Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 221 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir



Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

Eletrikli Vatozlar

Eletrikli Vatozlar

Vatoz, Rajiformes takımına özgü balıkların ortak adıdır.Vatozlar, köpekbalıkları ile birlikte bir kıkırdaklı balık olarak sınıflandırlır. Vatozların diğer balıklardan en önemli farkları arasında iyice yassı olan gövdeleri, çok uzun ve ince olan kuyrukları ve biçimi kelebek kanadını andıran büyük yüzgeçleri sayılabilir. Vatozların gözleri yassı gövdelerinin üzerinde, ağızları ve solungaçları ise gövdelerinin altında yer alır.Her bir vatozun ayrı avlanma yöntemleri vardır. Bazı vatozlar deniz tabanında gizlenip avları olan küçük balıkları ve kabukluları avlar. Bu vatozlar ise ya renkleri ile kumda saklanır ya da kendilerini kuma gömerler. Bir kısmı ise denizde yüzüp karşılarına çıkan balık ve planktonları koca ağızlarından içeri alırlar. Bu vatozların renkleri genelde mavi ya da gri olur.Vatozların uzun kuyrukları ise sadece savunma amacı ile kullanılır. Vatozların kuyruklarında elektrik vardır. Bu elektrikten köpek balıkları bile korkar.Kuyruklarındaki elektrik vücutlarındaki özel bir organdan sağlanır ve ölümcül tehlikelere yol açar. Vatozların yumurta keselerine biçimleri nedeni ile "denizkızının çantası" denilir.

http://www.biyologlar.com/eletrikli-vatozlar

ZYGENIDAE

ZYGENIDAE

Fotoğraf: Prof.Dr. Ahmet KARATAŞ

http://www.biyologlar.com/zygenidae



Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda


Helmintlerde Tespit, Boyama ve Kalıcı Preparat Yapımı

Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olmasıgerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p.763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341Ahmet GÖKÇEN Harran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, Türkiye ÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önem arz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekilde korunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlar örneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir. Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır. Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat. Fixation, Staining and Preparation of Permanent Mounts of Helminths SUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists. Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal and external details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methods are absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size of specimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixation and staining methods of helminths has been discussed. Key Words: Helminth, relaxation, fixation, staining, permanent mounts GİRİŞ Helmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğu sindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10). Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gerekse bu alanda yeni çalışmaya başlayan teknik personel ve akademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır. Çünkü incelenecek örneği her zaman ve her yerde bulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarında müfredat programına göre uygun örnekleri seçerek uygulamalı eğitim birimlerinde kullanılma kolaylığı sağlar (1). Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerin canlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmiş olmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıkla ulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olması gerekir (1, 12). Gerekli laboratuar malzemeleri : 1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselere zarar vermemesi için, 2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesi için kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir. 3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır. 4. Eldiven: Tek kullanımlık olanlar tercih edilir. 5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır. 6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır. 7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır. 8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/Review Geliş tarihi/Submission date: 02 Kasım/02 November 2007 Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008 Kabul tarihi/Accepted date: 06 Mart/06 March 2008 Yazışma /Correspoding Author: Ahmet Gökçen Tel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58 E-mail: agokcen@harran.edu.tr Gökçen A. 178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir. 9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12). Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar : Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvanda her türden yeterli sayıda helmint olmayabilir. O zaman birkaç hayvandan toplanan türlerden preparatlar yapılabilir. Bazı helmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazıları gibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyle durumlarda morfolojik özelliklerine göre teşhise yardımcı olan bölümleri dikkate alınan helmintler, parçalar halinde ayrılarak kalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleri düzenli tutulmalı ve özellikle bölümlere ayrılan örneklerde karışmaya fırsat verilmemelidir. Buna karşın nematodların çoğu ince bir kutikülaya sahip olduklarından boyama ve montaj yapılamayabilir. Bunların tespiti, suyunun giderilmesi ve montajı çok zor olduğu için genellikle içine birkaç damla gliserin ilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitim amacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudan ya da laktofenolde şeffaflandırıldıktan sonra morfolojik özellikleri mikroskopta incelenebilir (12). Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasında aceleci olunmamalı, işlem aşamaları sırası atlanılmadan ve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır. Örneğin alkol serilerinden tam geçirilmeyen ve bunun sonucu tam dehidrasyonu sağlanmayan örnekler preparatlarda bulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarak görülemeyebilir. Bazı helmint örnekleri çok küçük olduğu için gerek temizlerken, gerekse mikroskop altında çalışırken veya örnekleri tespit ve boyama kaplarına naklederken örnekler zarar görüp teşhise yardımcı olan morfolojik özellikleri tahrip olabilir. Bu gibi olumsuzluklara yol açmamak için nazik ve kibar olunmalıdır (1, 11). Kalıcı preparat yapılacak helmintler, iç ve dış detaylarının bozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir. Parazit öldükten sonra vücudunda otolitik reaksiyonlar başlayacağından teşhis kriterleri olan bazı detaylar da dejenere olabilir. Konak hayvan ölünce ektopara-zitler konağı terk ederken endoparazitler belli bir süre sonra ölürler ve kısa süre içinde dejenere olmaya başlarlar. En iyi örnek, konak hayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilir kesilmez elde edilen canlı helmintlerdir. Cestod ve trematodlarda dejenerasyon ölümden birkaç dakika sonra başlarken nematodlarda bu süre birkaç saate kadar uzayabilir (10, 12). Helmintlerin boyanarak kalıcı preparat haline getirilme aşamaları : a. Helmintlerin konaklardan elde edilmesi, b. Helmintlerin temizlenmesi, c. Helmintlerin relaksatiyonu-gevşetilmesi d. Helmintlerin fikzasyonu-tespiti e. Helmintlerin boyanması ve kalıcı preparatlara monte edilmesi. a. Helmintlerin konaklardan elde edilmesi: İyi bir preparat yapımı için, örneklerin bütün ve canlı olarak elde edilmesi gerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardan kısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirim sistemi özafagustan rectuma kadar bütün olarak açılır. Büyük hayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuş bölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozaya yapışmış helmintleri çıkarmak için zorlamamalı, kendiliğinden ayrılması için içerisine fizyolojik tuzlu su ilave edilmiş bir küvete konularak, birkaç saat buzdolabında masere edilmek suretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleri bağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyon iğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmaları gerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobu kullanılabilir. Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarının açığa çıkarak zarar görmesini önlemek için; toplama, temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşak tüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılar kullanılmalıdır. Organın dokusu içerisinde bulunan helmintleri toplamak için bu organları küçük parçalara ayırarak incelemek gerekir. Uzun süre önce ölmüş veya dondurulmuş halde olan örnekler kalıcı preparat yapımı için uygun değildir (9, 12). b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlice alınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmış dışkı artıkları ve benzeri yabancı partiküllerden serum fizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir. Çok küçük örnekler stereomikroskop altında temizlenebilir. Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı ve kaplar çalkalanmamalıdır (12). c. Canlı helmintlerin relaksatiyonu-gevşetilmesi: Relaksatiyon veya gevşetme, helmintlerin doğal görünümde kalmalarının yapay olarak sağlanmasını içeren bir süreçtir. Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumak halinde toplanmaları nedeniyle montaj esnasında teşhise yarayan morfolojik özellikleri tahrip olabilir. Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlı hayvanların (Balık, kurbağa vb.) deri, solungaç ve burun boşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlar balıkların 1/4000’lik formalin solüsyonunda 30 dakika kadar bekletilmeleri ile gevşemiş halde toplanırlar. Küçük Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 179 trematodlar preparata yerleştirilir. Üzerine birkaç damla serum fizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saat kadar bekletilerek gevşetilebilir. Çok küçük olanları diseksiyon mikroskobu kullanılarak puar veya ince bir pipet yardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonunda saklanırlar (3, 4, 13). Digenea’lar halk arasında kelebek olarak adlandırılan, genellikle ince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi iç organ boşluklarında bulunan trematodlardır. Bunlar yerleştiği organların diseksiyonu ve içeriğin çeşme suyu altında yıkanması ile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsa osmotik şok sonucu yırtılmalara ve dejenerasyonlara maruz kalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisinde birkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler. Bir lam boyutundan daha uzun olan örnekler birkaç kez katlanarak lam boyutuna getirilebildiği gibi deney tüpleri veya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibi uygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler (1, 3, 4, 11, 13). Cestodlar, segmentli yapıda olup genellikle konakların sindirim sistemi lumeninde yapışma organelleri ile tutunmuş halde bulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırça yardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojik veya % 5-10’luk etil alkolden herhangi birisinde 5–15 dakika bekletilerek gevşetilirler (4, 6, 9, 11). Nematodlar dışkı artıklarından temizlendikten sonra doğrudan glasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonra kıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etil alkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir. Buna engel olmak için temizlenen nematodlar direkt kaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, nematodların hem yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (6, 12). Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğu gibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esas olan dikencikler bulunduğu için daha fazla itina ister. Lumene yapışmış halde bulunan proboscis kısmı çok dikkatli bir şekilde kopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içine alınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11). Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyuna alınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlerce beklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlı suda bekletme yöntemidir (1). d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespit dokuların canlı iken sahip olduğu özelliklerinin muhafaza edilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklı kalması için iyi bir şekilde tespit edilmesi gerekir. Tespitin amacı gevşetilmiş örneklerin gerçek boyutunda kalmalarını sağlamak ve bünyelerinde olabilecek metabolik ve dokusal değişiklikleri durdurmaktır (12). Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay ve ucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanında AFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi (***) de kullanılabilir (1). Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendikten sonra doğrudan AFA solüsyonu ile tespit edilirken, büyük olanları iki lam arasına konularak 48 saat süreyle tespit edilip % 70’lik etil alkolde uzun süre saklanabilirler (12). Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30 dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudan AFA solüsyonuna alınırken, büyük olanları morfolojik yapılarına göre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacak şekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamların yanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerek cestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’larda olduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra % 70’lik etil alkole alınarak uzun süre saklanabilirler (12). Nematodlar glasiyal asetik asitte hem tespit edilip hem de saklanabilirler. Bunun yanında direkt kaynama derecesindeki %70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserin ilave edilmesi, hem nematodların yumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasını önler (1, 6, 12). Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonuna alınarak tespit edilir. AFA solüsyonunda 3–7 gün tespit edildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir. İşlemler esnasında ve bu helmintleri naklederken çok dikkatli olunmalıdır. Aksi halde pens ile baş kısmından tutulursa teşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir (12). Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyinden AFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler. Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildikten sonra % 70’lik etil alkolde uzun süre saklanabilirler (1). e. Helmintlerin boyanması ve kalıcı preparata monte edilmesi: Monogenea’lar çift lamel arası gliserin jeli (****) ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparat haline getirilirler. Şeffaf oldukları için iç organelleri kolaylıkla görülebilir ve boyanmadan kalıcı preparat yapılabilirler (12). Bunun için: 1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmint bir pipet veya puar yardımıyla 22 x 22 mm veya daha büyük ölçekli bir lamel üzerine yerleştirilir. 2. Hava kabarcığı oluşturmadan üzerine bir damla gliserin jeli damlatılır. Gökçen A. 180 3. Üzerine yavaşça daha küçük bir lamel kapatılıp serin bir yerde bir süre bekletilir, kenarlardan çıkan gliserin jelin fazla kısmı tıraşlanarak temizlenir. 4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerine monte edilerek Kanada balsamı ile yapıştırılır. Lama montaj esnasında küçük lamelli olan taraf alta yani lama temas eden yüze gelmeli ve kenar boşlukları büyük lamel tarafından korunmuş olmalıdır. Montaj işlemi biten preparat, 37 ºC’lik etüvde bir süre kurutularak kullanıma hazır hale getirilebilir (1, 12). Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’s acetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyaması gibi çeşitli boyama metotları kullanılabilir. Aşamaları-nın karmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çok tercih edilen Semichon’s acetocarmine (*****) boyama metodudur (10, 12). Bunun için: 1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarmin boya solüsyonuna alınarak 2–4 saat boyanır. 2. Boyanan örnekler %70’lik etil alkolde 15–30 dakika bekletilir. 3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodun büyüklüğüne göre 15 saniye – 10 dakika arasında tutulur. 4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazik alkol ile muamele edilir. 5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etil alkolde 15–30 dakika ve daha sonra %96’lık absolüte etil alkolde her biri 15–30 dakika olmak üzere üç kez alkolden geçirilir. 6. Ksilen veya toluende her biri 10–20 dakika olmak üzere iki kez tutulur. Daha sonra iki lam arasına monte edilerek Kanada balsamı veya Gum-damar ile yapıştırılır. Cestodların boyanması Digenea’lardaki gibi Semichon’s acetocarmine metoduyla yapılabilir. Bunun yanında Borax Carmine (******) ile de boyanmaktadır. Büyük cestodlarda teşhis kriterlerine esas olmak üzere morfolojik farklılık gösteren skoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümünden kesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaç olgun halka alınarak boyanıp ayrı ayrı preparatlara monte edilir. Metrelerce uzunluğundaki cestodun tamamını boyamaya gerek yoktur. Tespit ve boyama esnasında çok dikkatli olmalı, birden fazla tür varsa farklı türlerin skoleks ve halkaları birbirine karıştırılmamalıdır (12). Borax Carmin ile boyama prosedürünün aşamaları şunlardır. 1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık) geçirilir. 2. Hazırlanan Borax – Carmin solüsyonunda 15 dakika boyanır. 3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve %70’lik etil alkol şişelerine alınır. 4. Preparata monte edilerek kanada balsamı ile yapıştırılıp, 37 °C’lik etüvde kurutulur. Nematodların bir kısmı toprakta serbest yaşarken, önemli bir bölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerinde parazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2 cm’den küçük olanları bütün halde bir preparata monte etmek için uygundur. Buna karşın daha büyük nematodlar morfolojik yapılarına göre teşhise yardımcı olacak bölümleri kasilerek ayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinli bloklarda histolojik kesitler alınarak preparatlara monte dilip hematoksilen eosin ile boyanarak teşhis edilirler (12). Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilen nematodlar ksilen veya toluende bekletildikten sonra boyanmadan direkt preparata monte edilebilirler. Eğer %70’lik etil alkolde saklanacaklarsa içerisine %5’lik gliserol ilave edilmesi gerekir (10, 12). Kalıcı preparat yapımında prosedür şu aşamalardan oluşur: 1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde 30 dakika tespit edilir. 2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika, %96’lık absolüte etil alkolde iki kez 30’ar dakika, Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli. 3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanada balsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvde birkaç hafta kurutularak kalıcı preparat haline getirilebilir. Acanthocephala’lar genellikle balık, kaplumbağa, su kuşları nadiren insan ve evcil hayvanların ince bağırsaklarında lokalize olurlar (4, 11, 13). Acanthocephala’lar boyalı veya nematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir. Boyama yapılacaksa; Van Cleave’s hematoxylin veya Mayer’s hematoxylin metodlarıyla ya da cestodlarda olduğu gibi en çok önerilen Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veya yavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibi konaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyük sülükler boyanmadan direkt incelenip % 70’lik etil alkol konulmuş şişelerde boyanmadan saklanırken, küçük sülükler Digenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduyla boyanarak kalıcı preparatları yapılabilir (10, 12). Parazitlerin iç ve dış yapılarını uygun şekilde korumak için laboratuarlarda değişik metotlar uygulanmaktadır. Teşhis ve eğitim amacıyla kullanılan ve söz konusu metotlarla elde edilen koleksiyonlardan her zaman yararlanılabilir. Sonuç olarak, bu derlemede farklı kaynaklarda dağınık şekilde bulunan Helmintlerde tesbit, boyama ve kalıcı preparat yapımı 181 helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparata montaj metotlarının toplu olarak sunulması gereği vardır. Bunun zaman ve emek kaybını önlemek için helmintoloji alanında yeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir. Metinde geçen kimyasal bileşikler ve formülasyonları (*) AFA (Alkol-Formalin-Asetik asit) fikzatifi 1. Ticari Formalin (HCHO) : 100 ml 2. Etil alkol (C2H5OH, % 95’lik) : 250 ml 3. Glasiyal asetik asit (CH3COOH) : 50 ml 4. Gliserin (C3H5(OH)3) : 100 ml 5. Distile su : 500 ml (**) Gilson’un fikzatifi 1. Nitrik asit (HNO3, % 80’lik) : 15 ml 2. Glasiyel asetik asit (CH3COOH) : 4 ml 3. Civa klörür (HgCl2) : 20 gr 4. Etil alkol (C2H5OH, % 60’lık) : 100 ml 5. Distile su : 800 ml (***)Shaudin’in fikzatifi 1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml 2. Etil alkol (C2H5OH, % 95’lik) : 100 ml 3. Glasiyel asetik asit (CH3COOH) : 15 ml (****) Gliserin jeli bileşimi 1. Jelatin : 10 gr 2. Distile su : 60 ml 3. Gliserin : 70 ml 4. Fenol : 1gr Hazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir. Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonra geniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır. (*****) Semichon’s Acetocarmine (Stok solüsyonu) 1. Glasiyal asetik asit (CH3COOH) : 250 ml 2. Distile su : 250 ml 3. Carmin : 5 gr 4. Etil alkol (C2H5OH, % 70’lik) : 500 ml (******) Borax Carmine bileşimi 1. Carmine : 3 gr 2. Borax (Na2B4O7. 10H2O) : 4 gr 3. Distile su : 100 ml 4. Etil alkol (C2H5OH, % 70’lik): 100 ml Hazırlanışı: Carmin ve borax distile su ile çözünene kadar kaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildikten sonra süzgeç kâğıdından süzülerek kullanılır. KAYNAKLAR 1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8– 227–2. Headquarters, Washington, USA. 2. Anderson RC, 1992. Nematode Parasites of Vertebrates, Their Development and Transmission, CAB Int, UK. p. 1–12. 3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., William Heinemann, London. p. 295–304. 4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368 Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara. 5. Hendrix CM, 1997. Laboratory Procedures for Veterinary Technicians, 3rd. Ed., Mosby, Inc., USA. 6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth- Heinemann, Oxford. p. 181–204. 7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde Evcil Tavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod ve Nematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul. 8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971. Manuel of Veterinary Parasitological Laboratory Techniques, HMSO, Technical Bulletin No:18, London. 9. Pratt PW, 1997. Laboratory Precedures for Veterinary Technicians, 3rd. ed., Mosby Inc., Missouri. 10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary Clinical Parasitology 6th. ed., Iowa State University, Ames, Iowa. 11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa of Domesticated Animals, 7th. ed., Bailliere Tindall, London. p. 763–777. 12. Upton SJ, 2005. Animal Parasitology, Biology 625 Laboratory Manual, Kansas Satate University, USA. 13. Urquhart GM, Armour J, Duncan JL, Dunn AM and Jennings FW, 1988. Veterinary Parasitology. ELBS, Longman UK. p. 269–279. Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008 PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341

http://www.biyologlar.com/helmintlerde-tespit-boyama-ve-kalici-preparat-yapimi

Virüslerin Yaşama Şekilleri

Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır.

http://www.biyologlar.com/viruslerin-yasama-sekilleri

<b class=red>Kelebek</b>lerde Komple Metamorfoz

Kelebeklerde Komple Metamorfoz

  A butterfly metamorphosis close up chronological view showing detailed transitions from egg, caterpillar growth, chrysalis formation, butterfly development within the chrysalis and butterfly emergence.

http://www.biyologlar.com/kelebeklerde-komple-metamorfoz



DAVRANIŞ BİYOLOJİSİ ( ETOLOJİ)

Davranış Biyolojisi 1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982) Hazırlayan: Fatih UZUNER

