin, elinde tuttuğu ve transferini gerçekleştirdiği su ve kan ve ayrıca O2 ve CO2 alışverişini sağladığı aşamalarının anlaşılması; balıkların fizyolojik ihtiyaçlarını giderecek ve yüksek derecede sağlık ortamı sağlayacak bir intensive kültür sisteminin mantıklı dizayn ve operasyonunu temin edecektir. Solunumun bütün işlevleri önemlidir, fakat intensive kültür sisteminin tipik özelliği olan yoğun balık stoklamalarında, gaz alışverişindeki etkilerin ani ölümlere neden olması bilinmelidir. Solungaç çevresindeki sudan transfer edilmesi ve dokulara gönderilmesi gereken O2 miktarı önemlidir. Salmonid gibi aktif soğuk su balıkları için O2 gereksinimi 100 mg.O/kg vucut ağırlığı şeklinde yüksek bir oranda veya daha fazlası olabilir. Aktif olarak yüzen balıklarda, solunum sistemi, 800 mg.O/kg/saat (20 ml.O/min civarında) kadar yüksek oranda O2 sağlayıp, karşılığında büyük oranda CO2 ortadan kaldırmalıdır. Bununla birlikte su, maximum çözünmüş O2’nin 10-12 mg/l’yi nadiren geçtiği O2 fakiri bir ortamdır. Deniz suyunda, mevcut çözünmüş yüksek tuz konsantrasyonu, mevcut DO’yu maximum 8-9 mg/l’ye kadar azaltabilir. Bunun için, balık yaşamının devamı için büyük miktarda suyun solungaçlardan geçmesi gereklidir. Salmonidler için solungaçlardan suyun geçmesi 5-20 l HO2/O2/vücut ağırlığı/saat oranındadır. Çoğu balık gerekli miktardaki suyu ağızlarıyla pompalayarak ve opercular hareketler yaparak sağlarlar. Ağız ve solungaçlar emme basma tulumbası olarak görev yaparlar ve böylece sabit bir su akışı sağlarlar. Haçerideki balıklar için, su alıp verme oranı 40-60 l/dk oranındadır. Suyun yüksek yoğunluk ve viskozitesinden dolayı solungaç ventilasyonunun enerji gideri, en az, tüketilen O2’nin %10’u kadardır. Salmonid, köpek balığı ve tuna gibi aktif balıklar, solungaçları üzerinden gerekli su akışını ram ventilasyonu (Yüzerken ağızını açarak) ile sağlarlar. Örneğin, pasifik salmon, ram ventilasyonunu 1 vücut uzunluğu/saniye’den daha yüksek hızda yüzerek kullanır. Bazı köpek balıkları, ram ventilasyonu ile sınırlandırılmıştır ve yaşamak için sürekli yüzmek zorundadır. Her iki solungaç ventilasyon metodunda da DO’nun %80’ine kadarki kısmımın (teorik olarak) kullanılması mümkündür. Çünkü solungaç anatomisi, ters yönde kan akışını sağlayacak şekilde dizayn edilmiştir (suyun solungaçlar üzerinden akışı, kanın solungaçlar içinden akışına terstir). Gerçek O2 tüketimi türlere göre farklıdır. Alabalıkta %30-40, tunada %70 ve sazanda %70-80’dir. Buna kıyasla, insan havadaki O2’nin sadece %25’ni alabilir. Su solungaçlardan geçerken, sudaki çözünmüş O2, sekonder solungaç lamelinin ince epitelyal hücrelerinin arasından geçer ve kana difüze olur. Asitlik arttıkça hemoglobinin O2’ye yakınlığı azalır (Bohr etkisi) ve bazı türlerde asitlik, hemoglobinin O2’yi tutmasındaki maksimum kapasiteyi azaltır (Root etkisi). Bu yüzden kan, dokuların kapillar yataklarından geçerken üretilen CO2’in neden olduğu asitlik Hb-O2 ağını zayıflatır ve O2 yoğunluğunun düşük olduğu hücrelere difüze olan O2’nin çıkışını kolaylaştırır. Aynı zamanda, CO2, dokulardan kana difüze olur. O2’in tersine, CO2’in çoğu plazmada erir ve bikarbonat formunda yeniden solungaçlara gönderilir. Kan solungaçlardan geçerken karbonikanhidraz enzimi, HCO3 iyonunu sonra yeniden suya difüze olan CO2 molekülüne hidroliz eder. Bir ünite kanın solungaçlar içinde kalma zamanı, sadece birkaç saniye olduğu için ve kan ve su arasındaki yüksek CO2 basıncından dolayı bu enzimatik reaksiyon son derece hızlı bir aşamadır. Bu yüzden kandaki O2 basıncı 100 mg Hg veya daha yüksek seviyeler arasında değişebilir, kandaki CO2 konsantrasyonu düşük kalır ve çok az değişir. Özellikle aktif soğuk su balıklarında Bohr etkisi büyük olur (kanın düşük CO2 düzeyinde başlar). Aquakültür sistemlerinde, örneğin eğer sudaki çözünmüş CO2 konsantrasyonu 20 mg/l’ye çıkarsa Bohr etkisi salmonidlerin O2 transferini engeller. Karışık kültürü yapılan sıcak su balıkları (Tilapya, sazan, kanal kedi balığı gibi) genellikle çözünmüş CO2 konsantrasyonuna daha az duyarlıdırlar ama, bu yetiştiricilik yöntemi, iyi bir yetiştiricilik işletmesi için, CO2 ’in havuz suyunda birikmesine engel olan durumları sağlamada iyi bir yöntemdir. CO2’in etkisiyle birlikte, laktik asit üretimi kan asitliğinin yükselmesine ve kanın O2 transferinin bozulmasını neden olur. En genel sebep; beyaz kaslarda O2 olmamasından dolayı kan ve dokularda laktik asit birikmesiyle sonuçlanan aşırı yüzme aktiviteleridir. Bu da heyecan ve stresten kaynaklanır. Örneğin, eğer kanın pH’sı 7,8-7,6’dan 6,0’a düşürülürse toplam hemoglobinin sadece çok az bir yüzdesi O2 ile doyurulabilir. Root etkisindeki Hb’in normal görevi choroid rete üzerinden O2’i göze ileten moleküler pompa görevi yapmak ve physoclistik türlerde rete mirabile üzerinden yüzme kesesini doldurmaktır. İkinci görevi, salmonidlerde (fizostomları bulunduğu için) önemsizdir ki; havayı emerek yüzme kesesini doldurmaktır. Bununla beraber, salmonid gözündeki normal O2 yoğunluğu, hem kanın, hem de suyunkinden fazladır. Bu da root etkisindeki Hb’in bu balıklarda önemli bir rol aldığını gösterir. Cadmium ve civa gibi ağır !!!!llerin öldürücü seviyelerinin altındaki dozlarına maruz kalma durumunda, root etkisindeki Hb’in normal fonksiyonunun tersi yönde etkilendiği bilinir. Bunun yoğun kültürdeki balığın sağlığı için önemi bilinmemektedir. Yoğun kültürdeki balıklar için, Bohr ve Root etkisi altında O2 transferinin azalması ile ilgili problemler, kanda yüksek laktik asit konsantrasyonu (Hyperlacticemia) veya kanda yüksek CO2 konsantrasyonu sonucu ortaya çıkar. Genel sebepleri; düşük DO durumları ve heyecandan kaynaklanan aşırı yüzme aktiviteleridir. Ayrıca yetiştirme ve transfer sırasında daha yüksek stoklama yoğunluğu sağlamak için saf O2 kullanarak havalandırma yapmak, aşırı doyurulmuş DO düzeyine ve hipercapnia’ya (yüksek DO’nun solungaç havalandırma oranını baskılaması nedeniyle oluşan bir yan etki) neden olur. Bu ise, CO2 birikmesine ve yüksek arterial PCO2 basıncına neden olur. Kana O2 transferi bundan etkilenmeyebilir. Çünkü daha yüksek arterial PO2, bohr etkisi kaynaklı azalmaları dengeler. Buna ek olarak hipercapnia, dokulara O2 naklini, sadece arta kalan asitliği normal kan dengesini aşarsa veya solunum asidosisi meydana gelirse tehlikeye sokabilir. Suyun kalitesinin iyi olduğu balık kültürlerinde Bohr etkisi kaynaklı O2 naklinin azalması ile ilgili problemler, aşırı yüzme sonunda üretilen laktik asitten dolayı ortaya çıkan !!!!bolik asidosis kökenlidir. Bohr etkisinin solunum baskısının CO2 ve DO konsantrasyonu ile olan ilişkisi ilk kez Basu (1959) tarafından belirlendi. Dokulara yeterli O2 sağlamak için vasat bir yüzme seviyesi oluşturmak için gereken DO seviyesi bunu ortaya çıkarmıştır. Bu minimum miktar, eğer çok az CO2 varsa veya hiç yoksa 6 mg/l’den, Eğer çözünmüş CO2 konsantrasyonu 30 mg/l’ civarına yükselirse, 11 mg/l’den daha yukarı çıkar. Sonuç olarak, salmonid gibi balıkların, DO seviyesinin %80 doygunluk oranının altına düşmemesi şartıyla, yeterli O2’ye sahip olmaları önerilir. Eğer çözünmüş CO2 seviyesi 30-40 mg/l’nin altında tutulmazsa, kanın O2 taşıma kapasitesi, yüksek DO konsantrasyonunun bile yetersiz olduğu, doku hipoksia’sına neden olabilecek seviyelere düşer. Bohr ve root etkisi kaynaklı solunum baskısı, heyecan ve yüzme aktivitesini azaltmak için dikkatli balık tutumu ile en aza indirilebilir. Yeterli miktarda çözünmüş O2 sağlamanın yanısıra çözülmüş CO2 ‘yi hızla ortadan kaldıran havalandırma sistemi ve su değişim oranı ile de bu sağlanabilir. Pratikte bunlar yoğun kültürdeki balığın ihtiyaçlarını sağlamada gerekli unsurlardır. Haçeri’deki çözünmüş O2’i balığın tüketme oranı yoğun kültür sistemlerinin sağlanmasında önemlidir. O2 tüketimi, balık naklinde gerekli olan havalandırma miktarı ve istenilen yükleme yoğunluğu için gerekli su alışveriş oranı gibi temel parametreleri belirler. Racewaylerdeki salmonidler en az 100 mg.O/kg/saat ile en fazla 800 mg/kg saat arasında tüketir. Bu seviye, yüzme seviyelerine, su sıcaklığına, zaman, son beslenme ve heyecan, stres derecesine göre değişir. Egzersiz, stres veya su sıcaklığının sonucu olan !!!!bolik ihtiyaçları karşılamak ve O2 tüketim oranını kontrol etmek için hormonal teknikler kullanılır. Hem soğuk su, hem de sıcak su balıklarının solunum oranı karasal omurgalılarda olduğu gibi kanda CO2 yükselmesi ile değil, DO konsantrasyonundaki düşüş ile stimüle edilir. Örneğin, balıklar elle tutularak stres olduğu zaman, adrenalin ve diğer cathekolomine hormonları (hem solungaç perfüzyon miktarını , hem de alyuvar hemoglobininin O2 taşıma kapasitesini artıran hormonlar) üretilir. Bronşal vasodilasyonun yan etkisi olarak suyun normal ozmatik akımı aşırı şekilde yükselir ve bundan sonra vücuttan atılmalıdır. Diüresis’in sonucu çok çarpıcı olabilir, kandaki elektrolitlerin bazıları üretilen çok fazla üre içinde kaçınılmaz bir şekilde kaybolur. Diüresis uzatılırsa, iyon regulasyonunda bozulmalar ortaya çıkabilir. Balık tutulduktan veya nakledildikten 1-2 gün sonra oluşan gecikmiş ölümler büyük ölçüde bu olayın bir sonucudur. Yoğun kültür sistemlerindeki balıkların O2 tüketimi, hem balığın kültürel prosedürü, hem de doğal gelişmeler nedeniyle arttırılabilir. Bunlardan, tutma nedenli stres, heyecan nedenli arttırılmış yüzme aktivitesi ve beslenmenin doğal aşamaları en önemli olanlarıdır. Örneğin Çelikbaş alabalığı juvenilleri tutulmaktan dolayı strese girerler, O2 tüketimleri 2 kat birden artabilir ve bir veya daha fazla saat yüksek oranda kalır. O2 tüketiminin artması (heyecan ve stres kaynaklı), balıklar nakil tanklarına yüklendikten sonra, birden meydana gelen DO’daki ani düşüşün sorumlusudur. O2 havalandırması varsa, balık bulunan tank suyu 14-16 mg/l’lik DO’ya kadar doyurulmalıdır ki, bu da balıkların O2 ihtiyacını karşılar. Sadece sıkıştırılmış hava varsa, havalandırma sistemini, balık yüklemeden 5-10 dakika önceden başlatmak, suyun doyurulmasını sağlayacağından bir dereceye kadar etkili olacaktır. Beslenme ve sindirimin doğal aşamaları, balığın O2 tüketimini büyük ölçüde artırır. Çünkü sindirimin, absorbsiyon ve asimilasyonun kalorik maliyeti, geri kalan !!!!bolik kalorinin %40’ı kadardır. Bu etkinin O2 tüketimindeki boyutu (Specific dynamic action of food (SDA) = .Yiyeceklerin spesifik dinamik hareketi) her zaman tam olarak değerlendirilmez. Çünkü beslenme rutin bir operasyondur. Salmonid, kanal kedi balığı ve tilapya için, her defasında balık birkaç saat beslendiği için O2 tüketim oranını %40-50 veya daha fazla arttırmak akıllıcadır. SDA’nın pratik sonucu olarak; balığın hemen tutulmaması veya nakil edilmemesi gerekir. Çünkü, beslenme ve sindirim olaylarına eklenen heyecan ve stres, onların O2 tüketimini, havalandırma sisteminin yeterli DO sağlayamayacak seviyede arttırır. Elle tutulmadan ve nakilden 24-48 saat önce balık beslemeyi durdurmak bu etkiyi önler ve O2 tüketim oranını büyük ölçüde azaltır. Yoğun kültür sisteminde O2 tüketimini etkileyen diğer önemli faktörler ise; su sıcaklığı ve yüzme aktiviteleridir. Daha yüksek su sıcaklığı, bütün !!!!bolik hızı artırarak O2 tüketimini yükseltir. Bununla beraber yüzme aktivitelerinde O2 tüketimi, kasların kasılması için, Hb doygunluğunu düşürerek kandaki O2‘yi tüketmesi ile yükselir. Gökkuşağı alabalığında, solungaç lamelleri’nin sadece %60’ı kanla perfüze olur. Hızlı yüzmeye dayanan kas kasılması, adrenalin ve diğer cathekolamine hormonlarının dolaşımını teşvik eder. Meydana gelen solungaç perfüzyonun yükselmesi ile birlikte, eritrosistlerin, hücre içi pH’sını artıran, Na / H değişiminin adrenal hormonu tarafından teşviki sağlanır. Bohr etkisi düşürülür ve hem kanda O2 oluşumu, hem de O2 ‘nin dokulara teslimi sağlanır. Isı ve yüzme aktivitelerinin O2 tüketimi üzerindeki etkisinin gerçek boyutu Brett (1973) tarafından, kontrol altında tutulan pasifik solmonu üzerinde belirlenmiştir. Daha sıcak su, O2 tüketimini bir dereceye kadar artırır. Bununla beraber, yüzmenin etkisi daha çarpıcıdır. İleri atılarak yüzme, özellikle enerji bakımından yoğundur. Çünkü sürtünme etkisi çok yüksektir. Yoğun kültür sistemindeki balığın yüzme aktivitesi genelde daha düşüktür. Salmon kültüründe racewaylerde su alışverişi öyle ayarlanmalıdır ki, o balığın O2 tüketim oranı, DO’yu son taşma sınırının yaklaşık 6 mg/l aşağısına indirmemelidir. Havalandırma sistemi ayrıca, taşıma kapasitesini artırmak için de kullanılır. Bazı durumlarda DO oranını 14-16 mg/l ‘ye çıkarmak için sıvı O2 kullanılır. Balık nakil sisteminde O2 tüketim oranı, genelde yüksek heyecan ve stres nedeniyle değişkendir. Yakaşık DO doygunluğunu sağlamak için saf O2 kullanılır. DO, balık tarafından tüketildikten sonra hemen yenilenmezse, O2 tükenmesi meydana gelir. Karasal hayvanların aksine, balığın nefes alma oranı, yükselen CO2 ile değil, düşen DO konsantrasyonu ile stimüle edilir. Alabalık, sazan, kedi balığı gibi türler düşen DO seviyesine, önce ağız ve solungaçlarını kullanıp solungaç havalandırma oranını yükselterek; kan basıncını ve kardial verimi yükseltip solungaçlardan kan akışını artırarak cevap verir. Salmonidlerde, normal DO tükenmesi bile, solungaç havalandırma oranında çarpıcı yükselmelere neden olur. Bu olaylar, ilk olarak O2 alımını yükseltir, fakat daha fazla su akışı da, solungaçlardan her geçişte çekilebilen DO oranını azaltabilir. DO düştükçe kana transfer edilen O2 miktarı da düşer (max %80’den min %15’e). Ayrıca, daha fazla suyun solungaçlar üzerinden hareket ettirilmesi, enerji maliyetini büyük oranda yükseltir (Absorbe edilen O2 ‘nin %10 ‘undan %70’e yükselmesi). Sonuç olarak; O2 elde etmek için harcanan güç, suda çözünmüş O2 miktarı düştükçe ve arterial kandaki O2 basıncı düştükçe yükselir. Arteial kan O2‘si, alyuvardaki Hb %60 doygunluktan daha az olduğu noktaya ulaşıncaya dek azaldığında; solungaç damarlarını genişleterek ve Na/H alışverişini alyuvar membranı ile sağlayıp, hücre içi PH’yı yükselten adrenalin ve diğer cathecolamine hormonları salgılanır. Bir dizi karışık olay sırasında Hb-O2 ilişkisinde değişiklikler ve Bohr ve Root effect kökenli kapasite değişiklikleri, hem solungaçlardaki O2 transferini, hem de O2 ‘nin dokulara yükselmesini kolaylaştırır. Eğer çözünmüş O2, 5 mg/l’nin altına düşerse, salmonidler, iştahsızlaşırlar. Bu, beslenme ve sindirim sırasında O2 tüketiminde meydana gelen normal yükselmeye engel olmak için geliştirilen bir davranışsal cevaptır. Salmonidlerde, O2‘nin elde edinimi ve kullanımının biyoenerjik maliyeti, DO’nun 2 mg/l civarına kadar tüketilmesinden dolayı ortaya çıkan aşırı enerji ihtiyacı ile başlar ve bilinç kaybı ve hatta ölümle sonuçlanabilir. Aquakültür için önemli olan çoğu sıcak su balığı DO seviyesi 1 mg/l’nin altına düşse bile birkaç saat hayata kalmayı başarır. Ama sonunda meydana gelen doku hipoksiası bilinçsizlik ve ölümle sonuçlanır. Aquakültür ortamında balığın tükettiği O2 oranını sürekli düşürmek en temel hedeftir. O2 tüketimini artırmak için varolan aynı biolojik ve çevresel faktörlerin çoğu onu düşürmek için de arttırılabilir. Su sıcaklığını azaltma (hipothermia) ve yüzme aktivitesini, heyecanı ve balık tutma sırasındaki stresi düşürmek için anastezik kullanımı en bilinenleridir.

http://www.biyologlar.com/baliklarda-solunum-fizyolojisi

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

GENETİK KOPYALAMA

İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..." Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.." Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..." YUKARIDAKİ PARÇA, Aldous Huxley’in 1930’larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor. Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yolaçtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya’da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı. Şubat ayının 22’sinden itibaren, İskoçya’nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile. Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature’ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat’ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı. Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer’ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti. Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi’nde maymunların klonlandığını öne sürdüler. Oysa, Oregon’da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu. Edinburg’daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı. Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut’un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly’nin varlığının temel sebebi olmuş. Dr. Wilmut’un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek. Adını, ünlü şarkıcı Dolly Parton’dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly’nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL’in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor. PPL ve Roslin Enstitüsü’nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil. Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı. Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz. Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir. Biraz Ayrıntı İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut’un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor. Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var. Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor. Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor. Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün. Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA’yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)’dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA’nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor. Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde. G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur. Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly’i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı? Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi. Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi. Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi. İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor. Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Herşeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor. Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA’ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor. Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor. Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA’sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor. Her yumurta hücresi, farklı tipte DNA’lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA’lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly’nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly’nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu. Klonlamalı mı? Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı. Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi. Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı. Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck’a dayanıyor. Lamarck’ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır. Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir. Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA’sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük. Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için... İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci’yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976’da yazdığı The Boys from Brazil romanında Adolf Hitler’den klonlanan genç Hitler’lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler’in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti. Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler’i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf’un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor. Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL’in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açması gibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir. Örneğin, Budist bir araştırmacı, Dolly’nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş. Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya’da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal’daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..." İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi. Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir. Özgür Kurtuluş Kaynaklar: Biospace Huxley A., Cesur Yeni Dünya, Çev: Gürol E., Güneş Yayınları, 1989 Nash M. J., "The Age of Cloning", Time, 10 Mart 1997 Roslin Enstitüsü Basın Bültenleri Star C., Taggart R., Biology: The Unitiy and Diversity of Life, 1989 Underwood A., "Little Lamb Who Made Thee", Newsweek, 10 Mart 1997 Wilmut I., Schnieke A. E., McWhir J., Kind A. J., Campbell K. H. S., "Viable Offspring Derived From Fetal and Adult Mammalian Cells", Nature, 27 Şubat 1997

