Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 161 kayıt bulundu.

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Evrim Nedir

“Bilimler, düşündügümüzün tam tersi bir düzen içinde geliştiler. Bize en uzak olan şeylerin yasalari en önce bulundu, sonra yavaş yavaş daha yakinlara sira geldi: Ilkin gökler, arkadan yer, sonra hayvanlarla bitmkilerin yaşami, sonra insan gövedesi en sonra da (Yine de en yarim yamala) insan zihni. Bu durumun anlaşilamayaca bir yani yoktur... Yalniz teme doga yasalarinin bulunmasi degil, dünyanin uzun süreli gelişmesiyle ilgil ögretinin kurulmasi da gökbilimle başladi; ama bu ikinci öncekinden ayri bir konuya gezegenimizde yaşamin başlayip gelişmesi konusunua uygulaniyordu daha çok. Şimdi gözden geçirecegimiz evrim ögretisi gökbilimle başlamişsa da yerbilim ile biyoloji açilarindan daha büyük bir önem kazanmiş, ayrica Copernicus sisteminin zaferinden sonra gökbilimin karşisina dikilen daha rinegen tanribilimsel önyargilarla savaşmak zorunda kalmiştir. Modern kafanın, uzun süreli bir gelişme kavramının ne denli yeni olduğunu görmes güçtür; gerçekte de bütünüyle Newton’dan sonraki bir düyşüncedir bu. Kutsal Kitap ’a dayanan inanca göre evren altı günde yaratılmış, o zamandan beri, şimdi içinde bulanan bütün göklü yaratıklara, bütün phayvanlarla bitkilere, Büyük Sel’in yokettiği daha başka birçok canlııya yurtluk etmişti.Birçok tanrıbilimcinin söylediklerine, bütün Hıristiyanların inandıklarına göre Düşüşş zamanında evrene yasa olabilecek bir gelişme şöyle dursun, her türlü kötülüğün korkunç bir kaynaşması görülüyordu. Tanrı, Adem ile Havva’ya belli bir ağacın meyvesini yememesini söyledi; ama onlar dinlemeyip yediler.Bunun üzerine Tanrı , onların, kendi soylarından gelecekelerin bütünüyle birlikte ölümlü olmalarını, küçük bir azınlık bir yana, en uzak torunlarının bile cehennemde sonsuz ceza çekmelerini emretti; bu küçük azınlığın da neye göre seçileceği tartışmalıydı. Adem, günahı işler işlemez, hayvanlar birbirlerini avlamaya, dikenler göğermeye başlamış, birbirinden ayrı mevsimler ortaya çıkmış, toprak da lanetlenmiş, ağır bir emek karşılığı olmadıkça insanoğluna hiçbir şey vermemesi emredilmişti. İnsanlar öyelesine azalmışlardı ki, Tanrı, Nuh ile üç oğlu ve karılarından başka hepsini Büyük Sel’de boğmuştu. Bu cezadan sonra da uslandıkları sanılmıyordu; ama Tanrı, artık başka bir evrensel felaket göndermeyeceğine söz vermişti ancak arasıra yaptığı su basıknlarıyla, depremlerle yetiniyordu. Bilmeliyiz ki bütün bunlar ya doğrudan doğruya Kutsal Kitap ’ta yer alan, ya da Kutsal Kitap ’takilerden, tümdengelimden çıkarılan kesin gerçekler olarak benimseniyorlardı. Dünya’nın yaratılış yılı, Oluş (Genesis ) da adı anılan her atanın, en büyük oğlu doğduğunda kaç yaşında olduğunu söyleyen soy dizilerinden çıkarılabilir. Bu konularda,İ brani yazması ile Septuagint yazması (Tevrat’ın İÖ 270 yılında 70 kişi tarafından başlanılan Yunanca çevirisi) arasındaki ayrılıklardan ya da anlaşılma güçlüklerinden doğan karıştıtlıklar da ortaya çıkabilyordu; sonunda Protestanlar genel olarak başpiskopos Usher’in ileri sürdüğü İÖ 4004 yılını dünanın yaratılış yılı kabul ettiler. Cambridge Üniversitesi’nin Yardımcı Başkanı Dr. Lightfood yaratıtılış yılı konusunda bu bilgiyi benimsemiş, Oluş’un yakından incelenmesiyle daha başka bir çok konunun da büyük bir seçiklik kazanacağını düyşünmüştü; onun söylediğine göre insan 23 Ekim sabahı saat 9'da yaratılmıştır; ama bu da bir inanç sorunuydu;Oluş’tan çıkaracağınız birtakım kanıtlara dayanarak, Adem ile Havva’nın, 16 Ekim’de ya da 30 Ekim’de varedildiklerine inanmanızda, dinsiz sayılma sakıncası yoktur. Yaratılış gününün Cuma olduğu da biliniyordu tabi, çünkü Tanrı, Cumartesi günü dinlenmişti. Bilimin de bu dar sınırlar içinde kalması istenmiş, gördüğümüz evrenin 6000 yıllık değil çok daha yaşlı olduğunu düşünenler alay konusu olmuşlardır. Gerçi böyle kimseler artık yakılmıyor, hapsedilmiyorlardı; ama tanrıbilimciler bunlarını yaşamalaranı zehir etmek, öğretilerinin yayılmasına engel olmak için ellerinden geleni geri koymuyorlardı. Newton, Copernicus sistemi kabul edildikten sonra, dinsel inançları sarsacak bir şey yapmış olmuyordu. Kendisi de koyu bir Hıristiyan, Kutsal Kitap ’a inanan bir kimseydi. Onun evreni, içinde gelişmeler bulunmayan bir evren değildi, söylediklerinde bu konuya hiç rastlamıyoruz; ama herhalde bütün evrenin tek parçadan yaratıldığına inanıyordu. Gezegenlerin Güneşin çekiminden kurtulmalarını sağlayan teğetsel hızlarını açıklarken, hepsinin başlangıçta Tanrı eliyle boşluğa fırlatılmış olduklarının tasarlıyordu; bundan sonra olup bitenler de genel çekim yasasıyla açıklanıyordu. Newton’un, Bentley’e yazmış olduğu özel bir mektupta bütün evrenin Güneş sisteminin ilkel bir parçalanmasından doğmuş olabileceğini ileri sürdüğü doğrudur; ama topluluk karşısında ya da resmi olarak söylediklerine bakılırsa, Güneş ile gezegenlerin birdenbire yaratılmış olduklarını benimseyen, evrensel evrime hiçbir şey tanımayan bir düşünceden yana olduğu görülür. 18. yüzyılın özel inanç biçim Newton’dan alınmadır; buna göre evrenin ilk yaratıcısı olan Tanrı, temel yasalar da koymuş, yaptığı kurallarla da gelecekteki bütün olayları kendisinin bir daha araya girmesini gerektirmeyecek biçimde belirlemiştir. Koyu dinciler göre yasalarla açıklanamayacak durumlar da vardı: dinle ilgili mucizeler. Ama yaratancılara göre herşey doğal yasalarla yönetiliyordu. Pope’ un İnsan Üstüne Deneme iki görüşle de karşılaşırız. Bir parçada: Her şeye yeterli ilk güç, ayri ayri degil, genel yasalarla hareket eder, pek azdir bunun dişinda kalan. Ama dinsel bağın unutulduğu anlarda, hiçbir duruma ayrıcalık tanımaz: Doğa’nğın zincirinden hangi halkayı koparsanız, onuncu olsun, on birinci olsun fark etmez, kırılıverir zincir. Aşamalı sistemler, şaşkınlık veren o bütüne uyarak, hep birbirleri gibi yuvarlanıp giderlerken en küzük bir karışıklık koca bir sistemi yıkmakla kalmaz, bütünü de yıkar. Yer dengesini yitirir, fırlar yörengesinden; gezgenler, güneşler, yasasız koşarlar gökyüzünde; yönetici melekler göklerinden uğrarlar, varlık varlık üstüne dünya dünya üstüne yığılır; bütün temelleri göklerin eğilir merrkeze doğru. Doğa titrer tahtı önünde Tanrının! Yasaların Yetkisi sözünden, Kraliçe Anne zamanında olduğu gibi, politik durulma anlaşılıyor, devrimler çağının geçtiğine inanılıyordu. İnsanlar yeniden değişiklik istemeye başlayınca, doğal yasaların işlyeşi ikonusundaki görüşleri de kural olmaktan çıktı. Güneşin gelişimi konusunda ciddi bir bilimsel kuram koymaya girişen ilk kimse 1755 yilinda Göklerin Genel Doga Tarihi ile Kurami ya da Newton Ilkelerini Uygulayarak Evrenin Bütün Yapisinin Kuruluşu ve Mekaki Kynagi Üzerinde Araştirma adli kitabiyla Kant olmuştur. Bu kitap, kimi yönleriyle modern gökbilimin sonuçlarini önceden gören çok önemli bir yapittir. Çiplak gözle görülebilen bütün yildizlarin tek sisteme, Samanyolu’na bagli olduklarini söyleyerek başlar. Bütürn bu yildizlar hemen hemen bir düzlemde yer alirlar. Kant’a göre bunlar arasinda da tipki Güneşş sistemindekine benzer bir birlik göze çarpar. Olagaüstü bir düşsel karayişla Nebula’nin da sonsuz uzaklikta yildiz kümelerinden başka bir şey olmadigini söylemiştir; bugün de genellikle tutulan görüş budur. Nebula’nin, Samanyolu’nun, yildizlarin, gezegenlerin takimyildizlarinin gerçekte dağınık olan bir maddenin küme küme yoğunlaşmasından ortaya çıktıklarını ileri süren-yer yer, matematik kanıtlara dayanmamakla birlikte, daha sonraki buluşların eşiğine dayanmış- bir kuramı vardır. maddesel evrenin sınırsızlığına inanır, bunun Yaratıcı’nın sınırsızlığına yaraşacak tek görüş olduğunu söyler. Kant’ın düşüncesine göre karışıklıktan örgütlenmeye doğru aşamalı bir geçiş evrenin çekim merkezinden başlar, yavaş yavaş bu noktadan en uzak kesimlere değin yayılır; sonsuz bir uzayda olup biten sonsuz zaman isteyen bir işledir bu. Kant’ın yapıtının önemli yönlerinden birincisi maddesel evreni bir bütün, Samanayoluyla Nebula’nın da bu bütünün birimleri olarak düşünen görüş; ikincisi de uzaydaki hemen hemen anlaşılmaz bir madde dağılmasından doğan aşamalaı gelişim fikridir. Bu, birden yaratılma düşüncesi yerine evrimi koyan ilk adaımdır, böyle bir görüşün Dünya’yla değil de göklerle ilgili bir kuramla ortaya çıkmış olması da ilgi çekicidir. Türlü nedenlerden dolayı Kant’ın yapıtına ilgi azdı. (B.Russel, Din ile Bilim s: 35-39) Kitap yayımlandığı zaman Kant otuz bir yaşındaydı., büyük bir üne ulaşmış değildi daha. Bir matematikçi ya da fizikçi değil, filozoftu; kendi başına olan bir sistemin, durup dururken bir dönme kazanacağını tasarlaması, dinamik konusundaki yetersizliğini gösterir. Ayrıca, kuramı yer yer katıksız bir düştü; örneğin bir gezegen Güneşten ne denli uzaksa içinde yaşayanlar da o denli daha üstündür diye düşünüyordu; bu görüş insan soyu konusunda gösterdiği alçakgönülüllükle birlikte, bilimsel dayanaklardan yoksundur. Bu nedenlerden dolayı Laplace aynı konuda daha yetkili bir kuram ortaya koyuncaya dek Kant’ın yapıtı hemen hemen göze çarpmamıştır bile. Laplace’ın ünlü varsayımı ilk olarak, 1796'da Dünya Sisteminin Açıklaması adlı kitabın yayımlanmasıyla ortaya çıktı; Laplace, söylediklerinin çoğunun daha önce Kant tarafından söylenmiş oluduğunu bilmiyordu bile. Söylediğinin bir varsayımdan başka hiçbir şey olmadığına inanıyor; bunu “gözlem ya da hesap sonucu olmayan herşeydeki güvensizlik” diyen bir notla belirtiyordu; ama şimdi değişmiş olan bu varsalyım o zaman bütün bir yüzyıl boyunca düşünce alanına egemen oldu. Laplace’a göre Güneş sistemi ile gezeneler sistemi bu zamanlar çok geniş bir nebulaydı; bu nebula yavaş yavaş büzüldü. Büzülünce de daha hızlı dönmeye başladı; merkeçkaç gücü ile koparak uçan topraklar gezegen oldular; aynı işlemin tekrarlanmasıyla gezegenlerin uyduları ortaya çıktı. Laplace, Fransız Devrimi çağında yaşadığı için tam bir özgür düşünürdü. Yaratılışı bütünüyle yadsıyordu. Göklü bir hükümdara beslenen inancın yeryüzü hükümdarlarına da saygı uyandıracağına inanan Napoleon, Laplace’ın büyük yapıtı Celestial Mechanics ’de Tanrı adının neden hiç anılmadığını sorunca, büyük gökbilimci, “Efendimiz, o varsayımla işim yok benim ” diye karşılık vermişti. Tanrıbilimciler diş biliyorlardı tabii; ama Laplace’a olan öfkeleri, tanrıtanımazlık akımı ile devrim Fransa’sının türlü azgınlıkları karşısında duydukları korku yanında hiç kalıyordu. Hem o güne dek gökbilimcilere açtıkları her savaş boşuna çaba olmuştu. Yerbilimsel görüşün gelişmesi, bir bakima gökbilimdekinin tam tersi oldu. Gökbilimde göksel cizsimlerin degişmezi oldugu kanisi, yerini göksel cisimlerin aşamali bir gelişim geçirdiklerini söyleyen kurama birakti; ama yerbilimde, hizli, karmakarişik degişikliklerin geçirilmiş oldugu eski bir dönemin varligina inanilirken, bilim ilerledikçe, degişikliklerin her zaman için, uzun bir süreyi gerektirdikleri inanci yerleşti. Oysa daha önce, bütün dünya tarihini alti bin yila sigdirmak gerekiyordu. Tortul kayalardan, lav birikintilerinden elde edilen kanitlar incelenirken, bunlarin ilgili bulundugu felaketlerin eskiden çok yaygin olduklari tasarlaniyordu, çünkü sinirli bir zaman içinde olup bitmişti hepsi. Bilimsel gelişme yönünden yerbilimin gökbilimden ne denli geri kaldigi,Newton zamanindaki durumundan anlaşilabilir. 1695'te Woodward “yer kabugundaki bütün kalinti katmanlari birkaç ay içinde birikmiştir” diyordu. On dört yil önce (1681'de) sonralari Charterhouse’a başkanlik etmiş olan Thomas Burnet, Yer’in Aslini Şimdiye Dek Geçirmiş Oldugu ya da Her şey Bütünleniceye Dek Geçirecegi Degişiklikleri Açiklayan Kutsal Yer Kurami adili kitabini yayimlamişti. Büyük Sel’den önce Güneş yörengesi düzleminde bulunan Ekvator’un, selden sonra şimdiki egik duruma geldigine inaniyordu (Bu degişikligin Düşüş sirasinda oldugunu düşünen Milton’un görüşü tanribilimsel yönden daha dogrudur) Burnet’in düşüncesine göre, güneşin isisiyla yerkabugu çatlamiş, yeraltindaki sularin bu yariklardan fişkirmasiyla sel olmuştur. Ikinci bir felaketin, büyük selden bin yil sonra görüldügüne inaniyordu. Görüşlerini incelerken yine de dikkatli olmak gerekir, örnegin tanrisal cezaya inanmiyordu. Daha da kötsü, Düşüşü’ün ders alinacak bir öyküden başka bir şey olmadigin söylüyordu. Encylpaedia Britannicca’dan ögrendigimize göre, bu ininçlarindan dolayi “kral onu saray rahipliginden uzaklaştirmak zorunda kalmiştir”. Whiston 1696'da yayimladigi kitabinda Burnet’in Ekvator’la ilgili yanliş görüşüyle öbür yanlişlarindan kaçinmaya çalişmiştir. Bu kitabin yazilmasinda bir bakima 1680 kuyrukluyildizinin payi olmuştur; bu belki de Whiston’a, Büyük Sel’in de bir kuyruklu yildizdan ileri gelmiş olabilecegini düşündürmüştür. Bir noktada, Kutsal Kitap ’a bagliligin derecesi tartişma götürür; yaratiliştaki alti günün bildigimiz günlerden daha uzun olduklarini düşünüyordu. Woodward, Burnet ve Whiston’un, çağlarının öbür yerbilimcilerinden daha aşağı oldukları sanılmamalıdır. Tam tersine zamanlarını en iyi yerbilimcileriydiler; Whiston, Locke’un çok büyük övgülerine konu oluşturmuştur. 18. yy’da, hemen hemen her şeyin sudan geldigini söyleyen Neptün’cü okulla, her şeyi yanardaglarla depremlere baglayan Volakanci okul arasinda uzun bir çatişma görülür. Birinciler durmadan Büyük Sel’in kanitlarini topluyorlar, daglarin yüksek kesimlerinde bulunan taşil (fosil) kalintilara büyük bir önem yüklüyorlardi. Dinsel görüşe daha çok bagliydilar, bundan dolayi bu görüşün düşmanlari, bulununa taşillarin gerçek hayvan kalinilari olamayacagini söylemeye kalkiştilar. Voltaire aşiri şüpheyle davrandi bu konuda; bu taşillarin gerçekten yaşamiş hayvanlardan kalma olduklarını yadsımayacak duruma gelince, bunların dağlardan yolu geçen hacılarca atılmış, düşürülmüş olduklarını ileri sürdü. Bu örenkte, dogmatik özgür düşünce, bilime aykırılıkla dinsel düşünceden daha baskın çıkmıştır. Büyük doğacı Buffon, 1749'da yayımladığı Doğal Tarih adıl kitabında, Paris’teki Sorbonne Tanrıbilim Fakültesinin “Kilise öğretisine aykırı” olmakla suçlandırdığoı on dört önerme ileri sürdü. Bu önermelerden biri, yerbilimle ilgili olarak: “ Şimdi yeryüzünde bulunan dağlar, vadiler ikincil nedenlerden doğmuştur, aynı nedenler zamanla bütün kıtaları, tepeleri, vadileri yok ederek yerlerine yenilerini getireceklerdir” diyordu. Burada “ikincil nedenler” Tanrı’ın yaratıcı emirleri dışında kalan büün öbür nedenler anlamındadır; oysa 1749'da dinsel görüş, dağlarıyla, vadileriyle, denizlerinin, karalarının, dağılışıyla bütün dünyanın, şimdi gördüğümüz biçimde yaratılmış olduğuna inanmayı gerektiriyordu; yalnız bir mucize ile değişikliğe uğramış olan Lut Gölü bunun dışında sayılıyordu. Buffon, Sorbonne ile bir çatışmaya girişmenin iyi olmayacağını düşündü. Sözlerini geri alarak şu itirafı yayımlamak zorunda kaldı: “Kutsal Kitap ’a aykırı şeyler söylemek amacında olmadığımı; Kutsal Kutap’ta yaratışı konusunda söylenenlerin gerçekliğine, belirtilen sürelerin doğruluğuna bütün gücümle inandığımı; kitabımda, yerin oluşumu konusunda bütün söyledilerimden, genel olarak Musa’nın söyledikleriyle çelişebilecek bir şeyden vazgeçtiğimi açıklarım.” Burada açıkça görüldüğü gibi, tanrıbilimcilerin Galilei ile olan çatışmadan aldıkları ders gökbilim sınırları içinde kalmıştı. Yerbilim konusunda modern bir bilimsel görüş ortaya koyan ilk yazar, ilkin 1788'de, sonra daha genişleterek 1795'te yayimladigi Yer Kurami adli kitabi ile Hutton olmuştur.Söyledigine göre, geçmiş çaglarda yer yüzeyinin geçirmiş oldugu degişiklikler bugün de sürüp gitmekte olan nedenlerden ileri gelmişti, bu nedenlerin eski çaglarda şimdikinden daha etkili olduklarini düşünmek yersizdi.Bu, temel bakimdan saglam bir görüşse de, Hutton bu görüşün kimi yönlerini çok geliştirmiş, kimi yönleri üzerinde de geregi ölçüsünde durmamiştir. Deniz dibinde biriken tortulara bakarak, kitalarin ortadan kalkişini aşinmaya bagliyordu; ama yeni kitalarin ortaya çikişini,birden gelmiş büyük degişikliklerle açikliyordu. karalarin birden bire batmasini ya da yavaş bir süreyle yükselmesini, gerektigi ölçüde anlayamamiştir. Ama onun gününden beri bütün yerbilimciler, geçmişteki degişiklikleri yapan etkenlerin bugün kiyilarin yavaş yavaş degişmelerinde, dag yüksekliklerinin artip eksilmesinde, deniz dibinin yükselip alçalmasinda payi olan etkenlerden ayri olmadiklarini söyleyen yöntemi benimsemişlerdir. (B. Russel, Din ile Bilim s:40-43 ) İnsanların bu görüşü daha önce benimsememiş olmaları, yalnızca Musa’cı zaman bilgisi yüzündendir. Oluş’a bağlı kimseler, Hutton ile öğrencisi Playfair’e çok ağır saldırılarda bulunmuşlardır.Lyell “Din tutkusu Hutton öğretilerine karşı coşmuştu, bu çatışmada başvurulan hileler, aşırılıklar inanılacak gibi değildir, İngilliz halkının düşüncelerinin o zamanlar nasıl ateşli bir heyecanla kamçılandığını anımsayamayan okur bütün bunları anlayamaz.” diyor. “Fransa’da birtakım yazarlar yıllardır bütün güçleriyle Hıristiyan inancının temellerini çökertmeye çalışıyorlardı; bir yandan bu yazarların başarıları, bir yandan da Devrim’in sonuçları, en gözüpek kafaları uyandırmıştı; ama daha yüreksiz olanların kafalarında yenilik korkusu, korkunç bir düş gibi sürüp gidiyordu.” 1795 İngiltere’sinde hemen hemen bütün zenginler Kutsal Kutap’a karşıt her öğretiyi mallarına yönelmiş bir saldırı, bir giyotin tehditi olarak görüyorlardı. İngiliz düşüncesi yıllarca, Devrim’den önceki özgürlüğünden bile yoksun kaldı. Taşillarin soyu tükenmiş canlilara, yaşam biçimlerine birer kanit olduklari düşünülerek yerbilimin daha sonraki gelişimi biyolojininki ile karişti.Dünyanin ilkçaglari söz konusu olunca, yerbilim il e tanribilim alti “gün”ün alti “çag” sayilmasi gerektigini söyleyerek uzlaşiyorlardi. Ama canlilar konusunda tanribilimin ileri sürdügü bir sürü kesinlemeyi, bilimle uzlaştirmak gitgide daha güç bir iş oldu. Düşüş zamanina dek hayvanlardan hiçbiri öbürünü yememişti; şimdi varolan hayvanlar Nuh’un gemisine alinan hayvanlarin soyundandirlar(Dip not: Bu düşüncenin de güçlükleri yok degildi. St Augustine tanri’nin sinekleri yaratmasindaki nedeni bilmedigini söylmek zorunda kalmişti. Luther daha da ileri giderek, sineklerin, iyi kitaplar yazarken kendisini rahatsiz etsinler diye Şeytan tarafindan yaratildiklarini söylemiştir. Bu ikinci düşünce daha degerlidir kuşkusuz), şimdi soyu tükenmiş olanlar ise selde bogulmuşlardir. Yaratilan türler hiçbir degişiklige ugrayamazlardi; herbiri ayri bir yaratma eyleminin sonucuydu. Bu önermelerin herhangibiriyle ilgili bir soru sormak, tanribilimcileri öfkelendirmek demekti. Güçlükler Yeni Dünya’nın bulunmasıylla başlamıştı. Amerika, Ağrı Dağından çok uzakta bir ülkeydi; ama yine de aradaki ülkelerin hiçbirinde görülmeyen birçok hayvan yaşıyordu orada. Bu hayvanlar bunca uzak yoldan nasıl gelmişlerdi, üstelik, türlerinden bir tekini bile yolda bırakmamışlardı. Kimileri onları denizcilerin getirmiş olduklarını düşündüler ama kendisini Kızılderilileri dine sokmaya adayan, sonra kendi inancını da güç kurtarabilen sofu Jesuit Joseph Acosta böyle bir varsayımı şaşkınlıkla karşılamıştı. Kızılderililerin Doğal ve Töresel Tarihi (1590) adlı yapıtında bu sorunu çok olumlu bir biçimde tartışır der ki: “ İnsanların bunca uzak bir yolculukta, Peru’ya tilkiler götürmek için başlarını derde sokmuş olduklarını kim düşünüebilir, hele şimdiye dek gördüklerimin en pisi olan o ‘Acias’ türünü? Kaplanlar ya da aslanlar götürmüş olduklarını kim söyleyebilir? Böyle düşünenlere gülünse yeridir doğrusu. Bir fırtınayla ellerinde olmaksızın, bunca uzun, bilinmez bir yolculuğa sürüklenmiş olan insanlar kendi canlarının derdine düşmüşlerdir herhalde, yoksa başlarına gelenler yetmiyormuş gibi kurtlar, tilkiler götürmeye kalkışıp iki taşın arasında, bir de onları beslemekle uğraşmamışlardır. Bunun üzerine tanrıbilimciler pis Acias’la benzeri hayvanların Güneş etkisiyle kendiliklerinden, bataklıklardan türemiş olduklarına inandılar; ne yazık ki Nuh’un gemisinde bununla ilgili hiçbir ipucu yoktu. Ama başka çıkar yol da yoktu. Örneğin, adlarının da belirtildiği gibi, yerlerinden zor kımıldayan Sloth’lar (Sloth, Amerika’da yaşayan, ağır ağır yürür, ağaçlara tırmanır hayvanlar, Bu sözcük ayrıca tembellik anlamına da gelir.) nasıl Ağrı Dağı’ndan yola çıkıp hep birlikte Amerika’ya ulaşmış olabilirler? Başka bir güçlük de hayvanbilimin gelişmesiyle elde edilen, hayvan türlerinin sayisindan dogdu. Şimdi bu sayi iki imilyonu bulmuştu, her türden iki hayvanin gemiye alindigi göz önünde tutulunca, geminin biraz fazlaca kalabalik olabilecegi düşünüldü. Hem, Adem hepsine ayri ayri ad takmişti; bunca çok sayida hayvani adlandirmak yaşamin tam başlangicinda biraz agir bir iş olurdu. Avusturalya’nin bulunmasi yeni güçlükler çikardi. Neden bütün kangurular Torres Bozagi’ndan atlamişlar, geride bir çift bile kalmamişti? Biyoloji alanindaki gelişmeler yüzünden, Güneş’in etkisiyle batakliklardan bir çift kangurunun türemiş oldugunu düşünmek de pek güçtü artik; ama böyle bir kuram her zamankinden daha gerekliydi. Bu türden güçlükler, bütün 19. yy boyunca din adamlarının kafalarını oyaladı durdu. Örneğin, Tanrı’nın Zorunlu Varlığı ’nın yazarı William Gillespie’nin Hugh Miller ve Başkalarından Verilmiş Örneklerle Yerbilimcilerin Tanrıbilimi adlı kitapçığı okuyunuz Bir İskoç tanrıbilimcisinin yazdığı bu kitap 1859'da Darwin’in Türlerin Kökeni ile aynı yılda çıktı. Yerbilimcilerin korkunç önermeleri üzerinde durur, onyların “düşünülmesi bile korkunç günahların öncüleri” olduklarını söyler. Yazarın üzerinde durduğu ana sorun, Hugh Miller’in Kayaların Tanıklığı adlı kitabında ileri sürdüğü “insan ilk günahı işleyip acı çekmeye başlamadan önce de hayvanlar arasında şimdiki savaş vardı” düşüncesidir. Hugh Miller, insanın yaratılışından önce yaşayıp soyları tükenmiş hayvan türlerini birbirlerine karşı başvurdukları ölüm, işkence yollarını bütün korkulu yanlarıyla, canlı bir biçimde anlatır. Dine bağlı bir kimse olduğu için tanrı’nın günahsız yaratıklara neden böyle acı çektirdiğini bir türlü anlayamıyordu. Mr. Gillespie, kanıtlara gözlerini kapayarak, küçük hayvanların insanın ilk günahından dolayı acı çektiklerini, yine bundan dolayı öldüklerini söyleyen dinsel görüşü körükörüne savunuyor; Kutsal Kitap’tan aldığı “insanla geldi ölüm” sözleriyle, Adem’in elmayı yediği zamana değin hiçbir hayvanın ölmemiş olduğunu tanıtlamaya kalkışıyordu(Dip not: Bütün eski öğretilerin ortak görüşüydü bu. tıpkı bunun gibi Wesley, Düşüş’ten önce “Örümcek de sinek gibi dokuncasızdı, kan için pusuda beklemiyordu” der). Hugh Miller’in, soyu tükenmiş hayvanların boğuşmaları konusunda söylediklerini göstererek, İyiliksever bir Yaratıcı böyle canavarlar yaratmış olamaz diyordu. Bütün bunlara peki diyelim Ama daha aşırı düşünceleri pek gariptir. Herhalde yerbilimin kanıtlarını yadsımaya yeltenmiş, ama yiğitliği daha baskın çıkmıştır. Belki de vardı böyle canavarlar, ama onlar doğrudan doğruya Tanrı eliyle yaratılmamışlardır, diyordu. Başlangıçta iyi yaratıklardı, sonradan şeytan ayarttı onları; ya da belki Gadarene domuzu gibi, cinleri barındıran hayvan gövdeleriydi bunlar. Tevrat’ın, birçokları için sürçme-taşı olan Gadarene domuzu öyküsüne neden yer verdiği anlaşılır burda. Biyoloji alanında, dinsel görüşü kurtarmak için, Edmund Gosse’un babası, doğa bilgini Gosse garip bir yelteni gösterdi.Dünyanın eskiliği konusunda yerbilimcilerin ileri sürmüş oldukları bütün kanıtları kabul etti; ama Yaratılış sırasında herşeyin eskiymiş gibi yapılmış olduğunu ileri sürdü. Kuramının gerçek olmadığını tanıtlayacak, mantığa uygun bir yol yoktur. Tanrıbilimciler, Adem’le Havva’nın tıpkı doğumla dünyaya gelen insanlar gibi göbekleri olduğunu söylüyorlardı.(Belki de Gosse kitabına Omphalos adını bunun için vermiştir) Bunun gibi, öbür yaratılanla da eski bir biçimde yaratılmışlardı belki.Kayalar taşıl kanıtlarla doldurulmuş volkanların ya da tortul birikmelerin etkisine uğramış gibi yapılmış olabilirlerdi. Ama böyle olanaklar bir kez benimsendi mi, dünya şu zaman ya da bu zaman yaratılmıştır diye tartışmanın hiçbir anlamı kalmaz. Hepimiz anılarla, çoraplarımızda delikler, saçımız sakalımız uzamış bir halde bir halde beş dakika önce dünyaya gelmiş olabiliriz. Mantıkça olağan bu duruma, kimse inanamazdı; Gosse umduğunun tam tersine , din ile bilim arasında yaptığı, mantık yönünden eşsiz uzlaştırmaya, hiçmkmisenin inanmadığını gördü. Onun oüşüncelerini tanımayan tanrıbilimciler, daha önceki öfkelerinin çoğunu bırakıp azıyla durumlarını kurtarmaya çalıştılar. Bitkilerle hayvanların üreme, değişme yoluyla uzun süreli bir evrim geçirdiklerini söyleyen öğreti biyolojiye yerbilimden geldi daha çok; bu kuram üçe ayrılabilir..İlk gerçek,-ancak, uzak çağlarla ilgili bir gerçekten umulabilecek kesinlikte bir gerçek bu- küçük canlıların daha eski oldukları, daha karmaşık bir bir yapı taşıyan canlıların ise gelişmenin sonlarına doğru ortaya çıktıklarıdır. İkincisi, daha sonraki, çok daha üstün yapılı canlılar kendiliklerinden ortaya çıkmamışlar, bir değişmeler dizisinden geçerek daha önceki canlılardan türemişlerdir; biyolojide “evrim” ile söylenmek istenen budur. Üçüncüsü, bütünlükten uzak olkala birlikte, evrimin işleyişini, örneğin değişmenin belli canlıların yaşayıp öbürlerinin silinip gitmlerinin nedenlerini araştıran bir çalışma vardır. İşleyşişkonusunda daha birçok karanlık noktalar bulunmakla birlikte, evrim öğretisi bugün bütün evrence benimsenmiştir. Darwin’in başlıca tarihsel evrimi daha olağan gösteren bir işleyiş- doğal seçim- ileri sürmüş olmasıdır; ama ileri sürdüğü, kendisinden hemen sonra gelenlerce kolay benimsenmişse de, yirminci yüzyılın bilim adamlarına göre pek yetersizdir. Evrim öğrtisine önem veren ilk biyoloji bilgini Lamarck (1744-1829) oldu. Öğretileri kabul edilmedi, çünkü türlerin değişmezliği konusundaki önyargı geçerlikteydi daha, üstelik ileri sürdüğü değişim süreci de bilimsel kafaların benimseyebileceği gibi değildi. Bir hayvanın gövdesinde beliren yeni bir organın, duyulan yeni bir istekten ileri geldiğine inanıyor, tek örnekte görülen bu yeniliğin, sonra bütün soya geçtiğini düşünüyordu. İkinci varsayım olmadan, birincisi evrim için pek yetersiz bir açıklamaydı Birinci varsayımın, yeni türlerin gelişiminde önemli bir öğe olmayacağını söyleyen Darwin, kendi issteminde pek geniş bir yer tutmamasına karşın, ikinciyi benimsiyordu. Tek örneklerde ortaya çıkan değişikliklerin bütün bir soya geçktiğini söyleyen ikinci varsayıma Weissmann bütün gücüyle karşı koydu, bu çekişme bugün bile sürüp gitmektedir, ama elde edilen kanıtlar bir kaç ayırıcı durum dışında, soya geçen bütün yeni özeliklerin yumurta hücdresiyle ilgili değişiklikler olduğunu göstermektedir. Bu bakımdan Lamarck’ın evrimi işleyişi konusunda söyledikleri kabul edilemez. Lyell’in yeryuvarlağı ile yaşamın eskiliğini sağlam kanıtlarla savunan Yerbilimin (Jeolojinin) İlkeleri adlı kitabı 1839'da ilk baıldığı zaman dine bağlı kimseler arasında büyük bir yaygarayla karşılandı, oysa kitabın ilk basıkıılarında canlıların evrimi varbsayımını savunan çok şey yoktu. Lamarck’ın kuramlarını titizlikle eleştiriyor, bilimsel kanıtlara dayanarak çürütyordu. Darwin’in Türlerin Kökeni (1859) çıkışından sonra yaptığı yeni baskılarda ise evrim kuramını savunuyordu. Darwin’in kuramı, laisser-faire ekonomi düzeniyle işleyen bitki hayvan dünyasını da kavramaktaydı, Malthus nüfus kuramı da Darwin kuramına dayanıyordu. Bütün canlıların büyük bir hızla yayılmalarından dolayı, her kuşağın büyük çoğunluğunun daha çoğalma çağına varmadan ölmesi gerekmektedir. Dişi bir morina balığı yılda 9 milyon yumurta yumurtlar. Bu yumurtaların hepsinden yeni morina balıkları çıksa, birkaç yıla varmaz bütün deniz silme morinayla dolar, karalar yeni bir sele uğrardı. Fillerden başka, öbür hayvanların hepsinden daha yavaş artan insan topluluklarının da her yirmi beş yıl içinde iki kat olduklarıbilinmektedir. Bütün dünyadaki insanlar bu hızla çoğalsalar, önümüzdeki iki yüz yıl içinde insan sayısı beşyüzbin milyonu bulur. Oysa, hayvan-bitki topluluklarının gerçekte, bir kural gereği sayıca hep aynı düzeyde kaldıklarını görüyoruz; birçok dönemlerde insan toplulukları için de durum aynı olmuştur. Buradan çıkan sonuca göre bir türün, kendilerine üstünlük sağlayan bir yanlarıyla öbürlerinden ayrılan kimi üyelerinin, süreklilikleri daha olağandır. Ayrılan özellik sonradan kazanılma ise arkadan gelen kuşaklara geçmez ama doğuştansa yeni kuşaklarda, küçük bir oran da olsa bile izler bırakabilir.Lamarck zürafanın boyunun yüksek dallara ulaşabilme çabasından dolayı uzadığını, bu çabanın sonucunun da soydan soya geçtiğini düşünüyordu; Weismann’ın yaptığı değişikliklerle Darwinci görüş, zürafaların, uzun boyunluluğa doğuştan bir eğilim taşıdıklarını, böylece açlıktan ölebilme sakıncasından kurtulduklarını, bundan dolayı kendilerinden sonraya da yine uzun boyunlu, daha çok sayıda zürafa bıraktıklarını, kimilerini anne babalarından da daha uszun boyunlu olduklarını söylüyordu. Böylece zürafanın bu özelliği, daha çok uzamanın hiçbir yarar sağlamayacağı zamanına dek gitgide gelişecekti. Darwinin kuramı, nedenelri bilinmeyen tek tük değişikliklerin görülmesine dayanıyordu.Ele alınan herhangi bir çiftin bütün çocuklarının aynı olmadıkları bir gerçekti. Evcil hayvanlar yapay seçmeler sonucunda büyük bir değişikliğe uğruyorlardı: İnsanın aracılığı ile inekler daha çok süt vermeye başlıyor, yarış atları daha hızlı koşuyorlar, koyunlar daha çok yün veriyorlardı. Böyle olgular, seçmenin ne sonuçlar doğurabileceği konusunda Darwin’e en açık kanıtları sağlıyorlardı. Yetiştiricilerin bir balığı keseli bir hayvana, keseli bir hayvanı bir maymuna dönüştüremeyecekleri açıktır; ama bu gibi büyük değişikliklerin, yerbilimcilerin söylediği sayısız çağlar sonucunda ortaya çıkmaları olağan bir şeydir. Hem birçok durumlarda ataların ortaklığına kanıtlar da vardır.Taşıllar, geçmiş çağlarda şimdi çok yaygın olan türlerin karışımı hayvanların yaşadıklarını gösteriyorlar; Pterodaktil, örneğin, yarı kuş yarı sürüngendi. Döllenme konusunda çalışan bilginler, gelişme evreleri sırasında, kimi olgunlaşmamış hayvanlarda daha önceki biçimlerin yeniden ortaya çıktıklarını göstermişlerdir; belli bir dönemde bir memelide, iyice gelişmemiş balık solungaçları göze çarpar; bunlar bütünüyle yarasızdırlar, ancak soyla ilgili tarihsel değişikliklerin başlıca etkenlerinin evrim ile doğal seçme olduğunu göstermek için, türlü yollardan kanıtlar ileri sürüldü. Darwincilik, tanrıbilime Copernicus’culuktan geri kalmayan bir tokat oldu. Yalnızca Oluş’ta ileri sürülen ayrı ayrı yaratma eylemlerini, türlerin değişmezliklerini çürütmekle; yaşamın başlangıcından beri, dinsel görüşe taban tabana karşıt, usa sığmaz bir sürenin geçmiş olduğunu söylemekle; Tanrı’nın iyilikseverliği ile açıklanan, canlıların çevreye uyumunu, doğal seçmeye bağlamakla kalmıyor; hepsinden kötüsü, evrimciler insanın daha aşağı hayvan soylarından türediğini savunuyorlardı. Tanrıbilimcilerle öğrenimsiz kimseler, gerçekte kuramın bu noktasına takılıyorlardı. “Darwin insanın maymun soyundan geldiğini söylüyor!” diye bir yaygara koptu dünyada. Bir ara, kendisinin maymuna benzerliğinden dolayı böyle bir şeye inandığı söylendi( oysa benzemiyordu). Çocukken, öğretmenlerimden biri büyük bir ciddiyetle şu sözleri söylemişti bana: “Darwinci olursan acırım sana, bir kimse hem Darwinci hem Hıristiyan olamaz ” Bugün bile Tennessee’de evrim öğretisini yaymak yasalara aykırıdır, çünkü bu öğreti Tanrı Sözü’ne karşıt sayılmaktadır. Her zaman olduğu gibi tanrıbilimciler, yeni öğretinin doğuracağı sonuçları, bu öğretiyi savunanlardan daha çabuk kavradılar, ileri sürülen kanıtlara inanmakla birlikte dine bağlılıkla dirediler, önceki inançlarını ellerinden geldiğince korumaya çabaladılar.Özellikle 19. yy’da yeni öğreti, savunucularının düşüncesizliğinden dolayı büyük bir hız gösterdi, bu yüzden, daha ağır bir değişikliğe alışılmadan arkadan öbürü bastırdı.Bir yeniliğin bütün sonuçları bir arada ileri sürülürse, alışkanlıkların tepkisi öyle büyük olur ki bu tepkiyle yeniliğin bütünü birden terslenir; oysa her on ya da yirmi yılda bir atılacak yeni adımlarla, gelişme yolu boyunca büyük bir direnmeyle karşılaştırılmadan, alışkanlıklar yavaş yavaş uyutabilirdi. 19. yy’ın büyük adamları gerekliği sugötürmez bir devrimi başarıya ulaştırmak istiyorlardı ama kafaları ya da politikaları yönünden devrimci görünmüyorlardı Yenilikçilerin bu yolda davranışları 19. yy’ın önemli bir gelişme çağı olmasına yardım etti. Tanrıbilimciler yine de neyin olup bittiğini halktan daha iyi biliyorlardı. İnsanların ruhlarının ölümsüz olduğunu, maymunlarda ise böyle bir özelliğin bulunmadığını;İsa’nın maymunları değil insanları kurtarmak için öldüğünü; insanlarda tanrıca bir iyiyi kötüyü ayırt etme duygusu varken, maymunların yalnızca içgüdülerle hareket ettiklerini söylemeye başladılar.İnsanlar kavranamayacak ölçüde uzun süreli bir değişme sonunda maymundan türedilerse, tanrıbilimce önemli olan bu özellikleri ne zaman kazandılar ansızın? 1860'ta, Türlerin Kökeni ’nin yayımlanmasından bir yıl sonra, Bishop Wilberforce Darwinciliğe karşı gürleyerek bayrak açtı: “Bu doğal seçme ilkesi bütünüyle Tanrı Sözü’ne aykırıdır” Ama bütün parlak sözler bir işe yaramadı, Darwin’i başarıyla savunan Huxley bu sözleri herkesin anlayabileceği biçimde çürüttü. Artık kilisenin kızgınlığına kimse aldırmıyşordu., Chichester başpapazı bir ünversite vaazında: “İlk anne-babamızın yaratılış tarihini, anlamındaki bütün açıklığa karşın kabul etmeyip, yerine şu modern evrim düşünü koymak isteyenler isnoğlunun kurtuluşu konusundaki bütün düşünceleri çökertmlektedirler diyerek Oxford’u uyarmaya çalıştı; öte yandan Kutsal Kitap’ın öğretisine bağlı olmamakla birlikte dinsel görüşü destekleyen Carlyle, Darwin için “kirli bir dinin peygamberi” dedi, ama bunların hepsi etkisiz kaldı, hayvan-bitki türlerinin evrimi kısa zamanda biyoloji bilginlerinin de benimsedikleri bir öğreti oldu. Bilim çevreleri dışındaki laik Hıristiyanların tutumuna, Gladstone’un davranışı iyi bir örnektir. Bu özgür önder bütün çabalarına karşın, çağının özgür bir çağ olmasını önleyemedi.1864'te tanrısal adalete inanmadıklarından dolayı cezalandırılmaları istenen iki din adamıyla ilgili karar, Kral’ın Danışma Kurulu’nun yargıçları tarafından bozulunca, Gladstone öfkelenerek, böyle olursa “Hıristiyanlığa inanmak ya da inanmamak konusunda büyük bir umursamazlık”çıkar ortaya demişti. Darwin’in kuramı ilk basıldığında, yöneticiliğe alışmış bir kimsenin halden anlarlığıyla: “ ... evrim diye adlandırılan gerçek ile, Tanrı’nın yaratma işine son verilmiş; dünyayı değişmez yasalar uyarınca yönetmekten uzaklaştırılmıştır” demişti. Ama Darwin’e özel bir kızgınlığı yoktu. Yavaş yavaş tutumunu değiştirdi, 1877'de Darwin’le görüşmeye bile gitti, bütün görüşme sırasında da durmadan Bulgar zulmünden söz etti Ayrıldığında Darwin büyük bir saflıkla : “ Böyle büyük bir adamın beni görmeye gelmesi ne onur!” diyordu. Gladstone’da Darwin’le ilgili izlenim kalıp kalmadığı konusunda ise tarih bir şey söylemiyor. Günümüzde din, evrim öğretisine göre kendisine çekidüzen vermiş, yeni yeni düşünceler bile sürmüştür ortaya. “Çağlar içinden akıp gelen, büyüyen bir amaç vardır.” Evrim de Tanrı’nın kafasındaki bir düşüncenin çağlar boyunca açılmasıdır. Bütün bunlardan, Hugh Miller’i uzun uzun uğraştıran, hayvanların, birbirlerine korkunç boynuzlarla, can alıcı iğnelerle işkence ettikleri o çağlarda her şeye yeterli tanrının elini kolunu bağlayıp daha da çetin işkence yollarıyla gitgide daha artan zorbalığıyla, eninde sonunda insanoğlunun ortaya çıkmasını beklediği anlaşılıyordu. Büyük Yaratıcı, neden böyle birtakım işlemlere başvurdu da doğrudan doğruya gerçekleştirmedi isteğini, bunu söylemiyorlar modern tanrıbilimciler. Bu konudaki şüphelerimizi giderecek çok şey de söylemiyorlar. Alfabeyi öğrendikten sonra, elde ettiği şeyin bunca emeğe değmediğini düşünen bir çocuk gibi duyuyoruz kendimizi ister istemez. Ama bu bir beeni sorunudur ne de olsa. Evrim üzerine kurulmuş herhangi bir tanribilim ögretisine yöneltilebilecek daha agir bir itiraz vardir. Bin sekiz yüz altmiş, yetmiş siralarinda, evrimin geçen moda oldugu siralarda, gelişim, dünyanin bir yasasi sayiliyordu. Her yil daha zengin olmuyor muyduk, azalan vergilere karşin bütçemiz gitgide kabarmiyor muydu? Bizim kurdugumuz düzen dünyaya parmak isirtan bir düzen, parlamentomuz bütün yabanci aydinlarin öykündügü bir örnek degil miydi? Gelişimin hep böyle sürüp gideceginden şüphe den var miydi? Böyle bir dünyada evrim, günlük yaşamin bir genellemesinden başka bir şey degildi sanki. Ama zaman bile daha düşünceli olanlar, öbür yani görebiliyordu. Gelişim saglayan yasalar çöküşü de hazirlar. Bir gün Güneş soguyacak, yeryüzünde yaşam sona erecektir. Bütün bu hayvanlar, bitkiler tarihi, çok sicak çaglarla çok soguk çaglar arasinda bir geçiş dönemi olacaktir. Evrensel gelişim yasasi olmayacak, yalniz enerji dagilimi yüzünden dünyada hafifçe aşagiya egimli, yukari aşagi bir salinma görüleceketir. Bugünkü bilimin çok olagan saydigi, bizim umutlari kirilmiş kuşagimizin da kolayca inanacagi bir sondur bu. Şimdiki bilgimizle kavrayabildigimiz ölçüde evrimden, iyimser sonuçlara baglayabilecegimiz bir felsefe çikarilamaz. (B. Russel, Din ile Bilim s: 44-53) “1953'te, AmerikalıJ ames Watson ve İngiliz Francis Crick tarafından DNA’nın ikili sarmal yapısına, ardından, 60'lı yıllarda, genetik kodlama mekanizmasına ilişkin olağanüstü keşiflerden sonra, moleküler biyoloji yerinde saymıştı. Vaatlerini tutar gibi görünmüyordu. Öyle ki bakterilerin genomu (genetik programın bütünü) üzerindeki çalışmalardan hayvana ve a fortiori insana gidecek olan yol, geçit vermez görünüyordu. Bakteri genomonon işlevi hakkında çok şey bilinyordu; ama gelişmiş hayvanların DNA’sı ile çalışılmaya geçildiğinde bir bilmece silsilesiyle karşılaşıylıyordu. Genetiğin pratik uygulamalarının belirsiz bir geleceğe itelenmiş olmasından kaygı duyulabilirdi. Derken 70'lı yıllarda, Amerikalı araştırmacılardan oluşan küçük bir ekipten, hayvan ya da insan geninin bir bakteri aracılığıyla yeniden üretimine olanak sağlayan bir bilim kurgu tekniği çıkageldi. Bir geni ya da insan genomunun bir kısmını parçalara ayırıp sonra da bunu bir bakterini içine yerleştirmek mümkün oluyordu. Bakteri, birkaç saatte, içine yerleştirilmiş genin kopyasıyla birlikte, milyarlarca örnek halinde çoğalıyordu (bu işlem, genlerin klonajı diye adlandırılır). Ve bu milyarlarca bakteriden yola çıkarak, bir okadar sayıdaki gen saf halre eldeediliyordu. Araştirmacilar daha da iyisini başardilar: bir insan genini bir bakteri içinde klonlamayi başardiklari andan itibaren, o genin bakterinin içinde faaileyt göstermesini sagladilar, yani sonuçta, bakteriye, genin kodladigi proteini büyük miktarlarda üretebildiler. Aslinda, bakterideki bir genin açiga çikarilmasi çok özel koşullar gerektirir ve genellikle işlem çok hassastir. Böylece, istenen genlerin ve iyi belirlenmiş genom parçalarinin tükenmez mitarlarina ulaşilmasi, genetik araştirmasinda yepyeni ufuklar açiyordu. Ve tip alaninda dogrudan DNA üzerinde çalişilabilecegi düşüncesi dogmaya başliyordu. Bugün moleküler biyoloji diye kutsanana terim, sözü uzatmaktan başka bir terim degildir. Eger biyoloji moleküler degilse, o zaman başkaca nasil bir biyoloji olabilecegini sormak gerekir. Ama bu her zaman böyle degildi. 1940'li yillarda DNA molekülü keşfedildiginde, bazilari , başlangiçta, hiçbir işe yaramayan kimyasal bir maddenin söz konusu oldugunu düşündü! 1978'de Jean Dausset’in laboratuvari, DNA konusundaki çalişmaya henüz bütünüyle yabanciydi... Genetik etkenler (DNA’nın taşıdığı bilgiler), tıpkı otuz yıl önce Jean Dausset’nin yaptığı gibi hücreler, daha doğrusu hücre yüzeyleri incelenerek, hep dolaylı bir biçimde çözümlenirdi. Çok uzun bir süre bir antite olarak kalan genin kendisi üzerinde hiç çalışılmazdı. Yalnız şu da var: hiçbir şey, bir proteini çözümlemektendaha zor değildir. Gen, ince ve uzun bir iplikçikten başka bir şey değilken protein en sık olarak küresel bir biçimle karşımıza çıkar. Aslında, proteinin kendisi de bir iplikçiktir; ama az çok düzensiz bir küre biçimini alacak şekilde kıvrılmış ve yumaklaşmış bir iplikçik. Birbirine çok benzer yapıdaki iki alel (bir bakıma iki kardeş gen) ile kodlanmış iki proteni birbirinden ayırmak, özellikle nankör bir iş demektir. Buna karşilik, genetik dehanin en yeni araçlari yakindan bilindigi anda DNA molekülünü oluşturan kimyasal elementler zincirini okumanin da çok daha kolay oldugu ortaya çikiyordu. Çünkü DNA tipki manyetik bir bant gibi, çizgisel tarzda okunur... Proteinler üzerndeki araştirma, kazanilmiş bir alandi. Üstelik çok önemli bir alan. Birilerinin, bu alana incelemeyi sürdürmesi zorunluydu. Zaten bugün arayştirma teknikleri de daha etkin bir hale gelmişti. Proteinlerin yapi ve işlevlerini çözümlemeye olanak saglayan biyolojik araçlar, hele bir tümüyle yetkinleşsinler, yakin bir gelecekte, genetik işlemlerdeki patlamadan sonra proteinleri kullanma çalişmasindan da benzer bir patlamayla pekala karşilaşilabilirdi. Araştirmanin yollari da tipki yaşaminkiler gibi, çogu zaman gereginden fazla uzundur. DNA’ya duyulan hayranlık, onun olağanüstü bir kolaylıkla çözümlenebilmesinden kaynaklanır. Bir kez tekniklerde ustalaştınız mı, kolayca başarılı olursunuz.Her şeyin kökeni olarak görülen bu tanrısal moleküle dokununca, kendinizi sihirbaz sanırsınız. Gerçekte bu, ölü, haretesiz bir molekül, bir kayıt kütüğüdür. Protein ise tersine, olağanüstü duyarlı ve tepki veren canlı bir maddedir. Toprak ve taş için bitkiler ne ise DNA için de proteinler odur. toprağa temel atıp tuğlaları döşemek, yaşamın bahçesini ekip, bakımını yapmaktan daha kolaydır. (Daniel Cohen, Umudun Genleri, s: 25-29 )

http://www.biyologlar.com/evrim-nedir

Philadelphia Kromozomunu Duymuş muydunuz?

Philadelphia Kromozomunu Duymuş muydunuz?