http://www.biyologlar.com/davranis-biyolojisi-etoloji

Helmintlerde Tespit, Boyama ve Kalıcı Preparat Yapımı

Ahmet GÖKÇENHarran Üniversitesi Veteriner Fakültesi, Parazitoloji Anabilim Dalı, Şanlıurfa, TürkiyeÖZET: Helmintlerin toplanma, gevşetilme, tespit, boyanma ve kalıcı preparat halinde saklama teknikleri parazitologlar için büyük önemarz eder. Parazitlerin, canlı olarak toplanmaları ve direkt tespit edilmeleri gerekir. Bu süreç, parazitlerin iç ve dış yapılarının uygun şekildekorunmalarını sağlar. Helmintlerin gevşetilmesi ve normal şekillerinin korunması için çeşitli metodlar kullanılabilir. Bu metotlarörneklerin uzun süre korunmasını sağlar. Boyama ve montaj teknikleri; örneğin türüne, büyüklüğüne ve gelişme dönemine göre değişir.Bu derlemede helmintlerin gevşetilmesi, tespiti, boyama ve kalıcı preparat haline getirilmeleri tartışılmıştır.Anahtar Sözcükler: Helmint, gevşetme, tespit, boyama, kalıcı preparat.Fixation, Staining and Preparation of Permanent Mounts of HelminthsSUMMARY: The techniques for the collection, relaxation, preservation and staining of helminths are very important for parasitologists.Parasites should be collected alive and fixed directly in the living condition. These procedures insure proper preservation of internal andexternal details of parasites. There are various methods for relaxing and preserving the normal morphology of helminths. These methodsare absolutely essential for permanent preservation of the specimens. Staining and mounting techniques vary depending upon size ofspecimens, species, and stage of development of the organisms. In this review, the preparation of permanent mounts, relaxation, fixationand staining methods of helminths has been discussed.Key Words: Helminth, relaxation, fixation, staining, permanent mountsGİRİŞHelmintlerin teşhisi değişik gelişme formlarından birinin veya yumurtalarının görülmesi ile yapılmaktadır. Büyük çoğunluğunsindirim sisteminde yerleştikleri için dışkı muayenesinin teşhiste ayrı bir önemi vardır. Dışkı muayeneleri, eğitim amacıyla öğrenci laboratuarlarında yapılabildiği gibi, hastalıkların teşhisi için hastanelerin parazitoloji laboratuarlarında da sık sık yapılmaktadır (5, 8, 9, 10).Helmintlerden kalıcı preparat hazırlanması, referans laboratuvarlarında rutin olarak yapılmaktadır. Özellikle helmint enfeksiyonlarının yaygın olduğu bölgelerde gerek doğru teşhis gereksebu alanda yeni çalışmaya başlayan teknik personel veakademisyenlerin eğitimi amacıyla koleksiyonlar oluşturulmaktadır.Çünkü incelenecek örneği her zaman ve her yerdebulmak mümkün değildir. Ayrıca öğrenci laboratuvarlarındamüfredat programına göre uygun örnekleri seçerek uygulamalıeğitim birimlerinde kullanılma kolaylığı sağlar (1).Kalıcı preparat yapmanın ön koşulu, kullanılacak helmintlerincanlı, morfolojik yapısının tam, sağlam ve konaktan elde edilmişolmasını zorunlu kılar. Yapılan koleksiyonun da kolaylıklaulaşılabilir, teşhis ve eğitim amacıyla kullanılabilir olmasıgerekir (1, 12).Gerekli laboratuar malzemeleri :1. Laboratuvar önlüğü: Çalışanların üzerlerinin kirlenmemesi, çeşitli boya ve kimyasal maddelerin elbiselerezarar vermemesi için,2. Doğal kıl ve tüylerden yapılmış değişik boyda yumuşak tüylü muhtelif fırçalar: Örneklerin temizlenmesiiçin kullanılır. Sentetik ve plastik fırçalar kullanılan bazı solüsyonlardan etkilenip bozulabilir.3. Diseksiyon seti: Sindirim sistemlerinin açılması ve büyük helmintlerin kesilip bölümlere ayrılması için kullanılır.4. Eldiven: Tek kullanımlık olanlar tercih edilir.5. Permanent kalemler: Preparatları ve saklama şişelerini işaretlemek için kullanılır.6. Boyama kapları: Kullanım amacına göre çeşitli büyüklüklerde olmalıdır.7. Plastik poşet ve torbalar: Atık malzemelerin toplanması için kullanılır.8. Kullanılacak tüm cam ve benzeri malzemelerin temiz ve kuru olması, kimyasal solüsyonların taze hazırlanmış olması, boya solüsyonlarının filtre edilmiş Makale türü/Article type: Derleme/ReviewGeliş tarihi/Submission date: 02 Kasım/02 November 2007Düzeltme tarihi/Revision date: 14 Şubat/14 February 2008Kabul tarihi/Accepted date: 06 Mart/06 March 2008Yazışma /Correspoding Author: Ahmet GökçenTel: (+90) (414) 312 84 56 Fax: (+90) (414) 314 41 58E-mail: agokcen@harran.edu.trGökçen A.178 olması ve içlerinde çökelti ve tortulaşma olmaması gerekir.9. Kaliteli ve uzun süre dayanıklı olan yapıştırıcı kullanılmalıdır. Tavsiye edilen en iyi yapıştırıcı Kanada balsamı ve Gum-damardır. Diğer yapıştırı-cılar kuruyunca veya belli süre sonra opaklaşır ya da kristalleşerek preparatın bozulmasına yol açabilir. Ayrıca hava kabarcıkları oluşturarak helmint örneğinin net görülmesine engel olabilirler (12).Örnek toplama ve preparat yapımında dikkat edilecek genel hususlar :Her hayvanda çeşitli parazit türleri bulunabilir. Ancak bir hayvandaher türden yeterli sayıda helmint olmayabilir. O zaman birkaçhayvandan toplanan türlerden preparatlar yapılabilir. Bazıhelmintler (Ascaridae’lerin çoğu, Anoplocephalidae’lerin bazılarıgibi) tek bir preparata sığmayacak kadar büyük olabilir. Böyledurumlarda morfolojik özelliklerine göre teşhise yardımcı olanbölümleri dikkate alınan helmintler, parçalar halinde ayrılarakkalıcı preparatlara monte edilebilir. Kayıt ve işaretleme işlemleridüzenli tutulmalı ve özellikle bölümlere ayrılan örneklerdekarışmaya fırsat verilmemelidir. Buna karşın nematodlarınçoğu ince bir kutikülaya sahip olduklarından boyama ve montajyapılamayabilir. Bunların tespiti, suyunun giderilmesi vemontajı çok zor olduğu için genellikle içine birkaç damla gliserinilave edilmiş %70’lik etil alkollü şişelerde saklanabilirler. Eğitimamacıyla kullanılacakları zaman bu şişelerden alınıp ya doğrudanya da laktofenolde şeffaflandırıldıktan sonra morfolojik özelliklerimikroskopta incelenebilir (12).Örnek toplama, gevşetme, tespit ve boyama işlemleri esnasındaaceleci olunmamalı, işlem aşamaları sırası atlanılmadanve belirtilen zaman süreçleri içerisinde tam olarak uygulanmalıdır.Örneğin alkol serilerinden tam geçirilmeyen ve bununsonucu tam dehidrasyonu sağlanmayan örnekler preparatlardabulanıklaşır ve boyanan materyalin tüm ayrıntıları net olarakgörülemeyebilir. Bazı helmint örnekleri çok küçük olduğu içingerek temizlerken, gerekse mikroskop altında çalışırken veyaörnekleri tespit ve boyama kaplarına naklederken örneklerzarar görüp teşhise yardımcı olan morfolojik özellikleri tahripolabilir. Bu gibi olumsuzluklara yol açmamak için nazik vekibar olunmalıdır (1, 11).Kalıcı preparat yapılacak helmintler, iç ve dış detaylarınınbozulmaması için canlı olarak toplanmalı ve derhal tespit edilmelidir.Parazit öldükten sonra vücudunda otolitik reaksiyonlarbaşlayacağından teşhis kriterleri olan bazı detaylar dadejenere olabilir. Konak hayvan ölünce ektopara-zitler konağıterk ederken endoparazitler belli bir süre sonra ölürler ve kısasüre içinde dejenere olmaya başlarlar. En iyi örnek, konakhayvan ölür ölmez ya da otopsi veya tüketim amacıyla kesilirkesilmez elde edilen canlı helmintlerdir. Cestod vetrematodlarda dejenerasyon ölümden birkaç dakika sonra başlarkennematodlarda bu süre birkaç saate kadar uzayabilir (10,12).Helmintlerin boyanarak kalıcı preparat haline getirilmeaşamaları :a. Helmintlerin konaklardan elde edilmesi,b. Helmintlerin temizlenmesi,c. Helmintlerin relaksatiyonu-gevşetilmesid. Helmintlerin fikzasyonu-tespitie. Helmintlerin boyanması ve kalıcı preparatlara monteedilmesi.a. Helmintlerin konaklardan elde edilmesi: İyi bir preparatyapımı için, örneklerin bütün ve canlı olarak elde edilmesigerekir. Örnekler yeni ölen veya otopsi için kesilen konaklardankısa sürede toplanmalıdır. Küçük hayvan-larda tüm sindirimsistemi özafagustan rectuma kadar bütün olarak açılır. Büyükhayvanlarda ise sindirim sistemi aralarına çift ligatür konulmuşbölümlere ayrılarak bir diseksiyon makası ile açılmalıdır. Mukozayayapışmış helmintleri çıkarmak için zorlamamalı, kendiliğindenayrılması için içerisine fizyolojik tuzlu su ilave edilmişbir küvete konularak, birkaç saat buzdolabında masere edilmeksuretiyle serbest kalmaları sağlanmalıdır. Cestodların skoleksleribağırsak lumanine yapışık olduğundan kıl fırça veya diseksiyoniğnesi ile çok dikkatli bir şekilde lumenden ayrılıp toplanmalarıgerekir. Çok küçük helmintleri toplamak için diseksiyonun mikroskobukullanılabilir.Canlı helmintlerin parçalanması, distorsiyonu ve iç organlarınınaçığa çıkarak zarar görmesini önlemek için; toplama,temizleme ve transfer esnasında küt makas, dişsiz pens, yumuşaktüylü fırça, puar ve pipet gibi malzemeler ile izotonik sıvılarkullanılmalıdır. Organın dokusu içerisinde bulunanhelmintleri toplamak için bu organları küçük parçalara ayırarakincelemek gerekir. Uzun süre önce ölmüş veya dondurulmuşhalde olan örnekler kalıcı preparat yapımı için uygundeğildir (9, 12).b. Helmintlerin temizlenmesi: Konak hayvanlardan dikkatlicealınıp petri kutularına nakledilen helmintler; dış yüzeyine yapışmışdışkı artıkları ve benzeri yabancı partiküllerden serumfizyolojik içinde yumuşak bir fırça yardımıyla yıkanarak temizlenir.Çok küçük örnekler stereomikroskop altında temizlenebilir.Temizlik esnasında bir kaba aşırı miktarda örnek konulmamalı vekaplar çalkalanmamalıdır (12).c. Canlı helmintlerin relaksatiyonu-gevşetilmesi:Relaksatiyon veya gevşetme, helmintlerin doğal görünümdekalmalarının yapay olarak sağlanmasını içeren bir süreçtir.Tam gevşetilmeyen helmintlerin, büzüşüp kıvrılarak bir yumakhalinde toplanmaları nedeniyle montaj esnasında teşhiseyarayan morfolojik özellikleri tahrip olabilir.Monogenea’lar narin yapılı trematodlar olup genellikle soğukkanlıhayvanların (Balık, kurbağa vb.) deri, solungaç ve burunboşluklarına çekmenleriyle tutunmuş olarak yaşarlar. Bunlarbalıkların 1/4000’lik formalin solüsyonunda 30 dakika kadarbekletilmeleri ile gevşemiş halde toplanırlar. KüçükHelmintlerde tesbit, boyama ve kalıcı preparat yapımı179trematodlar preparata yerleştirilir. Üzerine birkaç damla serumfizyolojik damlatılıp lamel kapatılır ve buzdolabında bir saatkadar bekletilerek gevşetilebilir. Çok küçük olanlarıdiseksiyon mikroskobu kullanılarak puar veya ince bir pipetyardımıyla alınıp AFA (Alkol-Formalin-Asetik asit) (*) solüsyonundasaklanırlar (3, 4, 13).Digenea’lar halk arasında kelebek olarak adlandırılan, genellikleince bağırsak, safra kesesi, safra kanalları, idrar kesesi gibi içorgan boşluklarında bulunan trematodlardır. Bunlar yerleştiğiorganların diseksiyonu ve içeriğin çeşme suyu altında yıkanmasıile toplanırlar. Tespit edilmeden su içinde uzun süre kalırlarsaosmotik şok sonucu yırtılmalara ve dejenerasyonlara maruzkalabilirler. Daha büyük trematodlar, ise serum fizyolojik içerisindebirkaç saat veya bir gece buzdolabında bekletilerek gevşetilebilirler.Bir lam boyutundan daha uzun olan örnekler birkaçkez katlanarak lam boyutuna getirilebildiği gibi deney tüpleriveya cam kavanozlar içinde ya da uzun cestodlarda olduğu gibiuygun yerlerinden kesilerek müstakil bölümler halinde gevşetilebilirler(1, 3, 4, 11, 13).Cestodlar, segmentli yapıda olup genellikle konakların sindirimsistemi lumeninde yapışma organelleri ile tutunmuş haldebulunurlar. Dış yüzeyine yapışan dışkı artıklarından bir fırçayardımıyla temizlendikten sonra, soğuk distile su, serum fizyolojikveya % 5-10’luk etil alkolden herhangi birisinde 5–15dakika bekletilerek gevşetilirler (4, 6, 9, 11).Nematodlar dışkı artıklarından temizlendikten sonra doğrudanglasiyal asetik asit içine atılıp 5–10 dakika bekletilir, daha sonrakıvrılanları uzatılarak düzeltilir ve hızlı bir şekilde % 70’lik etilalkole alınırlar. Bazı nematodlar bu esnada rupture olup parçalanabilir.Buna engel olmak için temizlenen nematodlar direktkaynama derecesindeki sıcak % 70’lik etil alkole atılıp düzeltilerekgevşetilir ve tespit edilirler. Tespitte kullanılan alkol içerisinebirkaç damla gliserin ilave edilmesi, nematodların hemyumuşak ve daha elastik kalmasını sağlar hem de alkol buharlaştığındakuruyup çatlamasını önler (6, 12).Acanthocephala’ların gevşetme ve tespiti nematodlarda olduğugibi yapılır. Ancak başlarında morfolojik teşhis kriterlerine esasolan dikencikler bulunduğu için daha fazla itina ister. Lumeneyapışmış halde bulunan proboscis kısmı çok dikkatli bir şekildekopartılmadan çıkarılmalı ve daha sonra doğrudan distile su içinealınıp 30–120 dakika kadar tutularak temizlenmelidir (1, 11).Sülükler, içerisine birkaç mentol kristali atılmış çeşme suyunaalınıp 15–60 dakika bekletilerek gevşetilirken bazen saatlercebeklemek gerekebilir. Diğer bir yöntem ise sodyum karbonatlısuda bekletme yöntemidir (1).d. Helmintlerin fikzasyonu-tespiti: Fikzasyon veya tespitdokuların canlı iken sahip olduğu özelliklerinin muhafazaedilmesini sağlayan bir süreçtir. Örneklerin uzun süre dayanıklıkalması için iyi bir şekilde tespit edilmesi gerekir. Tespitinamacı gevşetilmiş örneklerin gerçek boyutunda kalmalarınısağlamak ve bünyelerinde olabilecek metabolik ve dokusaldeğişiklikleri durdurmaktır (12).Tespit için kullanılan çeşitli metotlar vardır. En basit, kolay veucuz olanı % 5’lik sıcak formol ile tespittir. Bunun yanındaAFA fiksatifi, Gilson’un fisatifi (**) veya Shaudin’in fikzatifi(***) de kullanılabilir (1).Küçük Digenea’lar dışkı ve benzeri artıklardan temizlendiktensonra doğrudan AFA solüsyonu ile tespit edilirken, büyükolanları iki lam arasına konularak 48 saat süreyle tespit edilip% 70’lik etil alkolde uzun süre saklanabilirler (12).Cestodlar canlılık belirtileri tamamen kaybolmadan ilk 5–30dakika içinde tespit edilmelidirler. Küçük cestodlar doğrudanAFA solüsyonuna alınırken, büyük olanları morfolojik yapılarınagöre 3–4 cm uzunluğunda kesilerek, ezilip parçalanmayacakşekilde iki lam arasına sıkıştırılmalıdır. Daha sonra lamlarınyanlarına bir pipet yardımıyla tespit solüsyonu ilave edilerekcestod yüzeyleriyle teması sağlanır. Bundan sonra Digenea’lardaolduğu gibi 24–72 saat tespit solüsyonunda bekletildikten sonra %70’lik etil alkole alınarak uzun süre saklanabilirler (12).Nematodlar glasiyal asetik asitte hem tespit edilip hem desaklanabilirler. Bunun yanında direkt kaynama derecesindeki%70’lik sıcak etil alkole atılıp düzeltilerek gevşetilir ve tespitedilirler. Tespitte kullanılan alkol içerisine birkaç damla gliserinilave edilmesi, hem nematodların yumuşak ve daha elastikkalmasını sağlar hem de alkol buharlaştığında kuruyup çatlamasınıönler (1, 6, 12).Acanthocephala’lar temizlendikten sonra direkt AFA solüsyonunaalınarak tespit edilir. AFA solüsyonunda 3–7 gün tespitedildikten sonra %70’lik etil alkole alınıp uzun süre saklanabilir.İşlemler esnasında ve bu helmintleri naklederken çok dikkatliolunmalıdır. Aksi halde pens ile baş kısmından tutulursateşhiste yararlanılan baş kısmındaki dikencikler dejenere olabilir(12).Sülükler iki lam arasına sandviç gibi bağlanıp dış yüzeyindenAFA solüsyonu ile teması sağlanarak 15–30 dakikada tespit edilirler.Ya da bağlı şekilde AFA solüsyonunda 7 gün tespit edildiktensonra % 70’lik etil alkolde uzun süre saklanabilirler (1).e. Helmintlerin boyanması ve kalıcı preparata monteedilmesi: Monogenea’lar çift lamel arası gliserin jeli (****)ile preparat yapılıp lama yapıştırılmak suretiyle kalıcı preparathaline getirilirler. Şeffaf oldukları için iç organelleri kolaylıklagörülebilir ve boyanmadan kalıcı preparat yapılabilirler (12).Bunun için:1. Gevşetme ve tespiti yapılmış Monogenea’ya ait helmintbir pipet veya puar yardımıyla 22 x 22 mm veya daha büyükölçekli bir lamel üzerine yerleştirilir.2. Hava kabarcığı oluşturmadan üzerine bir damla gliserinjeli damlatılır.Gökçen A.1803. Üzerine yavaşça daha küçük bir lamel kapatılıp serin biryerde bir süre bekletilir, kenarlardan çıkan gliserin jelinfazla kısmı tıraşlanarak temizlenir.4. Bu şekilde hazırlanan örnek daha sonra bir lam üzerinemonte edilerek Kanada balsamı ile yapıştırılır. Lamamontaj esnasında küçük lamelli olan taraf alta yani lamatemas eden yüze gelmeli ve kenar boşlukları büyük lameltarafından korunmuş olmalıdır. Montaj işlemi biten preparat,37 ºC’lik etüvde bir süre kurutularak kullanıma hazırhale getirilebilir (1, 12).Digenea’ların boyanmasında Mayer’s hematoksilen, Semichon’sacetocarmine, Van Cleave’s acetocarmine veya Malzacher’s boyamasıgibi çeşitli boyama metotları kullanılabilir. Aşamaları-nınkarmaşık olmaması ve kolayca yapılabilmesi nedeniyle en çoktercih edilen Semichon’s acetocarmine (*****) boyama metodudur(10, 12).Bunun için:1. Etil alkolde saklanan örnekler direkt Semichon’s asetocarminboya solüsyonuna alınarak 2–4 saat boyanır.2. Boyanan örnekler %70’lik etil alkolde 15–30 dakikabekletilir.3. Boyanın sabitlenmesi için %70’lik asit alkolde trematodunbüyüklüğüne göre 15 saniye – 10 dakika arasında tutulur.4. Örnekler 15 saniye – 10 dakika arasında %70’lik bazikalkol ile muamele edilir.5. Önce %70’lik etil alkolde 5 dakika, sonra %95’lik etilalkolde 15–30 dakika ve daha sonra %96’lık absolüte etilalkolde her biri 15–30 dakika olmak üzere üç kez alkoldengeçirilir.6. Ksilen veya toluende her biri 10–20 dakika olmak üzereiki kez tutulur. Daha sonra iki lam arasına monte edilerekKanada balsamı veya Gum-damar ile yapıştırılır.Cestodların boyanması Digenea’lardaki gibi Semichon’sacetocarmine metoduyla yapılabilir. Bunun yanında BoraxCarmine (******) ile de boyanmaktadır. Büyük cestodlardateşhis kriterlerine esas olmak üzere morfolojik farklılık gösterenskoleks-baş bölgesi 2–3 cm aşağısındaki boyun bölümündenkesilir, 2–3 cm uzunluğunda birkaç genç halka ile birkaçolgun halka alınarak boyanıp ayrı ayrı preparatlara monteedilir. Metrelerce uzunluğundaki cestodun tamamını boyamayagerek yoktur. Tespit ve boyama esnasında çok dikkatliolmalı, birden fazla tür varsa farklı türlerin skoleks ve halkalarıbirbirine karıştırılmamalıdır (12).Borax Carmin ile boyama prosedürünün aşamaları şunlardır.1. Örnekler alkol serilerinden (%70, %80, %90 ve %96’lık)geçirilir.2. Hazırlanan Borax – Carmin solüsyonunda 15 dakikaboyanır.3. Beşer dakikalık sürelerle üç kez distile sudan geçirilir ve%70’lik etil alkol şişelerine alınır.4. Preparata monte edilerek kanada balsamı ile yapıştırılıp,37 °C’lik etüvde kurutulur.Nematodların bir kısmı toprakta serbest yaşarken, önemli birbölümü de insan ve hayvanların sindirim, kan ve lenf sistemlerindeparazit olarak yaşamaktadır (2, 3, 4, 11). Nematodların 2cm’den küçük olanları bütün halde bir preparata monte etmekiçin uygundur. Buna karşın daha büyük nematodlar morfolojikyapılarına göre teşhise yardımcı olacak bölümleri kasilerekayrı ayrı bölümler halinde monte edilmelidir. Ya da parafinlibloklarda histolojik kesitler alınarak preparatlara monte diliphematoksilen eosin ile boyanarak teşhis edilirler (12).Tespitten sonra değişik yoğunluktaki alkol serilerinden geçirilennematodlar ksilen veya toluende bekletildikten sonra boyanmadandirekt preparata monte edilebilirler. Eğer %70’liketil alkolde saklanacaklarsa içerisine %5’lik gliserol ilaveedilmesi gerekir (10, 12).Kalıcı preparat yapımında prosedür şu aşamalardan oluşur:1. Nematodlar eğer tespit edilmemişse, %70’lik etil alkolde30 dakika tespit edilir.2. Alkol serilerinden geçirilişi. %95’lik etil alkolde 30 dakika,%96’lık absolüte etil alkolde iki kez 30’ar dakika,Ksilen veya toluende önce 15, sonra 30 dakika bekletilmeli.3. Preparata montajı yapılıp üzerine lamel kapatılarak Kanadabalsamı ile yapıştırılır. Daha sonra 37 ºC’lik etüvdebirkaç hafta kurutularak kalıcı preparat haline getirilebilir.Acanthocephala’lar genellikle balık, kaplumbağa, su kuşlarınadiren insan ve evcil hayvanların ince bağırsaklarında lokalizeolurlar (4, 11, 13). Acanthocephala’lar boyalı veyanematodlarda olduğu gibi boyasız olarak mikroskopta incelenebilir.Boyama yapılacaksa; Van Cleave’s hematoxylin veyaMayer’s hematoxylin metodlarıyla ya da cestodlarda olduğugibi en çok önerilen Semichon’s acetocarmine metoduylaboyanarak kalıcı preparatları yapılabilir (10, 12).Sülükler genellikle göl, havuz, bataklık gibi durgun sularda veyayavaş akan dere, ırmak ve nehirlerde; ya balık, kaplumbağa gibikonaklara yapışmış halde ya da serbest halde bulunurlar (4). Büyüksülükler boyanmadan direkt incelenip % 70’lik etil alkolkonulmuş şişelerde boyanmadan saklanırken, küçük sülüklerDigenea’larda olduğu gibi gibi Semichon’s acetocarmine metoduylaboyanarak kalıcı preparatları yapılabilir (10, 12).Parazitlerin iç ve dış yapılarını uygun şekilde korumak içinlaboratuarlarda değişik metotlar uygulanmaktadır. Teşhis veeğitim amacıyla kullanılan ve söz konusu metotlarla elde edilenkoleksiyonlardan her zaman yararlanılabilir. Sonuç olarak,bu derlemede farklı kaynaklarda dağınık şekilde bulunanHelmintlerde tesbit, boyama ve kalıcı preparat yapımı181helmintlerdeki gevşetme, tespit, boyama ve kalıcı preparatamontaj metotlarının toplu olarak sunulması gereği vardır. Bununzaman ve emek kaybını önlemek için helmintoloji alanındayeni çalışmaya başlayanlara kolaylık sağlayacağı düşünülmektedir.Metinde geçen kimyasal bileşikler ve formülasyonları(*) AFA (Alkol-Formalin-Asetik asit) fikzatifi1. Ticari Formalin (HCHO) : 100 ml2. Etil alkol (C2H5OH, % 95’lik) : 250 ml3. Glasiyal asetik asit (CH3COOH) : 50 ml4. Gliserin (C3H5(OH)3) : 100 ml5. Distile su : 500 ml(**) Gilson’un fikzatifi1. Nitrik asit (HNO3, % 80’lik) : 15 ml2. Glasiyel asetik asit (CH3COOH) : 4 ml3. Civa klörür (HgCl2) : 20 gr4. Etil alkol (C2H5OH, % 60’lık) : 100 ml5. Distile su : 800 ml(***)Shaudin’in fikzatifi1. Civa klorür (HgCl2, Distile su ile doymuş halde) : 200 ml2. Etil alkol (C2H5OH, % 95’lik) : 100 ml3. Glasiyel asetik asit (CH3COOH) : 15 ml(****) Gliserin jeli bileşimi1. Jelatin : 10 gr2. Distile su : 60 ml3. Gliserin : 70 ml4. Fenol : 1grHazırlanışı: Kristal fenol suda çözülür ve jelâtin ilave edilir.Çözünüp homojen hale gelinceye kadar ısıtılır. Daha sonrageniş ağızlı bir cam şişeye katılıp soğutulur ve kullanılır.(*****) Semichon’s Acetocarmine (Stok solüsyonu)1. Glasiyal asetik asit (CH3COOH) : 250 ml2. Distile su : 250 ml3. Carmin : 5 gr4. Etil alkol (C2H5OH, % 70’lik) : 500 ml(******) Borax Carmine bileşimi1. Carmine : 3 gr2. Borax (Na2B4O7. 10H2O) : 4 gr3. Distile su : 100 ml4. Etil alkol (C2H5OH, % 70’lik): 100 mlHazırlanışı: Carmin ve borax distile su ile çözünene kadarkaynatılır, soğutulur ve etil alkol ilave edilerek 1–2 gün bekletildiktensonra süzgeç kâğıdından süzülerek kullanılır.KAYNAKLAR1. Anonim, 1961. Laboratory Procedures in Parasitology, TM 8–227–2. Headquarters, Washington, USA.2. Anderson RC, 1992. Nematode Parasites of Vertebrates, TheirDevelopment and Transmission, CAB Int, UK. p. 1–12.3. Dunn AM, 1978. Veterinary Helmintology, 2nd. ed., WilliamHeinemann, London. p. 295–304.4. Güralp N, 1981. Helmintoloji, Ank Ünv Vet Fak Yay No: 368Ders Kitabı: 266, İkinci baskı, Ank Ünv Basımevi, Ankara.5. Hendrix CM, 1997. Laboratory Procedures for VeterinaryTechnicians, 3rd. Ed., Mosby, Inc., USA.6. Kassai T, 1999. Veterinary Helminthology. 1st ed., Butterworth-Heinemann, Oxford. p. 181–204.7. Merdivenci A, 1967. Türkiye’nin Marmara Bölgesinde EvcilTavuk, Hindi, Ördek ve Kazlarda Görülen Trematod, Cestod veNematodlara Dair Araştırmalar, Kutulmuş Matbaası, İstanbul.8. Ministry of Agriculture, Fisheries and Food (MAFF), 1971.Manuel of Veterinary Parasitological Laboratory Techniques,HMSO, Technical Bulletin No:18, London.9. Pratt PW, 1997. Laboratory Precedures for VeterinaryTechnicians, 3rd. ed., Mosby Inc., Missouri.10. Sloss MW, Kemp RL, Zajak AM, 1994. Veterinary ClinicalParasitology 6th. ed., Iowa State University, Ames, Iowa.11. Soulsby EJL, 1986. Helminths, Arthropods and Protozoa ofDomesticated Animals, 7th. ed., Bailliere Tindall, London. p.763–777.12. Upton SJ, 2005. Animal Parasitology, Biology 625 LaboratoryManual, Kansas Satate University, USA.13. Urquhart GM, Armour J, Duncan JL, Dunn AM andJennings FW, 1988. Veterinary Parasitology. ELBS, LongmanUK. p. 269–279.Kaynak: Türkiye Parazitoloji Dergisi, 32 (2): 177 - 181, 2008PDF formatını buradan indirebilirsiniz.: www.tparazitolderg.org/pdf.php3?id=341

http://www.biyologlar.com/helmintlerde-tespit-boyama-ve-kalici-preparat-yapimi-1


ÖLDÜRME KAPLARI

1) Siyanürlü Öldürme Şişeleri : Geniş ağızlı, kapağı lastik veya mantar olan bir şişe alınız. Tabanına 4 tane nohut büyüklüğünde potasyum siyanür (KCN) parçasını aralıklı olarak koyunuz. Potasyum siyanür parçalarını kendi şişesinden pens ile alınız. Potasyum siyanür taneleri üzerini 1 cm kalınlıkta, şişenin tabanını kaplayacak şekilde pamukla örtünüz. Bir başka kapta döküme hazırladığınız alçıyı , ağır ağır ve dikkatle pamuğun üzerine, şişenin tabanından itibaren 3 parmak yükseklik hasıl oluncaya kadar dökünüz. Hazırladığınız bu kuru zehir şişesini, pencerenin dış kenarına ağzı açık olarak bırakınız. 24 saat sonra ağzını kapatarak kullanınız. Aynı şişeden 3 tane hazırlayınız. Bunlardan birisi içine yalnız kelebekleri, ikincisine örümcekleri, üçüncüsüne de örümcek ve kelebek hariç, diğer bütün böcek çeşitlerini ve çok ayaklıları koymak için kullanınız. Bir etiketin üzerine iskelet kafatası çizdikten ve altına kırmızı kalemle “şiddetli zehir “ yazdıktan sonra bu şişelere kuvvetli bir yapıştırıcı ile yapıştırmayı unutmayınız. Bu zehir şişelerinden kırılan olursa bunları katiyen rasgele bir yere atmayınız. Ekilmeyen ve hiçbir zaman kazılması ihtimali olmayan bir yere bir metre derinlikte bir çukur kazınız ve şişenin parçalarını buraya her şeyi ile birlikte iyice gömünüz. Yeteri kadar derin gömmediğiniz takdirde, zehir, tabi toprak sıcaklığında buharlaşarak toprağın  üzerinde oturan, yatan bütün canlıları öldürebilir. 2. Asetik Eterli veya Kloroformlu Öldürme Şişeleri :Potasyum siyanür bulunamazsa eczaneden bir litre asetik eter alınız. Kavanozun tabanından itibaren 2 parmak yüksekliğine kadar, hızardan çıkmış toz tahta talaşı doldurunuz. Talaşı biraz sıkıştırınız. Öte yandan kavanozun tabanını örtecek büyüklük ve şekilde, kalınca bir mukavva kesiniz. Mukavva üzerinde, çivi ile 25 - 30 kadar delik açınız ve hemen kullanmak üzere yanınıza alınız. Asetik eteri veya kloroformu azar azar talaşa emdiriniz. Öyleki talaş tam ıslansın, fakat tabanda sıvı birikmesin. Mukavvayı, talaş üzerine sımsıkı oturtunuz. Kavanozu kendi kapağı ile örtünüz. Hayvanlar asetik eter içinde daha geç ölürler. Çünkü asetik eter siyanür gibi şiddetli bir zehir değildir. Bu şişelerin kullanılması da siyanür şişeleri gibidir. 3. Alkollü Öldürme Şişeleri :Geniş ağızlı şişeler alınız. Bu şişelere kendi boylarının ¼`üne kadar alkol veya adi ispirto koyunuz. Şişeler kullanmaya hazırdır. Alkollü öldürme şişelerine böcekleri, örümcekleri ( örümcekleri ayrı şişeye ), çok ayaklıları, tespih böceklerini, suda yakalanmış ufak hayvanları (ayrı şişeye), ufak salyangoz, midye, istiridye, solucan, tırtıl ve böcek larvalarını, deniz yıldızı, deniz kestanesi, deniz hıyarı ve deniz şakayıklarını koyabilirsiniz. Pul kanatlıları (kelebekler) asla alkollü şişelere koymayınız. Kelebeklerin, başlarının hemen gerisindeki göğüs kısımlarını üst-alt istikametinde iki parmak arasında, çıt sesini duyuncaya kadar sıkınız. Hayvanı bu şekilde öldürdükten sonra, önceden, boy boy ve çok sayıda hazırladığınız kelebek zarflarına, hayvanın kanatlarını üstten birleştirerek, yan bir şekilde koyunuz. Her zarfa yalnız bir kelebek koyarak kapatınız. Bu zarfları da katlanmadan muhafaza edilecek şekilde kutulara yerleştiriniz. 4. Formollü Öldürme Şişeleri :Formol, eczanelerde kiloluk şişeler halinde % 40 oranlı formaldehit olarak satılır. Bu % 40 oranlı formolden bir kaba 1 bardak formol konmuş ise, üzerine, aynı bardakla 9 bardak su katmak suretiyle sulandırılır. Böylece % 4 oranlı formollü su elde edilmiş olur. Bu sulandırılmış formolden öldürme şişelerine, şişenin ¼ `üne kadar doldurulur. Şişeniz kullanılmaya hazırdır. Formollü su içine de, kelebekler hariç bütün hayvanlar konulabilir. Ancak formol, adi ispirto, tuvalet ispirtosu gibi sıvılar, içlerinde uzun müddet bırakılan hayvanların renklerini soldurur ve bozar. Ayrıca, bu hayvanların doku sularını da çekerek, gevrek bir şekilde sertleştirir. Bu sebeple alkollü ve formollü öldürme şişelerine koyduğunuz hayvanları kuru olarak muhafaza edecekseniz bu şişeler içinde bir günden fazla tutmayınız.