http://www.biyologlar.com/genetik-kopyalama

BLOOR METODU İLE KOLESTEROL ANALİZİ

BLOOR METODU İLE KOLESTEROL ANALİZİ

Prensip :Kloroformda eritilmiş kolesterolün, asetik asit anhidridi ve sülfirik asit ile verdiği ve kolesterol miktarı ile orantılı olan renk reaksiyonuna dayanır.Reaktifler:1) Bloor ayıracı ( 3 hacim etil alkol + 1 hacim eter karıştırılır.)2) Kloroform ( saf )3) Asetik asit anhidridi4) Sülfirik asit5) Asetilan karışım ( 24 ml kloroform + 15 ml asetik anhidrid + 1 ml sülfirik asit karıştırılır, soğuduktan sonra kullanılır. ) Her defasında taze hazırlanır.6) Dijitonin çözeltisi ( 0.5 gr dijitonin %50 lik alokolde eritilir ve 100 ml’ ye tamamlanır.)7) Kolesterol ana çözeltisi % 80 mg ( 80 mg kolesterol, 100 ml kloformda eritilir iyice karıştırılır.)8) Kolesterol çalışma çözeltisi % 8 mg ( 1 ml ana çözeltisi + 9 ml kloroform iyice karıştırılır.)9) Standart eğri grafiği için kolesterol çalışma çözeltisi % 20 mg ( 5 ml ana çözelti + 15 ml kloroform )Deneyin yapılışı :A. TOTAL KOLESTEROL :Cam kapaklı bir tüp veya 25 ml lik bir ölçü silindiri içine1 ml serum24 ml Bloor ayıracı konur, kuvvetle çalkalanarak karıştırılır. Ara sıra karıştırmak sureti ile 30 dakika yan yatırılarak beklenir. Bundan sonra süzgeç kağıdı ile süzülür. Süzüntüden 5 ml alınıp bir bahar içine konur. Buharlaşması için beklenir. Eter kokusu kaybolduktan sonra kaynar su banyosu üzerinde veya etüvde alkol kısmının uçması için bekletilir. İyice kuruma sağlandıktan sonra eher içindeki kuru kalıntı iki üç kerede toplam 5 ml olmak üzere kloroformla eritilip alınır. Bu ekstre bir deney tüpüne aktarılır. Beherdeki bulaşıklık 5 ml asetilan karışımı ile çalkalanarak aynı tüpün üzerine konur.Böylece deney tüpünde toplam hacim 10 ml olmuş olur.Bir başka deney tüpüne5 ml kolesterol çalışma çözeltisi % 8 mg5 ml asetilan karışımı konur ve karıştırılır. Tüplerin hepsi 20 0C sıcaklıkta ve karanlıkta 15 dakika bekletilir. Distile su kör olmak üzere 660 nm de okunur. Numune ve standart tüplerinin optik dansitelerinden hareket ederek aşağıdaki formüle göre numune serumdaki kolesterol miktarı bulunur.Serum kolesterol % mg : ( Numune optik dansitesi / Standart optik dansitesi ) X 200

http://www.biyologlar.com/bloor-metodu-ile-kolesterol-analizi

LİKENLERİN BESİN OLARAK KULLANIMI

Özellikle de kıtlık zamanlarında boreal ve subarktik bölgelerdeki insanlar tarafından likenlerin yerel olarak kullanıldıklarına dair birçok kayıt vardır. Likenler un ile karıştırılabilir veya jelatinlerini çıkartmak için kaynatılabilir. Batı Kanada ve ABD’de bazı kabilelerin bol bir konifer likeni olan Bryoria fremontii’yi ( fruticos bir liken ) ektikleri bilinmektedir. Liken; acı maddelerin süzülmesi için önce suya bırakılır, bekletilir, buharlı kayalarda pişirilir, kurutulur ve daha sonra küçük parçalara kesilir, ihtiyaç duyulduğunda ise parçalar suya bırakılır ve yenilirdi. Bu gibi belirgin türlerin % 24.8 karbohidrat ve % 5.5 protein içeriği vardır. Bugün Japonya’da kaya fungusu olarak bilinen Umbilicaria gibi bazı yapraksı türler dağlık alanlardan toplanır ve salatalarla yenilir veya yağda kızartılarak yenilir, bunların lezzetli olduğu söylenir. İzciler için boreal ve sıcak alanlarda bulunan kaya likenleri acil durumlarda yemek için iyi bir kaynaktır. Toprakta büyüyen Cladonia, Cetraria islandica ve diğer likenler özellikle protosetrarik asit gibi acı ve tadı çok kötü olan asitler içerebilir. Bu gibi asitler zehirli değildir fakat soda içinde kaynatılarak uzaklaştırılmalıdır. Tabi ki likenler hiçbir zaman insanlar tarafından büyük ölçüde besin kaynağı olmayacaktır. Besinsel değeri diğerleri ile karşılaştırıldığında avantajlı olsa bile bunların çok yavaş büyümesi insanların bunları kültüre alması için bir dezavantajdır Likenler tundra ve subarktik bölgelerde yaşayan rengeyikleri için önemli bir besin kaynağıdırlar. Bulunan ürüne bağlı olarak bu hayvanların toplam kış besinin % 30-60’ını teşkil edebilirler. En yaygın otlatılan likenler Cladonia ve Cetraria cinsleridir. Bunlara halk dilinde ren geyiği likenleri denir. Themnolia vermicularis ve Peltigera cinsine ait likenlerde geyikler tarafından önemli ölçüde tüketilirler. Eğer kar örtüsü kalın ise rengeyiği Bryoria, Usnea gibi epifitik likenleri de yiyecektir. Kuzey ABD’de rengeyikleri kar kaplaması otlara ulaşmayı engellediği zamanlarda bu likenlerden şiddetli bir şekilde yararlanır. Kanada’da bazı hayvan yemi olan likenler rengeyiğinin tahmin edilen besin gereksinimlerine nazaran protein, kalsiyum ve fosfor açısından fakirdir ama yinede bunlar için önemli bir besin kaynağıdır. Muhtemelen likenlerin en yaygın biçimde hayvan yemi olarak kullanılması Laponyalılar tarafından gerçekleştirilir. Bunlar bu likenleri ekerler ve biçtikten sonra depo ederler. Günümüzde çok fazla otlatmanın Laponya’daki liken ürünü miktarını ciddi şekilde azalttığı belirlenmiştir. Normal olarak otlanan bir alanın rejenere olması için yaklaşık 15 yıl gerekir ama burada kontrollerin yetersiz olmasından dolayı bu alanların kendini yenilemesi için çok az zaman verilmektedir ve bu yüzden likenlerde önemli azalmalara yol açmaktadır. Libya çöllerinde otlayan koyunlar yoğun biçimde Aspicilia esculenta üzerinden beslenmektedir. Bu liken toprak ve kayalara ince ve yumuşak bir biçimde bağlanır ve koyun tarafından kolayca yenir, ama dişlerinin aşınmasından dolayı koyun henüz olgunlaşmamış dişlerini kaybeder. Aspicilia esculenta’nın aynı zamanda eski İsraillilerin masallarına konu olan kudret helvası olduğundan şüphe edilmektedir 

http://www.biyologlar.com/likenlerin-besin-olarak-kullanimi

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

Biyoterörizm ve Biyolojik Silahlar

Biyoterörizm kavramı, 11 Eylül 2001 tarihini takiben ABD’de posta kaynaklı şarbon vakalarının görülmesiyle günlük hayatımıza girmiştir. Biyoterörizm kişiler, gruplar veya hükümetler tarafından gerek ideolojik, gerekse politik veya finansal kazanç sağlamak amacıyla hastalık yaratıcı patojenlerin (biyolojik savaş araçlarının-BSA) sivil halk üzerinde, hayvanlarda ve bitkilerde hastalık oluşturmak ve/veya ölüme neden olmak amacıyla açık veya gizli şekilde yayılması şeklinde tanımlanmaktadır. Peki biyolojik silahlar nedir?. Klasik olarak “Biyolojik Silahlar” sadece yaşayan canlılara kitlesel zarar veren patojen (bakteri, virüs, mantar) veya doğada patojen olmayan ancak genetik olarak değiştirilmiş mikroorganizmalar ile bu etkenlerin toksinleri olarak tanımlanmaktadır. Neden insanoğlu biyolojik silahları üretmektedir?. Nükleer, kimyasal ve konvansiyonel silahlarla karşılaştırıldıklarında biyolojik silahların çeşitliliği onları diğerlerinden ayıran en önemli özelliği oluşturmaktadır. Bulaşıcılığı yüksek, kolay ve hızlı üretilebilen, aşı ve tedavisi kullanıcı tarafından kolaylıkla kendi yandaşlarına uygulanabilen hemen hemen tüm mikroorganizmalar biyolojik saldırı amaçlı kullanılabilir. Günümüzde 43 mikroorganizma biyolojik silah adayı olarak kullanılabilir olmakla birlikte, bunlar arasında en önemlileri; şarbon, brusella, veba, Q ateşi, tularemi, çiçek, viral ensefalit, viral hemorajik ateş, botulizm toksini ve stafilokoksik enterotoksin B'dir. Biyolojik Silah Olarak mikroorganizmaların Avantajları: • Çok geniş alana dağılabilmesi (etki alanının geniş olması) • Kolay üretilebilir depolanabilir ve Üretim merkezlerinin kamufle edilebilir olması • Düşük maliyetle üretilmesi Kilometrekare kare başına düşen insan sayısının %50’sini etkileyen doz (LD50) baz alınarak maliyet hesaplandığında, konvansiyonel silahlar 2000$, nükleer silahlar 800$, kimyasal silahlar 600$, biyolojik silahlar ise 1 dolara mal olmaktadır. Bu nedenle biyolojik silahlar “Fakirin Atom Bombası” olarak tanımlanmaktadır. • Kullanımlarının kolay olması ve iz bırakmaması Biyolojik silah ajanları renksiz, kokusuz, tatsız olmaları nedeniyle insan gözüyle görülemezler. Aerosol bulutu halinde atıldığı zaman, mikroskopik boyutlardaki partiküller (1-10 m çapında) solunum ile akciğerlerin uç bölgelerine ulaşırlar. Ayrıca, etkilerinin ancak kuluçka süresinin sonunda görülmesi nedeniyle maruz kalanlar semptomlar ortaya çıkana kadar hedef olduklarının farkına varamazlar ve bu arada salgın yayılmış olur. • Az miktarının büyük kitleleri etkilemesi ve oldukça fazla sayıda insanda hastalık ve/veya ölüme neden olabilmesi: Örneğin Washington bölgesine, rüzgar yönünde 100 kg. aeresol şeklindeki şarbon sporunun yayılmasını takiben, 130000 ile 3000000 arasında ölüm gözleneceği, CDC tarafından geliştirilen bir ekonomik modele göre ise saldırıya maruz kalan her yüz bin kişi için 26.2 milyar dolarlık bir bütçe kaynağı gerektiği hesaplanmıştır. Bu da bir BSA’nın etkisinin bir megatonluk nükleer savaş başlığı etkisinden büyük, bir hidrojen bombasının etkisine ise eşit ya da daha büyük olacağı anlamına gelmektedir. • Dış ortam koşullarına dayanıklılığının yüksek olması: Örneğin şarbon sporu toprakta 40 yıldan daha uzun süre kalabilmektedir. • Bazı etkenlerin insandan insana bulaşma olasılığı: Veba, çiçek, kanamalı ateş gibi BSA’ya bağlı enfeksiyonların insandan insana bulaşarak salgın oluşturma ve böylece silahın hedef aldığı kitleden çok daha büyük bir kitleyi etkilemesi mümkün olmaktadır. Ayrıca BSA’lar yayılımı takiben insan vücudu gibi uygun bir ortam bulduklarında çoğalmaya başlarlar; bu şekilde kullanıldıkça çoğalan başka bir silah bulunmamaktadır. • Kitleler üzerinde panik etkisi yaratması ve sağlık sisteminde çökmeye neden olması sayılabilir Kendisini kullananlara zarar verebilmesi, etkilerinin önceden tahmin edilememesi ve uzun süre doğada kalabilmeleri ise BSA’ların olumsuz yönleridir. Biyolojik ajanların kullanımı temel olarak üç yolla olmaktadır: Kontamine su ve gıdalar, infekte vektörler ve aerosolizasyon aracılığıyla ile uygulanabilirler. Ancak, vektörlerin geniş kitleler üzerinde etkili olmaması ve gelişmiş ülkelerin su sistemlerindeki ileri düzeydeki arıtma teknolojisi nedeniyle BSA’nın bu şekilde kullanımı sınırlı olup, tercih edilmez. Aerosol, yapısı nedeniyle geniş bir yayılım sağladığı için biyoterörizmde kullanılan en etkin araçtır. Aerosol şeklinde hazırlanmış biyolojik silahlar; bakterilerin tarım ilaçlaması şeklinde uçaklardan veya sprey tanklarından yerleşim yerlerinin üzerine püskürtülmesi suretiyle etkili olurlar. Düşük maliyeti ve kolay uygulanabilmesi tekniğin avantajları olmakla birlikte etkili olabilmesi için ideal hava koşulları gereklidir. Şiddetli rüzgar, yağmur ve güneş ışınları gibi hava koşulları etkilerinin azalması ayrıca uygulama hatasına bağlı kullanıcının da zarar görmesi gibi olumsuzlukları da söz konusudur. BSA’nın çeşitliliği, hangisinin kullanacağının önceden bilinmemesi, kimyasal silahlarda olduğu gibi hemen belirti vermemesi, bu nedenle de olay mahallinin bilinememesi, hastalık tablosunun birbirine benzemesi dolayısıyla etkenin hangi ajan olduğunun kolayca belirlenememesi ve o bölgede doğal bir salgın olabileceği ihtimali gibi etmenler BSA’nın saptanmasını önemli ölçüde güçleştirmektedir. Yanısıra hangi ajanın ne zaman kullanılacağının bilinmemesi aşı gibi koruyucu önlemlerin uygulanmasını da imkansız kılmaktadır. Biyolojik saldırı olduktan sonra bazı bakterilere karşı antibiyotikler ile proflaksi uygulanabilirse de genetik olarak bu ilaçlara karşı dirençli hale getirilmiş BSA’nın olabileceği göz önünde bulundurulmalıdır. Etkili bir savunma için, saldırı olmadan önce ülkedeki ilgili kurum ve kuruluşların rasyonel ve ekonomik bir şekilde organizasyonu ayrıca operasyonda görev alacak teknik personelin teorik ve pratik eğitimlerinin yapılması gerekir. ABD Hastalık Kontrol ve Önleme Merkezi tarafından (CDC) biyolojik silahlara karşı savunma stratejileri beş ana başlık altında sınıflandırılmıştır. 1.Hazırlık, önlemler 2.Saptamak, gözetim (ilk olgular, otopsi) 3.Etkenin özelliklerini iyi bilme 4.Koruyucu yöntemlerin geliştirilmesi 5.İletişim ağının sağlıklı çalışması Ne zaman ve nereden geleceği tahmin edilemeyen biyoterörist saldırılara %100 hazırlıklı olmanın olanağı yoktur. Ancak, hangi BSA’nın karşı tarafın elinde olduğunu bilmek ve bu ajanlara karşı tanı, tedavi ve korunma açısından hazırlık yapmak esastır. BSA’nın kullanılmasını takiben hastanelerin aktive edilmesi, arındırma, izolasyon, karantina, proflaksi, aşılama, otopsi ve diğer koruyucu önlemlerin belirlenip sağlık örgütünün salgına vereceği savunma yanıtı için epidemiyolojik kapasitenin artırılmasına yönelik hazırlık planları geliştirilmelidir. Bu hazırlık planları, BSA’nın tanımlamasına yönelik yerel, bölgesel ve ulusal laboratuvarların tanı olanaklarına göre belirlenmiş bir laboratuvar ağı oluşturmalarını ve ajanların moleküler karakterizasyonu dahil her türlü incelemeyi yapabilecek çok gelişmiş bir referans laboratuvarının kurulmasını, laboratuvar ağı içerisinde verilerin sağlıklı paylaşımı için bilgisayar ağının kurulması, ulusal veya bölgesel düzeyde sürveyans sisteminin oluşturulması ile şüpheli olguların tanısı ve değerlendirilmesi için standart kriterlerin geliştirilmesini içermektedir. Ayrıca, sağlık personelinin nükleer, biyolojik ve kimyasal ajanlar (NBC) konusunda sürekli eğitilmesi gereklidir. Ulusal ve bölgesel düzeyde ilgili birimler arasında hızlı ve etkin bir iletişim ağının oluşturulması, kesin ya da şüpheli saldırı durumlarında paniğe meydan vermeden halkın bilgilendirilmesi sağlanmalıdır. BSA’nın ne gibi hastalıklar oluşturabileceği, tanı, tedavi ve korunma yolları hakkında toplumun eğitilmesi, biyolojik saldırı sırasında ve sonrasında halkı bilgilendirecek ve endişelerini giderecek eğitim materyallerinin hazırlanması gereklidir. Günümüzde, BSA’nın hızlı saptanmasına yönelik farklı sistemler geliştirilmiştir. Bu tanımlama sistemleri BSA kullanımına bağlı oluşan yapay bulutların analizine dayanan askeri sistemler ile (15 dakika içerisinde) olay yerine taşınabilir sistemler veya laboratuvarda uygulanan moleküler yöntemlere (bir saatten daha az zaman içerisinde) dayanmaktadır. “Biyolojik silahlara karşı korunmada en etkin yol koruyucu giysi ve maske kullanmaktır”. Savaş ortamında yapılabilecek bir biyolojik saldırıda 1-10'luk partikülleri filtre edebilen bir maske ve NBC koruyucu elbisesi birçok BSA için belli derecelerde güvenlik sağlayacaktır. Besin ve su kaynakları zincirinin de biyolojik ajan açısından izlenmesi gereklidir. Bütün teknolojik gelişmelere rağmen, sabunlu su ile vücudun ve özellikle ellerin yıkanması, halen oldukça geçerli ve önemli bir korunma yöntemidir. Biyolojik savaş ajanlarının gelişmesi ile beraber dünyada bu silahların üretimi, stoklanması ve kullanımının önlenebilmesi için 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. Sonuç olarak, potansiyel BSA'ların tanısını koyabilecek referans laboratuvarların kurulması veya mevcut olanlara bu özelliklerin kazandırılması, olay yerinde tanımlama sistemlerinin sağlanması ve BSA’ları tanıyan, etkilerini ve taktik kullanımını bilen uzman biyolojik örnek alma ekiplerinin kurulmasına yönelik düzenlemelerin yapılması için bilimsel kuruluşlar, Üniversiteler ve TSK'lerin bu konularda işbirliği içinde çalışması ülkemiz güvenliği ve çıkarları açısından son derecede önemlidir. KAYNAKLAR • Bellamy RJ, Freedman AR. Bioterrorism. Q J Med 2001;94:227-234. • Kortepeter MG, Parker GW. Potential biological waeapons threats. Emer Infect Dis 1999;5(4):523-527. • Spencer RC, Lightfood NF. Preparedness and Response to Bioterrorism. J Infect 2001;43:104-110. • USAMRIID’s Medical Management of Biological Causalties Handbook.4rd ed. Feb 2001. • Henderson A, Inglesby V, O’Toole T. Bioterrorism Guidelines for Medical and Public Health Management. ASM press 2002. • Prevention of a Biological and Toxin Arms Race and the Responsibility of Scientists. Eds.Geissler E, Haynes RH. Akademie-Verlag Berlin 1991. • Public health response to biological and chemical weapons—WHO guidance(2004). Chapter 3&4, p 38-76. • Erdem H, Pahsa A. Biyolojik Silah Saldırılarına Yönelik Ulusal ve Bölgesel Yaklaşımlar. Infek Derg 2002;16(3) Ek. Uzm.Dr.Selçuk Kılıç RSHMB Salgın Hast. Arş.Md., Parazitoloji Laboratuvarı Kaynak: T.C. SAĞLIK BAKANLIĞI Refik Saydam Hıfzıssıhha Merkezi Başkanlığı ve Temel Sağlık Hizmetleri Genel Müdürlüğü Cilt:4 Sayı:5 Eylül-Ekim 2005 AYLIK EPİDEMİYOLOJİ RAPORU

