Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 838 kayıt bulundu.

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

P. polycephalum, bir hücreli organizma, daha çok cıvık mantar olarak bilinir. Laboratuarda agarda büyütülebilir. Credit: Audrey Dussutour (CNRS)

http://www.biyologlar.com/civik-mantarlar-ogrendiklerini-diger-civik-mantarlara-aktarabiliyorlar

Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar?  İşte evrimsel nedeni:

Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar? İşte evrimsel nedeni:

Zehirli kurbağalar sinir sistemleri yardımıyla toksinler üretirler. Bir ok kurbağasında bulunan zehir miktarı 150 insanı öldürebilecek güce sahiptir. Photo: Dirk Ercken/Shutterstock

http://www.biyologlar.com/ok-kurbagalari-kendilerini-nasil-zehirlemeden-yasarlar-iste-evrimsel-nedeni

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Bir araştırma ekibi, arkeal ve ökaryotik hücrelerin genetik materyalini nasıl paketlediğini ve depoladıklarını gösteren çarpıcı paralellikler buldu. Credit: Santangelo and Luger Labs

http://www.biyologlar.com/sonucta-o-kadar-da-farkli-degiliz-insanlardaki-hucreler-ve-saglam-mikroplar-ortak-bir-atayi-paylasiyor

Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

Biyoloji Mesleğine Gereken Değerin Verilmesi Bizim Elimizdedir.

Sevgili Meslektaş Kardeşlerim, Bölümümüz ve mesleğimiz ileri çağın bölümü-mesleğidir ve her geçen gün global çapta Biyoloji Bilimi ileri düzeydeki araştırmalarıyla, hayata sunduğu buluş ve imkanlarıyla Biyologluğun ne kadar nadide ve ehemmiyet teşkil eden bir meslek olduğunu göstermektedir... Ancak bununla birlikte ülkemizde çoğu meslektaş gurubumuzda yer alan insan(biyolog), Türkiye de mesleğimize verilen değerin hiç de kendi ehemmiyetine yakışır durumunda olmadığından büyük bir üzüntü duymakta ama her nedense bunun neden böyle olduğunu araştırmaya ve görmeye bile çalışmayıp, bu konuda hiçbir çözüm yolu bulmaya, sözkonusu durumdan ötürü organize olup, son derece samimi bir çözüm getirmeye çalışmamaktadır...Bu da çoğunluk teşkil eden kitlenin, samimiyetsiz tutumundan kaynaklanmakta ve bu şekilde tutumlar da organize olarak, çok samimi bir şekilde, meslek çapında insanlarımızı bilinçlendirmeye engel teşkil etmektedir.Bilinçli olarak mesleklere detaylı bakamayan bir toplumda ise; gerçeklerden kopuk, son derece mesleklere sıradan basit bir bakış söz konusu olacak,çağın bilimsel gelişmelerine paralel bir bakış açısıyla,bir mesleğin çok mühim bir bilim dalı olmasıyla fazla ilgilenilmeden, geleneksel bir yaklaşımla mesleklere değer verilmeye devam edilecektir...Bu da toplumun, çağın bilim seviyesinden daha aşağıda bir yer teşkil etmesine sebep olacak ve diğer toplumların buluşlarını kendileri elde edemeyeceğinden çağın seviyesine ulaşmak için dışarıdan getirmeye mecbur olacak bu da elbette toplumu çok yönlü etkilemeye devam edecektir... Ama eğer insanlar bu önemli konularda bilinçlendirilirse toplumda mesleklere son derece sıradan bilgisizce yaklaşımlar oluşmaz, her mesleğe hakkı kadar değer verilir; birçok nadide mesleğin önü açılır araştırma alanları korunur, iş sahaları daralmaz ve toplum aktif bir bilimsel araştıma nimetini elde ederek çağın seviyesine kendi aktif üst düzey çabalarıyla ulaşır..Bu şekilde toplumda büyük bir refah ve kalite yaşanır... Ancak çoğu bahsettiğimiz gerçek samimiyetten uzak insan, mesleğe sadece para ve kendimi kurtarayım benim ne işim var bilimle falan kazancım olan bir iş olsun yeter psikolojisiyle baktığı için meslek konusunda yakınmaları sadece bu kapsamda olmakta ve sadece bu konuda çaba sarfetmektedirler.Bu çok basit bencil bir düşüncedir ve bu şekilde düşünen insanlar yüzünden meslekler kendini düşünen hakiki hizmet vermeyen insanlarla dolmakta ve bu şekilde bir durumdan ötürü iş sahlarını asıl kendileri ellerinden aldırmaktadırlar...Oysa bir bilim dalının ve çağın önemli bir mesleğinin toplum içinde pasif kalması o toplumu bilimsel anlamda dışarıya bağımlı hale getirmekde bu da toplumu çok yönlü etkilemektedir...Toplumda pasif kalan önemi anlaşılamamış meslek her ne kadar mühim bir meslek gurubuna dahi girmiş olsa da iş sahasında toplum içinde bazı problemlerle karşılaşacaktır ve toplumda yeteri kadar kendini gösteremeyecek meslek gurubundaki insanların bir kesminin farklı bir meslekte hizmet etmesine neden olacaktır... İşte insanların çoğunluğunu oluşturan bir kısım, mesleklere para ve sadece 'kendilerini kurtarabilecekleri bir iş elde etme' gözüyle baktıkça bu mühim konu asla düşünülmeyecek bilim adına samimi çalışmalar olabilecek dereceden az olacak toplumda mesleklere gine çağın getirdiği bilim düzeyinde değilde geleneksel yaklaşımlarla değer biçilecek böylece nadide birçok meslek toplumda geri kalacak ve korunamayan iş sahaları tek tek elin altından kayıp gidecektir...Tüm bunların çözümü ise; samimi olarak kendimi kurtarayım mantığıya değil de, Bilim adına toplumun bilim çapında ilerlemesini göz önüne alıp hizmet anlayışla mesleği en iyi şekilde temsil etmek toplumu mesleki olarak bilinçlenmdirmeye çalışmakla mümkündür...Bu şekilde meslek sahalrı korunbilir araştırma sahaları güvenilir bir şekilde meslektaşlarımıza verilerek güzel sonuçlar beklenir ve de samimi hiçbir biyolog kardeşimiz ne işşiz ve de makasız kalır...Tek çözüm mesleğimizi gerek bilimsel icraatlerimizle gerek yer geldiğinde insanlara her yönüyle en güzel şekilde anlatmayla mesleğimizin kendine yakışır konuma gelmesi mümkündür...Bu konuda hepinizin daha bilinçli ve duyarlı olacağına inanıyorum inşaAllah değerli kardeşlerim... SaygılarımlaMurat KÖSEDAĞ

http://www.biyologlar.com/biyoloji-meslegine-gereken-degerin-verilmesi-bizim-elimizdedir-

Yalnız George'dan İnsanlığa Hüzünlü Veda

Yalnız George'dan İnsanlığa Hüzünlü Veda

Galapagos kaplumbağası, türünün son örneği "Yalnız George" 100 yaşında yaşama veda etti. 1535 yılında İspanyol gemiciler tarafından, Ekvadora bağlı Galapagos adalarında yaşayan bu kaplumbağalara, İspanyolca kelime olan Galapago ismi verildi. Çobanlar tarafından 1972 yılında Pinta adasında bulunan erkek dev su kaplumbağası Geochelone Nigra Abingdoni alt türünün bilinen son örneğiydi. Galapagos Ulusal Park Müdürü Edwin Naula, SantaCruz adasındaki kaplumbağa yetiştirme merkezinde bakıcısı Fausto Llerena  tarafından ölü bulunan Yalnız George'un ölüm nedeninin belirlenebilmesi için nekropsi  uygulanacak.Galapagos adaları,1835 de Darwinin ziyaretiyle üne kavuşmuş adalardır. İngiliz doğa tarihçisi, Charles Darwin, 1859 da ortaya attığı evrim teorisinin unsurlarından "Doğal Seçilim"i, Galapagos adalarındaki gözlemlerine dayanarak yapmıştır. Doğal seçilime göre, belirli bir türde dış çevreye uyum konusunda daha elverişli özelliklere sahip olan canlılar, bu elverişli özelliklere sahip olmayan canlılara göre, yaşama ve üreme açısından daha şanslıdırlar. Bunun sonucu olarak genlerini yeni kuşaklara aktarabilmeleri yoluyla evrim devam eder. Yalnız George 1993 yılından beri başka dev su kaplumbağalarıyla çiftleştirilmeye çalışıldı fakat başarılı olunamadı. Ve türünün son örneği olan yalnız George ile birlikte dünyamız bir kere daha yara aldı. İnsanoğlu bir türü daha uğurlarken, ciddi anlamda artık kendini sorgulamalı. Yaban hayatında bize veda etmeye hazırlanan pek çok canlı var. Bu ilk değil ama son da olmayacak. Her şeyden önce "insan" varlığı, yaptıkları ve yapacakları üzerine düşünmelidir. Yapılması gereken en önemli çalışma eğitimdir. Bireyler, biyoçeşitliliği neden korumaları gerektiğini anlamazlarsa, kendimiz dışındaki canlıları koruma şansımızda kalmaz. Her canlının yaşam zincirinin bir halkası olduğu, öğretilmelidir. Bunu anlatmak zaman ve emek ister. Âmâ şöyle bir düşünüldüğü zaman, biz, bu zinciri bozmak için bu kadar zaman harcarken, toplamak için neden zaman ayırmayalım. Aynı zamanda, çocuklarımıza paylaşmayı, öğretirken, bizimle yaşamı paylaşan diğer canlılarla da paylaşmamız gereken şeyler olduğunu öğretmeliyiz. Biz yaşamı başka canlılarla da paylaşıyoruz. İnsan, başka bir insanla, nasıl ki ekmeği, suyu, sevgiyi paylaşıyorsa, diğer canlılarla da havayı, suyu, toprağı paylaşması gerektiği çocuklarımıza öğretilmelidir. Çocuk yaşamın tamimiyle kendisine hak olduğunu düşünürse, insanlık kaybetmeye mahkûm demektir... Yalnız Georgenin bu şekilde veda etmesinin, senaryosunu kim yazdı? -Yazan: İnsan, oynayan "Yalnız George ve arkadaşları". Film biter ve "Yalnız George" insanoğluna veda eder. VAR OLAN DÜNYAMIZDA FÜGÜRAN YOK, HER CANLI BAŞ KAHRAMAN... Nuray GÜNDOĞDU Eğitim ve Etkinlikler Sorumlusu/Education and Event Area Manager Faruk Yalçın Zoo Faruk Yalçın Hayvanat Bahçesi ve Botanik Parkı A.Ş. www.farukyalcinzoo.comKaynak: http://www.ttkder.org.tr

http://www.biyologlar.com/yalniz-georgedan-insanliga-huzunlu-veda

Mendel Yasaları

Avusturyalı bir papaz olan Gregor Mendel 'in genetik ilmiyle ilgili olarak bulduğu biyoloji kanunları. Manastırın bahçesinde bezelye leri birbirleriyle çaprazlama|çaprazlayarak (eşleştirerek) kalıtım için ilgi çekici sonuçlar buldu. Bugün bu sonuçlar Mendel kanunları adıyla anılmaktadır. Çalışmalarını yaptığı dönemde kromozom ve genlerin varlığı bilinmemesine rağmen, özelliklerin "faktör" adını verdiği birimlerle nesilden nesile aktarıldığını söyledi. Bugün bu birimlere, gen denmektedir.Bahçe bezelyeleriyle yıllarca yapmış olduğu çalışmalarının sonuçlarını 1865'te yayınladı. ''Bitki Melezleri Üstüne Denemeler'' isimli eseriyle genetik|genetiğin kurucusu olarak kabul edildi. Mendel'in en önemli deneylerinin konusu bezelye idi. Adi bezelye tanelerinin bazıları düz yuvarlak, bazıları buruşuktur, bazı taneler sarıyken, diğerleri yeşildir, bazı bezelye bitkileri uzun, bazıları kısadır. Bu bitkileri düzenli tozlaşmalara tabi tutan Mendel, yukarıdaki özelliklerin dölden döle nasıl aktarıldığını göstermiştir. İki özelliğin bir araya gelmesi sonucunun bir karakteristik ortalaması olabileceği düşünülebilir. Bazı saf karakterlerin birleşmesinden, gerçekte de bu sonuçlar alınabilir; ama Mendel'in deneylerine göre, iki saf karakterin çaprazından, mesela uzunluk ve kısalıktan melez uzunlar çıkmaktaydı. Uzunluk karakteri, kısalık karakterine baskın olduğundan sonuçta melez bireyler uzun görünümdeydi. Bu tip iki uzun melezin çaprazı sonucunda ise, % 25 oranında saf uzun, % 25 saf kısa, % 50 melez uzun çıkmaktaydı. İki eş saf özellik çaprazlandığında, sadece bu saf özellik ortaya çıkmaktaydı. Mendel kanunlarının esası buna dayanmaktaydı.Mendel'in bahçe bezelyeleri ile deneyleriMendel bahçe bezelyeleriyle yaptığı çaprazlamalarda bazı belirli özelliklerin değişmediğini tesbit etti. Bezelyelerin bir kısmı kısa ve çalı tipli (bodur) olduğu halde, bazıları uzun ve tırmanıcı idiler. Yine, bazıları sarı tohum ürettiği halde, bir kısmı yeşil tohum üretirdi. Bazıları renkli çiçeklere sahip olduğu halde, bazıları da beyaz çiçek ihtiva ederdi.Mendel bahçe bezelyelerinin topu topu yedi özelliğinin değişmediğini keşfetti. Ayrıca bezelye çeşitlerinde özelliklerin nesilden nesile kendi kendilerine sürdürdükleri tozlaşma sayesinde korunduğunu gördü.Melezleme tozlaşmasında ise çiçeğin erkek organlarından diğer bitkinin dişi organına çiçek tozu ( polen ) aktarılarak kolaylıkla üretilmekteydi.Farklı yedi özellik (uzunluk, kısalık, sarı tohum, yeşil tohum vs.) görüldüğünden ve melezleme tozlaşması kolaylıkla icra edildiğinden Mendel'in seçtiği konu idealdi. Onun ilk işi, kendisinin takip ettiği ve anne babadan evlatlara devamlı aktarılan yedi özelliği, olsa da olmasa da keşfetmekti. Mendel farklı bitki çeşitlerinin her birinden tohumlar toplayarak onları bahçesinde fidan olarak dikti. Deneylerle ortaya çıkan yedi özelliğin zürriyet meydana getirmede ebeveynlerden (anne babadan) evlatlara aktarıldığını göz önüne almıştı. Bezelye çiçekleri, ancak kendini dölleyebilecek bir yapıya sahip olduğundan saf soylarını devam ettirmeye müsaittir. Mendel ilk deneylerinde bezelyelerin arı döl olup olmadığını araştırmaya başladı. Bunun için aynı bitkiyi birkaç defa arka arkaya tozlaştırarak birçok döl elde etti. Her dölde elde ettiği bireyleri birbirine ve ebeveynlerine benzeyip benzemediklerine göre ayırdı. Böylece özellikleri farklı yedi saf döl elde etti. Bu özelliklerin herbirine saf karakter adını verdi.Mendel'in Dominantlık (Baskınlık) Kanunu'nu keşfetmesiMendel'in bundan sonraki işi, iki farklı karakterli bitkiyi tozlaştırdığında ne olacağını görmekti. Buna uygun olarak bir uzun ve bir kısa ebeveyn bitki seçti. Uzunundan çiçek tozu alarak kısanın dişicik borusunun üzerine serpti. Kısa bitkide tohumlar olgunlaştığında çaprazlamanın sonucunu keşfetmek için tohumları ekti. Acaba yeni bitki kısa ebeveyne mi, uzun ebeveyne mi benzeyecekti? Yoksa her iki ebeveynin karakterinin tesiriyle orta uzunlukta mı olacaktı? Üreyen fidanların hepsinin, çaprazlamayı yapmak için çiçek tozu aldığı bitkiler gibi uzun olduğunu gördü.Mendel'in ikinci adımı, hangi bitkinin farklılığa sebep olduğunu bulmaktı. Çiçek tozunu kullandığı mı, yoksa üretimde tohumlarını kullandığı bitki mi?Buna uygun olarak tozlaşma işlemini ters tatbik ederek polen için kısa bitkileri, tohum üretimi için de uzun bitkileri kullandı. Sonuçlar önceki gibi olup bütün yavru bitkiler uzun meydana gelmişti.Mendel sonra diğer karakterleri çaprazlayarak deneyler yaptı. Sarı tohumlu bitkilerle yeşil tohumlu bitkileri çaprazladı. Çaprazlamanın birinci dölünde (F1 dölünde) hepsinin sarı tohumlu olarak ürediğini gördü. Bunun gibi yuvarlak tohumlu türlerle buruşuk tohumluların çaprazlamasından yuvarlak tohumlular üretti. Mendel yedi farklı karakteri tahlil edene kadar çaprazlama deneylerini tekrar etti ve şaşırtıcı sonuçlar elde etti. Çaprazlama döllerini dikkatle takip ederek birinci çaprazlamada kullandığı ebeveyn bitkileri "P" olarak adlandırdı. Adı geçen dölün çaprazlama sonucuna (ürününe) F1 olarak ad verdi. F1 ilk evladı temsil ediyordu. İki uzun bezelyenin F1 döllerinin çaprazlamasıyla, F2 dölünü (torunları) üretti. Üretimde önceki yolu takip etti. Her ikisi de uzun olan iki F1 bitkisi seçti. Onları çaprazlayarak tozlaştırdı ve F2 dölünü vermesi için tohumları dikti. Bu çaprazlamanın sonuçları gayet dikkat çekiciydi. Bitkilerin bazıları uzun olmasına rağmen diğerleri ise kısaydı. İkisi arası uzunlukta (orta boy) hiçbir bitki meydana gelmemişti. Üretilen bitkilerin 3/4'ü uzun, 1/4'ü ise kısa idi. F2 dölünde kısa bitkilerin tekrar ortaya çıkışı Mendel için büyük bir anlam taşımaktaydı. Demek ki F1 bitkileri görünmeyen kısalık karakterine sahipti. Diğer karakterlere sahip olan F1 neslinin çaprazlamalarıyla da aynı sonuçlar elde edildi. Sarı tohumlu ile yeşil tohumlu ebeveyn bitkileri (P) birbirleriyle çaprazlandığında F2 dölünde 3/4 oranında sarı ve 1/4 oranında yeşil bezelyeler üredi. Mendel bu sonuçlardan "''Dominantlık Kanunu''"nu kurdu.Mendel'in ikinci kanunu olarak bilinen Dominantlık (Baskınlık) Kanunu açık bir ifade ile şöyle tanımlanabilir: "Aynı genetik yapıya sahip iki benzer melez çaprazlandığında meydana gelen dölde, ana-babadan gelen karakterler belirli oranlarda (baskın karakter % 75, çekinik % 25) ortaya çıkar."Mendel'in ilk kalıtım kanunu: Uzun bezelyelerin kısalarla melezlenmesinden (çaprazlanmasından) uzun F1 nesli üredi ve kısa bezelyeler F2 dölünde tekrar ortaya çıktılar. Mendel, karakterlerin meçhul faktörler tarafından kontrol edildiğini ileri sürdü. Bugün bu faktörlere " gen " denilmektedir. Mendel bu temel üzerine kalıtımın birinci kanununu yani Eştiplilik = İzotipi Kanunu'nu kurdu.Eştiplilik (İzotipi) KanunuBu kanun, çeşitli kalıtsal karakterlerin faktörleri (genler) tarafından kontrol edildiğini ve bu faktörlerin çiftler halinde bulunduğunu ifade etmektedir. Mendel'in yaşadığı zamanda gen ve kromozomlar bilinmediği halde onun "Eştiplilik Kanunu" bugün genetiğin temel kurallarını meydana getirmektedir. Eştiplilik (İzotipi) Kanunu açık bir ifade ile şöyle tarif edilebilir: "Birer karakteri farklı iki saf ( homozigot ) ırk çaprazlandığı zaman meydana gelen F1 dölünün bireylerinin hepsi melez ve birbirine benzer olur." Uzun saf bezelye ile kısa saf bezelyelerin çaprazlanmasından % 100 uzun melezler meydana gelir. Mendel uzun F1 dölü bitkilerinin saf uzun ebeveyn bitkileri gibi olmadıklarını ortaya çıkardı. Bu bezelyeler görünmediği halde kısalık faktörünü taşımaktaydılar. Bu faktör bir sonraki dölde tekrar ortaya çıkacaktı. Bu muhakeme, onun kalıtımın ikinci kanununu, yani Baskınlık (dominantlık) Kanunu'nu keşfetmesine öncülük etti. Bu kanuna göre, çiftler halinde bulunan faktörlerden (genlerden) biri diğerini maskeleyebilir veya varlığını göstermesine mani olabilir.Baskınlık (Dominantlık) KanunuBahçe bezelyelerinde olduğu gibi, uzunluk bir çift gen tarafından kontrol edilir. Uzunluk geni kısalık genine baskındır ( dominant tır). Kısalık genine çekinik ( resesif ) denir. Mendel'in çaprazlamalarında ebeveynin biri saf uzun olup, her iki uzunluk genine de sahipti. Diğeri de saf kısa olup, her iki kısalık genine sahipti. Bunların çaprazlama ürünü olan F1 dölünün bireylerinin hepsi uzun, fakat melezdiler. Bunlar bir uzunluk ve bir kısalık geni taşımalarına rağmen, uzunluk geni kısalık genine baskın olduğundan uzun olarak ortaya çıktılar. Mendel, çalışma sonuçlarını tablolar halinde göstermeyi başardı. Günümüzde her karakter en az iki genle ifade edilir. Genetik te her gen bir harf ile temsil edilir. Dominant (baskın) genler büyük harfle, resesif (çekinik) genler aynı harflerin küçükleri ile ifade edilir. Eğer uzunluğu T harfiyle gösterirsek, saf uzun bitki TT olarak yazılacaktı ve uzunluk karakterinin her iki geni böyle gösterilecekti. Büyük T, uzunluğun zıt karakter olan kısalığa baskın olduğunu ifade etmektedir. Aynı usulle, küçük t, kısalığı temsil etmektedir ve yalnız başına saf kısa, tt olarak gösterilecekti. Bütün vücut hücreleri diploit sayıda (2N) kromozom ve gen ihtiva etmelerine rağmen, gamet ler (cinsiyet hücreleri) mayoza uğrayarak kromozom ve gen sayılarını yarıya indirgediklerinden haploit sayıda (N) kromozom ve gen taşırlar. İnsanın vücut hücrelerinde 23 çift (46 adet), gametlerinde ise 23 adet kromozom bulunur.Sonuç olarak bezelyenin tohum taslağındaki yumurta hücresi ve polen tanesinden meydana gelen sperm çekirdekçiği her karakter için yalnız birer gen taşırlar. Saf uzun bezelye bitkisinde, yumurta ve sperm çekirdekleri olgunlaştığında biri T'nin birini, diğeri de diğer T'yi alır. Aynı şekilde bütün vücut hücrelerinde tt genlerini taşıyan saf kısa bitkinin genleri mayoz sonucu t ve t'ye bölünerek şekillenen yumurta veya spermlere geçerler.Mendel Ayrılma Kanunu adı ile kalıtımın üçüncü kanununu kurdu. Bu kanuna göre, bir melezde bulunan gen çiftleri birbirinden bağımsız ayrılarak gametlere gider. Bu demektir ki, gen çiftinin bir tanesini bir gamet, diğerini ise başka bir gamet taşır. Ayrıca bir melezde, dominant genle beraber bulunan resesif gen değişmez. Eğer melezin sonraki döllerinde, iki resesif bir araya gelirse resesif karakter tekrar ortaya çıkar.Mendel çaprazlamalarının çizim metodları: Mendel'in bezelyelerle olan melezleme çalışmaları, dama tahtasına benzeyen tablolarla daha açık olarak gösterilebilir. Gametler, üst ve dikey karelere yerleştirilir. Gametlerin birbiriyle eşlenmesi, diğer karelerde işaretlenir.Tt meydana gelen uzun melez bitkileri ifade eder. T (uzunluk) geni, kısalık (t) genine dominant olduğundan, bireyler uzun olarak gözükür. Eğer Tt melezleri birbiriyle çaprazlanırsa gen birleşimlerinin dört ihtimali rahatlıkla tabloda işaretlenebilir. Durum '''tablo 2'''´de gösterildiği gibi olur.Melez ebeveynlerden T ve t genlerinin birleşme ihtimallerinin sonucunda, F2 dölünde: 1/4'ü saf uzun TT, 1/2 melez uzun Tt ve 1/4'ü saf kısa tt yavru meydana gelir.Mendel'in uzun ve kısa bezelyeleri çaprazlayarak elde ettiği aynı sonuçlar kobay ların renk verasetinde de ispatlandı. Bu durumda siyah renk, beyaz renge dominanttır. Saf bir siyah kobay BB ile, saf bir beyaz kobayı bb çaprazladığımızda ne olacağını görelim. F1 dölünde bütün bireyler (yavrular) siyahtır. Genetik yapılarında ebeveynlerden farklılık arz ederler. Çünkü onlar melez siyahlar Bb'dir. İki melez çaprazlandığında F2 dölü 1/4 oranında saf siyah BB, 1/2 oranında melez siyah Bb ve 1/4 oranı saf beyaz bb olarak gözükebilir. F1 dölünün iki melezi Bb arasındaki çaprazlamadan ortaya çıkan F2 dölü, dağılım gösterir.

http://www.biyologlar.com/mendel-yasalari-2

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Rus yazar Boris Zhitkov, 1931'de anlatıcının karışık ameliyatları gerçekleştirmek için minyatür eller oluşturduğu kısa hikayesi olan Mikrohand'leri yazdı.

http://www.biyologlar.com/bilim-kurguyu-gercege-donusturen-5-nanobilim-yolu

CANLILAR NASIL OLUŞTU VE GELİŞTİ

Yakın geçmişteki atalarımız acaba nasıl bir canlıydı?Daha önce neydik? Oksijenli ortamdaki yaşam nasıl bir canlıyla başladı? Bilim çevrelerinde, insanların ve hayvanların atasının, bir barsak paraziti (giardia)ne benzer bir canlıdan türediği görüşü ağırlıkta. Dünya var olduğundan beri üzerinde milyarlarca canlı, yaşam sürdü. Bu gün de en az 30 milyon tür yaşamını sürdürüyor. Elbette tüm canlıları birer birer sayma ve sınıflandırma olanağı yok. 18. yüzyılda Linnaeus, 10 000 canlıyı sınıflayabilmişti. Daha sonraları canlıların nasıl sınıflandırılacağı konusu gündeme geldi. Bir yol, organizmaları gözle görülebilir özelliklerine göre sınıflamaktı( Taksonomi). Darwin' le birlikte bu bakış açısı değişti. Canlılar soy ağaçlarına göre sınıflandırılmaya başlandı. Bu sınıflandırma, evrimsel ortaya çıkışın izini sürer. Güneş Sistemi' nin yaşi yaklaşik 4.5 milyar yil. İlk canlıların oksijensiz ortamda, 4.5 milyar yıl önce türediklerini biliyoruz. O zamanlarda atmosfer, büyük oranda azot ve daha az oranlarda karbon dioksit, metan, amonyak gazlarıyla ve az miktarda su buharından oluşmuştu. Oksijen yoktu. Ozon da yoktu. Ozon tabakası olmayınca Güneş' ten gelen morötesi ışınlar, yeryüzünü tüm şiddetiyle bombalıyordu. Bu morötesi ışınlar, yüksek enerjili ışınlardı. Moleküllerin Yaşam Savaşi Morötesi ışınlar, bol miktarda çakan şimşek ve yıldırımlar, milyonlarca yıl boyunca, mevcut basit molekülleri parçaladı. Parça birimler, birleşerek yeni moleküller oluşturdu. Bazı moleküller, başka moleküllerin oluşmasını kolaylaştırdı. Böylesi maddelere katalizör diyoruz. Bazı moleküller, kendinin aynısı olan moleküllerin oluşmasını da kolaylaştırır ( kendi kendinin katalizörü, otokatalizör). " Bugün artık kopyalama (çoğalma) işleminde belli protein ve enzimler aracı oluyor. İkinci olarak, "kendinin tıpkısı" bir molekül yaratmak, özelliklerini "yeni kuşak" moleküle aktarmak demek oluyor ki, bu da "kalıtım" mekanizmasının müjdecisidir. Kopyalama işlemi sırasında arada bir hatalar oluyordu. Yeni yaratılan moleküllerin büyük bölümü, bu hatadan ötürü bulundukları ortama uyamıyor, hemen parçalanıyordu; ya da ortama uysa bile çoğalabilme özlelliğini kaybediyor ve çoğalamıyordu. Ancak, çok nadiren de olsa, bazı hatalı moleküller hem ortama uyabiliyor hem de çoğalma yeteneğini kaybetmiyordu. Ortalığı dolduran bu değişik moleküller yeni bir tür oluşturuyorlardı. Bu da canlıların çeşitliliğini sağlayan" mütayon" mkanizmasının başlangıcını oluşturdu." Bu değişik moleküller, canlı çeşitliliğinin başlangıcıydı. Bazı moleküller sıcağa, yüksek enerjiye dayanıklıydı; onlar "hayatta" kalıyordu. Bunlar diğerlerinin dayanamayacağı ortamlarda çoğalabiliyordu. Kimileri sıcaktan parçalanıyor ve "ölüyor" du.(Prof. Dr. Orhan Kural, Bilim ve Teknik 343. sayı) Sudan Doğan Yaşam Moleküllerin yaşam savaşi suda, deniz ve göllerde kök salmişti. Suyun dişindaki moleküller, morötesi işinlarin bombardimaniyla paramparça oluyordu. Su ise bu işinlarinin bombardiman ateşini kesiyordu. Denizlere ve göllere siginmiş moleküller, uzaylilarin saldirisina ugramiş dünyalilar gibi adeta bir siginaktaydilar. Su, sicakligi sabit bir ortamdi; ayrica moleküllere hareket ve yaşama olanagi taniyan iyi bir akişkandi."Yaşayan" moleküller, giderek daha karmaşik yapilar geliştirdi. teel yapilari, " çift sarmal" olarak bildigimiz DNA idi. Bu moleküller, çevrelerine bir zarf yaparak kendilerini diş etkilerden bir ölçüde korumayi başardilar ve böylece ilk bakteriler oluştu. Bu noktaya gelme, yaklaşik yarim milyar yil aldi. Bakteriyi Küçümsemeyelim! Bakteriler bir anlamda en ilkel canlılar. Ama bakterileri küçümsemeyelim. " Biz, her zamanki insan merkezli bakışımızla "en başarılı yaratık insandır" der ve bunu hiç sorgumlamayız. Oysa ki, bizim türümüz olan homo sapiens sapiens' in bilemediniz en fazla 100 bin yıllık bir geçmişi var, geleceği de pek parlak görünmüyor. Bakteriler 3.5 milyar yıldır var, heryere yayıldılar, değil insan, başka hiçbir canlının yaşayamayacağı koşullar altında dahi yaşamaya uyum sağladılar ve insanlar yok olduktan sonra da, hiçbir şey olmamışçasına varlıklarını sürdürecekleri kesin. Üstelik bakterilerin olmadığı bir dünyada başka hayatın olması da pek düşünülemez. şimdi siz söyleyin, gerçek başarı kiminki? Bir süre sonra bazı bakteriler, işbirliğine giderek yeteneklerinde özdeşleştiler, bu küçük bakteriler toplumu da ilk hücrelerei yarattı. Bu hücrelerin bazıları çoğalma sırasında bölünürken birbirinden ayrılmadılar ve zamanla çok hücreli organizmalar oluştu. Bu da yaklaşık olarak 3 milyar yıl önce oldu....." "Derken, yaklaşik 2 milyar yil önce, doga en büyük keşfini yapti: Cinsiyet.... O zamana kadar, bakteriler ve hücreler tek başlarina bölünerek çogaliyorlardi. Bölünme sirasinda kendileri ile ilgili yapisal ve davranişsal her türlü bilgiyi (yani genetik kodu) taşiyan DNA' lar kopyalaniyor ve iki yeni varlik arasinda paylaşiliyordu. Bu temel işlem, hiç degişmemişti..... Derken, bazi hücreler çogalirken kendi DNA' larina bir başka hücrenin DNA' larini katarak genetik kodlari kariştirmayi keşfettiler. Sonuçta her iki hücreden farkli bir hücre meydana geliyordu. Birden bire, mütasyon çok büyük bir hiz kazandi ve çeşitlilikte bir patlama oldu. Bunun önemi şöyle anlaşilabilir: Ilk 2 milyar yilda evrim, ancak bazi basit organizmalar yaratabildi. Cinsiyetin keşfinden sonraki 2 milyar yilda ise bugün çeremizde gördügümüz bu inanilmaz çeşitliligi yaratti." Kendini, Türünü Koru ve Çoğal "Bu sıralarda orada bulunnsaydınız, deniz ve göllerin içindeki bakterileri, tek ve çok hücreli canlıları görebilseydiniz aklınıza gelecek cümlecik mutlaka şu olurdu: " Bir faaliyet, bir faaliyet...!" Gerçekten de bu canlı-ların adeta oraya buraya koştuklarını, hızla çoğaldiklarını, bazılarının diğerlerini yediğini, bazılarının ise ortaklıklar kurup bir takım üstünlükler sağladıklarını görecektiniz. Bütün bunlar taa başından beri süregelen 1 numaralı genitik emrin uygulanmaları idi : "Kendini, türünü koru ve çoğal ". Bunu yerine getirmek için bütün türler kendilerine uygun taktik ve stratejiler geliştiriyor, bunlardan en başarılı olanların sahipleri ortama egemen oluyor, diğerleri yok oluyordu. Bu amansız mücadele hiç dinmeden bugüne kadar geldi. Cinsiyetin keşfinden 500-600 milyon yil sonra önemli bir adim daha atildi. Bazi bakteriler atik olarak oksijen üretmeye başladilar. Başlangiçta, varolan canlilar için bir zehir olan bu yeni gazi kullanarak enerji üretmeyeyi ögrenen canililar büyük üstünlük sagladilar, çünkü yeni enerji üretim mekanizmasi eskiye göre çok daha verimli idi." ( Bilim ve Teknik,TÜBITAK, 343. sayi s: 29 ; Prof. Dr. Orhan Kural) “Atmosferdeki oksijen miktarının ancak % 1' e ulaşması yaklaşık 2 milyar yıl önce gerçekleşmiştir." Bugünkü yaşamın sürdüğü ortamın büyük bir kısmı oksijenli kara ortamı olduğu, ve insanoğlu da bu ortamın bir üyesi olduğu için, oksijensiz yaşamın önemi gözden kaçabilir. Oysa oksijensiz ortamın canlıları, yakından tanıdığımız gelişmiş, çok hücreli canlıları incelerken değerli açılımlar sunabilir. 3-4 milyar yıl öncesinin oksijensiz ortam canlılarının yaşadığı ortamda ancak iz miktarda oksijen vardı. Canlıların evriminde oksijenin rol oynamaya başlamasından çok önce, 500 milyon yıl boyunca, oksijensiz ortam canlılarının hükümranlığı sürmüştü. Bu sürecin ortalarında bir yerde, Güneş enerjisini kullanarak fotosentez yapan bir prokaryot türü; siyanobakteriler türemişti.... Büyük olasılıkla, bugün soluduğumuz oksijen moleküllerinin bir kısmı da, yaklaşık 2 milyar yıl önce, siyanobakterilerce üretilmiştir." Atmosferdeki oksijen miktarı arttıkça oksijene bağımlı bakteriler türedi. Bunlar, hücre zarı, hücre çekirdeği, bağımsız organeller gibi öğelerle donatılmış canlı türleriydi. Oksijen enerji metebolizmasında olağanüstü bir verimlilik artışı sağlamıştı. Öte yandan oksijenin zehir (toksik) özlelliğini gidermek için canlılar enzim (biyolojik katalizör) üretmeliydi Ayrıca oksijene dayanmayan fotosentez sistemlerinin, oksijen kullanan sistemlerden mekanik bakımdan çok daha basit oluşu, oksijenli fotosentezin evrim tarihinin ileri bir aşamasında ortaya çıktığını gösteriyor." Zamanla atmosferde çoğalan oksijen, ozon tabakasını yarattı, bu da morötesi ışınları önemli ölçüde kestiği için artık canlıların sudan çıkmalarına engel kalmadı. Sonuçta karalar, hızla artan bir bitki ve hayvan çeşitliliği ile doldu. Bitkiler oksijeni üretiyor, hayvanlar tüketiyor, hayvanlar karbon dioksit üretiyor, bitkiler tüketiyordu. Bitkiler enerjilerini Güneş' ten alıyor, hayvanların bazıları bitkilerin bu hazır enerjilerini, onları yiyerek alıyor, bazıları ise daha yoğun bir enerji almak için diğer hayvanları yiyorlardı.Daha sonra da ölen hayvanlar, yapı maddelerini, çürüyen vücutları ile toprağa geri veriyor, bu da bitkiler tarafından alınıyor, çıkar zinciri tamamlanıyordu. Herkes gül gibi geçiniyordu. Bu, o kadar iyi işleyen bir mekanizma idi ki günümze kadar değişmeden geldi. Bütün bu gelişmeler sırasında, her adımda genetik bilgilere sürekli yenileri ekleniyordu. Genellikle eski bilgiler kalıyor, yeni edinilenler ekleniyordu. Buna örnek olarak, virüslerin (yalnızca bir parazit olarak yaşayabilen en basit canlıdır) genetik kodunda yaklaşık 10 bin "bit" vardır (Buradaki "bit", parazit değil, "bilgi taneciği" diye tanımlanabilecek olan bilgi ölçüsü). Bir bakterininkinde 1 milyon, bir amibinkinde 400 milyon ve bir insanınkinde yaklaşık 5 milyar bit vardı. Hemen gözünüze çarpmıştır, bir amip ile bir insan arasında genetik bilgi olarak yalnızca 10 kadar bir katsayı var, bu çok aşağılayıcı değil mi? Değil aslında, o fazla bitlerin bir kısmı çok önemli bir gelişme için kullanılmış: Bir yazılım üretme ve depolama organı, yani beyni geliştirmeye." (Orhan Kural, Bilim ve Teknik 343. sayı) Fotosentez, yalnız oksijenle olmaz. Örneğin, elektron vericisi olarak su yerine hidrojen sülfürü kullanan fotosentez sistemleri, atık olarak oksijen yerine kükürt salar. Oksijensiz ortamın canlıları bu yolla yakıt olarak yalnız Güneş enerjisini kullanabilir. Tek hücreli bu ilk hayvanlar, giderek oksijen kullanmaya başladı. Organizmaların, oksijenli yaşama görece hızlı bir biçimde uyum sağladıkları düşünülüyor. Bu kurama göre, organizmalar oksijenle beslenen küçük organizmaları bünyelerine almıştı. Bu küçük organizmaların mitokondri organelinin atası olduğu düşünülüyor. Mitokondri, hem kendisi, hem de konakladığı hücre için oksijeni ATP enerjisine dönüştürüyordu. Buna karşılık büyük hücre de mitokondri için protein sentezliyordu. Günümüz hücrelerindeki mitokondri organeli, işte bu bakteri benzeri atadan türemiştir. mitokondriye bitki ve hayvan hücrelerinde, ayrıca bitkilerin kloroplastlarında rastlanır. Mitokondri, kendi DNA sına sahiptir ve hücre bölünürken bağımsız biçimde kendi kendini kopyalayabilir. Elde edilebilen en eski mitokondrili fosil 850 milyon yıl öncesine ait. ( Bilim ve Teknik 332. sayı, Özgür Kurtuluş)

http://www.biyologlar.com/canlilar-nasil-olustu-ve-gelisti

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

Ökaryotik Kromatinin Fonksiyonu

Ökaryotik Kromatinin Fonksiyonu

Vücudunda belirgin bulan genetik özellikler uzak atalarınızdan miras alınmıştır; milyonlarca yıl geriye uzanan kesintisiz bir nesil kuşağından gelmektedir.

