Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 218 kayıt bulundu.

Göç nedir ?

Kuşlarda göç, tanımlanmış iki coğrafi bölge arasında düzenli tekrarlanan nüfus hareketi olarak tanımlanabilir. Pek çok kuş türünde görülen ve üreme sonrası genç bireylerin çevreye yayılmalarını tanımlayan “saçılma” ve besin kaynaklarının bazı yıllarda yetersizliği sonucu baykuşlarda ve çaprazgagalarda olduğu gibi güneye ani hareketlenme ile tanımlı “işgal” göç sayılmazlar. Neredeyse her göçmen tür için farklı olan göç rota ve yordamları, kuş topluluğunun tarihçesine, geniş engelleri aşabilme yeteneklerine, topoğrafik engellerin konumlarına ve kışlama ve üreme alanlarının birbirlerine göre konumlarına bağlı. Son elli yılda sürdürülen kapsamlı halkalama ve işaretleme programları sayesinde yüzlerce türün göç ayrıntıları bilinmekte. Örneğin, Kuzey Amerika kuşlarının başlıca göç rotası kıyı ve dağ sıralarının aynı yönde uzanması nedeniyle kuzey-güney doğrultusunda. Avrasya'da ise sonbaharda kuşlar önce doğu-batı doğrultusunda hareketlendikten sonra, ancak Akdeniz ve Büyük Sahra'yı geçerlerken kuzey-güney hattına dönerler. Genel olarak söylemek gerekirse, Güney Yarımküre'de üreyen kuşlar Kuzey Yarımküre'deki benzerleriyle karşılaştırıldıklarında pek göç hareketi göstermezler. Bazı kırlangıçlar ve sinekkapanlar kışları kuzeye, tropikal Amerika'ya yönlenseler de hep küçük bir azınlık olarak kalırlar. Bunun başlıca nedeni, Kuzey Yarımküre'deki kara parçalarının kutuplara daha yakın kesimlerde geniş yüzölçüme sahip olmaları. Göç rotaları, çoğu zaman kuş türlerinin uzak geçmişteki yayılma hareketlerini yansıtırlar. Örneğin Grönland'ın ve Alaska'nın tundra çayırlarını Avrasya'nın iki farklı ucundan gelerek kolonize eden Kuyrukkakanlar (Oenanthe oenanthe), kışlamak için çok daha yakın olmasına karşın Kuzey Amerika yerine okyanusu aşarak atalarının bir zamanlar geldiği Avrupa kıtası üzerinden Afrika'ya gitmeyi yeğlerler. Kuzeybatı yayılışının ucu İskandinavya'ya ulaşan Kutup Çıvgını (Phylloscopus borealis) ise Asya'yı boydan boya çapraz bir rotada katederek kışın Güneydoğu Asya'ya ulaşır. Günümüzde izlediğimiz göç hareketleri, son buzul çağı bitiminde buzulların geri çekilmesi ile şekillenmiş. Buzulların en güneye, Anadolu’ya ulaştığı dönemde bugünkü Sahra Çölü tundra ve tayga içeren büyük bir bataklıktı. Buzulların geri çekilmesi ile vejetasyon kuşakları da kuzeye doğru hareket etti ve kuzeye yaklaştıkça kış ve yaz arasında çevre koşulları giderek daha aşırı hale geldi. Kendi uygun habitatlarını, örneğin tundrayı izleyen kuş türlerinin dağılımları kuzeye doğru ilerlerken giderek kış ve yaz arasındaki farklar belirginleşti ve hep biraz daha güneyde “beklemek” durumunda kaldılar. Elbette bu uzun süreç boyunca “bekleme” ve üreme alanları arasında giderek artan mesafeyle baş edebilmek için pek çok adaptasyon evrimsel olarak gelişti.

http://www.biyologlar.com/goc-nedir-


Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili- 3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde 3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1


Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

KENELER BİYOLOJİK SİLAHMI

Türkiye`de 120 kişinin ölümüne neden olan keneler, biyolojik silah olarak kullanılıyor mu? Bilim adamları bu sorunun cevabını aradı. Kaynak:Haber Merkezi Kırım Kongo kanamalı ateşi (KKKA) Türkiye`de ilk kez 2002`de görüldü ve 28`i bu yıl olmak üzere toplam 120 kişinin ölümüne yol açtı. Bu yılın ilk 3 ayında 206 kişinin kene ısırması şikâyetiyle hastanelere başvurması, hastalığı `salgın` boyutuna taşıdı. Türkiye ile birlikte Afrika, Asya, Balkanlar ve Ortadoğu`da 30`dan fazla ülkeyi tehdit eden hastalığın tedavisi henüz bilinmiyor. Küresel ısınmanın virüsün yayılmasında etkili olduğu söylense de `Biyolojik silah mı?` sorusu tartışmaların odağına yerleşti. Hacettepe Üniversitesi Halk Sağlığı Bölümü`nden Prof. Dr. Levent Akın, bu soruya, `CIA ve FBI`ın biyolojik silahlar listesinde Kırım Kongo da var.` cevabını veriyor. Ancak mikrop üreten ve kullanmaya karar veren bir ülkenin elinde bunu durduracak maddenin olması gerektiğini vurgulayan Akın, dünyada henüz bu mikrobu öldürecek maddenin bulunmadığını hatırlatıyor. Cerrahpaşa Tıp Fakültesi`nden Prof. Dr. Ayşen Gargılı da, virüsün biyolojik silah listesinde yer aldığını doğruluyor. Fakat, bunun Türkiye`de denendiği tezine karşı çıkıyor. Sebebini ise `Kırım Kongo solunum yoluyla bulaşmaz ve kitlesel ölümler getirmez.` sözleriyle açıklıyor. `Çocukken ineklerden keneleri söker, öldürürdük. Hiçbir şey olmazdı. Bu kenelere ne oldu da şimdi hastalık saçıyor?` sorusu 35 yaşındaki Sivaslı Fatih Polat`a ait. Türkiye`deki hemen herkesin dilinde olan bu sorunun cevabını kimse bilmiyor. Bilinen bir gerçek var ki; hyalomma marginatum marginatum türü keneler 2002 yılından bu yana Türkiye`de hastalık saçıyor. İlk olarak 1944`te Kırım`da, 1956`da da Kongo`da görülen virüsün Türkiye`de 1970`li yıllarda da tek tük vakalara sebep olduğu biliniyor. Ancak ölümcül virüs taşıyan keneler Anadolu`daki 60`ın üzerindeki tür içinde hızla artıyor. 15 yıl öncesinde sayıları çok az olan keneler, şu anda en kalabalık nüfusa sahip tür olarak insanları tehdit ediyor. Cerrahpaşa Tıp Fakültesi Mikrobiyoloji ve Klinik Mikrobiyoloji Anabilim Dalı üyesi Prof. Dr. Ayşen Gargılı, hastalık taşıyan kenelerin gelişimini anlatırken, bugünkü durumu `kene salgını` olarak niteliyor. Gargılı, `Vakalardaki patlama salgının gidişatı açısından şaşırtan bir mesele değil. Olgu sayıları artarak devam eder, doygunluk noktasına çıkar ve insanlardaki bağışıklık oranı geliştikçe durur, daha sonra aşağıya iner.` diyor. Şu ana kadar dünyadaki en büyük KKKA salgınının Türkiye`de yaşandığını dile getiren Gargılı, `biyolojik silah Türkiye`de deneniyor` tezini doğru bulmuyor. Virüsün biyolojik silah ve terörizm listesinde bulunduğunu doğrulayan Gargılı, Kırım Kongo`nun solunum yoluyla bulaşmadığı ve kitlesel ölümler getirmeyeceği için çok etkin biyolojik silah olarak kullanılamayacağını söylüyor. Vakalar temmuz ayında patlama yapıyor Bir kene yılda 5-7 bin arasında yumurta bırakıyor. İlkbahardan itibaren toprağın üstüne çıkan keneler, önce hayvanlara yapışıyor. Daha sonra insanlardan kan emiyor. Nisanda başlayan vakalar eylül ayına kadar devam ediyor. En fazla vaka temmuz ayında görülüyor. Eylülün ortalarında keneler toprağa geri dönüyor. KKKA, hayvanlara ve insanlara kenelerin ısırmasıyla geçiyor. Hayvanlarda belirtisiz seyreden hastalık, insanlarda öldürücü olabiliyor. Türkiye`de vakaların yüzde 10`u ölümle sonuçlanıyor. Hastalık ani başlayan ateş, baş ve kas ağrıları, kırgınlık, halsizlik ve iştahsızlık gibi belirtilerle ortaya çıkıyor. Bulantı, kusma, karın ağrısı, ishal gibi şikâyetlerle devam ediyor. Hastalığın ilerlemesi durumunda diş eti, burun, kulak kanaması ve vücudun çeşitli yerlerinde dış kanama oluşuyor. Ankara Numune Hastanesi Mikrobiyoloji Klinik Şefi Hürrem Bodur, kene ısırdıktan 6 saat sonra virüsün salgılanmaya başlandığını belirtirken, iki hafta içinde kaybedilmeyen hastaların, KKKA`ya karşı bağışıklık kazandığını belirtiyor. Kelkit Vadisi`ndeki şehirlerde kene işgali var Orta Karadeniz, Orta Anadolu`nun kuzey kısımları, Toroslar`a kadar uzanan bodur alanlar. Virüslü kenelerin yaşamadığı yegane yer Akdeniz ve Karadeniz kıyıları. Nemli ve ıslak yerlerde yaşam sürdüremeyen bu tür keneler, Kelkit Vadisi olarak bilinen Tokat, Çorum, Yozgat, Sivas civarında yoğun olarak görülüyor. Bu illerin yanı sıra vakaların rastlandığı iller; Amasya, Ankara, Artvin, Aydın, Balıkesir, Bolu, Çankırı, Çorum, Düzce, Erzincan, Erzurum, Giresun, Gümüşhane, İstanbul, Karabük, Kastamonu, Kayseri, Kırşehir, Kocaeli, Muş, Ordu, Samsun, Şanlıurfa, Yozgat, Zonguldak. Keneler, Amerika`da `lyme` hastalığına, Almanya ve Avusturya ile Kuzey Avrupa ülkelerinde ise beyin iltihaplanmasına yol açıyor.

http://www.biyologlar.com/keneler-biyolojik-silahmi


Türkiye kuşlar listesi

Türkiye kuşlar listesi

Türkiye'nin farklı iklimli bölgeleri birçok farklı kuş türünün yaşaması için elverişlidir. Yaklaşık 465 kuş türü Türkiye sınırları içinde gözlemlenebilmektedir

http://www.biyologlar.com/turkiye-kuslar-listesi

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler



Gaitada Parazit

Dışkı örneği ile çalışan laboratuvarlarda potansiyel olarak bulunan tehlikeler şunlardır. Parazit yumurtası veya kistleri (cysts) yutmak, enfektif larvaların deriden geçişi yada dışkıdaki veya diğer biyolojik sıvılardaki paraziter olmayan enfeksiyöz ajanlarca enfekte olmak. Bu riskin oranı genel laboratuvar temizlik ve çalışma şartları uygulanarak azaltılabilir. Laboratuvarda çalışırken dikkat edilmesi gereken genel kuralları şu şekilde sıralayabiliriz. 1-Laboratuarda örnek incelerken (çalışırken) laboratuvar önlüğü ve lastik eldiven giymek. 2-Gerekli durumlarda biyolojik güvenlik kabini kullanılmalı (filtreli özel kabinler). 3-Çalışma ortamında yiyecek yenmemeli, sigara, çay v.b. şeyler içilmemeli, makyaj yapılmamalı, kontak lens takma-çıkarma-düzeltme yapılmamalıdır. 4- Çalışma sahası daima temiz ve düzenli tutulmalıdır. Akan, dökülen yada etrafa sıçrayan her türlü örnek yada maddeler hemen temizlenmelidir. Saha günde bir kez dekontaminasyon (bulaşıklardan uzaklaştırma- temizlik) işlemine tabi tutulmalıdır. 5-Ellerde bulunan kesik, yırtık v.b. yaralar ve ezikler yara bandı veya pansuman malzemeleri ile kapatılmalıdır. 6-Eğer keskin maddeler (bistüri ucu, iğne v.b.) kullanılmış ise bunlar hemen özel atık kutularına yerleştirilmelidir. Ortada bırakmak yada normal çöp kovalarına atmak sakıncalıdır. 7-Eldivenler çıkartılıp uygun biyolojik atık çöp kutularına atılır. Eller temizce yıkanır. Bu güvenlik kuralları mutlaka uygulanmalıdır. Hatta dışkı örneği belli fiksatifler (tespit ediciler) ve prezervatifler (koruyucular) içinde dahi olsa yukarda ki işlemler yapılmalıdır. Örneğin formalin (formaldehit) içerisinde tespit edilmis dışkıdaki bazı kalın kabuklu parazit yumurtalarının, kistlerin (cysts) yada oocystslerin (ookists) ölmesi için günler- haftalar gerekebilir. Ascaris lumbricoides’in yumurtası formalin içerisinde gelişmesine devam edebilir ve infektif duruma gelebilir. Dışkı Örneği Toplama: 1.Dışkı kuru ve sızdırmaz kaplar içerisine toplanmalıdır. Bu sırada diğer maddeler (idrar, toprak, saman v.s.) ile kontaminasyonu (bulaşması) engellenmelidir. 2.Dışkının kıvamı içeriği hakkında bilgi verebilir. Şekilli dışkıda parazitlerin daha çok kistik (cysts) formları bulunurken, sıvı (sulu) dışkı kıvamına doğru gidildikçe kistik form azalır ancak trophozoit (tırofozoid) formları daha çok görülür. İncelemeye başlarken bu durum unutulmamalıdır. 3.Taze dışkı ya hemen incelenmeli yada daha sonra incelenecekse zaman geçirmeden prezervatifler (koruyucular) içerisine konulmalıdır. Eğer prezervatifler hemen kullanılamıyorsa buzdolabında kısa süreli saklama yapılabilir. Ancak bu dışkı sadece antijen testleri için uygun olacaktır. 4.Örnekler mümkün olan en kısa sürede prezervatiflere konulmalıdır. Eğer ticari bir prezervatif kullanılıyor ise bu ürünün kullanım bilgilerine uyulmalıdır. Eğer ticari koruyucular kullanılmıyor ise; örnekler ikiye ayrılmalı ve uygun kaplarda iki ayrı prezervatif içerisine konulmalıdır. Örneğin: % 10’luk formalin ve PVA (polivinil alkol) kullanılabilir. Bir hacim dışkı üç hacim prezervatif ile karıştırılmalıdır. 5. Toplanan örneğin prezervatif ile tam olarak karıştığından emin olunmalıdır. Şekilli dışkılarında iyice dağılıp, parçalandığından emin olunmalıdır. 6. Örnek konulan kapların iyice kapatıldığından emin olunmalıdır. Kapaklar parafilm yada benzeri maddeler ile yeniden sarılmalı ve kaplar plastik torbalara konulmalıdır. 7. Belli ilaçlar dışkı içeriğini değiştirebilir. Bu durumdaki dışkılar muayene için alınmamalıdır. Örnek, herhangi bir ilaç veya madde verilmeden önce alınmalıdır. Yada örnek ilaç etkisi geçtikten sonra toplanabilir. Bu ilaçlara; antiacid, kaolin, mineral yağ veya diğer yağlı maddeler, emilmeyen anti-diyare preperatları, baryum yada bizmut (7-10 gün beklenmeli atılmaları için), antimikrobiyel ilaçlar (2-3 hafta) ve safra kesesi boyaları (3 hafta). 8. Eğer ilk incelemede sonuç negatif çıkarsa örnek alınması tekrarlanabilir. Mümkünse en az üç örnek 2-3 gün ara ile alınıp incelenmelidir. Örneklerin İncelenmesi: Dışkı örnekleri taze olarak yada prezervatiflerde korunmuş olarak incelenebilir. Taze dışkının incelenmesi: Taze dışkı incelemesi hareketli trophozoitlerin görülebilmesi açısından gereklidir. Ancak bu örnek toplandıktan sonraki ilk yarım saat (30 dakika) içerisinde incelenmelidir. Sıvı (ishal-diyare-diarhoic) dışkılar daha fazla trophozoit içerirler. Yumuşak kıvamlı dışkılar hem cysts hemde trophozoit formlarını barındırabilmektedir. Bu nedenle ilk bir saat içerisinde incelenmelidir. Eğer bu süre aşılırsa sonuç güvenli olmaz. Çünkü bu süre sonrasında trophozoitler parçalanıp dağılmaktadır. Daha kıvamlı (şekilli) dışkılar da trophozoit bulunma oranı çok azdır. Bu durumdaki örnekler bir süre saklanabilirler. Eğer gerekirse buzdolabında korunabilirler. Parazitolojik muayenelerde kullanılacak dışkılar kesinlikle dondurulmazlar. Dondurulan dışkılardaki parazit yumurta ve oocystsleri parçalanırlar. Prezervatifli Dışkının İncelenmesi: Dışkı inceleme yukarda belirtilen süreler içerisinde yapılamayacaksa , örneği prezervatiflerde saklamak gerekir. Bu amaç için kullanılabilen çeşitli prezervatifler vardır. En çok kullanılan prezervatifler %10’luk formalin, Polivinil Alkol gibi preparatlardır. Formalin (% 10) ve PVA diğer prezervatiflere göre daha fazla avantaj sağladığı için bu iki fiksatif daha çok kullanılır. Örneklerin ikiye ayrılarak bu iki prezervatiflede tespit edilmesi tavsiye edilmektedir (bir hacim dışkı ile üç hacim prezervatif karıştırılmalıdır). Prezervatife konulmuş örnekler birkaç ay korunabilir. Formalinde Tespitli Örnekler: örnekler direk olarak incelemeye alınabilirler (ıslak yuva, immunoassay, kromotrop boyama) yada yoğunlaştırma (konsantre etme) işlemi yapılarak daha sonraki testlerde kullanıma hazır hale getirilebilir. Yoğunlaştırma İşlemleri: Bu işlem parazit veya yumurtalarını dışkıdan ayırma işlemleridir. Böylece az sayıda bulunan paraziter durumları da teşhis etme şansı artmış olur. Sedimentasyon (çöktürme) ve flotasyon (yüzdürme) yöntemleri olarak iki kısma ayrılır. Flotation (flotasyon) tekniği: Bu yöntemde genellikle sofra tuzu (NaCl), şeker yada çinko sülfat (zinc sulfate) solusyonları kullanılır. Bu sıvılar organizmadan daha yüksek spesifik graviteye (özgül yoğunluğu) sahip oldukları için paraziter yapılar yüzüp yukarı çıkarken çoğu dışkı kalıntıları dibe çöker. Bu işlemin asıl avantajı sedimentasyon tekniğine göre daha temiz inceleme maddesi elde edilir. Dezavantajı ise bazı yumurta yada kistler (cysts) bu solusyonlar içerisinde büzüşebilirler yada bazı parazit yumurtaları yüzmeyebilirler. Bu durumda teşhis zorlaşabilir. Sedimentation(sedimentasyon) tekniği: Çöktürme işleminde spesifik gravitesi (özgül yağunluğu) paraziter organizmalardan daha düşük olan solusyonlar kullanılır. Böylece bu organizmalar sedimentin içerisinde yoğunlaştırılmış olurlar. Sedimentasyon tekniği genelde çok kullanılır çünkü kullanımı ve hazırlanışı kolaydır ve teknik hata yapma ihtimali çok azdır. Formalin-etil asetat (formalin- ethyl acetate) ile çöktürme işlemi çok kullanılan bir yöntemdir. Genel olarak kullanılan prezervatiflerle toplanmış örneklere de uygulanabilir. Formalin-Ethyl Acetate Sedimentasyon Konsantrasyonu 1. Örneği iyice karıştırın. 2. Dışkı örneğinin yaklaşık 5 ml’sini süzün (çay süzgeci yada mikro elek) 3. Fizyolojik tuzlu su yada % 10’luk formalini süzgeçte kalan kalıntılara dökerek tekrar süzün ve bu şekilde 15 ml deney tüpünü doldurun. Distile su kullanılması tavsiye edilmez. Çünkü eğer örnekte Blastocystsis hominis varsa bu parazit deforme olabilir yada parçalanabilir. 4. Örneği 10 dakika santrifüj et (1000 rpm- dakikada devir yada 500g) 5. Üstte kalan sıvıyı dikkatlice dök bu sırada çöküntü bozulmamalı. Sıvı dökülürken iyice sızdırmaktan kaçınılmalı. Son kısımda paraziter maddeler olabilir. 6. Çöküntü üzerine 10 ml %10’luk formalin eklenip tekrar homojen hale getirilir. 7. Üzerine 4 ml etil asetat (ethyl acetate) ileve edilir ve deney tüpü kapatılıp içerik iyice karıştırılır. 8. Tüp tekrar 10 dakika santrifüj edilir (1000 rpm-500g) 9. Tüpün üst kısmında (tepe) biriken dışkı kalıntıları bir çubukla tüpten ayrılır. Üst kısımdaki sıvılar dikkatlice boşaltılır. 10. ucuna pamuk sarılmış bir çubuk ile tüp kenarındaki kalıntılar temizlenebilir. 11. Bir kaç damla % 10’luk formalin ilave edilerek dipteki sediment sulandırılır ve örnek istenilen deney metodu için kullanıma hazırdır. PVA İçerisinde Tespit Edilmiş Örnekler: Kalıcı Trikrom boyamalar için genellikle PVA prezervatif olarak kullanılır. Boyama öncesinde şu işlemler yapılır. 1. Dışkı örneğinin iyice karışmış olmasına dikkat edilir. 2. Dışkı örneğinden 2-3 damla (dışkı yoğunluğuna bağlı) alınarak sürme preperat hazırlanır. 3. Preperat ısı ile tespit edilir (60oC – 5 dakika) yada normal oda ısısında tamamen kurutulur. 4. Insure that the specimen is well mixed. Preperat trikrom boyama yapılabileceği gibi daha sonraki boyamalar için bir kaç ay preperat koruyucu kutularda saklanabilir. Örneklerin Başka Yerlere Nakli: Bazı durumlarda bölgenizde parazitoloji laboratuvarı bulunmayabilir. Bu durumlarda dışkı örnekleri başka bölgelerdeki laboratuvarlara gönderilmesi gerekebilir. Bu durumlarda dikkat edilmesi gereken hususlar aşağıdadır. Prezervatifsiz Dışkı Örneklerinin Nakli: Bazı durumlarda laboratuvarlar şüphenelinen patojenleri izole edebilmek için prezervatif kullanılmamış örnekler isteyebilirler (örneğin microsporidia kültürü yapılacak dışkılar). Böylesi durumlarda örnekler hemen temiz bir kaba konulmalı ve gönderilene kadar buzdolabında saklanmalıdır. Örnekler alındıktan sonra en kısa sürede (ortalama 8-12 saat), soğuk taşıma şartlarında taşınarak ulaştırılmalıdır. Kullanılan kaplar sızdırmaz olmalı ve örnek ile ilgili tüm bilgiler kap üzerine yazılmalı yada not olarak yanına ilave edilmelidir. Prezervatifli Örneklerin Nakli: Prezervatifli örneklerin nakil kuralları prezervatifsiz örneklerinki ile aynıdır. Sadece buzdolabında saklamaya ve soğuk taşımaya gerek yoktur. Paketleme: Dışkı örnekleri sızıntıları engelleyecek şekilde paketlenmelidir. Paketleme kaba işlemlere dayanıklı malzemeden secilmeli ancak depolama, paletli-kızaklı sistemlerde hareket edebilir olmalıdır. Örnek hacmine göre iki farklı paketleme yöntemi kullanılabilir. Hacmi 50 ml’ye kadar olan örnekler: 1. Nakledilecek mateteryal su sızdırmaz tüp veya kaba konulmalıdır (buna birinci nakil kutusu yada birinci kutu-kap, denilebilir). 2. Birinci kap, su sızdırmaz, dayanıklı bir kutuya konulur (ikinci nakil kabı-kutusu) 3. Birden fazla birinci nakil kutusu, ikinci nakil kutusuna yerleştirilebilir ancak toplam hacim 50 ml’yi geçmemelidir. 4. Soğuk kaynağı olan buz paketi v.s. yanında, sızma ihtimaline karşı emici maddeler de kutuya konulmalıdır. Bu maddeler kutu içindeki tüm hacmi emebilecek özellikte olmalıdır. Emiciler, parçalı maddelerden, talaş v.s. olmamalıdır. 5. Daha sonra bu kutular asıl nakil kutusuna (koli, özel taşıma kutusu v.b.) yerleştirilir. 6. Asıl nakil kutusu üzerinde “Biyolojik Madde”, “Tıbbi Malzeme” gibi uygun uyarıcı yazılar mutlaka rahatca görülebilecek yerlere konulmalıdır. Hacmi 50 ml’den fazla olan örnekler: Büyük hacimli örnekler paketlenirken yukardaki kuralların hepsi uygulanmalıdır. Bunlara ilaveten aşagıdaki kurallarda yerine getirilmelidir. 1. Birinci ve ikinci taşıma kutuları arasına ve her yönde şok emici maddeler mutlaka ilave edilmelidir. Bu işlemden sonra asıl taşıma kutusuna yerleştirilmelidir. 2. Birinci taşıma paketi 1000 ml’den (bir litreden) fazla örnek taşımamalıdır. Birden fazla birinci taşıma kutusu toplam hacimleri 1000 ml’geçmemek üzere ikinci taşıma kutusuna yerleştirilebilir. 3. Asıl taşıma kutusu birden fazla ikinci taşıma kutusu taşıyacaksa toplam hacim 4000 ml’yi (4 litre) geçmemelidir. Boyama: Kalıcı boyama yöntemleri ile boyanmış yayma (sürme) prepreperatlar laboratuvarlara avantaj sağlarlar. Bu sayede hem kalıcı olarak kayıt tutulabilir hemde ihtiyaç olduğunda örnekler yeniden incelenebilir. Ayrıca farklı organizma morfolojileri ile karşılaşıldığında yada teşhis zorluğu ile karşılaşıldığında bu preperatlar referans laboratuvarlara gönderilebilirler. Yukarda sayılan nedenler yüzünden her paraziter kontrole gelen dışkı örneğinden en az bir adet sürme preperatın kalıcı boyamalar ile boyanması tavsiya edilir. Modifiya Asit-fast Boyama : Bu boyama metodu İsospora, Crptosporidium, Cyclospora gibi coccidian parazitlrin teşhisinde kullanışlıdır. Trikrom boyamaya göre teşhiste avantaj sağlar. Modifiye asit-fast boyamada, Ziehl-Neelsen boyamada olduğu gibi boyama maddelerini ısıtmaya da gerek yoktur. Örnek: Taze yada formalindeki dışkı örneği çökeltme ile konsantre edildikten sonra kullanılabilir. Diğer klinik örneklerde (duedonum sıvıları, safra yada akciğer sıvıları (balgam, bronş yıkantısı , biyopsi) yine bu boyama ile boyanarak incelenebilir. Reagentlar (Boyamada kullanılacak Solusyonlar): Asit-Fast boyamada aşağıdaki solusyonlar hazır olmalıdır. 1. Absolute Methanol (Saf Metanol) 2. Asit Alkol 10 ml Sülfirik Asit + 90 ml Absolute ethanol. Oda ısısında depolanmalıdır. 3. Kinyoun Carbol fuchsin (Karbol Fuksin) (ticari olarak satın alınabilir) 4. Malachite green %3 (Malahit yeşili) Malahit yeşilinin 3 gramını 100 ml distile suda çözdür ve oda ısısında depo et. Boyama İşlemi 1. Dışkı örneğinin sedimentinden 1-2 damla bir lam üzerine damlatılıp yayılır. Yayılan dışkı çok kalın olmamalıdır. Bu preperat 60°C’de tamamen kurutulur. 2. Preperat absolut metanol içerisinde 30 saniye tespit edilir. 3. Karbol fuksin ile bir dakika boyanır. Distile su ile hafifce yıkanır ve suyu süzdürülür. 4. Asit alkol kullanılarak iki dakika boyama nötürleştirilir (İstenmeyen boya miktarı uzaklaştırılır.) 5. Malahit yeşili (Malachite green) ile karşı boyama yapın. Distile su ile hafifce durulayın ve suyu süzdürün. 6. Preperatı sıcak havada (60°C) beş dakika kurutun. uygun bir lamel ile preperat kapatılabilir. İstenilen bölgeler örtülerek incelemeye hazır hale getirilir. 7. Preperat mikroskop altında düşük yada yüksek büyütmeler ile incelenir. Organizmaların morfolojik detaylarını görmek için immersiyon (mineral) yağ kullanılabilir. Kalite Kontrolü: Bir adet kontrol preperatı boyamanın ne denli başarılı olduğunu konrol için örnek ile beraber boyanmalıdır. Bu amaç için genellikle Cryptosporidium (% 10 ‘luk formalinde tespit edilmiş) Kullanılır. Cryptosporidiumlar kırmızımsı-pembe renkte boyanırken arkaplan yeşil boyanmış olmalıdır. Kromotrop Boyama (Chromotrope) İşlemi: Bu boyama yöntemi trikrom (trichrome) bazı boyama maddeleri kullanılarak CDC tarafından geliştirilmiştir (Centre for Disease Control and Prevention-USA). Bu metod ile microsporidia sporlarını tespit edebilmek için kullanılmaktadır. Örnek: Formalin ( %10) içerisinde korunmakta olan dışkı örneğinden 10 µl alınarak sürme preparat hazırlanır. Preperat ısı ile kurutulup tespit edilir (60°C’de 5-10 dakika). Reagents (Solusyonlar): 1. Absolute methanol 2. Chromotrope Stain )kromotrop boya) Chromotrope 2r (Kromotrop 2r) 6.00 g Fast green )Hızlı yeşil) 0.15 g Phosphotungstic acid (fosfotungistik asit) 0.70 g Glacial acetic acid (Glasiyal asetik asit) 3.00 ml Bu maddeleri karıştırıp yarım saat (30 dakika) beklet ve 100 ml distile su ilave et. Her ay taze olarak kullanmak üzere yenisini hazırla. 3. Acid alcohol: (asit alkol) 90% ethanol 995.5 ml Glacial acetic acid 4.5 ml 4. 95% ethanol 5. 100% ethanol 6. Xylene (Ksilen) Boyama İşlemi: 1. Örneği (sürme preperat) absolute methanol içinde 5 dakika tespit et. 2. Kromotrop boya içerisine koyup 90 dakika boyama yap 3. Boyamayı nötürleştir , asit alkol içerisinde 1- 3 saniye. 4. Örneği % 95’lik ethanol içerisine batırarak asit alkolü durula. 5. İki % 100’lük ethanol kabı hazırla ve örneği içerisine koyarak (sıra ile) üçer dakika beklet. 6. İki ayrı ksilen (xylene yada hemo-de) kabı hazırla ve ayrı ayrı 10 dakika burada beklet. 7. preperatı süzdür ve kurutup üzerini uygun lamel ile kapatıp tespit et. İmmersiyon oil yöntemi ile en az 200 mikroskop sahasını incele. Kalite Kontrol: Formalinde ( % 19) prezerve edilmiş microsporidialı olduğu bilinen bir örnekte, incelenecek örnek ile boyanırsa boyama kalitesini kontrol etmek mümkün olabilir. Microsporidi sporlarının duvarı pembemsi- kırmızı renkte boyanır ve çapları yaklaşık 1µm çapındadırlar. Her 10 preperat boyamasından sonra tüm solusyonlar yenilenmelidir. Boyama esnasında durulama ve kurutma işlemleri tam yapılmalıdır. Microsporidiaları tespit edebilmek için 100X’lük büyütme kullanılmalıdır. Pazitif sonuçlar ikinci bir eksper tarafından doğrulatılmasında yarar vardır. Modifiye Safranin Tekniği (Sıcak Metod) Cyclospora, Cryptosporidia ve Isospora için kullanılır: Klinik örneklerinde çoğunlukla Cyclospora oocystleri tespitinde Kinyoun’un modifiye acid-fast boyaması (soğuk boyama) kullanılır. Ancak, asit-fast boyama tekniğinde oocystsler farklı derecelerde boyanırlar. Boyanmış, yarım boyanmış yada boyanmamış oocystsler aynı örnekte görülebilir. Bu durum yanlış teşhislere yol açabilmektedir. Modifiye safranin tekniğinde daha üniform (aynı tipte) oocystsler elde edilir. Boyaalr ısıtıcılar yardımı ile kaynama noktalarına kadar ısıtılırlar. Örnekler: Concentrated sediment of fresh or formalin-preserved stool may be used. Other types of clinical specimens such as duodenal fluid may also be stained. Solusyonlar: 1. Asit Alkol (% 3 HCl/Methanol) Hidroklorik asidi (3 ml) yavaşca absolute metanol (97 ml) içerisine ilave edip ağzı sıkıca kapalı kaplarda oda ısısında sakla. 2. Safranin Boyası 3. Malachite Green (% 3) Malachite green (malahit yeşili-3 g)distile su içerisinde (100 ml) çözdür ve oda ısısında koru. Boyama İşlemi: 1. İnce yayma (sürme) preperatı hazırla ve kurut. 2. Alkol içerisinde 5 dakika tespit et. 3. Distile su ile dikkatlice durula. 4. Kaynamakta olan safranin içerisinde 1 dakika boya. 5. Distile su ile dikkatlice durula. 6. Malachite green ile1 dakika karşı boyama yap. 7. Distile su ile durula ve preparatı kurut. 8. Kurumuş preperatı uygun yolla kapat ve incele. Kalite Kontrol: İçerisinde Cyclospora olduğu bilinen bir preperat (% 10’luk formalinde korunmuş olabilir)hazırlanır ve yeni incelenecek örnek ile beraber boyanır. Cyclospora oocystleri kırmızımsı-portakal sarısı renkte boyanırlar. Arka planın unifor yeşile boyanmış olması gerekir. Trichrome Boyama Dışkıda intestinal protozoaların incelenmesinde tek ve en iyi sonuç veren yöntem dışkıdan ince yayma preperat yaparak boyama tekniğidir. Kalıcı boyama ile boyanmış preperatlarda cysts ve trophozoit taranması, tanınması (bulma ve teşhis etme) ve devamlı kayıt maddesi (kanıt) elde edilebilir. Küçük protozoalar ıslak yöntemler ile (flotasyon vb) hazırlanan incelemelerde görünmeyebilirken (hazırlama veya inceleme hatası vs) boyanmış preperatlarda tespitleri daha kolay olmaktadır. Trichrome boyama tekniği hızlı, kolay basit bir boyama metodudur. Bu boyama ile intestinal protozoalar, insan hücreleri, mayalar yada diğer maddeler uniform olarak boyanmış halde elde edilirler. Örnek: Boyama için kullanılacak olan taze dışkı örneği bir lam üzerinde yayma yapılıp hemen tespit edilir. Tespit için, Schaudinn’s fiksative yada polivinil alkol (PVA) kullanılır ve havada veya ısıtılarak (60°C) kurutulur. Sodium acetate-acetic acid-formalin (SAF-sodyum asetat- asetik asit-formalin) ile tespit edilmiş örneklerde kullanılabilir. Solusyonlar: 1. Ethanol (% 70) + iodine: Etil alkol içerisine iyot kristalleri (iodine) ekleyerek bir stok solusyonu hazırla. Solusyon tamamen koyu bir renk alana kadar iyot ekle. Bu solusyonu kullanacağında kırmızımsı-kahve rengi yada demli çay rengi oluşana kadar % 70’lik etanol ilave et. 2. Ethanol % 70 3. Trichrome Boya 4. Acid-Ethanol % 90 Ethanol % 90 99.5 ml Acetic acid (glacial) 0.5 ml 5. Ethanol % 95 6. Ethanol % 100 7. Xylene (Ksilen) Boyama İşlemi: 1. Taze örneklerde preperatı Schaudinn’s fiksativinden çıkartıp % 70 ethanoliçerisinde 5 dakika beklet. Daha sonra % 70 Ethanol + iodine koyup bir dakika beklet. Eğer örnek PVA yayması ise preperatı % 70 ethanol + iodine içimde 10 dakika beklet. 2. Preperatı % 70 Ethanol de 5dakika beklet. 3. Preperatı ikinci % 70’lik Ethanol içinde3 dakika beklet. 4. Trichrome boyaya koyup 10 dakika beklet. 5. Fazla boyaları % 90’lık ethanol + acetic acid ile uzaklaştır (1veya 3 saniye). 6. Örneği % 100 ethanol ile bir kaç defa durula. 7. İki kademeli % 100’lük ethanole koy (her biri 3 dakika). 8. İki kademeli xylene (ksilen) koy (her birinde 10 dakika). 9. Uygun lamel ile preperatı kapatıp yapıştır. 10. Mikroskopta 100X objektif ile (immersiyon oil) en az 200 mikroskop sahası incele. Kalite Kontrol: İçerisinde protozoa bulunduğu bilinen (Giardia gibi) PVA içerisinde tespit edilmiş bilinen bir örnek kontrol örneği olarak bilinmeyen örnekle beraber boyanmalıdır. Düzgün olarak tespit edilmiş ve doğru boyanmış preperatlarda protozoa trophozoitlerinin stoplazması mavimsi yeşil veya morumsu renklerde belirir. Cysts (Kistler) daha morumsu olarak belirirler. Çekirdek ve diğer yapılar (kromatid yapılar, bakteriler ve alyuvarlar) bazan mora kaçan kırmızı renkte görülürler.Glikojen solusyonlarda eridiği için bu bölgeler temiz alanlar olarak belirir. Geri plan ise genellikle yeşil renk boyanır ve iyi bir renk zıtlığı oluşturarak parazitlerin daha iyi belirmesini sağlar. Mikroskobik İnceleme Oküler Mikrometre kullanılarak Mikroskopların Kalibrasyonu: Doğro olarak kalibre edilmiş mikroskoplar incelemelerde çok önemlidir. Çünkü organizmaların özellikle parazitlerin büyüklükleri önemli bir teşhis aracı olarak kullanılır. Kalibrasyon için iki mikro metre kullanılır. Birinci mikro metre okülere yerleştirilir. İkinci mikrometre mikroskop sehpasında konulur ve her büyütmede iki mikrometrenin ne kadar çakıştığı belirlenir. Sehpadaki mikrometrenin, okülerde nekadar görüldüğü ve görülen mesafenin aslında nekadar olduğu ile oranlanarak kalibrasyon yapılır. Bu işlem her mikroskop için ayrı ayrı yapılmalıdır. Mikrometreyi sehpaya yerleştirip net ayarını yap ve hem 0.1 mm hem de 0.01 mm çizgilerini görüntüle. Okülerdeki mikrometrenin “0” çizgisi ile sehpadaki mikrometrenin “0” çizgilerini çakıştır. Daha sonra, diğer kısımda kalan bölümlerden hem sehpa hemde okulerdeki metrelerden tam olarak çakışan iki çizgi bulunur (bu iki aramesafenin mümkün olan en uzak mesafelerden seçilir). Okülerdeki bu mesafe ile sehpadaki mesafe arasınad oran kurularak kalibrasyon tamamlanır. Örneğin sehpadaki mikrometrenin 36 bölmesi okulerdeki 0.7 mm çizgisi ile çakıştı bu durumda 0.7/36= 0.019mm olarak hesaplanır.Yani okülerde sizin 1 mm olarak gördüğünüz cisim aslında 0.019 mm büyüklüğünde demektir. Genelde bu ölçümler milimetre yerine, mikrometre cinsinden verilir. Bu durumda mesafe 1000 ile çarpılır sonuç 19 µm olarak bulunur yani her bölüm her ünite (kesik çizgiler arası) bu mesafeye eşittir. Bu işlem her büyütme için ve her mikroskop için ayrı yapılır. Ayrıca mikroskop obyektif, oküler değişimleri vya genel temizlikleri sonrasında tekrarlanmalıdır. Kalibrasyon işlemi sonrası mikroskop yanına bu işlem sonucu kaydedilebilir. Basit Yayma Preperat Hazırlanması: Bu işlem öncesinde mikroskoplarda kalibrasyon işleminin yapılmış olması tavsiye edilir. Protozoan trophozoitleri, cysts, oocysts ve helminth yumurtaları ve larvalarbu yöntemle görülüp teşhis edilebilir. Bu işlem için bir lam, lamel ve dışkı örneği gereklidir. Az bir miktar dışkı alınıp lam üzerine konur. eğer dışkı hala kıvamlı ise bir iki damla su veya tuzlu su ile sulandırılır. Genellikle en az iki örnek hazırlanması istenir. Bu sayede bir örnek iyot ile boyanabilir. Bu yaymada dışkı kalınlığı çok olmamalıdır. Lam altına konulan yazılar üstten görünebilmeli ve okunabilmelidir (bak resim1). Eğer arzu edilirse lamel, lam üzerine yapıştırılabilir. Bu işlem için en ucuz ve kolay elde edilebilen madde tırnak cilalarıdır (oje). İlk olarak lamelin dört köşesi birer damla ile tespit edilir. Daha sonra oje lamel etrafına açık kısım kalmayacak şekilde sürülür ve kurumaya bırakılır. Bu şekilde hazırlanan preperatlar uzun süre saklanabilir. Saklanacak preperatlarda tuzlu su kullanılmamalıdır. Bu işlem için diğer yapıştırıcılarda kullanılabilir. Preperatı sistematik olarak incele. Bu işlem ilk olarak 10 X objektif ile yapılmalıdır. Her hangi bir nesne incelenmek istenirse o zaman büyük büyütme ile inceleme yapılır. Boyanmış Preperat Hazırlanması: Kalıcı boyamalar ile hazırlanmış olan preperatlar protozoan trophozoites ve cystlerini teşhis etmek yada tür tayini yapmak için hazırlanır. Ayrıca daha sonraki çalışmalar için kaynak oluşturur (uzman incelemeleri vs). İnceleme öncesinde çalışma ortamında aranan organizma ile ilgili kaynaklar (kitap, resim yada pozitif olduğu bilinen preperatlar) hazır olmalıdır. Hangi boyama yapılacağı aranan organizmaya göre belirlenir. Normalde her 3 örnekten bir tanesi kalıcı boyamalar için hazırlanılması tavsiye edilir. Eğer dışkı örneği prezervatifsiz olarak gelmiş ise hemen bir baget (çubuk) ile biraz dışkı alınıp bir lam üzerine sürülerek yayma yapılır. Dışkı çok kıvamlı ise bir iki damla su ile sulandırılabilir. Bu preperat hemen Schaudinn'in fiksativine konur. Bu aşamada preperat kurutulmaz, kurumamasına dikkat edilir. Eğer PVA ile tespit edilmiş örnek gelirse bir iki damla alınıp lam üzerine homojen olarak ve yaklaşık 22x22 genişliğindeki lamel alanı kadar yayılır. Boyama işlemi tamamlandıktan sonra preperat sistemik olarak incelenir. Bu işlem için 100x objektif kullanılır. En az 200 yada 300 mikroskop sahası taranır. Eğer varsa görülen protozoa cysts yada trophozoitleri tespit ve teşhis edilir ve rapor edilir.

http://www.biyologlar.com/gaitada-parazit-1

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

“Dinlerin evrimi” mi “Evrimin dini” mi?

