Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 26 kayıt bulundu.
Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Kimerler, Kediler ve Diğer Genetik Tuhaflıklar

Hayır, bu bir fotoğraf hilesi değil. Bu gördüğünüz kedicik, aslında bir Kimer olmayan, ama bu yazıyı yazmak için bana esin kaynağı olan Venüs. (Kaynak: Facebook) Eğer benim gibi bir kedisever iseniz, son birkaç haftadır internette dolanan çok tuhaf bir kedi resmini görmüş olabilirsiniz. Ben, resmi ilk gördüğümde, bunun kesinlikle fotoğraf hilesi olduğunu düşünmüştüm. Ancak biraz araştırınca öğrendim ki, artık kendi facebook sayfası olan Venüs isimli bu kedi bir fotoşop hilesi değil, capcanlı bir kedi. İnanmıyorsanız kendi Youtube sayfasındaki videosunu görebilirsiniz. Venüs, bir internet fenomeni olduktan sonra yayınlanan pek çok blogda kendisinden ‘kimer‘ olarak bahsediliyor. Kimer, bu yazımızda bahsedeceğımız bir tür genetik fenomen aslında.  Venüs’ün  bir kimer olup olmadığını söylemek ise çok zor. Zira bir canlıya kimer tanısı koymak için oldukça detaylı genetik analizler yapmak gerekiyor. Kedilerdeki kürk renklerini belirleyen farklı mekanizmalar var. Venüs’ün desenlerinin çok daha sık görülen bu mekanizmalardan birine bağlı ortaya çıkmış olma olasığı, bir kimer olma ihtimalinden çok daha yüksek. Bu ihtimallerden yazımızın sonunda bahsedeceğiz, ama gelin önce bu genetik duruma ismini veren Kimera’dan bahsedelim. Homeros’tan Yanartaş’a Florence Arkeoloji Müzesi, 5. yy’dan bir Kimera keykeli. ( Kaynak: Britannica Ansiklopedisi) Kimera, mitolojide antik çağda bugünkü Güney Anadolu bölgesinde yaşamış olan Likya uygarlığına ait mitolojik bir figür. Ozan Homeros’un yazdıklarına göre,  bu yaratığın gövdesi pekçok hayvanın birleşmesinden oluşmuştu: başı bir aslana, arka ayakları bir keçiye, kuyruğu ise bir sürüngene aitti.  Ağzından bir ejder gibi alevler çıkaran bu canavarı,  epik kahraman Bellerophon üzerine bindiği kanaltı atı Pegasus yardımıyla öldürmüş.   Antalya’nın Çıralı beldesindeki sönmeyen volkanik  alevler, adlarını bu canavarın ağzından çıkan  alevlerden alıyor. Bu bölgeye Yanartaş ya da Kimera adı veriliyor. Biden fazla canlının kaynaşmasından oluşmuş bu ilginç mitolojik canlı, çok nadir görülen ve oldukça şaşırtıcı olan bir genetik duruma isim babalığı yapmış durumda: Kimerizm. Kimerizm 1998 yılında, 31 yaşındaki bir anne adayı ve 41 yaşındaki bir baba adayı, tüp bebek sahibi olmak için doktora başvururlar. Tüp bebek girişimi sırasında, annenin rahmine döllenmiş üç embriyo yerleştirilmesine rağmen, çoğu tüp bebekte denemesinde olduğu gibi embriyolardan sadece bir tanesi gelişimini tamamlar ve çift, gebelik süresinin sonunda, normal doğum ile 3.46 gramlık sağlıklı bir erkek bebek sahibi olur. Yeni doğan bebeğin, sağ testisi normal olup, sol testis torbasının içi boştur. Bu bebeklerde çok sık rastlanan bir durum olduğu için bir süre, sol testisin de yerine inmesi için beklenir. Bebek 15 aylıkken, bu durumun ameliyatla düzeltilmesine karar verilir. Ameliyat sırasında, bebeğin sol kasığnda bir fıtık olduğu ve fıtık içinde bozunmuş testis benzeri bir yapının olduğu fark edilir ve bu dokular ameliyat sırasında alınır. Daha sonra yapılan patolojik incelemede, bu dokuların aslında körelmiş bir rahim ve yumurtalık kanallarına ait dokular olduğu saptanır. İleri tetkiklerde, bebeğin kanındaki akyuvar hücrelerinde iki dizi hücre olduğu tespit edilir: kadınlara özgü 46, XX ile erkeklere özgü 46, XY. CSI dizisinin 4. sezon, 23. bölümünde, dedektiflerimiz bir tecavüz zanlısını dizinin başında kan ve sperm genetik analizi birbirini tutmadığı için salıverirler. Bir kimer olan suçluyu, kolundaki Kimera dövmesi ele verir. Gene aynı yıllarda, 26 yaşındayken çocuklarına bakamadığı gerekçesiyle devlet yardımına başvuran Lydia Fairchild, bu yardımı alması için çocukların biyolojik annesi olduğunu ispat edecek olan zorunlu olan genetik testleri yaptırır. Test sonuçlarını almak için başvurduğunda, Sosyal Yardım dairesi’ndeki görevliler onu bir odaya alırlar ve “Sen kimsin?”, ” Bu çocuklar kimin çocukları, onları nereden buldun?”, ” Bu çocukların gerçek annesi kim?” sorularıyla başlayan, uzun ve yıpratıcı bir süreçten geçer. Çocukların tamamının kendi çocuğu olduğunu iddia etmesine rağmen, ifadesine inanılmaz ve hakkında devleti dolandırmaya çalışmaktan işlem yapılmaya başlanır. Tekrarlanan testler aynı sonuçları vermektedir, bu testlere göre çocuklarının DNA’sı ile kendi DNA’sı uymamaktadır. Bu konuya anlam veremeyen ve çocuklarının hastanede başka bebeklerle karışmış olmasından şüphelenmeye başlayan Lydia, bu sırada dördüncü çocuğuna hamiledir. Avukatından, doğum sırasında şahitlik etmesini ve doğar doğmaz bebeğe tetkik yapılmasını ister. Bebek anne rahminden çıkar çıkmaz kan örnekleri alınır. Sonuç gene aynıdır, yapılan DNA testine göre Lydia çocuklarının genetik annesi değildir. Bu sırada, bir başka şehirde, Karen Keegan isimli bir hasta, son dönem böbrek yetmezliğinden muzdariptir ve böbrek nakli için sıra beklemektedir. Karen’in üç oğlu da, annelerine böbreklerini bağışlamak için gönüllü olurlar. Yapılan doku uygunluk tetkiklerinin sonucu tuhaftır. Testlere göre, Karen’in oğullarından sadece biri kendisine aittir. Diğer iki oğlunun genetik yapısı tamamen farklıdır. Bu tuhaf durumu çözmek isteyen doktorlar seferber olurlar, Karen’in hemen her dokusundan örnekler alınır, ama sonuç aynıdır. Daha sonra Karen, birkaç yıl önce ameliyatla çıkarılmış olan tiroid bezinin de test edilmesini ister. Yapılan incelemelerde, Karen’in iki oğlunun genetik yapısının kendisiyle olmasa bile, birkaç yıl önce aldırdığı tiroid  beziyle aynı olduğu saptanır. Bu birbirinden ilginç vakaların ortak özelliği, her birinin Tetragametik Kimerizm adı verilen nadir bir genetik fenomen olmaları. Tetragametik kimerizm, iki farklı yumurta hücresinin, iki farklı sperm tarafından döllenmesini takiben, oluşan blastosit evresindeki ikiz embryoların birbirileri ile kaynaşması sonucunda ortaya çıkan ilginç bir fenomen. Embriyo büyüdükçe, farklı embriyolardan gelen hücre grupları farklı organların oluşumunda yer almaya başlarlar. Bir kimerin karaciğerinin bir hücre grubundan, böbreğinin de diğer embroya ait hücre grubundan köken almış olması mümkündür. Bu durumda bu iki organın genetik yapıları birbirinden farklı olacaktır. Blaschko Çizgileri Çoğu kimer, bu örnekler kadar çarpıcı deneyimler yaşamaz. Eğer birbiriyle kaynaşan iki embriyonun cinsiyeti ve fiziksel özellikleri kodlayan genleri aynıysa, tetragametik bir kimer, hayat boyu bu özelliğinin farkına varmayabilir. Bazı kimselerde,  iki gözün renginin birbirinden farklı olması gibi küçük belirtiler olabilir. Nadir olarak buradaki örneklerdeki, farklı organların farklı genetik yapıya sahip olması gibi  kimerizm vakaları da olabilir. Çoğu kimerin cildinde, ancak UV ışık altında görülen Blaschko çizgileri mevcuttur. Bu çizgiler, iki ayrı ten rengi tonu kodlayan farklı  embriyo hücrelerinin rahim içindeki gelişimleri boyunca yaşadıkları hücre göçü nedeniyle ciltte farklı iki tonun girdap benzeri desenler oluşturmasından kaynaklanır. Blaschko çizgilerini çıplak gözle görmek zordur, genelde UV ışık altında belirgindirler. Kimerizm, ilginç bir konu olması nedeniyle popüler kültürde de sıklıkla yer buluyor. CSI dizisinin 4. sezoununun 23. bölümünde, kahramanlarımız bir tecavüz zanlısının peşindedirler. Zanlıdan alınan kan örnekleri, suç mahalindeki sperm örnekleri ile karşılaştırılır. Sonuç negatiftir, iki örneğin genetik yapısı farklıdır. Zanlı salıverilmesine rağmen, tüm şüpheler genetik tanı ile aklanan bu kişiyi göstermektedir. Kahramanlarımız, zanlının kolundaki mitolojik canavar Kimera dövmesini fark edince, bu dövmeden yola çıkarak olayı çözerler. Zanlının bu defa kan hücreleri değil, başka hücrelerinden örnekler alınır, sonuç sperm analiziyle uyumludur. Adalet bir kez daha yerini bulur. Stephen King’in aynı isimli romanında uyarlanan The Dark Half ( Hayatı Emen Karanlık) isimli film, kimer bir yazarın başından geçenleri anlatıyor. Bir başka kimera öyküsü ise ünlü korku yazarı Stephen King’den. Türkçeye Hayatı Emen karanlık diye çevrilen The Dark Half romanı ve aynı isimli filmde, bir yazarın beyninde ve bedenine yaşayan ikiz kardeşinin öyküsü anlatılmaktadır. Thad isimli kahramınımız, zaman zaman bilincini kaybetmekte, bu zamanlarda, masasının üzerinde Stark isimli gizemli birinden kendisine hitaben yazılmış notlar bulmaktadır. Kitabın ilerleyen bölümlerinde Stark’ın, anne karnındayken Thad ile bütünleşen kötücül ikizi olduğu anlaşılır. X Kromozom İnaktivasyonu Gelelim, yazımızın başında bahsettiğimiz, İnternet’te milyonlarca hayranı olan Venüs’e. Her ne kadar Venüs, internette “Kimer Kedi” olarak ünlü olmuş olsa da, gerçekte kimer olma ihtimali oldukça düşük. Kimerizm, çok nadir görülen bir durum. Oysa kedilerdeki bu tip renk örgülerine neden olan ve oldukça sık görülen bir başka nedeni var: X  Kromozom  İnaktivasyonu. Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Amnion sıvısından toplanan dişi hücrelerinin hücre çekirdekleri. Okla gösterilen leke, hücre çekirdeği içinde inaktif halde paketlenmiş Barr cismi. (Kaynak:  Journal of Cell Biology, Vol 135, 1427-1440. PMID:8978813)Memelilerde, erkek ve dişilerde cinsiyet kromozomları birbirlerinden farklıdır. Dişiler iki adet X kromozomu taşırlarken (XX), erkekler bir X bir Y kromozomuna sahiptirler (XY). Genden fakir Y kromozomunun aksine, X kromozomunda her iki cinsiyetin de hücre gelişmesinde anahtar rol üstlenen binden fazla gen mevcuttur. Ancak iki set X kromozomu hücre fonksiyonları için  gerekli değildir. Bu nedenle, dişilerde X kromozomlarından biri inaktif hale getirilir ve paketli bir halde hücre çekirdeğinin bir köşesinde durur.  Bu paketlenmiş X kromozomuna Barr Cismi adı verilir. Keselilerde genelde babadan gelen X kromozomu inaktif hale getirilirken, memelilerde anne ve babadan gelen X kromozomları hücreden hücreye değişiklik gösterecek şekilde rastgele inaktive olurlar. Kediler de memeli hayvanlardır, bu nedenle aynı insanlardaki gibi dişi kedilerde de, hücreler içindeki X kromozomlarından biri rastgele inaktif hale gelir ve Barr cismi oluşturur. Kedilerde, tüy rengini belirleyen genlerden bir tanesi X kromozmunda yer alır. Bu genin iki varyasyonu vardır. Bir tanesi (XB), kedi tüylerinin sarı olmasını sağlarken, diğeri (Xb) siyah tüyleri kodlar. Sarı tüyleri kodlayan gen, siyah tüy genine göre daha baskındır. Normalde, bu durumda, ebeveynlerinden farklı genleri alan kedilerin (genotip XBXb) tüylerinin sarı olması beklenir. Ancak,  bu şekilde heterozigot genlere sahip olan dişi kediler (XBXb), gövdelerinin farklı yerlerinde hücrelerdeki X kromozomlarından birinin rastgele inaktif olması nedeniyle sarı ve siyah lekeli olarak doğarlar. Lekeleri yama şeklinde dağınık olan bu tip kedilere tortoiseshell kediler denir. Bu renk bir kedi gördüğünüzde, o kedinin çok yüksek ihtimalle dişi olduğunu söyleyebilirsiniz. Tortoiseshell kedilerin kürklerindeki renk örgülerinin nasıl oluştuğunu bu şemada görebilirsiniz. En üst satırda, kedilerin olası genetik kombinasyonu mevcut. Dişi kedilerde ( XX), hangi kromozomun Barr Cismi halinde geldiği, kedinin kürk renginin belirlenmesinde temel rolü oynuyor. Barr cismi halinde inaktif hale gelen kromozom, resimde U şeklinde gösterilmiş. ( Kaynak: Miami Univeersitesi Biyoloji Bölümü) Peki erkek tortoiseshell kediler yok mu?  Çok nadir olsa da var. Ancak bu desene sahip kedilerinin hepsinde genetik bir problem olduğunu, çoğunun XXY gibi bir kromozom anomalisine sahip olduklarını gönül rahatlığı ile söyleyebiliriz. (Bu tip erkek kediler, genetik problemleri nedeniyle genelde kısır oluyorlar.) Elbette, çok daha nadir olabilecek bir başka ihtimal daha var: o da bu erkek kedilerin kimer olması. Venüs kadar artistik olmasa da, bir başka dişi tortoiseshell kedi. Venüs’ e baktığımızda,  yüzündeki desen her ne kadar çok ilginç de olsa, dişi bir kedi olduğu için bu desenin büyük ihtimalle yukarıda X inaktivasyonu nedeniyle oluştuğunu söylemek daha olası bir iddia olacaktır. İnternette kısa bir araştırma yaparsanız, Venüs kadar artistik olmayan pekçok yamalı yüzlü tortoiseshell kedi bulmak olası. Kimer olsun veya olmasın, gene de çok şirinler ama değil mi?   Kaynaklar: Chimera. Theoi Greek Myhtology. A True Hermaphrodite Chimera Resulting from Embryo Amalgamation after in Vitro Fertilization. Strain L., Dean J., Hamilton M., Bonthron D.  New England Journal of Medicine. 1998. 166-169. Which half is Mommy?: Tetragametic Chimerism and Trans-Subjectivity . UC Davis, Project Muse. The Stranger Within. Kate Werk. New Scientists, vol 180, issue 2421 The Tech Museum: Chimeras, Mosaicism and other fun stuff. Silence of the Fathers. Early X İnactivation. Cheng M., Disteche C. Bioessays. 2004.  26:821-824 The Genetics of Calico Cats. University of Miami, Biology Department. Yazar hakkında: Işıl Arıcan http://www.acikbilim.com/2012/09/dosyalar/kimerler-kediler-tuhafliklar.html

http://www.biyologlar.com/kimerler-kediler-ve-diger-genetik-tuhafliklar

Toprak Enzimleri

Çok sayıda bitkisel ve hayvansal organizmaları barındıran toprak, farklı miktarlarda pek çok ölü biyolojik maddeleri de içerir. Toprak mikroorganizmaları kendileri için lüzumlu besin maddelerinin çevrelerindeki biyolojik maddelerden sağlarlar. Mikroorganizmaların en önemli faaliyetlerinden biri organik maddenin mineralizasyonu yani kompleks organik maddeleri basit inorganik bileşiklere veya besin iyonlarına kadar parçalamalarıdır. Toprağa düşen bitkisel ve hayvansal artıklardaki besin elementleri yüksek polimer bileşikler halinde kaldıkları sürece, yüksek bitkiler ve mikroorganizmalar bunlardan doğrudan doğruya yararlanamazlar. Topraktaki organik maddeleri çoğu örneğin lignin, proteinler, protein karakterinde olmayan azotlu bileşikler, pektin maddeleri, selüloz ve diğer polisakkaritler mikroorganizmaların doğrudan doğruya absorbe edemeyecekleri kadar büyük moleküllü bileşiklerdir. Mikroorganizmaların bunlardan faydalanabilmeleri için enzimler salarak bu bileşikleri alabilecekleri büyüklükte basit bileşiklere parçalamaları gerekir. Toprakta bulunan enzimlerin büyük bir kısmı bu maksatla mikroorganizmaların dışarı saldıkları ektoenzimlerle, mikroorganizmaların ölümünden sonra otoliz ile kısmen ya da tamamen serbest hale gelerek toprağa karışmış enzimlerdir. Bu enzimler toprağın inorganik ve organik kolloidleri (kil ve humin maddeleri) tarafından absorbe edilir. Absorbe edilmiş enzimler dış etkilere karşı diğer enzimlerden daha dayanıklıdır. Aktivitelerini uzun süre koruyabilirler. Böylece enzimlerin etkileriyle çoğu bitkisel olan organik atıklar bir seri enzimatik reaksiyondan sonra küçük moleküllü basit bileşiklere parçalanır. Örn: Karbohidraz enzimleri selüloz, nişasta ve benzeri polisakkaritleri disakkaritlere ve nihayet monosakkaritlere kadar parçalarlar. Proteazlar, proteinli maddeleri polipeptid, dipeptid, oligopeptid ve nihayet aminoasitlere kadar hidrolize eder. Pektin parçalayıcı enzimler de pektin maddelerini basit ürünlere ayrıştırırlar. Fosfataz, lipaz sülfataz gibi esteraz enzimleri nükleik asitleri ve diğer fosfat esterlerini fosfat anyonlarına kadar hidroliz ederler. Bu enzimlerin faaliyeti sonucu açığa çıkan parçalanma ürünlerinin bir kısmı mikroorganizmalara yem olur. Büyük bir kısmını bitkiler kullanırlar yine bir kısmı da yine enzimlerle çeşitli reaksiyonlara girerek daha büyük moleküllü ve daha dayanıklı humin maddelere dönüşürler. Bitki artıklarından toprağa geçen enzimler ortam şartlarına karşı dayanıksız olduklarından hemen parçalanarak aktivitelerini kaybederler. Bu nedenle topraktaki bitkisel enzimlerin herhangi bir nedenle miktarlarının artması toprak enzim aktivitesi üzerinde önemli etki yaratır. Topraktaki aktif enzimlerin kökeni mikrobiyal olmasına rağmen kültür topraklarında bu aktivite hasat olayları ve gübreleme gibi nedenlerle farklılık gösterir. Mikrobiyal etkileşimler (interaksiyonlar) Toprakta yaşayan çeşitli bireyler veya populasyonlar arasındaki etkileşimler (interaksiyon) organizmalardan birinin veya her ikisinin uyarılması (stimulation) veya engellenmesine (inhibition) bağlı olarak olumlu veya olumsuz olabilir. Olumsuz etkileşimler: • Rekabet (competition) • Zıt etkileşim (Antagonizm) • Mantar gelişmesinin engellenmesi (Fungistasis) • Avcılık (predasyon) • Parazitlik Olumlu etkileşimler: • Birlikte bulunma (Kommensalizm) • Zorunlu olmayan karşılıklı yararlanma (Protocooperation) • Karşılıklı zorunlu yararlanma (Mutualizm) Rekabet Tüm canlılar arasında mevcut olan bu ilişki toprak mikroorganizmaları arasında da mevcuttur. Mikroorganizmalar arasındaki rekabet esas olarak substrat yani enerji sağlamak için gerçekleşir. (diğer canlılarda ışık, su, besin ve yaşam alanı için de rekabet oluşur). Su, besin elementleri ve gelişme alanı mikroorganizmaların rekabeti için çok fazla önemli değildir. Gelişme ortamında su mikrobiyal aktivite için önemli olmasına rağmen miktoorganizmalar metabolik faaliyetleri esnasında su üretirler. Bu nedenle su, toprak mikroorganizmalarının aktivite ve yaşamını sağlayan temel faktörlerden olmakla birlikte, rekabet edilen bir madde değildir. Mikroorganizmaların substrat için rekabetleri inter ya da intra-spesifik olabilir. Toprak ekosistemi içinde bulunan organizmalar substrat niteliğindeki çok çeşitli maddelerle temastadırlar. Toprağın organik maddesi toprak organizmalarının kullanabileceği çok farklı kimyasal bileşikler içerir. Toprak mikroorganizmaları organik maddelerin ayrışmasında farklı ekolojik nişe sahip olduğundan doğrudan bir rekabete girmezler. Örn: Nitrifikasyon bakterileri olan Nitrosomonas’lar tarafından amonyağın oksidasyonu ile üretilen nitrit, Nitrobacter türleri tarafından substrat olarak değerlendirilir ve nitrata oksitlenir. Rhizobium türlerinin toprakta yaşayan doğal formları ile kültüre aşılanan soyları arasında nodül oluşturma bakımından rekabet gerçekleşebilir. Doğal soylar, azot fiksasyon özellikleri zayıf dahi olsa nodül oluşturmuşlarsa kültürle toprağa Rhizobium eklemenin bir değeri kalmaz. Parmecium örneği Gaussen eğrisi Zıt Etkileşim (Antogonizm) Mikroorganizmaların salgıladıkları metabolitlerle bir türün diğer bir türün gelişimini engellemesi ile sonuçlanan etkileşime amensalizm denir. Etkileşim her iki tür organizmayı da olumsuz etkiliyorsa antogonizm olarak tanımlanır. Antibiyotik üretimi ile oluşturulan etkileşim bazen Antibiyosiz olarak ta tanımlanmaktadır. Antibiyotikler bir organizma tarafından üretilen ve düşük konsantrasyonlarda diğer organizmaların gelişmelerini engelleyen maddelerdir. Mikroorganizmalar toprak çevresine çeşitli metabolitler salgılarlar. Bazı mikrobiyal salgılar diğer organizmalarca gelişim faktörü veya enerji sağlayıcı substrat ve besin maddesi olarak kullanılabilir. Antibiyotik üretimi ise bu konuda özelleşmiş organizma gruplarınca oluşturulan ve rekabetle işleyen en önemli mekanizmalardan biridir. Ancak toprakta gerçekleşen her zıt etki antibiyozisle ilgili olmayabilir. Topraklarda yüksek konsantrasyonlarda bazı mikroorganizmalara toksik etki yapan biyolojik orijinli pek çok bileşik bulunmaktadır. Örn: Mikrobiyal metabolizma sırasında oluşan bazı organik asitler gibi ara ürünler veya oluşan CO2’nin lokal etkileri. Yine alkali topraklarda mineralizasyon sonucu oluşan amonyak Nitrobacter’leri önemli ölçüde engeller. Bunun sonucu oluşan nitrit birikimi diğer bakteri ve bitki gelişimini olumsuz etkileyebilir. Bazı bitki dokularının ayrışma ürünü olarak ortaya çıkan reçineler, tanenler ve fenol bileşikleri de mikroorganizmalara toksik etki yaparlar. Bu metabolik ürün ve yan ürünlerin antibiyotiklerden farklı etki gösterebilmeleri için ortamda yüksek konsantrasyonlarda bulunmaları gerekir. Topraktan izole edilen organizmalarda laboratuar koşularında antibiyotik oluşturmaktadır. Aktinomisetler, özellikle Streptomiset’ler önemli antibiyotik üreticisidirler. Streptomisin, kloramfenikol, sikloheksimid bileşikleri aktinomisetler tarafından oluşturulmaktadır. Antibiyotik üreten bakteriler arasında Bacillus türleri ve Pseudomonas suşları sayılabilir. Bunlar pycocyanin ve ilgili bileşikleri salgılar. Mantarlar içerisinde Penicillum, Trichoderma, Aspergillus ve Fusarium önemli antibiyotik üreten örneklerdir. Alg ve protozoalarda antibiyozis olayı gözlenmemiştir. Antibiyotikler, duyarlı mantarları, bakteri ve aktinomisetleri engelleme veya öldürmede etkilidir. Bazı antibiyotikler özel bir etki gücüne sahiptir. Bazıları geniş spektrumlu olabilir. Örn: Streptomycin gram + ve gram – bakterilerle aktinomisetlere karşı etkilidir. Bazıları sınırlı bir spektrum gösterir. Örn: Viomycin esas olarak Mycobacterium türlerine karşı aktiftir. Antibiyotikler aktif organizmalarca küçük bir alanda kullanılan güç olup, salındıklarından bir süre sonra hızlı bir şeklide kimyasal ve biyolojik aktiviteleri kaybedebilirler. Çeşitli antibiyotikler: Organizma Antibiyotik Streptomyces antibioticus Actinomycin S. erythraeus Erythromycin S. fradie Neomycin S. griseus Streptomycin S. niveus Novobiocin Bacillus polymyxa Polymixin Penicillum chrysogenum Penicilin Gönderi; Zahide

http://www.biyologlar.com/toprak-enzimleri

BİTKİLERDE İÇTEN VE DIŞTAN GELEN SİNYALLERE VERİLEN YANITLAR

Bitki yaşamının her evresinde, çevreye duyarlılık ve yanıtlarında koordinasyon vardır. Bitkinin bir kısmından, diğer kısımlarına sinyaller gönderilebilmektedir. Örneğin; bir sürgün ucundaki tepe tomurcuğu birkaç metre uzaklıktaki yanal tomurcukların büyümesini baskı altına alabilir. Bitkiler, zamanı günlük ve yıllık olarak izlemektedirler. Yer çekimini ve ışığın yönünü algılarlar. Bitkinin morfolojisi ve fizyolojisi, çevresindeki değişkenlere göre sürekli olarak ayarlanır; bu çevresel uyartılar ve içsel sinyaller arasındaki kompleks ilişkilerle sağlanır. SİNYAL İLETİMİ VE BİTKİ YANITLARI Bitkiler dahil tüm organizmalar, özgül çevresel sinyalleri ve içten gelen sinyalleri alma ve bu sinyallere yanıt verme yeteneğindedir; organizmaların bu sinyallere yanıt vermesi, bir bakıma , yaşama ve üreme başarılarını artırır. Bitkiler de çevrelerindeki önemli değişiklikleri saptamak için hücresel reseptörlerini kullanırlar; bu değişiklik büyüme hormonunun konsantrasyonundaki bir artışı, yapraklar üzerinde beslenen bir çekirgenin verdiği zararı yada kış yaklaştıkça gün uzunluğunun azalmasını kapsayabilir. İç yada dış kaynaklı uyartının bir fizyolojik yanıtı başlatabilmesi için, organizmadaki belirli hücrelerin, uygun bir reseptöre sahip olması gerekir. Bir reseptör, özel bir uyartıya duyarlı ve ondan etkilenen bir moleküldür. Reseptör, bir uyartıyı alır. Bundan sonra iletim, bir dizi özel biyokimyasal basamağı, yani; sinyal iletim yolunu başlatır. Sinyal iletim yolu, uyartının algılanmasını organizmanın yanıtıyla eşleştirir. Sinyal iletimi, içten ve dıştan (çevreden) gelen sinyalleri hücresel yanıtlara bağlar Bir sürgün, güneş ışığına ulaşınca çok önemli morfolojik ve biyokimyasal değişiklikler geçirir. Bu değişiklikler yeşillenme olarak adlandırılır. Yeşillenme sırasında gövdelerin uzama hızı yavaşlar, yapraklar genişler, kökler uzamaya ve toprak üstü kısımlar klorofil üretmeye başlar; kısaca sürgün tipik bir bitkiye benzemeye başlar. Bu yeşillenme nasıl olur? Bu soruya cevap ararken; bir sinyalin (örn, ışık) bir bitki hücresi tarafından nasıl alındığını ve bu algılamanın bir yanıta (yeşillenme) nasıl dönüştürüldüğünü göreceğiz. İncelemelerimiz sırasında, mutantlarla yapılan çalışmaların, hücrede sinyal oluşumunun üç farklı evresinde (algılama, iletme ve yanıt verme) çeşitli moleküllerin oynadığı rollere nasıl ışık tuttuklarını göreceğiz Sinyal iletim yollarının genel bir modeli. Özel bir reseptöre bağlanan bir hormon (veya çevreden gelen diğer bir sinyal), sekonder mesajcılar üretmek için hücreyi uyarır. Sekonder mesajcılar, orijinal sinyale karşı hücrenin çeşitli tepkimeler üretmesini sağlar. Yukarıdaki şekilde reseptör, hedef hücrenin yüzeyinde görülmektedir. Diğer durumlarda, hormonlar hücreye girer ve hücre içinde özel reseptörlere bağlanır. Sinyalin Alınması Sinyaller ister içten ister dıştan gelsin, ilk olarak reseptörler tarafından saptanır. Reseptörler, özel bir uyartıya yanıt olarak yapısal değişiklikler geçiren proteinlerdir. Bitkilerde yeşillenmede yer alan reseptör fitokrom olarak adlandırılır. Fitokrom özel bir proteine bağlanmış, ışık absorblayan bir pigmentten oluşmuştur. Plazma zarındaki pek çok pigmentin aksine, yeşillenmede iş gören fitokrom sitoplazmada bulunur. Araştırmacılar, yeşillenme sürecinde fitokromun gerekli olduğunu, aurea isimli bir domates mutantıyla yaptıkları çalışmalarda ortaya çıkarmıştır. Normal düzeyden daha düşük miktarda fitokroma sahip olan bu mutant, ışığa maruz bırakılınca yabani tip domatesten daha az yeşillenmektedir. (Latince aurea altın-renkli anlamındadır. Klorofil yokluğunda, karetenoyit denilen sarı bitki pigmentleri, daha fazla belirginleşirler). Araştırmacılar, diğer bitkilerden elde ettikleri fitokromu mikro iğnelerle (mikro enjeksiyon yoluyla) aurea‟nın yaprak hücrelerine enjekte ettikten sonra bu bitkiyi ışığa maruz bırakarak normal bir yeşillenme yanıtının oluşmasını sağlamışlardır. Bu tür denemeler, yeşillenme sürecinde, ışığın algılanmasında fitokromun iş gördüğü varsayımını desteklemiştir. Sinyal İletilmesi Yeşillenme süreci, çok düşük düzeydeki ışık tarafından başlatılır. Örneğin; birkaç saniyelik ay ışığına eşdeğer ışık düzeyleri, karanlıkta büyüyen çavdar fidelerinin gövde uzamasının yavaşlatmaya yeter. Fitokrom gibi reseptörler, çok zayıf çevresel ve kimyasal sinyallere duyarlıdır. Bu çok zayıf çevresel ve kimyasal sinyallerden gelen bilgi nasıl çoğaltılmakta ve bitki tarafından bu algılama özel bir yanıta nasıl dönüştürülmektedir? Bu sorunun yanıtı, sekonder mesajcılardır (sekonder messenger veya ikincil mesajcılar). Bunlar bitkide üretilen küçük kimyasal maddeler olup sinyali çoğaltarak reseptörden proteine nakleder; bu proteinler özel bir yanıta neden olur. Örneğin; yeşillenmenin ortaya çıkması sırasında etkileşen her bir fitokrom, yüzlerce sekonder mesaj taşıyıcı molekül oluşturabilir. Bunlar da yüzlerce özel enzim molekülünü aktifleştirebilir. Sinyal iletim yolundaki bir sekonder mesajcı, bu tür mekanizmalarla sinyalin hızlı bir şekilde çoğalmasını sağlar. Şimdi, özel olarak sekonder mesajcıların oluşumunu ve yeşillenmenin ortaya çıkmasındaki işlevlerini inceleyelim. Bitkilerde sinyal iletimine bir örnek; yeşillenmede fitokromun rolü. Işık sinyali fitokrom reseptörü tarafından alınır. Daha sonra reseptör G-proteinlerini içeren iki sinyal iletim yolunu aktifleştirir. 1) yollardan biri, bir protein kinaz serisini aktifleştiren bir sekonder mesengera götürür. 2) diğer yol, özel bir protein kinazı aktifleştiren bir Ca+2 – kalmodulin kompleksinin oluşumuna götürür. 3) her iki yol yeşillenmede iş gören proteinlerle ilgili genlerin ifade (yeşillenmede iş görmek için dizilmesini) olmasını sağlar. Pek çok reseptör guanin-bağlı proteinlerle (G-proteinleri) ilişkiye girer. Fitokrom böyle bir reseptördür. Işık fitokromda konformasyonal bir değişikliğe neden olur. Daha sonra fitokrom, özel G-proteini ile ilişkiye girer. Aktifleşme sırasında, inaktif G-proteinine bağlı olan guanozin difosfat (GDP), guanozin trifosfat (GTP) ile yer değiştirir. Böylelikle, aktif hale gelen G-proteini, yeşillenmeyi sağlayan sinyal iletim yolundaki diğer enzimleri aktifleştirir. Örneğin; fitokromun aktifleştirdiği G-proteinleri, ikincil (sekonder) bir mesaj taşıyıcı olarak siklik-GMP‟ı (cGMP) oluşturan enzim olan guanil siklazı aktifleştirir. G-proteini inhibitöreleri, aurea domates hücrelerine, fitokromun mikroenjeksiyon yoluyla verilmesinden sonra yeşillenmeyi durdurur; buna karşılık G-proteini aktivatörleri, yanıtı uyarır. Siklik adenozin monofosfat (cAMP, siklik AMP) ve siklik guanozin monofosfatın (cGMP) dahil olduğu siklik nükleotidler özel protein kinazları (diğer proteinleri fosforlayarak aktifleştiren proteinler) aktifleştirir. Denemeler cGMP‟nin yeşillenme sürecinde yer aldığını göstermektedir. cGMP‟nin aurea domates hücrelerine mikroenjeksiyonu, fitokrom ilavesi olmaksızın bile, yeşillenme işlemini kısmen teşvik etmektedir. Sitoplazmadaki (sitosol) Ca+2 düzeyleri genel olarak çok düşüktür (yaklaşık 10-1M). Bununla bilikte, çok çeşitli hormonal ve çevresel uyartı, sitosoldeki Ca+2 düzeyinde küçük bir artışa sebep olabilir. Daha sonra, Ca+2, kalmodulin olarak isimlendirilen küçük bir proteine doğrudan bağlanır. Bundan sonra Ca+2-kalmodulin kompleksi birkaç enzime bağlanarak, onları aktifleştirir. Protein kinazlar, bu enzimlerin en belirginleridir. Şekilde yeşillenme mekanizması sırasında fitokromun aktifleşmesinin, sekonder mesenger olarak hem cGMP hem de Ca+2-kalmodulinle sonuçlandığına dikkat ediniz. Yanıtın Oluşması Sonuçta, sinyal-dönüştürme yolları, hücrede bir yada daha fazla aktivitenin düzenlenmesine yol açar. Çoğu durumda, özelliklede gelişimdeki değişiklikler söz konusu olduğu zaman, uyartıya (sinyale) karşı verilen bu yanıtlar belirli enzimlerin aktivitesini artırır. Sinyal oluşturan bir yol, bir enzimi iki ana mekanizma ile aktifleştirebilir. Bu mekanizmalardan biri, o enzimle ilgili mRNA‟nın transkripsiyonunun uyarılmasıdır, diğeri ise mevcut enzim molekülünün aktifleştirilmesidir (yani translasyon sonrası modifikasyon). Transkripsiyon: DNA kalıbı üzerinden RNA sentezlenmesi. Translasyon: Bir mRNA molekülü üzerinde kodlanmış genetik bilgiyi kullanarak bir polipeptidin sentezlenmesi. Transkripsiyon faktörü: DNA‟ya bağlanarak özgül genlerin transkripsiyonunu uyaran, düzenleyici protein. Transkripsiyon başlatma kompleksi: Promotere bağlanan RNA polimeraz ve transkripsiyon faktörlerinin tümünün oluşturduğu birlik. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Transkripsiyon Evresinde Düzenleme Trankripsiyon faktörleri doğrudan özel DNA bölgesine bağlanır ve özel genlerin transkripsiyonunu kontrol eder. Fitokromun teşvik ettiği yeşillenmede, uygun ışık koşullarına yanıt olarak birkaç transkripsiyon faktörü, fosforilasyonla aktifleştirilir. Bu transkripsiyon faktörlerinin bazısı cGMP‟a, buna karşılık diğerlerinin aktifleşmesi ise Ca+2-kalmodulin‟e gereksinim duyar. Bir sinyalin yeni bir gelişim sürecinin başlamasını sağladığı mekanizma, pozitif transkript faktörlerine (özel genlerin transkripsiyonunu artıran faktörler) yada negatif transkript faktörlerinin (transkripsiyonu azaltan proteinler) etkisizleşmesine yada her ikisine birden bağlıdır. Karanlıkta büyütüldüklerinde mat renkli olmalarının dışında, ışıkta büyütülmüş gibi morfolojik özelliklere (geniş yapraklar, kısa ve sağlam gövdeler) sahip Arabidopsis mutantları mevcuttur (bu mutantlar yeşil renkli değildir. Çünkü klorofil üretiminin son basmağında doğrudan ışığa gereksinim duyulur). Bu mutantların bir negatif transkripsiyon faktöründe bozukluklar bulunur. Bu transkripsiyon faktörü, normalde ışık tarafından aktifleştirilen diğer genlerin ifadesini engellemektedir. Negatif faktör, mutasyonla ortadan kalkınca, onu durduran yol aktifleşmektedir. Proteinlerde Translasyon Sonrası Oluşan Değişimler Transkripsiyon ve translasyonla yeni proteinlerin sentezi, yeşillenme ile ilgili önemli moleküler olaylar olmalarına karşın, mevcut proteinlerin translasyon sonrası değişimleri de önemlidir. Bu mevcut proteinlerin çoğu sıklıkla fosforilasyonla, yani proteine bir fosfat grubunun katılmasıyla, değişime uğramaktadır. Protein kinazlar olarak isimlendirilen belirli proteinler hedef proteinlerin fosforilasyonunu katalizlemektedir. cGMP ve bazı fitokrom formları dahil, bazı reseptörlerin kendileri doğrudan protein kinazları aktifleştirir. Tüm bitki genlerinin yaklaşık % 2-3‟ü protein kinazları kodlayabilir. Çoğunlukla bir protein kinaz başka bir protein kinaza, daha sonra diğerine, o da başkalarına fosfor kazandırır. Böylece kinazların ard arda harekete geçirilmesi, sonuçta başlangıçtaki uyartıya gen ifadesi düzeyinde yanıt verilmesini sağlar. Bu, genellikle transkripsiyon faktörlerinin fosforlanmasıyla gerçekleşir. Pek çok sinyal iletim yolu, bu tür mekanizmalarla yeni proteinlerin sentezini düzenler. Bunu, çoğunlukla özgül genlerin açılıp kapanmasını sağlayarak yapar. Fosforilasyon şelalesi. Bir fosforilasyon şelalesinde yer alan farklı moleküller, bu yolda sırasıyla fosforile edilirler. Dizideki her molekül, kendinden sonraki moleküle bir fosfat grubu ekler. Burada gösterilen fosforilasyon şelalesi, protein kinaz 1 olarak adlandırdığımız bir enzimin bir aktarım molekülü tarafından aktive edilmesinden sonra başlar. 1) Aktif protein kinaz 1 bir fosfat grubunu ATP‟den inaktif protein kinaz 2‟ye aktarır. Böylece ikinci kinaz aktifleşir. 2) Aktif protein kinaz 2 daha sonra protein kinaz 3‟ün fosforilasyonunu (ve aktivasyonunu) katalizler. 3) Sonuçta, aktif protein kinaz 3, sinyale verilecek hücresel cevabı ortaya çıkaracak olan proteini (pembe) fosforile eder. Kesikli çizgi ile gösterilen oklar fosforile olmuş proteinlerin inaktivasyonunu temsil etmektedirler. Fosfotaz enzimleri fosfat gruplarının proteinlerden uzaklaştırılmasını katalizler. Böylece bu proteinler yeniden kullanılamazlar. Aktif ve inaktif proteinler farklı yapılarda temsil edilmektedirler. Bunun nedeni, aktivasyonun genellikle molekülün biçim değiştirmesiyle birlikte cereyan ettiğini hatırlatmaktır. Sinyal iletim yolları, başlangıç sinyali ortadan kalkınca kapanma mekanizmasına da sahip olmalıdır. Özgül proteinlerin fosfor yitirmelerini sağlayan fosfataz enzimleri, bu kapama sürecinde yer alır. Herhangi bir anda bir hücrenin aktivitesi, pek çok proteinkinaz ve protein fosfataz enziminin aktivitesindeki dengeye bağlıdır. Yeşillenmeyi Sağlayan Proteinler Yeşillenme sürecinde hangi proteinlerin transkripsiyonu gerçekleşmekte yada fosforilasyonla aktifleştirilmektedir? Bu proteinlerin çoğu doğrudan fotosentezde iş gören enzimlerdir; diğerleri ise klorofil üretimi için gerekli kimyasal öncüllerin temin edilmesinde yer alır; bunların dışındaki enzimler ise, büyümeyi düzenleyen bitkisel hormonların düzeylerini etkiler. Örneğin gövde uzamasını artıran iki hormonun düzeyi sitokromun aktifleşmesinden sonra azalır. Bu nedenle, yeşillenmeyle birlikte gövde uzaması azalır. Yeşillenme gibi yalnızca bir tek sürecin altında yatan biyokimyasal değişikliklerin bile ne denli karmaşık olduğunu açıklamak için bitki yeşillenmesinde yer alan sinyal iletimini ele aldık. Her bitki hormonu ve her bir çevresel uyartı, karmaşık, bir yada daha fazla sinyal iletim yolunu başlatır.

http://www.biyologlar.com/bitkilerde-icten-ve-distan-gelen-sinyallere-verilen-yanitlar

Bal ve Apiterapi

Apiterapi, arı ürünlerinin bir ya da birden fazla hastalığın önlenmesi ya da iyileştirilmesi amacıyla kullanılması şeklinde tanımlanabilir. Her geçen gün sonuçlanan araştırmalar toplumların dikkatini bu konu üzerine çekmekte ve özellikle Uzakdoğu ülkelerinde başlayan ve dünyada hızla gelişen arı ürünleri ile tedavi yöntemleri hızla yaygınlaşmaktadır. Hatta, başta Japonya, Doğu Asya ülkeleri, Amerika, Kanada gibi ülkelerde apiterapi merkezleri kurulmuştur. Bal ve Apiterapi Balın besin içeriğinin insan sağlığına etkisinin yanısıra olağanüstü bir özelliği de vardır ki, bu özellik antimikrobiyal aktivitesidir. Balın bu özelliği nedeniyle Hipokrat zamanından beri hastalıklarda tedavi edici bir araç olarak kullanıldığı bilinmektedir. Balların antimikrobiyal aktivitesi için farklı mekanizmalar ileri sürülmüştür. İleri sürülen mekanizmalardan biri, balın sahip olduğu yüksek şeker konsantrasyonudur. Bir diğer sebebi de balda enzimsel olarak üretilen H2O2’dir. Üçüncü olarak da balın düşük pH’sıdır (ort. 3.2-4.5). Balın Antimikrobiyel Aktivitesi Balda mikrop üreyemez çünkü; Şeker konsantrasyonu çok fazladır. Balın pH sı 3.5-4.0 civarındadır. Baldaki enzimler inhibin (H2O2) oluşmasına neden olur. Glukoz oksidaz, GLUKOZ, Glukonik asit + H2O2 Not: Isıtılmış ballarda antimikrobiyel aktivite görülmez veya yok denecek kadar azdır İnsan vücuduna etki eden çoğu mikroorganizma balda yaşamını sürdürememektedir. Bal, temas ettiği mikroorganizmaları öldürdüğü gibi içerisinde de barındırmamaktadır. Öyle ki Mısır piramitlerinde bulunan ve Postum’da M.Ö. 6. asra ait çömlekler, içindeki balların biraz katılaşmakla beraber vasıflarını hiç kaybetmemesi, balda mikroorganizmaların yaşayamadığını tarihi bir gerçek olarak göstermektedir. Tıbbi literatürde, İngiliz ve Amerikan hastanelerinde birinci sınıf mikrop öldürücü olarak bal kullanıldığını, Almanya’da yara ve soğuk algınlıklarından kaynaklanan hastalıklarda, baldan bu yönü ile istifade edildiğini görmekteyiz. Alman Dr. Zaiss’in mikrop öldürücü olarak balı tentürdiyot ‘a tercih ettiğini belirtmesi de ilginçtir. Balın yaraların ve enfeksiyonların iyileşmesini sağlamak için kullanımı 1981 yılında Dünya Sağlık Forumu tarafından da önerilmiş olup, Pharmaceutical Journal’da apse, çıban, göz yangıları, ishal, üriner sistem enfeksiyonları, dizanteri etkeni, deri ve ağız içi enfeksiyonlarına antimikrobiyal etkisinin olduğu rapor edilmiştir. Balın çeşitli hastalıklara karşı tedavi edici özelliğini incelemek amacıyla birçok araştırma yapılmıştır. Bu konuyla ilgili ilgi çekici çalışmalardan birisi 1991’de King Suud Üniversitesi tarafından yapılanıdır. Yapılan bu çalışmanın sonunda gastrit ve oniki parmak bağırsağı ülserine sahip hastalara, alternatif bir tedavi olarak balın tek başına veya antimikrobiyal bir ajanla uygun bir bileşiminin kullanılması önerilmiştir. Lavanta, karahindiba, ve kolza balları yüksek antimikrobiyal aktiviteye sahipken orman gülü, okaliptus ve portakal nispeten düşük aktivite göstermektedir. Balın antimikrobiyal etkisini destekleyen bir başka bildirişte, eşit miktarda bal, çavdar unu ve zeytin yağı karışımı ile hazırlanan kremin günde üç kez kullanımı ile inek ve atlarda görülen ve kangrene dönüşen yaraları dahi tedavi ettiği sonucuna varan Lucke’nin bildirişidir Bal, karaciğer rahatsızlıklarında da başarı ile kullanılmaktadır. Bu başarıda balın antimikrobiyal etkisinin yanında, fruktozun doku ve kasları yumuşatıcı ve gevşetici özelliği de önemli sayılabilir. Balın çeşitli araştırmalar sonucunda, doku oluşmasını hızlandırdığı, yara ve yanık izlerini azalttığı (Arman, 1980; Dumronglert, 1983), bazı ülkelerde doktorlar tarafından katarakt ve kojuktivit ile bazı kornea rahatsızlıklarında başarı ile kullanıldığı bildirilmektedir (Mikhailov, 1950). Ayrıca kornea ülserinin de saf bal ile veya vazelin yerine bal ile hazırlanan % 3 lük sulphidine pomadı ile başarılı bir şekilde tedavi edildiği görülmüştür.

http://www.biyologlar.com/bal-ve-apiterapi

Yaşam biçimimiz bozuldu Obezite arttı

Bilinçli Sağlıklı Yaşam Dergisi’ne açıklamalarda bulunan Türk Obezite Vakfı Başkanı Prof. Dr. Taner Damcı, obezitenin bu kadar yaygınlaşmasının sebeplerinin başında yaşam biçiminin gittikçe bozulmasının yer aldığını söyledi.   Pahalı ve tedavisi zor bir hastalık olan obezite, önümüzdeki yıllarda toplumun sağlığını en fazla tehdit eden hastalıkların başında gelmeye aday. Türkiye’deki obezite görülme sıklığı yüzde 30’lar civarında. Buna fazla kilolu insan sayısını da eklersek bu rakam yüzde 50’yi aşıyor.    Yeme davranışı bozukluları ve hareketsiz yaşamın yaygınlaşmaya başladığını bildiren Prof. Dr. Damcı, “Teknolojinin gelişmesi bizlere her an sınırsız miktarda yiyeceğe en kısa zamanda ulaşmamızı sağlıyor. Artık her mahallede birkaç tane süpermarket, sabaha kadar evlere servis yapan yiyecek satıcıları, ağzına kadar dolu buzdolaplarımız var. Bunlar tabi ki kötü değil ama bu koşullar altında yeme davranışımız bozuluyor. Yüksek stres ve insanlar arası gerginleşen ilişkilerde yiyecekler duygusal bir yatıştırıcı olarak kullanılıyor. Gündelik alışkanlıklarımız, trafik, yaşamımızdaki günlük küçük hareketlerin dahi azalmış olması, spor yapma olanağı ve alışkanlıklarımızın yetersiz olması bizi şişmanlamaya ve sonucu olarak da sağlığımızı kaybetmeye doğru hızla iten faktörler arasında” dedi.   “Sorun ne yediğimiz değil ne kadar yediğimizdir”   Sağlıklı beslenmenin yollarını anlatan Prof. Dr. Damcı, son zamanlarda kilo alımı üzerinde etkisi olduğu öne sürülen şekerin tek başına insanı şişmanlatmayacağını, tüm gıdalar gibi şekeri de aşırı tüketmenin insana kilo aldırabileceğine vurgu yaparak, sözlerine şöyle devam etti:   “Beslenme ihtiyacı, insanın nefes alması gibi en temel gereksinimlerinden biridir. Yani kendi bedenimiz tarafından düzenlenebilen mekanizmalardan biridir. Bu biyolojik mekanizma açlık-tokluk ve gıda seçimleri gibi ihtiyaçlarımızı da kendisi ayarlar. Ancak günümüzün stres ortamında, toplumda ve basında yer alan yanlış yönlendirmelerle bu en temel ve güçlü biyolojik mekanizmamızı dinlemekten uzaklaşmış durumdayız. Kendi kararımızı vermekten uzak noktadayız. Son derece trajikomik bir biçimde sağlıklı beslenmenin nasıl olması gerektiği neredeyse politik tartışmalar gibi kutuplaşma ve hakarete varacak tartışmalara zemin oluşturuyor. Bir takım komplo teorileri ve bunların karşıt görüşleri acımazsızca insan ve toplum sağlığına zarar veriyor. Sonuçta olan ise,  bu durumu dehşet içinde izleyen insanlara ve onların sağlıklarına oluyor.    Obezite ve kilo artışında tek bir temel sorun var. O da ne yediğimiz değil, ne kadar yediğimizdir. Toplum olarak aşırı miktarda gıda tüketiyoruz. Bunu azaltmak, sorunu düzeltmek veya önlemek için yeterlidir” diye konuştu.   http://www.medical-tribune.com.tr

http://www.biyologlar.com/yasam-bicimimiz-bozuldu-obezite-artti

Hücre zedelenmesinin nedenleri ve zedelenmeye karşı hücrenin verdiği uyum yanıtları nelerdir; hasara uğrayan dokunun onarılması nasıl gerçekleşir?