KML nadir görülen bir hastalık. Her yıl bu tür kan kanseri, yani lösemi tanısı konulan insan sayısı aynı kalmaktadır. Ancak, hastalıkla mücadelede geliştirilen tedavilerle giderek artan sayıda insan artık KML ile yaşamlarını sürdürmeye devam edebilmektedir. 22 Eylül Kronik Miyeloid Lösemili (KML’li) hastalar için çok özel bir tarih. İlk defa 22 Eylül 2011’de dünyanın her yanından hasta dernekleri bir araya gelerek “Uluslararası KML Farkındalık Gününü”nde  Max Vakfı, Alianza Latina ve Uluslararası KML Vakfı’nın desteği ile sağlık mesleği mensuplarına, hükümetlere ve sektöre hastalığın bilinirliğinin artırılması için işbirliği çağrısında bulundu. İşte bu sebeple, KML’ye neden olan 9 ve 22 numaralı kromozomlardaki genetik değişikliği sembolize eden 22/9 tarihinde dünyanın her yerinde farkındalığı sağlayıcı etkinlikler düzenlenmektedir ve bu tarih Uluslararası KML Günü olarak takvimlerde yerini almıştır. KML hastalarının kromozomlarında bulunan kusurlu gen Philadelphia’da keşfedildiği için Philadelphia kromozomu olarak anılmaktadır. Ulusalararası KML Günü nedeni ile Türk Hematoloji Derneği adına açıklama yapan Dernek Başkanı Prof. Dr. Teoman Soysal, “daha 13 yıl öncesine kadar KML’nin çoğu hasta için ölümcül bir hastalık olduğunu, ancak hedefe yönelik tedavilerin tıbbın hizmetine sunulmasıyla KML’nin günümüzde artık yönetilebilen kronik bir hastalık düzeyine geriletildiğini” belirtti. Prof. Dr. Soysal “KML erken tespit edildiği ve iyi tedavi edildiği takdirde, hastalar kaliteli ve uzun bir yaşam sürebilir. KML birçok kanser türü için hedefe yönelik tedaviler için model haline gelmiş bulunuyor” dedi. Dünyaca ünlü basketbol oyuncusu Kareem Abdul Jabbar da Aralık 2008 yılından beri bu hastalıkla mücadele ediyor. Hastalık kendisini olduğu kadar ailesini de etkilemiş. Bu nedenle ünlü basketbolcu KML bilinçlendirme kampanyalarında gönüllü yer alıyor, sosyal medyada, gazetelerde, radyo ve dergilerde bu hastalığın bilinirliğine yönelik röportajlar veriyor. Röportajlarında “düzenli kan kontrolleri yaptırdığını, tedavisini aksatmadığını, eğer bırakırsa hayatını tehlikeye atmış olacağını” belirten Kareem Abdul Jabbar, KML’nin bilinirliğini artırmak amacı ile dünya ülkelerini ziyaret ediyor ve çeşitli etkinliklere katılıyor. http://www.medical-tribune.com.tr

http://www.biyologlar.com/philadelphia-kromozomunu-duymus-muydunuz

Bilim, İnanç ve Eğitim

Bilim müfredatında herhangi bir tür yaratılışcılığın bulunmasına karşı çıkan biyologlar ve diğerleri ifade özgürlüğüne karşı değillerdir ve dinsel inancı ortadan kaldırmaya çalışmıyorlar.Onlar yaratılış öykülerinin sadece tarih ya da çağdaş toplum gibi derslerinde öğretilmesini kabul edilebilir bulsalar da bu inançların geçerli bilimsel hipotezler olmadığını bilim derslerinde yeri olmadığını savunmaktadır.Malesef,bilim dersleri almış olsalarda çoğu insanın bilimin ne olduğu ve nasıl işlediğine dair anlayışı çok sınırlıdır.Oysaki evrim yaratılış tartışmasında tam da bu anlayışın çok önemli bir yeri vardır.Popüler inancın aksine,bilim bir olgular toplamı değil doğal fenomenler hakkında bir anlayış edinim sürecidir.Bu süreç,hipotezlerin öne sürüldüğü ve gözlemsel ve deneysel kanıtlarla test edildiği bir süreçtir.Hipotezlerin kanıtlanması gibi konuşmaların aksine bilimcilerin çoğu hipotezlerin mutlak anlamda kanıtlanamayacağı konusunda bilim felsefecileriyle aynı görüştedir.Diğer bir deyişle,bilimciler matematikte olduğu gibi mutlak ve garantili bir kanıt elde edemez.Daha ziyade,var olan verileri o anda en iyi açıklayan hipotez geçici olarak kabul edilir çünkü bu hipotezin değişebileceği,genişleyebileceği ya da yeterli kanıt bulursa ya da henüz düşünülmemiş daha iyi bir hipotez kurgulanabilirse reddedilebileceği görüşü bilimciler arasında egemen görüştür.Bazen gerçekten de tamamen yeni bir paradigma eskisinin yerini alır;mesala 1950 lerde levha tektoniği kıtaların yerlerinin sabit olduğu inancının yerini alarak jeolojide devrim yapmıştır.Daha sık rastlanan ise eski hipotezlerin zaman içinde kademeli bir şekilde değişmesi ve genişlemesidir.Söz gelimi modern genetiğe yol açan Mendelin ayrışım ve bağımsız ayrılma yasaları,bağlantı ve indirgemeli bölünme itkisi (meiotic drive) gibi olaylar keşfedildiğinde değiştirilmiş ama parçacıklara(genler) bağlı kalıtımın altında yatan ilke bugün de geçerliliğini korumaktadır. Bu süreç bilimin en önemli ve değerli özelliklerinden birini yansıtmaktadır:eğer bireysel olarak bilimciler bir hipoteze inanıyor olsalar bile bir grup olarak bilim insanları değiştirilemez bir biçimde kendilerini hiçbir inanca adamayacak ve ikna edici aksine aksine kanıtlar olduğunda bu hipoteze olan inançlarını sürdürmeyeceklerdir.Eğer kanıtlar aksini gösterirse düşüncelerini değiştirmek zorundadırlar ve değiştirirler.Gerçekten de, bilim yerleşik düşüncelerdeki küçük zayıflıkların araştırılmasından oluşmaktadır ve bir bilim insanının şöhretine önemli bir hipotezin yetersiz ya da hatalı olduğunu göstermekten daha fazla katkıda bulunabilecek başarı türü sadece birkaç tanedir.Bu nedenle bilim sosyal bir süreç olarak bir denemedir;inanç ve otoriteyi sorgular ;öne sürülen görüşleri kanıtlar aracılığıyla sürekli bir şekilde test eder.Bilimsel iddialar gerçektende doğal bir seçilim sürecinin ürünleridir çünkü düşünceler (ve bilimciler) birbirleriyle yarış halindedir ve böylece bir bilim alanındaki düşüncelerin toplamı açıklama içeriği ve gücü bakımından sürekli büyür(Hull , 1988). Bilim bu açıdan iddialarını test etmek için kanıtlara başvurmayan,belli inançlara,deney ve gözleme dayanmayan bağlılıklarını sarsmak için kanıtlara izin vermeyen ve doğal dünyayı açıklama kapasitesi artmayan yaratılışçılıktan ayrılır. Bu nasıl olabilir ? Bir akıllı tasarım,yandaşının şöyle dediğini kabul edelim : çok hücreli canlılar tek hücreli canlılarla karşılaştırıldığında o kadar karmaşıktır ki bunlar mutlaka zeki bir tasarımcının müdahalesi sonucu ortaya çıkmıştır.Eğer bu akıllı tasarım yandaşı dünya dışı varlıkların bu işten sorumlu olduğunu iddia etmiyorsa,bu tasarımcı maddi bir varlık değil doğa üstü bir varlık olmak zorundadır. Bu durumda ,bu tasarımcı nedir,canlıları yeni özelliklerle nasıl donattı,bunu yapması ne kadar zaman aldı ve bunu neden yaptı ? Doğa bilimleri en azından bu tür sorulara yanıt vermeyi hayal edebilir (söz gelimi filogenetik aratürleri araştırabiliriz,ilinti özellik farklılıklarını şifreleyecek genlerdeki farklılıkları analiz edebilir,taşıl arayabilir,çok hücreliliğin seçim açısından yararı hakkında deney yapabiliriz).Fakat AT hipotezi bu tür araştırma fikirleri ortaya koyamaz. Bilimsel araştırma,deneysel ve gözlemsel verilere dayanarak hipotezleri sınamanın bir yolunu bildiğimizi şart koşar.Bilimsel hipotezlerin en önemli özelliği onların en azından ilkece-test edilebilir olmasıdır.Bazen bir hipotezi doğrudan gözlemle sınayabiliriz,fakat çoğu zaman bir süreci ya da nedeni doğrudan göremeyiz.(örneğin,elektronlar,atomlar,hidrojen bağları,moleküller ve genler doğrudan gözlemlenebilir değildir ve DNA kopyalaması sırasında bir mutasyonun oluşumunu seyredemeyiz).Bu tür süreçleri gözlem ya da deneylerin sonuçlarını çekişen hipotezlerce ortaya atılmış kestirimlerle (prediction) karşılaştırarak çıkarsarız.Bu tür çıkarımlar yapabilmek için,bu süreçlerin doğa yasalarına belli koşullar geçerliyken belli tür olayların daima meydana geleceğini belirten ifadeler uyduğunu kabul etmek zorundayız.Diğer bir deyişle bilim (fizik ve kimya yasalarında örneğini gördüğümüz gibi) doğal fenomenlerin tutarlılığına ya da (en azından istatiksel olarak) kestirebilirliğine dayanır.Doğa üstü olay ya da varlıkların kabulü , doğa yasalarının varlığını askıya aldığı ya da ihlal ettiği için bilim bunlar hakkında çıkarımda bulunamaz ve daha doğrusu bu tür varlık ve olayları kabul eden hipotezlerin geçerliliğini sınayamaz. Dinin doğal olaylar hakkında bilimsel,mekanistik bir açıklama sağlayamaması gibi,biliminde doğal fenomenler hakkında olmayan sorulara yanıt veremeyeceğini anlamak önemlidir.Bilimin bize neyi güzel ya da çirkin , iyi ya da kötü,ahlaka uygun ya da ahlak dışı olduğunu söyleyemez.Bilim bize yaşamın anlamının ne olduğunu ve doğa üstü bir varlık olup olmadığını da söyleyemez(bkz. Gould 1999;Pigluicci 2002). Bilim insanları dünya çapında bir tufanın varlığını ya da dünyanın tüm canlıların yaşının 10.000 yıldan daha az olduğu gibi bazı özel yaratılışçı savları sınayıp yanlışlayabilir ama bilimciler tanrının var olduğunu ya da tanrının herhangi bir şeyi yarattığı gibi hipotezleri sınayamazlar çünkü bu tür hipotezlerin ne gibi oluşumları kestirebileceğini bilemeyiz.(Bu doğaüstü olanıklılıkları kesin olarak yanlışlayabilecek bir gözlem düşünmeye çalışın).Bu nedenle bilim,doğal dünya hakkında açıklamayı arzu ettiğimiz her şeyden doğal nedenlerin sorumlu olduğunu kabul etmek zorundadır.Bu zorunlu olarak METAFİZİK DOĞACILIK her şeyin gerçekten doğa üstü değil doğal nedeni olduğu ön kabulü görüşünü kabul ettiğimiz anlamına gelmez ,sadece YÖNTEMSEL DOĞACILIK bilimsel açıklamalar aradığımızda sadece doğal nedenleri dikkate almamızı söyleyen işlevsel ilke görüşünü kabul etmeyi gerektirir.Yaratılışcılığın temel iddiası olan biyolojik çeşitlilik doğa üstü güçlerin bir sonucudur iddiası ise sınanamaz. Bu akıllı tasarım kuramı içinde aynı şekilde doğrudur.Bu kuram bilimin yöntemleri ile değerlendirilemez. Hipotez,kuram ve olgu gibi terimleri kullandığımız için bunların ne anlama geldiğini anlamamız zorunludur.Hipotez bir önerme,bir kabuldür.1944den önce,çok az kanıtın desteklediği genetik maddenin DNA olduğu düşüncesi makul bir hipotezdi.1944den bugüne,destekleyen kanıtlar arttıkça bu hipotez giderek daha da güçlendi.Bugün bu görüşü bir olgu olarak kabul ediyoruz.Basit bir şekilde söyleyecek olursak,olgu kanıtlarla çok fazla desteklenerek artık doğruymuş gibi kabul etmemizde hiçbir sakıncası olmayan bir hipotezdir.Diğer bir deyişle,neredeyse hiçbir kuşkuya yer vermeyecek şekilde doğru olduğu kanıtlanmıştır.Ama sadece neredeyse. Yoksa akla gelebilecek herhangi bir kuşkuya yer vermeyecek şekilde kanıtlanmış değildir. Bilimde kullanıldığı biçimde kuram(teori) ise , desteklenmeyen bir spekülasyon ya da (popüler kullanıldığı biçimde) bir hipotez değildir. Tersine,bir kuram diğer düşünceleri ve hipotezleri kapsayan ve onları bağdaşık bir doku şeklinde ören büyük bir düşüncedir.Kuram,olgun,akıl yürütme ve çok çeşitli gözlemleri açıklayan kanıtlara dayalı birbiriyle bağlantılı bir tümceler bütünüdür.Oxford English Dictionary tarafından verilen tanımlardan biri şudur : bir grup düşünce ya da olayın açıklamasını sağlayan düşünce ve ifadeler bütünü;bilinen ya da gözlenen bir şeyin genel yasaları,ilkeleri ya da nedenleri olarak bilinen bir anlatım. Böylece atom kuramı,kuantum kuramı ve levha tektoniği kuramı sadece spekülasyon ya da fikirler değil,çok çeşitli kuralları açıklayan ve kuvvetli bir şekilde desteklenen düşüncelerdir. Biyolojide birkaç kuram vardır ve kesinlikle evrim bunlardan en önemli olanıdır. Bu durumda evrim bir olgu mudur yoksa kuram mı ? Bu tanımların ışığı altında evrim bilimsel bir olgudur.Diğer bir deyişle,ortak atalardan değişim yoluyla tüm türlerin türeyişi 150 yılda çok sayıda kanıtla desteklenmiş ve tüm testleri başarıyla geçmiş bir hipotezdir,yani bir olgudur.Fakat evrimsel değişimin tarihçesi,canlıların geçirdiği(mutasyon,seçilim,genetik sürüklenme,gelişimsel sınırlamalar vb. hakkındaki) çeşitli değişimleri açıklayabilen bir ifadeler bütünü olan evrim kuramı tarafından açıklanır. Canlıların çeşitliliği ve özellikleri için sunulan yaratılışcı açıklamalar bilimin yöntemleri ile değerlendirilemeyeceğinden bu görüşe bilim sınıflarında eşit süre verilmemelidir.Ayrıca bilimsel olmayan ya da yanlışlığı gösterilmiş olan hipotezlere de eşit süre verilmemelidir.Kimya öğretmenleri simya kurşun gibi bir elementin büyü yoluyla altın gibi başka bir elemente dönüştürülebileceği hakkındaki eski bir düşünce öğretmez ve öğretmemelidir ; yerbilimleri sınıfları Yerkürenin düz olduğu hipotezinden bile söz etmemelidirler;tarih ve psikoloji öğretmenleri tarihsel olayları ya da kişilik özelliklerini açıklayan astrolojiyi dikkate almamalıdır her e kadar bu tür bilim dışı düşüncelere inanan insanlar varsa da.İdeal demokrasi bazen yanlış olan ve tamamen pratik nedenlerle bu şekilde anlamamızın zorunlu olduğu düşünceleri kapsayacak kadar genişletilemez.Günlük hayatta,doğa üstü değil doğal açıklamaları benimser onlara göre yaşarız.1962de Massachussets eyaletinin Salem kasabasında insanları cadılıktan mahkum etmiş Püritanlardan farklı olarak biz,artık bir kişinin cadının büyüsünden etkileneceği ya da şeytani güçlerce ele geçirebileceği düşüncelerini ciddiye almayız. Bir suçlu Şeytan benim bunları yapmama neden oldu diyerek serbest kalabilseydi bu bizi çileden çıkarırdı.Kaderinin tanrı tarafından belirlendiğine canı gönülden inanmış birisi bile uçağın motorları çalışmasaydı paniğe kapılırdı.Bilimsel açıklamalara bağlı yaşıyoruz ve bilimin kendisini kanıtlamış olduğunu biliyoruz-çükü bilim işe yarar. ALINTI KAYNAĞI : PALME YAYINCILIK 1.BASKI Evrim Douglas J.Futuyma Çeviri Editörleri : Prof.Dr.AYKUT KENCE Prof.Dr.A.NİHAT BOZCUK Bölüm : 22 Sayfa 525 526 - 527 Gönderi:Onur Doğan  

http://www.biyologlar.com/bilim-inanc-ve-egitim

Kayıp Dünya Borneo

Yarısı Endonezya ya diğer yarısı Malezya'ya ait Borneo Adası'nda, son 10 yılda 365 yeni canlı türü keşfedildi. Bu türler arasında Yeni bir kedi balığı Boyu 10 cm ulaşan dev hamamböceği 259 adet böcek türü, 50 adet yeni bitki türü 30 ayrı balık türü, 7 adet kurbağa, 6 adet kertenkele, 5 adet yengeç, Dünyanın en küçük ikinci omurgalısı olan 8 milimetre boyunda bir erişkin balık türü 2 ayrı yılan türü, (Kapuas Bataklık Yılanı) 2 yeni ağaç kurbağası Yeni bir etobur türü, Dünyanın en uzun böceği (56.6 cm) yeralıyor. Stuart Chapman, 220 bin kilometre karelik muazzam Borneo adasının tam ortasında yer alan sık ormanlarla kaplı bölgede, dünyanın en nadide hayvan türlerinin barınabileceğinden bahsediyor. 1970’li yıllardan beridir kerestecilik alanında çok büyük ilerleme kaydeden yerli halk dünyada kullanılan tropik yapraklı ağaç odunları ile geçimini sağlamaktadır. Çok hızlı bir şekilde kesilen ormanların 39 yılında yarısı yok edilmiştir. Ulaşımı güçlükle sağlanan iç bölgelerde bulunan dağlık alanlardaki orman kaybı diğer bölgelere nazaran daha azdır. Bölgenin önemli ağaç türlerinden olan yağ palmiyesi yok olma tehlikesiyle karşı karşıya olup, bunun yanında yukarıda bahsettiğimiz nadide türler parçalanan ve yok olan ormanların içinde yok olma tehlikesi ile karşı karşıyadır. Gunung Palung Ulusal Parkının uydu görüntüleri incelendiğinde ağaç kesiminin ne kadar hızlı olduğunu açıkça gözler önüne serilmektedir. Son 20 yılda kesilen orman alanın yaklaşık olarak 8000 kilometrekareye ulaştığı, 2010 yılında alçak bölge ormanlarının tamamen yok olma tehlikesi ile karşı karşıya kalacağı bildirilen haberler arasında yer alıyor. Kaçak ağaç kesimi nedeniyle Endonezya her yıl en az 2.8 milyon hektar orman kaybediyor. Yedi ayrı ekolojik bölgeye sahip olan Borneo biyolojik çeşitlilik açısından, 220 bin kilometrekarelik alanı ile tam bir canlıar topluluğunu iç içe barındırmaya devam ediyor. Bu güne kadar keşfedilen tür çeşitliliğine bakılacak olursa yer yüzünde eşi benzeri bulunmayan, vahşi doğa harikası, çok büyük bir ada olduğunu anlamak çok güç olmasa gerek... Ne varki ülkemizin birçok bölgesinde olduğu gibi ada da yaşayan halklar topluluğu da içinde bulundukları vahşi hazinenin farkında değil, Her geçen gün hızla tükenen bitki örtüsü, ormanlar ve canlılar yöre halkını çokda ilgilendirmiyor, belki ekonomik yokluklar, belki bilinçsizce yapılan avlanmalar ve ağaç kesimleri son 39 yılda nelerin kaybedildiğini açıkça göstermekte... Dünyada var olan kara parçaları içinde orangutan, fil, gergedan ve adını sayamadığım yüzlerce canlı türünün bir arada yaşadığı iki ayrı bölgeden biri olan 220 bin kilometrekarelik yağmur ormanının korunması için çalışmalar yürütülüyor. WWF'ye göre bu, sadece Borneo'yu değil, tüm Asya ve Dünya'yı ilgilendiren bir trajedi... Kaynaklar: www.coloradocarnivorousplantsociety.com maps.grida.no www.naturetrek.co.uk atlas dergisi Hazırlayan Uzm. Biyolog Yavuz AYDIN Bu haber Ediz HUN beye e- mail olarak gönderdik sağolsun kendisi bizi kırmayıp kendi görüşlerini yazıp gönderdi makaleyi aynan yayınlıyorum.

http://www.biyologlar.com/kayip-dunya-borneo

Mikrobiyal Biyoteknoloji Bölüm 4

MİKROBİYAL FİTAZLAR Tahıl ve baklagil tohumlarının olgunlaşması sırasında fitik asitin (myo-inositol-1,2,3,4,5,6-hexakis dihidrojen fosfat) önemli bir miktarı birikmekte olup (Honke ve ark. 1998) bu tohumların çoğunda ve yan ürünlerinde %1-2 fitik asit bulunmaktadır (Reddy ve ark. 1982). Fitik asit; tahıl, baklagil ve yağlı tohumlarda fosforun ana depo formudur. Kimyasal olarak tam tarifi myo-inositol 1,2,3,4,5,6-hekza-dihidrojen fosfat’tır (IUPAC-IUB 1977). Moleküler formülü ise C6H18O24P6’dır. Fitik asitin tuzları fitat olarak tanımlanır. Fitat, fitik asitin potasyum-magnezyum ve kalsiyum tuzlarının karışımıdır (Vohra ve Satyanarayana 2003) Fitaz (myo-inositol hexakisphosphate phosphohydrolase), fitik asiti (myo-inositol hekzafosfat), inorganik monofosfat, myo-inositol fosfat ve serbest myo-inositol’e hidrolize eden enzimdir (Kerovuo 2000). Bitkilerde, hayvansal dokularda ve çeşitli mikroorganizmalarda fitaz aktivitesinin olduğu bildirilmiştir (Miksch ve ark. 2002). Fitatı parçalayan enzimler IUPAC-IUB (International Union of Pure and Applied Chemistry and the International Union of Biochemistry) tarafından iki sınıfa ayrılmıştır: Fitatın D3 pozisyonundaki ortofosfatı uzaklaştıran 3-fitaz (myo-inositol-hekzakisfosfat 3-fosfohidrolaz, EC 3.1.3.8) ve myo-inositol halkasındaki L-6 (D-4) pozisyonundaki defosforilasyonu sağlayan 6-fitaz (myo-inositol-hekzakisfosfat 6-fosfohidrolaz, EC 3.1.3.26). Mikrobiyal fitazlar genellikle 3-fitaz sınıfında yer alırken bitkisel kökenli fitazlar 6-fitaz sınıfında yer almaktadır (Konietzny ve Greiner 2002). Fitaz parçalayan enzimlerle yem hammaddelerinde ve insanlar için hazırlanan gıdalardaki fitat içeriğini azaltmak amacıyla özellikle son yıllarda birçok çalışma yürütülmektedir. Fitatı parçalayan enzimler bitkisel materyalin besleyici değerini artırmak amacı ile tavsiye edilmektedir. Son yıllarda fitaz enzimlerinin özellikle entansif hayvan yetiştiriciliği yapılan alanlarda hayvan gübresiyle ortaya çıkan fosfor kirliliğini azaltmak amacıyla kullanımını da gündeme getirmiştir. Yapılan bir çok çalışmada fitatı parçalayan enzimlerin fitatdan fosfor kullanımını artırmakta olduğu ve çevrede ortofosfat birikimini önemli derecede azalttığı bildirilmiştir (Cromwell ve ark. 1995, Simons ve ark. 1990). Ayrıca bunların yanı sıra myo-inositol fosfatların hazırlanması, kağıt endüstrisi ve toprak iyileştirme alanlarında da fitaz enzimi kullanılmaktadır. Ayrıca son yıllarda biyoteknoloji alanındaki gelişmeler sonucunda heterolog mikrobiyal ekspresyon sistemleriyle büyük miktarlarda ve düşük maliyetli fitaz üretimi de mümkün olabilmektedir. Fitaz enzimi bitkilerde, mikroorganizmalarda ve bazı hayvansal dokularda bulunmasına rağmen yapılan son araştırmalar mikrobiyal fitazların biyoteknolojik uygulamalar için en ümit verici olduğunu göstermiştir (Pandey ve ark. 2001, Vohra ve Satyanarayana 2003). Bakteri, maya ve funguslardan fitaz enzimleri karakterize edilmiş olup, günümüzde ticari olarak üretimde toprak fungusu olan Aspergillus üzerinde durulmaktadır. Ancak substrat spesifitesi, proteolisise karşı direnç göstermesi ve katalitik aktivitesi gibi özelliklerinden dolayı bakteriyel fitazlar, fungal enzimlere alternatif oluşturabilmektedir (Konietzyn ve Greiner 2004). Bakteriyel fitazların ortalama olarak moleküler ağırlığı (40-55 kDa) glukolizasyon farkı olduğu için fungal fitazlardan (80-120 kDa) daha küçüktür (Choi ve ark. 2001, Golovan ve ark. 2000, Han ve Lei 1999, Kerovuo ve ark. 1998, Rodriguez ve ark. 2000a, Van Hartingveldt ve ark.1993). İzole edilen fitazların çoğunun pH optimumu 4.5-6.0 arasında yer almaktadır. Ancak Bacillus sp.’ye ait nötral veya alkali fitazlar da bulunmaktadır (Choi ve ark. 2001, Kim ve ark. 1998). A. niger fitazının (phyA) pH optimumu ise asidik sınırlarda olup 2.5 ve 5.5’dir. Bu iki sınır arasında aktivitede azalma meydana gelmektedir. Mikrobiyal fitazların çoğunun sıcaklık optimumu ise 45-60°C arasında yer almaktadır. Ancak Pasamontes ve ark. (1997a,b) A. fumigatus’a ait sıcaklığa dirençli fitazın 100°C’ye kadar olan sıcaklıklarda 20 dakikalık inkübasyonlarda sadece %10’luk kayıpla aktivitesini koruduğunu bildirmişlerdir. E. coli ve Citrobacter braakii fitazı, ticari olarak kullanılan Aspergillus niger fitazına kıyasla pepsin ve pankreatine daha dirençlidir (Kim ve ark. 2003; Rodriquez ve ark. 1999). Ayrıca C. braakii fitazı tripsine de dirençlidir (Rodriquez ve ark. 1999). E. coli fitazı, Bacillus fitazı ile karşılaştırıldığında, pankreatine benzer hassasiyetlik gösterirken pepsine karşı daha hassastır (Simon ve Igbasan 2002). E. coli ve C. braakii fitazları yem katkısı olarak uygun özelliklere sahiptirler. E. coli fitazı asidik koşullar altında yüksek bir pH stabilitesine sahip olup pH 2.0’de birkaç saat sonunda bile önemli bir aktivite kaybı göstermemektedir (Greiner ve ark. 1993). Fitaz Enziminin Uygulama Alanları 1-) Yem katkısı: Fitat, tohumların çimlenmesi sırasında enerji ve fosfor kaynağı olarak görev alsa da bağlı fosfor tek mideli hayvanlarca çok az miktarda kullanılabilmektedir. Bu nedenle inorganik fosfor yenilenemez ve pahalı bir mineral olup kanatlı, domuz ve balık rasyonlarında fosfor kaynağı olarak ilave edilmektedir (Lei ve Porres 2003). Fitat ve fitata bağlı fosfor tüm kanatlı rasyonlarında bulunmakta ve fitat fosforunun da kısmen kullanıldığı bilinmekteydi (Lowe ve ark. 1939). İlk olarak Warden ve Schaible (1962), broylerde, ekzogen olarak verilen fitazın, fitat fosforunun kullanımını ve kemikteki mineralizasyonu artırdığını bildirmişlerdir. Ancak bundan yaklaşık 30 yıl sonra, yem katkısı olarak, fitata bağlı fosforu serbest bırakacak ve fosfor atığını azaltacak Aspergillus niger fitazının ticari olarak kullanımı başlamıştır. Günümüzde tek mideli hayvanlarda yem katkısı olarak fitaz kullanımı oldukça yaygınlaşmış olup hatta nişasta tabiatında olmayan polisakkaritleri parçalayan enzimlerden daha fazla kullanılmaktadır (Bedford 2003). Geçtiğimiz 10 yıl içerisinde kanatlı ve domuz rasyonlarında mikrobiyal fitaz kullanımı ile bu konudaki bilimsel çalışmalar ve deneyimler artmakta ve yem katkısı yeni fitaz enzimleri araştırılmakta ve kullanılmaktadır. Bazı kanatlı yem maddelerindeki toplam fosfor, fitat fosforu ve toplam fosfordaki fitat fosfor oranları Çizelge 2’de verilmiştir. Ruminantlar ise, rumendeki mikrobiyal flora tarafından üretilen fitaz enzimi ile fitatı parçalayabilmektedirler (Yanke ve ark. 1998). Fitatın parçalanması ile açığa çıkan fosfor hem mikrobiyal flora hem de konakçı ruminant tarafından kullanılmaktadır. Birçok farklı kaynaktan elde edilen mikrobiyal fitaz ürünleri günümüzde ticari olarak kullanılmaktadır. Bunlar arasında yem katkısı olarak en yaygın olarak kullanılanları A. niger (3-fitaz), Peniophora lycii (6-fitaz) ve Escherichia coli (6-fitaz) fitazlarıdır. Kanatlı rasyonlarına fitaz, granül veya sıvı formda veya yüksek peletleme sıcaklığındaki (>80ºC) enzim denatürasyonu probleminden kaçınmak için peletleme sonrasında uygulanabilmektedir (Selle ve Ravindran 2006). Bitkisel fosfor kaynaklarındaki kullanılmayan fitat fosforu zaman içerisinde birikmekte ve entansif olarak hayvan yetiştirciliği yapılan alanlarda çevre kirliliğine neden olmaktadır. Topraktaki aşırı fosfor deniz ve göllere akmakta ve burada yaşayan canlılarda birikerek insanlarda da nerotoksik etki oluşturmaktadır (Lei ve Porres 2003). Su ürünleri üretiminde, soya küspesi ve diğer bitki kökenli küspeler kullanılarak birçok çalışma yürütülmüştür (Mwachireya ve ark. 1999). Pahalı protein kaynakları yerine daha düşük fiyatlı bitkisel protein kaynakları kullanıldığında masraflarda önemli derecelerde azalmaların olabildiği bildirilmektedir. Balık üretim masraflarının %70’ini yem giderleri oluşturmaktadır (Rumsey 1993). Kanatlı ve domuzlarda olduğu gibi balıklarda yem maddeleri içerisindeki fitin fosforundan yararlanacak sindirim enzimine sahip olmadığından suda fosfor birikimi meydana gelmektedir. Bu nedenle fitaz su ürünleri üretmede, hem düşük fiyatlı bitkisel kökenli maddelerin kullanımını artırmak hem de suda fosforu kabul edilebilir seviyede tutabilmek amaçları ile kullanılmaktadır. Balık beslemesinde, yüksek seviyelerde bitkisel kökenli maddeler içeren yemlerde fitaz enziminin kullanılması ile ilgili birçok çalışma yürütülmektedir (Robinson ve ark. 1996, Mwachireya ve ark. 1999). 2-) Gıda sanayi: Fitik asit tuzları olarak tanımlanan fitatlar, bitki tohumları ve danelerde fosfat ve inositolün başlıca depo formudur. Fitat bitki tohumlarının olgunlaşması sırasında oluşur ve olgun tohumlarda toplam fosfatın %60-90’nını oluşturur (Loewus 2002). Fitat bu nedenle bitkisel kökenli gıdaların başlıca bileşenidir. Bazı bitkisel kökenli gıdalardaki kuru maddedeki fitat miktarı Çizelge 3’de verilmiştir. Diyetlerdeki bitki kökenli gıdaların miktarına ve gıdaların işlenme derecelerine bağlı olarak günlük fitat tüketimi en fazla 4500 mg’a kadar yükselmelidir. Ortalama olarak vejetaryen diyetlerinde ve gelişmekte olan ülkelerde kırsal kesimlerde günlük fitat tüketimi yaklaşık 2000-2600 mg olup bu değer karışık diyetlerde 150-1400 mg’dır (Reddy 2002). Diyetlerde fitatın varlığı ile ilgilenilmesinin nedeni mineral alımındaki negatif etkisidir. Bu mineraller çinko, demir, kalsiyum, magnezyum, manganez ve bakırdır (Konietzny ve Greiner 2003, Lopez ve ark. 2002). Fizyolojik pH değerlerinde çözünmez mineral-fitat komplekslerinin oluşumu düşük mineral emiliminin temel nedeni olarak bildirilmektedir. Çünkü bu kompleksler aslında insan sindirim sisteminde absorbe olmamaktadır. Ayrıca sindirim sisteminin üst kısmında sınırlı miktarda mikrobiyal popülasyonun olması ve içsel fitatı hidrolize edici enzimlerin olmaması nedenleri ile ince bağırsakta, fitat çok sınırlı miktarda hidroliz olabilmektedir (Iqbal ve ark. 1994). Fitat, asidik ve alkali pH’da proteinlerle kompleks oluşturmaktadır (Cheryan 1980). Bu interaksiyon proteinin yapısında değişiklikler meydana getirmekte ve bunun sonucunda enzimatik aktivitede, proteinin çözünürlüğünde ve proteolitik parçalanmada azalmalar meydana gelebilmektedir. Fitaz enzimi yem katkısı olarak kullanılmasının yanı sıra gıda sanayinde de büyük bir potansiyele sahiptir. Ancak şimdiye kadar marketlerde fitaz enzimi kullanılmış gıdalar bulunmamaktaydı. Bu alandaki çalışmalar, gıda işlemede teknik geliştirmenin yanı sıra bitki kökenli gıdaların besleyici değerlerinin artırılması üzerine yoğunlaşmıştır. Fitat içeriği yüksek diyetler mineral maddelerin absorbsiyonunu oldukça azaltmakta (Konietzny ve Greiner 2003, Lopez ve ark. 2002) ve gıdaların işlenmeleri sırasında fitatın defosforilasyonu, sadece kısmen fosforile olmuş myo-inositol fosfat esterlerinin oluşmasına neden olmaktadır (Sandberg ve ark. 1999, Sandström ve Sandberg 1992, Han ve ark. 1994). Myo-inositol fosfat esterleri insanlar için önemli fizyolojik özelliklere sahiptir (Shears 1998). Bu nedenle fitaz enziminin gıda üretimi sırasında kullanılması ile fonksiyonel gıdaların üretilmesi mümkün olacak (Greiner ve ark. 2002) ve böylelikle fitaz enzimi ile biyokimyasal olarak aktif myo-inositol fosfat esterleri oluşacak ve insanlarda mineral maddelerin emilmesi de sağlanmış olacaktır. Gıda sanayinde gıdaların işlenmesi sırasında fitaz ilavesi ekmek yapımı (Haros ve ark. 2001), bitkisel protein izolatlarının üretimi (Fredrikson ve ark. 2001, Wang ve ark. 1999) ve tahıl kepeklerini parçalamada kullanılmaktadır (Kvist ve ark. 2005). Gıda işleme ve hazırlama sırasında, fitat genel olarak, bitkilerde ve mikroorganizmalarda doğal olarak bulunan fitazlarla tamamen hidrolize olmamaktadır. Özellikle demir olmak üzere minerallerin yararlanımını artırmak için fitat çok düşük düzeylere indirilmelidir (Hurrell 2003). Myo-İnositol fosfatların hazırlanması: Günümüzde, transmembran sinyalizasyonunda ve intraselülar kaynaklardan kalsiyumun hareketini sağlamada görev alan inositol fosfat ve fosfolipidlere olan ilginin artması, çeşitli inositol fosfatların hazırlanmasını gündeme getirmiştir (Billington 1993). S.cerevisiae fitazı kullanılarak fitik asitin enzimatik hidrolizi ile D-myo-inositol 1,2,6-trifosfat, D-myo-inositol 1,2,5-trifosfat, L-myo-inositol 1,3,4-trifosfat ve myo-inositol 1,2,3-trifosfatların hazırlandığı bildirilmiştir (Siren 1986a). Ayrıca E. coli fitazı kullanılarak inositol 1,2,3,4,5-pentakisfosfat, inositol 2,4,5-trifosfat ve inositol 2,5-bifosfat da hazırlanmaktadır (Greiner ve Konietzny 1996). İnositol fosfat türevleri enzim stabilizatörü (Siren 1986b), enzim inhibitörü, biyokimyasal ve metabolik araştırmalarda enzim substratı ve ilaç olarak da kullanılmaktadır (Laumen ve Ghisalba 1994). İnositol fosfat karışımları eklem iltihabı ve astım gibi solunum hastalıklarına karşı kullanıldığı ve spesifik inositol trifosfatların ağrı kesici olarak önerildiği de bildirilmiştir (Siren 1998). İnositol veya inositol fosfatların endüstriyel üretiminde, fitik asitten myo-inositol fosfat türevleri, serbest myo-inositoller ve inorganik fosfat eldesinde fitaz enzimi kullanımı önerilmektedir (Brocades 1991). Bu enzimatik hidrolizin avantajı fitaz enziminin spesifitesi ve reaksiyon koşullarına uygun olmasıdır. 3-) Kağıt endüstrisi: Kağıt endüstrisinde bitki fitik asitinin uzaklaştırılması oldukça önemlidir. Günümüzde termostabil fitazlar, kağıt hamuru ve kağıt yapma aşamalarında fitik asiti parçalamak amacıyla kullanılan biyolojik maddelerdir. Fitik asitin enzimatik olarak parçalanması sonucunda kanserojen veya toksik maddeler içeren ürünler oluşmaz. Bu nedenle kağıt endüstrisinde fitaz enzimlerinin kullanımı, daha temiz bir teknolojinin kullanılmış olması ve dolayısıyla çevreyi koruma açısından önem taşımaktadır (Liu ve ark. 1998). 4-) Toprak iyileştirme: Bazı alanlarda toprakta, fitik asit ve türevleri toplam organik fosforun %50’sini oluşturabilmektedir (Dalal 1978). Findenegg ve Nelemans (1993), mısır bitkisi için topraktaki fitik asitten fosforun kullanılabilmesinde fitazın etkisini araştırmışlardır. Toprağa fitaz ilave edildiğinde fitinin parçalanma oranının artmasına bağlı olarak büyümeyi uyardığını bildirmişlerdir. Bu çalışma bitkilerin köklerinde fitaz geninin ekspresyonu ile transgenik bitkilerle topraktaki fosforun kullanılabileceği düşüncesini ortaya çıkarmıştır (Day 1996). 5-) Biyoteknoloji : Geçtiğimiz 20 yıl içerisinde fitaz enzimi, besleme, çevre koruma ve biyoteknoloji alanlarındaki bilim adamlarının dikkatini çekmektedir. Fitazlar özellikle biyoteknolojik uygulamalarda (özellikle yem ve gıdalardaki fitat içeriğini azaltmada) büyük bir önem taşımaktadır (Lei ve Stahl 2001, Vohra ve Satyanarayana 2003). ANTİBİYOTİKLER Ticari olarak üretilen mikrobiyal ürünlerin içerisinde en önemlisi antibiyotiklerdir. Antibiyotikler mikroorganizmalar tarafından üretilen, diğer mikroorganizmaları öldüren veya büyümesini inhibe eden kimyasal maddelerdir. Antibiyotikler tipik sekonder metabolitlerdir. Ticari olarak faydalı antibiyotiklerin birçoğu filamentöz funguslar ile Bacteria’nın aktinomiset grubu tarafından üretilmektedir. Endüstriyel fermentasyonla büyük ölçekte üretilen en önemli antibiyotikler Çizelge1’de gösterilmiştir. Çizelge 1. Ticari olarak üretilen bazı antibiyotikler. Antibiyotik Üreten mikroorganizma* Basitrasin Sefalosporin Kloramfenikol Siklohekzimid Sikloserin Eritromisin Griseofulvin Kanamisin Linkomisin Neomisin Nistatin Penisilin Polimikzin B Streptomisin Tetrasiklin Bacillus licheniformis (EOB) Cephalosporium sp.(F) Kimyasal sentez (daha önce Streptomyces venezuela’ (A)dan mikrobiyal yolla üretilmekteydi) Streptomyces griseus (A) Streptomyces orchidaeus (A) Streptomyces erythreus (A) Penicillium griseofulvin (F) Streptomyces kanamyceticus (A) Streptomyces lincolnensis (A) Streptomyces fradiae (A) Streptomyces noursei (A) Penicillium chrysogenum (F) Bacillus polymyxa (EOB) Streptomyces griseus (A) Streptomyces rimosus (A) *EOB, endospor oluşturan bakteri; F, fungus; A, aktinomiset Günümüzde 8000’in üzerinde antibiyotik maddesi bilinmektedir ve her yıl yüzlercesi keşfedilmektedir. Daha fazla antibiyotik keşfedilmesi beklenmektedir mi, buna gerek var mıdır diye bazı sorular akla geldiğinde bunun cevabı evettir. Bu nedenle Streptomyces, Bacillus, Penicillium gibi birkaç genusa ait mikroorganizmaların çoğu antibiyotik üretip üretmedikleri açısından sürekli olarak incelenmektedir. Antibiyotikler konusunda araştırma yapan birçok araştırıcı, diğer mikroorganizma gruplarının da incelenmesi sonucunda birçok yeni antibiyotiğin keşfedileceğine inandıklarını belirtmektedir. Son yıllarda büyük ilerleme gösteren genetik mühendisliği tekniklerinin yeni antibiyotiklerin yapılmasına izin vereceği ve yeni ilaçlar için kompüter modellemesinin klasik eleme (screening) metotlarının er geç yerini alacağı düşünülmektedir. Fakat günümüzde bunlar henüz çok yaygın bir kullanıma sahip olmadığı için yeni antibiyotikler klasik yol olan “screening” yoluyla keşfedilmektedir. Screening yaklaşımında, çok sayıda muhtemelen antibiyotik üreticisi olan mikroorganizma izolatı doğadan saf kültürler halinde izole edilmektedir (Şekil 1-a) daha sonra bu izolatlar Staphylococcus aureus gibi bir test bakterisinin büyümesini inhibe eden diffüzlenebilen maddeler üretip üretmedikleri açısından test edilmektedir. Şekil 1-a’daki fotoğrafta görülen kolonilerin çoğu Streptomyces türlerine aittir ve antibiyotik üreten bazı kolonilerin etrafında indikatör organizmanın (Staphylococcus aureus) büyüyemediği inhibisyon zonları görülmektedir. Bu amaçla kullanılan test bakterileri çok çeşitli ve genellikle bakteriyal patojenlere yakın veya onları temsil eden türler olup çeşitli literatürlerde tip kültür numaralarıyla belirtilmektedir. Antibiyotik üretimi için yeni mikrobiyal izolatların test edilmesinde, “karşıt-çizgi metodu” (Şekil 1-b) yaygın olarak kullanılan bir yöntemdir. Bu yöntemde Streptomyces gibi potansiyel üretici olduğu bilinen bir tür petrinin üçte birlik kısmını kaplayacak şekilde bir köşesine ekilir ve petri uygun sıcaklıkta inkübe edilir. İyi bir büyüme elde edildikten sonra sıvı besi yerinde geliştirilmiş olan test bakterileri Streptomyces hücre kütlesine dikey olacak şekilde çizilerek inkübasyona bırakılır. Şekil 1-b’deki fotoğrafta da görüldüğü gibi bazı test bakterilerinin Streptomyces hücre kütlesine yakın kısımlarda büyüyemediği görülmektedir. Bu Streptomyces’in test bakterilerinin büyümesini inhibe eden bir antibiyotik ürettiğini göstermektedir. Fotoğrafta (Şekil 1-b) görülen test organizmaları (soldan sağa): Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumonia, Mycobacterium smegmatis’tir. Bu şekilde ekim yapılan izolatlardan antibiyotik üretimi belirlenenler daha sonra daha ileri denemelere alınarak antibiyotiğin yeni olup olmadığı bakımından test edilirler. Çoğu screening (eleme) programlarında elde edilen izolatların çoğu bilinen antibiyotikleri üretmektedir. Bu nedenle endüstriyel mikrobiyologların bilinen antibiyotik üreticilerini çok hızlı belirlemesi gerekmektedir böylece çalışmalarında hem zamanın hem de kaynakların boşa gitmesi önlenecektir. Bir organizmanın yeni bir antibiyotik ürettiği keşfedildiğinde bu antibiyotik yapısal analizler için yeterli miktarlarda üretilmelidir ve daha sonra enfekte olmuş hayvanlarda terapötik aktivite ve toksisite için test edilmelidir. Burada yeni antibiyotiğin selektif toksisiteye sahip olup olmadığı ortaya çıkmaktadır. Maalesef yeni bulunan antibiyotiklerin bir çoğu hayvan testlerini geçemezken sadece birkaç tanesi geçebilmektedir. Bu nedenle her yıl yüzlerce yeni antibiyotik bulunmasına karşılık bunların sadece birkaç tanesinin medikal kullanım için yararlı olduğu kanıtlanabilmekte ve ticari olarak üretilmektedir. VİTAMİNLER VE İLİŞKİLİ BİYOFAKTÖRLER Dengesiz beslenme ve besin işleme alışkanlıkları, gıda kıtlığı, açlıktan dolayı hayvan ve bitki orijinli vitaminlerden başka ekstra vitaminlere ihtiyaç duyulmaktadır. Vitaminlerin kullanım alanları gıda/yem sektörü, sağlık ve tıbbi alanlardır. Ekstra vitaminler günümüzde kimyasal veya biyoteknolojik olarak fermentasyon ya da biyodönüşüm prosesleriyle hazırlanmaktadır. Vitaminler ve diğer biyofaktörlerin çoğu kimyasal olarak veya ekstraksiyon işlemi ile üretilirken bazıları da hem kimyasal hem de mikrobiyal proseslerle üretilmektedir. Bunun yanı sıra vitamin B12 ve B13 gibi vitaminler ise sadece mikrobiyolojik yolla üretilmektedir. Aşırı miktarlarda vitamin üreten mikrobiyal suşların doğadan taranması ve bulunması veya bunların genetik mühendisliği yoluyla yapımı zordur, bunun yerine geliştirilmiş fermentasyon prosesleri ve immobilize biyokatalist biyodönüşümleri önem kazanmıştır. ENZİMLER Bütün organizmalar hücresel faaliyetlerini sürdürebilmek için küçük miktarlarda çok çeşitli enzimleri üretmektedir. Günümüze kadar tanımlanmış olan 3000’den fazla enzimin büyük bir çoğunluğu mezofilik organizmalardan izole edilmektedir. Buna karşılık bazı enzimler bazı organizmalar tarafından çok yüksek miktarlarda üretilmekte ve hücre içinde tutulmayarak hücre dışına salgılanmaktadır. Ekstraselüler enzimler olarak isimlendirilen bu enzimler selüloz, protein, nişasta, vb. gibi suda çözünmeyen polimerleri parçalama yeteneğindedir. Bu ekstraselüler enzimlerin bazıları gıda, tekstil ve ilaç endüstrilerinde kullanılmaktadır ve mikrobiyal sentez yoluyla büyük miktarlarda üretilmektedir. Son yıllarda enzim terminolojisinde ortaya çıkan yeni bir terim olan “ekstremozimler” ise ekstrem çevrelerde yaşayan prokaryotlardan elde edilen enzimleri ifade etmektedir. Ekstremozimler, ekstrem olarak yüksek sıcaklık, düşük sıcaklık, çok yüksek tuz, çok yüksek asit veya alkalin pH’larda yaşayan ve “ekstremofiller” olarak isimlendirilen mikroorganizmalar tarafından üretilmektedir. Bu enzimleri yüksek miktarlarda üreten mikrobiyal kaynakları doğadan izole etmek için çeşitli yöntemler kullanılmaktadır ve yeni mikrobiyal kaynakların araştırılması sürekli olarak devam eden bir iştir. Burada biyoçeşitlilik önemli bir konu olup farklı ve yabancı çevrelerden (ekstrem çevreler) izole edilen mikroorganizmalar önemli enzim kaynakları olarak düşünülmektedir. Ülkemiz en önemli ekstrem çevreler olan sıcak su kaynakları (kaplıcalar) açısından çok zengindir. Ayrıca soda gölleri, tuz gölleri, vb. ekstrem çevrelere de sahip olduğumuz göz önüne alınırsa, buralardaki biyoçeşitliliğin bir an önce belirlenerek ortaya konması ülkemiz açısından çok önemli bir konudur. Lipazlar bakteri, maya ve küfleri içeren mikrobiyal flora tarafından bol miktarda üretilmektedir. Lipazlar gıda endüstrisinde, biyomedikal uygulamalarda, biyosensörler ve pestisidlerin yapımında, deterjan ve deri sanayiinde, çevre yönetiminde, kozmetik ve parfüm sanayiinde uygulama alanları bulmaktadır. Endüstriyel olarak en yaygın kullanılan lipaz üreticisi mikroorganizmalar Candida spp., Pseudomonas spp., Rhizopus spp.’dir. Son yıllarda biyoteknoloji alanında lipazların kullanımında eksponansiyel bir artış gözlenmektedir. Bu nedenle lipazların aşırı üretimini sağlamak amacıyla yönlü mutasyonlar yardımıyla suş geliştirme çalışmalarına ağırlık verilmiştir. Endüstriyel olarak en fazla üretilen enzimlerden biri olan proteazlar ise ekmekçilikte, deterjan ve temizleme sanayiinde, biyomedikal uygulamalarda, gıda sanayiinde etlerin olgunlaştırılmasında, tabaklama sanayiinde, atık arıtımı ve kimyasal endüstride kullanılmaktadır. Son yıllarda alkalofilik mikroorganizmaların ürettiği ve aşırı alkali ortamlarda aktivite gösteren alkalin proteazlar endüstriyel olarak çok önem kazanmıştır.Şu anda alkalin proteazların ticari üretimi Bacillus licheniformis ve diğer alkalofilik Bacillus spp.’den yapılmaktadır. Bu enzimlerin üretimi için öncelikle ümit verici organizmaların seçilmesine olanak sağlayan farklı izolasyon yöntemlerinin belirlenmesi daha sonra endüstriyel suş geliştirilmesi için mutasyon ve/veya rekombinant DNA teknolojisinin kullanımı üzerinde yoğun çalışmalar sürdürülmektedir. α-amilaz, β-amilaz ve glukoamilaz gibi mikrobiyal amilazlar, enzimler arasında en önemlileri olup günümüzde biyoteknolojide oldukça büyük önem kazanmışlardır. Mikrobiyal amilazlar uygun preparasyonlarda hazırlandıktan sonra ilaç sanayiinde analitik kimya alanında, nişastanın sakkarofikasyonu, tekstil ve gıda sanayiinde, bira sanayii ve damıtma endüstrilerinde geniş bir uygulama alanına sahiptir. Hayvanlar ve bitkilerde de bulunmasına karşılık amilazlar en yaygın olarak mikroorganizmalarda bulunmaktadır. Amilazların ticari üretiminde birçok bakteri ve fungus türleri kullanılmaktadır. α-amilazın ticari üretiminde Bacillus türleri çok önemlidir. Ticari amilaz üreticisi suşların geliştirilmesinde gen klonlama yöntemleri kullanılmaktadır. Gen klonlmanın en temel amaçları; termostabil enzimlerin ifade edilmesi, yüksek enzim verimliliği ve iki enzimin aynı organizmada ifade edilmesinin sağlanmasıdır. AMİNOASİTLER Organizmaların primer metabolitleri arasında en önemlileri amino asitlerdir. 1950’lerin sonlarına doğru Corynebacterium glutamicum’un bazı suşlarının doğal olarak önemli miktarlarda L- glutamat sentezlediğinin bulunmasının ardından amino asit üreticisi mikroorganizmaların taranması ve ıslah edilmesi çalışmaları büyük hız kazanmıştır. O zamandan beri amino asit salgılama yeteneğinde olan bir çok organizma belirlenmiş ve bu konu endüstriyel mikrobiyolojinin önemli bir konusu olmuştur. Dünya çapında 1.5x106 ton amino asit üretimi gerçekleşmektedir. Amino asitler tıpta, gıda endüstrisinde katkı maddesi olarak, kimya endüstrisinde başlatıcı maddeler olarak kullanılmaktadır. En önemli ticari amino asit lezzet arttırıcı olarak monosodyum glutamat (MSG) formunda kullanılan Glutamik asittir. Diğer iki önemli amino asit diyet içecekler ve yiyeceklerde tatlandırıcı olarak kullanılan Aspartam’ın bileşenleri olan Aspartik asit ve Fenil alanindir. Bundan başka lisin, glutamin , arjinin, triptofan, treonin, izolösin ve histidin amino asitleri de ticari olarak mikrobiyolojik yolla üretilmektedir.Mikrobiyolojik üretim için Corynebacterium ve Brevibacterium türleri ile Escherichia coli en bilinen ticari türlerdir. Corynebacterium ve Brevibacterium türlerinde metabolizma nispeten basit olduğu için regülasyon sistemlerinin kolaylıkla değiştirilmesiyle, Enterobacteriaceae üyelerinde ise karmaşık rekombinant DNA tekniklerinin kullanımıyla verimli amino asit üreticileri elde edilebilmektedir. Kaynak: Doç. Dr. Rengin ELTEM /Ege Üniversitesi /Mühendislik Fakültesi Biyomühendislik Bölümü POLİMER ÜRETİMİ Modern biyoteknolojiyi komodite amaçlı ürünlerin üretiminde de kullanmak mümkündür. En çarpıcı örneklerden biri, mikroorganizmaları uygun ortamlarda besleyip polimer ürettirmektir. Birçok mikroorganizma besin kısıtlaması koşullarında, tepkisel olarak hücre içinde polimer biriktirir. (Şekil 3’de hücre içindeki beyaz dairesel şekilli olanlar). Bunlar bilimsel adıyla “polialkalonatlar”, “mikrobiyal poliesterler” dir. Polibuturat ve poli(buturat-valarat) teknolojik olarak üretilen mikrobiyal poliesterlerdir. Bunların işlenmesi biraz zor, komodite plastiklere göre biraz pahalı, ancak doğada parçalanabilen türden, dolayısıyla çevre dostu polimerlerdir. Bunlardan üretilen şampuan, parfüm, vb. şişeleri piyasaya sunulmuş durumdadır. Buradaki ilginç gelişme yine genetik modifiye mikroorganizmaların kullanımıdır. Bunlarda hücre içinde polimer birikimi kuru ağırlıkta %99’lara kadar çıkarılmıştır, dolayısıyla verim çok yüksektir. Bu yöntemle üretilen polimerlerin molekül ağırlıkları sentetik yollarla çıkılması çok yüksek değerlerdedir (20 milyon hatta daha fazla). Mikroorganizmalar ile polimer üretimi teknolojisini bitkilere de uygulamak mümkündür. Özellikle mısır’ın çok da değerli olmayan koçanında ve kabuğunda polimerler biriktirilebilir. Faj Yerdeğiştirme “phage display” Teknolojisi Alternatif yöntemlerden biri de genetik modifiye mikroorganizmaları kullanmaktır. Yaygın olarak E.Coli’nin kullanıldığı “faj yerdeğiştirme” (“phage display”) tekniği böyle bir yaklaşımdır. Burada, istenilen üretim bilgisini taşıyan DNA, B lenfositlerinden izole edilir ve bakteriye yerleştirilir. Daha sonra bakteri, filament fajlar (bir çeşit virüs) ile enfekte edilir. Fajlar, bakteri içinde, genellikle çok sayıda antibadi fragmanını da taşıyacak şekilde çoğalır. İstenilen fragmanı taşıyan fajlar, bir biyoafinite sistemi ile ayrılır ve bunlarla yine bakteriyi enfekte edilerek üretimi gerçekleştirilir. Elde edilen monoklonal antibadi fragmanları saflaştırılıp ya doğrudan yada bir antibadi gövdesine takılarak kullanılabilir. Bu teknikte kullanılan reaktörler, hibridoma teknolojisinde kullanılanlardan çok daha düşük fiyatlı ve iyi tanımlanmış klasik fermentörlerdir, dolayısıyla üretim ucuz ve kolaydır. Kaynak: www.biyomedtek.com/bmt-konular-no3.htm Hazırlayanlar: Enver Ersoy ANDEDEN&Ahmet TEZER

http://www.biyologlar.com/mikrobiyal-biyoteknoloji-bolum-4

Albertosaurus Dinazor

Yaklaşık 70 milyon yıl önce Kretase dönemin de Kuzey Amerika'da yaşamış tyrannosaurid theropod dinozorun bir cinsidir. Bazı bilim adamları Gorgosaurus libratus cinsi olarak tanımlamakta ama genel olarak tyrannosaurid theropod olarak kabul edilmektedir. Albertosaurus küçük 2 parmaklı elleri ve iri kafasında bulunan keskin dişleri ile iki ayağı üzerinde durabilen ekosistem besin zincirinin en tepesinde yer alan avcılardan biriydi. Albertosaurus muhtemelen az 2 ton ağırlığında, ondan daha ünlü olan Tyrannosaurus daha çok küçüktü. 1884 yılında ilk keşfedildiğinden bu yana, otuzdan fazla bireylerin fosiller çoğu diğer tyrannosaurids için kullanılabilir olandan Albertosaurus anatominin daha ayrıntılı bir bilgiye sahip bilim adamları sağlayan ele geçmiştir. Yapı olarak kuyruktan buruna kadar yaklaşık 10 metre, yerden yüksekliği ise 3.5 metre civarındaydı.

http://www.biyologlar.com/albertosaurus-dinazor

Aerosteon Dinazor

Aerosteon Dinazor Türü yeni keşfedilmiş bir tür sayılabilir. 1996 yılında keşfedilen bu dinazorun kalıntıları Arjantin de bulundu. Aerosteon 9 metre (30 ft) uzunluğunda, iki ayaklı, etçil ve yaklaşık 83 milyon yıl önce yaşamış bir dinozor türüdür. İç organları bakımından uş türlerine benzemektedir. Solunum sistemleri kuş türlerinin ki gibidir. Aerosteon kuş sanılsa da solunum sisteminde ki hava boşluklarının daha sonra vücut ısısını dengelemek için kullandığı keşfedildi.