Sık sık duyarsınız bu iki kelimeyi “Dinlerin Evrimi.” Öyle ki pekçok kaynakta neredeyse bilimsel bir gerçeklik gibi sunulur. Nedir bu “dinlerin evrimi” meselesi? 19.yüzyılıın sonundan itibaren darwinizm, büyük bir hızla kabul gördü ve biyolojiden başlayıp ekonomi, psikoloji, sosyoloji, antropoloji ve tarih gibi hemen her alanı yaygın bir biçimde etkiledi. Bu, “din” olgusuna da “dinlerin evrimi” olarak yansıdı. Böylelikle de insanlığın son derece kısa bir zamanını kapsayan yazılı tarihine ve eldeki kısıtlı arkeolojik bulgulara dayanarak, evrim fikrinin a priori kabul görüldüğü hakim materyalist bakışla “dinlerin evrimi” düşüncesi ortaya çıkmış oldu. Bu düşünceye göre insanlığın ilk dönemlerinde hiçbir dini inanç yoktu. İlk dinler ise ölülere tapınmayla başlamıştı. Bu konuda farklı görüşler de vardı, bunlardan bazılarına göre dinin kaynağı animizme (doğaya canlılık atfetme, onda ruh olduğuna inanma), bazılarına göre ise totemizme (sembol olarak seçilen bir insan, grup ya da eşyaya tapma) dayanıyordu. Bu evrim tarihi içinde de insanlık, inanç sistemleri olarak sırayla animizm, manizm, politeizm (çok tanrıcılık) aşamalarını geçmiş son olarak da monoteizme (tek tanrıcılık) demir atmıştı. Bu temelle ilişkili olarak, pozitivizmin fikir babası A. Comte’de insanlığın inanç tarihini kategorize ederken mitolojik çağ ve metafizik çağ olarak sınıflandırma yapmış, son aşama olarakta pozitivizmi öngörerek dinlerin bu yeni dönemde ortadan kalkacağını iddia etmişti. (Zaman, Comte’nin yanıldığını açıkça gösterdi, ama bu başka bir konu.) Dinlerin evrimi düşüncesini desteklemek için kullanılan bulgularla, biyolojik evrim için gösterilen bulguların kullanım mantığı arasında büyük bir benzerlik görüyoruz. Nasıl ki biyolojik evrimde canlıların yapıtaşlarındaki benzerlikler homoloji ve anoloji gibi kavramlarla “common descent”e (ortak ata) kanıt olarak gösteriliyorsa, dinlerin evrimi düşüncesinde de aradaki benzelikler evrimlerine kanıt olarak gösteriliyor. Özetle, tek tanrılı dinlerle önceki inanışların gerek bazı ritüelleri, gerek tarihsel hikayeleri, gerekse metafizik öğeleri arasındaki benzerliklerden hareketle, zaman içinde birbirlerinden evrimleştikleri öne sürülüyor. Peki bu sonuca varılmasını sağlayan nedir? Yani bu ortak noktalar birbirlerinden evrimleşmeye mi kanıttır yoksa İlahi mesajın sürekliliğine ve zamanla bozuldukça tekrarlandığına mı? Yoksa bu ortak noktalar her iki görüş için de bakılan yere göre değişen kanıt sunabilir mi? Tarih öncesi çağlara dair elimizde çok az bulgu olduğu gerçeğini de dikkate alarak şu söylenebilir; bu benzerlikler her iki düşünceyi de desteklemek için kullanılabilir. Elbetteki a priori kabullerle başlanarak. Hangi görüşü daha kuvvetli desteklediğini görmek için ise yetersiz de olsa elimizdeki bulgulara bakmalıyız. Dinlerin evrimi düşüncesi, “bilimsellik” bağlamında düşünürsek önkabullerden ve arkeolojik kanıtların bu önkabule uygun bir biçimde yorumlanmasından başka bir şey ifade etmiyor. Bu önkabul materyalizm elbette. Bu materyalist önkabulün olmadığı bir bakışla incelendiğinde ise yaklaşık bir yüzyıldır ele geçirilen antropolojik ve arkeolojik bulgular, tarih boyunca toplumlarda önce tek Tanrı inancının var olduğunu, ancak bunun zamanla bozulduğunu gösteriyor. Bazı dinler tarihi yorumcularına göre başlangıçta herşeyi yoktan var eden, herşeyi gören ve bilen, tüm alemlerin sahibi olan tek Yaratıcı’ya inanan toplumlar, zamanla Yaratıcı’nın sıfatlarını ayrı ayrı ilahlar olarak düşünme yanılgısına düşüyor ve birden fazla ilaha tapınmaya başlıyorlar. Birkaç alıntı ile eldeki bulguların ne ifade ettiğine bakalım. Stephen H. Langdon, The Scotsman adlı dergide şunları yazmış: Tüm deliller, kesinlikle başlangıçta bir “tek Tanrı” inancının bulunduğunu gösteriyor. Semitik kökenli halkların arkeolojik ve edebi kalıntıları da en eski zamanlarda bile bir “tek Tanrı” inancının var olduğunu gösteriyor. Yahudi dininin ve diğer Semitik kökenli dinlerin, totemistik, putlara dayanan bir kökeni olduğu teorisinin tamamen geçersiz olduğu bugün anlaşılmış durumda. Axel W. Persson da “Tarih Öncesi Yunan” isimli eserinde şöyle demiş: (1) İlk baştan beri var olan tek Tanrı inancı, daha sonra Yunan dinsel mitlerinde gördüğümüz sayısız önemli önemsiz tanrısal kişiliklere dönüşmüştür. Benim görüşüme göre bu birçok ilahın varlığı, tek ve bir olan bir Tanrı’yı tanımlayan değişik isimlerin zamanla değişik yorumlanmasına bağlıdır. Antropolog Sir Flinders Petrie de bu konuda şöyle diyor:(2) Eğer ruhlara tapmak tek bir İlah’a tapmaya uzanan bir evrim sürecinin ilk basamağı olsaydı, bu durumda çok tanrılılığın gittikçe tek tanrılılığa evrimleşmesinin kanıtlarını görmemiz gerekirdi… Bunun tam aksine tek görebildiğimiz, tek Tanrı inancının her zaman ilk basamak olduğudur…[….] Çok tanrı inancını ilk oluşumuna kadar izleyebildiğimiz her yerde, bunun tek Tanrı inancının bir çeşitlemesi olduğunu görüyoruz Alıntılar çoğaltılabilir. Yani bakışa göre değişir diyorum ama darwinist önkabulden sıyrılıp nesnel bir bakış yaptığımızda da “İlahi mesajın sürekliliği ve zamanla bozuldukça tekrarlandığı” yaklaşımının daha makul olduğu ve delillerle de desteklendiği görülüyor. Hele ki çıkışından 300 yıl sonra tanınamayacak hale getirilen Hristiyanlık örneği de elimizde iken bu bozulmanın mümkün olduğunu ve çeşitli öğretilerdeki sembolizmanın ifade ettiği anlamların benzerliği sebebiyle tek ilahi köken yaklaşımının çok daha makul olduğunu düşünüyorum. Tüm kadim medeniyetlerin ve toplulukların dini öğretilerinde ilahi bir öz vardır. Büyük İslam düşünürü Seyyid Hüseyin Nasr bunu “gelenek” olarak tanımlar. Bu, bizim bildiğimiz anlamda gelenek-görenek tanımlamasına giren adet, alışkanlık, düşünce ya da motiflrin kuşaktan kuşağa aktarımı değildir. Nasr bu “gelenek” ile, Vahy-i İlahi ile inen, kaynaklarında İlahi olanın özel bir tezahürü ile özdeşleşen ilkeler dizisini ve bu ilkelerin farklı zaman birimlerinde ve farklı koşullarda belli bir insan topluluğuna indirilmesini ve uygulanmasını kasteder. (3) Hulasa edersek; bu İlahi mesaj farklı zamanlarda farklı toplumlara farklı form ve sembolizma ile indirilmiş olabilir. Bir Hindunun dini ritueli, bir Brahmanın ahlakî yaklaşımı bu mesajın o toplum için sembolize edilmiş bir tezahürü olabilir. Bu konuda S.Hüseyin Nasr ve ünlü metafizikçi düşünürlerden Frithjof Schuon, Rene Guenon, A.K. Coomaraswamy gibi isimlerin eserlerine bakılabilir. Bu eserlerde İlahi mesajın insanlığın başlangıcından bu yana iletildiği zamana ve muhatap topluma göre nasıl bir sembolizmayı kullandığına, farklı farklı formlara büründüğüne ilişkin kıyaslamalara ve mesajın tekliğine ilişkin çok detaylı bilgiler var. (4) Bu yaklaşım her ne kadar bulgularla desteklense de nihayetinde a priori kabule dayanır; ve adı üstünde bu bir inançtır. Müslümanlar ya da diğer inanç sahipleri bunun bir “inanç” olduğunu kabul ederler. Bu teolojik olarak da kendi inanç sistemleri içinde tutarlı bir bakıştır. Fakat yukarıda da bahsettiğim nedenlerle dinlerin evrimi gibi bir düşünce de inançtır. Eldeki bulgular her ne kadar çoğunlukla aksini gösterse de, yine de bu düşünce lehine yorumlanabilir. Fakat bu yorum da -tıpkı İlahi köken yaklaşımında da olduğu gibi- önkabule dayanır, mevcut bilimsellik kriterlerine göre de bilimsel bir bakış değildir. O halde “dinlerin evrimi” gibi bir yaklaşımı, bilimsel gerçeklik gibi sunmaya çabalayan bazı materyalistlerin daha dikkatli konuşması gerekiyor. Notlar: (1) Tarihi Yalan:Kabataş Devri. Alıntı: Axel Persson, The Religion of Greece in Prehistoric Times, University of California Press (2) Age. Alıntı: Sir Flinders Petrie, The Religion of Ancient Egypt, Constable, London (3) İslam and The Plinght of Modern Man. S. Huseyn Nasr. (4) Bununla ilişkili bir yazım için bakınız: Kaynak: www.derindusunce.org

http://www.biyologlar.com/dinlerin-evrimi-mi-evrimin-dini-mi

KAN GLUKOZ TAYİN YÖNTEMLERİ

Glukoz insan kanında bulunan en önemli monosakkarittir. Glukoz insan ve hayvan dokularının enerjisini sağlar. Bu canlıların kalori ihtiyaçlarının yarısından fazlası glukoz tarafından sağlanmaktadır. Glukoz altı karbona sahip bir aldoheksozdur. Glukoz meyve sularında, nişastada, şeker kamışında, maltoz ve laktozda bulunur. Hidroliz ile açığa çıkar. Organizmanın kullandığı ve kanda taşınan en önemli şekerdir. Diabetes mellutuslu hastalarda idrarda da bulunur. İndirgeyici bir şekerdir. Maya tarafından fermente olur. Nitrik asidde çözünerek sakkarik asid oluşturur.Glukoz barsaklardan emilerek kana geçtikten sonra vücudun enerji ihtiyacı doğrultusunda glikolitik yola girerek piruvata kadar yıkılır. Glukozun piruvata yıkımı aerobik glukoliz ile olmaktadır ki bu yolu mitokondriye sahip hücreler kullanmaktadırlar. Ertrositler, kornea, lens ve retina hücreleri çok az mitokondri içerirler bu nedenle glikolitik yol bu dokuların pirimer enerji gereksinimlerini karşıladıkları yoldur. Bu dokularda aneorobik glikoliz olur ki son ürün laktik asiddir.Glukozun kandan hücrelere kullanılmak üzere girişinden sorumlu yegane hormon insülindir. İnsülin anabolizan bir hormondur. İnsüline zıt olarak çalışan bir diğer hormon ise glukagon hormonudur. Dolayısı ile kan glukoz konsantrasyonunu bu iki hormon öncelikli olarak etkilemektedirler. Kan glukozu azaldığında ve hücrelerin enerji ihtiyaçları arttığında glukagon hormonunun etkisi ile glikojen depoları boşalmaya ve kan şekeri artmaya başlar. Kan şekeri arttığında ise hücrelere glikozun girişi insülin hormonu aracılığı ile olmaktadır. Kan glukoz seviyesi karaciğer tarafından düzenlenir.Kan glukozunun kontrolü başlıca iki hormonun kontrolündedir. Bunlar insülin ve glukagon hormonlarıdır. Etkileri ise şu şekildedir.İNSÜLİN GLUKAGON Glikolisis Glikojenılisis ­Glikogenesis ­ Glikojen ® Glukoz Glukoz ® glikojen ® piruvat®acetyl-CoA Glikoneogenesis ­ Lipogenesis ­ Yağ asidi ® Asetil CoA ® KetonGlikojenolisis¯ Proteinler ® Amino asidler Kan glukoz ölçümlerinin başlıca iki amacı vardır. Bunlar ya hiperglisemiyi yada hipoglisemiyi tespit etmektir.*** Normal açlık plazma glikoz seviyesi : FPG < 110 mg / dl olmalıdır.HİPERGLİSEMİ HİPOGLİSEMİAçlıkKan glikozu > 110 mg / dl İlaçlarDiabetes mellitus EtanolHepatik hastalıklarTip I . İnsülinomaBeta- cell yıkımı . Doğmasal hiperinsülinizmAbsolut insülin yetmezliği G-6 Fosfataz yetmezliği ( Vov Gierke’s hast )Otoantibadiler İslet-cell otoantibadiler İnsülin otoantibadilerGlutmik asid dekarboksilaz otoantibadilerTip IIİnsülin resistansıRelatif insülin yetmezliğiDiğerSekonderBeta-cell genetik fonksiyon yetmezliğiPankreas hastalıklarıEndokrin hastalıklarİlaçlarİnsülin reseptör abnormalitesiGestasyonelGebelikte glikoz intoleransıMetabolik ve hormonal değişime bağlı KAN GLUKOZ TAYİN YÖNTEMLERİMODİFİYE SOMOGYI-NELSON METODU:Prensip:Glukoz tayini yapılacak olan kan, plazma, yada serum örneği,, içersinde glukozun yanı sıra indirgeyici özelliği bulunan proteinleri çöktürmek ve ortamdan uzaklaştırmak için deproteinize edilir. Bu amaçla Çinko Hidroksit kullanılır. Daha sonra numune Alkali Bakır solüsyonu ile ısıtılır. Cuprik ( cu+2 ) bakır iyonları glukozu okside eder ve Cuprous ( cu+1 ) iyonları oluşur. Bu esnada oluşan bu bakır miktarına eşit miktarda Arsenomolibdat indirgenir. Renk değişimi kolorimetrik olarak ölçülür ve glukoz kantitasyonu yapılır.Normal kan glukoz değeri: Tam kanda ( açlık ) 65 –110 mg / 100 ml’dir.Numune: Bu yöntemle tam kan, serum, plazma yada serebrospinal sıvıda glukoz tayini yapılabilir. Plazma için herhangi bir antikoagulant madde kullanılabilir. Tam kan hemen ölçümlerde kullanılmayacaksa, içersine glikolizisi durdurmak için Sodyum Florid katılarak buzdolabında saklanmalıdır.Reaktifler:1- 1- Sodyum hidroksit ( NaOH ), 0,08 N2- 2- Sodyum hidroksit ( NaOH ), 1 N3- 3- % 5’lik Çinko sülfat solüsyonu, ( ZnSO4 )4- 4- % 10 Bakır Sülfat solusyonu, ( CuSO4 )5- 5- Alkalen bakır solüsyonu,Çözelti A. 12 gr. Na2CO38 gr. NaOH CO36 gr. Potasyum sodyum tartarat ( C4N4KNaO6 ( 4H2O )72 gr. Na2SO4 Anhdril.Saf suda eritilir ve 400 ml ye tamamlanır.Çözelti B. 28 gr. Disodyum fosfat anhdr. ve 40 gr. Rochelle tuzu ( KnaC4H4O6 . 4H2O ) tartılıp bir bir balon jojede 700 ml saf suda eritilir. Magnetik karıştırıcıda bunlar çözünürler iken üzerine 100 ml 1 N Sodyum hidroksit ve 80 ml % 10 Bakır sülfat yavaş yavaş eklenir. Daha sonra üzerine 180 gr Sodyum sülfat anhdr. eklenir ve en son balon joje saf su ile 1 L ye tamamlanır.Kullanmadan önce 4 volüm A çözeltisi 1 volüm B çözeltisi ile karıştırılır.6- 6- Arsenomolibdat Çözeltisi: 25 gr. ( NH4 )6Mo7O27 . 4H2O ( amonyum molibdat ) 450 ml saf suda eritilir. 21 ml derişik H2SO4 ilave edilip karıştırılır. 25 ml saf suda eritilmiş 3 gr Disodyum hidrojen arsenat ( Na2HasO4 . H2O) ilave edilir. Çözelti karıştırıldıktan sonra etüvde 37 C0 de 24-48 saat bekletilir.7- 7- Standart glukoz çözeltisi: % 50 mg, % 100 mg, %200 mg, % 300 mg, % 400 mg.Standart Kalibrasyon Eğrisi: Stok standardı 10 ml.lik tüplerde 0.5, 1.0, 2.0, 3.0 ve 4.0 ml dilüe edilir. Bu çalışma standartları 50, 100, 200, 300, 400 mg glukoz / 100 ml konsantrasyona eşittir. Daha sonra test prosedürü bunlara aynen uygulanır. Blank referanslığında 530 nm dalga boyunda spektrofotometrede absorbansları alındıktan sonra, alınan absorbansa ve konsantrasyona göre bir grafik çizilir.Test Prosedürü:15 x 125 mm’lik deney tüplerine aşağıdaki sırada blank, numune ve standart çöeltileri sırayla konur. Sodyum hidroksit konduktan sonra 5 dk. kadar beklenir ve Çinko sülfat eklenir. Tüpler iyice karıştırılır. BLANK            NUMUNE              STANDARTSaf su ( ml )                                        1 ml                     0                         0Standart ( ml )                                      0                       0                        1.0Numune ( kan, serum, CSF ) ml                0                      1.0                       0NaOH, 0,08 M                                       7.0                     7.0                     7.0ZnSO4 ( ml ) ml                                     2.0                     2.0                    2.0· · Tüm tüpler 2500 rpm’de 5 dk. Santrifüj edilir.· · Blank için 1, standart ve numune sayısı kadar da Folin- Wu tüpleri alınır. Bu tüplere süpernatanttan birer ml konur. Her tüp mutlaka etiketlenmelidir.· · Her tüpe 2.0 ml Alkali bakır çözeltisi konur ve karıştırılır.· · Tüpler su banyosunda 15 dk kaynatılır. İşlem sonunda akan musluk suyunda tüpler soğutulur.· · Her tüpe 1.0 ml Arsenomolibdat reaktifi konur ve tüpler karıştırılır. Tüpler saf su ile 25 ml ‘lik hacime tamamlanır.· · 550 nm dalga boyuna ayarlanmış spektrofotometrede tüm tüpler köre karşı okunur.· · Standart eğrinin referanslığında numunenin glukoz konsantrasyonu hesaplanır.Not: Eğer standart grafik değilde tek bir standart kullanılıyorsa şu formül yardımı ile numunenin glukoz konsantrasyonu hesaplanabilir.Nc = NAB / SAB x Sc Nc : Numunenin konsantrasyonuNAB: Numunenin absorbansıSAB : Standardın absorbansıSc : Standart konsantrasyonuGLUKOZ OKSİDAZ ( Fermco Test ) METODUPrensip : Serum, plazma, CSF’ de bulunan glukoz moleküler oksijen tarafından Glukonic asid ve H2O2’ ye okside edilir. Bu reaksiyonu Glukoz Oksidaz enzimi katalizler. H2O2 Kromojen Peroksidaz enziminin etkisi ile renkli bir bileşiğe oksitlenir. Bu bileşik H2SO4 etkisi ilekalıcı kırmızı renk verir. Ölçüm kolorometrik olarak yapılır.1. Glukoz + O2 + H2O Glukoz Oksidaz Glukonik asid + H2O22. H2O2 + Chromogen Peroksidaz amber compaund3. Amber Compaund + H2SO4 ........... Stable red pigmentNormal Değerleri:Serum- Plazma ( açlık ) : 70 – 110 mg / 100 mlSerebrosipinal sıvı ( açlık ) : 45 – 80 mg / 100 mlNumune:Kan alındığında eritrosit hemolizinin olmamasına dikkat edilmelidir. Çünkü eritrositlerin sitoplazmik glikolitik enzimler serum-plazma glukozunun yanlış ölçülmesine yol açarlar. Bunu engellemek için Florid kullanılmamalıdır. Çünkü florid glikolitik enzimleri baskılamakla kalmaz deneyde kullanılan enzimleri de baskılar. En iyi ölçüm kan alındıktan hemen sonra serumu çıkartılıp yapılan ölçümdür.Reaktifler:1- 1- Enzim- Kromogen Buffer Reagent.2- 2- Sülfirik Asid ( 7.2 N )3- 3- Glukoz Standardları: 300 mg anhidroz reagent-grade glukoz ( dextroz ), 80 ml deiyonize suda çözülür. Üzerine 0,25 g benzoik asid ilave edilir ve karıştırılır. Karışımın üzeri 100 ml ye tamamlanır. Bu stok solüsyonda 60, 120 ve 240 mg / 100 ml’lik standart çalışma solüsyonları hazırlanır.Test Prosedürü:· · 13 x 120 mm’lik deney tüplerine numune, standard ve kör için birer ml enzim-kromogen karışımı reaktifinden konarak tüpler 37 C0 da su banyosuna kaldırılır.· · Aynı anda 20 ml bilinmeyen serumdan numune tüpünün üzerinde tabaka oluşturacak şekilde konur ve hemen karıştırılır. Blank sadece enzim- kromojen reaktifi içermelidir. Standartlar için de numuneye yapılan işlem yapılır.· · 10 dk. sonra reaksiyon her tüpe 4,0 ml 7,2 N H2SO4 eklenerek durdurulur.· · Blank referanslığında standard ve numunenin absorbansları 540 nm dalga boyunda spektrofotometrik olarak okunur.Hesaplama: Aşağıdaki formül yardımı ile glikoz konsantrasyonu bilinmeyen örneğin glukoz konsantrasyonu hesaplanır.Numunenin absorb. / Standardın absorb. X Standardın konstr. = Glukoz ( mg / 100 ml )

http://www.biyologlar.com/kan-glukoz-tayin-yontemleri-1

Serçegiller (Passeridae)

Ev serçesi (Passer domestica) Söğüt serçesi (Passer hispaniolensis) Çalı serçesi (Passer moabiticus) Orman serçesi (Passer montanus) Çöl serçesi (Carpospiza brachydactyla) Sarı gerdanlı serçe (Petronia xanthocollis) Kaya serçesi (Petronia petronia) Kar serçesi (Montifringilla nivalis)

http://www.biyologlar.com/sercegiller-passeridae

Gen Terapisinin Riskleri Nelerdir

Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığayol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik daneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inabiliriz.

http://www.biyologlar.com/gen-terapisinin-riskleri-nelerdir

Çıkmış biyoloji soruları

A. Doğru şıkkı işaretleyiniz. ( 12*3 puan= 36 ) 1. İnsanlarda besin ve enerji tüketimi fazla olan dokulardaki kılcal kan damarı oranı , diğerlerine göre daha fazladır. Buna göre aşağıdaki dokulardan hangisindeki kılcal damar oranı diğerlerinden daha fazladır? a- Epitel doku ve kas doku c- Yağ dokusu ve epitel doku c- Kas dokusu ve sinir doku d- Kıkırdak doku ve yağ doku 2. Kemiklerin sağlığını korumak için, I. Yeterli ve dengeli olarak beslenmek. II. Sportif hareketler yapmak. III. Aşırı ve ağır yük taşıma . Şeklindeki faaliyetlerden hangilerinin yapılması gereklidir? a. Yalnız 1 b. Yalnız 2 c. 1 ve 2 d. 1,2 ve 3 3. Bol miktarda köfte yiyen bir insanın kanına hangi besinden en fazla gider? a. Glikoz b. Vitamin c. Aminoasit d. Mineral 4. Kalın bağırsaktan hangisi kana geçemez? a. Su b. Vitamin c. Mineral d. Selüloz 5. Vücut ağırlığının artmasında aşağıdakilerden hangisi etkilidir? a- Normalden fazla solunum yapılması b- Şekerlerin yağa çevrilerek depolanması c- İskelet kasların fazla miktarda etkinlik göstermesi d- Vücuttaki artıkların dışarıya boşaltılması 6. Kandaki şeker miktarını hangi hormonlar ayarlar? a- Adrenalin ve insülin b- Tiroksin ve hipofiz c- Hipofiz ve glukagon d- İnsülin ve glukagon 7. Aşağıdakilerden hangisi sindirim sisteminin görevidir? a- Havadaki oksijenin vücuda alınıp kana karışmasını sağlar. b- Besinlerin parçalanıp kana karışmasını sağlar. c- Besinleri dişler ve kaslar yardımıyla parçalar. d- Sistemlerin çalışmasını denetler. 8. Aşağıdakilerden hangisi vücudun engellerindendir? a- Ter b-Deri c- Solunum yolları d- Hepsi 9. Aşağıdakilerden hangisinde oynar eklem vardır? a- Boyun b- Kalça c- Kafatası d- Bel 10. Aşağıdaki hangi olay beyin kabuğundaki merkezler tarafından kontrol edilmez? a. Hareket b. Görme c- Düşünme d- Denge 11. Aşağıdakilerden hangisinin görevi kanın pıhtılaşmasını sağlamaktır? a- Alyuvar b- akyuvar c- kan pulcukları d- kalp 12. Kandan zararlı ve atık maddeleri hangi organ ayırır? a- Böbrek b- Akciğer c- Karaciğer d- akyuvar B-Aşağıdaki boşlukları doldurunuz. (7*2 puan=14) 1- Eklemleri oluşturan kemiklerin ucu __________________kaplıdır. Kemiklerin sürtünmesini engeller. 2- Böbreğimizde kanı temizleyen 1.000.000 tane küçük filtre _____________vardır. 3- Boşaltım sistemi üzerine uzmanlaşmış doktorlara ___________ denir. 4- Kolumuzdaki kaslar ______ _______________ kaslardır. 5- Kemiklerin birleştiği yere ______________denir. Hareketi kolaylaştırırlar. 6- Nezle, kabakulak ve AIDS hastalığına _____________ neden olur. Kolera , difteri, verem hastalığına __________________neden olur. 7- Akciğerleri ________________, beyni ________________ dıştan korur. C-. Aşağıdaki soruları yanıtlayınız.(20*2.5 puan=50) 1- Kimyasal sindirim ve mekanik sindirimi anlatınız. 2- Sindirimin izlediği yolu yazınız. 3- Dolaşım sistemini oluşturan yapıları yazınız. 4- Kalbin görevi nedir? 5- Büyük ve küçük kan dolaşımını açıklayınız. 6- Kan hücrelerini yazınız.Görevlerini açıklayınız. 7- Kan grupları hakkında bilgi veriniz. 8- Lenf sistemini açıklayınız. Önemini belirtiniz. 9- Aşı ve serumun farkı nedir? 10- Nefes alıp- verme nasıl olur? Solunumla farkı nedir? 11- Alveollerin görevi nedir? 12- Eklem çeşitlerini birer örnek vererek açıklayınız. 13- Böbreğin görevi nedir? 14- Sinir sisteminin kısımlarını açıklayınız. 15- Beyin kabuğunda hangi merkezler yer alır? 16- Omurilik, beyin ve beyinciğin görevlerini yazınız. 17- Adrenalin hormonu nereden salgılanır? Görevi nedir? 18- Vücudumuzda şeker ayarlamasını hangi hormonlar yapar? 19- İskeletin görevi nedir? 20- Kalp kası , düz ve çizgili kası açıklayınız. A. Doğru şıkkı işaretleyiniz.(8*4 puan= 32) 1- Gözde göz yuvarlağının içine ulaşabilecek ışık miktarını aşağıdakilerden hangisi ayarlar? a. Retina b. Kornea c. İris d. Optik sinir 2-Gözde ışığa duyarlı hücreleri içeren en iç tabaka aşağıdakilerden hangisidir? a.Retina b. Kornea c. İris d. Optik sinir 3- İç kulakta denge duyusunu algılamamızı sağlayan hangi yapılardır? a. Kohlea b. Kulak kemikçileri c. Yarım daire kanalları d. Östaki borusu 4. Aşağıdakilerden hangisi kulak kemikçiklerinden değildir? a. Çekic b. Örs c. Östaki d. Üzengi 5.Retinanın ışığa en duyarlı bölgesine ne denir? a. kör nokta b. Sarı leke c. Ağ tabaka d. Kornea 6. Retinada oluşan görüntü nasıl bir şekilde olur? a. Başaşağı ve 3 boyutlu b. Başaşağı ve 2 boyutlu c. Yukarı doğru ve 2 boyutlu d. Yukarı doğru ve 3 boyutlu 7. Hipermetrop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Dışbükey d. İnce lens 8. Miyop göz bozukluğunu düzeltmek için nasıl mercek kullanılır? a. İnce kenarlı b. Kalın kenarlı c. Boşbükey d. İnce lens B. Boşlukları doldurunuz. (4*2 puan=8) 1. Gözün farklı mesafelerdeki cisimleri odaklayabilmesine ________ __________ denir. 2. Ortamda az ışık varsa _________________ büyür. Ortamda çok ışık varsa gözbebeği küçülür. 3. _________ ___________ orta kulak ile dış ortam arasındaki basıncı dengeleyip kulak zarının zarar görmesini engeller. 4. Göz kapakları gözün dış kısmını ____________, göz yaşı gözün dış kısmını ______________. C -Aşağıdaki soruları yanıtlayınız.( 15*4 puan=60) 1- Duyu organları nelerdir? 2- Konjanktiva nerede bulunur? Görevi nedir? 3- Uzaktaki ve yakındaki cismi nasıl görebiliyoruz? 4- Hipermetrop göz ve miyop göz hakkında bilgi veriniz. 5- Derinin görevi nedir? 6- Dilde hangi tatları alırız? Şekil üzerinde gösteriniz. 7- Deride bulunan duyu alıcıları nelerdir? 8- Burunda sarı bölge nereye denir? Görevi nedir? 9- Pacini cissimciği nedir? 10- Kulak kaç bölümde incelenir, isimleri nelerdir? 11- İşitme olayını açıklayınız. 12- Görme olayını açıklayınız. 13- Renkli görmemizi sağlayan yapılar nelerdir? 14- Katarakt nedir? 15- Gözdeki kör nokta, optik sinir ve kirpiksi kasların özelliklerini yazınız.

http://www.biyologlar.com/cikmis-biyoloji-sorulari

Sofra Tuzu

Sofra Tuzu

Bu sayımızda, ayın fotoğrafı köşemizde, hepimizin yakından tanıdığı bir madde var: Sofra Tuzu, ya da bilimsel adıyla Sodyum Klorür ( NaCl). Fotoğraf: Cüneyt ÖzdaşMakine: Canon 7DLens: Canon MP-E65Tarih: 30 Mayıs 2012 Sofra tuzu, ya da Sodyum Klorür, her ne kadar gözümüze toz gibi görünse de, aslında küp şeklindeki küçük granüllerden oluşuyor. Softa tuzunun bu kübik yapısı, NaCl bileşiğinin kristalize yapısından kaynaklanıyor. Tipik bir iyonik bileşik olan Sodyum Klorür, ardışık örgü sistemi ile kararlı hale gelmiş çok sayıda iyondan oluşan bir kristal yapıya sahip. Artı ve eksi değerdeki çok sayıda iyon, kararlılık sağlayacak şekilde diziliyorlar ve gözle zor farkedilen ama iyi büyüten bir kamera veya büyüteçle gözlenebilen küp şeklinde kristaller oluşturuyorlar. Alttaki temsili çizim, Na ve Cl iyonlarının ne şekilde bir araya gelerek bu kristalleri oluşturduğunu gösteriyor. Dikkat ederseniz, bu yapıda, her bir Na ve Cl iyonu, üç boyutlu düzlemde karşıt yüklü iyonlarla çevrelenecek şekilde diziliyorlar. Alttaki şekilde görüldüğü gibi sadece aynı çizgi üzerinde yer alan iyonlar birbirlerine değiyorlar. Kübün merkezinde yer alan Cl iyonu ise, 6 adet Na iyonu ile çevrelenmiş durumda. Benzer durum, daha çok sayıda iyon içeren olası bir başka çizimdeki Cl iyonları için de geçerli. Bu nedenle, bu yapıya 6:6 dizilimli kristal yapı deniyor.     Sodyum Klorür’in 6:6 dizilimli kristal yapısının avantajı ne peki? Pozitif ve negatif iyonlar arasında ne kadar fazla sayıda bağ olursa, molekül yapısı o kadar kararlı hale geliyor. Her bir tuz kristalinde milyarlarca sodyum ve klorür iyonları mevcut olabilir. Kristal zerresinin büyüklüğünü, bu iyonların sayısı belirliyor. Kristal yapısının kesitini ve detayını üç boyutlu olarak görmek için ekteki videoyu izleyebilirsiniz: Kaynaklar: Sodium. Cüneyt Özdaş, Flickr kolleksiyonu. Ionic Structures. www.chemguide.co.uk Sodium Chloride. Kings College Kimya Bölümü 25- Halite (Sodium Chloride) crystal structure. Youtube. (Bu ay itibariyle başladığımız “Ayın Fotoğrafı” bölümümüze kendi çekmiş olduğunuz fotoğrafları gönderebilirsiniz. iletisim@acikbilim.com adresinize fotoğrafınızın yüksek çözünürlüklü bir kopyasıyla birlikte, kimlik bilgilerinizi ve fotoğrafınızın öyküsü ya da fotoğrafın içerdiği öğelerin ve nesnelerin açıklamasını yollayabilirsiniz. Seçilen fotoğraflar her ay Açık Bilim’de yayınlanacaktır.)   Yazar hakkında: Işıl Arıcan Ege Üniversitesi Tıp Fakültesi'nden mezun olduktan sonra ABD'de Sağlık Yönetimi üzerine yüksek lisans yaptı. Halen ABD'de tıbbi bilişim ve proje yönetimi üzerine danışmanlık yapıyor. Çeşitli bilim dışı iddiaları ve hurafeleri inceleyen Yalansavar isimli blogun kurucusu ve yazarıdır. http://www.acikbilim.com

http://www.biyologlar.com/sofra-tuzu

Nano-walkers take speedy leap forward with first rolling DNA-based motor

Nano-walkers take speedy leap forward with first rolling DNA-based motor

Physical chemists have devised a rolling DNA-based motor that's 1,000 times faster than any other synthetic DNA motor, giving it potential for real-world applications, such as disease diagnostics. Nature Nanotechnology is publishing the finding. "Unlike other synthetic DNA-based motors, which use legs to 'walk' like tiny robots, ours is the first rolling DNA motor, making it far faster and more robust," says Khalid Salaita, the Emory University chemist who led the research. "It's like the biological equivalent of the invention of the wheel for the field of DNA machines." The speed of the new DNA-based motor, which is powered by ribonuclease H, means a simple smart phone microscope can capture its motion through video. The researchers have filed an invention disclosure patent for the concept of using the particle motion of their rolling molecular motor as a sensor for everything from a single DNA mutation in a biological sample to heavy metals in water. "Our method offers a way of doing low-cost, low-tech diagnostics in settings with limited resources," Salaita says. The field of synthetic DNA-based motors, also known as nano-walkers, is about 15 years old. Researchers are striving to duplicate the action of nature's nano-walkers. Myosin, for example, are tiny biological mechanisms that "walk" on filaments to carry nutrients throughout the human body. "It's the ultimate in science fiction," Salaita says of the quest to create tiny robots, or nano-bots, that could be programmed to do your bidding. "People have dreamed of sending in nano-bots to deliver drugs or to repair problems in the human body." So far, however, mankind's efforts have fallen far short of nature's myosin, which speeds effortlessly about its biological errands. "The ability of myosin to convert chemical energy into mechanical energy is astounding," Salaita says. "They are the most efficient motors we know of today." Some synthetic nano-walkers move on two legs. They are essentially enzymes made of DNA, powered by the catalyst RNA. These nano-walkers tend to be extremely unstable, due to the high levels of Brownian motion at the nano-scale. Other versions with four, and even six, legs have proved more stable, but much slower. In fact, their pace is glacial: A four-legged DNA-based motor would need about 20 years to move one centimeter. Kevin Yehl, a post-doctoral fellow in the Salaita lab, had the idea of constructing a DNA-based motor using a micron-sized glass sphere. Hundreds of DNA strands, or "legs," are allowed to bind to the sphere. These DNA legs are placed on a glass slide coated with the reactant: RNA. The DNA legs are drawn to the RNA, but as soon as they set foot on it they destroy it through the activity of an enzyme called RNase H. As the legs bind and then release from the substrate, they guide the sphere along, allowing more of the DNA legs to keep binding and pulling. "It's called a burnt-bridge mechanism," Salaita explains. "Wherever the DNA legs step, they trample and destroy the reactant. They have to keep moving and step where they haven't stepped in order to find more reactant." The combination of the rolling motion, and the speed of the RNase H enzyme on a substrate, gives the new DNA motor its stability and speed. "Our DNA-based motor can travel one centimeter in seven days, instead of 20 years, making it 1,000 times faster than the older versions," Salaita says. "In fact, nature's myosin motors are only 10 times faster than ours, and it took them billions of years to evolve." The researchers demonstrated that their rolling motors can be used to detect a single DNA mutation by measuring particle displacement. They simply glued lenses from two inexpensive laser pointers to the camera of a smart phone to turn the phone into a microscope and capture videos of the particle motion. "Using a smart phone, we can get a readout for anything that's interfering with the enzyme-substrate reaction, because that will change the speed of the particle," Salaita says. "For instance, we can detect a single mutation in a DNA strand." This simple, low-tech method could come in handy for doing diagnostic sensing of biological samples in the field, or anywhere with limited resources. The proof that the motors roll came by accident, Salaita adds. During their experiments, two of the glass spheres occasionally became stuck together, or dimerized. Instead of making a wandering trail, they left a pair of straight, parallel tracks across the substrate, like a lawn mower cutting grass. "It's the first example of a synthetic molecular motor that goes in a straight line without a track or a magnetic field to guide it," Salaita says. In addition to Salaita and Yehl, the co-authors on the Nature Nanotechnology paper include Emory researchers Skanda Vivek, Yang Liu, Yun Zhang, Megzhen Fan, Eric Weeks and Andrew Mugler (who is now at Purdue University). Source: Emory Health Sciences http://www.biologynews.net/

http://www.biyologlar.com/nano-walkers-take-speedy-leap-forward-with-first-rolling-dna-based-motor