Hücre Zedelenmesinin Nedenleri Hücre zedelenmesinde pek çok etken söz konusudur. Trafik dahil pekçok kazanın neden olduğu gözle görülen fiziksel travmalardan, belli bazı hastalıklarda neden olabilen defektli enzimleri oluşturan gen mutasyonlarına kadar sıralanabilir. Zedeleyici etkenler aşağıdaki gibi, sınıflanabilir. Oksijen Kayıpları: Hipoksi (oksijen azlığı- oksijen yetersizliği), hücre zedelenmesi veya ölümünün en önemli ve en çok görülen nedenidir. Hipoksi pekçok durumda görülür. Bunlar içinde en önemli olanı iskemidir. Hipoksi, iskemiden (kansızlık) farklıdır ve ayrılmalıdır. İskemi, dokulara gelen arteriyel akımın engellenmesi veya venöz dönüşün azalmasıyla ortaya çıkan dolaşımdaki kan kaybıdır. Bir bölgedeki kan akımının durması olarak özetleyebiliriz. İskemi, dokuları hipoksiden daha çabuk zedeler. Hipoksik doku zedelenmesi, karşımıza şu durumlarda çıkar. 1-İskemix: Mortalite (kalb hastalığı- miyokard enfarktüsü) ve morbiditenin (serebral ve renal iskemik hastalıklar) başlıca nedenidir. 2-Asfiksi (solunum zorluğu- solunum yetersizliği) nedeniyle, kanın oksijenizasyonundaki azalmaya bağlı olarak hücre zedelenmeleri ortaya çıkabilir. Buna kalb-akciğer hastalık- larında ve pnömonide görülen yetersiz kan oksijenlenmesi örnek verilebilir. 3-Anemixx veya karbon monoksit (CO) zehirlenmesinde görülen, kanın oksijen taşıma kapasitesindeki düşme, diğer bir örnek olabilir. Kimyasal Etkenler ve İlaçlar: Zehir olarak bilinen maddeler, tedavi amaçlı kullanılan bazı ilaçlar (hassas bünyeli kişilerde) ve ilaçların aşırı kullanılma durumlarında, hücre zede-lenmeleri meydana gelebilir. Hücrelerin bazı yaşamsal işlevlerini, örneğin membran permea-bilitesini, osmotik homeostazı (hücre içi denge) ve enzim entegrasyonunu (sistemi) bozarak, ciddi hücre zedelenmesi ve belki de tüm organizmanın ölümüne neden olabilir. Esasda zarar-sız olan glukoz ve tuz gibi kimyasallar, konsantre olduğunda osmotik çevreyi bozarak, hücre zedelenmesine ve hatta ölüme yol açabilir. Fiziksel Etkenler: Travma, sıcak ve soğuk olmak üzere aşırı ısı, ani ve farklı atmosfer basınç değişiklikleri, radyasyon ve elektrik şoku, hücre üzerinde geniş etkiler gösterir. Enfeksiyöz Etkenler: Bu grupta submikroskopik viruslardan, mikroskopik bakteri, riket- siya, fungus ve parazitlere kadar geniş bir mikroorganizma grubu bulunur. Mikrobiyolojik ajanlar olarak, salgıladıkları toksinler ve enzimlerle hücrenin metabolizmasını inhibe eder ve hücresel yapıları destrüksiyona uğratır. İmmunolojik Reaksiyonlar: Biyolojik etkenlere karşı vücudu koruyan immün sistem, bazı durumlarda immun reaksiyonlara neden olarak, hücre ve doku zedelenmesi meydana getirebilir. Yabancı proteinlere (antijen) karşı gelişen anaflaktik (allerjik) reaksiyon, önemli bir örnektir. Ayrıca bu grupta endojen antijenlerin sorumlu olduğu immunolojik reaksiyonlar söz konusu olabilir. Bunlar da “otoimmun hastalıklar” olarak sınıflanır. Radyasyon: Ultraviyole (noniyonize -güneş ışını) ışınlar hücrelere zarar vererek güneş yanıklarına neden olabilir. İyonize radyasyon hücrelerdeki moleküllere direkt etki yapıp, mo-lekül ve atomların iyonizasyonuna neden olarak veya hücre komponentleri ile etkileşen serbest radikal oluşumuna neden olarak hücrelere zarar verir. Genetik Defektler: Tek bir genin eksikliği veya yapısal bozukluğu, hastalığa neden olabi-lir. Doğuştan var olan metabolik depo hastalıkları ve bazı neoplastik hastalıklar gibi, bir çok hastalığın temelinde, genetik defektlerin rol oynadıkları bilinir. Beslenme Dengesizlikleri: Vücudun bazı aminoasitler, yağ asitleri, vitaminler gibi, orga-nik ve inorganik maddeleri besinlerle alması gerekir. Beslenme yetersizliğinde ortaya çıkan protein ve besin eksikliği, doku hasarlarına neden olabilir. Besinlerin eksikliği gibi, aşırılıkla-rında, ortaya çıkan şişmanlık ve atheroskleroz da morbidite ve mortaliteye zemin hazırlaya-rak, zarar verir. Obesite, tip 2 diyabetes mellitus riskini arttırır. Hayvansal yağ yönünden zen-gin olan gıdalar, atheroskleroz ve kanseri de içeren pekçok hastalığın oluşumundan sorumlu olabilir. Yaşlanma; hücre zedelenmesine neden olan diğer bir örnekdir. Yıllar geçtikçe hücrelerde çoğalma ve kendini onarma yeteneklerinde meydana gelen azalmalar ve buna bağlı ölümler oluşur. Hücre Zedelenmesinin Mekanizmaları Hücre zedelenmesine neden olan pek çok farklı yol vardır; fakat bunların hepsi öldürücü değildir. Bununla birlikte, herhangi bir zedelenmeden kaynaklanan, hücre ve doku değişiklik-lerine yol açan, biyokimyasal mekanizmalar oldukça karmaşıktır ve diğer intrasellüler olaylar ile sıkıca birbiri içine girmiştir. Bu nedenle, sebep ve sonuçları birbirinden ayırdetmek müm-kün olmayabilir. Bir hücrenin yapısal ve biyokimyasal komponentleri o kadar yakın ilişkide-dir ki, zedelenmenin başlangıç noktası önem taşımayabilir; fakat pek çok sekonder etki süratle oluşur. Yine de hücre zedelenmeleriyle ilgili bilinen pekçok özellik vardır. Örneğin siyanürle aerobik solunumun zehirlenmesi, intrasellüler osmotik dengenin korunması için elzem olan sodyum, potasyum ve ATP aktivitelerinde azalmalara neden olur. Bunlar korunamadığı za-man, hücre süratle şişer, rüptüre olur ve nekroza gider. Hücre hasarlarına neden olan, bazı zedeleyici ajanların patojenik mekanizmaları çok iyi ta-nımlanmıştır. Örneğin, siyanürle zehirlenmede mitokondriyada oksijen taşıyıcı bir enzim olan sitokrom oksidazın inaktive edilmesiyle, ATP’yi tüketerek, hipoksi yoluyla hasar meydana getirir, yani intrasellüler asfiksiye yol açar. Yine aynı şekilde anaerobik bazı bakteriler, fosfo-lipaz salgılayarak hücre membran fosfolipidlerini parçalayıp, hücre membranında direkt hasar meydana getirir. Hücre zedelenmesinin pekçok şeklinde, hücreyi ölüme götüren moleküler mekanizmalardaki bağlantıları anlamak bu kadar kolay değildir. Reversibl zedelenmenin neden olduğu hücresel bozukluklar onarılabilir ve zedeleyici etki hafifletilebilirse, hücre normale döner. Kalıcı veya şiddetli zedelenme, o bilinmeyen “dönüşü olmayan nokta” yı aşarsa irreversibl zedelenme ve hücre ölümü meydana gelir. İrreversibl zedelenme ve hücre ölümüne neden olan “dönüşü olmayan nokta”, hala yeterince anlaşılama-mıştır. Sonuç olarak; hücre ölümüne neden olan bilinen ortak bir son yol yoktur. Bütün bunla-ra rağmen, hücre ölümünü anlamak ve açıklayabilmek için, bir miktar genelleme yapılabilinir. İrreversibl hücre zedelenmesinin patogenezinde başlıca iki olay vardır. Mitokondrial disfonk-siyonun düzelmeyişi (oksidatif fosforilasyon ve buna bağlı ATP üretiminin yapılamaması) ve hücre membranındaki ağır hasardır. Bunu ispatlayan kanıtlar vardır. Lizozomal membran-lardaki zedelenme enzimatik erimeye neden olup, hücre nekrozunu ortaya çıkarır. Zedelenme İle İlgili Bazı Özellikler: -- Zedeleyici stimulusa hücresel yanıt, zedeleyicinin tipine, onun süresine ve şiddetine bağlı- dır. Bu nedenle düşük dozda toksinler veya iskeminin kısa sürmesi, reversibl (dönüşlü) hücre zedelenmelerine neden olur. Halbuki daha büyük toksin dozları veya daha uzun süreli iskemik aralar, irreversibl (dönüşsüz) zedelenme ile sonuçlanır ve hücre ölüme gider. -- Tüm stresler ve zararlı etkenler, hücrede ilk etkilerini moleküler düzeyde yapar. Hücre ölü- münden çok önce, hücresel fonksiyonlar kaybolur ve hücre ölümünün morfolojik değişiklikle- ri, çok daha sonra ortaya çıkar. Histokimyasal veya ultrastrüktürel teknikler, iskemik zedelen- medeki değişiklikleri birkaç dakika ile birkaç saat içinde görülebilir hale getirir. Örneğin, myokardial hücreler iskemiden 1, 2 dk sonra, nonkontraktil (kasılamama) olur. İskeminin 20- 30 dk’sına kadar, ölüm meydana gelmez. Ölümden sonraki değişikliklerin, ultrastrüktürel dü-zeyde değerlendirilmesi için, 2- 3 saat, ışık mikroskobu ile görülebilme düzeyine gelebilmele-ri için (örn. nekroz), 6- 12 saat geçmesi gerekir. Morfolojik değişikliklerin çıplak gözle görü-lebilir hale gelmesi, daha da uzun bir zaman alır. -- Zedeleyici stimulusun sonuçları; zedelenen hücre tipine, hücrenin uyum yeteneğine ve ge-netik yapısına bağlı olarak da farklılıklar gösterir. Örneğin, bacaktaki çizgili iskelet kası, 2- 3 saatlik iskemileri tolere edebilir. Fibroblastlar da dirençli hücrelerdir. Buna karşın kalb kası hücresi (myosit), yalnızca 20-30 dakikalık zaman içinde ölüme dayanabilir. Bu zaman, nöron- da 2- 3 dakikadır. -- Farklı zedeleyici etkenler, nekroz veya apoptoz şeklinde hücre ölümüne neden olur. ATP de kayıplar ve hücre zarı hasarları, nekrozla ilişkilidir. Apoptoz; aktif ve düzenli bir olaydır. Proğramlanmış bir hücre ölüm biçimidir ve burada ATP kayıpları yoktur. -- Hücre zedelenmesi hücre komponenetlerinden bir veya bir kaçında ortaya çıkan biyokimya-sal veya fonksiyonel bozukluklardan kaynaklanır. Zedeleyici stimulusun en önemli hedef nok-taları şunlardır: (a)Adenozin trifosfat (ATP) üretim yeri olan mitokondriler, (b)hücre ve organellerinin iyonik ve osmotik homeostazı için gerekli olan hücre membranı, (c)protein sentezi, (d)genetik apareyler (DNA iplikciğinin bütünlüğü) ve (e)hücre iskeleti çok önemlidir. Membran Permeabiltesindeki Defektler: Hücre membranı; iskemi, bazı bakteriyel tok-sinler, viral proteinler, kompleman komponentleri, sitolitik lenfositler veya birçok fiziksel- kimyasal etkenlerle direkt zarar görebilir. Ayrıca birçok biyokimyasal mekanizma, hücre membran hasarına etken olabilir. Kısaca gözden geçirelim. - Fosfolipid sentezinde azalma: Oksijendeki düşmeler ATP sentezinde azalmalara, ATP’nin azalması da fosfolipid sentezini düşürür. Fosfolipid kaybına bağlı olarak, membran hasarı meydana gelir. - Fosfolipid yıkımında artma: Hücre içi (sitozolik) kalsiyum artımı, fosfolipazları aktifleştirir. Bu da membran fosfolipidlerin parçalanmasını- yıkımını arttırır. - Lipid yıkım ürünlerinde artma: Fosfolipidlerin parçalanması, yıkılması, lipid yıkım ürünleri-ni arttırır. Bu ürünlerin birikimi, geçirgenliği bozarak zarar verir. - Reaktif oksijen türevleri (serbest radikaller): Hücre membranında lipid peroksidasyonuna neden olup, zarar verir. - Hücre iskelet anormallikleri: Hücre iskeleti iplikcikleri, hücre içini hücre zarına bağlayan ça-palar olarak görev yapar. Hücre içi kalsiyumun artması, proteazları aktifleştirerek hücre iske-leti proteinlerini parçalar, bu şekilde hücre zarını hasarlar. Hücre İskeleti: Sitoplazmik matriksde; mikrotübüller, ince aktin flamanlar, kalın flaman-lar ve değişik tiplerde ara flamanlardan oluşan, karmaşık bir ağ yapısı “hücre iskeleti” olarak tanımlanır. Bunlara ek olarak hücre iskeletinde, nonflamentös ve nonpolimerize proteinler de vardır. Bu yapısal proteinler sadece hücrenin şekil ve biçimini korumakla kalmaz, aynı za-manda hücre hareketinde de önemli bir rol oynar. Hücre iskelet bozuklukların da; hücre hare-keti ve intrasellüler organel hareketleri gibi, hücrelerde fonksiyon defektleri görülür. Ayrıca hücrenin fagositoz yetenekleri de kaybolur. Bunlar lökosit gibi özel hücreler ise, lökosit göçü ve fagositoz yeteneklerinde kayıplar ortaya çıkar. Mitokondriyal Zedelenme: Memeli hücrelerinin tümü, temelde oksidatif metabolizmaya bağlı olduğundan mitokondriyal bütünlük hücre yaşamı için, çok önemlidir. Mitokondri hüc-renin “enerji santralı” olarak bilinir. ATP hücredeki bütün intrasellüler metabolik reaksiyonlar için, gereken enerjiyi sağlar. Mitokondrilerde üretilen ATP deki enerji, hücrelerin yaşamı için elzemdir. Yine bu mitokondriler, hücre zedelenmesi ve ölümünde de çok önemli bir rol oynar. Mitokondriler sitozolik (hücre içi) kalsiyumun artmasıyla, serbest radikallerle (aktif oksijen türevleri), oksijen yokluğunda ve toksinlerle zedelenebilir. Mitokondriyal zedelenmenin iki ana sonucu vardır: 1)Oksidatif fosforilasyonun durmasıyla ATP nin progresif olarak düşmesi, hücre ölümüne götürür. 2)Aynı zamanda mitokondriler bir grup protein içerir. Bunlar içinde apoptotik yolu harekete geçiren protein (sitokrom c) de bulunur. Bu protein, mitokondride enerji üretimi ve hücrenin yaşamı için, önemli bir görev yapar. Eğer mitokondri dışına sitozo-le sızarsa, apoptozisle ölüme neden olur. Bazı nonletal patolojik durumlarda mitokondriaların sayılarında, boyutlarında, şekil ve fonksiyonlarında çeşitli değişiklikler olabilir. Örneğin hücresel hipertrofide, hücre içindeki mitokondri sayısında artma vardır. Buna karşın atrofide, mitokondri sayısında azalma görülür. ATP Tüketimi: Hücrelerin enerji deposu olarak bilinen ATP, adenozin difosfat (ADP) ve 1 fosfat (P1) ile mitokondride -üretilir- sentezlenir. Bu işlem oksidatif fosforilasyon olarak tanımlanır. Ayrıca oksijen yokluğunda glikolitik yol ile glukozu kullanarak ATP üretilebilir (anaerobik glikolizis). ATP, hücre içindeki tüm sentez ve parçalama işlemlerinde gereklidir. ATP, hücresel osmolaritenin korunması, membran geçirgenliği, protein sentezi ve temel metabolik işlevler gibi, hemen her olayda çok önemlidir. ATP kayıplarının başlıca nedenleri; iskemiye bağlı oksijen kayıpları ve besin alımında azalma, mitokondri hasarı ve siyanür gibi, bazı toksinlerin etkileri sayılabilir. Kalsiyum Dengesindeki Değişmeler: İskemi ve belli bazı toksinler, belirgin bir şekilde hücre dışı kalsiyumun plasma membranını geçerek hücre içi akışına yol açar. Bunu, hücre içi depolardan ( mitokondri, endoplazmik retikulum) kalsiyumun açığa çıkması izler. Bu hücre içi artan kalsiyum, sitoplazmada bulunana bazı enzimleri aktifleştirir. (1)Fosfolipazları aktive ederek, fosfolipid yıkımına neden olur. Fosfolipid azalması ve lipid yıkım ürünlerinin de açı-ğa çıkmasına neden olur. Bu katabolik (yıkım) ürünler, hücre membran zedelenmesine neden olur. (2)Proteazlarıx (protein parçalayan enzim) aktive ederek, hem membran hem hücre iske-leti proteinlerinin parçalanmasına neden olur. hücre iskeletinin hücre membranından ayrılma-sına ve böylelikle, membranda yırtılmalara neden olur. (3)Adenozin trifosfatazlara (ATPas) etki ederek adenozin trifosfat (ATP) azalmasını hızlandırır. (4)Endonükleazları aktive eder, DNA ve kromatin parçalanmasından sorumludur. Sonuç olarak intrasellüler kalsiyumun art-ması, hücrede bir dizi zedeleyici etki yaparak, hücre ölümüne sebebiyet veren en önemli et-kendir. Hücre Zedelenmesinde Serbest Radikallerin Rolü Hücre zedelenmesinde önemli mekanizmalardan birisi de, aktive edilmiş (reaktif) oksijen ürünlerine (serbest radikaller) bağlı zedelenmedir. Hücre membranına ve hücrenin diğer elemanlarına zarar verir. Serbest radikallerin sebep olduğu hasarlar; iskemi-reperfüzyon hasarıx, kimyasal (hava kir-liliği, sigara dumanı, bitki ilaçları gibi çevresel faktörler) ve radyasyon zedelenmesi, oksijenin ve diğer gazların toksisitesi, hücresel yaşlanma, savunma sisteminin fagositik hücrelerce mikropların öldürülmesi, iltihabi hücrelerin oluşturduğu hücre hasarı ve makrofajlarca yapılan tümör hücrelerinin destrüksiyonu şeklinde sıralanır. Serbest radikallerin hücrelerde yaptığı hasarlar: a)Lipidlerin peroksidasyonuna neden olarak hücre membran hasarı yapar. b)Protein hasarı yaparak, iyon (Na/K) pompası dengesini bozar. c)DNA yı haraplayarak, yetersiz prote- in sentezine neden olur. d)Mitokondrial hasar yaparak, ATP yokluğuna neden olup etkisini gösterir. Oksijen yaşamsal olarak çok gerekli bir molekül olmasına karşın, oksijenin aşırı miktarlar- da bulunduğu durumlar veya çeşitli kimyasal ajanlarla oluşturdukları oksidasyon reaksiyonları ile ortaya çıkan serbest oksijen radikallerinin, hücreye zarar verme riski vardır. Bunlar oksijen zararına örnektir. Paslanmanın bilimsel adı, oksitlenmedir. Vücudumuzdaki hücreler de oksit- lenir ve yaşlanır. Serbest radikallerin (bunlar oksidan moleküller, oksitleyiciler olarak da bili- nir) yıkımına karşı, hücrelerde harabiyeti önleyen, sınırlayan veya onaran gibi, pek çok koru- yucu mekanizma vardır. Bunlara “serbest radikal savaşcıları” (antioksidanlar- oksitlenmeyi önleyiciler) adı verilir. Bunları enzimatik ve nonenzimatik olarak iki ana grupta inceleyebili- riz. Bunların dışında serbest radikallerin, stabil olmadıklarından spontanöz (kendiliğinden) bozulmaları da söz konusudur. Enzimatik Antioksidanlar: Hücrede oluşan serbest radikallerin yok edilmeleri bir dizi enzi-matik olay ile gerçekleşir. Antioksidan enzimlerle yapılan savunmanın önemli bir bölümünü; süperoksit dismutaz, glutatyon peroksidaz ve katalaz oluşturur. Süperoksit radikali, süperoksit dismutasyonla; hidrojen peroksit ise, katalaz ve glutatyon peroksidaz enzimleri ile nötralize edilir. Hidrojen peroksitin parçalanmasında katalaz direkt etkilidir. Nonenzimatik Antioksidanlar: Bu savunma başlıca endogenös ve ekzogenös antioksidanlar tarafından sağlanır. Ekzogenöse örnek; vitamin E (tokoferoller), vitamin C (askorbik asid), beta karoten (A vitaminin yapı taşı) gibi vitaminlerdir. Ekstrasellüler antioksidan olarak serü-loplasmin sayılabilir. Vitamin C ve E’nin vücudu serbest radikallerin yıkıcı etkilerinden koru-duğu düşünülür. Bu antioksidanlar serbest radikallere kendi elektronlarından birini verip, elektron çalma reaksiyonunu sonlandırmasıyla nötralize eder. Antioksidan besinler elektron vermekle, kendileri serbest radikallere dönüşmez; çünki her iki şekilde de stabildir. Bunlar çöpcüler gibi hareket ederek hastalık oluşmasına neden olacak, hücre ve doku hasarlarını ön-ler. Antioksidan besinlere diğer örnekler; eser miktardaki mineraller bakır, çinko ve selen-yumdur. Bu mineraller bazı antioksidan enzimlerin gerekli komponentleri olduğundan, anti-oksidan görevi görür. Kimyasal (Toksik) Zedelenme: Kimyasal maddeler iki mekanizmadan birisiyle hücre zedelenmesine neden olur. (1)Bazı kimyasal maddeler, moleküler komponentlerle veya hüc-resel organellerle direkt birleşerek etki eder. Birçok antineoplastik kemoterapotik ajanlar, doğrudan sitotoksik etkileriyle hücre hasarlarına neden olur. (2)Diğer mekanizmada ise, bazı kimyasal maddeler, biyolojik olarak aktif değilken, toksik metabolitlere dönüştükten sonra, aktif olur ve hedef hücrelerde etkilerini gösterir. Burada indirekt etki söz konusudur. Bu tip değişme genellikle karaciğer hücrelerinde oluşur. x Kan akımının kesilmesiyle (iskemi) eğer hücreler reversibl olarak zedelenirse, kan akımının yeniden düzelme-siyle hücrelerde iyileşme görülür; fakat bazı durumlarda iskemiye uğramış bir dokuda, kan akımının yeniden sağlanmasına (reperfüzyon) rağmen, zedelenme giderek daha da kötüleşir. Buna “iskemi- reperfüzyon hasarı” (reperfüzyon nekrozu) adı verilir. Klinik olarak çok önemli olan, kalb ve beyin enfarktüslerindeki doku hasarla-rında bu şekilde bir zedelenmenin bariz katkısı vardır. Bu olayın nedeni, bölgede serbest radikallerin miktarının artması olabilir; çünki bu toksik oksijen ürünleri, reperfüzyon anında iskemik alana gelen lökositler tarafından bol miktarda ortama salınmıştır. İskemiye uğramış dokuda reperfüzyon oluşmasa bile, sonuçta bu bölgede letal iskemik hücre hasarı yine meydana gelecektir; fakat hasar, bu sefer serbest radikallerle değil, iskemik zedelen-me, hipoksi (oksijen yetersizliği) nedeniyle ortaya çıkacaktır. Serbest Radikaller: Serbest radikaller (oksidan ürünler) ile antioksidan etkileşimini anlamak için, ilk önce hücreler ve moleküller hakkında biraz bilgi sahibi olmak gerekir. İşte bu nedenle burada lise kimyasına kısaca bir göz atalım. İnsan vücudu pekçok farklı tip hücreden oluşmuştur. Hücreler de birçok değişik tip moleküllerden oluşmuştur. Mole- küller, bir veya daha fazla atomlardan, bir veya daha fazla elementlerin kimyasal bağlarla birleşmesinden mey-dana gelmiştir. Atomlar; tek bir nüve (çekirdek), nöronlar, protonlar ve elektronlanlardan oluşur. Atom çekirde- ğindeki protonların (pozitif yüklü parçacıklar) sayısı, atomu çevreleyen elektronların (negatif yüklü parçacıklar) sayısını belirler. Elektronlar kimyasal reaksiyonlarla ilgilidir ve molekül oluşturmak için, atomları birbirine bağ-layan maddedir. Elektronlar atomu yörünge biçiminde bir veya birkaç kat kabuk şeklinde çevreler. En içteki ka-buk iki elektrona sahip olduğunda dolar. İlk kabuk dolduğu zaman, elektronlar ikinci kabuğu doldurmaya başlar. Bir atomun kimyasal davranışını belirleyecek en önemli yapısal özellik, dış kabuktaki elektron sayısıdır. Dış ka-buğu tamamen dolu olan bir madde, kimyasal reaksiyonlara girme eğiliminde değildir, stabildir (hareketsiz). Atomlar maksimum stabiliteye ulaşmak için, dış kabuğunu dolu hale getirmeye çalışırlar. Atomlar genellikle di-ğer atomlarla elektronlarını paylaşarak dış kabuklarını doldurmaya çalışır. Serbest radikaller dış yörüngede eşleş-memiş (çiftlenmemiş) tek bir elektronu bulunan kimyasal moleküllerdir. Bu özellikleri nedeniyle son derece değişken- dengesiz yapıda olduğundan, kolayca inorganik ve organik kimyasallarla reaksiyona girer. Bunlar hem organik hem de inorganik moleküller halinde bulunur. Diğer bileşiklerle süratle reaksiyona girerek, stabilite kazanmak için, gerekli elektronu kazanmaya çalışır. İşte serbest radikaller en yakın stabil moleküle saldırarak o moleküllün elektronunu çalarak zararlı etkisini gösterir. Serbest radikal tarafından saldırılan molekül, elektro-nunu kaybedip serbest radikale dönüşür. Süreç bir kez başlayınca ardışık zincirleme olaylar, canlı hücrenin yaşa-mının bozulmasıyla sonuçlanır. Hücrelerde oluştuğu zaman, hücresel proteinler ve lipidler olduğu kadar nükleik asidlerle de süratle etkileşek onları parçalar. Buna ek olarak serbest radikaller otokatalitik reaksiyonları başlatır. Serbest radikallerle reaksiyona giren moleküller, yeni serbest reaksiyonlara dönüşerek zincirleme hasarlara yol açar. Hücre içinde pekçok reaksiyon, serbest radikallerin oluşumundan sorumludur. Çeşitli reaksiyonlar sonucu bunlar ortaya çıkar. Bunlar aşağıda özetlenmiştir. 1- Hücre içi metabolik olaylar sırasında oluşan redüksiyon- oksidasyon (redoks) reaksiyonlarında görülür. Bu olaylarda; süperoksit radikali (O2-), hidrojen peroksitx (H2O2) ve hidroksil radikali (OH) gibi, önemli serbest radikaller oluşur. Hücre içinde oluştuğunda süratle çeşitli membran molekülleri olduğu kadar, proteinleri ve nük-leik asidleri (DNA) de parçalayarak hasar verir. Böyle DNA hasarları; hücre ölümünde, yaşlanmada ve malig-niteye dönüşümde söz konusudur. Normal koşullarda bu serbest radikaller, antioksidanlarla yok edilebilir. Eğer antioksidanlar yoksa veya serbest radikal üretimi çok artarsa, hücrelerde hasar kaçınılmaz olacaktır. 2- Radyasyon enerjisinin (ultraviyole ışık, X- ışınları) absorbsiyonunda iyonize radyasyonun etkisiyle hücre içindeki su hidrolize olur. Suyun bu radyolizisi sonucu hidroksil (OH) ve hidrojen (H) serbest radikalleri ortaya çıkar. 3- Demir ve bakır gibi değişimli metaller, bazı hücre içi reaksiyonlarda elektron alıp verme özellikleri nede-niyle serbest radikaller ortaya çıkar. 4- Ekzogenös (dış kaynaklı) kimyasal maddelerin enzimatik metabolizması sonucu karbon tetraklorid (CCl4) den, karbon tetraklorür (CCl3) serbest radikali oluşur. 5- Nitrik oksit (NO), endotel hücreleri ve makrofaj gibi, bazı tip hücreler tarafından sentez edilen, serbest radikal gibi davranan önemli bir kimyasal medyatördür. Nitrik oksit oksijenle reaksiyona girdiğinde, NO2 ve NO3 gibi, diğer serbest radikalleri de oluşturur. x Hidrojen peroksit (H2O2), kendisi serbest radikal değildir, bu nedenle reaktif oksijen türevi olarak adlandırılır. STRESE KARŞI HÜCRESEL ADAPTASYON Normal bir hücre, değişen çevre şartlarına göre, yapı ve fonksiyonunu (işlevini) belirli ölçülerde değiştirerek yaşamını devam ettiren bir mikro evrendir. Bu oluşum, stresler çok ciddi olmadığı sürece, kendini koruma eğilimindedir. Eğer hücre, aşırı fizyolojik strese veya bazı patolojik stimulasyonlara (uyarılara) maruz kalırsa, stresin devam etmesine rağmen, adaptasyon (uyum) göstererek sağlığını korur. Hücresel adaptasyon, normal hücre ile zedelen- miş hücre arasında kalan bir durumdur. Hücresel adaptasyonlar başlıca atrofi, hipertrofi, hiperplazi ve metaplazidir. Hücre adaptif gücü aşıldığında veya hiç adaptif yanıt sağlanamadı- ğında hücre zedelenmesi ortaya çıkar. Hücre zedelenmesi bir noktaya kadar reversibldir (geri dönüşlü); fakat ciddi veya kalıcı streslerle irreversibl (geri dönüşsüz) hale gelir ve hücre so-nuçta ölüme gider. İrreversibl zedelenme, hücre ölümüne yol açan, kalıcı patolojik değişiklik- leri. ifade eder. Reversibl hasardan, irreversibl hasara ne zaman geçtiği kesin olarak bilinme- mektedir. Bu bölümde özellikle patolojik olaylarda, hücre büyüme ve farklılaşmasıyla (diferansiyas-yon) ortaya çıkan adaptif değişikliklere değineceğiz. Bunlar; atrofi (hücre boyutunun küçül-mesi), hipertrofi (hücre boyutunun büyümesi), hiperplazi (hücre sayısının artması) ve meta-plaziyi (hücre tipindeki değişiklik) içermektedir. Ayrıca displazi (hücrelerde şekil bozukluğu) hipoplazi, atrezi, agenezis ve aplazinin anlamlarını açıklayacağız. Atrofi: Hücrenin madde kaybına bağlı olarak hacmının küçülmesi “atrofi” olarak bilinir. Atrofi, adaptif yanıtın bir şeklidir. Yeterli sayıda hücre etkilendiğinde, tüm doku veya organ hacmında küçülme olur ve organ atrofik şekle dönüşür. Gerçi atrofik hücrelerde fonksiyon azalmıştır ama bu hücreler ölü değildir. Atrofik hücre daha az mitokondria, myoflament ve endoplazmik retikulum içerir. Birçok durumda atrofiye, artmış bir otofaji (kendini yiyen) eşlik eder. Atrofinin nedenleri şunlardır: (1)İnaktivite atrofisi; iş yükünün azalması söz konusudur. Çalışmayan, fonksiyon görmeyen organ veya doku atrofiye uğrar. Uzun süre alçıda kalan ekstremitelerde kas atrofisi görülebilir. Felçlilerde, felçli taraf kaslarında inaktivite nedeniyle atrofi olur. (2)İnnervasyon (sinir uyarı) kaybı; poliomyelitisde olduğu gibi, innervasyon kay-bına bağlı meydana gelen paralizilerde söz konusu kas dokularında atrofiler görülür. Burada da fonksiyon kaybı söz konusudur. (3)Kanlanmanın azalması, (4)yetersiz beslenme, (5)endo-krin stimülasyon (uyarı) kaybı; menoposda hormon kayıpları örnek verilebilir ve (6)yaşlan-maya bağlı atrofiler meydana gelir. İleri yaşlardaki kişilerin beyinlerinde görülen atrofilere “senil atrofi” denir. Senil atrofi ve menoposda hormon stimülasyon kayıpları, fizyolojik atro-fiye örnektir. Patolojik atrofiye, innervasyon kaybı örnek verilebilir. Hipertrofi: Hipertrofi, hücrelerin hacımlarının artmasını tarif eder ve böyle bir değişiklik- te organın hacmı da büyüyecektir. Bu nedenle hipertrofiye organda yeni hücreler yoktur, yal- nızca büyük ve iri hücreler vardır. Hücre hacmının artımı, sıvı alımının artımı ile ilgili değil- dir. Sıvı alımıyla ilgili olanı, hücre şişmesi veya ödem olarak adlandırılır; fakat hipertrofide daha çok ultrastrüktürel komponentlerin (proteinler ve organeller) sentezinde bir artım söz konusudur. Hipertrofi, fizyolojik veya patolojik olabilir ve organdaki fonksiyonel artım veya spesifik hormonal stimülasyon, bunun oluşmasına neden olabilir. Gebelik anında, uterusun büyümesi, fizyolojik bir olaydır. Uterus düz kas hücrelerinde oluşan artım, hem hipertrofi ve hem de hiperplazi nedeniyledir. Patolojik hücresel hipertrofiye örnek, hipertansiyon veya aortik valvül hastalığı sonucu ortaya çıkan kardiyak büyüme gösterilebilir. Her bir myokard lifi hipertrofiye olarak, hücre büyümesi ve hacım artışı göstererek, bu artan yüke karşı, kalbin daha fazla bir güç ile pompalamasını sağlar. Kas kitlesinin büyümesi, bir sınıra ulaştıktan sonra, artan yükü kompanse edemez ve kalb yetmezliği ortaya çıkar. Bu safhada myokardiyal liflerde bir dizi dejeneratif değişiklikler ve hücre ölümü ortaya çıkar. Kalb ve iskelet kasında-ki çizgili kas hücreleri, en fazla hipertrofi gösterebilme yeteneğinde olan hücrelerdir. Belki de bu, hücrelerin artan metabolik gereksinimlere mitotik bölünme ve yeni hücre şekillenmesiyle 8 yanıt veremediğindendir. Hipertrofinin kesin mekanizması ne olursa olsun, Bunların en önem-lisi myofibriler kontraktif elemanlarının erimesi ve kaybıdır. Hiperplazi: Hiperplazi, bir doku veya organda hücre sayısındaki artışı belirtir ve böylelik- le volüm olarak da artış vardır. Hücreler, fonksiyonel gereksinim artmasına bir yanıt olarak nasıl hipertrofiye olursa, aynı şekilde stress altında kalınca veya stimüle edilince, mitotik bölünerek çoğalırlar. Bu şekilde organ veya dokuda hücre sayısının artmasına “hiperplazi” adı verilir. Hücre sayısı artması ile, organ veya dokunun büyümesi söz konusudur. Hiperplazi gösteren hücrelerin fonksiyonlarında artma olur. Özellikle bu, iç salgı gudde hücrelerinde belirgindir. Vücuttaki her hücre tipinin hiperplazik kapasitesi yoktur. Örnek; kalb ve iskelet kası ile sinir hücreleridir. Epidermis, intestinal epitel, hepatositler, fibroblastlar ve kemik iliği hücreleri hiperplaziye uğrar. Hiperplazi; fizyolojik ve patolojik olarak ikiye bölünebilir. Fizyolojik Hiperplazi: Fizyolojik hiperplazi de ikiye ayrılır. (1)Hormonal hiperplazi; en iyi örnek puberte (ergenlik) ve gebelikte; meme glandüler epitel proliferasyonu ve ayrıca gebelikte uterusda kas hücrelerinde hiperplazi ve hipertrofi görülür. Menstrüel siklusdaki “proliferatif faz” (endometrial proliferasyon) fizyolojik bir hiperplazidir. (2)Kompensatuvar hiperplazi; parsiyel hepatotektomi yaparak, karaciğer dokusunun bir parçasının çıkarılmasın-dan sonra, karaciğerin rejenerasyon kapasitesi ile yeni karaciğer hücreleri yapılır. Patolojik Hiperplazi: Patolojik hiperplazinin pek çok şeklinde, aşırı hormonal veya büyü-me faktörü stimülasyonu vardır. Normal menstrüel perioddan sonra, endometrial doku gudde-lerinde aşırı proliferasyon görülür. Bu endometrial proliferasyon esasda fizyolojik bir hiper-plazidir; fakat hormonal dengelerin bozulduğu bazı durumlarda (östrojen ve progesteron ara-sındaki balans) östrojenin artması durumunda, endometrium guddelerinde aşırı bir hücre artı-mı ortaya çıkar. Bu endometrial hiperplazi sonrası, kanser sürpriz olmamalıdır; çünki endo-metrial hiperplazilerde kanser riski vardır. Ayrıca, endometrial hiperplazi, anormal menstrüel kanamaların başlıca nedenidir. Prostat kanseri tedavisi için, östrojen hormonu verildiğinde veya karaciğer sirozunda oldu-ğu gibi, östrojenin inaktivite edilemediği durumlarda, hastalarda hiperöstrinizm (östrojen fazlalığı) ortaya çıkar. Bu gibi, erkek hastaların memelerinde büyümeler (jinekomasti) meyda- na gelir. Kanın kalsiyum düzeyindeki uzun süreli düşmeler, paratiroid salgılıklar üzerine uyarıcı etki yapar, paratiroid hiperplazisi (sekonder hiperparatiroidizm) saptanır. ACTH veril- mesi sonucu, sürrenal korteks hiperplazisi gelişir (Cushing sendromu)x. Patolojik hiperplaziye örnek olarak iltihabi iritasyon ve enfeksiyon hiperplazisini göstere- biliriz. Kötü yapılmış bir protez, alttaki dokuda epitel ve bağ dokusu olmak üzere hücre proli- ferasyonlarına neden olur. Bunlara “iltihapsal fibröz hiperplazi” denir. Protez vuruğu hiper- plazisi veya epulis fissuratum olarak adlandırılır. Hiperplazi, yara iyileşmesindeki bağ dokusu hücrelerinin verdiği önemli bir yanıt olabilir. Prolifere olan fibroblast ve kan damarı hücreleri bir onarım işlemine yol açarak bir granulasyon dokusunu oluşturur. Bu hücreler, fibroblast ve endotel hücreleri, büyüme faktörlerinin stimülasyonu (uyarısı) ile prolifere olarak hiperplazi- ye neden olur. Büyüme faktörlerinin stimülasyonu, keza human papilloma virus gibi bazı viral enfeksiyonlarda da hiperplazilere neden olarak karşımıza çıkabilir. Bu tür lezyonlara örnek, deride görülen bildiğimiz deri siğilleridir (verruka vulgaris). Gerçi hipertrofi ve hiperplazi tanımlamada iki farklı olaylarsa da, aynı mekanizma tarafından başlatılır ve pek çok durumda beraber oluşur. x Cushing Sendromu : Adrenokortikal hiperfonksiyonu, Cushing sendromuna neden olur. Bu fazlalığın nedenleri (1)adrenal bezinde (salgılığında) hiperplazi, (2)adenoma veya karsinoma gibi, tümörler (3)hastanın ağızdan uzun süre kortizon alması ve (4)hipofiz hiperfonksiyonu (ACTH hipersekresyonu) dur. Bütün bunlar, adrenal salgılığına aşırı salgı yaptırır. Klinik olarak, Buffalo tipi şişmanlık, düşük omuz, kalın boyun, aydede yüz hastalığın özelliğidir. Karın derisinde çizgilenme, akne, osteoporoz, hipertansiyon görülür. Kadınlarda hirsutizm (kıllanma) amenore ve mental bozukluk, diğer özelliklerdir. Metaplazi: Metaplazi adült (matür= erişkin) bir hücre tipinin (epitelyal veya mezanşimal) yerini, diğer bir adült hücrenin alması şeklinde olan reversibl bir değişikliktir. Olumsuz çevre koşullarına karşı dayanabilmek için, strese duyarlı hücrelerin daha dirençli hücre tipine dönü-şerek gösterdiği adaptif cevaptır. Bu tür adaptif metaplaziye en güzel örnek, “skuamoz meta-plazi” dir. Sigara (içme gibi, kötü) alışkanlığı olan kişilerde solunum yollarındaki (trakea ve bronş epiteli) silli- silendirik epitel yerini, stratifiye skuamoz epitel hücrelerinin almasıdır. Tükrük salgılığı kanalı ve safra kesesi kanalı taşlarının varlığında olan kronik iritasyon, bura-lardaki sekretuvar silendrik epitelin yerini nonfonksiyonel stratifiye skuamoz epitel alabilir. A vitamini yetersizliği de, solunum yolu epitelini skuamoz metaplaziye uğratır. “Müköz meta-plazi” kronik bronşitte psödostratifiye silli solunum yolu epiteli, mukus salgılayan basit silen-dirik epitele dönüşebilir. Metaplazi mekanizması, adaptif bir yanıt olarak, mezankim hücrele-rinde de oluşur. Fibroblastlar kemik ve kıkırdak yapan osteoblast veya kondroblastlara dönü-şebilir. Örneğin; osteoid ve kemik dokusu yumuşak dokuda özellikle zedelenme alanında nadiren oluşur, buna “osseöz metaplazi” denir. Hipoplazi: Özel yapısı aynı kalmakla beraber, normal boyutuna ulaşamayan organlar için kullanılan bir terimdir. Bu bir eksik gelişmedir. Organın görünümü normal, fakat hacım bakı- mından küçüktür. Beyinin tam gelişemeyerek küçük kalmasına “mikrosefali” adı verilir, bu hipoplaziye bir örnektir. Gelişmesini tamamlamamış ve küçük kalmış bir diş, hipoplazik diş olarak adlandırılır. Aplazi: Tam gelişememiş bir organı tarif eder. Bir organın çok küçük ve biçimsiz olması durumudur. Bir taraftaki böbreğin taslak halinde bulunmasıdır. Agenezi: Bir organ veya dokunun konjenital bir bozukluk nedeniyle taslak halinde bile bulunmamasına “agenezis” denir. Bir organa ait doku kalıntılarının olmaması durumudur. Dental agenez olarak, çok nadir de olsa rastladığımız lateral veya üçüncü molar dişlerdeki hiç gelişememe örnekleri vardır. Atrezi: Barsak karaciğer ve safra kanalı gibi, duktal veya lümenli organların kanal açıklı-ğının olmamasıdır. REVERSİBL VE İRREVERSİBL HÜCRE ZEDELENMESİNDE IŞIK MİKROSKOBİK DEĞİŞİKLİKLER Klasik patolojide öldürücü olmayan (nonletal) zedelenme sonucu ortaya çıkan morfolojik (yapısal- biçimsel) değişikliklere “dejenerasyon (yozlaşma)” olarak söz edilirdi; fakat bugün bunlara daha basit olarak, reversibl (geri dönüşlü) değişiklik adı verilmektedir. İki ana mor-folojik değişiklik şeklinde karşımıza çıkar: (1)Hücresel şişme ve (2)yağlanma. Hücresel Şişme: Hücre içi sıvı ve iyon dengesinin bozulduğunda görülür. Hidropik de-ğişme veya vakuoler dejenerasyon olarak da adlandırılan hücresel şişme, hücrede hemen her tip hasarın ilk göstergesi ekstrasellüler suyun, hücre içine geçmesi neticesi olan hücredeki büyüme “hücresel şişme” olarak bilinir. Hücre şişmesi, reversibl bir olaydır ve hafif hasarın (zedelenmenin) işaretidir. Makroskopik olarak hücresel şişmede organlar büyümüştür; sert ve soluk görünümlü olup, ağırlıkları artmıştır. Mikroskopik olarak hücre sitoplasması bulanık, nükleus (nüve= çekirdek) ise soluk görünümlüdür. Yağlı Değişme (Yağlanma- Steatozis): Yağlı değişme parankimal hücrelerde anormal yağ (trigliseritler, kolesterol ve kolesterol esterleri) birikimini belirtir. Yağlanma ise, daha az görülen bir reaksiyondur. Hücre içindeki küçük ve büyük vakuoller, hücrede lipid artışını gösterir. Yağlı değişme öldürücü olmayan (reversibl) zedelenmenin belirtisidir; fakat etken ortadan kaldırılmazsa, bazen öldürücü olabilir. Yağ metabolizmasının ana organı olması nede-niyle yağlı değişme, en sık karaciğer dokusunda görülür; fakat kalb, böbrek, kas ve diğer organlarda da oluşabilir. Karaciğerdeki yağlı değişmenin en önemli nedeni, alkol bağımlılığı-dır. Alkol bir hepatotoksiktir. Yağlı karaciğer daha sonra, siroz olarak adlandırılan ilerleyici karaciğer fibrozisine yol açabilir. Yağlı karaciğere neden olan diğer etkenler; obesite, toksin-ler, protein malnutrisyonu, diyabetes mellitus ve anoksidir. İskemik ve Hipoksik Zedelenme İskemi veya dokudaki kan akımı azalması, klinik tıpta hücre zedelenmesinin en yaygın görülen nedenidir. Hipoksinin ilk etkilediği yer, hücrenin solunum merkezidir (aerobik solu-numu) ki burası, mitokondrilerdeki oksidatif fosforilasyonun olduğu yerdir. Oksijen basıncı düştükçe ATP nin hücre içi yapımı, bariz bir şekilde azalır ve durur. ATP kaybı, hücrede genel olarak bir çok sistemi etkiler. Hücre dışı kalsiyumun, hücre içi girişine neden olur. Hipoksi ve ATP azalmasının en erken sonuçlarından birisi, hücresel şişmedir (hücresel ödem). Protein normalde hücre içinde daha fazla olduğu için, hücre içi osmotik kolloidal basınç yük-sektir. Diğer taraftan sodyum (Na) ve diğer bazı iyonların konsantrasyonu dış ortama göre, hücre içinde daha düşüktür. İntrasellüler sodyumun azlığı, hücre membranında ATP enerjisine dayanan “sodyum pompası” ile sağlanır. Potasyum (K) konsantrasyonu ise, dış ortama göre hücre içinde daha yüksektir. ATP azalmasıyla bu sistem bozulur. Potasyum dışarı çıkmaya, sodyum hücre içine girmeye başlar. Sodyum ile birlikte hücre içine su girişi olur. Sonuçta iç ve dış ortam dengeye vardığında, hücre içinde normalden çok fazla su bulunacaktır ve hücre şişecektir. Hücresel Yaşlanma: Bu deyim; hemen daima subletal (reversibl) zedelenmenin progresif (ilerleyici) birikimleri, hücresel fonksiyonla uyum içinde davranır ve hücre ölümüne yol açabilir veya en azından hücrenin bir zedelenmeye karşı verdiği yanıt kapasitesindeki azalma- yı anlatır. Yaş ile pekçok hücre fonksiyonu progresif olarak azalır. Mitokondrial oksidatif Fosforilasyon (aerobik solunum), strüktürel, enzimatik ve reseptör proteinlerinin sentezindeki gibi, giderek azalır. Yaşlanan hücrelerde besin alımlarında ve kromozomal hasarların onarı-mında belirgin azalmalar görülür. Yaşlı hücrelerin ultrastrüktürel yapılarında da morfolojik değişiklikler gözlenir. Şekil bozukluğu gösteren nüveler, pleomorfik vaküollü mitokondriler, endoplazmik retikulumda azalma ve lipofussin pigment birikimi vardır. Hücresel yaşlanmada serbest radikal hasarı, önemli hipotezlerden birisidir. İyonizan radyasyon olarak tekrarlayan çevresel etkilenme, antioksidan savunma mekanizmalarının (örn vitamin E, glutatyon peroksi- daz) progresif bir şekilde azalması veya her ikisi birden beraberce etki ederek serbest radikal hasarı oluşturur. Lipofussin birikimi yaşlanmış hücrelerde bu tür hasarın açıklayıcı bir göster- gesidir; fakat pigmentin kendisinin hücreye toksik olduğuna dair deliller yoktur. Serbest radi- kaller mitokondrial ve nükleer DNA hasarını harekete geçirebilir. Zedelenmeye Karşı Hücre İçi Yanıtlar Lizozomal Katabolizma (Parçalama): Primer lizozomlar esas fonksiyonu sitoplazma içi sindirim olan, çok sayıda ve çeşitte sindirici (hidrolitik) enzim içeren, membranla çevrili vezi- küllerdir. Her hücrede bulunursa da özellikle fagositik aktivite gösteren hücrelerde (makrofaj, lökosit) bol miktarda bulunur. Bugüne kadar 50’den fazla hidrolitik (parçalayıcı) enzim tanımlanmıştır. Lizozomal örneklerden bazıları; asid hidrolaz (organik materyale örn. Bakteri-ye karşı rol oynar), lizozim (lökositlerde olduğu kadar makrofajlarda da bulunur. Mikroorga-nizmaların hidrolizinde rol oynar), proteaz (proteinlerin parçalanmasına neden olur; elastin, kollagen ve bazal membranda bulunan proteini yıkar) ve diğerleri asit fosfataz, glukoronidaz, sülfataz, ribonükleaz, deoksiribonükleaz, elastaz, kollagenaz ve lipaz’dır. Lizozomlar tarafın-dan parçalanma şu iki yoldan birisiyle oluşur. Otofaji: Hücrenin kendi içeriğinin (komponentler), yine hücrenin kendi lizozomları tara-fından sindirilmesidir. Kendini yeme anlamındadır. Pekçok durumda mitokondri ve endoplaz-mik retikulum gibi, hücre organalleri zedelenmeye maruz kalırsa hücre normal fonksiyonları-nı koruyabilmek için, bunları yok edebilmelidir. Zedelenmiş veya yaşlanmış organellerin belli bir düzen içinde yok edilmesi bir hücresel yenilenmedir. Ayrıca besinsiz kalan hücrenin kendi öz içeriğini yemek suretiyle kendi yaşamını sürdürmesi olayıdır. Otofaji, özellikle atrofiye giden hücrelerde belirgindir. Heterofaji: Bir hücrenin özellikle makrofajın, dış ortamdan hücre içine aldıkları maddeleri sindirmesi olayına, heterofaji denir ve otofajinin karşıtıdır. Bir materyalin dış çevreden alın-ması olayı, genelde “endositozis” olarak adlandırılır. Büyükçe partiküler materyal için, “fago-sitozis” ve küçük solubl (eriyebilir) makromoleküller için de “pinositozis” terimi kullanılır. Dış ortamdan alınan partikül hücre içine girdiğinde, vakuolle çevrilir. Bunlar fagozom (fago-sitik vakuol) olarak adlandırılır. Bu fagozomlar, primer lizozomlarla kaynaşır, artık sekonder lizozom (fagolizozom) dur. Heterofaji, genelde “profesyonel fagositler” olarak bilinen lökosit (PNL -mikrofaj) ve makrofajlarca (histiosit) yapılır. Lökositler bakterileri, makrofajlar da hücre debrilerini sindirir. Sindirilmiş atıkların hücreden dışarı atılma olayına “ekzositozis” denir. N E K R O Z İ S Canlı organizmada (doku ve organ) ışık mikroskopi ile saptanan, hücre ölümü sonucu ortaya çıkan morfolojik değişikliklere “nekroz” denir. Nekrozis, Yunan dilinde ölüm anla-mındadır. Kan gereksinimi kesintilerinde (iskemik zedelenme) veya belli bazı toksinlerle karşılaşılması durumunda ortaya nekroz çıkar. Nekrozdaki morfolojik görünüm, aslında aynı anda oluşan iki olayın sonucu olabilir: (1)Hücrenin enzimatik yıkımı (organellerin parçalan-ması) ve (2)makromoleküllerin denaturasyonu (proteinlerde yapı değişiklikleri). Bir hücrenin enzimatik sindirimi, kendi lizozomal enzimlerinden kaynaklanıyorsa “otoliz” olarak tanımla-nır. Hücre kendi- kendini sindirir. Otosindirimde nekroz meydana gelir. Postmortem otoliz, tüm organizma öldükten sonra oluşur ve bu bir nekroz değildir. Çevreye gelen bakteri ve lökosit lizozomlarından türeyen hidrolitik (katalitik) enzimlerle olan sindirime de “heteroliz” adı verilir. Bu şekilde de hücre dıştan gelen enzimatik etki ile nekrotik olur. Biyopsi ve rezek-siyon gibi, cerrahi işlemlerle vücuttan alınıp fiksatife (%10’luk formalin) konulan doku parça-sındaki hücreler de ölüdür; fakat nekrotik değildir. Fiksatifler dokuların yapısal bütünlüğünü (morfolojiyi) korur. Hücre ölümünün temel işaretleri nüvede bulunur. Ölüme giden hücrelerde nüve değişiklik- leri şu üç görünümden birisini gösterir. Bunların hepsi kromatin ve DNA nın parçalanmasına bağlıdır. Nüve büzüşür ve küçülür, kromatin yoğunluğu artmıştır. Bazofilik nüve olarak söz edilir, (1)piknozis olarak adlandırılır. Piknozis apoptotik hücre ölümünde de görülür. Zaman içersinde piknotik nüvede parçalanma olayı meydana gelir. Nüve küçük düzensiz parçacıklara bölünmüştür (2)karyorekzis olarak adlandırılır ve (3)karyolizis olarak bilinen nükleer mater-yallerin çözülme ve erimesi söz konusudur. Kromatinin bazofilliği solabilir. Sonuçta, nekrotik hücrede nüve tümüyle kaybolur. Bu arada sitoplazmik değişiklikler de görülür. Sitoplazmada homojenizasyon ve belirgin eosinofili artışı vardır. Artık bu safhada nekrotik hücre; çekirdeği olmayan asidofilik bir atığa dönmüştür. Geleneksel olarak birçok farklı tiplerde nekrotik doku görünümleri tarif edilmiştir. Koagülasyon Nekrozu: En çok görülen nekroz tipi, koagülasyon nekrozudur. Genel ola-rak doku yapısı korunmuştur. Nekrotik doku içinde, hücre elemanları hayalet hücre şeklinde görüntü verir, hücrelerin dış hatları seçilebilir. Nekrotik alan asidofilik opak görünümlüdür. Bu nekroz tipi, daha çok kan akımının kesilmesiyle iskemi (hipoksi) sonucu ortaya çıkan enfarktlarda oluşur. Bakteriyel toksinler, viruslar ve iyonize radyasyon gibi, pek çok etken de neden olabilir. Bu tip nekroz iltihabi yanıtı harekete geçirir. Hasarlı doku fagositler tarafından ortadan kaldırılır ve bölge onarım veya rejenerasyona uğrar. Kalb (myokard enfarktüsü) ve böbrek gibi, organlarda daha sık görülür. Kazeifikasyon Nekrozu: Bu nekroz, farklı- özel bir nekroz tipidir. Başlıca tüberküloz enfeksiyonlarında oluşur. Bu nekroz tipinin karakteristik makroskopik yapısı, bir çeşit peyniri hatırlatan yumuşak, parçalanabilir gri- beyaz görünümde olmasıdır. Bu görünümü nedeniyle “kazeös” terimi kullanılır. Mikroskopik olarak hiçbir hücre detayı görülmez, dokunun yapı özellikleri tamamen silinmiştir. Yerine amorfös, granüler ve eosinofilik bir doku geçmiştir. Likefaksiyon Nekrozu: Bu tip nekroz, iki durumda karşımıza çıkar. Bunlardan biri enzim sindiriminin baskın olduğu durumlarda söz konusudur. Güçlü hidrolitik enzimlerin aksiyonu sonucu oluşur. Başlıca fokal bakteri (özellikle pyojenik mikroorganizmalar) enfeksiyonların- da görülür. Dokuda belirgin yumuşama ve likefaksiyon vardır; abse buna bir örnektir. Hücre ölümü sonrası bölgede bulunan bakteri ve lökositlerin hidrolitik enzimleri ile çevre doku hüc- relerinin otolizi ve heterolizisi sonucu ortaya çıkar. Lökositlerle dolu abse kavitesi oluşturarak doku defekti meydana getirir. Püy’ün oluşmasıyla karakterli süpüratif enfeksiyondur. Diğeri, santral sinir sisteminde iskemi sonucu oluşan hücre ölümü, likefaksiyon nekrozudur. Hemorajik Nekroz: Venöz drenajda blokaj olduğu dokularda ekstravaze kırmızı kan hücrelerinin çevreyi kaplaması sonucu, dokuların nekroze olmasıdır. Gangrenöz Nekroz: Çoğunlukla diyabetli kişilerde, özellikle alt ekstremitelerde ayak ve ayak parmaklarında görülür. Dokuda iskemik hücre ölümü ile ortaya çıkan koagülasyon nek- rozunun özel bir formudur. Bölgede mevcut bakterilerin ve çevreden gelen lökositlerin like- faktif aksiyonunun oluşur. Koagülasyon nekrozu ön planda olduğu zaman, bu olay gelişir. İskemiye neden olan damar tıkanıklığı, lökosit göçünü engellerse, nekroza uğrayan hücrelerin parçalanması önlenir ve ortadan kaldırılmayan nekrotik hücreler mumyalaşır. Buna “kuru gangren” denir. Salim doku ile sınırı belirgindir. Nekrotik bölgeye bakteri invazyonu ve löko- sit göçü olursa, likefaksiyon nekrozu gelişir, “yaş gangren” terimi kulanılır. Yaş gangrene, putrefaksiyon (kokuşma) nekrozu da denir.Vincent spiroketleri, fusiform basiller ve daha bazı mikroorganizmaların eklenmeleri söz konusudur. Beslenme defektli direnci düşük çocuklarda orafasiyal dokularda ortaya çıkan “noma” (gangrenöz stomatit) olarak adlandırılan lezyon da bir çeşit yaş gangrendir. Noma (Gangrenöz Stomatitis- Şankrum Oris): Oral ve fasial dokularda destrüktif yapısı ile karakterize, süratle yayılan daha çok 2- 5 yaşlardaki beslenme defektli veya debilite (yıkıcı) sistemik hastalıklara sahip çocuklarda görülen nadir bir hastalıktır. Kişinin genel sağlığıyla belirgin bir uyum gösteren doku nekrozu, başlangıçta fuziform basiller ve Vincent spiroketleri gibi, anaerobik bakterilerin invazyonu ve sonrasında stafilokokus aureus, streptokokus pyo-gens gibi, diğer çeşitli mikroorganizmalar tarafından invazyona uğrayan spesifik bir enfeksi-yondur. Gerçi pnömoni, sifiliz, tüberküloz, lösemi ve sepsis gibi, zayıf düşürücü sistemik has-talıklar yanısıra malnütrisyon, en sık görülen predispozan faktörlerdir. Noma çok nadir görülür. Gelişmemiş ülkelerde, özellikle malnütrisyon veya protein defek- ti gösteren durumlarda ortaya çıkar. Lezyon özellikle gingival mukozada küçük ağrılı bir ülser şeklinde başlar. Çevre dokuya süratle yayılır. Alttaki yumuşak dokuya penetre olan, sonunda yüz derisini perfore eden akut gangrenöz bir hastalıktır. Nekrozlara bağlı olarak meydana ge- len doku kayıpları sonucu, kemik dokusu ve dişler açığa çıkar. Etkilenen bölgede dişler dökü- lür. Noma, çok sınırlı ve daha benign yapıda olan “akut nekrotizan ülseratif gingivitis”e (ANUG) bir çok özellikleriyle benzemektedir. Her ikisinde de etken aynı mikroorganizmalar-dır ve olay, doku nekrozu ile sonuçlanır. Ayrıca her iki lezyonda da bağışıklık yönünden düşük (immünosüprese) kişiler söz konusudur. Gerçi nadir de olsa, ANUG’dan noma’ya dönüşen olgular da vardır. Son zamanlarda yapılan araştırmalarda, HIV/AIDS’li hastalarda noma’nın görülme sıklığının artmış olduğu gözlenmiştir. Mikroskopi; nonspesifik yoğun nek-roz ve belirgin yaygın bir iltihabi hücre reaksiyon gösterir. Tedavi; enfeksiyonun kendisi kadar, hastalığa neden olan predispozan faktörlerin de yok edilmesini içermelidir. Uygulanan antibiyotik tedavisi yanında, hastanın sıvı- elektrolit denge- sinin ve beslenmesinin sağlanması gerekir. Eğer çevre dokuda yoğun destrüksiyon varsa, do- kudaki nekrotik debrilerin temizlenmesi gerekir. Noma’da mortalite; antibiyotiklerden önce yaklaşık %75 idi. Gerçi bu lezyon hala ciddi bir problemdir. “Gazlı gangren”; özellikle Clostrdium welchii’nin etken olduğu, sporlu anaerobik Clostri-dia grubunun yaptığı spesifik bir enfeksiyondur. Klostiridya sporlarının bulaştığı delici yara-lanmalarda, güçlü ekzotoksinler ile proteolitik enzimler çevre dokuyu haraplar, hatta fatal (öldürücü) olabilir. Yağ Nekrozu: Yağ dokusu hasarı iki şekilde oluşur. 