http://www.biyologlar.com/aerosteon-dinazor

BİR ZAMANLAR DARWINİZM

Charles Darwin insanın kökeni hakkındaki teorisini ve buna dair bulduğunu sandığı kanıtları The Descent of Man (İnsanın Türeyişi) adlı kitabında açıkladı. Bu kitabın sayfalarında yer alan tek resim ise, hemen birinci bölümde yer alan, biri insan diğeri ise köpek embriyolarına ait iki çizimdi. "İnsanın Daha Aşağı Bir Formdan Gelişinin Kanıtları" isimli bölümde, Darwin şöyle yazıyordu: Embriyonik gelişim: İnsan 1 inçin 125'te biri büyüklüğündeki bir ovülden gelişir ve bu ovül diğer hayvanlarınkinden hiçbir farklılık taşımaz. Embriyo erken dönemlerinde omurgalıların diğer üyelerinden çok zor ayrılabilir. Bu dönemde... (insan embriyosunun) boynunun iki yanındaki yarıklar hala varlığını korur."53 Bunun ardından Darwin, insan embriyosunun maymun veya köpek gibi omurgalı embriyolarına çok benzediğini, ancak gelişimin (hamileliğin) ileri dönemlerinde farklılaşma olduğunu söylüyor, bunun gözlemlere dayandığını ileri sürüyordu. Dostu Asa Gray'e yazdığı bir mektupta ise, embriyolojiyi, sözde "teorisini destekleyen en önemli gerçeklerden biri" olarak tanımlamıştı.54 Ancak Darwin bir embriyolog değildi. Hiçbir zaman embriyoları mercek altına alıp kapsamlı bir biçimde incelememişti. Dolayısıyla bu argümanını geliştirirken bu konuda otorite saydığı kişilerden alıntı yaptı. Verdiği dipnotta özellikle bir isim dikkat çekiyordu: Natürliche Schöpfungsgeschichte (Doğal Yaratılış Tarihi) adlı kitabında çeşitli embriyo çizimleri vermiş ve bunlar üzerine yorumlar yapmış olan Alman biyolog Ernst Haeckel. Nitekim Haeckel gerçekten de kısa bir süre sonra embriyolojinin evrimci yorumunun kurucusu ve asıl sahibi olarak tarihe geçecekti. Haeckel, Darwin'in 1859'da yayınlanan Türlerin Kökeni adlı kitabını büyük bir heyecanla okumuş, benimsemiş ve Darwin'den bile koyu bir evrimci olmuştu. Bu teoriye kendi adına "katkıda" bulunmak için bir dizi araştırma yaptı ve kitap yazdı. 1868'de yazdığı Natürliche Schöpfungsgeschichte (Doğal Yaratılış Tarihi) adlı kitabında ise, ona asıl ününü kazandıracak olan embriyoloji teorisini ortaya attı. Haeckel, bu kitapta, farklı hayvanların ve insanın ovüllerinin ve embriyolarının gelişimin başlangıcında birbirleri ile tamamen aynı olduklarını öne sürüyordu. Kitabın 242. sayfasına yerleştirdiği insan, maymun ve köpek embriyosu resimleri de bunun kanıtıydı. Görünürde birbirlerinin tamamen aynı olan bu resimler, Haeckel'e göre bu canlıların ortak bir kökenden geldiklerini kanıtlıyordu. Türlerin Kökeni kitabı, Haeckel'in çok önemli yanılgılara kapılmasına neden oldu. Gerçekte ise söz konusu canlılar değil, ama onların çizimleri ortak bir kökenden geliyordu: Haeckel, tek bir embriyo çizimi yapmış, sonra da bunu çok küçük farklılıklara uğratarak insan, maymun ve köpek embriyosu diye yanyana yerleştirmişti! Aynı resmi yanyana basınca, doğal olarak "birbirinin aynı" duruyorlardı.55 İşte Darwin'in İnsanın Türeyişi kitabında kaynak olarak gösterdiği "çalışma" buydu. Oysa daha Darwin bu kitabı yazmadan önce, Haeckel'in "çalışma"sında çok önemli bir çarpıtma olduğunu fark eden ve bunu açıklayanlar olmuştu. Haeckel'in kitabını yayınladığı 1868 yılı içinde, Archiv für Anthropologie (Antropoloji Arşivi) adlı Alman bilim dergisinde yayınlanan L. Rutimeyer imzalı bir makalede, Haeckel'in sahtekarlık yaptığı gözler önüne serildi. Basel Üniversitesi'nde zooloji ve karşılaştırmalı anatomi profesörü olan Rutimeyer, Haeckel'in embriyo çizimlerinin yayınlandığı iki kitabı, Naturliche Schöpfungsgeschichte (Doğal Yaratılış Tarihi) ve Über die Entstehung und den Stammbaum des Menschengeschlechts'i (İnsan Cinsiyetinin Soyağacı ve Oluşumu Hakkında) incelemiş, bunların her ikisindeki embriyo çizimlerinin de gerçeklerden tamamen ilgisiz olduğunu göstermişti. Şöyle diyordu Rutimeyer: Haeckel bu çalışmaların hem bilim adamı olmayan kişiler tarafından kolayca anlaşılabileceğini, hem de bilimsel ve akademik olduklarını ileri sürüyor. Yazarın ilk yorumuna kimse karşı çıkmayacaktır, ama ikincisi pek ciddi bir biçimde savunulabilecek bir iddia değildir. Bunlar, Ortaçağ formalitesi ile sarmalanmış işlerdir. Bilimsel kanıtların (yoktan) üretildiği çok aşikardır. Ama yazar, okuyucuların bu gerçeği fark etmemesi için çok dikkatli davranmıştır."56 Haeckel'in farklı canlıların embriyoları arasında benzerlik varmış izlenimi yaratmak için hazırlanmış sahte şemaları. Buna rağmen Darwin ve onu destekleyen diğer biyologlar, Haeckel'in çizimlerini referans olarak kabul etmeye devam ettiler. Bu da Haeckel'e motivasyon sağladı. Embriyolojiyi Darwinizm'e güçlü bir dayanak haline getirmek için kolları sıvadı. Yaptığı gözlemler ortaya böyle bir dayanak çıkarmıyordu, ama o gözlemlerden çok, çizimlere önem veriyordu. İlerleyen yıllarda bir dizi karşılaştırmalı embriyo çizimi yaptı. Balık, semender, kaplumbağa, tavuk, tavşan ve insan embriyolarını yanyana gösteren şemalar hazırladı. Bu şemalarda dikkati çeken yön, bu farklı canlıların embriyolarının ilk başta birbirlerine çok benzemeleri, gelişim süreci sırasında yavaş yavaş farklılaşmalarıydı. Özellikle insan embriyosunun balık embriyosuna benzerliği çok dikkat çekiciydi. Öyle ki, insan embriyosu çizimlerinde, aynı balıktaki gibi "solungaç"lar bile görülüyordu, Haeckel, bu çizimlerin verdiği sözde bilimsellik görüntüsü ile "teorisini" ilan etti: Ontojeni, Filojeniyi Tekrar Eder (Bireyoluş, Soyoluşun Tekrarıdır). Bu sloganın anlamı şuydu: Haeckel'e göre, her canlı yumurtasında veya annesinin rahminde geçirdiği gelişim sırasında, kendi türünün "evrimsel tarihini" baştan yaşıyordu. Örneğin insan embriyosu anne karnında ilk başta balığa benziyor, ilerleyen haftalarda semender, sürüngen, memeli gibi aşamalardan geçtikten sonra, insana "evrimleşiyor"du. "Ontojeni, Filojeniyi Tekrar Eder" sloganındaki "tekrar etme" (recaputilation) kavramından hareketle "Rekapütilasyon Teorisi" olarak da bilinen bu hikaye, kısa sürede tüm zamanların en ünlü sözde evrim "kanıt"larından biri haline geldi. Tüm bir 20. yüzyıl boyunca, yüz milyonlarca öğrenci Haeckel'in balık-semender-kaplumbağa-tavuk-tavşan-insan şemalarını ders kitaplarında gördü ve "insan embriyosunda solungaçlar olduğu" hikayesiyle yetiştirildi. Bugün de hala evrim teorisine inanan pek çok kişiye sorulduğunda, akıllarına gelen birkaç "evrim kanıtı"ndan biri bu olacaktır. Oysa tüm bu hikaye katıksız bir sahtekarlıktan ibaretti. Embriyolar gerçekte birbirlerine hiç benzemiyorlardı. Haeckel yaptığı çizimlerde olabilecek her türlü tahrifatı yapmıştı. Embriyolara hayali organlar eklemiş, bazılarından organları çıkarmış, büyüklükleri çok farklı olan embriyoları aynı boyda gibi göstermişti. Haeckel'in insan embriyosunda "solungaç" diye gösterdiği yarıkların ise solungaçlarla hiçbir ilgisi yoktu: Bunlar, gerçekte insanın orta kulak kanalının, paratiroidlerinin ve timüs bezlerinin başlangıçlarıydı. (Haeckel'in diğer benzetmelerinin de aldatıcı olduğu anlaşıldı: Embriyonun "yumurta sarısı kesesi"ne benzetilen kısmı, gerçekte bebek için kan üreten bir keseydi. Haeckel'in ve onu izleyenlerin "kuyruk" olarak tanımladıkları kısım ise, insanın omurga kemiğiydi ve sadece bacaklardan daha önce ortaya çıktığı için "kuyruk" gibi gözüküyordu.) Haeckel'in çizimlerde sahtekarlık yaptığı, henüz 20. yüzyılın başlarında ortaya çıkmış ve o da bu konuda hayli açık bir "itiraf"ta bulunmuştu. Ernst Haeckel şöyle söylüyordu: Bu yaptığım sahtekarlık itirafından sonra kendimi ayıplanmış ve kınanmış olarak görmem gerekir. Fakat benim avuntum şudur ki; suçlu durumda yanyana bulunduğumuz yüzlerce arkadaş, birçok güvenilir gözlemci ve ünlü biyolog vardır ki, onların çıkardıkları en iyi biyoloji kitaplarında, tezlerinde ve dergilerinde benim derecemde yapılmış sahtekarlıklar, kesin olmayan bilgiler, az çok tahrif edilmiş, şematize edilip yeniden düzenlenmiş şekiller bulunuyor.57 Ancak buna rağmen Darwinist sistem bu propaganda malzemesini çok beğendi ve kullanmaktan vazgeçmedi. Çizimlerin bir bilim sahtekarlığı olduğu göz ardı edildi ve on yıllar boyunca ders kitapları başta olmak üzere pek çok evrimci kaynak bu çizimleri bir gerçek gibi lanse etti. Haeckel'in sahtekarlığı mercek altında: 1999'da İngiliz biyolog Richardson'ın çektiği embriyo fotoğrafları, Haeckel'in çizimlerinin gerçekle hiçbir ilgisi olmadığını kanıtladı. Üstteki sırada Haeckel'in hayali çizimleri, alttaki sırada ise gerçek fotoğraflar yer alıyor. Haeckel'in çizimlerinin bir sahtekarlık olduğu, ancak 90'lı yılların ikinci yarısında yükses sesle dile getirilmeye başlandı. (Bunda, "bilinçli tasarım" teorisini savunan ve Darwinist efsaneleri çürütmeyi amaçlayan bilim adamlarının da büyük payı vardır.) Ünlü bilim dergisi Science, 5 Eylül 1997 tarihli sayısında, Haeckel'in embriyo çizimlerinin bir sahtekarlık ürünü olduğunu açıklayan bir makale yayınladı. "Haeckel'in Embriyoları: Sahtekarlık Yeniden Keşfedildi" başlıklı ve Elizabeth Pennisi imzalı yazıda şöyle denmektedir: Londra'daki St. George's Hospital Medical School'dan embriyolog Michael Richardson, '(Haeckel'in çizimlerinin) verdiği izlenim, yani embriyoların birbirine çok benzedikleri izlenimi yanlış' diyor... O ve arkadaşları Haeckel'in çizdiği türdeki ve yaştaki canlıların embriyolarını yeniden inceleyerek ve fotoğraflayarak kendi karşılaştırmalarını yapmışlar. Richardson, Anatomy and Embryology dergisine yazdığı makalede, 'embriyolar çoğu zaman şaşırtıcı derecede farklı görünüyorlar' diye not ediyor.58 Haeckel'in, embriyoları benzer gösterebilmek için, bazı organları kasıtlı olarak çizimlerinden çıkardığını ya da hayali organlar eklediğini bildiren Science dergisi, yazının devamında şu bilgileri vermektedir: "Richardson ve ekibinin bildirdiğine göre, Haeckel sadece organlar eklemek ya da çıkarmakla kalmamış, aynı zamanda farklı türleri birbirlerine benzer gösterebilmek için büyüklükleri ile oynamış, bazen embriyoları gerçek boyutlarından on kat farklı göstermiş. Dahası Haeckel farklılıkları gizleyebilmek için, türleri isimlendirmekten kaçınmış ve tek bir türü sanki bütün bir hayvan grubunun temsilcisi gibi göstermiş. Richardson ve ekibinin belirttiğine göre, gerçekte birbirlerine çok yakın olan balık türlerinin embriyolarında bile, görünümleri ve gelişim süreçleri açısından çok büyük farklılıklar bulunuyor. Richardson '(Haeckel'in çizimleri) biyolojideki en büyük sahtekarlıklardan biri haline geliyor' diyor. 59 Science'taki makalede, Haeckel'in bu konudaki itiraflarının bu yüzyılın başından itibaren her nasılsa, örtbas edildiğinden ve sahte çizimlerinin ders kitaplarında bilimsel gerçek gibi okutulmaya başlanmasından da şöyle söz edilmektedir: "Haeckel'in itirafları, çizimlerinin 1901'de "Darwin and After Darwin" (Darwin ve Darwin Sonrası) isimli bir kitapta kullanılmasından sonra ortadan kayboldu. Ve çizimler, İngilizce biyoloji ders kitaplarında geniş çaplı olarak çoğaltıldı."60 New Scientist'teki 16 Ekim 1999 tarihli bir makalede Haeckel'in embriyoloji masalının tamamen gerçek dışı olduğu şöyle anlatılıyordu: Haeckel, teorisini "biyogenetik yasa" olarak adlandırdı ve bu düşünce kısa zamanda "rekapitülasyon" olarak popülerleşti. Gerçekte ise, Haeckel'in keskin yasasının yanlış olduğu yakın bir zaman sonra gösterildi. Örneğin, erken insan embriyosunun hiçbir zaman bir balık gibi solungaçları yoktur ve embriyo hiçbir zaman erişkin bir sürüngene ya da maymuna benzer evrelerden geçmez.61 Böylece tüm zamanların en popüler "evrim kanıtı" sayılabilecek olan "rekapitülasyon" teorisi çürümüş oldu. Haeckel'in sahtekarlığı da böylece ortaya çıkmış oldu. Ama Haeckel'inkine yakın bir diğer sahtekarlık, hala görmezden gelinmeye devam ediliyordu. Bu, Darwin'in sahtekarlığıydı. Darwin, başta da belirttiğimiz gibi, Haeckel'in çizimlerini ve yorumlarını, devrin diğer bilim adamlarının aykırı görüşlerini hiçe sayarak almış ve teorisini desteklemek için kullanmıştı. Ancak Darwin'in dürüstlükten uzaklaştığı tek nokta bu değildi. Daha da çarpıcı bir nokta, dönemin en ünlü embriyoloğu sayılabilecek olan Karl Enrst von Baer'in görüşlerini tamamen çarpıtarak aktarmış olmasıydı. Jonathan Wells'in Icons of Evolution adlı kitabında ayrıntılarıyla açıkladığı gibi, Von Baer Darwin'in teorisine inanmıyordu ve buna şiddetle karşı çıkmıştı. Embriyolojiye getirilen evrimci yorumlara da yine kesinlikle karşıydı; "yüksek hayvanların embriyoları hiçbir zaman bir başka formun embriyosuna benzemez, sadece kendi embriyosuna benzer" diye yazmıştı.62 Darwinistlerin ise "embriyoları incelemeden önce zaten Darwinist evrim hipotezini kabul etmiş" dogmatikler olduğunu belirtmişti.63 Ancak Darwin, Türlerin Kökeni'nin üçüncü baskısından itibaren, Von Baer'in yorumlarını ve vardığı sonuçları çarpıtarak kendi teorisi lehinde bir kanıt olarak kullandı. Jonathan Wells, bunu şöyle açıklıyor: Darwin von Baer'i kendi embriyolojik kanıtlarının kaynağı olarak alıntıladı, ama en önemli noktada Darwin bu kanıtları kendi teorisine uygun hale getirmek için çarpıttı. Von Baer kendi yaptığı gözlemlerin Darwin tarafından haksız biçimde kullanılmasına karşı çıkacak kadar uzun yaşadı ve 1876'daki ölümüne kadar Darwinist evrimin güçlü eleştirmenlerinden biri oldu. Ama Darwin yine de onu kaynak göstermeyi sürdürdü, onu (Baer'i) açıkça karşı çıktığı teorinin sanki bir destekçisiymiş gibi gösterdi.64 Kısacası Darwin, döneminin ilkel şartlarını, sadece yanlış ve önyargılı bilimsel çıkarımlar yapmak için değil, iletişim eksikliğinden yararlanarak başka bilim adamlarının çalışmalarının sonuçlarını çarpıtmak için de kullanmıştı. Tüm bunların geç de olsa ortaya çıkması, kuşkusuz Darwinizm'e önemli bir darbedir. Darwin, Haeckel'in sahtekarlığından güç bulmuş ve embriyolojiyi, kendi ifadesiyle, teorisine "delil sağlayan en güçlü gerçekler sınıfı" olarak kabul etmişti.65 Pek çok insan da bu hikayeye kandı, cahillik ve yüzeysellik içinde, bir zamanlar boğazında "solungaçlar" taşıdığını sanarak, evrime inandı. Ama bu, bir zamanlardı... Artık embriyolojinin Darwinizm'e bir kanıt sağlamadığı biliniyor. Ve artık embriyoloji alanında da aynı sloganı tekrar etmek gerekiyor: Bir zamanlar Darwinizm vardı!...

http://www.biyologlar.com/bir-zamanlar-darwinizm

Bir Zamanlar Hatalı Tasarımlar Hikayesi Vardı

Richard Dawkins günümüz dünyasının en bilinen evrimci biyologlarından biridir. Oxford Üniversitesi'nde zooloji profesörü olan Dawkins'i ünlü yapan etken ise, zooloji alanındaki çalışmaları değil, Darwinizm'i ve ateizmi savunmakta gösterdiği ısrarcılıktır. Ateist Richard Dawkins, 1986'da yayınlanan "Kör Saatçi" adlı kitabında doğadaki sözde "hatalı tasarım"lardan söz etmişti. Dawkins'in bu argümanının cehalete dayandığı sonradan ortaya çıktı. Dawkins'in 1986'da The Blind Watchmaker adlı bir kitabı yayınlandı. "Kör Saatçi" anlamına gelen bu başlık altında, Dawkins, okurlarını, canlılardaki karmaşık tasarımların aslında bilinçsiz doğal seleksiyon mekanizmasının bir ürünü olduğuna ikna etmeye çalışır. Bu ikna çabası çoğu yerde spekülasyonlara, hatalı benzetmelere ve yanlış hesaplara dayalıdır ve bu da şimdiye kadar çeşitli bilim adamları ve yazarlar tarafından detaylı biçimde ortaya konmuştur.66 Dawkins'in iddialarından biri ise, "hatalı tasarımlar" argümanıdır. Dawkins, canlılardaki bazı yapıların verimsiz ve dolayısıyla hatalı tasarımlara sahip olduğunu savunmakta ve bunların bilinçli bir tasarımla yaratıldıklarını inkar ederek, böyle olsa daha farklı olacaklarını ileri sürmektedir. Bu konuda verdiği en belirgin örnek ise, insan dahil tüm omurgalı canlıların gözünde yer alan "ters-çevrilmiş retina"dır. Ters-çevrilmiş retina kavramı, omurgalı gözünün retinasındaki "fotoreseptör" (ışık algılayıcı) hücrelerin, gözün ön tarafına, yani ışığa doğru değil de gözün arka tarafına bakacak şekilde yerleştirilmiş olmalarını ifade eder. Bu hücrelerin ışık algılayan yüzeyleri arka tarafa bakmakta, bu hücrelerden çıkan sinirler ise, ışıkla hücreler arasında bir katman oluşturmaktadır. Bu sinirler gözün belirli bir noktasında toplanır ve oradaki bir kanaldan dışarı çıkarlar. Bu kanal üzerinde fotoreseptör hücre olmadığı için de, bu noktada görüntü algılanmaz. "Kör nokta", işte bu noktadır. Darwinistler, bu "ters çevrilmişlik" durumunu ve bunun oluşturduğu kör noktayı kendilerince malzeme edinmişler, bunun bir "tasarım hatası" olduğunu ileri sürmüşler ve dolayısıyla aslında ortada bir "tasarım" bulunmadığını, gözün doğal seleksiyonla ortaya çıktığını ve bu gibi garipliklerin beklenmesi gerektiğini iddia etmişlerdir. Richard Dawkins, başta da belirttiğimiz gibi, bu argümanı seslendiren en bilinen kişidir. Dawkins, The Blindwatchmaker'da şöyle yazmıştır: Her mühendis, fotohücrelerin ışığa doğru yöneltilmesi, kablolarının da arkaya, beyin tarafına doğru uzanması gerektiğini kabul edecektir. Fotohücrelerin ışıktan uzağa doğru bakmaları ve kablolarının ışığa en yakın durumda olmalarını gerektiren bir tasarımı yanlış bulacaktır. Ama tüm omurgalı gözlerinde tam olarak bu yaşanmaktadır.67 Okurlarının bir kısmı Dawkins'in bu argümanından etkilenmiş, gözde "hata" olduğunu ve bunun gözün tasarlandığı (yaratıldığı) görüşüne karşı büyük bir kanıt oluşturduğunu sanmış olabilirler. Biyoloji Profesörü Michael Denton Oysa Dawkins ve ona inananlar yanılmışlardır. Yanılgının nedeni, Dawkins'in gözün anatomisi ve fizyolojisi hakkındaki cehaletidir. Bu konuyu detaylı biçimde gözler önüne seren bilim adamı, Darwinizm'in günümüzdeki en önde gelen eleştirmenlerinden biri olan, Otago Üniversitesi'nden moleküler biyoloji profesörü Michael Denton'dır. Denton, Origins&Design dergisinde yayınlanan "The Inverted Retina: Maladaptation or Pre-adaptation?" (Ters Çevrilmiş Retina: Hatalı Adaptasyon mu, Önceden Belirlenmiş Bir Adaptasyon mu?) başlıklı bilimsel makalesinde, Dawkins'in "hatalı tasarım" olarak gösterdiği "ters çevrilmiş retina"nın, aslında omurgalı gözü için olabilecek en verimli tasarım olduğunu anlatır. Denton, bunu şöyle özetlemektedir: Omurgalı retinasındaki fotoreseptör hücrelerin çok yüksek enerji ihtiyaçlarını düşündüğümüzde, omurgalı gözünün şaşırtıcı ters çevrilmiş tasarımının, teleolojiye (tasarıma) yönelik bir meydan okuyuş olmadığı, aksine yüksek omurgalıların çok aktif olan fotoreseptör hücrelerine çok yüksek miktarlarda oksijen ve besin sağlayan çok özel bir çözüm olduğu ortaya çıkmaktadır.68 Profesör Denton'ın üzerinde durduğu, Dawkins'in ise farkında bile olmadığı bu gerçeği anlamak için, öncelikle retinadaki fotoreseptör hücrelerin ne denli yüksek bir enerji ve oksijen ihtiyacı içinde olduklarını belirlemek gerekir. Söz konusu hücreler, biz gözümüzü açık tutup ışık gördüğümüz sürece, her saniye, her salise, çok karmaşık kimyasal reaksiyonlara sahne olurlar. Işığın en küçük parçacıkları olan fotonlar, bu hücreler tarafından algılanır. Bu algılama, fotonun başlattığı karmaşık bir kimyasal reaksiyon sayesinde olur ve her an yeniden tekrarlanır. Bu işlem o kadar karmaşık ve hızlıdır ki, Denton'ın ifadesiyle, "fotoreseptör tabaka, bilinen tüm dokular içinde en büyük metabolik hızlara sahiptir."69 1) Kornea, ışığın odaklanmasına yardımcı olur. 2) Retina, görüntüyü sinir sinyallerine dönüştürür. 3) Göz boşluğundaki damarlar retinayı besler. 4) Işık gözbebeğinin karanlık açıklığından içeri girer. 5) İris kasları, ne kadar ışık alınacağını kontrol eder. 6) Sclera, göz yuvarlağını kaplayan sert beyaz yapıdır. 7) Mercek, görüntüyü odaklar. 8) Optik sinirler gözü beyne bağlar. Allah'ın üstün yaratmasının tecellilerinden olan göz, olabilecek en verimli şekilde çalışabileceği bir tasarıma sahiptir. Kuşkusuz, retina hücreleri bu yüksek metabolizmayı ayakta tutabilmek için çok yüksek miktarda enerjiye ihtiyaç duyarlar. İnsan retinası hücrelerinin oksijen ihtiyacı, böbrek hücrelerinin ihtiyacının iki katı, beyindeki serebral korteks katmanındaki hücrelerin üç katı ve kalp kasını oluşturan hücrelerin ihtiyacının altı katıdır. Dahası bu karşılaştırmalar tüm retina tabakası esas alınarak yapılmıştır; bu tabakanın yarısından azını oluşturan fotoreseptör hücrelerin enerji ihtiyacı ise tabakanın genelinden daha da yüksektir. G. L. Walls The Vertebrate Eye (Omurgalı Gözü) adlı ansiklopedik kitabında, bu hücrelerin besin ve oksijene "ihtiraslı" şekilde ihtiyaç duyduklarını yazar.70 Peki görmemizi sağlayan bu hücrelerin olağanüstü derecede yüksek besin ve oksijen ihtiyacı nasıl karşılanmaktadır? Elbette ki, tüm vücutta olduğu gibi, kan yoluyla... Peki kan nereden gelmektedir? İşte "ters çevrilmiş retina"nın neden çok ideal bir tasarım olduğu, bu noktada ortaya çıkar. Gözün retina tabakasının hemen arkasında, bu tabakayı adeta bir ağ gibi saran, çok özel bir damar dokusu vardır. Denton, bu konuda şunları yazmaktadır: Fotoreseptörlerin abartılı metabolik açlığını giderecek oksijen ve besinler, "choriocapillaris" denen çok özel bir kılcal damar yatağı tarafından sağlanmaktadır. Bu, geniş ve düzleştirilmiş kılcal damarların birleşerek oluşturduğu ve hemen fotoreseptörlerin arkasına yerleştirilmiş zengin bir damar tabakasıdır. Bu tabaka ile fotoreseptörler arasında sadece hücre duvarları ve bir de "Bruch zarı" denen özel bir zar vardır; ki bunlar sadece fotoreseptör hücrelerin ihtiyaç duydukları metabolitlerin ve besinlerin geçmesine izin veren son derece seçici bir sınır oluştururlar. Buradaki kılcal damarların çapı 18-50 mikron arasında değişir ki, bu da standart damarlardan çok daha geniş bir boyuttur. Bu özgün damar kanalları ağı, fotoreseptör tabakasını bol miktarda kanla beslemek için adapte edilmiş olduğunu gösteren bütün işaretleri taşımaktadır.71 Prof. James T. McIlwain, An Introduction to the Biology of Vision (Görmenin Biyolojisine Giriş) adlı kitabında, "fotoreseptörlerin büyük metalobik ihtiyaçları nedeniyle" gözde "koroidi kana 'boğma' yönünde bir strateji olduğunu, böylece gerekli enerji arzında hiçbir sorun olmamasının sağlandığını" yazar.72 İşte fotoreseptör hücreler bu nedenle "ters çevrilmiş" durumdadırlar. Ortada bir "strateji" vardır. Retinanın ters çevrilmiş yapısı, Dawkins'in sandığı gibi bir "hata" değil, belirli bir amaca yönelik bilinçli bir "tasarım"dır. Denton, ilgili makalesinde retinanın başka türlü tasarlanmasının mümkün olup olmadığını da incelemektedir. Vardığı sonuç ise bunun mümkün olmadığıdır. Retinanın Dawkins'in kendince önerdiği gibi "düz" olması, yani fotoreseptör hücrelerin ışığa doğru bakması durumunda, bu hücreler onları beslemekte görevli olan damar tabakasından uzaklaşacaklar ve ihtiyaç duydukları besin ve oksijenden büyük ölçüde mahrum kalacaklardır. Damarların retina tabakasının içine uzatılması da bir "çözüm" değildir, çünkü bu pek çok kör nokta oluşturarak gözün görme yeteneğini büyük ölçüde azaltacaktır. Denton şu yorumu yapar: Omurgalı retinasının tasarımı ne kadar derinlemesine incelenirse, sahip olduğu her özelliğin gerekli olduğu o kadar ortaya çıkmaktadır. Olabilecek en yüksek çözünürlüklü görüşe ve en yüksek muhtemel hassasiyete sahip olacak bir gözü ilk baştan tasarlamaya kalkarsak, omurgalı gözünü aynen baştan inşa etmek durumunda kalırız- ters çevrilmiş retinasıyla birlikte... 73 Kısacası Dawkins'in ve diğer evrimcilerin "gözdeki hata" argümanı, cehaletten kaynaklanan bir argümandır. Canlılığın detaylarının daha yüksek bilgiyle -ve bilinçle- incelenmesi sonucunda da çürümüştür. Aslında Darwinizm'in tarihinde daha pek çok "cehaletten kaynaklanan argüman" vardır. Tüm "körelmiş organlar" hikayesi böyledir. Körelmiş Organlar Hikayesi Apendiksini veya kuyruk sokumunun birer "körelmiş organ" olduğu, bunların daha önceki hayali "evrimsel atalarda" önemli işlevler üstlenmelerine rağmen, zaman içinde fonksiyonlarını yitirdikleri şeklinde bir hikaye duydunuz mu? Muhtemelen duymuşsunuzdur. Pek çok insan da duymuştur. Çünkü söz konusu "körelmiş organlar" hikayesi, Darwin'den bu yana evrimcilerin en çok rağbet ettikleri propaganda malzemesidir. Hikaye, Darwin'le başlamıştı. Darwin, Türlerin Kökeni'nde "fonksiyonlarını yitirmiş ve fonksiyonları azalmış" organlardan söz etmişti. "Rudimentary" (ilkel) kelimesiyle tanımladığı bu organları bir kelimenin içinde yazılan, ama okunmadığı için etkisi olmayan harflere benzetmişti.74 19. yüzyılın ilkel bilim düzeyi içinde, apendiks işlevsiz ve dolayısıyla "körelmiş" bir organ sanılmıştı. Ama bu Darwinizm'in diğer iddiaları gibi, o dönemin ilkel bilim düzeyinden güç bulan bir hurafeydi. Bilim ilerledikçe, Darwin'in ve onu izleyenlerin "körelmiş" saydıkları bu organların gerçekte önemli fonksiyonlara sahip oldukları yavaş yavaş ortaya çıktı. "Fonksiyonsuz" denen organlar, aslında "fonksiyonu henüz tespit edilememiş" organlardı. Fonksiyonları tespit edildikçe, evrimciler tarafından sayılan uzun "körelmiş organlar" listesi de giderek küçüldü. Alman anatomist R. Wiedersheim tarafından 1895 yılında ortaya atılan "körelmiş insan organları" listesi, apendiks, kuyruk sokumu kemiği gibi yaklaşık 100 organı içeriyordu. (Apendiks (ya da apandis), toplumda 'apandisit' olarak bilinen organdır. Yanlış kullanım sonucu dilimizde bu organı tanımlamak için kullanılan 'apandisit' gerçekte bu organın enfeksiyona uğramasına verilen addır.)75 Bilim ilerledikçe, Wiedersheim'ın listesindeki organların hepsinin vücutta çok önemli işlevlere sahip oldukları ortaya çıktı. Örneğin "körelmiş organ" sayılan apendiksin, gerçekte vücuda giren mikroplara karşı mücadele eden lenf sisteminin bir parçası olduğu belirlendi. Bu gerçek, "Examples of Bad Design Gone Bad" (Kötü Tasarım Örnekleri Kötü Çıktı) başlıklı bir makalede, çeşitli temel anatomi kaynaklarına referans verilerek şöyle açıklanıyor: Apendiksin mikroskobik düzeyde incelenmesi, bunun oldukça önemli oranda lenf dokusu içerdiğini göstermektedir. Benzer lenf dokusu birikimleri (ki bunlara GALT, yani sindirim sistemiyle ilişkili lenf dokuları denir) bağırsak sisteminin diğer alanlarında da görülür. Bunlar, vücudun yutulan maddelerdeki yabancı antijenleri tanıma yeteneğiyle ilgilidirler. Benim kendi araştırmam, özellikle, bağırsağın bağışıklık fonksiyonları üzerine yoğunlaşmıştır. Tavşanlarda yapılan deneyler yeni doğan bireylerde apendiksin ameliyat edilmesinin mukozal bağışıklık gelişimine zarar verdiğini göstermiştir. Tavşan apandiksi üzerine yapılan morfolojik ve fonksiyonel çalışmalar ise, apandiksin, memelilerdeki hava keseciklerine denk olduğunu göstermektedir. Bu kesecikler, kuşlardaki sıvısal bağışıklığın gelişiminde kritik bir rol oynamaktadır. Tavşan ve insan apandiksinin mikroskobik ve mikrobağışıksal benzerlikleri, insandaki apandiksin tavşandakine benzer bir görevi olduğunu göstermektedir. İnsan apandiksi özellikle yaşamın erken dönemlerinde çok önemlidir, çünkü doğumdan kısa bir süre sonra büyük gelişim geçirmekte, sonra yaş ilerledikçe gerilemektedir, ta ki sindirim sistemi organlarına, ince bağırsaktaki peyer plakları gibi diğer bazı kısımlarına benzeyene kadar. Bu yeni çalışmalar, insan apandiksinin, bir zamanlar iddia edildiği gibi zamanla küçülmüş ve faydasını kaybetmiş bir organ olmadığını göstermektedir.76 Kısacası tüm zamanların en ünlü "körelmiş organı" olarak öne sürülen apendiksin körelmiş sanılmasının nedeni, Darwin ve taraftarlarının dönemin ilkel bilim düzeyine dayanan dogmatizmleriydi. Dönemin ilkel mikroskopları altında apendiksin lenf dokusu gözükmüyordu; onlar da yapısını anlayamadıkları dokuyu kendi teorileri gereğince "fonksiyonsuz" saymışlar ve körelmiş organlar listesine dahil etmişlerdi. Darwinizm, bir kez daha, 19. yüzyılın ilkel bilim düzeyinden güç bulmuştu. Bu durum sadece apendiks için değil, tüm diğer sözde körelmiş organlar için geçerliydi. Wiedersheim'ın "körelmiş organlar" listesinde yer alan bademciklerin de ilerleyen yıllarda boğazı, özellikle erişkin yaşlara kadar, enfeksiyonlara karşı korumada önemli rol oynadığı keşfedildi. Omuriliğin sonunu oluşturan kuyruk sokumunun ise, leğen kemiğinin çevresindeki kemiklere destek sağladığı, bu nedenle, kuyruk sokumu kemiği olmadan rahatça oturabilmenin mümkün olmadığı anlaşıldı. Ayrıca bu kemiğin pelvis bölgesindeki organların ve buradaki çeşitli kasların da tutunma noktası olduğu belirlendi. İlerleyen yıllarda yine "körelmiş organlar"dan sayılan timüs bezinin T hücrelerini harekete geçirerek vücudun savunma sistemini aktif hale getirdiği; pineal bezin, lüteinik hormonu baskılayan melatonin gibi önemli hormonların üretilmesinden sorumlu olduğu keşfedildi. Tiroid bezinin bebeklerde ve çocuklarda dengeli bir vücut gelişimini sağladığı ve metabolizma ve vücut aktivitesinin düzenlenmesinde rol oynadığı saptandı. Pitüiter bezin de tiroid, böbrek üstü, üreme bezleri gibi birçok hormon bezinin doğru çalışmasını ve iskelet gelişimini kontrol ettiği ortaya çıktı. Darwin tarafından "körelmiş organ" olarak nitelendirilen gözdeki yarım ay şeklindeki çıkıntının ise gözün temizlenmesi ve nemlendirilmesi işine yaradığı anlaşıldı. Günümüzde, geçtiğimiz on yıllar içinde ileri sürülen "körelmiş organlar"ın hepsinin aslında belirli fonksiyonlar üstlendiği tespit edilmiş durumdadır. Dr. Jerry Bergman ve Dr. George Howe tarafından kaleme alınan 'Vestigial Organs' Are Fully Functional ('Körelmiş Organlar' Tümüyle Fonksiyonel) adlı çalışmada, bu gerçek detaylarıyla ortaya konmaktadır. Nitekim pek çok evrimci de "körelmiş organlar" hikayesinin cehaletten kaynaklanan bir argüman olduğunu kabul etmiş durumdadır. Evrimci biyolog S. R. Scadding Evolutionary Theory (Evrimsel Teori) dergisinde yazdığı "Körelmiş Organlar Evrime Delil Oluşturur mu?" başlıklı makalesinde bu gerçeği şöyle ifade eder: (Biyoloji hakkındaki) bilgimiz arttıkça, körelmiş organlar listesi de giderek küçüldü... Bir organın işlevsiz olduğunu tespit etmek mümkün olmadığına ve zaten körelmiş organlar iddiası bilimsel bir özellik taşımadığına göre, "körelmiş organlar"ın evrim teorisi lehinde herhangi bir kanıt oluşturamayacağı sonucuna varıyorum.77 Evrimcilerin bu sonuca varmaları bir buçuk asır kadar uzun bir zaman sürmüş olsa da, sonuçta Darwinizm'in bir hurafesi daha tarihe karışmıştır. Panda'nın Baş Parmağı Stephen Jay Gould Bu bölümün başında Richard Dawkins'in "gözdeki hatalı tasarım" iddiasının geçersizliğini incelemiştik. Dawkins kadar ünlü bir diğer evrimci ise Stephen Jay Gould'dur. Harvard Üniversitesi paleontoloğu olan Gould, 2002 yılındaki ölümüne kadar, ABD'nin en önde gelen evrimcilerinden biri olmuştur. Ve Gould'un da aynı Dawkins'in retina örneği gibi, bir "hatalı tasarım" örneği vardır: Pandanın baş parmağı. Pandanın elinde, insan elinde olduğu gibi, dört parmaktan ayrı duran ve böylece cisimleri tutmayı kolaylaştıran ayrı bir baş parmak yoktur. Hayvanın beş parmağı da yanyana uzanır. Ama bu beş paralel parmağının dışında, bileğinden çıkan "radyal susamsı kemik" (radial sesamoid bone) olarak isimlendirilen bir kemik çıkıntısı daha bulunmaktadır. Bunu kimi zaman bir parmak gibi kullandığı için, biyologlar buna "pandanın baş parmağı" adını vermişlerdir. Gould'un iddiası ise, pandanın elinin bu yapısıyla verimsiz olduğu, eğer burada bilinçli bir tasarım olduğu gerçeği kabul edilse, bu tasarımın pandaya "düzgün bir baş parmak" kazandırmasının bekleneceği şeklinde özetlenebilir. Bu iddiayı o kadar önemsemiştir ki, iddia 1980 yılında yayınlanan kitabının ismini oluşturmuştur: The Panda's Thumb (Pandanın Baş Parmağı) Oysa Gould'un "hatalı tasarım" iddiası da, Dawkins'inki gibi yanlıştır. Gould, 1980'de yayınlanan "Pandanın Baş Parmağı" adlı kitabında bu canlının el yapısının "hatalı tasarım" olduğunu öne sürmüştü. Ama yeni bilimsel araştırmalar, bu iddiayı geçersiz kıldı ve pandanın bu özelliğinin önemli bir tasarım olduğunu ortaya koydu. Gould'un hatası, pandanın baş parmağını, insan eli gibi düşünmesi ve fonksiyonelliğini insan eliyle kıyaslamasıdır. Paul Nelson, bu konuda şu yorumu yapar: Pandanın baş parmağı bazı işler için -örneğin klavye kullanmak gibi- optimal (ideal) olmasa da, kendi üstlendiği işlev için, yani bambu soymak için son derece uygun gözükmektedir.78 The Giant Pandas of Wolong (Wolong'un Dev Pandaları) adlı bilimsel inceleme kitabının yazarları ise, şu yorumu yaparlar: Panda, birinci parmağının çıktığı tüysüz yüzeyi ile sahte baş parmağını aynen bir maşa gibi kullanarak, bambu kamışlarını büyük bir hassasiyetle tutabilmektedir... Pandanın yaprak yemesini izlerken... tutma kabiliyeti karşısında hepimiz etkilendik. Önayaklar ve ağız büyük bir uyum içinde çalışmakta ve ona büyük bir hareket ekonomisi kazandırmaktadır.79 1999 yılında Nature dergisinde yayınlanan bir inceleme, pandanın baş parmağının hayvanın doğal ortamı açısından son derece verimli olduğunu göstermiştir. Dört Japon araştırmacının ortak yürüttükleri çalışma, "kompüterize tomografi" ve "manyetik rezonans resimlendirmesi" teknikleri ile yürütülmüş ve sonuçta pandanın baş parmağının "memeliler arasında bulunan en olağanüstü yönlendirme tekniklerinden biri" olduğu sonucuna varılmıştır.80 " Role of the giant panda's 'pseudo-thumb'" (Büyük Pandanın "Sahte Baş Parmağının Rolü") başlıklı makale, şu yorumla bitmektedir: Büyük pandanın elinin, daha önceki morfolojik modellerde ileri sürüldüğünden çok daha rafine bir tutma mekanizması olduğunu göstermiş bulunuyoruz.81 Kısacası, son 150 yıl içinde evrimciler tarafından ortaya atılan tüm "körelmiş organ" veya "hatalı tasarım" iddiaları, sözü edilen biyolojik yapıların daha yakından incelenmesi sonucunda boşa çıkmıştır. Evrimciler doğadaki hiçbir biyolojik yapının kökenini açıklayamaz iken, bu yapıların gerçek açıklaması olan "bilinçli tasarım"a karşı öne sürdükleri itirazlar da çürümüştür. Bu nedenle diyebiliriz ki; bir zamanlar Darwinizm vardı. Bu teori, canlıların "hatalı" veya "körelmiş" organlarla dolu olduğunu iddia ediyordu. Bugün ise bu teori çürümüştür. PandanınParmağıMükemmel Bir Tasarımdır Evrimciler yaratılışı inkar etmek için doğada kusur ve uyumsuzluk ararlar. S. J. Gould'un pandaların baş parmakları ile ilgili iddiası buna bir örnektir. Oysa Gould yanılmaktadır. Çünkü bu kemiksi parmak Gould'un zannettiği gibi bir kusur değildir. Aksine hareketi kolaylaştırır ve tendonların yırtılmasını engelleyici etkiye sahiptir. 1999 yılında Nature dergisinde yayınlanan bir inceleme, pandanın baş parmağının hayvanın doğal ortamı açısından son derece verimli olduğunu göstermektedir. Dört Japon araştırmacının ortak sürdürdükleri çalışma, "kompüterize tomografi" ve "manyetik rezonans resimlendirmesi" teknikleri ile yürütülmüş ve sonuçta pandanın baş parmağının "memeliler arasında bulunan en olağanüstü yönlendirme tekniklerinden biri" olduğu sonucuna varılmıştır. (Endo, H., Yamagiwa, D., Hayashi, Y. H., Koie, H., Yamaya, Y., and Kimura, J. 1999. Nature 397: 309-310) Yukarıda, çalışmayı yürüten uzmanların pandanın el yapısı ile ilgili yaptıkları bilgisayar çizimi yer alıyor.

http://www.biyologlar.com/bir-zamanlar-hatali-tasarimlar-hikayesi-vardi

Bir Zamanlar "Hurda DNA" Masalı Vardı

Bir önceki bölümde incelediğimiz "hatalı" veya "körelmiş" yapılar iddiasının son dayanağı, Hurda DNA (Junk DNA) kavramıydı. Yeni bir konu olduğu -ve çok kısa bir süre önce çöktüğü- için bu kavramı ayrı bir bölüm içinde incelemekte yarar vardır. Körelmiş organlar efsanesi, bir önceki bölümde incelediğimiz gibi, 20. yüzyılın ikinci yarısından itibaren çökmeye başladı. İşlevsiz denen organların önemli işlevleri olduğu keşfedildikçe, bu efsane de savunulamaz hale geldi. Ama bu efsanenin propaganda gücünden mahrum kalmak istemeyen evrimciler bunun yeni bir versiyonuna sarıldılar. Bu yeni versiyon, vücuttaki organların değil, ama organların genetik şifresini içeren genlerin bir kısmının "körelmiş" olduğu şeklindeydi. Kullanılan kavram ise "körelmişlik" değil, "hurdaya çıkmışlık"tı. Söz konusu "hurda" (junk) nitelemesi, tüm canlıların genetik bilgisini kodlayan dev DNA molekülünün bazı kısımları için kullanıldı. Evrimci iddiaya göre DNA'nın oldukça büyük bir bölümü işlevsizdi. Evrimciler bu işlevsiz kısımların, geçmişteki sözde evrim sürecinde bir işe yaradığını ama zamanla "hurdaya çıktığını" ileri sürdüler. İddianın Darwinizm'le olan paralelliği çok belirgindi ve bu nedenle de "Hurda DNA" (Junk DNA) kavramı, kısa sürede bilim literatürünün sık tekrarlanan terimlerinden biri haline geldi. Ancak körelmiş organlar hikayesinin bu yeni versiyonunun ömrü de fazla uzun olmadı. Özellikle 2001 yılında sonuçları açıklanan İnsan Genomu Projesi'yle birlikte, "Hurda DNA" kavramının bir yanılgı olduğu bilim dünyası içinde yüksek sesle ifade edilmeye başlandı. Cleveland Üniversitesi'nden evrimci bilim adamı Evan Eichler "Hurda DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil" itirafında bulunuyordu. 82 Bunun nedeni, Hurda DNA denen kısımların da işlevlerinin olduğunun yavaş yavaş anlaşılmasıydı. Şimdi, Hurda DNA efsanesinin nasıl doğduğunu ve çöktüğünü inceleyelim. Kodlamayan DNA'nın Hurda Sanılışı Evrimcilerin bu yanılgısının anlaşılması için öncelikle DNA'nın yapısı hakkında bilgi vermek gerekir. Tüm canlı hücrelerinde yer alan dev bir moleküler zincir olan DNA molekülü, içerdiği genetik bilgiler yüzünden çoğu zaman "bilgi bankası" olarak anılır. Molekül aynı zamanda bu bilgilerin bedensel faaliyetlerde kullanımını düzenleyen bir genetik koda sahiptir. Daha önceki bölümlerde incelediğimiz gibi, DNA molekülünün kökenini açıklama amacıyla yapılan tüm evrimci girişimler sonuçsuz kalmış, bu moleküldeki bilginin rastlantısal olarak oluşamayacağı ortaya çıkmıştır. DNA molekülü ancak bilinçli tasarımla açıklanabilmektedir. DNA üzerinde fiziksel özelliklerimizin ve fizyolojik faaliyetlerimizin bilgisini kodlayan belirli kısımlara "genler" denir. Bu genler farklı farklı proteinlerin kodlanmasında rol oynar ve yaşamımızın devamını sağlar. Ancak genlerimizin tamamı, DNA'mızın yaklaşık %10'unu oluşturur. DNA'nın geriye kalan daha büyük kısmı, protein kodlamadığı için "kodlamayan DNA" olarak isimlendirilir. Kodlamayan DNA'yı da kendi içinde bazı kategorilere ayırmak mümkündür. Kodlamayan DNA, bazen genler arasına sıkıştırılmış vaziyette bulunur ve bunlara "intron" adı verilir. Bir diğer kısım kodlamayan DNA, aynı nükleotid dizisinin art arda sıralanmasıyla oluşmuş daha uzun zincirler meydana getirir. Bunlara "tekrarlı (repetitive) DNA" ismi verilir. Eğer kodlamayan DNA üzerindeki nükleotidler, tekrarlayan diziler yerine, genlerdeki karmaşık dizilimi andıracak şekilde sıralanmışlarsa, bu defa "sahte gen" (pseudogene) olarak isimlendirilirler. Evrimciler protein kodlamayan bu bölümleri genel olarak "Junk DNA" (Çöplük ya da Hurda DNA) adı altında toplamış ve bunların sözde evrimsel süreçten aktarılan gereksiz yığınlar olduğunu ileri sürmüşlerdir. Oysa bunun mantıksal açıdan hatalı bir yaklaşım olduğu açıktır. Çünkü bu DNA yapılarının protein kodlamıyor olması, bunların işlevsiz olduğunu göstermez. Bunların fonksiyonlarını öğrenmek için üzerinde yapılacak araştırmaların sonuçlarını beklemek gerekir. Bilimsel yaklaşım bunu gerektirir. Ancak evrimci önyargılar bu mantığın devreye sokulmasını engellemiş, toplumu yıllarca Hurda DNA iddialarıyla yanıltacak haberlere yol açmıştır. Ancak özellikle son on yılda yapılan araştırmalar bu iddiaların hayalden başka birşey olmadığını göstererek evrimcileri yalanlamıştır. Çünkü kodlamayan DNA kısımlarının, evrimcilerin iddia ettiği gibi "çöplük" değil, tam aksine "genomik hazine" olduğu anlaşılmıştır.83 Chicago Üniversitesi'nden doktora sahibi ve bilinçli tasarım hareketinin önde gelen savunucularından biri olan Dr. Paul Nelson, "Hurdacı Artık Hurda Satmıyor" (The Junk Dealer Ain't Selling That No More) başlıklı makalesinde, evrimcilerin çöplük DNA iddialarının çöküşünü şu cümlelerle açıklar: "[Ateizmin savuncularından]Carl Sagan, Shadows of Forgotten Ancestors (Unutulmuş Ataların Gölgeleri) isimli kitabında, "genetik hurdalığın", DNA'daki "fazlalıkların, kekelemelerin (gereksiz tekrarlar) ve kopya edilemez saçmalıkların", hayatın temelinde derin kusurlar bulunduğunu kanıtladığını öne sürmüştü. Bu tür yorumlara biyoloji literatüründe giderek daha az rastlanmaktadır. Neden mi? Çünkü artık genetikçiler, genetik enkaz olarak bilinen kısımların fonksiyonlarını keşfediyorlar."84 Şimdi 'Hurda DNA'nın aslında hiç de hurda olmadığının nasıl keşfedildiğini inceleyelim.. 1. Kodlamayan DNA'nın nükleotid diziliminde lisan yeteneği ile ilgili bir kodlama kriteri bulundu. 1994 yılında Harvard Tıp Fakültesi moleküler biyologları ile Boston Üniversitesi'nden fizikçilerin gerçekleştirdiği ortak çalışmada kodlamayan DNA ile ilgili çarpıcı bir sonuç elde edildi. Araştırmacılar, çeşitli canlılardan alınan ve 50.000 baz çifti içeren 37 DNA dizilimini incelemiş ve nükleotidlerin sıralamasında belirli kuralların olup olmadığını araştırmışlardı. Bu çalışma sonucunda, insan DNA'sında %90 yer tutmakta olan sözde Hurda DNA'nın, insan diline has bir özelliğe sahip olduğu ortaya çıktı.85 Buna göre, yeryüzünde konuşulmakta olan tüm dillerde görülen ortak bir kodlama kriterine insan DNA'sında sıralanan nükleotidlerde de rastlanmıştı. Şüphesiz bu bulgu sözde Hurda DNA'daki bilginin tesadüfen biriktiği tezine değil, yaşamın temelinde bilinçli tasarım olduğu tezine destek sağlıyordu. 2. Tekrarlı heterokromatin şaşırtıcı bir fonksiyonellik ortaya koydu: Kendi başlarına anlamsız gibi görünen nükleotidler birarada önemli görevleri yerine getiriyor ve mayotik bölünmede rol oynuyor. Yakın bir geçmişte, Hurda DNA olduğu zannedilen, ancak bilim adamlarının fonksiyonlarını yeni keşfetmeye başladığı DNA dizilimlerinden biri heterokromatindir. Bu, DNA'da fazlaca tekrar edilen bir koddur. Herhangi bir proteinin üretiminden sorumlu olduğu tespit edilemediği için uzun zaman "Hurda DNA" olarak tanımlanmıştır. Renauld ve Gasser (İsveç Deneysel Kanser Araştırma Enstitüsü) heterokromatin için şu yorumu yaparlar: Genomda dikkat çekecek şekilde temsil ediliyor olmasına rağmen, (insan hücrelerinin %15'i ve sinek hücrelerinin yaklaşık %30'u), heterokromatin her zaman 'Hurda DNA', yani hücreye hiçbir faydası olmayan DNA olarak kabul edilmiştir.86 Ancak, son çalışmalar heterokromatinin de önemli fonksiyonel görevleri olduğunu ortaya koydu. Moleküler Tıbbi Bilimler Enstitüsü'nden Emile Zuckerland bu konuda şunları söyledi: Tek başına fonksiyonel olmayan nükleotidleri biraraya getirdiğinizde, fonksiyonel hale gelen nükleotidler topluluğu elde edebilirsiniz. Kromatine ait olan nükleotidler ise bunun bir örneğidir. Geçmişte heterokromatinin hurda olduğunu iddia eden görüşlere rağmen, bugün bu alanda aktif olarak çalışan birçok kişi, DNA'nın bu bölümünün çok önemli fonksiyonel görevleri olduğundan şüphe etmiyor... Nükleotidler tek başlarına hurda olabilirler, ancak birarada iken altınlar.87 Heterokromatinin bu tür "kollektif" fonksiyonlarından biri mayotik bölünmede tespit edildi. Aynı zamanda yapay kromozom çalışmaları da, DNA'nın bu bölümünün farklı fonksiyonları olduğunu ortaya çıkardı.88 3. Araştırmacılar kodlamayan DNA ile hücre çekirdeği arasındaki ilişkiyi ortaya çıkardılar. Bu gelişmelerin "Hurda DNA" iddiasını çürüttüğünü ifade ettiler. 1999 yılında yapılan bir çalışma, ökaryot hücrelerdeki protein kodlamayan-DNA'nın (diğer adıyla sekonder DNA) çekirdek içinde işlevsel bir yapı olduğunu ortaya çıkardı. Bu çalışmada, Crytomonad isimli fotosentez yapan tek hücreli canlılar incelendi. Bu canlıların özelliği, boyut açısından geniş bir çeşitlilik ortaya koyuyor olmalarıydı. Ancak hücreler farklı boyutlarda olsalar da, çekirdek büyüklüğü ile hücrenin (canlının) büyüklüğü arasında daima doğrusal bir orantı bulunuyordu. Araştırmacılar kodlamayan DNA'nın miktarının, çekirdeğin büyüklüğüne oranlı olduğunu gördüler ve bu durumu, kodlamayan DNA'nın daha büyük çekirdek için yapısal olarak gerekli olduğuna dair bir gösterge olduğu sonucuna vardılar. Bu yeni araştırma, tasarımı reddeden Hurda DNA -hatta Dawkins'in öne sürdüğü "bencil DNA" 89- gibi kavramlara çok önemli bir darbe oluşturdu. Araştırmacılar yazılarını şöyle bitiriyorlardı: "Dahası, sekonder DNA [kodlamayan DNA] nükleomorfun önemli ölçüde eksik oluşu,... sekonder DNA ile ilgili 'bencil' ve 'çöplük' DNA tezlerini çürütmektedir". 90 4. Kodlamayan DNA'nın, kromozom yapısı için gerekli olduğu ortaya çıktı. Kodlamayan DNA'nın son yıllarda ortaya çıkarılan bir başka önemli rolü de kromozom yapısı ve işlevinde "kesinlikle gerekli" olmasıydı. Bu alanda yapılan çalışmalar, kodlamayan DNA'nın, DNA'nın birçok işlevi yerine getirmesini mümkün kılan yapıyı sağladığını gösterdi. Öyle ki forma sokulmuş bir yapı olmaksızın bu işlevlerin gerçekleştirilmesi imkansızdı. Bilim adamları bira mayasının kromozomlarından birinde, telomerleri (telomerler kromozomların her iki ucunda bulunan ve her hücre bölünmesi sonrası belli ölçüde kısalan DNA-protein kompleksleridir) ortadan kaldırdıklarında hücre bölünmesinin kesintiye uğradığını gördüler.91 O halde telomerler hücrenin, sağlam kromozomları, hasar görmüş DNA'dan ayırmasına yardımcı oluyordu. Bu kesinti halinden kurtulan hücrelerde kromozom sonunda kaybediliyordu. Bu da kodlamayan DNA'ya ait telomerlerin, hücrenin kromozom sabitliğinin korunmasında gerekli olduğunu gösteriyordu. 5. Kodlamayan DNA'nın embriyonun gelişimindeki rolleri ortaya çıkarıldı. Kodlamayan DNA'nın, gelişim sırasında gen ifadesinin (gendeki bilginin okunarak protein üretimi yapılması işleminin) düzenlenmesinde de önemli rol oynadığına dair kanıtlar elde edildi.92 Çeşitli çalışmalarda, kodlamayan DNA'nın, fotoreseptör hücrelerinin 93, üreme bölgesinin 94 ve merkezi sinir sisteminin 95 gelişiminde rol oynadığı gösterildi. Tüm bunlar, kodlamayan DNA'nın gelişim ve embriyojenez (embriyonun gelişimi) sırasında hayati rolleri düzenlediğini gösterdi. 6. Hurda DNA kategorisine dahil edilen intronların hücre faaliyetlerinde hayati roller oynadığı ortaya çıktı. Evrimcilerin uzun yıllar Hurda DNA zannettiği ancak önemli rolleri daha sonra keşfedilen bir başka tür kodlamayan DNA ise intronlardır. İntronların özelliği, fonksiyonel genlerin içine sıkıştırılmış olmalarıdır. İntronlar, protein üretimi ve işlevleri sırasında ayrıştırılarak elenirler. Evrimciler, intronların ilk bakışta protein üretiminde rol oynamamasına aldanmış, bunları Hurda DNA kabul etmişlerdi. Oysa yapılan araştırmalar intronların çok önemli yaşamsal faaliyetlerde rol oynadığını ortaya çıkardı. Günümüzde intronlar artık farklı DNA'lardan meydana gelen ve hücrenin yaşamı açısından hayati derecede önemli rol oynayan kompleks bir karışım olarak kabul ediliyor.96 Ünlü The New York Times gazetesinin bilim köşesinde yayınlanan bir yazı, intronlarla ilgili evrimci yanılgıları ortaya koyması açısından ilgi çekiciydi. C. Claiborne Ray tarafından hazırlanan ve "DNA: Hurda mı, Değil mi?" başlığını taşıyan kısa yazıda, intronlar üzerinde yapılan araştırmaların sonucu şu cümlelerle özetleniyordu: "Yıllar boyu yapılan çalışmalar, intronların hurda olmadığını, bunların aslında genlerin çalışma şeklini etkilediklerini ortaya çıkardı. ...intronlar, şüphesiz, aktif roller oynuyorlar."97 New York Times gazetesindeki bu yazıda, son bilimsel gelişmeler ışığında, intronlar gibi "sözde çöplük DNA"nın gerçekte organizmalara "faydalı" olduğu vurgulanıyordu. Maddeler halinde ele aldığımız tüm bu gelişmeler kodlamayan DNA hakkında yepyeni bilgiler ortaya koymakla birlikte önemli bir gerçeği de açığa çıkarmış oluyordu. Evrimcilerin Hurda DNA kavramı, bilgisizlikten kaynaklanan, uydurma bir kavramdı. Case Western Reserve Üniversitesi'nden Evan Eichler 2001 yılında Science'da yayınlanan bir makalede, durumu şu sözlerle özetliyordu: "Çöplük DNA deyimi bizim bilgisizliğimizin yansımasından başka birşey değil."98 Hurda DNA Efsanesinin Son Dayanağı da Çöktü: Bir "Sahte Gen"in Fonksiyonel Olduğu Ortaya Çıktı 90'lı yıllardan itibaren yaşanan tüm bu önemli bilimsel gelişmeler, Hurda DNA iddiasının bilgisizlikten kaynaklanan bir evrim yanılgısı olduğunu ortaya koydu. Genlerin içine sıkışmış intronlar ve daha uzun sıralar halinde birarada bulunan tekrarlı DNA gibi "kodlamayan DNA"ların aslında işlevsel olduğu gösterilmiş oldu. Bununla birlikte, geriye fonksiyonel olup olmadığı tam bilinmeyen tek bir tür "kodlamayan DNA" kalıyordu: "Sahte genler" anlamına gelen "pseudogenler" (pseudogenes). Nature, 1 Mayıs 2003 Nature dergisinde yayınlanan ve "Pseudogene" adı verilen sözde "işlevsiz" DNA bölümlerinin, mesajcı RNA'yı düzenlediğini anlatan bilimsel makale. Pseudogen, görünürde, mutasyona uğramış fonksiyonel genlerin işlevlerini kaybederek ortaya çıkardıkları DNA parçalarına evrimcilerce verilen isimdir. "Pseudo" kelimesi de İngilizcede "sahte, yanıltıcı" anlamında kullanılır. Pseudogenlerin evrimciler açısından özel bir önemi olduğu söylenebilir. Çünkü mutasyonların evrim meydana getireceği iddiasının geçersizliğini içten içe kabullenmiş, pseudogenlere bir tür göz boyama aracı olarak sarılmışlardır. Kısaca hatırlayacak olursak, canlılar üzerinde yapılan sayısız deneyde, mutasyonların, etkili oldukları zaman canlılarda daima genetik bilgi kaybına neden oldukları görülmüştür. Bir saate yapılan rastgele çekiç darbelerinin saati geliştirmeyeceği gibi, mutasyonlar da organizmaları asla geliştirmemiş, bir diğer deyişle evrimleştirmemişlerdir. Evrim teorisi genetik bilgide artış gerektirdiği halde mutasyonlar hep genetik bilgiyi azaltır, tahrip ederler. Teorilerine destek gösterebilecekleri bir mekanizmadan dahi yoksun olan evrimciler, pseudogenleri hayali evrim sürecinin "hayalet" mekanizmasının işlediğine kanıt gösterdiler. Evrimciler, protein kodlamayan bu DNA parçalarının sözde evrimin moleküler fosilleri olduğunu iddia ettiler. Bu iddianın tek dayanağı, bu genlerin herhangi bir fonksiyonunun bilinmeyişiydi. Ta ki 2003 Mayısı'na kadar. Pseudogenlerin fonksiyonel olduğunu gösteren bir çalışma, ünlü Nature dergisinin 1 Mayıs 2003 tarihli sayısında yayınlandı. Araştırmacılar, "İfade Edilmiş Bir Pseudogen, Homolog Kodlayan Geninin Mesajcı RNA Kararlılığını Düzenliyor" (An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene) başlıklı yazılarında, bir deneye hazırlanan farelerde gözlemledikleri bir durumu haber veriyorlardı.99 Buna göre bir dizi farenin, Makorin1-p1 ismi verilen pseudogenlerinin, genetik olarak değiştirilmesi sonucu farelerde ölümcül mutasyonlar meydana gelmişti. Farelerin böbrek ve kemiklerinin anormal şekilde geliştiği gözlemlenmişti. Pseudogendeki dizilimde meydana gelen bir değişimin farenin organlarını etkilemesinin açıklaması basitti: Bu pseudogen işlevsiz değil, gerekliydi. Nature dergisinde bu araştırmayı yorumlayan bir makalede bu çalışmanın, evrimin "moleküler fosilleri" gözüyle bakılan pseudogenler hakkındaki yaygın görüşlere meydan okuduğu yazılıyordu.100 Yani, bir evrim efsanesi daha yıkılıyordu. Pseudogenlerle ilgili bir fonksiyon ortaya çıkarıldıktan yalnızca üç hafta sonra, bir diğer ünlü bilim dergisi Science'da yayınlanan bir araştırma, Hurda DNA kavramına bir başka ağır darbe vurdu.101 Derginin 23 Mayıs 2003 tarihli sayısında yayınlanan bir araştırma, kodlamayan DNA ile ilgili yeni bir işlev daha ortaya çıkarıyordu. Yukarıda aktardığımız tüm gelişmelerin farkında olan evrimciler için, uzun süre gündemde tuttukları "Çöplük DNA" kavramının anlamsızlığını açıkça kabul etmekten başka seçenek kalmıyordu. Çöplük DNA kavramının çöpe atılma vakti gelmişti. Pensylvannia Eyalet Üniversitesi'nden Wojciech Makalowski tarafından kaleme alınan yazının başlığı bu değişimi gösterir nitelikteydi: "Not Junk After All" (Artık Hurda Değil). Makalowski durumu şöyle özetliyordu: Özellikle tekrarlayan elemanlarla ilgili olan Hurda DNA görüşü 1990'lı yıllarda değişmeye başladı... Şimdilerde giderek daha fazla sayıda biyolog tekrarlayan elemanlara genomik hazine olarak bakıyor. Bu rapor gösteriyor ki tekrarlayan elemanlar 'Hurda DNA değil', ökaryotik genomların önemli, birleştirici bileşenleri. O halde tekrarlayan DNA "Hurda DNA" olarak isimlendirilmemeli…". 102 Bir zamanlar Hurda DNA kavramını ve buna dayalı evrimci spekülasyonları sık sık duyabilirdiniz. Ama, burada özetlediğimiz gibi, Darwinistlerin son "körelmişlik" iddiası olan Hurda DNA kavramı da tarihe karıştı. Darwinizm'in bu son çırpınışları da boşa çıktı.

http://www.biyologlar.com/bir-zamanlar-hurda-dna-masali-vardi

Ginseng Nedir? Faydaları Nelerdir?