http://www.biyologlar.com/okaryotik-kromatinin-fonksiyonu

İNSANIN EVRİMİ

19. yy’ın ortalarıydı. 1859' yılında Türlerin Kökeni adlı bir kitap yayınlandı.Kitap Darvin imzasını taşıyordu : Charles Darwin ( 1809-1882). Darwin, 19. yüzyılın dahilerinden biriydi. 1871 de ise İnsanın İnişi yayımlandı. İşte Darvin' in bu kitapları insanın doğuşunun bilimsel anlamda ilk açıklama bildirileriydi. İnsanın Afrika' da ve Ekvator yakınında "doğduğu" artık kesinleşmiştir diyebiliriz. (İnsanın Yücelişi, s: 25) Dünya, böyle gelmiş böyle mi gidiyordu? Yoksa başlangiçta durum daha mi farkliydi? Varliklarin çeşitligini nasil açiklayabilirdik? Bu yeni yoruma göre, herhangi bir zamanda varolan canli türlerin çeşitliligi zaman içinde evrim geçirmiş ve geçirmektedir. Dinsel açiklamalarla, bilimsel yaklaşim ilk kez cepheden karşikaşiya kaldi. Yaratiliş kurami yani dini açiklama ve evrim kurami. Biyologlar 1.5 milyondan fazla 'flora ve fauna' türü üzerinde çaliştilar. Bu çeşitliligin zaman içinde evrimleşme ve dogal ayiklanma ile açiklanabilecegini açikladilar.( George Basalla, Teknolojinin Evrimi, s: 1) Darvin, doğrulanıyordu yani. Evrenin evrimi, genellikle kolay kabul edilir. İşte efendim, bir toz bultuydu önce. Sıcak bir çorbaydı, sonra soğudu. Ve Tanrı, insanı yaratıp Dünya' ya gönderdi! Bu arada George Basalla, çok başka bir noktaya dikkat çekiyor. Yeryüzündeki canlilarin ve cansiz maddelerin çeşitliligi gerçekten ilginç ve hayret verici. Ama insanin kendi elleriyle " yarattiklari" çeşitlilik de canli türlerin çeşitililigi kadar şaşirtici."Taş aletlerden mikroçiplere, su degirmenlerinden uzay gemilerine, raptiyelerden gökdelenlere kadar çeşitlilik içeren yelpazeyi gözönüne getirin. 1867 yilinda Karl Marx, Ingiltere' nin Birmingham kentinde beşyüz farkli tip çekiçin üretildigini ögrendiginde çok şaşirmişti. Normal olarak buna şaşirmasi da gerekirdi. Bu çekiçlerin herbiri, endüstri ve zanaat sektöründe özel bir işlevi yerine getirmek üzere üretiliyordu" (Teknoloji nin Evrimi, s: 2) Birbirine yakın canlılar bile neden bu derece değişik özelliklere sahip? Kuşlar, Kediler, köpekler, kurt, aslan, tilki... Darwin' den önce Fransız bilgini Jean Lamarck (1744-1829) bu sorunla ilgilenmişti. Ona göre her varlık, içinde oluştuğu, yaşadığı maddesel koşullara göre oluşuyordu. Kuşu oluşturan koşullarla kediyi oluşturan koşullar aynı değildi. Bir de canlının bu koşullara uyumu ya da koşullara etkisi aynı değildi. Gereksinme, organ yaratıyordu. Gereksinme olmayan organlar köreliyordu. Ortamın zorlamasıyla oluşan özellikler, kalıtımla kuşaktan kuşağa geçiyordu. Örneğin zürafa, önceleri otla beslendiği için normal boyunlu ve normal bacaklı bir hayvandı. Sonra yaşadığı çevre çölleşti. Zürafa başka bir çevreye geçerek yiyeceğini yüksek ağaçlardan sağlamak zorunda kaldı ve giderek bacakları da boynu da uzadı... Lamarck' ın görüşleri kuşkusuz sorunlara bir yaklaşım getiriyordu. Ama yeterli de değildi. Çevresel koşulların (ortamın) etkisiyle oluşan özellikler nasıl oluyor da kuşaktan kuşağa geçiyordu? Ortam denen bilinçsiz güç, nasıl oluyor da bu denli düzenli ürünler oluşmasını sağlıyordu? Yoksa bu güç başka bir yerde miydi? Darvin' in büyük önemi, böylesi soruları bilimsel kanıtlarla yanıtlaması. O, kendinden öncekileri izledi. Lamarck, Diderot, Robinet, Charles de Bonnet gibi evrimcilerin kuramlarını incelemişti, onların eksikliklerini düzeltiyordu. Özellikle Lamarck' ın soyaçekim ve çevreye uyma varsayımlarını, doğal ayıklanma ve yaşama savaşı bulgularıyla güçlendirdi. Darvin şunu savunuyordu: Yaşam kasırgası içinde ancak yaşama gücü olanlar canlı kalır ve türlerini sürdürür. Bu , bir doğal ayıklanma ya da doğal seçmedir. Yaşama savaşında ayakta kalanlar belli özellikler gösterenlerdir. Bu özellikler, soyaçekimle yeni kuşaklara geçer hem de gelişerek. Bitki ve hayvan yetiştirenler kuraldişi özellikler gösterenleri birbirlerine aşilaya aşilaya yeni türler elde ederler. Insanlarin bile yapabildigi bu aşilamayi doga daha kolaylikla ve dogal olarak yapmaktadir. Gerçekten de, bu seçim, doğumdan önce başlamaktadır. Örneğin bir insan yaratmak için iki yüz yirmi beş milyon erkek tohumu sekiz saat süren bir yarışa girişirler. Kadın yumurtası karanlık bir köşede gizlenmiştir. İki yüz yrmi beş milyon yarışçı arasından hangisi acaba daha önce varır,yumurtayı gizlendiği köşede bulunabilirse,doğacak çocuğu o meydana getirecektir. (Düşünce Tarihi, s: 15-16... ) İnsan, Bu Değişmeyen! (Hüsnü A. Göksel) ..."Pekiy, bilimin ve tekniğini bu gelişmesine koşut olarak insanda da aynı hızda olumlu bir gelişme olduğunu söyleyebilir miyiz? Ne yazık ki hayır, söyleyemiyoruz... Neden böyle acaba? Bilimi yapan, bilimi bugüne getiren de insanın kendisi değil mi? Binlerce, onbinlerce canlı türü arasında, insan türü "Homo Sapiens" mağaradan çıktı dünyaya, dünyanın aydınlığına. Üzerinee mağaranın karanlığı bulaşmıştı. Gözleri kamaştı aydılığa çıkınca. Korktu, kapadı gözlerini, dönüp mağaranın karanlığına sığındı yine. O zamandan beri binlerce yıldır, zaman zaman mağara karanlığında güvence arar, güvence bulur insan. Ama yenemedi merakını, çıktı yine dünyaya, dünyanın aydınlığına. çevresine bakındı. Böylece " bilim" in tohumu düşmüş oldu yüreğine : merak etmek, araştırmak, öğrenmek, gerçeği bulma tutkusu. Ve o zamandan beri bu merak, bu araştırmak, bu, gerçeği bulmaya çalışma uğraşı, binlerce yıldır süregeldi. Binlerce, on binlerce canlı türleri icinde insan, varlığının, varoluşunun bilincine varan tek yaratıktır. Mağaranın karanlığından, dünyaya, dünyaaydınlığına çıkınca vardı bu bilince. Varlık bilinci yokluk bilincini, varoluş bilinci yok oluş bilincini de içinde taşır. düşündü o zaman: Neden "var" dı? Ve neden "yok" olacatı? Var olduğuna göre onu "var" eden, "yapan" biri, birileri, olmalıydı. Onu " var" eden ya da edenler, on "yok" edeceklerdi. Güçsüzlüğünün ayırımına vardı, korktu, ürktü, kendi gücünün üstünde bir güce sığınmak zorunluluğunu duydu. Bu gücü "Doğa" da gördü önce, ona sığındı. Böylece dinler tarihi başlamış oldu. Güneş' e, şimşeğe, fırtınaya, çevresinde lav püsskürten yanardağa sığındı, güvendi, tapındı. Güneş doğarken yüzünü ona dönüp secdeye kapandı. Öğleyin tepedeyken Güneş, zenit noktasında iken, ellerini gökyüzüne kaldırdı, yardım istedi ondan. yanardağ lav püskürünce ona döndü, secdeye kapandı. mısırlılar taşlardan dev gibi yaratıklar yaptı tanrı olarak. Kedi başlı kocaman bir kadın, kocaman bir Sfenks... Mezopotamyalıların tanrıları kuş başlı adamlar, aslan başlı kadınlar, yarı insan, gerçekdışı yaratıklardı. Hepsi kocaman, genellikle korkunç. Eski Yunanda tanrılar tümüyle insan figürlerine dönüştü. her şeyin her duygunun, her doğa olayının ayrı ayrı tanrıları vardı. Bu tanrılar yalnız biçim olarak değil, tüm davranıyları ile insan gibi idiler. Birbirleriyle kavga ediyorlar, aralarında dostluk, düşmanlık kuruluyor, Zeus ölümlü genç kızlarla karısı Hera' yı aldatıyor. Hera kıskançlıkla o kızları yılana çeviriyordu. Bundan sonraki dönemde heykellerin yerini doğrudan doğruya insan aldı, Kral Allahlar dönemi başladı. Böylece insanlar tanrılaştırıldı. Ve nihayet "Tek Tanrı dinleri" doğdu. Doğa dinlerinden tek Tanrı dinlerine kadar tüm dinlerin ortak yönleri Tanrı' ya insan gözü ile bakmalarıdır. Tanrı' da, insanda, yani kendisinde olan nitelikleri, yetenekleri, özellikleri görür, onda insan davranışlarını var sayar. Tanrı, ya da Tanrı' lar sever, kızar, affeder, ödüllendirir, cezalandırır. Gönlüü almak için kurbanlar verilir Tanrı' ya, tanrılara. En belirgin insan daranışı, tanrı ların ya da Tanrı' nın konuşmasıdır. "Önce Söz Vardı" söylemi bunun en belirgin örneğidir. Tanrılar ya da Tanrı insana ya da insanlara vereceği ileti (mesaj) için neden söz' e geresinim duysun ki? tanrı' da insan niteliklerini görmenin nedeni, insan beyninin, duyuların ötesinde bir varlığı algılama gücünden yoksun olmasıdır. Aklın gücü sınırsız ve sonsuz olmadığı için sınırsız ve sonsuz olan bir varlığı ve gücü algılayamaz, kavrayamaz. Dinlerin başka bir ortak yani doga dinlerinden tek tanri dinlerine kadar tüm dinlerde tanri' ya kulluk yapilirken, bedene belirli biçim verilmesi, belirli hareketler yapilmasi, belirli yöne dönülmesidir. Kibleye dönülür, yedi kollu şamdana dönülür, Ikonaya, Madonnaya, Isa' nin heykeline dönülür, Güneş' e dönüür. Diz çökülür, secdeye varilir, avuçlar birbirine yapiştirilir, gökyüzüne açilir. Görkemli tapinaklarda mimari, süsleme, müzik, dans sanatla dini bütünleştirir. Dünyanin Yedi Harikasi' ndan biridir Diyana Tapinagi. Tekbi-i ilahi ile Naat-i Şerif ile Mevlevi Semai ile Itri' nin besteleri dalgalanir görkemli kubbelerde. Ya da Haendel' in Mesih' i, Mozart' in Requiem' i. Tüm dinlerin en önemli ortak yönü hepsinde, tanrı ile kul ya da kullar arasına birilerinin girmesidir. Doğa dinlerinden tek tanrı dinlerinekadar,büyücüler girmiştir, bakıcılar girmiştir, rahipler girmiştir. Azizler, imamlar, papazlar, hahamlar, mollalar, sinagog, kilise, papa girmiştir ve nihayet kulla tanrı arasına girmeyi kendisinin görevi sanan yetkisiz, bilgisiz kimseler girmiştir. Böylece " Din, tarih boyunca, tüm insanlık tarihi boyunca, tüm dünada amaç için kullanılan araçlardan biri olmuştur. Halkın ne zaman boyundurk altındatutulması gerekti ise, din, kitleleri etkiemek için tüm ahlaki araçların ilkini ve başlıcasını oluşturmuş. Hiçbir dönemdi hiçbir felsefe, hiçbir düşünce, hiçbir güç onun yerini sürekli alamamıştır." (F.Engels) Tüm dinlerin, din öğretilerinin temelinde, iyilik, dürüstlük, başkalarının hakkını yememe, kendi hakkına razı olma, açgözlü olmama vardır. Tüm dinler yalan söylemeyi, açgözlülüğü yasaklar, lanetler. Din- Bilim ikilisinin en önemli ortak çizgisi, dürüstlüktür, yalana yer vermemektir. Ama!.. Evet ama insan mağaradan çıktı dünyaya. Dünyanın aydınlığına mağara karanlığından çıktı. Etinde, kemiğinde, beyninde mağara karanlığının bulaşığı var. Din, bilim, töreler, yasalar, eğitim, bu blaşığı arındırmayı amaçlar. Zordur bu amac erişmek. çünkü tüm bu uğraşların karşısında arındırmaya engel olanr, insanın kendi yarattığı bir başka tanrı vardır. Kimdir? Nedir Bu Tanrı? İnsan mağaradn çıkınca, kendisi gibi başka insanların da varolduğunu gördü. Dünyasına onların da ortak olduğunu gördü. dostluk, düşmanlık, alışveriş ilişkileri kurdu onlarla zorunlu olarak. Önceleri kendi gerksinimi için ve gerektiği kadar üretirken sonraları gerektiğinden fazla üretip, kendi ürünü başkalarının ürünleri ile değiş tokuş yapmaya girişti. Böylece ilkel ticaret başladı. Birkuşku düştü içine: kendi ürünü karşılığında aldığı ürün, kendi ürününün değerini karşılıyor muydu acaba? Bunu düzenleyen bir değer biri"mi olmalıydı. Ve "para" yı icat etti insan. "Homo Sapiens", "Homo Economicus" a dönüştü. "Para", ona sahip olanı da tanrılaştırıyordu. Tanrılaşmak için daha çok, daha çok malı mülkü parası olmalıydı. Bu çokluk, başkaların sırtından, başkalarının emeğinden, başkalarının hakkından kazanılamaz mıydı? "Homo Economicus, görünmez bir el tarafından, aslında istemediği bir hedef yaratmak zorunda bırakıldı." (Adam Smith' ten aktaran Erich Fromm) İnsan sömürgen oldu, "insan yiyen yaratık" oldu insan. Para karşılığında satılmayacak, satın alınamayacak şey kalmamalıydı. Marks' ın ürünü oluşturan öğelerden birinin emek olduğunu, emeğin de para karşılığında satılıp alınabileceğini, yani bir meta olduğunu söylemesinden binlerce yıl önce, köle ve serflik dönemlerinde bile " homo Economicus" dürüstlüğün, onurun, erdemin de meta olduğunu, para karşılığı satılıp alınabileceğini keşfetti.... Dinler tarihi, bilimler tarihi, din-bilim ikiliği insanın "Homo Sapiens" in beynine bulaşan bu mağara karanlığından kurtuluş için verdiği savaşımın tarihidir. Homo sapiens mağaradan uzaklaşabildiği, mağara karanlığından arınabildiği oranda "İnsan" sayılır. " (Hüsnü A. Göksel, Cumhuriyet, 8 Eylül 1996) Daktilolu Maymun DNA Üretebilir mi? "Yaygın bir görüş şudur: Bir insan DNA' sını, ortalıkta gezinenen moleküllerden yaratmak için, molekülleri çok dikkatli seçmek ve belli bir sıra ile dizmek gerekir. Sayıları da o kadar çok ki bu , seçilmiş harfleri yan yana dizerek üçyüz adet kitap yazmak ile eşdeğer bir iş. Bu DNA' nın rastgele birleşmelerle meydana çıkması ise, bir maymunu bir daktilonun başına oturtup, tuşlara rastgele basarak Shakespeare' in bütün eserlerini tesadüfen yazıvermesine benzer. Yani olmayacak bir iş." Öyleyse arasıra evrenin saatini kuran birileri, zaman zaman DNA moleküllerini özenle sıralama işiyle de uğraşıyor! Orhan Kural 'la sürdürelim: "Olaya böyle bir benzetme ile yaklaştiginizda gerçekten de hiç olmayacak bir iş gibi görünüyor. Maymunun, birakin Shakespeare' in bütün eserlerini, onun bir tek "sonnet " ini çikartabilmesi bile en az on üzeri yüzelli yil gerektirir (daha dogrusu, 1000 tane maymuna bu işi yaptirsak, ortalama başari süreleri bu olur ama bu teknik ayrintilarla kendinizi üzmeyin). Evrenin yaşi ise yaklaşik 10 milyar yil olduguna göre daha fazla bir şey söylemek gereksiz... mi acaba? Aslında uygulanan taktik, basit fakat hatalı bir benzetme ile insanların aklını karıştırıp tartışma kazanma taktiğidir ve bunun örneklerini hergün görürsünüz. Eğer benzetme yapılacaksa, bunun eldeki verilere uygun olması gerek. Herşeyden önce, "Macbeth " i yeni baştan yaratmaktan vazgeçip "agzi burnu yerinde herhangi bir ( yazilmiş ya da yazilmamiş) edebi eser " e fit olmak gerek. Olanak olsa da Dünya' yi 4 milyar yil önceki haline götürsek, bugüne geldigimizde herşeyin aynen günümüzdeki gibi olacagini düşünmek, evrimin kaotik yönünün hiç görmemek demektir. 4 milyar yillik evrim deneyini her tekrarladigimizda başka bir "bugün" e geliriz. İkinci olarak, maymun sayısını artırmak şart. Ne kadar mı? Bilmem ama herhalde ortalıkta birleşmek üzere dolaşan moleküllerin sayısı mertebesinde olmalı. Son olarak da maymunların daktilolarını atıp önlerine bilgisayar terminalleri vermek gerek. Merkez bilgisayarın içinde ise çok özel bir program yüklü olmalı. Bakın şimdi bu program neler yapacak: Maymunlarımız rastgele tuşlara bastıkça birtakım harf dizileri oluşacak. Bu harf dizilerinin anlamsız olan çok büyük bölümü program tarafından silinecek, arada bir beliren anlamlı diziler( yani kelimeler) ise ortak belleğe alınacak. Böylece kısa sürede bellekte kapsamlı (ve her dilden) bir kelime hazinesi oluşacak. Bilgisayar klavyelerinden bu kelimeleri çağırmak olanağı da olacak ve bellek doldukça bizim maymunlar (tabii farkında olmadan) bu kelimeleri giderek daha sık çağırmaya başlayacaklar. Çağrılan kelimelerden oluşan diziler bir anlam taşımıyorsa yine silinecek ama taşıyorsa onlar da cümle belleğine gönderilecek. Bu kez cümleler çağrılıp birleştirilecek (hep rastgele olarak). Bu kadar çok maymun çalıştığına göre yine kısa süre içinde bazı eserler görülmeye başlanacak. Başta belki 2-3 mısralık şiirler görülecek, sonnra yavaş yavaş daha uzun eserler belirecek, eh 4 milyar yıl beklerseniz de "ağzı burnu yerinde" epeyce eser ortaya çıkacaktır." Uzun Evrim Zincirinin Mirasları "Tabii ki en önemli miras, daha önce de birkaç kez değindiğim, "1 numaralı emir" dir. Yani, "kendini, türünü koru ve çoğal" emri. Bu, bütün canlıları kapsar. Daha ilkel olanları, daha çok çoğalma yönü ile ilgilenir ama gelişmişlik arttıkça kendini koruma ve nihayet türünü koruma da işin içine girer. İnsan' da bunu açıkcça görürüz; başimiza hizla gelen bir taş görünce hiç düyşünmeden başimizi çeker ve kendimizi korururuz, bu tamamen reflekstir. bazi durumlar ise evrim açisindan çok yenidir ve daha refleksi gelişememiştir ama harika organikmiz beyin, işin çaresine bakar. Örnegin, bindiginiz arabanin sürücüsü islak yolda hiz yapmaya kalkarsa bunun tehlikeli oldugunu bilirsiniz ve önlem almaya çalişirsiniz. Bu 1 numarali emir o kadar bilinenbir miras ki üzerinde daha fazla vakit harcamaya dagmez. Cinsiyetin keşfi önemli demiştik, bir de onun bazi sonuçlarina bakalim. Hatirlarsiniz, çogalacak hücre, kendine gen verecek bir başka hücre bulur, genleri kariştirdiktan sonra yeni genlerle çogalmaya başlar. Burada da bir noktaya parmak basmadan geçmek olmayacak, o da şu: dikkat ederseniz, esas çogalma işini üstlenen hücreyi yaniyumurtayi taşiyan, bildiginiz gibi dişi canli. Erkek ise sadece olaya çeşni katmak işini üstlenmiş. Uzun sözün kisasi, begenseniz de begenmeseniz de, türlerin esas temsilcileri her zaman dişilerdir. Bazi inanişlarda kadinin, "erkegin kaburgasindan" imal edildigi iddia edilirse de bu, büyük olasilikla bir yanliş anlamadir. Herhalde gerçek, erkegin, "kadinin kaburgasindan" imal edildigidir."( Bu satirlari yazarken "erkek" ligimizin ayaklar altina alindigini ben de görüyorum! Hani şu Sikiyönetim bildirilerini andiran " 1 nolu emir" geregi: kendini, türünü koru ve çogal. Kendimizi ve türümüzü korumak kolay da nasil "çogalacagiz"? Işte bu noktada ne yazik ki dişilere muhtaçiz!) Erkekler Dişilerin Peşinde " İşin başından beri süregelen işbölümüne bakarsanız, erkeğin ilk görevi, bir dişi bulup ona genlerini vermektir. Dolaysıyla, kalıtımsal bir özellik olarak, erkek sürekli olarak dişilerin peşindedir, diğer özellikleri bu özelliğine destek niteliğindedir. Ancak genlerini verme(yani dölleme) görevini yaptıktan sonra hayvanın türüne göre, "ailesiyle" bazen ilgilenebilir ki bu da türün sürekliliğini sağlamaya yarar. Dişinin ise ilk kalıtımsal görevi çoğalmaktır. Bunun için çevresinde bulduğu (genleri) en iyi erkeği seçer, onun genlerini aldıktan sonra çoğalır ve yavrularının yetişmesini sağlar. En ilkel biçimiyle bu, yumurtalarını tehlikeden saklamak olabilir veya daha gelişmiş biçimiyle, yıllarca yavrularına bakmak ve onları eğitmek olabilir." Şimdi de Dişiler Erkeklerin Peşinde "Dişilerin en uygun erkegi seçebilmeleri için onlarin hangisinin "en iyi" oldugunu anlamasi gerek. Bunun için erkekler yarişirlar. Yarişmalar çok degişik şekillerde olabilir. Bazen Tavuskuşu gibi güzelligini gösterir (büyük bir olasilikla bu, saglikli oldugunu gösterir), bazen Çulhakuşu gibi becerisini gösterir, dişisi en güzel yuvayi yapmiş olani seçer. Aslinda söylenenin tersine, yuvayi yapan çogunlukla erkek kuştur, dişiler başka türlü "yuva yapma" da mahirdirler. Neyse, herhalde iyi yapilmiş bir yuvanin,gelecek yavrulari yetiştirme açisindan önemi gayet açik." ( Orhan Kural hoca, nihayet yenen hakkimizin birazini olsun veriyor. Bizdi dişilere kendimizi begendirmek için daha nice hünerler var. Ama Hoca, evrimin ilk basamaklariyla düşündügünden olacak onlari atlamiş.) "Aklıma gelmişken, burada bir parantez daha açayım " diyor Orhan Kural ve biz erkeklere kaşıkla verdiğini kepçeyle geri alıyor: " Hayvanların erkekleri güzel, dişileri çirkindir" diye başlayarak Doğa' nın bile erkekleri üstün yarattığını savunanlara herhalde rastlamışsınızdır. Erkeklerin genellikle daha güzel oldukları (bence insanlar için bu tamamen geçersiz) belki doğru olabilir ama nedenine bakarsanız, bundan varılan sonucun çok yanlış olduğunu göreceksiniz. Erkeklerin güzelliği, yani göz alıcı renk ve desenleri, yanızca dişilere kendilerini beğendirmek amacını taşır. Buna karşılık, göze çok kolay battığı için de düşmanlarınca kolayca bulunur. Doğa eğer erkekleri korumak isteseydi onlara fona karışabilecek renk ve desenler verir ve onları kamufle ederdi. İşte bu iyiliği, Doğa dişilere yapmıştır. Nedeni ise açık: çoğalma işini yürüten dişiler çok daha kıymetli. Erkeklerin yarışma tarzlarının en belirginlerinden biri de aralarında dövüşme tarzıdır. Bir dişiye kenidini beğendirmekten çok, rakiplerini ortadan kaldırmak gayesini taşır. Yalnız, burada Doğa yine çok akıllı bir iş yapmıştır(Tabii ki Doğa bilinç sahibi değildir, bu sözün gelişi). Şayet iki erkek her çarpıştığında biri ölse, diğeri de sakat kalsa, kısa sürede ortada erkek kalmaz. Buna izin veren türler zaten çoktan yok olmuştur. Bunun yerine, dövüşme bir tür "oyun" olarak yapılır. kuralları bellidir, sanki boksörlerin "belden aşağı vurmak, ısırmak, dirsek atmak... yasaktır" kuralları gibi, her türdeki erkeklerin dövüşmede çok katı kuralları vardır. Örneğin iki dağ koyunu mutlaka önce karşıkarşıya dururlar, birbirlerine bakarlar sonra bizim göremediğimiz ama onlarca çok açık olan bir işaret üzerine birbirlerine bir tos vururlar, sonra tekrar karşılıklı geçerler. Bu, bir süre yinelenir, sonra koyunlardan biri pes eder ve kaçar. Kimse de büyük zarar görmez. Kurtlar gibi, isteseler rdakiplerini parçalayıp öldürebilecek yapı ve yetenekte olan hayvanlarda bile zarar verme minimal düzeydedir. Dövüşen kurtlardan biri yere yatıp boynunu diğerine sunduğu anda kavga biter. Bu, insan erkekleri arasında birinin diğerine "abimsin!" (ya da benzeri bir şey) demesine benzer. Erkekler arasında, pes etmiş olan birine zarar vermek büyük haysiyetsizlik sanılır-hem insanlarda hem de diğer hayvan türlerinde. (Lütfen "hayvanlarda ' haysiyet' kavramı var mıdır?" diye sormayın, ne demek istediğimi anladınız!). Aslında burada erkeklerin kadınlar uğruna, hele ülkemizde, yaptıkları "dövüşler" biraz geçiştirilmiş, ama bunu hocamızın inceliğine yorup geçelim! Orhan Kural Hoca, erkeklerin "oyunbaz", "kuralcı", "ödün vermesini bilen"...canlılar olduğunu örnekledikten sonra sözü yine kadınlara getiriyor: "Kadınlar için ödün vermek, asla bir seçenek değildir; hele karşılıklı "centilmenlik" yapmak, ancak gülünecek bir tutumdur. Bir tartışmada karşınızdaki erkeğe "sen haklısın" dediğiniz anda tartışma biter, hatta bazı erkekler, "yok canım, aslında sen de haklısın" gibi bir yumşatmaya gider. Eğer tartıştığınız kişi bir kadın ise ve "sen haklısın" derseniz, değil yumşatmaya gitmek, zaferini perçinlemek için büsbütün saldırır size. Tekrar ediyorum, bu söylediklerim herkes için geçerli değildir, istisnalar vardır. Neyse , şimdi bu çok tehlikeli konuyu geçelim. Bir başka konu da "saldırganlık" konusu olabilir. Saldırgan (yani "agresif") tutumun en bilinen belirtisi karşısındakinin gözünün içine dik dik bakmaktır. Memeli hayvanların çoğunda bu özellik vardır; siz bir kediyi karşınıza alıp gözlerine sabit bir bakışla dik dik bakarsanız derhal tedirgin olduğunu farkedersiniz. Vücudu adrenalin salgılar ve " saldır ya da kaç" moduna girer. Biraz sonra kararını görürsünüz. Eğer kaçmaya karar verdiyse ne ala, aksi takdirde yandınız demektir. Gorilleri anlatan doğa belgesellerinde farketmişsinizdir onlarla karşılaşma durumunda "sakın onlara bakmayın, yere bakın" diye tavsiye edilir. Saldırganlığın bir başka belirtisi, üst dişleri göstermektir. Bir köpeğin havlaması genellikle zararsızdır; ama eğer üst dişler meydanda ise, bir de derin bir sesle hırlıyorsa hiç vakit kaybetmeden önleminizi almanız iyi olur. İnsanlarda da aynı şey söz konusudur, karşınızdaki insan size dik dik bakarken üst dudaklarını oynatarak sıkılmış dişlerin arasından, hele derin bir ses ile konuşuyorsa, size "seni çok seviyorum" bile diyorsa siz aranızdakimesafeyi hızla artırmaya bakın. Eminim konuşmayı daha öğrenmemiş atalarımız da böyle davranıyorlardı. Birinin önünden çiğ et almaya kalksaydınız hemen size üst dişlerini gösterip derin bir sesle hırlardı. Aslında keşfedilmiş bir şey daha var bu konu ile ilgili olarak: Bütün hayvanlar ihtarda bulunacakları zaman seslerini kalınlaştırır, karşısındakine güven vermek istedikleri zaman seslerini inceltirler. Bir bebek ile cilveleştiğiniz zamanki sesinizi düşünün. Ya da bir köpeğin "alttan alma" sesini. Kadın ve erkek seslerinin farkını bu açıdan bir düşünün." Kural Hoca'nın Kuralları "Ben düzenli bir insanım. Herşeyi yerli yerinde severim. Bazen ev halkından birinin örneğin paltosunu, yine örneğin, salonda bıraktığı olur. O zaman içimden neredeyse öfke diyebileceğim bir kızgınlık kabarır. Neden? -" Yahu, bunun yeri burası değil ki" -" Peki sen kaldırsan ne olur, çok mu zor?" - "Anlamıyorsun, konu o değil, bu davranış beni adam yerine koymamak demektir." - " Afedersin, salondaki bir paltonun seninle ne ilgisi var? herhalde sen kızasın diye bırakılmadı" - "Olsun, kızıyorum işte". Benim bir türlü anlamak istemediğim, bu duygularımın bana çok eskilerden miras kalmış olduğudur. Hayvanların çok büyük bölümü belli bir bölgeyi "kendi bölgesi" olarak benimser, onu şu ya da bu yoldan ilan eder. Kuşlar içinde bunu öğrenerek bildirenler vardır ama aidiyet konusunu en açık seçik ilan edenler meme lilerin bir bölümüdür. Onlar katı ya da sıvı dışkılarıyla bölgelerini işaretler. Bu kokuyu alanlar hemen durumu kavrarlar. Bizler de aynı davranışı sergileriz. Örneğin kalabalık bir hava alanı bekleme salonunda otaracak bir yer bulmuşsunuz, gidip bir paket çikolata almak ihtiyacını duydunuz. Kalksanız biri hemen yerinizi kapacak, neyaparsınız? Tabii yerinize çantanızı, kitabınızı ya da ... paltonuzu bırakırsınız. (hayvanların bıraktığını bırakacak haliniz yok ya!). Bunu yaparak, "burası bana ait" diye ilan ediyorsunuz. İşte, büyük olasılıkla, ben de salondaki paltoyu böyle algılıyorum O zaman da diensefalon' dan gelen mesaj, davranışıma egemen oluyor. İstemeyerek de olsa buyazıyı burada bitirmek zorundayım, yemeğe oturacağız. Doğrusu bu ya, yiyeceğim kanlı bifteği düşününce ağzım sulanıyor. İnşallah yine "bakayım nasıl olmuş" diye tabağımdan lokma aşırmaya kalkmaz kimse. Çünkü o zaman hırlamanın dikalasını sergilerim!" ( Prof. Dr. Orhan Kural ODTÜ Makine Müh. Bölümü, Bilim ve Teknik 343. sayı) 1997 yılında Kural Hoca, arabadan içtikleri bira şişelerini yola fırlatanları uyardığı için fena halde cezalandırıldı. Basındaki fotoğraflardan anlaşıldığına göre, parmaklarından kırılanlar vardı; ayrıca kaşı gözü de yarılmıştı... Bizi Atalarımıza Götüren Hazineler: Fosiller Darwin' e "evrim fikirini veren ilk kanıtlar fosillerin incelenmesiyle ortaya çıkmıştır. Çene kemikleri, dişler, dinazorlara ait taşlaşmış dışkılar ve diğer fosilleşmiş kalıntılar. Fosil , "kazı sonucu topraktan çıkarılan canlıların taşlaşmış kalıntıları" demektir. Yüz yılı aşkın süren kazı çalışmaları, sayısı ikibini geçmeyen insan atası kalıntıları. Bunlar bizi şimdilik 5-8 milyon yıl öncesine götürüyor. Kalıntılar ve günümüz türlerinden sağlanan moleküler ipuçları, insanoğlunun şempanzelerle ortak bir atadan türediğini gösteriyor. Bulunan en eski "insanımsı" (hominid) fosilleri, Afrika kökenli ve 4.4 milyon yıl öncesine ait. Daha yeni olanları sırasıyla Avrupa, Asya, Avusturalya, Kuzey ve Güney Amerika kökenli. Bu fosiller, yaklaşık yüzbin yıl öncesine ait. Fosilleşme ender rastlanan bir durum. Çok kuru ortamlarda canli adeta mumya şeklini alir. Tuzlu bataklik ve buzullar içinde binlerce yildan beri bozulmadan günümüze ulaşan canli kalintilari bulunmuştur. Örnegin Sibirya buzullarinda günümüzden 2.5 milyon - 10 bin yil öncesini kapsayan dönemde yaşamiş mamutlara ait hemen hiç bozulmamiş örnekler bulunmuştur. Bunlarin bazilari öyle iyi korunmuş ki etleri kurt gibi hayvanlar tarafindan yenilmiştir. Kehribar da iyi bir koruyucu. Özellikle böcek gibi küçük canlilar için. Milyonlarca yil öncesinden kalma kehribar korumali canli türleri bulunmuştur. Tüm yeryüzü kazilsa bile bazi türlerin kalintilarini bulamayabiliriz.Ama kazdikça yeni kalintilar buldugumuz için bunu sürdürmeliyiz. Cambridge Üniversitesi' nden biyoantropolog Robert Foley, Afrika kökenli maymun türlerini incelemiş. O da insan ve şempanzenin üyesi oldugu evrimsel dallanmanin 7.5 milyon yil önce başladigini belirtiyor. Foley, ilk olarak dinazorlarin yok oldugu 65 milyon öncesine gidiyor. Bu dönem sirasinda memelilerin yok oluncaya veya başka bir canliya evrimleşinceye kadar, bir milyon yil boyunca varligini sürdürmüştür. (Bilim ve Teknik 332. sayı...) Hitler, 1933'te 'seçimle' başa geçti. Üstün irk kavramiyla milyonlarca insanin ölümüne neden oldu ve bilim adamlarini susturdu. Ama sonunda kendi silahini kendi agzina dayayarak yaşamina son verdi. Hem de metresi Eva Braun ile birlikte. Sovyetler Birligi’nin Hitler karşiti diktatörü Stalin, ünlü genetikçi Nikolai Vavilof' u " proleter biyoloji" görüşünü reddettigi için vatan hainligiyle suçlamişti ve ölüm cezasina çarptirmişti. Sonradan cezasi ömür boyu hapse çevrildi ve Vavilof, 1943' te hapisanede öldü. Bu ölümler normal degildir.(Şerafettin Turan,TKT s: 158) Bizler, bu ölümlerden haberdar olamayan bir kuşagiz. Haberdar edilsek de “inanmazdik” diye düşünüyorum. Onu Amerikan emperyaliziminin sosyalist sistemi alaşagi etme eyleminin bir parçasi olarak kolayca yorumlardik. Yalan mi? *** Taşlaşma Fosiller yalnızca canlıların sert kısımlarını( kemik, dişi, kabuk...) değil, aynı zamanda çeşitli organlarının ve yaşantıları ile ilgili izler taşıyon kalıpları da kapsar. Bir hayvana ait tüm bir fosil bulmak genellikle olanaksızdır. Ancak vücut parçalarının şekline göre yorum yapılabilmektedir. Örneğin çenesinin yapısından hayvanın nasıl beslenodiğini, ayak yapısından hareket biçimini öğrenebiliriz. Engözde ve kullanışlı fosil, omurgalılara ait iskelet kalıntılarıdır. kemiklenrin şeklinden, üzerindeki kas bağlantılarından, hayvanın şekli ve nasıl hareket ettiği anlaşılabilir. Killi ve çamurlu ortam, fosil oluşumu için oldukça uygundur. Bu çamurun içine herhangibir nedenle düşmüş canlinin etrafindaki maddeler sertleşir ve bir kalip ortaya çikar. Canli çürüyrek ortadan kalkar, ama kalibi kalir. Vücut parçalari, degişik mineralli sularla veya yalnizca mirnerallerle dolarsa, buna taşlaşma denir. Demir, kalsiyum ve silisyum taşlaştirici minerallerin en önemli elemntleridir. Bu taşlaşma bazen çok öyle mükemel oliur ki, anatomik incelemeler dahi yapilabilir. Örnegin 300 milyon yil önce taşlaşmiş bir köpek baliginin kaslifleri ve kaslarindaki bantlar bile görülebilir. Bu taşlaşmaya en güzel örnek Arizona' daki taşlaşmiş ormandir. Yürüyüş ve yaşam tarzini açiklayan ayak izleri, aldigi besinin kalitesini veren boşaltim artiklarinin ve çogalmasi konusunda bilgi veren yumurtalar (bir yumurtanin içerisinde dinazor yavrusunun fosili bulunmuştur) in fosilleri de bizim için önemli kanitlardir. Lavlar da fosil oluşmasina neden olabilir. Gerçi yanardaglarin patlamasiyla ortaya çikan zehirli gazlar birçok canliyi ölüdür; ama kismen sogumuş olan lavlar bunlarin üzerini örterek fosilleştirir. Ayrica belirli derinliklerdeki canlilari toprak firinlayabilir ve pişirir. Vezüv Yanardagi' nin oluşturdugu lavlarin altinda böylesi fosiller bulunmuştur. İnce yapraklı ağaçların çıkardığı reçineler, kehribar ve diğer bitkilerin oluşturduğu amber gibi konserve edici maddeler içine düşen küçük organizmalar, özellikle böcekler çok iyi saklanmıştır. Sibirya ve Alaska' da tarih öncesinde yaşayan 50' den fazla mamut fosili bulunmuştur. Buzların içinde (en -35 derece) bulunan bu tüylü mamutların- en az 25 bin yıl önce yaşamış- etleri bugün dahi yenebilmektedir. (Ali Demirsoy Kalıtım ve Evrim, 5. Baskı 1991 Ankara, s:479-480) İNSANIN EVRİMİ (Ali Demirsoy' dan) " Birçok kişi, insanlari hayvanlar aleminin içinde degerlendirmenin küçültücü ve aşagilatici olduguna inanir ve insanlari tüm diger hayvanlardan ayri olarak degerlendirmeyi yeg tutar. Fakat bugünkü bilgilerimizin işigi altinda insanlarin diger hayvanlardan belirli derecede farklilaştigini; ama onlardan tamamen ayri bir özellik göstermediklerini de biliyoruz. Hatta büyükbeynin gelişmesini bir tarafa birakirsak, onlardan çok daha yetersiz oldugumuz durumlarin ve yapilarin sayisi az degildir. Özellikle dogal korunmada çok zayifiz. Uzun, keskin pençelerimiz; uzun, keskin dişlerimiz; kuvvetli kaslarimiz yoktur. çok küçük bir panter dahi bizi parçalayacak güçtedir. Bir köpek bizden çok daha iyi koku alir; hata uykuda bizim alamayacagimiz sesleri algilayarak uyyanabilir. Bazilari, toprak üzerinde birakilan kokudan iz takip ederler. Bazi kuşlar, düşünemeyecegimiz kadar keskin görme gücüne sahitirler. havada uçan şahin veya atmaca, yarisi yaprak altinda kalmiş fare ölülerini bile derhal görebilir. Yalniz bir özelligimizle diger canlilardan üstünüz. Diger tüm canlilari bastiracak bir üstünlük veren, karmaşik ve vücudumuzun büyüklügüne göre çok gelişmiş beynimiz, en belirgin özelligimiz olarak ortaya çiktmaktadir. Heiçbir tür, çevresini kendi çikarlari için kontrol altinaalmamiş ve diger canlilar üzerinde mutlak bir baskinlik kurmamiştir. Fakat başarilarimizdan gururlanmadan önce bunun, kişisel biryetenekten ziyade, binnlerce yil süren bir bilgi ve iletişim birikiminin meyvesi oldugunu bilmemiz gerekecektir. Bu, şimdiye kadar yaşamiş milyanlarca insanin elde ettigi deneyimin görkemli bir meyvesi olarak kullanimimiza sunulmuştur. Bu iletişim ve bilgi aktarimi olmasaydi, belki biz, yine biraz daha gelişmiş bir maymun olarak agaçlar ve çalilar içinde yaşiyor olacaktik. Süper zekamiz bu sonucu büyük ölçüde degiştirmeyecekti. Çok yakin zamanlarda yapilan araştirmalar, bizim zekamizin, inanildigi gibi maymunlardan çok fazla olmadigini kanitlamiştir. Gelişmişlik olarak görünen, toplumdaki bilgi ve deneyim birikimidir."

http://www.biyologlar.com/insanin-evrimi

Veritabanı ve Veritabanları

Biyoinformatiğe yeni başlayanlar veya kendini geliştirmek isteyenler genelde genom veya proteom veritabanlarıyla başlarlar; biz de eğitimlerimizde bu yolu izliyoruz ve bu kaynakları bir araya getiren veritabanları veritabanlarından sonlarda bahsediyoruz. Ancak bir süredir bunun çok da etkin olmadığını farketmeye başladım. Temel sıkıntı, bu yaklaşımla birçok veritabanına aynı anda bakmak pek de pratik olmadığı için her bir veritabanının güçlü ve zayıf yönlerini anlamak mümkün olmuyor. Yani bu şuna benziyor; bir çamaşır makinası almak istiyorsunuz ancak her bir markayı ayrı ayrı gezdiğinizde kafanız karışıyor ve hızlı bir kıyaslama imkanı bulamıyorsunuz; bir teknoloji mağazasında aynı markaları bir arada gördüğünüzde ise karar verme süreciniz kolaylaşıyor. GeneCards'la başlayalım. Kısaca şunu yapıyor GeneCards; her bir gen için birçok veritabanındaki veriyi otomatik olarak toplayıp aynı sayfada sınıflandırarak gösteriyor. Bunu hatırlar mısınız bilmiyorum ama, eskiden (daha bilgisayarlar piyasada yokken) kütüphanelerde dizin kartlarından oluşan bir sistem vardı. Bir kitap hakkındaki tanımlayıcı her bilgi ve bazen de kısa bir özet bir kart üzerinde sunulurdu ve bu kartlar alfabetik olarak dizilip dar uzun çekmecelerde muhafaza edilirdi [geçmişten bahsettiğim için kelime seçimlerim bile değişti, korunmak yerine muhafaza'ya geçtim. Kolay kolay karşılaşamayacağınız veya bir başkasının yönlendirmesi olmadan keşfedemeyeceğiniz birçok kıymetli veritabanı GeneCards'da yer alıyor. Örneğin MDM2 üzerinden gidelim [Lisans'ta ilk ciddi raporumu bu gen için hazırlamıştım, neden seçtiğimi bilmiyorum, ismi hoşuma gitmişti sanırım]. GeneCards'ta bu geni aradığınızda bu genin kelime olarak bir şekilde ilişkilendirilebileceği birçok seçenek karşınıza çıkıyor, ardından genin kendisine tıklayıp devam edebiliyorsunuz. En önemli kısım, "Jump to Section" menüsünde yer alan ve web sayfasında da kutularla ayrılan başlıklar. Her bir başlığın altında, akademik olarak güvenilir ve referans kabul edilen veritabanlarının isimleri ve buralardan elde edilen verileri buluyorsunuz. Bir gen veya protein hakkında araştırma veya ödev yapıyorsanız, bu konuda bulabileceğiniz ve mutlaka başvurmanız gereken neredeyse tüm kaynaklar burada, tek bir sayfada. GeneCards'ı bir kez keşfedince vaz geçemeyeceksiniz. GeneCards hakkında ufak bir konudan daha bahsetmek istiyorum. Güneş tutulmasının ülkemizden çok iyi gözlenebildiği bir sene (galiba 2006'da) Antalya'da ICGEB etkinliğinde bu servisi kuran ve yürüten kişi ile tanışmıştım. 5 tam zamanlı, bir o kadar da yarı zamanlı çalışandan oluşan bir ekipten bahsetmişti; büyük kısmı öğrenciydi diye hatırlıyorum. O zaman içimden geçirmiştim, böyle bir şeyi neden biz yapamayalım diye. Ancak bizdeki kritik kütle o zaman daha oluşmamıştı, bir türlü de oluşamadı nedense. Bir diğer kritik veritabanları veritabanı ise Pathguide. Toronto'dan Gary Bader'in [BIND veritabanını hayata geçiren zât-ı muhterem] meydana getirdiği bu kaynak o kadar değerli ki, nasıl ifade etmek lazım bilemedim. Buradaki temel fayda şu: piyasadaki birçok yolak [pathway] veritabanı veya bu bilgiyle ilişkili veritabanları teker teker taranmış ve bazı özellikleri özetlenmiş. Yani yaptığınız araştırma yolak bilgisini veya sistem yaklaşımını içeriyorsa, kesinlikle başvurmanız gereken bir kaynak; hayatınızı çok kolaylaştıracak. Lisans yaz stajımda yer aldığım laboratuvar Bader ve ekibiyle ortak işler yapıyordu ve ben de tanışma ve birlikte çalışma şansına sahip olmuştum. Türkiye'den ve Bilkent'ten geldiğimi öğrenmiş ve öğrenir öğrenmez benim yanıma gelmişti, ve hemen PATIKA'yı sormuştu. PATIKA bizde çok bilinmez ancak yurtdışındaki etkisi hakikaten çok büyük. Son olarak bir eksiklikten bahsetmek istiyorum. Kaynaklarımızın neredeyse tamamı metin tabanlı, ancak biz insanlar metin yerine şekilleri algılamakta daha uzmanlaşmış durumdayız. Bu nedenle, verilerin -nasıl olacağını tam olarak kestiremiyorum ama- şekillerle temsil edilebileceği bir yaklaşıma ihtiyacımız var; büyük ihtimalle bunu keşfedebildiğimiz zaman bazı şeyler çok daha hızlanacak. Cytoscape bu bağlamda sahip olduğu eklentiler [plug-ins] ve Google Chart entegrasyonu ile büyük bir potansiyele sahip. Yapılacak ve yapılabilecek çok şey var. biyoinformatiktr.blogspot.com

http://www.biyologlar.com/veritabani-ve-veritabanlari

Protoplazmanın Hidratürü

Gram k.ağ başına su miktarını belirten hidrasyonundan farklı bir terimdir ve protoplazma suyunun bağıl termodinamik aktivitesinin ölçüsüdür. Fakat fizyolojik aralıkları olan% 96 - 100 arasında aralarında doğrusal ilişki vardır, yani şişme ile hidratür paralel değişir. Protoplazma hidrasyonunun su potansiyeli - emme potansiyeli - difüzyon basıncı eksikliğine bağlı olduğu ve suya doymuş hücrede maks. olduğu görüşü termodinamik açıdan yanlıştır. Özsuyun bağıl su aktivitesi - hidratürü daima < saf su olduğundan protoplazmanın şişmesi limite gider. Özsu osmotik potansiyeli bilindiğinde protoplazma hidratürü hesaplanabilir, başka türlü de ölçülemez. Fakat OP sıcaklığa bağlı iken hidratür değildir, bu açıdan OP çöl bitkilerinin su ilişkilerinin ekolojisinde çok önemlidir. Çok değişik ekolojik ortamlarda birçok türün potansiyel osmotik basınçlarının ölçümü ile osmotik spektra elde edilir. Bu spektrum vejetasyonu oluşturan ot, sukkulent ve çalı gibi farklı yaşam formlarının osmotik basınç potansiyellerinin karşılaştırılması olanağını verir. Hidratürün tanımlanmamışolduğudönemde her tür için elde edilen en düşük ve yüksek OB potansiyelin negatifi olan potansiyel OB değerleri de belirtilerek ölçülen örnek sayısına göre ortalamaları ile beraber kullanılmıştır. Kurak alanlarda ortalama hava sıcaklığı örneğin 30 den 40 dereceye çıkarken kum yüzeyin sıcaklığı 35 den 85 dereceye kadar çıkıp gece daha hızlı olarak düşer. Hava bağıl nemi Rh-Relativ hümidite ise tam tersi ilişki gösterir, örneğin %40 dan 0a düşer ve tekrar 40’a çıkar. Kışın ise Rh ve top. suyu donma ile düşer, kuraklık etkisi yapar, bitkiler donmuş suyu alamaz, buna fizyolojik kuraklık denir. Nemli bölge ile semiarid- yarıkurak bölgenin sınırını yağış ile evaporasyon potansiyeli dengesi çizer evapotranspirasyon, yani bitki terlemesi ile topraktan buharlaşmanın toplamı esas alınr. Doğal olarak bu da havanın bağıl nemi ve dolayısı ile sıcaklığa bağlıdır. Karasal çöllerde kışın günlerin kısalığı soğuk etkisini arttırır ve hava hareketleri havanın sürekli kuru kalmasına neden olur.Yazın ise güneş enerjisi alçak basınca neden olur ve çevreden içe hava akımı yaratır. Çevre dağlık ise nem aşağıda kaldığından dağları aşamaz ve iç kısıma kuru hava akımı olur. Yaz yağışları düzensiz ve yereldir, çünkü dağları geçebilen nem yeryüzü örtüsünün heterojenitesi ve rakım farklılıkları nedeniyle konveksiyona uğrar. Kısa süreli ve yerel fırtınalar olur, özellikle sırtlar, vadiler hava akımı yarattığından bu fırtınaları destekler. Yıllık yağış çanakta 12 cm olurken dağların rüzgarlı eteklerinde 100 cm olabilir. Sukkulens ile kurağa dayanıklılık kışı sert yörelerde -1...-4 derecenin altında mineral beslenmesi ve osmotik basınca bağlı olarak direnci kırdığından karasal steplerde pek geçerli olamaz. Kış gecelerinde sıcaklıkları hava drenajı kontrol eder. Güneşin batışı ile toprak yüzeyi ve hemen üstündeki hava tabakası çabuk soğur. Soğuma ile hava yoğunluğu ve ağırlığı artar ve sırtlardan aşağıya esinti ile süzülür, çukurlarda soğuk birikirken yamaçlarda doğan boşluğu daha sıcak hava doldurur; böyle sürer. Kuvvetli bir hava akımı ve sıcaklık değişimi modeli doğar Doğal olarak çanak - tepe rakım farkları ile eğimler, kuzey ve güneye bakış önemli rol oynar. Kış yağışın bol olduğu zaman olduğundan güneye bakan yamaçlardaki daha sıcak koşullar nemin kaçmasına neden olur, kuzey yamaçlarda ise nem tutulur. Sonuçta vejetasyon- bitki örtüsü farklılıkları yüksek olur. Gün ortasındaki ortalamalar ise çanakta 15 derece iken tepelerde 4 derece gibi beklenen farklılıkları gösterir. Yazın ise koşul farklılıkları azalır, gecelerin kısalığı hava drenajı etkisini azaltır ve gece sıcaklıkları kritik değerlerden uzaktır. Anakaya jeolojisi kurak alanların erozyonu ve çölleşmesinde önemlidir. Jeomorfolojiyi ve erozyona dayanıklılığı etkiler. Çöl ortamı ana kayaç jeolojisi ile yeryüzünde cereyan eden olayların uzun süreli ilişkisi sonucudur ve aynı bölgede farklı koşullara yol açar, yani çölleşme piyesinin sahnesidir. Yeryüzündeki kayaların şekil, büyüklük ve dağılımını, ilişkilerini belirler. Erozyona bağıl dayanıklılık oranlarını hem fiziksel ve kimyasal özellikleri hem de topoğrafya ile birlikte belirlediği gibi erozyonla doğan yapıların tanecik şekil ve boyutlarını, çözünürlük ve taşınabilirliklerini de belirler. Dayanıklılığın aynı olduğu ortamlarda da iklim koşullarının etki şekli ve derecesi hem yeryüzüdeki etkisi hem de önleyici vejetasyonu sınırlayıcı etkisiyle önem kazanır. Jeolojik etki yapabilecek düzeyde yağış olmadığında rüzgar önem kazanır. Yağış hem fiziksel hem de kimyasal etkiler yaratırken rüzgarın etkisi tümüyle fizikseldir. Hava nemi ise kimyasal etki yaratır. Tipik karakteristik olan vejetasyon azlığı veya yokluğu oldukça kısa sürede de ortaya çıkabilir. Örneğin bir maden alanında 150-180cm ort. yıllık yağışa rağmen 100 km2 lik bir alan dumanlar vs.nin etkisiyle çıplaklaşıp, rüzgar ve sel etkisine açık hale gelerek erozyona uğraması sık görülebilen bir durumdur. Yoğun ve dikkatsiz tarım uygulamaları doğal vejetasyonu eriterek kuraklığı arttırıp, tarımsal verimi azaltırken, rüzgar ve su erozyonunu arttırı ve 10 yılda bile çölleşme olabilir. Entansiv tarım toprağın asitleşmesine neden olarak bitkilere yararsız hale getirir. Buna karşı toprağın kireçlenmesi gerekir. Benzer şekilde aşırı otlatma ile bitki örtüsü kaybı çölleşmeye neden olur. Semi - arid, orta kurak bölgelerdeki çorak alanlarda toprağın üst yüzeyinin kabuklaşması suyun yüzeyden akışına neden olarak topoğrafik izler bırakır. Özellikle kalker gibi çözünür kayaçları çok etkiler, yüzeydeki çentikli görünümle kendini belli eder. Fiziksel etkileri poröz kayaçlardan gevşek yapıları çekerek uzaklaştırmak suretiyle zayıflatmak ve zamanla seçii olarak bozunuma neden olmaktır. Özellikle ince taneli sedimanter kayaçlarda kendini gösterir. Kimyasal etki çözünür tuzları çekerek çöktürmesidir. Kalkerli tüf veya traverten oluşumuna neden olur. sıak dönemlerde de yüzeyde bu tuzların birikimi görülür. Çölleşme vejetasyon çeşitliliğini azaltır, toprak tekstürü, eğim, kumluluk gibi ekstrem koşullara adapte olabilen cinslerin türlerine indirgenir. Drenajı yetersiz alkali düzlüklerde vejetasyon zayıftır ve örneğin çeşitli Atriplex, Astragalus, Salvia, Thymus türleri gibi türler görülür. Halofitler de yanlarında bulunur. Sert zemin üzerindeki ağır topraklarda en iyi gelişimlerini gösteren çalı türleri özellikle Atriplex spp. dir. Yabani asma türleri yanında odunlulardan Acacia, Juniperus, Eucalyptus türleri olabilmektedir. Legüm ağaçlarından Acacia örneğinGüney Afrika, Arizona çöllerinde dahi boldur. Vejetasyon tipleri yerel topoğrafya ve edafik koşullara göre, örn. Volkanik,granitik anakaya cinsine göre farklılaşabilmektedir. Çölleşme endemik tür artışına neden olur, perenniyal/ annual oranı 3/2 gibi yüksek oranlara ulaşır. Genelde çöl türleri sürekli evrimleşme ile ortaya çıkmış ve evrimlerini sürdüren türlerdir. Özel edafik ve fizyolojik koşullarda yaşayan, sadece kuru koşullara bağlı olmayan türlerdir. Örn. tuzlu, alkalin, kumul gibi ortamlar için seçicidirler, Atriplex bunlardandır alkalin, tuzlu topraklarda susuz ortam yanında toprağın yüksek osmotik basıncına dayanıklı oluşları ile yüksek rekabet gücü elde ederler. Bazı türler çölleşme koşullarındaki mikrohabitat koşullarına alttürleri sayesinde uyum sağlamışlardır. İklim koşulları soğuk ve nemli kış koşulları ile de rekabet tablosunu etkiler. Türlere göre değişen çimlenme zamanı ve yöntemi üzerinde etkili olan başka etmenler de vardır. Empermeabl tohum kabukları sayesinde susuz ortamda desikasyona, yani kurumaya uğramadan embriyoyu canlı tutma önemlidir. Su ile yakın temas, yüksek sıcaklıkta suyun varlığı, belli bir sıcaklık değişiminin veya gündüz / gece sıcaklık ilişkisinin kurulamamış oluşu, ışık belli bir sıcaklıkta yağış gibi çok farklı etmenler çimlenmeyi engelleyebilmektedir. Çeşitli kurak bitkilerinin yapraklarından kültür ortamında diğer türlere inhibitör hatta toksik etki yapan maddeler izole edilmiştir. Bazılarının inhibitör veya zehirlerinin dökülen organlarından toprağa geçerek uzun süre etkili olabildiği ve sonra toprak biyolojik veya kşmyasal aktivitesi, yağmurun yıkaması ile bu etkinliği kaybettikleri de ortaya çıkarılmıştır. Terleme genelde yeterli su varken yüksektir. Sıcaklık, güneş ışığı, buharlaşma hızı yükselme stomalar kapanmakta terleme azalmaktadır. Mezofitlere oranla aynı koşullardaki stoma açıklığı daha yüksek kalmakta, ancak çok şiddetli ışıkta kapanmaktadırlar. Tipik olarak karanlıkta stomalar açılmaktadır. Bazı türler kurakta tüm yapraklarından kurtulmakta ve ancak su alabildiklerinde yeniden yapraklanmaktadırlar. OrtaDoğu çöl vejetasyonunun dominant perennial türlerinin çoğu herdem yeşil kamefitler olup terleme yüzeylerini mevsimsel olarak yaprak değişimi ile ayarlamaktadırlar. Tipik bir örnek türde transpirasyon yapan kütlenin %87.4 azaldığı saptanmıştır. Diğer bir faktör de vejetasyon sıklığı ile kendini gösteren rekabettir, yağış rejimine göre vejetasyon seyrelerek toplam transpirasyonu sabit tutmaktadır. Birçok sukkulent türün ekstraktlarının antibiyotik aktivitesi görülmüştür. Aynı şekilde alkaloid birikmesinin de türler arasındaki antimikrobiyal farklılıklara paralel olduğu da gösterilmiştir. Bazı sukkulentlerin gece daha az CO2 çıkarttıkları, yani asit biriktirdikleri bulunmuştur. Krassulasean asit metabolizması ileride incelenecektir. Kurak alanlarda yeraltı suyunun derinliği bitki örtüsü üzerinde etkilidir, örneğin çöllerde tabansuyu 100m. kadar derinde olabilir ve yüzeye eriştiğinde de çok tuzlu olabilir. Kalitesi iyi ise çok yararlı olur. Yeraltı sularının hareketliliği ısı, yüzey gerilimi, elektriksel alan, basınç, yerçekimi ve su kimyası gibi birçok etmenin bileşkesi olup, taban suyu üzerinde, su ile havanın beraber bulunduğu derinliklerde yüzey gerilimi ile kılcallık yer çekimini yendiğinde su yüzeye çıkar. Çöllerde toprak nemi sıcaklık değişiminin etkisi ile hareket eder. Yağıştan sonra ısınan yüzey tabakası nemi yukarı çeker ve yüzey altında depolanmasına neden olur. öellikle kil ve siltlerde kimyasal osmoz etkili olur. Çok heterojen bir dağılım gösteren toprağın kapilaritesi önemli rol oynar. Kapilariteye bağlı olarak taban suyu evapotranspirasyon etkisi ile daha kısa veya uzun sürede yeryüzüne ulaşır. Tipik olarak düzlükleri çevreleyen yamaç ve dağlardan düzlüğe süzülen ve yer altında toplanan su bu yoldan evapotranspirasyonla atmosfere geçer. Büyük düzlüklerde veya 20-40mm.lik yağışlarda ise yeryüzüne yakın kısımdan yukarı çıkarak kısa sürede evapotranspirasyona uğrar. Karbonatlı veya volkanik kayalar üzerindeki bölgelerde bu kayaçların yüksek permeabilitesi nedeniyle taban suyu hareketliliği yüksek olabilir ve yağışlı mevsimlerde vejetasyon hareketlenir. Kökleri yüzeye yakın, yatay dağılan, yüzeyde kalan suyu kullanan kserofitler ile taban suyundan yararlanan freatofitleri birbirinden ayırmak gerekir. Fretofitler tabansuyuna doymuş olan taban derinliği, evapotranspirasyonla kaybedilen oranı ve suyun kalitesi hakkında fikir verirler. Genellikle otsu freatofitler tabansuyu derinliğinin 3m.yi, çalımsı olanlar ise 10m.yi aşmadığı ortamlarda gelişirler. Ağaçlar için bu derinlik 30m.yi bulabilir. Su derinliği yanında tuzluluğu, bitki türü, toprak ve anakaya özellikleri de önemli rol oynar. Bazı türler su kalitesi indikatörüdür, örneğin tuzlu su yabani otu (pickleweed -Allenrolfea occidentalis) taban suyunun tuza doymuş olduğu yerlerde yaşar. Kavak ve söğüt içilir kalitede tabansuyu indikatörüdür, hurma su seçmez, vs. Fretofitlerin su tüketimi iklim, tür ve bireyin sağlık durumu, bitki yoğunluğu ve su derinliği ile kalitesine bağlı olarak değişir. Örneğin kavak kurak ve sıcak ortamda yılda 2000-3000mm su tüketirse iyi büyüyebilir. Genelde fterofitlerin su tüketimi yüksektir, 1 hektarlık alanda yoğun yetişme için yılda 2000m3 su gibi bir tüketim gerekir. Optimum koşullarda nemli topraktan evaporasyon doğrudan su yüzeyinden olana eşittir ve sıcak çöllerde yılda 250-320 cm cıvarındadır. Ancak suyun tuzluluğu ile bu hız azalır. Derinlerden gelen suyun evaporasyonla kaybıkapilarite tüm profilde maks. düzeyde olamadığından genelde düşüktür, Porozite 0.3 olduğunda bile ve tuzlanma yoksa yılda 0.003-0.3 mm.yi aşmaz. Fakat gene de taban suyu derinliğinin 5 m veya daha az olduğu geniş alanlarda önemli bir yer tutar. Legümlerin çoğu tuza çok duyarlıdır. Genellikle yeraltı sularında Na, Ca, Mg, HCO, Cl, SO4, H4SiO4 ve daha az oranlarda da K, CO3, Fe2 ve F bulunur. Redükleyici koşullar ve düşük pH’ta Fe++ dominant olabilir. Genel derişimler arttığında Mg(OH)+, CaSO4 ve MgCO3 önem kazanır. Genelde kurak alanlarda ve özellikle çöllerde taban suları daha tuzludur, çünkü evapotranspirasyon/yağış oranı yüksektir, yağışlar şiddetli olduğundan yukarıda toplanan tuzu tabana indirir. Freatrofik ve otsu bahar vejetasyonun tahribi, permeabilitenin iyi olmadığı topraklarda sulama ile tuzlanma,sanayileşme ile tabansuyunun kurutulması insan eliyle erozyon ve çölleşmeye neden olur.

http://www.biyologlar.com/protoplazmanin-hidraturu

Ekolojik Kirlilik

En geniş anlamıyla çevre "ekosistemler" ya da "biyosfer" şeklinde açıklanabilir. Daha açık olarak çevre, insanı ve diğer canlı varlıkları doğrudan ya da dolaylı olarak etkileyen fiziksel, kimyasal, biyolojik ve toplumsal etmenlerin tümüdür.İnsanları çevre kirliliği konusunda duyarlı hale getirebilmek için 1997 yılı çevre yılı olarak kutlandı. Çevrenin doğal yapısını ve bileşiminin bozulmasını, değişmesini ve böylece insanların olumsuz yönde etkilenmesini çevre kirlenmesi olarak tanımlayabiliriz. Artık hepimizin bildiği gibi çevreden, içindeki varlıklara göre en çok yararlanan bizleriz. Çevreyi en çok kirleten yine bizleriz. Bu nedenle "Çevreyi kirletmek kendi varlığımızı yok etmeye çalışmaktır" denilebilir. Bilinçsiz kullanılan her şey gibi temiz ve sağlıklı tutulmayan çevre de bizlere zarar verir. Bu nedenle çevre denince aklımıza önce yaşama hakkı gelmelidir. İnsanın en temel hakkı olan yaşama hakkı, canlı ya da cansız tüm varlıkları sağlıklı, temiz ve güzel tutarak dünyanın ömrünü uzatmak, gelecek kuşaklara bırakılacak en değerli mirastır. 1970'li yıllardan sonra bilincine vardığımız çevre kirliliği dayanılmaz boyutlara ulaştı. Çünkü artık temiz hava soluyamaz olduk. Ruhsal rahatlamamızı sağlayacak yeşil alanlara hasret kalmaya başladık. Yüzmek için deniz kıyısında bile yüzme havuzlarına girmek zorunda kaldık.gürültüsüz ve sakin bir uyku uyuyamaz, midemiz bulanmadan bir akarsuya bakamaz olduk. Kısaca artık kirleteceğimiz çevre tükenmek üzeredir. 2000-3000 yıl önce bir doğa cenneti ve büyük bir kısmı otlaklarla kaplı olan Anadolu'yu günümüzde bu durumlara düşürdük. Doğada kirlenmeye neden olan etmenleri, doğal etmenler ve insan faaliyetleri ile oluşan etmenler olmak üzere iki grupta inceleyebiliriz. Doğal etmenler:depremler, volkanik patlamalar, seller gibi doğadan kaynaklanan etmenlerdir. İnsan faaliyetlerinden kaynaklanan etmenler ise aşağıdaki gibi sıralanabilir. Evler, iş yerleri ve taşıt araçlarında; petrol, kalitesiz kömür gibi fosil yakıtların aşırı ve bilinçsiz tüketilmesi. Sanayi atıkları ve evsel atıkların çevreye gelişigüzel bırakılması. Nükleer silahlar, nükleer reaktörler ve nükleer denemeler gibi etmenlerle radyasyon yayılması. Kimyasal ve biyolojik silahların kullanılması. Bilinçsiz ve gereksiz tarım ilaçları, böcek öldürücüler, soğutucu ve spreylerde zararlı gazlar üretilip kullanılması. Orman yangınları, ağaçların kesilmesi, bilinçsiz ve zamansız avlanmalardır. Yukarıda sayılan olumsuzlukların önlenmesiyle çevre kirliliği büyük ölçüde önlenebilir. Çevre bilimcilere göre genelde, aşağıda verilen iki çeşit kirlenme vardır. Birinci tip kirlenme; biyolojik olarak ya da kendi kendine zararsız hale dönüşebilen maddelerin oluşturduğu kirliliktir. Hayvanların besin artıkları, dışkıları, ölüleri, bitki kalıntıları gibi maddeler birinci tip kirlenmeye neden olur. Kolayca ve kısa zamanda yok olan maddelerin meydana getirdiği kirliliğe geçici kirlilik de denir. İkinci tip kirlenme: biyolojik olarak veya kendi kendisine yok olmayan ya da çok uzun yıllarda yok olan maddelerin oluşturduğu kirliliktir. Plastik, deterjan, tarım ilaçları, böcek öldürücüler (DDT gibi), radyasyon vb. maddeler ikinci tip kirlenmeye neden olur. Kalıcı kirlenme de denilen ikinci tip kirlenmeye neden olan maddeler bitki ve hayvanların vücutlarına katılır. Sonra besin zincirinin son halkasını oluşturan insana geçerek insanın yaşamını tehlikeye sokar. Örneğin; Marmara denizine sanayi atıkları ile cıva ve kadminyum iyonları bırakılmaktadır. Zararlı atıklar besin zincirinde alglere, balıklara ve sonunda insana geçerek önemli hastalıklara ve ani ölümlere neden olmaktadır. Köy gibi kırsal yaşama birliklerindeki insanlar genellikle büyük kentlerde yaşayan insanlardan daha sağlıklı ve daha uzun ömürlüdür. Çünkü kırsal ekosistemler, çevre kirliliği yönünden kentsel ekosistemlerden daha iyi durumdadır. Bunu bilen kent insanı fırsat buldukça, çevre kirliliği en az olan kırlara, köylere koşmaktadır. Günümüzde en yaygın olan kirlilik su, hava, toprak, ses ve radyasyon kirliliğidir. Yeryüzündeki içme ve kullanma suyunun miktarı sınırlıdır. Zamanla su kaynaklarının azalması, insan nüfusunun artması ve daha önemlisi, suların kirlenmesi yaşamı giderek zorlaştırmaktadır. Su kirliliğini oluşturan etmenlerin başında lağım sularıyla sanayi atık suları gelmektedir. Bunun yanında petrol atıkları, nükleer atıklar, katı sanayi ve ev atıkları da önemli kirleticilerdir. Bunlar deniz kenarındaki bitki ve alg gibi kaynakları yok etmektedir. Kirlenme sonucu denizlerde hayvan soyu tükenmeye başlamıştır. Örneğin; Marmara denizi, kirlilik nedeniyle balıkların yaşamasına uygun ortam olmaktan çıkmıştır. Karadeniz'deki kirlenme nedeniyle hamsi ve diğer balık türleri giderek azalmaktadır. İstakozların larva halindeyken temiz su bulamamaları nedeniyle nesilleri tükenmektedir. Nehir ve göllerimizde kirlilik nedeniyle canlılar tükenmek üzeredir. Yeni yeni kurulmaya başlanan arıtma tesisleri, lağım ve sanayi atık sularını hem kimyasal hem de biyolojik olarak temizlemektedir. Böylece hem sulama suyu gibi yeniden kullanılabilir su kazanılmakta hem de denizlerin kirlenmesi önlenmektedir. Bu nedenle sanayileşme mutlaka iş yerleri planlanırken arıtma tesisleri ile birlikte düşünülmelidir. Hava, içinde yaşadığımız gaz ortamı oluşturmanın yanında yaşam için temel bir gaz olan oksijeni tutar. Oksijen yanma olaylarını da sağlayan temel bir maddedir. Temiz hava olarak nitelendirilen atmosferin alt katmanı; azot, oksijen, karbondioksit ve çok az miktarda diğer gazlardan oluşur. Ayrıca atmosferin üst katmanında bir de ozon gazının (O3) oluşturduğu tabaka vardır. Ozon, güneşten gelen zararlı ışınların çoğunu yansıtıp bir kısmını tutarak yeryüzüne ulaşmasını engeller. Evler, iş yerleri, sanayi kuruluşları ve otomobillerin çevreye verdikleri gaz atıklar havanın bileşimini değiştirir. Havaya karışan zararlı maddelerin başlıcaları kükürt dioksit (SO3), karbon monoksit (CO), karbon dioksit (CO2), kurşun bileşikleri, karbon partikülleri (duman), toz vb. kirleticilerdir. Ayrıca deodorant, saç spreyleri ve böcel öldürücülerde kullanılan azot oksitleri, freon gazları ile süpersonik uçaklardan çıkan atıklar da havayı kirletir. Zararlı gazların (özellikle kükürt bileşikleri); yağmur, bulut, kar gibi ıslak ya da yarı ıslak maddelerle karışmaları sonucunda asit yağmurları oluşur. Asit yağmurları da bir yandan orman alanları vb. yeşil alanları yok etmekte bir yandan da suları kirletmektedir. Aşırı artan CO2, atmosferin üst katmanlarında birikerek ısının, atmosfer dışına çıkmasını engeller. Böylece yeryüzü giderek daha fazla ısınır. Bu da buzulların eriyerek denizlerin yükselmesine kıyıların sularla kaplanmasına neden olabilecektir. "Sera etkisi" denilen bu olay sonucu denizlerin 16 metre kadar yükselebileceği tahmin edilmektedir. Freon, kloroflorokarbon (CFC) gibi gazların etkisiyle ozon tabakası incelmektedir. Bunun sonunda güneşin zararlı ışınlarıyeryüzüne ulaşarak cilt kanseri gibi hastalıklara ve ölümlere neden olmaktadır. Sonuçta, biyosferin canlı kitlesini yok etme tehlikesi vardır. Büyük yangınlar da önemli ölçüde hava kirliliği yaratır. Örneğin; orman yangınları, körfez savaşında olduğu gibi petrol yangınları vb. Hava kirliliği aşağıda verilen uygulamalarla önlenebilir: Hava kirliliğinin en önemli nedenlerinden olan fosil yakıtlar olabildiğince az kullanılmalı. Bunun yerine doğalgaz, güneş enerjisi, jeotermal enerji vb. enerjilerin kullanımı yaygınlaştırılmalıdır. Karayolu taşımacılığı yerine demiryolu ve deniz taşımacılığına ağırlık verilmelidir. Büyük kentlerde toplu taşıma hizmetleri yaygınlaştırılmalıdır. Böylece, otomobil egzozlarının neden olduğu kirlilik azaltılabilir. Sanayi kuruluşlarının atıklarını havaya vermeleri önlenmelidir. Yeşil alanlar artırılmalı, orman yangınları önlenmelidir. Ozon tabakasına zarar veren maddeler kullanılmamalıdır. Canlılığın kaynağı sayılabilecek toprağın yapısına katılan ve doğal olmayan maddeler toprak kirliliğine neden olur. Böyle topraklarda bitkiler yetişmez ve toprağı havalandırarak yarar sağlayan solucan vb. hayvanlar yaşayamaz duruma gelir. Topraktan bitkilere geçen kirletici maddeler, besin zinciri yoluyla insana kadar ulaşır. Hastahane atıkları gibi mikroplu atıklar, hastalıkların yayılmasına neden olur. Toprak kirliliğine neden olan başlıca etmenler: Ev, iş yeri, hastahane ve sanayi atıkları. Radyoaktif atıklar. Hava kirliliği sonucu oluşan asit yağmurları. Gereksiz yere ve aşırı miktarda yapay gübre, tarım ilacı vb. kullanılması. Tarımda gereksiz ya da aşırı hormon kullanımı. Suların kirlenmesi. Su kirliliği toprak kirliliğine neden olurken, toprak kirliliği de özellikle yer altı sularının kirlenmesine neden olur. Toprak kirliliğinin önlenmesi için aşağıdaki uygulamalar yapılmalıdır. Verimli tarım topraklarında yerleşim ve sanayi alanları kurulmamalı, yeşil alanlar artırılmalıdır. Ev ve sanayi atıkları, toprağa zarar vermeyecek şekilde toplanıp depolanmalı ve toplanmalıdır. Yapay gübre ve tarım ilaçlarının kulanılmasında yanlış uygulamalar önlenmelidir. Nükleer enerji kullanımı bilinçli şekilde yapılamlıdır. Sanayileşme ve modern teknolojinin gelişmesiyle ortaya çıkan çevre sorunlarından biri de ses kirliliğidir. Gürültü de denilen ses kirliliği, istenmeyen ve dinleyene bir anlam ifade etmeyen sesler ya da insanı rahatsız eden düzensiz ve yüksek seslerdir. Ses kirliliğini yaratan önemli etmenler; Sanayileşme Plansız kentleşme Hızlı nüfus artışı Ekonomik yetersizlikler İnsanlara, gürültü ve gürültünün yaratacağı sonuçları konusunda yeterli ve etkili eğitimin verilmemiş olmasıdır. Ses kirliliği, insan üzerinde çok önemli olumsuz etkiler yaratır. Bu etkileri aşağıdaki gibi sıralayabiliriz. İşitme sistemine etkileri: Ses kirliliği işitme sistemi üzerinde, geçici ve kalıcı etkiler olmak üzere iki çeşit etki yapar. Ses kirliliğinin geçici etkisi, duyma yorulması olarak da bilinen işitme duyarlılığındaki geçici kayıplar şeklinde olur. Duyma yorulması düzelmeden tekrar gürültüden etkilenilmesi ve etkileşmenin çok fazla olması durumunda işitme kaybı kalıcı olur. Fizyolojik etkileri: İnsanlarda görülen stresin önemli bir kaynağı ses kirliliğidir. Ani olarak oluşan gürültü insanın kalp atışlarında (nabzında), kan basıncında (tansiyonunda), solunum hızında, metabolizmasında, görme olayında bozulmalar yaratır. Bunların sonucunda uykusuzluk, migren, ülser, kalp krizi gibi olumsuz durumlar ortaya çıkar. Ancak en önemli olumsuzluk kulakta yaptığı tahribattır. Psikolojik etkileri: Belirli bir sınırı aşan gürültünün etkisinde kalan kişiler, sinirli, rahatsız ve tedirgin olmaktadır. Bu olumsuzluklar, gürültünün etkisi ortadan kalktıktan sonra da sürebilmektedir. İş yapabilme yeteneğine etkileri: Özellikle beklenmeyen zamanlarda ortaya çıkan ses kirliliği, iş veriminin düşmesi, kendini işine verememe ve hareketlerin engellenmesi şeklinde performansı düşürücü etkiler yapar. Gürültünün öğrenmeyi ve sağlıklı düşünmeyi de engellediği deneylerle saptanmıştır. Ülkemizde, insanları gürültünün zararlı etkilerinden korumak için gerekli önlemleri içeren ve çevre yasasına göre hazırlanmış olan "Gürültü kontrol yönetmeliği" uygulanmaktadır. Ancak yönetmeleğin hedeflerine ulaşabilmesi için insanların bu konuda eğitilmeleri ve bilinçlendirilmeleri gerekir. Ses kirliliğinin saptanmasında ses şiddetini ölçmek için birim olarak desibel (dB) kullanılır. İnsan için 35-65 dB sesler normaldir. 65-90 dB sesler, sürekli işitildiğinde zarar verebilecek kadar risklidir. 90 dB'in üzerindeki sesler tehlikelidir. Ses kirliliği aşağıdaki uygulamalarla önlenebilir: Otomobil kullanımını azaltacak önlemler alınmalıdır. Ev ve iş yerlerinde ses geçirmeyen camlar (ısıcam gibi) kullanılmalıdır. Eğlence yerleri vb. ortamlarda yüksek sesle müzik çalınması engellenmelidir. Gürültü yapan kuruluşlar, şehirlerin dışında kurulmalıdır. Radyoaktif element denilen bazı elementlerin atom çekirdeğinin kendiliğinden parçalanarak etrafa yaydığı alfa, beta ve gama gibi ışınlara radyasyon denir. Çevreye yayılan bu ışınlar, canlı hücreleri doğrudan etkileyerek mutasyon denilen genlerdeki bozulmaya neden olur. Çok yoğun olmayan radyasyon, canlının bazı özelliklerinin değişmesne neden olurken yoğun radyasyon, canlının ölümüne neden olabilir. Örneğin; 1945'te Japonya'ya atılan atom bombası, atıldıktan sonraki 7 gün içinde, vucutlarının tamamı 10 saniye radyasyon almış insanların % 90'ı hiç bir yara ve yanık izi olmadan öldü. 26 Nisan 1986'da Çernobil'deki nükleer kazanın; ani ölümler, gebe kadınlarda düşük olayları, kan kanseri, sakat doğumlar gibi olumsuz etkileri oldu. Bir çevredeki belli bir dozun üzerinde olan radyasyon, canlının vücut hücrelerini etkileyerek doku ve organlarda bozulmalara, anormalliklere, üreme hücrelerini etkileyerek doğacak yavrularda sakatlıklara neden olur. Uzun süre radyasyon etkisinde kalmanın yaratacağı sonuçlar aşağıdaki gibi sıralanabilir: Kanser oluşması, Ömrün kısalması (erken ölümler), Katarakt oluşması, Sakat ve ölü doğumlar şeklinde sıralanabilir Radyasyonun zararlı etkilerinden korunmak için, alınabilecek başlıca önlemler şunlardır: Özel giysiler (kurşun önlük, özel maske) kullanılmalıdır. Radyasyon kaynağından uzak durulmalı, en kısa sürede radyasyonlu ortam terk edilmelidir. Radyasyonlu cihazlarla yapılan teşhis ve tedaviye sık sık başvurulmamalıdır. Radyasyon, doğadaki radyoaktif maddelerden çok, bunların kullanıldığı ortam ve olaylardan çıkar. Bunlar; nükleer santraller, nükleer enerjiyle çalışan gemiler ve nükleer denemelerdir. Ayrıca teşhis ve tedavide kullanılan bazı cihazlar, tıbbi malzemelerin ve suların dezenfekte edilmesi için kullanılan araçlardan da radyasyon yayılmaktadır RADYASYON SES KİRLİLİĞİ TOPRAK KİRLİLİĞİ HAVA KİRLİLİĞİ SU KİRLİLİĞİ