1)Travmatik yağ nekrozu; meme gibi yağ içeren dokularda oluşan şiddetli zedelenme sonucu ortaya çıkar. 2)Enzimatik yağ nekrozu (lipolizis); pankreasdaki ağır bir iltihabın sonucu ortaya çıkan, akut hemorajik pankreatitisin komplikasyonudur. Proteolitik ve lipolitik pankreatik enzimlerinin aksiyonu sonucu, yağ do-kusunda ortaya çıkan bir tip nekrozdur. Fibrinoid Nekroz: Bu gerçek bir nekroz özelliği göstermez. Bazı hipersensitivite (aşırı duyarlık) reaksiyonlarında görülür. Genellikle immünolojik olarak zedelenen damar duvar- larında koyu eosinofilik boyanan fibrine- benzer homojen görünümlü bir madde birikimiyle karakterlidir. Bu birikim; fibrin, immünoglobulin ve plasma proteinlerinden oluşur. A P O P T O Z İ S Apoptozis, köken olarak apo (ayrı), ptozis (düşen) kelimelerinden oluşmuştur. Apoptoz (kopma, düşme) sonbaharda yaprak dökümünü tanımlayan bir kelimedir. Farklı ve önemli bir hücre ölümü biçimi olan apoptoz, proğramlanmış veya seçici hücre ölümüdür, hücre intiharı ile eş anlamlı olarak kullanılmaktadır. Bir grup içinde belli bazı hücrelerin kendi- kendilerini yok ettikleri proğramlı bu ölüm biçimi, diğer bir hücre ölümü olan nekrozdan farklı olduğu bilinmelidir. Nekroz, yalnızca patolojik durumlarda ortaya çıkar ve iltihabi reaksiyon mevcut-tur. Apoptoz, hiçbir zaman iltihabi reaksiyona neden olmaz. Organizmanın dengeli yaşamını sağlayan apoptoz, fizyolojik olduğu kadar patolojik olaylarda da rol oynamaktadır. Önemi, biyolojik olaylarda gereksiz ve zararlı hücrelerin yok edilişini sağlamasından, organizmanın kendi iç dengesinin devamlılığına katkıda bulunmasından ileri gelmektedir. Apoptoz, fizyolojik ve patolojik olmak üzere pek çok durumda karşımıza çıkar. Fizyolojik Apoptoz : 1-Embriyogenezis sırasında aşırı yapılmış hücrelerin proğramlı olarak ortadan kaldırılması olayında görülür. 2-Erişkinlerde hormon bağımlı dokuların gerilemesinde (involüsyon═ organ atrofisi) görü-lür: Postlaktasyonel (sütten kesilmiş) meme salgı hücrelerinde regresyon, menopozda ovarian follikül atrofisi, menstrüel siklusda endometrium hücrelerindeki ölüm, örnektir. 3-Prolifere hücre topluluklarındaki hücre kayıpları; buna örnek barsak kriptlerindeki epitel hücre sayılarının sabit tutulmaları için, hücre ölümü örnek verilebilir. 4-İltihabi yanıtın sonlandırılması; ekstravazasyondan sonra, iltihabi dokuda görevini ta-mamlamış lökositlerin ölümü, apoptozis ile olmaktadır. 5-Sitotoksik T lenfositler tarafından oluşturulan hücre ölümü: Virus ve tümör hücrelerine karşı oluşturulan bir savunma mekanizmasıdır. Bunların öldürülerek elimine edilmelerini sağ- lar. Patolojik Apoptoz : 1-DNA hasarı: Radyasyon, sitotoksik antikanser ilaçları, aşırı ısı (soğuk, sıcak) ve hipoksi, gibi, nekroz oluşturan bu etkenler, düşük dozlarda uygulandığı zaman hücre intiharını tetikler. DNA, direkt olarak veya serbest radikaller aracılığıyla zedelenebilir. Eğer hasar onarılamazsa, interensek (içsel) mekanizmalar tetiklenerek apoptoz indüke edilir. DNA daki mutasyonların malign değişme riski bulunduğu için, bu durumdaki hücrelerin apoptoz ile yok edilmeleri bir kazançtır. Apoptozda, tümör süpresör (baskılayıcı) gen olan TP53 (p53) ün aracılığı söz konu-sudur. Bir antionkogen olan bu genin (TP53), apoptozu harekete geçiriçi bir etkisi vardır. 2-Hatalı sarmalanmış proteinlerin birikimi. Gen mutasyonları ve serbest radikaller sonucu ortaya çıkan bu proteinler, endoplasmik retikulumda aşırı birikir ve hücrenin apoptotik ölü-müne neden olur. 3-Hücre zedelenmesine neden olan bazı infeksiyonlar, özellikle viruslar, apoptotik ölüme neden olur. 4-Paranşimal organlarda (pankreas, tükrük salgılığı ve böbrek) kanal tıkanmalarından son-ra ortaya çıkan patolojik atrofi. Apoptoz Mekanizması ve Morfolojisi Bu tip hücre ölümünün morfolojik yapısı, koagülasyon nekrozundan farklıdır. Apoptoz da gözlenen başlıca morfolojik değişiklikler, en iyi biçimde elektronmikroskopi ile gözlenebi- lir. Hücre, su ve elektrolit kaybı ile birlikte yapısal elementlerinin yoğunlaşması sonucu dansi-tesinde artma meydana gelir ve volümlerinin yarısını kaybeder ve hacım olarak küçülür. Apoptoz ışık mikroskobunda tanınabilir. Histolojik olarak tek hücre veya hücre gruplarında hematoksilen- eosin ile boyanmış kesitlerde yoğun eosinofilik sitoplazma içinde, yoğun nük- leer kromatin parçalarına sahip, yuvarlak veya oval kitleler olarak görülür. Nüve kromatini yoğundur (piknotik) ve sonuçta karyoreksiz oluşur. Bu sırada hücre süratle büzüşür, önce sito- plazmik tomurcuklar sonra, parçacıklar şeklinde beliren “apoptotik cisimcikler” oluşur. Bun-lar membranla çevrili nükleer ve sitoplazmik organeller içeren parçacıklardır. Bunlar süratle makrofajlar ve komşu doku hücreleri tarafindan fagosite edilir. HÜCRE İÇİ BİRİKİMLER Bazı koşullar altında normal hücreler, anormal miktarlarda çeşitli maddeler biriktirebilir. Bu maddelerin birikimi geçiçi veya kalıcı olabilir. Bunlar hücreye zarar vermeyebilir veya bazen toksik olabilir ve hücrede ciddi zedelenme yapabilir. Maddelerin birikim yeri sitoplaz- ma veya nüvedir; sitoplazmada en çok lisosomlardadır. Bu intrasellüler birikimler üç grupta incelenir: (1)Normal endogenös madde, normal miktarlarda üretilir; fakat bunu kullanacak metobolizma hızı yeterli değildir (normal bir maddenin çok fazla birikmesi). Buna örnek “karaciğer hücrelerinde görülen yağlı değişme” verilebilir. Ayrıca hücre içinde su, glikojen ve protein birikimleri, örnek verilebilir. (2)Anormal endogenös madde birikir; çünki bu endoge- nös maddeyi metabolize edebilecek enzimlerde defekt söz konusudur. Bunun önemli nedeni doğuştan varolan genetik enzimatik defektir ve bu metabolitin parçalanmasında yetersiz olur. Sonuçta hücre içi birikimler ortaya çıkar. Bunlar, “depo hastalıkları” olarak tanımlanır. Tay- Sacks hastalığında gangliosid, Gaucher hastalığında glukoserebrosid ve Niemann- Pick hasta-lığında da sfingomyelin birikimleri, örnek verilebilir. (3)Hücreye dışarıdan alınan anormal ekzojen madde depolanmasıdır. Bunları parçalayıp yok edecek yeterli metabolizma yoktur ve diğer alanlara da taşınamadığı için, bu birikimler ortaya çıkar. Solunum yoluyla alınan kar-bon- kömür veya silika partiküllerinin akciğerde birikimi ve tatuaj (döğme) pigmentleri buna verilebilecek en güzel örnekleridir. Bu pigmentler makrofajlardaki fagolisosomlarda dekatlar-ca kalabilir. Lipidler: Sayfa 11 de yağlı değişmeyi (yağlanma) tekrar okuyunuz. Kolesterol: Makrofajlar, iltihabi bir alandaki nekrotik hücrelerin lipid artıklarını fagositik aktiviteleri ile tutarlar. Bu da bir çeşit hücre içi lipid birikimidir. Bu hücrelerin sitoplazmaları, küçük lipid vakuolleri ile dolar ve köpüksü bir görünüm alır. Bunlara “köpük hücreleri” adı verilir. Aterosklerozda düz kas hücreleri ve makrofaj sitoplazmaları, lipid vakuolleri (koleste- rol) ile doludur. Bunlara aterosklerotik plak denir. Proteinler: Lipid birikimine oranla çok daha nadir görülür. Hücreler içindeki protein fazlalığı, morfolojik olarak sitoplazmada görülebilen pembe renkli hyalin damlacıklar şeklin-dedir. Hücre içindeki protein birikimi; (a)hücrenin aşırı proteine maruz kalıp, hücreye alınma-sı şeklinde olur veya (b)hücrede protein sentezinin aşırı yapılması şeklindedir. Bu birikim şe-killerine örnek vermek istersek; böbrek, albumini glomerüllerden filtre ederken, proksimal tüplerden az bir kısmını tekrar geri emer. Aşırı proteinüriye (idrarda fazla protein kaybı) neden olan böbrek hastalıklarında (glomerülonefritler), haliyle protein daha fazla miktarda reabsorbsiyona uğrayacaktır. Bu protein reabsorbsiyonu nedeniyle tüp epitel hücrelerinde aşırı birikme meydana gelir. Plasma hücrelerinde muhtemelen antijen uyarılarına yanıt olarak gra-nüllü endoplasmik retikulumda sentezlenen immünoglobulin birikimi olursa, “Russell cisim-ciği” olarak adlandırılan homojen eosinofilik inklüzyonlar (cisimcikler) görülür. Glikojen: Glikoz veya glikojen metabolizma bozukluğu olan hastalıklarda hücre içinde aşırı miktarda glikojen birikimi görülür. Glikojen birikimini, su veya yağ vakuollerinden ayır- mak gerekir. Glikojen, sitoplazmada PAS pozitif şeffaf (saydam) vaküoller şeklinde görülür. Diyabetes mellitus (şeker hastalığı), glikoz metabolizma bozukluğunun başlıca örneğidir. Bu hastalıkta glikojen; karaciğer hücreleri, pankreasdaki Langerhans adacıklarındaki beta hücre-leri ve kalb kası hücrelerinde (kardiyak myosit) olduğu kadar, böbrek tüp epitellerinde de biri- kir. Ayrıca “glikojen depo hastalıkları” veya “glikogenoz”lar olarak adlandırılan, birbiriyle yakın ilişkili bir grup genetik hastalıklarda hücre içinde glikojen aşırı birikir. Bu hastalıklarda glikojenin, yapım ve yıkımıyla ilgili enzim defekti nedeniyle metabolize edilemez ve aşırı birikim nedeniyle, sekonder hücre zedelenmesi ve hücre ölümü ortaya çıkar. Hyalin Değişiklik Hyalin terimi; hücre içi birikimin veya hücre incinmesinin spesifik işeretinden daha çok, tarif edici bir terim olarak kullanılır. Hücre içinde veya ekstra boşluklarda hyalin olarak tanımlanan değişiklikler hematoksilen- eosin ile boyanan rutin histolojik kesitlerdeki homoje- nös, camsı, saydamsı pembe görünümde madde birikimleridir. Bunlar intrasellüler birikimler veya ekstrasellüler depositler olarak tarif edilir. İntrasellüler hyalini değişikliklere örnekler şunlardır: (1)Aşırı proteinüri de, böbrek tüp epitel hücrelerinde geri emilen protein, hyalin damlacıklar şeklinde görülür. (2)Plasma hücrelerinde küresel hyalin depositler şeklinde immunoglobulin birikimleri olur (Russell cisimcikleri). (3)Bir çok viral enfeksiyonda, nüve veya sitoplazmada hyalin inklüzyonlar görünümünde oluşumlar vardır. Bunların bir kısmı, viral nükleoprotein birikimleridir. “İnklüzyon cisimcikler”i olarak adlandırılır. (4)Alkoliklerin karaciğer hücrelerinde “alkolik hyalin” denilen hyalin inklüzyonlar görülür. Ekstrasellüler hyalini analiz etmek bir dereceye kadar güçtür. Eski skar (nedbe) yerindeki kollagen fibröz doku, hyalinize bir görünüm alır. Uzun süren hipertansiyonda ve diyabetes mellitusda damar duvarları özellikle böbrek, hyalinize bir şekil alır. Ekstrasellüler hyaline diğer bir örnek, kronik haraplanmaya neden olan böbrek glomerüllerindeki hyalindir. Amiloid de Hematok-silen- eosin boyasında, hyalini bir görünüm verir. Görüldüğü gibi, çok sayıda ve birbirinden farklı mekanizmalar bu değişikliğe neden olabilir. Hyalini değişiklik görüldüğünde, etyoloji-deki farklı patolojik durumlar nedeniyle lezyonun tanımlanması önem arzeder. PİGMENTLER Pigmentler renkli maddelerdir, Latince boya- renk anlamına gelir. Melanin gibi, hücrenin normal içeriği olabilir, hücrenin içinde sentez edilir (endojen pigment). Diğer bir bölümde ise, bazı durumlarda organizmaya dış çevreden gelen birikimlerdir (ekzojen pigment). En sık görülen ekzojen pigment, karbon veya kömür tozudur. Bunlar medeni yaşamın en önemli hava kirliliği etkenleridir. Büyük sanayi şehirlerinde yaşayanlarda görülebildiği gibi, asıl kö- mür madenlerinde çalışan işçilerde çok belirgindir. Solunumla alındığında alveolar makrofaj- lar tarafindan tutulup, bölgesel trakeo- bronşial lenfatik kanallardan lenf düğümlerine taşınır. Akciğer dokusunun bu pigment birikimi ile kararması “antrakozis” olarak adlandırılır. Kömür tozu birikimleri, fibroblastik reaksiyona neden olarak anfizem ve hatta ciddi bir akciğer toz hastalığı olan “kömür işçisi pnömokonyozu” adı verilen akciğer patolojilerine neden olur. İnhalasyonla alınan İnorganik tozların cinsine göre; antrakozis dışında asbestozis (amyant) ve silikozis de örnek verilebilir. Bunlar, “pnömokonyoz” lar olarak adlandırılan, çevresel hasta-lıklardır. Bunların içersinde en zararsızı antrakozisdir. Metal, cam ve taş partiküllerine silika tozları denir. Bu alanlarda çalışan silika tozları etkisi altında kalan işçilerde, silikozis görülür. Asbestozisde, asbest tozlarının inhalasyonu söz konusudur. Diffüz interstisyel fibrozise neden olur ve bronkojenik karsinoma ile malign mezotelyoma gelişme riski vardır. HÜCRE ZEDELENMESİ, ADAPTASYON ve HÜCRE ÖLÜMÜ Tatuaj (Döğme) : Dekoratif amaçla vücudun değişik bölgelerindeki deriye boyalı şimik maddelerle değişik resimler yapılmasıdır. Deriye ekzojenös metalik veya bitkisel pigment verilmesi sonucu oluşur. İnoküle pigmentler, dermal makrofajlar tarafından fagosite edilir. Bu pigment herhangi bir iltihabi yanıt oluşturmaz ve zararsızdır; fakat kullanılan bu maddeye karşı allerjisi olanlarda reaksiyonlar gelişir. Ayrıca kullanılan malzeme aracılığıyla AIDS, he-patit B ve C’ye yakalanma riski olabilir. Amalgam Tatuaj : Dental dolgu yapımı sırasında amalgam parçacıklarının oral yumuşak doku içine implante olması durumunda, söz konusu olur. Klinik olarak mavi- kahverenkte ve hatta bazen siyah renkte pigmentasyon görülür. Mikroskopik düzeyde, dev hücre oluşumları gösteren bir reaksiyon vardır. Ayırıcı tanı için, hematom ve nevusu düşünmeliyiz. Endojen Pigmentler : Bu grupta lipofuskin ve melanin pigmentleri ile hemoglobin türev-leri olan hemosiderin ve bilirubin gibi, pigmentler vardır. Lipofuskin : Latince "kahverengi lipid" anlamına gelen sarı- kahverenk'de, ince granüler sitoplazmik bir pigmenttir. Yaşlı kişilerde, ciddi malnütrisyon ve kanser kaşeksisinde, özellik- le kalb ve karaciğer hücrelerinde görülür. Bu organlarda hacım küçülmesiyle beraber görüldü- ğünden “brown atrofi” olarak da bilinen bu yıpranma pigmenti, hücre içi sindirilmemiş mater- yale örnek verilebilir. Serbest radikal hasarı, lipofuskin birikimine neden olabilir. Antioksidan savunma mekanizmalarının kaybına yol açan çevresel etkenlerle oluşabilir. E vitamini gibi, antioksidanların eksik olduğu durumlarda karşımıza çıkmaktadır. Bu pigmentin hiçbir önemi yoktur. Lipofuskinin kendisi hücre ve fonksiyonlarına bir zarar vermez. Sadece fizyolojik ve patolojik atrofi veya kronik zedelenme gibi, regresif değişiklikleri işaret eder. Melanin : Melanin, tirozinin enzimatik oksidasyonu ile üretilen bir pigmenttir. Melanin sentezi, epidermisin bazal tabakasında bulunan melanositlerde yapılır. Kahverengi-siyah renk- te olan bu pigmentin adı Yunanca siyah anlamına gelen "melas" kelimesinden türemiştir. Melanositlerin prekürsörleri (öncüleri) olan melanoblastların, embriyonik gelişim devresinde nöral kristadan göç ederek son bulundukları yer olan bölgeye geldikleri düşünülür. Bu hücre-lerin yuvarlak gövdeleri bu gövdeden uzanan düzensiz uzantıları vardır. Bunlar epidermis içine doğru dallanarak, bazal ve spinal tabakadaki hücreler arasına uzanır. Melanin melano-sitlerde sentezlenir. Bu işlem tirozinaz enziminin varlığında olur. Tirozinaz aktivitesiyle tiro-zin önce dihydroxyphenylalanine (DOPA) oluşturur ve daha sonra bir dizi dönüşüm işlemi ile melanin ortaya çıkar. Ultrastrüktürel düzeyde tirozinaz, granüler endoplazmik retikulumda sentezlenir ve Golgi kompleksinin veziküllerinde biriktirilir. Membranla çevrili bu küçük organellere "melanozom" adı verilir. Bunlar ışık mikroskobunda görülebilen pigment granül-lerini oluşturur. Melanositlerin normalde görüldüğü yerler; deri, kıl follikülleri, retina pigment epiteli, lep-tomeninks ve iç kulak bölgesidir. Derimiz bu pigment sayesinde renk kazanır. Güneş ışınları-nın (ultraviyole)x etkisiyle derideki melaninin miktarı artar, derinin esmerleşmesi olarak kendini belli eder. Melanin ve melanositler birçok yönden öneme sahiptir. Melaninin fonksi-yonu koruyuculuktur. Bu pigment sayesinde deri ve göz, güneş ışığının zararlı etkisine karşı daha iyi korunur. Melanin pigmenti az olan beyaz derili kişiler, güneşin zararlı etkilerine karşı daha hassasdır. Güneş altında uzun süre çalışan beyaz derili çiftçilerde ve gemicilerde deri kanseri görülme oranı, kapalı yerlerde çalışanlara oranla çok daha yüksektir. Fazla güneşte kalan insanda, melanin pigmentasyonu artar. Kişi koyu renk alır, bronzlaşır. Bu bronzlaşma ile vücut kendini güneşin zararlı ışınlarından korumaya çalışır. Bir zaman sonra, pigment artımı deriyi korumak için yeterli olmaz. Vücut derisi kendini korumak için, bu sefer kalın-laşmaya başlar, hiperplazi gelişir. Sayıca artan hücrelerde dejenerasyon ve de mutasyonun oluşumuyla kansere dönüşme riski ortaya çıkar. Melanogenesisin lokal artması, çoğu kişilerde görülen ve halk arasında "ben" adı verilen, melanositlerin proliferatif lezyonlarını (pigmentli nevusları) ortaya çıkarır. Bunlar deride çok yaygın olarak bulunan siyah- kahverenkte hafif kabarık oluşumlardır. Benign bir lezyon olan nevus'un malign karşıtı, kanserin oldukça öldürücü bir tipi olan, malign melanomadır (mela-no karsinoma). Dermis, ağız mukozası, retina ve çok nadir olarak da, leptomeninks’den geli- şen malign melanoma olguları vardır. Melanin sentezi, adrenalxx (sürrenal) ve hipofizin kontrolü altındadır. Hipofizden adreno- kortikotropik hormon (ACTH) yanısıra, melanosit stimüle eden hormon (MSH) da salgılanır. Adrenal korteksden salgılanan glikokortikoid (kortizol, kortikosteron, kortizon gibi, bir grup hormonu kapsar) ler ve mineralokortikoidler (aldosteron), feed-back regülasyonu ile hipofiz üzerinde ACTH salgılanmasını kontrol eder. ACTH ve MSH düzeyindeki artmalar, melanin pigmentasyonunda da artmalara neden olur. Addison hastalığıxxx (ki bunda primer adrenokor-tikal yetmezlik -hipoadrenalizm- söz konusudur) buna güzel bir örnektir. Hipoadrenalizmde, adrenal korteksden salgılanan ACTH antagonistleri olan adrenokortikal hormon (örneğin kortizol salgısı baskılandığı zaman) oluşamayacağı için, hipofiz üzerindeki feed-back frenleyi ci etkisi de ortadan kalkar. Adrenal korteksin hipofiz üzerindeki kontrolü yok olduğundan, haliyle kompensatuvar olarak hipofiz daha fazla ACTH ve MSH salgılayacaktır. Bunların aşırı salgılanmaları da, deri ve mukozalarda pigmentasyon artımına neden olur. x Ultraviyole (morötesi); çok kısa, enfraruj (kızılötesi); çok uzun dalga boyuna sahip, güneşin zararlı ışınlarıdır. xx Adrenal: ad- ek + renal Surrenal: sur(supra)- üst + renal xxxAddison Hastalığı(Kronik Adrenal Korteks Yetmezliği): Adrenal yetmezlik (hipoadrenalizm) primerdir; sürre-nalin kendisinde bir lezyon vardır veya hipofizin ACTH salgılanmasında bir yetersizlik söz konusudur ve sekon-der hipoadrenalizm olarak adlandırılır. Primer hipoadrenalizm, Addison hastalığı olarak da bilinir. Bunda böbrek üstü bezi hasarlanmıştır. Addison hastalığı, adrenal korteksin progresif destrüksiyonuna bağlı olarak ortaya çıkan, çok nadir rastladığımız bir hastalıktır. Klinik belirtilerin ortaya çıkması için, salgılığın % 90’ının harab olması gerekir. Bu genelde iki şekilde karşımıza çıkar. Otoimmün adrenalitis; olguların % 60-70’sini oluşturur. Enfeksiyonlar; Tuberküloza bağlı hasar en çok rastlanılan bir nedendir. Özellikle tuberküloz adrenalitis’i iltihabi olguların % 90’ını oluşturur. Klinik olarak, deride ve ağız mukozasında melanin pigmentasyonunda artma, hipo-tansiyon şiddetli anemi, halsizlik, kas zayıflığı, kilo kaybı, anoreksi (iştahsızlık) ve gastroentestinal semptomlar (kusma, diyare) görülür. Mineralokortikoid (aldosteron) yetmezliği nedeniyle, başta sodyum (Na) iyonları kaybı ve buna bağlı olarak su kaybı meydana gelecektir. Bu durum, kan hacmı azlığını ve hipotansiyon belirtilerini doğuracaktır. Aynı zamanda potasyum (K) iyonları retansiyonu (hiperpotasemi-hiperkalemi) görülür. Önemli tehlike, hipotansiyonun daha sonra, “kardiovasküler şok” tablosunu meydana getirmesidir. Hasta tedavisi, aldosteron ve tuz verilerek yapılır. -- Pigmentasyon artımı “hiperpigmentasyon” olarak adlandırılır. Aşağıdaki şu lezyonlar-da melanin artımı söz konusudur. Addison Hastalığı (Kronik Adrenal Korteks Yetmezliği): Multipl Nörofibromalar (Nörofibromatozis): Periferal sinirlerden kökenli değişik bü-yüklüklerde ve çok sayıda (multipl) nörofibromlar vardır. Bununla beraber, deride ve ağız mukozasında sütlü-kahve lekeleri (cafe-au-lait) halinde melanin pigmentasyonu görülür. Oto-zomal dominant geçişli bir hastalıktır. İki tipi vardır. Nörofibromatozis tip1 (von Recklingha-usen hastalığı) de, az da olsa malignleşme olasılığı vardır. Nörofibromatozis tip 2, bilateral akustik (vestibüler) schwannoma ve diğer beyin tümörleriyle beraber görülür. Bu her iki has-talık genetik ve klinik olarak birbirinden farklıdır. Olguların % 90 ı tip 1 dir. Tip 2, çok daha nadir görülür. Peutz- Jeghers Sendromu : İnce barsaklarda multipl polipozis ile beraber ağız mukoza- sında ve dudakta melanin pigmentli lekeler vardır. McCune-Albrigt Sendromu : Kemiklerde multipl odaklar halinde fibröz displazi ile bera- ber, deride ve ağız mukozasında melanin lekeleri vardır. Bunlara “cafe- au- lait (kahve) leke-leri denir. -- Deride melanin pigmentasyonunun azalmasına “hipopigmentasyon” denir ve görüldü-ğü durumlar: Skatris (Nedbe) Yerleri : Cerrahi işlem veya travmalar sonucu ortaya çıkan skatris yerle-rinde, lepra hastalarında lezyonların bulunduğu alanlardaki skatris yerlerinde pigment yoktur. Hormonal Nedenler : Kastre (hadım) erkeklerde ve ayrıca hipofiz hipofonksiyonunda vücuttaki pigment miktarı azalır. Albinolar : Bu tip kişilerde kalıtsal tirozinaz enzim defekti vardır. Bu enzim yokluğunda, tirozinin DOPA ya dönüşme yetersizliği söz konusudur. Bu nedenle albinolar, melanin sentez edemez, derileri ve kılları çok açık renktedir. Bu kişiler güneş ışığına ileri derecede duyarlıdır Vitiligo : Deride leke tarzında pigmentsiz alanların bulunmasıdır ve bu edinsel (kazanılmış akkiz, sonradan oluşan) bir lezyondur. Lezyonların dağılımı ve boyutları çeşitlilik gösterebilir. Bu hastalığın nedeni son araştırmalara göre, daha çok otoimmün bir bozukluk olduğu yönün- dedir. Hemosiderin : Hemoglobinden türeyen hemosiderin, altın sarısından- kahverengine kadar değişen renklerde görülen bir pigmenttir. Demirin hücre içinde birikme şekline örnektir. Kanamanın doğal sonucu hemosiderin pigmenti oluşur. Hücre içinde demir, apoferritin adı verilen proteine bağlı ferritin miçelleri şeklinde depolanır. Hücre ve doku içinde biriken demir histokimyasal olarak Berlin Mavisi denilen özel bir boya ile gösterilir. Makroskopik kanamalar veya yoğun vasküler konjesyonun neden olduğu mikroskopik ka-namalar, demirin lokal artımını ve bunu takiben hemosiderini ortaya çıkarır. Buna en iyi ör-nek, zedelenmeden sonra görülen çürüktür (ekimoz). Çürükler, lokalize hemosiderozisin en iyi örneğidir. Kanama bölgesindeki eritrositlerin yıkımıyla ortaya çıkan kırmızı kan hücre artıkları, makrofajlar tarafından fagoside edilir. Hemoglobin içeriği lisosomlar tarafından katalize edilir ve hemosiderine dönüştürülür. Çürükte görülen renk değişikliği, bu dönüşüm- deki aşamaları yansıtır. Kronik kalb yetmezliğinde uzun süreli staz nedeniyle oluşan konjesyon, akciğerde pig-mentasyon görülmesine neden olur. Akciğer alveollerinde kapillerlerin yırtılması ve geçirgen- liğinin artması nedeniyle eritrositler dışarı çıkar. Eritrositler alveolar makrofajlar tarafından fagosite edilir. Sonuçta hemosiderin oluşur. Akciğer alveollerinde bulunan hemosiderinle yüklü bu tür makrofajlara “kalb hatası hücreleri” adı verilir. Nedeni ne olursa olsun, demirin sistemik yüklenmesi, çeşitli organ ve dokularda hemosiderin birikimine neden olur. Bu şekle “hemosiderosis” adı verilir. Sistemik hemosiderozisin birçok şeklinde, intrasellüler pigment birikimi çoğu durumlarda paranşimal hücrelere zarar vermez veya organ fonksiyonunu boz- maz. Hemosiderozisi meydana getiren pigment birikimi; (1)besinlerle alınan demirin emili- mindeki artım ve kontrolsüz kan yapıcı tabletlerin alımı (2)demirin kullanımındaki yetersiz- lik, (3)hemolitik anemiler ve (4)kan nakillerinde (kırmızı kan hücre transfüzyonları), ekzoje- nöz demir yüklenmesine neden olur. Demirin normalden çok fazla (yoğun) birikimi “hemo-kromatozis” olarak bilinir. Biriken demir, çeşitli organlarda disfonksiyona ve hücre ölümleri-ne neden olur. Kalb yetmezliği (kardiyomyopati), siroz (kronik karaciğer hastalığı) ve diyabe-tes mellitusu (pankreas adacık hücreleri ) içeren doku- organ zararları oluşabilir. Bilirubin : Bilirubin, safrada bulunan ve safranın sarı- yeşil rengini veren başlıca pig- menttir. Kırmızı kan hücrelerinin mononükleer fagositik sistemde parçalanmasıyla (karaciğer- deki kupffer hücrelerinde) serbestleşen hemoglobinden türemiştir; fakat demir içermez. Orga- nizmada normal yaşam sürelerini (100- 120 gün) tamamlayan bu eritrositlerin parçalanma- sıyla konjuge olmamış (ankonjuge) bilirubin meydana gelir. Bu ankonjuge bilirubin, kan pro- teinlerine (albumin) bağlanarak karaciğer parankim hücrelerine (hepatosit) taşınır ve burada işlenerek konjuge bilirubine çevrilir. Bu işlem spesifik bir enzim (bilirubin uridindifosfat glukuronosil transferas) ile oluşur. Daha sonra safra aracılığıyla bağırsağa dökülür. Bağır-saktaki bakteriyel enzimlerin etkisiyle “urobilinojen”e dönüştürülür. Bu pigmentin bir bölümü (% 20) tekrar barsaktan geri emilerek (reabsorbe olarak), karaciğere döner. Bunun bir bölümü de idrarla atılır. Barsaktaki urobilinojenin geri kalan bölümü, daha ileri bir işlemle “ürobilin” (stercobilin)’e dönüşür. Dışkının bilinen rengini (sarı- kahverengi) veren bu maddedir. Kan plasmasında total bilirubinin normal miktarı 100 ml’de 0.3- 1 mg’dır. Kandaki biliru-bin düzeyi (hem konjuge hem de ankonjuge) 2- 3 mg’ın üzerine çıktığında (bazı durumlarda 30- 40 lara çıkabilir), deri ve sklerada sarı bir renk oluşur. Bu renk değişikliği, dokuların safra pigmenti birikimine bağlı olarak, sarıya boyanmasından ileri gelmektedir. Klinik olarak “sarı-lık” (ikter) diye tarif edilir ve meydana geliş biçimlerine göre şöyle incelenebilir. (1)yoğun eritrosit yıkımı (hemoliz artması), (2)hepatosellüler disfonksiyon ve (3)intrahepatik veya eks-trahepatik safra obstrüksiyonu ile safranın tutulması (kolestaz) sonucu sarılık ortaya çıkar. Konjuge bilirubin; suda çözünür, nontoksiktir ve idrarla atılır. Ankonjuge bilirubin suda çö-zünmez, idrar ile atılmaz, toksiktir ve bilirubinin bilinen bütün toksik etkilerinin nedenidir. (1) Hemolitik (Prehepatik) Sarılık: Kırmızı hücre parçalanmasına bağlı bilirubin artı- mını yansıtır. Eritrosit yıkımının yoğun olduğu durumlarda sarılık görülür. Hemolitik anemi- lerde, ağır enfeksiyonlarda, yılan zehiri gibi, dolaşımdaki toksik maddelerin neden olduğu eritrosit destrüksiyonlarında ve kan transfüzyon uyuşmazlıklarında bilirubin miktarı aşırı artar. Bu bilirubin, ankonjuge bilirubindir. Yeni doğanlarda fizyolojik olarak hemoliz fazladır. Ayrıca, karaciğerde bilirubin konju-gasyonu ve atılımını sağlayan hepatik mekanizmalar, hayatın ilk iki haftasına kadar tam ola-rak gelişmediğinden, bütün yenidoğanlarda geçici (2- 4 gün), hafif bir ankonjuge hiperbiliru-binemi ortaya çıkar. Buna yenidoğanın fizyolojik sarılığı (neonatal sarılık) adı verilir. Bu durum tehlikesizdir. Bebeklerde görülen diğer bir tehlikesiz olan sarılık, maternal (anneye ait) serum sarılığıdır. Anne sütü ile beslenen bazı bebeklerde muhtemelen anne sütündeki beta glukuronidazlar nedeniyle oluşur. Tehlikeli olanı, Rh uyuşmazlığı gibi nedenlerle karşımıza çıkanıdır. Rh uyuşmazlığında, aşırı hemoliz olduğundan, ankonjuge bilirubin düzeyi çok yükselir ve “yenidoğanın hemolitik sarılığı” (eritroblastosis fetalis)x gelişir. Bu hastalık nedeniyle meydana gelen yoğun eritrosit yıkımına bağlı olarak ortaya çıkan bilirubin, yeni doğanların kapiller damarlarının geçirgenliği fazla olduğundan beyin dokusuna geçerek, doğumdan sonra “kernikterus” (bilirubin ansefalopatisi) adı verilen ağır nörolojik hasara yol açarak, sekeller bırakabilir veya bebeğin ölümüne yol açar. Adültlerde ankonjuge bilirubin seviyesi yüksek olsa bile, kan- beyin bariyeri nedeniyle kernikterus oluşmaz. (2) Hepatosellüler (Hepatik) Sarılık: Karaciğer hücre hasarı olan yoğun hepatosellüler nekroz ve siroz gibi, durumlarda görülür. Fazla bilirubin konjuge ve ankonjuge olmak üzere karışıktır. Karaciğer hücresinin fonksiyon bozukluklarında, bilirubinin alımında azalma ola-bildiği gibi, karaciğer hücresinde yetersiz konjugasyon da söz konusu olabilir. Karaciğer parankim hücrelerinin zedelenmeleri sonucu, bilirubin salgılanmasında intrahepatik blokaj da olabilir. Karaciğer hücresine verilen zarar, enzim sistemini etkilemiş olabilir. Örneğin viral hepatitis, kimyasal veya ilaç toksisitesi yanısıra karaciğerin mikrobiyolojik enfeksiyonları, konjugasyonu ve safra ekskresyonunu (ifrazat) bloke edebilir. Bu şekilde dolaşımdaki biliru-binin miktarı artmış olur. (3) Obstrüktif (Posthepatik) Sarılık: Bu grupta genellikle safra kanalı obstrüksiyonu söz konusudur. Ekstrahepatik tıkanmaların başlıca nedeni; safra kanalı ve pankreas karsinomaları ile safra kanalı taşlarıdır. Bu tıkanmalar uzarsa, hepatositlerde nekrozlar ortaya çıkar ve “bili- er siroz” meydana gelebilir. Çok nadiren de yenidoğanlarda bir anomali olarak, intrahepatik ve ekstrahepatik obstruksiyon, hepatositlerdeki primer defekt veya safra duktuslarının atrezisi ve agenezisi şeklinde karşımıza çıkabilir. Karaciğerdeki konjuge bilirubin, safra yollarındaki tıkanma nedeniyle bağırsağa akamaz ise, bağırsakta safra pigmenti olmayacağı için, feçes açık renkte olur. Ayrıca bağırsakta safra eksikliği nedeniyle, K vitamini sentezi yapılamaz (Vita- min K; endojen olarak E. coli varlığında barsakda sentezlenmekteydi). Vitamin K eksikliği veya diffüz karaciğer hastalıklarında, hepatositlerdeki disfonksiyonun etkisiyle, vitamin K’ya bağlı koagülasyon faktörlerin (protrombin ve diğer pıhtılaşma faktörleri) sentezinde meydana gelen azalmayla koagülopati meydana gelir, hemorajik diatez’e (anormal kanamalar) neden olur. Bu spontanös kanama sonucu hematomlar, hematüri, melena, ekimozlar ve dişeti kana- maları görülür. Azalmış safra akışının diğer sonuçları; yağda eriyen A, D ve K vitaminlerinin yetersiz absorbsiyonudur. x Eritroblastosis Fetalis: Maternal ve fetal kan grubu uyuşmazlığı sonucu annede oluşmuş olan antikorların, fetus’da neden olduğu bir hemolitik anemidir. Rh(-) bir annenin fetusu, babanın ki gibi Rh(+) olursa, anne ve onun bebeği arasında Rhesus (Rh) uyuşmazlığı meydana gelebilir.Anne; Rh antijeninden yoksun (Rh-) ise, fetusda mevcut olan Rh antijenlerine (Rh+) karşı antikorlar üretir. Rh(-) anne eritrositleri, Rh(+) fetus eritrositle- ri tarafından sensitize edilmiştir. Fetal eritrositler gebelik boyunca plasentadan sızarak annenin dolaşımına katı- lır. En büyük geçiş, doğum esnasında olur. Oluşan bu antikorlar, sonraki gebeliklerde plasenta yolu ile fetusa geçerek, fetusa ait kırmızı hücrelerin destrüksiyonuna (lizise, hemoliz) neden olur. Ortaya çıkan sendrom, “eritroblastosis fetalis” olarak bilinir. Yenidoğanın bu hemolitik hastalığında meydana gelen anemi, uterus içinde fetal ölüme yol açabilecek kadar şiddetli de olabilir. Anemiye reaksiyon olarak fetal kemik iliği, olgunlaşmamış eritrositleri (eritroblastları) fetusun dolaşımına katar. Eritroblastosis fetalis terimi; oluşan eritrosit destrüksiyo- nunu kompanse etmek için, fetal dokulardaki kırmızı kan hücre prekürsörlerinin (hematopoesis) aşırı artmasını anlatır. Rh uyuşmazlığının patogenezindeki sensitizasyonun önemi anlaşıldıktan sonra, bu hastalık belirgin bir şekil- de kontrol altına alınmıştır. Rh sisteminin içerdiği pekçok antijenden yalnızca D antijeni, Rh uyuşmazlığının başlıca nedenidir. Rh(-) anneye, Rh(+) bebeğin doğumundan hemen sonra, anti- D globulin uygulanmaktadır. Anti- D antikorlar, doğum sırasında maternal dolaşıma sızan fetal eritrositlerdeki antijenik bölgeleri maskeleye- rek, Rh antijenlerine karşı olan duyarlılığı engeller. Eritroblastosis fetalis; belirtilerine göre üç sendroma ayrılabilir. Şiddetli komplikasyonlar olmadan yaşam mümkün olan, yalnızca hafif anemiyle seyreden “yeni doğanda konjenital anemi” olarak adlandırılır. Şiddetli hemoliz vakalarında anemiye bariz sarılık eşlik eder, “ikterus gravis” sendromu oluşur. Dolaşım bozukluğundan, anazarka denilebilecek kadar şiddetli bir ödemin ortaya çıkışı, buna eşlik eden sarılık, “hidrops fetalis” olarak adlandırılan bir klinik tabloyu da ortaya çıkarabilir. Hidrops Fetalis: Fetusdaki yaygın ödemi anlatmak için kullanılan bir terimdir. İntrauterin gelişim süresinde progresif sıvı birikimi sonucu oluşur, genellikle ölümle sonuçlanır. Geçmişte fetus ile anne arasındaki Rh uyuş- mazlığı sonucu ortaya çıkan hemolitik anemi, hidrops fetalisin en büyük nedeniydi. Bu tip, immun hidrops ola-rak bilinir. Gebelikdeki kan uyuşmazlığı tedavi edilebildiğinden, immun hidrops’un görülme sıklığı, zamanımız-da düşmüştür. Non- immun hidrops’un başlıca nedenleri ise; kardiovasküler defektler, kromozomal anomaliler ve fetal anemidir. Rh veya ABO uyuşmazlığı dışında başka nedenlerle de fetal anemi oluşur. Bu da hidrops feta-lis ile sonuçlanabilir. KARACİĞER Karaciğerin Normal Histolojik Yapısı Karaciğerin temel mimari yapı birimi, lobdur. Her lobun merkezinde, hepatik ven ağının uzantısı (santral ven) bulunur. Lobun periferinde, portal alan adı verilen bu bölgelerde fibröz doku içinde hepatik arter, portal ven dalları, sinir lifleri, safra kanalları ve lenfatik damarlar gibi, pek çok portal kanal bulunur. İki karaciğer hücresi arasında intralobüler safra kanalikül-leri denilen ince tübüler yapılar bulunur. Bunların içindeki safra, kan akımının ters yönünde, yani lobülün merkezinden portal alanlardaki safra kanallarına akar. Lobüller içindeki hepatositler ışınsal olarak dizilmiş ve bir duvarın tuğlalarına benzer biçimde düzenlenmiştir. Karaciğer hücrelerinin yaptığı bu tabakalar arasındaki boşluklara, karaciğer sinuzoidleri adı verilir. Bunlar labirent şeklinde ve sünger benzeri bir yapı oluştura- cak biçimde serbestçe anastomozlaşırlar. Bu sinuzoidal kapillerler, pencereli endotel tabakala- rından oluşan damarlardır. Endotel hücreleri ile alttaki hepatositler arasında kalan aralığa, Disse aralığı adı verilir. Endotel hücrelerine ek olarak, sinuzoidler Kupffer hücreleri adı veri- len makrofajları da içerir. Bu fagositik hücrelerin başlıca fonksiyonları; yaşlı eritrositleri me-tabolize etmek, hemoglobini sindirmek, immunolojik olaylarla ilgili proteinleri salgılamak ve kalın barsaktan portal dolaşıma geçen bakterileri ortadan kaldırmaktır. Karaciğere kan, iki farklı kaynaktan gelir: (a)Kanın %60- 70’i abdominal (pankreas ve da-lak) organlardan gelen oksijenden fakir, bağırsaklardan emilen besinleri içeren (besinden zen-gin) kanı taşıyan portal ven’den gelir; (b)%30- 40’ı ise, oksijenden zengin kanı sağlayan he-patik arter’ den gelir. Portal alana gelen arter ve ven kanı, karaciğer lobülünün çevresinden merkeze doğru sinuzoidler boyunca akar. Sinuzoidlerde karışan bu kan, vena santralis ve daha sonra da hepatik venlerle vena kava inferiyora akar. Karaciğerin vücudun metabolik dengesini sağlamak için, çok büyük ve önemli işlevleri vardır. Karaciğer dokusu; (1)besinlerle alınan proteinler, karbonhidratlar, yağlar ve vitaminle-rin metabolize edilmesi (işlenmesi) ve depolanması, (2)plasma proteinlerin ve enzimlerin sen-tezi, (3)pek çok endogen atık ürünlerin ve ekzogen toksinlerin detoksifikasyonu ve bunların safra ile atılması gibi, pek çok fizyolojik fonksiyona sahiptir. Çoğu ilaç, karaciğer tarafından metabolize edilir. Anlaşılacağı gibi, karaciğer dokusu; metabolik, toksik, mikrobiyal ve dola-şım bozuklukları olmak üzere çeşitli etkilere açıktır. Bazı durumlarda hastalık, karaciğerin primer olayıdır. Bunun dışında karaciğeri sekonder olarak etkileyen kardiyak dekompansas-yon, diyabet ve ekstrahepatik infeksiyonlar gibi, çok sık görülen hastalıklar vardır. Karaciğer muazzam bir işlevsel kapasiteye sahiptir. hepsi olmasa da çoğu fulminant hepa-tik hastalıklar dışında rejenerasyon oluşur. Normal bir karaciğerin %60’ının cerrahi olarak çıkarılması durumunda minimal ve geçici bir karaciğer fonksiyon yetersizliği görülür. Karaci-ğer kitlesinin büyük bir bölümü 4- 6 hafta içinde rejenerasyonla yeniden oluşur. Masif hepa-tosellüler nekrozlu kişilerde, hepatik retikulin çatı harap edilmemişse, mükemmele yakın bir restorasyon oluşabilir. Kronik sağ ventriküler kalb yetmezliği, karaciğerde kronik pasif venöz konjesyona neden olur. Hepatik vendeki basıncın artmasına bağlı olarak intralobüler santral vendeki basınç da artar. Ortaya çıkan sinuzoidal dilatasyon ve konjesyon, santral ven çevresindeki hepatositlerde hipoksi ve iskemiye bağlı hasarlar ortaya çıkarır. Buna bağlı olarak bu karaciğer hücrelerinde dejenerasyon, yağlı değişme ve sonuçta nekroz meydana gelirken, buna tezat periferdeki he-patositler (portal alan çevresi) normal kalabilir. Hepatosellüler nekroz sonucu fibrozis meyda-na gelebilir. Karaciğerin temel yapısındaki bağ dokusu ağı haraplanmışsa, siroz ortaya çıkar. SİROZ Siroz, kronik karaciğer hastalıklarının irreversibl bir şeklidir ve “siroz” adı da bu hastalığı tanımlayan bir terimdir. Çeşitli kronik karaciğer hastalıklarının son döneminde ortaya çıkan bir sekeldir. Batı ülkelerinde ilk on içindeki ölüm nedenlerinden birisidir. Alttaki etiyolojiyi belirtmesinden başka, sirozun doyurucu bir sınıflaması yoktur. Sirozun etiyolojisinde pek çok etken rol oynar: (a)Aşırı alkol alımının bir sonucu olarak görülen sirozun diğer nedenleri ara-sında bazı ilaç ve kimyasal maddelerin uzun süreli alınması, (b)viral hepatitler, bilier obstrük-siyon (safra yolu hastalıkları), hemokromatozis (aşırı demir yüklenmesi), (c)kalb yetmezliğine bağlı, karaciğerde kronik pasif konjesyon (d)Wilson hastalığıx ve doğuştan olan bazı metabo-lik bozukluklar sayılabilir. Siroz gelişmesi için, uzun zaman periyodunda hücre ölümü, buna eşlik eden bir rejeneratif olay ve fibrozise gerek vardır. Başlıca üç patolojik mekanizma kombinasyonu, sirozu yaratır. (1)Karaciğer hücrelerinin progresif hücre incinmesine bağlı hepatosellüler (paranşimal) ölüm, (2)hepatosellüler hasara ve ölüme bağlı olarak ortaya çıkan rejenerasyon ve (3)buna eşlik eden kronik iltihabın stimüle ettiği progresif (ilerleyen) fibrozis bu hastalığı karekterize eden özelliklerdir. Rejenerasyon, hücre ölümünü kompanse etmek için, normalde verilen bir yanıt-tır. Normalde hepatositlerin proliferatif kapasitesi sirkülasyondaki büyüme faktörleri ile regü-le edilir. Hepatosit nekrozu sonucu açığa çıkan büyüme faktörleri hepatosit proliferasyonunu stimüle eder. Bu progresif olaylar sonucu karaciğerin normal lobüler yapısı ortadan kalkar. Fibrozis bu rejenere karaciğer dokusunu çevreleyerek sirozun karakteristik özelliği olan, değişik boylarda nodül yapılarının oluşmasına neden olur. Fibrozis, bir yara iyileşme reaksiyonudur. Zedelenme yalnızca paranşimi değil, destek bağ dokusunu da tuttuğu zaman skar oluşumuna neden olur. Normalde interstisyel kollagenler, portal alanlarda ve santral ven çevresinde ince bandlar şeklinde bulunurken, sirozda bu kolla-genler, lobülün tüm bölümlerini tutmuştur. Sirozda mikroskopik düzeyde karaciğerin normal arşitektürünün yerini, diffüz olarak kalın kollagen fibröz bandlarla separe edilmiş rejenere ka-raciğer hücre gruplarından oluşan nodüller yer almıştır. Karaciğerin normal yapısının değiş-mesi mikrosirkülasyonu bozar ve buna bağlı hastalığın klinik özellikleri ortaya çıkar. Çoğu sirozlu hastalardaki ölüm; (1)progresif karaciğer yetmezliği, (2)portal hipertansiyona bağlı komplikasyonlar ve (3)hepatosellüler karsinom gelişmesi sonucudur. Tüm siroz çeşitle-rinde hepatosellüler gelişme riski fazladır. Sirozların sınıflandırılmalarında bir konsensus yoktur. Yapılan morfolojik sınıflama ile sirozlar üçe ayrılmıştır: (1)Mikronodüler siroz (nodüllerin çapı 3 mm den daha küçüktür), (2)makronodüler siroz (nodül çapları 3 mm den büyüktür ve 2-3 cm ye ulaşabilir) ve (3)mikst olanda ise, mikro ve makro nodüller birarada bulunur. Etiyolojik nedenlere göre şu şekilde sınıflanabilir. Alkolik karaciğer hastalığı %60- 70; viral hepatitis %10; safra hastalıkları %5- 10; herediter hemokromatozis %5 vs. Siroz tiplerini; oluş biçimleri ve özelliklerine göre şu şekilde sıralayabiliriz. Alkolik (Beslenmeye Bağlı) Siroz: Alkolle ilgili olan ve çok sık görülen şekildir, Laennec siroz olarak da bilinir. Mikronodüler yapıdadır Postnekrotik (posthepatik) Siroz: Çoğunlukla viral etiyoloji (Hepatit B Virus ve Hepatit C Virus) etkendir. Makronodüler yapıdadır. Biliyer Siroz: 1)Primer biliyer siroz; otoimmun kökenli olduğu savunulur. 