Ginseng Nedir? Faydaları Nelerdir?

Ginseng, ginseng bitkisinin köklerinden elde edilen oldukça popüler bir bitkisel ilaçtır. Tarihçilere göre ginseng bitkisi ilk olarak 5000 yıl önce, Kuzey Çin’in dağlık bölgelerinde keşfedildi.Başlangıçta bu bitki yemek pişirme amaçlı kullanılırken, daha sonra tedavi edici özellikleri tespit edilmiştir. Ginsengin en az 3000 yıldır popüler olarak kullanıldığı düşünülmektedir. Bir çok hastalığın tedavisinde kullanılan ginseng, geleneksel Çin tıbbında çok önemli bir yere sahiptir. Ginseng bitkisinin köklerinin insan vücuduna olan benzerliği, bu bitkinin tedavi edici özelliklerine olan inancı güçlendirdi. Tıbbi özellikleri için esas kullanılan parçası etli kökleri de olsa, yaprakları da kullanılır. Ginseng yapraklarının kökleri kadar etkili olmadığı gözlemlenmiştir bu kökler aynı zamanda oldukça pahalıdır.Yabani ginseng Asyanın dağlık bölgelerinde, özellikle de Çin’de bulunur. “Panax” cins ve “Araliaceae” ailesine ait 11 ginseng türü vardır. Etli köklere sahip bu yavaş büyüyen bitkiler soğuk iklime sahip bölgelerde yetişmektedir. Çok çeşitli ginseng bitkileri arasında en değerlileri Amerikan ginsengi olarak da bilinen Panax quinquefolius ve Asya ginsengi olarak da bilinen Panax ginseng’dir. Kore ginsengi, tüm ginseng türleri arasında en etkili olarak kabul edilir. Panax kelimesi Yunanca’da her derde deva anlamındaki “panakos” kelimesinden, ginseng ise Çince insan suretinde anlamına gelen “jen-shen” kelimesinden köken almaktadır.Fiziksel Özellikleri:Bir çok ginseng türü olmasına rağmen, Amerikan ve Asya ginsengi en değerli olanlardır ve yaygın olarak kullanılmaktadırlar. Asya ve Amerikan ginsengi görünüm olarak hemen hemen aynıdır. Bu yavaş büyüyen bitkiler genellikle dağ geçitlerinin yamaçlarında ve iyi drene olan dağlık ormanlarda yetişir.Kullanımı:Tıbbi özellikleri nedeniyle çok popüler olan ginseng, ticari olarak dünyanın birçok yerinde yetiştirilmektedir. Ginseng için gittikçe artan talep dolayısıyla yabani ginseng oldukça azalmıştır hatta tehlikeli denebilecek bir hal almıştır. Ginseng bitkisi ağırlıklı olarak tedavi edici özellikleri nedeniyle kullanılır. Yaygın bir bitkisel ilaç olarak kabul edilir ve geleneksel Çin tıbbında önemli bir bileşendir. Diyabet tedavisinde, erkeklerde cinsel fonksiyon bozukluklarında, kan şekerini düşürmede ve kan kolestrolünü azaltmada kullanılır. Aynı zamanda afrodizyak ve uyarıcı olarak etkili olduğu ve oldukça popüler bir anti-aging maddesi olduğu bilinmektedir. Ginsengin faydaları kozmetiği ve enerji içeceklerini de kapsar. Çorbalara da eklenebilir.Ginseng kökleri genellikle kurutulmuş olarak satılır. Bunları bütün ya da dilimler halinde satın alabilirsiniz. Sayısız kozmetiğin ve bitkisel takviyenin içinde bulunan bir aktif maddedir aynı zamanda ginseng çayı olarak da çay poşetleri satılmaktadır. Ginsengi medikal amaçlar için kullanmaya başlayan antik Çinlilerdir. Gözlere parlaklık vermek, güç kazanmak ve pek çok hastalık için kullanmışlar ve bu durum bir ticarete dönüşmüştür. Çinliler bu bitkiyi Kore’den ve bazı Kuzey Amerikan ülkelerinden satın almaya başlamışlardır.Ginsengin Faydaları:- Ginseng kökleri stres, anksiyete, bulantı, kusma, baş ağrısı, hazımsızlık, ishal, akciğer sorunları, artrit, astım, Crohn hastalığı, tümörler, yorgunluk, şeker hastalığı, depresyon, diş ve diş eti hastalıkları gibi hastalıklara faydalıdır.-Mide sorunlarına faydalıdır. Bir yumuşatıcı ve bir uyarıcı olarak çalışır ve sindirim sisteminin sorunsuz ve verimli çalışmasını sağlar.-Ginseng kökleri afrodizyaktır. Cinsiyet ve doğurganlıkla ilgili problemlerin düzeltilmesi için çalışır. Üreme hormonlarının üretimini düzenler ve bu hormonları arttırır.-Kökler yorgunluk, sinirlilik ve travma gibi çeşitli stres faktörlerine karşı vücudun direncini artırır. -Menstruasyonu düzenlemek, doğum ağrılarını azaltmak için kullanılabilir.-Bağışıklık sistemini güçlendirir ve enfeksiyonlara karşı vücudu güçlendirir.-Ginseng hafızayı arttırarak öğrenme yeteneklerini geliştirebilir.-Ginseng kökleri karaciğer ve kalbin sorunsuz çalışmasını sağlayarak kan şekeri ve kolestrol seviyelerini düzenler.-Düzenli olarak tüketildiğinde kanser riskini azaltır.-Solunum sisteminin verimli çalışmasına yardımcı olur.-Ginseng kökleri tüm vücudu güçlendirir, canlandırır bu nedenle bir anti-aging maddesi olarak çalışır.Uzun süreli kullanımları, fazla miktarda kullanımları, diğer ilaçlarla etkileşimleri ve alerjik insanlarda kullanımları yan etkilere neden olabilir. Ancak doğru şekilde kullanıldığında ginsengin sayısız faydaları vardır.Ginsengin Yan Etkileri:Konsantrasyon azalması, sinirlilik, çarpıntı, bulantı, kusma, şişkinlik, karın ağrısı, uykusuzluk, göğüste ağırlık, deri döküntüleri, ödem, sindirim bozuklukları ve astım ginseng köklerinin en sık görülen yan etkilerinden bazılarıdır. Yan etkiler kullanan kişinin genel sağlık durumuna göre değişebilir. Bazı kişilerde düşük kan şekerine neden olabilirken, bazılarında hipertansiyona neden olabilir. Aşırı kullanımları baş ağrısı, ishal, burun kanaması, göğüs ağrısı ve vajinal kanamaya neden olabilir. Hızlı kalp atışları ve kas krampları ile birlikte yüksek tansiyon gibi bazı nadir yan etkiler Sibirya ginsenginin bir yan etkisi olarak görülebilmektedir.İleride yapılacak olan çalışmalar ginsengin faydaları ve yan etkileri konusunda daha net bilgiler verecektir. Ginsengin yararlarıyla ilgili yapılan çalışmalar genellikle kemirgenler üzerinde yapıldığından insanlar üzerindeki etkileri çok net bilinmemektedir. Buna rağmen düzenli olarak ginseng kullananlar, bu bitkinin sağlıkları üzerine olumlu etkiler yaptığından oldukça eminler.Kaynakça:http://www.buzzle.com/articles/ginseng-plant.htmlhttp://www.buzzle.com/articles/ginseng-root.htmlYazar: Tülay Arsoyhttp://www.bilgiustam.com

http://www.biyologlar.com/ginseng-nedir-faydalari-nelerdir

Bitki Hormonlarının Sınıflandırılması

Bitki hormonlarına, yapıca benzeyen kimyasal maddeler laboratuvarda sentetik yollarla elde edilmekte ve bunlar bitkiye dıştan uygulandığında bitki hormonu gibi fizyolojik etkiler göstermektedirler. Fakat bunlar, bitkide doğal olarak sentezlenmediğinden ve hormon tanımına girmediğinden büyümeyi düzenleyici maddeler olarak sınıflandırılır. Bitki hormonlarının (fitohormonların) bazı grupları büyümeyi teşvik edici etki gösterirken, bazıları ise engelleyici etki gösterirler. Fakat, bitkide düzenli bir büyüme için, büyümeyi teşvik eden ve engelleyen, her iki tip hormona da ihtiyaç vardır. Bitki hormonları; oksin, sitokininler, giberellinler, absisik asit, etilen ve brassinosteroidler olmak üzere altı gruba ayrılır. Büyümeyi teşvik edenler: oksin, sitokininler, giberellinler, etilen, brassinosteroidler Büyümeyi engelleyenler: absisik asit, etilen Hormon Bitkide Üretildiği Yer Ana İşlevler Oksin (IAA)----Tohumun embriyosu, apikal tomurcukların meristemleri, genç yapraklar.----Gövde uzamasını (yalnızca düşük konsantrasyonda), kök büyümesini, hücre farklılaşmasını ve dallanmayı teşvik eder; meyve gelişimini düzenler; apikal dormansiyi artırır; fototropizma ve gravitropizmada iş görür. Sitokininler (Zeatin)---Köklerde sentezlenir ve diğer organlara taşınırlar. ----Kök büyüme ve farklılaşmasını etkiler; hücre bölünmesi ve büyümesini teşvik eder; çimlenmeyi teşvik eder; senesensi geciktirir. Giberellinler (GA3)---Apikal tomurcukların ve köklerin meristemleri, genç yapraklar, embriyo.----Tohum ve tomurcuk çimlenmesini, gövde uzamasını ve yaprak büyümesini artırır; çiçeklenmeyi ve meyve gelişimini teşvik eder, kök büyümesini ve farklılaşmasını etkiler. Absisik asit---Yapraklar, gövdeler, kökler, yeşil meyve.----Büyümeyi engeller; su stresi esnasında stomalar kapanır; dormansinin kırılmasını engeller. Etilen----Olgunlaşan meyve dokuları, gövdelerin nodyumları, yaşlanan yaprak ve çiçekler.---Meyve olgunlaşmasını artırır; oksinin bazı etkilerini bastırır; türe bağlı olarak, köklerin, yaprakların ve çiçeklerin büyümesini artırır veya engeller. Brassinosteroidler (Brassinolid)----Tohumar, meyveler, gövdeler, yapraklar ve çiçek tomurcukları. ----Kök büyümesini engeller, yaprak absisyonunu engeller, ksilem farklılaşmasını artırır. OKSİN : Büyüme Hormonu Charles Darwin ve oğlu Francis, 19. yüzyılın sonlarında fototropizma üzerindeki ilk denemeleri gerçekleştirmiştir. Bu araştırmacılar, fototropik uyartının kuş yemi (Phalaris canariensis) koleptilinin ucunda oluştuğunu ve belli bir mesafede etki ettiğini gözlemiştir. Fototropizma üzerinde yapılan ilk deneyler. Sadece koleoptilin ucu ışığı algılayabilir; fakat kıvrılma uçtan belli bir uzaklıkta oluşur. Bir sinyal çeşidinin, uçtan aşağıya taşınması gerekir. Sinyal, geçirgen bir engelden (jelatin blok) geçebilir, fakat katı bir engelden (mika) geçemez bu, fototropizma sinyalinin taşınabilir bir kimyasal olduğunu göstermektedir. Koleoptilin ucu kesildiğinde, koleoptilin kıvrılmadığı gözlenmiştir. Koleoptilin ucu ışık geçirmeyen bir kapla örtüldüğünde de fideler ışık yönünde büyüyememişlerdir; buna karşılık, ne koleoptilin ucu şeffaf bir kapla örtüldüğünde, ne de koleoptilin alt kısmı ışık geçirmez bir kapla sarıldığında fototropizmanın oluşması önlenememiştir. Darwin, ışığın algılanmasından koleoptilin ucunun sorumlu olduğunu düşünmüştür. Bununla birlikte, gerçek büyüme yanıtı, yani koleoptilin kıvrılması, uçtan belirli uzaklıkta gerçekleşmekteydi. Darwinler, koleoptilin ucundan uzama bölgesine bazı sinyaller gönderildiğini ileri sürmüşlerdir Koleoptil: Bir yulaf (çim) tohumu embriyosunun genç kökünün örtüsü. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi Birkaç on yıl sonra, Danimarka‟dan Peter Boysen–Jonsen, bu varsayımı sınamış ve sinyalin hareketli bir kimyasal madde olduğunu göstermiştir. Araştırmacı, koleoptil ucunu, hücreler arasındaki teması kesen, fakat kimyasalların geçişine izin veren jelatin bir blokla koleoptilin diğer kısımlarından ayırmıştır. Bu fideler, ışığa doğu kıvrılarak normal davranış göstermişlerdir. Buna karşın uç, koleoptilin alt kısmından geçirimsiz bir engelle ayrıldığında, fototropik yanıt oluşmamıştır 1926‟da Hollandalı bir lisans üstü öğrencisi olan Frits W. Went, Boysen-Jonsen‟in denemelerinde değişiklik yaparak fototropizmada iş gören kimyasal mesaj taşıyıcı elde etmeyi başarmıştır. Bu araştırmacı, koleoptil ucunu çıkartarak agara yerleştirmiştir, daha sonra agarı bloklara ayırarak koleoptillerin tek tarafına yerleştirmiştir Şöyle ki; agar blokları, karanlıkta tutulmuş ucu kesik koleoptillerin üzerine yerleştirmiştir Koleoptil tepesinin ortasına yerleştirilen bir blok, gövdenin dik büyümesine neden olmuştur. Fakat blok, merkezin uzağına yerleştirildiğinde (asimetrik olarak tek tarafa), koleoptil ucu, ışığa doğru büyümesinde olduğu gibi, agar bloğun bulunduğu tarafın aksi yönünde kıvrılmaya başlamıştır. Went’in Deneyleri. Ucun yerine bir blok konulduğunda, koleoptilden agar bloğa geçebilen bir kimyasal, kök koleoptilinin uzamasını teşvik eder. Eğer blok, karanlıkta tutulan ve ucu kesilmiş bir koleoptilin ucunun uzağına yerleştirildiğinde, organ, tek taraftan ışık alıyormuş gibi kıvrılır. Bu kimyasal, bir hormon olan oksindir. Oksin, sürgünde hücrelerin uzamasını teşvik etmektedir. NOT: Went deneylerinde Avena sativa (yabani yulaf) koleoptillerini kullanmıştır. Went, agar bloğun, koleoptil ucunda üretilen bir kimyasalı içerdiği sonucuna varmıştır. Went‟e göre, bu kimyasal koleoptile geçtikçe büyümeyi uyaran ve artıran bir kimyasaldı ve koleoptilin ışık almayan tarafında daha yüksek bir konsantrasyonda biriktiğinden koleoptil ışığa doğru büyüyordu. Wenti bu kimyasal mesaj taşıyıcı yada hormona, oksin (auxein = artmak) ismini verdi. Daha sonra oksin, Kaliforniya Teknoloji Enstitüsünden Kenneth Thimann ve arkadaşları tarafından izole edilmiş (saflaştırılmış) ve yapısı aydınlatılmıştır. Darwinler‟in ve Went‟in çalışmalarına dayalı olarak, koleoptillerin ışığadoğru büyümelerine neyin neden olduğu yönündeki klasik varsayım, oksinin, koleoptil ucundan aşağıya taşınarak asimetrik olarak dağılmasına ve ışık almayan taraftaki hücrelerin ışık alan taraftaki hücrelerden daha hızlı büyümesine neden olduğudur. Oksin Biyosentezi ve Metabolizması Kenneth Thimann ve arkadaşları tarafından izole edilen oksinin, indolasetik asit(IAA, indol-3-asetik asit) olduğuna karar verildi. Daha sonra bitkilerde çeşitli oksinlerin bulunduğuda anlaşıldı. Bunlar fenil asetik asit (PAA), indol butirik asit (IBA) ve 4-kloro indol-3-asetik asit (4-Cl-IAA) gibi maddelerdir. Bunlar gibi etki gösteren fakat doğal olmayan sentetik oksinlerde vardır; naftelen asetik asit (NAA), 2,4-dikloro fenoksi asetik asit (2,4-D), ve 2,4,5-trikloro fenoksi asetik asit (2,4,5-T), 2-metoksi-3,6-dikloro benzoik asit. Üç doğal oksinin yapısı. IAA, bütün bitkilerde; 4-Cl-IAA, bezelyede; IBA, hardal ve mısırda görülür. IAA, triptofan amino asitinden sentezlenir. IAA‟in bütün sentez yollarında başlangıç maddesi genelde triptofandır. IAA, gövde ve dal uçlarında sentezlenmekle beraber, tohumlarda ve genç yapraklarda da sentezlenir. Oksinin floem yoluyla yukarıdan aşağıya doğru taşınımı saatte 0,5-1,5 cm arasındadır. Oksinin, floem yoluyla az da olsa aşağıdan yukarıya taşındığı radyoaktif izleme yöntemiyle (C14 ile işaretlenmiş oksin kullanılarak) belirlenmiştir. Oksinin taşınımı sentetik bir madde olan 2,3,5-triiyodo benzoik asit (TIBA) ile engellenmektedir. Bunun dışında da doğal ve sentetik oksin inhibitörleri de vardır. Oksinin sürgün ucundan aşağıya, gövdeye doğru taşınma hızı saatte 10 mm dir. Bu taşınım hızı floem yoluyla taşınım hızından daha düşüktür. Oksin, bir hücreden diğerine, doğrudan parankima dokusundan taşınır. Taşınma sadece sürgün ucundan kaideye doğru gerçekleşir. Bunun aksi yönünde bir taşınım görülmez. Oksinin, bu tek yönlü taşınımı polar taşınım olarak adlandırılır. Polar taşınımın yer çekimiyle ilgisi yoktur. Bir gövde yada koleoptil parçası baş aşağı konumlandırıldığında oksin yukarı doğru taşınır. Şekil 10‟da plazma zarında ATP ile çalışan proton pompalarının oksin taşınımı için nasıl metabolik enerji sağladıkları gösterilmiştir (Oksin taşınma mekanizması, kemiozmozis ile hücrenin iş yapmasına diğer bir örnek teşkil eder. Kemiozmozis, proton pompalarının yarattığı H+ gradiyentlerini kullanır). Polar oksin taşınımı (kemiozmotik model). Oksin, büyüyen sürgünlerde, sürgün ucundan aşağı doğru tek yönde taşınır. Bu yol boyunca, hormon, hücrenin apikal ucundan girer ve basal ucundan çıkar. Bu esnada çeperden geçer ve bir sonraki apikal uçtan girer. 1) Oksin hücre çeperinin asidik ortamı ile karşılaşınca, elektriksel olarak nötrleşmek için bir hidrojen alır. 2) Nispeten küçük olan molekül plazma zarından geçer. (oksin hücreye girerken; yüksüz formda (AH), difüzyonla veya anyon (A-) olarak sekonder aktif taşımayla girer.) 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 4) ATP ile çalışan proton pompaları hücrenin içi ve dışı arasındaki pH farkının sürmesini sağlar. 5) Oksin yalnızca hücrenin basal ucundan dışarı çıkar. Hücrenin basal ucunda yer alan zarda, özel taşıyıcı proteinler bu çıkışı sağlar. 6) Proton pompaları, zarın iki yanında bir zar potansiyeli (voltaj) oluşturarak oksin çıkışına katkı yapar. Bu, anyonların hücre dışına çıkmasını sağlar. Kemiosmozis: ATP sentezi gibi, hücresel bir olayı yerine getirmek için zarın karşı tarafında hidrojen iyonu gradiyenti oluşturmakla ortaya çıkan, depolanmış enerjiyi kullanan bir enerji elde etme mekanizması. Hücrede sentezlenen ATP‟nin çoğu, kemiosmozis yoluyla sentezlenir. Proton pompası: Zar potansiyeli meydana getirme işleminde, ATP kullanarak hidrojen iyonlarını hücrenin dışında tutan, hücre zarındaki aktif taşıma mekanizması. Apikal meristem: Kökün uç kısmında ve gövdenin tomurcuklarında bulunan embriyonik bitki dokusu; bitkinin uzunlamasına büyümesi (uzaması) için bitkiye hücre sağlar. Oksin düzeyi bitkide her zaman sabit değildir; mevsim ve çevre şartlarına göre azalıp çoğalabilir. Dolayısıyla oksinin bitkide sentezlendiği gibi parçalandığı sonucuna ulaşırız. IAA hormonu iki şekilde etkisiz hale gelir: birisi çeşitli maddelerle bir enzim aracılığıyla birleştirilerek oksinin inaktif edilmesidir; diğeri ise IAA oksidaz enziminin kataliziyle indol asetaldehit ve CO2‟e parçalanmasıdır. Ayrıca kuvvetli ışıkta da oksin parçalanabilir. Oksinlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Büyümesinde Oksinin Rolü Oksin, esas olarak bir sürgünün apikal meristeminde sentezlenir. Oksin sürgün ucundan hücre uzaman bölgesine taşındıkça, hücrelerin büyümesini uyarır. Bu etki, olasılıkla, oksinin plazma zarındaki bir reseptöre bağlanmasıyla gerçekleşir. Oksin büyümeyi sadece 10-8 ila 10-4 M‟lık konsatrasyon aralığında uyarır. Daha yüksek konsantrasyonlarda hücre büyümesini (uzamasını) engelleyebilir. Bu engellemeyi muhtemelen etilen üretimini teşvik ederek yapar(etilen, bu gibi oskin özelliklerini bastırabilir). Oksin aynı zamanda gen ifadesini hızla değiştirir. Gen ifadesinin değişmesi, dakikalar içinde hücrenin uzama bölgesinde yeni proteinlerin oluşmasını sağlar. Bu proteinlerin bazıları, diğer genleri baskı altına alan yada aktifleştiren kısa ömürlü transkripsiyon faktörleridir. Bu başlangıç hamlesinden sonra büyümenin sürmesi için hücrelerin daha fazla sitoplazma ve çeper maddesi alması gerekir. Oksin, aynı zamanda büyümeyle ilgili bu yanıtın devam etmesini sağlar. Oksine yanıt olarak hücre büyümesi (uzaması); asit büyüme hipotezi. Asit büyüme hipotezi olarak adlandırılan bir görüşe göre, proton pompaları hücrelerin oksine yanıtında büyük bir rol oynamaktadır. Oksin, bir gövdenin uzama bölgesinde plazma zarındaki proton pompalarını uyarır. Bu etkileşim sonucu dakikalar içinde zarın iki yanında zar potansiyeli oluşur (voltaj artar) ve hücrenin pH‟sı düşer (Şekil 11). Çeperin asitleşmesi, ekspansin olarak isimlendirilen enzimleri aktifleştirir. Ekspansinler çeperde selüloz mikrofibrillerin arasındaki bağlantıları (hidrogen bağları) koparır. Bunun sonucunda çeper gevşer. Zar potansiyelindeki artış hücreye iyon alınımını artırır. Bu da, suyun osmozla alınmaına neden olur. Çeperlerin esnekliğinin artışıyla birlikte olan su girişi, hücrenin uzamasını (büyümesini) sağlar. Yan Kök ve Adventif Kök oluşumu Oksinler, ticari olarak bitkilerin çeliklerle vejetatif olarak üretilmesinde kullanılmaktadır. Oksin içeren köklendirme tozu ile bir kesik yaprak yada gövdenin muamele edilmesi çoğunlukla kesik yüzeyin yakınında adventif kök oluşumuna neden olur. Oksin aynı zamanda köklerin dallanmasında da yer alır. Araştırmacılar, yan kökleri aşırı çoğalan bir Arabidopsis mutantının normalden 17 kat daha fazla oksin içerdiğini bulmuşlardır. Ayrıca oksin, apikal dominansinin sürdürülmesinde , absisyonun engellenmesinde, kambiyal faaliyetleri artırarak dikotillerde enine büyümenin teşvikinde, tohum çimlenmesinde, meyve gelişiminde, fototropizma, gravitropizma gibi olaylarda da rol alır. Oksin, primer büyüme için hücre uzamasını uyarmasının yanında, sekonder büyümeyi de etkiler. Bunu, demet kambiyumunda hücre bölünmesini teşvik ederek ve sekonder ksilemin farklılaşmasını etkileyerek yapar. Gelişmekte olan tohumlar oksin sentezlerler. Bu oksin, meyvelerin büyümesini artırır. Domates fidelerine oksin püskürtülmesi, tozlaşmaya gerek duyulmaksızın meyve gelişimini teşvik eder. Bu, normalde gelişmekte olan tohumlar tarafından sentezlenen doğal oksin yerine, sentetik (yapay) oksin kullanılarak, tohumsuz domates yetiştirilmesine olanak sağlar. Oksinlerin zirai amaçlı kullanımında aşağıdaki yöntemler kullanılır: 1) Yapraklara püskürtme. 2) Sulama suyuna karıştırma. 3) Kesik yüzeylere lanolin macunu içinde sürme. 4) Bitki organlarını hormon içeren çözeltiye batırma. 5) Belirli bir dokuya enjeksiyon yapma. Sentetik oskinler, daha ucuz olduğundan, bunları tanıyan yıkıcı enzimlerin bitkide bulunmadığından, bazılarının doğal olanlara göre daha etkili olduğundan pratik olarak daha çok kullanılırlar. Gravitropizma: Bitki yada hayvanların, yer çekimiyle ilişkili olarak verdikleri yanıt. Herbisit Olarak Oksinler 2,4-Dinitrofenol (2,4-D) gibi sentetik oksinler, yaygın bir şekilde herbisit (yabani ot öldürücü) olarak kullanılmaktadır. Mısır gibi monokotiller süratle bu sentetik oksinleri, etkisizleştirirken, dikotiller bunu yapamaz. Bu nedenle aşırı hormon dozları bu bitkileri öldürür. Tahıl tarlalarına 2,4-D püskürtülmesi, karahindiba gibi dikotil otları ortadan kaldırır. Böylece tahıllardan daha çok mahsul alınır. IBA ve NAA, çeliklerin köklendirilmesinde kullanılır. Çelikler bu maddelerin çözeltilerinde bir süre batırılarak köklendirilir. NAA seracılıkta domates ve salatalık gibi sebzelerde çiçeklenme ve meyve gelişimini artırmak için, elma ve armut gibi meyve ağaçlarında meyva tutumunu artırmak için kullanılır. Bu uygulamalar püskürtme ile yapılmaktadır. Bunların dışında, oksinler doku kültürü çalışmalarında kök geliştirilmek üzere besi ortamına ilave edilerek kullanılır. SİTOKİNİNLER : Hücre Büyüme Düzenleyicileri Doku kültüründe bitki hücrelerinin büyüme ve gelişimini artıran kimyasal katkı maddelerini bulmak için gösterilen çabalar, sitokininlerin keşfine yol açmıştır. New York‟ta Cold Spring Harbor Laboratuvarında çalışan, Johannes van Overbeek, 1940‟lı yıllarda, kültür ortamına, Hindistan cevizi tohumunun sıvı endosperminin (hindistancevizi sütü), bitki embriyolarının büyümesini uyardığını buldu, fakat bu madde tanımlanamadı. Bu maddeyi, 1974‟te Letham zeatin olarak tanımladı (ayrıca Letham mısır endosperminde de zeatin elde etmiştir). Daha sonra, t-RNA‟nın antikodon bölgesine yakın bir yerde bulunan izopentenil adenin (IPA) homonu keşfedildi. Bunlar bitkilerde sentezlenen-doğal- sitokinin hormonlarıdır. 1950‟de Wisconsin Üniversitesinden Folke Skoog ve Carlos O. Miller, kültür ortamına ilave ettikleri parçalanmış DNA örneklerinin, tütün hücrelerinin bölünmesini artırdığını gözlemlemişlerdir. Burada rol alan madde otoklavlanmış DNA‟da aydınlatılmış ve kinetin olarak adlandırılmıştır. Kinetin sentetik bir sitokinindir. Sentetik sitokinlere diğer bir örnek ise benzil adenin (BA)‟dir. Sitokininlerin aktif bileşeni, nükleik asitlerin bir elemanı olan adenin (amino pürin) bazının değişime uğramış formlarıdır. Sitokinezi yada hücre bölünmesini uyarması nedeniyle bu büyüme düzenleyicileri, sitokininler olarak isimlendirilmiştir. Bitkilerde doğal olarak oluşan sitokinin çeşitlerinden en yaygın olanı zeatindir. Zeatin, ilk kez mısır (Zea mays) bitkisinde keşfedildiği için bu isim verilmiştir. Sitokininlerin Biyosentezi ve Metabolizması Sitokininlerin sentezi amino pürin yani adeninden başlar. fakat yan grupların sentezi tam bilinmemektedir. Zaten sitokininlerin hormon aktivitesi gösteren kısmı yan gruplara bağlıdır. IPA, t-RNA‟nın yapısındayken hormon aktivitesi göstermez fakat t-RNA‟nın parçalanmasıyla serbest hale geçtiğinde aktivite gösterir. Büyük çabalara rağmen ne sitokininleri oluşturan enzimler bitkilerden izole edilebilmiş ne de onu kodlayan genler tanımlanabilmiştir. Hatta Salisbury Devlet Üniversitesinden Mark Holland, bitkilerin kendi sitokininlerini üretemeyebileceklerini ileri sürmüştür. Bu araştırmacıya göre, sitokininler bitki dokularında simbiyotik oalrak yaşayan ve metilobakteriler olarak isimlendirilen prokaryotlar tarafından üretilmektedir. Bu bakteriler in vitro kültürlerde bile aktif olarak büyüyebilmektedirler. Gerçekten metilobakteriler yok edilince normal gelişme süreci engellenmektedir. Bu süreç, metilobakterilerin yeniden uygulanması yada sitokininlerin yeniden verilemsiyle düzelmektedir. Bu kışkırtıcı varsayımın destek bulup bulmamasına bağlı olmaksızın, varacağımız yer şudur; genom sekanslanması bizi gerçek bilgiye götürecektir. Şu an Arabidopsis‟in gen dizisi analizi tamamlanmıştır. Dolayısıyla, eğer bir sitokinin üreten enzim mevcut ise bunun kolaylıkla tanımlanması gerekir. Bitki hücreleri sitokininlerin kaynağına bağlı olmaksızın sitokinin reseptörlerine sahiptir. Bazı kanıtlar, biri hücre içi, diğeri hücre yüzeyinde olmak üzere iki farklı sitokinin sınıfının varlığını göstermektedir. Sitoplazmik reseptör, sitokinine doğrudan bağlanır ve izole nukleusta transkripsiyonu uyarabilir. Sitokininler bazı bitki hücrelerinde plazma zarındaki Ca+2 kanallarını açarak, sitosolde Ca+2 artışına neden olur. Sitokinin sentezi ve sinyal iletimi hakkında tam olarak bilimsel veriler bulunamamıştır. Fakat bitki fizyolojisi ve gelişimi üzerindeki ana etkileri bilinmektedir. Sitokininlerin yıkımı, sitokinin oksidaz enzimi ile yan grupların uzaklaştırılması ve amino pürin kalmasıyla gerçekleşir. Amino pürin tek başına hormon etkisi gösteremez. Diğer bir yollada; sitokininler şekerlerle birleştirilerek glikozitlerin oluşmasıyla inaktif hale getirilebilir. Turpta rafanatin adı verilen glikozit (glikozil zeatin) bu şekilde meydana gelir. Sitokininlerin bitkide başlıca sentez yerleri tohumlar, genç yapraklar ve en çok kök uçlarıdır. Kök uçlarında sentezlenen sitokininler ksilem yoluyla gövdeye ordanda etki gösterecekleri hedef dokulara taşınırlar. Yaprak, tohum ve meyve gibi organlara sitokininlerin başlangıçta kökten taşınarak geldikleri kabul edilmektedir. Sitokininlerin yukarıdan aşağıya doğu taşınımları ile ilgili veriler çeşitlidir. Yapraklarda uygulanan sitokininler ağaç gibi bazı bitkilerde hiç taşınmayıp yaprakta biriktiği, ancak çilek gibi bitkilerde yavaşta olsa yapraktan diğer organlara taşındığı belirtilmiştir. Sitokininlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Bölünmesi ve Farklılaşmanın Kontrolü Sitokininler, özellikle kökler, embriyolar ve meyvelerde olmak üzere, aktif olarak büyüyen dokularda üretilirler. Kökte üretilen (sentezlenen) sitokininler ksilem öz suyunda taşınarak hedef dokulara ulaşır. Sitokininler, oksin ile birlikte hareket ederek hücre bölünmesini teşvike eder ve farklılaşmayı etkiler. Doku kültüründe büyüyen hücreler üzerinde sitokininlerin etkileri, bu hormonun bütünlüğü bozulmamış bir bitkideki işlevi hakkında ipucu verir. Gövdeden alınan bir parankima dokusu parçası sitokinler olmaksızın kültüre alındığında hücreler çok fazla büyürler fakat, bölünmezler. Sitokininler tek başlarına etki göstermezler, oksin ile birlikte uygulandıklarında hücreler bölünürler. Sitokininin oksine olan oranı ise hücre farklılaşmasını kontrol eder. Bu iki hormonun konsantrasyonları dengelenince, hücre kütlesi büyümeyi sürdürmekle birlikte, farklılaşmaz ve küme oluşturur. Farklılaşmamış bu hücre kümesi, kallus olarak isimlendirilir. Eğer sitokinin oranı artırılırsa kallustan gövde tomurcukları gelişir. Oksin düzeylerinin artırılması halinde ise kökler oluşur. Simbiyoz: Birbirleriyle doğrudan temas halinde olan iki farklı türe ait organizma arasındaki ekolojik ilişki. Endosperm: Çifte döllenme sırasında bir sperm hücresinin iki kutup hücresi çekirdeği ile birleşmesiyle oluşan besince zengin doku; angiospermlerin tohumu içerisinde gelişen embriyoya besin sağlar. In vitro: Hücelerin, dokuların, organların ait oldukları organizmaların dışında yapay ortamlar içinde yetiştirilmeleri veya bulunmaları. Apikal Dominansinin Kontrolü Apikal dominansinin kontrolü için sitokininler oksin ve diğer faktörlerle etki gösterirler. Apikal dominansi, tepe tomurcuğunun yanal tomurcukların gelişimini baskı altına almasıdır. Son zamanlara kadar, apikal dominansinin hormonlar tarafından düzenlenmesi ile ilgili başlıca varsayıma göre (doğrudan engelleme varsyımı) yanal tomurucuk büyümesinin düzenlenmesinde oksin ve sitokinin antagonistik(birbirinin tersi etki göstermek) etki gösterir. Bu görüşe göre; tepe tomurcuğundan sürgünün alt kısımlarına taşınan oksin yanal tomurcukların büyümesini doğrudan engeller. Böylece gövde uzar, fakat yan dallar oluşmaz. Aynı zamanda, kök sisteminden gövde sistemine giren sitokininler büyümenin başlaması için yanal tomurcuklara sinyal göndererek oksin etkisini ortadan kaldırır. Buna göre; yanal tomurcuk engellenmesinin kontrolünde oksinin sitokinine oranı kritik bir etmendir. Pek çok gözlem doğrudan engelleme varsayımı ile uyumludur. Eğer başlıca oksin kaynağı konumundaki tepe tomurcuğu uzaklaştırılırsa (kesilirse), yanal tomurcuklar engellenmez ve bitki çalımsı görünüm alır. Ucu kesilmiş fidelerin kesik yüzeylerine oksin uygulanması yanal tomurcukların büyümesini baskı altına alır. Aşırı sitokinin üreten yada sitokininle muamele edilen bitkiler, normalin üstünde çalımsı görünüm alırlar. Doğrudan engelleme varsayımına göre, başlıca oksin kaynağı durumundaki tepe tomurcuğunun kesilmesi yanal tomurcukların oksin düzeyinde bir azalmaya neden olacaktır. Fakat, biyokimaysal çalışmalar bunun tersini göstermektedir. Ucu kesilen bitkilerin yanal tomurcuklarında oksin düzeyleri artmıştır. Böylece, doğrudan engelleme varsayımı tüm deneysel bulgular tarafından desteklenememektedir. Bu halen bir bilmecedir. Yaşlanmayı Önleyici Etkileri (senesensi geciktirme) Sitokininler, protein parçalanmasını (yıkımını) engelleyerek, RNA ve protein sentezini teşvik ederek ve etraftaki dokulardan besin elementlerini hareketlendirerek bazı bitki organlarının yaşlanmasını geciktirir. Eğer bir bitkiden alınan yapraklar bir sitokinin çözeltisine daldırılırsa, uzun süre yeşil kalırlar. Ayrıca sitokininler bütünlüğü bozulmamış bitkilerde yaprak bozulmasını yavaşlatır.Bu yaşlanmayı engelleyici etkisi nedeniyle, çiçek satıcıları kesilmiş çiçekleri taze tutmak için sitokinin spreyleri kullanırlar. Ayrıca sitokininler kloroplast gelişiminde, boy kısalığında, vasküler kambiyum faaliyetini artırıcı etkilerde etmendir. Kloroplast gelişiminde; karanlıktaki etiyole bitkiye sitokininle muamele edildiğinde, lamellere sahip kloroplastların meydana geldiği fakat klorofil oluşmadığı belirlenmiştir. Işık ve sitokinin etiyole bitkiye birlikte uygulanmasında ise, sadece ışık uygulanan bitkiye göre kloroplastların ve klorofilk sentezinin daha iyi ve hızlı oluştukları görülür. Kök ve gövdeye dıştan yüksek dozda uygulanan sitokinin enine büyümeyi artırarak boy kısalığına sebep olur. Etilende bu etkiye sahip olduğuna göre, sitokininlerde oksinler gibi bitkide etilen artışına sebep olurlar? Bu soruya cevap olarak; bu etkinin hücre çeperinde yeni sentezlenen (üretilen) mikrofibrillerin diziliş yönlerini değiştirmeleri öne sürülmüştür. Sitokininler oksinler gibi vasküler kambiyum faaliyetini artırıcı etkiye sahip olduklarından oksinlerle birlikte aşı macununa karıştırılarak aşı tutmayan bitkilerde aşılamayı kolaylaştırmada kullanılırlar. NOT: Sitokininler bazen oksinin tamamlayıcısı (büyüme), bazen de antagonisti (kök ve tomurcukların farklılaşması) gibi görünmektedir. Etki mekanizmaları bilinmemesine rağmen bu iki tip hormon arasındaki dengenin büyümeyi belirleyici faktörlerden biri olduğu açıktır. Apikal dominansi: Büyüme olayının, bitkinin gövdesinin uç kısmında yoğunlaşması ve buradaki terminal tomurcuğun, lateral tomurcukların büyümesini kısmen engellemesi. Senesens: Bitkilerde yaşlanma ile birlikte gerçekleşen ve bir dokunun, bir organın veya bir bikinin ölümüne yol açan katabolik olaylar dizisi. Kallus: Bitkilerde sürgünlerin kesilen ucunda yer alan, bölünme özelliği gösateren farklılaşmamış hücre kümesi. Dormansi: Büyümenin ve gelişmenin askıya alındığı, son derece düşük metabolik hız ile kendisini gösteren durum. Vernalizasyon: Bazı bitkilerinçiçeklenmesi için sadece uygun fotoperyod yeterli olammakta, belli bir süre düşük sıcaklığa maruz kalması gerekir. Absisyon: Yaprak, çiçek ve meyve gibi organların bitkiden koparak dökülmeleridir.

http://www.biyologlar.com/bitki-hormonlarinin-siniflandirilmasi

GİBERELLİNLER : Bitki Boyu Düzenleyicileri

Giberellinler Japonya’da 2. Dünya Savaşı yıllarında keşfedilmiştir, fakat bu sırada batı ile ilişkiler kopuk olduğundan batı bu keşfi 1950’lerde öğrenmiştir. Yüzyıl önce, Asya‟daki çiftçiler çeltik tarlalarındaki pirinç fidelerinin aşırı ölçüde boylandıklarını ve ince kaldıklarını gözlediler. Bu durumda, fideler olgunlaşmadan ve çiçek oluşturmadan önce, ince ve cılız oluyor ve bu sebepten dik duramayıp erkenden ölüyordu veya verim düşüyordu. Japon bitki pataloğu Kurusowa, 1926‟da, sersem fide hastalığı denen bu hastalığa Ascomycetes türü olan Gibberella fujikuroi isimli mantarın sebep olduğunu buldu. 1930‟lu yıllara kadar, fungusun giberellin adı verilen (Gibberella fujikuroi türüne itafen) bir kimyasal salgılayarak pirinç gövdelerinin aşırı uzamasına neden olduğunu buldular. Araştırmacılar, 1950‟lerde bitkilerinde giberellinleri sentezlediklerini keşfettiler. Her ne kadar sayıları her bir bitki türünde çok daha az ise de, bilim adamları son 40 yılda bitkilerde doğal olarak sentezlenen 100‟den fazla giberellin bulmuşlardır. Bunlar GA1,GA2,GA3…. şeklinde isimlendirlirler. En yaygın olanı ise GA3 yani giberellik asit (giberellan çekirdek)‟tir. Diğer giberellinler bu temel yapıya bağlı çeşitli yan gruplara sahiptir. Giberellin Biyosentezi ve Metabolizması Giberellin sentezi, bitkide asetil-KoA‟nın asetil biriminden başlar. Solunumdan kaynaklanan mevalonik asit yoluyla birkaç reaksiyondan sonra giberellin sentezlenir. Giberellinler diterpenler grubundadır. Giberellin sentezinin kaurenik aside kadar sitopolazmada, ancak giberellinlerin birbirine dönüşümünün kloroplastlarda olduğu bilinmektedir. 20 karbonlu kauren tüm gibberellinlerin çıkış noktasıdır. Piyasada giberellin antagonisti (büyüme engelleyici) olarak satılan Fosfon-D, Amo-1618, CCC gibi sentetik engelleyiciler giberellin sentezinin belirli reaksiyonlarını inhibe ederler. Bitkide genç yapraklarda ve daha çok tohum embriyosunda sentezlenirler. Buralardan bitkinin diğer kısımlarına taşınırlar. Çimlenen tohumlarda floem vasıtasıyla fideye taşınan giberellinlerin, genç yapraklardan diğer kısımlara hangi yolla taşındığı çelişkilidr. Daha çok floem dışıyollarla korteks ve öz parankimasından difüzyonla taşındığı düşünülmektedir. Dolayısıyla giberellinlerin taşınımı oksin taşınımı gibi polar olmayıp, olasılıkla, her yönde aynı hızdadır. Giberellinler sentezlendikten sonra çok yavaş parçalanırlar. Giberellinleri parçalayan enzimler bilinmemektedir. Giberellinler şekerlerle veya proteinlerle birleşerek inaktive olurlar. Ayrıca aktif olan giberllinler daha az aktif giberellinlere kolayca dönüşebilmektedir. Örneğin, GA4‟ün daha az aktif GA34‟e dönüşümü çok sık gerçekleşir. Giberellinlerin Fizyolojik Etkileri ve Pratik Değeri Gövde Uzaması Giberellinler esas olarak kökler ve genç yapraklarda üretilir. Giberellinler hem yapraklarda hem de gövdelerde büyümeyi teşvik etmekle birlikte, kök büyümesi üzerinde çok az etkiye sahiptir. Giberellinler, gövdelerde hücre uzamasını ve hücre bölünmesini uyarır. Oksinler gibi giberellinler de hücre gevşemesine neden olurlar. Ancak bunu çeperi asitleştirerek yapmazlar. Bir varsayıma göre, giberellinler hücre çeperi gevşetici enzimleri uyarmaktadır. Bu enzimler hücre çeperine ekspansinlerin girişini kolaylaştırmaktadır. Böylece, büyüyen bir gövdede uzamayı artırmak için oksin ve sitokininle birlikte hareket etmektedir. Bu süreçte, oksin hücre çeperini asitleştirmekte ve ekspansinleri aktifleştirmekte; giberellinler ise ekspansinlerin girişini kolaylaştırmaktadır. Cüce bitkilere (mutantlar) giberellin uygulanarak, giberellinlerin gövde uzamasına artırıcı etkisi ortaya konmuştur. Örneğin, bazı cüce bezelye bitkilerine (Mendel‟in çalıştığı türler dahil) giberellin uygulanırsa, çoğunlukla yanıt alınmaz. Çünkü, bu bitkiler önceden optimum dozda hormon üretmişlerdir. Çiçek sapının hızla büyümesi giberellinin teşvik ettiği gövde uzaması ile ilgili en dikkat çekici durumdur. Lahana benzeri bitkiler vejetatif evrede rozet formundadırlar: yani çok kısa internodyumlu oluşları nedeniyle toprağa çok yakındırlar. Bitki üreme evresine geçince; giberellinlerin artması internodyum uzamasını hızla artırır. Bunun sonucunda gövde uçlarındaki çiçek tomurcuklarının boyu uzar. Meyve Büyümesi Pek çok bitkide, meyve bağlanması için hem oksin hem de giberellinlerin bulunması gerekir. Giberellinlerin en önemli ticari uygulaması, Thompson isimli çekirdeksiz isimlere püskürtülmesidir. Hormon, tüketicilerin istediği biçimde, üzüm tanelerinin büyümesini ve salkımların internodyumlarının uzamasını sağlar. Taneler arasında hava dolaşımını artırdığından, diğer meyvelerin ve diğer mikroorganizmaların hastalık bulaştırıcı etkisi de azalır. Çimlenme Tohum embriyoları, zengin bir giberellin kaynağıdır. Suya batırıldıktan sonra, embriyodan serbest bırakılan giberellinler dormansinin kırılması ve çimlenmenin başlaması için tohuma sinyal gönderir. Çimlenme için ışık yada düşük sıcaklık gibi özel ortam koşullarına gereksinim duyan bazı tohumlara giberellin uygulanması durumunda dormansi kırılır. Giberellinler depo besin elementlerini mobilize eden α – amilaz gibi sindirici enzimlerin sentezini teşvik ederek tahıl fidelerinin büyümesini destekler. Ayrıca giberellinler çiçeklenme hormonu olarak bilinir. Bir çok bitkide çiçeklenmeyi teşvik eder. Gerek fotoperyodizmle gerekse vernalizasyonla çiçek açmada giberellinler rol alırlar. ABSİSİK ASİT : Stres Hormonu Absisik asit (ABA) kimyasal grup olarak seskuiterpenler grubundan bir maddedir. ABA‟nın giberellinlerle ortak noktası her ikisinin de ana grup olarak terpenlerden olmalarıdır. ABA bitkiler tarafından sentezlenen en önemli engelleyici hormondur. Tomurcuk dormansisinden önce ortaya çıkan kimyasal değişiklikleri çalışan bir araştırma grubu ve yaprak absisyonundan (son baharda yaprak dökülmesi) önce ortaya çıkan kimyasal değişiklikleri çalışan bir diğer ekip, 1960‟da, aynı bileşiği yani absisik asiti (ABA) izole etmiştir. Aynı yıllarda başka araştırma grupları akça ağaç ve baklada da ABA‟yı izole ettiler. Daha sonrayapılan çalışmalarda ABA‟nın ciğer otları, algler, bakteriler ve mantarlar dışında genel olarak bitki aleminde mevcut olduğu tespit edildi. ABA bulunmayan bitkilerde başka engelleyicilerin bulunduğu düşünülmektedir. Diğer açıdan işin garip tarafı ise, şu anda, ABA‟nın ne tomurcuk dormansisinde ne de yaprak absisyonunda önemli bir rol oynamadığı düşünülmektedir; fakat ABA bir çok etkiye sahip önemli bir bitki hormonudur. Şu ana değin incelediğimiz oksin, sitokinin ve giberellinlerin aksine, ABA büyümeyi yavaşlatıcı etki gösterir. Genel olarak büyüme hormonlarının etkilerine zıt etki yapar. Bir yada daha fazla büyüme hormonuna ABA oranı, fizyolojik etki gösterecek sonucu belirler. ABA Biyosentezi ve Metabolizması ABA 15 karbonlu bir seskuiperten olup kloroplastlarda ve diğer plastidlerde mevalonik asit yoluyla sentezlenir. Kaynaklandığı öncül maddenin bir ksantofil karotenoidi olan vialoksantin‟in fotokimyasal veya enzimatik yıkımıyla başladığı belirtilmektedir. (bu yol izopentil difosfat (IPP) la başlar ve C40 ksantofili olan vialoksantinle devam eder). Bu yıkımın ilk ürünü ksantoksin‟dir ki bununda bir engelleyici madde olduğu ve fototropizmada rol oynadığı ileri sürülmektedir. ABA‟nın inaktivasyonu ya karboksil grubuna bir glukoz bağlanmasıyla yada faseik asit ve dihidro fasetik asit‟e oksitlenmesiyle olmaktadır. ABA‟nın bitkide başlıca sentez yerleri yaşlı yapraklar, gövde ve yeşil meyvalardır. Tohumlarda da sentezlendiği bazı bitkilerde ise tohumlara başka yerlerden taşındığı düşünülmektedir. ABA’nın taşınımı giberellin taşınımına benzer. Hem ksilemden hem floemden taşındığı gibi parankima hücrelerinden difüzyonla da her yönde taşınabilir. Kuraklıkta, tuzlulukta, mineral eksikliği gibi çeşitli stres şartlarında yaprakta ABA sentezi artar. ABA‟nın bu ekstrem koşullarda bitkiye dayanıklılık sağladığı düşünülmektedir. Kuraklık stresinde ABA‟nın stomaların kapanmasına yol açtığı ve böylece transpirasyonla su kaybınıo azalttığı bilinmektedir. ABA’nın Fizyolojik Etkileri ve Pratik Değeri Tohum Dormansisi Tohum dormansisi, yaşamın sürmesinde büyük önem taşır; çünkü dormansi tohumun optimum ışık, sıcaklık ve nemlilik koşullarında çimlenmesini sağlar. Sonbaharda çevreye yayılan bir tohumun, kış koşullarında ölmesini engelleyecek şekilde, hızla çimlenmesini önleyen nedir? Bu tür tohumların ilkbaharda çimlenmesini hangi mekanizmalar sağlar? Hatta, meyvenin nemli iç ortamında, karanlıkta, tohumların çimlenmesini engelleyen nedir? Bu soruların yanıtı ABA‟dır. Tohum olgunlaşması sırasında ABA düzeyi, 100 kat artabilir. Olgunlaşan tohumlardaki yüksek ABA düzeyi, çimlenmeyi engeller ve özel proteinlerin üretimini teşvik eder. Bu proteinler, olgunlaşmayla birlikte oluşan aşırı su kaybına karşı tohumun ayakta kalmasına yardım eder. ABA, bazı yollarla yok edilir yada etkisizleştirilirse, tohumlar çimlenir. Bazı çöl bitkilerinin tohumlarında dormansi, sadece şiddetli yağmurların ABA‟yı tohumdan yıkayarak uzaklaştırmasıyla kırılır. Diğer tohumlar ise ABA‟nın etkisizleştirilmesi için ışığa yada uzun süren düşük sıcaklığa gereksinim duyar. Çoğunlukla ABA‟nın giberelline oranı, tohumun uyku halinde kalıp kalmayacağını yada çimlenip çimlenmeyeceğini belirler; çimlenme için suya daldırılmış tohumlara ABA ilave edilirse, tohumlar yeniden dormansi koşullarına döner. Tohumlar henüz koçan içindeyken çimlenen bir mısır mutantı, işlevsel bir transkripsiyon faktöründen yoksundur; bu transkripsiyon faktörü belirli genlerin ifade edilmesini sağlamak için ABA‟ya gereksinim duyar. Kuraklık Stresi ABA, bitkilerin kuraklığa karşı koymasını sağlayan asıl iç sinyaldir. Bir bitki solmaya başlayınca yapraklarda ABA birikerek stomaların hızla kapanmasını sağlar. Bunun sonucu transpirasyon (buharlaşmayla su kaybedilmesi) azalır ve su kaybı önlenir. ABA bekçi hücrelerinin (stomalarda bekçi ve arkadaş hücreleri ile birlikte bir por bulunur) plazma zarındaki dışa doğru yönelmiş potasyum (K+) kanallarının açılmasını artırır. Bunu, kalsiyum gibi sekonder mesajcıları etkileyerek yapar. Potasyum kanallarının açılmasıyla, bekçi hücrelerinden büyük miktarda potasyum çıkışı olur. Suyun ozmotik olarak kaybı, bekçi hücrelerinin turgorunun azalmasına ve stoma porunun küçülmesine neden olur. Bazı durumlarda su kıtlığı kök sistemini gövde sisteminden daha önce baskı latına alır. Köklerden yapraklara taşınan ABA, erken uyarı sistemi olarak iş görür. Solgunluğa özellikle duyarlı mutantlar genelde ABA üretemezler. Ayrıca, ABA‟nın hücrede RNA ve protein sentezini engelleyici etkisininde olabileceğine dair deneysel veriler vardır. ABA‟nın pratik kullanımı çok nadirdir. Tahıllarda dane verimini artırmak ve yatmaya karşı mukavemet kazandırmak için, bazı durumlarda da sormansi süresini uzatmak ve çeşitli stres şartlarına karşı bitkiye dayanıklılık sağlamak için kullanılır. ABA pahalı ve kolayca katabolize olduğu için bunun yerine fosfon-D kullanılmaktadır. ETİLEN : Gaz Hormon Kömür gazının bahçe ışıklandırılmasında kullanıldığı 19. yüzyılda, gaz lambalarından çıkan aydınlatma gazı sızıntısı çevredeki ağaçların yapraklarını erkenden dökmelerine neden olmuştur. Dimitri Neljubow isimli bir Rus bilim adamı, 1901‟de aydınlatma gazındaki aktif faktörün etilen gazı (C2H4) olduğunu göstermiştir. Ayrıca etilenin bitkiler tarafından sentezlenen (üretilen) bir hormon olduğu, ve bununla birlikte, etilen miktarının ölçümünü basitleştiren gaz kromatografisi tekniği geliştirilince yaptığı iş önemli ölçüde kabul görmüştür. Bitkiler, kuraklık, su baskını, mekanik basınç, zarar ve enfeksiyon gibi streslere yanıt olarak etilen üretir. Aynı zamanda meyve olgunlaşması ve programlanmış hücre ölümü sırasında etilen üretilir. Ayrıca dıştan yüksek konsantrasyonlarda oksin uygulanmasından sonrada etilen üretilmektedir. Dikkat çekici olan bir diğer noktada; daha önce kök uzamasının engellenmesi gibi, oksinle ilişkilendirlen bir çok biyolojik etkinin, şu an oksinin uyardığı etilen üretimine bağlı olduğudur. Etilen Biyosentezi ve Metabolizması 1970‟li yıllarda etilen sentezinin bitkide metionin amino asitinden kaynaklandığı belirlendi. Metionin‟den amino siklopropan karboksilik asit (ACC), ondanda dekarboksilasyon ve deaminasyonla etilen oluşmaktadır. Etilen sentezinin ACC üzerinden olduğunu, avokado meyvesinin hasatından sonra olgunlaşmasında meyvede ACC ve etilen konsantrasyonlarının pozitif korelasyonlu değişim göstermeleri doğrulamıştır. Amino etoksivinil glisin (AVG) ve aminooksi asetik asit (AOA) bileşiklerinin etilen sentezini inhibe ettikleri bilinmektedir. CO2 gazıda yüksek konsantrasyonlarda etilen üzerinde inhibisyon gösterir. Depolanırken olgunlaşması istenmeyen meyvelere CO2 gazının inhibisyon etkisi uygulanır. Gümüş iyonları ve bazı maddelere etilenin bağlanmasıyla, etilen sentezi inhibe edilir. Etilenin Fizyolojik Etkileri ve Pratik Değeri Mekanik Strese verilen Üçlü Yanıt: Bir Sinyal İletim Yolunun İncelenmesinde Mutantların Kullanılması Kaya gibi hareketsiz bir nesnenin altında kalmış ve topraktan yukarıya doğru yükselmeye çalışan bir bezelye fidesini düşünelim. Gövde üstündeki engeli ittikçe, narin yapılı uç bölge mekanik strese maruz kalır,. Bu, fideyi etilen üretmeye teşvik eder. Etilen ise fideyi üçlü yanıt olarak adlandırılan bir büyüme manevrası yapmaya teşvik eder. Bu manevra fidenin engeli aşmasını sağlar. Şekil 19‟da görebileceğiniz bu yanıt gövde uzamasının yavaşlaması, gövdenin kalınlaşması (dayanıklılığı artırır) ve gövdenin yatay olarak büyümesine neden olan bir eğrilme olmak üzere üç kısımdan oluşur. Gövde büyümeye devam ettikçe ucu nazikçe yukarıya dokunur. Eğer bu yoklama sonucu yukarda katı bir cisim olduğunu saptarsa yeniden etilen üretir ve gövde yatay olarak büyümeye devam eder. Bununla birlikte, eğer fidenin uç kısmı katı bir cisim algılamazsa etilen üretimi azalır ve normal olarak yukarı doğru büyümesini sürdürür. Gövdenin yatay olarak büyümesini fiziksel engelden ziyade etilen teşvik eder; ayrıca, fiziksel bir engelle karşılaşmaksızın serbestçe büyüyen fidelere dıştan etilen uygulanması, üçlü yanıttın oluşmasına neden olmaktadır (Şekil 19). Araştırmacılar bu yanıtta yer alan sinyal iletim yollarını araştırmak için anormal üçlü yanıt veren Arabidopsis mutantları üzerinde çalışmışlardır. Etilene duyarsız (ein) mutantlara etilen uygulanınca bu bitkiler üçlü yanıt verememişlerdir. İşlevsel bir etilen reseptörüne sahip olmadıklarından bazı ein mutant tipleri, etilene duyarsızdırlar. Diğer mutantlar ise, toprak dışında, fiziksel bir engelin bulunmadığı hava ortamında bile üçlü yanıt vermişlerdir. Bu tip mutantların bazılarında düzenleyici bir bozukluk bulunur. Bu bozukluk böyle mutantların 20 kat daha fazla etilen üretmelerine neden olur. Bu tür aşırı etilen üreten (eto) mutantlarda fenotip, fidelere etilen sentezi inhibitörleri uygulanmasıyla iyileştirilebilir. Üçüncü tip mutantlar hava ortamında bile üçlü yanıt verirler; ancak, üçlü yanıt (ctr) mutantları olarak adlandırılan bu mutantlar etilen sentezi inhibitörlerine yanıt vermezler. Bu durumda, etilen mevcut olmasa bile etilen sinyal yolu işlevini sürdürür. ctr mutantlarından etkilenen bir gen, bir protein kinazı kodlamak için açılır. Bu mutasyonun etilene verilen yanıtı aktifleştirmesi, yabani-tip allelin normal kinaz ürününün, etilen sinyal iletim işleminin negatif bir düzenleyicisi olduğunu düşündürmektedir. Yabani tip bitkilerde bu yolun nasıl çalıştığına ilişkin bir varsayım aşağıda verilmiştir: Etilenin etilen reseptörüne bağlanması kinazı aktif hale getirir. Bu negatif düzenleyicinin inaktif hale gelmesi üçlü yanıt için gerekli proteinlerin sentezlenmesini sağlar. Şekilde verildiği gibi; bu yolda iki membran proteini, bir engelleyici protein (CTR1), bir de transkripsiyon faktörü olan protein (EIN3) vardır: (eğer etilen varsa) ilki etilen reseptörü (ETR1) ve ikincisi bir kanal proteini olan (EIN2) dir. EIN2 bir sekonder mesajcıya etki eder ve buda bir transkripsiyon faktörü olan EIN3‟ü aktive eder. EIN3 etilen etkisini üretmek üzere ifade olacak genleri harekete geçirir. Eğer etilen yoksa; etilen reseptörü olan ETR1 inaktif kalır ve CTR1‟i inaktif edemez. Aktif kalan CTR1, membran proteini olan EIN2‟yi inaktif tutar. EIN2 nin aktivitesi olmayınca transkripsiyon faktörü olan EIN3 inaktif kalır ve nukleusta herhangi bir etki gösteremez. Apoptosis: Programlanmış Hücre Ölümü Bir yaprağın sonbaharda döküldüğünü yada tek yıllık bir bitkinin çiçek verdikten sonra öldüğünü düşünün. Yada içerdiği canlı maddenin parçalanması sonucu, içi boşalan bir trakenin farklılaşmasındaki son basamağı düşünün. Bu olayların tümü, belirli hücrelerin veya organların yada tüm bitkinin programlanmış ölümünü kapsar. Belirli bir zamanda ölmek için kalıtsal olarak programlanmış hücreler, organlar ve bitkiler, basitçe hücresel mekanizmayı kapatıp ölümü beklemez. Bunun yerine apoptosis olarak adlandırılan programlanmış hücre ölümünü yaparlar. Bu, bir hücrenin yaşamında en yoğun olduğu süreçlerden biridir. Apoptosis esnasında yeni genlerin ifade olmasına gerek duyulur. Bu sırada oluşan yeni enzimler, klorofil, DNA, RNA, proteinler ve zar lipitleri dahil pek çok kimyasal bileşeni parçalar. Bitki parçalanma ürünlerini kurtarabilir. Hücrelerin, organların yada tüm bitkinin apoptosisi sırasında etilen patlaması yaşanır. Yaprak Absisyonu Her sonbaharda yaprakların dökülmesi bir adaptasyondur. Kökten kışın topraktan su absorblayamadığından, bu adaptasyon kış aylarında yaprak döken ağaçların kurumasını önler. Yapraklar dökülmeden önce, ölmekte olan yapraklardan pek çok önemli element geri kazanılarak gövdenin parankima hücrelerinde birikir. Bu besin elementleri, bir sonraki bahar ayında gelişmekte olan yapraklar tarafından yeniden kullanılır. Sonbaharda tekrar üretilen kırmızı pigmentler ve yaprakta önceden bulunan, ancak sonbaharda koyu yeşil klorofilin parçalanmasıyla görünür hale gelen sarı ve turuncu karoteneyidler, yapraklara sonbahar rengini verir. Bir sonbahar yaprağı dökülünce, petiyolün kaidesinin yakınında bir absisyon tabakası oluşur. Daha sonra yaprak buradan koparak yere düşer. Absisyon tabakasındaki küçük parankima hücreleri çok ince çeperli olup, iletim demetlerinin çevresinde lifler bulunmaz. Hücre çeperlerindeki polisakkaritler daha da zayıflar. Sonuçta, rüzgarın da etkisi ile yapraktaki ağırlık absisyon tabakasının kopmasına neden olur. Hatta yaprak dökülmeden önce, absisyon tabakasının dala bakan tarafında mantar tabakası bir iz oluşturur. Bu iz bitkiyi patojenlere karşı korur Absisyonu, etilen ve oksin dengesindeki değişiklik kontrol eder. Yaşlanan bir yaprak, giderek daha az oksin üretir. Bu, absisyon tabakasındaki hücrelerin etilene karşı duyarlılıklarını artırmaktadır. Etilenin absisyon tabakası üzerindeki etkisi arttıkça, selülozu ve hücre çeperlerinin diğer bileşenlerini parçalayan enzimler üretilmektedir. Meyve Olgunlaşması Meyveler, çiçekli bitkilerde tohumların yayılmasına yardım eder. Ekşi, sert ve yeşil olan olgunlaşmamış meyveler, tohum olgunlaşması esnasında yenilebilir hale gelir. Meyvede etilen üretiminin patlaması, enzimatik olarak bu olgunlaşmayı tetikler. Hücre çeperi bileşenlerinin enzimatik olarak parçalanması ve nişastaların ile asitlerin şekerlere dönüşümü meyveyi tatlandırır. Yeni kokuların ve renklerin üretilmesi, olgunlaşan meyvenin, bu tohumları yiyen ve dağıtan hayvanları cezp etmesine yardım eder. Olgunlaşma sırasında bir zincir reaksiyonu ortaya çıkar; etilen olgunlaşmayı tetikler, olgunlaşmada etilen üretiminin artmasına neden olur. Bu, fizyolojide pozitif geri beslenmenin nadir örneklerinden biridir. Sonuçta etilen üretiminde dev bir patlama meydana gelir. Hatta etilen bir gaz olduğundan, olgunlaşma sinyali bir meyveden diğerine geçer; geçerken de çürük bir elma bir kasa elmayı çürütebilir. Eğer yeşil bir meyve satın alırsanız, meyveleri plastik bir torbada tutarak olgunlaşmayı hızlandırabilirsiniz. Çünkü plastik torba içinde etilen gazı birikir. Ticari amaçlı olarak, meyvelerin çoğu etilen gazı düzeyleri artırılmış dev depolarda olgunlaştırılır. Diğer durumlarda ise doğal etilenin sebep olduğu olgunlaşmayı geciktirmek için önlem alınır. Örneğin, elmalar karbondioksit içeren depolarda tutulur. Hava sirkülasyonu etilen birikimini önler ve yeni etilen sentezi engellenir. Sonbaharda toplanmış ve bu şekilde depolanmış elmalar, yaz aylarında bile satışa sunulabilir. Etilenin, meyvelerin hasat sonrası fizyolojilerindeki önemi düşünüldüğünde, etilen sinyal iletim yolları ile ilgili genetik mühendisliğin potansiyel olarak ticari önemi büyüktür. Örneğin, moleküler biyologlar isteğe bağlı olarak olgunlaşan domates meyveleri üretmiştir. Bunu, etilen sentezinde gerekli genlerden birinin transkripsiyonunu durduran bir antisens RNA yerleştirerek yapmışlardır. Yeşil haldeyken toplanan bu tür meyveler, etilen gazı verilmediği taktirde olgunlaşmayacaktır. Bu tür yöntemlerin geliştirilmesi meyve ve sebzelerin çürümesini önleyecektir. Bu sorun, şu an birleşik devletlerde ve bazı ülkelerde hasat edilen ürünün yarısına yakın kısmını yok etmektedir. BRASSİNOSTEROİDLER Brasinosteroidler büyümeyi teşvik edici karakteristik aktiviteleri ile, bitki hormonlarının yeni bir grubudur. 1979‟da kolza bitkisi (Brassica napus L.) poleninden izole ve karakterize edilmişlerdir. Sonradan 44 bitkide bundukları rapor edilmiş ve bitki aleminde muhtemelen her yeder bulundukları kabul edilmiştir. Brassinosteroidler, 37 Angiosperm (9 monokotil ve 28 dikotil), 5 Gimniosperm, 1 pteridofit ve 1 alg olmak üzere 44 bitki türünde izole edilmişlerdir. Brassinosteroidler, çok düşük konsantrasyonlarda etki gösterirler. Brassinosteroidler, büyüme gibi çeşitli gelişimsel etkileri , tohumların germinasyonu, rizogenez, çiçeklenme ve senesens gibi pleotropik etkileriyle dikkate alınmıştır. Ayrıca, çeşitli abiyotik stres durumlarına karşı da bitkiye dayanıklılık sağlamaktadırlar. Brassinosteroidlerin Biyosentezi ve Metabolizması 1974‟te ilk brassinosteroid olan brassinolid keşfedildi. Biyolojik olarak aktif olan bu bitki büyüme düzenleyicisi bir steroid lakton olarak C28H48O6 (MA: 480) formülü ile desteklendi. 1982‟de büyümeyi destekleyici, diğer bir steroid madde, kestane (Castenea crenata) üzerinde böcekler tarafından tahrip edilen kısımlardan izole edildi ve kastesteron (castesteron) olarak adlandırıldı. Brassinolid ve castesteronun keşfi, bitki aleminde büyümeyi destekleyici steroid hormonlarının varlığı düşüncesini desteklemiştir. Brassinosteroidler, doğal polihidroksi steroidlerin yeni bir grubudur. Şimdiye kadar tanımlanan doğal brassinosteroidler genel bir 5α-kolestan yapısına sahiptirler ve bunların varyasyonları yapı üzerindeki işlevlerinin çeşit ve oryantasyonundan oluşmaktadır. Fitosterol ailesine ait bileşikler C27, C28, C29 brassinosteroidler olarak sınıflandırılır. Şu ana kadar 42 brassinosteroid ve 4 brasinosteroid bileşiği karakterize edilmiştir. Brassinosteroidler BR1, BR2, …BRn şeklinde isimlendirilirler. Bitki steroidleri asetil Ko-A, mevalonat, izopentenil pirofosfat, geranil pirofasfat ve farnesil pirofosfattan, isoprenoid yolla sentezlenirler. Mevalonatla başlayan bu yol sonunda sikloartenol sentezlenir. Bu doğal yolun dışında, sentetik olaraktan kampesterol‟den brasinoid‟e kadar sentetik bir yolla sentezlenebilirler. Bitkide gelişmekte olan dokular, olgun dokulşara göre daha fazla konsantrasyonlarda brassinosteroidleri içerirler. Polen ve genç tohum zengin brassinosteroid kaynağıdır. Yapraklar ve sürgünler düşük konsantrasyonlarda brassinosteroid içerirler. Brassinosteroidlerin Fizyolojik Etkileri ve Pratik Değeri Brassinosteroidlerin analizinde göze çarpan iki test vardır; birincisi, fasulyede ikinci internod oluşumu testi ve diğeri pirinç laminasında eğilme testidir. Fasulyede ikinci intenod oluşumu testi, brassinolidin kolza bitkisinden izolasyonunda geliştirilmiştir. Fasulye fidesindeki ikinci internod kesilip, lanolin macunuyla brassinolid uygulanmasıyla uzama, eğilme, şişme ve iki ayrı parçaya ayrılma (splitleşme) göstermiştir. Uzama, eğilme ve şişme düşük konsantrasyonda, iki ayrı parçaya ayrılma ise yüksek konsantrasyonda gerçekleşmiştir. Bu, brasinosteroidlerin büyümeye etkilerinden biridir. Brassinosteroidler genç vejetatif dokuların gelişimine etki ederler. Soya fasulyesi ve bezelye epikotillerinde, Arabidopsis pedinkullarında, yulaf koleoptillerinde uzamayı ve büyümeyi teşvik ederler. Kök gelişimini engellerler fakat gövde gelişimini teşvik ederler. Hücre bölünmesini ve uzamasını, polen tübü uzamasını teşvik ederler. Yaprak absisyonunu geciktirler (Citrus) ve ksilemde farklılaşmayı artırırlar. İletim demetlerinin farklılaşmasında rol alırlar. Tohum germinasyonunu teşvik eder, aynı zamanda absisik asitin inhibe edici etkisini yok ederler. Brassinosteroidler üzüm meyvelerine spreyle muamele edildiğinde; sonbaharda çiçek sayısını artıran, kışın (aynı muamele yapıldığında) çiçek sayılarını azaltan etki göstererek çiçeklenmede rol oynarlar. Brassinosteroidler, Xanthium gibi bazı cinslerde senesensi hızlandırırlar. Ayrıca bitkilerin abiyotik stres şartlarına karşı dayanıklığını artırırlar; düşük sıcaklığa maruz kalan pirinç ve domates bitkilerinde brassinosteroid uygulamasıyla büyümenin daha iyi olduğu gözlenmiştir; mısır ve lahana fidelerinde de düşük sıcaklık stresine karşı toleransı artıran etki gösterirler. Bu etkilerin oksin etkilerine çok benzemesinden dolayı brassinosteroidlerin, oksinden farklı bir hormon olarak kabul edilmesi yıllar sürmüştür. Ek olarak brasinosteroidler kimyasal yapı olarak hayvanlarda bulunan steroid hormonlarına en benzer gruptur; bitki ve hayvan steroid hormonlarının benzer kimyasal yapıları, belirli genlerin ifade olmasında benzer etkiler göstermektedir. Şöyle ki; bitki steroidleri insanlardaki eşey hormonları gibi, aynı olan pek çok şeyi yaparlar. Bir bitkide steroid fazla olduğunda, o bitki daha büyük, daha dayanıklı ve daha kuvvetli olmaktadır. Örneğin; mutasyon nedeniyle bitkiler steroid üretmediklerinde cüceleşirler. Steroidler aynı zamanda bitkide eşeyli üremeyi düzenlemektedirler (burada; belirli bir molekül grubunun farklı organizmalarda sinyal molekülleri olarak iş görmesi ilginçtir). Bir bitkinin steroid sentezlemek için kullandığı enzimlerin çoğu, kendi steroid çeşitlerini üreten hayvanlarda da bulunmaktadır. Dolayısıyla bu enzimlerle ilgili bazı genlerin, bitkiler ve hayvanların bir milyar yıldan daha uzun bir süre önce ortak bir atadan dallanmaları sebebiyle korunmuş olma olasılığı vardır. Buna karşın, steroidlere yanıtlarla ilgili sinyal yolundaki moleküller, bitki ve hayvanlarda çok büyük bir farklılık göstermektedir. KAYNAKLAR Purves, Sadava ve arkadaşları, Life – The Science of Biology, 7inci baskı. Campbell ve Reece, Biology, 6ncı baskı. Salisbury ve arkadaşları, Plant Physiology. Taiz ve Zeiger, Plant Physiology, 3üncü baskı. Ram Rao S. ve ark., Brassinosteroids – A new class of phytohormones, Current Science, Vol. 82, No. 10, 2002. Haydarabad, Hindistan. Kocaçalışkan İ., Bitki Fizyolojisi, Dumlupınar Üniversitesi www.pubmedcentral.nih.gov 4e.plantphysiol.org www.whfreeman.com www.hhmi.org