http://www.biyologlar.com/oldurme-kaplari


Dipteraların Ekonomik ve Tıbbi Önemleri

Larva ve erginlerinin farklı yaşam alanların uyum sağlamış olmaları nedeniyle her iki dönemde de oldukça farklı tarzlarda faydalı veya zararlı olurlar. Dipterlerin ekonomik önemleri henüz göz önünde bulundurulmamaktadır. Muhtemelen dipterler bu konuda diğer bütün böcek gruplarını geride bırakacak bir öneme sahip olup insan sağlığına ve ekonomiye sinek ve sivrisineklerin verdiği zarar asla düşünülmez. Ancak sivrisineklerin sebep olduğu hastalıklardan sadece sıtmadan Hindistan'da 1897'de 5 milyon, 1927'de 3 milyon ve daha yakın bir tarihte 1958'de 1,5 milyon insan ölmüştür. Yine Simulidae familyası türleri 1923 yılında Romanya'da 16.000 büyükbaş hayvanın ölümüne neden olmuştur. Bunların dışında İngiltere ve Galler'deki Oscinella frit (ekinbaşsineği; Chloropidae)'in yulaflara verdiği zarar 100.000 insanın yıllık besinine karşılık gelmektedir. Tanmsal zararlılar olarak her şeyden önce Tipulidae'nin bazı, Bibionidae, Sciaridae, Cecidomyiidae, Syrphidae, Phoridae, Tephritidae, Psilidae, Chloropidae, Agromyzidae, Ephydridae ve Anthomidae ve diğer familyalardan çok sayıdaki türün Iarvalann önemlidir. Fitofag dipter larvaları yedikleri besine göre 4 grupta toplamam mümkündür . Bunlar; 1. Mantar (Sciaroidea: Sciaridae, Bolithophilidae, Mycetophilidae, Keroplatidae) veya alg yiyenler (Ptychopteridae), 2. Diğer bitkilerle beslenenler , 3. Gal oluşturanlar (Cecidomyiidae, 4. Meyve yiyenler (Drosophilidae). Cecidomyiidae familyasının pek çok türü bitkilerde gal meydana getirir. Bitkinin kök kısımları dışında yumru halinde gal oluştururlar. Çok defa belirli bitki türlerinde hatta bitkinin belirli yerlerine özelleşmişlerdir. Gal oluşumuna larvarın tükrük salgısı önemli rol oynamaktadır. Mekanik uyanlarla birlikte bitkinin o bölgesinin hızlı büyümesi sağlanır. Özellikle dipter kökenli insan hastalıklarının teşhisinde bir taraftan kontaminöz materyal ile (leş ve dışkı), diğer taraftan besin maddelerine temas etmesi sonucu evlerdeki sinek faunasının araştırılması ihtiyacı ortaya çıkmaktadır. Stutgart şehri ile ilgili yapılan bir araştırmada evlerdeki Musca, Fannia, Drosophila, Stomoxys, Calliphora, Lucilia, Piophila, Psychoda ve Scatopse cinsi sineklerin önemli olduğunu ortaya koymuştur. Örneğin Asilidae türlerinin ergin ve larvalarının tamamı predatör olup, diğer böcek takımlarına ait böcekleri avlayarak yedikleri gibi, nadir olarak da diğer eklembacaklılarla beslenirler. Bazı türler yalnızca tek bir takıma ait bireylerle beslenmekte olup bazılarının ise tercih ettiği bir takım olmakla birlikte, o takıma ait bireyleri bulamayınca başka takımlara ait bireylerle de beslenmektedir. Dasypogon diadema önemli bir an parazitidir. Asilidae larvalarının toprak altındaki gelişim dönemlerinde de Coleoptera ve Diptera takımına ait bazı bireylerle beslenmektedir. Syphidae türleri tabiatta ekonomik yönden çok yararlı sinekler olup ergin ve larvalarının beslenme özellikleri yönünden önemli böcek gruplarından birini oluştururlar. Çiçeklerde yoğun olarak görülen erginler, birçok kültür ve yabani bitkilerin anlardan soma en önemli tozlaştırıcılar olarak kabul edilir. Hatta birçok türü hep aynı bitki türünü ziyaret etme eğiliminde olduğu için tozlaşma açısından bal arılan ve Bombus'lardan sonra 2. sırada gelirler. Syrphidae bir kısım türü bitkilere zarar veren küçük böceklerle beslenirler " Birçok türü eşit sayıdaki Coccinella septempunctata (gelin böceği) larvasından daha fazla yaprak biti tükettiğinden faydalıdır. Bunun yanında Episyrphus balteatus predatör syrphidler içerisinde en çok görülen tür olup değişik bitkilerdeki (genellikle Compositae ve Umbelliferae familyalanna ait 57 değişik bitkide rastlanmış) aphid (yaprak biti) kolonilerinde gelişir ve yılda 3-4 nesil verebilir. Bunların yanında Zambak, Nergis ve buna benzer soğanlı bitkilerin soğanları ile beslenen syrphidler zararlıdır. Arı benzeri sinekler olan bombyliidler diptera'nın tür sayısı bakımından en fazla türe sahip familyalarından birisidir. Pek çok türü çiçekleri ziyaret ederek polen ve nektar ile beslenirler. Bu sırada da bitkilerin tozlaşmasına yardım ederler. Bu sineklerin larvaları diğer pek çok böcek üzerinde hyperparazit, parazit veya yumurta zararlısıdır. Larvalarını bu özellik 1 eri bakımından böcek kontrolünde büyük yararlar sağlamaktadır .Mesela bir çok türünün larvaları çekirgelerin yumurta kümelerine saldım ve onlara zarar verirler. Ayrıca yaygın gece kelebeklerini, dana bumu gibi böceklerin larvalarını parazitleyerek bu böceklere de zarar verirler. Sineklerin en gelişmiş familyalarından olan Tachnidlerin gelişmeleri öncelikle kelebek, bunların yanı sıra coleopter, yaprakarısı ve tipulid larvaları ile çekirge, coleopter, hemipterler ve karıncalarda da parazit yaşayanları vardır. Bir kısmı monofajdır, sadece bir konukçuda gelişir. Parazit yaşamaları, geniş yayılış göstermeleri ve hızlı çoğalmaları biyolojik denge açısından oldukça önemlidir. Laboratuvar şartlarında yetiştirilmeleri olumlu ve başarılı sonuçlar vermesinden dolayı bilhassa orman ve tarım zararlılarının mücadelesinde büyük önem arz etmektedirler. Meyve sineklerinden (Drosophilidae) Drosophila melanogaster'in kolay yetiştirilmeleri ve hızlı çoğalmaları, az kromozom taşımaları, mutasyonlaşmaya yatkın olmaları ve mutasyonların kolayca saptanması bakımından bilhassa kalıtım deneylerinde sıklıkla kullanılmalarını sağlamıştır. Kaynaklar •Brauns, A., 1976, Taschenbuch der Waldinsekten, Band 2. Ökologische Freiland-Differential diagnose bildteil, 380-383. •Demirsoy, A., 1990, Omurgasızlar/Böcekler, Yaşamın Temel Kuralları, 713-792. •Hennig, W., 1973, 31. Ordnung Diptera (Zweiflügler).-In: Helmcke, J.G., D. Starck & H. Vermuth (Hrsg.), Handb. Zool., 4 (2) (lfg. 20): 1-337. •Lindner, E., 1949, Die Fliegen Der Paläarktischen Region, Bd. 1: 1-400. •Sedlag, U., 1986, Insekten Mitteleuropas. Diptera: 346-377, Ferdinand Enke Verlag, Stutgart. •Williams, D. Dudley, and Blair W. Feltmate. 1992. Aquatic Insects. CAB International. xiii, 358pp.

http://www.biyologlar.com/dipteralarin-ekonomik-ve-tibbi-onemleri


Trematoda

Trematoda sınıfına kelebeklerde denir. - Vücutları dorso-ventral basıktır. - Vücut boşluğu yoktur. - Tüm vücut tek bir bölümden oluşmuştur. - Tüm organlar tek bir paranşim içinde toplanmıştır. -Çekmen/çengelleri vardır. -Genellikle anüsleri yoktur. -Schistosomatidae ailesi dışındakiler hermafrodittir. -Direk/indirek gelişirler. 3 tane alt sınıf vardır : -Monogenea -Aspidogastrea - Digenea MONOGENEA : - Soğukkanlı ve suda yaşayan hayvanlarda (balık, amfibi, sürüngen) parazitlenirler. -Genellikle ektoparazittirler. -Vivipar ya da ovipardırlar. -Larvaları olgunlarına benzer. -Tutunma organeli olarak arka kısımlarında çekmen/çengelleri vardır. -Direk gelişirler. Ör: Gyrodactylus Dactylogyrus ASPIDOGASTREA : - Yaklaşık 80 türü vardır. -Balık, sümüklü, kabuklu ve kaplumbağalarda parazitlenir. -Hiçbir türünün ekonomik önemi yoktur. -Digenea'lara benzerler. -Çok sayıda alveol/çekmene sahip bir ventral disk taşırlar. -Çekmen bulunmaz -Tegumentte mikrotubuller vardır. -Ekto ya da endoparazit olabilirler. Medikal açıdan önemli olan altsınıf Digenea'dır. DIGENEA : - Boyutları 0,3 mm ile 10 cm arasındadır. -Vücut segmentsiz ve tek bölümlüdür. Paramphistomum soyu tesbih tanesi gibi, Schistosoma soyu da ince, uzun ve silindirik bir yapıya sahip olamsına rağmen genellikle yaprak şekilde dorso-ventral basık bir formdadırlar. -Vücut tegument ile kaplıdır. Tegument düz (Dicrocoelium) ya da dikenli (Fasciola) olabilir. -Ağız ve karında olmak üzere 2 tane çekmen vardır. Bazılarında (Heterophyes) genital çekmen bulunur. -Bazı türlerde (Echinostomatidae) ön kısımda bir yaka ve bu yakada 1-2 sıralı diken bulunur. Sindirim sistemi : Basittir. Ağız / prepharynx / pharynx / oesophagus / barsak (kör olarak sonlanır). Anus yoktur. Beslenme doku artıkları sayesinde olur. Sindirim barsaklarda gerçekleştirilir. Sinir sistemi : Oesophagus çevresinde bir sinir tasması bulunur. Buradan çıkan sinir iplikçikleri vücuda dağılır. Boşaltım sistemi : Paranşimde kirpikli ateş hücreleri varıdır. Buradan çıkan boşaltım kanalları daha büyük kanallarla buluşup arka kısımdaki boşaltım deliğinr açılır. Üreme sistemi : Schistosoma hariç hermafrodittirler. Erkekte:2 testis / vasa deferens / sirrus kesesi (ves.seminalis + penis +sirrus) / genital delik. Dişide : ovarium / oviduct / ootip / uterus. Ootip çevresinde salgılarıyla yumurta kabuğunun şekillenmesini sağlayan Mehlis bezleri vardır. Parazitin iki yanınada ve ootipa açılan vitellojen bezlerin salgısıyla da yumurta sarısı oluşturulur. Döllenme ootipte olur. Larva dönemleri : a) Miracidium : Ön tarafı geniş, arka ksımı dardır.Üzeri kirpikli epitelle kaplıdır. Ön uçta arakonağı delmeye yarayan dikenli çıkıntı vardır.Bazı türlerde 1-2 göz lekesi bulunabilir. b) Sporokist : İnce duvarlı bir kesedir. İç duvarında bölünme yeteneğine sahip hücreler vardır. c) Redi : Silindirik yapıdadır.Ön kısımda ağız çekmeni vardır .Sindirim kanalı ve boşaltım sistemi şekillenmiştir. Vücudun vbir tarafına açılan bir doğum deliği vardır. d) Serker : Vücut gövde ve kuyruktan oluşur. Ağız, karın çekmeni, sindirim kanalı, boşaltım ve sinir sistemi gelişmiştir. Kuyruk tek ya da türe göre çatallı (furkoserker) olabilir. e) Metaserker : Serkerin gövdesini kistleşmiş şeklidir. Genellikle enfektif formdur. Schistosomalarda enfektif dönem serker dönemidir. Metaserker dönemi gözlenmez. Yumurtalar :2 tiptir : -Çift çeperli, kalın kabuklu,dikensiz,kapaklı -Çift çeperli,kalın kabuklu,dikenli,kapaksız (Örn:Schistosomatidae) Teşhis : Sedimentasyon yöntemi ile dışkı bakısı yapılır. Biyoloji : - Gelişme indirektir. -1-2 arakonak kullanılır. Genellikle 1.arakonak sümüklülerdir. 2.arakonak ise genellikle suda yaşayan balık, kabuklulardır. -Son konakata bulunan parazitten dışarı atılan yumurtalarda miracidium gelişir. Miracidium suda yumurtayı terkeder. Bazı türlerde ise (Dicrocoelium dendriticum) terketmez. Miracidium / sporokist (arakonakta serbest halde) / redi / serker / metaserker / çevre koşulları uygun olmazsa kız redi *Dicrocoelium dışındaki tüm digenik trematodların aracıları su sümüklüleridir. 1.AILE : FASCIOLIDAE Cins: Fasciola Tür: F.hepatica,F.gigantica Hastalık: fasciolosis Cins:Fascioloides Tür:F.magna Cins:Fasciolopsis Tür:F.buski Fasciola hepatica : Son konaklar: Sığır, koyun, insan dahil birçok memeli Ara konaklar: Lymnea truncatula (su yüzeyinde yaşar, beyaz renkli ve şeffaftır) Yerleşim: Karaciğer (gençler parankimde, olgunları safra yollarında) Yayılışı: Yurdumuzun her bölgesinde yaygındır Morfoloji: F.hepatica Uzunluk 2-2,5 cm Genişlik 8-15 cm Arka kısım daha sivri Kenarlar daha sivri F.gigantica Uzunluk:2,5-2,7 cm. Genişlik:3-15 cm. Arka kısım küt Kenarlar paralel Rengi sarı-kahverengidir. Kanla beslenir. Doymuşsa kırmızı gözükebilir. 2 tane çekmeni vardır. Ağzı ağız çekmeni kuşatır. Ağzı pharynx, oesophagus ve barsaklar (dallanma gösterir) takip eder. Sindirim sistemi kör olarak sonlanır. Anus yoktur. Vitallojen bezler, ovaryum (yumurta ile dolu ise siyah renkte gözükür) va testisler (arka kısımda bulunur, dallanma gösterir) üreme sistemini oluşturur. Tegument dikenlerle kaplıdır. Biyoloji: Y/M/R/S/M Yumurta safra yoluyla barsaklara karışır, dışkı ile dışarı atılır. Yumurta kapaklı, dikensiz, tek blastomerli, içi tamamen yumurta sarısıyla dolu, sarı renklidir. Dışarı atılan yumurtanın içinde uygun koşullarda 9-10 gün içinde miracidium şekillenir. Işıklı ve sulu ortamda kapağı açılan yumurtadan miracidium dışarı çıkar ve suda serbest olarak yüzmeye başlar. Suda serbest olarak yaşama süresi 1 gündür. Bu süre içinde ara konağa girmelidir. Miracidium arakonağın (L.truncatula) yumuşak dokusunu delerek ara konağa dahil olur. sporokist, redi ve serker dönemlerini geçirdikten sonra ara konağı terkeder. Ara konağı terkeden serker suda kuyruğuyla ilerler. Bir süre sonra kuyruğu kopan serker, metaserkere dönüşür. Gıdalarla birlikte serker son konağın vücuduna girer. Son konakta açılan metaserkerdenn genç kelebek açığa çıkar. Genç kelebek barsak duvarını delerek karın boşluğuna, oradan da karaciğer parankimine geçer. Karaciğer parankiminde yaklaşık 5-6 haftalık göç geçirir. Safra yollarına gelerek olgunlaşır. Prepatent süre 11-12 haftada, tüm biyolojisi ise 17-18 haftada tamamlanır. Uygun olmayan şartlarda bu süre uzar. Klinik belirtiler: Perakut dönemde: Ani ölüm karaciğer kapsülünde yırtılma, karın boşluğunda kan birikimi görülür (enfestasyon durumunda). Akut dönemde: Halsizlik, solunum güçlüğü, karın şişliği, ve ağrı (sternum'a palpasyonla teşhis edilir) görülür. Karın boşluğunda kanlı, fibrinli sıvı birikimi vardır. Ayrıca karaciğerde büyüme, kanama, hematom, göç izleri ve genç kelebekler görülür. Hastalık koyunlarda genelde akut seyreder. Kronik dönemde : Anemi, kaşeksi, çene ve karınaltında ödem, verim düşüklüğü görülür. Karaciğerde setleşme, kenarlarında düzensizlik, safra yollarında kalınlaşma, fibrosis ve kireçlenme vardır. Sığırlarda çok şiddetli reaksiyon oluştuğundan hastalık geneldekronik seyreder. Nekrotik hepatitis'te genellikle belirti görülmez. Genç kelebeklerin barsaklardan karaciğere göçü sırasında barsaklardaki bazı bakteriler de karaciğere gelie. Toksemiden ani ölüm şekillenir. Karında ağrı ve kan birikimi yoktur. Daha çok 2-4 yaşındaki iyi kondisyonlu hayvanlarda görülür. Halk arasında kara hastalık (Black disease) olarak bilinir. Etken bakteri B tipi Clostiridium novyi'dir. Derisi yüzülen hayvanlarda derialtı damarları birden siyahlaşır. Epizootiyoloji: Konak-mera-su Arakonaklar suya ve çamura girip çıkarlar (amfibiktirler). Çamurlu ve pH'ı hafif asit oaln bölgeler ara konaklar için elverişlidir. Yağış; ara konak yaşamı, miracidium ve serkerin çıkışı, toprağın nemi dolayısıyla yumurtanın gelişimi ayrıca meralar için gereklidir. Yumurtadan miracidium ve ara konakların gelişimi için optimal sıcaklık 22-26°C'dir. 10°C'nin altında gelişme durur. Kışın -4°C'nin altında yumurta, metaserker ve çoğu sümüklü ölür. İlaçlama: Stratejik ilaçlam meraya çıkıştan sonraki 1 ay içinde ve kışa girerken yapılabilir. Teşhis: Akut dönemde : Otopside karaciğerde genç kelebekler görülür. Kronik dönemde : Sedimentasyon yöntemi ile dışkı bakısı yapılarak parazit yumurtaları aranır. Kanda gamaglutamik transpeptidaz enzim seviyesine bakılabilir. İnsanlarda ultrasonografi yöntemi denenebilir. Sağaltım: Kontrol: 1) Arakonaklarla mücadele: Molluscisid kullanılarak ve drenaj ile yaşadıkları alanlar kurutularak. 2) Sonkonakların sağlatımı ile: Hayvanlarda parazitin (ilkbaharda ve sonbaharda), merada metaserkerin (ilkbaharda) en çok olduğu zaman. İlaç kullanımında biyoloji dikkate alınır. 3) Hayvanlar enfekte meraya sokulmaz. 2.AILE: DICROCOELIDAE Cins: Dicrocoelium Tür: Dicrocoelium dendriticum (kum kelebeği) Hastalık: Dicrocoeliosis Son konak: Özellikle ruminantlar. Nadiren insan, domuz ve kemiriciler. Ara konak: I. Kara sümüklüleri (Helicella, Zebrina vs.) II. Formica cinsi karıncalar Yerleşim: Karaciğer safra kanalı ve safra kesesi. Yayılış: Yurdumuzda her yerde yaygındır. Patojenite: Fazla patojenitesi yoktur. Sağaltım: İlaçlara çok dirençlidir. Thiabendazole, Netovmin, Albendazole, Praziquantel kullanılır. Biyoloji: Dışkıyla dışarıya miracidiumlu gelişmiş yumurta atılır. Kara sümüklüsü pasif olarak yumurta ve miracidiumu alır. Metaserker dışarıya çıkar®sporokist®serker (dışarı). Atılan sümüksü yumağı karıncalar alır. Serkerlerden bazıları karıncanın beynine gider ve yaptıkları tahribat sonucu karıncanın anormal davranışlarına neden olur.En tipik hareket, sabahın erken saatinde otların tepesine tırmanmak ve ağızlarıyla ota tutunup kalmaktır. Karıncanın çene kasları felç olmuştur. Otların tepesindeki metaserker taşıyan karıncaları alan son konaklar enfekte olur. metaserkerler açılır, genç kelebek serbest duruma geçer. Barsaklardan ductus choleduchus yolu ile karaciğere geçer. Prepatent süre zundur, 10-12 hafta. 3.AILE: OPISTORCHIIDAE Cins: Opistorchis Tür: O.tenuicollis (1) O.sinensis (2) Hastalık: Opistorchiosis Son konak: Köpek, kadi (1), insan (2), diğer balık yiyen etçiller Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları Yerleşim: Karaciğer safra yolları Yayılış: Türkiye, Uzakdoğu Patogenez: Dikenli tegument safra kanalı epitelini irrite ederek papillom ve karsinom gibi tümör oluşumuna neden olur. Teşhis: Dışkıda yumurtaların görülmesi ile taşhis yapılır. Sağaltım: Hexachlorophen 20 mg/kg Morfoloji: Dicrocoelium'a benzer ama testisler arkadadır. 4.AILE HETEROPHYDAE Cins: Heterophyes Tür: Heterophyes heterophyes Son konak: Karnivor ve insan Ara konak: I. Tatlı su sümüklüleri II. Tatlı su balıkları ( Mugil vs.) Yerleşim: İnce barsaklar Yayılış: Türkiye, Ortadoğu, Uzakdoğu Morfoloji: 1,5 mm uzunluk, genital deliği çevreleyn bir GENİTAL ÇEKMEN var. Teşhis: Yumurta (D.dendriticum'unkine benzer ama açık kahverengi) Sağaltım: Praziquantel, Niclosamide,Niclofolan Biyoloji: İnce barsaktaki yumurta dışkı ile atılır. I. ara konaklar yumurtayı Dicrocoelium'daki gibi pasif olarak alırlar. Serkerler II. ara konaklarca alınır. Kaslarda metaserkerler gelişir. Çiğ ya da az pişmiş balıkları yiyen son konaklar enfeksiyona yakalanır. 5.AILE TROGLOTREMATIDAE Cins: Paragonimus Tür: Paragonimus westermanii Son konak: İnsan, karnivor Ara konak: Yengeç, kerevit Yerleşim: Akciğer Cins:Troglotrema Tür:Troglotrema acutum Son konak:Tilki,vizon vb. Yerleşim:Sinüs(frontal ve etmoidal) 6.AILE ECHINOSTOMATIDAE Cins: Echinostoma , Echinochasmus , Echinoparphium Tür: Echinostoma revolutum , Son konak: kanatlı, memeli Tür: Echinoparphium recurvatum , Son konak: kanatlı Tür: Echinochasmus perfoliatus , Son konak: köpek, kedi Yerleşim: İnce barsak 7.AILE PARAMPHISTOMATIDAE Cins: Paramphistomum (RUMEN KELEBEĞİ) Türler: Paramphistomum cervi , Paramphistomum ichikawai Hastalık: Paramphistomosis Ara konaklar: Su sümüklüleri (Planorbis , Bulinus) Son konaklar: Ruminantlar Yerleştiği yer: Gençleri duadenuma, erişkinleri rumen ve reticuluma Yayılışı: Türkiye dahil birçok ülkede. (özellikle eskişehir,bolu) Morfoloji: -Şekli:Kesik koni biçiminde ,yuvarlak -Büyüklüğü: Erişkinler 1 cm.kadar,göç halindeki gençler 0.5 mm.den küçük -Rengi: Pembe,kırmızı -Karın çekmeni: Parazitin arka tabanında bulunur. Biyoloji: F.hepatica ve F.gigantica'ya benzerlik gözterir.Son konakların rumeninde bulunan olgun parazitlerin yumurtaları dışkıyla dışarıya atılır.Dışarıda yumurtadan miracidium gelişir ve miracidium yumurtayı terkeder.Daha sonra miracidium tatlısu sümüklüsüne girer.Sümüklüde sporokist,redi,serker gelişir ve serker dışarıya atılır.Daha sonra serker otlarda ,suda kistlenir,kuyruğu kopar ve metaserker haline gelir.Bunu gıdalarıyla birlikte alan sonkonaklar enfekte olurlar.Metaserker sindirim sisteminde açılır.Genç parazitler önce duadenuma gelir.Daha sonra geri dönerek rumen ve reticuluma gelip olgunlaşırlar. Prepatent süre yaklaşık 7-10 haftadır. Patogenez ve klinik belirtiler: -Akut dönem:Duadenum ve abomasumdaki göç halindeki genç parazitlerden ileri gelir.Parazitler mukozaya bazen kas ve serozaya kadar gömülür.Bağırsakta boğulma,ülser,kanama ve nekroza neden olurlar.Plazma albuminleri bağırsağa sızar.Kanda Ca seviyesi düşer.Plazma proteinlerinin seviyesinin düşmesi sonucu vucut boşluklarında sıvı toplanır.(ödem).İştahsızlık,kilo kaybı,açlık atrofisi, ishal ve bitkinlik görülür. -Kronik dönem:Bazen karın çekmenleri ile rumen papillalarını boğarak atrofiye neden olurlar. Teşhis: Akut dönemde ishalli dışkıda prinç tanesi büyüklüğünde pembe,beyaz renkli parazitler aranır.Kronik dönemde dışkıda yumurtalar aranır. Sağaltım: mg/kg 8.AILE SCHISTOMATIDAE Cins: Schistosoma Orientobilharzia Türler Son konak Yerleştiği vena S.mansoni insan portal, mezenterik S.haematobium insan idrar kesesi S.bovis çift tırnaklı portal, mezenterik S.japonicum insan,hayvan portal, mezenterik S.matthei çift tırnaklı portal ,mezenterik S.nasale çift ve tek tırnaklı burun mukozası O.turkestanicum memeliler portal, mezenterik Hastalık: Schistomosis, Orientobilharziosis Arakonaklar: Tatlısu sümüklüleri (Bulinus, Planorbis, Lymnea) Son konaklar: Memeli ve kanatlı Yerleştiği yer: Vena (portal ve mezenterik) Yayılışı: Orientobilharzia turkestanicum Türkiyede vardır.Koyunlarda görülmüştür. Özellikleri: -Ayrı eşeylidir. -Vucutları silindiriktir. -Yumurtaları kapaksız ve dikenlidir. -Serkerleri çatal kuyrukludur.(furcoserker). -Redi ve Metaserker dönemi yoktur. Morfoloji: -Uzunluğu 2cm.kadardır. -Erkekleri dişilerden daha geniş ve yassıdır. -Dişileri silindiriktir. -Erkek dişiyi ventralinde bulunan bir kanalda (Gynaechophoric kanal) taşır. Biyoloji: İnsan ve hayvanlarda bulunan olgun parazitlerin yumurtaları bulundukları venayı dikenleriyle delerek en yakın kanaldan dışarıya atılırlar.(Eğer idrar kesesi venasındaysa idrarla,Burun boşluğu mukozasındaki bir venadaysa sümükle,mezenterik bir venadaysa dışkıyla).Yumurta atıldığında içerisinde miracidium vardır.(Miracidium sonkonakta gelişir.).Suyla temas ettiği zaman miracidium yumurtayı terkeder ve suda uygun aracılara girer.Aracıda sporokist ve serker gelişir.Serker çatalkuyrukludur.(Furcoserker).Furcoserker kendi aktif hareketiyle sonkonakların derisinden girerek veya suyla,gıdalarla birlikte alınarak sonkonağa girer. -Prepatent süre 6-7 haftadır. -Hava kötüyse sporokistten ikinci kuşak sporokistler gelişir. -Arakonaktaki gelişim süresi 5 haftadır. -Deriden girer girmez kuyruk kopar .Ağız boşluğundan alındıysa mukozayı delerek kana karışır,kuyruğu kopar,kalp,akciğer,karaciğer yoluyla yerleşecekleri venalara giderler veerişkin duruma gelirler. -Kuyruğu koptuktan sonraki döneme SCHİSTOSUMUL denir. -Redi, metaserker dönemi yoktur. Patogenez ve klinik belirti: 1.İnvazyon dönemi: Serker (banyo) dermatitisi oluşur.Deriden giren serkerlerin çıkardıkları sekret, sitolitik enzimler ve ölen serkerlerin vucut antijenleri deride gecikmiş tip aşırı duyarlılığa neden olurlar. (Özellikle o konak için yabancı serkerlerin ölmesi sonucu).(Deri - larva migransı) 2.Göç dönemi: Schistosomaların kan yoluyla kalp,akciğer,karaciğer ve portal sisteme göç ettiği dönemdir.Akciğerlerde pneumoni tablosu şekillenebilir. 3.Olgunlaşma dönemi: Schistosomulların karaciğerde olgunlaştıkları dönemdir. 4.Yumurtlama dönemi: En patojen dönemdir.Yumurtalar damarları yırtarlar.Kanamalara neden olurlar.Anemi şekillenir. Bir kısım yumurta konağı terketmeyerek dokularda(bağırsak mukozası,karaciğer) tutulur.Buralarda yangı ve fibrosise neden olurlar. Teşhis:Dışkı ,idrar ve burun akıntısında yumurtaları görerek yapılır. Sağaltım: Genellikle antimon bileşikleri verilir.(Stibufon gibi)

http://www.biyologlar.com/trematoda

Tropikal <b class=red>Kelebek</b>ler

Tropikal Kelebekler

The Butterfly Conservatory: Tropical Butterflies Alive in Winter, an annual favorite visited by millions of children and adults, returns to the American Museum of Natural History. Visitors can mingle with up to 500 live butterflies among tropical flowers and vegetation. Watch as Hazel Davies, AMNH's Manager of Living Exhibits, and Whitney Doreen Ortiz walk through the vivarium and interact with butterflies from around the world -- blue morphos, striking scarlet swallowtails and large owl butterflies.