2)Sekonder biliyer siroz; uzun süreli ekstrahepatik safra kanalı obstrüksiyonu bunun nedenidir ve daha çok karşı-mıza çıkar. X Wilson Hastalığı: Bakır metabolizmasını otozomal resesif bir bozukluğudur. Bozukluklar karaciğer, böbrek ve beyinde anormal miktarlarda bakır birikimi meydana gelir. Hemokromatozis: (1)Herediter hemokromatozis; bağırsak mukozasında demir absorbsiyo-nunda (emiliminde) kalıtımsal bir defekt vardır; aşırı geri emilim görülür. (2)Sekonder hemo-kromatozis; aşırı demir yüklenmesi durumlarında sekonder olarak meydana gelir. Sirozda Klinik Özellikler: Fonksiyonel parankim kayıpları, sirozun başlıca şu klinik be-lirtilerini ortaya çıkarır. - Hepatosellüler hasar ve buna bağlı karaciğer yetmezliğiyle ilgili bulgular: a)Sarılık: Karaciğerin işlevlerinden birisi de safra üretimidir. Kandaki bilirubin (ankonjuge bilirubin) karaciğer hücrelerinde işlenir (konjuge edilir), safra yolları aracılığıyla barsağa dö-külür. Bu işlemin herhangi bir yerindeki aksama sonucu bilirubin kana karışırsa, sarılık (ikter) ortaya çıkar. Çoğunluğu karışık olmak üzere, konjuge ve ankonjuge bilirubin artımı söz konu-sudur. b)Hipoalbuminemi: Hepatosit hasarına bağlı albumin ve fibrinojen olmak üzere plasma protein sentezindeki azalma söz konusudur. c)Koagülasyon faktör eksiklikleri: Karaciğerde oluşan pıhtılaşma faktörlerinin sentezinde azalma ortaya çıkar. d)Hiperöstrinizm: Testikular atrofi, jinekomasti, palmar eritem (lokal vazodilatasyon) ve vücudun değişik kısımlarında, spider anjiomlar (örümcek şeklinde damarlanma). - Portal hipertansiyon: Portal akımla kan, batından vena kava inferiora döner. Portal kan akımındaki herhangi bir engelleme, portal venlerdeki hidrostatik basıncın artmasına neden olur. Üç farklı bölgedeki obstrüksiyona bağlı olarak ortaya çıkar. 1)Prehepatik: Portal vendeki tromboz nedeniyle oluşan obstrüksiyon, karaciğer içinde sinusoidlere dağılmadan öncedir. 2)İntrahepatik: Hepatik sinusoidlerdeki blokaj, bunun nedenidir. En önemli neden sirozdur, daha sonra yaygın karaciğer yağlanması gelir. 3)Posthepatik: Santral vendeki, hepatik vende-ki veya vena kavadaki blokaj nedendir. Bu, sağ kalb yetmezliği ve ağır perikardit gibi durum-larda karşımıza çıkar. Portal Hipertansiyona Bağlı Değişiklikler (Komplikasyonlar): Portal hipertansiyonun belli başlı bulguları; assit, venöz kollateraller (bazı bölgelerde venöz varisler), splenomegali (dalak büyümesi) ve bazen hepatik ansefalopatidir. - Assit (hidroperitoneum), hidrotoraks veya periferal ödem: Biriken kan geriye doğru ba-sınç yapar. Sirozdaki portal hipertansiyonun en önemli klinik sonuçlarından birisi, periton boşluğunda fazla sıvı birikimi (assit) oluşmasıdır: a)Portal vende hidrostatik basınç artımı, he-patik lenf sıvısı artımına neden olur. Bu sıvı peritona geçer. b)Hipoalbuminemiye bağlı olarak ortaya çıkan plasma onkotik (ödeme neden olan) basıncın düşmesi ve c)sodyum ve su tutulu-munun artması; Bu da hepatik hasara bağlı olarak aldosteronun karaciğerdeki yıkımının azal-ması (hiperaldosteronizm) ve renin- anjiyotensin sistem aktivasyonundaki artma, ödemi ve peritondaki sıvı birikimini açıklar. nedenidir. - Hepatik ansefalopati: Nöropsikiyatrik bir sendromdur. Karaciğer yetmezliklerinde ortaya çıkar. Normalde karaciğerde detoksifiye edilen amonyak ve nörotoksik maddelerin karaciğer-deki siroz gibi, bir defekt nedeniyle detoksifiye edilemeyen bu maddelerin doğrudan dolaşıma girmesi sonucu oluşur. Hafif konfüzyondan (bilinç kaybı) derin komaya kadar giden nörolojik belirtiler gösterir. Ölüm olağandır. x Etil alkol (etanol) - nontoksik Metil alkol (metanol) – toksik Alkolik Karaciğer Hastalığı Bu Karaciğer hastalığının başlıca nedeni, yoğun alkol (etanol)x alımıdır. Alkol alışkanlığı, ölüm nedenlerinin beşinci sırasında yer alır. Alkole bağlı siroz, ölümlerin önemli bir bölümü- nü oluşturur. Ölümlere neden olan diğer önemli bir neden ise, alkole bağlı otomobil kazaları sonucu meydana gelen ölümlerdir. Hastahanelerde yatan karaciğer hastalarının %20- 25 inde, alkol nedeniyle ortaya çıkan problemler vardır. Kronik alkol alımı birbiriyle bağlantılı üç farklı tipte karaciğer hastalıklarına neden olur. 1-Hepatik Steatoz (Yağlı Karaciğer): Hepatositler içinde önce küçük yağ damlacıkları biri-kir. Bunlar zamanla hücrenin içini tamamen doldurur, nüveyi kenara iter. Tamamen bir yağ hücresine döner. Bu değişme önce vena santralis çevresindedir, sonra perifere doğru yayılarak tüm lobülü tutar. Zamanla bu nekrotik parankimal hücreler yerini fibröz dokuya bırakır. Fib-rozis gelişmeden önce alkol alımı kesilirse, yağlı değişmeler gerileyebilir. 2- Alkolik Hepatitis: Hepatositler tek veya gruplar halinde şişer (balonlaşır) ve nekroza uğ-rar. Nekrotik ve dejenere hepatositlerin çevresinde polimorf nüveli lökositler birikir. Daha sonra lenfositler ve makrofajlar bölgeye gelir. Sonuçta belirgin bir fibrozis ortaya çıkar. 3- Siroz (Alkolik Siroz): Alkolik karaciğer hastalığının finali ve geri dönüşsüz şekli olan siroz, sinsidir ve yavaş gelişir. Karaciğerin makroskopik görünümü sarı- turuncu renktedir, yağlı ve büyümüştür, ağırlığı artmıştır. Oluşan fibröz septalar arasındaki parankimal hepato-sitlerin rejeneratif aktiviteleri, değişik büyüklükte nodüller oluşturur. İleri zamanlarda fibrozis geliştikçe karaciğer yağ kaybeder, progresif bir seyirle büzüşür, küçülür. Yağsız bir organ haline gelir. Organın ağırlığı düşmüştür ve sirozun karakteristiği olan değişik büyüklüklerde (mikro- makro) nodüller gelişir. PANKREAS : Pankreas, iki ayrı organın bir organda bulunma özelliğinde olan bir organımızdır. Yakla- şık %85-90 ekzokrin salgılıktır ve besinlerin sindirimi için, gerekli enzimleri salgılar. Geri kalan %10-15 endokrin salgılıktır ve insülin, glukagon ve diğer hormonları salgılayan Langer-hans adacıklarından oluşmuştur. Endokrin Pankreas : Endokrin pankreas Langerhans adacıkları adı verilen, bir milyon civarında mikroskopik hücre kümesinden oluşmuştur. Bu adacıklardaki hücrelerin tipleri, rutin hematoksilen- eosin boyası ile ayırt edilemez. Ancak bazı özel boyalarla elektron mik-roskobunda granüllerin şekillerinin görülmesiyle veya immunohistokimyasal yöntemle hücre tipi belirlenebilir.  (beta) hücreleri : Adacık hücre topluluğunun %70’ ini oluşturur. İnsülin hormonunu sentez eder ve salgılar. Hipoglisemik etkili hormondur.  (alfa) hücreleri : Adacık hücrelerinin %5- 20’sini temsil eder ve glukagon oluşturur. Kara-ciğerde glikojenolitik (glikojen parçalayan) etkinliği nedeniyle hiperglisemi oluşturur.  (delta) hücreleri: %5-10’luk bir bölümü oluşturur. İnsülin ve glukagon üretimini dengeleyen somatostatin hormonunu salgılar. PP (Pankreatik Polipeptit): %1-2 oranındadır ve yalnızca adacıklarda değil, pankreasın ekzo-krin bölümünden de salgılanır. Salgıladıkları polipeptidin, gastrik ve intestinal enzimlerin sal-gılanmasını uyarmak, intestinal hareketleri inhibe etmek gibi, etkileri bulunmaktadır. Adacık hücrelerinin önemli patolojik olaylarından birisi “Diyabetes Mellitus” dur. Diğeri “Adacık Hücre Tümörleri” dir. DİYABETES MELLİTUS Diyabet; insülinin yetersiz üretimi veya yetersiz işlevi nedeniyle ortaya çıkan hiperglisemi ile karakterize kronik, multisistemik bir hastalıktır. Karbonhidrat, yağ ve protein metaboliz-masını etkiler. Vücuttaki bütün hücrelerin glikoza (şeker molekülü- karbonhidrat) enerji kay-nağı olarak ihtiyacı vardır. Hücrelerin kandan şekeri alabilmeleri için, insülin hormonu şarttır. İnsülin, glikoz için regülatördür. Normalde kanda glikoz düzeyi yükselince insülin salgılanır. Tolere edilemeyen glikoz, hücre ölümlerine neden olur. Fazla glikoz, gerektiği zaman kan do-laşımına salınmak üzere, karaciğerde glikojen olarak depo edilir. İnsülin salgısının yokluğu (veya eksikliği) sonucu, glikozun kullanımında yetersizlikler meydana gelir. İnsülin salgısı duralarsa, kanda glikoz miktarı artar hiperglisemix durumu ortaya çıkar. Bu nedenle buna, halk arasında “şeker hastalığı” denir. Diyabetes mellitus hastalığında pankreasda yeteri kadar insülin üretilemiyordur veya vücut hücreleri bu insülinin etkisine karşı direnç geliştirmiştir. Her iki durumda da hücrelerin kan-dan glikozu almalarında problem vardır. Kan glikoz seviyesi yüksektir ve her ikisin de ortaya çıkan klinik sonuc aynıdır. Sınıflama ve Görülme Sıklığı Asıl özelliği hiperglisemi olan diyabetes mellitus, heterojen bir grup hastalıktır. Etyoloji-sine göre İki grup altında incelenir. Primer tip; en yaygın şeklidir (%95) ve insülin üretimin-deki veya işlevindeki bir defektten ortaya çıkar. Sekonder tip; infeksiyonlar (kronik pankrea-tit), herhangi bir nedenle pankreasın bir bölümünün cerrahi olarak çıkarılması, pankreas ada-cıklarının destrüksiyonuna neden olan bazı hastalıklar, aşırı demir yüklenmesi (hemokromato-zis), bazı genetik bozukluklar ve tümör gibi, pankreasın kendisini tutan lezyonlar yanısıra, in-sülinin antagonistleri olan hormonların hipersekresyonu söz konusudur. Akromegaliye neden olan aşırı büyüme hormonu (GH), Cushing sendromunda glukokortikoid artımı, feokromasito-mada (tümör) adrenalin artımı ve hipertiroidi gibi, bazı endokrin hastalıklar sonucu ortaya çı-kan diyabetes mellitusdur. Bu ikinci grup (sekonder tip) çok nadir görülür (%5). Diyabetes mellitusun en yaygın ve en önemli şekli, adacık hücresi insülin sinyali sisteminde primer bo-zukluğundan ortaya çıkanıdır. Bu primer diyabet; kalıtım özelliği, insüline verdiği yanıt ve köken olarak birbirinden farklı iki ana grupta (tip1 ve tip2) incelenir. Diyabetin iki ana tipinin farklı patogenetik mekanizmalara ve metabolik özelliklere sahip olmasına rağmen, kan da-marlarında, böbreklerde, gözlerde ve sinirlerde ortaya çıkan komplikasyonlar her iki tipte de mevcuttur. Bu hastalıktan meydana gelen ölümlerin en önemli nedenleridir. Patogenez : Önce insülin metobolizmasını kısaca gözden geçirelim. Normal İnsülin Fizyolojisi ve Glukoz Dengesi: Normal glikoz dengesi, birbiriyle ilişkili üç mekanizma ile sıkı bir şekilde denetlenir. Bunlar:(1)Karaciğerde glikoz üretimi, (2)glikozun çevre dokular tarafından (özellikle kas) alınması, kullanılması ve (3)insülin ve bunu den-geleyici karşıt hormonun (glukagon) salınımı. İnsülin salgılanması, glikoz üretimi ve kulanı-mını kan glikozun normal düzeyde kalacağı şekilde ayarlar. İnsülin pankreatik adacıkların beta hücre granüllerinde sentez edilir ve depolanır. Kan glikoz düzeyindeki yükselme, daha fazla insülin salımına neden olur. İnsülin sentezini ve salgılanmasını başlatan en önemli uya-ran glikozdur. İnsülin majör bir anabolik hormondur: İnsülinin en önemli metabolik etkisi, vü-cuttaki bazı hücre tiplerinde hücre içine glikoz girişini hızlandırmaktır. Bunlar myokordial hücreleri de içine alan çizgili kas, fibroblast ve yağ hücreleridir. Glikoz kas hücrelerinde gli-kojen olarak depolanır veya adenozin trifosfat (ATP) üretimi için oksitlenir. Glikoz yağ doku-sunda öncelikle lipid olarak depolanır. İnsülin, yağ hücrelerinde lipid üretimini (lipogenez) hızlandırırken diğer yandan da lipid parçalanmasını (lipoliz) inhibe eder. Aynı şekilde amino asid alımını ve protein sentezini hızlandırırken, diğer taraftan protein parçalanmasını durdu-rur. Böylelikle, insülinin etkileri anabolik olarak glikojen, lipid ve proteinin artan üretimi ve azalan parçalanması olarak özetlenebilir. x Yunanca; hiper- yüksek; glyk- şeker; emia- kan kelimelerinden köken alır. Açlık durumunda glikojen üretimi azaldığından (düşük insülin- yüksek glukagon durumu), karaciğerde glikoneojenezi (glikojen sentezi) ve glikojenolizi (yıkımı) arttırarak, hipoglisemi-yi önler. Bu nedenle açlık plasma glikoz düzeyi, karaciğerden salınan glikoz miktarı ile belir-lenir. İnsülin salınmasının başlıca tetikleyicisi, glikozun kendisidir. Salgılanan insülin, ilgili çevre dokularda insülin reseptörüne bağlanarak hücreiçi glikoz alımını tetikler. Böylelikle gli-koz dengesi kurulur. Tip1 Diyabetes Mellitus Patogenezi Tip1 Diyabet (İnsüline Bağımlı Diyabetes Mellitus): Tüm diyabet vakalarının %5-10 nu oluşturur. Çocuklukta gelişir, pubertede belirgin hale gelir ve şiddetlenir. Pankreasın insülin yapma özelliği kaybolmuştur. İnsülin sekresyonunda tam (veya tama yakın) yokluk söz konu-sudur. Hastaların hayatta kalmaları için, mutlak insüline gereksinim vardır. Bu nedenle “insü-lin bağımlı diyabet” olarak tanımlanır. Pankreas beta hücre antijenlerine karşı, T hücre lenfo-sitlerin oluşturduğu reaksiyon sonucu beta hücrelerinin destrüksiyona uğradığı otoimmun bir hastalıktır. Dışarıdan insülin alınmadığı takdirde diyabetik ketoasidoz ve koma gibi, ciddi metabolik komplikasyonlar gelişir. Beta hücre destrüksiyonuna iç- içe geçmiş pek çok meka-nizma katkıda bulunur: (1)Genetik eğilim, (2)otoimmünite ve (3)çevresel etkenler. Genetik Eğilim : Diyabetes mellitusun, ailesel özellik gösterdiği uzun zamandan beri bilin- mektedir. Genetik eğilimin kesin kalıtsal geçiş şekli tam olarak bilinmemektir. Tek yumurta ikizlerinin (eş ikizler) ikisinde birden görülme oranı yaklaşık %40’dır. Diyabetli ailelerde yaklaşık %6 sının çocuklarında bu hastalık gelişmektedir. Gerçi tip1 diyabet olgularının %80 inde ailevi bir hikaye yoktur. Otoimmünite : Tip1 diyabetin klinik başlangıcı ani olmasına rağmen, beta hücrelerine karşı olan kronik otoimmun atak, hastalığın başlamasından yıllar önce başlamıştır. Hastalığın klasik belirtileri olan hiperglisemi ve ketoz, beta hücrelerinin % 90 ından fazlası haraplandıktan son-ra, ortaya çıkar. Otoimmunitenin diyabet patogenezindeki rolü morfolojik, klinik ve deneysel birçok gözlemle desteklenmiştir: (1)Hastalığın erken dönemlerinde çoğu vakada adacıklarda hücre nekrozu ve lenfositten zengin iltihabi infiltrasyon (insülitis) gözlenir. (2)Diyabetli has-taların %80 inin kanlarında, beta hücre antijenlerine karşı oluşmuş antikorlar (otoantikor) gösterilmiştir. (3)T lenfositler beta hücre antijenlerine karşı reaksiyon gösterir ve hücre hasar-larına neden olur. (4)Sitokinler beta hücrelerini harplar. Çevresel Etkenler: Çevresel bozukluk beta hücrelere zarar vererek otoimmüniteyi tetikle-miş olabilir. Epidemiyolojik gözlemler, böyle bir tetiklemeyi virusların yaptığını düşündür-müştür. Tip2 Diyabetes Mellitus Patogenezi Tip2 Diyabet (İnsüline Bağımlı Olmayan Diyabetes Mellitus): Vakaların büyük bir çoğun-luğunu (%90) bu tip diyabet oluşturur. Hastalık olgun yaşlarda başlar ve daha çok 50-60 lı yaşlarda ortaya çıkar. Daha önceleri adult tipi diyabet olarak adlandırılırdı. Pankreas insülin üretir; fakat dokuların bu insülini kullanmasında problem vardır. Dokuların insüline karşı olan duyarlılığında azalma nedeniyle karbonhidrat, yağ ve protein metabolizmalarının bozukluğu ortaya çıkar. Dokuların insüline duyarlılığın azalmasına (azalmış duyarlılık) “insülin direnci (rezistansı)” denir. İnsülin direnci; glukoz alımında, metabolik işlevde veya depolanmasında, insülinin etkisine karşı bir direnç olarak tanımlanır. İnsülin direnci, tip2 diyabetli hastalarda görülen karakteristik bir özelliktir ve diyabetli bireylerde görülen obeslik, genel bir bulgudur. Tip2 diyabeti iki metabolik defekt karakterize eder. (1)Çevre doku hücrelerinde, insüline yanıt verme yeteneğinde azalma (insülin direnci) ve (2)bu insülin direnci ve hiperglisemiyi kom-panse etmek için, gerekli insülinin pankreas tarafından salgılanamaması. Bu patolojiye beta hücre disfonksiyonu adı verilir. Burada esas olay, insülin dirençidir. Tip2 diyabetli hastaların yaklaşık %80’i şişman kişilerdir. Patogenezde obesite söz konusu olduğundan, kişinin yaşam biçimi ve beslenme alışkanlıkları gibi, çevresel faktörlerin önemli bir rol oynadığı düşünülür. 27 Bir zamanlar adültlerin bir hastalığı olarak düşünülürdü. Şimdi obes çocuklarda da bu şeklin görülebildiği bilinmektedir. Obesite, insülin direnciyle ve böylelikle tip2 diyabetle, önemli bir ilişkiye sahiptir. Kilo verilmesi ve fizik ekzersiz, bu hastalarda glikoz tolerans bozukluğunu düzeltebilir. Tip2 diyabet çok daha fazla görülmesine karşın, patogenezi hakkında bilgi azdır. Otoim-mün mekanizmaya ait deliller yoktur. Bunun yerine göreceli olarak insülin yetmezliğiyle sonuçlanan, insülin direnci ve β hücre bozukluğu vardır. Hafifden tam’a kadar değişen bir in-sülin eksikliği söz konusudur ve tip1 diyabetten daha az şiddettedir. Tip2’de insülin yetmez-liğinin kesin sebebi bilinmemektedir. Tip1 diyabette olduğu gibi, beta hücrelerinde viral veya immün sistem kökenli zedelenmeyi gösterecek bir bulgu da yoktur. Genetik faktörler, Tip1 diyabete göre bu Tip2 de daha önemlidir. Tek yumurta ikizlerin ikisinde de birden görülme oranı %60-90 dır. Bu hastalığın görülme oranı tüm popülasyonda %5-7 iken, birinci derece akrabalarda hastalık gelişme riski %20-40 arasında değişmektedir. Diyabetes Mellitus Geç Komplikasyonlar ve Patogenezi İnsülin hormonunun bulunması ve bunun tedavide kullanıma başlanmasından sonra, hasta-ların ömrü uzamıştır; fakat bu hastalık tedavi edilememiştir Diyabet hastalığında, geç kompli-kasyonlar olarak adlandırılan hastalığın başlangıcından 10- 15 yıl sonra ortaya çıkan lezyonlar çok önemlidir. Hastalar arasında bu komplikasyonların çıkış zamanı, şiddeti ve tutulan organ-lar yönünden bariz farklar vardır. Pankreasda patolojik bulgular çok çeşitlidir ve mutlak dra-matik değildir. Komplikasyonların hemen tamamı damar lezyonlarına bağlıdır. Bugünün diya-betle ilişkili en önemli komplikasyonları; küçük damarların bazal membranlarında kalınlaşma (mikroanjiyopati), arterlerde (ateroskleroz), böbreklerde (diyabetik nefropati), retinada (reti-nopati), sinirlerde (nöropati) ve klinik olarak bütün bu organlarda disfonksiyonlar görülür. Yapılan gözlem ve çalışmalar, ortaya çıkan bu komplikasyonların doğrudan hiperglisemiye bağlı olduğunu düşündürmektedir. Buna ilaveten, diyabette hipertansiyonun varoluşu, atero-sklerozisi hızlandırır. En çok konuşulan bulgu, nondiyabetik donörlerden (verici) diyabetik hastalara yapılan böbrek transplantlarında 3- 5 yıl sonra, bu böbrekte diyabetik nefropatinin gelişmesidir. Buna tezat oluşturacak şekilde diyapatik nefropatili böbreklerin normal alıcılara transplante edildiği zaman, bu böbreklerde düzelmeler olduğu bilinir. Diyabette hayatı tehdit eden esas olay ateroskleroz ve mikroanjiyopati gibi, generalize vasküler hastalıktır. Ateroskleroz, diyabetin klinik seyrini hızlandırır; kalb, beyin ve böbrekde iskemik lezyonlar gelişir. Myokard infarktüsü, serebral infarktüs, renal yetmezlik ve alt eks- tremite gangrenleri diyabetlerde sık görülen lezyonlardır. Diyabetin patognomanik (tanı koy- durucu) ağız lezyonları (spesifik ağız yumuşak doku ve dental lezyonları ) yoktur. Diyabette Pankreas Değişiklikleri: Langerhans adacıklarında diyabetin etyolojisini ve pato-genezini açıklayacak spesifik bir patolojik lezyon gösterilememiştir. Pankreas lezyonları sabit ve patognomanik değildir. Tip1 deki değişiklikler, tip2 ye göre daha belirgindir. Gerçi diyabe-te eşlik eden, bazı morfolojik değişiklikler vardır. Adacıklar sayıca azalmıştır, buralarda fibro-zis ve lenfosit infiltrasyonu (insülitis) ve amiloid birikimi görülebilir. Amiloid birikimi za-manla hücrelerin atrofisine neden olabilir. Ayrıca beta hücrelerinde granül kayıpları dikkati çeker. Diyabetik Göz Komplikasyonları: Diyabetik retinopati olarak adlandırılan göz lezyonları, katarakt veya glakom (göz tansiyonu) gelişmesine bağlı olarak, görme bozuklukları ve körlü- ğe kadar gidebilen ağır lezyonlar gelişir. Retinada, düzensiz damar duvarı kalınlaşmaları ve mikroanevrizmalar sonucu lezyonlar ortaya çıkar. Diyabetik Nöropati: Geç komplikasyonlar olarak periferal sinirler, beyin ve omurilik hasar görebilir. Refleks bozuklukları, duyu kusurları, gelip- geçici ekstremite ağrılarına neden olur. Schwann hücre hasarı, myelin dejenerasyonu ve akson hasarı ile karakterlidir. Bu hücrelerde- ki hasarın primer hasar olduğu düşünülmektedir. Buna, intrasellüler hipergliseminin yol açtığına inanılır. Hem bu intrasellüler hiperglisemi ve hem de mikroanjiopati sonucu gelişen iske- minin beraberce nöropatiye neden olduğuna inanılır. Pelvik organların innervasyonu bozula- rak; seksüel impotans (ereksiyon problemi), mesane ve barsak disfonksiyonu ortaya çıkabilir. Diyabetik Böbrek Değişiklikleri (Diyabetik Nefropati): En ağır lezyon gösteren organlar-dan birisi böbrektir. Myokard infaktüsünden sonra görülen en sık ölüm nedenidir. Ölüm çoğu kez, mikroanjiopati sonucu gelişen böbrek yetersizliğine bağlıdır. Vasküler Sistem: Diyabet vasküler sisteme ağır zararlar verir. Her çaptaki damarlar (aort ve küçük damarlar) etkilenir. Koroner arterlerin aterosklerozu nedeniyle ortaya çıkan myo- kard enfarktüsü, diyabetiklerde görülen en sık ölüm nedenidir. Diyabette ateroskleroz daha erken yaşta ortaya çıkar ve daha ağır seyreder. Ateroskleroz oluşmasına yatkınlık, birden fazla faktöre bağlıdır. Hiperlipidemi ve trombositlerin yapışma özelliğinin artması, şişmanlık ve hipertansiyon gibi, aterosklerozda rol oynayan diğer risk faktörleri de vardır. Damarlarda ülserasyon, kalsifikasyon, ve trombüs gelişimi sıktır. Damarların daralmasına bağlı olarak myokard infarktüsü gibi klinik bulgular ortaya çıkar. Yırtılma riski olan anevrizmalar gelişir. Diyabetlilerde normalden 100 kat fazla olan, alt ekstremite gangrenleri gelişir. Diyabette Klinik Özellikler Tip1 diyabet, çoğu hastada 35 yaşın altında poliüri (çok idrara çıkma), polidipsi (çok su içme), polifaji (iştah artışı) ve ciddi olgularda ketoasidozis ile kendini göstererek başlar. Bun-ların tümü metabolik bozukluklardan meydana gelir; çünki insülin vücuttaki başlıca anabolik hormon olduğundan, İnsülin salgılanmasındaki bir yetersizlik, yalnızca glikoz metabolizma-sını etkilemez, yağ ve protein metabolizmasını da etkiler. İnsülin eksikliğinde, glikozun kas ve yağ dokusu tarafından emiliminde, bariz azalma (veya yokluğu) söz konusudur. Karaciğer ve kasdaki glikojen depoları azaldığı gibi, glikojenoliz nedeniyle yedek depolar da tükenir. Şiddetli bir açlık hiperglisemisi izler. Tip1 de iştah artmasına rağmen katabolik etkinin baskın olması, kilo kaybı ve kas zayıflığı ile sonuçlanır. Polifaji ve kilo kaybının beraberliği bir tezat oluşturur. Böyle kişilerde her zaman bir diyabet şüphesi akla gelmelidir. Kandaki glikoz seviyesi artarsa, glomerüllere fazla glikoz gider, “glikozüri” (idrarda şeke-rin çıkması) başlar. Glikozüri osmotik diürezi başlatır, poliüriye neden olur. Yoğun bir su ve elektrolit (Na+, K+, Mg++, PO4-) kaybı ortaya çıkar. Sonuç olarak dolaşımda sodyum, potas-yum kayıpları ve kandaki glukoz seviyesinin artmasına bağlı olarak ortaya çıkan serum os-molaritesindeki artma (hiperosmolarite) ile kombine renal su kaybı, hücreler içi ve hücreler arası su kaybına neden olarak beyinde susuzluk merkezi uyarılarak su içme isteği doğar (polidipsi). İnsülin eksikliğinde metabolik dengenin bozulması ve ayrıca yağ katabolizması (yıkımı) aşırı artması, serbest yağ asidi düzeyini yükseltir. Bu serbest yağ asitleri, karaci-ğerde oksitlenerek keton cisimleri meydana gelir. İdrarla keton atılımı azalırsa, ketoasidoz oluşur. Tip2 diyabetes mellitus, poliüri ve polidipsi gösterebilir; fakat tip1 den farklı olarak hasta-lar genellikle 40 yaş üzeridir ve şişmandır. KALSİYUM METABOLİZMASI VE BOZUKLUKLARI Kalsiyum ve fosfat (PO4)x metabolizması, birbirleriyle çok yakın bir ilişki içindedir. Hem kalsiyum hem de fosfat dengesinin düzenlenmesinde, büyük ölçüde dolaşımdaki paratiroid hormonu (PTH), vitamin D ve bunlar kadar olmasa da kalsitonin hormonunun etkileri vardır. Kalsiyum; kemik ve dişlerin şekillenmesi, kasların kasılması, kanın pıhtılaşması, sinir uyarıla- rının iletisi ve hormon salınması gibi, pekçok fizyolojik olayda anahtar rol oynar. Bu nedenle kalsiyum dengesinin korunması kritik önem taşır. Vücuttaki kalsiyum depoları (iskelet siste- mi) ve plazma kalsiyum konsantrasyonunun korunması; besinlerle kalsiyum alımına, gastroin- testinal kanaldan kalsiyum emilimine ve böbreklerden kalsiyum atılımına bağlıdır. Dengeli bir beslenmeyle günde yaklaşık 1000 mg kalsiyum alınır. Bu da sütün 1 litresindeki miktara eşit- tir. Kalsiyumun esas atılımı dışkı ve idrar ile olmaktadır. Bunun yanısıra, barsaktan geri emi- lim de olmaktadır. D vitamini, kalsiyumun barsaklardan emilimini arttırır. Böbreklerde aktif vitamin D sentezixx arttırılarak, barsaktan kalsiyum emilimi arttırılır. Böbreklerde bir hasar mevcutsa, D vitamini etkisinin büyük bir bölümünü kaybeder ve barsak emilimi de azalır. Paratiroid hormonu; kalsiyum ve fosfat’ın barsaklardan reabsorbsiyonunu, böbreklerden atılmalarını ve ekstrasellüler sıvı ile kemikler arasındaki değişimleri düzenleyen bir hormon- dur. Paratiroid salgılığı (bezi) aktivitesinin artması, kemikten kalsiyum tuzlarının hızla rezorb- siyonuna yol açarak, ekstrasellüler sıvıda hiperkalsemi oluşturur. Bunu osteoklast aktivasyonu ile kemik rezorbsiyonu yani kalsiyumun mobilizasyonu arttırarak yapar. Bunun aksine, parati- roid salgılıklarının hipofonksiyonu, hipokalsemiye neden olur. D vitamini, kemik rezobsiyonu (yıkımı) ve kemik depolanması (yapımı) yani remodelas-yon üzerinde önemli etkilere sahiptir. Aşırı miktarda vitamin D fazlalığında, kemiklerde re- zorbsiyon oluşur. D vitamini eksikliğinde, paratiroid hormonunun kemik rezorbsiyonu üzerine olan etkisi büyük ölçüde azalır. Hipokalseminin Başlıca Nedenleri: 1-Hipoparatiroidizm: Paratiroid hormonunun eksikliği veya yokluğu nedeniyle, hipopara- tiroidizm ortaya çıkar. Başlıca özellikleri hipokalsemi ve hiperfosfatemidir. Özellikle tiroidek- tomi sırasında paratiroid salgılıklarının kaza sonucu çıkarılması veya hasar görmesiyle hipo-paratiroidizm meydana gelir. PTH yeterince salgılanamayınca kemiklerde osteolitik rezorb- siyon azalır. Vücut sıvılarında da kalsiyum düzeyi düşer. Kemiklerden kalsiyum ve fosfat re- sorbsiyonu olmadığı için, kemikler dayanıklılığını kaybetmez. Kronik hipokalsemide deride kuruma ve pullanma, tırnaklarda çatlama ve kırılma ile saç-larda sertleşme görülebilir. Kalsiyum konsantrasyonu ileri derecede azaldığında, tetani belirti- leri ortaya çıkar. Özellikle larenks kasları tetanik spazma duyarlıdır ve bu kasların spazmı, solunumu engeller. Gerekli tedavi uygulanmazsa, ölüme yol açabilir. 2-Vitamin D Eksikliği: Besinlerle yeterince D vitamini alınamaması (malnutrisyon) yanı- sıra, hepatobilier hastalık (karaciğer hastalıkları vitamin A, D ve K nın sentezini düşürür), barsaklardaki emilim bozuklukları (intestinal malabsorpsiyon), renal hastalıklar, belli bazı ilaçların alımı ve derinin güneş ışığını yeterince alamaması (İngilteredeki Müslüman kadınlar) gibi durumlar, vitamin D eksikliğinin önemli nedenleridir. Vitamin D, güneş ışını aracılığıyla deride sentez edilir; eksikliği hipokalsemiye neden olur. Eksikliğine bağlı olarak, çocuklarda raşitizm ortaya çıkar. Erişkinlerde diyete bağlı D vitamini veya kalsiyum yetersizliği oldukça seyrektir; çünki kemik büyümesi çocuklardaki gibi, çok miktarda kalsiyum gerektirmez. x Fosfor, insan vücudunda en çok bulunan elementlerden biridir. Vücuttaki fosforun çoğu oksijen ile beraber, fosfat (PO4) şeklinde bileşik halinde bulunur. Vücuttaki fosfat’ın yaklaşık % 85 i kemiktedir ve burada hidroksi-apatit kristalinin önemli bir bileşenini oluşturur2. xx Böbreklerde 1-α hidroksilaz enzimi tarafından vitamin D’nin en aktif formu olan 1, 25-dihidroksikolekalsife- rol’e [1,25(OH2) D3] çevrilir. Bu madde [vitamin D3 (kolekalsiferol)] barsaklardan kalsiyum emilimini arttırır. Önemli miktardaki vitamin D eksikliklerinde, erişkinlerde osteomalasi’ye yol açar. Bu, nor- mal gelişimini yapmış kemiklerdeki eksik mineralizasyonu yansıtır. Raşitizm’de ise yetersiz mineralizasyon çocuklarda gelişmekte olan kemikleri tutar. 3- Böbrek Yetersizliği: Böbreklerde vitamin D, aktif şekli olan dihidroksikolekalsiferol’a çevrilir. Böbrek hücrelerinin direkt hasar görmesinden dolayı; (1) aktif vitamin D oluşumu- nun azalması ve ayrıca (2) lezyonlu böbreklerde meydana gelen anormal kalsiyum kayıpları, hipokalsemiye neden olur. Fosfat’ın böbreklerden atılımının azalmasına bağlı olarak gelişen hiperfosfatemi de, tam anlaşılamamış bazı mekanizmalar yoluyla hipokalsemiye neden ol-maktadır. Hiperkalseminin Başlıca Nedenleri: Hiperkalsemi, kemik rezorbsiyonunun aşırı olma-sından kaynaklanır. Nedenleri şöyle sıralanabilir. 1- Primer Hiperparatiroidizm: Popülasyonda en sık rastlanılan hiperkalsemi nedenidir. Paratiroid salgılığındaki (bezi) bir bozukluk nedeniyle aşırı miktarda hormon salgılanması so-nucu meydana gelir. Nedeni paratiroid salgılıklarındaki bir hiperplazi veya tümördür. Bu tü-mör benign (adenoma) veya malign (karsinoma) olabilir. Eksesif paratiroid hormonu yapımın-da (hiperparatiroidizm) kemiklerde osteoklastik aktivite ileri derecede artmıştır, kemiklerden kalsiyumun açığa çıkmasına neden olur. Bu durum dolaşımda kalsiyum konsantrasyonunu arttırır, serum kalsiyum seviyesi yükselir. Osteoklastik aktivasyon (rezorbsiyon), osteoblastik depolanmadan çok fazla olduğu için, kemik yıkımı fazladır. Bu tür hastalarda patolojik kırık-lara çok rastlanır. Osteoklastların yaptığı lakunar rezorbsiyon, kemiklerde defektlere neden olacaktır ve kistik kaviteler şeklinde belirecektir. Bu bulgular da, hormon fazlalığının radyolo-jik ve histopatolojik göstergesidir. Paratiroid hormonunun kronik artımı, tüm iskelet sistemin-de herhangi bir kemiği tutabildiği gibi, çene kemiklerini de tutabilir. Bu hastaların kemikle-rinin radyolojik incelemelerinde, aşırı dekalsifikasyon kemik yıkımı nedeniyle multipl kistik alanlar görülür. Bu kistik alanlarda fibröz doku ve osteoklast tipi dev hücreler yoğun bir şekil-de bulunur. Bu histolojik özellik, çene kemiklerinin özel bir lezyonu olan, santral dev hücreli granulomanın benzeridir. Hiperparatiroidizme bağlı bu tür kistik kemik hastalığına, “osteitis fibroza kistika” adı verilir. Bu lezyon bazen kitleler oluşturarak tümörlerle karışabilir. Bu nedenle bu lezyonlar, “hiperparatiroidizmin brown (kahverengi) tümörü” olarak da bilinir. Osteoblastlar aktive olduğu zaman, bol miktarda alkalen fosfat salgılar. Bu nedenle, önemli tanı bulgusu plasma alkalen fosfat düzeyinde artıştır. Bu hastalar böbrek taşı oluşumuna aşırı yatkın olurlar. Bunun nedeni hiperparatiroidizmde barsakdan absorbe edilen ve kemikten mo-bilize olan kalsiyum ve fosfatın, böbrekler tarafından atılması sırasında idrardaki konsantras-yonlarının çok artmasıdır. Sonuçta, kalsiyum fosfat kristalleri böbreklerde çökmeye başlar ve böylece kalsiyum fosfat taşları oluşur. 2- Sekonder Hiperparatiroidizm: Sekonder hiperparatiroidizmde paratiroid hormon artı- şı, paratiroid salgılığındaki primer bir bozukluk yerine, önceden var olan hipokalseminin kompansasyonu sonucu ortaya çıkar. Böbrek yetersizliği en önemli nedendir. Barsakda mal- absorbsiyon sendromu gibi olaylarda, vitamin D eksikliği ve yetersiz kalsiyum alımları, hipo- kalseminin nedenleri olabilir. Kronik hipokalsemi sonucu, paratiroid salgılanmasında bir artış belirir. Buna “sekonder hiperparatiroidizm” denir. 3- Vitamin D fazlalığı: Aşırı vitamin D’nin alımı, vitamin D’nin toksik etkisini ortaya çı-karabilir. D vitaminin fazlalığı, çocuklarda gelişim geriliğine neden olabilir; adültlerde hiper-kalsiüri, nefrokalsinozis ve böbrek taşına neden olur. Vitamin D fazlalığı; kalsiyumun bar-saklardan emilimini arttırdığı gibi, normalin üstünde kemik rezorbsiyonuna (yıkımına) neden olarak kan kalsiyum seviyesini yükselterek, hiperkalsemiye neden olur. 4- Destrüktif Kemik Tümörleri: Destrüktif kemik lezyonlarına neden olan multipl mye- loma veya metastatik kemik tümörlerini sayabiliriz. Multipl myeloma, skuamoz hücreli karsi- noma, böbrek karsinomu, meme- over kanseri hiperkalsemiye neden olur. 5- Süt- Alkali Sendromu: Genellikle peptik ülser tedavisi sırasında uzun müddet ve aşırı miktarda antiasit olarak, kalsiyum (kalsiyum karbonat) ve emilebilir alkali alınması sonucu, hiperkalsemi ortaya çıkar. Bu olaya “süt- alkali sendromu” denir. Gerçi bu sendrom, büyük miktarlarda süt alan hastalarda da tanımlandı. Bu sendrom hiperkalsemi, hiperkalsüri, metabo- lik alkaloz (plasma bikarbonat düzeyinin artması), nefrokalsinozis ve böbrek yetmezliğine neden olabilir. 6- Hipertiroidizm 7- Sarkoidozis: Akciğerleri tutan kronik granulomatöz bir iltihaptır. PATOLOJIK KALSİFİKASYON Kalsiyum tuzlarının kemik ve dişlerden başka dokularda birikmesine, patolojik kalsifikas- yon denir. Normalde kalsifikasyon yalnızca kemik ve dişlerde oluşur. Bunların dışında oluş- ması, heterotopik kalsifikasyon olarak yorumlanır. Heterotopik kalsifikasyon iki farklı tipte tanımlanır. 1)Distrofik Kalsifikasyon: Serum kalsiyum ve fosfor seviyesinin normal olması- na ve kalsiyum metabolizmasında bir bozukluk olmamasına rağmen görülür. Kalsiyum tuzları ölü ve dejenere hücre ve dokularda (tüberküloz nekrozu) birikir. Ayrıca atherosklerozisde aterom plaklarında ve hasarlı kalb kapakcıklarında oluşur. 2)Metastatik Kalsifikasyon: Kalsiyum metabolizmasında bir bozukluk söz konusudur. Hiperkalsemi olan her durumda, normal ve canlı dokularda kalsifikasyonun oluşması görülür. Hatta hiperkalsemi, distrofik kalsifikasyonu da arttırır. Metastatik kalsifikasyonda özellikle bazı dokulara nedeni bilinme- yen bir meyil vardır. Böbrek tübulusları, akciğer alveolleri, mide mukozası ve kan damarları- nın mediası sıkça etkilenen organlardır. Bu organlarda yetmezlikler nedenidir. Metastatik kalsifikasyona neden olan hiperkalseminin nedenlerini daha önce de değindi- ğimiz gibi, şu şekilde sıralayabiliriz; (1)aşırı paratiroid hormonu salgısına neden olan, parati-roid tümörleri ve primer hiperparatiroidizm gibi, endokrin bozukluklar, (2)kemik yıkımını arttıran multipl myeloma, metastatik kanserler ve lösemi gibi tümörler ve (3)vitamin D fazla-lığı (intoksikasyonu) ve süt- alkali sendromu ile sarkoidozdur. Hatta hiperkalsemi, (4)ileri saf-hadaki böbrek yetmezliğinde ortaya çıkan sekonder hiperparatiroidizm’e bağlı olarak da geli-şebilir. Histolojik olarak kalsifikasyon intrasellüler, ekstrasellüler veya her iki lokalizasyonda da depolanabilir. Bu birikim bazofilik, amorfös (şekilsiz) granüler görünümdedir. Kalsifikasyon odağında zaman içinde, kemik gelişebilir, buna “heterotopik kemik” denir. KEMİK HASTALIKLARIİnsan iskeleti kompleks bir sistemdir. Yapısal olarak destek oluşturmaya iyi ayarlanmıştır. İskelet kasının aktivitesini harekete dönüştürür ve hassas iç organlar için, koruyucu bir çevre oluşturur. Ayrıca vücudun kan oluşturan (hematopoetik) elemanları için, iskeletten bir yapı oluşturur ve kalsiyum ile diğer birçok hayati minerallerin ana deposu olarak görev yapar. Pek çok beslenme bozukluğu ile endokrin bozukluklar, iskelet sistemini etkiler. Beslenme bozuk-luklarının neden olduğu kemik hastalıkları; C vitamini eksikliklerinde, skorbüt ve D vitamini eksikliklerinde, raşitizm ile osteomalazi görülen hastalıklardır. Mineralizasyon kaybıyla ka-rakterli bir grup hastalık vardır. Bunlar “osteopenik hastalıklar” adı altında incelenir. Osteo-peni (kemik kaybı), radyolojik olarak mineralize kemik kitlesindeki kayba verilen genel bir terimdir. Bu kolaylaştırıcı bir kavram olup, bunlardaki radyolojik görüntüler, belirli bir patolojiyi işaret etmez. (1)Osteoporoz en sık görülen bir osteopenidir. (2)Osteomalazi ileri yaşlarda, (3)raşitizm çocuklarda görülen kemik matriksindeki mineralizasyon kaybını anla-tır. (4)Osteitis fibroza kistika, hiperparatiroidizmde görülen, kemik kayıpları gösteren bir lezyondur. Osteoklastik kemik rezorbsiyonunda artım vardır. Ortaya çıkmış olan kaviteleri dolduran fibröz doku proliferasyonları görülebilir. Fibröz dokunun tam doldurmadığı kavite-ler, kistik kaviteler olarak tanımlanır. Bazı (5)malign kemik lezyonlu osteopenik hastalarda kemiklerinde bir azalma görülür. Bu artan osteoklastik aktivitenin delilleri olmasına rağmen,bir kısmında anormal osteoklastik aktivite yoktur. Tümör hücrelerinin kendileri kemik rezorb-siyonundan sorumludur. Osteoporoz: Osteoporoz, kemik kitlesinin azalmasıyla mikro- yapı bozulmasına bağlı ola-rak ortaya çıkan kemik inceliği ve zayıflığına bağlı olarak kırık olasılığının arttığı bir kemik hastalığıdır. Burada hem kemik yapımı azalmıştır, hem de kemik yıkımı artmıştır. Kemik in-celiği lokalize olabildiği gibi, tüm iskelet sistemini de tutabilir. Osteoporoz terimi nitelendiril-meden kullanılırsa, primer senil ve postmenopozal şekli anlaşılır. Senil osteoporoz, yaşlılarda ve heriki cinsde şiddeti artarak görülür. Postmenopozal osteoporoz, menopoz sonrası kadın-larda görülür. Yaşlı kadınlardaki femur başı kırığın başlıca komplikasyondur. Primer osteopo-rozis ileri derecede yaygın olarak görülür. Osteoporozisle ilgili kırıklara bağlı ortaya çıkan morbidite ve mortalite analiz edilirse, yıllık maaliyetin çok yüksek olduğu görülür. Patogenezis: Erişkinlerde kemik oluşumu ve rezorbsiyonu arasında dinamik bir denge var-dır. Bu dengenin osteoklastların kemik yıkım tarafına kaydığında olay osteoporoz ile sonuçla-nır. Bu dengesizliğin oluşumu bir sırdır. Gerçi kemik gelişimi ve yeniden modelizasyon (yı-kım- yapım) kontrol mekanizmalarında heyecan verici önemli kavramlar vardır. Bunların merkezinde, tümör nekroz faktörü (TNF) ailesine ait yeni bir molekülün, keşfi vardır. Nükle-er Faktör kB nin Reseptör Aktivatörü (RANK) olarak adlandırılan bu molekülün, osteo-klast fonksiyonunu (işlevini) etkilediği anlaşılmıştır. Bunu, kemik stromal hücreler ile osteo-blastların sentezlediği ve hücrenin membranına yerleşik olduğu bugün artık bilinmektedir. Bu liganların reseptörü, makrofajlarda bulunmaktadır. RANK- sunan (tanıtan) hücreler bu makro-fajlar (böylelikle osteoklastlar) dır. Makrofajların osteoklastlara dönüşebilmeleri için, stromal hücreler veya osteoblastlarda bulunan bu RANK ligandının, makrofajlardaki RANK reseptö-rüne bağlanması gereklidir. Aynı zamanda osteoblastlar ve stromal hücreler, makrofaj koloni stimüle eden faktör (M- CSF) olarak adlandırılan bir sitokin üretir. Bu uyaran faktör, makro-faj yüzeyinde bulunan farklı bir reseptöre bağlanır. RANK ligandı ve makrofaj koloni –stimü-le eden (uyaran) faktör beraberce etki ederek makrofajları, kemik- yiyen osteoklastlara dönüş-türür. Bunun dışında stromal hücreler/osteoblastlar tarafından salgılanan ve osteoprotegerin (OPG) olarak adlandırılan molekül, tuzağa düşürücü “yem reseptör” dür. RANK ligandını kaplayarak, bunun makrofajdaki RANK reseptörüne bağlanmasını önler ve böylece yeni osteoklastların oluşumu ve kemik yıkımı kesintiye uğramış olur. Öyle görülüyor ki, osteoporoz tek bir hastalık olmaktan çok, total kemik kitlesinin ve yo-ğunluğunun azalması gibi, benzer morfolojik görüntüyü veren hastalıklar grubudur. Normal durumlarda bebeklik ve çocukluktan itibaren, kemik kitlesi devamlı artar, genç adült yaşların- da zirveye çıkar. Bunu büyük ölçülerde genetik faktörler belirler. Gerçi fiziksel aktivite, diyet ve hormonal durumlar gibi, eksternal (dış) faktörlerin de büyük rolü vardır. Yaş Faktörü: Kemik dansitesindeki (yoğunluğu) yaşa bağlı değişiklikler, her bireyde görü- lebilir. Kemik dinamik bir dokudur ve yaşam boyu devamlı bir yıkım- yapım şeklinde devam eder. Bu remodelizasyon (yıkım- yapım), kemik rezorbsiyonu ve yeni kemik yapımı değişik- likleriyle karakterizedir. Maksimum kemik yoğunluğuna yaşamın üçüncü on yılında ulaşılır. Bundan sonra dansite giderek azalır. En büyük kayıplar, yoğun süngersi (trabeküler) kemikle- rin olduğu omurga ve femur boynunda ortaya çıkar. Bu nedenle osteoporozlu kişilerde kırıklar bu bölgelerde çok sık görülür. Yaşlı hanımlarda kalça kırıkları kayda değer sayılardadır. Bu tür kırıklardaki tedavide, yaşlı insanların uzun periyodlarda hareketsiz yatmaları gerektiğin- den, hareketsizliğe bağlı olarak pnömoni, akciğer ödemi ve pulmoner tromboembolizm gibi, komplikasyonlar çok sık görülür ve başlıca ölüm nedenidir. Mekanik Faktör: Özellikle beden ağırlığının taşınması normal yeni kemik yapımında önemli bir stimulusdur. Azalmış bir fiziksel aktivitenin, hızlanmış kemik kayıplarıyla yakın ilişkisi vardır. Bunun kötü örnekleri felçli veya hareketten yoksun ekstremiteler örnek verilir. Sıfır yerçekiminde bir müddet kalmış olan astronotlarda da kemik yoğunluğunda kayıplara rastlanır. Pekçok yaşlı insandaki yaşam biçimi, hiç şüphesiz osteoporozun ilerlemesinde kat-kısı olabilir. Diyet Faktörü: Osteoporozun oluşması, korunması ve tedavisinde, kalsiyum ve vitamin D nin alımını da içeren diyetin rolü, halen daha tam anlaşılamamıştır. Raşitizm ve Osteomalazi Raşitizm ve Osteomalazi, her ikisi de vitamin D eksikliğinin birer örneğidir. Başlıca deği- şiklik kemiğin mineralizasyonundaki eksikliktir ve buna bağlı olarak nonmineralize osteoid kitlesindeki artım ortaya çıkar. Kısaca, osteoid matriks kalsifikasyonundaki defekttir. Osteo- malazideki bu özellik, total kemik kitlesindeki azalmaya rağmen, kalan kemik kitlesinde mineralizasyonu normal olan, osteoporozise çelişki oluşturur. Osteoporozisde kemik kaybı vardır, mineralizasyon kaybı yoktur. Raşitizmde mineralizasyon defekti, çocuklarda gelişmekte olan kemiklerde ortaya çıkar. Osteomalazide ise, tamamen normal gelişimini tamamlamış kemikteki bozuk mineralizasyon tarif edilir. PROF. DR. Taha ÜNAL EGE ÜNİVERSİTESİ DİŞHEKİMLİĞİ FAKÜLTESİ 2011 ORJİNAL KAYNAK: dent.ege.edu.tr/dosyalar/kaynak/301_patoloji/11.pdf   documents/11.pdf