http://www.biyologlar.com/ekolojik-kirlilik

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Suyun dolaşımı

Fiziksel özelliklerine göre Yağış Buharlaşma Yeraltı ve üstü suları Atmosferdeki nemin yoğunlaşmasıyla bulutlar ve klimatik etkenlerle yağış meydana gelir. Yeryüzüne düşen yağışın bir kısmı buharlaşarak atmosfere geri döner, bir kısmı akarsularla göllere ve yer altı sularına toplanır diğer bir kısmı biçkilerde toplanarak yapısında görev alır. Bir bölgedeki yağıştan sonra 8-9 gün sonra atmosfer kendini yeniler yani nem atmosfere geri döner. Okyanuslada yüzey geniştir; bu yüzden buharlaşma çok olur, fakat yağışla gelen su az olur. Bu yüzden tuzlu sudur. İç sularda buharlaşma az yağışla gelen su çok olur. Bu yüzden tatlı sudur Bir bölgede yağış sonrası toprak doyma noktasına kadar suyu emer daha sonra daha sonra toprak üzerinde akış oluşur .Bu akış nehir ve akar suları meydana getirir. Yağış alan alanda bir geçirimsiz toprak tabakası varsa bu tabakanın üzerinde bu sular birikerek yer altı su kaynaklarını oluşturur. Yağış yüzeyde bir çukurun üzerine düştüğünde yada nehirlerle bir çukurda toplandığında göller oluşur . Göller (Lentik biotoplar)

http://www.biyologlar.com/suyun-dolasimi

Sibernetik Organizmalaştırdığımız Böcekler

Diğer bir adıyla sayborg böcekler, yani Robocop gibi böcekler. Vücutlarına eklenen teknolojik araçlarla normalinden daha gelişmiş yeteneklere sahip olan canlıların prototiplerini oluşturmak için kullanılan böcekleri inceleyeceğiz. Sibernetik organizma (cybernetic organism), kısaltılıp dilimize girmiş haliyle sayborg (cyborg) hem biyolojik hem de yapay (elektronik, mekanik veya robotik) parçalardan oluşmuş canlılara deniyor [1]. Sayborgların insan olması gibi bir anlayış hakim olmasına karşın, bu tarz bir kısıtlama kesinlikle yok. Mikro-organizmalar bile bu tanımlamaya dahildir. Zaten sibernetik organizma adının çağrıştırdığı gibi herhangi bir organizmaya uygulanabilir; yeter ki bu teknolojik ve yapay öğeler, bahsi geçen organizmanın değiştirilmemiş haline kıyasla daha yüksek seviyelerde özelliklere sahip olmasını sağlasın. Diğer taraftan bir elektromekanik sisteme veya bir robota eklenecek olan canlı organlar veya dokular da robotun sayborga dönmesine sebep olacaktır. Popüler kültürden örnekler vermek gerekirse, organik ve sentetik parçalardan oluşturulan Robocop, Star Trek’teki Borg Queen (Şekil 1) veya Battlestar Galactica’daki insan saylonlar (cylon) ve Terminatör’ler en akılda kalan sibernetik organizmalardır. Yeri gelmişken sıkça karıştırılan iki terim olan sayborg ve androidin ayrımını da yapalım. Android insan dış görünümünü andıran robotlara verilen isim. Farkettiğiniz üzere bir android aynı zamanda bir sayborg olabilir de (yukarıdaki örnekler), olmayabilir de (örn: ASIMO, bkz. Tekinsiz Vadi).Sayborgların sadece bilim kurgu öğeleri olduğunu zannetmeyin, bu paragrafın sonunda neredeyse hepimizin birer sayborg olduğuna ikna edeceğim belki de sizleri. Öncelikle tanımı gereği gündelik hayatlarımızda kullandığımız bazı elektronik fiziksel eklentiler, bizleri birer sayborga dönüştürüyor. Kalp pilleri, kohlear ve retinal implantlar, insülin pompaları bazı organlarımızın yerini alarak değiştirilmiş vücut organlarımız haline geliyor. Bu sebeple bir başka yazımızda işlediğimiz beyin-makine arayüzleri olarak kullanılan protez kollar ve bacaklar da bizleri birer sayborga dönüştürüyor. Hatta bazı filozoflar ve teorisyenler işi daha da ileri götürerek, kontak lensler ve işitme cihazlarını bile eksik olan biyolojik yetilerimizi güçlendirmeye yaradıkları için sibernetik güçlendirmeler olarak görüyor, ancak ben bu fikire kesinlikle katılmıyorum. Çünkü bu şekilde insanların kullandığı bütün aletleri listeye eklemek mümkün.Sayborg böcekler Şekil 2: Sayborg böceğin üstten ve yandan görünümleri Berkeley bilim insanları 2009 yılında bir böceğin uçma yetilerini kontrol edebildiklerini iddia ettiler (Şekil 2). Bir beyin-makine arayüzü olan ve sinirsel uyarım yapan bir implant sayesinde böceğin uçuşunu başlatıp, yönetip, durdurabildiklerini de aşağıdaki video aracıyla kanıtladılar. Hatta bazalar kasları uyararak böceği istedikleri yöne doğru döndürebildiler. Ama esas işin enteresan kısmı böceğin sadece gerektiği zaman istenilen yöne gitmesine izin veren implantın gömülme detayları (Şekil 2). Eğer böcek istenilen yöne doğru uçuyorsa, yönelim sinyali kesiliyor ve böcek kendini tekrar stabilize edip yoluna koyulmaya devam ediyor, ancak bu sefer bilim adamlarının istediği yöne doğru uçuyor. Aslında bir nevi kontrol edilebilir zombiye dönüşmüş durumda, çünkü bu mekanizma sadece böcek istenilen hareketleri yapmadığında devreye giriyor. Kalkış ve inişlerde böcek kendi karar verip hareketleri otonom olarak yönlendiriyor, çünkü bu tarz bir karmaşık bir bilgiyi böceğe gönderip böcek dinamiğini kontrol etmek oldukça meşakkatli bir iş.DARPA sibernetik böceklere yönelik her türlü araştırmayı destekliyor [2]. Gaz sensörleri, mikrofonlar ve video kameralarla donatmayı planladıkları böceklere utanmasalar bir de minik roketler takacaklarını söyleyecekler (tabii henüz onu söyleyemiyorlar.)         Bu projedeki esas zorluk henüz koza evresinde olan canlıların Mikro ElektroMekanik Sistem (MEMS) devrelerini içerilerine alarak büyümelerini sağlamak ve elektronik-biyonik hibrit böcekler üretmek. Böylece güve (Şekil 3) veya böcek büyüdüğü zaman içlerindeki elektronik devrelere kontrol komutları gönderilebilecek [3].             Şekil 4: Böceği koza evresindeyken beynine yerleştirilen bir implantla kontrol etmek mümkün. i) Koza evresi, ii) Erişkin evresi, Kaynak: Boyce Thompson EnstitüsüAynı takım bundan önce de aşağıda videosunu seyredebileceğiniz sayborg güvelerle çalışmıştı. Gaz sensörleri, düşük çözünürlüklü kameralar ve mikrofonları da kapsayan silikon zihin arayüzleri hayvanların koza evresindeyken beyinlerine yerleştirilebiliyor (Şekil 4). Bu şekilde güve büyüdüğünde arama-kurtarma ve gözetleme görevlerinde kullanılabiliyor. Bir işitme cihazı piliyle beslenen bu elektromekanik düzeneğe sahip güvelerle çalışmanın bir dezavantajı mevcut, o da güvelerin kısa ömürleri. Ayrıca farkettiğiniz üzere USB girişi bulunan bu güveler yukarıdaki böcekler gibi serbest değiller.     Enerji ihtiyacı nasıl karşılanıyor?Şekil 5: Bir bozuk para büyüklüğündeki böceğe takılmış yaylar sayesinde enerji üretmek mümkünSayborg böcekler uzunca bir zamandır kullanılıyor olsalar da, minicik cüsseleri onları tam olarak istenilen birer insansız hava taşıtına çevirmiyor. Bu böcekler (örn. gergedan böceği) genellikle sadece kendi ağırlığının %30’unu taşıyabiliyorlar ki bu da 2.5 grama tekabül eder. Böcekler kendi hayatta kalma enerjilerini kendileri üretiyor olsalar da, eğer bu böceğe kamera veya başka yükler takmak isterseniz, dışarıdan enerji üretmeniz gerekiyor. Eğer sabit bir pil eklerseniz de zaten pilden geriye yer kalmayacağı için yeni sensörler eklemek de imkansız hale geliyor. Az güç harcayan bir alıcı-verici kullandığınızı düşünseniz bile düzenli veri işleme ve aktarımı için yaklaşık 1 ile 100 miliwatt arası enerji gerektiriyor.Bu noktada bilim insanlarının uyguladığı iki adet yöntem var. Birincisi böceğin kendi kaynaklarından enerji elde etmek. Michigan ve Western Michigan Üniversitesi bilim insanları piezoelektrik maddeden yaptıkları bir enerji jeneratörünü, böceğin kanat çırpmasından elektriğe dönüştürecek bir sistem geliştirdiler (Şekil 5). Her kanada takılacak her bir yaydan, 100 mikrowatt (μW) enerji üretilebiliyor ki, böceği yönetmek için kullanılan ortalama 80μW’tan bile daha fazla [4]. Bu tarz bir enerji kaynağında karşılarına çıkabilecek tek sorun böceğin kendi enerjisini toplamak için bir meyve arası vermesi.İkincisi enerji sağlama yöntemi ise nükleer pil kullanmak. Cornell Üniversitesi araştırmacıları 12 yıllık yarı ömre sahip, radyoaktif nikel-63 (Ni-63) izotopu kullanarak enerji sağlanan bir mikro elektromekanik sistem (MEMS) radyo frekans alıcı-vericisi kullandılar. Bu sayede onlarca yıl kendi enerjisini kendi sağlayan bir böcek yaratmış oldular ( her ne kadar böceğin ömrü bu kadar olmasa da). Bu düzenek 10 mikrosaniyede bir, 5 miliwattlık ve 100 Megaherzlik radyo frekansı yayınlayabiliyor. Tabii ki gene Amerikan Savunma Bakanlığı İleri Araştırma Projeleri Ajansı (DARPA) sponsorluğunda yapılan bu projede kontrol devreli güveler ve böcekler kullanılmış.Peki radyoaktif enerji veri transferini sağlayacak enerjiye nasıl dönüştürülüyor? İzotoptan çıkan elektronlar, silikon ve piezoelektrik bir manivela (40 mikrometre kalınlığında ve 4-8 milimetre uzunluğunda) üzerinde negatif yük birikimine sebep oluyorlar [5]. Bu manivela görece daha pozitif olan Ni-63 tabakaya doğru yaklaşmaya ve bükülmeye başlıyor. Tam değeceği sırada, bu negatif yük, tabakaya zıplama yapıyor ve yükünden kurtulan manivela tekrar başlangıç pozisyonuna geri dönüyor. İşte hareket enerjisi de tam bu geri dönme hareketi sırasında elde ediliyor. Bu döngü, izotop tüm enerjisi tükenene kadar devam ediyor, yani yaklaşık 100 yıl kadar.Her bir zıplama hareketi yaklaşık 3 dakika alıyor. Bu da her 3 dakikada bir elektrik üretildiği ve veri transferi yapılabileceği anlamına geliyor. Eğer daha farklı zaman aralıkları hedefleniyorsa, biriken elektron sayısına göre ayarlanmış bir MEMS sistemine ihtiyaç var, ve bu rahatlıkla mümkün. Tüm bu düzeneğin büyüklüğü 1 santimetrekare alan kaplıyor.En önemli çekince, bu radyoaktif kaynaktan aynı zamanda beta yayılımı yapılıp yapılmadığı ve hayvanın ve üzerindeki mekanizmanın zarar görüp görmediği. Bilim adamları sadece 21 nanometre penetrasyon yapan bu nükleer kaynağın zararsız olduğu iddiasında.Sayborg Sinekler:Şekil 6: A) Yuların ucundaki sinek, B) Yuların bağlı olduğu düzeneğin etrafı LED ekranlarla çevrili, C) Sineğin kanat çırpışlarıyla hareket eden robot, D) Kamera düzeneğiETH Zürih Üniversitesi Robotik ve Akıllı Sistemler departmanında çalışan bilim insanları 2010 yılında meyve sinekleri üzerinde yaptıkları araştırmalar sonunda, odada bulunan engellerin etrafından uçurabildikleri bir sayborg sinek yaratmayı başardılar. Bunun için yarattıkları deney koşulları çok sıradışı (Şekil 6).Aldıkları bir sineği sabit bir yulara bağlayarak (Şekil 7), çevresine 360 derecelik bir LED ekran yerleştirilmek suretiyle farklı görüntülere maruz bıraktılar [6]. Bu görüntüler sineği sağ veya sol kanatlarını hızlı veya yavaş şekilde çırpmak için tahrik eden görüntülerdi. Yani sineğe bir nevi sanal gerçeklik yaşatıyorlardı. Bu esnada aynı ortamda bulunan bir kamera sistemi de sineğin kanat çırpma hareketlerini bir robotu kontrol etmek için gerekli komutlara çeviriyordu. Bilim insanları amaçlarının sineklerdeki temel uçuş kontrol mekanizmalarını anlayıp, daha iyi canlı-taklitçi robotlar yapmak olduğunu söylüyorlar.Şekil 7: Meyve sineğinin uçmaya çalışsa bile yerinden kıpırdayamayacak şekilde sabit kaldığı düzenekKamera düzeneği kanat çırpış frekansı, pozisyonu, fazı ve genliğini algılabilecek kalitede seçilmiş. Bu bilgiler bir algoritma sayesinde robotun hareketlerine çevrilmiş ve hareket eden robotun üzerinde bulunan kamera ve yakın mesafe sensörleri sayesinde ise tekrar sineğin çevresinde gördüğü LED ekrandaki hareket görüntülerine çevrilmiş. Benzer düzenekleri popüler sinemadaki Matrix ve özellikle de Avatar filmlerinden hatırlarsınız. Böylece sinek kendisi hareket ettiği için ve çevresi de hareket ettiği simülasyonunu gerçekleştirdiği için, gerçek dünyada ilerlediği izlenimine kapılıyor.Sonsözİstekleri dışında uçmak zorunda bırakılan, bir düzeneğe bağlanan veya radyoaktiviteye maruz kalan bu hayvancağızların, hem zihinsel olarak hem de fiziksel olarak birer zombiye döndükleri aşikar. Acaba bu tarz sorunları hedef alan ve bilimsel araştırma kisvesi altında da olsa hayvanlara eziyeti suç sayan bir sayborg etiğinin bilime sunulma vakti gelmedi mi [7]?Kaynaklar:[1] http://en.wikipedia.org/wiki/Cyborg[2] http://www.darpa.mil/MTO/Programs/himems/index.html[3] http://www.technologyreview.com/computing/22039/[4] http://spectrum.ieee.org/automaton/robotics/military-robots/micro-energy-harvesters-will-make-cyborg-insects-unstoppable[5] http://spectrum.ieee.org/semiconductors/devices/nuclearpowered-transponder-for-cyborg-insect[6] http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/cyborg-fly-pilots-robot-through-obstacle-course[7] Kevin Warwick, Cyborg morals, cyborg values, cyborg ethics, Ethics and Information Technology, Volume 5, Number 3, 131-137, DOI: 10.1023/B:ETIN.0000006870.65865.cf Yazar : Gökhan İnce http://www.acikbilim.com/2012/06/dosyalar/sibernetik-organizmalastirdigimiz-bocekler.html Açık Bilim Haziran 2012

http://www.biyologlar.com/sibernetik-organizmalastirdigimiz-bocekler

Histoloji Preparatlarının Hazırlanması

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim.Tespit (Fiksasyon)Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir.Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki  depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz.Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz.Otoliz nedir? Fiksasyon hangi amaçla yapılır?Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenenözelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi).Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır.Birleşik tespitten ne anlıyorsunuz?Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir:- Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir.- Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır.- Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir.- Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır.- Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır.- Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır.- Ayrıca SAĞLIĞIMIZ AÇISINDAN:Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz.Tespitte uyulması gereken kurallar nelerdir?Tespit işlemleri ne tür yerlerde yapılmalıdır, neden?DehidratasyonTespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçlakullanılan maddelere örnektir.Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir.Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılırElektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir.Bloklama (Gömme)Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafinintersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.Bloklama işleminde ne tür maddeler kullanılır?Kesit AlmaBlokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımızultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar.Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir.Mikrotom ve Ultramikrotom neye denir?Boyama (Kolorasyon)Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasalyapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır.Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, AsitFüksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir.Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir.Asidofili ve bazofili neye denir?Birleşik boyama neye denir?Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır.Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir.Ortokromazi ve metakromazi nedir?Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterdevital boyalardır.Vital boyamanın diğer boyama yöntemlerinden farkı nedir?Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır.Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi-1

Evrimin Kanıtları Var mı?

" Hayvan türlerinden biri olarak, biz insanlar, diğer türler gibi evrimin yasalarına uyarız. Bu savı, destekleyecek birçok kanıta da sahibiz. Öncelikle, diğer omurgalı hayvanlarda bulunan birçok benzer ve kökendeş (homolog) yapıya ve organa sahibiz. Diğer hayvanlarda işlev gören birçok yapıyı biz körelmiş olarak taşırız. Embriyomuz gelişirken, solungaç keselerini, basit kalbi; ilkel boşaltim tiplerini, diger omurgali hayvanlardakine benzeyen kuyrugu ve buna benzer birçok yapiyi göstermesi kökendeşligimizin tipik kanitlaridir. Kanimizin serumundaki proteinler ve kirmizi kan hücrelerindeki antijenler insansi maymunlarinkine dikkati çekecekk kadar benzerdir. Gerçekte, bu bakimdan, kuyruksuz maymunlara kuyruksuz maymunlardan daha çok benzeriz. Birçok genimiz, diger omurgali hayvanlarinkinin aynisidir. İnsan evriminin en önemli özelliği, beyin büyümesi, özellikle büyükbeyinin izlenimleri saklama ve öğrenme işlevini yüklenerek, beynindiğer kısımlarına göre oransal olarak çok daha fazla gelişmesidir. Buna bağlı olarak, üstün zekanın ortaya çıkaracağı hünerleri yerine getirebilmek için ilk olarak harektte kullanılan ön üyeler, el olarak kullanılmaya başlamıştır." ( Ali Demirsoy , Kalıtım ve Evrim, 5. Baskı, 1991 Ankara s:716-717) Atların fosilerini milyonlarca yıl geriye izleyebiliyoruz. Çünkü yeterince fosil bulunmuştur. " Halbuki insan fosilleri çok seyrek bulunur. Bunun nedeni, insanın atalarının çok yakın zamanda oluşması ve fosilleşmek için zamanın oransal olarak kısa olması; diğer hayvanlara göre yaygın ve fazla bireyli popülasyonlar oluşturmaması ve en önemlisi oransal olarak diğerlerine göre çok daha zeki olmaları nedeniyle tehlikeyi önceden sezinleyerek, bataklık, katran kuyuları ve fosilleşmenin uygun olacağı tuzaklardan uzak durmaları ve kaçmaları olarak düşünülebilir. Önsezimizle bu tuzaklardan uzaklaşmış ve tehlike sırasında da el hünerlerimizle çoğunluk kurtulmayı sağlamışızdır. Halbuki diğer hayvanlar bu olanaklardan yoksundular ve bu nedenle bol miktarda fosil bırakabilmişlerdir. Keza birçok hile ve araçla yırtıcı hayvanlardan kurtulmayı başarmış ve bu yolla kemiklerin fosilleşmesi de önlenmiştir. Bunun yanısıra, toplumsal ayaşama geçiş de bu tehlikeleri büyük ölçüde azaltmıştır. Bol miktarda fosilin bulunamaması insanın soy dizisinin açıklanmasında bazı karanlık noktalar bırakmıştır. Bütün bunlara karşın, elimizde birikmiş kanıtlar, insanın maymun benzeri bir atadan, bugünkü insana, Homo sapiens ' e geliştiğini göstermeye yeterlidir." (Demirsoy, s:717) Turkana Çocuğu Antropologlar, birbirinden ayrı düşmüş dişler, tek tek kemikler, kafatası parçaları; insana özzgü tarihöncesinin öyküsü çoğunlukla, bu ipuçlarından oluşturulur.”Umut kıracak kadar eksik olsalar da, bu ipuçlarının büyük önem taşıdığını inkar etmiyorum; onlar olmasa, insana özgü trihöncesinin öyküsünü anlatamazdık.Bu mütevazi kalıntılarla karşılaşmanın getirdiği benzersiz heyecanı da gözardı etmiyorum; bunlar, bizim geçmişimizin, et ve kandan oluşan sayısız kuyşakla bize sağlanan parçalarıdır. Ama nihai ödül yine de bütün haldeki bir iskeletin keşfedilmesidir.” (Richard Leakey, İnsanın Kökeni Varlık/Bilim s:7) " 1984 yazının sonlarında çalışma arkadaşlarımla birlikte, nefeslerimizi toplu olarak tutmuş ve sürekli artan umudumuz deneyimin katı gerçekliği karşısında sönmüş bir haldeyken, bu hayalin şekillenmeye başladığını gördük. .Eski bir kaftasına ait küçük bir parça bulduk. Dikkatle kafatasının diğer parçalarını aramaya başladık ve umduğumuzdan çok daha fazlasını bulduk. Bu keşfi izleyen ve açık sahada yedi aydan fazla bir zamana denk gelen beş kazı mevisimi boyunca ekimiz, bin beşyüz ton tortu çıkardı ve sonuçta 1.5 milyon yıldan fazla bir süre önce eski gölün kıyısında ölmüşü birinin eksiksiz iskeletini bulduk. Turkana çocuğu adını taktığımız bu birey öldüğünde yalnızca dokuz yaşındaymış; ölüm nedeni ise hala bilinmiyor.Arka arkaya fosil kemikleri çıkarmak gerçekten eşi bulunmaz bir deneyimdi:kollanr, bacaklar, omurga kemikleri, kaburgalar, leğen kemiği, çene, dişler ve yine kafatasları. Çocuğun iskeleti şekilleniyor ve 1.6 milyon yıl parçalar halinde yaşadıktan sonra birey olarak yeniden oluşturuluyordu.İnsan fosili kalıntılarında, yalnızca 100 bin yıl öncesindeki Neanderthal dönemine dek, bu iskelet kadar eksiksiz bir başka şey bulunamamıştır... Tarihöncesi insan ailesinin çeşitli türlerinin herbiri bilinmese bile bir etiket, yani tür adi, taşiyor ve bu adlari kulanmaktan kaçinmak olanaksiz. Inas türleri ailesinin de kendine özgü bir adi var: Insangiller (homonidler) Meslektaşlarimdan bazilari geçmişteki tüm insan türleri için “insangil” terimini kullanmayi yegliyorlar. “Insan” sözcügünü yalnizca bizim gibiler için kullanilmasi gerektigini savunuyorlar.Yani, yalnizca bizim düzeyimizde zekaya, ahlak duygusuna ve içedönük bilince sahip olanlari “insan” olarak tanimliyorlar. Ben farklı bir bakış açısına sahibim. Esik insangilleri dönemin diğer insansı (kuyruksuz) maymunlarından ayıran, dik durarak hareket etme evriminin, sonraki insan tarihinin temeli olduğunu düşünüyorum. Uzak atamızın iki ayaklı bir insansımaymun haline gelmesiyle birlikte pek çok diğer evrimsel yenilik de mümkün oldu ve sonuçta, Homo ortaya çıktı. Bu nedenle tüm insangil türlerine “insan” demekte haklı olacağımızı düşünüyorum. Tüm eski insan türlerinin bizim günümüzde bildiğimiz zihinsel dünyaları yaşadıklarını söylemek istemiyorum. “İnsan” tanımı en basit düzeyde, dik yürüyen- iki ayaklı- insansı maymuları içerir. .. Turkana çocuğu, insan evrimi tarihinin dönüm noktasını oluşturan bir tür olan Homo erectus ’un üyesiydi. Kimi genetik kimi de fosillerden olmak üzere farklı kanıt dizilerinden, ilk insan türünün yaklaşık 7 milyon yıl önce ortaya çıktığını biliyoruz. Yaklaşık 2 milyon yıl önce Homo erectus sahneye çıktığında, insanın tarihöncesi oldukça uzun bir yol almıştı. Homo erectus’un ortaya çıksamından önce kaç insan türünün yaşayıp öldüğünü henüz bilmiyoruz; en azzından altı, belki de bu rakamın iki katı sayıda tür olmalı. Ama Homo erectus’ tan önce yaşayan tüm insan türlerinin, iki ayaklı olkala birlikte, pek çok açıdan insansımaymun benzeri özellikler taşıdıklarını biliyoruz.Beyinler görece küçük, yüzleri sivri çeneli (yani, öne doğru çıkık) ve beden yapılarının kimi özellikleri- örneğin göğüs huni şeklinde, boyun kısa ve bel yok- insandan çok insansımaymun benzeriydi.Homo erectus ’ta beyin büyüdü, yüz düşleşti ve beden daha atletik yapili hale geldi. Homo erectus’la birlikte, kendimizde gördügümüz pek çok fiziksel özellik de ortaya çikti; anlaşilan insanin tarihöncesi, 2 milyon yil önce çok önemli bir dönem noktasindan geçmişti. Homo erectus ateş kullanan, avciligi beslenme düzeninin önemli bir parçasi haline getiren, modern insanlar gibi koşabilen, belli bir zihinsel kaliba göre taş aletler yapabilen ve harekat alanini Afrika’nin ötesine taşiyabilen ilk insan türüdür. Homo erectus’un konuşma diline sahip olup olmadigini kesin olarak bilemiyoruz; ama buna işaret eden çeşitli kanitlar var. Bu türde belli bir benlik bilinci, insansi bir bilinç olup olmadigini da bilmiyoruz ve büyük olasilikla asla bilemeyecegiz; ama ben oldugunu düşünüyorum. Homo sapiens’in en degerli özellikleri olan dil ve bilincin tarihöncesi kalintilarinda hiçbir kanit birakmadigini söylemeye herhalde gerek yok. Antropoloğun hedefi, insansımaymun benzeri bir yaratığı bizim gibi insanlara dönüştüren evrim olaylarını anlamaktır. Bu olaylar romantik bir açıdan, büyük bir tiyatro eseri gibi tanımlanmış ve gelişen insanlığa da öykünün kahramanı rolü verilmiştir. Oysa gerçek büyük olasılıkla çok daha basittir ve bu değişimi epimaceradan çok, iklimsel ve ekolojik değişimler yönlendirmiştir. Yine de bu, dönüşümün ilgimizi dahha az çekmesine neden olmuyor. Biz, doğal dünylyayı ve bu dünyadaki yerimizi merak eden türüz.Şu andaki halimeze nasıl ggeldiğimizi ve geleceğimizin nasıl olacağını bilmek istiyoruz; bilmek zorunluluğu duyuyoruz. Bulduğumuz fosiller bizi fiziksel açıdan geçkmişimize bağlıyor ve sundukları ipuçlarını, doğayı ve evrim tarihimizin izlediği yolu anlamala yolu olarak yorumlamaya yönlendiriyor. İnsanoğlunun tarihöncesine ait daha pek çok kalıntı gün ışığına çıkartılıp incelenene dek hiçbir antropolog kalkıp da, “Bu, tüm ayrıntılarıyla şöyle oldu” diyemez. Ama araştırmacılar, insan tarihöncesinin genel şekiline dair pek çok konuda aynı fikirdeler. İnsanın tarihöncesinde dört temel aşama kesinlikle saptanabiliyor. İlk aşama, 7 milyon yıl önceki, iki ayaklı ya da dik hareket eden insansımaymun benzeri bir türün geliştiği insan ailesinin kökenidir. İkinci aşama, iki ayaklı türlerin çoğalması yani biyologların uyarlayıcı ışınım adını verdikleri bir süreçtir. 7 milyon ile 2 milyon yıl öncesi arasında her biri birbirinden biraz farklı ekolojik şartlara uyarlanmış pek çok değişik iki ayaklı insansımaymun gelişti. Bu insan türleri arasından birisi, 3 milyon ile 2 milyon yıl önce arasında, önemli oranda büyük bir beyin geliştirdi. Beyin boyutundaki büyüme üçüncü aşamayi oluşturur ve insan soyagacinin, Homo erectus ’tan sonuçta Homo sapiens’e dek uzanan dali olan Homo cinsinin kökenine işaret eder. Dördüncü aşama , modern insanlarin kökenidir; bizim gibi, dogada başka hiçbir şekilde görülmeyen dile, bilince, sanatsal düş gücüne ve teknolojik yenilikçilige sahip insanlarin ortaya çikişidir. Bu dört temel olay, kitabımızdaki bilimsel anlatının yapısını oluşturuyor. İleride de görüleceği gibi, insanoğlunun tarihöncesini araştırıken yalnızca neyin, ne zaman olduğundan öte, neden olduğunu da sormaya başlıyoruz. Bizler ve atalarımız, artık tıpkı fillerin ya da atların evrimi incelenirken olduğu gibi, aşamalı bir evrim senaryosu bağlamında inceleniyoruz. Bu, Homo sapiens’in pek çok açıdan özel olduğunu yadsımak anlamına gelmiyor: en yakın evrimsel akrabamız olan şempanzeden bile bizi ayıran pek çok şey var; ama artık, doğayla bağlantımızı biyolojik anlamda anlamaya başladık. Son otuz yıl içinde bilim dalımızda, daha önce eşi görülmemiş fosil keşiflerinin ve bu fosilleri yorumlayıp sundukları ipuçlarını bütünleştirmekte kullandığımız yenilikçi yöntemlerin sayesinde, çok önemli ilerlemeler kaydedildi. tüm bilimlerde olduğu gibi antropolojide de uygulayıcı bilimler arasında dürüst ve kimi zaman da şiddetli fikir farklılıkları görülür. Bu fikir farklılıkları kimi zaman fosil ve taş aletler gibi verilerin kimi zaman da yorumlama yöntemlerinin yetersizliğinden kaynaklanır. Kısacası, insanın tarihöncesi hakkında pek zok soruya kesin yanıtlar verilemez. Örneğin: İnsan soyağacının tam şekli nedir? Gelişmiş konuşma dili ilk olarak ne zaman ortaya çıktı? İnsanın tarihöncesinde beynin çarpıcı oranda büyümsenie yol açan neydi? İlerideki bölümlerde bu fikir farklılıklarının hangi konularda ve neden oluştuğuna değinecek ve zaman zaman kendi tercihlerimi belirteceğim. Yirmi yılı aşkın antropoloji çalışmalarım sırasında pek çok eşsiz meslektaşımla birlikte çalışma şansına eriştim ve hepsine şükran duyuyorum. (Richard Leakey, İnsanın Kökeni Varlık/Bilim s: 9-14) Organik Evrimin Ana İlkeleri “Organik evrim onusunda ana ilkelerin açığa çıkarılması ve öğretilmesi toplumların düşünce sistemlerinde büyük yansımalara neden olduğu ve olacağı için, sadece doğanın temel yasalarını açıklamaya dönük olan böyle bir bilimsil alan, ne yazık ki, belirli çevrelerde tehlikeli bidr gelişim olarak değerlendirilmektedir. Çünkü evrim kavramı, zaman süreci içerisinde bir değişmeyi açıklar; sonsuzluk ve değişmemezlik evrimin ilkelerine aykırıdır. Dolaysıyla evrim kavramı. dogmatik düşünceye, yani herşeyin olduğu gibi benimsenmesine izin vermeyen bir bilim dalıdır. Bu ise, belirli koşullara ve düşüncelere, olduğu gibi, yüz yıllardır, düşünmeden uymuş toplumları; keza bunun yanısıra toplumların bu uyumundan çıkarları için yeterince yararlanan çevreleri rahatsız etmektedir. Evrim kavramının kendisi de sabit değildir, zaman süreci içerisinde yeni bilimsel çalışmaların ışığı altında değişmek zorundadır.Çünkü kendini zaman süreci içerisinde değiştiremeyen, yeni bilgilerin ve gelişimlerin etkisi altında yenileyemeyen her şey ve her kavram yok olmak zorundadır. Bu yasa, tüm canlılar ve kavramlar için geçerli görünmektedir. Evrim kavramı özünde üç alt kavramı içine alır: 1. Anorganik evrim: Cansızların değişimini inceler; özellikle evrenin oluşumundan, canlıların temel maddelerini oluşturan cansız maddelerin oluşumuna kadar ortaya çıkan olayları kapsar. 2. Organik evrim: Canlıların değişimini inceler. 3. Sosyal evrim: Toplumların değişimini inceler. Biyioloji bilimi, özellikle organik evrimi tapsar. Organik evrim buguünb de devam etmektedir.; hatta bugün tarihin birçok devrelerinden daha hızlı olmaktadır. Son binkaç yüzbbin senede yüzlerce yeni bitki ve hayvan türü meydana gelirken, yüzlercesi de yeni tür oluşumları için ayrılmaya başlamıştır.Fakat bu ayrılma ve türleşme o kadar yavaş yürümektedir ki, gözlemek yalnız tarihpsel belgelerin bir araya getirilmeleriyle ve karşılaştırılmalarıyla mümkün olacaktır. Biyilojik evrimin oluştuguna ilişkin kanitlayici tipik örnek,15. yüzyilin başlarinda Madeira yakininda, Porta Santo denen küçük bir adaya birakilan tavşanlarda gözlenmiştir. Tavşanlar, Avrupa’danh getiriymişti. Adada dger bir tavşan türü ve getirilen tavşanlarin düşmanlari olmadigi için getirilen tavşanlar anormal derecede çogaldilar ve sonuçta 400 yil sonra,Avrupa’daki anaçlarindan tamamen farkli yapilar kazandilar. Öyle ki, büyüklükleri, Avrupadakilerin yarisi kadar oldu; renklenmeleri tamamen degişti ve daha gececi hayvanlar oldular.En önemlisi, atalariyla biraraya geldiklerinde, artik çiftleşip yeni bir döl meydana getiremiyorlardi. Yani yeni bir tür özelligi kazanmiştilar. Canlılar arasında benzerliklerin ve farklılıkların nasıl ortaya çıktığı, bilimsel olarak ilk defa, Charles Darwin’in gözlemleriyle gün ışığına çıktığı ve açıklandığı için, evrim kavramı ile Darwin’in ismi ve kişiliği özdeşleştirilerek “Darwinizm” denir. Evrim Konusundaki Düşüncelerin Gelişimi Canılların birbirinden belirli derecelerde farklılıklar gösterdiğine ve aralarında belirli derecelerde akrabalıklar olduğuna ilişkin gözlemler, düşünce tarihi kadar eski olmalıdır. Yavruları atalarından, kardeşlerin birbirinden belirli ölçülerde farklı olduğu çok eskiden gözlenmişti. Bitkilerin ve hayvanların benzerlik derecelerine göre, türden başlayarak belirli gruhlar oluşturduları saptanmıştı. Fakat kalıtım konusunda bilgiler yeterli olmadığı ve özellikle bir türün binlerce yıllık gelişimi düşünür bir birey tarafından izlenemediği için, çeşitlenme ve akrabalık bağları tam olarak açıklanamamıştır. Bazı bireylerin yaşam savaşında üstün niütelikler taşıdığı, dolaysıyla ‘doğal seçme’ eskiden de bilinçsiz olarak gözlenmişti. Fakat evrim konusundaki bilimsel düşüncelerin tarihi, diğer bilim dallarına göre çok yenidir.

http://www.biyologlar.com/evrimin-kanitlari-var-mi

LİKENLERİN BESİN OLARAK KULLANIMI

Özellikle de kıtlık zamanlarında boreal ve subarktik bölgelerdeki insanlar tarafından likenlerin yerel olarak kullanıldıklarına dair birçok kayıt vardır. Likenler un ile karıştırılabilir veya jelatinlerini çıkartmak için kaynatılabilir. Batı Kanada ve ABD’de bazı kabilelerin bol bir konifer likeni olan Bryoria fremontii’yi ( fruticos bir liken ) ektikleri bilinmektedir. Liken; acı maddelerin süzülmesi için önce suya bırakılır, bekletilir, buharlı kayalarda pişirilir, kurutulur ve daha sonra küçük parçalara kesilir, ihtiyaç duyulduğunda ise parçalar suya bırakılır ve yenilirdi. Bu gibi belirgin türlerin % 24.8 karbohidrat ve % 5.5 protein içeriği vardır. Bugün Japonya’da kaya fungusu olarak bilinen Umbilicaria gibi bazı yapraksı türler dağlık alanlardan toplanır ve salatalarla yenilir veya yağda kızartılarak yenilir, bunların lezzetli olduğu söylenir. İzciler için boreal ve sıcak alanlarda bulunan kaya likenleri acil durumlarda yemek için iyi bir kaynaktır. Toprakta büyüyen Cladonia, Cetraria islandica ve diğer likenler özellikle protosetrarik asit gibi acı ve tadı çok kötü olan asitler içerebilir. Bu gibi asitler zehirli değildir fakat soda içinde kaynatılarak uzaklaştırılmalıdır. Tabi ki likenler hiçbir zaman insanlar tarafından büyük ölçüde besin kaynağı olmayacaktır. Besinsel değeri diğerleri ile karşılaştırıldığında avantajlı olsa bile bunların çok yavaş büyümesi insanların bunları kültüre alması için bir dezavantajdır Likenler tundra ve subarktik bölgelerde yaşayan rengeyikleri için önemli bir besin kaynağıdırlar. Bulunan ürüne bağlı olarak bu hayvanların toplam kış besinin % 30-60’ını teşkil edebilirler. En yaygın otlatılan likenler Cladonia ve Cetraria cinsleridir. Bunlara halk dilinde ren geyiği likenleri denir. Themnolia vermicularis ve Peltigera cinsine ait likenlerde geyikler tarafından önemli ölçüde tüketilirler. Eğer kar örtüsü kalın ise rengeyiği Bryoria, Usnea gibi epifitik likenleri de yiyecektir. Kuzey ABD’de rengeyikleri kar kaplaması otlara ulaşmayı engellediği zamanlarda bu likenlerden şiddetli bir şekilde yararlanır. Kanada’da bazı hayvan yemi olan likenler rengeyiğinin tahmin edilen besin gereksinimlerine nazaran protein, kalsiyum ve fosfor açısından fakirdir ama yinede bunlar için önemli bir besin kaynağıdır. Muhtemelen likenlerin en yaygın biçimde hayvan yemi olarak kullanılması Laponyalılar tarafından gerçekleştirilir. Bunlar bu likenleri ekerler ve biçtikten sonra depo ederler. Günümüzde çok fazla otlatmanın Laponya’daki liken ürünü miktarını ciddi şekilde azalttığı belirlenmiştir. Normal olarak otlanan bir alanın rejenere olması için yaklaşık 15 yıl gerekir ama burada kontrollerin yetersiz olmasından dolayı bu alanların kendini yenilemesi için çok az zaman verilmektedir ve bu yüzden likenlerde önemli azalmalara yol açmaktadır. Libya çöllerinde otlayan koyunlar yoğun biçimde Aspicilia esculenta üzerinden beslenmektedir. Bu liken toprak ve kayalara ince ve yumuşak bir biçimde bağlanır ve koyun tarafından kolayca yenir, ama dişlerinin aşınmasından dolayı koyun henüz olgunlaşmamış dişlerini kaybeder. Aspicilia esculenta’nın aynı zamanda eski İsraillilerin masallarına konu olan kudret helvası olduğundan şüphe edilmektedir 

http://www.biyologlar.com/likenlerin-besin-olarak-kullanimi

HİSTOLOJİ PREPARATLARININ HAZIRLANMASI

Canlılardan alınan doku ya da organ parçalarını mikroskopla incelenir duruma getirebilmek için takip ettiğimiz işlemlerin tümüne birden histolojik teknik adını veriyoruz. Bu amaçla kullanılan yöntemler uygulayacağımız mikroskobi tekniğine bağlı olarak ilk bakışta bazı farklılıklar görünse de temelde prensipler aynıdır. Bu konuyla ilgili temel prensipleri anlayabilmek için klasik ışık mikroskobunda inceleyeceğimiz bir preparatın hazırlanışını görelim. Tespit (Fiksasyon) Bir histolojik incelemenin sağlıklı bir şekilde yapılabilmesi için dokuya ait yapı özelliklerinin, kimyasal içeriklerinin iyi korunmuş olması gerekir. Bunun için canlılara ait preparatların hazırlanışında ilk temel prensip hücre ve dokuları canlıdakine en yakın şekilde tutabilmektir. Bunun için ilk hedef otolizi engellemek olmadır. Canlı hücre içinde, etrafı membranla çevrili, eritici enzimler içeren, lizozom adını verdiğimiz organeller vardır. Hücre bu yapıları sindirim amacıyla kullanır. Ölümden sonra eritici enzimler sitoplazma içine geçerek hücreyi eritmeye başlar. Bu olaya kendini eritme anlamına gelen otoliz adı verilir. Otolize uğramış hücreler normal görünümünü kaybederek incelenmesi imkansız hale gelir. Otolizi engellemek amacıyla kullanılan bazı maddeler lizozomların içindeki enzimlerin sitoplazmaya geçişini ve erimeyi önlerler. Bu olaya tespit ya da fiksasyon, bu amaçla kullanılan maddelere de fiksatör adı verilir. Pek çok tespit maddesi ve tespit yöntemi vardır. Uygulayacağımız tespitin sonraki işlemlere, özellikle boyama işlemine bir zarar vermiyor olmasına dikkat etmek gerekir. Örneğin, klasik yöntemlerle tespit ve takip edilen dokularda yağ hücreleri içindeki depo yağını korumak imkansızdır. Hücrelerdeki yağ içeriği takip işlemleri esnasında akar, hücrelerin içleri sonradan boş görünür. Eğer bir çalışmada bu hücreleri yağ içerikleri ile beraber görmek istiyorsak fiziksel bir tespit yöntemi olan dondurma tekniğine başvurabiliriz. Fiziksel olarak tespit yöntemlerine örnek olarak periferik kan yayma preparatlarının boyanmadan önce ısıtılarak ya da doğrudan kurutularak tesbitini verebiliriz. Otoliz nedir? Fiksasyon hangi amaçla yapılır? Kimyasal tespit yöntemleri hem kullanılma sıklığı hem de kullanılan fiksatörlerin çeşitliliği açısından daha çok zenginlik gösterir. En bilinen ve yaygın kullanılan fiksatör formoldür. Formol genellikle %10'luk sulu çözeltisi şeklinde kullanılır. Ticari formol %100'lükmüş gibi kabul edilerek 1 kısım formol, 9 kısım suyla karıştırılarak tesbit sölüsyonu hazırlanır. Ayrıca, glutaraldehit, osmium tetraoksit, bazı asitler, alkoller ya da bunların kombine formları daha az sıklıkla kullanılan kimyasal fiksatörlere örnek olarak verilebilir. Bütün fiksatiflerin istenen özelliklerinin yanı sıra istenmeyen bazı etkileri de vardır. Değişik kombinasyonlar kullanılarak istenen tespit özelliklerinin artmasını, istenmeyen bazı etkilerin en aza indirgenmesini sağlamak mümkündür. Birleşik olarak kullanılan fiksatörler çoğu kere ilk bulup kullanan araştırıcının adıyla anılırlar (Bouin, Carnoy, Zenker gibi). Elektron mikroskopta incelenecek preparatların hazırlanmasında ultrastruktürel yapının detaylı incelenebilmesi için çift fiksasyon işlemine gereksinim vardır. Bu işlemde önce tamponlanmış glutaraldehit ilk fiksatör olarak, daha sonra tamponlanmış osmium tetroksit ikinci fiksatör olarak kullanılır. Birleşik tespitten ne anlıyorsunuz? Doku ve organlardan alınan parçaların tespitinde aşağıdaki konulara dikkat etmek gerekir: - Tespit ve takipte kullanılan sölüsyonların dokunun içine iyi işlemesi için parçaların yeterince küçültülmüş olmasına özen gösteriniz. Parçanın boyutlarının 0.5 cm. yi geçmiyor olması daha olumlu sonuç verecektir. - Parçalar alındıktan hemen sonra bekletilmeden tespit sıvısına konulmalıdır. - Parçalar büyük ve kanlı ise tespit sıvısı yenilenmelidir. - Tespit sıvısının, hacim olarak konulan parça ya da parçaların minimum kırk katı fazlalığında olmasına çalışılmalıdır. - Uygulayacağımız her tespit yöntemi için önerilen süreye uyulmalıdır. -Tespitten sonra parçalar iyi yıkanmalı, yapay görüntülere neden olmaması için tespit maddesi dokudan tamamen uzaklaştırılmalıdır. - Ayrıca SAĞLIĞIMIZ AÇISINDAN: Histoloji laboratuvarlarında kullanılan pek çok madde gibi tespit maddelerinin buharlarının canlı hücre ve organizma için son derece zararlı olduğunu aklımızdan çıkarmayıp, bu işlemlerin çeker ocak denilen yerlerde yapılmasına dikkat etmeliyiz. Eğer bu mümkün olmuyorsa laboratuvar ortamının çok iyi havalandırılıyor olmasına özen göstermeliyiz. Tespitte uyulması gereken kurallar nelerdir? Tespit işlemleri ne tür yerlerde yapılmalıdır, neden? Dehidratasyon Tespit edilmiş parçalar bu aşamadan sonra suyundan arındırılır. Bu işleme dehidratasyon adı verilir. Dehidratasyon işlemi için suyu kolaylıkla kendi bünyesine kabul eden etil alkol, izopropil alkol, dioksan, anilin gibi maddeler kullanılır. Bunlardan en yaygın kullanılanı etil alkoldür. Derecesi absolu alkole kadar ulaşan banyolardan geçirilen parçalar daha sonra ışığı geçirgen hale getirilir. Bu işleme şeffaflaştırma (clearing) işlemi denir. Bu amaçla en sık kullanılan madde ksiloldur. Ayrıca benzen, toluen, kloroform gibi maddeler bu amaçla kullanılan maddelere örnektir. Bu işlemler petri kutuları gibi buharlaşmayı engellemek için düzgün kapaklı cam kaplarda elle takip şeklinde yapılabildiği gibi otomatik takip makineleri ile de yapılabilir. Otomatik takip makineleri zaman ayarlaması yapılabilen, doku parçalarının istenilen kaplarda istediğmiz kadar kalmasını sağlayan makinelerdir. Dehidratasyon nedir? Hangi maddeler bu amaçla kullanılır Elektron mikroskop için hazırlanan preparatlar da doku parçaları dehitratasyon işleminden geçirilir. Bu işlem için de yine ethanol kullanılır. Gömme işleminden önce plastik eritici olan propilen oksit gibi maddelerde infiltre edilir. Bloklama (Gömme) Parçalardan rahatça kesitler alabilmek, düzgün kesit yüzeyleri sağlayabilmek için gömme ya da bloklama olarak ifade ettiğimiz işleme başvururuz. Parafin, jelatin, selloidin, karbovaks gibi maddeler bu işleme uygundur. En yaygın kullanılan madde parafindir. 56-60 derecede sıvılaşan parafin etüvde hazır tutulur. Parça prizmatik kalıplar içine konur, üzerine sıvı parafin dökülür. Parafin laboratuvar ısısında mum gibi donarak sertleşir. Kalıptan çıkarınca içinde bizim doku parçamız da bulunan düzgün prizmatik bir parafin bloku elde ederiz. Parafin intersüller boşluklara hatta hücrelerin içine bile penetre olarak dokuyu daha sabit ve kesilebilir hale getirir. Elektron mikroskop için ışık mikroskobuna oranla çok daha ince kesitlere ihtiyaç vardır. Bu nedenle gömme ya da bloklama işleminde daha sert plastik maddeler gereklidir. Bunun için epon, araldit gibi epoxy plastik maddeler kullanılır.  Bloklama işleminde ne tür maddeler kullanılır?  Kesit Alma Blokladığımız doku ve organ parçalarında düzgün ince kesitler almak için kullandığımız aletlere mikrotom denir. Işık mikroskop incelemeleri için kullandığımız mikrotomlar mikron düzeylerinde ince kesitler alabilirlerken elektron mikroskop araştırmalarında kullanılan ultramikrotomlar angström inceliklerinde kesitler sağlarlar. Işık mikroskobu için kesitler almakta kullandığımız mikrotomlarda çelik bıçaklar kullanılırken, EM için kesitler aldığımız ultra mikrotomlarda cam ya da daha iyisi elmas bıçaklar kullanılır. Işık mikroskop çalışmalarında  genellikle 6-10 mikronluk kesitler kullanılır. Mikrotomların bıçakların hareketli olduğu kızaklı mikrotom denilen tipleri ya da bıçaklarının sabit, kesilecek blokların hareketli olduğu rotari mikrotom tipleri vardır. Mikrotom aracılığıyla parafin bloklardan isteğimiz kalınlıklarda dilimler keserken blok içindeki parçadan da aynı kalınlıkta kesitler elde etmiş oluruz. Daha sonra lam üzerinde alınan kesitler boyama işlemine hazır olurlar. Xylol gibi bazı solventler doku içindeki lipidler gibi bazı maddeleri eritebilirler. Bu istenmeyen etkinin önüne geçmek için cryostat adı verilen dondurma mikrotomları kullanılır. Dokular bu yöntemle düşük ısıda aniden dondurularak takip işlemlerinden geçirilmeden ve bloklanmadan kesit alınabilir hale gelir. Mikrotom ve Ultramikrotom neye denir? Boyama (Kolorasyon) Çok ufak ayrıcalıklar dışında dokuların büyük bir kısmı renksizdir ve boyanmadığı sürece ışık mikroskobunda incelenmesi zordur. Çeşitli doku ve hücre kısımlarının yapıları nedeniyle farklı kimyasal özellikteki boyaları farklı bir şekilde tutmaları histolojide boyamanın esasını teşkil eder. Histolojik araştırmalarda kullanılan boyaların büyük bir çoğunluğu asit veya baz özelliğinde olup dokudaki ionize köklerle elektrostatik bağlantı yaparlar. Bu şekilde doku ve hücrelerin daha belirgin bir şekilde ortaya çıkması sağlanırken diğer yandan kimyasal yapısını bildiğimiz boyalarla reaksiyona giren yapıların kimyasal özellikleri ortaya konmuş olur. Histolojik boyalar renklendirici gruplarının asit ya da baz oluşuna göre asit ve bazik boyalar olmak üzere iki ana grupta toplanırlar. Bazik boyaları çeken, o boyanın renginde boyanan hücre ve doku kısımları bazofil boyanıyor ya da bazofili gösteriyor diye tanımlanır. Genel olarak granüllü endoplazmik retikulumun yoğun olduğu kısımlar, hücre çekirdeği bazofili gösteren yapılardır. Asit boyalarla reaksiyona girerek onun renginde boyanan hücre ya da doku kısımları için asidofil boyanıyor ya da asidofili gösteriyor denir. Bazı ayrıcalıkları olmakla birlikte hücre sitoplazması, kollajen lifler, mitokondrium ve lizozomlar asidofilik yapılardır. Bazik boyalara örnek olarak Metilen Mavisi, Jansiyan Viyole, Bazik Füksin, Azokarmin, Safranin, Hematoksilin, Nükleer Fast Red verilebilir. Eozin, Pikrik Asit, Asit Füksin, Oranj G, Eritrosin, Kongo Kırmızısı, Light Green gibi boyalar asit boyalara örnektir. Boyalar bazı yöntemlerde tek olarak kullanılır. Bazı yöntemlerde ikili ya da daha çok boya içeren birleşik yöntemler dediğimiz şekillerde kullanılırlar. Birleşik yöntemlerde kesitler birbiri ardından bazik ve asit boyalarla işleme tabi tutulurlar. Birleşik boya yöntemlerinden ikili olanlara örnek olarak çok yaygın bir boyama yöntemi olan Hematoksilin+Eozin (HE) yöntemi gösterilebilir. Azokarmin, Oranj G ve Anilin Mavisinden oluşan Heidenhein İn Azan yöntemi ise üçlü bir boyama yöntemidir. Asidofili ve bazofili neye denir? Birleşik boyama neye denir? Bazı boyalar, bazı yapıları boyanan çözelti renginden farklı bir renge boyarlar. Bu olaya metakromazi, böyle boyalara da metakromatik boyalar denir. Örneğin toluidin mavisi dokuya düşük konsantrasyonda bağlandığında mavi renkte boyar (ortokromatik). Oysa bir yapıya yüksek konsantrasyonda bağlandığında mor-kırmızı renkte boyar (metakromatik). Toluidin mavisinin Mast hücrelerinin granüllerini mor-kırmızı boyaması metakromatik boyanmadır. Bazı lipidler, makromoleküller metafosfat, sülfomukopolisakkaritler, nükleik asitler metakromazi gösteren yapılardır. Toluidin mavisi, Metilen mavisi, Azur A gibi boyalar ise metakromatik boyalara örnek verilebilir. Ortokromazi ve metakromazi nedir? Bazı boyalar deneysel amaçla doğrudan canlıya verilebilir. Bu renkli maddeler organizmada bazı yerlerde tutularak canlıda boyanma sağlarlar. Örneğin, tripan mavisi deney hayvanının dolaşımına verildiğnide karaciğer kupffer hücreleri tarafından tutulur. Böylece hayvan daha canlıyken sitoplazması mavi tanecikler tarzında boyunmış olur. Vital boyalardan Tripan mavisi, Kongo kırmızısı, Çini mürekkebi, Alizarin ve Lityum karmin asit karakterde vital boyalardır. Metilen Mavisi, Nötral Red, Janus Green, Krezil Viyole ve Nigrosin bazik karakterde vital boyalardır. Vital boyamanın diğer boyama yöntemlerinden farkı nedir? Boyama işleminden sonra kesitler yeni baştan dehidrate edilir ve şeffaflaştırılır. Daha sonra üzerlerine lamel kapatılarak korunur. Preparatların kapatılmasında Kanada Balsamı ya da son zamanlarda ucuzluğu ve çabuk kuruması yönünden tercih edilen bazı sentetik yapıştırıcılar kullanılmaktadır. Uzun süre saklanılması düşünülen preparatları doğrudan güneş ışığı ya da kuvvetli ışıklardan sakınmak gerekir. Aksi takdirde boya solacaktır. Dokuların renkli boyalarla boyanmasının yanı sıra altın, gümüş gibi bazı metallerin seçici olarak bazı kısımlara çöktürülmesi de o bölgelerin mikroskop altında kolayca belirlenmesini sağlayan boyadışı bir renklendirme yöntemi olarak karşımıza çıkar.

http://www.biyologlar.com/histoloji-preparatlarinin-hazirlanmasi

Biyolojik Savaşmı Sinir Savaşımı ?