http://www.biyologlar.com/biyoterorizm-ve-biyolojik-silahlar

Mikobakteri Kültür Yöntemleri

Mikroskopik muayenede ARB araştırılması, TBC tanısı için oldukça değerli, basit ve ucuz bir yöntem olup ön tanı değeri taşır. Fakat tüberkülozun kesin tanısı için etken ajanın kültür ortamında tekrar gösterilmesi ve bazı in vitro testler ile doğrulanması gerekir. Kültür yöntemi; M.tuberculosis için “altın standart” olarak kabul edilmektedir. Mikobakterilerin üretilmesinde çalışılacak laboratuvar ortamının imkanları ölçüsünde standart besiyerlerinden MGIT, BACTEC gibi komplike sistemlere kadar farklı kültür yöntemleri uygulanabilir. Mikobakterilerin izolasyonu için ideal ortam;Az sayıdaki mikobakterilerin hızlı ve bol miktarda üremelerine izin vermeli, Ekonomik olmalı, içeriğinde bulunan maddelerin temininde ve hazırlanmasında zorluk yaşanmamalı, Pigment oluşumu ve koloni morfolojisine dayanarak izolatlar arasındaki farklılıkları saptamaya yardımcı olmalı, Mikobakteri dışındaki kontaminant mikroorganizmaların üremesini inhibe etmeli, İlaç duyarlılık testleri uygulamak için uygun olmalıdır. Tüberkülozda kullanılan standart besiyerleri değişik başlıklar altında toplanabilir:İçerikleri yönünden; Sentetik besiyerleri (Sauton, Long vb.) Yarı sentetik besiyerleri (Yumans, Dubos, Middlebrook vb.) Kompleks besiyerleri (Löwenstein Jensen, Ogawa, Trudeau) Görünüm yönündenKatı besiyerleri (Yumurtalı ve agarlı; Löwenstein Jensen, agarlı Middlebrook, Treduau vb.) Sıvı besiyerleri (Middlebrook, Youmans, Sula vb.) Karışık besiyerleri (Gliserinli, patatesli buyyon vb.) Kullanım amacına görePrimo kültür - ilk izolasyon (Löwenstein Jensen, agarlı Middlebrook, Trudeau, Ogawa vb.) Araştırma Üretim (Tüberkülin, BCG; Sauton, Proskauer, Long vb.) Antimikrobiyal madde içeriğine göreNonselektif: Antibiyotik içermezler. Selektif: Antibiyotik içerirler. Günümüzde mikobakterilerin ilk izolasyonunda en sık kullanılanlar yumurtalı besiyerleri ve/veya agarlı besiyerleridir. Agarlı besiyerlerine göre yumurtalı besiyerlerinin hazırlanması daha zahmetli fakat daha ucuzdur ve koloni görüntüsü daha tipiktir. Bu nedenle Türkiye dahil Tüberküloz hastalığının sık görüldüğü ülkelerde en sık yumurtalı besiyerleri, bunlardan da en sık Löwenstein Jensen besiyeri kullanılmaktadır. Yine yumurtalı ve katı olan Ogawa besiyeri de basit ve ucuz bir besiyeridir. Uzak Doğu’da özellikle Japonya’da kullanılır. Amerika’da yumurtalı besiyeri olarak Treduau ve ayrıca agarlı besiyeri olarak Middlebrook 7H10 ve 7H11 en sık kullanılan besiyerleridir. Petragnani besiyeri özellikle yoğun kontamine örneklerden mikobakteri izolasyonunda tercih edilir. American Thoracic Society Medium (ATSM), diğerlerine göre daha düşük oranda malaşit yeşili içerdiğinden özellikle BOS, plevra sıvısı, biyopsi gibi steril örneklerde tavsiye edilir. Löwenstein Jensen besiyerinin klinik örneklerden mikobakteri izolasyonundaki duyarlılığı; üreme zamanının daha uzun olması, koloni oluşumunun daha geç tespit edilmesi gibi nedenlerden dolayı, Middlebrook 7H10, 7H11 ve sıvı formu (broth) olan 7H9 besiyerleri ile karşılaştırıldığında daha düşüktür. Balgam kültürlerinde ilk seçenek yumurtalı besiyerleridir. Balgam dışı örneklerde ise en verimli yöntem sıvı besiyerlerini kullanmaktır. Ekonomik yeterliliği olan laboratuvarlarda özellikle BOS, vücut boşluk sıvıları ve biyopsi gibi tekrarlanamayan örneklerde sıvı besiyerlerinin kullanılması tavsiye edilmektedir.Yumurtalı BesiyerleriAvantajları 1. Hazırlanması kolaydır. 2. Mevcut en ucuz besiyeridir ve tüberküloz bakterisinin iyi üremesine müsaade eder. 3. Taze yumurtadan hazırlandığı, sıkı kapaklı tüplerde saklandığı ve buharlaştırarak sıvı artığının minumuma indirildiği durumlarda haftalarca buzdolabında saklanabilir. 4. Tüplere dağıtıldıktan sonra koagüle edildiğinden ve ayrıca eklenen malaşit yeşili mikobakteri dışındaki diğer bakterilerin üremesini engellediğinden kontaminasyon riski düşüktür.Dezavantajları1. Pozitifliğin saptanma süresi uzundur. Özellikle örnekte az sayıda bakteri bulunması ya da güçlü dekontaminasyon işlemi uygulanması durumunda belirgin kolonilerin izlenmesi 6-8 hafta gibi uzun bir süreyi alabilir.2. Kontaminasyon durumunda çoğu kez besiyerinin tüm yüzeyi etkilendiğinden sıklıkla besiyeri kaybedilir. Besiyeri Hazırlarken Dikkat Edilmesi Gereken Kurallar:İyi kalitede bir besiyeri elde etmek için kullanılan kimyasal maddelerin saf olması, cam malzemelerin ve distile suyun steril olması gerekir. Besiyeri hazırlama yönteminde yer alan kurallar aynen uygulanmalı, değişikliklerden kaçınılmalıdır. 1. Çalıştığınız ortamı mümkün olduğu kadar temiz tutunuz. Tezgahın üzerini uygun bir dezenfektan (1/10 ya da 1/20 oranında sulandırılmış çamaşır suyu gibi) ile siliniz. Yerleri toz oluşmasını engellemek için nemli bezlerle siliniz.2. Cam malzemeleri ve diğer aletleri steril ettikten sonra kullanınız.3. Kimyasal maddelerin tavsiye edilen saflıkta olmasına dikkat ediniz.4. Koagülatör ısısını önceden kontrol ediniz.5. Asepsi kurallarına özenle uyunuz (tüplerin ve şişelerin ağzını alevden geçirme vb.).6. Yumurtaların kabuklarını kırmadan önce mutlaka temizleyiniz.7. Koagülasyonda tavsiye edilen ısının ve sürenin üzerine çıkmayınız.8. Hazırlamış olduğunuz besiyerlerini ışıklı ortamda (özellikle UV altında) tutmayınız. Buzdolabında saklayınız (Buzdolabı ışığının kapak kapatıldıktan sonra söndüğünden emin olunuz). 9. Tüplere dağıtım aşamasında besiyeri hacmini kullandığınız tüplere göre ayarlayınız (6-8 ml küçük şişelere, 20 ml deney tüpüne). Gereksiz tasarruflardan kaçınınız. LOWENSTEIN - JENSEN BESİYERİ HAZIRLANMASITuz Solüsyonu Monopotasyum Fosfat 2400 mgMagnezyum Sülfat 240 mgMagnezyum Sitrat 600 mgL- Asparagine 3600 mg Gliserin 12 mlDistile Su 600 ml Yukarıdaki maddeler tartılıp büyük bir balona konularak eriyinceye kadar benmaride kaynatılır. Otoklavda 121oC’de 30 dakika sterilize edilir.Besiyeri İçin Gerekli Yumurtanın Hazırlanması1. Önce, 2 gr malaşit yeşili tartılır, 100 ml distile su içinde eritilir. Bu şekilde hazırlanmış % 2’lik malaşit yeşili stok çözeltisi koyu renkli bir aktarılır, güneş ışığından uzak bir yerde muhafaza edilir. 2. 25 adet sağlam, taze yumurta alınır, üzeri kirli olanlar sabunlu suyla iyice fırçalanır. Yumurtalar geniş bir kaba konulur. Steril bir kapta UV lambası altında 45 dakika bekletilerek sterilize edilir. UV lamba yoksa yumurtalar, %70’lik etil alkol ile doldurulmuş geniş ve derin bir kapta 15 dakika bekletilir. 3. Bu sterilize edilmiş yumurtalar, ağzı lastik tıpa ile kapatılabilen steril bir balona, steril huni vasıtasıyla kırılır. Balonun ağzı kapatılarak balonda toplanan yumurtalar homojen hale gelinceye kadar çalkalanır. Daha önce hazırlanıp steril edilmiş büyük balondaki tuz solüsyonuna steril bir tülbentten süzülerek ilave edilir. 4.Bunun üzerine % 2 lik malaşit yeşilinden 25 ml ilave edilir, hepsi birlikte çalkalanır. 5. Özel tevzi (dağıtım) cihazları ile 6-8 ml hacimlerde, 160x16 mm’lik tüplere steril şartlarda dağıtılır. 6. Aral Gürsel sulu tip koagülatörde 78-80oC’de 1 saat koagüle edilir. 7. Koagüle edilen besiyerleri, 37oC’lik etüvde 24 saat bekletilir. Ertesi gün kontamine olmuş besiyerleri ayrılır. Steril ve sağlam olan besiyerleri 2-8oC’de (buzdolabında) saklanır. İlaçlı Löwenstein-Jensen besiyerlerinin raf ömrü 2 ay; ilaçsız (normal) Löwenstein-Jensen besiyerinin (kurumasına mani olunduğu taktirde) raf ömrü ise 6 aydır. 8. Ticari olarak baz Lowenstein-Jensen besiyeri temin edilebilir. Bunlarda benzer şekilde hazırlanır. Ancak bu besiyerleri patates unu içerdiğinden ilaçlı besiyeri yapımında kullanılmaz. SIVI KÜLTÜR SİSTEMLERİSolid besiyerlerine göre mikobakterilerin, daha kısa sürede üremesine olanak sağlarlar. Bactec ve MGIT sistemleri bu amaçla kullanılmaktadır.BACTEC Bactec yöntemi sıvı besiyerinde üreyen mikobakterinin üremesinin radyometrik olarak izlenmesi esasına dayanır.Temel prensip 14C ile işaretli substrat içeren besiyerinde bu substratı kullanarak üreyen mikobakterilerin 14CO2 üretmesidir. Tespit edilen 14CO2 miktarı vial içindeki üremenin miktarı ve oranını yansıtır ve üreme indeksi olarak tanımlanır. İlaç duyarlılık testleri Bactec sistemi kullanılarak yapılabilir.MGITMGIT yöntemi mikobakterilerin klinik örneklerden (kan ve idrar hariç) hızlı izolasyonunu optimize etmek için geliştirilmiş in vitro bir sistemdir. Hastalardan alınan örnekler işlendikten sonra MGIT tüplerine inoküle edilir. MGIT tüplerinin dip kısımlarında fluorescent içeren silikon bulunur ve sıvı besiyerinde bulunan çözünmüş haldeki O2 varlığına duyarlıdır. Sıvı besiyerinde üreyen mikobakterilerin açığa çıkardığı çözünmüş haldeki oksijen floresan açığa çıkarır ve üremenin tespit edilmesini sağlar.

http://www.biyologlar.com/mikobakteri-kultur-yontemleri

HİSTOLOJİ LABORATUVARDA KULLANILAN BAZI ÇÖZELTİLER

A-Cam Kapları Yıkamak İçinCam eşyadaki kaba kir bildiğimiz gibi sabun veya herhangibir temizleme tozu ve sıcak su ile temizlenir.Saf su ile çalkalanır ve kurutulur Reçine ve parafin ile kirlenmiş camlar önce toluen veya ksilol ile yıkandıktan sonra sıcak su ve sabun ile yıkanmalıdır. Bu nedenle boyalarda kullanılan artık ksilol veya toluol saklanmalıdır. Erimeyen organik kalıntılar, boya çöküntüleri veya metalik tuzlar cam kaplar aşağıdaki çözeltilerle temizlenebilir.1-Potasyum dichromate-sulfuric acid temizleme sıvısında yıkayarak temizlenir. Bunun için birkaç dakikadan birkaç güne kadar bu sıvıda bırakılır. Daha sonra asit kalıntısını kaldırmak için su ile iyice yıkanır. Potassium dichromate 200 gm.Su 1 litreKonsantre Sulfuric asit 750 cc Çözeltiyi sıcağa dayanıklı bir cam kavanozda yap. Önce potassium dichromate’ı suda erit, çabuk erimesini istiyorsan ısıt. Soğuduğu zaman, bir taraftan cam bir çubuk ile karıştır ve sülfirik eşiti yavaşça ilave et. Isı yükselecektir. Koyu yeşil oluncaya kadar birçok defa kullanılabilir. 2-Potasyum bikromat...................60 grSülfürik asit..............................1000 cc 3-Potasyum permanganat...............10 grSodyum hidroksit.......................10 grDistile su....................................100 cc 4-Kral SuyuHidroklorik asit..........................3 birimNitrik asit...................................1 birimB-Lam ve Lamellerin Temizlenmesi: Yeni lam ve lameller % 90 veya 95’lik alkolde bırakılır, sonra buradan teker teker alınan lam veya lameller temiz eski bir mendil veya pamuklu bir bez ile iyice kurulanır Temizliğini kontrol için pipet ile üstüne su damlatılır. Su dağılırsa lam ve lameller temizlenmiştir, su damla halinde kalırsa halen kirli demektir. Böyle camları temizlemek için 15 dakika kadar yarı yarıya eter ve saf alkol karışımına bırakılır. Kullanılmış lam ve lameller- Eğer üzerlerine balsam ve sakız yapışmamışsa sıcak su ve yıkama tozları ile iyice yıkanır ve suda çalkandıktan sonda % 90 veya 95’lik alkolde bırakılır. Silinip kurutulduktan sonra kullanılmağa hazırdır. Lam ve lameller bu yöntemle temizlenmezse bir veya iki gün temizleme solusyonunda bırakılır sonra suda yıkanır ve ammonium hidroksit ile alkalize edilmiş suda birkaç saat bırakılır. Suda yıkanır, alkolde bekletildikten sonra kurulanır. Balsam veya sakızlı lam veya lamelleri ise bahsettiğimiz yıkamadan önce ksilol veya toluol içinde bırakmalıdır.Lamları Jelatinleme YöntemiGelatine powder........................................5 grKalium chrom (III) sülfat rein....................0.5 grDistile su................................................... Distile su LABORATUVARDA KULLANILAN BAZI BOYA ÇÖZELTİLERİA-Nötral Red (nötral kırmızısı): Bir şişe saf suya rengi kırmızı oluncaya kadar bu boyadan karıştırınız. Çözeltinin saydam olması şarttır. B-Sirke asitli metilen yeşili: 100 cc saf suya 2 gr sirke asidi ve bir miktar da metilen yeşilinden karıştırınız. Çözeltinin rengi mavimsi yeşil olmalıdır. C-Karmin - sirke asidi: 45 hacim saf ve yoğun sirke asidini 55 hacim saf su ile karıştırınız. Buna biraz (örneğin %45 yoğunluğundaki 100 cc sirke asidine 5gr ) saf carmin ekleyin ve dar boyunlu bir cam kap içinde bir baget ile hafifçe kaynatınız. Çözelti soğuduktan sonra bunu bu filtre kağıdıyla süzünüz ve damlalıklı şişelerde saklayınız. Filtre kağıdında kalan kısmını tekrar kullanılabilir. Karmin-sirke asidini ağzı iyice kapanan şişelerde uzun zaman bozulmadan saklanabilir.LABORATUVARDA KULLANILAN BAZI FİZYOLOJİK SIVILARBasit tuz eriyiği: Kurbağa için Memeliler için NaCl...............................6,5 gr. NaCl...............................8-9 gr.Saf su .............................1000 cm3 Saf su .............................1000 cm3 Ringer eriyiği Kurba ğa için Memeliler için Saf su ..........................1000 cm3 Saf su ..........................1000 cm3NaCl ..................................6gr NaCl.............................. 9gr CaCl2 .............................. 0,2gr CaCl2 .............................0,2grKCl................................... 0,2 gr KCl ................................ 0,2grNaHCO3...........................0,1 gr NaHCO3 ...........................0,1gr NORMALİTE-MOLARİTENormalite: Çözeltinin litresindeki eşdeğer gram sayısıdır.Molarite : Çözünmüş maddenin, çözeltinin litresindeki mol veya formülgram sayısına denir ve M ile gösterilir.Konsantrasyon:Çözelti veya çözgenin belirli bir miktarındaki çözünmüşmadde miktarına denir. Bu miktarlar amaca uygun değişikbirimlerle ifade edilebilir.Yüzdesel konsantrasyon: Çözelti veya çözgenin 100 cc veya 100 gramındaki çözünmüş madde miktarıdır. Bir çözeltinin yüzdesi verildiğinde, genel olarak o çözeltinin 100 gramındaki madde miktarı anlaşılır.Çözücü : Saf halde bulunan çözücü ( Su, alkol, aseton ). Çözelti: Çözünen madde + çözücü

http://www.biyologlar.com/histoloji-laboratuvarda-kullanilan-bazi-cozeltiler-1

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

PH-Tuzluluk- Kireç ve Bitkiler için Önemi

Toprak Reaksiyonu (pH) Nedir? Toprak pH'sı, bir toprak çözeltisindeki asitliği veya alkaliliği tanımlayan bir ölçüdür. Asitliğin miktarı öncelikle H+ ve OH ֿ iyonlarının konsantrasyonlarına bağlıdır. Toprak daha fazla asidik olurken H+ iyonları konsantrasyonu artar, bunun sonucunda pH azalır. pH=7'de H+ ve OH ֿ iyonlarının konsantrasyonları birbirine eşittir. Toprak pH'sı doğrudan ve/veya dolaylı olarak toprak içerisinde meydana gelen birçok fiziksel, kimyasal ve biyolojik olayı etkiler. Toprak reaksiyonu ile toprak canlıları arasında sıkı bir ilişki mevcuttur; örneğin mantarlar 4-5, bakteriler ise 6-8 pH derecelerinde daha etkindir. Ayrıca pH derecesi, toprakta mevcut bitki besin maddelerinin bitki için yarayışlılığında önemli rol oynamaktadır. Örneğin; azot, fosfor ve potasyumun bitkiler tarafından alımı açısından en uygun değerler 6,5-7,5 arasıdır. Fosfor, 6.0'dan düşük pH değerlerinde Al ve Fe ile, 7,5'den büyük değerlerde ise Ca ile bağlanır. Bu nedenle bitkiler tarafından alınması zorlaşmaktadır. 5,0'dan küçük değerlerde, Al ve Mn bitkiler için toksik etki yapmaktadır. 7,5 den büyük değerlerde ise; Fe, Cu, Zn, Mn gibi mikro elementler çözünemez forma geçtiğinden, bitkiler için yarayışlılığı yüksek oranda azalmaktadır. Kısacası toprak tepkimesi; pedogenetik bakımdan, toprak oluşumu ve gelişimi; ekolojik açıdan da besin maddeleri ekonomisi üzerinde önemli rollere sahiptir Yukarıda aktarılmaya çalışılan nedenlerden dolayı toprak pH'sının bilinmesi ve düzenlenmesi, bitki beslenmesi açısından büyük önem taşımaktadır. Genellikle alkali karakterli topraklarda; ortamdaki H+ iyonları konsantrasyonunu arttırmak ve/veya mevcut H+ iyonlarını aktif hale geçirmek için, toprağa toz kükürt ve organik madde ya da jips uygulaması yapılır. Toprak tepkimesinin düşük olduğu durumlarda ise, kireçleme yapmakta yarar vardır (Bkz. Kireç) Tuzluluk Toprak tuzluluğu kavramı, birim hacımdaki toprakta bulunan çözünebilir tuzların miktarını belirtir. Genellikle Cl ֿ ve SO4 ֿֿ anyonlarının iki değerlikli katyonlarla, özellikle Ca++, Toprağın tuz içeriği laboratuvar koşullarında, elektriki geçirgenlik ölçüm cihazıyla belirlenir ve elde edilen verilerin değerlendirmesi aşağıdaki sınıflandırmaya göre yapılır. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. Tuzluluğa yol açan etmenler; anamateryal, topoğrafya, kapalı havzalar, iklim, taban suyu ve hatalı sulama ve gübrelemedir. Ayrıca tuz içeriği yüksek olan sulama suyu da zaman içerisinde, toprakta tuz birikimine yol açabilir. Tuzluluğun meydana getirdiği zarar, bilhassa yıllık yağışın düşük olduğu kurak bölge topraklarında daha fazladır. Doğal koşullardaki tuz birikimi iki şekilde meydana gelir. Bunlardan Birincisi, yağış sularının, geçtiği yerlerdeki çözünebilir tuzları eriterek birikme havzalarına taşıması; diğeri ise, yüksek sıcaklık altında, toprak suyunun buharlaşıp kapillarite ile yüzeye çıkması ve yükselirken beraberinde tuzları da yüzeye taşıyarak burada biriktirmesidir. Tuzlu topraklar iki şekilde meydana gelmektedir. Bunlardan Birincisi, sularla taşınan çözünmüş tuzların toplama havzalarında çökelmesiyle; diğeri ise, denizlerden arta kalan sedimentlerin etkisiyle oluşan tuzlu topraklardır Ağaç ve çalıların en iyi yetiştikleri toprak tuzluluk sınırı 2,0 mmhos/cm'nin altındadır. Tüm ağaçlar toprakta bulunan yüksek orandaki tuzdan zarar görür. Çünkü tuzluluk, toprakların stürüktürünü olumsuz yönde etkiler. Ayrıca toprak suyunun ozmotik potansiyelini arttırarak bitki köklerinin su alımını engeller. Bunların dışında çözünebilir tuzların yapısında, yüksek oranda bulunan sodyum, klor ve bor gibi bazı elementler bitkiler için toksik etki (zehir etkisi) gösterir. KİREÇ Topraktaki kireç miktarı bitkiler için önemlidir. Temel kireç bileşikleri; kalsiyum ile magnezyum karbonatlar ve dolomittir. Laboratuvar koşullarında, karbonat miktarı nicel olarak belirlenerek % toplam CaCO3 miktarı cinsinden ifade edilir. Toprak kireç içeriği sınıflaması genel olarak aşağıdaki gibi yapılmaktadır Kireç miktarının artmasıyla birlikte toprak pH'sı da yükselir. Kireç oranı yüksek olan topraklarda, pH 8,5'e kadar Ca++ katyonu başat durumdadır. Toprakta Ca++ katyonu konsantrasyonu yükseldikçe ortamdaki alınabilir fosfor ve demir iyonları kalsiyum ile çözünemez formda bileşikler oluşturur. Yüksek kireç içeriğine sahip topraklarda, bitkilerde kireç klorozu olarak adlandırılan ve demir noksanlığından kaynaklanan sararmalar meydana gelir Kireç miktarının yüksek olması kadar, çok düşük olması da bitki beslenmesi açısından sakıncalıdır. Çünkü kalsiyum bitki hücre duvarlarının yapısında yer almaktadır. Ayrıca topraktaki kalsiyum karbonat; toprak kırıntılılığını, biyolojik aktiviteyi arttır ve toprak profilinin yıkanmasını güçleştirir. Bu nedenlerden dolayı kireç miktarı çok düşük olan topraklarda kireçleme yapılması gerekir. Kireçleme materyali olarak CaO, CaOH2, CaCO3 ve dolomit kullanılmaktadır BU ÖLÇÜTLERİN ARAZİDEKİ UYGULAMALARI pH ve Tuzluluk Ölçümü Ön etüd çalışmalarında, pH ve tuzluluk ölçümü için arazi kitleri yaygın olarak kullanılmaktadır. Ancak, bu kitlerle yapılan ölçümler yaklaşık olarak sonuç vermektedir. İdeal sonuçların elde edilebilmesi ise laboratuvar analizleriyle mümkündür .Cep ph-metre ve kondüktometreleriyle 1:1 vb. oranlarda toprak-saf su karışımların pH ve elektriki geçirgenliği ölçülebilir. Ayrıca özel olarak hazırlanmış "indikatör çözeltileri veya kağıtları"ndan da yararlanılabilir. Kitlerin üzerinde ya da kullanma kılavuzunda verilen sınıflandırma bilgileri veyahut renk skalaları ile değerlendirm yapılır. Kireç Ölçümü Arazide topraktaki kireç miktarının belirlenmesi için genellikle 1/10 seyreltik HCl kullanılır. Bir saat camı üzerine alınan ince toprak örneği üzerine 5-6 damla asit damlatılır. Meydana gelen kabarmanın şiddetine ve süresine göre toprağın kireç içeriği kabaca aşağıdaki tablodan belirlenir. TOPRAĞIN pH, TUZ, KİREÇ DURUMU ve TÜR SEÇİMİ Tür seçimi konusunda; toprağın pH'sı, tuzluluğu ve kireç miktarı mutlaka göz önünde bulundurulması gereken önemli ölçütlerdir. Ancak Bitkilerin yaşamında tüm ekolojik faktörler birbirleriyle sıkı bir ilişki içerisinde bulunmakta ve her biri önem taşımaktadır. Bu nedenle bir toprağın pH, tuzluluk ve kireç miktarı değerleri irdelenirken değerlendirme, mutlak surette diğer ekolojik faktörler ve toprak özellikleri de göz önünde bulundurularak yapılmalıdır Toprak pH'sı, tuzluluğu ve kireç miktarı bakımından türlerin isteklerinin belirlenmesi amacıyla pek çok bilimsel çalışma gerçekleştirilmiştir. Ancak elde edilen araştırma sonuçları, çalışmanın yapıldığı yörenin içinde bulunduğu ekolojik koşullar için geçerlidir. Bu nedenle literatür incelemelerinden elde edilen bilgilerin, söz konusu ekolojik şartlarda ya da benzeri koşullar altında geçerli olabileceğini kesinlikle unutmamak ve buna göre değerlendirme yapmak gerekir. Ayrıca ön etüd çalışmalarında, incelemesi yapılan sahadaki birtakım özelliklere dikkat etmek suretiyle toprağın pH, tuzluluk ve kireç miktarı ile ilgili bazı fikirler edinmek mümkündür. Örneğin orman altındaki diri örtü pH'ye daha duyarlı olduğundan, bitki örtüsüne bakılarak da pH konusunda bir yargıya varılabilir. Örneğin, karaçam sahalarında bu türe eşlik eden defne yapraklı laden (Cistus laurufolius) ile kızılçam sahalarında bulunan diğer laden türü (Cistus creticus), birer müşir (indikatör) bitki niteliğindedir. Tuzlu toprakların olduğu sahalarda, ılgın (tamariks) gibi halofit yani tuzcul Bitkilerin dışında başka türlere rastlamak mümkün değildir. Ancak Halepçamı, okaliptus, iğde, palmiye ve hurma gibi bazı türlerin tuza dayanıklılığının diğer türlere göre daha fazla olduğu bilinmektedir. Nusret DİRENÇ( Ziraat Mühendisi ) Dr. Rabia ŞİŞANECİ ( Ziraat Mühendisi )

http://www.biyologlar.com/ph-tuzluluk-kirec-ve-bitkiler-icin-onemi

Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili-3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit-1