http://www.biyologlar.com/hucre-zedelenmesinin-nedenleri-ve-zedelenmeye-karsi-hucrenin-verdigi-uyum-yanitlari-nelerdir-hasara-ugrayan-dokunun-onarilmasi-nasil-gerceklesir

Virusların Genel Özellikleri

Virusların Genel Özellikleri

Viruslar, protein veya kompleks bir yapıdan (glikolipoprotein) oluşan bir muhafaza içine paketlenmiş DNA veya RNA'lardan sadece birine sahip çok küçük infeksiyöz ajanlardır. Latince zehir anlamına gelen virus(lar) bu basit ve çok küçük yapıları ile cansız ortamlarda üreyebilecek yetenekte değildirler. Çünkü, taşıdıkları genetik bilgiler ve buna bağlı olarak gen sayısı kendilerinin bağımsız replikasyonlarını sağlayacak yeterlilik taşımamaktadır. Bu nedenle de canlı hücrelerin ekspresyon mekanizmalarına ve makromoleküllerine gereksinim duyarlar. Diğer bir ifade ile viruslar, bağımsız çoğalmalarını sağlayacak mekanizmalardan ve moleküllerden yoksundurlar. Bunları ancak, infekte ettikleri hücrelerde buldukları için, hücrelere bağımlıdırlar ve birer hücre paraziti olarak kabul edilirler. Bu noksanlıkları nedeniyle de, viruslar, bakteriler gibi tam bir hücre olarak değil "bazı genetik informasyonlara sahip infeksiyöz ajanlar" olarak tanımlanmaktadırlar. Viruslar, infekte ettikleri hücrelerde kendi replikasyonlarını sağlayacak makromolekülleri her zaman hazır bulamazlar. Bulunanlar da replikasyonları için uygun veya yeterli olmayabilir. Böyle dezavantajları gidermek için, bazı viruslarda, replikasyonları için önemli fonksiyonu olan bazı enzimlerin kodlarını taşırlar. Ayrıca, viral genom hücreye (sitoplasma) girdikten sonra, hücrenin bütün mekanizmalarına hakim olmakta ve sadece kendilerinin replikasyonu için programlama ve yönlendirme yapmaktadır. Böylece, viral replikasyon güvence altına alınmaktadır.Litik infeksiyonlarda infekte hücreler, kendileri için değil, sadece virus için bütün olanaklarını (ekspresyon mekanizmaları, makromolekülleri, vs.) seferber eder. Hücrelerde metabolizma, replikasyon ve sentez olguları tamamıyla durur ve sonunda hücreler ölürler. Bakteriler ise, viruslardan çok daha fazla büyüktürler. Genomlarında ve sitoplasmalarında kendi bağımsız replikasyonlarını sağlayabilecek genlere, genetik bilgilere, ekspresyon mekanizmalarına, enerji ve makromolekül oluşturabilecek bütün olanaklara sahiptirler. Bu nedenle de, bakteriler, canlı veya cansız bütün ortamlarda kolayca üreyebilmektedirler. Bakteri olarak kabul edilen, klamidia ve riketsiyalar canlı hücrelerde üremelerine karşın kendilerinde bağımsız replikasyonlarını yapabilecek tüm mekanizmalar bulunmaktadır. Bazı bakteriler de (mikoplasma, riketsiya ve klamidia) boyutları yönünden viruslara yaklaşır bir konumdadır. Diğer bir ifade ile, bakteriler ile viruslar arasında ölçülere sahiptirler. Bunlardan, mikoplasmalar hariç tutulursa, riketsiya ve klamidialar sadece canlı ortamlarda üreyebilmektedirler. Bu özelliğinin dışında, bu iki cinse ait etkenler ile mikoplasmalar tam bir bakteri karakteri gösterirler. Bu nedenlerle de, bakteriler arasında klasifiye edilmektedirler. Bakteriler ile virusların bazı özellikleri aşağıdaki tabloda gösterilmiştir. Viruslardan, çiçek grubuna ait olanlar hariç tutulursa, diğerleri normal ışık mikroskopu ile görülmezler. Ancak, bazılarının hücrelerde meydana getirdiği intrasellüler veya intranükleer inklusiyon cisimleri kolayca gözlenebilir. Virusların morfolojilerini izlemede elektron mikroskoplardan yararlanılır. Virusların aksine, bakterilerde, DNA, RNA ve ribozomların hepsi bulunur. Viruslar antibiyotiklerden etkilenmedikleri halde bakteriler değişik tarzda olmak üzere duyarlılık gösterirler. Bakteriler ortadan bölünerek çoğalırlar ve filtrelerden geçemezler. Hayvan viruslarının etrafında bulunan kapsid veya zarf oluşumuna bazı bitki viruslarında rastlanamamıştır (viroid: tek iplikçik, sirküler RNA). Virusların bakterilere oranla 10-20 kat daha küçük olmaları, bir çok yönlerinin eksik kalmasına yol açmaktadır. Hem viral genom çok küçük olmakta ve hem de içinde bulunan gen sayısı ve buna bağlı olarak genetik informasyonlar bakterilere oranla daha az olmaktadır. Virusların boyutları da 20-300 nm arasında değişmektedir. En küçük virus parvoviruslar (20 nm) ve en büyükleri ise çiçek virusları 300 nm). Çiçek virusları bu ölçüleri ile ışık mikroskobunda kolayca görülmektedirler. Virus gruplarına göre değişmek üzere, infekte hücrelerde çok sayıda (yüzlerce, binlerce) virus partikülü sentezlenebilir. Böyle infeksiyonlar sonunda hücreler parçalanarak olgun viruslar saçılırlar (litik infeksiyon). Hücrelerde oluşan morfolojik bozukluklar (sitopatik efektler, CPE), hücre ve virus türlerine göre bazı değişiklikler ve özellikler gösterebilir. Bazı viruslar da hücrelerde sitopatik etkiler veya lizis oluşturmazlar (nonlitik infeksiyonlar). Böyle karakter gösteren virusların bazıları, hücrelerde yavaş ürerler ve hücrelerden tomurcuklanma ile olgunlaşarak dışarı çıkarlar. Hücrelerde her hangi bir bozukluk görülmez, hücreler hem virus üretmeye ve hem de çoğalmalarına devam ederler (persistent infeksiyonlar). Virusların diğer bir bölümü de, infekte hücrelerde bulunmalarına karşın herhangi bir üreme göstermezler. Böyle viruslar, hücrelerinin genomu ile birleşerek latent döneme girerler (latent infeksiyonlar). Latent infeksiyonlar, hücrelere yeni karakterler ve yeni antijenik determinantlar kazandırabilir. Bakterilerdeki, fajlar tarafından oluşturulan latent infeksiyonlarda toksin sentezi ve antijenik konversiyonlar meydana gelmektedir (C. diphtheriae ve C. botulinum C). Böyle durumlarda insan ve hayvan hücrelerinde de malignansi vs. gelişebilmektedir (retroviruslarda). Canlılar böyle latent viruslarla uzun süre birlikte yaşayabilirler. Viruslar çok geniş bir konakçı spektrumuna sahiptirler. Bazıları (kuduz) zoonotik infeksiyonlara yol açmasına karşın, bir bölümü de sadece insan veya sadece hayvanlara özgü kalmaktadır. Hayvan türlerinin de kendilerine ait viral infeksiyonları bulunmaktadır. Şöyle ki, kızamık, kabakulak, polio vs. viral hastalıklar insanlarda görülmesine karşın hayvanlarda rastlanamamaktadır. Buna karşın hayvan viruslarından, At vebası virusu at ve diğer tek tırnaklılarda, Sığır vebası virusu sığır ve diğer çift tırnaklı hayvanlarda hastalık yapar, insanlarda infeksiyon meydana getiremez. Konakçı affinitesine göre viruslar aşağıdaki tarzda klasifiye edilmektedir.  Virusların Klasifikasyonu Ve İsimlendirilmesi Doğada bulunan bütün organizmaların (hayvan, bitki, mantar, alg, parazit, bakteri, protozoon, vs.) kendine özgü bir veya birkaç virusla infekte olabileceği görüşü eskiden beri bilinmektedir. Bunlar arasında insan, hayvan ve bitkilerde hastalıklara yol açan değişik karakterde ve çeşitli özellikte viruslar saptanmış ve her geçen 5-10 yıl içinde de yeni viruslar ortaya çıkmaktadır. Virusların ilk saptanması, bakterilerden sonra olmuştur. Bu gecikmede, virusların boylarının bakterilerden çok küçük olmaları nedeniyle normal ışık mikroskoplarıyla görülememesi, cansız sıvı ve katı besi yerlerinde ürememesi ve filtreleri geçmesi esas nedeni oluşturmuştur. Bugün, virusların varlığını ortaya koyabilecek, izole ve identifiye edebilecek, üretebilecek bir çok teknik geliştirilmiştir. Elektron mikroskoplar da virusları görüntülemede ve morfolojilerini belirlemede çok yararlı olmaktadırlar. Viruslar hastalık oluşturduğu canlılara göre sınıflandırıldığı gibi (insan, hayvan, bitki, insekt, virusları, vs.) meydana getirdiği bozuklukların lokalizasyonuna göre de bir klasifikasyona tabi tutulmuştur. Şöyle ki, afinitesi (tropizm) olduğu doku ve organlara göre: enterotropik viruslar, neurotropik viruslar, dermatropik viruslar, pneumotropik viruslar, vs. Ayrıca, viruslar enzimatik, immunolojik, bazı kimyasal maddelere duyarlılık, replikasyon stratejileri, vs. özellikleri de dikkate alınarak sınıflandırmalar yapılmıştır. Virusları klasifiye etmede "İnternational Committee on taxonomy of viruses" tarafından önerilen bazı kriterler belirlenmiştir. 1966 ve1982 yıllarında bu komite, 3 önemli kriter üzerinde durmuştur. 1) Nukleik asit karakteri: DNA-RNA, polaritesi, tek-çift iplikçikli, lineer-sirküler, molekül ağırlığı, spesifik enzim kodları, segmentleri, vs. 2) Replikasyon tarzları :Rolling circle, semikonservatif, vs. 3) Virion morfolojisi :Kübik simetri, sarmal simetri, kompleks yapı, çıplak-zarflı oluşu, kapsomer sayısı, büyüklüğü, vs. Ancak, şunu da belirtmek gerekir ki, virusların ayrıntılı incelenmesi sonu ortaya çıkan yeni buluşlar standart ve devamlı geçerli bir klasifikasyona engel olmaktadır. Virus sınıf, familya, alt familya ve cinslerini belirlemede aşağıda açıklanan son ekler kabul edilmiştir. Virus Sınıfları için :-virales son eki Virus familyaları için :-viridae " Virus alt familyaları için :-virinae " Virus cinsleri için :-virus " 03. Başlıca Virus Grupları Başlıca virus familyaları (alfabetik sıraya göre dizilmişlerdir). DNA Virusları Familya-1 : Adenoviridae Cins -1 : Mastadenovirus (memelilerin) Cins -2 : Aviadenovirus (kanatlıların) Familya-2 : Circoviridae Familya-3 : Hepadnaviridae Familya-4 : Herpesviridae Alt familya-1 : Alphaherpesvirinae Cins -1 : Simplexvirus Cins -2 : Varicellavirus Alt familya-2 : Betaherpesvirinae Cins -1 : Cytomegalovirus Cins -2 : Muromegalovirus Alt familya-3 : Gammaherpesvirinae Cins -1 : Lymphocryptovirus Cins -2 : Rhadinovirus Cins -3 : Thetaly phocrytovirus Familya-5 : İridoviridae Familya-6 : Papovaviridae Cins -1 : Papillomavirus Cins -2 : Polyomavirus Familya-7 : Parvoviridae Cins -1 : Parvovirus Cins -2 : Dependovirus Cins -3 : Densovirus Familya-8 : Poxviridae Cins -1 : Orthopoxvirus Cins -2 : Leporipoxvirus Cins -3 : Avipoxvirus Cins -4 : Capripoxvirus Cins -5 : Suipoxvirus Cins -6 : Parapoxvirus Cins -7 : Molluscipoxvirus Cins -8 : Yatapoxvirus RNA Virusları Familya-1 : Arenaviridae Familya-2 : Birnaviridae Familya-3 : Bunyaviridae Cins -1 : Bunyavirus Cins -2 : Phlebovirus Cins -3 : Nairovirus Cins -4 : Hantavirus Familya-4 : Caliciviridae Familya-5 : Coronaviridae Familya-6 : Filoviridae Familya-7 : Flaviviridae Cins -1 : Flavivirus Cins -2 : Pestivirus Familya-8 : Orthomyxoviridae Cins -1 : Influenza Familya-9 : Paramyxoviridae Alt familya -1 : Paramyxovirinae Cins -1 : Paramyxovirus Cins -2 : Morbillivirus Cins -3 : Rubellavirus Alt familya -2 : Pneumovirinae Cins -1 : Pneumovirus Familya-10 : Picornaviridae Cins -1 : Enterovirus Cins -2 : Cardiovirus Cins -3 : Rhinovirus Cins -4 : Aphthovirus Familya-11 : Reoviridae Cins -1 : Orthoreovirus Cins -2 : Orbivirus Cins -3 : Cypovirus Cins -4 : Rotavirus Cins -5 : Fijivirus Familya-12 : Retroviridae Alt familya -1 : Oncovirinae Cins -1 : Oncovirus (C) Cins -2 : Oncovirus ( Cins -3 : Oncovirus ( Alt familya -2 : Lentivirinae Alt familya -3 : Supunavirinae Familya-13 : Rhabdoviridae Cins -1 : Vesiculovirus Cins -2 : Lyssavirus Familya-14 : Togaviridae Cins -1 : Alphavirus Cins -2 : Rubivirus Cins -3 : Pestivirus Cins -4 : Arterivirus Familya-15 :Toroviridae (tam sınıflandırılamadı) Familya-16 : Astroviridae (tam sınıflandırılamadı) Kaynak: Kaynak : Temel Mikrobiyoloji

http://www.biyologlar.com/viruslarin-genel-ozellikleri

Bitkilerde Yaprak Dökümü Nasıl Gerçekleşir?

Bitkiler için, özellikle de besin üretiminin yapıldığı yapraklar için güneş ışığı çok önemlidir. Sonbaharın gelmesiyle birlikte havalar soğumaya, gündüzler kısalmaya başlar ve Dünya’ya gelen güneş ışığında azalma meydana gelir. Bu azalma, bitkilerde bazı değişikliklere sebep olur ve yapraklarda “yaşlanma programı” olarak da nitelendirebileceğimiz yaprak dökümü başlar. Yaprak dökümü ağaçlar için bir zorunluluktur. Çünkü soğuk havalarda topraktaki su gitgide katılaşır ve ağaç köklerinin suyu emebilmesi zorlaşır. Buna karşın, yapraklardaki terleme havanın soğumasına rağmen devam etmektedir. Suyun azaldığı bir dönemde sürekli terleme yapan yapraklar, bitki için fazlalık olmaya başlamıştır. Zaten, yaprakların hücreleri soğuk kış günlerinde don ile karşılaşıp parçalanacaktır. Bu yüzden ağaçlar, erken davranıp kış gelmeden yapraklarını dökerler, böylece zaten kısıtlı olan su rezervlerini boş yere kullanmamış olurlar. Ağaçlar yapraklarını dökmeden önce, yapraktaki bütün besleyici maddeleri emmeye başlarlar. Amaçları potasyum, fosfat, nitrat gibi maddelerin düşen yapraklarla birlikte yok olmasını engellemektir. Bu maddeler, ağaç kabuğunun katmanlarının ve gövdenin ortasından geçen iliğe yönelir ve burada depolanırlar. İlikte toplanmaları, bu maddelerin ağaç tarafından kolay emilmesini sağlar. (Lathiere, S. Scienc&vie Junior, Kasım 1997) Yaprak Dökümünde Gerçekleşen Kimyasal Olaylar Dışarıdan bakıldığında sadece fiziksel bir işlem gibi görünen yaprak dökümü, aslında pek çok kimyasal olayın birbiri ardınca gerçekleşmesiyle meydana gelir. Yaprak ayasında yer alan hücrelerde, "fitokrom" adı verilen ışığa duyarlı ve bitkilere renk veren moleküller vardır. Bitkilerin, gecelerin süresinin uzaması sonucunda yapraklarına daha az güneş ışığı ulaştığını fark etmelerini sağlayan işte bu moleküllerdir. Fitokromlar bu değişimi algıladıklarında, yaprağın içinde çeşitli değişimlere sebep olur ve yaprağın yaşlanma programını başlatırlar. Yapraklardaki yaşlanmanın ilk işaretlerinden biri, yaprak ayası hücrelerindeki etilen üretiminin başlamasıdır. Etilen gazı, yaprağa yeşil rengini veren klorofilin yıkımını başlatır; bir başka deyişle ağaç yapraklarındaki klorofili geri çeker. Yaprak dökülmesini geciktiren bir büyüme hormonu olan oksin maddesinin üretimini engelleyen de etilen gazıdır. Klorofilin yıkımının başlamasıyla birlikte yaprak güneşten daha az enerji alır ve daha az şeker üretir. Ayrıca, o güne kadar baskı altına alınmış, yapraklardaki sıcak renklerin oluşmasını sağlayan karotenoidler kendilerini gösterirler ve bu şekilde yapraklarda renk değişimi başlar. Bir süre sonra etilen gazı yaprağın her tarafına yayılır ve yaprak sapına geldiğinde, burada bulunan küçük hücreler şişmeye başlayıp sapta bir gerginleşmeye neden olurlar. Yaprak sapının gövdeye bağlandığı bölümde bulunan hücrelerin miktarı artar ve hücreler özel enzimler üretmeye başlarlar. İlk olarak selülaz enzimleri selülozdan oluşan çeperleri parçalar, daha sonra pektinaz enzimleri hücreleri birbirine bağlayan pektin tabakasını parçalar. Giderek artan bu gerginliğe yaprak dayanamaz ve sapın dış tarafından içeriye doğru yarılmaya başlar. “Yaprak Dökümü Planı” İşliyor... Buraya kadar anlatılanlar, yapraktaki besin üretiminin durması ve yaprağın sapından kopmaya başlaması olarak özetlenebilir. Genişlemeye devam eden yarığın etrafında çok hızlı değişimler yaşanır ve hücreler hemen mantarözü üretmeye başlarlar. Bu madde, selüloz çepere yavaş yavaş yerleşerek onun güçlenmesini sağlar. Bütün bu hücreler, arkalarında mantar tabakasının yerini alan büyük bir boşluk bırakarak ölürler. (Malcolm Wilkins, Plantwatching, New York, Facts on File Publications, 1988, s.171) Tüm bu işlemler, tek bir yaprağın düşmesi için birbiriyle bağlantılı birçok olayın gerçekleşmesi gerektiğini göstermektedir. Fitokromların güneş ışınlarının azaldığını tespit edebilmelerinin, yaprağın düşmesi için gerekli olan tüm enzimlerin uygun zamanlarda devreye girmelerinin, tam sapın kopacağı yerde hücrelerin mantarözü üretmeye başlamasının ne derece olağanüstü bir işlemler zinciri olduğu ortadadır. Art arda işleyen ve her aşaması planlı ve birbiriyle bağlantılı olan bu kusursuz işlemler serisinin evrimcilerin iddia ettiği gibi "rastlantı" ile açıklanması mümkün değildir. Bütün bu işlemlerdeki zamanlama son derece yerindedir. Yaprak dökümü planı mükemmel bir şekilde işlemektedir. Yaprak Dökümü Sonrasında Neler Oluyor? Yaprak gövdeden tamamen ayrıldığı için, iletim borularından öz su alamaz, bu yüzden yaprağın tutunduğu yer ile bağı gittikçe zayıflar. Biraz hızlı esen bir rüzgar bile yaprak sapını koparmaya yeterli olur. Toprağa düşen ölü yapraklarda, böceklerin, mantarların ve bakterilerin yararlanabileceği besin maddeleri bulunur. Bu besin maddeleri, mikroorganizmalar tarafından değişime uğratılır ve toprağa karışırlar. Ağaçlar da bu maddeleri, kökleri aracılığıyla topraktan besin olarak geri alabilirler. Bütün canlıları rahmetiyle kuşatmış olan Yüce Rabbimiz, bitkilere de son derece hayati mekanizmalar bahşetmiştir. Yaprak dökümü bu mekanizmalardan yalnızca bir tanesidir. Yapraklardaki Havalandırma Sistemi Nasıl Çalışıyor? Bazı bitkilerin gövdelerinin büyük bir kısmı su içinde yaşar. Köklerinin metrelerce derinde olması bitkinin oksijen almasını imkansız hale getirecek bir durumken, Yüce Allah'ın bitkilerde yarattığı havalandırma sistemi sayesinde bu sorun hiç yaşanmaz. Bu havalandırma sisteminin motorları yapraklardır. Genç yaprakların görevi, rüzgar estiğinde havayı emme; yaşlı yapraklarınki ise havayı dışarı bırakmaktır. Bu emme ve üfleme işleminin çalışma sistemi son derece komplekstir. Bu tür yaprakların içindeki su buharlaştıkça, yaprakların ısısı azalır. Rüzgar ise buharlaşmayı artırır ve böylece yaprağın ısısı daha da düşer. Bu işlem güçlü rüzgarlarla daha da etkili bir hale gelir. Ancak bu soğuma, yaprağın içinde her bölümde aynı oranda hissedilmez. Yaprakların orta kısmındaki bölgeler dış yüzeylerinden daha sıcak kalır. Araştırmacılara göre bu sıcaklık farkı 1 veya 2°C daha fazla olduğunda, oksijeni emme işlemi de tetiklenmiş olur. Bu havalandırma sistemi sadece su altındaki kökleri canlı tutmak açısından değil, ekolojik olarak da büyük öneme sahiptir. Derin suların dibinde biriken tortular çoğu zaman oksijensiz kalırlar. Bu yüzden demir hidroksit gibi, bitkilere zarar veren kimyasallar üretirler. Su bitkileri, köklerinden sızdırdıkları oksijenle bu maddeleri okside ederek zararsız hale getirirler. Bu oksijen sızıntısı sayesinde köklerin etrafındaki toprak zenginleşerek canlıların yaşamasına müsait bir hale gelir ve böylece suyun dibi temizlenmiş olur. Bu da Dünya'daki tüm eko-sistemi doğrudan etkileyen ve canlılığı ayakta tutan kompleks bir sistem oluşturur.

http://www.biyologlar.com/bitkilerde-yaprak-dokumu-nasil-gerceklesir

Mutasyonlar

Evrim Mekanizmaları yazı dizimiz içerisindeki bu yazımızda, çok çeşitli yönüyle mutasyonlara değineceğiz ve evrimsel biyoloji ile ilgili bazı noktaları tam olarak anlayabilmek açısından belki de en önemli makalelerimizden biri olacaktır. Çünkü ne yazık ki günümüzde bazı bilim dışı kaynaklar ve bilimsel gerçekler yerine bu kaynakları benimseyen eğitim kurumları sebebiyle mutasyonlar, Evrim Kuramı'nın merkezine yerleştirilmeye çalışılmaktadır. Üstelik mutasyonların nasıl ve neden olduğu tam olarak anlatılmamakta, evrimsel biyoloji ile ilişkisi düzgün bir şekilde izah edilememektedir. Bunun sebebi çok açıktır: Bilimsel bir gerçeğe, sadece içerisindeki rastlantısallık unsurları öne çıkarılarak, "Bakın, her şeye tesadüf gözüyle bakıyorlar." şeklinde bilim dışı açıklamalar yaparak ve bu alandaki sayısız araştırmacının emeklerini hiçe sayıp, bir bilim dalına hakaret ederek saldırılabilir. Bu kişi, örgüt ve kurumların yaptığı da apaçık budur. Henüz konu hakkında geniş bir bilgiye sahip olmayan bireylerse, basitçe bu insanların yalan ve manipülasyonlarına kanarak, bilimsel bir gerçekten uzaklaşmakta ve bilimden soğumaktadırlar. Halbuki göreceğimiz gibi, mutasyonlar, evrimin iddia edildiği kadar büyük bir kısmını oluşturmamaktadır, hatta tek başına evrim olarak bile kabul edilemez. Elbette ki, bir Evrim Mekanizması olarak mutasyonların, evrim üzerinde çok önemli etkileri vardır; ancak bunlar, diğer mekanizmalardan bu kadar abartılacak kadar üstün veya fazla değildir. Hemen konuya girelim: Mutasyon, kelime anlamıyla genetik materyalde meydana gelen rastlantısal değişim demektir. Basitçe, bir nükleotidin bir başkasına dönüşmesi, bir yapının şekil ve içerik değiştirmesi, yanlış kopyalanma sonucu genetik yapının bozulması ve daha nice genetik değişim mutasyon kapsamına alınabilir. Her şeyden önce, mutasyonların rastlantısallık değerlerine ve sebeplerine bakmakta fayda vardır: Mutasyonlar gerçekten de çok büyük oranda rastlantısaldır (tesadüfidir). Ancak bir kavramın rastlantısal olması, o kavramın gerçekliğini veya değişime katkı sağlama gücünü azaltmamaktadır. Örneğin, hava koşullarının değişimi de büyük oranda rastlantısaldır. Bu, hava koşullarının (yağmur, kar, dolu, vs.) gerçek olmadığı veya uzun vadede evrimsel değişimler yaratamayacağı, evrime yön veremeyeceği anlamına gelmez. Benzer şekilde, depremlerin meydana geldiği üsler ve zamanlar rastlantısaldır. Bir paranın havaya atılması sonucu gelen yüz, rastlantısaldır. Bunların tümü, belirli oranlar dahilinde istatistiki hesaplara vurulabilir. Örneğin günün belli bir saatinde yağmur yağıp yağmayacağını belirli oranlar dahilinde olasılık hesabıyla bulabiliriz. Benzer şekilde, bir depremin bir bölgede gerçekleşme ihtimali ve zamanını olasılık hesaplarıyla bulabiliriz. Paranın yüzleriyle ilgili hesaplar ise, hepimizin bildiği basit hesaplardır. Benzer şekilde mutasyonların da oluşma olasılıklarını hesaplayabilir, hatta kimi zaman sadece mutasyon olasılıklarına dayanarak evrimin yönünü belli sınırlar dahilinde tahmin edebiliriz. Ancak bu daha başka bir konunun ve daha akademik bir analizin konusudur. Şimdilik sadece mutasyonların da sıradan olasılıksal unsurlar olduğu gerçeğini aklınızda tutmanız yeterlidir. Bu kavramların olasılıksal değerlerinin hesaplanmasının zorluğu, kavrama eşlik eden diğer olgularla ilgilidir. Örneğin yağış durumu sıcaklık, yükseklik, basınç gibi birkaç faktöre bağlıdır. Deprem ise, fay hatlarıyla ilgili yüzlerce farklı değişkene (açı, toprak yapısı, toprak organizmaları, kütle, basınç, komşu plakaların durumu, vs.) bağlı olabilir ve bu, olasılık hesaplarının zorlaşmasına neden olurken, bir yandan da depremlerin rastlantısallığını arttırmış olur. Ancak bunların hiçbiri, olgunun gerçekliğini etkilemez. Belirli durumlarda, belirli zamanlarda, belirli bölgelere, belirli tip yağış düşer. Kimi zaman depremler olur. Örnekler arttırılabilir. Evrendeki her olay belli bir olasılık hesabı çerçevesinde değerlendirilebilir. Ancak burada önemli olan, olasılığı tanımlamak için kullandığımız matematiksel modelin, fiziksel dünyada modellemeye çalıştığımız olayı %100 veya buna yakın bir oranda karşılayabilmesidir. Günümüzde sahip olduğumuz matematiksel modeller, yaşamın başlangıcı veya çok sayıda değişkenden etkilenen kaotik sistemleri (uzun vadede hava durumu, geniş bir genomdaki mutasyonlar ve lokasyonları gibi) modellemek için yeterince güçlü değildir. Bu sebeple bu alanda geliştirilen bilgisayar yazılımları da yeterince güçlü simülasyonlar yaratamamaktadır. İşte tam olarak bu sebeple canlılığın başlangıcı ve benzeri sistemlerle ilgili yapılan matematiksel hesaplar gerçekle uyuşamamaktadır. Mutasyonların olasılıklarının hesaplanması da buna benzemektedir. Para örneğinde ise, rastlantısallık oranı çok düşüktür. Çünkü paranın üzerinde atış hızı, sürtünme, gibi bazı değişkenlerin etkisi olsa da, bunlar göz ardı edilebilecek kadar küçüktür ve paranın, çok büyük oranda %50 ihtimalle (veya bu orana çok yakın bir diğer olasılık ile) beklediğimiz yüzü geleceğini biliriz. Bu yüzden insanlar paranın yazı veya tura gelmesini "tesadüfler"e bağlamaktansa, olasılık hesabıyla açıklamayı tercih eder. İstenmeyen yüz geldiğinde, "tesadüf" açıklamasından çok, "Eh, %50 ihtimalim vardı zaten." açıklaması yapılır. Mutasyonlara geldiğimizde, belirli bir bölgede ne tip bir mutasyon olacağını bilmek neredeyse olanaksızdır. Bunu anlamak için, öncelikle mutasyonun nasıl bir etki yarattığını bilmemiz gerekir. Bunun içinse, bir molekülün "ne" olduğunu anlamamız gerekir. Neyse ki, bu konuda daha önceden bir yazı dizisi hazırlamıştık: Abiyogenez Yazı Dizisi. Bu yazı dizimizi gözden geçirerek gözümüzde çok büyütmeye meylettiğimiz DNA, protein, aminoasit gibi yapıların gerçekte ne olduklarını, neye benzediklerini ve nasıl çalıştıklarını okuyabilirsiniz. Abiyogenez yazı dizimizde görebileceğiniz gibi, genetik materyalimizin tümü, sıradan atom ve moleküllerden oluşmaktadır. Dolayısıyla bunlar da, bilimsel geçerliliği olmayan "canlı" varlıklara ait olsa dahi, tüm fizik ve kimya yasalarına tabidir. Bu moleküller, doğadaki tüm moleküller gibi bazı bağlar ile birbirlerine bağlanırlar. Bu bağlar; kovalent veya iyonik bağlar gibi güçlü bağlar olabilecekleri gibi, Van der Waals gibi daha zayıf bağlar da olabilir. Benzer şekilde, atomların içerisinde elektronlar, çekirdeğe bazı temel kuvvetlerle bağlanırlar (burada ayrıntısına tekrardan girmiyoruz). Ancak her bağ, yeterli enerji verildiğinde kırılabilirdir. İşte mutasyonların temelinde yatan mantık budur: Dış çevreden gelen, rastlantısal radyoaktif dalgalar ve benzerleri, atomların içindeki elektron bağlarını kırabilir, elektronların atom çevresindeki düzeyini değiştirebilir veya molekülleri birbirine bağlayan bağları parçalayabilir. Bu gibi durumlarda, sıradan fizik ve kimya yasaları dahilinde, kopan molekül ve atomların yerine, yeni enerji durumuna daha uygun elektronik yapıya sahip atom ve moleküller gelebilir. Bu durumda, eskiden -atıyoruz- Guanin (G) olarak isimlendirdiğiniz bir kimyasal formül, Adenin (A) diye isimlendirdiğiniz bir diğer formüle dönüşebilir: Bir Hidrojen (H) ve bir Oksijen (O) atomu koparak. İşte buna, nükleotitlerin değişmesinden ötürü, mutasyon diyoruz. Bunun sonucunda, genetik yapı ve bu yapıya bağlı olarak üretilen protein ve enzimler değişiyor. Bu değişim sonucunda da, organizmanın özellikleri değişebiliyor. Orak hücre anemisine sebep olan mutasyonun şematik gösterimi... Normal bir hemoglobin proteinde belli bir noktada bulunması gereken Glutamik Asit (Glu) aminoasidi, GAA mRNA kodu ile kodlanmaktadır. Bu da, DNA üzerinde CTT koduyla bulunur. Bu kodun 2. nükleotitinde meydana gelen bir mutasyon Timin (T) nükleotitini Adenin (A) nükleotitine çevirebilir. Bu durumda, mRNA üretildiğinde GAA kodu yerine GUA kodu üretilir ve bunun karşılığı da Glutamik Asit yerine Valin (Val) aminoasidinin oluşumudur. Bu durum, hemoglobinin yapısını değiştirerek orak hücre anemisine neden olur. Kısaca mutasyon, çevremizden rastlantısal olarak aldığımız dalgaların etkisinde genetik yapımızda meydana gelen değişimlerdir. Buradaki rastlantısallık, gelen dalgaların vücuda giriş açısı, şiddeti, frekansı gibi özelliklerin raslantısallığından kaynaklanmaktadır. Aslında rastlantısal olan, mutasyonlar değil; mutasyonlara sebep olan etkenlerdir. Bir dalganın vücudunuza ne şiddette, ne açıda, ne frekansta gireceğini ve vücudunuzdaki hangi hücredeki, hangi kimyasal maddeye (atom, molekül, vs.) isabet edeceğini ve onda ne tip bir değişime sebep olacağını önceden kestirmeniz olanaksızdır. Mutasyonların rastlantısallığı tam olarak bu sebepledir. Tıpkı yukarıda açıkladığımız diğer örnekler gibi... Bu konu anlaşıldıktan sonra, mutasyonların Evrim açısından önemini anlamak ve gereğinden fazla önem vermemek çok daha kolay olacaktır. Mutasyonların önemi şudur: Mutasyonlar, vücudumuzda rastlantısal olarak pek çok değişime sebep olurlar. Bakterilerde göreceli olarak az gelişmiş olan genetik tamir mekanizmalarından ötürü bu mutasyonlar çoğu zaman tamir edilemez. Bu sebeple genel olarak prokaryotlarda mutasyonların etkisi çok daha fazladır. Öte yandan, insanlar gibi ökaryotik canlılarda tamir mekanizmaları çok daha aktif olarak işler ve hataların büyük bir kısmı düzeltilir.

http://www.biyologlar.com/mutasyonlar-2

DNA YAPISI VE ÖZELLİKLERİ

Bütün tek ve çok hücreli organizma ile bir kısım virüslerde genetik materyal DNAdır. DNA yapı ve özellikleri başlığı altında, DNAnın moleküler yapısı, deoksiriboz, fosfat ve pürin ve primidin bazlarının yapıları ve birbirleri ile verdikleri reaksiyonlardan başlanarak anlatılmaktadır.nükleozid, nükleozit fosfat, nükleotid ve nükleozid-tri-fosfatlar hakkında bilgi verilmekte, nükleozit-tri-fosfatların DNA polimerini oluşturma reaksiyonları, purin pirimidin eşleşme özellikleri anlatılmaktadır. DNA çift sarmalının özellikleri, çeşitli ortam koşullarında biarbirine dönüşebilen DNA formları hakkında bilgi verilmektedir. DNA replikasyonunun yarı koruyucu (semikonservatif) özelliği deneysel örnek verilerek; ökaryotik ve prokaryotik DNA replikasyonu basamakları karşılaştırmalı olarak ve görev alan proteinlerle ilgili bilgileri de kapsamak üzere açıklanmaktadır. Ayrıca bu başlık altında DNA hasar tipleri, bunlara neden olan etkenler ve tamir mekanizmaları açıklanmakta; genom DNAsının farklı bölgeleri (tekrar dizinleri, gen aileleri, satellit DNA, gen kontrol bölgeleri, sessiz bölgeler gibi terimlere de açıklık getirilerek) ayrıntılı bir sınıflandırma yapılarak anlatılmaktadır. Gen aktivitelerinin ayarlanması (Genetik kontrol mekanizmaları) Çok hücreli bir organizmdeki bütün hücreler aynı genoma sahiptirler. Ancak, bu hücrelerdeki gen ürünleri ve bu ürünlerin düzeyleri hücreden hücreye, ya da aynı bir hücrede bir andan diğerine farklılık göstermektedirler Hücrelerin özelleştikleri fonksiyonlara ve o andaki gereksinimlere uygun ürünleri, uygun düzeylerde bulundurdukları gözlenmektedir.çok ya da tek hücreli organizmalarda her bir hücredeki gen ifadesi çeşitli mekanizmalarla ayarlanmaktadır.Bu kontrol mekanizmaları. Tek hücrelilerin çevre koşullarına; çok hücrelilerde ise hücrelerin birbirlerine uyumunu sağlamaktadır. Konunun kapsadığı alt başlıklar şunlardır: Bakteride enzim (protein) sentezinin ayarlanması, 1)Laktoz operonu örneğiyle anabolik/katabolik operon; konstitutif (zorunlu)/fakültatif (seçimli) enzim; katabolit aktivator proteini; indüktör; regülatör bölge; triptofan operonu örneğiyle, repressör; korepressör; son ürün inhibisyonu, genetik polarite terimleri ve mRNA düzeyinde genetik kontrol mekanizması, 2) arabinoz operonu örneği üzerinden ise gen aktivitesinin, gen ürünü tarafından negatif /pozitif kontrolu; RNA yapısına bağlı; küçük RNAlar ya da ribozomal proteinler veya alarmonlar aracılığı ile translasyon düzeyindeki kontrol ayrıntılı olarak açıklanmaktadır. Ökaryotlarda gen aktivitesinin ayarlanması ise, 1)Duplikasyon ya da amplifikasyon, 2)Metilasyon/demetilasyon v.b yollarla selektif gen inaktivasyonu/aktivasyonu, 3)Gen yeni düzenlenmeleri (rearrangement) ile kontrol, 4)Arttırıcı (enhancer) ve susturucu (silencer) DNA bölgeleri ile aktivite ayarlanması, 5)Posttranskripsiyonel kontrol ve 6)Hormonal kontrol ikincil başlıkları ile anlatılmaktadır. Mitoz ve amitoz bölünmeler Girişte, bilinen hücre bölünmesi tiplerinin genel sınıflandırması ve tanımları yapıldıktan sonra, insan dahil çok hücrelilerin kimi hücrelerinde normal olarak, kimi hücrelerinde ise kanser ya da çevre koşulları nedeniyle normal dışı gerçekleşen amitoz bölünme kısaca anlatılmaktadır. Konunun devamında ayrıntılı olarak, hücre döngüsü,ve bu döngünün G1, G0, G2, S (DNA biyosentezi) ve M (mitoz) bölümleri; mitoz bölünme fazların ve bu fazlar sırasında hücrede gerçekleşen moleküler olaylar, çekirdek ve hücreye ait hareket ve değişimler, ayrıca mikrotübüllerin yapımı, moleküler yapıları, S ve M fazlarına geçişleri kontrol eden moleküller ve çalışma prensipleri anlatılmakta; hücre döngüsü sırasında her bir basamakta hücrenin DNA düzeyi (n, 2n, 4n), çeşitli proteinlerin düzeylerindeki değişiklikler; kromozom, kromatid, sentromer, kinetokor, metafaz ve interfaz kromozomu ile kardeş kromatid değişimleri üzerinde durulmaktadır... Mayoz bölünme, ovogenez ve spermatogenez Mayotik bölünme, ovogonyal ve spermatogonyal kök hücrelerin ard arda geçirdikleri mitoz bölünmeler sonucunda oluşan ve özel moleküler sinyallerle uyarılan hücrelerin bir S fazı sonrasında geçirdikleri ard arda iki bölünmeyi (mayotik I. Ve Mayotik II. Bölünmeler) kapsar, birinci bölünme daha uzun sürmekte ve kendine özgü alt fazları, tamir mekanizmaları, sinaps, kiazma, krossing/over ve gen dönüşümü (gene conversion), sentromer bölünmesinin olmaması gibi olay ve özelliklerle mitoz bölünmeden ayrılır. İkinci bölünme ise mitoz bölünmenin aynıdır. Mayotik bölünmenin en önemli sonuçları, türe özgü kromozom sayısının korunması ve rekombinantların orta çıkmasıdır... Konu, birbirine paralel çizilmiş mitoz bölünme, mayoz bölünme, ovojenez ve spermatojenez şemaları üzerinden karşılaştırmalı ve ayrıntılı olarak sunulmakta, bu olaylar sırasında gerçekleşen hücre ve kromozom hareketleri, kromozom ve gen hareketlerinin ilişkileri, bu hareketlerin ovojenez ve spermatojenezdeki zamanlamaları ve farklılıkları üzerinde durulmaktadır... Mozaiklik ve şimerizm Bu başlık altında, aynı bir organizmde, farklı kromozom kuruluşlu hücrelerin birlikte bulundukları mozaiklik (mikzoploidi) ve şimerizm (freemartinizm) karşılaştırmalı olarak ele alınmakta, oluşum mekanizmaları, oluştukları düzeyler (gametik, zigotik, somatik gibi) ve bunlara göre etkileri, ayrıca mozaikliğin özel bir tipi olan Lyonizasyon ve kromozom sapmalarının saf formlarının oluşturdukları etkilerle karşılaştırmalar yapılmaktadır. Mendel Genetiği Konunun girişinde, Genetiğin babası olarak adlandırılan Mendel’in yaptığı deneyler, elde ettiği sonuçlar, başarılı olmasını sağlayan etkenler ve Mendel’in sonuçlarından, günümüzdeki DNA; gen; hücre bölünmeleri; kromozom hareketleri ve kalıtım arasındaki ilişkiler anlayışına ulaşılana kadar yapılanlar kısaca özetlenmektedir. Daha sonra, mayotik kromozom hareketleri ile allellerin ve farklı genlerin hareketleri karşılaştırılarak Mendel’in birinci ve ikinci kuralları verilmektedir... gen, allel, hibrit, parental döl, filial döl, çaprazlama, genotip, fenotip gibi terimler konunun akışı içerisinde açıklanmakta, genotiplerden gametlerin saptanması, mono-, di- ve trihibrit çaprazlama, kendileştirme, test çaprazlaması, çaprazlama tablolarının hazırlanıp, sonuçların değerlendirilmesi örnek problem çözümleri ile anlatılmaktadır. Alleller arasındaki ilişkiler (dominantlık, intermedier kalıtım, multipl allelizm gibi alt başlıklarla), farklı genler arasındaki ilişkiler (epistasi, modifikatör,süpressor genler letal genler gibi alt başlıklarla) ayrıntılı olarak anlatılmaktadır. Ayrıca bağlı (linked) genler ile krossing/over ilişkisinden yararlanılarak, incelenen genlerin kromozom üzerinde birbirlerine göre yerleşimlerinin bulunması, örnek problemlerle anlatılmaktadır. DNA metilasyonu Çoğu ökaryotik organizmanın DNAsı, replikasyon sonrasında bir takım değişikliklere uğrar. Bu değişikliklerden biri de baz metilasyonudur. Metilasyona uğrayan baz genellikle CG (sitozin_guanin) ikililerindeki C bazıdır. DNA metilasyonundan sorumlu enzimlerin genel adı, metil transferazlardır. C metilasyonu gen ifadesinin kontrolunda rol oynayan mekanizmalardan biridir. Bu konu başlığı altında, gen aktivitesinin kontroluyla ilgili metilasyonun DNA daki yerleşimi, nasıl rol oynadığı, DNA metilasyonu ile sınırlayıcı (restriction)enzimlerinin ilişkilerinden yola çıkılarak DNA metilasyonunun incelenmesinin temel prensipleri, bu inceleme metodlarının, onkogenlerin demetilasyonları ya da tümör supressör genleri metilasyonu ile ortaya çıkabilen kanser tiplerinin ve başka hastalıkların tanı ve sınırlı da olsa tedavisinde yararlı olabileceğini gösteren bulgular tartışılmaktadır... Hücreler arası haberleşme Tek hücrelilerde gözlenen fototaksi, kemotaksi gibi hücre-çevre ya da feromenler aracılığı ile olduğu gibi hücre-hücre haberleşmesi, çok hücrelilerde daha da gelişmiş ve karmaşıklaşmış bir organizma içi sosyal kontrol mekanizması şeklinde karşımıza çıkmaktadır. Hücreler arası haberleşme, büyüme; yaşama; çoğalma; ölüm v.b. olayların düzenlenmesini ve hücreler arasındaki koordinasyonu sağlar. Konunun akışı içerisinde, sinyal molekülleri (ligandlar), alıcı moleküller (reseptörler)in çeşitler, özellikleri ve çalışma mekanizmaları, hücreler arası haberleşmenin genel prensipleri, sinyal kaynağı ve hedef hücrelerin özelliğine göre haberleşme tipleri (parakrin, sinaptik, endokrin ve otkrin haberleşme gibi), hücre içerisindeki sinyal akışı ve enerji kullanımı modelleri ile hücresel aktivitelerin, diğer hücrelerin aktiviteleri ile uyumluluğunun nasıl sağlandığını gösteren örnekler konu kapsamına alınmıştır.      

http://www.biyologlar.com/dna-yapisi-ve-ozellikleri

Kalbin Atma ( Çalışma ) Mekanizması

Kalbin Atma ( Çalışma ) Mekanizması

Kalbin oldukça sistemli bir mekanizması vardır. Bu mekanizmada meydana gelen tek bir aksaklık o insanın hayatını sona erdirebilir. Kalbin sahip olduğu mekanizmalardan en önemlisi sağ ve sol tarafında bulunan pompalardır.

http://www.biyologlar.com/kalbin-atma-calisma-mekanizmasi

FAGOSİTOZ ve FAGOSİTİK AKTİVİTENİN BELİRLENMESİ

Fagositoz sözlük manasıyla Hücre yemesi demektir. Hayvansal hücrelerin katı besin maddelerini vezikül oluşturacak biçimde sitoplazmalarına almaları. Fagositoz hayvansal hücrelerin kendilerine gerekli maddeleri almalarında en önemli yollardan birisidir. Vücudun tabii müdafaa sisteminin üyeleri olan bazı hücrelerin dışarıdan giren bakteriyi içlerine alıp öldürmeleri. Bu hücrelerin en mühim olanları parçalı çekirdekli akyuvarlar ve monositlerdir. Gerçekte Fagositoz “yemek” manasına gelmektedir. Yabancı bir partikülün nötrofil tarafından etkisi hale getirilmesindeki en önemli aşamadır. Sırasıyla partikülün nötrofile tutunması hücre içine alınması fagositik vakuol (fagozom) oluşması ve degranülasyon kademelerinden oluşur. Örneğin alkol kullanan birisi alkolü almadan önce biraz zeytin yağı içerse daha geç sarhoş olur çünkü zeytinyağı büyük moleküllü olduğu için ve zeytinyağını önce aldığımız için hücreye ilk ulaşan zeytinyağıdır bunun sonucunda da onun hücreden geçmesi zor olduğundan alkolde geçemez ve kişi daha geç sarhoş olur. 1-Büyük parçacıkların (besinlerin veya yok edilecek olan yabancı maddelerin) yalancı ayaklar yardımıyla hücre içerisine alınması. 2-Bir maddenin hücre içine alınması işlemidir. Sırasıyla;hücreye tutunma hücre içine alınma fagozom oluşumu ve sindirim kademelerinden oluşur. 3-Hücre zarından geçemeyen büyük katı moleküllerin yalancı ayaklarla hücre içine alınmasıdır. Fagositoz kabaca iki kademede gerçekleşir. Bakterinin tanınıp hücreye yapıştırılması ve hücre içine alınıp tahrip edilmesi. Hücrenin bakteriyi yabancı ve zararlı olarak tanıması “kompleman” adı verilen maddeler tarafından sağlanır. Fagositoz yapacak hücrenin zararlı bakteriye doğru hareket etmesine “kemotaksis” denir. Bakterinin hücreye yapışıp içeri alınmasını “opsonin” adı verilen maddeler sağlar ki bu olaya da “opsoninizasyon” denir. İçeri alındıktan sonra çeşitli enzimler vasıtasıyla bakteri sindirilir. Fagositoz vücudu enfeksiyonlara karşı koruyan en önemli mekanizmalardan birisidir. Vücudun herhangi bir yerinde iltihap olduğu zaman kemik iliğinde fagositoz yapıcı hücrelerin yapımı hemen kamçılanır ve kana geçerler. Bu sebeple vücutta iltihap olup olmadığı kandaki akyuvar (lökosit) sayısına bakılarak anlaşılabilir. Normalde milimetreküpte 5-7 bin olan lökosit sayısı iltihap anında iltihabın şiddetine göre artar ve genellikle 10.000’i aşar. Fagositoz mekanizmasında bir aksaklığın olması halinde enfeksiyon hastalıkları hızla meydana gelir ve hastayı hayati tehlikeye sokar. Fagositozun pek çok etki mekanizması vardır. Fagosit hücrenin üst yüzeyine komplementten bağımsız antijen bağlanarak lenfokinler bırakılır ki bu olay fagositoza bağımlı savunma reaksiyonlarının başlangıcını oluşturur. Fagositoz aktivitesi komplement sistem opsoninler ve bakteri ekstraktları (lipopollisakkaritler peptidoglikanlar) ile artırılabilir. Yabancı cisimciklerin mikroorganizmaların hasarlı ve ölü doku hücreleri ve savunma hücrelerinin hücre içine alınması yıkılması ve ortadan kaldırılması işlemlerini kapsar. Fagositik aktivitenin belirlenmesi : Granulositlerin fagositik aktiviteleri albumin veya immun globulinle işaretlenmiş floresan veren lateks partikülleri aracılığı ile ya da fagosite edilebilen tüm mikroorganizmalar aracılığı ile belirlenir. Partiküller bu şekilde işaretlendikten sonra tam kan ilave edilerek bakteriyel bir peptitle inkube edilir ve flowcytometrede fagositoz yapmış olan hücreler ve gösterdikleri floresans +4 C derecede inkube dilmiş negatif kontrolleriyle karşılaştırılır. Benzeri bir işlem ışık mikroskobunda da yapılabilir. Fagositer hücrelerin içlerine aldıkları partikül sayıları bu kez mikroskopta belirlenir.