http://www.biyologlar.com/tropikal-kelebekler


Insecta (Hexapoda, Entoma, Böcekler) Sınıfı

Insecta (Hexapoda, Entoma, Böcekler) Sınıfı Bu sınıf böcekleri yani haşareleri içerir. Erişkinlerde vücut belirgin olarak 3 bölüme ayrılmıştır. Bunlar baş, göğüs ve abdomendir. Başta bir çift anten vardır ve göğüs 3 segmentden oluşmuştur. Bu halkaların her birinden birer çift ayak çıkar. Bazı türlerde ise thoraxdan bir veya iki çift kanat çıkar. Abdomen ise değişik sayıda segmentlerden oluşmuştur. Baş (Capot) : Oval veya küremsi yapıdadır. Genellikle iki adet küremsi (bileşik, compound) göz bulunur. Ayrıca üçgen şeklinde dizilmiş üç basit göz "ocellus" bulunur. İnsectlerdeki bu petek gözler çok büyük olup, başın sağlı sollu iki geniş alanını kaplarlar. Böceklerde çok iyi gelişmiş olan bu gözler çok iyi bir görme olanağı sağlarlar. Başta bir çift anten bulunur. Antenler duyu organları olup, başın önemli organlarıdırlar. Bu antenlerin üzerlerinde hava akımlarına karşı duyarlı tüyler bulunur. Ayrıca anten üzerinde çeşitli kokuları almaya yarayan bir çift anten vardır. Antenler çeşitli segmentlerden meydana gelir ve değişik türlerde farklıdır. Böceklerde ağız organelleri üç değişik tipte olabilir. Bunlar kesici-parçalayıcı, sokucu-emici ve yalayıcı-emici ağız tipleridir. Ancak nadiren bazı türlerde örneğin myiasis etkenlerinde ağız organelleri redüksiyona uğramıştır. Bu ağız organelleri tiplerinden sokucu-emici tip kan emicilerde iyi gelişmiş olup, ağız yapılışı bir hortum (rostellum) dan ibarettir. Bu hortum anten, palp, üst dudak (labrum), üst çene (mandibula), alt çene (1. maxilla), hypopharynx (tükrük yolu) ve alt dudak (labium, 2. maxilla) dan oluşmuştur. Göğüs (Thorax) :Thorax üç segmentden oluşmuştur. Bunlardan birincisine ve önde bulunana prothorax, ortadakine mesothorax arkadakine ise metathorax adı verilir. Bu halkalar belirgin ise de bazen ilk ikisi bazende üçü birden birbiriyle kaynaşmıştır. Ayak ve kanatlar bu halkalara yapışırlar. Kanat; böcekler için önemli bir organ olup, normal olarak her böcekte iki çift kanat vardır. Eğer kanat varsa bunlar mesothorax ve metathoraxdan çıkarlar. Bazı böcek türlerinde metathoraxdan çıkan kanat redüksiyona uğramış ve bir halter şeklini almıştır. Bu halter şeklindeki kanat denge organı görevi yapar. Bit ve pire gibi insectlerde kanat bulunmaz. Karıncalarda ise kanat bir süre bulunur ve sonra atılırlar. Önemli olan Diptera takımında ise iki çift kanat bulunur. Kanadın üzerindeki tüy ve lekeler ile kanadın şekli, rengi ve üzerindeki damarlar tür ayrımında önemlidir. Boru şeklinde olan damarların içinden sinir iplikleri ve kanadı besleyen sıvı geçer. Coleopteralarda ön kanatlar kitini ve mat olup, zar şeklinde olan arka kanatlan muhafazada kullanılır. Göğüsün her segmentinden bir çift ayak çıkar. Yani insectler üç çift bacaklıdırlar. Ayak sıra ile coxae, trochanter, femur, tibia, tarsus ve pulvillus denen kısımlardan oluşur. Tarsusun uç kısmında tutunmaya yarayan pulvillum denen yastıkçılar ve kancalar bulunabilir. Abdomen (karın) : Abdomendeki halkalar genel olarak belirgin olup, halka sayısı değişmekle beraber genellikle 11 halkadan oluşmuştur. Bu segmentlerin bazıları birbiriyle kaynaşmışlardır, Abdomenin arka tarafında türlere göre değişmek üzere anüs ve cinselorganlar bulunur. Erkeklerde çiftleşmeye yarayan genital organlar hypopygium adını alır ve bazenda kılıfıyla birlikte penis bulunur. Dişilerde ise yumurtlamaya hizmet eden ovipozitor bulunur. İnsectlerde sindirim sistemi ağızIa başlar ve birçok kör keselerden oluşan mide ve bağırsaklarla devam eder ve anüsle sona erer. Bağırsaklar ön, orta (mideye tekabül eder) ve son bağırsaktan ibarettir. Midenin bağırsağa geçtiği yerde birçok kanalcık yani malpighi kanalları vardır. Bu kanallar böceğin ekskresyon aygıtları olup, artık maddeleri toplar ve son bağırsağa dökerler. Böceklerde kaslar çeşitli halkalar içerisinde uzunlamasına ve enlilemesine şeritler meydana getirirler. Bunlar çizgili kaslardandır. Kaslar çeşitli organları özellikle de ayak ve kanatları hareket ettirirler. Örneğin uçan bir sineğin kanadı dakikada 300 kez çırpma yapar. İnsectlerde sinir sistemi merdiven şeklinde olup, vücudun dorsalinde arkaya doğru uzanır. Bu sinir ipcikleri birbirlerine sinir ipleriyle bağlıdır. Merkezi sinir sistemi, başta bulunan cervical ganglion (gelişmemiş ilksel bir beyin) ve bunların oesophagus etrafında birleşmeleri ile oluşur. Karın sinirleri ise başta beyin görevini yapan baş sinir ganglionundan çıkarlar. Böceklerde duyu organları,antenlerde, palplerde, başın çeşitli girinti ve çıkıntı yapan bölgelerinde, coxae ve trochanter üzerinde bulunurlar. Böceklerde solunum sistemleri karın halkalarının yan taraflarında bulunan ve stigma (solunum deliği) adını alan organellerde sonuçlanan, vücut içinde bir yumak halinde bulunan borucuklardan ibarettir. Solunum sistemi genel olarak trachea sistemiyle yapılır. Dallı ve budaklı borucuklar şeklinde olan bu trachealar stigmalarla dışarı açılır. Stigmalar abdomendeki segmentlerin yan taraflarından dışarı açılır. Her segmentde birer çift olabilir. Baş ve thoraxda genelde stigma olmaz. Stigmalar yalnız abdomen halkalarının iki yanında bulunurlar. Stigmaların etrafı kalın bir kitin tabakasıyla çevrilmiş ve kaslarla idare edilen bir kapağa sahitir.Böcek istediği zaman burayı kapatır. Solunum hareketleri kas kontraksiyonları ve vücut duvarının genişlemesiyle olur. Dolaşım sistemi yönünden böceklerde kapalı bir durum görülmemektedir. Böceklerde gerçek bir karın boşluğu yoktur. Bunların iç organlarının üzerini bir yağ tabakası örter ve aralarında boşluklar bulunur. Kalp dorsalde ve arkada yer alır ve genişlemiş bir damardan ibarettir. İnsectlerde kan dolaşımları açıktır ve vücudun dorsalinde üzerinde delikler bulunan, iç kısmında vücudun ön tarafına doğru açılıp arka tarafına doğru kapanan kapakcıkları taşıyan bir damardan ibarettir. Vücut boşluğunda serbest olarak dolaşan kan hemolenftir. Bu hemolenf kalp adı verilen damar içine girer ve bunun sıkışması ile de ön tarafa doğru hareket eder. Bunun sonucunda üzerindeki deliklerden vücut boşluğuna hemolenfi iter. İnsectlerde üreme sistemleri erkek ve dişi bireylerde farklıdır. Böceklerde erkek ve dişi ayrılmışlardır. Erkek üreme organları, genellikle ikiadet testis, ve sırası ile vasa defferens (boşaltı kanalı), vesicula seminalis (tohum kesesi), ductus ejaculatorius (boşaltım borusu) ve eklenti bezlerinden oluşur. Dişilerde ise iki tane yumurtalık vardır. Bu ovaryumların her biri bileşik borucuklardan yani ovarial tüplerden oluşmuştur. Her iki ovaryum oviducta (yumurta yolu) açılır. Oviduct vajinaya bağlıdır. Ayrıca çiftleşme esnasında spermatozoitleri toplayan receptaculum seminis (tohum torbası) yada spermatheca adı verilen bir torba bulunur. Bu torba vajinaya açılır. Dişilerde en son organ olarak da yumurtlamaya yardımcı olan ovipositor adını alan organ vardır. Böceklerin çoğunda yaşamları boyunca bir kez kopulasyon olur. Döllenmeden sonra erkek ölür, spermatozoitler dişinin yaşamı boyunca spermatekada canlı kalırlar ve gelişen yumurtayı döllerler. Dişi ve erkek böcek çiftleştikten sonra türlere göre değişrnek üzere yumurta, larva yada pupa bırakırlar. Bu duruma göre bazı insectler ovipar (Dişileri yumurta bırakır), bazıları vivipar (Dişileri canlı, hareketli larvaları bırakır, buna larvipar da denir.) ve hatta bazılarıda pupipar (Dişilerin doğrudan pupa bırakması) 'dır. İnsectlerin üzerleri kitin tabakasından oluşan bir kılıfla örtülüdür. Böceklerin biyolojik gelişmeleri sırasında erişkin hale yani olgun (matur) hale gelebilmesi için, böceğin büyüyüp gelişebilmesi için üzerindeki bu kılıfı atması olayına gömlek değiştirme adı verilir. Bu gömlek değiştirme olayı böceğin gelişmesi sırasında tüm dönemlerde meydana gelir. Böceklerde sırası ile erişkin -yumurta -larva -pupa ve erişkin dönemleri görülür. Ancak bazı türlerde bu biyolojik gelişme evrelerinde değişiklikler olur. Yani erşkin-yumurta-nymph-erişkin böcek dönemleri görülür. Böceklerin gelişmesi sırasında iki tip larva şekli görülür. Bunlar; Magot Larva: Başları küçük ve ayakları bulunmayan larvalara magot larva adı verilir. Dipteralarda ve pirelerde görülür. Oligopod Larva: Bu tip larvaların başları belirgindir ve thoraxda üç çift bacak bulunur. Coleopteralarda görülür. Pupa: Tam metamorfoz geçiren böceklerin biyolojilerini tamamlarken girmiş oldukları hareketsiz safhaya pupa adı verilir. Pupayı çevreleyen ve onu koruyan yapıya ise kokon adı verilir. İki çeşit pupa vardır. Bunlar, Obtek pupa: Pupa ince bir zarla örtülüdür ve pupa serbestçe hareket eder. Örn : Nematocera ve Brachycera 'larda, Koarktat pupa ise pupa içinde böcek görülmez ve pupa hareketsizdir. Örn : Cyclorrhapha 'larda görülen pupa şeklidir. İnsectlerde Gelişme (Metamorfosis-Metamorphosis-Metamorfoz -Başkalaşım) : İnsectlerin gelişmesinde yumurtadan çıkan genç artropod az çok erginlerine benzeyebileceği gibi bazı türlerde ise yumurtadan çıkan genç artropodlar erginlere hiç benzemezler. Yumurtadan çıkan ve erişkine hiç benzemeyen artropodun erişkine benzeyinceye kadar geçirdiği değişiklikler olayının tümüne metamorfosis adı verilir. Yani metamorfoz gelişme döneminde bir böcekte meydana gelen yapısal ve şekilsel değişikliklerdir. Metamorfoz yönünden insectler üç grupta toplanırlar. a) Metamorfosis göstermeyen yada ilkel bir metamorfosis gösteren insectler : Bu gruptaki insectler direk gelişirler. Yumurtadan çıkan genç formlar büyüklükleri dışında erişkinlere tamamen benzerler. Bu formlar kısa sürede gelişip erişkinlerin büyüklüklerine erişirler. Apterygota alt sınıfındaki insectler bu gruptandır. Bu gruptaki insectlerin bu tip gelişmelerine ametabola adı da verilir. b) Yarım metamorfosis veya basit metamorfosis (Bemimetabola) gösteren insectler : Bu gruptaki insectlerin gelişmesinde yumurta -nymph -erişkin (imago) dönemleri sırası ile görülür. Yani yumurtadan çıkan genç formlar erginlere bazı eksiklikler dışında (kanatlannın olmayışı gibi) tamamen benzerler. Bu döneme nymph dönemi adı verilir. Nymph'ler türlere göre değişrnek üzere birkaç kez gömlek değiştirdikten sonra erişkin yani imago haline geçerler. Bu tip gelişme Pterygota alt sınıfına bağlı Exopterygota bölümündeki insectlerde görülür. Bunlardan bazılan Orthoptera, Mallophaga, Anoplura ve Hemiptera 'lardır. c) Tam veya komplex metamorfosis (Bolometabola) gösteren insectler : Tam başkalaşım geçiren böceklerin biyolojilerinde sırası ile Yumurta -Larva -Pupa -Erişkin böcek dönemleri görülür. Yani yumurtadan çıkan genç formlar erişkinlere hiç benzemezler ve kurtcuk biçimindedirler. Bu döneme larva adı verilir. Larvalar birkaç gömlek değiştirdikten sonra hareketsiz ve sakin bir devreye girerler. Bu esnada artropodun etrafında koruyucu bir kılıf veya kabuk meydana gelir. Bu koruyucu kılıfa kokon ve kokon içerisindeki döneme ise pupa yada bazı insect türlerinde krizalit adı verilir. Daha sonra kokon açılarak erişkin böcekler dışarı çıkarlar.Yani bu tür insectlerin gelişmesinde görülen dönemler arasında hiç bir morfolojik fark yönünden benzerlik yoktur. Bunun içİn de bu gruptaki böceklerde tam metamorfosis görülür. Örneğin Pterygota alt sınıfındaki Endopterygota bölümünde bulunan insectlerde bu tip bir gelişme yani holometabola görülür. Örn: Lepidoptera, Siphonaptera ve Diptera takımlarında tam başkalaşım görülür. İnsecta Sınıfının Sınıflandırılması (Classificationu) İnsecta sınıfında iki alt sınıf vardır. 1- Subclasis (Alt sınıf) : Apterygota Bunlar kanatsız insectlerdir. Gelişmelerinde metamorfoz göstermezler. Bu alt sınıftaki türlerin Veteriner Hekimlik yönünden bir önemleri yoktur. Bu alt sınıfa bağlı; Thysanura Diplura Collembala Protura takımları bulunur. 2- Subclasis : Pterygota Bu alt sınıftakiler erişkin dönemlerinde kanatları olan veya kanatlı formlardan köken almış yada evoluasyon sonucu sonradan kanatsız olmuş insectlerdir. Pteryagota 'lar tam veya yarım metamorfoz geçirirler. Bunlar iki alt bölüme (division) aynlırlar. 2.a- Exopterygota bölümü (Hemimetabola bölümü) : Bu bölümdeki böceklerin kanatları dışa doğru bir sürgün veya tomurcuk gibi gelişir. Biyolojilerinde yarım metamorfosis gösterirler ve bunun içinde hernimetabola bölümü olarakta adlandınlırlar. Bu insectlerin erişkin olmayan yani genç dönemleri (immature) yapıları ve yaşadıkları yerler bakımından erginlerine benzerler. Exopterygota bölümünde bulunan önemli takımlar şunlardır: Takım (Order) : Orthoptera (Blattaria, Hamam böcekleri, Çekirge) Takım: Mallophaga (Isıran bitler) Takım: Anoplura (Siphunculata, Sokucu bitler) Takım: Herniptera (Tahta kurulan) Takım: Odonata (Kız böceği) Takım: Thysanoptera (Ekin -Fidan bitleri) Takım: Dermaptera (Kulağa kaçanlar) Takım: Plecoptera (Taş sinekleri) Takım: Isoptera (Termitler. beyaz kanncalar) Takım: Psocoptera (Kitap bitleri) 2.b- Endopterygota bölümü (Holometabola bölümü) : Bu bölümdeki insectlerin gelişmelerinde tam metamorfoz görülür. Kanatları internal olarak yani bir kokan içinde veya koza içinde gelişir. Bu bölümde bulunan önemli takımlar şunlardır. Takım: Coleoptera (Kın kanatlılar) Takım: Hymenoptera (Zar kanatlılar, bal arıları, normal karıncalar ve eşek arıları) Takım: Lepidoptera (Kelebek ve güveler) Takım: Neuroptera (Sinir kanatlılar) Takım: Siphonaptera (Aphaniptera, Pireler) Takım: Diptera (Gerçek sinekler, çift kanatlılar) Exopterygota Bölümü Bu bölüm içerisinde çok sayıda takım varsa da bunlar içerisinde Veteriner Hekimlik yönünden önemli olanlar üzerinde durulacaktır. Yani insan ve hayvan sağlığı yönünden önemli olan, hastalıklar oluşturan ve vektörlük yapan türlerden bahsedilecektir. OrthopteraTakım; (Syn: Blattaria) Bu takım; hamam böcekleri yanında, ağustos böcekleri ve çekirgeleri kapsar. Bunlar veteriner ve insan hekimliği yönünden parazitlik etkileri olmamalarına karşılık bazı hastalık etkenlerine arakonaklık yapmaları ve taşıyıcılık görevi yapmaları yönünden önemlidir. Bunlardan Melanoplus cinsine bağlı çekirgeler Tetrameres americana ve Cheilospirura amulosa'ya arakonaklık yaparlar. Hamam böcekleri değişik uzunlukta ve büyüklükte olup, vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden meydana gelmiştir. Başlarında bir çift anten, bir çift göz ve parçalamaya ve çiğnemeye elverişli ağız organelleri vardır. Göğüs halkalarının dorsalinden masothorax ve metathoraxdan iki çift kanat çıkar. Bunlardan birincisi sertleşmiş ve kitini yapıda olup, metathoraxdan çıkan ve ince bir zar gibi olanının üzerini örter. Göğüs halkalarının ventral kısmından uzun üç çift bacak çıkar. Hamam böcekleri kanatlı olmalarına rağmen uçamazlar. Sıcak ve rutubetli yerlerde yaşarlar. Mekaniksel olarak bazı protozoon kistlerini taşırlar ve bir kısım nematodlara arakonaklık yaparlar.Hamam böceklerinden üç tür yurdumuzda bulunmuştur. Bunlar; Blatta orientalis (Şark hamam böceği) Blatella germanica (Alman hamam böceği) Periplanata americana'dır. Hamam böcekleri spirurida takımındaki bazı nematodlara, Gongylonema 'ya bazı tavuk cestodlarına (Raillietina sp) ve oxyspirura cinsi nematodlara arakonaklık yaparlar. Bakterilerden salmanella 'lara vektörlük yapabilirler. Yine değişik bakteri, protozoon, mantar gibi değişik hastalık etkenlerini mekanik olarak bir yerden başka bir yere taşırlar ve özellikle yiyeceklere bulaştırırlar. Kolera, tifo ve verem basilleri ile Entamoeba coli, Entamoeba histolytica, Balantidium coli, Giardia intestinalis ve Trichomonas hominis kistlerinin yayılmasında aktif olarak rol oynarlar. Aynca helmintlerden Tetrameres, Acuaria, Hymenolepis ve Moniliformis cinslerine arakonaklık yaparlar. Hamam böcekleri sıcak yerlerde yaşar ve karanlıkta dolaşırlar. Duvarların çatlak ve oyuklarına, tahta kenarlarının arasına yada arkalarına, su ve kalorifer borularının arkasına ve dolaplara gizlenirler. Bu insectler nişastalı ve şekerli besinleri severler. Ancak diğer besinlerle de beslenebilirler. Bu nedenle mutfaklarda yiyecek konulan dolaplarda, kiler ve fırınlarda sıkça rastlanılır. Ayrıca hayvan barınaklarında da bunlara sıkça rastlanılır. Blatella germanica yani alman hamam böceği 15 mm uzunlukta olup, açık kahverengindedir. Thoraxın üst kısmında iki koyu çizgi görülür. Kanatlar her iki cinsiyette de mevcut olup, vücut uzunluğunu biraz geçer. Şark hamam böceği (Blatta orientalis) ise nisbeten daha büyük olup, 25 mm uzunluğunda ve koyu siyah renktedir. Kanatlar erkeklerde abdomenin ucuna kadar ulaşmaz ve dişilerde ise kanatlar daha da küçülmüştür. Hamam böceklerinin dişileri içlerinde yumurtaları bulunan ve yumurta paketleri adını alan silindir şeklindeki yumurta paketlerini uygun yerlere bırakırlar. Bu yumurta paketleri içerisinde çok sayıda yumurta bulunur. Uygun ısı ve besin bulunduğu ortamda çabucak gelişerek nymphler oluşur. Yumurtadan erişkinlerin oluşması normal şartlarda 30 -50 gün kadar sürer. Hamam böcekleri ile mücadelede insectisit yani insect öldürücü ilaçlar kullanılır. Toz şeklinde olanIarı hamam böceklerinin geçecekleri yerlere dökülür yada bir puar yardımı ile toz ilaçlar bunların saklandıkları yerlere serpilirler. Toz ilaçların kullanılması bu tip ilaçların kalıcı etkisinden dolayı daha faydalıdır. Bunun yanısıra solüsyon halindeki ilaçlarda bunların saklandıkları yerlere püskürtülürler. Ancak bu solüsyonların mutlak süratte hamam böceklerinin vücutlarına temas etmesi gerekir. Kontrolde dieldrin ve lindan gibi klorlu hidrokarbonlu insectisitler sprey şeklinde saklandıkları yerlere püskürtülerek uygulanır. Ancak yumurtadan çıkacak yeni nesilleri öldürmek için ilaç tekrarlanmalıdır. Bu amaçla sentetik pyretroidlerde kullanılabilir. Bunlann dışında 25 gr kaynamış patatese 75 gr borik asit karıştırılarak un haline getirilir. Etrafta yiyecek bulundurmamak şartıyla küçük tabaklar içinde hamam böceklerinin yemesine bırakılır. Hamam böcekleri ile mücadelede meskenlerin tümünde mücadele yapılır ve temizliğe dikkat edilir. Kullanılan ilaçlara karşı direnç gelişebileceği için farklı gruplardan insektisitlerin değiştirilerek kullanılmasında yarar vardır. Phthiraptera (Bitler) Gözle görülebilecek büyüklükte olan bitler 1 -2 mm büyüklüktedirler. Vücutları dorso -ventral olarak basıktır. Vücut caput, thorax ve abdomenden oluşur. Erişkin formlarında daima üç çift bacak bulunur. Kanatları yoktur. .Gözleri rudimenterdir yada yoktur. Bitler bütün yaşam dönemlerini (yumurta -nymph -erişkin) konak üzerinde geçiren insectlerdir. Yani daimi ve tek konaklı parazitlerdir. Bitler kan emen hakiki bitler (Anoplura) ile tüy ve yapağı yiyen bitler (Mallophaga) olmak üzere iki takımda incelenirler. Mallophaga ve Anoplura takımındaki türler arasındaki farklar şunlardır: MalloRhaga Takımı AnoRlma Takımı- Baş ve Thorax Baş thoraxdan geniş Baş thoraxdan dar ve ve kalkan seklindedir. sivrilmis sekildedir. Ağız organelleri Kesmeye -parçalamaya Sokmaya -emmeye elverislidir. elverislidir. Gtdası Epidermis artıkları Konakçımn kam ve tüvler Konaklan Türlerin çoğunluğu Hepsi memelilerde bulunur kanatlılarda, çok azı ise memelilerde bulunur. Mallophaga Takımı: Bu takıma bağlı üç alt takım (suborder) vardır. Bunlardan Amblycera ve Ischnocera alt takımları daha önemlidir. Suborder : Amblycera Antenleri başın iki yanındaki çukurlarda olup, kolayca görülemez. Bunların mandibulaları önden ısırır. Çok hareketli, uzun yapılı ve sarı renklidirler. Mesothorax ve metathorax arasında genellikle görülebilen bir çizgi vardır. 1) Familya (Aile): Gyropidae Memeli hayvanlarda ve daha çok kemiricilerde (kobay) bulunurlar. Genus (Cins) : Gyropus Bu cinse bağlı en önemli tür Gyropus ovalis'dir. Kemirici hayvanlarda bulunurlar. Kobayların mallophagose'unu meydana getirir. Erkekleri 1 mm, dişileri ise 1.2 mm uzunluğundadır. 2) Familya: Menoponidae Kanatlılarda görülür. Bu ailedeki türlerin başları çok genişlemiş ve üç köşeli bir görünüm almıştır. Antenleri dört eklemlidir ve tarsuslarında bir çift tırnak bulunur. Bu ailede bulunan önemli türler: Species (Tür) : Menopon gallinae Species : Menopon phaeostomum Species : Holomenopon leucoxanthum Species : Menacanthus stramineus Species : Trinoton anserinum Bunlardan en yaygın olarak görülen cins menapon' dur. Daha ziyade konağının derisi üzerinde yaşadığından vücut biti adını alır. Süratli hareket eder. Özellikle genç hayvanlarda ölüme sebep olabilirler. Suborder : Ischnocera Bu alt takımdakilerin mandibulaları alttan ısırır ve antenleri kolay görülür. Hareketleri nisbeten yavaştır. Geniş yapılıdırlar ancak bazı türleri dar ve uzundurlar. Renkleri kırmızı esmer veya gri siyahtır. Mesothorax ve metathorax kaynaşmıştır. I) Familya: Philopteridae: Kanatlılarda, kuşlarda görülürler. Bu ailedeki önemli türler: Species : Lipeurus heterographus Lipeurus'lann vücutları dar ve uzundur. Vücut kenarları birbirine paraleldir. Species : Lipeurus caponis Species : Goniodes gigas Goniodes'ler tavuk tüylerinin sapı üzerinde bulunurlar ve renkleri kırmızımtrak esmerdir. Species : Goniocotes gallinae Species : Chelopistes meleagridis Species : Columbicola columbae Species: Anaticola crassicornis Philopteridae ailesindeki türlerin antenleri 5 eklemlidir. Ayak tarsuslarının uç kısmında bır çift tırnak bulunur. 2) Familya: Trichodectidae : Antenleri 3 eklemlidir. Tarsusların uç kısmında tek bir çengel bulunur. Bu ailedeki türler memelilerde görülür. Memelilerin tüyleri arasında yaşarlar. Bu ailede üç önemli cins bulunur, Cins: Trichodectes Species: Trichodectes canis: Köpeklerde bulunan mallophaga türüdür. Açık san renktedir. Başı dikdört.gen şeklinde olup, antenleri tüylüdür. Cins: Felicola Species : Felicola subrostrata: Kedilerde bulunur. Başlarının ön kısmı üçgen şeklindedir. Genus: Damalinia (Bovicola) : Ayaklan ve ayak uçlarındaki çengelleri uzundur. Species : Damalinia (Bovicola) bovis : Sığırlarda görülür. Species : Damalinia (Bovicola) ovis : Koyunlarda bulunur. Species : Damalinia (Bovicola) equi : Tektırnaklılar konaklarıdır. Species : Damalinia (Bovicola) caprae : Keçilerde Species : Damalinia (Bovicola) painei : Keçilerde Species : Damalinia (Bovicola) limbala : Keçilerde bulunan mallophaga türleridirler. Suborder : Rhynchophthirina : Bu alt takımda bulunan mallophaga türleri fazla önemli değidirler. Önemli cins ve türü ise; Cins: Haematomyzus Species : Haematomyzus elephantis'dir. Fil bitleri'dir. Anoplura (Siphunculata) Takımı Gerçek bitler olup, yalnız memelilerde bulunurlar ve konaklarından kan emerek beslenirler. Bu takıma bağlı 5 aile vardır. I) Familya: Haematopinidae : Hayvan bitleridir. Aile adından da anlaşıldığı gibi kan emenler anlamına gelir. Gözleri bazen hiç yoktur bazen de çok basittir. Baş ön tarafa doğru çıkıntılar yapmıştır. Bacaklar aynı büyüklüktedir. Bu ailedeki önemli cinsler; Genus: Haematopinus Species : Haematopinus asini : At bitidir. At, katır ve eşeklerin kuyruk ve yelelerindeki kıllarda bulunur. Species : Haematopinus bufali: Mandalarda bulunur. Species : Haematopinus suis: Domuzlarda bulunur. Species : Haematopinus eurysternus : Sığırlarda görülür. Özellikle kaşektik sığırların uzun kıllı kısımlarında bulunur. Species: Haematopinus tuberculatus: Mandalardabulunur. 2) Familya: Linognathidae: Gözleri olmayabilir. Ön bacaklar daha küçüktür, yani birinci çift bacaklar çok zayıftır. Bu ailedeki cins ve bağlı olan türler; Genus: Linognathus : Koyun, sığır, keçi, köpek ve tilkilerde görülür. Bulundukları hayvanlarda linognathose adı verilen belirtilere sebep olurlar. Bu cinse bağlı türler; Species : Linognathus ovillus : Koyunlarda vücut biti türüdür. Species : L. africanus: Koyunlarda bulunur. Species : L. pedalis : Koyunların bacaklarında bulunur ve bacak biti adını alır. Specıes: .stenopsıs: Keçi bitidir Species : L. vituli : Konakları sığırlardır. Species : L. setosus : Köpek ve tilkilerde görülür. Genus: Solenopotes Species : Solenopotes capillatus : Sığırlarda bulunur. Species : Microthoracius cameli: Deve biti. 3) Familya: Pediculidae : İnsan bitleri bu grupta bulunurlar. Maymunlarda ve insanlarda yaşarlar. Gözleri vardır. Tarsuslarının nihayetinde bir tek çengel bulunur. Bu ailedeki türler tarafından insanlarda meydana getirilen belirtilere yada enfestasyon olayına "pediculosis" adı verilir. Bu ailede bulunan türler; Species : Pediculus humanus: İnsanlarda parazitlenir. Bu türün iki varyetesi vardır. Bunlardan Pediculus humanus capitis baş biti adını alır ve kafa saçı, bazan sakal, kaş v,e bıyıkta yerleşir. Diğeri ise Pediculus humanus corporis olup, daha çok gövde kısımlarında ve çamaşırların katlanmış, kıvrım yerlerinde bulunurlar. Bu son türe İnsanlardaki vücut biti adı verilir. Species : Phthirus pubis: Oran olarak diğer türlere göre daha geniş yapılıdırlar. Ancak abdamenleri daha kısadır ve orta bacak ile arka bacakların tırnakları kuvvetlidir. İnsanlarda eşeysel organların ve anüsün civarındaki kılların arasında bulunurlar. Bunun içinde insanların kasık biti veya edep biti adını alırlar. Bu bölgelerden kan emerken tahrişlere ve ekzamalara yol açarlar. Bu belirtilere "Phthiriosis" adı verilir. Aynca pediculidae ailesine bağlı olarak Pedicinus cinsi bulunur. Pedicinus cinsi maymunlarda bulunan bit türüdür. 4) Familya: Hoplopleuridae: Bu ailedeki türler fare ve kemiricilerde parazitlenirler. Bulunan türler; Genus: Polyplax, Hoplopleura, Haemodipsus. Species : Polyplax spinulosa: Farelerde ve sıçanlarda yaşarlar. Bu tür protozoonlardan Haemobartonella türlerini bulaştırır. Ayrıca fare tifusü, bulaşıcı anemia ve fare trypanosomiosis hastalıklarıın insanlara bulaştırırlar. Species : Polyplax serrata' Kemiricilerde bulunur. Eperythrozoon ve Francisella türlerini bulaştırırlar. Bu türlerden başka bu aileye bağlı olarak kemiricilerdede Hoplopleura ve Haemodipsus cinsleri de vardır. 5) Familya: Echinophthiriidae: Foklarda ve deniz fıllerinde yaşarlar. Bu bitlerin kara yırtıcılarından denizde yaşayan memelilere geçtikleri tahmin edilmektedir. Vücutları kılların değişmesinden dolayı pullarla örtülüdür. Familya: Cimicidae (Gerçek tahtakuruları) Bu ailedeki tahtakurularının antenleri dört eklemlidir. Kanatları iyice küçülmüş ve atrofiye olmuştur. Vücutları oval ve dorso -ventral olarak basıktır. Bunlar hoşa gitmeyen bir koku yayarlar ve geceleri beslenirler. İnsan omurgalı hayvanlar ve kanatlılardan kan emerler. Bu aileye bağlı olarak bulunan önemli cins ve türler Familya: Formidae (Karmcalar) : Bu ailede karıncalar bulunur. Kanatlı veya kanatsız olabilirler. Ağız organelleri parçalayıcı ve çiğneyici tiptedir. Toplu halde yaşarlar. Yumurtayla çoğalırlar. Kopulasyondan sonra dişi ve erkekler kanatlarını kaybederler. İşçi karıncalar ise iyi gelişmemiş dişiler olup, kanatsızdır ve bunların zehir bezleri vardır. İnsan ve hayvanları ısırdıklarında şiddetli kaşıntıya sebep olabilirler. Bu aileye bağlı en önemli tür Formica fusca' dır. Bunların hekimlik yönünden önemleri kanatlı cestodlarından Raillietina türlerine ve trematodlardan Dicrocoelium dentriticuma arakonaklık görevi yapmalarıdır. Familya: Vespidae Yaban arıları adını alan, bu ailedeki türler tek tek yada toplu halde yaşarlar. Bunlar etcildirler. Ancak hem hayvansal hemde bitkisel besinlerle beslenirler. Karın bölgesi hareketli olduğundan ağılı iğnelerini her yönde kullanabilirler. Yaban arılan türlerinden özelikle Vespa crabro,Vespa germanica ve Vespa orientalis türlerinin sokması çok acı verir, ağır klinik belirtilere hatta ölümlere yol açabilirler. Çeşitli hastalık etkenlerini besinlere mekanik olarak bulaştırabilirler.Tesadüfen ağıza girdiklerinde insan ve hayvanların dil yada boğaz çevresini sokarak buraların şişmesine sebep olabilirler, ayrıca allerjik reaksiyonlara ve anfılaktik şoka sebep olarak ölümlere yol açabilirler. Familya: Apidae (Bal anları) Bu aile bal anlarını kapsar. Bunlar genellikle toplu halde yada tek tek yaşarlar. Zehirli iğneleri yönünden insan ve hayvanlar için çok zararlı olabilirler. Bu arı ağılaması olayına Hymenopterismus adı verilir. Arı sokmaları sonucu acı, allerjik bozukluklar ve hatta anafılaktik reaksiyonlar oluşur. Boğaz ve dil gibi hayati bölgeleri sokmaları sonucu ölümler görülebilir. Arı sokmalarında eğer arı iğnesi içeride kalmışsa çıkarılır. Bu yerlere gazyağı ve benzin damlatılır. Uzun süre arı sokması sonucu bazı kişilerde bağışıklık gelişir. Bazı fertlerde ise şiddetli bir duyarlılık görülmektedir. Yılan zehirine karşı hazırlanan serum arı zehirine karşı da kullanılmaktadır. An soktuğu zaman deride kaldığı sürece zehir bezesinden salgı yapar. Bunun için arı sokmalarında iğnenin en kısa sürede çıkarılması gerekir. İğnesi kopan arı kısa sürede ölmektedir. Bu ailede bulunan en önemli tür Apis mellifera (Apis mellifica) dır. Bu tür bal arısı olarak adlandırılır. Ekonomik olarak en önemli türdür. Normal bir arı topluluğu 40.000 -70.000 ergin bireyden oluşur. Bundan daha az birey içeren yuvalar zayıf olarak nitelendirilir ve kışı geçirmeleri zayıf ihtimaldir. Bir yuvada yani kovanda üreme yeteneği olan bir kraliçe (ana arı), dişi olan ve üreme yeteneği olmayan işçi arılar ve üreme dönemlerinde ortaya çıkan erkek arılar vardır. Ana arı 20 -25 mm boyunda, anteni 12 segmentli ve nokta gözler alında birbirine değmez. İşçi anlarda ana arı özelliklerini gösterirler. Ancak büyüklükleri 13 –15 mm kadardır. Erkek arılar da 15 -17 mm boyunda olup, işçilere ve ana arıya göre daha tıknaz yapılıdır. Arıların gelişmelerinde yumurta, larva, pupa ve erişkin dönemleri vardır yani tam metamorfoz geçirirler. Ana arının görevi Mart'ın başından Eylül'ün sonuna kadar yumurta bırakma ve salgıladığı feromonla yuvanın düzenini ve böylece bütünlüğünü sağlamaktır. Günde yaklaşık 3.000 yumurta bırakırlar. Yumurtadan ergin oluncaya kadar işçi anlar için 21 gün. Ana arılar için 16 ve erkek arıların gelişmesi içinde 24 gün geçmesi gerekir. İnsan ve hayvanları en çok sokan arı türleri ; Apis mel!ifica (Bal arısı), Vespa crabro, V. silvetris (Sarıca arılar), Polistes gallicus ve Bombus sp.'dir.Arılarda alkalen zehir bezi (küçük olan) ve asit zehir bezi (büyük ve çatal şeklinde olan) olmak üzere iki adet zehir keseleri bulunur. Bunların; alyuvarları eritici, sinir uçlarını ağılayıcı, yangı yapıcı, allerji oluşturucu ve bölgesel nekroz oluşturucu etkileri vardır. Hymenopterismus’un tedavisinde yapılacak işlemler. -Bir pens veya bıçak ucu ile dikkatlice iğne çıkarılır. -Sokulan bölgeye buz tatbik edilir. -Antihistaminikli solüsyon veya pomadlar lokal olarak uygulanır. -Antihistaminikler oral veya parenteral olarak verilebilir. Şayet anafilaktik reaksiyonlar oluşmuş ise; -Özel enjektörlerde bulunan adrenalin 0.3-0.5 ml (1:1000 sulandırılmış) deri altı veya damar içi yolla verilir. -Parenteral olarak antihistaminikler verilir. -Damar içi serum fizyolojik