Ure Tayini

Ure karacigerde sentezlenir.Insanlarda protein katabolizmasinin azot iceren metabolik son urunudur.% 90’i bobreklerden, geri kalani GIS den ve deriden itrah edilir.Ure bobrek glomeruluslarindan serbest olarak suzulur.Tubuluslarda ise %40-70’i pasif olarak geri diffuze olur ve plazmaya gecer.Pasif diffuzyonun hizi idrar akis hizina baglidir.Idrar akim hizi azaldikca plazmaya geri donus artar.Ure miktari, diyetle protein alimina ve karacigerde ure sentez hizina baglidir.Normal degerler: %20-50 mgUremi nedenleri :A-Renal nedenler1-Glomeruler nedenler2-Tubuler nedenler3-Interstisyel nedenler4-Vaskuler nedenlerB-Prerenal nedenler1-Dehidratasyon2-Fazla proteinli diyet3-Protein yikiminin arttigi durumlar4-Mide- barsak sisteminde buyuk kanamalar5-Bobrek kanlanmasini bozan durumlar6-Kortizol v.s ile tedaviC- Postrenal nedenler-Tikanmaya yol acarak idrar akimini engelleyen durumlar(pelvik tas, prostat buyumesi v.s) Ure Tayin YontemleriA-Direkt Yontemler1-Ksanthidrol yontemi2-Kolorimetrik yontem (Diasetil monoksim=Fearon reaksiyonu)B-Indirekt yontemler1-Gazometrik yontem (Kowarsky yontemi)2-Kolorimetrik yontemlera-Berthelot reaksiyonub-Nesslerizasyon3-Enzimatik yontem4-Elektrokimyasal yontemlera-Konduktimetrib-PotansiyometriGunumuzde laboratuvarlarda ure olcumu otoanalizorlerde kinetik UV assay yomtemi ile yapilmaktadir.Prensip olarak ureaz enzimi kullanilarak ure parcalanmakta ve reaksiyonda kullanildigi icin azalan NADH miktari kinetik olarak olculmektedir.Ureaz Yontemiyle Serumda Ure Tayini Reaktifler:1-Izotonik sodyum sulfat2-%10 Cinko sulfat3-0.5 N NaOH4-Ureaz suspansiyonu5-Nessler ayiraci6-Ure standartiDeneyin Yapilisi:Numune tupu Standart tupu Serum 0.5ml ¾- Standart ¾- 0.5mlIzotonik sodyum sulfat 7.5ml 7.5mlUreaz 0.5ml 0.5mlHer iki tup karistirilir ve 30 dk 37 C su banyosunda bekletilir.Daha sonra her iki tupe 1’er ml cinko sulfat ve 1 ml NaOH konur ve iyice karistirilir.5dk bekledikten sonra suzgec kagidindan suzulurler.Yeni uc tup alinir,Numune Standart KorDistile su 6ml 6ml 7mlN.tupu suzuntusu 1ml ¾ ¾St. Tupu suzuntusu ¾ 1ml ¾Nessler ayiraci 1ml 1ml 1mlKaristirildiktan sonra 510 nm de kore karsi numune ve standartin absorbanslari olculur.Ure(% mg) = Numune absorbansi x Standart konsantrasyonuStandart absorbansiNot: Ure yerine kan ure azotu (Blood urea nitrogen=BUN) degeride kullanilmaktadir.Bir ure molekulu 60gr’dir, urede iki tane azot bulunur, yani 2x14=28g azot vardir. (N’un atom agirligi=14)Ure degerini BUN’ a cevirmek icinUre (mg/dl)x 0.467 (28:60)=mg/dl BUNVeya BUN degerin ureye cevirmek icinBUN(mg/dl)x2.14 (60:28)= mg/dl ure bulunur.Kaynak: Deneysel Biyokimya. Nuri Bakan. Syf: 100

http://www.biyologlar.com/ure-tayini

B6 vitamini, B6 vitamininin faydaları ve vücudumuza etkisi

Vücudumuzun sağlıklı kalabilmek ve düzenli olarak işleyebilmek için farklı vitaminlere ve besin değerlerine ihtiyacı vardır. B6 vitamini bu vitaminlerden sadece bir tanesidir. Bu vitamin genellikle “ruh hali vitamini” olarak anılır. Bunun nedeni B6 vitamininin beyindeki ruh halini kontrol eden hormonları etkilemesidir. Ayrıca B6 vitamini yağ ve proteinlerin metabolize edilmesinde de oldukça önemli bir görev alır. Bu sayede vücuttaki enerji seviyesi arttırılır. Bunun yanı sıra B6 vitamini gıdalardan aldığınız protein miktarını arttırır. Yapılan çalışmalar B6 vitaminini kalp rahatsızlıklarını ve diğer kardiyovasküler sorunları önlemeye yardımcı olduğunu göstermektedir. Gıdalardan yeterli miktarda B6 vitamini alamamanız halinde bazı takviyelere başvurabilirsiniz. Bununla birlikte almanız gereken B6 vitamininin miktarını bilmek oldukça önemlidir. Bu konuya ilişkin olarak bir doktora danışabilirsiniz. Depresyon sorunu olan birçok kişiye genellikle duygusal sorunları ile baş etmesi için B6 vitamini alması önerilir. B6 vitamini beyindeki serotonin miktarını arttırarak kişinin kendisini iyi hissetmesini sağlar. Ayrıca kalp sorunu bulunan kişiler de bu takviyeleri alabilir; çünkü B6 vitamini kalp rahatsızlıklarının önlenmesinde de etkili olarak kullanılır. Her gün bir veya iki tane B6 vitamini takviyesi almak hem kalp hem de zihin sağlığınız için iyi olacaktır. Araştırmacılar şizofreni, otizm gibi ciddi zihinsel sağlık sorunları bulunan kişilerde ciddi B6 vitamini eksikliği olduğunu iddia etmektedirler. Bu vitamini her gün düzenli olarak alarak kendinizi daha iyi hissettiğinizi fark edebilirsiniz. Bununla birlikte B6 vitamin takviyelerini almadan önce mutlaka bir doktora danışın. Eğitimli bir doktor size hangi dozda vitamin takviyeleri alacağınızı söyler. Eğer takviyeleri kullanmayı istemiyorsanız B6 vitaminini bazı gıdalardan da alabilirsiniz. Muz, erik ve yulaf gibi gıdalar B6 vitamini kaynağıdır.

http://www.biyologlar.com/b6-vitamini-b6-vitamininin-faydalari-ve-vucudumuza-etkisi

Topraktan Mineral Madde Alımı

Bitki kökleri toprak çözeltisinden daha önce belirtilen mekanizmalarla su ve mineral madde alırlar, toprağın havasını kök solunumu için kullanırlar. İdeal olan tarla kapasitesindeki toprağın por hacminin su ve hava tarafından yarı yarıya paylaşılması ideal durumdur. Nemli ortamlarda toprak havalanmasına porozite artışı yolu ile solucanlar gibi hayanlar önemli katkıda bulunur. Toprağın yapısını bitkiler kökleri ile destekler, ölü kökler toprakta çeşitli çaplarda kanallar oluşturarak poroziteyi ve permeabiliteyi arttırdığı gibi organik madde oluşumuna katkı sağlar. Bu açıdan derin ve yaygın kök sistemleri ile yüzeysel kök sistemi olan türleri içeren ekosistemler sürdürülebilir özellik kazanır.Bu açıdan toprak sıcaklığı da önemlidir. Mikrobiyal aktivite yanında evaporasyon ve bunun serinletici etkisi gibi etkilerin karmaşık ilişkileri söz konusudur. Toprak mikrobiyolojisi özellikle bitkilerin azot beslenmesi ve organik madde içeriği açısından çok önemlidir. Toprak organik maddesinin yaklaşık yarısına kadar olan kısmını mikro canlılar oluşturur.Topraktan alınan su miktarı ile iyon miktarı paralellik göstermez, yani bitki iyon alımını denetimi altında tutar. Kökler katyonları özellikle protonla iyon değişimi yaparak alırlar, azot NH4 katyonu ve NO3 anyonu, P özellikle H2PO4 ve S de SO4 halinde alınır. Tuzları halinde bulunan iyonların alım oranları farklıdır, örneğin NaCl çözeltisinden aynı miktarda Na ve Cl alınmaz, bu oran da denetim altında tutulur. Fosforun toplam miktarı ile bitkilerin kullanabildiği fosfor miktarı paralellik göstermediğinden faydalı fosfor analizi ile sonuca gidilir.

http://www.biyologlar.com/topraktan-mineral-madde-alimi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Fotosentez

