Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 30 kayıt bulundu.
Ökaryotik <b class=red>Kromatinin</b> Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

Çekirdekçik (nukleolus)

Çekirdek içinde sayıları bir veya bir kaç tanedir. Protein sentezinde görevli ribozomal RNA'nın yapım yeridir. Çekirdekçiğin çevresinde zar bulunmaz. Çok ve çabuk protein üreten hücrelerde gelişmiş olarak gözlenir. Bazik boyanma özelliğindedir. Kromatin ağı başlıca DNA (dezoksiribonükleik asit) dan oluşur. DNA protamin ve histon gibi proteinlerle ince uzun kromatin iplikçiklerini oluşturur. Işık mikroskobunda kromatin iplikçiklerinin yaptıkları ağ, çok koyu (heterokromatin) ya da çok açık gözlenebilir (ökromatin). Elektron mikroskobunda kromatin düzenli dağılmış tanecikler olarak belirir. Ayrıntılı incelemelerde ökromatinin, kromatin tanecikleri seyrek dağıldıkları için açık renkte, heterokromatinin ise kromatin taneciklerinin bir arada olması nedeniyle koyu renkle görülmektedir. Metabolizma işlevinin çok hızlı olduğu hücrelerde örneğin sinir hücrelerinin çekirdeklerinde ökromatin alanları fazla gözlenir.

http://www.biyologlar.com/cekirdekcik-nukleolus

TEMELİNDE SUBLİME VE KARIŞIMLARI BULUNAN TESPİT SOLUSYONLARI

Sublime genel bir tespit solüsyonudur. Kuvvetli bir koagulant (pıhtılaştırıcı)’ dır. Dokuya nüfuzu yavaştır. Ya tek başına kullanılır yada çeşitli karışımların bünyesine girerek kullanılır. A- Sublime solusyonu : Sature (doymuş) bir solusyon halinde kullanılır veya sature solusyonu içerisine % 5 lik asetik asit ilave edilerek kullanılır. Sublime  (Cıva klorur)  ………….……….7,5 gr. Saf su  ………………… ……………… 100 cc Bu terkip ısıtılır ve Cıva klorurun erimesi sağlanır. Kaynamadan dolayı kaybolan su ilave edilir. Eridikten sonra süzülür. Sublimenin fazlası  ince iğne şeklinde kristallere dönüşür ve şişenin dibinde birikir. Bu hazırlanan solusyon sature sublimedir. B- Asetik asitli sublime Sublime …………..95 cc. Asetik asit ………... 5 cc Sublime ile hazırlanmış solusyonları tespit solusyonu olarak kullanırken hiçbir zaman içine metal pens sokulmamalıdır.Tespit Süresi:  2-6 saat olup, parçaların büyüklüğü en fazla 2-3 mm olmalıdır. Yıkama:  24 saat müddetle  % 70 ‘lik alkolde parçalar yıkanır. Sublimeyi yok etmek için parçaları iyotlu alkolde yıkanması gerekir. Hatta parçalar iyotlu alkolde birkaç gün tutularak iyotlu alkol sık sık değiştirilir. İyotlu alkol elde etmek için % 70 ‘lik alkole iyot ilave edilerek solusyonun Konyak rengini alması sağlanır. İyotu tam yok etmek için parçayı bir müddet (24 saat)  % 95’lik alkolde bırakmak gerekir. Üstünlükleri : Sublime kuvvetli bir kuagulanttır. Bütün boyalarla boyanırlar. Metilen mavisi ile kollegen fibriller çok iyi görünürler.Sakıncaları : Parçaya geç ve az nüfuz eder. Bu nedenle parçanın çok küçük olması gerekir. Dokuda olmayan yapılar meydana gelir. Tespitten dolayı parçalar çabucak toz hale gelebilir. Bazı nükleus boyaları bu tespitten sonra nükleusu zor boyar. C – Zenker Likidi Potasyum dikromat ………… 25 gr …………. 2.5 gr Sublime (Civa klorur) ………   50 gr …………. 5 gr. Sodyum sülfat ………………  10 gr ………….. 1 gr Saf su …………………………1000 cc ……….. 100 cc Bu karışımın tümü sıcakta eritilir sonra dinlendirilir. Kaynama nedeniyle kaybolan su ilave edilir. Sonra süzülür. Hazırlanmış bu solusyon stok solusyondur. Uzun süre saklanabilir. Kullanılacağı zaman ; Stok zenker solusyonu ……… 100 ccAsetik asit ………………………..5 cc.        alınır ve kullanılır. Tespit Süresi : 12 saat olup, karanlıkta tespit yapılır.Yıkama: Akan çeşme suyuna birkaç saat tutulup, dikromatinin gitmesi sağlanır. Bundan sonra parçalar 24 saat % 70’lik alkolde tutulur. Sublimeyi gidermek için parçalar 5-6 saat iyotlu alkol içerisine alınır. İyotu yok etmek için 24 saat % 95’lik alkol içine alınır. Üstünlükleri:  Parçalara hızlı nüfuz eder. Böylece hızlı tespit eder. Bütün boyalarla boyanır. Özellikle Anilin mavisiyle bağ dokusu çok iyi boyanır.   Sakıncaları: Uzunca ve sayıca çok yıkama gerektirir. Sublime gibi dokularda olmayan maddeler meydana getirir. Uzun bir tespitten sonra parça çabuk dağılabilir. Tespitler uzun tutulursa nükleuslar iyi boyanmaz. D – Helly Likidi (Zenker Formalin)Zenker likidindeki asetik asit yerine % 10’luk Nötr veya ticari formol kullanılır. Kullanılacağı zaman stok zenker solusyonuna formol ilave edilir.   Zenker solusyonu……………………………100 cc Formaldehit ……………………………………. 5 ccTespit Süresi : 2- 4 mm lik parçalar 1-8 saat kadar bu solusyonda bırakılmalıdır. Yıkama           : Zenker solusyonundaki gibidir.

http://www.biyologlar.com/temelinde-sublime-ve-karisimlari-bulunan-tespit-solusyonlari

IMSI Nedir?

Intrasitoplazmik morfolojiye göre seçilmiş sperm injeksiyonu (IMSI); konvansiyonel IVF mikroskopları ile karşılaştırıldığında özel büyütme teknikleri kullanarak spermlerin incelemesine imkan sağlayan bir yöntemdir. Bu yöntemde, kullanılan büyütmeler 6000 ve üzerine çıkarak morfolojik olarak en iyi spermlerin seçilmesine imkan sağlamaktadır. Bu gelişmiş yöntem sayesinde sperm hücresinde bulunan ve kromatin stabilizasyonunu bozduğu bilinen vakuol (etrafı zarla çevrili boşluklar) gibi bazı hücre içi yapıların tespit edilmesi mümkün hale gelmektedir. Bu defektleri göstermeyen ya da en az defekt gösteren spermler ile ICSI (mikroenjeksiyon) yapılmakta, implantasyon ve gebelik oranları ise artmaktadır. Spermin embriyo gelişimine katkısı insanda iki ya da üçüncü günden sonra artmaktadır. Çünkü embriyo genomu yani sperm ve yumurtanın birleşmesiyle oluşan yeni genetik yapı bu dönemden sonra tam olarak faaliyete geçer. Genomun sağlıklı çalışmasının dolaylı bir göstergesi embriyonun blastosist evresine kadar yaşamını sürdürmesidir. Dolayısıyla IMSI yöntemi ile seçilen ve kromatinin daha stabilize olduğu düşünülen embriyoların blastosist evresine ulaşma oranlarının, IMSI kullanılmadan seçilen spermlerle oluşturulan embriyolara göre daha yüksek olduğu gösterilmiştir.

http://www.biyologlar.com/imsi-nedir

Hücre zedelenmesinin nedenleri ve zedelenmeye karşı hücrenin verdiği uyum yanıtları nelerdir; hasara uğrayan dokunun onarılması nasıl gerçekleşir?