verilir. -Kortizon endikedir. -Solunum yolu açık tutulur. Eğer siyanoz varsa oksijen verilir. An sokmalarına karşı duyarlı kişilere koruyucu olarak arı antitoksini verilebilir. Neuroptera Takımı (planipennia -Sinirkanatlılar) Bu takımdaki böcekler küçük kelebeklere ve odonata takımındaki insectlere morfolojik olarak benzerler. Vücut caput, thorax ve abdomenden meydana gelmiştir. Çiğneyici ağız organelleri ve yarım küre şeklinde büyük bileşik gözlere sahiptirler. İki çift kanatları vardır. Çeşitli türlerde kanatlar renklenmeler ve desenler gösterirler. Cam gibi saydam olan kanatlar, çoğunlukla kahverengi benekler şeklindedir. Kanat üzerindeki damarlar kanat kenarlarına doğru çatallaşır ve birbirlerine birçok enine damarla bağlanırlar. Böceğin dinlenmesi sırasında kanatlar genellikle abdomenin üzerinde çatı şeklinde dururlar. Gelişmelerinde tam başkalaşım görülür ve çoğunlukla akşamları ve geceleri aktiftirler. Lepidoptera Takımı (Kelebek ve Güveler) Lepidoptera takımında kelebek ve güveler bulunur. Kelebeklerin ağız organelleri iyi gelişmemiştir. Besinlerini çiçeklerin nektar ve polenlerinden sağlarlar. Bazı türleri ise kısa süren yaşamlarında hiç besin almazlar. Kelebekler böcekler içerisinde kanadı, gövdesi ve bacakları pullarla tamamen örtülü olan insektlerdir. İki çift kanatlrın vardır. Kanat üzerindeki renkli ve kitini olan bu örtüler kelebeklere güzel bir görünüm verirler. Lepidoptera takımındaki .artropodların gelişmelerinde sırası ile yumurta, larva (tırtıl), krizalit (koza içinde) ve erişkin dönemleri vardır. Yani gelişmelerinde holometabol görülür. Ancak bunların larvalarına tırtıl, pupa dönem karşılıklarına da krizalit adı verilir. Larvaları çok ayaklı olup, polipod larva türüne örnektir. Kelebek tırtıllarının üzerindeki kılların zehir keseleri ile ilişkili olduğu ve bu nedenle tırtılların insanlarda allerjik dermatitislere neden olduğu belirtilmektedir. İşte kelebek türlerinden bazılarının canlı yada ölü tırtıllarının diplerinde zehirli salgı yapan bezeler bulunan vücut kıllarının insaınn derisi üzerine yada gözüne düşerek dokulara saplanması sonucu oluşan allerjik dermatitise tırtıl dermatitisi ya da Lepidopterizm (Lepidopterismus) adı verilir. İnsanlarda deride oluşan lezyonlara analjezik ve anti inflamatuar merhemler sürülür. Bulunan kıllar pensle çıkarılır. Bu tırtılları yiyen hayvanlarda ölümle sonuçlanabilen hastalıklar oluşabilir. Bu yüzden ördek ve tavuklarda zehirlenmeler görülmüştür. Aynca bu takımda bulunan ve arılarda büyük ekonomik kayıplara sebep olan türler vardır. Bunlar; Aile: Galleridae Species : Galleria mellonella (Büyük balmumugüvesi) Species : Achroia grisella (Küçük balmumugüvesi) Bu türlerden başka bu takımda evlerde görülen değişik güvelerde bulunmaktadır. Bunlar içerisinde en önemlisi olan ve arı güvesi olarak bilinen büyük balmumugüvesi hakkında bilgi verilecektir. Galleria mellonella Arıların büyük mum güvesi olarak bilinen bu parazit özellikle havalanması iyi olamayan karanlık ve zayıf kovanlarda etkili olur. Bu parazit küçük mum güvesi olan Achroia grisella'ya göre daha zararlıdır. Büyük mum güvesi karanlık, sıcak ve iyi havalandırılmayan yerlerde depolanmış peteklerde büyük zarar verirler. Genellikle alçak rakımlı yerlerde daha yaygındırlar. Yüksek rakımlı yerlerde yoğunluğu ve zararları daha azdır. Güve larvaları peteklerde tüneller açarak, peteklerdeki bal, polen ve balmumunu yiyerek koloniye büyük zarar verirler. Zararlı etkisi daha çok depolanmış sahipsiz peteklerde ve ağ örerek olmaktadır. Ayrıca güçsüz kolonilerdeki peteklerde de aynı zararı yapabilmektedirler. Güçsüz ve hastalıklı koloniler güve için uygun gelişme ortamıdırlar. Güve larvaları petek gözlerinde açtıkları tüneller sebebiyle, petek gözlerinin bozulmasına ve balın akmasına sebep olurlar. Dişi Galleria mellonella türleri yumurtalarını genellikle kovandaki yarık ve çatlaklara, ışıktan uzak loş yerlere kümeler halinde bırakırlar. Bir küme içinde 80 -100, hatta bazen daha fazla yumurta bırakabilmektedirler. Herbir dişinin bıraktığı yumurta sayısı 500 kadardır. Yumurtadan larvalar 24 -26 derece sıcaklıkta 5 -6 günde, 10 -l5 derece sıcaklıkta 34 günde çıkar. Larvalar hareketlidir, peteklerde yuva yapar ve gelişmesini sürdürürler. Larva dönemi 30 derece sıcaklıkta ortalama bir ay sürer. Ancak bu süre alınan gıdaya ve sıcaklığa göre değişir. Larva gelişmesi için en uygun sıcaklık 30 -35 derece sıcaklıktır. Gelişmesini tamamlayan larvalar sert, tüylü, beyaz renkli ipek bir koza örerler. Koza içerisinde larva pupaya (krizalit) dönüşür. Pupa dönemi 8 -14 gün sürer. Pupadan grimsi kahverengi ergin kelebekler çıkar. Dişi kelebekler kozadan çıktıktan 4 -10 gün sonra yumurtlamaya başlar. Erginler iklim şartlarına bağlı olarak değişmek üzere 2 -5 hafta yaşarlar. Ömürleri düşük sıcaklıkta daha da uzar. Pupadan çıkan ergin kelebekler çiftleşerek yumurtlamak üzere tekrar koloniye girmeye çalışırlar. Galleriosis'li kovanlarda larvalar gelişmesini tamamladıktan sonra kovan içinde sert tüylü ipekten ağ ve koza örerek kovandaki arıların faaliyetlerine engel olurlar. Böylece de büyük ekonomik kayıplara yol açarlar. Ayrıca bu zararlarının yanısıra larvalar peteklerdeki balın sır kısımlarını zedeleyerek, tüneller açarlar ve balın dışarı akmasına neden olurlar. Galleriosis'de kontrol ve korunma: Arıcılıkta Galleria enfestasyonlarının kontrolünde şu tedbirler alınır. l- Balmumu güvesinin en etkili düşmanı arıların kendisidir. Bunun için koloniler güçlü tutulmalıdır. Bu tip güçlü kolonilerde arılar güve larvalarını kovan dışına taşıyarak, zararlı etkilerinden kurtulurlar. 2- Kovanda yarık ve çatlaklar bırakılmamalı, kırıntı ve her türlü artıklar temizlenmelidir. 3- Arılı kovanlara verilecek ilaçlar anlar içinde zararlı olabileceği için, ilaçlı mücadele depolanmış arısız petek ve ancılık malzemelerinde uygulanmalıdır. 4- Boş petekler ve diğer malzemeler yeterli hava akımının bulunduğu bir odada 60 derecede 34 saat, -12 derece sıcaklıkta 3 saat tutulmalıdır. Düşük ısı ve yüksek sıcaklık balarısı zararlılarının bütün dönemlerindeki bireyleri öldürmektedir. 5- Petek güvesine karşı bakteriler, mantarlar ve peradatör böcekler kullanılarak biyolojik mücadele yapılmaktadır. Bunun için de arılara zararlı olmayan ancak kelebek larvalarına (tırtıl) etkili olan Bacillus thuringuensis toxinleri kullanılmaktadır. 6- Kontrolde diğer bir önlemde ilaçlamadır. Bunun için güve görülen kovanlardaki arılar başka temiz bir kovana boşaltılır. Güveli çerçeveler bir kovan yada sandık içinde, paradiklorbenzen (PDB ), ethylene dibromit, metyl bromid, karbondisülfid gibi ilaçlarla ilaçlanır. Çerçeveler tamamen asalaklardan temizlendikten sonra istenilen kovana konulabilir. Ayrıca depolarda da ilaçlamalar yapılır. ilaçlar ergin kelebekleri, larva ve pupaları öldürür. Ayrıca toz kükürt fumigasyon halinde kullanılabilir. Siphonaptera (= Aphaniptera) Takımı (Pireler) Pireler, sıcak kanlı memelilerden yani kanatlı ve memelilerden kan emen ve yalnız ergin devrelerinde geçici parazit olan insectlerdir. insecta sınıfının genel özelliklerini gösterirler. Vücut caput, thorax ve abdomene ayrılmıştır. Vücutları latero -lateral yani iki yanlı olarak (bilateral) basıktır. Vücut parlak sarı kahverenginde sağlam bir kitinle örtülüdür. Pirelerin erginleri 1.5 -5 mm büyüklüğünde olup, 3. çift bacakları çok uzun ve sıçramaya elverişlidir. Yani, pireler zıplayan böceklerdir. Kanatları redüksiyona uğramış olup, görülemez. Ağız organelleri sokmaya -emmeye elverişlidir. Pirelerde baş (capitilum) önden yuvarlağımsı ve ellipsoidal, iki yandan basık ve gövdeye yapışık görünümdedir. Başlarında bir çift antenleri ve bazı türlerinde ise bir çift gözleri vardır. Pire türlerinin bazılarında siyah iri dikenler şeklinde tarak (ctenidia) lar vardır. Bu taraklar başın alt kısmında ise genal tarak (yanak tarağı), boyun kısımlarında ise pronotal tarak (boyun tarağı, omuz tarağı) adını alır. Thorax üç kısımdan oluşmuştur. Thorax üstte notum, altta ise sternum olarak adlandırılır. Thorax pronotum, mesonotum ve metanotumdan meydana gelir. Thoraxın ventralinde uzunlukları önden arkaya doğru artan üç çift bacak çıkar. Bunlardan 3. çift bacaklar çok uzundur ve sıçramaya elverişlidir. Abdomen halkalardan oluşmuştur ve bu karın halkaları birbirine geçmelidir. Onun için pireler çok fazla kan emebilirler. Karın halkaları üstte tergum, altta ise sternum olarak adlandırılır. Sekiz karın halkası vardır. Her halkada spiracle (stigma) bulunur. Ayrıca son halkada pygidium (his organeli), antipygidial bristil (uzun diken) ve anal stylet adını alan değişik dikenler bulunur. Dişilerin arka taraftarında kitinsel bir kese biçiminde olan, türlere göre şekilleri değişen spermatheca (reseptaculum seminis, tohum kesesi) bulunur.Erkeklerde ise kitinsel, ince, uzun ve dinlenme sırasında spiral biçiminde kıvrılmış kopulasyon organı olan clasper bulunur. Pirelerin yumurtaları oval ve beyaz renkte olup, 0.5 mm büyüklüğündedir. Pirelerin gelişmesinde tam metamorfoz görülür. Larvaları kurtcuk biçiminde olup, beyaz renklidir. Olgunlaşan larvaları 6 mm kadar uzunlukta olabilir. Pireler pupa dönemini yaklaşık 4x2 mm ebatlarında olan bir kokon içerisinde geçirir. Kokonun çevresi toz ve toprak ile bulaşıktır. Pireler kozmopolit yani her yerde bulunabilen canlılardır. Her türlü konaktan kan emerler (euroxen parazit). Ancak bazı türleri özellikle kendi konaklarına daha çok gelirler. Dişileri çiftleşmeden sonra toplu iğnenin 1/4'i başı büyüklüğündeki, krem rengindeki yumurtalarını toz, toprak içerisine bırakırlar. Ancak konak üzerine bırakılan yumurtalarda yapışıcı özellikte olmadıklarından kayarak toprağa düşerler. Yumurtadan 1 -2 hafta içerisinde kurtcuk şeklinde ve üzerleri tüylü larvalar çıkar. Larvalar çok aktiftirler. Bunlar topraktaki organik maddelerle, hayvansal artıklarla, kan pıhtılarıyla, kokuşan bitkisel maddelerle yada konağın dışkılarıyla beslenirler. Bunun sonucunda büyüyerek gelişirler ve 11 halkalı kurtçuk şeklini alırlar. Larvalar ışıktan kaçarlar. Larva dönemi 9 -200 gün arasında değişir. Larvalar saldıkları bir salgıyla toz toprak arasında kendilerine bir kokon (koza) örerler. Bu pupa dönemi 10 gün ile bir kaç ay arasında değişir. Bu kokonun içerisinde pire gelişir ve kokonu açarak dışarı çıkar. Ancak Tungidae ailesindeki pirelerin biyolojileri biraz daha farklıdır. Bu ailedeki türlerde dişiler yumurtalarını konak derisinde meydana getirdikleri şişliklerin içerisine ya da yaralara bırakırlar. Larvalar yumurtayı konak üzerindeyken terkeder ve daha sonra yere düşerler. Bu larvalar daha sonra bir kokon içerisinde pupa dönemini geçirerek ergin erkek ve dişiler oluşur. Tungidae ailesindeki pirelerin bu özelliklerinden dolayı pireler geçici parazitizmden daimi parazitizme geçiş halinde olan artropodlar olarak kabul edilirler. Siphonaptera takımında bulunan aile ve türler: Familya: Tungidae Bu ailedeki pirelere oyuk, tünel açan pireler adı verilir. Çünkü dişileri döllendikten sonra konakçısının derisine girer, çok şiddetli olarak irrite eder ve etrafındaki doku şişerek pireyi içine hapseder. Dişi pireler yumurtalarını buralara bıraktıktan sonra dokunun sıkıştırması sonucu ölürler. Tungidae ailesindeki pireler küçük ve ayakları diğer türlere oranla kısa ve zayıftır. Genal ve pronotal taraklar bulunmaz. Bu ailede iki önemli tür vardır. Species : Tunga penetrans Bu türün büyüklüğü 1 mm kadardır. Başın ön kısmı sivrilmiştir. Thorax segmentleri çok dardır. Gözleri geniş ve piğmentlidir. Kırmızı esmer renktedirler. Dişilerde spermatheca konik şekildedir. Başlıca konakları kanatlılardır. Fakat domuz, evcil memeliler ve insanlardan da kan emebilirler. Konaklarına çok şiddetli ağrılar verirler ve hatta deri içerisinde ezilen pirenin dokuları gangrene yol açabilir. Bu tür Güney Amerika' da ve Afrika' da yaygındır. Species : Echidnophaga gallinacea Başlıca konakları tavuklar ve diğer kanatlılardır. Büyüklükleri 1.5 mm' dir. Baştaki alın kısmı köşelidir. Thorax'ın notumları dardır. Genal ve pronotal tarak yoktur. Spermatheca iyi kitinize olmuştur. Bu tür köpek, rat, insan ve diğer hayvanlardan da kan emebilir. Tropik ve subtropik bölgelerde görülmektedir. Familya: Pulicidae Bu ailedeki türlerde genellikle gözler mevcuttur. Bazı türlerinde genal ve pronotal taraklar bulunabilir. Bu ailede bulunan türler; Species : Pulex irritans İnsan piresi olarak bilinen ve insanlardan kan emen bu tür, karnivorlardan ve diğer hayvanlardan da kan emebilir. 1.5 -4 mm uzunluğundadır. Gözünün alt kısmında uzunca bir diken bulunur. Thorax segmentlerinde birer sıra, birinci karın halkasında 2 ve ikinci ile 7. abdominal tergumda ise birer sıra diken bulunur. Erkeklerde clasper geniştir ve biri uzun üç hareketli çıkıntısı vardır. Dişilerde spermathecanın başı yuvarlak ve kitinize olup, kuyruk kısmı kıvrılmış bir parmağa benzer. Genal ve pronotal taraklar yoktur. Pulex irritans doğal şartlarda olmasa bile deneysel koşullarda veba hastalığına vektörlük yapabilmektedir. Türkiyede bu pire türüne rastlanılmıştır. Bu tür ayrıca helmintlerden Hymenolepis nana, Hymenolepis dimunata ve Dipylidium caninum'a arakonaklık yapar. Species : Ctenocephalides canis Köpek piresi olan bu tür, 2 -3.5 mm uzunluktadır. Her kenarda sekiz adet diken ihtiva eden genal ve pronotal tarakları bulunur. Baş yuvarlağımsı şekildedir. Şeritlerden Dipylidium caninum'un arakonaklığını yapar. İnsan ve diğer karnivorlardan da kan emerler. Species : Ctenocephalides felis Kedi piresi olarak tanımlanır. Ancak köpek ve insanlardan da kan emebilir. 2 -3 mm büyüklüğündedir. Alın kısmı daha uzun, dar ve sivridir. Genal ve pronotal tarakları vardır. Genal tarağın ön dikeni hemen hemen 2. nin uzunluğu kadardır. Türkiye'de yaygındır. Species : Spilopsyllus cunuculi Tavşanlarda görülen pire türüdür. Genal tarak 5 -6, pronotal tarak ise 14 -17 koyu renkli büyük dikenden oluşur. Genal tarak subvertikal olarak yerleşmiştir. Dişilerde spermathecanın deliği terminaldir. Tavşanlarda görülmesinin yanında kedi, tilki ve ratlarda da saptanmıştır. Bu tür myxomatosis virusuna vektörlük yapar. Species : Xenopsylla cheopis Xenopsylla genusu içinde bulunan türlerin en yaygınıdır. Asya rat piresi olarak bilinir. Thoraxın mesonotumunda kitini vertikal bir çizgi bulunur. Antenlerinin 3. eklemi asimetriktir. Göz kılı gözün önündedir. Genal ve pronotal taraklar mevcut değildir. Afrika'da ve Güney Amerika'da yaygındır. Ancak dünyanın her kıtasına yayılmıştır. Bu tür veba hastalığı etkeni olan Pasleurella pestis'in vektörlüğünü yapar. Species : Leptopsylla segnis Farelerde görülen pire türüdür. Genal ve pronotal tarak vardır. Ayrıca alında küçük ve az sayıda dikenden ibaret bir alın tarağı bulunur. Familya: Ceratophyllidae Bu ailenin bazı türlerinde frontal çıkıntı vardır. Gözler genellikle mevcuttur. Küçük memelilerle, kuşlarda bulunurlar. Species : Ceratopyllus gallinae Erginleri 2 -3 mm uzunluğunda, vücutları uzunca ve genel olarak renkleri esmerdir. Baş yuvarlak olup, genal tarak yoktur. Pronotal tarak bulunur ve 12 diken taşırlar. Kanatlılarda ve özellikle de tavuklarda bulunurlar. Kuş piresi yada Avrupa kanatlı piresi olarak adlandırılırlar. Kanatlılarda şiddetli yaralanmalara neden olurlar. Species: Ceratopyllus columbae Güvercin piresi olarak adlandırılır. Özellikleri C. galhnae'ye benzer. Species : Nosopsyllus fasciatgs Fare ve sıçanlarda bulunur. Avrupa rat piresi olarak adlandırılır. Ancak diğer hayvanlardan da kan emebilirler. Genal tarak yoktur. Pronotal tarak vardır ve 8 dikenlidir. Gözleri iyi gelişmiştir. Pirelerin Yaptığı Zararlar: Erişkin pireler mutlak süratle kan emerler. Bunun ıçınde buldukları her konak üzerine giderler. Bunların her canlıdan kan emmeleri hastalık etkenlerini bu canlılar arasında nakletmelerine sebep olurlar. Pireler fare ve sıçanlarda bulunan veba etkenlerini kan emmeleri esnasında alırlar. Pire tarafından alınan bu etkenler pirenin midesinde çoğalırlar. Bu pirelerin insanlara gelip kan emmeleri esnasında bu etkenleri onlara aktarırlar. Aynca fare ve rat pireleri fare tifüsu etkeni olan Rickettsiya typhı’yı taşırlar. Tavşan piresi myxomatosis virusunu, köpek piresi Dipyhdium caninum'u, yine köpek ve kedi pireleri Dipetalonema reconditum,Dirofilaria immilis, insan pireleri Hymenolepis nana'yı naklederler. Pireler ayrıca Tularemi'yi mekanik olarak naklederler. Pirelerin zararlı etkilerini sıralayacak olursak; Yukarıda anlatıldığı gibi hastalık etkenlerine vektörlük veya arakonaklık yapmaları, Bazı pire türleri konaklarına traumatik (yaralayıcı) olarak etki yapmaları, Konaklarından kan emmeleri sonucu soyucu -sömürücü etki yapmaları, AIlerjik etkilerinin olması. Özellikle köpeklerde bu tip etkiler sıkça görülmektedir. Konaklarını huzursuz etmeleri, Deride irrtasyon sonucu kaşıntı, dermatitis ve ürtikerlere neden olmaları, Deride tünel açan pire türleri deri altına yerleşerek, kaşıntı, şiddetli ağrı ve bulunduğu yerde irinleşmelere sebep olmaları gibi etkileri vardır. Pirelere karşı mücadelede insektisitler bir hafta ara ile iki kez uygulanmalıdır. Mücadelede insan ve hayvan meskenlerinde pirenin yumurta ve larvaları toprakta bulunduğundan, eğer meskenler toprak zeminli ise buralara insectisitler püskürtülür, toz şeklinde olanlar ise serpilirler. Hayvanlar üzerinde bulunan pireler için insectisitler solüsyon halinde ise püskürtülür veya banyo edilir. Toz halinde ise hayvanların tüyleri arasına serpilirler. BHC'li ve organik fosforlu ilaçlar tercih edilir. Fenol bileşikleri ve BHC'li ilaçlar kedilerde kullanılmaz. Pire allerjisine karşı kortikosteroidler kullanılır. Organik fosforlulardan dichlorvos, sentetik pyretroidlerden permethrin, organik klorlulardan ise lindan kullanılabilir. Ancak lindan kediler için toksiktir. Pirelerde kontrol amacıyla kedi ve köpeklerde dichlorvos ve diazinon ihtiva eden tasmalar kullanılabilir. Fire enfestasyonlarının kontrolündeki başarı barınaklar ve meskenlerde özellikle yataklarda yapılacak ilaçlamaya ve temizlik işlemlerine bağlıdır. Son yıllarda bu amaçla methoprene aerosol kontrol amacıyla kullanılmaktadır. Bu ilaç pire larvalarının bulunabileceği yataklık, halı, kilim gibi yerlere uygulanır. Larvalar tarafından alınan ilaç etkisini pupa döneminde gösterir. İlaç pupalardan erişkin formların çıkışını önleyerek kontrolü sağlar.Kanatlılarda pire mücadelesinde ise malathion ve carbaryl kullanılabilir. Bu ilaçlar toz ve özellikle Echidnophaga enfestasyonlarında solüsyon şeklinde uygulanır. Korunma için kanatlı bannaklarında altlıklar uzaklaştırılır ve yakılır. Barınaklar (kümesIer) % 1 ronnel solüsyonu ile 14 gün aralıklarla iki defa ilaçlanmalıdır. Diptera Takımı (Sinekler = İkikanatlılar) İnsecta sınıfının en önemli takımlarındandır. Bu takımda bulunan artropodlar insecta sınıfının genel özelliklerini gösterir. Yani vücut caput, thorax ve abdomene ayrılmıştır. Diptera (di= iki, ptera= kanat) ların başlarında bir çift anten, bir çift petek göz, sokucu- emici, parçalayıcı veya yalayıcı -emici ağız organellerine sahiptir. Erginlerinin mesothoraxlarından çıkan bir çift fonksiyonel kanatları vardır. Arkadan çıkan kanatlar rudimenter olup, topuz şeklindedir ve denge organı görevini yaparlar. Sinek uçarken dengeyi sağlar. Bazı türlerinde ise ağız organelleri atrofiye olmuştur. Böylece bunların beslenmeleri söz konusu değildir. Topuz şeklinde olan ve dengeyi sağlayan kanatlara halter adı verilir. Dişiler yumurta, larva veya pupa meydana getirerek çoğalırlar. Yani dipteraların gelişmelerinde tam bir metamorfoz vardır. Sokucu -emici olanlarda hortum (probiscic) iyi gelişmiştir ve çoğunlukla insan ve hayvanlardan kan emerler. Kan emmeleri esnasında oluşturdukları anemi ve sokma yerlerindeki toksik etkiden dolayı kızarıklık ve kaşıntının yanısıra, bazı hastalık etkenlerini (bakteri, virus, protozoon, helminth gibi) canlılar arasında nakletmeleri ile önemlidirler. Bu takımdaki bazı sinekler larvalarından dolayı önem taşırlar. Çünkü bu sineklerin larvaları konaklarının iç ve dış paraziti olabilmektedirler yani myiasis oluşturmaktadırlar. Dipteraların bazı türlerinin larva şekillerinin insan ve hayvanlarda hastalık oluşturmaları olayına. myiasis adı verilir. Myiasise neden olan türlerin erişkin şekillerinin hiçbir paraziter etkisi yoktur ve ömürleri çok kısadır. Diptera takımında insan ve hayvan sağlığı yönünden önemli olan üç alt takım bulunur. Bunlar ; Suborder (Alttakım) : Nematocera Genellikle uzun vücutlu ve narin yapılı sivrisineklerdir. Küçük sinekler olup, erişkinlerin antenleri baş ve thoraxdan daha uzundur. Olgun sineklerin antenleri çok sayıda (8'den fazla) eklemden (segmentden) oluşmuştur. Antenlerin üzerinde "arista" adı verilen üzeri tüylü bir kıl yoktur. Kanatları pullu, kıllı yada parlaktır. Kanat venleri birbiri ile kesişmez. Ayakları çok uzun veya biraz uzuncadır. Dişileri kan emerler. Larvalarının baş kısmı iyi gelişmiştir. Larvaların mandibulaları yatay olarak (horizantal) ısırır. Larva ve pupaları obtektir ve suda yaşarlar. Ayın zamanda hareketlidirler. Su border: Brachycera Nematoceralara göre daha tıknaz yapılı ve kuvvetli yapılıdır. İri sineklerdir. Erişkinlerin antenleri thoraxdan kısa olup, 6'dan daha az segmentlidir. Antenleri birbirinden farklı şekilleri olan segmentlerin birleşmesinden meydana gelmiştir. Antenleri üzerinde (3. segment) bir. arista bulunabilir. Arista antenin ucuna doğru yer alır. Karekteristik damarlanma görülen kanatlarda, kanat venlerinde kesişme görülür. Dişileri kan emerler. Larvalarında baş kapsülü kısmen yada tamamen körelmiştir. Larvaları suda yaşar ve pupalarıda obtek olup, suda yaşarlar. Larvaların mandibulaları vertical (dikey olarak) olarak ısırır. Suborder : Cyclorrhapha Bu alttakımdaki türlerin erginleri tüylü ve çeşitli metalik renklere sahiptirler. Kan emen türlerin dişi ve erkekleri kan emer. Olgun sineklerin antenleri 3 segmentlidir ve aristalıdır. Arista 3. segmentin dorsalinde yer alır. Kurt benzeri olan larvalarında baş yoktur. Bu tip larvalar hareketli olup, magot adını alırlar. Pupa koarktat olup, hareketsizdir. Larva ve pupa dönemleri toprakta geçer. Suborder : Nematocera Bu alttakımda bulunan aileler şunlardır. Familya: Culicidae (Sivrisinekler) Familya: Ceratopogonidae (= Heleidae, Acısinekler) Familya: Simuliidae (= Melusinidae, Siyahsinekler, Körsinekler) Familya: Psychodidae (Tatarcıklar) Culicidae Ailesi (Sivrisinekler) Sivrisinekler yaz geceleri düşünülebilecek her yerde bulunan, özellikle ışıklar söndürüldükten sonra insanlardan kan emen ve vızıltısı ile insanları sürekli rahatsız eden insectlerdir. Sivrisinekler 2 -10 mm uzunluğundadır. Bu ailedeki artropodların vücutları; narin, başları küçük ve küreseldir. Bacakları uzundur. Vücutları genellikle silindirik yapıdadır. Antenleri 14 -15 segmentden meydana gelmiştir ve erkeklerde tüylüdür. Ağız organelleri uzun ve silindirik bir biçimde olup, sokmaya -emmeye elverişlidir. Abdomen uzun yapılı ve thorax karekteristik olarak kama şeklindedir. Kanatları uzun ve dar olup, kondukları zaman abdomen üzerinde düz katlanırlar. Culicidae ailesinde bulunan önemli sivrisinek cinsleri; Anopheles, Aedes, Culex, Mansonia ve Theobaldia' dır. Bunlardan özellikle ilk üç tür önemlidir. Sivrisinekler su kenarlarında çoğunlukla bulunurlar. Durgun sularda, durgun deniz sularında larvaları gelişir. Sivrisineklerin sadece dişileri insan ve hayvanlardan kan emerler. Erkek sivrisineklerde alt ve üst çene (maksilla ve mandibula) kısalmış olduklarından konağın derisini delememekte ve kan emememektedirler. Bunlar bitki artıklarından doku özsuyu emerek beslenirler. Sivrisineklerin biyolojisi Dişi sivrisinekler yumurtalarını su yüzeyine veya suda yüzen bitki üzerlerine bırakırlar. Yumurta bırakma şeklinde her türün kendine has özellikleri vardır. Anopheles ve Aedes cinsindekiler yumurtalarını tek tek bıraktıkları halde, Culex cİnsindekiler yumurtalarını paketler halinde bırakırlar. Bazı türler yumurtalarını temiz akarsulara, bir kısmı durgun su birikntilerine yada ağır akan su yollarına, hatta bazıları da deniz suyuna bırakırlar. Culex cinsindekiler yumurtalarını foseptik sularına da bırakmaktadırlar. Yumurtadan çıkan larvalar 10 -11 halkalı olup, kurtçuk şeklindedirler. Larvalar aktif ve hareketli olup, bükülüp açılma şeklinde bulundukları su içinde hareket ederler. Larvalar türlere göre değişmek üzere vücut halkalarında hava borusu taşırlar. Bu hava deliklerini su yüzeyine doğru uzatırlar. Anopheles'lerin larvaları vücutlarının son 3 -4 halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine parelel dururlar. Culex ve Aedes larvaları ise vücutlarının son halkasında hava borusu taşıdıklarından içinde bulundukları suyun yüzeyine dikey dururlar. Larvalar 4 defa gömlek değiştirdikten sonra pupa safhasına girerler. Pupa evresinde baş ve thorax yuvarlak kokon benzeri bir yapının içinde bulunurken abdomen serbest vaziyettedir. Bu dönemde daha az aktiftirler. Pupalardan çıkan erişkin sinekler, beslenmek amacı ile çoğaldıkları yerden birkaç kilometre ve hatta rüzgar ve değişik vasıtalarla çok daha uzağa gidebilirler. Erişkin sivrisineklerin kondukları yüzeye duruş şekilleride farklıdır. Anopheles'ler kondukları yüzeye eğik durdukları halde, Aedes ve Culex'ler paralel dururlar. Yaşam süreleri sıcak bölgelerde 6 aydır. Türkiye'de ise bu süre 1 -2 ay kadardır. Culicidae'ler bitki özsularıyla ve şekerli suyla beslenebilirler. Fakat dişiler yumurtlayabilmek için mutlaka bir miktar kan emmek zorundadırlar. Dişi bireyler geceleyin ışığa doğru ve konakçısının vücut ısısına doğru yönelirler. Gündüzleri ise karanlık ve kuytu köşelerde saklanırlar. Sivrisineklerin (Culicidae) Önemi Konaklarını huzursuz ederler. Kan emilen yerde çok rahatsız edici kaşıntıların meydana gelmesine neden olurlar. Çok sayıda oldukları zaman kan emerek soyucu -sömürücü etkilerini gösterirler. Sivrisineklerin esas önemleri sıcak ülkelere doğru gittikçe sıklığı artan, birçok hastalığın bulaşmasına aracılık etmeleridir. İnsan, maymun ve kanatlılar arasında sıtma etkeni olan plasmodium'ların biyolojik vektörüdürler. Dişi Anopheles türleri insanlarda sıtmaya neden olan plasmodium türlerine, Anopheles, Culex ve Aedes türleri ise kanatlılarda sıtmaya neden olan plasmodium türlerine vektörlük yaparlar. Ayrıca sivrisineklerden bazı türler nematodlardan Wuchereria bancraıli (insanlarda fil hastalığı etkeni) ve köpeklerde Dirofilaria immitis larvalarını naklederek, bu helmintIere arakonaklık yaparlar. Bakterilerden Borrelia anserina (Kanatlı spiroketası) 'yı Aedes cinsindeki türler bulaştırır. Yine Mansonia türleri Brugia malayi'nin naklini sağlarlar. Sivrisinekler sarı humma virusuna, doğu ve batı at encephalitislerine ve Japon B encephalitisine vektörlük yapar. Ayrıca kanatlı çiçeğine mekanik taşıyıcılık yaparlar. Tavşan myxomatosis'ine de vektörlük yaparlar. Sivrisineklere karşı mücadele Sivrisineklere karşı mücadele larvalara ve erişkinlere karşı olmak üzere iki şekilde yapılır. Larvalara karşı mücadelenin başında bunların yaşadıkları yerlerin ortamını bozmak gelir. Bunun için taşkınları önlemek, kanalizasyon sistemlerini iyi yapmak ve bataklıkları kurutmak gerekir. Bataklıklar ve durgun sular drenajla kurutulmaya çalışılır. Bunun mümkün olmadığı durumlarda ise bu bölgelere insectisitler sürekli olarak yada planlı olarak belirli periyodlarla kullanılır. Bu amaçla en çok kullanılan ilaçlar organik klorlu ve organik fosforlu insectisitlerdir. Taşkınlara bu ilaçlar püskürtülerek uygulanır. Ayrıca larvalara karşı mücadelede biyolojik savaş metodları da kullanılmaktadır. Bunun için Gambusia cinsi balık türleri, yetiştirilmelidir. Bu balıklar sinek larvalarını yiyerek kontrolü sağlarlar. Bu amaçla ayrıca larvalar için patojen olan ve larvalarda salgınlar oluşturan çeşitli bakteri, protozoon ve helmintler de uygulanabilir.Sivrisineklerin erişkinlerine karşı ise insectisitler kullanılmalıdır. Bunun için en uygunları karbamatlı ve organik fosforlu insektisitlerdir. Ayrıca özellikle Anophellere karşı kalıcı etkili ilaçların kullanılması ile iyi bir kontrol sağlanmaktadır. Ancak çevreye etkilerinden dolayi bu tip ilaçlar pek tercih edilmemektedir. Ayrıca mekanik önlemler ve sinekleri uzaklaştırıcı tedbirlerde alınır. Familya: Ceratopogonidae (= Heleidae, Acısinekler) Bu ailedeki türler sivrisineklerden daha küçük olup, 1 -3 mm boyundadırlar. Antenleri 13 -15 segmentlidir. Dişilerde çok seyrek ve kısa kıllıdır. Erkeklerde ise çok kıllı ve uzundurlar. Ağız organelleri sokucu -emici tiptedir. Hortumları kısadır. Thoraxın her üç parçası kaynaşmıştır. Thorax başın üst tarafına doğru bir kamburlaşma yapar. Kanatları geniş, uçları yuvarlak ve üzerlerinde duman renginde benekler vardır. Kanatlarında pulların olmasıyla sivrisineklerden, daha uzun antenlere sahip olmaları ile de Simulium'lardan ayrılırlar. En tipik özellikleri benekli kanatlara sahip olmalarıdır. Ceratopogonidae ailesindeki türler konaklarını soktuklarında büyük acı verirler. Bunun içinde acısinekler adını alırlar. Dişileri kan emer, erkekleri ise bitki özsuyu ile beslenirler. Bu ailede bulunan ve hekimlik açısından önemli olan Cilicoides (acısinek)'dir. Culicoides'lerin kanatları tüylüdür. Bu cinse bağlı önemli tür ise Culicoides robertsi' dir. Bu türe kumsinekleri adı da verilir. Bu sinekler bataklık bölgelerde ürerler. Dişiler döllenmiş yumurtalarını sığ akarsuların kıyılarına, su içindeki bitkilerin ve taşların üzerine bırakırlar. Dişiler yaşamları boyunca birkaç kez yumurta bırakırlar. Yumurtadan çıkan kurtçuk benzeri larvalar hem karada hemde suda yaşayabilirler. Daha sonra pupa dönemini geçirerek erişkin sinekler meydana gelir. Erişkinler yumurtlamadan önce kan emerler. Sabah vakitleri ve ikindi vaktinde daha çok saldırgan olurlar. Ayrıca bulutlu ve kapalı havalarda çok aktiftirler. Erişkinleri yazın Mayıs ayından Eylül ayına kadar görülürler. Yaz aylarında gelişme süresi 1 -2 aydır. Kışı ise larva döneminde çamura gömülü olarak geçirirler. Veteriner Hekimlik yönünden önemli olan Culicoides'ler sivrisineklerden daha küçük yapılı oldukları için sivrisinekler için yapılan tellerden kolaylıkla geçebilirler. Culicoides 'ler toplu halde uçuşurlar. İnsanlardan ve hayvanlardan kan emerler. Çok sayıda olduklarında hayvanları ürkütüp kaçıştırırlar. Konaklarından kan emerek soyucu -sömürücü etki gösterirler ve fazla sayıda olduklarında anemiye yol açarlar. Ayrıca konaklarını sokmaları kuvvetli tepki oluşturur. Sokma yerinde kaşıntı, ödem ve şiddetli acıya neden olabilirler. Bazen 2 cm büyüklüğünde, seröz bir sıvı dolmuş kabarcıklar meydana gelir. Daha çok orman ve açık arazide çalışanlara saldırırlar. Culicoides türlerinin en önemli