Dünya, canlı yaşamına en uygun olacak şekilde, özel olarak tasarlanmış bir gezegendir. Atmosferindeki gazların oranından, güneşe olan uzaklığına, dağların varlığından, suyun içilebilir olmasına, bitkilerin çeşitliliğinden yeryüzünün sıcaklığına kadar kurulmuş olan pek çok hassas denge sayesinde dünya yaşanabilir bir ortamdır. Yaşamı oluşturan öğelerin devamlılığının sağlanabilmesi için de hem fiziksel şartların hem de bazı biyokimyasal dengelerin korunması gereklidir. Örneğin nasıl ki canlıların yeryüzünde yaşamaları için yer çekimi kuvveti vazgeçilmez ise, bitkilerin ürettiği organik maddeler de yaşamın devamı için bir o kadar önemlidir. İşte bitkilerin bu organik maddeleri üretmek için gerçekleştirdikleri işlemlere, daha önce de belirttiğimiz gibi fotosentez denir. Bitkilerin kendi besinlerini kendilerinin üretmesi olarak da özetlenebilecek olan fotosentez işlemi, bunların diğer canlılardan ayrıcalıklı olmasını sağlar. Bu ayrıcalığı sağlayan, bitki hücresinde insan ve hayvan hücrelerinden farklı olarak güneş enerjisini direkt olarak kullanabilen yapılar bulunmasıdır. Bu yapıların yardımıyla, bitki hücreleri güneşten gelen enerjiyi insanlar ve hayvanlar tarafından besin yoluyla alınacak enerjiye çevirirler ve yine çok özel yollarla depolarlar. İşte bu şekilde fotosentez işlemi tamamlanmış olur. Gerçekte bütün bu işlemleri yapan, bitkinin tamamı değildir, yaprakları da değildir, hatta bitki hücresinin tamamı da değildir. Bu işlemleri bitki hücresinde yer alan ve bitkiye yeşil rengini veren "kloroplast" adı verilen organel gerçekleştirir. Kloroplastlar, milimetrenin binde biri kadar büyüklüktedir, bu yüzden yalnızca mikroskopla gözlemlenebilirler. Yine fotosentezde önemli bir rolü olan kloroplastın çeperi de, metrenin yüz milyonda biri kadar bir büyüklüktedir. Görüldüğü gibi rakamlar son derece küçüktür ve bütün işlemler bu mikroskobik ortamlarda gerçekleşir. Fotosentez olayındaki asıl hayret verici noktalardan biri de budur. SIR DOLU BİR FABRİKA: KLOROPLAST Kloroplastta fotosentezi gerçekleştirmek üzere hazırlanmış thylakoidler, iç zar ve dış zar, stromalar, enzimler, ribozom, RNA ve DNA gibi oluşumlar vardır. Bu oluşumlar hem yapısal hem de işlevsel olarak birbirlerine bağlıdırlar ve her birinin kendi bünyesinde gerçekleştirdiği son derece önemli işlemler vardır. Örneğin kloroplastın dış zarı, kloroplasta madde giriş-çıkışını kontrol eder. İç zar sistemi ise "thylakoid" olarak adlandırılan yapıları içermektedir. Disklere benzeyen thylakoid bölümünde pigment (klorofil) molekülleri ve fotosentez için gerekli olan bazı enzimler yer alır. Thylakoidler "grana" adı verilen kümeler meydana getirerek, güneş ışığının en fazla miktarda emilmesini sağlarlar. Bu da bitkinin daha fazla ışık alması ve daha fazla fotosentez yapabilmesi demektir. Bunlardan başka kloroplastlarda "stroma" adı verilen ve içinde DNA, RNA ve fotosentez için gerekli olan enzimleri barındıran bir de sıvı bulunur. Kloroplastlar sahip oldukları bu DNA ve ribozomlarla hem kendilerini çoğaltırlar, hem de bazı proteinlerin üretimini gerçekleştirirler. Fotosentezdeki başka bir önemli nokta da bütün bu işlemlerin çok kısa, hatta gözlemlenemeyecek kadar kısa bir süre içinde gerçekleşmesidir. Kloroplastların içinde bulunan binlerce "klorofil"in aynı anda ışığa tepki vermesi, saniyenin binde biri gibi inanılmayacak kadar kısa bir sürede gerçekleşir. Bilim adamları kloroplastların içinde gerçekleşen fotosentez olayını uzun bir kimyasal reaksiyon zinciri olarak tanımlarlarken, işte bu hız nedeniyle fotosentez zincirinin bazı halkalarında neler olduğunu anlayamamakta ve olanları hayranlıkla izlemektedirler. Anlaşılabilen en net nokta, fotosentezin iki aşamada meydana geldiğidir. Bu aşamalar "aydınlık evre" ve "karanlık evre" olarak adlandırılır. AYDINLIK EVRE Bitkilerin fotosentez işleminde kullanacakları tek enerji kaynağı olan güneş ışığı değişik renklerin birleşimidir ve bu renklerin enerji yükü birbirinden farklıdır. Güneş ışığındaki renklerin ayrıştırılması ile ortaya çıkan ve tayf adı verilen renk dizisinin bir ucunda kırmızı ve sarı tonları, öbür ucunda da mavi ve mor tonları bulunur. En çok enerji taşıyanlar tayfın iki ucundaki bu renklerdir. Bu enerji farkı bitkiler açısından çok önemlidir çünkü fotosentez yapabilmek için çok fazla enerjiye ihtiyaçları vardır. Bitkiler en çok enerji taşıyan bu renkleri hemen tanırlar ve fotosentez sırasında güneş ışınlarından tayfın iki ucundaki renkleri, daha doğrusu dalga boylarını soğururlar, yani emerler. Buna karşılık tayfın ortasında yer alan yeşil tonlardaki renklerin enerji yükü daha az olduğu için, yapraklar bu dalga boylarındaki ışınların pek azını soğurup büyük bölümünü yansıtırlar. Bunu da kloroplastların içinde bulunan klorofil pigmentleri sayesinde gerçekleştirirler. İşte yaprakların yeşil gözükmesinin nedeni de budur. Fotosentez işlemi bitkilerin yeşil görünmesine neden olan bu pigmentlerin güneş ışığını soğurmasından kaynaklanan hareketlenme ile başlar. Acaba klorofiller bu hareketlenme ile fotosentez işlemine nasıl başlamaktadırlar? Bu sorunun cevabının verilebilmesi için öncelikle kloroplastların içinde bulunan ve klorofilleri içinde barındıran Thylakoid'in yapısının incelenmesinde fayda vardır. "Klorofiller, "klorofil-a" ve "klorofil-b" olarak ikiye ayrılırlar. Bu iki çeşit klorofil güneş ışığını soğurduktan sonra elde ettikleri enerjiyi fotosentez işlemini başlatacak olan fotosistemler içinde toplarlar. Thaylakoid'in detaylı yapısının anlatıldığı resimde de görüldüğü gibi fotosistemler kısaca, thylakoid'in içinde yer alan bir grup klorofil olarak tanımlanabilir. Yeşil bitkilerin tamamına yakını bir fotosistem ile tek aşamalı fotosentez gerçekleştirirken, bitkilerin %3'ünde fotosentezin iki aşamalı olmasını sağlayacak iki farklı fotosistem bölgesi bulunur. "Fotosistem I", ve "Fotosistem II" olarak adlandırılan bu bölgelerde toplanan enerji daha sonra tek bir "klorofil-a" molekülüne transfer edilir. Böylece her iki fotosistemde de reaksiyon merkezleri oluşur. Işığın emilmesiyle elde edilen enerji, reaksiyon merkezlerindeki yüksek enerjili elektronların gönderilmesine, yani kaybedilmesine neden olur. Bu yüksek enerjili elektronlar daha sonraki aşamalarda suyun parçalanıp oksijenin elde edilmesi için kullanılır. Bu aşamada bir dizi elektron değiş tokuşu gerçekleşir. "Fotosistem I" tarafından verilen elektron, "Fotosistem II" den salınan elektron ile yer değiştirir. "Fotosistem II" tarafından bırakılan elektronlar da suyun bıraktığı elek-tronlarla yer değiştirir. Sonuç olarak su, oksijen, protonlar ve elektronlar olmak üzere ayrıştırılmış olur. Ortaya çıkan protonlar thylakoid'in iç kısmına taşınarak hidrojen taşıyıcı molekül olan NADP (nikotinamid adenin dinükliotid fosfat) ile birleşirler. Neticede NADPH molekülü ortaya çıkar. Suyun ayrışmasından sonra ortaya çıkan protonlardan bazıları ise thylakoid zarındaki enzim kompleksleri ile birleşerek ATP molekülünü (hücrenin işlemlerinde kullanacağı bir enerji paketçiği) meydana getirirler. Bütün bu işlemler sonucunda bitkilerin besin üretebilmesi için ihtiyaç duydukları enerji artık kullanılmaya hazır hale gelmiştir. Bir reaksiyonlar zinciri olarak özetlemeye çalıştığımız bu olaylar fotosentez işleminin sadece ilk yarısıdır. Bitkilerin besin üretebilmesi için enerji gereklidir. Bunun temin edilebilmesi için düzenlenmiş olan "özel yakıt üretim planı" sayesinde diğer işlemler de eksiksiz tamamlanır. KARANLIK EVRE Fotosentezin ikinci aşaması olan Karanlık Evre ya da Calvin Çevrimi olarak adlandırılan bu işlemler, kloroplastın "stroma" diye adlandırılan bölgelerinde gerçekleşir. Aydınlık evre sonucunda ortaya çıkan enerji yüklü ATP ve NADPH molekülleri, karanlık evrede kullanılan karbondioksiti, şeker ve nişasta gibi besin maddelerine dönüştürürler. Burada kısaca özetlenen bu reaksiyon zincirini kaba hatlarıyla anlayabilmek bilim adamlarının yüzyıllarını almıştır. Yeryüzünde başka hiçbir şekilde üretilemeyen karbonhidratlar ya da daha geniş anlamda organik maddeler milyonlarca yıldır bitkiler tarafından üretilmektedir. Üretilen bu maddeler diğer canlılar için en önemli besin kaynaklarındandır. Fotosentez reaksiyonları sırasında farklı özelliklere ve görevlere sahip enzimler ile diğer yapılar tam bir iş birliği içinde çalışırlar. Ne kadar gelişmiş bir teknik donanıma sahip olursa olsun dünya üzerindeki hiçbir laboratuvar, bitkilerin kapasitesiyle çalışamaz. Oysa bitkilerde bu işlemlerin tümü milimetrenin binde biri büyüklüğündeki bir organelde meydana gelmektedir. Şekilde görülen formülleri, sayısız çeşitlilikteki bitki hiç şaşırmadan, reaksiyon sırasını hiç bozmadan, fotosentezde kullanılan hammadde miktarlarında hiçbir karışıklık olmadan milyonlarca yıldır uygulamaktadır. Ayrıca fotosentez işlemi ile, hayvanların ve insanların enerji tüketimleri arasında da önemli bir bağlantı vardır. Aslında yukarıda anlatılan karmaşık işlemlerin özeti, bitkilerin fotosentez sonucu canlılar için mutlaka gerekli olan glukozu ve oksijeni meydana getirmeleridir. Bitkilerin ürettiği bu ürünler diğer canlılar tarafından besin olarak kullanılırlar. İşte bu besinler vasıtasıyla canlı hücrelerinde enerji üretilir ve bu enerji kullanılır. Bu sayede bütün canlılar güneşten gelen enerjiden faydalanmış olurlar. Canlılar fotosentez sonucu oluşan besinleri yaşamsal faaliyetlerini sürdürmek için kullanırlar. Bu faaliyetler sonucunda atık madde olarak atmosfere karbondioksit verirler. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider. FOTOSENTEZ İÇİN GEREKLİ OLAN HER ŞEY GİBİ GÜNEŞ IŞIĞI DA ÖZEL OLARAK AYARLANMIŞTIR Bu kimyasal fabrikada her şey olup biterken, işlemler sırasında kullanılacak enerjinin özellikleri de ayrıca tespit edilmiştir. Fotosentez işlemi bu yönüyle incelendiğinde de, gerçekleşen işlemlerin ne kadar büyük bir hassasiyetle tasarlanmış olduğu görülecektir. Çünkü güneşten gelen ışığın enerjisinin özellikleri, tam olarak kloroplastın kimyasal tepkimeye girmesi için ihtiyaç duyduğu enerjiyi karşılamaktadır. Bu hassas dengenin tam anlaşılabilmesi için güneş ışığının fotosentez işlemindeki fonksiyonlarını ve önemini şöyle bir soruyla inceleyelim: Güneş'in ışığı fotosentez için özel olarak mı ayarlanmıştır? Yoksa bitkiler, gelen ışık ne olursa olsun, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe mi sahiptirler? Bitkiler hücrelerindeki klorofil maddelerinin ışık enerjisine karşı duyarlı olmaları sayesinde fotosentez yapabilirler. Buradaki önemli nokta klorofil maddelerinin çok belirli bir dalga boyundaki ışınları kullanmalarıdır. Güneş tam da klorofilin kullandığı bu ışınları yayar. Yani güneş ışığı ile klorofil arasında tam anlamıyla bir uyum vardır Amerikalı astronom George Greenstein, The Symbiotic Universe adlı kitabında bu kusursuz uyum hakkında şunları yazmaktadır: Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır. Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz. FOTOSENTEZİN SONUÇLARI Milimetrenin binde biri büyüklükte yani ancak elektron mikroskobuyla görülebilecek kadar küçük olan kloroplastlar sayesinde gerçekleştirilen fotosentezin sonuçları, yeryüzünde yaşayan tüm canlılar için çok önemlidir. Canlılar havadaki karbondioksitin ve havanın ısısının sürekli olarak artmasına neden olurlar. Her yıl insanların, hayvanların ve toprakta bulunan mikroorganizmaların yaptıkları solunum sonucunda yaklaşık 92 milyar ton ve bitkilerin solunumları sırasında da yaklaşık 37 milyar ton karbondioksit atmosfere karışır. Ayrıca fabrikalarda ve evlerde kaloriferler ya da soba kullanılarak tüketilen yakıtlar ile taşıtlarda kullanılan yakıtlardan atmosfere verilen karbondioksit miktarı da en az 18 milyar tonu bulmaktadır. Buna göre karalardaki karbondioksit dolaşımı sırasında atmosfere bir yılda toplam olarak yaklaşık 147 milyar ton karbondioksit verilmiş olur. Bu da bize doğadaki karbondioksit içeriğinin sürekli olarak artmakta olduğunu gösterir. Bu artış dengelenmediği takdirde ekolojik dengelerde bozulma meydana gelebilir. Örneğin atmosferdeki oksijen çok azalabilir, yeryüzünün ısısı artabilir, bunun sonucunda da buzullarda erime meydana gelebilir. Bundan dolayı da bazı bölgeler sular altında kalırken, diğer bölgelerde çölleşmeler meydana gelebilir. Bütün bunların bir sonucu olarak da yeryüzündeki canlıların yaşamı tehlikeye girebilir. Oysa durum böyle olmaz. Çünkü bitkilerin gerçekleştirdiği fotosentez işlemiyle oksijen sürekli olarak yeniden üretilir ve denge korunur. Yeryüzünün ısısı da sürekli değişmez. Çünkü yeşil bitkiler ısı dengesini de sağlarlar. Bir yıl içinde yeşil bitkiler tarafından temizleme amacıyla atmosferden alınan karbondioksit miktarı 129 milyar tonu bulur ki bu son derece önemli bir rakamdır. Atmosfere verilen karbondioksit miktarının da yaklaşık 147 milyar ton olduğunu söylemiştik. Karalardaki karbondioksit-oksijen dolaşımında görülen 18 milyar tonluk bu açık, okyanuslarda görülen farklı değerlerdeki karbondioksit-oksijen dolaşımıyla bir ölçüde azaltılabilmektedir. Yeryüzündeki canlı yaşamı için son derece hayati olan bu dengelerin devamlılığını sağlayan, bitkilerin yaptığı fotosentez işlemidir. Bitkiler fotosentez sayesinde atmosferdeki karbondioksidi ve ısıyı alarak besin üretirler, oksijen açığa çıkarırlar ve dengeyi sağlarlar. Atmosferdeki oksijen miktarının korunması için de başka bir doğal kaynak yoktur. Bu yüzden tüm canlı sistemlerdeki dengelerin korunması için bitkilerin varlığı şarttır. BİTKİLERDEKİ BESİNLER FOTOSENTEZ SONUCUNDA OLUŞUR Bu mükemmel sentezin hayati önem taşıyan bir diğer ürünü de canlıların besin kaynaklarıdır. Fotosentez sonucunda ortaya çıkan bu besin kaynakları "karbonhidratlar" olarak adlandırılır. Glukoz, nişasta, selüloz ve sakkaroz karbonhidratların en bilinenleri ve en hayati olanlarıdır. Fotosentez sonucunda üretilen bu maddeler hem bitkilerin kendileri, hem de diğer canlılar için çok önemlidir. Gerek hayvanlar gerekse insanlar, bitkilerin üretmiş olduğu bu besinleri tüketerek hayatlarını sürdürebilecek enerjiyi elde ederler. Hayvansal besinler de ancak bitkilerden elde edilen ürünler sayesinde var olabilmektedir. Buraya kadar bahsedilen olayların yaprakta değil de herhangi bir yerde gerçekleştiğini varsayarak düşünsek acaba aklınızda nasıl bir yer şekillenirdi? Havadan alınan karbondioksit ve su ile besin üretmeye yarayan aletlerin bulunduğu, üstelik de o sırada dışarıya verilmek üzere oksijen üretebilecek teknik özelliklere sahip makinaların var olduğu, bu arada ısı dengesini de ayarlayacak sistemlerin yer aldığı çok fonksiyonlu bir fabrika mı aklınıza gelirdi? Avuç içi kadar bir büyüklüğe sahip bir yerin aklınıza gelmeyeceği kesindir. Görüldüğü gibi ısıyı tutan, buharlaşmayı sağlayan, aynı zamanda da besin üreten ve su kaybını da engelleyen mükemmel mekanizmalara sahip olan yapraklar, tam bir tasarım harikasıdırlar. Bu saydığımız işlemlerin hepsi ayrı özellikte yapılarda değil, tek bir yaprakta (boyutu ne olursa olsun) hatta tek bir yaprağın tek bir hücresinde, üstelik de hepsi birarada olacak şekilde yürütülebilmektedir. Buraya kadar anlatılanlarda da görüldüğü gibi bitkilerin bütün fonksiyonları, asıl olarak canlılara fayda vermesi için nimet olarak yaratılmışlardır. Bu nimetlerin çoğu da insan için özel olarak tasarlanmıştır. Çevremize, yediklerimize bakarak düşünelim. Üzüm asmasının kupkuru sapına bakalım, incecik köklerine… En ufak bir çekme ile kolayca kopan bu kupkuru yapıdan elli altmış kilo üzüm çıkar. İnsana lezzet vermek için rengi, kokusu, tadı her şeyi özel olarak tasarlanmış sulu üzümler çıkar. Karpuzları düşünelim. Yine kuru topraktan çıkan bu sulu meyve insanın tam ihtiyaç duyacağı bir mevsimde, yani yazın gelişir. İlk ortaya çıktığı andan itibaren bir koku eksperi gibi hiç bozulma olmadan tutturulan o muhteşem kavun kokusunu ve o ünlü kavun lezzetini düşünelim. Diğer yandan ise, parfüm üretimi yapılan fabrikalarda bir kokunun ortaya çıkarılmasından o kokunun muhafazasına kadar gerçekleşen işlemleri düşünelim. Bu fabrikalarda elde edilen kaliteyi ve kavunun kokusundaki kaliteyi karşılaştıralım. İnsanlar koku üretimi yaparken sürekli kontrol yaparlar, meyvelerdeki kokunun tutturulması içinse herhangi bir kontrole ihtiyaç yoktur. İstisnasız dünyanın her yerinde kavunlar, karpuzlar, portakallar, limonlar, ananaslar, hindistan cevizleri hep aynı kokarlar, aynı eşsiz lezzete sahiptirler. Hiçbir zaman bir kavun karpuz gibi ya da bir mandalina çilek gibi kokmaz; hepsi aynı topraktan çıkmalarına rağmen kokuları birbiriyle karışmaz. Hepsi her zaman kendi orijinal kokusunu korur. Bir de bu meyvelerdeki yapıyı detaylı olarak inceleyelim. Karpuzların süngersi hücreleri çok yüksek miktarda su tutma kapasitesine sahiplerdir. Bu yüzden karpuzların çok büyük bir bölümü sudan oluşur. Ne var ki bu su, karpuzun herhangi bir yerinde toplanmaz, her tarafa eşit olacak şekilde dağılmıştır. Yer çekimi göz önüne alındığında, olması gereken, bu suyun karpuzun alt kısmında bir yerlerde toplanması, üstte ise etsi ve kuru bir yapının kalmasıdır. Oysa karpuzların hiçbirinde böyle bir şey olmaz. Su her zaman karpuzun içine eşit dağılır, üstelik şekeri, tadı ve kokusu da eşit olacak şekilde bu dağılım gerçekleşir.   Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez" dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlı hücrelerin büyük bir çoğunluğu, basit bir algden, büyük ve karmaşık kara bitkilerine kadar fotosentez yaparlar. İnsan yaşadığı ortamda kendi gereksinmelerine göre bir çok değişiklikleri yapma yeteneğine sahip olmasına rağmen, tüm beslenme sorunu için tamamıyla diğer organizmalara bağlıdır. Bu besin piramidinin tabanını fotosentez yapan bitkiler oluşturur. Yediğimiz her şey, ya doğrudan doğruya bitkisel kökenli, ya da bu kökenden türemiş maddelerdir. Gerçekten fotosentez tek başına büyük bir olaydır. Her yıl dünyada 690 milyar ton karbon dioksit (CO2) ve 280 milyar ton su (H2 O) dan fotosentez yolu ile 500 milyar ton karbonhidrat üretilmekte ve 500 milyar ton oksijen atmosfere verilmektedir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Diğer bir kısım organizmalar ise serbest oksijen olmadan da enerji elde edebilirler (Anaerobik solunum). Fakat kompleks yapılı bitki ve hayvanlar, yaşamak için çok miktarda oksijen kullanmak zorundadırlar (Aerobik solunum). Öyleyse kompleks yapılı organizmaların canlılığının devamı ve yayılması oksijenin varlığına bağlıdır. Deney 1. Klorofil Elde Edilmesi Yeşil bitkilerin kloroplastlarında meydana gelen fotosentez de, havanın karbon dioksidi ve suyun varlığında karbonhidrat ve oksijen oluşturulmasıdır. Fotosentez olayını detaylı bir şekilde ortaya koymadan önce klorofil ile ilgili bazı deneyler gösterilecektir. Araç ve Gereçler: Isırgan otu (Urtica) yaprağı, kum, havan, kurutma kağıdı, tebeşir, benzen, alkol, su. Uygulama: Bir havan içine hücrelerin parçalanmasını kolaylaştırmak için kum ve alkol konulup ısırgan otunun yaprakları ilave edilerek iyice ezilir. Bunun sonucunda koyu yeşil boyalı bir eriyik elde edilir. Buna ham klorofil ekstresi adı verilir. Ham klorofil ekstresi hem klorofil, hem de diğer renk maddelerinden olan karotin ve ksantofil boyalı maddeleri de içermektedir. Bunları ayırmak için ekstre filitre kağıdından süzülür. Süzülen bu berrak ekstreden bir miktar alınarak bir deney tüpüne aktarılır. Tübün üzerine aynı miktarda benzen ile bir kaç damla su ilave ediler. Su ilave edilmesinin amacı alkol karışımının yoğunluğunu arttırıp, benzenin kolayca tübün üst kısmına çıkmasını sağlamaktır. Bir süre sonra tübün üst kısmında benzende eriyen klorofilin , alt kısmında ise alkolde kalan sarı renkli karotin ve ksantofil bulunur. Bu şekilde ayırmak, kaba bir yöntemdir. Bu ayrımı daha ayrıntılı bir biçimde gözleye bilmek için kağıt ve tebeşir yardımıyla basitçe yapılabilecek olan bazı uygulamaları örnek olarak verebiliriz. Bu uygulamada yukarıda adı geçen renkli maddeler molekül ağırlığı ve adsorbsiyon derecelerine göre ayrılırlar. Bir petri içine süzülmüş olan berrak klorofil ekstresinden bir miktar koyulur. İçerisine şerit şeklinde kesilerek hazırlanmış kurutma kağıdı ile tebeşir yerleştirilir. Bir süre sonra kağıdın ve tebeşirin üst kısımlarında sarı renkli karotin ve ksantofil, alt kısımda ise yeşil renkli klorofilin toplandığı görülür. Bu kademeli renk farkı adı geçen renk maddelerinin molekül ağırlıklarının ve adsorbsiyon derecelerinin farklı olmasında ileri gelir. Fotosentez Olayında Organik Madde Sentezlendiğinin Gösterilmesi Fotesentezde ışığın katalizörlüğü altında karbon dioksit ve suyun bitkiler tarafından birleştirilerek organik madde (glikoz) sentezlenmesidir. Bu maddeler ya olduğu gibi ya da uzun zincirler şeklinde paketlenerek nişasta şeklinde depolanırlar. Amacımız fotosentezin bir ürünü olan glikozun sentezlendiğini ortaya koymaktır. Araç ve Gereçler : Ebegümeci ve yaprağı iki renkli olan bir bitki yaprağı, siyah renkli kağıt, potasyum iyodür (KI), sıcak su. Uygulama : Yaprağı iki renkli olan bitkiyi alarak uzun bir müddet ışık altında tutunuz. Ebegümeci bitkisinin bir yaprağının yarısını siyah bir kağıt ile kapatarak diğer bitkiyle birlikte aynı sürede olmak şartıyla ışık altında bırakınız. Daha sonra bu bitkileri saplarından keserek kaynamakta olan suyun içerisinde hücrelerinin ölmesini ve çeperlerinin dağılmalarını sağlayınız. Bu iş için iki dakikalık bir süre yeterli olacaktır. Yapraklar yeşil rengini kaybedince potasyum iyodürle muamele ediniz. Işıkta kalmış yeşil renkli bölgelerin nişasta oluşumundan dolayı mavi bir renk aldığını, yeşil olmayan kısımların ise renk vermediğini göreceksiniz (Şekil 4. 3). Deney 3. Fotosentez İçin Karbondioksitin Varlığının Zorunlu Olduğunun Gösterilmesi Yeşil bir bitki oldukça yoğun olarak ışık altında bırakılsa bile, eğer ortamda karbon dioksit bulunmuyorsa bitki bir süre sonra sararmaya başladığı ve gelişiminin durduğu gözlenir. Bunu aşağıdaki gibi bir deneyle ispatlamak mümkündür. Araç ve Gereçler : Bir dal parçası, kavanoz, tüp, tıpa, potasyum hidroksit (KOH), su. Uygulama : Bir bitki dalı alınarak iki yaprağı içerisinde su ve potasyum hidroksit bulunduran bir tüple birlikte (tüpün ağzı açık durumda) geniş ağızlı bir şişe veya kavanoz içerisine bırakılır. Bir süre sonra dalın kavanoz içerisinde kalan kısmında yaprakların sararıp solduğu görülür. Bir müddet daha sonra ise yapraklar tamamen ölür. Buna neden olan faktör, büyük şişedeki karbon dioksitin potasyum hidroksit tarafından emilerek şişe içerisindeki yaprakların ışık ve suyu aldıkları halde karbon dioksit yetersizliğinden fotosentezi yapamamalarındandır. Böylece fotosentez için ortamda karbondioksite kesinlikle gereksinim duyulduğu ispatlanmış olur (Şekil 4. 4). Deney 4. Fotosentezi Etkileyen Faktörlerin Birlikte İncelenmesi Aynı canlı materyeli üzerinde, fotosentezi etkileyen faktörlerin birinin etkisini değiştirip (ışık, karbon dioksit, sıcaklık gibi) diğerlerininkinin sabit tutulması ile fotosentez hızında meydana gelen değişikliklerin incelenmesi ve bu faktörlerin etkilerinin karşılaştırılması şeklinde gösterilecektir. Araç ve Gereçler: Elodea bitkisi, beher, huni, ışık kaynağı, %4'lük potasyum bikarbonat (KHCO3), %1'lik KHCO3, termometre, ispirto ocağı, milimetrik kağıt. Uygulama: Bu deney için Elodea su bitkisi kullanılacaktır. Elodea bitkisi içi su dolu bir cam kaba alınır. Bitkinin üzeri çıkacak olan gaz kabarcıklarını toplayacak olan bir huniyle şekilde görüldüğü gibi kapatılır (Şekil 4. 5). Işık faktörünün etkisini ölçmek için önce normal ışıktaki kabarcık çıkışı tespit edilir. Bir lamba yardımıyla düzeneğe ışık verilir ve kabarcık çıkışı gözlenir. Fotosentez hızı ile aydınlatma şiddeti arasındaki ilişki grafikte gösterilir. Karbondioksit konsantrasyonunun etkisini inceleyebilmek için de başka bir kaba yine ortamı su ile hazırlanmış %4'lük KHCO3 çözeltisi konur. Yine bitki bu düzeneğin içine yerleştirilip bu konsantrasyondaki fotosentez hızı ölçülür. Aynı işlem %1'lik KHCO3 için tekrarlanır. KHCO3 konsantrasyonuna karşı kabarcık sayısındaki değişim grafiği çizilir. Sıcaklığın fotosentez üzerine etkisini ölçmek içinde aynı düzeneğin sıcaklığı ölçülür ve bu sıcaklıktaki kabarcık sayısı saptanır. Daha sonra sıcaklık ispirto ocağı yardımıyla arttırılır ve kabarcık sayısı belirlenir. Sıcaklık kabarcık çıkışı durana kadar arttırılır. Sıcaklık ile fotosentez ilişkisi bir grafikte gösterilir. Deney 5. Aerobik Solunum Bu deneyle karbonhidratların havadan alınan O2 ile CO2 ve H2 O ya kadar yıkılıp enerji açığa çıktığını göreceksiniz. Araç ve Gereçler: Çimlenmekte olan bezelye taneleri, balon joje, cam boru, beher, KOH, renkli bir sıvı. Uygulama: Bu deney için, CO2 tutma özelliğine sahip potasyum hidroksit (KOH) kristalleri pamuğa sarılarak çimlenmekte olan bezelye taneleri ile birlikte bir balon joje içine yerleştirilir. Daha sonra balon şekilde görüldüğü gibi bir ucu renkli sıvıya batırılmış kılcal boru ile birleştirilir. Bir süre sonra bezelyelerin solunum yapması sonucu O2 alınıp CO2 verilir. Dışarıya verilen bu CO2, KOH kristalleri tarafından tutulur ve azalan hacim kadar kılcal boruda sıvı yükselir. Deney 6. Anaerobik Solunum Havanın serbest oksijeni ile temas halinde olmayan bazı bitkiler, kendileri için gerekli olan enerjiyi, organik maddeleri enzimatik faaliyetlerle parçalayarak sağlarlar. Bu parçalanma sonucunda açığa çıkan gaz CO2 'tir. Araç ve Gereçler: Çimlenmekte olan nohut, deney tüpü, civa, beher. Uygulama: Çimlenmekte olan bir kaç nohut tanesini deney tüpünün içine yerleştirin. Sonra tüpü tamamıyla civa ile doldurun ve ters çevirerek yine civa dolu bir kabın içine batırın. Daha sonra cıva dolu kabın üzerine su ilave edin. Bir süre sonra tohumların anaerobik solunumu sonucu ortaya çıkan gaz tüpteki civayı aşağıya doğru ittiğini göreceksiniz (Şekil 4. 7). Bu da bize havadaki serbest oksijen yerine bitki dokularındaki bağlı oksijenin kullanıldığını gösterir. Deney 7. Fermantasyon Bazı organizmaların solunumu sonucunda substrat CO2 gibi çok basit bir ürüne kadar parçalanmaz. Solunum sonucunda daha kompleks bir madde açığa çıkar. Bu olaya fermantasyon denir. Araç ve Gereçler: %1 'lik glikoz çözeltisi, % 20 'lik Baryum hidroksit (Ba(OH)2), taze bira mayası, erlenmayer, cam boru, tıpa. Uygulama: Bir erlenin içine 200 cm3 %1 lik glikoz çözeltisi konulur. Daha sonra bu karışımın içine bir miktar taze bira mayası ilave edilir. Erlenin ağzı şekilde görüldüğü gibi cam boru takılmış tıpa ile kapatılır ve cam borunun diğer ucu yine tıpa ile kapatılmış % 20 'lik Ba(OH)2 çözeltisi içine batırılır. Ba(OH)2 içeren tüpte çökelmenin meydana gelmesi, olay sonucunda CO2 açığa çıktığını, alkol kokusu da fermentasyon sonucu alkolün meydana geldiğini gösterir Özet Doğada meydana gelen ve canlılığın ışık ile iletişim gösteren en belirgin temel olaylarından biri "fotosentez"dir. Fotosentez ışık enerjisinin biyolojik olarak kimyasal enerjiye dönüşümü olayıdır. Enerji yönünden tüm canlı organizmalar kesinlikle fotosenteze bağımlıdır, çünkü gerekli besin maddelerinin ve hatta atmosferdeki oksijenin kökeni fotosentezdir. Canlıların büyük bir çoğunluğu için oksijen, besin kadar önemlidir. Oksijen (O2) hayatsal olayların sürekliliği için gerekli olan, besinlerde depo edilmiş enerjiyi serbest hale getirir. Canlıların çoğu havadaki serbest oksijeni kullanır. Bir kısım organizmalar (bazı bir hücreliler, ilkel bitkiler, yassı ve yuvarlak parazit solucanlar) enerji elde etmek üzere çevrelerindeki eser miktarda oksijenden bile faydalanabilirler. Bu ünitede bitkilerde fotosentez olayını, fotosenteze etki eden faktörleri, oksijenli ve oksijensiz solunum olaylarını, fermantasyon olayının nasıl meydana geldiği bazı deneylerle gösterilmeye çalışılmıştır. Değerlendirme Soruları Aşağıdaki soruların yanıtlarını verilen seçenekler arasından bulunuz. 1. Fotosentez için aşağıdakilerden hangisi gerekli değildir? A. CO2 B. Işık C. Klorofil D. KOH E. H2O 2. Aşağıdaki bileşiklerden hangisi CO2 tutabilme özelliğine sahiptir? A. H2O B. KHCO3 C. BaCO3 D. NaOH E. KOH 3. Fermantasyon sonucu aşağıdaki maddelerden hangisi oluşur? A. Glikoz B. Karbonhidrat C. Alkol D. Oksijen E. Protein 4. Aerobik solunumda karbonhidratlar, aşağıdaki hangi maddenin yardımıyla en küçük yapı taşları ve enerjiye kadar parçalanırlar? A. O2 B. CO2 C. H2 O D. KOH E. NaOH 5. Aşagıdakilerden hangisi fotosentezin hızına etki etmez? A. CO2 B. Glikoz C. Sıcaklık D. Işık E. Klorofil Yararlanılan ve Başvurulabilecek Kaynaklar Ocakverdi, H., Konuk, M., (1989) Bitki Fizyolojisi Laboratuvar Kılavuzu, Selçuk Üniv. Eğitim Fak. Yay: 14, Konya. Önder, N. Yentür, S., (1991) Bitki Fizyolojisi Laboratuvar Kılavuzu, İstanbul. Üniv. Fen Fak.Yay. No: 220, İstanbul. Önder, N., (1985) Genel Bitki Fizyolojisi, İstanbul Üniv. Fen Fak. Yay. No: 189, İstanbul. Ayrıntılar ve şekiller için tıklayınız: http://www.aof.anadolu.edu.tr/kitap/IOLTP/2282/unite04.pdf