Hücre Zedelenmesinin Nedenleri Hücre zedelenmesinde pek çok etken söz konusudur. Trafik dahil pekçok kazanın neden olduğu gözle görülen fiziksel travmalardan, belli bazı hastalıklarda neden olabilen defektli enzimleri oluşturan gen mutasyonlarına kadar sıralanabilir. Zedeleyici etkenler aşağıdaki gibi, sınıflanabilir. Oksijen Kayıpları: Hipoksi (oksijen azlığı- oksijen yetersizliği), hücre zedelenmesi veya ölümünün en önemli ve en çok görülen nedenidir. Hipoksi pekçok durumda görülür. Bunlar içinde en önemli olanı iskemidir. Hipoksi, iskemiden (kansızlık) farklıdır ve ayrılmalıdır. İskemi, dokulara gelen arteriyel akımın engellenmesi veya venöz dönüşün azalmasıyla ortaya çıkan dolaşımdaki kan kaybıdır. Bir bölgedeki kan akımının durması olarak özetleyebiliriz. İskemi, dokuları hipoksiden daha çabuk zedeler. Hipoksik doku zedelenmesi, karşımıza şu durumlarda çıkar. 1-İskemix: Mortalite (kalb hastalığı- miyokard enfarktüsü) ve morbiditenin (serebral ve renal iskemik hastalıklar) başlıca nedenidir. 2-Asfiksi (solunum zorluğu- solunum yetersizliği) nedeniyle, kanın oksijenizasyonundaki azalmaya bağlı olarak hücre zedelenmeleri ortaya çıkabilir. Buna kalb-akciğer hastalık- larında ve pnömonide görülen yetersiz kan oksijenlenmesi örnek verilebilir. 3-Anemixx veya karbon monoksit (CO) zehirlenmesinde görülen, kanın oksijen taşıma kapasitesindeki düşme, diğer bir örnek olabilir. Kimyasal Etkenler ve İlaçlar: Zehir olarak bilinen maddeler, tedavi amaçlı kullanılan bazı ilaçlar (hassas bünyeli kişilerde) ve ilaçların aşırı kullanılma durumlarında, hücre zede-lenmeleri meydana gelebilir. Hücrelerin bazı yaşamsal işlevlerini, örneğin membran permea-bilitesini, osmotik homeostazı (hücre içi denge) ve enzim entegrasyonunu (sistemi) bozarak, ciddi hücre zedelenmesi ve belki de tüm organizmanın ölümüne neden olabilir. Esasda zarar-sız olan glukoz ve tuz gibi kimyasallar, konsantre olduğunda osmotik çevreyi bozarak, hücre zedelenmesine ve hatta ölüme yol açabilir. Fiziksel Etkenler: Travma, sıcak ve soğuk olmak üzere aşırı ısı, ani ve farklı atmosfer basınç değişiklikleri, radyasyon ve elektrik şoku, hücre üzerinde geniş etkiler gösterir. Enfeksiyöz Etkenler: Bu grupta submikroskopik viruslardan, mikroskopik bakteri, riket- siya, fungus ve parazitlere kadar geniş bir mikroorganizma grubu bulunur. Mikrobiyolojik ajanlar olarak, salgıladıkları toksinler ve enzimlerle hücrenin metabolizmasını inhibe eder ve hücresel yapıları destrüksiyona uğratır. İmmunolojik Reaksiyonlar: Biyolojik etkenlere karşı vücudu koruyan immün sistem, bazı durumlarda immun reaksiyonlara neden olarak, hücre ve doku zedelenmesi meydana getirebilir. Yabancı proteinlere (antijen) karşı gelişen anaflaktik (allerjik) reaksiyon, önemli bir örnektir. Ayrıca bu grupta endojen antijenlerin sorumlu olduğu immunolojik reaksiyonlar söz konusu olabilir. Bunlar da “otoimmun hastalıklar” olarak sınıflanır. Radyasyon: Ultraviyole (noniyonize -güneş ışını) ışınlar hücrelere zarar vererek güneş yanıklarına neden olabilir. İyonize radyasyon hücrelerdeki moleküllere direkt etki yapıp, mo-lekül ve atomların iyonizasyonuna neden olarak veya hücre komponentleri ile etkileşen serbest radikal oluşumuna neden olarak hücrelere zarar verir. Genetik Defektler: Tek bir genin eksikliği veya yapısal bozukluğu, hastalığa neden olabi-lir. Doğuştan var olan metabolik depo hastalıkları ve bazı neoplastik hastalıklar gibi, bir çok hastalığın temelinde, genetik defektlerin rol oynadıkları bilinir. Beslenme Dengesizlikleri: Vücudun bazı aminoasitler, yağ asitleri, vitaminler gibi, orga-nik ve inorganik maddeleri besinlerle alması gerekir. Beslenme yetersizliğinde ortaya çıkan protein ve besin eksikliği, doku hasarlarına neden olabilir. Besinlerin eksikliği gibi, aşırılıkla-rında, ortaya çıkan şişmanlık ve atheroskleroz da morbidite ve mortaliteye zemin hazırlaya-rak, zarar verir. Obesite, tip 2 diyabetes mellitus riskini arttırır. Hayvansal yağ yönünden zen-gin olan gıdalar, atheroskleroz ve kanseri de içeren pekçok hastalığın oluşumundan sorumlu olabilir. Yaşlanma; hücre zedelenmesine neden olan diğer bir örnekdir. Yıllar geçtikçe hücrelerde çoğalma ve kendini onarma yeteneklerinde meydana gelen azalmalar ve buna bağlı ölümler oluşur. Hücre Zedelenmesinin Mekanizmaları Hücre zedelenmesine neden olan pek çok farklı yol vardır; fakat bunların hepsi öldürücü değildir. Bununla birlikte, herhangi bir zedelenmeden kaynaklanan, hücre ve doku değişiklik-lerine yol açan, biyokimyasal mekanizmalar oldukça karmaşıktır ve diğer intrasellüler olaylar ile sıkıca birbiri içine girmiştir. Bu nedenle, sebep ve sonuçları birbirinden ayırdetmek müm-kün olmayabilir. Bir hücrenin yapısal ve biyokimyasal komponentleri o kadar yakın ilişkide-dir ki, zedelenmenin başlangıç noktası önem taşımayabilir; fakat pek çok sekonder etki süratle oluşur. Yine de hücre zedelenmeleriyle ilgili bilinen pekçok özellik vardır. Örneğin siyanürle aerobik solunumun zehirlenmesi, intrasellüler osmotik dengenin korunması için elzem olan sodyum, potasyum ve ATP aktivitelerinde azalmalara neden olur. Bunlar korunamadığı za-man, hücre süratle şişer, rüptüre olur ve nekroza gider. Hücre hasarlarına neden olan, bazı zedeleyici ajanların patojenik mekanizmaları çok iyi ta-nımlanmıştır. Örneğin, siyanürle zehirlenmede mitokondriyada oksijen taşıyıcı bir enzim olan sitokrom oksidazın inaktive edilmesiyle, ATP’yi tüketerek, hipoksi yoluyla hasar meydana getirir, yani intrasellüler asfiksiye yol açar. Yine aynı şekilde anaerobik bazı bakteriler, fosfo-lipaz salgılayarak hücre membran fosfolipidlerini parçalayıp, hücre membranında direkt hasar meydana getirir. Hücre zedelenmesinin pekçok şeklinde, hücreyi ölüme götüren moleküler mekanizmalardaki bağlantıları anlamak bu kadar kolay değildir. Reversibl zedelenmenin neden olduğu hücresel bozukluklar onarılabilir ve zedeleyici etki hafifletilebilirse, hücre normale döner. Kalıcı veya şiddetli zedelenme, o bilinmeyen “dönüşü olmayan nokta” yı aşarsa irreversibl zedelenme ve hücre ölümü meydana gelir. İrreversibl zedelenme ve hücre ölümüne neden olan “dönüşü olmayan nokta”, hala yeterince anlaşılama-mıştır. Sonuç olarak; hücre ölümüne neden olan bilinen ortak bir son yol yoktur. Bütün bunla-ra rağmen, hücre ölümünü anlamak ve açıklayabilmek için, bir miktar genelleme yapılabilinir. İrreversibl hücre zedelenmesinin patogenezinde başlıca iki olay vardır. Mitokondrial disfonk-siyonun düzelmeyişi (oksidatif fosforilasyon ve buna bağlı ATP üretiminin yapılamaması) ve hücre membranındaki ağır hasardır. Bunu ispatlayan kanıtlar vardır. Lizozomal membran-lardaki zedelenme enzimatik erimeye neden olup, hücre nekrozunu ortaya çıkarır. Zedelenme İle İlgili Bazı Özellikler: -- Zedeleyici stimulusa hücresel yanıt, zedeleyicinin tipine, onun süresine ve şiddetine bağlı- dır. Bu nedenle düşük dozda toksinler veya iskeminin kısa sürmesi, reversibl (dönüşlü) hücre zedelenmelerine neden olur. Halbuki daha büyük toksin dozları veya daha uzun süreli iskemik aralar, irreversibl (dönüşsüz) zedelenme ile sonuçlanır ve hücre ölüme gider. -- Tüm stresler ve zararlı etkenler, hücrede ilk etkilerini moleküler düzeyde yapar. Hücre ölü- münden çok önce, hücresel fonksiyonlar kaybolur ve hücre ölümünün morfolojik değişiklikle- ri, çok daha sonra ortaya çıkar. Histokimyasal veya ultrastrüktürel teknikler, iskemik zedelen- medeki değişiklikleri birkaç dakika ile birkaç saat içinde görülebilir hale getirir. Örneğin, myokardial hücreler iskemiden 1, 2 dk sonra, nonkontraktil (kasılamama) olur. İskeminin 20- 30 dk’sına kadar, ölüm meydana gelmez. Ölümden sonraki değişikliklerin, ultrastrüktürel dü-zeyde değerlendirilmesi için, 2- 3 saat, ışık mikroskobu ile görülebilme düzeyine gelebilmele-ri için (örn. nekroz), 6- 12 saat geçmesi gerekir. Morfolojik değişikliklerin çıplak gözle görü-lebilir hale gelmesi, daha da uzun bir zaman alır. -- Zedeleyici stimulusun sonuçları; zedelenen hücre tipine, hücrenin uyum yeteneğine ve ge-netik yapısına bağlı olarak da farklılıklar gösterir. Örneğin, bacaktaki çizgili iskelet kası, 2- 3 saatlik iskemileri tolere edebilir. Fibroblastlar da dirençli hücrelerdir. Buna karşın kalb kası hücresi (myosit), yalnızca 20-30 dakikalık zaman içinde ölüme dayanabilir. Bu zaman, nöron- da 2- 3 dakikadır. -- Farklı zedeleyici etkenler, nekroz veya apoptoz şeklinde hücre ölümüne neden olur. ATP de kayıplar ve hücre zarı hasarları, nekrozla ilişkilidir. Apoptoz; aktif ve düzenli bir olaydır. Proğramlanmış bir hücre ölüm biçimidir ve burada ATP kayıpları yoktur. -- Hücre zedelenmesi hücre komponenetlerinden bir veya bir kaçında ortaya çıkan biyokimya-sal veya fonksiyonel bozukluklardan kaynaklanır. Zedeleyici stimulusun en önemli hedef nok-taları şunlardır: (a)Adenozin trifosfat (ATP) üretim yeri olan mitokondriler, (b)hücre ve organellerinin iyonik ve osmotik homeostazı için gerekli olan hücre membranı, (c)protein sentezi, (d)genetik apareyler (DNA iplikciğinin bütünlüğü) ve (e)hücre iskeleti çok önemlidir. Membran Permeabiltesindeki Defektler: Hücre membranı; iskemi, bazı bakteriyel tok-sinler, viral proteinler, kompleman komponentleri, sitolitik lenfositler veya birçok fiziksel- kimyasal etkenlerle direkt zarar görebilir. Ayrıca birçok biyokimyasal mekanizma, hücre membran hasarına etken olabilir. Kısaca gözden geçirelim. - Fosfolipid sentezinde azalma: Oksijendeki düşmeler ATP sentezinde azalmalara, ATP’nin azalması da fosfolipid sentezini düşürür. Fosfolipid kaybına bağlı olarak, membran hasarı meydana gelir. - Fosfolipid yıkımında artma: Hücre içi (sitozolik) kalsiyum artımı, fosfolipazları aktifleştirir. Bu da membran fosfolipidlerin parçalanmasını- yıkımını arttırır. - Lipid yıkım ürünlerinde artma: Fosfolipidlerin parçalanması, yıkılması, lipid yıkım ürünleri-ni arttırır. Bu ürünlerin birikimi, geçirgenliği bozarak zarar verir. - Reaktif oksijen türevleri (serbest radikaller): Hücre membranında lipid peroksidasyonuna neden olup, zarar verir. - Hücre iskelet anormallikleri: Hücre iskeleti iplikcikleri, hücre içini hücre zarına bağlayan ça-palar olarak görev yapar. Hücre içi kalsiyumun artması, proteazları aktifleştirerek hücre iske-leti proteinlerini parçalar, bu şekilde hücre zarını hasarlar. Hücre İskeleti: Sitoplazmik matriksde; mikrotübüller, ince aktin flamanlar, kalın flaman-lar ve değişik tiplerde ara flamanlardan oluşan, karmaşık bir ağ yapısı “hücre iskeleti” olarak tanımlanır. Bunlara ek olarak hücre iskeletinde, nonflamentös ve nonpolimerize proteinler de vardır. Bu yapısal proteinler sadece hücrenin şekil ve biçimini korumakla kalmaz, aynı za-manda hücre hareketinde de önemli bir rol oynar. Hücre iskelet bozuklukların da; hücre hare-keti ve intrasellüler organel hareketleri gibi, hücrelerde fonksiyon defektleri görülür. Ayrıca hücrenin fagositoz yetenekleri de kaybolur. Bunlar lökosit gibi özel hücreler ise, lökosit göçü ve fagositoz yeteneklerinde kayıplar ortaya çıkar. Mitokondriyal Zedelenme: Memeli hücrelerinin tümü, temelde oksidatif metabolizmaya bağlı olduğundan mitokondriyal bütünlük hücre yaşamı için, çok önemlidir. Mitokondri hüc-renin “enerji santralı” olarak bilinir. ATP hücredeki bütün intrasellüler metabolik reaksiyonlar için, gereken enerjiyi sağlar. Mitokondrilerde üretilen ATP deki enerji, hücrelerin yaşamı için elzemdir. Yine bu mitokondriler, hücre zedelenmesi ve ölümünde de çok önemli bir rol oynar. Mitokondriler sitozolik (hücre içi) kalsiyumun artmasıyla, serbest radikallerle (aktif oksijen türevleri), oksijen yokluğunda ve toksinlerle zedelenebilir. Mitokondriyal zedelenmenin iki ana sonucu vardır: 1)Oksidatif fosforilasyonun durmasıyla ATP nin progresif olarak düşmesi, hücre ölümüne götürür. 2)Aynı zamanda mitokondriler bir grup protein içerir. Bunlar içinde apoptotik yolu harekete geçiren protein (sitokrom c) de bulunur. Bu protein, mitokondride enerji üretimi ve hücrenin yaşamı için, önemli bir görev yapar. Eğer mitokondri dışına sitozo-le sızarsa, apoptozisle ölüme neden olur. Bazı nonletal patolojik durumlarda mitokondriaların sayılarında, boyutlarında, şekil ve fonksiyonlarında çeşitli değişiklikler olabilir. Örneğin hücresel hipertrofide, hücre içindeki mitokondri sayısında artma vardır. Buna karşın atrofide, mitokondri sayısında azalma görülür. ATP Tüketimi: Hücrelerin enerji deposu olarak bilinen ATP, adenozin difosfat (ADP) ve 1 fosfat (P1) ile mitokondride -üretilir- sentezlenir. Bu işlem oksidatif fosforilasyon olarak tanımlanır. Ayrıca oksijen yokluğunda glikolitik yol ile glukozu kullanarak ATP üretilebilir (anaerobik glikolizis). ATP, hücre içindeki tüm sentez ve parçalama işlemlerinde gereklidir. ATP, hücresel osmolaritenin korunması, membran geçirgenliği, protein sentezi ve temel metabolik işlevler gibi, hemen her olayda çok önemlidir. ATP kayıplarının başlıca nedenleri; iskemiye bağlı oksijen kayıpları ve besin alımında azalma, mitokondri hasarı ve siyanür gibi, bazı toksinlerin etkileri sayılabilir. Kalsiyum Dengesindeki Değişmeler: İskemi ve belli bazı toksinler, belirgin bir şekilde hücre dışı kalsiyumun plasma membranını geçerek hücre içi akışına yol açar. Bunu, hücre içi depolardan ( mitokondri, endoplazmik retikulum) kalsiyumun açığa çıkması izler. Bu hücre içi artan kalsiyum, sitoplazmada bulunana bazı enzimleri aktifleştirir. (1)Fosfolipazları aktive ederek, fosfolipid yıkımına neden olur. Fosfolipid azalması ve lipid yıkım ürünlerinin de açı-ğa çıkmasına neden olur. Bu katabolik (yıkım) ürünler, hücre membran zedelenmesine neden olur. (2)Proteazlarıx (protein parçalayan enzim) aktive ederek, hem membran hem hücre iske-leti proteinlerinin parçalanmasına neden olur. hücre iskeletinin hücre membranından ayrılma-sına ve böylelikle, membranda yırtılmalara neden olur. (3)Adenozin trifosfatazlara (ATPas) etki ederek adenozin trifosfat (ATP) azalmasını hızlandırır. (4)Endonükleazları aktive eder, DNA ve kromatin parçalanmasından sorumludur. Sonuç olarak intrasellüler kalsiyumun art-ması, hücrede bir dizi zedeleyici etki yaparak, hücre ölümüne sebebiyet veren en önemli et-kendir. Hücre Zedelenmesinde Serbest Radikallerin Rolü Hücre zedelenmesinde önemli mekanizmalardan birisi de, aktive edilmiş (reaktif) oksijen ürünlerine (serbest radikaller) bağlı zedelenmedir. Hücre membranına ve hücrenin diğer elemanlarına zarar verir. Serbest radikallerin sebep olduğu hasarlar; iskemi-reperfüzyon hasarıx, kimyasal (hava kir-liliği, sigara dumanı, bitki ilaçları gibi çevresel faktörler) ve radyasyon zedelenmesi, oksijenin ve diğer gazların toksisitesi, hücresel yaşlanma, savunma sisteminin fagositik hücrelerce mikropların öldürülmesi, iltihabi hücrelerin oluşturduğu hücre hasarı ve makrofajlarca yapılan tümör hücrelerinin destrüksiyonu şeklinde sıralanır. Serbest radikallerin hücrelerde yaptığı hasarlar: a)Lipidlerin peroksidasyonuna neden olarak hücre membran hasarı yapar. b)Protein hasarı yaparak, iyon (Na/K) pompası dengesini bozar. c)DNA yı haraplayarak, yetersiz prote- in sentezine neden olur. d)Mitokondrial hasar yaparak, ATP yokluğuna neden olup etkisini gösterir. Oksijen yaşamsal olarak çok gerekli bir molekül olmasına karşın, oksijenin aşırı miktarlar- da bulunduğu durumlar veya çeşitli kimyasal ajanlarla oluşturdukları oksidasyon reaksiyonları ile ortaya çıkan serbest oksijen radikallerinin, hücreye zarar verme riski vardır. Bunlar oksijen zararına örnektir. Paslanmanın bilimsel adı, oksitlenmedir. Vücudumuzdaki hücreler de oksit- lenir ve yaşlanır. Serbest radikallerin (bunlar oksidan moleküller, oksitleyiciler olarak da bili- nir) yıkımına karşı, hücrelerde harabiyeti önleyen, sınırlayan veya onaran gibi, pek çok koru- yucu mekanizma vardır. Bunlara “serbest radikal savaşcıları” (antioksidanlar- oksitlenmeyi önleyiciler) adı verilir. Bunları enzimatik ve nonenzimatik olarak iki ana grupta inceleyebili- riz. Bunların dışında serbest radikallerin, stabil olmadıklarından spontanöz (kendiliğinden) bozulmaları da söz konusudur. Enzimatik Antioksidanlar: Hücrede oluşan serbest radikallerin yok edilmeleri bir dizi enzi-matik olay ile gerçekleşir. Antioksidan enzimlerle yapılan savunmanın önemli bir bölümünü; süperoksit dismutaz, glutatyon peroksidaz ve katalaz oluşturur. Süperoksit radikali, süperoksit dismutasyonla; hidrojen peroksit ise, katalaz ve glutatyon peroksidaz enzimleri ile nötralize edilir. Hidrojen peroksitin parçalanmasında katalaz direkt etkilidir. Nonenzimatik Antioksidanlar: Bu savunma başlıca endogenös ve ekzogenös antioksidanlar tarafından sağlanır. Ekzogenöse örnek; vitamin E (tokoferoller), vitamin C (askorbik asid), beta karoten (A vitaminin yapı taşı) gibi vitaminlerdir. Ekstrasellüler antioksidan olarak serü-loplasmin sayılabilir. Vitamin C ve E’nin vücudu serbest radikallerin yıkıcı etkilerinden koru-duğu düşünülür. Bu antioksidanlar serbest radikallere kendi elektronlarından birini verip, elektron çalma reaksiyonunu sonlandırmasıyla nötralize eder. Antioksidan besinler elektron vermekle, kendileri serbest radikallere dönüşmez; çünki her iki şekilde de stabildir. Bunlar çöpcüler gibi hareket ederek hastalık oluşmasına neden olacak, hücre ve doku hasarlarını ön-ler. Antioksidan besinlere diğer örnekler; eser miktardaki mineraller bakır, çinko ve selen-yumdur. Bu mineraller bazı antioksidan enzimlerin gerekli komponentleri olduğundan, anti-oksidan görevi görür. Kimyasal (Toksik) Zedelenme: Kimyasal maddeler iki mekanizmadan birisiyle hücre zedelenmesine neden olur. (1)Bazı kimyasal maddeler, moleküler komponentlerle veya hüc-resel organellerle direkt birleşerek etki eder. Birçok antineoplastik kemoterapotik ajanlar, doğrudan sitotoksik etkileriyle hücre hasarlarına neden olur. (2)Diğer mekanizmada ise, bazı kimyasal maddeler, biyolojik olarak aktif değilken, toksik metabolitlere dönüştükten sonra, aktif olur ve hedef hücrelerde etkilerini gösterir. Burada indirekt etki söz konusudur. Bu tip değişme genellikle karaciğer hücrelerinde oluşur. x Kan akımının kesilmesiyle (iskemi) eğer hücreler reversibl olarak zedelenirse, kan akımının yeniden düzelme-siyle hücrelerde iyileşme görülür; fakat bazı durumlarda iskemiye uğramış bir dokuda, kan akımının yeniden sağlanmasına (reperfüzyon) rağmen, zedelenme giderek daha da kötüleşir. Buna “iskemi- reperfüzyon hasarı” (reperfüzyon nekrozu) adı verilir. Klinik olarak çok önemli olan, kalb ve beyin enfarktüslerindeki doku hasarla-rında bu şekilde bir zedelenmenin bariz katkısı vardır. Bu olayın nedeni, bölgede serbest radikallerin miktarının artması olabilir; çünki bu toksik oksijen ürünleri, reperfüzyon anında iskemik alana gelen lökositler tarafından bol miktarda ortama salınmıştır. İskemiye uğramış dokuda reperfüzyon oluşmasa bile, sonuçta bu bölgede letal iskemik hücre hasarı yine meydana gelecektir; fakat hasar, bu sefer serbest radikallerle değil, iskemik zedelen-me, hipoksi (oksijen yetersizliği) nedeniyle ortaya çıkacaktır. Serbest Radikaller: Serbest radikaller (oksidan ürünler) ile antioksidan etkileşimini anlamak için, ilk önce hücreler ve moleküller hakkında biraz bilgi sahibi olmak gerekir. İşte bu nedenle burada lise kimyasına kısaca bir göz atalım. İnsan vücudu pekçok farklı tip hücreden oluşmuştur. Hücreler de birçok değişik tip moleküllerden oluşmuştur. Mole- küller, bir veya daha fazla atomlardan, bir veya daha fazla elementlerin kimyasal bağlarla birleşmesinden mey-dana gelmiştir. Atomlar; tek bir nüve (çekirdek), nöronlar, protonlar ve elektronlanlardan oluşur. Atom çekirde- ğindeki protonların (pozitif yüklü parçacıklar) sayısı, atomu çevreleyen elektronların (negatif yüklü parçacıklar) sayısını belirler. Elektronlar kimyasal reaksiyonlarla ilgilidir ve molekül oluşturmak için, atomları birbirine bağ-layan maddedir. Elektronlar atomu yörünge biçiminde bir veya birkaç kat kabuk şeklinde çevreler. En içteki ka-buk iki elektrona sahip olduğunda dolar. İlk kabuk dolduğu zaman, elektronlar ikinci kabuğu doldurmaya başlar. Bir atomun kimyasal davranışını belirleyecek en önemli yapısal özellik, dış kabuktaki elektron sayısıdır. Dış ka-buğu tamamen dolu olan bir madde, kimyasal reaksiyonlara girme eğiliminde değildir, stabildir (hareketsiz). Atomlar maksimum stabiliteye ulaşmak için, dış kabuğunu dolu hale getirmeye çalışırlar. Atomlar genellikle di-ğer atomlarla elektronlarını paylaşarak dış kabuklarını doldurmaya çalışır. Serbest radikaller dış yörüngede eşleş-memiş (çiftlenmemiş) tek bir elektronu bulunan kimyasal moleküllerdir. Bu özellikleri nedeniyle son derece değişken- dengesiz yapıda olduğundan, kolayca inorganik ve organik kimyasallarla reaksiyona girer. Bunlar hem organik hem de inorganik moleküller halinde bulunur. Diğer bileşiklerle süratle reaksiyona girerek, stabilite kazanmak için, gerekli elektronu kazanmaya çalışır. İşte serbest radikaller en yakın stabil moleküle saldırarak o moleküllün elektronunu çalarak zararlı etkisini gösterir. Serbest radikal tarafından saldırılan molekül, elektro-nunu kaybedip serbest radikale dönüşür. Süreç bir kez başlayınca ardışık zincirleme olaylar, canlı hücrenin yaşa-mının bozulmasıyla sonuçlanır. Hücrelerde oluştuğu zaman, hücresel proteinler ve lipidler olduğu kadar nükleik asidlerle de süratle etkileşek onları parçalar. Buna ek olarak serbest radikaller otokatalitik reaksiyonları başlatır. Serbest radikallerle reaksiyona giren moleküller, yeni serbest reaksiyonlara dönüşerek zincirleme hasarlara yol açar. Hücre içinde pekçok reaksiyon, serbest radikallerin oluşumundan sorumludur. Çeşitli reaksiyonlar sonucu bunlar ortaya çıkar. Bunlar aşağıda özetlenmiştir. 1- Hücre içi metabolik olaylar sırasında oluşan redüksiyon- oksidasyon (redoks) reaksiyonlarında görülür. Bu olaylarda; süperoksit radikali (O2-), hidrojen peroksitx (H2O2) ve hidroksil radikali (OH) gibi, önemli serbest radikaller oluşur. Hücre içinde oluştuğunda süratle çeşitli membran molekülleri olduğu kadar, proteinleri ve nük-leik asidleri (DNA) de parçalayarak hasar verir. Böyle DNA hasarları; hücre ölümünde, yaşlanmada ve malig-niteye dönüşümde söz konusudur. Normal koşullarda bu serbest radikaller, antioksidanlarla yok edilebilir. Eğer antioksidanlar yoksa veya serbest radikal üretimi çok artarsa, hücrelerde hasar kaçınılmaz olacaktır. 2- Radyasyon enerjisinin (ultraviyole ışık, X- ışınları) absorbsiyonunda iyonize radyasyonun etkisiyle hücre içindeki su hidrolize olur. Suyun bu radyolizisi sonucu hidroksil (OH) ve hidrojen (H) serbest radikalleri ortaya çıkar. 3- Demir ve bakır gibi değişimli metaller, bazı hücre içi reaksiyonlarda elektron alıp verme özellikleri nede-niyle serbest radikaller ortaya çıkar. 4- Ekzogenös (dış kaynaklı) kimyasal maddelerin enzimatik metabolizması sonucu karbon tetraklorid (CCl4) den, karbon tetraklorür (CCl3) serbest radikali oluşur. 5- Nitrik oksit (NO), endotel hücreleri ve makrofaj gibi, bazı tip hücreler tarafından sentez edilen, serbest radikal gibi davranan önemli bir kimyasal medyatördür. Nitrik oksit oksijenle reaksiyona girdiğinde, NO2 ve NO3 gibi, diğer serbest radikalleri de oluşturur. x Hidrojen peroksit (H2O2), kendisi serbest radikal değildir, bu nedenle reaktif oksijen türevi olarak adlandırılır. STRESE KARŞI HÜCRESEL ADAPTASYON Normal bir hücre, değişen çevre şartlarına göre, yapı ve fonksiyonunu (işlevini) belirli ölçülerde değiştirerek yaşamını devam ettiren bir mikro evrendir. Bu oluşum, stresler çok ciddi olmadığı sürece, kendini koruma eğilimindedir. Eğer hücre, aşırı fizyolojik strese veya bazı patolojik stimulasyonlara (uyarılara) maruz kalırsa, stresin devam etmesine rağmen, adaptasyon (uyum) göstererek sağlığını korur. Hücresel adaptasyon, normal hücre ile zedelen- miş hücre arasında kalan bir durumdur. Hücresel adaptasyonlar başlıca atrofi, hipertrofi, hiperplazi ve metaplazidir. Hücre adaptif gücü aşıldığında veya hiç adaptif yanıt sağlanamadı- ğında hücre zedelenmesi ortaya çıkar. Hücre zedelenmesi bir noktaya kadar reversibldir (geri dönüşlü); fakat ciddi veya kalıcı streslerle irreversibl (geri dönüşsüz) hale gelir ve hücre so-nuçta ölüme gider. İrreversibl zedelenme, hücre ölümüne yol açan, kalıcı patolojik değişiklik- leri. ifade eder. Reversibl hasardan, irreversibl hasara ne zaman geçtiği kesin olarak bilinme- mektedir. Bu bölümde özellikle patolojik olaylarda, hücre büyüme ve farklılaşmasıyla (diferansiyas-yon) ortaya çıkan adaptif değişikliklere değineceğiz. Bunlar; atrofi (hücre boyutunun küçül-mesi), hipertrofi (hücre boyutunun büyümesi), hiperplazi (hücre sayısının artması) ve meta-plaziyi (hücre tipindeki değişiklik) içermektedir. Ayrıca displazi (hücrelerde şekil bozukluğu) hipoplazi, atrezi, agenezis ve aplazinin anlamlarını açıklayacağız. Atrofi: Hücrenin madde kaybına bağlı olarak hacmının küçülmesi “atrofi” olarak bilinir. Atrofi, adaptif yanıtın bir şeklidir. Yeterli sayıda hücre etkilendiğinde, tüm doku veya organ hacmında küçülme olur ve organ atrofik şekle dönüşür. Gerçi atrofik hücrelerde fonksiyon azalmıştır ama bu hücreler ölü değildir. Atrofik hücre daha az mitokondria, myoflament ve endoplazmik retikulum içerir. Birçok durumda atrofiye, artmış bir otofaji (kendini yiyen) eşlik eder. Atrofinin nedenleri şunlardır: (1)İnaktivite atrofisi; iş yükünün azalması söz konusudur. Çalışmayan, fonksiyon görmeyen organ veya doku atrofiye uğrar. Uzun süre alçıda kalan ekstremitelerde kas atrofisi görülebilir. Felçlilerde, felçli taraf kaslarında inaktivite nedeniyle atrofi olur. (2)İnnervasyon (sinir uyarı) kaybı; poliomyelitisde olduğu gibi, innervasyon kay-bına bağlı meydana gelen paralizilerde söz konusu kas dokularında atrofiler görülür. Burada da fonksiyon kaybı söz konusudur. (3)Kanlanmanın azalması, (4)yetersiz beslenme, (5)endo-krin stimülasyon (uyarı) kaybı; menoposda hormon kayıpları örnek verilebilir ve (6)yaşlan-maya bağlı atrofiler meydana gelir. İleri yaşlardaki kişilerin beyinlerinde görülen atrofilere “senil atrofi” denir. Senil atrofi ve menoposda hormon stimülasyon kayıpları, fizyolojik atro-fiye örnektir. Patolojik atrofiye, innervasyon kaybı örnek verilebilir. Hipertrofi: Hipertrofi, hücrelerin hacımlarının artmasını tarif eder ve böyle bir değişiklik- te organın hacmı da büyüyecektir. Bu nedenle hipertrofiye organda yeni hücreler yoktur, yal- nızca büyük ve iri hücreler vardır. Hücre hacmının artımı, sıvı alımının artımı ile ilgili değil- dir. Sıvı alımıyla ilgili olanı, hücre şişmesi veya ödem olarak adlandırılır; fakat hipertrofide daha çok ultrastrüktürel komponentlerin (proteinler ve organeller) sentezinde bir artım söz konusudur. Hipertrofi, fizyolojik veya patolojik olabilir ve organdaki fonksiyonel artım veya spesifik hormonal stimülasyon, bunun oluşmasına neden olabilir. Gebelik anında, uterusun büyümesi, fizyolojik bir olaydır. Uterus düz kas hücrelerinde oluşan artım, hem hipertrofi ve hem de hiperplazi nedeniyledir. Patolojik hücresel hipertrofiye örnek, hipertansiyon veya aortik valvül hastalığı sonucu ortaya çıkan kardiyak büyüme gösterilebilir. Her bir myokard lifi hipertrofiye olarak, hücre büyümesi ve hacım artışı göstererek, bu artan yüke karşı, kalbin daha fazla bir güç ile pompalamasını sağlar. Kas kitlesinin büyümesi, bir sınıra ulaştıktan sonra, artan yükü kompanse edemez ve kalb yetmezliği ortaya çıkar. Bu safhada myokardiyal liflerde bir dizi dejeneratif değişiklikler ve hücre ölümü ortaya çıkar. Kalb ve iskelet kasında-ki çizgili kas hücreleri, en fazla hipertrofi gösterebilme yeteneğinde olan hücrelerdir. Belki de bu, hücrelerin artan metabolik gereksinimlere mitotik bölünme ve yeni hücre şekillenmesiyle 8 yanıt veremediğindendir. Hipertrofinin kesin mekanizması ne olursa olsun, Bunların en önem-lisi myofibriler kontraktif elemanlarının erimesi ve kaybıdır. Hiperplazi: Hiperplazi, bir doku veya organda hücre sayısındaki artışı belirtir ve böylelik- le volüm olarak da artış vardır. Hücreler, fonksiyonel gereksinim artmasına bir yanıt olarak nasıl hipertrofiye olursa, aynı şekilde stress altında kalınca veya stimüle edilince, mitotik bölünerek çoğalırlar. Bu şekilde organ veya dokuda hücre sayısının artmasına “hiperplazi” adı verilir. Hücre sayısı artması ile, organ veya dokunun büyümesi söz konusudur. Hiperplazi gösteren hücrelerin fonksiyonlarında artma olur. Özellikle bu, iç salgı gudde hücrelerinde belirgindir. Vücuttaki her hücre tipinin hiperplazik kapasitesi yoktur. Örnek; kalb ve iskelet kası ile sinir hücreleridir. Epidermis, intestinal epitel, hepatositler, fibroblastlar ve kemik iliği hücreleri hiperplaziye uğrar. Hiperplazi; fizyolojik ve patolojik olarak ikiye bölünebilir. Fizyolojik Hiperplazi: Fizyolojik hiperplazi de ikiye ayrılır. (1)Hormonal hiperplazi; en iyi örnek puberte (ergenlik) ve gebelikte; meme glandüler epitel proliferasyonu ve ayrıca gebelikte uterusda kas hücrelerinde hiperplazi ve hipertrofi görülür. Menstrüel siklusdaki “proliferatif faz” (endometrial proliferasyon) fizyolojik bir hiperplazidir. (2)Kompensatuvar hiperplazi; parsiyel hepatotektomi yaparak, karaciğer dokusunun bir parçasının çıkarılmasın-dan sonra, karaciğerin rejenerasyon kapasitesi ile yeni karaciğer hücreleri yapılır. Patolojik Hiperplazi: Patolojik hiperplazinin pek çok şeklinde, aşırı hormonal veya büyü-me faktörü stimülasyonu vardır. Normal menstrüel perioddan sonra, endometrial doku gudde-lerinde aşırı proliferasyon görülür. Bu endometrial proliferasyon esasda fizyolojik bir hiper-plazidir; fakat hormonal dengelerin bozulduğu bazı durumlarda (östrojen ve progesteron ara-sındaki balans) östrojenin artması durumunda, endometrium guddelerinde aşırı bir hücre artı-mı ortaya çıkar. Bu endometrial hiperplazi sonrası, kanser sürpriz olmamalıdır; çünki endo-metrial hiperplazilerde kanser riski vardır. Ayrıca, endometrial hiperplazi, anormal menstrüel kanamaların başlıca nedenidir. Prostat kanseri tedavisi için, östrojen hormonu verildiğinde veya karaciğer sirozunda oldu-ğu gibi, östrojenin inaktivite edilemediği durumlarda, hastalarda hiperöstrinizm (östrojen fazlalığı) ortaya çıkar. Bu gibi, erkek hastaların memelerinde büyümeler (jinekomasti) meyda- na gelir. Kanın kalsiyum düzeyindeki uzun süreli düşmeler, paratiroid salgılıklar üzerine uyarıcı etki yapar, paratiroid hiperplazisi (sekonder hiperparatiroidizm) saptanır. ACTH veril- mesi sonucu, sürrenal korteks hiperplazisi gelişir (Cushing sendromu)x. Patolojik hiperplaziye örnek olarak iltihabi iritasyon ve enfeksiyon hiperplazisini göstere- biliriz. Kötü yapılmış bir protez, alttaki dokuda epitel ve bağ dokusu olmak üzere hücre proli- ferasyonlarına neden olur. Bunlara “iltihapsal fibröz hiperplazi” denir. Protez vuruğu hiper- plazisi veya epulis fissuratum olarak adlandırılır. Hiperplazi, yara iyileşmesindeki bağ dokusu hücrelerinin verdiği önemli bir yanıt olabilir. Prolifere olan fibroblast ve kan damarı hücreleri bir onarım işlemine yol açarak bir granulasyon dokusunu oluşturur. Bu hücreler, fibroblast ve endotel hücreleri, büyüme faktörlerinin stimülasyonu (uyarısı) ile prolifere olarak hiperplazi- ye neden olur. Büyüme faktörlerinin stimülasyonu, keza human papilloma virus gibi bazı viral enfeksiyonlarda da hiperplazilere neden olarak karşımıza çıkabilir. Bu tür lezyonlara örnek, deride görülen bildiğimiz deri siğilleridir (verruka vulgaris). Gerçi hipertrofi ve hiperplazi tanımlamada iki farklı olaylarsa da, aynı mekanizma tarafından başlatılır ve pek çok durumda beraber oluşur. x Cushing Sendromu : Adrenokortikal hiperfonksiyonu, Cushing sendromuna neden olur. Bu fazlalığın nedenleri (1)adrenal bezinde (salgılığında) hiperplazi, (2)adenoma veya karsinoma gibi, tümörler (3)hastanın ağızdan uzun süre kortizon alması ve (4)hipofiz hiperfonksiyonu (ACTH hipersekresyonu) dur. Bütün bunlar, adrenal salgılığına aşırı salgı yaptırır. Klinik olarak, Buffalo tipi şişmanlık, düşük omuz, kalın boyun, aydede yüz hastalığın özelliğidir. Karın derisinde çizgilenme, akne, osteoporoz, hipertansiyon görülür. Kadınlarda hirsutizm (kıllanma) amenore ve mental bozukluk, diğer özelliklerdir. Metaplazi: Metaplazi adült (matür= erişkin) bir hücre tipinin (epitelyal veya mezanşimal) yerini, diğer bir adült hücrenin alması şeklinde olan reversibl bir değişikliktir. Olumsuz çevre koşullarına karşı dayanabilmek için, strese duyarlı hücrelerin daha dirençli hücre tipine dönü-şerek gösterdiği adaptif cevaptır. Bu tür adaptif metaplaziye en güzel örnek, “skuamoz meta-plazi” dir. Sigara (içme gibi, kötü) alışkanlığı olan kişilerde solunum yollarındaki (trakea ve bronş epiteli) silli- silendirik epitel yerini, stratifiye skuamoz epitel hücrelerinin almasıdır. Tükrük salgılığı kanalı ve safra kesesi kanalı taşlarının varlığında olan kronik iritasyon, bura-lardaki sekretuvar silendrik epitelin yerini nonfonksiyonel stratifiye skuamoz epitel alabilir. A vitamini yetersizliği de, solunum yolu epitelini skuamoz metaplaziye uğratır. “Müköz meta-plazi” kronik bronşitte psödostratifiye silli solunum yolu epiteli, mukus salgılayan basit silen-dirik epitele dönüşebilir. Metaplazi mekanizması, adaptif bir yanıt olarak, mezankim hücrele-rinde de oluşur. Fibroblastlar kemik ve kıkırdak yapan osteoblast veya kondroblastlara dönü-şebilir. Örneğin; osteoid ve kemik dokusu yumuşak dokuda özellikle zedelenme alanında nadiren oluşur, buna “osseöz metaplazi” denir. Hipoplazi: Özel yapısı aynı kalmakla beraber, normal boyutuna ulaşamayan organlar için kullanılan bir terimdir. Bu bir eksik gelişmedir. Organın görünümü normal, fakat hacım bakı- mından küçüktür. Beyinin tam gelişemeyerek küçük kalmasına “mikrosefali” adı verilir, bu hipoplaziye bir örnektir. Gelişmesini tamamlamamış ve küçük kalmış bir diş, hipoplazik diş olarak adlandırılır. Aplazi: Tam gelişememiş bir organı tarif eder. Bir organın çok küçük ve biçimsiz olması durumudur. Bir taraftaki böbreğin taslak halinde bulunmasıdır. Agenezi: Bir organ veya dokunun konjenital bir bozukluk nedeniyle taslak halinde bile bulunmamasına “agenezis” denir. Bir organa ait doku kalıntılarının olmaması durumudur. Dental agenez olarak, çok nadir de olsa rastladığımız lateral veya üçüncü molar dişlerdeki hiç gelişememe örnekleri vardır. Atrezi: Barsak karaciğer ve safra kanalı gibi, duktal veya lümenli organların kanal açıklı-ğının olmamasıdır. REVERSİBL VE İRREVERSİBL HÜCRE ZEDELENMESİNDE IŞIK MİKROSKOBİK DEĞİŞİKLİKLER Klasik patolojide öldürücü olmayan (nonletal) zedelenme sonucu ortaya çıkan morfolojik (yapısal- biçimsel) değişikliklere “dejenerasyon (yozlaşma)” olarak söz edilirdi; fakat bugün bunlara daha basit olarak, reversibl (geri dönüşlü) değişiklik adı verilmektedir. İki ana mor-folojik değişiklik şeklinde karşımıza çıkar: (1)Hücresel şişme ve (2)yağlanma. Hücresel Şişme: Hücre içi sıvı ve iyon dengesinin bozulduğunda görülür. Hidropik de-ğişme veya vakuoler dejenerasyon olarak da adlandırılan hücresel şişme, hücrede hemen her tip hasarın ilk göstergesi ekstrasellüler suyun, hücre içine geçmesi neticesi olan hücredeki büyüme “hücresel şişme” olarak bilinir. Hücre şişmesi, reversibl bir olaydır ve hafif hasarın (zedelenmenin) işaretidir. Makroskopik olarak hücresel şişmede organlar büyümüştür; sert ve soluk görünümlü olup, ağırlıkları artmıştır. Mikroskopik olarak hücre sitoplasması bulanık, nükleus (nüve= çekirdek) ise soluk görünümlüdür. Yağlı Değişme (Yağlanma- Steatozis): Yağlı değişme parankimal hücrelerde anormal yağ (trigliseritler, kolesterol ve kolesterol esterleri) birikimini belirtir. Yağlanma ise, daha az görülen bir reaksiyondur. Hücre içindeki küçük ve büyük vakuoller, hücrede lipid artışını gösterir. Yağlı değişme öldürücü olmayan (reversibl) zedelenmenin belirtisidir; fakat etken ortadan kaldırılmazsa, bazen öldürücü olabilir. Yağ metabolizmasının ana organı olması nede-niyle yağlı değişme, en sık karaciğer dokusunda görülür; fakat kalb, böbrek, kas ve diğer organlarda da oluşabilir. Karaciğerdeki yağlı değişmenin en önemli nedeni, alkol bağımlılığı-dır. Alkol bir hepatotoksiktir. Yağlı karaciğer daha sonra, siroz olarak adlandırılan ilerleyici karaciğer fibrozisine yol açabilir. Yağlı karaciğere neden olan diğer etkenler; obesite, toksin-ler, protein malnutrisyonu, diyabetes mellitus ve anoksidir. İskemik ve Hipoksik Zedelenme İskemi veya dokudaki kan akımı azalması, klinik tıpta hücre zedelenmesinin en yaygın görülen nedenidir. Hipoksinin ilk etkilediği yer, hücrenin solunum merkezidir (aerobik solu-numu) ki burası, mitokondrilerdeki oksidatif fosforilasyonun olduğu yerdir. Oksijen basıncı düştükçe ATP nin hücre içi yapımı, bariz bir şekilde azalır ve durur. ATP kaybı, hücrede genel olarak bir çok sistemi etkiler. Hücre dışı kalsiyumun, hücre içi girişine neden olur. Hipoksi ve ATP azalmasının en erken sonuçlarından birisi, hücresel şişmedir (hücresel ödem). Protein normalde hücre içinde daha fazla olduğu için, hücre içi osmotik kolloidal basınç yük-sektir. Diğer taraftan sodyum (Na) ve diğer bazı iyonların konsantrasyonu dış ortama göre, hücre içinde daha düşüktür. İntrasellüler sodyumun azlığı, hücre membranında ATP enerjisine dayanan “sodyum pompası” ile sağlanır. Potasyum (K) konsantrasyonu ise, dış ortama göre hücre içinde daha yüksektir. ATP azalmasıyla bu sistem bozulur. Potasyum dışarı çıkmaya, sodyum hücre içine girmeye başlar. Sodyum ile birlikte hücre içine su girişi olur. Sonuçta iç ve dış ortam dengeye vardığında, hücre içinde normalden çok fazla su bulunacaktır ve hücre şişecektir. Hücresel Yaşlanma: Bu deyim; hemen daima subletal (reversibl) zedelenmenin progresif (ilerleyici) birikimleri, hücresel fonksiyonla uyum içinde davranır ve hücre ölümüne yol açabilir veya en azından hücrenin bir zedelenmeye karşı verdiği yanıt kapasitesindeki azalma- yı anlatır. Yaş ile pekçok hücre fonksiyonu progresif olarak azalır. Mitokondrial oksidatif Fosforilasyon (aerobik solunum), strüktürel, enzimatik ve reseptör proteinlerinin sentezindeki gibi, giderek azalır. Yaşlanan hücrelerde besin alımlarında ve kromozomal hasarların onarı-mında belirgin azalmalar görülür. Yaşlı hücrelerin ultrastrüktürel yapılarında da morfolojik değişiklikler gözlenir. Şekil bozukluğu gösteren nüveler, pleomorfik vaküollü mitokondriler, endoplazmik retikulumda azalma ve lipofussin pigment birikimi vardır. Hücresel yaşlanmada serbest radikal hasarı, önemli hipotezlerden birisidir. İyonizan radyasyon olarak tekrarlayan çevresel etkilenme, antioksidan savunma mekanizmalarının (örn vitamin E, glutatyon peroksi- daz) progresif bir şekilde azalması veya her ikisi birden beraberce etki ederek serbest radikal hasarı oluşturur. Lipofussin birikimi yaşlanmış hücrelerde bu tür hasarın açıklayıcı bir göster- gesidir; fakat pigmentin kendisinin hücreye toksik olduğuna dair deliller yoktur. Serbest radi- kaller mitokondrial ve nükleer DNA hasarını harekete geçirebilir. Zedelenmeye Karşı Hücre İçi Yanıtlar Lizozomal Katabolizma (Parçalama): Primer lizozomlar esas fonksiyonu sitoplazma içi sindirim olan, çok sayıda ve çeşitte sindirici (hidrolitik) enzim içeren, membranla çevrili vezi- küllerdir. Her hücrede bulunursa da özellikle fagositik aktivite gösteren hücrelerde (makrofaj, lökosit) bol miktarda bulunur. Bugüne kadar 50’den fazla hidrolitik (parçalayıcı) enzim tanımlanmıştır. Lizozomal örneklerden bazıları; asid hidrolaz (organik materyale örn. Bakteri-ye karşı rol oynar), lizozim (lökositlerde olduğu kadar makrofajlarda da bulunur. Mikroorga-nizmaların hidrolizinde rol oynar), proteaz (proteinlerin parçalanmasına neden olur; elastin, kollagen ve bazal membranda bulunan proteini yıkar) ve diğerleri asit fosfataz, glukoronidaz, sülfataz, ribonükleaz, deoksiribonükleaz, elastaz, kollagenaz ve lipaz’dır. Lizozomlar tarafın-dan parçalanma şu iki yoldan birisiyle oluşur. Otofaji: Hücrenin kendi içeriğinin (komponentler), yine hücrenin kendi lizozomları tara-fından sindirilmesidir. Kendini yeme anlamındadır. Pekçok durumda mitokondri ve endoplaz-mik retikulum gibi, hücre organalleri zedelenmeye maruz kalırsa hücre normal fonksiyonları-nı koruyabilmek için, bunları yok edebilmelidir. Zedelenmiş veya yaşlanmış organellerin belli bir düzen içinde yok edilmesi bir hücresel yenilenmedir. Ayrıca besinsiz kalan hücrenin kendi öz içeriğini yemek suretiyle kendi yaşamını sürdürmesi olayıdır. Otofaji, özellikle atrofiye giden hücrelerde belirgindir. Heterofaji: Bir hücrenin özellikle makrofajın, dış ortamdan hücre içine aldıkları maddeleri sindirmesi olayına, heterofaji denir ve otofajinin karşıtıdır. Bir materyalin dış çevreden alın-ması olayı, genelde “endositozis” olarak adlandırılır. Büyükçe partiküler materyal için, “fago-sitozis” ve küçük solubl (eriyebilir) makromoleküller için de “pinositozis” terimi kullanılır. Dış ortamdan alınan partikül hücre içine girdiğinde, vakuolle çevrilir. Bunlar fagozom (fago-sitik vakuol) olarak adlandırılır. Bu fagozomlar, primer lizozomlarla kaynaşır, artık sekonder lizozom (fagolizozom) dur. Heterofaji, genelde “profesyonel fagositler” olarak bilinen lökosit (PNL -mikrofaj) ve makrofajlarca (histiosit) yapılır. Lökositler bakterileri, makrofajlar da hücre debrilerini sindirir. Sindirilmiş atıkların hücreden dışarı atılma olayına “ekzositozis” denir. N E K R O Z İ S Canlı organizmada (doku ve organ) ışık mikroskopi ile saptanan, hücre ölümü sonucu ortaya çıkan morfolojik değişikliklere “nekroz” denir. Nekrozis, Yunan dilinde ölüm anla-mındadır. Kan gereksinimi kesintilerinde (iskemik zedelenme) veya belli bazı toksinlerle karşılaşılması durumunda ortaya nekroz çıkar. Nekrozdaki morfolojik görünüm, aslında aynı anda oluşan iki olayın sonucu olabilir: (1)Hücrenin enzimatik yıkımı (organellerin parçalan-ması) ve (2)makromoleküllerin denaturasyonu (proteinlerde yapı değişiklikleri). Bir hücrenin enzimatik sindirimi, kendi lizozomal enzimlerinden kaynaklanıyorsa “otoliz” olarak tanımla-nır. Hücre kendi- kendini sindirir. Otosindirimde nekroz meydana gelir. Postmortem otoliz, tüm organizma öldükten sonra oluşur ve bu bir nekroz değildir. Çevreye gelen bakteri ve lökosit lizozomlarından türeyen hidrolitik (katalitik) enzimlerle olan sindirime de “heteroliz” adı verilir. Bu şekilde de hücre dıştan gelen enzimatik etki ile nekrotik olur. Biyopsi ve rezek-siyon gibi, cerrahi işlemlerle vücuttan alınıp fiksatife (%10’luk formalin) konulan doku parça-sındaki hücreler de ölüdür; fakat nekrotik değildir. Fiksatifler dokuların yapısal bütünlüğünü (morfolojiyi) korur. Hücre ölümünün temel işaretleri nüvede bulunur. Ölüme giden hücrelerde nüve değişiklik- leri şu üç görünümden birisini gösterir. Bunların hepsi kromatin ve DNA nın parçalanmasına bağlıdır. Nüve büzüşür ve küçülür, kromatin yoğunluğu artmıştır. Bazofilik nüve olarak söz edilir, (1)piknozis olarak adlandırılır. Piknozis apoptotik hücre ölümünde de görülür. Zaman içersinde piknotik nüvede parçalanma olayı meydana gelir. Nüve küçük düzensiz parçacıklara bölünmüştür (2)karyorekzis olarak adlandırılır ve (3)karyolizis olarak bilinen nükleer mater-yallerin çözülme ve erimesi söz konusudur. Kromatinin bazofilliği solabilir. Sonuçta, nekrotik hücrede nüve tümüyle kaybolur. Bu arada sitoplazmik değişiklikler de görülür. Sitoplazmada homojenizasyon ve belirgin eosinofili artışı vardır. Artık bu safhada nekrotik hücre; çekirdeği olmayan asidofilik bir atığa dönmüştür. Geleneksel olarak birçok farklı tiplerde nekrotik doku görünümleri tarif edilmiştir. Koagülasyon Nekrozu: En çok görülen nekroz tipi, koagülasyon nekrozudur. Genel ola-rak doku yapısı korunmuştur. Nekrotik doku içinde, hücre elemanları hayalet hücre şeklinde görüntü verir, hücrelerin dış hatları seçilebilir. Nekrotik alan asidofilik opak görünümlüdür. Bu nekroz tipi, daha çok kan akımının kesilmesiyle iskemi (hipoksi) sonucu ortaya çıkan enfarktlarda oluşur. Bakteriyel toksinler, viruslar ve iyonize radyasyon gibi, pek çok etken de neden olabilir. Bu tip nekroz iltihabi yanıtı harekete geçirir. Hasarlı doku fagositler tarafından ortadan kaldırılır ve bölge onarım veya rejenerasyona uğrar. Kalb (myokard enfarktüsü) ve böbrek gibi, organlarda daha sık görülür. Kazeifikasyon Nekrozu: Bu nekroz, farklı- özel bir nekroz tipidir. Başlıca tüberküloz enfeksiyonlarında oluşur. Bu nekroz tipinin karakteristik makroskopik yapısı, bir çeşit peyniri hatırlatan yumuşak, parçalanabilir gri- beyaz görünümde olmasıdır. Bu görünümü nedeniyle “kazeös” terimi kullanılır. Mikroskopik olarak hiçbir hücre detayı görülmez, dokunun yapı özellikleri tamamen silinmiştir. Yerine amorfös, granüler ve eosinofilik bir doku geçmiştir. Likefaksiyon Nekrozu: Bu tip nekroz, iki durumda karşımıza çıkar. Bunlardan biri enzim sindiriminin baskın olduğu durumlarda söz konusudur. Güçlü hidrolitik enzimlerin aksiyonu sonucu oluşur. Başlıca fokal bakteri (özellikle pyojenik mikroorganizmalar) enfeksiyonların- da görülür. Dokuda belirgin yumuşama ve likefaksiyon vardır; abse buna bir örnektir. Hücre ölümü sonrası bölgede bulunan bakteri ve lökositlerin hidrolitik enzimleri ile çevre doku hüc- relerinin otolizi ve heterolizisi sonucu ortaya çıkar. Lökositlerle dolu abse kavitesi oluşturarak doku defekti meydana getirir. Püy’ün oluşmasıyla karakterli süpüratif enfeksiyondur. Diğeri, santral sinir sisteminde iskemi sonucu oluşan hücre ölümü, likefaksiyon nekrozudur. Hemorajik Nekroz: Venöz drenajda blokaj olduğu dokularda ekstravaze kırmızı kan hücrelerinin çevreyi kaplaması sonucu, dokuların nekroze olmasıdır. Gangrenöz Nekroz: Çoğunlukla diyabetli kişilerde, özellikle alt ekstremitelerde ayak ve ayak parmaklarında görülür. Dokuda iskemik hücre ölümü ile ortaya çıkan koagülasyon nek- rozunun özel bir formudur. Bölgede mevcut bakterilerin ve çevreden gelen lökositlerin like- faktif aksiyonunun oluşur. Koagülasyon nekrozu ön planda olduğu zaman, bu olay gelişir. İskemiye neden olan damar tıkanıklığı, lökosit göçünü engellerse, nekroza uğrayan hücrelerin parçalanması önlenir ve ortadan kaldırılmayan nekrotik hücreler mumyalaşır. Buna “kuru gangren” denir. Salim doku ile sınırı belirgindir. Nekrotik bölgeye bakteri invazyonu ve löko- sit göçü olursa, likefaksiyon nekrozu gelişir, “yaş gangren” terimi kulanılır. Yaş gangrene, putrefaksiyon (kokuşma) nekrozu da denir.Vincent spiroketleri, fusiform basiller ve daha bazı mikroorganizmaların eklenmeleri söz konusudur. Beslenme defektli direnci düşük çocuklarda orafasiyal dokularda ortaya çıkan “noma” (gangrenöz stomatit) olarak adlandırılan lezyon da bir çeşit yaş gangrendir. Noma (Gangrenöz Stomatitis- Şankrum Oris): Oral ve fasial dokularda destrüktif yapısı ile karakterize, süratle yayılan daha çok 2- 5 yaşlardaki beslenme defektli veya debilite (yıkıcı) sistemik hastalıklara sahip çocuklarda görülen nadir bir hastalıktır. Kişinin genel sağlığıyla belirgin bir uyum gösteren doku nekrozu, başlangıçta fuziform basiller ve Vincent spiroketleri gibi, anaerobik bakterilerin invazyonu ve sonrasında stafilokokus aureus, streptokokus pyo-gens gibi, diğer çeşitli mikroorganizmalar tarafından invazyona uğrayan spesifik bir enfeksi-yondur. Gerçi pnömoni, sifiliz, tüberküloz, lösemi ve sepsis gibi, zayıf düşürücü sistemik has-talıklar yanısıra malnütrisyon, en sık görülen predispozan faktörlerdir. Noma çok nadir görülür. Gelişmemiş ülkelerde, özellikle malnütrisyon veya protein defek- ti gösteren durumlarda ortaya çıkar. Lezyon özellikle gingival mukozada küçük ağrılı bir ülser şeklinde başlar. Çevre dokuya süratle yayılır. Alttaki yumuşak dokuya penetre olan, sonunda yüz derisini perfore eden akut gangrenöz bir hastalıktır. Nekrozlara bağlı olarak meydana ge- len doku kayıpları sonucu, kemik dokusu ve dişler açığa çıkar. Etkilenen bölgede dişler dökü- lür. Noma, çok sınırlı ve daha benign yapıda olan “akut nekrotizan ülseratif gingivitis”e (ANUG) bir çok özellikleriyle benzemektedir. Her ikisinde de etken aynı mikroorganizmalar-dır ve olay, doku nekrozu ile sonuçlanır. Ayrıca her iki lezyonda da bağışıklık yönünden düşük (immünosüprese) kişiler söz konusudur. Gerçi nadir de olsa, ANUG’dan noma’ya dönüşen olgular da vardır. Son zamanlarda yapılan araştırmalarda, HIV/AIDS’li hastalarda noma’nın görülme sıklığının artmış olduğu gözlenmiştir. Mikroskopi; nonspesifik yoğun nek-roz ve belirgin yaygın bir iltihabi hücre reaksiyon gösterir. Tedavi; enfeksiyonun kendisi kadar, hastalığa neden olan predispozan faktörlerin de yok edilmesini içermelidir. Uygulanan antibiyotik tedavisi yanında, hastanın sıvı- elektrolit denge- sinin ve beslenmesinin sağlanması gerekir. Eğer çevre dokuda yoğun destrüksiyon varsa, do- kudaki nekrotik debrilerin temizlenmesi gerekir. Noma’da mortalite; antibiyotiklerden önce yaklaşık %75 idi. Gerçi bu lezyon hala ciddi bir problemdir. “Gazlı gangren”; özellikle Clostrdium welchii’nin etken olduğu, sporlu anaerobik Clostri-dia grubunun yaptığı spesifik bir enfeksiyondur. Klostiridya sporlarının bulaştığı delici yara-lanmalarda, güçlü ekzotoksinler ile proteolitik enzimler çevre dokuyu haraplar, hatta fatal (öldürücü) olabilir. Yağ Nekrozu: Yağ dokusu hasarı iki şekilde oluşur. 1)Travmatik yağ nekrozu; meme gibi yağ içeren dokularda oluşan şiddetli zedelenme sonucu ortaya çıkar. 2)Enzimatik yağ nekrozu (lipolizis); pankreasdaki ağır bir iltihabın sonucu ortaya çıkan, akut hemorajik pankreatitisin komplikasyonudur. Proteolitik ve lipolitik pankreatik enzimlerinin aksiyonu sonucu, yağ do-kusunda ortaya çıkan bir tip nekrozdur. Fibrinoid Nekroz: Bu gerçek bir nekroz özelliği göstermez. Bazı hipersensitivite (aşırı duyarlık) reaksiyonlarında görülür. Genellikle immünolojik olarak zedelenen damar duvar- larında koyu eosinofilik boyanan fibrine- benzer homojen görünümlü bir madde birikimiyle karakterlidir. Bu birikim; fibrin, immünoglobulin ve plasma proteinlerinden oluşur. A P O P T O Z İ S Apoptozis, köken olarak apo (ayrı), ptozis (düşen) kelimelerinden oluşmuştur. Apoptoz (kopma, düşme) sonbaharda yaprak dökümünü tanımlayan bir kelimedir. Farklı ve önemli bir hücre ölümü biçimi olan apoptoz, proğramlanmış veya seçici hücre ölümüdür, hücre intiharı ile eş anlamlı olarak kullanılmaktadır. Bir grup içinde belli bazı hücrelerin kendi- kendilerini yok ettikleri proğramlı bu ölüm biçimi, diğer bir hücre ölümü olan nekrozdan farklı olduğu bilinmelidir. Nekroz, yalnızca patolojik durumlarda ortaya çıkar ve iltihabi reaksiyon mevcut-tur. Apoptoz, hiçbir zaman iltihabi reaksiyona neden olmaz. Organizmanın dengeli yaşamını sağlayan apoptoz, fizyolojik olduğu kadar patolojik olaylarda da rol oynamaktadır. Önemi, biyolojik olaylarda gereksiz ve zararlı hücrelerin yok edilişini sağlamasından, organizmanın kendi iç dengesinin devamlılığına katkıda bulunmasından ileri gelmektedir. Apoptoz, fizyolojik ve patolojik olmak üzere pek çok durumda karşımıza çıkar. Fizyolojik Apoptoz : 1-Embriyogenezis sırasında aşırı yapılmış hücrelerin proğramlı olarak ortadan kaldırılması olayında görülür. 2-Erişkinlerde hormon bağımlı dokuların gerilemesinde (involüsyon═ organ atrofisi) görü-lür: Postlaktasyonel (sütten kesilmiş) meme salgı hücrelerinde regresyon, menopozda ovarian follikül atrofisi, menstrüel siklusda endometrium hücrelerindeki ölüm, örnektir. 3-Prolifere hücre topluluklarındaki hücre kayıpları; buna örnek barsak kriptlerindeki epitel hücre sayılarının sabit tutulmaları için, hücre ölümü örnek verilebilir. 4-İltihabi yanıtın sonlandırılması; ekstravazasyondan sonra, iltihabi dokuda görevini ta-mamlamış lökositlerin ölümü, apoptozis ile olmaktadır. 5-Sitotoksik T lenfositler tarafından oluşturulan hücre ölümü: Virus ve tümör hücrelerine karşı oluşturulan bir savunma mekanizmasıdır. Bunların öldürülerek elimine edilmelerini sağ- lar. Patolojik Apoptoz : 1-DNA hasarı: Radyasyon, sitotoksik antikanser ilaçları, aşırı ısı (soğuk, sıcak) ve hipoksi, gibi, nekroz oluşturan bu etkenler, düşük dozlarda uygulandığı zaman hücre intiharını tetikler. DNA, direkt olarak veya serbest radikaller aracılığıyla zedelenebilir. Eğer hasar onarılamazsa, interensek (içsel) mekanizmalar tetiklenerek apoptoz indüke edilir. DNA daki mutasyonların malign değişme riski bulunduğu için, bu durumdaki hücrelerin apoptoz ile yok edilmeleri bir kazançtır. Apoptozda, tümör süpresör (baskılayıcı) gen olan TP53 (p53) ün aracılığı söz konu-sudur. Bir antionkogen olan bu genin (TP53), apoptozu harekete geçiriçi bir etkisi vardır. 2-Hatalı sarmalanmış proteinlerin birikimi. Gen mutasyonları ve serbest radikaller sonucu ortaya çıkan bu proteinler, endoplasmik retikulumda aşırı birikir ve hücrenin apoptotik ölü-müne neden olur. 3-Hücre zedelenmesine neden olan bazı infeksiyonlar, özellikle viruslar, apoptotik ölüme neden olur. 4-Paranşimal organlarda (pankreas, tükrük salgılığı ve böbrek) kanal tıkanmalarından son-ra ortaya çıkan patolojik atrofi. Apoptoz Mekanizması ve Morfolojisi Bu tip hücre ölümünün morfolojik yapısı, koagülasyon nekrozundan farklıdır. Apoptoz da gözlenen başlıca morfolojik değişiklikler, en iyi biçimde elektronmikroskopi ile gözlenebi- lir. Hücre, su ve elektrolit kaybı ile birlikte yapısal elementlerinin yoğunlaşması sonucu dansi-tesinde artma meydana gelir ve volümlerinin yarısını kaybeder ve hacım olarak küçülür. Apoptoz ışık mikroskobunda tanınabilir. Histolojik olarak tek hücre veya hücre gruplarında hematoksilen- eosin ile boyanmış kesitlerde yoğun eosinofilik sitoplazma içinde, yoğun nük- leer kromatin parçalarına sahip, yuvarlak veya oval kitleler olarak görülür. Nüve kromatini yoğundur (piknotik) ve sonuçta karyoreksiz oluşur. Bu sırada hücre süratle büzüşür, önce sito- plazmik tomurcuklar sonra, parçacıklar şeklinde beliren “apoptotik cisimcikler” oluşur. Bun-lar membranla çevrili nükleer ve sitoplazmik organeller içeren parçacıklardır. Bunlar süratle makrofajlar ve komşu doku hücreleri tarafindan fagosite edilir. HÜCRE İÇİ BİRİKİMLER Bazı koşullar altında normal hücreler, anormal miktarlarda çeşitli maddeler biriktirebilir. Bu maddelerin birikimi geçiçi veya kalıcı olabilir. Bunlar hücreye zarar vermeyebilir veya bazen toksik olabilir ve hücrede ciddi zedelenme yapabilir. Maddelerin birikim yeri sitoplaz- ma veya nüvedir; sitoplazmada en çok lisosomlardadır. Bu intrasellüler birikimler üç grupta incelenir: (1)Normal endogenös madde, normal miktarlarda üretilir; fakat bunu kullanacak metobolizma hızı yeterli değildir (normal bir maddenin çok fazla birikmesi). Buna örnek “karaciğer hücrelerinde görülen yağlı değişme” verilebilir. Ayrıca hücre içinde su, glikojen ve protein birikimleri, örnek verilebilir. (2)Anormal endogenös madde birikir; çünki bu endoge- nös maddeyi metabolize edebilecek enzimlerde defekt söz konusudur. Bunun önemli nedeni doğuştan varolan genetik enzimatik defektir ve bu metabolitin parçalanmasında yetersiz olur. Sonuçta hücre içi birikimler ortaya çıkar. Bunlar, “depo hastalıkları” olarak tanımlanır. Tay- Sacks hastalığında gangliosid, Gaucher hastalığında glukoserebrosid ve Niemann- Pick hasta-lığında da sfingomyelin birikimleri, örnek verilebilir. (3)Hücreye dışarıdan alınan anormal ekzojen madde depolanmasıdır. Bunları parçalayıp yok edecek yeterli metabolizma yoktur ve diğer alanlara da taşınamadığı için, bu birikimler ortaya çıkar. Solunum yoluyla alınan kar-bon- kömür veya silika partiküllerinin akciğerde birikimi ve tatuaj (döğme) pigmentleri buna verilebilecek en güzel örnekleridir. Bu pigmentler makrofajlardaki fagolisosomlarda dekatlar-ca kalabilir. Lipidler: Sayfa 11 de yağlı değişmeyi (yağlanma) tekrar okuyunuz. Kolesterol: Makrofajlar, iltihabi bir alandaki nekrotik hücrelerin lipid artıklarını fagositik aktiviteleri ile tutarlar. Bu da bir çeşit hücre içi lipid birikimidir. Bu hücrelerin sitoplazmaları, küçük lipid vakuolleri ile dolar ve köpüksü bir görünüm alır. Bunlara “köpük hücreleri” adı verilir. Aterosklerozda düz kas hücreleri ve makrofaj sitoplazmaları, lipid vakuolleri (koleste- rol) ile doludur. Bunlara aterosklerotik plak denir. Proteinler: Lipid birikimine oranla çok daha nadir görülür. Hücreler içindeki protein fazlalığı, morfolojik olarak sitoplazmada görülebilen pembe renkli hyalin damlacıklar şeklin-dedir. Hücre içindeki protein birikimi; (a)hücrenin aşırı proteine maruz kalıp, hücreye alınma-sı şeklinde olur veya (b)hücrede protein sentezinin aşırı yapılması şeklindedir. Bu birikim şe-killerine örnek vermek istersek; böbrek, albumini glomerüllerden filtre ederken, proksimal tüplerden az bir kısmını tekrar geri emer. Aşırı proteinüriye (idrarda fazla protein kaybı) neden olan böbrek hastalıklarında (glomerülonefritler), haliyle protein daha fazla miktarda reabsorbsiyona uğrayacaktır. Bu protein reabsorbsiyonu nedeniyle tüp epitel hücrelerinde aşırı birikme meydana gelir. Plasma hücrelerinde muhtemelen antijen uyarılarına yanıt olarak gra-nüllü endoplasmik retikulumda sentezlenen immünoglobulin birikimi olursa, “Russell cisim-ciği” olarak adlandırılan homojen eosinofilik inklüzyonlar (cisimcikler) görülür. Glikojen: Glikoz veya glikojen metabolizma bozukluğu olan hastalıklarda hücre içinde aşırı miktarda glikojen birikimi görülür. Glikojen birikimini, su veya yağ vakuollerinden ayır- mak gerekir. Glikojen, sitoplazmada PAS pozitif şeffaf (saydam) vaküoller şeklinde görülür. Diyabetes mellitus (şeker hastalığı), glikoz metabolizma bozukluğunun başlıca örneğidir. Bu hastalıkta glikojen; karaciğer hücreleri, pankreasdaki Langerhans adacıklarındaki beta hücre-leri ve kalb kası hücrelerinde (kardiyak myosit) olduğu kadar, böbrek tüp epitellerinde de biri- kir. Ayrıca “glikojen depo hastalıkları” veya “glikogenoz”lar olarak adlandırılan, birbiriyle yakın ilişkili bir grup genetik hastalıklarda hücre içinde glikojen aşırı birikir. Bu hastalıklarda glikojenin, yapım ve yıkımıyla ilgili enzim defekti nedeniyle metabolize edilemez ve aşırı birikim nedeniyle, sekonder hücre zedelenmesi ve hücre ölümü ortaya çıkar. Hyalin Değişiklik Hyalin terimi; hücre içi birikimin veya hücre incinmesinin spesifik işeretinden daha çok, tarif edici bir terim olarak kullanılır. Hücre içinde veya ekstra boşluklarda hyalin olarak tanımlanan değişiklikler hematoksilen- eosin ile boyanan rutin histolojik kesitlerdeki homoje- nös, camsı, saydamsı pembe görünümde madde birikimleridir. Bunlar intrasellüler birikimler veya ekstrasellüler depositler olarak tarif edilir. İntrasellüler hyalini değişikliklere örnekler şunlardır: (1)Aşırı proteinüri de, böbrek tüp epitel hücrelerinde geri emilen protein, hyalin damlacıklar şeklinde görülür. (2)Plasma hücrelerinde küresel hyalin depositler şeklinde immunoglobulin birikimleri olur (Russell cisimcikleri). (3)Bir çok viral enfeksiyonda, nüve veya sitoplazmada hyalin inklüzyonlar görünümünde oluşumlar vardır. Bunların bir kısmı, viral nükleoprotein birikimleridir. “İnklüzyon cisimcikler”i olarak adlandırılır. (4)Alkoliklerin karaciğer hücrelerinde “alkolik hyalin” denilen hyalin inklüzyonlar görülür. Ekstrasellüler hyalini analiz etmek bir dereceye kadar güçtür. Eski skar (nedbe) yerindeki kollagen fibröz doku, hyalinize bir görünüm alır. Uzun süren hipertansiyonda ve diyabetes mellitusda damar duvarları özellikle böbrek, hyalinize bir şekil alır. Ekstrasellüler hyaline diğer bir örnek, kronik haraplanmaya neden olan böbrek glomerüllerindeki hyalindir. Amiloid de Hematok-silen- eosin boyasında, hyalini bir görünüm verir. Görüldüğü gibi, çok sayıda ve birbirinden farklı mekanizmalar bu değişikliğe neden olabilir. Hyalini değişiklik görüldüğünde, etyoloji-deki farklı patolojik durumlar nedeniyle lezyonun tanımlanması önem arzeder. PİGMENTLER Pigmentler renkli maddelerdir, Latince boya- renk anlamına gelir. Melanin gibi, hücrenin normal içeriği olabilir, hücrenin içinde sentez edilir (endojen pigment). Diğer bir bölümde ise, bazı durumlarda organizmaya dış çevreden gelen birikimlerdir (ekzojen pigment). En sık görülen ekzojen pigment, karbon veya kömür tozudur. Bunlar medeni yaşamın en önemli hava kirliliği etkenleridir. Büyük sanayi şehirlerinde yaşayanlarda görülebildiği gibi, asıl kö- mür madenlerinde çalışan işçilerde çok belirgindir. Solunumla alındığında alveolar makrofaj- lar tarafindan tutulup, bölgesel trakeo- bronşial lenfatik kanallardan lenf düğümlerine taşınır. Akciğer dokusunun bu pigment birikimi ile kararması “antrakozis” olarak adlandırılır. Kömür tozu birikimleri, fibroblastik reaksiyona neden olarak anfizem ve hatta ciddi bir akciğer toz hastalığı olan “kömür işçisi pnömokonyozu” adı verilen akciğer patolojilerine neden olur. İnhalasyonla alınan İnorganik tozların cinsine göre; antrakozis dışında asbestozis (amyant) ve silikozis de örnek verilebilir. Bunlar, “pnömokonyoz” lar olarak adlandırılan, çevresel hasta-lıklardır. Bunların içersinde en zararsızı antrakozisdir. Metal, cam ve taş partiküllerine silika tozları denir. Bu alanlarda çalışan silika tozları etkisi altında kalan işçilerde, silikozis görülür. Asbestozisde, asbest tozlarının inhalasyonu söz konusudur. Diffüz interstisyel fibrozise neden olur ve bronkojenik karsinoma ile malign mezotelyoma gelişme riski vardır. HÜCRE ZEDELENMESİ, ADAPTASYON ve HÜCRE ÖLÜMÜ Tatuaj (Döğme) : Dekoratif amaçla vücudun değişik bölgelerindeki deriye boyalı şimik maddelerle değişik resimler yapılmasıdır. Deriye ekzojenös metalik veya bitkisel pigment verilmesi sonucu oluşur. İnoküle pigmentler, dermal makrofajlar tarafından fagosite edilir. Bu pigment herhangi bir iltihabi yanıt oluşturmaz ve zararsızdır; fakat kullanılan bu maddeye karşı allerjisi olanlarda reaksiyonlar gelişir. Ayrıca kullanılan malzeme aracılığıyla AIDS, he-patit B ve C’ye yakalanma riski olabilir. Amalgam Tatuaj : Dental dolgu yapımı sırasında amalgam parçacıklarının oral yumuşak doku içine implante olması durumunda, söz konusu olur. Klinik olarak mavi- kahverenkte ve hatta bazen siyah renkte pigmentasyon görülür. Mikroskopik düzeyde, dev hücre oluşumları gösteren bir reaksiyon vardır. Ayırıcı tanı için, hematom ve nevusu düşünmeliyiz. Endojen Pigmentler : Bu grupta lipofuskin ve melanin pigmentleri ile hemoglobin türev-leri olan hemosiderin ve bilirubin gibi, pigmentler vardır. Lipofuskin : Latince "kahverengi lipid" anlamına gelen sarı- kahverenk'de, ince granüler sitoplazmik bir pigmenttir. Yaşlı kişilerde, ciddi malnütrisyon ve kanser kaşeksisinde, özellik- le kalb ve karaciğer hücrelerinde görülür. Bu organlarda hacım küçülmesiyle beraber görüldü- ğünden “brown atrofi” olarak da bilinen bu yıpranma pigmenti, hücre içi sindirilmemiş mater- yale örnek verilebilir. Serbest radikal hasarı, lipofuskin birikimine neden olabilir. Antioksidan savunma mekanizmalarının kaybına yol açan çevresel etkenlerle oluşabilir. E vitamini gibi, antioksidanların eksik olduğu durumlarda karşımıza çıkmaktadır. Bu pigmentin hiçbir önemi yoktur. Lipofuskinin kendisi hücre ve fonksiyonlarına bir zarar vermez. Sadece fizyolojik ve patolojik atrofi veya kronik zedelenme gibi, regresif değişiklikleri işaret eder. Melanin : Melanin, tirozinin enzimatik oksidasyonu ile üretilen bir pigmenttir. Melanin sentezi, epidermisin bazal tabakasında bulunan melanositlerde yapılır. Kahverengi-siyah renk- te olan bu pigmentin adı Yunanca siyah anlamına gelen "melas" kelimesinden türemiştir. Melanositlerin prekürsörleri (öncüleri) olan melanoblastların, embriyonik gelişim devresinde nöral kristadan göç ederek son bulundukları yer olan bölgeye geldikleri düşünülür. Bu hücre-lerin yuvarlak gövdeleri bu gövdeden uzanan düzensiz uzantıları vardır. Bunlar epidermis içine doğru dallanarak, bazal ve spinal tabakadaki hücreler arasına uzanır. Melanin melano-sitlerde sentezlenir. Bu işlem tirozinaz enziminin varlığında olur. Tirozinaz aktivitesiyle tiro-zin önce dihydroxyphenylalanine (DOPA) oluşturur ve daha sonra bir dizi dönüşüm işlemi ile melanin ortaya çıkar. Ultrastrüktürel düzeyde tirozinaz, granüler endoplazmik retikulumda sentezlenir ve Golgi kompleksinin veziküllerinde biriktirilir. Membranla çevrili bu küçük organellere "melanozom" adı verilir. Bunlar ışık mikroskobunda görülebilen pigment granül-lerini oluşturur. Melanositlerin normalde görüldüğü yerler; deri, kıl follikülleri, retina pigment epiteli, lep-tomeninks ve iç kulak bölgesidir. Derimiz bu pigment sayesinde renk kazanır. Güneş ışınları-nın (ultraviyole)x etkisiyle derideki melaninin miktarı artar, derinin esmerleşmesi olarak kendini belli eder. Melanin ve melanositler birçok yönden öneme sahiptir. Melaninin fonksi-yonu koruyuculuktur. Bu pigment sayesinde deri ve göz, güneş ışığının zararlı etkisine karşı daha iyi korunur. Melanin pigmenti az olan beyaz derili kişiler, güneşin zararlı etkilerine karşı daha hassasdır. Güneş altında uzun süre çalışan beyaz derili çiftçilerde ve gemicilerde deri kanseri görülme oranı, kapalı yerlerde çalışanlara oranla çok daha yüksektir. Fazla güneşte kalan insanda, melanin pigmentasyonu artar. Kişi koyu renk alır, bronzlaşır. Bu bronzlaşma ile vücut kendini güneşin zararlı ışınlarından korumaya çalışır. Bir zaman sonra, pigment artımı deriyi korumak için yeterli olmaz. Vücut derisi kendini korumak için, bu sefer kalın-laşmaya başlar, hiperplazi gelişir. Sayıca artan hücrelerde dejenerasyon ve de mutasyonun oluşumuyla kansere dönüşme riski ortaya çıkar. Melanogenesisin lokal artması, çoğu kişilerde görülen ve halk arasında "ben" adı verilen, melanositlerin proliferatif lezyonlarını (pigmentli nevusları) ortaya çıkarır. Bunlar deride çok yaygın olarak bulunan siyah- kahverenkte hafif kabarık oluşumlardır. Benign bir lezyon olan nevus'un malign karşıtı, kanserin oldukça öldürücü bir tipi olan, malign melanomadır (mela-no karsinoma). Dermis, ağız mukozası, retina ve çok nadir olarak da, leptomeninks’den geli- şen malign melanoma olguları vardır. Melanin sentezi, adrenalxx (sürrenal) ve hipofizin kontrolü altındadır. Hipofizden adreno- kortikotropik hormon (ACTH) yanısıra, melanosit stimüle eden hormon (MSH) da salgılanır. Adrenal korteksden salgılanan glikokortikoid (kortizol, kortikosteron, kortizon gibi, bir grup hormonu kapsar) ler ve mineralokortikoidler (aldosteron), feed-back regülasyonu ile hipofiz üzerinde ACTH salgılanmasını kontrol eder. ACTH ve MSH düzeyindeki artmalar, melanin pigmentasyonunda da artmalara neden olur. Addison hastalığıxxx (ki bunda primer adrenokor-tikal yetmezlik -hipoadrenalizm- söz konusudur) buna güzel bir örnektir. Hipoadrenalizmde, adrenal korteksden salgılanan ACTH antagonistleri olan adrenokortikal hormon (örneğin kortizol salgısı baskılandığı zaman) oluşamayacağı için, hipofiz üzerindeki feed-back frenleyi ci etkisi de ortadan kalkar. Adrenal korteksin hipofiz üzerindeki kontrolü yok olduğundan, haliyle kompensatuvar olarak hipofiz daha fazla ACTH ve MSH salgılayacaktır. Bunların aşırı salgılanmaları da, deri ve mukozalarda pigmentasyon artımına neden olur. x Ultraviyole (morötesi); çok kısa, enfraruj (kızılötesi); çok uzun dalga boyuna sahip, güneşin zararlı ışınlarıdır. xx Adrenal: ad- ek + renal Surrenal: sur(supra)- üst + renal xxxAddison Hastalığı(Kronik Adrenal Korteks Yetmezliği): Adrenal yetmezlik (hipoadrenalizm) primerdir; sürre-nalin kendisinde bir lezyon vardır veya hipofizin ACTH salgılanmasında bir yetersizlik söz konusudur ve sekon-der hipoadrenalizm olarak adlandırılır. Primer hipoadrenalizm, Addison hastalığı olarak da bilinir. Bunda böbrek üstü bezi hasarlanmıştır. Addison hastalığı, adrenal korteksin progresif destrüksiyonuna bağlı olarak ortaya çıkan, çok nadir rastladığımız bir hastalıktır. Klinik belirtilerin ortaya çıkması için, salgılığın % 90’ının harab olması gerekir. Bu genelde iki şekilde karşımıza çıkar. Otoimmün adrenalitis; olguların % 60-70’sini oluşturur. Enfeksiyonlar; Tuberküloza bağlı hasar en çok rastlanılan bir nedendir. Özellikle tuberküloz adrenalitis’i iltihabi olguların % 90’ını oluşturur. Klinik olarak, deride ve ağız mukozasında melanin pigmentasyonunda artma, hipo-tansiyon şiddetli anemi, halsizlik, kas zayıflığı, kilo kaybı, anoreksi (iştahsızlık) ve gastroentestinal semptomlar (kusma, diyare) görülür. Mineralokortikoid (aldosteron) yetmezliği nedeniyle, başta sodyum (Na) iyonları kaybı ve buna bağlı olarak su kaybı meydana gelecektir. Bu durum, kan hacmı azlığını ve hipotansiyon belirtilerini doğuracaktır. Aynı zamanda potasyum (K) iyonları retansiyonu (hiperpotasemi-hiperkalemi) görülür. Önemli tehlike, hipotansiyonun daha sonra, “kardiovasküler şok” tablosunu meydana getirmesidir. Hasta tedavisi, aldosteron ve tuz verilerek yapılır. -- Pigmentasyon artımı “hiperpigmentasyon” olarak adlandırılır. Aşağıdaki şu lezyonlar-da melanin artımı söz konusudur. Addison Hastalığı (Kronik Adrenal Korteks Yetmezliği): Multipl Nörofibromalar (Nörofibromatozis): Periferal sinirlerden kökenli değişik bü-yüklüklerde ve çok sayıda (multipl) nörofibromlar vardır. Bununla beraber, deride ve ağız mukozasında sütlü-kahve lekeleri (cafe-au-lait) halinde melanin pigmentasyonu görülür. Oto-zomal dominant geçişli bir hastalıktır. İki tipi vardır. Nörofibromatozis tip1 (von Recklingha-usen hastalığı) de, az da olsa malignleşme olasılığı vardır. Nörofibromatozis tip 2, bilateral akustik (vestibüler) schwannoma ve diğer beyin tümörleriyle beraber görülür. Bu her iki has-talık genetik ve klinik olarak birbirinden farklıdır. Olguların % 90 ı tip 1 dir. Tip 2, çok daha nadir görülür. Peutz- Jeghers Sendromu : İnce barsaklarda multipl polipozis ile beraber ağız mukoza- sında ve dudakta melanin pigmentli lekeler vardır. McCune-Albrigt Sendromu : Kemiklerde multipl odaklar halinde fibröz displazi ile bera- ber, deride ve ağız mukozasında melanin lekeleri vardır. Bunlara “cafe- au- lait (kahve) leke-leri denir. -- Deride melanin pigmentasyonunun azalmasına “hipopigmentasyon” denir ve görüldü-ğü durumlar: Skatris (Nedbe) Yerleri : Cerrahi işlem veya travmalar sonucu ortaya çıkan skatris yerle-rinde, lepra hastalarında lezyonların bulunduğu alanlardaki skatris yerlerinde pigment yoktur. Hormonal Nedenler : Kastre (hadım) erkeklerde ve ayrıca hipofiz hipofonksiyonunda vücuttaki pigment miktarı azalır. Albinolar : Bu tip kişilerde kalıtsal tirozinaz enzim defekti vardır. Bu enzim yokluğunda, tirozinin DOPA ya dönüşme yetersizliği söz konusudur. Bu nedenle albinolar, melanin sentez edemez, derileri ve kılları çok açık renktedir. Bu kişiler güneş ışığına ileri derecede duyarlıdır Vitiligo : Deride leke tarzında pigmentsiz alanların bulunmasıdır ve bu edinsel (kazanılmış akkiz, sonradan oluşan) bir lezyondur. Lezyonların dağılımı ve boyutları çeşitlilik gösterebilir. Bu hastalığın nedeni son araştırmalara göre, daha çok otoimmün bir bozukluk olduğu yönün- dedir. Hemosiderin : Hemoglobinden türeyen hemosiderin, altın sarısından- kahverengine kadar değişen renklerde görülen bir pigmenttir. Demirin hücre içinde birikme şekline örnektir. Kanamanın doğal sonucu hemosiderin pigmenti oluşur. Hücre içinde demir, apoferritin adı verilen proteine bağlı ferritin miçelleri şeklinde depolanır. Hücre ve doku içinde biriken demir histokimyasal olarak Berlin Mavisi denilen özel bir boya ile gösterilir. Makroskopik kanamalar veya yoğun vasküler konjesyonun neden olduğu mikroskopik ka-namalar, demirin lokal artımını ve bunu takiben hemosiderini ortaya çıkarır. Buna en iyi ör-nek, zedelenmeden sonra görülen çürüktür (ekimoz). Çürükler, lokalize hemosiderozisin en iyi örneğidir. Kanama bölgesindeki eritrositlerin yıkımıyla ortaya çıkan kırmızı kan hücre artıkları, makrofajlar tarafından fagoside edilir. Hemoglobin içeriği lisosomlar tarafından katalize edilir ve hemosiderine dönüştürülür. Çürükte görülen renk değişikliği, bu dönüşüm- deki aşamaları yansıtır. Kronik kalb yetmezliğinde uzun süreli staz nedeniyle oluşan konjesyon, akciğerde pig-mentasyon görülmesine neden olur. Akciğer alveollerinde kapillerlerin yırtılması ve geçirgen- liğinin artması nedeniyle eritrositler dışarı çıkar. Eritrositler alveolar makrofajlar tarafından fagosite edilir. Sonuçta hemosiderin oluşur. Akciğer alveollerinde bulunan hemosiderinle yüklü bu tür makrofajlara “kalb hatası hücreleri” adı verilir. Nedeni ne olursa olsun, demirin sistemik yüklenmesi, çeşitli organ ve dokularda hemosiderin birikimine neden olur. Bu şekle “hemosiderosis” adı verilir. Sistemik hemosiderozisin birçok şeklinde, intrasellüler pigment birikimi çoğu durumlarda paranşimal hücrelere zarar vermez veya organ fonksiyonunu boz- maz. Hemosiderozisi meydana getiren pigment birikimi; (1)besinlerle alınan demirin emili- mindeki artım ve kontrolsüz kan yapıcı tabletlerin alımı (2)demirin kullanımındaki yetersiz- lik, (3)hemolitik anemiler ve (4)kan nakillerinde (kırmızı kan hücre transfüzyonları), ekzoje- nöz demir yüklenmesine neden olur. Demirin normalden çok fazla (yoğun) birikimi “hemo-kromatozis” olarak bilinir. Biriken demir, çeşitli organlarda disfonksiyona ve hücre ölümleri-ne neden olur. Kalb yetmezliği (kardiyomyopati), siroz (kronik karaciğer hastalığı) ve diyabe-tes mellitusu (pankreas adacık hücreleri ) içeren doku- organ zararları oluşabilir. Bilirubin : Bilirubin, safrada bulunan ve safranın sarı- yeşil rengini veren başlıca pig- menttir. Kırmızı kan hücrelerinin mononükleer fagositik sistemde parçalanmasıyla (karaciğer- deki kupffer hücrelerinde) serbestleşen hemoglobinden türemiştir; fakat demir içermez. Orga- nizmada normal yaşam sürelerini (100- 120 gün) tamamlayan bu eritrositlerin parçalanma- sıyla konjuge olmamış (ankonjuge) bilirubin meydana gelir. Bu ankonjuge bilirubin, kan pro- teinlerine (albumin) bağlanarak karaciğer parankim hücrelerine (hepatosit) taşınır ve burada işlenerek konjuge bilirubine çevrilir. Bu işlem spesifik bir enzim (bilirubin uridindifosfat glukuronosil transferas) ile oluşur. Daha sonra safra aracılığıyla bağırsağa dökülür. Bağır-saktaki bakteriyel enzimlerin etkisiyle “urobilinojen”e dönüştürülür. Bu pigmentin bir bölümü (% 20) tekrar barsaktan geri emilerek (reabsorbe olarak), karaciğere döner. Bunun bir bölümü de idrarla atılır. Barsaktaki urobilinojenin geri kalan bölümü, daha ileri bir işlemle “ürobilin” (stercobilin)’e dönüşür. Dışkının bilinen rengini (sarı- kahverengi) veren bu maddedir. Kan plasmasında total bilirubinin normal miktarı 100 ml’de 0.3- 1 mg’dır. Kandaki biliru-bin düzeyi (hem konjuge hem de ankonjuge) 2- 3 mg’ın üzerine çıktığında (bazı durumlarda 30- 40 lara çıkabilir), deri ve sklerada sarı bir renk oluşur. Bu renk değişikliği, dokuların safra pigmenti birikimine bağlı olarak, sarıya boyanmasından ileri gelmektedir. Klinik olarak “sarı-lık” (ikter) diye tarif edilir ve meydana geliş biçimlerine göre şöyle incelenebilir. (1)yoğun eritrosit yıkımı (hemoliz artması), (2)hepatosellüler disfonksiyon ve (3)intrahepatik veya eks-trahepatik safra obstrüksiyonu ile safranın tutulması (kolestaz) sonucu sarılık ortaya çıkar. Konjuge bilirubin; suda çözünür, nontoksiktir ve idrarla atılır. Ankonjuge bilirubin suda çö-zünmez, idrar ile atılmaz, toksiktir ve bilirubinin bilinen bütün toksik etkilerinin nedenidir. (1) Hemolitik (Prehepatik) Sarılık: Kırmızı hücre parçalanmasına bağlı bilirubin artı- mını yansıtır. Eritrosit yıkımının yoğun olduğu durumlarda sarılık görülür. Hemolitik anemi- lerde, ağır enfeksiyonlarda, yılan zehiri gibi, dolaşımdaki toksik maddelerin neden olduğu eritrosit destrüksiyonlarında ve kan transfüzyon uyuşmazlıklarında bilirubin miktarı aşırı artar. Bu bilirubin, ankonjuge bilirubindir. Yeni doğanlarda fizyolojik olarak hemoliz fazladır. Ayrıca, karaciğerde bilirubin konju-gasyonu ve atılımını sağlayan hepatik mekanizmalar, hayatın ilk iki haftasına kadar tam ola-rak gelişmediğinden, bütün yenidoğanlarda geçici (2- 4 gün), hafif bir ankonjuge hiperbiliru-binemi ortaya çıkar. Buna yenidoğanın fizyolojik sarılığı (neonatal sarılık) adı verilir. Bu durum tehlikesizdir. Bebeklerde görülen diğer bir tehlikesiz olan sarılık, maternal (anneye ait) serum sarılığıdır. Anne sütü ile beslenen bazı bebeklerde muhtemelen anne sütündeki beta glukuronidazlar nedeniyle oluşur. Tehlikeli olanı, Rh uyuşmazlığı gibi nedenlerle karşımıza çıkanıdır. Rh uyuşmazlığında, aşırı hemoliz olduğundan, ankonjuge bilirubin düzeyi çok yükselir ve “yenidoğanın hemolitik sarılığı” (eritroblastosis fetalis)x gelişir. Bu hastalık nedeniyle meydana gelen yoğun eritrosit yıkımına bağlı olarak ortaya çıkan bilirubin, yeni doğanların kapiller damarlarının geçirgenliği fazla olduğundan beyin dokusuna geçerek, doğumdan sonra “kernikterus” (bilirubin ansefalopatisi) adı verilen ağır nörolojik hasara yol açarak, sekeller bırakabilir veya bebeğin ölümüne yol açar. Adültlerde ankonjuge bilirubin seviyesi yüksek olsa bile, kan- beyin bariyeri nedeniyle kernikterus oluşmaz. (2) Hepatosellüler (Hepatik) Sarılık: Karaciğer hücre hasarı olan yoğun hepatosellüler nekroz ve siroz gibi, durumlarda görülür. Fazla bilirubin konjuge ve ankonjuge olmak üzere karışıktır. Karaciğer hücresinin fonksiyon bozukluklarında, bilirubinin alımında azalma ola-bildiği gibi, karaciğer hücresinde yetersiz konjugasyon da söz konusu olabilir. Karaciğer parankim hücrelerinin zedelenmeleri sonucu, bilirubin salgılanmasında intrahepatik blokaj da olabilir. Karaciğer hücresine verilen zarar, enzim sistemini etkilemiş olabilir. Örneğin viral hepatitis, kimyasal veya ilaç toksisitesi yanısıra karaciğerin mikrobiyolojik enfeksiyonları, konjugasyonu ve safra ekskresyonunu (ifrazat) bloke edebilir. Bu şekilde dolaşımdaki biliru-binin miktarı artmış olur. (3) Obstrüktif (Posthepatik) Sarılık: Bu grupta genellikle safra kanalı obstrüksiyonu söz konusudur. Ekstrahepatik tıkanmaların başlıca nedeni; safra kanalı ve pankreas karsinomaları ile safra kanalı taşlarıdır. Bu tıkanmalar uzarsa, hepatositlerde nekrozlar ortaya çıkar ve “bili- er siroz” meydana gelebilir. Çok nadiren de yenidoğanlarda bir anomali olarak, intrahepatik ve ekstrahepatik obstruksiyon, hepatositlerdeki primer defekt veya safra duktuslarının atrezisi ve agenezisi şeklinde karşımıza çıkabilir. Karaciğerdeki konjuge bilirubin, safra yollarındaki tıkanma nedeniyle bağırsağa akamaz ise, bağırsakta safra pigmenti olmayacağı için, feçes açık renkte olur. Ayrıca bağırsakta safra eksikliği nedeniyle, K vitamini sentezi yapılamaz (Vita- min K; endojen olarak E. coli varlığında barsakda sentezlenmekteydi). Vitamin K eksikliği veya diffüz karaciğer hastalıklarında, hepatositlerdeki disfonksiyonun etkisiyle, vitamin K’ya bağlı koagülasyon faktörlerin (protrombin ve diğer pıhtılaşma faktörleri) sentezinde meydana gelen azalmayla koagülopati meydana gelir, hemorajik diatez’e (anormal kanamalar) neden olur. Bu spontanös kanama sonucu hematomlar, hematüri, melena, ekimozlar ve dişeti kana- maları görülür. Azalmış safra akışının diğer sonuçları; yağda eriyen A, D ve K vitaminlerinin yetersiz absorbsiyonudur. x Eritroblastosis Fetalis: Maternal ve fetal kan grubu uyuşmazlığı sonucu annede oluşmuş olan antikorların, fetus’da neden olduğu bir hemolitik anemidir. Rh(-) bir annenin fetusu, babanın ki gibi Rh(+) olursa, anne ve onun bebeği arasında Rhesus (Rh) uyuşmazlığı meydana gelebilir.Anne; Rh antijeninden yoksun (Rh-) ise, fetusda mevcut olan Rh antijenlerine (Rh+) karşı antikorlar üretir. Rh(-) anne eritrositleri, Rh(+) fetus eritrositle- ri tarafından sensitize edilmiştir. Fetal eritrositler gebelik boyunca plasentadan sızarak annenin dolaşımına katı- lır. En büyük geçiş, doğum esnasında olur. Oluşan bu antikorlar, sonraki gebeliklerde plasenta yolu ile fetusa geçerek, fetusa ait kırmızı hücrelerin destrüksiyonuna (lizise, hemoliz) neden olur. Ortaya çıkan sendrom, “eritroblastosis fetalis” olarak bilinir. Yenidoğanın bu hemolitik hastalığında meydana gelen anemi, uterus içinde fetal ölüme yol açabilecek kadar şiddetli de olabilir. Anemiye reaksiyon olarak fetal kemik iliği, olgunlaşmamış eritrositleri (eritroblastları) fetusun dolaşımına katar. Eritroblastosis fetalis terimi; oluşan eritrosit destrüksiyo- nunu kompanse etmek için, fetal dokulardaki kırmızı kan hücre prekürsörlerinin (hematopoesis) aşırı artmasını anlatır. Rh uyuşmazlığının patogenezindeki sensitizasyonun önemi anlaşıldıktan sonra, bu hastalık belirgin bir şekil- de kontrol altına alınmıştır. Rh sisteminin içerdiği pekçok antijenden yalnızca D antijeni, Rh uyuşmazlığının başlıca nedenidir. Rh(-) anneye, Rh(+) bebeğin doğumundan hemen sonra, anti- D globulin uygulanmaktadır. Anti- D antikorlar, doğum sırasında maternal dolaşıma sızan fetal eritrositlerdeki antijenik bölgeleri maskeleye- rek, Rh antijenlerine karşı olan duyarlılığı engeller. Eritroblastosis fetalis; belirtilerine göre üç sendroma ayrılabilir. Şiddetli komplikasyonlar olmadan yaşam mümkün olan, yalnızca hafif anemiyle seyreden “yeni doğanda konjenital anemi” olarak adlandırılır. Şiddetli hemoliz vakalarında anemiye bariz sarılık eşlik eder, “ikterus gravis” sendromu oluşur. Dolaşım bozukluğundan, anazarka denilebilecek kadar şiddetli bir ödemin ortaya çıkışı, buna eşlik eden sarılık, “hidrops fetalis” olarak adlandırılan bir klinik tabloyu da ortaya çıkarabilir. Hidrops Fetalis: Fetusdaki yaygın ödemi anlatmak için kullanılan bir terimdir. İntrauterin gelişim süresinde progresif sıvı birikimi sonucu oluşur, genellikle ölümle sonuçlanır. Geçmişte fetus ile anne arasındaki Rh uyuş- mazlığı sonucu ortaya çıkan hemolitik anemi, hidrops fetalisin en büyük nedeniydi. Bu tip, immun hidrops ola-rak bilinir. Gebelikdeki kan uyuşmazlığı tedavi edilebildiğinden, immun hidrops’un görülme sıklığı, zamanımız-da düşmüştür. Non- immun hidrops’un başlıca nedenleri ise; kardiovasküler defektler, kromozomal anomaliler ve fetal anemidir. Rh veya ABO uyuşmazlığı dışında başka nedenlerle de fetal anemi oluşur. Bu da hidrops feta-lis ile sonuçlanabilir. KARACİĞER Karaciğerin Normal Histolojik Yapısı Karaciğerin temel mimari yapı birimi, lobdur. Her lobun merkezinde, hepatik ven ağının uzantısı (santral ven) bulunur. Lobun periferinde, portal alan adı verilen bu bölgelerde fibröz doku içinde hepatik arter, portal ven dalları, sinir lifleri, safra kanalları ve lenfatik damarlar gibi, pek çok portal kanal bulunur. İki karaciğer hücresi arasında intralobüler safra kanalikül-leri denilen ince tübüler yapılar bulunur. Bunların içindeki safra, kan akımının ters yönünde, yani lobülün merkezinden portal alanlardaki safra kanallarına akar. Lobüller içindeki hepatositler ışınsal olarak dizilmiş ve bir duvarın tuğlalarına benzer biçimde düzenlenmiştir. Karaciğer hücrelerinin yaptığı bu tabakalar arasındaki boşluklara, karaciğer sinuzoidleri adı verilir. Bunlar labirent şeklinde ve sünger benzeri bir yapı oluştura- cak biçimde serbestçe anastomozlaşırlar. Bu sinuzoidal kapillerler, pencereli endotel tabakala- rından oluşan damarlardır. Endotel hücreleri ile alttaki hepatositler arasında kalan aralığa, Disse aralığı adı verilir. Endotel hücrelerine ek olarak, sinuzoidler Kupffer hücreleri adı veri- len makrofajları da içerir. Bu fagositik hücrelerin başlıca fonksiyonları; yaşlı eritrositleri me-tabolize etmek, hemoglobini sindirmek, immunolojik olaylarla ilgili proteinleri salgılamak ve kalın barsaktan portal dolaşıma geçen bakterileri ortadan kaldırmaktır. Karaciğere kan, iki farklı kaynaktan gelir: (a)Kanın %60- 70’i abdominal (pankreas ve da-lak) organlardan gelen oksijenden fakir, bağırsaklardan emilen besinleri içeren (besinden zen-gin) kanı taşıyan portal ven’den gelir; (b)%30- 40’ı ise, oksijenden zengin kanı sağlayan he-patik arter’ den gelir. Portal alana gelen arter ve ven kanı, karaciğer lobülünün çevresinden merkeze doğru sinuzoidler boyunca akar. Sinuzoidlerde karışan bu kan, vena santralis ve daha sonra da hepatik venlerle vena kava inferiyora akar. Karaciğerin vücudun metabolik dengesini sağlamak için, çok büyük ve önemli işlevleri vardır. Karaciğer dokusu; (1)besinlerle alınan proteinler, karbonhidratlar, yağlar ve vitaminle-rin metabolize edilmesi (işlenmesi) ve depolanması, (2)plasma proteinlerin ve enzimlerin sen-tezi, (3)pek çok endogen atık ürünlerin ve ekzogen toksinlerin detoksifikasyonu ve bunların safra ile atılması gibi, pek çok fizyolojik fonksiyona sahiptir. Çoğu ilaç, karaciğer tarafından metabolize edilir. Anlaşılacağı gibi, karaciğer dokusu; metabolik, toksik, mikrobiyal ve dola-şım bozuklukları olmak üzere çeşitli etkilere açıktır. Bazı durumlarda hastalık, karaciğerin primer olayıdır. Bunun dışında karaciğeri sekonder olarak etkileyen kardiyak dekompansas-yon, diyabet ve ekstrahepatik infeksiyonlar gibi, çok sık görülen hastalıklar vardır. Karaciğer muazzam bir işlevsel kapasiteye sahiptir. hepsi olmasa da çoğu fulminant hepa-tik hastalıklar dışında rejenerasyon oluşur. Normal bir karaciğerin %60’ının cerrahi olarak çıkarılması durumunda minimal ve geçici bir karaciğer fonksiyon yetersizliği görülür. Karaci-ğer kitlesinin büyük bir bölümü 4- 6 hafta içinde rejenerasyonla yeniden oluşur. Masif hepa-tosellüler nekrozlu kişilerde, hepatik retikulin çatı harap edilmemişse, mükemmele yakın bir restorasyon oluşabilir. Kronik sağ ventriküler kalb yetmezliği, karaciğerde kronik pasif venöz konjesyona neden olur. Hepatik vendeki basıncın artmasına bağlı olarak intralobüler santral vendeki basınç da artar. Ortaya çıkan sinuzoidal dilatasyon ve konjesyon, santral ven çevresindeki hepatositlerde hipoksi ve iskemiye bağlı hasarlar ortaya çıkarır. Buna bağlı olarak bu karaciğer hücrelerinde dejenerasyon, yağlı değişme ve sonuçta nekroz meydana gelirken, buna tezat periferdeki he-patositler (portal alan çevresi) normal kalabilir. Hepatosellüler nekroz sonucu fibrozis meyda-na gelebilir. Karaciğerin temel yapısındaki bağ dokusu ağı haraplanmışsa, siroz ortaya çıkar. SİROZ Siroz, kronik karaciğer hastalıklarının irreversibl bir şeklidir ve “siroz” adı da bu hastalığı tanımlayan bir terimdir. Çeşitli kronik karaciğer hastalıklarının son döneminde ortaya çıkan bir sekeldir. Batı ülkelerinde ilk on içindeki ölüm nedenlerinden birisidir. Alttaki etiyolojiyi belirtmesinden başka, sirozun doyurucu bir sınıflaması yoktur. Sirozun etiyolojisinde pek çok etken rol oynar: (a)Aşırı alkol alımının bir sonucu olarak görülen sirozun diğer nedenleri ara-sında bazı ilaç ve kimyasal maddelerin uzun süreli alınması, (b)viral hepatitler, bilier obstrük-siyon (safra yolu hastalıkları), hemokromatozis (aşırı demir yüklenmesi), (c)kalb yetmezliğine bağlı, karaciğerde kronik pasif konjesyon (d)Wilson hastalığıx ve doğuştan olan bazı metabo-lik bozukluklar sayılabilir. Siroz gelişmesi için, uzun zaman periyodunda hücre ölümü, buna eşlik eden bir rejeneratif olay ve fibrozise gerek vardır. Başlıca üç patolojik mekanizma kombinasyonu, sirozu yaratır. (1)Karaciğer hücrelerinin progresif hücre incinmesine bağlı hepatosellüler (paranşimal) ölüm, (2)hepatosellüler hasara ve ölüme bağlı olarak ortaya çıkan rejenerasyon ve (3)buna eşlik eden kronik iltihabın stimüle ettiği progresif (ilerleyen) fibrozis bu hastalığı karekterize eden özelliklerdir. Rejenerasyon, hücre ölümünü kompanse etmek için, normalde verilen bir yanıt-tır. Normalde hepatositlerin proliferatif kapasitesi sirkülasyondaki büyüme faktörleri ile regü-le edilir. Hepatosit nekrozu sonucu açığa çıkan büyüme faktörleri hepatosit proliferasyonunu stimüle eder. Bu progresif olaylar sonucu karaciğerin normal lobüler yapısı ortadan kalkar. Fibrozis bu rejenere karaciğer dokusunu çevreleyerek sirozun karakteristik özelliği olan, değişik boylarda nodül yapılarının oluşmasına neden olur. Fibrozis, bir yara iyileşme reaksiyonudur. Zedelenme yalnızca paranşimi değil, destek bağ dokusunu da tuttuğu zaman skar oluşumuna neden olur. Normalde interstisyel kollagenler, portal alanlarda ve santral ven çevresinde ince bandlar şeklinde bulunurken, sirozda bu kolla-genler, lobülün tüm bölümlerini tutmuştur. Sirozda mikroskopik düzeyde karaciğerin normal arşitektürünün yerini, diffüz olarak kalın kollagen fibröz bandlarla separe edilmiş rejenere ka-raciğer hücre gruplarından oluşan nodüller yer almıştır. Karaciğerin normal yapısının değiş-mesi mikrosirkülasyonu bozar ve buna bağlı hastalığın klinik özellikleri ortaya çıkar. Çoğu sirozlu hastalardaki ölüm; (1)progresif karaciğer yetmezliği, (2)portal hipertansiyona bağlı komplikasyonlar ve (3)hepatosellüler karsinom gelişmesi sonucudur. Tüm siroz çeşitle-rinde hepatosellüler gelişme riski fazladır. Sirozların sınıflandırılmalarında bir konsensus yoktur. Yapılan morfolojik sınıflama ile sirozlar üçe ayrılmıştır: (1)Mikronodüler siroz (nodüllerin çapı 3 mm den daha küçüktür), (2)makronodüler siroz (nodül çapları 3 mm den büyüktür ve 2-3 cm ye ulaşabilir) ve (3)mikst olanda ise, mikro ve makro nodüller birarada bulunur. Etiyolojik nedenlere göre şu şekilde sınıflanabilir. Alkolik karaciğer hastalığı %60- 70; viral hepatitis %10; safra hastalıkları %5- 10; herediter hemokromatozis %5 vs. Siroz tiplerini; oluş biçimleri ve özelliklerine göre şu şekilde sıralayabiliriz. Alkolik (Beslenmeye Bağlı) Siroz: Alkolle ilgili olan ve çok sık görülen şekildir, Laennec siroz olarak da bilinir. Mikronodüler yapıdadır Postnekrotik (posthepatik) Siroz: Çoğunlukla viral etiyoloji (Hepatit B Virus ve Hepatit C Virus) etkendir. Makronodüler yapıdadır. Biliyer Siroz: 1)Primer biliyer siroz; otoimmun kökenli olduğu savunulur. 2)Sekonder biliyer siroz; uzun süreli ekstrahepatik safra kanalı obstrüksiyonu bunun nedenidir ve daha çok karşı-mıza çıkar. X Wilson Hastalığı: Bakır metabolizmasını otozomal resesif bir bozukluğudur. Bozukluklar karaciğer, böbrek ve beyinde anormal miktarlarda bakır birikimi meydana gelir. Hemokromatozis: (1)Herediter hemokromatozis; bağırsak mukozasında demir absorbsiyo-nunda (emiliminde) kalıtımsal bir defekt vardır; aşırı geri emilim görülür. (2)Sekonder hemo-kromatozis; aşırı demir yüklenmesi durumlarında sekonder olarak meydana gelir. Sirozda Klinik Özellikler: Fonksiyonel parankim kayıpları, sirozun başlıca şu klinik be-lirtilerini ortaya çıkarır. - Hepatosellüler hasar ve buna bağlı karaciğer yetmezliğiyle ilgili bulgular: a)Sarılık: Karaciğerin işlevlerinden birisi de safra üretimidir. Kandaki bilirubin (ankonjuge bilirubin) karaciğer hücrelerinde işlenir (konjuge edilir), safra yolları aracılığıyla barsağa dö-külür. Bu işlemin herhangi bir yerindeki aksama sonucu bilirubin kana karışırsa, sarılık (ikter) ortaya çıkar. Çoğunluğu karışık olmak üzere, konjuge ve ankonjuge bilirubin artımı söz konu-sudur. b)Hipoalbuminemi: Hepatosit hasarına bağlı albumin ve fibrinojen olmak üzere plasma protein sentezindeki azalma söz konusudur. c)Koagülasyon faktör eksiklikleri: Karaciğerde oluşan pıhtılaşma faktörlerinin sentezinde azalma ortaya çıkar. d)Hiperöstrinizm: Testikular atrofi, jinekomasti, palmar eritem (lokal vazodilatasyon) ve vücudun değişik kısımlarında, spider anjiomlar (örümcek şeklinde damarlanma). - Portal hipertansiyon: Portal akımla kan, batından vena kava inferiora döner. Portal kan akımındaki herhangi bir engelleme, portal venlerdeki hidrostatik basıncın artmasına neden olur. Üç farklı bölgedeki obstrüksiyona bağlı olarak ortaya çıkar. 1)Prehepatik: Portal vendeki tromboz nedeniyle oluşan obstrüksiyon, karaciğer içinde sinusoidlere dağılmadan öncedir. 2)İntrahepatik: Hepatik sinusoidlerdeki blokaj, bunun nedenidir. En önemli neden sirozdur, daha sonra yaygın karaciğer yağlanması gelir. 3)Posthepatik: Santral vendeki, hepatik vende-ki veya vena kavadaki blokaj nedendir. Bu, sağ kalb yetmezliği ve ağır perikardit gibi durum-larda karşımıza çıkar. Portal Hipertansiyona Bağlı Değişiklikler (Komplikasyonlar): Portal hipertansiyonun belli başlı bulguları; assit, venöz kollateraller (bazı bölgelerde venöz varisler), splenomegali (dalak büyümesi) ve bazen hepatik ansefalopatidir. - Assit (hidroperitoneum), hidrotoraks veya periferal ödem: Biriken kan geriye doğru ba-sınç yapar. Sirozdaki portal hipertansiyonun en önemli klinik sonuçlarından birisi, periton boşluğunda fazla sıvı birikimi (assit) oluşmasıdır: a)Portal vende hidrostatik basınç artımı, he-patik lenf sıvısı artımına neden olur. Bu sıvı peritona geçer. b)Hipoalbuminemiye bağlı olarak ortaya çıkan plasma onkotik (ödeme neden olan) basıncın düşmesi ve c)sodyum ve su tutulu-munun artması; Bu da hepatik hasara bağlı olarak aldosteronun karaciğerdeki yıkımının azal-ması (hiperaldosteronizm) ve renin- anjiyotensin sistem aktivasyonundaki artma, ödemi ve peritondaki sıvı birikimini açıklar. nedenidir. - Hepatik ansefalopati: Nöropsikiyatrik bir sendromdur. Karaciğer yetmezliklerinde ortaya çıkar. Normalde karaciğerde detoksifiye edilen amonyak ve nörotoksik maddelerin karaciğer-deki siroz gibi, bir defekt nedeniyle detoksifiye edilemeyen bu maddelerin doğrudan dolaşıma girmesi sonucu oluşur. Hafif konfüzyondan (bilinç kaybı) derin komaya kadar giden nörolojik belirtiler gösterir. Ölüm olağandır. x Etil alkol (etanol) - nontoksik Metil alkol (metanol) – toksik Alkolik Karaciğer Hastalığı Bu Karaciğer hastalığının başlıca nedeni, yoğun alkol (etanol)x alımıdır. Alkol alışkanlığı, ölüm nedenlerinin beşinci sırasında yer alır. Alkole bağlı siroz, ölümlerin önemli bir bölümü- nü oluşturur. Ölümlere neden olan diğer önemli bir neden ise, alkole bağlı otomobil kazaları sonucu meydana gelen ölümlerdir. Hastahanelerde yatan karaciğer hastalarının %20- 25 inde, alkol nedeniyle ortaya çıkan problemler vardır. Kronik alkol alımı birbiriyle bağlantılı üç farklı tipte karaciğer hastalıklarına neden olur. 1-Hepatik Steatoz (Yağlı Karaciğer): Hepatositler içinde önce küçük yağ damlacıkları biri-kir. Bunlar zamanla hücrenin içini tamamen doldurur, nüveyi kenara iter. Tamamen bir yağ hücresine döner. Bu değişme önce vena santralis çevresindedir, sonra perifere doğru yayılarak tüm lobülü tutar. Zamanla bu nekrotik parankimal hücreler yerini fibröz dokuya bırakır. Fib-rozis gelişmeden önce alkol alımı kesilirse, yağlı değişmeler gerileyebilir. 2- Alkolik Hepatitis: Hepatositler tek veya gruplar halinde şişer (balonlaşır) ve nekroza uğ-rar. Nekrotik ve dejenere hepatositlerin çevresinde polimorf nüveli lökositler birikir. Daha sonra lenfositler ve makrofajlar bölgeye gelir. Sonuçta belirgin bir fibrozis ortaya çıkar. 3- Siroz (Alkolik Siroz): Alkolik karaciğer hastalığının finali ve geri dönüşsüz şekli olan siroz, sinsidir ve yavaş gelişir. Karaciğerin makroskopik görünümü sarı- turuncu renktedir, yağlı ve büyümüştür, ağırlığı artmıştır. Oluşan fibröz septalar arasındaki parankimal hepato-sitlerin rejeneratif aktiviteleri, değişik büyüklükte nodüller oluşturur. İleri zamanlarda fibrozis geliştikçe karaciğer yağ kaybeder, progresif bir seyirle büzüşür, küçülür. Yağsız bir organ haline gelir. Organın ağırlığı düşmüştür ve sirozun karakteristiği olan değişik büyüklüklerde (mikro- makro) nodüller gelişir. PANKREAS : Pankreas, iki ayrı organın bir organda bulunma özelliğinde olan bir organımızdır. Yakla- şık %85-90 ekzokrin salgılıktır ve besinlerin sindirimi için, gerekli enzimleri salgılar. Geri kalan %10-15 endokrin salgılıktır ve insülin, glukagon ve diğer hormonları salgılayan Langer-hans adacıklarından oluşmuştur. Endokrin Pankreas : Endokrin pankreas Langerhans adacıkları adı verilen, bir milyon civarında mikroskopik hücre kümesinden oluşmuştur. Bu adacıklardaki hücrelerin tipleri, rutin hematoksilen- eosin boyası ile ayırt edilemez. Ancak bazı özel boyalarla elektron mik-roskobunda granüllerin şekillerinin görülmesiyle veya immunohistokimyasal yöntemle hücre tipi belirlenebilir.  (beta) hücreleri : Adacık hücre topluluğunun %70’ ini oluşturur. İnsülin hormonunu sentez eder ve salgılar. Hipoglisemik etkili hormondur.  (alfa) hücreleri : Adacık hücrelerinin %5- 20’sini temsil eder ve glukagon oluşturur. Kara-ciğerde glikojenolitik (glikojen parçalayan) etkinliği nedeniyle hiperglisemi oluşturur.  (delta) hücreleri: %5-10’luk bir bölümü oluşturur. İnsülin ve glukagon üretimini dengeleyen somatostatin hormonunu salgılar. PP (Pankreatik Polipeptit): %1-2 oranındadır ve yalnızca adacıklarda değil, pankreasın ekzo-krin bölümünden de salgılanır. Salgıladıkları polipeptidin, gastrik ve intestinal enzimlerin sal-gılanmasını uyarmak, intestinal hareketleri inhibe etmek gibi, etkileri bulunmaktadır. Adacık hücrelerinin önemli patolojik olaylarından birisi “Diyabetes Mellitus” dur. Diğeri “Adacık Hücre Tümörleri” dir. DİYABETES MELLİTUS Diyabet; insülinin yetersiz üretimi veya yetersiz işlevi nedeniyle ortaya çıkan hiperglisemi ile karakterize kronik, multisistemik bir hastalıktır. Karbonhidrat, yağ ve protein metaboliz-masını etkiler. Vücuttaki bütün hücrelerin glikoza (şeker molekülü- karbonhidrat) enerji kay-nağı olarak ihtiyacı vardır. Hücrelerin kandan şekeri alabilmeleri için, insülin hormonu şarttır. İnsülin, glikoz için regülatördür. Normalde kanda glikoz düzeyi yükselince insülin salgılanır. Tolere edilemeyen glikoz, hücre ölümlerine neden olur. Fazla glikoz, gerektiği zaman kan do-laşımına salınmak üzere, karaciğerde glikojen olarak depo edilir. İnsülin salgısının yokluğu (veya eksikliği) sonucu, glikozun kullanımında yetersizlikler meydana gelir. İnsülin salgısı duralarsa, kanda glikoz miktarı artar hiperglisemix durumu ortaya çıkar. Bu nedenle buna, halk arasında “şeker hastalığı” denir. Diyabetes mellitus hastalığında pankreasda yeteri kadar insülin üretilemiyordur veya vücut hücreleri bu insülinin etkisine karşı direnç geliştirmiştir. Her iki durumda da hücrelerin kan-dan glikozu almalarında problem vardır. Kan glikoz seviyesi yüksektir ve her ikisin de ortaya çıkan klinik sonuc aynıdır. Sınıflama ve Görülme Sıklığı Asıl özelliği hiperglisemi olan diyabetes mellitus, heterojen bir grup hastalıktır. Etyoloji-sine göre İki grup altında incelenir. Primer tip; en yaygın şeklidir (%95) ve insülin üretimin-deki veya işlevindeki bir defektten ortaya çıkar. Sekonder tip; infeksiyonlar (kronik pankrea-tit), herhangi bir nedenle pankreasın bir bölümünün cerrahi olarak çıkarılması, pankreas ada-cıklarının destrüksiyonuna neden olan bazı hastalıklar, aşırı demir yüklenmesi (hemokromato-zis), bazı genetik bozukluklar ve tümör gibi, pankreasın kendisini tutan lezyonlar yanısıra, in-sülinin antagonistleri olan hormonların hipersekresyonu söz konusudur. Akromegaliye neden olan aşırı büyüme hormonu (GH), Cushing sendromunda glukokortikoid artımı, feokromasito-mada (tümör) adrenalin artımı ve hipertiroidi gibi, bazı endokrin hastalıklar sonucu ortaya çı-kan diyabetes mellitusdur. Bu ikinci grup (sekonder tip) çok nadir görülür (%5). Diyabetes mellitusun en yaygın ve en önemli şekli, adacık hücresi insülin sinyali sisteminde primer bo-zukluğundan ortaya çıkanıdır. Bu primer diyabet; kalıtım özelliği, insüline verdiği yanıt ve köken olarak birbirinden farklı iki ana grupta (tip1 ve tip2) incelenir. Diyabetin iki ana tipinin farklı patogenetik mekanizmalara ve metabolik özelliklere sahip olmasına rağmen, kan da-marlarında, böbreklerde, gözlerde ve sinirlerde ortaya çıkan komplikasyonlar her iki tipte de mevcuttur. Bu hastalıktan meydana gelen ölümlerin en önemli nedenleridir. Patogenez : Önce insülin metobolizmasını kısaca gözden geçirelim. Normal İnsülin Fizyolojisi ve Glukoz Dengesi: Normal glikoz dengesi, birbiriyle ilişkili üç mekanizma ile sıkı bir şekilde denetlenir. Bunlar:(1)Karaciğerde glikoz üretimi, (2)glikozun çevre dokular tarafından (özellikle kas) alınması, kullanılması ve (3)insülin ve bunu den-geleyici karşıt hormonun (glukagon) salınımı. İnsülin salgılanması, glikoz üretimi ve kulanı-mını kan glikozun normal düzeyde kalacağı şekilde ayarlar. İnsülin pankreatik adacıkların beta hücre granüllerinde sentez edilir ve depolanır. Kan glikoz düzeyindeki yükselme, daha fazla insülin salımına neden olur. İnsülin sentezini ve salgılanmasını başlatan en önemli uya-ran glikozdur. İnsülin majör bir anabolik hormondur: İnsülinin en önemli metabolik etkisi, vü-cuttaki bazı hücre tiplerinde hücre içine glikoz girişini hızlandırmaktır. Bunlar myokordial hücreleri de içine alan çizgili kas, fibroblast ve yağ hücreleridir. Glikoz kas hücrelerinde gli-kojen olarak depolanır veya adenozin trifosfat (ATP) üretimi için oksitlenir. Glikoz yağ doku-sunda öncelikle lipid olarak depolanır. İnsülin, yağ hücrelerinde lipid üretimini (lipogenez) hızlandırırken diğer yandan da lipid parçalanmasını (lipoliz) inhibe eder. Aynı şekilde amino asid alımını ve protein sentezini hızlandırırken, diğer taraftan protein parçalanmasını durdu-rur. Böylelikle, insülinin etkileri anabolik olarak glikojen, lipid ve proteinin artan üretimi ve azalan parçalanması olarak özetlenebilir. x Yunanca; hiper- yüksek; glyk- şeker; emia- kan kelimelerinden köken alır. Açlık durumunda glikojen üretimi azaldığından (düşük insülin- yüksek glukagon durumu), karaciğerde glikoneojenezi (glikojen sentezi) ve glikojenolizi (yıkımı) arttırarak, hipoglisemi-yi önler. Bu nedenle açlık plasma glikoz düzeyi, karaciğerden salınan glikoz miktarı ile belir-lenir. İnsülin salınmasının başlıca tetikleyicisi, glikozun kendisidir. Salgılanan insülin, ilgili çevre dokularda insülin reseptörüne bağlanarak hücreiçi glikoz alımını tetikler. Böylelikle gli-koz dengesi kurulur. Tip1 Diyabetes Mellitus Patogenezi Tip1 Diyabet (İnsüline Bağımlı Diyabetes Mellitus): Tüm diyabet vakalarının %5-10 nu oluşturur. Çocuklukta gelişir, pubertede belirgin hale gelir ve şiddetlenir. Pankreasın insülin yapma özelliği kaybolmuştur. İnsülin sekresyonunda tam (veya tama yakın) yokluk söz konu-sudur. Hastaların hayatta kalmaları için, mutlak insüline gereksinim vardır. Bu nedenle “insü-lin bağımlı diyabet” olarak tanımlanır. Pankreas beta hücre antijenlerine karşı, T hücre lenfo-sitlerin oluşturduğu reaksiyon sonucu beta hücrelerinin destrüksiyona uğradığı otoimmun bir hastalıktır. Dışarıdan insülin alınmadığı takdirde diyabetik ketoasidoz ve koma gibi, ciddi metabolik komplikasyonlar gelişir. Beta hücre destrüksiyonuna iç- içe geçmiş pek çok meka-nizma katkıda bulunur: (1)Genetik eğilim, (2)otoimmünite ve (3)çevresel etkenler. Genetik Eğilim : Diyabetes mellitusun, ailesel özellik gösterdiği uzun zamandan beri bilin- mektedir. Genetik eğilimin kesin kalıtsal geçiş şekli tam olarak bilinmemektir. Tek yumurta ikizlerinin (eş ikizler) ikisinde birden görülme oranı yaklaşık %40’dır. Diyabetli ailelerde yaklaşık %6 sının çocuklarında bu hastalık gelişmektedir. Gerçi tip1 diyabet olgularının %80 inde ailevi bir hikaye yoktur. Otoimmünite : Tip1 diyabetin klinik başlangıcı ani olmasına rağmen, beta hücrelerine karşı olan kronik otoimmun atak, hastalığın başlamasından yıllar önce başlamıştır. Hastalığın klasik belirtileri olan hiperglisemi ve ketoz, beta hücrelerinin % 90 ından fazlası haraplandıktan son-ra, ortaya çıkar. Otoimmunitenin diyabet patogenezindeki rolü morfolojik, klinik ve deneysel birçok gözlemle desteklenmiştir: (1)Hastalığın erken dönemlerinde çoğu vakada adacıklarda hücre nekrozu ve lenfositten zengin iltihabi infiltrasyon (insülitis) gözlenir. (2)Diyabetli has-taların %80 inin kanlarında, beta hücre antijenlerine karşı oluşmuş antikorlar (otoantikor) gösterilmiştir. (3)T lenfositler beta hücre antijenlerine karşı reaksiyon gösterir ve hücre hasar-larına neden olur. (4)Sitokinler beta hücrelerini harplar. Çevresel Etkenler: Çevresel bozukluk beta hücrelere zarar vererek otoimmüniteyi tetikle-miş olabilir. Epidemiyolojik gözlemler, böyle bir tetiklemeyi virusların yaptığını düşündür-müştür. Tip2 Diyabetes Mellitus Patogenezi Tip2 Diyabet (İnsüline Bağımlı Olmayan Diyabetes Mellitus): Vakaların büyük bir çoğun-luğunu (%90) bu tip diyabet oluşturur. Hastalık olgun yaşlarda başlar ve daha çok 50-60 lı yaşlarda ortaya çıkar. Daha önceleri adult tipi diyabet olarak adlandırılırdı. Pankreas insülin üretir; fakat dokuların bu insülini kullanmasında problem vardır. Dokuların insüline karşı olan duyarlılığında azalma nedeniyle karbonhidrat, yağ ve protein metabolizmalarının bozukluğu ortaya çıkar. Dokuların insüline duyarlılığın azalmasına (azalmış duyarlılık) “insülin direnci (rezistansı)” denir. İnsülin direnci; glukoz alımında, metabolik işlevde veya depolanmasında, insülinin etkisine karşı bir direnç olarak tanımlanır. İnsülin direnci, tip2 diyabetli hastalarda görülen karakteristik bir özelliktir ve diyabetli bireylerde görülen obeslik, genel bir bulgudur. Tip2 diyabeti iki metabolik defekt karakterize eder. (1)Çevre doku hücrelerinde, insüline yanıt verme yeteneğinde azalma (insülin direnci) ve (2)bu insülin direnci ve hiperglisemiyi kom-panse etmek için, gerekli insülinin pankreas tarafından salgılanamaması. Bu patolojiye beta hücre disfonksiyonu adı verilir. Burada esas olay, insülin dirençidir. Tip2 diyabetli hastaların yaklaşık %80’i şişman kişilerdir. Patogenezde obesite söz konusu olduğundan, kişinin yaşam biçimi ve beslenme alışkanlıkları gibi, çevresel faktörlerin önemli bir rol oynadığı düşünülür. 27 Bir zamanlar adültlerin bir hastalığı olarak düşünülürdü. Şimdi obes çocuklarda da bu şeklin görülebildiği bilinmektedir. Obesite, insülin direnciyle ve böylelikle tip2 diyabetle, önemli bir ilişkiye sahiptir. Kilo verilmesi ve fizik ekzersiz, bu hastalarda glikoz tolerans bozukluğunu düzeltebilir. Tip2 diyabet çok daha fazla görülmesine karşın, patogenezi hakkında bilgi azdır. Otoim-mün mekanizmaya ait deliller yoktur. Bunun yerine göreceli olarak insülin yetmezliğiyle sonuçlanan, insülin direnci ve β hücre bozukluğu vardır. Hafifden tam’a kadar değişen bir in-sülin eksikliği söz konusudur ve tip1 diyabetten daha az şiddettedir. Tip2’de insülin yetmez-liğinin kesin sebebi bilinmemektedir. Tip1 diyabette olduğu gibi, beta hücrelerinde viral veya immün sistem kökenli zedelenmeyi gösterecek bir bulgu da yoktur. Genetik faktörler, Tip1 diyabete göre bu Tip2 de daha önemlidir. Tek yumurta ikizlerin ikisinde de birden görülme oranı %60-90 dır. Bu hastalığın görülme oranı tüm popülasyonda %5-7 iken, birinci derece akrabalarda hastalık gelişme riski %20-40 arasında değişmektedir. Diyabetes Mellitus Geç Komplikasyonlar ve Patogenezi İnsülin hormonunun bulunması ve bunun tedavide kullanıma başlanmasından sonra, hasta-ların ömrü uzamıştır; fakat bu hastalık tedavi edilememiştir Diyabet hastalığında, geç kompli-kasyonlar olarak adlandırılan hastalığın başlangıcından 10- 15 yıl sonra ortaya çıkan lezyonlar çok önemlidir. Hastalar arasında bu komplikasyonların çıkış zamanı, şiddeti ve tutulan organ-lar yönünden bariz farklar vardır. Pankreasda patolojik bulgular çok çeşitlidir ve mutlak dra-matik değildir. Komplikasyonların hemen tamamı damar lezyonlarına bağlıdır. Bugünün diya-betle ilişkili en önemli komplikasyonları; küçük damarların bazal membranlarında kalınlaşma (mikroanjiyopati), arterlerde (ateroskleroz), böbreklerde (diyabetik nefropati), retinada (reti-nopati), sinirlerde (nöropati) ve klinik olarak bütün bu organlarda disfonksiyonlar görülür. Yapılan gözlem ve çalışmalar, ortaya çıkan bu komplikasyonların doğrudan hiperglisemiye bağlı olduğunu düşündürmektedir. Buna ilaveten, diyabette hipertansiyonun varoluşu, atero-sklerozisi hızlandırır. En çok konuşulan bulgu, nondiyabetik donörlerden (verici) diyabetik hastalara yapılan böbrek transplantlarında 3- 5 yıl sonra, bu böbrekte diyabetik nefropatinin gelişmesidir. Buna tezat oluşturacak şekilde diyapatik nefropatili böbreklerin normal alıcılara transplante edildiği zaman, bu böbreklerde düzelmeler olduğu bilinir. Diyabette hayatı tehdit eden esas olay ateroskleroz ve mikroanjiyopati gibi, generalize vasküler hastalıktır. Ateroskleroz, diyabetin klinik seyrini hızlandırır; kalb, beyin ve böbrekde iskemik lezyonlar gelişir. Myokard infarktüsü, serebral infarktüs, renal yetmezlik ve alt eks- tremite gangrenleri diyabetlerde sık görülen lezyonlardır. Diyabetin patognomanik (tanı koy- durucu) ağız lezyonları (spesifik ağız yumuşak doku ve dental lezyonları ) yoktur. Diyabette Pankreas Değişiklikleri: Langerhans adacıklarında diyabetin etyolojisini ve pato-genezini açıklayacak spesifik bir patolojik lezyon gösterilememiştir. Pankreas lezyonları sabit ve patognomanik değildir. Tip1 deki değişiklikler, tip2 ye göre daha belirgindir. Gerçi diyabe-te eşlik eden, bazı morfolojik değişiklikler vardır. Adacıklar sayıca azalmıştır, buralarda fibro-zis ve lenfosit infiltrasyonu (insülitis) ve amiloid birikimi görülebilir. Amiloid birikimi za-manla hücrelerin atrofisine neden olabilir. Ayrıca beta hücrelerinde granül kayıpları dikkati çeker. Diyabetik Göz Komplikasyonları: Diyabetik retinopati olarak adlandırılan göz lezyonları, katarakt veya glakom (göz tansiyonu) gelişmesine bağlı olarak, görme bozuklukları ve körlü- ğe kadar gidebilen ağır lezyonlar gelişir. Retinada, düzensiz damar duvarı kalınlaşmaları ve mikroanevrizmalar sonucu lezyonlar ortaya çıkar. Diyabetik Nöropati: Geç komplikasyonlar olarak periferal sinirler, beyin ve omurilik hasar görebilir. Refleks bozuklukları, duyu kusurları, gelip- geçici ekstremite ağrılarına neden olur. Schwann hücre hasarı, myelin dejenerasyonu ve akson hasarı ile karakterlidir. Bu hücrelerde- ki hasarın primer hasar olduğu düşünülmektedir. Buna, intrasellüler hipergliseminin yol açtığına inanılır. Hem bu intrasellüler hiperglisemi ve hem de mikroanjiopati sonucu gelişen iske- minin beraberce nöropatiye neden olduğuna inanılır. Pelvik organların innervasyonu bozula- rak; seksüel impotans (ereksiyon problemi), mesane ve barsak disfonksiyonu ortaya çıkabilir. Diyabetik Böbrek Değişiklikleri (Diyabetik Nefropati): En ağır lezyon gösteren organlar-dan birisi böbrektir. Myokard infaktüsünden sonra görülen en sık ölüm nedenidir. Ölüm çoğu kez, mikroanjiopati sonucu gelişen böbrek yetersizliğine bağlıdır. Vasküler Sistem: Diyabet vasküler sisteme ağır zararlar verir. Her çaptaki damarlar (aort ve küçük damarlar) etkilenir. Koroner arterlerin aterosklerozu nedeniyle ortaya çıkan myo- kard enfarktüsü, diyabetiklerde görülen en sık ölüm nedenidir. Diyabette ateroskleroz daha erken yaşta ortaya çıkar ve daha ağır seyreder. Ateroskleroz oluşmasına yatkınlık, birden fazla faktöre bağlıdır. Hiperlipidemi ve trombositlerin yapışma özelliğinin artması, şişmanlık ve hipertansiyon gibi, aterosklerozda rol oynayan diğer risk faktörleri de vardır. Damarlarda ülserasyon, kalsifikasyon, ve trombüs gelişimi sıktır. Damarların daralmasına bağlı olarak myokard infarktüsü gibi klinik bulgular ortaya çıkar. Yırtılma riski olan anevrizmalar gelişir. Diyabetlilerde normalden 100 kat fazla olan, alt ekstremite gangrenleri gelişir. Diyabette Klinik Özellikler Tip1 diyabet, çoğu hastada 35 yaşın altında poliüri (çok idrara çıkma), polidipsi (çok su içme), polifaji (iştah artışı) ve ciddi olgularda ketoasidozis ile kendini göstererek başlar. Bun-ların tümü metabolik bozukluklardan meydana gelir; çünki insülin vücuttaki başlıca anabolik hormon olduğundan, İnsülin salgılanmasındaki bir yetersizlik, yalnızca glikoz metabolizma-sını etkilemez, yağ ve protein metabolizmasını da etkiler. İnsülin eksikliğinde, glikozun kas ve yağ dokusu tarafından emiliminde, bariz azalma (veya yokluğu) söz konusudur. Karaciğer ve kasdaki glikojen depoları azaldığı gibi, glikojenoliz nedeniyle yedek depolar da tükenir. Şiddetli bir açlık hiperglisemisi izler. Tip1 de iştah artmasına rağmen katabolik etkinin baskın olması, kilo kaybı ve kas zayıflığı ile sonuçlanır. Polifaji ve kilo kaybının beraberliği bir tezat oluşturur. Böyle kişilerde her zaman bir diyabet şüphesi akla gelmelidir. Kandaki glikoz seviyesi artarsa, glomerüllere fazla glikoz gider, “glikozüri” (idrarda şeke-rin çıkması) başlar. Glikozüri osmotik diürezi başlatır, poliüriye neden olur. Yoğun bir su ve elektrolit (Na+, K+, Mg++, PO4-) kaybı ortaya çıkar. Sonuç olarak dolaşımda sodyum, potas-yum kayıpları ve kandaki glukoz seviyesinin artmasına bağlı olarak ortaya çıkan serum os-molaritesindeki artma (hiperosmolarite) ile kombine renal su kaybı, hücreler içi ve hücreler arası su kaybına neden olarak beyinde susuzluk merkezi uyarılarak su içme isteği doğar (polidipsi). İnsülin eksikliğinde metabolik dengenin bozulması ve ayrıca yağ katabolizması (yıkımı) aşırı artması, serbest yağ asidi düzeyini yükseltir. Bu serbest yağ asitleri, karaci-ğerde oksitlenerek keton cisimleri meydana gelir. İdrarla keton atılımı azalırsa, ketoasidoz oluşur. Tip2 diyabetes mellitus, poliüri ve polidipsi gösterebilir; fakat tip1 den farklı olarak hasta-lar genellikle 40 yaş üzeridir ve şişmandır. KALSİYUM METABOLİZMASI VE BOZUKLUKLARI Kalsiyum ve fosfat (PO4)x metabolizması, birbirleriyle çok yakın bir ilişki içindedir. Hem kalsiyum hem de fosfat dengesinin düzenlenmesinde, büyük ölçüde dolaşımdaki paratiroid hormonu (PTH), vitamin D ve bunlar kadar olmasa da kalsitonin hormonunun etkileri vardır. Kalsiyum; kemik ve dişlerin şekillenmesi, kasların kasılması, kanın pıhtılaşması, sinir uyarıla- rının iletisi ve hormon salınması gibi, pekçok fizyolojik olayda anahtar rol oynar. Bu nedenle kalsiyum dengesinin korunması kritik önem taşır. Vücuttaki kalsiyum depoları (iskelet siste- mi) ve plazma kalsiyum konsantrasyonunun korunması; besinlerle kalsiyum alımına, gastroin- testinal kanaldan kalsiyum emilimine ve böbreklerden kalsiyum atılımına bağlıdır. Dengeli bir beslenmeyle günde yaklaşık 1000 mg kalsiyum alınır. Bu da sütün 1 litresindeki miktara eşit- tir. Kalsiyumun esas atılımı dışkı ve idrar ile olmaktadır. Bunun yanısıra, barsaktan geri emi- lim de olmaktadır. D vitamini, kalsiyumun barsaklardan emilimini arttırır. Böbreklerde aktif vitamin D sentezixx arttırılarak, barsaktan kalsiyum emilimi arttırılır. Böbreklerde bir hasar mevcutsa, D vitamini etkisinin büyük bir bölümünü kaybeder ve barsak emilimi de azalır. Paratiroid hormonu; kalsiyum ve fosfat’ın barsaklardan reabsorbsiyonunu, böbreklerden atılmalarını ve ekstrasellüler sıvı ile kemikler arasındaki değişimleri düzenleyen bir hormon- dur. Paratiroid salgılığı (bezi) aktivitesinin artması, kemikten kalsiyum tuzlarının hızla rezorb- siyonuna yol açarak, ekstrasellüler sıvıda hiperkalsemi oluşturur. Bunu osteoklast aktivasyonu ile kemik rezorbsiyonu yani kalsiyumun mobilizasyonu arttırarak yapar. Bunun aksine, parati- roid salgılıklarının hipofonksiyonu, hipokalsemiye neden olur. D vitamini, kemik rezobsiyonu (yıkımı) ve kemik depolanması (yapımı) yani remodelas-yon üzerinde önemli etkilere sahiptir. Aşırı miktarda vitamin D fazlalığında, kemiklerde re- zorbsiyon oluşur. D vitamini eksikliğinde, paratiroid hormonunun kemik rezorbsiyonu üzerine olan etkisi büyük ölçüde azalır. Hipokalseminin Başlıca Nedenleri: 1-Hipoparatiroidizm: Paratiroid hormonunun eksikliği veya yokluğu nedeniyle, hipopara- tiroidizm ortaya çıkar. Başlıca özellikleri hipokalsemi ve hiperfosfatemidir. Özellikle tiroidek- tomi sırasında paratiroid salgılıklarının kaza sonucu çıkarılması veya hasar görmesiyle hipo-paratiroidizm meydana gelir. PTH yeterince salgılanamayınca kemiklerde osteolitik rezorb- siyon azalır. Vücut sıvılarında da kalsiyum düzeyi düşer. Kemiklerden kalsiyum ve fosfat re- sorbsiyonu olmadığı için, kemikler dayanıklılığını kaybetmez. Kronik hipokalsemide deride kuruma ve pullanma, tırnaklarda çatlama ve kırılma ile saç-larda sertleşme görülebilir. Kalsiyum konsantrasyonu ileri derecede azaldığında, tetani belirti- leri ortaya çıkar. Özellikle larenks kasları tetanik spazma duyarlıdır ve bu kasların spazmı, solunumu engeller. Gerekli tedavi uygulanmazsa, ölüme yol açabilir. 2-Vitamin D Eksikliği: Besinlerle yeterince D vitamini alınamaması (malnutrisyon) yanı- sıra, hepatobilier hastalık (karaciğer hastalıkları vitamin A, D ve K nın sentezini düşürür), barsaklardaki emilim bozuklukları (intestinal malabsorpsiyon), renal hastalıklar, belli bazı ilaçların alımı ve derinin güneş ışığını yeterince alamaması (İngilteredeki Müslüman kadınlar) gibi durumlar, vitamin D eksikliğinin önemli nedenleridir. Vitamin D, güneş ışını aracılığıyla deride sentez edilir; eksikliği hipokalsemiye neden olur. Eksikliğine bağlı olarak, çocuklarda raşitizm ortaya çıkar. Erişkinlerde diyete bağlı D vitamini veya kalsiyum yetersizliği oldukça seyrektir; çünki kemik büyümesi çocuklardaki gibi, çok miktarda kalsiyum gerektirmez. x Fosfor, insan vücudunda en çok bulunan elementlerden biridir. Vücuttaki fosforun çoğu oksijen ile beraber, fosfat (PO4) şeklinde bileşik halinde bulunur. Vücuttaki fosfat’ın yaklaşık % 85 i kemiktedir ve burada hidroksi-apatit kristalinin önemli bir bileşenini oluşturur2. xx Böbreklerde 1-α hidroksilaz enzimi tarafından vitamin D’nin en aktif formu olan 1, 25-dihidroksikolekalsife- rol’e [1,25(OH2) D3] çevrilir. Bu madde [vitamin D3 (kolekalsiferol)] barsaklardan kalsiyum emilimini arttırır. Önemli miktardaki vitamin D eksikliklerinde, erişkinlerde osteomalasi’ye yol açar. Bu, nor- mal gelişimini yapmış kemiklerdeki eksik mineralizasyonu yansıtır. Raşitizm’de ise yetersiz mineralizasyon çocuklarda gelişmekte olan kemikleri tutar. 3- Böbrek Yetersizliği: Böbreklerde vitamin D, aktif şekli olan dihidroksikolekalsiferol’a çevrilir. Böbrek hücrelerinin direkt hasar görmesinden dolayı; (1) aktif vitamin D oluşumu- nun azalması ve ayrıca (2) lezyonlu böbreklerde meydana gelen anormal kalsiyum kayıpları, hipokalsemiye neden olur. Fosfat’ın böbreklerden atılımının azalmasına bağlı olarak gelişen hiperfosfatemi de, tam anlaşılamamış bazı mekanizmalar yoluyla hipokalsemiye neden ol-maktadır. Hiperkalseminin Başlıca Nedenleri: Hiperkalsemi, kemik rezorbsiyonunun aşırı olma-sından kaynaklanır. Nedenleri şöyle sıralanabilir. 1- Primer Hiperparatiroidizm: Popülasyonda en sık rastlanılan hiperkalsemi nedenidir. Paratiroid salgılığındaki (bezi) bir bozukluk nedeniyle aşırı miktarda hormon salgılanması so-nucu meydana gelir. Nedeni paratiroid salgılıklarındaki bir hiperplazi veya tümördür. Bu tü-mör benign (adenoma) veya malign (karsinoma) olabilir. Eksesif paratiroid hormonu yapımın-da (hiperparatiroidizm) kemiklerde osteoklastik aktivite ileri derecede artmıştır, kemiklerden kalsiyumun açığa çıkmasına neden olur. Bu durum dolaşımda kalsiyum konsantrasyonunu arttırır, serum kalsiyum seviyesi yükselir. Osteoklastik aktivasyon (rezorbsiyon), osteoblastik depolanmadan çok fazla olduğu için, kemik yıkımı fazladır. Bu tür hastalarda patolojik kırık-lara çok rastlanır. Osteoklastların yaptığı lakunar rezorbsiyon, kemiklerde defektlere neden olacaktır ve kistik kaviteler şeklinde belirecektir. Bu bulgular da, hormon fazlalığının radyolo-jik ve histopatolojik göstergesidir. Paratiroid hormonunun kronik artımı, tüm iskelet sistemin-de herhangi bir kemiği tutabildiği gibi, çene kemiklerini de tutabilir. Bu hastaların kemikle-rinin radyolojik incelemelerinde, aşırı dekalsifikasyon kemik yıkımı nedeniyle multipl kistik alanlar görülür. Bu kistik alanlarda fibröz doku ve osteoklast tipi dev hücreler yoğun bir şekil-de bulunur. Bu histolojik özellik, çene kemiklerinin özel bir lezyonu olan, santral dev hücreli granulomanın benzeridir. Hiperparatiroidizme bağlı bu tür kistik kemik hastalığına, “osteitis fibroza kistika” adı verilir. Bu lezyon bazen kitleler oluşturarak tümörlerle karışabilir. Bu nedenle bu lezyonlar, “hiperparatiroidizmin brown (kahverengi) tümörü” olarak da bilinir. Osteoblastlar aktive olduğu zaman, bol miktarda alkalen fosfat salgılar. Bu nedenle, önemli tanı bulgusu plasma alkalen fosfat düzeyinde artıştır. Bu hastalar böbrek taşı oluşumuna aşırı yatkın olurlar. Bunun nedeni hiperparatiroidizmde barsakdan absorbe edilen ve kemikten mo-bilize olan kalsiyum ve fosfatın, böbrekler tarafından atılması sırasında idrardaki konsantras-yonlarının çok artmasıdır. Sonuçta, kalsiyum fosfat kristalleri böbreklerde çökmeye başlar ve böylece kalsiyum fosfat taşları oluşur. 2- Sekonder Hiperparatiroidizm: Sekonder hiperparatiroidizmde paratiroid hormon artı- şı, paratiroid salgılığındaki primer bir bozukluk yerine, önceden var olan hipokalseminin kompansasyonu sonucu ortaya çıkar. Böbrek yetersizliği en önemli nedendir. Barsakda mal- absorbsiyon sendromu gibi olaylarda, vitamin D eksikliği ve yetersiz kalsiyum alımları, hipo- kalseminin nedenleri olabilir. Kronik hipokalsemi sonucu, paratiroid salgılanmasında bir artış belirir. Buna “sekonder hiperparatiroidizm” denir. 3- Vitamin D fazlalığı: Aşırı vitamin D’nin alımı, vitamin D’nin toksik etkisini ortaya çı-karabilir. D vitaminin fazlalığı, çocuklarda gelişim geriliğine neden olabilir; adültlerde hiper-kalsiüri, nefrokalsinozis ve böbrek taşına neden olur. Vitamin D fazlalığı; kalsiyumun bar-saklardan emilimini arttırdığı gibi, normalin üstünde kemik rezorbsiyonuna (yıkımına) neden olarak kan kalsiyum seviyesini yükselterek, hiperkalsemiye neden olur. 4- Destrüktif Kemik Tümörleri: Destrüktif kemik lezyonlarına neden olan multipl mye- loma veya metastatik kemik tümörlerini sayabiliriz. Multipl myeloma, skuamoz hücreli karsi- noma, böbrek karsinomu, meme- over kanseri hiperkalsemiye neden olur. 5- Süt- Alkali Sendromu: Genellikle peptik ülser tedavisi sırasında uzun müddet ve aşırı miktarda antiasit olarak, kalsiyum (kalsiyum karbonat) ve emilebilir alkali alınması sonucu, hiperkalsemi ortaya çıkar. Bu olaya “süt- alkali sendromu” denir. Gerçi bu sendrom, büyük miktarlarda süt alan hastalarda da tanımlandı. Bu sendrom hiperkalsemi, hiperkalsüri, metabo- lik alkaloz (plasma bikarbonat düzeyinin artması), nefrokalsinozis ve böbrek yetmezliğine neden olabilir. 6- Hipertiroidizm 7- Sarkoidozis: Akciğerleri tutan kronik granulomatöz bir iltihaptır. PATOLOJIK KALSİFİKASYON Kalsiyum tuzlarının kemik ve dişlerden başka dokularda birikmesine, patolojik kalsifikas- yon denir. Normalde kalsifikasyon yalnızca kemik ve dişlerde oluşur. Bunların dışında oluş- ması, heterotopik kalsifikasyon olarak yorumlanır. Heterotopik kalsifikasyon iki farklı tipte tanımlanır. 1)Distrofik Kalsifikasyon: Serum kalsiyum ve fosfor seviyesinin normal olması- na ve kalsiyum metabolizmasında bir bozukluk olmamasına rağmen görülür. Kalsiyum tuzları ölü ve dejenere hücre ve dokularda (tüberküloz nekrozu) birikir. Ayrıca atherosklerozisde aterom plaklarında ve hasarlı kalb kapakcıklarında oluşur. 2)Metastatik Kalsifikasyon: Kalsiyum metabolizmasında bir bozukluk söz konusudur. Hiperkalsemi olan her durumda, normal ve canlı dokularda kalsifikasyonun oluşması görülür. Hatta hiperkalsemi, distrofik kalsifikasyonu da arttırır. Metastatik kalsifikasyonda özellikle bazı dokulara nedeni bilinme- yen bir meyil vardır. Böbrek tübulusları, akciğer alveolleri, mide mukozası ve kan damarları- nın mediası sıkça etkilenen organlardır. Bu organlarda yetmezlikler nedenidir. Metastatik kalsifikasyona neden olan hiperkalseminin nedenlerini daha önce de değindi- ğimiz gibi, şu şekilde sıralayabiliriz; (1)aşırı paratiroid hormonu salgısına neden olan, parati-roid tümörleri ve primer hiperparatiroidizm gibi, endokrin bozukluklar, (2)kemik yıkımını arttıran multipl myeloma, metastatik kanserler ve lösemi gibi tümörler ve (3)vitamin D fazla-lığı (intoksikasyonu) ve süt- alkali sendromu ile sarkoidozdur. Hatta hiperkalsemi, (4)ileri saf-hadaki böbrek yetmezliğinde ortaya çıkan sekonder hiperparatiroidizm’e bağlı olarak da geli-şebilir. Histolojik olarak kalsifikasyon intrasellüler, ekstrasellüler veya her iki lokalizasyonda da depolanabilir. Bu birikim bazofilik, amorfös (şekilsiz) granüler görünümdedir. Kalsifikasyon odağında zaman içinde, kemik gelişebilir, buna “heterotopik kemik” denir. KEMİK HASTALIKLARIİnsan iskeleti kompleks bir sistemdir. Yapısal olarak destek oluşturmaya iyi ayarlanmıştır. İskelet kasının aktivitesini harekete dönüştürür ve hassas iç organlar için, koruyucu bir çevre oluşturur. Ayrıca vücudun kan oluşturan (hematopoetik) elemanları için, iskeletten bir yapı oluşturur ve kalsiyum ile diğer birçok hayati minerallerin ana deposu olarak görev yapar. Pek çok beslenme bozukluğu ile endokrin bozukluklar, iskelet sistemini etkiler. Beslenme bozuk-luklarının neden olduğu kemik hastalıkları; C vitamini eksikliklerinde, skorbüt ve D vitamini eksikliklerinde, raşitizm ile osteomalazi görülen hastalıklardır. Mineralizasyon kaybıyla ka-rakterli bir grup hastalık vardır. Bunlar “osteopenik hastalıklar” adı altında incelenir. Osteo-peni (kemik kaybı), radyolojik olarak mineralize kemik kitlesindeki kayba verilen genel bir terimdir. Bu kolaylaştırıcı bir kavram olup, bunlardaki radyolojik görüntüler, belirli bir patolojiyi işaret etmez. (1)Osteoporoz en sık görülen bir osteopenidir. (2)Osteomalazi ileri yaşlarda, (3)raşitizm çocuklarda görülen kemik matriksindeki mineralizasyon kaybını anla-tır. (4)Osteitis fibroza kistika, hiperparatiroidizmde görülen, kemik kayıpları gösteren bir lezyondur. Osteoklastik kemik rezorbsiyonunda artım vardır. Ortaya çıkmış olan kaviteleri dolduran fibröz doku proliferasyonları görülebilir. Fibröz dokunun tam doldurmadığı kavite-ler, kistik kaviteler olarak tanımlanır. Bazı (5)malign kemik lezyonlu osteopenik hastalarda kemiklerinde bir azalma görülür. Bu artan osteoklastik aktivitenin delilleri olmasına rağmen,bir kısmında anormal osteoklastik aktivite yoktur. Tümör hücrelerinin kendileri kemik rezorb-siyonundan sorumludur. Osteoporoz: Osteoporoz, kemik kitlesinin azalmasıyla mikro- yapı bozulmasına bağlı ola-rak ortaya çıkan kemik inceliği ve zayıflığına bağlı olarak kırık olasılığının arttığı bir kemik hastalığıdır. Burada hem kemik yapımı azalmıştır, hem de kemik yıkımı artmıştır. Kemik in-celiği lokalize olabildiği gibi, tüm iskelet sistemini de tutabilir. Osteoporoz terimi nitelendiril-meden kullanılırsa, primer senil ve postmenopozal şekli anlaşılır. Senil osteoporoz, yaşlılarda ve heriki cinsde şiddeti artarak görülür. Postmenopozal osteoporoz, menopoz sonrası kadın-larda görülür. Yaşlı kadınlardaki femur başı kırığın başlıca komplikasyondur. Primer osteopo-rozis ileri derecede yaygın olarak görülür. Osteoporozisle ilgili kırıklara bağlı ortaya çıkan morbidite ve mortalite analiz edilirse, yıllık maaliyetin çok yüksek olduğu görülür. Patogenezis: Erişkinlerde kemik oluşumu ve rezorbsiyonu arasında dinamik bir denge var-dır. Bu dengenin osteoklastların kemik yıkım tarafına kaydığında olay osteoporoz ile sonuçla-nır. Bu dengesizliğin oluşumu bir sırdır. Gerçi kemik gelişimi ve yeniden modelizasyon (yı-kım- yapım) kontrol mekanizmalarında heyecan verici önemli kavramlar vardır. Bunların merkezinde, tümör nekroz faktörü (TNF) ailesine ait yeni bir molekülün, keşfi vardır. Nükle-er Faktör kB nin Reseptör Aktivatörü (RANK) olarak adlandırılan bu molekülün, osteo-klast fonksiyonunu (işlevini) etkilediği anlaşılmıştır. Bunu, kemik stromal hücreler ile osteo-blastların sentezlediği ve hücrenin membranına yerleşik olduğu bugün artık bilinmektedir. Bu liganların reseptörü, makrofajlarda bulunmaktadır. RANK- sunan (tanıtan) hücreler bu makro-fajlar (böylelikle osteoklastlar) dır. Makrofajların osteoklastlara dönüşebilmeleri için, stromal hücreler veya osteoblastlarda bulunan bu RANK ligandının, makrofajlardaki RANK reseptö-rüne bağlanması gereklidir. Aynı zamanda osteoblastlar ve stromal hücreler, makrofaj koloni stimüle eden faktör (M- CSF) olarak adlandırılan bir sitokin üretir. Bu uyaran faktör, makro-faj yüzeyinde bulunan farklı bir reseptöre bağlanır. RANK ligandı ve makrofaj koloni –stimü-le eden (uyaran) faktör beraberce etki ederek makrofajları, kemik- yiyen osteoklastlara dönüş-türür. Bunun dışında stromal hücreler/osteoblastlar tarafından salgılanan ve osteoprotegerin (OPG) olarak adlandırılan molekül, tuzağa düşürücü “yem reseptör” dür. RANK ligandını kaplayarak, bunun makrofajdaki RANK reseptörüne bağlanmasını önler ve böylece yeni osteoklastların oluşumu ve kemik yıkımı kesintiye uğramış olur. Öyle görülüyor ki, osteoporoz tek bir hastalık olmaktan çok, total kemik kitlesinin ve yo-ğunluğunun azalması gibi, benzer morfolojik görüntüyü veren hastalıklar grubudur. Normal durumlarda bebeklik ve çocukluktan itibaren, kemik kitlesi devamlı artar, genç adült yaşların- da zirveye çıkar. Bunu büyük ölçülerde genetik faktörler belirler. Gerçi fiziksel aktivite, diyet ve hormonal durumlar gibi, eksternal (dış) faktörlerin de büyük rolü vardır. Yaş Faktörü: Kemik dansitesindeki (yoğunluğu) yaşa bağlı değişiklikler, her bireyde görü- lebilir. Kemik dinamik bir dokudur ve yaşam boyu devamlı bir yıkım- yapım şeklinde devam eder. Bu remodelizasyon (yıkım- yapım), kemik rezorbsiyonu ve yeni kemik yapımı değişik- likleriyle karakterizedir. Maksimum kemik yoğunluğuna yaşamın üçüncü on yılında ulaşılır. Bundan sonra dansite giderek azalır. En büyük kayıplar, yoğun süngersi (trabeküler) kemikle- rin olduğu omurga ve femur boynunda ortaya çıkar. Bu nedenle osteoporozlu kişilerde kırıklar bu bölgelerde çok sık görülür. Yaşlı hanımlarda kalça kırıkları kayda değer sayılardadır. Bu tür kırıklardaki tedavide, yaşlı insanların uzun periyodlarda hareketsiz yatmaları gerektiğin- den, hareketsizliğe bağlı olarak pnömoni, akciğer ödemi ve pulmoner tromboembolizm gibi, komplikasyonlar çok sık görülür ve başlıca ölüm nedenidir. Mekanik Faktör: Özellikle beden ağırlığının taşınması normal yeni kemik yapımında önemli bir stimulusdur. Azalmış bir fiziksel aktivitenin, hızlanmış kemik kayıplarıyla yakın ilişkisi vardır. Bunun kötü örnekleri felçli veya hareketten yoksun ekstremiteler örnek verilir. Sıfır yerçekiminde bir müddet kalmış olan astronotlarda da kemik yoğunluğunda kayıplara rastlanır. Pekçok yaşlı insandaki yaşam biçimi, hiç şüphesiz osteoporozun ilerlemesinde kat-kısı olabilir. Diyet Faktörü: Osteoporozun oluşması, korunması ve tedavisinde, kalsiyum ve vitamin D nin alımını da içeren diyetin rolü, halen daha tam anlaşılamamıştır. Raşitizm ve Osteomalazi Raşitizm ve Osteomalazi, her ikisi de vitamin D eksikliğinin birer örneğidir. Başlıca deği- şiklik kemiğin mineralizasyonundaki eksikliktir ve buna bağlı olarak nonmineralize osteoid kitlesindeki artım ortaya çıkar. Kısaca, osteoid matriks kalsifikasyonundaki defekttir. Osteo- malazideki bu özellik, total kemik kitlesindeki azalmaya rağmen, kalan kemik kitlesinde mineralizasyonu normal olan, osteoporozise çelişki oluşturur. Osteoporozisde kemik kaybı vardır, mineralizasyon kaybı yoktur. Raşitizmde mineralizasyon defekti, çocuklarda gelişmekte olan kemiklerde ortaya çıkar. Osteomalazide ise, tamamen normal gelişimini tamamlamış kemikteki bozuk mineralizasyon tarif edilir. PROF. DR. Taha ÜNAL EGE ÜNİVERSİTESİ DİŞHEKİMLİĞİ FAKÜLTESİ 2011 ORJİNAL KAYNAK: dent.ege.edu.tr/dosyalar/kaynak/301_patoloji/11.pdf   documents/11.pdf