İnsanın Biyokültürel Evrimi

İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. İnsanlık gerçektende 30.000 yıl önce çok mu medeniydi? Aslında bu soruyu sormak bile bilime hakaret. Erich von daniken'in bayatlamış hipotezleri halen Bilime zarar vermektedir. Bilimin en çok zara verdiği dallarından biri insan bilimi yani sosyal antropolojidir. Halen bu gün bile Agarta gibi efsanelere inanılması gibi, uzaylıların dünyamıza gelip Cro-Magnon'ların ve Neandertal'lerin kültürünü geliştirdiğini inanılmaktadır. Bununla birlikte Mısır'daki piramitleri ve bazı eski çağlardaki yapıları uzayılıarın yaptığını söyleyenlerde var. Aslında Bilim bu tür safsataları çoktan çökertmişitir. Aslında Daniken'in taraftarlarının en çok takıldığı nıkta şudur. Eski çağlardaki duvarlarda tek gözlü iri insanların çizilmiş olması dev arazilere ise atmosferden görülücek işaretler bırakılması halen bir kanıt olarak görünmektedir. Aslında bunlar abartılmış ve o şekilde görülmek istenenmektedir. İlk olarak söylemek istediğim bir şey var, geçen senelerde İran'daydı her ahlde Deccel diye bir çocuğu naletlemişlerdi. Nedeni ise çocuğun tek gözlü doğmasıydı. Çokcuk sadece fiziksel ve bio şekilde engelliydi. Doktorlar çocuğun sağlık durumunun iyi olduğunu söylemişlerdi, sadece gözü ortada bulunuyordu. Şimdi birde bu olayın binlerce yıl önce gerçekleştiğini düşünün, o zaman ki insaların tepkilerinin düşünün, hepsi o kişiden korkacaktır yada o insanı tanrı olarak göreceklerdir. İşte buda o duvardaki resmi açıklıyor. Çağillik ve bilimin yokluğu, diğer konuya gelecek olursak tarlalarda bu gün güya ufoların yaptığı işaretlere, bunu şöyle açıklamak isterim; maç sırasında taraftarlar kendi takımını desteklemk için büyük bir pankart açarlar, açtıkları bu pankart spor takımını çokşturmak içindir, yada başka şeyler içindir. Bü tür şeyleri görünmyen şeylere yormaya bayılıyoruz sanırım. Asıl konumuza dönelim yani insanın biyokültürel evrimine, halen Homo sapien sapien'in Homo helmi'den mi? yoksa Homo Neandertal'lerden mi? geldi, aslında bu konu halen tartışılmaktadır. Bir çok bilim adamı Neandertallerin bizim ancak kuzenimiz olabileceği yönde fikirleri var, ve modern insanın Homo helmi'den Afrika'daki Homo Helmi popülasyonundan türediğini düşünüyorlar. Ama ne olursa olsun evrimin ilk basamaklarında çıkan bazı türler bir arada yaşamış ve birbirlerine istekli isteksiz sosyol kültür öğretmiştir. Hatta Afrika'da bu gün bulunan eski gıda tüketimlerine bakılınca, tarihin ilk balık lokantasına rastlanıyor. Bu balık lokantası bir mağradır ve buz çağında sığınan neandertaller gibi türlerin tabaklarda sırayla ve düzenle dizmişerler ve o şekilde birbirlerine sunmuşlardır. Eğer Cro-Magnon'ların beyin amileyatına kalkıştı gibi sözlerle bizi avutmaya çalışan kendilerini bilime adamış ama bilimden uzak olan bu insanlar neden tıpbi ihtiyaçları varken, mağralrda yaşadıklarını açıklyabilir mi? Ama bu insanların sadece bu iddaları yoktur, neden tüm maymunlar evrim geçirmedi? ve neden maymunlar şimdi artık insan olmuyor? yani maymunlar cehennemi neden yaşanmıyor? gibi saçma ve bilimin yanıtını verdiği halde halen sordukları bu sorulardan asla vaz geçmiyorlar. İlk olarak evrim tek ve düz bir çizgi diğil yani evrim onların hayl ettiği gibi düz ilerlemez, kördür. Neden maymunlar evrim geçirmiyor sorusunun cevabını size vermekten guru duyarım, insan ve şempanze ayrıldıktan sonra insanın evrimi 1 milyon yıl önce yavaşlamıştır. Bu yavaşlama cinsel yolla evrimede etki etmiştir. Ama tam tersine şempanzelerde evrim çok hızlı ilerlemye devam etmiştir. Bu durum şempanzenin kendi alınında yani pozitif şekilde evrim geçirmesine sebep oldu. Şempanzelerin evrim hızı %3 oranında, peki bu durumda akla gelen soru şudur. Neden şempanzeler akıllı diğil? İnsanlarda mutasyonlar daha az sayıda ortaya çıksa bile, önemli olanlar hızla yayılıyor. İnsanın avantajına olan mutasyonlar, mesela zeka, muhtamelen güçlü bir doğal ayıklanma baskısı altında oluştu. Yani bu beceriyi hızlı kazanan insanlar hayatta kalırken, diğerleri yok oldu. Biz asıl konumuza dönelim yani Cro-magnon'ların ve Neandertal'lerin bzie kazadırdıklarına. Cra-Magnon'lar yaptıkları deniz araçlarıyla, zamanımızdan 30.000 ile 20.000 yıl önce Kore'den Japonya'ya, Bering Boğazı yoluyla Asya'dan Amerika'ya daha sonra da Avustralya'ya ayak basmışlardır. Avustralya'da en son yapılan kazılarda elde edilen bulgular ise bu görüşün aksine, Avustralya'da yaşamın 50.000 yıl önce başladığını göstermektedir. 30 ile 25.000 yıl öncesinden, özellikle magdalenyen evresinden itibaren, cro-magnon lar, doğal mağaraları terk ederek, çadır ve kulübelerde yaşamaya başlamışlardır. Isı kaybını önlemek için yan yana toprağa gömdükleri kulübelerinin duvarlarım mamutların fildişleri ile örüyor, sonra hayvan derisiyle kaplıyorlardı. Böyle tek bir kulübenin yapımında 95 mamutun kemiğinin kullanıldığı tespit edilmiştir. Cro-magnon lar da, H.neanderthalensis ler gibi ölülerini gömmüşler, bazen çoklu gömülere de yönelmişlerdir. Ancak özel mezarlıklar yapmamışlardır. Mağara resim sanatı prehistoryanın altın çağıdır. Din H.neanderthalensis ler ile, sanat ise cro-magnon larla başlamıştır diyebiliriz. Cisimlerin üç boyutlu olarak algılanması ve soyut düşünme kavramı 30.000 yıl önce üst yontma taş çağı insanı ile beraber ortaya çıkmış ve gelişmiştir. Cro-magnon lar, mağaraların en kuytu ve karanlık köşelerine duvar resimleri yapmışlardır. Fransa'da 67, İspanya'da 31 resimli mağara belirlenmiştir. 33-30 bin yıl öncesine ait, duvarlarında renkli olarak yapılmış ağızları açık mağara ayıları, koşan aslanlar ve kavga eden gergedanlar bulunan Fransa'daki Chauver mağarası, daha başlangıçtan itibaren perspektif anlayışının bilindiğini bize göstermektedir. Bu mağaralar arasında en ünlüsü, mavi, kırmızı ve siyah renkler kullanarak yapılmış, bizon, vahşi at, kıllı gergedan ve ren geyiği başta olmak üzere, 150 hayvan resmini ve 850 gravürü içeren birçok dehlizi ile Fransa'daki Lascaux mağarasıdır. Yine Fransa'daki Cosquer, Ebbou ve Niaux ile İspanya'daki Altamira mağaraları, cro-magnon resim sanatının en ilginç örneklerini bizlere sunmaktadır. Cro-magnonlar, boya olarak doğal minerallerden kırmızı için okn, siyah için manganez dioksidi, ayrıca limonid ve hematiti kullanmışlardır. Çevresinde yaşayan av hayvanlarını, doğal boyutlarını, anatomik ayrıntılarını ve canlılığını resmeden üst yontma taş çağı insanı, kendini nedense ya hiç görüntülememiş, ya da yarı insan, yarı hayvan şeklinde çizmiştir. Magdalenyen kültür evresinde tapmak amacıyla kullanıldığı kuvvetle muhtemel olan 150 resimli mağara tespit edilmiştir. Bu mağaralarda genellikle hiç oturulmamıştır. Bazı mağaralarda insanlar hayvan maskesi altında görüntülenmişlerdir. İspanya'daki Altamira mağarasında ise çok sayıda geometrik motifler bulunmuştur.

http://www.biyologlar.com/insanin-biyokulturel-evrimi

Atmacagiller (Accipitridae)

Bayağı arı şahini (Pernis apivorus) Tepeli arı şahini (Pernis ptilorhyncus) (G) Ak çaylak (Elanus caeruleus) Kara çaylak (Milvus migrans) Kızıl çaylak (Milvus milvus) (T) Ak kuyruklu kartal veya Bayağı deniz kartalı (Haliaeetus albicilla) (T) Kara kuş (Gypaetus barbatus) (T) Mısır akbabası (Neophron percnopterus) (T) Kızıl akbaba (Gyps fulvus) (T) Kara akbaba (Aegypius monachus) (T) Yılan kartalı (Circaetus gallicus) (T) Saz delicesi, Saz tuygunu veya Kızıl sungur (Circus aeruginosus) Gökçe tuygun veya Gökçe delice (Circus cyaneus) Bozkır tuygunu veya Bozkır delicesi (Circus macrourus) (T) Çayır tuygunu veya Çayır delicesi (Circus pygargus) Çakır kuşu (Accipiter gentilis) (T) Bayağı atmaca (Accipiter nisus) (T) Yoz atmaca veya Yaz atmacası (Accipiter brevipes) (T) Bayağı şahin (Buteo buteo) Kızıl şahin (Buteo rufinus) Paçalı şahin (Buteo lagopus) Küçük orman kartalı (Aquila pomarina) Büyük orman kartalı (Aquila clanga) (T) Bozkır kartalı (Aquila nipalensis) (T) Şah kartal (Aquila heliaca) (T) Kaya kartalı (Aquila chrysaetos) Tavşancıl (Aquila fasciatus) Küçük kartal (Aquila pennatus)

http://www.biyologlar.com/atmacagiller-accipitridae

DNA damage by ultrashort pulses of intense laser light

DNA damage by ultrashort pulses of intense laser light

DNA damage caused by very low-energy electrons and OH-radicals formed upon irradiation of water by ultrashort pulses of very intense laser light.

http://www.biyologlar.com/dna-damage-by-ultrashort-pulses-of-intense-laser-light

Coleoptera (Kılkanatlılar)

Böcek takımları içerisinde en zengin olan Coleptera’dır; bilinen böcek türlerinin yüzde kırkı bu takıma bağlıdır. Çok küçük yapılıları olduğu gibi, çok irileri de vardır. Bazı tropik türlerin boyu 15 cm’ye yaklaşır. Üst kanatlar (Elytra; tekil olarak Elytron) az veya çok kalın kitinsel yapıdadır. Alt kanatlar ise, zar şeklinde ve az damarlı olup, dinlenme halinde diğerlerinin altında kadı olarak bulunur. Bazı türlerde alt kanat gelişmemiştir. Başın ön kısmı hortum gibi uzamış da olabilir. Başkalaşım holometabol ya da hypermetabordur. Larva şekilleri değişik tiplerdedir. Suda, karada, bitki veya, toprak içerisinde yaşayan ve hayvansal ya da bitkisel besin alanları vardır. Döl sayılan yılda 4 döl ile birkaç yılda bir döl arasında değişir. Coleoptera’nın sistematiği hususunda araştırıcılar arasında görüş farkı vardır. Biri çok fakir olmak üzere, 3 Alt-takım halinde gözden geçirilir. Bunlardan her birine bağlı familyalar da üst-familya toplulukları meydana getirir. Burada sadece 2 Alt-takıma bağlı önemli familyalar bildirilecektir. Coleoptera Takımına Ait Bazı Örnekler (Bodenhehner, 1939′dan). l. Calosoma inquisitor (Carabidae); 2. Cybister lateralimargiualis (Dytiscidae); 3. Staphylinus olens (Staphylinidae); 4. Laypyris noctulica (Lampyridae) erkek ve 5. aynı türün dişisi; 6. Carpipbilus hemipterus (Nitidulidae); 7. Coccinella septempunctata (Coccinellidae); 8. Dermestes lardauus (Dermestidae); 9. Melanotus rufupes (Elateridae); 10. Bostrychug capucinus (Bostrychidae); 11. Caphnodis cariosa (Buprestidae); 12. Meloe variegatus (Meloidae); 13. Blaps sp. (Tenebrionidae); 14. Aromia moschata (Cerambycidae); 15. Chrysomela sp. (Chrysomelidae); 16. Balaninus nucum (Curculionidae); 17. Rhyncbites sp. (Curculionidae); 18. İps tyrographus Scolytidae); 19. Polyphylla fullo (Scarabaeidae). Familya Elateridae: Takla Böcekleri, Telkurtları Bu familyadaki böceklerin vücutları dar ve uzundur. Baş tarafları küt, kanat örtülerinin uç kısmı fazlaca daralmış vaziyettedir. “Bu böceklerin antenleri 11 parçadan yapılmış desteremsi.ya da tarağımsı anten tipindedir. Boyun kalkanlarının iki nihayet kenan arkaya bakan sivri bir diken halini almıştır. Boyları 12-30 mm’lerdedir. Agriotes türleri arka üstü yatarken, ön göğüsün arkaya bakan tarafında bulunan bir diken ile orta göğsün ön kısmında bulunan dikene uygun bir çukurcuğun yardımıyla takla atma kabiliyetine sahiptirler. Bu özelliklerinden dolayıdır ki, bu böceklere Takla böcekleri denir. Takla böceklerine arka üstü bulundukları sırada dokunulursa, ekseriya hareket etmezler ve kendilerini ölmüş gibi gösterirler. Takla böceklerinin larvalarına Telkurdu denir. Sarı ya da açık kahverengi olan larvaların üstü kuvvetli bir şekilde kitinleşmiş olduğundan serttir. Üç çift bacakları ve üç parçadan yapılmış kısa antenleri vardır (Şekil 86). Agriotes larvaları, biri enine kesitleri yuvarlak ve sonuncu karın halkası sivri, diğeri enine kesitleri yassı ve sonuncu karın halkası keza yassı ve nihayetinde derince bir girintisi olan iki tipe ayrılırlar. Bunlardan birinci tiptekiler besinlerini genel olarak bitkisel, ikinci tipte olanlar ise hayvansal maddelerden alırlar. Bu böcekler, yumurtalarını toprak üstüne, toprak ya da ağaç çürükleri içine koyarlar. Larvaları toprakta ya da çürümekte olan odunların içinde yaşarlar ve ölmüş ya da yasayan bitkisel maddelerle geçinirler. Bu meyanda tohumlar, fideler ve çeşitli bitkilerin kökleri bu hayvanların başlıca gıdalarını oluştururlar. Bunlar özellikle l yaşındaki genç fidanların köklerini severek yerler. Köklerin iç kısmını yiyip kabuklarına dokunmamaları karakteristiktir. Agriotes türlerinin generasyon süreleri çeşitlidir. Fidanlıklarda yaşayan zararlı türlerin ekserisi 2-4 yıl arasında değişen bir generasyona sahiptirler. Fakat generasyonu 4 senelik olanları enderdir. Erginleri yazın tarlalarda, Fidanlık ve ormanlarda yaşarlar ve genç sürgünleri ve bunların kabuklarını yer yer kemirmek suretiyle zarar yaparlar. Fakat önemli olan larvaların yaptığı zarardır. Tel kurtlan, özellikle sebze ve meyve bahçelerinde, fidanlıklarda büyük zararlar meydana getirebilirler. Bu arada ekim ve dikim alanlarında ve fidanlıklarda tohum ve kökleri yemek suretiyle yaptıkları zarardan dolayı ormancılık bakımından da önem taşırlar. HayatlarıGenel olarak zararı yapan devresi larva safhasıdır. Tel kurtlan hayatı tür farkına göre değişir. Burada fikir verebilecek esasları ele alırsak: Tel kurdu bir toprakaltı zararlısıdır. Binaenaleyh bu böceğin gelişme safhası da toprak altın-da geçer. Şeker pancarı için akla gelen zarar kısmı ise toprak altındaki kısmıdır. Kışı pupa kokonunda veya sokulabildiği toprak derinliği veya taş altlarında ergin olarak geçiren tel kurtlan ilkbaharda meydana çıkarlar. Kumsal ve çiftlik gübresi çok verilen yerlerde ziyadesiyle görülen Tel kurtları erginleri uçabilirler de nisbeten rutubetli topraklara bırakılan yumurtaları en fazla bir ay içersinde açılır. Yumurtlama Mayıs ayında toprağa olur. Açılan larvalar pancara her safhada hücum ederler. Zaten pancar kök civarına ve toprağın hemen 1-2 cm. derinliğine bırakılır bu yumurtalar. Larva kurak topraktan çıkar. Yaz- içersinde toprak sathı kuruyunca o nisbette rutubetle teması olan tabakalara iner. Tel kurtlarının hayatları iyice bilinmelidir. Larvaların toprakta 2-3 sene yaşadıkları iddia olunur. Mücadelesi1. Sonbaharda toprak derince kazılır ve meydana çıkan telkurtları yok edilir. 2. Sararmakta olan fidanlar çıkarılarak bunların köklerinde bulunan larvalar öldürülür. 3. Tuzak olarak hazırlanan komposto yığınları sönmemiş kireç ile karıştırılarak içlerindeki larvaların ölmeleri sağlanır. 4. Tuzak bitkisi olarak İlkbaharda fidan ve tohum sıraları arasına az miktarda yeşil salatalık dikilir. Telkurtları salatalıkları sevdiklerinden bunların köklerini yemeğe gelirler. Sararan salatalıklar toprağıyla birlikte çıkarılır ve içindeki telkurtları öldürülür. 5. Yine tuzak vazifesini görmek üzere yeşil salatalık veya patates, pancar, havuç parçaları veya yonca demetçikleri telkurtlarının bulundukları yerlere konur. Bunlara gelen telkurtları toplanarak yok edilir. 6. Tuzak olarak zehirli yonca demetleri de kullanılabilir. Bu amaç için hazırlanan ortalama 50 gr’lık yonca demetleri şekerli su ve arsenik tuzundan yapılmış eriyiğe veya % 10 oranındaki Şvaynfurt yeşiline batırıldıktan sonra toprağın 5 - 6 cm kadar içine yatay olarak gömülür. Bunları yiyen telkurtları zehirlenerek öldüklerinden ayrıca toplanmağa gerek kalmaz. 7. Bir ağaç kazık veya özel pülverize kazıklariyle toprakta yaklaşık 5 cm derinliğinde açılan deliklere, metrekareye 50 - 150 gr hesabiyle Karbon sülfür eşit olarak dökülür. Yalnız bu işlem esnasında toprağın boş olması gerekir. Bu şekilde Karbon sülfür ile muamele edilen alanlara dezenfekteden ancak üç hafta kadar sonra dikim yapılmalıdır. Bu yöntem pahalı olduğundan yalnız değerli kültürler için uygulanır. 8. Telkurtlarının fazla bulunduğu alanlar % 1 - 2 oranında Demir sülfat’lı şerbetle sulanır. 9. Telkurtlarına karşı WP formulasyonunda Chlorpyrifos - ethyl veya Endo-sulfan gibi insektisitler tohum ile kuru kuruya karıştırıldıktan sonra ekim yapılır. 10. Toprak ilaçlaması ekim veya dikimden önce yapılır. Toz ilâç kullanılacaksa, önce bir miktar toprakla karıştırılarak bulaşık alana serpilir. Islanabilir toz ilâçlar ise dönüme 60 litre su hesabıyla sulandırılarak toprak sathına püskürtülür. Her iki halde de kullanılan ilâçlar toprağın 15 - 20 cm derinliğine kadar karıştırılmalıdır. 11. Fide dikimi sırasında ocaklara, can suyu şeklinde insektisit uygulanabilir. Bu amaç için Diazinon, Chlorpyrifos-ethyl veya Endosulfan gibi ilâçlar kullanılabilir.

http://www.biyologlar.com/coleoptera-kilkanatlilar

Türkiye'de tarla ve bahçe bitkilerinin tür zenginliği ve endemizmi

Türkiye,iki önemli Vavilovyan gen merkezinin kesiştiği noktada yer almaktadır:Akdeniz ve Yakın Doğu.By iki bölge tahılların ve bahçe bitkilerinin ortaya çıkışında çok önemli bir role sahiptir.Anadolu kökenli tarım bitkisi türlerinden bazırları şunlardır: Linum sp ., Allium sp. , Hordeum sp. ,Triticum sp. , Avena sp. ,Cicer sp. , Lens sp. , Pisum sp., Vitis sp. , Amygladus sp. , Prunus sp. , Beta sp. , vb. Türkiye'de beş ayrı "mikro-gen merkezi" bulunmaktadır: Trakya-Ege Bölgesi:Ekmeklik buğday, durum buğdayı, Poulard buğdayı, değnek buğdayı, küçük kızıl buğday, mercimek, nohut, kavun, burçak, acıbakla ve yonca. Güney-Güneydoğu Anadolu:Çift taneli buğday(Tiriticum dicoccum), küçük kızıl buğday, Aegilops speltoides, kabak, karpuz, salatalık, fasülye, mercimek, bakla, üzüm asması ve yem bitkileri. Samsun, Tokat, Amasya:Çok sayıda meyve cinsi ve türü , bakla, fasülye, mercimek ve hayvan yemi olarak kullanılan çeşitli baklagiller. Kayseri ve çevresi:Badem, elma, bezelye, meyve türleri, üzüm asması, mercimek, nohut, kaba yonca(alfalfa) ve evliyaotu. Ağrı ve çevresi:Elma, kayısı, kiraz, vişne, yem baklagilleri ve karpuz . Türkiye'de son otuz yıl içerisinde yerel ve ithal soyların kullanımıyla geliştirilen ve kaydedilen toplam tahıl çeşidi sayısı 256'dır ve bunun 95'i buğday, 22'si arpa, 19'u pirinç, 16'sı süpürge darısı, 11'i yulaf ve 2'si çavdar çeşididir. Endemizm oranının oldukça yüksek olduğu Türkiye florası, tıbbi ve aromatik bitkiler açısından da oldukça zengindir.Tıbbi ve aromatik amaçlarla kullanılan bazı önemli cinsleri şöyle sıralayabiliriz:Delphinum sp. , Digitalis sp. , Gypsophilia sp. , Helychrysum sp. , Leucolum sp. , Linum sp. , Liqiudambar sp. , Malva sp. , Matricaria sp. , Mentha sp. , Nigella sp. , Orchidaceae ssp. , Origanum sp. , Pimpinella sp. , Rosa sp. , Salvia sp. , Sideritis sp. ,Teucrium sp. , ve Thymus sp. Ülkemizde iç ve dış mekanlarda kullanılabilen süs bitkileri yetiştirilmekte ve satılmaktadır.Ayrıca karanfil, gül, glayör gibi kesme çiçekler de yetiştirlmektedir.Yılanyastığı, krizantem, sümbül, zambak, nergis ve siklamen üretimi de artmaktadır.

http://www.biyologlar.com/turkiyede-tarla-ve-bahce-bitkilerinin-tur-zenginligi-ve-endemizmi

Tıbbi Cihazlar Direktifi

93/42/EEC sayılı Tıbbi Cihazlar Direktifi, diğerlerinin yanı sıra normal sargılar, bıçaklar, yüzey elektrotları, karışım pompaları, kalp kateterleri, antibiyotikli kemik alçılar, iç optik lensler, tekerlekli sandalyeler, koltuk değnekleri, harici kalp pilleri ve ameliyathanelerdeki donanım ve araçları kapsamaktadır. Direktifin temel gerekleri; genel emniyet ve verimlilik gerekleri ile kimyasal, fiziksel ve biyolojik özellikler, mikrobik kirlenme ve enfeksiyon riskleri, ölçüm özellikleri, çevresel özellikler, radyasyona karşı korunma, mekanik, elektrik ve termal riskler ile ilgili özel hükümleri içerir. Ürünlerin büyük bir kısmı için zorunlu kullanım kılavuzu, ürünü güvenli kullanma yolları ve ürünün özellikleri ile ilgili olarak tüketicileri bilgilendirmelidir. Direktif, ürünlerin temel gereklere uygunluğunun değerlendirilmesini teminen çeşitli ürün kategorileri için ayrıntılı prosedür planı sunmaktadır. Onaylanmış kuruluşların sıkça bu prosedürlere dahil olması öngörülmektedir. CE işareti ve uygunluk prosedürüne dahil olan onaylanmış kuruluşun kimlik numarasının yanında, aşağıdaki veriler de etikette yer almalıdır: •imalatçının ve gerektiğinde ithalatçının adı veya ticari markası ve adresi, •ürünün tanımı ve tip göstergesi, •ürünün parti kodu veya seri numarası, •ürünün en son kullanma tarihi ve bunun uygun olmadığı durumlarda üretim yılı, •saklama ve kullanımla ilgili muhtemel önemli talimatlar ve uyarılar. Tıbbi Cihazlar Direktifinin 14. maddesi Avrupa’da cihazların veya birleşik cihaz paketlerinin piyasaya sürülmesinden sorumlu kişi ve şirketlerin kendi ülkelerinde bu amaçla atanan bir kuruluşa kayıtlı olma zorunluluğunu getirmektedir. İşyerinin kayıtlı adresi ve ilgili cihazların tanımı bu kuruluşa bildirilmelidir. AB’de 93/42/EEC sayılı Direktif 14 Haziran 1993’te kabul edildi. Direktif, 1 Ocak 1995’ten itibaren uygulamaya konuldu. 14 Haziran 1998’den beri de piyasaya sürülmüş bulunan bütün tıbbi cihazlar CE işareti taşımak zorundadır. 76/764/EEC sayılı Direktife uygun olan civalı klinik termometreler 30 Haziran 2004’ten sonra CE işareti taşımak zorundadırlar. Kapsam Tıbbi Cihazlar Direktifinde “tıbbi cihaz”, üretici tarafından insanlar için aşağıda sayılan amaçlarla kullanılmak üzere planlanan ve tam çalışması için gerekli yazılım da dahil olmak üzere alet, aygıt, materyal ve öteki maddeler ve bunların bileşimlerini içeren cihazdır: 1.hastalığın teşhisi, önlenmesi, izlenmesi, tedavisi ve etkisinin azaltılması, 2.bir yaralanma veya engelin teşhisi, izlenmesi, tedavisi, veya giderilmesi, 3.anatominin veya fizyolojik sürecin incelenmesi, yenilenmesi veya değiştirilmesi, 4.doğum kontrolü. Ürünün işlevini eksiksiz yerine getirebilmesi için gerekli olan aksesuar ve bilgisayar yazılımları da bu direktifte yer alır. Ayrıca, bir ilaç vermek amacıyla kullanılan tıbbi cihazlar da bu direktifin kapsamına girer. Bu durumda Tıbbi Cihazlar Direktifinin temel gerekleri sadece cihazın emniyet ve performansını sağlamak için uygulanabilir. İlaç 65/65/EEC sayılı Direktifin gereklerine ve prosedürlerine uygun olmalıdır. Ancak böyle bir cihaz ve ilaç tek bir ürünü oluşturuyorsa, o ürün tümüyle 65/65/EEC sayılı Direktif kapsamına girer. Direktifin kapsamı dışında kalan ürünler ise şunlardır: 1.in vitro diagnostik cihazlar, 2.90/385/EEC’nin kapsamına giren vücuda yerleştirilebilen aktif tıbbi cihazlar, 3.65/65/EEC’nin kapsamına giren ilaçlar, 4.76/768/EEC’nin kapsamına giren kozmetik ürünleri, 5.insan kanı (içeren cihazlar), 6.insan kaynaklı nakledilen organlar veya dokular veya hücreler (içeren ürünler) (veya bunlardan elde edilen ürünler), 7.hayvan dokularından elde edilmiş, hayat belirtisi göstermeyen ürünleri kullanan bir alet imal edilmedikçe, hayvan menşeli hücre, doku veya organlar, 8.89/686/EEC’nin kapsamına giren kişisel koruyucu donanımlar İn vitro diagnostik ürünleri de bu direktifin kapsamına almak için bir değişiklik önerilmiş bulunmaktadır. Bahse konu değişiklik yürürlüğe girene kadar bu ürünler ulusal hükümlere göre piyasaya sürülecektir. İn vitro diagnostik ürünler şunları kapsamaktadır: kan testi araçları, hamilelik testi araçları, laboratuar ekipmanı, ayıraçlar, kalibrasyon ekipmanı ve insan kaynaklı numunelerin teşhisi ile ilgili herşey. Uygulanabilen diğer direktifler Direktifin birinci maddesinin sekizinci bölümüne göre, Tıbbi Cihazlar Direktifi, elektromanyetik uyumlulukla ilgili üye ülke mevzuatının yakınlaştırılmasına dair 3 Mayıs 1989 tarihli ve 89/336/EEC sayılı Direktifin ikinci maddesinin ikinci bölümü anlamında özel bir direktiftir. EMC direktifinin ikinci maddesinin ikinci bölümü şöyle demektedir: “Bu direktifte açıklanan koruma gerekleri özel direktiflerce belli araçlar bakımından uyumlaştırıldığı zaman bu direktif uygulanmayacak veya diğer özel direktiflerin yürürlüğe girmesi üzerine bu araçlar veya koruma gerekleri bakımından uygulanması durdurulacaktır.” Bu, tıbbi cihazların EMC Direktifinin kapsamına girmediği anlamına gelmektedir. Bu kapsamda doğabilecek riskler tamamen Tıbbi Cihazlar Direktifinin temel gereklerinin kapsamına girmektedir. Aynı durum radyoloji ve elektro-tıbbi materyalleri kapsamının dışında tutan 73/23/EEC sayılı Alçak Gerilim Direktifi bakımından da söz konusu olmaktadır. Tıbbi Cihazlar Direktifinin temel gerekleri aynı zamanda bu ürünlerin emniyeti ile de ilgilidir. Uygunluk değerlendirmesi Tıbbi cihazlar Direktifin IX No.lu Ek’inde görüleceği gibi şu sınıflara ayrılmaktadır: Sınıf I, Sınıf IIa, Sınıf IIb ve Sınıf III. Bu alt sınıflandırma ürün listelerine göre değil, çeşitli tercihlerin mümkün olduğu ve istisnaların bulunduğu risk faktörleri ile ilgili birtakım kriterlere dayanmaktadır. Tıbbi cihazların sınıflandırılması ve belgelendirilmesi oldukça karmaşıktır. Bu yüzden bir ürünün sınıflandırılmasını belirlerken her zaman Direktifin ekinde yer alan tanımlara danışma önerilir. Doğru yoruma ulaşmak için ulusal makamlar ve onaylanmış kuruluşlardan yardım istenebilir. Her sınıf için farklı uygunluk değerlendirme prosedürleri izlenmelidir. Sınıf I’deki daha az risk faktörü taşıyan ürünler diğer şeylerle birlikte cerrahi mikroskopları, tekerlekli sandalyeleri ve hasta yataklarını içermektedir. Genelde, imalatçı bu ürünlerin uygunluk değerlendirmesini direktifin VII No.lu Ek’inde tanımlanan iç üretim kontrolü sistemine (Modül A) göre yapabilir. Bu ekte üretim ve üretimin idaresi, ürünün piyasaya sunulmasından sonra yaşanan tecrübeler ve olaylar, teknik dosya ile ilgili bir dizi özel gerek yer almaktadır. Diğer kategorilerin kapsadığı ürünler için daima bir onaylanmış kuruluşun uygunluk değerlendirmesine dahil olduğu prosedürler uygulanmalıdır. Çoğu durumda imalatçı onaylanmış tipe uygunluğu Modül C, D, E veya F’den seçeceği birine göre sağladıktan sonra AT Tip İncelemesini yürütmek zorundadır. Gereçler bir sistem veya prosedürler paketine dahil edilebilirler. Bu durumda aletleri bir araya getiren gerçek veya tüzel kişi aşağıdaki hususları da içeren bir beyan düzenlemelidir: •imalatçının talimatlarına uygun hareket ettiğini ve cihazların karşılıklı uyumunu doğruladığını, •sistemi veya prosedürler paketini bir araya getirdiğini ve tüketici için ilgili bilgiyi eklediğini, •bu faaliyetlerini uygun bir kalite güvence sistemine göre yürüttüğünü. Eğer bu şartlar yerine getirilmezse bir araya getirilen unsurlar bağımsız bir tıbbi cihaz olarak belgelendirilmelidir. Bu cihazları bir araya getiren kişinin söz konusu sistemleri ve prosedürler paketini tüketiciye arz etmeden önce sterilize etmesi durumunda da aynı husus uygulanır. Sistemlere ve prosedürler paketine fazladan bir CE işareti iliştirilmesine gerek yoktur. Ancak bu sistemler ve prosedürler paketine Direktifin I No.lu Ek’inin 13. maddesinde belirtilen gerekli bilgilerin eşlik etmesi zorunludur. Direktif, sipariş üzerine yapılan cihazlar ve klinik deneylerde kullanılmak amacıyla tasarımlanan cihazlar için özel hükümler de içermektedir. Bunlara CE işareti iliştirilmeyebilir. Bunun yerine üretici, “özel kullanım amaçlı cihazlarla ilgili bir beyanat” düzenlemekle ve bu belgeyi ürünle birlikte bulundurmakla yükümlüdür. İmalatçı sipariş üzerine yapılan hangi cihazların hizmete sokulduğunu yetkili kuruluşlara bildirmekle yükümlü kılınabilir. Son Güncelleme Tarihi: 07/06/2006 İletişim Bilgisi: Dış Ticarette Standardizasyon Genel Müdürlüğü Eposta: dts@dtm.gov.tr

http://www.biyologlar.com/tibbi-cihazlar-direktifi

Solucanlar; Platyhelminthes ( Yassı ), Anelida (halkalı ), Aschelminthes (yuvarlak solucanlar)

Solucan sınıfı Platyhelminthes (yassı solucanlar), Anelida (halkalı solucanlar), Aschelminthes (yuvarlak solucanlar) ve Pogonophora (sakallı solucanlar) filumlarını kapsar. Bazen Aschelminthes grubunu oluşturan Nematoda (iplik solucanlar), Rotifera, Gastrotricha, Kinorhyncha ve Pripalida sınıfları filum düzeyine yükseltilerek sınıflandırılmaktadır. Yer solucanları, Oligochaeta sınıfından halkalı solucanların karada yaşayan en tanınmış üyeleridir. Solucanların gövdesi ince uzun, silindir biçiminde yada yassılaşmış ve genellikle uzantılardan yoksundur. Uzunlukları 1mm ‘nin altından başlayarak 15m’yi aşabilir. Denizlere, tatlı sulara ve karalara yayılmış olan bu hayvanların bir bölümü asalak, öbürleri serbest yaşar. İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın Halkalı solucanlar (Annelida) Polymera olarak da bilinir. Segmentleri dıştan belirgin olarak görülen bir omurgasız hayvanlar şubesidir. Deniz, tatlı su ve karalarda yaşarlar. Vücut uzun ve segmentlidir. Vücut segmentler septum adı verilen bölmelerle birbirlerinden ayrılmıştır. Baş bölgesine prostomium, posterior uca ise pigidium adı verilir. Prostomium ile pigidium birer segment değildirler. En yaşlı segment başın hemen arkasındaki segmenttir. Çeşitli organlar her segmentte tekrarlanır. Protostome grubuna dahillerdir. Gerçek sölom bulunur. Sölomları şizosöl (Schizocoelous) tiptir. Boşaltım organları segmental sıralanmış nefridium’lardır. Vücudun ön ve arka uçlarındaki birkaç segment hariç, her segmentte bir çift nefridium bulunur. Vücut yüzeyi ince esnek kutikula ile kaplıdır. Bazılarında kitinden kıllar bulunur. İp merdiven sinir sistemi gelişmiştir. Prostomiumun sırt tarafında iki loplu bir beyin gangliyonu vardır. Duyu organları kimyasal duyu organları ve gözlerden ibarettir. Kapalı dolaşım sistemi bulunur. Annelidler hermafrodit hayvanlardır. Gonadları gayet basit yapılıdır. Rejenerasyon özellikleri çok iyi gelişmiştir. 9 bin türü bulunur. Bir kısmı mikroskobiktir. Yuvarlak solucanlar (İpliksisolucanlar) ya da Nematodlar, yuvarlak yapıda, sayıca Dünya üzerinde en fazla bulunan omurgasız hayvan şubesidir. Hayvan ve bitkilerde önemli zararlara neden olan birçok türü vardır. Yalancısölomları bulunur. Vücutları uzamış, silindirik, bilateral simetrilidir. Dünya üzerinde çok değişik yaşam yerlerine uyum sağlamışlardır. Bazıları serbest, bazıları parazitik yaşar. Marin nematodları, hayvan parazitleri, insan parazitleri, karasal nematodlar olarak gruplandırılırlar. Yuvarlak solucanlar, anatomik ve morfolojik olarak basit yapılı canlılardır. Boyları 0,25 mm – 3 mm, çapları 1-20 µ arasında değişir. Yüksek yapılı hayvansal organizmaların sahip olduğu bazı sistemlere sahip değildirler. Ör. solunum, dolaşım ve iskelet sistemi yoktur. Sinir ve boşaltım sistemleri ise çok basit yapılı hücre gruplarından oluşmuştur. En gelişkin sistemleri sindirim ve üreme sistemidir. Üreme [eşeysiz) olmakla beraber birçok türde besin konukçu varlığı ve çevre şartlarının uygun olduğu zamanlarda üreme partenogenetik (döllemsiz) olarak dişinin dişi birey içeren yumurta bırakması şeklinde olur. Böylece kısa sürede populasyonları artar. Erkekler populasyon içinde çok düşük oranda bulunurlar ve çevre şartlarının iyileşmesiyle dayanıklı yumurtaların oluşmasını sağlarlar. Bitki parazitleri, bitkilerin kılcal köklerinde ve kök-büyüme konisi (uç kısmı)nde styletlerini doku içerisine batırarak buradan bitki öz suyunu emerler. Nematod türüne ve yoğunluğuna bağlı olarak bitkilerde gelişme geriliği, solgunluk ve verimde azalmaya neden olurlar. Endoparazit, yarı-endo parazit ve ektoparazit olarak beslenirler. En zararlı grup, kök sistemine en çok zarar veren endoparazitlerdir Örn. kök-ur nematodları.    