Biyolojik savaş eskiden sadece Andromeda Strain (1971), Outbreak (1995), Twelve Monkeys (1996), Mission Impossible (2000) gibi filmlere ve The Coming Plague (1995), The Hot Zone (1995), The Cobra Event (1998), Rainbow Six (1999) gibi kitaplara konu olurken, Körfez Savaşı sırasında Amerika'nın Iraklı bilim adamları tarafından üretilen Anthrax temelli biolojik silahlara karşı askerlerine aşı yapma konusundaki titizliğiyle daha da önemli ve gerçek bir savaş haline geldi. Başkalarına zarar vermeye yönelik bulaşıcı bakteriyel veya viral (virüslerle ilgili) maddeler olarak bilinen biyolojik silahların çok uzun bir tarihi var. İlk çağ insanları insan ve bitkilerden elde edilen biyolojik toksinlere bulaştırılmış oklar kullanır ve düşmanlarını dışkılardan elde ettikleri zararlı toksik maddeleri su kaynaklarına bulaştırarak öldürürlerdi. Bir Rus şehri olan Kaffa'yı kuşatan ortaçağ savaşçıları veba hastalığı bulaştırılmış cesetleri mancınıklarla şehrin duvarlarından fırlatmışlardı.Avrupalılar bu hastalıklara direnci olmayan Yerli Amerikalılara çiçek hastalığı veya kızamık bulaştırılmış battaniyeler vermişlerdir.Biyolojik silahlar ilk olarak 2. Dünya savaşında kullanılmıştır. Zaman geçtikçe biyolojik silahlar biyolojik olarak çıkarılmış toksinler ve zehirler içermeye başladı.Bu zehirli maddelerden en tehlikelileri arasında çiçek hastalığı, Botalinyum toksini, Anthrax ve ricin gelir. Bazıları ölümcül iken diğerleri yerleşim yerlerini etkisiz hale getirir veya öncelikle hayvan ve bitkilere zarar verir. Bugün çoğu ülkenin bu konuya aşırı yatırım yaptığı biliniyor. Biyolojik silahlar modern bir konu oluyor Japonya 1918'de biyolojik silahlar üretimi ve araştırmalarına kendini adamış özel bir askeri ünite olan Ünite 731 ile ilk saldırgan biyolojik silah programını başlatmıştır. 1931'de bu ünite Çinli insanlar üzerinde deneyler yapılanbir yer olan Çin'deki Mançurya'ya taşındı ve aslında 1942'ye kadar bu ünite değişik şehirlere saldırılarda bulundu. En az 10,000 Çinli bu deneyler sırasında ölmüştür. 1942'de Amerika bu programı öğrendi ve böylece o da kendi programını başlattı. 1969'da Amerika artık anthrax, botulism, tularemia, brucellosis, Venezuela ve Q humması gibi hastalıklara sebeb olan maddelerle silahlanmasını tamamlamıştır. 1969'da başkan Nixon Amerika'nın tek yanlı ölümcül veya etkisiz hale getirici kimyasal maddeler ve silahların kullanımından vazgeçtiğini duyurdu ve şartsız olarak tüm biyolojik savaş metodlarını kullanmaktan vazgeçti. Bununla beraber Amerika biyolojik programı sadece katı bir şekilde tanımlanmış bağışıklık gibi savunma önlemleriyle ilgili araştırma yapacaktı. Stoklanmış bütün materyalin yok edilmesi istendi. ABD ve diğer 165 ülke biyolojik ve toksik silah antlaşmasını imzaladı ve 144 ülke bu antlaşmayı onayladı. Ama biyolojik sailahlar antlaşması uygulamaya geçmediği müddetçe etkili olamazdı. Örneğin, Rusya antlaşmayı imzaladı ama programlarına devam etti. 1979'da Sverdlovsk yakınlarındaki bir merkezde kazara Anthrax sızması en az 66 kişinin ölümüyle sonuçlandı. Sovyet otoriteleri biyolojik silah üretimini inkar etseler de yıllar sonra Yeltsin o zamanlar Anthrax'ın üzerinde çalışmalar yapıldığını söyledi. Yeltsin sonra tüm programların durdurulduğunu ve stokların yok edildiğini dile getirdi. Ama kanıtlar saldırı programlarının bir kısmının hala devam ettiğini gösteriyor. Sovyetler'in 1991'de çöküşüyle biyolojik silah üretimi konusunda bilgiler yayılmaya başladı. Margolis'e göre eskiden biyolojik savaş kurumlarında çalışan 60 bin bilim adamı ve teknisyenin şu anda Irak, Suriye, İsrail, İran ve Sırbistan gibi geniş biyolojik savaş silahlarıyla dolu cephaneliklere sahip ülkelerde çalışıyorlar. Hindistan bile Rusya'dan bu konuda yeterli yardım alabilir. Irak biyolojik silah programını 1995'da bildirdi. İyi olan şu ki, bu gibi silahlar misilleme olur korkusuyla Körfez savaşı sırasında kullanılmadı. Birleşmiş Milletler 1996'da Irak'ın biyolojik silah programında ne bulduysa yok etti. Çin, İran, Tayvan, Suriye, Küba, Kuzey Kore, Mısır, İsrail ve Libya'nın aynı tür programlara sahip olduğundan şüphe ediliyor. Biyolojik Silahlar Niçin Kullanılıyor İdeolojileri ve ilgileri insan hayatı ve gelecek nesiller dahil olmak üzere herşeyin üzerinde tutan milletler ve gruplar için bu tür silahlar çok çekici görünüyor. İşte bazı nedenler: 1. Biyolojik silah sayı bazında ele alındığında konvansiyonel silahlardan daha etkili. Sadece 8 gr "A" tipi olarak bilinen botalinyum toksin -bilinen en ölümcül madde- dünya üzerinde hiç canlı bırakmayacak kadar bir etkiye sahip olabilir.1 gr Anthrax 100 milyon ölümcül doz içerir ve birkaç kilosu Hiroşima'da ölen insan sayısı kadar ölümlere sebep olabilir. Genel düşündüğümüzde, birkaç kilo biyolojik etmen bir kaç ton nükleer gazın yapabileceği etkiyi yapabilir. Biyolojik silahlar çok etkilidirler çünkü aşırı toksik olmakla beraber hızlı çoğalan ve hedef noktalara ulaşan yaşayan organizmalardan oluşur. 2. Kimyasal ve nükleer silah üretmek çok sofistike ekipmanlar ve çok iyi yetişmiş eleman gerektirirken, bi-yolojik silah çok mütevazi bir eğitim ve yatırım gerektiriyor. ABD silah kontrol ve silahsızlanma acentası eski asistanlarından Kathleen C.Bailey, 10000 dolarlık ekipman ve 15x15 alanın muazzam biyolojik silah cephaneliği üretmek için yeterli olduğunu dile getiriyor. Örneğin; 1 km'lik alan bulaştırmak için 2000 $'lık konvansiyonel silah, 800$'lık nükleer silah, 600$ kimyasal silah gerektirirken, sadece 1 $'lık biyolojik silah bu alanı yerle bir etmeye yeter. Program, Phd'sini tamamlamış bir süpervisor kontrolünde bir düzineden az bilim dallarından mezun teknisyenle devam ettirilebilir. En biyolojik silah mikropları ile ilgili temel bilgi her yerde mevcut olup, ekipman ve kimyasallar bir çok yerden temin edilebilir. Seri ve yoğun üretim için canlı silahın sadece küçük bir örneğe ihtiyacı var. Bazı maddeler doğal olarak toprakta mevcut veya bir biotek şirketinde kolayca bulunabilir. Bir çok araştırmacı Saddam Hüseyin'in kendi orijinal Anthrax kültürünü edinmek için bu ikinci metodu kullandığı konusunda hemfikirler. 3. Birçok biyolojik silah taşınabilen ve/veya saklı şartlarda üretilebildiği için onları üretim aşamasında ortaya çıkarmak çok zor. Ortaya çıkarıldığında alan hızlıca te-mizlenebilir ve farmakolojik araştırmalar yapılan ve biyoloji laboratuvarına dönüştürülebilir. Ayrıca X-ışın makineleri, metal detektörler, eğitimli köpekler ve nötron bombardımanı gibi antiterörist sistemler biyolojik silahları ortaya çıkaramaz. 4. Zarar sadece insanlara ve diğer canlılara verilir. Böylece kızılötesi yapılar zarar görmez. Böyle bir tehditten çıkacak tek korku hükümetin paniğe kapılması ve silahın bırakılması ve ortaya çıkarılması. Arasında geçen uzun zamanın tanımlama ve teşhisi çok zor hale getirilmesi olarak göz önüne çıkıyor. Biyolojik silahların belli dezavantajları vardır: 1) Etkili bırakılmaya olan ihtiyaç. Birçok biyolojik silah nefes verip alırken etkisini gösterir. Çok büyük partiküller solunum sisteminde tutulurken küçük partiküller dışarıya nefesle atılır. Partiküllerin ciğerlerde kalması için, 1-5 Angstroms arasında olmalı. Japonya'daki bir biyolojik silah teşebbüsü hüsranla sonuçlandı, çünkü dissemination aracı (önceden haber veren cihaz) etkisizdi. 2) Dissemination olsa bile istenen sonuç kesin olmaktan çok uzak. Sporlar dahil çoğu biyolojik silah materyali ultraviyole ışınlar ve kurutma yöntemleriyle yok edilebiliyor. Havaya bırakılan maddeler hava değişiklikleri nedeniyle beklenmeyen bir şekilde yayılma gösterebilir.Yağmur bu maddeleri hedeflerine ulaşmadan yok edebilir. Ayrıca biolojik silahlar dönebilir ve onu bırakanları da etkileyebilir. Saldırının zayıflığı Biyolojik silahların iki kullanım sahası var: savaş alanı ve sivil hedefler. Savaş Alanı: Biyolojik silahları burda dış şartlara aşırı bağlılık, geçikmiş etkileri kendine bulaştırma, etkileri bulaştırılmış bir alanın ne zaman dönülecek kadar güvenli olacağı konusundaki güvensizlik ve aşılama veya koruyucu giysi konusunda nötralleştirme gibi dezavantajları var. Sivil Hedeflere yönelik kullanım: Bu alandaki Biyolojik silah kullanımı gerçek dehşeti doğuracak güce ulaşır. Çünkü, siviller böyle bir saldırıya hazır olmayacaklardır ve sonuçtaki salgın kontrol edilemeyecek kadar büyük olacaktır. Saldırı gizli ise otoriteler kaynağı tesbit edemeyeceklerdir ve etkilenen insanlar hastaneleri doldurana kadar saldırının farkına varamayacaklardır. Sonuçta madde tanımlansa bile, bulaşıcı geniş sahaya yayılmış olacaktır. Aşı mevcut değilse, sağlık personelleri çok fazla yardım edemeyeceklerdir. ABD bu tip saldırılara karşı etkileneceğe benziyor ve kendini korumak için çok titiz çalışmalar yapıyor. Peki, madem Biyolojik silahların temin edilmesi çok kolay niçin şimdiye kadar sivil hedefler üzerinde kullanılmadı? Bunun nedenleri arasında karşı saldırı korkusu ve toplumda uyanabilecek düşmanlık hisleri görünüyor. Biyolojik silahların potansiyel kullanıcıları dezavantajların avantajlardan daha ağır bastığını düşünürler ama bu düşüncenin her zaman devam etmeme ihtimaline karşılık ABD ve diğer ülkeler milli sağlık bakım ünitelerini ve personellerini böyle bir duruma karşı nasıl hazırlayacağı konusunda çalışmalar yürütüyorlar . Son Gelişme: 26 Temmuz 2001 Washington Post gazetesi ABD'nin biyolojik silahlardan vazgeçecegini, çünkü yeni oluşturulacak protokolün "kopyalamayı durdurmayacağı ve ABD'nin farmakolojik ve kimyasal endüstrisi noktasında casusluk yapıp bilgi sızdıracağı"nı düşünüyor. Sonuç: Tüm dinler yaşamın doğuştan kutsal ve saygı duyulmaya değer olduğu için bu tür silahları lanetlemişlerdir. Bununla beraber reel-politik, kâr için duyulan açgözlülük, ideolojik çatışmalar ile doğal ve diğer kaynaklar üzerinde kontrol etme gibi sebeplerden dolayı birçok hükümetin ve insanın dini çağrılara kulak tıkadığını görmekteyiz. Maalesef, bir devletin ve dahası bir grubun bu yolda ilerleme için verdiği kararlar, diğerlerinin kendi korunma içgüdülerinden dolayı aynı yolu takip etmemelerine sebep olmuştur. Bu yolda çok büyük ilerleme kaydettik ve kimse ne zaman biteceğini kestirememektedir. *Kaynak: The Fountain, Biological Warfare, October-December 2001, ISSUE 36. Yazar: By Joseph CLAY* - İng. Çev. Mustafa TOPRAK

http://www.biyologlar.com/biyolojik-savasmi-sinir-savasimi-

Keneler Hakkında Bilgi

Keneler Keneler zorunlu kan emici artropodlar olup, Dünya’nın her bölgesinde gözlenmektedirler. Ülkemizde halk arasında kene, sakırga, yavsı, kerni gibi isimlerle bilinmektedirler. Kenelerin sistematikteki yeri ve önemli türlerin isimleri aşağıda verilmiştir. Anaç: ARTHROPODA Anaç bölümü : CHELICERATA Sınıf altı: Acarina (Acari) Dizi: Metastigmata Aile: İxodidae Soy: İxodes Tür: İxodes ricinus Soy:Hyalomma Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Soy: Amblyomma (Türkiye’de yok) Tür: Amblyomma variegatum Soy: Haemaphysalis Tür: Haemaphysalis parva Tür: Haemaphysalis sulcata Tür: Haemaphysalis punctata Tür: Haemaphysalis inermis Soy: Dermacentor Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Tür: Rhipicephalus appendiculatus (Türkiye’de yok) Aile:Argasidae Soy: Ornithodorus Tür: Ornithodorus lahorensis Soy: Argas Tür: Argas reflexus Tür: Argas persicus Soy: Otobius Tür: Otobius megnini Günümüzde Argasidae ve Ixodidae ailelerine bağlı 850 türü bilinmektedir. Amblyomma soyu dışındaki soylara bağlı birçok kene türü, Türkiye’de yaygın olarak bulunmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Genel Morfolojik ve Biyolojik Özellikler Keneler morfolojik olarak diğer artropodlardan farklı olup, vücütları tek bir parçadan oluşmuştur. Vücudun ön tarafında ağız organelleri yer almktadır. 1.Aile: İxodidae (şekil 1) İxodidae ailesindeki türlere sert kene, mera kenesi veya yaz kenesi denir. Bu ailede bulunan türlerde caput, thorax ve abdomen tamamen birbirleriyle birleşmiştir. Olgunlarında ve nimflerinde 4 çift ayak , larvalarında ise 3 çift ayak vardır. Nimflerinde genital organlar henüz oluşmamıştır. Dorsalden bakılınca ağız organelleri görülebilir. Ağız organellerinin oturduğu kısıma basis caputili denir. Ağız organellerinin arkasında dişilerde vücudun önünde ve üst kısmında okul önlüğü yakası şeklinde kitini bir organ teşekkül ederki buna scutun denir. Erkeklerde bu oluşum dorsalde tüm vücudu kaplar, buna conscutum denir. Bu bakımdan erkekler kan emdiği zaman vücutlarında değişiklik olmaz. Buna karşılık dişiler kan emip doyunca normal büyüklüğünün 10 katı kadar genişleyebilir. Ağız organelleri 1 çift chelicer, chelicer kılıfı ve hipostom denilen delmeye ve kan emmeye yarayan organelden oluşur. Bu organellere rostellum denir. Rostellumun iki yanında bir çift palp bulunur. Ayrıca kenelerin dorsal kısmında, tür tayininde önemi olan, çukurluklar, feston, cervical oluklar ve noktalamalar bulunur. Ventralde ise anüs ile ikinci çift coxalar hizasında genital delik bulunur. Bu yüzde dişilerde anal oluk, erkeklerde ise kitini plaklar yer alır. Yine ventralde 4’üncü coxanın arkasında bir çift stigma bulunur. Ayaklarının sonunda bir çift tırnak ve tırnakların ventral yüzeyinde ise tutunmaya yarayan zar şeklinde pulvillum adı verilen organel vardır. (Argasidae’lerde bu organel yoktur). Önde birinci çift ayakta tarsuslar üzerinde Haller organeli denen bir çukurluk yer almıştır. Bu yapı duyu organelidir. Dişi kenelerde ovaryum ile barsak irtibat halindedir. Bu yüzden bazı keneler kan emerken parazitleri sindirim sisteminden ovaryumlarına geçirirler. Bu parazitler ovaryumdan yumurtaya geçerek, yumurtadan çıkan larvaları enfekte ederler. Bu larvalar kan emerken parazitleri de hayvanlara taşırlar (transovaryal nakil). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Biyoloji Keneler kan emerek beslenir, ancak bu diğer kan emen artropodlardan farklıdır. Keneler konakların tutunup ağız organellerini deri içine sokarlar ve burada sabitlenip doyana kadar aynı yerden kan emerler. Argasidaeler çok kısa sürelerde çok miktarda kan emip doydukları halde, Ixodidae ailesindeki kenelerin doyması için birkaç gün ile birkaç hafta arasında süre gerekmekte, hata bu süre içinde bazı Ixodidae türleri gömlek değiştirip diğer gelişme dönemlerine geçmektedirler. İxodidae türleri, genellikle ilkbahar ve sonbahar mevsimleri arasında aktiftirler. Bunlar evcil hayvanların kulak kepçesi içinde ve dışında, boyun altında, karın, anal ve perianal bölgeler ile sırt ve kuyruk üzerinde bulunurlar. Dişi keneler, erkeklerden daha fazla kan emerler. Hayatları boyunca geçirdikleri her dönemde (larva-nimf-olgun ) mutlaka kan emmek zorundadırlar. Erkek ve dişiler kan emme esnasında çiftleşirler. Ovipardırlar. Dişi keneler yumurtalarını taş, toprak ve merada yaprakların altına, toplu ve birbirine yapışık şekilde bırakırlar.Yumurtlama süresi ve miktarı, dişi kenenin az veya çok kan emmesine ve diğer dış faktörlere bağlı olarak değişir. Ayrıca türlere göre de yumurta sayısı değişiklik gösterir. Ortalama 3.000-15.000 arasında yumurta yumurtlarlar. Dişiler yumurtladıktan sonra ölürler. (Argasidae türleri ölmez). Yumurtadan çıkan larvalar 3 çift bacaklıdır. Birinci çift ayak tarsuslarında bulunan Haller organı konak bulmaya yarar. Türlere göre farklı sürelerde konaklardan kan emerler ve kan emdikten sonra yine değişen sürede gömlek değiştirirerek. 4 çift ayaklı nimf olurlar. Nimflerde larvalar gibi henüz genital organlar gelişmemiştir. Aç olan nimfler kan emer doyar ve gömlek değiştirdikten sonra aç olgun hale gelir. Erkek ve dişi olgun keneler kan emerken çiftleşir ve doyduktan sonra dişi toprağa düşer ve yumurtlar. Bu siklus böyle devam eder. Biyolojik gelişmeye göre konak değiştirmeleri esas alınarak İxodidae ailesine bağlı türler 3 grupta toplanır. a-Bir konaklı kene: Merada yumurtadan çıkan larvalar konak hayvana hücum eder, ondan kan emip doyduktan sonra konak üzerinde gömlek değiştirip nimf olur. Aç nimf kan emip doydukyan sonra konak üzerinde gömlek değiştirir. Ortaya çıkan aç olgun kenenin erkek ve dişisi kan emdikten sonra çiftleşir, dişiler konak hayvanı terkedip toprağa düşer yumurtlar ve ölür. Yani larva-nimf ve olgun safhalar bir hayvanda geçer. Örneğin, Boophilus annulatus. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com b-İki konaklı kene: İki konaklı kenelerde, larva ve nimf dönemini bir konakda geçirir, nimfler kan emip doyduktan sonra konak hayvanı terkederler. Meskende veya merada gömlek değiştirip aç olgun hale gelirler. Aç olgun keneler ikinci bir hayvana hücum ederek ondan kan emer, çiftleşir ve doyar. Daha sonra dişi kene toprağa düşer, yumurtlar ve ölür. Yani larva-nimf bir hayvanda, olgunu ise başka bir hayvanda geçer. Örneğin, Hyalomma türleri ve Rhipicephalus bursa. c-Üç konaklı kene: Üç konaklı kenede larva bir hayvandan kan emip doyar ve toprağa düşer.Toprakta gömlek değiştirip aç nimf olur.Aç nimf’ler ikinci bir hayvana hücum ederler. Ondan kan emip doyduktan sonra toprağa düşerler ve gömlek değiştirip aç olgun kene haline gelirler. Aç olgun keneler üçüncü bir hayvana hücum eder, kan emer ve çiftleşirler. Doyduktan sonra dişiler konak hayvanı terkedip toprakta yumurtlar ve ölürler. Yani bu kene türleri, larva, nimf ve olgun dönemlerinde ayrı ayrı veya aynı hayvana 3 kez gelmek suretiyle kan emer, gömlek değiştirme dönemlerini ise toprakta geçirirler. Dişiler yine yumurtalarını tprağa bırakırlar. Örneğin, İxodes ricinus, Dermacentor marginatus ve Haemophysalis punctata. İxodidae ailesine bağlı soylar, kenelerin ağız organellerinin uzun yada kısa olmasına göre birbirinden ayırtedilebilir. Ayrıca anal oluğun anüsü önden ve arkadan çevirmesi de soy ayrımında kullanılır. Buna göre İxodidae ailelerinde 7 soy vardır (Şekil 2). Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 2. Ixodidae ailesinde bulunan soyların ayırım anahtarı. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şelil 2. Ixodidae ailesindeki soyların ayırım anahtarı Anal oluk anusun önünde Soy: BOOPHILUS Soy: RHIPICEPHALUS Soy: DERMACENTOR Soy: ANOCENTOR 7 feston 11 feston Feston var, anal oluk belirgin, Coxa I’de derin yarık var Feston yok, anal oluk belirsiz, Coxa I bütün Basis capituli altıgen şeklinde Basis capituli dikdörtgen şeklinde Soy: HAEMAPHYSALIS II. Palp eklemi laterale çıkıntı yapar II. Palp eklemi düz Soy: AMBLYOMMA Soy: HYALOMMA Ağız organelleri Basis capituliden çok daha uzun, II. Palp ekleminin boyu eninden daha fazla Ağız organelleri Basis capituli ile yakın uzunlukta, II. Palp ekleminin eni ile boyu birbirine yakın Soy: IXODES Anal oluk anusun arkasında Capitulum terminalde yerleşmiş, üstten bakıldığında görülür, Scutum var Capitulum ventralde yerleşmiş, üstten görülmez, Scutum yok Argasidae Ixodidae Basis capituli II. Palp segmenti Basis capituli II. Palp segmenti Anal oluk Anus Ağız organelleri uzun olanlar Soy: İxodes Sadece bu soyda anal oluk anüsü önden çevirir. Ayak çiftleri öne yakındır. Göz yoktur. Türkiye’de tek türü bulunur. Tür: İxodes ricinus Soy:Hyalomma Palplerin ikinci ekleminin boyu eninin 2 katıdır.Bacakları uzun yapılıdır (Şekil 3). Göz vardır. Bu soya bağlı 5 tür Türkiye’de bulunmaktadır. Tür: Hyalomma anatolicum anatolicum Tür: Hyalomma anatolicum excavatum Tür: Hyalomma detritum Tür: Hyalomma marginatum marginatum Tür: Hyalomma marginatum rufipes Tür: Hyalomma marginatum turanicum Tür: Hyalomma aegyptium Şekil 3. Hyalomma sp. (erkek) Soy: Amblyomma Bu soya bağlı türler Afrika keneleridir. Ağız organelleri çok uzundur. Scutum üzerinde renkli alanlar mevcuttur.Göz vardır. Bir tür Türkiye’de Suriye sınırında bir vakada bildirilmişse de, ülkemizde olmadığı kabul edilmekltedir. Ağız organelleri kısa olanlar Soy: Haemophysalis Palplerin ikinci eklemi bazis caputuliyi yanlardan aşar. Göz yoktur. Daha çok Sonbahar ve Kış aylarında görülür. Bu soya bağlı 4 tür Türkiye’de bulumaktadır Tür: Haemophysalis parva Tür: Haemophysalis sulcata Tür: Haemophysalis punctata Tür: Haemophysalis inermis Soy: Dermacentor Bazis caputuli ağız organellerini yanlardan aşmıştır. Göz vardır. Scutum üzeri gri, açık kahverengi ve beyaz renklerde nakışlıdır. Daha çok Sonbahar aylarında aktiftirler ve konak hayvanların koyruk uçların bulunurlar. Türkiye’de 2 türü yaygındır. Tür: Dermacentor marginatus Tür: Dermacentor niveus Soy: Boophilus Ağız organelleri çok kısa olup, coxa 1’de yarık yoktur. Göz vardır. Türkiye’de bir türü bulunur. Tür: Boophilus annulatus calcaratus Soy: Rhipicephalus Coxa 1’de derin bir yarık olmasıyla Boophilus türlerinden ayrılır.Göz vardır. Bu soya bağlı 3 tür Türkiye’de yaygındır. Tür: Rhipicephalus sanguineus Tür: Rhipicephalus bursa Tür: Rhipicephalus turanicus Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Keneler, insan ve hayvan hastalıklarının naklinde rol oynayan en önemli vektörlerdendir ve diğer artropod gruplarının aksine bir çok çok farklı yapıdaki enfeksiyöz etkenleri (bakteri, virus, parazit, mantar) taşıyabilme yeteneğine sahiptirler. Kırım-Kongo Kanamalı Ateşi ve Keneler KKKA ile kenelerin ilişkisi ilk defa 1944-45 yıllarında Kırım’da hasat toplayan çiftçilere yardım eden askerlerde hastalığın oluşması ve etkenin kenelerden izole edilmesi sonucunda önem kazanmıştır. Ixodidae ve Argasidae ailesine bağlı 31 kene türünün virusun vektörü olabileceği bildirilmesine rağmen, bunların tümünün vektör potansiyeli gösterilememiştir. Kenenin tam anlamı ile vektör kabul edilebilmesi için, etken izolasyonu dışında, kenenin virusu duyarlı hayvanlara aktarabilme ve viremik hayvanlardan alabilme yeteneğinin de olması gerekmektedir. Bu kriterler yukarıda bildirilen 29 türden sadece bazılarında gözlenebilmiştir. Bunun yanında bazı türler virusu hem transovarial hem de transtadial olarak taşırken bazıları sadece transtadial olarak taşıyabilmektedir. Günümüzde hastalığın başlıca vektörlerinin Hyalomma marginatum marginatum, H.m.rufipes ve H.anatolicum anatolicum olduğu kabul edilmektedir. Ancak, Hyalomma türlerinin olmadığı bazı ülkelerde etkenin Ixodes ricinus, Dermacentor spp., Rhipicephalus spp. ve Boophilus annulatus gibi kenelerden izole edilmiş olması, diğer kenelerin de vektörlük potansiyelinin düşünülmesi gerektiğini göstermektedir. H.a.anatolicum ve H.m.marginatum genellikle iki konutlu gelişim gösterirler. H.a.anatolicum’un, gerek larva ve nimfleri, gerekse erişkinleri genellikle evcil ruminantları (özellikle sığırları) tercih etmesine karşı, H.m.marginatumun’un genç gelişme dönemleri (larva ve nimf) çoğunlukla küçük hayvanları (tavşan, kirpi, kanatlılar, fare, yabani memeliler) ve az olarak da büyük memeliler ve insanı tercih etmekte, erişkinleri ise ağırlıklı olarak evcil memeliler (sığır, at, koun, keçi, köpek) ve az olarak da küçük memeliler (tavşan, kirpi) ile insanı tercih etmektedir (Şekil 4). Göç eden kuşlar bu kenenin bölgeler arasında yayılışından büyük ölçüde sorumludur. H.marginatum, Güney Avrupa, Kuzey Afrika, Anadolu, Kafkaslar ve Eski Sovyet Cumhuriyet’lerini içine alan geniş bir yayılış alanına sahiptir. Bu keneler Şubat ile Aralık ayları arasında hayvanlar üzerinde görülebilse de, erişkinler Mart-Ağustos, larva ve nimfler ise Haziran-Kasım dönemlerinde aktif olarak kan emerler. Kışı, genellikle doymuş nimf veya aç erişkin şeklinde, ahırlardaki duvar çatlaklarında veya meralardaki (yarı-ormanlık alanlarda) kemirici yuvaları, toprak içinde veya ağaç kovuklarında geçirirler. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com Şekil 4. Hyalomma m.marginatum’un yaşam döngüsü. (Konak hayvanların büyüklükleri kenenin tercih sırasına göre orantılanmıştır). Kenelerle Mücadele Günümüze kadar kullanılan hiç bir mücadele yöntemi (bir kaç sınırlı alan hariç), tam bir kene eradikasyonu sağlayamamıştır. Hali hazırda kene eradikasyonunun neredeyse olanaksız olduğu kabul edilmektedir. Yapılan çalışmalar 2 temele dayanmaktadır: I. Kenelerle nakledilen hastalıkların ortadan kaldırılması veya azaltılması (aşı çalışmaları vs) II. İnsan ve hayvanlardan kan emen kenelerin sayısını düşük maliyetlerle kabul edilebilir sınırlara indirilmesi a. Akarisid kullanımı Kenelerle mücadele genellikle konak hayvanların ve çevrenin düzenli aralıklarla akarisid ilaçlarla ilaçlanması esasına dayanmaktadır. Bu konu üzerinde çok uzun yıllar boyunca durulmuş olmasına rağmen, bir türlü istenen düzeyde başarı sağlanamamıştır. Her ne kadar akarisid kullanımı gerekli olsa da, bu oldukça zahmetli ve masraflıdır. Kaldı ki, büyük çapta programlı uygulamaların yapılması oldukça zordur. Akarisid ile kene konrolünün başlıca 7 zorluğu vardır 1. Kenelerin yoğun biçimde tarım ve orman alanları içinde yayılmış olması, çevreye zarar verecek düzeyde akarisid kullanımını gerektirmektedir. 2. Akarisilerin kenelerin konakları üzerinde tutundukları bölgelere ulaşabilmesi ancak konağın tüm vüudunun yıkanmasını gerektirmektedir 3. Konak üzerinde bulunmadıkları süre içinde keneler akarisid ilaçların ulaşamayacağı yerlerde saklanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com 4. Kenelerin yüksek orandaki üreme yeteneği (3000-7000 yumurta) ilaçlamaların düzenli bir sıklıkta yapılmasını gerektirmktedir. 5. Kenelerin uygun olmayan çevre koşullarında çok uzun süreler boyunca canlı kalabilmeleri. 6. Kenelerin konak seçiminde çok alternatifinin olması 7. Akarisid direncinin oluşması b- Kenelerin yaşam alanlarının değişrtirilmesi 1- Herbisidal ilaç kullanımı 2- Arazi yakma 3- Arazinin sürülmesi 4- Kuru yaprak tabakasının hatta orman taban örtüsünün kaldırılması Ancak, bu gibi önlemlerin uygulanması sonucunda kene populasyonunda sağlanan azalma, kenelerin yok edilmesinden çok, konak hayvanların bu gibi elverişsiz hale gelmiş ortamlardan uzaklanmasına bağlanmaktadır c- Konak hayvanların ortadan kaldırılması Bu yöntem özellikle dar bölgelerde kısıtlı konak kullanan keneler için kullanılsa da (Amblyomma americanum’un eradikasyonu için belli bölgelerde geyik populasyonunu ortadan kaldırmak), bu yöntem çok miktarda konak alternatifi olan keneler için uygun değildir. d- Biyolojik kontrol Kenelerin doğal düşmanlarının ortama salınması üzerinde çalışmalar olsa da, çok pratik değeri yoktur e-Kendi kendini ilaçlama Bu yöntem özellikle yaban hayvanları üzerindeki keneleri de etkilediğinden oldukça umut vericidir. Hayvanların ilgisini çekecek çeşitli obejelerin (yemlik, içinde yem bulunan plastik boru, ilaçlı pamuk) üzerine uzun etkili akarisid salınımını sağlayan düzenekler kurularak hayvanların kendi kendilerini ilaçlaması sağlanmaktadır. Doç.Dr. Zati Vatansever vatansev@veterinary.ankara.edu.tr zativet@hotmail.com

http://www.biyologlar.com/keneler-hakkinda-bilgi

BAĞIŞIKLIK SİSTEMİNİ NEDİR

İnsan vücudu, hastalıklara karşı bir savunma sistemi ile donatılmıştır ve bu yüzden de kendi kendini iyileştirme yeteneğine sahiptir. Hastalığa yol açan maddeler tarafından uyarıldığında bu sistem hemen harekete geçer. Bu bazen adaptasyon tepkisi olarak adlandırılır. Sistem, yabancı olarak algıladığı bir mikroorganizma ile karşılaştığında, belirli hücreler bundan kurtulmak için savaşmaya başlar. Aşılama bağışıklık kazanmanın suni şeklidir. İşlemden geçirilmiş ya da ölü organizma aşı içinde vücuda enjekte edilir. Her gelişmiş sistemde olduğu gibi,sistem kötü işlediğinde sonuçlar ciddidir. Bağışıklık Sisteminde Dengeyi Korumak; Bağışıklık sistemini dengede tutmak önemlidir. Güçsüz bağışıklık sistemi gibi aktif olan sistemde sorun oluşturabilir. Bağışıklık sistemini dengede tutmak için anti-oksidan mikro besin maddeleri sağlayabilir. Dengede tutmak için ilk önce C ve E vitamini betakaroten ve selenyumun vücut tarafından alınması çok önemlidir. Bunun dışında taze meyve ve sebze yemeyi ihmal etmemek gerekir. Bağışıklık Sistemini Olumsuz Etkileyen Besinler... 1.FLÜORİD: Bağışıklık sistemini yavaşlatır,beyaz hücrelerin yabancı hücreleri yok etme gücünü azaltır. 2.CIVA: Vücudun enfeksiyonla savaşma gücünü olumsuz etkiler,antikorlarınkendi hücrelerinin zehirlenmesine yol açar. 3.KADMİYUM: Antikor içeren bazı enzimlerin fonksiyonlarını baskılar. 4.ALÜMİNYUM: Kalsiyum kullanımını engeller,hemoglobin üretimini etkiler. Etkin Bir Bağışıklık Sistemi... * Enfeksiyonların şiddetini azaltacaktır. * Soğuk algınlığı,nezle ve diğer enfeksiyonlara yakalanma riskini azaltacaktır. * Kanser hücrelerinin yok edilmesini en yüksek seviyeye çıkaracaktır. * Canlılığı azaltan toksit kimyasalların birikmesini önleyerek,enerji düzeylerini arttıracaktır. * Vücudu çevredeki radyasyon ve kirlerden koruyacaktır. * Yaşlanma sürecini yavaşlatacaktır. Bağışıklıkla İlgili Yaygın Hastalıkların Bazıları... * AIDS(Kazanılmış bağışıklık eksikliği sendromu) * Kanser ve tümörler * Alerjiler * Yiyeceklere karşı hassasiyet Bozulmuş Bağışıklık Sistemi Belirtileri... * Hazımsızlık * Şiş ve ağrılı bezler * Koku alamama,salgı yokluğu,solunum güçlüğü * Saç dökülmesi ve donuk saç rengi * Kırışık ve kuru cilt * Sertleşmiş ve şiş eklemler * Dikkat bozukluğu,ilgisizlik,isteksizlik ve halsizlik * Depresyon ve irritabilite

http://www.biyologlar.com/bagisiklik-sistemini-nedir

Canlıların Ortak Özellikleri

Canlı ve cansızların aynı kimyasal ve fiziksel yasalara bağlı olduğuna inanan felsefeye Materyalizm ya da mekanik görüş, buna karşılık canlıların farklı yasalar altında hareket ettiğini ve canlılığın mistik bir güç ile meydana geldiğini benimseyen görüşe de Vitalizm ya da kadercilik denir. Her iki görüşün de temelinde belirli kimyasal ve fiziksel ilkelerin yattığı bir gerçektir. Canlılk ile cansızlığı virüslerde birbirinden ayırmak oldukça zordur (uygun koşullarda canlı özelliği, uygun olmayan koşullarda ise kristal hale geçerek cansız özelliği gösterir). Daha ileriki kademelerde canlılık özelliği belirgin hale geçerken, o zaman da canlının bitki mi yoksa hayvan mı olduğu konusunda bazı sorunlar ortaya çıkar. Nitekim birhücreli bazı hayvan grupları bugün hem botanikçiler hem de zoologlar tarafından incelenmektedir. (Örneğin; kamçılılardan öglenanın karanlıkta hayvansal, ışıkta bitkisel davranması, evrimsel gelişimde her iki grubun bu kademede ortak bir organizasyona ve ataya sahip olduğu fikrini güçlendirmektedir.) Bu aşamadaki ortaklık, daha sonraki kademelerde "bu bir canlıdır"yargısını açıkça verdirecek ortak özellikleri beraberinde vermiş; uyuma göre bu özellikler sonradan geliştirilmiştir. A. ÖZEL BİR KİMYASAL DİZİLİME SAHİP OLMALARI Cansızlar, kimyasal bağların izin verdiği ölçüler içerisinde bir bileşime sahiptirler. Canlılar ise bu kimyasal bağların dizilimini özel bir şekilde saptarlar. Tüm canlılar genleri oluşturan çekirdek asitlerini -genellikle DNA (bazı virüslerde RNA)- içerirler. Gensiz bir canlılık düşünemeyiz. Çünkü genler değişik yaşam formlarının sentez ve replikasyonundan (eşlenmesinden) sorumludur. Tüm genler aynı birimlerden; fakat değişik dizilimlerden oluşmuştur. Dolayısıyla tüm canlıların yapısına giren protein, bu genlerin yapısal değişikliğine uygun olarak, her hücrede farklı amino asit dizilimine sahip olurlar. İlave olarak karbonhidrat, yağ, ve su içerirler. Tüm bu maddelerin özel karışımı protoplazmayı meydana getirir. B. HÜCRESEL DİZİLİM Canlıların büyük bir kısmı (kural olarak çokhücreliler) hücre olarak bilinen birimlerden yapılmıştır. Her hücre çok ince zarla (plazma zarı) çevrilmiştir. Bu zar erimiş maddelerin ve suyun hücre içerisine girip çıkmasına izin verir. Her iki yönde de geçirim bakımından çok özelleşmiş seçici bir yeteneği vardır. Hücre bir çok kimyasal değişimin yapılabilmesi için değişik enzimleri ve en önemlisi yalnız başına kendinin aynını üretebilecek yeteneğe sahiptir. C. ORGANİZASYON Canlıların vücut kısımlarının görev bölümüne ve belirli kurallar içerisinde canlılık etkinliğini devam ettirmelerine organizasyon denir. Bütün hayvan ve bitkilerin vücudu, yapısal ve işlevsel olarak birim kabul edilen hücrelerden yapılmış olmasına karşın homojen değildir. Farklılaşmış vücut kısımları değişik görevleri üzerine almıştır. Hatta birhücreli canlılarda, ergin evrede, boy ve şekil sabit olmakla beraber, hücrenin farklı kısımları farklı görevleri üzerine almıştır. D. UYARILMA Bütün canlıların çevrelerindeki fiziksel ve kimyasal koşulların değişmesine karşı tepkileri kalıtsaldır. Basit organizmalarda uyarı, genel olarak bütün vücutla algılandığı halde, yüksek organizmalarda duyu organlarının yeri merkezileşmiştir. Örneğin; ışık gözle, koku burunla, tat dille, basınç ve sıcaklık deriyle vs. Uyarının alınması ve gerekli tepkinin gösterilmesi, canlının evren içerisinde en uygun yerde ve koşullarda yaşamasını sağlamayı yaratmaktadır. E. HAREKET Beslenme, korunma, üreme, yayılma, en rahat edebileceği bölgeyi bulma vs. gibi yaşamın temel işlevlerini yürütebilmek için, ilkel organizmalarda ya vücudun tamamıyla protoplazmik hareket ya bir kısmıyla sil ve kamçı hareketi ya da yüksek organizmalarda görülen, yürüme, yüzme, ve uçmanın sağlanması için belirli organ oluşumları görülür. Birçok canlı tüm yaşamı süresince belirli bir yere bağlı kalmasına karşın, vücudun değişik kısımlarının çevre koşullarına göre değişimi de hareket olarak kabul edilir. Örneğin; bitkilerde ışığa (fototropizm), yerçekimine (geotropizm), neme (higrotropizm), vs. ye yönelim bir hareket kavramı içerisinde değerlendirilir. F. ENERJİ KULLANIMI Canlılığın en önemli öğelerinden biri büyüme, üreme, yenilenme vs. için enerjiye olan gereksinimleridir. Hücre kendi başına enerji üretemez; dışarıdan kaynak sağlamak zorundadır. Hayvanlar enerji bağları içeren molekülleri yıkmak (katabolik tepkimeler) suretiyle gerekli enerjiyi sağlarlar. (karbonhidrat, yağ ve proteinden). Küçük molekülleri büyük moleküller halinde bağlayarak (anabolik tepkimeler) yapı taşlarını ve enerji depolanmasını da yapabilirler. Bu tepkimelerin tümüne birden biyoenerjitik denir. Bir moleküldeki enerjinin büyük bir kısmını kullanma oksijen kullanmakla olur; yani tamamıyla oksitlenmelidir (aerobik solunum=oksijenli solunum). İlkel canlıların bir kısmı (bazı mikroorganizmalar, özellikle mayalar) ve bazı endoparazitler (bağırsak solucanları gibi) bu kaynak maddeleri oksijensiz yıktığı için enerjinin pek az bir kısmından yararlanabilir (anaerobik solunum=oksijensiz solunum). Pek az bir organizma grubu da bazı inorganik maddeleri yıkmak suretiyle enerji elde eder; azot, demir ve kükürt bakterileri bunlara tipik örneklerdir. Dünyada serbest oksijenin olmadığı devirlerde, canlılar enerjilerini bu yollarla sağlıyorlardı. Bitkiler ise (saprofit ve parazit olanların bir kısmı hariç) enerji kaynağı olarak güneş ışınlarını kullanır. Güneş ışınlarının kuantlarındaki enerjiyi kimyasal bağlar halinde (nişasta) tutarlar ve bu kimyasal bağlar tüm adrıbeslek (heterotrof) canlıların enerji kaynağını ve yapı maddelerini oluşturur. İlk evrelerde (bitkiler oluşmadan önce) enerji kaynağı olarak UV ışınlarının katalizlediği bazı ilkin organik moleküller kullanılmıştır. Ozon perdesi oluştuktan sonra bu kaynak büyük ölçüde kurumuştur. G. ÇEVREYE UYUM Canlılar kural olarak yaşadığı ortamın koşullarına uyum yapabilecek yeteneğe sahiptir. Bu durum homeostatik tepki olarak bilinir. Değişik koşulların bulunduğu ortamda en uygun yeri seçmeye çalışır; şayet tam anlamıyla uygun ortam bulamazsa, yapısal değişikliklerle (mutasyonların yardımıyla) bu uyum sağlanmaya çalışılır. Günlük uyumlardan binlercesini farkında olmadan yaparız. Örneğin gözün karanlığa ve aydınlığa uyum yapması gibi. Çevre koşullarının değişmesi canlı bünyesine en az etki bırakacak şekilde iletilmeye çalışılır (özellikle sıcakkanlılarda); örneğin çölde ve kutuplarda insan kanı her zaman aynı sıcaklıktadır. Canlı, uyum yapabildiği oranda hayatta kalma şansına sahiptir. Bu oran ise kalıtsal yapı ile saptanmıştır. Bu sınırların dışındaki uyumlar ancak mutasyonlarla sağlanabilir. H. ÜREME Hiçbir canlı sonsuz olarak yaşamını devam ettiremez. Herhangi bir şekilde, üremeyle, kalıtsal materyal gelecek kuşaklara aktarılır. Birhücrelilerde bölünme aynı zamanda çoğalmayı sağlamasına karşın, çokhücrelilerde üreme belirli vücut kısımlarına özgü bir yetenek olarak ortaya çıkmıştır. Bazı canlı gruplarında gen değişimi olmaksızın (eşeysiz) üreme görülmesine karşın (birhücrelilerde mitoz bölünme; çokhücrelilerde tomurcuklanma, dallanma, partenogenez çoğalma, bitkilerde çeliklenme vs.) kural olarak eşeyli üreme çok daha sıktır. Bu şekilde değişik gen kombinasyonları ortaya çıkarak daha başarılı döllerin meydana gelmesini sağlar. Bu, evrim mekanizmasının en önemli ögelerinden biridir. İ. EVRİMSEL UYUM VE VARYASYONLARIN KALITIMI Tüm canlılar genlere sahiptir ve genlerin tümü de mutasyonla değişebilir. Bu, aynı türün farklı bireylerinin kalıtsal olarak değişmesini sağlar. Dolayısıyla o anda faydalı olan mutasyonları taşıyan bireyler seçilir, zararlı olanlar uyum yapamadığı için ortadan kaldırılır ve evrimsel bir yönlendirme ortaya çıkar. Bu, zamanla türün değişmesine neden olur; özellikle çevre koşulları değiştiği zaman. Kalıtsal uyumlar meydana gelmeseydi, hiçbir tür yaşamını sürdüremeyecekti; çünkü çevre koşulları devamlı olarak değişmektedir. I. BÜYÜME Çevresindeki anorganik (ham) maddeleri kendi protoplazma yapısına çevirme, büyüme olarak bilinir. Bitkilerde (çok yıllık) kural olarak sınırsız bir büyüme görülmekle beraber, hayvanlarda her türün kendine özgü şekil ve büyüklüğe ulaşmasına kadar devam eder. Çok hücreli hayvanlarda genellikle bir büyüme evresi vardır. Bu evrede büyüme hızlıdır. Daha sonraki evre olgunluk evresidir, büyüme yoktur; fakat protoplazmanın yenilenmesi için devamlı besin yadımlaması (asimilasyonu) vardır. Protoplazma, metabolik tepkimeler sonucu sürekli olarak yıkılır, eğer yaşam devam edecekse bu protoplazmanın yenilenmesi gerekir. Birhücrelilerde büyüme, çoğalma ile sonuçlanmasına karşın; çokhücrelilerde vücudun gelişmesini ve irileşmesini sağlar. Yaşlılık evresinde protoplazmanın yenilenmesi gittikçe azalır; hücre yavaş yavaş işlevini; ilerlemiş ve yaygınlaşmış durumlarda da yaşamını yitirir. Bu bozulma herhangi bir yaşta, yeterince besin alınmadığında veya nitelik bakımından doyurucu olmadığında da ortaya çıkabilir. Yenilenmenin kusursuz olması protoplazmanın içerdiği maddelerin eksiksiz olmasıyla sağlanabilir. Büyüme her türde kalıtsal yapıyla sınırlandırılmıştır. Bunun alt ve üst sınırları çevre koşullarıyla belirlenmistir.