http://www.biyologlar.com/fotosentez

Canlılarda Üreme ve Çoğalma

Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.Eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu: Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾® Zigot(2n)® Embriyo ; &nbs p; Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu ÜREME VE GELİŞME Üreme:Canlıların soylarının devamı için kendilerine benzer yavrular meydana getirmelerine denir.eşeyli ve eşeysiz olarak iki şekilde olur. Eşeysiz üreme:Eşey hücrelerine gerek olmadan yapılan üreme şeklidir. Yavrular tamamen ana bireye benzerler. Eşeysiz üreme çeşitleri: 1.Bölünme:Monera, protista ve mantarlarda görülür. 2.Tomurcuklanma:Maya hücrelerinde ve bazı protistlerde görülür. 3.Sporlanma:Parazit bir hücreli, mantar ve bazı ilkel bitkilerde görülür. 4.Vejetatif üreme:Ana bitkiden ayrılan kısmın bölünme özelliği kazanmasıyla olur. Çelik, daldırma, aşı gibi çeşitleri vardır. Mitoz bölünme esasına dayanır. Eşeyli üreme:Farklı iki cins gametin birleşmesi ile yeni bir canlının oluşmasıdır. Kalıtsal yönden farklı canlılar oluşur. Zigot:Gametlerin birleşmesi sonucu(döllenme) oluşan yapıdır. Zigottan sonraki bölünmeler mitoz bölünmedir. İzogami:Şekil ve büyüklük bakımından aynı olan gametlerin birleşmesidir. Yeşil su yosunu ve ulotrix'te görülür. Anizogami:Yapı ve büyüklük bakımından farklı olan iki gametin birleşmesidir. Alg ve mantarlarda görülür. Oogami:Büyük ve hareketsiz yumurta hücresi ile küçük ve hareketli sperm hücresinin birleşmesi ile olan üremedir. Memeliler ve gelişmiş bitkilerde görülür. Hermafroditlik:Bir organizmanın hem erkek hem de dişi eşey organlarını barındırmasıdır. Partenogenez: Döllenmiş yumurtanın gelişerek tam teşekküllü bir bireyi oluşturmasıdır. Bu birey cinsiyet olarak erkek olup, vücut hücreleri haploit kromozom sayısına sahiptir. Döllenen yumurtalardan mutlaka dişi bireyler oluşur. Arılar ve bitki bitlerinde görülür. Metagenez:Eşeyli üremenin ardından eşeysiz üremenin gerçekleşmesidir. Sıtma mikrobu, deniz anası, eğrelti ve karayosunlarında görülür. Tohumsuz Bitkilerde Üreme Açık tohumlular:Üremeleri kozalak içinde açıkta bulunan tohumlarla gerçekleşir. Tozlaşma rüzgarla olur. Kapalı tohumlular:Tohum taslakları ovaryum içerisinde saklanır. Üreme yapıları çiçekte bulunur. Çiçekli Bitkilerde Eşeyli Üreme Bir çiçeğin genel yapisı Pistiı: Dişi organ Stamen:Erkek organ 1.Polen oluşumu:Erkek organ başcığındaki polen keseleri içinde 2n kromozomlu polen ana hücrelerinden mayoz ile n kromozomlu 4 tane mikrospor çekirdeği oluşur. Bunların mitoz geçirmesi ile n kromozomlu iki çekirdek taşıyan (generatif ve vejetatif çekirdek) yapı oluşur. Bu yapıya polen(çiçek tozu) denir. Polen çimlenirken vejetatif çekirdekten polen tüpü oluşur. Generatif çekirdekten sperm çekirdekleri oluşur. Her türün poleni kendine özgü bir şekle sahiptir. 2.Yumurta hücresi oluşumu: Dişi organ yumurtalığındaki tohum taslağı içinde 2n kromozomlu tohum taslağının ana hücresi mayoz geçirerek n kromozomlu 4 tana makrospor oluşturur. Makrosporların 3 tanesi erir, kalan 1 tanesinin çekirdeği arka arkaya 3 mitoz geçirerek 8 çekirdekli bir yapı olan EMBRİYO KESESİ ni meydana getirir. Bir kutuptaki 3 çekirdekten ortadaki yumurta çekirdeğigelişerek yumurta çekirdeği halini alır ve döllenmeye hazır durumdadır. Ortadaki 2 çekirdekte endospermi oluşturacak olan polar (kutup) çekirdeklerdir. Diğer çekirdeklerden 3 ü antipot, 2 si sinerjit adını alır ve kaybolur. 3.Tozlaşma:Erkek organların başçığındaki polenlerin su, rüzgar, böcek gibi faktörlerle dişi organın tepeciğine taşınmasıdır. Sperm çekirdeği(n)+Yumurta(n)¾®Zigot(2n)® Embriyo Döllenme Sperm çekirdeği(n)+Polar çekirdekler(2n)®Triploit çekirdek(3n)®Endosperm Tohum döllenmeden sonra oluşur. Tohum taslağınınörtüleri kalınlaşarak tohum kabuğunu yaparlar. Tohum embriyo+endosperm+tohum kabuğundan oluşur. Tohum taslağı sayısıkadar tohum oluşur. Dişi orga ve çiçek tablası, besin depolayarak tohumun çevresinde meyvayı oluştururlar. Tohumun yapısında şunlar bulunur: -Embriyo(embriyonik kök=radikula ve embriyonik gövde=plumula)= 2n kromozomlu -Çenek (kotiledon)= 2n kromozomlu -Endosperm (besi doku)= 3n kromozomlu -Kabuk (testa)= 2n kromozomlu Çimlenme:Embriyonun topraktan su alarak ilk kök ve fotosentez yapabilecek ilk yaprakları oluşturmasına kadar geçen büyüme evresidir. Tohumun olgunlaşmasından çimlenmesine kadar geçen süreye UYKU HALİ denir. Uykudaki tohumlar canlıdır fakat metabolizmaları minimum seviyededir. Çimlenme için yeterli H2O,sıcaklık, O2 ve enzimler gereklidir. Bitkilerde Gelişme Çimlenmeden sonra ışık, CO2, H2O ve mineral maddelerin yardımıyla bitkisel dokuların oluşmasıdır. Yüksek yapılı bitkilerde gelişme tohum içinde başlar. Gelişme eşeyli üreyen organizmalarda 3 temel olayla gerçekleşir: 1.Hücre bölünmesi 2.Büyüme 3.Farklılaşma Yüksek yapılı bitkilerin embriyosundaki çenekler, tohum içindeyken endospermden besin depo ederler. Çenekler bitkinin fotosentez yapmaya başlayıncaya kadar ki gelişimi sırasında emriyoyu besler. Kapalı tohumlu bitkilerden tek çenekliler genellikle tek yıllık ve otsu bitkilerdir. Çift çenekliler genellikle iki veya daha çok yıl yaşayan odunsu bitkilerdir. Açık tohumlu bitkiler ise çok çeneklidir. HAYVANLARDA ÜREME Üreme sistemi+boşaltım sistemi ürogenital sistem adını alır. Erkekegamete sperm(n)i dişi gamete yumurta(n) adı verilir. Hayvanlarda üç şekilde üreme-gelişme görülür: 1.Vivipar:İç döllenme ve iç gelişme yapan canlılardır (memeliler) 2.Ovipar:İç döllenme yaparlar fakat gelişme kabuklu yumurta içerisinde olur. (kuşlar, bazı sürüngenler) 3.Ovovivipar:Gelişme ana vücudunda ve yumurta içerisinde olur. Belli bir süre sonra canlı yumurtayı ve ana vücudunu terk eder ve doğuyormuş gibi gözükür. (bazı sürüngenler ve bazı balıklar) İç döllenme:Kara hayvanlarında görülür. Döllenme dişinin vücudu içinde olur. Bu nedenle az sayıdaki üreme hücresi tür sürekliliği için yeterlidir. Bazı canlılar suda yaşamalarına karşın, yavru sayısını koruyabilmek için iç döllenme yapabilirler (köpek balığı, lepistes) Başkalaşım(metamorfoz):Çok yumurta oluşturan bazı canlılarda yumurta içindeki besin maddesi (vitellüs) çok az olduğundan embriyo gelişimini tamamlamadan yumuırta larva halinde çıkar, dışarıda gelişerek ergin birey halini alır. Bu olaya metamorfoz denir. Kurbağalarda görülür. Balık ve kurbağalarda üreme: Dış döllenme görülür, yumurtalarında kabuk oluşmaz. Dişilerde yumurtalıkta oluşan Müller kanalı yardımıyla kloak tan dışarı atılır. Erkeklerde ise testislerde oluşan spermler Wolf kanalı yardımı ile kloaktan dışarı atılır. Wolf kanalı,hem spermleri hem de boşaltım maddelerini taşır. Sürüngen ve kuşlarda üreme:İç döllenme dış gelişme görülür. Embriyo gelişimini yumurta içinde tamamlar. Bazı yılan türlerinde faklılık görülebilir. Erkeklerde wolf kanalı yalnız spermleri taşır. Boşaltım maddeleri ise ayrı bir kanal ile kloak tan dışarı atılır. Sürüngen ve kuş yumurtasındaki embriyonik örtüler: 1.Kabuk:Yumurtayı kuraklığa, bakterilere karşı korur.O2 ve CO2 alışverişini sağlar. 2Koryon:Embriyoyu korur ve gaz alışverişine imkan sağlar. 3.Amniyon kesesi:Embriyoyu basınca ve sıcaklık değişimlerine karşı korur. İçindeki sıvı hareket serbestliği sağlar. 4.Allantoyis:Embriyonun artık maddelerni toplar, memelilerde körelmiştir. 5.Vitellüs kesesi:Embriyonun besin maddesinin bulunduğu kesedir. Memelilerde yoktur. Memelilerde üreme:İç döllenme, iç gelişme gözlenir. Gagalı ve keseli memeliler de yavru gelişimini ana vücudu içinde gerçekleştirir, besini yumurtadan alır. Plasentalı memelilerde, emriyo dişinin uterusu(döl yatağı) içinde gelişir. Vitellüs yeterli olmadığından beslenme, plasenta adı verilen özel bir yapı aracılığı ile anne kanından karşılanır. Plasenta:Koryon uzantıları ile, uzantıların uterusa değdiği bölge plasentayı oluşturur. Plasenta, embriyoya besin ve O2 sağlar, CO2 ve diğer artık maddelerin anne kanına geçmesine yardımcı olur. Amniyon zarının kenarlarının birleşmesi ile oluşan GÖBEK BAĞI embriyo ile plasenta arasında bağlantıyı oluşturur. İçinde kan damarları bulunur. İNSANDA ÜREME SİSTEMİ Erkek üreme sistemi: Testisler ince kıvrımlı SEMİNİFER tüpçüklerinden oluşurlar. Oluşan spermler buradan epididimis'e oradan da vasdeferns (sperm kanalı) a açılır. Vasdeferens de üretra(idrar kanalı) ile birleşip dışarı açılır. Spermatogenez testislerdeki seminifer tüpçüklerinde gerçekleşir. Spermlerin üretradan atılması seminal sıvı ile sağlanır. Bu sırada idrar yolu kasılıp tıkanmıştır. Seminal sıvı prostat-cowper bezi ve seminal keseciklerin salgılarından oluşur. Hormon kontrolü hipofiz bezinden salgılanan FSH ve LH hormonlarında yapılır. FSH spermatogenezi LH ise testislerden testesteron hormonu salgılanmasını kontrol eder. Testesteron hormonu ise sperm olgunlaşmasını, ses kalınlığını ve kıllanmayı sağlar. Dişi üreme sistemi. Yumurtalıklar (ovaryum), yumurta kanalı (fallopi tüpü) ve bajinaadı verilen kısımlarından oluşur. Vajinanın döl yatağına olan açıklığına servix denir. Döllenme fallopi tüpünde olur. Döllenmiş yumurta ilk mitoz bölünmeleri fallopi tüpünde geçirir. Ovaryum ve uterusta meydana gelen değişiklikler düzenli devreler halinde tekrarlanır. Bu üreme devre MENSTRUASYON PERYODU denir. 4 aşamada incelenir: 1.Folikül evresi:Hipofizden salgılanan FSH (folikül uyarıcı hormon) etkisi ile ovaryumdaki çok sayıda folikülden biri olgunlaşır. Folikül hücresinden östrojen hormon etkisi ile uterusta mitoz hızlanır, kan ve doku sıvısı artar. Folikül ovaryum yüzeyine kadar gelir bu evre 10-14 gün sürer. 2.Ovulasyon evresi:Hipofizden LH(lüteinleştirici hormon) salgılanması ile folikül yırtılarak içindaki yumurta ovaryumdan atılır. Atılan yumurta fallopi tüpüne geçer. 3.Corpus Luteum evresi:LH etkisi ile yırtılan folikül hücreleri sarı renkli yağ damlacıkları taşıyan lütein hücreleri halini alır. Bu yeni yapıya corpus luteum adı verilir. Lütein hücrelerinden salgılanan progesteron hormonu döllenmiş yumurtanın uterusa tutunmasını sağlar. Bu evre 10-14 gün sürer. Gebelik döneminde corpus luteum bozulmadığı için progesteron salgılanmasıda devam eder. Hipofizden salgılanan LTH (lüteotropik hormon) corpus luteumun östrojen ve progesteron hormonlarının devamını sağladığı gibi süt bezlerinin gelişmesi ve analık içgüdüsünün oluşmasında görevlidir. 4.Menstruasyon evresi: Döllenme yoksa sinirsel uyartılar olmadığından corpus luteum bozulur. Dolayısıyla progesteron seviyesi düşer. Uterus iç çeperi parçalanır. Doku parçaları, döllenmemiş yumurta, bir miktar kanla birlikte vajinadandışarı atılır. Ortalama 3-5 gün sürer. Daha sonra tekrar folikül evresi başlar. Hipofiz bütün üreme sistemini düzenler. Hipofiz hormonlarının salgılanması beynin hipotalamus bölgesinden çıkan RF(releasing faktör) tarafından düzenlenir. Hipofizden salgılanan OKSİTOSİN hormonu doğum sırasında uterus kasılmasını ve daha sonra sütün akmasını sağlar. Geri besleme (feed back):Bezlerin birbirlerini etkileyerek kandaki hormon miktarını düzenlemelerine geri besleme denir. Hayvanlarda Gelişme Gelişme evreleri: 1.Segmentasyon (Bölünme) 2.Gastrulasyon(Hücre hareketi) 3.Nörülasyon(Sinir borusu faklılaşması) 4.Organogenez(Organlaşma) Gelişmenin ilk devrelerinde zigotta görülen hızlı mitoz bölünmelere SEGMENTASYON denir. Blastomer:İlk bölünme ile meydana gelen hücrelerin her birine blastomer adı verilir. Segmentasyonu MORULA, BLASTULA ve GASTRULA olmak üzere üç evre izler. Gastrula evresindeki embriyonik tabakalardan oluşan doku, organ ve sistemler şunlardır: 1.Ektoderm:Sinir sistemi, deri, saç, tırnak. 2.Mezoderm:İskelet-kas sistemi, taşıma, lenf, boşaltım ve üreme sistemi 3.Endoderm:Sindirim sistemi, solunum sistemi. Rejenerasyon:Canlı organizmalarda kesilen veya kopan bir parçanın yeniden yapılmasıdır. Rejenerasyon da hücre bölünmesi ve hücre farklılaşması vardır. Basit yapılı canlılarda rejenerasyon üreme olarak kabul edilir. Doku kültürü (Hücre kültürü):Bir hücrenin içinde çeşitli besin maddeleri bulunan bir kültür ortamında yetiştirilmesi yöntemidir. Embriyonik indüksiyon:Embriyodaki tabakaların birbirini etkileyerek organ ve sistemlerin nasıl oluştuğunun açıklanmasıdır.

http://www.biyologlar.com/canlilarda-ureme-ve-cogalma

Tam Kan Sayımı (KISALTMALARI )

Tam Kan Sayımı (Hemogram) -RBC: Red Blood Cells (Kırmızı kan hücrelerinin –eritrosit- sayısı)Bunlar oksijen taşıyan hücrelerdir. Ağır egzersiz ve yüksek rakımda sayıları artarken düşük olması kansızlık (anemi) veya kan kaybını gösterir. Ayrıca hemolize neden olan bazı ilaçlar da eritrosit sayısını azaltabilir.-HGB: Hemoglobin (Hb)Kandaki toplam hemoglobin miktarını gösterir. Anemi, kan kaybı, polistemi (eritrosit sayısının normalden fazla olması) v.b. durumların değerlendirilmesinde kullanılır. Polistemi, egzersiz ve yüksek rakım hemoglobin miktarını artırırken anemi ise hemoglobin miktarını azaltır.-HCT: HematokritKandaki hemoglobin ve eritrosit miktarını gösterir. Bir başka ifadeyle kanın şekilli elemanlarının tüm kana oranıdır. Anemi ve kan kaybı gibi durumlarda miktarı azalır. Buna karşılık vücut su kaybederse (kusma v.b.) ya da yüksek rakımda hematokrit miktarı artar.-MCV: Mean Corpuscular VolumeEritrositlerin ortalama büyüklüğüdür.-MCH: Mean Corpuscular HemoglobinEritrositlerdeki hemoglobin miktarını gösterir.-MCHC: Mean Corpuscular Hemoglobin ConcentrationEritrosit hemoglobin konsantrasyonunun yüzde olarak ifadesidir.-RDW: Red cell Distrubition WidthEritrositlerin dağılım genişliğini gösterir.-PLT: Platelets (Trombosit sayısı)Pıhtılaşmayı sağlayan hücrelerdir. Koagülasyon sistemi ve hemostaz bozukluklarının değerlendirilmesinde kullanılır. Demir eksikliği anemisi ve akut enfeksiyonlarında trombosit sayısı artarken lösemiler, bazı enfeksiyonlar ve kemik iliğinin baskılanması ile trombosit sayısı düşer.-MPV: Mean Platelet VolumeTrombositlerin ortalama büyüklüğüdür. -PDW: Platelet Distrubition WidthTrombositlerin dağılım genişliğini gösterir.-WBC: White Blood Cells (Beyaz kan hücrelerinin-lökosit-sayısı)Vücudun savunmasında ve bağışıklığında görevlidir. Değer aralıklarından yüksek çıkması mikrobik hastalıklara işarettir. Düşük çıkması ise kan kanserini gösterebilir.-NE%: Nötrofil Yüzdesi-LY%: Lenfosit Yüzdesi-MO%: Monosit Yüzdesi-EO%: Eozinofil Yüzdesi-BA%: Bazofil Yüzdesi