http://www.biyologlar.com/fagositoz-ve-fagositik-aktivitenin-belirlenmesi

HÜCRE SİKLUSU VE KANSER

Hülya CABADAK Marmara Ün. Tıp Fakültesi, Biyofizik AD, İSTANBUL, TÜRKİYE Anahtar Kelimeler: Hücre siklusu, siklinler, siklin bağımlı kinazlar, tümör baskılayıcı gen, kanser Organizma/organ/doku gelişimi, hücrelerin büyüme ve çoğalmalarını içerdiği gibi hücre ölümlerini de sağlar. Hasarlı dokuların onarımı somatik hücrelerin ve destek dokunun çoğalması ile gerçekleşmektedir1. Hücre büyümesi, farklılaşması ve çoğalmasında rolü olan proto-onkogenlerde meydana gelen mutasyonlar tümör gelişimine, tümör baskılayıcı genlerde meydana gelen mutasyonlar ise hücre siklusunun inhibisyonunu engelleyerek anormal hücre büyümesine neden olur2. Homeostasis; hücre çoğalması, büyümenin durdurulması ve apoptozis (programlı hücre ölümü) ile sürdürülmektedir2. Hücre büyümesi ve ölüm arasındaki dengenin bozulması hiperplazi veya neoplaziye neden olur1. Pozitif veya negatif uyaranlar genetik lezyona yatkın hücrelerde, malign çoğalmaya neden olabilir. Malign gelişimi en aza indirmeye yardımcı mekanizmalardan birisi nekrozdur. Nekroz (kontrolsüz hücre ölümü) hücre şişmesi ve hızlı dejenerasyon olarak tanımlanır. Apoptozis, nekrozdan farklı olarak fizyolojik koşullarda meydana gelen ve doku homeostazisini sağlayan ölüm şeklidir. Programlı hücre ölümü apoptozisin normal hücre döngüsünde ve fizyolojik süreçlerde rolü vardır. Apoptotik hücrelerde hücre büzülmesi, kromatinin kondanse olması, sitoplazmik tomurcuklar ve apoptotik cisimciklerin oluşumu gibi morfolojik değişimler meydana gelir3. Makrofajlar apoptotik hücre ve cisimciklerini fagosite eder. Doku zedelenmesinde ilk etmen reaktif oksijen türevleridir. Reaktif oksijen türevlerinin hedefleri plazma zarında ve diğer hücre kompartmanlarında bulunan proteinler, lipidler, karbohidratlar ve nükleik asitlerdir3. Son yıllarda nekrozun da programlanmış olabileceği ve organizma homeostasis mekanizmalarının bir parçası olduğu yönünde görüş oluşmakla birlikte daha yaygın olarak nekroz indüklenmesi olası tedavi mekanizması olarak değerlendirilmektedir. Nekrozda ölen hücrelerden HMGB1 (High mobility group protein B1) ve HDGF (hepatoma derived growth factör) gibi moleküllerin salınımının immün cevabı uyardığı veya yara onarımını aktive ettiği düşünülmektedir4. Apoptozis, normal hücre ölümünün yanısıra mutant hücre çoğalmasını önleyen önemli bir yoldur. Hücre siklusu ve apoptozisde çok sayıda protein ikili rol oynar. Çevresel faktörlerle meydana gelen DNA hasarı hücre siklus kontrol mekanizmalarının bozulmasına neden olur. Pek çok kanser tipinde hücre siklus kontrol noktalarında mutasyonlar belirlenmiştir2. Büyümenin durdurulması (growth arrest), DNA onarımı ve apoptozis’in engellenmesi kanser gelişiminde kritik yolaklardır.5 Tümör baskılayıcı genlerde mutasyonlar hasarlı hücrelerin hücre sikluslarının ilerlemesine ve tümör gelişimine neden olur2,6. Genomun gardiyanı olarak da tanımlanan p53 proteini karmaşık etkinliklere sahip ve hücre siklusunu baskılayan bir proteindir2. p53, hücre döngüsünü düzenleyen bir transkripsiyon faktörüdür. Birçok organizmada kanserin baskılanmasında rolü olan çok önemli bir proteindir. p53 proteini hücre büyümesinin durdurulması, programlanmış hücre ölümü, hücre farklılaşması ve DNA tamir mekanizmasının başlatılmasında da rol alır. p53, mutant hücre çoğalmasına karşı genomun korunmasında önemli rol oynar2,6. 1.NORMAL HÜCRELERDE HÜCRE SİKLUSU Sürekli bölünen hücrelerde mitozdan sonra siklus G1-S-G2 (interfaz) ve M (mitoz) şeklinde tekrarlanır. Bu süreçte hücre uyarımı ve büyüme meydana gelmekte veya bölünme sinyali almadıkları sürece istirahat fazı G0 da durmaktadırlar2,7 . G1, S, G2 fazları (Interfaz) hücre siklusunun %90’nını kapsar ve 16-24 saat sürer. Mitoz bölünme ise 1-2 saat sürmektedir. Hücre büyümesi G1 fazında kısıtlayıcı nokta (R point) tarafından koordine edilir. Kısıtlayıcı noktada hücre duracak veya hücre siklusunu tamamlayacaktır7,8. G1 fazında hücreler kendi çevrelerini kontrol eder, sinyalleri alır ve büyümeyi indükler. Bu fazda DNA sentezi (replikasyonu) için hazırlık yapılır. RNA ve protein sentezi olur. S fazında ise DNA sentezlendikten sonra, G2 fazında hücre büyümeye devam eder aynı zamanda RNA sentezi, protein sentezi gerçekleşir ve hücre mitoza hazırlanır. Mitoz; profaz, metafaz, anafaz ve telofazdan oluşmaktadır. Telofazda sitoplazmik bölünme tamamlanır ve aynı genetik materyalli iki yeni hücre meydana gelir. Hücre siklusunda bir faz tamamlanmadan sonraki faza geçilirse genetik materyal tam ve doğru kopyalanmadığı için hücrede hasar meydana gelebilir. Hücre siklusunda G1-S geçişinde, G2-M geçişinde ve metafaz-anafaz geçişinde kontrol noktaları vardır. Bu kontrol noktalarında hücrenin siklusa devam edip etmeyeceği kararı verilir7. Radyasyon veya toksinle muamele edilen hücrelerde DNA’da meydana gelen hasara göre hücre siklusu kontrol noktaları G1 den S fazına veya G2’den mitoza geçişi engeller. DNA’da meydana gelen hasar DNA sentezini de inhibe edebilir. DNA’sı replike olmamış hücrelerde mitoza giriş kinaz komplekslerinin inaktivasyonu ile engellenir7. Hücre siklusunda iki tip gen grubunun rolü vardır: Onkogenler (Her 2, lneu, ras,c myc vb) ve tümör baskılayıcı genler p53 ve Rb (Retinoblastoma geni)9. Onkogenler, kanser gelişimini doğrudan ve dolaylı olarak etkileyen gen grubudur. Tümör baskılayıcı genler ise kanser gelişimini baskılar1. p53 geni işlevini kaybederse hücre büyümesinin kontrolü ortadan kalkar ve DNA tamiri olmadan hücre siklusu kontrolsüz devam eder. Normal hücrelerde DNA hasarı olduğunda, p53 genomik kararlılığı sağlar ve hücre siklusunu G1’de inhibe eder ve hücreye tamir için zaman kazandırır. Hasar tamir edilemiyorsa hücre apoptozise gider7,9 . Hu W ve ark. farelerde p53 ve onun düzenleyicileri Mdm2’nin embriyo implantasyonunda da rolü olduğunu ileri sürmüşlerdir10. Normal hücrelerde Rb hücre siklusunu G1 fazında inhibe eder. Retinoblastoma ve osteosarkom tümör hücrelerinde Rb gen inaktivasyonu gösterilmiştir. Büyüme uyarısı, hücreden büyüme faktörlerinin salınımı ile başlar. Büyüme faktörleri hücre zarında özgün reseptörlere bağlanır ve sinyaller sitoplazma proteinlerine iletilir. Bu sinyaller çekirdekte transkripsiyon faktörlerinin salınımına ve hücrenin hücre siklusuna girmesini sağlar4,11. Hücre siklus saati hücre siklusunun ilerleyip ilerlemeyeceğini belirler veya hücreyi ölüme yönlendirir8,9. 1-1. Hücre siklus kinazları Hücre siklusu siklinler (cyc=cln), siklin bağımlı kinazlar (cdk) ve siklin bağımlı kinaz inhibitörleri (CDI) tarafından kontrol edilir. Bu proteinlerin düzeyleri hücre siklusunun farklı fazlarında farklılıklar gösterir. Siklin bağımlı kinazlar G1-S-G2 ve mitoza geçişi kontrol eder.2,7,9 Memeli hücrelerinde hücre siklusunun düzenlenmesinde işlevleri en iyi bilinen onbir tane siklin bağımlı kinaz (cdk 1-11) ve 16 siklin (siklin D (D1, D2 ve D3); siklin E (E1, E2), siklin A (A1, A2) ve B (B1, B2) rol oynamaktadır (Tablo 1)2,7,9,11,12. Siklin D, E, G1/S fazlarının sınırında geçici olarak sentez edilir ve hücre S fazına girdiğinde hızla yıkılır, Siklin A ve B, S/G2/M faz geçişlerinde sentezlenir, siklin A1 mayoz ve embryogenesis de, siklin A2 çoğalan vücut hücrelerinde bulunur. Siklin B1’in siklin B2’nin fonksiyonlarını kontrol ettiği düşünülmektedir12. Cdk’lar protein fosforilasyonu yapan enzimlerdir. Cdk aktivitesi DNA sarmalının açılması içinde gereklidir. Replikasyon öncesi kompleks’in (PRC: Prereplicative compleks) birkaç bileşeni fosforile olur. Yeni replikasyon orijinleri mitozun sonunda cdk aktivitesi düşene kadar yeni PRC kompleksleri oluşturamaz. Bundan dolayı her hücre siklusunda DNA bir kez replike olur13,14. Cdk’lar siklin’e bağlandığında aktifleşerek aktif siklin-cdk komplekslerini oluştururlar. Siklinler bu komplekslerin düzenleyici alt birimleri, cdk’lar ise katalitik alt birimleridir15. Cdk, siklin (yapısal proteini) ve kinaz (enzim)inden oluşmaktadır9. Herbir cdk katalitik altbirimi farklı düzenleyici altbirimle biraraya gelebilir. Hücre siklusu boyunca kinaz komplekslerinin aktivite düzeyi değişir. Bu nedenle hücreler DNA’larını bir kez replike eder ve kromozomların yavru hücrelere uygun dağılımı sağlanır. Siklin-siklin bağımlı kinaz komplekslerinin (cyc-cdk) düzenlenmesi, cyc altbiriminin hücredeki konsantrasyo-nuna, fosforillenme durumuna ve inhibitör moleküllere bağlıdır. Siklinler hücre siklusunun farklı fazlarında bir taraftan sentezlenirken diğer taraftanda yıkılırlar. Memelilerde Cdk 2, Cdk 4 ve Cdk1(cdc 2)’in, siklin D, E, A ve B ile birlikte ekspresyonu olmaktadır2,9 . Siklin E ekspresyonu E2F transkripsiyon faktörlerine bağlıdır16,17. Herbir siklin özgün olarak belirli bir fazda en yüksek değere ulaşır, sonraki faza girerken hızla yıkılır. Siklinlerin düzeyleri transkripsiyon düzeyinde düzenlenir. Yıkımları ise ’ubiquitin’’ yolağı ile sağlanır Aktif cyc-cdk komplekslerinde cdk altbirimi Thr 161 amino asidinden fosforillenmişdir. Bu fosforilasyon cdk’yı aktive eden kompleks (cak)’ın aktivitesi ile meydana gelir18. Bir kez aktive olan cyc-cdk kompleksi, DNA replikasyonu ve mitozdaki birçok işlemin kontrolünde rolü olan proteinleri fosforiller. Protein kinazlarla cyc-cdk altbirimlerinin fosforilasyonu ile kinaz kompleksi inaktive olur7,9,11. Cdk’ların aktiviteleri sadece siklinlerle düzenlenmez ayrıca fosforilasyon ve defosforilasyona yol açan başka yollarla da düzenlenir. Siklin bağımlı kinaz inhibitörleri (CKI): Hücre siklus inhibitör proteinleri (CKI) cdk aktivitesini kontrol eder. Bu proteinler cyc-cdk kompleksi oluşumunu ve DNA replikasyonunu inhibe eder. CKI’lar hücre siklusunu frenlediklerinden tümör baskılayıcı genlere de adaydır. Etkiledikleri cdk ve inhibisyon mekanizmalarına göre iki farklı CKI ailesi vardır. Bunlardan ink 4 ailesinde p15, p16, p18, p19’ G1 fazındaki cdk4 ve cdk6’yı bağlayarak cyc-cdk kompleks oluşumunu inhibe eder (Şekil 2a). Cip/Kip ailesinde ise p21, p27, p57 bulunmaktadır. Cip/Kip ailesi cyc-cdk kompleksini inhibe etmektedir (Şekil 2b )2,7,9,11,12. G2 fazında siklin B cdk1(cdc-2)’in tam aktivasyonunu sağlayarak mitoza girişi tetiklemektedir (Şekil 2c)9,11,12. Genellikle, farklı kanser hücrelerinde hücre siklusunun G1-S fazını kontrol eden proteinlerin inaktif olduğu, G2-M fazlarını kontrol eden proteinlerde ise değişimin daha az olduğu belirtilmektedir1,2,19. 1-2. Normal hücrelerde G1-S geçişi Büyümeyi uyaran sinyaller G1 fazı başlangıcında siklin D düzeyini sonraki evrede ise siklin E artışına neden olur (Şekil 3)2,9,11,12,20. Kısıtlayıcı noktada (R point) büyüme inhibitör faktör (Rb, Retinoblastoma) hücrenin S fazına girip girmeyeceğini belirleyen anahtar gibi rol oynar7,4,8,9,11,21. Kısıtlayıcı nokta geçilirse hücre DNA sentezinin olduğu S fazına girer. DNA sentezi sırasında iplikçiklerin birbirinden ayrılması ile DNA hasara çok duyarlı hale gelir ve bu nedenle S fazı hızlı geçilir4. Hücre siklusunun ilerlemesi Rb proteininin fosforillenmesi ile belirlenmektedir22. Az fosforillenmiş (Hipofosforile) Rb E2F transkripsiyon faktörünü bağlıyarak inaktifleştirir11,23,24. E2F’nin inaktifleşmesi sonucu hücre S fazına ilerleyemediğinden siklus durur. İstirahat halindeki (Go fazında) hücre bölünme sinyali aldığında hipofosforile Rb G1 fazının sonuna doğru cyc’nin cdk ile birleşmesi ile cyc-cdk kompleksini oluşturur ve bu kompleks Rb proteinini fosforiller7,11,24. Fosforillenen Rb proteininden E2F salınır, E2F ‘nin siklus ilerletici etkisi ile S fazına giriş için gerekli genlerin transkripsiyonu aktive olur ve hücre S fazına girer6,9,11,12,18,19,24-26. Hücre siklusunun S fazına geçişini G1 fazında aktive olan siklinler sağlar. Go fazında bu siklinlerin çoğunun ekspresyonu olmaz. G1 cyc-cdk kompleksleri transkripsiyon faktörlerini aktive etmektedir. Büyüme faktörleri, otokrin uyarım, lektinlerle mitojenik uyarım veya Ras yolağı gibi hücre içi sinyal yollarında mutasyon, hücrelerin tekrar G1 fazından siklusa girmelerini uyarabilir9,27. İstirahat halindeki hücrelerde, başlangıçta mRNA’sı stabil olmayan siklin D az miktarda bulunur. Go’da büyüme faktörleri ile uyarım, siklin D sentezini ardından siklin E’nin birikimini uyarır.20 Büyüme faktörleri olmadığında siklin D düzeyi hemen düşer1,7,11,20. Embriyonik hücrelerde siklin E düzeyleri devamlı yüksektir28. Hücre siklusunda Rb aktivitesi ICBP90 transkripsiyon faktörü ile protein düzeyinde düzenlenebilir29. G1-S geçişinde, büyüme faktörlerine cevap olarak siklin D düzeyi artar. Siklin D artışı ile siklin D-cdk 4(cdk 6) kompleksi oluşur. Siklin D ve cdk 4‘ün ve de onların aktif komplekslerinin birikimi p16’nın inhibitör rolünü ortadan kaldırır ve Rb (retinoblastoma gen) fosforillenir24,30. Az fosforillenen Rb, E2F transkripsiyon faktörün inaktivasyonuna neden olan histon deasetilaz (HDAC) enzimine bağlanır31. Rb’nin fosforillenmesi S fazının başlaması ve ilerlemesi için gereken genlerin geçici olarak aktivasyonunda rolü olan E2F transkripsiyon faktörün baskılanmasını kaldırır. G1 de siklin E -cdk2 kompleksi (MTOC) mikrotübülleri organize eden merkezin iki sentromere dublikasyonunu aktive eder32. Siklinlerin uyarıcı etkileri CDK inhibitörleri CKI tarafından önlenmektedir. G1/S fazı geçişi için önkoşul CKI ların baskılanmasıdır. Örneğin hücre siklusuna giriş için siklin D1 düzeyinin yükselmesi yeterli değildir. ERK (extracelllular signal regulated kinase) aktivasyonu da geç G1’de cdk’ların aktivitesini artırmak için birkaç aşamada rol oynar. ERK aynı zamanda CKI’ların inhibisyonunda da rol oynamaktadır33. G1 fazı boyunca hücre çoğalmasını engelleyen birçok genin baskılanması için ERK’in sürekli aktivitesi gereklidir. Tek başına ERK aktivasyonu hücre siklusuna girişi sağlama- ya yetmez. Vücut hücrelerinde ERK, hücre siklusunun G2/M fazında aktive olur. Metafazda tutulan hücrelerde ERK fosforillenmemiş durumdadır33. Eş zamanlı çoğalan (senkronize) HeLA ve NIH 3T3 hücrelerinde ERK’in aktivasyonunun S fazının sonuna doğru meydana geldiği ve mitoz sonuna kadar aktif halde kaldığı belirlenmiştir. MEK (MAPK kinaz) inhibitörleri ile ERK aktivasyonu bloke edildiğinde mitoza girişin geciktiği ardından metafazdan anafaza gecikmeli geçişin mitoz süresinin uzamasına neden olduğu belirtilmektedir34. G2/M geçişinde ERK inhibe edildiğinde M faz süresi iki kat artar. ERK aktivasyon yolakları henüz tam olarak anlaşılamamıştır33. Genellikle normal hücrelerde p53, MDM2 proteinine bağlı olarak inaktiftir. p53 ubiquitin ligazla yıkıma uğradıktan sonra aktive olur. Aktive olan p53, p21 ekspresyonunu aktive eder. p21 G1-S (cdk) ve S (cdk) komplekslerine bağlanarak onları inhibe eder ve hücre siklusu durur. Siklusun durması hücreye tamir için zaman kazandırır. Radyasyon ve ilaç gibi hücrenin strese maruz kaldığı durumlarda DNA hasarı olursa, hücre bu uyarıya p53 düzeyini artırarak yanıt verir. p21’in aktivasyonu sağlanarak G1 kontrol noktasında Rb proteinin daha fazla fosforlanması önlenerek hücre siklusu durdurulur. p21 siklin-cdk kompleksini inhibe etmesi yanında “proliferating cell nuclear antijen (PCNA)i de inhibe eder35. Timidin ve metotoraksat (methotraxate) gibi ilaçlar hücre siklusunun ilerlemesini engeller36. 1-3. Normal hücrelerde G2-M geçişi Hücreler DNA sentezinden sonra G2 fazına girer. Siklin B-cdk1 kompleksinin aktivitesi artar, mitoza giriş uyarılır9,19,37. Siklin B-cdk1 kompleksi mitozu ilerleten faktör (MPF) olarak da isimlendirilmektedir. Geç S fazında siklin B sentezlenmeye başlar ve sentez mitoz boyunca devam eder, mitoz tamamlandığında siklin B düzeyi hızla düşer. Bu düşüş aktif MPF kompleksinin oluşmasını ve ikinci hücre bölünmesini engeller. Siklin B düzeyi sitoplazma ve çekirdek arasında aktif taşınımla düzenlenir. İnterfaz (G1,S,G2) aşamasında siklin B sitoplazmadadır. Mitoz başlangıcında siklin B cdk 1’e bağlanarak aktif MPF kompleksini oluşturur. İnhibe edici fosforillenme aynı zamanda MPF aktivitesi-ni düzenleyebilir. cdk1 altbiriminin ikinci kez fosfofosforilenmesi siklin B-cdk1 kompleksi-ni inaktive eder. Wee 1, nükleer protein kinaz, çekirdekte MPF kompleksini inaktive ederek erken mitozu engeller11,20,38. Wee1’ın cdk1 altbiriminin ATP bağlama bölgesini fosforillemesi ile MPF kompleksi inaktive olur. Myt 1, Golgi aygıtında lokalize olan protein kinazdır. Myt 1, cdk1’i fosforiller ve interfazda onun siklin B ile bağlanmasını düzenler11,20. Cdc25, cdk’lardan inhibe edici fosfat gruplarını kaldıran fosfatazdır. Cdc 25 hücre siklusunun çeşitli fazlarına ilerlemeyi kontrol eder39. Bu aşama mitoza girişte hız sınırlayıcı basamaktır. cdc25b proteininin G2 fazında birikimi ilk MPF aktivasyonunda kritik rol oynar. cdc25c protein düzeyi hücre siklusunun bütün fazları boyunca sabit kalır. G2-M geçişinde, cdc25c çekirdekte birikir ve mitoz başlangıcında MPF komleksini aktive eder. DNA’sı replike olmamış hücrelerin mitoza girişi MPF kompleksinin inaktive olması ile önlenir11,20,40. G1 fazını geçen hasarlı hücreleri ortadan kaldırmak için G2 fazı kontrol noktalarında siklin-cdk-CKI sistemi gereklidir11,20. Bu kontrol noktası sağlam olmayan kromozomların ayrılmasını önler5. G2 fazında, S fazında replike olmuş DNA ve kromatin proteinleri kondanse olur ve kardeş kromatidler olarak paketlenirler. Mitozun metafaz aşamasında kromozomlar ekvator plağına dizilir, ardından kutuplara çekildikten sonra iki yavru hücreye bölünür. Sentro-merler mikrotübüllere bağlanamazsa mitoz gecikir. Bu olaylarda siklin B-cdk1 gereklidir. Siklin B-cdk1 kompleksi aynı zamanda (MPF) M fazının ilerlemesinde de anahtar rol oynar. Marumato ve ark. siklin B-cdk1(cdc-2) aracılı fosforilasyonla indirek olarak aurora-A’nın aktive olduğunu bildirmişlerdir41. Siklin B-cdk1 (cdc-2) çekirdeğe girişte gereklidir. Aurora A’nın aktivasyonu nükleer translokasyonu sağlar ve siklin B cdk1(cdc-2)’nin tam aktivasyonu mitoza girişi tetikler. Çeşitli kanser tiplerinde Aurora A’nın fazla eksprese olduğu belirlenmiştir5,11,20,41,42. 1-3-1. DNA’sı hasarlı hücrelerin G2-M geçişi DNA hasarından sonra, G2 bloğunun olması için cdk 1 defosforillenmesinin inhibisyonu gereklidir9,43. DNA hasarı, cdc-25c’yi fosforilleyen chks1 ve 2 protein kinazların aktivasyonunu sağlar. Fosforillenen cdc-25c, 14-3-3 proteinlerine bağlanarak çekirdekten sitoplazmaya taşınır. cdc25c çekirdek içinde bulunursa, siklin B-cdk1 kompleksini aktive eder. Bunun yanısıra siklinB-cdk1 kompleksin aktivitesine gereken çekirdek içindeki cdc25c miktarının yetersiz olmasından dolayı G2 blok aktive olur. Aynı zamanda p53 de G2-M geçişinde rol oynayabilir9. DNA hasarında p53 stabil kalmakta ve 14-3-3 trans-kripsiyonel olarak aktive olmaktadır. Aktive olan 14-3-3 fosforillenmiş cdc 25c’e bağlanır ve kompleksi sitoplazma içinde tutar, böylece mitoza geçişe uygun aktif siklin B-cdk1 kompleksi azalır11. p21 ve p53 ikinci tur DNA sentezi yapmış fazla DNA’lı hücreleri G2 ve M fazında engeller5,39. p53, G2’ye girişi inhibe eden 14-3-3 gen transkripsiyonunu artırarak bu geçişi önlemektedir. 14-3-3 cdc25c fosfatazla birleşir ve bu kompleks cdc25c’nin çekirdeğe girişini inhibe ederek DNA ‘yı bloke eder9,11. 1-4. Normal hücrelerde mitoz iplikçik kontrol noktası Mitoz iplikçik kontrol noktası metafazdan anafaza geçişi düzenler.2,7,11,20,44-46 Bu kontrol noktası bütün kinetokorlara uygun mikrotübül bağlanmasını kontrol eder ve kinetokor gözetiminde uygun kromozom ayrılmasını sağlar. Mitotik siklinlerin yıkımından sonra anafaz başlar. Mitotik siklinler ubikuitinlendikten sonra proteozomal yıkım olur. Mitotik siklinlerin yıkımı siklinB-cdk1 kompleksini inaktive eder ve bu inaktivasyon mitozun normal bitmesini sağlar7,11. Mitoz iplikçik kontrol noktası olgunlaşmamış kardeş kromatidlerin ayrılmasını engeller. Bu kontrol noktasında rolü olan genler, MAD1L1, MAD2, MAD2L1, MAD2B, BUB1, BUBR1, BUB3, TTK, MPS ve CDC20’ dir. Bu genler hücre siklusunun kontroluna katılır. Mayadan insana kadar MAD ve BUB proteinleri korunmuştur. BUB ve MAD gen ürünleri kinetokor gözetimi ve anafaz düzenlenmesi için gereklidir. MAD proteinleri doğru kromozom ayrılmasını, BUB gen ürünleri ise mitozun ilerlemesini düzenler47. Drosophila Melonogaster, C.elegans ve farede mitoz iplikçik kontrol noktasının tamamen kaybolmasının embriyon ölümüne neden olduğu gösterilmiştir7,9,11,48-50. DNA sentezinden sonra kohesin protein kompleksleri kardeş kromatidleri birarada tutar ve kromozomlar oluşur11,20,51,52. Mitoz iplikçik kontrol noktası anafaz promoting kompleksi (APC) düzenler. CDC20p APC’yi aktive eder ve pds1p ubiquitinlenme ile yıkılır. Pds1p’nin yıkılması ile separin Esp 1 aktive olur ve kohesin salınır, böylece anafazda kardeş kromatidler ayrılır. CDC20p’nin APC’yi aktive etmediği durumlarda kohesin salınmaz, kardeş kromatidler ayrılamaz ve anafazda inhibisyon meydana gelir10,53. CDC20’nin MAD2, BUBR1, BUB3 ile kompleks oluşturması anafaza girişi beklemeye alır. 2- Kanser ve kontrol noktası inaktivasyonu Gen mutasyonlarından dolayı G1-S geçişindeki değişimler kansere neden olabilir. Kanser hücrelerinin karakteristik özelliklerinden biri büyüme uyarımından bağımsız olarak G1 fazına tekrar girebilmeleridir. Rb fosforillenme/defosforillenme dengesizliği olduğunda, G1-S fazları arası geçişlerde olan değişiklikler hücrelerin çoğalmasını değiş-tirebilir. Rb gen mutasyonları insan kanserlerinden bazılarında (glioblastoma ve Retino-blastoma vb) tanımlanmıştır. Tümör virüsleri HDAC ile Rb’nin bağlanmasını inhibe edebilir. Siklin D’nin fazla eksprese olduğu bazı durumlarda ise E2F aktifleşmesinden sonra Rb inhibisyonunu sağlayan defosforillenme olmadığında S fazına hatalı ilerleme olabilir11. Kusurlu G1 siklin E-cdk2 kompleksi sentriollerin hatalı replikasyonunu uyarmaktadır11. Hücrede iki veya daha fazla sentriolün varlığı anafazda hatalı kromozom ayrılmasına neden olur. Bazı insan kanserlerinde sentriollerin fazla dublikasyonu da belirlenmiştir7,11. 2-1. DNA’sı hasarlı kanser hücrelerinde G1-S geçişi: Radyasyon v.b. etkenlere maruz kalan hücrelerde hücre siklusunda hatalar olmaktadır11,54. Örneğin Gama radyasyonuna maruz kalan hücrelerde fonksiyonel p53 geninin yetersiz olmasından dolayı bu hücreler G1’de tutulamaz ve S fazında hasarlı DNA’yı dublike ederek gen mutasyonuna ve/veya hatalı kromozom dizilimine neden olur11,54-56. Hücre çoğalmasını gen delesyonu, fazla gen ekspresyonu ve nokta mutasyonlar etkilemektedir. İnsan kanserlerinde farklı genlerde nokta mutasyonlar ve delesyonlar vardır19. İnsan kanserlerinde en sık görülen mutant gen p53’tür. Normal bir hücrede DNA hasarı olduğunda, p53 düzeyi artar ve hücre siklusunu G1 fazında inhibe ederek DNA onarımı için hücreye zaman kazandırır6,43,54. Hasar tamir edilemiyorsa hücre apoptozise gider43. Hasarlı hücrenin ölümü veya hücre siklusunda kalmasının nasıl sağlandığı tam olarak bilinmemektedir. p53 mutasyonlarında hücreler bölünmeye devam eder. Bu mutasyonlar sonucunda tümör baskılayıcı fonksiyonlarında kayıp olurken diğer yandan onkojenik fonksiyon ortaya çıkabilir11,15,20. Muskarinik reseptör agonist ve antagonistler varlığında çoğaltılan K562 hücrelerinde siklin D1 transkripsiyon seviyelerinin değiştiği belirlenmiştir57. Bellamy ve ark. 5 gray gama radyasyonunun fibroblastlarda büyümenin durmasına, aynı doz radyasyonun ince bağırsak kripto hücrelerinde ise apoptozise neden olduğunu göstermişlerdir5,22. p53 aynı zamanda cdk’ların inhibitörü p21 transkripsiyonunu artıra-rak da DNA hasarına yanıt verir7,11,20. S fazında eksprese edilen siklin A erken fazda cdk2 ile sonraki fazda cdc ile birleşir. Siklin-cdk kompleksi DNA sentezinin başlamasında rol oynar, cdk ekspresyonunun inhibisyonu ise hücre siklusunun durmasına neden olur6,9. ATM ( Ataxia Telengiectasia Mutant kinaz ) tarafından p53’ün aktivasyonu DNA onarımı ve apoptozisi koordine eden DNA hasar sinyal yollarına aracılık eder59. ATM çift iplik kırıklarına cevapta ve ATR (ATM ve Rad3 related) olarak adlandırılan kinaz diğer tip DNA hasarlarına cevapta önerilmektedir60. Hücre siklusunda ATM ve CHK2 ekspresyonu nispeten devamlı olmasına rağmen ATR ve CHK1 G1 fazının başında ve ortasında düşüktür. ATR ve CHK1 G1/S geçişine yaklaştıkça önem kazanır. ATM/ATR p53 transkripsiyon faktörünü fosforiller. ubiquitin kinaz,MDM2 p53’ün hızlı sirkülasyonunu sağlamaktadır61,62. Ayırıcı hedef mekaniz-malar hala açıklanamamıştır. p53‘le uyarılan G1 fazında duraklamada p21Cip1/Waf 1’in rolü vardır65. Aynı zamanda PCNA (proliferating cell nuclear antigen) inaktive olmaktadır. PCNA, DNA sentezini katalize eden, DNA tamirinde yer alan DNA polimeraz delta’nın kofaktörüdür. Sentezi hücre siklusunun geç G1 fazında baslayarak orta-geç S fazinda en yüksek değere ulasmaktadir43,59,60. p21, cyc-cdk kompleksini inhibe etmesi yanında PCNA’i de inhibe eder. Hücre siklusunun G1/S fazında durdurulmasında yeni belirlenen nükleer protein ICBP90’un p53/p21Cip1/WAF 1 aracılı yolaklarda hedeflerden biri olarak önerilmektedir22,43. İnsan Rad 9 ve Rad 17 proteinlerinin S fazı başlangıcındaki kontrol noktasında ve kromozom kararlılığının sürdürülmesinde önemli olduğu belirlenmiştir37. Rad 9’un ATR kinazla büyük protein kompleksinin fosforillenmesine aracılık ettiği de önerilmektedir69. p53 ve Rb protein fonksiyon kaybının nedenleri mutasyon, delesyon veya diğer proteinlerle bağlanma olabilir25. Rb kontrolu kanser hücrelerinin bir çok tipinde bozulmaktadır. Rb kontrolunun bozulma nedeni Rb fosforillenmesinde rolü olan siklin ve cdk’larda onkojenik mutasyonlardır63. p53 fonksiyonu cdk 4 ve cdk 6 supressorlerinin fazla ekspresyonu ile baskılanır9,64. Genomda onkogenik lezyonlara p53 fonksiyonunun bozulması neden olur. Bunun nedeni p53’ün apoptozis öncesi düzenlenmesinin gerçekleşmemesidir25,41. Hücre siklusunda kontrolün kalkması p21, p27, p57 gibi p53’ün downstream genlerinde kusurlara neden olabilir. Cdk’ların ve siklin-cdk komplekslerinin aktivitelerini Cdk (p21, p27, p57)’nin inhibitörleri inhibe eder ve hücrenin S fazına girişini engeller4,5,6,7,11,22,25,26,65. Bazı tümörlerde cdk4 ve cdk 6’nın negatif düzenleyicileri olan p15 ve p16’nın mutant olduğu da rapor edilmiştir5,22,41,53. Tümör hücrelerinin bir kısmında cdc4 de kusurlar veya cdc4’ün ekspresyonunun fazla olmasından dolayı siklin E düzeyi normal değildir. Bazı tümör hücrelerinde siklin E-cdk2’nin negatif düzenleyicisi olan cdk inhibitörü, p27’nin kaybolduğu da belirlenmiştir56,60. 2-1-1. p53 aracılı apoptosis p53 ve Bcl 2, programlı hücre ölümünde anahtar rol oynayan genlerdir66. Normalde p53 hücre akibetini belirleyen moleküler ağı düzenler. cMyc (nükleer fosfoprotein) p53’ü seçici olarak aktive eder ve p53 apoptozisi başlatır2,5,22,43. Nükleer fosfo protein cMyc, Fas ligand ve Fas reseptörle birleşir. Bu proteinin p53 bağımlı ve bağımsız yolaklar ile sitokrom c salınımını indükleyen bax’ın transkripsiyonunu düzenlediği de düşünülmektedir6,65. Hasarlı hücrelerde fonksiyonel p53 yoksa, hücre siklusu kontrol noktaları tarafından kontrol edilmeden siklus ilerler5,9. p53’ün düzenleyici aktivitesini geçtiğini gösteren alternatif yol ise p53’un negatif düzenleyicisi Mdm 2 (murine double minute 2) dir. Mdm2 proteini, p53’ü kontrol altında tutar ve p53’ün G1/S geçişinde siklusu durdurmasını ve apoptozisi engeller. Radyasyon ve benzeri etkenlerle hücre etkilendiğinde Mdm2 proteininin p53’ bağlanma bölgesinde yapısal değişiklikler meyda-na gelir. Bu nedenle Mdm2 p53’ü bağlayamaz ve serbest p53 transkripsiyonel aktivitesi ile G1 ve G2 kontrol noktalarında siklusu durdurur ve bax genini aktive ederek apoptozise neden olur58. Mdm2, p53’ün transkripsiyonunu azaltır ya da p53’e bağlanarak aktivitesini inhibe edebilir. Lösemi, lenfoma, sarkoma glioma ve meme kanserinde Mdm2 gen amplifikasyonu gösterilmiştir2. Çok organize bir işlem olan apoptozis zararlı ve anormal hücrelerin yıkımını sağlamaktadır3,11,65. Apoptozis yolunda iki düzeyde mekanizma bozuklukları görülür: 1. Apoptozisi düzenleyen genlerde mutasyon ve bu nedenle apoptozise gitmeyen hücrelerin yaşamasıdır, 2. Apoptozise direnç geliştiren hücrelerin Darwinizm (doğal seçilim) ile seçilip yaşamaya devam etmesidir66. 2-1-2. Apoptozise karşı mekanizmalar: Bcl 2 hücre ölümünü inhibe ederek hücreyi apoptozise karşı korumaktadır21,66,67,68. Bu ailenin diğer üyelerinden Bcl-xL, mcl ve bag 1 hücre ölümünün inhibitörleri iken bad, bax ve bik apoptozisi ilerletirler3,67. GADD45 (a growth arrest and DNA damage (gadd)-induced gene) hücre siklusunun G2-M kontrol noktasında önemli rolü olan nükleer proteindir. Bu protein cdc2 proteini ile etkileşerek cdc2 kinaz aktivitesini inhibe etmektedir. cMyc, GADD45 ve cki genleri p15, p21, p27’yi baskılayarak hücre büyümesini sağlar2,7,9. Yaşam faktörleri olmadığında c-Myc onkogeni hücreleri apoptozise götürür68,69,70. Apoptozis öncesi ve sonrası olaylar tamamen açık değildir. Bcl-2 mitokondrinin dış zarında bulunur ve mitokondriden sitokrom c salınımını bloke eder56,70. Sitokrom c kaspazları aktive ederek apoptozisi indüklemektedir3,5,36,67. Bcl-2’nin ekspresyon düzeyi apoptozisi belirleyen faktörlerden birisidir. Bcl-2 ekspresyonu fazla olan hücreler hücre ölümünden kaçabilir30,65. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Bazı çalışmalarda Bcl-2 çok yüksek bulunmasına rağmen hücre ölümünün arttığı da gösterilmiştir7. NF-kB transkripsiyon faktörünün Bcl-2 ailesini up-regule ettiği bilinmektedir. Bcl-2 aynı zamanda Ras2’nin antiapoptotik aktivitesini de düzenler.2 Bcl-2’nin diğer düzenleyici mekanizması, bax gibi büyüme düzenleyicilerinin aktivitesini inhibe ederek apoptozisi engellemektedir2,7,25,43,67. 2-1-3. Apoptozis kontrol noktaları Apoptozisin olup olmayacağını Bax ve Bcl-2 dengesinin doğruluğu belirler7,62. Hücrelerin apoptozise gitmesi için Bax düzeyinin Bcl-2’den fazla olması gerekir4,5,9,25. Bu mekanizma apoptozisde kontrol noktası 1 olarak önerilmiştir 25,64 (Şekil 4). Yaban tip p53 varlığında Bcl-2 ekspresyonu az olan hücreler apoptozise gider5,71. Tersi olursa yaban tip p53 az, Bcl-2 fazla ise çok mutasyon olabilir. Bunun nedeni hücre proliferasyonunun aktive olmasıdır3,9,25. Bcl 2 ailesinin en büyük proteini Bcl-XL, Bcl-2’ ye benzer yolda hareket eder ve Bcl-2 aktivitesini baskılayan Bak apoptozise neden olur5,9,19,43,68,72,77. Apoptozis yolağında ikinci kontrol noktası çok iyi belirlenememiştir. Interlökin converting enzim (ICE) prokaspaz 1 olarak bilinmektedir. ICE DNA onarım enzimleri ile etkileşmektedir.9,25 Polyadenosin difosfat-riboz polimeraz DNA kırıklarını tanır ve DNA onarımına katılır. Nükleer membran proteini lamin A, PARP’ı parçalar ve apoptotik hücre morfolojisi meydana gelir. ICE ile PARP inaktive olursa, apoptozis başlar9,68. 2-2. Kanser hücrelerinde G2-M geçişi: Kanser gelişiminde ve/veya hastalığın ilerlemesinde G2-M geçişinde değişimlerin rol oynadığı belirlenmiştir. İyonize edici radyasyon Ku homoloğu olan protein kinazları, ataxia telegiectasia mutant (ATM) ve ATM ilişkili (ATR) genleri aktive eder74. Mayada yapılan çalışmalarda telomer idamesi ve DNA onarımı arasındaki bağlantı gösterilmiştir75. Ku, DNA kırıklarının onarımında homolog olmayan uçlar için gereklidir. Ku telomerik DNA’ya bağlanır ve G zengin dizilerin işlenmesine katılır. Telomer idamesinde rolü olan Ku, DNA’larında çift iplik kırığı olan hücrelerin G2-M geçişinde aktive olmaktadır76. Chk1 ve Chk2 protein kinazlar ilk olarak mayada gösterilmiştir. Bu kinazlar, DNA hasarı sonucu aktive olan hücre siklus kontrol noktalarında önemli rol oynamaktadır. Mutant Chk2 Li-Fraumeni sendromlu hastalarda bulunmuştur11,20,77. Chk2 tümör baskılayıcı gen olmaya adaydir. DNA hasarının ardından, Chk1 ve Chk2 yalnız G2 bloğunu uyaran cdc25c’yi fosforillemez; aynı zamanda stabilizasyon için p53 fosforilasyonunu da uyarır. Mikrotübül inhibitörlerinin yaban (wild) tip p53’lü fare embriyo fibroblastlarına verilmesi ile G2-M geçiş bloğu aktive olmaktadır bunun yanısıra mutant p53‘lü hücrelerde hücre siklusu durdurulamamıştır. Bu blok kromozomların ayrılması ve mitoz tamamlanmadan önce diğer S fazına geçişi önleyerek aneuploidiyi engellemektedir. Böylece mutant p53 uygun kromozom ayrılması olmaksızın tekrar tekrar döngüye neden olarak genomik dengesizliğe neden olmaktadır (örneğin aneuploidi). Bu cdk’ların aktivitelerinin inhibisyonu ile gerçekleşir11,20,35. Bu geçişin inhibisyonu p53’ün G2’ye girişi inhibe eden 14-3-3 geninin transkripsiyonunu artırmasıyla sağlanmaktadır. 14-3-3 cdc25c kompleksi, cdc 25c’nin çekirdeğe girişini engeller9,36. Memelilerde DNA hasarı sonucunda tetiklenen sinyal ileti kaskadında ATM ve ATR protein kinazların önemli rolleri vardır. chk1 ve chk2 bu kinazların kontrol noktası fonksiyonlarına aracılık etmektedir78. ATM ve ATR stress olmadığında aktive olmazlar, strese maruz kalınca aktive olmaktadırlar. ATM kinaz normal hücre siklusu ilerlemesinde veya hücre farklılaşmasında gerekli değildir79. 2-3. Kanser hücrelerinde mitoz iplikçik kontrol noktası Bazı araştırmacılara göre kanser gelişimini ve genomik dengesizliği mutasyon oranları ile açıklamak mümkün değildir11,12,80-82. Genomik dengesizlik somatik hücre gen mutasyonu veya aneuploidi gibi kromozom anomalileri içerebilir. Aneuploidi tümör baskılanmasında, hücre siklusunun düzenlenmesinde, sentrozom oluşumu ve fonksiyonunda, hücre büyümesi, metastaz ve metabolizmada bulunan çok sayıda genin dengesizliği olarak tanımlanabilir.11 Kanser gelişimi ve ilerlemesinde aneuploidilerde mitotik kontrol noktası içindeki MAD veya BUB genlerindeki mutasyonların rol oynayabileceği önerilmektedir7,44. Bu mutasyonlar mitotik kontrol noktası değişimine, metafazdan anafaza geçiş sırasında kromozomların yanlış ayrılmasına ve aneuploidiye neden olur. Bu tip mutasyonlar ilk olarak aneuploidi fenotipli olarak sınıflandırılan 19 kolorektum kanser hücre soyunda çalışılmıştır7,44. Ondokuz hücre soyundan ikisinde BUB1 geninde farklı mutasyonlar belirlenmiştir. Aneuplodili bireylerde hBUB1 geninde kalıtsal mutasyonlar bulunmuştur83. BUB1 üç fonksiyonel domain içerir: bunlar CD1, nükleer lokalize edici domain (NLS) ve kinaz domain (CD2)’lerdir. CD1 içinde çerçeve kayması ve anlamsız mutasyonlar bulunmuş, NLS veya CD2 domainlerinde ise mutasyon bulunamamıştır. Farklı araştırıcılar aneuploidi belirlenen kanserlerde BUB ve MAD genlerinde mutasyonlar bulmuştur7,83. Fakat bu mutasyonlar ile ilgili çalışmalar hala yetersizdir. İnsan kanserlerinde mitoz iplikçik kontrol noktaları hakkında bilinenler çok azdır. İnsan kanserlerinin çoğunda mutant MAD1’in kromozom instabilitesine neden olduğu belirlenmiştir11. Aurora kinaz ailesi hücre siklusunu G2/M kontrol noktasından sonra mitoz kontrol noktasında veya mitozun sonuna doğru rol oynar84-87. Aurora kinazlar hatasız hücre bölünmesi için gereklidir84. Aurora kinazların kromozom dizilimi, kromozom ayırımında ve sitokinesisde önemli rolleri vardır. Aneuploidi olan tümörlerde Aurora kinaz’ın fazla ekspresyonu ve sentrozom amplifikasyonu belirlenmiştir88. Aurora A kinaz p53 gibi tümör baskılayıcı proteinleri fosforilleyerek onların aktivitelerini de düzenlemektedir85. Aurora A ve B’nin ras yolağı aracılığı ile hücre transformasyonuna neden olduğu gösterilmiştir86-88. Bu nedenle Aurora kinaz inhibitörleri ile hücre siklusu bloke edilerek kanser tedavisine yönelik çalışmalar yapılmaktadır. Aurora B kinaz inhibitörü AZD1152 lösemi tedavisine yeni etken madde olarak önerilmektedir89. 2-4.Kanser hücrelerinde sentriol anomalileri Kanser hücrelerinde sentriollerin fazla duplike olduğu belirlenmiştir. Normal hücreler, hücre siklusunun G1 fazında siklinE-cdk2 kompleksleri ile sentriol kopya sayısını düzenler11,32. Anormal spindle (asp) gen ürünü mikrotübül assosiye eden proteindir. Asp proteini kutuplarda herbir mitotik iplikçiğin herbir sentrozoma bağlanmasında rol oynar. Mitozun metafazdan anafaza geçişte tutulmasının nedeni asp mutasyonu sonucu anormal iplikçik morfolojisidir. p53, sentrozom replikasyonunda rol oynayabilir11. Fonksiyonel p53 proteini olmayan fare embriyo hücrelerinde bir hücre siklusu sırasında çok sayıda sentrozom kopyası gösterilmiştir. Mitoz sırasında sentrozom sayısının çok olmasının kromozomların yanlış dağılımına ve bu nedenle aneuploidiye yol açtığı bildirilmiştir7,11. 2-5. Tedavi potansiyeli İnsan kanserlerinin %50’sinden daha fazlasında p53 mutasyonunun olduğu rapor edilmiştir84,90. Düzenleyici sinyal yollarında anahtar oyuncuların rolünün anlaşılması, bilgi artışının yanısıra tedavi hedef ve stratejilerinin belirlenmesine katkı sağlayacaktır. (7hidroksistaurosporin) UCNO1 olarak tanımlanan antikanser etkeninin cdc25c‘yi inhibe ederek G2/M kontrol noktasını bozduğu rapor edilmiştir. Kemoterapi ve radyoterapi gibi anti-kanser tedavilerine direnç, DNA hasar kontrol noktalarının değişmesi ile mümkün olabilir91. Kansere karşı ilaç tedavisinin gelişimi hücre transformasyonu içinde moleküler hedeflere daha fazla odaklanmak gereklidir. Araştırmalar hücre siklus kontrolünün düzenlenleyen kimyasal cdk inhibitörlerinin araştırılmasına dönmüştür2,84. Kanser gelişmeden önce p53 ve pRb mutasyonlarının taranması da tümör gelişiminin erken teşhisine olanak sağlayacaktır72,90. Bir grup araştırıcı siklin A veya E’nin fazla ekspresyonunu ve p53 mutasyonunu ‘’border line’' ve invasif yumurtalık kanserlerinde göstermişlerdir9,92. Check point kinase 1 (Chk 1) kanser tedavisinde yeni hedef olarak gösterilmektedir93. Kemoterapik etkenlere direnç gösteren yumuşak doku sarkomalarında G2/M kontrol noktasının korunduğunu göstermek için immunhistokimyasal analizler kullanılmıştır. Sonuç Hücre siklusunda olaylar kaskadını düzenleyen ve kontrol eden etkileşimler çok sayıda ve komplekstir. Tümör baskılayıcı fonksiyonun ve programlı hücre ölüm yolaklarının anlaşılması yönünde ilerlemeler olmasının yanısıra çözümlenmemiş çok sayıda soru vardır. Kemoterapi ve biyoterapi için hücre siklus kontrol noktaları büyük potansiyele sahip hedeflerdir. Kemoterapi ve radyoterapi sonrası kanser hücrelerinin yaşaması onarım yollarındaki hasarlara bağlı olabilir. Hücre siklus kontrol noktalarında ve DNA onarım yollarındaki moleküler bileşenlerin daha iyi anlaşılması için in vivo ve in vitro çalışmalar klinik çalışmalarla da desteklenmelidir7,9,11,33,80,93,94. 1) Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE. Molecular Cell Biology. 4th edition: WH Freeman and Co, New York, 2000. 2) Vermeulen K, VanBockstaele DR, Berneman Z N. The cell cycle : a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131-49. 3) Guimaras CA, Linden R. Apoptosis and alternative deastyles. Eur J Biochem 2004; 271: 1638-50. 4) Zong WX, Thompson CB. Necrotic death as a cell fate? Genes Dev 2006; 20 : 1-15. 5) Bellamy COC. p53 and apoptosis. Br Med Bull 1996; 53(3): 522-38. 6) DeVita Jr VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncolgy. 5th edition: Lippincott-Raven, Philadelphia, 1997. 7) Vermeulen K, Berneman ZN, vanBockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003; 36: 165-75. 8) Öndağ Cabadak H. İnsan periferal kan ve fibroblast hücre kültürlerinin sinkronizasyonu ve sinkronize hücre kültürlerinden kromozom analizi ve karyotip hazırlanması. Yüksek Lisans Tezi, Ankara: Gazi Üniversitesi Tıp Fakültesi Tıbbi Biyoloji ve Genetik Anabilim Dalı, 1987. 9) Foster I. Cancer: A cell cycle defect. Radiography 2008; 14: 144-9. 10) Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature 2007; 450(7170): 721-4. 11) Kearns WG, Liu JM. Cell cycle checkpoint genes and aneuploidy: A short review. Current Genomics 2001; 2: 171-80. 12) Giacinti C, Giordano A. RB and cell cycle progression. Oncogene 2006; 25: 5220-7. 13) Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69: 829-80. | 14) Prasanth SG, Mendez J, Prasanth KV, Stillman B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil Trans R Soc Lond B 2004; 359: 7-16. 15) Flatt PM, Pietenpol JA. Mechanisms of cell-cycle checkpoints: at the cross roads of carcinogenesis and drug discovery. Drug Metab Rev 2000; 32: 283-305. 16) Sears RC,Nevins JR. Signalling networks that link cell proliferation and cell fate. J Biol Chem 2002; 277: 11617-20. 17) Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14: 684-91. 18) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 19) Molinari M. Cell cycle check points and their activation in human cancer. Cell Prolif 2000; 33: 261-74. 20) Cheng M, Sexl V, Sherr C, Raussel M. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1) Proc Natal Acad Sci 1998; 95: 1091-4. 21) Hartwell LH, Kastan MB. Cell cycle and cancer. Science 1994; 266:1821-8. 22) Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 1998; 16(9): 3158-68. 23) Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14(6): 684-91. 24) Weinberg R. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323-30. 25) King RJB. Cancer biology, Longman, 1996. 26) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 27) Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70. 28) Murray AW. Recycling the cell cycle: cyclins revisited. Cell 2004; 116: 221-34. 29) Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase II expression. Cancer Res 2000; 60: 121-8. 30) Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigsm. Genes Dev 2000; 14: 2393-409. 31) Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53-61. 32) Hinchcliffe EH, Thompson EA, Maller JL, Sluder G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 1999; 283 (5403): 851-4. 33) Champard JC, Lefloch R, Pouyssegur J, Lenormand P. Erk implication in cell cycle regulation. Biochem Biophys Acta 2007: 1773(8): 1299-310. 34) Roberts EC, Shapiro PS, Nahreini TS, et al. Distinct cell cycle timing requirements for extracellular signal regulated kinase and phosphoinositide-3-kinase signalling pathways in somatic cell mitosis. Mol Cell Biol 2002; 22: 7226-41. 35) Harper J, Adami G, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805-16. 36) Öndağ H. Effects of excess thymidine and methotraxate on human peripheral blood and fibroblast culture, NATO-ASI The Enzyme Catalysis Process Book, 1998. 37) Pines J, Hunter T. Human cell division: the involvement of cyclins A and B1 and multiple cdc2s. Cold Spring Harb Symp Quant Biol 1991; 56: 449-63. 38) Heald R, McLoughlin M, McKeon F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell 1993: 74; 463-74. 39) Strausfeld U, Labbé JC, Fesquet D, et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351 (6323): 242-56. 40) Draetta G, Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta 1997: 1332: M53-M63. 41) Marumato T, Hirota T, Morisaki T, et al. Roles of aurora -A kinase in mitotic entry and G2 check point in mammalian cells. Genes Cells 2002; 7: 1173-82. 42) Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle check points. J Cell Physiol 2006; 209: 13-20. 43) Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M . Cell survival, cell death and cell cycle pathways are inter connected: Implications for cancer therapy. Drug Resist Updat 2007; 10: 13-29. 44) Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 19: 392: 300-3. 45) Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and Other Mitotic Spindle Checkpoint Genes. Genomicsm 1999; 58: 181-7. 46) Ouyang B, Meadows J, Fukasawa K. Human Bub1: a putative spindle checkpoint kinase closely linked to cell proliferation. Cell Growth Differ 1998; 9(10): 877-85 . 47) Sazer S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci 1997; 94(15): 7965-70. 48) Basu J, Bousbaa H, Logarinho E, Williams BC, Sunkel CE, Goldberg ML. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146(1): 13-28. 49) Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999; 1(8): 514-21. 50) Dobles M, Liberal V, Scott ML. Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101(6): 635-45. 51) Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 2000; 103(3): 399-410. 52) Roberts BT, Farr KA, Hoyt MA. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 1994; 14(12): 8282-91. 53) Taylor SS, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 1998; 142(1): 1-11 54) Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994-1002. 55) Katsan MB, Bartkova JK. The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 1997; 237: 1-4. 56) Sherr C, Mccormick F. The Rb and p53 pathways in cancer. Cancer Cell 2002; 2: 103-12. 57) Cabadak H, Aydın B, Kan B. Muscarinic agonist and antagonists changes muscarinic receptor and cyclin D1 expression in K562 cells. EMBO ’’ Molecular mechanisms of cell cycle control in normal and malignant cCells. Spetses Island-Greece,5-8 October 2007: 53. 58) Reifenberger G, Reifenberger J, Ichimura K, et al. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS and MDM2. Cancer Res 1994; 54: 4299-303. 59) Arima Y, Hirota T, Bronner C, et al. Down regulation of nuclear protein ICBP 90 by 53/p21Cip1/WAF1 dependent DNA damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells 2004; 9: 131-42. 60) Dang T, Bao S, Wang X. Human Rad 9 is required forthe activation of S-phase check point and the maintenance of chromosomal stability. Genes Cells 2005; 10: 287-95. 61) Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol 2001; 3: E277-86. 62) Craig A, Scott M, Burch L, Smith G, Ball K, Hupp T. Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain. Embo Rep 2003; 4: 787-92. 63) Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432: 298-306 64) Latham K, Baker GL, Musunuru K, et al. Cell cycle control and differentiation: mechanisms of proliferative dysfunction in cancer cells. Cancer Detect Prev 1996; 20: 5. 65) Kaldis P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 1999; 55: 284-96. 66) Decuadin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-Xl antagonize the mitochondria dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997; 52: 62-7. 67) Story M, Kodym R. Signal transduction during apoptosis; implications for cancer therapy. Front Biosci 1998; 3: d365-75. 68) Dixon S,Soriano BJ, Lush RM, Bomer MM, Figg WD. Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. Ann Pharmacother 1997; 31: 76-82. 69) Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317-21. 70) Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ, Jr Zhan Q. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 2000; 275 (22): 16602-8. 71) Harms-Ringdahl M, Nicotera P, Radford JR. Radiation induced apoptosis. Mutat Res 1996; 366: 171-9. 72) Sattler M, Liang H, Nettesheim D, Meadows RP, et al. Structure of Bcl-xL- Bak peptide complex recognition between regulators of apoptosis. Science 1997; 275: 983-6. 73) Taya Y. Rb kinases and Rb-binding proteins: new points of view. TIBS 1997; 22: 14-7. 74) Smith GC, Divecha N, Lakin ND, Jackson SP. DNA-dependent protein kinase and related proteins. Biochem Soc Symp 1999; 64: 91-104. 75) Peterson SE, Stellwagen AE, Diede SJ, Singer MS, Haimberger ZW, Johnson CO, Tzoneva M, Gottschling DE. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet 2001; 27(1): 64-7. 76) Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 2003; 17: 2384-95. 77) Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999; 286(5449): 2528-31. 78) Takagaki K, Katsuma S, Kaminishi Y, et al. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells. Genes to Cells 2005; 10: 97-106. 79) Shiloh Y, Kastan M B. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209-54. 80) Marusyk A, DeGregori J. Building a better model of cancer. Cell Division 2006; 1: 24. 81) Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386: 623-7. 82) Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643-9. 83) Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004; 36: 1159-61. 84) Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003: 4; 842-54. 85) Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 927-36. 86) Kanda AH, Kawai H, Suto S, Kitajima S, Sato S, Takata T, Tatsuka M. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene 2005: 24; 7266-72. 87) Tatsuka M, Sato S, Kitajima S, et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene 2005; 24: 1122-27. 88) Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998: 58; 3974-85. 89) Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H, Yokoyama A. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest. Blood 2007; 110: 2034-40. 90) Golias C, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 2004; 58: 1134-41. 91) Hattori H, Kuroda M, Ishida T, Shinmura K, Nagal S, Mukal K, et al. Human DNA damage check points and their relevance to soft tissue sarcoma. Pathol Int 2004; 54: 26-31. 92) Blegen H, Einhorn N, Sjovall K, Roschke A, Ghadimi B, McShane L, et al. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas. Int J Gynecol Cancer 2000; 10: 477-87. 93) Tse AN,Carvajal R,Schwartz GK. Targeting checkpoint kinase 1 in cancer thera-peutics. Clin Cancer Res 2007; 13(7): 1955-9. 94) Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432: 316-23.