http://www.biyologlar.com/canlilarin-ortak-ozellikleri-2

Mutasyonlar

Mutasyon, DNA içindeki dört tür nükleotid halkasından bir veya daha fazlasında değişmedir. Bir tek halkada bile değişiklik anımsayacağınız gibi DNA mesajında bir harfin değişmesi demektir.DNA’dan kopya alan mesajcı RNA değişikliği içerecektir ve protein yapmakta olan makine tarafından farklı okunacaktır. Ortaya değişmiş bir protein çıkacak ve amino asit zincirinde bir halka farklı olacak, sonuç olarak da proteinin işlevi değişecektir. Mutasyonların en önemli özelliklerinden biri, DNA kopya edildiği zaman onların da kopya edilmeleridir. Daha önce açıkladığımız gibi hücre bölünmesine hazırlık olarak bir enzim yeni bir dizi gen üreten kadar DNA ‘daki nükleotidleri teker teker aynen kopya eder. DNA’daki bir mutasyon genellikle, değişimi o DNA’yı içeren hücrelerin bütün gelecek kuşaklarına geçinmek amacı ile kopya edilir. Böylece ufak bir mutasyon DNA diline sonsuza kadar yerleşir. Mutasyonun Nedenleri Mutasyonlara doğal tepkimeler (örneğin x-ışınları ve morötesi ışınlar) ve insan yapısı kimyasal maddelerin DNA’nın nükleotidleri(s: 65) halkalarına çarparak bozmaları neden olur. Nükleotidler böylece başka nükleotidlere dönüşebilirler. Kimyasal olarak dört standart nükleotid dışında bir biçim alabilirler veya tümüyle zincirden kopabilirler. Bütün bu değişmeler doğal olarak zincirin anlamını değiştirebilir;dil bundan sonra artık biraz değişmiştir.(s:66) Mutasyonlar tümüyle raslantısal olaylardır. Kesinlikle DNA’nın hangi halkasına çarpacağını bilmenin olanağı yoktur. Biz dahil herhangi bir canlı yaratığın DNA’sının herhangi bir nükleotidinde her an mutasyon görülebilir(buna karşılık bazı ilginç titizlikte dacrana enzimler de DNA’yı sürekli gözler ve bir değişiklik bulurlarsa onarırlar. Ama herşeyi de yakalayamazlar). Mutasyon Beden Hücrelerini ve Cinsel Hücreleri Farklı Şekilde Etkiler Bedenimizdeki tüm hücreler,DNA’yı oluşturan,annemizden ve babamızdan aldığımız birbirini tamalayıcı iki bölüm içerir. Ana babanın çocuk yapabilmeleri için DNA’larını, yalnızca birleşmeye elverişli olan tek hücrelere yerleştirmelyeri gerekir; bu, karşı cinsin bir hücresiyle çiftleşip böylece DNA’larını paylaşmak içindir. Bu özel hücreler erkeğin testislerinde yapılan spermlerle kadının yumurtalıklarında yapılan yumurtalardır. Bedenimizin hücrelerinden birinde DNA’da bir mutasyon oluştugu zaman çogunlukla bunun hiç farkina varmayiz. Bedenimizdeki milyarlarca hücreden birinin bozulmasini hissetmek çok zordur. Bir tek önemli istisna var: Hücrenin kanser olmasina yol açan mutasyon. Bu degişmeyi bundan sonraki bölümde inecelecegiz. Oysa yeni bireyleri yapmak için kullanilan sperm ve yumurtalari üreten testis ve yumurtaliklar içindeki hücrelerde mutasyon oldugu zaman durum oldukça degişiktir. Çünkü eger yumurta veya sperm mutasyon içeriyorsa,bu mutasyon dogal olarak döllenmiş yumurtaya geçecektir. Döllenmiş yumurta bölündügünde de mutasyon bütün yeni hücrelere kopya edilecektir. Böylece sonuçta ortaya çikan yetişkinin bedeninin her (s:67) bir hücresinde mutasyonun bir kopyasi bulunacaktir. Ve bu yetişkinin testis veya yumurtaliklarinda oluşan,sperm veya yumurta,her seks hücresi de bu mutasyonu taşiyacaktir. Buna göre,evrimde önemli olacak mutasyon bir organizmanın cinsel hücrelerinde olup kalıtımla geçirilebilen mutasyon çeşitidir. “İyi” mutasyonlar ve “Kötü “ mutasyonlar Mutasyonlar enderdir ama yine de evrimsel değişmenin temel araçları olmuşlardırb. Bir organizmanın proteinlerinde,çevereye uyum sağlamasında avantajlı değişmelere yol açabilirler. Bu anlamda mutasyonlara yararımızadır. (Mahlon B. Hoaglandı, Hayatın Kökleri,TÜBİTAK Y, 13. Basım s: 19-68...) *** “Evren büyük patlama dedikleri o zamanlardan ( “günlerden” demeye dilim varmıyor) bu yana daha düzenli hale mi geldi, daha düzensiz hale mi geldi? Bunu bir bilen varsa ve bana söylese, gerçekten minnettar olacağım. Belki de termodinamiğin 2. kanununu fazla sorgulamaya lüzum yok. Çünkü neticede çoğu formülasyona göre bu bir olasılık kanunu olduğu için, yanlışlanmaya karşı zaten doğuştan dirençli! Bu kanun, kapali bir sistem daha düzenli hale gelemez, kendi kendine cansızdan canlı oluşamaz demiyor. Sadece bu ihtimali çok zayıf (hemen hemen sıfır, ama sıfır değil) diyor. Ve J. Monod gibi bazı büyük moleküler biyologlar da bu ihtimale sığınıyorlar.” (Şahin Koçak, Anadolu Üniversitesi, Bilim ve Teknik 325. sayi, s:9) DİL SANATI “Bizim bildiğimiz anlamıyla konuşma dilinin ortaya çıkışı hiç kuşkusuz, insanın tarihöncesinin belirleyici noktalarından ve hatta belki de belirleyici tek noktasıdır. Dille donanmış olan insanlar doğada yeni tür dünyalar yaratabildiler: İçebakışsal (introspektif) bilinçler dünyası ve “kültür” adını verdiğimiz, kendi ilemizle yaratıp başkalarıyla paylaştığımız dünya. Dil, mecramız; kültür ise nişimiz oldu. Hawaii Üniversitesinden dilbilimci Derric Bickerton, 1990 tarihli kitabı Language and Species ‘de bunu, ikna edici bir biçimde belirtiyor: “Dil bizi, diğer tüm yaratıkların tutsak oldukları anlık deneyim hapisanesinden kurtarıp sonsuz uzam ve zaman özgürlüklerine salıverebilirdi.” Antropologlar dil hakkında, bir doğrudan ve biride dolaylı olmak üzere, yalnızca iki şeyden emin olabilyorlar. Birincisi konuşma dili, Homo sapiens ’i diğer tümyaratıklardan açık şekilde ayırır. İletişim ve içabakışsal düşünce mecrası olarak karmaşık bir konuşma dili yaratabilen tek canı, insandır. İkincisi, Homo sapiens’in beyni, en yakın evrimsel akrabamız olan büyük Afrika insansımaymunlarının beyninden üç kat büyüktür. Bu iki gözlem arasında bir ilişki olduğu açıktır; ama ilişkinin yapısı hala şiddetle tartışılıyor. Felsefecilerin dil dünyasını uzun zamandır incelemeliren karşın, dil hakkında bilinenlerin çoğu son otuz yılda öğrenilmiştir. Dilin evrimsel kaynağı hakkında iki görüş olduğunu söyleyebiliriz: İlk görüş dili insanın benzersiz bir özelliği, beynimizdeki büyümenin yan sonucu olarak ortaya çıkmış bir yetenek olarak görür. Bu durumda dilin, bilişsel bir eşiğin (s: 129) oluşmasıyla birlikte, hızla ve yakın zamanlarda ortaya çıktığı düşünülmektedir. İkinci görüşte, konuşma dilinin insan olmayan atalardaki-iletişimi de içeren, ama iletişimle sınırlı kalmayan- çeşitli bilişsel yetenekler üzerinde doğal seçimin etki göstermesiyle geliştiği savunulur. Bu süreklilik modeline göre dil, insanın tarihöncesinde, Homo cinsinin ortaya çıkışından itibaren aşamalı olarak gelişmiştir. MIT’ ten dilbilimci Noam Chomsky ilk modelin yanında yer almış ve büyük etki yaratmıştır. Dilbilimcilerin çoğunluğunu oluşturan Chomskicilere göre dil yetenğinin kanıtlarını erken insan kanıtlarında aramak yararsız, maymun kuzenlerimizde aramak ise iyice anlamsızdır. sonuçta, genellikle bir bilgisayar ya da geçici leksigramlar kullanarak maymunlara bir tür simgesel iletişim öğretmeye çalışanlar düşmanlıkla karışlanmışlardır. Bu kitabın temel konularından biri de , insanları özel ve doğanın geri kalan kısmından apayrı görenlerle, yakın bir bağlantı olduğunu kabul edenler arasındaki felsefi bölünmedir. Bu bölünme özellikle, dilin doğası ve kökeni hakkındaki tartışmalarda ortaya çıkıyor. Dilbilimcilerin insansımaymun-dili araştırmacılarına fırlattıkları oklar da hiç kuşkusuz, bu bölünmeyi yansıtıyor. Teksas Üniversitesi’nden psikolog Kathleen Gibson, insan dilinin benzersizliğini savunanlar hakkında, yakın zamanlarda şu yorumu yaptı:" (Bu bakış açısı) önermeleri ve tartışmalarıyla bilimsel olsa da, en azından Yaratılış’ın yazarlarına ve Eflatun’la Aristo’nun yazılarına dek uzanan, insan zihniyetiyle davranaşının nitelik açısından hayvanlardan çok farklı olduğunu savunan köklü bir Batılı felsefe geleneğine dayanmaktadır?” Bu düşünüşün sonucu olarak antropolojik literatür uszun süre, yalnizca insana özgü oldugu düşünülen davranişlarla doldu. Bu davranişlarin arasinda alet yapimi, simge kullanabilme yetenegi, aynada kendini taniyabilme ve lebette dil yer aliyor. 1960'lardan beri bu benzersizlik duvari, insanismaymunlarin da alet yapip kullanabildiklerinin, simggelerden yararlandiklarini ve aynada kendilerini taniyabildiklerinin anlaşilmasiyla birlikte çatirdamaya başladi.Geriye bir tek dil kaliyor ve dolaysiyla dilbilimçciler, insanin benzersizliginin son savunuculari olarak kaldilar. Analişlan, işlerini çok da ciddiye aliyorlar. Dil, tarihöncesinde- bilinmeyen bir araç sayesinde ve bilinmeyen bir geçici grafik izleyerek- ortaya çıktı ve hem birey, hem de tür olarak bizi dönüştürdü.Bickerton, “ Tüm zihinsel yeteneklerimiz arasında dil, bilinç eşiğimizin altında en derin, rasyonelleştiren zihin için de en ulaşılmaz olanıdır” diyor. “Ne dilsiz olduğumuz bir zamanı hatırlayabiliriz, ne de dile nasıl ulaştığımızı.” Birey olarak, dünyada var olmak için dile bağımlıyız ve dilsiz bir dünyayı hayal bile edemeyiz. Tür olarak, dil, kültürün dikkatle işlenmesiyle, birbirimizle etkileşim kurma şekilimizi dönüştürür. Dil ve kültür bizi hem birleştirir, hem de böler. dünyada şu anda var olan beş bin dil, ortak yeteneğimizin ürünüdür; ama yarattıkları beş bin kültür, birbirinden ayrıdır. Bizi yapılandıran kültürün ürünü olduğumuz için, kendi yarattığımız bir şey olduğunu, çok farklı bir kültürle karşılaşana dek anlayamıoruz. Dil gerçekten de, Homo sapiens ’le doğanın geri kalan kısmı arasında bir uçurum yaratır.İnsanın ayrı sesler ya da fonemler çıkarma yeteneği, insansımaymunlara göre ancak mütevazi oranda gelişmiştir: Bizim elli, insansımaymunnunsa bir düzine fonemi var. Ama bizim bu sesleri kullanma kapasitemiz sonsuzdur.Bu sesler, ortalama bir insanı yüz bin sözcüklük bir dağarcıkla donatacak şekilde tekrar tekrar düzenlenebilir ve bu sözcüklerden de sonsuz sayıda tümce oluşturulabilir. Yani, Homo sapiens ’ in hızlı, ayrıntılı iletişim yetisinin ve düyşünce zenginliğinin doğada bir benzeri daha yoktur. Bizim amacımız, dilin ilk olarak nasıl ortaya çıktığını açıklamak. Chomskyci görüşe göre, dilin kaynağı olarak doğal seçime bakmamıza gerek yoktur; çünkü dil, tarihsel bir kaza, bilişsel bir eşiğin aşılmasıyla ortaya çıkmış bir yetenektir. Chomsky şöyle der:" Şu anda, insan evrimi sırasında ortaya çıkan özel (s:131) koşullar altında 10 üzeri 10 adet nöron basketbol topu büyüklüğünde bir nesneye yerleştirildiğinde, fizik kurallarının nasıl işleyeceği konusunda hiçbir fikrimiz yok. ” MIT’ ten dilbilimci Steven Pinker gibi ben de bu görüşe karşıyım. Pinker az ama öz olarak, Chomsky’nin “işe tam tersinden baktığını” söylüyor. Beynin, dilin gelişmesi sonucu büyümüş olması daha yüksek bir olasılıktır.Pinker’e göre “dilin ortaya çıkmasını beynin brüt boyutu, şekli ya da nöron ambalajı değil, mikro devrelerinin doğru şekilde döşenmesi sağlar”. 1994 tarihli The Language Instinct adlı kitabında Pinker, konuşan dil için, doğal seçim sonucu evrimi destekleyen genetik bir temel fikri pekiştirecek kanıtları derliyor. Şu anda incelenemeyecek denli kapsamlı olan kanıtlar gerçekten etkileyici. Burada karşimiza şu soru çikiyor:konuşma dilinin gelişimini saglayan dogal seçim güçleri nelerdi? Bu yetenegin eksiksiz halde ortaya çikmadigi varsayiliyor; öyleyse, az gelişmiş bir dilin atalarimiza ne tür avantajlar sağladığını düşünmeliyiz. En açık yanıt, dilin etkin bir iletişim aracı sunmasıdır. Atalarımız, insansımaymunların beslenme yöntemlerine göre çok daha fazla savaşım gerektiren bir yöntem olan ilkel avcılık ve toplayıcılığı ilk benimsediklerinde, bu yöntem hiç kuşkusuz yararlı olmuştu. Yaşam tarzlarının karmaşıklaşmasıyla birlikte, sosyal ve ekonomik koordinasyon gereksinimi de arttı. Bu şartlar alıtnad, etkili bir iletişim büyük önem kazanıyordu. Dolaysıyla doğal seçim, dil yeteneğini sürekli geliştirecekti. Sonuçta,- modern inasansımaymunların hızlı solumalarına, haykırışlarına ve homurtularına benzediği varsayılan-eski maymun seslerinin temel repertuvarı genişleyecek ve ifade edilme şekli daha gelişmiş bir yapı kazanacaktı. Günümüzde bildiğimiz şekliyle dil, avcılık ve toplayıcılığın getirdiği gereksinimlerin ürünü olarak gelişti. Ya da öyle görünüyor. Dilin gelişimi konusunda başka hipotezler de var. Avcı-toplayıcı yaşam tarzının gelişmesiyle birlikte insanlar teknolojik açıdan daha başarılı hale gelidler, aletleri daha ince (İnsanın Kökeni s:132)likle ve daha karmaşık şekiller vererek yapabilmeye başladılar. 2 milyon yıl öncesinden önce, Homo cinsinin ilk türüyle birlikte başlayan ve son 200.000 yılı kapsayan bir dönemde modern insanın ortaya çıkışıyla doruk noktasına ulaşan bu evrimsel dönüşüme, beyin boyutunda üç kata ulaşan bir büyüme eşlik etti.Beyin, en erken Australopithecus ‘lardaki yaklaşık 440 santimetreküpten, günümüzde ortalama 1350 santimetreküpe ulaştı.Antropolglar uzun süre, teknolojik gelişmişliğin artmasıyla beynin büyümesi arasında neden-sonuç bağlantısı kurdular.:İlki, ikincisini geliştiriyordu. Bunun, 1. Bölüm’de tanımladığım Darwin evrim paketinin bir parçası olduğunu hatırlayacaksınız. Kenneth Oakley’in “Alet Yapan İnsan” başlıklı, 1949 tarihli klasik denemesinde, insanın tarihöncesi hakkındaki bu bakış açısı verilmiştir. Daha öncekti bir bölümde de belirttiğimiz gibi Oakley, dilin günümüzçdeki düzeyde “mükemmelleştirilmesinin” modern insanın ortaya çıkışını sağladığını ilk zavunanlar arasındaydı: Diğer bir deyişle, modern insanı modern dil yaratmıştır. Ama günümüzde, insan zihninin oluşumuna açiklik getiren farkli bir açiklama yayginlik kazandi; alet yapan insandan çok sosyal hayvan olan insana yönelik bir açiklamaydi bu. Dil, bir sosyal etkileşim araci olarak geliştiyse, avci-toplayici baglaminda ilitişimi geliştirmesi evrimin asil nedeni degil, ikincil bir yarari olarak görülebilir. Columbia Ünivrsitesi’nden nörolog Ralph Holloway, tohumu 1960'larda atılan bu yeni bakış açısının en önemli öncülerindendir. On yıl önce şöyle yazmıştı: “ Dilin, temelde saldırgan olmaktan çok işbirlikçi olan ve cinsiyetler arasında tamamlayıcı bir sosyal yapısal davranışsal işbölümüne dayanan, sosyal davranışsal bilişsel bir matristen geliştiğine inanma eğilimini duyuyuroum. Bu, bebeğin bağımlılık süresinin uzaması, üreme olgunluğuna ulaşma sürelerinin uzaması ve olgunlaşma süresinin, beynin daha çok büyümesini ve davranışsal öğrenmeyi mümkün kılacak şekilde uzaması için gerekli bir uyarlanmacı evrim stratejisiydi.” Bunun, insangilerin yaşam tarihinin (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s: 133) modelleri hakkındaki, 3. Bölüm’de tanıladığım keşiflerle uyumlu olduğunu görebilirsiniz. Hollooway’ in öncü fikirleri pek çok kılığa büründükten sonra, sosyal zeka hipotezi olarak bilinmeye başladı. Londra’daki Unuvirsity College’den primatolog Robin Dunbar, bu fikri yakın zamanlarda şöyle geliştirdi: “ Geleneksel (kurama) göre (primatların) dünyada yollarını bulabilmek için daha büyük bir beyne ihtiyaçları vardır. Alternatif kurama göre ise, primatların kendilerini içinde bulundukları karmayşık sosyal dünya, danhha büyük beyinlerin oluşması için gerekli dürtüyü sağlamıştır.’ Primat gruplarında sosyal etkileşimi dğiştirmenin en önemli parçalarından biri giyinip kuşanmaktır; bu, bireyler arasında yakın bağlantı ve birbirini izleme olanağını sağlar. Dunbar’a göre giyim-kuşam, belli bir boyuttaki gruhplarda etkilidir; ama bu boyut aşıldığında toplumsal ilişkileri kolaylaştıracak başka bir araca gereksinim duyulur. Dunbar, insanın tarihöncesi döneminde grup boyutunun büyüdüğünü ve bunun da, daha etkili bir sosyal dış görünüş için seçme baskısı yarattığını söylüyor. “Dilin, dış görünüşle karşılaştırıldığında iki ilginç özelliği var. Aynı anda pek çok insanla konuşabilirsiniz”. Dunbar’a göre sonuçta, “dil, daha çok sayıda bireyin sosyal gruplarla bütünleştirilmesi için gelişti.” Bu senaryoya göre dil, “sesli giyim-kuşam”dır ve Dunbar dilin ancak, “Homo sapien’le birlikte” ortaya çıktığına inanır. Sosyal zeka hipotezine yakınlık duyuyorum; ama ileride de göstereceğim gibi, dilin insanöncesindeki geç dönemlerde ortaya çıktığına inanıyorum. Dilin hangi tarihte ortaya çıktığı, bu tartışmanın temel konularından biridir. Erken bir dönemde oluşup, ardından aşamalı bir ilerleme mi gösterdi? Yoksa yakın zamanlarda ve aniden (s: 134) mi ortaya çıktı? Bunun, kendimizi ne kadar özel gördüğümüze ilişkin felsefi anlamlar taşıdığı unutulmamalı. Günümüzde pek çok antropolog, dilin yakın zamanlarda ve hızla geliştiğine inanıyor; bunun temel hnedenlerinden biri, Üst Paleolitik Devrimi’nde görülen ani davranış değişikliğidir. New York Üniversitesinden arkeolog Randall White, yaklaşık on yıl önce kışkırtıcı bir bildiride, 100.000 yıldan önceki çeşitli insan faaliyetlyeriyle ilgili kanıtların “modern insanların dil olarak görecekleri bir şeyin kesinlikle olmadığına” işaret tetiğini savundu. Bu dönemde anatomik açıdan modern insanların ortaya çıktığını kabul ediyordu, ama bunlar kültürel bağlamda dili henüz “icat” etmemişlerdi. Bu daha sonra olacaktı: “ 35.000 yıl önce.. bu topluluklar, bizim bildiğimiz şekliyle dil ve kültürü geliştirmişlerdi.” White kendi düşüncesine göre, dilin çarpici oranda gelişmesinin Üst Paleolitik dönemiyle çakiştigini gösteren yeri arkeolojik kanit kümesi siraliyor: Ilk olarak, Neanderthaller döneminde başladigi kesin olarak bilinen, ama mezar eşyalarinin da eklenmesiyle ancak Üst Paleolitik’te gelişen, ölünün bilinçili olarak gömülmesi uygulamasiydi. Ikinci olarak, imge oluşturmayi ve bedenin süslenmesini içeren sanatsal ifade ancak Üst Paleolitik’te başliyordu. Üçüncü olarak,Üst Paleolitik’te, teknolojik yenilik ve kültürel degişim hizinda ani bir ivme görülüyordu. Dördüncü olarak, kültürde ilk kez bölgesel farklilyiklar oluşmaya başlamişti; bu, sosyal sinirlarin ifadesi ve ürünüydü. Beşinci olarak, egzotik nesnelerin degiştokuşu şeklinde uzun mesafeli temaslarin kanitlari bu dönemde güçleniyordu. Altinci olarak, yaşama alanlari önemli oranda büyümüştü ve bu düzeyde bir planlama ve koordinasyon için dile gerek duyulacakti. Yedinci olarak, teknolojide, agirlikli olarak taşin kullanilmasindan kemik, boynuz ve kil gibi yeni hammaddelerin kullanimina geçiliyor ve bu da fiziksel ortamin kullanilmasinda, dil olmaksizin hayal edilemeyecek bir karmaşikliga geçildigini gösteriyordu.(s:135) White ile, aralarında Lewis Binford ve Richard Klein ’ın da bulunduğu bazı antropologlar, insan faaliyetindeki bu “ilkler” öbeğinin altında, karmaşık ve tam anlamıyla modern bir konuşma dilinin ortaya çıkışının yattığına inanıyorlar. Binford, önceki bölümlerden birinde de belirttiğim gibi, modern öncesi insanlarda planlamaya ilişkin bir kanıt göremiyor ve gelecekteki olay ve faaliyetlerin önceden tahmin edilip düzenlenmesinin fazla yarar taşıyacağına inanmıyordu.İleriye doğru atılan adım, dildi; “dil ve özellikle, soyutlamayı mümkün kılan simgeleme. Böylesine hızlı bir değişimin oluşması için biyolojiye dayalı, temelde iyi bir iletişim sisteminden başka bir araç göremiyorum.” Bu savı esas itibarıyla kabul eden Klein, güney Afrika’daki arkeolojik sitlerde, avcılık becerilerinde ani ve görece yakın zamanda gerçekleşmiş bir gelişmenin kanıtlarını görüyor ve bunun, dil olanağını da içeren modern insan zihninin ortaya çıkışının bir sonucu olduğunu söylüyor. Dilin, modern insanların ortaya çıkışıyla çakışan hızlı bir gelişme olduğuna dar görüş geniş destek görse de, antropolojik düşünceye tam anlamıyla hakim olmuş değildir. İnsan beyninin gelişimi hakıkndaki incelemelerinden 3. Bölüm’de söz ettiğimi Dean Falk, dilin daha erken geliştiği düşüncesini savunuyor. Yakın zamanlarda bir yazısında şöyle demişti: “İnsangiller dili kullanmamış ve geliştirmememişlerse, kendi kendine geliyşen beyinleriyle ne yapmış olduklarını bilmek isterdim.”Nörolog Terrence Deacon da benzer bir görüşü savunuyor ama onun düşünceleri fosil beyinler değil, modern beyinler üzerinde yapılan incelemelere dayanıyor: 1989'da Human Evolution dergisinde yayınlanan bir makalesinde “ Dil becerisi (en az 2 milyon yıllık) uzun bir dönem içinde, beyin-dil etkileşiminin belirlediği sürekli bir seçimle gelişti” der. İnsansımaymun beyniyle insan beyne arasındaki nöron bağlantısı farklarını karşılaştıran Deacon, insan beyninin evrimi sırasında en çok değişen beyin yapı(s: 136) ve devrelerinin, sözlü bir dilin alışılmadık hesaplama gereksinimlerini yansıttığını vurguluyor. Sözcükler fosilleşmedigine göre antropologlar bu tartişmayi nasil çözüme kavuşturacaklar? Dolayli kanitlar-atalarimizin yarattigi nesneler ve anatomilerindeki degişimler- evrim tarihimiz hakkinda farkli öyküler anlatiyor. Işe beyin yapisi ve ses organlarinin yapisi da dahil olka üzere, anatomik kanitlari inceleyerek başlayacagiz. Sonra- davranişin arkeolojik kalintilarini oluşturan yönleri olan- teknolojik gelişmişlige ve sanatsal ifadeye bakacagiz. İnsan beynindeki büyümenin 2 milyon yıldan önce, Homo cinsiyle birlikte başladığını ve istikrarlı şekilde sürdüğünü görmüştük. Yaklaşık yarım milyon yıl önce Homo erectus’un ortalama beyin büyüklüğü 1100 santimetreküptü ve bu, modern insan ortalamasına yakın bir rakamdı. Australopithecus ’la Homo arasındaki yüzde elli düzeyindeki sıçramadan sonra, tarihöncesi insan beyninin büyüklüğünde ani artışlar görülmedi.Mutlak beyin boyutunun önemi psikologlar arasında sürekli bir tartışma konusu olsa da, insanın tarihöncesinde görülen üç kat oranındaki büyüme hiç kuşkusuz, bilişsel yeteneklerin geliştiğini gösteriyor. Beyin boyutu dil yetenekleriyle de bağlantılıysa, yaklaşık son 2 milyon yıl içinde beyin boyutunda görülen büyüme, atalarımızın dil becerilerinin kademeli olarak geliştiğini düşündürüyor. Terrence Deacon’ın insansımaymun ve insan beyinleri arasında yaptığı karşılaştırma da bunun mantıklı bir sav olduğunu gösteriyor.Nörobiyolog Harry Jerison, insan beynindeki büyümernin motoru olarak dile işaret ederek, Alet Yapan İnsan hipotezindeki, daha büyük beyinler için evrim baskısını el becerilerinin yarattığı fikrini yadsıyor. 1991'de verdiği bir konferansta (s: 137)şöyle demişti:" Bu bana yeteresiz bir açıklama gibi geliyor; özelilkle de alet yapımının çok az beyin dokusuyla da mümkün olması yüzünden. Basit ama yararlı bir dil üretmek içinse çok büyük oranlarda beyin dokusuna ihtiyaç var.” Dilin altında yatan beyin yapısı bir zamanlar sanıldığından çok daha karmaşıktır. İnsan beyninin çeşitli bölgelerine dağılmış, dille bağlantılı pek çok alan görülüyor. Atalarımızda da bu tür merkezlerin saptanabilmesi durumunda, dil konusunda bir karara varmamız kolaylaşabilirdi. Ama soyu tükenmiş insanların beyinlerine ilişkin anatomik kanıtlar yüzey hatlarıyla sınırlı kalıyor; fosil beyinler, iç yapı hakkında hiçbir ipucu snmuyor. Şansımıza, beynin yüzeyinde, hem dille hem de alet kullanımıyla bağlantılandırılan bir beyin özelliği görülüyor. Bu, (çoğu insanda) sol şakak yakınlarında yer alan yüksek bir yumru olan Broca kıvrımıdır. Fosil insan beyinlerinde Broca kıvrımına dair bir kanıt bulmamız, dil becerisinin geliştiğine ilişkin, belirsiz de olsa bir işaret olacaktır. Olası bir ikinci işaret de, modern insanlarda sol ve sağ yarıları arasındaki büyüklük farkıdır. çoğu insanda sol yarıküre sağ yarıküreden daha büyüktür; ve bu kısmen, dille ilgili mekanizmanın burada yer almasının sonucudur. İnsanlarda el kullanımı da bu asimetriyle bağlantılıdır. İnsan nüfusunun yüzde 90'ı sağ ellidir; dolaysıyla, sağ ellilik ve dil yetisi sol beynin büyük olmasıyla bağlatılandırılabilir. Ralph Holloway, 1972'de Turkana Gölü’nde bulunmuş, çok iyi (?) bir Homo habilis örnegi olan ve yaklaşik 2 milyon yaşinda oldugu saptanan kafatasi 1470'in(Müzeye giriş numarasi) beyin şeklini inceledi. Beyin kutusunun iç yüzeyinde Broca alaninin izini saptamaktan öte, beynin sol-sag şekillenmesinde de hafif bir asimetri buldu. Bu, Homo habilis’in modern şempanzelerin soluma- haykirma-homurtudan çok daha fazla iletişim aracina sahip oldugunu gösteriyordu. Holloway, Human Neurobiology’de yayinlanan bir bildiride, dilin ne zaman ve nasil ortaya çiktigini kanitlamanin olanaksizligina karşin, dilin ortaya çikişşinin “paleontolojik geçmişin derinliklerine “ uzanmasinin (s: 138) mümkün oldugunu belirtti. Holloway, bu evrim çizgisinin Australopithecus’la başlamiş olabilecegini söylüyordu;ama ben onunla ayni fikirde degilim. Bu kitapta şu ana dek yer verilen tüm tartişmalar, Homo cinsinin ortaya çikişiyla birlikte, insangil uyarlamasinda önemli bir degişim yaşandigina işaret ediyor.. Dolaysiyla ben, ancak Homo habilis ’in evrilmesiyle bir tür konuşma dilinin oluşmaya başladigini düşünüyorum. Bickerton gibi ben de bunun bir tür öndil, içedrigi ve yapisi basit, ama insansimaymunlarin ve Australopithecus ’ larin ötesine geçmiş bir iletişim araci oldugunu saniyorum. Nicholas Toth’un, 2. Bölümde sözü edilen, olağanüstü özenli ve yenilikçe alet yapma deheyleri, beyin asitmetrisinin erken inasnlarda da görüldüğü fikirini destekliyor.Toth’un taş alet yapımı çalışmaları,Oldovan kültürü uygulamacılarının genellikle sağ eli olduklarını ve dolaysıyla, sol beyinlerinin biraz daha büyük olacağını gösterdi. Toth’un bu konudaki gözlemleri şöyleydi: “Alet yapma davranışlarının da gösterdiği gibi, erken alet yapımcılarında beyin kanallaşması oluşmuştu. Bu, olasılıkla dil yetisinin de ortaya çıkmaya başladığını gösteren bir işarettir.” Fosil beyinlerinden elde edilen kanıtlar beri, dilin Homo cinsinin ilk ortaya çıkışıyla birlikte gelişmeye başladığına ikna etti. En azından, bu kanıtlarda, dilin erken dönemlerde ortaya çıktığı savına karşıt bir şey göremiyoruz. Ama ya ses organları: Gırtlak, yutak, dil ve dukalar? Bunlar da ikinci önemli anatomik bilgi kaynağını oluşturuyor. İnsanlar, gırtlağın boğazın alt bölümünde yer alması ve dolaysıyla, yutak adı verilen geniş bin se odacığı yaratması sayesinde, pek çok ses çıkarabilirler. New York’taki Mount Sınai Hastanesi tıp Fakültesinden Jeffrey Laitman, Brown Ünversitesinden Philip Lieberman ve Yale’den Edmund Crelin’in yenilikçi çalışmaları,, belirgin, ayrıntılı bir konuşma yaratılmasında geniş bir yutağın anahtar rol oynadığını gösteriyor. Bu araştırmacılar canlı yaratıkların ve insan fosillerinin ses yolu (s: 139) anatomileri üzerinde kapsamlı bir araştırma gerçekleştirdiler ve ikisinin birbirinden çok farklı olduğunu gördüler. İnsan dışında tüm memelilerde, gırtlak boğazın üst kısmında yer alı ve bu da, hayvanın aynı anda hem soluyup hem içebilmesini sağlar.Ama yutak boşluğunun küçüklüğü, yaratılabilecek ses alanını kısıtlar. dolaysıyla, memelilerin çoğunda, gırtlakta yaratılan seslerin değiştirilmesi ağız boşluğunun ve dudukların şekline bağlıdır. Gırtlağın boğazın alt kısmında yer alması insanların daha çok ses çıkarabilmelerin sağlar; ama ayını anda hem soluyup hem de içmemizi engeller. Böyle bir şey yaptığımızda boulabiliriz. İnsan bebekleri, memeliler gibi, boğazın üst kısımnada yer alan bir gırtlakla doğarlar ve dolaysıyla, aynı anda hem (s: 140) soluyup hem içibilirler; zaten, süt emerken ikisini de yapabilmeleri gerekir. Yaklaşık on sekizinci aydan itibaren gırtlak boğazın alt kısımlarına kaymaya başlar ve yetişkin konumuna, çocuk yaklaşık on dört yaşındayken ulaşır.Araştırmacılar,insanın erken dönem atalarının boğazlarında gırtlağın konumunu saptayabilmeleri durumunda,türün seslendirme ve dil yetisi konusunda bazı sonuçlara ulaşabilecemklerini fark ettiler.Ses organlarının fosilleşmeyen yumuşak dokulardan-kıkırdak, kas ve et- oluşması nedeniyle,bu oldukça güç bir işti.Yine de eski kafalarda,kafatasının dibinde, yani basikranyumda yer alan çok önemli bir ipucu görülüyor. Temel memeli modelinde kafatasının alt kısmı düzdür. İnsanlardaysa,belirgin şekilde kavisli. Dolaysıyla, fosil insan türlerinde basikranyum şekli,ses çıkarabilme yeteneğinin düzeyini gösterir. İnsan fosillerini inceleyen Laitman, Australopithecus’taki basikranyumun düz olduğunu gördü. Diğer pek çom biyolojik özellikte olduğu gibi,bu açıdan da insansımaymun gibiydiler ve insansımaymunlar gibi,onların da sesli iletişimi kısıtlı olmalıydı.Australopitecus’lar,insan konuşma modeline özgü evrensel ünlü seslerinin bazılarını çıkaramayacaklardı. Laitman,şu sonuca vardı: “Fosil kalıntılarında tam anlamıyla eğrilmiş bir basikranyum ilk olarak,yaklaşık 300 000 ile 400 000 yıl önce,arkakik Homo sapiens adını verdiğimiz insanlarda görülmektedir.” Yani,anatomik açıdan modern insanların evrilmesinden önce ortaya çıkan arkaik sapiens türlerinin tam anlamıyla modern bir dilleri var mıydı? Bu, pek olası görünmüyor. Basikranyum şeklindeki degişim,biline en eski Homo erectus örnegi olan,kuzey kenya’da bulunan ve yaklaşik 2 milyon yil öncesinden kalma kafatasinin incelemeliren göre bu Homo erectus bireyi,bazi ünlü sesleri çikartma yetenegine sahipti. Laitman, erken homo erectus’ta girtlak konumunun,alti yaşindaki modern bir çocugun girtlak konumuna eşdeger olacagini hesapliyor. Ne yazik ki, şu ana dek eksiksiz bir habilis beyin kutusu bulunamamasi nedeniyle (s:141), homo habilis hakkinda hiçbir şey söylenemiyor. Ben, en erken Homo’ya ait eksiksiz bir beyin kutusu buldugumuzda,tabanda egrilme başlangici görecegimizi tahimin ediyorum.Ilkel bir konuşma dili yetisi, homo’hnun ortaya çikişiyla birlikte başlamiş olmali. Bu evrim dizisi içinde açık bir paradoks görüyoruz. Basikranyumlarına bakılırsa,Neanderthallerin sözel becerileri,kendilerinden yüz binlerce yıl önce yaşamış olan diğer arkakik sapiens’lere göre daha geriydi. Neanderthallerde basikranyum eğrilmesi, Homo erectus’tan bile daha az düzeydeydi. Neanderthaller gerileyerek,atalarına göre konuşma yeteneklerini kaybetmişer miydi?(Gerçekten de kimi antropologlar,Neanderthallerin soylarının tükenmesiyle,dil yeteneklerinin alt düzeyde olması arasında bağlantı kurulabeleceğini söyylüyorlar). Bu tür evrimsel bir gerileme pek olası görülmüyor;bu tipte başka hiçbir örnek göremiyoruz.Yanıtı,Neanderthal yüz ve beyin kutusu anatomisinde bulmamız daha olası. Soğuk iklime bir uyarlanma olarak,Neanderthalin yüzünün orta kısmı aşırı derecede çıkıntılıdır. Bu yapı, burun geçişlerinin genişlemesini ve dolaysıyla,soğuk havanın ıbsıtılmasını ve dıyşşarı verilen soluktaki nemin yoğunlaşmasını sağlar. Bu yapı basikranyum şeklini,türün dil yetisini önemli oranda azaltmadan etkilemiş olabilir.Antropologlar bu noktayı hala tartışıyor. Kısaca anatomik kanıtlar, dilin erken dönemlerde ortaya çıktığını ve ardından, dil yeteneklerinin aşamalı olarak geliştiğini düşündürüyor.Ama alet teknolojisi ve sanatsal ifade konuisundaki arkeolojik kalıntılardan,genellikle farklı bir öykü çıkıyor. Daha önce belirttiğim gibi dil fosilleşmese bile,insan elinin ürünleri ilkesel olarak,dil hakkında bazı içgödrüler sunabilir. Bir önceki bölümdeki gibi,sanatsal ifadeden söz ederken,modern insan zihninin işleyişinin bilincindeyiz; bu da, modern bir dil düzeyine işaret ediyor. Taş aletler de alet yapımcılarının diyl yetileri hakkında bir anlayış sağlayabilir mi? 1976'da New york Bilimler akademisi’nde dilin kökeni ve doğası hakkında bir bildiri sunması istenen Glynn Isaac’ın (s:142) yanıtlaması gereken de buydu. Isaac, yaklaşık 2 milyon yıl önceki başlangıcından 35.000 yıl önceki Üst Paleolitik devrimine dek süren taş alet kültürlerinin karmaşıklığını gözden geçirdi. bu insanların aletlerle yaptıkları işlerden çok,aletlere verdikleri düzenle ilgileniyordu. Düzenleme insani bir saplantıdır;bu, en ince ayrıntılarıyla gelişmiş bir konuşma dili gerektiren bir davranış biçimidir. Dil olmasa, insanların koyduğu keyfi düzen de olamazdı. Arkeolojik kalıntılar,düzen vermenin insanın tarihöncesinde çok yavaş- adeta buzul hızıyla- geliştiğini gösteriyor. 2.Bölümde, 2.5 milyon ile yaklaşık 1.4 milyon yıl öncesi arasındaki Oldovan aletlerinin fırstaçı bir doğaya sahip olduklarını görmüştük. Alet yapımcılarının aletin şekline önem vermedikleri ve daha çok, keskin yongalar üretmeyi amaçladıkları görülüyor. kazıcılar, kesiciler ve diskler gibi “çekirdek “aletler bu sürecin yan ürünleriydi. Oldovan kültürünü izleyen ve yaklaşık 250.000 yıl öncesirne dek süren Acheuleen kültürü aletlerinde de ancak asgari düzeyde bir şekil görülüyor. Damla şeklindeki el baltası büyük olasılıkla,bir tür zihinsel kalıba göre üretilmişti ama gruptaki diğer aletlerin çoğu pek çok açıdan Oldovankültürüne benziyordu;dahası, Acheuleen alet kutusunda ancak bir düzine alet biçimi görülüyordu. Yaklaşık 250,000 yıl öncesinden itibaren,aralarında Neanderthallerin de bulunduğu arkaik sapiens bireyleri önceden hazırlanmış yongalardan alekler yapmaya başladılar. Mousterien’i de içeren bu gruplarda belki altmış alet tipi saptanabilmişti.Ama tipler 200.000 yılı aşkın bir süre değişmedi;tam bir insan zihninin varlığını yadsır gibi görünen bir teknolojik duruğalık dönemiydi bu. Yenilikçilik ve keyfi düzen ancak 35.000 yıl önce,Üst Palelitik kültürlerin sahneye çıkmasıyla birlikte yaygınlaştı. Yeni ve daha incelikli alet türlerinin yapılmasından öte,Üst Paleolitik döneme özgü alet grupları yüzbinlerce yıl değil,binlerce yıllak bir zaman ölçeği içinde değişmişti. Isaac, bu tenolojik çeşitlilik ve değişim modelinin,bir tür konuşma dilinin aşamalı (s:143) olarak ortaya çıkmasına işaret ettiğini düşünüyor ve Üst Paleolitik Devrimi’nin bu evrim çizgisinde önemli bir dönüm noktası oluşturduğunu savunuyordu. Çoğu arkeolog bu yorumu kabul etmektedir;ancak erken alet yapımcılarının konuşma dili düzeyleri konusunda farklı fikirler vardır; tabii,gerçekten bir dilleri varsa. Colorado Üniversitesi’nden Thomas Wynn, Nicholası Toth’un tersine,Oldovan kültürünün genel özellikleriyle insan değil, insansı maymun benzeri olduğuna inanıyor.man dergsinide 1989'da yaymlanan bir makalede, “Bu tabloda dil gibi unsurları varsaymamız gerekmez” diyor. Bu basit aletlerin yapımının çok az bilişsel yeti gerektirdiğini ve dolaysıyla, hiçbir şekilde insana özgü olmadığını savunuyor. Yine de Acheuleen el baltalarının yapımında “insana özgü bir şeyler” olduğunu kabulleniyor: “Bunun gibi insane serleri,yapımcının ürününün nihai şekline önem verdiğini ve onun bu amaçlılığını,homo erectus’un zihnine açılan küçük bir pencere olarak kullanabileceğimizi gösteriyor.”Wynn,homo erectus’un bilişsel yetisini, Acheuleen aletlerinin yapımının gerektirdiği zihinsel kapasiteyi temel alarak,yedi yaşındaki bir modern insana denk görüyor. Yedi yaşındaki çocuklar,gönderme (referans) ve gramer gibi,kayda değer dil becerilerine sahiptirler ve işaretlere ya da hareketlere gerek duymadan konuşma noktasına yakındırlar. bu bağlam içinde, Jeffrey Laitman’ın,basikranyum şeklini temel alarak, homo erectus’un dil yetisini ayltı yanıdaki modern bir inasının dil yetisine eş gördüğünü hatırlamak ilgi çekici olacaktır... Arkeolojik kalıntıların yalnızca teknoloji unsurunu klavuz alırsak,dilin erken dönemlerde ortaya çıktığını,insanın tarihöncesinin büyük bölümü boyunca yavaş yavaş ilerlediğini ve görece yakın zamanlarda büyük bir gelişme geçirdiğini düşünebiliriz. Bu, anatomik kanıtlardan türeetilen hipotezden ödün verilmesi anlamına geliyor. ama arkeolojik kalıntılar böyle bir ödüne yer bırakmıyor. kayalık korunaklara ya da mağaralara (s:144) yapılmış resim ve oymalar, kalıntılarda 35.000 yıl öncesinden itibaren,birderbire görülüyor. Aşıboyası sopa ya da kemik nesnelerin üzerine kazınmış eğriler gibi, daha önceki sanat eserlerine dair kanıtlar,en iyi olasılıkla ender ve en kötü olasılıkla da kuşkuludur. Sanatsal ifadenin-sözgelimi Avusturalyalı arkeolog Iain Davidson’ ın ısrarla savunrduğu gibi- konuşma diline ilişkin tek güvenilir gösterge olarak alınması durumunda dil,ancak yakın zamanlarda tamamen modern hale gelmiş,bunun da ötesinde, başlangıcı yakın zamanlarda olmuştur. New England Üniversitesi’nden çalışma arkadaşı William Noble’la birlikte yazdıkları yakın tarihli bir bildiride şöyle diyorlar:"tarihöncesinde nsnelere benzeyen imgelerin yapılması ancak,ortak anlamlar sistemlerine sahip topluluklarda ortaya çıkmış olabilirdi.” “Ortak anlamlar sistemleri” elbette, dil sayesinde yaratılabilirdi.Davidson ve noble, sanatı dilin olanaklı kıldığını değil, sanatsal ifadenin,göndermeli dilin gelişmesini sağlayan bir ortam olduğunu savunuyorlar. Sanat dilden önce gelmeli ya da en azından,dille koşut olarak ortaya çıkmalyıydı. Dolaysıyla, arkeolojik kalıntılarda sanatın ilk ortaya çıkışı,göndermeli konuşma dilinin de ilk ortaya çıkışına işaret eder İnsan dilindeki evrimin yapısı ve zamanlamasıyla ilgili pek çok hipotez var; bu da kanıtların ya da en azından kanıtların bir ısmınını yanlış yorumlandığını gösteriyor. Bu yanlış yorumlamaların getirdiği karmaşıklık ne olursa olsun,dilin kökeninin karmaşıklığı hakkında yeni bir anlayış gelişiyor. Wenner-Gren Antropolojik Araştırmalar Vakfı’nın düzenlediği ve Mart 1990'da gerçekleştirilen önemli bir konferansın,illeri yıllardaki tartışmaların akışını belirlediği görülecektir. “İnsan Evriminde Aletler, Dil ve Bilişim” başlıklı konferansta,insan tarihöncesinin bu önemli konuları arasında bağlantı kuruldu. konferansın düzenleyicilerinden Kathleen Gibson bu konumu şöyle tanımlıyor: “İnsan sosyal zekasının,alet kullanımının ve dilin, beyin boyutunda nicel gelişmeyle ve bununla ilgili bilgi işleme yetisiyle bağlantılı olması nedeniyle,içlerinden hiçbiri tek başına Minerva’nın Zeus’un başından doğması gibi,eksiksiz halde ve birdenbire ortaya çıkmış olamaz. Beyin boyşutu gibi bu entellektüel yetilerin her biri de kademeli olarak gelişmiş olmalı. Dahası, bu yetilerin birbirlerine bağımlı olmaları nedeniyle,içlerinedn hiçbiri modern karmaşıkylık düzeyine tek başına ulaşmış olamaz.” Bu karşıkıl bağımlılıkları çözümlemek zorlu bir savaşım olacaktır. Daha önce de belirtttiğim gibi burada, tarihöncesinin yeniden oluşturulmasından çok daha gfazlası; kendimize ve doğadaki yerimize dair bakış açımız da söz konusu. İnsanları özel görmek isteyenler,dilde yakın tarihli ve ani bir başlangıca işaret eden dellileri benimseyeceklerdir. İnsanın doğanın geri kalan kısmıyla bağlantısını reddetmeyenlerse, bu temel insan yetisinin erken dönemlerde ve aşamalı olarak gelişmesi fikrinden rahatsızlık duymayacaklardır. Doğanın bir garipliği sonucu Homo habilis ve Homo erectus topluluları hala var olsaydı, herhalde, çeşitli düzeylerde göndermeli dil kullandıklarını görürdük. Bu durumda, bizimle doğanın geri kalan kısmı arasındaki uçurum bizzat kendi atalarımız tarafından kapatılmış olurdu. (Richard Leakey, İnsanın Kökeni, Varlık/Bilim Yay, s:129-147 ,7. Bölümün sonu) İnsanın evrimine yön veren ayıklama baskıları sorununu bu terimler içinde ele almak gerekir. Söz konusu olanan kendimiz oluşu ve varlığımızın köklerinin evrimin içinde daha iyi görünce onu bugünkü doğası iuçinde daha iyi anlama olanağı bulunuşu bir yana bırakılsa bile, bu yine ayırksal ilginçlikte bir sorundur. Çünkü yansız bir gözlem, örneğin bir Mars’lı, kuşkusuz, evrende biricik bir olay ve insanın özgül edimi olan simgesel dilin gelişmesinin, yeni bir alanının, kültür, düşünce ve bilgi alanının yaratıcısı olan başka bir evrime yol açtığını görebilir. Çağdaş dilciler, simgesel dilin, hayvanların kullandığı türlü iletişim yollarına (işitsel, dokunsal, görsel ya da başka) indirgenemeyeceği olgusu üzerinde direniyorlar. Kuşkusuz doğru bir tutum. Fakat bundan, evrimin mutlak bir kesinlik gösterdiği, insan dilinin daha başlangıçtan beri , örneğin büyük maymunların kullandıkları bir çağırma ve haber verme türleri sistemiyle hiçbir ilişiksi olmadığı sonucuna varmak, bana, güç atılır bir adım ve ne olursa olsun, yararsız bir varsayım gibi görünüyor. Hayvanların beyni, kuşkusuz, yalnızca bilgileri kaydetmekle kalmayıp bunları birleştirmeye, dönüştürmeye ve bu işlemlerin sonucunu kişisel bir işlem olarak yeniden kurmaya elverişlidir: Fakat bu- ki konunun özü de buradadır- özgün ve kişisel bir çağrışım ya da dönüştürmeyi başka bir bireye iletmeye elverişli biçime sokulmamıştır. Oysa tam tersine bir bireyde gerçekleşen yaratıcı birleştirmelerin ve yeni çağrışımların, başkalarına aktarıldıklarında o bireyle ölüp gitmediği gün doğmuş sayılan insan dilinin sağladığı olanak budur. Primitif dil diye bir şey bilinmiyor: Çagdaş, biricik türümüzün bütün irklarinda simgesel aygit hemen hemen ayni karmaşikliga ve iletişim gücüne ulaşmiştir. Chomsky’ye göre ise, bütün insan dillerini temel yapisinin, yani “biçim”inin, ayni olmasi gerekir.Dilin hem temsil edip, hem olanak sagladigi olaganüstü edimler, Homo sapiens ’ de merkezi sinir sistemindeki önemli gelişmeyle açikça birlikte gitmiştir ve bu gelişme onun en ayirt edici anatomik özelligini oluşturur. Bugün denebilir ki, insanın bilinen en uzak atalarından başlayan evrimi, herşeyden önce kafatasının, dolyasıyla beyninin, ileri doğru gelişmesinde kendini gösterir. Bunun için, iki milyon yıldan daha uzun süren, yönlendirilmiş, sürekli ve desteklenmiş birr ayıklama baskısı gerekti. Ayıklama baskısı hem çok güçlü olmalı, çünkü bu süre göreli olarak kısadır, hem de özgül olmalı, çünkü başka hiçbir soyda bunun benzeri gözlemlenmemiştir: Çağımızdaki insanımsı maymunların kafatası sığası birkaç milyon yıl öncekilerden daha büyük değildir. İnsanın ayrıcalıklı merkezi sinir sisitmenini evrimiyle, onu özniteleyen biricik edimin evrimi arasında sıkı bir birliktelik olduğunu düşünmemek olanaksız. Öyle ki bu durumda dil, bu evrimin yalnızca bir ürünü değil, ayrıca başlangıç koşullarından da biri oluyor.(Raslantı ve Zorunluluk, s: 118-119) Bana göre doğruya en yakın varsayım, en ilkel simgesi iletişimin bizim soyumuzda çok erken ortaya çıktığı ve yeni bir ayıklama baskısı yaratarak türün geleceğini belirleyen başlangıç “ seçim”lerinden birini oluşturduğudur; bu ayıklama, dilsel edimin kendisinin ve dolaysıyla onu kullanan organın, yani beynin, gelişmesini kolaylaştırmış olmalı. Bu varsayımı destekleyen güçlü kanıtlar bulunduğunu sanıyorum. Bugünkü bilinen en eski gerçek insanımsılarda (Australopitekuslar ya da Leroi-Gourhan’ın haklı deyimiyle “Australantroplar”), İnsanı, en yakınları olan Pongide’lerden (yani insanımsı maymunlardan) ayır eden öznitelikleri bulunuyordu ve onların tanımı da buna dayanır. Australantroplar ayakta dururlardı ve bu, yalnızca ayağın özelleşmesiyle değil; iskeletteki ve başta belkemiği olmak üzere kas yapısındaki ve kafanın belkemiğine göre konumundaki değişikliklerle birlikte gider. İnsanın evriminde, Gibbon dışındaki bütün insanımsıların, dört ayakla yürümenin kısıtlamalırnadan kurtulmuş olmalarının önemi üzerinde de çok duruldu. Kuşkusuz bu çok eski (Australantroplardan daha eski) buluş çok büyük bir önem taşıyordu: Atalarımızın, yürürken ya da koşarken de ellerini kullanabilmelerini sağlayan yalnızca buydu. Buna karşi, bu ilkel insanimsilarin kafatasi sigasi bir şempanzeninkinden biraz büyük ve bir gorilinkinden biraz küçüktü. Beynin agirligi edimleriyle oranli degildir, ancak bu agirligin edimleri sinirladigi da kuşkusuzdur ve Homo sapiens yalnizca kafatasinin gelişmesiyle ortaya çikabilirdi. Ne olursa olsun, Zinjantrop, beyninin bir gorilinkinden daha ağır olmamasına karşın, Pongide’lerin bilmediği edimlere yetenekliydi: Gerçekten, Zinjantrop alet yapabiliyordu; gerçi bu öylesine ilkeldi ki; bu “aletler” ancak çok önemsiz biçimlerin yinelenmesi ve belli taşıl iskeletleri çevresinde brikmiş olmaları nedeniyle yapıntı olarak kabul ediliyorlar. Büyük maymunlar, yeri geldikçe, taştan ya da ağaç dallarından doğal “alet” kullanırlar, fakat tanınabilir bir norma göre biçimlendirilmiş yapıntılara benzeyen şeyler üretmezler. Böylece Zinjantropun çok ilkel bir Homo faber olarak görülmesi gerekiyor. Oysa dilin gelişmesiyle, amaçli ve disiplinli bir etkinligin belirtisi olan bir ustaligin gelgşmesi arasinda çok siki bir karşiliklilik bulunmasi büyük bir olasilik gibi görünüyor. Demek Australantroplarda, yalin ustaliklari ölçüsünde bir simgesel iletişim aygiti bulundugunu düşünmek yerinde olur. Öte yandan eger Dart’in düşündügü gibi, Austalantroplar, özellikle de gergedan, hipopotam ve panter gibi güçlü ve tehlikeli hayvanlari da başariyla avlayabilmişlerse, bunun, bir avcilar takimi arasinda önceden tasarlanmiş bir edim olmasi gerekir. Bu önceden tasarlama bir dilin kullanilmasini gerektirir. Australantropların beyinlerinin oylumundaki gelişmenin azlığı bu varsayıma karşı çıkar gibidir. Fakat genç bir şempanze üzerinde son yapılan deneylerin gösterdiğine göre, maymunlar konuşma dilini öğrenme yeteneğine sahip olmamakla birlikte sağır-dilsizlerin dilinden kimi öğeleri kavrayıp kullanabilmektedirler. Bu durumda artık konuşmalı simgeleme gücünün kazanılmasının, bu aşamada bugünkü şempanzeden daha anlayşışlı olmayan bir hayvandaki çok karmaşık olması gerekemyen nöromotris değişmelerden doğduğunu kabul etmek yerinde olur. Fakat açıktır ki bir kez bu adım atıldıktan sonra, ne denli ilkel olursa olsun bir dilin kullanılması, düşüncenin varkalma değerini arttırmaktan, böylece beynin gelişmesine yardımcı olarak, konuşmadan yoksun hiçbir türün erişemeyeceği, güçlü ve yönlü bir ayıklama baskısı yaratmaktan geri kalmaz. Bir simgesel iletişim sistemi ortaya çıktığı anda, bunu kullanmakta en yetenekli olan bireyler, daha doğrusu topluluklar, başka topluluklar karşısında, aynı zeka düzeyinin, dilden yoksun bir türün bireylerine sağlayabileceğiyle ölçüştürülemeyecek kadar üstünlük kazanırlar. Yine görülüyor ki, bir dilin kullanımından doğan ayıklama baskısı, sinir sisteminin, özellikle bu ayrıcalıklı, özgül ve geniş olanaklarla dolu edimin verimliliğine en uygun yönde gelişmesine yardım edecektir. Bu varsayım, günümüzdeki kimi verilerle de desteklenmiş olmasaydı, çekici ve akla uygun olmaktan öte gidemezdi. Çocuğun dil kazanması üzerindeki araştırmaların karşı çıkılmaz biçimde gösterdiğine göre bu sürecin bize mucize gibi görünmesi onun doğası gereği, herhangi bir biçimsel kuramlar sisteminin düzenli öğrenimindenf farklı oluşundandır.Çocuk hiçbird kural öğrenmez ve büyüklerin konuşmasına öykünmeye çalışmaz. Denebilir ki gelişmenin her aşamasında kendine uygun olanı alır. İlk aşamada (18 aylığa doğru) on kelime kadar bir dağarcığı olur ki, bunları her zaman, hep ayrı ayrı, öykünmeyle bile birbiriyle birleştirmeden kullanır. Daha sonra kelimeleri ikişer ikişer, üçer üçer vb., yine büyüklerin konuşmasınının yalın bir yinelemesi ya da öykünmesi olmayan bir sözdizimine göre birleştirecektir. Bu süreç, öyle görünüyor ki, evrenseldir ve kronolojisi de bütün dillerde aynıdır. İlk yıldan sonraki iki ya da üç yıl içinde, çocuğun dille oynadığı bu oyunda kazanmış oldğu yetkinlik, yetişkin bir gözlemci için inanılır gibi değildir. İşte bu nedenle burada, dilsel edimlerin temelindeki sinirsel yapıların içinde gelliştiği sıralı- oluşsal bir embriyolojik sürecin yansısını görmek zorunda oluyor. Bu varsayım, sarsıntılı kaynaklı konuşma yitimiyşle ilgili gözlemlerle desteklenmiştir. Bu konuşma yitimleri çocuğun gençliği ölçüsünde daha çabuk ve daha tam olarak geriler. Buna karşı bu bozukluklar erinliğe yakın ya da daha sonra ortaya çıktıklarında tersinmezz olurlar. Bunların dışında bütün bir gözlemler birikiminin doğruladığına göre, dilin kendiliğinden kazanılışının kritik bir yaşı vardır. Herkes bilir, yetişkin yaşta ikinci bir dil öğrenmek, sistemli ve sürekli bir iradeli çabayı gerektirir. Bu yoldan öğrenilen bir dilin düzeyi, hemen her zaman, kendiliğinden öğrenilen ana dil düzeyinin altında kalır. Dilin ilk edinilişinin sirali-oluşsal bir gelişme sürecine bagli oldugu görüşü, anatommik verilerle de dogrulanmiştir.Gerçekten, beynin doguştan sonra süren gelişmesinin erinlikle bittigi bilinir. Bu gelişme temelde, beyin kabugu sinir hücrelerinin kendi aralarindaki baglantilarin önemli ölçüde zenginleşmesinden oluşur. Ilk iki yilda çok hizli olan bu süreç, sonra yavaşlar: Erinlikten sonra (göründügü kadariyla) sürmez; demek ki ilksel edinimin olanakli bulundugu “kritik dönemi” kaplar. (Raslantı ve Zorunluluk, s:121) Burada, çocukta dil kazanımının böylesine mucizevi biçimde kendiliğinden görünüşü, onun, işlevlerinden bir dile hazırlamak olan bir sıralı-oluşsal gelişmenin bütünleyici bir bölümü oluşundandır, düşüncesine varabilmek için bir küçük adım kaloyor ki, ben kendi payıma bu adımı atmakta duraksamam. Biraz daha kesin belirtelim: Bilişsel işlevin gelişmesi de, kuşkusuz, beyin kabuğunun bu doğum sonrası büyümesine bağlıdır. Dilin bilişsel işlevle birliğini sağlayan, onun bu sıralı-oluş sürecinde kazanılmış olmasıdır; bu öylesine bir birlikteliktir ki, konuşmayla onun açıkladığı bilginin, içebakış yoluyla birbirinden ayrılmasını çok zorlaştırır. İkinci evrimin, yani kültürün ürünü olan insan dillerinin büyük çeşitliliğine bakarak, genellikle dilin bir “üstyapı”dan başka bir şey olamayacağı kabul edilir. Oysa Homo sapiens ’ deki bilişsel işlevlerin genişliği ve inceliği, açıklamasını ancak dilde ve dil yoluyla bulabilir. Bu aygıt olmadan o işlevler, büyük bölümüyle, kullanılamaz olur, kötürümleşir. Bu anlamda dil yeteneği artık üstyapı olarak görülemez. Kabul etmeli ki çağdaş insanda, bilişsel işlevler ile bunların doğurduğu ve aracılıklarıyla kenndini açıkladığı simgesel dil arasında, ancak uzun bir ortak evrimin ürünü olabilecek sıkı bir ortakyaşarlık (sybiose) vardır. Bilindiği gibi, Chomsky ve okuluna göre, derinliğine bir dilsel çözümleme, insan dillerinin büyük çeşitliliği içinde bütün dillerde ortak olan bir “biçim” bulunduğunu gösteriyor. Chomsky’ye göre, demek bu biçim, türün özniteliği ve doğuştan olarak kabul edilmelidir. Bu görüş, onda Descartesçı metafiziğe bir dönüş gören birçik filozof ya da antropoloğu şaşırttı. Bunun gerektirdiği biyolojik içeriği kabul etmek koşuluyla, bu görüş beni hiç şaşırtmıyor.Tersine çok daha önce, en kaba biçimiyle kazanılmış birdilsel yeteneğin insanın beyin zarı yapısındaki gelişmeyi etkilemekten geri kalmayacağını kabul etmek koşuluyla, bu bana, bu bana çok doğal görünüyor. Bu da demektir ki, konuşulan dil, insan soyunda ortaya çıktıktan sonra, yalnızca kültürün gelişmesini sağlamakla kalmadı, insanın fiziksel evrimine de belirgin biçimde yardım etti. Eğer gerçekten böyle olduysa, beynin sıralı-oluşsal gelişmesi boyunca ortaya çıkan dilsel yetenek, bugün “insan doğası”nın bir bölümüdür ve kendisi de, genom içinde, kalıtsal kuramın kökten değişik diliyle tanımlanmıştır. Mucize mi? Son çözümlede bir rastlantı ürünü söz konusu olduğuna göre öyle. Fakat Zinjantrop ya da arkadaşlarından biri, bir kategoriyi temsil etmek üzere bir konuşma simgesini ilk kullandığında, bir gün Darwinci evrim kuramını kavrama yeteneğinde bir beynin ortaya çııkma olasılığını çok büyük ölçüde artırmış oldu. (J. Monod, Raslantı ve Zorunluluk, s: 116-122) Sınırlar “ Evrimin belki üç milyar yıldan beri geçtiği yolun büyüklüğü, yarattığı yapıların görkemli zenginliği, bakteri’den İnsan’a, canlı varlıkların teleonomik edimlerinin mucizevi etkinliği düşünüldüğünde bütün bunların, gelişigüzel sayılar arasından kazanılan, kör bir ayıklamanın gelişigüzel belirlediği bir piyango ürünü olduğundan şüpheye düşülebilir. Birikmiş çagdaş kanitlarin ayrintili bir incelemesi, bunun olgularla (özellikle eşlenmenin, degişinimin ve aktarimin moleküler mekanizmalariyla) bagdaşan tek görüş oldugunu bildirse de, bir bütün olarak evrimin, dolaysiz, bireşimsel (synthetique) ve sezgisel bir anlatimini vermez görünüyor. Mucize “açiklanmiş” da olsa bizim gözümüzde hala mucizeligini koruyor. Mauriac’in deyişiyle : “Biz zavalli Hiristiyanlar için, bu profesörün dedikleri, bizim inandiklarimizdan daha inanilmaz görünüyor.” Bu da tıpkı modern fizçikteki kimi soyutlamaların doyurucu bir zihinsel imgenin kurulmaması gibi doğrudur. Fakat yine de biliyoruz ki, bu tür güçlükler, deneyin ve mantığın güvencelerini taşıyan bir kurama karşı kanıt olarak kullanılamazlar.Gerek mikroskopik gerek kozmolojik fizikte, sezgisel anlaşmazlığın nedenini görebiliyoruz: Karşılaştığımız olayların ölçüsü, dolyasız deneyimizin kategorilerini aşıyor. Bu sayrılğın yerine, o da sağaltmadan, yalnızca soyutlama geçebilir. Biyoloji için zorluk başka bir düzeydedir. Herşeyin temelinde bulunan ilksel etkileşimleri kavramak, mekanik öznitelikleri nedeniyle, göreli olarak kolaydır. Her tür toptan sezgisel tasarıma karşı çıkan, canlı sistemlerin fenomenolojik karmaşıklığıdır. Fizikte olduğu gibi biyolojide de, bu öznel güçlükler içinde; kuramı çürüten bir kanıt bulunmaz. Bugün artık denebilir ki, evrimin ilksel mekanizmaları, ilke olarak anlaşılmış olmakla kalmıyor, kesinlikle belirlenmiş de oluyor. Bulanan çözümü, türlerin kalıcılığını sağlayan mekanizmalarla, yani DNA’nın eşlenici değişmezliği ve organizmaların teleonomik tutarlılığı ile ilgili olduğu ölçüde doyurucudur. Yine de biyolojide evrim, daha uzun süre, zenginleşip belirlenmesini sürdürecek olan esas kavramdir. Bununla birlikte, temelde sorun çözülmüştür ve evrim artik bilginin sinirlari üzerinde bulunmamaktadir. Bu sınırları, ben kendi payıma, evrimin iki ucunda görüyorum: Bir yandan ilk canlı sistemlerin kaynağı, öte yandan da ortaya çıkmış olan sistemler arasında en yoğun biçimde teleonomeik olanın, yani insanın sinir sisteminin, işleyişi. Bu bölümde, bilinmeyenin bu iki sınırını belirlemeye çalışacağım. Cüanlı varlıkların özsel nitelikleinin temelindeki evrensel mekanizmaların açığa çıkarılmasının, kaynaklar sorununun çözzümünü de aydınlattığı düşünülebilir. Gerçekte bu buluşlar, sorunu hemen tümüyle yenileyerek, çok daha belirli terimler içinde ortaya koymuşlar ve onun eskiden göründüğünden de daha zor olduğunu göstermişlerdir. İlk organizmaların ortaya çıkışına götüren süreçte, önsel (a priori) olarak, üç aşama tanımlanabilir: a. Yeryüzünde canlı varlıkların temeli kimyasal oluşturucularının yani nükleotid ve aminosatlerin oluşmasi b. Bu gereçlerden başlayarak eşlenme yetenegi bulunan ilk makromoleküllerin oluşmasi c. Bu “eşlenici yapilar” çevresinde, sonunda ilk hücreye ulaşmak üzere bir teleonomik aygit yapan evrim. Bu aşamalardan her birinin yorumunun ortaya koydugu sorunlar degişiktir. Çok kere “önbiyotik aşama” denen birinci aşamaya, yalniz kuram degil, deney de yeterince ulaşabiliyor.Önbiyotik evrimin gerçekte izledigi yollar üzerinde belirsizlikler kalmiş ve daha da kalacak olmakla birlikte, bütünün görünüşü yeterli açikliktadir. Dört milyar yil önce atmosferin ve yer kabugunun koşullari kömürün, metan gibi kimi basit bileşiklerinin birikimine elverişliydi. Su ve amonyak da vardi. Oysa bu basit bileşikler, katlizörlerle biraraya geldiginde, aralarinda aminoasitlerin ve nükleotid öncülerinin (azotlu bazlar, şekerler) bulundugu çok sayida daha karmaşik cisimler kolayca elde edilebiliyor. Burada dikkati çeken olgu, bir araya gelmeleri kolay anlaşilan belli koşullar altinda, bu bireşimlerin, günümüz hücresinin oluşturuculariyla özdeş olan ya da benzeşen cisimler bakimindan veriminin çok yüksek oluşuduru. Demek ki, yeryüzünde belli bir anda, kimi su yatakları içinde, biyolojik makromoleküllerin iki öbeği olan malik asitlerle proteinlerin temel oluşturucularının, yüksek yoğunlukta çözeltiler olarak bulunmasının olabilirliği kanıtlanmış sayılabilir. Bu önbiyotik çorbada, önceden bulunan aminoasit ve nükleotidlerin polimerleşmesi yoluyla, çeşitli makromoleküller oluşabilir Gerçekten laboratuvarda, akla yatkın koşullar altında, genel yapılarıyla “çağdaş” makromoleküllere benzeyen polipeptit ve polinükleotidler elde edilmiştir. Demek buraya dek önemli zorluklar yok. Fakat belirleyici aşama aşilmiş degil: Ilk çorba koşullari altinda, hiçbir teleonomik aygitin yardimi olmadan, kendi eşlenimlerini gerçekleştirme yeteneginde olan makromoleküllerin oluşmasi. Bu zorluk aşilmaz gibi görünüyor. Bir polinükleotidik dizinin, kendiliginden bir eşleşmeyle, tamamlayici dizi ögelerinin bireşimine gerçekten öncülük edebildigi gösterilmiştir. Dogal olarak böyle bir mekanizma ancak çok etkisiz ve sayisiz yanlişliklara açik olurdu. Fakat bunun devreye girmesiyle, evrimin üç temel süreci yani eşlenme, degişinim ve ayiklanmanin da işlemeye başlamasi dizisel-çizgisel yapilari nedeniyle kendiliginden eşlenmeye en elverişli makromoleküllere önemli bir üstünlük saglamiş olmaliydi. Üçüncü aşama, varsayima göre, eşlenici yapinin çevresinde bir organizma , yani bir ilkel hücre oluşturacak olan teleonomik sistemlerin adim adim ortaya çikişidir. Işte “ses duvari”na burada ulaşilir, çünkü bir ilkel hücrenin yapisinin ne olabilecegi üzerinde hiçbir bilgimiz yok. Tanidigimiz en yalin sistem olan bakteri hücresi, ki sonsuz karmaşiklik ve etkinlikte bir makine düzenidir, bugünkü yetkinlik düzeyine belki de bundan bir milyar yil önce ulaşmiştir. Bu hücre kimyasinin bütünsel tasarisi, bütün başka canlilarinkiyşla aynidir. Kullandigi kalitsal kuram ve çeviri düszeni, örnegin insanlirinkiyle aynidir. Böylece, araştirmamiza sunulan en yalin hücrelerin “ilkel” bir yani yoktur. Bunlar, beş yüz ya da bin milyar kuşak boyunca, gerçekten ilkel yapilarinin kalintilari seçilemez olacak düzeyde güçlü bir teleonomik araçlar birikimi oluşturabilen bir ayiklanmanin ürünüdür. Taşillar olmadan böyle bir evrimi yeniden kurmak olanaksizdir. Yine de bu evrimin izledigi yol, özellikle başlama noktasi üzerine hiç olmazsa akla yatkin bir varsayim ortaya atmaya çalişilabilir. İlkel çorba yoksullaştığı ölçüde, kimyasal gizil gücü harekete geçirmeyi ve hücresel oluşturucuları birleştirmeyi “öğrenmiş” olması gereken metabolizma sisteminin gelişmesi ortaya Herkül sorunları çıkarır.Canlı hücrenin zorunlu koşulu olan seçmeli geçirimli zarın ortaya çıkışında da durum aynıdır. Fakat en büyük sorun, kalıtsal hücreyle, onun çevirisinin mekanizmasıdır. DOğrusu, “sorun”dan değil de gerçek bir gizden söz etmek gerekiyor.(s:128) Şifrenin çevirisi yapilmadikça anlami yoktur. Çagdaş hücrenin çeviri makinesi, kendileri de DNA’da şifrelenmiş olan yüz elli kadar makromoleküler oluşturucu içerir: şifrenin çevirisini ancak çeviri ürünleri yapabilir. Bu, her canli bir tohumdan çikar’in çagdaş anlatimidir. Bu halkanin iki ucu, kendilginden, ne zaman ve nasil birleşti? bunu tasarlamak son derece zor. Fakat bugün, şifrenin çözülmüş ve evrenselliginin anlaşilmiş olmasi, hiç olmazsa sorunun belirli terimler içine yerleştirilmesini sagliyor; biraz yalinlaştirarak aşagidaki alternatif saptanabilir: a. Şifrenin yapisi kimyasal ya da daha dogrusu stereokimyasal nedenlerle açiklanir. Eger belli bir amino asit temsil etmek üzere belli bir şifre seçilmişse, bunun nedeni, aralarinda belli bir stereokimyasal yakinlik bulunmasidir. b. Şifrenin yapisi kimyasal olarak rastgeledir; şifre, bildigimize göre, yavaş yavaş onu zenginle=ştiren bir dizi raslantisal seçimlerin sonucudur. Birinci varsayım, gerek şifrenin evrenselliğini açıklayabildiği, gerekse içindeki amino asitlerin bir polipeptit oluşturmak üzere dizisel sıralınışının, amino asitlerle eşlenici yapınını kendisi arasındaki dollaysız bir etkileşimden doğduğu ilkel bir çeviri mekanizması tasarlanmasına elverişli olduğu için, çok daha çekicidir. Son olarak da, özellikle bu varsayım doğruysa, ilke olarak doğrulanabilme olanağı vardır. Bu yüzden birçok doğrulama girişimi yapılmışsa da sonucun şimdilik olumsuz olduğunun kabul edilmesi gerekiyor. Belki de bu konuda henüz son söz söylenmemiştir. Olasi görünmeyen bir dogrulama beklenedursun ikinci varsayima yönelinmiştir ki, yöntembilim açisindan sevimsiz ise de bu, onun dogru olmadigi anlamina gelmez. Sevimsizligin birçok nedeni var. Şifrenin evrenselligini açiklamaz. O zaman birçok gelişme egilimlerinden yalniz birinin süregeldigini kabul etmek gerekiyor. Bu, çok olasi görünürse de hiçbir ilksel çeviri modeli vermez. Çok ustalikli kurgular öne sürülmüştür: Alan boş, hem de aşiri boştur. Giz, çözülmediği gibi, son derece ilginç bir sorunun yanıtını da saklıyor. Hayak yeryüzünd başladı: Bu olaydan önce bunun böyle olma olasılığıo neydi? Dirimyuvarının bugünkü yapısı, kesin sonuçlu olayın yalnızca bir kez ortaya çıktığı varsayımını ortadan kaldırmıyor. Bunun da anlamı önsel olasılığın hemen hemen sıfır olduğudur. Bu düşünce birçok bilimadamina itici gelir. Biricik bir olaydan yola çikarak, bilim ne bir şey söyleyebilir; ne bir şey yapabilir. Bilim yalnizca bir öbek oluşturan olaylar üzerine, bu öbegin önsel olabilirligi ne denli zayif da olsa, bir “söylem” geliştirebilir. Oysa, şifreden başlayarak bütün yapilarindaki evrenselligin dogrudan sonucu olarak, dirimyuvari biricik bir olayin ürünü gibi görünür. Dogal olarak, bu tek olma niteliginin, başka birçok girişim ve degişkenlerin ayiklanarak elenmesinden dogmasi olanagi da vardir. Fakat bu yorumu dogrulayacak bir şey yok.(s:129) Evrendeki bütün olabilir olaylar arasın

http://www.biyologlar.com/mutasyonlar

B6 vitamini, B6 vitamininin faydaları ve vücudumuza etkisi

Vücudumuzun sağlıklı kalabilmek ve düzenli olarak işleyebilmek için farklı vitaminlere ve besin değerlerine ihtiyacı vardır. B6 vitamini bu vitaminlerden sadece bir tanesidir. Bu vitamin genellikle “ruh hali vitamini” olarak anılır. Bunun nedeni B6 vitamininin beyindeki ruh halini kontrol eden hormonları etkilemesidir. Ayrıca B6 vitamini yağ ve proteinlerin metabolize edilmesinde de oldukça önemli bir görev alır. Bu sayede vücuttaki enerji seviyesi arttırılır. Bunun yanı sıra B6 vitamini gıdalardan aldığınız protein miktarını arttırır. Yapılan çalışmalar B6 vitaminini kalp rahatsızlıklarını ve diğer kardiyovasküler sorunları önlemeye yardımcı olduğunu göstermektedir. Gıdalardan yeterli miktarda B6 vitamini alamamanız halinde bazı takviyelere başvurabilirsiniz. Bununla birlikte almanız gereken B6 vitamininin miktarını bilmek oldukça önemlidir. Bu konuya ilişkin olarak bir doktora danışabilirsiniz. Depresyon sorunu olan birçok kişiye genellikle duygusal sorunları ile baş etmesi için B6 vitamini alması önerilir. B6 vitamini beyindeki serotonin miktarını arttırarak kişinin kendisini iyi hissetmesini sağlar. Ayrıca kalp sorunu bulunan kişiler de bu takviyeleri alabilir; çünkü B6 vitamini kalp rahatsızlıklarının önlenmesinde de etkili olarak kullanılır. Her gün bir veya iki tane B6 vitamini takviyesi almak hem kalp hem de zihin sağlığınız için iyi olacaktır. Araştırmacılar şizofreni, otizm gibi ciddi zihinsel sağlık sorunları bulunan kişilerde ciddi B6 vitamini eksikliği olduğunu iddia etmektedirler. Bu vitamini her gün düzenli olarak alarak kendinizi daha iyi hissettiğinizi fark edebilirsiniz. Bununla birlikte B6 vitamin takviyelerini almadan önce mutlaka bir doktora danışın. Eğitimli bir doktor size hangi dozda vitamin takviyeleri alacağınızı söyler. Eğer takviyeleri kullanmayı istemiyorsanız B6 vitaminini bazı gıdalardan da alabilirsiniz. Muz, erik ve yulaf gibi gıdalar B6 vitamini kaynağıdır.