http://www.biyologlar.com/tam-kan-sayimi-kisaltmalari-

Mikrodizi (Microarray) Nedir

Bu kavramı birçok yerde "mikrodizin" olarak da görmüşsünüzdür, o ayrı bir yazı konusu. Bu yazıda, daha önce detaylı bir şekilde bahsedeceğimi söylediğim mikrodizi teknolojisine giriş yapacağım. Mikrodizi veri analizi yerine, bu teknolojinin nasıl bir şeye benzediğinden bahsedeceğim. Bu teknoloji fazlasıyla popüler ülkemizde (dünyada artık Yeni Nesil Sekanslama konuşuluyor), bir süre daha devam edeceğe de benziyor. Temel birkaç sebepten birisi bu teknolojiyi uygulamayı bilen insan sayısı göreceli olarak hayli fazla, her yerde (evet, neredeyse her yerde) mikrodizi cihazı var, ve bu teknolojiyi kullanarak yayın çıkarmak göreceli olarak kolay. Bu durum da beraberinde gereğinden yüksek beklentileri ve uygunsuz teknoloji kullanımlarını getiriyor. Önce neden böyle bir teknolojiye ihtiyaç duyulduğundan başlayalım. Klasik bilimsel yaklaşım belirli bir vakit diliminde belirli bir faktörü incelemek üzerine kurulu. Bu nedenle p53 üzerine binlerce yayın var; ancak p53'ün tam olarak nasıl çalıştığına ilişkin elimizde tam bir bilgi yok, çünkü etkileşim mekanizmasını tam olarak anlayabilmiş değiliz. Buradaki anahtar kelime, "etkileşim" [interaction]. Yani klasik yaklaşımla, direksiyonun bir otomobil için çok önemli olduğunu anlayabiliyoruz. Hatta direksiyonun türler arasında (kamyon, otobüs, vapur, uçak vb.) korunduğunu ve bazen farklı şekillere büründüğünü ve buna rağmen aynı etkiyi yaptığını da kavrayabiliyoruz. Ama direksiyonun tam olarak nasıl çalıştığını klasik yaklaşımla anlayamıyoruz; çünkü bir başka deneyde direksiyonu sabit tutup gaza basıyoruz, bir başkasında otomobilin krank milini çıkarıp etkisine bakıyoruz, ve benzeri şeyler. Bu sıkıntı bilimin birçok dalında kendini gösteriyor, fakat özellikle de birden fazla faktörün işin içine girdiği alanlarda içinden çıkılmaz bir hal alıyor bu durum. Psikoloji bilimsel olarak geç kabul gören fakat hızlı ilerleyen bir dal. Klasik bilimsel yaklaşımla çözülemeyen bazı problemleri çözmek adına farklı bir yaklaşım ortaya çıkıyor. Gestalt psikolojisi denilen bu yaklaşım diyor ki: "Bütün, onu oluşturan parçaların toplamı değil, daha fazlasıdır." Yani deniyor ki, bir ormanı anlamak istiyorsanız teker teker her bir ağacı araştırmanız yetersizdir. Ormanı oluşturan şey, ağaçlar ve onların birbiriyle etkileşimidir. Yani p53'ün ne işe yaradığı çoğu zaman anlamsızdır; önemli olan, p53'ün diğer moleküllerle etkileşimini ortaya koymaktır. Yani direksiyonu çevirdiğimizde tekerlerin nasıl hareket ettiğini keşfetmek, belirli hızlarla giderken her bir derecelik direksiyon açısındaki değişmenin kaç metrelik sapmalara denk geldiğini görmek, her bir lastiğin aşınmışlığının bu sapmaları nasıl etkilediğini keşfetmek, direksiyon boşluğu denen şeyin aracın yönünü ayarlamayı nasıl etkilediğini bulmak tüm resmi görmektir. Elbette direksiyonun şekli, yapıldığı materyal vb. şeyler kıymetlidir ama, bütün resmin sadece ufak bir parçasıdır. Gestalt psikolojisini detaylı bir şekilde araştırmanızı öneririm; sistem biyolojisini anlamak için çok güzel bir başlangıç noktası bence. 1977 yılında Northern Blot adı verilen bir yöntem geliştirildi. Amaç, gen ifade miktarını hedef bir gen/transkript için belirleyebilmekti. Örneğin, p53 gen ifade miktarını bu yöntemle tayin edebiliyordunuz ve sadece bir veya birkaç gen ifade miktarını kendi aralarında farklı durumlar (hastalıklı - sağlıklı vb.) için kıyaslayabiliyordunuz. Burada önemli bir detay var; ilgilendiğiniz gen veya transkriptin DNA dizilimini, en azından bir kısmını bilmeniz gerekiyor ki ona göre probu tasarlayabilesiniz. Aslında bu durum aynı zamanda çok büyük bir kısıtlayıcı etkiye sahip; henüz keşfedilmemiş genler için bu yöntemi kullanabilmek mümkün değil. Hücredeki süreçleri daha iyi anlayabilmek için mümkünse hücredeki her detaya ilişkin veriye ihtiyacımız var. Genetik alanındaki araştırmalar ilerledikçe ve moleküller arası etkileşimin önemi farkedildikçe aynı anda onlarca gene ait özelliklere bakabilmenin daha faydalı olabileceği düşüncesi yaygınlaşmaya başladı; gestalt yaklaşımının biyoloji versiyonu gibi düşünebilirsiniz bu gelişme sürecini. Yeni bir teknolojinin geliştirilmesi biraz uzun sürdü; SAGE (Serial Analysis of Gene Expression) yöntemi bu arayışlar doğrultusunda ortaya çıktı, sene 1995. Henüz İnsan Genom Projesinin çıktıları bilinmiyordu ve araştırmacılar mümkün olduğu kadar çok gen ifade değişimini aynı anda gözlemleyebilmek istiyordu. Böylece, bir hastalık durumunda gen ifade miktarlarının sağlıklı bireylerin gen ifade miktarlarına göre nasıl değiştiği ve böylelikle hastalığa neyin neden olduğu, veya hastalığın neleri etkilediği/değiştirdiği anlaşılabilecekti. Yandaki şekil SAGE metodunu kısaca özetliyor. SAGE yönteminin bir diğer avantajı ise, hücredeki transkriptlerin ne olduğunu önceden bilmenizi gerektirmeyen ve yeni genlerin keşfine olanak sağlayan bir yaklaşıma sahip olması. Daha doğrusu, yeni bir genin ufak bir dizisini keşfetmekten bahsediyoruz, yine de bu o zamanlar için büyük bir keşif olarak düşünülebilir (Bir yazımda EST'lerden kısaca bahsetmiştim). SAGE metodu DNA dizilimlemeye dayanır ve o dönemde elimizdeki en iyi yöntem Sanger yöntemiydi. Eğer dizilimlemek istediğiniz DNA bölgesi fazlasıyla uzunsa bu hem uzun süreler, hem de yüksek maliyetler anlamına geliyor. Bu nedenle, yine aynı dönemde geliştirilen mikrodizi teknolojisi düşük maliyetler vadettiği için bir anda popüler hale geldi ve SAGE metodunun pabucunu dama attı. Oysa iki metodun karşılaştırmalarına baktığımızda, SAGE yöntemi mikrodizi teknolojisine göre çok daha kesin ve nicel sonuçlar verebiliyor. Maliyet avantajı fazlasıyla baskın gelmiş anlaşılan. Peki mikrodizi teknolojisi ne getirdi, temel farkı neydi? Bu yeni teknolojiyi, aynı anda gerçekleştirilen Northern Blot'lar gibi düşünebiliriz; binlerce ve bazen on binlerce Northern Blot, tek seferde, çok daha az sarf maliyetiyle. Yaklaşım aynı; önceden tasarlanmış ve bir transkripti tanımlayabilecek en az bir prob tasarlayın. Prob lafı biraz korkutucu geliyor başta ve bir kavram kargaşasına da yol açabiliyor. Kastettiğimiz şey, 20 ila 500 baz arasında uzunluğu olan tek zincirli bir DNA molekülü (ülkemizde yaygın olarak kullanılan Affymetrix teknolojisinde DNA molekülünün uzunluğu 25 baz olarak belirlenmiş). Olay tamamen hibridizasyon temelli ve bu nedenle tek zincirli DNA parçaları, eşlenecekleri diğer molekülleri bekliyorlar; onlar da hedef transkriptler. Bir video yüzlerce kelimeye bedel, buradan teknolojinin nasıl işlediğini izleyebilirsiniz. Birçok farklı mikrodizi teknolojisi ve yine birçok uygulaması var; yani aslında mikrodizi teknolojisi dediğimizde ortada yine ufak bir kavram kargaşası var ancak sistemin çalışması yukarıda bahsettiğimiz gibi. Peki sonra ne oluyor? Problara bağlanması için hücrelerden elde ettiğimiz DNA veya mRNA parçaları floresan moleküllerle işaretleniyor (kafamda, her bir nükleik asit molekülünün ucunda birer LED veya ampül varmış gibi hayal ediyorum). Problar sabit olduğu ve her bir pozisyonda hangi transkripti hedeflediği bilindiği için, o bölgelerdeki floresan ışımaya bakılıyor ve bu ışıma miktarının hücredeki gen ifadesi miktarıyla paralel olduğu varsayılıyor. Buradaki paralel olma ifadesi şu demek; elimizde sayısal veriler var ancak bunlar mutlak rakamlar değil. Çok ışıma varsa hücrede bu gen çok miktarda ifade ediliyor diye düşünüyoruz, az ışıma varsa az gen ifadesi var diye düşünüyoruz. Bu az veya çok olma durumu hücrede gerçekte kaç kopya transkript olduğu bilgisini vermiyor. Bu nedenle mutlaka bir referansa veya bir referans grubuna ihtiyacımız var. Mikrodizi ne değildir, tam da bu noktada başlıyor. Tek bir mikrodizi deneyiyle bir gene ait ifade değerini mutlak olarak söyleyemezsiniz, herhangi bir tespit yapamazsınız. Aynı değer grubuna ait örneklerle yapacağınız mikrodizi deneyleriyle de bunu yapamazsınız. Yani, 10 tane hasta bulup bunlardan alacağınız örneklerle yaptığınız mikrodizi deneyi, pratikte neredeyse hiç bir işe yaramaz, çünkü bu teknoloji böyle kullanılmaya uygun değil; mutlaka birden fazla referans çalışmaya ihtiyacınız var. Böylece elde ettiğiniz hasta örneklerine ait verilerin "çok" veya "az" olduğunu söyleyebileceğiniz bir referans noktası elde edebilirsiniz. Model organizma çalışırken referans veya kontrol grubu bulmak çok daha kolay ancak konu insan olduğunda sağlıklı bireylerden kontrol örneklerini nasıl bulabilirsiniz? Örneğin, sağlıklı bir bireye karaciğer biyopsisi yapmanın veya o bireyin beyninden parça almanın hem etik hem de yasal bir çok problemi var. O zaman bu dokulardan elde edilen örneklerle mikrodizi deneyleri yapılmayacak mı? Referansınız yoksa, evet, çalışmanın bir anlamı yok. Yeterince örnek toplayamıyorsanız, yine burada bir problem var. Elinizdeki değerler mutlak değerler değil ve bu değerlerin kendi içlerinde de sapmalar var, bu nedenle birçok örneğe ihtiyacınız var. Bütçeniz kısıtlıysa ve her bir deney grubu için sadece bir örnek çalışabilecekseniz, mikrodizi teknolojisine başvurmanın yine neredeyse hiç bir anlamı yok. Veya referans olarak kullanacağınız kontrol örnekleri gerçekten de kontrol değilse (deney grubu örnekleriyle aynı dokudan ve aynı şartlarda alınmadıysa vb.), o zaman yine yapacağınız çalışma tehlikeye giriyor. Yukarıda saydığım nedenlerden ötürü bir mikrodizi deneyi tasarlamadan önce bir biyoinformatik uzmanına veya bir biyoistatistikçiye danışmakta çok büyük faydalar var; bu sayede birçok hatanın ve verimsizliğin önüne geçilebilir. Her bir farklı üreticinin geliştirdiği mikrodizi teknolojileri de birbirinden farklı, bu nedenle bu konuda da bilgi sahibi olmak gerekiyor. Gözünüz korkmasın, Wikipedia'da ufak bir gezinti farklı mikrodizi teknolojileri hakkında fikir sahibi olmanız için yeterli.

http://www.biyologlar.com/mikrodizi-microarray-nedir

KITALARIN VE KARA PARÇALARININ KONUMLANMASI İLE İLGİLİ GÖRÜŞ VE KURAMLAR

Mevcut hayvan yayılışının açıklanmasında Kararlılık, Köprüler ve Kıtaların kayma kuramı olmak üzere üç temel kuramdan yararlanılmıştır. Bunlar: 1. Kararlılık (Permanenz) Kuramı Dünyadaki kıtaların ve bununla ilgili olarak ana karaların ve deniz tabanlarının oluşumundan beri ufak abzı değişiklilikerin dışında durumunu ve konumunu koruduğu ve değişmediğini varsayılmıştır. Bu kuramın en önemli savunucularından olan Wallace (1876) zoocoğrafik yayılışın, göçler ve bugünkü kara ve su bağlantıları ile açıklamaya çalışır. Bu kurama destek veren Darlington (1957) geç ortaya çıkmış olan memeli hayvanların günümüzde bu yoları etkin biçimde kullandıklarını öne sürmüştür. 2. Kara Köprüleri Kuramı Bir çok canlı grubunun yayılışını bugünkü kıta konumlanması ile açıklamak oldukça zordur. Bu nedenle 1800 yılların başından itibaren kara köprülerinin kabul edilmesi eğilimi ortaya çıktı. Bu kurama göre; Dünyadaki büyük kıta ve kara parçaları arasındaki hayvan geçişinin dar bağlantılar, suların buz ve kar halinde yüksek dağ başlarına veya kutuplarda tutulması sonucunda deniz seviyesinin düşmesiyle oluşan kara köprüleri aracılığı ile gerçekleşmiş olduğunu ileri sürmektedir. Wallace bu kurama da destek vermiştir. Farbes (1846) İngiltere’nin ana kıta ile olan bir karasal bağlantı yoluyla faunalarının bezerliğini açıklamıştır. Hooker (1847) Avustralya ve Güney Amerika kıtaları arasındaki bağlantıyı, bir zamanlar var olduğu öne sürdüğü “ Transokyanusya” kara parçasına bağlamaktadır. Bununla ilgili çok sayıda kara köprüleri ile ilgili kuramlar ortaya konulmuştur. Çoğu bilim adamının vardığı önemli kurama göre, büyük kıtalar arasındaki geçiş, ya dar bağlantılarla ya da suların buz ve kar halinde yüksek dağların başına ve kutuplara yığılması sonucunda denizlerdeki su seviyesinin düşmesi ile oluşan kara köprüleri aracılığı ile sağlanmıştır. ( örneğin Bering boğazının Asya ile Kuzey Amerika arasındaki geçişi sağlaması gibi). Kara köprüleri ile İngiltere ile Avrupa, Asya ile Japonya arasındaki geçişler açıklanmıştır. Afrika ile Güney Amerika arasındaki köprü (Atlantis) bir varsayımdan öte geçmemiştir. Ana kıtalara yakın ve sığ sularda bulunan adalara geçişler, bu yaklaşımlarla kolay açıklanabilmektedir. Uçamayan kuşların kıtalardaki dağılımı kara köprüleri kuramlarına göre de tam açıklanamıyordu. Günümüzde yaşayan deve kuşlarının yapısal özellikleri, hepsinin ortak bir atadan türediğini göstermektedir. Bu kanatsız kuşların okyanuslardaki büyük mesafeleri aşması olanaksız görülmektedir. Kıtaların kayma kuramı bu soruna açıklık getirmiştir. Kara köprüleri kuramı bir açıdan da geçerli bir kuramdır. 2.1. Buzullaşmalar ve Kara Köprülerinin Oluşumu Buzul dönemlerinde, bugünkü buz birikiminin yaklaşık 3 katı daha fazla buz birikimi olmuştur. Buzla kaplı alanların miktarı, Antartika hariç, bugünkünün 13 katı daha fazlaydı. Buzulların ortalama kalınlığı yaklaşık 2 km civarındaydı. Kuzey yarımküre’deki buz miktarı , Güney Yarımküre’den kabaca iki kat fazlaydı Güneyde, buzullar Antartika kıtasının dışına taşmamıştı. Buna karşın Kuzey Amerika ve Avrasya’da, buzlar karalara büyük ölçüde yayılmıştı. İskandinavya’daki buzullar 48o enleme kadar inmişti. Kuzey Amerika’daki nemli iklim ve büyük miktardaki kar yağışı ise 37 o enleme kadar inmişti. Son buzul dönemindeki, buzulların yayılışı, hareketi ve konumlanması ayrıntılı olarak haritalanmıştır. Avrasyadaki buzlar bir çok yeri tamamen örtmüştü (İngiltere, Benelüks ve İskandinavya ülkeleri Almanya’nın önemli bir bölümü ve Sibirya gibi yerler buzlar altında kalmıştı). Buzulların yığılmasıyla birlikte, altlarında bulunan taşküre, dengeyi sağlayabilmek için, magmaya gömülmeye başlar ve buzul arası dönemlerde de tersi ortaya çıkar. Böylece kara parçaları bir duba gibi yükselir ve alçalır. Buzulların erimesiyle karaların yükselmesi yaklaşık 15 000 yıldan beri sürmektedir. Suların buz halinde kıtalara yığılması deniz seviyesinin düşmesine, erimesi ise yükselmesine neden olmuştur. Denizlerde yaşayan kabuklu hayvanların fosillerini kıyılardaki katmanlarda saptamak ve izlemek yoluyla su seviyesindeki değişmeler gözlemlenebilir. Genel bir kabul, buzul devirlerde, deniz düzeyinin bugünkünden 100-150 m’den daha fazla düştüğü yönündedir. Buzullar arası dönemlerde ise deniz düzeyi bugünkünden yaklaşık 20 m. daha fazla yükseldiği kabul edilmektedir. Böylece kara ve su köprülerinin oluşmasının yanı sıra, keza bitki ve hayvanlar için yaşam alanlarının genişlemesi veya kısıtlaması durumu ortaya çıkmıştır. Hem buzul arası dönemin sürmesi, hem de CO2 birikimi ile dünya atmosferinin normal seyrinden daha fazla ısınması, dünyadaki buzların erime sürecini hızlandırmıştır. Antartika ve Grönland’daki buzların erimesi, dünya denizlerinin 6 m. yükselmesine, bu da bir çok kıyı şeridi ile birlikte bugünkü liman şehirlerinin bir çoğunun su altında kalmasına neden olacaktır. Buzullaşma dönemine girseydik, deniz düzeyi en an 100 m düşeceği için, kıyılarda bir çok yeni toprak elde edilecekti. Buzul dönemlerinde bölgeler arasındaki sıcaklık farkları çok daha fazla olduğundan, meydana gelen rüzgarların miktarı, şiddeti ve yönleri bugünkülerden farklıydı. Pleistosen’de (kuaterner’in ilk dönemi, 1 milyon 800 bin yıl önce başlamış, 10 bin yıl öncesine kadar devam etmiş olan jeolojik bölüm) ortaya çıkan buzullaşmalar zoocoğrafya açısından oldukça önemlidir. Pleistosen’de belirgin olarak 4 buzul dönemi saptanmıştır. Her buzul döneminin arasında, sıcaklığın bugünkü gibi yüksek olduğu bir dönem vardır. Tropiklerde ve subtropiklerde kurak (arid) ve yağışlı (pluvial) iklimler birbirini izlemiştir. Zamanımız buzularası (interglasiyal) evredir. Pleistsende meydana gelen buzul dönemleri, dünyanın tümünü etkilemiştir. Tundra yapısında olan Holarktik bir çok canlı için yaşanamaz duruma gelmiştir. Tersiyer türlerinin bir kısmı tamamen ortadan kalkmış, bir kısmı güneye sığınmıştır. Doğu-Batı yönünde uzanan sıradağlar (Alpler, Toroslar, v.s), güneye olan göçü büyük ölçüde önlemiştir. Sonuç olarak Tersiyer’in tür zenginliği ortadan kalkmıştır. Bir çok tür refigiyum (=sığınak) denen uygun ortamlara sığınarak, tür ve alttür oluşumuna zemin hazırlamış ve buzularası dönemde bu refigiyumlar yeniden bir yayılma ya da gen merkezi olarak görev yapmıştır. Anadolu önemli bir refigiyum olarak buzul dönemleri sırasında hizmet vermiştir. Bu dönemde Avrupa’da Alp dağları ve diğer dağlar arasına sığınmış türlere arktik-alpin türler denir. Deniz canlıları da buzullardan etkilenmiştir (suların soğumasından dolayı). Akdeniz, bu dönemde sıcak seven türlerinin hemen hepsini yitirmiştir. Suların buz halinde karalara yığılası ile birbirine 100-150 m sığlıktaki denizlerle bağlanmış kara parçaları arasında kara köprüleri kurulmuş; kara canlıları için yeni yayılma yolları açılmış; fakat daha önce yalıtılmış olan bazı adalarda oluşmuş birçok tür de, ana kıtadan gelen yeni türlerle ortadan kaldırılmıştır. İç sular arasında da buzulların etkisiyle su köprüleri kurulmuştur. Buzul dönemlerinde güneye göç edenlerin bir kısmı, buzul arası dönemlerde tekrar kuzeye gelirken , bir kısmı da yüksek dağların başına çekilerek soğuk yerler aramıştır. Böylece yüksek dağların belirli yüksekliklerinde Arktik Relikt adı verilen bir çok canlı yerleşmiştir. Darwin bu konuda da araştırma yapmıştır. 2.2. Kara Köprüleri Canlıların yayılmasında önemli rol oynayan kara köprüleri iki şekilde oluşmuştur. Birincisi tektonik nedenlerle, yani kara parçalarının yükselmesi ile "Isostatic"; diğeri ise buzul devirlerde deniz düzeyinin düşmesi ile (bu sonuncular "Eustatic" diye adlandırılır) ortaya çıkar. BERİNG KANALI VE KÖPRÜSÜ Senozoyik'in sonlarına doğru Kuzey Amerika ile Avrasya arasında oluşmuş geniş bir kara köprüsüydü. Deniz seviyesinin 100 m. düşmesiyle yaklaşık Alaska'nın genişliğinde bir köprü oluşmuştur (HOPKİNS, 1967). İlave olarak iki kıta arasında Senozoyik boyunca, Miyosen'den sonra, kısa aralıklarla da olsa zaman zaman açılıp kapanan kıstaklar "İsthmus" oluşmuştu. Bu kıstaklar. Kuzey Yarımküre'de, geniş ölçüde buz kütlesi oluşmadan önce, büyük bir olasılıkla, yer hareketiyle oluşmuştu. Fakat esas fauna ve flora alışverişinin olduğu dönem, deniz düzeyinin, östatik (= eustatic= buzullaşma) nedenlerle düşmesi sonucu gerçekleşmiştir. Bu kara köprüsü yaklaşık 12.000 yıl açık kalmıştır. Bering Köprüsü, en azından Geç Pleistosen'de, boreal ormanlardan arınmış, yağış miktarı oransal olarak az olan, tundra ve çayırlık özelliğinde bir köprüydü. Böyle bir bitki örtüsü, ancak, steplerde ve tundralarda yaşamaya uyum yapmış memelilerin göçlerine olanak sağlamıştı. Bununla birlikte, birçok dönemde, iklim, büyük bir olasılıkla, bugünkü boreal iklimden fazla farklı değildi; çünkü Kuzey Pasifik akıntısı kısmen buraları ısıtıyordu. Buradaki iklim ve bitki örtüsü, her defasında, bir süzgeç gibi görev yaparak, ancak, bazı farklı hayvan türlerinin geçmesine izin vermiştir. Bu da Amerika ya da Asya kıtasında bulunan her hayvanın neden diğer kıtaya göç edemediğinin açık kanıtıdır. Bu geçişten en çok yararlananlar, boreal sıcaklıkta, birincil olarak otlayan (çayır, mera ve otlağa bağlı) hayvanlardır. İNGİLİZ KANALI Avrupa Kıtası'nı, Britanya Adaları'na bağlamıştır. Tabanı, Kuzey Denizi ile bağlantılıdır. Buzullaşma olduğu; fakat bizzat bu bölgeler buzullarla örtülmediği zaman, su düzeyinin düşmesiyle kara köprüsü oluşmuştur. İngiliz Kanalı, en azından onun dar bir kısmı. Pleistosen boyunca ya da büyük bir kısmında, hatta deniz düzeyinin yükseldiği buzularası dönemin bir kısmında, kıstak (köprü) özelliğini korumuştur. Bu değişim sırasında, birçok türün yanısıra, fil, gergedan, geyik ve su aygırınm geçtiğini kanıtlayan fosiller bulunmuştur. Bu kıstağın tamamen kapanması, M.Ö. 8000 yıllarında gerçekleşmiştir. İRLANDA KANALI Buzul dönemleri sırasında Weichsel Buzullaşması'na kadar, köprü özelliğini korumuştur. Memelilere dayalı kanıtlar bunu göstermektedir. Örneğin Weichsel Buzullaşması'yla ilişkili (ve daha sonraki dönemler için) hiçbir karasal memeli fosili İrlanda'da henüz bulunmamıştır. İngiltere ve İrlanda arasındaki dar köprü, M.Ö. 8000 yıllarında deniz düzeyinin yükselmesi ile (Flandrian Yükselmesi) kesilmiştir.

http://www.biyologlar.com/kitalarin-ve-kara-parcalarinin-konumlanmasi-ile-ilgili-gorus-ve-kuramlar