http://www.biyologlar.com/hucre-siklusu-ve-kanser

MUTASYONLARIN UYARTIMI ve MUTAJENLER

Kendiliğinden oluşan mutasyonların oranını arttıran etkenlere mutajenik faktörler (=mutajenler) denilir. Mutajenler fiziksel ve kimyasal olmak üzere iki grupta toplanabilir.Örneğin etkiledikleri dokuda iyon oluşturma özelliğine göre iyonize ya da iyonize olmayan radyasyonlar fiziksel mutajenlerdir.X ve gama ışınları ıyon oluşturur,fakat ultraviyole (UV) ışınları oluşturamaz.Hergün çevremizde bizi etkileyen pekçok kimyasal madde, çevre kirleticileri (sigara dumanı,pestisitler,endüstriyel ürünler ve atıklar),besinlerimizdeki doğal ya yapay kimyasal maddeler kimyasal mutajenlerdir.Mutajenlerin fenotipik etkileri oldukça özgündür.Özgünlük, farklı işlergelerden (mekanizmalardan) kaynaklanır.Örneğin UV ışınları ve EMS (etilmetanosülfonat) GC AT (transisyon) mutasyonunu,AFB1 (aflatoksin B1) GC TA (transversiyon) mutasyonunu uyartır. DNA'daki mutasyona duyarlı bazı bölgeler de mutasyon oranının artmasında rol oynar DNA'daki metillenmiş sitozin adacıkları buna örnektir. Mutajenlerin kanserojenik özelliği Eşey hücrelerindeki kalıtsal değişikliklerinin yanında mutajenler,somatik hücrelerde kanserle ilgili genlerde mutasyonları uyartarak kanserlere neden olabilmektedir.Çünkü DNA'daki kalıcı bir değişiklik bölünmeyle ortaya çıkan yeni hücrelerde de kendini göstermektedir. Çok aşamalı kanser oluşum iyle açıklandığı gibi bu hücrelerin kendiliğinden ya da mutajenlerin etkisiyle ek mutasyonlara uğraması sonucu çeşitli tümörler oluşabilmektedir.Ames testi ve diğer mutajenite testleriyle elde edile sonuçlara göre bilinen kanserojenlerin yaklaşık %90 kadarı aynı zamanda mutajeniktir.Buna karşın tüm mutajenlerin potansiyel kanserojen olabilecekleri söylenebilir.

http://www.biyologlar.com/mutasyonlarin-uyartimi-ve-mutajenler

Enflamasyon Nedir ?

Enflamasyon, inflamasyon, yangı veya iltihaplanma, canlı dokunun her türlü canlı, cansız yabancı etkene veya içsel/dışsal doku hasarına verdiği sellüler (hücresel), humoral (sıvısal) ve vasküler (damarsal) bir seri vital yanıttır. Yangı normalde patolojik bir durum olmasına karşın, yangısal reaksiyon fizyolojik olarak vücudun gösterdiği bir tepkidir. Halk arasında iltihap tabiri yangı için kullanılmasına rağmen sık sık apseler için de iltihap denmesinden dolayı yangı terimini kullanmak daha yerinde olacaktır. Hücre dejenerasyonu ile birlikte yangı konusu, hastalıkların patolojik temelini oluşturmaktadır. Bir çok hastalığın seyri sırasında yangısal bir takım reaksiyonlar meydana gelmektedir. Bunlar başlıca enfeksiyöz hastalıklar ve yangısal idiopatik otoimmun hastalıklardır. Tarih boyunca bu olgular farklı şekillerde yorumlanmış, bir çok hastalık için tanrının gazabı veya bazı dengelerin bozulması sonucu (örneğin Ying ve Yang) meydana geldiği sanılmıştır. Bugün bilindiği üzere enfeksiyöz hastalıklarda veya söz konusu diğer sebeplerin bir sonucu olarak bağışıklık sistemi tarafından yangı ve yangısal reaksiyonlar indüklenmektedir. Bu sebeple yangı konusu oldukça derin ve immunoloji disiplini çerçevesinde incelenmesi gereken bir konudur. Otoimmun hastalıklarda etkenin bilinmemesinden dolayı bu gibi olguların genetik bazı defektler veya özel genler aracılığıyla gerçekleşmesinin yanında henüz bilinmeyen bir takım virusların da sebep olabileceği düşünülmektedir. Yangının tarihsel gelişimi incelenecek olursa en eski veriler antik çağa kadar dayanır. Bu dönemin hekimleri yangıyı ciddi derecede tanıyor ve tanımlıyorlardı. Bilinen en eski tıbbi kitap -Mısırlılar tarafından kaleme alınmıştır- Edwin Smith papirüsü; organizmanın yaraya verdiği tepkiye şemet adını vermişti. Bu papirüsün ortaya çıkmasından yaklaşık 1000 yıl sonra Yunan hekim Hipokrat yangı için kabaca "yanan şey" anlamına gelen flegmon terimini kullanmıştır. Milattan sonra 1. yüzyılda yine Romalı yazar Cornelius Celcus yangının bugün bile kabul görmüş tanımını yapmıştır; Rubor et tumor cum, calore et dolore, yani ateş ve ağrının eşlik ettiği kızarıklık ve şişkinlik.[1] Milattan sonra 400-500 yılları döneminde Hipokrat'a ait literatürlerde "yangı" terimi geçmemekte ancak yangının karakteristik özellikleri ve temel özellikleri bilinmekteydi. Hipokrat, yaşamı, ışık vererek, ısıtarak kendi benliğini tüketen bir lambaya benzetmekteydi. Vücudun sıcaklığının lokal olarak ve sınırlı bir şekilde yükselmesine inflamasyon denirken, bütün vücutta meydana gelen bir sıcaklık artışı febris (ateş) olarak tanımlanmıştır. Modern anlamdaki çalışmalar ise 1860'lara dayanır. Bu dönemde patolog Julius Cohnheim canlı kurbağaların dilleri üzerine kostik (yakıcı, dağlayıcı) nitelikte maddeler vermiş ve meydana gelen değişimleri mikroskopik olarak incelemiştir. Yangının tipik beş belirtisi vardır.[2] Bunlar: Kızarıklık (Rubor): Yangılı alanda bir çok medyatörün etkisi sonucu damar geçirgenliği (vasküler permeabilite) ve damar genişliği arttığı (vazodilatasyon) için bölge daha fazla aktif olarak kanlanır, yani hiperemiktir. Rubor, yangının erken evresi ve hafif seyreden reaksiyonlarda, alerjilerde oldukça tipiktir.[3] Isı artışı (Calor): Damar genişlemesi (vazodilatasyon) sebebiyle bölgeye daha fazla kan akımı olacaktır. Daha fazla kan akımı ile bölgedeki sürtünme artacağından dolayı bölgede ısı artışı olur. Çünkü kan aynı zamanda organizmada ısıl dengede son derece öneme sahiptir. Akut yangının en önemli bulgusu calordur. Şişkinlik (Tumor): Damar geçirgenliği (permeabilite) artması sonucu bölgeye kan plazması sızar ve bu da bölgede şişkinliğe neden olur (ödem). Ancak şişkinliğin tek sebebi ödem değildir. Proliferatif karakterde yangılarda meydana gelen granülomlar veya hiperplaziler, fibrotik değişiklikler de söz konusu şişliğe neden olabilir. Dışarıdan görülebilen oluşumlarda yangısal reaksiyonlarda şişkinlik ön plandadır. Vücudun daha iç kısımlarında bulunan organ ve dokularda; örneğin bir akciğerde bu şişkinliği dış bakıda gözlemlemek olanaksızdır. Zira bu organda meydana gelen örneğin akut bir pnömoni, akciğerlerden köpüklü sıvı gelmesine veya patolojik akciğer seslerinin duyulmasına neden olur. Ağrı (Dolor): Bölgedeki sinirler sürekli ağrı uyarımına neden olur. Ağrının şekillenmesindeki en önemli iki sebep; yangıyı tetikleyici prostaglandinlerin organizmada ağrı oluşumunda rol alması ve yangısal ödemden kaynaklanan sinir uçlarına basıdır. Kronik duruma geçen yangılarda dolor, zamanla arka planda kalmaya başlar. Ancak romatoid artrit gibi bozukluklar ne kadar kronik seyretse de böyle olaylarda ağrı ön plana çıkar. Kapsanan organlarda disfonksiyon yani işlev bozukluğu (Functio laesa): Doğal olarak yangılı organ işlevlerini yerine tam olarak getiremez.[4] Functio laesa tanımını inflamasyona Rudolf Virchow dahil etmiştir. Bu beş nitelikten ilk dördü antik zamanlardan beri bilinmektedir ve Celsus'a [5]; functio laesa ise yangı tanımına 1858'de Rudolf Virchow tarafından eklenmiştir.[2] Yangı vücudun savunma sisteminin bir sonucu olarak gelişir ve organizmayı korumaya yöneliktir. Fakat yangı oluşması her zaman istenmez. Örneğin beyinde veya kalpte oluşabilecek bir yangı hayatı tehdit edebilir. Bu sebeple yangıyı önleyici ilaçlar kullanılabilir (Antiinflamatuar droglar). Yangının çok çeşitli sebepleri vardır. Bunlar infeksiyöz etkenler, mikroorganizmalar oldukları gibi parazitler veya cansız cisimler (kıymık, silika vb) de olabilirler. Travmalar, kontüzyonlar (ezilmeler), kesikler de yangı ile sonuçlanır. Yangıya ilişkin bir önemli özellik, yangının daima interstisiyumda gerçekleşmesidir. Parankimatöz yangı olmaz, ancak yangının etkileri parankim dokuda görülebilir.[6] Bunların dışında yangılar akut (birkaç günden bir haftaya kadar gelişen) olabildikleri gibi kronik (uzun süreli) de olabilirler. Yangının organizmada üç temel amacı vardır. Bunlar, hastalık etkenini yok etmek, etkenleri yok edemiyorsa vücuttan ayrı tutmak (demarkasyon) ve hasarlı dokuları ortadan kaldırmaktır. Örneğin nekrotik dokularda, nekrozun yayılmasını ve bu ölü dokuların intoksik etkisini engellemek amacıya nekrotik saha yangısal bir kuşakla, yani demarkasyon bölgesi ile sınırlandırılmaya çalışılır. Yangının temel 4 amacı şunlardır: 1.Vücuda yabancı olan ve patojen nitelikte olan tüm etkenleri yok etmek. 2.Yok edilemeyen etkenleri sınırlandırarak vücuttan ayrı tutmaya çalışmak. 3.Yara iyileşmesinin sağlanması için gerekli uyarım ve biyoaktivite. 4.Nekroz ve gangrenin sınırlandırılması. Yangının başlıca sebepleri aşağıda sıralanmıştır: 1.Canlı etkenler: Yangıya sebep olan en önemli etken mikroorganizmalardır. Bakteri, virus, riketsiya, mantar, protozoon, ve helmintler bu gruba girer. Bu gibi etkenler sahip oldukları antijenler ve yüzey reseptörleri aracılığıyla nötrofilik kemotaksise neden olurlar ve sonuçta yangı gelişir. Yangısal değişikliğin karakterini özellikle canlı etkenler belirler. Bir çok mikroorganizma özellikle de bakteriler (örneğin Streptokoklar, Pseudomonaslar) irin oluşumuna neden olurlar. Yangı normal olarak doğal bağışıklık sisteminin bir unsurudur. Canlı etkenlerin sebep olduğu yangıların birincil amacı etkeni yok etmektir. Bu başarılamazsa organizma bu etkenleri sınırlandırarak veya baskılayarak vücuttan uzak tutmaya çalışır. Bu da başarısız olursa enfeksiyon ve genel sistemik olaylar (örneğin toksemi veya septisemi gibi) meydana gelir. 2.Fiziksel etkenler: Mekanik travmalar (kesici ve delici cisimler, vurma, çarpma gibi darbeler vs.) sıcak ve soğuk etkiler, elektrik, ultraviyole ışınlar, iyonizasyon yapan ışınlar, çeşitli yabancı cisimler (silika, asbest, kıymık, tel vb.). Bu tür etkilerde yangısal reaksiyon klasik olarak oluşur. Organizmaya yabancı bir durum gelişmiştir ve şekillenen yangı adeta standart bir cevaptır.Fiziksel etkiler asepsi-antisepsi özelliğine göre iki şekildedir.Bunlardan biri şirurjikal; yani cerrahi travmaya bağlı gelişen yangısal reaksiyondur. Bu tür olgular steril kabul edilirler. Ancak steril olmayan tüm fiziksel etkilerden ileri gelen sıyrık, kesi, abrazyon, laserasyon gibi olaylar septiktir ve enfekte nitelik taşırlar. Ancak laserasyonlar kas veya tendo gibi dokuda aşırı bir gerilme kaynaklı ise şekillenen yangı aseptik karakterde olur. 3.Kimyasal nedenler: Asitler, alkaliler, dezenfektanlar, ağır metal bileşikleri (örneğin sublime), organizmada fazlaca oluşan metabolizma ürünler; örneğin üremi gibi vücutta fazla miktarda üre birikmesi. Bir başka örnek ise idrar kesesi yırtılması ve buna bağlı ortaya çıkan peritonitis'tir. İdrarın asit pH'sının etkisi olarak peritonda yangısal reaksiyon meydana gelir ve aseptiktir. Endojen ve eksojen toksinler ve bazı ilaçlar yangıya neden olan önemli sebeplerdendir. Genellikle neden oldukları doku yıkımı, dejenerasyon; immun yanıt şeklinde yangı oluşumuna neden olur ki söz konusu doku hasarı sınırlandırılsın. Ahırda yaşayan hayvanlarda en büyük kimyasal sorun üre-amonyaktır. Bu madde solunum yoluyla alındığı taktirde solunum yollarını ciddi şekilde irkilti eder. Asit maddeler hızla doku yıkımına neden olduklarından yangısal yanıt hızlı gelişir. 4.İmmunolojik reaksiyona neden olan maddeler: Yabancı proteinler (örneğin katgüt dikiş ipliği), hipersensibilite yaratan eksojen ve endojen kaynaklı maddeleri transplantasyon'da doku ve organ reddi, immunkompleksler. Gerek homoiyoplastik, gerek heteroplastik olsun; tüm doku/organ nakilleri immun yanıta neden olur. Vücudun bir başka yerinden alınmış dahi olsa yabancı doku daima yabancıdır ve şekillenen immun yanıt da bir çeşit yangıdır. 5.Anoksemi ve nekroz: Dokulara gelen kanın azalması veya kesilmesi bu bölgenin çevresinde yangısal reaksiyon oluşur ve bu nekrozun yayılmasını önler (demarkasyon). Örneğin infarktuslar çevresinde yangılı alan (demarkasyon zonu) görülebilir. 6.İdiopatik (sebebi bilinmeyen) yangılar: Bazı yangısal hastalıkların sebebi tam olarak ortaya konulamamıştır. Örneğin SLE veya Sarkoidozis gibi hastalıklarda yangısal reaksiyonlara neyin neden olduğu tam olarak ortaya konulamamıştır. 7.Doku hasarı ve iyileşme: Doku hasarının beraberinde gelişen tüm iyileşmeler birer yangısal prosestir.Örneğin bir ameliyat sonrası kesi atılan dokuların iyileşmesi yangısal bir süreci de beraberinde getirir. 8.Kontakt yangı: Vücudun bir bölümündeki yangı sık sık yakın dokulara sirayet eder. Bu en çok idrar yolu ve üst solunum yolları enfeksiyonlarında görülür. Patogenezi ve Yangı Hücreleri Yangıya ilişkin vasküler değişiklikleri ilk defa Cohnheim incelemiştir. Daha sonraları Lewis, damarlardaki çap değişikliklerini üçlü yanıt deneyi ile açıklamıştır. Bu deneyde Lewis bir cetvelin ince kenarı ile deriye vurmuş ve olayları şöyle incelemiştir: 1.Önce kapillarlarda daralma olur ve bölge solar. Fakat 30-60 saniye içinde çizgi halinde kırmızılık belirir. Bu kırmızılık kapillar ve venüllerin genişlemesi sonucudur ve birinci yanıt olarak bilinir. 2.1-3 dakika içinde kırmızı alan genişler. İlk oluşan kırmızı alan etrafında düzensiz kırmızı ikinci bir çeper meydana gelir. Bu da ikinci yanıttır. Bu esnada bölgede sıcaklık artar. Kapillar ve venül genişlemesine arteriel genişleme eşlik eder. 3.Birkaç dakika ile 40 dakika arasındaki sürede o bölgede şişme ile beraber solma görülür (üçüncü yanıt). Bu şişlik ve solgunluk damarlardan sıvı çıkmasına yani ödeme bağlıdır. Nötrofiller yangı sinyallerini takiben şu aşamaları izlerler: Emigrasyon: Normal kan dolaşımında lökositler merkezde, eritrositler lökositlerin etrafında kuşak şeklinde ve en dışta (damar duvarına en yakın) trombositler ile plazma konuşlanır. Yangısal uyarımın alındığı ilk andan itibaren nötrofiller merkezden perifere doğru göçe başlar. Bu olay emigrasyondur ve takibinde derhal marginasyon gerçekleşir. Marginasyon: Emigrasyona uğrayan nötrofillerin, merkezden uzaklaşarak damar duvarına yaklaşmış olması durumudur. Adherens: Marjine olan nötrofiller, damar endoteli ile yüzey molekülleri aracılığıyla (ICAM-1,2 ve VCAM-1,2 gibi) etkileşime girmesi olayına adherens denir. Diapedezis: Psödopodlara (yalancı ayak) sahip nötrofillerin aynı zamanda damar endotellerini enzimatik olarak yıkımlayarak damar dışına çıkması olayıdır. İmmun sistem hücreleri yangının patogenezinde önemli rol oynar. Yangının ilk evrelerinde damarlardaki normal akımın seyri değişir. Normal kan akımında damar lumeninin en iç yüzünde lökositler, bunların etrafında eritrositler, daha dışarıda trombositler ve damar lumenine en yakın olarak da plazma yer alır. Herhangi bir sebeple yangı reaksiyonu başlarsa öncelikle devreye giren histamin, prostoglandin, kinin-bradikinin ve diğer yangı stimule edici (proinflamatuvar) ajanlarca damar geçirgenliği artar ve yangısal ortamda lökositlerin (özellikle monositer makrofajlar ve nötrofiller) daha uygun hareket etmeleri için uygun ortamı hazırlamak üzere plazma eksudasyonu (ödem) gerçekleşir.Yangısal ödem daima hücre göçünden önce olur. Daha sonra damarlardaki normal akım bozulur ve en içteki lökositler damar lumenine yaklaşmaya başlar (marginasyon). Bunun ardından damar lumenine gelen lökositler geçirgenliği artmış damar duvarından yalancı ayaklar (pseudopodlar) vasıtasıyla ve salgıladıkları bazı litik enzimler (özellikle nötral ve asit proteazlar) aracılığı ile damar dışına sızarlar (lökodiapedesis). Artık yangı başlamış ve vücut düşmanla savaşmak için gerekli hazırlıklarını yapmıştır. Nötrofiller Yangının başlarında en öncü hücreler nötrofillerdir. Nötrofillerin bu özelliğinin kemotaksis'e olan duyarlılığının neden olduğu sanılmaktadır. Bu duyarlılıkta özellikle hücre membranı yüzeyinde bulunan komplemen proteinlerin türü ve yoğunluğu önem taşır. Akut yangısal olaylar veya bakteriyel enfeksiyonlar nötrofil yapımını ve yangısal infiltrasyonunu artırır.[7] Viruslara karşı gelişen immun yanıttan nötrofiller değil lenfositler sorumludur. Ancak bunun istisnaları vardır.(Örneğin FIP hastalığı). Nötrofillerden üretilen proteazlar, proteinleri ve hücre zarlarını tahrip eder ve komplemanların proteolitik aktivasyonundan, koagulasyondan (çökelme, pıhtılaşma) ve kinin kaskadından sorumludur. Kinin-bradikinin; tıpkı histamin benzeri bir etki göstererek yangısal reaksiyonu indükler.[8] Kemik iliğinde kök hücreye kök hücre faktörü, interleukin IL)-3, IL-6, IL-11, granulosit koloni uyarıcı faktör (G-CSF)gibi büyüme faktörleri ve sitokinlerin etkisi ile progenitor hücreler granülositler şeklinde olgunlaşır ve çoğalır.[9] Yangısal reaksiyonlar ve enfeksiyonlara bağlı olarak gelişen nötrofili, kemik iliği depo havuzundan nötrofil salınması sebebiyle ortaya çıkar.[10] Dolaşımdan nötrofil salınmasının azalmasına bağlı olarak, CR3 reseptörü olan CD11b/CD18 eksikliğine bağlı nötrofili gelişebilir. Bu durum Lökosit adhezyon eksikliği olarak bilinir ve nötrofiller kapiller endotele yapışmaz. Bundan dolayı enfeksiyon ortaya çıktığında yangı bölgesine ulaşamazlar.[11][12] Nötrofillerin yangısal yanıtta sahip oldukları önem son derece büyüktür. Bunun en önemli sebeplerinden biri de sahip oldukları granüler yapıların immunolojik özelliğidir. Primer granüller; Myeloperoksidaz, defensin [13], katepsin-G, Proteinaz 3, Lizozim, Azurosidin, gibi enzimlere sahiptir. Bunlar mikrobiyal yıkımı sağlar.[13] Sekonder granüller; Lizozim, laktoferrin, kollajenaz, sitokrom b558, alkalin fosfataz ve plazminojen gibi enzimler esahip olup migrasyon ile mikrobiyal yıkımı sağlar. Tersiyer granüller; Jelatinaz, lizozim, asetil transferaz, asit fosfataz, sitokrom b558, nramp-1 gibi moleküllere sahiptir. Bunlar da damar dışına göçten sorumludur. Sekretorik veziküller; Alkalin fosfataz, sitokrom b558, plazma proteinleri gibi bileşenleri içerir. Sekretorik veziküller adhezyondan sorumludur. Cathepsin-G, defensin ve myeloperoksidaz gibi enzimler güçlü oksidatif ve proteolitik etki göstererek fagosite edilmiş yabancı materyali veya etkeni yıkımlayan protein yapısında enzimlerdir. Cathepsin-G, Serin endopeptidaz benzeri aktivite gösterir.[14] Bunun yanı sıra heparini bağlar.[15] Cathepsin-G'nin organizmadaki asıl önemli fonksiyonları ise proteinlerin yıkımlanması, mantarlara karşı bağışıklık yanıtı ve nötrofil aracılı gram negatif bakteri yıkımıdır.[16][16] Lenfositler Bağışıklık sisteminin temel hücre gruplarından olan lenfositler kandaki çekirdekli hücrelerin (granülositler) yaklaşık olarak %25’ini oluştururlar. CD4+ T lenfositler MHC Sınıf II aracılığı ile antijen tanırken, CD8+ hücreler MHC Sınıf I aracılığı ile antijen tanımaktadırlar. Lenfositlerin bir çok alt tipi vardır. Bunlar; CD4+ helper, CD8+ sitotoksik, Treg hücreler, B hücreler, Doğal öldürücü hücreler ve NKT hücrelerdir.[17] İkili boyamada oldukça büyük çekirdeğe sahip bir lenfosit görülmekte. Yangısal CD4+ T Hücreleri: CD4+ T yardımcı hücreleri öncelikle timusta naif T hücresi olarak oluşmakta ve dolaşıma verilmektedir. Bunu izleyen süreçte bu hücreler antijenlerle karşılaştıktan sonra uygun sitokin ortamı etkisiyle belli T hücre guruplarına farklılaşmaktadırlar. Olgunlaşmış T hücreleri kendi reseptörlerine uygun yapıda olan antijeni, antijen taşıyan antijen sunucu hücrenin MHC molekülü üzerinde algılar; CD3 ve CD28 kostimülasyonu da sağlandığında ve yine ortamda IFN-Υ veya IL-12 sitokini baskın ise Th1 hücresi olarak farklılaşırlar.[18] Antijenleri tanıdığı vakit, saldırı emri alan TH1 hücreleri, IFN-Υ ve TNF sitokinlerini sentezler. Bu sitokinlerin, daha doğrusu CD4+ T Hücrelerinin temel fonksiyonu makrofaj aktivasyonudur. Seçilmiş TH1 hücreleri de sitotoksisiteye neden olabilir.[19] M Hücreleri Luminal yüzeyden aldıkları antijenleri dar yapıdaki sitoplazmalarından geçirmek suretiyle parçalı olan bazal membranından bağ dokuda bulunan lenfositlere ileterek IgA yapımını indükler.[20] Makrofaj Nötrofillerden başka en önemli yangı hücrelerinden biri de makrofajlardır. Makrofajlar, dolaşımdaki monositlerin farklılaşmasıyla gelişirler. Granülasyon dokusu oluşumunun başlamasında ve gelişiminde oldukça önemli rol oynarlar. Diğer makrofaj kaynağı ise dokulardaki makrofajlar yani histiyosit lerdir. Makrofajlar her ne kadar enfeksiyon etkenlerini fagositoz ve yok etme amacıyla görev alsa da bazı yüksek virulansa sahip hastalık etkenleri; örneğin Mycobacterium tuberculosis dolaşıma geçirerek tüm vücuda da yayabilir.Bu yüzden gerek yangıda, gerek bir hastalığın patogenezisinde oldukça önemlidirler. Makrofajlar ayrıca vazoaktif medyatörler (damar geçirgenliğini artırıcı), proteaz gibi enzimler, kemotaktik ve büyüme faktörleri gibi biyolojik olarak aktif maddeleri de üretirler. Granülasyon dokusu oluşacağı zaman veya fibrozis gibi bir nedbeleşme olaylarında bölgede yeni oluşacak kan damarları, fibroblast göçü yine makrofajların sorumluluğunda gerçekleşir.[21][22] Bunların dışında yangıların karakteristiğine göre bölgeye bir çok hücre de gelebilir. Bunların başında B ve T lenfositler yer alır. Lenfositler genellikle kronik yangılarda sayıca üstün oldukları gibi viral bir infeksiyona bağlı yangı oluşmuşsa yine sayıca üstün hücre olurlar. Şayet yangının karakteri allerjik veya parazitik ise bu defa sayıca üstün hücreler eozinofiller olurlar. Bu duruma allerjen maddelerin antikorlarla oluşturdukları kompleksler ve yine antijenin türünden dolayı üretilen ECF (Eosinophilic chemotactic factor) aracı olmaktadır. Bir başka önemli yangı hücresi ise fibroblastlardır. Aslında fibroblastların yangı bölgesinde olmasının en önemli nedeni makrofajların salgıladığı büyüme faktörleridir. Bunun sonucu olarak bağ doku ve fibrin oluşumu ile karakterize fibrozis meydana gelir. Bu durum akciğer gibi bir organda olmuş ise adı karnifikasyon olur. Pneumoconiosis ve benzeri olaylarında yangı sonucu bağ doku oluşumu görülür. Fibroblastlar proliferatif karakterde reaksiyonların ve doku kayıplarının giderildiği olayların baş aktörleridir. Bazı yangılarda teşhiste de rol oynayan spesifik hücreler bulunur. Bunlar dev hücreleri olarak adlandırılır. Bilinen dev hücreler; Langhans dev hücresi, Sternberg dev hücresi, Epulis dev hücresi, yabancı cisim dev hücresi, tümör dev hücresi, sinsityal hücrelerdir. Epulis dev hücresi dışındaki dev hücreler makrofaj veya epiteloid hücrelerden köken alırlar. Sinsityal hücrelerin oluşum mekanizması oldukça ilginçtir. Viral enfeksiyonların önemli bir mikroskopik bulgusu olan bu dev hücrelerin oluşumu, patojen virusun enfekte ettiği hücreyi terk etmeden çoğalmasını sağlar. Üretilen fizyon proteinleri hücreleri bir araya çekerek öncelikle sinsityum oluşumu sağlar. Yangı mediatörleri Bir yangısal reaksiyonda belirli süreçleri tetikleyen kimyasal maddelerdir. Kompleks olmayan bir inflamasyonda bu maddeler birbirlerini karşılıklı olarak aktive ederler veya baskılarlar; böylece,inflamasyondaki bireysel adımlar koordineli bir defansif (savunmacı) reaksiyon oluştururlar. Bunlar (kininlerde olduğu gibi) ölü dokulardan elde edilebilir ya da canlı dokulardan oluşturulabilir. Hücrelerden elde edilen mediatörler: Bunlar ya bunları aktive biçimde salgılayan belirli hücreler içinde depolanmış mediatörlerdir ya da hücreler tarafından özellikle sentezlenen mediatörlerdir. Histamin mast hücre ve bazofil granüllerinde depolanır. Bu inflamasyonun alerjik formlarında kilit bir rol oynar. Histamin; Antijen-antikor kompleksleri tarafından salgılanır ve hücrelerin membrana bağlı IgM molekülleri tarafından önceden duyarlılığı gerektirir.Serotonin trombositlerden ve ince bağırsaktaki enretokromoffin hücrelerden gelir. Etkileri histamininkine benzer. Damar geçirgenliğinde artışa neden olur. ICAM-3: İnterselüler adhezyon molekülü-3 olarak da bilinir.Lökositlerin hücre yüzeyinde bulunan bu molekül, antijen sunan hücreler ile T-lenfositlerin etkileşiminde son derece önemli rol oynar. Bu etkileşim, hem ICAM-1, ICAM-2 ve ICAM-3'ün LFA-1 molekülleri ile etkileşime girmesi hem de T hücre yüzeyinde bulunan CD2 molekülü ve APC'nin sunduğu LFA-3'ün etkileşime girmesi sayesinde gerçekleşir.[23] Sitokinler'in (lenfokinlerin) rolleri Sitokinler (lenfokinler) hücresel düzenleyici proteinlerdir. Çeşitli uyarılara karsı cevap olarak özel hücreler (T Lenfositler) tarafından salgılanır ve hedeflenen hücrelerin davranışını etkilerler. Belli bir sitokin çeşitli hücreler tarafından farklı dokularda salgılanır ancak aynı benzeri biyolojik etkinliği gösterir. Sitokinlerin etkileri sistemik veya lokaldir.[24] Lenfosit kaynaklı sitokinler; IL-2, IL-4, IL-5, IL-12, IL-15, TGF-β (transforming growth factor). IL-10 ve TGF-β immun yanıtı azaltırken, IL-2, IL-4 lenfosit gelişimini indüklemer. Yangısal olaylarda genel olarak stimulan (proinflamatuvar) veya depresif (antiinflamatuvar) etki gösterirler. Sitokinlerin temel görevleri arasında makrofajlarda kemotaksisinin başlatılması, damar permeabilitesinde (geçirgenlik) artış ve immunite (bağışıklık) sayılabilir. Makrofaj/monosit kaynaklı sitokinler ise (monokin); IL-1α ve β, TNF-α'dır. Bazı sitokinler tedavi amacıyla ilaç olarak kullanılmaktadır; IFN’ların kanser (IFN-α), hepatitis (IFN-α), kronik granülomatoz hastalık (IFN-γ) ve multipl skleroz (IFN-β) ve IL-2’nin renal kanser ve melanoma tedavisinde yer edinmiştir. Th2 hücreleri(Tip-2 Yardımcı T Lenfosit), bağışıklık sisteminde T-hücre reseptörleri aracılığıyla hem allerjen peptitleri doğrudan tanıyan hem de interlöykinlerin (IL) salınımı sağlayan tek hücre sistemidir ve bu da alerjik yangıda IgE antikoru üreten B hücreleri (IL-4, IL-13), mast hücreleri (IL-4, IL-10), ve eozinofil'ler (IL-5) ile ilişkisini ortaya koyar.Lökosit kemotaksis'i ve kemokinezis'ini etkileyen sitokinler arasında; IL-8, eotaksin ve makrofaj enflamatuvar protein-1α bulunmaktadır.[25] Sitokinleri iki başlık altında toplanabilir. Bunlar doğal immun yanıtı regüle edenler ve edinsel immun yanıtı regüle edenlerdir. Doğal immun yanıtı regüle eden sitokinler Bunlar makrofaj ve diğer mononükleer fagositlerden salınırlar. Bunların dışında T Lenfosit, NK (Natural Killer, Doğal Katil) hücreleri, endotel hücreleri ve mukozal epitel hücrelerince de salınabilirler. Doğal bağışıklık gelişmesinde önemli rol oynayan; IL-1, TNF-α, IL-6, özel olmayan yangısal cevabı başlatır; IFN tip 1 ise antiviral etkilidir.[26] TNF (Tümör Nekrozis Faktör),Gram negatif bakterilere ve diğer infeksiyöz mikroplara akut yangısal yanıtın düzenleyicileridir. TNF’ye TNF-α adı da verilir ve böylece TNF-β (lenfotoksin)’den ayrılır. Nötrofil ve monositleri uyararak infeksiyon bölgesine toplamak ve aktive ederek mikropların ortadan kaldırılmasını sağlar. Endotelyal hücreleri ve makrofajları kemokin salmak üzere uyarır. Mononüklear fagositlerden IL-1 salınımını uyarır. IL-1’nin, TNF’ye benzer bir rolü vardır. Bazı hücre tiplerinde (örneğin virus ile infekte veya tümöral hücreler) apoptozis'i indükler. TNF, hipotalamus üzerine etki ederek vücut sıcaklığının artışına, dolayısıyla ateşe neden olur. Bu nedenle endojen pirojen olarak bilinir. TNF’ye (ve IL-1’e) yanıt olarak gelişen ateş oluşumu, sitokinle uyarılan hipotalamik hücrelerden salınan prostoglandinler aracılığıyla (PG) düzenlenir. Örneğin Aspirin PG sentezini inhibe ederek TNF ve IL-1’in bu etkisini bloke ederek ateşi düşürür. Hepatositleri bazı serum proteinlerinin (örneğin serum amiloid A ve fibrinojen) sentezi için uyarır. TNF’nin uzamış üretimi, kas ve yağ dokusu hücrelerinin zayıflamasına neden olur. Bu zayıflama, TNF aracılığı ile iştahsızlıktan ve lipoprotein lipazın azalan sentezinden kaynaklanır. TNF miktarı aşırı arttığında miyokardiyal kasılabilirlik ve damar düz kas tonusu inhibe olur. Bu durumda, kan basıncı düşer. Dolaşımda fazla TNF olması kan glukoz düzeyinin azalması gibi metabolik bozukluklara neden olur. TNF trombomodulin (trombin reseptörü-pıhtılaşma inhibitörü) ekspresyonunu inhibe ederek tromboz oluşumuna neden olur. Interlöykin-1 (IL-1) Makrofajlardan salınan İnterlökin 1(IL-1), araşidonat kaskadını aktive eder, platelet aktivating faktör(PAF) oluşturur ve kinin sistemini aktive eder. Akut yangısal reaksiyonları destekler. Karaciğerden akut faz proteinlerinin salınımını artırır. Skatriks (nedbe) için gerekli olan kollagen ve kollagenaz aktiviteyi uyarır. Interlöykin-12 (IL-12) İntrasellüler etkenlere karşı gelişen erken primitif immun yanıttan sorumludur. Hücresel immunitenin tetikleyicisidir. T lenfosit ve NK'lerden Interferon-φ (IFN-Gama) sentezini uyarır. Interlöykin-6 (IL-6), IL-1'in ilk iki etkisine ek olarak B lenfosit proliferasyonunu uyarır ve nötrofil sayısında artışı destekler. Interlöykin-10 (IL-10), Aktif makrofaj ve dendritik hücreleri ile IL-12'nin etkinliğini baskılar. Bu özelliğinden dolayı antiinflamatuvar'dır. Edinsel immun yanıtı regüle eden sitokinler Interlöykin-2 (IL-2), NK ve lenfositler için gelişim faktörüdür. Diğer sitokinlerin sentezisi uyardığı gibi B lenfositlerden antikor salınımını artırır. Antijenle uyarılan T lenfositler için bir büyüme faktörüdür ve antijenle etkileştikten sonra T hücrelerinin çoğalmasından (klonal ekspansiyon) sorumludur. Interlöykin-4 (IL-4), NK hücreleri, CD4+ TH1 hücreler ve CD8+ T hücreler tarafında üretilir. Helmint ve artropod infeksiyonlarından kaynaklanan yangısal reaksiyonlarda, Immunglobulin-E (IgE) aktivasyonunu artırır. IL-4, IFN-Gama antagonistidir.Kısmen antiviral aktiviteye de sahiptir. Interlöykin-5 (IL-5), IL-4 ile ortak göreve sahip olan bu sitokin eozinofil aktivasyonunu tetikler. IFN-Gama, Makrofaj aktivasyonunun en önemli sitokinlerinden biridir. Lenfotoksin (LT), T lenfositlerinden ve diğer hücrelerden üretilir. %30 oranında makrofaj kaynaklı TNF ile homoloji gösterir ve benzer fonksiyonlara sahiptir. Bu nedenle LT, TNF-β olarak adlandırılır. Endotel hücreleri ve nötrofilleri aktive eder, bu nedenle akut inflamatör yanıtın bir mediatörü olarak görev yapar. Bu biyolojik etkinliği TNF’ninkine benzer. Interlöykin-13 (IL-13), makrofajlar gibi lenfoid olmayan hücreler üzerine etki eder ancak T ve B lenfositlere etkisi IL-4 kadar değildir. Major etkisi makrofajların aktivitesini inhibe etmektir ve IFN-gama’ya antagonisttir. Akciğer epitelyal hücrelerde mukus üretimini arttırır. Araşidonik asit metabolitleri Prostaglandinler ve lökotriyenler AA metabolizması sonucu açığa çıkan ürünler bir çok biyolojik olayları etkiler. Her hücre yaralanması, fosfalipaz A 2 yi aktive ederek araşidonik asit gibi 20 karbonlu poliansature yağ asitleri oluşturur. Bu olaylardan biri de yangıdır. AA poliansature bir yağ asididir ve hücre zarındaki fosfolipid'lerde önemli miktarlarda bulunur.İnflamatuvar etkinlik ya da C5a gibi kimyasal mediatörler aracılığıyla sellüler fosfolipaz aktivasyonu sonucu membran fosfolipid'lerinden açığa çıkar.Yangısal reaksiyon esnasında, nötrofil lizozomlarının, fosfolipaz'ların önemli düzeyde kaynağı olduğunu sanılmaktadır.Lökotriyenler özellikle allerjik reaksiyonlarda indükleyici görev görür. Reaksiyon başladıktan sonra AA metabolizması iki temel yoldan birini seçer.Bunlar; Siklooksijenaz yolu Lipooksijenaz yolu'dur. Lipooksijenaz lökotrienleri oluşturmak üzere parçalar(LT). Siklooksijenaz ise nonsterodial antiinflamatuar ajanlar tarafından inhibe edilebilen bir süreçte prostoglandinleri(birçok hücrede bulunan) oluşturur. Prostosiklin kapiller endotel ve vasküler duvar, tromboksan trombositler tarafından oluşturulur. Prostaglandinin etkileri: Yaygın vazodilatasyon. Ağrı reseptörlerinin uyarılması. Ateş yükselmesidir. Lökotienlerin etkileri: Nötrofilik ve eozinofilik granüllerin kemokinleri ve kemotaksisi. Vazokonstriksiyon. Bronkonstriksiyondur. Antiinflamatuvar etkinlik Antiinflamatuvar etki yangısal reaksiyonu diğer mediatörlerin aksine baskılar. Vücutta doğal antiinflamatuvar mediatörler olduğu gibi dışardan alınan bir çok etken maddenin de antiinflamatuvar etkisi vardır. Bir çok antiinflamatuvar mediatör etkisini prostaglandin sentezini inhibe ederek gösterir. Arachidonik asit üzerinden siklooksijenaz yolunun blokajı ve lipooksijenaz yolunun blokajı temel mekanizmalardan biridir. Doğal antiinflamatuvarlar Bunlar vücut tarafından üretilen mediatörlerdir. En bilinen antiinflamatuvar mediatörler başlıca kortizon ve diğer glikokortikoid'lerdir. Nonsteroid (yapay) antiinflamatuvarlar Kısaca NSAID olarak bilinirler. Bunların bir çoğunun analjezik ve antipiretik etkileri vardır. Yani hem ağrı kesici hem de ateş düşürücü etkilere sahiptirler. Ağrı kesici etkileri de prostoglandin sentezinin inhibisyonunun bir sonucudur. En bilinen NSAID'ler metamizol, diklofenak, naproksen sodyum ve ketoprofen türevi bileşiklerdir. Çoğu NSAİİler siklooksijenaz yolunu non-selektif olarak inhibe ederek etkirler. Siklooksijenaz-1 (COX-1) ve siklooksijenaz-2 (COX-2) izoenzimlerinin her ikisini de inhibe ederler. Siklooksijenaz araşidonik asitten tromboksan ve prostaglandin yapımında katalizör görevi görür. Prostaglandinler inflamasyon oluşum sürecinde diğer görevli maddelerle birlikte iletim molekülü olarak rol oynar.Bu etki mekanizması John Vane tarafından ortaya çıkarıldı ve bilim adamı bu şekilde Nobel ödülü sahibi oldu. Fibronektin faktörü Fibronektinler 450.000 Dalton boyutunda, genellikle dimerik yapıdaki glikoproteinlerdir. Hem plazmada çözünür formda (plazma fibronektin), hem de hücre dışı alanda çözünmez formda (sellüler fibronektin) bulunurlar[27]. Fibronektin opsonik aktivitesi nedeniyle retiküloendotelial sistemde(RES) ve pıhtı stabilizasyonunda rol oynar. Diğer fonksiyonlarının yanında hücre adhezyonu, migrasyonu, büyüme ve farklılaşmada görev alırlar. Başlıca üretim yerleri karaciğer hücreleri, endotelyal hücreler ve fibroblastlardır.[28][29][30] Yara iyileşmesi birbiriyle kompleks oluşturmuş dört fazda incelenebilir. Bunlar; koagülasyon, inflamasyon, granülasyon dokusu oluşumu ve matriks formasyonu-yeniden yapılanmadır. Fibronektin'in bu fazların hepsinde fonksiyon gördüğü bilinmektedir.[31] Yangının iyileşme sürecinde gelişen granülasyon dokusunun oluşumunda fibronektin olmazsa olmaz denilebilecek derece roller üstlenir.[32] Fibronektin, kuvvetli opsonik bir alfa-2-glikoproteindir. Aynı zamanda kanı pıhtılaşmasında primer tıkaç oluşması için gerekli hücre göçünden sorumlu mediatörleri de üretir.[33] Akut faz proteinleri Yangısal alanda nötrofil gibi granulositler ve mononüklear hücrelerin aktive edilmesiyle birlikte TNF-alfa ve İnterlökin-6 gibi proinflamatör (yangıyı tetikleyici) sitokinlerin salınımı ile birlikte akut faz proteinleri (APP) olarak bilinen glikoproteinlerin karaciğerden üretimini destekler.[34] Bunun dışında akut faz proteinlerinin üretimi için gerekli uyarımlar İnterlökin-1 tarafından da stimule edilir. Günümüzde akut faz proteinleri lökositozis ve/veya nötrofili gibi geleneksel hematolojik değerlendirmelerde kullanılan yangısal parametrelere göre daha duyarlı oldukları tespit edildiği için yangısal reaksiyonların belirlenmesinde daha etkili ve hassas bir yöntem olmuştur.[35] C-Reaktif Protein (CRP):Yangının yanı sıra enfeksiyon ve travmanın sebep olduğu doku hasarını takiben, yangısal bir olaylar zincirinde üretilen akut faz proteinlerden biri de CRP'dir.[36][37][38] Yapılan bir çok çalışmada CRP'nin yangısal cevabı takiben 24 saat içinde artış gösterdiği ve yangısal uyarımların bitiminden itibaren yavaşça azaldığı gözlenmiştir.[39][40] CRP seviyesinin gastrointestinal sistemdeki mukozal hasarının da tespitinde belirteç olarak kullanılması söz konusudur.[41] Diğer önemli akut faz proteinleri: Serum Amiloid (A-SAA): A-SAA, yangının akut fazında üretilir. Safra için üretilen kolesterolün taşınımı, yangısal alana immun sistem hücrelerinin göçü ve ekstraselüler matrikse enzimlerin girişini sağlar. Amiloidozis, romatoid artrit ve aterosklerozis gibi yaygın, kronik inflamatuvar hastalıklardan sorumlu olduğu düşünülmektedir.[42] Farelerde üç izoformu bildirilmiştir. Bunlar; SAA-1, SAA-2 ve SAA-3'tür. Yangı boyunca SAA-1 ve SAA-2 karaciğerden üretilirken, SAA-3 ise farklı dokulardan üretilmektedir. SAA-1 ve SAA-2 genlerinin kontrolü ise sitokinlerden IL-1, IL-6 ve TNF-α'dır.[43] Haptoglobin (Hp): Oksidatif aktivite sonucu ertirositlerden plazmaya salınan serbest hemoglobini bağlar, hasara uğrayan böbreklerden ileri gelen demir kaybını önler.[44] Alfa-1Asid Glikoprotein (AGP) Seruloplazmin (Cp) Fibrinojen (Fb) Adezyon, migrasyon ve diapedezde görevli yüzey molekülleri Bunlar başlıca Hücre aracılı bağlanma reseptörleri ve Soluabl (çözülebilir) yüzey molekülleri olmak üzere iki temel sınıfa ayrılır. Hücre aracılı bağlanma reseptörleri: Toll Benzeri Reseptörler: Bakteriyel lipopolisakkaritler, peptidoglikanlar, viral nükleik asitler ve bazı parazitlerin yüzey molekülleri ile etkileşime girmeyi sağlayan bu moleküller başlıca plazma membranı, dendritik hücrelerin endozomal membranı (hücre içi uyarım), fagositler, B hücreleri ve diğer bir çok hücre yüzeyinde bulunur. İmmun sistem hücrelerini uyararak yangının başlamasını sağlarlar. NOD Benzeri Reseptör: Bakteriyel hücre duvarı, flagellin, muramyl dipeptid ve hasara uğrayan hücrelerin metabolitleri ile bağlanır. Başlıca fagositlerin sitoplazmalarında bulunur. RIG Benzeri Reseptör Viral RNA ile etkileşime girer. NOD benzeri reseptörlerde olduğu gibi fagosit sitoplazmasında bulunurlar. RIG-1 ve MDA-5 bu reseptörlere başlıca örnektir. C Tipi Lektin Bağlayıcı Reseptör Bakteriyel hücre duvarı yüzeyinde bulunan mannoz ve fruktozun yanı sıra mantar hücre duvarında bulunan glukanlar ile reaksiyona girer. Fagositlerin plazma membranında bulunur. Komplement sistemin aktivasyonundan sorumludur. Bu moleküllere örnek olarak Mannoz reseptörü, Trombomodulin ve Dektin verilebilir. Soluabl yüzey molekülleri: Pentraksinler: Mikrobiyal fosforil kolin ve fosfatidil etanolamin gibi moleküllerle etkileşime girerler. Plazmada bulunurlar. Örneğin, C-Reaktif Protein. Kolektinler: Mikrobiyal yapı ürünleri ile etkileşime girerler. Mannoz bağlayıcı lektin ve Surfaktan proteinleri SP-A, SP-D gibi proteinlerdir. Başlıca plazma ve alveollerde bulunurlar. Selektinler: CD62 molekülü olarak da adlandırılmaktadır. Selektinler, tek zincirli transmembran glikoproteinleridir. Hücre adezyonlarından sorumludurlar.[3] Endotelyal hücrelerde E-selektin, lökositlerde L-selektin, plateletler ve endotel hücrelerinde ise P-selektin konuşlanmıştır. Komplement: Mikrobiyal yüzey molekülleri ile etkileşime girer. En önemli iki örneği Komplement 3 ve 5'tir. Başlıca plazmada bulunurlar. Nitrik oksit ve reaktif yanıt Nitrik oksit organizmada bir çok role sahip özel bir biyolojik moleküldür. Makrofajlarca fagosite edilmiş, sindirilmiş mikroorganizmalara karşı oldukça güçlü bir yanıt gösterir.[45] Hücre içi sinyal iletiminde de bazı fonksiyonları vardır. Nitrik oksit kısa süreli ve güçlü bir reaktif etkiye sahiptir. Böylece fagosite edilen mikroorganizmaların yıkımlanmasını sağlar. Nitrik oksitin bunların yanında ayrıca nörotransmitter bir maddedir ve dolaşımda stabilizasyonu sağlar. Nitrik oksitin tepkimeye girmesiyle bakterilerin sitrik asit siklusu engellenir. Bunun yanında viral replikasyonu, yani virusların hücre içinde üremesini, çoğalmasını da engeller. Çeşitleri Yangılar akut ve kronik olmalarının yanında eksudasyonlarına göre de bir çok şekilde sınıflandırılabilir. Bunlar eksudatif, alteratif ve proliferatif yangılardır. Akut yangı Akut yangılar hızlı bir şekilde başlar ve kısa sürede şekillenir (bir kaç saat ile bir gün arasında). Hızlıca oluştukları için yangılı alana sayıca hakim hücreler nötrofil lökositlerdir. Bunun yanında makrofajlar da sıkça görülür. Sayıca az da olsa lenfositler görülebilir. Kronik yangı Kronik yangılar uzun sürede (3-4 hafta ve daha fazla) gelişirler. Akut yangılara nispeten ağrı duyusu daha azdır. Mikroskopik incelemede yangılı alanda sayıca lenfositlerin üstün olduğu görülür. Genellikle bu tür yangılarda fibrinleşme görülür. Bunun yanında akut yangılar zamanla kronik hale de gelebilirler. Eksudatif yangı Eksudatif yangılar, yangının bir semptomu olan tumor ile karakterizedir. Yani bu tip yangılar sıvı eksudasyonu ile kendilerini belli ederler. Bundan başka genel olarak yangıların ilk evreleri de eksudatif yangı kabul edilir. Eksudatif yangılar yangı içeriğine ve eksudatın yoğunluğuna göre sınıflandırılabilir: Seröz yangılar. Bunlar en hafif yangısal reaksiyonlardır. En tipik örnekleri allerjik reaksiyonlar, böcek-sinek ısırmaları ve 1. derece yanıklar (combulsio eritematosa)'dır.Şekillenen eksudat, transudata oldukça yakın kıvamdadır.Bu tür yangısal reaksiyonlar hemen hemen tamamen rezolüsyona uğrarlar.İyileşme süreçleri kısadır.Belirgin bir eksudasyondan başka herhangi bir reaksiyon görülmez.Yangısal hiperemi ve sıcaklık artışının ardından tıpkı birer vezikül görünümünü alırlar. Fibrinli (fibrinöz) yangılar. Genellikle serozalarda veya mukozalarda oluşurlar. Eğer seroz zarlar arasında oluşursa adhezyon'lara (yapışma, sineşi) neden olabilir. Fibrinli yangılar sıklıkla fibrin ağı, nötrofiller ve ölü mikroorganizmalardan oluşan bir koleksiyonla örtülür. Bu yapıya pseudomembran adı verilir. Bir pseudomembranın yapısını nötrofil, ölü mikroorganizmalar ve fibrin parçaları içerir. Pseudomembran, altında bulunan bağ doku ile ilişki halinde değildir ve bulunduğu yerden kolaylıkla ayrılır. Bazen pseudomembranlar altlarında bulunan bağ doku ile sıkı bir organizasyona girebilirler ki bu durumda Difterik/difteroid pseudomembran adını alırlar. Pseudomembran oluşumundaki en önemli sebep yangısal bölgenin sürekli temasa maruz kalmasıdır. Örneğin ağız mukozası, sindirim kanalı mukozası sürekli içerik ile temasa maruz kaldığı için bir bakıma koruyucu mekanizma olarak pseudomembran oluşur. Kataral (serö-müköz) yangılar. Bunlar daha çok sindirim ve solunum sistemi kanallarında rastlanır.Yoğun bir eksudasyon ön plandadır. En güzel örneği enteritis catarrhalis'tir. Gastrointestinal yangısal olaylar belirgin bir ishal ile karakterizedir. Eksudat, seröz yangıya göre daha yoğundur. Akut gelişen olgularda bol miktarda nötrofil ve plazma içerir. Olay kronikleştikçe içerik daha da yoğunlaşmakla beraber lenfoplazmositik hücreler artış gösterir. Eksudat bağ doku elemanları içermeye başlar. Purulent (irinli, suppuratif) yangılar. Ölü ve canlı nötrofiller ile enfeksiyon etkenlerinin (ki söz konusu bakterilerdir) oluşturduğu asit pH'da bir yangı ürünüdür irin. Bunların en önemli komplikasyonu, irinin kana karışarak tüm vücuda yayılması, yani piyemi'dir. İrinli yangıların en önemli kaynağı piyojen mikroorganizmalardır. Bunun yanında terpentin, kroton yağı gibi yüksek derece irkiltici maddeler aseptik irin denilen yapının oluşmasına neden olur.İrinli yangılar genellikle bağ dokudan organize olmuş bir kapsül aracılığıya sınırlandırılarak apseleri oluşturur. Asit pH'ya sahip irin daima fistülleşme eğilimi gösterir. Yani bir bölgeden oluşan kanal (fistül) yardımı ile dışarı açılır. Apseye neden olan etkenlerin arasında anaerob veya mikroaerofilik streptococ'lar, bacteriodes gibi diğer anaeroblar, staphylococcus'lar, actinomyces, nocardia yer alır. Mantarların da apse yapabildiği sanılmaktadır. İçi boşlukluk organlarda irin birikebilir. Bu olaya empiyem denir. Örneğin sinusitis purulenta, sinus empiyemidir. Yine piyometra, uterus empiyemi'dir. Hemorajik yangılar. Bunlar genellikle virulensi yüksek mikroorganizmalardan ileri gelen infeksiyonların seyri sırasında ortaya çıkar.Yangısal reaksiyon çok şiddetli olduğu için artan kapiller permeabilite eritrositlerin de damar dışına sızmasına neden olur.Diapedezin bir kanama şekillenir. Bunun yanında bazı toksinler de damar geçirgenliğini aşırı derecede artırabilir veya pıhtılaşma faktörlerinin bir ya da birkaçını engelleyerek kanama eğilimini artırır. Yangısal yanıt ile birlikte kan sızması da söz konusudur. Kanamanın bir başka sebebi de şiddetli doku yıkımı ve buna bağlı gelişen kapiller hasardır. Fazla miktarda üretilen opsonin ve komplementlerin damar geçirgenliği artırması kanamalara neden olur. Alteratif (nekrotik) yangı Alteratif (nekrotik) yangı, doku kaybının ön planda olduğu yangı türüdür. Genellikle spesifik mikroorganizmalardan (özellikle Necrobacillus ve Fuscobacterium necrophorium) ileri gelir. Yangılı alanda ülserleşme de dikkati çeker. Alteratif yangılar yüzeyde veya mukozalarda oluşabilir. Sonucunda bölgede nedbe dokusu (skatix, scar) oluşabileceği gibi kavernler veya daha kötü bir sonuç olan nekroz oluşur. Proliferatif yangı Proliferatif yangılarda sonuç olarak rezolüsyon genellikle oluşmamıştır ve etkenler fibröz kapsüllerle sınırlandırılır. İşte bu kapsüller granülomlardır. Bu yüzden bu tür yangılara özel bir adlandırma olarak graülomatöz yangı da denir. Yangılı alanda yeni oluşan kapiller damarlar, bağ dokusu hücreleri ve iplikçikleri, lökositler, histiyositler ve dev hücreleri görülür. Örneğin sığırlarda çene dokusunda üreyen Actinomyces bovis'ten ileri gelen Actinomikozis bir çeşit granülamatöz yangıdır. Yabancı cisimlere karşı şekillenen yangısal reaksiyonlar da granülom oluşumları ile karakterizedir. Bunun dışında tüberküloz, paratüberküloz ve Lupus erythematosusSLE de granülomatöz yangılara en tipik örnekleri oluşturular. İrin içeren granülomlar, piyogranülom adını alır. Parazit kistleri, bazen larvaları da granülomlar içerisine hapsedilmeye çalışılır. Bunun en tipik örneği Echinococcus kistleridir. Herhangi bir etkinin sonunda iyileşme aşamasında da yangısal olaylar gelişir. Bölgeye nötrofil, makrofaj ve mononükleer hücrelerden ve kan damarlarından zengin granülasyon dokusu şekillenir. Bu da bir çeşit granülomdur. İsimlendirme Organlarda ve dokularda yangısal reaksiyonlar isimlendirilirken genel bir kural olarak -itis eki kullanılır. Beşeri hekimlikte sıklıkla isimlendirme kısaca yapılır, yani -it eki getirilir. Ancak bazı oluşumların yangıları isimlendirilirken bu sözü edilen ekler kullanılamaz. Bu durumda o yapıya özel yangı terimi kullanılır. Yangısal hücre infiltrasyonunun bulunduğu yere veya organdaki konumuna göre de yangılar isimlendirilirken belirli hususlara dikkat edilir. Örneğin tek başına pneumoni akciğerlerde alveolerde eksudat birikmesi ile karakterize bir tabloyu alveolitis ifade eder. Organın interstisiyumunda şekillenen yangılar ifade edilirken daima interstisiyel ibaresi belirtilir.Örneğin interstisiyel pneumoni, böbrek korteksine ilişkin yangıda nefritis, glomerullerde yangısal hücre infiltrasonu için glomerulonefritis veya böbrek medullasını da içine alıyorsa piyelonefritis gibi. Bunların bazı örnekleri aşağıda verilmiştir: Mide (Ventriculus, gaster): Gastritis (Gastrit) Karaciğer (Hepar): Hepatitis (Hepatit) Bağırsaklar: Enteritis (Enterit) Yumurta kanalı (Oviduct, salphinx, tuba uterina): Salpingitis (Salpingit) Sinus: Sinusitis (Sinuzit) Yutak (Pharynx): Pharyngitis (Farenjit) Kör Bağırsak (Caecum): Tiflitis (Tiflit) Böbrek (Ren): Nephritis (Nefrit) Yumuşak Damak (Palatum molle): Angina (Anjin) Sert Damak (Palatum durum): Palatitis (Palatit) Bademcik (Tonsilla): Tonsillitis (Tonsillit) Akciğer (Pulmo): Pneumonia (Pnömoni) Diyafram (Diaphragma): Phrenitis (Frenit) Yangının Klinik Patolojisi Organlarda yangısal değişikliklere bağlı olarak sözkonusu organ ve ona ilişkin sistemlerde bir takım aksaklıklar ve buna bağlı olarak gelişen klinik bulgularda söz edilmesi olasıdır. Organizmada meydana gelen yangısal değişiklikleri laboratuvar analizleri ile belirlemek klinik patoloji bakımından önem taşır. Akut yangısal olgularda kan nötrofil sayısı artarken (nötrofili), kronik olgularda lenfosit sayısında artış lenfositoz göze çarpar. Bununla birlikte yangısal reaksiyonlarda serum bakır düzeyinde artış gözlemlenmiştir. Yangısal reaksiyonun şekillendiği bölge hastalığın seyri veya ölümcül olup olmaması ile yakından ilgilidir. Beyin ve beyin zarlarının yangılarının ölüm riski son derece yüksektir. Bir periton yangısı büyük oranda ölümle sonuçlanır. İç organlarda şekillenen yangılar, organın da fonksiyonuna göre sistemik, görevsel veya bölgesel klinik belirtilerle ortaya çıkar. Yangısal reaksiyonlar sırasında açığa çıkan sitokinlerin aynı zamanda sistemik etkilerinin de göz önünde bulundurulması gerekir. Örneğin interlökin-1 vücut sıcaklığında artış, iştah azalması gibi sistemik etkilere de neden olmaktadır. Benzeri etkiler yine interlökin-1,6 ve TNF-alfa gibi sitokinlerin karaciğerden akut faz proteinlerinin üretimini indüklemesi sonucu sistemik etkileri meydana getirmektedir. Yangıya ilişkin 5. temel semptom; yani functio laesa, söz konusu organdaki fonksiyon bozuklarından bahseder. Karaciğere ait yangısal olgular: sarılık, hemoglobinuri, kusma gibi semptomlarla kendini belli eder. Hücre içi ATP konsantrasyonu, NAD/NADH2 oranı yükselir. Hücre membran geçirgenliği artar ve mitokondriyal, sitoplazmik ve lizozomal enzimlerin aktivitesinden dolayı metabolizma ürünleri ve potasyum kaybı görülür. Hasara uğray Yine organın bulunduğu bölgenin elle muayenesinde ağrıya yanıt alınır. Akut gelişen hepatit ve karaciğer an hepatositlerden açığa çıkan serbest karaciğer enzimleri; özellikle ALT(Alanin aminotransferaz), AST(Aspartat aminotransferaz) ve ALP(Alkalen fosfataz) kanda yüksek değerde görülür. Özellikle AST'nin yüksek çıkması karaciğerde akut hasarın habercisidir. yetmezliklerine sıklıkla ensefalopati de eşlik eder. Ensefalopati'nin sebebi karaciğerin fonksiyon gösteremeyerek portal ven'den gelen Amonyağı, üreye çevirememesi ve bundan dolayı bu maddenin beyin dokusuna zarar vermesidir. Kronik inflamasyonlardan farklı olarak akut olaylar genellikle geri dönüşümlüdür. Yavaş gelişen ve uzun vadede seyreden hepatitis'ler fibrozis oluşumuna neden olur. En kötü sonuç ise karaciğer sirozudur. Solunum sisteminde gelişen yangılar: Güç solunum, bazen hipoksi, öksürük gibi semptomlarla seyreder. Herhangi bir yolla solunum yollarına ulaşabilen infeksiyöz ya da non infeksiyöz etkenler gerek üst solunum yolu infeksiyonları (ÜSYE), gerek alt solunum yolları infeksiyonları (bronchitis, pneumoni gibi) meydana getirir. Yabancı cisimlerin aspirasyonu (solunum yollarına kaçması) Gangrenli pneumoni denilen ciddi bir olguya neden olur. İnfeksiyöz etkenler ise salgıladıkları toksinler vb ürünlerle akciğerlerde harabiyete neden olurlar. Pneumoni'lerin en tipik bulgusu yangısal eksudasyona bağlı balgam üretimi (viral infeksiyonlarda görülmez) ve soluma güçlükleridir. Üriner sisteme ait yangısal reaksiyonlar: disüri, anüri, hematüri, hemoglobinüri gibi semptomlarla seyreder. Yangının bulunduğu bölgeye göre de klinik belirtilerim şiddeti farklılık gösterir. Örneğin bir nefrit olayları lokalden ziyade sistemik etkilere(üremi, hiperkalemi, metabolik asidozis gibi) sahiptir. Alt üriner sistem yollarında ise daha çok hematüri ve disüri klinik bulgulardır. Eklemlerde şekillenen yangısal olaylar; örneğin arthritis yürüyüş bozuklukları, topallama gibi belirtiler gösterir. İlerleyen olaylar eklemlerde post distrofik kireçlenmeye veya ankiloz denilen hareketsiz pozisyon almasına neden olur. Bu olay yangının kronikleşmesi ve fibröz dokunun aşırı oranda üremesinden dolayıdır. Sindirim sisteminde gelişen yangılar: En temel semptomu ishaldir.Bunun nedeni sindirim kanalı duvarında gelişen eksudasyon ve epitel hücre yıkımıdır. Ancak her ishal görülen durum bir enteritis olgusuna işaret etmez.Zira ishale sebep olan ve yangısal nitelikte olmayan bir çok sebep vardır ve göz önünde bulundurulmalıdır. Merkezi sinir sisteminin yangısal reaksiyonları: Prognoz(hastalığın gidişatı) açısından sıkıntılı, hatta olumsuzdur. Çünkü bu dokuların rejenerasyon yeteneği yok kabul edilir ve geri dönüşü olmayan hasarlar meydana gelir. MSS yangısal olayları daha dramatik klinik bulgularla seyreder. Örneğin ataksi, titremeler, vücut sıcaklığında ciddi derecede artış gibi. Beyin omurilik sıvısında yangısal hücre elemanları görülür. Ancak yangı, diğer yangısal olmayan bazı semptomlarla veya bozukluklarla karıştırılabilir.Bunların ayrımı yapmak tanı ve uygulanacak tedavi açısından önemlidir.Yangısal değişiklikler başlıca şu olgularla karıştırılabilir: Tümör Hematom Fıtık Kalsinozis Exostoz Zira bunların yangısal oluşumlardan ayrımını yapmak mümkündür. Yangısal Bozukluklarla Seyreden Hastalıklar Çoğunluğu otoimmun bilinen hastalıklar güzel örnek teşkil eder. Bunların mekanizmaları büyük oranda bilinmekle birlikte çoğunun sebebi bilinmemekte ancak genetik faktörler olduğu düşünülmektedir. Özel hastalıkların yanında Tip-3 aşırı duyarlılık reaksiyonları da örnek teşkil eder. Kaynaklar 1.Veteriner Genel Patoloji - H. ERER, M.Münir KIRAN, M.Kemal ÇİFTÇİ 2.Temel Patoloji (Basic Pathology). Kumar, Kotran, Robbins 3.Veteriner Genel Cerrahi, E.SAMSAR, F. AKIN 4.Biyokimya, Prof. Dr. N. BAYŞU, Prof. Dr. N. Bayşu SÖZBİLİR. s-584 5.Gillis S, Williams DE. 1998: Cytokine therapy: lessons learned and future challenges. Current Opinion in Immunology 10,501-3. 6.Essential Immunology , Roitt, Delves, 2001 7.Immunology, Roitt, Brostoff, Male, 1996 8.Cellular and Molecular Immunology, Abbas, Lichtman, 2005 9.Immunology 5th ed. Goldsby RA, Kindt, TJ, Osborne BA, Kuby J. 2002 10.Color Atlas of Pathology (Thieme). 11.Color Atlas of Immunology (Thieme). 12.Veteriner Farmakoloji. Ed: Prof. Dr. S. KAYA 13.Rasyonel Tedavi Yönünden Tıbbi Farmakoloji. Prof.Dr. S.Oğuz Kayaalp 14.Biochemistry Microbiology Pathology Pharmacology. Francis J. CHLAPOWSKI 15.Muir's Textbook Of Pathology. J. R. ANDERSON 16.Robbins Review of Pathology. Klatt - Kumar 17.General Pathology. Martin Gwent LEWIS, Thomas K. BARTON 18.www.saglikbilimi.com 19.Harrison's Principle of Internal Medicine. 5th edition