http://www.biyologlar.com/b6-vitamini-b6-vitamininin-faydalari-ve-vucudumuza-etkisi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Virüslerin Özellikleri

1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-ozellikleri

Tatlı Su Protozoonları ve Önemi

Protozoa tek hücreli, ökaryotik mikroorganizmalardır. Özellikle bakteri, tek hücreli alg ve diğer protistler üzerinden beslenirler. 80.000’in üzerinde protozoon türü tanımlanmıştır. Bunların yarıdan fazlası fosil, yaklaşık 10.000 kadarı da simbiyonttur [1]. Protozoon türleri uzun yıllar sadece insanlara verdikleri zarar düşünülerek, parazitolojik açıdan ele alınmış, serbest yaşayan protozoonlar ihmal edilmiştir. Gerçekte çok sayıda parazit protozoon olmasına rağmen, daha da fazla sayıda hem sucul hem de karasal habitatlarda yaşayan serbest protozoon türü bulunmaktadır. Serbest yaşayan protozoonların bulundukları ortamdaki önemlerinin anlaşılmasından sonra, araştırmacılar dikkatlerini tıbbi protozoolojiden, serbest yaşayan protozoonların ekolojisine çevirmişlerdir. Genel limnolojik çalışmalarda heterotrofik protozoa uzun bir süre dikkate alınmamıştır. Kesin olarak ortaya koymak güç olmakla birlikte, bu ihmalin sebebi, muhtemelen uzman eksikliği veya daha büyük olan metazoonlara göre preparasyon işlemlerinin zor ve zaman alıcı olması gösterilebilir [2]. Protozoonların mikrobiyal besin ağında ve organik kirlilik yükü yüksek suların arıtılmasında önemli rolleri bulunmaktadır. Bunların yanı sıra atık su arıtma sistemlerinin performans göstergesi ve doğal suların kirlilik ve ötrofikasyon indikatörü olarak da kullanılmaktadırlar [3-9]. Protozoon türlerinin planktonik besin ağının önemli bir parçası olduğu ve sucul habitatlarda toplam zooplankton biyoması içerisinde önemli bir yere sahip olduğunun anlaşılmasından sonra göl, gölet, akarsu, rezervuar, kaynak suları ve sulak alanlar gibi tatlı su ekosistemlerinde, protozoon biyomas ve tür çeşitliliğinde meydana gelen mevsimsel değişimler, komünite yapıları çeşitli çalışmalarda ele alınmıştır. Ülkemizde değişik ekosistemlerde bulunan farklı organizma gruplarına ait çalışmalarda büyük aşamalar kaydedilmiş olmasına karşın, protozoonlar ile ilgili çalışmalar yeterli ölçüde değildir. Türkiye tatlı su protozoonları ile ilgili bilgiler yeni, az ve eksiktir. Bu çalışmanın bu alanda yapılacak olan araştırmalara temel bilgi sağlaması beklenmektedir. Protısta Alemi ve Protozoonlar Önceleri tüm canlılar iki alemli sınıflandırma sistemi (Kingdom: Plantae, Kingdom: Animalia) içerisinde ya bitki ya da hayvan olarak kabul edilmişler ve protozoonlar hayvanlar alemine dahil edilmişlerdir. Uzun bir zamandır kullanılmakta olan Whittaker’in beş-alemli sınıflandırma sisteminde bitki, mantar ya da hayvan tanımına uymayan tüm ökaryotik hücre organizasyonu gösteren tek hücreli canlılar Protista alemini oluşturmaktadır. Moleküler tekniklerin gelişmesi sonucunda canlı türleri arasındaki filogenetik ilişkiler ortaya çıkarılmış ve üç domain (süperkingdom) sistemi (Bacteria-Archaea-Eukarya) bilim dünyasına girmiştir. Bu sınıflandırma sisteminde bütün ökaryotik canlılar üçüncü domain olan Eukarya’ya dahil edilmiş ve domain Eukarya dört aleme (Protista-Plantae-Fungi-Animalia) bölünmüştür. Son zamanlarda bilim adamları bugün yaşayan türler arasındaki filogenetik ilişkilere dayanan sekiz alemden (Archaebacteria-Eubacteria-Archaezoa-Protista-Chromista-Plantae-Fungi-Animalia) oluşan yeni bir sınıflandırma sistemini teklif etmişlerdir [10,11]. Archaezoa olarak sınıflandırılan bir hücreli organizmalar (Archaeamoebae-Metamonada-Microsporidia) gerçek bir çekirdeğe sahiptirler, ancak mitokondri, endoplazmik retikulum ve Golgi aygıtından yoksundurlar. Moleküler verilere göre, Archaezoa üyeleri en eski ökaryotik hücreler olup, anaerobik periyodda, Golgi ve endoplazmik retikulumun gelişimi ve mitokondriyal simbiyontların hücreye dahil olmasından önce, ökaryotik evrim hattından ayrılmışlardır. Kahverengi algler ile klorofil c içeren diğer tek hücreli ökaryotlar Chromista adı altında ayrı bir alem içerisinde toplanmış, geriye kalan bir hücreli ökaryotlar, Protista alemine dahil edilmişlerdir [10-13] . Protista üyeleri yapı ve işlev bakımından çok çeşitlidir ve sınıflandırılması güçlüklerle dolu bir geçmişe sahiptir. Bu alemin sınırı değişik sınıflandırmalar arasında büyük farklılıklar göstermektedir [12, 14-16]. Çoğunluğu tek hücreli ve mikroskobik ökaryot canlılar olmasına karşın, aynı zamanda daha basit çok hücrelileri ve hatta deniz yosunları gibi karmaşık yapılı iri organizmaları da kapsar. Bunları bir araya toplayan asıl faktör hayvan, mantar ya da gerçek bitki olmamalarıdır. Protista aleminin, geleneksel bir yaklaşımla hayvan benzeri (Mastigophora-Sarcodina-Ciliata), mantar benzeri (Sporozoa-Mycetozoa-Gymnomycota), bitki benzeri (Euglenoidea-Dinoflagellata) gruplar şeklinde düzenlenmesi kabul görmektedir. Hayvan benzeri bir hücreliler olarak “Protozoa”, evrimsel ya da sistematik bir anlam ifade etmediğinden, takson olarak kabul edilmez. Protozoa kavramı, fonksiyonel anlamda bir organizasyon düzeyini ifade etmek için kullanılır. Bu grubu oluşturan organizmalar, hayvanlarla aynı tip beslenme stratejisini kullanırlar. Hayvan benzeri bir hücreliler enerji ve besinlerini heterotrofi yoluyla (osmotrofi-fagotrofi) elde ederler. Çok sayıda flagellat miksotrofiktir ve her iki beslenme stratejisini de (heterotrofi-ototrofi) kullanırlar. Bir çok heterotrofik protozoa da sitoplazmalarında fotosentez yapabilen endosimbiyontlar içerirler. Protozoanın olağanüstü çeşitliliğini içeren bir sınıflandırma sistemi düzenlemek oldukça zordur. Finlay ve Esteban [17] belirleyici karakter olarak fagotrofinin önemini vurgulayarak, tatlı suda yaygın olarak bulunan serbest yaşayan protozoonları aşağıda belirtildiği gibi 16 şubeye ayırmışlardır. Bu sınıflandırmada protozoa kavramı, eski sınıflandırmalarda tanımlanan Kingdom Protozoa’yı ve geleneksel bir şekilde protozoon olarak kabul edilen ancak şimdi Archaezoa ve Chromista’ya (esas olarak fototrofik protistler ya da alglerdir) dahil edilen organizmaları içermektedir. ARCHAEAMOEBAE: Mitokondriden yoksun, tek-kamçılı ameboyit hücreler olup, “pelobiont”lar da denir (örneğin Mastigamoeba, Mastiginella, Pelomyxa). Kamçı Pelomyxa cinsinde güçlükle gözlenir, bu nedenle amip olarak da tanımlanmaktadır. Organik madde bakımından zengin, anoksik sedimentlerde yaygın olarak bulunurlar. Özel bir besin tercihleri yoktur; bakteri, alg, detritus vs. üzerinden beslenirler. METAMONADA: Mitokondriden yoksun anaerobik kamçılı protistlerdir. İki, dört, sekiz (ya da bazen daha fazla) kamçı taşırlar. Çoğunluğu endokommensal olmasına karşın, parazit türler ve serbest yaşayan diplomonad türleri de (örneğin Hexamita, Trepomonas) içerir. Organik olarak zengin, anoksik sedimentlerde yaygın olarak bulunurlar, bakteri üzerinden osmotrofik ve fagotrofik olarak beslenirler. PERCOLOZOA: Genellikle 1-4 (bazen daha fazla) arasında değişen kamçı taşıyan flagellatları (örneğin ameboyit olmayan dört kamçılı Percolomonas, çok kamçılı pseudosiliyatlar), geçici kamçılı safhaları bulunan ameboyit flagellatları (örneğin iki kamçılı Naeglaria, dört kamçılı Tetramitus), kamçılı safha bulunmayan ameboyit formları (örneğin Vahlkampfia) ve modifiye olmuş mitokondri (hidrogenozom) içeren anaerobik flagellatları (örneğin Psalteriomonas) içeren karışık bir gruptur. Bazıları fakültatif patojendirler. Tümü sedimentlerde yaşar ve esas olarak bakteri üzerinden beslenirler. PARABASALA: Çok sayıda kamçıya sahip hidrogenozom içeren anaerobik, heterotrofik flagellatlardır. Karakteristik olarak parabasal cisimcik (modifiye olmuş Golgi) içerirler. Muhtemelen Ditrichomonas, Pseudotrichomonas hariç, hemen hemen tümü endosimbiyotiktir. İyi bilinmemekle beraber, bakteri üzerinden beslendikleri tahmin edilmektedir. Bazı araştırıcılar Parabasala’yı Archaezoa alemine dahil ederler. EUGLENOZOA: Genellikle iki (nadiren daha fazla) kamçı taşıyan flagellatlardır. Kamçılardan biri ya da her ikisi de anteriyör bir çöküntüden çıkar. Çoğu fagotrofiktir (örneğin Rhyhchomonas, Bodo, Astasia, Paranema, Entosiphon, Anisonema). Fagotrofik türler esas olarak sedimentlerde yaşarlar ve buraya tutunmuş bakteriler ya da su sütununda asılı duran bakteriler üzerinden beslenirler. Entosiphon gibi daha büyük öglenoyitler büyük partiküllerle beslenirler. Kinetoplastid içeren biflagellat bodonidleri de içerir. Serbest yaşayanlara ilaveten simbiyotik olan üyeleri de vardır. Ichthyobodo necator tatlı su balıklarının solungaçlarında ektoparazit olarak yaşar. OPALOZOA: Çoğu biflagellat protistlerdir (Anisomonas, Apusomonas, Cercomonas, Heteromita). Esas olarak bakteri üzerinden beslenirler. Kathalepharis türleri planktonda küçük algler üzerinden, bazıları ise (örneğin Cercomonas) pseudopod oluşturarak bakteri üzerinden beslenirler. Cyathobodo kendini zemine tespit etmek için sap oluşturur. Bu takson endokommensal olarak yaşayan opalinidleri de kapsar. CHOANOZOA: Serbest yaşayan, tek kamçılı, renksiz flagellatlardır. Hücrelerin apikal yüzeyinde bulunan çok sayıda ince sitoplazmik uzantı, kamçının etrafında yaka benzeri bir yapı oluşturur. Çoğunlukla sesildirler. Soliter ya da koloniyal, çıplak ya da lorikalı olabilirler. Sadece fagotrofik formları içerir, tatlı sudaki süspanse bakteri ve diğer küçük partiküller üzerinden beslenirler (örneğin Codonosiga, Diploeca, Diplosigopsis, Monosiga, Sphaeroeca). DINOZOA: Ekolojik bakımdan önemli olan bir şubedir. Deniz ve tatlı sularda serbest, bir kısmı da diğer protistler veya metazoonlarda simbiyont olarak yaşayan, iki heterodinamik kamçı taşıyan flagellatlardır. Renksiz türler osmotrofiktirler, detritus ya da diğer protistler üzerinden beslenirler. Katadinium, Peridinium, Gymnodium ve Ceratium cinslerinde fagotrofik tatlı su türleri bulunur. CILIOPHORA: Protista içerisinde yer alan şubeler arasında en homojen gruplardan biridir. Nüklear dualizm (makro- ve mikronükleus) göstermeleri, hareket ve beslenme için sil veya bileşik sil yapıları (sir, membranel vs.) taşımaları, homothetogenik (enine) bölünmenin görülmesi (flagellatlarda symmetrogenik bölünme görülür) diagnostik özellikleridir. Bir çoğu kompleks ağız siliyatürüne sahiptir. Çoğu aerobiktir, anaerobik türlerde mitokondri yoktur ya da hidrogenozom bulunur. Siliyatlarda beslenme heterotrofiktir, fakat bazı türler fotosentetik algal protistler içerirler. Çoğunluğu serbest yaşar, çok sayıda türü kommensal veya nadiren de parazit olarak yaşayan simbiyontlardır. Ichthyopthyrius multifiliis balıklarda beyaz benek hastalığı etkenidir. Yumuşak zeminlerde geniş populasyonlar oluştururlar (örneğin Loxodes, Spirostomum, Caenomorpha, Aspidisca, Acineta, Nassula, Cyclidium, Vorticella, Frontonia, Paremecium, Prorodon, Lacrymaria, Actinobolina). Bir çok siliyat serbest, fakat bazı peritrich ve suktorlar sesil yaşarlar. Vorticella soliterdir, fakat Epistylis, Carchesium, Zoothamnium ve Operculaia koloniyaldir. Küçük türler bakteri üzerinden, büyük türler ise büyük tek hücreli algler, flamentöz siyanobakteri, diğer protozoonlar ve nadiren rotifer ve diğer mikrozooplankton üzerinden beslenirler. Halteria viridis gibi miksotrofik türlerin metalimniyonda aşırı çoğalması primer üretim bakımından önemli olabilir. RHIZOPODA: Beslenme ve hareket için pseudopod oluşturan, kamçısız amiplerdir. Yalancı ayaklar lobsu (lopopod), ipliksi (filopod) ya da ağsı (retikulopod) olabilir. Çıplak amipler lobsu (örneğin Amoeba, Acanthamoeba) ya da ipliksi (örneğin Vampyrella) yalancı ayaklara, kabuklu amipler ya lobsu (örneğin Arcella) ya da ipliksi (örneğin Euglypha) yalancı ayaklara sahiptirler. Foraminiferlerin (Granuloreticulosa) tümü hemen hemen denizeldir, kabuk yüzeyindeki deliklerden yalancı ayaklar ipliksi şekilde çıkarlar ve ağsı bir yapı şekillendirirler. Taksonun üyeleri esas olarak serbest yaşarlar, fakat endosimbiyont olarak yaşayanları da vardır (örneğin Entamoeba). Serbest yaşayanların tümü fagotrofik heterotroflardır. Alg, detritus, bakteri vs. üzerinden beslenirler. Vampyrella flamentöz yeşil algler üzerinde parazit yaşarlar. Bazı kabuklular planktoniktirler (örneğin Difflugia). HELIOZOA: Aksopodlu fagotrofik hücrelerdir. Sert, mikrotübüler aksonem içeren aksopodlar hücrenin etrafından ışınsal olarak çıkar. Güneş hayvancıkları da denir. Esas olarak tatlı sularda yaşarlar (örneğin Actinosphaerium, Actinophrys, Clathrulina). Bazıları denizeldir. Alg, protozoa ve rotiferler üzerinden beslenirler. Aksopodlar diffüzyonla beslenmede kullanılır. Esas olarak planktonik protistlerdir ve sap ya da aksopodlar aracılığı ile yüzeye tutunabilirler. BICOSOECA, DICTYOCHAE, PHAEOPHYTA, HAPTOMONADA ve CRYPTOMONADA : Kingdom Chromista’ya ait şubelerdir. Çoğunluğu fototrof olduğu halde, fagotrofik türler de içerirler. Tatlısu formlarında miksotrofi ve fagotrofi özellikle chrysomonadlarda yaygındır. Chrysomonadlar iki kamçılı, sesil ya da hareketli ve soliter ya da koloniyal olabilirler (örneğin Spumella, Uroglena, Dinobryon). Beslenme ile ilgili organelleri başta olmak üzere, protozoon morfolojisi ve fonksiyonel rolleri arasında yakın bir ilişki vardır. Bulundukları habitatlarda fonksiyonel rolleri dikkate alındığında, serbest protozoonlar siliyatlar, sarkodinler (kök bacaklılar) ve heterotrofik flagellatlar olmak üzere üç büyük gruba ayrılırlar. Fonksiyonel gruplar aynı yerde, bir arada yaşadıkları halde, besin yakalama mekanizmaları farklıdır. Flagellatlar genellikle 20μm’den, amipler 50 μm’den, siliyatlar 200 μm’den daha küçüktürler. Ancak bazı amip ve siliyatların büyüklükleri 2 mm’ye kadar ulaşabilir (örneğin Pelomyxa, Actinosphaerium, Stentor). Protozoonlar kendi büyüklüklerine uygun besini tercih ederek, mikrobiyal populasyonları kontrol altında tutarlar. Fonksiyonel özellikler dikkate alındığında, siliyatlar (besin yakalamada sil kullanırlar) yırtıcı beslenenler (örneğin Prorodon, Monodinium, Didinium, Dileptus, Chidonella, Nassula), süzerek beslenenler (Cyclidium, Colpidium, Vorticella, Aspidisca, Eupletes, Strombidium, Strobilidium) ve difüzyon ile beslenenler (Suctoria) olarak ayrılabilirler. Sarkodinler kendi içinde üç fonksiyonel gruba ayrılır: çıplak amipler, kabuklu amipler ve heliozoonlar. Bu protistler gruplara göre çeşitlilik gösteren pseudopodlarla, protistin büyüklüğüne uygun olarak alg yada bakteriler üzerinden, Pelomyxa türleri canlı olmayan organik partiküller üzerinden beslenirler. Heterotrofik flagellatlar diğer gruplara göre daha küçüktürler. Bu nedenle sucul ortamlarda, yüzey ve dipte önemli bakteri tüketicileridir. Yırtıcı beslenme (örneğin chrysomonadlar), süzerek beslenme (örneğin choanoflagellatlar) ve difüzyonla beslenme (örneğin Ciliophrys ve helioflagellatlar) bu grupta da görülür. Taksonomik gruplar ile fonksiyonel gruplar arasında yakın bir ilişki yoktur. Farklı türler, benzer ekolojik fonksiyonları olmasına karşın, farklı taksonomik gruplarda yer alabilirler. Heliozoonlar ve helioflagellatlar morfolojik olarak birbirlerine benzedikleri halde, farklı şubelerde yer alırlar. Bu iki şube benzer beslenme stratejisine sahiptirler. Benzer şekilde farklı beslenme stratejisi geliştiren bir hücrelilere çeşitli taksonomik gruplarda rastlanmaktadır. Örneğin değişik pek çok bir hücreli grubunda fotosentez yapan türler vardır. Bir grup fotosentez yapan türleri, heterotrofik türleri ve miksotrofik türleri içerebilir. Protist çeşitliliği ile ilgili iki farklı görüş bulunmaktadır. Mikrobiyal çeşitliliğin, makroskobik hayvan ve bitki çeşitliliği ile ayırt edici bazı özelliklere sahip olduğunu vurgulayan Finlay ve Esteban [17], tatlı su protozoon türlerinin az sayıda bireyle ya da kist olarak temsil edilse bile, tüm nemli habitatlarda her zaman bulunduklarını ve muhtemelen hiçbir zaman da yok olmadıklarını ifade etmişlerdir. Lokal olarak, birçok tür nadir ya da kriptiktir (gizli türler, kist halinde olanlar). Çevresel koşulların onların tercih ettikleri yönde gelişmesini beklerler. Uzun süre “aktif” durumdan çok “potansiyel” durumda kalırlar. Bundan dolayı aktif biyoçeşitlilikten çok, potansiyel biyoçeşitlilikten söz edilir. Boyutlarının küçük olması, dirençli kistler oluşturmaları ve bir yerden bir yere kolay bir şekilde taşınmalarından dolayı kozmopolit türler olarak kabul edilirler. Mikrobiyal ökaryot türlerin dağılışı nadir olarak coğrafik bariyerlerle sınırlanmıştır. Bu nedenle spesifik coğrafik dağılımları hakkında bilgi vermek oldukça zordur. Endemizm nadirdir,global tür çeşitliliği azdır ve en azından siliyatların çoğu halihazırda tanımlanmıştır [18-21]. Siliyat türlerinin çoğunun kozmopolit olduğu konusunda Finlay ve Fenchel’in görüşlerine katılan Foissner [22] önceki araştırıcıların aksine tür çeşitliliğinin çok fazla olduğunu, halen tanımlanmamış çok sayıda türün olduğunu, endemizmin yaygın olduğu ve spesifik coğrafik dağılış gösterdiklerini ileri sürmüştür. Yüksek yapılı hayvan ve bitkilerle karşılaştırıldığında, küçük oldukları ve yaşamlarının çoğunu kist safhasında geçirdikleri için protistleri tanımlamanın güç olduğunu ifade eden Foissner [23], sadece uygun koşullar oluştuğunda kistten çıktıklarını, birkaç tane her zaman mevcut ve sayısal olarak dominant tür tarafından gizlendiğini ve bu nedenle nadir türlerin gözden kaçırılabileceğini açıklamıştır.

http://www.biyologlar.com/tatli-su-protozoonlari-ve-onemi

Moleküler Biyolog Aranıyor

Moleküler Biyolog Aranıyor

•Üniversitelerin Biyoloji, Moleküler Biyolog ve Genetik, Gıda Mühendisliği Bölümlerinden mezun, •Gıda laboratuvarında mikrobiyolojik analizler ve GDO analizleri yapmış, benzer pozisyonlarda•En az 1 yıl iş tecrübesi olan,•İyi derecede ingilizce bilgisine sahip,•Konusu ile ilgili raporlama ve yorumlama becerisine sahip,•İnsan ilişkileri güçlü, iletişim becerileri yüksek,•Takım çalışmasına uyumlu analitik düşünebilen, dikkatli, kendini geliştirmeye ve öğrenmeye açık,•İyi dokümantasyon ve İyi laboratuvar uygulamalarına hakim, •Esnek çalışma saatlerine uyum sağlayabilen,•Erkek adaylar için askerlik görevini tamamlamış,•Anadolu yakasında ikamet eden ya da metrobüs güzergahına yakın oturan adaylarİŞ TANIMI;•Mikrobiyoloji ve Biyogenetik laboratuvarlarında analiz ekipmanlarını kullanabilen ve analizleri gerçekleştirebilen,•Metod validasyon çalışmalarını yapmış,•İş geliştirme potansiyeline sahip,•Laboratuvar çalışma düzenine iş paylaşımını sağlayabilecek,•Real Time PCR cihazı kullanmış,•Tercihen Gıda Analiz Laboratuvar'ında  Mikrobiyoloji, GDO, Tür tayini konularında en az 1 yıl iş tecrübesi olan takım ardaşları arıyoruz.Aday Kriterleri Tecrübe:1 - 15 yıl tecrübeli adaylarAskerlik Durumu:YapıldıEğitim Seviyesi: Üniversite(Öğrenci), Üniversite(Mezun), Yüksek Lisans(Öğrenci), Yüksek Lisans(Mezun), Doktora(Öğrenci), Doktora(Mezun)Üniversite Bölümü:Moleküler Biyoloji ve GenetikYabancı Dil: İngilizce( Okuma : İyi, Yazma : İyi, Konuşma : İyi)AYRINTILAR VE MÜRACAAT İÇİN : KARİYER.NET

http://www.biyologlar.com/molekuler-biyolog-araniyor

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Mikrodizi (Microarray) Nedir

Bu kavramı birçok yerde "mikrodizin" olarak da görmüşsünüzdür, o ayrı bir yazı konusu. Bu yazıda, daha önce detaylı bir şekilde bahsedeceğimi söylediğim mikrodizi teknolojisine giriş yapacağım. Mikrodizi veri analizi yerine, bu teknolojinin nasıl bir şeye benzediğinden bahsedeceğim. Bu teknoloji fazlasıyla popüler ülkemizde (dünyada artık Yeni Nesil Sekanslama konuşuluyor), bir süre daha devam edeceğe de benziyor. Temel birkaç sebepten birisi bu teknolojiyi uygulamayı bilen insan sayısı göreceli olarak hayli fazla, her yerde (evet, neredeyse her yerde) mikrodizi cihazı var, ve bu teknolojiyi kullanarak yayın çıkarmak göreceli olarak kolay. Bu durum da beraberinde gereğinden yüksek beklentileri ve uygunsuz teknoloji kullanımlarını getiriyor. Önce neden böyle bir teknolojiye ihtiyaç duyulduğundan başlayalım. Klasik bilimsel yaklaşım belirli bir vakit diliminde belirli bir faktörü incelemek üzerine kurulu. Bu nedenle p53 üzerine binlerce yayın var; ancak p53'ün tam olarak nasıl çalıştığına ilişkin elimizde tam bir bilgi yok, çünkü etkileşim mekanizmasını tam olarak anlayabilmiş değiliz. Buradaki anahtar kelime, "etkileşim" [interaction]. Yani klasik yaklaşımla, direksiyonun bir otomobil için çok önemli olduğunu anlayabiliyoruz. Hatta direksiyonun türler arasında (kamyon, otobüs, vapur, uçak vb.) korunduğunu ve bazen farklı şekillere büründüğünü ve buna rağmen aynı etkiyi yaptığını da kavrayabiliyoruz. Ama direksiyonun tam olarak nasıl çalıştığını klasik yaklaşımla anlayamıyoruz; çünkü bir başka deneyde direksiyonu sabit tutup gaza basıyoruz, bir başkasında otomobilin krank milini çıkarıp etkisine bakıyoruz, ve benzeri şeyler. Bu sıkıntı bilimin birçok dalında kendini gösteriyor, fakat özellikle de birden fazla faktörün işin içine girdiği alanlarda içinden çıkılmaz bir hal alıyor bu durum. Psikoloji bilimsel olarak geç kabul gören fakat hızlı ilerleyen bir dal. Klasik bilimsel yaklaşımla çözülemeyen bazı problemleri çözmek adına farklı bir yaklaşım ortaya çıkıyor. Gestalt psikolojisi denilen bu yaklaşım diyor ki: "Bütün, onu oluşturan parçaların toplamı değil, daha fazlasıdır." Yani deniyor ki, bir ormanı anlamak istiyorsanız teker teker her bir ağacı araştırmanız yetersizdir. Ormanı oluşturan şey, ağaçlar ve onların birbiriyle etkileşimidir. Yani p53'ün ne işe yaradığı çoğu zaman anlamsızdır; önemli olan, p53'ün diğer moleküllerle etkileşimini ortaya koymaktır. Yani direksiyonu çevirdiğimizde tekerlerin nasıl hareket ettiğini keşfetmek, belirli hızlarla giderken her bir derecelik direksiyon açısındaki değişmenin kaç metrelik sapmalara denk geldiğini görmek, her bir lastiğin aşınmışlığının bu sapmaları nasıl etkilediğini keşfetmek, direksiyon boşluğu denen şeyin aracın yönünü ayarlamayı nasıl etkilediğini bulmak tüm resmi görmektir. Elbette direksiyonun şekli, yapıldığı materyal vb. şeyler kıymetlidir ama, bütün resmin sadece ufak bir parçasıdır. Gestalt psikolojisini detaylı bir şekilde araştırmanızı öneririm; sistem biyolojisini anlamak için çok güzel bir başlangıç noktası bence. 1977 yılında Northern Blot adı verilen bir yöntem geliştirildi. Amaç, gen ifade miktarını hedef bir gen/transkript için belirleyebilmekti. Örneğin, p53 gen ifade miktarını bu yöntemle tayin edebiliyordunuz ve sadece bir veya birkaç gen ifade miktarını kendi aralarında farklı durumlar (hastalıklı - sağlıklı vb.) için kıyaslayabiliyordunuz. Burada önemli bir detay var; ilgilendiğiniz gen veya transkriptin DNA dizilimini, en azından bir kısmını bilmeniz gerekiyor ki ona göre probu tasarlayabilesiniz. Aslında bu durum aynı zamanda çok büyük bir kısıtlayıcı etkiye sahip; henüz keşfedilmemiş genler için bu yöntemi kullanabilmek mümkün değil. Hücredeki süreçleri daha iyi anlayabilmek için mümkünse hücredeki her detaya ilişkin veriye ihtiyacımız var. Genetik alanındaki araştırmalar ilerledikçe ve moleküller arası etkileşimin önemi farkedildikçe aynı anda onlarca gene ait özelliklere bakabilmenin daha faydalı olabileceği düşüncesi yaygınlaşmaya başladı; gestalt yaklaşımının biyoloji versiyonu gibi düşünebilirsiniz bu gelişme sürecini. Yeni bir teknolojinin geliştirilmesi biraz uzun sürdü; SAGE (Serial Analysis of Gene Expression) yöntemi bu arayışlar doğrultusunda ortaya çıktı, sene 1995. Henüz İnsan Genom Projesinin çıktıları bilinmiyordu ve araştırmacılar mümkün olduğu kadar çok gen ifade değişimini aynı anda gözlemleyebilmek istiyordu. Böylece, bir hastalık durumunda gen ifade miktarlarının sağlıklı bireylerin gen ifade miktarlarına göre nasıl değiştiği ve böylelikle hastalığa neyin neden olduğu, veya hastalığın neleri etkilediği/değiştirdiği anlaşılabilecekti. Yandaki şekil SAGE metodunu kısaca özetliyor. SAGE yönteminin bir diğer avantajı ise, hücredeki transkriptlerin ne olduğunu önceden bilmenizi gerektirmeyen ve yeni genlerin keşfine olanak sağlayan bir yaklaşıma sahip olması. Daha doğrusu, yeni bir genin ufak bir dizisini keşfetmekten bahsediyoruz, yine de bu o zamanlar için büyük bir keşif olarak düşünülebilir (Bir yazımda EST'lerden kısaca bahsetmiştim). SAGE metodu DNA dizilimlemeye dayanır ve o dönemde elimizdeki en iyi yöntem Sanger yöntemiydi. Eğer dizilimlemek istediğiniz DNA bölgesi fazlasıyla uzunsa bu hem uzun süreler, hem de yüksek maliyetler anlamına geliyor. Bu nedenle, yine aynı dönemde geliştirilen mikrodizi teknolojisi düşük maliyetler vadettiği için bir anda popüler hale geldi ve SAGE metodunun pabucunu dama attı. Oysa iki metodun karşılaştırmalarına baktığımızda, SAGE yöntemi mikrodizi teknolojisine göre çok daha kesin ve nicel sonuçlar verebiliyor. Maliyet avantajı fazlasıyla baskın gelmiş anlaşılan. Peki mikrodizi teknolojisi ne getirdi, temel farkı neydi? Bu yeni teknolojiyi, aynı anda gerçekleştirilen Northern Blot'lar gibi düşünebiliriz; binlerce ve bazen on binlerce Northern Blot, tek seferde, çok daha az sarf maliyetiyle. Yaklaşım aynı; önceden tasarlanmış ve bir transkripti tanımlayabilecek en az bir prob tasarlayın. Prob lafı biraz korkutucu geliyor başta ve bir kavram kargaşasına da yol açabiliyor. Kastettiğimiz şey, 20 ila 500 baz arasında uzunluğu olan tek zincirli bir DNA molekülü (ülkemizde yaygın olarak kullanılan Affymetrix teknolojisinde DNA molekülünün uzunluğu 25 baz olarak belirlenmiş). Olay tamamen hibridizasyon temelli ve bu nedenle tek zincirli DNA parçaları, eşlenecekleri diğer molekülleri bekliyorlar; onlar da hedef transkriptler. Bir video yüzlerce kelimeye bedel, buradan teknolojinin nasıl işlediğini izleyebilirsiniz. Birçok farklı mikrodizi teknolojisi ve yine birçok uygulaması var; yani aslında mikrodizi teknolojisi dediğimizde ortada yine ufak bir kavram kargaşası var ancak sistemin çalışması yukarıda bahsettiğimiz gibi. Peki sonra ne oluyor? Problara bağlanması için hücrelerden elde ettiğimiz DNA veya mRNA parçaları floresan moleküllerle işaretleniyor (kafamda, her bir nükleik asit molekülünün ucunda birer LED veya ampül varmış gibi hayal ediyorum). Problar sabit olduğu ve her bir pozisyonda hangi transkripti hedeflediği bilindiği için, o bölgelerdeki floresan ışımaya bakılıyor ve bu ışıma miktarının hücredeki gen ifadesi miktarıyla paralel olduğu varsayılıyor. Buradaki paralel olma ifadesi şu demek; elimizde sayısal veriler var ancak bunlar mutlak rakamlar değil. Çok ışıma varsa hücrede bu gen çok miktarda ifade ediliyor diye düşünüyoruz, az ışıma varsa az gen ifadesi var diye düşünüyoruz. Bu az veya çok olma durumu hücrede gerçekte kaç kopya transkript olduğu bilgisini vermiyor. Bu nedenle mutlaka bir referansa veya bir referans grubuna ihtiyacımız var. Mikrodizi ne değildir, tam da bu noktada başlıyor. Tek bir mikrodizi deneyiyle bir gene ait ifade değerini mutlak olarak söyleyemezsiniz, herhangi bir tespit yapamazsınız. Aynı değer grubuna ait örneklerle yapacağınız mikrodizi deneyleriyle de bunu yapamazsınız. Yani, 10 tane hasta bulup bunlardan alacağınız örneklerle yaptığınız mikrodizi deneyi, pratikte neredeyse hiç bir işe yaramaz, çünkü bu teknoloji böyle kullanılmaya uygun değil; mutlaka birden fazla referans çalışmaya ihtiyacınız var. Böylece elde ettiğiniz hasta örneklerine ait verilerin "çok" veya "az" olduğunu söyleyebileceğiniz bir referans noktası elde edebilirsiniz. Model organizma çalışırken referans veya kontrol grubu bulmak çok daha kolay ancak konu insan olduğunda sağlıklı bireylerden kontrol örneklerini nasıl bulabilirsiniz? Örneğin, sağlıklı bir bireye karaciğer biyopsisi yapmanın veya o bireyin beyninden parça almanın hem etik hem de yasal bir çok problemi var. O zaman bu dokulardan elde edilen örneklerle mikrodizi deneyleri yapılmayacak mı? Referansınız yoksa, evet, çalışmanın bir anlamı yok. Yeterince örnek toplayamıyorsanız, yine burada bir problem var. Elinizdeki değerler mutlak değerler değil ve bu değerlerin kendi içlerinde de sapmalar var, bu nedenle birçok örneğe ihtiyacınız var. Bütçeniz kısıtlıysa ve her bir deney grubu için sadece bir örnek çalışabilecekseniz, mikrodizi teknolojisine başvurmanın yine neredeyse hiç bir anlamı yok. Veya referans olarak kullanacağınız kontrol örnekleri gerçekten de kontrol değilse (deney grubu örnekleriyle aynı dokudan ve aynı şartlarda alınmadıysa vb.), o zaman yine yapacağınız çalışma tehlikeye giriyor. Yukarıda saydığım nedenlerden ötürü bir mikrodizi deneyi tasarlamadan önce bir biyoinformatik uzmanına veya bir biyoistatistikçiye danışmakta çok büyük faydalar var; bu sayede birçok hatanın ve verimsizliğin önüne geçilebilir. Her bir farklı üreticinin geliştirdiği mikrodizi teknolojileri de birbirinden farklı, bu nedenle bu konuda da bilgi sahibi olmak gerekiyor. Gözünüz korkmasın, Wikipedia'da ufak bir gezinti farklı mikrodizi teknolojileri hakkında fikir sahibi olmanız için yeterli.

http://www.biyologlar.com/mikrodizi-microarray-nedir

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

Yatay gen transferi

Yatay gen transferi, bir organizmanın, ikinci bir organizmadan türemeden, o ikinci organizmaya ait genetik malzeme edinmesini sağlayan herhangi bir süreçtir. Buna karşın, dikey transfer bir organizmanın kendi atalarından (yani ebeveynlerinden) genetik malzeme edinmesidir. Genetik bilmi bu iki transfer biçiminden daha yaygını olan dikey transfere odaklanmış olmakla beraber, yakın zamanda yatay transferin de anlamlı bir olgu olduğu bilincine varılmıştır. Yatay gen transferinin yapay biçimi bir genetik mühendislik şeklidir. Yatay gene transferi ilk defa 1959'da, farklı bakteri türleri arasında antibiyotik direncinin aktarılabildiğinin gösterilmesi ile keşfedilmiştir. Japon araştırmacılar tarafından yapılan bu buluşunun ne anlama geldiği Batı bilimcileri tarafından anlaşılması için bir 10 yıl geçti. Michael Syvanen bu konuda çalışmış ilk batılı araştırmacılardandır. Syvanen, 1984'ten itibaren yatay gen transferi üzerine bir dizi makale yayınlamış, yatay gen trasnferinin olduğunu öngörmüş, yeryüzünde yaşamın başlangıcından itibaren evrim tarihini etkilemiş olan bir süreç olduğunu belirtmiştir. Gen ve genom çalışmaları prokaryotlar arasında önemli miktarda yatay gen transferi olduğunu göstermekteler. Bu olgunun tek hücreli ökaryotlar için de anlamlı olduğu görülmektedir. Bulgular, protistaların evriminde de yatay gen transferinin önemli bir rol oynadığını göstermektedir. Bitki ve hayvanların da bu olgudan etkilendiğine dair belirtiler vardır, ama bunun ne derece önemli olduğu açık değildir Virüsler Mimivirüs adı verilen virüs, sputnik adlı uydu virüs tarafından enfekte edilebilir. Sputnik virüsünün genlerinde 13'ü herhangi başka hiçbir gene benzemekle beraber, 3 tanesi mimivirüs ve mamavirüs genleriyle yakın ilişkilidir. Bu genlerin mimivirüsün kendini paketlemesi sırasında edinilmiş olduğu tahmin edilmektedir. Bu bulgular, bazı uydu virüslerin, virüsler arasında yatay gen transferi yapabileceğini göstermektedir. Bakteriyofajların bakteriler arasında gen taşıması da buna benzetilebilir. Prokaryotlar Yatay gen transferi birbirine uzak akraba olan bakteriler arasında dahi yaygındır. Bu süreç, antibiyotik direncinin baçlıca nedeni olarak sayılmaktadır; bir bakteri direnç edinince, direnç genini kısa sürede başka türlere de aktarabilmektedir. Enterik bakteriler, içinde bulundukları bağırsaktaki diğer bakterilerle genetik alışverişte bulunurlar. Yatay gen transferi için başlıca üç mekanizma vardır: Transformasyon, hücre içine yabancı genetik malzeme (DNA veya RNA) girmesi sonucu hücrenin kalıtsal değişime uğramasıdır. Bu süreç bakterilerden göreceli olarak yaygındır, ama ökaryotlarda daha enderdir. Transformasyon, deneysel, endüstriyel amaçlar için bakterilere yeni genlerin sokulması için sıkça kullanılır. Bakınız moleküler biyoloji ve biyoteknoloji maddeleri. Transdüksiyon (genetik), bakteri DNA'sının bir virüs (bakteriyofaj, veya kısaca faj) aracılığıyla bir bakteriden diğerine taşınması. Bakteriyel konjugasyon, bir bakterinin hücresel temas yoluyla DNA'sını bir diğer bakteriye aktarması. Ökaryotlar DNA dizilerinin analizi ökaryotların içinde, mitokondri ve kloroplast genomlarından çekirdek genomuna, yatay gen transferinin olmuş olduğuna işaret etmektedir. Endosimbiyoz teorisinde belirtildiği gibi, kloroplast ve mitokondrilerin kaynağı, ökaryotik hücrelerin atası bir hücrenin içindeki bakteriyel endosimbiyontlardı. DNA dizi karşılaştırmaları farklı türler arasında pek çok genin yatay transferini göstermiştir, bu transferlerin bazıları farklı üst-alemler arasında dahi gerçekleşmiştir. Bakterilerden bazı mantarlara, özellikle Saccharomyces cerevisiae mayasına yatay gen transferi iyi belgelenmiştir. Aduki fasulya kınkanatlısının kendi endosimbiyontu Wolbachia 'dan genetik malzeme edindiğine dair de kanıtlar vardır. Wolbachia bakterilerini artropod ve filaria nematodlarında önemli bir genetik malzeme kaynağı olduğu gösterilmiştir Rafflesiaceae bitki ailesinin parazitlerinin, konak bitkiden bazı mitokondri genlerini yatay transfer yapmış olduğu da gösterilmiştir. Ayrıca, henüz kimliği bilinmeyen bir bitkinin kloroplastından Phaseolus fasulyasının mitokondrisine transfer olduğu gösterilmiştir.  

http://www.biyologlar.com/yatay-gen-transferi

BİYOTEKNOLOJİK GELİŞMELER

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır.

http://www.biyologlar.com/biyoteknolojik-gelismeler

ARGULUS SP

Argulus spp. Diğer adıyla balık biti, tatlı su ve deniz balıklarının ektoparazitlerinden olup, tüm dünyada yaygındır. Konağın kanını ve diğer doku sıvılarını emerek beslendiklerinden ve sekonder enfeksiyon etkenlerine taşıyıcılık da yaptıklarından konakları için tehlike oluşturmaktadırlar. Kan emdikten sonra konağı terk ettiklerinden fakültetif parazittirler. Argulus, konağın derisini deldikten sonra salgıladığı maddeyi yara içine akıtmakta, deldikleri kan damarından kan emmektedirler. Argulus’lar erişkin forma ulaşıncaya kadar balığın deri, yüzgeç ve solungaçlarına tutunarak ve kan emerek yaşamaktadırlar. ETİYOLOJİ: Pylum: Artropoda Subpylum: Crustacea (Brünnich,1772) Clasis: Maxillipoda (Dahl,1956) Subclasis: Branchiura (Thorell,1864) Ordo: Arguloida (Wilson,1932) Familya: Argulidae (Rafinesque,1815) Genus: Argulus (Müler,1785) Argulus’lar en büyük parazitlerdendir ve çıplak gözle görülebilirler. 5mm ile 10 mm arasında değişen uzunlukları vardır. Balıklar üzerinde küçük koyu renkte noktalar gibi görülürler ve hareket edene kadar onların Argulus olduğu anlaşılamayabilir. Vücudun yassı ve kalkana benzer kısmı karapastır ve kafayla kaynaşmış, ayrıca göğüsün de bir kısmını kaplamıştır. Baş kısmında iki tane bileşik göz lekesi bulunmaktadır. Argulus’un karnı, arkada uzamış kuyruk gibi gözükmektedir. Dört çift yüzücü ayakları vardır. EPİZOOTİYOLOJİ: Argulus (Crustacea:Branchiura) cinsi dünya çapında oldukça fazla yayılım göstermektedir ve Afrika, Avrupa, Asya, Avustralya, Kuzey, Orta ve Güney Amerika kıtalarından bilinmektedir. (Ringuelet, 1943; Fryer, 1968; Yamaguti, 1963; Hewitt ve Hine, 1972; Byrnes, 1985; Heegaard, 1962) Amerika’daki deniz ve göllerde 23 türün olduğu Cressey tarafından saptanmıştır.(1972) Argulus japonicus ve Argulus foliaceus’un İngiltere’deki birçok göl balığı türlerinde görüldüğü kaydedilmiştir. Avrupa’da Argulus’un bulunan üç göl türünün (A.foliaceus, A.coregoni, A,japonicus) yazın sonlarında ve sonbaharın başlarındaki dönemlerde maksimum bollukta bulundukları kaydedilmiştir.(Lester&Roubal, 1995) Bütün türlerin sert kışlarda yaşamlarını sürdürebilecek yumurtlama evreleri vardır.(Shimura,1983; Mikheev 2001) Ayrıca A.foliaceus erginlik evrelerinde de kış koşullarında yaşayabilirler.(Kimura, 1970) Hatta Bowershore (1940),kışın ılımlı olduğu koşullarda A.foliaceus’un yıl içerisinde yumurtlayabileceğini de savunmuştur. Argulus sp. Şu anda bilinen 150 türüyle neredeyse tüm dünyada bulunmaktadır. Avrupa’da kaydedilen üç tür Argulus foliaceus, Argulus japonicus ve Argulus coregoni’dir. Ayrıca Argulus foliaceus kahverengi alabalık,tatlı su levreği,sazan,turna ve çipurada da görülmektedir. Genellikle yüzgeçlerin arkasında veya kafa çevresinde yerleşmiş olarak bulunurlar. Saydam yüzgeçlerde daha iyi görülebildikleri için en iyi görüldüğü yerler yüzgeçlerdir. Tablo 1. Üç Argulus türü arasındaki farklılıklar Türler Vücut uzunluğu(mm) Cephalothoracic karapasın arka lopları Karın Karnın arka kenarının tırtıklaşması(Posterior emargination of abdomen) A.foliaceus 6-7 Başlangıcın ötesine uzamamış Yuvarlak loplar Ortaya ulaşmamış A.japonicus 4-8 Karnın orta seviyelerine kadar uzamış Yuvarlak loplar (A.foliaceus’tan daha fazla noktalı) Ortaya ulaşmış A.coregoni 12 Karnın başlangıcına kadar uzamamış Sivri loplar Ortanın ötesine ulaşmış Güney Amerika’da bulunan göze çarpan türler Argulus multicolor’dur. Argulus japonicus bütün dünyada yayılım göstermektedir ve bunun asıl nedeni de altın balık (Carassius auratus) ve aynalı sazan (Cyprinus carpio)’da oldukça fazla görülmesidir. Argulus coregoni İskoçya’da Clyde nehrindeki kahverengi alabalık (Salmo turta) üzerinde bulunmuştur. (Campbell, 1971) Argulus foliaceus da kahverengi alabalıkta görülmekle beraber buna ek olarak dikenli balıkta (Gasterosteus aculeatus), kızılkanatta (Rutilus rutilus), tatlı su levreğinde (Perca fluviatilis), aynalı sazanda (Cyprinus carpio), kadife balığında (Tinca tinca) ve turnada (Esox lucius) görülür. Argulus foliaceus’un görünüşü KLİNİK BULGULAR VE PATOJENİTE: Argulus kendini konakçı balığa, emme organelleriyle, ikinci maxillae, diken veya kancalarıyla bağlar; preoral dikenli iğnesini veya hortumunu deriye batırarak toksik salgıyı iletir.(Sindirim enzimleri ve salgı maddesi-anticoagulant madde-) ve konakçının vücudu üstünden kanı emer. Derinin delinmesi konakçı balığın şiddetli kaşınmasına ve vücudun zarar görerek iltihaplanmasına neden olur. Yaralar kanlı nekroza neden olur ve ikincil olarak da Aeronomas, Pseudomonas gibi bakteriler ve Saprolegnia gibi mantarların bulaşmasına neden olur ve bunun sonucu da derin ülserleşme ve ölümdür. Eritrosit ve lökosit sayısında düşüş, hemoglobin yoğunlaşması, kandaki hematokrit değerindeki toplam protein, toplam kolesterol ve kalsiyum konsantrasyonları gibi hematolojik değişimler görülür. Buna ek olarak, solungaçlar ciddi bir şekilde zarar görerek kanda oksijen azlığına neden olarak ölüme sebebiyet verirler. OTOPSİ BULGULARI: Argulozis hastalığı balıklarda en sık rastlanan hastalıklardan biridir. Parazitler balıkların üzerinde kolayca görülürler. Bu parazitler yarı saydam olduğu, larva ve gençlik dönemlerinde küçük olduğu için,ilk bakışta fark edilemezler. Ancak bu durumlarda balık hastalık belirtisi gösterir. Bu parazitin konakçı balık üzerindeki etkisi enfestasyon şiddetine (Balık üzerindeki parazit sayısı) ve konakçı balığın büyüklüğüne bağlıdır. (Roberts, 1978) Yoğun istilaya uğrayan balık uyuşukluk gösterir, yemekten kesilir, renkte açılma ve yüzgeç düşmesi gibi durumlar gözlenir.(Lester&Roubal, 1995) Argulus sp. Tarafından enfeksiyona uğrayan balıklarda çoğunlukla küçük hemorojik bölgeler görülür. Mikroskobik incelemeler bu bölgelerin, hyperplazi yüzünden yaranın kenarındaki epidermal dokuda oluşturulan kraterler olduğunu gösterir. Bütün balıklarda, mukus ve club hücreleri kraterdeki epidermal dokuda bulunmaz, fakat mukus hücreleri yara kenarı çevresindeki dokuda bolca bulunurlar. TEŞHİS: Argulus bulaşmış balıklar uyuşuklaşırlar, düzensiz hareket ederler ve sık sık kuyruklarını suya çarparlar. Aynı zamanda güçsüzleşirler ve su yüzeyinde yüzerek bazen stres belirtileri gösterirler. Derileri donuk hale gelir ve üzerinde siyah noktalar oluşur. Yüzgeçleri saçaklanır ve gözleri çekilir. Balıklar beslenmeyi bırakırlar. KORUMA: Balık yetiştiriciliğinde hijyen kurallarına uyulması,stok yoğunluğunun iyi belirlenmesi,hastalık belirtisi gösteren balıkların karantinaya alınması önemlidir. Fakat büyük ölçekli balık üretimi için (örneğin alabalık çiftliği) uygun değildir. TEDAVİ: Larvalar için genellikle haftada 2-3 doz (daha düşük sıcaklıklarda daha uzun) Trichlorfon gerekir. Tavsiye edilen Trichlorfon oranları; 27 C sıcaklığın altına litre başına 0,25 mg Trichlorfon, 27 C sıcaklığın üstünde litre başına 0,50 mg Trichlorfon Organophoshate masoten: (Peter Waddington) 13 C sıcaklığın üsütnde 0,7 mg/litre (UK) 13 C sıcaklığın altında 0,4 mg/litre (UK) Olgunlaşmış parazitler elle uzaklaştırılabilirler, ayrıca; Lufenuron 15 mg/litre, Sodyum klorid 3 mg/litre ile tankta 3 hafta süreyle tedavi edilebilirler. Olgunlaşmamış bir Argulus 2 günlük tedavi sonunda deri parçaları üzerinde bulunur. Tedavinin başlamasından 28 gün sonra deri parçaları üzerinde parazite rastlanmaz. Tedavinin sağlığa zararlı bir etkisi yoktur. KAYNAKÇA: www.science.siu.edu/zoology/grad ... gulus.html ryoko.biosci.ohio-state.edu/~par ... gulus.html www.fishdoc.co.uk/disease/argulus.htm www.isrvma.org/article/57_3_6.htm www.drpez.com/pz18b.htm www.aquabase.org/crustacea/view.php3?id=25 www.maine.gov/ifw/fishing/fishlab/vol2issue5.htm

http://www.biyologlar.com/argulus-sp

BİYOLOJİK AJANLARIN ETKİLERİ

Biyolojik ajanlar ya yaşayan organizmalar ya da ölüm veya hastalıklara sebep olan toksin gibi türevlerden oluşur. Yaşayan organizmalar etkilerini gösterene kadar yaşayan hedeflerde çoğalırlarken, toksinlerini üremezler. Toksinler genellikle daha öldürücüdür, birkaç dakika veya saat gibi çok çabuk ölüm veya saf dışı bırakmaya neden olurlar. Yaşayan organizmalar enfeksiyon ve hastalık belirtileri görünmesi arasında 24 saat ila 6 hafta arasında kuluçka devri gerektirir. Biyolojik silahlar ilk bulaşmadan sonra birkaç hafta sonra dikkate değer bir etki bırakmaya devam edebilir. Benzer şekilde geciktirilmiş kuluçka periyodu bulaştığı yerde ajanın tamamen örtülü olarak gelişmesini sağlar ve etkisi ortaya çıktığında hastalığın tabii olarak geliştiği fikrini oluşturabilir. Bir biyolojik saldırı, bir bölgeyi birkaç saat ile birkaç hafta boyunca kirletir, teçhizatı kirletir ve birlikleri harekatı son derece sınırlayan, koruyucu elbise giymeye zorlar ve/veya koruyucu yan etkileri büyük ölçüde bilinmeyen antimikrobiyaller almak zorunda bırakırlar. Bu ajanların bazıları ölümcüldürler, diğerleri genellikle kapasite düşürücü olarak kullanılırlar. Literatürde klasik tedavi yöntemlerinin etki edemediği veya belli etnik gruplar üzerinde kullanılabilen genetik mühendisliği ürünü ajanlardan bahsedilmektedir. Kimyasal silahların bütün korkunçluğuna rağmen, biyolojik organizmanın çok küçük bir örneği bile çok daha ölümcül olabilir. Örneğin; Bacillus antraksis basilinin yol açtığı şarbon hastalığında solunum yoluyla havadan alınan dayanıklı sporlar akciğerler içerisinde açılarak çoğalmakta, başlangıçta soğuk algınlığı semptomlar ile kuluçka devresini geçirerek kısa sürede öldürücü tablolar ile karşımıza çıkabilir. Genetik mühendisliği öldürücülüğü artırmak için daha fazla patojen veya toksin üreten genlerin geliştirilmesi için potansiyel yaratmıştır. Bu şekilde normal halinden 100 defa daha fazla patojen olan ve toksin üreten hücreler elde edilmiştir. Enfeksiyonu yayarken etkinliği geliştirebilmek ancak genetik olarak güçlendirilmiş ajanlarla mümkündür. Bu şekilde kurumaya, ultraviyole ışınlarına, ısınmaya karşı patojenlerin dirençli olmaları sağlanarak sağlık üzerine olumsuz etkinlikleri artırılabilir. Belirli biyolojik ajanlara besleyici katkı maddesi kullanılması tutulduğu ortamda hayatta kalmalarını kuvvetlendirir. Bazı patojenlerin belli çevre şartları içinde kontrollü olarak mevcudiyetlerinin sağlanması bile mümkündür. Koşullara bağlı kendini yok eden genler adı verilen gelişme ile organizmalar belirli bir çevrede önceden belirlenen miktarlarda kopyalandıktan sonra tamamen yok olacak şekilde programlanabilmektedir. Böylece, enfekte olmuş arazi belirli bir zaman sonra zarara uğramış olur. SINIRLAMALARI 1- Biyolojik ajanlar, kimyasal silahların aksine etkilerinin tahmin edilmesi ve kontrolü son derece zordur. Etkileri, kimyasal ajanlardan daha fazla ısı, hava şartları ve topografik yapıya bağlıdır. 2- Böylece, her zaman yalnız hedefi kirletme riski vardır. 3- Bir çok biyolojik ajan etkili olabilmesi için solunum veya sindirim yoluyla alınmalıdır. Kimyasal ajanlarda olduğu gibi deri ile temas sonunda enfeksiyon yaratması mümkün değildir. Bu durumda, eğer biyolojik ajanlar doğru bir şekilde tespit edilebilirse buna karşı savunma kimyasal ajanlara karşı savunmadan daha kolaydır. 4- Anthraks sporları ve bazı toksinler gibi kuru ajanlar kalıcı olmalarına rağmen, bir çok biyolojik ajanın etkisi zamanla çok çabuk azalır. 5- Anthraks sporları toprakta ölümcül etkilerini onlarca yıl muhafaza ederler. Buna benzer ajanlar uzun vadede tehlikelerini sürdürürler. Bu şekildeki ajanların kullanım durumunda taarruzu gerçekleştiren tarafın işgal etmek veya geçmek istediği harekat alanı kirletilmiş olur ve koruyucu elbise kullanma ihtiyacı ile ciddi tekrar kontaminasyon gereksinimlerini beraberinde getirir. 6- Biyolojik silahlanmanın getirdiği depolama ve kullanma her zaman teknik zorlukları beraberinde getirir.