http://www.biyologlar.com/solucanlar-platyhelminthes-yassi-anelida-halkali-aschelminthes-yuvarlak-solucanlar

Sumrugiller (Sternidae)

Gülen sumru (Gelochelidon nilotica) Hazar sumrusu (Sterna caspia) Tepeli sumru (Sterna bengalensis) Kara gagalı sumru (Sterna sandvicensis) Bayağı sumru (Sterna hirundo) Kuzey sumrusu veya Kutup sumrusu (Sterna paradisea) Küçük sumru (Sterna albifrons) Bıyıklı sumru (Chlidonias hybridus) Kara sumru (Chlidonias niger) Ak kanatlı sumru (Chlidonias leucopterus)

http://www.biyologlar.com/sumrugiller-sternidae

Umudun Genleri

Umudun Genleri, Tunus asıllı Fransız bilimci Daniel Cohen'in(1951-...) kitabının adı. Bir bilimadamının hoş anılarını ve genlerin umudunu açıklayan bu kitaptan ilginç bölümler aktaracağım.Daniel Cohen,1978'den itibaren Profesör Jean Dausset(Nobel,1980) ile birlikte çalışmaya başladı.Daniel Cohen, insanın genetik yap-bozununun ortaya çıkarılma serüvenine katılmış ve bu serüveni bize hoş bir dille anlatıyor. Yeşim Küey'in,çok başarılı bir şekilde Türçe'ye kazandırdığı kitabı,Kesit Yayıncılık yayımlamıştır. Bir Bilim Adamının Anıları :Daniel Cohen Jean Dausset, 1960'lı yıllarda, tüm hücrelerimizin yüzeyinde varolan proteinleri kodlayan genler bütününü keşfetmişti. O zamanlar bu proteinlerin rolü oldukça gizemliydi. Dausset ’nin çalışmaları organ naklini sağladı ve onun sayesinde milyonlarca yaşam kurtarıldı halen de kurtarılıyor... Ben, Nobel Ödülü’nü almasından (1980) bir yıl önce yoluma onunla devam etmeye karar vermiştim. O sıralarda bunun nedenlerini çözümlemeyi hiç düşünmediysem de herhalde çok iyi gerekçelerim vardı. İMKANSIZ denen şey, beni tam da çok heyecanlandıran şeydi. Ben kuşkucuların, fazlasıyla sakınımlı olanların ve bıkkınların düşüncelerinin iflas etmiş olmasından kuşkulanıyordum. Elbette Jean Dausset’nin durumu kesinlikle bu değildi! Benim onda asıl değer verdiğim şey, başkalarının eleştirdikleri şeydi. Düşünüş biçimi rahatsız ediyordu O sıralarda, onu bir naif, bir hayalci, bir garip olarak görüyorlardı. Jean Dausset, klasik düşünce biçimiyle hiç ilgisi olmayan bir düşünce biçimine sahiptir. Onun akıl yürütmeleri alışılmış mantık yollarını izlemez. Yüzeyde görünmediği için bazılarının “yavaş” bulduğu, kendine özgü bir düşünme ritmi vardır. Bunun nedeni, Dausset’nin etkilemek için uğraşmamasıdır. O acele etmemeyi ve sorunların derinlerine inmeyi sever. karşısındakini asla çürütülemez kanıtların yığını altında ezmez. Konuya beklenen yerinden girerek bir mantık çerçevesinde ilerlemek yerine, o, sorunları bir başka yandan ele alır. Bu, çalışma arkadaşlarının ve meslektaşlarının düşünmediği bir yandır. Sorunu bir köşesinden yakalar, sorunlu konunun içine sakince yerleşir ve kafasında, alışılmış düşünce sistemlerinin yolundan gitmeyen bir kavrayış şeması kurar. Kimi zaman şaşırtıcıdır. Size, Kutsal Kitap’takiler kadar basit görünen bir sorunda kilitlenir. Herkesin anlayabileceği ve anladığı bu sorunu, o, anlamaz. Açıklarsınız. Yine anlamaz. tıpkı bir çocuk gibi! Ve sonra, o anlamaya çalışırken bir de bakarsınız ki, sorunu bütünüyle farklı bir biçimde aydınlatmış. konuya yakın olanlar, uzmanlar, böylece hata yaptıklarını anlarlar. Meğer yanlış yoldaymışlar, sorunun temelini görmemişler. O, görü sahibidir. Tümüyle. Onunla tartışan biri, görüşlerini ne kadar dirençle savunursa savunsun, bu özgün kafanın sorunlar her zaman derinlemesine doğru bir tarzda yaklaştığını kabul etmekten kendini alamaz. Onunla aynı düşüncede olmasanız, onunkilerden farklı seçimler yapsanız da bu böyledir. Üstelik, ondaki mizah duygusu yaşama sevinci ve isteği bulaşıcıdır. Onu görmek ve tanımak gerekir. Neşe saçan bir adamdır. Bu estet, bir modern resim tutkunudur. Her şey onun ilgilendirir her şey onun memnun eder. En olağanüstü yanı da tartışma ve düşünce alışverişindeki rahatlığıdır. Jean Dausset mandarinlerin, kendilerin ezip geçmesinler diye çevresine düşünce sahibi olmayanları toplayan büyük patronların tam tersidir. Onun tutumu daima bunun karşıtı olmuştur. Asla kimseyi engellemez. Birinin bir düşüncesi mi var? Onunla birlikte bunu çözümler: “Tamam...Çok iyi..” Güvenir. Ve özellikle de gece demeden, pazar günü demeden, her zaman sizinle birlikte düşünür. Onun hoşuna giden şey budur. Çevresinde düşünce sahibi insanların olmasına gereksinim duyar. Bu onun düşüncelerini zenginleştirir. Aksi takdirde, nasıl “eğlenebilir ki”? Başka konularda olduğu gibi araştırmada da gerçek mutluluklar yalnız yaşanmaz. Aslında, bir büyük patronun, bir gence uyan tutuma sahip olması, hiç de kolay değildir. Sorun, gencin düşünce üretebilmesi için ne yapmak gerektiğini bilmek değil ( böyle şeyler siparişle olmaz) ama daha çok, onun düşüncelerini yansıtması için nasıl davranılacağını bilmektir. Dausset, iş arkadaşların öne çıkarmasını bilir. Asla onların yetkinliklerinden kuşkulanmaz. tersine! “Onu yetiştiren benim, her şeyini bana borçlu... “ biçimindeki bir söylem ona tamamen yabancıdır. Kafasının açıklığı, ona araştırmacıları yönetmede eşsiz bir yaklaşım kazandırır. Onun yaklaşım tarzını anlamadan da kendisinden yararlanmış olabilirdim. Bu tarzı, çözümlenmesinin önemini görecek kadar kavramış ve örnek alabilmiş olmaktan dolayı çok mutluyum. Bizler birbirimizden çok farklıyız. ama ben, kendi öğrencilerime ve kendi ekip üyelerime karşı gösterdiğim belli bir davranış tarzını ona borçluyum. son derece etkili bir tarz. 1979. Onun ekibinde, bağışıklık genetiğine alışarak geçirdiğim bir yıl. Kalıtımın kimyasal desteğini temsil eden, kromozomlarımızı ve genlerimiz oluşturan uzun DNA molekülünü kullanma teknikleriyle birlikte, moleküler biyolojide bir dönüm noktası belirmeye başlıyordu.(s: 23-25) Belli bir anda, bilimcilerden biri, dikkatini, yeni bir yol açabilecek küçük bir şeye yöneltir. Gerçekten yeni düşüncelere gelince, bunlar son derece enderdir. İnsan bunlardan birini bulduğunu sandığında, olağanüstü bir şeylere el atmış olduğunu umduğunda, inceleme ve çözümlemelerden sonra, aynı alanda on kişinin daha çalıştığını ya da aynı şeyi çok önceden düşündüklerini fark eder! O halde sorun, varsayımını sürüncemede bırakmamak, onu deneysel olarak kanıtlamaktadır. Varsayımını doğrulayan, öne geçer. Elbette o her şeyi alt üstü eden düşüncelere sahip biri de çıkabilir, tıpkı Jean Dausset’de olduğu gibi. Ama bu pek nadirdir. Binde bir, bir araştırmacı, kimi kez bir deha özelliği olan, tamamen kendine ait bir esine, bilimde nitel bir sıçrama yaptıracak bir buluşa sahiptir. Buna da ancak on yılda bir rastlanır, rastlanabilirse. Araştırmacının bugünkü üstünlüğü, kafasındaki fikirlerden çok, bunları gerçekleştirmek için ortaya koyduğu yeteneğe .. ve zorunlu araçları bir araya getirmek üzere sürekli dilencilik yapmaya harcadığı enerjiye, sonra da düşüncelerini kanıtlamak için sergilediği yaratıcılığa dayanır. Yeniliklerin çoğunlukla teknolojik olmasının nedeni budur. Bu bir yana, Jean Dausset, DNA üzerinde çalışma önerisine ne kadar olumlu karşıladıysa, ekibinin çoğunluğu da bir o kadar karşıydı. Esasen Cohen (yazarımız), bu toy delikanlı, moleküler genetik konusunda ne biliyordu ki? Neredeyse hiçbir şey! İşin kötüsü bu gerçekten doğruydu.(s:28)..İnsanın Jean Dausset gibi bir patronu olmasının üstünlüğü, onun hiçbir yolu araştırma dışında tutmamasıydı; ister genç ister çok genç olsun, yeter ki, kanıtları olan ve bunlara karşı biraz heyecanla yaklaşan biri çıksın. Bana gelince, benden daha deneyimli olduklarını söyleme gereken arkadaşlarım tarafından pek de iyi gözle bakılmıyordum. Kabul etmeliyim ki, dayanılmaz, tam anlamıyla çekilmez bir kibir içindeydim. Ama bir genç, kesinlikle doğru olduğu önsezisiyle iz sürerken ve deneyimsizlik ona kendinden kıdemlilerin karşı çıkmalarına aldırmama cesaret ve küstahlığı verirken, ister istemez çekilmezdir. Ve ayrıca, o, her zaman bilimsel itirazlarla değil, ama öncelikler ve kazanılmış konumlarla da karşılaştığı duygusuna sahipse, kendine nefret ettirmekten belli bir haz da alır. Gerçekte, ünlü bile olsa, hiçbir araştırmacı kendinden daha genç olanların itirazlarından korunamaz. Eğer gençlerle arasında sorun yoksa ne ala. Ama ilk anlaşmazlık patlak verir vermez, kendi kendini, hemen sorgulama ve ısrarla haklı olduğunu düşünmekten vazgeçme anı gelmiş demektir. Sonuca bağlayıp karar vermezden önce, çoğu zaman kendi kendime, benim yerimde Jean Dausset gibi biri olsa ne yapardı diye sorarım. Onun da Mendes France, Robert Debre ya da Jean Bernard’ı anma alışkanlığı vardı. Herkesin kendi başvuru kaynakları var; ama miras da budur işte. Üstelik bilimcilerin dünyası da kutsal değildir. Her yerde olduğu gibi orada da, neden orada olduklarını unutmuş insanlar vardır; bilimle gerçekten ilgilenmeyen bir grup profesyonel, kendi nüfuzlarını küçük alanını desteklemek için bilimi kullanır. Alınan sonuçlar, onları iktidar oyunundan ve ünlerini artırmaktan daha az coşkulandırır mali açıdan yeterince doyum olmadığından, hepsi de salt bilim ve insanlık yararına tutkulardan kaynaklanmayan doyumlar peşinde koşarlar. Tanınmış olmak isteyenler de vardır. Yoo ille de toplum tarafından, onları çalıştıranlar ve adlarına çalıştıkları insanlar tarafından değil, ama beş on rakip meslektaş tarafından. Neler yaptıklarını anlayan on kişiden fazla insan olmadığı için böyledir bu! Araştırmacının gündelik davranışında, adının, gerginlik içinde bilimsel yayınlarda kovalanması vardır. Bir kongre sırasında, bir bilimci ne bekler? Neyi kollar? -Benden söz edilecek mi? A, benden alıntı yapıldı! Elbette senden de.. Alıntılanmak bir saplantıdır! Bir yayın mı çıktı? Hemen metnin kaynakçasına saldırılır: -Benden alıntı yapmamış! sonra, bilimsel bir makaledeki isimlerin ve imzalayanların sırası! Geleneksel olarak sonuncu ya da birinci sıra, araştırma yöneticisinindir. Ya ikinci imzayı kim attı, üçüncüyü, sonuncuyu... Bu konuda, araştırmacılar üzerine bir antoloji, bir sosyoloji kitabı yazılabilirdi. Bir küçük alem içindeki toplumsal ürünün dayanağı! En gülüncü de bu tür tanınmışlığın yalnızca geçici olması değil, sonuç olarak gönülsüzce verilmiş olmasıdır. Bir gün sizden alıntı yaparlar, hemen sonra unuturlar, çünkü yarışma süreklidir. Ama böylesi bir didişme içinde insanların özsaygısı yaralanır ve kemirilir. Bundan hiç kimse tümüyle kaçamaz; ama bundan kurtulmayı öğrenmek gerekir. Bütün bunları keşfetmek, beni şaşkına çevirmiş ve çileden çıkarmıştı. Jean Dausset bu tür kaygıların çok üstünde ve uzağındaydı. O, bir yaratıcıdır. Hiç durmadan düşün ve üreten bilimcilerden biridir. Düşüncelerinden birinin çalınması, bu insanlar için pek de önemli değildir. Bu da, onların başkalarına karşı alabildiğince açık olmalarını, gerçek anlamda tartışabilmelerin sağlar. Dausset’ye gelince o, hepimize karşı muhteşem bir iyi niyetlilik içindeydi. Bu tutumundan herkesten çok ben yararlandım ve de aşırı ölçüde yararlandım; ama onun bundan ötürü yakındığını asla duymadım. Her koşulda o bana açık çek verdi. Başka yerlerden gelen iki araştırmacı da bana katılmıştı. Biri, diploma sıvanı geçmek zorunda olan, çok zeki, yirmi beş yaşında bir Venezüellalıydı: Luis Ascano. Diğeri, Howard Cann, Amerikalıydı. Elli beş yaşındaydı ve Amerika Birleşik Devletlerinde sağlam bir üne sahipti... Böylece üçümüz birlikte çalıştık. Bir yıl boyunca. Gece ve gündüz!. Aslında biz çalışmıyorduk. Her akşam gece yarılarına ya da sabahın ikisine dek sözcüğün tam anlamıyla bata çıka gidiyorduk. Moleküler genetiği iyi bilmiyorduk ve onu el yordamıyla öğreniyorduk... Gezip durduk, rasgele yürüdük ve olabilecek bütün hataları yaptık. Laboratuvarımız küçücüktü; üç metreye iki metre. Tezgah üstünde çalışacak yer bulamadığım için, araçlarımı lavobanın içine yerleştirmiştim! İlerlemiyorduk, bunalmış durumdaydık. Oldukça gergin dönemlerden geçiyorduk. Bulduğumuz tek rahatlama anı sabahın birine doğruydu: Saint Louis Hastanesi’nin yakınındaki Belleville’den Tunus usulü sandviç ve kuskus getirtirdik... Bizim hikaye uzadıkça uzuyordu. Aylar geçiyor ve hiç bir şey çıkmıyordu. Sekiz ayın sonunda, bizi bunca uğraştıran konu üzerinde Oxford’da bir kongre oldu: HLA bölgesinin, doğrudan DNA düzeyinde çözümlenmesi mümkün müdür? Biz sonuçlarımızdan söz etmek üzere çağrılmıştık Elimizde hiçbir sonuç yoktu. Kesinlikle hiç. Hiç. Yüze yakın insanın önünde konuşmamız bekleniyordu. ve bizimde söz almak için birbirimizle savaştığımız söylenemezdi. -Howard, sen konuşursun. En deneyimlimiz sensin. -Hayır sen! -Evet ama sen İngilizce konuşuyorsun. Oraya gittiğimizde, sonuçta, konuşması gereken bendim. Niyetlerimiz dışında, sunulacak somut bir şey kesinlikle yoktu. Kongrelerde bazen böyle şeyler olur; ama bu asla çok iyi bir şey değildir elbette. Biz hemen bir taktik geliştirdik. kendimizi kurtarmak üzere, tebliğimizi iptal ettirmek iç kongre başkanına şöyle dedik: -Biliyorsunuz, biz herkesle tartıştık. Onlar sonuçlarımızın hepsini bilmektedir, bunları sunmaya gerçekten de gerek yok... Başkan bize inanma inceliğini gösterdi. Onurumuz, şimdilik kurtulmuştu.” Derken aradan dört ay geçiyor. “İlk makaleyi yazıyoruz. çalışmamız olağanüstü bir yol açıyordu. çünkü biz, HLA sistemindeki çeşitliliğin, mutlak bir kesinlikle DNA düzeyinde ayrıştırılabileceğini ileri sürüyorduk. Makaleyi okuduktan sonra, Dausset yalnızca “müthiş” diye mırıldanmıştı.” “Buluş, genellikle Arşimet’in “Eureka!” sındaki gibi yaşanmaz. Bu, mitolojidir. Gerçekte, bir ekip bazı şeyler bulduğunda, bunların çok da fazla farkında değildir. Sonuç o denli beklenmiştir ki, insanlar ona alışmışlardır. Ortaya konduğu zaman, hanidir bilinmektedir ve kimse şaşırmaz. yalnızca, bir dahaki kongrede lafı gevelemek zorunda kalınmayacağı düşüncesiyle rahatlanır. Yeni sonuç, yalnızca onu beklemeyen kişilere gösterdiğiniz zaman bomba etkisi yapar (eğer yapacaksa). (Danile Cohen, Umudun Genleri, Kesit Yayıncılık-1995 s:28-33) “Bu kitapta anlatılan bilimsel serüvenin temel amacı olan genom nedir? Mümkün olan birçok tanımı vardır. Yalınlaştırmak için, işlevsel bakış açısından, genomun hücrelerin çekirdeğinde içerilen bilişimlerin (informations) bütünü olduğunu söyleyelim. Hücreler bölünür, bu bilişim bilgi hücreden hücreye aktarılır. canlı varlıklar ürere ve bu bilişim kuşaktan kuşağa aktarılır. Yapısal bakış açısından genom, her hücrenin çekirdeğindeki birkaç metrelik DNA’dır. DNA, gerçekten de, bu bilişimin elle tutulabilir, fizik kanıtıdır. Bizim bir yumurta ile bir sperm hücresinin karşılaşmasından doğduğumuzu herkes bilir Genetik, en çok insanlığı ilgilendiren bu ilk perdeyle başlar. İnsanın, evrimin ilerlemesine katkıda bulunması için hazzın işe karışması gerekiyordu. Bu birleşmenin sonucu bir başlangıç hücresidir, annenin karnına büzülmüş, döllenmiş bir yumurta. Bu hücrenin ikiye, dörde, sekize, on altıya.. erkek ya da dişi olarak gebelik sırasında türümüzün biçimini almak üzere bir araya gelecek olan milyarlarcasına bölündüğünü göreceğiz. Çünkü şaşırtıcı olan, bireysel farklılıklarımızı ortaya çıkaran şey olduğu kadar, ayaklarımızla, ellerimizle, duyarlı el ve ayak parmaklarımızla, yüz ifadelerimizle, ağlama ve gülme yetilerimiz ve benzerleriyle, hepimize benzer kılan şeydir. Ontogenez ’in (insanın döllenmiş yumurtadan yetişkin oluncaya kadarki gelişimini tanımlar) bu mucizesinin milyonlarca yıldan beri hep aynı biçimde gerçekleşmesi için, bir şeylerin bu üreyebilirliği YÖNETTİĞ İ Nİ kabul etmektedir. İnsan gibi karmaşık bir canlının her kuşakta aynı biçimde üremesine olanak sağlayan şey, bir programın, yani imgelemimizi oldukça aşabilecek keskinlik ve ustalıktaki büyük bir yönerge bütününün içindedir. Bu program genom ‘dur. Genom, bir bilgisayar disketinin ya da dilerseniz, çok uzun bir manyetik bantın rolünü üstlenmiştir. Daha kesin bin anlatımla, biri babadan gelen sperm hücresi diğeriyse anneden gelen yumurta ile dolu olan ve aynı temel yönergeleri taşıyan bir çift disket ya da bir çift manyetik bant gibi iş görür. Ama şu iyi anlaşılmalıdır: anneden gelen ve örneğin kafamız ve kollarımızla ilgili olan, genomumuzun bir yarısı; babadan gelen ve örneğin kalbimiz ve bacaklarımızla ilgili olanı da diğer yarısı değildir. Hayır. Sahip olduğumuz genomun yönergelerinin tümü de çifttir: kafa için iki program, bacaklar, kollar, kalp vb için ikişer program. Bu da sonuçta, oldukça pratik olan bir şeydir. İki yönergeden biri hata yaptığında ya da kötü yazılmış olduğunda, diğeri bu eksikliği giderir. Böylece, iki benzeşik yönerge aynı zamanda zarar görmedikçe bozukluk genellikle dramatik değildir. Çoğu zaman bir çaresi vardır. Yüz milyonlarca yıldan beri bu tip bir genetik düzenleme kendini kanıtlamıştır(eşeyli üreyen canlılara ait, yaklaşık bir milyar yıl öncesinin kalıntıları bulundu.). Yaşamın güvenilebilirliği yinelemelerden geçer gibi görünmektedir. Birey ölçeğinde bu genom, daha doğrusu, genomun neredeyse birbirinin eşi olan iki kopyası, aslında, organizmadaki bir hücrenin bölünmek üzere olduğu her kez kendini milyarlarca kez çoğaltır. Her hücre, yağlı bir kılıfı olan bir keseden oluşmuştur. Bu kese bir başka kese içerir; bu da çekirdektir. Anne ve babadan gelen her genom örneği hücre çekirdeği içinde tek bir sürekli iplikçik biçiminde değil, genellikle birbirine dolaşmış ve gözle fark edilemeyen iplikçik parçaları yığını halinde bulunur. Açıldıklarında, bu parçalardan her birinin uzunluğu birkaç santim kadardır. En büyüğü en küçüğünden beş kez daha uzundur. İpekten bin kat daha ince olan bu iplikçik parçaları uç uca eklenirse, bir metre elli santim olacaktır( ana ve babadan gelen örnekleri birlikte hesaba katarsak, bunun iki katı). Bu iplikçikler çok basit bir molekül olan DNA’dan oluşur. Bunu upuzun bir inci kolyeye benzetebiliriz: ana ve babadan gelen birer örnek için 3'er milyar inciden, her hücre başına topla 6 milyar. Her inci, “baz “diye adlandırılan bir kimyasal maddeye karşılık gelmektedir. Her biri kendi baş harfi ile gösterilen dört tip baz vardır: A (adenin), T ( timin), C (sitozin) ve G (guanin); bunlar genetik alfabenin dört harfini oluşturur. Bölünme anının hemen öncesinde hücre bir biçimde şişmeye ve hem anneden hem de babadan gelen genetik materyalin tümünü ikileştirmek için gerekli maddeleri yapmaya başlayacaktır. İşte tam bu anda, iplikçik yığınının, insan türünde 23 çifti bulunan ve optik mikroskop atında X şeklinde oldukça iyi görülebilen kromozomlar halinde düzeneğe girdiği görülür. Böylece her bir çiftte, bir kromozom anneden, diğeri babadan gelir. Bireyin organizmasındaki tüm hücreler, başlangıç genomunun, yani ana ve babadan gelen ilk yönergelere uygun olarak, embriyon, cenin, sonra da yetişkin organizma halinde farklılaşacak olan yumurta genomunun iki örneğinin de tam bir kopyasına sahiptirler. Böylece insan, çekirdekleri bu küçük iplikçikleri, yani yalnızca hücresel bölünme öncesinde ayrımsanabilen kromozomları içeren yüz milyarlarca hücreden oluşmuştur. Ve genomun her bir kopyası, gördüğümüz gibi, 3 milyar baz içerir. Birkaç on binlik baz içeren tikel bir parça, o sayıdaki harflerden kurulu bir sözcük oluşturur ve buna gen adı verilir. Bu sözcüklerin bütünüyse programı oluşturur. Bunlar, ileride göreceğimiz gibi, kuralları insan dilindekilere tuhaf bir şekilde yakınlık gösteren bir dilin öğeleridir. Dört harfli bir alfabe için 30 000 karakterli sözcükler Genomun bir örneği yaklaşık yüz bin sözcüğe sahiptir, biz yüz bin gen diyelim. Bunların her birinin kendi benzeri, diğer örnek üzerinde yer almaktadır. A,T,C ve G’den oluşan dört bazlı genetik alfabenin gerçekten de yalnızca dört harfi vardır. Ama yalnızca bu dört harfiyle, bizim 26 harfli alfabemizinki kadar zengin bir sözcük dağarcığı oluşturur. On harfli bir sözcük oluşturmak için kuramsal olarak 26 üzeri on birleşim olanaklıdır. Dört harften ibaret bir alfabeyle on harfli bir sözcük oluşturmak için bu kez yalnızca 4 üzeri 10, yani yaklaşık bir milyon olabilirlik vardır. Ne iyi ki, ne milyarlarca Fransızca sözcük ne de milyarlarca gen var! Doğa gibi kültür de daha makul. Alfabetik yazıya sahip insan dilleri, alfabelerinin birleşim potansiyellerinin tümünü kullanmaktan çok uzaktır. Elimin altındaki Petit Larousse’un, en kısasından en uzununa, içerdiği tüm sözcükler sonuçta yalnızca 83 500 gibi oldukça alçak gönüllü bir sayıya (özel isimler dahil) ulaşıyor! Buna, tekniklere, mesleklere ve argoya ilişkin, kullanımı sınırlı, farklı sözcük dağarcıkları da eklense 200 000 sözcükten fazlasına pek ulaşılmaz. İlginç bir rastlantıyla, genomun sözlüğü de benzer sayıda sözcük içermektedir: uzunluğu birkaç bin ile birkaç milyon karakter arasında değişen,50 000 ile 100 000 arasında gen. Genomun inci dizen oyuncuları her türlü şıkta çok fazla sabır göstermek zorundadırlar. Önemi yok. sonuç ortada.: A,T, C ve G harflerinden oluşan on binlerce bireşimiyle ortaya çıkan genom dili, en azından kendi yarattıklarının dili kadar inceliklidir. Her bir gen, hücrenin yaşamını düzenleyen ve bizim kendisinden sıkça söz edeceğimiz gerçek işçi olan bir molekülün, yani proteinin, üretimini harekete geçirecek olan bir komut verir. Bir insan yapmak için yüz bin gen yeterlidir; becerebildiğimiz milyonlarca şeye kıyasla bu sayı azdır ama besbelli ki yeterlidir. Garip ve onur kırıcı olan şey, farenin ve maymunun da bizimki kadar gene sahip görünmeleridir; hayvanlar dünyasının aşamalı-düzeni (hiyerarşi) içinden yükselen bu nanik, gizinin keşfedilmesini bekliyor. Yazım Hataları ve Hoşgörüleri Genlerin, yani genomun sözcüklerinin yazımı, hiçbir gevşekliğe yer bırakmayan Fransız dili yazımının tersine, bir insandan diğerine hafifçe değişiklik gösterebilir. Ama ne de olsa, genomun örneğini izleyen, daha az bütünlükçü başka diller de vardır. Fransız Akademisi 17. yy’da yazım kurallarını düzenlenmesinden önce Fransız dili de esasen bu durumdaydı... Ama elbette her gevşekliğin sınırları vardır. Esnek olmak için ileti yine de anlaşılır kalmak zorundadır. Genomun kabul edilebilir yazım değişiklikleri vardır;saçlara rengini, yüzlere taşıdıkları ifadeyi, dış görünümlere heybetini... yani yaşamı güzelleştiren bütün o çeşitlilikleri, bu yazım değişiklikleri sağlar. Ve hastalıkların kaynağında bulunan, dramatik sonuçlar doğuran yazım değişiklikleri de vardır. Bu iki tip değişikliğin arasındaki sınır, tıpkı normali patolojikten ayıran sınır gibi bulanık hareketlidir. Genlerin yazılışındaki gerçek yazım yanlışları nelerden oluşur? Diyelim ki bir sözcüğün o 30 000 harfinden biri (bazen bir çoğu), genetik alfabenin diğer üç harfinden biriyle yer değiştirebilir ya da ortadan kaybolabilir ya da çiftleşebilir(merhaba’nın merhapa, merhaba, mehaba olması gibi). Bu, mutasyon olarak adlandırılan şeydir(bunun nasıl ortaya çıktığını göreceğiz) ve sonuçları değişkendir: mutlu, iyi huylu, nötr ya da trajik. Mutasyon, genin kendi anlamını kaybettirecek derecedeyse ileti artık yoktur ya da anlaşılmamıştır. Diyeceksiniz ki sorun değil, genomun diğer örneği üstünde yedek bir genim var. Kuşkusuz. Ama göreceğimiz gibi, bu bazen sonuç vermez, bazen verir. Çoğu kez proteindeki değişikliğin zararlı etkisi yalnızca beslenmeye, yaşam tarzına ya da diğer etkenlere bağlı belli bir ortam içinde görülür. Bir bakıma her şey, yanlış yazılmış, bağlamına göre şu ya da bu ölçüde anlaşılan bir sözcükle karşılaşıldığındaki gibi cereyan eder. Özetlersek, mutasyonlar kimi kez iyi bir sağlıkla uyumlu farklılıklara eşlik ederler ve canlıların olağanüstü çeşitliliği böylece ortaya çıkar. Kimi kez bu mutasyonlar özellikle duyarlılık taşıyan noktaları değiştirirler ve gerçek aksaklıklara, amansız hastalıklara neden olurlar; sonuçta kimi kez de mutasyonlar bir şeyleri değiştirirler ama bu, yalnızca belli ortamlarda hastalık etkenidir ve hastalık, ancak ortam uygun olduğunda ortaya çıkar. Biyologların gelecek kuşakları hiç şüphesiz bu mekanizmanın olağanüstü ustalıklarını ve çevreyle etkileşimlerini inceleme olanağı bulacaklardır. Bugün için, biz hala, neredeyse anlaşılmaz olan ama yine de dört harfli alfabesini bildiğimiz ve ne mutlu ki, sözcüklerinin yaklaşık yüzde 1'in de tanıdığımız bir yabancı dile, yani genomun diline ulaşmak zorundayız. Üstelik, o birkaç bin sözcüğün anlamını da hiç şüphesiz kısmen biliyoruz. Bir genin bir işlevinin tanımlanmış olması, onun yalnızca bir işleve sahip olmasını gerektirmiyor. Ama her şeyden önce daha bu dilin sentaks ve gramerini bilmiyoruz, edebiyatından hiç söz etmeyelim! Yine de şimdiden erişebildiğimiz bir şey var: bu dilin sözcüklerinin belli yazım değişiklikleriyle iyice tanılanmış hastalıklar arasındaki bağlantıları kurup, saptamayı giderek daha iyi öğreniyoruz ve gerçekleştirebiliyoruz. Gerçekten de diyabetten kansere, allerjiden romatizmaya dek neredeyse bütün hastalıklar mutasyonlarla ilişkilidir. Bu hastalıklara yol açan genetik değişikliklerin bilinmesi, hastalıkların mekanizmalarının daha iyi anlaşılmasına, önlenmelerine ve hastaların tedavi edilmelerine olanak sağlayabilecektir. İşte günümüz genetiği için ulaşılabilecek hedef en azından budur. Bu, yalnızca bir başlangıç olabilir. Ama şimdiden çok coşku vericidir. (Daniel Cohen, Umudun Genleri, s:36-42) HAYVAN VE İNSAN KOPYALAMA Organ nakli, doğum kontrolü, büyük ameliyatlar derken genetikçiler, hayvan kopyalamayı da başardı. İskoçya’da Ian Wilmut, Dolly adını verdiği kuzuyu kopyaladı. Sonra Hawai’de fare, Kore’de inek, İskoçya’da domuz kopyalandı.Güney Kore de türü azalan bir kaplan türünü kopyalamaya hazırlanıyor (Hürriyet, 24 Mayıs 1999) “... Bizim (biyologların), hapsedilme tehditini de içeren sayısız ve kesin kuralla dizginlenmesi gereken büyük işadamları olduğumuz söylenir. Tüm bunlar genlerimizi oluşturan DNA’nın olası en kötü şeyleri kışkırtabileceğinin düşünülmesi nedeniyledir. Bu tamamen aptalca; çevremizde beni, DNA’dan daha az ürküten başka bir öğe düşünemiyorum.” James Watson, 1977 “Uyarı profesyonellerinin genetikçilerin uğursuz güçlerini lanetlemeleri için, 1970'li yılların başında, biyologların, DNA rekombinasyon tekniklerini oluşturarak laboratuvarlarında doğayı taklit edebileceklerini keşfetmeleri ve böylece moleküler biyolojiyi kuramsal gettosundan çıkarmaları yetti. Bilimi, özellikle de insanın bilinmesiyle ilgili olduğunda, şeytanlaştırmaya çalışan insanlara daima rastlanır. On beş yıldır, genetikçilerin uluslararası küçük topluluğu, bilimsel perhiz, sakınımlılık, otosansür, kendini sınırlama, erteleme, yanı kısacası, Watson’ın bu bölümün epigrafı olan sözlerini kendisinden aldığım, rasyonalizmin canlandırıcısı Fransız filozof Pierre- Andre Taguieff’in güzel bir biçimde söylediği gibi, araştırmaların gönüllü olarak kesilmesini buyuran bir entellektüel baskıyla karşı karşıyadır. Taguieff’in dediği gibi: Fransız usulü bilim karşıtı vahiycilik, birçok açıdan, 60'lı yılların sonunda ABD’de başlatılan büyük “acemi büyücü” avının küçük ve gecikmiş bir yansımasından başka bir şey değildir. Belki gecikmiş yansıma; ama şu son yıllarda Avrupa’da, şimdi de bizi yüzyıl sonu korkularımızdan kurtarmaya yazgılı, ahlaki uzmanlığını tuhaf bir biçimde biyoloji ve tıbba bakmış tüm bu “etik komiteler”i-de Gaulle’ün deyimiyle bu yeni tür “ıvır zıvır”ı- yaratan, bu gecikmiş yansımadır. Sırası gelmişken, tüm sanayileşmiş ülkelerin bilimsel bütçelerinin çok büyük bölümünü yutan nükleer ve askeri araştırmalar gibi diğer gerçek tehlike ve sapmalar konusunda bu komitelere danışmayı düşünen var mı? Oysa bana, insanlığın gen sağaltımından çok askeri elektronikten kaygı duyması gerekirmiş gibi geliyor. Hiç şüphesiz, bilimin şeytanlaştırılmasındaki bu yeni akım amacına ulaşamıyor; perhize çağrı, doğum kontrolünde olduğu gibi bilimsel kontrol için de zavallı bir yöntemdir. Ama gelin de, Taguieff’in terimleriyle, yalnızca kuşkunun mantığına boyun eğen, kaygan zeminden başka kanıt tanımayan ve sapmaları önleme adına, mutlak tutuculuğun biyoloji sapağına, hatta bilimin totaliter denetimine doğru bizzat sapan yeni lanetçilere laf anlatın. Biyolojideki ilerlemeler ve insanın kendi üzerinde edindiği yeni olanaklar, ahlakçıların hayal güçlerini her zaman çalıştırmıştır. Bazıları bizi, geleceğin doktor Frankenştayn’larının korkunç bir “biyokrasi”si olarak betimlemekten çekinmiyorlar. Sanki gerçek bir saygısızlık olanağı varmış gibi, bizi “insan genomuna ve bütünlüğüne saygı”nın kutsal ilkesiyle tehdit ediyorlar. Böyle bir yaklaşım, bu alandaki ilk sorumsuzun bir takım kopyalama hataları yapmadığı, onlarsız biyolojik evrimin asla olamayacağı “mutasyonlar”a başvurmadığı zamanlar, her döllenmede her zaman farklı yeni bir varlık oluşturan ve “ufak tefek düzeltmeler”le yetinen doğa olduğunu unutmak demektir. Ayrıca, aynı zamanda hekim de olan bir başka filozofun, François Dagognet’nin söylediği gibi, bizim genetik konusundaki kaygımız, tek model olarak, türün üreme engeline takıldığı hayvanlara gönderimde bulunmak gibi bir dar görüşlülüğü yansıtmaktadır. Ama bakış tarzı, karışma ve melezleşmenin sıkça görülen fenomenler haline geldiği bitkisel alan da dahil, canlıların bütününe doğru genişletildiğinde söz konusu tabu ortadan kalkmaktadır. Ve nedeni bellidir: çok eski zamanlardan beri insanlar, bitki türleri üzerinde kasıtlı değiştirmeler uyguladılar. İnsanın canlıya ilişkin mantığı bu yolla sarsıldı. Ve sonra, canlının doğal düzenini kutsallaştırmak niye? Biyolojik yönden, programlanmış olmamaya programlanmış insan, niçin başarısızlıkları da dahil olmak üzere, genetik lotarya karşısında diz çökmek ve ona saygı göstermek zorunda olacaktır kı? Genetik kalıtımıza egemen olmak hiç şüphe yok ki, insanın evriminde yeni bir evreyi işaretleyecektir; buna döneceğim. Bu evrimi bir kabusmuşçasına tasarlamak zorunda değiliz. İnsan genomunun bilinmesiyle ortaya çıkan kaygılar şu soruyla özetlenebilir: -Şimdilik bize yalnızca hastaların iyileştirilmesinin söz konusu olduğunu söylüyorsunuz. Çok iyi. Buna karşı çıkmak zor. Ama, siz genetikçilerin az ya da çok yakın bir gelecekte, insanı kendi kararınıza göre dönüştürme erkine, cüce ya da devlerden, güçlü ya da zayıflardan, üstün zekalı ya da ilkel kölelerden oluşacak “ırklar” yaratma erkine sahip olmayacağınızı bize kim garanti ediyor? Megalomaniniz ya da itaatkarlığınız sonucu, davranış genlerimizle, hatta zeka genlerimizle “oynama” eğilimi duymayacağınızı bize kim söylüyor? Şimdiden “gen nakledilmiş” fareler yapıyorsunuz, “gen nakledilmiş insan” cehennemi ne zaman? Bu kaygılar, insanın genetik kalıtına ilişkin olarak geri, kolaycı ve biyolojik bilgiye dayanmayan bir bakışı yansıtır. Son yirmi beş yıldır moleküler biyolojinin gelişimi, bize genetik rekombinasyon mekanizmalarının ve genlerin dışavurumunun iki şeyi güvence altına aldığını öğretti: insanın sonsuz çeşitliliği ve insan fenotipinin(Dip not:Fenotip, bireyin gelişimi sırasında ve çevresel etkenlerin denetimi altında genotipinin-gen kalıtının- gerçekleşmesine uyan belirgin vasıflarının bütünüdür) bozulamayacak karmaşıklığı. Bu iki biyolojik gerçekten bir parçacık haberdar olan herkes, Jim Watson gibi, hiçbir şeyin üzerinde çalıştığımız o molekülden, yani DNA’dan daha az ürkütücü olmadığı ve bunda yeni bir Pandora kutusu(Dip not: Yunan mitolojsinin güzel Pandora’sı. Prometheus’un tanrı katından çaldığı ateşi getirdiği insanları cezalandırmak için dünyaya gönderilmişti. tanrılar Pandora’ya içinde bütün kötülüklerin bulunduğu bir kutu emanet etmişti. Merakını yenemeyen Pandora kutuyu açtı ve böylece tüm kötülükler dünyaya yayıldı. Biraz da acıyarak, bilimin bu yeni engizisyoncularının kafalarının da evrensel ilk günah mitosu tarafından kurcalandığını düşünüyorum!) görmenin gülünç olacağı sonucuna varacaktır.(236-238) Karmaşık tahrip edilebilir; ama onu kolaylaştırmak, onunla “oynamak “, onu azaltmak istemek hiç de gerçekçi değildir. İnsanlığın genetik olarak tekbiçimlileştirilmesi fantezisi bir tür biyolojik anlamsızlıktır. Bunu istesek bile yapamazdık. İnsanlık, genetik yasaları kendi yararına kullanabilir, kullanabilecektir; ama onları değiştiremeyecektir. Anımsatmak gerekir mi; dönemin yaygın yinelemesine uygun biçimde, “bir üstün ırk”ın ayıklanması yoluyla türün iyileştirilmesi anlamındaki Nazi tipi öjenizm, tam bir fiyasko olmuştur.Psikopat diktatörün sanrıları, genetiğin bilgisine hiçbir şey borçlu değildi. Bu sanrılar, toplama kampları ve gaz odaları aracılığıyla girişilen bir soykırımın sözümona bilimsel doğrulanışından başka bir şey değildi. Ekonomik bunalım ve milliyetçiliklerle her türlü karanlıkçıların tırmanış dönemlerinde, ırkçı ve totaliter tüm ideolojik hortlamaları bıkıp usanmadan ifşa etmek, entellektüellerin ve bilimcilerin görevidir. Ama geçmişin vahşeti geleceğin açılımları karşısında bizi dehşetten donakalmış bir halde bırakmamalı, tabu haline gelmiş sözcükler aracılığıyla hedefimizi şaşırtmamalıdır... En son tıbbi tekniklere başvurarak ağır hastalıkları olmayan bir çocuğa sahip olmak, gebeliği önleyebilmek, çocuk düşürme hakkı, yani iyi anlaşılmıyş öjenizm, kuşkusuz bireyin tümüyle özgür seçimiyle uygulandığında iyi bir şeydir. Biz zengin ülke topluluklarının bu tartışmaları, bizim kendi ülkelerimizde yararlandığımız doğum kontrol sisteminin olanaklarına ulaşmaya çamlışan yoksul ülkelerin kadın ve erkeklerine oldukça şaşırtıcı gelebilecektir... Gerçekte, totaliter rejimlerin normalleştirici fantezilerin çok ötesinde, yüzyılın bu son çeyreğinde biyoloji, insan düşüncesini çeşitlilik ve karmaşıklığın mantığına alıştırmak için hiç şüphesiz en fazla uğraşmış olan bilimdir. Kendimi geleceğin ahlaki sorunlarını çözmek için hiçbir şekilde yetkin görmüyorum. Ben daha çok, gelecek kuşakların neyi kabul edilebilir ya da edilemez sayacaklarını bulmek için o kuşakların kendilerine güvenme eğilimindeyim. Ahlakın kendi değişmezleri vardır; ama bunlar, bilim ve bilgiyle birlikte evrimleşirler. Bugün bilgisizlikle kendimize yasakladığılmız şeylere, belki de yarın, daha iyi bir bilmenin ışığında izin vereceğiz. Okuru rahatlatır mı bilmem; ama genetiğin yasalarına egemen olmanın kaygılanacak fazla bir yanı bulunmadığını, buna karşılık umut verecek çok yanı olduğunu bana düşündüren nedenleri, burada gözden geçirmek isterim. Çeşitliliğin Genetiği Buraya kadar patolojilere yol açan mutasyonları, genomun oyunbozanlık rolünü üstlenenleri gördük. Gerçekten de genom programının en acil hedefi, bizi genetik hastalıklara karşı silahlandırmaktıdr. Ama uzun dönemli hedefi daha temellidir ve biyolojik düzenlenişimizin bütününü daha iyi anlamayı amaçlıyor. kuşaklar boyu biriken mutasyonların hepsi (bu ortalama olarak her 300 bazda bir değişiklik noktası, yani genomun bütününde yaklaşık on milyon polimorf nokta eder) hastalıklara yol açmaz. Çok şükür. Kalıtımla aktarılan bu mutasyonların büyük çoğunluğunun hiçbir kötü sonucu yoktur.(Ek Not:Genomun 3 milyar bazı arasından, ortalama olarak 300 bazdan biri insandan insana değişir. Bunlar mutasyon noktalarıdır.Bu noktalırn herbirinde baz “değişir”; ama yine de, genetik alfabenin yalnızca dört harfi olduğundan, seçim yalnızca dört olasılık arasında yapılır: A,T,C,G. Örneğin A harfi yerinde bir T, bir C, ya da bir G olacaktır. Her bir değişiklik bölgesi için, topluluk içinde en fazla yalnızca dört allel vardır..s:291) Öncelikle, mutasyohlardan çoğu basit bir istatistik olgu sonucu genomun kodlayıcı olmayan bölgelerini (DNA’nın yüzde 90'nından fazlası) etkiledikleri ve uslu uslu sessiz kaldıkları için: gözlemlenebildiği üzere fenotipte kendilerini dışa vurmazlar. Sonra da bu kez asıl genlere (protein kodlayan, DNA dizilerinden yaklaşık yüzde 10'una) düşkün mutasyonların çoğu “nötr” oldukları için... Ya ana babanın alleliyle kodlanan proteinlerle aynı işleve sahip “eş anlamlı” bir protein kodlayan geni değişime uğratırlar. Ya da organizmanın düzgün işleyişinde bir değişiklik yapmaksızın, yalnızca insanların çeşitliliğine yol açan farklı proteinleri kodlarlar. En sonunda, geriye genomu bozan mutasyonlar kalır. Yüz bin genimizi etkileyen yaklaşık bir milyon mutasyon noktası olduğu varsayılabilirken, tek ya da çok etkenli, yaklaşık üç bin genetik hazstalık saptanmıştır. Mutasyonların çeşitlendirici rollerinin, bozucu rollerinden daha ağır bastığı görülüyor. Bozuk kabul edilen genlerin sayısı hesaplanmak istenirse, kafanızda genlerimizin bir milyon ya da yalnızca 997 000 polimorf noktasını gönlünüzce birleştirmeye çalışın [Dip not: Bu sayıları yalnızca büyüklüğü göstermek için veriyorum. Gerçekte her genetik hastalık ille de bir nokta mutasyonuna denk gelmez;ama bir mutasyonlar bileşiminin ya da kromozomların rekombinasyonu sırasında ortaya çıkan kazalıarın sonucu da olabilir.)Genetik rulet düşleyemeyeceğimiz kadar çok fazla sayıda bireysel bileşim sağlar. Biz, şu ya da bu deri rengi ya da başka bir yapısal özelliği sağlayan on kadar özel allele ayrıcalık tanımak isteseydik bile geriye kalan milyonlarca allel sonsuz çeşitliliği güvenceye almaya yetecekti. İnsan türünü tekbiçimlileştirmek hiç de kolay değildir. En fazlası ve biraz kötü bir şansla, bazı çekinik hastalıkları kolaylaştırmayı başaracaktık ki, bu da esasen, çok sınırla bir topluluk içinde kuşaklar boyu uygulanan her endogamide ortaya çıkan bir şeydir ve değişkenliğin, potansiyel mozayikliği de diyebileceğimiz genel kaynağına gerçek bir zarar vermez. Bireysel değişiklikle her türlü genetik akıl yürütmenin başlangıç noktasıdır. Bu temel gözlem verisi Darwin’in ilk esin kaynağı oldu; bu veri olmaksızın onun doğal ayıklanma kuramının hiçbir anlamının olmayacağı çoğu kez unutulur.”En uygun olanın ayıklanması”na gelince, türün ortamın sonsuz çeşitliliğine uyum sağlamasına izin vermesi nedeniyle, Darwin’den sonra ileri sürüldüğünün tersine, çok daha az tekbiçimlileştiricidir. Evet, biz farklı olmaya mecburuz! Birkaç saniye için (daha fazlasına dayanılmaz) tamamen özdeş varlıklarla dolu bir dünya düşlemeye çalışalım! Rahatlayalım. Böyle bir olasılık, bir biyolojik olanaksızlıktır. Sonuçta kendimizi paylamaya, farklılık “hakkı”mızı ileri sürmeye, bizi sağduyuya zorlaması için tüm etik kaynakları harekete geçirmeye hiç gerek yok. Hoşumuza gitsin ya da gitmesin, her birimiz insan türünü aynı büyük izleği üzerindeki farklı birer değişikliğiz. Şu son yirmi otuz yıllık biyolojik araştırmanın en şaşırtıcı keşiflerinden biri (60'lı yıllarda Jean Dausset’nin öncülüğünü yaptığı HLA sisteminin aydınlatılmasıyla), yalnızca protein düzeyinde değil, genlerimiz düzeyinde de söz konusu olduğu anlaşılan bu olağanüstü insani polimorfizmdir. Mutasyonlar ve DNA rekombinasyonları bizim en iyi korumalarımız, normalleştirici heveslerimizin karşısındaki en etkili engellerdir. Farklılığa ve dolaysıyla bireye saygı içinde özgürlük, bundan böyle bir hümanist talepten daha fazla bir şeydir: haklılığını genlerimizde bulmuştur. Genetik kalıtımızın olağanüstü değişkenliğinin keşfi, yalnızca ırk kavramını değil, türe özgü temel özellikler dışındaki biyolojik “norm” kavramını da sonsuza kadar yıktı. Leonardo da Vinci güzelliğin ölçütü olacak bir altın sayı bulunduğuna inanıyordu. Çabalarına rağmen onu asla bulamadı. Çok mükemmel bir nedenden dolayı: ideal norm, bizim basitleştirici zihnimizce yaratılmış bir soyutlamadan başka bir şey değildir. Mükemmellik gibi güzelliğe atfettiğimiz kurallar da bir kültürden diğerine, bir dönemden diğerine, hatta bir bireyden diğerine göre değişir. İnsanın özdeş baskısı yoktur! Kuşkusuz, evrim her yeni türe ait yeni işlevlerin ortaya çıkmasına katkıda bulunur. Ama her türün ne bir ana öbeği ne de modeli vardır. Büyük evrim kuramcılarından biri olan Theeodosius Dobzansky’nin yazdığı gibi, genetik koşullanma yalnızca, tek bir insan doğası değil, ama insan doğaları olduğu anlamına gelir . Norm, norm olmamasıdır. Bu biyolojik gerçek, evrimin mantığını dile getirmekten başka bir şey yapmaz.(S:243) Farklılık, türün devamı için zorunludur. Öğrencilerimle beraberken daima şu düşüncenin üzerinde dururum: hepimiz farklı olduğu için hala buradayız. Aksi halde, ne iz ne de ben olacaktık. Burada olmamı, benim gibi olmamış (bugün de benim gibi olmayan ), ama belki de benim bizzat dayanamayacak olduğum bir saldırıdan sağ kalabilmiş olan ötekine borçluyum. Doğada saf soy yoktur. Olsaydı, hayatta kalamazdı. Laboratuvarda üretilenler, iste hücreler, ister drosofiller (sirke sineği) ya da beyaz fareler söz konusu olsun, özgürlüğün bedelini hemen yaşamlarıyla öderler. Eğer sivri sinekler farklı böcekölrüncülerine karşı şeytansı bir direnç gösteriyorlarsa, bu onların genetik polimorfizmlerinin her defasında bazılarının kendilerini kurtarmalarını, sonra da gelecek yok edici bombardımana kadar büyüyüp çoğalmalarını sağlaması nedeniyledir. Gelecek, dirençli azınlıklarda, marjinallerde ve uyum göstermeyenlerdedir! Buna göre, insan sivri sinekten daha az polimorf değildir. Yoksa, dünyanın bizzat yaratmış olduğu çetrefil karmaşıklıklarına nasıl uyum sağlardı? Bu polimorfizm, elli bin ya da yüz bin yıl önce homo sapiens ’in ilk marifetleri döneminde olduğu gibi, bugün için de doğrudur. küçük avcı-toplayıcı gruplar neden yaşamlarını sürdürebildiler? Tüm erkekler av için uygun bacaklara ve gözlere, tüm kadınlar yenebilecek ot ve taneleri kesin olarak tanıma yeteneğine ve hep birlikte ateşi ya da barutu yeniden icat etme becerisine sahip olmaları nedeniyle mi? Tam olarak böyle değil. Bunu iyi biliyoruz. Her insan grubu, tıpkı bugünkü gibi, miyoplarına, artiritlilerine, keskin gözlülerine ya da koşu şampiyonlarına; yavaş düşünenlerine, hızlı düşünenlerine, liderlerine ve diplomatlarına, melankoliklerine ve neşelilerine, sanatçılarına ve eylem adamlarına, serserilerine ve ahlak hocalarına vb.. sahipti. kısacası her türden ve özellikle de her konumdan insanlar bulunuyordu. Dönemin küçük sürüleri, en azından benim gibi Roy Lewis’in olağanüstü romanı Babamı Niçin Yedim’ e inanırsanız, muhtemelen kendi “tutucular”ına ve “ilerlemeciler”ine bile sahipti. Onların da, Vanya dayı gibi, toplanma çığlığı(s:244) “Ağaçlara Dönüş!” olan kendi tepkicileri ve baba Edouard gibi ateşi icat edip çayırları yaktıktan sonra, “Olanaklar olağanüstü !” diye haykırmaktan geri durmayan dirençli icatçıları vardı. Tarihöncesine dair çalakalem yazılmış bu gülünç yapıtta bilerek başvurulmuş anakronik öğelerin ardında, yazarın derin bir antropolojik gerçekliğe parmak bastığına inanıyorum. Hiç şüphe yok ki, yazarın kendilerine atfettiği bilgece dilin ötesinde, ilkel (ve yine de biyolojik olarak bizim kadar ya da az farkla evrimleşmiş) insanlar, Roy Lewis’in yeniden keşfettiği gibi, bugün bizi bölen davranışlarımızı aratmayan farklılık ve incelikteki davranışlarıyla insani entrika ve gülünçlüklere sahip bir çeşitlilik içindeydiler. Musee de l’Homme’ un son sergilerinden birinin, Hepimiz akrabayız, hepimiz farklıyız şeklindeki güzel başlığını açıklamak gerekirse, biz birbirimize benzeriz ve hepimiz farklıyız. Evet. Bunan yakınmak için ve bunun gizlenmesi için hiçbir neden yok. Mavi gözlü mü kara gözlü mü, ince-uzun mu kısa mı, beyaz tenli mi siyah ya da esmer mi.. olmak daha iyidir? Herkesin, en azından bir parça uygar olduğunu ileri süren herkesin hemfikir olacağı gibi, bunlar saçma sapan sorulardır. Ama zihinsel yeteneklerle, zekayla ve davranışlarla ilgili sorunlara gelince, karışıklık genel bir hal alır. Bazıları, yetenek ve zeka farklılıklarında genetik bir kökeni kabul etmekle insanlığa karşı bir suç işlediklerini düşüneceklerdir. Diğerleri, genlerimizin bazı sorumlulukları olduğunu bahane ederek tüm güçleriyle herkesin zekasını kendi ölçütlerine göre ölçmek ve davranışlarımızın tüm gizini hayvanlarda keşfetmek isteyeceklerdir. Gerçekte bunlar nedir? Örneğin zeka diye adlandırılan şey, doğal ya da insanın yarattığı çevrenin kavranmasını hedefleyen bir yetenekler mozayiğidir. Bu yeteneklerin bireşim mekanizması hiç şüphesiz tükenmez olanaklara sahiptir. Bir zeka geni değil, ama daha çok her insanın zekasının tek, karmaşık ve dinamıik düzenlenişini oluşturan on binlerce özellik temelindeki bir gen yığınının olması, gerçeği daha uygundur. Akla uygun tek çıkarsama bir zeka bulunmadığı, zekanın sayısız biçimlerinin olduğudur. Ortam burada fazlasıyla rol oynar. Bazı halklar, diğerleri tarafından ayrıcalıklı kılınandan farklı zeka biçimleri geliştirmek zorunda kalabilirler. Bir grup insana yaşamını Kalahari çölünde ya da Ekvator ormanlarında sürdürmesi için gereken zeka, elbette New York ya da Paris’teki bir büroda çalışmak için gereken zkanın eşi değildir. Aynı zeka değildir; ama kesinlikle eşdeğeridir. Boşimanların ya da Pigmelerin gözünde bizler cahil kişileriz. Boşimanların birbirinden ince farkları olan ve sabah ya da akşam çiğinin damıtılabileçcceği bsayısız bitkileri ayrıştırdıkları yerde, biz yalnızca çöl görürüz. Pigmeler ise, Joseph Conrad’ın Karanlığın Yüreği ’nden (Çev: Sinan Fişek, İletişim Yay: 1994) başka bir şey görmediği yerde, ormanı kolayca okurlar. Ama genetik çeşitlilik aynı kültür içindeki bireyler arasında da rol oynar. Zeka burada da,genetikçilerin polimorf diyecekleri gibi çok biçimlidir. Müzisyenin zekası matematikçinin zekasıyla belli bir benzerliğe sahip görünür;ama matematikçilerin ve müzisyenlerin kendileri çok çeşitli mizaçlara sahiptiler. Ressamın zekası yöneticinin, organizatörün, diplomatın, düzenbazın,filozofun, deneycinin,çalgı yapımcısının,icatçının, hatibin, eğitimcinin vb zekalarından başka ve şairinkiyle biraz benzerliği olabilen romancınınkiyle aynı değildir. Diğerlerinin zekasından yararlanabilme zekasına da sahip olmak ve bu durumda, anlaşılacağı üzere, en büyük çoğulculuğu savunmak mümkündür! Çevre ve kültür her şeyi açıklamaz,sonuçta genlere de başvurmak gerekir. Bir zeka biçiminde mükemmel ve ne yapılırsa yapılsın,öğrenmeye ne kadar çalışılırsa çalışılsın,bir diğerinde düz ahmak olunabilir. Kuşkusuz kültürel çevreme de eğitimime de borçlu olmadığım kendime ait bir sorun karşısında,uzun süre ben de çılgına döndüm:çabuk anlayamama sorunum var;askere çağrılan lise mezunlarının IQ ortalaması 100 görünürken,o dönem bana söylenene göre 80 civarında,çok kötü bir IQ ile değerlendirilmeme yol açan bir tür yavaşlıktan şikayetçiyim! Tıp eğitiminin sonuna gelmiş tecilli bir öğrenci olarak,keyfim yerindeydi! Ve bunu bir dram haline getirdiysem de,bazılarının,olayın anlamını kavramak için çok zaman harcadığım için böyle davrandığımı söyleyeceklerini biliyorum. (Daniel Cohen, Umudun Genleri'1993),Çeviri: Yeşim Küey,Kesit yayıncılık(1995) s:236-247)