http://www.biyologlar.com/hucre-zedelenmesinin-nedenleri-ve-zedelenmeye-karsi-hucrenin-verdigi-uyum-yanitlari-nelerdir-hasara-ugrayan-dokunun-onarilmasi-nasil-gerceklesir

Genler ve Gen Transferi

Çok hücreli bir organizmanın herbir hücresi genellikle aynı genetik maddeyi içerir.DNA molekülleri,hücredeki en büyük moleküllerdir ve çoğunlukla kromozom olarak adlandırılan yapılarda paketlenir.Ökaryotik hücreler genellikle birden fazla,çoğu bakteri ve viruslar ise bir tek kromozoma sahiptir.Bir tek kromozom binlerce gen taşıyabilir.Bir hücrenin tüm genleri ve genler arasındaki DNA'ları,birlikte,hücresel genomu oluşturur. Bir tek kromozomda kaç tane gen vardır ? Tüm dizilimi belirlenmiş prokaryotik genomlardan biri olan Escherichia coli'nin kromozomu 4 638 858 baz çifti uzunlukta dairesel bir DNA molekülüdür.Bu baz çiftleri,proteinler için 4 300 kadar,stabil RNA moleküller için 115 geni oluşturur.Ökaryotlar için bilgilerimiz henüz tamamlanmış değildir.İnsan genomu 3 milyar baz çiftinden oluşur ve 24 farklı kromozomda 32 000 geni kodladığı bilinmektedir. Genellikle her bir bakteri hücresinde sadece bir kromozom vardır.Hemen hemen tümünde,her bir kromozom,her bir genden bir kopya içerir.Ancak rRNA'larda olduğu gibi birkaç gen birçok kez tekrarlanmıştır.Prokaryotlarda,düzenleyici diziler ve genler hemen hemen DNA'nın tümünü kapsar.Bundan başka her bir gen,kodladığı RNA dizisi ya da amino asit dizilimiyle paralellik gösterir . Ökaryotik DNA'daki genlerin organizasyonu yapısal ve işlevsel olarak daha karmaşıktır,ve ökaryotik kromozom yapısının çalışılması sırasında pekçok sürpriz ortaya çıkabilmektedir.Çok kopyalı fare DNA 'sında yapılan testler beklenmeyen bir sonuç ortaya çıkarmıştır.Fare DNA'sının %10 kadarı,her bir hücrede milyonlarca kez tekrarlanmış ve 10 baz çiftinden daha az uzunlukta kısa dizilerden oluşur.Bunlara çok tekrarlanmış dizilimler ya da basit-dizilimli DNA denilir.Tekrarlanmış DNA'ların bir kısmı,evrimsel geçişlerin izi,basit " çöplük DNA" olabilmektedir.Bununla beraber,bunların bir bölümünün işlevsel önemi vardır.Fare DNA'sının kalan %70'i tek kopya ve sadece birkaç kez tekrarlanmış bölümlerden oluşur.Ökaryotik krozomlardaki genlerin çoğu tek kopyalı genlerdir.Basit dizilimli DNA'lara satellit (uydu) DNA da denilir.Çalışmalar, basit-dizilimli DNA'nın,protein ya da RNA şifrelemediğini göstermiştir.Bunların çoğu ökaryotik kromozomlardaki iki önemli yapı ile ilgilidir: sentromer ve telomerler. Ökaryotik kromozomun belirgin bir özelliği onun sentromeridir.Sentromer,hücre bölünmesi sırasında,kromozomu mitotik iğciğe bağlayan proteinler için bir bağlantı alanı olarak iş gören DNA dizisidir.Bu bağlantı,,kromozomların kardeş hücrelere eşit ve düzenli dağıtımı için gereklidir.Biramayası kromozomlarının sentromerleri izole edilmiş ve çalışılmıştır.Sentromer işlevinde gerekli diziler,yaklaşık 130 baz çifti uzunluğa sahiptir ve A=T çiftlerince zengindir.Daha yüksek ökaryotların sentromerik dizileri daha uzundur ve (bira- mayasınınkine benzemeksizin) genellikle basit-dizilimli DNA içerirler.Aynı yönde, 5-10 baz çiftlik bir ya da birkaç dizinin binlerce peşpeşe dizilmiş kopyasından oluşur.Sentromer işlevinde basit-dizilimli DNA'nın kesin rolü,henüz anlaşılamamıştır. 150-300 baz çiftlik, orta sıklıkta tekrarlanan DNA'lar yüksek yapılı ökaryotik genomun her tarafına serpilmiştir.Bu tekrarların bazıları karakterize edilmiştir.Bunların birkaçı,çok düşük sıklıkta genomda hareket eden diziler olan transpozonlara aittir ( ya da bağlantılı olabilir.İnsanlarda,bu tekrarların bir sınıfı (yaklaşık 300 baz çifti uzunluktaki),Alu ailesidir. AluI restriksiyon endonükleaz için bir kopya, tanıma dizisi içermesi nedeniyle bu şekilde adlandırılmıştır.Toplam genomun %1-3'ünü kapsayan yüzbinlerce Alu tekrar dizisi, genomun her tarafına serpilmiştir.Alu ve benzer saçılmış tekrarlar birlikte,insan DNA'sının %5-10 kadarını oluşturur.Bu DNA'ların işlevi henüz bilinmemektedir. Tümünün olmasa da ökaryotik genlerin çoğunun,diğerlerinden farklı ve şaşırtıcı bir yapısal özelliği vardır:nükleotit dizilimleri,polipeptidin amino asit dizilimini kodlamayan bir ya da daha fazla, dizilim arasına giren bölümler içermektedir.Translasyona uğramayan bu dizilimler,genin nükleotit dizilimi ile kodladığı polipeptitin amino asit dizilimi arasındaki bağlantıyı bozmaktadır.Genlerdeki bu tip translasyona uğramayan DNA kesimleri,aradaki dizilimler, ya da intron, ve kodlayan kesimler ise ekson olarak tanımlanırlar.Çok az prokaryotik gen,intron içerir.Bakteriler,DNA viruslarından daha fazla DNA içerirler.Bir tek E.coli hücresi, l bakteriyofaj partikülünün içerdiğinden hemen hemen 100 kat fazla DNA içermektedir.E.coli'nin kromozomu,bir çift- sarmal dairesel DNA molekülüdür. 4,639,221 baz çifti ve 1.7 mm'lik ve E.coli'den 850 kat daha büyük olan bir uzunluğa sahiptir. Ökaryotik Hücreler Prokaryotlardan Daha Fazla DNA İçerir En basit ökaryotlardan biri olan biramayası hücresi,E.coli hücresinden dört kat daha fazla DNA'ya sahiptir.Klasik genetik çalışmalarda kullanılan meyve sineği, Drosophila hücreleri E.coli 'den 25 kat fazla DNA içerir.İnsan ve diğer memeli hücreleri,E.coli'den 600 kez daha fazla DNA'ya sahiptir.Pek çok bitki ve amfibi hücreleri daha fazla DNA içermektedir.Ökaryotik hücreler bakteri hücrelerinden daha fazla DNA içermesine karşın,bir ökaryotik genomda daha büyük oranda kodlamayan DNA bulunur.Her bir milimetresinde 2,500'ün üzerinde gen bulunan E.coli DNA'sı ile karşılaştırıldığında, insan DNA'sının her bir milimetresinde yaklaşık 50 gen vardır. Bu kodlamayan DNA'nın çoğu,ökaryotik kromozom yapısının düzenlenmesinde önemli rol oynayabilmektedir. İnsanın bir tek hücresindeki tüm DNA'nın uzunluğu 2 m kadardır.E.coli'ninki 1.7 mm'dir. Süper kıvrımlaşmaya neden olmasını ve sarmal ayrılmasını biraz daha kolaylaştırmasının yanında,DNA'nın azalmış kıvrımlaşması moleküldeki yapısal değişiklik miktarını kolaylaştırmaktadır.Bunların fizyolojik önemi daha azdır fakat az kıvrılmanın etkilerinin gösterilmesine yardımcıdır.Genellikle birkaç eşleşmemiş baz içeren bir haç oluşumunu anımsarsanız, DNA az kıvrımı,gerekli sarmal ayrılmasının sürdürülmesine yardım eder. Ayrıca,soldan-sağa (sağ el dönüşlü) bir DNA heliksinin kıvrımlaşma azalması, baz diziliminin Z-DNA formuna uyumlu bölgelerinde, kısa gerginlikte sağdan-sola (sol el dönüşlü) Z-DNA'nın oluşmasını kolaylaştırmaktadır. Topoizomerazlar DNA Bağlantı Sayısındaki Değişiklikleri Katalizler DNA'da süper kıvrımlaşma,DNA metabolizmasının pek çok yönünü etkileyen ve tam düzenlenmiş bir işlemdir.Her bir hücre,özgün işlevi DNA'yı kısmen açmak ya da gevşetmek olan enzimlere sahiptir.DNA kısmi açılım uzantısını arttıran ya da azaltan enzimlere topoizomerazlar denilir.Değiştirdikleri DNA özelliği,bağlantı sayısıdır.Bu enzimler, özellikle replikasyon ve DNA paketlenmesi gibi işlemlerde önemli rol oynarlar.İki izomeraz sınıfı vardır.Tip I izomerazlar,iki sarmaldan birini kısa süreli olarak kırıp,kırık olmayan uçlardan birini döndürmek ve kırılan uçları yeniden birleştirmek şeklinde etki gösterirler.Tip II topoizomerazlar,her iki DNA sarmalını kırarlar . Ökaryotik hücreler de tip I ve tip II izomerazlara sahiptir.Topoizomeraz I ve III tip I grubunda yer alır.İki tip II topoizomeraz; topoizomeraz IIa ve IIb,hem pozitif hem de negatif süper kıvrımları gevşetebilmesine karşın, (negatif süper kıvrım nedeni) DNA'da kıvrım azalması yapamaz. Süper kıvrım olmuş DNA molekülleri,bazı yönleriyle benzerlik gösterir.Negatif süper kıvrımlı DNA moleküllerindeki süper kıvrımlar,sağ el konumludur (soldan-sağa) .Bunlar,uzama ve genellikle birden fazla dallanmayla,sıkılaşmadan çok daralma eğilimindedir Kromatin ve Nükleoit Yapı "Kromozom" adı,bir virus,bakteri,ökaryotik hücre ya da bir organel içindeki genetik bilgiyi depolayan nükleik asit molekülünü tanımlamaktadır.Bu,ışık mikroskobunda görüldüğü gibi,boyanmış ökaryotik hücrelerin çekirdeklerinde yoğunlaşmış renkli cisimcikleri de tanımlar.Ökaryotik kromozomlar,somatik hücrelerde çekirdeğin bölündüğü mitozun hemen öncesi ve mitoz sırasında çekirdekte keskin sınırlı cisimler olarak görünmektedir.Bölünmeyen ökaryotik hücrelerde kromatin denilen kromozom materyali,şekilsiz ve çekirdeğin her tarafına rastgele dağılmış olarak gözlenir.Hücreler bölünmeye hazırlanırken,kromatin yoğunlaşır ve türe özgü sayıda iyice belirginleşmiş kromozomlara dönüşür . Kromatin,çok az miktarda RNA ile birlikte,yaklaşık eşit ağırlıkta protein ve DNA içeren ipliklerden oluşur.Kromatindeki DNA, histon denilen proteinlerle çok sıkı bağlanarak, nükleozom denilen yapısal birimlere paketlenmiş ve dizilmiştir.Kromatinde,bazıları özgün genlerin ifadelenmesini düzenleyen,pekçok histon olmayan proteinler de bulunur.Nükleozomal oluşumla,ökaryotik kromozomal DNA,en sonunda ışık mikroskobunda görülen yoğunlaşmış kromozomu oluşturmak için daha ileri düzeyde dizilmiş yapılara paketlenir. Histonlar Küçük ,Bazik Proteinlerdir Histonlar bazik arjinin ve lizin amino asitlerince çok zengindirler (Her ikisi birden tüm amino asitlerin dörtte bir kadarını oluşturur).Ökaryotik hücrelerde molekül ağırlıkları farklı beş temel histon sınıfı bulunur .H3 ve H4 histonları tüm ökaryotlarda yakın benzerlikte amino asit dizilerinden oluşur.Bu,onların işlevlerinin tam anlamıyla korunduğunu gösterir.Örneğin,bezelye ve sığırın H4 histon molekülleri arasında sadece 102 amino asitten ikisi,insan ve bira mayasında sadece 8 amino asit farklıdır.H1,H2A ve H2B histonların dizilimleri ökaryotik türler arasında daha az benzerlik gösterir. Histonların her biri,bazı amino asitlerin yan zincirleri enzimatik yolla metillenerek,ADP-ribozilasyonu,fosforillenme ya da asetillenmeyle değişikliğe uğratıldığından,çeşitli yapıda olabilmektedir.Bu tip değişiklikler,kromatinin yapısal ve işlevsel özellikleri kadar,histonların diğer özelliklerini,şeklini ve net elektrik yükünü etkilemektedir. Nükleozomlar Kromatinin Asıl Düzenleyici Birimleridir Bir "ipliğe dizilmiş boncuk"düzenindeki boncuklar,histon ve DNA bileşiminden oluşur.Boncuk ve bir sonraki boncuğa uzanan bağlaç DNA,nükleozomu oluşturur.Nükleozom,üzerinde kromatinin daha yüksek paketlenme düzeni oluşmasını sağlayan temel birimlerdir.Her bir nükleozom boncuğu sekiz histon molekülü içerir: H2A,H2B,H3 ve H4'ün her biri iki kopyalıdır.Nükleozom boncuklarının aralık düzeni,146 baz çifti sekiz parçalı histon çekirdeğinin çevresine sıkıca sarılmış ve geriye kalanı nükleozom boncukları arasında bağlaç DNA olarak işlevi olan,genellikle toplam 200 baz çiftlik tekrarlayan birimler şeklindedir.H1 histonu,bağlaç DNA'ya bağlanır.DNA'yı parçalayan enzimlerin kromatine kısa süreli uygulanması,bağlaç DNA'nın tercihli olarak parçalanmasına ve parçalanmaktan kurtulmuş olan 146 baz çiftlik DNA içeren histon parçacıklarının serbest kalmasına neden olmaktadır. Bu yapının kapalı görünümü,ökaryotik hücrelerin DNA'da kıvrımı azaltan enzimlerden yoksun olduğu halde ökaryotik DNA’da kısmen açılma nedenini açıklamaktadır.Nükleozomlarda DNA'nın solenoidal sarılmasının,DNA’nın kısmen açılmasıyla (negatif süper kıvrımlaşma) başlatılan bir süper kıvrım biçimi olduğunu anımsayınız.Nükleozom yapısındaki bir histon çekirdeği çevresinde DNA'nın sıkıca sarılması için,DNA'daki yaklaşık bir heliks döngüsünün azalması gereklidir.İn vitro olarak,bir nükleozomun protein çekirdeği gevşemiş kapalı-dairesel DNA'ya bağlandığı zaman bağlanma, yeni bir negatif süper kıvrım oluşturmaktadır.Bununla beraber,bu bağlanma olayı DNA'yı koparmaz ya da bağlantı sayısı değişmez.Böylece negatif bir solenoidal süper kıvrım oluşumuna bağlı olmayan DNA bölgesinde dengeleyici bir pozitif süper kıvrım eşlik etmek zorunda olmaktadır.Daha önce değinildiği gibi ökaryotik topoizomerazlar,pozitif süper kıvrımları gevşetebilmektedir.Bağlı olmayan pozitif süper kıvrımın gevşemesi,sabit (nükleozom histon çekirdeğine bağlı olması nedeniyle) negatif süper kıvrımı bırakır ve bir uçtan diğerine bağlantı sayısının azalmasıyla sonuçlanır.Gerçekten,in vitro olarak saflaştırılmış histonlarda topoizomerazların gerekli olduğu kanıtlanmıştır. Nükleozom çekirdeklerinde DNA'nın histonlara bağlanmasını etkileyen bir başka faktör,bağlı DNA'nın dizilimidir.Histon çekirdekleri DNA'ya rastgele bağlanmazlar,tam tersine kendilerini belirli bölgelerde tutma eğilimindedirler.Bu durum çok iyi anlaşılamamıştır,fakat DNA heliksinde histonların dokunduğu küçük oluktaki A=T baz çiftlerinin bölgesel çokluğuna bağlı olduğu ortaya çıkmıştır.Nükleozomun histon çekirdeği çevresinde DNA'nın sıkıca sarılması için bu noktalarda küçük oluğun sıkışması gerekmekte ve iki veya üç A=T baz çiftinden oluşan bir küme bu sıkışmayı daha uygun duruma getirmektedir. DNA üzerindeki bazı nükleozomların yerleşmesinde başka proteinler de gereklidir.Bazı organizmalarda,özgün DNA dizilimine bağlanan ve böylece hemen bitişikteki nükleozom oluşumunu kolaylaştıran proteinler bulunmuştur.Nükleozom çekirdeklerinin belirgin yerleşimi,bazı ökaryotik genlerin ifadelenmesinde rol oynayabilmektedir . Nükleozomlar Daha Yüksek Düzeyde Birbirini İzleyen Yapılara Paketlenmektedir Bir nükleozom çekirdeğine DNA'nın sarılması DNA uzunluğunu yaklaşık yedi kat kısaltır.Baştan sona kromozomdaki tüm yoğunlaşma,daha ileri düzeydeki düzenlemelerle 10,000 kattan daha fazladır.Çok hassas yöntemlerle saflaştırılmış kromozomlarda,nükleozom çekirdeğinin 30 nm'lik fibril denilen bir yapıda düzenlendikleri ortaya çıkmıştır .Bu paketleme,her bir nükleozomda bir histon molekülüne gereksinim duyar.30 nm'lik fibril organizasyonu,tüm kromozomu kapsamına almaz fakat,diziye özgü (histon olmayan) DNA-bağlı proteinlerin bağlandığı bölgelerle sınırlanmaktadır.30 nm'lik yapının, DNA'nın özel bir bölgesinin transkripsiyonal aktivitesiyle de bağlantılı olduğu ve genlerin transkripsiyon bölgelerinde daha az düzenlendiği belirlenmiştir. 30 nm'lik fibril,ikinci bir kromatin düzenlenmesiyle DNA'da yaklaşık 100 kat sıkılaşma sağlar.Daha ileri katlanma düzeyleri henüz bilinmemektedir.Fakat DNA'nın belirli bölgelerinin bir nüklear (çekirdeksel) iskele ile bağlantıda olduğu belirlenmiştir.İskele bağlantılı bölgeler,20,000 ile 100,000 baz çifti uzunlukta DNA ilmekleriyle ayrılır.İlmekteki DNA, birbiriyle bağlantılı bir gen seti içerebilir.Örneğin,Drosophila'da histon kodlayan tüm gen takımlarının iskele bağlantı bölgeleriyle bağlanmış ilmeklerde kümelenmiş görünmektedir .İskelenin kendisi , özellikle (fibrilin içinde yerleşmiş) çok miktarda H1 ve topoizomeraz II gibi birkaç proteini içerir.Topoizomeraz II'nin varlığı ayrıca,DNA’nın kısmen açılması ile kromatin oluşumu arasındaki bağlantıyı gösterir.Topoizomeraz II,kromatin birleşmesi için önemlidir.Bu enzimin inhibitörleri,hızla bölünen hücreleri öldürebilmektedir.Kanser kemoterapisinde kullanılan bazı ilaçlar,enzimin DNA sarmalını kırmasını teşvik eden fakat kırıkların yeniden birleşmesine izin vermeyen topoizomeraz II inhibitörleridir. Ökaryotik kromozomlarda her birinin sıkılaşma düzeyini belirgin şekilde arttıran ek organizasyon katmanlarının varlığı kanıtlanmıştır.Daha yüksek yapısal düzeni,kromozomdan kromozoma, kromozomun bir bölgesinden diğer bölgesine,ve hücre yaşamının bir anından diğer bir anına göre değişebilir.Bu yapıları açıklamaya uygun bir tek model yoktur.Bununla birlikte,ilke açıktır: ökaryotik kromozomlarda DNA sıkılaşması,kıvrım üzerine kıvrımı gerektirir. Bakteri DNA'sı da Oldukça Organizedir Şimdi özetlenmiş şekilde bakteri kromozomlarının yapısına dönelim.Bakteri DNA'sı,hücre haciminin büyük bir kesimini dolduran ve, nükleoit olarak tanımlanan bir yapı içinde yoğunlaşmıştır .Bakteri hücrelerinin DNA'sı,plazma zarın iç yüzüne bir ya da daha çok noktadan bağlı durumdadır.Nükleoitin yapısı hakkında ökaryotik kromatininden daha az şey bilinmektedir.E.coli' de,yukarıda kromatinde açıklandığı gibi, dairesel kromozomun bir dizi ilmek yapılar olarak düzenlenmiş,iskele benzeri bir yapı görülür.Ökaryotlarda nükleozomlarla sağlanan bölgesel düzenlenmeyle kıyaslanabilecek ,bakteri DNA'sında herhangi bir yapı görülmemektedir.E.coli'de çok miktarda histon-benzeri proteinler bulunur.En iyi karakterize edilmiş örnek,HU olarak bilinen iki-alt birimden oluşan bir proteindir.Ancak bu proteinler dakikalar içinde bağlanır ve ayrılırlar, düzenli ve kararlı yapıda değillerdir.Bakteri kromozomu,bir olasılıkla genetik bilgisine daha kolay ulaşılma gereksiniminn yansıtan, nispeten dinamik bir yapı gösterir. DNA BAĞLANMA MOTİFLERİ Hidrofobik grupları gizleyecek tabaka yapısı oluşturma yetenekleri sınırlı DNA-bağlanma motifleri, ya çok sıkı kararlı bir yapı ya da bir kesimiyle protein yüzeyinden bir çıkıntı oluştururlar. Helix-Turn-Helix . Bu DNA- bağlanma motifi, pekçok prokaryotik düzenleyici proteinin DNA ile etkileşmesinde çok önemlidir.Benzer motifler bazı ökaryotik düzenleyici proteinlerde de oluşmaktadır. Helix-turn-helix motifi,herbiri yedi-sekiz amino asit uzunlukta ve bir b döngüsüyle ayrılmış iki kısa a-helikal segment içinde 20 kadar amino asiti kapsar.Bu yapının kendisi genellikle kararlı değildir; sadece daha büyük bir DNA-bağlanma bölgesinin etkin kısmıdır.İki a-helikal segmentin birisi,genellikle diziye-özgü şekilde DNA ile etkileşen pek çok amino asiti içermesi nedeniyle, tanıma heliksi olarak isimlendirilir.Bu a heliks protein yapısının diğer segmentleri üzerinde yığılarak, proteinin yüzeyinde çıkıntı oluşturur.DNA'ya bağlandığı zaman,tanıma heliksi,büyük oluğun içinde ya da hemen yanında pozisyon alır.Laktoz repressörü,bu DNA-bağlanma motifine sahiptir. Çinko Parmak. Çinko parmaklar,bir tek Zn+2 iyonu ile dördü (dört Cys, ya da iki Cys ve iki His olarak) bağlanmış, 30 kadar amino asit biriminden oluşur. Çinkonun kendisi DNA ile etkileşmez,tersine,çinko ile bağlanması bu küçük yapısal motife kararlılık kazandırır.Yapının iç kısmındaki birkaç hidrofobik yan zincir de kararlılığa yardımcı olur.Çinko parmaklar,pek çok ökaryotik DNA-bağlanma proteininde oluşmaktadır.Bir tek çinko parmağın DNA ile etkileşimi zayıftır.DNA-bağlanma proteini,DNA ile eş zamanda etkileştiğinde,bağlanma sağlamlığını arttıran çok miktarda çinko parmak içerir.Xenopus kurbağasının DNA-bağlı bir proteininde 37 çinko parmak vardır.Prokaryotik proteinlerde, çinko-parmak motifinin çok az örneği bilinmektedir. Proteinlerdeki çinko parmakların DNA'ya bağlanma biçimleri, proteinlere göre değişir.Bazı durumlarda çinko parmaklar,dizilimin ayırtedilmesinde önemli amino asit birimleri içerir.Ancak bazılarının DNA'ya özgün olmayan şekilde bağlandığı görülmüştür (özgünlüğün oluşumunda gerekli amino asitler proteinin herhangi bir bölgesindedir). Çinko parmakların,RNA'ya bağlanma motifleri olarak da işlevi vardır. Örneğin,ökaryotik mRNA'lara bağlanan ve translasyonal repressör olarak etki gösteren bazı proteinler vardır. Homeodomain.Özellikle ökaryotik organizmaların gelişimi sırasında,transkripsiyonal düzenleyiciler olarak işleve sahip bazı proteinlerde, bir DNA-bağlanma bölgesi tanımlanmıştır. 60 amino asitten oluşan bu bölgeye -vücut örüntü (patern) gelişimini düzenleyen homeotik genlerde keşfedilmesi nedeniyle homeodomain denilir - türlerde oldukça korunmuş ve insanı kapsayan çok geniş organizma grubununun proteinlerinde belirlenmiştir..Bölgenin DNA'ya bağlanan kısmı,helix-turn-helix motifiyle bağlantılıdır.Bu bölgeyi kodlayan DNA dizilimi homeobox olarak tanımlanır. Düzenleyici proteinler yalnız DNA'ya bağlanmak için değil,protein-protein etkileşimleri için - RNA polimeraz ile,diğer düzenleyici proteinlerle ya da aynı düzenleyici birimin diğer altbirimleriyle etkileşim için bölgeler de içerir.Örnekler çoğunlukla, çinko parmak motifiyle DNA-bağlanma bölgelerini kullanan ve dimerler şeklinde DNA'ya bağlanan, gen aktivatörleri olarak işleve sahip pekçok ökaryotik transkripsiyon faktörünü kapsamaktadır.Bazı yapısal bölgeler,genellikle DNA'ya bağlanma için bir zorunluluk olan,dimer oluşumunda gerekli etkileşimler için ayrılmıştır. Tıpkı DNA-bağlanma motifleri gibi,protein-protein etkileşimlerine aracılık eden yapısal motifler,birkaç ortak gruptan birine girme özelliğindedirler.İki önemli örnek, lösin fermuar ve bazik helix-loop-helix 'tir.Bu tip yapısal motifler, bazı düzenleyici proteinlerin yapısal aileler şeklinde sınıflandırılmasının temelidir. Lösin Fermuar Bu motif,bir tarafında bir dizi hidrofobik amino asit biriminin yoğunlaşmış olduğu amfipatik bir a helikstir.Hidrofobik yüzey,dimerin iki polipeptidi arasında dokunum alanı oluşturur.Bu a helikslerin çarpıcı özelliği,hidrofobik yüzey boyunca her yedinci pozisyonda, bir tane lösin amino asiti bulundurarak düz bir hat oluşturmasıdır.Araştırmacılar başlangıçta lösin birimlerinin iç içe geçmiş çıkıntılar oluşturduğu (bu nedenle “fermuar” adı verilmiştir) düşüncesinde olmasına karşın biz onların birbiri çevresinde kıvrılan a heliks etkileşimi olarak yan yana uzandıklarını biliyoruz .Lösin fermuarlı düzenleyici proteinler çoğunlukla,DNA omurgasının negatif yüklü fosfatlarıyla etkileşebilen bazik (lys ya da arg) amino asit birimlerinin çok yoğunlaştığı ayrı bir DNA-bağlanma domaini içermektedir.Lösin fermuar motifleri pekçok ökaryotik ve birkaç ökaryotik proteinde bulunmaktadır. Bazik Helix-Loop-Helix Çok hücreli organizmaların gelişimi sırasında,gen ifadelenmesinin denetiminde işe karışan bazı ökaryotik düzenleyici proteinlerde,yaygın başka bir yapısal motif bulunur.Bu proteinler,hem DNA bağlanması hem de protein dimerizasyonunda önemli,yaklaşık 50 amino asitlik korunmuş bir bölge bulundurur.Bu bölge değişken uzunlukta bir ilmek ile bağlanmış iki kısa amfipatik a heliks oluşturabilmektedir.Bu motif (DNA bağlanmasıyla ilgili helix-turn-helix motifinden ayrı),helix-loop-helix’tir.İki polipeptitten oluşan helix-loop-helix motifleri,dimer yapısı oluşturmak için etkileşirler.Bu proteinlerde DNA bağlanması,lösin fermuar motifi içeren proteinlerdeki DNA-bağlanma bölgesine benzer,bazik birimlerce zengin kısa bir amino asit dizilimi aracılığıyla olur. DNA bağlanmasına ve dimerizasyona (ya da oligomerizasyona) ayrılmış yapısal bölgelere ek olarak,pek çok düzenleyici protein,RNA polimeraz ve diğer bağlantısız düzenleyici proteinlerle ya da her ikisiyle de etkileşmek durumundadır.Ökaryotlarda,protein-protein etkileşimleri için en azından üç farklı tipte ek bölgeler karakterize edilmiştir:özellikle çok bulunan amino asitleri yansıtan; glutamince-zengin,prolince-zengin ve asidik bölgeler.Gen işlevinin karmaşık düzenleyici döngülerinin temeli,protein-DNA bağlanma etkileşimleridir.