http://www.biyologlar.com/enflamasyon-nedir-

Metilasyon, asetilasyon, siRNA hakkında döküman

Kimyada metilasyon veya metillenme, bir kimyasal bileşiğe bir metil grubunun bağlanması veya ornatılmasıdır. Bu terim kimyada, biyokimyada, toprak bilimlerinde ve hayat bilimlerinde yaygınca kullanılır. Biyokimyada metilasyon daha spesifik olarak bir hidrojen atomunun bir metil grubuyla yer değiştirmesi anlamında kullanılır. Biyolojik sistemlerde metilasyon enzimler tarafından katalizlenir; bu reaksiyon, ağır metallerin modifikasyonunda, gen ifadesinin denetlenmesinde, protein işlevlerinin denetlenmesinde ve RNA metabolizmasında yer alır. Ağır metallerin metilasyonu biyolojik sistemler dışında da olur. Histolojide doku örneklerinin kimyasal metilasyonu bazı histolojik boya artifaktlarının azaltılmasında kullanılan bir yöntemdir. Biyolojik metilasyon Epigenetik Epigenetik kalıtıma etki eden metilasyon DNA metilasyonu veya protein metilasyonu ile meydana gelir. DNA metilasyonu omurgalılarda tipik olarak CpG bölgelerinde (sitozin-fosfat-guanin bölgeleri; yani DNA dizisinde sık olarak sitozinin hemen ardından guaninin geldiği yerler); bu metilasyon sonucu sitozinden 5-metil sitozin meydana gelir. Me-CpG oluşumu DNA metiltransferaz enzimi tarafından katalizlenir. Omurgali hayvanlarin genomlarinda CpG dizileri genelde seyrek olmakla beraber gen promotörlerinde normalden yüksek sıklıkta görülürler ve toplu olarak bu bölgelere CpG adaları denir. Bu CpG bölgelerinin metilasyon durumu gen ifadesi üzerinde büyük etkide bulunur. Protein metilasyonu tipik olarak protein dizisindeki arginin veya lizin amino asit kalıntılarında yer alır.[1] Arginin peptidilarginin metiltransferazlar tarafından bir kere (monometillenmiş arginin) veya iki kere metillenebilir; iki kere metillenme durumunda ise ya her iki metil grubu birden uçtaki azot üzerinde bulunabilir (asimetrik iki metilli arginin) veya her bir azot atomu üzerinde birer metil grubu bulunur (simetrik iki metilli arginin). Lizin ise lizin metiltransferazlar tarafından bir, iki veya üç kere metillenebilir. Protein metilasyonu en çok histonlar için çalışılmıştır. S-adenozil metyoninden metil gruplarının histonlara aktarılması histon metiltransferaz olarak adlandırılan enzimler tarafından gerçekleştirilir. Belli amino asit kalıntıları üzerinde metillenmiş olan histonlar epigenetik biçimde etki ederek gen ifadesini etkinleştirebilir veya engelleyebilirler.[2][3] Protein metilasyonu bir tip çevrim sonrası değişimdir. Embriyonik gelişim Memelilerin erken gelişiminde (döllenmeden sekiz hücre aşamasına kadar) genom metilsizlenmiştir. Sekiz hücre aşamasından morulaya kadar genomda yeni baştan metilasyon olur, böylece genomdaki epigenetik bilgi değişir veya yeni epigenetik bilgi eklenir. Blastula aşamasında, metilasyon tamalanmıştır. Bu süreç "epigenetik yeniden programlama" olarak adlandırılır.[4] DNA metiltransferaz enzimi olmayan gen nakavt mutant hayvanların morula aşamasında öldüğünün gözlemlenmesi ile metilasyonun önemi ortaya çıkmıştır.[kaynak belirtilmeli] Doğum sonrası gelişim Metilasyon ile çevresel faktörlerin etkileşiminin gen ifadesine olan etkisine dair deliller gittikçe çoğalmaktadır. Sıçanlarda ilk altı ay zarfında anne bakımındaki farklılıklar bazı promotörlerde farklı metilasyon örüntülerine yol açmakta ve dolayısıyla gen ifadesine etki etmektedir.[5] Buna ilaveten, interlökin sinyalizasyonu gibi daha da hızlı süreçlerin de metilasyon ile denetlendiği gösterilmiştir.[6] Kanser Metilasyon örüntüleri kanser alanında önemli bir araştırma konusu olmuştur. Normal dokularda gen metilasyonu başlıca kodlayıcı bölgelerde konumlanmıştır, ki bunlar CpG-fakiridir. Buna karşın genlerin promotör bölgeleri metillenmemiştir, CpG adalarının bu bölgelerdeki çokluğuna rağmen. Neoplazi metilasyon dengesizliği ile karakterizedir; genom çapında hipometilasyon olmasına karşın yerel olarak hipermetilasyon bölgeleri vardır ve DNA metiltransferaz ifadesi artmıştır.[7] Bir hücrenin toplam metilasyon durumu karsinogeneze sürükleyici bir faktör olabilir, çünkü genom çapında metilasyonun kromozom istikrarsızlığı ve artan mutasyon oranına yol açtığını gösterir deliller vardır.[8] Bazı genlerin metilasyon durumu tümörigenez için bir biyomarker olarak kullanılabilir. Örneğin, pi-sınıf glutatyon S-transferaz geninin (GSTP1'in) aşırı metilasyonu (hipermetilasyonu) prostat kanseri için ümit verici bir diagnostik indikatör olarak görünmektedir.[9] Kanserde genetik ve epigenetik gen susturmalarının mekanizmaları çok farklıdır. Somatik genetik mutasyonlar mutan genden işlevsel proteinlerin üretmini engeller. Eğer hücreye selektif bir avantaj sağlarsa bu mutasonu taşıyan hücreler klonal şekilde çoğalarak bir tümör meydana getirirler, bu tümördeki tüm hücreler o proteini üretmekten acizdir. Buna karşın, epigenetik modifikasyon aracılığıyla gen susturması tedrici olur. Önce transkripsiyonda az farkedilir bir azalma ile başlar, bunun sonucu çevreleyen heterokromatin tarafından CpG adalarının koruması azalır. Bu kaybı takiben CpG adalarındaki metilasyon seviyesi artmaya başlar, bu değişiklikler farklı hücrelerde bulunan aynı genin kopyaları için farklı farklı kendini gösterir. [10] Bakteriyel konak savunması Adenozin ve sitozin metilasyonu çoğu bakteride bulunan restriksiyon modifikasyon sisteminin parçasıdır. Bakteriyel DNA periyodik olarak tüm genomda metillenir. Metilaz, belli bir DNA dizisini tanıyan ve bu dizi içinde veya yakınındaki bazlardn birini metilleyen bir enzimdir. Bu şekilde metillenmeden hücre içinde giren yabancı DNA'lar diziye özgün restriksiyon enzimleri tarafından yıkılır. Bu restriksiyon enzimleri bakteriyel genomik DNA'yı tanımazlar. İçsel DNA'nın metilasyonu bir çeşit ilkel bağışıklık sistemi olarak etki eder, bakterileri bakteriyofaj enfeksiyonuna karşı korur. Metilasyon Kanser Genetiği Metilasyon Tümör süpressör genler (TSG), genellikle nokta mutasyonlar ve delesyonlar neticesinde inaktive olurlar. İnaktivasyona neden olan bir diğer önemli mekanizma ise promoter bölgesinin metilasyonudur. Bu mekanizma, CpG adalarını içeren promoter gen bölgesinde gözlenir. Normal hücrelerde CpG adacıklarının çoğu metile olmamış durumdadır. Tümör hücrelerinde, bazı genlerin promoter bölgesinde bulunan ve normalde unmetile olması gereken CpG adalarının metile olduğu gözlenir. CpG adacıklarının metilasyonu, gen ekspresyonu engelleyerek ilgili genin inaktivasyona neden olur. Gen bölgelerinin metilasyon yolu ile inaktivasyona duyarlılıkları farklılıklar gösterir. MSH2 gibi bazı genler sadece mutasyon yolu ile inaktive olurlar. MLH1 gibi bazı bölgeler ise sıklıkla nokta mutasyonlarla fonksiyonlarını kaybederken alternatif olarak metilasyon mekanizması da etkili olabilmektedir. RASSF1A ve HIC1 genleri ise sadece metilasyon değişiklikleri ile inaktif olurlar. Metilasyon Analizi Genomik DNA’da Sitozin-Guanin (CpG) dinükleotitlerinin metilasyonu gen susturmayla karşılıklı olarak ilişkilidir. Metilasyon, epigenetik durumlarda son derece önemlidir. Özellikle bazı genlerin promotor bölgesindeki CpG metilasyonu tümör baskılayıcının inaktivasyonuyla oluşan bazı kanserlerde erken dönemlerde gözlenmiştir. Metillenmiş CpG’lerin belirlenmesinde bisülfit ile muamele edilmiş DNA’nın dizi analizinin yapılması basit ve kullanışlı olan bir yöntemdir. Servisin Tanımı: DNA izolasyonu Genomik DNA’nın PCR ve DNA dizi analizi Metillenmemiş sitozinlerin bisülfat dönüşümü Sadece dönüştürülmüş DNA’nın amplifikasyonu için primer tasarımı yapılması PCR ürünlerin subklonlanması veya dizi analizinin yapılması Real time PCR deneyi ile belirleme Dizi karşılaştırılması ve 5MeCpG’lerin analizi Asetilasyon Asetilasyon (veya IUPAC adlandırma sistemi ile etanoylasyon), organik bir bileşiğe bir asetil fonksiyonel grubu eklenme tepkimesidir. Deasetilasyon ise asetil grubunun çıkartılmasıdır. Bir diğer deyişle, asetilasyon bir bileşiğe bir asetil grubu eklenmesi, yani bir hidrojen grubu yerine bir asetil grubunun substitusyonudur. Bunun sonucundan bir asetoksi grubu meydana gelir. Bir hidroksit grubundaki hidrojen yerine bir asetil grubunun (CH3CO) gelmesi bir ester tipi olan asetatı meydana getirir. Asetik anhidrit serbest hidroksil grupları ile tepkimek için kullanılan yaygın kullanılan bir asetilasyon reaktifidir. Örneğin aspirin sentezinde kullanılır. Proteinlerin asetilasyonu Hücrelerde asetilasyon hem çevrimle eşzamanlı hem de çevrim sonrası bir değişim olarak meydana gelir. Asetilasyona uğrayan proteinler arasında histonlar, p53, ve tübülin sayılabilir. N-alfa-uç asetilasyonu Proteinlerin N-ucundaki alfa amin grubunun asetilasyonu ökaryotlarda çok yaygın görülen bir modifikasyondur. Maya proteinlerinin %40-50'si ve insan proteinlerinin %80-90'ı bu şekilde değişime uğrar, ve modifikasyonun şekli evrimsel olarak korunmuştur. Bu değişim N-alfa-asetiltransferazlar (NAT'lar) tarafından yapılır. NAT'lar, asetiltransferaz üst ailesi GNAT'ların bir alt ailesidir. GNAT'lar asetil-koenzim A'dan amin grubuna bir asetil grubu aktarırlar. NAT'lar en çok mayada çalışılmışlardır. Bu canlıda üç NAT kompleksi, NatA, B ve C çoğu N-alfa-uç asetilasyonunu gerçekleştirir. Substratlarının dizileri için spesifiteleri vardır. Bu enzimlerin ribozomlarla ilişkili olduğu, ve sentezlenen yeni peptitleri çevrim ile eşzamanlı olarak asetile ettikleri düşünülmektedir. İnsanlarda, insan NatA ve NatB kompleksler tespit edilmiş ve karakterize edilmiştir. NatA kompleksinin altbirimlerinin kanserle ilişkili süreçlerde yer aldığı bulunmuştur: hipoksia tepkisi ve beta katenin yolu gibi. NatA'nın papiler tiroid karsinom ve nöroblastomada aşırı ifadesi gözlemlenmiştir. İnsan NatB kompleksi hücre döngüsü ile ilişkilidir. NatB kompleksinin Nat3 altbirimi bazı kanserlerde yüksek düzeyde ifade edilmektedir. Korunmuş ve yaygın bir modifikasyon olmasına rağmen, N-alfa-uç asetilasyonunun biyolojik rolü bilinmemektedir. Aktin ve tropomiyosin proteinlerinin, düzgün aktin filamanları oluşturmak için NatB asetilasyonuna muhtaç oldukları bulunmuştur. Halen asetilasyonun biyolojik önemini gösteren başka örnekler bilinmemektedir. Lizin asetilasyonu ve deasetilasyonu Histon asetilasyonu ve deasetilasyonunda, histonlar N-uçlarındaki lizin kalıntılarında asetile ve deasetile olurlar, bu süreç gen düzenlemesi ile ilişkilidir. Tipik olarak bunu "histon asetiltransferaz" ve "histon deasetilaz" etkinliği olan enzimler yapar, ama bu enzimler histon olmayan proteinleri de modifiye edebilir.[1] Transkripsiyon faktörleri, efektör proteinler, moleküler şaperonlar ve hücre iskeleti proteinlerinin asetilasyon / deasetilasyon yoluyla düzenlenmesi, çevrim sonrası değişim yoluyla gerçekleşen önemli mekanizmalardan biridir.[2] Bu bakımdan kinaz ve fosfatazlar tarafından gerçekleştirilen fosforilasyon ve defosforilasyon değişimlerine benzemektedir. Bir proteinin asetilasyon durumu onun etkinliğini belirlemektedir. Bu çevrim sonrası değişim, diğer değişimlerle (fosforilasyon, metilasyon, ubikuitinasyon, sumoylasyon, ve diğerleriyle) etkileşerek hücre sinyalizasyonunun dinamik kontrolüne sağlamaktadır.[3] Tübülin asetilasyon ve deasetilasyon sistemi Chlamydomonas'da iyi anlaşılmıştır. Aksonemin ucunda yer alan bir tübülin asetiltransferaz, bütünleşmiş mikrotübülinde α-tübülin altbirimindeki belli bir lizin kalıntısını asetiller. Mikrotübülin ayrıştıktan sonra bu asetilasyon sitozolda bulunan spesifik bir deasetilaz tarafından çıkartılır. Bu iki enzimin etkinliklerinin sonucu, aksonemal mikrotübüllerdeki α-tübülin'in yarı ömrü uzun olması, sitozolik mikrotübüllerdekinin ise kısa ömürlü olmasıdır. Asetilasyon Tepkimesi Asetilasyon (veya IUPAC adlandırma sistemi ile etanoylasyon), organik bir bileşiğe bir asetil fonksiyonel grubu eklenme tepkimesidir. Deasetilasyon ise asetil grubunun çıkartılmasıdır. Bir diğer deyişle, asetilasyon bir bileşiğe bir asetil grubu eklenmesi, yani bir hidrojen grubu yerine bir asetil grubunun substitusyonudur. Bunun sonucundan bir asetoksi grubu meydana gelir. Bir hidroksit grubundaki hidrojen yerine bir asetil grubunun (CH3CO) gelmesi bir ester tipi olan asetatı meydana getirir. Asetik anhidrit serbest hidroksil grupları ile tepkimek için kullanılan yaygın kullanılan bir asetilasyon reaktifidir. Örneğin aspirin sentezinde kullanılır. Proteinlerin asetilasyonu Hücrelerde asetilasyon hem çevrimle eşzamanlı hem de çevrim sonrası bir değişim olarak meydana gelir. Asetilasyona uğrayan proteinler arasında histonlar, p53, ve tübülin sayılabilir. N-alfa-uç asetilasyonu Proteinlerin N-ucundaki alfa amin grubunun asetilasyonu ökaryotlarda çok yaygın görülen bir modifikasyondur. Maya proteinlerinin %40-50'si ve insan proteinlerinin %80-90'ı bu şekilde değişime uğrar, ve modifikasyonun şekli evrimsel olarak korunmuştur. Bu değişim N-alfa-asetiltransferazlar (NAT'lar) tarafından yapılır. NAT'lar, asetiltransferaz üst ailesi GNAT'ların bir alt ailesidir. GNAT'lar asetil-koenzim A'dan amin grubuna bir asetil grubu aktarırlar. NAT'lar en çok mayada çalışılmışlardır. Bu canlıda üç NAT kompleksi, NatA, B ve C çoğu N-alfa-uç asetilasyonunu gerçekleştirir. Substratlarının dizileri için spesifiteleri vardır. Bu enzimlerin ribozomlarla ilişkili olduğu, ve sentezlenen yeni peptitleri çevrim ile eşzamanlı olarak asetile ettikleri düşünülmektedir. ınsanlarda, insan NatA ve NatB kompleksler tespit edilmiş ve karakterize edilmiştir. NatA kompleksinin altbirimlerinin kanserle ilişkili süreçlerde yer aldığı bulunmuştur: hipoksia tepkisi ve beta katenin yolu gibi. NatA'nın papiler tiroid karsinom ve nöroblastomada aşırı ifadesi gözlemlenmiştir. ınsan NatB kompleksi hücre döngüsü ile ilişkilidir. NatB kompleksinin Nat3 altbirimi bazı kanserlerde yüksek düzeyde ifade edilmektedir. Korunmuş ve yaygın bir modifikasyon olmasına rağmen, N-alfa-uç asetilasyonunun biyolojik rolü bilinmemektedir. Aktin ve tropomiyosin proteinlerinin, düzgün aktin filamanları oluşturmak için NatB asetilasyonuna muhtaç oldukları bulunmuştur. Halen asetilasyonun biyolojik önemini gösteren başka örnekler bilinmemektedir. Lizin asetilasyonu ve deasetilasyonu Histon asetilasyonu ve deasetilasyonunda, histonlar N-uçlarındaki lizin kalıntılarında asetile ve deasetile olurlar, bu süreç gen düzenlemesi ile ilişkilidir. Tipik olarak bunu "histon asetiltransferaz" ve "histon deasetilaz" etkinliği olan enzimler yapar, ama bu enzimler histon olmayan proteinleri de modifiye edebilir. Transkripsiyon faktörleri, efektör proteinler, moleküler şaperonlar ve hücre iskeleti proteinlerinin asetilasyon / deasetilasyon yoluyla düzenlenmesi, çevrim sonrası değişim yoluyla gerçekleşen önemli mekanizmalardan biridir.[2] Bu bakımdan kinaz ve fosfatazlar tarafından gerçekleştirilen fosforilasyon ve defosforilasyon değişimlerine benzemektedir. Bir proteinin asetilasyon durumu onun etkinliğini belirlemektedir. Bu çevrim sonrası değişim, diğer değişimlerle (fosforilasyon, metilasyon, ubikuitinasyon, sumoylasyon, ve diğerleriyle) etkileşerek hücre sinyalizasyonunun dinamik kontrolüne sağlamaktadır. Tübülin asetilasyon ve deasetilasyon sistemi Chlamydomonas'da iyi anlaşılmıştır. Aksonemin ucunda yer alan bir tübülin asetiltransferaz, bütünleşmiş mikrotübülinde α-tübülin altbirimindeki belli bir lizin kalıntısını asetiller. Mikrotübülin ayrıştıktan sonra bu asetilasyon sitozolda bulunan spesifik bir deasetilaz tarafından çıkartılır. Bu iki enzimin etkinliklerinin sonucu, aksonemal mikrotübüllerdeki α-tübülin'in yarı ömrü uzun olması, sitozolik mikrotübüllerdekinin ise kısa ömürlü olmasıdır. siRNA Tasarımı ve Ekspresyon vektör oluşturulması siRNA Nedir? Ökaryotlarda gen ekspresyonu, “RNA interference” olarak adlandırılan RNA’ya bağlı bir mekanizmayla transkripsiyon sırasında veya sonrasında kontrol edilmektedir. “small interference RNA” (siRNA) olarak adlandırılan küçük inhibe edici RNA’lar, çift zincirli RNA’nın (ds RNA) hücresel enzimler ile (dicer) parçalanması sonucunda oluşur. siRNA’lar heterokromatin oluşumu, dış kökenli nükleik asitlerin parçalanması gibi önemli hücresel görev üstlenmektedirler. siRNA’nın gen susturma yeteneğinden yararlanılarak yapılan ekspresyon vektörleri gen fonksiyon analizinde kullanılan güvenli ve kullanışlı bir araçtır. Bu vektörler tipik olarak siRNA’nın yapısına benzeyen küçük hairpin RNA’nın transkripsiyonunu ve ekspresyonunu sağlayan standart bir promotor (genellikle RNA polimeraz III) kullanır. Servisin Tanımı: siRNA tasarımı Kimyasal sentez Ligasyon Klonlama DNA dizi analizi ile çift zincir doğrulama Gliserol stok veya liyofilize klon karışımı şeklinde teslimat

http://www.biyologlar.com/metilasyon-asetilasyon-sirna-hakkinda-dokuman

Restriksiyon modifikasyon sistemi

Restriksiyon modifikasyon sistemi (RM sistemi) bakterilerin kendilerini yabancı DNA'dan korumak için kullandığı bir sistemdir.

http://www.biyologlar.com/restriksiyon-modifikasyon-sistemi

Çin’de yaprak taklidi yapan örümcek keşfedildi

Çin’de yaprak taklidi yapan örümcek keşfedildi

Günümüzde varlığını sürdüren canlı türlerine bakıldığında, hepsinde yeterince süre hayatta kalıp yavru vermenin bir şekilde garanti altına alındığını görülür. Bu değişmez bir olgudur.

http://www.biyologlar.com/cinde-yaprak-taklidi-yapan-orumcek-kesfedildi

Evrim'i Tetikleyen Mekanizmalar Nelerdir?

Evrim'i Tetikleyen Mekanizmalar Nelerdir?

Evrim Ağacı ekibi olarak bu yazı dizimizde ele alacağımız konu olan evrim mekanizmaları, Evrim Kuramı'nı anlamak isteyen ve Evrimsel Biyoloji hakkında yorum yapabilmek isteyen herkesin son derece iyi; hatta kendi adından daha iyi bilmesi gereken kavramlar serisidir.

http://www.biyologlar.com/evrimi-tetikleyen-mekanizmalar-nelerdir

Yeni Genetik Kombinasyonların Oluşumu ve Evrimin Türleri Değiştirme Mekanizması

Yeni Genetik Kombinasyonların Oluşumu ve Evrimin Türleri Değiştirme Mekanizması

Evrimsel süreçle ilgili anlaşılması en güç kavramlardan biri, bir özelliğin nasıl değiştiği ve türlerin nasıl farklılaştığıdır. Örneğin ortalama boyu 20 santimetre olan bir canlının boyu nesiller içerisinde nasıl 2 katına, 40 santimetreye çıkabilir?

http://www.biyologlar.com/yeni-genetik-kombinasyonlarin-olusumu-ve-evrimin-turleri-degistirme-mekanizmasi

Kopyalanan Genler Mayadaki Dayanıklılığı Azaltabilir

Kopyalanan Genler Mayadaki Dayanıklılığı Azaltabilir

Araştırmacılar bazı kopyalanmış maya genlerinin, bağımlılık geliştirdiğini keşfettiler- bir kopyanın kaybedilmesi diğerinin başarısızlığına yol açıyor.

http://www.biyologlar.com/kopyalanan-genler-mayadaki-dayanikliligi-azaltabilir


Meyve Sineği ve İnsan Genetiğinde Zamanlama Her Şeydir…

Meyve Sineği ve İnsan Genetiğinde Zamanlama Her Şeydir…

Her hayvan zamanla hücre, doku ve organların çoğuna çoğalır ve olgunlaşan bir yığın hücre olarak başlar. Bu temel biyolojidir. Credit: McKay Lab (UNC-Chapel Hill)

http://www.biyologlar.com/meyve-sinegi-ve-insan-genetiginde-zamanlama-her-seydir

Unutmak Sizi Daha Zeki Yapabilir!

Unutmak Sizi Daha Zeki Yapabilir!

Çoğu kişiye göre iyi bir hafızaya sahip olmak, daha fazla bilgiyi uzun süre hatırlayabilmek demektir. Credit: CC0 Public Domain

http://www.biyologlar.com/unutmak-sizi-daha-zeki-yapabilir

Sirkadiyen Saat ve Hücre Döngüsü

Sirkadiyen kontrol ve hücre döngüsü farklı moleküler mekanizmalardan oluşmalarına rağmen, memelilerde bu iki döngü birbiri ile ilişkilidir. Sirkadiyen saat mutasyonları önemli hücre döngüsü düzenleyicilerinin  ekspresyonunu  değiştirebilir.  Bu  nedenle sirkadiyen saatin hücre bölünmesinin düzenlenmesi ile ilişkili olduğu belirtilmiştir.3 Hücre döngüsü ve sirkadiyen saat genellikle tüm organizmaların düzenleyici sistemleridir. Her ikisi de transkripsiyon-translasyon, protein modifikasyonu ve yıkım evrelerinden oluşan hücre içi “saatler” dir.3,8 Benzer şekilde her iki döngü de çoğu hücrelerde 24 saat için periyodik  olup  hücreye  özgündürler.  Gap1  (G1), DNA sentezi (S), Gap2 (G2), Gap1(G1) veya G0’da duran mitoz (M) aşamalarından oluşan hücre döngüsünün  aksine  sirkadiyen  döngüde  yer  alan  saat genlerinin ekspresyonu her hücrede devamlıdır ve durup yeniden başlamak için karaciğer yenilenmesi gibi belirli bir tetikleyiciye ihtiyaç duyar.3 G2/M geçişi, Cdk 2/siklin B kompleksi tarafından kontrol edilir  ve  hücre  döngüsü  için  önemli  bir  noktadır. G2’den  M  fazına  kadar  hücre  döngüsünün  diğer bir düzenleyicisi wee1’dir. Sirkadiyen saat genleri, CLOCK/BMAL1’in wee1 geninin promotöründeki E-kutusu’na direkt olarak bağlanması ile wee1 genin ekspresyonunu düzenler ve böylelikle karaciğer yenilenmesi gibi durumlarda hücre döngüsünü başlatabilir (Şekil 2).3,4,8 G1 fazının ilerlemesi bir siklin bağımlı kinaz inhibitörü olan p21’in de kontrolü altındadır. p21’i hedefleyen REV-ERB yolağının da sirkadiyen  kontrol  altında  olabileceği  belirtilmektedir.15 Rev-erb α/β bir başka saat kontrollü gendir ve protein ürünü Bmal1’in ekspresyonunu negatif olarak düzenler. REV-ERBα/β, G1-S hücre döngüsü inhibitörü p21’in ekspresyonunu direkt olarak inhibe edebilir. Bununla birlikte, saç germ hücrelerinde BMAL1’in yokluğu Rev-erb α/β’nın aşağı düzenlenmesine, p21 ekspresyonunun artmasına ve döngünün G1 de durmasına neden olur (Şekil 2).16 Wee1  kinazı  kodlayan  genin  aktivasyonu  ile Cdk2/siklin B1 kompleksi fosforilasyona uğrar ve G2-M geçişi kontrolü sağlanır. Diğer iki sirkadiyen proteini olan Tim ve Per 1, DNA hasarına cevapta görev alır çünkü her ikisi de ATM ve ATR (ATM, mutant ataksi telenjiektazi; ATR, Rad3-ilişkili ataksi telenjiektazi) kinazlar ve kontrol noktası kinazları Chk (checkpoint kinases) 1 ve 2 ile kompleks halinde bulunabilir.8 Sağlıklı bireylerde kemik iliği, barsak, cilt ve ağız mukozasındaki hücrelerin S-fazındaki sayısı her 24 saatlik dönemde % 50 veya daha fazla oranda değişir. Benzer değişiklikler insan ağız mukozasındaki p53, siklin E, siklin A ve siklin B1 ekspresyonunda da belirlenmiştir. Siklin E diğer değişkenlerden neredeyse iki kat daha fazla sirkadiyen düzenlenmeden etkilenir ve böylelikle G1-S kontrol  noktasının  sirkadiyen  olarak  düzenlenmesini sağlar.2 Per1 geni önemli bir saat faktördür ve sirkadiyen ritimler için önemli bir rol oynar. Hücre bölünmesi için kritik öneme sahip biyolojik yolaklar sirkadiyen kontrol altındadır ve Per 1, sirkadiyen sistem ile hücre döngüsü sistemi arasında önemli bir bağlantı sağlar.4,6   KAYNAKLAR1. Okamura H. Circadian and seasonal rhythms: Integration of mammalian circadian clock signals from molecule to behavior. J Endocrinol 2003; 177(1): 3-6. 2. Lévi F. Circadian chronotherapy for human cancers. Lancet Oncol. 2001;2(5):307-15.3. Ishida N. Circadian clock, cancer and lipid metabolism. Neurosci Res. 2007;57(4):483-90.4. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The  circadian  gene  per1  plays  an  important  role  in  cell growth and DNA damage control in human cancer cells. Mol Cell 2006;22(3):375-82.5. Hastings M, O’Neill JS, Maywood ES.: Circadian clocks: regulators  of  endocrine  and  metabolic  rhythms.  J  Endocrinol 2007;195(2):187-98.6. Walisser JA, Bradfield CA. A time to divide: does the circadian clock control cell cycle? Dev Cell 2006;10(5):539-40.7. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271-90.8. Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell 2007:4;129(3):461-4.9. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett 2010;584(12):2618-25.10. Kondratov RV. A role of the circadian system and circadian proteins in aging. Ageing Res Rev 2007;6(1):12-27.11. Çalıyurt O. Duygudurum bozuklukları ve biyolojik ritm. Duygudurum Dizisi 2001; (5):209-14.12. Schibler U. The daily rhythms of genes, cells and organs. EMBO reports 2005;6(S1): 9-13.13.  Beckett  M,  Roden  LC.  Mechanisms  by  which  circadian rhythm disruption may lead to cancer. South African J Sci 2009;10: 415-20.14. Lamont EW, James FO, Boivin DB, Cermakian N. From circadian clock gene expression to pathologies. Sleep Med 2007;8(6):547-56. 15. Gre ́chez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation J Biol Chem 2008; 283(8):4535–42.16. Geyfman M, Andersen B. Clock genes, hair growth and aging. Aging 2010;2(3):122-8.17. Saydam F, Degirmenci I, Gunes HV. MicroRNAs and cancer. Dicle Medical Journal 2011; 38 (1): 113-20.18. Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC. Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 2006;243(1):55-7.19. Ozturk N, Okyar A. Biyolojik saatin moleküler mekanizmaları. Türk Farmakoloji Derneği Bülteni 2010; 106(1): 16-8.20. Yang X, Wood PA, Ansell CM, et al. The circadian clock gene  Per1  suppresses  cancer  cell  proliferation  and  tumor  growth  at  specific  times  of  day.  Chronobiol  Int. 2009;26(7):1323-39. Dicle Tıp Derg / Dicle Med J   www.diclemedj.org  Cilt / Vol 38, No 4, 514-518 C. Özbayer ve İ. Değirmenci. Sirkadien saat ve kanser

http://www.biyologlar.com/sirkadiyen-saat-ve-hucre-dongusu

 Alzheimer Hastalığı ile İlişkilendirilen <b class=red>Mekanizmalardan</b> Biri Daha Ortaya Kondu

Alzheimer Hastalığı ile İlişkilendirilen Mekanizmalardan Biri Daha Ortaya Kondu

Alzheimer hastalığı, ileri yaştaki demans (bunama) vakalarında en sık karşılaşılan neden. Bellek yitiminin yanı sıra, hastaların öğrenme, mantıklı düşünme, iletişim kurma ve hatta gündelik yaşam etkinliklerinin üstesinden gelme becerilerinde kayıplar oluşuyor.

http://www.biyologlar.com/alzheimer-hastaligi-ile-iliskilendirilen-mekanizmalardan-biri-daha-ortaya-kondu

 
3WTURK CMS v6.03WTURK CMS v6.0