http://www.biyologlar.com/umudun-genleri

Jeolojik Zamanlar Hakkında Bilgi

Hadeen (4,6 – 4,0 milyar yıl) Dünya’nın bir gezegen olarak şekillendiği ve gezegen haline dönüştüğü dönemdir. Bu dönemde yeryüzüne sürekli bir meteor yağışı görülürken volkanlar da çok aktifti. Aktif olan volkanların püsküttüğü metan, amonyak, su buharı, hidrojen sülfür, kükürt gibi gazlardan oluşan zehirli bir atmosfer bulunuyordu. Canlılığın temel yapıtaşı olan aminoasitler, DNA ve RNA moleküllerinin ilk kez bu dönemde ortaya çıkması ile 4,3 – 4 milyar yıl önce ilk canlı moleküller görüldü. Demirin damlacıklar halinde Dünya’nın merkezine doğru inerek yoğunlaşması ile çekirdek oluştu. Arkeen (4,0 – 2,5 milyar yıl) Eğer Arkeen dönemine geri dönebilseydik, muhtemelen içinde bulunduğumuz gezegeni tanıyamayacaktık. Bilinen en eski kayaçlar bu döneme aittir. Serbest oksijen içermeyen atmosfer yaşam için hala zehirliydi. Yaşamın ilk izleri olan, bilinen en yaşlı fosiller özellikle siyanobakterilerin oluşturduğu ve 3,5 milyar yıl yaşındaki stromatolitlerdir. Siyanobakterilerin yaptığı fotosentez sonucu okyanuslara oksijen salınmaya, yeryüzü kabuğunun yavaş yavaş soğumasıyla kıtasal plakalar oluşmaya başladı. Proterozoyik (2,5 milyar – 542 milyon yıl) Bu dönemin en önemli özelliği oksijenli atmosferin oluşmaya başlamasıyla birlikte birçok bakteri grubunun yok olması, 1,5 milyar yıl önce bir hücreli, gelişmiş ve eşeysel üreme yeteneğine sahip ökaryotik hücrelerin ortaya çıkasıdır. Dönem ortalarına doğru atmosferde oksijenin artmasıyla birlikte çok hücreli, yumuşak gövdeli canlılar ortaya çıktı. FANEROZOYİK - PALEOZOYİK(542 – 251 milyon yıl) Kambriyen (542 – 488,3 milyon yıl) Bu dönem yeryüzü yaşamı için bir dönem noktasıdır. Bilinen hayvan şubelerinin nerdeyse tamamı Kambriyan’de ortaya çıktı. Belli başlı hayvan gruplarının birdenbire ortaya çıkması, yaşam çeşitliliği ve yaygınlığının en fazla düzeye ulaşması “Kambriyen Patlaması” olarak bilinir. Bu dönemde ilk kez ortaya çıkan canlılar arasında Nautilus gibi yumuşakçalar, bryozoalar, hydrozoalar, süngerler, mercanlar, derisidikenliler ve trilobit gibi ilkel eklembacaklılar bulunur. Sudaki bu zengin yaşama karşı karada henüz yaşam yoktu. Ordovisiyen (488,3 – 443,7 milyon yıl) Bu dönemde denizel canlılarda büyük çeşitlenme görüldü. Ayrıca kırmızı-yeşil algler, ilkel balıklar, Ammonoidler, mercanlar, deniz laleleri ve karındanbacaklılar (Gastropoda) da bu dönemde okyanuslarda bulunuyordu. Dönemin sonlarına doğru karasal bitkiler ortaya çıktı. Ordovisiyen’in sonunda birçok canlı grubunun ortadan kalkmasına neden olan büyük kitle yokoluşu meydana geldi. Silüriyen (443,7 – 416 milyon yıl) Silüriyen, çevre ve canlıları önemli derecede etkileyecek yeryüzü değişimlerinin meydana geldiği bir dönemdir. Büyük iklim değişimlerinin sona ermesiyle iklim dengeye ulaştı. Deniz seviyesinin yükselmesiyle birlikte mercan resifleri ilk kez oluştu ve çeneli, çenesiz balıklar ile tatlı su balıklarındaki çeşitlenmeyle birlikte balık türlerinin evriminde belirgin gelişmeler yaşandı. Kara yaşamına ait ilk kanıtlar olan örümcek, akrep, kırkayak ve akrabaları ile ilk damarlı bitkiler ortaya çıktı. Devoniyen (416 – 359,2 milyon yıl) Bu dönem, balıklarda görülen büyük çeşitlenme nedeniyle “Balık Çağı” olarak bilinir. Çeneli balıkların çeşitliliği artarken kıkırdaklı balıklar ilk kez ortaya çıktı. Lob yüzgeçli balıkların yaklaşık 397 milyon yıl önce karaya ayak basmaları ve üyelerin evrimleşmesi ile ikiyaşamlılar (Amphibia) ortaya çıktı. Bu dönemin sığ ve sıcak denizleri çok çeşitli omurgasız gruplarına ev sahipliği yapıyordu. Mercanlar, süngerler, algler ve dallı bacaklılardan (Brachiopoda) oluşan resifler çok yaygındı ve ilk ammonitler ortaya çıktı. İlk toprak oluşumu ve ilk böcek fosili Devoniyen’den bilinir. Karbonifer (359,2 – 299 milyon yıl) Karbonifer, dünya ölçeğinde geniş yayılımlı kömür yataklarının zenginliği ile bilinir. İklim oldukça ılımandı. Karada eğrelti otları ve ilk tohumlu bitkilerden oluşan dev boyutlu bitki örtüsü ile birlikte dev boyutlu böcekler, kırkayaklar ve akrepler hakimdi. Bu dönemde omurgalılar karaya tam olarak ayak basıp çeşitlenmeye başladı ve sürüngenler büyük bir evrimsel değişim gösterdi. Permiyen (299 – 251 milyon yıl) Bu dönem memeliler, kaplumbağalar, lepidosaurlar ve archosaurların atası olan amniyotların çeşitlenmesi ile karateristiktir. Karasal iklimin görülmeye başlaması ile sulakalanlar azaldı ve ikiyaşamlılar yerine sürüngenler daha fazla yayılım gösterdi. Dönem sonlarına doğru memelilerin atası olan Synapsidler ve günümüz sürüngenleri, dinozorlar, pterosaurlar ve timsahların atası olan Diapsidler oldukça başarılı şekilde geniş alanlara yayıldılar. Permiyen sonunda karasal canlılarla birlikte daha çok sucul canlıların yok olmasına neden olan büyük bir kitlesel yokoluş meydana geldi. - MESOZOYİK (251 – 65,5 milyon yıl) Triyas (251 – 199,6 milyon yıl) Triyas’tan önce meydana gelen büyük yokoluştan kurtulan canlılar boş alanları doldurdu. Sucul ortamda yeni mercanlar ve aralarında Ichthyosaur ve Plesiosaur’un da bulunduğu sucul sürüngenler ortaya çıktı. Dönem sonlarında ilk memeliler, uçan sürüngenler (Pterosaur) ve ilk dinozorlar görüldü. Triyas sonunda yine daha çok sucul canlıların etkilendiği büyük bir yokoluş meydana geldi. Jura (199,6 – 145,5 milyon yıl) Jura “Sürüngenler Çağı” olarak bilinir. Bu dönem Brachiosaurus, Diplodocus gibi büyük otçul dinozorlar için altın bir çağdı. Eğrelti otları ve palmiye benzeri ağaçlarla beslenen bu otçul dinozorlar Allosaurus gibi o dönemin etçil dinozorları tarafından avlanırdı. Sucul yaşamda balıklar ve sucul sürüngenler hakimdi. Dönemin sonlarına doğru ilk kuş olan Archaeopteryx ortaya çıktı. Kretase (145,5 – 65,5 milyon yıl) Kretase ılıman iklimi ve yüksek deniz seviyesi ile karakteristiktir. Okyanus ve denizler günümüzde nesli tükenmiş olan sucul sürüngenler, ammonitler ve rudistlerle, karalar ise içlerinde büyük etçil Tyrannosaurus rex’in de bulunduğu dinozorlarla kaplıydı. Yeni memeli ve kuş gruplarıyla birlikte çiçekli bitkiler ve birçok yapraklı ağaç türü ortaya çıktı. Dönemin başlarında erken keseli memeliler (Marsupialia), sonlarına doğru ise gerçek plasentalı memeliler görüldü. Kretase sonunda meydana gelen büyük yokoluş sonucunda kuş olmayan dinozorlar, pterosaurlar ve büyük sucul sürüngenler tamamen ortadan kalktı. - SENOZOYİK(65,5 milyon yıl – günümüz) 1. Paleojen Paleosen (65,5 – 55,8 milyon yıl) Bu dönemde meydana gelen en önemli olay birçok yeni memeli türünün ortaya çıkması, hızlı bir şekilde evrimleşmesi ve dinozorlardan boşalan alanları hızlar doldurmasıdır. Bu dönemdeki memelilerin küçük boyutlu olmalarından dolayı fosil kayıtları çok az sayıdadır. Karada modern bitkiler gelişti, kaktüs ve palmiye ağaçları ortaya çıktı. Denizlerde yeni tip foraminiferler ve günümüzde bulunan gruplara çok benzer formlar ile gastropodlar ve bivalvler bulunuyordu. Paleosen’de ortaya çıkan grupların birçoğu günümüze ulaşamadan ortadan kalktı. Eosen (55,8 – 33,9 milyon yıl) Eosen devrinin başlangıcı ilk modern memelilerin çıkışı ile karakteristiktir. Çift toynaklılar (Artiodactyla), tek toynaklılar (Perissodactyla) ve Primatlar gibi memeli gruplarının küçük boyutlu formları ile birlikte hortumlu memeliler (Proboscidea), kemirgenler (Rodentia) gibi modern memeli gruplarının erken formları ve balina, deniz ineği gibi deniz memelileri ilk kez görülmeye başladı. Eosen modern kuş takımlarının ilk kez ortaya çıktığı dönemdir. Bu dönemin sonunda meydana gelen yokoluş ile Asya faunası Avrupa’ya giriş yaptı. Oligosen (33,9 – 23,03 milyon yıl) Bu dönemde otlak alanların yayılmasıyla birlikte tropik geniş yapraklı ormanlar ekvator bölgesine çekildi. Karadaki canlıların boyutlarında artış görüldü ve Baluchitherium gibi gergedan benzeri memeliler çok büyük boyutlara ulaştı. Atlar, gergedanlar ve develer gibi memeli grupları açık alanlarda koşmaya uyumlu hale geldi. Sucul ortamdaki canlılar günümüzdekilere oldukça benzerdi. 2. Neojen Miyosen (23,03 – 5,33 milyon yıl) Bu döneme ait bitki ve hayvanlar günümüzde yaşayanlara oldukça benzemekteydi. Bitkiler açısından iki önemli ekosistem dikkat çekiciydi. İlki ot yiyici hayvanların evrimi üzerinde etkili olan genişleyen çayırlık alanlar, diğeri ise azalan tropik ormanlardır. Memeli çeşitliliği en üst düzeydeydi. Geyikler ve zürafalar ilk kez görülmeye başladı. Köpekler, rakunlar, atlar, kunduzlar, geyikler, develer ve balinalar gibi memelilerin günümüzde yaşayan türlerine benzer formlar ortaya çıktı. Pliyosen (5,33 – 2,58 milyon yıl) Bu dönemde dünya coğrafyası, iklim ve hayvan toplulukları günümüze oldukça benzerdi. Kıtalar hemen hemen bugünkü konumlarını aldılar. Daha soğuk ve kurak iklim koşulları sonucunda tropik bitki türleri azalırken, yapraklarını döken ağaç ormanları hızla çoğaldı, otlak alanlar Antaktika hariç tüm kıtalara yayıldı. 3. Kuvaterner Pleyistosen (2,58 milyon – 10.000 yıl) Bu dönemde görülen en önemli olay, sürekli devam eden iklimsel bir soğuma ve buzul çağlarıdır. İklim oynamaları sonucunda aşağı yukarı 50 ile 100’er bin yıl süren buzul ve buzularası dönemler görüldü. Büyük memeli faunası hızla yayıldı ve hominid primatlar biyolojik ve kültürel alanda evrim geçirdi. İnsan soyu Homo erectus, Homo neanderthalensis ve Homo sapiens (modern insan) olarak evrimsel bir sıra izledi. Deniz seviyesinin düşük olduğu buzul dönemlerde kurulan kara köprüleri ile karasal hayvanların kıtalar ve adalar arası göçleri gerçekleşti. Pleyistosen sonlarında özellikle büyük memelileri etkileyen yokoluş sonucunda mamutlar, mastodonlar, kama dişli kediler, yer tembelhayvanı ve mağara ayısı gibi memeliler yokoldu. Holosen (10.000yıl – günümüz) İnsan Çağı olarak da adlandırılan bu devir, içinde bulunduğumuz zamanı ifade eder. İnsanın doğaya egemen olduğu, insan kültürünün hızla geliştiği ve yayıldığı çağ olarak kabul edilir. Bu devirde başlayan küresel ısınmanın önümüzdeki yıllarda da devam edeceği düşünülmektedir. İnsanın neden olduğu olaylar sonucunda doğa dengesinin bozulması nedeniyle birçok tür yokoldu ve yokolmaya devam etmektedir.

http://www.biyologlar.com/jeolojik-zamanlar-hakkinda-bilgi

Güvercingiller (Columbidae)

Kaya güvercini (Columba livia) Gökçe güvercin (Columba oenas) Tahtalı (Columba palumbus) Kumru (Streptopelia decaocta) Üveyik (Streptopelia turtur) Küçük kumru (Streptopelia senegalensis) Büyük üveyik (Streptopelia orientalis) (G) Kap kumrusu (Oena capensis) (G)

http://www.biyologlar.com/guvercingiller-columbidae

Kuzgunkuşugiller (Coraciidae)

Gökkuzgun (Coracias garrulus) Hint gökkuzgunu (Coracias benghalensis)

http://www.biyologlar.com/kuzgunkusugiller-coraciidae

Kuş Gözleminde Kullanılan Malzemeler

Kuş Gözleminde Kullanılan Malzemeler

Dürbün ve Teleskop Dürbün kuş gözlemcisinin ayrılmaz parçasıdır. Kullandığımız dürbün ne kadar kaliteli olursa yapacağımız gözlemde o kadar zevkli olur. Gözlemci, dürbününü seçerken bazı noktaları göz önünde bulundurmalıdır. Sonuçta her dürbün ile kuş gözlemi yapılmaz. Eğer bir dürbünümüz yoksa, yapacağımız ilk iş bir dürbün almak olacaktır. Dürbünümüzü, konusunda uzman ve daha sonra bize teknik destek sağlayabilecek yerlerden almalıyız. Aksi takdirde, bir arıza durumda sorun yaşayabiliriz. Satın alacağımız ya da gözleme götüreceğimiz dürbünü seçmeden önce gözlem için en ideal dürbün nasıldır bunu belirleyelim. Gözlem yapacağımız dürbünde arayacağımız ilk özellik görüntü kalitesidir. Peki bir dürbünün kaliteli görüntü verdiğini nasıl anlarız? Bütün dürbünlerin üzerinde bazı sayılar vardır. Örneğin:6x42, 10x50 gibi. Buradaki sayılardan ilki (örneğin 6x42 büyütmedeki 6 rakamı) dürbünün Okülerinin, diğer sayı ise (42) dürbünün Objektif lensinin mm değerinden çapını ifade eder. Bu sayılar kuş gözlem için iyi bir dürbün almamızda bize yardımcı olurlar. Bir dürbünün kuş gözlem için uygun olup olmadığını anlamak için o dürbünün “Büyütme Değeri”ne bakarı. Dürbünün büyütme değerini, Objektif lens çapını Oküler Çapına bölerek bulabiliriz. Büyütme değeri 5-7 arasında olan dürbünler kuş gözlem için idealdir. Yukarıda ki örnek için Büyütme değeri 42/6=7’dir. Objektif lens çapı ne kadar büyük olursa dürbün o kadar çok ışık toplar. Büyük lense sahip dürbünler iyi ışık topladığından güzel görüntü verir. Bu tip dürbünler ışık şiddetinin düşük olduğunu, sabaha karşı, akşama doğru gibi kapalı havalarda gözlem yapmak için idealdir. Büyük mercekli dürbünlerin dezavantajı ise, büyük merceğe sahip oldukları için boyutları büyük ve ağırlıkları fazladır. Bu dürbünler uzun süreli yapılan gözlemlerde, gözlemciyi yorabilir. Eğer ışık şiddetinin düşük olduğu zamanlarda ve yerlerde gözlem yapmayacaksak mercek çapı küçük olan dürbünleri tercih etmeliyiz. Dürbünümüzde arayacağımız diğer özellikler ise şöyle olmalıdır; -Dürbünümüz demir ya da benzeri malzemelerden değil, plastik gibi hafif ve herhangi bir darbe anında merceğe zarar vermeyecek malzemeden yapılmış olmalıdır. Bu tür dürbünler ayrıca hafif oldukları için fazla ağırlık yapmazlar. -Dürbünümüz, elimizin büyüklüğüne uygun olmalı ve parmaklarımız ayar vidalarına rahatlıkla yetişebilmelidir. -Dürbünle baktığımızda nesneleri normal şekillerinde görmeliyiz. Ayrıca dürbünün ışığı halkalar biçiminde gösterip göstermediğine de dikkat etmeliyiz. Teleskoplar dürbünlere göre daha büyük, ağır ve kullanması deneyim isteyen aletlerdir. Teleskopların büyütme gücü x20 ve üzeridir. Bu büyütmeye sahip aletlerin gözlem esnasında titremesi görüntüyü bozar, bunun için teleskoplar, üçayakla (tripod) birlikte kullanılırlar. Bilimsel bir çalışma yapmıyor ve sürekli yerimizi değiştiriyorsak, gözlemimize teleskop götürmeye gerek yoktur. Çünkü bir teleskopu arazide saatlerce taşımak oldukça zordur ve gözlem açısından pratik değildir. Eğer teleskop alacaksak dikkat etmemiz gereken bazı noktalar vardır. Bunları kısaca şöyle özetleyebiliriz: -Teleskopumuz plastik malzemeden yapılmış olmalıdır. -Gözü yoran düz teleskoplar yerine üstten bakmalı teleskopları tercih etmeliyiz.