http://www.biyologlar.com/insecta-hexapoda-entoma-bocekler-sinifi


ULUDAĞ MİLLİ PARKI

ULUDAĞ MİLLİ PARKI

İli : BURSA Adı : ULUDAĞ MİLLİ PARKI Kuruluşu : 1961 Alanı : 12.732 ha. Konumu : Marmara Bölgesi’nde, Bursa ili sınırları içerisinde yer almaktadır. Ulaşım : Bursa’dan 34 km’lik yaz-kış açık kara yolu ile veya teleferikle 20 dakikada Sarıalan’a çıkılarak, oradan da minibüslerle oteller bölgesine ulaşılır. Özel helikopter servisi ile İstanbul’dan 25 dakikada milli parka varılabilir. Kaynak Değerleri :           Yer kürenin derinliklerinden gelen mağmanın kırıklar ve çatlaklar boyunca yeryüzüne doğru yükselmesi ve katılaşması sonunda meydana gelen Uludağ’ın jeolojik yapısını genellikle iç püskürük granit kayaçları oluşturmaktadır. Dağın bugünkü şeklini kazanması, tektonik hareketler ve farklı aşınma etkisiyle oluşmuş-tur. Bursa ovasına kısa mesafede ve 2543 metre yükseklikte olan Uludağ, Marmara Bölgesi’nin en yüksek noktasıdır. Aras Çağlayanı ve doruklarda görülen buzul izleri Uludağ’ın jeomorfolojik yapısının ilgi çekici özellikleridir.           Milli parkın bir başka özelliği de, Bursa Ovası’ndan Uludağ’ın doruklarına doğru değişen bitki topluluklarının meydana getirdiği orman kuşaklarıdır. Botanik bilimci Mayer’ın bitki kuşaklarını muhtelif yüksekliklerde karakterize etmesi bakımından dünya ormancılık literatüründe özel bir önemi vardır.           Milli parkın elverişli tabiat şartları ayı, kurt, çakal, tilki, karaca, geyik, tavşan, domuz, keklik, yabani güvercin, akbaba, kartal, çaylak, bülbül ve çalıkuşu gibi hayvanların yaşamasına ve çoğalmasına imkan vermektedir.           Aralık-Mayıs ayları boyunca Uludağ karla örtülüdür. 3.95 cm.’ye varan kar kalınlığı, kar kalitesi ile Uludağ kayak yapmaya son derece elverişli olup, Türkiye’nin en önemli kış sporları merkezidir.  Görünecek Yerler : Çobankaya, Sarıalan ve Kirazlıyayla günü-birlik kullanım alanları milli parkın farklı peyzaj değerlerini, Çobankaya mevkiindeki “Bakacak Manzara Seyir Terası” ise daha geniş bir perspektifte peyzaj değerlerini , Bursa Ovası’nı ve kent gelişimini ziyaretçilere sunar. Mevcut Hizmetler : Milli park sahası içerisinde “oteller bölgesi” diye adlandırılan mevki ziyaretçilere kış aktivitelerinden kayak imkanı sunarken, Sarıalan, Çobankaya ve Kirazlıyayla mevkileri kamp ve günübirlik kullanımlar için düzenlenmiş sahalardır. Konaklama : Sarıalan mevkiinde baraka, bungalow ve çadır ile kamp yapma imkanı sağlanmakta, oteller bölgesinde ise gerek kamu, gerekse özel işletmelere ait oteller ve misafirhanelerde konaklama imkanı bulunmaktadır. Ayrıca Çobankaya mevkiinde yalnızca çadırla kamp yapılabilmektedir. FLORA Uludağ'ın bitki örtüsü tipleri arasında (350 m' ye kadar) tipik Akdeniz maki ve frigana bitki örtüsü yer alır. Orman kuşağı, karışık kestane (Castanea sativa) ormanı (350-700 m), sık doğu kayını (Fagus orientalis) ormanları (700-1500 m), lokal olarak sapsız meşe (Quercus petraea) ve nemli Uludağ göknarı (Abies nordmanniana ssp. bornmuelleriana) topluluklarından (1500-2100 m) oluşur. Türkiye'nin endemik ve önemli ağaç türlerinden biri olan Uludağ Göknarı, alanda çok sağlıklı topluluklar oluşturur. Orman kuşağı 2000 m' nin üstünde subalpin fundalıklara geçiş yapar. Subalpin kuşağı (1800-2200 m), bodur çalıları ve açık mera toplulukları ağırlıkta olmak üzere, yüksek arazi fundalık bitki örtüsü tiplerinin bir mozaiğini içerir. Subalpin ve alpin kuşaklardaki daha kurak yamaçlarda endemik türler bulunmaktadır. Alanda Bern Sözleşmesi'ne göre Tehlike Altındaki Habitatlar; Akdeniz dağlık sık meraları, Batı Karadeniz doğukayını ormanları, Batı Karadeniz göknar-doğu kayını ormanları, Batı Karadeniz'in alt kesimlerinde yetişen doğu ormanları, Batı Karadeniz'in alt kesimlerinde yetişen subalpin ormanlarıdır. Uludağ, ev sahipliği yaptığı pek çok bitki türünün gösterdiği ilginç yayılış deseni nedeniyle bitki coğrafyası açısından da çok önemlidir. FAUNA Uludağ’ a özgü endemik tür olan Apollo Kelebeği, ayrıca dünyada sayıları çok azalmış olan Sakallı Akbaba parkta bulunmaktadır. Bunların dışında; Tilki, Çakal, Yaban Kedisi, Porsuk, Sincap, Sansar, Tavşan, Karaca, Yaban Domuzu, Kirpi, Oklu Kirpi, Dağ Faresi, Kaplumbağa, Kurbağa, Alabalık, Kurt ve Ayı bulunmaktadır. Sürüngenlerden; Yılan, Kertenkele, Bukalemun, Kuşlardan ise; Akbaba, Kaya Kartalı, Doğan, Şahin, Atmaca, Kerkenez, Karga, Ağaçkakan, Saksağan, Baykuş, Dağ güvercini, Tahtalı, Çulluk, Üveyik, Karatavuk, Saka, Çalıkuşu, Keklik, Bülbül ve Serçe türleri bulunmaktadır. Alanda 46 tür kelebek ve 11 tür bombus arısı tespit edilmiştir. Uludağ sakallı akbaba ve kaya kartalının üreme popülasyonlarını barındırması nedeniyle Önemli Kuş Alanı olarak belirlenmiştir. Kızıl akbaba, çakırkuşu, küçük kartal, bıyıklı doğan, ve gökdoğanın ürediği sanılmaktadır. Bu dağ aynı zamanda Türkiye’de paçalı baykuşun yaşadığı bilinen birkaç yerden biridir. http://www.milliparklar.gov.tr TANITIM VİDEOSU      

http://www.biyologlar.com/uludag-milli-parki

PREPARAT YAPMA (HAZIRLAMA) YÖNTEMLERİ

Araştırmanın amacına göre izlenecek preparat yapma yöntemleri farklı olur. Obje amaca uygun olan şekilde, ışık mikroskobu ya da E.M. düzeyindeki preparat yöntemlerinden biri ile gözleme hazır duruma getirilir. A- Kuru Kapatma: En basit preparat yapma, objenin kuru olarak kanada balzamı içinde kapatılmasıdır. (Diatome, polen, böcek ağız parçaları, kelebek pulu v.b. gibi). Bazı hallerde sert ve içi boş olan obje önce saydamlaştırılır ve sonra herhangi bir kapama maddesi (kanada balzamı) içine konulup lamelle kapatılır.Kanada balzamı içine yerleştirme üç evrede yapılmaktadır. 1- Suyun çıkarılması ( dehidrasyon ) 2- Saydamlaştırma 3- Kanada balzamı içinde kapatma Suyun çıkarılması, yükselen alkol serilerinden ( %90, %96 ve %100 etil alkol ) geçirilme ile yapılır. Sonuncu alkol serisini 2-3 kez tekrar etmek gerekir. Saydamlaştırma için objeler % 100 alkolden ksilen ( ksilol ) veya toulenden geçirilir. Ksilen veya toluen dışındaki saydamlaştırıcılar arasında kreozot, sedir yağı, karanfil yağı sayılabilir. Parçalar birkaç saat ya da 24 saat saydamlaştırıcı içinde kalabilir. Kanada balzamı içine kapatmak için temizlenmiş lam üzerine bir damla kanada balzamı konur. Saydamlaştırıcı sıvıdan çıkarılan obje bir filtre kağıdı üzerine alınarak hafifçe kurutulup, dikkatlice kanada balzamı damlasının ortasına yerleştirilir. ve üzerine yavaşça lamel kapatılır. Kanda balzamı içinde hava kabarcığı kalmaması için lamelin elle eğik ve daha iyisi bir taraftan da saplı iğne ile desteklenerek yavaşça kapatılması gerekir.Orta kalınlıkta veya kalın olan objeler için lamelin dört köşesine ya da lamelin karşılıklı iki kenarına uygun boyda kesilmiş tahta çubuklar, ya da özel hazırlamış bir halka konur. Bunun amacı kanada balzamının lamelin her yerinde aynı kalınlıkta olmasını sağlamaktır. Kanda balzamının kuruması özellikle kalın preparatlarda çok uzun süreceği için preparatları bir müddet 40 oC dolayındaki etüvde bırakmak uygun olacaktır.B- Sürtme (Froti) Preparat Yöntemi (=Yayma Yöntemi) Bu yöntem özellikle kan, vücut sıvıları ve küçük protozoonların araştırılmasında kullanılır. Çok temiz bir lam üzerine bunlardan herhangi birinden bir küçük damla damlatılıp yayılır ve hemen kurutulur. Frotiler nemli ve kuru olmak üzere iki çeşittir. 1- Kuru Froti Yöntemi Kuru froti yapmak için iki önemli koşul vardır. a- Lamlar çok temiz olmalı ve üzerinde hiç yağ bulunmamalıdır. b- Preparasyon sırasında çok çabuk hareket edilmeli ve preparasyon mümkün olduğu kadar çabuk kurutulmalıdır. Kan frotisinin hazırlanması bütün frotilere örnek olabilir.