http://www.biyologlar.com/giberellinler-bitki-boyu-duzenleyicileri

EVREN, EVRİM, İNSAN ve DÜŞÜNCE

Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık yok... Düşünsel olasılıkların, yani düşüncede çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Bu evren bir çeşitlilikler ve dolayısıyla bir olasılıklar evreni... Ve bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Bugün, biraz uzaktan bakıldığında, bilimin ilgi alanlarını kabaca ama net olarak sınıflandırmak mümkün: Fizik, enerjiyi ve ilk halinden başlayarak maddeyi alıyor atom sınırına kadar getirip bırakıyor; kimya, atomdan başlıyor inorganik ve organik madde sınırına kadar gidiyor; biyoloji ise yalnız canlılarla ilgileniyor. Biyolojinin alanı terkettiği noktada da devreye yalnızca insanla ve insan topluluklarıyla ilgilenen sosyal bilimler; felsefe, tarih, sosyoloji, ekonomi, psikoloji vb. giriyor. Pozitif bilimlerde, hiç olmazsa, sınır bölgelerinde disiplinlerarası bir kaynaşmadan sözedilebileceği görülüyor. Sözgelimi atom, hem fiziğin hem kimyanın; canlılar aleminin temel taşı olan organik madde de hem kimyanın hem biyolojinin ilgi alanı içine giriyor. Öte yandan, pozitif bilimlerle sosyal bilimler arasındaysa, kaynaşma bir yana, bir uçurumun varlığı hissediliyor. Sosyal bilimler alanında, psikolojinin çok kısıtlı ilgisi dışında hiçbir disiplin, hiç değilse biyoloji ile ilgilenme gereğini bile duymuyor. Üstelik bu disiplinlerin hemen hemen hiçbiri, tarihi, yazının keşfedildiği altı bin yıl öncesinden daha geriye götürmeye de yanaşmıyor. Bizzat tarih bilimi bile, evrimin şimdilik son aşaması sayılan modern insanın ilk ortaya çıktığı 50 bin yıllık sürece egemen olmayı dahi reddediyor ve yazının keşfedilmesinden bu yana geçen 6 bin yılla iktifa ediyor. Gerekçe, kuşkusuz, bilimsel bir disiplin olarak tarihin tahmine değil belgeye dayandırılması zorunluluğu... Bu gerekçenin elbette haklı bir yanı da var. Ama bir gerçek daha var: Bütün o atomaltı tanecikler, atomlar, moleküller ve madde; elementler, inorganik ve organik madde; hücreler; bunların oluşturduğu bileşikler ve tek hücrelisinden çok hücrelisine kadar bütün canlılar; bunların hepsi, hepsi bizatihi birer belge... Hatta yorumsuz oldukları ve bir bütünlük taşıdıkları için, evrendeki yegane ‘gerçek belgeler’ oldukları da söylenebilir. Evrenin bütün geçmişi, bütün tarih, bütün evrim, evrime yolaçan değişimin mekanizması, evrenle ilgili herşey, canlı ve cansız maddenin ve enerjinin ve hareketin yapısında gizli... Ve eğer böyleyse, bu belgelerin hepsi birden gözden geçirilmeden, şu son altı bin yılın da sağlıklı bir biçimde çözümlenmesi mümkün olabilir mi? Ve eğer evrenin tarihi, dünü olduğu kadar bugünü ve yarını da kapsayan ve hiç değilse başına, bugüne kadarki gelişmesine ve sonuna dair bir kısım olasılıkların belli olduğu bir bütünlük arzediyorsa ve eğer evrim, 20 milyar yıl öncesinden bugüne uzanan ve bugünden de belki 20, belki 80 milyar yıl ötesine uzanacak olan kesintisiz bir süreçse; henüz birleşik bir kuram haline getirilmemiş olsalar bile, pozitif bilimler alanında saptanmış olan temel yasaların, tıpkı Marki de Laplace’ın bir zamanlar düşünmüş olduğu gibi, evrimin son halkası olan insanı ve insan topluluklarını konu alan sosyal bilimler alanında da geçerli olması gerekmez mi? Ve insan da atomlardan ve hücrelerden oluştuğuna, yani nevzuhur bir yaratık değil de büyük bir evrim sürecinin son halkası olduğuna göre, fizik, kimya ve biyoloji bilmeden (ve kuşkusuz fizik, kimya ve biyoloji kadar ekonominin ve hatta müziğin de ortak dili olan matematik bilmeden); enerji ile maddenin tarihini ve enerji ile maddenin yapısını bilmeden ve bu yeni bilgilerin felsefesini yapmadan; evrenin, kozmosu ve kaosu aynı anda kucakladığını, dolayısıyla bir olasılıklar evreni olduğunu ve bu durum gözönüne alınmadığı takdirde evrendeki ister psikolojik ister sosyal, ister siyasi ister ekonomik hiçbir oluşumun doğru değerlendirilemeyeceğini anlamak sözkonusu olabilir mi? Dahası, insan kendi kendisini böyle bir gerçekliğin içinde değerlendirerek, evreni tanımlayacak birleşik bir kuram oluşturmak için çırpınıp duran astrofizikçilere de yardım etmiş olmaz mı? Hayır, hiç de zor değil!.. Artık bu ve benzeri bilgilere ulaşmak hiç de zor değil!.. Yepyeni bilgilerle zenginleşmiş olan bilime ilişkin yepyeni yorumları aktaran popüler bilim kitapları artık, Türkiye’de dahil birçok ülkede neredeyse her köşebaşında satılıyor. Bilimkurgu kitapları ise daha da yaygın... Ve bilim yazarlarına oranla daha özgür davranan bilimkurgu yazarları, 20. yüzyılda felsefenin boş bıraktığı yeri dolduruyorlar. En son bilimsel gerçekleri özgürce, cesaretle yorumlayarak geleceğe ilişkin ve olup bitenin nedenlerine ilişkin kuramlar oluşturuyorlar. Üstelik yine Türkiye dahil Dünya’nın her tarafında çok da ilgi çekiyorlar. Ama şunu da unutmamak gerekiyor: Oluşturulan kuramların hepsi de yalnızca bir takım olasılıklardan ibaret... Mesela Mars konusunda, yıllardan beri insanoğlunu oyalayan ve sonunda göz yanılgısından başka birşey olmadığı anlaşılan çizgisel Mars kanallarının etkisi altında kaldıkları için olacak ki, ilk kuşak bilimkurgu yazarlarının çok yanlış düşüncelere kapıldıkları görülüyor. O ilk kuşak bilimkurgu yazarlarının hemen hepsi Mars’ta canlıların yaşadığını, hiç değilse bir zamanlar yaşamış olduğunu düşünüyorlar. Bu varsayımsal canlıların bir kısmı çok sevimli, çok gelişmiş; Mars’ı sömürgeleştiren saldırgan insanlarla başa çıkmaya çalışıyorlar; bir kısmı ise, dünyayı istila etmeye kalkışan birer canavar ve insanlara acımasızca saldırıyorlar. Tabii Mars’a ilişkin yanlış kanılardan yalnız bilimkurgu yazarları sorumlu değil... Sir Fred Hoyle gibi çok ciddi bir bilim adamı da, muhtemelen dinsel inançları yüzünden geliştirdiği evrende durağan hal kuramına aşırı bağlılığından ötürü, dünyaya düşen göktaşlarından bazılarının Mars’tan geldiği inancının yayılmasında rol oynuyor. Sir Hoyle, büyük evrim sürecinin cansız maddeden canlı yaşama geçişi de sağlamış olabileceğini kabul edemediği için olsa gerek ki, dünyada canlıların varlığını, Mars’tan gelen göktaşları üstünde bulunan canlı hücrelere bağlamak istiyor. Ama bu arada, o canlı hücrelerin Mars’ta nasıl varolmuş olabileceği sorusu da yine açıkta kalıyor. Açıkta kalan bir başka soru da, milyarlarca yıl önce dünyaya düşmüş oldukları söylenen göktaşlarının üstünde, bu taşların Mars’tan geldiklerine dair ne gibi bir kanıt bulunduğu... Yani eğer taşların üstünde “made in Mars” yazısı yoksa, bu taşların Mars’tan geldiğinin nasıl kanıtlanabileceği (aslına bakılırsa bu konu biraz tuhaf; dünyaya milyarlarca yıl önce düşmüş ve yıllarca önce de bulunmuş olan taşlar, geçen yaz, neden birdenbire, hem de inanılmaz yoğunlukta bir ilgi konusu oluverdiler, hiç anlaşılamadı) ... Carl Sagan ile Sojourner adı verilen araçların, bugünlerde Mars yüzeyinde yaptıkları çalışmalar bile tuhaf sonuçlara varılmasına neden olabiliyor. Kimi insanlar, Mars’ı bir zamanlar sellerin götürmüş olduğunu duyduklarında, bu sellerle Nuh Tufanı arasında ya da bu sellerle kayıp Atlantis ve Mü kıtaları arasında bir bağ kurulabileceğini düşünüyorlar. Amaç yine aynı: Yeter ki canlı yaşam dünya üstünde kendiliğinden başlamamış olsun!.. Başlamamış olsun da varsın atalarımız Marslı olsun!.. Aslına bakılırsa bu da bir olasılık elbette... Ama gerçekleşmiş olması zor bir olasılık... Çünkü evrensel yasalar gereği Mars’ın Dünya ile yaklaşık aynı zamanlarda ve benzer koşullarda gelişmiş olması gerekiyor. Yani bundan yaklaşık 4,5 milyar yıl kadar önce ve adım adım... Eğer Mars’taki seller, bundan 4 milyar yıl kadar önce değil de 3-5 yüz milyon yıl önce olmuş olsaydı, o takdirde evrimin Mars’ta da aynı biçimde, ama biraz daha hızlı geliştiği düşünülebilirdi. Ve karşı koyamadıkları bir sel felaketiyle yüzyüze gelen Marslılar’ın bir uzay aracına doldurdukları değişik türden çift çift hayvanlarla birlikte gelip Dünya’ya yerleştikleri... Halbuki 4 milyar önce oluştuğu anlaşılan seller, Dünya’da evrim süreci gelişip dururken Mars’ta evrim sürecinin hiç başlamamış olduğunun kanıtı gibi görünüyor. Zaten aynı yıldız sisteminde, yanyana iki gezegende birden aynı sürecin yaşanması da pek olası görünmüyor. Öte yandan 100 milyar galakside 100 milyar yıldız da, evrendeki tek canlı türünün insan olamayacağını gösteriyor. Böyle bir iddia da olasılık kurallarına hiç uymuyor. Dolayısıyla mitolojik ya da dinsel efsanelerin bir bölümünün, dünyaya gelip giden uzaylılarla ilgisi olması olasılığı hala var... Ama bu olasılık, ağır basan diğer olasılığı, insanı evrimin yaratmış olabileceği yönündeki olasılığı hiçbir şekilde bertaraf etmiyor. Zaten bilinmeyen bir gerekçeyle hiçliğin içindeki tek bir noktadan koskoca bir evren yaratan mucizesel bir sürecin, gide gide canlı yaşamı ve insanı ve düşünceyi de yaratmış olmasında, hiçbir tuhaflık ya da aykırılık da bulunmuyor. İşin güzel yanı şu: Böyle düşünsel olasılıkların, yani çeşitlenmenin ortaya çıkması, düşüncenin daha da evrimleşeceğinin bir göstergesi... Büyük evrim sürecinin son halkası olan düşünsel evrimin sürebilmesi için, çeşitlenmenin, yani çok sayıda değişiklik olasılığının ortaya çıkması lazım... Evrim, şimdilik hala, bu olasılıklardan, evrensel yasalarla en iyi uyum sağlayabilen yönünde ilerliyor. Ve adım adım ilerliyor. Ama günün birinde düşüncenin evriminde ileri aşamalara ulaşılabilirse, evrensel yasalara egemen olacak olasılıkların çoğaltılması da mümkün olabilir. Ve tek bir adım yerine birkaç adım birden atılabilir. Bu da bir olasılık... Hatta evrendeki kaçınılmaz yaşlanmanın, düşüncenin de sonu olmasının önüne geçmesi bile sözkonusu olan bir olasılık... Bu evren bir çeşitlilik ve dolayısıyla bir olasılıklar evreni... Ama bu olasılıkların varlığı, artık kendisi de evrimsel bir birim oluşturmaya başlayan insanlığın ortak iradesine, belli sınırlar içinde kalmak kaydıyla önemli bir şans veriyor. Belli sınırlar içinde kalmak kaydıyla... Çünkü öyle görünüyor ki insan, kendi doğumunu nasıl belirleyemiyorsa, evrenin doğumuna ilişkin bir irade kullanma hakkına da sahip değil... Bu zamandan sonra böyle birşey olması, zaten mantık açısından da mümkün değil... Ve insan, kendi ölümünün önüne nasıl geçemiyorsa, muhtemelen evrenin ölümünün önüne geçme konusunda da herhangi bir şansı yok... Ama eğer işler böyle gittiği taktirde, insan, belli bir yaştan sonra kendi hayatına ilişkin kararlar alma ve uygulama şansına nasıl sahip oluyorsa, insanlık da, belli bir aşamadan sonra, kendi yaşamına ilişkin ortak kararlar alma ve uygulama şansına sahip olacak gibi görünüyor. Tabii bu, yine yalnızca bir şans olacak... Bu şansı kullanıp kullanmamak, bu olasılığı değerlendirip değerlendirmemek ise insanlığa kalacak. Bu durumda, karamsarlık üretip eylemsizliği artırmak yerine, düşünsel evrimin sürmesini sağlayacak çeşitlenmelerin önünü açmak, evrimi daha da ileriye taşıyacak olasılıkların ortaya çıkmasına şans tanımak daha doğru değil mi? Ve düşünce özgürlüğü asıl bu demek ve bu nedenle de çok önemli demek değil mi? KAYNAK: www.historicalsense.com      

http://www.biyologlar.com/evren-evrim-insan-ve-dusunce

Apoptozis ve kaspazlar

Apoptozis, organizma tarafından düzenlenen enerji bağımlı hücre ölümüdür. Programlı hücre ölümü olarak da adlandırılan bu süreç, doku homeostazının korunmasında kritik bir role sahip olduğu gibi, fetal gelişim ve erişkin dokulardaki pekçok fizyolojik olayda da önemli rollere sahiptir. Apoptozis terimi ilk kez 1972 yılında Kerr ve arkadaşları tarafından kullanılmıştır (1). Kerr, fizyolojik olarak ölen hücrelerin çekirdeklerinde yoğunlaşmış kromatin parçalarını gözlemlemiş ve organellerin iyi korunduğunu fark ederek bu olayı büzüşme nekrozu olarak adlandırmıştır. Apoptosis terimi köken olarak "ayrı düşmek" anlamına gelmektedir (1). ve hücre kaybını belirtmek amacı ile kullanılmıştır. Apoptotik ölüm sinyali alan hücrenin kromatini yoğunlaşmaya başlar. Benzer şekilde sitoplazma da yoğunlaşmaya ve hücrenin boyutları küçülmeye başlamıştır. Bir süre sonra hücre apoptotik cisimcik denilen daha küçük parçalara bölünür. Bu parçacıkların en büyük özelliği, fragmente olmuş nükleusların ve parçalanan hücreye ait tüm yapıların plazma membranı ile kaplanarak immün sistemi enflamasyon yönünde uyarmamasıdır. Apoptotik cisimcikler, yüzeylerinde yeni sinyal yapıları ortaya çıkarır ve bu sinyalin uyarısı ile yandaki hücre tarafından fagosite edilerek ortadan kaldırılır (2,3). Apoptozis normal gelişimsel süreç içerisinde pek çok fizyolojik olayda görev alır. Embriyogenesis (4,6), normal menstruel siklusda endometrial hücrelerinin yıkımı (5), barsak kripta epitelleri gibi sürekli çoğalan hücre gruplarında hücre sayısının dengelenmesi (6), timusun gelişimi sırasında otoreaktif T hücrelerinin ortadan kaldırılması (6), bunlardan sadece birkaçıdır. Apoptotik hücre ölümü regülasyonundaki defektler hücre birikiminin olduğu kanser, restenoz gibi hastalıklara yol açabildiği gibi, hücre yıkımının arttığı otoimmün rahatsızlıklar, nörodejeneratif hastalıklar, Alzheimer gibi rahatsızlıklara da yol açabilmektedir (7,8 ). Son yıllarda yürütülen araştırmalar neticesinde, apoptosisten sorumlu moleküler mekanizmalar açıklığa kavuşmuştur. Bu çalışmalar sonucunda, kaspaz adı verilen, intrasellüler proteazların; apoptosisin gerek direkt, gerekse indirekt morfolojik ve biokimyasal değişikliklerinden sorumlu olduğu ortaya konulmuştur. Kaspazların apoptozla ilk ilişkisi bir nematod olan Caenorhabditis Elegans'ın genetik analizi sırasında ortaya çıkmıştır (9). Kaspazlar apoptotik hücre ölümü esnasında önemli rol oynayan multigen ailesinden oluşan sistein-proteaz grubu enzimlerdir. Kelime olarak "Cysteine Aspartate Specific ProteASEs- CASPASE" olarak türetilmiştir. Öncelikle inaktif proteinler olarak sentezlenen bu enzimler çeşitli yollarla aktive edilmelerinin ardından hücresel hedeflerdeki tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Hücre ölümü sırasında meydana gelen pek çok sellüler ve morfolojik değişimler, bu enzimlerin rol oynadığı birtakım süreçler neticesinde gelişir (10). Kaspaz-1, kaspaz ailesinin prototipidir ve önceleri prointerlökin-1-beta'nın biyolojik aktif formuna dönüşümünden sorumlu, ICE (interlökin-1-beta dönüştürücü enzim) olarak da adlandırılan, bir sistein proteaz olarak tanımlanmıştır (11,12). Daha sonraları ise ICE'nin diğer sistein-proteazlardan farklı olarak amid bağının N-terminalindeki p1 pozisyonu olarak bilinen ucunda aspartik asitin mutlak gerekliliğini gerektiren farklı bir sistein-proteaz olduğu keşfedilmiştir. ICE'nin inflamasyondaki rolü geniş bir şekilde aydınlatılırken bir taraftan da hücre ölümünden sorumlu genetik yoldaki rolü ortaya konmuştur (13). Bir nematod olan Caenorhabditis elegans'ın üzerinde yapılan bu çalışmada, hücre ölümü sırasında görev alan genetik yolda ced-3 isimli bir genin kodladığı proteinin hermafroditin gelişimi esnasındaki tüm programlı hücre ölümlerinden sorumlu olduğu görülmüştür. Daha sonraları ise ced-3'ün memelilerdeki ICE'nin bir homoloğu olduğu gözlenmiştir (14,15). Tüm bu bilgilerin ışığında apoptotik hücre ölümleri esnasında meydana gelen özellikli proteolizler ve bu yıkımlar sonucu oluşan biyokimyasal olaylar aydınlatılmaya çalışılmıştır. Memelilerde en az 14 kaspaz tanımlanmıştır (16). Filogenetik analiz sonucunda gen ailesinin ICE (kaspaz-1) ile ilişkili ve ced-3 benzeri olmak üzere iki subgrubu olduğu görülür. Proenzimlerin kısa (kaspaz 3,6,7) veya uzun prodomain barındırmalarına göre de kaspazları daha alt gruplara ayırmak mümkündür. Alternatif olarak bu proteazlar, substrat spesifitelerine göre de gruplandırılabilir (17,18). Günümüzdeki modern yaklaşım ise proteazları üç gruba ayırmaktadırlar (10). (şekil-1). Şekil 1: Proteolitik aktivitelerine göre kaspazlar Grup 1 : Sitokin matürasyonuna aracılık edenler (caspase-1, 4, 5, 13) - ICE ailesi, Grup 2 : Apoptotik hücre ölümü sürecinde efektör görevi üstlenenler (kaspaz-2, 3, 7) - ced 3 ailesi, Grup 3 : Apoptotik hücre ölümünde aktivatörler (kaspaz-6, 8, 9, 10) - ced 3 ailesi (14). Kaspazlar tetrapeptit motiflerini aminoasit spesifitelerine göre tanır ve p4 pozisyonundaki aminoasitlere göre üç spesifik gruba ayrılır. Grup 1 kaspazlar (kaspaz-1, 4, 5, 13) P4 pozisyonunda hidrofobik aminoasitleri tanırlar ve sitokinlerin maturasyonuna aracılık ederler. Grup 2 kaspazların yeğledikleri ayırma noktası hücre ölümü sırasındaki pek çok proteinlerde gözlenir ve bununla ilintili olarak da grup 2 kaspazlar (kaspaz-2, 3, 7) apoptosisin major efektörleri olarak bilinirler. Grup 3 kaspazlar (kaspaz-6, 8, 9, 10) ise P4 pozisyonunda alifatik aminoasitleri tanır ve grup 2 kaspazların aktivasyonunda görev alır (şekil 2). Kaspazlara ek olarak bir serin proteaz olan granzim-B gibi başka proteazlar da kaspaz aktivasyonunda görev alarak ve bazen de kaspazların yerine fonksiyon görerek apoptotik hücre ölümüne katkıda bulunur (şekil 2). Bu sıralanmanın istisnaları da mevcuttur. Örneğin kaspaz-2 kendiliğinden aktive olabilir. Kaspaz-6 efektör proteaz olarak görev alabilir (10). Kaspazlar inaktif üç parçalı proenzimler olarak sentez edilirler. Aktivasyonları sırasında aspartat (P1) - X (P2) bağının ayrılması ile proenzimden, küçük ve büyük subüniteleri içeren aktif enzim oluşur. Ayrılma noktasında aspartatın bulunması kaspazın oto-aktif ya da aktive edilebilir olmasıyla uyumludur. Ayrılma işleminden sonra 2 büyük ve 2 küçük alt üniteden oluşan tetramer yapısına sahip kaspaz yapısı izlenir (şekil 3). Şekil 3: Kaspaz X-ışını kristal yapılanması. Kaspazların tetramer yapısı 2 adet büyük (dışta) ve 2 adet küçük alt üniteden (içte) oluşmuştur. Bu şekilde kaspaz-3 ve onun inhibitörü Ac-DEVD-CHO (sarı) görülmektedir (24). Kaspaz aracılı apoptozisin aktivasyonunda üç ayrı yolun varlığı bilinmektedir; 1. Mitokondri/Sitokrom-C aracılı apoptozis 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis 3. Endoplazmik retikulum aracılı apoptozis 1. Mitokondri/Sitokrom-C aracılı Apoptozis: Hücresel stres durumunda mitokondriden, sitokrom c ve apoptotik proteaz aktive edici faktör (Apaf-1) salınarak dATP kofaktörlüğünde prokaspaz-9 molekülüne bağlanır (şekil 4). Bu yolla aktive olan kaspaz-9, prokaspaz-3'ü aktive eden kaskadı başlatır ve devamında sitoplazmada yapısal poteinlerin sindirimi, kromozomal DNA'nın degradasyonu ve hücrenin fagositozu sağlanır (19,20,21). Şekil 4: Sitokrom c ve Apaf-1 aracılı apoptozis Apaf-1 molekülündeki konformasyonel değişiklikler apoptozom oluşumuna ve apoptozisin aktivasyonuna neden olur. Apoptozomun oluşum ve fonksiyon görmesi ise mitokondrial ve sitozolik faktörler tarafından düzenlenir (22). 2. Hücre yüzey reseptörleri aracılığı ile tetiklenen apoptozis: Fas-ligand (Fas-L) ve Tumor necrosis factor (TNF) gibi moleküllerin, hücre yüzeyindeki Fas ve TNF reseptörlerine bağlanmasıyla sitoplazmaya Kaspaz-8'i aktive eden sinyaller yayılır. Kimyasal, fiziksel ya da viral enfeksiyonlarla hasar görmüş hücrelerde, interlökin-1 (IL-1) gibi pro-enflamatuar sitokinlerin etkisi ile hücre yüzey Fas ekspresyonu başlar. Bu süreç Fas antijeninin up-regülasyonu olarak adlandırılır. Bu süreç sırasında sitotoksik T hücreleri de Fas-L yapımı için uyarılırlar ve Fas- FasL bağlanması ile prokaspaz 8 ve 2'nin aktivasyonu sağlanır (23). Böylece hücrenin apoptozise gitmesi indüklenmiş olur (24). Fas-Fas-L etkileşimi FADD (Fas bağımlı ölüm domain proteini) aracılığıyla olur (25) (şekil 5). Bir yandan da, ilk kez granülositlerde keşfedildiği için Granülosit-enzim kelimelerini birleştirerek ifade edilen Granzim B (GrB ), sitotoksik T hücrelerinden salgılanarak GrB reseptörlerine bağlanır. GrB bir serin proteaz enzimidir. Sitoplazma içine alınan GrB, kaspas kaskadı üzerinden apoptozisi başlatır (26,27,28,29). 3. Endoplazmik retikulum aracılı apoptozis: Endoplazmik retikulum (ER), hücre içi kalsiyum dengesi, sentezi ve membran proteinlerinin katlanmasını içeren birçok süreçte kritik öneme sahiptir. Hücre içi kalsiyum seviyeleri yükseldiğinde ER membranında lokalize olan prokaspaz-12 aktifleşir ve sitoplazmaya yönelir. Kaspaz-9 ile karşılıklı olarak etkileşerek kaspaz kaskadını aktive eder (30,31). Kaspasların etkilediği hedef noktalar; DNA hasarının tamirinden sorumlu Poli ADP Riboz Polimeraz (PARP) (9,32), DNA-bağımlı protein kinaz (DNA-PK) (33,34), nükleus membranının integritesini sağlayan laminler (35) ve UlRNP (9), DNA'nın parçalanmasına yol açan nükleazları inhibe eden DNA fragmentasyon faktörü (DFF 45) adlı protein (36), hücre içi kolesterol homeostazisinden sorumlu bir integral protein olan Sterol Düzenleyici Element Bağlayıcı Protein (SREBP-1) (16-37), bir tümör supresör gen olan retinoblastom geni ve hücre iskelet proteinlerinden Fodrin (23) olarak özetlenebilir. Apoptozisi saptamak icin çok çeşitli yöntemler geliştirilmiştir. 1972 yılında, apoptozis terimi ilk kez kullanıldığında hücrenin morfolojik görünümüne göre karar verilmişti. Günümüzde ise morfolojik değerlendirmenin yanı sıra, apoptozise özgü olduğu bilinen bazı aktivasyonların (örn, aktif kaspaz-3 tayini) moleküler düzeyde belirlenmesiyle de apoptosiz saptanabilmektedir. Bu yöntemler şu şekilde sıralanabilir (38): I. Morfolojik görüntüleme yöntemleri 1. Işık Mikroskobu • Hematoksilen Boyama • Giemsa Boyama 2. Floresan Mikroskobu / Lazerli Konfokal Mikroskop 3. Elektron Mikroskobu 4. Faz Kontrast Mikroskobu II. İmmunohistokimyasal yöntemler 1. Anneksin V Yöntemi 2. Tunnel Yöntemi 3. M30 Yöntemi 4. Kaspaz 3 Yöntemi III. Biyokimyasal yöntemler 1. Agaroz Jel Elektroforezi 2. Western Blot 3. Flow Sitometri III. İmmunolojik yöntemler 1. Elisa 2. Flourimetrik Yöntem IV. Moleküler Biyoloji yöntemleri (DNA Microarrays) Günümüzde pekçok çalışmada bu yöntemlerden bir veya birkaçından birlikte faydalanıldığı ve gerek çeşitli çevresel toksinlerin gerekse birtakım hastalıkların dokulardaki etkisini göstermek amacıyla kullanıldığını görmekteyiz. KAYNAKLAR 1. Kerr J.F., Wyllie A.H, Currie A.R. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972; 26 (4): 239-245. 2. Lipponen P, Aaltomaa S, Kosma VM, Syrjänen K. Apoptosis in breast cancer as related to histopathological characteristics and prognosis. Eur J Cancer. 1994; 30A(14): 2068-73. 3. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306. 4. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3-15 5. Hopwood D, Levison DA. Atrophy and apoptosis in the cyclical human endometrium. Pathol. 1976 Jul;119(3):159-66. 6. Cohen JJ. Apoptosis: mechanisms of life and death in the immune system. J Allergy Clin Immunol. 1999 Apr;103(4):548-54. 7. Kiess W, Gallaher B. Hormonal control of programmed cell death/apoptosis. Eur J Endocrinol. 1998 May;138(5):482 - 91. 8. Hetts SW. To die or not to die: an overview of apoptosis and its role in disease. JAMA. 1998 Jan 28;279(4):300-7. 9. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci. 1997 Aug; 22(8):299-306. 10. Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 1999; 6:1028-1042. 11. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 1992; 356: 768 - 774. 12. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, et al. Molecular cloning of the interleukin1 beta converting enzyme. Science 1992; 256: 97 - 100. 13. Ellis RE, Yuan JY and Horvitz HR. Mechanisms and functions of cell death. Annu. Rev. Cell. Biol. 1991; 7: 663 - 698 14. Xue D, Shaham S and Horvitz HR. The Caenorhabditis elegans celldeath protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes. Dev. 1996; 10: 1073 - 1083 15. Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641 - 652 16. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA,Wong WWand et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87 (2): 171 17. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-CalvoM, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 1997; 272: 17907 - 17911. 18. Rano TA., Timkey T., Peterson EP., Rotonda J., Nicholson DW., Becker JW., et al. A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem. Biol. 1997; 4: 149 - 155. 19. Hu Y M, Benedict M A, Ding L Y. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-I-mediatcd caspase-9 activation and apoptosis. EMBO J. 18: 3586- 3595, 1999. 20. Krajewski S, Krajewska M, Ellerby L M, Welsh K, Xie Z, Deveraux Q L, Salvesen G S, Bredesen D E, Rosenthal R E, Fiskum G, Reed J C: Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci, USA 96: 5752-5757, 1999. 21. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479 - 489 22. Cozzolino M, Ferraro E, Ferri A, Rigamonti D, Quondamatteo F, Ding H, Xu ZS, Ferrari F, Angelini DF, Rotilio G, Cattaneo E, Carrì MT, Cecconi F. Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ. 2004 Nov;11(11):1179-91. 23. Nagata S, Golstein P. The Fas death factor. Science. 1995; 267:1449-56. 24. Grell M, Krammer PH, Scheurich P. Segregation of APO- 1/Fas antigen- and tumor necrosis factor receptor-mediated apoptosis. Eur J Immunol. 1994 Oct; 24(10): 2563-6. 25. Bhojani MS., Chen G., Ross BD., Beer DG., Rehemtulla A. Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 2005 Nov;4(11): 1478-81. Epub 2005 Nov 20. 26. Srinivasula SM., Ahmad M., Fernandes-Alnemri T., Litwack G., Alnemri ES. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA. 1996; 93:14486-91. 27. Darmon AJ., Nicholson DW. ,Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 1995; 377: 446 - 448. 28. Martin SJ., Amarante-Mendes GP., Shi L., Chuang TH., Casiano CA., O'Brien GA., et al. The cytotoxic cell protease granzyme B initiates apoptosis in a cell- free system by proteolytic processing and activation of the ICE/CED-3family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996; 15: 2407-2416. 29. Andrade F., Roy S., Nicholson D., Thornberry N., Rosen A., Casciola-Rosen L. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 1998; 8: 451-460. 30. Nakamura K, Bossy-Wetzel E, Burns K, Fadel MP., Lozyk M. et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000; 150: 731-740. 31. Rao RV., Hermel E., Castro-Obregon S., del Rio G., Ellerby LM. et al. Coupling endoplasmic reticulum stress to the cell death program: mechanism of caspase activation. J Biol Chem 2001; 276: 869-874. 32. Hirata H., Takahashi A., Kobayashi S., Yonehara S., Sawai H., Okazaki T. et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med. 1998;187:587-600. 33. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med. 1996 May 1;183(5):1957-64. 34. Song Q., Lees-Miller SP., Kumar S., Zhang Z., Chan DW., Smith GC. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 1996;15:3238-3246. 35. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996; 86:147-157. 36. Chen WJ, Huang YT, Wu ML, Huang TC, Ho CT, Pan MH. Induction of apoptosis by vitamin D2, ergocalciferol, via reactive oxygen species generation, glutathione depletion, and caspase activation in human leukemia Cells. J Agric Food Chem. 2008 May 14;56(9):2996-3005. Epub 2008 Apr 37. Zou H, Henzel WJ, Liu X, Lutscha A, Wang X. Apaf-1, a human protein hoınologous to C.elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Celi. 1997;90:405-13. 38. Ulukaya E. Apoptozis ders notları. Uludağ Üniversitesi Tıp Fakültesi, Biyokimya Anabilim Dalı 2003;15-26. Yazışma Adresi: Dr. K. Beril YÜKSEL Dr. Zekai Tahir Burak Kadın Sağlığı Eğitim ve Araştırma Hastanesi Hamamönü / ANKARA Tel: 0 312 310 31 00 e-mail: berilyu@hotmail.com Bu metin dergi.ztb.gov.tr adresinden alınmıştır.   Yüksek organizmalarda hücre ölümü iki farklı mekanizma ile gerçekleşir. Klasik hücre ölümü nekroz olarak adlandırılır.Şiddetli bir travma, zararlı bir uyarı ile meydana gelir. Genellikle gruplar halinde hücreleri etkiler.Morfolojik olarak ER, mitokondride dilatasyon, plazma membranının iyon transportunun bozulması,hücrelerin şişmesi ve lizisi tipiktir.Nükleer kromatin flokulasyonu, DNAnın nonspesifik klavajı, hücrelerin parçalanması ile hücre içeriği ve lizozomal enzimler eksrasellüler ortama dökülür.Bu enzimlerde komşu hücre ve dokuları zedeleyerek inflamatuar yanıta yol açar. Hücre ölümünün diğer şekli Apoptosis genellikle tek tek hücreleri etkiler.Birçok fizyolojik ve patolojik koşulda ortaya çıkar ve genellikle inflamatuar yanıt söz konusu değildir. Müllerian kanalın ve interdigital perdelerin regresyonu, B ve T hücrelerin negatif seleksiyonu, self antijenleri tanıyan immunkompetan hücrelerin delesyonu, hormon bağımlı dokuların, hormon yokluğunda involusyonu gibi birçok fizyolojik olayda rol alır. Apoptosis, hücrelerin öldürülmesinde fizyolojik bir süreçtir.Çok hücreli organizmaların gelişimi, işlevselliğinde çok önemlidir. Bu hücre ölümünün kontrolündeki anormallikler : --Kanser --Otoimmun Hastalıklar --Dejeneratif Hastalıklar oluşumuna neden olur Organizmanın bütünlüğü ve homeostazisi, hücre çoğalması ve farklılaşması yanısıra, hücre ölümü ile sağlanabilir. Apoptosis sinyallenmesi ya hücre içinden gelen tetikleyici olaylar yada ölüm reseptörlerinin ligasyonu gibi hücre dışındaki olaylarla olur.Tüm apoptosis sinyalleyici yollar, proteinleri aspartat rezidülerine bölen, sistein proteazlar (Kaspazlar) ile olan ortak hücre yıkımı işleminde birleşir.Doku transglutaminaz aktivitesi ise proteinlerin çapraz bağlanmasına yol açarak intrasellüler yapıların ekstraselüler alana dökülmesine engel olur. Ölü hücrelerin yıkımı ve uzaklaştırılması, komşu hücrelerin fagozitozu ile olur. Apoptosisdeki Morfolojik Değişiklikler: Elektron mikroskobunda apoptosis esnasında; -Kromatin kondansasyonu -Stoplazmik büzülme -Plazma membran kabarması Apoptosis erken safhasında ER, mitokondri, golgide gözlenebilir değişiklikler olmadığı gösterilmiş olmakla beraber son zamanlarda, mitokondri dış membranında şişme, mitokondrial membran aralıgında sitokrom c ve bir oksidoredüktaz ile ilişkili flavoprotein olan Apopitos İndükleyici Faktör salınımı olduğu bildirilmiştir. Apoptosis esnasındaki moleküler degişiklikler arasında ; -DNA ayrılması -İç ve dış plazma membran yaprakları arasında PS dağılımının randomizasyonu vardır. Bu değişiklikler; -DNA kırılmasında,nukleotitlerin terminal deoksinükleotidil transferaz yolu ile belirlenmesi, -PS in annexin ile boyanması , -Subdiploid DNA içeriği olan hücrenin, DNA ekleyen boyalar ile belirlenmesi ile gösterilebilir. Apoptosisdeki Major Oyuncular: 1-Kaspazlar 2-Kaspazların başlatıcı etkinliğini kontrol eden Adaptor Proteinler 3-TNF-R 4-Bcl-2 proteinleri KASPAZLAR: İnisiatör K. Efektör K. Cytokin Maturasyon Ced-3 C-3 C-1 C-13 C-2 C-6 C-4 C-14 C-9 C-7 C-5 C-10 C-11 C-8 C-12 Bir grup sistein proteaz enzimidir. Apoptosis için gereklidir. Kaynağına yada ölüm uyaranına bakılmaksızın apoptosise giden tüm hücrelerde sistein proteaz aktivitesi tespit edilir. Basulovirus protein P35, tüm kaspazların potent inhibitörüdür. Kaspazlar, apoptosisin son devresindeki hücresel substratların degradasyonundan sorumlu olduğu gibi apoptosisin başlatılmasında da kritik önemi vardır.Memelilerde en az 14 kaspaz vardır.Bunlar tetrapeptit motifleri tanır ve substratı, bir aspartat rezidüsünün karboksil tarafından ayırır. Kaspazlar, düşük intrensik etkinlik gösteren zimojenler olarak sentezlenir.Aktif enzim, 20kD luk subünite ilaveten 10kD luk subünit bulunan bir heterotetramerdir. Kaspaz 8 ve Kaspaz 9, baslatıcı kaspazlardır ve efektör kaspazların aktivasyonunu başlatır.Bazı kaspazlar ise self processingdir. Efektör kaspazlar;-DNA onarım enzimleri -Lamin -Gelsolin -MDM2(P53inhibitörü) -Protein Kinaz Cd , gibi yaşamsal proteinleri ayırmakta ve inaktive etmektedir.Kaspaz yollu proteoliz ile aktive olan enzimlerde vardır.Kaspaz yolu ile aktifleşen DNAase (CAD) normalde bir inhibitöre İCAD(DNA fragmantasyon faktör) a bağlanarak inaktive olmaktadır.Apoptosis esnasında İCAD kaspazlar tarafından ayrılmakta ve bu durum karekteristik internükleozomal DNA ayrılması oluşturur. Aktif endonükleazın salınmasına yol açar. - ADAPTÖR PROTEİNLER: Adaptor proteinler: Apaf-1 Ced-4 RAIDD FADD/MORT1 RIP FLIP1 -Hücre ölüm efektörleri, -Hücre ölüm regülatörleri, -Ölüm reseptörleri, -Bcl-2 gen ailesi , arasındaki bağlantıyı kurarlar. Kaspazlar, TNF-Rleri ve Adaptör Proteinler arasındaki bağlantılar, ölümsahası(DD), ölüm effektör sahası(DED) ve Kaspaz Toplama sahası(CARD) olarak bilinen alanlar arasındaki homotipik etkilesimler yolu ile sağlanmaktadır. DD içeren bir TNF-R üyesinin adaptör proteini çapraz bağlanmasından sonra TNF-R’nin DD ile adaptör proteinin DD i arasındaki homotipik etkileşimler, kaspaz agregasyonuna ve aktivasyonuna izin verir. Kaspaz toplanması ve birikimi adaptör proteinlerde bulunan başka bir alan olan DED yolu ile de olur. DEDler FADD ve Kaspas 8 de de vardır. Bu nedenle CD95in çapraz bağlanması prokaspaz 8, agregasyonu ve FADD yolu ile aktiflenmesi sonucunu doğurabilir. DR --FADD--Kaspas 8, sinyallenmesi , FLİP molekülleri ile bloke edilebilir. FLİP molekülleri prokaspaz 8 in toplanması ve aktiflenmesini önlemektedir. FLİP in, FLİPL ve FLİPS şekilleri vardır. FLİPL daha yaygındır ve prokaspaz 8 e çok benzer.FLİPS ise sadece iki DED içerir. Bütün kaspazlar TNF-R çapraz bağlanma yolu ile aktive olmadığı gibi bütün başlatıcı kaspazlar DED içermezler. Memeli prokaspaz 9 ve prokaspaz 2 ve C.elegans Ced-3 ü aynı zamanda kendi spesifik adaptörü olan Apaf-1 ve Ced-4 te bulunan CARD ler içerir. Kaspaz 8, CD95 yoluyla aktive olurken, Kaspaz 9 Apaf-1 ile aktive olur ve Bcl-2 proapopitotik üyeleri ile kontrol edilir. TNF-R AİLESİ: TNF-R1 CD95 DR3 CAR1 DR4 DR5 NGFRp75 TNF-R üyelerinin pleotropik etkisi vardır. Hücre tipine ve aldığı sinyallere göre proliferasyon ,canlı kalma, farklılaşma yada ölümü tetikleyebilir. Bu reseptörler, TNF ligant ailesine ait ligantlar tarafından aktive edilir. Bu bağlar memrana bağlanmış trimerler olarak sentezlenir, sinyalleme için çok miktarda çapraz bağlanma gerekir. TRAİL/APO-21(TNF ile ilgili apoptosis başlatıcı ligant), Apoptosisi transforme hücrelerde başlatır ve diğer ligantlara kıyasla dokularda daha yaygındır. TRAİL in 4 reseptörü tanımlanmıştır: DR4 , DR5 , DCR1 ,DCR2 . Fakat sadece DR4 ,DR5 apoptosisi başlatır. Diğerleri, intrasellüler ve transmemran bölgeleri yada DD bölgeleri içermediginden apoptosisi başlatamazlar. Bu reseptörler tuzak vazifesi görür. Akciğer ve kolon kanserinde Fasl (DCR3) ye karşı bir tuzak reseptörün çok fazla olduğu gösterilmiştir. Spesifik kaspaz inhibitörleri ve kaspaz eksikliği olan mice’ların fibroblastlarında yapılan deneylerde, kaspaz 8 in , DR4 , DR5 ve DR3 ile oluşan apoptosis için şart olduğunu göstermiştir. BcL-2 ÜYELERİ: Antiapoptotik Proapoptotik Bcl-2 Bax Bcl-xl Bod Boo Bcl-xs Bcl-w Bid A1 Bim Mcl-1 Blk Bak Antiapoptotik Bcl-2 üyeleri, a.a sıraları en az üç dört bölgede benzerlik gösterir. Bcl-2 ye benzerlik gösterirler. Proapoptotik Bcl-2 lerin hepsinde BH3 bölgesi vardır. Antiapoptotiklerde bu bölge yoktur. Bcl-2 proteinlerinin, transmembran bir C terminali vardır. Bu alan nükleer membran, mitekondri dış membranı, ER membrannın sitozolik tarafında yer alır. Bunlar etkileşim bölgeleridir. Bu bölgeler bazılarında sabit iken bazılarında degişebilir. Örneğin, Bax sitozolik bir proteindir, apoptosisde mitokondrial membrana redistribsiyonu olur. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Proapoptotik Bcl-2ler sinyalleri adaptör proteinlerde yoğunlaştırır, adaptör proteinler ölüm teşvik edici protein kompleksi Apoptosom un tam bileşimidir. Memelilerde,efektör kaspazlarin aktivasyonu iki farklı mekanizma ile olur; 1-Hücre içinde stresle ortaya çıkan sinyallerle başlar. -Timosit ve embriyonik fibroblastlarda, -DNA hasarında, -Steroid,Strausporin tedavisinde, -Büyüme faktörü yoksunluğunda, oluşan apoptosisler genelde böyledir. Burada Apaf-1 ve Kaspaz 9, Kaspaz 3, gereklidir. Bcl-2 antiapoptotik proteinleriyle bloke edilir. Bu ölümler ihmal ölümleri olarak bilinir. 2-Apoptotik sinyallerle, CD95 ve TNF-R yoluyla apoptosis. FADD ve Kaspaz 8 gereklidir. Bcl-2 apoptotik proteinlerle bloke edilemez. Özellikle lenfositlerdeki apoptosis bu yolla olur. Aynı hücrede TNF-R ve Bcl-2 tarafından kontrol edilen yolların aynı anda bulundugu gösterilmiştir ve muhtemelen aralarında bir bağlantı olduğu tespit edilmiştir. Hücre extraktları ile yapılan çalışmalar, Holocytochrom c, dATP, ATP nin Apaf-1 ile olan Kaspaz 9 aktivasyonunu ilerlettiğini göstrmiştir. Ek larak, Holocytochrom c nin, apoptos altındaki hücrelerde mitekondriden stoplazmaya göç ettiği gösterilmiştir. Apoptosis boyunca hücre ölümü bir çok dokuda, hücre diferansiasyonunun farklı aşamasında meydana gelebilir. Apoptosisdeki anormallikler hastalıkların oluşumunda rol alabilir. Antiapoptotik Bcl-2 ekspresyonu fazla olan miceların tümörogenezise eğilimli olduğu gösterilmiştir. Tek başına Bcl-2 daha az onkojendir fakat l-myc ve pim 1 ile sinerjik etki gösterir. Bcl-2 fazla ekspresyonu neoplastik transformasyonda hücrelerin yaşam süresini uzatmada rol alır ve onkojenik kazanılmış mutasyonları kolaylaştırır. Bcl-2 proapoptotik üyeleri tümör supressör gibi görev yapar. Kemoteropatikler ve radyasyon terapisi tm hücrelerinin apoptosisini teşvik eder. Çalışmalar Kaspaz 8 ve Kaspaz 1 dışındaki kaspazların ilaçla teşvik edilmiş apoptosis için esansiyel uyaranlar olduğunu göstermiştir. Kaspaz 8 i olmayan mice ların kemoterapiye ve radyoterapiye daha duyarlı olduğu Kaspaz 9 u olmayanların da yüksek derecede dirençli olduğu gösterilmiştir. Hücrelerin uygunsuz hayatta kalışları sadece tümörogenezis için geçerli değildir. Bağışıklık sistemi yanıtı hızlı hücre proliferasyonu ile karekterize edilir. Anormal şekilde uzatılmış aktive lenfosit yaşamı, etkin lenfokin üretimi ve bulundukları ortama korkunç zararları ile sonuçlanır. Transgenik mice’ların B lenfositlerinde Bcl-2 nin fazla ekspresyonu veya Bim in olmaması, uzamış humoral yanıt ve plazma hücrelerinin patolojik birikimine yol açar(SLE). Apoptosis viruslara ve intersellüler diğer patojenlere karşı savunma mekanizması olarak kullanılır. Bu patojenlerin bir çoğu yaşadıkları hücre ölümüne karşı engelleyici mekanizmalar geliştirmişlerdir. Örn:Adenovirus Protein E1B55 viral replikasyonu sağlarken, hücreninde apoptosisini aktive eder. Bu Apoptosis de iki Adenovirus proteini E1B55(P53homoloğu), E1B19 (Bcl homoloğu) ile bloke edilebilir. Bcl –2 homologlarına ilaveten virusler daha değişik inhibitörler kazanmıştır. Adenovirus---E3-14.7 Kaspaz 8 i inhibe eder. Compox V.---Crm-A Kaspaz 1 ve 8 inhibe eder. İL-1,İNFg,İNFb üretimini inhibe eder.CD95, TNF-R1 tarafından saglanan apoptosisi engeller. Pox V.---TNF-R homologlarını kodlar , TNF ve lenfotoksinlerin yaptığı olayları nötralize eder. Basulovirus ---P35 , bütün kaspazları inhibe eder. Herpes V.8---Bcl-2 homoloğu ORF-16 ve vFLİP ORF-71(prokaspaz 8 inhibisyonu). Bircok virus hem Bcl-2 hem de reseptör aracılı apoptosisi engelleyebilir.