http://www.biyologlar.com/biyolojik-ajanlarin-etkileri

Botaniğin Tarihçesi

Bugünkü sistematik botanik adına yaşanan en büyük ilerlemeler, 20. yüzyılın ikinci yarısında meydana gelmiştir. O dönemlerin kötü koşulları ve maddi sıkıntılarına rağmen, dünyanın bir çok yerindeki çok sayıda flora yazarı, önemli çalışmalar başlatmış ve bu konuda büyük adımlar atmışlardır. Dünya tarihinde, bilinen ilk Flora yayınları, küçük bir alanda yetişen bitkilerin isim listesinden bile daha dar kapsamlıydı. Bugün ise, en iyi ve modern çalışmalar içerik olarak sub-monografiktir. 1950 ve 1960’lı yıllarda G.B. Asya’nın çeşitli bölgelerinde birkaç Flora projesi başlatılmış, bu çalışmaların durumu ve ilerleyişi devamlı olarak takip edilmiş ve bölgeler tekrar tekrar incelenmiştir. Bu araştırmalar, Floristik bir çalışmadan elde edilecek bilgilerin geliştirilmesi ve üzerine yeni bilgilerin eklenmesi için yerel botanikçilere ihtiyaç duyulduğunu göstermiştir. Çünkü bir bölgenin floristik açıdan tam olarak ortaya konması çalışmaların sürekliliğine bağlıdır. Bu çok uzun bir zaman alabilir. Devamlılığı olmayan ve kısa süreli çalışmalarla bir bölgeye ait sağlıklı bir floristik tanımlama yapılamaz, dolayısıyla tam olarak ortaya konmuş bir çalışma, o bölgede sürekli araştırmalarda bulunan yerel botanikçilerin varlığına bağlıdır. Botaniğin çok geniş bir bilim dalı olduğu ve bir bütün olarak değerlendirilmesi gerektiği düşünülürse, Floristik çalışmalar, botaniğin ne tamamı olarak ne de botanik bilimi içinde küçük bir ayrıntı olarak ele alınmalıdır. Aslında bu çalışmalar, botaniğin vazgeçilmez bir parçası şeklinde düşünülmelidir. İLK FLORALAR GüneybBatı Asya’nın bugünkü durumu hakkında konuşmaya başlamadan önce, konuşulması gereken diğer bir nokta ise, Flora terimi ile temsil edilmiş olsun yada olmasın, genel Flora yazımının kökeni ve bilinen en eski Flora çalışmalarının durumu olacaktır. En eski Floristik çalışmalar hakkında bilgi edinmek, bu çalışmaları bugün için ortaya koymak, oldukça zor bir iştir. Konuyla ilgili bilinen en eski kayıtlar, 16. yüzyılın ikinci yarısına aittir. O dönemde bilimsel bir Flora çalışması diye nitelendirilebilecek uğraşılar, sınırları belli bir bölgedeki bir veya birkaç çeşit bitki türü hakkında yazılmış bir botanik rehberi olmaktan daha ileri gidememiştir. Bu bilgilere ise, Deutchman Corolus Clusinius’un o tarihlerde yapmış olduğu çalışmalardan elde edilmiştir. Clusinus’un yazdığı iki eserden ilki, 1567 yılında İspanya ve Portekiz’e ilk Flora çalışmalarıdır ve bu ülkelere 1563, 1565 yıllarında yaptığı kısa seyahatleri sonucu ortaya çıkmıştır. Diğer eseri ise 1583 de yayınlanmış Avusturya ve Macaristan bölgelerinin çevrelerine ait olan Flora çalışmalarını içermektedir. Bu yayında sadece doğal olarak yetişen türlerden bahsedilmemiş, aynı zamanda Tulipa, Lilum, Fritillaria gibi ornomentallerden hatta Amerika kökenli Solanum ve Mirabilis gibi birkaç türden daha bahsedilmiştir. Yapılan çalışmalarda, tam ve kesin lokalite bildirimi ve diskripsiyon hatalarını önlemek amacıyla Clisinus, Floristik çalışmalara bir standart getirmeye çalışmış ve bunun için uzun yıllar uğraş vermiştir. Stafleu(1967) Clusinus’un bu çalışmalarının dikkate değer ve takdir edilir cinsten olduğunu aktarmıştır. Clusinus, bu iki eserinde de Flora terimini ne başlık ne de başka bir şekilde kullanmıştır. Ama bu çalışmalar, kökeni 500 yıl önceye dayanan Flora yazımının başlangıcı ve menşeidir. Aynı zamanda ise bilimsel birer Flora çalışması olduklarına kuşku yoktur. Daha önce dediğimiz gibi, bilinen en eski Botanik rehberinin ve Floristik çalışmaların tespit edilip ortaya konması çok zordur. Aynı şekilde eserlerinde Flora terimini ilk kimin kullandığı da bilinmesi zor olan bir diğer konudur. 1647 yılında Flora Dannica adlı eseri yayınlanan Simon Pauli’nin Flora terimini ilk kullanan botanikçi olduğu ileri sürülmektedir. Bundan sonra ise İsveçli ünlü tabiat bilgini olan Karl Von Linneaus zamanına kadar Flora terimi ile temsil edilen pek çok eser yayınlanmıştır. Almanya’nın Jena bölgesi için yayınlanmış olan, Ruppius’un yazdığı Flora Jenesis (1718), ayrıca Bryne’nin yazdığı Flora Capensis (1724-G. Afrika) bunlara örnek olarak verilebilir. Flora Capensis tam bir Floristik çalışmadan ziyade bitki koleksiyonu şeklinde hazırlanmıştır. Bunların dışında, gerçek Floristik çalışmaları içeren modern botaniğin bir çok bölümüne ait ilk çalışmaları başlatan kişinin Linneaus olduğu bilinmektedir ve O, dönemin botanik üzerine çalışanları arasında en mükemmel olanıdır. 1737’de Linneaus’un yazdığı Flora Lapponica adlı eser, Flora yazımında bir dönüm noktası olarak kabul edilmektedir. Species Plantarum adlı eserinde nomenklatür kullanılmış ve türler binomial olarak adlandırılmıştır. İçeriği ise nispeten moderndir. Synonimler ve habitat detayları verilmiş ayrıca Cryptogamlardan da bahsedilmiştir. Belli bir alanda yayılış gösteren bitki topluluklarını ifade eden flora terimi ile Floristik çalışmalar sonucu oluşturulan eserleri ve kitapları ifade eden Flora terimi arasında bir ayırım yapmak istenirse, durumu aydınlığa kavuşturmak açısından, yayınlanan kitaplar ve eserler için “F” harfi, bitki topluluklarını ifade içinde “f” kullanılmalıdır. Böyle bir düzenleme yapıldığında aradaki farkı ayırt etme bakımından bu durum günümüz botanikçilerine oldukça faydalı olacaktır. Flora kelimesi “Çiçeklerin Romalı Tanrıçası (Roman Goddes of Flowers)” adından türemiştir. İlk botanikçiler doğal ve kültür bitkileri arasında, bugün yapıldığı gibi bir ayırıma gitmemişler ve bitkilerin tamamını göz önüne almışlardır. Onlara göre bu iki bitki gurubu, birbirlerinin ayrılmaz birer parçasıydı. Thornton’un yazdığı Floranın Mabedi (The Temple of The Flora ) adlı eser çok sonra post-Linneaus’un en güzel örneklerinden biri olmuştur (Linneaus’a ait olan Sexual Sistem’in yeni örneklerinin resmedildiği levhalar). Linneaus hayatayken ve daha sonraki dönemlerde Floristik çalışma, eser yazımı ve yayınlanmasında önemli ölçüde artış olmuştur. Britanya’da gerçekleştirilen ilk Floristik çalışmalar ve yine Avrupa’da yapılan en eski ve temel bir çok çalışmanın kökeni de bu döneme dayanmaktadır. Britanya Florasının kökeni 200 yıl önceye yada daha eskilere dayanmaktadır. Bu 200 yıl boyunca daha önce yapılmış veya şuan yapılmakta olan bir çok çalışma vardır. Çalışmalar devam etmektedir ve bulunan her yeni bilgi eskilere eklenmektedir ve şu durumda son söz hala söylenmemiştir. Her ne kadar, geçmişten günümüze kadar yapılmış ve yayınlanmış olan Floristik çalışmaları düzenleyip sınıflamak ve bir sıraya sokmak taksonomik açıdan zor bir durum ortaya çıkarsa da (bu çalışmaların sırası ve düzeni yavaş yavaş birbirine karışmaktadır.) bu konuda 3 ana ve esas dönem kabul etmek gerekir. Bunlar Linneaus öncesi dönem, Linneaus’un yaşadığı dönem (Victorian dönemi 1850’lerden yüzyılın sonuna kadar olan dönemi içerir.) ve şuan ki Floristik dönem( içinde bulunduğumuz yüzyılın ortalarından bugüne kadar olan süreyi kapsamaktadır). Özellikle bu dönemde G. B. Asya’da oldukça modern düzeyde bir çok Floristik çalışma gerçekleştirilmiştir. VICTORIAN DÖNEMİ 19. yüzyıla ve Victorian dönemine baktığımızda o dönemde pek çok Floristik çalışma yapıldığını ve yayınlandığını görmekteyiz. Bu çalışmalar genel olarak, karşılaştırmalı morfoloji, bugün olduğu gibi bir nebze nomenklatür, tipifikaston, örneklerin sitasyonu, ekoloji ve sitoloji göz önüne alınarak oluşturulmuştur. George Bentham dönemin ünlü ve büyük bir botanikçisi ve matatikçisiydi. Bentham, (1861) Flora Honkongensis ve 7 ciltlik Flora Australiensis (1863-780) eserlerinin yazarıdır. Bentham bu iki eseriyle, daha sonra yapılan tüm Floristik çalışmaları özellikle de Kew’un yayınladıklarını bir standarda sokmuştur. Bentham (1874) Flora yazımı hakkında kendi dönemiyle ilgili olduğu kadar günümüzde de hala etkili olan çeşitli açıklama ve yorumlar yapmıştır. Ona göre Flora yazımının prensipleri; “belli bir alandan alınan herhangi bir bitkinin teşhisini kullanıcıya mümkün olduğunca kolaylaştırmaktır.” Ve yeni başlayan bir kimse örnekler hakkında uzun diskripsiyonlar düzenleyebilir, fakat bir tür hakkında kısa bir diskripsiyon hazırlarken, bitkinin ayırt edici ve tanımlayıcı özelliklerini ortaya koyarken karakter seçimini tam ve yerinde yapması gerekir. Bunun için de kişinin tam ve mükemmel bir metodolojik seviyeye, incelediği bitki gurubu hakkında geniş bir bilgi birikimine sahip olması gerekir.” Yani uzun bir diskripsiyon hazırlamak daha kolaydır. Diskiripsiyonlar basitleşebilir fakat eksiksiz ve doğru olmalıdır. Bentham günümüzün diskripsiyonları hakkında ne düşünürdü bilemiyorum ama (kesin olan şu ki; bizim diskripsiyonlarımız daha uzun.) onun yaptığı tüm çalışmalarda diskiripsiyonların yüksek standartlarda olduğundan kuşku yoktur. Bentham çalışmalarının çoğunu tek başına bazen de Hooker ile yapardı. Özellikle Genera Plantarum yazılırken (1862-83). Bu çalışmanın da yine büyük bir bölümünü Bentham hazırlamıştır. 80 yaşının üzerindeyken bile, işine gösterdiği hırsın günümüze dek gelen hikayesi, botaniğe yeni yaklaşımlar ve katkılar sağlamıştır. “Orchidae’ler üzerine bir yıldan fazla, yoğun ve aralıksız süren çalışmaların ardından (Genera Plantarum için) bir cumartesi öğleden sonra, sıkıntılı bir şekilde ve zorluklar içinde yaptığı revizyon çalışmalarında bir sonuca ulaşmıştı; Bu işler sırasında hiç durmaksızın otsu bitkileri tanımaya ve tanımlamaya çalışmış ve hala çok zor olan bu görevi uzun yıllar üstlenmiştir. Bu çalışma Bentham’ın en son ve neredeyse en büyük işi olmuş, aynı şekilde başlangıçta kendisine materyal sağlayan ve çalışma süresince yardımcı olan insanları çok rahat ve kolay bir şekilde idare etmiş ve zamanı çok iyi kullanmıştır.” Kew; Boissier zamanında da şimdi olduğu gibi dünyanın en büyük taksonomi araştırma merkezlerinden biriydi. Fakat Geneva’da Edmond Boissier, G. B. Asya’da ilerleyen botanik biliminin sonuçlarına bağlı olarak başlatılan bir çalışmaya (Flora orientalis) katılmıştı; Artık dev bir anıt haline gelmiş olan Flora Orientalis’e ait olan birinci cilt 1867’de 5. ve sonuncu cilt ise 1884’de yayınlanmıştır. Boissier’in ölümünden sonra, suplamenteri olan 6. cilt ise 1888’de yayınlanmıştır. Boissier yaşadığı süre içinde 6000 yeni tür tanımlamıştır (Burdet, 1985). Bu 6000 türün çoğunu yine Flora Orientalis çalışmaları sırasında ortaya koymuştur. Tanımladığı türlerin bugün bile geçerliliğini koruyor olması, onun bu büyük botanik zekasına yapılmış bir övgüdür. Bir konuda tüm insan aktivitelerinde olduğu gibi eğer bir gelişme kaydediliyor ise önemli olan onun öncesinin ve sonrasının biliniyor olmasıdır. Yani nereden gelip nereye gittiğinin biliniyor olması gerekir. Bu durumu politik ekonomi, motorlu arabalar, çamaşır makineleri ve futbolda da görebiliriz. Bu genellemeyi sistematik botanik içinde yapabiliriz. Linneaus, De Candolle, Bentham, Boissier ve Hooker’ın bıraktığı bu büyük ve sağlam mirası, varisleri devralacaklar ve geliştireceklerdir. Bugün bu düşünüldüğü gibi olmuştur. Çünkü günümüzde onların bıraktığı bu temeli geliştirmeye çalışan botanikçiler vardır. G. B. Asya ile ilgili olarak tüm flora (küçük “f” ile) çalışanları, boissier’in Flora Orietalis’i oluşturduğu böyle geniş ve kısmen doğal bir alanda çalıştıkları için şanslı sayılırlar. Yani bu çalışma tam doğru olan ve azımsanamaz bir çalışmadır. Flora Orintalis örnekleri Geneva’da bulunmakta ve çok iyi korunup saklanmaktadır. G. B. Asya’daki Floristik çalışmalarda da bir çok modern Flora çalışmasında olduğu gibi taksonomik kavramlara uygunluk oldukça üst düzeydedir. Bundan dolayı G. B. Asya Boissier’e çok şey borçludur. O bu konuda gerçekten büyük bir devdir. GÜNEY BATI ASYA FLORASININ BUGÜNKÜ DURUMU Eğer 3. Flora dönemi dediğimiz devreye bakacak olursak aslında bugün hakkında konuşuyor oluruz ve aynı zamanda bugün için belli bir çizgiye gelmiş olduğumuzu görürüz. Muhtemelen bu doğrudur çünkü, sözünü ettiğimiz bu 3 dönemin Floristik çalışmaları göz önüne alınırsa 20. yüzyılın 2. yarısına rastlayan periyotta çok büyük gelişmeler ve en azından çok sayıda yayın üretilmiştir. Dünyanın hemen her yerinde inanılmaz sayılarda Flora projesi uygulamaya konulmuştur (Avrupa’da, Afrika’da ve yeni dünyada). Eğer önümüzdeki birkaç yüzyıl içinde hala çevrede botanikçi var olursa, öyle sanıyorum ki 20. yüzyıldaki bitki sistematiği adına yaşanan tüm gelişmelerde göz önüne alınırsa, botanik tarihçilerinin dikkatini en çok günümüz Flora yazım aktiviteleri çekecektir. Bu projelerden birkaç tanesi çok büyük olarak tasarlanmıştı ve hala bu derecede büyük Flora projeleri tasarlanmaktadır. 30 veya daha uzun yılar alan Flora SSCB 1964’de tamamlanmış ve bu çalışmada 17000’den fazla bitki türünden bahsedilmiştir. Bu 17000 türün yaklaşık %10’u yani 1700 tanesi ise tamamen yeni tür olarak bilim dünyasına tanıtılmıştır( 19?7 Shetler). Büyük Çin Florası (Flora Republicae popularis Sinicae) çalışmalarında 28000 vasküler bitkinin incelendiği bilinmektedir. Bu çalışama için 200 Çinli botanikçiye ihtiyaç duyulmuştur. Bunun nedeni ise ilk cildin bir an önce 1959’da çıkartılmak istenmesidir. Bu çalışma yüzyılın sonlarına doğru 80 cilt olarak tamamlanmıştır. Bu iki devasal projenin de (Çin ve SSCB) komünist-sosyalist yönetimlerce desteklendiği gerçeği de oldukça ilginçtir. Aynı dönemlerde dünyanın diğer pek çok yerindeki benzer Flora projeleri ile karşılaştırılacak olursa, diğerleri sürekli finansal sıkıntılar çekmişler ve kaynak arayışı içine girmişlerdir. Çok ilginçtir ki o dönemde dünyanın çok zengin iki ülkesi olan Amerika ve Suudi Arabistan’da böyle bir Flora çalışması yapılmamıştır. Doğu ile Batı arasında ilginç bir karşılaştırma; “bir insanı aya göndermek” yada “yeni petrol kaynakları bulup milyarlar kazanmak” dururken neden bitkileri anlamak için para harcasınlar ki? Şimdi oldukça ilginç ve önemli olan G.B. Asya Florasının bugünkü durumuna yeniden dönüyoruz. Kısaca ele alacağımız üç çalışma var. Türkiye Florası, İran Florası, Pakistan Florası. Bence neresi olursa olsun, herhangi bir yerin florasının kökenin araştırmak oldukça ilginç bir konudur. Bu çok özel olan üç bölgenin tamamı, buralardaki Floristik çalışmaları başlatan ve ilerleten birkaç kişiye çok şey borçludur (ne bir hükümete, ne bir enstitüye, nede bir tavsiye komitesine). Peter Davis, Karl Heinz Rechinger ve Ralph Steward isimleri şu an Türkiye İran ve Pakistan Floralarıyla eş anlamlı ve özdeş hale gelmişlerdir. Aynı şekilde Komarov ismi de SSCB Florası ile (hatta bu çalışma onun ölümünden sonra tamamlanmış olsa bile) eş anlamlı tutlmaktadır; babası Mouterde ise Nouvelle Flore du Libani et de la Syrie Florası ile özdeşleşmiştir. Peter Davis bir zamanlar şöyle demişti, “Kişisel ve iyimser bir görüş olarak düşündüğüm Türkiye Florasının yazımı fikri tesadüfi bir şekilde, bende büyük bir ilgi uyandırmıştır.” Peter Davis 20 yaşındayken, yüzyılın başlarında daha önce Boissier’in gelip inceleme yaptığı Batı Türkiye Dağlarını, botaniksel anlamda incelemiş ve örnekler toplamıştır(1938). Daha sonraki ilk Türkiye seyahatinde, ülkenin bitki örtüsünden ve vejetasyonundan dolayı büyülenmiştir. Savaştan sonra Davis, Edinburg’da derece almış, bir çok madalya hak etmiş ve üniversiteye konuşmacı olarak atanmıştır(1950). Ardından yakın bir zamanda Türkiye’ye yapacağı 10 büyük bitki toplama seyahatlerinin ilkini gerçekleştirmiştir; yaklaşık 27.000 hatta bunun 3-5 katı kadar örnek toplamıştır(Davis & Hedge 1975). Bu keşif seyahatlerinin bir kısmı oldukça uzun sürmüştür. Hedge de onunla birlikte yaklaşık 7 ay süren bir geziye katılmıştır. 1950’lerden sonra uygun ve iyi durumda olan tüm herbaryum materyalleri gerçekçi bir Flora yazımı için bir araya getirilmiştir. Bunun dışında Dr. A. Huber Moarth ise Türkiye‘ye düzenlemiş olduğu çeşitli seyahatler sonucu Davis’in yaptığı çalışmalardan bağımsız olarak Edinburg ve Basal’da Türkiye Florası üzerine çalışmalarda bulunmaktaydı. 1961’de Davis, Endüstriyel ve Bilimsel Araştırma Departmanından aldığı personel yardımı ile küçük bir takım kurmuştur. Bu personeller Edinburg ve Royal Botanic Garden’de yetişmiş full-time çalışma asistanlarıydı. Davis bu çalışmaları sırasında Royal Botanic Garden ve hükümetin bu konu ile ilgili departmanları arasında kurulan koordinasyon sonucu üst düzeyde desteklenmiştir. Bu yardımlar ve destekler, ancak Türkiye Florası’nın çok hızlı çalışılması ve işlerin planlandığı şekilde gitmesi durumunda devam edecekti. Proje tamamlanana kadar karşılıklı bu olumlu ilişkiler ve işler planlandığı şekilde devam etmiştir. Türkiye Florasının ilk cildi 1965 yılında Edinburg’da basılmıştır. Son cilt olan 9. cilt ise 1985’de, ayrıca ek cilt olan 10. cilt 1988’de yayınlanmıştır(Türkiye Florası üzerine devam eden çalışmalar sonucu 2000 yılında 11. cilt basılmıştır). 10. cilt Davis tarafından 2 araştırma asistanı ile birlikte (Robert Mill & Kit Tan) çok geniş bir şekilde hazırlanarak yazılmıştır. Net istatistiklere göre 20 yıllık bir periyotta tamamlanmış olan ilk 9 ciltte 8800 tür üzerinde inceleme yapılmıştır. Yani bu, her yıl 400’ün üzerinde türün incelenmesi anlamına gelmektedir. Boissier’in yazmış olduğu Flora Orientalis, Türkiye Florası oluşturulurken temel kaynak olarak kullanılmıştır. Flora of Turkey ve Flora Iranica gibi birer çalışma yapmak oldukça yerinde ve orijinal araştırma olmuştur. Dr. Mill son zamanlarda Türkiye’de 1332 tür tanımlamıştır. Bu süreç 1945’den bugüne kadar olan süreyi kapsamaktadır. Bu sayı toplam tür sayısının %15.5’ini karşılamaktadır. Ayrıca sonradan meydana gelen değişiklikler ve sinonim olan (yaklaşık 150 tane) türlerde göz önüne alınırsa yüzde dilim hala %13.5 gibi yüksek bir orana sahiptir. Endemizm durumu ise ayrıca yüksek bir orana sahiptir. Şu ana kadar Türkiye Florasının kökeni hakkında pek çok şey söyledik. Tabi ki çalışmaların tam ve doğru biçimde tamamlanması oldukça metronomik bir işlemi kapsamaktadır. Türkiye Florasının bugünkü durumu nasıl acaba? Çalışmalar süresince bu kadar sıkıntı çekmeye ve para harcamaya değer miydi? Şu an Türkiye Florası hakkında 25 yıl önce bildiğimizden çok daha fazlasını biliyoruz. Bu da çok önemli bir sonuçtur. Diğer bir sonuç ise şuan Türkiye’deki her üniversitede işin ehli olan bir çok botanikçi vardır. Bu botanikçiler zamanında Türkiye Florası yazılırken ve bu konuda çalışmalar sürerken, üst düzeyde efor sarf eden ve yardımcı olan botanikçilerin öğrencileri ve eserleridir. 1950’li yıllarda Türkiye’de sistematik botanik çalışan kimse neredeyse yoktu. Türk botanikçilerin sayısı oldukça azdı. Türkiye Florası yazılırken genç Türk botanikçiler Edinburg’a gelmişler ve olanaklarından yararlanışlardır. Bu da onlara pek çok fayda sağlamıştır. Hala bu bağlantılar ve ilişkiler olumlu bir şekilde devam etmektedir. Şuan Türkiye’de bitki sistematiği çalışmaları hayattadır ve işler yolunda gitmektedir. Bu durum diğer alanlarda da sevindirici boyutlardadır. Yani orman botaniği, korumacılık, sitoloji, biyokimya, bitki sosyolojisi ve foto kimya. Tüm bu olumlu gelişmelere rağmen botaniksel uzmanlık anlamında hala sağlam bir alt yapı oluşturulamamış ve maalesef laboratuarlarla ilişkili, kütüphane olanakları olan ve en önemlisi araştırmalarla desteklenen, bundan kaynak alan ulusal bir herbaryum hala kurulamamıştır. Bu türlü bir herbaryum dünyanın herhangi bir yerinde botanik araştırmalarının vazgeçilmez bir parçası olmalıdır. Hala tamamlanamamış olan Türkiye Florası hakkında bu kadar konuşmamızın ana nedeni tarihsel açıdan çok ilginç olması, aynı zamanda özellikle Flora yazımına ve genel olarak taksonomik botaniğe uygun bir çok yönünün olmasından kaynaklanmaktadır. Galiba bu konuda peşin hüküm gösteriyor ve duygusal davranıyorum, fakat bu Flora projesi, pek çok yönden modern ve bilimsel bir Flora projesinin nasıl olması gerektiğine çok güzel bir örnek olmuştur. Bu çalışma kolay kullanım özelliğinde, içerdiği türler hakkındaki gözlemleri aydınlatıcı ve ayırt edici olan özet bir çalışmadır. Daha da önemlisi tahmin edilen ve tasarlanan sürede tamamlanmıştır. Dünyanın diğer bir çok yerinde, şuan tamamlanmak üzere olan bir çok Flora çalışmasında, çok sayıda taksondan bahsedilmektedir. En kötü ihtimali göz önüne alırsak, Floralarda adı geçen ve bugün yaşayan bir çok takson, en fazla bizden birkaç nesil sonra belki de nesli tükenmiş olacaktır. Flora of Southern Africa ve Flora Malesia monografiktir. Fakat tam olarak gerçekçi çalışmalar sonucu oluşturulmamışlardır. Flora Tropical East Africa floristik çalışmaları (yaklaşık 40 yıl önce başlamıştır.), Flora Thailand çalışmaları bunlara birer örnektir. Son olarak, Hooker’ın ortaya koyduğu bir çalışma olan Flora of British India’nın yerini tamamlanmış haliyle ve Fascicle Flora of India adıyla anılan bir çalışma ne zaman alacak? Yani bu bölgelerin başlı başına, ayrıntılı ve gerçekçi çalışmalara ihtiyacı vardır. Prof. Dr. Rechinger, İran Florası hakkında yakın zamanda konuştuğu için bu konuda fazla bire şey söylemeyeceğim. Üzerinde durmak istediğim bir konuda şudur; Böyle geniş ve büyük bir proje nasıl oluyor da, bir kadın(karısı Wilhemine) ve bir erkek tarafından başlatılıp tamamlanabiliyor. Bu, üzerinde konuşulup düşünülmesi gereken bir noktadır. Flora Iranica’ya ait oldukça ince olan ilk fasikül 1963 yılında yazılmıştır. Bu çalışma zamanımıza ait tam ve doğru diğer çalışmalar içinde geliştirilmiştir. Yakın zamanda yayınlanmış olan Caryophyllaceae (no:163) familyası da benzer bir şekilde bir durum sergilemektedir. Bu familyada 450’nin üzerinde türden bahsedilmektedir ve bu muhtemelen tüm Floranın ¼’ünü oluşturmaktadır. Tanımlanan bu 450 tür, familya hakkındaki bilgilerimizin gelişmesine önemli ölçüde katkıda bulunmaktadır; bazı cinsler yüksek oranda endemizm içermektedir. Örneğin Silene cinsinin yaklaşık %40’ı ile %60’ı endemiktir. Rechinger’in tarihsel özelliği göz önünde tutulursa, eğer Flora yayınlamayı yaklaşık 25 yıl önce bitirmiş olsaydı, şaşırtıcıdır ki O, Büyük İran Florası için ilk bitki toplama seyahatlerine 50 yaşının üzerindeyken (Rechinger 1989) başlamış olurdu. 50 yaşının ortalarındayken de aşağı yukarı 10.000 tür içeren bir Flora çalışmasına girişmiş olurdu. Elbetteki O, dünyanın bir çok yerindeki çok değerli bir çok botanikçiyle bağlantı ve yardımlaşma içindeydi. Daha 1990’da 8.000 üzerinde tür incelemiştir. Flora of Turkey üzerine yapılan bir eleştiride, bu çalışmanın çok yetersiz oluşuydu. Bu kesinlikle İran Florasının düzenlemesine yapılan bir eleştiri değildir; İran Florası fotoğraf, şekil ve grafiklerle desteklenmiş ve oldukça iyi bir şekilde ortaya konmuştur. Fakat bu arzu edilen ekler kitaplara konunca, fiyatlarda yukarı fırladı. Buna bağlı olarak korsan ve kopya kitaplar kullanılmaya başlandı. Avrupa’da sınırlı olarak basımı yapılan bilimsel yayınların fiyatlarının yüksek olması da yine üzücü bir gerçektir. Örneğin bir adet Flora of Turkey seti almak için £500 ödemeniz gerekir. Aynı şekilde Flora Iranica seti de benzer fiyatlardadır. İran Florası üzerinde duracağımız son bir nokta ise şudur; Genel botanik topluluğu (G.B.T.), usulen bu gerçeği taktir ettiğini göstermelidir. Boissier’in Flora Orientalis’inde olduğu gibi onun Flora çalışmalarının sınırları siyasi sınırlara dayanmaz. Daha çok bu sınırlar doğal olarak ayrılmış olan bölgelerle ilgilidir. Kaçınılmaz olan şudur ki harita üzerine bir çizik atsanız bu, yapay sınırlar yarattığınızın bir işaretidir. Söz konusu olan ve yayınlanan bu üç Floristik çalışmaların sonuncusuna ait yorumlar Pakistan Florası üzerine olacaktır. Pakistan Florası diğer ikisinden çok önemli ve büyük bir farklılık arz etmektedir. Bu çalışma Pakistan’ın kendi botanikçilerinin bir ürünüdür ve iki özerk editör tarafından yapılmıştır. Bu iki editörden ilki Karachi’de bulunan Prof. Ali diğeri ise Kuzey Kavalpindi’de yaşayan Prof. E. Nasır’dır. Büyük ve geniş familya tanımlamaları bu iki botanikçi tarafından hazırlanmışlardır. Yine sanatsal ve estetik çalışmalarda aynı şekildedir. Bu proje 1960’larda başlamış gözükse de (USA ziraat departmanı sermayesiyle) aslında başlangıcı daha eskilere dayanmaktadır. Dr. Steward, Ladak’da iken 1911 yıllarında yani 80 yıl önce bitki toplamaya başlamıştır(Steward 1982). Sonraki 50 yıl veya daha fazla yıldır O, botaniğin özüne inmiş, öğrencileri cesaretlendirmiş ve eğitmiştir. Bugün Pakistan’daki tüm yerleri dolaştı ve bitki topladı. Tüm bu seriler boyunca çeşitli yayınlar çıkardı. Bu yayınlar genelde değişik yerlerin Floraları hakkındaydı. O’nun bu aktiviteleri Pakistan florasının gerçek kökenini bulmaya yönelikti. 1972’de Keşmir ve Pakistan’daki vasküler bitkilerin izahlı bir katalogunu yayınladı. Son zamanlarda Labiatae familyasını kaleme alırken (Hedge 1991) edindiğim deneyimleri göz önüne tutarsak, bu çalışmanın ne kadar önemli, doğru ve tam bir iskelet çalışması olduğu ortaya çıkar. Maalesef bu çalışmanın küçük bir kısmı da kaybolmuştur. Ali bu katalog hakkında ilk defa şunları söylemiştir(1978). –“Biz bu Flora projesindeki ilk günlerde eserin müsveddesini oluşturmaya doğru ilerleme kaydettik ve bu katalog mütevazı çalışmalarımıza temel olmuştur. Flora of Pakistan’ın ortaya konması sırasında çalışmalara yardım edenlerin ve editörlerin karşılaştığı zorlukları hatırlamak çok önemli olacaktır. Onlar ne Edinburg’un sahip olduğu gibi bir bahçeye, ne herbaryum olanaklarına, ne de kütüphanelere sahiptiler. Tüm bunlara rağmen onlar Pakistan’da bulunan tip örnek sayısında küçükte olsa bir artış sağlamışlardır. Yinede parasal desteğin devamlılığı konusunda da çok sık ve tahmin edilemez oranlarda sıkıntı çekmişlerdir. Bu noktada çok eleştirmeden şunları söylemek yerinde olacaktır; sonraki fasiküller ilk çıkanlara nazaran daha iyi durumdaydı. Çünkü ilk çıkan fasiküllerde yeni taksonlar ve türler yaratmaya, tartışmalı olan, aslında informal incelenmesi daha iyi olacak varyasyonlara formal sıralama verilmesine bir eğilim vardı. Her ne kadar taxonomistlerin doğasında var olan yeni tür ve takson yaratma eğilimi oldukça üst düzeyde olsa da, onlar taxonomik cesaretlerini sergileme hissindeydiler - şahsi olarak - artık yok olamaya başlayan fedakar taxonomistler (hepimizin olması gerektiği gibi) biliyorlar ki yeni bir tür yaratmaktansa, bir türü indirgeyip synonim yapmak, botaniğe daha büyük katkılar sağlayacaktır. Fakat ben, Pakistan Florasının ilk bölümüne olan eleştirimin aynısını Türkiye ve İran Florasının ilk bölümlerine de yapmıştım. Bazen böyle durumlar tanımlama yaparken yetersiz materyal kullanımından kaynaklanmaktadır. Buna örnek olarak Türkiye Florasındaki Chenopodiaceae tanımları verilebilir ve bu tanımlar 1966’da 2. ciltte yayınlanmıştır. Fakat sonraki 35 yıl içinde materyal toplanarak diskripsiyonlara açıklık kazandırılması ve bunların birleştirilerek yeniden yazılmaya ihtiyaçları olmuştur. Her ne kadar Pakistan Florası hala tam olarak bitmemiş ve tanımlanmamış olsa da öyle sanıyorum ki Prof. Ali ve Nasır yaptıkları botaniksel sanat çalışmaları ve sayısız diskripsiyonu başarıyla oluşturdukları için samimi ve içten kutlamalara layık olmuşlardır. Flora of Pakistan çok iyi tanımlanmış bir flora kitabı ve çalışmasıdır. Son Sözler ve Kat Edilen Mesafe Bir bölgede yapılan ilk floristik çalışmalarla, yöre florasını tam olarak bitmiş düşünemeyiz. Bu araştırmaların tam olarak bitmiş sayılabilmesi, uzun sürekli ve kesintisiz çalışmaların varlığına bağlıdır. Yani herhangi bir alanda yapılacak birkaç arazi çalışması, söz konusu bölge florasını tam olarak ortaya koymak için yeterli sayılamaz. Britanya’daki floristik çalışmalar hakkında daha önce konuşmuştuk. Britanya florasının küçük ve büyük birçok bölgenin florasını içerdiğinden, çalışmaların 250 yıldan buyana sürdüğünden ve hala devam ettiğinden bahsetmiştik. Eğer G.B. Asya’da da 250 yıl boyunca etrafta hala botanikçilerin etkin bir şekilde çalışmaları şartıyla, belki o zaman bölge florası Britanya’nınki kadar iyi bilinen ve ortaya konmuş duruma gelecektir. Bölgesel flora çalışmaları ancak sınırlı oranda objektif olabilir ve sadece herbaryum materyalleri ile sağlanabilecek sınıflamaları içerebilir. Fakat bu herbaryum materyalleri azımsanmamalı ve yabana atılmamalıdır. Bu münasebetle yazarın daima, sınıflamaları oluştururken dürüst olması gerekir. Bu çok önemlidir. Örneğin, iki tür arasında farklılıklar tam olarak ortadaysa bu durumda Flora yazarının görevi, bu iki tür arasındaki ayırımı anlaşılır biçimde ortaya koymaktır. Pek çok flora yazarını kendini isteklerine düşkün ve bencil (yani onlar bunu yapıyorlar çünkü bu onların hoşuna gidiyor ve maalesef sadece kendileri için yazıyorlar) yada işinin ehli olan ve bilimsel düşünebilen botanikçiler olarak iki guruba ayırabiliriz. İdeal, mükemmel ve işinin ehli olan flora yazarları hazırladıkları anahtarları, diskripsiyonaları ve tanımlamaları oluştururken başkalarının da kullanacağını daima düşünür ve çalışmalarını buna göre yapar. Bazı flora yazarları ise anahtarlarını ve diskripsiyonalrını farkında olarak yada farkında olmayarak araştırmacıların kullanamayacağı tarzda oluşturur. Yani kullanıcı anahtardaki ayıt edici özelliklerle tam ve kesin bir sonuca ulaşamaz. Bu tip yazarlara örnek vermeyeceğim..! Yakın bir gelecekte yaklaşık olarak tüm G. B. Asya florası tamamlanacaktır. Dolayısıyla şu soruyu sormak yerinde olacaktır. “bundan sonra ne yapacağız ve nereye gideceğiz!” Şüphesiz ki, bitki ve onun çevresi hakkında yapılan arazi çalışmaları konusunda reel gelişmeler yaşanmaktadır. Bu gelişmeler ise kendi bölgelerinde, daha önce yapılan Floristik çalışmalardan elde edilen bilgiler ışığında, yerel botanikçiler tarafından devam ettirilmeli ve tamamlanmalıdır. İyi ve modern Flora çalışmalarını içeren sistematik botanik dalına aşırı önem verip botanik biliminin tamamı gibi düşünmek yanlış olacaktır. Bunun yerine bu sahayı botanik bilimi içinde genişçe bir alan olarak düşünmek gerekir. Daha önce dediğimiz gibi taxonomiyi küçük bir ayrıntı olarak görmekte yine doğru ve yerinde bir yaklaşım olmaz. Örneğin Pakistan Florası için Labiatae familyasının diskripsiyonlarını ve İran Florası için ise Chenopodiaceae diskripsiyonlarını hazırlarken tür “çiftlerinin” ayrımına gitmeyi gerektiren bir çok problemle karşılaştım. Yani birbirine çok yakın akraba olan veya henüz akrabalıkları kanıtlanmamış 2 tür düşünelim. Dolayısıyla bu türlerin birbirlerinden karakter yönünden farklılıkları halen tanımlanmamış olanları, çok yakın ve benzer habitatları paylaşanları ve hemen hemen aynı alanlarda yayılış gösterenleri bulunmaktadır. Genç türlerin ayrımı neden hala tam anlamıyla yapılamamıştır. Bu durum gelecekteki araştırma projeleri için, Flora diskripsiyonlarında tamamlanması ve düzeltilmesi gereken önemli problemlere sadece bir örnektir. Eski bir gazetede (Davis & Hedge 1975) Davis ile birlikte modern botaniğin çeşitli bölümlerinin yerel botanikçiler tarafından araştırılıp geliştirilebileceğini tartışmıştık. Gelecekte G. B. Asya’nın doğal bitkilerinin koruma altına alınmasını garanti eden dev projelere gerek kalmayacaktır. Çünkü bu bölgeler yerel botanikçiler tarafından ayrıntılı bir biçimde ele alınacak ve çalışmalar sürekli devam ettirilecektir. Son olarak G. B. Asya, Boissier’den Davis, Rechinger ve Steward’a ve elbetteki Prof. Ali ve Nasır’a kadar bir çok botanikçinin ilgisini çekmiştir. Dolaysısıyla botanikçiler açısından daima şanslı bir bölge olmuştur. Yeni nesil botanikçileri açısından gelecek hala parlak ve araştırmaya açıktır. Türkçeye Çeviren: Barış BANİ (I.C. HEDGE Royal Botanic Garden,Edinburg EH3 5LR, Scotland, UK. I. PLoSWA)

http://www.biyologlar.com/botanigin-tarihcesi

Antikorlar: Mutasyonlara Hiç Bu Kadar İhtiyaç Duyulmamıştı

İnsanoğlu tarihi boyunca hastalıklardan pek çok sıkıntı çektiği gibi, hala bu sıkıntıları aşmak için yollar aramakta. Kimi zaman ciddi enfeksiyonlar, kimi zamanda basit enfeksiyonlar geçirsek de, hepimiz hemfikiriz ki; hastalıklar can sıkıcıdır! Peki bizim için can sıkıcı bu sürece sebep olan virüsler ve bakteriler gibi dış etmenleri vücudumuz nasıl önce nasıl tanıyor ve nasıl hafızasında tutuyor? Hastalıklar konusunda büyük bir avantajımız var ki, geçirdiğimiz bir hastalığa genelde tekrar yakalanmıyoruz. Bu görevi üstlenen kazanılmış bağışıklık sistemi elemanları, görevlerini şaşırtıcı bir teknikle yerine getiriyor ve bizi aynı hastalığa tekrar yakalanmaktan koruyor. Gelin, bunun için önce bağışıklık sistemimizin kısaca nasıl çalıştığını tekrar hatırlayıp, bu ajanların lenfositler üzerinde gerçekleştirilen genetik rekombinasyonlarla (yeniden düzenlenme) nasıl tanındığına ve bunun hayati önemine bir bakalım. Vücudumuz ile dışarıdan gelen tehditlerin ilk karşılaşması ilk olarak deri ve ağız-burun açıklıklarımızın iç yüzeyini örten mukoza zarlarında gerçekleşir. Bu yapılarımız da koruma için özelleşmiş salgılar üretir. Normal koşullarda; yaralanma ve benzeri bir durum yoksa, buralardan vücudumuza mikropların girmesi bir hayli zordur. Fakat tabii ki bu her zaman işe yaramamakta ve bu ilk savunma hattından içeriye mikroplar girmekte. İşte bu noktadan sonra bağışıklık sistemimiz devreye girer ve bu ilk savunma hattını aşan mikroplara karşı amansız savaşına başlar. Öncelikli olarak mikropların girdiği bölgedeki vücut hücreleri çeşitli moleküller salgılayarak o bölgede bir yangı oluşmasını ve bölgedeki kılcal kan damarlarının genişleyerek daha fazla geçirgenlik kazanmalarını sağlar. Ayrıca yaralı bölgedeki kan damarları yine bazı molekülleri salgılayarak fagositik (hücre yiyen) akyuvarların bölgeye çağırılmasında rol oynar. Böylece alarm verilen bölgeye akyuvarlarımız hızla ulaşır. Dışarıdan gelen mikropların dış yapılarında bulunan çeşitli proteinleri tanıma özelliğine sahip ve fagositoz yapabilen akyuvarlarımız sayısını arttırır tanıdığı bütün davetsiz misafirleri yutmaya başlar. Bağışıklık sistemimizin bu kısmı çok özelleşmiş tanıma sistemleri kullanılmadığı için ve sonradan kazanılan tanıma sistemleri olmadığı için kalıtsal bağışıklık sistemi olarak adlandırılır. Peki, buraya kadar kısaca gözden geçirdiğimiz kalıtsal bağışıklık sistemimizin gözünden kaçan ya da bu savunma sisteminin yok etmekte zorlandığı mikroplar yok mu? Tabii ki var. Peki bunları kim, nasıl tanıyor? İşte asıl soruya şimdi geldik. Bildiğimiz gibi kanımızda fagositoz yapan akyuvarlar dışında başka akyuvar tipleri de var. Bu akyuvar tiplerinden biri; T hücrelerini, NK (doğal öldürücü) hücrelerini ve B hücrelerini kapsayan lenfositlerdir. Lenfositler; diğer kan hücreleri gibi fetusun kemik iliğindeki ya da karaciğerindeki pluripotent denilen kök hücrelerinden oluşur ve gelişimlerini tamamladıkları yere göre işlev kazanarak T veya B hücreleri olarak adlandırılırlar. Bu lenfositler edinilmiş bağışıklık sistemimizin yapı taşlarını oluşturular. Burada ele alıp inceleyeceğimiz temel lenfosit “B hücreleri” olacak. B hücrelerinin dış yüzeyinde yabancı yapıları tanıyan ve onlara bağlanan ‘antikor’ olarak adlandırdığımız glikoprotein yapılar vardır. Bu antikorlar immunoglobulinler (Igs) olarak da adlandırılır. Tipik bir antikor molekülü Y şeklinde bir yapıdadır ve 4 polipeptid zincirinden oluşur. İç taraftaki diğerine göre uzun olan zincire ağır zincir, dıştaki kısa zincirlere ise hafif zincir denir. Antikorun bu temel yapısı yabancı proteinlere bağlanmak için hayati önem taşır. Çünkü ağır ve hafif zincirin ucundaki bağlanma bölgesi ‘antijen’ tanıma özelliğine sahiptir. (Şekil 1) Şekil 1. Tipik bir antikor yapısı. Bu özel yapılara sahip B hücreleri yoğun olarak dalakta konumlanarak kan içerisinde önüne gelen her yapıya dokunur ve antikor yapısının bağlanabildiği antijeni arar. İşte bu noktada bu antikor yapılarının hangi antijenleri tanıyabildiği çok önemlidir. Kanda dolaşan farklı antijenleri tanımak için farklı antikorlar üretmek gerekmektedir ve B hücreleri bu işte gerçekten çok ustadır! Peki nasıl? Yukarıda bahsettiğimiz antikor yapısının uç bölgelerinde tanıma bölgeleri olduğunu söylemiştik. Bu uçların sürekli ve rastgele olarak değişmesi, herhangi bir antijeni tanıma ve yakalama olasılığı yüksek antikorların üretilmesi hayati önem taşır. Tek tip üretilen antikorlardan çok fayda göremeyeceğimiz belli! B hücreleri bu çeşitliliği sağlamak için, normal vücut hücrelerinde göremeyeceğimiz bir mekanizmayla tanıma bölgelerini kodlayan, yeri ve sayısı belirli olan çok sayıdaki genleri çok farklı yerlerden ve farklı biçimlerde kesip-biçerek ortaya tamamen yeni bir DNA dizisi çıkarır! Bu kesip çıkarılan bölgeler o kadar farklı şekillerde yeniden yapılandırılır ki, ortaya çıkan olasılık şaşırtıcı düzeyde olur. Ve bu genomdan kodlanan tanıma bölgeleri bir öncekinden farklı bir yapı kazanıp, farklı antijenler tanıyabilir. (şekil 2) Şekil 2. B hücrelerinin genomunda kalın zinciri kodlayan gen bölgelerindeki V, D, J bölgeleri ve bu bölgelerin yeniden düzenlenmeleri. Normalde bütün hücrelerimizdeki DNA’ların aynı olduğunu bilirdik, değil mi? Evet ama B hücrelerin buna dahil olmadığını söylebiliriz! B hücrelerindeki bu rekombinasyonal mutasyonlar hayat kurtarıcı özelliğe sahipler. Ve B hücreleri bu rekombinasyonu özel olarak idare eden ve özellikle hata yapmaya eğilimli enzimler üretirler. Son olarak; çok farklı şekillerde dizayn edilen bu antikorlar bütün vücudumuzda devriye gezer ve antijen arar. Antijenleri bulduğu zaman ise, bir kısmı büyük bir hızla kendilerini çoğaltır ve yüzeyindeki antikorları hücre dışına salgılar. Hücre dışına çıkan antikorlar yüzeyi ile yabancı maddelere tutunur ve onları işaretleyerek etkisiz hale getirmeleri için fagositik hücrelere sunar. (Bu antikor salgılayan değişime uğramış B hücrelerine plazma hücreleri de denir.) Aynı antikoru içeren bir kısım B hücresi ise kendini bellek hücreleri olarak ayırır ve uzun süre kanımızda kalırlar. Daha sonra aynı antijenle karşılaştığında bellek hücreleri bu antijeni tanır. Böylece vücudun erken ve hızlı tepki üretmesini sağlarlar. Önceden hastalık simülasyonları: Aşı Yukarıda son olarak sarfettiğim cümle size de bir şeyleri çağrıştırmış olmalı diye düşündüm ve bu mekanizmayı kullanarak üretilen aşılardan kısaca bahsetmek istedim. Aşı; çocukların korkulu rüyası! Siz de çocukken kızamık aşısı oldunuz değil mi? Ya çiçek aşısı? Peki siz korkup bağıran çocuklardan mıydınız? Yoksa korktuğunu belli etmeyen, sınıfta kahraman olma umuduyla en öne atlayanlardan mı? Çocukken çok fazla kafa yormadığımız ya da anlayamadığımız aşı olayı tam olarak savunma sistemize karşılacağı tehlikeler için önceden bir uyarı ve destek niteliğinde. Aşı dediğimiz şeyin aslında kulaktan dolma da olsa ‘zayıflatılmış mikrop’lar olduğunu biliyoruz hepimiz. Aslında tam olarak öyle olmasa da, temel olarak aynı etki mekanizması kullanılır. Aşı ile birlikte savunma sistemini uyarmak için sadece mikroplar verilmeyebilir. Örneğin bu mikropların salgıladığı toksik proteinler de verilebilir. Ya da hastalık yapıcı virüslerin dış yapılarında bulunan proteinler. Sonuç olarak vücdumuza giren, çok güçlü hastalık etkisi göstermeyen bu yapılar yukarıda bahsettiğimiz özel B hücreleri tarafından tanınır ve hafızaya alınır. B hücreleri artık aynı mikropların saldırısına çok hızlıca yanıt verip yok edebilecek teknik bilgiye sahiptir! Kaynaklar: Cell and Molecular Biology: Concepts and Experiments, 6th Edition, Gerald Karp Biology, 6th Ed., Campbell and Reece www.wikipeda.org Şekil 1.: http://en.wikipedia.org/wiki/File:Antibody.svg Şekil 2.: http://en.wikipedia.org/wiki/File:VDJ_recombination.png Şekil 3.:http://www.visualphotos.com RF Image no: SMP0011755 Yazar : Konuk Yazarlar Açık Bilim Haziran Sayısı http://www.acikbilim.com/2012/06/genel/antikorlar-mutasyonlara-hic-bu-kadar-ihtiyac-duyulmamisti.html

http://www.biyologlar.com/antikorlar-mutasyonlara-hic-bu-kadar-ihtiyac-duyulmamisti

Bitkilerde Beslenme Fizyolojisi

Bitkilerde Beslenme Fizyolojisi

Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir.

http://www.biyologlar.com/bitkilerde-beslenme-fizyolojisi

TESPİT EDİLMİŞ DOKULARI BOYAMADAKİ GENEL FAKTÖRLER

1-Fiksasyonun Boyama Üzerine Etkileri: Fiksasyon, dokularla boyaların etkileşimine yardım eder. Formaldehit ve civa klorür, bazik boyaları tercih ederken, trikloroasetik asit, pikrik asit ve krom bileşikleri asidik boyaların hareketini kolaylaştırır. Etil alkol veya asetik asitle fiksasyondan sonra hem asidik hem de bazik boyalar dokular tarafından kolaylıkla alınır.Çekirdek boyası olan carmalum, civa klorür fiksasyonundan sonra daha çok, formalinden sonra ise daha az boyar. Bazen tespit edici ajan, özel bir doku bileşeni ve boya arasında direkt olarak hareket eder. Bu durumda iken fiksatifin bir mordant olarak hareket ettiği söylenir. Örnek olarak, hematoksilenle miyelinin gösterilmesinde başlangıç basamağı olarak dokunun potasyum dikromatla muamelesi verilebilir. 2-Progressif ve Regressif Boyama: Progresif boyama tekniği, dokulardaki farklı elementlerin sıra ile renklendiği ve boyama solusyonunda uygun sürenin sonunda dokuların tatmin edici differensiyel renklenmesinin başardığı bir tekniktir.Regressif teknikte ise dokular önce fazla boyanırlar, hücresel ayrıntılar yok olur. Sonra dokunun istenmeyen kısımlarından fazla boyanın uzaklaştırılması ile boyanın alındığı veya differensiye edildiği bir tekniktir. Regressif boyama eski progressif yöntemlerden daha çok uygulanmaktadır. Çünkü diğer hücre yapılarının bir miktar boyanması olmaksızın bir hücrenin bir kısmının yeterli yoğun progressif boyanması olmaksızın hücre bölümlerini yeterli yoğun progressif boyanmasını elde etmek zordur. Regressif boyama ise ayrıntıları örten diffüz sonuç verir. Differansiyasyonla daha açık renkte boyanmış alanlardan boyaların uzaklaştırılması olasıdır. Differansiyasyondan sonra hala diğer yapılarda seçici ve açık biçimde ayrıntılı sonuçlar için yeterli miktarda boya kalmaktadır.3- Direkt ve İndirekt Boyama: Anilin boyaların bir çoğu ( metilen mavisi, eozin gibi) boyanın basit sulu veya alkolik solusyonlarına konursa dokuları mükemmel olarak boyar ve direkt boyama olarak bilinir (Şekil a). Hematoksilen gibi birçok boya ise dokularda tatmin edici bileşimin oluşması için mordant olarak bilinen ara bir maddeye gereksinim duyarlar. Bu olay indirekt boyama olarak bilinir.Boya ve mordant ünitesi renkli bir göl şekillendirmek için ve mordantlanmış boya, bir doku-mordant-boya kompleksini oluşturmak üzere doku ile birleşirerek sonraki zıt boyamanın ve dehidrasyonun kolaylıkla yapılmasına izin verir. Histolojik boyama yöntemlerinde boya ve mordant ya birlikte (örn/ Erlich hematoksileninde hematoksilen potasyum alum ile) veya mordant doku boya solusyonuna aktarılmadan önce ( örn; Heidenhein hematoksileninden önce iron alum banyosu) kullanılabilir. Demir, alimünyum ve krom bileşikleri boyalarla bazik boyalar oluşturmak üzere birleşen mordantlardır. Metalik mordant; kimyasal bağlarla kendini hem boyaya hem de dokuya bağlar.Accentuator-Vurgulayıcılar: Mordantlardan farklıdırlar ve kullanıldıkları boyanın boyama gücünü artırırlar. Boyalarla göller oluşturmazlar ve boyanın doku ile kimyasal birleşmesi için esasi değildirler. Loeffler' in metilen mavisindeki potasyum hidroksit ve karbol thionin ve karbol fuksindeki fenol; boyanın yoğunluğunu ve seçiciliğini artırarak accentuator olarak hareket ederler. Accentuatorlar sırası ile anyonik (asidik) ve katyonik (bazik) boyalara eklendiklerinde sıklıkla asit ve alkalidirler. Bir anyonik boyaya asidin eklenmesiyle; dokuların bazik gruplarının iyonlaşmasının artmasıyla boyama yoğunlaşır. Eğer bir katyonik boyaya alkali eklenirse, asidik gruplarının iyonizasyonu artar. Fenol, karbol thionin ve karbol fuksinde accentuator olarak kullanılır fakat hareket tarzı tam olarak anlaşılamamıştır. a- Direkt boyamab- Mordant ile indirekt boyamac- Accetuator ile indirekt boyama Sinir sistemi için metalik impregnasyon yöntemlerini de kullanılan Acceleratörlerin (hızlandırıcılar) (örn/ Cajal yöntemlerindeki chloral hidrat ve veronal) de aynı zamanda accentuatorlar gibi aynı yolla hareket ettikleri görülmektedir. Trapping(tuzağa düşüren ajanlar), boyaları dokularla ve bakterilerle birarada tutar; tannik asit ve iodin örnek olarak verilebilir. Metilen mavisi/ eozinle seçici olarak boyanan bir kan smeari, tannik asitle muamelesinden sonra krornatindeki metilen mavisini tutar. Gentian viyole ve iodin ile boyanan bakterilerin ve alkolik deklorizasyona dayanması da aynı zamanda bakteri-boya kompleksine iodinin trapping hareketi yüzündendir. İodinin boyanın bakteriler ile reaksiyona girme kapasitesini değiştirmediğine, fakat boyayı tutmaya meyilli olduğuna ve differansiyasyon sırasında dokudan kaçışına engel olduğuna inanılmaktadır.4-Differansiyasyon: Regressif bir teknikteki aşırı boyanmış dokunun differansiasyonu veya boyanın geri alınımı (de-staining), basit solusyonlarda yıkama ile veya asitler ve oksitleyici ajanların kullanımı ile sağlanabilir. Mordantlar ve bazı boyalar aynı zamanda differansiasyon ajanları gibi hareket edebilirler. Suda veya alkolde yıkama, differensiasyonun temelidir ve boyanın içinde çözünebileceği herhangi bir solvent de kullanılabilir; differensiasyon sıvısı basit çözünebilirlikle hareket eder. Dokularla sıkı kimyasal birleşme ile birleşen boyalar, bu yolla kolaylıkla differansiye olamazlar fakat onların doku-boya linkajları asitlerin hareketi ile parçalanabilir. Differansiasyon ajanı ya doku ve mordant arasındaki birleşimi ya da mordant ve boya arasındaki bağları koparır. Asitlerle hematoksilen boya göllerinin differansiasyonu; mordantla birleştiğinde kaybolan boyadaki hidroksil grubun yeniden oluşumu ile mordant-boya hattını kırar; asit aynı zamanda dokulardaki asidik grupların iyonizasyonunu baskılar. Doku-mordant bağı da kırılır. Oksitleme ajanları farklı olarak hareket ederek boyayı renksiz bir bileşiğe oksitlerler. Differensiasyon için kullanılan mordantlar; çözünmeyen boya mordant doku kompleksini, bir boya olarak dokuda boyanın sadece bir bölümünü bırakarak, boyanın kismi redistribution yolu ile differensiasyon sıvısında dağılan çözünebilir boya-mordant gölüne dağıtır. Boyalar, kullanılan boyalardan doku kompenentleri için daha kuvvetli bir affiniteleri olduğunda differentiatör olarak işlev görürler. Orange G gibi daha kuvvetli bir boya, diğer daha az hırslı boyayı yerinden çıkarır ve basit de-staining gibi aynı etkiyi yaratır.Boyama Solusyonlarının Olgunlaşması: Bazı boyama solusyonları sadece haftalarca veya aylarca havaya, ışığa ve (sıklıkla) ısıya maruz kaldıktan sonra etkilidir. Hematoksilen iyi bilinen bir örnektir. Taze hazırlandığında nukleus boyası için kullanışsızdır fakat stoklandıktan birkaç hafta sonra aktifleşir. Hematoksileni hemateine okside olur. Oksitleme ajanlarının (sodyum iodat, merküri oksit, potasyum permanganat gibi) eklenmesi ile hızlandırılabilir. Hematoksilenin bir kısmının boyama solusyonunda suni olarak fazla hematoksilenin ise doğal olarak olgunlaştırılmasının mümkün kılınması önerilmektedir. Bu, boyanın bir kerede kullanılmasına izin verir fakat devam eden oksidasyon boyanın aktivitesinin birkaç ay sürmesini sağlar; yoksa tamamen olgunlaşmış solusyon daha ileri oksidasyonla inaktif bileşiklere dönüşerek hızla etkisiz hale gelir. Boyaların hazırlandığı günün tarihini etiketle belirlemek akıllıca olacaktır.