http://www.biyologlar.com/preparat-yapma-hazirlama-yontemleri


HAYVANLARI TOPLAMA VE SAKLAMA TEKNİKLERİ

Her hayvan grubu için farklı yöntemler kullanılarak hayvanlar doğal ortamlarından toplanırlar. Salyangozları, midyeleri, zar kanatlılar dışında kalan diğer bütün böcekleri, keneleri, kırkayakları, kurbağaları, tespih böceklerini, toprak solucanlarını, deniz şakayıklarını el ile tutabiliriz. Çıyan, örümcek, kelebek tırtılları ters yüzen   sokucu ve zehirli hayvanları pens ile tutabiliriz.Su böcekleri, kurbağa ve kurbağa yavruları ile çekirge gibi hayvanları fileli kepçe ile, gündüz kelebeklerini, kelebek ağı ile yakalayabiliriz. Elle tutulamayacak kadar ufak olan, suda yaşayan plankton hayvanlarını plankton ağı ile ;suyu biraz derince olan tatlı su veya göllerdeki balıkları serpme veya olta ile, suyu çok azalmış dere, su arkı, çeşme ve ufak pınar ayaklarındaki çeşitli su hayvanlarını  (balık, su böcekleri, böcek larvaları, gammarus vs. gibi) su yolunu keserek yakalayabiliriz. Sığır, at, eşek, köpek, kedi gibi hayvanların vücutlarındaki dış parazitleri sık dişli tarakla taramak suretiyle; yürüyen böcekleri, böcek düşürme kapanları ile: gece uçan böcekleri, ışıklı böcek düşürme kapanları ile yakalayabiliriz. HAYVANLARIN SAKLANMASIAynı şekilde toplanan  her hayvan grubu farklı şekillerde saklanırlar.Tek hücreliler için en uygun saklama ortamı % 4 lük formoldür. Kabuklu ve iskeletli olanları alkolde saklanabilir. Coelenterata, sünger, polip, deniz şakayığı ve deniz anaları bu gruptandır. Bunlarda % 4 lük formolde saklanır. Solucanlar: Yassı solucanlar büzülmelerini önlemek için önce % 1-1,5 lük formolde yada az ısıtılmış % 5-10 luk alkolde öldürülüp sonra % 4 lük formole konulur. Yuvarlak solucanlarda Sıcak alkolde öldürüldükten sonra % 4 lük formole konur. Halkalı solucanlar ise önce su içerisinde öldürülür sonra % 4 lük formole konulur. Yumuşakçalar: Salyangozların büzülmelerini önlemek için önce suyu bir kapta 10-15 dk. kaynatınız, soğudunuz. Silme olarak bir kaba doldurunuz. Kabuklu ve kabuksuz hayvanları içine atınız. Üzerini camla hava kalmayacak şekilde kapatınız. 24 saat içinde hayvanlar ölür (Ayak ve tutkaçları uzamış şekilde).  Hayvanların üzerine bol sofra tuzu serpilir ve 1 dk sonra tazyikli suyla yıkanır. Bu olay 3 defa tekrar edilir. Böylece sümüksü sıvılar  temizlenmiş olur. Sonra % 4’lük formole koyulur.Eklem bacaklılar:  Formol ve alkolde saklanacak eklem bacaklıları önce 24 saat kadar 3 kısım % 70 lik alkol ve 1 kısım gliserin karışımında bekletiriz. Sonra % 5 gliserinli  % 70 lik alkole alınır.  Yada % 4 lük formole alınır. Balıklar, Kurbağalar ve Yılanlar:  Bu gruptaki hayvanlar uygun şekilde öldürülürler. (Sıcak su içene bırakmak, sulandırılmış eter içine koymak, anüsten vücut içine eter enjekte etmek, kapalı kap içinde eterle öldürmek yada sulandırılmış sodyum pental enjekte ederek öldürmek). Öldürülen hayvanların gövde ve bacaklarına uygun bir şekil verilir. Üzerlerini örtecek kadar formol- alkol konur. Bu şekilde 1-4 gün beklenir. Sonra çeşme suyunda yıkanan hayvanlar % 70 lik alkol içerisine alınır.  Yarasalar: Yarasalar hem kuru (post halinde) hem de sulu ortamlarda koleksiyon edilebilirler Yarasalar sadece % 70 lik alkolde saklanırlar Memelilerin ve kuşların tamamı post çıkarma yöntemi ile koleksiyona uygun hale getirilirler (25).

http://www.biyologlar.com/hayvanlari-toplama-ve-saklama-teknikleri



Böceklerin Kökeni ve Evrimi

Prekambriyumdan önce monofiletik ikiz grup olusturan Mandibulata (Crustacea) ve Tracheata (Myriapoda ve Insecta) büyük bir olasilikla suda yasayan ve spermalari spermatofor içinde toplanan ana kök daha sonra ikiye ayrilmis, bir grubu sularda kalarak Crustacea'yi (kabuklular), ikinci grup karaya çikarak Tracheata'yi meydana getirmistir > prekambriyumda ayrilmistir. Tracheata'ya geçis sirasinda, ikinci maksil, labium halinde kaynasarak bir agiz boslugu meydana gelmis, ikinci antenler körelmis, gövde segmentlerinin çogunda birer çift stigmayla birlikte trake sistemi olusmus, bosaltim organlarindaki degisiklikle körelen anten ve kabuk bezlerinin yerine barsak çikintilarindan olusan Malpiki tüpleri meydana gelmistir. Iki kardes grup olan Myriapoda ve Insecta ayrildiklarinda, baslangiçtaki temel yapilarini (mandibul eklemleri, abdominal üye kalintilari ve trake sistemi, Symphyla (Myriapoda), Diplura ve Thysanura'da (Insecta) bu ortak özellikler görülür) gösterirken, Myriapodlar saklanarak yasamaya uyum yaptigi için, bilesik gözlerini kaybetmeye baslamis ve saklanmaya uyum yapacak yassi vücut seklini kazanmislardir. Buna karsin böcekler serbest yasama uyum yaparak gövdenin, üç thoraks, onbir abdomen segmentinden yapili olmasi, gögüsteki kaslarin hareketi, abdomendekilerin sindirimi sagliyacak biçimde yogunlasmasi, thorakstaki paranotal loblardan kanat olusmasi ve abdomen bacaklarinin körelmesiyle Tracheata'dan farklilasmistir. En ilkel böcek, Chilopoda'ya benzer bir atadan kök alarak gelistigi düsünülür. 3 segmentli thorax ve her segmentte birer çift bacagi olan bu yaratigin abdomen üyeleri muhtemelen yoktur veya körelmistir. Bu formlarda yavrular, erginden görünüs olarak çok az farklidirlar. Kanatlar henüz olusmamistir. Kanatsiz olan bu bes ilkel böcek takimina (ordo) Apterygota diyoruz. Bes apterygot takimdan en primitif olani Diplura'dir ve tahminen Collembola ile Protura takimlari da Diplura ya benzer bir atadan kök almistir. Bu takimlarda tibia ve tarsus kaynasmis, abdomendeki stigmalar ise körelmistir. Birçok ortak köken özellikleri olmasina ragmen Collembola ve Protura birbirine hiç benzemeyen böcekler seklinde gelismislerdir. Protura da anten körelmis ve ön bacaklar bir çift anten seklini almistir. Collembola'da ise abdomen segmentleri sayica dumura ugramis (Protura'da 11, Collembola'da 6 segment) ve 4. abdomen segmentine ait dejenere bacak, ziplama organi (furcula) seklinde gelismistir. Bu üç takimda da agiz çukurunun yanlari kaynasarak birlesmis ve agiz parçalarinin etrafini çeviren bir bosluk meydana getirmislerdir. Diger iki apterygot böcek takimi olan Microcoryphia ve Thysanura vücut yapilari ve agiz parçalari göz önüne alinirsa bu ilk üç takimdan daha basit olsalarda daha sonra kanatli böceklerin meydana gelecegi yapilari gelistirmislerdir. Bu yapilarin en önemlileri daha uzun ve kuvvetli bacaklar ile tentoryumun (iç iskelet) dorsal ve posterior kollarinin gelismesidir. Microcoryphia bütün abdomen segmentlerinde stayli tasimasina ragmen Thysanura da ilk 6 abdomen segmentinde bu stayliler körelmistir ve tentoryum parçalari çok fazla gelismistir. Vücut daha genis ve yassidir. Bu sebeplerden dolayi, muhtemelen Thysanuraya yakin bir atadan çikan bir kol, yükselip alçalma kabiliyetini ve bununla birlikte yapisini da gelistirmesiyle böcek kanatlari ortaya çikmis ve bunun sonucu olarakta uçus ile kanatli böcekler türemistir. Kanatlarla hareket, böceklerinin patlama biçiminde gelismesini ve dallanmasini getirmistir. Ilk uçus yapabilen kanatlilarda kanat sert ve yelpaze gibi katli olup, abdomen üzerinde katlanip uzanamaz biçimdedir. Bu tür kanatlara sahip böcek takimlarina "Paleoptera" denmektedir. Paleopter takimlarin bugünkü yasiyan örnekleri Ephemeroptera ve Odonata'lardir. Paleoptera'dan ise kanatlari vücut üzerine yatirilabilen ve katlanabilen kanatlara sahip Neuptera türemis olup bu gruba hamamböcekleri ve çekirgeler dahildir. Böcekler paleozoik devirden yani 350 milyon yildan beri yasamaktadirlar. Bu gün için en ilkel böceklere ait kesin bir fosil kayiti elimizde yoktur. Ancak önceden de belirtildigi gibi çok bacakli (Chilopoda) bir hayvandan türemis olduklari kuvvetle muhtemeldir. Kayalarda bulunan fosil formlara göre elimizdeki ilk kayit Paleozoik'in Pensilvanian periyoduna ait olup 300 milyon yil öncesine gitmektedir. Ancak bu türlerin hiçbir temsilcisi günümüze erisememis ve nesilleri tükenmistir. Fakat hamamböcekleri ve pirimitif kanatsiz böcekler (Apterygotlar) ilk sekillerini bugüne kadar korumuslardir. Yine fosil formlara göre pensilvanian periyodun da (Carbonifer) büyük ormanliklarda kanat açikligi 30 inc= 75 cm. olan (l inc= 2.54 cm) Dragonfly (Odonata)' lara benzer böcekler yasamislardir. Palezoikin Permiyen (Perm) peryodunda buzullarin olusmasi, daglarin yükselmesi gibi yerkürede ve iklimde meydana gelen degisiklikler Holometaboli'nin (Tam baskalasim) ortaya çikmasina dolayisi ile böceklerin çesitlenmesine yol açmistir. Kabuklu böcekler (Coleoptera) ve sineklerin (Diptera) ortaya çikisi çok daha sonralara Mezozoik'in Trias periyoduna rastlamaktadir. Sinir kanatli (Neuroptera) böcekler ve kelebekler (Lepidoptera) ise 170 milyon sene önce Jura periyodunda ortaya çikmislardir. Çiçekli bitkilerin ortaya çikis devri olan Mezozoik'in Kretase periyodunda böcekler tam olarak gelisme imkani bulmus ve patlarcasina bir çesitlenme göstermislerdir. Senozoikte meydana gelmis olan ufak ve narin yapili türler bugün yasiyan örneklere aynen benzemekte olup bugün bile teshis edilebilir durumdadirlar. Ari, sinek ve kelebek gibi gruplar tozlasmayi saglamakta ve bu nedenle bitki evrimine paralel bir evrimlesme göstermektedir. Her jeolojik dönem bir böcek grubuyla simgelenmistir. Böcekler 3. zamanin (Sönozoik) en basarili hayvan grubudur. Bu devir ise "böcek devridir" ve diger hayvan gruplarindan belirli bir üstünlük göstermislerdir. Kanatsiz böcekler diger Tracheata gruplari gibi stigmalarla solunum yapan karasal hayvanlardir. Kanatli böcekler karasal biotalari isgal ederken, bir kismi larvalarinin yaptigi ikincil bir uyumla suya geçmis ve çesitlenme daha hizlanmistir.

http://www.biyologlar.com/boceklerin-kokeni-ve-evrimi


HYLEA

Havası çok nemli, sürekli yeşil kalan ve bütün yıl boyunca büyüme gösteren bitki örtüsü olan ve içinde çok sayıda hayvan türünü barındıran subtropik ve tropik ormanları içine alan kuşaktır. Bu yüzden balta girmemiş tropik ormanlarda hemen bütün hayvan grupları çok sayıda türle temsil edilir. Hayvanlarda çok değişik vücut şekilleri ve parlak renkler bulunur. Buralarda kuşlar ve böcekler (özellikle kelebekler) tür çeşitliliği ve renk zenginliği ile göze çarpar. Uygun iklim koşulları, öncelikle çok nemli hava ve don olayının görülmemesi bazı arkaik (eski) hayvan gruplarının barınmasına da olanak verir. Öteki bölgelerde ortadan kalkan ya da çok azalan hayvan türleri, burada zengin bir çeşitlenmeye ve yayılışa sahiptir. Bunlara, amfibiler (Gymnophion = körsemenderler), sürüngenler (büyük yılanlar, kaplumbağalar), çıplaksalyangozlar, karagirdapı solucanları, kütükayaklılar (Onychophora), çok güzel yapılı Buprestidae türleri örnek olarak verilebilir. Böcekler için genelde bütün takımların ve ilave olarak da yaşlı familyaların hyleada temsil edilmekte oldukları söylenebilir. Parazit derisinekleri (Chalcididae) ve kısa kınkanatlıların (Staphylinidae) tropik türleri, bilinen tür sayısının %50'den fazlasını oluşturur. Hyleadaki türler çoğunlukla az sayıda bireyle temsil edilir. Madde döngüsünün hızlı olması hylea için tipiktir. Organik maddelerin hemen hemen tümü ve keza gerekli olan minerallerin çoğu canlı vücudunda bulunduklarından, toprak hem organik madde hem de mineral bakımından çok fakirdir. Ölü ve atık organik maddelerin hemen parçalanması ve keza elektrolitlerle birlikte tekrar canlı vücuduna alınması nedeniyle, balta girmemiş ormanlardaki sular elektrolit bakımından son derece fakirdir ve ayrıca humus oluşumu da zor olmaktadır. Hızlı madde dönüşümünün bir sonucu besin maddesi birikimi de başlayamadığından, hyleadaki hayvan türleri (memeliler, kuşlar ve böcekler) birey bakımından az sayılarda bulunur. Yani onlara seyrek olarak (ya da tek tek) rastlanır; aynı besin üzerinden beslendiklerinden aynı türün sürü hali genellikle görülmez. Hayvanların kitle ya da sürü halindeki büyük topluluklarına, hyleanın ormanlaşmamış karasal ekosisteminde rastlanır. Tropik ormanlarda yaşayan ilkel kabilelerin nüfus yoğunluğu çok azdır. Çünkü toplayıcı ve avcı olarak geçimini sağlayan bu kabilelerin, büyük miktarlarda hayvansal besin bulmaları zordur. Son zamanlarda özellikle gelişmiş ülkelerin tüccarları, yangın çıkarmak suretiyle, hyleada belirli alanları ve aynı zamanda mineral yataklarını tahrip ederek, bu bölgeleri, ekonomik tropik bitkilerin (muz, kahve, hindistancevizi, mısır vs.) üretimine yönlendirmeye çalışmışlardır. Bu şekilde kazanılan topraklar, mineral bakımından fakir olduğu için, genellikle kısa zamanda verimsizleşmiştir. Birkaç yıl sonra yeni alanlar açılmak ve yeni yangınlar çıkarılmak suretiyle tahribatın boyutları gittikçe genişlemektedir. Bütün uyarılara karşın, bu tahribatlar, dünyanın geleceğini tehdit edecek şekilde sürüp gitmektedir. Bu yerlerde döküntü tipi yeni ikincil ormanları oluşmaktadır. Hyleanın asıl toplulukları hiçbir şekilde geri gelmemektedir. Tropik ülkelerdeki mali yetersizlikler ve politik karışıklıklar, bilimsel bir ağaçlandırmayı ve büyük bir titizlik gerektiren bir programın uygulamaya konmasını güçleştirmektedir. Böylece, sadece memeli ve kuşlar değil, bu bölgelerde yaşayan her çeşit canlı yok olma tehlikesiyle karşı karşıya gelmiş bulunmaktadır.

http://www.biyologlar.com/hylea

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi


Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler



Bakterilerin Teknoloji ve Endüstrideki Önemi

Bakteriler, çoğu zaman laktobasil türleri, maya ve küflerle beraber, fermante edilmiş gıdaların (peynir, turşu, soya sosu, sauerkraut, sirke, şarap ve yoğurt gibi) hazırlanmasında binlerce yıldır kullanılmaktadır. Bakterilerin çeşitli organik bileşikleri parçalayabilme yetenekleri dikkate değerdir ve atıkların işlenmesi ve değerlendirilmesinde (bioremediation) kullanılmıştır. Petroldeki hidrokarbonları sindirebilen bakteriler çoğu zaman petrol saçılmalarının temizlenmesinde kullanılır. 1989'da meydana gelen Exxon Valdez tanker kazasının ardından Prince William Sound kıyılarına gübre dökülerek bu doğal bakterilerin büyümesi teşvik edilmişti. Bu yöntem, çok fazla petrol kaplanmamış kıyılarda etkili olmuştu. Bakteriler ayrıca endüstriyel toksik atıkların değerlendirilmesinde de kullanılırlar. Kimya endüstrisinde, enantiyomerik olarak saf kimyasalların üretilmesinde (bunlar ilaç ve tarımsal kimyasalların hammadesidir) bakteriler önemli rol oynarlar. Bakteriler ayrıca biyolojik haşare kontrolünde haşare ilaçlarının yerine kullanılabilirler. Bunun en yaygın örneği, Gram pozitif bir toprak bakterisi olan Bacillus thuringiensisdir (BT olarak da adlandırılır). Bu bakterinin alt-türleri kelebeklere (Lepidoptera türlerine) özgül bir böcek öldürücü olarak kullanılır. Spesifik olmalarından dolayı bu böcek öldürücüler çevre dostu olarak kabul edilir; insanlara, yabani hayvanlara, polinasyon yapan ve diğer faydalı böceklere etkileri çok az veya hiçtir. Hızlı büyüme ve kolaylıkla manipüle edilebilmelerinden dolayı bakteriler moleküler biyoloji, genetik ve biyokimyada birer araç olarak kullanılırlar. Bakteri DNA'sında mutasyon yapıp bunun fenotipini inceleyerek bilimciler genlerin, enzimlerin ve metabolik patikaların işlevlerini belirleyebilmekte, sonra edindikleri bilgileri daha karmaşık canlılara uygulayabilmektedirler. Muazzam miktarda enzim kinetiği ve gen ifadesi verileri, canlıların matematiksel modellerinde kullanılarak hücrenin biyokimyasının anlanması amaçlanmaktadır. Çok çalışılmış bazı bakterilerde bu mümkündür, Escherichia coli metabolizmasının modelleri üretilmekte ve denenmektedir. Bakteri metabolizması ve genetiğinin bu seviyede anlaşılır olması sayesinde bakterilerin biyoteknoloji kullanılarak yeniden tasarımı mümkün olmakta, böylece onların tedavi amaçlı proteinleri (insülin, büyüme faktörleri veya antikorlar gibi) daha verimli sekilde üretmesi sağlanabilmektedir.

http://www.biyologlar.com/bakterilerin-teknoloji-ve-endustrideki-onemi


BÖCEKLERDE AĞIZ YAPISI VE AĞIZ TİPLERİ

Basin alt veya ön tarafina yerlesmis olan agiz üç extremite ve diger bazi parçaciklardan yapilmistir. Agiz, böcegin aldigi besinin sivi veya kati olmasi, herhangi bir hayvansal veya bitkisel doku içersinde bulunmasi sebebi ile degisik yapilar kazanmistir. Agiz parçaciklarinin yapisi, böceklerle savasta kullanilacak ilacin seçiminde önemli rol oynar. Örnegin, bitkiyi sokarak özsu emen bir böcekle savas için mide zehiri kullanmak bosunadir. Zira ilaç bitkinin yüzeyindedir ve böcek içerisinden besin almaktadir. Baslica agiz tipleri asagida belirtilmistir. Çigneyici agiz: Bu tipe isirici veya kemirici agiz adi da verilebilir. Adindan da anlasilacagi gibi bu sekilde agiz yapisina sahip böcekler besinlerini isirip çignemek suretiyle alirlar. Bu tipe örnek olarak Orthoptera, Coleoptera ve Isoptera takimlarina bagli böcekleri gösterebiliriz. Çigneyici agiz tipi esas yapidadir. Bunun degismesi ile diger tipler meydana gelir. Agiz parçalarinin üzeri bir deri uzantisindan ibaret olan labrum (üst dudak) tarafindan kismen örtülmüstür; bu genis ve yassi yapilidir. Esas agiz parçalarindan ilk çifti olan, kahverenkli ve saglam yapili mandibula, labrumun hemen altinda ve yanlara dogru yer almistir. Mandibulanin ödevi besin maddesini parçalamak oldugundan iç kisimlari keskin dislidir. Daha altta sagli sollu bir çift halinde I. maxilla vardir. Bu kisim üzerinde Cardo birinci maxillayi agiz boslugunun yanlarina baglar; Stipes birinci maxillanin tabanini olusturur. Diger parçaciklar buna baglidir. Bundan yanlara dogru uzanan birkaç halkadan ibaret ve antene benzer yapida olan kisim Maksillar palpus (çogul hali Palpi) adini alir. Genellikle üzerinde ince killar vardir ve tad alma görevini yüklenmistir. Stipes ve palpustan içeri dogru iki çigneyici kisim uzanir. Bunlardan biri Galea (dis çigneyici), digeri Lacinia (iç çigneyici)dir. Bu parçaciklar besinin daha ufak bir hale getirilmesi isini yapar. Agzin orta yerinde, iki kismin kaynasmasi ile simetrik tek bir parça halini almis olan II. Maxilla bulunmaktadir; bu birlesik parçaya labium adi da verilir. Bunun taban kismini, altta Submentum, üstte Mentum ve bunun ucunda Prementum olusturur. Prementum'un yanlarinda, asagiya dogru ikinci maxilla palpuslari anlamina gelen labial palpus bulunur. En ortada Glossa (dil) ve onun yanlarinda Paraglossa (yandil) yer almistir. Bu kisimlara ilave olarak agiz tabaninda ayrica Hipofarinks (labiumun içyüzeyinde yeralir, agiz tabaninin dil biçiminde uzayan kismidir) veEpifarinks (labrumun altinda ve gerisinde yeralir, tat alma organini olusturur) yeralir. Yalayici-emici agiz: Arilar (Hymenoptera)'in çogu besin maddelerini sekerli eriyikler halinde ve emerek aldiklarindan, agiz parçalari bu ise uygun sekillenmistir. Mandibullar, bir evvelki tipe nazaran ufalmis ancak fonksiyonlarini tamamen kaybetmemistir. Örnegin üzüm üzerinde beslenen bir ari önce mandibulalari vasitasi ile meyvenin kabugunu parçalar. Birinci maxillalarin esas tipte çok uzun olan palpuslari körelmis durumdadir. Buna karsi galea kalinlasmis ve uzamistir. Enine kesitte, bunun bir kilif olusturacak sekilde, diger kisimlari sardigi görülür. Labium bu tip agiz parçalarinin besin alma isini sagliyacak sekilde degisiklige ugramistir. Prementum ve buna bagli parçalardan glossa ve palpus'lar uzamis paraglossa ise aksine körelmistir. Glossanin meydana getirdigi boru enine kesitte gayet belirgin olarak görülür. Emici agiz: Kelebeklerde (Lepidoptera) agiz parçalarinin yapisi, esas yapiya nazaran bir hayli degisiklik gösterir. Labrum ve mandibula kisalmistir. Birinci maxilla, simdiye kadar görülenlerin aksine kaynasarak tek parça haline dönüsmüstür. Galea olaganüstü gelismis, bir hortum seklini almistir. Parçanin enine kesidi incelenirse herbir galeanin bir oluk seklinde oldugu ve bunlarin karsilikli durmalari ile de hortumun meydana geldigi görülür. Dinlenme halinde hortum kivrilmis olarak basin alt tarafinda durur. Beslenme sirasinda açilarak düz bir durum alir. Bununla beraber, bazi kelebeklerde hortum kismen veya tamamen dumura ugramistir. Ikinci maxillalarin sadece palpus kisimlari kalmistir ve bunlar basin ön tarafinda ileri veya yukari dogru uzanmis olarak durur. Sokucu-emici agiz: Bazi böcekler, bitki veya hayvan dokusu içerisinde bulunan sivilari emerek beslenirler. Bu sebep ile agiz yapilari evvela bu dokuyu delmeye, sonra siviyi emmeye elverisli durumda olmalidir. Bu tip agiz parçalarinin yapisinda, böcek gruplari arasinda bazi farklar bulmak mümkündür; bu yüzden sokucu-emici agiz yapilarini birkaç alt tipe ayirmak yerinde olur; *Alti igneli sokucu-emici agiz: Labium uzayarak bir Proboscis (hortum) halini almistir. Bunun üst tarafinda kalan boslugu gene uzamis yapida olan ve ayni zamanda sokucu igne durumunda ki labrum örter. Böylece labium meydana getirdigi oluk içersinde 6 igne göze çarpar. Bu ignelerin iki adedi mandibullalardan diger iki adedi birinci maxillalardan ve sonuncusu hypopharynx'den meydana gelmistir. Bu ignelerin uçlari disli oldugundan besini saklayan doku kolayca delinir. Hypopharynx'in ortasinin delik olusu sokulan hayvan dokusundan emilen kanin pihtilasmasini önleyici tükrük maddesinin akitilmasina yarar; bu delige tükrük maddesi kanali adi verilir. Kanin emildigi kanal ise hypopharynx ile labrum arasindaki bosluktur, emme kanali adini alir. Bu tipteki agiz yapisina Diptera takimina bagli bazi familyalarda (Culicidae, Tabanidae gibi) rastlanir. Sineklerde 4 igneli sokucu emici agiz da görülür. Önceki tipten farki mandibul ignelerinin olmayisi ve esas delici organin hypofarinx olusudur. Labrum, I. maxilla(2) ve hypopharyn, 4 igneyi olusturur. Salgi kanali hypopharynx içinde, beslenme kanali labrum ve hypopharynx arasindadir. *Dört igneli sokucu-emici agiz: Bir evvelki tipe nazaran fark, hyophorynx'ten yapilmis ignenin bulunmayisi ve labrumun ufak kalisi dolayisiyle sadece dört adet ignenin mevcut olusudur. Tükrük ve emme kanallarinin yeri de degismistir. Birinci gaganin dis segmentli kismi labiumdur ve 4 igne tasir. 2 mandibul, 2 tane I. maxilladan olusur. Labrum gaga kaidesinde kisa bir lobtur. Hypopharynx de gaga içinde kisa bir lob halindedir. Labium parçalamaz fakat örter. Maxillalar karsilikli gelerek besin ve emme kanallarini olusturur. Birinci Maxilla igneleri karisilikli duruslarinda aralarinda iki boru meydana getirirler. Bu boru veya kanallardan labrum tarafindaki emme, digeri tükrük kanalidir. Hemiptera ve Homoptera takimlarina bagli böceklerin agiz parçalari bu tiptedir. Dinlenme durumunda bas ve thorax'in altinda geriye dogru uzanmis olan hortum, beslenme sirasinda vücudu dik bir hale getirir; igneler doku içersine daldirildiginda, ikinci maxillanin olusturdugu oluk, kivrik vaziyette disarida kalir. *Iki igneli sokucu-emici agiz: Bazi Diptera'larda görülür. Madibulalar tamamen dumura ugramis ve birinci maxilladan ise geriye sadece palpus'lar kalmistir. Ikinci maxilla'nin teskil ettigi hortum içerisinde sadece iki igne görülür. Bunlardan birisi hypopharynx digeri labrumdan meydana gelmistir. Tükrük kanali hypopharynx içindeki delik olup emme kanali ise bununla labrum arasindaki bosluktur. Asil sokma isi labium (ikinci maxilla) tarafindan yapilir, ucunda iki ufak plak (labellum) vardir. Musca domestica L.'nin agiz yapisi esas itibariyle bu sekilde ise de yukarida bahsedilen iki igne ufalmistir. Maxilla ve mandibullar görev yapmaz. Ikinci maxillanin olusturdugu oluk içersinden ileriye dogru uzanan ve uçta genisleyerek iri çikinti halini alan labial sünger gibi bir yapi olan labelluma sahiptir. Bu sivi besine sokulur. Üzerinde incecik oluklar bulunmaktadir. Salgilanan tükrük bu oluklardan alinacak besin üzerine akitilir ve bu suretle eritilen besin maddesi ayri oluklar vasitasi ile alinarak özel olukla agiz bosluguna sevkedilir. Görüldügü üzere, karasinegin agiz parçalari yapisi sokucu-emici olmaktan ziyade bir çesit yalayici-emici tiptedir. Üç igneli sokucu-emici agiz: Bitki dokusunu sokarak beslenmeye uygun agiz yapisina sahip böcek takimlarindan birisi de Thysanoptera'dir. Bunlarin agizlarinda birisi sol mandibuladan, ikisi birinci maxilladan yapilmis 3 igne bulunur. Sag mandibul körelmistir. Pirelerin (Siphonaptera) agiz parçalari bu tipte olup, 1 tanesi epipharynx, 2 tanesi I.maxilladan (lacinia) olusmus 3 stilet içerir. Delme islemi kenarlari tirtikli olan maxillaya ait igneler tarafindan gerçeklestirilir. Emme kanali epipharynxle maxilla igneleri arasinda uzanirken, tükrük kanali maxillaya ait ignelerin karsilikli gelmesiyle olusan oluktur. Labial ve maxiller palpuslar dinlenme sirasinda stiletleri örter. Cervix veya Boyun Bas ile gövde arasindaki membran özelligindeki kisim boyun veya cervix'dir. Bazilari bunu microthorax adi ile ayri bir vücut segmenti olarak kabul ederlerse de bu hususu destekleyen pek az delil vardir. Daha ziyade cervix, labial bas segmenti ve prothorax segmenti ile bunlarin arasindaki bükülebilir özellikteki alani kapsar. Cervix'in içine basin gövde ile eklemlesmesine yarayan 2 çift cervical sclerit gömülü durumdadir. Her iki yanda bulunan ikiser sclerit birbiri ile mentese gibi baglanarak tek bir parça haline gelmistir. Bu parça anterior olarak basin post occiput kismi üzerindeki occipital condyl ile; posterior olarak ta prothorax ile eklemli baglanti olusturur. Cervical scleritler çogunlukla prothorax'in pleura'lari ile kaynasirlar. Genel Anlamda Böcek Segmentinin Gelisimi Bugün yasayan ilkel böcek gruplarinda ve Chilopoda'da bulunan yapi, her iki gruptaki vücut segmentlerinin bes özellik gösteren basit bir tipten evrimlestigi düsüncesini uyandirmaktadir. Bu özellikler sunlardir: l. Tergum veya thoraxda notum denen sklerotize dorsal plaka, 2. Ventralde yer alan sternum veya sklerotize plaka, 3. Tergum ve sternumu birlestiren tamamen membran özelliginde pleural bölge, 4. Bir çift segmentli bacak; bazal segment olan coxapodit, tergum ve sternum arasindaki membrana gömülü durumdadir. Coxapodit, bir bazal kisim (subcoxa) ve apikal kisim (coxa) olmak üzere iki kisma ayrilmistir. Subcoxa 3 sclerite ayrilmis durumdadir. 5. Her bir ayagin kaidesinin üst kisimdaki membran üzerinde bir stigma yer alir.