http://www.biyologlar.com/genler-ve-gen-transferi

KALITIMIN KROMOZOMAL ESASI

Bitkilerde ve hayvanlarda her tür kendine özgü sabit sayida kromozom içerir. Kromozomlarin sayisi mitoz bölünmedeki düzenli ve kesin olaylarla sabit tutulur. Birçok hayvan ve bitkide kromozom sayisi esittir. Fakat kromozomlardaki kalitim faktörleri farklidir. KROMOZOMLARIN YAPISI Ilk defa 1840 yilinda botanikçi Hofmeister tarafindan Tradescamia bitkisinin polen ana hücrelerinde görülmüs ve 1888 yilinda Vvaldeyer tarafindan da "Kromozom" ismi verilmistir. Hiçbir zaman yeniden yapilmazlar ya eskiden varolan kromozomun bölünme-sinden ya da tamamlama sentezleri ile yapilirlar. Yasamin sürekliligi kromozomlarin devamliligina dayanir. h-ler canlida kromozomlann sekli farkli olmasina karsin, ayni türde ayni kromozomlarin sekilleri birbirine benzerdir. Örnegin, 3. kromozom bir türde ayni sekle sahip olmasina karsilik, ayni türde 3. ile 8. kromozomlarin sekilleri birbirinden farklidir. Sayilari, türden türe farkli olur. Sayisi ile organizasyon derecesi arasinda herhangi bir baglanti yoktur. Küçük bir kromozom daha fazla gen tasiyabilir. Örnegin, Ascaris megalocephala un/va/ens'öe 2n = 2 (bilinen en az sayida kromozom tasiyan canli), Drosophila melanogaster'öe 2n = 8, insanda 2n = 46, keçide 2n = 60, bir tür istakozda 2n = 200, Ophyoglos-sum vulgatum (bir çesit egrelti otul'da 2n = 500 (canlilar arasinda bilinen en fazla kromozom sayili bitki) kromozom vardir. Normal vücut hücreleri anadan ve babadan gelen birer kromozom takimina sahiptir. Ana ve babadan gelen es kromozomlarin sekilleri ve büyüklükleri (esey kromozomlari hariç) birbirine esittir. Bu çift kromozom takimi bütün vücut hücrelerinde bulunur. Böyle hücrelere "S o m a t i k h ü c r e-l e r" adi verilir. Kromozom sayisi bakimindan da "D i p l o i f'tir denir ve 2n ile gösterilir. Fakat esey hücrelerinde, ergin gametlerde ve bazi ilkel canlilarin bütün hayat devrelerinde (yalniz zigot halinde diploit) kromozomlar eslerinden yoksundur. Partenogenetik çogalan bazi hayvanlarda, örnegin, erkek arilarda, vücut hücreleri-nin kromozom sayisi disilerinin somatik hücrelerindekinin yarisi kadardir. Ya erkek ya da disi esey kromozomunu bulunduranlara "G e r m i n a t i f H ü c r e l e r " denir. Esi olmayan kromozomlara da "H a p l o i t" denir ve "n" simgesiyle gösterilir. Kromozom sayisi sabit olmakla beraber bazi özeliesmis hücrelerde örnegin, böcek-lenn, özellikle bazi sineklerin tükrük bezlerinde bu sayi 2n'nin katlari seklinde bir artis gösterir. Burada kromozomlar çekirdek zan parçalanmaksizin çogalirlar. Buna "E n d o m i t o z i s" ve kromozom durumuna da "P o l i p l o i d i" denir. Çekir-dek büyüklügü kromozomlarin miktarina bagli oldugundan, poliploidide çekirdek hacminde büyüme görülür. Normal bir hücrede kromozomlar gözükmez. Profazin baslangicindan basla-yarak gittikçe yay seklinde kivrilan ve kalinlasan ince kromatin agi seklindedir. Sonunda türlere özgü kromozom seklini alincaya kadar kivrilma devam eder. Dino-f/age/lata'öa kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zan yoktur ve DNA bazik proteinlere bagli degildir. Bu tip hücreiere "M e z o k a r y o t i k" hücreler denir. Bir kromozomu kaba taslak distan incelemeye baslarsak su kisimlar (Sekil 10.3 ve 4) görülür: Aralarinda genel olarak açi bulunan iki koldan olusur. Kol-lar, primer bogumla birbirinden aynlmistir, buna S e n t r o m e r " (Kinetokor) denir. iki kolu birbirine esit olan kromozomlara "Metasentrik", esit olmayanlara ise "Submetasentrik" denir. Bir kollu gibi görünen kromozomlara da "Akrosentrik" (buniann sentromeri kromozomlarin ucundadir) (Sekil 10.5) kromozomlar denir. Bazi hayvan gruplari bu üç tipten yalniz birine sahiptir. Örnegin amfibiler yalniz metasentrik kromozomlara sahiptir. Kromozomlar üzerinde bu primer (birincil) bogumlardan baska, sekonder (ikin-cil) bogumlar da bulunabilir (Sekil 10.3 ve 4). Bazen (genellikle) kromozomun uç kis-minda uydu "S a t e l l i t" denilen yuvarlak ya da uzunca bir yapi bulunur. Uydu, kromozoma ince bir kromatin ipligiyle baglidir. Bu tip kromozomlara SAT kromo-zomlar denir. Sentromerler kromozomlarin ig ipligine takilmasini saglar. Sentromeri olmayan bir kromozom bölünmeye katilamaz ve tasfiye olur. Bu bogulma yerlerinde bulunan genler, rRNA'lari ve dolayisiyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna 'Gen Amplifikasyon'u ya da 'Redunanz' denir. Kromozomlarin uçlarina da "Telomer7' denir. Kromozomun (Insanda) Ince Yapisi: Çözülmüs DNA'nin uzunlugu, bölün-mekte olan hücredeki paketlenmis kromozomlardan yaklasik 100.000 defa daha fazladir. insan kromozomlarinin agirligi, kabaca, DNA ve kromozomdaki proteinie-rin toplamina esittir. DNA'nin "Histonlar" olarak bilinen kromozomal proteinlerle olan baglantilari, tamamen yogunlasmis kromozomlar içinde DNA'nin inanilmaz derecede sikica paketlenmesim saglar. Bölünmeyen hücrelerde, çekirdek, kromatin olarak bilinen, kaba ve sekilsiz bir granüler materyal içerir. Kromatin, elektronmikroskop altinda incelendiginde, 0.3-0.5 mp çapinda boncuk dizisi gibi belirli bir yapiya sahip oldugu görülür (Sekil 10.6)- Bu kromatin ipligine çok defa "Kromonema" denir. Kromonemalar, bölünme evresine girmis kromozomlarda. "Matrix" denen, proteinlerden yapilmis amorf bir madde içerisinde bulunur. Bölünmelerin haricinde, kromatin iplikler çözünmüs olarak bulunduklari için, isik mikroskopunda görülmezler. Kromatinlerin her bir boncuguna "Nucleosom" (eski adlandinlmasi ile Kromomer) denir. Nukleozom, dört farkli histon çesidinin her birinden ikiser adet molekül içeren bir nukleozom çekirdeginden ve bunun üzerinde bir çember gibi sarili olan DNA'dan olusur (Sekil 10.6/n). Sekil 10.6/n'de görüldügü gibi DNA, nukleozom çekirdeginin etrafinda tam olarak iki defa dönmüstür. Nukleozomlar birbirlerine "Linker DNA = Baglayici DNA" denen çok uzun olmayan bir DNA zinciri ile baglanmislardir. Besinci çesit histon, nukleozomun dis yüzünde yer alir ve muhtemelen nukleozo-mun kararli kalmasini ve DNA'nin bulundugu yere sabitlestirilmesini saglar. DNA'nin nukleozom etrafinda dönen kismi yaklasik 200 baz çiftinden olusmustur ve bunun da yaklasik 1/6'si sarilmadan durur. Eger hücreler bölünme-leri sirasinda incelenirlerse, kromozomlarin bölünmeye yaklastikça yogunlastiklari görülür. Bölünen hücrelerdeki DNA'nin ve proteinlerin bu denli siki paketlenme mekanizmalari tam olarak bilinmemektedir; fakat birincil ve ikincil kivrilmalarin bu yogunlasmada önemli oldugu açiktir. Kromatinin yogunlasma derecesi. yapisal ve regulatör genlerin ürün verme derecelerinin göstergesidir. Çesitli kanitlar, kivrilmamis, yani çözülmüs kromatin-deki genlerin, yogunlasmis kromatindeki genlerden çok daha fazla okunduklarini göstermektedir. Kadinlarda çok siki paketlenmis X kromozomlarindan biri (Barr Cisimcigi), kalitsal olarak islevsizdir; nitekim homologu olan, çözülmüs ve uzamis olan ikinci X kromozomu yüzlerce okunabilir durumda gen tasir. Hücre bölünme-sinden önce kromozomlar gittikçe yogunlasirken (anafazda en yogun durumuna ulasir), bazi kromozomiarin bazi bölgelerimn diger kisimlardan daha fazla yogunlas-tigi görülür. Boyama ile, belirli evrelerde, belirii yogunlasma (kondensasyon) bölgeleri tasiyan kromozomlar gösterilebilir. Özel boyama teknikieriyle bir krorno-zom üzerinde açik (az yogunlasmis bölgeler = Eukromatik Bölgeler) ve koyu (çok yogunlasmis = Heterokromatik Bölgeler) bantlar seklinde görülen kromatin kisimlari saptanir. Her kromozomdaki bantlarin konumu kendine özgüdür ve bu bantlasmanin incelenmesi, genetik programin aydinlatilmasi için çok önemli sonuçlar verir. Her ne kadar bölünmekte olan hücrelerdeki kromozomlarin açik renkli bantlarindaki kromatin, koyu renkli olan kisimlardakine (yani çok siki paketlenmis) göre nisbeten daha çok okunabilen gen tasirsa da, bölünme olayinin ilerlemis evrelerinde, kromozomun hiçbir kisminda artik gen okunmasi meydana gelmez. Çünkü paketlenme en üst düzeyine ulasir. mRNA'ya tercüme, yalniz, bölünme döngüsüne girmemis hücrelerdeki, kismen gevsemis kromatin kisimla-rinda gerçeklesir. Histonlar, üç çesit kromozomal proteinden ancak bir grubudur. Diger ikisi yapisal ve regülatör proteinlerdir. Histonlari alinan kromozomun sekli bozulmaz; çünkü sekli olusturan yapisal proteinlerdir. Çiplak DNA sarmallari bu yapisal proteinlere tutunurlar. Regülatör proteinler en az bilinen gruptur. Büyük bir olasilikla DNA'nin çift sarmallarini ya da DNA'nin en azindan yapisal ve regülatör genlenni içeren kisimlarini tümüyle örterek kapatirlar ve böylece okunmalarini önlerler. Kromozomal regülatör proteinlerin etkisini, gelisme süreci içerisinde, belirli bir zamana ve siraya göre gösterdigi ve böylece organizmadaki yapilarin bir zaman dizisi içerisinde ortaya çiktigi bilinmektedir. Dev kromozomlarin incelenmesi (sineklerin tükrük bezlerinde, Malpiki kanalin-daki hücrelerde ve bazi yag dokularinda) oldukça önemli bilgiler vermistir. Çünkü endomitozis ile kromozomlar binlerce defa bölünmesine karsin, yavru kromonemalar yan yana kalmakta ve bu suretle kuvvetli boyanan DNA bantlari meydana gelmekte-dir (Sekil 10.7). Biz dev kromozomlari haploit olarak kabul ediyoruz. Çünkü ana ve babadan gelen kromozom çifti bunlarda birbirine kaynasmis durumdadir. Mutasyon-larin gösterilmesinde önemli rol oynarlar. Çünkü haploit oldugundan çekinik genler dahi etkisini fenotipte gösterebilecektir. Dev kromozomlarin özel bir durumunu yumurta sarisi bakimindan zengin olan balik, amfibi, sürüngen ve kuslarda görüyoruz. Mayoz bölünmenin profaz evresinde, homolog kromozomlar lamba seklinde dizilirler . Kromozomlarin döller boyunca sabit tutulmasi, gamet olusumu sirasinda, homolog kromozomlarin ikiye ayrilmasi ve yalniz bir tanesinin gametlere verilmesiyle rnümkün olur. 2n sayisi döllenme ile tekrar saglanir. Her kromozom içerisinde bir ya da birkaç özelligi kontrol eden birçok gen vardir. Her gen belirli bir yerde bulunur; bu yere lokus denir (çogul loki). Her hücrede ayni kromozomdan bir çift bulundugun-dan ayni özellige etki eden genler de çift (en azindan) halde bulunur (Y kromozo-munda bulunanlar hariç). Kromozomlar birbirinden ayrilirken genler de buna uygun olarak ayrilir. Genler, kromozomlarin içinde bir dogrultu üzerinde dizilmislerdir. Homolog kromozomlarda ayni genler ayni yerlerde bulunurlar. Dolayisiyla mayoz esnasinda sinapsis yapan kromozomlar, noktasi noktasina kavustuklarindan homolog genler tamamen birbirlerinin karsisina gelirler. Prof.Dr.Ali Demirsoy

http://www.biyologlar.com/kalitimin-kromozomal-esasi

Kalıtımın Kromozomal Esası

KALITIMIN KROMOZOMAL ESASI Bitkilerde ve hayvanlarda her tür kendine özgü sabit sayida kromozom içerir. Kromozomlarin sayisi mitoz bölünmedeki düzenli ve kesin olaylarla sabit tutulur. Birçok hayvan ve bitkide kromozom sayisi esittir. Fakat kromozomlardaki kalitim faktörleri farklidir. KROMOZOMLARIN YAPISI Ilk defa 1840 yilinda botanikçi Hofmeister tarafindan Tradescamia bitkisinin polen ana hücrelerinde görülmüs ve 1888 yilinda Vvaldeyer tarafindan da "Kromozom" ismi verilmistir. Hiçbir zaman yeniden yapilmazlar ya eskiden varolan kromozomun bölünme-sinden ya da tamamlama senaaaleri ile yapilirlar. Yasamin sürekliligi kromozomlarin devamliligina dayanir. h-ler canlida kromozomlann sekli farkli olmasina karsin, ayni türde ayni kromozomlarin sekilleri birbirine benzerdir. Örnegin, 3. kromozom bir türde ayni sekle sahip olmasina karsilik, ayni türde 3. ile 8. kromozomlarin sekilleri birbirinden farklidir. Sayilari, türden türe farkli olur. Sayisi ile organizasyon derecesi arasinda herhangi bir baglanti yoktur. Küçük bir kromozom daha fazla gen tasiyabilir. Örnegin, Ascaris megalocephala un/va/ens'öe 2n = 2 (bilinen en az sayida kromozom tasiyan canli), Drosophila melanogaster'öe 2n = 8, insanda 2n = 46, keçide 2n = 60, bir tür istakozda 2n = 200, Ophyoglos-sum vulgatum (bir çesit egrelti otul'da 2n = 500 (canlilar arasinda bilinen en fazla kromozom sayili bitki) kromozom vardir. Normal vücut hücreleri anadan ve babadan gelen birer kromozom takimina sahiptir. Ana ve babadan gelen es kromozomlarin sekilleri ve büyüklükleri (esey kromozomlari hariç) birbirine esittir. Bu çift kromozom takimi bütün vücut hücrelerinde bulunur. Böyle hücrelere "S o m a t i k h ü c r e-l e r" adi verilir. Kromozom sayisi bakimindan da "D i p l o i f'tir denir ve 2n ile gösterilir. Fakat esey hücrelerinde, ergin gametlerde ve bazi ilkel canlilarin bütün hayat devrelerinde (yalniz zigot halinde diploit) kromozomlar eslerinden yoksundur. Partenogenetik çogalan bazi hayvanlarda, örnegin, erkek arilarda, vücut hücreleri-nin kromozom sayisi disilerinin somatik hücrelerindekinin yarisi kadardir. Ya erkek ya da disi esey kromozomunu bulunduranlara "G e r m i n a t i f H ü c r e l e r " denir. Esi olmayan kromozomlara da "H a p l o i t" denir ve "n" simgesiyle gösterilir. Kromozom sayisi sabit olmakla beraber bazi özeliesmis hücrelerde örnegin, böcek-lenn, özellikle bazi sineklerin tükrük bezlerinde bu sayi 2n'nin katlari seklinde bir artis gösterir. Burada kromozomlar çekirdek zan parçalanmaksizin çogalirlar. Buna "E n d o m i t o z i s" ve kromozom durumuna da "P o l i p l o i d i" denir. Çekir-dek büyüklügü kromozomlarin miktarina bagli oldugundan, poliploidide çekirdek hacminde büyüme görülür. Normal bir hücrede kromozomlar gözükmez. Profazin baslangicindan basla-yarak gittikçe yay seklinde kivrilan ve kalinlasan ince kromatin agi seklindedir. Sonunda türlere özgü kromozom seklini alincaya kadar kivrilma devam eder. Dino-f/age/lata'öa kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zan yoktur ve DNA bazik proteinlere bagli degildir. Bu tip hücreiere "M e z o k a r y o t i k" hücreler denir. Bir kromozomu kaba taslak distan incelemeye baslarsak su kisimlar (Sekil 10.3 ve 4) görülür: Aralarinda genel olarak açi bulunan iki koldan olusur. Kol-lar, primer bogumla birbirinden aynlmistir, buna S e n t r o m e r " (Kinetokor) denir. iki kolu birbirine esit olan kromozomlara " sentrik", esit olmayanlara ise "Sub:sentrik" denir. Bir kollu gibi görünen kromozomlara da "Akrosentrik" (buniann sentromeri kromozomlarin ucundadir) (Sekil 10.5) kromozomlar denir. Bazi hayvan gruplari bu üç tipten yalniz birine sahiptir. Örnegin amfibiler yalniz )sentrik kromozomlara sahiptir. Kromozomlar üzerinde bu primer (birincil) bogumlardan baska, sekonder (ikin-cil) bogumlar da bulunabilir (Sekil 10.3 ve 4). Bazen (genellikle) kromozomun uç kis-minda uydu "S a t e l l i t" denilen yuvarlak ya da uzunca bir yapi bulunur. Uydu, kromozoma ince bir kromatin ipligiyle baglidir. Bu tip kromozomlara SAT kromo-zomlar denir. Sentromerler kromozomlarin ig ipligine takilmasini saglar. Sentromeri olmayan bir kromozom bölünmeye katilamaz ve tasfiye olur. Bu bogulma yerlerinde bulunan genler, rRNA'lari ve dolayisiyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna 'Gen Amplifikasyon'u ya da 'Redunanz' denir. Kromozomlarin uçlarina da "Telomer7' denir. Kromozomun (Insanda) Ince Yapisi: Çözülmüs DNA'nin uzunlugu, bölün-mekte olan hücredeki paketlenmis kromozomlardan yaklasik 100.000 defa daha fazladir. insan kromozomlarinin agirligi, kabaca, DNA ve kromozomdaki proteinie-rin toplamina esittir. DNA'nin "Histonlar" olarak bilinen kromozomal proteinlerle olan baglantilari, tamamen yogunlasmis kromozomlar içinde DNA'nin inanilmaz derecede sikica paketlenmesim saglar. Bölünmeyen hücrelerde, çekirdek, kromatin olarak bilinen, kaba ve sekilsiz bir granüler materyal içerir. Kromatin, elektronmikroskop altinda incelendiginde, 0.3-0.5 mp çapinda boncuk dizisi gibi belirli bir yapiya sahip oldugu görülür (Sekil 10.6)- Bu kromatin ipligine çok defa "Kromonema" denir. Kromonemalar, bölünme evresine girmis kromozomlarda. "Matrix" denen, proteinlerden yapilmis amorf bir madde içerisinde bulunur. Bölünmelerin haricinde, kromatin iplikler çözünmüs olarak bulunduklari için, isik mikroskopunda görülmezler. Kromatinlerin her bir boncuguna "Nucleosom" (eski adlandinlmasi ile Kromomer) denir. Nukleozom, dört farkli histon çesidinin her birinden ikiser adet molekül içeren bir nukleozom çekirdeginden ve bunun üzerinde bir çember gibi sarili olan DNA'dan olusur (Sekil 10.6/n). Sekil 10.6/n'de görüldügü gibi DNA, nukleozom çekirdeginin etrafinda tam olarak iki defa dönmüstür. Nukleozomlar birbirlerine "Linker DNA = Baglayici DNA" denen çok uzun olmayan bir DNA zinciri ile baglanmislardir. Besinci çesit histon, nukleozomun dis yüzünde yer alir ve muhtemelen nukleozo-mun kararli kalmasini ve DNA'nin bulundugu yere sabitlestirilmesini saglar. DNA'nin nukleozom etrafinda dönen kismi yaklasik 200 baz çiftinden olusmustur ve bunun da yaklasik 1/6'si sarilmadan durur. Eger hücreler bölünme-leri sirasinda incelenirlerse, kromozomlarin bölünmeye yaklastikça yogunlastiklari görülür. Bölünen hücrelerdeki DNA'nin ve proteinlerin bu denli siki paketlenme mekanizmalari tam olarak bilinmemektedir; fakat birincil ve ikincil kivrilmalarin bu yogunlasmada önemli oldugu açiktir. Kromatinin yogunlasma derecesi. yapisal ve regulatör genlerin ürün verme derecelerinin göstergesidir. Çesitli kanitlar, kivrilmamis, yani çözülmüs kromatin-deki genlerin, yogunlasmis kromatindeki genlerden çok daha fazla okunduklarini göstermektedir. Kadinlarda çok siki paketlenmis X kromozomlarindan biri (Barr Cisimcigi), kalitsal olarak islevsizdir; nitekim homologu olan, çözülmüs ve uzamis olan ikinci X kromozomu yüzlerce okunabilir durumda gen tasir. Hücre bölünme-sinden önce kromozomlar gittikçe yogunlasirken (anafazda en yogun durumuna ulasir), bazi kromozomiarin bazi bölgelerimn diger kisimlardan daha fazla yogunlas-tigi görülür. Boyama ile, belirli evrelerde, belirii yogunlasma (kondensasyon) bölgeleri tasiyan kromozomlar gösterilebilir. Özel boyama teknikieriyle bir krorno-zom üzerinde açik (az yogunlasmis bölgeler = Eukromatik Bölgeler) ve koyu (çok yogunlasmis = Heterokromatik Bölgeler) bantlar seklinde görülen kromatin kisimlari saptanir. Her kromozomdaki bantlarin konumu kendine özgüdür ve bu bantlasmanin incelenmesi, genetik programin aydinlatilmasi için çok önemli sonuçlar verir. Her ne kadar bölünmekte olan hücrelerdeki kromozomlarin açik renkli bantlarindaki kromatin, koyu renkli olan kisimlardakine (yani çok siki paketlenmis) göre nisbeten daha çok okunabilen gen tasirsa da, bölünme olayinin ilerlemis evrelerinde, kromozomun hiçbir kisminda artik gen okunmasi meydana gelmez. Çünkü paketlenme en üst düzeyine ulasir. mRNA'ya tercüme, yalniz, bölünme döngüsüne girmemis hücrelerdeki, kismen gevsemis kromatin kisimla-rinda gerçeklesir. Histonlar, üç çesit kromozomal proteinden ancak bir grubudur. Diger ikisi yapisal ve regülatör proteinlerdir. Histonlari alinan kromozomun sekli bozulmaz; çünkü sekli olusturan yapisal proteinlerdir. Çiplak DNA sarmallari bu yapisal proteinlere tutunurlar. Regülatör proteinler en az bilinen gruptur. Büyük bir olasilikla DNA'nin çift sarmallarini ya da DNA'nin en azindan yapisal ve regülatör genlenni içeren kisimlarini tümüyle örterek kapatirlar ve böylece okunmalarini önlerler. Kromozomal regülatör proteinlerin etkisini, gelisme süreci içerisinde, belirli bir zamana ve siraya göre gösterdigi ve böylece organizmadaki yapilarin bir zaman dizisi içerisinde ortaya çiktigi bilinmektedir. Dev kromozomlarin incelenmesi (sineklerin tükrük bezlerinde, Malpiki kanalin-daki hücrelerde ve bazi yag dokularinda) oldukça önemli bilgiler vermistir. Çünkü endomitozis ile kromozomlar binlerce defa bölünmesine karsin, yavru kromonemalar yan yana kalmakta ve bu suretle kuvvetli boyanan DNA bantlari meydana gelmekte-dir (Sekil 10.7). Biz dev kromozomlari haploit olarak kabul ediyoruz. Çünkü ana ve babadan gelen kromozom çifti bunlarda birbirine kaynasmis durumdadir. Mutasyon-larin gösterilmesinde önemli rol oynarlar. Çünkü haploit oldugundan çekinik genler dahi etkisini fenotipte gösterebilecektir. Dev kromozomlarin özel bir durumunu yumurta sarisi bakimindan zengin olan balik, amfibi, sürüngen ve kuslarda görüyoruz. Mayoz bölünmenin profaz evresinde, homolog kromozomlar lamba seklinde dizilirler . Kromozomlarin döller boyunca sabit tutulmasi, gamet olusumu sirasinda, homolog kromozomlarin ikiye ayrilmasi ve yalniz bir tanesinin gametlere verilmesiyle rnümkün olur. 2n sayisi döllenme ile tekrar saglanir. Her kromozom içerisinde bir ya da birkaç özelligi kontrol eden birçok gen vardir. Her gen belirli bir yerde bulunur; bu yere lokus denir (çogul loki). Her hücrede ayni kromozomdan bir çift bulundugun-dan ayni özellige etki eden genler de çift (en azindan) halde bulunur (Y kromozo-munda bulunanlar hariç). Kromozomlar birbirinden ayrilirken genler de buna uygun olarak ayrilir. Genler, kromozomlarin içinde bir dogrultu üzerinde dizilmislerdir. Homolog kromozomlarda ayni genler ayni yerlerde bulunurlar. Dolayisiyla mayoz esnasinda sinapsis yapan kromozomlar, noktasi noktasina kavustuklarindan homolog genler tamamen birbirlerinin karsisina gelirler.

http://www.biyologlar.com/kalitimin-kromozomal-esasi-1

KALITIMIN ESASI

Ilk defa 1840 yilinda botanikçi Hofmeister tarafindan Tradescamia bitkisinin polen ana hücrelerinde görülmüs ve 1888 yilinda Vvaldeyer tarafindan da "Kromozom" ismi verilmistir. Hiçbir zaman yeniden yapilmazlar ya eskiden varolan kromozomun bölünme-sinden ya da tamamlama sentezleri ile yapilirlar. Yasamin sürekliligi kromozomlarin devamliligina dayanir. h-ler canlida kromozomlann sekli farkli olmasina karsin, ayni türde ayni kromozomlarin sekilleri birbirine benzerdir. Örnegin, 3. kromozom bir türde ayni sekle sahip olmasina karsilik, ayni türde 3. ile 8. kromozomlarin sekilleri birbirinden farklidir. Sayilari, türden türe farkli olur. Sayisi ile organizasyon derecesi arasinda herhangi bir baglanti yoktur. Küçük bir kromozom daha fazla gen tasiyabilir. Örnegin, Ascaris megalocephala un/va/ens'öe 2n = 2 (bilinen en az sayida kromozom tasiyan canli), Drosophila melanogaster'öe 2n = 8, insanda 2n = 46, keçide 2n = 60, bir tür istakozda 2n = 200, Ophyoglos-sum vulgatum (bir çesit egrelti otul'da 2n = 500 (canlilar arasinda bilinen en fazla kromozom sayili bitki) kromozom vardir. Normal vücut hücreleri anadan ve babadan gelen birer kromozom takimina sahiptir. Ana ve babadan gelen es kromozomlarin sekilleri ve büyüklükleri (esey kromozomlari hariç) birbirine esittir. Bu çift kromozom takimi bütün vücut hücrelerinde bulunur. Böyle hücrelere "S o m a t i k h ü c r e-l e r" adi verilir. Kromozom sayisi bakimindan da "D i p l o i f'tir denir ve 2n ile gösterilir. Fakat esey hücrelerinde, ergin gametlerde ve bazi ilkel canlilarin bütün hayat devrelerinde (yalniz zigot halinde diploit) kromozomlar eslerinden yoksundur. Partenogenetik çogalan bazi hayvanlarda, örnegin, erkek arilarda, vücut hücreleri-nin kromozom sayisi disilerinin somatik hücrelerindekinin yarisi kadardir. Ya erkek ya da disi esey kromozomunu bulunduranlara "G e r m i n a t i f H ü c r e l e r " denir. Esi olmayan kromozomlara da "H a p l o i t" denir ve "n" simgesiyle gösterilir. Kromozom sayisi sabit olmakla beraber bazi özeliesmis hücrelerde örnegin, böcek-lenn, özellikle bazi sineklerin tükrük bezlerinde bu sayi 2n'nin katlari seklinde bir artis gösterir. Burada kromozomlar çekirdek zan parçalanmaksizin çogalirlar. Buna "E n d o m i t o z i s" ve kromozom durumuna da "P o l i p l o i d i" denir. Çekir-dek büyüklügü kromozomlarin miktarina bagli oldugundan, poliploidide çekirdek hacminde büyüme görülür. Normal bir hücrede kromozomlar gözükmez. Profazin baslangicindan basla-yarak gittikçe yay seklinde kivrilan ve kalinlasan ince kromatin agi seklindedir. Sonunda türlere özgü kromozom seklini alincaya kadar kivrilma devam eder. Dino-f/age/lata'öa kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zan yoktur ve DNA bazik proteinlere bagli degildir. Bu tip hücreiere "M e z o k a r y o t i k" hücreler denir. Bir kromozomu kaba taslak distan incelemeye baslarsak su kisimlar (Sekil 10.3 ve 4) görülür: Aralarinda genel olarak açi bulunan iki koldan olusur. Kol-lar, primer bogumla birbirinden aynlmistir, buna S e n t r o m e r " (Kinetokor) denir. iki kolu birbirine esit olan kromozomlara "Metasentrik", esit olmayanlara ise "Submetasentrik" denir. Bir kollu gibi görünen kromozomlara da "Akrosentrik" (buniann sentromeri kromozomlarin ucundadir) (Sekil 10.5) kromozomlar denir. Bazi hayvan gruplari bu üç tipten yalniz birine sahiptir. Örnegin amfibiler yalniz metasentrik kromozomlara sahiptir. Kromozomlar üzerinde bu primer (birincil) bogumlardan baska, sekonder (ikin-cil) bogumlar da bulunabilir (Sekil 10.3 ve 4). Bazen (genellikle) kromozomun uç kis-minda uydu "S a t e l l i t" denilen yuvarlak ya da uzunca bir yapi bulunur. Uydu, kromozoma ince bir kromatin ipligiyle baglidir. Bu tip kromozomlara SAT kromo-zomlar denir. Sentromerler kromozomlarin ig ipligine takilmasini saglar. Sentromeri olmayan bir kromozom bölünmeye katilamaz ve tasfiye olur. Bu bogulma yerlerinde bulunan genler, rRNA'lari ve dolayisiyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna 'Gen Amplifikasyon'u ya da 'Redunanz' denir. Kromozomlarin uçlarina da "Telomer7' denir. Kromozomun (Insanda) Ince Yapisi: Çözülmüs DNA'nin uzunlugu, bölün-mekte olan hücredeki paketlenmis kromozomlardan yaklasik 100.000 defa daha fazladir. insan kromozomlarinin agirligi, kabaca, DNA ve kromozomdaki proteinie-rin topl***** esittir. DNA'nin "Histonlar" olarak bilinen kromozomal proteinlerle olan baglantilari, tamamen yogunlasmis kromozomlar içinde DNA'nin inanilmaz derecede sikica paketlenmesim saglar. Bölünmeyen hücrelerde, çekirdek, kromatin olarak bilinen, kaba ve sekilsiz bir granüler materyal içerir. Kromatin, elektronmikroskop altinda incelendiginde, 0.3-0.5 mp çapinda boncuk dizisi gibi belirli bir yapiya sahip oldugu görülür (Sekil 10.6)- Bu kromatin ipligine çok defa "Kromonema" denir. Kromonemalar, bölünme evresine girmis kromozomlarda. "Matrix" denen, proteinlerden yapilmis amorf bir madde içerisinde bulunur. Bölünmelerin haricinde, kromatin iplikler çözünmüs olarak bulunduklari için, isik mikroskopunda görülmezler. Kromatinlerin her bir boncuguna "Nucleosom" (eski adlandinlmasi ile Kromomer) denir. Nukleozom, dört farkli histon çesidinin her birinden ikiser adet molekül içeren bir nukleozom çekirdeginden ve bunun üzerinde bir çember gibi sarili olan DNA'dan olusur (Sekil 10.6/n). Sekil 10.6/n'de görüldügü gibi DNA, nukleozom çekirdeginin etrafinda tam olarak iki defa dönmüstür. Nukleozomlar birbirlerine "Linker DNA = Baglayici DNA" denen çok uzun olmayan bir DNA zinciri ile baglanmislardir. Besinci çesit histon, nukleozomun dis yüzünde yer alir ve muhtemelen nukleozo-mun kararli kalmasini ve DNA'nin bulundugu yere sabitlestirilmesini saglar. DNA'nin nukleozom etrafinda dönen kismi yaklasik 200 baz çiftinden olusmustur ve bunun da yaklasik 1/6'si sarilmadan durur. Eger hücreler bölünme-leri sirasinda incelenirlerse, kromozomlarin bölünmeye yaklastikça yogunlastiklari görülür. Bölünen hücrelerdeki DNA'nin ve proteinlerin bu denli siki paketlenme mekanizmalari tam olarak bilinmemektedir; fakat birincil ve ikincil kivrilmalarin bu yogunlasmada önemli oldugu açiktir. Kromatinin yogunlasma derecesi. yapisal ve regulatör genlerin ürün verme derecelerinin göstergesidir. Çesitli kanitlar, kivrilmamis, yani çözülmüs kromatin-deki genlerin, yogunlasmis kromatindeki genlerden çok daha fazla okunduklarini göstermektedir. Kadinlarda çok siki paketlenmis X kromozomlarindan biri (Barr Cisimcigi), kalitsal olarak islevsizdir; nitekim homologu olan, çözülmüs ve uzamis olan ikinci X kromozomu yüzlerce okunabilir durumda gen tasir. Hücre bölünme-sinden önce kromozomlar gittikçe yogunlasirken (anafazda en yogun durumuna ulasir), bazi kromozomiarin bazi bölgelerimn diger kisimlardan daha fazla yogunlas-tigi görülür. Boyama ile, belirli evrelerde, belirii yogunlasma (kondensasyon) bölgeleri tasiyan kromozomlar gösterilebilir. Özel boyama teknikieriyle bir krorno-zom üzerinde açik (az yogunlasmis bölgeler = Eukromatik Bölgeler) ve koyu (çok yogunlasmis = Heterokromatik Bölgeler) bantlar seklinde görülen kromatin kisimlari saptanir. Her kromozomdaki bantlarin konumu kendine özgüdür ve bu bantlasmanin incelenmesi, genetik programin aydinlatilmasi için çok önemli sonuçlar verir. Her ne kadar bölünmekte olan hücrelerdeki kromozomlarin açik renkli bantlarindaki kromatin, koyu renkli olan kisimlardakine (yani çok siki paketlenmis) göre nisbeten daha çok okunabilen gen tasirsa da, bölünme olayinin ilerlemis evrelerinde, kromozomun hiçbir kisminda artik gen okunmasi meydana gelmez. Çünkü paketlenme en üst düzeyine ulasir. mRNA'ya tercüme, yalniz, bölünme döngüsüne girmemis hücrelerdeki, kismen gevsemis kromatin kisimla-rinda gerçeklesir. Histonlar, üç çesit kromozomal proteinden ancak bir grubudur. Diger ikisi yapisal ve regülatör proteinlerdir. Histonlari alinan kromozomun sekli bozulmaz; çünkü sekli olusturan yapisal proteinlerdir. Çiplak DNA sarmallari bu yapisal proteinlere tutunurlar. Regülatör proteinler en az bilinen gruptur. Büyük bir olasilikla DNA'nin çift sarmallarini ya da DNA'nin en azindan yapisal ve regülatör genlenni içeren kisimlarini tümüyle örterek kapatirlar ve böylece okunmalarini önlerler. Kromozomal regülatör proteinlerin etkisini, gelisme süreci içerisinde, belirli bir zamana ve siraya göre gösterdigi ve böylece organizmadaki yapilarin bir zaman dizisi içerisinde ortaya çiktigi bilinmektedir. Dev kromozomlarin incelenmesi (sineklerin tükrük bezlerinde, Malpiki kanalin-daki hücrelerde ve bazi yag dokularinda) oldukça önemli bilgiler vermistir. Çünkü endomitozis ile kromozomlar binlerce defa bölünmesine karsin, yavru kromonemalar yan yana kalmakta ve bu suretle kuvvetli boyanan DNA bantlari meydana gelmekte-dir (Sekil 10.7). Biz dev kromozomlari haploit olarak kabul ediyoruz. Çünkü ana ve babadan gelen kromozom çifti bunlarda birbirine kaynasmis durumdadir. Mutasyon-larin gösterilmesinde önemli rol oynarlar. Çünkü haploit oldugundan çekinik genler dahi etkisini fenotipte gösterebilecektir. Dev kromozomlarin özel bir durumunu yumurta sarisi bakimindan zengin olan balik, amfibi, sürüngen ve kuslarda görüyoruz. Mayoz bölünmenin profaz evresinde, homolog kromozomlar lamba seklinde dizilirler . Kromozomlarin döller boyunca sabit tutulmasi, gamet olusumu sirasinda, homolog kromozomlarin ikiye ayrilmasi ve yalniz bir tanesinin gametlere verilmesiyle rnümkün olur. 2n sayisi döllenme ile tekrar saglanir. Her kromozom içerisinde bir ya da birkaç özelligi kontrol eden birçok gen vardir. Her gen belirli bir yerde bulunur; bu yere lokus denir (çogul loki). Her hücrede ayni kromozomdan bir çift bulundugun-dan ayni özellige etki eden genler de çift (en azindan) halde bulunur (Y kromozo-munda bulunanlar hariç). Kromozomlar birbirinden ayrilirken genler de buna uygun olarak ayrilir. Genler, kromozomlarin içinde bir dogrultu üzerinde dizilmislerdir. Homolog kromozomlarda ayni genler ayni yerlerde bulunurlar. Dolayisiyla mayoz esnasinda sinapsis yapan kromozomlar, noktasi noktasina kavustuklarindan homolog genler tamamen birbirlerinin karsisina gelirler.

http://www.biyologlar.com/kalitimin-esasi

DNA için Feulgen reaksiyonu

DNA için en güvenilir ve en spesifik tekniktir. Reaksiyon, asit hidroliz ile purin-deoksiriboz bağlarının kırılması ile aktif aldehit gruplarının serbest kalması esasına dayanmaktadır. Aldehitler, Schiff reaktifini (leucofuksin, fuksin sülforoz asidi) tekrar renklendirerek, çekirdek kromatinine mor-menekşe renk verir. Bu reaksiyon, PAS reaksiyonunun analogudur. Fiksasyon için Bouin, aşırı hidrolize neden olduğundan tavsiye edilmez. Diğer fiksatiflerin çoğu kullanılabilir fakat asit hidrolizin optimum süresi fiksatife göre değişmektedir. Fiksatifin penetrasyon hızı Feulgen reaksiyonunun yoğunluğunu etkiliyebilir. Hidroliz ise 1 N HCl ile 60 0C’de yapılır. Birçok alternatif hidrolize edici ajanlar kullanılabilir. Hidroliz, nükleik asitlerde 2 farklı değişikliğe neden olmaktadır. Purin bazlar hızla uzaklaşır ve deoksiribozun aldehit grupları açığa çıkar. Bu istenen bir harekettir fakat aynı zamanda bazik protein ve nükleik asitler kromozomlardan uzaklaştırılır. Yetersiz hidroliz, zayıf bir Feulgen reaksiyonu verirken aşırı hidroliz ise negatif sonuçlara yol açmaktadır. Pratikte kesitleri farklı hidroliz sürelerine maruz bırakarak optimal zamanın tayin edilmesi iyi sonuçlar vermektedir. Yöntemler A-DNA için Feulgen reaksiyonu DNA morumsu - kırmızı Sitoplazma yeşil B-DNA için naphtoik asit hidrazit-Feulgen reaksiyonu DNA mavimsi – menekşe Sitoplazma ve diğer proteinler pembemsi – kırmızı

http://www.biyologlar.com/dna-icin-feulgen-reaksiyonu

NÜKLEİK ASİTLER İÇİN METİL GREEN-PYRONİN YÖNTEMİ

Pappenheim, bazik boyalardan metil green ile pyronin’in karıştırılması ile kromatinin yeşil, bazofilik inklüzyon cisimciklerini (genellikle RNA) kırmızı boyadığını göstermiştir. Bu yöntem, Unna tarafından fenol‘ün kullanımı ile geliştirilmiştir ve Unna - Pappenheim tekniği olarak bilinmektedir. DNA ve RNA’nın differensiyel boyamasında 2 bazik boyanın kullanımı mantıksız görülmektedir fakat 2 boyanın kimyasal affinitelerindeki küçük değişiklikler dokularda farklı boyanmalarını sağlamaktadır. Metil green ve pyronin, düşük pH’da (1,5) total pyronin (kırmızı) boyama vardır ve yüksek pH’da (9,0) metil green predominanttır. Bu iki seviyeler arasında genellikle (pH 4.8) her iki boya farklı şekilde hareket eder. Ne metil green ne de pyronin DNA veya RNA için spesifikdir. Fakat pratikte metil green DNA için çok seçicidir, pyronin ise RNA için spesifik olabilir. Yöntemler: DNA ve RNA için metil green–pyronin boyası DNA (kromatin) ........................ yeşil veya mavi – yeşil RNA (çekirdekcikler) .................gül kırmızı b- DNA ve RNA için gallocyanin – krom alum yöntemi DNA...........mavi RNA .......... mavi 3- Nükleik asitler için floresans boyama: Florokrom acridin orange taze dokularda, taze veya tespit edilmiş yaymalardaki DNA ve RNA’nın gösteriminde kullanılabilir. DNA yeşil, RNA ise kırmızı floresans verir. Yöntemler: Nükleik asitler için acridin orange tekniği DNA (Çekirdekler)...............................................................yeşil RNA (nükleoluslar ve stoplazmik nükleik asitler )................kırmızı Fibröz doku .........................................................................yeşil Ortam ..................................................................................siyah Hoechst yöntemi: Floresans vital boyama tekniğidir. Propidium iodide: Floresans vital boyama tekniğidir. 4- Nükleik asitler için ekstrasyon yöntemleri DNA ve RNA için boyama tekniklerinin spesifik kontrolu geride mukopolisakkaritler gibi diğer bazofilik maddeleri bırakarak nükleik asitlerin uzaklaştırılması ve denaturasyonunu sağlayan ekstrasyon yöntemleri ile yapılır. İki tip işlem vardır: Deoksiribonükleaz ve ribonükleaz’ın kullanıldığı enzimatik işlem, kuvvetli asitlerin kullanıldığı kimyasal işlem Uygulama Yöntemleri: Ribonükleaz ekstrasyon teknikleri RNA ....................ekstrakte olur DNA.....................etkilemez Asidik ekstrasyon Yöntemleri:Perklorik asit ( HClO4) hem DNA’yı hem de RNA’yı ekstrakte eder. Fakat RNA daha hızlı uzaklaşır. Trikloroasetik asit hem DNA’yı hem RNA’yı uzaklaştırır fakat differensiyel ekstrasyon için uygun değildir. DNA, Bouin sıvısındaki hidroliz ve anilin ile muamele ile de ekstrakte olabilir. Diğer ekstrasyon yöntemleri: Safra tuzları ile nükleik asitler ekstrakte olur.

http://www.biyologlar.com/nukleik-asitler-icin-metil-green-pyronin-yontemi

Genler Ve Kromozomlar

Mendel’den sonra mitoz ve mayozun da açıklanmasıyla genlerin de bu hücrelerle dölden döle taşındığı kanıtlandı. 1. Eşeye Bağlı Kalıtım Tam renk körlüğü X ve Y üzerindeki homolog genlerle Balık pulluluk kulak memesi yapışıklığı Y’nin X’le homolog olmayan bölgesindeki genlerle Hemofili kırmızı ve yeşil renk körlüğü X’in Y ile homolog olmayan bölgesindeki genlerle İnsanda eşeye bağlı kalıtımın en tipik örneği hemofili ve kırmızı - yeşil renk körlüğüdür. Hemofili Renk körlüğü XHXH Sağlıklı dişi XRXR XHXh Taşıyıcı dişi XRXr XhXh Hasta dişi XrXr XHY Sağlıklı erkek XRY XhY Hasta erkek XrY Her iki özellik de X kromozomuna bağlı olarak kalıtlandığından erkek birey taşıyıcı olamaz. Anne taşıyıcı ise erkek çocuğunun hasta olma olasılığı % 50’dir. X e bağlı kalıtım = Daltonizm hemofili Y ye bağlı kalıtım = Kulak memesinin yapışıklığı balık pulluluğu X ve Y’ye bağlı kalıtım = Tam renk körlüğü Sirke sinekleri kırmızı gözlüdür. Ancak beyaz gözlüleri vardır. Beyaz gözlü olanların tümü erkektir. Yani beyaz gözlülük bir mutasyon değildir. Genotip Gamet * Göz rengini oluşturan gen X koromozomu üzerindedir. Bu genin Y üzerinde aleli yoktur. Böyle bir genin çekinik olduğu halde erkeğin fenotipinde görülür: Çünkü Y de genin fenotipine yansımasını engelleyen baskın aleli yoktur. Dişide ise X lerden biri üzerinde çekinik gen bulunsa bile fenotipte görülmez. Çünkü X üzerindeki baskın gen çekinik genin fenotipe çıkmasına engeller. Erkek Dişi Genotip Fenotip Genotip Fenotip XBY Kırmızı gözlü XBXB Kırmızı gözlü XbY Beyaz gözlü XBXb Kırmızı gözlü (Taşıyıcı) XbXb Beyaz gözlü Eşeye bağlı kalıtımın bulunması genlerin kromozom üzerinde bulunduğunun kanıtıdır. Ayrılmama Bir genotipte gamet oluşurken bazen homolog kromozom çiftlerinden biri ya da birkaçı birbirinden ayrılmaz ikisi birlikte bir gamete giderler. Krossingower Homolog kromozomların sinaps yaptıkları bölgedeki kromatitler birbirine değer. Buna kiazma denir. Kromozomlara kiazma yaptıkları yerdeki kromatitleri yer değiştirmesidir. Kromatitlerle birlikte genler de yer değiştirir. * Krossingower bağlı genler arasında olur. * Krossingower heterozigot genotipler için önemlidir. Homozigot genotiplerde rekombinasyona neden olmaz. Kromozom haritaları Bir kromozom üzerinde bulunan genlerin (bağlı genler) kromozom üzerindeki dizilişi sırasını ve aralarındaki uzaklığı oransal olarak gösterir. * Kromozom haritaları bağlı genler arasındaki krossingower yüzdelerinden yararlanılarak yapılır. * Uzak genler arasında krossingower daha çok yakın genler arasında daha az olur. ÖRNEK Diploit bir canlı türünde kromozom sayısı 2n-1 olan bir bireyin oluşmasına aşağıdakilerden hangisi neden olur? A) Krossingower B) Kromozomlarda ayrılmama C) Partenogenez çoğalma D) Çok alelli kalıtım E) Eşeye bağlı kalıtım ÇÖZÜM Diploit bir canlı türünde kromozom sayısı 2n-1 olan bir bireyin oluşmasına kromozomlarda ayrılmama neden olur. Cevap B’dir. Bitkilerde ve hayvanlarda her tür kendine özgü sabit sayıda kromozom içerir. Kromozomların sayısı mitoz bölünmedeki düzenli ve kesin olaylarla sabit tutulur. Birçok hayvan ve bitkide kromozom sayısı eşittir. Fakat kromozomlardaki kalıtım faktörleri farklıdır. KROMOZOMLARIN YAPISI ilk defa 1840 yılında botanikçi HOFMEİSTER tarafından Tradescamia bitkisinin polen ana hücrelerinde görülmüş ve 1888 yılında VVALDEYER tarafından da "K r o m o z o m" ismi verilmiştir. Hiçbir zaman yeniden yapılmazlar ya eskiden varolan kromozomun bölünme-sinden ya da tamamlama sentezleri ile yapılırlar. Yaşamın sürekliliği kromozomların devamlılığına dayanır. h-ler canlıda kromozomlann şekli farklı olmasına karşın aynı türde aynı kromozomların şekilleri birbirine benzerdir. Örneğin türden türe farklı olur. Sayısı ile organizasyon derecesi arasında herhangi bir bağlantı yoktur. Küçük bir kromozom daha fazla gen taşıyabilir. Örneğin poliploidide çekirdek hacminde büyüme görülür. Normal bir hücrede kromozomlar gözükmez. Profazın başlangıcından başla-yarak gittikçe yay şeklinde kıvrılan ve kalınlaşan ince kromatin ağı şeklindedir. Sonunda türlere özgü kromozom şeklini alıncaya kadar kıvrılma devam eder. Dino-f/age/lata'öa kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zan yoktur ve DNA bazik proteinlere bağlı değildir. Bu tip hücreiere "M e z o k a r y o t i k" hücreler denir. Bir kromozomu kaba taslak dıştan incelemeye başlarsak şu kısımlar (Şekıl 10.3 ve 4) görülür: Aralarında genel olarak açı bulunan iki koldan oluşur. Kol-lar eşit olmayanlara ise "Sub****sentrik" denir. Bir kollu gibi görünen kromozomlara da "Akrosentrik" (buniann sentromeri kromozomların ucundadır) (Şekil 10.5) kromozomlar denir. Bazı hayvan grupları bu üç tipten yalnız birine sahiptir. Örneğin amfibiler yalnız ****sentrik kromozomlara sahiptir. Kromozomlar üzerinde bu primer (birincil) boğumlardan başka rRNA'ları ve dolayısıyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna 'Gen Amplifikasyon'u ya da 'Redunanz' denir. Kromozomların uçlarına da "Telomer7' denir. Kromozomun (İnsanda) İnce Yapısı: Çözülmüş DNA'nın uzunluğu tamamen yoğunlaşmış kromozomlar içınde DNA'nın inanılmaz derecede sıkıca paketlenmesim sağlar. Bölünmeyen hücrelerde nukleozomun dış yüzünde yer alır ve muhtemelen nukleozo-mun kararlı kalmasını ve DNA'nın bulunduğu yere sabitleştirilmesini sağlar. DNA'nın nukleozom etrafında dönen kısmı yaklaşık 200 baz çiftinden oluşmuştur ve bunun da yaklaşık 1/6'sı sarılmadan durur. Eğer hücreler bölünme-leri sırasında incelenirlerse kromozomların bölünmeye yaklaştıkça yoğunlaştıkları görülür. Bölünen hücrelerdekı DNA'nın ve proteinlerin bu denli sıkı paketlenme mekanızmaları tam olarak bilinmemektedir; fakat birincil ve ikincil kıvrılmaların bu yoğunlaşmada önemli olduğu açıktır. Kromatinin yoğunlaşma derecesi. yapısal ve regulatör genlerin ürün verme derecelerinin göstergesidir. Çeşitli kanıtlar kısmen gevşemiş kromatin kısımla-rında gerçekleşir. Histonlar üç çeşit kromozomal proteinden ancak bir grubudur. Diğer ikisi yapısal ve regülatör proteinlerdır. Histonları alınan kromozomun şeklı bozulmaz; çünkü şekli oluşturan yapısal proteinlerdir. Çıplak DNA sarmalları bu yapısal proteinlere tutunurlar. Regülatör proteinler en az bilinen gruptur. Büyük bir olasılıkla DNA'nın çift sarmallarını ya da DNA'nın en azından yapısal ve regülatör genlenni içeren kısımlarını tümüyle örterek kapatırlar ve böylece okunmalarını önlerler. Kromozomal regülatör proteinlerin etkisini belirlı bir zamana ve sıraya göre gösterdiği ve böylece organizmadaki yapıların bir zaman dizisi içerisinde ortaya çıktığı bilinmektedir. Dev kromozomların incelenmesi (sineklerin tükrük bezlerinde yavru kromonemalar yan yana kalmakta ve bu suretle kuvvetli boyanan DNA bantları meydana gelmekte-dir (Şekil 10.7). Biz dev kromozomları haploit olarak kabul ediyoruz. Çünkü ana ve babadan gelen kromozom çifti bunlarda birbirine kaynaşmış durumdadır. Mutasyon-ların gösterilmesinde önemli rol oynarlar. Çünkü haploit olduğundan çekinik genler dahi etkisini fenotipte gösterebilecektir. Dev kromozomların özel bir durumunu yumurta sarısı bakımından zengin olan balık homolog kromozomlar lamba şeklinde dizilirler . Kromozomların döller boyunca sabit tutulması noktası noktasına kavuştuklarından homolog genler tamamen birbirlerinin karşısına gelirler.