http://www.biyologlar.com/tespit-edilmis-dokulari-boyamadaki-genel-faktorler-2

Biyoloji Eğitiminde Evrim ve Yaratılışcılık

Biyolojik bilimlerin temeli olan evrim kurami çagimizin belki de en önemli bilimsel devrimlerinden biridir. Yeryüzündeki canli türlerinin ortak bir atadan evrimleserek ortaya çiktigini, yeryüzündeki yasamin ortak bir geçmisi paylastigini öne süren evrim kurami, insanin kendine ve dogaya bakis açisini degistirmistir. Sayet insan bugünkü konumuna evrim sonucu geldiyse evrimin yasalarini ögrenebilir ve kendinin ve diger canli türlerinin evrimini yönlendirebilir (1). Canli türlerinin bir evrim sonucunda olustugu ortaya atilincaya kadar dogadaki tüm canli türlerinin insanligin yarari için varoldugu, insanin da dogadan yararlanmak, dogaya egemen olmak üzere yaratildigi düsüncesi geçerli idi. Evrim kurami ise insani bu özel konumundan indirmis ve insanin diger canli türleri gibi biyolojinin yasalarina tabi oldugunu, doganin bir parçasi oldugunu, diger canli türleri ile ortak bir biyolojik bir geçmisi paylastigini öne sürmüstür. Diger bir deyisle biyologlarin, ekologlarin kuslar, böcekler, baliklar, yosunlar üzerinde çalisarak ortaya koydugu ilkeler insan için de geçerlidir. Evrim kuraminin ortaya attigi görüsler insanin ve diger canli türlerinin ortak bir atadan evrimlestikleri görüsü, yaratilisin kutsal kitaplardaki öyküsü ile çelisir görünümdedir. Bu nedenledir ki canli türlerinin olusumunu bilimsel olarak açiklayan evrim kuramina kutsal kitaplari harfi harfine yorumsuz olarak kabul eden bazi kökten dinci çevrelerce sürekli olarak karsi çikilmistir. Dünyanin evrenin merkezi olmadigi sadece günesin çevresinde dolanan küçük bir gezegen oldugu görüsü de ilk kez ortaya atildigi zaman kutsal kitaplarin anlatimi ile çelistigi için büyük bir direnisle karsilasmisti. Günümüzde Copernicus, Kepler, Galileo'nun günes sistemi konusundaki buluslari artik tartisma konusu degildir. Ancak incili harfi harfine tartisilmaz bir tanri kelami olarak kabul eden kökten dinci hiristiyan gruplar evrime karsi bagnazca savaslarini halen sürdürmektedirler. Evrim karsiti kampanyada merkezleri ABD'de bulunan Yaratilisi Arastirma Enstitüsü (Institution for Creation Research) ve Yaratilisi Arastirma Dernegi (Creation Research Society) adli iki örgüt basi çekmektedir (2, 9). Kökten dinciler daha 1920'lerde ABD'nin bazi eyaletlerinde evrim kuraminin ögretilmesini yasaklayan yasalar çikmasini saglayabilmislerdir. Biyoloji ögretmeni John Scopes 1925 yilinda biyoloji dersinde evrim anlattigi için yargilanmis ve mahkum edilmisti. Bunun sonucu olarak 1960'lara kadar Amerika'nin bazi eyaletlerinde evrim kurami pek deginilmeyen bir konu olarak kalmistir. 1957 yilinda gerçeklesen bir olay Amerikalilarin biyoloji egitiminde evrimi yasaklayan tutumunu degistirmelerine neden olmustur. Sovyetler Birligi ilk kez uzaya bir yapay uydu olan Sputnik'i firlatmistir. Bunun üzerine Amerikalilar teknoloji yarisinda Sovyetler Birliginin gerisinde kaldiklarini farkederek fen egitimini yeniden gözden geçirip fen dersleri müfredatinda köklü degisikliklere gitmeye karar vermislerdir. Fen dersleri müfredati çagdas bilimin gerektirdigi sekilde yeniden düzenlenmis ve biyoloji ders kitaplarinda Darwin'in evrim kuramina da yer verilmistir. Bundan sonra evrim karsiti tüm yasalar Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Bunun üzerine kökten dinciler dinsel inançlari Yaratilis bilimi olarak öne sürmüsler ve okullarda bu sözde bilimin de evrimle birlikte okutulmasi için çalismaya baslamislardir. Bunun sonucu olarak 1981 yilinda Arkansas eyaletinde evrim kuramina karsi görüsleri içeren yaratilis biliminin de evrim kurami ile birlikte ögretilmesi yasalasmistir. Daha sonra bu yasa da Amerika Birlesik Devletleri anayasasinin laiklik ilkesine aykiri bulunarak iptal edilmistir. Mahkeme kararina göre evrim kuramina karsi görüsleri savunan ve dinsel bir inanci temsil eden yaratilisçilik ögretisi bir bilim degildi ve fen bilimleri egitiminde evrim kuramina karsi bilimsel bir alternatif sayilamazdi. Amerika Birlesik Devletleri Ulusal Bilimler Akademisi de yaratilis görüsünün evrim ile birlikte ögretilmesine karsi çikmis ve yayinladigi bir kitapçikta su görüse yer vermistir (3) : " Din ile bilim insan düsüncesinin iki ayri ve birbirini dislayan alanidir; bu yüzden ayni yerde ikisinin birlikte verilmeye çalisilmasi hem bilimsel teorinin hemde dinsel inancin yanlis anlasilmasina yol açacaktir." Amerika Birlesik Devletleri Ulusal Bilimler Akademisi yayinladigi Bilim ve Yaratilisçilik (3) adli kitapçikda bu görüslere de yer vermistir : "Ulusal egitim sistemimize ve bilimin zorluklarla kazanilan, somut kanitlar üzerine kurulu yapisinin bütünlügüne ve etkinligine karsi girisilen böyle bir saldiri karsisinda Ulusal Bilimler Akademisi sessiz kalamazdi, çünkü sessiz kalmak, akademik ve düsünsel özgürlüge ve bilimsel düsüncenin temel ilkelerine olan sorumlulugumuzu ihmal etmek olurdu. Bilimsel ugrasinin tarihsel temsilcisi ve Federal hükümet'in bilimsel sorunlardaki danismani olarak Akademimiz bilinmesini ister ki; Yaratilis bilimi ilkeleri bilimsel bir kanitla desteklenmemektedir ve yaratilisçiligin ögretim programinda hiçbir düzeyde yeri yoktur. Günümüzün bilgili ve bilinçli fen dersi ögretmenlerinin de önerilen ögretimi yapmalari mümkün degildir. Ayrica böyle bir ögretim, ülkenin gereksinim duydugu bilimsel gelismeleri izleyebilen bir vatandas ve bilinçli bir bilimsel-teknik personel kitlesinin olusmasini engelleyecektir." Bugün insanin en temel sorunlarindan biri, nüfusunun artmasi ve çevre sorunlari karsisinda yer yüzündeki varligini sürdürebilmesi sorunudur. Bunun için ise insanin diger canlilar gibi biyolojik bir varlik oldugunun, diger canlilar ile ortak bir geçmisi paylastiginin, doganin bir parçasi oldugunun, diger canlilar gibi biyoloji yasalarina, ekoloji yasalarina tabi oldugunu bilinmesi gerekir. Bu da ancak kapsamli bir biyoloji egitimi ile gerçeklesebilir. Liselerimizdeki fen egitimi ise ne yazik ki gençleri önümüzdeki yüzyilin bilimine, biyolojiye hazirlamaktan uzaktir. Biyoloji ders kitaplarinda evrim kuramina karsi bir görüs olarak yaratilis görüsü konulmustur. Böylece ögrenciler dünyanin hiç bir çasdas ülkesinde görülmeyen bir uygulama ile karsi karsiya kalmislardir. Bir fen dersi olan biyolojide yeryüzündeki canli türlerinin çesitliligini açiklamak için kaynagini dinden alan yaratilis öyküsüne de yer verilmistir. Buna göre Biyoloji kitaplarinda (4) "Islama göre kainat ve kainattaki bütün varlıklar ALLAH tarafindan yaratilmistir. Dünyanin ilk yaratilisi insanlar tarafindan gözlenemeyen ve tekrarlanamayan bir olaydir. Yaratilis görüsünde bir de dünyayi saran tufandan söz edilmektedir... Dinozorlarin yeryüzünden bir anda silinmis olmasi buna güzel bir örnektir" seklinde bilimsel olmayan ifadeler yer almaktadir. Ayrica din derslerinde bir biyoloji konusu olan evrim kurami islenmektedir. Lise I Din Kültürü ve Ahlak Kitabinda (5) biyoloji ile hiç bir ilgisi olmayan yazarlar Darwin'in evrim kuramini alabildigince elestirmektedirler. Evrim kuraminda canli türlerinin ortak bir atadan türediklerini, bu nedenle birbirine yakin türlerin genetik açidan da benzer oldugu görüsünü yalanlamak amaci ile su savi ileri sürmektedirler. "Yapilan kan muayenelerinde kurbaga, fare ve yilan kanlarinin evrimcilerin iddialarinin aksine maymununkinden insana daha yakin oldugu tespit edilmistir". Bu sav bilimsel temelden tamamen yoksun ve gerçek disidir (6). Yazarlar hangi bilimsel kaynaga dayanarak bu savi ileri sürmektedirler ? Kan ile neyi kastetmektedirler ? Yapildigi öne sürülen kan muayenelerinde kanin hangi ögesi veya ögeleri incelenmistir ? Kaldi ki insan kani ile maymun kani arasinda büyük bir benzerlik vardir. Örnegin 287 aminoasitten olusan hemoglobin A molekülü insan ve sempanzede tipatip aynidir. Ayni molekül bakimindan insan ve goril kani arasindaki fark ise 287 aminoasitten sadece birindedir. Hemoglobin A molekülü farede 19, koyunda 26, tavukta 45, sazan baliginda 95 aminoasit ile insan hemoglobin A molekülünden ayrilmaktadir. Görüldügü gibi kanin bir ögesi olan hemoglobin A molekülü bakimindan insana en yakin canli olan sempanzede hiç fark yok iken insandan uzaklastikça farkliliklar artmaktadir. Daha bir çok protein üzerinde yapilan çalismalarda ayni yönde sonuçlar elde edilmistir. Bu yakinlik uzaklik iliskileri daha önce bilim adamlarinin morfoloji, anatomi, gelisme biyolojisi, paleontoloji, sistematik gibi dallarda elde edilen kanitlara dayanarak yaptigi siniflandirmalardaki yakinlik uzaklik iliskileri ile paraleldir. Bunun disinnda kalitimin kimyasal temelinin evrenselligi yani tüm canlilar için ayni kalitsal mekanizmanin geçerli olmasi canlilarin ortak bir geçmiii paylaitiklarinin yadsinamaz bir kanitidir (7). Amerika Birlesik Devletlerinde ögretilmesi mahkemece anayasanin laiklik ilkesine aykiri bulunan yaratilis görüsü (8) 1985 yilinda Türkiye Cumhuriyeti Milli Egitim Bakanliginin onayi ile Lise Biyoloji ve Din Kültürü ve Ahlak kitaplarına girebilmistir. Böylece laiklige aykiri oldugu bilinen ve dünyanin hiçbir çagdas ülkesinde görülmeyen bir uygulama 20. yüzyilin son çeyreginde devletin egitim politikasi haline gelmistir. Bilim adamlari günümüzde evrimin olup olmadigini degil evrimin nasil oldugunu tartismaktadirlar. Yaratilis bilimcileri evrimciler arasindaki evrimin mekanizmalari üzerindeki bilimsel tartismalari çarpitarak evrim kuraminin yanlis oldugunu kanitlamak için kullanmaktadir. Bilim kendi kendini düzeltici bir nitelige sahiptir ve bilim adamlari arasinda bazen çok siddetli olabilen tartismalar özelestiriler bilimin saglikli yanini gösterir. Bize de Amerika Birlesik Devletleri'nden ithal edilen yaratilis görüsü biyoloji kitaplarinda "Islama göre kainat ve kainattaki bütün varliklar Allah tarafindan yaratilmistir" seklinde yer almaktadir. Bu görüsün tartisilmasi olanaksizdir. Dahasi bu görüsün deney ve gözlem ile dogrulanmasi ya da yanlislanmasi söz konusu degildir. Din derslerinde ögrencilere Darwin'in evrim kuramini çürütmeleri için ödev vermek olagan bir uygulama haline gelmistir. Bilimsel bir kuram öngörüleri deney ve gözlem sonuçlari ile çelistigi zaman çürütülebilir. Deney ve gözlem sonuçlari kuramin öngörüleri ile uyum içinde ise kuramin desteklendigi söylenir. Bilimsel bir kuramin ispat edilmesi söz konusu degildir. Bilimin yöntemleri ile biyologlarin sayisiz deney ve gözlem yaparak 130 yildir çürütemedikleri, yanlislayamadiklari evrim kuramini din dersinde ögrencilere ödev vererek çürütmeye çalismak bilimsellikten tamamen uzak bir yaklasimdir. Bu çabalarin arkasinda gençlerimizin beyinlerini dinsel görüslerin dar kalibina uydurmaya, bu kalip içerisinde hapis etmeye, ögrencilerin bilimsel düsünebilme, sorgulayabilme, elestirebilme yeteneklerini körletmeye çalismak gibi bir amaç yatmaktadir. Evrimi arastiran bilim adamlarinin çabalari dogayi anlama ve açiklama amacina yöneliktir. Bunun disinda tanrinin varligini reddetmek veya kanitlamak gibi bir amaçlari yoktur, olamaz da. Dinsel konular pozitif bilimlerin yöntemleri ile arastirilamazlar. Çagimizda dünya ülkelerinin bilim ve teknoloji alanindaki yarisi hizla sürerken ülkemizin ayakta kalabilmesi gençlerimizin bilimi bir anlayis sistemi olarak benimsemelerine, kavrayabilmelerine baglidir. Sayet gençlerimiz bilimi bir anlayis sistemi olarak benimsemezler ise dinsel inaçlarina bagli fakat tutsak bir ulus olmamiz kaçinilmazdir. Dünyada çesoitli kültürlerde, çesitli dinlerde çok çesitli yaratilis görüsleri vardir. Fakat bu görüslerin hangisinin dogru oldugunu sinama da ise bilim yetkili degildir. Zira bu yaratilis görüsleri bilimsel degildir. Evrim kurami ise evrenseldir, yani dünyanin her yerinde ayni kuram geçerlidir, dinden dine, kültürden kültüre, bölgeden bölgeye degismez. Bir yanda binlerce kez sinamadan geçmis deney ve gözlemler ile defalarca dogrulanmis bilimsel bir kuram diger yanda ise elestirilemeyen, sorgulanamayan, tartisilamayan, kaynagini kutsal kitaplardan alan yaratilis öyküsü. Yaratilisçilar evrim kuraminin da bilimsel olmadigini iddia etmektedirler. Bir kuramin bilimsel olabilmesi için deney ve gözlemler ile yanlislanma olanaginin bulunmasi gerekir. Evrim kurami deney ve gözlemler ile yanlislanabilir. Örnegin, kambriyan katmanlarinda bir insan, bir çiçekli bitki, bir memeli, bir kus fosili bulunabilirse bu bulgulardan bir tanesi bile evrim kuramini geçersiz kilabilir. Bu yaklasim, biyoloji derslerinde fen derslerinde dinsel bir ögreti ile bilimsel bir kuramin birbirinin karsito iki kuram gibi ele alinarak ögretilmesi ögrencileri büyük bir ikilem içine itmektedir. Ögrenci ya bilimi ya da dini tercih etmeye zorlanmaktadır. Ögrenci ya evrim kurami sadece bir kuramdir kutsal kitaplarda yazilanlar dogrudur diyerek bilimi reddedecek ve yaratilis ögretisini kabul edecek, ya da yaratilis öyküsünü de bilimsel bir kuram gibi sorguya çekerek, irdeleyerek bilimsel bir yaklasimi tercih edecektir. Örnegin yaratilis öyküsündeki Nuh tufani olayini bilimsel bir irdelemeden geçirerek Su anda yeryüzünde bulunan 2 milyon canli türünün her birinden birer çift alarak, Nuh peygamberin bu hayvanlari 40 gün boyunca gemisinde nasil yasatabildigini, dinazorlarin bu gemiye sigmadigi için mi yok oldugunu, tüm dünyayi saran bir tufanda Agri daginin zirvesine kadar sularin nasil yükseldigini, ya da bu hacimde su kütlesinin nereden çiktigini sorabilecektir. Simdi de fen derslerinde evrim kuramini tümden kaldirmak egilimi vardir. Evrim kurami biyolojinin tek birlestirici kuramidir. Bugün evrim kurami olmadan biyolojideki bir çok olay birbiri ile ilgisi olmayan, ilginç fakat pek fazla anlam tasimayan bilgiler yigini olacaktir. Bu bakimdan evrim kurami olmayan bir biyolojiyi düsünmek mümkün degildir. Fen derslerinden, biyoloji derslerinden evrim kurami çikarildigi takdirde fen egitimimiz Amerika Birlesik Devletlerinin bazi eyaletlerinde 1950' lerdeki fen egitimine benzeyecektir. Fen egitiminde bazi konular dinsel inanislarimiz ile bagdasmiyor diyerek o konulari fen egitimi müfredati disinda tutamayız. Bilim bir bütündür. Evrimi müfredat disi birakirsak, biyoloji egitimi, fen egitimi anlamin tamamen yitirir. Bilimin verileri isiginda dinsel görüslerin yorumunu yapmak din adamlarinin görevidir. Fakat bu görüslerin bir fen dersinde bilimsel bir kuram ile birlikte, bilimsel kuramin seçenegi gibi islenmesi fen egitiminde istenilen amaçlara ulasilmasini engelleyecektir. Türkiye'nin gelecegi yetistirdigimiz bilim adamlarinin niteligi ve niceligi ile dogrudan iliskilidir. Bilim adami adaylarinin özgür, elestirel, ve bagimsiz düsünebilme diger bir deyisle bilimsel düsünebilme aliskanligini kazanmis olmalari gerekir. Bilim adami arastiracagi konuya hiç bir önyarginin tutsagi olmadan özgürce yaklasabilmeli, konuyu özgürce sorgulayabilmeli, ve deney ve gözlemlerinin sagladigi kanitlari sonuna kadar, kanitlar nereye götürürse götürsün izleyebilmelidir. Türkiye'nin kalkinmasi, bilimde, teknolojide çagdas ülkeler arasinda yerini alabilmesi için özgür, kosullandirilmamis, elestirel düsünebilen beyinlere ihtiyaci vardir. Bunun için de fen egitiminde bilimin dogasina aykiri olan din konularina yer vermemek gerekir. Türkiye'de bilimin gelisebilmesi için egitimde anayasamizin laiklik ilkesine uyulmasi son derece gereklidir. KAYNAKLAR : 1) Dobzhansky, T., Ayala, F.J., Stebbins, G.L., Valentine, J.W. 1977. Evolution. W.H.Freeman and Company. 2) Kence, A. 1985. Evrim kurami ve yaratilisçilik. Cumhuriyet 24 Nisan 1985. 3) Akkaya, E.U.(Çev.).1985. Bilim ve Yaratilisçilik ABD Ulusal Bilimlar Akademisi'nin görüsü. Gözlem Matbaacilik, 80 s, Istanbul. 4) Güven, T., Köksal, F., Öncü, C., Erdogan, I., Acar, Ö., Demirci, C., Togral, A., Simsek, S. 1994. Liseler için Biyoloji I. Milli Egitim Bakanligi Yayinlari 602, Ders Kitaplari Dizisi 223. 5) Ayas, M.R., Tümer, G. 1994. Liseler için Din Kültürü ve Ahlak Bilgisi I. Milli Egitim Bakanligi Yayinlari 118, Ders Kitaplari Dizisi 100. 6) Kence, A. 1994. Biyoloji egitimi ve laiklik. Cumhuriyet Bilim ve Teknik, 367: . 7) Futuyma, D.J. 1983. Science on Trial. Panteon Books, New York. 8) Creationism in Schools: The decision in McLean versus the Arkansas Board of Education. 1982. Science, 215: 934-943. 9) Morris, H.M. 1985. Yaratilis Modeli. Milli Egitim Bakanligi, Bilim ve Kültür Eserleri Dizisi. (TUBA KONUSMASI) Aykut KENCE ODTU Biyoloji Bölümü, Ankara

http://www.biyologlar.com/biyoloji-egitiminde-evrim-ve-yaratiliscilik

Havuz balığı (Carassius carassius)

Havuz balığı (Carassius carassius)

Havuz balığı (Carassius carassius), sazangiller (Cyprinidae) familyasına ait bir balık türü. Havuz balığı sazan'a çok benzer. ikisini ayırt etmek için havuz balığının daha yüksek olan sırtına, ve sazan balığında var olan bıyıkların eksik olmamasına dikkat etmek gerek. Renkleri çoğunlukla metalik sarı, bazende gri ya da yeşilimsi olur. Havuz balığı çok yavaş büyür. Boyları 15-25 en çok 60 cm. ve 2–3 kg. ağırlıkta olur. Havuz balığı ile sazan balıkları birbirleri ile çiftleşebilirler. En büyüklerinin diğer küçük balıkları yedikleride görülmüştür. Trakya, Marmara bölgeleri, Kızılırmak, Yeşilırmak deltaları ve Çoruh havzasında yayılış gösterir. Avrupa'da da çok yaygındır. Su içindeki otlar, dip hayvanları ve sinek larvalarıyla beslenir. Mayıs-Haziran arası 14-20 C° sularda 150-300 000 yumurtasını otların üzerine bırakır. Suyun kirliliği ve oksijen toleransına dayanıklı bir balıktır. Hatta 5 güne kadar hiç oksijen içermeyen suda hala hayatta kalabildigi tespit edilmiştir. Kurak zamanlarda yasadığı küçük göl kurusa bile, kendini çamura gömüp belli bir süre hayatta kalabilir. Bu yüzden hatta cok kirli sularda, ve çok küçük göllerde bile yaşayabilir. Büyüklerinin eti lezzetlidir. Bazı batı ülkelerinde üretimi yapılmaktadır. Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Cypriniformes (Sazansılar)Familya:Cyprinidae (Sazangiller)Cins:     CarassiusTür:     C. carassius

http://www.biyologlar.com/havuz-baligi-carassius-carassius

Kanser Tedavisinde Yeni Silahlar

Kanser Tedavisinde Yeni Silahlar

İnsanlık, bildiğimiz kadarı ile, yazılı tarih boyunca kendi tarihi kadar eski ve bir o kadar da ürkütücü kanserle mücadele etmiş ve hala bu mücadelesine devam etmekte. M.Ö. 3000 yıllarında yazıldığı tahmin edilen eski Mısır metinlerinde meme ülserlerinin (o zaman henüz kanser kelimesi literatürde yoktu) koterle yakılarak alındığı anlatılıyor. Günümüzde ise kanser hastaları radyoterapi, kemoterapi ve cerrahi müdahaleler ile tedavi edilmeye çalışılmakta. Bu tedavi yöntemlerinin kanserli hücre kadar sağlıklı hücrelere de saldırması nedeni ile kusma, saç dökülmesi, enfeksiyon riskinin artması gibi istenmeyen etkiler hastalarda sıklıkla görülüyor. Kanser araştırmacıları, sağlıklı hücrelere zarar vermeyecek, ancak kanserli hücreleri öldürecek ilaçlar ve tedavi yöntemleri geliştirmeye çalışmaktalar. Sağlıklı hücreler ile kanser hücrelerini birbirinden ayırmak için kanser hücrelerinin genetik yapısının anlaşılması önemli olduğu biliniyor. Nitekim, 2010 yılında yapılan bir meta-analiz çalışması, kanser araştırmacıları arasında tümör biyolojisi ve kanser genetiği araştırmalarının popüler olduğunu gösteriyor [1]. Meme ülserlerinden bahseden eski Mısır metinlerinin üzerinden 5000 yıl, Hipokrat’ın “karsinoma” terimini kullanarak çeşitli kanser türlerini tanımlamasından 2400 yıl sonra kanser araştırmaları on beş yıldır umut vaat eden yeni bir alanda seyrini sürdürüyor: Kanser kök hücreleri (KKH). Şekil 1: KKH’lerin kendilerini yinelemeleri ve farklılaşmaları. (A) karesi içerisinde mavi renkle gösterilen KKH kendini sınırsız yineleyebilme özelliğine sahiptir. Bu özellik dönümlü ok ile temsil edilmiştir. KKH kendini yinelerken (B) karesi içerisindeki gibi kendinin aynısı kanser kök hücrelerini üretebilir. Bu KKH’ler de hem sınırsız kök hücre üretme, hem de farklılaşma yetisine sahiptir. (A) karesindeki KKH farklılaşırken ise önce (C) karesinde açık mavi ile gösterilen hücreyi üretir. Bu hücre bir miktar (soru işaretinin gösterdiği üzere) kendini tekrar üretme yetisine sahipken bu hücreden bölünerek farklılaşan diğer hücreler artık sınırsız kendilerini yineleme ya da farklılaşma yetisine sahip değildir. Kanser, basitçe anlatımı ile hücrelerin kontrolsüz büyümesi nedeni ile oluşan yüzden farklı hastalığa verilen genel bir isimdir. Ancak bu kadar basitçe tanımlanabilmesi kanserlerin basit, kolay anlaşılır hastalıklar olduğu anlamına gelmiyor. Kanserli bir dokuda farklı kanser hücreleri bulunuyor. KKH hipotezine göre bu hücrelerin bir kısmı tedavi süresince ilaçlara dayanıklılık geliştirebilen kanser kök hücreleri. Kök hücreleri bölünmeleri sırasında kendilerinin birebir aynısı iki kopya yapmazlar. Oluşan yavru hücrelerin bir tanesi ana hücrenin tıpkı kopyası iken diğer hücre (Şekil C) planlanan işleve göre farklılaşır. Kanser kök hücreleri de benzer bir şekilde asimetrik olarak bölünür. Bu hücrelerin bölünmesi sırasında oluşan hücrelerden bir tanesi standart kanser hücresi olarak yaşamına devam ederken diğer hücre  (Şekil B)kanser kök hücresi olarak kalır ve daha fazla kanser hücresi üretmeye devam eder [Şekil 1]. Yavru kök  hücrelerinin kendilerini yeniden üretme yetilerine sahip oldukları kadar radyoterapiye ve kanser ilaçlarına direnç kazandıkları da gözlemlenmiştir. Kanser araştırmalarında kök hücre fikrinin aslında çok yeni bir fikir olmadığı söylenebilir. Tümörlerin heterojen histolojik (histoloji: doku ve hücrelerin mikroskobik anatomilerinin incelenmesi bilimi) özellikler gösterdiği 19. yüzyıldan bu yana araştırmacılar tarafından biliniyor. Ancak kanser kök hücrelerinin varlıkları akut myeloid lösemi (AML) üzerinde yapılan araştırmalar sonucunda ortaya çıkarılmış. AML hücrelerinin sık bölünmediğini gören araştırmacılar “temel” bir hücre tipinin AML hücrelerini ürettiği fikrini test etmek amacı ile fareler üzerinde çeşitli deneyler yapmışlar. Bu deneyler sırasında araştırmacılar insan kökenli AML hücrelerini fareye nakil etmişler ve bir tip hücrenin kemik iliğine yerleşerek lösemi hücreleri ürettiğini gözlemlemişler. Gözlenen bu hücreler kanser kök hücreleri olarak adlandırılmış. Daha sonraki çalışmalar meme ve kalın bağırsak kanseri başta olmak üzere pek çok katı tümörde de KKH’lerin bulunduğunu gösteren sonuçlara ulaşmış. Önceleri tümörlü bir yapı içerisinde kanser kök hücrelerinin oranının çok düşük (binde birden daha az) olduğu varsayılmaktaymış ama 2007 yılında yapılan bir çalışma farelere enjekte edilen lösemi ve lenfoma hücrelerinin %10 kadarının in vivo (canlı organizma içinde yapılan araştırmalar) ortamda kanser geliştirme yetisine sahip olduğunu göstermiş. Başka bir çalışma ise ileri derece melanomlardan (oldukça saldırgan bir cilt kanseri türü) toplanan hücrelerin %25’inin bağışıklık yetmezliği olan fareler üzerinde kanser hücreleri oluşturduğunu belirlemiş [2]. Tümörler içerisindeki KKH miktarı konusunda hala tartışmalar devam etmekte olsa da yapılacak çalışmalar ile önümüzdeki yıllarda bu sorunun yanıtına ulaşılacak gibi gözükmekte. Şekil 2. Kanser Kök Hücreleri – Olası tedavi hedefleri Kansere karşı etkili, tümör oluşturan hücreleri hedefleyen tedavi yöntemleri geliştirilerek tümörleri yok etmek için [Şekil 2], kanserli doku içerisindeki oranları ne olursa olsun KKH hipotezinin test edilmesinin gerekli olduğu araştırmacılar tarafından vurgulanıyor. Konu ile ilgili bilim insanları KKH’lerin kanser hücresi üretme yetilerine yol açan özel biyolojik ve genetik yapıları ile uyumlu olarak bu hücrelerin antitümör ilaçlarına karşı duyarlılıklarının da diğer kanser hücrelerinden farklı olabileceğini düşünmekteler. Bu hücrelerin nasıl yok edileceği sorusu ise bilim dünyasını meşgul eden diğer bir soru. Ama bu soruya yanıtlar gelmeye başlamış. Bilim insanları, KKH’lerin bölünmesi sırasında kullandıkları üç farklı moleküler yolağı tanımlamayı başarmışlar: Notch yolağı, Hedgehog yolağı ve Wnt/beta-katenin yolağı. Bu üç yolağı kullanarak kanser kök hücrelerinin tümör üretim aktivitelerini durduracak tedavi yöntemleri üzerine çalışmaların devam ettiği çeşitli kaynaklarda bildiriliyor. Her ne kadar tümör içindeki oranları, her bireyde ve kanserli yapıda gösterdikleri farklılıklar hala tartışmaya açık olsa da KKH hipotezi gelecekte kanser tedavileri için bir umut ışığı yakmış gibi görünmektedir. Üniversiteler ve araştırma kuruluşları AML hücrelerinde kanser kök hücrelerinin tanımlanmasından bu yana KKH araştırmalarına yüksek miktarlarda yatırım yapmışlardır. A.B.D. Ulusal Kanser Enstitüsü tarafından yönetilen Kanser Genom Atlası Projesi kapsamında binlerce tümör örneğinin gen dizilimlerinin belirlenmesi çalışmalarına önümüzdeki beş yıl içerisinde 1 milyar dolar harcanması planlanmaktadır. Bu çalışmaların kanser kök hücreleri ve kanser biyolojisine ait bilgilerimizi arttıracağı tartışma götürmezken, kanser tedavisinde yeni çığırlar açma olasılığı da hem bilim dünyası hem de kanser hastaları için heyecan vericidir. Kaynaklar 1. “A close look at cancer”, Allison Farrell, Nature Medicine, March 2011, Vol. 17, Number 32. “Solving an age-old problem”, Barbara Dunn, Nature, March 2012, Vol. 4833. “The cancer stem cell: premises, promises and challenges”, Hans Clevers, Nature Medicine, March 2011, Vol. 17, Number 34. “Recent advances in cancer stem cells”, Robert W Cho and Michael F Clarke, Current Opinion in Genetics & Development , 2008, 185. “Cancer stem cell: target for anti-cancer therapy”, Carol Tang, Beng T. Ang, and Shazib Pervaiz, The FASEB Journal, December 2007, Vol. 21 Bahadır Ürkmez http://www.acikbilim.com/2012/11/dosyalar/kanser-tedavisinde-yeni-silahlar.html

http://www.biyologlar.com/kanser-tedavisinde-yeni-silahlar

MAVİ YEŞİL ALGLER

Bakteriler, mavi-yeşil algler, rikestsiyalar, aktinomisetler, ve miykoplazmaların gruplarının dahil olduğu; gerçek çekirdek zarları ve membrana bağlı organelleri olmayan, fosfolipid barındıran hücre duvarı ve tek helezonlu DNA molekülü hücre içinde serbest halde bulunan mikroorganizmalardır. Organeller ve karmaşık sitoplazma yapısı bu canlılarda bulunmaz. Mavi-yeşil algler çekirdeksiz hücrelerin en gelişmiş kolunu oluşturur. Hemen hemen hepsi kromozom olarak proteinle çevrilmiş çember şeklinde bir DNA zinciri içerirken, mitoz bölünme yapmazlar. Her hücrede haploit olan tek kromozom, açılarak bir hücrenin bir ucundan diğer ucuna hareket ederek kendini eşlediğinde, hücre bölünür. Evrim sürecinde, 2,5-3 milyar yıl önce, kese şeklindeki ilk hücrelerden evrimleştikleri düşünülmektedir. Mavi yeşil alglerin, diğer alg türleri gibi, farklı bir dış görünümleri vardır. Bunlar, basit hücre yapısına sahiptir (prokaryot). Belirgin bir hücre çekirdeği bulunmaz. Mavi yeşil algler de diğer algler gibi sucul yaşamda, besin zincirinde ilk sırada yer alırlar. Yapılarında bulunan pigmentler sayesinde suyu ve bazı besin maddelerini (azot, fosfor), ışığın etkisiyle karbonhidratlara çevirirler. Böylece hem besin üretmiş, hem de suyun çözünmüş oksijen miktarını artırmış olurlar. Çoğalmalarını ışık, sıcaklık ve besine bağlı olarak belirlenir. Buraya kadar olan kısım dengeli bir ekosistemde gerçekleşen olayları kapsar. Ancak, ekosistem bozulduğunda alglerin üremesinde bir artış meydana gelir. Örneğin, evsel atıklar azot ve fosfor içerir. Bunlar arıtılmadan suya verildiğinde algler, bunları kullanarak aşırı miktarda üreyebilir. Fazla ürediğinde de suyun oksijenini azaltırlar, bulanıklığa neden olurlar ve ışığın derin sulara gitmesini engellerler. Bu durum derin su canlılarının da ölmesine neden olur. Zehirleyici özellik Dinoflagellata grubunda görülür Bu türler yapılarında zehir taşırlar ve sayıları arttığında etkileme alanları da artar. Mavi - yeşil algler de bakteriler kadar küçüktür. Ya tek tek hücre olarak ya da koloni halinde yaşarlar. Nemli topraklarda ve sularda yaşarlar. • Zarla çevrili organeller ve zarla çevrili çekirdekleri , yoktur. Sitoplazmalannda hem yeşil rengi veren l klorofil hem de mavi renk veren bir renk maddesi 1 vardır. | • Klorofilleri olduğu için fotosentez yapabilirier. • Sporla çoğalırlar. Eşeyli ve eşeysiz çoğalır. Algler, prokaryotik (basit yapılı canlılar) ve ökaryotik (gelişmiş canlılar) olmak üzere iki ayrı sınıfa dahil edilebilir. Prokaryotik algler, gerçek nükleusları (hücre çekirdeği), nükleolusları (çekirdekçik) ve bir zarla çevrili plastidleri olmadığından, ökaryotik alglerden ayrılırlar. Bu gruba dahil edilebilecek mavi-yeşil algler ipliksi yapı gösterirler, ya tek olarak veya koloni halinde yaşarlar. Bu alglerin arasında bakteriler kadar küçük olanları bulunmakla birlikte, çoğu bunlardan büyüktür. Yine, prokaryotik grupta yer alan algler, tatlı suların yüzeyinde diğer planktonlarla birlikte "su çiçeği" denen bir yapı oluşturmaktadırlar. Çoğunlukla nemli topraklarda, havuz kenarlarında, nemli kayalar üzerinde, kaplıca sularında yaşayabilirken, bir kısmı da mantarlar ile fizyolojik bir birlik oluşturarak likenleri meydana getirirler. Bu algler arasında yer alan Microcystis aeruginosa suya saldığı bir toksin ile zooplankton, balık ve su kuşlarının ölümüne yol açar. Algler, tüm ekosistemlerin bütünlüğünün muhafazası için hayati önem taşırlar. Okyanusların planktonlarında bulunan diyatomlar ve diğer mikroskobik algler, tüm dünyanın ihtiyacı olan fotosentetik karbon ihtiyacının üçte ikisini üretirler. Algler tarafından gerçekleştirilen fotosentez, tüm sularda oksijenli ortam oluşturur. Algler, bununla birlikte suda yaşayan canlıların gıda zincirlerinin en önemli üreticileridir. Bu besin maddeleri, örneğin depremler gibi yer hareketleriyle su yüzeyine çıkmaktadır. Bilinen tüm bitkiler içindeki en hızlı büyüme oranını gösteren Pasifik Denizi"nin dev su yosunu Macrocystis pyrifera"nın yaprakları, çelikleme sonrası haftada 3 ile 4.5 m arası boy vermektedir. Çok yıllık bu bitkiler yaklaşık 60 metre uzunlukta olabilirken, bazen 100 metre yüksekliğe kadar ulaşabilirler. Öte yandan bu yosunlar yaklaşık 100 kglık bir ağırlığa sahiptir 17. yüzyılın sonlarından beri, kahverengi deniz yosunları yakılarak, mineralce zengin küllerinden sabun ve cam yapımında kullanılan soda ve gübre yapımında kullanılan potas elde edilmektedir. Kimyasal maddeler arasında yer alan brom ve iyot ilk kez bu külden izole edilmiştir ve iyot hala Japonya"da deniz yosunlarından elde edilmektedir. Deniz yosunları yaygın bir şekilde gübre olarak kullanılmaya devam etmektedir. Dünyanın bazı kesimlerinde karın altında yaşayabilen algler, karı baharda kırmızı renge çevirirler. Yosunlarla birlikte likenler, dünyamızda yaşayan bitki grupları arasında en geniş dağılım gösteren bitki grubunu teşkil eder. Likenler, yüksek bitkilerin yetişmesi için toprağın elverişsiz olduğu alanlar başta olmak üzere, her şartta ve yerde yetişebilirler. Kurak habitatlarda, likenler kendilerine havada uçuşmaları ve rüzgarla dağılmalarına imkan tanıyan bir büyüme şekli gösterirler. Örneğin, bir ağacın gövdesinde, bir kaplumbağanın üst kabuğunda, hatta bir bostan korkuluğunun üzerindeki ceketde bile bulunabilirler.

http://www.biyologlar.com/mavi-yesil-algler

Lizozom zarının geçirgenliği bozulursa ne olur?

Hücre kendi kendini yok eder; başka bir deyişle eritir. Lizozomlar hücrenin sindirim organeli olarak düşünülebilir. Golgi kompleksinin çıkış yüzünden ayrılan içi eritici enzimlerle dolu veziküller homojen görünümlü primer lizozomlardır. Şekil 2.8: Lizozomlar ve Fonksiyonları Hücre dışından hücre içine fagositoz ya da pinositoz yoluyla alınan yapılar (örneğin bakteri ya da besinler) sindirilmek istendiğinde, primer lizozom zarı ile bu maddelerin çevrelerindeki zar kaynaşır. Lizozomlardaki eritici enzimler keseciğin içine akar. Şekil 2.8'de görüldüğü gibi, sekonder lizozom (=heterofagozom) adı verilen yeni bir yapı gelişir. Eğer hücre içinde yaşlanmadan dolayı bozulmuş yapılar varsa aynı şekilde primer lizozomlarca sindirilir. Bu şekildeki sekonder lizozoma otofagozom adı verilir. Otofagozomların sayısı yaşlılıkta, açlıkta ve doku yaralanmalarında artar.

http://www.biyologlar.com/lizozom-zarinin-gecirgenligi-bozulursa-ne-olur

MİLLİ PARKLAR YÖNETMELİĞİ

Tarım Orman ve Köyişleri Bakanlığından: R.G. Tarihi: 12/12/1986 R.G. Sayısı: 19309 BİRİNCİ BÖLÜM : Amaç, Kapsam ve Tanımlar Amaç Madde 1 - Bu Yönetmeliğin amacı, 2873 sayılı Milli Parklar Kanunu ile 6831 sayılı Orman Kanununun 25 inci maddesinin uygulanmasını düzenlemektir. Kapsam Madde 2 - Bu Yönetmelik, 2873 sayılı Milli Parklar Kanununun 22 nci maddesi ile 2896 sayılı Kanunla 6831 sayılı Orman Kanununa eklenen EK 5 inci maddesine göre hazırlanmış olup; Milli Parkların, Tabiat Parklarının, Tabiat Anıtlarının, Tabiatı Koruma Sahalarının ve Orman İçi Dinlenme Yerlerinin ayrılması, planlanması, geliştirilmesi, korunması, yönetilmesi ve tanıtılmasına ilişkin iş ve işlemleri kapsar. Kısaltmalar Madde 3 - Bu Yönetmelikte yer alan; a) Kanun: 2873 sayılı Milli Parklar Kanununu, b) Bakanlık: Tarım Orman ve Köyişleri Bakanlığını, c) Genel Müdürlük: Orman Genel Müdürlüğünü, d) Daire Başkanlığı: Milli Parklar Dairesi Başkanlığını, e) Müdürlük: Milli Parklar Müdürlüğünü, f) Fon: Milli Parklar Fonu'nu, ifade eder. Tanımlar Madde 4 - Bu Yönetmelikte yer alan; a) Milli Parklar, Tabiat Parkı, Tabiat Anıtı ve Tabiatı Koruma Alanı; Kanunun 2 nci maddesinde tarif edilen tabiat parçalarını, b) Ekosistem; belli bir yaşama muhiti içindeki canlı organizmalar ile cansız çevrenin meydana getirdiği karakteristik bir ekolojik sistemi, c) Tabii Kaynak; biyolojik tabii değerler; flora, fauna, habitatlar, ekosistemler, tabiat tarihinin ve tabii mirasın müstesna özellikleri ve bunlara dair ilmi değerler ile fiziki tabii değerler; coğrafi konum, jeolojik ve jeomorfolojik teşekküller, hidrolojik ve limnolojik özellikler, klimatik özellikler ve bunlara dair ilmi değerleri, d) Estetik Kaynak; insanın psikolojik yapısına ve bedii zevklerine hitap eden üstün, bakir ve tabii manzara özelliklerini, e) Kültürel Kaynak; tarihi, arkeolojik, mitolojik, antropolojik, etnografik, sosyolojik olayları belgeleyen ve bu olayların izlerini taşıyan sitler ve yöreler ile tarihteki büyük olayların ve kişilerin izlerini ve hatıralarını taşıyan, mimarlık ve güzel sanatların örneklerini bünyesinde toplayan yerler objeler ve kültürel mirasın olağanüstü örnekleri ve bunlarla ilgili ilmi değerleri, f) Teknik İzahname; bu yönetmeliğin uygulanmasına açıklık getiren, Yönetmelikte yer almayan hususları ihtiva eden Bakanlık emrini, g) Rekreasyonel Kaynak; tabii ve kültürel çevrenin, özellikle açık hava rekreasyonu yönünden potansiyeli, taşıma kapasitesi ve hitap ettiği demografik çevreyi, h) Rekreasyon; insanın eğlenme, dinlenme, kendini yenileme fonksiyonunu, ı) Orman İçi Dinlenme Yeri (Orman Mesire Yeri); rekreasyonel ve estetik kaynak değerlerine sahip ormanlık alanı, ifade eder. İKİNCİ BÖLÜM : Temel İlkeler ve Kriterler Temel İlkeler Madde 5 - Bu yönetmeliğin uygulandığı yerlerde; A) Genel olarak; 1 - Kanunun 14 üncü maddesi ile yasaklanan faaliyetler yapılamaz. 2 - Kaynak değerleri ile koruma ve kullanma esaslarının belirlenmesinde, ilmi ve teknik araştırmalara en geniş ölçüde yer verilir. 3 - Kaynakların tabii karakterinin mutlak korunması ve devamlılığı sağlanır. 4 - Tabii kaynakların işletilmesi yasaktır. 5 - Tabii denge ve manzara bütünlüğünü bozacak ve tabii çevrenin bakir karakteri ile bağdaşmayacak hiçbir faaliyete izin verilmez. 6 - Bu yerler sadece koruma, yönetim, araştırma, ziyaretçi, tanıtım tesis ve hizmetleri ile donatılır; bu tesisler ile kaynak amenajmanı ve restorasyon esasları planlarında belirtilir. 7 - Kullanma ve yararlanma şartları ve seviyesi idarece belirlenir ve taşıma kapasitesinin dışına çıkılmaz. 8 - Tabii ve kültürel kaynaklara, kaynak değerini bozmayacak, ancak tamamlayıcı ve restorasyon amaçlı müdahalelerde bulunulabilir. 9 - Tabiatı mutlak koruma zonlarında, tabii kaynaklar insan etkisi olmaksızın tabii haline bırakılır. 10 - Devlet mülkiyeti ve yönetimi ile kaynak, manzara, mülkiyet ve yönetim bütünlüğü esastır. Ancak milli parklarda devlet mülkiyeti aranmayabilir. 11 - Kamulaştırma ve Tahsisler Kanunun 5 inci ve 6 ncı maddelerine göre yapılır. 12 - Planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir.   B) Özel hallerde; 1 - Düzenli tarım ve mevcut iskan alanları ile bunları çevreleyen kırsal manzara dokusu, kültürel ve tabii kaynakların korunması ve değerlendirilmesinde tezat teşkil etmemesi halinde bu arazi kullanımlarının devamlılıklarını temin etmek üzere planlarında gerekli hükümler getirilir ve bu hükümlere göre özel mülkiyet tasarruflarına izin verilebilir. 2 - Milli parklar ve tabiat parklarında gerçek ve tüzel kişiler lehine verilecek izinlere dair esaslar, bu Yönetmeliğin 22 inci maddesinde belirtilmiştir. 3 - Üretim, otlatma ve avlanma faaliyetlerine ve kaynakların korunması geliştirilmesi ve devamlılığını sağlayacak teknik faaliyetlere, Kanunun 13 üncü maddesinde belirtilen esaslar dahilinde ve mutlak koruma zonları dışında izin verilebilir. 4 - Kamu yararı açısından vazgeçilmez ve kesin bir mecburiyet doğması halinde, planda yer almayan herhangi bir yatırım projesinin uygulanmasına, projenin çevreye yapacağı tesir etüd edilerek, çevre ve kaynak koruma politikalarıyla kabul edilemez bir tezat teşkil etmeyeceğinin tespit edilmesi halinde, planda gerekli değişiklikler yapıldıktan sonra Bakanlıkça izin verilebilir. Milli Park ve Tabiat Parkı Kriterleri Madde 6 - A) Milli Park olarak ayrılacak yerlerde; 1 - Tabii ve kültürel kaynak değeri ile rekreasyonel potansiyeli, milli ve milletlerarası seviyede özellik ve önem taşımalıdır. 2 - Kaynak değerleri, gelecek nesillerin miras olarak devralacakları ve sahip olmaktan gurur duyacakları seviyede önemli olmalıdır. 3 - Kaynak değerleri tahrip olmamış veya teknik ve idari müdahalelerle ıslah edilebilir durumda olmalıdır. 4 - Saha büyüklüğü, kaynak değerleri kesafeti yönünden, özel haller ve adalar dışında, en az 1000 hektar olmalı ve bu alan bütünüyle koruma ağırlıklı zonlardan meydana gelmelidir. İdari ve turistik amaçlı geliştirme alanları bu asgari saha büyüklüğünün dışındadır. B) Tabiat parkı olarak ayrılacak yerlerde; 1 - Milli veya bölge seviyesinde üstün tabii fizyocoğrafik yapıya, bitki örtüsü ve yaban hayatı özelliklerine ve manzara güzellikleri ile rekreasyon potansiyeline sahip olmalıdır. 2 - Kaynak ve manzara bütünlüğünü sağlayacak yeterli büyüklükte olmalıdır. 3 - Bilhassa açık hava rekreasyonu yönünden farklı ve zengin bir potansiyele sahip olmalıdır. 4 - Mahalli örf ve adetlerin, geleneksel arazi kullanma düzeninin ve kültürel manzaraların ilgi çeken örneklerini de ihtiva edebilmelidir. 5 - Devletin mülkiyetinde olmalıdır. Tabiat Anıtı ve Tabiatı Koruma Alanı Kriterleri Madde 7 - A) Tabiat anıtı olarak ayrılacak yerler ve tabii objeler; 1 - Tabiat ve tabiat olaylarının meydana getirdiği tek veya nadir olmaları sebebiyle ilmi ve estetik yönden milli öneme sahip, bir veya bir kaç jeolojik ve jeomorfolojik formasyon ve bitki türleri gibi müstesna değerleri barındırmalıdır. 2 - Özellikle insan faaliyetlerinden çok az zarar görmüş veya hiç zarar görmemiş olmalıdır. 3 - Saha büyüklüğü milli parkları küçük, fakat koruma yönünden bütünlüğü sağlayacak yeterlikte olmalıdır. 4 - Devletin mülkiyetinde olmalıdır. B) Tabiatı koruma alanı olarak ayrılacak yerler; 1 - Milli veya milletlerarası seviyede tipik, emsalsiz, nadir, tehlikeye maruz veya kaybolmaya yüz tutmuş ekosistemler, türler ve tabii olayların meydana getirdiği veya gizlediği tabii ve geleneksel arazi kullanım şekillerine ait örnekleri barındırmalıdır. 2 - Genellikle hassas ekosistemlere, habitatlara veya hayat şekillerine, biyolojik veya jeolojik önemli çeşitliliklere, zengin genetik kaynaklara sahip olmalıdır. 3 - Bu özellikleri ve farklılıkları; bilim, eğitim, araştırma kurumları veya ilgili kuruluşlar tarafından tesbit edilmiş olmalıdır. 4 - Saha büyüklüğü, korunması gerekli değerlerin hayatlarını uzun süreli olarak devam ettirmelerine yeterli olmalıdır. 5 - Devletin mülkiyetinde olmalıdır. Orman İçi Dinlenme Yeri Kriterleri Madde 8 - Orman içi dinlenme yeri olarak ayrılacak yerler; a) Mahalli seviyede açıkhava rekreasyonu yönünden değişik ve zengin özelliklere sahip olmalıdır. b) Alt yapı imkanlarına sahip olmalıdır. c) Kaynak bütünlüğünü sağlayacak büyüklükte olmalıdır. d) Orman rejimine tabi olmalıdır. ÜÇÜNCÜ BÖLÜM : Tayin, Tesbit ve Planlama Tayin ve Tesbit Madde 9 - Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları Kanunun 3 üncü maddesinde açıklanan esaslara göre tayin ve tesbit edilen yer ve yörelere dair uygulama statüleri ve sınırları mahallen duyurulur. Orman İçi Dinlenme Yeri Kriterlerine sahip olduğu tesbit edilen sahalar; 2896 sayılı Kanunla değişik 6831 sayılı Orman Kanununun 25 inci maddesi hükümlerine göre, Genel Müdürlüğün onayı ile orman içi dinlenme yeri olarak belirlenir. Planlama Esasları Madde 10 - Bu yönetmeliğin uygulanacağı yerlerin; etüd, envanter ve araştırması ile Milli Park Planlaması ve kaynak amenajmanı planlarıyla ilgili usul ve esaslar teknik izahnamede açıklanır. Uzun Devreli Gelişme Planları Madde 11 - Milli Park uzun devreli gelişme planları, ilgili Bakanlıkların olumlu görüşleri ve gerektiğinde fiili katkılarıyla hazırlanır. Bakanlıkça onaylanarak yürürlüğe konur. İmar Uygulama Planları Madde 12 - Milli Park uzun devreli gelişme planı uyarınca iskan ve yapılaşmaya konu olan yerler için, mahalli gelişme planı karakterindeki, imar mevzuatına uygun imar uygulama planları, milli park uzun devreli gelişme planı hüküm ve kararlarına uygun olarak, hazırlanır veya hazırlattırılır, Bayındırlık ve İskan Bakanlığının onayı ile yürürlüğe girer. Tabiat Parkı, Tabiat Anıtı, Tabiatı Koruma Alanı ve Orman İçi Dinlenme Yeri Planları Madde 13 - Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı olarak tesbit edilmiş yerler için hazırlanacak planlar; milli park planlama usul ve teknikleriyle, uygulanan statünün amaçları, kriterleri, genel politika ve ilkeler ile uyumlu olarak ve planlanan sahanın kaynak değerleri ve özellikleri gözönünde bulundurularak, Kültür ve Turizm Bakanlığının görüşü alınarak hazırlanır ve Bakanlıkça onaylanarak yürürlüğe konur. Orman içi dinlenme yeri planları, orman içi dinlenme yeri kriterleri ile sahanın rekreasyonel ve estetik değerlerinin yıpratılmadan kullanılması, statü uygulamasının o yer için amaçları gözönünde bulundurularak Dairesince hazırlanır ve Genel Müdürlükçe onaylanarak yürürlüğe konur. Uygulama Projeleri Madde 14 - Uzun devreli gelişme planı, mahalli gelişme planı ve yatırım projeleri uyarınca Dairesince hazırlanan veya hazırlattırılan uygulama projeleri, Genel Müdürlükçe onaylanarak yürürlüğe konur. Kültür Varlıklarının Korunması ve Turizm Yatırımlarına Dair Plan Kararları Madde 15 - Bu yönetmelik uygulamasına konu olan yerlerde; a) Kültür varlıklarının korunması, tahkimi, restorasyonu ve değerlendirilmesine dair plan kararları, 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümlerine göre ve Kültür ve Turizm Bakanlığı ile işbirliği içinde tesbit edilir. b) Turizm bölge, alan ve merkezlerinde, turizm yatırımlarına dair plan kararları Bakanlığın görüşü alınarak sonuçlandırılır. DÖRDÜNCÜ BÖLÜM : Kuruluş ve Yönetim Kuruluş Madde 16 - Bu Yönetmelik kapsamına giren hizmetlerin taşradaki uygulaması bölge müdürlüklerince yürütülür. Koruma Madde 17 - Bu Yönetmeliğin uygulandığı yerlerde; a) Sınırlar uygun fiziki elemanlarla veya yeşil çitlerle yer yer belirlenir. Bunun dışında kalan sınırlar uygun aralıklı ve kolay görülebilir işaret ve levhalarla belirtilir. b) Koruma amacı ile yol, patika, haberleşme ağı; telsiz ve telefon gözetleme kule ve kulübeleri geliştirilir; deniz-hava ulaşım ve kontrol imkanları, ekipman ve araçlarıyla donatılır. c) Yangınlar, özellikle orman yangınlarıyla mücadele yönünden bu Yönetmeliğin 10 uncu maddesinde açıklanan esaslar dahilinde her türlü tedbir alınır. Mücadelede su ve çevreye zararlı olmayan kimyevi madde kullanımına yer verilir. Yangınların tesbit ve söndürülmesine ilişkin her türlü müdahale kalifiye ekiplerce sağlanır. Geniş uygulama alanları için özel yangınla mücadele projeleri hazırlanır ve uygulanır. d) Planlar uyarınca gerçekleştirilecek her türlü tesisin, idarenin koyacağı esaslar dahilinde, çevre sorunu yaratmayacak şekilde, atık su arıtma sistemiyle donatılması ve tesisle birlikte bitirilmesi, tesisi yapan kuruluş veya şahıslarca sağlanır. Yapım sırasında meydana gelen moloz döküntüleri yatırımcı tarafından kaldırılır ve kullanım alanının tabii peyzaja uygun çevre tanzimi idarenin belirleyeceği esaslara göre yapılır. İdarece gerçekleştirilecek müşterek alt yapı tesislerine, kamu ve özel tesis sahiplerinin, belirlenecek katılım payları ile iştiraki temin edilir. e) Çevreyi ve ziyaretçileri rahatsız edecek seviyede gürültülü faaliyetlerde bulunulamaz, yüksek sesle müzik yayını yapılamaz. f) Yapı ve tesislerde çevre ve hava kirliliği yaratan yakıt kullanılamaz, kullanılması gerektiğinde idarenin koyacağı kirlenmeye karşı tedbirlerin alınması zorunludur. g) Ziyaretçiler, idarece konan esaslar dahilinde bu yerlerden yararlanabilirler. h) Yasaklanan fiillere, arazi kullanma şekillerine ve plan dışı yapılaşmaya fırsat verilmez. Aksi hareket edenler hakkında kanuni işlem yapılır. ı) Genel peyzajda göze çarpan bozulmaları gidermek üzere, yörenin tabii arazi yapısı, tabii bitki örtüsü ve tabii peyzaj özellikleri dikkate alınmak ve o yörenin tabii türleri kullanılmak suretiyle ağaçlandırma, peyzaj restorasyonu ve tesislerin yakın çevre peyzaj düzenlemeleri yapılır. Koruma Görevlileri Madde 18 - Bu Yönetmeliğin uygulandığı yerler ve yörelerde; Yönetmelikte belirtilen her türlü koruma hizmetleri ve yasaklara karşı işlenen suçların takibi 6831 sayılı Orman Kanununun 5 inci fasıl dördüncü bölümünde yer alan suçların takibi ile ilgili hükümlere, 2872 sayılı Çevre, 1380 sayılı Su Ürünleri ve 3167 sayılı Kara Avcılığı Kanunları hükümlerine, genel hükümlere ve Muhafaza Memurları Görev ve Çalışma Yönetmeliğine uygun olarak orman muhafaza memurlarınca sağlanır. Mülkiyet ve Kamulaştırma Madde 19 - Milli park, tabiat parkı, tabiat anıtı, tabiatı koruma alanlarının devlet mülkiyetinde ve Genel Müdürlüğün intifa ve denetiminde olması esastır. Ancak Milli parklarda devlet mülkiyeti aranmayabilir. Bunu sağlamak üzere gerekli kamulaştırma işlemleri, Kanunun 5 inci maddesi hükmüne göre yapılır. Kamulaştırma bedelleri Fon'dan karşılanır. Taşınmazların tahsisi ise Kanunun 6 ncı maddesi hükümlerine göre yapılır. Tesis ve Düzenleme Madde 20 - Kanun kapsamına giren yerlerde planların gerektirdiği her türlü yapı, tesis, hizmet ve faaliyetlerin yapılması, yönetilmesi ve işletilmesi Kanunun 12 nci maddesine göre düzenlenir. Bu hizmetler içinde yer alan, lokanta, kafeterya, büfe, kır gazinosu ve benzeri tesisler idarece fon kapsamında işletilebileceği gibi, mevsimlik olarak işletmeciye de verilebilir. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları yatırımları için gerekli ödenekler, fon yönetmeliği esasları dahilinde kullanılır. Milli Park, tabiat parkı, tabiat anıtı ve tabiatı koruma alanları içindeki mevcut yerleşim merkezlerinde ikamet edenler dışında bu yerlere gelen ziyaretçiler; giriş kontrol merkezlerinde veya sahalar içindeki idare ve ziyaretçi merkezlerinde, Bakanlıkça tesbit edilecek ücreti öderler. Bu ücretler fon'da toplanır. Kamu Kurum ve Kuruluşlarına Verilecek İzinler Madde 21 - Milli park ve tabiat parklarında, planlarına uygun olması şartıyla kamu kurum ve kuruluşları tarafından yapılacak her türlü plan, proje ve yatırımlara Bakanlıkça izin verilebilir ve uygulamalar Kanun ve Yönetmelik hükümlerine göre denetlenir. Ancak bu yerlerdeki tarihi ve arkeolojik sahalarda kazı, restorasyon ve ilmi araştırmalar, Bakanlığın bilgisi içinde olmak şartıyla, Kültür ve Turizm Bakanlığının iznine tabidir. Gerçek ve Tüzel Kişilere Verilecek İzinler Madde 22 - Milli Park ve tabiat parklarında, kamu yararı olmak şartıyla, o yer planlarının hükümleri dahilinde turistik amaçlı bina ve tesisler yapmak üzere gerçek ve özel hukuk tüzel kişileri lehine, Maliye ve Gümrük Bakanlığının görüşü alınarak ve Bakanlık tarafından öngörülen şartlar yerine getirilmek kaydıyla izin verilebilir. Müteşebbis, o yere ait mevcut planlarındaki şartlarla, Bakanlığın belirleyeceği esaslar dahilinde projelerini hazırlar ve turizm mevzuatına uygun olarak Kültür ve Turizm Bakanlığından belge almak sureti ile Bakanlıktan intifa hakkı tesisi talebinde bulunur. Turizm belgesi ve ekli projeleri ile keşif özetlerini Bakanlığa getiren müteşebbis adına, Maliye ve Gümrük Bakanlığının görüşü alınarak, Bakanlıkça usulüne ve proje ekonomisi ile amortisman müddetine uygun olarak kırkdokuz yılı geçmemek kaydıyla intifa hakkı tesis edilir. İntifa hakkı tesis edildiğinin Bakanlıkça müteşebbise tebliğini takip eden bir ay içinde Bakanlıkça verilen örneğe uygun noter tasdikli taahhüt senedi Bakanlığa verilir. Takiben, tahsis edilen yer, Bakanlıkça müteşebbise mahallen düzenlenen bir tutanakla teslim edilir. Müteşebbis, Bakanlığa taahhüt ettiği şartlara kesinlikle uymak zorundadır. İntifa hakkı süresinin uzatılması ve devri Kanunun 8 inci ve 9 uncu maddeleri hükümlerine göre yapılır. İzin Verilmeyecek Yerler ve Haller Madde 23 - a) Milli Park ve tabiat parklarında gelişme planları kesinleşmeden Kanun ve Yönetmelikte sözü edilen izinler verilemez. b) Tabiat anıtları ve tabiatı koruma alanlarında; 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla izin verilmez veya intifa hakkı tesis edilemez. c) Bu yönetmelik kapsamına giren yerlerde, Maden ve Petrol Kanunları gereğince araştırma, işletme ruhsatnamesi ve imtiyazı 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun ilgili hükümleri saklı kalmak kaydıyla, Bakanlar Kurulu Kararıyla verilir. Araştırma, işletme faaliyetlerinde bu yerlerin korunması amacıyla riayet edilecek hususlar Bakanlıkça belirlenir. Bu yönetmelikte yer alan izin işleriyle ilgili hususlar dışında 6831 sayılı Orman Kanununun ilgili hükümleri ve buna bağlı mevzuata göre hareket edilir. BEŞİNCİ BÖLÜM : Suçların Takibi ve Cezalar Suçların Takibi Madde 24 - Kanunda belirlenen yasaklar ve bu Yönetmelikteki açıklamalar ile 6831 sayılı Orman, 3167 sayılı Kara Avcılığı, 1380 sayılı Su Ürünleri, 6785 ve 1605 sayılı İmar, 2872 sayılı Çevre, 2634 sayılı Turizmi Teşvik ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu gibi Kanunlar ile bu Kanunların ek ve değişiklikleri ve bunlara dayalı mevzuatın getirdiği yasaklara uyulmaması ve suç sayılan fiillerin işlenmesi Kanun ve bu yönetmelik hükümlerinin uygulandığı yerlerde görevli orman muhafaza memurları tarafından bu memurların görevlerine ilişkin mevzuat çerçevesinde önlenir veya suç işlenmesi halinde gerekli kanuni işlem yapılır. Cezalar Madde 25 - 6831 sayılı Orman Kanunu, 3167 sayılı Kara Avcılığı Kanunu ve 1380 sayılı Su Ürünleri Kanunu ile bu kanunların ek ve değişikliklerinde yasaklanan fiillerin, Kanunun uygulandığı yerlerde işlenmesi halinde Kanunun 20 ve 21 inci maddeleri uygulanır. ALTINCI BÖLÜM : Son Hükümler Yürürlükten Kaldırma Madde 26 - 08/02/1973 gün ve 6304-586/9 Sayılı Milli Parkların Ayrılma, Planlama Uygulama ve Yönetimine Ait Yönetmelik yürürlükten kaldırılmıştır. Geçici Maddeler Geçici Madde 1 - Kanunun yürürlüğe girmesinden önce 6831 sayılı Orman Kanununun ilgili maddelerine göre Milli Park olarak ayrılan yerler ile Devlet Orman İşletmesi ve Döner Sermayesi Yönetmeliğinin ilgili hükümleri uyarınca orman içi dinlenme yeri (mesire yeri) olarak ayrılan yerler, Kanun ve bu Yönetmelik hükümlerine uygun olarak yeniden tasnif ve değerlendirmeye tabi tutulur. Milli Park kriterlerine haiz olan yerlerde; tamamı veya belirli bir kısmı evvelce Bakanlar Kurulu Kararı ile orman rejimine alınıp milli park olarak ayrılmış olanlarında; Kanun ve bu Yönetmelik hükümleri başkaca bir işleme gerek kalmaksızın uygulanır, diğerlerinin Milli Park olarak kabul edilmesi için Bakanlar Kurulu Kararı istihsal edilir. Tabiat parkı, tabiat anıtı ve tabiatı koruma alanı kriterlerine haiz yerlerde ise Kanun ve bu Yönetmelik hükümlerinin uygulanmasına belirleme işlemi ile birlikte başlanır. Geçici Madde 2 - Kanun ve bu Yönetmelik kapsamına giren yerlerde evvelce verilmiş kullanma izni, irtifak ve intifa hakları; geçerlilik süresi bitimine kadar başka bir işleme gerek kalmaksızın sahibi tarafından kullanılır. Yürürlük Madde 27 - Bu yönetmelik Resmi Gazetede yayımı tarihinden yürürlüğe girer. Yürütme Madde 28 - Bu yönetmelik hükümlerini Tarım Orman ve Köyişleri Bakanlığı yürütür.

http://www.biyologlar.com/milli-parklar-yonetmeligi

 
3WTURK CMS v6.03WTURK CMS v6.0