http://www.biyologlar.com/boceklerde-agiz-yapisi-ve-agiz-tipleri

Çiçeklerde Tozlaşma

Döllenmenin olabilmesi için, polen tanelerinin herhangi bir araç ile erkek organın başçık(arter) kısmında dişi organın tepecik(stigma) kısmına taşınması gerekir.Bu taşınma olayına tozlaşma adı verilir.Tozlaşma iki tipte olmaktadır.Bunlardan birisi çiçeğin dişi organına aynı çiçeğin erkek organından veya aynı bitkinin başka çiçeğinden çiçek tozu gelerek döllerse buna autogami denir. Bezelye,fasulye,pamuk,buğday,p irinç,domates ve tütün çiçeklerinde bu şekilde tozlaşma görülür. Bir diğer tozlaşma şeklinde ise bir çiçek üzerinde meydana gelen polenler aynı türden başka bir dişi çiçeğin dişi organına gelir ve döllenme olur. Buna da allogomi ve ya heterogomi denir. Bitkilerde çoğunlukla bu döllenme olur. Bunun sağlanması autogaminin önlenmesi içinde aynı çiçekteki erkek ve dişi organlar farklı zamanlar da olgunlaşır. Bazı bitki türlerinin eşey organları farklı yapılışta olup ,dişi organın boyuncuğunun uzunluğu ile erkek organın flamenti boy yönünden farklılık vardır ve autogami kısmen engellenmiş olur. ????: Web Hattı - Türkiyenin En Güncel Forumu www.webhatti.com/showthread.php?t=49183 Bitkilerde bu tozlaşma üç yolla olmaktadır; a)Rüzgar ile(anemofili): Tozlaşma rüzgar aracılığı ile olmaktadır. Bu bitkilerin çiçekleri genellikle küçük ve gösterişsizdir. Periant küçülmüş veya ortadan kalkmıştır. Stigmalar büyük ve dallanmıştır. Polen keseleri çok fazla polen ihtiva etmektedir ve polen taneleri küçük,hafif ve kurudurlar. Kavak,söğüt,ceviz,meşe,buğday ve diğer çayır otlarında bu tozlaşma olmaktadır. b)Su ile(hidrofili):Bazı su bitkilerin de görülür. c)Böcekler ile tozlaşma(emtemofili): Çiçekli bitkilerin büyük bir kısmında tozlaşma böcekler vasıtası ile olur.Bunlardan başlıcaları ;arılar,kelebekler,sinekler ve diğer kın kanatlılardır.Bazı bitkilerde kuşlar tozlaşmayı sağlamaktadır.Bu çiçekler,parlak ve güzel renkleri,ihtiva ettikleri bal özleri sayesinde böceklerin uğrak yeri olmaktadırlar. Bazen böcekler bal özü yerine polen tanelerinden besin olarak istifade ederler. Bir böcek bal özü veya polen tanesi yemek için bir çiçeğe konduğu zaman ,erkek organların başçıklarındaki polen tanelerinden bazıları böceğin dokunması ile yerinden ayrılır ve böceğin tüylü vücuduna yapışır. Bundan sonra böcek bu çiçekten ayrılıp başka bir çiçeğe konunca vücuduna yapışmış olan polenlerde beraber taşınarak çiçeğin stigmasına gelerek tozlaşma sağlanmış olur.

http://www.biyologlar.com/ciceklerde-tozlasma

BÖCEKLERDE THORAX KASLARI VE UÇMA

Kutikulanin olusmasiyla birlikte Annelid'lerdeki yuvarlak kaslar, enine kaslar halini almis ve integümentin belirli bölgelerine baglanarak üye kaslarini da olusturmustur. Uçma islevi meso ve metathoraxtaki kaslar tarafindan yüklenilmis olup, gögüs kaslarinin dogrudan dogruya (kanat hareketi daha yavas) ya da dolayli etkisiyle gerçeklestirilir.Dolayli etkiye sahip kaslar kanatla baglantili degildir, bu kaslar vücut duvarini hareket ettirmek suretiyle kanatlarin hareketini saglar, kanatlar çirpilmadan daha çok bir titresim hareketi ile yönlendirilir (prothorax içinde yer alan vertikal kaslarin kasilmalari sonucu, tergum alttan ve üstten asagi çekilerek kanadin yukari dogru hareket etmesi saglanirkan, boyuna kaslar bu hareketin tersi hareket olarak kanatlari asagiya indirir). IKI KANATLI GIBI DAVRANMA Ilkel kanatli böceklerde her kanat çifti kendi basina bagimsiz, fakat senkronize edilmis (iki kanat çiftide ayni zamanda çirpilir) olarak çirpilir. Diger gelismis kanatli böceklerde, aerodinamik bakimdan daha uygun bir yapi kazanilmasi için, islevsel ön ve arka kanatlarin birbirine baglanmasiyla olur. ön kanat, uçma islevini yürütmek için geliserek büyümüs, arka kanat ise küçülmüs, iyi uçan böceklerde ise ön kanadin bir parçasi gibi hareket etmeye baslamistir. Ön ve arka kanadin birbirine baglanmasi için çesitli yapilar gelismis olup, Jugatae olarak siniflandirilan ilkel kelebeklerde, ön kanat bazalinin arka kismi, Jugum denen parmak biçiminde bir çikinti tasir jugum ve distalinde yer alan kil demeti arka kanadin arka alt kismina geçerek iki kanadi birbirine baglar, Frenatae grubuna giren modern kelebeklerde ise, arka kanat costasinin bazelinde yer alan ve uzun killarla donanmis Frenulum olarak isimlendirilin çikintinin ön kanadin arka kenar alt kisminda bulunan Retinaculum denen bölgeye tutunmasiyla iki kanat birbirine baglanir. Diptera'da arka kanatlar, Strepsiptera takiminda ise ön kanatlar tamamen kaybolmus olup, denge organi görevini gören yapi haline dönüsmüstür. ve sineklerin bazilarinda daha ileri asama olarak metathoraxin tamamen körelmesiyle iki kanatlilik olusmustur degisikliklerle dört kanadin sanki iki kanatmis gibi hareket etmesi saglanmistir.

http://www.biyologlar.com/boceklerde-thorax-kaslari-ve-ucma

KARALARIN ZOOCOĞRAFİK BÖLGELERİ

Hayvanların yayılma alanlarının büyüklüğü, çeşitli hayvan gruplarında farklı olabilir. Bu, o canlının yaşam koşullarına, hareket yeteneğine, geçmiş devirlerdeki yayılma öyküsüne ve meydana çıktığı bölgenin coğrafik konumuna bağlıdır. Türün gelişim tarihinin eskiliği ile yayıldığı alanın genişliği arasında nadiren doğru bir orantı vardır. Çok farklı filogenetik yaşa sahip bazı cins ve türlere, taşınım olanaklarının fazla olması ve uyum yeteneklerinin yüksek olmasından dolayı, yeryüzünün tüm alanlarında rastlanabilir "Kozmopolit Türler". Zoocoğrafik açıdan fazla öneme sahip değillerdir. Kozmopolit hayvanlara, birhücreliler, tekerlekli hayvanlar (Rotifera) ve diğer küçük hayvanlar dahil değildir. Çünkü bunlar evcil hayvanların ve insanların paraziti olmaları ve kültüre alınabilmeleri nedeniyle kolayca yayılırlar. Ancak hiçbir hayvan türünün aynı zamanda kara, deniz ve tatlısularda yaşadığı saptanmamıştır. Yeryüzünün bütün kara kesimlerinde bulunan bazı kozmopolit hayvan türleri şunlardır: Peçelibaykuş (Tyto alba), balıkkartalı (Pandion haliaetus), gribalıkçıl (Ardea cinerea), günümüzde nadir rastlanan gezgindoğan (Falco peregrinus), devedikeni kelebeği (Vanessa cardui), lahanagüvesi (Plutella maculipennis) ve yine kelebeklerden Nannophila noctuella vs.dir. Buzul devrini izleyen sıcak dönemlerde, hayvanların, yüksek dağların tepelerine çekilmeleri "Boreal-Alpin Yayılma" olarak bilinir. İşte bugün kartavşanlarının, kartavuklarının ve bazı küçük hayvan gruplarının hem Alp Dağları'nda ve hem de kuzey kutup bölgesinde yaşamalarının nedeni budur. Hayvanların belirli bir iklim bölgesine bağlı kalarak yayılmasına "Bölgesel Yayılma" denir. Bu tür yayılmaya kuzey yarım kürenin ılıman bölgelerinde yaşayan köstebekler (Talpidae), kunduzlar (Castoridae), semenderler (Salamandridae), sombalıkları (Salmonidae), koşucu kınkanatlılar (Carabus) ve diğer bazıları örnek gösterilebilir. Tropik kuşakta buna benzer bölgesel yayılmaları, bazı kuş familyalarında, timsahlarda, Gymnophiona = köramfibiler'de ve çeşitli böcek familyalarında görmekteyiz. Bazı hayvanların sadece bir adada ya da adalar grubunda yaşamasına "İnsular Yayılma" denir. Orangutan yalnız Borneo ve Sumatra ormanlarında, birçok maymunsu yalnız Madagaskar adasında, kuzgun maymun ise Celebes adasında bulunur. Çok küçük adaların da kendine özgü hayvan gruplarının olduğu görülmüştür. Örneğin belirli kuş ve sürüngen familyaları, sadece Galapagos adalarında bulunmaktadır. Komodo varanı (Varanus komodensis), günümüzdeki en büyük kertenkele türü olup, sadece Komodo adasında yaşamaktadır. Yüksekliğin hayvanların yayılışında önemli etkisi vardır. Birçok hayvan türü, her zaman ağaç sınırının üstünde yaşar. Bunlara, yüksek alpin hayvan formları denir. Örneğin, ülkemizde, Pamphaginae (bir çekirge altfamilyası) türleri bunun için tipik örnektir. Birçoğu ise ancak alçak yerlerde yaşarlar. Batrochotetriginae (bir çekirge altfamilyası) türlerinin yayılışı da buna tipik örnektir. Bir türün ya da hayvan grubunun, büyük bir bölgenin her tarafına aralık bırakmadan yayılmış olmasına "Kesintisiz Yayılış", buna karşın, bir türün ya da yakın akraba hayvanlarının, büyük bir bölgede, aralıklar bırakarak yayılmasına "Kesintili Yayılış"; eğer farklı zooocoğrafik bölgelerde kesintili yayılış gösterirse buna da çok defa "Disjunkşın = Serpintili Yayılış" denir. Bu sonuncuya örnek olarak tapirleri verebiliriz. Tapirler, bugün, yalnız Güney Amerika ve Malezya'da bulunurlar. Bunların bulundukları alanlar birbirinden uzak ve ayrı bölgeler halindedir. Dağların uç kısımlarında yaşayan birçok hayvanın yayılışı da bu gruba girer. Örneğin dağkeçileri, kuzukartalları, apollo kelebekleri (Parnassius), birçok Alpinik böcek türü, Avrupa ve Asya'daki sıradağların birbirinden uzak mesafelerle ayrılan yüksekliklerinde yaşarlar.

http://www.biyologlar.com/karalarin-zoocografik-bolgeleri

MSS’nin Sitolojik Yapısı

Medulla Spinalis Omurga kanalı içinde, foramen magnumdan ikinci bel omuru hizasına kadar uzanır. Ortasında dar bir kanal bulunan uzun bir boru biçimindedir. Enine kesitte medulla spinalisin oval bir şekle sahip olduğu görülür. Posteriorda, dorsal median septum vasıtası ile medulla spinalis iki eşit parçaya ayrılır, anteriorda ise anterior (ventral) median fissura adında derin longitidünal bir yarık bulunur. Medulla spinalis tümüyle pia mater ile sarılmıştır. Pia mater anterior median fissuradan içeri doğru sokulur. Her ne kadar medulla spinalisin şekil ve yapısı değişik düzeylerde (8 servikal, 12 torasik, 5 lumbar, 5 sakral ve 1 koksigeal olmak üzere toplam 31 segment) varyasyonlar gösterirse de bütün düzeylerde temel görünüm aynıdır. Enine kesitte medulla spinalisin merkezinde, sinir hücrelerinden oluşmuş kelebek veya H şeklinde gri cevher (substantia nigra veya grisea) bulunur. H bölgesinin her iki tarafındaki uzantılar kornu anterior (ön boynuz) ve kornu posterior (arka boynuz) olarak adlandırılır. İlaveten torakolumbar bölgede (T1-L2) medulla spinaliste gri cevherden meydana gelmiş her iki yanda lateral boynuzlar bulunur. Burada perikaryonları küçük nöronlar yerleşim gösterir. Epandim hücreleri ile döşeli olan merkezi kanal H bölgesinini horizontal çizgisi üzerinde yer alır. Sinir hücreleri perikaryonları gruplar halinde gri cevherde bulunurlar, büyük motor nöronlar (Golgi tip I) anterior boynuzda yerleşmişlerdir. Bu nöronlar organizmanın en büyük hücreleri arasında sayılırlar (70-120 mikron). Uzun eksenleri omuriliğin uzun eksenine paralel düzenlenmiştir. Belirli bir düzen göstermeksizin ön boynuzda oldukça yoğun kümeler oluştururlar. Nöroplazmadaki Nissl tanecikleri kaba ve çok sayıdadır. Motor nöronların aksonları omuriliğin beyaz cevherine katılır, motor yolları ve çevresel sinirleri yaparlar. Dendritleri uzundur ve bunlar da beyaz cevherde yer alırlar. Arka boynuzda sinir hücrelerinin perikaryonları küçüktür, tek olabildikleri gibi gruplar halinde de gözlenebilirler. Bu hücreler arka boynuza gelen afferent uzantılarla sinaps yaparlar. Sinir liflerinden oluşan beyaz cevher, gri cevheri çevreler ve funikuluslara (longitidünal sütunlara) ayrılır. Gri cevherin posterior boynuzu ile dorsal median septum arasında posterior ya da dorsal funikulus uzanır. Beyaz cevherin (substantia alba) geri kalan kısmı ise ventral boynuz ve sinir kökleri vasıtası ile lateral sütunlara, anterior median fissura ile de ventral sütunlara ayrılmıştır. Posterior boynuzların uç kısmı ile medulla spinalis yüzeyinin arasında ince sinir liflerinin bulunduğu beyaz cevher bölgesine Lissauer hattı (Lissauer zone) adı verilmektedir. Gri madde uzantılarının beyaz maddeye karıştığı bölgeye Formasyo retikülaris denir. Gri cevher (Subtantia nigra) içerisinde bulunan sinir hücreleri multipolardır. Bazılarının aksonları medulla spinalisi ventral kök lifleri olarak terk eder. Bazıları ipsilateral ve kontralateral bölgelerdeki beyaz cevhere aksonlar gönderir (Golgi tip I nöronlar). Bazıları da kısa aksonlara sahiptir ki gri cevher içerisinde olmak üzere bu aksonların köken aldıkları hücrelere yakın bulunan nöronlarda sonlanır (Golgi tip II). Genellikle beyaz cevher perikaryon ve dendritlerden yoksun olup myelinli ve myelinsiz liflerden meydana gelmiştir. Medulla spinalisin yüzeyinde yalnızca nörogliadan oluşan ince bir marginal bölge bulunur. Medulla spinalis kesitinde, H şeklinde gri cevher ve çevresinde beyaz cevher izlenmektedir. Gri cevherin; merkezinde tek katlı silyalı Epandim hücreleri ile döşeli bir merkezi kanal, dorsal boynuzunda küçük perikaryonlara sahip duyu nöronları ve ventral boynuzunda daha büyük perikaryonlara sahip motor nöronlar yer almaktadır. Beyaz cevherde ise nöron perikaryonları bulunmamaktadır. Glia hücreleri hem kortekste hemde medullada yaygındır.H&E. Medulla spinalis kesitinde, gri cevherde merkezi kanal ve belirgin çekirdek ve çekirdekçiğe sahip yeşil renkli nöron perikaryonları izlenmektedir. Beyaz cevherde pembe renkli miyenli sinir lifleri görülmektedir. Lapham.

http://www.biyologlar.com/mssnin-sitolojik-yapisi

Böceklerde Sinir Sistemi

Böceklerin sinir sistemi bas içersinde özefagus üzerinde yerlesmis bir beyin ve ayni borunun altinda bulunan, beyin ile 2 yankol vasitasi ile temasta olan subözefagal ganglion ve sindirim sisteminin altinda yer alarak vücut boyunca uzanan ventral sinir kordonundan ibarettir. Beyin birlesms sekilde üç kisimdan meydana gelir. l. Protocerebrum: petek ve nokta gözlere sinir gönderir. 2.Deutocerebrum: antenlere sinir gönderir. 3.Tritocerebrum: 2 parça halinde özefagusun altindan geçen komissur ile birbirine bagli durumdadir. Beynin diger kisimlari tek parça olmasina karsin tritocerebrum kesin olarak çifttir. Uzun bir evrimsel gelisme sonucu orjininde agzin önünde olan beyin bugünkü böceklerde agizin üzerindedir. Protocrebrum ve Deutoserebrum özofagus üzerinde olup bu sebepten primitif prostomial beynin bir yapiti oldugu düsünülmektedir. Tritocerebrum deutocerebruma bunu takiben konnektif iplikleri ile baglandigindan ve bu baglantilarin özofagus altindan geçtiginden tritocerebrumun böcek atasina ait l. vücut segmenti yani simdi basla birlesmis olan vücut segmentine ait ganglion oldugu kabul edilmektedir. Suboesophagal gangliona gelince basta özefagus altinda yeralmis olup beyne büyük bir çift konnektifle birlesen büyük bir sinir merkezidir. Köken olarak, mandibular, maxillar ve labial segmentlere ait ganglionlarin birleserek kaynasmasindan meydana gelmistir. Bu kompoze gangliondan agiz parçalarina sinir kollari ayrilir ve bir çift konnektifle toraksa geçer. Toraks ve abdomende her segmentte ventral olarak tipik bir sinir ganglionu vardir. Bir segmentin ganglionu daha sonrakine bir çift konnektifle baglanir. Bunun tümü protoraxtan geriye uzanan bir zincir meydana getirir. Bu zincir ventral sinir kordonudur; subözofagal ganglionla boyundan geçen konnektif araciligi ile birlesir. Torakstaki ganglionlar bacak ve kanatlari kontrol eden sinirleri gönderir. Abdomene ait ganglionlar ise abdomen kaslarina ve abdomen üyelerine kollar gönderir. Stomodeal sinir sistemine gelince böceklerde sindirim sisteminin ön bölümünü, dorsal kan damarinin bir takim motorize hareketlerini kontrol eden simpatik sinir sistemi mevcuttur. (Birçok sinir kollarinin görevleri henüz tam olarak bilinmemektedir. Fakat sindirim sistemine ait tahminler gerçege daha çok uygundur. Çünkü sistemin degisik bölümleri stomodeum yanlarinda veya üzerindedir.) Stomadeal sinir sistemi merkezinin frontal ganglion oldugu kuvvetle muhtemeldir ki bu kisim beynin önünde ve tritocerebruma bir çift kolla baglanir. Frontal gangliondan geriye dogru yönelik çikan sinir özefagus üzerinde bir ganglion ve sinir sistemi ile baglanir. Occipetal ganglion denen bu grup ise stomadeumu, salgi bezlerini, tükrük bezlerini aortu ve agiz parçalarina ait kaslari idare eder. Böceklerde organlarin merkezi sinir sistemi ile olan ilgisi çok siki degildir. Örnegin böcegin beyninden organlara ayrilan sinir kollari kesilirse böcek yine yürür, uçar, yer fakat genel olarak vücut kontrolu kaybolur. Beyin tamamen çikarilirsa yine yasar fakat örnegin agzina besin verilmedikçe yiyemez. Beyin, böcegin genel yasayisi ve hayatsal fonksiyonlarinin düzenli bir sekilde yürütülmesinde rolü büyüktür. Görme, isitme, koklama, tatma, dokunum sinir sistemi araciliyla gerçeklestirilir. Böceklerde, koklama, tatma, dokunum, ile ilgili yapilar organlarin daha çok deri kisminda bulunur. Anten ve palpuslar duyu organlari bakimindan çok zengindir. Vücudu örten killarin dibine gelen sinir kollari nedeniyle killara dokununca vücut hareketsiz kalir. Tad alma organi agizdadir. Sivi haldeki maddeleri tadi alinir. Bu organlar kisa ve küt koniler seklindedir. Bazi böcek gruplarinda örnegin kelebek ve sineklerin bazi türlerinde bu organlar ayakta bulunur. Böceklerin bir çogu koku ve tat ayirmada insanlardan çok ileridir. Insanlarin birbirine karistirdiklari koku ve tadlari böcekler ayirtedilir; örnegin bal arilari üzüm sekeri ile sakkarini daha besini almadan ayirtedebilmektedirler. Koku alma, böcek yasaminda önemli rol oynar. Bu sayede erkek ve disi birbirini bulur. Yumurta koyacaklari ortami bulurlar. Koloni fertleri yabancilari bu yolla ayirtedebilir. Birçok böceklerin isi duygusuda vardir. Çesitli isi derecelerinin oldugu ortama koyulunca en çok tercih ettikleri kisimda toplanirlar. Neme karsi duyarlilikta ayni sekildedir.

http://www.biyologlar.com/boceklerde-sinir-sistemi

Böcekler ( Insecta)

Böcekler Arhropoda (eklembacaklılar) filumunun Insecta (böcekler) sınıfını oluşturur. Böcekler hayvanlar aleminin en geniş filumudur: hem birey sayısı hem de uyum sağlama ve yeryüzüne dağılım açısından. Böcekler sınıfı 2 alt sınıfa ayrılır: Apterygota (kanatsız böcekler) ve Pterygota (kanatlı böcekler). Apterygota altsınıfının Protura, Thysanura (kılkuyruk), Diplura ve Collembola (yay kuyruk) gibi 4 takım içinde sınıflandırılan üyeleri ilkel, kanatsız ve genellikle başkalaşmasız böceklerdir; bunlarda, erişkinlerin ağız parçaları baş kapsülüne tek bir noktada eklemlenir. 27 takımdan oluşan Pterygota altsınıfının üyeleri daha üstün yapılı, kanatlı, kanatlı ve başkalaşma geçiren böceklerdir; bunlarda, erişkinlerin ağız parçaları baş kapsülüne iki noktada eklemlenir. Bu altsınıfın iki bölümünden biri olan Exopterygota, yarı başkalaşmalı böcekleri içerir ve 17 takıma ayrılır: gün sinekleri, hamamböceği, cırcırböceği, kulağa kaçanlar, cadı çekirgeleri, eşkanatlılar, termitler, ısırıcı bitler, tahta kurusu... Altsınıfın ikinci bölümü olan ve tüm başkalaşmalı böcekleri içeren Endopterygota bölümü ise 10 takıma ayrılır: deve sinekleri, kelebek, arı, karınca, sinekler,pireler... Bütün eklem bacaklılarda olduğu gibi, böceklerin de bacakları eklemli, gövdeleri bölütlü ve genellikle bir dış iskeletle korunmuştur. Bu sınıfın üyelerini eklembacaklıların öbür sınıflarından ayıran temel özellikler ise şunlardır: Öbür eklembacaklılarda gövde 2 bölümden oluşurken, böceklerde baş, göğüs ve karın olmak üzere 3 bölümden oluşur; Öbür eklembacaklıların hiçbirinde kanat bulunmazken, bu sınıfın üyelerinin çoğu kanatlıdır; öbür eklembacaklılardaki en az 4 çift bacağa karşılık böceklerin 3 çift bacağı vardır. Nitekim bazı uzmanlar böcekler sınıfını, altı bacaklı anlamına gelen Hexapoda terimiyle adlandırır. Böceklerin başlıca özelliklerinden biri olan kanat yapısı ise, sınıflandırma ve adlandırmada temel olarak alınır: Düzkanatlılar, yarım kanatlılar, kın kanatlılar, pul kanatlılar, zar kanatlılar gibi. Böceklerin yaşam çevrimi genellikle yumurtayla başlar. Türlerin çoğunda, çevre koşulları elverişli olmadıkça lavra yumurtanın içinden çıkmaz ve türden göre ya duraklama durumuna geçerek gelişmesini erteler yada gelişmesini tamamladıktan sonra uyku durumuna geçerek koşulların düzelmesini bekler. Yumurtadan çıkan lavra, kitinli kabuğu sertleşinceye değin hava yutarak şişer. Bu dış iskelet bir kez sertleştikten sonra artık büyümediği için, böcek geliştikçe bu daralan kabuğu atıp, yeni ve daha geniş bir kabuk oluşturarak birkaç kez deri değiştirir. Böceklerin lavra biçimleri 5 grupta toplanabilir : tırtıla benzeyen lavralar, tombul ve kıvrık lavralar, uzun,yassı ve hareketli lavralar, telkurduna benzeyen lavralar ve bacaksız lavralar. Hemen hemen bütün böceklerde eşeyli üreme, bazılarında döllenmesiz çoğalma, bir bölümünde de tek eşeylilik görülür.

http://www.biyologlar.com/bocekler-insecta

 
3WTURK CMS v6.03WTURK CMS v6.0