http://www.biyologlar.com/apoptozis-ve-kaspazlar

Arkelerin Biyolojik Ekonomik önemi

1970'lerde yapılan çalışmalarda arkeler farklı bir yaşam biçimine sahip canlılar olarak kabul edilmişti. 1990'larda yapılan çalışmalarla sistematik üzerine çalışan bilim insanları bu canlıları bakterilerden ayırmayı önermişlerdir. Bu ayrımı arkelerin hücresel, metabolik ve filogenetik özellikleri ile gen yapılarına bakarak yapmışlardır. Günümüzde arkeler ile ilgili olarak yapılan çalışmaların çoğu bu canlıların sistematik özellikleri ile ilgili değil, ekolojik özellikleri ile ilgilidir. Prokaryot hücreli canlılar olan arkeler yaşadıkları zorlayıcı şartlar nedeniyle ilgi odağı olmuştur. Arkeler, kaynayan jeotermal kaynaklardan, yanardağ bacalarının etrafına, derin deniz termal çukurlarından, tuz göllerine, yüksek asit ve yüksek bazik özelliğe sahip sular ve topraklara kadar son derece zorlayıcı şartlarda (aşırı tuzluluk, yüksek sıcaklık, düşük pH vb.) yaşayabilen canlılardır. Yakın zamana kadar arkelerin sadece diğer canlıların bulunmadığı şartlarda yaşayabildikleri düşünülmesine rağmen günümüzde ılımlı koşullarda (ortalama tuzluluk, sıcaklık ve pH vb.) başka gruplar ile birlikte de yaşayabildikleri saptanmıştır. Zorlayıcı şartlara uyum sağlamış bu canlıları yaşadıkları çevresel koşullara bağlı olarak dört grupta inceleyebiliriz. Metanojenik arkeler (metanojenler): CO2'i hidrojen ile birleştirip metan (CH4) gazı oluşturarak enerji elde ederler. Zorunlu anaerob olan bu gruba oksijen zehir etkisi yapar. Bataklıklarda, kirli sularda, çiftlik gübresinde, çöplerde ve otçul canlıların sindirim sistemlerinde bol miktarda bulunur. Buralarda çürümekte olan artık maddelerde beslenirler. Bazıları karbon dioksit ve hidrojen kemosentez yoluyla besin üretir. Metanojenlerin bazı türleri otçul canlıların sindirim sisteminde yaşarlar ve selülozun parçalanmasında etkilidirler. Bazı türlerinin volkanik bölgelerde 110 derecede yaşadıkları görülmüş ve 84 derecenin altında yaşayamadıkları tespit edilmiştir. Aşırı tuzcullar (halofiller): Bu grupta yer alan arkebakteriler, çok tuzlu ortamda yaşayabilirler. Tuz gölü ve Kızıldeniz gibi tuzlu yerlerde yaşar. Tuzluluk derecesi %36 olan ortamlarda rahatça yaşadıkları tespit edilmiştir. Bazı türler gelişebilmek için deniz suyundan on kat fazla tuz oranına ihtiyaç duyar. Klorofilleri bulunduğu için fotosentez yaparlar. Aşırı termofiller: Sıcak ortamlarda yaşar. Bu canlılar için en uygun sıcaklıklar 65-85 °C arasında değişmekle birlikte bazı türler 105 °C ve daha yüksek sıcaklıklardaki yanardağ bacalarının etrafında ve derin deniz termal çukurlarında da gelişme gösterebilir. Soğuk seven (psikrofilik arke): Bu grubun üyelerinin %80'inden fazlası sıcaklığı 5 °C'un altındaki alanlarda yaşar. Soğuk seven arke türleri neredeyse suyun donma noktasındaki zorlayıcı yaşam şartlarına direnç gösterir. Bu şartlarda yaşayabilmek için enzim aktivitesini, hücre zarı akışkanlığını, protein yapılarını, besin maddelerinin ve artık ürünlerin hücreye giriş çıkışını değiştirebilir. Soğuk seven arkelerin sahip oldukları bu özellikler sayesinde biyoteknolojik çalışmalardaki yerleri her geçen gün artmaktadır. Arkelerin Gram boyanmaları, şekilleri, solunum ve beslenmeleri gibi fiziksel ve kimyasal özellikleri bakterilere benzer. Arkeler yukarıdaki gruplamanın dışında bu özellikleriyle de gruplandırılabilir. Biyolojik ve ekonomik özellikleri açısından bakıldığında arkeler, özellikle ılıman şartlarda yaşayan bakterilerin yaşayamadığı koşullarda yaşayabilirler ve bozulmadan kalabilen dirençli enzimlere sahiptir. Bu enzimler, endüstride pek çok tepkimenin gerçekleşmesinde, atık metallerin zehirli özelliklerinin azaltılmasında, kalitesi düşük metal cevherlerinin biyolojik yollarla kullanılabilir hale getirilmesinde vb. kullanılmaktadır. Ayrıca metallerin bulaşması ile kirlenmiş suların yeniden kullanılabilir hale gelmesinde ve boya endüstrisinin anaerobik arıtma tanklarında bulunan atık suyun yeniden temizlenmesinde de arkelerden yararlanılmaya başlanmıştır. Çiftliklerde çöpler ve hayvan gübresi üzerinde gelişebilen metanojen arkeler ise biyogaz olarak adlandırdığımız metan gazını oluşturur. Ayrıca otçul canlıların bağırsaklarında selüloz sindiriminde etkilidir. Onlar bakterilerle birlikte dünyamızın en eski sahipleridir. Yaşam sahnesine yaklaşık üç buçuk milyar yıl önce çıktıkları tahmin edilmektedir. Bunlar en eski ve en ilkel organizma olarak bilinir. Fakat bilim adamları onların farkına ancak otuz yıl önce varabildi. Bugün bu organizmalara arkeler denilmekte fakat ilk keşfedildikleri 1970?li yıllarda arke bakteriler (eski bakteriler) olarak tanımlanmışlardır. Çünkü bu canlıların doğadan yalıtılan ilk örneklerinin yaşadıkları ortamlar oksijensiz, bol kükürtlü ve sıcaklığın yüksek olduğu yerlerdi. Bunlar, dünyamızda yaşamın da başladığı kabul edilen ilk zamanlardaki yeryüzü koşullarına benziyordu. Ayrıca bu mikroorganizmalar ,bakteriler gibi prokaryottu(çekirdek zarı içermeyen tek hücreli canlı) ve onlarla aynı ortamlarda yaşıyordu. Bu nedenle bunlara arke bakteriler, bakterilere de öbakteriler yani ?gerçek bakteriler adı verilmişti. Fakat bir süre sonra , moleküler biyoloji tekniklerine dayalı moleküler sınıflandırma araştırmalarından elde edilen bulguların artmasıyla, arkelerin bir tür bakteri olmayıp onlardan farklı bir prokaryot grubu olduğu anlaşıldı. Hatta bu bulgular, arkelerin bakterilere olan yakınlıklarının bu organizmaların insan ya da meşe ağacına olan yakınlıklarından daha fazla olmadığını gösteriyordu. Moleküler biyoloji devrimi, insanlığa ve bilim dünyasına bu kez yeni ve büyük canlı grubunu armağan ediyordu. Arkelerin bulunması , bilim adamlarının doğaya bakışında önemli değişikliklerin meydana gelmesine yol açtı. Bu etki her geçen gün artarak devam etmektedir. Yaşadıkları olağan dışı ortamlar diğer hiçbir canlıda görülmeyen genetik ve metabolik özellikleri , canlılığın kökeni ve biyolojik evrim konusunda sunduğu bilgiler, yüksek organizasyonlu canlılara(ökaryotlar) olan benzerlikleri , biyoteknolojik önemleri vb. özellikleriyle arkeler, insanlığın ilgi odağına girmeye başladı. Arkelerin keşfi, bilim dünyasındaki ilk etkisini, canlıların sınıflandırılması ve gerçek bir soy ağacının oluşturulmasında göstermiş bulunuyor. Bu konular, özellikle biyolojik evrimle yakından ilgili olduğu için çok önemlidir. Antik çağın büyük doğa bilgini Aristoteles ?ten beri , canlıların sınıflandırılmasında sorunlar yaşanmaktaydı. Bunun nedeni, sınıflandırılmada kullanılan ölçütlerin kimi zaman canlılar arasındaki gerçek evrimsel bağların yani akrabalık ilişkilerinin ortaya çıkmasında yardımcı olmamasıdır. Yani kim kimden önce evrimleşti, hangi canlı hangi başka canlıyla ortak atayı paylaşıyordu. Bu durum birçok noktada belirsizlik taşıyordu. Gözle görünür özelliklere dayanan sınıflandırma, özellikle yüz binlerce tür içeren mikroskobik canlılarda pek yararlı olmamaktaydı. Bu nedenle 20. yüzyılın ortalarına dek mikroorganizmalar, sınıflandırma güçlüğü olan basit bitki hayvan alt grupları olarak kabul ediliyordu. Araştırmacılar 1960?lı yıllardan başlayarak canlıların sınıflandırmasında protein, deoksiribonükleik asit ve rübonükleik asit moleküllerini kullanmaya başladı. Çünkü, ortak bir atadan evrimleştikleri için tüm canlılar ortak bir moleküler kalıtı paylaşmaktadır. Milyarlarca yıldır süre gelen evrimleşme süreci içerisinde bu moleküllerin yapısında birçok kalıcı değişime(mutasyon) meydana geldi ve hala meydana gelmektedir. Fakat bu moleküller her canlıda farklı bir çünkü yaşadıkları için, geçirdikleri değişimin boyutu da farklı oluyor. Doğal olarak, birbirlerine daha yakın (akraba) canlıların molekülleri arasındaki fark daha az, uzak olanlarında ise fazladır. Bu durumu insanlardan bir örnek vererek açıklamak vererek açıklamak gerekirse, bir bireyin sahip olduğu büyük ve küçük kan grupları en fazla ana, baba ve kardeşlerine benzemekte de, diğer insanlarla olan benzerlik ise, akrabalık derecesine bağlı olarak azalmaktadır. Bu gelişmeler dayalı olarak Carl Woese ve George Fox 1977 yılında yayınladıkları bir makale ile, canlıları hücrelerinde protein sentez fabrikaları olarak iş gören ribozomların bileşiminde yer alan ribozomal RNA moleküllerinin nükleotid dizilerinin karşılaştırılması sonucu, dünyamızdaki tüm canlıların üç büyük üst alem içinde yer aldığını açıkladılar. Günümüzdeki şekli ile bunlar: 1. Bakteriler(bacteria) 2. Metanojen(metan gazı üreten), Hiperhalofil (çok tuzcul) ve Hipertermofilleri (çok sıcak sever) içeren arkeler(archaea) 3. Ökaryotlar Görüldüğü gibi ,arkelerle yapılan moleküler sistematik araştırmalar genişleyerek, tüm canlılar arasındaki gerçek evrimsel ilişkilerin ortaya çıkmasını sağlamış bulunuyor. EKONOMİK OLARAK İLİŞKİSİ Moleküler biyolojide temel rolü olan genetik transkripsiyon ve translasyon mekanizmaları bakterilere pek benzemeyip, çoğu bakımdan ökaryotlara benzemektedir. Örneğin arke translasyonu ökaryotik-benzeri başlatma (initiation) ve uzatma (elongasyon) faktörleri kullanır, trankripsiyonda ökaryotlardaki gibi TATA-bağlanma proteinleri ve TFIIB rol oynar. Çoğu arke tRNA ve rRNA genlerinde arkelere has intronlar bulunur ki bunlar ve ökaryotik intronlara, ne de bakteryel intronlara benz farklı kılan çeşitli başka özellikler vardır. Bakteri ve ökaryotlarda olduğu gibi arkaelerde de gliserollu fosfolipitlere sahiptirler. Ancak arke lipitlerinin üç özelliği değişiktir: Arke lipitlerindeki gliserolun stereokimyası bakteri ve ökaryotlardakinin tersidir. Bu, farklı bir biyosentetik yol olduğuna işarettir. Çoğu bakteri ve ökaryotun hücre zarları gliserol-lipit Lipit, hem bitki hem de hayvan hücrelerinde yedek madde olarak depolanan maddeler. Çoğu bakteri ve ökaryotun hücre zarları gliserol-lipitesterlerinden oluşur, oysa arkelerin zarları gliserol-lipit Ester Alm. Ester m, Fr. Esther m, İng. Ester. RCOOR1 genel formülü ile gösterilen organik bileşikler sınıfı. R ve R1 alkil gruplarını temsil eder. Çok Ünlü olan elde edilmesi, asitlere alkollerin etki ettirilmesiyledir: RCOOH + HOR1 ® RCOOR1 + H2O asit alkol ester su Esterlerin adlandırılması, karboksilli asitlerin tuzlarının adlandırılması gibidir. HCOOCH3, formik asit ile metil alkolden elde edilir ve adı metil formiyattır. CH3 COOC2H5 = Et eterlerinden oluşur. Bakterilerde eter bağlantılı lipitler olsa dahi bunlardaki gliserol sterokimyası bakteriyel biçimdedir. Arke lipitleri Eter Alm. Ather m, Fr. Ether m, İng. ether. Karbon, hidrojen ve oksijenden meydana gelen, R-O-R1 genel formülü ile gösterilen organik maddeler sınıfından herhangi bir üye. R ve R1 alkil veya aril gruplarıdır (R ve R1 aynı bir grup veya ayrı da olabilirler. Aynı olmaları halinde eter basit bir eterdir. Farklı iseler karışık eter sözkonusu olur). Bu sınıfın en tanınmış üyesi, anestezik (uyuşturucu) bir madde olan dietileter (veya kısaca ?eter?)dir. Bu beş karbonlu bileşik bakteri ve ökaryotlardaki bazı vitaminlerde yer almasına rağmen, yalnızca arkeler onu lipitlerinin inşasında kullanırlar. Çoğunlukla bu lipitler 20 karbonlu (4 monomerden oluşmuş) veya 40 karbonlu (8 monomer) olurlar. Kırk karbonlu lipitlerin uzunluğu hücre zarının kalınlığı kadar olduğu için bazı arkelerin İzopren Kapalı formülü C5H8 olan renksiz, uçucu sıvı hidrokarbon. 2-metil-1.3- bütadien olarak da bilinir. Petrol veya kömürün damıtılması ile elde edilir. İzopren doymamış bir bileşik olarak polimerleşmeye yatkındır. İzoprenden tabii kauçuğa çok benzeyen sun?i kauçuk polimerleşme işlemiyle elde edilmektedir. İzoprenin en çok kullanıldığı saha sun?i kauçuk üretimidir. hücre zarında bu lipit zincirinin iki ucunda gliserol fosfat grupları bağlıdır, zar başka canlı türlerinde olduğu gibi iki lipit tabakasından değil, tek bir tabakadan oluşur. Tek tabakalı zar özellikle ısısever (termofilik) arkelerde yaygındır. Arke hücre duvarları da bakteri ve ökaryotlarda ender görülen özelliklere sahiptir. Örneğin, çoğu arkenin hücre duvarı S-tabakası olarak adlandırılan yüzey proteinlerinden oluşur. S-tabakası bakterilerde de görülür, bazı canlılarda hücre duvarının tek bileşenidir (örneğin Hücre Zarı ya da Hücre Membranı, hücrenin dış kısmında bulunan, molekülleri özelliklerine göre hücre içine alan veya dışarı bırakan katmandır. Planctomyces) veya peptidoglikanlı canlılarda bir dış tabaka oluşturur. Peptidoglikan, uzun paralel polisakkarit zincirlerine kovalent çapraz bağlarla bağlanmış kısa peptit zincirlerinden meydana gelen büyük molekül|moleküller. Metanojenlerin bir grubu haricinde arkelerde peptidoglikan duvar yoktur. Metanojenlerde olan peptidoglikan dahi bakterilerdekinden çok farklıdır. Arkelerin flagellası, bakteri flagellasına yüzeysel olarak benzer Habitatları Çoğu arke, aşırıseverdir ( ekstremofil). Bazısı yüksek sıcaklıklarda, Ekstremofiller çoğunlukla tek hücreli olup ekstrem koşullarda yaşama gereksinim duyan ve bu koşullarda optimum olarak gelişen organizmalara denir.Ekstremofiller karasal mezofilik organizmaların büyümeleri ve üremeleri için gerekli optimal koşullardan çok farklı olan ekstrem çevrelerde gelişirler.Çoğu ekstremofiller(ekstrem koşulları seven) mikroorganizmalardır.Archaea domaini ekstremofillerin geniş dağılımlı olduğu bir domain olarak bilinmesine karşın,ekstremofiller hem bakterilerin hem geyzerlerde veya deniz dibi sıcak su kaynaklarında oluğu gibi, çoğu zaman 100 °C'nin üstünde yaşarlar. Diğerleri çok soğuk ortamlarda, veya aşırı tuzlu, asit veya alkali ortamlarda bulunurlar. Buna karşın başka arkeler ılıman şartlarda yaşarlar (mezofil), bataklık, deniz suyu, toprak ve atık sularda bulunmuşlardır. Çoğu metanojenik bakteri geviş getiren hayvanların, insanların ve termitlerin sindirim sisteminde bulunur. Arkeler genelde diğer organizmalar için zararsızdır ve hastalık etmeni olarak bilineni yoktur. Arkeler tercih ettikleri habitatlarına göre üç gruba ayrılırlar. Bunlar tuzsevenler ( halofiller), metanojenler ve ısısevenlerdir ( termofiller). Halofiller aşırı tuzlu ortamlarda yaşar. Metanojenler anaerobik ortamda yaşarlar ve metan üretirler. Bunlar tortu tabakalarında ve hayvanların bağırsaklarında bulunurlar. Termofiller sıcak su kaynakları gibi yüksek sıcaklıklı yerlerde yaşarlar. Bu gruplar mutlaka moleküler genetik yöntemlerle belirlenmiş filojenilere uymayabilirler, tüm arkeleri kapsamayabilirler ve birbirlerini dışlamayabilirler. Gene de, daha ayrıntılı çalışmalara başlangıç olarak faydalı sayılırlar.

http://www.biyologlar.com/arkelerin-biyolojik-ekonomik-onemi

Arkelerde Sistematik Yapı

Üst alem: Archaea Bölüm / Sınıf Crenarchaeota Euryarchaeota Korarchaeota Nanoarchaeota Arkeler, Arkea (Yunanca αρχαία, "eskiler" 'den türetme; tekil olarak Arkaeum, Arkaean, veya Arkaeon), veya Arkebakteriler, canlı organizmaların bir ana bölümüdür. Yabancı literatürde bu gruptaki canlılar Archaea veya Archaebacteria, grubun tek bir üyesi ise tekil olarak Archaeum, Archaean, veya Archaeon olarak adlandırılır Arkeler, Ökaryotlar ve Bakteriler, üç-saha sisteminin (İngilizce three domain system) temel gruplarıdır. Bakteriler gibi arkaeler de çekirdeği olmayan tek hücreli canlılardır, yani prokaryotlardır (prokaryotlar altı-alemli sınıflandırmada Monera olarak adlandırılırlar). İlk tanımlanan arkaeler aşırı ortamlarda bulunmuş olmalarına rağmen sonradan hemen her habitatta raslanmışlardır. Bu üst krallığa ait tek bir organizma "arkeli" (Arkea'ye ait anlamında; İngilizce archaean) olarak adlandırılır, bu sözcük sıfat olarak da kullanılır. Evrim ve sınıflandırma Arkeler rRNA filojenetik ağaçlarına göre iki ana gruba ayrılırlar, Euryarchaeota ve Crenarchaeota. Ancak yakın yıllarda bu iki gruba ait olmayan bazı başka türler de keşfedilmiştir. Woese, arke, bakteri ve ökaryotların ortak bir atadan (progenot) türemiş farklı evrimsel sülaleler olduğunu öne sürmüştür. Yunanca archae veya 'eski' anlamında Arke isminin seçiminin arkasında bu hipotez yatmaktadır. Daha sonra bu grupları, her biri bir çok âlem içeren, bölge (domain) veya üst-âlem olarak tanımlamıştır. Bu gruplandırma sistemi çok popüler olmuş, ancak progenot fikri genel destek görmemektedir. Bazı biyologlar arkaebakteri ve ökaryotların özelleşmiş öbakterilerden türediğini öne sürmüşlerdir. Arkea ve Ökarya arasındaki ilişki biyolojide önemli bir problem olarak sürmektedir. Yukarda belirtilen benzerlikler bir yana, birçok filogenetik ağaç bu ikisini beraber gruplandırır. Bazıları ökaryotları Crenarchaeota'lardan ziyade Euryarchaeota'lara yakın yerleştirir, hücre zarı biyokimyası aksini göstermesine rağmen. Thermatoga gibi bazı bakterilerde arke-benzeri genlerin keşfi aradaki ilişkinin tanımlanmasını zorlaştırmaktadır, çünkü yatay gen transferi olmuş olması muhtemel görünmektedir. Bazıları ökaryotların bir arkeli ile bir öbakterinin kaynaşmasıyla meydana geldiğini öne sürmüşlerdir, öyle ki birinci çekirdek, ikincisi ise sitoplazmayı oluşturmuştur. Bu hipotez genetik benzerlikleri açıklayabilmekte, ama hücre yapısını açıklamakta zorluklarla karşılaşmaktadır. Arkelerin bakterilerden farklılıkları rRNA gen dizinlerinin karşılıştırılması sonucu ortaya çıkmıştı. Yukarıda belirtilen problemlerin bazıları, gen dizinlerine tek başına bakmak yerine artık organizmaların bütün genomlarının karşılıştırılması yoluyla çözülmeye çalışılmaktadır. 2006 Eylül ayı itibariyle 28 arke genom dizini tamamlanmış, 28'i ise kısmen tamamlanmıştır. Arkelerin keşfi bilim dünyasındaki ilk etkisini canlıların sınıflandırılması ve gerçek bir soy ağacının oluşturulmasında göstermiştir.Bu konular özellikle biyolojik evrim ile yakından ilgili olduğu için çok önemlidir Gerçek akrabalık ilişkilerini ve ortak atayı bulmak için insanlar antik çağın büyük doğa bilgini Aritotales'ten beri ,canlıları sınıflandırmaya çalışmakta ve bunda da bir sorun yaşanmaktadır.Bunu nedeni sınıflandırmada kullanılan ölçütlerin kimi zaman canlılar arasındaki gerçek evrimsel bağların,yani akrabalık ilişkilerinin ortaya çıkarılmasında yardımcı olmamasıdır.Yani kim kimden önce evrimleşti,hangi canlı, hangi başka canlıyla ortak atayı paylaşıyordu;bu durum birçok noktada belirsizlik taşıyordu.Gözle görünür özelliklere dayalı sınıflandırma, özellikle yüzbinlerce tür içeren mikroskobik canlılarda pek yararlı olmamaktaydı.Bu nedenle 20.yüzyılın ortalarına denk mikroorganizmalar,sınıflandırma güçlüğü olan basit bitki ve hayvan alt grupları olarak kabul ediliyordu. 1957'ye kadar prokaryotlar iki alemli bir sistematik modelin(Carolous Linnaeus'a göre) parçası olarak günümüzde bile bir referans olarak kabul edilen Dr.David Hendricks Bergey'in "Bergey's Manual Of Determinative Bacteriology(Bergey'in tanımlamalı Bakteriyoloji El Kitabı)"nın 7. Baskısında olduğu gibi tek hücreli bitkiler olarak kabul edildi,ki bugün bu değişmişdir ve bu sistematik içinde bugün arke grubuna dahil edilmiş türlerde vardı;yani arke oldukları bilinmeselerde bakteri olarak adlandırılsalarda geçmişte arkeler bakteri olarak sınıflandırılmışlardı(örneğin Halobacterium salinarum türü ve Methanobacteriaceae ailesi). 1956'da ise bakteriler ve arkeler(ki 1956'da bakteri olarak biliniyorlardı) bugün bile kulanılan şekliyle monera içindeki yerlerini mavi-yeşil alglerle(yada siyanobakterilerle) beraber almışlardır(Lynn Margulis ve H.F. Copeland'ın yaptığı dörtlü sistematiğe göre). Arkeler bütün yaşamın bölündüğü üç domeynden birini oluşturur. Geri kalan iki domeynden birini bitkileri,hayvanları,protistaları ve mantarları içeren ökaryota grubu oluşturur.Protistalar hariç çoğunlukla tanıdık olduğumuz diğer ökaryotlar Aristotales zamanından beri bilinmekte ve araştırılmaktaydı.Son domeyn(ing.;domain:klasik taksonomideki karşılığı regnum(alem) yada regnumdan daha geniş bir grup olarak kabul edilir) olan bakteriler ilk defa 17.yy'da Hollandalı doğa bilimci Anthony Van Leeuwenhoek tarafından mikroskop altında gözlendi. Prokaryotların çok küçük olan boyutları onları çalışılması çok zor bir grup haline getirmişti.İlk sınıflandırma prokaryot hücrelerin şekline, labarotuvar kültürlerindeki kolonilerin görünüşüne ve diğer fiziksel karakterlere dayanıyordu.Biyokimya modern bir bilim dalı olarak gelişince,kimyasal karakterler prokaryot türlerin sınıflandırılmasında kullanıl-dı.Fakat buna rağmen bu bilği küçük mikropları güvenilir bir şekilde tanımlamak ve sınıflandırmak için yeterli olmamıştı. Çünkü hala,keşfedilmiş olan birçok arke türü bakterilerin içinde sınıflandırılmaya devam ediyordu.Örneğin metanojenler,oksijenin bunları öldürdüğü,olağan dışı enzimler üretmeleri ve hücre duvarlarının bilinen tüm bakterilerden farklı olmasıyla mikrop dünyasındaki kimyasal bir farklılık olarak zaten çoktan biliniyorlardı(arke diye farklı bir grup bulunmadan da öncede).Çoğu arkeon mikroskop altında bakteriden pek farklı görünmüyordu ve birçok türün olağandışı ko-şullarda yaşaması kültürlerinin yapılmasını zorlaştırıyordu (bilim insanları şimdilerde arkeyi okyanus yüzeyi,derin okyanus çamurları,antartika ve derin petrol yatakları gibi artan bir habitat düzeyi içinde bulmaya başladılar).Bu nedenle onların yaşayan organiznalar arasındaki yerleri çok uzun zamanlar keşfedilemedi. Prokaryotların güvenilir ve tekrar edilebilir deneylerle(örnegin bazı prokaryotlar değişen bazı ortam koşulu parametrelerine göre farklı gram boyama reaksiyonları verir)sınıflandırılması 20.yy'ın sonlarına,taki moleküler biyolojinin polinükleotid dizi sıralarının çıkarılmasına olanak verene kadar mümkün olmadı. 1950'lerde Sanger'in proteinleri yapıtaşları olan aminoasitlere ayırma metodlarıdan ilkini(ki daha birçok metod vardır) bulmasıyla diğer araştırmacılarda boş durmadı vede bu yöntemi diger moleküller de uygulamaya başaladılar.Buarada 1960'larda Wisconsin-Madison Üniversitesinde çalışmakta olan Thomas D.Brock,biyologların hayatın 80 santigrad üstündeki derecelere dayanamacağını düşündüğü bir ortamda araştırmalarına devam etti vede A.B.D.'de Yellowstone Ulusal Parkında(büyük bir bölümü Wyoming eyaletinde olan,tektonik yeryüzü hareketlerinin sürdüğü,gayzerleriyle ünlü bir bölgedir),sıcak su kaynaklarında Thermus aquaticus adınıverdiği,aşırı sıcak sever(hipertermofilik) bir bakteri buldu.Her ne kadar Brock'un bulduğu organizma arke olmasada termofilik arkelerin keşfedilmelerinde önemli role sahiptir.Çünkü hayatın varolamayacağı düşünülen habittlarda da yaşamarama çabaları başlamış ve birçok aşırı sıcak sever arke keşfedilmişdir. Yakın bir zamana kadar arke domeyni yaşamın ana bir domayni olarak farkedilemedi.20.yy'a kadar çoğu biyolog tüm canlıları bitkliler ve hayvanlar olarak düşündü.Fakat 1950'lerde ve 1960'larda çoğu biyolog mantar,protista ve bakterilere yer açmak için bu sınıflandırmanın yetersiz kaldığı gerçeğinin farkına vardı.1970'lerde beş alemli sistematik tüm canlılrın sınıflandırılabileceği bir model olarak kabul gördü(1969daki Whittaker yaptığı sınıflandırmaya göre).Temel ayrım bir prokaryota ve dört ökaryotik(bitki,hayvan,mantar,protista) grup arasında yapıldı.Ökaryotik organizmaların prokayotlardan ayrımı ortak özellikleri olan nükleus,sitoiskelet ve hücre içi zar sistemini gibi yapıları paylaşıyor olmalarıydı. Araştırmacılar 1960'lı yıllardan başlayarak canlıların sınıflandırılmasında protein,deoksikarboksilik asit(DNA) ve ribonükleik asit(RNA) molekülleri kullanmaya başladı.Çünkü ortak bir atadan evrimleştikleri için tüm canlılar ortak bir moleküler kalıtı paylaşmaktadırlar.Milyarlarca yıldır süre gelen evrimleşme süreci içinde bu moleküllerin yapısında birçok kalıcı değişme (mutasyon) meydana geldi ve hala gelmekte. Fakat bu moleküller her canlıda farklı bir öykü yaşadıkalrı için,geçirdikleri değişmenin boyutuda farklı oluyor.Doğal ola-rak birbirine yakın(akaraba) canlıların molekülleri arasındaki fark daha az,uzak olanlarda ise daha fazla.Bu durumu insanlardan bir örnek vererek açıklamak gerekirse,bir bireyin sahip olduğu küçük ve büyük kan grupları en fazla ana,baba ve kardeşlerine benzemekte,diğer insanlarla olan benzerlikse,akrabalık derecesine bağlı olarak azalmakta. DNA molekülleri canlı hücrelerde bulunur ve hücrelerin ihtiyaç duyduğu proteinlerin ve diğer hücresel komponentlerin yapımı için gerekli bilğiyi taşır.Ribozom ise DNA daki bilgiyi kimyasal bir ürüne çeviren,hücrenin en önemli bileşenlerinden biri olan büyük ve karmaşık bir moleküldür.Ribozomun kimyasal kompozisyonu DNA'ya çok benzer ve kendine özgü bir yapıtaşı sırasına sahip olan RNA ve proteindir.Dizi tanımlama teknikleriyle bir moleküler biyolog RNA'nın yapı taşlarını tek tek ayırarak tanımlayabilir. Ribozomlar(DNA mesajını kimyasal bir ürüne çevirir) canlıların fonksiyonları açısından kiritik derecede önemliydi,onlar çabuk evrimleşmeye meğilli değillerdi. Ribozamal dizideki büyük bir değişme,ribozomun hücre için yeni proteinler inşa etme görevini yerine getirememesine neden olabilirdi ve bunun ilk sonucuolarakda canlının yaşaması mümkün olmazdı.Yani bugün yaşayan canlılardaki ribozamal RNA'nın(özellikle de 16s RNA) diğer moleküllere göre çok daha az değişmesinin en büyük kanıtı bu canlıların hala hayatta olmalarıdır!Bunedenle araştırıcılar ribozal dizilerin sıralarının korunduğunu fazla değişmediğini söylüyorlar.Bu yavaş moleküler evrim oranı ribozomal sırayı bakteriyel evrim sırlarının gizli kalmaması için iyi bir seçenek yaptı.Geniş bir çeşitliliğe sahip olan bakteriler(hatta tüm canlılar) arasında ribozomal sıradaki az sayıdaki farklılıkları karşılaştırarak benzer dizi sıralarına sahip gruplar bulunabildi ve ilişkili gruplar olarak kabul edildi. Bilim dünyası 1970'lerin sonlarında arke denen tamamen yeni bir organizma grubunun keşfiyle anlaşılmaz bir şekilde şok oldu.1970'lerin sonunda Dr.Carl R. Woese Illinois üniversitesindeki meslektaşlarıyla beraber yürüttüğü prokaryotlar arasındaki evrimsel ilişki üzerine olan bir çalışmanın başkanıydı vede bakteriyel ilişkinin daha iyi bir resmini geliştirebilmek amacıyla bakterilerdeki moleküler dizi sıralarını arştırmaya başladılar.Dr.Carl R. Woese mikropların birbiriyle nekadar yakından ilişkili olduklarını bulmak için RNA dizi sıralarıyla özelliklede moleküler saat(evrim süresince tıpkı bir saat gibi sabit aralıklarla değişen) ve evrim boyunca geçirilen değişmeyi yansıtabilecek bir molekül olarak seçtiği 16S ribozamal RNA(ökaryotlardaki işlevsel karşılığı endoplazmik retikulumun zarına bağlı ve sitoplazmada serbest olarak bulunan ribozomlardaki(yani kısaca sitoplazmik ribozomlardaki) 18S vede kloroplast ve mitokondrideki ribozomlardaki 16S rRNA) -ne 23S rRNA(ökaryotlardaki işlevsel karşılığı 28S ve yine kendisi) kadar mutasyonlara açık ve gereksiz baz dizisine sahip olma olasılığı vardı ne de 5S rRNA(ökaryotlardaki karşılığı aynısı yani yine) gibi karşılaştırmaya yetmeyecek kadar az baz dizisine sahipti- ile çalıştı ve prokaryotların aslında bakteri ve onun arke dediği,yeni farkedilen iki çok farklı gruptan oluştuğunu farketti (tabiki DNA dizi sıraları ve klasik taksonominin kriterleriyle destekleyerek!). Bu grupların herbiri birbirinden ökaryotadan oldukları kadar farklıydılar. Bunula birlikte biyokimyasal olarak sizden ne kadar farklıysalar bakterilerden de o kadar farklıydı-lar.Bulgularını DNA vede protein dizileriyle destekledi.Bulguları 1977'de Proceedings of the National Academy of Sciences(PNAS)'ın Ekim 1977 sayısında yayınlandı (Carl R. Woese,Ralph Wolfe ve arkadaşları tarafından) ve çok büyük bir süprizle karşılandı.Bütün küçük yapılı mikroplar birbirleriyle yakından ilişkili değillerdi.Analizlerde bakteriler ve ökaryotlara ek olarak metan üreten mikropların üçüncü bir grubu daha vardı.O bu müthiş ayrımı farkederek,öbakterilerden (gerçek bakteriler) ayırdetmek için bu gruba arkebakteriler(eski bakteriler) adını verdi.Vede tüm canlıları:Öbakteriler,Ökaryotlar ve Arkebakteriler olarak üç domeyn altında topladı.Zaten beşli sistematik modelde bir prokaryot ve dört ökaryot olmak üzere prokaryotlar ve ökaryotlar ayrı guruplarda toplanmıştı fakat Woese'un çalışması bu iki ana gruba ek olarak Arkebakterileride(Arke) içeren üç ana grup ortaya çıkarmıştı!Kısacası bu genetik yapılarındaki farklılıktan dolayı Woese hayatın üç domeyne bölüneceğini ö-nerdi;Ökaryot,Öbakteri,Arke.Bugün ise bir otorite olarak kabuledilen Bergey'in Tanımlamlı Bakteriyoloji El Kitabı Arkebakterileri metanojenler,sülfat indirgeyiciler,aşırı tuzcullar,hücre duvarı olmayanlar ve aşırı sıcak severler(sülfür metabolize edenler) olarak beş gruba ayırmakta (Bergey'in Tanımlamalı Bakteriyoloji El Kitabı'ndan farklı olarak ilk defa 1984'de çıkan Bergey'in Bakteri Sistematiği adlı eserin 2001 yılındaki ikinci basımın birinci cildinde). Woese'un çalışmasının önemi,onun bu garip mikropların biyolojilerinin en temel düzeyinde bile farklı olduklarını göstermesidir.Onların RNA dizi sıraları bilinen bakterilere bir balık yada çiçekten daha benzer değildi.O bu müthiş farklılığı farkederek, bakterilerdenayırtetmek için bu gruba arkebakteriler(eski bakteriler) adını verdi.Bu organizmalar arasındaki doğru basamaksal ayrım kesinleşmeye başladıkça,Woese insanların arkebakterileri basit bir bakteriyal grup olarak düşünmemeleri için onların adını arke olarak kısalttı. Hatta kendisi 1998'de o zamanki Başkan Bill Clinton'dan,Amerika Birleşik Devletlerinde her yıl bilime katkılarından dolayı bilim adamlarına verilen bir ödül de almıştır. Arkeon filogenisinde(biyolojide birbirinden türeyen canlıların üreyerek birbirini izlemesi) DNA'larındaki moleküler dizi sıralarından dayararlanılır.DNA dizi sıralarının tayini (16S rRNA dizi sıraları,proteinlerin amino asit sıraları,klasik taksonomideki kriterlerden biyokimyasal ve fizyolojik özellikler,morfoloji gibi verilerle desteklenerek) arke içinde öyarkeota,krenarkeota ve korarkeotaolarak üç farklı grup olduğunu gösterir.Örneğin, krenarkeota ve öyarkeota DNA replikasyon mekanizmaları ve hücre döngüleri ve translasyonel araçları bakımından belirgin bir şekilde birbirlerinden farklıdırlar.Klasik taksonomi ölçütleriyle desteklenmiş olan filogenetikçalışmalara göre çıkarılmış yeni soy ağacı;bilgisayar simülasyonları, gen bankalarından gelen bilgiler,genetik allogoritma denen bir matematiksel modelleme kullanılarak tasarlanmıştır.Vede bu ağacın dallarının köküne olan uzaklığı,dallarının birbirine olan uzaklığı rastgele değildir,bu hesaplamalar sonucunda ortaya çıkarılmıştır. Arke domeyninin kendi içinde ayrıldığı gruplar. Metan üreticileri ve tuz seven arkeleri içine olan öyarkeota neredeyse en iyi bilinenidir.Hatta öyarkeota grubunda sülfonojen ve demir redükleyen aşırı sıcak sever türlerde keşfedilmişdir. Krenarkeota bilinen tüm canlılardan daha yüksek sıcaklıklarda yaşayan türleri içersede,toprağın içinde ve daha ılımlı sıcaklıklarda birçok türü keşfedildi.Korarkeota grubu ise en ilgincidir.Çünkü bu grubun bildiğimiz anlamda herhangi bir üyesi daha henüz canlı olarak izole edilememiştir.Sadece arkelerin habitatlarından izole edilen nükleik asit dizileri (PCR metoduyla amplifiye edilip,elektroforez yöntemiyle jelde yürütülerek)ve aminoasit dizilerine göre farklı bir grup oluşturulmuş ve korarkeota adını almıştır.Bu grubun işaret ettiği en önemli nokta ise,artık canlıları sınıflandırmak için canlının izoleedilmesede,o canlıya ait bulunan moleküllerinin yetebilecegidir!Ayrıca,bazı kaynaklara göre bu üç gru-ba(krenarkeota,öyarkeota,korarkeota) girmeyen vede toluen bozan ve metanojenlere benzeyen sınıflandırılmayı bekleyen arkeler de vardır. Yukarıda da görüldüğü gibi,metanojenlerin bakterilere değilde arkelere ait olduğu keşfedildiğinden beri(1970'lerde Woese'un çalışmasıyla),diğer birkaç arke grubu daha keşfedildi.Bunlar aşırı tuzcul sularda hayatını sürdüren ve suyun kaynama derecesine yakın sıcaklıklarda yaşayan bazı gerçekten garip arkeleri içerirler.Arke sadece 25 yılda belirsizlik-ten,anlaşılmazlıktan neredeyse tam bir düzene girmiştir. Arkeonlar artan bir şekilde bilimsel araştırmaların konusu oldu. Arekeal hücreler bir yandan bakteri hücrelerini andırabilir fakat önemli sayıdaki neden bakımından ökaryal hücrelere daha çok benzerler.Bu noktadaki önemli soru ise arkelerin bizimde içinde bulunduğumuz grup olan ökaryotanın mı yoksa bakteryanın mı yakın akrabası oduğudur.Bu cevaplanması oldukça zor bir soru çünkü,bizburada hayat ağcının en alt dalları hakkında konuşuyoruz,bugünhayatta karşılaştırmak için o kadar eski atalarımız yok.Bu soruya hitap eden ilğinç bir yaklaşım ise eş genlere bakılması yönündedir.Bazı DNA dizileri her hücrede bir kopyadan daha fazla bulunurlar.Çünkü tahminlere göre geçmişte fazladan kopyalar yapıldı. Hücrelerdeki bazı eş kopya olarak bulunduğu bilinen genler,eş kopya yapımının yaşamın üçüncü domeyni ayrılmadan önce meydana geldiğini des-tekler.Bilimadamları iki diziyi karşılaştırarak arkenin bizeve diğer ökaryotlara bakteriden daha yakın ilişkide olabileceğini buldular. Moleküler tekniklerin kullanılması,evrim sürecinin erken zamanlarında prokaryotların arke ve bakteri(yada öbakteri) olarak ayrıldığını kanıtladı(16S ve 18S ribozomal alt birimlerindeki ribozomal RNA sıralarındaki kanıt).Birincil özellikleri;hücre duvarlarının peptidoglikandan yoksun olması,plazma membranın kendilerine özgü bir lipit kompozisyonuna sahip olması ayrıca RNA polimeraz ve ribozomal proteinlerinin bakterilerden çok ökaryotlara benzemesi olarak sıralayabiliriz.

http://www.biyologlar.com/arkelerde-sistematik-yapi


Evrim Kuramını Destekleyen Bir Yığın KANIT Var.

Doğal şeçilim yoluyla evrim, Darwin’in yaşamını adadığı çalışmanın belkemiğini oluşturan kavram, bir kuram. Yeryüzündeki canlılar arasındaki uyum, karmaşıklık ve çeşitliliğin kökenine ilişkin bir kuram. Bu anlamda, Albert Einstein’ın tanımladığı şekliyle görelilik de bir kuram. Kopernik’in 1543′te ortaya attığı, Güneş’in Dünya’nın değil, Dünya’nın Güneş etrafında döndüğü yolundaki görüş bir kuram. Kıtaların kayması bir kuram. Peki atom varlığı, yapısı ve dinamiğine ne ad veriliyor? Atom kuramı. Hatta elektrik dahi, elektron denilen, şimdiye dek hiç kimsenin görmediği yüklü taneciklere dayalı kuramsal bir yapı. Bu kuramların her biri, gözlem ve deney yoluyla, konunun uzmanlarınca gerçek olarak kabul edildikleri bir düzeyde doğrulanmış açıklamalar. Bilim insanlarının kuram derken kastettiği, kanıtlara uyan, açıklanabilir bir söylem. Ve bizler de genellikle bu açıklamaları kabul ediyoruz. TV’lerimizin fişini duvardaki küçük prizlere takıyor, bir yıllık zaman dilimini Dünya’nın yörüngesine göre ölçüyor ve diğer pek çok açıdan da yaşamımızı bu kuramların güvenilir gerçekliklerine dayalı olarak sürdürüyoruz. Bununla birlikte evri kuramı diğerlerinden biraz farklı. Bu, öylesine olağan dışı ve kapsamlı bir görüş ki, DESTEKLEYİCİ KANIT SAYISININ ÇOKLUĞUNA KARŞIN bazı insanlar onun KABUL EDİLEMEZ olduğunu düşünüyor. Ve türümüz Homo Sapiens’e uygulandığı haliyle daha da büyük bir tehdit gibi algılanabiliyor. İnsanların önceki dönemlerde yaşamış primatlardan geldiği düşüncesi pek çok köktenci Hıristiyan ve Ortodoks Yahudi’yi dehşete düşürüyor. Bu rahatsızlık, İslam’a göre yaradılış düşüncesini benimseyenlerde de paralellik gösteriyor. (Buraya DİKKAT!!!) > Bu arada, evrim konusunda ikna olmayanlar sadece KUTSAL KİTAPLARA BAĞLI OLANLARDAN OLUŞMUYOR. Örneğin ABD’de 2001 Şubatı’nda gerçekleştirilen ve 1000′in üzerinde telefon görüşmesinden derlenen bir Gallup araştırmasına göre, anketi yanıtlayan yetişkin Amerikalıların yaklaşık %45′,, bu biçimi almış olmamızda evrimin hiçbir rol olmadığı görüşünde. Ankete yanıt veren Amerikalıların yalnızca %37’si hem Tanrı’ya hem Darwin’e, yan, her şeyi başlatan tarnısal güç ve yaratıcı araç olarak da evrime yer açmakta sakınca görmüyor.-Parantez içinde yazılmış olana DİKKAT!!!-(Papalık’ın birden fazla yaptığı resmi açıklamaya göre bu görüş, Roma Katolik Klisesi İNANCINA AYKIRI DÜŞMÜYOR.) Ve Amerikalıların yalnızca %12’si Tanrı’nın herhangi bir müdahalesi olmaksızın insanların başka yaşam formlarından evrildiğine inanıyor. (……) Biraz atlayım! - Devam Neden bu kadar evrim karşıtı insan var? İnanç, YANITIN SADECE BİR BÖLÜMÜ OLABİLİR. Amerikan halkının, kutsal metinlere harfi harfine inanan geniş bir kesimi içerdiğine kuşku yok ama bu, %44 gibi yüksek bir oran oluşturmuyor Devlet okullarında evrimsel biyoloji öğretmenliğine engel olmak için uğraşanlar ve siyasi eylemciler de, diğer kesimi oluştuyor. Milyonlarca yetişkin Amerikalı arasında, kafası gerçekten karışmış ve bu konuda yeterince bilgi sahibi olmayanlar da diğer bir kesimi oluşuyor. Pek çok kişi evrimin anlatıldığı bir biyoloji dersi görmemiş ya da kuramın anlaşılır bir dille açıklandığı bir kitap okumamış. Kuşkusuz hepimizin Charles Darwin’den, varolma savaşı ve yaşamı sürdürme ile ilgili kuşkulu ve kasvetli bir kavramdan-ki buna bazen çok genel bir tanım olan “Darwinizm” etiketi yapıştırılıyor- haberi var. Ama bu konuda bilgi edinmiş çoğu insanın başlıca dayanak noktalarının, en iyi olasılıkla gelişigüzel kaynaklar olduğu görülüyor: kültürel etkileşim, TV’de yayınlanan ve bazı ayrıntılı araştırmalara dayanmayan doğa belgeselleri ve kulaktan dolma bilgiler. (Sayfayı çeviyoruz ve sayfanın en önemli söz başlık olarak sayfanın üstüne konuluyor:) Evrim ilginç olduğu kadar önemli bir kavram üstelik insanlığın geleceği, tıp bilimi ve dünyayı anlamamız açısından günümüzde her zamankinden ÇOK DAHA ÖNEMLİ bir yer tutuyor.(Burada büyük harfleri kendileri yazmışlar, ben değil) ( Sayfayı bir kez daha çeviyoruz ve araya yüzeyinde bir iskelet resmi bulunan bir ara sayfa giriyor. Altında da şu açıklama yeralıyor: ) Gün Işığında Çıkan Veriler- Meraklı bir gözlemci olan Darwin aynı zamanda deneysel araştırmacıydı. Çeşililiğin gizemini çözmek için evinin arkasında büyük bir kuş kafesi yapıp süs güvercileri yetiştirmeye başladı; bir dönem neredeyse 90 kuşu vardı. Tek bir yabani türden, yani kaya güvercinin(Columba livia) soyundan geldiklerini görebilecek benzerlikler arayarak farklı ırkların iskelet anatomisini karşılaştırdı. Etleri kemiklerinden ayırmak için hizmetkarının yardımıyla leşleri kaynatıyordu(şöyle diyordu): “Leşi sudan çıkardığımda, koku öylesine dayanılmaz oluyordu ki, içim dışına çıkıyordu.” Bu nedenle bu işi başkasına devretti. Darwin’in elyazısından anlaşıldığı üzere bu örnek cüce bir güvercin. (Sayfayı çevirdiğimizde -160. sayfadayız- şu düşündürücü sorular soruluyor: ) ERKEK MEMELİLERİN neden meme başı var? Neden bazı yılanların içinde gelişmemiş minicik bacaklar gizli? Neden uçamayan kınkanatlıların bazı türlerinde hiç açılmayan kanıtlar var? (Sayfa 162.-Sayfada bi güve ve bir orkide resmi var) Ortak Evrimleşme- Darwin’in Gözüyle Bakmak Böcekler tarafından tozlanmayı kontrol altına almak için olağanüstü bir uyum sürecinden geçen orkideler Darwin’de merak uyandırıyordu. Tuhaf değişimler geçirmiş çiçeklerinin bazı bölümlerinin, daha basit bitkilerin çiçek kısımlarına karşılık geldiğini gördü; bu, evrimsel değişime işaret ediyordu. Gözüne çarpan türlerden biri de, balözü hanesinin uzunluğu 28 cm. olan Madagaskar orkidesiydi. Hiç gitmediği Madagaskar’ın bir yerinde, bu orkidenin balözünü toplamaya uyum sağlamış 28 cm. uzunluğunda hortumu olan bir güve yaşıyor olabileceğini tahmin ediyordu. 40 yıl sonra iki böcekbilimci Madagaskar’da Xanthopan morganii praedicta türü güveyi ortaya çıkararak Darwin’in tahminini doğruladı. Bu tür karşılıklı gelişen uyum sağlamalara -güvenin çiçeğe, çiçeğin güveye- ortak evrimleşme deniyor. ( Köpekler- Sayfa 165: ) Evcil Seçilim Köpek yetiştiricilerinin önce kuşaklar boyunca boğalarla güreştirmek amacıyla, daha sonra da çirkin sevimliliği için şekillendirdiği buldog, kurt atalarından çok çok farklı. Darwin’in düşüncesine göre, evcil ırk yetiştirme bu tür değişim yaratabiliyorsa, doğal şeçilim milyonlarca yıl botyunca daha fazlasını yapabilirdi. Yabanıl türlerin, ortak atalarından tıpkı evcil çeşitlenmelerde olduğu igbi uzaklaştığını savundu. Arka bahçesindeki kuş kafesini kullanıp diğer yetiştiricilerden de bilgi alarak İngiliz şişingen güvercin, iskenderun ve rahibe gibi süs güvercinleri arasındaki farklılıkları inceledi. Ayrıca kesiler, atlar, domuzlar, tavşanlar, ördekler ve diğer sürü hayvanları üzerine çalıştı. Örnekleri hem ölü hem de diri olarak inceledi, ölçüp biçti. (Sayfa 168′de şu söz sayfanın başlığı olarak tekrarlanıyor. -büyük harfleri kendileri yazmışlar- : ) “Evrim kuramı öylesine OLAĞAN DIŞI ve KAPSAMLI bir yaşam görüşü ki, destekleyici kanıt bolluğuna rağmen bazı insanlar onu kabul edilemez buluyor.” ( Sayfada bir açıklama. -Orangutan iskeleti fotografının yanında, fotografa atfen – : ) Anatomik benzerlikler ortak kökeler olduğunu ortaya çıkarıyor. Orangutanın (sağda) kolları uzun ama çifte kemikli yapısı insandaki ön kol kemiği radyus ile dirsek kemiğini andırıyor. Orangutan eli bizimkine o kadar benziyor ki bir eldivenin içine sığabilir. (Şimdi bir-kaç sayfa atlayalım. Sayfa 178′deki şu başlığa bakalım: ) “Evrim kuramından kuşku duyanlar soruyor: Evrime fiilen tanık olabiliyor muyuz? Doğada gözlemlenebiliyor mu? Laboratuvarda ölçüm yapılabiliyor mu? Yanıt, evet.” (Altındaki yazınınbir kısmından alıntı: ) HIV’in AZT gibi antiviviral ilaçlara ne denli çabuk direnç kazandığını anlamak, çoklu ilaç kokteylleriyle tedaviyi geliştirme açısından çok önemliydi. Palumbi, “Bu yaklaşım 1996′dam beri HIV’le bağlantılı ölümleri bir kaç azalttı ve hastalığın hasta bedeninde gçirdiği EVRİMİ büyük oranda yavaşlattı” diyor. Böcekler ve zararlı otlar da böcek ve bitki ilaçlara karşı aynı yolla direnç kazanıyor. Biz insanlar onları zehirlemeye çalıştıkça, EVRİM, doğal seçilim yoluyla bir sivrisinek popülasyonunu ya da devedikenini o zehirden daha az etkilenenYENİ BİR CANLI TÜRÜNE dönüştürüyor. Bu nedenle farklı farklı zehirler icat edip duruyoruz. Boşuna bir çaba. Ekosistemlerde yarattığı şiddetli ve kalıcı etkileriyle DDT bile, keşfedildiği 1939 yılını izleyen on yıl içinde KENDİ KENDİNE dirençli karasinekler üretti. 1990′a gelindiğinde, 500′ü aşkın tür (114 sivrisinek türü de dahil) pestiklerden en az birine karşı direnç kazandı. Stephen Palumbi, bu istenmeyen sonuçlardan hareketle, karamsar bir ifadeyle, “insanlar dünyanın baskın evrimsel gücü olabilir” yorumunda bulunuyor. (Sayfa-182: ) Tıp Araştırmaları- Evrim ve İnsanlık Bakteri ve virüsler de evrim geçiriyor. Tüberküloza yol açan Mycobacterium tuberculosis bakterisi gibi bulaşıcı miktoplar ilaçlara çabucak uyum sağlayıp direnç kazanıyor. Bir hastanın röntgenini tutarken görülen Barry Kreiswirth’in (Şahısın resmi ve elinde tuttuğu röntgen filmi yan sayfada gösteriliyor) ilaçlara dirençli verem bakterisi üzerine çalışmalarının temelini evrim kuramı oluşuturuyor. Deney fareleri araştırmalarda kobay olarak kullanılıyor; çünkü bu hayvanlarla memeli atalarımızın ortak olamasının yanı sıra DNA’mızın büyük bir bölümü de aynı. Peter Kibisov adlı eski bir mahkum(üstte resmi veriliyor), Rusya’da cezaevinde geçirdiği günlerin iki kalıcı izini taşıyor: Bedenindeki dövmeler ve ilaçlara dirençli verem mikrobu. Onun hastalığına çare bulmaya yönelik araştırmalara klavuzluk eden şey de EVRİMİ TEMEL ALAN BİLİM. (Evrim konusu bitti ancak, 168. sayfaya geri dönelim ve şu açıklamaya DİKKAT!!! Edelim-Özellikle de bize “Darwinist” Yakıştırması yapanlar DİKKAT ETSİN LÜTFEN- : ) Sonuç olarak Darwin, evrim konusunda HAKLIYDI. Ancak HER KONUDA HAKLI DEĞİLDİ. Her şeye bir açıklama getirmeyi kendine dert edinen Darwin, uzun meslek yaşamında birçok kuram ortaya attı; bunlardan bazıları HATALI ve ALDATICIYDI. Bir tür içerisindeki değişimlere neyin yol açtığı konusunda YANILIYORDU. En önemlisi, pangenesis adını verdiği ve biyolog meslektaşları arasında fazla kabul görmemiş olmasına karşın el üsünde tuttuğu kalıtım kuramının TAMAMEN YANLIŞ OLDUĞU ANLAŞILDI. Neyse ki Darwin’in en ünlü başarılı kuramının doğruluğu, ortaya attığı bu EN KÖTÜ DÜŞÜNCESİNDEN BAĞIMSIZDI. Doğal seçilim yoluyla evrim, Darwin’in en parlak yönünü-yani bilimsel gözleme dikkatli düşüncesinin doruğunu- temsil ediyor. Yazı: David QUAMMEN NATİONAL GEOGRAPHİC Türkiye DERGİSİ-Kasım 2004 Sayısı 150-183. sayfalar arası alıntılar!

http://www.biyologlar.com/evrim-kuramini-destekleyen-bir-yigin-kanit-var-

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

Bitkiyle Beslenen Örümcek

Şimdiye kadar tanımlanan yaklaşık 40.000 örümcek türünün hepsinin avlanarak beslendiği biliniyor. Bazıları ağ kuruyor bazıları da avlarına doğrudan saldırıyor. Ancak bilim insanları buna çok çarpıcı bir istisna keşfetti: Bagheera kiplingi adıyla bilinen bir zıplayan örümcek bilim dünyasında öncelikle bitkiyle beslenen ilk örümcek örneği oldu. İlginç keşif 12 Ekim’de Current Biology’de yayımlandı. Örümceğin bitkisel besin tercihi akasya çalılarının yapraklarının ucunda bulunan, Beltian yapıları denen özel yapılar. Normalde Beltian yapıları akasya dikenlerinin boşluklarında yaşayan ve bitkinin “koruyuculuğu”nu yapan karıncaların ödülüdür. Karıncaakasya mutualizmi (yani karşılıklı faydaya dayalı ortak yaşam biçimi) birlikte evrimleşmenin doğadaki en çok incelenmiş ve bilinen örneklerinden. Örümceği Meksika’daki bir alan çalışması sırasında fark eden Villanova Üniversitesi’nden Christopher Meehan, bunun gerçekten de özellikle bitki “avlayan” ve aynı zamanda birincil besin kaynağı olarak bitki arayan ilk örümcek olduğunu söylüyor. Meehan aynı örümceğin, makalenin ortak yazarı olan, Brandeis Üniversitesi’nden Eric Olson tarafından da Costa Rica’da bağımsız olarak keşfedildiğini belirtiyor. Meehan B. kiplingi’nin katı bitkiselbesin tükettiği bilinen tek örümcek türü olduğunu ekliyor. Örümceklerin bazen küçük omurgasızları avladığı da oluyor, ancak hem alandaki gözlemler hem de biyokimya analizleri örümcekgillerin bu üyesinin öncelikle bitkisel besin tükettiğini gösteriyor. Örümceklerin avladıkları hemen hemen tek hayvan ise akasyayı koruyan karıncaların larvaları. Meehan’ın anlattığına göre şimdiye kadar örümceklerde görülen tek bitkisel beslenme bir örümceğin nadiren nektar ya da polen yemesi şeklindeydi. Polenle beslenme şimdiye kadar sadece bir tür örümcekte, onda da sadece geri dönüştürmek üzere ağını yerken ağa takılmış şeyleri de ağla birlikte yiyen genç örümceklerde görülmüştü. Nektarla beslenme muhtemelen ağ kurmak yerine doğrudan avlanan örümceklerde oldukça yaygın, ama bu sadece nadir alınan bir besin. Meehan örümceklerin katı besin tüketemeyecekleri yönünde genel bir yargı olduğunu söylüyor. Örümceklerin avlarını vücut dışında sindirdiğini ve büyüklüğü yaklaşık bir mikrometreyi geçen her tür maddenin örümceğin yutağındaki özsudan süzüldüğünü anlatıyor. Oysa Beltian yapıları % 80 yapısal fiberden oluşuyor ve örümceklerin standartlarına göre hayli büyük kalıyor. Meehan örümceklerin bu bitkisel yapıları beş dakikadan kısa bir sürede tamamen tüketebildiğini belirtiyor. Peki bu örümcekler, akasyayı korumakla görevli oldukları ve Beltian yapıları kendilerine saklayacağı düşünülen karıncaları atlatmayı nasıl başarıyor? Meehan Bagheera da dahil olmak üzere zıplayan örümceklerin inanılmaz derecede gelişmiş algılama yeteneklerine ve çevikliğe sahip olduğunu, bireylerin duruma özel stratejiler kullanarak karıncaları atlattığını söylüyor. Görünüşe göre örümcekler aynı zamanda ağlarını fazla çekici olmayan ağaçlara kuruyor ve yuvalarını karıncalara karşı aktif biçimde koruyor. Meehan son olarak örümceklerin karıncaları taklit ediyor olabileceğini belirtiyor. Özellikle genç örümcekler karıncalara benziyor ve görünüşe göre onlar gibi hareket ediyor; belki de bu örümceklerin akasya ve karıncaları inceleyen araştırmacıların uzun süre dikkatinden kaçmasının sebebi budur. Meehan aynı zamanda örümceklerin karıncaların kimyasal kokusunu da “sürünmüş” olabileceğini düşünüyor ve bununla ilgili incelemeler yapıyor. www.eurekalert.org/pub_releases/2009-10/cpfv100509. php Bilim ve Teknik Kasım 2009 İlay Çelik

http://www.biyologlar.com/bitkiyle-beslenen-orumcek

Kalıtsal Değişiklikler Nelerdir ?