http://www.biyologlar.com/kus-gozleminde-kullanilan-malzemeler

Biyomalzeme: Vücutta Kullanılan Yapay Malzemeler

Biyomalzeme: Vücutta Kullanılan Yapay Malzemeler

Biyomalzeme; vücudun işleyişine yardımcı olmak üzere üretilen ve geliştirilen malzemelerdir. Yapısı itibariyle vücut ile sürekli temas halinde bulunmaktadır.Son zamanlarda özellikle tıp ve mühendislik alanında gelişmeler yaşanmaktadır.Bu gelişmelerden bir kısmı ise biyomalzeme alanında olmuştur. İnsan vücudundaki doku ya da organlar çeşitli sebeplerden dolayı işlevini yitirmesi sonucunda biyomazemelere ihtiyaç duyulmaktadır. Bu biyomalzemeler sayesinde insan yaşamı eskiye oranla daha kolaylaşmaktadır. Ortopedi alanında kullanılan protezler ve diş alanında kullanılan dolgular biyomalzeme olarak gösterilebilir.Biyomalzemelerin kullanımı eski çağlara kadar gitmektedir. Örneğin; eski zamanlarda altın ile hastaların dişleri kaplanıyordu. Bu uygulama ilk olarak eski Çin’de uygulanmıştır.Biyomalzeme türlerinden ilk metal protez 1938 yılında kullanılmıştır. Vitalyum içeren bu metal protez 1960 yılına kadar kullanılmıştır. Ancak sonrasında metal korozyona uğramaları sonucu insan vücudunda büyük tehlikelere yol açmıştır. Çünkü, vitalyum korozyona uğraması sonucu paslanmaktadır. Geliştirilen biyomalzemeleler ile 1950 li yıllarda kalp vanaları kullanılmaya başlanmıştır. 1960 Yılına gelindiğinde ise yapay kalça kemikleri kullanılmaya başlamıştır.1972 yılında ise alumina ve zirkonya seramikleri biyomalzeme olarak hastalarda kullanılmıştır. Ancak sonrasında vücut ile uyum sağlamadığı tespit edilmiştir. Bu yüzden yeni malzeme arayışı içine girilmiştir.Sonrasında kullanılan biyocam ve hidroksiapatit insanlar için daha yararlı olmuştur.Biyomalzeme kullanımı zaman geçtikçe artmıştır.Biyomalzeme vücutta yerine kullanılacağı organ ya da uzvun benze bur özelliklerine sahiptir. Bu şekilde işlevini kaybetmiş organ ya da uzuv gibi hareket etmektedir. Bir kemik yerine kullanılan protez, kemik ile benzer bir yapıya sahiptir. Kemik dokusu aslında karmaşık yapıya sahiptir. Bundan dolayı biyomalzemeler tam olarak gerçek organın işlevini yerine getiremez.Biyomalzemelerin Özellikleri Biyomalzemeler vücutta bulunan dokularla uyumlu bir yapıya sahiptir. Bu yapılarıyla vücuda zarar vermemektedir. Vücudumuz genellikle dışarıdan yapısına katılan yabancı unsurları kabul etmemektedir. Bu yüzden vücutta kullanılan malzemeler ilk başta tehtit olarak algılanmaktadır. İşte bu aşamada biyouyumluluk kavramı ortaya çıkmaktadır. Biyouyumluluk vücudumuzda kullanılan malzemelerin vücut tarafından yabancı tehdit kabul edilmemesidir. Yabancı kabul edilmeyen bu malzemeler vücut içinde uyumluluk sağlayarak işlevini yerine getirmektedir. Biyomalzemeler vücuda yerleştiğinde vücudun olağan reaksiyonları dışında bir çok reaksiyon daha meydana gelmektedir. Vücutta meydana gelebilecek başlıca reaksiyonlar; dokularımızdaki proteinler ile bioymalzeme arasındaki etkileşim, alyuvar sayısının artışı, tümör üretimi ve bağışıklık sistemindeki hareketlenme olarak gösterilebilir. Biyomalzemeler Ve Kullanım AlanlarıÖzellikle metal ve alaşımlar bir çok alanda biyomalzeme olarak kullanılmaktadır. Çünkü, mekanik ve kimyasal yapıları bu iş için uygundur. Metal ve alaşımlar; diş protezinde, kas iskelet sisteminde ve kalp kapakçıklarında sıklıkla kullanılmaktadır. Son zamanlarda biyomalzemelerde titanyum kullanım oranı artmıştır. Çünkü yapılan araştırmalarda titanyumun hafif olduğu, dokularla fazla reaksiyona girmediği ve vücuda karşı biyouyumluluğa sahip oluğu görülmüştür.Metalik biyomalzemelerde Nikel ve titanyum alaşıları kullanılmaktadır. Tıp da akıllı malzemeler olarak nitelendirilmektedir. Özellikle gözlük çerçeveleri, otomobil parçaları,diş telleri ve kap-damar hastalıklarında kullanılan malzemeler başlıca akıllı malzemelerdir. Akıllı malzemeler şekil bellekli alaşımlardır.Başka bir biyomalzeme türü ise biyosermiklerdir. İnsan vücudunda zarar görmüş ve işlevini yitirmiş olan uzvun yerine geçmektedirler. Günlük yaşamda diş tedavilerinde, kalça protezinde ve yüz kemiklerinde kullanılmaktadır. Kalsiyum eksikliğinde meydana gelen kemik erimesinde biyoseramiklere ihityaç duyulmaktadır. Ayrıca ileri yaşlarda meydana gelen kemik erimesi sonucunda da biyoseramiklere ihtiyaç duyulmaktadır.Biyomalzemelerin  Amaçlarını Maddeler Halinde Sayacak Olursak;- Vücutta hastalıklı ya da hasar görmüş organ ya da uzuvların yerine kullanılır.Örneğin; diyaliz ve protezler- Vücutta hasarlı organın fonksiyonelliğini arttırmak amacıyla kullanılır.Örneğin; lens, kalp pili, işitme cihazı ve benzeri- Kozmetik sıkıntıları gidermek amaçlı kullanılır.Örneğin; diş teli ve silikon yaptırma- Fonsiyon bozukluklarını gidermek amacıyla kullanılır. Örneğin ; omurgalardaki bozukluklar- Hasarlı bölgenin iyileşmesine yardımcı olur. Örneğin; Ameliyat iplikleri, cerrahi vida ve teller- Hastalığın teşhisine yardımcı olma amaçlı kullanılmaktadır. Örneğin; endoskopi makinesi ve enkektörBiyomalzemelerin yazdıklarımız dışında bir çok kullanım amacı bulunmaktadır.Sonuç olarak; Bilim adamlarının görevi insanlığa faydalı olmaktır. Bilim adamları çalışmalarında görevini yerine getiremeyen dokuları incelemişlerdir. Bunun sonucunda bir çok biyomalzeme türü ortaya çıkmıştır.Biyomalzeme alanındaki çalışmalar son hızıyla devam etmektedir.http://www.bilgiustam.com

http://www.biyologlar.com/biyomalzeme-vucutta-kullanilan-yapay-malzemeler

Onchocleidus species (Monogenoidea) from a bluegill sunfish

Onchocleidus species (Monogenoidea) from a bluegill sunfish

  One of the monogenes that occur on fish gills. This one is a species of Onchocleidus. This particular video is a good one because you can see so much of the internal anatomy. Pictures were shot using a Nikon AlphaPhot teaching compound microscope with a trinocular head and a mounted camera. Ill shoot some scales and post them separately as a short video. Lowest mags were with a 4X objectives, next mags with a 10X objective, and highest with a 40X objective. The camera tube has no separate eyepiece lens. Thanks for the suggestions!

http://www.biyologlar.com/onchocleidus-species-monogenoidea-from-a-bluegill-sunfish

Gyrodactylus bulbacanthus video

Gyrodactylus bulbacanthus video

  Monogene from the gills of the plains killifish in Nebraska. Pictures were shot using a Nikon AlphaPhot teaching compound microscope with a trinocular head and a mounted camera. Ill shoot some scales and post them separately as a short video. Lowest mags were with a 4X objectives, next mags with a 10X objective, and highest with a 40X objective. The camera tube has no separate eyepiece lens. Thanks for the suggestions!

http://www.biyologlar.com/gyrodactylus-bulbacanthus-video

Gyrodactylus stableri

Gyrodactylus stableri

  Gyrodactylus stableri on the fin of the plains killifish Fundulus zebrinus; filmed in western Nebraska. Pictures were shot using a Nikon AlphaPhot teaching compound microscope with a trinocular head and a mounted camera. Ill shoot some scales and post them separately as a short video. Lowest mags were with a 4X objectives, next mags with a 10X objective, and highest with a 40X objective. The camera tube has no separate eyepiece lens. Thanks for the suggestions!

http://www.biyologlar.com/gyrodactylus-stableri

Gorgoderid cercariae

Gorgoderid cercariae

  Gorgoderidae (Trematoda) cercariae from fingernail clam in western Nebraska. Adults are probably frog bladder flukes.Pictures were shot using a Nikon AlphaPhot teaching compound microscope with a trinocular head and a mounted camera. Ill shoot some scales and post them separately as a short video. Lowest mags were with a 4X objectives, next mags with a 10X objective, and highest with a 40X objective. The camera tube has no separate eyepiece lens. Thanks for the suggestions!

http://www.biyologlar.com/gorgoderid-cercariae

EMBRİYOLOJİK GELİŞİM EVRELERİ

4. Hafta -Başlangıçta embriyo hemen hemen düzdür ve yüzeyinde 4-12 somit seçilir. -24. günden başlayarak embriyoda,1. yutak(mandibula)kavsi ve 2.yutak(hyoid) kavsi belirir. -1. yutak kavsinin büyük bir bölümünden mandibula(alt çene), öne doğru uzantısından ise maxilla (alt çene) oluşur. -Kalp ventralde büyük bir çıkıntı şeklinde seçilir ve kan pompalar. -26. günde embriyoda üç çift yutak kavsi gözlenir.Nöral tüpün ön açıklığı kapanmıştır. -Üst extremite tomurcukları,26-27. günlerde vücudun ventrolateral duarında küçük şişkinlikler şeklinde görülmeye başlar.Aynı zamanda iç kulak tsalağı olan otik çukurlar belirir. -Başın iki yanında gözün lensini oluşturacak ve lens plakodları olarak adlandırılan ektodermal kalınlaşmalar gözlenir. -4. haftanın sonunda 4 çift yutak kavsi ile alt extremite tomurcukları belirgin hale gelir. -4. haftanın sonundaki karakteristik görünüm uzun ve incelmiş bir kuyruktur. -4. haftada pek çok organ sisteminin özellikle kardiyovasküler sistemin ilk taslağı oluşmuştur. -4. haftanın sonunda nöral tüpün alt açıklığı da genellikle kapanmış olur. 5.Hafta -Baş büyümesi diğer dölümlere göre daha fazladır.Bunun nedeni beyin ve yüz taslaklarının hızlı gelişmesidir. -Üst extremiteler kürek,alt extremiteler ise palet şekline benzemektedir. -Bu haftada gözlenen mezonefrik çıkıntılar,insanda geçici böbrek olan mezonefrozun yerini belirtir. -2. yutak kavsiidiğerlerine göre fazla gelişerek 3. ve 4. yutak kavislerinin üzerini örter ve her 2 yanda servikal sinüs adı verilen ektodermal çukurcuklar oluşur. 6.Hafta -Üst extremitelerde dirsek ve geniş el plakları oluşması ile bölgesel bir farklılaşmanın başladığı gözlenir. -El plaklarında parmakların oluşmasını sağlayacak olan parmak taslakları belirir. -6.haftada embriyoda gövde ve extremitelerin seyirmesi gibi kendiliğinden olan hareketler gözlenir. ! Alt extremitenin gelişimi üst extremitenin gelişiminden daha geç olur. -2. ve 1. yutak kavsi arasındaki yarığın çevresinde aurikula tepecikleri oluşur. -1. yutak yarığından,dış kulak yolu gelişir.Dış kulak yolunun çevresindeki aurikula tepecikleri birleşerek kulak kepçesini oluşturur. -Göz,retinada pigment oluştuğu için görülebilir hale gelmiştir. -Baş gövdeye göre daha büyüktür ve kalp çıkıntısı üzerine doğru eğilmiş durumdadır. -6. haftada embriyonun dokunmaya refleks yanıtı ortaya çıkar… 7.Hafta -El plağında parmak taslakları arasında yarıklar oluşur ve artık parmaklar belirgin olarak ayırt edilir. -Primitif barsak ile vitellüs kesesi bağlantısı daralır ve vitellüs sapı olarak da isimlendirilen bir kanala indirgenir. -Embriyoda göbekteki fıtıklaşma normal bir olaydır.Fıtıklaşmanın nedeni barsakların hızlı gelişmesine rağmen karın boşluğunun çok küçük olmasıdır. -7. haftanın sonunda üst ekstremitelerde kemikleşme başlar. 8.Hafta -Elde perdeli olmak üzere parmaklar ayrılmıştır. -Kuyruk varlığını sürdürmekle beraber çok küçülmüştür. -Kafa derisi vasküler pleksusu gözlenir ve bu pleksus başın çevresinde karakteristik bir bant oluşturur. -Extremitelerin hatları belirgindir. -Parmaklar uzamış,birbirinden ayrılmıştır. -Extremitelerin belli bir amaca hizmet eden hareketleri bu haftada olur. -Alt extremitede kemikleşme başlar ve ilk olarak femurda gözlenir. -Kuyruk bu haftanın sonunda kaybolur. -Kafa derisi vasküler pleksusu tepe noktasında bant oluşturur. -8. haftanın sonunda baş hala orantısız bir şekilde,embriyonun yarısı büyüklüğündedir,boyun bölgesi gelişir ve göz kapakları belirginleşir. -Barsaklar henüz göbek kordonu başlangıcı kısmındadır. -Kulak kepçesi son şeklini almıştır ancak alt seviyededir.

http://www.biyologlar.com/embriyolojik-gelisim-evreleri

Saf Kültür İzolasyonu Mikrobiyoloji

İncelenecek örnekten, petri kutusundaki uygun agarlı bir besiyerine tek koloni düşürme tekniği ya da yayma tekniği kullanılarak ekim yapılır. Petri kutuları uygun sıcaklık ve sürede inkübasyona bırakılır. İnkübasyon sonrası petri kutularında oluşan, birbirine temas etmeyen ve izole edilmek istenen mikroorganizmanın özelliklerine uygun olan koloni öze, kürdan veya aşı iğnesi yardımı ile sıvı bir besiyerine aktarılır. İnkübasyonun ardından izolatın saf olup olmadığını incelemek amacıyla saflık kontrolü yapılır. Saflık kontrolü için petri kutusundaki agarlı besiyerine sürme yapılarak inkübasyon sonrası burada oluşacak koloninin şekil, büyüklük, yapı, renk gibi özellikleri incelenir. Farklı özelliğe sahip koloni varlığı gözlendiğinde, bu durum kültürün karışık olması anlamına gelir ve tekrar tek koloni alınarak saflık kontrolüne kadar işlemler tekrarlanır. Besiyerinde aynı tip koloni gözlense bile tek koloni alınarak reizolasyon işlemi yapılması da genel olarak önerilmektedir.

http://www.biyologlar.com/saf-kultur-izolasyonu-mikrobiyoloji

Echinostome cercariae

Echinostome cercariae

  Redia and cercariae of an echinostome (Trematoda) species from a snail at the Cedar Point Biological Station in western Nebraska. Pictures were shot using a Nikon AlphaPhot teaching compound microscope with a trinocular head and a mounted camera. Ill shoot some scales and post them separately as a short video. Lowest mags were with a 4X objectives, next mags with a 10X objective, and highest with a 40X objective. The camera tube has no separate eyepiece lens. Thanks for the suggestions!

http://www.biyologlar.com/echinostome-cercariae

Kuş ve Doğa Fotoğrafçılığı Çekim Rehberi

Fotoğrafik Donanım Fotoğrafa yeni başlayanlar için piyasadaki seçeneklerin fazlalığı büyük bir kaybolmuşluk ve şaşkınlık yaratabilir. Bu psikoloji içinde ve arkadaşlardan alınan duyumlarla bilinçsiz seçimler yapabiliriz. Ancak fotoğraf malzemelerinin pahalı olması yanlışlardan dönmeyi zorlaştırır. Bu yüzden seçimimizi bilinçli yapmak büyük önem taşır. Teknoloji süratle gelişmekte olduğundan, son yenilikleri içeren modelleri seçmekte yarar vardır. İyi fotoğraf çekmek için iyi bir fotoğrafçı oluncaya dek yüksek teknolojili malzemelerin sağladığı avantajlardan yararlanmak hayatı kolaylaştıracaktır. Analog Fotoğraf Makineleri Özellikle küçük boyutları, taşıma kolaylığı ve değiştirilebilir lens (objektif) sistemi yüzünden 35mm SLR kameralar (fotoğraf makineleri) doğa fotoğrafçılarının tercih sebebidir. Büyük format (6x6 cm gibi) kameralara oranla daha küçük ve hafif olan 35mm SLR kameralar kayalık alanlarda tırmanırken veya sulak alanlarda ilerlerken hareket yeteneğinizi sınırlamayacak ve sizi yormayacaktır. Diğer taraftan, çoğu zaman bu kameraların içinde bulunan sarma motorları, saniyede 4-5 kare film sararak örneğin bir kuşun kanat çırpma aşamalarını film üzerine ard arda kaydetmenize olanak sağlayacaktır. Gene bu özellik sayesinde uzaktan kumanda aygıtları kullanarak veya sehpa üzerinde (makineye el sürmeden) deklanşör kablosu ile çekim yapmak mümkün olacaktır. Fotoğrafta görülen EOS5 in sarma motoru ve ayna refleksi olağanüstü sessizdir. Kuşlar ve diğer hayvanlar sese karşı aşırı duyarlı olduklarından ilk kare çekimden sonra korkup kaçabilirler, bu açıdan kullanacağınız makinenin sessiz olması önem taşımaktadır. Otomatik netleme yapan (AF) makinalar, netleme hatalarınızı en aza indireceğinden bu tip kameraları seçmenizde fayda vardır. Dijital Fotograf Makineleri Dijital sistemleri tercih edenler için yukarıda tavsiye edilen 35 mm SLR analog kameraların eşdeğeri dijital SLR kameralardır. Dijital kameralar sizleri film ve banyo (tab) masraflarından kurtaracak, çektiğiniz fotografı anında görmenizi sağlayacak, beğenmediğiniz kareleri tekrar çekmenize olanak verecek, daha sonra bilgisayarınız başında çektiğiniz kareleri üzerinde bazı manipülasyonlar yapmanızı sağlayacaktır. Bu kameraların dezavantajı analog SLR lere oranla pahalı olmalarıdır. Ayrıca hafıza kartları da oldukça fiyatlıdır. Öte yandan mevcut AF lenslerinizi bu makinelerle de kullanabilirsiniz. Objektifler Kuş fotoğrafları için gerekli en gerekli lens uzun bir tele-objektifdir. Bu uzunluk en az 400mm olmalıdır. Bunun yanında 2x gücünde bir teleconverter (TC) lensinizin gücünü 800mm ye çıkaracaktır (400x2=800). Ancak unutulmaması gerekir ki TC ler görüntüyü yaklaştırma çarpanları oranında filme ulaşan ışığı azaltırlar. Örneğin 400mm f/2.8 bir lense 2x TC taktığınızda ışık iki durak azalır; yani artık 800 mm f/5.6 değerinde bir lensiniz var demektir. Fotoğrafta hem daha ucuz, hem de daha hafif olması nedeniyle tercih edilebilecek EF 400mm f/5.6 Canon lens görülmektedir. Bu lensler içinde bulunan yassı ultrasonik motorlar (USM) sessiz ve hızlı otomatik netleme için vazgeçilmez özelliklerdir. Canon serisi bazı lenslerde uygulanmaya başlayan titreşim engelleme sistemi (IS: Image Stabilizer) ışığın yeterli olmadığı ortamlarda iki durak değerinde avantaj sağlamakta; makinenin sallamasından doğan istenmeyen efektleri en aza indirmektedirler. IS teknolojisinin başarısına bakılırsa yakın gelecekte bu teknolojinin yaygınlaşacağını söyleyebiliriz. ***Aynı lensi dijital SLR kamerada kullanmanız halinde dijital makine içindeki çipin, 35mm film alanından küçük olması nedeniyle lensiniz 640mm (400x1.6) ye eşdeğer olacaktır. Önemli Not: Lenslerin "f" (diyafram) değeri yükseldikçe ışığın filme ulaşma süresi uzar, kuşlar genellikle sürekli olarak hareket halinde bulunduklarından, "f" değerinin yükselmesi kuş çekimleri için bir dezavantajdır. Bunun yanında böcek, kelebek ve çiçek çekimleri için 1:1 (doğal büyüklükte) çekim yapma imkanı veren 100mm makro bir lens ile manzara çekimleri için geniş açısı 24mm veya 28mm olan bir zoom lensin de çantanızda bulunması gerekmektedir. Alternatif Objektifler Konvansiyonel tele-objektiflerin ağır ve pahalı olması nedeniyle saha teleskoplarını bunlara alternatif olarak kullanmak mümkündür. Bir adaptör aracılığıyla kameranıza bağlayabileceğınız teleskop ile 800mm f/10.4 eşdeğerinde bir tele-objektif sağlamış olursunuz. Bunun yanı sıra, SLR kameralar için bağımsız objektif üreticilerinin sağladığı aynalı lensler, ucuz ve hafif olmaları nedeniyle tercih edilebilir. Bu tür lenslerde, bunların içinde bulunan toplayıcı ve yansıtıcı aynalardan kaynaklanan görüntü kayıpları ile özellikle su kenarlarında istenmeyen halkacıklar sorunu yaşanabilir, her şeye rağmen, bol ışıklı ortamlarda aynalı lenslerle iyi sonuçlar elde edebilirsiniz. Önemli Not: alternatif objektiflerin "f" değerleri yüksek ve sabittir. Filtreler Objektiflerinizi çizilmekten, tozdan, rezinden, yağdan korumak ve güneşin ultraviole ışınlarını kesmek için lenslerin çaplarına uygun UV veya skylight filtreleri devamlı üzerlerinde takılı bulundurmak gerekir. Ayrıca özellikle manzara fotoğrafı çekerken istenmeyen yansımaları ortadan kaldırmak ve arzu edilen renk ısısını elde etmek için polarize filtre vazgeçilmez bir eklentidir. Modern kameralarda ışık ölçüm (TTL) sistemlerin yanılmasını önlemek için dairesel (Circular-CPL) polarizerlerin seçilmesi lazımdır. Alternatif Dijital Fotoğraf Makineleri Fiyatları çok yüksek olan Dijital SLR makineleri yerine daha ucuz alternatif arayanlar için bu alanda kullanılabilecek en uygun dijital fotograf makinesi döner başlıklı Nikon Coolpix serisidir. Nikon Coolpix ler digiscoping olarak adlandırılan kuş fotograflama yöntemi için çok uygundur. Digiscoping yöntemi dijital bir fotograf makinesiyle bir saha teleskobunun kombinasyonundan oluşmaktadır. Bu yöntem kullanılarak örneğin 20x yakınlaştırma değeri olan bir saha teleskobuna 3x yakınlaştırma değerli bir dijital makine eklendiğinde 35 mm formatında 2800mm ye eşdeğer bir sistem kurulabilmektedir. Kamerayı sağ üstte görüldüğü gibi bir destek ünitesi yardımıyla veya bir adaptör kullanarak teleskopla birleştirmek veya kamerayı elle tutarak, okülere yaklaştırıp çekim yapmak mümkündür. Benzer şekilde dürbün-coolpix kombinasyonu da kullanılabilir. Netleme konusunda bolca egzersiz yapıldıktan sonra bu yöntemle çok başarılı fotograflar çekilebilir: Sehpa , döner başlık ve diğer sabitleyiciler Tele-objektif, teleskop veya makro lens kullanırken titreşimi önlemek ve net görüntü yakalayabilmek için sehpa kullanmak şarttır. Profesyoneller, manzara fotoğrafı çekerken dahi sehpa kullanırlar. Taşınma kolaylığı açısından hafif sehpa almayı düşünenler bunu hemen unutsunlar, zira hafif sehpalar arazide sıkça görülen rüzgarlardan hemen etkilenir, titreşimi kameraya yansıtır hatta rüzgar veya arazi eğiminden dolayı üzerindeki kıymetli teçhizatla birlikte devrilebilirler. Burada tavsiye edeceğim sehpa hafif olmayan, ayakları birbirinden bağlantısız, su ve özellikle çamurun ayak kanallarına dolmasına olanak vermeyen tiplerdir. Sehpa ayaklarının ve merkez dikitinin birbirlerinden bağımsız olarak hareket ettirilebilmesi sehpayı alçak seviyelerde kullanmaya (çiçek, böcek çekimlerinde gerekli) veya düz olmayan kayalık alanlarda, değişik açılarda farklı yükseltilere yerleştirmeye imkan verir. Öte yandan özellikle araba içinden kuşları çekmek için pencereye kelepçelenen aparatlar da büyük kolaylık sağlarlar, ancak bunlar kullanılırken titreşimi kesmek için arabanın motoru kapatılmalıdır. Bu aparatın takıldığı pencerenin üzerine bir perde geçirildiği takdirde arabalar kolaylıkla bir gözlem evine dönüştürülebilir. Diğer taraftan kullanılan sehpalar üzerinde yön değiştirmeye, ince ayar yapmaya, fotoğrafı çekilecek kuşu izlemeye yarayan bir döner başlık yerleştirmek gerekir. Bu konuda en başarılı modeller top kafalı döner başlıklardır. Flaş ve Aksesuarları Kuşları ve doğal yaşamı fotoğraflarken flaş genellikle güneş ışığına ek olarak ve yaprak-dal gölgelerini gidermek, gölgede duran objeyi aydınlatmak üzere yardımcı olarak kullanılır. Kullandığınız filmin ISO değeri yükseldikçe veya objektifte daha düşük "f" değeri kullanıldıkça flaşın etki alanı da artar. Seçeceğiniz flaş ünitelerinin, kameranız ile uyumlu olmasını öneririm, bunlar çoğu kez ön parlama ile çekim öncesi ölçüm yapma özelliğine sahip TTL flaş tipleridir. Flaş seçerken serinin en büyük GN* değerine sahip olan döner başlıklı modelleri tercih etmek yararlı olur. Kullandığınız kamera için üretilen orijinal flaşlara yardımcı olarak daha ucuz olan ve bağımsız firmalar tarafından üretilen flaşları ek olarak kullanabilirsiniz. Bu tip ek flaş üniteleri fotoselli algılayıcılar sayesinde kablo kullanmaya gerek kalmadan ana flaş ünitesi ile eşzamanlı olarak tetiklenebilirler. Diğer taraftan, tele-objektiflerle çalışırken flaş ışığının dağılmasını önleyerek huzmeyi daha uzağa iletmek için, yanda resmi görülene benzer yardımcı aparatlar kullanılabilir. Yakın çekimlerde ise makro lenslerin ağzına yerleştirilen daire şeklinde özel makro flaşların kullanımı fotoğraf kalitesini yükseltecektir. Not: GN=Guide Number= Rehber Numara flaşın gücünü belirler (ISO100 film için) örneğin 28GN bir flaş, f5.6 da 5 metreye kadar etkili olabilir 28/5=5.6 Uzaktan Kumanda ve Kızılötesi Tetikleme Aygıtları, Kablolu deklanşör Kuşlara veya diğer hayvanlara yaklaşmak kimi zaman olanaksız, kimi zaman ise sakıncalı olabilir (üreme dönemleri). Bu durumda gözden uzak uygun bir yerde konuşlanarak uzaktan kumanda ile veya kızıl ötesi tetikleme yöntemiyle çekim yapmak gereklidir. Uzaktan kumanda aygıtlarını elektronik ve mekanik olarak iki gurupta ele alabiliriz. Elektronik aygıt seçerken kamera üreticileri tarafından söz konusu makine için özel olarak üretilen modelleri kullanmak yerinde olur. Mekanik aparatlar ise uzun kablolu deklanşörler niteliğindedir ve hava basıncı ile çalışır.Bu tür aparatların etki alanları 5-15 metre arasındadır. Kimi profesyoneller, radyo frekansları çalışan ile daha uzun mesafelerde (50-100m) etkili alıcı-verici sistemleri de kullanmaktadır. Diğer taraftan fotoğraf çekerken hassas ayarların bozulmasını ve titreşimi engellemek için kablolu deklanşör kullanmak gereklidir. Aygıtları yerleştirirken kuşların etrafta bulunmadığı zamanlar tercih edilmelidir. Film Çektiğiniz fotoğrafların ticari değer ifade etmesi, bozulmadan uzun süre saklanması ve kolaylıkla arşivlenmesi açılarından pozitif (slayt-dia) film kullanmanızda yarar vardır. Filmin ISO (ışık hassasiyet) değeri yükseldikçe ışığa duyarlığı artar ancak gren seviyesi yükselip , renk tonları solgunlaşabilir (ISO 200-400) . Bu dezavantajlar yüzünden düşük grenli ve düşük ISO değerli filmler (50-100) kullanmakta fayda vardır. Ancak "f" değeri yüksek, ışığı geç geçiren (yavaş) lensler kullanırken yüksek ISO değerli filmler kullanmak kaçınılmaz gibidir. Diğer Yardımcı Malzemeler Fotoğraf Makinelerinizi boynunuzda taşımanız gerektiğinde boyuna ağırlık yüklemeyecek, geniş yüzeyli, ağırlığı yayan özel kamera kayışları kullanılmalıdır dar kayışlar, efor gerektiren etaplarda boyundaki damarlar ve ense omurları üzerindeki bası nedeniyle baş ağrısına yol açabilirler. Fotoğraf malzemelerini taşımak için konvansiyonel çantalar yerine mevcut sırt çantalarınızı kullanmanızı öneririm, objektif, kamera, vd.nin birbirine çarpmasını önlemek için yedek iç çamaşırı, t-shirt , polar şapka kullanabilir veya mevcut çantalarınız içindeki muflonlu seperatörleri bunların arasına yerleştirebilirsiniz. Piyasada sırt çantası şeklinde tasarlanmış kamera çantaları da vardır. Ancak ben içinde matara (su), güneşten koruyucu krem (kokusuz), su kenarına gidiliyorsa sivriler için sinek-kov spreyi, çakı, çakmak ve rehber kitap, not defteri ve kalem bulundurduğum çok fonksiyonlu sırt çantamı tercih ediyorum. Arıların ve diğer hayvanların dikkatini çekmemek için parfüm kullanmamanızı tavsiye ederim. Bakım Ürünleri Toz ve nem, makine ve objektiflerin düşmanıdır. Her yolculuktan sonra araç ve gereçlerinizin tozunu almak için yumuşak temizleme fırçası ve lekeleri gidermek için lens temizleme kağıtları bulundurmak gereklidir. Toz almak amacıyla satılan basınçlı hava spreylerini dikkatli kullanmak ve fotoğraf makinelerinin içine kesinlikle tutmamak gerekir, bu işlem makinenin elektronik perdesine zarar verebilir. Lens temizlemek için satılan solüsyonları mercek üzerinde yapışkan-inatçı lekeler oluşmadıkça önermiyorum, bu tip kimyasallar imalat sırasında mercekler üzerine uygulanmış bulunan kaplamalara zarar verebilir. Fotoğrafik Teknikler Bir fotoğrafı iyi bir fotoğraf yapan fotoğraf makinesi değil fotoğrafçıdır. Doğada bol pratik yaparak yeteneklerinizi geliştirmeniz gerekir. Zamanla kendi tarzınızı geliştirdiğinizi göreceksiniz. Ancak iyi bir kuş ve doğa fotoğrafçısı olmak için aynı zamnda iyi bir gözlemci olmak gerektiğini de unutmayın. Gördüğünüz kuş veya çiçek nedir, hangi türler, ne tip habitatlarda bulunur, türlerin davranış biçimleri nedir? gibi bilgileri edinmek gerekir. Kuşlar, çiçekler, mantarlar ve böceklerle ilgili çeşitli yardımcı kitaplar edinip bunları çalışmakta büyük yarar vardır. Kompozisyon Bir konuyu, fotoğraf karesine aktarmanın pek çok yolu vardır. Sizin özgün tarzınızı belirleyecek olan da konuyu, küçük bir kareye sığdırırken kullanacağınız yöntem olacaktır; başka bir deyişle kompozisyon kurma yeteneğiniz. İyi bir kompozisyonu oluşturan tüm öğeleri tarif etmek zordur, zira bunu yapmanın pek çok şekli olabilir, burada sadece kompozisyonun temel öğelerine değinmekle yetineceğim. Başarılı bir kompozisyonun içindeki tüm etmenler izleyicinin ilgisini çekecek şekilde dizilmiş olmalıdır: Işık ve gölge Işığın başarılı kullanımı, solgun renklerin hakim olduğu ortamlardan başarılı fotoğraflar çıkarabilmenizi mümkün kılabilir. Bir an siyah-beyaz fotoğrafı düşünecek olursanız ışığın gücünü daha iyi kavrayabilirsiniz. Kısaca vurgulamak gerekirse: ışığın aydınlattığı alan izleyicinin dikkatini çeken alandır. Geride kalan alanlar ise ışık düşen alanları dengeli biçimde besleyerek fotoğrafta üçüncü boyutun oluşmasına katkıda bulunurlar. Resim 1`de gördüğünüz flamingoyu içinde bulunduğu ortamdan soyutlayabilmek ve kuşun çarpıcı rengini vurgulayabilmek için -1.5 f/durak (eksi) pozlandırma uyguladım. Söz konusu işlem yapılmamış olsaydı, bu sıradan bir flamingo fotoğrafı olacaktı ve fazla ışık kuşun renklerini solgun, beyaza dönük pembe, gölgelik alanları ise uçuk gri olarak gösterecekti. Günün fotoğraf çekmek için en uygun ışığı, güneş doğduktan hemen sonra ve güneş batmadan önceki saatlerde bulunabilir. Resim 1`de görülen flamingo fotoğrafı güneş batmadan önce çekilmiştir. Geleneksel olarak güneşi arkamıza veya yanımıza alarak fotoğraf çekmek en iyi sonuç veren yöntemlerdir. Gün ışığı yeterli olmadığında veya istenmeyen gölgeler (dal ve yaprak) konunun üzerine düştüğünde bunları gidermek için yapay ışık kaynağı (flaş) kullanmak gerekir. Renkler ve ahenk Güçlü, parlak renkler izleyicinin dikkatini çeker. Örneğin kırmızı rengin insanların beyin hücrelerini uyardığı kanıtlanmıştır. Öte yandan renklerin uyumu (ahenk) ve uyumlu karışımlar (sarı-mavi) izleyiciyi olumlu etkiler. Gün ışığının dikey ve yatay gelmesi renk tonlarını etkiler. Güneş doğarken veya batarken ışınlar yatay geldiğinden ışığın ultra-viole etkisi azalır, bundan dolayı kırmızı ve sarı tonlar kuvvetlenir, abartılı çıkar. Işığın dik olarak geldiği saatlerde artan kontrastı dengelemek ve renk ısısını korumak için polarize filtre kullanılmalıdır. Açı ve derinlik Fotoğrafın çekildiği açı objelerin görünüm ve derinliğini dramatik biçimde değiştirir. Bir objeyi yukarıdan (tepeden) çekmek fotoğrafı iki boyuta indirecek (sağdaki fotograf) oysa diz çökerek veya yere yüzükoyun uzanarak yandan (yüzeyden) çekmek konuya derinlik katacak, (aşağıdaki fotoğraflar) fotoğrafa üçüncü boyutu kazandıracaktır. Öte yandan derinlikte detayın önemli olduğu manzara fotoğraflarında alan derinliğini artırmak için f/14 gibi yüksek f/durakları tercih edilmelidir. Hareketli fotoğraflar çekerken önemli olan merkez objenin netliği olduğundan f/2.8 gibi mümkün olan en düşük f/durağı tercih edilir. Nitekim düşük f/durağı tercih etmek daha süratli hız aralıklarında çekim yapmayı mümkün kılar ve objelerin hareketli olmasından doğan netlik risklerini de en aza iner. (Resim 2) Fon ve ufuk çizgisi Fotoğrafı çekilen objenin dışında arka planda veya kenarlarda neyin nasıl bulunduğuna da dikkat etmek gerekir. Fon`da veya kenarlarda objeyi perdeler şekilde duran, ilgiyi dağıtacak detayların (dallar, yapraklar, çöp vb yıgınlar gibi) bulunmamasına ve ufuk çizgisinin yatık değil (Resim 3), düz olmasına (soldaki fotograf), ayrıca fotoğraf alanını tam ortadan değil ortanın altından bölmesine özen gösterilmelidir. Fonda istenmeyen objelerin bulunmaması için temel objeye gösterilen dikkatin aynısını göstermek gerekmektedir. Kısaca konu kadar, konunuzun etraf ve arkasını gözlemlemeniz büyük önem taşır. Kadraj ve anlatım disiplini Objelerin ne kadarının fotoğraf karesi içine alındığı ve bunun karenin neresine yerleştirileceği önemlidir. Burada pek çok seçenek karşımıza çıkar, örneğin bir kuşu çekerken portre veya tüm gövde tercih edilebilir ya da kuşun yaşadığı ortamı vurgulamak için kuş biraz daha küçük tutularak içinde yaşadığı habitat hakkında fikir verilmesi sağlanabilir. Kuşun gövdesinin tamamını kapsayan bir fotoğrafta, gövdenin yatay kadrajda tercihen sağ veya sol alt köşeye (bakış yönüne göre) yerleştirilmesi anlatımı güçlendiren bir uygulamadır. Anlatım gücünü artırıp fotoğrafı değerli kılmak için objeyi sabit çekmek yerine belirgin bir davranışı sergilerken çekmekte fayda vardır. Uçarken, avını yakalarken, beslenirken, v.b. (Resim 4) Pozlandırma Temel kompozisyon kurallarına yer verdikten sonra, pozlandırma ile ilgili bilgilere geçebiliriz. Pozlandırma ile basit olarak film yüzeyine düşecek ışığın dozajının ayarlanmasını kasdediyorum. Fotoğrafı başarılı kılacak en önemli etmenlerden biri filme ulaşan ışığın uygun ölçülerde olmasıdır. Filme ulaşacak ışığı ayarlamak için elimizde iki kontrol noktası vardır, objektif odak-diyafram değerleri (Av: f-durakları: f2.8-f22 arası) ve makinenin çekim hız aralığı (Tv: 1/4000sn-30sn). Her filmin az ve çok pozlandırmaya karşı toleransı değişiktir bu durumda kullandığınız filmlerin duyarlıklarını ölçmek size düşüyor, bunu tecrübe ile bulacaksınız. Bu iki kontrol noktası arasında ters oranlı bir ilişki vardır, birinin değeri arttığında diğeri azalır; örneğin poz değeriniz f5.6 de(Av), 1/500 (Tv) ise derinliği artırmak içi diyaframı kısarak f8 e(Av) getirirseniz hız (Tv) 1/250 ye düşecektir. Hızın düşmesini engeller ve değeri (Tv) 1/500 de bırakırsanız fotoğrafınız 1 f/durağı az pozlanmış olur. Fotoğrafa yeni başlayanlar makinelerinin otomatik olarak atadığı değerlerle çalışmalıdırlar, biraz tecrübe kazandıktan sonra pozlandırma egzersizleri yapılabilir, ancak ne yaptığınızı unutmamak için poz değerlerinizi bir kenara not almakta yarar vardır. Kuşlar gibi hareketli konuları çekerken konuyu istenen netlikte dondurmak için mümkün olan en düşük f/durağı ve en yüksek hız değeri kullanılmalıdır. Fakat teleobjektiflerin f/durak değerleri düştükçe fiyatları artar. Örneğin 300mm f/5.6 bir lens 300 dolara alınabilecekken, aynı lensin f/2.8 durağına sahip olanı 3000 dolar değerinde olacaktır. Bu çarpıcı örneği verirken aynı zamanda kuş fotoğrafçılarının en önemli problemini de sanırım açıklamış oldum. Fotoğraf makineleri tarafından otomatik olarak atanan değerler ile çoğu zaman optimum pozlandırma yapılabilir ancak bazı durumlarda işe el koyup otomatik pilotu devreden çıkarmak gerekebilir. Risk içeren durumlarda (açık veya koyu renkli kuşlar çekerken) öncelikle makineyi durak (Av) belirleyici otomatik konuma getirmekte ve kuş ile aynı uzaklıkta bulunan bir ağaç gövdesinden ışık ölçümü yaparak hızı (Tv) bu değere sabitlemekte yarar vardır. Bu yapılmadığı takdirde tıpkı yandaki fotoğrafta olduğu gibi TTL metre koyu renkli fondan etkilenerek beyaz tüylerdeki detayın kaybolmasına (beyaz patlaması) yol açar. (Resim 5) Alan Derinliği Alan derinliğini objektif değerlerini (Av) değiştirerek kontrol edebiliriz. Kural basittir: f/durağı değerini artırırsanız (ör:f18) alan derinliği artar, azaltırsanız (ör: f2.8) azalır. Peki alan derinliğini artırıp, azaltmak ne işe yarıyor? Alan derinliği arttıkça vizör içinde görülen her obje mümkün olan en net biçimiyle ve detaylı olarak filme çıkacaktır, bu yüzden manzara fotoğrafları çekerken makine tarafından atanan değerler yerine f14 gibi yüksek duraklar seçmeniz gerekir. Bir çiçek resmi çekerken ise onu arkadaki istenmeyen dal ve yaprak görüntülerinden soyutlamak (alan derinliğini azaltmak) için f5.6 gibi nisbeten düşük bir durak kullanılabilir. F/duraklarını artırıp azaltırken dikkat edilmesi gereken nokta, alan derinliği arttıkça daha düşük hız aralıkları içinde veya flaş kullanarak çekim yapmamız gerektiğidir. Eğer objeniz hareketli ise veya rüzgardan dolayı sallanıyorsa alan derinliğini artırma çabalarınız başarısızlıkla sonuçlanabilir. (Resim 6) Flaş Kullanımı Işığın yetersiz olduğu durumlarda başarılı fotoğraf çekebilmek için flaşdan yararlanmak gerekir. Flaş yapay bir ışık kaynağı olduğundan objeye ve fona eşit oranda dağılmaz, örneğin objeniz sizden 10 m, fondaki yapraklar ise 20m uzakta ise, yapraklara objeye ulaşan ışığın ancak dörtte biri ulaşacak fon film üzerine iki durak daha az pozlanmış olarak çıkacaktır. Böyle bir ortamda Fonu da objeyle aynı oranda pozlamayı arzu ediyorsanız ek flaş üniteleri kullanmanız gerekecektir. Gece çekimlerinde ortaya çıkan bir başka problem olan ‘kızıl göz` ü ortadan kaldırmanın en iyi yolu uzatma kablosu kullanarak flaşı makineden farklı bir açıda konuşlandırmaktır. (Resim 7) Flaş bir taraftan güneş ışığının az olması veya olmaması nedeniyle kullanılırken, diğer taraftan da fazla olması nedeniyle ortaya çıkan istenmeyen gölgeleri ortadan kaldırmak için de kullanılır. Tamamen siyah renkli olan kuşların (sağdaki karatavuk gibi) tüyleri üzerinde detay vermek ve gözlerine ışıltı katıp gövdesinden ayırmak, ışığı arkasında bulunduran objeleri aydınlatmak için de flaş kullanılır. Gözlerdeki ışıltı fotoğrafa canlılık katan önemli bir öğedir, sırf bunu sağlamak için devamlı olarak flaş kullanmak da mümkündür. Flaş ile çalışılırken makineniz en fazla 1/60 - 1/250 hız değerlerinde çalışır. Yüksek hız aralıklarında (1/250) gün ışığı ile flaşı dengelemek kolaylaşır. Gün ışığı ile flaşı aynı anda kullanırken (dolgu flaş) doğru pozlama yapabilmek için makinenizin TTL metresinin okuduğu değerde bir değişiklik yapmazken, flaş değerini 1 durak az ışık verecek şekilde ayarlamanız gerekir. Modern flaşların üzerinde tıpkı kameranızın üzerinde olduğu gibi artı-eksi pozlama düğmesi bulunmaktadır, eski tip flaşlarda bunu sağlamak için makine değerini sabitleyip, flaşın üzerindeki ASA ayarını 100`den 200`e getirmek gereklidir. Arkasında güneş bulunan objeler için böyle bir ayarlama yapmanıza gerek yoktur. Uzaktan Kumanda Normal şartlarda yeterince yaklaşılması mümkün olmayan veya sakıncalı olan (yuvada) kuşları fotoğraflamak için uzaktan kumanda aygıtları kullanmak gerekmektedir. Bu aygıtların kuşların etrafta bulunmadığı bir zamanda yerleştirilmesi ve tecihen iyi gizlenmesi gerekir. Uzaktan kumandaya bağlanmış makine kuşun konması beklenen noktaya netledikten sonra , kuşun göremeyeceği bir yere saklanarak sabırla beklemekten başka yapacak bir şey yoktur. Fotografları çektikten sonra düzeneği kaldırırken de aynen kurarken olduğu gibi kuşların uzaklaştığı zamanı beklemek gerekir. Kuşların hangi noktalara konduğunu ve makineyi nereye koyacağınızı tespit etmek için dikkatli gözlem yapmak gereklidir. Resim 8`deki fotoğraf, kara kızılkuyruğun istinat duvarının deliği içinde yuva yaptığı belirlendikten sonra üzerinde küçük teleobjektif olan bir düzeneğin yuva ağzının üç-dört metre gerisine gizlenmesiyle çekilmiştir. Bu sistemi kullanarak büyük tele objektifleriniz olmasa da mükemmel sonuçlar alabilirsiniz.