SOLUNUM SİSTEMİ FİZYOLOJİSİ

Solunum kelimesi iki anlamda kullanılabilir. Hücresel düzeyde, hücresel oksidatif Matabolizma anlamındadır. Organizma düzeyinde ise, gaz değişim yüzeylerinin, yani akciğerlerin atmosfer havası ile havalanması demektir. Solunum sistemi, dolaşım sisteminin atmosferle olan bağlantısını sağlar. Amfibian denilen kurbağa gibi hem karada hem de suda yasayan canlılarda ¤¤¤¤bolizma düşük olduğu için cilt solunumu yeterlidir. Eğer insanlarda kurbağalar gibi cilt solunumu yapsalardı, o zaman insanların ¤¤¤¤bolizması daha yüksek olduğu için, insan vücudunun yüzeyinin, gerçek yüzeyinden kat kat fazla olması gerekir idi. Akciğerler ağırlık olarak vücudun pek az bir kısmını oluştururlar, fakat yüzey olarak çok fazla bir yer kaplar. Yunan mitolojisine göre, "PNEUMA" yani nefes, görülmez kişisel bir ruhtur ve sahibine hayat verir. Sağlıklı insanlar, soluk almayı, değerini takdir etmeden, verilmiş bir hak gibi kabul ederler, çünkü soluk alıp verme hemen hemen gayretsizdir ve bilinçsizce yapılır. Oysa solunum hastalığı olanlar için, her soluk bir altın değerindedir. Solunum hastalıkları genellikle, soluk havasının ya sigara dumanı ya da kirli hava ile kirlenmesinden kaynaklanır. Solunum sisteminin bir diğer görevi de ses çıkarmaktır. Konuşurken, solunum sisteminde dolasan hava, ses tellerini titreştirir, oluşan bu sesin havayla dolu boşluklarda yankılanmasıyla bazı frekanslar diğerleri üzerine baskın çıkar, bu da her kişiye kendine has özel sesini verir. SOLUNUM SİSTEMİ ANATOMİSİ Solunum sistemi burun, ağız, farinks (yutak), larinks (gırtlak), trakea (soluk borusu), bronşlar, bronsioller, ve alveollerden oluşur. Trakeadan sonra ilk dallanan yapılara bronşlar, broşlardan sonraki daha dar çaplı yapılara da bronsioller denilmektedir. Bronşlar, bronsioller ve terminal bronsiollerde gaz alışverişi olmaz, bu kanallar anatomik ölü boşluk olarak adlandırılır. Anatomik ölü boşlukta bulunan hava hacmi 150 ml dir. Gaz değişimi yapılan alanlar ise respiratuvar bronsiol, duktus alveolaris, ve alveol keseleridir. Anatomik ölü boşluk nedeni ile her bir solunum ile akciğerlere alınan 500 ml havanın 350 ml sinde gaz değişimi yapılmaktadır. Diffüzyon: Gerek akciğerlerde gerekse hücre düzeyinde gaz alışverişi diffüzyon ile olmaktadır. Bu diffüzyon pasif bir olaydır, yani gazlar konsantrasyon farkları doğrultusunda diffüzyona uğrarlar. Bir sıvıda çözünmüş olan gazin konsantrasyonu o gazin kısmi basıncı ile ifade edilmektedir. Gazin kısmi basıncı büyüdükçe, konsantrasyonu da artmaktadır. Akciğerlere gelen venöz kanda, alveol içindeki atmosfer havasına oranla, CO2 basıncı daha yüksek, O2 basıncı ise daha düşüktür; bu sebeple, CO2 alveol içine verilirken, O2 de kana geçmektedir. Kanda oksijenin % 97 si eritrositler içinde hemoglobine bağlı olarak taşınır, geri kalan % 3 ise plazmada fiziksel olarak çözünmüş halde taşınmaktadır. Karbondioksit ise 4 şekilde taşınır. % 70 oranında plazmada HCO3 iyonu seklinde taşınır. Hücrelerde oluşan CO2, kana geçtiği zaman eritrositler içine alınır. Eritrositler içinde CO2, karbonik anhidraz enziminin etkisiyle H2O ile birleşir. Karbonik anhidraz: CO2 + H2O HCO3 + H Yukarıdaki reaksiyonda ortaya çıkan hidrojen iyonları hemoglobin molekülüne bağlanır, bikarbonat iyonları ise eritrositlerden plazmaya çıkar ve akciğerlere kadar plazmada gelir. Kan akciğerlere gelince, bikarbonat iyonlarının eritrositler içine girmesi ile reaksiyon tersine döner, sonuçta su ve karbondioksit oluşur ve solunum yoluyla dışarı atılır. Karbondioksitin % 70 i bu yolla taşınır. Karbondioksitin bir kısmı doğrudan hemoglobin molekülüne bağlanarak taşınır. Çok az bir kısmı plazmada fiziksel olarak çözünmüş halde taşınır. Az bir kısmı da plazma proteinleri ile karboamino bileşikleri oluşturarak taşınır. Solunum Sisteminin Fonksiyonları: 1.Oksijen temin eder. 2. Karbondioksiti atar. 3. Kanın hidrojen iyon konsantrasyonunu (pH sini) düzenler. 4. Konuşmak için gerekli sesleri üretir (fonasyon). 5. Mikroplara karsı vücudu savunur. 6. Kan pıhtısını tutar ve eritir. Solunum Sisteminin Organizasyonu: Sağ ve sol olmak üzere 2 akciğer vardır. Akciğerler esas olarak ALVEOL denilen (alveolus, tekil; alveoli, çogul) içi hava dolu küçük keseciklerden oluşur. Alveol kanla, atmosfer havasının gaz değiştirdikleri yerdir ve her bir akciğerde yaklaşık 150 milyon alveol vardır. HAVAYOLU dış ortamla, alveol arasında havanın geçtiği tüm tüplere verilen isimdir. Inspirasyon soluk alma demektir ve solunum sırasında dış ortamdan, havanın havayolları aracılığı ile alveollere hareket etmesidir. Ekspirasyon ise soluk verme demektir ve havanın alveollerden dış ortama, yine havayolu aracılığı ile verilmesi demektir. Soluk alıp verme sırasında, 1 dakikada yaklaşık 4 litre hava alveollere girip çıkarken, alveollerin çevresindeki kapiller damarlardan ise 1 dakikada 5 L kan geçer. Ağır egzersiz sırasında hava akışı 30-40 kat artabilirken, kan akimi da 5-6 kat artabilir. Her zaman için alveole giren hava ile alveol çevresindeki kapillerler içindeki kan birbiriyle orantılı olmalıdır. Alveoler hava ile kapiller kan birbirinden çok ince bir zar ile ayrılmıştır, bu zar oksijen ve karbondioksitin diffüze olmasına olanak tanır. Havayolu: Soluk alma sırasında, hava ya ağızdan ya da burundan farenkse geçer, farenks hem yiyecekler hem de hava için ortak bir geçiş yoludur. Farinks 2 tüpe ayrılır, birisi özafagustur ki buradan yiyecekler mideye geçer, diğeri ise larinks dir ki, bu havayolunun bir parçasıdır. Ses telleri larinkste bulunur, geçen havanın bu telleri titretmesi ile ses oluşur. Larinks trakea denilen uzun bir tüpe açılır. Trakeada 2 tane bronşa dallanır. Bir bronş sağ akciğere bir bronş da sol akciğere girer. (Bronchus=bronş, bronchi=bronşlar) Trakea ve bronşların duvarları kartilaj denilen kıkırdak dokusu içerir ve kartilaj bu yapılara esneklik ve dayanıklılık verir. Akciğerler içerisinde bronşların dallanması devam eder, her bir dallanma daha dar, daha kısa, ve daha çok sayıda tüp oluşması ile sonuçlanır. Bu dallanmalar sırasında kartilaj içermeyen ilk dallanmalardaki tüplere bronsiyol denir. Alveoller, respiratuvar bronsiyollerden itibaren görülmeye baslar. Havayolları larinksten itibaren 2 bölüme ayrılır. 1)İletici kısım 2)respiratuvar kısım. İletici kısımda hiç alveol olmadığı için bu kısımda gaz değişimi olmaz. Respiratuvar kısım ise respiratuvar bronsiollerden itibaren baslar. Bu kısımda gaz değişimi olur. Farinksten, respiratuvar bronsiollerin sonuna kadar tüm havayolu boyunca, epitelyal yüzeyler silya içerir. Tüm havayolu boyuna ayrıca mukus salgılayan epitel hücreleri ile çeşitli bezler bulunur. Silyalar sürekli olarak farinkse doğru hareket halindedirler. Bu yapıyı mukustan yapılmış bir yürüyen merdivene benzetebiliriz. Bu yürüyen merdiven sayesinde solunum havasındaki toz mukusa yapışır ve yavaş ama sürekli hareket halindeki silya hareketleriyle farinkse doğru iletilir ve farinkse varınca, burada yutulur. Bu mukus yürüyen merdiveni akciğerleri temiz tutmak için çok önemlidir. Silyer aktivite zararlı pek çok etkenle inhibe edilebilir. Örneğin sigara içmek silyaları saatlerce immobilize eder. Silyer aktivitenin azalması akciğer enfeksiyonu ile ya da atılamayan mukusun havayolunu tıkamasıyla sonuçlanabilir. İkinci koruma mekanizması fagositlerdir. Tüm havayolu ve alveoller boyunca bulunan fagositler solunumla alınan küçük parçacıkları ve bakterileri fagosite ederek bunların öteki akciğer hücrelerine ya da kan dolaşımına geçmesini önlerler. ALVEOL Alveoller küçük, içi hava dolu keseciklerdir. Alveol duvarının havaya bakan iç yüzleri yalnızca 1 hücre kalınlığındadır. Bu iç yüzey Tip I hücreleri denilen epitel hücreleri tarafından 1 sıra olarak oluşturulmuştur. Alveollerin duvarları ayni zamanda kapiller damarları da içerir. Kapiller damarların endotel hücreleri, alveol endotel hücrelerinden çok az bir interstisiyel sıvı ve bir bazal membranla ayrılmıştır. Sonuç olarak kapiller damarlardaki kan, alveollerdeki havadan yalnızca 0,2 m m kalınlığında bir bariyerle ayrılmıştır. Ortalama bir eritrositin çapının 7 m m olduğunu düşünürsek, 0,2 m m lik bir bariyerin ne kadar ince olduğu çok açıktır. Kapiller damarlar ile temas eden alveol yüzeyinin toplam alanı 75 m2 dir ki bu bir tenis kortunun alanına eşittir, ya da bir diğer deyişle, vücut dış yüzeyinin 80 katidir. Bu kadar ince ve büyük bir alan olması sebebiyle oksijen ve karbondioksit büyük miktarlarda hızlıca değişmektedir. Alveol epitelinde Tip I hücrelerine ek olarak daha az sayıda Tip II hücreleri vardır. Şekilsel olarak Tip I den daha büyük olan bu Tip II hücreleri surfaktan denilen bir madde sentezlerler. GÖGÜS KAFESİ Akciğerler toraks denilen göğüs kafesi içinde yerleşmiştir. Toraks kapalı bir bölmedir. Boyunda kaslar ve bağ dokusu tarafından sınırlanmıştır, altta ise diyafram denilen kubbe seklinde bir çizgili kas ile karından tümüyle ayrılmıştır. Toraks duvarları, omurilik, kostalar, iman tahtası (sternum), ve kostalar arasındaki kas olan interkostal kaslardan oluşur. Toraks duvarı ek olarak büyük miktarda elastik bağ dokusu içerir. Her akciğer plevra zari denilen bir zar ile tamamen kaplanmıştır. Bu zar iki katli bir zardır. Plevra zarını hayalde canlandırmak için içi su dolu bir balona bir yumruğu bastırdığınızı düşünün. Yumruk akciğeri temsil etmektedir, yumruğu ilk saran balon zari visseral plevrayı temsil etmektedir. İkinci katman ise pariyetal plevrayı temsil etmektedir. Visseral plevra ile parietal plevra arasında intraplevral sıvı denilen çok ince bir sıvı tabakası vardır. Bunun toplam miktarı sadece birkaç ml dir. Gelişim sırasında bu iki plevra zari arasında yaklaşık 4 mm Hg lik negatif bir basınç oluşur. Bu negatif basınç sayesinde, normalde kollabe olması gereken alveol açık kalır. Bu negatif basınç alveolleri dışa doğru çekerken, göğüs kafesini de içe doğru çeker. Göğsün kesici aletlerle olan yaralanmasında parietal plevra delindiği için plevral aralıktaki basınç atmosfer basıncına eşitlenir, yani negatif basınç kalmaz. Pnemotoraks denilen bu yaralanmada alveolleri dışa doğru çeken negatif basınç olmadığı için akciğerler kollabe olur, yani söner. İNSPİRASYON (SOLUK ALMA) Inspirasyon, diyafram ve inspiratuvar interkostal kasların kasılmasıyla baslar. Diyaframın kasılmasıyla göğüs boşluğu karına doğru büyür. Interkostal kasların kasılmasıyla da göğüs yukarı ve dışa doğru büyür. Göğüsün bu büyümesi intraplevral aralıktaki basıncı daha da negatif yapar. Bu da akciğerleri daha da büyüterek havanın akciğerlere doğru emilmesine yol açar. EKSPİRASYON (SOLUK VERME) Inspirasyonun sonunda, diyafram ve inspiratuvar interkostal kaslara giden sinirler, kasları uyarmayı sonlandırır ve böylelikle kaslar gevşerler. Göğüs duvarı ve dolayısı ile akciğerler pasif olarak orijinal değerlerine dönerler. Akciğerler küçülünce, alveollerin içindeki hava sıkışır ve alveol içi basınç atmosfer basıncını geçer. Dolayısı ile alveol içindeki hava kolayca havayollarından dışarı atılır. Sonuç olarak istirahat halinde ekspirasyon pasif bir olaydır, inspiratuvar kasların gevşemesi ve akciğerlerin elastikiyeti sayesinde gerçekleşir. Fakat egzersiz sırasında daha büyük miktarda hava dışarı atılmak zorunda olduğu için ekspiratuvar interkostal kaslar ve karin kaslarının kasılmasıyla göğüs daha aktif olarak küçülür. KOMPLİANS (ESNEME) Belirli bir basınç altında belirli bir maddenin ne kadar esneyebildiğine o maddenin kompliansi denir. Dolayısı ile akciğerlerin kompliyansi ne kadar çok olursa, esneyebilmeleri de o kadar çok olur. Tersine komplians azalmışsa akciğerlerin esneyebilmeleri de zor olur. Akciğerlerin kompliyansinin azaldığı hastalıklarda, esneklik azaldığı için, akciğerleri genişletmek için daha fazla güç uygulamak gerekecektir. Bu tür hastalar, yüzeysel ve hızlı solurlar. Akciğerlerin kompliansini etkileyen bir diğer faktör de alveollerin yüzey gerilimidir. Alveollerin yüzeyleri nemlidir ve alveoller ince bir su tabakası ile kaplı gibi düşünülebilir. Bu su tabakası gerilmiş bir balon gibi davranır ve akciğerlerin genişlemesini engelleyen bir güç gibi davranır. Akciğerlerin genişlemesini etkileyen bu güce "yüzey gerilimi" denir. Sonuç olarak akciğerlerin genişlemesi hem akciğerlerin elastik dokusunu germek, hem de bu yüzey gerilimini asmak için daha fazla enerjiye ihtiyaç duyacaktır. Alveollerdeki Tip II hücreler surfaktan denilen bir madde sentezlerler. Surfaktan yüzey gerilimini azalttığı için akciğerlerin kompliansini arttırır, yani akciğerleri genişletmek için daha az enerjiye gereksinim duyulur. Respiratuvar Distress Sendromu denilen hastalıkta yeni doğan bebekler yeteri kadar surfaktan sentezleyemedikleri için bu bebekler soluk alıp vermek için çok enerji harcarlar ve çocukların yorgunluktan bitkin düşerek ölmelerine neden olabilir. Gebe kadına kortizol yapılması çocukta surfaktan sentezini artırır. AKCİĞER KAPASİTELERİ Tek bir solukla akciğerlere alınan veya akciğerlerden çıkarılan hava msktarina tidal volum (soluk hacmi) denir, miktarı 500 ml dir. Pasif ekspirasyondan sonra akciğerlerde kalan hava miktarına fonksiyonel rezidüel kapasite denir, yaklaşık 2300 ml dir. Zorlu bir ekspirasyondan sonra, akciğerlerde kalan hava miktarına rezidüel volüm denir, miktarı 1200 ml dir. Normal bir inspirasyondan sonra zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar yedek volüm denir, 3000 ml civarındadır. Normal pasif ekspirasyondan sonra zorlu ekspirasyon ile akciğerlerden atılan hava miktarına ekspiratuvar yedek volüm denir, 1100 ml civarındadır. Normal bir ekspirasyondan sonra, zorlu inspirasyon ile akciğerlere alınabilen hava miktarına inspiratuvar kapasite denir. Tidal volüm, inspiratuvar ve ekspiratuvar yedek volümlerin toplamı akciğerlere kas kuvveti ile alınıp verilebilen maksimum hava miktarını gösterir, ve buna vital kapasite denir. Vital kapasite genç erkeklerde 4,6 L genç kızlarda ise 3,1 L dir. Maksimum ekspirasyondan sonra akciğerlerde kalan hava miktarına residüel volüm denir, ve yaklaşık 1200 ml civarındadır. Vital kapasite ile residüel volümün toplamına ise Total akciğer kapasitesi denir. Bu bahsedilen volümlere statik volümler denir, çünkü bu ölçümler hava akimi olmadığı zaman yapılan ölçümlerdir. Zorlu ekspirasyon sırasında yapılan akciğer volüm değişikliklerine ise dinamik akciğer volümleri denir. Bunlar FEV1 ve FVC dir. FEV1 birinci saniyede akciğerlerden çıkarılabilen hava miktarıdır. FVC ise maksimum inspirasyondan sonra akciğerlerden çıkarılabilen maksimum hava miktarıdır. Sağlıklı genç bireylerde FEV1 4 L FVC ,ise 5 L dir ve oran 0,8 dir. GÖĞÜS HASTALIKLARI Göğüs hastalıkları iki genel kısma ayrılırlar. Obsruktif Hastalıklar: Bu hastalıklarda hava yolu direnci artmıştır (amfizem, astım). Restriktif Hastalıklar: Akciğer kompliansi azalmıştır (pulmoner fibrozis, respiratuvar distress sendromu).

http://www.biyologlar.com/solunum-sistemi-fizyolojisi

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)  Asit Yağmurlarının Toprağa Etkisi  Asit Yağmurlarının Sulara Etkisi  Asit Yağmurlarının Yapılara Etkisi  Asit Yağmurlarının Bitkilere Etkisi  Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi  İnsan Sağlığına  Hayvan ve Bitkilere  İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri  Fiziksel İşlevler  Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği  Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ  İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler.  HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.  İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:  FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.  FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:  Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.  Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.  Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:  Hava taşıt araçlarının meydana getirdiği kirlenme  Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi  Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.  Limanlarda meydana gelen kirlilik.  Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.  Deniz ürünlerini elde etmede uygulanan yöntemler.  Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:  Yerleşim yerlerinden denize dökülen kirlilik.  Çöpler.  Kullanılmış sular, kanalizasyon artık ve suları.  Endüstri kuruluşlarından denize atılan kirlilik.  Tarımdan gelen kirlilik.  Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:  Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.  Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.  Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.  Erozyonun etkileri  Yaşlık ve çoraklığın etkileri  Taşlılık ve kayalığın etkileri  Gübre ve gübrelemenin etkileri  Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Bitki Fizyolojisi

Hücreler yaşamlarını devam ettirebilmek için gerekli olan besin ve oksijeni dışardan almak, metabolizma sonucu meydana gelen azotlu artıkları ve karbondioksiti uzaklaştırmak zorundadır. Yüksek yapılı canlılarda besin ve oksijenin bütün hücrelere taşınması ve hücrelerde oluşan metabolizma artıklarının boşaltım organlarına taşınarak dışarıya atılmasını sağlayan sistem taşıma sistemidir. Tek hücreli ve koloni gibi canlılarda özelleşmiş bir taşıma ve dolaşım sistemi yoktur. Bu canlılarda hücreye maddelerin alınması ve hücredeki maddelerin dışarıya verilmesi difüzyon, aktif taşıma ve osmoz gibi olaylarla gerçekleştirilir. Sularda yaşayan bir hücreli yeşil algler, fotosentez için gerekli maddeleri ortamdan difüzyonla alır. Yüksek yapılı bitkilerde ise bunu sağlayan yaprak, kök ve taşıma sistemi elemanları gelişmiştir. Taşıma sistemini odun boruları (ksilem) ve soymuk boruları (floem) oluşturur. Bitkilerde Suyun Taşınması Odun Boruları ( Ksilem ) * Hücreleri ölüdür (lignin birikimi nedeniyle) * Su ve mineral taşır. * Aşağıdan yukarıya tek yönlü taşıma vardır. * Etrafında canlı parankima ve destek hücreleri vardır. * Çapı geniş olanlara trake, dar olanlara ise trakeid denir. Suyun topraktan emici tüylerle alınıp kökteki iletim demetleriyle yapraklara kadar taşınmasını sağlayan faktörler: 1. Kök basıncı 2. Terleme ve kohezyon kuvveti 3. Kılcallık olayı 1. Kök Basıncı * Kök hücrelerinde organik madde konsantrasyonunun yüksek tutulması ile kök osmotik basıncı toprak osmotik basıncından yüksek hale getirilir. * Buna bağlı olarak topraktaki su ve mineraller osmoz ile emici tüylere ve oradan odun borularına geçer. Bu sayede aşağıdan yukarıya doğru bir itme kuvveti doğar (kök basıncı). * Kök basıncı ile su en fazla 30 m yüksekliğe çıkabilir. * Otsu bitkilerde kök basıncı yeterlidir, ancak uzun bitkilerde diğer faktörler de etkili olur. Toprak uzun süre sulanmazsa, toprak partiküllerinin osmotik basıncı artar. Toprak osmotik basıncı kökten daha fazla olur. Böylece bitki topraktan su alamadığı için tepeden başlayarak kurur. 2. Terleme ve Kohezyon Kuvveti * Bitkinin yapraklarındaki gözeneklerden su kaybetmesine terleme (transpirasyon) denir. * Bitki terleme ile su kaybettikçe kohezyonun (aynı cins moleküller arası çekim kuvveti) etkisiyle bitkide kaybolan su bir alttaki su molekülünü çeker, böylece alttan yukarıya doğru taşınan kopmaz bir su sütunu oluşur. Unutulmamalıdır ki su ve minerallerin taşınmasında en etkili olan faktör terleme ve kohezyon kuvvetidir. 3. Kılcallık * Aynı cins moleküllerin birbirlerini çekmeleri gibi farklı cins moleküller arasında da bir çekim bulunur. (Örneğin bir yüzey yıkandığında suyun damlalar halinde akmadan yüzey üzerinde kalmasını sağlayan bu kuvvettir.) * Eğer yeterince ince bir boru bir sıvının içine daldırılırsa sıvı molekülleri ile boruyu oluşturan maddeye ait moleküller arası çekim nedeniyle sıvı yerçekiminin tersi yönde bu boru içinde yükselebilir. * Odun borularının ince (kılcal) olması borular içindeki suyun yerçekimi nedeniyle kazandığı ağırlığı azaltır. * Böylece bitki suyu yapraklara kadar kök basıncı ve terleme gibi olaylar yardımıyla taşıyabilir. * Su moleküllerinin birbirini çekmesi (kohezyon) suyun bir sütun şeklinde taşınmasını sağlar. Suyun taşınmasında etkili olan faktörlerin etkinlik sırası: Terleme ve Kohezyon Kuvveti › Kök Basıncı › Kılcallık Olayı Bitkilerde Terlemenin Sonuçları: * Terleme ile kaybedilen su yaprak osmotik basıncını arttırır ve yapraklarda emme kuvveti oluşur. Bu basınç suyun köklerden yapraklara taşınmasına yardım eder. * Yapraklarda atılan su saf sudur. Topraktan minarelli suyun alınabilmesi için bu suyun atılması gerekir (su sirkülasyonu). Böylece bitki yaprakları saf suyu kaybetmiş, yerine mineral madde bakımından zengin su almış olur. Bitki fotosentez olayında mineral maddeleri kullanır. * Yaprak yüzeyinin soğutulması için bitki terler. Böylece yaprak uygun sıcaklıkta tutulur, enzim etkinliği devam eder. Terlemeyi etkileyen faktörler 1. Çevresel Faktörler: Işık, nem, sıcaklık, rüzgar, topraktaki su miktarı 2. Bitkisel Faktörler: Stomaların yapısı, büyüklüğü, dağılışı ve turgor durumu, yaprak alanı, yaprağın yapısı, kutikula tabakasının kalınlığı, tüylerin varlığı ve sıklığı, yaprak hücrelerinin osmotik basıncı, sitoplazmanın su kapasitesi Terleme olayında havanın bağıl nemi önemlidir, bağıl nem fazlaysa terleme hızı düşer. Bu nedenle nemli bölge bitkileri terleme hızını arttırmak için gözenek sayısını ve yaprak yüzeyini arttırmışlardır (Adaptasyon). Bitkilerde Organik Besinlerin Taşınması Yapraklarda fotosentezle oluşan glikoz ve kökte oluşan aminoasit gibi organik besinler bitkinin diğer kısımlarına soymuk borularıyla taşınır. Soymuk Boruları * Hücreleri canlıdır * Organik besinleri taşır * Taşıma çift yönlüdür * Etrafında arkadaş ve destek hücreleri Soymuk borularının hücreleri canlı olduğu için iletim hızı odun borularına göre yavaştır. İletim difüzyon ve aktif taşımayla olur. Su ve organik maddelerden başka tuz ve diğer erimiş maddeler hem odun hem soymuk borularıyla taşınır. Bitki yapraklarında sentezlenen karbonhidratlar(glikoz) köke taşınarak burada azot tuzlarıyla birleştirilip amino asitlere dönüştürülür. Kökte oluşan bu aminoasitler bitkinin ihtiyacına göre üst kısımlara taşınabilir. Bu nedenle soymuk borularında madde iletimi çift yönlüdür.

http://www.biyologlar.com/bitki-fizyolojisi-1

 
3WTURK CMS v6.03WTURK CMS v6.0