http://www.biyologlar.com/genler-ve-kromozomlar

KALITIMIN KROMOZOMAL ESASI

Bitkilerde ve hayvanlarda her tür kendine özgü sabit sayida kromozom içerir. Kromozomlarin sayisi mitoz bölünmedeki düzenli ve kesin olaylarla sabit tutulur. Birçok hayvan ve bitkide kromozom sayisi esittir. Fakat kromozomlardaki kalitim faktörleri farklidir. KROMOZOMLARIN YAPISI Ilk defa 1840 yilinda botanikçi Hofmeister tarafindan Tradescamia bitkisinin polen ana hücrelerinde görülmüs ve 1888 yilinda Vvaldeyer tarafindan da "Kromozom" ismi verilmistir. Hiçbir zaman yeniden yapilmazlar ya eskiden varolan kromozomun bölünme-sinden ya da tamamlama sentezleri ile yapilirlar. Yasamin sürekliligi kromozomlarin devamliligina dayanir. h-ler canlida kromozomlann sekli farkli olmasina karsin ayni türde ayni kromozomlarin sekilleri birbirine benzerdir. Örnegin 3. kromozom bir türde ayni sekle sahip olmasina karsilik ayni türde 3. ile 8. kromozomlarin sekilleri birbirinden farklidir. Sayilari türden türe farkli olur. Sayisi ile organizasyon derecesi arasinda herhangi bir baglanti yoktur. Küçük bir kromozom daha fazla gen tasiyabilir. Örnegin Ascaris megalocephala un/va/ens'öe 2n = 2 (bilinen en az sayida kromozom tasiyan canli) Drosophila melanogaster'öe 2n = 8 insanda 2n = 46 keçide 2n = 60 bir tür istakozda 2n = 200 Ophyoglos-sum vulgatum (bir çesit egrelti otul'da 2n = 500 (canlilar arasinda bilinen en fazla kromozom sayili bitki) kromozom vardir. Normal vücut hücreleri anadan ve babadan gelen birer kromozom takimina sahiptir. Ana ve babadan gelen es kromozomlarin sekilleri ve büyüklükleri (esey kromozomlari hariç) birbirine esittir. Bu çift kromozom takimi bütün vücut hücrelerinde bulunur. Böyle hücrelere "S o m a t i k h ü c r e-l e r" adi verilir. Kromozom sayisi bakimindan da "D i p l o i f'tir denir ve 2n ile gösterilir. Fakat esey hücrelerinde ergin gametlerde ve bazi ilkel canlilarin bütün hayat devrelerinde (yalniz zigot halinde diploit) kromozomlar eslerinden yoksundur. Partenogenetik çogalan bazi hayvanlarda örnegin erkek arilarda vücut hücreleri-nin kromozom sayisi disilerinin somatik hücrelerindekinin yarisi kadardir. Ya erkek ya da disi esey kromozomunu bulunduranlara "G e r m i n a t i f H ü c r e l e r " denir. Esi olmayan kromozomlara da "H a p l o i t" denir ve "n" simgesiyle gösterilir. Kromozom sayisi sabit olmakla beraber bazi özeliesmis hücrelerde örnegin böcek-lenn özellikle bazi sineklerin tükrük bezlerinde bu sayi 2n'nin katlari seklinde bir artis gösterir. Burada kromozomlar çekirdek zan parçalanmaksizin çogalirlar. Buna "E n d o m i t o z i s" ve kromozom durumuna da "P o l i p l o i d i" denir. Çekir-dek büyüklügü kromozomlarin miktarina bagli oldugundan poliploidide çekirdek hacminde büyüme görülür. Normal bir hücrede kromozomlar gözükmez. Profazin baslangicindan basla-yarak gittikçe yay seklinde kivrilan ve kalinlasan ince kromatin agi seklindedir. Sonunda türlere özgü kromozom seklini alincaya kadar kivrilma devam eder. Dino-f/age/lata'öa kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zan yoktur ve DNA bazik proteinlere bagli degildir. Bu tip hücreiere "M e z o k a r y o t i k" hücreler denir. Bir kromozomu kaba taslak distan incelemeye baslarsak su kisimlar (Sekil 10.3 ve 4) görülür: Aralarinda genel olarak açi bulunan iki koldan olusur. Kol-lar primer bogumla birbirinden aynlmistir buna S e n t r o m e r " (Kinetokor) denir. iki kolu birbirine esit olan kromozomlara "Metasentrik" esit olmayanlara ise "Submetasentrik" denir. Bir kollu gibi görünen kromozomlara da "Akrosentrik" (buniann sentromeri kromozomlarin ucundadir) (Sekil 10.5) kromozomlar denir. Bazi hayvan gruplari bu üç tipten yalniz birine sahiptir. Örnegin amfibiler yalniz metasentrik kromozomlara sahiptir. Kromozomlar üzerinde bu primer (birincil) bogumlardan baska sekonder (ikin-cil) bogumlar da bulunabilir (Sekil 10.3 ve 4). Bazen (genellikle) kromozomun uç kis-minda uydu "S a t e l l i t" denilen yuvarlak ya da uzunca bir yapi bulunur. Uydu kromozoma ince bir kromatin ipligiyle baglidir. Bu tip kromozomlara SAT kromo-zomlar denir. Sentromerler kromozomlarin ig ipligine takilmasini saglar. Sentromeri olmayan bir kromozom bölünmeye katilamaz ve tasfiye olur. Bu bogulma yerlerinde bulunan genler rRNA'lari ve dolayisiyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna 'Gen Amplifikasyon'u ya da 'Redunanz' denir. Kromozomlarin uçlarina da "Telomer7' denir. Kromozomun (İnsanda) İnce Yapısı: Çözülmüs DNA'nin uzunlugu bölün-mekte olan hücredeki paketlenmis kromozomlardan yaklasik 100.000 defa daha fazladir. insan kromozomlarinin agirligi kabaca DNA ve kromozomdaki proteinie-rin toplamina esittir. DNA'nin "Histonlar" olarak bilinen kromozomal proteinlerle olan baglantilari tamamen yogunlasmis kromozomlar içinde DNA'nin inanilmaz derecede sikica paketlenmesim saglar. Bölünmeyen hücrelerde çekirdek kromatin olarak bilinen kaba ve sekilsiz bir granüler materyal içerir. Kromatin elektronmikroskop altinda incelendiginde 0.3-0.5 mp çapinda boncuk dizisi gibi belirli bir yapiya sahip oldugu görülür (Sekil 10.6)- Bu kromatin ipligine çok defa "Kromonema" denir. Kromonemalar bölünme evresine girmis kromozomlarda. "Matrix" denen proteinlerden yapilmis amorf bir madde içerisinde bulunur. Bölünmelerin haricinde kromatin iplikler çözünmüs olarak bulunduklari için isik mikroskopunda görülmezler. Kromatinlerin her bir boncuguna "Nucleosom" (eski adlandinlmasi ile Kromomer) denir. Nukleozom dört farkli histon çesidinin her birinden ikiser adet molekül içeren bir nukleozom çekirdeginden ve bunun üzerinde bir çember gibi sarili olan DNA'dan olusur (Sekil 10.6/n). Sekil 10.6/n'de görüldügü gibi DNA nukleozom çekirdeginin etrafinda tam olarak iki defa dönmüstür. Nukleozomlar birbirlerine "Linker DNA = Baglayici DNA" denen çok uzun olmayan bir DNA zinciri ile baglanmislardir. Besinci çesit histon nukleozomun dis yüzünde yer alir ve muhtemelen nukleozo-mun kararli kalmasini ve DNA'nin bulundugu yere sabitlestirilmesini saglar. DNA'nin nukleozom etrafinda dönen kismi yaklasik 200 baz çiftinden olusmustur ve bunun da yaklasik 1/6'si sarilmadan durur. Eger hücreler bölünme-leri sirasinda incelenirlerse kromozomlarin bölünmeye yaklastikça yogunlastiklari görülür. Bölünen hücrelerdeki DNA'nin ve proteinlerin bu denli siki paketlenme mekanizmalari tam olarak bilinmemektedir; fakat birincil ve ikincil kivrilmalarin bu yogunlasmada önemli oldugu açiktir. Kromatinin yogunlasma derecesi. yapisal ve regulatör genlerin ürün verme derecelerinin göstergesidir. Çesitli kanitlar kivrilmamis yani çözülmüs kromatin-deki genlerin yogunlasmis kromatindeki genlerden çok daha fazla okunduklarini göstermektedir. Kadinlarda çok siki paketlenmis X kromozomlarindan biri (Barr Cisimcigi) kalitsal olarak islevsizdir; nitekim homologu olan çözülmüs ve uzamis olan ikinci X kromozomu yüzlerce okunabilir durumda gen tasir. Hücre bölünme-sinden önce kromozomlar gittikçe yogunlasirken (anafazda en yogun durumuna ulasir) bazi kromozomiarin bazi bölgelerimn diger kisimlardan daha fazla yogunlas-tigi görülür. Boyama ile belirli evrelerde belirii yogunlasma (kondensasyon) bölgeleri tasiyan kromozomlar gösterilebilir. Özel boyama teknikieriyle bir krorno-zom üzerinde açik (az yogunlasmis bölgeler = Eukromatik Bölgeler) ve koyu (çok yogunlasmis = Heterokromatik Bölgeler) bantlar seklinde görülen kromatin kisimlari saptanir. Her kromozomdaki bantlarin konumu kendine özgüdür ve bu bantlasmanin incelenmesi genetik programin aydinlatilmasi için çok önemli sonuçlar verir. Her ne kadar bölünmekte olan hücrelerdeki kromozomlarin açik renkli bantlarindaki kromatin koyu renkli olan kisimlardakine (yani çok siki paketlenmis) göre nisbeten daha çok okunabilen gen tasirsa da bölünme olayinin ilerlemis evrelerinde kromozomun hiçbir kisminda artik gen okunmasi meydana gelmez. Çünkü paketlenme en üst düzeyine ulasir. mRNA'ya tercüme yalniz bölünme döngüsüne girmemis hücrelerdeki kismen gevsemis kromatin kisimla-rinda gerçeklesir. Histonlar üç çesit kromozomal proteinden ancak bir grubudur. Diger ikisi yapisal ve regülatör proteinlerdir. Histonlari alinan kromozomun sekli bozulmaz; çünkü sekli olusturan yapisal proteinlerdir. Çiplak DNA sarmallari bu yapisal proteinlere tutunurlar. Regülatör proteinler en az bilinen gruptur. Büyük bir olasilikla DNA'nin çift sarmallarini ya da DNA'nin en azindan yapisal ve regülatör genlenni içeren kisimlarini tümüyle örterek kapatirlar ve böylece okunmalarini önlerler. Kromozomal regülatör proteinlerin etkisini gelisme süreci içerisinde belirli bir zamana ve siraya göre gösterdigi ve böylece organizmadaki yapilarin bir zaman dizisi içerisinde ortaya çiktigi bilinmektedir. Dev kromozomlarin incelenmesi (sineklerin tükrük bezlerinde Malpiki kanalin-daki hücrelerde ve bazi yag dokularinda) oldukça önemli bilgiler vermistir. Çünkü endomitozis ile kromozomlar binlerce defa bölünmesine karsin yavru kromonemalar yan yana kalmakta ve bu suretle kuvvetli boyanan DNA bantlari meydana gelmekte-dir. Biz dev kromozomlari haploit olarak kabul ediyoruz. Çünkü ana ve babadan gelen kromozom çifti bunlarda birbirine kaynasmis durumdadir. Mutasyon-larin gösterilmesinde önemli rol oynarlar. Çünkü haploit oldugundan çekinik genler dahi etkisini fenotipte gösterebilecektir. Dev kromozomlarin özel bir durumunu yumurta sarisi bakimindan zengin olan balik amfibi sürüngen ve kuslarda görüyoruz. Mayoz bölünmenin profaz evresinde homolog kromozomlar lamba seklinde dizilirler . Kromozomlarin döller boyunca sabit tutulmasi gamet olusumu sirasinda homolog kromozomlarin ikiye ayrilmasi ve yalniz bir tanesinin gametlere verilmesiyle rnümkün olur. 2n sayisi döllenme ile tekrar saglanir. Her kromozom içerisinde bir ya da birkaç özelligi kontrol eden birçok gen vardir. Her gen belirli bir yerde bulunur; bu yere lokus denir (çogul loki). Her hücrede ayni kromozomdan bir çift bulundugun-dan ayni özellige etki eden genler de çift (en azindan) halde bulunur (Y kromozo-munda bulunanlar hariç). Kromozomlar birbirinden ayrilirken genler de buna uygun olarak ayrilir. Genler kromozomlarin içinde bir dogrultu üzerinde dizilmislerdir. Homolog kromozomlarda ayni genler ayni yerlerde bulunurlar. Dolayisiyla mayoz esnasinda sinapsis yapan kromozomlar noktasi noktasina kavustuklarindan homolog genler tamamen birbirlerinin karsisina gelirler.

http://www.biyologlar.com/kalitimin-kromozomal-esasi-2

DNA Replikasyonu

DNA, bazı virüsler hariç, tüm canlıların genetik maddesidir. Hücresel aktiviteyi yönlendiren bir program ihtiva eder. Bu program RNA da kopya ve proteinde tercüme edilir. DNA ilk defa 1869'da F. Miescher tarafından beyaz kan hücrelerinde bulunmuştur. Önceleri DNA'nın sadece hayvansal, RNA'nın da sadece bitkisel hücrelerde bulunduğu zannedilmiş, fakat yıllar sonra hem DNA ve hem de RNA'nın her iki hücre çeşidinde de bulunduğu anlaşılmıştır. 1944'de O. Avery ve arkadaşları, saf DNA'nın, zararsız R-tipi pnömokokun virulen S-tipi haline dönüşmesine sebep olduğunu bildirmelerinden sonra, DNA'nın genetik bir madde olduğu ortaya çıkmıştır. 1952'de A. Hershey ve M. Chase, bazı virüslerin bakterileri, DNA'larını bakteri içine dış kılıflarını ayırmak suretiyle yerleştirerek enfekte ettiklerini bulmuştur. Bu sırada E. Chargaff, DNA'nın baz kompozisyonunun türden türe değişiklik gösterdiğini, fakat adenin /timin ve guanin /sitozin oranının bütün türler için hemen 1.00 olduğunu göstermiştir. Nihayet J. Watson ve F.H.C. Crick, DNA'nın çift helezon yapısını ortaya koymuştur. DNA'nın Semikonservatif Replikasyonu DNA replikasyonunun çeşitli modelleri vardır: "Semikonservatif" replikasyon modelinde yeni meydana gelen her bir DNA çifti, ana DNA'dan bir şerit ihtiva eder. Veya DNA replikasyonu "dispersif" bir mekanizma ile olur. Bu mekanizmada ana DNA'nın iki şeridi birden, rasgele dağılır ve yeni yapı, ana DNA'yı değişik miktarlarda ihtiva eder. Yahut ta replikasyon konservatif olabilir. Bunda da orijinal ana yapı bütünlüğünü muhafaza eder ve yeni DNA çifti, orijinalden farkı olmayan 2 şerit ihtiva eder. Şekil 29.1 bu 3 çeşit replikasyon modelini göstermektedir. DNA Polimeraz Bu enzim, bir primer ve kalıp görevi yapan bir DNA şeridi mevcut olunca dezoksiribonukleosid trifosfatın polimerize olmasını katalize eder. Kalıp DNA şeridi, daima adenin timin ile ve guanin de sitozin ile eşleştiğinden yeni sentezlenmiş zincirin sırasını belirler. Kalıp şerit, henüz olgunlaşmamış zincire eklenecek nükleotidil artığını tayin ettiğinden, DNA polimeraz DNA ya yöneliktir. Bu primer, bir köşebent görevi yapar. Zincir daima 5'-3' yönünde büyür. Büyüyen zincirin fosfodiester bağları, bu zincirin terminal kısmındaki 3'-OH grubunun, dezoksinükleosid trifosfatın pirofosfatını yerinden oynatarak α-fosforu üzerine nükleofilik saldırısını gerçekleştirmesiyle teşekkül eder. Bu reaksiyon bir "nükleotidil transfer" reaksiyonudur. Şekil 29.2, DNA polimeraz aktivitesi için gerekli kalıbı ve primeri göstermektedir. A. E. colinin DNA Polimerazları E. coliden izole edilen 3 DNA polimeraz vardır. Bir E. coli hücresi yaklaşık 400 molekül DNA polimeraz I, 40 molekül DNA polimeraz II ve 10 molekül DNA polimeraz III ihtiva eder. DNA polilimerazlar birden fazla katalitik aktiviteye sahiptirler. 5'-3' yönünde fosfodiester bağını katalize ettikten başka, DNA polimeraz I ve III 3'-5' ekzonükleolitik parçalanmayı da katalize eder. Ayrıca DNA'nın 5'-3' ekzonükleolitik ve endonükleolitik parçalanmasını da katalize ederler. DNA polimeraz II sadece 3'-5' ekzonükleolitik aktiviteye sahiptir. DNA replikasyonundan sorumlu başlıca enzim DNA polimeraz III'tür. DNA polimeraz I, Zn (II) iyonu ile sıkı sıkıya bağlı olup aktivitesi için Mg (II) gereklidir. DNA polimeraz I'in aktivitesi, tabii haldeki enzimin tek bir polipeptid zincirinde görülür. DNA polimeraz I, II ve III'ün 3'-5' ekzonükleaz aktivitesi düzeltici bir fonksiyona sahiptir. Büyümekte olan DNA zincirinde yanlış baz çiftleşmesi oluyorsa yani karşı karşıya gelen bazlar, Watson-Crick'in (adenin-timin) ve (guanin-sitozin) kuralına uymuyorsa, 3'-5' ekzonükleaz aktivitesi, fosfodiester bağını hidrolize ederek yanlış bazı zincirden uzaklaştırır. DNA polimeraz I'in yanılma oranı 1/100.000 dür. Bu suretle DNA polimerizasyonu olayı, kendi kendisini düzeltebilen bir olaydır (Sekil 29.3). 5'-3' nükleaz aktivitesi de DNA biyosentezinde düzeltici görev yapar. Bu enzim, bir oligonükleotidi 10 parçaya kadar ayırır. 5'-3'-endonukleaz aktivitesi ultraviyole radyasyondan ortaya çıkan timin dimerini ayıramaz. 5'-3' endünokleolitik aktivite timin dimerini ayırdıktan sonra meydana gelen eksiklik DNA polimeraz tarafından doldurulur. 5'-3' nükleolitik aktivite bir parçayı çıkararak, 3'-5' ekzonükleolitik aktivite ise düzelterek görev yapar. DNA'nın düzeltilmesinden DNA polimeraz I sorumludur. DNA polimeraz III'ün vivo DNA replikasyonunu gerçekleştirir. B. Ökaryotik DNA Polimerazlar Hayvansal hücrelerde α-, β- ve γ- ile gösterilen 3 DNA polimeraz bulunur, α- ve β- nükleusta, γ- ise mitokondride yer alır. α-DNA polimeraz, kromozomların replikasyonunda DNA biyosentezini sağlar. Oysa bu olayda β-DNA polimeraz önem taşımaz, fakat hatalı DNA'yı düzeltir. Miktarı α-formuna göre 1/10 kadardır. γ-DNA polimeraz ise mitokondride DNA replikasyonundan sorumludur. Prokaryotik hücrelerdeki DNA polimerazların aksine hayvansal DNA polimerazların hiçbiri ekzonükleolitik aktiviteye sahip değildir. E. coli'de DNA Replikasyonu A. E. coli Kromozomunun Yapısı ve Bakteri Hücresi E. colinin ana kromozomu, tek bir dairesel DNA molekülünden ibarettir. Bu molekül bakteri hücresinin içinde "nükleoid" denen bir boşluğa yoğun bir şekilde yerleşir. Nükleoid membrana bağlı değildir. E. coli ve birçok diğer bakteriler "plazmid" denen küçük kromozomlara sahiptirler. Plazmidler, en az 3 proteini, en çok ta toplam hücre proteininin %20'sini kodlayabilen genleri ihtiva ederler. Plazmidlerin her hücrede 50'ye kadar kopyası bulunabilir ve plazmid DNA sı, ana kromozomdan bağımsız olarak replike olur. E. coli hücreleri, 20-60 dakikada bir replike olur. Hücre bölünmesi olayı birkaç aşamada gerçekleşir: 1. DNA replikasyonu 2. İki kromozomun ayrılması 3. Fizyolojik bölünme 4. Hücrenin ayrılması Herhangi bir sebeple DNA sentezi durursa, hücre de bölünmez. B. Tek Bir Orijinden 2 Yönlü Replikasyon E. coli kromozomunun semikonservatif replikasyonu için birkaç ihtimal vardır 1. Dairesel kromozom, dairenin açılan bir ucundan diğerine lineer bir DNA replikasyonu şeklinde olur. 2. Replikasyon, dairesel kromozomun bir noktasından başlayıp, tüm kromozom kopya edilinceye kadar tek yönde devam edebilir. 3. Replikasyon, dairesel kromozomun tek bir noktasından başlar ve tüm kromozom kopya edilinceye kadar 2 yönlü olarak devam edebilir. DNA replikasyonu, E. coli kromozomunda "ilv geni" nin yakınında bir noktadan başlar. Bu gen; izolösin ve valin biyosentezinden sorumlu enzimleri kodlar. Bu noktaya ''replikasyon başlangıcı" denir. DNA sentezi saat yelkovanı ve aksi yönünde ve aynı hızda meydana geldiğinden, DNA sentezi, başlangıç noktasına göre iki zıt yönde "trp geni" yakınında son bulur. Bu gen de triptofan biyosentezini gerçekleştiren enzimleri kodlar. C. DNA Replikasyonu 5 aşamada olur: 1. Parental çift helisinin açılması. 2. Bir oligonükleotid primerinin sentezi 3. DNA-zincirinin 5'-3' yönünde büyümesi 4. Primerin çıkması 5. Yeni sentez edilen DNA zincirinin birleşmesi. a. Parental Çift DNA Helis Kıvrımlarının Açılması E. coli kromozomunun 4 x 106 baz çifti in vivo 40 dakikada (37°C'de) replike olur (Dakikada 50.000 baz çiftinin replikasyonu) Bu olaya birkaç protein yardımcı olur. Helisin kıvrımlarını açan proteine "helikal denir. Bu protein, tek şeritli DNA ya sıkı sıkıya bağlanarak açılmayı kolaylaştırır. "DNA-giraz"ı DNA'nın negatif aşırı kıvrımını sağlar. Yeni bir DNA şeridi sentez edildikten sonra DNA giraz da replike olmuş DNA'nın tekrar tabii haline kıvrılmasına yardımcı olur. Önceleri DNA açılmasını sağlayan enzim olarak bilinen ve diğer bir helikaz olan "rep protein" şeridin ayrılmasını temin eder. Rep protein, DNA'yı ATP'den güç alan bir olayda denatüre eder (rep protein ismi, DNA replikasyonu vuku bulacak E. coli kromozomunda gerekli geni ifade eden bir genetik isimdir). rep protein, fibröz kümelenmeler teşkil eder. b. Oligonükleotid Primerlerinin Sentezi. DNA polimeraz aktivitesi için hem bir primer ve hem de üreyen bir şerit gerektirir. Bir defa DNA kıvrımı açıldıktan sonra spesifik bir RNA polimeraz (primaz), replikasyonun başlangıcını temsil eden kromozom DNA sının özel bir bölgesini tamamlayıcı kısa bir şerit sentez eder (Şekil 6). Primaz, genetik kodun tercümesinden sorumlu RNA-polimerazdan farklı olup, bu enzim E. colinin "dnaG proteini" olarak identifiye edilmiştir. DNA replikasyonunun başlangıcında bir primer RNA sentezinin anahtarı "dnaB proteini" dir. Her bir hücrede 20 molekül kadar dnaB proteini vardır. dnaB proteini, DNA'yı bağladıktan ve primaz etkisini başlattıktan sonra artık replikasyon kavşağına bağlı kalır. c. Replikasyon Çatalında Sentezin Durması Bir defa DNA dubleksi, çatallanma noktasında açılınca artık primaz aşamaları tamamlanır ve DNA polimerizasyonu başlar. Parental şeritler zıt kutuplu olduklarından, devamlı DNA sentezi, bir şerit üzerinde 3'-5' aktivitesi olan polimeraza, diğer şeritte de 5'-3' aktivitesi olan polimeraza ihtiyaç duyar. Bilinen bütün polimerazlar, zincir büyümesini özellikle 5'-3' yönünde katalize ettiklerinden, böyle devamlı bir sentez cereyan etmez. DNA polimeraz primer yapıda serbest 3'-OH grubunu gerektirir ve devamlı zincir uzaması bir şeritte sadece 5'-3' yönünde meydana gelir. Bu şeride "öncü şerit" denir. Diğer şeritteki zincir büyümesi, ise kesintili devam eder. Bu şeride de "geciken şerit" denir. DNA biyosentezinde küçük polinükleotid parçalarına bulunan isimden esinlenilerek "okazaki parçaları" denmiştir. Bunlar ara ürünlerdir. d. Primerin Çıkması ve Fosfodiester Teşekkülü Bir defa Okazaki parçaları sentez edilince artık üç aşama kalır: 1. Bir ribonükleaz, RNA primerini uzaklaştırır. 2. DNA polimeraz I, küçük boşluğu doldurur. 3. DNA ligaz, kalan çentikleri kapatır Bir nükleotidil artığının 3'-OH grubu ile komşu artığın 5'-fosfat esteri arasında fosfodiester bağının sentezinde DNA ligaz kofaktör olarak E. coli de NAD ya, ökaryotik hücrelerde de ATP a ihtiyaç duyar. Ökaryotik Kromozomların Replikasyonu Ökaryotik hücreler, prokaryotik hücrelere göre binlerce katı daha fazla DNA ihtiva eder. Ökaryotik kromozomlara "Kromatin" denir. Bunlar "histon" adı verilen bazik proteinlerle kompleks halinde bulunurlar. A. Nükleozomlar ve Kromatinin yapısı a. Histonlar Kromatinlerin yapısı iki kısma ayrılabilir: " Nükleozomlar" protein ve DNA parçacıklarıdır. Bağlayıcı bölge, nükleozomu bağlayan DNA aralığıdır. Histonlar denen küçük molekül ağırlıklı bir grup protein, kromatinin hem nükleozom bölgesine ve hem de bağlayıcı kısımla bağlanır. Histonlar, kromatinin esansiyel komponentleridir. Hl., H2A, H2B, H3 ve H4 olmak üzere 5 tip histon mevcuttur. Hl, kromatinin bağlayıcı kısmına bağlıdır; diğer 4 ü ise nükleozomun yapısının bir parçasını teşkil eder. Nükleozom histonlarına "internalhiston" denir. Histonlar arjinin ve lizinden zengin bazik proteinlerdir. Histonlar, aminoasit sıvısının korunmasında görev yapmazlar. Bunlar, sentez edildikten sonra, kovalent olarak değişikliğe uğrarlar. Bu olaya "tercüme sonrası değişiklik" denir. b. Kromatinlerin Yapısı Kromatin, DNA ve histonların nükleoprotein kompleksidir. Bunlar nükleozom denen boncuk benzeri tanecikler ve bağlayıcı DNA şeridinden ibarettir (Şekil 29.9). Histonlar, nükleozomun merkezinde, DNA ise yüzeyinde yer alır. Metafazda, kromatin yaklaşık 1000 defa daha kondanse olur. Silindirik iplikçiğin helisinin her bir turu, 6-7 nükleozom ihtiva eder. B. Ökaryotik DNA'nın Replikasyonu Ökaryotik hücrelerin hayat süresince aktif DNA replikasyonu periyoduna "S-fazı" denir. DNA replikasyonu, prokaryotik hücrelerde olduğu gibi ökaryotik hücrelerde de semikonservatiftir ve çift yönlü cereyan eder. DNA biyosentezi ökaryotik hücrelerde öncü şeritte devamlı, geciken şeritte kesintili meydana gelir. Kromatin replikasyonu, nükleozomların da replikasyonunu içerir. Nükleozom histonlarının bundan dolayı, sentez edilmiş olmaları ve yeni sentez edilmiş DNA ya yerleşmek üzere bir araya gelmeleri gerekir. Ökaryotik hücrelerde DNA replikasyonu ile birçok protein ilgilidir. Bunlar nispeten daha az karakterize edilebilmişlerdir. Ökaryotik DNA biyosentezinde DNA replikasyonunun modeli, E. coli' deki DNA replikasyonuna ait olayların sırasına benzer. Bu olaylarda DNA polimerazlar önemli rol oynar. Bu enzimin α-formu nükleustaki DNA replikasyonunda, β-formu DNA onarımında ve γ-formu da mitokondrideki DNA replikasyonunda görevlidir. DNA sentezi, öncü şeritte 5'-3' yönünde devamlı geciken şeritte ise 5'-3' yönünde kesintili cereyan eder. Kesintili DNA sentezi beş aşamalıdır: 1. Özel bir RNA polimeraz, ribonükleotid primerini sentez eder. 2. DNA polimeraz α, Okazaki parçalarının sentezini katalize eder. 3. RNA primeri hidrolize olur. 4. DNA polimeraz boşluğu doldurur. 5. DNA ligaz, çentikleri kapatır. Histon sentezi ile DNA sentezi aynı zamanda ve aynı hızda cereyan eder. Kromozom duplikasyonunun her bir turunda histon sayısı iki katı artar. Eski nükleozomlar, yeni sentez edilmiş DNA ile parental DNA arasında rastgele dağılmışlardır. Buna "rastgele ayrılma" denir. Parental DNA'ya bağlı olan histonlar bağlı olarak kalırlar ve yeni sentez edilmiş bütün histonlar, yeni DNA ya bağlanırlar. Buna da "konservatif dağılım" denir. Mutasyon ve Mutajenler DNA replikasyonunda kopya edilen her 109-1010 baz çifti için ortalama 1 hata görülebilir. Fakat DNA'nın baz sırasını değiştiren herhangi bir hata, genetik haberi de değiştirir. Bunlardan başka, hücre ultraviyole ışınları ve bazı kimyasal etkilerin altında DNA yapısını değiştirebilir. Azotlu baz sıralanmasındaki değişikliklere "mutasyon" denir. Genel olarak iki tip mutasyon vardır: 1. Baz Substitüsyon Mutasyonu (Nokta Mutasyonu): Bir baz diğeri ile total baz sayısı değişmeksizin yer değiştirir. Şayet pürin pürinle veya pirimidin primidinle yer değiştirirse bu substitüsyona "geçiş mutasyonu (transisyon) denir. Eğer pürin ve pirimidinden biri diğerinin yerine geçerse buna da "çapraz mutasyon" ( transversiyon) adı verilir. 2. Kalıp Değiştirme Mutasyonu: Bunda bir veya daha fazla baz ilave olur. Bu tip mutasyon, proteini kodlayan baz sıralanmasını değiştirir. Dış çevre etkileri olmaksızın kendiliğinden meydana gelen mutasyona "spontan mutasyon" adı verilir. Bunda çoğu kez baz sübstitüsyonu olur. DNA replikasyonu sırasında baz sübstitüsyonunun bir kaynağı, bazların "laktam-laktim" tautomerizasyonudur. Örneğin, timinin laktim şekli, adeninden çok guaninle eşleşir. Mutasyona sebep olan veya mutasyonun hızını artıran bir dış etkiye "mutajen" denir. Ultraviyole ışınları, X-ışınları ve birçok kimyasal madde mutajen etki gösterirler. Bu kimyasal maddeler, baz analoğudurlar. 5-bromourasil böyle bir maddedir. Yapısındaki (Br) atomu, timindeki (-CH3) grubu ile aynı van der Waals yarıçapına sahiptir. Bunun mutajenitesi, laktam-laktim tautomerizasyon dengesinin laktime kaymasından ortaya çıkar. 5-Bromourasilin laktim tautomeri adeninden ziyade guanin ile eşleşir ve 5-bromourasilin DNA'ya girerek 5-bromourasil-guanin ve 5-bromourasil-adenin baz çiftleşmesine yol açar. Keza DNA, asit çözeltilerde NaNO2'e maruz kalırsa nitröz asit teşekkül eden serbest nitröz asit, DNA'daki bazların dezaminasyonuna sebep olur. Sitozinin dezaminasyonundan urasil meydana gelir. O takdirde de urasil-adenin baz çiftleşmesi olur. Hidroksilamin (H2N-OH), sitozinle reaksiyona girip N4-hidroksisitozin hasıl eder. Bu da guanin yerine adeninle eşleşir. Ultraviyole ışınları, bitişik timin bazlarının siklobutil dimerleri oluşturmasına sebep olur. Alkilleştirir etkenler de diğer bir sınıf mutajenlerdir. Guaninin özellikle N-7 pozisyonu kolayca alkilleşebilir. DNA'nın Onarılması Şayet genetik haber hatalı ise, bunu izleyen her şey hatalı olacaktır ve böyle bir mutasyon öldürücü olabilir. Hücrenin onarılabilen tek molekülü DNA'dır. A. Timin Dimerlerinin Fotoreaktivasyonu: Bazen ultraviyole ışınların meydana getirdiği timin dimerleri, fotokimyasal olarak tersine bir dimerizasyon reaksiyonu ile tek bir aşamada bir enzim tarafından onarılabilir. Bir defa dimerizasyon reaksiyonu geri dönünce, artık enzim DNA'dan dissosiye olur ve komşu timinler adenin ile tekrar çift bir helis içinde -H- bağları teşkil ederler. B. DNA'nın Onarılan Kısmının Çıkarılması: Genellikle şu dört aşamada gerçekleşir: 1.Çift şeritli DNA'da bir çentik açılması 2. Çift şeritli DNA'da bir boşluk meydana getirmek üzere ikinci bir fosfodiester bağının kopararak ayrılması, çıkarılması. 3. Yeni DNA sentezi 4. Yeni DNA'nın yerleşmesi ve çentiği kapatması. Memelilerde DNA şeridinde hatalı kısmın çıkarılması ve yeniden sentezi, hem çıkarmayı ve hem de polimerizasyonu katalize edebilecek iki fonksiyonlu enzimler bulunmadığından oldukça komplekstir. Son aşamada yeni sentez edilen DNA yerinden çıkarılmış hatalı DNA'nın yerine yerleşir, mevcut şeritle birleşir ve bir ligaz aktivitesiyle çentik kapanır. Hidroksilamin etkisiyle sitozinin dezaminasyonu ile urasilin meydana geldiği ve daha çok adeninle eşleştiği hatalı bir baz çiftleşmesinin onarımı buna bir örnektir. Genetik Rekombinasyon Bu deyim, tam bir çift helisli DNA molekülünden diğerine DNA'nın yer değişmesini belirler. Olayın iki tipi vardır: 1. Genel rekombinasyon: Meiosis sırasında bir diğeri ile eşleşen kromozomlar arasında DNA değişimidir. Bu çiftleşmiş kromozomlar ayni şekle ve aynı genetik habere sahip olduklarından homologdurlar. Genel rekombinasyon, yumurta ve sperm meydana gelmesi sırasında genlerin yeni kombinasyonlar üretmesinde önem taşır. 2. Bölgeye Özel Rekombinasyon: Bir DNA parçasının genomdaki özel bir bölgeye yerleşmesi şeklinde olur. A- Genel Genetik Rekombinasyon: Genel rekombinasyonda homolog kromozomlar arasında, tek bir şeridin transfer mekanizması aşağıda Şekil 29.10 da gösterilmiştir. Önce, bir nükleaz 2 çift helisten birinin şeridine bir çentik açar ve ikinci bir protein de çentikli çift helisi açar. Sonra, DNA polimeraz I, tamamlayıcı bir şerit sentez eder ve 3 şeritli bir ürün meydana gelir. Bir "rec A proteini" ATP ye bağımlı olarak, serbest üçüncü şeridi 2. çift helise D ilmik yapısını vermek üzere asimle eder. Bu yapının ömrü kısadır ve çabucak "rec AB proteini" denen dimerik bir enzim tarafından hidrolize edilir. D ilmiğinin tek şeridi sindirilince yapı, bir şerit çaprazına sahip olur. Bir şeridin izomerizasyonu, 2 şeritli çapraz hasıl eder. B- Bölgeye Özel Rekombinasyon: DNA molekülünün bir başka özel bölgeye katılmasıdır. Bu rekombinasyon modeli, "birleştirici bir mekanizma" tarafından meydana getirilir. Şayet 2 molekül DNA'nın tek şeritli uçları açılmış ve bunların baz sıraları tamamlayıcı ise eklenme reaksiyonu gerçekleşebilir. Bu uçlar arasındaki bölgeye "birleşme yeri" (eklem) adı verilir. Parçaların birbiri üstüne geldiği bölgeye "eklenme yeri" denir. RNA tümör virüslerinin genetik bilgisi RNA'da bulunur. Virüs, reverse transkriptaz enzimini meydana getirmek üzere konakçı tarafından tercüme edilen bir gen ihtiva eder. Bu enzim, RNA'yı kalıp olarak kullanır ve RNA'yı tamamlayıcı cDNA'yı sentez eder. Genetik haberin tercümesinde, DNA önce mRNA denen RNA kopyasına tercüme edilir. Böylece sentez edilen cDNA molekülü tek bir şeridinde orijinal genin bütün haberlerini ihtiva eder. Genler kimyasal yolla sentez edilebilir. Bunun için, somatostatin ve insülin gereklidir. Virüsler Virüsler çok sayıdaki enfeksiyon hastalıklarının etkenleridir, Hayvanlar üzerinde yapılan araştırmalar, tümörlerin de belirli virüsler tarafından meydana getirildiğini ortaya koymuştur. Virüsler, üreme yeteneğine sahip, en küçük bağımsız birimlerdir. Virüsler, haber taşıyan nükleik asitlere sahiptirler, fakat bu genetik haberi realize edecek bir enzim sisteminden yoksundurlar. Küçük virüsler sadece bir nükleik asit ve proteinden, büyük olanları da bunlara ilave olarak lipid ve karbonhidratlardan kuruludurlar. Protein kısmı, nükleik asit kısmını çeviren bir kılıf gibidir. Bu kılıf (kapsül) çok sayıda küçük identik protein birimlerinden (kapsomer) ibarettir. Virüsler ihtiva ettikleri nükleik asit çeşidine göre DNA virüsleri veya RNA virüsleri diye ikiye ayrılabilirler. Çiçek, adenom ve papillom virüsleri DNA virüsleri, mikso virüsler (kabakulak, kızamık vb.) pikoma virüsleri (poliomyelitis, nezle vb.) reo virüsler (solunum yollarının hastalıkları) ise RNA virüsleridirler. DNA virüsleri açık ya da kapalı bir çift şeritten ibaret olabildikleri gibi, halka şeklinde tek bir şeritten de kurulmuş olabilirler. RNA virüsleri da tek bir nükleotid şeridinden ibarettirler. Tamamlanmamış genetik haber ihtiva eden virüs türleri de vardır. Örneğin, Rous sarkom virüsü sadece nükleik asit kısmının replikasyonu için gerekli olan, fakat protein kısmının sentezi için gerekli olmayan haberi ihtiva eden bir RNA ya sahiptir. Böyle bir virüs, genetik olarak ta tam değildir ve hücre içinde çoğalması için aynı zamanda bu hücre içinde çoğalmak zorunda olan bir başka virüsün yardımına muhtaçtır. Virüslerin çoğalması: Virüs çoğalması, zamanla sınırlı olarak, tamamıyla kontrol altında bulunan çeşitli fazlarda olur. Bir çoğalma fazı genellikle 7-8 saat sürer ve şu beş basamakta cereyan eder: a- Virüsün Hücreye Adsorbe Edilmesi: Hücrenin moleküler şartlarının, elektrostatik gücünün ve özel hücre reseptörlerinin rolü vardır. b- Virüsün Hücreye Girmesi: Her virüs için farklı şekillerde olur. Bazıları protein kılıflarını dışarıda bırakacak şekilde sadece nükleik asit kısmı ile hücreye girerler, bazı virüsleri da hücre, fagositoz yolu ile kendisi alır. c- Hücrede Virüs Çoğalmasının Başlaması: DNA virüslerinde hücre çekirdeğinde; RNA virüslerinde da ya çekirdekte ya da sitoplazmada başlar. d- Virüsün Hücre içinde Olgunlaşması: Virüs nükleik asidi, olgunlaşmak için ihtiyaç duyduğu yapı taşlarının sentezini uyarır. Virüs çoğalmasının gerektiği gibi olması ve yeterli protein tabakasının hazırlanması suretiyle virüsün yapısı tamamlanır. e- Yeni Teşekkül Eden Virüsün Hücre Dışına Çıkması: Bu iş ya parçalayıcı enzimlerin yardımı ile hücrenin tahrip olması sonunda, ya da aktif bir salgılama olayı ile gerçekleşir. Bakterileri konakçı hücre olarak kullanan virüslere "bakteriyofaj" adı verilir. Bakteriyofajların DNA'sı, bakterilerin DNA'sı ile eşleşebilir ve orada varlığını gizli olarak sürdürebilir. Böyle fajlara "pro faj" denir. Bölünmede daha sonra bakteriler, profajları tüm yavru hücrelere nakleder. Bu olayların cereyan ettiği döngüye "lizojen döngü" denir. Profaj, yine de spontan olarak veya deneysel şartlar altında (ultraviyole ışınları etkisi gibi) tekrar üreme döngüsüne girebilir ve fajların çıktıkları hücreler erime nedeniyle tahrip olurlar. Bu olaya da "litik döngü" adı verilir. İnterferon Hücreler, virüs enfeksiyonlarına karşı doğal bir savunma mekanizmasına sahiptirler. Bu yeteneklerini interferon teşkil ederek gösterirler. İnterferon, virüslerin faaliyetini önleyici özelliğe sahip bir proteindir. İnterferon, enfekte olmuş hücreden enfekte olmamış hücreye geçer ve orada hücrenin protein sentezine yardımcı olan özel bir mRNA sentezine sebep olur ki virüse özel olan bu protein de sentezi önler. Bu proteine "tercümeyi önleyen protein" (Translation Inhibiting Protein) (TIP) denir. Bu protein, ribozomlarda depo edilir. Hücre bir virüs tarafından enfekte edilince virüs mRNA-TIP ribozom kompleksi nedeniyle virüs özel hiçbir proteini sentez edemez. İnterferon, belirli bir hücre için özel değildir, yani çeşitli virüslere karşı koyar, fakat neve özeldir. Yani içerisinde meydana geldiği nevin bireylerine etkilidir. DNA'nın bir hücreden diğer hücreye taşınma mekanizması şöyle özetlenebilir: Değişim Yoluyla: Bir pnömokok türünden elde edilen saf DNA, diğer bir pnömokok türüne eklenirse, bunlar mutasyona uğrayarak tipik özelliğini (örneğin; kapsül teşkil etme yeteneğini) kaybederler. Bu suretle mutasyona uğramış hücreden izole edilen DNA molekülü, sonradan kapsül teşkil etme yeteneğini tekrar kazanacak şekilde konakçı hücrenin DNA'sı ile elde edilmiş olan DNA arasında yeni bir kombinasyona girer. İki Faj Arasında Taşınarak: Genetik materyalin (DNA), bir bakteriden diğerine bakteriofajlar aracılığı ile taşınmasıdır.  