http://www.biyologlar.com/kus-ve-doga-fotografciligi-cekim-rehberi

Denizlerimiz ve ekolojik önemleri

Deniz göl okyanus ekosistemi Denizel (Okyanus ekosistemleri Deniz ekosistemleri) Su ekosistemlerini kara ekosistemlerindeki gibi coğrafi sınırlarla belirlemek çok zordur. Çünkü sular atmosferik olaylardan karaların etkilendiği oranda etkilenmemektedirler. Ancak deniz tatlı su ve haliç gibi su havzalarının derinlikleri ve bileşimlerindeki farklı maddeler nedeniyle sularda da farklı canlı bölgelerinden söz edilebilir. Buradan hareketle su biyomları; deniz biyomları (tuzlu su) ve tatlı su biyomları olmak üzere iki başlık altında incelenebilir. DENİZ BİYOMLARI Denizlerdeki tür topluluklarının dağılımında en önemli etken derinliktir. Neiritik alan diye adlandırılan 200 m derinliğe kadar olan deniz ortamı tür topluluklarının en zengin oldukları bölgeyi oluşturmaktadır. Neiritik alanların akarsularla beslenmesi güneş ışınını fazla almaları oksijen ve birçok çözünmüş maddenin fazla olması nedeniyle deniz canlılarının en çok yoğunlaştığı bölgelerdir. Neiritik alan deniz canlılarının % 90’ını barındırmaktadır. Daha derin sahalara ise güneş ışınları daha az ulaştığı ve besin maddeleri az olduğu için canlı türleri çok azalmaktadır. Bu bölgelerdeki canlılar daha üst tabakalardan inen besinlerle beslenmektedir. NOT: Deniz ve okyanuslar doğada ısının dağılmasında ve atmosferde tuz dağılımında son derece önemlidir.Bu tuz kristalcikleri yoğuşma olayında son derece önemlidir.Aerosol denilen bu parcacıklar bulut oluşumuna yardımcı olur… TATLI SU BİYOMLARI Akarsular göller sulak alanlar ve bataklıklar tatlı su biyomlarını oluşturmaktadır. Akarsular ekosistemlerin önemli bir parçasını oluşturur. Akarsuyun yeraltına sızan kısmı akiferleri yüzeysel akışa geçen kısmı da deniz ve okyanusları besler. Akarsular birçok bitki ve hayvan türü için yaşam alanı oluşturur. Akarsuların akış hızı ve kimyasal özellikleri akarsuyun barındırdığı hayvan türü ve sayısı üzerinde etkili olan faktörlerin başında gelir. Bir akarsuda çağlayanlar varsa biyolojik üretim ve çeşitlilik az olur. Çünkü balıklar ve diğer canlıların çağlayanları aşmaları çok zor bir durumdur. Yatak eğiminin fazla olduğu yerlerde bol miktarda alüvyal malzeme taşınıyorsa akarsu bulanık bir görünüm arz eder. Suyun bulanık olması birçok canlı için olumsuz sonuçlar doğurur. Akarsu denize ulaşıyorsa ağız kesimlerinde tatlı su ve tuzlu su birbirine karışır. Buralar bitki ve hayvan türleri bakımından zengin alanlardır. Akarsuların taşıdığı elementler ve besin maddeleri buralardaki biyolojik çeşitliliği artırır. Akarsu ağızları mikroorganizmalardan kuşlara kadar birçok canlının barındığı yerlerdir. Tüm deniz balık üretiminin % 90’ı kıyı sularından özellikle de akarsu ağızlarından sağlanmaktadır. Göller karalar üzerindeki durgun su ekosistemlerini oluşturur. Göllerin çevresinde yer alan sucul bitkiler gerek su kuşları gerekse diğer canlılar için hem barınma hem de beslenme alanları oluşturmaktadır. SU DÖNGÜSÜ: Su yaşam kaynağıdır. Bütün canlıların ağırlıklarının önemli bir kısmını su oluşturur. Yeryüzündeki su miktarının yaklaşık % 5’ i tatlı sulardır. Güneş enerjisinin ısıtmasıyla çeşitli kaynaklardan atmosfere çıkan su buharı; yağmur kar dolu gibi yağış biçimleriyle yeniden yer yüzüne döner. Bu suyun bir miktarı yer altı sularına karışırken daha büyük kısmı göl ve deniz gibi kaynaklarda birikir. Su döngüsü de öteki tüm döngüler gibi süreklidir. Bitkiler terleme ile su döngüsüne katılır. Yer yeryüzündeki bütün sular katılmaktadır. Söz gelimi denizlerden buharlaşan su yağış olarak yer yüzüne dönmekte bir kısmı yüzeysel sularda birikip bir kısmı da yer altı sularına karışmaktadır.Yer altı sularının son toplanma yeri ise deniz ve okyanuslardır. Burada toplanan sular su döngüsüne devam eder ( uzun su devri ). Deniz ve okyanuslardan buharlaşan suyun karalara geçmeden tekrar yağmur kar dolu biçiminde deniz ve okyanuslara geçmesine ise kısa su devri denir. OKYANUS EKOSİSTEMİ Ekolojik şartları büyük bir çeşitlilik gösteren deniz ortamı homojen bir bütün olarak ele almak bilimsel açıdan çok kısıtlı bir bakış açısına neden olur. öncelikle iki büyük okyanus alanı ayırt edilmektedir.bütünüyle denizleri oluşturan �su kütlesi� ve kıyılardan derin abis çukurlarına kadar dipleri kapsayan �dip alanı� ;Dip alanı derinliğine göre üçe ayrılır. 0-200 metreler arasında uzanan ve okyanusların tabanının yüzde 76 sını oluşturan kıta sahanlığı; 200 metreden 2000 metreye kadar uzanan dipteki ani eğim bölgesinden meydana gelen ve tabanın yüzde 81 ni oluşturan kıta şevi; ve nihayet okyanusların tabanının yüzde 843 ünü meydana getiren abisler. (2000-6000 metre) ve çukurlar (6000 metreden bilinen en derin yer olan mariana çukurunda 11.000 metreye kadar) Gelgite maruz kalan ve hatta dalga serpintisiyle ıslanan kıyı şeritleri de okyanus alanına dahil edilmektedir. Gerçekten de bu bölgelerde yaşayan organizmalar gerek gelgitler sırasında birbirini ardınca su altında ve su üstünde kalarak gerek ortamın yüksek tuzluluğu sebebiyle okyanus etkilerine maruz kalmaktadır. Okyanusları ve denizleri oluşturan su kütlesi ikiye ayrılan kıta sahanlığını örten yüzey suları ve 200 metrenin altında kalan dip suları bu düzeylerde su kütlesi güneş ışınlarının nüfuz etmesi derecesine ve mevsimlik sıcaklık değişimlerine bağlı olarak düşey bir ekolojik katmanlaşma gösterir. Işığın ulaştığı epipelojik bölge ışık miktarının bitkilerin fotosentez yapabilmesi için yeterli olduğu 0 ila 50-100 metrelik yüzey sularına tekabül eder. Söz konusu bu bölgenin altında dip bitkileri ve fitoplankton yaşayamaz; yanlızca etçiler veya çürükçül beslenen hayvan türleri canlı kalabilir. Okyanus ekosisteminin alt bölümlere ayrılması karşılaşılan ekolojik şartların çeşitliliğiyle ilişkilidir; organizmaların uyum mekanizması ve üretkenliği bir bölgeden diğerine belirgin farklılıklar gösterir.   DENİZ KIYILARIMIZDA KİRLENME,EKOSİSTEM ACISINDAN BİR DEĞERLENDİRİLMESİ H. Özden Ege Üniversitesi, Müh.Fak. Mak. Müh. Bölümü ÖZET Denizlerimizde ekosistem dengesini olumsuz etkileyen başlıca nedenler: - kıyılarımızın yıllardan beri kentsel çöplerle ve kimyasal içerikli, mikrobik, bakteriyel ve radyoaktif içerikli endüstriyel atıklarla kirletilmesi, - topraksı hafriyatla, gelişigüzel doldurulması, - deniz ürünlerinin aşırı be bilinçsiz avlanılması ve toplanılması. Bunların sonucu olarak her gecen yıl birçok balık türü ve deniz bitkisi yok olurken deniz ürünlerinin avlama miktarlarında da büyük düşüşler tespit edilmektedir. Deniz kıyılarımızdaki bu olumsuz gelişmeleri basta balıkçılar olmak üzere herkesin bilmelerine ve zaman, zaman yakarmalarına rağmen, gereken yapılmıyor. Uluslar arası sivil örgütlerle bir dayanışma içerisinde toplumsal tepki gösterilmiyor. Uluslararası bir sorun haline gelen deniz kirliliği, Birleşmiş Milletlerde gündeme getirilmiyor, uluslararası çözümler üretilmiyor. Devlet yönetiminde bu kör zihniyet devam ettikçe, vatandaş ve sivil örgütler ses çıkarmadıkça ekosistem dengesi düzelmeyecek şekilde harap olmağa devam edecektir. Doğa harikası deniz kıyılarımızın katliamına hepimiz seyirci kalmaktayız. Bu çalışmada; - Deniz kirliğinin ulaştığı boyutlar, başlıca nedenlerine ve ekosistemdeki bazi olumsuz yansımalarına dikkat çekilmektedir.. Deniz kirliği hakkında ve alınması gereken bazı önlemler sıralanmaktadır. Ayni zamanda çekirdekten yetişme bir balıkçı ve gemici olarak bu konudaki gözlemlerim, tespitlerim ve değerlendirmelerim tartışmaya sunulmaktadır. Anahtar Kelimeler: Deniz kıyıları, kirlenme, kentsel çöpler, sanayi atıkları, eko sistem, önlemler. 1. GİRİŞ Kıyı denizlerimiz, limanlarımız, göllerimiz fosseptik çukuru ve çöplük ve her türlü ölümcül, hastalık atık deposuna dönüştürülmüştür. Deniz suyuna yayılan lağım artıkları, çöp yığınları ve iğrenç rengi nedeniyle bırakın balık avlamayı, denize bile bakılamıyor, Yeşil sağlıklı deniz bitkilerinin, yosunların yerini kahve renkli seyrelmiş hastalıklı yosunlar ve yaz sıcaklarında artarak çoğalan tiksindirici sümüksü mikroplu yosunlarla ve köpüklerle denizin üstünü kaplar olmuştur.. Deniz dibindeki altın sarısı kumlukların yerini laspa, (pis kokulu çamurumsu, bataksı zemin), poşetler ve plastik malzemeler kaplamıştır. Endüstriyel ve kentsel kirli atıklar yetmiyormuş gibi kıyılarımızın, bilhassa liman içi ve turistik kıyıların gelişi güzel ticari amaçlı doldurulması büyük bir sorumsuzluk göstergesidir. Denizin doldurulmasıyla açılan parklarda, kordon boylarında, rıhtımlarda bırakın oturup dinlenmeyi, güneşlenmeyi veya yüzmeyi; denizden bilhassa yaz sıcağında rüzgarsız günlerde ayılan pis kokudan insan nefes almakta zorlanıyor. Şekil 1 gözlenen deniz kıyıların kirlenmesine, kıyı tahribatına ait farklı örnekler gösterilmektedir. (1 ve 2. fotoğraflarda; Kanalizasyon boruları önündeki yüzen çöpler, 3. fotoğrafta; Yağmur sonrası İzmir liman denizinde su üstünde yüzen çöpler, 4. fotoğrafta; Denize acılan bir dere ağzındaki yüzen çöpler, 5. fotoğrafta; Denize dökülen bir derede ilaçlanma görüntüleri, 6. fotoğrafta; Bodrumda devlet ödüllü topraksı hafriyat deniz dolgusuna bir örnek gösterilmektedir). Benzeri kirlilikler ve kıyı tahribatları dünyanın birçok deniz ve göl kıyılarında rastlamaktadır. Kıyı yerel yönetimler deniz içini ve deniz kıyılarını konutsal ve endüstriyel çöplerle, atıklarla ve topraksı hafriyatla doldurup kirleteceklerine; kaynaklarını ve enerjilerini merkezi arıtma tesislerinin, çökeltme göletlerin yapımları gibi hizmetlerde harcasınlar. Denizi doldurarak yeşil saha açacaklarına ve bu yeşil sahalar üzerine gelişigüzel kamu binalarla, büfelerle, cay-kahve, düğün salonları ve sosyete gazinoları ve mafya lokalleri ile yeniden dolduracaklarına denizin dibine suyun içine kadar olan çarpık, geri zekâlılık abidesi olan yapılaşmayı önlesinler. Dolgular, kıyının doğal yapısını bozmakla kalmamakta; denizin kendi kendini yenileme ve temizleme doğal mekanizmasını tahribat etmektedir! 2. DENİZ SUYUNUN KİRLENME NEDENLERİ Deniz suyunun kirletilmesi ile denizdeki bir çok bitkinin, canlının yok olmasının bir çok nedenleri vardır. Bu nedenler örneğin; - Kentsel çöpler, (atıklar) - Sanayisel atıklar, - Tarımsal Atıklar, - Gemi-Teknesel atıklar, - Topraksı hafriyatlı dolgular, - Aşırı ve bilinçsiz avlanma, gibi gruplandırılarak sıralanabilirler. Diğer bir gruplandırma ise, kirli atıkların kati (denizdeki poşetler, lastikler, plastikler, suni maddeler v.b.) , sıvı (yanık yağlar, kimyasal asitli, renklendirici sanayi sıvıları, boyaları, deterjanlı temizlik suları v.b.), aeroskopik atık maddeleri, örneğin püskürtmeli tarımsal ilaçlar) ve radyoaktif özelliğine göre alt gruplandırmalar yapılabilmektedir. 2.1 Kentsel Atıklar: Buradaki kirlilik, evsel bilhassa mutfak artıkların örneğin, yanık yağların lavabo-kanalizasyon yolu ile direkt yada dolaylı denize ulaşmaları. Ayni şekilde temizlikte, hijyenikte kullanılan kimyasal sıvılar, tozlar ( deterjanlar, çamaşır tozları, klorak gibi asitler, sabunlar, macunlar v.b.) Önem sırası dikkate alınmadan aşağıdaki gibi sıralanabilir: ·Evsel-konutsal sıvısal atıkların, (deterjanlı bulaşık suların, asitli çamaşır kirli ve asitli suların, yağların v.b.) lağım, kanalizasyon yoluyla yıllardan beri arıtılmadan direkt yada dolaylı olarak denize akıtılmaları. ·Lağım çukurlarına biriktirilen konut artıklarının, bilhassa asitli, fosfatlı temizlik malzemelerinin, deterjanlı suların, yanmış yağ artıklarının direkt vidanjörlerle veya dere, kanalizasyon, boru gibi kanallarla denize boşaltılmaları, ·Konutsal kati artıkların örneğin poşet, plastik, lastik, sise, kağıt, kumaş gibi kati artıkların, kati çöplerin farklı yollardan direkt atılmaları yada dolaylı olarak dere akarsularla denize dökülmeleri, yayılmaları. ·Konutsal topraksı, taşlı, ağaçlı v.b. hafriyat atıkların denizin içine yada denizin kıyısına boşaltılması, ·Derde yataklarının, kanalizasyonların dezenfekte edilmesi daha sonra bu zehirli ilaçların deniz suyuna karışması, ·Dere yataklarında su birikintilerinde bilhassa sıcak yağışsız mevsimlerde oluşan mikrop, bakterilerin çoğalarak denize karışmaları, deniz deki canlı ve bitkilere bulaşmaları. (Yapılan bir araştırmada İzmir limanı içersinden avlanan balıkların etinde ve barsallarında insan sağlığını tehdit eden kanserojen kalıntıları, bakteriler bulunmuştur, bu bulgular İzmir limanın lağım çukuruna dönüştürüldüğünün diğer bir delilidir.!) 2.2 Endüstriyel Atıklar (Sanayisel ve Tarımsal Atıklar) ; Sanayisel kati, sıvı ve aerosol (sıvı, gaz ve toz karışımlı) artıkları denizlerimiz deki ekosistemi tehdit eden kirliliklerin başında yer alırlar. Bu atıklar Denizlerimde yakıcı, boğucu, bozucu, çökeltici, zehirli, engellemeci, radyoaktif, bulaşma ve yapışma özeliklerine sahiptirler. Tehlikeli hastalık saçan, kanserojen etkili, biyolojik mikrobik sanayi artıkları da arıtılmadan denize ulaşmaktadırlar. Miktar acısından da tehlikeli atıklardır. Sanayisel deniz kirliliğin başlıca nedenini aşağıdaki gibi özetleyebiliriz: “Her türlü Zehirli, çöktürücü, renklendirici, boğucu, radyoaktif sanayi artıkların denize arıtılmadan yada yetersiz artıma ile direkt yada dolaylı olarak dökülmeleri ve denizde yayılmaları” Tarımsal atıkları endüstriyel atıklar grubu icerisinde ele alınabilirler. Tarımsal amaçlı olarak kullanılan kimyasal gübrelerin, alıntılarının, bitkisel ve hayvansal hormonların, ilaçların, boyaların, havadan, yer altı veya yerüstü sularla direkt yâda dolaylı olarak deniz suyuna karışmalarıdır. Endüstriyel baca gazlarını ve aerosöl atıklarını, dünyadaki yanardağların meydana getirildiği kirlilik oranı ile karsılaştırıp Fabrika bacalarından ve eksozlardan yayılan cevre kirliliğini küçümseyen bazı bilim adamları gibi yanılgıya düşüp bilensiz ilaçlama, gübreleme ile meydana gelen kıyı denizlerimizdeki kirlilikte küçümsenmemelidir. 20 sene evveline kadar Edremit körfezinden ta Çandırlı körfezine kadar hemen, hemen her yıl zeytin ağaçlarının ilaçlanması, kanserojen DTT tozu ile uçaklardan püskürtülerek yapılıyordu. Aerosöl ilacın bir kimsi denize karışarak zaman, zaman bazı sahillide toplu balık katliamlarına neden oluyordu, Büyük küçük yavru ayırt etmeksizin balıkların bir kısmi ölü karaya vururken, bir kısmide oryantasyonu kaybedip su üstünde panik içerisinde yüzdükleri hala gözlerimin önündedirler. İşin ilginç ve acı tarafı; cahil vatandaşların bunları denizden toplayarak satması ve pişirip yemesi idi. Günümüzde deniz kıyılarımızda hala zeytin ağaçlarını ilaçlanması uçakla ve motorlu güçlü pompalarla yerden yapılmaktadır. Bu ilacın bir kısmi yine denize karışmaktadır. Tek fark, karaya vuran balıkların görülmemesidir. Bunun nedenini gayet basit sizde düşünün ve yorumlayın! (Denizlerimizde ilaçlardan etkilenip karaya vuracak balık kalmamıştır) 2.3 Gemi-Teknesel ve bot gibi deniz araçlarından denize karışan atıklar, Son yılarda denizlerimizde gemi, tekne, bot, yat gibi deniz vasıtaların sayıları artmıştır. Bu artışa paralel olarak denizlerimizdeki kirlilik artmıştır. Bu kirlilik farklı yollardan denize bulaşmaktadır: ·Petrol tankerlerinden ve diğer gemilerin kazaya uğrayarak kirletici maddelerin denize karışması, yayılması, ·sinte ve balast suların denize boşaltılmaları, ·gemi-evsel çöplerin denize atılması, ·gemi- tuvalet-lavabo suların, denize akıtılmaları, ·gemi ambar artıkların, süprüntülerin denize dökülmesi, ·zararlı yosunların, mikro organizmaların bir denizden diğerine taşınmaları, ·Gemi altlarının yosun, atırganalara (gemilerin sualtı dış gövdelerinde zamanla oluşan kabuklu organizmalar midye türü canlılar, Teknelerin hızını önemli ölçüde azalttığı, yakıt tüketimini artırdığı gibi gövdenin çürümesine de neden olmaktadırlar ) ve diniz kurtçuklarına karşın zehirli boya ile boyatılmaları, bu zehirli boya partiküllerin deniz suyuna karışması. 2.4 Topraksı hafriyatlı deniz kıyısı dolguları ·Her türlü çöpün, topraksı hafriyatın denize direkt veya dolaylı denize dökülmeleri, ·Deniz kıyılarının doğal yapısının betonlaştırılarak tahribat edilmesi, ·Deniz suyunun doğal devir-daimi, akıntıların gelişigüzel dolgu, barınak, dalgakıran, marina, kütiskele, dalyan, gibi yapılarla engellenmesi veya olumsuz yöne çevrilmesi, ·İnşaatlar için sahillerden, koylardan ve deniz dibinden kum, çakıl, taş toplanması, Kıyı dolgusunun her türlü hafriyat, toprak ve çöp artıkları dökülerek gelişigüzel, ciddiyetsiz yapılması ve yapımın üzün sürmesi halinde ortaya çıkan zararlar: ·Topraksı hafriyatın (Şekil 1 de fotoğraf 6) ve çöplerin rüzgar, akıntı, dalga gibi etkenlerle denizin derinliklerine yayılmaktadır, zamanla denizin dibine çökmektedirler, bir kısmı ise karşı sahillerde tekrar karaya vurmaktadırlar. (Günümüzde deniz kıyıları, alışveriş poşetlerinden, bira, kola kutularından, plastik kaplardan, şişelerden geçilmiyor, (Şekil 1) Topraksı, çöplü dolgunun suda eriyerek, dağılması ve yayılması sonucu su bulanmaktadır. Çamurlu su içindeki katıklar zamanla denizin dibine çökelmektedir. Suya karışan toprak ve denizin dibinde çamur seklinde çöken tabaka canlıların, bitki örtüsünün, mikro organizmaların ve balık yavrularının oksijensizlikten telef olmalarına neden olabilmektedir. Diğer yönden yosun gibi bitki örtülerin üzerini kaplayarak bir çok balık türünün besin kaynaklarını yok etmektedir. ·Deniz suyun berraklığına, temizliğine göre güneş ışınları derinliklere ulaşır ve havadaki oksijen denizin yüzeyinden çözünerek derinliklere yayılır. Bu acıdan değerlendirildiğinde, topraksı hafriyatla denizin bulanması sonucu uzun bir süre güneş ışınlarının deniz suyunun derinliklerine ulaşmasını, havadaki oksijenin deniz suyunda çözünüp derinliklerine kadar yayılmasını da büyük ölçüde kısıtlamaktadır. Deniz suyundaki oksijen konzetrasyonuna ve güneş ışınlarına hassas olan deniz bitkilerinin ve çanlılarının topluca katliamına sebebiyet vermektedirler. Bilhassa sıcak havalarda kıyılarda rastlanan sürü halindeki balık katliamlarının diğer bir nedeni budur. Bu katliamlar akarsu ve göletlerde boyalı suların döküldüğü zamanlarda daha yoğun rastlanmaktadır. ·Kıyıların betonlaştırılarak suyun kendi kendini temizleme (arıtma tesisi) mekanizması tahrip edilmektedir. Kumluk, taşlık gerekse de kayalık kıyılar birer canlı arıtma tesisi gibi çalışan bir çok mikro organizmaları, deniz canlıları ve yosunları barındırmaktadır. Kıyıların doldurulmasıyla ilk önce bunlar katledilmektedir daha sonra bunların yerine geçeceklerin yaşam ortamı da yok edilmektedir. Doğal kıyılarda barınabilen sağlıklı yosunlar, mikroorganizmalar, midyeler, kara dikenler, deniz patlıcanları, salyangozlar, yengeçler, deniz yıldızları, solucanlar, mamunlar (deniz böcekleri, kurtcuklar), karidesler v.d. suyun temizlenmesinde önemli rol oynadıkları bilinmektedir. Ayrıca bunlar bir çok balık türünün birer besin kaynağı olduğu da unutulmamalıdır. ·Plansız dolgu yapımları ile deniz suyunun akıntısı engellenmekte veya olumsuz bir yöne doğru yönlendirilmektedir. Deniz suyunun doğal devir-daiminin bozulası ile su kendi kendini tazeleme, yenileme işlevini sürdürememektedir. Suya karışan artıklar akıntı vasıtasıyla acık denizlere taşınamamakta, suyun dibine bir örtü şeklinde çökelerek birikmektedirler. Buraları zamanla bir nevi mikrop yuvasına dönüşmektedir, çevreye yayılmaktadır! Bunu en güzel örneği İzmir Limanında ve İstanbul Haliçte görülmektedir. ·Dolguların, Kordonların diğer bir olumsuz yanı ise, kıyını doğal güzelliğini yok ederken kıyılarda ki canlı arıtma tesislerinin yaşam ortamı da ortadan kaldırmaktadır. Genelde kıyılara en az 50 m ye kadar normal yapılaşmaya izin verilmemeliydi. Bu kural yeni yerleşim kıyı yerlerinde gelecek nesiller için uygulanmalıdır. Deniz kıyıları her kesin kullanımına doğa tahrip edilmeden açık tutulmalıdır. 2.5 Aşırı ve bilinçsiz avlanma ·Tırol, trata gibi kıyıların deniz dibini tarayarak harap eden ağ avlama yöntemlerin yıllardan beri sürmesi, ·Kıyılarda ışık destekli sürüklenmeli germeli ağ balık avlama yönteminin yoğunlaşması, (aşırı avlanma ·Deniz diplerinden, kayalık ve taşlıklardan midye, salyangoz, deniz patlıcanı, yıldız, kara diken, yosun, karides, mamun, (kabuklu kabuksuz deniz böcekleri, kurtları) gibi mamullerin yıllardan beri aşırı toplanması, ·Teknelerin, gemilerin sualtlarının zehirli boyalarla kaplanması, ·Katil yosunların, atırgana gibi zehirli mikroorganizmaların deniz taşıtları ile denizlerde yayılmaları ·Tekne, motor, yat, sandal gibi deniz taşıtlarındaki hızlı artış. Sinte, yakıtlı, yağlı tekne içi sularının limanlarda, koylarda denize boşaltılması.(Denizde suyun üstünde yayılan yağın, yakıtın bir çok bitkinin ve canlının besin kaynağı olan platkon, yakamoz gibi mikro organizmaları, yok etmektedir. ) 2.6 Kıyı denizlerdeki balık çiftliklerin ürettiği kirlilik Yerel yönetimlerin denize direk bıraktıkları arıtılmamış kanalizasyon suları, denize dökülen kentsel atıklar, denize karışan sanayi artıkları ve topraksı hafriyatın yanında balık çiftliklerin ürettiği deniz kirliliği hiç denecek kadar azdır. Aslında balık çiftlikleri denizdeki eko sitemin korunmasında yararlı oldukları gibi ülke ekonominse çok yönlü yararlar sağlamaktadırlar Balık çiftliklerini kaldıracağı yerde artırılması yönünde devletin tevsikleri vermelidir. Koylardaki doğal akıntıyı sekteye vurmayacak şekilde Türkiye’nin belli bölgelerinde kurulmalarında, deniz kirliliği açısından ben sakınca görmüyorum. Balıkçı kooperatifleri yeni balık çiftlikleri kurarak bilinçli isleterek düzenli ve sürekli bir geçim kayağını kendilerine sağlayabilirler. Kıyı yerel yönetimler her yıl milyonlarca metreküp kirli aratılmamış kanalizasyon suyunu, yüz binlerce ton kati atiği denize, limana döküyorlar. Bu kirlenmeğe karşın kamuoyunda ses getirilmiyor. Bula, bula balık çiftliklerindeki kirlenmeye karşın kamuoyunda yaygara koparmalarını manidar buluyorum. Sadece görüntü kirliliği yönünden turistik kıyılarda arsa fiyatlarını düşürdükleri ve ileride turistik tesislerin yapımlarını engelledikleri için belli çevrelerce arzu edilmemektedir, kapatılmaları ve taşınmaları istenmektedir. Denizdeki farklı sorunların üstesinden gelmek için ilgili bakanlığın, Denizcilik bakanlığının kurulma istemini bazı öğretim üyelerinin bu yöndeki önerilerini de anlamsız buluyorum. Balık çiftliklerin kapatılması için ciddi anlamda bilimsel araştırmalara dayalı nedenler bulunmamaktadır. Balık çiftliklerin ürettiği kirlilik üzerine yeterli bilimsel araştırmalar bulunmamaktadır. Kamuoyuna yansıyan bazı ölçümler, kirliliğin ana nedenleri ve boyutları hakinde bilgi vermemektedir. Bu ölçümlerde global kirlilik etkenleri dikkate alınmamıştır. Bazı balık çiftlikleri çevresindeki gözlenen deniz suyu kirliliğinin asil nedenleri, çevresel kirlilik araştırılmamıştır. Balık çiftliklerin koylarda akıntıyı büyük ölçüde sekteye uğratmayacak, görüntü kirliliği yaratmayacak şekilde ve turistik kıyı bölgeleri dışında kurulmalarına dikkat edilmelidir. 3. DENİZ SUYUNUN KİRLENMESİNE KARŞIN ALINACAK BAZI ÖNLEMLER Örneğin gereğinden fazla plastik poşet ambalajlarının kullanılmaması, Almanya’da olduğu gibi plastik şişeler yerine dönüşümlü cam şişelerin kullanılması. Gereğinden fazla temizlik maddelerinin kullanılmaması, Yağımsı, asitli maddelerin kanalizasyona dökülmemesi, Çökeltme ve eleme göletlerin, tagarlarin yapılması, Konutsal çöplerin artıkların ayrı çöp bidonlarına ayrıştırılması gibi çok basit ve ekonomik bazı önlemlerle deniz suyunun temiz kalmasına katkıda bulunabilir. Önem sırası dikkate alınmadan önlemlerin sıralanması: a.Zehirli, boğucu, renklendirici, mikroplu fabrika atıklarının merkezi arıtma ve dinlendirme tesislerinden sonra denize ulaşmalarını sağlamak. Organize sanayi sitelerinde, bölgelerinde merkezi arıtma tesislerin yapımının faaliyetini şart koşmak. Büyük kapasiteli atık üreten fabrikalarda ön amaçlı arıtma tesislerin mevcudiyeti aranmalıdır. b.Küçük büyük yerleşim birimlerin kanalizasyona bağlanması ve atıkların merkezi arıtma tesislerinde zararlı bileşenler arındırılması ve yapay göletlerde dinlendirildikten sonra sulamaya veya akarsulara, denize akıtılmaları. c.Akarsu, (dere, ırmak, nehir..) ve deniz kenarlarına her türlü hafriyatın. Çöpün, artığın dökülmesinin önüne geçmek. Her nedense Türkiye’de yaz aylarında genellikle kuruyan dere, ırmak, çay gibi akarsuların kıyıları, içleri çöplükle, her türlü pisliklerle, zehirli maddelerle doldurulmaktadır. Yaz mevsiminden sonra ilk yağan küvetli yağmurla karadaki çöpler, pislikler, zararlı ve zehirli maddeler denize dökülmektedir. Sekil 3. Parça resim III.1 de yağmurdan sonra İzmir Limanı bütününde deniz üstünde yüzen çöplükler görülmektedir. d.Akarsuların, derlerin denize dökülmeden evvel yapay göletlerden geçirilmeleri, dinlendirilmeleri.. süzgeç- bariyerlerden geçirilmelerini sağlamak e.Liman içlerinde ve sığ sularda balık avlanmasını belli bir süre yasaklamak, f.Kıyılara on mil kala balık avlanmasını kontrol etmek, sadece olta balıkçılığına örneğin, paragata izin vermek, Bu alan içerisinde sabit dikey ağlarla ve hareketli ağlarla örneğin, trata, trol ve gırgır gibi deniz dibini taraklayan balık avlama metotlarının yasaklanması,… g.Bilhassa liman içlerinden deniz diplerinden karadiken, (denizkestanesi) mideye, salyangoz, denizhıyarı ve yosun gibi deniz ürünlerin toplanılmasını yasaklamak, h.Deniz kıyılarının doğal yapısının korunmasına özen göstermek. Deniz su kenarından 50 m’ye kadar yapılaşmaya (konut, yazlık, otel v.b.) izin vermemek. i.Denizin devir daimini aksatacak dalyan, kordon, kütiskele, barınak, dalgakıran, balık, midye çiftlikleri gibi yapılara (Bilhassa liman içlerinde, boğazlarda) izin vermemek kumsalların her türlü araç trafiğine kapalı tutulması. j.Zaruri dolgularda çevreye en az zarar verecek şekilde yapılması, k.Deniz kenarlarından ve deniz diplerinden inşaatlar için kum, çakıl, taş toplanmasına izin vermemek. l.Deniz suyuna dik inen beton kordon duvarları yerine, su seviyesine kadar iri ufaklı topraksız kaya parçaların dökülmesi, m.Deniz uyunun devir daimini destekleyecek kanalların açılması. (Örneğin İzmir Limanında Bayraklı önlerinden denizin dibinde 2 –3 m genişliğinde, 2 m. derinliğinde tarak gemileri ile açılacak kanallar ve veya deniz dibine döşenecek borularla pis suyun acık denizlere taşınmasını kolaylaştıracaktır. Ayrıca açıktan temiz suyun liman girmesine de katkı sağlayacaktır. n.Denize acılan derelerde, deniz kıyısına yakın yerlerde tagarların açılması, (küçük kapasiteli pis, katıklı su dinlendirme havuzları, göletler Şekil 5) o.Halk yazılı ve görsel basınla konunun ehemmiyeti acısından bilgilendirilmelidir. Temiz çevre bilinci aşılanmalıdır. (Örneğin hanımların daha az sıklıkta çamaşır yıkamaları, daha az deterjan temizlik malzemeleri kullanmaları, gereğinden fazla poşet almamaları, Ağır atıkların, çöplerin, hafriyatın dere kenarlarına veya denize gizli dökülmemesi, kızartma yağlarının tuvalete dökülmemesi, Tamirhanelerde motor, fren yanık yağlarının kanalizasyona, dere kıyıların tenha yerlere boşaltılmaması gibi uyarılar. Evsel ve sanayi atik yağların haftanın belli günlerinde ücret karşılığında toplanması bu toplanan yağların rafine edilerek yakıt olarak kullanılması gibi projelere destek vermek ) p.Çevreyi kirletenlerin takibi, tespiti ve caydırıcı hapis ve para cezaların uygulanması q.Dolgu işleminin en kısa sürede tamamlanması, r.Dolgu işleminin suyun akıntısını engellemeyecek biçimde şekillendirilmesi s.Dolgu işlemi için hazırlanan projenin ilgili makamlar tarafından onaylı olması, Dolgu işlemi kıyı yerel yönetimlerin keyfine bırakılmamalıdır. 4. SONUÇLAR ·Deniz kıyıları her geçen gün farklı şekillerle kirletilerek deniz ekosistemini kendi kendini yenilenmeyecek, onarılmayacak derecede tahribat ediliyor. Birçok limanlarımızda, hatta büyük körfezlerde, Marmara denizi gibi kapalı denizlerde kirliliği ciddi boyutlara ulaşmıştır. Buraların deniz suyunda bırakın yüzmeyi, balık avlamayı; sahil şeritlerinde gezinmek, kordondaki banklarda dinlenmek, güneşlenmek bile denizden yayılan pis kokulardan, denizde yüzen lağımsı atıklardan, çöplerden, sümüksü mikroplu iğrenç yosunlardan, köpüklerden mümkün olmuyor. Deniz kirliliği Akdeniz`i tehdit eder boyutlara ulaşmıştır. ·Deniz kirliğin önemli nedenleri ve etkenleri bu çalışmada sıralanmıştır. Denizlerin eski temizliğine kavuşması için bu nedenler ve etkenler ortadan kaldırılması gerekir. Bu yapılmadıkça yürütülen mali külfetli projeler istenileni veremeyeceklerdir. ·Balık çitliklerinin deniz kıyılarındaki ürettikleri kirlilik, yerel yönetimlerin denize döktükleri arıtılmamış kanalizasyon suları yanında hiç denecek kadar azdır. Balık çiftlikleri deniz eko sistem için olmasa olamazlardandır. Öğretim üyeleri destekli Türk kamuoyunda balık çiftlikleri aleyhine koparılan yaygara manidardır! Balık çiftlikleri çevresinde gözlenen deniz suyu kirlenmesi, kıyı denizlerimizde yerel yönetimlerin ve bazı sanayicilerin sebep olduğu, kıyı deniz kirliliğinin bir parçasıdır. ·Deniz ekosisteminin bozulmasının nedenlerinden biri, kıyıların gelişigüzel topraksı hafriyatla, çöplerle v. b. artıklarla doldurulmasıdır. Kıyı dolgu işlemiyle deniz ekosistemine verilen zararın farkında ve bilincinde değillerdir. Her şeyden evvel kumlu, taşlı, kayalıklı kıyılarda yaşam ortamı bulan canlı arıtma tesisleri de yok edilmektedir. Deniz suyuna karışan toprak yayılarak daha sonrada denizin dibine çökerek deniz içindeki canlı ve bitkilerin havasızlıktan boğulmalarına sebebiyet verdiği göz ardı edilmemelidir. Bu nedenle kıyı dolgu işlerinde topraksı hafriyat yasaklanmalıdır. ·Kıyı yerel yönetimler, (bilhassa turistik sahillerde) kıyıları doldurularak yeşil saha, geniş yollar açacaklarına; - beldelerinin kanalizasyon ve arıtma sistemlerine ağırlık versinler, - toplu insan taşımacılıkta yaşanılan problemlerle ilgilensinler. ·Kıyı denizlerimizin ekosistem dengesinin berbat edilmesi ile o beldelerin turistik çekiciliği, balıkçılığı ve dolayısıyla önemli gelirleri, iş sahaları yok olacaktır. Deniz suyunun berraklığı, içindeki yaşam, su ürünleri, koyların temizliği, doğal güzelliği bu beldeleri ilgi çekici yaptığı unutulmamalıdır. Ve bu doğal güzellikler insanlığın geleceği için korunmalıdır.   PDF VERİLERİDE İNCELEYİN documents/k__y___deniz_11.doc documents/suyunonemiekolojiksorunlar.pdf  

http://www.biyologlar.com/denizlerimiz-ve-ekolojik-onemleri

NIH-funded study establishes genomic data set on Lassa virus

NIH-funded study establishes genomic data set on Lassa virus

An international team of researchers has developed the largest genomic data set in the world on Lassa virus (LASV). The new genomic catalog contains nearly 200 viral genomes collected from patient samples in Sierra Leone and Nigeria, as well as field samples from the major animal reservoir, or host, of Lassa virus--the rodent Mastomys natalensis, also called the multimammate rat. The researchers show that LASV strains cluster into four major groups based on geographic location, with three in Nigeria and one in Sierra Leone, Guinea and Liberia. Although Lassa fever was first described in modern-day Nigeria in 1969, the current study also suggests that these four LASV strains originated from a common ancestral virus more than 1,000 years ago and spread across West Africa within the last several hundred years. Prior to the study, data from only 12 complete genomes of LASV were available, despite the virus' endemic presence in Guinea, Liberia, Nigeria, Sierra Leone and other parts of West Africa. The new catalog of data provides a foundation for ongoing research on LASV and offers insight into the virus' origins and transmission. The study is supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH). The data set is publicly accessible at the National Center for Biotechnology Information's BioProject website under PRJNA254017 . While Lassa fever is often mild, the disease can be severe with signs and symptoms similar to those of Ebola virus disease. According to the Centers for Disease Control and Prevention, LASV causes roughly 100,000 to 300,000 cases of Lassa fever each year in West Africa, with approximately 5,000 deaths; as many as 10 to 16 percent of hospital admissions in some areas of West Africa may be due to Lassa fever. No cure or vaccine is available for Lassa fever, but the antiviral drug ribavirin may help patients if taken early in the course of the disease. Infections in people mainly occur through exposure to infected rodents or their secretions, and less commonly, between people through direct contact with bodily fluids. "Emerging and re-emerging infectious diseases like Lassa fever are global health challenges, and the NIH has a long history of investing in global research to improve the health of people in the United States and around the world," said NIAID Director Anthony S. Fauci, M.D. "The new Lassa virus data set will be valuable for understanding Lassa virus and developing medical countermeasures such as diagnostics, therapies, and vaccines." In the new study, researchers analyzed samples collected from the Kenema Government Hospital in Sierra Leone and the Irrua Specialist Teaching Hospital in Nigeria between 2008 and 2013. The genomic data set, with samples from people and the animal host, confirmed that viral transmission mainly occurs from rodent to human, and not between people. Previous estimates suggested that up to 20 percent of LASV infections were caused by human-to-human transmission, but the new analysis indicates that human-to-human transmissions are likely much lower. The study offers new information about LASV mutations and its replication in infected individuals that may help scientists understand how the virus causes infection and evades the immune response, and why clinical outcomes can differ so widely. Source: NIH/National Institute of Allergy and Infectious Diseases http://www.biologynews.net

http://www.biyologlar.com/nih-funded-study-establishes-genomic-data-set-on-lassa-virus