Her canlı varlığın öz niteliklerini belirleyen temel iki etken vardır: Kalıtsal yük ve çevre. Bu iki etkenin birbirine etkisi gelişmeye, büyümeye, çoğalma yeteneğine, bir başka deyişle her bireyin yaşamına bağlıdır.Kalıtsal yük, türden türe gerek sayı, gerekse tek başına görünüşü bakımından değişen, ama aynı türün bütün bireylerinde aynı yapıda olan kromozom yumağında kodlanmıştır. Kalıtsal değişiklikler, soydeğişimler ( = mutasyonlar) sonucu belirmiş olurlar ve iki büyük grupta sınıflandırılabilirler: Gen değişimleri ve kromozom değişimleri. Gen Değişimleri Gen değişimleri, kalıtsal içeriğin çok küçük bölgelerinde görülen değişikliklerdir. Bu nedenle mikroskopik incelemeyle saptanamazlar. Bu gruba giren değişiklikler, yenidoğan'ın bireysel, toplumsal, ruhsal ve fiziki yaşamında ağırlığı olan, birçok hastalığın ortaya çıkmasına neden olur. Bu hastalıklar ; 1. Hemofili: Kanın pıhtılaşma yetersizliği. 2. Talasemi: Alyuvarların oksijen iletiminin yetersizliği. 3. Duchenne tipi ilerlemiş miyodistrofi: İskelet kaslarının felci. Kromozom Değişimleri Bu gruba, yani kromozom değişimlerine, bir ya da daha fazla kromozomun yapısal ya da sayısal değişiklikleri girer. Kromozom değişimleri, bazı hücreler (kanda lenfositler, deri, kemik iliği gibi dokulardaki bazı hücreler) üzerinde yapılacak mikroskopik gözlemlerle saptanabilir.Günümüzde, gen değişiminin neden olduğu hastalıkların bazılarıyla , kromozom değişikliğine bağlı hastalıkların tümü, gebeliğin ikinci üç aylık devresinde biyokimyasal incelemeler ve hücre genetiği çalışmalarının sağladığı geliştirilmiş yöntemlerle tanılanabilmektedir. İnsan Kromozomları Kromozomlar her hücrenin çekirdeğinin özel bir oluşumudur ve DNA (Deoksiribonükleik asit) moleküllerini içerir. Bireyin, bütün özelliklerini düzenlerler. İnsan türünde, organizmanın bütün hücrelerinde (üreme ile görevlendirilen eşeysel hücreler dışında) bulunan kromozom sayısı 23 x 2= 46'dır. 23 çiftin biri cinsiyet farkını belirlediğinden ayrı olarak gösterilmiştir (22XY) Erkekte bu kromozom çifti hem biçim, hem de boyut bakımından birbirinden farklıdır ve XY olarak işaretlenir. Dişide ise bu kromozom çiftleri birbirine benzerler ve XX olarak işaretlenirler. Diğer çiftler 1 'den 22'ye kadar numaralanmışlardır. Her çift benzeşik iki kromozomla ( homolog ) gösterilmişlerdir. Değişik çiftler de aralarında yapı ve büyüklük bakımından farklılaşırlar.Günümüzde laboratuvar yöntemleri, yalnızca kromozomların toplam sayısındaki değişiklikleri değil, aynı zamanda yapılarındaki değişik olasılıkları da etkin biçimde saptamaya izin verir. Hücre Bölünmesi Kromozomlar mikroskopta yalnızca, hücre iki yavru hücre oluşturmak için bölündüğü sırada gözlenebilirler. Çünkü bu evrede DNA yoğunlaşmış ve büklümleşmiş durumdadır.İnsan hücrelerinin büyük bölümü, bir dizi düzeneği aşarak, ana hücrenin özdeş kromozom içeriğini, yavru hücrelere aktarmak amacı ile bölünür.İnsanda ve genel olarak bütün yüksek canlılarda türün çoğalmasına izin veren bazı hücreler bulunur. Bu hücreler özel biçimde gelişmiş eşeysel hücrelerdir; bunların olgunlaşmasından eşeygözeler ( = gametler) oluşur. Erkek ve dişi gametlerin birleşmesiyle de yeni bir bireyin doğumuna yol açacak bir etkinlik başlar.Gametler daha sonra "mayoz" denilen özel bir hücre bölünmesine uğrarlar. Bu etkinlikte ana hücrenin kromozom yükü ikiye bölünür ve her biri 23 ana çiftin yalnızca bir kromozomunu içeren iki yavru hücre oluşur. Bunlar, sadece 23 kromozomlu bir yumağa sahiptir. Dişide bu etkinliğin son ürünü yumurta hücresi, erkekte sperm hücresidir.Döllenmeyle, yani yumurta hücresinin sperm hücresi ile birleşmesiyle 23'ü anneden, 23'ü de babadan gelen, 46 kromozomlu kalıtsal yük yeniden bütünleşir. Bu yeni hücre "zigot" adını alır. Zigotun oluşumuyla, önce öndölütü, sonra embriyoyu ve sonuçta yeni doğacak canlıyı oluşturacak olan düzenekler sırasıyla işlemeye başlar. TÜRKİYE’Yİ ETKİLEYEN KALITSAL HASTALIK AKDENİZ ANEMİSİ Eski yunancada "Thalas" kelimesi deniz, "Emia" kelimesi anemi anlamına, "Thalasemia" ise Akdeniz anemisi anlamına gelir. Akdeniz bölgesinde ve göçlerle yayılarak dünyanın bir çok ülkesinde görülen kalıtsal kan hastalığıdır. D.S.Ö. nün verilerine göre, tüm dünyada 266 milyon hemoglobinopati taşıyıcısının bulunduğu vurgulanmaktadır. Talasemi, Türkiyede'de en önemli sağlık problemlerinden birisidir. Talasemi için taşıyıcı sıklığı, yaklaşık olarak % 2,1 (1.300.000 taşıyıcı birey) ve yaklaşık olarak 4000 hasta bireyin bulunduğu bilinmektedir. (Harita 2). Yalnızca Antalya' da taşıyıcı sayısı 200.000 civarında (sıklık %12), hasta sayısı 600 civarındadır. Antalya’daki hastaların dağlımı Harita 3’de görülmektedir. TALASEMİNİN FORMLARI: 1. TALASEMİ TRAİT: TALASEMİ TAŞIYICILIĞI: Bu bireyler, tamamen sağlıklıdır. Eğer her iki ebeveyn de talasemi taşıyıcı iseler, çocuklarına geçirdikleri talasemi geni ile talasemi hastalığına neden olabilirler. Talasemi taşıyıcılarına talasemi minör denir. 2. TALASEMİ İNTERMEDİA: Taşıyıcılar gibi tamamen sağlıklı olmayan, hastalık belirtileri genellikle ileri yaşlarda başlayan, kan gereksinimleri daha az olan hastalığın hafif formudur. 3. TALASEMİ MAJOR: Akdeniz anemisi olarakta bilinir. Erken çocuklukta başlayan, çok ciddi bir kan hastalığıdır. Bu çocuklar kendileri için yeterli hemoglobini yeterince yapamazlar. Bu tür kalıtsal hastalıklardan korunmada en etkili yöntemler; 1. Toplum eğitimi, 2. Taşıyıcıların taranması, 3. Genetik danışma, 4. Doğum öncesi tanı yöntemleridir. İki taşıyıcının evlenmesi halinde ise hamileliğin 6-22. haftasında doğum öncesi tanı yapılabilir. Böylece hasta bir çocuğun doğması önlenir. Doğum öncesi tanı ile sağlıklı olacağı belirlenen bebeğin doğmasına izin verilebilir. KROMOZOMLARIN GİZLEDİKLERİ GENOME PROJESİ (EN KÖTÜSÜ 21 NCİ KROMOZOM) Her insan hücresinde yaşamın yapı taşları kabul edilen 23 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.KROMOZOM Alzheimer, ağır işitme 2.KROMOZOM Belleğin oluşumuyla ilgili bilgiler 3.KROMOZOM Akciğer kanseri 4.KROMOZOM Çeşitli kalıtımsal hastalıklar 5.KROMOZOM Akne, saç dökülmesi 6.KROMOZOM Diyabet, epilepsi 7.KROMOZOM Kronik akciğer iltihabı, şişmanlık 8.KROMOZOM Erken yaşlanma 9.KROMOZOM Deri kanseri 10.KROMOZOM Bilinmiyor 11.KROMOZOM Diyabet 12.KROMOZOM Metabolizma hastalıkları 13.KROMOZOM Göğüs kanseri, retina kanseri 14.KROMOZOM Alzheimer 15.KROMOZOM Doğuştan beyin özrü 16.KROMOZOM Crohn hastalığı 17.KROMOZOM Göğüs kanseri 18.KROMOZOM Pankreas kanseri 19.KROMOZOM Bilinmiyor 20.KROMOZOM Bilinmiyor 21.KROMOZOM Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.KROMOZOM Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.KROMOZOM (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 23.KROMOZOM (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor. Erkek genleri daha riskli Genome Projesi'nde elde edilen önemli bulgulardan biri de erkek genlerindeki kalıtımsal mutasyonların kadınlara göre iki kat fazla olduğu. Yani erkeklerdeki bir genetik bozukluğun ileriki kuşaklara geçme riski kadınların yarattığı riskin iki katı. Bu durum önemli bir paradoks yaratıyor: Evrimsel değişim sürecinde erkeklerin daha etkin bir faktör olduğu ileri sürülüyor, ancak aynı zamanda erkekler hastalıkların yayılması açısından da daha etkin bir faktör olarak ortaya çıkıyorlar. İnsan genlerinde meydana gelen mutasyonların, diyabetten astıma, kanserden kalp krizine kadar uzanan geniş bir yelpazede tam 1500 hastalığa yol açtığı belirlendi. Yaklaşık 30 kadar gen bu hastalıklara yol açıyor. Genetik şifrenin çözülmesiyle birlikte bu mutasyonların neden hastalıkla sonuçlandığı şimdi daha iyi anlaşılıyor. Bunun sonucunda da devrim niteliğindeki şu yeni tedavi yöntemlerinin geliştirilmesi bekleniyor: -Kişinin genetik yapısına özel imal edilen ilaçlar. -Sadece hastalıklı bölgeyi hedef alan, bedenin geri kalan kısmını etkilemeyen ilaçlar. -Bir insanın hangi hastalıklara yakalanabileceği anlaşılacak ve doğumdan önce müdahaleyle önlenecek. Bu müdahale kanser ve kalp hastalıkları için de geçerli. Çünkü kanser büyük ölçüde genlerin eseri. 30 bin genimiz var İnsan vücudunda 60 bin ila 100 bin gen bulunduğunu tahmin eden araştırmacılar, son araştırmalarla bu sayının 30-40 bin arasında olduğunu gördüler. Bilim adamları, insanı meyve sineği ve fareden farklı kılan genlerin sayısının fazla bir fark oluşturmadığını saptarken, bunu yüzyılın tıp alanındaki sürprizi olarak nitelendirdiler. İnsan genlerininin sıralanması ile ilgili bilgiler ışığında, bilim adamlarının insan biyolojisi ile ilgili yeni bir başlangıç oluşturduğu ve yeni tedavi uygulamalarınının, devrim yaratacak ilaçlarla gündeme geleceği bildirildi. Şimdiye kadar insan ile ilgili olarak düzinelerle bilinmeyene cevap oluşturan araştırmalar sonucunda, hastalıkların daha az yan etkilerle tedavisinin mümkün kılınacağı açıklandı. Araştırmalarda, genlerin tek başına durumlarının yanı sıra genler arasındaki ilişkilerin de anlaşılabildiği, insanlar arasındaki farklılıkların cevabının, milyonlarda DNA kodlarındaki farklı varyasyonlar ile ortaya çıktığı kaydedildi. DNA kodlarının her bir varyasyonunun kromozomlar için bir belirleyici olduğu ve bu sayede, genlerin taşıdığı mikroskopik yapının incelenebileceği belirtildi. Bilgisayar yardımı ile hastalıklı genlere benzeyen bilinmeyen genlerin de hızlı bir şekilde analiz edilebileceği, bu şekilde DNA'ların tek başına araştırılmasına gerek kalmayacağı bildiriliyor. Böylece DNA'ların analizine harcanan yıllar sürecek araştırmaların kısa bir zamana sığdırılabildiği kaydediliyor. İnsanın biyolojik yapısının sırlarını ortaya koyan gen sıralamasının öncelikle kalp hastalıkları, kanser, sinir sistemi bozuklukları, enfeksiyonlar ve çevresel etkenlerin yol açtığı hastalıklar ile mücadelede kullanılacağına dikkat çeken bilim adamları, önümüzdeki yıllarda bu konularda, insanlara büyük müjdeler verilebileceğini ve insan ömrünün giderek uzayabileceğini ileri sürüyor. Gen haritası ile ilgili yapılan son araştırmalar, bugüne kadar insanın biyolojik yapısı ile ilgili olarak tıp dünyasının çok az bilgilere sahip olduğunu da ortaya koymuş oldu.  

http://www.biyologlar.com/kalitsal-degisiklikler-nelerdir-

Mikrobiyoloji nedir ?

Mikrop diye de isimlendirilen, gözle görülemeyecek kadar küçük canlıları inceleyen ilim dalı. Mikroorganizma denilince bakteriler, virüsler, protozoonlar, mantarlar ve ilkel algler anlaşılır. Mikrobiyoloji ilim dalının faydalı olduğu branşlar, tıp, tarım ve endüstridirmikrobiyoloji Mikrop terimi, ilim dünyasına ilk defa 1878’de Fransız cerrahı Charlet Sédillot tarafından getirilmiştir. Sédillot, mikropların kendilerine has apayrı bir dünyası olduğunu savunmuştur. Mikrobiyoloji ilim dalı beş ana kısma ayrılmıştır: Viroloji, bakteriyoloji, protozooloji, algoloji ve mikoloji. Bunlara ilaveten moleküler ve hücresel biyoloji, biyokimya, fizyoloji, ekoloji, botanik ve zoolojiyle de yakından ilgilidir. Uzun müddet insanlar, çevrelerinin mikroplarla dolu olduğundan habersizdi. Halbuki mikroorganizmalar, onun etrafındaki her yerde, eşyalarında hatta derisinde ve barsaklarında milyonlarca bulunuyordu. İlerleyen yüzyıllarda insan bilmeden mikropları işlerinde kullanmaya başladı. Ekmek yapımı, peynir ve sirke imali, boza yapımı bunların başta gelenleridir. Mikroskobun bulunmasından (1590) 16 asır önce yaşamış olan Marcus Terentius Varro (M.Ö. 116-27), iltihaplı alanlar için; "Buralarda çok küçük hayvanlar ürüyor ki, bunların gözle görülmesi imkansızdır." demiştir. Fatih Sultan Mehmed Hanın hocası Akşemseddin hazretleri de; "Hastalık insandan insana veya topraktan insana gözle görülemeyen canlı tohumlar vasıtasıyla iletilir." demiştir. Mikroplar hakkında ilk kayıt, Robert Hooke’un Mikrographa eserindedir. 1665’te basılan bu eserde bir küf mantarının sporları ve birçok küçük deniz kabuklusunun kabukları anlatılmıştı. Antony Van Leeuwenhoek ise kendi yaptığı mikroskoplarla 1674’te protozoonları ve 1676’da bakterileri görmeyi başardı. Mikrobiyolojinin kurulması, Pasteur ve Koch: Fransız kimyacısı Louis Pasteur, mikrobiyolojinin kurucusu olarak kabul edilir. Pasteur alkollü içki imalatında ortaya çıkan fermentasyonun mayalar tarafından yapıldığını söyledi (1856). Pasteur’ün mayalar üzerindeki bu açıklamasından sonra 1867’de İngiliz cerrahı Joseph Lister, antiseptik solusyonları infeksiyonlara karşı koruyucu olarak kullanmaya başladı. Otoklav denilen mikropsuzlaştırma (Sterilizasyon) aracının Pasteur’ün çalışma arkadaşlarından Charles Chamberland tarafından bulunmasıyla sterilizasyon işlemi laboratuvar ve ameliyathanelerde devamlı kullanılmaya başladı. 1877’de Prusya’da adı duyulmamış bir kasaba hekimi olan Robert Koch, belli bir bakterinin (Bacillus anthracis) şarbon etkeni olduğunu ispat etti. Pasteur bir adım daha ileri giderek, laboratuvar şartlarında mikropların hastalandırıcılık özelliklerini azaltmayı başardı. Koch’un ikinci büyük başarısı, 1882’de kendi adıyla anılan verem basilini bulmasıdır. 1885’te ise Pasteur Fransız Bilimler Akademisine sunduğu bildiride, kuduza karşı aşıyı bulduğunu açıkladı. Tıbbi Bakteriyolojinin gelişimi: Pasteur ve Koch’un çalışmasından sonra, bu bilgilerin ışığında birçok hastalık, bakterilerin mevcudiyetine bağlandı. Koch’un asistanlarından ve aynı zamanda da bir askeri cerrah olan Friedrich Loeffler kendi adıyla anılan Difteri basilini buldu (1884). Emil Behring ise, difteri toksinine karşı bağışıklanmış hayvanların serumlarını vererek insanlarda difterinin hafifletilebileceğini söyledi. 1893’te Alexander Yersin, Hong Kong’ta veba etkenini izole etmeyi başardı. Yersin’in bu buluşuna paralel olarak veba mikrobu Koch’un Japon asistanlarından Shibasaburo Kitasato tarafından da bulunmuştu. Kitasato 1889’da tetanus amilinin bir anaerobik sporlu ve toksin imal edici bir mikrop olan Clostridium tetani tarafından husule getirildiğini açıkladı. Zamanla bakteriler ve yaptıkları hastalıkların listesi giderek genişledi. Topraktaki bakteriler: Bakteriler yalnızca hastalık yapan varlıklar olarak ele alınmamalıdır. Tabiatta birçok yerde bakteriler çok önemli bir denge rolü oynamaktadır. 1878’de iki Fransız ilim adamı Théophile Schloesing ve Achille Mantz, topraktaki nitrat bileşiklerinden amonyak imalinin basit bir kimyasal reaksiyon olmayıp, olayın bazı mikroorganizmalarca yapıldığını açıkladılar. Bu olayı yapan bakterileri 1890’da bir Rus bilim adamı Sergei Winogradsky buldu. Bu tip bakteriler enerji ihtiyaçlarını karşılamada organik maddeleri kullanamazlar, ancak bu iş için amonyağın oksitlenmesiyle ortaya çıkan enerjiyi kullanırlar. Vücut maddelerinin yapımı için gereken karbonu karbondioksitten alırlar. Bu iki özellikleri dolayısıyla bunlara kemoototrof (kimyevi yolla kendi kendine beslenen) denmiştir. Aynı Rus bilim adamının bir diğer açıklaması bazı anaerobik (oksijene ihtiyacı olmayan) bakterilerin toprakta serbest bulunduğu ve atmosferdeki azotu, bitkilerin kullanabileceği hale getirdiği şeklindeydi. 1901’de toprakta baklagiller cinsi bitkilerin köklerinde yaşayan Rhizobium türünde bakteriler keşfedildi. Bunlar, kökünde bulundukları bitkinin faydasına olarak, havadaki azotu tespit edici özelliğe sahiptir. Viroloji: 1884’te Fransız bakteriyoloğu Charles Chamberland bakterilerin geçişine izin vermeyen porselen bir filtre imal etti. Bu filtre bakteriden arınmış su elde etmede kullanılıyordu. 1892’de Rus bilim adamı Dimitri İvanovsky tütün mozaik hastalığının etkeninin bu süzgeçten geçebildiğini gösterdi. Bu süzgeçlerden geçen mikroorganizmalara filtrabl (filtreden geçebilen) virüsler adı verildi. 1900’de Amerikalı ilim adamı Walter Reed’in bazı filtrabl virüslerin belli bir hastalığı yaptığını (bu hastalık "Sarı Humma" dır) göstermesi kendine haklı bir şöhret sağladı. Aynı şekilde bakteriden arındırılmış filtratların (süzülmüş sıvıların) hayvanlarda tümör ortaya çıkmasında rol oynadığı ilk olarak V. Ellerman ve O. Bang (1908 Danimarka) daha sonra da Peyton Rous (1911 ABD) tarafından açıklandı. Virüslerin bakteriler içinde de gelişebildikleri 1915’te Frederick Twort tarafından bildirildi. Bu virüslere Bakteriyofajlar denildi. Tütün mozaik virüsünün kristalizasyonla saflaştırılıp, elde edilmesi (1935), virüslerin birer mikrop olmaktan ziyade, birer kimyevi molekül olduğu fikrini ortaya çıkardı. 1937’de virüslerin nukleoprotein yapısında oldukları İngiliz araştırmacılar F.C. Bawden ve N.W. Pirich’in ekibince bildirildi. Elektron mikroskobunun ilim dünyasına sunulmasını takiben virüslerin fotoğrafları çekilebildi ve incelemeler sonucu hücresel yapıya sahip olmadıkları anlaşıldı. Yine elektron mikroskobunun ve moleküler biyolojinin gelişmesi "büyük virüs" veya "küçük bakteri" denilebilecek küçük mikroorganizmaların varlığını gösterdi. Bunlara riketsia denildi. Riketsialar tifus, siper humması, kayalık dağları humması ve diğer bazı hastalıkları yaparlar. Mikoloji: Mikrobiyolojinin, mantarlarla uğraşan dalı. Mantarların yapılarını, yaşayışlarını ve yaptıkları hastalıkları inceler. On sekizinci yüzyılın ikinci yarısı ve 19. yüzyılın ilk yarısında mantarlar ciddi olarak bitki hastalıklarının amili olarak tanındı. 1835’te Agastino Bassi, ipekböceklerinde hastalık yapan bir mikroorganizmanın günümüzde "Beauveria bassiana" adıyla anılan bir mantar olduğunu buldu. David Gruby adlı Paris’te yaşayan bir Macar ilim adamı da önce çocuk ağız-boğazındaki aftların amilinin "Candida albicans" adıyla anılan maya mantarı olduğunu açıklayıp, daha sonra derinin önemli mantar hastalıklarını bildirdi. 1841-1845 arasındaki bu keşiflerden sonra mantarların insan veya hayvan vücudunda yüzeyde ve derinde birçok iltihabi hastalığa sebep olduğu anlaşıldı. Bununla birlikte genel olarak bakterilerin daha çok insan ve hayvanda, mantarların da daha çok bitkilerde hastalık yaptığı kabul edilir. Mantarlar üzerindeki çalışmalar bu şekilde ilerleyerek 1900 yıllarına varıldı. 1928 yılında Alexander Flemming, Penicillum cinsi mantarların, bakterileri tahrip eden bir madde imal ettiklerini keşfetti. Bu maddeye depenisilin adını verdi. 1940 yılına kadar önemli addedilmeyen bu keşif, o tarihte Oxford Üniversitesindeki çalışma ekibinin penisilinin büyük antibakteriyel etkisini ortaya çıkarmasıyla önem kazandı. Penisilin gibi bakterilerin çoğalmalarını durduran maddelere antibiotik adı verildi. Mikrobiyolojide ortaya çıkarılan ilerlemeler, 1900 yıllarından sonra süratle devam etti. Mantarların yaptıkları hastalıklar, ilaç yapımı endüstrideki kullanılışları yüzyılımızda çok araştırılan konular haline geldi. Mikrobiyolojide kullanılmaya başlayan çok çeşitli metodlar, mikoloji ve mantar hastalıklarına da önemli katkılarda bulundu. Soburoaud’un bulduğu besi yeri birçok mantarın üretilerek teşhisini sağladı. Mantar hastalıkları (mikozlar) çok rastlanan rahatsızlıklardır. Özellikle ayak mantarları pekçok kişide görülen ve rahatsız edici kaşıntılar yapan durumlardır. Deri mantarları ve sistemik hastalık yapan mantarlar olarak mantar hastalıkları ikiye ayrılabilir. Deride hastalık yapan mantarlardan kel, kandida hastalığı, sakal mantarları ve tırnak mantarları önemlidir. Blastomikoz, akdtinomikoz, histoplazmoz gibi hastalıklar vücudun derinliklerinde yerleşen mantar enfeksiyonlarıdır. (Bkz. Mantarlar) Protozooloji: On dokuzuncu yüzyılın ilk yarısında Almanya’da C.G. Ehrenberg, protozooloji dalını ilim dünyasına takdim etti. O protozoonların hayvanlardaki her organ sistemine (çok çok küçültülmüş olarak) sahip olan canlılar olduğunu düşünmüştü. On dokuzuncu yüzyılın ortalarında Alman ilim adamı German Karl Van Siebold protozoonların tek hücreli canlılar olduğunu ortaya koydu. Günümüzde protozonların şark çıbanı, kala-azar, sıtma gibi hastalıkları yaptığı bilinmektedir. Kaynak: mikrobiyoloji.nedir.com/#ixzz2mM4qZMjt

http://www.biyologlar.com/mikrobiyoloji-nedir-

Down Sendromu nedir

Eğer hamile iseniz bebek bekleyen anne adaylarının hepsinin en büyük ortak korkusunu çok büyük bir olasılıkla siz de yaşıyorsunuz demektir. Bu ortak korku bebeğin zeka özürlü olma olasılığıdır. Pek çok faktör bireyin zekasında rol oynar ancak bu nedelerden en iyi ve halk arasında en çok bilineni Down Sendromu ya da eski adıyla mongolizm'dir. Down sendromunun komuoyunda sık sık gündeme gelmesi ve adının geçmesi ve özellikle yaşı ileri annelerin bebeklerinde daha fazla görüldüğü bilgisi zeka geriliğini nerdeyse Down Sendromu ile özdeşleştirmiştir. Zeka özürü dışında pek çok yapısal ve fonkisyonel bozukluğu da bünyesinde barındıran Down sendromu ya da bilimsel adıyla "Trizomi 21" kromozomal bir bozukluktur. Tarihçe Trizomi 21 ile ilgili ilk bilimsel kayıt 1866'yılına aittir. O tarihte İngiliz bilim adamı John Langdon Down bazı ortak özellikleri paylaşan ve diğerlerinden şekil olarak faklı ve zeka problemleri olan bir grup çocuğu yayınladığı makalesinde ilk kez tanımladı. Down aynı zamanda tiroid hormonu azlığına bağlı olarak görülen kretenizmden farklı bir durumun da ilk kez altını çiziyordu. Ancak kendisi çok talihsiz bir benzetme yaptı ve bu türdeki çocukları yüz yapıları nedeniyle bir uzakdoğu ırkı olan Moğollara benzeterek "Mongoloid idiotlar" olarak isimlendirdi. Yirminci yüzyılın ilk yarısında Down sendromunun nedenleri konusunda çok fazla spekülasyon yapılmaktaydı. Bu durumun kromozomal anormalliklere bağlı olabileceği fikrini ilk kez 1930 yılında Waardenberg ve Bleyer ileri sürdüler ancak bunu kanıtlamak 1959 yılında çalışmalarını birbirinden habersiz olarak sürdüren iki ayrı bilim adamı; Jerome Lejeune ve Patricia Jacobs'a nasip oldu. Bu iki araştırmacı Down sendromunda 21. kromozomdan 2 tane olması gerekirken 3 tane olduğunu gösterdiler. Sendromun diğer nedenleri olan transloklasyon ve mozaisizmin ortaya konması ise 3 yıl daha aldı. Bu bilgilerin ortaya konması zaten gergin ve kızgın olan Asyalı genetikçileri harekete geçirdi ve bilimsel arenada yarattıkları baskı sonucu mongolizm tanımlaması bilimsel literatürden kaldırıldı ve bunun yerine Down sendromu ismi 1970'li yıllardan itibaren kullanılmaya başlandı. Down sendromu nasıl olur? Tüm canlı organizmalar gibi insan da hücrelerden oluşmuştur. Her hücrenin içinde tıpkı organlar gibi organel adı verilen yapılar bulunur. Bu yapıların her birinin hücre içinde farklı görevleri bulunur. Hücre organallerden biri de çekirdektir. Hücre çekirdeği içerisinde DNA yani genetik materyali barındırır. Genler bireyin kalıtsal ve diğerlerinden farklı olmasını sağlayan özelliklerini taşırlar. Belirli genler bir araya gelerek bir grup oluştururlar. Bu gruplara kromozom adı verilir. İnsanda 23 çift olmak üzere toplam 46 kromozom vardır. Bunların yarısı anneden diğer yarısı ise babadan gelir. 22 kromozom kadın ve erkelerde aynıdır.Bu kromozomlar bedensel faaliyetleri kontrol ederler ve otozomal kromozomlar olarak adlandırılırlar. 23. kromozom ise cinsiyeti belirlediğinden seks (cinsiyet) kromozomu olarak isimlendirilir. Kromozomlar belirli bazı işlemlerden geçirilerek özel mikroskoplar altında görülebilir hale getirilebilirler. Buna karyotip adı verilir. Normal bir erkeğin karyotipi 46 XY, kadının ki ise 46 XX'dir. Bir kromozom çiftindeki anneden ve babadan gelen kromozomlar aynı geni kodlarlar. Örneğin belirli bir işlevi gerçekleştiren genin 1. kromozomda olduğunu düşünelim. Bu işlev ile ilgili anneden ve babadan gelen genlerin ikiside 1. kromozom üzerinde yer alır.Bu bilgiler aynı geni kodlamasına rağmen farklı olabilirler. Bu farklılığa allel adı verilir. Örneği somutlaştırmak gerekirse göz rengi bir gendir. Ancak mavi, yeşil, kahverengi alleldir. Hücreler bölünerek çoğalırlar. Doğada iki tür bölünme vardır. Mitoz bölünme adı verilen ilk türde bir hücreden birbirinin aynısı iki hücre ortaya çıkar. Erkekte testis ve kadındaki yumurtalıklarda yer alan üreme hücreleri dışında vücuttaki tüm hücreler bu mitoz bölünme ile çoğalırlar ve 23 çift olmak üzere toplam 46 kromozom içerirler. Testis ve overlerde ise durum farklıdır. Burada mayoz bölünme olur ve hücrelerin genetik materyalleri ikiye ayrılır. Yani sperm ve yumurta 23 çift değil 23 tek kromozom içerir. Sperm hücresi 22 otozomal kromozomla birlikte X yada Y kromozomu içerirken, kadındaki döllenmeye hazır yumurta hücresi 22 otozomal kromozom ve bir adet X kromozomu içerir. Sonuçta döllenme olup sperm ile yumurta birleştiğinde spermden gelen 23 tek kromozom ile yumurtadan gelen 23 tek kromozom birleşir ve ortaya çıkan embryoda 23 çift yani 46 kromozom olur. Down sendromunda hücrelerde 46 değil 47 kromozom vardır ve fazla olan kromzom 21. kromzomdur. Başka bir değişle 21. kromozomdan 2 değil 3 tane vardır. Hücre bölünmesi sırasında pekçok hata ortaya çıkabilir. Mayoz bölünme sırasında kromozom çiftleri birbirinden uzaklaşarak farklı hücrelere dağılırlar. Buna ayrılma ya da disjunction adı verilir. Bazı durumlarda bir çift kromozom ayrılmaz ve kromozom çifti beraberce bölünen hücrelerden birine geçer. Nondisjunction ya da ayrılmama adı verilen bu durum olduğunda bölünme sonrası ortaya çıkan hücrelerden birinde 22 kromozom varken diğerinde 24 kromozom bulunur. Eğer bu eksik ya da fazla sayıda kromozom taşıyan hücre döllenme olayına katılır ve normal sayıda kromozom içeren bir sperm ya da yumurta ile döllenirse sonuçta ortaya çıkan embryoda normalden farklı sayıda kromozom olacaktır. Ayrılmama en sık 21. kromozomda olur. 2 tane 21. kromozom içeren 24 kromozomlu bir üreme hücresi normalde olması gerektiği gibi 1 tane 21. kromozom taşıyan bir üreme hücresi ile birleştiğinde embryoda 3 tane 21. kromozom bulunacakır. Bu durum trizomi 21 yani Down sendromudur. Down Sendromu olgularının %95'inde altta yatan neden işte bu ayrılmamadır. Tam tersi durumda hiç 21. kromozom içermeyen 22 kromozomlu bir sperm ya da yumurta normal yapıda bir sperm ya da yumurta ile birleştiğinde sadece 1 adet 21. kromozomu olan toplam 45 kromozomlu bir embryo oluşur. Buna monozomi adı verilir. Monozomi varlığında gebelik genelde düşükle sonuçlanır Ayrılmama en sık 21. kromozomda görülmekle birlikte 13 v 18 kromozomlarda hatta çok nadir olarak diğerlerinde de görülebilir. Yapılan çalışmalar ayrılamamaya bağlı Down sendromu olgularının %90'ında iki tane 21. kromozom taşıyan anormal hücrenin sperm değil yumurta hücresi olduğunu göstermektedir. Yumurtada meydana gelen ayrılmamanın nedeni bilinmemekle birlikte anne yaşı ile kuvvetli bir ilişkisi vardır. Genetik bilimindeki gelişmeler konuyla ilgili pekçok araştırmanın yapılmasına da olanak sağlamıştır. Halen daha ayrılmamanın nedenleri ve zamanı ile ilgili çok sayıda araştırma devam etmektedir. Trizomi 21 olgularının %1-4'ünde durum daha farklıdır. Fazla olan 21. kromozom serbest halde değil başka bir kromozoma eklenmiş halde bulunur. Bu duruma Robertsonian Translokasyon'u (yer değiştirmesi) adı verilir. Genelde 14 ve 21. kromozomlar arasında görülür. Ondördüncü kromozomda bir kırık oluşur ve fazla olan 21. kromozom buraya yapışır. Karyotip olarak bireyde 46 kromozom olmasına karşın 14. kromozom normalden daha büyüktür. Bazen 21. kromozomun tamamı değil bir kısmı ayrışmaz ve 14. kromozoma eklenir. Bu duruma kısmı (parsiyel) trizomi 21 adı verilmektedir. Translokasyon kalıtsal olabilir bu nedenle translokasyon saptanan bireylerin anne babaları da incelenmeli, karyotip analizi yapılarak taşıyıcı olup olmadıkları belirlenmelidir. Bir diğer Down sendromu türü de mosaisizmdir. Bu bireylerin hücre yapıları birbirinden farklıdır. Bazı hücreler normal sayıda kromozom içerirken, bazı hücrelerde trizomi 21 bulunur. Hücresel mosaisizmde aynı türdeki değişik hücrelerde farklı yapıda hücreler bulunur. Örneğin deri hücrelerinin bazısı normal bazısı anormaldir. Doku mosaisizminde ise farklı hücre gruplarının tamamı anormaldir. Örneğin kan hücrelerinin tamamı normalken, deri hücrelerinin tamamı anormaldir. Bunlar dışında bir de dengeli translokasyon vardır. En sık görülen dengeli translokasyon varlığında bireyin 21 numaralı kromozomlarından birisi 14 numaralı kromozomlarından birsis ile birleşir. Sonuçta genetik materyal tam olmasına karşın kromozom sayısı 45'dir. Bu birey çocuk sahibi olduğunda 3 olasılık mevcuttur: Eğer bebeğe fazladan 21. kromzomu taşıyan 14. kromozom ve normal olan 21. kromozom geçer ise bebekte diğer ebeveynden gelen 1, translokasyonlu ebeveynden gelen 1 ve hatalı 14. kromozomdan gelen 1 olmak üzere toplam 3 tane 21. kromozom bulunur ve bebekte Down sendromu görülür. Eğer bebeğe hatalı 14. kromozom geçer ve 21. kromozom geçmez ise bebekte diğer ebeveynden gelen 1, translokasyonlu ebeveynden gelen 0 ve hatalı 14. kromozomdan gelen 1 olmak üzere toplam 2 tane 21. kromozom bulunur. 21. kromozomlardan birisi 14. kromozom üzerinde bulunduğundan bebek ebeveynlerinden birisi gibi dengeli translokasyon taşıyıcısı olur. Eğer bebeğe normal olan 14. kromozom ile birlikte normal olan 21. kromozm geçer ise bebekte diğer ebeveynden gelen 1, translokasyonlu ebeveynden gelen 1 olmak üzere toplam 2 tane normal 21. kromozom bulunur ve bebek tamamen normal olarak dünyaya gelir. Fazla kromozom olursa ne olur? Kromozomların genleri taşıdığını belirtmiştik. Genler vücudumuzun işlev görmesi için gerekli maddelerin yapımını kontrol ederler. Bu işleve genin kendisini ifade etmesi (expression) adı verilir. Trizomi 21 varlığında üçüncü kez tekrarlanan genler, genin kendisini normalden fazla ifade etmesine yani overexpression'a ve sonuçta bazı maddelerin gerektiğinden fazla üretilmesine neden olur. Pek çok gen için "kendini fazla ifede etme" sorun yaratmaz. Vücudun düzenleyici mekanizmaları bu fazla ifadenin üstesinden gelebilir ancak 21. kromozom ve taşıdığı genler için durum farklıdır. Hangi genleri taşımaktadır sorusu 21. kromozom keşfedildiği günden beri bilim adamlarının zihnini kurcalamaktadır. Yıllardır devam eden çalışmalar Down sendromunun ortaya çıkması için 21 numaralı kromozomun tamamının değil sadece bir kısmının 3 adet bulunmasının yeterli olduğunu ortaya koymuştur. Buna Down sendromu için kritik bölge adı verilir. Bu kritik bölge tek bir alan değildir Gerçekte birbirinden ayrı noktalardaki genleri ifade eder. 21 numaralı kromozomun yaklaşık 200-250 geni taşıdığı sanılmaktadır ve taşıdığı gen sayısına göre bakıldığında insandaki en küçük kromozomdur. Bununla birlikte sadece 20-50 genin Down sendromu gelişiminde rol aldığı tahmin edilmektedir. Bu genlerden hangisinin ne işe yaradığı ve Down sendromunda rol alıp almadığı spekülatiftir. Down sendromu gelişiminde yer aldığı tahmin edilen genler şunlarıdır. Gen adı Fonksiyonu veya fazlalığı durumunda görülebilecek bulgular Superoxide Dismutase (SOD1) Fazlalığı erken yaşlanma ve bağışıklık sistemi bozukluklarına neden oluyor olabilir. Yaşlışığa bağlı bunama ve Alzheimer üzerindeki etkisi tartışmalıdır. COL6A1 Fazlalığı kalp anomalilerine neden oluyor olabilir. ETS2 Fazlalığı iskelet anomalilerine ve lösemiye neden oluyor olabilir. CAF1A Fazlalığı DNA sentezinde hatalara neden oluyor olabilir. Cystathione Beta Synthase (CBS) Fazlalığı DNA metabolizması ve tamirinde bozulmalara neden oluyor olabilir. DYRK Fazlalığı zeka geriliğinin nedeni olabilir. CRYA1 Fazlalığı kataraktların nedeni olabilir. GART Fazlalığı DNA sentezi ve tamirinde hatalara neden oluyor olabilir. IFNAR Fazlalığı bağışıklık sisteminde bozulmalara neden oluyor olabilir. Bunlar dışında APP, GLUR5, S100B, TAM, PFKL adı verilen genlerin de Down sendromu ile ilgili olabileceği düşünülmektedir. Ancak bugüne kadar hiçbir genin Down Sendromu ile olan ilişkisinin kanıtlanamadığı unutulmamalıdır. Down sendromu ile ilgili olarak bir başka dikkat çekici nokta ise bu hastalığa sahip bireylerde çok değişik anomalilerin görülebilmesidir. Bireylerin zeka düzeyleri ve öğrenme kapasiteleri değişkendir. Bazı bebeklerde kalp anomalileri görülürken bazılarında görülmez, bazılarında epilepsi, hipotiroidi, celiac hastalığı gibi hastalıklar ortaya çıkarken bazılarında çıkmaz. Bu değişik durumların olası nedenlerinden birincisi hangi genin 3 kere tekrarladığı olabilir. Daha önce belirtildiği gibi genler allel adı verilen değişik şekillerde bulunurlar. Genin kendini fazla ifade etmesi ile ilgili olarak oraya çıkan bulgular hangi allelin fazla olduğuna bağlı olarak değişebilir. Bir diğer neden ise penetrans olarak adlandırılan durum olabilir. Eğer bir allel bazı bireylerde belirli bir durumun görülmesine neden oluyor diğerlerinde ise olmuyorsa buna değişken penetrans adı verilir ve değişken penetrans trizomi 21'deki durumu açıklayabilir: Alleller ona sahip olan bireylerde aynı etkiyi yaratmıyor olabilir. Yenidoğanda down sendromu tanısı nasıl konur? Down sendromlu bebekler sanılanın aksine birbirlerine benzemezler. Tüm çocuklar gibi genetik özelliklerini aldıkları anne ve babalarına benzerler. Bununla birlikte bazı ortak özellikleri de taşırlar. Hamilelik takipleri sırasında tanısı konulmamış down sendromlu bir bebek dünyaya geldiğinde dış görüntüsünden şüphelenilerek genetik analiz yapılır ve tanıya ulaşılır. Yenidoğan bir bebekte down sendromundan şüphelenmek için pek çok fiziksel özellik vardır. Ancak burada dikkat edilmesi gereken nokta bu özelliklerin hemen hepsinin daha nadir olarak tamamen normal bireylerde de görülebileceğidir. Bu nedenle sadece fiziksel özelliklere bakılarak tanı asla konmaz, konamaz ve konmamalıdır. Kesin tanı sadece ve sadece kromozom analizi ile konur. Down sendromunda en sık karşılaşılan fiziksel özellikler şunlardır: Kaslarda gerginliğin az olması (hipotoni) Düz ve basık bir yüz yapısı, küçük burun Burun kökünün basık olması Gözün iç kenarlarında tipik görünüşlü deri kıvrımları (epikantus) Anormal yapılı ve düşük yerleşimli kulak kepçeleri El ayasını ortana ikiye bölen tek bir çizgi (Simian çizgisi) Hiperfileksibilite (eklemlerin normalden fazla miktarda açılabilmesi) El küçük parmağında ortadaki kemiğin olmaması Ayak başparmağı ve ikinci parmak arasında ayrıklık Dilin ağıza oranla çok büyük olması Önceden de belirttiğimiz gibi bu anomalilerin herbiri çok daha düşük oranlarda normal bireylerde de görülebilir. Örneğin yanda resimi görülen Simian çizgisi Down sendromlu bireylerin yaklaşık %50'sinde bulunurken normal genetik yapıya sahip bireylerin sadece %1-2'sinde vardır. Benzer şekilde el baş parmağının geriye doğru aşırı bükülebilmesi Down sendromluların %77'sinde normal bireylerin ise %28'inde karşılaşılan bir durumdur. Öte yandan Down sendromlu bireylerde bazı sağlık sorunlarına daha fazla rastlanır. Bireylerin yaklışık %60'ında işitme sorunları görülür. Yüzde 40 olguda doğumsal kalp anomalileri bulunur. Sindirim sistemi ile ilgili problemler de normalden daha fazladır. Beslenme de zaman zaman problem olabilir. Ergenlik ve erişkinlik döneminde obesite görülebilir. Tiroid fonksiyon bozukluklarına da sıkça rastlanır. Down sendromunda görülen zeka geriliğine bağlı olarak motor gelişimde yavaşlama nadir değildir. Bebekler akranlarından daha geç yürümeye ve konuşmaya başlarlar. Down sendromunda yaşam beklentisi ne kadardır? Down sendromlu bireylerde beklenen yaşam süresi normalden 10 ile 20 yıl daha azdır bununla birlikte 80 yaşına kadar hayatını devam ettirenler de vardır. Down sendromunda çocukluk çağı lösemilerine (kan kanseri) daha sık rastlanır. Kesin bir kanıt olmamakla birlikte bu bireylerde genç yaşta Alzheimer hastalığının (erken bunama) görülme oranlarında da artış olduğu sanılmaktadır. Down sendromlu bireylerin çocukları olur mu? Teorik olarak down sendromlu kadınların yarısı fertil yani üreme potansiyeline sahiptir. Erkekler için ise durum daha farklıdır. Bugüne kadar down sendromlu erkeklerden olan sadece 1 gebelik olgusu bilinmektedir. Bu olguda annesi de down sendromlu olan erkeğin eşi hamile kalmış ancak hamilelik düşük ile sonuçlanmıştır. Down sendromu tedavi edilebilir mi? Hayır. Herhangi bir canlının genetik yapısını değiştirmek günümüzde mümkün değildir. Bu nedenle Down sendromunun tedavisi yoktur. Ancak bu bireyler yakın ilgi ve özel eğitim programları ile yaşamlarını rahatlıkla idame ettirebilirler pek çok aktivitede bulunabilirler. Down sendromlu bir aktörün ödül aldığını hatırlatmakta fayda var. Down sendromunun anne karnında tanısı mümkün mü? Evet. Bu amaçla uygulanan 2 tür test vardır. Tarama testleri ve tanısal testler. Tarama testleri kesin tanı koydurmayan ancak down sendromu açısından riskli bebekleri diğerlerinden ayıran kolay ve invazif olmayan testlerdir. Tanısal testlerin halk arasında en iyi bilineni üçlü testtir. Burada anneden alınan kan örneğinde 3 ayrı maddenin miktarlarına bakılarak bir risk belirlemesi yapılır. Risk kabul edilebilir sınırların üzerine çıktığında tanısal testlere geçilir. Bir başka tanısal test ise gebeliğin 11-14 haftalarında bebeğin ense kalınlığının ölçülmesidir. Kalınlığın belirli bir miktarın üzerinde olması down sendromu açısıdan oldukça önemlidir. Güncel olan ve giderek popülarite kazanan bir başka tarama testi ise ikili testtir. Üçlü test gibi anne kanında bazı maddelerin miktarlarına bakılarak risk tayini yapılır. Tarama testleri ile Down sendromlu bebeklerin %90'ına yakını saptanır ve ileri testler ile tanı doğrulanır. Öte yandan ultrasonografi incelemeleri de Trizomi 21 açısından riskli bebekleri ayırdetmede önemli ipuçları vermektedir. İncelemelerde kalp anomalisi başta olmak üzere anomali saptanan olgularda tanısal testler önerilebilir. Yine ultrason incelemelerinde bebeğin kalça ve diz eklemi arasında bulunan ve femur adı verilen kemiğin olması gerekenden kısa olması, el küçük parmaklarında ikinci kemiğin olmaması gibi bulguar down sendromu lehine değerlendirilmelidir. Günümüzde giderek yaygınlaşan 3 boyutlu ultrasonografi ciazları sayesinde bebeğin el ayasındaki Simian çizgisi bile görülebilir. Down sendromundaki ultrason bulguları Rahim içi gelişme geriliği Beyindeki ventriküllerde genişleme Beyinde koroid pleksus kisti Ense kalınlığında artma Kistik higroma Kalp anomalileri Barsak anomalileri Oniki prmak barsağında tıkanıklık Böbrek pelvisinde genişleme Kol ve bacak kemiklerinde kısalık El küçük parmağında hipoplazi İki damarlı göbek kordonu Tanısal testler amniyosentez ve kroyon villus örneklemesidir. Modern gebelik takibinde tarama testlerinin her hamile kadına yapılması gereklidir. Down sendromu sadece yaşı ileri annelerin bebeklerinde mi görülür? Down sendromlu bebeklerin sadece yaşı ileri anne adaylarında görüldüğü inancı sık yapılan bir yanlıştır. Bu bilgi doğru olmakla birlikte eksiktir. Down sendromu görülme riski artan anne yaşı ile birlikte yükselir. Dünyadaki tüm gebeliklerin sadece %5-8'i otuzbeş yaş üstündeki kadınlarda olmasına rağmen Down sendromlu bebeklerin %20'i bu gruptan dünyaya gelir. Bu durumun doğal sonucu olarak Trizomi 21 yani Down sendromu olan bebeklerin %80'i 35 yaşından genç annlerin hamileliklerinden doğmaktadırlar. Kadın yaşı 35'e ulaştığında amniyosentez sonrası düşük görülme olasılığı ile bebeğin down sendromlu olma olasılığı birbirine çok yaklaşır. Amniyosentez önermek için belirlenen 35 yaşı sınırının nedeni budur. Yaşınız kaç olursa olsun hamilelik takipleriniz sırasında doktorunuzdan tarama testlerini yapmasını istemelisiniz. Bu yazı Dr. Alper Mumcu'dan (www.mumcu.com)

http://www.biyologlar.com/down-sendromu-nedir

Biyolojik Silahların Tarihçesi

Biyolojik silahların kullanımının insanlık tarihi kadar eski olduğu söylenebilir. Biyolojik silahın bilinen en eski tarihi M.Ö. 300’lü yıllarda Perslerin, Asurluların ve Atinalıların düşmanlarını yenmek için içme sularına hayvan leşlerini atmalarına kadar dayanmaktadır. 11 ve 12. yüzyıllarda Kudüs topraklarını ele geçirmek isteyen Haçlı ordusu, Müslümanlar tarafından bulaştırılan veba mikrobuyla büyük zayiat vermiş ve amaçlarına ulaşamamıştır. 13. yüzyılda da İspanyollar, Amerika’ya geldiklerinde oradaki yerlilere daha önce çiçek hastalığına yakalanmış ve ölmüş insanların kıyafetlerini vermişler, çiçek salgınının başlamasına ve birçok yerlinin ölümüne neden olmuşlardır. Canlı bir organizmanın ilk kez bilinçli bir şekilde insanlara karşı kullanımı ise Tatarlar tarafından gerçekleştirilmiştir. 1346’da Kırım’daki (şimdiki Ukrayna sınırları içerisinde kalan) Kefe şehrini kuşatan Tatarlar, uzun süren kuşatmayı vebadan ölen insan cesetlerini mancınıkla şehrin surlarından içeri atarak meydana getirdikleri veba salgınıyla sonlandırmışlardır. Bazı tip tarihçilerine göre bu olay, Ortaçağ’da 1347 ve 1351 yılları arasında Avrupa’da yayılan ve 25 milyon insanin ölümüne neden olan veba salgınının nedenleri arasında gösterilmektedir. 18. yüzyılda Kuzey Amerika’da; önce İngilizler sonra Amerikalılar suçiçeği mikrobu taşıyan battaniyeleri Kızıl Derililere vermişler ve büyük bir çiçek salgınına neden olmuşlardır. Yüz binlerce Kızıl Derilinin bu şekilde öldürülmesiyle tarihin en büyük jenositlerinden biri gerçekleştirilmiştir. 1863 yılının Temmuz ayında Amerikan iç savaşında konfederasyon ordusunun geri çekilmesi sırasında General Johnston gölleri ölülerle doldurtarak su kaynaklarını zehirledi ve General Sherman’in kuvvetlerini engelledi. I. Dünya Savaşı’nda Almanlar, ABD’den müttefik ordularına gönderilecek olan çiftlik hayvanları ve Romen süvari atları arasında ruam hastalığı salgınını çıkartmışlardır. Ayrıca bu dönemde Almanya’nın İtalya’da kolera, St. Petersburg’da da veba hastalığı yaydığı iddia edilmektedir. 19. yüzyıla kadar mikroorganizmaların özellikleri, etkileri ve korunma yöntemleri hakkında çok az şey biliniyordu. Bunun sonucu olarak milletler bir mikroorganizmayı düşmanlarına karşı silah olarak kullanırken kendileri de bundan zarar görüyorlardı. Yine de bu yöntemler, mikroorganizmalara karşı korunma yöntemlerinin keşfedildiği 19. yüzyıla kadar kullanıldı. 17 Temmuz 1925 yılında 40 ülke kimyasal ve biyolojik silahların kullanımını Cenevre Protokolü’nü imzalayarak yasaklamıştır. Zehirli gazlar ve biyolojik silahların kullanımı savaşlar sırasında yasaklanırken kimyasal ve biyolojik savaş maddelerinin araştırılması, geliştirilmesi, silahlandırılması ve stok yapılması yasaklanmamıştır. 2. Dünya Savaşı sırasında (1939-1942 yılları arasında) Japon kuvvetleri, Çin ve Mançurya’da şarbon, veba, çiçek, tularemi, ruam, kolera, kızıl, menenjit, tüberlükoz, tifo, tetanus, hemorajik ateş ve difteri gibi çeşitli enfeksiyon hastalıklarını esirler üzerinde deneyip, 10 binden fazla insanin ölümüne yol açmıştır. 13 Ağustos 1945’te ABD Hiroşima’ya atom bombası attıktan ve Ruslar Kore ve Mançurya’yı işgal ettikten sonra Japonya kısa fakat kötü biyolojik savaş tarihine son vererek tüm biyolojik savaş tesislerini imha etmiştir. 1982’de Japon hükümeti bir rapor yayınlatmış ve bu raporda biyolojik savaşla ilgili deneylerin olağanüstü savaş zamanında meydana geldiğini ve insanlık açısından üzgün olduklarını ifade etmiştir. Aynı yıllarda İngilizler, İskoçya açıklarındaki Greenad Adalarında şarbonla çok sayıda deneme yapmışlar ve ada topraklarının 36 yıl boyunca şarbon sporlarıyla kalmasına neden olmuşlardır. Adanın temizlenmesine 1979’da başlanmış ve 280 ton formaldehit kullanıldıktan sonra ancak 1987’de tam anlamıyla temizlenebilmiştir. 1950’li yıllarda Amerikan ordusu biyolojik bir silahı taklit ve gerçek bir biyolojik silahın kullanımında meteorolojik koşulların etkisini araştırmak amacıyla San Fransisco’da Serratia marcescens isimli bir bakteriyi yaydı. Bu bakteri hastalık yapmıyordu. Bu deneme 1970 yılında The Washington Post Gazetesi tarafından yayınlanıncaya kadar halktan gizlendi. Daha sonra Standford Üniversitesi Hastanesi’nde S. marcescens’e bağlı üriner sistem enfeksiyonu salgını oldu ve bir hasta endokardit nedeniyle öldü. Salgının ordunun yaptığı bu denemeyle olan ilgisi hala bilinmemektedir. 25 Kasım 1969’da Amerikan Başkanı Nixon biyolojik savaş maddelerinin ve silahlarının kullanımını tek yönlü yasakladı. Tüm biyolojik araştırmalar bağışıklık kazanma, kesif ve emniyet gibi güvenliğe yönelik olarak sınırlandırıldı. 14 Şubat 1970’de de biyolojik ve kimyasal olarak üretilen toksinler de bir bildiriyle yasaklandı. 1972 yılında ise ABD biyolojik savaş maddelerini yok etti. 22 Ocak 1975’de biyolojik ve toksin savaş maddelerinin üretimi, stoğu ve geliştirilmesini yasaklayan biyolojik silahlar anlaşması Rusya dahil 151 ülke tarafından imzalandı. 1979 yılında Rusya’nın Sverdlovsk şehrinde birçok kişi antraxin havaya yayılması sonucu akciğer ödeminden öldü. 1992’de ABD’yi ziyaret eden Rusya Federasyonu Başkanı Boris Yeltsin bu olayın biyolojik savaş maddesi üretim merkezinden kaza sonucu sızan aerosol antrax bakterilerinden kaynaklandığını tasdik etti. 1969’da başlayıp 1975’de 151 ülke tarafından imzalanan biyolojik silahların üretimi, depolanması ve kullanımının yasaklanmasına ilişkin anlaşmaya rağmen bugün bu silahların üretimi ve depolanması halen birçok ülkede gizlilik içerisinde sürdürülmektedir. Anlaşmaya rağmen biyolojik silahların kullanıldığının tespitinin çok zor olusu, önümüzdeki savaşlarda veya savaş yokken dahi düşman ülkelerin insan gücü ve ekonomisini zayıflatmak için gizlice kullanılabileceğini ortaya koymaktadır. Bunların dışında Tokyo’da 1995 yılında bir metro istasyonuna sarin gazıyla saldırı düzenleyip çok sayıda kişinin ölümüne neden olan terörist örgüt Aum Shinri Kyo’nun en az sekiz defa şarbon ve botulinum toksini ile saldırı düzenlediği ancak başarılı olamadığı saptanmıştır. 11 Eylül 2001’de ABD’ye yönelik terörist saldırılar sonrasında değişik kuruluşlara gönderilen mektuplar içinde toz halinde şarbon sporları saptanmış, yedisi akciğer ve kalanı deri şarbonu olmak üzere 15 kişide hastalık tespit edilmiştir. Bu tarih itibariyle ABD dışından şimdiye kadar şarbona yakalanan kişi bildirilmemiştir.