http://www.biyologlar.com/dna-replikasyonu-1

HÜCRE SİKLUSU VE KANSER

Hülya CABADAK Marmara Ün. Tıp Fakültesi, Biyofizik AD, İSTANBUL, TÜRKİYE Anahtar Kelimeler: Hücre siklusu, siklinler, siklin bağımlı kinazlar, tümör baskılayıcı gen, kanser Organizma/organ/doku gelişimi, hücrelerin büyüme ve çoğalmalarını içerdiği gibi hücre ölümlerini de sağlar. Hasarlı dokuların onarımı somatik hücrelerin ve destek dokunun çoğalması ile gerçekleşmektedir1. Hücre büyümesi, farklılaşması ve çoğalmasında rolü olan proto-onkogenlerde meydana gelen mutasyonlar tümör gelişimine, tümör baskılayıcı genlerde meydana gelen mutasyonlar ise hücre siklusunun inhibisyonunu engelleyerek anormal hücre büyümesine neden olur2. Homeostasis; hücre çoğalması, büyümenin durdurulması ve apoptozis (programlı hücre ölümü) ile sürdürülmektedir2. Hücre büyümesi ve ölüm arasındaki dengenin bozulması hiperplazi veya neoplaziye neden olur1. Pozitif veya negatif uyaranlar genetik lezyona yatkın hücrelerde, malign çoğalmaya neden olabilir. Malign gelişimi en aza indirmeye yardımcı mekanizmalardan birisi nekrozdur. Nekroz (kontrolsüz hücre ölümü) hücre şişmesi ve hızlı dejenerasyon olarak tanımlanır. Apoptozis, nekrozdan farklı olarak fizyolojik koşullarda meydana gelen ve doku homeostazisini sağlayan ölüm şeklidir. Programlı hücre ölümü apoptozisin normal hücre döngüsünde ve fizyolojik süreçlerde rolü vardır. Apoptotik hücrelerde hücre büzülmesi, kromatinin kondanse olması, sitoplazmik tomurcuklar ve apoptotik cisimciklerin oluşumu gibi morfolojik değişimler meydana gelir3. Makrofajlar apoptotik hücre ve cisimciklerini fagosite eder. Doku zedelenmesinde ilk etmen reaktif oksijen türevleridir. Reaktif oksijen türevlerinin hedefleri plazma zarında ve diğer hücre kompartmanlarında bulunan proteinler, lipidler, karbohidratlar ve nükleik asitlerdir3. Son yıllarda nekrozun da programlanmış olabileceği ve organizma homeostasis mekanizmalarının bir parçası olduğu yönünde görüş oluşmakla birlikte daha yaygın olarak nekroz indüklenmesi olası tedavi mekanizması olarak değerlendirilmektedir. Nekrozda ölen hücrelerden HMGB1 (High mobility group protein B1) ve HDGF (hepatoma derived growth factör) gibi moleküllerin salınımının immün cevabı uyardığı veya yara onarımını aktive ettiği düşünülmektedir4. Apoptozis, normal hücre ölümünün yanısıra mutant hücre çoğalmasını önleyen önemli bir yoldur. Hücre siklusu ve apoptozisde çok sayıda protein ikili rol oynar. Çevresel faktörlerle meydana gelen DNA hasarı hücre siklus kontrol mekanizmalarının bozulmasına neden olur. Pek çok kanser tipinde hücre siklus kontrol noktalarında mutasyonlar belirlenmiştir2. Büyümenin durdurulması (growth arrest), DNA onarımı ve apoptozis’in engellenmesi kanser gelişiminde kritik yolaklardır.5 Tümör baskılayıcı genlerde mutasyonlar hasarlı hücrelerin hücre sikluslarının ilerlemesine ve tümör gelişimine neden olur2,6. Genomun gardiyanı olarak da tanımlanan p53 proteini karmaşık etkinliklere sahip ve hücre siklusunu baskılayan bir proteindir2. p53, hücre döngüsünü düzenleyen bir transkripsiyon faktörüdür. Birçok organizmada kanserin baskılanmasında rolü olan çok önemli bir proteindir. p53 proteini hücre büyümesinin durdurulması, programlanmış hücre ölümü, hücre farklılaşması ve DNA tamir mekanizmasının başlatılmasında da rol alır. p53, mutant hücre çoğalmasına karşı genomun korunmasında önemli rol oynar2,6. 1.NORMAL HÜCRELERDE HÜCRE SİKLUSU Sürekli bölünen hücrelerde mitozdan sonra siklus G1-S-G2 (interfaz) ve M (mitoz) şeklinde tekrarlanır. Bu süreçte hücre uyarımı ve büyüme meydana gelmekte veya bölünme sinyali almadıkları sürece istirahat fazı G0 da durmaktadırlar2,7 . G1, S, G2 fazları (Interfaz) hücre siklusunun %90’nını kapsar ve 16-24 saat sürer. Mitoz bölünme ise 1-2 saat sürmektedir. Hücre büyümesi G1 fazında kısıtlayıcı nokta (R point) tarafından koordine edilir. Kısıtlayıcı noktada hücre duracak veya hücre siklusunu tamamlayacaktır7,8. G1 fazında hücreler kendi çevrelerini kontrol eder, sinyalleri alır ve büyümeyi indükler. Bu fazda DNA sentezi (replikasyonu) için hazırlık yapılır. RNA ve protein sentezi olur. S fazında ise DNA sentezlendikten sonra, G2 fazında hücre büyümeye devam eder aynı zamanda RNA sentezi, protein sentezi gerçekleşir ve hücre mitoza hazırlanır. Mitoz; profaz, metafaz, anafaz ve telofazdan oluşmaktadır. Telofazda sitoplazmik bölünme tamamlanır ve aynı genetik materyalli iki yeni hücre meydana gelir. Hücre siklusunda bir faz tamamlanmadan sonraki faza geçilirse genetik materyal tam ve doğru kopyalanmadığı için hücrede hasar meydana gelebilir. Hücre siklusunda G1-S geçişinde, G2-M geçişinde ve metafaz-anafaz geçişinde kontrol noktaları vardır. Bu kontrol noktalarında hücrenin siklusa devam edip etmeyeceği kararı verilir7. Radyasyon veya toksinle muamele edilen hücrelerde DNA’da meydana gelen hasara göre hücre siklusu kontrol noktaları G1 den S fazına veya G2’den mitoza geçişi engeller. DNA’da meydana gelen hasar DNA sentezini de inhibe edebilir. DNA’sı replike olmamış hücrelerde mitoza giriş kinaz komplekslerinin inaktivasyonu ile engellenir7. Hücre siklusunda iki tip gen grubunun rolü vardır: Onkogenler (Her 2, lneu, ras,c myc vb) ve tümör baskılayıcı genler p53 ve Rb (Retinoblastoma geni)9. Onkogenler, kanser gelişimini doğrudan ve dolaylı olarak etkileyen gen grubudur. Tümör baskılayıcı genler ise kanser gelişimini baskılar1. p53 geni işlevini kaybederse hücre büyümesinin kontrolü ortadan kalkar ve DNA tamiri olmadan hücre siklusu kontrolsüz devam eder. Normal hücrelerde DNA hasarı olduğunda, p53 genomik kararlılığı sağlar ve hücre siklusunu G1’de inhibe eder ve hücreye tamir için zaman kazandırır. Hasar tamir edilemiyorsa hücre apoptozise gider7,9 . Hu W ve ark. farelerde p53 ve onun düzenleyicileri Mdm2’nin embriyo implantasyonunda da rolü olduğunu ileri sürmüşlerdir10. Normal hücrelerde Rb hücre siklusunu G1 fazında inhibe eder. Retinoblastoma ve osteosarkom tümör hücrelerinde Rb gen inaktivasyonu gösterilmiştir. Büyüme uyarısı, hücreden büyüme faktörlerinin salınımı ile başlar. Büyüme faktörleri hücre zarında özgün reseptörlere bağlanır ve sinyaller sitoplazma proteinlerine iletilir. Bu sinyaller çekirdekte transkripsiyon faktörlerinin salınımına ve hücrenin hücre siklusuna girmesini sağlar4,11. Hücre siklus saati hücre siklusunun ilerleyip ilerlemeyeceğini belirler veya hücreyi ölüme yönlendirir8,9. 1-1. Hücre siklus kinazları Hücre siklusu siklinler (cyc=cln), siklin bağımlı kinazlar (cdk) ve siklin bağımlı kinaz inhibitörleri (CDI) tarafından kontrol edilir. Bu proteinlerin düzeyleri hücre siklusunun farklı fazlarında farklılıklar gösterir. Siklin bağımlı kinazlar G1-S-G2 ve mitoza geçişi kontrol eder.2,7,9 Memeli hücrelerinde hücre siklusunun düzenlenmesinde işlevleri en iyi bilinen onbir tane siklin bağımlı kinaz (cdk 1-11) ve 16 siklin (siklin D (D1, D2 ve D3); siklin E (E1, E2), siklin A (A1, A2) ve B (B1, B2) rol oynamaktadır (Tablo 1)2,7,9,11,12. Siklin D, E, G1/S fazlarının sınırında geçici olarak sentez edilir ve hücre S fazına girdiğinde hızla yıkılır, Siklin A ve B, S/G2/M faz geçişlerinde sentezlenir, siklin A1 mayoz ve embryogenesis de, siklin A2 çoğalan vücut hücrelerinde bulunur. Siklin B1’in siklin B2’nin fonksiyonlarını kontrol ettiği düşünülmektedir12. Cdk’lar protein fosforilasyonu yapan enzimlerdir. Cdk aktivitesi DNA sarmalının açılması içinde gereklidir. Replikasyon öncesi kompleks’in (PRC: Prereplicative compleks) birkaç bileşeni fosforile olur. Yeni replikasyon orijinleri mitozun sonunda cdk aktivitesi düşene kadar yeni PRC kompleksleri oluşturamaz. Bundan dolayı her hücre siklusunda DNA bir kez replike olur13,14. Cdk’lar siklin’e bağlandığında aktifleşerek aktif siklin-cdk komplekslerini oluştururlar. Siklinler bu komplekslerin düzenleyici alt birimleri, cdk’lar ise katalitik alt birimleridir15. Cdk, siklin (yapısal proteini) ve kinaz (enzim)inden oluşmaktadır9. Herbir cdk katalitik altbirimi farklı düzenleyici altbirimle biraraya gelebilir. Hücre siklusu boyunca kinaz komplekslerinin aktivite düzeyi değişir. Bu nedenle hücreler DNA’larını bir kez replike eder ve kromozomların yavru hücrelere uygun dağılımı sağlanır. Siklin-siklin bağımlı kinaz komplekslerinin (cyc-cdk) düzenlenmesi, cyc altbiriminin hücredeki konsantrasyo-nuna, fosforillenme durumuna ve inhibitör moleküllere bağlıdır. Siklinler hücre siklusunun farklı fazlarında bir taraftan sentezlenirken diğer taraftanda yıkılırlar. Memelilerde Cdk 2, Cdk 4 ve Cdk1(cdc 2)’in, siklin D, E, A ve B ile birlikte ekspresyonu olmaktadır2,9 . Siklin E ekspresyonu E2F transkripsiyon faktörlerine bağlıdır16,17. Herbir siklin özgün olarak belirli bir fazda en yüksek değere ulaşır, sonraki faza girerken hızla yıkılır. Siklinlerin düzeyleri transkripsiyon düzeyinde düzenlenir. Yıkımları ise ’ubiquitin’’ yolağı ile sağlanır Aktif cyc-cdk komplekslerinde cdk altbirimi Thr 161 amino asidinden fosforillenmişdir. Bu fosforilasyon cdk’yı aktive eden kompleks (cak)’ın aktivitesi ile meydana gelir18. Bir kez aktive olan cyc-cdk kompleksi, DNA replikasyonu ve mitozdaki birçok işlemin kontrolünde rolü olan proteinleri fosforiller. Protein kinazlarla cyc-cdk altbirimlerinin fosforilasyonu ile kinaz kompleksi inaktive olur7,9,11. Cdk’ların aktiviteleri sadece siklinlerle düzenlenmez ayrıca fosforilasyon ve defosforilasyona yol açan başka yollarla da düzenlenir. Siklin bağımlı kinaz inhibitörleri (CKI): Hücre siklus inhibitör proteinleri (CKI) cdk aktivitesini kontrol eder. Bu proteinler cyc-cdk kompleksi oluşumunu ve DNA replikasyonunu inhibe eder. CKI’lar hücre siklusunu frenlediklerinden tümör baskılayıcı genlere de adaydır. Etkiledikleri cdk ve inhibisyon mekanizmalarına göre iki farklı CKI ailesi vardır. Bunlardan ink 4 ailesinde p15, p16, p18, p19’ G1 fazındaki cdk4 ve cdk6’yı bağlayarak cyc-cdk kompleks oluşumunu inhibe eder (Şekil 2a). Cip/Kip ailesinde ise p21, p27, p57 bulunmaktadır. Cip/Kip ailesi cyc-cdk kompleksini inhibe etmektedir (Şekil 2b )2,7,9,11,12. G2 fazında siklin B cdk1(cdc-2)’in tam aktivasyonunu sağlayarak mitoza girişi tetiklemektedir (Şekil 2c)9,11,12. Genellikle, farklı kanser hücrelerinde hücre siklusunun G1-S fazını kontrol eden proteinlerin inaktif olduğu, G2-M fazlarını kontrol eden proteinlerde ise değişimin daha az olduğu belirtilmektedir1,2,19. 1-2. Normal hücrelerde G1-S geçişi Büyümeyi uyaran sinyaller G1 fazı başlangıcında siklin D düzeyini sonraki evrede ise siklin E artışına neden olur (Şekil 3)2,9,11,12,20. Kısıtlayıcı noktada (R point) büyüme inhibitör faktör (Rb, Retinoblastoma) hücrenin S fazına girip girmeyeceğini belirleyen anahtar gibi rol oynar7,4,8,9,11,21. Kısıtlayıcı nokta geçilirse hücre DNA sentezinin olduğu S fazına girer. DNA sentezi sırasında iplikçiklerin birbirinden ayrılması ile DNA hasara çok duyarlı hale gelir ve bu nedenle S fazı hızlı geçilir4. Hücre siklusunun ilerlemesi Rb proteininin fosforillenmesi ile belirlenmektedir22. Az fosforillenmiş (Hipofosforile) Rb E2F transkripsiyon faktörünü bağlıyarak inaktifleştirir11,23,24. E2F’nin inaktifleşmesi sonucu hücre S fazına ilerleyemediğinden siklus durur. İstirahat halindeki (Go fazında) hücre bölünme sinyali aldığında hipofosforile Rb G1 fazının sonuna doğru cyc’nin cdk ile birleşmesi ile cyc-cdk kompleksini oluşturur ve bu kompleks Rb proteinini fosforiller7,11,24. Fosforillenen Rb proteininden E2F salınır, E2F ‘nin siklus ilerletici etkisi ile S fazına giriş için gerekli genlerin transkripsiyonu aktive olur ve hücre S fazına girer6,9,11,12,18,19,24-26. Hücre siklusunun S fazına geçişini G1 fazında aktive olan siklinler sağlar. Go fazında bu siklinlerin çoğunun ekspresyonu olmaz. G1 cyc-cdk kompleksleri transkripsiyon faktörlerini aktive etmektedir. Büyüme faktörleri, otokrin uyarım, lektinlerle mitojenik uyarım veya Ras yolağı gibi hücre içi sinyal yollarında mutasyon, hücrelerin tekrar G1 fazından siklusa girmelerini uyarabilir9,27. İstirahat halindeki hücrelerde, başlangıçta mRNA’sı stabil olmayan siklin D az miktarda bulunur. Go’da büyüme faktörleri ile uyarım, siklin D sentezini ardından siklin E’nin birikimini uyarır.20 Büyüme faktörleri olmadığında siklin D düzeyi hemen düşer1,7,11,20. Embriyonik hücrelerde siklin E düzeyleri devamlı yüksektir28. Hücre siklusunda Rb aktivitesi ICBP90 transkripsiyon faktörü ile protein düzeyinde düzenlenebilir29. G1-S geçişinde, büyüme faktörlerine cevap olarak siklin D düzeyi artar. Siklin D artışı ile siklin D-cdk 4(cdk 6) kompleksi oluşur. Siklin D ve cdk 4‘ün ve de onların aktif komplekslerinin birikimi p16’nın inhibitör rolünü ortadan kaldırır ve Rb (retinoblastoma gen) fosforillenir24,30. Az fosforillenen Rb, E2F transkripsiyon faktörün inaktivasyonuna neden olan histon deasetilaz (HDAC) enzimine bağlanır31. Rb’nin fosforillenmesi S fazının başlaması ve ilerlemesi için gereken genlerin geçici olarak aktivasyonunda rolü olan E2F transkripsiyon faktörün baskılanmasını kaldırır. G1 de siklin E -cdk2 kompleksi (MTOC) mikrotübülleri organize eden merkezin iki sentromere dublikasyonunu aktive eder32. Siklinlerin uyarıcı etkileri CDK inhibitörleri CKI tarafından önlenmektedir. G1/S fazı geçişi için önkoşul CKI ların baskılanmasıdır. Örneğin hücre siklusuna giriş için siklin D1 düzeyinin yükselmesi yeterli değildir. ERK (extracelllular signal regulated kinase) aktivasyonu da geç G1’de cdk’ların aktivitesini artırmak için birkaç aşamada rol oynar. ERK aynı zamanda CKI’ların inhibisyonunda da rol oynamaktadır33. G1 fazı boyunca hücre çoğalmasını engelleyen birçok genin baskılanması için ERK’in sürekli aktivitesi gereklidir. Tek başına ERK aktivasyonu hücre siklusuna girişi sağlama- ya yetmez. Vücut hücrelerinde ERK, hücre siklusunun G2/M fazında aktive olur. Metafazda tutulan hücrelerde ERK fosforillenmemiş durumdadır33. Eş zamanlı çoğalan (senkronize) HeLA ve NIH 3T3 hücrelerinde ERK’in aktivasyonunun S fazının sonuna doğru meydana geldiği ve mitoz sonuna kadar aktif halde kaldığı belirlenmiştir. MEK (MAPK kinaz) inhibitörleri ile ERK aktivasyonu bloke edildiğinde mitoza girişin geciktiği ardından metafazdan anafaza gecikmeli geçişin mitoz süresinin uzamasına neden olduğu belirtilmektedir34. G2/M geçişinde ERK inhibe edildiğinde M faz süresi iki kat artar. ERK aktivasyon yolakları henüz tam olarak anlaşılamamıştır33. Genellikle normal hücrelerde p53, MDM2 proteinine bağlı olarak inaktiftir. p53 ubiquitin ligazla yıkıma uğradıktan sonra aktive olur. Aktive olan p53, p21 ekspresyonunu aktive eder. p21 G1-S (cdk) ve S (cdk) komplekslerine bağlanarak onları inhibe eder ve hücre siklusu durur. Siklusun durması hücreye tamir için zaman kazandırır. Radyasyon ve ilaç gibi hücrenin strese maruz kaldığı durumlarda DNA hasarı olursa, hücre bu uyarıya p53 düzeyini artırarak yanıt verir. p21’in aktivasyonu sağlanarak G1 kontrol noktasında Rb proteinin daha fazla fosforlanması önlenerek hücre siklusu durdurulur. p21 siklin-cdk kompleksini inhibe etmesi yanında “proliferating cell nuclear antijen (PCNA)i de inhibe eder35. Timidin ve metotoraksat (methotraxate) gibi ilaçlar hücre siklusunun ilerlemesini engeller36. 1-3. Normal hücrelerde G2-M geçişi Hücreler DNA sentezinden sonra G2 fazına girer. Siklin B-cdk1 kompleksinin aktivitesi artar, mitoza giriş uyarılır9,19,37. Siklin B-cdk1 kompleksi mitozu ilerleten faktör (MPF) olarak da isimlendirilmektedir. Geç S fazında siklin B sentezlenmeye başlar ve sentez mitoz boyunca devam eder, mitoz tamamlandığında siklin B düzeyi hızla düşer. Bu düşüş aktif MPF kompleksinin oluşmasını ve ikinci hücre bölünmesini engeller. Siklin B düzeyi sitoplazma ve çekirdek arasında aktif taşınımla düzenlenir. İnterfaz (G1,S,G2) aşamasında siklin B sitoplazmadadır. Mitoz başlangıcında siklin B cdk 1’e bağlanarak aktif MPF kompleksini oluşturur. İnhibe edici fosforillenme aynı zamanda MPF aktivitesi-ni düzenleyebilir. cdk1 altbiriminin ikinci kez fosfofosforilenmesi siklin B-cdk1 kompleksi-ni inaktive eder. Wee 1, nükleer protein kinaz, çekirdekte MPF kompleksini inaktive ederek erken mitozu engeller11,20,38. Wee1’ın cdk1 altbiriminin ATP bağlama bölgesini fosforillemesi ile MPF kompleksi inaktive olur. Myt 1, Golgi aygıtında lokalize olan protein kinazdır. Myt 1, cdk1’i fosforiller ve interfazda onun siklin B ile bağlanmasını düzenler11,20. Cdc25, cdk’lardan inhibe edici fosfat gruplarını kaldıran fosfatazdır. Cdc 25 hücre siklusunun çeşitli fazlarına ilerlemeyi kontrol eder39. Bu aşama mitoza girişte hız sınırlayıcı basamaktır. cdc25b proteininin G2 fazında birikimi ilk MPF aktivasyonunda kritik rol oynar. cdc25c protein düzeyi hücre siklusunun bütün fazları boyunca sabit kalır. G2-M geçişinde, cdc25c çekirdekte birikir ve mitoz başlangıcında MPF komleksini aktive eder. DNA’sı replike olmamış hücrelerin mitoza girişi MPF kompleksinin inaktive olması ile önlenir11,20,40. G1 fazını geçen hasarlı hücreleri ortadan kaldırmak için G2 fazı kontrol noktalarında siklin-cdk-CKI sistemi gereklidir11,20. Bu kontrol noktası sağlam olmayan kromozomların ayrılmasını önler5. G2 fazında, S fazında replike olmuş DNA ve kromatin proteinleri kondanse olur ve kardeş kromatidler olarak paketlenirler. Mitozun metafaz aşamasında kromozomlar ekvator plağına dizilir, ardından kutuplara çekildikten sonra iki yavru hücreye bölünür. Sentro-merler mikrotübüllere bağlanamazsa mitoz gecikir. Bu olaylarda siklin B-cdk1 gereklidir. Siklin B-cdk1 kompleksi aynı zamanda (MPF) M fazının ilerlemesinde de anahtar rol oynar. Marumato ve ark. siklin B-cdk1(cdc-2) aracılı fosforilasyonla indirek olarak aurora-A’nın aktive olduğunu bildirmişlerdir41. Siklin B-cdk1 (cdc-2) çekirdeğe girişte gereklidir. Aurora A’nın aktivasyonu nükleer translokasyonu sağlar ve siklin B cdk1(cdc-2)’nin tam aktivasyonu mitoza girişi tetikler. Çeşitli kanser tiplerinde Aurora A’nın fazla eksprese olduğu belirlenmiştir5,11,20,41,42. 1-3-1. DNA’sı hasarlı hücrelerin G2-M geçişi DNA hasarından sonra, G2 bloğunun olması için cdk 1 defosforillenmesinin inhibisyonu gereklidir9,43. DNA hasarı, cdc-25c’yi fosforilleyen chks1 ve 2 protein kinazların aktivasyonunu sağlar. Fosforillenen cdc-25c, 14-3-3 proteinlerine bağlanarak çekirdekten sitoplazmaya taşınır. cdc25c çekirdek içinde bulunursa, siklin B-cdk1 kompleksini aktive eder. Bunun yanısıra siklinB-cdk1 kompleksin aktivitesine gereken çekirdek içindeki cdc25c miktarının yetersiz olmasından dolayı G2 blok aktive olur. Aynı zamanda p53 de G2-M geçişinde rol oynayabilir9. DNA hasarında p53 stabil kalmakta ve 14-3-3 trans-kripsiyonel olarak aktive olmaktadır. Aktive olan 14-3-3 fosforillenmiş cdc 25c’e bağlanır ve kompleksi sitoplazma içinde tutar, böylece mitoza geçişe uygun aktif siklin B-cdk1 kompleksi azalır11. p21 ve p53 ikinci tur DNA sentezi yapmış fazla DNA’lı hücreleri G2 ve M fazında engeller5,39. p53, G2’ye girişi inhibe eden 14-3-3 gen transkripsiyonunu artırarak bu geçişi önlemektedir. 14-3-3 cdc25c fosfatazla birleşir ve bu kompleks cdc25c’nin çekirdeğe girişini inhibe ederek DNA ‘yı bloke eder9,11. 1-4. Normal hücrelerde mitoz iplikçik kontrol noktası Mitoz iplikçik kontrol noktası metafazdan anafaza geçişi düzenler.2,7,11,20,44-46 Bu kontrol noktası bütün kinetokorlara uygun mikrotübül bağlanmasını kontrol eder ve kinetokor gözetiminde uygun kromozom ayrılmasını sağlar. Mitotik siklinlerin yıkımından sonra anafaz başlar. Mitotik siklinler ubikuitinlendikten sonra proteozomal yıkım olur. Mitotik siklinlerin yıkımı siklinB-cdk1 kompleksini inaktive eder ve bu inaktivasyon mitozun normal bitmesini sağlar7,11. Mitoz iplikçik kontrol noktası olgunlaşmamış kardeş kromatidlerin ayrılmasını engeller. Bu kontrol noktasında rolü olan genler, MAD1L1, MAD2, MAD2L1, MAD2B, BUB1, BUBR1, BUB3, TTK, MPS ve CDC20’ dir. Bu genler hücre siklusunun kontroluna katılır. Mayadan insana kadar MAD ve BUB proteinleri korunmuştur. BUB ve MAD gen ürünleri kinetokor gözetimi ve anafaz düzenlenmesi için gereklidir. MAD proteinleri doğru kromozom ayrılmasını, BUB gen ürünleri ise mitozun ilerlemesini düzenler47. Drosophila Melonogaster, C.elegans ve farede mitoz iplikçik kontrol noktasının tamamen kaybolmasının embriyon ölümüne neden olduğu gösterilmiştir7,9,11,48-50. DNA sentezinden sonra kohesin protein kompleksleri kardeş kromatidleri birarada tutar ve kromozomlar oluşur11,20,51,52. Mitoz iplikçik kontrol noktası anafaz promoting kompleksi (APC) düzenler. CDC20p APC’yi aktive eder ve pds1p ubiquitinlenme ile yıkılır. Pds1p’nin yıkılması ile separin Esp 1 aktive olur ve kohesin salınır, böylece anafazda kardeş kromatidler ayrılır. CDC20p’nin APC’yi aktive etmediği durumlarda kohesin salınmaz, kardeş kromatidler ayrılamaz ve anafazda inhibisyon meydana gelir10,53. CDC20’nin MAD2, BUBR1, BUB3 ile kompleks oluşturması anafaza girişi beklemeye alır. 2- Kanser ve kontrol noktası inaktivasyonu Gen mutasyonlarından dolayı G1-S geçişindeki değişimler kansere neden olabilir. Kanser hücrelerinin karakteristik özelliklerinden biri büyüme uyarımından bağımsız olarak G1 fazına tekrar girebilmeleridir. Rb fosforillenme/defosforillenme dengesizliği olduğunda, G1-S fazları arası geçişlerde olan değişiklikler hücrelerin çoğalmasını değiş-tirebilir. Rb gen mutasyonları insan kanserlerinden bazılarında (glioblastoma ve Retino-blastoma vb) tanımlanmıştır. Tümör virüsleri HDAC ile Rb’nin bağlanmasını inhibe edebilir. Siklin D’nin fazla eksprese olduğu bazı durumlarda ise E2F aktifleşmesinden sonra Rb inhibisyonunu sağlayan defosforillenme olmadığında S fazına hatalı ilerleme olabilir11. Kusurlu G1 siklin E-cdk2 kompleksi sentriollerin hatalı replikasyonunu uyarmaktadır11. Hücrede iki veya daha fazla sentriolün varlığı anafazda hatalı kromozom ayrılmasına neden olur. Bazı insan kanserlerinde sentriollerin fazla dublikasyonu da belirlenmiştir7,11. 2-1. DNA’sı hasarlı kanser hücrelerinde G1-S geçişi: Radyasyon v.b. etkenlere maruz kalan hücrelerde hücre siklusunda hatalar olmaktadır11,54. Örneğin Gama radyasyonuna maruz kalan hücrelerde fonksiyonel p53 geninin yetersiz olmasından dolayı bu hücreler G1’de tutulamaz ve S fazında hasarlı DNA’yı dublike ederek gen mutasyonuna ve/veya hatalı kromozom dizilimine neden olur11,54-56. Hücre çoğalmasını gen delesyonu, fazla gen ekspresyonu ve nokta mutasyonlar etkilemektedir. İnsan kanserlerinde farklı genlerde nokta mutasyonlar ve delesyonlar vardır19. İnsan kanserlerinde en sık görülen mutant gen p53’tür. Normal bir hücrede DNA hasarı olduğunda, p53 düzeyi artar ve hücre siklusunu G1 fazında inhibe ederek DNA onarımı için hücreye zaman kazandırır6,43,54. Hasar tamir edilemiyorsa hücre apoptozise gider43. Hasarlı hücrenin ölümü veya hücre siklusunda kalmasının nasıl sağlandığı tam olarak bilinmemektedir. p53 mutasyonlarında hücreler bölünmeye devam eder. Bu mutasyonlar sonucunda tümör baskılayıcı fonksiyonlarında kayıp olurken diğer yandan onkojenik fonksiyon ortaya çıkabilir11,15,20. Muskarinik reseptör agonist ve antagonistler varlığında çoğaltılan K562 hücrelerinde siklin D1 transkripsiyon seviyelerinin değiştiği belirlenmiştir57. Bellamy ve ark. 5 gray gama radyasyonunun fibroblastlarda büyümenin durmasına, aynı doz radyasyonun ince bağırsak kripto hücrelerinde ise apoptozise neden olduğunu göstermişlerdir5,22. p53 aynı zamanda cdk’ların inhibitörü p21 transkripsiyonunu artıra-rak da DNA hasarına yanıt verir7,11,20. S fazında eksprese edilen siklin A erken fazda cdk2 ile sonraki fazda cdc ile birleşir. Siklin-cdk kompleksi DNA sentezinin başlamasında rol oynar, cdk ekspresyonunun inhibisyonu ise hücre siklusunun durmasına neden olur6,9. ATM ( Ataxia Telengiectasia Mutant kinaz ) tarafından p53’ün aktivasyonu DNA onarımı ve apoptozisi koordine eden DNA hasar sinyal yollarına aracılık eder59. ATM çift iplik kırıklarına cevapta ve ATR (ATM ve Rad3 related) olarak adlandırılan kinaz diğer tip DNA hasarlarına cevapta önerilmektedir60. Hücre siklusunda ATM ve CHK2 ekspresyonu nispeten devamlı olmasına rağmen ATR ve CHK1 G1 fazının başında ve ortasında düşüktür. ATR ve CHK1 G1/S geçişine yaklaştıkça önem kazanır. ATM/ATR p53 transkripsiyon faktörünü fosforiller. ubiquitin kinaz,MDM2 p53’ün hızlı sirkülasyonunu sağlamaktadır61,62. Ayırıcı hedef mekaniz-malar hala açıklanamamıştır. p53‘le uyarılan G1 fazında duraklamada p21Cip1/Waf 1’in rolü vardır65. Aynı zamanda PCNA (proliferating cell nuclear antigen) inaktive olmaktadır. PCNA, DNA sentezini katalize eden, DNA tamirinde yer alan DNA polimeraz delta’nın kofaktörüdür. Sentezi hücre siklusunun geç G1 fazında baslayarak orta-geç S fazinda en yüksek değere ulasmaktadir43,59,60. p21, cyc-cdk kompleksini inhibe etmesi yanında PCNA’i de inhibe eder. Hücre siklusunun G1/S fazında durdurulmasında yeni belirlenen nükleer protein ICBP90’un p53/p21Cip1/WAF 1 aracılı yolaklarda hedeflerden biri olarak önerilmektedir22,43. İnsan Rad 9 ve Rad 17 proteinlerinin S fazı başlangıcındaki kontrol noktasında ve kromozom kararlılığının sürdürülmesinde önemli olduğu belirlenmiştir37. Rad 9’un ATR kinazla büyük protein kompleksinin fosforillenmesine aracılık ettiği de önerilmektedir69. p53 ve Rb protein fonksiyon kaybının nedenleri mutasyon, delesyon veya diğer proteinlerle bağlanma olabilir25. Rb kontrolu kanser hücrelerinin bir çok tipinde bozulmaktadır. Rb kontrolunun bozulma nedeni Rb fosforillenmesinde rolü olan siklin ve cdk’larda onkojenik mutasyonlardır63. p53 fonksiyonu cdk 4 ve cdk 6 supressorlerinin fazla ekspresyonu ile baskılanır9,64. Genomda onkogenik lezyonlara p53 fonksiyonunun bozulması neden olur. Bunun nedeni p53’ün apoptozis öncesi düzenlenmesinin gerçekleşmemesidir25,41. Hücre siklusunda kontrolün kalkması p21, p27, p57 gibi p53’ün downstream genlerinde kusurlara neden olabilir. Cdk’ların ve siklin-cdk komplekslerinin aktivitelerini Cdk (p21, p27, p57)’nin inhibitörleri inhibe eder ve hücrenin S fazına girişini engeller4,5,6,7,11,22,25,26,65. Bazı tümörlerde cdk4 ve cdk 6’nın negatif düzenleyicileri olan p15 ve p16’nın mutant olduğu da rapor edilmiştir5,22,41,53. Tümör hücrelerinin bir kısmında cdc4 de kusurlar veya cdc4’ün ekspresyonunun fazla olmasından dolayı siklin E düzeyi normal değildir. Bazı tümör hücrelerinde siklin E-cdk2’nin negatif düzenleyicisi olan cdk inhibitörü, p27’nin kaybolduğu da belirlenmiştir56,60. 2-1-1. p53 aracılı apoptosis p53 ve Bcl 2, programlı hücre ölümünde anahtar rol oynayan genlerdir66. Normalde p53 hücre akibetini belirleyen moleküler ağı düzenler. cMyc (nükleer fosfoprotein) p53’ü seçici olarak aktive eder ve p53 apoptozisi başlatır2,5,22,43. Nükleer fosfo protein cMyc, Fas ligand ve Fas reseptörle birleşir. Bu proteinin p53 bağımlı ve bağımsız yolaklar ile sitokrom c salınımını indükleyen bax’ın transkripsiyonunu düzenlediği de düşünülmektedir6,65. Hasarlı hücrelerde fonksiyonel p53 yoksa, hücre siklusu kontrol noktaları tarafından kontrol edilmeden siklus ilerler5,9. p53’ün düzenleyici aktivitesini geçtiğini gösteren alternatif yol ise p53’un negatif düzenleyicisi Mdm 2 (murine double minute 2) dir. Mdm2 proteini, p53’ü kontrol altında tutar ve p53’ün G1/S geçişinde siklusu durdurmasını ve apoptozisi engeller. Radyasyon ve benzeri etkenlerle hücre etkilendiğinde Mdm2 proteininin p53’ bağlanma bölgesinde yapısal değişiklikler meyda-na gelir. Bu nedenle Mdm2 p53’ü bağlayamaz ve serbest p53 transkripsiyonel aktivitesi ile G1 ve G2 kontrol noktalarında siklusu durdurur ve bax genini aktive ederek apoptozise neden olur58. Mdm2, p53’ün transkripsiyonunu azaltır ya da p53’e bağlanarak aktivitesini inhibe edebilir. Lösemi, lenfoma, sarkoma glioma ve meme kanserinde Mdm2 gen amplifikasyonu gösterilmiştir2. Çok organize bir işlem olan apoptozis zararlı ve anormal hücrelerin yıkımını sağlamaktadır3,11,65. Apoptozis yolunda iki düzeyde mekanizma bozuklukları görülür: 1. Apoptozisi düzenleyen genlerde mutasyon ve bu nedenle apoptozise gitmeyen hücrelerin yaşamasıdır, 2. Apoptozise direnç geliştiren hücrelerin Darwinizm (doğal seçilim) ile seçilip yaşamaya devam etmesidir66. 2-1-2. Apoptozise karşı mekanizmalar: Bcl 2 hücre ölümünü inhibe ederek hücreyi apoptozise karşı korumaktadır21,66,67,68. Bu ailenin diğer üyelerinden Bcl-xL, mcl ve bag 1 hücre ölümünün inhibitörleri iken bad, bax ve bik apoptozisi ilerletirler3,67. GADD45 (a growth arrest and DNA damage (gadd)-induced gene) hücre siklusunun G2-M kontrol noktasında önemli rolü olan nükleer proteindir. Bu protein cdc2 proteini ile etkileşerek cdc2 kinaz aktivitesini inhibe etmektedir. cMyc, GADD45 ve cki genleri p15, p21, p27’yi baskılayarak hücre büyümesini sağlar2,7,9. Yaşam faktörleri olmadığında c-Myc onkogeni hücreleri apoptozise götürür68,69,70. Apoptozis öncesi ve sonrası olaylar tamamen açık değildir. Bcl-2 mitokondrinin dış zarında bulunur ve mitokondriden sitokrom c salınımını bloke eder56,70. Sitokrom c kaspazları aktive ederek apoptozisi indüklemektedir3,5,36,67. Bcl-2’nin ekspresyon düzeyi apoptozisi belirleyen faktörlerden birisidir. Bcl-2 ekspresyonu fazla olan hücreler hücre ölümünden kaçabilir30,65. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Bazı çalışmalarda Bcl-2 çok yüksek bulunmasına rağmen hücre ölümünün arttığı da gösterilmiştir7. NF-kB transkripsiyon faktörünün Bcl-2 ailesini up-regule ettiği bilinmektedir. Bcl-2 aynı zamanda Ras2’nin antiapoptotik aktivitesini de düzenler.2 Bcl-2’nin diğer düzenleyici mekanizması, bax gibi büyüme düzenleyicilerinin aktivitesini inhibe ederek apoptozisi engellemektedir2,7,25,43,67. 2-1-3. Apoptozis kontrol noktaları Apoptozisin olup olmayacağını Bax ve Bcl-2 dengesinin doğruluğu belirler7,62. Hücrelerin apoptozise gitmesi için Bax düzeyinin Bcl-2’den fazla olması gerekir4,5,9,25. Bu mekanizma apoptozisde kontrol noktası 1 olarak önerilmiştir 25,64 (Şekil 4). Yaban tip p53 varlığında Bcl-2 ekspresyonu az olan hücreler apoptozise gider5,71. Tersi olursa yaban tip p53 az, Bcl-2 fazla ise çok mutasyon olabilir. Bunun nedeni hücre proliferasyonunun aktive olmasıdır3,9,25. Bcl 2 ailesinin en büyük proteini Bcl-XL, Bcl-2’ ye benzer yolda hareket eder ve Bcl-2 aktivitesini baskılayan Bak apoptozise neden olur5,9,19,43,68,72,77. Apoptozis yolağında ikinci kontrol noktası çok iyi belirlenememiştir. Interlökin converting enzim (ICE) prokaspaz 1 olarak bilinmektedir. ICE DNA onarım enzimleri ile etkileşmektedir.9,25 Polyadenosin difosfat-riboz polimeraz DNA kırıklarını tanır ve DNA onarımına katılır. Nükleer membran proteini lamin A, PARP’ı parçalar ve apoptotik hücre morfolojisi meydana gelir. ICE ile PARP inaktive olursa, apoptozis başlar9,68. 2-2. Kanser hücrelerinde G2-M geçişi: Kanser gelişiminde ve/veya hastalığın ilerlemesinde G2-M geçişinde değişimlerin rol oynadığı belirlenmiştir. İyonize edici radyasyon Ku homoloğu olan protein kinazları, ataxia telegiectasia mutant (ATM) ve ATM ilişkili (ATR) genleri aktive eder74. Mayada yapılan çalışmalarda telomer idamesi ve DNA onarımı arasındaki bağlantı gösterilmiştir75. Ku, DNA kırıklarının onarımında homolog olmayan uçlar için gereklidir. Ku telomerik DNA’ya bağlanır ve G zengin dizilerin işlenmesine katılır. Telomer idamesinde rolü olan Ku, DNA’larında çift iplik kırığı olan hücrelerin G2-M geçişinde aktive olmaktadır76. Chk1 ve Chk2 protein kinazlar ilk olarak mayada gösterilmiştir. Bu kinazlar, DNA hasarı sonucu aktive olan hücre siklus kontrol noktalarında önemli rol oynamaktadır. Mutant Chk2 Li-Fraumeni sendromlu hastalarda bulunmuştur11,20,77. Chk2 tümör baskılayıcı gen olmaya adaydir. DNA hasarının ardından, Chk1 ve Chk2 yalnız G2 bloğunu uyaran cdc25c’yi fosforillemez; aynı zamanda stabilizasyon için p53 fosforilasyonunu da uyarır. Mikrotübül inhibitörlerinin yaban (wild) tip p53’lü fare embriyo fibroblastlarına verilmesi ile G2-M geçiş bloğu aktive olmaktadır bunun yanısıra mutant p53‘lü hücrelerde hücre siklusu durdurulamamıştır. Bu blok kromozomların ayrılması ve mitoz tamamlanmadan önce diğer S fazına geçişi önleyerek aneuploidiyi engellemektedir. Böylece mutant p53 uygun kromozom ayrılması olmaksızın tekrar tekrar döngüye neden olarak genomik dengesizliğe neden olmaktadır (örneğin aneuploidi). Bu cdk’ların aktivitelerinin inhibisyonu ile gerçekleşir11,20,35. Bu geçişin inhibisyonu p53’ün G2’ye girişi inhibe eden 14-3-3 geninin transkripsiyonunu artırmasıyla sağlanmaktadır. 14-3-3 cdc25c kompleksi, cdc 25c’nin çekirdeğe girişini engeller9,36. Memelilerde DNA hasarı sonucunda tetiklenen sinyal ileti kaskadında ATM ve ATR protein kinazların önemli rolleri vardır. chk1 ve chk2 bu kinazların kontrol noktası fonksiyonlarına aracılık etmektedir78. ATM ve ATR stress olmadığında aktive olmazlar, strese maruz kalınca aktive olmaktadırlar. ATM kinaz normal hücre siklusu ilerlemesinde veya hücre farklılaşmasında gerekli değildir79. 2-3. Kanser hücrelerinde mitoz iplikçik kontrol noktası Bazı araştırmacılara göre kanser gelişimini ve genomik dengesizliği mutasyon oranları ile açıklamak mümkün değildir11,12,80-82. Genomik dengesizlik somatik hücre gen mutasyonu veya aneuploidi gibi kromozom anomalileri içerebilir. Aneuploidi tümör baskılanmasında, hücre siklusunun düzenlenmesinde, sentrozom oluşumu ve fonksiyonunda, hücre büyümesi, metastaz ve metabolizmada bulunan çok sayıda genin dengesizliği olarak tanımlanabilir.11 Kanser gelişimi ve ilerlemesinde aneuploidilerde mitotik kontrol noktası içindeki MAD veya BUB genlerindeki mutasyonların rol oynayabileceği önerilmektedir7,44. Bu mutasyonlar mitotik kontrol noktası değişimine, metafazdan anafaza geçiş sırasında kromozomların yanlış ayrılmasına ve aneuploidiye neden olur. Bu tip mutasyonlar ilk olarak aneuploidi fenotipli olarak sınıflandırılan 19 kolorektum kanser hücre soyunda çalışılmıştır7,44. Ondokuz hücre soyundan ikisinde BUB1 geninde farklı mutasyonlar belirlenmiştir. Aneuplodili bireylerde hBUB1 geninde kalıtsal mutasyonlar bulunmuştur83. BUB1 üç fonksiyonel domain içerir: bunlar CD1, nükleer lokalize edici domain (NLS) ve kinaz domain (CD2)’lerdir. CD1 içinde çerçeve kayması ve anlamsız mutasyonlar bulunmuş, NLS veya CD2 domainlerinde ise mutasyon bulunamamıştır. Farklı araştırıcılar aneuploidi belirlenen kanserlerde BUB ve MAD genlerinde mutasyonlar bulmuştur7,83. Fakat bu mutasyonlar ile ilgili çalışmalar hala yetersizdir. İnsan kanserlerinde mitoz iplikçik kontrol noktaları hakkında bilinenler çok azdır. İnsan kanserlerinin çoğunda mutant MAD1’in kromozom instabilitesine neden olduğu belirlenmiştir11. Aurora kinaz ailesi hücre siklusunu G2/M kontrol noktasından sonra mitoz kontrol noktasında veya mitozun sonuna doğru rol oynar84-87. Aurora kinazlar hatasız hücre bölünmesi için gereklidir84. Aurora kinazların kromozom dizilimi, kromozom ayırımında ve sitokinesisde önemli rolleri vardır. Aneuploidi olan tümörlerde Aurora kinaz’ın fazla ekspresyonu ve sentrozom amplifikasyonu belirlenmiştir88. Aurora A kinaz p53 gibi tümör baskılayıcı proteinleri fosforilleyerek onların aktivitelerini de düzenlemektedir85. Aurora A ve B’nin ras yolağı aracılığı ile hücre transformasyonuna neden olduğu gösterilmiştir86-88. Bu nedenle Aurora kinaz inhibitörleri ile hücre siklusu bloke edilerek kanser tedavisine yönelik çalışmalar yapılmaktadır. Aurora B kinaz inhibitörü AZD1152 lösemi tedavisine yeni etken madde olarak önerilmektedir89. 2-4.Kanser hücrelerinde sentriol anomalileri Kanser hücrelerinde sentriollerin fazla duplike olduğu belirlenmiştir. Normal hücreler, hücre siklusunun G1 fazında siklinE-cdk2 kompleksleri ile sentriol kopya sayısını düzenler11,32. Anormal spindle (asp) gen ürünü mikrotübül assosiye eden proteindir. Asp proteini kutuplarda herbir mitotik iplikçiğin herbir sentrozoma bağlanmasında rol oynar. Mitozun metafazdan anafaza geçişte tutulmasının nedeni asp mutasyonu sonucu anormal iplikçik morfolojisidir. p53, sentrozom replikasyonunda rol oynayabilir11. Fonksiyonel p53 proteini olmayan fare embriyo hücrelerinde bir hücre siklusu sırasında çok sayıda sentrozom kopyası gösterilmiştir. Mitoz sırasında sentrozom sayısının çok olmasının kromozomların yanlış dağılımına ve bu nedenle aneuploidiye yol açtığı bildirilmiştir7,11. 2-5. Tedavi potansiyeli İnsan kanserlerinin %50’sinden daha fazlasında p53 mutasyonunun olduğu rapor edilmiştir84,90. Düzenleyici sinyal yollarında anahtar oyuncuların rolünün anlaşılması, bilgi artışının yanısıra tedavi hedef ve stratejilerinin belirlenmesine katkı sağlayacaktır. (7hidroksistaurosporin) UCNO1 olarak tanımlanan antikanser etkeninin cdc25c‘yi inhibe ederek G2/M kontrol noktasını bozduğu rapor edilmiştir. Kemoterapi ve radyoterapi gibi anti-kanser tedavilerine direnç, DNA hasar kontrol noktalarının değişmesi ile mümkün olabilir91. Kansere karşı ilaç tedavisinin gelişimi hücre transformasyonu içinde moleküler hedeflere daha fazla odaklanmak gereklidir. Araştırmalar hücre siklus kontrolünün düzenlenleyen kimyasal cdk inhibitörlerinin araştırılmasına dönmüştür2,84. Kanser gelişmeden önce p53 ve pRb mutasyonlarının taranması da tümör gelişiminin erken teşhisine olanak sağlayacaktır72,90. Bir grup araştırıcı siklin A veya E’nin fazla ekspresyonunu ve p53 mutasyonunu ‘’border line’' ve invasif yumurtalık kanserlerinde göstermişlerdir9,92. Check point kinase 1 (Chk 1) kanser tedavisinde yeni hedef olarak gösterilmektedir93. Kemoterapik etkenlere direnç gösteren yumuşak doku sarkomalarında G2/M kontrol noktasının korunduğunu göstermek için immunhistokimyasal analizler kullanılmıştır. Sonuç Hücre siklusunda olaylar kaskadını düzenleyen ve kontrol eden etkileşimler çok sayıda ve komplekstir. Tümör baskılayıcı fonksiyonun ve programlı hücre ölüm yolaklarının anlaşılması yönünde ilerlemeler olmasının yanısıra çözümlenmemiş çok sayıda soru vardır. Kemoterapi ve biyoterapi için hücre siklus kontrol noktaları büyük potansiyele sahip hedeflerdir. Kemoterapi ve radyoterapi sonrası kanser hücrelerinin yaşaması onarım yollarındaki hasarlara bağlı olabilir. Hücre siklus kontrol noktalarında ve DNA onarım yollarındaki moleküler bileşenlerin daha iyi anlaşılması için in vivo ve in vitro çalışmalar klinik çalışmalarla da desteklenmelidir7,9,11,33,80,93,94. 1) Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE. Molecular Cell Biology. 4th edition: WH Freeman and Co, New York, 2000. 2) Vermeulen K, VanBockstaele DR, Berneman Z N. The cell cycle : a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131-49. 3) Guimaras CA, Linden R. Apoptosis and alternative deastyles. Eur J Biochem 2004; 271: 1638-50. 4) Zong WX, Thompson CB. Necrotic death as a cell fate? Genes Dev 2006; 20 : 1-15. 5) Bellamy COC. p53 and apoptosis. Br Med Bull 1996; 53(3): 522-38. 6) DeVita Jr VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncolgy. 5th edition: Lippincott-Raven, Philadelphia, 1997. 7) Vermeulen K, Berneman ZN, vanBockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003; 36: 165-75. 8) Öndağ Cabadak H. İnsan periferal kan ve fibroblast hücre kültürlerinin sinkronizasyonu ve sinkronize hücre kültürlerinden kromozom analizi ve karyotip hazırlanması. Yüksek Lisans Tezi, Ankara: Gazi Üniversitesi Tıp Fakültesi Tıbbi Biyoloji ve Genetik Anabilim Dalı, 1987. 9) Foster I. Cancer: A cell cycle defect. Radiography 2008; 14: 144-9. 10) Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature 2007; 450(7170): 721-4. 11) Kearns WG, Liu JM. Cell cycle checkpoint genes and aneuploidy: A short review. Current Genomics 2001; 2: 171-80. 12) Giacinti C, Giordano A. RB and cell cycle progression. Oncogene 2006; 25: 5220-7. 13) Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69: 829-80. | 14) Prasanth SG, Mendez J, Prasanth KV, Stillman B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil Trans R Soc Lond B 2004; 359: 7-16. 15) Flatt PM, Pietenpol JA. Mechanisms of cell-cycle checkpoints: at the cross roads of carcinogenesis and drug discovery. Drug Metab Rev 2000; 32: 283-305. 16) Sears RC,Nevins JR. Signalling networks that link cell proliferation and cell fate. J Biol Chem 2002; 277: 11617-20. 17) Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14: 684-91. 18) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 19) Molinari M. Cell cycle check points and their activation in human cancer. Cell Prolif 2000; 33: 261-74. 20) Cheng M, Sexl V, Sherr C, Raussel M. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1) Proc Natal Acad Sci 1998; 95: 1091-4. 21) Hartwell LH, Kastan MB. Cell cycle and cancer. Science 1994; 266:1821-8. 22) Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 1998; 16(9): 3158-68. 23) Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14(6): 684-91. 24) Weinberg R. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323-30. 25) King RJB. Cancer biology, Longman, 1996. 26) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 27) Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70. 28) Murray AW. Recycling the cell cycle: cyclins revisited. Cell 2004; 116: 221-34. 29) Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase II expression. Cancer Res 2000; 60: 121-8. 30) Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigsm. Genes Dev 2000; 14: 2393-409. 31) Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53-61. 32) Hinchcliffe EH, Thompson EA, Maller JL, Sluder G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 1999; 283 (5403): 851-4. 33) Champard JC, Lefloch R, Pouyssegur J, Lenormand P. Erk implication in cell cycle regulation. Biochem Biophys Acta 2007: 1773(8): 1299-310. 34) Roberts EC, Shapiro PS, Nahreini TS, et al. Distinct cell cycle timing requirements for extracellular signal regulated kinase and phosphoinositide-3-kinase signalling pathways in somatic cell mitosis. Mol Cell Biol 2002; 22: 7226-41. 35) Harper J, Adami G, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805-16. 36) Öndağ H. Effects of excess thymidine and methotraxate on human peripheral blood and fibroblast culture, NATO-ASI The Enzyme Catalysis Process Book, 1998. 37) Pines J, Hunter T. Human cell division: the involvement of cyclins A and B1 and multiple cdc2s. Cold Spring Harb Symp Quant Biol 1991; 56: 449-63. 38) Heald R, McLoughlin M, McKeon F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell 1993: 74; 463-74. 39) Strausfeld U, Labbé JC, Fesquet D, et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351 (6323): 242-56. 40) Draetta G, Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta 1997: 1332: M53-M63. 41) Marumato T, Hirota T, Morisaki T, et al. Roles of aurora -A kinase in mitotic entry and G2 check point in mammalian cells. Genes Cells 2002; 7: 1173-82. 42) Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle check points. J Cell Physiol 2006; 209: 13-20. 43) Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M . Cell survival, cell death and cell cycle pathways are inter connected: Implications for cancer therapy. Drug Resist Updat 2007; 10: 13-29. 44) Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 19: 392: 300-3. 45) Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and Other Mitotic Spindle Checkpoint Genes. Genomicsm 1999; 58: 181-7. 46) Ouyang B, Meadows J, Fukasawa K. Human Bub1: a putative spindle checkpoint kinase closely linked to cell proliferation. Cell Growth Differ 1998; 9(10): 877-85 . 47) Sazer S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci 1997; 94(15): 7965-70. 48) Basu J, Bousbaa H, Logarinho E, Williams BC, Sunkel CE, Goldberg ML. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146(1): 13-28. 49) Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999; 1(8): 514-21. 50) Dobles M, Liberal V, Scott ML. Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101(6): 635-45. 51) Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 2000; 103(3): 399-410. 52) Roberts BT, Farr KA, Hoyt MA. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 1994; 14(12): 8282-91. 53) Taylor SS, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 1998; 142(1): 1-11 54) Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994-1002. 55) Katsan MB, Bartkova JK. The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 1997; 237: 1-4. 56) Sherr C, Mccormick F. The Rb and p53 pathways in cancer. Cancer Cell 2002; 2: 103-12. 57) Cabadak H, Aydın B, Kan B. Muscarinic agonist and antagonists changes muscarinic receptor and cyclin D1 expression in K562 cells. EMBO ’’ Molecular mechanisms of cell cycle control in normal and malignant cCells. Spetses Island-Greece,5-8 October 2007: 53. 58) Reifenberger G, Reifenberger J, Ichimura K, et al. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS and MDM2. Cancer Res 1994; 54: 4299-303. 59) Arima Y, Hirota T, Bronner C, et al. Down regulation of nuclear protein ICBP 90 by 53/p21Cip1/WAF1 dependent DNA damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells 2004; 9: 131-42. 60) Dang T, Bao S, Wang X. Human Rad 9 is required forthe activation of S-phase check point and the maintenance of chromosomal stability. Genes Cells 2005; 10: 287-95. 61) Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol 2001; 3: E277-86. 62) Craig A, Scott M, Burch L, Smith G, Ball K, Hupp T. Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain. Embo Rep 2003; 4: 787-92. 63) Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432: 298-306 64) Latham K, Baker GL, Musunuru K, et al. Cell cycle control and differentiation: mechanisms of proliferative dysfunction in cancer cells. Cancer Detect Prev 1996; 20: 5. 65) Kaldis P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 1999; 55: 284-96. 66) Decuadin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-Xl antagonize the mitochondria dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997; 52: 62-7. 67) Story M, Kodym R. Signal transduction during apoptosis; implications for cancer therapy. Front Biosci 1998; 3: d365-75. 68) Dixon S,Soriano BJ, Lush RM, Bomer MM, Figg WD. Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. Ann Pharmacother 1997; 31: 76-82. 69) Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317-21. 70) Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ, Jr Zhan Q. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 2000; 275 (22): 16602-8. 71) Harms-Ringdahl M, Nicotera P, Radford JR. Radiation induced apoptosis. Mutat Res 1996; 366: 171-9. 72) Sattler M, Liang H, Nettesheim D, Meadows RP, et al. Structure of Bcl-xL- Bak peptide complex recognition between regulators of apoptosis. Science 1997; 275: 983-6. 73) Taya Y. Rb kinases and Rb-binding proteins: new points of view. TIBS 1997; 22: 14-7. 74) Smith GC, Divecha N, Lakin ND, Jackson SP. DNA-dependent protein kinase and related proteins. Biochem Soc Symp 1999; 64: 91-104. 75) Peterson SE, Stellwagen AE, Diede SJ, Singer MS, Haimberger ZW, Johnson CO, Tzoneva M, Gottschling DE. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet 2001; 27(1): 64-7. 76) Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 2003; 17: 2384-95. 77) Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999; 286(5449): 2528-31. 78) Takagaki K, Katsuma S, Kaminishi Y, et al. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells. Genes to Cells 2005; 10: 97-106. 79) Shiloh Y, Kastan M B. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209-54. 80) Marusyk A, DeGregori J. Building a better model of cancer. Cell Division 2006; 1: 24. 81) Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386: 623-7. 82) Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643-9. 83) Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004; 36: 1159-61. 84) Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003: 4; 842-54. 85) Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 927-36. 86) Kanda AH, Kawai H, Suto S, Kitajima S, Sato S, Takata T, Tatsuka M. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene 2005: 24; 7266-72. 87) Tatsuka M, Sato S, Kitajima S, et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene 2005; 24: 1122-27. 88) Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998: 58; 3974-85. 89) Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H, Yokoyama A. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest. Blood 2007; 110: 2034-40. 90) Golias C, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 2004; 58: 1134-41. 91) Hattori H, Kuroda M, Ishida T, Shinmura K, Nagal S, Mukal K, et al. Human DNA damage check points and their relevance to soft tissue sarcoma. Pathol Int 2004; 54: 26-31. 92) Blegen H, Einhorn N, Sjovall K, Roschke A, Ghadimi B, McShane L, et al. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas. Int J Gynecol Cancer 2000; 10: 477-87. 93) Tse AN,Carvajal R,Schwartz GK. Targeting checkpoint kinase 1 in cancer thera-peutics. Clin Cancer Res 2007; 13(7): 1955-9. 94) Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432: 316-23.

http://www.biyologlar.com/hucre-siklusu-ve-kanser

Mitoz bölünme ve evreleri

1.Moneralar hariç diğer canlılarda kalıtsal yapı kromozomlar halindedir.Moneralarda ve sitoplazmik kalıtımda rol alan organel kalıtsal yapıları DNA halindedir. 2.Moneralar hariç bütün canlılarda nucleusta bulunur.Moneralarda ve sitoplazmik kalıtımda rol alan organel kalıtsal yapıları plazmada yer alır. 3.Hücrelerde canlı türüne özgü kromozom sayısı bulunur.Örnek:İnsanda=46, Güvercin=16,Sirke sineği=8 vb. 4.Hücrelerdeki kromozomlar çiftler halindedir.Bu çiftlerden biri anneden biri babadan gelir.Bu kromozom çiftlerine homolog kromozom denir. 5.Canlılardaki kromozom çeşit sayısına takım sayısı denir ve n ile gösterilir.Örnek:İnsanda n=23, Güvercinde n=8, Sirke sineğinde=4 vb. 6.n sayısı hücrelerdeki kromozomların yarısıdır ve canlı türüne göre değişir.Örnek:İnsanda n=23, Güvercinde n=8, Sirke sineğinde=4 vb. 7.Normalde eşeyli üreyen canlıların hücrelerinde iki takım (2n) kromozom bulunur ve bu hücrelere diploid hücreler denir.Örnek:İnsanda:Epitel hücresi 2n=46, Kas hücresi 2n=46,Karaciğer hücreleri 2n=46 vb. 8.Üremede rol alan hücreler bir takım kromozom taşırlar ve bu hücrelere haploid hücre denir.Örnek: Sperm , Ovum , Makrospor , Mikrospor , spor gibi hücreler bir takım kromozom taşırlar ve haploid hücre olarak adlandırılırlar 9.Bazı canlıların hücreleri bir takım kromozom taşır.Bu tür canlılara haploid canlılar denir.Örnek:Erkek arılar.Tohumsuz bitkilerin gametofitler (Eğrelti,karayosunu vb.) , Bakteriler vb canlılar. 10.Haploid canlılar gametlerini mitoz bölünme ile oluştururlar. A)Monoploid hücreler 1-n sayıda kromozom taşırlar. 2-Mayoz bölünme ile meydana gelirler. 3-Erkek arı spermi ve çiçeksiz bitkilerde gametler mitoz bölünme ile oluşurlar. 4-Erkek arılarda ,çiçeksiz bitkilerde ve bakterilerde olduğu gibi vücudu oluşturabilirler. 5-Sadece mitoz bölünme geçirebilirler. B )Diploid hücreler 1-2n kromozom taşırlar. 2-Mitozla oluşurlar. 3-Mitoz veya mayoz bölünme geçirebilirler 4-Vücudu oluşturan hücrelerdir. Not:Bazı hücrelerde ve bazı canlıların vücudunu oluşturan hücrelerin kromozom durumları 3n ,4n gibi fazla sayıda takım içerebilir bu duruma poliploidi denir. Çoğu kültür bitkisinde durum böyledir. HÜCRE BÖLÜNMESİ Bir hücre inter faz veya bölünme evresinde görülür. İnter faz evresi bazı hücrelerde çok kıssa sürer. Örnek bakteri hücrelerinde 20 dakikadır. Bazı hücrelerde ise çok uzun sürer. Örnek sinir hücrelerinde ömür boyudur. Bu evrede hücreler kendilerine özgü yaşamsal olaylarını yürütür. Bunlar: 1-Madde alış- verişi 2-Anabolik ve katabolik reaksiyonlar 3-Organel oluşumu 4-Çok hücrelilerde dokusal işlevler 5-Büyüme ve farklılaşma 6-DNA ve RNA sentezi Ancak ileri düzeyde özelleşen kas sinir vb. hücrelerde büyüme ve farklılaşma yoktur.Bölünme yeteneği olan hücrelerin interfazında görülen en önemli olay DNA sentezidir . Bölünebilen hücrelerde gerek interfazda ve gerek mitozda değişik olayların gerçekleştiği alt evreler vardır.Bunlar: 1-İnterfazda: G1 – S – G2 evreleridir. 2-Bölünme (Mitoz): Profaz – Metafaz – Anafaz – Telofaz evreleridir. Hücrelerde büyüme iki şekilde görülür : 1-Sitoplazmik büyüme (Hacimsel büyüme olup r3 şeklinde gerçekleşir.) 2-Hücre zarı büyümesi (Alansal büyüme olup r2 şeklinde gerçekleşir.) Sitoplazma ve hücre zarındaki bu dengesiz büyümeden dolayı hücrelerde şu sorunlar oluşur. 1-Nucleus yetersizliği görülür. 2-Madde alış verişinde yetersizlik görülür. 3-Hücre zarının parçalanma tehlikesi oluşur. Hücreler bu sorunları bölünerek çözerler .Bölünme öncesinde hücrelerde bir takım değişiklikler görülür. Bölünmeye hazırlanan hücrelerde görülen değişiklikler şunlardır: 1-Diğer hücrelerle bağlantılarını çözer. 2-Dış yüzey çıkıntılarını kaybeder. 3-Fazla miktarda su alarak şişer. Hücreleri bölünmeye yönelten temel etkenler şunlardır: 1-Yüzey hacim oransızlığı. 2-Nucleus sitoplazma oransızlığı. 3-İç bölünme faktörleri (Sitoplazmik faktörler.) 4-Nucleus emri. (Oldukça zayıf ihtimal) 5-Hormonlar ve kanserojen maddeler. (Örnek:Bitkilerde sitokinin hormonu, İnsanlarda ostrojen hormonu.) Hücre bölünmesi tek hücrelilerde çoğalmaya neden olurken, çok hücrelilerde büyüme ,yenilenme ve onarılmayı sağlar.İnterfaz evresinde görülen bazı önemli olaylar vardır.Bölünme yeteneği olmayan hücrelerde bu evrede bölünme ile ilgili olaylar hariç diğer bütün olaylar görülür. Bölünebilen hücrelerde interfazda görülen olaylar şunlardır: 1-Bazı organellerin sayısı artırılır. Örnek: Mitokondri, sentrozom vb. 2-Yapısal ve işlevsel proteinlerin oranı artırılır. 3-Bölünmede görev alacak enzimler sentezlenir. 4-ATP sentezi artarak yedeklenir. 5-DNA sentezi gerçekleşir. 6-Bu evrede DNA molekülü aktif olup hücredeki yaşamsal olayları kontrol eder. A-İnterfaz 1-DNA molkülü 2-DNA + Protein 3-Kromatin yapı 4-Kromatinin kendini eşlemesi ile oluşan kardeş kromatidler 5-Kromozomal yapı a) G1 evresi: 1-Metabolik olaylar yoğun bir şekilde sürer. 2- Madde alış verişi , sentez ve yıkım reaksiyonları , organel yapımı, RNA sentezi ve dokusal işlevlerin en üst düzeyde devam ettiği evredir. 3- En uzun evredir.Bu evrede bölünebilen hücrelerde büyüme gerçekleşir. 4- Bölünme yeteneklerini kaybeden hücreler yaşam ve faaliyetlerini bu evrede gerçekleştirirler. Örnek:Kas ve sinir hücreleri bu evrede varlıklarını sürdürürler. 5-Bu evrede hücrede kromozom yapısı 2n2c dir. ( takım sayısı 2. Kromatin sayısı ise2 dir.) b) S evresi: 1-DNA’ nın eşlendiği ve kromatin sayısının iki katına çıktığı evredir. 2-Protein sentezinin en yoğun şekilde gerçekleştiği evredir. 3-Sentrozomların eşleşmesi emri bu evrede verilir. 4-Bu evrenin sonunda hücrenin kromozom yapısı 2n4c dir.(Takım sayısı 2, kromatid sayısı ise 4 tür.) c) G2 evresi: 1-Bölünme ile ilgili enzimler sentezlenir. 2-Organel sayısı artırılır. 3-DNA sentezi durmuştur ancak RNA sentezi devam eder. 4-Sentrozomların sentezi bitmiş ve oluşan sentrozom çifti zıt kutuplara hareketlenir. 5-Bu evredeki hücrenin kromozom yapısı 2n4c dir. B-Mitoz bölünme evreleri Hücre bölünmesi iki ayrı hücre kısmının bölünmesi ile gerçekleşir: 1-Karyokinez: Çekirdek bölünmesi. 2-Sitokinez: Sitoplazma bölünmesi. Sitokinez olayı bitki ve hayvanlarda farklı şekillerde gerçekleşir. a)Hayvanlarda: Ortadan boğumlanarak gerçekleşir. b)Bitkilerde: Orta lamel oluşumu ile gerçekleşir. a) Profaz 1-Nucleus zarı ve endoplazmik retikulum zarı erir. 2-Kromozomlar kısalır ve kalınlaşır. 3-Sentrozomlar zıt kutuplara hareket eder. 4-Nucleolus kaybolur. 5-Kutuplardan merkeze iğ iplikleri oluşur. b)Metafaz 1-Kromozomlar iyice kısalıp kalınlaşırlar. 2-Kardeş kromatidler sentromerler vasıtası ile bir arada tutulurlar. 3-Kromozomlar ekvatoral düzlemde yanyana dizilirler. 4-Kromozomlar sentromerleri ile iğ ipliklerine tutunurlar. c)Anafaz 1-İğ ipliklerinin kasılma ve gevşeme hareketleri ile kardeş kromatidleri bir arada tutan sentromeri parçalar. 2-Kardeş kromatidler birbirinden ayrılır ve zıt kutuplara taşınır. c)Telofaz 1-Kromozomların hareketi bitmiştir. 2-Kromozomlar helixlerini çözerek kromatin iplikler haline döner. 3-Nucleolus (Çekirdekçik) şekillenir. 4-RNA ve protein sentezi başlar. 5-İğ iplikleri kaybolur. 6-Nukleus zarı oluşmaya başlar ve endoplazmik retikulumlar şekillenir. 7-Hücrede yaşamsal olaylar yeniden başlar. 8-Sitokinez gerçekleşir ve bölünme sonlanır. A) Mitoz (Normal) bölünme Nucleus zarı kaybolarak gerçekleşir. Bir karyokinez ve birde sitokinez görülür. Genel özellikleri: 1-Bir hücreden iki hücre oluşur. 2-n, 2n, 3n, vb. gibi farklı kromozom sayısına sahip hücrelerde görülebilir. 3-Hem somatik hücrelerde hemde gametlerde görülebilir. 4-Kalıtsal çeşitlilik oluşturmaz ve oluşan bütün hücreler yapı ve özellik olarak aynıdır.( fenotip ve genotip olarak aynıdır.) 5-Bir karyokinez birde sitokinez görülür. 6-Sadece kardeş kromatidler zıt kutuplara çekilir. 7-Bir hücre ard arda defalarca mitoz geçirebilir. 8-Eşeysiz üreme, yenilenme-onarılma ve büyümenin temel mekanizmasıdır. 9-Eşeyli üreyebilen monoploid canlılarda (Erkek arılar,Eğreltiler,Karayosunları vb.)Gametleri oluşturur. B )Amitoz bölünme Nucleus zarı kaybolmadan gerçekleşir.Bir karyokinez ve birde sitokinez görülür. Genel özellikleri: 1-Nucleus zarı kaybolmaz. 2-Kalıtsal materyal ve sitoplazma eşit şekilde dağılmaz. 3-Hızlı gerçekleşir. 4-Kanser, akyuvarlar ve protistalarda gerçekleşir. C)Çoğa bölünme Genel özellikleri: 1-Nucleus zarı kaybolmadan gerçekleşir. 2-Oldukça hızlı gerçekleşen bir bölünme şeklidir. 3-Bir hücreden kısa sürede onlarca yeni hücre oluşur. 4-Çok miktarda nucleus bölünmesi (Karyokinez) olmasına karşı sitokinez görülmez. 5-Ana hücrenin parçalanması ile oluşan yeni nukleuslar etraflarına bir miktar sitoplazma alarak çok miktarda yeni hücreler oluştururlar. Örnek: Plazmodiumlarda sporlanma, Çiçekli bitkilerde Makrospordan embriyo kesesinin (8 nucleuslu) meydana gelmesi verilebilir. D) Fıssyon bölünme Bakterilerde görülen gerçek anlamda mitoz özellikleri taşımayan bölünmedir. Çekirdek bölünmesi olmayıp sadece DNA eşlenmesi ve ardından sitokinezle gerçekleşen bölünme şeklidir. Mitoz bölünmenin evrimsel önemi 1-Kalıtsal devamlılığı sağlar. 2-Yararlı kalıtsal özelliklerin günümüze kadar gelmesini sağlar.

http://www.biyologlar.com/mitoz-bolunme-ve-evreleri

Steroid Hormonların Metabolizmaları

Kandaki normal fizyolojik düzeyleri 10-10 ile 10-8 M arasında bulunan bu hormonlar iyi karakterize edilmiş plazmadaki proteinlerle taşınmaktadırlar. Plazma albuminleri spesifik olmayan bir şekilde ve sınırsız oranda steroid hormonları bağlar ve taşır. Ancak bunun sadece mineralokortikoidler (aldosteron) için önemi vardır. Diğer hormonlar affinitesi ve seçiciliği yüksek proteinlere (globulinlere) bağlanarak taşınırlar. Bu proteinler hormonları vaktinden önce inaktivasyona karşı korudukları gibi hormonların aşırı ve dengesiz bir şekilde salınmalarını da önlerler. 1. Hücreye Alınış: Steroidler lipofilik olduklarından kolaylıkla plazma zarlarının lipid tabakasından geçebilirler ve böylece bütün hücrelere girebilirler. Bazı insan tümörlerinde (hiperplastik prostat papillomları ve hipofiz adenomları gibi) steroidler için kolaylaştırılmış veya aktif transport mekanizmalarının bulunduğu gösterilmiştir. Fakat bu mekanizmaların normal hücreler için olan önemleri bilinmemektedir. Steroidler hücre içerisinde stoplazmik hidrofob proteinlere bağlanırlar. Bu nedenle steroid hormon etkinliğinin spesifikliği hedef doku hücrelerinin stoplazmalarındaki özgül reseptör protein aracılığı ile sağlanır. Eğer bir hücrede özgül reseptör protein yoksa hormon dengesi hücre dışı yöndedir. Plazmada onu bağlayıp taşıyan alfa ve beta globulinlere bağlı olarak kalır. Halbuki hedef hücrelerde spesifik reseptörler olduğundan denge içe dönük olur ve hormonlar kolayca hücreye girerler. 2.Metabolizma: İki önemli madde hariç steroid ve türevleri hedef hücrelerde biyolojik cevaplarını oluşturmak üzere metaboliz edilmezler. Ancak androgenlerin etkili olabilmeleri için çeşitli hedef hücrelerde seçici şekilde testosteronunu belirli metabolitlerine çevrilmeleri gerekir. Bu metabolitler arasında 5 dihidroksitestosteron oluşumu erkek yardımcı sex organlarının muhafazası için çok önemlidir. Diğer istisnayı da kolekalsiferol göstermektedir. Bunun kemik ve mineral metabolizması üzerindeki maksimum etkilerini gösterebilmesi için en az iki kez hidroksillenmesi gerekmektedir. Sonuçta 1,25 dihidroksikolekalsiferol oluşur. 3. Reseptör komplekslerinin aktivasyonu ve çekirdeğe girmeleri Çoğu araştırıcılarca kabul edildiğine göre stoplazmik reseptörler çekirdeğe girmeden önce bir aktivasyona uğramaktadırlar. Böylece steroid-reseptör kompleksinin çekirdeğin akseptör yerlerine bağlanmaları kolaylaşır. Ancak yapılan çalışmalar reseptör aktivasyonunu ortaya çıkaramadığı gibi östrogen reseptörleri dışında fizikokimyasal şekilleri de bir değişikliği ortaya koyamamıştır. Bütün hedef hücrelerde hormonlar 0 santigrat derecede bile stoplazmada spesifik bir halde bağlı olarak bulunurlar ve çekirdeğe ancak 20 santigrat derecenin üzerindeki sıcaklıklarda taşınabilirler. Bütün bunlara rağmen kabul edildiğine göre steroid reseptör kompleksi nükleusa diffüze olur veya taşınır. Bu taşınma sırasında reseptör protein daha düşük ağırlıklı bir proteine dönüşür veya steroid hormon ikinci ve daha küçük molekül yapısında bir proteine iletilir. Sedimentasyon katsayısı azalmış bulunan kompleks çekirdeğe girer ve kromatine oldukça sıkı bir şekilde bağlanırlar. Bu bağlanma büyük bir olasılıkla kromatinin asit özellikteki proteinleri ile olmaktadır. Reseptör protein stoplazmaya geri dönebilmektedir. Bu nedenle östradiol gibi işaretlenmiş steroid bir hormon damardan verildiğinde bunun hedef hücre çekirdeklerinde toplandığı görülmektedir. 4. Akseptör Yerleri: Akseptör yerlerinin şekli ve tabiatı halen tartışılmaktadır. Hem DNA’nın hemde Histon olmayan proteinlerin akseptör olabileceklerine dair deliller vardır. Steroidlerin çekirdekçikte yoğunlaştıkları gösterilememiştir. Böylece akseptör yerleri ya nükleoplazma veya çekirdek zarı yada her ikisidir. Kromatinin boncuklu şekli ile hormon etkileri arasında bir ilişki de bulunamamıştır. Çekirdekte hormon buradaki özgül genleri, anlatımlarını özgül haberci RNA’lar oluşturmak yoluyla kayıtlanması (transkripsiyonu) için uyarırlar. Bu protein biyosenteinin kayıtlama aşamasını uyarıyorlar demektir. Haberci RNA’lar stoplazmaya geçerek ribozomlarda yeni proteinlerin sentezi demek olan çevirim işlemini başlatırlar. Steroid hormonların etkilerini DNA’nın özgül mRNA türleri şeklinde yazılmasını uyararak etki gösterdikleri kavramı üç türlü kanıt ile desteklenmektedir: 1. Bu tür hormonlar kromatindeki histon olmayan proteinlere daha çok bağlanmaktadılar. Bu proteinlerin özgül genlerin yazılmasını ayarladığı sanılmaktadır. 2. mRNA sentezinde, saflaştırılmış kromatin etkinliğinin steroid hormonlar tarafından uyarılmasıdır. Sentezlenen mRNA’nın özgül bir protein sentezine neden olduğu birkaç durumda gösterilmiştir. 3. Hedef organların yanıt verme yeteneklerinin aktinomisin D tarafından engellenmesidir. Bu yanıt verebilmek için mRNA sentezine gerek olduğunu göstermektedir. Biyokimyasal deneylerde engelleyicilerin kullanılması tamamen doyurucu bir yaklaşım olarak kabul edilmese de bu tür deneyler destekleyici katkılar sağlamaktadır. Steroid Sekresyonunun Düzenlenişi Böbrek üstü bezi ve diğer seks steroidlerinin sentezi ve salgılanışı hipofizden çıkan adrenokortikotropik hormon (ACTH) tarafından kontrol olunur. ACTH’nun sekresyonu da hipotalamustan salıverilen kortikotropin salıverici faktör (kortikotropin releasing factor-CRF) tarafından düzenlenir. Bu bezin uyarılmasından sonra adrenler içerisinde bulunan kolesterol konsantrasyonunda hızlı bir düşüş görülür. Bu durum ACTH etkisiyle kolesterolün pregnenolona dönüştüğünün delilidir. ACTH’nin etki mekanizmasının reaksiyon hızını etkileyen substrat veya kofaktörlerin hücre içerisine girmelerini hızlandırmaları ile olduğu sanılmaktadır. ACTH aynı zamanda adrenokortikal fosforilaz enzimini de aktive etmektedir. Hayvanlara ACTH verildiği zaman adrenal kolesterol miktarındaki azalışa paralel olarak askorbik asit düzeyi de alçalmaktadır. Ancak aynı zamanda adrenal damarlarda askorbik asit düzeylerinde artış görülmektedir. Vitamin C’nin adrenal steroidler üzerindeki etkisi tartışılmaktadır. Bazıları askorbik asidin steroid hidroksilasyonlarını inhibe ettiğini ve askorbik asidin azalmasının bu inhibisyonu ortadan kaldırdığını öne sürmektedirler. Bir diğer düşünceye göre ise askorbik asit steroidlerin hidroksilasyonunu stimüle etmektedir. Bunu NADPH’lı bir oksidazı aktive ederek yaptığı ileri sürülmektedir. ACTH’nin etki mekanizmasının büyük olasılıkla kolesterol yan zincirinin degradasyonu sırasında olduğu bilinmektedir. ACTH tarafından steroid sentezinin uyarılması ve serbest bırakılması cAMP ile ilgili olarak düşünülmektedir.cAMP’nin kendisi direkt olarak ACTH’nin etkisini stimüle edebilmektedir. Steroid sentezi ekseriyetle Ca++ bağlı olarak adrenal mitekondrial membranda meydana gelen yapısal değişikliğe de bağlanmaktadır. ACTH’nin salgılanışı, kandaki steroidler tarafından feed-back mekanizma ile kontrol edilmektedir. Bu steroidlerden en önemlisi kortizoldür. Glikokortikoidler spesifik olarak hipofiz bezinde ACTH ve mRNA sentezini artırırlar. Yine pregnenolon steroidogenezisin bir feed-back inhibitörüdür. Diğer kortikosteroidlerden farklı olarak adrenaller tarafından aldosteronun üretimi ACTH tarafından etkilenmez. Aldosteron üretimi beta adrenerjik uyarı ile de artmaktadır. Beta adrenerjik uyarı ile ilgili olarak böbrekler ve dolayısı ile rennin-anjiyotensin sistem aldosteronun sekresyonunda önemli bir kontrolördür. Aldosteron üretiminin beta adrenerjik stimülüsler tarafından artırılması aldosteron salıverilişinin cAMP tarafından artırıldığına dair fikri desteklemektedir. 2.1 Adrenal Korteks Hormonları Adrenal bezin dış kısmı adrenal korteksdir. Hayat için gereklidir. Embriyolojik orjini, adrenal medulludan oldukça farklıdır. Adrenal korteks zona reticularis, zona fasciculata ve zona glomerulosa olmak üzere üç bölümden oluşur. Adrenal korteksin steroid hormonları 3 sınıfa ayrılır. 1. Glukokokortikoidler: Öncelikle protein, karbonhidrat, lipid metabolizmasını etkilerler ve zona fasciculata’dan sentezlenirler. 2. Mineralokortikoidler: Elektrolitlerin transportunu ve dokularda suyun dağılımını etkilerler. Zona glomerulosada sentez edilirler. 3. Adrojen ve östrojenler: Spesifik hedef organlarında sekunder seks karakterlerini etkilerler, zona fasciculatada sentez edilirler. 2.1.1 Glukokortikoidler En önemlisi kortizoldür. Kortizol sentezi için pregnenolonda önce 17a-hidroksilasyon (D5 yolu) ve daha sonra çift bağın D4’e izomerizasyonu gerekir. Kortizol endoplazmik retikulumda 21 hidroksilaz ve mitekondride 11b-hidroksilazın etkileri ile 17a-hidroksiprogesterondan sentezlenir. Kortisol plazmada protein bağlı olarak ve serbest halde bulunur. Plazma bağlı protein alfa globilindir, buna transkortin veya kortikosteroid bağlı globulin (CBG) denir. CBG karaciğerde üretilir ve sentezi troid bağlı globilin (TBG) gibi östrojenler tarafından artırılır. Gebelik döneminde veya diğer yüksek östrojen şartlarında, CBG düzeyi artar ve dolayısıyla plazma total cortizol düzeyi artar. CBG ve total plazma kortizol düzeyi bazı karaciğer hastalıklarında azlır, yine, idrarla fazla protein kayıplarında (nefrotik sendrom) da azalır. Glukokortikoidler insuline antagonisttir. Glukokortikoidler dolaşımdaki glukozu artırırlar. Kan damarlarında ve gastrointestinal sistemde düz kas tonusunun korunması için de gereklidir. Kortizol geneel olarak katabolik bir hormondur. Yani hücrelerde protein yıkımını hızlandırır. Travma ve enfeksiyon gibi stres durumları ile başaçıkabilmek için yakıt moleküllerini harekete geçirir. Hiperkortizolizm genel olarak bağışıklık sisteminin baskılanmasını gerektiren otoimmun veya inflamatuar hastalıklar nedeniyle glukokortikoidlerin farmakolojik dozlarına bağlı olarak ortaya çıkar. ACTH salgılayan bir hipfiz tümörüne bağlı olarak ortaya çıkan Cushing sendromu da hiperkortizolizme neden olur. Kortizol fazlalığı olan hastalarda şişmanlık, karın, göğüs ve yüzde yağ birikimi gözlenir. Glukokortikoid fazlası diabetes mellitusa, ekimozlara, yara iyileşmesinin gecikmesine, immun yetmezliğe neden olur. Glukokortikoid yetmezliğine Adisson hastalığı denir. Genellikle adrenal bezlerin otoimmun harabiyeti sonucu oluşur. Bu hastalarda yetersiz glukoneogenezis sonucu hipoglisemi, damar tonusunun azalması sonucu hipotansiyon, hafif ateş ve yüksek ACTH konsantrasyonlarına bağlı olarak hiperpigmentasyon görülür. Glukokortikoidler veteriner hekimlikte ketozis, gebelik toksemisi gibi metabolik hastalıklar ile artritisler, üreme, göz ve deri hastalıklarında ve bazı sinirsel hastalıkların sağıtımında kullanılırlar. 2.1.2 Mineralokortikoidler Mineral dengesinin korunabilmesi için adrenal mineralokortikoidlere ihtiyaç vardır. En güçlü mineralokortikoid olan aldosteron böbreklerden sodyum tutulmasına ve potasyumun atılmasına neden olur. Kortizolün tersine aldosteron, adrenal korteksin zona glomerulosa tabakasında D4 yolu ile progesterondan sentezlenir. Aldosteronün plazmada bağladığı spesifik bir taşıyıcı protein yoktur. Fakat çok zayıf bir formda albumine bağlanır. Aldosteron salgılanmasında etkili olan faktörler, ekstrasellüler sıvının potasyum iyonu yoğunluğu, renin-angiotensin sistemi, vücudun sodyum miktarı ve ACTH’dur. Aldosteron oluşumunda özellikle dolaşımdaki sodyum eksikliği ve potasyum fazlalığı ile hücre dışı sıvı hacmindeki azalış etkilidir. Dışarıdan verilen ACTH aldosteron yapımını geçici olarak uyarsa da bu hormonu esas kontrol eden mekanizma bu değildir. Esas uyarılar, damar içindeki hacim ve tuz durumuna cevap olarak böbreğin jukstaglomerüler (JG) hücrelerinden gelir. JG hücreleri glomerül yakınında, afferent böbrek arteriolünün özel kısımlarına yerleşmişlerdir. Bu hücreler kendilerine bitişik bir böbrek tubulünde yerleşmiş olan ve tubuldeki tuz ve sıvı bileşimine duyarlı olan makula densa hücreleri ile beraber çalışırlar. Tuz eksikliği, kan hacmi veya basıncında düşme sonucu JG hücrelerinden bir glikoprotein enzim olan renin salglanır. Renin, anjiotensinojeni anjiotensin I e çevirir. Anjotensin I daha sonra anjiotensin converting enzyme (anjiotensin dönüştürücü enzim) ile anjiotensin II’ye çevrilir. Anjiotensin II de bir aminopepdidaz ile anjiotensin III’e dönüştürülür. Her ikisi de adreanl korteksin zona glomerulosa hücrelerindeki spesifik reseptörlere bağlanırlar ve aldosteron salgısını artırırlar. Yüksek potasyum düzeyleri de aldosteron salgısını artırır. Aldosteron distal renal tubililerde potasyum-hidrojen iyonu ile değiştirelerek sodyumun glomeruler filtrattan geri emilimini artırır. Sodyumun barsaklardan emilimini de büyük ölçüde artırmaktadır. Na+ ve Cl-‘nin ter, tükürük, mide barsak kanalı salgıları ile kaybını azaltır. Yukarıdaki etkilerine paralel olarak ekstrasellüler sıvı hacmini artırarak kan basıncını yükseltir. İdrar miktarı artar. Hiperaldosteronizm, adrenal bezin hiperplazisi veya tümörü nedeniyle oluşur. Bu durumda hipertansiyon, hipokalemi ve düşük plazma renin düzeyleri gözlenir. Aldosteron sentezindeki artış, sodyum tutulması ve damar hacmindeki artış renin salgılanmasının baskılanmasına neden olmaktadır. Bu durumda ciddi bir ödem ve hipernatremi oluşmaz. Çünkü diğer hormonal sinyaller böbreğin aldosteron etkisinden kaçabilmesine olanak verir. Bu grup hormonların veteriner sağıtımdaki uygulama alanı hemen hemen köpeklerin kronik interstitiel nefritislerinin sağıtımı ile sınırlıdır. Glukokortikoidlerin aksine tek başına mineralokortikoid yetmezliği tedavi edilmese bile ölümcül değildir. Bunun sebebi vazopressin, katekolaminler ve atrial natriüretik pepdit gibi hormonların kan basıncını ve elektrolit metabolzimasını düzenleyici etkileridir. 2.1.3 Adrenal Androjenler Adrenal androjenler primer olarak zona fasciculata’da pregnenolon veya progesteronun 17. Karbonundaki yan zincirinin koparılmasıyla sentezlenirler. ... 2.2 Gonadal Steroidler 2.2.1 Östrojenler ve Progestinler Yumurtalık folliküllerinde üç major hücre tipi vardır. Follikül çevresindeki interstisyel hücrelerden köken alan theca interna hücreleri, yumurta hücresini saran granulosa hücreleri ve yumurta hücresinin kendisi. Yumurtalıklardaki theca interna hücrelerinde pregnenolon önce D4 yolu ile progesterona, daha sonra da androstenedion’a çevrilir. Oluşan androstenedion yumurtalıklardaki granulosa hücrelerinde önce testosterona (17a-hidroksisteroid dehidrogenaz ile) ve daha sonra major östrojen olan östradiole (Östradiol 17b) dönüştürülür. Östrojen sentezindeki anahtar enzim bir 19-hidroksilaz-aromataz kompleksidir. 19. Karbonun uzaklaştırılması ve A halkasının aromatizasyonu ile 18 karbonlu steroidin yapımı katalizlenir. Etkili diğer östrojenler ise östron ve östriol’dür. Yumurtalıklar tarafından gonadal steroidlerin üretilmesi, hormon yapımı ile yumurta hücrelerinin olgunlaşması ve ovulasyon ile döngüsel bir şekilde senkronize olmaları son derece ilginç olaylardır. Östrojenin en önemli görevi menstrual siklusun normal şeklilde devamını sağlamak ve dişi üreme organlarını gebeliğe hazırlamaktır. Ovaryum folliküllerinden östrogenlerin salgılanması ovaryum ve ön hipofiz arasındaki feed-back mekanizma ile düzenlenmektedir. Buna göre ön hipofizden salgılanan FSH ve LH’ın ovaryumları uyarmasıyla östrogenler salgılanır. Söz konusu uyarıda FSH’nın etkinliği birinci derecede ve LH’inkine ikinci derecede kalır. Östrogenlerin kan yoğunluğu arttığında dolaylı olarak ön hipofizden FSH salgılanması inhibe edilir. Östrogenlerce FSH salgısının inhibüsyonu mekanizması erkek hayvanlarda androgenlerin FSH salgısını inhibe ettiği şekilde ve ondan daha güçlü olarak hipotalamustan GnRF salgısının ve ona bağlı olarak FSH ve LH salgılarının azalması ovaryumlardan östrogenlerin salgılanmasının azalmasına yol açar. Östrogenlerin kan yoğunluğu azaldığında yukarıda özetlenen mekanizma tersine çalışmak suretiyle salgılanmaları artar. Böylece kan östrogen yoğunluğu gizyolojik düzeylerde tutabilmesi için feed-back kontrol mekanizması sayesinde FSH ve östrogen yoğunlukları arasında bir denge sağlanır. Kana geçen östrogenlerin büyük kısmı plazmada sex hormonu bağlayan globulin (SHBG) adı verilen bir özel proteine bağlanırlar. Bu proteinin karaciğerdeki sentezi östrogenlerin etkisi ile ihtiyaca göre ayarlanmaktadır. Östrogenler dişilerde cinsiyet organlarının ve ikincil cinsiyet karakterlerinin gelişmesi, gelişmenin ve fizyolojik etkinliklerinin sürdürülmesi için gereklidirler. Östrogenler dişi karakterlerinin meydana gelmesinde birinci derecede sorumludurlar. Özellikle progesteron olmak üzere diğer steroidlerle birlikte etkileyerek östrus (kızgınlık) olarak nitelenen davranış ve fiziksel değişiklikleri oluştururlar. Östrogenlerin dişi memelilerde oluşturduğu ikincil sex karakterleri vücut şeklinin kılların ve sesin değişmesi, memelerin gelişmesi, tüylenme vb işlevleri kapsar. Meme bezlerinin büyümesi duktusların, stromanın gelişmesindeki artış ve yağ depolanması sonucunda meydana gelir. Meme bezleri üzerindeki etkide progesteron, glukokortikoidler ve insülinle birlikte hareket eder. Östrogenler tüm çiftlik hayvanlarında vücudun erken gelişen kısımlarının gelişmesini uzatmak suretiyle büyümeyi uyarıcı bir etki gösterirler ve dokuların besinlerden daha iyi yararlanmalarını sağlayarak kemiklerin ve kasların gelişmesini artırırlar. Bu grup hormonların etkisiyle azot alıkonulmasında artış olmaz. Hormon kullanılmasına bağlı olarak özellikle kasaplık hayvanların karkas ağırlıklarında meydana gelen artış, yağdan çok vücut proteinlerinin ve kemiklerin ağırlık artışından ileri gelir. Gerçekten de östrogenler hücrelerde protein sentezini artırırlar. Üreme organlarının bu hormonlar tarafından büyütülmesinde hücrelerde sayısal artışın yanında protein sentezindeki artışa bağlı olarak hücre büyüklüğündeki artmanın da katkısı vardır. Genç horozlara uygulanan östrogenler vücutta daha çok yağın depolanmasına olanak sağlar. Östrogenlerin proteinler üzerindeki anabolik etkileri sığırlar başta olmak üzere kanatlılar ve tüm kasaplık hayvanların semirtilmesi yönünden önem taşımakta olup bunun için özellikle dietilstilbestrol (DES) gibi nonsteroid sentetik östrogenler sığır, koyun ve domuzlarda, yemlerle birlikte verilerek veya deri altına implante edilerek kullanılabilmektedir. DES’in neden olduğu besin kirlenmesi birçok ülkede özel bir sorun yaratmaktadır. Kanserojenik etkili bulunması, sorunun önemini daha da artırmıştır. Öte yandan cinsiyet farkı gözetmeksizin insanlarda östrogenik etki gösterildiği ve dolayısı ile besinleri ile birlikte östrogenik hormon kalıntısı alan insanların östrogenik etki riski ile karşı karşıya olmalarıda konunun önemli diğer bir yönüdür. Ovülasyondan sonra granulosa hücreleri corpus luteum yapısı içerisinde başta progesteron olmak üzere progestinleri sentezlerler. Androgenler ve östrogenler dışında kalan ve çoğunluğu korpus luteumdan salgılanan veya bu organdan izole edilen gonadal steroidler genellikle progestinler adı altında toplanırlar. Memeli vücudunda sentezlenen başlıca projestin hormonu progesterondur. Bunun büyük bir çoğunluğu ovaryumlardan, korpus luteumun lüteal hücreleri tarafından salınmaktadır. Çeşitli dokularda hazırlanan progesteronun bir kısmı salgılanır, diğer kısmı ise hücrelerde diğer steroid bileşiklere çevrilmektedir. Progesteron uterus mukozasının kalınlığını ve bezlerinin kompleksitesini artırır. Böylece endometruyum implantasyona hazırlanır. Uterus kasılmalarının frekansı azalır. Böylece implante olmuş durumdaki fötüsun dışarı atılması önlenmiş olur. Myometruyum hücrelerini oksitosine karşı duyarsızlaştırır. Fallop borularını kaplayan mukozada da progesteron etkisi ile sekretuar değişiklikler meydana gelir. Bu değişiklikler döllenen ve bölünmekte olan ovum için çok önemlidir. Zira ovumun buradan geçerek uterusa ulaşması sırasında beslenmesi bu şekilde sağlanmaktadır. Progesteron memelerde lobulus ve alveolusların gelişmesini sağlar. Alveol hücreleri progesteron etkisi ile çoğalır, büyür ve sekretuar nitelik kazanır. Dana sonra da prolaktin etkisi ile süt salgılamaya başlar. Büyük miktarda progesteron distal tubuluslardan su sodyum ve klorür rezorpsiyonunu artırır. Bu etkisini aldosteron reseptörleri ile birleşme yetenekleri sayesinde gösterir. Progesteron katabolik etkilidir. Yani annenin yedek protein depolarını harekete geçirerek bunları gebelikte gerekli olan yapım işleri için uterusun büyümesi, süt bezlerinin büyümesi, gelişmesi ve özellikle uterus içerisindeki plasentanın gelişmesi ile yavrunun beslenip büyümesi için kullanır. Gebelikte progesteron etkisi ile iştah artar ve fiziksel etkinlik azalır. Progesteron psisik etkileri çerçevesinde olmak üzere dişi hayvanlarda yavru yapma örneğinde olduğu gibi annelik davranışlarının gelişmesini kolaylaştırır. Yüksek dozda verilen progesteron ve tüm progestirler hipotalamustan gonadotropin salıverici faktör salgılanmasını inhibe etmek suretiyle ön hipofizden LH salgılanmasını azaltırlar. İnekler gibi östrus siklusu gösteren hayvanlarda bu durum diöstrusun uzunluğunun bir düzenleyicisi olabilir. Çünkü korpus luteumun progesteron sekresyonu kesilir kesilmez derhal FSH salgılanması bunu izler ki bu da proöstrus ve folliküllerin gelişmesine neden olur. Yüksek dozlarda verilen progesteron birçok hayvan türünde ve kadında folliküllerin gelişmesini önlemek suretiyle ovulasyonu bloke edebilmektedir. Gebelik sırasında ovulasyon olmaması LH salgılanmasındaki azalmayla açıklanır. Progesteron yüksek dozlarda verildiğinde vücut ısısını yükseltir. Vücut ısısının yükselmeye başlaması ovülasyon zamanını belirleme bakımından bir gösterge oluşturabilir. Termojenik etkinin hormonun hipotalamusta termoregülasyon merkezine etki etmesinden ileri geldiği sanılmaktadır.