EVREN, EVRİM VE İNSAN

Dünya Toprağın anası olan sıcak, kıvamlı çorba: Kimyasal evrimin son aşamaya ulaşması ve biyolojik evrimin başlaması için uygun ortam... Viroyitler ile virüsler: Organik maddeyle canlı yaşam arasındaki geçiş ürünleri mi? Canlılar, ilyarlarca yıl süren bir gelişmenin ardından 600 bin yıl önce Kambriyen Patlaması’yla çeşitlenmişler. İnsanla maymunun ortak atası olan primatlar ise epi topu 70 milyon yıl önce ortaya çıkmışlar. Ve 5 milyon yıl önce başdöndürü bir gelişme: Önce insansılar, sonra Homo Habilis, Homo Erectus, Homo Neanderthalis ya da Homo Sapiens ve 50 bin, yalnızca 50 bin yıl önce de Homo Sapiens Sapiens: İşte insan!.. İnsanın çamurdan yaratıldığını anlatan dinsel efsanelerle, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığını söyleyen evrime ilişkin bilimsel bulgular arasındaki tek ayrım, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı... Bugün üstünde yaşadığımız gezegen, hiçliğin içindeki bir noktada meydana gelerek evreni oluşturmaya başlayan Büyük Patlama’dan 15 milyar dünya yılını aşkın bir süre sonra, bağrından koptuğu yıldızın etrafında yörüngeye ilk girdiğinde, herhalde, alev alev yanan bir top gibiydi. Bu alev topunun son kalıntıları, Dünya’nın çekirdeğinde, dışarı akacak mecra bulmak için hala ayaklarımızın altındaki zemini yoklayıp duruyor. Varoluşundan tam 4 milyar 570 milyon yıl sonra bile Dünya’da yanardağlar, arasıra da olsa hala lav püskürtüyorlar. İlk başlarda dünyanın hidrojen, su buharı, amonyak, metan ve hidrojen sülfitten oluştuğu düşünülüyor. Laboratuvarda böyle bir gaz karışımına dışardan enerji verildiğinde bir süre sonra kahverengi bir bulamaç elde ediliyor. Dünya’nın da böyle bir süreçten geçerek en dış kabuğundan itibaren önce sıcak, kıvamlı bir çorba halini aldığı, sonra ağır ağır katılaştığı varsayılıyor. Toprağın anası olan bu sıcak, kıvamlı çorba, Güneş’in aşırı sıcağında gelişen kimyasal evrimin son aşamaya ulaşması için uygun bir ortam oluşturmuşa benziyor. Ve kimyasal evrim tamamlandığında; yani evrenin veri olan koşullarında varolabilecek bütün gelişme basamaklarında, giderek artan farklı sayılarda elektron ve protondan oluşan atomlar ile izotopları kararlılık kazandıklarında, niteliksel bir sıçramayla biyolojik evrim aşamasına geçilmiş olması gerekiyor. İnorganik maddeden organik maddeye... Aminoasitler ile nükleik asitlere... Ve cansız maddeden canlı maddeye... Bilinen en basit canlılara viroyit adı veriliyor. Bunlar yaklaşık 10 bin atomdan oluşuyorlar. Viroyit, 250 m. uzunlukta bir RNA dizisinden başka birşey değil... Ve kendi kendisini üretebiliyor. Bazı virüsler de yine bir RNA dizisiyle bunu çevreleyen bir protein tabakasından oluşuyorlar; ama bazılarında da hem RNA hem DNA bulunuyor. Elbette virüsler de kendi kendilerini üretebiliyorlar. Ama viroyitlerle virüslerin canlı sayılıp sayılamayacağı hala tartışmalı... Zira en ilkelinden en gelişmişi olan insana kadar bütün canlı türlerinin hücrelerinde RNA’nın yanısıra bir de, viroyitlerle bazı virüslerde bulunmayan ve çok önemli olan DNA molekülü mutlaka var... Ve her canlı türünün DNA molekülü farklı... DNA moleküllerindeki farklılık, basitten karmaşığa doğru tırmanan bir farklılık... En basiti virüsler, sonra tek hücrelilerde, en karmaşığı insanda... DNA molekülü bir şifre... Sözkonusu canlının bütün özelliklerini belirleyen şifre... Hücreler, bu şifrenin RNA vasıtasıyla taşınan talimatları doğrultusunda örgütleniyorlar ve birbirlerinden farklılaşıyorlar. DNA molekülü kendi etrafında dolanan uzun bir ip merdivene benziyor ve hücre bölünmesiyle gerçekleşen üreme sürecinde düşey olarak ikiye ayrılarak ilk hücreden üreyen iki yeni hücrede kendi yarımından kendisini yeniden üretebiliyor. Döllenmeyle gerçekleşen üreme sürecinde de, eşlerden her birinin DNA molekülleri yine düşey olarak ikiye ayrılıyor ya da çözülüyorlar. Döllenme gerçekleştiğinde, erkeğin yarım DNA’sıyla dişinin yarım DNA’sı birleşerek yeni bir DNA molekülü oluşturuyorlar. Ve biyolojik evrim hep DNA bazında gerçekleşiyor. Gerek kendi yarısından kendini üretmesi esnasında, gerekse iki yarımın birleşmesi esnasında çoğu zaman hiçbir mesele çıkmıyor ama, arasıra da DNA’yı oluşturan bazı moleküller tam yerine oturmuyorlar. Ya da ortamda bulunan başka bazı moleküller tam birleşme sırasında gelip DNA’ya katılıyorlar. Böylece şifre, bir ayrıntıda değişmiş oluyor. Ve ayrıntıda değişen bu şifre, doğan yeni canlının, anababasından bir ya da birkaç ayrıntıda farklı olmasına yol açıyor. Bu olaya mutasyon/değşinim, bu değişik canlıya da mutant/değşinik deniyor. Her döllenmede bir değşinim olması olasılığı yok değil... Ama işin içine olasılıklar girince, yani döllenme sayısı olasılık kurallarının işleyeceği kadar büyük olunca, muhtemelen çan eğrisi biçiminde bir dağılım sözkonusu oluyor. Yani, döllenmeler sırasında çoğu DNA kendisini tıpatıp ya da tıpatıpa çok yakın bir durumda üretmeyi başarıyor. Böylece çoğu döllenme, anababasından farksız yavrular üremesiyle son buluyor. Ama yine her döllenme kuşağında, bir kısmı olumlu, bir kısmı da olumsuz değşinikler de mutlaka ortaya çıkıyor. Bunlar, çan eğrisinin iki ucuna doğru yayılıyorlar. Eğrinin iki en uç kısmında aşırı olumlu değşinikler ile aşırı olumsuz değşinikler bulunuyorlar. Kalıcı olması için bir değşinimin resesif/çekinik değil, dominant/başat özellikte olması; yani değşinik bir başkasıyla ilişkiye girip döl verdiğinde yavrusuna aktarılacak ölçüde güçlü olması gerekiyor. Tabii döl verecek hale gelmesi için sözkonusu değşiniğin öncelikle çevre koşullarına uyum sağlaması, açıkçası hayatta kalmayı başarmış olması koşulu da var... Taşıdıkları farklı özellikler ister olumlu ister olumsuz olsun değşiniklerden çoğu yaşama ayak uyduramayıp ölüyorlar. Buna doğal ayıklama süreci deniyor. Dolayısıyla her değşinim, evrim sürecinde önemli bir yer tutuyor değil... Ancak çevre koşullarıyla uyum sağlayıp doğal ayıklamaya karşı koyan ve kalıcı olabilen ve olumlu değşinimler evrim sürecinde bir gelişmeye neden olabiliyorlar. Ve böyle bir değşinik, ancak uzun, çok uzun bir zaman geçince yeni bir türün ortaya çıkmasına neden olabiliyor. Ayrıntısal değişiklikler üstüste gelip de ilk değşiniğe döl vermiş olan türden çok farklı bir türün çoğalıp kendine Dünya’da yer edinebileceği kadar uzun bir zaman... Bazen milyarlarca, milyonlarca, hiç değilse yüzbinlerce yıl uzunluğunda bir zaman... Carl Sagan ya da Isaac Asimov gibi bazı bilim yazarları, Dünya üstündeki biyolojik evrimi şöyle özetliyorlar: 4 milyar yıl önce dünyada yalnızca moleküller varmış. Zamanla özel işlevli bir takım moleküller biraraya gelerek bir molekül ortaklığı kurmuşlar. Bu, ilk hücreymiş. 3 milyar yıl kadar önce bir değşinim, tek başına varlığını sürdürmekte olan bir hücrenin, bölündükten sonra ikiye ayrılmasını engellemiş. Bunun sonucunda tek hücreli bitkilerden bazıları biraraya gelmişler. Bunlar ilk çok hücreli organizmaları oluşturmuşlar. 2 milyar yıl kadar önce cinsler ortaya çıkmış. Böylelikle aynı cinsten iki organizma DNA’ların ikiye ayrılmasıyla döl vermeye başlamışlar. 1 milyar yıldır bitkiler öyle çeşitlenmişler ve öyle yayılmışlar ki dünyanın çevre koşullarını inanılmayacak kadar değiştirmişler. Çünkü yeşil bitkiler oksijen üretiyorlar. Ve oksijen üreten bitkiler dünyanın okyanuslarını kapladıkça hidrojen ağırlıklı ilk yapı ortadan kalkmış. Hidrojen yerini oksijene bırakmış. 600 milyon yıl önce Kambriyan Patlaması adı verilen bir olgu gerçekleşmiş ve yeşil bitkilerin yanısıra birdenbire bir dizi yeni canlı türü ortaya çıkmış. Önce ilk balıklar ve omurgalılar... Bu arada önceleri yalnızca okyanuslarda yaşayan bitkiler kara parçalarını işgal etmeye başlamışlar. İlk böcekler gelişmiş. Bunlardan üreyen yavrular karalara çıkmışlar. Kanatlı böceklerle hem karada hem suda yaşayabilen böcekler üremiş. Yine hem karada hem suda yaşayabilen balıklar görülmeye başlamış. Bunun ardından, 300 milyon yıl önce, ilk ağaçlar ve ilk sürüngenler ortaya çıkmış. Bunları dinozorlar izlemiş. Sonra sıra memelilere gelmiş. Tam o sırada ilk kuşlar da uçmaya, ilk çiçekler de açmaya başlamışlar. 70 milyon yıl kadar önce, yunus balıklarıyla balinaların ataları olan ilk balıklar... Ve aynı dönemde, maymunun, orangutanın ve insanın atası olan primatlar... İlk maymunlar 40 milyon yıl önce görünmüş. Ve 5 milyon yıldan beri de başdöndürücü bir gelişme yaşanmaya başlanmış. Önce hominidler/insansılar çıkmış ortaya: Australopithecus Afarensis; sonra, 3 milyon yıl kadar önce Australopithecus Africanus ve türevleri; 2 milyon yıl önce çeşitli hünerleri olan, ellerini tam anlamıyla kullanan ve artık maymundan çok insana benzemeye başlayan Homo Habilis, 1 milyon 6 yüz bin yıl önce ayakta duran ve beyni de büyümüş olan Homo Erectus; 3 yüz bin yıl önce bize iyice benzemeye başlayan ve geride bıraktıklarıyla akıllı olduğunu belli eden Homo Nearderthalensis ya da Homo Sapiens ve yalnızca elli bin yıl kadar önce de akıllının akıllısı ilk gerçek atalarımız: Homo Sapiens Sapiens... İşte insan!.. Bilim henüz, biyolojik evrimin dünya üstündeki gelişmesini de, bilime yakıştırılan türden bir kesinlikle ispatlayabilmiş değil... Bunun birkaç gerekçesi var... Bunlardan bir tanesi, bilimsel kesinliğe ulaşmak için toplanması gereken veri ya da birim bilgi miktarının, Aydınlanma Çağı’da umulandan çok fazla olması... Toplanması gereken birim bilgi miktarının yoğunluğu anlaşıldığı için biz, günümüzde, bilimin giderek daha küçük alanları kapsayacak biçimde bölünmesine, parçalanmasına ve yabancılaşmasına tanık oluyoruz. Bugün 2 bin 5 yüz farklı bilimsel disiplinin varlığından sözediliyor. Bu disiplinler yanyana açılan bir takım kuyular gibi kendi içlerinde giderek derinleşiyorlar, ama hiç değilse şimdilik birbirleriyle pek ilişki kurmuyorlar. Dolayısıyla bir disiplin tarafından elde edilen bilgilerin ve geliştirilen yorumların diğer disiplinler tarafından kullanılması şimdilik pek mümkün olamıyor. İkinci gerekçe, bazı bilgilere ulaşılamaması ve hiç ulaşılamayacak olması... Mesela Kambriyen Patlaması’ndan önceki dönemde yaşamış olduğu varsayılan canlı türlerinin bir kısmının hiçbir iz bırakmadan ortadan kaybolacak bir yapıya sahip olmaları... Bir başka önemli gerekçe ise, bilimle uğraşanların da sonuç itibariyle birer insan olması... Özellikle evrim konusunda, dinsel ve siyasal inançların etkisinden sıyrılamayan bilim insanları, kısıtlı da olsa ellerindeki bilgiyi yorumlarken bazen, eldeki verileri dinsel efsanelere uydurmak için fazlasıyla zorlanmış yorumlar yapabiliyorlar. Halbuki insanın çamurdan yaratıldığını anlatan dinsel efsanelerle bilimin evrime ilişkin bulguları arasında çok da büyük ayırımlar yok... Sonuç olarak bilimsel veriler de, insanın, dünyanın başlangıcındaki kıvamlı, sıcak bulamaçtan yaratıldığına işaret ediyorlar. Yani bilim, çamurdan yoğrulmuş iki bedene can üflendiğini anlatan efsaneleri bir anlamda doğruluyor. Arada yalnızca, insana önemli görünse de, evrenin boyutları temelinde fazlaca önemi olmayan bir zaman farkı var... Hepsi o!.. Bilimsel açıklamalar kesinlik taşımıyor olsalar da, mantık, eldeki verilerin, evrim sürecinin gerçekliğine inanmaya yeterli olduğunu söylüyor. Ve tam bu noktada insan, kendi soyunun biyolojik evrim sürecinin, hatta fiziksel ve kimyasal aşamalarıyla birlikte bütün evrim sürecinin en son aşaması olup olmadığını merak ediyor.

http://www.biyologlar.com/evren-evrim-ve-insan


Gal oluşumu,çeşitleri ve gal oluşumuna sebep olan böcekler

GAL NEDİR? Gal, bitki dokularının yaralanması sonucu mikroorganizma enfeksiyonu veya özellikle böcek ve akarların yumurta bırakması sonucunda oluşan anormal gelişmedir. Evrimsel olarak, geçmişte, böcekler, bitkileri değişik şekillerde yerken, bir kısmı iletim demetlerini tahrip ederek bitkinin ölümüne neden olmaktaydı. Büyük bir olasılıkla bitkiler, bu zarardan korunmak için gal oluşumunu başlatmışlardır. Böylece böcekleri belirli bir bölgeye hapsetmeyi başarmışlardır. Galleri, bu sefer böcekler bir koza gibi gelişmelerinin bir parçası olarak kullanmaya başlamışlardır. Böceğin çıkardığı salgılardan (beta indolik asit) dolayı gal olan bitki kısımlarına diğer bir parazitin yerleşmesi olanaksızdır. Çünkü gal civarındaki belirli bir bölgeye immunize olmuştur. Bitki kurusa dahi galin bulunduğu kısım yaşamına bir süre daha devam eder. Her ne kadar bu ilişki bir parazitizmden simbiyozise dönmüş gibi gözükürse de bu birliktelikten bitki çoğunluk zararlı çıktığı için bir simbiyozis kavramı içerisinde değerlendirilmemektedir. Oluşan galleri tanımlarken galin meydana geldiği yere ve ya şekline göre bir isimlendirme yapılır; kabarcık galleri, tomurcuk galleri, küçük top galler, erinoz, çiçek galleri, meyve galleri, yaprak galleri, yaprak lekeleri, meşe elmaları, kese galleri, roly-poly galleri, kök galleri, rozet galleri, yaprak sapı ve ya sürgün galleri gibi.   Galler yaprak ya da gövdede basit şişlikler halinde olabileceği gibi, bitkinin anatomik yapısında oldukça karmaşık yapıda da olabilir. Fakat her zaman gal yapıcılarına özgü bir yapıdadır. Yani galler, gal yapan türe özgü ölçülere, biçime ve renge sahiptirler. Daha çok yaprak, gövde ve çiçekteki galler böcek ve akarlar tarafından meydana getirilir. Galler bitki hücrelerinin anormal gelişmeleriyle ortaya çıkar. Böcek ve akarların beslenme ve yumurta bırakma süresince meydana gelen uyarılara tepki olarak gal dokuları meydana gelir. Bu uyarıları kısaca, Bitki dokuları içine bırakılan yumurtalardan salınan bir sıvı Bitki dokuları içindeki ve ya üstündeki böcek ya da akarların varlığı Böcek ve ya akar tükürükleri Böcek salgıları şeklinde özetleyebiliriz. Böcek ve akarların beslenme ve yumurta bırakması süresince kimyasal bir sekresyon gözlenir. Bu kimyasal maddeler bitki büyüme hormonları gibi davranıp bitki dokusunu gal oluşumuna teşvik eder. Böceklerin beslenirken mekaniksel olarak bitkiye verdikleri zarardan dolayı da gal oluşabilir. Gal yapıcılar, konakçının dokularına yumurtalarını bırakır. Yumurtalar açılır ve meristematik hücrelerle ve ya büyüme bölgeleriyle ilişkide olan küçük larvalar ortaya çıkar.Bu sırada gal büyümeye başlar. Galler, aşırı hücre çoğalması(hyperplasia) ve onu takiben hücre büyümesinin(hipertrofi) sonucudur. Galler;başlıca böcekler, akarlar, nematodlar, bakteriler ve mantarlar tarafından şekillendirilirler. Böcekler; Cynipidleri, Psylidleri, Aphidleri, Thripleri, Güve kurtçuklarını ve kın kanatlıları kapsar. Gal yapıcılara genel olarak ‘’cecidozoa’’ denir. Bunlar salgıladıkları enzimlerle bitkide hipertrofiye ve ya hiperplaziye neden olurlar. Psyllidler ve ya sıçrayıcı bitki bitlerinin çitlembik üzerinde meme başı şeklinde oluşturdukları galler en iyi bilinenlerindendir. Gal yapan aphidler, adelgidler ve ya pamuksu aphidler öncelikle yapraklarını dökmeyen ağaçlara etki eden grubu kapsar. En çok bilinen adelgid, Colorado’daki Cooley ladin gal adelgididir. Bunlar kozalağımsı galleri ladinler üzerinde meydana getirir. Gal yapan aphidlerin meydana getirdiği en göze çarpan galler, kavak ve kavak türleri üzerinde meydana gelen çeşitli gövde ve petiol galleridir. Diğer gal aphidleri, dişbudak, titrek kavak ve kavak üzerinde göze çarpacak derecede yaprak bükülmelerine sebep olurlar. Bunlara pseudo-gal denir. Gal yaban arıları gal yapan böcekler grubunun en büyük üyesidir. Gal yaban arıları odunsu bitkilerde geniş çaplı galler meydana getirir. Galler, gövde ve yapraklar üzerinde tüylü ve yosunludur. Genelde tüm böcekl galleri meşe ve ya güller üzerinde bulunup gal yaban arıları tarafından meydana getirilir. Gal sinekleri bazı kavaklarda ve titrek kavağın yeni sürgünlerinde gelişir.Dairesel şişlikler meydana getirirler. Galler;başlıca böcekler, akarlar, nematodlar, bakteriler ve mantarlar tarafından şekillendirilirler. Böcekler Cynipidleri, Psylidleri, Aphidleri, Thripleri, Güve kurtçuklarını ve kın kanatlıları kapsar. Gal yapıcılara genel olarak ‘’cecidozoa’’ denir. Bunlar salgıladıkları enzimlerle bitkide hipertrofiye ve ya hiperplaziye neden olurlar. Psyllidler ve ya sıçrayıcı bitki bitlerinin çitlembik üzerinde meme başı şeklinde oluşturdukları galler en iyi bilinenlerindendir. Gal yapan aphidler, adelgidler ve ya pamuksu aphidler öncelikle yapraklarını dökmeyen ağaçlara etki eden grubu kapsar. En çok bilinen adelgid, Colorado’daki Cooley ladin gal adelgididir. Bunlar kozalağımsı galleri ladinler üzerinde meydana getirir. Gal yapan aphidlerin meydana getirdiği en göze çarpan galler, kavak ve kavak türleri üzerinde meydana gelen çeşitli gövde ve petiol galleridir. Diğer gal aphidleri, dişbudak, titrek kavak ve kavak üzerinde göze çarpacak derecede yaprak bükülmelerine sebep olurlar. Bunlara pseudo-gal denir. Gal yaban arıları gal yapan böcekler grubunun en büyük üyesidir. Gal yaban arıları odunsu bitkilerde geniş çaplı galler meydana getirir. Galler, gövde ve yapraklar üzerinde tüylü ve yosunludur. Genelde tüm böcekl galleri meşe ve ya güller üzerinde bulunup gal yaban arıları tarafından meydana getirilir. Gal sinekleri bazı kavaklarda ve titrek kavağın yeni sürgünlerinde gelişir.Dairesel şişlikler meydana getirirler. GAL OLUŞTURAN TÜRLER NELERDİR ? Bitkilerde gal oluşturan akarlar Eriophyidae familyasına dahildirler. Bu familyanın tamamı bitkilerde parazittir, ancak gelişmeleri için canlı bitki dokularına ihtiyaç duyduklarından diğer gal yapıcılar kadar bitkiye zarar vermezler. Görünüşleri iğ şeklinde ve gözle görülemeyecek kadar küçük akarlardır. Diğer akarlardan farklı olarak tüm yaşamları boyunca iki çift bacağa sahiptirler. Bu akarlar kışı ergin dişiler olarak ağaç kabuklarındaki yarıklarda geçirirler. Böyle dişilere deutogyne denir. Baharda erginler açılan tomurcuklara hareket ederler ve burada beslenmeye başlarlar.Beslenmeleriyle birlikte bitkide deformasyonlar oluşur ve akarın beslenmeye devam edip, yumurtasını bırakabileceği kese ve ya galler oluşur. Bu arada erkek akarların yaşadığı keseler yaprak yüzeyinde dağılmış durumdadır. Erkek ve dişi birey arasında çiftleşme olmaz. Erkek spermatoforlarını yaprak yüzeyine bırakır ve dişi bunları toplayarak döllenme gerçekleşir. Dişi yumurtalarını gallerin içine bırakır. Bir ay içinde her dişi 80 kadar yumurta bırakır. Yumurtalar bir hafta içinde açılır ve nimfler gelişmelerini tamamlayabilmek için galin içinde kalmaya devam eder. Yumurtadan ergine kadar iki safhadan geçerler. Olgunluğa erişen akarlar ortaya çıkarlar ve yeni yaprakları istila ederler. Ağustos başında gal akarları hibernasyona çekilirler. Gal oluşturan Eriophyidler beslenme sonucu her türe özgü olan ve türler arasında farklılık gösteren lokal bitki deformasyonlarına sebep olurlar. Galler konusunda yapılan araştırmalarda, her bir türün bu tip büyüme tepkileri oluşturmak için bitkiye özel bir büyüme regülatörü vermesi gerektiği düşünülmektedir. Bu bileşimi bilinmeyen, ancak bitkilere verildiğinde yaprakların rengini, hücrelerin büyüme düzenini bozan, sayayla ilgili olan kimyasal maddelerle yapılan çalışmalarda Eriophyes elangatus Hodgkiss akçaağaçta yaprakların üst yüzeyinde koyu kırmızı erineler meydana getirirken, E. Modestus Hodgkiss yine akçaağaçta yaprağın alt yüzeyinde yeşil erineleri meydana getirdiği gözlenmiştir. Akarların oluşturduğu galler, salgılanan büyüme regülatörleri tarafından bozulan epidermal hücrelerden meydana gelmektedir. Her bir galin belirli sınırları vardır. Hepsinde ortak olan özellik eriophyid gallerin çıkış deliği bulundurmasıdır. Erineler, Eriophyidae familyasındaki bir çok türün beslenmesi sonucu oluşan erinose da denilen keçemsi yapılardır. Yaprağın üst yüzeyine doğru meydana gelen şişkinliğin iç kısmında bulunurlar. Çıkış delikleri olan gallerin aksine, tüy kümeleri içersinde akarların barınmasını sağlarlar. Erineler çok sınırlı yamalar halinde olabildiği gibi yaprak ya da petiol yüzeyinin çoğunu kaplar şekilde olabilir. Yapraklarda galler oluşturarak veya galeriler açarak zararlı olan böcek türleri; Tracys minutus (L.) (Coleoptera-Buprestidae), Rhynhaenus salicis (L.) (Curculionidae), Phylloctnistis saligna Z. (Lepidoptera-Phyllocnistidae), Pontania proxima (Lep.) (Hymonoptera- Tenthredinidae). Cecidomyiidae familyasının pek çok türü bitkilerde gal meydana getirir. Bitkinin kök kısımları dışında yumru halinde gal oluştururlar. Çok defa belirli bitki türlerinde hatta bitkinin belirli yerlerine özelleşmişlerdir. Gal oluşumuna larvarın tükrük salgısı önemli rol oynamaktadır. Mekanik uyanlarla birlikte bitkinin o bölgesinin hızlı büyümesi sağlanır. Agrobacterium tumefaciens (Smith and Town.) Conn – Rhizobium rhizogenes (Riker et al.)Conn Agrobacterium tumefaciens; bakteriyel hastalık etmeni dikototiledon bitkilerde, özellikle elma, seftali, armut, kiraz, bağ ve güllerde gal oluşumuna neden olmaktadır. Hastalık bitkilerin toprak üstü aksamlarında ( kök boğazına yakın yerlerde) tipik olarak büyük tümör benzeri sikinliklerden (gal) dolayı bu ismi almıştır. Okaliptüs gal arısı Leptocybe invasa Fisher & LaSalla, okaliptüslerin yeni zararlısıdır. Eucalyptus camaldulensis ve E. grandis’lerin taze sürgün ucunda bulunan yaprak orta damarı, yaprak sapı ve sürgünlerde tipik gal (ur) meydana getirmektedir. Spongospora subterranea (Wallr.) Lagerh. fungal hastalık etmeni olup, patates yumru ve köklerinde görülmektedir. Colemerus vitis :Asma yapraklarında emgi sırasında kabarcık meydana getirir. Eriophyes erineus: Ceviz yapraklarının alt yüzeyinde dikdörtgen şekilde keçemsi tüyler oluşturur. Eriophyes brachytarsus :Ceviz yapraklarında oluşturulan galler keçe şeklindedir. Bu galler 3-6 mm. büyüklüğündedir. Olgunlaştıkça kırmızı renk alır. Phytoptus leavis: Kızılağaç yapraklarında boncuk şeklinde galler oluşturur. Dıştan parlak görülür. Phytoptus similis: Kayısı ve zerdali yapraklarının kenarlarında cep ve külah şeklinde yeşil ve ya kırmızı galler görülür. Boncuk şeklinde gallerin içinde şişkin papillalar vardır. Phytoptus tiliae: Ihlamur ağacı yapraklarında oluşturduğu galler çivi şeklindedir. Eriophyes parulmi: Karaağaç yapraklarında parmak şeklinde galler oluşur. Phytoptus avellanae: Fındık kozalak uyuzu olarak bilinir. Eriophyes elangatus: Akçaağaç yaprağının üst yüzeyinde koyu kırmızı renkli erine oluşturur. Eriophyes triplacis: Meşe ağacında ince papillalardan olusan erine meydana getirir. Eriophyes mackiei: Meşe ağacında yaprakların alt ve ya üst yüzeyinde yeşil ve parlak renkli erineler oluşturur. Eriophyes calaceris: Akçaağaç yapraklarının üst yüzeyinde renkli erineler oluşturur. Acalitus fagarinea: Kayın ağacı yapraklarında sarı erineler meydana getirir. Eriophyes tristriatus: Ceviz yaprağı gal akarı olarak bilinir. Yaprağın alt ve üst yüzeyinde ana damar etrafında küre biçimli urlar meydana getirir. Bazen meyve ve meyve sapında da bu urları görmek mümkündür. Eriophyes triradiatus: Söğüt zararlısı olarak bilinir. Meydana gelen galler üzüm salkımı ve ya mısır püskülü gibidir. Phytoptus pyri: Armut yaprak uyuzu olarak bilinir. Başta armut olmak üzere elma, ayva ve bunların bazı yabani formlarında zararlıdır. Ülkemizde bolca bulunur. Acalitus phloecoptes. Erik tomurcuk akarı olarak bilinir. Başlıca konukçuları erik ve badem ağaçlarıdır. Tetraspinus (=Platoculus) pyramidicus: Dağ diş budağı yaprak kabarcık akarı olarak bilinir. Erineum tipi galler oluşur. Aceria negundi: Akçaağaç gal akarıdır. Akçaağaç yapraklarının alt yüzünde içi beyaz keçemsi tüylerle dolu baskılanmış küçük yuvarlaklıklara neden olur. Eriophyes sheldoni: Turunçgil tomurcuk akarıdır. Meyvede şekil bozukluğuna ve deformasyona, yaprakta rozetleşmeye neden olur. Eriophyes oleae: Zeytin tomurcuk akarıdır. Özellikle genç zeytin ağaçlarında zararlı olmaktadır. Yaprakların bükülüp bodurlaşmasına, sürgünlerin kurumasına neden olurlar. KUŞ BURNU BİTKİSİNDE GAL YAPAN BÖCEKLER ; GALLER NASIL KONTROL ALTINA ALINABİLİR Galler nadirende olsa ciddi zararlara yol açabilirler. Gal bir kere şekillenmeye başladımı büyük olasılıkla durdurulması imkansızdır. Ancak yeni büyüme aşamasındayken spreylerle kontrol altına alınabilir. İnce dal ve tomurcuklar oxythoquinox veya carbaryl ile baharın ılık günlerinde spreylenebilir. Bu işlem yaprak tomurcuklarının yeni çıkmaya başladığı nisan ayında yapılabilir. Gal yapan böcekleri kontrol ettiği sanılan birçok insektisit ve akarisite rağmen bunların kullanımı yersiz ve sonuçsuzdur. Fakat kullanılması zorunlu ise yetişkin yumurtaları gal içine bırakmadan önce kullanılmalıdır. İnsektisitle kontrol genelde kullanmaya elverişli değildir. Çünkü: ·Çoğu zaman zarar çok önemli olmayabilir. Parazitler normal olarak gelişmiş ve gal yapıcılarının populasyonu ciddi bir hasar meydana gelmeden bastırmış olabilir. ·Uygulamanın doğru zamanı gal şekillenmeye başlamadan önce yetişkin canlıları kontrol etmede gereklidir. ·Özellikle büyük ağaçlarda çevresel kontaminasyonlar ve harcamalar hesaplanamaz. Gövdede ve geniş dallarda meydana gelen bazı Galler özenle seçilmiş ve tahrip edilebilir. Diğer bir kontrol şekli biyolojik kontroldür. Bir çok arı gal yapan böceklerin parazitidir ve gal şekillenmesini kısıtlarlar. Doğal düşmanı tarafından rahatsız edilen gal yapıcı delikten dışarı çıkar ve gali terk eder. Boşalan yere küçük örümcekler, yararlı böcekler, karıncalar, bazı larvalar veya parazitik arılar yerleşir. Bu nedenle yaşlı galler zararlı böceklerle beslenen yararlı organizmalara barınak olmuş olur. GALLERDEN NASIL YARARLANILABİLİR Gallerden elde edilen başlıca ürün tannik asittir. Bu madde insektisit yapımında kullanılır. En kaliteli mürekkep gallerden elde edilir. Bu konuda Avrupa ve Asya’daki meşelerde bulunan Aleppo (smyrna) galeri en bilinenlerdendir.Bazı ülkelerde yiyecek olarak kullanılır. Yakın doğuda ‘’pomme de sauge’’ aromatik ve asidik tadı nedeniyle değerlendirilir. Amerika’da ufak siyah galler çiftlik hayvanlarının başlıca gıdasıdır. Çünkü % 64 karbonhidrat ve %9’dan fazla protein içerir. Ayrıca galler renkleri ve şekilleri nedeniyle ülkemizde de olmak üzere birçok yerde çiçek aranjmanında kullanılır. Kumaş boyası elde etmede kullanılan gallerde vardır. Eğer galler demir sulfatla kombine edilirse siyah boya, tek başlarına ise gri renk boya verirler. Aleppo (Cynips tinctoria) galleri Yunanlılardan beri kullanılmaktadır. Derinin bitkisel tabaklanmasında kullanılır. Çin aleppo galerinin üretim ve dağıtımında dünyada %95’lik yer kaplar. Galler %50-75 gallotannin, %2-3 gallik asit ve %2 ellogic asit ve glukoz, eter ve nişasta içerir. SONUÇ Galerin bitkiye bir çok zararı olduğu gibi diğer canlılarada pek çok yararı vardır. Besin olarak kullanıldığı gibi boya sanayinde, deri sanayide ve çiçek sektörüdede kullanılmaktadır.Ancak bunlardan dolayı bitkiye verdiği zarar göz ardı edilemez. Galli yapraklar diğer yapraklardan önce dökülmektedir. Meyvedeki zararı ise; meyveye çürük görünümü verir ve meyveler kullanışsız hale gelir. Gövde ve dallarda iletim demetleri kurur. Yeni çıkan sürgün ve filizlerde oluşan galler büyümeyi engeller. Bu nedenle gal oluşmadan önce tedbir alınması gerekir. KAYNAKLAR Demirsoy, A., 1999. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji. ISBN:975-7746-02-9, Sh:272-274, 6. Baskı Ege Üniversitesi, Ziraat Fakültesi, ‘Bitki Zararlısı Akarlar’ Yüksek Lisans Ders Notları. Jeppson, L.R., Keifer, H.H., Baker, E.M.,1975. Mites ınjurious to economic plants. University of California Pres, 614 s. Madanlar, N., 1991. İzmir ilinde turunçgillerde bulunan Acarina türleri ve populasyon yoğunluklarının saptanması üzerine araştırmalar. E.Ü. Fen Bilimleri Enstitüsü, Bitki Koruma Anabilim Dalı, Basılmamış Doktora Tezi, 258 s. Madanlar, N., 1992. İzmir ve çevresinde turunçgil bahçelerindeki akar türlerinin durumu. Türkiye II. Entomoloji Kongresi (28-31 Ocak 1992, Adana) Bildirileri, 683-691.    

http://www.biyologlar.com/gal-olusumucesitleri-ve-gal-olusumuna-sebep-olan-bocekler

 
3WTURK CMS v6.03WTURK CMS v6.0