http://www.biyologlar.com/steroid-hormonlarin-metabolizmalari

DNA ve Özellikleri Hakkında Kapsamlı Bilgi

Deoksiribonükleik asit veya kısaca DNA, tüm organizmalar ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilginin uzun süreli saklanmasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Ama başka DNA dizilerinin yapısal işlevleri vardır (kromozomların şeklini belirlemek gibi), diğerleri ise bu genetik bilginin ne şekilde (hangi hücrelerde, hangi şartlarda) kullanılacağının düzenlenmesine yararlar. Kimyasal olarak DNA, nükleotit olarak adlandırılan basit birimlerden oluşan iki uzun polimerden oluşur. Bu polimerlerin omurgaları, ester bağları ile birbirine bağlanmış şeker ve fosfat gruplarından meydana gelir. Bu iki iplik birbirlerine ters yönde uzanırlar. Her bir şeker grubuna baz olarak adlandırılan dört tip molekülden biri bağlıdır. DNA'nın omurgası boyunca bu bazların oluşturduğu dizi, genetik bilgiyi kodlar. Protein sentezi sırasında bu bilgi, genetik kod aracılığıyla okununca proteinlerin amino asit dizisini belirler. Bu süreç sırasında DNA'daki bilgi, DNA'ya benzer yapıya sahip başka bir nükleik asit olan RNA'ya kopyalanır. Bu işleme transkripsiyon denir. Hücrelerde DNA, kromozom olarak adlandırılan yapıların içinde yer alır. Hücre bölünmesinden evvel kromozomlar eşlenir, bu sırada DNA ikileşmesi gerçekleşir. Ökaryot canlılar (yani hayvan, bitki, mantar ve protistalar) DNA'larını hücre çekirdeği içinde bulundururken prokaryot canlılarda (yani bakteri ve arkelerde) DNA, hücre sitoplazmasında yer alır. Kromozomlarda bulunan kromatin proteinleri (histonlar gibi) DNA'yı sıkıştırıp organize ederler. Bu sıkışık yapılar DNA ile diğer proteinler arasındaki etkileşimleri düzenleyerek DNA'nın hangi kısımlarının okunacağını kontrol eder. Nükleotit olarak adlandırılan birimlerden oluşan bir polimerdir.[1][2] DNA zinciri 22 ila 26 Ångström arası (2,2-2,6 nanometre) genişliktedir, bir nükleotit birim 3,3 Å (0.33 nm) uzunluğundadır.[3] Her bir birim çok küçük olmasına rağmen, DNA polimerleri milyonlarca nükleotitten oluşan muazzam moleküllerdir. Örneğin, en büyük insan kromozomu olan 1 numaralı kromozom yaklaşık 220 milyon baz çifti uzunluğundadır.[4] Dna'nın yarısı dişi bireyden yarısı da erkek bireyden gelir. Canlılarda DNA genelde tek bir molekül değil, birbirine sıkıca sarılı bir çift molekülden oluşur.[5][6] Bu iki uzun iplik sarmaşık gibi birbirine sarılarak bir çift sarmal oluşturur. Nükleotit birimler bir şeker, bir fosfat ve bir bazdan oluşurlar. Şeker ve fosfat DNA molekülünün omurgasını oluşturur, baz ise çifte sarmaldaki öbür DNA ipliği ile etkileşir. Genel olarak bir şekere bağlı baza nükleozit, bir şeker ve bir veya daha çok fosfata bağlı baza ise nükleotit denir. Birden çok nükleotidin birbirine bağlı haline polinükleotit denir.[7] DNA ipliğinin omurgası almaşıklı şeker ve fosfat artıklarından oluşur.[8] DNA'da bulunan şeker 2-deoksiribozdur, bu bir pentozdur (beş karbonlu şekerdir). Bitişik iki şekerden birinin 3 numaralı karbonu ile öbürünün 5 numaralı karbon atomu arasındaki fosfat grubu, bir fosfodiester bağı oluşturarak şekerleri birbirine bağlar. Fosfodiester bağın asimetrik olması nedeniyle DNA ipliğinin bir yönü vardır. Çifte sarmalda bir iplikteki nükleotitlerin birbirine bağlanma yönü, öbür ipliktekilerin yönünün tersidir. DNA ipliklerinin bu düzenine antiparalel denir. DNA ipliklerin asimetrik olan uçları 5' (beş üssü) ve 3' (üç üssü) olarak adlandırılır, 5' uç bir fosfat grubu, 3' uç ise bir hidroksil grubu taşır. DNA ve RNA arasındaki başlıca farklardan biri, içerdikleri şekerdir, RNA'da 2-deoksiriboz yerine başka bir pentoz şeker olan riboz bulunur.[6] Çift sarmalı iki ipliğe bağlı bazlar arasındaki hidrojen bağları DNA'yı stabilize eder. DNA'a bulunan dört baz, adenin (A olarak kısaltılır), sitozin (C), guanin (G) ve timin (T) olarak adlandırılır. Bu dört baz şeker-fosfata bağlanarak bir nükleotit oluşturur, örneğin "adenozin monofosfat" bir nükleotittir. Bazlar iki tip olarak sınıflandırılırlar: adenin ve guanin, pürin türevleridir, bunlar beş ve altı üyeli halkaların kaynaşmasından oluşmuş heterosiklik bileşiklerdir; sitozin ve timin ise pirimidin türevleridir, bunlar altı üyeli bir halkadan oluşur. Bir diğer baz olan urasil (U), sitozinin yıkımı sonucu seyrek olarak DNA'da bulunabilir. Kimyasal olarak DNA'ya benzeyen RNA'da timin yerine urasil bulunur. Oyuklar İki sarmal iplik DNA omurgasını oluşturur. Bu iplikler araındaki boşluklar takip edilerek iki tane hayali boşluk veya oyuk daha bulunabilir. Bu oyular baz çiftlerine bitişiktir ve onlara bağlanmak için bir yer olşuturabilirler. Bu oyuklar birbirlerinin tam karşısında olmadıkları için büyüklükleri aynı değildir. Bunlardan büyük oyuk (majör oyuk) olarak adlandırılanı 22 Å genişliğinde, küçük (minör) oyuk ise 12 Å genişliğindedir.[9] Küçük oyuğun darlığı nedeniyle bazların kenarlarına erişmek büyük oluktan daha kolaydır. Bu nedenle, DNA'daki belli baz dizilerine bağlanan, transkripsiyon faktörü gibi proteinler büyük oyuktan bazların kenarlarına temas ederler.[10] Hücredeki DNA'nın bazı bölgelerinde bu durum farklı olabilir (aşağıda "Alternatif çifte sarmal yapılar" bölüne bakınız) ama oralarda dahi, eğer DNA normal B biçimini alacak şekilde burulsaydı görülecek büyüklük farklılıklarına göre adlandırılır. Baz eşleşmesi DNA'nın bir ipliğindeki bir baz tipi, öbür iplikten tek bir baz tipi ile bağ kurar. Buna tümleyici (komplemanter) baz eşleşmesi denir: pürinler pirimidinler ile hidrojen bağı kurar, A yalnızca T'ye bağlanır, C'de yalnızca G'ye bağlanır. Çift sarmalda karşıdan karşıya birine bağlı iki baza bir baz çifti denir. Çift sarmalı kararlı kılan ayrıca hidrofobik etki ve pi istiflenmesi vardır, bunlar DNA dizisisinden bağımsızdır.[11] Hidrojen bağları kovalent bağlardan daha zayıf olduklarından kolayca kopup tekrar oluşabilirler. Dolayısıyla DNA zincirinin iki ipliği bir fermuar gibi kolayca birbirinden ayrılabilir, ya mekanik güç ile veya yüksek sıcaklıkta.[12] Komplementerliğin bir sonucu olarak bir DNA sarmalındaki iki iplikli dizideki tüm bilgi ipliklerin her birinde kopyalanmış durumdadır, bu da DNA kopyalanması için esas bir özelliktir. Aslında komplementer baz çiftleri arasındaki spesifik ve tersinir etkileşimler DNA'nın canlılardaki işlevleri için şarttır.[1] İki tip baz çifti farklı sayıda hidrojen bağları oluşturur, AT'nin iki hidrojen bağı, GC'nin üç hidrojen bağı vardır (bakınız şekil). Dolayısıyla GC çiftleri AT baz çiftlerinden daha güçlüdür. Dolayısyla iki DNA ipliğinin birbirine bağlanma gücünü belirleyen, hem DNA çift sarmalının uzunluğu hem de onu oluşturan GC baz çiftlerinin yüzde oranıdır. Yüksek oranda GC'li uzun DNA'ların iplikleri birbirine daha sıkı bağlıdır, AT oranı yüksek kısa sarmalların iplikleri ise birbiriyle daha zayıf etkileşirler.[13] Biyolojide, DNA çifte sarmalının kolay ayrılması gereken bölgelerinde AT oranı yüksek olur, örneğin bazı promotörlerde bulunan TATAAT Pribnow kutusu.[14] Laboratuvarda bu etkileşimin gücünü ölçmek için hidrojen bağlarını koparmak için gerekli sıcaklık, ergime sıcaklığı belirlenir (bu, Tm sıcaklığı olarak da adlandırılır). DNA çifte sarmalındaki tüm baz çiftleri eridikten sonra iplikler ayrışır ve çözeltide iki bağımsız molekül olarak varlığını sürdürür. Bu iki tek iplikli DNA molekülün tek bir biçimi yoktur, ama bazı biçimler diğerlerinden daha kararlıdır.[15] Anlam ve ters anlam Bir DNA dizisi, eğer ondan protein sentezlemeye yarayan mesajcı RNA kopyası ile aynı diziye sahipse, "anlamlı" olduğu söylenir.[16] Öbür iplikteki diziye "ters anlamlı" dizi denir. Aynı DNA ipliğinin farklı bölgelerinde anlamlı ve ters anlamlı diziler bulunabilir, yani her iki iplikte hem anlamlı hem anlamsız diziler bulunur. Hem prokaryot ve ökaryotlarda ters anlamlı, yani protein üretimine yaramayan, RNA'nın üretildiği olur, bu RNA'ların işlevi hâlen tam bilinmemektedir.[17] Bir görüşe göre ters anlamlı RNA, RNA-RNA baz eşleşmesi yoluyla gen ifadesinin düzenlenmesine yaramaktadır.[18] Bazı DNA dizilerinde anlam ve ters anlam kavramları birbirine karışır, çünkü bazen genler birbiriye örtüşebilir.[19] Böyle durumlarda bazı DNA dizileri çifte görev yapar, bir iplik boyunca okununca bir protein kodlar, öbür iplik boyunca okununca ikinci bir protein kodlar. Bakterilerde bu tür gen örtüşmeleri gen transkripsiyonunun düzenlenmesi ile ilişkili olduğuna dair bulgular vardır,[20] virüslerde ise, genlerin örtüşmesi küçük bir viral genoma daha çok bilginin sığmasını sağlar.[21] Süper burulma Süper burulma (İngilizce supercoiling) tabir edilen bir süreç ile DNA bir halat gibi burulabilir. "Gevşek" halinde DNA'daki bir iplik, her 10,4 baz çiftinde bir, çift sarmalın ekseni etrafında bir tam dönüş yapar. Ama, eğer DNA burulursa iplikler daha sıkı veya daha gevşek sarılı olabilirler.[22] Eğer DNA sarmalı sarılma yönünde burulursa buna pozitif süperburulma denir ve bazlar birbirlerine daha sıkı şekilde tutunurlar. Eğer ters yönde burulursa DNA, buna negatif süperburulma denir ve bazlar birbirlerinden daha kolay ayrışırlar. Doğadaki çoğu DNA molekülü az derecede negatif süper burguludur, bundan topoizomeraz adlı enzimler sorumludur.[23] Bu enzimlerin bir işlevi transkripsiyon ve DNA ikileşmesi gibi süreçler sırasında DNA ipliklerine etki eden burulmayı bertaraf etmektir.[24] Alternatif çifte sarmal yapılar DNA'nın çeşitli biçimleri (konformasyonları) mevcuttur.[8] Ancak, canlılarda sadece A-DNA, B-DNA, ve Z-DNA gözlemlenmiştir. DNA'nın hangi biçimi aldığı DNA dizisine, süperburulmanın yönü ve miktarına, bazlardaki kimyasal değişimlere, ve çözeltinin özelliklerine (metal iyonu ve poliamin konsantrasyonu gibi) bağlıdır.[25] Bu üç biçimden yukarıda betimlenmiş olan "B" biçimi, hücrelerdebulunan şartlar altında en sık görülenidir.[26] B biçimine kıyasla DNA'nın A biçimi daha geniş bir sarmaldır, küçük oluk daha geniş ve sığ, büyük oluk da daha dar ve derindir. A biçimli nükleik asitler, fizyolojik olmayan şartlarda, suyunu kaybetmiş DNA örneklerinde görülür, hücre içinde ise DNA ve RNA ipliklerinin birbirine sarılmasından oluşan karma (hibrit) eşleşmelerde, ayrıca bazı enzim-DNA komplekslerinde meydana gelebilir.[27][28] Metilasyonla kimyasal değişime uğrayan DNA parçaları daha büyük biçimsel değişiklik gösterip Z biçimini alabilirler. Bu durumda iplikler sarmal ekseni etrafında dönerek sol elli bir spiral oluşturur, bu daha yaygın olan B biçimimdekinin tersi yöndedir.[29] Bu sıra dışı yapılar Z-DNA bağlayıcı proteinler tarafından tanınır ve transkripsiyon kontrolü ile ilişkili olduğu sanılmaktadır.[30] Dörtlü yapılar Doğrusal kromozomların uçlarında telomer olarak adlandırılan özelleşmiş bölgeler bulunur. Bu bölgelerin ana fonksiyonu kromozom uçlarının telomeraz adlı enzim aracılığıyla kopyalanmasını sağlamaktır. DNA'yı normalde kopyalayan enzimler kromozomların en uç kısımların kopyalayamadığı için bu kopyalama telomeraz aracılığıyla yapılır.[32] Bu özelleşmiş kromozom başlıkları ayrıca DNA'nın uçlarını korurlar ve hücredeki DNA tamir sistemlerinin bunları tamir edilmesi gereken hasar olarak algılanmasını engeller.[33] İnsan hücrelerinde telomerler genelde TTAGGG dizisinin birkaç bin kere tekrarından oluşan tek iplikli DNA uzantılarıdır.[34] Bu guanin zengini diziler normal DNA'daki baz çiftleri yerine, dört bazlı birimlerden meydana gelmiş istiflenme kümeleri ile kromozom uçlarını stabilize ederler. Burada dört guanin bazı yassı bir tabaka oluştururlar, bunlar da birbiri üzerine istiflenerek kararlı bir G-dörtlüsü (G-quadruplex) yapısı oluştururlar.[35] Bu yapıların stabilizasyonu, bazların kenarları arasındaki hidrojen bağları ve her dört bazlı birimin ortasında yer alan bir metal iyonun şelasyonu ile gerçekleşir.[36] Bu G-dörtlüleri başka yollardan da oluşabilir: tek bir ipliğin birkaç kere katlanması ile bu dörtlü birim oluşabilir, veya ikiden fazla farklı paralel ipliğin her birinin ortak yapıya bir baz temin etmesi ile de bu dört baz bir araya gelebilir. Bu istiflenmiş yapıların aynı sıra, telomerler ayrıca telomer ilmiği (T-ilmiği; İngilizce: telomere loops veya T-loops) adlı yapılar oluştururlar. Bunlarda tek iplikli DNA, telomer bağlanıcı proteinler tarafından stabilize edilmiş bir halka olarak kıvrılır.[37] Bir T-ilmiğinin en ucundaki tek iplikli DNA, çift iplikli bir DNA bölgesine bağlıdır. Bu birleşme noktasında tek iplikli telomer DNA'sı, çift iplikli DNA'nın çifte sarmalını bozup iki sarmaldan biri ile baz eşleşmesi yapar. Bu üç sarmallı yapıya yer değişim halkası (İngilizce displacement loop veya D-loop) denir.[35] Baz değişimleri Kromatin adı verilen bir yapı içinde DNA'nın paketlenmesi ile kromozomlar meydana gelir. Bu paketlenme gen ifadesine etki eder. Baz değişimi (modifikasyonu) bu paketlenmeyle ilişkilidir, öyle ki gen ifadesinin az olduğu veya hiç olmadığı yerlerde sitozin bazları yüksek derecede metilasyona uğramıştır. Örneğin, sitozin metilasyonu ile 5-metilsitozin meydana gelir, bu X kromozomu inaktivasyonu için önemlidir.[38] Ortalama metilasyon düzeyi canlıdan canlıya farkeder: solucan Caenorhabditis elegans'da sitozin metilasyonu olmaz, buna karşın omurgalı DNA'sının %1'e ulaşan kadarı 5-metilsitozin içerebilir.[39] 5-metilsitozinin önemli bir baz olmasına rağmen, onun deaminasyonu sonucu bir timin bazı oluşur, bu yüzden metillenmiş sitozinler mutasyona eğilimlidirler.[40] Diğer baz modifikasyonarı arasında bakterilerde görülen adenin metilasyonu ve kinetoplastitlerde urasilin glikozilasyonu sonunda meydana gelen "J-bazı" sayılabilir.[41][42] DNA hasarı DNA çeşitli farklı mutajenler tarafından hasara uğrayabilir, bunun sonucunda DNA dizisi değişebilir. Mutajenler arasında başlıca, yükseltgen (oksitleyici) etmenler, alkilleyici etmenler ve yüksek enerjili elektomanyetik ışınlar (morötesi ışık ve X ışınları gibi) sayılabilir. DNA'da meydana gelen hasarın tipi mutagenin tipine bağlıdır. Örneğin, mor ötesi ışık timin ikilileri (timin dimerleri) oluşturarak DNA'ya hasar verir.[44] Buna karşın, serbest radikaller veya hidrojen peroksit gibi yükseltgen etmenler çeşitli farklı türden hasar oluşturabilirler, baz değişimi (özellikle guanozin) ve iki iplikli kırılmalar gibi.[45] Her bir insan hücresinde günde 500 baz yükseltgeyici zarar görür.[46][47] Bu yükseltgeyici hasarlardan en zararlısı çift zincirli kırılmalardır, çünkü bunların onarımı zordur, bunlar DNA dizilerinde noktasal mutasyonlara, insersiyonlara ve delesyonlara ayrıca kromozomal translokasyonlara yol açabilirler.[48] Çoğu mutajen, iki baz çifti arasındaki boşluğa girer, buna enterkalasyon denir. Çoğu enterkalatörler aromatik ve düzlemsel moleküllerdir, bunlara örnek olarak etidyum bromür, daunomisin ve doksorubisin sayılabilir. Bir enterkalatörün iki baz çifti arasına girebilmesi için bunların arasının açılması, bunun olabilesi için de DNA sarmalının normalin aksi yönde burularak gevşemesi gerekir. Bunlar olunca transkripsiyon ve DNA ikilenmesi engellenir, zehirlenme ve mutasyonlar meydana gelir. Bu yüzden DNA enterkalatörleri çoğunlukla kanserojendir, bunların iyi bilinen örnekleri olarak benzopiren diol epoksit, akridin türevleri aflatoksin ve etidyum bromür sayılabilir.[49][50][51] Tüm bunlara rağmen, DNA transkripsiyonuna engel olma özelliklerinden dolayı bu toksinler aynı zamanda hızla büyüyen kanser hücrelerini engellemek amacıyla kemoterapide kullanılırlar.[52] Biyolojik işlevleri DNA, ökaryotlarda doğrusal kromozomlar, prokaryotlarda ise dairesel kromozomlar içinde bulunur. Bir hücredeki kromozomlar kümesine onun genomu denir; insan genomu 46 kromozom içinde yer alan yaklaşık 3 milyar baz çiftinden oluşur.[53] Protein ve diğer işlevsel RNA molekülleri kodlayan bilgi, gen adı verilen DNA parçalarının dizisinde yer alır. Genlerdeki genetik bilginin aktarılması baz eşleşmesi ile gerçekleşir. Örneğin, transkripsiyon sırasında bir DNA dizisinin ona komplementer bir RNA dizisi olarak kopyalanması, DNA ile doğru RNA nükleotitler arasındaki çekim ile mümkün olur. Protein çevrimi (translasyon) denen süreç sırasında bu RNA dizisine kaşılık gelen bir protein sentezlenirken, RNA nükleotitleri arasında gene baz eşleşmesi olur. Bir diğer önemli biyolojik süreç, hücredeki genetik bilginin kopyalanması olan DNA ikilenmesidir. Bu işlevlerin ayrıntıları başka maddelerde işlenmiştir; burada DNA ile genomun fonksiyonlarını yerine getiren diğer moleküller arasındaki etkileşimler ele alınmıştır. Genler ve genomlar Genomu oluşturan DNA ökaryotlarda hücre çekirdeğinde, ayrıca az miktarda mitokondrilerde bulunur. Prokaryotlardaki DNA, sitoplazma içinde yer alan, düzensiz şekilli nükleoit denen cismin içindedir.[54] Genom tarafından kodlanan bilgi genlerde yer alır, bir canlı birey tarafından taşınan bu bilginin tamamına onun genotipi denir. Gen kalıtımsal bir birimdir ve organizmanın belli bir özelliğini belirleyen bir DNA dizisi ile tanımlanır. Ayrıca, bu DNA bölgesinin transkripsiyonunu düzenleyen diziler (promotör ve hızlandırıcılar gibi) de vardır. Çoğu biyolojik türde genomdaki dizilerin ancak ufak bir bölümü protein kodlar. Örneğin insan genomunun ancak %1'i protein eksonları kodlar, buna karşın insan DNA'sının %50'si protein kodlamayan, kendini tekrar eden dizilerden oluşur.[55] Ökaryot genomlarında bu kadar çok protein kodlamayan DNA'nın bulunması ve türlerin genom büyüklüğündeki ("C-değeri"ndeki) büyük farklılıkların nedeni henüz anlaşılamamıştır ve "C değeri muamması" olarak bilinir.[56] Ancak, protein kodlamayan (non-coding) DNA dizileri gene de işlevsel kodlamayan RNA molekülleri kodlamaktadır, bunlar da gen ifadesinin düzenlenmesinde rol oynarlar.[57] Bazı kodlamayan DNA dizileri kromozomlar için yapısal rol oynarlar. Telomer ve sentromerler tipik olarak çok az sayıda gen içerir, ama kromozomların işlev ve stabilitesi için önemlidir.[33][59] İnsanlarda bulunan kodlamayan DNA'ların önemli bir türü psödogenlerdir, bunlar mutasyon sonucu çalışmaz hale gelmiş genlerin kopyalarıdır.[60] Bu DNA dizileri genelde birer moleküler fosilden ibarettir ama bazen yeni genlerin oluşumuna ham madde olabilirler, gen ikilenmesi ve ıraksak evrim süreçleri sonucu.[61] Transkripsiyon ve çevrim Genler, işlevsel moleküller kodlayan DNA dizileridir, bunlar canlının fenotipini belirler. Protein kodlayan genler durumunda DNA dizisi bir mesajcı RNA dizisini tanımlar, bu da bir veya birkaç proteinin dizisini belirler. Genlerdeki DNA dizisi ile proteinlerdeki amino asit dizisi arasındaki ilişki, biyolojik çevrim (translasyon) kuralları tarafından belirlenir, bunlar topluca genetik kod ile özetlenir. Genetik kod, üç nükleotitlik dizilere karşılık gelen, üç harfli 'kelimelerden' oluşur (örneğin, ACT, CAG, TTT), bu üçlüler kodon olarak adlandırılır. Transkripsiyonda, protein kodlayan bir genin kodonları önce RNA polimeraz tarafından bir mesajcı RNA şeklinde kopyalanır. Bu RNA kopya, ardından bir ribozom tarafından deşifre edilir; ribozom, mesajcı RNA ile amino asit taşıyan taşıyıcı RNA'lar arasında baz eşlemesi yaparak onu okur. Dört bazın 3'lü kombinasyonları olabildiği için 64 olası kodon vardır (43 kombinasyon). Bunlar yirmi standart amino asidi kodlarlar, böylece çoğu amino asite birden çok kodon düşer. Ayrıca, protein kodlayıcı bölgenin sonuna işaret eden üç tane de 'stop' veya anlamsız (nonsense) kodon vardır, bunlar TAA, TGA ve TAG kodonlarıdır. İkileşme Canlıların çoğalması ve (çok hücreli canlıların) büyümesi için hücre bölünmesi gereklidir. Ancak bir hücre bölünürken DNA'sını da kopyalamak zorundadır ki iki yavru hücre ana hücredeki genetik bilginin aynısına sahip olsunlar. DNA'nın iki iplikli yapısı DNA ikileşmesi (DNA duplikasyonu) için basit bir mekanizma sağlar. İki iplik ayrışırlar, sonra her bir iplikteki dizinin komplementer dizisi DNA polimeraz adlı bir enzim tarafından imal edilir. Bu enzim, tümleyici ipliği sentezlemek için gereken her bazın doğru olanını baz eşleşmesi yoluyla seçer ve onu uzamakta olan ipliğe ekler. DNA polimeraz bir DNA ipliğini ancak 5' - 3' yönünde uzatabildiği için, bir çifte sarmalın antiparalel ipliklerininin kopyalanması için farklı mekanizmalar mevcuttur.[62] Böylece, eski iplikteki baz, yeni ipliğe eklenen bazları belirler, sonunda hücre DNA'sının mükemmel bir kopyasını elde eder. Proteinler ile etkileşim DNA'nın tüm işlevleri onun proteinlerle olan etkileşimine bağlıdır. Bu protein etkileşimlerinin bazıları özgül-dışıdır (non-spesifiktir), bazılarında ise protein ancak belli bir DNA dizisine bağlanabilir. Enzimler de DNA'ya bağlanabilir ve bunlar arasında DNA baz disini transkripsiyon ve DNA ikilemesi için kopyalayan polimerazlar özellikle çok önemlidir. DNA'ya bağlanıcı proteinler DNA'ya bağlanan yapısal proteinler, non-spesifik DNA-protein etkileşimlerinin iyi anlaşılmış örneklerindendir. Kromozomlarda bulunan DNA, yapısal proteinlerle beraber kompleksler oluşturur. Bu proteinler DNA'yı kromatin adlı kompakt yapı içinde organize ederler. Ökaryotlarda kromatinin oluşmasında DNA'nın histon adlı küçük, bazik proteinlere bağlanması önemli bir rol oynar; prokaryotlarda ise çeşitli başka protein türleri DNA'ya bağlanır.[63][64] Histonlar, nükleozom adlı disk şeklinde bir kompleks oluştururlar, çift iplikli DNA buna sarılarak iki kere bunun etrafında döner. Histonların bazik kalıntıları ile DNA'nın şeker-fosfat omurgasındaki asidik fosfatlar arasındaki iyonik bağlar, non-spesifik bir etkileşim oluşturur, baz dizisinden büyük ölçüde bağımsızdırlar.[65] Bu bazik amino asitlerin kimyasal değişimleri arasında metilasyon, fosforilasyon, ve asetilasyon sayılabilir.[66] Bu kimyasal değişimler, DNA'nın histonlarla etkileşimini etkiler, bunun sonucunda DNA'ya transkripsyon faktörlerinin erişimi ve transkripsiyon hızı değişir.[67] Kromatinde bulunan diğer non-spesifik DNA'ya bağlanıcı proteinler arasında bulunan yüksek hareketli grup proteinleri (ing. high-mobility group proteins) bükülmüş veya distorte olmuş DNA'ya bağlanır.[68] Bu proteinler, bitişik nükleozom gruplarını bükerek daha büyük ölçekli yapılar oluşturarlar ve kromozomları meydana getirirler.[69] DNA'ya bağlanıcı proteinler arasında bulunan başlıca bir protein grubu, tek iplikli DNA'ya bağlanıcı proteinlerdir (bunlar tek iplikli DNA bağlayıcı protein olarak da adlandırılırlar). İnsanda replikasyon protein A bu protein ailesinin en iyi anlaşılmış üyesi sayılır, bu protein, cifte sarmalın ayrıştığı durumlarda, örneğin DNA ikileşmesi, rekombinasyon ve DNA tamirinde işlev görür.[70] Bu proteinler tek iplikli DNA'yı kararlı kılar, onun sap-ilmik (stem-loop) oluşturmasına veya nükleazlar tarafında yıkımına engel olurlar. Yukarıda değinilen proteinlerden farklı olarak başka proteinler belli DNA dizilerine bağlanacak şekilde evrimleşmişlerdir. Bunların en iyi araştırılmış olanları transkripsiyon faktörleridir, bular transkripsiyonu düzenleyen proteinlerdir. Her transkripsiyon faktörü belli bir DNA diziler kümesine bağlanır ve bu dizilere yakın protörleri olan genlerin transkripsiyonu etkinleştirir veya engeller. Transkripsiyon faktörleri bunu iki farklı yoldan gerçekletirir. Birincisi, transkripsiyondan sorumlu olan RNA polimeraz bağlanırlar, bunu ya doğrudan ya da aracı proteinlerle yaparlar, bunun sonucunda polimeraz promotöre yakın bir konuma yerleştitilmiş olur ve transkripsiyona başlaması mümkün hale gelir.[72] Bir diğer yolda ise, transkripsiyon faktörleri promotörde yer alan histonları kimyasal değişime uğratan enzimlere bağlanırlar; bunun sonucunda polimerazın DNA'ya erişimi değişir.[73] Bu DNA bağlanma dizileri bir canlının genomunun her tarafında bulunabileceği için, bir transkripsiyon faktörünün etkinliğinde meydan gelen değişiklikler binlerce gene etki edebilir.[74] Dolayısıyla bu proteinler çoklukla, çevresel değişiklikler, hücresel başkalaşım ve gelişimi kontrol eden süreçlerle ilişkili olan sinyal iletim süreçlerinin hedefidirler. Bu transkripsiyon faktörlerinin DNA ile etkileşimindeki spesifisite, proteinin DNA bazlarının kenarları ile yaptığı temaslardan kaynaklanmaktadır, bu sayede bu proteinler DNA'nın dizisini "okurlar". Bazlarla olan bu etkileşimlerin çoğu, bu bazlara kolaylıkla erişilebilen büyük olukta meydan gelir.[75] DNA değiştirici enzimler Nükleazlar DNA iplikleri kesen enzimlerdir, fosfodiester bağlarının hidrolizini katalizlerler. DNA ipliklerinin uçlarındaki nükleotitleri hidrolizleyen nükleazlare eksonükleaz denir, ipliklerin iç kısımlarındaki bağları hidrolizleyenlere ise endonükleaz. Moleküler biyolojide en sık kullanılan endonükleazlar restriksiyon endonükleazlarıdır, bunlar DNA'yı belli dizilerde keserler. Örneğin soldaki resimde görülen EcoRV enzimi 6 bazlı 5'-GAT|ATC-3' dizisini tanır ve dik çizgi ile gösterilen noktada onu keser. Doğada bu enzimler, restriksiyon modifikasyon sisteminin bir parçası olarak, bakterileri fajlara karşı korumaya yararlar, hücrenin içine giren faj DNA'sını sindirerek.[77] Teknolojide bu enzimler moleküler klonlama ve DNA parmakizlemesi için kullanılır. DNA ligaz enzimleri kesilmiş veya kırık DNA ipliklerini birleştirir.[78] Ligazlar özellikle gecikmeli iplik DNA ikileşmesinde önemli bir rol oynarlar, çünkü replikasyon çatalında meydana gelen kısa DNA parçalarını birleştirirler. Ayrıca DNA tamiri ve genetik rekombinasyonda kullanılırlar. Topoizomeraz ve helikazlar[değiştir | kaynağı değiştir] Topoizomerazlar hem nükleaz hem de ligaz etkinliğine sahiptir. Bu proteinler DNA'daki süperburulma derecesini değiştirirler. Bu enzimlerin bazıları DNA sarmalının bir ipliğini kesip bunun öbürü etrafında dönmesini sağlar, sonra da DNA'daki kesiği tekrar birleştirir.[23] Bu enzimlerin diğerleri ise DNA sarmalının bir ipliğini kesip öbür ipliğin bu kesiğin içinden kesmesini sağlarlar, sonra kesiği tekrar birleştirirler.[79] Topoizomerazlar DNA'yla ilgili pek çok süreçte yer alırlar, DNA ikileşmesi ve transkripsiyonu gibi.[24] Helikazlar moleküler motor özellikli proteinlerdir. Nükleozit trifosfatlarda, özellikle ATP'de taşınan kimyasal enerjiyi kullanıp bazlar arasındaki hidrojen bağlarını kırarlar ve DNA çifte sarmalını ters yönde burarak onu tek iplikler halinde açarlar.[80] Bu enzimler DNA bazlarına erişmeye gerek duyan enzimlerin bulunduğu süreçlerde gereklidir. Polimerazlar[değiştir | kaynağı değiştir] Nükleik asit polimerazları, nükleozit trifosfatlardan polinükleotit zincirler sentezleyen enzimlerdir. Ürettikleri ürünler var olan polinükleotit zincirlerinin (bunlara kalıp denir) kopyalarıdır. Bu enzimler, bir DNA zincirindeki en son nükleotitin 3' hidroksil grubuna yeni bir nükleotit ekleyerek çalışır. Dolayısıyla tüm polimerazlar 5' - 3' doğrultusunda ilerler.[81] Bu enzimlerin aktif bölgesinde, gelen nükleozit trifosfat kalıp ile baz eşleşmesi yapar; bu sayede polimeraz, kalıba komplementer bir ipliği doğru bir şekilde sentezleyebilir. Polimerazlar kullandıkları kalıbın tipine göre sınıflandırılır. DNA ikileşmesinde, DNA-bağımlısı DNA polimeraz, bir DNA dizisinin kopyasını yapar. Bu süreçte hata olmaması hayatî önem taşıdığı için bu tip polimerazlarının çoğunda prova okuma aktivitesi bulunur. Bunlarda, sentez reaksiyonunda meydana gelen ender hatalar, baz eşleşmesinin doğru olmamasıyla anlaşılır. Eğer bir uyumsuzluk algılanırsa, 3'-5' yönünde çalışan bir eksonükleaz aktivitesi etkinleştirilir ve hatalı baz çıkartılır.[82] Çoğu canlıda DNA polimerazlar replizom olarak adlandırılan ve yardımcı altbirimler (DNA kıskacı ve helikazlar gibi) içeren büyük bir kompleks içinde yer alır.[83] RNA-bağımlısı DNA polimerazlar RNA ipliğinde bulunan diziyi DNA olarak kopyalayan özel bir polimeraz sınıfıdır. Ters transkiptazlar bu sınıfa dahildir, bunlar viral enzimler olup hücrelerin retrovirüsler tarafından enfeksiyonunda yer alırlar. Telomerazlar da bu sınıfa dahildir, bunlar da telomerlerin ikilenmesi için gereklidir.[32][84] Telomerazı diğer bu tip enzimlerden farklı kılan bir özelliği, kullandığı RNA kalbın kendi yapısının bir parçası olmasıdır.[33] Transkripsiyon, DNA-bağımlısı RNA polimeraz tarafından gerçekleştirilir, bu enzim DNA ipliğindeki diziyi RNA olarak kopyalar. Bir genin transkripsiyonu için RNA polimeraz, DNA üzerinde promotör adlı bir bölgeye bağlanır ve DNA ipliklerini ayrıştırır. Sonra genin dizisini bir RNA zinciri olarak kopyalar, ta ki terminatör (sonlayıcı, İng. 'terminator') adlı bir DNA bölgesine gelip orada durup DNA'dan kopana kadar. DNA bağımlı DNA polimeraz da olduğu gibi, RNA polimeraz II (ökaryotlardaki çoğu genin transkripsiyonun yapan enzim) de çeşitli düzenleyici ve yardımcı proteinlerden oluşmuş büyük bir protein kompleksinin parçası olarak çalışır.[85] Genetik Rekombinasyon Bir DNA sarmalı genelde başka DNA parçaları ile etkileşmez, ve hatta insan hücrelerinde farklı kromozomlar çekirdekte farklı bölgelerde yer alırlar.[87] Farklı kromozomların fiziksel olarak bu şekilde ayrı tutulması DNA'nın kararlı bir bilgi deposu olarak işlev görmesinde önemli bir rol oynar. Kromozomların birbiriyle etkileştiği zamanlar sadece rekombinasyona girdikleri krosover sırasındadır. Krosover sırasında iki DNA sarmalı kesilir, bir bölüm yer değiştirir ve kesik uçlar birleşir. Rekombinasyon sayesinde kromozomlar arasında genetik bilgi takası olur ve yeni gen kombinasyonları meydan gelir, bunun doğal seleksiyonun verimini artırdığı ve yeni proteinlerin hızlı evrimleşmesinde önemli olduğu düşünülmektedir.[88] Genetik rekombinasyon DNA tamiriyle de ilişkilidir, özellikle çift iplikli kırılmalara hücrenin tepkisinde.[89] Kromozom sarılmasının en yaygın şekli homolog rekombinasyondur, bunda iki kromozom birbirine çok benzer dizilere sahiptir. Non-homolog rekombinasyon hücreye zarar verici olabilir çünkü kromozomal translokasyon ve genetik anormalliklere yol açabilir. Rekombinasyon tepkimesi rekombinaz olarak adlandırılan enzimler (örneğin RAD51) tarafından katalizlenir.[90] Rekombinasyonun ilk adımı çift iplikli bir kesik oluşturulmasıdır, bu ya bir endonükleaz ya da DNA hasarı sonucunda meydana gelir.[91] Rekombinaz tarafından kısmen katalizlenen bir dizi adım sonucunda iki sarmal en az bir Holliday bağlantısı tarafından birleştirilir: her sarmalın bir ipliği, öbür sarmalda ona komplementer olan öbür iplik ile kaynaşır. Holliday bağlantısı, tetrahedral bir yapıdır, bu şekilde birleşmiş iki kromozomda bir ipliğin bir diğeriyle yer değiştirmesiyle bu yapı kromozomlar boyunca ilerler. Rekombinasyon tepkimesi, bağlantının kesilmesi ve serbest kalan DNA uçlarının tekrar birleşmesi ile son bulur.[92] DNA metabolizmasının evrimi DNA'da bulunan genetik bilgi tüm modern canlıların işlev görmesine, yani büyümesi ve çoğalmasına olanak sağlar. Ancak, 4 milyar yıldır sürmekte olan yaşamın tarihçesi boyunca DNA'nın bu işlevi yerine getirdiği belli değildir, yaşamın en eski biçimlerinin kullanmış olduğu kalıtsal malzemenin RNA olduğu öne sürülmüştür.[81][93] RNA, hem genetik bilgi aktarma hem de ribozimlerin parçası olarak katalizör özelliğine sahip olmasından dolayı ilk hücrelerin metabolizmasında merkezî bir rol oynamış olabilir.[94] Nükleik asitlerin hem kalıtımda hem de katalizde rol oynadığı bu eski RNA dünyası, günümüz genetik kodunun dört nükleotit bazından oluşmuş şekilde evrimleşmesine etki etmiş olabilir. Bunun nedeni, bir canlıdaki bazların sayısının azlığının replikasyon verimini artıracağı ama bazların çokluğunun ise ribozimlerin katalitik verimini artıracağı, bu iki zıt etki ile kalıtsal bilgiyi kodlayan baz sayısının dört olarak dengelenmiş olabileceği öne sürülmüştür.[95] Ne var ki, eski genetik sistemler hakkında doğrudan delil mevcut değildir, çünkü çoğu fosillerden DNA elde edilmesi mümkün değildir. Bunun nedeni, çevre etkilerine maruz kalan DNA'nın bir milyon yıldan az süre dayanması ve çözelti içinde zamanla küçük parçalara yıkımıdır.[96] Eski DNA'nın izole edilmiş olduğuna dair iddialar vardır, özellikle 250 milyon evvelden kalma bir tuz kristalı içinde canlı kalmış bir bakterinin izole edildiği iddia edilmiştir[97] ama bu iddialar tartışmalıdır.[98][99] Kaynak: ^ a b Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1. 2.^ Butler, John M. (2001). Forensic DNA Typing. Elsevier. ISBN 978-0-12-147951-0.pp. 14–15. 3.^ Mandelkern M, Elias J, Eden D, Crothers D (1981). "The dimensions of DNA in solution". J Mol Biol 152 (1): 153–61. doi:10.1016/0022-2836(81)90099-1. PMID 7338906. 4.^ Gregory S, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature 441 (7091): 315–21. doi:10.1038/nature04727. PMID 16710414. 5.^ Watson J, Crick F (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171 (4356): 737–8. doi:10.1038/171737a0. PMID 13054692. 6.^ a b Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company ISBN 0-7167-4955-6 7.^ Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Accessed 03 Jan 2006 8.^ a b Ghosh A, Bansal M (2003). "A glossary of DNA structures from A to Z". Acta Crystallogr D Biol Crystallogr 59 (Pt 4): 620–6. doi:10.1107/S0907444903003251. PMID 12657780. 9.^ Wing R, Drew H, Takano T, Broka C, Tanaka S., Itakura K, Dickerson R (1980). "Crystal structure analysis of a complete turn of B-DNA". Nature 287 (5784): 755–8. doi:10.1038/287755a0. PMID 7432492. 10.^ Pabo C, Sauer R (1984). "Protein-DNA recognition". Annu Rev Biochem 53: 293–321. doi:10.1146/annurev.bi.53.070184.001453. PMID 6236744. 11.^ Ponnuswamy P, Gromiha M (1994). "On the conformational stability of oligonucleotide duplexes and tRNA molecules". J Theor Biol 169 (4): 419–32. doi:10.1006/jtbi.1994.1163. PMID 7526075. 12.^ Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub H (2000). "Mechanical stability of single DNA molecules". Biophys J 78 (4): 1997–2007. PMID 10733978. 13.^ Chalikian T, Völker J, Plum G, Breslauer K (1999). "A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques". Proc Natl Acad Sci USA 96 (14): 7853–8. doi:10.1073/pnas.96.14.7853. PMID 10393911. 14.^ deHaseth P, Helmann J (1995). "Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA". Mol Microbiol 16 (5): 817–24. doi:10.1111/j.1365-2958.1995.tb02309.x. PMID 7476180. 15.^ Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J (2004). "Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern". Biochemistry 43 (51): 15996–6010. doi:10.1021/bi048221v. PMID 15609994. 16.^ Designation of the two strands of DNA JCBN/NC-IUB Newsletter 1989, Accessed 07 May 2008 17.^ Hüttenhofer A, Schattner P, Polacek N (2005). "Non-coding RNAs: hope or hype?". Trends Genet 21 (5): 289–97. doi:10.1016/j.tig.2005.03.007. PMID 15851066. 18.^ Munroe S (2004). "Diversity of antisense regulation in eukaryotes: multiple mechanisms, emerging patterns". J Cell Biochem 93 (4): 664–71. doi:10.1002/jcb.20252. PMID 15389973. 19.^ Makalowska I, Lin C, Makalowski W (2005). "Overlapping genes in vertebrate genomes". Comput Biol Chem 29 (1): 1–12. doi:10.1016/j.compbiolchem.2004.12.006. PMID 15680581. 20.^ Johnson Z, Chisholm S (2004). "Properties of overlapping genes are conserved across microbial genomes". Genome Res 14 (11): 2268–72. doi:10.1101/gr.2433104. PMID 15520290. 21.^ Lamb R, Horvath C (1991). "Diversity of coding strategies in influenza viruses". Trends Genet 7 (8): 261–6. PMID 1771674. 22.^ Benham C, Mielke S (2005). "DNA mechanics". Annu Rev Biomed Eng 7: 21–53. doi:10.1146/annurev.bioeng.6.062403.132016. PMID 16004565. 23.^ a b Champoux J (2001). "DNA topoisomerases: structure, function, and mechanism". Annu Rev Biochem 70: 369–413. doi:10.1146/annurev.biochem.70.1.369. PMID 11395412. 24.^ a b Wang J (2002). "Cellular roles of DNA topoisomerases: a molecular perspective". Nat Rev Mol Cell Biol 3 (6): 430–40. doi:10.1038/nrm831. PMID 12042765. 25.^ Basu H, Feuerstein B, Zarling D, Shafer R, Marton L (1988). "Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies". J Biomol Struct Dyn 6 (2): 299–309. PMID 2482766. 26.^ Leslie AG, Arnott S, Chandrasekaran R, Ratliff RL (1980). "Polymorphism of DNA double helices". J. Mol. Biol. 143 (1): 49–72. doi:10.1016/0022-2836(80)90124-2. PMID 7441761. 27.^ Wahl M, Sundaralingam M (1997). "Crystal structures of A-DNA duplexes". Biopolymers 44 (1): 45–63. doi:10.1002/(SICI)1097-0282(1997)44:1. PMID 9097733. 28.^ Lu XJ, Shakked Z, Olson WK (2000). "A-form conformational motifs in ligand-bound DNA structures". J. Mol. Biol. 300 (4): 819–40. doi:10.1006/jmbi.2000.3690. PMID 10891271. 29.^ Rothenburg S, Koch-Nolte F, Haag F (2001). "DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles". Immunol Rev 184: 286–98. doi:10.1034/j.1600-065x.2001.1840125.x. PMID 12086319. 30.^ Oh D, Kim Y, Rich A (2002). "Z-DNA-binding proteins can act as potent effectors of gene expression in vivo". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16666–71. doi:10.1073/pnas.262672699. PMID 12486233. 31.^ Created from NDB UD0017 koordinatlarından üretilmiştir 32.^ a b Greider C, Blackburn E (1985). "Identification of a specific telomere terminal transferase activity in Tetrahymena extracts". Cell 43 (2 Pt 1): 405–13. doi:10.1016/0092-8674(85)90170-9. PMID 3907856. 33.^ a b c Nugent C, Lundblad V (1998). "The telomerase reverse transcriptase: components and regulation". Genes Dev 12 (8): 1073–85. doi:10.1101/gad.12.8.1073. PMID 9553037. 34.^ Wright W, Tesmer V, Huffman K, Levene S, Shay J (1997). "Normal human chromosomes have long G-rich telomeric overhangs at one end". Genes Dev 11 (21): 2801–9. doi:10.1101/gad.11.21.2801. PMID 9353250. 35.^ a b Burge S, Parkinson G, Hazel P, Todd A, Neidle S (2006). "Quadruplex DNA: sequence, topology and structure". Nucleic Acids Res 34 (19): 5402–15. doi:10.1093/nar/gkl655. PMID 17012276. 36.^ Parkinson G, Lee M, Neidle S (2002). "Crystal structure of parallel quadruplexes from human telomeric DNA". Nature 417 (6891): 876–80. doi:10.1038/nature755. PMID 12050675. 37.^ Griffith J, Comeau L, Rosenfield S, Stansel R, Bianchi A, Moss H, de Lange T (1999). "Mammalian telomeres end in a large duplex loop". Cell 97 (4): 503–14. doi:10.1016/S0092-8674(00)80760-6. PMID 10338214. 38.^ Klose R, Bird A (2006). "Genomic DNA methylation: the mark and its mediators". Trends Biochem Sci 31 (2): 89–97. doi:10.1016/j.tibs.2005.12.008. PMID 16403636. 39.^ Bird A (2002). "DNA methylation patterns and epigenetic memory". Genes Dev 16 (1): 6–21. doi:10.1101/gad.947102. PMID 11782440. 40.^ Walsh C, Xu G (2006). "Cytosine methylation and DNA repair". Curr Top Microbiol Immunol 301: 283–315. doi:10.1007/3-540-31390-7_11. PMID 16570853. 41.^ Ratel D, Ravanat J, Berger F, Wion D (2006). "N6-methyladenine: the other methylated base of DNA". Bioessays 28 (3): 309–15. doi:10.1002/bies.20342. PMID 16479578. 42.^ Gommers-Ampt J, Van Leeuwen F, de Beer A, Vliegenthart J, Dizdaroglu M, Kowalak J, Crain P, Borst P (1993). "beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei". Cell 75 (6): 1129–36. doi:10.1016/0092-8674(93)90322-H. PMID 8261512. 43.^ PDB 1JDG koordinatlarından üretilmiştir 44.^ Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003). "Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation". Biochemistry 42 (30): 9221–6. doi:10.1021/bi034593c. PMID 12885257. 45.^ Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J, Ravanat J, Sauvaigo S (1999). "Hydroxyl radicals and DNA base damage". Mutat Res 424 (1–2): 9–21. PMID 10064846. 46.^ Shigenaga M, Gimeno C, Ames B (1989). "Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage". Proc Natl Acad Sci USA 86 (24): 9697–701. doi:10.1073/pnas.86.24.9697. PMID 2602371. 47.^ Cathcart R, Schwiers E, Saul R, Ames B (1984). "Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage". Proc Natl Acad Sci USA 81 (18): 5633–7. doi:10.1073/pnas.81.18.5633. PMID 6592579. 48.^ Valerie K, Povirk L (2003). "Regulation and mechanisms of mammalian double-strand break repair". Oncogene 22 (37): 5792–812. doi:10.1038/sj.onc.1206679. PMID 12947387. 49.^ Ferguson L, Denny W (1991). "The genetic toxicology of acridines". Mutat Res 258 (2): 123–60. PMID 1881402. 50.^ Jeffrey A (1985). "DNA modification by chemical carcinogens". Pharmacol Ther 28 (2): 237–72. doi:10.1016/0163-7258(85)90013-0. PMID 3936066. 51.^ Stephens T, Bunde C, Fillmore B (2000). "Mechanism of action in thalidomide teratogenesis". Biochem Pharmacol 59 (12): 1489–99. doi:10.1016/S0006-2952(99)00388-3. PMID 10799645. 52.^ Braña M, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A (2001). "Intercalators as anticancer drugs". Curr Pharm Des 7 (17): 1745–80. doi:10.2174/1381612013397113. PMID 11562309. 53.^ Venter J, et al. (2001). "The sequence of the human genome". Science 291 (5507): 1304–51. doi:10.1126/science.1058040. PMID 11181995. 54.^ Thanbichler M, Wang S, Shapiro L (2005). "The bacterial nucleoid: a highly organized and dynamic structure". J Cell Biochem 96 (3): 506–21. doi:10.1002/jcb.20519. PMID 15988757. 55.^ Wolfsberg T, McEntyre J, Schuler G (2001). "Guide to the draft human genome". Nature 409 (6822): 824–6. doi:10.1038/35057000. PMID 11236998. 56.^ Gregory T (2005). "The C-value enigma in plants and animals: a review of parallels and an appeal for partnership". Ann Bot (Lond) 95 (1): 133–46. doi:10.1093/aob/mci009. PMID 15596463. 57.^ The ENCODE Project Consortium (2007). "Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project". Nature 447 (7146): 799–816. doi:10.1038/nature05874. 58.^ PDB 1MSW koordinatlarından üretilmiştir 59.^ Pidoux A, Allshire R (2005). "The role of heterochromatin in centromere function". Philos Trans R Soc Lond B Biol Sci 360 (1455): 569–79. doi:10.1098/rstb.2004.1611. PMID 15905142. 60.^ Harrison P, Hegyi H, Balasubramanian S, Luscombe N, Bertone P, Echols N, Johnson T, Gerstein M (2002). "Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22". Genome Res 12 (2): 272–80. doi:10.1101/gr.207102. PMID 11827946. 61.^ Harrison P, Gerstein M (2002). "Studying genomes through the aeons: protein families, pseudogenes and proteome evolution". J Mol Biol 318 (5): 1155–74. doi:10.1016/S0022-2836(02)00109-2. PMID 12083509. 62.^ Albà M (2001). "Replicative DNA polymerases". Genome Biol 2 (1): REVIEWS3002. doi:10.1186/gb-2001-2-1-reviews3002. PMID 11178285. 63.^ Sandman K, Pereira S, Reeve J (1998). "Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome". Cell Mol Life Sci 54 (12): 1350–64. doi:10.1007/s000180050259. PMID 9893710. 64.^ Dame RT (2005). "The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin". Mol. Microbiol. 56 (4): 858–70. doi:10.1111/j.1365-2958.2005.04598.x. PMID 15853876. 65.^ Luger K, Mäder A, Richmond R, Sargent D, Richmond T (1997). "Crystal structure of the nucleosome core particle at 2.8 A resolution". Nature 389 (6648): 251–60. doi:10.1038/38444. PMID 9305837. 66.^ Jenuwein T, Allis C (2001). "Translating the histone code". Science 293 (5532): 1074–80. doi:10.1126/science.1063127. PMID 11498575. 67.^ Ito T. "Nucleosome assembly and remodelling". Curr Top Microbiol Immunol 274: 1–22. PMID 12596902. 68.^ Thomas J (2001). "HMG1 and 2: architectural DNA-binding proteins". Biochem Soc Trans 29 (Pt 4): 395–401. doi:10.1042/BST0290395. PMID 11497996. 69.^ Grosschedl R, Giese K, Pagel J (1994). "HMG domain proteins: architectural elements in the assembly of nucleoprotein structures". Trends Genet 10 (3): 94–100. doi:10.1016/0168-9525(94)90232-1. PMID 8178371. 70.^ Iftode C, Daniely Y, Borowiec J (1999). "Replication protein A (RPA): the eukaryotic SSB". Crit Rev Biochem Mol Biol 34 (3): 141–80. doi:10.1080/10409239991209255. PMID 10473346. 71.^ PDB 1LMB koordinatlarından üretilmiştir 72.^ Myers L, Kornberg R (2000). "Mediator of transcriptional regulation". Annu Rev Biochem 69: 729–49. doi:10.1146/annurev.biochem.69.1.729. PMID 10966474. 73.^ Spiegelman B, Heinrich R (2004). "Biological control through regulated transcriptional coactivators". Cell 119 (2): 157–67. doi:10.1016/j.cell.2004.09.037. PMID 15479634. 74.^ Li Z, Van Calcar S, Qu C, Cavenee W, Zhang M, Ren B (2003). "A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells". Proc Natl Acad Sci USA 100 (14): 8164–9. doi:10.1073/pnas.1332764100. PMID 12808131. 75.^ Pabo C, Sauer R (1984). "Protein-DNA recognition". Annu Rev Biochem 53: 293–321. doi:10.1146/annurev.bi.53.070184.001453. PMID 6236744. 76.^ PDB 1RVA koordinatlarından yaratılmıştır 77.^ Bickle T, Krüger D (1993). "Biology of DNA restriction". Microbiol Rev 57 (2): 434–50. PMID 8336674. 78.^ Doherty A, Suh S (2000). "Structural and mechanistic conservation in DNA ligases". Nucleic Acids Res 28 (21): 4051–8. doi:10.1093/nar/28.21.4051. PMID 11058099. 79.^ Schoeffler A, Berger J (2005). "Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism". Biochem Soc Trans 33 (Pt 6): 1465–70. doi:10.1042/BST20051465. PMID 16246147. 80.^ Tuteja N, Tuteja R (2004). "Unraveling DNA helicases. Motif, structure, mechanism and function". Eur J Biochem 271 (10): 1849–63. doi:10.1111/j.1432-1033.2004.04094.x. PMID 15128295. 81.^ a b Joyce C, Steitz T (1995). "Polymerase structures and function: variations on a theme?". J Bacteriol 177 (22): 6321–9. PMID 7592405. 82.^ Hubscher U, Maga G, Spadari S (2002). "Eukaryotic DNA polymerases". Annu Rev Biochem 71: 133–63. doi:10.1146/annurev.biochem.71.090501.150041. PMID 12045093. 83.^ Johnson A, O'Donnell M (2005). "Cellular DNA replicases: components and dynamics at the replication fork". Annu Rev Biochem 74: 283–315. doi:10.1146/annurev.biochem.73.011303.073859. PMID 15952889. 84.^ Tarrago-Litvak L, Andréola M, Nevinsky G, Sarih-Cottin L, Litvak S (1994). "The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention". FASEB J 8 (8): 497–503. PMID 7514143. 85.^ Martinez E (2002). "Multi-protein complexes in eukaryotic gene transcription". Plant Mol Biol 50 (6): 925–47. doi:10.1023/A:1021258713850. PMID 12516863. 86.^ PDB 1M6G kordinatlarından üretilmiştir 87.^ Cremer T, Cremer C (2001). "Chromosome territories, nuclear architecture and gene regulation in mammalian cells". Nat Rev Genet 2 (4): 292–301. doi:10.1038/35066075. PMID 11283701. 88.^ Pál C, Papp B, Lercher M (2006). "An integrated view of protein evolution". Nat Rev Genet 7 (5): 337–48. doi:10.1038/nrg1838. PMID 16619049. 89.^ O'Driscoll M, Jeggo P (2006). "The role of double-strand break repair - insights from human genetics". Nat Rev Genet 7 (1): 45–54. doi:10.1038/nrg1746. PMID 16369571. 90.^ Vispé S, Defais M (1997). "Mammalian Rad51 protein: a RecA homologue with pleiotropic functions". Biochimie 79 (9-10): 587–92. doi:10.1016/S0300-9084(97)82007-X. PMID 9466696. 91.^ Neale MJ, Keeney S (2006). "Clarifying the mechanics of DNA strand exchange in meiotic recombination". Nature 442 (7099): 153–8. doi:10.1038/nature04885. PMID 16838012. 92.^ Dickman M, Ingleston S, Sedelnikova S, Rafferty J, Lloyd R, Grasby J, Hornby D (2002). "The RuvABC resolvasome". Eur J Biochem 269 (22): 5492–501. doi:10.1046/j.1432-1033.2002.03250.x. PMID 12423347. 93.^ Orgel L. "Prebiotic chemistry and the origin of the RNA world". Crit Rev Biochem Mol Biol 39 (2): 99–123. doi:10.1080/10409230490460765. PMID 15217990. 94.^ Davenport R (2001). "Ribozymes. Making copies in the RNA world". Science 292 (5520): 1278. doi:10.1126/science.292.5520.1278a. PMID 11360970. 95.^ Szathmáry E (1992). "What is the optimum size for the genetic alphabet?". Proc Natl Acad Sci USA 89 (7): 2614–8. doi:10.1073/pnas.89.7.2614. PMID 1372984. 96.^ Lindahl T (1993). "Instability and decay of the primary structure of DNA". Nature 362 (6422): 709–15. doi:10.1038/362709a0. PMID 8469282. 97.^ Vreeland R, Rosenzweig W, Powers D (2000). "Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal". Nature 407 (6806): 897–900. doi:10.1038/35038060. PMID 11057666. 98.^ Hebsgaard M, Phillips M, Willerslev E (2005). "Geologically ancient DNA: fact or artefact?". Trends Microbiol 13 (5): 212–20. doi:10.1016/j.tim.2005.03.010. PMID 15866038. 99.^ Nickle D, Learn G, Rain M, Mullins J, Mittler J (2002). "Curiously modern DNA for a "250 million-year-old" bacterium". J Mol Evol 54 (1): 134–7. doi:10.1007/s00239-001-0025-x. PMID 11734907.

http://www.biyologlar.com/dna-ve-ozellikleri-hakkinda-kapsamli-bilgi

Apoptozis ve Nekroz Nedir?

Doku yasami, hücresel çogalma ve apoptozis gibi hücre ölüm islemleri arasindaki siki dengeyle sürdürülür. Apoptozis hem fizyolojik hem de patolojik olarak istenmeyen, hasar görmüs ya da potansiyel olarak neoplastik hücrelerin uzaklastirilmasinda basvurulan bir hücre intihar mekanizmasidir. Bu içsel intihar formunun temelinde genetik mekanizma vardir. Melekler Mekanı - Apoptozis ve Nekroz Nedir? Apoptozis tipik morfolojik ve biyokimyasal özelliklere sahiptir. Göze çarpan morfolojik degisimler hücre küçülmesi, nuklear kromatinin yogunlasmasi, nukleusun fragmantasyonu ve DNA’nin internukleozomal alandan ayrilmasidir1,3,4,5,7. Genomik DNA’nin (deoksiribonükleikasit) internukleozomal fragmantasyonu son yillarda apoptozisin en belirgin biyokimyasal isareti olarak düsünülmektedir. Tüm bu özelliklerin olusumu enerjiye bagimlidir. Bundan dolayi apoptozis enerjiye bagimli islemlerle hücreyi ölüme sürükler. Caspase ailesi proteazlari, BCL-2 ailesi proteinleri ve p53 gen ürünü apoptozisin düzenlenmesinde merkezi rol oynar. Bu derlemede, apoptozis ve diger hücre ölüm mekanizmalari hakkinda son zamanlardaki çalismalar özetlenmeye çalismistir. Apoptozis ilk kez 1885’de Flemming tarafindan gözlenmis ve bu durum kromatolizis (chromatolizis) olarak isimlendirilmistir. Flemming memelilerin ovaryum folikülleri üzerinde çalismis ve foliküllerin epitelyal hattindaki hücrelerde nukleusun yikima ugradigini ve sonuç ta ortadan kayboldugunu gözlemistir. O yillarda kromatolizis (chromatolizis) kavrami farkli arastiricilar tarafindan farkli sekillerde kullanilmistir. Örnegin nöropatologlar aksona geçisten sonra nissle taneciklerinin yikimi iç in bu terimi kullanirlarken; Flemming vb. embriyolojistler bu terimi gerçek anlaminda benimsemislerdir. Glücksman (1950), embriyodaki fizyolojik hücre ölümünü kromatolizise dayandirmistir. Hücre nukleusunun ve sitoplazmanin sivi kaybiyla küçüldügünü , nuklear boyalar için affinitenin yitirildigini, feulgen negatif hale geldigini, nukleusun indirgenip ortadan kayboldugunu ve daha sonra ise dejenere olan hücre komsusu tarafindan fagosite edildigini belirtmistir. 1950’lerin sonlarina dogru DeDuve lizozomlardan kaynaklanan hücre intihari fikrini ortaya atmistir. Hücrelerin kendi içlerinde intihar çantalari gibi rol oynayan lizozomlarin patlamasiyla ölebileceklerini önermistir. Ancak bugün bilinen gerçek bunun ancak özel durumlarda gerçeklesebilecegidir. 1960’larda serbest radikal patolojisi terimi ortaya çikmis ve hücresel organellere zarar verebilen serbest radikallerin intrasellüler saliniminin hücre intiharinin belirmesinde rol oynadigini belirtmistir. 1976’da ve 1981’de 3 grup, radyasyona ugramis dokularin kromatinini elektroforetik olarak ç alismislar ve fragmanlarina ayrildigini bulmuslardir. Bu fragmanlar ç ok sayidaki nükleozomlardir. 1984’de Wyllie ilk kez apoptozis terimini kullanmistir. Spesifik biyokimyasal markerlar ekleyerek apoptotik hü crelerin farkli morfolojik degisiimlerini gözlemistir. Bu bulusla birlikte apoptozisle ilgili arastirmalar oldukça fazla artmistir. Apoptozisin Morfolojik Isaretleri Apoptozis temelinde genetik mekanizma olan kasitli intihar formu özelligi gösterir. Hücrede apoptozise neden olacak olaylar meydana geldiginde örnegin DNA herhangi bir sekilde zarar gördügünde apoptotik süreç baslar. Enerji gerektiren aktif islemlerle zarar gören hücre ölüm yolunu seçer. Apoptozisin belirlenmesinde elektron mikroskobuyla gözlenen farkli morfolojik özellikler ilk kez Kerr ve arkadaslari tarafindan belirtilmistir. Bu sekilde gözlenen morfolojik degisimler; a. nukleus Apoptozisin baslangici nuklear kromatinin yogunlasmasiyla karakterize edilir. Bu yogunlasmayla kromatin materyalinin sinirlari çizilir hale gelir. Yarim ay, at nali, orak gibi tipik sekiller gösterir. Daha sonra nukleus bozulur,ayrilir ve yikima ugrar. Bu duruma karyorheksis (karyorrhexis) denir. b. Hücre Morfolojisi Apoptozisin baslangici hücre küçülmesi, sitoplazmanin yogunlasmasi ve hücrenin kendisini çevreleyen dokudan ayrilmasi ile de karakterize edilir (ª ekil 1). Hücrenin dis taslagi düzensizlesir. Bu durum apoptozise özgü bir durum olan tomurcuklanma sürecini baºlatir. Bu apoptotik olusumlar hücresel organellerce zengindir. Bundan sonra fagositoz baslar1,2,3,4,5,6,7,8. Ancak apoptotik olusumlar lenfositleri ya da nötrofilleri cezbetmez. Bu da apoptotik hücre ölümünün, meydana gelen diger hücre ölü m tiplerinden bir farkidir. Bu duruma getirilen açiklama, tek basina ölen hücrenin salgiladigi kimyasallarin etkin konsantrasyonda vasküler endotelyuma ulasmadigi yönündedir. 2).Fagositozu meydana getiren hücreler fagositik hale gelen doku makrofajlari veya parenkimal hücrelerdir3,4,5. Eg er bu hücreler fagosite edilmezlerse ikincil nekrozis olarak adlandirilan indirgenmeye ugrarlar3,5. Apoptozisin erken safhasinda ve yeni olusturulmus apoptotik olusumlarda hücresel ince yapi oldukça iyi korunmustur. 3. Insan organizmasýnda apopitozun izlendigi durumlar Embriyonal ve fötal gelisimde, hormon azalmasina bagli involusyonlarda, Dokulardaki hücre homeostazinin saglanmasinda, Immun reaksiyonlarda, defansif olarak, Hücrelerin herhangi bir nedenle hasarlanmalari durumunda, Yaslilikta a) Embriyogenez ve fötogenez sirasinda normal gelisimin saglanabilmesi amaciyla, olusmus olan hücrelerin bir kismi apopitoza gitmektedir. Özellikle sinir sisteminin ve immün sistemin gelisiminde apopitoz önemli rol oynamaktadir. Sinir sistemi gelisirken çok fazla sayida nöron ve sinaps olusur. Apopitoz ile nöronal havuz hedef olan miktara indirilmekte, aksonlari hedeflerine ulasmayan nöronlar ortadan kaldirilarak nöronlarla hedef organlar arasinda olusan baglanti hatalari onarilmaktadir. Immun sistemde ise, olusan fazla ve otoreaktif hücreler ortadan kaldirilarak, bunlarin embriyo/fötusa zarar vermesi engellenmektedir. Intrauterin gelisim sirasinda el ve ayak parmaklarinin arasi baslangiçta kapali iken parmaklar arasindaki hücrelerin apopitoz ile yikilmasi ile parmaklar birbirlerinden ayrilmaktadir. Embriyonun gelismekte olan epidermisinin en üst sirasindaki bazi hücreler (periderm) de apopitoza giderek amnion sivisina atilirlar. Apopitoz embriyonal gelismenin erken dönemlerinde de izlenmekte, ayrica böbrek taslaklarinin dejenerasyonunda da önemli rol üstlenmektedir. b) Eriskinlerde hormon yetmezligine bagli olarak gelisen organ gerilemelerinde apopitoz rol almaktadir. Örn: mensturasyonda endometrial hücre yikimi, menapozda ovaryum folliküllerinin atrezisi, laktasyon sonrasinda meme bezi gerilemesi, orsiektomi sonrasinda prostat atrofisi gelismesi gibi.4,14,20 c) Proliferasyona ugrayan hücre topluluklarinda (örn:barsak kript epiteli) apopitoz sik olusur. d) Tümörlerde, özellikle regresyona gittikleri dönemlerde apopitoz görülür. e) T ve B lenfositler sitokin yetersizligine bagli olarak apopitoza gidebilirler. f) Hücresel immun red ve graft vs host reaksiyonlarýnda sitotoksik T lenfositler (CTL) araciligi ile apopitoz olusur. g) Pankreas, parotis ve böbrek gibi organlarda kanal obstriksiyonlarina bagli olarak gelisen atrofilerde apopitoz izlenir. h) Çesitli viral hastaliklarda apopitoz görülür. Örn:Viral hepatitte karacigerde olusan apopitotik hücreler (Concilman cisimcikleri ) gibi. i) Hücrelerde hasar olusturan çesitli etkenler normalde nekroza neden olurken düsük dozlarda apopitosis olusturabilmektedir. Örn: Isi, radyasyon, antikanser ilaçlar, hipoksi gibi. Nekroz: Patolojik olaylar sonucu gelisen hücre ölüm seklidir.hücre hasarini olusturan travma,hücre kanlanmasinin,dolayisiyla oksijenlenmenin bozulmasi,enfeksiyon gibi nedenlere bagli olarak gerçeklesir.organeller siser,hücre sinirlari düzensiz hale gelirve bunlarin sonucu olarak hücrenin bütünlügü kimyasal ve yapisal olarak bozulur.Hücre ölümü ya apoptozis veya nekroz ile olur. Nekroz disardan gelen hasarla plazma membraninda olusan degisiklikler sonucu olusur. Nekrotik hücre; sisme ve plazma membraninin yikilmasi sonucunda sitoplazmik içerigini disardaki doku araligina salar. Hücrenin nekrotik artiklari inflamatuar hücreleri dokuya çekerek bu dokunun parçalanmasina yol açar ve bu inflamasyon olarak bildigimiz histolojiye neden olur. Hücre zedelenmesi sonucu hücrede gelisen geri dönüsü olmayan (irreversibl) harabiyet hücrenin ölümüne neden olur. 4 tip nekroz çesidi mevcut olup hepsi farkli histomorfolojik bulgular içerirler

http://www.biyologlar.com/apoptozis-ve-nekroz-nedir

Apoptozisin Morfolojik İşaretleri

Apoptozis temelinde genetik mekanizma olan kasıtlı intihar formu özelliği gösterir. Hücrede apoptozise neden olacak olaylar meydana geldiğinde örneğin DNA herhangi bir şekilde zarar gördüğünde apoptotik süreç başlar. Enerji gerektiren aktif işlemlerle zarar gören hücre ölüm yolunu seçer. Apoptozisin belirlenmesinde elektron mikroskobuyla gözlenen farklı morfolojik özellikler ilk kez Kerr ve arkadaşları tarafından belirtilmiştir. Bu şekilde gözlenen morfolojik değişimler; a. Nukleus Apoptozisin başlangıcı nuklear kromatinin yoğunlaşmasıyla karakterize edilir. Bu yoğunlaşmayla kromatin materyalinin sınırları çizilir hale gelir. Yarım ay at nalı orak gibi tipik şekiller gösterir. Daha sonra nukleus bozulur ayrılır ve yıkıma uğrar. Bu duruma karyorheksis (karyorrhexis) denir. b. Hücre Morfolojisi Apoptozisin başlangıcı hücre küçülmesi sitoplazmanın yoğunlaşması ve hücrenin kendisini çevreleyen dokudan ayrılması ile de karakterize edilir. Hücrenin dış taslağı düzensizleşir. Bu durum apoptozise özgü bir durum olan tomurcuklanma sürecini başlatır. Bu apoptotik oluşumlar hücresel organellerce zengindir. Bundan sonra fagositoz başlar. Ancak apoptotik oluşumlar lenfositleri ya da nötrofilleri cezbetmez. Bu da apoptotik hücre ölümünün meydana gelen diğer hücre ölüm tiplerinden bir farkıdır. Bu duruma getirilen açıklama tek başına ölen hücrenin salgıladığı kimyasalların etkin konsantrasyonda vasküler endotelyuma ulaşmadığı yönündedir. Fagositozu meydana getiren hücreler fagositik hale gelen doku makrofajları veya parankimal hücrelerdir. Eğer bu hücreler fagosite edilmezlerse ikincil nekrozis olarak adlandırılan indirgenmeye uğrarlar. Apoptozisin erken safhasında ve yeni oluşturulmuş apoptotik oluşumlarda hücresel ince yapı oldukça iyi korunmuştur. İnsan organizmasında apopitozun izlendiği durumlar Embriyonal ve fötal gelişimde Hormon azalmasına bağlı involusyonlarda Dokulardaki hücre homeostazinin sağlanmasındaİmmun reaksiyonlarda defansif olarak Hücrelerin herhangi bir nedenle hasarlanması durumunda Yaşlılıkta a) Embriyogenez ve fötogenez sırasında normal gelişimin sağlanabilmesi amacıyla oluşmuş olan hücrelerin bir kısmı apopitoza gitmektedir. Özellikle sinir sisteminin ve immün sistemin gelişiminde apopitoz önemli rol oynamaktadır. Sinir sistemi gelişirken çok fazla sayıda nöron ve sinaps oluşur. Apopitoz ile nöronal havuz hedef olan miktara indirilmekte aksonları hedeflerine ulaşmayan nöronlar ortadan kaldırılarak nöronlarla hedef organlar arasında oluşan bağlantı hataları onarılmaktadır. İmmun sistemde ise oluşan fazla ve otoreaktif hücreler ortadan kaldırılarak bunların embriyo/fötusa zarar vermesi engellenmektedir. İntrauterin gelişim sırasında el ve ayak parmaklarının arası başlangıçta kapalı iken parmaklar arasındaki hücrelerin apopitoz ile yıkılması ile parmaklar birbirlerinden ayrılmaktadır. Embriyonun gelişmekte olan epidermisinin en üst sırasındaki bazı hücreler (periderm) de apopitoza giderek amnion sıvısına atılırlar. Apopitoz embriyonal gelişmenin erken dönemlerinde de izlenmekte ayrıca böbrek taslaklarının dejenerasyonunda da önemli rol üstlenmektedir. b) Erişkinlerde hormon yetmezliğine bağlı olarak gelişen organ gerilemelerinde apopitoz rol almaktadır. Örn: mensturasyonda endometrial hücre yıkımı menapozda ovaryum folliküllerinin atrezisi laktasyon sonrasında meme bezi gerilemesi orşiektomi sonrasında prostat atrofisi gelişmesi gibi. c) Proliferasyona uğrayan hücre topluluklarında (örn: barsak kript epiteli) apopitoz sık oluşur. d) Tümörlerde özellikle regresyona gittikleri dönemlerde apopitoz görülür. e) T ve B lenfositler sitokin yetersizliğine bağlı olarak apopitoza gidebilirler. f) Hücresel immun red ve graft vs host reaksiyonlarında sitotoksik Tlenfositler (CTL) aracılığı ile apopitoz oluşur. g) Pankreas parotis ve böbrek gibi organlarda kanal obstriksiyonlarına bağlı olarak gelişen atrofilerde apopitoz izlenir. h) Çeşitli viral hastalıklarda apopitoz görülür. Örn: Viral hepatitte karaciğerde oluşan apopitotik hücreler (Concilman cisimcikleri ) gibi. i) Hücrelerde hasar oluşturan çeşitli etkenler normalde nekroza neden olurken düşük dozlarda apopitosis oluşturabilmektedir. Örn: Isı radyasyon antikanser ilaçlar hipoksi gibi.

http://www.biyologlar.com/apoptozisin-morfolojik-isaretleri

Transkripsiyon faktörü

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya (bir aktivatör olarak) kolaylaştırırlar veya (bir represör olarak) engeller. Biyolojik rolleri Transkripsiyon faktörleri DNA'daki genetik bilgiyi okuyup yorumlayan protein gruplarından biridir. DNA'ya bağlanırlar ve gen transkripsiyonunun artması veya azalmasına yol açarlar. Bu bakımdan pek çok önemli hücresel süreçte hayatî bir konuma sahiptirler. Transkripsiyon faktörlerinin ilişkili olduğu bazı önemli fonksiyonlar aşağıdadır: Bazal transkripsiyon düzenlemesi Ökaryotlarda transkripsiyonun gerçekleşmesi için "genel transkripsiyon faktörü" diye adlandırılan önemli bir transkripsiyon faktörü sınıfının üyeleri gereklidir. Bu faktörlerin çoğu doğrudan DNA'ya bağlı değildir, ama RNA polimeraz ile doğrudan etkileşirler. Bunların en önemlileri TFIIA, TFIIB, TFIID (ayrıca bakınız TATA bağlanma proteini), TFIIE, TFIIF ve TFIIH'dir. Gelişme Çok hücreli canlıların gelişmesinde pek çok transkripsiyon faktörü rol oynar. Uyarılara tepki veren bu transkripsiyon faktörleri, ilgili genleri çalıştırırlar veya durdurarlar, bu da hücre morfolojisinde, hücre kaderi belirlenmesinde ve hücresel başkalaşımda gerekli olan değişiklikleri mümkün kılar. Örneğin, Hox transkripsiyon faktör ailesi sirke sineğinden insana kadar pek çok canlıda vücut biçiminin oluşması için önemlidir. Bir diğer örnek, insanlarda cinsiyetin belirlenmesinde rol oynayan SRY genidir. Hücreler arası sinyallere tepki Hücreler, sinyal molekülleri salgılayarak birbirleriyle haberleşirler, bu moleküller alıcı hücrelerde sinyal silsileleri (ing. cascade) başlatır. Eğer sinyal, alıcı hücredeki genlerin ifadesinin değişmesini gerektiriyorsa sinyal silsilesinin akışaşağısında (ing. downstream) genelde bir transkripsiyon faktörü bulunur. Basit bir örnek olarak estrojen sinyallemesi verilebilir: estrojen, plasenta ve yumurtalık gibi dokular tarafından salgılanır, alıcı hücrenin hücre zarından geçip sitoplazmasındaki estrojen reseptörüne bağlanır; sonra estrojen reseptörü çekirdeğe gidip kendi DNA bağlanma yerine bağlanır, bu da ilgili genlerin transkripsiyon denetimini değiştirir. Çevreye tepki vermek Transkripsiyon faktörleri çevresel uyaranların doğurduğu sinyal silsilelerinin ucunda da yer alabilirler. Buna örnekler, yüksek sıcaklıkta canlı kalmayı sağlayan ısı şoku faktörü (ing., heat shock factor; HSF), düşük oksijenli ortamda yaşamı sağlayan hipoksiya indüklenebilir faktör (ing. hypoxia inducible factor; HIF) ve hücre içindeki lipit seviyelerini düzenleyen sterol düzenleyici elemana bağlanıcı protein (ing., sterol regulatory element binding protein; SREBP) olarak sayılabilir. Hücre döngüsü kontrolü Çoğu transkripsiyon faktörü, özellikle onkogen veya tümör bastırıcıları hücre döngüsünü düzenlerler, dolayısıyla bir hücrenin ne kadar büyeyeceğine ve ne zaman bölüneceğini belirler. Bunun bir örneği hücre büyümesi ve apoptozda önemli rol oynayan Myc oncogenidir. Transkripsiyon faktör etkinliğinin düzenlenmesi Biyolojik süreçlerin genelde birden çok kontrol ve düzenleme katmanı vardır. Bu, transkripsiyon faktörleri için de geçerlidir: bir gen ürününün miktarı transkripsiyon seviyesi tarafından belirlendiği gibi, transkripsiyon sürecinin kendi de denetime tâbidir. Aşağıda, bir transkripsiyon faktörünün denetlenme yollarının bazıları sıralanmıştır: Transkripsiyon faktör sentezi Transkripsiyon faktörlerinin sentezinde bir gen RNA'ya çevriyazılır (ing. transcribe), RNA da proteine çevrilir. Bu adımların her birinin denetimi bir transkripsiyon faktörünün seviyesine etki eder. Transkripsiyon faktörleri kendi kendilerini de denetleyebilirler: Örneğin, transkripsiyon faktörünün kendi represörü olması bir geri besleme döngüsü meydana getirir; transkripsiyon faktörü kendi geninin promotörüne bağlanarak kendi üretimini aşağı ayarlar (ing. downregulate), böylece transkripsiyon faktörünün hücre içindeki seviyesi düşük kalmış olur. Çekirdeğe taşınma Ökaryotlarda transkripsiyon faktörleri (çoğu protein gibi) çekirdekte okunur amd sonra sitoplazmaya taşınır, oysa işlev yerleri çekirdektir. Çekirdekte aktif olan proteinler çekirdeğe gitmelerini sağlayan bir çekirdek lokalizasyon sinyaline sahiptirler ama transkripsiyon faktörleri durumunda bu lokalizasyon otomatik olmaz, bu süreç onların denetiminin önemli bir noktasıdır. Çekirdek reseptörleri gibi bazı transkripsiyon faktörleri sitoplazmadan çekirdeğe geçebilmek için önce bir liganda bağlanmak zorundadırlar. Kimyasal modifikasyon veya ligand bağlanması ile etkinleşme Ligandlar bir transkripsiyon faktörünün nerede bulunduğunu belirlemekten başka, onun etkin halde olmasını ve DNA'ya veya başka kofaktörlere bağlanabilir olmasına da etki ederler. Transkripsiyon faktörünün kimyasal değişimi de onu etkinleştirebilir. Örneğin, STAT proteinleri gibi transkripsiyon faktörlerinin DNA'ya bağlanmaları için fosforile olmaları gerekir. DNA bağlanma yerinin erişilebilirliği Ökaryotlarda aktif olarak çevriyazılmayan genler heterokromatinde yer alır. Heterokromatin, kromozomun tıkız (kompakt) olduğu bölgeleridir; bu bölgelerde DNA'nın histonlara sıkıca sarılmasıyla oluşan kromatin iplikleri vardır. Bu sıkışıklık yüzünden heterokromatindeki DNA'ya çoğu transkripsyon faktörü tafarından erişilemez. Transkripsyon faktörünün DNA'ya bağlanabilmesi için heterokromatinin histon değişimleri (modifikasyonları) yoluyla daha gevşek yapılı olan ökromatine dönüştürülmesi gerekir. Bir transkripsiyon faktörünün DNA'ya bağlanamamasının bir nedeni de bağlanma yerinin başka bir transkripsyon faktörü tarafında işgal edilmiş olmasıdır. Bir genin denetiminde iki transkripsiyon faktörü (bir aktivatör ve bir represör) bu şekilde birbirine zıtlık yaratabilirler. Bir kompleksin oluşumu için gereken diğer kofaktörler veya transkripsiyon faktörleri Çoğu transkripsiyon faktörü tek başına çalışmaz. Genelde transkripsiyonun olması için birkaç transkripsiyon faktörünün DNA düzenleyici dizilerine bağlanması gerekir. Bu transkripsiyon faktörleri de ardından transkripsiyon kofaktörlerini seferber ederek başlama öncesi kopmpleks ve RNA polimerazın bağlanmasını sağlarlar. Dolayısıyla tek bir transkripsyon faktörünün transkripsiyonu başlatabilmesi için bu diğer proteinlerin hepsinin yerinde olması ve transkripsiyon faktörünün kendisin de onlara bağlanabilecek bir durumda olması gerekir. Yapı Transkripsiyon faktörlerinin yapıları modülerdir ve şu bölgelerden: DNA bağlanma bölgesi (DBB) düzenlenen genin bitişiğindeki promotör bölgesindeki, veya daha uzağındaki hızlandırıcı (ing. enhancer) DNA dizilerine bağlanır. Trans-aktivasyon bölgesi (TAB) transkripsiyon eşdüzenleyici (co-regulator) başka proteinler için bağlanma yerlerine sahiptir. Bazen bulunan bir sinyal algılama bölgesi, örneğin bir ligand bağlanma bölgesi, moleküler sinyalleri algılayıp transkripsiyon kompleksinin geri kalanına ileterek genin aşağı veya yukarı ayarlamasını yapar. Bazen DNA bağlanma bölgesi ve sinyal algılama bölgesi, transkripsiyon kompleksini oluşturan faklı proteinlerde yer alırlar. DNA bağlanma proteinleri Transkripsiyon faktörleri çoğu zaman DNA bağlanma bölgelerindeki benzerliğe göre sınıflandırılırlar: DNA'ya bağlanan başlıca transkripsiyon faktörü/DNA bağlanma bölgesi sınıfları aşağıda listelenmiştir: Lambda repressörü-gibi (SCOP 47413) (Şablon:InterPro) (SCOP 46894) İki parçalı tepki düzenleyicilerinin (ing. bipartite response regulators) C-uç efektör bölgesi (Şablon:InterPro) Serum tepki faktörü (ing. serum response factor; srf)-gibi (SCOP 55455) (Şablon:InterPro) Bazik-sarmal-halka-sarmal (SCOP 47460) (Şablon:InterPro) GCC kutusu (SCOP 54175) Zn2/Cys6 (SCOP 57701) winged helix (SCOP 46785) Zn2/Cys8 çekirdek reseptorü çinko parmağı (SCOP 57716) homeobölge proteinleri - Başka transkripsiyon faktörlerinin promotörlerinde yer alan homeokutuları DNA dizilerine bağlanırlar. Homeobölgeli (homeodomain) proteinler gelişimin denetlenmesinde önemli rol oynarlar. (SCOP 46689) Çoklu bölgeli Cys2His2 çinko parmaklılar (SCOP 57667) (Şablon:InterPro) bazik-lösin fermuarlı (ing. basic leucine zipper, bZIP) proteinler (SCOP 57959) Daha çok ayrıntı için Transkripsiyon faktör sınıfları listesi'ne bakınız. Transkripsiyon denetiminde önemli rol oynayan başka proteinler de vardır ama bunlar DNA'ya bağlanmadıkları için transkripsiyon faktörü olarak sayılmazlar. Örneğin, koaktivatörler, kromatin biçimlendiriciler, histon asetilazlar ve deasetilazlar, kinazlar ve metilazlar. Transkripsiyon faktörü bağlanma yerleri Transkripsyon faktörleri kendilerine has nükleotit dizilerinde DNA'ya bağlanırlar. Bu bağlanma yerleri ile etkileşirken kimyasal olarak hidrojen bağları ve Van der Waals bağları kullanırlar. Bir bağlanma yerindeki bu etkileşimlerden bazıları diğerlerinden daha zayıftır. Bu yüzden transkripsyon faktörleri tek bir diziye değil, birbiriyle yakın ilişkili bir grup dizye bağlanabilirler, her biriyle farklı güçte olmak üzere. Örneğin, TATA bağlanma proteininin (TBP) konsensus bağlanma dizisi TATAAAA olmakla beraber TBP transkripsiyon faktörü buna benzer olan TATATAT veya TATATAA dizilerine de bağlanabilir. Transkripsiyon faktörleri benzer dizilere bağlanabildikleri ve bunların kısa diziler olduğu için, yeterince uzun bir DNA zincirinde bir bağlanma yeri tesadüfen de bulunabilir. Buna rağmen bir transkripsiyon faktörü genomda bulunan kendisiyle uyumlu her bağlanma yerine bağlanmaz, çünkü DNA'ya erişilebilirlik ve kendisi için gerekli kofaktörlerin mevcudiyeti sınırlamalar getirir. Bu yüzden bir transkripsiyon faktörünün bağlanma yerini bilmek, bir canlı hücrede onun gerçekten nereye bağlandığını öngörmeye yetmez. Sınıflar Mekanizmaya göre Transkripsiyon faktörlerinin mekanizmalarına göre üç sınıfı vardır: Genel transkripsiyon faktörleri, transkripsiyon başlangıç öncesi kompleks oluşumuyla ilişkilidir. En yaygın olanlarının adları TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH olarak kısaltılır. Her yerde bulunurlar ve tüm Sınıf II genlerin transkripsiyon başlama noktasını çevreleyen çekirdek promotör bölgesi ile etkileşirler. Akışyukarı (upstream) transkripsyon faktörleri transkripsiyon başlama noktasının yukarı kısmına bağlanarak transkripsiyonu uyaran veya bastıran proteinlerdir. İndüklenebilir transkripsyon faktörleri akış yukarı transkripsyon faktörleri gibidirler ama aktivasyon veya inhibisyon gerektirirler. İşlevsel Alternatif olarak transkripsiyon faktörleri düzenleyici fonksiyonlarına göre sınıflandırılırlar: I. Yapısal etkin (constitutively active) -Tüm hücrelerde her zaman mevcut- genel transkripsiyon faktörleri, Sp1, NF1, CCAAT II. Şartlı etkin - aktivasyon gerektirir. II.A. Gelişimsel (hücreye özgün) - gen ifadesi sıkı kontrol altında ama başladıktan sonra ek atkinleştirme gerektirmez. II.B Sinyale bağımlı - etkinleşme için haricî bir sinyal gerektirir. II.B.1 Hücredışı ligand bağımlı - çekirdek reseptörleri II.B.2 Hücrediçi ligand bağımlı - küçük hücre içi moleküller tarafından etkinleşir. Örneğin, SREBP, p53, öksüz çekirdek reseptörleri. II.B.3 Hücre zarı resptörü bağımlı ikincil mesajcı sinyalleme silsilesi bir transkripsiyon faktörünün fosforile olmasına neden olur. II.B.3.b Gizli (latent) sitoplazmik faktörler - inaktif hali sitoplazmada yer alır ama etkinleşince çekirdeğe geçer - Örneğin, STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT. II.B.3.a yerleşik çekirdek faktörleri aktivasyon halinden bağimsız olarak çekirdekte yer alır. Örneğin, CREB, AP-1, Mef2. Farklı organizmalarda rolleri ve korunumları Transkripsiyon faktörleri gen ifadesinin düzenlenmesi için zaruridir ve dolayısıyla her canlıda bulunur. Canlılarda bulunan transkripsiyon faktörü sayısı genom büyüklüğü ile orantılıdır, daha büyük genomlarda gen başına transkripsiyon faktörü sayısı daha çoktur. İnsan genomunda DNA'ya bağlanabilen yaklaşık 2600 protein vardır, bunların çoğunun transkripsiyon faktörü olduğu tahmin edilmektedir. Dolayısıyla genomdaki genlerin yaklaşık %10'u transkripsiyon faktörlerini şifrelemektedir, yani bu protein grubu insan proteinleri arasında en kalabalık olanıdır. Genlerin genelde iki tarafında birkaç farklı transkripsiyon faktörünün bağlanma yerleri bulunmaktadır ve bu genlerin verimli olarak ifadesi için birkaç transkripsiyon faktörünün beraberce etkisi gerekmektedir. Yani 2000 insan transkripsiyon faktörünün belli bir alt kümesinin kombinezonları insan genomundaki her genin gelişim sırasındaki kendine has denetimini açıklamaya yeterlidir. Transkripsiyon faktörleri ve insan hastalıkları Gelişim, hücre içi sinyalleme ve hücre döngüsündeki önemli rollerinden dolayı bazı transkripsiyon faktörlerindeki mutasyonların hastalıklarla ilişkili olduğu bulunmuştur. İyi bilinen bazı örnekler aşağıda sıralanmıştır: Rett syendromu MECP2 transkipsiyon faktöründeki mutasyonlar Rett sendromu, nörogelişimsel bir bozukluktur. Diyabet Diyabetin ender bir biçimi olan Gençlerin erişkin başlangıçlı diyabeti (ing. Maturity onset diabetes of the young; MODY) hepatosit çekirdek faktörlerinde (ing. hepatocyte nuclear factors; HNF) veya insülin promotör faktörü-1'deki (ing. insulin promoter factor-1; IPF1) mutasyonlar neden olmaktadır. gelişimsel sözel dispraksi FOXP2 transkipsiyon faktöründeki mutasyonlar gelişimsel sözel dispraksi (ing. developmental verbal dyspraxia) ile ilişkilendirilmiştir, bu hastalıkta kişiler konuşma için gerekli olan hassas koordinasyonlu hareketleri yapamaazlar. Otoimmün hastalıklar FOXP2 transkipsiyon faktöründeki mutasyonlar ender bir otoimmün hastalık olan IPEX'e neden olur. Kanser Çoğu transkripsiyon faktörü tümör baskılayıcısı veya onkogendir, bu yüzden onları mutasyonu veya hatalı denetimi kanserle ilişkilidir. Örneğin Li-Fraumeni syndromu tümör baskılayıcısı p53'teki mutasyonlardan kaynaklanır.

http://www.biyologlar.com/transkripsiyon-faktoru

Transkripsiyon faktörü nedir Biyolojik rolleri nelerdir

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya (bir aktivatör olarak) kolaylaştırırlar veya (bir represör olarak) engeller Biyolojik rolleri nelerdir Transkripsiyon faktörleri DNA'daki genetik bilgiyi okuyup yorumlayan protein gruplarından biridir. DNA'ya bağlanırlar ve gen transkripsiyonunun artması veya azalmasına yol açarlar. Bu bakımdan pek çok önemli hücresel süreçte hayatî bir konuma sahiptirler. Transkripsiyon faktörlerinin ilişkili olduğu bazı önemli fonksiyonlar aşağıdadır:    Bazal transkripsiyon düzenlemesi Ökaryotlarda transkripsiyonun gerçekleşmesi için "genel transkripsiyon faktörü" diye adlandırılan önemli bir transkripsiyon faktörü sınıfının üyeleri gereklidir. Bu faktörlerin çoğu doğrudan DNA'ya bağlı değildir, ama RNA polimeraz ile doğrudan etkileşirler. Bunların en önemlileri TFIIA, TFIIB, TFIID (ayrıca bakınız TATA bağlanma proteini), TFIIE, TFIIF ve TFIIH'dir.    Gelişme Çok hücreli canlıların gelişmesinde pek çok transkripsiyon faktörü rol oynar. Uyarılara tepki veren bu transkripsiyon faktörleri, ilgili genleri çalıştırırlar veya durdurarlar, bu da hücre morfolojisinde, hücre kaderi belirlenmesinde ve hücresel başkalaşımda gerekli olan değişiklikleri mümkün kılar. Örneğin, Hox transkripsiyon faktör ailesi sirke sineğinden insana kadar pek çok canlıda vücut biçiminin oluşması için önemlidir. Bir diğer örnek, insanlarda cinsiyetin belirlenmesinde rol oynayan SRY genidir.    Hücreler arası sinyallere tepki Hücreler, sinyal molekülleri salgılayarak birbirleriyle haberleşirler, bu moleküller alıcı hücrelerde sinyal silsileleri (ing. cascade) başlatır. Eğer sinyal, alıcı hücredeki genlerin ifadesinin değişmesini gerektiriyorsa sinyal silsilesinin akışaşağısında (ing. downstream) genelde bir transkripsiyon faktörü bulunur. Basit bir örnek olarak estrojen sinyallemesi verilebilir: estrojen, plasenta ve yumurtalık gibi dokular tarafından salgılanır, alıcı hücrenin hücre zarından geçip sitoplazmasındaki estrojen reseptörüne bağlanır; sonra estrojen reseptörü çekirdeğe gidip kendi DNA bağlanma yerine bağlanır, bu da ilgili genlerin transkripsiyon denetimini değiştirir.    Çevreye tepki vermek Transkripsiyon faktörleri çevresel uyaranların doğurduğu sinyal silsilelerinin ucunda da yer alabilirler. Buna örnekler, yüksek sıcaklıkta canlı kalmayı sağlayan ısı şoku faktörü (ing., heat shock factor; HSF), düşük oksijenli ortamda yaşamı sağlayan hipoksiya indüklenebilir faktör (ing. hypoxia inducible factor; HIF) ve hücre içindeki lipit seviyelerini düzenleyen sterol düzenleyici elemana bağlanıcı protein (ing., sterol regulatory element binding protein; SREBP) olarak sayılabilir.    Hücre döngüsü kontrolü Çoğu transkripsiyon faktörü, özellikle onkogen veya tümör bastırıcıları hücre döngüsünü düzenlerler, dolayısıyla bir hücrenin ne kadar büyeyeceğine ve ne zaman bölüneceğini belirler. Bunun bir örneği hücre büyümesi ve apoptozda önemli rol oynayan Myc oncogenidirTranskripsiyon faktör etkinliğinin düzenlenmesiCandida albicans 'ta beyaz/opak geçişi kontrol eden transkripsiyon faktörlerinin birbirini denetimi. Ucu oklu cizgiler aktivasyonu, ucu kesik çizgiler ise baskılamaya karşılık gelirBiyolojik süreçlerin genelde birden çok kontrol ve düzenleme katmanı vardır. Bu, transkripsiyon faktörleri için de geçerlidir: bir gen ürününün miktarı transkripsiyon seviyesi tarafından belirlendiği gibi, transkripsiyon sürecinin kendi de denetime tâbidir. Aşağıda, bir transkripsiyon faktörünün denetlenme yollarının bazıları sıralanmıştır:    Transkripsiyon faktör sentezi Transkripsiyon faktörlerinin sentezinde bir gen RNA'ya çevriyazılır (ing. transcribe), RNA da proteine çevrilir. Bu adımların her birinin denetimi bir transkripsiyon faktörünün seviyesine etki eder. Transkripsiyon faktörleri kendi kendilerini de denetleyebilirler: Örneğin, transkripsiyon faktörünün kendi represörü olması bir geri besleme döngüsü meydana getirir; transkripsiyon faktörü kendi geninin promotörüne bağlanarak kendi üretimini aşağı ayarlar (ing. downregulate), böylece transkripsiyon faktörünün hücre içindeki seviyesi düşük kalmış olur.    Çekirdeğe taşınma Ökaryotlarda transkripsiyon faktörleri (çoğu protein gibi) çekirdekte okunur amd sonra sitoplazmaya taşınır, oysa işlev yerleri çekirdektir. Çekirdekte aktif olan proteinler çekirdeğe gitmelerini sağlayan bir çekirdek lokalizasyon sinyaline sahiptirler ama transkripsiyon faktörleri durumunda bu lokalizasyon otomatik olmaz, bu süreç onların denetiminin önemli bir noktasıdır. Çekirdek reseptörleri gibi bazı transkripsiyon faktörleri sitoplazmadan çekirdeğe geçebilmek için önce bir liganda bağlanmak zorundadırlar.    Kimyasal modifikasyon veya ligand bağlanması ile etkinleşme Ligandlar bir transkripsiyon faktörünün nerede bulunduğunu belirlemekten başka, onun etkin halde olmasını ve DNA'ya veya başka kofaktörlere bağlanabilir olmasına da etki ederler. Transkripsiyon faktörünün kimyasal değişimi de onu etkinleştirebilir. Örneğin, STAT proteinleri gibi transkripsiyon faktörlerinin DNA'ya bağlanmaları için fosforile olmaları gerekir.    DNA bağlanma yerinin erişilebilirliği Ökaryotlarda aktif olarak çevriyazılmayan genler heterokromatinde yer alır. Heterokromatin, kromozomun tıkız (kompakt) olduğu bölgeleridir; bu bölgelerde DNA'nın histonlara sıkıca sarılmasıyla oluşan kromatin iplikleri vardır. Bu sıkışıklık yüzünden heterokromatindeki DNA'ya çoğu transkripsyon faktörü tafarından erişilemez. Transkripsyon faktörünün DNA'ya bağlanabilmesi için heterokromatinin histon değişimleri (modifikasyonları) yoluyla daha gevşek yapılı olan ökromatine dönüştürülmesi gerekir. Bir transkripsiyon faktörünün DNA'ya bağlanamamasının bir nedeni de bağlanma yerinin başka bir transkripsyon faktörü tarafında işgal edilmiş olmasıdır. Bir genin denetiminde iki transkripsiyon faktörü (bir aktivatör ve bir represör) bu şekilde birbirine zıtlık yaratabilirler.    Bir kompleksin oluşumu için gereken diğer kofaktörler veya transkripsiyon faktörleri Çoğu transkripsiyon faktörü tek başına çalışmaz. Genelde transkripsiyonun olması için birkaç transkripsiyon faktörünün DNA düzenleyici dizilerine bağlanması gerekir. Bu transkripsiyon faktörleri de ardından transkripsiyon kofaktörlerini seferber ederek başlama öncesi kopmpleks ve RNA polimerazın bağlanmasını sağlarlar. Dolayısıyla tek bir transkripsyon faktörünün transkripsiyonu başlatabilmesi için bu diğer proteinlerin hepsinin yerinde olması ve transkripsiyon faktörünün kendisin de onlara bağlanabilecek bir durumda olması gerekir.YapıÖkaryotik transkripsiyon başlangıcının basit bir modeli. 1. Transkripsiyon başma noktası. 2. RNA polimeraz ve genel transkripsiyon faktörlerinin bulunduğu TATA kutusu. 3. Bir aktivatör proteinin bağlı olduğu hızlandırıcı (ing. enhancer) diziTranskripsiyon faktörlerinin yapıları modülerdir ve şu bölgelerden:    DNA bağlanma bölgesi (DBB) düzenlenen genin bitişiğindeki promotör bölgesindeki, veya daha uzağındaki hızlandırıcı (ing. enhancer) DNA dizilerine bağlanır.    Trans-aktivasyon bölgesi (TAB) transkripsiyon eşdüzenleyici (co-regulator) başka proteinler için bağlanma yerlerine sahiptir.    Bazen bulunan bir sinyal algılama bölgesi, örneğin bir ligand bağlanma bölgesi, moleküler sinyalleri algılayıp transkripsiyon kompleksinin geri kalanına ileterek genin aşağı veya yukarı ayarlamasını yapar. Bazen DNA bağlanma bölgesi ve sinyal algılama bölgesi, transkripsiyon kompleksini oluşturan faklı proteinlerde yer alırlar.DNA bağlanma proteinleriTranskripsiyon faktörleri çoğu zaman DNA bağlanma bölgelerindeki benzerliğe göre sınıflandırılırlar:DNA'ya bağlanan başlıca transkripsiyon faktörü/DNA bağlanma bölgesi sınıfları aşağıda listelenmiştir:    Lambda repressörü-gibi (SCOP 47413) (Şablon:InterPro)    (SCOP 46894) İki parçalı tepki düzenleyicilerinin (ing. bipartite response regulators) C-uç efektör bölgesi (Şablon:InterPro)    Serum tepki faktörü (ing. serum response factor; srf)-gibi (SCOP 55455) (Şablon:InterPro)    Bazik-sarmal-halka-sarmal (SCOP 47460) (Şablon:InterPro)    GCC kutusu (SCOP 54175)    Zn2/Cys6 (SCOP 57701)    winged helix (SCOP 46785)    Zn2/Cys8 çekirdek reseptorü çinko parmağı (SCOP 57716)    homeobölge proteinleri - Başka transkripsiyon faktörlerinin promotörlerinde yer alan homeokutuları DNA dizilerine bağlanırlar. Homeobölgeli (homeodomain) proteinler gelişimin denetlenmesinde önemli rol oynarlar. (SCOP 46689)    Çoklu bölgeli Cys2His2 çinko parmaklılar (SCOP 57667) (Şablon:InterPro)    bazik-lösin fermuarlı (ing. basic leucine zipper, bZIP) proteinler (SCOP 57959)Daha çok ayrıntı için Transkripsiyon faktör sınıfları listesi'ne bakınız.Transkripsiyon denetiminde önemli rol oynayan başka proteinler de vardır ama bunlar DNA'ya bağlanmadıkları için transkripsiyon faktörü olarak sayılmazlar. Örneğin, koaktivatörler, kromatin biçimlendiriciler, histon asetilazlar ve deasetilazlar, kinazlar ve metilazlar.Transkripsiyon faktörü bağlanma yerleriTranskripsyon faktörleri kendilerine has nükleotit dizilerinde DNA'ya bağlanırlar. Bu bağlanma yerleri ile etkileşirken kimyasal olarak hidrojen bağları ve Van der Waals bağları kullanırlar. Bir bağlanma yerindeki bu etkileşimlerden bazıları diğerlerinden daha zayıftır. Bu yüzden transkripsyon faktörleri tek bir diziye değil, birbiriyle yakın ilişkili bir grup dizye bağlanabilirler, her biriyle farklı güçte olmak üzere.Örneğin, TATA bağlanma proteininin (TBP) konsensus bağlanma dizisiTATAAAAolmakla beraber TBP transkripsiyon faktörü buna benzer olanTATATAT veya TATATAAdizilerine de bağlanabilir.Transkripsiyon faktörleri benzer dizilere bağlanabildikleri ve bunların kısa diziler olduğu için, yeterince uzun bir DNA zincirinde bir bağlanma yeri tesadüfen de bulunabilir. Buna rağmen bir transkripsiyon faktörü genomda bulunan kendisiyle uyumlu her bağlanma yerine bağlanmaz, çünkü DNA'ya erişilebilirlik ve kendisi için gerekli kofaktörlerin mevcudiyeti sınırlamalar getirir. Bu yüzden bir transkripsiyon faktörünün bağlanma yerini bilmek, bir canlı hücrede onun gerçekten nereye bağlandığını öngörmeye yetmez.SınıflarMekanizmaya göreTranskripsiyon faktörlerinin mekanizmalarına göre üç sınıfı vardır:Genel transkripsiyon faktörleri, transkripsiyon başlangıç öncesi kompleks oluşumuyla ilişkilidir. En yaygın olanlarının adları TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH olarak kısaltılır. Her yerde bulunurlar ve tüm Sınıf II genlerin transkripsiyon başlama noktasını çevreleyen çekirdek promotör bölgesi ile etkileşirler.    Akışyukarı (upstream) transkripsyon faktörleri transkripsiyon başlama noktasının yukarı kısmına bağlanarak transkripsiyonu uyaran veya bastıran proteinlerdir.    İndüklenebilir transkripsyon faktörleri akış yukarı transkripsyon faktörleri gibidirler ama aktivasyon veya inhibisyon gerektirirler.İşlevselAlternatif olarak transkripsiyon faktörleri düzenleyici fonksiyonlarına göre sınıflandırılırlar:    I. Yapısal etkin (constitutively active) -Tüm hücrelerde her zaman mevcut- genel transkripsiyon faktörleri, Sp1, NF1, CCAAT    II. Şartlı etkin - aktivasyon gerektirir.    II.A. Gelişimsel (hücreye özgün) - gen ifadesi sıkı kontrol altında ama başladıktan sonra ek atkinleştirme gerektirmez.        II.B Sinyale bağımlı - etkinleşme için haricî bir sinyal gerektirir.            II.B.1 Hücredışı ligand bağımlı - çekirdek reseptörleri            II.B.2 Hücrediçi ligand bağımlı - küçük hücre içi moleküller tarafından etkinleşir. Örneğin, SREBP, p53, öksüz çekirdek reseptörleri.            II.B.3 Hücre zarı resptörü bağımlı ikincil mesajcı sinyalleme silsilesi bir transkripsiyon faktörünün fosforile olmasına neden olur.                II.B.3.b Gizli (latent) sitoplazmik faktörler - inaktif hali sitoplazmada yer alır ama etkinleşince çekirdeğe geçer - Örneğin, STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT.                II.B.3.a yerleşik çekirdek faktörleri aktivasyon halinden bağimsız olarak çekirdekte yer alır. Örneğin, CREB, AP-1, Mef2.Farklı organizmalarda rolleri ve korunumlarıTranskripsiyon faktörleri gen ifadesinin düzenlenmesi için zaruridir ve dolayısıyla her canlıda bulunur. Canlılarda bulunan transkripsiyon faktörü sayısı genom büyüklüğü ile orantılıdır, daha büyük genomlarda gen başına transkripsiyon faktörü sayısı daha çoktur. İnsan genomunda DNA'ya bağlanabilen yaklaşık 2600 protein vardır, bunların çoğunun transkripsiyon faktörü olduğu tahmin edilmektedir. Dolayısıyla genomdaki genlerin yaklaşık %10'u transkripsiyon faktörlerini şifrelemektedir, yani bu protein grubu insan proteinleri arasında en kalabalık olanıdır. Genlerin genelde iki tarafında birkaç farklı transkripsiyon faktörünün bağlanma yerleri bulunmaktadır ve bu genlerin verimli olarak ifadesi için birkaç transkripsiyon faktörünün beraberce etkisi gerekmektedir. Yani 2000 insan transkripsiyon faktörünün belli bir alt kümesinin kombinezonları insan genomundaki her genin gelişim sırasındaki kendine has denetimini açıklamaya yeterlidir.Transkripsiyon faktörleri ve insan hastalıklarıGelişim, hücre içi sinyalleme ve hücre döngüsündeki önemli rollerinden dolayı bazı transkripsiyon faktörlerindeki mutasyonların hastalıklarla ilişkili olduğu bulunmuştur. İyi bilinen bazı örnekler aşağıda sıralanmıştır:    Rett syendromu MECP2 transkipsiyon faktöründeki mutasyonlar Rett sendromu, nörogelişimsel bir bozukluktur.    Diyabet Diyabetin ender bir biçimi olan Gençlerin erişkin başlangıçlı diyabeti (ing. Maturity onset diabetes of the young; MODY) hepatosit çekirdek faktörlerinde (ing. hepatocyte nuclear factors; HNF) veya insülin promotör faktörü-1'deki (ing. insulin promoter factor-1; IPF1) mutasyonlar neden olmaktadır.    gelişimsel sözel dispraksi FOXP2 transkipsiyon faktöründeki mutasyonlar gelişimsel sözel dispraksi (ing. developmental verbal dyspraxia) ile ilişkilendirilmiştir, bu hastalıkta kişiler konuşma için gerekli olan hassas koordinasyonlu hareketleri yapamaazlar.    Otoimmün hastalıklar FOXP2 transkipsiyon faktöründeki mutasyonlar ender bir otoimmün hastalık olan IPEX'e neden olur.    Kanser Çoğu transkripsiyon faktörü tümör baskılayıcısı veya onkogendir, bu yüzden onları mutasyonu veya hatalı denetimi kanserle ilişkilidir. Örneğin Li-Fraumeni syndromu tümör baskılayıcısı p53'teki mutasyonlardan kaynaklanır.

http://www.biyologlar.com/transkripsiyon-faktoru-nedir-biyolojik-rolleri-nelerdir

Heterokromatin nedir

Heterokromatin, interfaz aşamasında yoğunlaşmış halde bulunan kromatindir. Heterokromatik bölgeler geç replikasyon yapma özelliğine sahiptir. Konstitütif ve fakültatif olmak üzere iki formu bulunmaktadır. Çoğu bitki kromozomunun sonu konstitütif heterokromatin içerir. Heterokromatinin inaktifliğinin moleküler mekanizması henüz tamamen aydınlatılmamıştır.

http://www.biyologlar.com/heterokromatin-nedir


DNA'ya bağlanıcı proteinler nelerdir ?

DNA'ya bağlanıcı proteinler nelerdir ?

DNA'ya bağlanan yapısal proteinler, non-spesifik DNA-protein etkileşimlerinin iyi anlaşılmış örneklerindendir.

http://www.biyologlar.com/dnaya-baglanici-proteinler-nelerdir-

Genetik Kontrol ve Epigenetik Düzenleme

Genetik Kontrol ve Epigenetik Düzenleme

Francis Crick’in 1958’de ilk olarak sözünü ettiği moleküler biyolojinin temel dogması, nükleik asitle kodlanan bilginin mRNA üzerinden proteine translasyonunun olduğunu, bunun da tersinir  bir  ifllev  olmadığını  iddia  eder  (Şekil).  Oysa  1980’lerden sonra bulunan moleküler kanıtlar bunun zaman zaman tersinin de söz konusu olduğunu, sekans değiflikliği ile sonlanmasa bile çevresel faktörlerin DNA transkripsiyonunu, hem nicel hem de nitel olarak değifltirebildiğini ortaya koymaktadır. Epigenetik  düzenlemeler  birçok  farklı  mekanizmayla  geliflmektedir (Tablo 1). Bunlardan en iyi bilineni DNA-metilasyonudur.  Bu,  yaklaflık  1  kb  uzunluğundaki  CpG  adaları  adı  verilen, %50’den fazla nükleotidin sitozin ve guaninden olufltuğu promotor  bölgelerindeki  sitozinin  (C)  metilasyonudur.  DNA-metiltransferazlarca  (DNMT)  yapılan  bu  düzenleme  ile  genin  transkripsiyonu susturulmaktadır. Bu enzim mitozla ortaya çıkan yeni  DNA’nın  metillenmesi  ve  epigenetik  bilginin  korunmasını sağlamaktadır. Bu değiflikliğin mitozla aktarılabilmesi, çevresel faktörlerin uzun süreli etkilerini açıklamak açısından önemlidir. Bazı  hastalıklarda  promotor  bölgelerinin  nasıl  olup  da  uygunsuz flekilde hipermetile edildiği bilinmezliğini korumaktadır. Bu  konuda  değiflik  hipotezler  mevcuttur.  Bunlardan  biri  de DNMT’lerin  gereğinden  uzun  süre  ortamda  bulunmasıdır.  Her enzim gibi bir ömrü olan DNMT’in ortamda daha uzun süre yıkılmadan kalan varyantları, DNA’nın hipermetilasyonunun sebebi olabilir.  Bu  ayrıca,  demetilazların  yetersizliği  ve  ikincil  olarak DNA metillenmesine neden olan histon metilazların hiperaktivitesi sonucu da oluflabilmektedir. Metillenmifl sitozin (5-MeC) deaminasyonla timine (T) kolaylıkla dönebilmektedir. Bu nedenle DNA’nın metilasyonu mutasyonel sıcak noktalar yaratarak genomik mutasyonlara da zemin hazırlamaktadır (5) . DNA’nın metilasyonu ile ortaya çıkan kromatinin tekrar modellenmesinin bilinen en iyi örneği, adını Mary Lyon’dan alan X kromozomunun  rastlantısal  inaktivasyonudur  (Lyon  hipotezi). Aslında  X  kromozomundaki  genlerin  çoğu  cinsiyet  ile  iliflkili genler  değildir.  Bu  nedenle  erkek  ve  kadınlarda  eflit  miktarda translasyonunun  olmasının  sağlanması  gerekir.  Bundan  ötürü difli  hücrelerde  fazla  olan  bir  X  kromozomu  (X inaktif)  DNA  metilasyonu  ile  inaktive  edilip  heterokromatin  haline  getirilerek, nükleusda  Barr  cisimciği  olarak  korunmaktadır.  Herfleye  rağmen X inaktif ‘in kodladığı genlerin yaklaflık %30’unun transkripsiyonunun  olduğu  düflünülmektedir.  X  kromozomundaki  yapısal değifliklik  bu  genlerin  inaktivasyonunda  sorunlar  çıkararak, susturulması  gereken  genlerin  eksprese  olması  sonucunu  doğurabilir. Bu da ilgili genin fazla ekspresyonuyla sonuçlanarak hastalık sebebi olabilir. X kromozomundaki kırılmaya uygun sıcak bölgelerin çokluğu (6) göz önüne alınırsa bazı hastalıkların (X inaktif )’den  kaynaklanmasının  ihtimal  dahilinde  olduğunu  düşünmek gerekir. Kaynak: Nöropsikiyatri Arflivi 2008; 45 Özel Sayı: 15-20Archives of Neuropsychiatry 2008; 45 Supplement: 15-20

http://www.biyologlar.com/genetik-kontrol-ve-epigenetik-duzenleme

DNA organizasyonunun uzun süredir var olan biyolojik gizemi şimdi çözüldü!

DNA organizasyonunun uzun süredir var olan biyolojik gizemi şimdi çözüldü!

Yeni bir teknik, kromatin boyalı bir metalle boyama ve elektron mikroskobuyla (EM) görüntülemeyle bir hücre çekirdeği (mor, sol alt) içinde kromatin yapısını ve organizasyonu 3-D görselleştirme sağladı.

http://www.biyologlar.com/dna-organizasyonunun-uzun-suredir-var-olan-biyolojik-gizemi-simdi-cozuldu

Apoptoz’un Belirlenmesinde Kullanılan Morfolojik görüntüleme yöntemleri

1. Işık mikroskopu kullanımı:a. Hematoksilen boyama: Morfolojik görüntüleme yöntemleri içinde en ucuz ve kolay olanı hematoksilen ile boyamadır. Hematoksilen ile boyanan preparatlar ışık mikroskobu ile incelenir. Hematoksilen boyama (HB) hem hücre kültürü çalışmalarında hem de doku boyamalarında kolaylıkla kullanılabilir. Apoptotik hücrelerin saptanmasında genellikle ilk metod olarak başlanması uygundur ve çeşitli açılardan (örn. ilk değerlendirme, maliyet) diğer metodlara karşı avantaj sağlar. Hematoksilen boyamada, hematoksilen boyası kromatini boyadığından apoptotik hücreler nukleus morfolojisine göre değerlendirilir. Apoptozise özgü değişiklikler iyi bir boyama yapılmışsa kolayca gözlenebilir. Fakat yine de deneyim gerektirmektedir. Çünkü bazı durumlarda mitotik hücreler ile apoptotik hücreler karıştırılabilir. Gözlenebilen değişiklikler şunlardır: hücre küçülmesi “cell shrinkage”, veya sitoplazmik küçülme “cytoplasmic shrinkage”, kromatinin kondanse olması “nuclear condensation” ve nukleus zarının periferisinde toplanması, nukleusun küçülmesi “pyknosis” veya parçalara bölünmesi “nuclear fragmentation”. Yukarıdaki fotoğrafda hemen hemen merkezi konumdaki iki hücrede nukleus fragmentasyonu görülmektedir. b. Giemsa boyama: Giemsa ile boyamada hematoksilenle boyamada da olduğu gibi nukleus morfolojisi esas alınarak apoptotik hücreler tanınır. Sitoplazma sınırları hematoksilen boyamaya göre daha iyi seçilebilmekle birlikte hematoksilen boyamaya belirgin bir üstünlüğü yoktur. 2. Floresan mikroskopu / Lazerli konfokal mikroskop kullanımı: Floresan maddelerin (örn. Hoechst boyası, DAPI, propidium iyodür) kullanılmasıyla yapılan bir boyama şeklidir. Floresan boyalar DNA’ya bağlanabildiklerinden hücrenin kromatini dolayısıyla nukleusu görünür hale gelebilir. Floresan sistemler ışık mikroskopuna göre çok daha pahalıdır. Fakat, eğer hücre kültürü çalışmasında kullanılırlarsa, canlı hücre ile yaşayan hücrenin ayırımına olanak tanırlar. Oysa, hematoksilen ya da Giemsa boyamanın kullanıldığı örneklerde hücrelerin tamamı yöntemin prensibi gereği zaten ölmektedirler. Canlı ve ölü hücre ayrımını yapabilmek için, canlı veya ölü tüm hücreleri boyayabilen bir boya (örn. Hoechst boyası) ile sadece ölü hücreleri boyayabilen bir başka boya (örn. propidium iyodür) beraber kullanılır. Bu boyama yöntemindeki prensip şudur: Bu yöntemlerde canlılığın belirleyicisi, hücrenin plazma membranının (hücre zarının) intakt olup olmadığıdır. Membranı intakt olan (canlı) hücreler propidium iyodür gibi sadece membran bütünlüğü bozulmuş (ölü) hücreleri boyayan bir boya ile boyanmazlarken, Hoechst boyası gibi ölü veya canlı tüm hücrelere girebilen boyalar ise ortamdaki tüm hücreleri boyayarak ölü veya canlı hücre ayrımına olanak sağlarlar. Bu şekilde boyanan hücreler bir floresan mikroskopu ile tanınabilirler. Kuşkusuz, bu yöntemle hücrelerin ölü ya da canlı olduğu anlaşılabilir ama ölü hücrelerin apoptozisle veya nekrozisle ölüp ölmediklerinin ayrımı hematoksilen boyamada olduğu gibi nukleus morfolojisine bakılarak yapılır. Kromatin kondensasyonu veya nukleus fragmentasyonu olan hücreler apoptotik hücreler olduklarını düşündürür. Hücrelerin detaylı ayrımı aşağıdaki kriterlere göre yapılır: - Nekrozisle ölen hücreler: Ölü oldukları belirlenen (Hem propidium iyodür hem de Hoechst boyası pozitif) hücrelerin nukleuslarında apoptotik değişiklikler görülmez. Nukleus paterninde büyük değişiklik yoktur. Nukleusun başlangıçda daha küçük olduğu gözlenebilir ama ileri evrelerde normale göre biraz daha büyümüş görülebilir. Boya yoğunluğu başlangıçda daha fazla olabilir ama ileri evrelerde yoğunluk apoptotik hücrelere göre daha az bulunabilir. - Apoptozisle ölen hücreler: Apoptotik hücrelerde hücre zarı eğer sekonder nekrozis gelişmemişse intakt olduğundan propidium iyodür ile boyanmaz ama Hoechst boyası pozitifdir. Yani propidium iyodür negatif ve Hoechst boyası pozitif boyanırlar. Fakat apoptozise özgü nukleus morfolojisi bu hücrelerde tanı koydurucudur. Tipik nukleus fragmentasyonu en önemli bulgudur. - Normal (canlı) hücreler: Propidium iyodür negatifdir. Hoechst boyası ile boyanırlar ve nukleus normaldir. Özetle: Nekrotik hücreler: Hoechst boyası (+) ve propidiyum iyodür (+); Apoptotik hücreler: Hoechst boyası (+), propidiyum iyodür (-) ve apoptotik morfoloji (+); Normal hücreler: Hoechst boyası (+), propidiyum iyodür (-) ve apoptotik morfoloji (-). 3. Elektron mikroskopu: Elektron mikroskopu ile değerlendirme apoptozisde en değerli yöntem (“gold standard”) olarak düşünülmektedir. Morfolojik değişikliklerin en doğru olarak gözlendiği bir yöntemdir. Üstelik subsellüler detaylar (örn. mitokondrinin durumu, hücre zarı ya da nukleus membranının bütünlüğünün bozulup bozulmadığı gibi) da incelenebilir. Yukarıdaki elektron mikroskopu çalışmalarında, üstteki resimde (A) nukleus fragmentasyonu net olarak izlenebilmektedir. Alttaki resimde (B), solda normal bir hücre görülmektedir. Sağdaki apoptotik hücrede, normal hücreyle kıyaslandığında sitoplazmik küçülme, kromatin kondansasyonu ve fragmentasyonu izlenebilmektedir. 4. Faz kontrast mikroskopu: Bu tür mikroskop sadece hücrelerin kültür ortamında, “flask” veya “plate”lerde büyütüldüğü çalışmalarda, hücreyi veya hücre topluluğunu incelemek amacıyla kullanılır. Ölen hücreler yapıştıkları “substratum”dan ayrılacakları için besiyer içinde yüzmeye başlarlar. Bu hücreler faz kontrast mikroskopu ile gözlenebilirler. Mitozise giden hücreler de faz kontrast mikroskopuyla gözlenebilirler fakat bu hücreler aynı zamanda apoptotik hücrelerin erken evredeki görüntüleri ile karışabilirler. O yüzden ayrımları hemen hemen imkansızdır. Gerek mitozisde gerekse apoptozisin erken evresinde hücreler üzerine yapıştıkları “substratum”a yayılmış halde değil, tam tersine yuvarlaklaşmış ve küçülmüş olarak görülürler. Faz kontrast mikroskopu ile apoptotik hücreler üzerinde gelişen cepcikler (“blebs”) izlenebilir.Hücreler henüz “substratum”a yayılmış haldeler ise hücrelerin sitoplazmasında ortaya çıkan vakuoller de gözlenebilir. Ayrıca, bazı hücre tiplerinde “blister” olarak adlandırılan hücrenin sitoplazmasından dışarıya taşar gibi görülen bir veya birkaç tane büyük vakuoller de gözlenebilir. Bu vakuoller hücreden ayrılıp besiyer içinde yüzebilirler. İçleri boş küresel yapılar olarak gözükürler. Bu vakuoller olasılıkla bazı araştırmacıların hayalet hücre (“ghost cell”) olarak adlandırdıkları yapılardır. Hücre kültürü ortamında apoptozise giden hücrelerin başlangıçda hücre membranları intakt olmasına rağmen ileri dönemlerde sekonder nekrozis gelişir ve böylece membran bütünlükleri bozulur. Sekonder nekrozis aşamasına kadar olan süre içinde non-vital boyalar denen (örn. propidium iyodür) boyalarla boyanacak olurlarsa apoptozis başlamış olmasına rağmen hücreler bu boyalarla boyanmazlar. Çünkü membran bütünlüğü halen tamdır. Sekonder nekrozis geliştikten sonra membran bütünlüğü bozulur ve hücreler non-vital boyalarla boyanma özelliği kazanmaya başlarlar.“Blister”lerin oluştuğu aşamada membran bütünlüğü halen tamdır ve bu aşamada nukleus morfolojisindeki değişiklikler floresan boyalarla gözlenebilir. Fakat bu dönem uzun sürmez dakikalar içinde membran bütünlüğü bozulur. Faz kontrast mikroskopunda hücreleri gözlemek için normalde boya kullanmaya gerek yoktur ama istenirse yukarıda belirtildiği gibi hem faz kontrast mikroskopisi hem de floresan mikroskopisi aynı anda kullanılabilir. Böylece, örneğin nukleusu renklendirilmiş ve belirgin bir şekilde ortaya konmuş hücrelerin faz kontrast mikroskopisi fotoğrafları elde edilebilir. Kaynak: http://biyokimya.uludag.edu.tr/apoptozis_ders_notu.pdf  Dr. Engin ULUKAYA Biyokimya Anabilim Dal

http://www.biyologlar.com/apoptozun-belirlenmesinde-kullanilan-morfolojik-goruntuleme-yontemleri

“Çöp DNA’lar” Embriyo Gelişiminde Kilit Role Sahip

“Çöp DNA’lar” Embriyo Gelişiminde Kilit Role Sahip

Memelilerde genomun yarısı, retrotranspozon olarak bilinen ve amacının ne olduğu konusunda bilim insanlarının bir açıklama bulmakta zorlandığı tekrarlayan DNA parçalarından oluşur.

http://www.biyologlar.com/cop-dnalar-embriyo-gelisiminde-kilit-role-sahip


 
3WTURK CMS v6.03WTURK CMS v6.0