http://www.biyologlar.com/biyolojik-silahlarin-tarihcesi

Jiberelinler (Gibberellic Asit)

1930'lu yıllarda keşfedilen oksin hormonu bitkilerdeki her türlü büyüme ve gelişme olaylarını düzenlediği bilinmekteydi.İlerleyen yıllarda bilim her zamanki gibi yerinde saymadı ve 1950'li yıllarda İngiliz ve Amerikalı bilim adamlarının yaptığı araştırmalar sonucunda bitkilerde başka hormonlarda keşfedildi. Oksin hormonundan sonra keşfedilen bitkisel hormon 'Jiberelin' hormonudur.Jiberelini İngiliz ve Amerikalı bilim adamları bulsa da onlardan çok önce Japonya çeltik çiftçilerinin çok önemli bir sorununu araştıran Japon bilim adamları Jiberelin hormonu keşfetmişti.Japonya’da çeltiklerin boyları çok fazla uzuyor ancak meyve verip tohum oluşmuyordu.Japonya’da bu hastaligia aptal tohum hastalığı 'Bakanae' denir.Yapılan çalışmalar sonucunda bu hastalığa Gibberella fujikuroi isimli bir fungusun(mantarın) sebep olduğu anlaşıldı.Bu mantarda bulunan jiberelin A hormonu çeltiklerde anormal uzamaya sebep oluyordu. Jiberelinlerin Jiberelin A1 A2 A3 ... ve Jiberelik(Gibberelic) asit gibi birçok türevleri vardır.Jiberelinler bitki gövdesinin boyca uzamasını sağlar.Bitkilerin gençliğini etkiler.Birçok odunsu perennial bitki olgunluğa ulaşmadan çiçek açıp meyve vermez.Bazı bitkilerde de gençliklerinde ve olgunluklarında yaprak formları farklılıklar gösterir.bu safhalarda bitkilerde jiberelin uygulaması ile bitki formlarında çeşitli değişikliler sağlanır.Hedera helix(orman sarmaşığı) e GA3 uygulanırsa yapraklar olgun halden tekrar genç yapraklara dönüşebilir.Genel anlamda jiberelinler erkek çiçek ,meyve gelişimini teşvik eder ve tohum çimlenmesini ve gelişimini hızlandırır.

http://www.biyologlar.com/jiberelinler-gibberellic-asit

Biyometri Teknolojisi ve Biyometri

Biyometri ortalama yaşam süresinin hesaplanması, çeşitli yaşam istatistikleri ana karnındaki dölütün ölçülerinin ultrasanografi yöntemleriyle belirlenmesi insan gözündeki çeşitli boyutların ölçülmesi gibi birbirinden çok farklı alanlardaki uygulamalar için kullanılmaktadır. Biyometri kişileri biyolojik özellikleri aracılığıyla tanımlamaktır. Artan güvenlik ihtiyacının şifrelerle karşılanamayacağı görüldüğü için biyometrik sistemlerin geliştirilmesi kaçınılmaz olmuştur. Mevcut biyometrik tanıma sistemleri Ses tanıma Retina ve iris tanıma Yüz tanıma İnsan yüzünde 80 farklı nokta vardır : Gözler arasındaki mesafe burun genişliği göz çukurlarının derinliği yanaklar gibi. Bu noktalardan kullanılan programa bağlı olarak 14 ilâ 22 tanesi taranarak 84 baytlık bir sayı dizisi halinde kaydedilir. Bu sayı dizisine yüz izi (faceprint) denir. Taramanın hatasız yapılabilmesi için insan yüzünün kameraya en az 35 derecelik bir açıyla bakması gereklidir. Günümüzdeki programlar (Face It Gotcha) alınan yüz izini diskten okursa saniyede 15 milyon bellekten okursa 60 milyon kayıtlı yüz iziyle karşılaştırabilmektedir. Benzer bir yüz bulursa 1 ile 10 arasında bir benzeme katsayısı hesaplamaktadır. Bu katsayı önceden belirtilen kabûl edilebilir eşik değerinden yük¤¤¤¤e yüz tanınmıştır. El tanıma İmza tanıma Kulak tanıma (2005 ortalarında keşfedildi ve halen geliştirilmekte) Çalışma biçimi Taranan bilgiler veritabanındakilerle karşılaştırılır ve olumlu veya olumsuz bir cevap üretilir. Biyometri ultrason dalgaları kullanılarak göz mesafelerinin ölçümü demektir. Klinikte en çok gözün ön-arka uzunluğunun ölçümü için kullanılır. Alet otomatik olarak ön kamara derinliğini ve lens kalınlığını da verir. Bu ölçümler katarakt cerrahisinde göz içine yerleştirilecek yapay göz içi lensinin numarasının belirlenmesinde yardımcı olur. Ayrıca ilerleyici miyopinin olduğu durumlarda ilerlemenin ön-arka uzunluğa mı yoksa lensteki değişikliklere mi ait olduğunun belirlenmesinde faydalı olur.

http://www.biyologlar.com/biyometri-teknolojisi-ve-biyometri

Dünya'da Organik Tarım Süreci

İnsanlığın varoluşundan bu yana bilinmekte olan tarım, yüzyıllar boyunca insanoğlu ile birlikte değişime uğramıştır.Tarımdaki değişim, teknolojinin ve sanayinin gelişimi ile hız kazanmıştır. Özellikle hızlı nüfus artışı ile birlikte 1960-70’li yıllarda tarımda yeşil devrim adı verilen değişim başlatılmıştır. Bu amaçla değişimde sadece verim artışı hedeflenmiş, sentetik kimyasal tarım ilaçları ve mineral gübrelerin kullanımı artmıştır. Bu girdilerin yarattığı olumsuz etkiler ilk önce, keşfedildiği andan itibaren yoğun olarak kullanıldığı gelişmiş ülkelerde görülmüş, buna bağlı olarak yüzyılımızın başlarında konvansiyonel tarım yöntemine alternatif arayışları başlatılmıştır. Bu konudaki ilk çalışma İngiltere’ de 1910’lu yıllarda organik tarım görüşünün oluşturulmasıdır. Bunu Albert Howard’ın “Tarımsal Vasiyetnamesi”nin 1940 yılında yayınlanması takip etmiştir. Diğer Avrupa ülkelerinde ise alternatif tarım arayışının öncüleri arasında Dr. Rudolf Steiner görülmektedir. Bir antropolog olan Steiner, 1924 yılında Biyodinamik ( Biyolojik-Dinamik ) Tarım Yöntemi hakkında bir kurs düzenlemiş ve 1928 yılında Biyodinamik Tarım Enstitüsü’nü kurmuştur. Bir diğer alternatif arayışı 1930’lu yıllarda İsviçre’de görülmektedir. Müeller ve Rusch, organik tarımın ilkelerinin bir bölümünü oluşturan Kapalı Sistem Tarım (en az dış girdi gereksinimi olan tarım şekli) konusunda çalışmalarda bulunmuşlardır. Aynı konuda Lemaire-Boucher Fransa’da bazı alglerin bitkilerde doğal dayanıklılığın arttırılması amacıyla kullanılabileceğini tespit etmişlerdir. Takip eden yıllarda konvansiyonel tarımın olumsuz etkileri gözlendikçe, her ülke kendi başına organik tarım çalışmalarına başlamıştır. IFOAM (International Federation of Organic Agriculture Movement) 1970’li yıllara kadar ayrı ayrı devam eden geliştirme çalışmaları 1972 yılında IFOAM’ın (International Federation of Organic Agriculture Movement) kurulması ile farklı bir boyut kazanmıştır. Üç kıtadan 5 kurucu organizasyon tarafından oluşturulan ve merkezi Tholey-Theley/Almanya’da olan “Uluslararası Organik Tarım Hareketleri Federasyonu” (IFOAM) tüm dünyadaki organik tarım hareketlerini bir çatı altında toplamayı, hareketin gelişimini sağlıklı bir şekilde yönlendirmeyi, gerekli standart ve yönetmelikleri hazırlamayı, tüm gelişmeleri üyelerine ve çiftçilere aktarmayı amaçlamaktadır. IFOAM, tüm dünyada organik üretime ilişkin kuralları ilk olarak tanımlayan ve yazıya döken kuruluştur. Temel İlkeler olarak geliştirilen kurallar dizini 1998 yılında IFOAM Temel Standartları olarak modifiye edilmiş ve genel kurul tarafından kabul edilerek yürürlüğe girmiştir. Kuruluş, AB, Birleşmiş Milletler Tarım-Gıda Örgütü (FAO), Dünya Ticaret Organizasyonu (WTO), Uluslararası Doğa Koruma Birliği (IUCN) gibi uluslararası kuruluşlarla da organik üretimle ilgili sıkı bir işbirliği yapmaktadır. www.ifoam.org (FAO) Birleşmiş Milletler Gıda-Tarım Örgütü FAO, son yıllara dek uyguladığı politikalarda sürdürülebilirlik ve gıda güvenliği kavramlarını ön plana çıkarırken 1998 yılı Ekim ayında, İsviçre’de diğer ilgili kuruluşların da katılımı ile organik tarım araştırmalarında uygulanacak yöntemlerin tartışıldığı bir toplantı düzenlemiştir. Bu toplantının ikincisi Eylül 1999’da yine FAO’nun katılımı ile Bari’de yapılmıştır. FAO’nun organik tarıma olan ilgisi hızla artmaktadır. Halen gıda maddesi artış hızının nüfus artış hızından yüksek olduğu ender bölgelerden orta-batı Afrika ülkelerinde yürüttüğü kalkınma projesi çerçevesinde alt proje olarak organik muz yetiştiriciliği projesini desteklemektedir. Konu ile ilgili olarak FAO içinde bir masa da oluşturulmuştur. FAO, Dünya Sağlık Örgütü (WHO)’nün birlikte oluşturdukları Codex Alimentarius bünyesindeki Gıda Etiketleme Komitesi, organik olarak üretilen ve etiketlenen gıda maddelerine ait standartları hazırlamaktadır. www.fao.org Geleneksel tarımdan organik tarıma geçişte Avrupa ülkelerindeki durum irdelendiğinde bunun tabandan gelen bir yaklaşımla olduğu görülmektedir. Ancak halen Avrupa Topluluğu’nda organik üretime geçiş sürecinde birim alan başına belirli bir destek sağlandığı için organik üretimin hızla yayılması sağlanmıştır. Bunun en güzel örneği, ekili alanların %20’sinde organik üretim yapılan Avusturya’dır. Ancak geçiş sonrası dönemde desteğin azaltılması veya kaldırılması, özellikle Portekiz, Fransa ve İspanya’da organik tarım işletmelerinin sayısının azalmasına neden olmuştur. İsrail örneğinde ise organik üretimle ilgili özendirici politikalar veya yayım yerine üreticiden gelen bilinçli talebin üretime geçişte daha ön plana çıktığı görülmektedir. Hindistan’da girdi kullanımının yoğun olduğu ve organik tarımın hiçbir şekilde desteklenmediği koşullarda üreticiler arasında yapılan bir anket çalışması, organik tarıma geçiş nedenlerinin sosyo-kişisel, sosyo-ekonomik, sosyo-psikolojik, sosyo-kültürel ve sistemler arası alt başlıklar altında toplanabileceğini ve salt gelir artışının hedef olarak ortaya çıkmadığı belirlenmiştir. Bu faktörler arasında komşuların organik üretime başlaması, girdi fiyatlarının yüksekliği, alıcı firmaların reklamları gibi nedenler de yer almaktadır. Yapılan çalışmalar, organik üretimde verim ve kalitenin sağlanabilmesi için üreticilere teknik ve ekonomik konularda bilgi akışının sağlanmasının şart olduğunu ve özellikle geçiş sürecinde üreticilerle yakın temasın etkili olacağını ortaya koymaktadır. Her yöre üreticisi için önceliklerin ayrı ayrı belirlenerek ele alınması başarıyı arttıracaktır. Yine bugüne değin yapılan uygulamalarda sistemin başarılı ve uzun süreli olması için desteklerin bütün olarak ele alınması gerektiği ortaya çıkmıştır. Avrupa ülkelerinde 1990’lı yıllardan sonra Avusturya, Almanya, Lüksemburg ve İsviçre gibi ülkelerde organik tarım hızla gelişmiştir. Organik tarıma geçişte ve başarıda etkili faktörler üreticilere sağlanan finansal imkanlar, hızlı bilgi akışı, geniş ürün yelpazesi, ulusal semboller ve koruma ve planlama olarak sayılabilir. Üreticilere sağlanan mali desteğin etkisi kaçınılmaz olmaktadır. Ancak destekler, ülkeden ülkeye farklılık göstermektedir. Ürün yelpazesinin ve pazarlama kanallarının çeşitlenmesi (süpermarketlerde ailelere yönelik kasa içinde çeşitli sebze veya meyve satışları, restoranlar, catering servisleri, işleme sanayi) organik tarıma geçişi hızlandırmaktadır. Gerek Avusturya gerekse İsviçre’de organik ürünlerin süpermarketlere girişi üreticileri teşvik eden etkenlerin başında gelmektedir. Ancak bu açıdan tüketicilerin eğitimi de talebi yaratma ve geliştirmesi açısından önemlidir. Gerek ülkesel gerekse uluslar arası yönetmeliklerle tüketiciler güvence altına alınmıştır. Yaratılan logolar da tüketiciyi yönlendirmekte etkili olmaktadır. İsviçre ve Avusturya’daki logolar bu işlevi yerine getirirken Almanya’da çok sayıda logonun piyasada yer alması tüketiciyi büyük ölçüde karışıklığa itmektedir. Halen tüketiciyi şaşırtabilen çok sayıdaki özel marka veya işaret yerine ülkesel tek bir logonun yaratılma çalışmaları yürütülmektedir. Ülkemizde de tek logonun geliştirilmesi ve kalitenin korunumuna yönelik sıkı önlemlerin alınması sektörün gelişimine katkı sağlayacaktır. 1982’li yılların ortalarından itibaren yapılan pazar araştırmaları tüketicilerin organik ürünlere olan olumlu tavrını ortaya koymakla birlikte pazar payı, organik ürünlerin gerçek olmasa da daha pahalı olduğu imajı ile oldukça yavaş artmıştır. 1990lardan itibaren Avrupa’da çok hızlı bir gelişme göstererek 1998 yılında Avrupa Topluluğu (AT) ve EFTA (European Free Trade Association) ülkelerinde 85.337 tarım işletmesinin organik üretim yapmaları ile 2 milyon hektara ulaşmıştır. Tarım alanlarını %1.4’ü, tarım işletmelerinin ise %1.1’i organik tarıma geçmiştir. Halen organik ürünlerdeki fiyat marjı üretim koşullarına bağlı olmakla birlikte, teknik uygulamaların geliştirilerek organik ve konvansiyonel ürünler arasındaki fiyat farkının %25 dolayında tutulması ve lüks tüketim ürünü olarak kabul edilmemesi yönünde görüşler vardır. Danimarka’da 1980’li yılların ortalarında yeraltı sularında tehlikeli boyutlarda yüksek nitrat düzeylerine rastlanması ve başlıca nedenler olarak çiftlik gübresi ve sentetik gübrelerin yanlış kullanılmasının belirlenmesi, çevre kirliliği ile ilgili tartışmaların giderek artmasına yol açmıştır. Bu arada organik tarımın çevreye olan olumlu etkilerinin ve yapılan anketlerde tüketicilerin organik üretilmiş ürünlere belirli bir fiyat farkı ödemeye hazır olduklarının belirlenmesi, haziran 1987’de Organik Tarım Yasasının parlamentodan büyük çoğunlukla geçmesini sağlamıştır. Daha sonra çıkarılan yönetmelikle Organik Tarım Konseyi kurulmuş ve 1987-1990 yılları arasında organik tarım uygulamalarında başarının sağlanmasında etkili üç önemli karar almıştır. Bunlar: - Danimarka’da organik üretimin standartlarının belirlenmesi, - Resmi kontrol ve sertifikasyon sistemi ile devlet garantisini simgeleyen etiket sisteminin (State Guarantee Label) geliştirilmesi, - Destek sisteminin geliştirilmesi (Geçiş dönemi desteği ile araştırma, eğitim, yayım, işleme, yayın ve pazarlama alanındaki projelerin parasal olarak desteklenmesi). Yasanın çıkışından itibaren Danimarka hükümeti her yıl organik üretim tekniklerinin ve gelişme projelerinin desteklenmesi için bir fon ayırmaktadır. Ayrıca çevreyi kirleten sanayi kuruluşlarından fonlar organik tarımın geliştirilmesi için harcanmaktadır. Hastaneler, yerel yönetimler ve diğer bir çok kuruluş hizmetlerinde tümüyle organik ürün kullanmak üzere fizibilite çalışmaları yapmaktadır. ABD’de Organik Araştırma Vakfı (The Organic Farming Research Foundation OFRF) tarafından yapılan bir incelemede ABD’deki organik tarım işletmelerinin %83’nün aile işletmeleri olduğu belirlenmiştir. Organik ürünlerin tüketicilerce talep edilmelerinde kişisel sağlığa ve özellikle çocuklarının sağlığına verdikleri önem, ilk sırada yer almaktadır. Almanya ve İngiltere yapılan bir anket çalışmasında sağlık , Almanya’da %70, İngiltere’de %46 ile ilk sırada ifade edilmiştir. Almanya’da çevre % 10-30, lezzet %13,24 ile ikinci ve üçüncü sırada yer almaktadır. İngiltere’de %41, lezzet %40, hayvan hakları %26 ile sağlığı takip etmektedir. Organik hayvan üretiminde hayvanlara açık havadar ve güneşli belirli bir alanın ayrılmasını ön görmesi nedeni ile Avrupa’daki hayvan severler arasında tercihte ilk sıralara doğru yükselmektedir. Tüm dünyada hızla artan organik tarımda genellikle ülkelerin geleneksel ürünleri örneğin Hindistan’da çay, Danimarka’da süt ve ürünleri, Arjantin’de et ve mamulleri, orta Amerika ve Afrika ülkelerinde muz, Tunus’ta hurma, zeytin yağı, Türkiye’de kurutulmuş ve sert kabuklu meyveler organik üretilen ilk ürünlerdir. Mevcut bilgi ve yüksek adaptasyon organik tarıma daha kolay geçişi sağlamaktadır. Ancak iç pazarın geliştirilmesi ve ürün yelpazesinin genişletilebilmesi için üreticilerin bilgilendirilmesi ve bunun için de araştırmalarla desteklenmesi önem kazanmaktadır. Organik tarımda iş gücü ihtiyacı yüksektir. Modern ve yoğun tarımdaki yüksek makineleşme düzeyi ile zıt bir durum oluşturmaktadır. Gıda maddeleri fiyatlarının genelde akaryakıt fiyatlarına paralel olarak geliştiği bildirilmekte ve önümüzdeki yıllarda akaryakıt fiyatlarının artacağı hesaplanmaktadır. Böyle bir gelişme karşısında organik ürün fiyatlarının konvansiyonel üretime oranla daha da avantajlı konuma geçeceği ve organik üretimin hızla artacağı düşünülmektedir.

http://www.biyologlar.com/dunyada-organik-tarim-sureci

Kromozom Nedir?

Kromozom Nedir?

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir.

http://www.biyologlar.com/kromozom-nedir

Nesli Tükenen Hayvanlar ve Yok Olmaya Etki Eden Faktörler

Günümüzde pek çok hayvan türü neslinin tükenmesi sorunuyla karşı karşıyadır Bunda yıllar içerisinde değişen çevre şartlarının yanı sıra insandan kaynaklanan faktörlerde etkilidir Eski çağlarda insanlar, beslenmek ve korunmak için hayvanları öldürüyorlardı Ama yüzyıllar içinde insanın hayvanları öldürme nedenleri çok çeşitlendi ve giderek bir katliama dönüştü Bu nedenlerden bazılarını aşağıdaki gibi sayabiliriz 1 Korunmak için 2 Oyun ve eğlence için 3 Beslenmek için 4 Savaşlarda atılan bombalar, kimyasal silahlar, hareket halindeki binlerce zırhlı araç ve asker 5 Havayı kirlettiğimiz için 6 Moda ve aksesuar için 7 Avcılık 8 Ormanları yakıp yıktığımız için 9 Bilimsel deneyler (Kobay) 10 Otoyol kazaları 11 Nüfus artışı 12 Ticaret için Bilim adamları yukarıda sayılan nedenlerden kaynaklı olarak bugün var olan türlerin yüzde yirmisinin 21 yüzyılda yok olacağı tahmin ediyor Ülkemizde soyu tükenen veya tükenme tehlikesi ile karşı karşıya olan pek çok tür bulunmaktadır Bu türlerin çoğu sadece ülkemizde yaşamakta olan türlerdir Yani bir anlamda doğal zenginliklerimizdir Ama bilinçsizlik bu zenginliklerin ileri nesillere miras bırakılmasını önlemektedir Bu türlerden bazıları Toros Kertenkelesi, kaplumbağa türleri, Anadolu Kaplanı, Akdeniz Foku, çeşitli kelebek türleri, Kelaynaklar vs…………… SOYU TEHLİKEDE OLAN BAZI HAYVANLAR DENİZ KAPLUMBAĞALARI Soyu tehlikede olan türlerden biri olup sayıları hızla azalmaktadır Bunun çeşitli nedenleri vardır Birincisi, üreme alanları olan kumsalların insanlar tarafından tahrip edilmesi İkinci neden, bazı türlerin etinin yenmesi Üçüncü neden, ağları parçaladıkları gerekçesiyle balıkçılar tarafından öldürülmeleri Bazı ülkelerde denizkaplumbağası kabukları turistik eşya olarak bile satıldığı görülmektedir KELEBEKLER Narin ve korunmasız yapıları nedeniyle kelebekler, insanın doğaya verdiği zarardan en çok etkilenen böcek türüdür Kanatlarının olağanüstü etkileyici renk kompozisyonlarıyla insanların eskiden beri ilgisini çeken kelebeklerden Türkiye'de 268 tür bulunmaktadır Bu türlerin çoğu artan çevre kirliliği nedeniyle yok olmakta ya da yok olma tehlikesi ile karşı karşıya bulunmaktadır KUŞLAR Devlet Su İşleri gibi bazı kurumlar tarım arazisi elde etmek için veya su kaynakları sağlamak amacıyla göl ve bataklıkları kurutmakta ve yaban hayvanların soylarının tükenmesine neden olmaktadır Örneğin; yurdumuzda yalnızca Hatay'daki Amik Gölü'nde yaşayan Yılanboyun isimli kuşun soyu, gölün kurutulmasıyla yok olmuştur Buna ek olara tarım ilaçlarının fazlaca ve bilinçsiz olarak kullanılması pek çok hayvanı olumsuz etkilemiştir Bitkilere zarar veren böcek, fare gibi canlılarla mücadele etmek için tarlalara atılan yapay gübreler ve zehirler, milyonlarca hayvanın da ölüm nedenidir Tarım ilaçları nedeniyle soyları tükenen hayvanlara en güzel ve en bilinen örnek, kelaynaklardır Göçmen kuşlardan olan kelaynaklar, yazın Afrika'dan göç edip Urfa'nın Birecik ilçesine geliyorlardı 1950'li yıllarda, bölgede 600 çiftten fazla kelaynak görülüyordu Ama yine o yıllarda zararlı böcekler için kullanılmaya başlanan tarım ilaçları, kelaynakları da yok etti Çünkü kelaynakların besin kaynağı bu zararlı böceklerdir 1970'li yıllara gelindiğinde, kelaynakların sayısı 50'nin altına düştü Koruma altına alındılar Ama bugün Birecik'teki koruma istasyonunda üretilmiş olan kelaynaklar, göç etme özelliklerini yitirmiş durumdalar ANADOLU LEOPARI Anadolu leoparı, Türkiye'de yaşayan vahşi kedilerin en güzel örneklerinden biri olup aynı zamanda Türkiye’de yaşayan bilinen en yırtıcı hayvandır Ama yüzyıllar boyunca avlanma sonucu sayıları hızla azalmıştır Anadolu leoparının son bireyleri, 1950'li yıllarda Dilek Yarımadası'nda ve 1970'li yılların başında Eskişehir çevresinde örülmüş ve görüldüğü yerde de öldürülmüştür O günden bu yana varlığından haber yok AKDENİZ FOKU Yok olma sınırındaki bir başka hayvan türü de milyonlarca yıldır yaşayan Akdeniz fokudur Akdeniz foku bütün dünyada nesli tehlike altında bulunan türler içerisinde ilk sırada yer almaktadır Ülkemizde özellikle Ege’de Foça, Bodrum Yarımadası ve Anamur-Taşucu’nda yaşamaktadır Akdeniz foku için alınacak her önlem aynı zamanda balıkçılık, turizm, kıyılarımız ve denizlerimizi de koruyacaktır Soyu tükenen her canlı, aslında insanın bir parçasıdır Onunla birlikte bir parçamızı da yitiriyoruz Bu nedenle her insan, onu yaşatmak için çaba harcamalı forum47com hizmetinizdedir başka bir kaynaktan Eski çağlarda insanlar, beslenmek ve korunmak için hayvanları öldürüyorlardı Ama yüzyıllar içinde insanın hayvanları öldürme nedenleri çok çeşitlendi ve giderek bir katliama dönüştü Bugün var olan türlerin yüzde yirmisinin 21 yüzyılda yok olacağı tahmin ediliyor Yanlış inançlar Hayvanlar konusunda insanlar, birçok yanlış ve boş inanca sahipler Kendileri için yararlı pek çok hayvanı bu yanlış inançlar nedeniyle yok yere öldürüyorlar Örneğin tarlaları, köyleri farelerden temizleyen baykuş, "uğursuz" olduğu yolundaki yanlış inanç nedeniyle öldürülüyor Leşleri yiyerek hastalık ve mikropların çoğalmasını engelleyen sırtlanlar, "çirkin" oldukları gerekçesiyle yok ediliyor Aynı biçimde kurt, karga, yılan, örümcek ve daha pek çok tür, yanlış inaçlar nedeniyle öldürülüyor Korunmak içinÇok eski çağlardan beri insanlar korunmak amacıyla hayvanları yok ediyorlar O günlerde insan, korkak ve korunmasız bir yaratıktı Silahları ilkeldi ama zekası sayesinde kendisini tehdit eden hayvanları tuzağa düşürüp yok ediyordu Tarih öncesi çağlardan kalma mağara resimlerinde, ilk insanların vahşi hayvanlara karşı düzenledikleri avlar sahnelenir Oyun ve eğlence için İnsanlar, basit ve acımasız zevkler için yüzyıllardan beri hayvanlara doğalarına aykırı olarak davranıyor Onlara ya işkence ediyor ya da öldürüyorlar Roma İmparatorluğu döneminde aslan ve leoparlar arenalarda öldürülürdü Günümüzde, horoz ve köpekler vahşice dövüştürülüyor İspanya ve Meksika'daki boğa güreşlerinde yüzlerce boğa, acı çeke çeke yaşamını yitiriyor Savaşlar Savaşlarda atılan bombalar, kimyasal silahlar, hareket halindeki binlerce zırhlı araç ve asker, vahşi doğaya büyük zarar veriyor; buralarda yaşayan canlıların yaşam ortamlarını yakıp yıkıyor Havayı kirlettiğimiz için Kirli hava yalnız insanların değil, hayvanların da zehirlenip ölmelerinin nedeni Asit yağmurlarına neden oluyor, asit yağmurları da yeryüzündeki ormanların ölümüne Ormanlar ise yaban hayvanların evi Moda ve aksesuar için Kürkü için birçok türden binlerce hayvan öldürülüyor Çanta, şapka, kemer ya da biblo yapmak için fillerden timsahlara, yılanlardan ceylanlara kadar birçok hayvan acımasızca yok ediliyor Hem de yasadışı yollarla ve son derece acımasız yöntemler kullanılarak Geçtiğimiz yıllarda Türkiye'de, kürkleri nedeniyle birçok tilki, doğaya bırakılan zehirli yemlerle öldürüldü Soyları tükenme noktasına gelen, günümüzde koruma altına alınan karacalardan bir çoğu, ayaklarından baston yapmak için katledildi Gösteriş için de yüzbinlerce hayvanın ölümüne neden oluyoruz Yalnızca gösteriş için, soyu tükenme noktasına gelmiş olan kaplan, geyik, leopar gibi hayvanlar öldürülüyor Bu hayvanların post, boynuz, diş gibi organlarıyla bazı insanlar evlerini süslüyor Göl ve bataklıkları kuruttuğumuz için Devlet Su İşleri gibi bazı kurumlar, tarım arazisi kazanmak ve su rezervi elde etmek için göl ve bataklıkları kurutarak yaban hayvanların soylarının tükenmesine neden oluyor Yurdumuzda yalnızca Hatay'daki Amik Gölü'nde yaşayan yılanboyun isimli kuşun soyu, gölün kurutulmasıyla yok oldu Göl ve bataklık kurutma işlemi günümüzde de sürüyor Tarım ilaçlarıyla Bitkilere zarar veren böcek, fare gibi canlılarla mücadele etmek için tarlalara atılan yapay gübreler ve zehirler, milyonlarca hayvanın da ölüm nedeni Tarım ilaçları nedeniyle soyları tükenen hayvanlara en güzel örnek, kelaynaklar Göçmen kuşlardan olan kelaynaklar, yazın Afrika'dan göç edip Urfa'nın Birecik ilçesine geliyorlardı 1950'li yıllarda, bölgede 600 çiftten fazla kelaynak görülüyordu Ama yine o yıllarda zararlı böcekler için kullanılmaya başlanan tarım ilaçları, kelaynakları da yok etti Çünkü kelaynakların yiyeceğini bu zararlı böcekler oluşturuyordu 1970'li yıllara gelindiğinde, kelaynakların sayısı 50'nin altına düşmüştü Koruma altına alındılar ama, artık her şey için çok geçti Bugün Birecik'teki koruma istasyonunda üretilmiş olan kelaynaklar, göç etme özelliklerini yitirmiş durumdalar Avcılık İnsan yüzyıllardır avlanıyor Ama avcılık hiçbir çağda 20 yüzyıldaki kadar katliam boyutlarına ulaşmadı Günümüzde, Türkiye'de 4 milyon kayıtlı avcı olduğu sanılıyor Hayvanların sayısı ise bu rakamın çok altında Örneğin soyu tehlikede olan dikkuyrukların sayısı 15 bini geçmiyor Ayı sayısı ise 2 bin civarında Ormanları yakıp yıktığımız için Ormanlar doğal yaşamın en önemli alanları Ama yakarak, keserek ormanları yok ediyor, dolayısıyla burada yaşayan böcekten ayıya, kelebekten kuşa kadar birçok hayvanın soyunun tükenmesine neden oluyoruz Özellikle yaz mevsiminde Ege ve Akdeniz bölgelerinde çıkan yangınlar hayvanlara büyük zarar veriyor Bu yangınlarda belki de hiç keşfedilmemiş türlerin son üyeleri de yanıp kül oluyor Bilimsel deneyler Kobay sözcüğü, çoğu kişi için "laboratuvarda deney amacıyla kullanılan canlı" anlamına gelir Ama bu sözcük, laboratuvarlarda deney amacıyla en çok kullanılan hayvan olan "kobay"dan kaynaklanır Yaklaşık 30 santimetre boyundaki kobaylar çok kolay evcilleşirler Güney Amerika kökenli bu hayvanların yaşamı laboratuvarda başlayıp, laboratuvarda biter Kobayların yanı sıra, insanın fizyolojik yapısıyla benzer özellikler gösterdikleri için beyaz fareler, maymunlar, köpekler de çeşitli deneyler amacıyla laboratuvarlarda işkence görüyor ve öldürülüyor Tropikal bölgelerde yaşayan birçok yılan, zehirleri alınmak üzere doğal ortamlarından koparılıp yok ediliyor Otoyol kazaları Gelişen ulaşım sektörü, bütün doğal alanlardan otoyol geçmesine neden oldu Hızlı giden taşıtlar bu yollarda birçok yaban hayvanın ölümüne neden oluyor Otoyollarda yaptığınız gezilerde çevrenize dikkat edin! Aracınızın camına, özellikle yazın pek çok böcek çarparak ölecek Yol kenarlarında araçların çarpması sonucu yaşamını yitirmiş birçok kedi, köpek, kirpi, yılan, kaplumbağa, kuş cesedi göreceksiniz Uçakların pervaneleri ve jet motorları da yüzlerce kuşu öldürüyor Nüfus artışı İnsan nüfusunun hızlı artışı, hem insan hem hayvan hem de bitkiler açısından büyük tehlike Çünkü artan insan nüfusu, doğa ve orman alanlarının tahrip edilmesine neden oluyor Yeni kentler kuruluyor, yeni yollar yapılıyor, yeni tarlalar açılıyor Orman alanları, sanayi tesisleri yapılmak için kesilip biçiliyor Dolayısıyla hayvanlara yaşayacak yer kalmıyor Örneğin "caretta caretta" türü denizkaplumbağaları, Fethiye ve Akdeniz koylarımızdaki kumsallara yumurtalarını gömerek çoğalırlar Ama son 20 yıldır hızla gelişen turizm sektörü, Türkiye'nin bütün ıssız koylarının otellerle, güneşlenen insanlarla dolmasına neden oldu Ticaret için Vahşi ve egzotik hayvan ticareti tüm dünyada olağanüstü boyutlarda Bunun yanı sıra derisi, dişi, kürkü, kemikleri ve kabukları için, fillerden timsahlara, deniz kabuklularından tilkilere kadar, birçok türde hayvan acımasızca öldürülüyor Örneğin tropik ülkelerde tuzaklarla yakalanan papağan, maymun gibi birçok tür, Türkiye'nin büyük illerindeki hayvan mağazalarında rahatlıkla satılıyor DENİZKAPLUMBAĞALARI Soyu tehlikede olantürlerden biri Sayıları hızla azalıyor Bunun çeşitli nedenleri var Birincisi, üreme alanları olan kumsalların insanlar tarafından tahrip edilmesi İkinci neden, bazı türlerin etinin yenmesi Üçüncü neden, ağları parçaladıkları gerekçesiyle balıkçılar tarafından öldürülmeleri Bazı ülkelerde denizkaplumbağası kabukları turistik eşya olarak bile satılıyor Anadolu balıkları alarm veriyor Gökçe, Akşehir İnci, Siraz, Kababurun, Kum balığı gibi sadece Anadolu’daki göl ve akarsularda yaşayan balıklar, sulak alan kaybı, barajlar, yabancı balık türlerinin gelişigüzel atılması ve aşırı kirlenme nedeniyle yok olma tehdidi altında Orkidenin başını salep yaktı Her yıl 45-180 milyon arasında yabani orkide salep yapımında kullanılmak üzere doğadan toplandığı için günümüzde yalnızca 200 tane kaldı Nesli Tükenmekte Olan Kelaynaklar Afrika'da Bugün kelaynaklar dünyanın en çok tehdit altında olan kuşlarından birisi (Birecik Kelaynak Üretme İstasyonu'nun İnternet sitesinden) Kelaynaklar (Geronticus eremita) eskiden Türkiye’den Kuzey Afrika’ya, Arap Yarımadası’ndan Fas’a kadar çok geniş bir bölgede ürerlermiş 17 yüzyılda Avrupa’nın ortasında, Alp Dağları’nda bile ürediği bilinmektedir Fakat avcılık, üreme alanlarında rahatsız edilmeleri, yaşam alanlarının değişmesi ve beslenme alanlarında kullanılan zirai ilaçlardan zehirlenmeleri sonucunda sayılarında ciddi azalma ve dağılım gösterdikleri alanlarda daralma meydana gelmiştir Bugün kelaynaklar dünyanın en çok tehdit altında olan kuşlarından birisi Kelaynaklar Fas’ın güney batısında iki alanda, çok ufak bir koloni ile Suriye’de ve tüm Avrupa’da sadece Türkiye’de yaşamaktadırlar İzlanda balina avına yeniden başlıyor İzlanda, ticari amaçla balina avına yeniden başlayacağını açıkladı İzlanda hükümetinin açıklamasında, balina avına yeniden başlanmasının, soyu tükenme tehlikesiyle karşı karşıya kalan türleri tehdit etmeyeceği belirtildi Açıklamada balina avına ne zaman başlanacağına değinilmedi İzlanda, balina avına 1990’da son vermişti Akdeniz'de 350 fok kaldı Roma Bilgi ve İletişim Bölgesel Eylem Merkezi Direktörü Sergio Illuminato, Akdeniz havzasında 350 Akdeniz fokunun kaldığını ve korunma tedbirleri için yıllık 5 milyon avro bütçeye ihtiyaç olduğunu bildirdi Tehlike çanları orkinoslar için çalıyor Akdeniz'in en önemli deniz zenginliklerinden biri olan orkinos balıkları, yasadışı avcılık sonucu tükenme noktasına geldi Avlanan her fok için 60 dolar Kanada'da 325 bin fokun öldürüleceği av başladı Avlanan her fok, 60 dolar demek FLAMİNGOLAR Kuşlar, yeryüzündeki en güzel canlı gruplarından biri Bilim adamları, bugüne kadar 10 bin kuş türü tespit ettiklerini belirtiyorlar Ama yaşam ortamlarının insanlarca yok edilmesi, sayılarını hızla azaltıyor En zarif kuş türlerinden olan flamingoların uçuşunu izlemek ise olağanüstü bir deneyim Flamingolar Sultan Sazlığı ve Tuz Gölü gibi tuzcul sulak alanlarda yaşıyorlar KELEBEKLER Narin, korunmasız yapıları nedeniyle kelebekler, insanın doğaya verdiği zarardan en çok etkilenen böcek türü Kanatlarının olağanüstü etkileyici renk kompozisyonlarıyla insanların eskiden beri ilgisini çeken kelebekten Türkiye'de 268 tür bulunuyor ANADOLU LEOPARI Anadolu leoparı, Türkiye'de yaşayan vahşi kedilerin en güzel örneklerinden biriydi Ama yüzyıllar boyunca avlandı ve sayıları hızla azaldı Anadolu leoparının son bireyleri, 1950'li yıllarda Dilek Yarımadası'nda ve 1970'li yılların başında Eskişehir çevresinde görüldü ve görüldüğü yerde de öldürüldü O günden bu yana varlığından haber yok AKDENİZ FOKU Soyu tükenen her canlı, aslında insanın bir parçası Onunla birlikte bir parçamızı da yitiriyoruz Bu nedenle her insan, onu yaşatmak için çaba harcamalı Yok olma sınırındaki bir başka hayvan türü de Akdeniz foku Tanrıça yunus pigme suaygırı slender loris, dünyaya veda etmek üzere Dünya ısınıyor, atmosfer, karalar ve denizler kirleniyor, birçok canlı türünün yaşamı da tehlikeye giriyor Özellikle de memeli hayvanların yaşam alanı her geçen gün daralıyor Dünya Koruma Birliği IUCN’nin geçen yılki tespitine göre tanımlanan 5 bin 416 memeli türünün yüzde 20’si yok olma tehdidiyle karşı karşıya Son altı yılda büyük artış olmasa da bu tehdit sürüyor Londra Zooloji Derneği, yok olma tehlikesi yaşayan hayvanları kamuoyuna tanıtmak amacıyla EDGE projesini başlattı İlk aşamada 100 türü belirledi En büyük tehdit altındaki 10 tür bu yıl mercek altına alınacak Küresel ısınma ve çevre kirliliği sadece insanları tehdit etmiyor Elbette binlerce diğer canlı türü de iklim değişikliklerinden ve yaşam alanlarının kirlenmesinden dolayı soylarının tükenmesi tehdidiyle karşı karşıya Bu durumdan en çok etkilenenler de memeli hayvan türleri Aralarında az bilinen ve çok ilginç türlerin de bulunduğu memelilerin tükenmesine karşı çalışma başlatanlardan biri de İngiltere’deki Londra Zooloji Derneği (ZSL) oldu Dernek, EDGE (Evolutionarily Distinct and Globally Endangered) adını verdiği proje ve edgeofexistenceorg internet sitesiyle yok olmanın eşiğindeki hayvanları kamuoyuna duyurmak ve destek toplamak istiyor Önceliği bugüne kadar göz ardı edilen türlere veriyor Bu amaçla öncelikle doğada en az örneği kalan 100 memeli türünü saptadılar Bu 100 tür 15 Ocak’ta açıklandı Aralarında pigme hipopotam, Yangtze yunusu, uzun kulaklı jerboanın da bulunduğu 10 türe ise projenin ilk çalışma yılı 2007’de özel ilgi gösterilecek ZSL’den Dr Jonathan Baillie, The Guardian gazetesine EDGE’in özel türlere odaklanan ilk küresel program olduğunu söyledi: "Dünyanın en olağanüstü türlerini korumak için çalışacağız Aralarında kibrit kutusu büyüklüğünde yarasalar, yumurta bırakan memeliler ve zehirli dev kemirgenler var Liste başındaki Yangtze yunusu için ekibimiz Çin’e gitti, tek yunusa rastlamadı Yok olmanın eşiğinde Bu türlerden birini bile kaybetmek insanlık için Mona Lisa tablosunu kaybetmek kadar büyük kayıp, hiçbirinin yeri doldurulamaz" EN AZ ÖRNEĞİ KALAN TÜRLER 100 türlük liste hazırlanırken, yakın türü en az kalan memeliler seçildi Bu yolla hangi türlerin uzun süre bağımsız olarak evrimleştiği de tespit edildi Daha sonra bu türler Dünya Koruma Örgütü IUCN’in "Kırmızı Liste"siyle karşılaştırıldı ve en öncelikli 10 tür belirlendi Bunların bir kısmı ulaşılmaz bölgelerde yaşadıkları ya da araştırmacıların ilgisini çekmedikleri için çok az biliniyordu Proje kapsamında türleri korumak için geliştirilen çözümler ve ne yapılması gerektiği kamuoyuyla paylaşılacak ZSL, yerel araştırmacıların işbirliğiyle geliştireceği planları web sitesinde duyuracak Çevreye duyarlı kişiler projelere bağışta bulunabilecek Ayrıca son gelişmeler de araştırmacıların blogları sayesinde günü gününe takip edilebilecek DURUMU EN KRİTİK 10 MEMELİ Yangtze Nehri yunusu, uzun gagalı ekidna, Hispaniola solenodonu, çift hörgüçlü deve, pigme su aygırı, slender loris, hirola, uzun kulaklı jerboa, altın sokumlu hortumlu fare, Bumblebee yarasası İndri: Bu lemur türü Malgaş halkınca kutsal kabul ediliyor Ormanlarla birlikte yok olma tehdidiyle karşı karşıya İndriler kilometrelerce uzaktan duyulan çığlığıyla meşhur SADECE MADAGASKAR’DA YAŞAYAN İKİ TÜR Altın taçlı sifaka: Madagaskar’da en seyrek bulunan lemur türü 1988’de keşfedildi Bölgede açılan altın madeni bu türü tehdit ediyor SLENDER LORIS Sadece Hint Okyanusu’ndaki Sri Lanka Adası’nın güneyinde yaşayan bu memeli türünün boyu 11 ila 17 cm, ağırlığı 103 ila 172 gram Bir insanın başparmağı büyüklüğündeki slender loris vücuduna göre kocaman yuvarlak gözleri sayesinde karanlıkta çok iyi görüyor Sri Lanka ormanlarının tarım alanı açmak için yok edilmesi ve geleneksel tıpta kullanılmak üzere avlanılması nedeniyle türü yok olmak üzere Foto: AP Pigme SUAYGIRI 1,5 ila 1,75 metre boyundaki ve 160 ila 270 kilo ağırlığındaki pigme suaygırı bugün sadece Batı Afrika’daki birkaç ülkede yaşıyor Birbirinden ayrı alanlarda yaşayan 2 ila 3 bin örneği hálá hayatta Nijerya’daki son örneklerinin de tükendiği ve sadece Liberya ile Sierra Leone’de yaşadığı tahmin ediliyor YANGTZE YUNUSU Sadece Yangtze Nehri’nde yaşayan bu yunus türünün hiçbir yakın akrabası yok 20 milyon yıl önce geçirdiği evrimle diğer yunus türlerinden ayrılmış Çin efsanelerine göre, Baiji yunusu boğulduktan sonra yeniden hayata gelen bir prenses Yangtze Tanrıçaları diyorlar onlara Son 30 yılda soyu hızla tükendi 2006 sonunda Yangtze Nehri’ndeki altı haftalık aramada tek örneğine rastlanamadı Fotoğraftaki Qi qi isimli yunus ise Çin’in Wuhan kentindeki akvaryumda 22 yıl yaşadı, 2002’de öldü UZUN KULAKLI JERBOA Fare benzeri bu kemirgen Moğolistan ve Çin’in belli bölgelerinde yaşıyor Hakkında çok az bilimsel veri var En önemli özelliği kulaklarının kafasından üçte bir oranında daha büyük olması Bu özelliğiyle, dünyanın vücuduna göre en büyük kulaklara sahip hayvanı TÜKENEN TÜRLERİ KORUMADA ÖNCELİKLİ ÜÇ AMAÇ EDGE Programı, dünyanın evrimsel olarak en farklı türlerinin soyunun tükenmesini önlemeyi hedefliyor İlk amaç, tehlikeyi duyurmak Fil, gergedan gibi iri türlerin yok olma tehdidiyle karşı karşıya olduğu bilinse de diğer birçok türün tehdit altında olduğu fark edilmiyor İkinci amaç, bu türleri doğal yaşam alanları içinde incelemek Ancak, bu yolla asıl tehditleri belirleyip koruma yöntemlerinin saptanacağına inanılıyor Koruma programları sahadaki araştırmacıların tavsiyesi, kılavuzluğuyla uygulanacak Üçüncü amaç, yerel toplulukları gözetmek Doğal kaynakları korumalarını sağlamak Telli turnalar Türkiye'yi terk etti Anadolu türkülerinin en önemli motiflerinden olan, bir zamanlar sürüler halinde gelen göçmen telli turnalardan günümüzde yalnızca 11'i üreme alanı olarak Türkiye'yi seçiyor

http://www.biyologlar.com/nesli-tukenen-hayvanlar-ve-yok-olmaya-etki-eden-faktorler

DNA’nın titreşimsel davranışları..

Ezoterik ve manevi eğitim verenler uzun zamandır bedenimizin dil, kelime ve düşünceyle programlanabilir olduğunu biliyorlardı. Bu şimdi bilimsel olarak kanıtlandı ve açıklandı. İnsan DNA’sı biyolojik bir İnternet ve bir çok bakımdan yapay olandan daha üstün. Son Rus bilimsel araştırmaları durugörü, önsezi, ani ve uzaktan terapi eylemleri, kendi kendini iyileştirme, olumlama teknikleri, kişilerin etrafındaki ışık/aura (yani maneviyatta ustalar) aklın iklim yapısı üzerindeki etkisi ve bir çok fenomeni daha doğrudan yada dolaylı olarak açıklıyor. Ayrıca, söz ve frekanslarla bir tek geni ÇIKARIP EKLEMEDEN DNA’yı etkiyen ve yeniden programlayan yepyeni bir çeşit ilaca dair kanıtlar var. DNA’mızın sadece 10% protein oluşturmak için kullanılıyor. Bu DNA kümesi batılı araştırmacıların ilgisini çekiyor, inceleniyor ve vasıflandırılıyor. Geriye kalan %90 “çöp DNA” olarak değerlendiriliyor. Rus araştırmacılar, bununla birlikte, doğanın aptal olmadığını düşünerekten %90 olan”çöp DNA” yı araştırmak için dilbilimci ve genetikcilerle bir araya geldiler. Sonuçları, bulguları ve vardıkları kanaat devrim niteliğinde! Bulgularına göre, DNA’mız sadece bedenimizin inşaasından değil veri saklama ve iletişimden de sorumlu. Rus dilbilimciler genetik kodun – özellikle görünürde ”yararsız” %90 - bütün insani dillerle aynı kodu izlediğini keşfettiler. Bu sonuca göre sözdizim kurallari (kelimelerin söz ve cümle oluşturmak için bir araya getirilişi), anlambilim ve gramerin temel kurallarını karşılaştırdılar. DNA’mızın alkalikleri düzenli bir grameri izliyor ve tıpkı dilimiz gibi kurallar dizisinin olduğunu keşfettiler. Bu nedenle insan dilleri tesadüfen ortaya çıkmadı ve özümüzde olan DNA’nın bir yansıması. Rus biyofizikci ve moleküler biyolog Pjotr Garjajev ve meslektaşları DNA’nın titreşimsel davranışlarını da incelediler. Sonuç kısaca şöyle: ”Canlı kromozomlar tıpkı bir endojen (içsel) DNA lazer radyasyonu kullanan holografık bir bilgisayar gibi işliyor. Belirli ses frekans modellerini, DNA frekanslarını ve böylece genetik bilginin kendisini etkileyen lazer tarzı bir ışına, modüle etmeyi örnek olarak başardılar. DNA alkalin eşleri ve dilin temel yapısı (daha önceden açıklandığı gibi) aynı yapıya sahip, DNA şifresini çözmeye gerek yok. Sadece dilin kelime ve cümleleri kullanılabilir! Bu da, deneylerle kanıtlanmıştır! Canlı DNA maddeleri (canlı dokularda ki, laboratuar ortamında ya da yapay koşullardaki değil) dil ile modüle edilmiş lazer ışınları ve radyo dalgalarına her zaman tepki verirler tabi eğer doğru frekans (ses) kullanılır ise. Bu nihayet ve bilimsel olarak neden olumlamaların, hipnozların ve benzerlerinin insanlar ve bedenleri üzerinde bu kadar kuvvetli tesirleri olabildiğini açıklıyor. DNA’mızın dile tepki vermesi tamamen normal ve doğal. Batılı araştırmacılar bir tek geni DNA sarmallarından kesip başka yerlere eklerken Rus araştırmacılar hücresel metabolizmayı modüle edilmiş radyo ve ışın frekanslarıyla etkileyen ve böylece genetik bozuklukları onaran cihazlar yarattılar. Belli bir DNA’nın bilgi modellerini dahi ele geçirip ve başka bir tanesine aktardılar bu şekilde başka bir genom için hücreleri yeniden programladılar. Başarılı bir şekilde, örneğin, sadece DNA bilgi modelini aktararak kurbağa embriyolarını semender embriyolarına dönüştürdüler! Bu şekilde, DNA’dan bir tek geni kesip eklerken oluşan hiçbir yan etki ve uyuşmazlık olmadan tüm bilgi aktarılmıştır. Eski kesme prosedürü yerine sadece titreşim (ses frekansları) ve dil ekleyerek uygulanan bu prosedür inanılmaz, dünyayı değiştiren bir devrim ve sansasyonu gösteriyor Bu araştırma organizmaların oluşumunda, alkalik dizilişlerin biyokimyasal işlemlerinden, çok daha fazla etkiye sahip olan dalga genetiğinin muazzam gücüne dikkat çekiyor. Ezoterik ve manevi eğitim verenler uzun zamandır bedenimizin dil, kelime ve düşünceyle programlanabilir olduğunu biliyorlardı. Bu şimdi bilimsel olarak kanıtlandı ve açıklandı. Frekans tabi ki doğru olmak zorunda. Ve bu herkes aynı derecede başarılı değil yada her zaman aynı kuvveyle yapamadığının nedeni. DNA’yla bilinçli bir iletişim kurabilmek için bireysel kişi içsel süreç ve gelişimi üzerinde çalışmak zorunda. Rus araştırmacılar bu faktörlere bağımlı olmayan ancak DAİMA, doğru frekansın kullanılması şartıyla, çalışabilecek bir yöntem üzerinde çalışıyorlar. Bir bireyin bilinci ne kadar gelişmiş ise, her hangi bir cihaz için gereksinim o kadar az ve kişi tek başına bu neticelere ulaşabilir. Bilim nihayet bu tarz fikirlere gülmeyi bırakacak ve sonuçları onaylayıp açıklayacak. Ve orada bitmiyor. Rus bilimadamları DNA’mızın bir boşluk içerisinde bozucu modeller oluşturabileceğini keşfettiler, böylece manyetize edilmiş solucan delikleri oluştarabilir. Solucan delikleri karadeliklerin çevresindeki Einstein-Rosen diye adlandırlan köprülerin mikroskobik karşılığı. Bunlar evrendeki mekan ve zamanın dışında bilginin aktarılabildiği tamamen farklı alanların arasındaki tünel bağlantılar. DNA bu bilgi bitlerini kendine çekiyor ve bilincimize iletiyor. Bu hiper komünikasyon işlemleri (telepati, kanalize olma) en etkili gevşeme durumunda oluyor. Stres, kaygı yada hiperaktif bir zihin, hiper komünikasyonu engelliyor yada bilginin tamamen bozulmuş ve yararsız olmasını sağlıyor. Doğada hiper komünikasyon milyonlarca senedir başarılı bir şekilde uygulandı. Böceklerin organize hayat akışları bunu çarpıcı bir biçimde kanıtlıyor. Modern insan bunu sadece çok daha sübtil bir seviyede “önsezi” olarak biliyor. Ama bizde, ondan yeniden bütünüyle faydalanabiliriz. Doğadan bir örnekle, bir kraliçe arı kolonisinden uzak düştüğü zaman, geride kalan işçi arılar planlarına göre gayretli bir şekilde yapımlarına devam ediyorlar. Oysa, eğer kraliçe arı öldürülürse kolonideki bütün işler duruyor. Hiç bir arı ne yapacağını bilemiyor. Anlaşılan, kraliçe arı ”yapım planlarını” uzaktayken dahi toplumundakilere grup bilinci aracılığıyla aktarıyor. Hayatta olduğu sürece istediği kadar uzakta olsun. İnsanlarda, hiper komünikasyonla kişi aniden bilgi tabanı dışındaki bir bilgiye erişim sağladığında karşılaşılıyor. Bu hiper komünikasyon o zaman ilham yada önsezi olarak deneyimleniyor (trance challenging de aynı şekilde). Örneğin İtalyan besteci Giuseppe Tartini rüyasında bir gece bir şeytanın başucunda oturduğunu ve keman caldığını gördü. Ertesi sabah Tartini parçayı hafızasından oldugu gibi yazabildi. Ona the Devil’s Trill Sonata (Şeytan Sonatı) adını verdi. 42 yaşında bir erkek hemşire senelerce rüyasında bir çeşit bilgi CD-ROM’una bağlı olduğunu gördü. Düşünülebilen bütün alanlardan doğrulanabilir bilgiler ona aktarıldı ve sabah hatırlayabildi. O kadar yoğun bir bilgi akışı vardı ki sanki bütün bir ansiklopedi o gece aktarılmıştı. Bilgilerin çoğu onun kişisel bilgi tabanı dışındaydı ve hakkında hiç bir bilgisi olmadığı teknik detaylara kadar uzanıyordu. Hiper komünikasyon oluştuğunda, kişi DNA da, insanda olduğu gibi mucizevi fenomen gözlemleyebilir. Rus bilimciler DNA örneklerini lazer ışığıyla ışınladılar. Ekranda tipik bir dalga modeli oluştu. DNA örneğini kaldırdıklarında dalga modeli kaybolmadı ve kalmaya devam etti. Bir çok kontrollü deney şekilin kaldırılmış örnekten gelmeye devam ettiğini gösterdiler, anlaşılan enerji alanı kendiliğinden geride kalmaya devam ediyordu. Bu etkiyi şimdi fantom DNA etkisi deniyor. Zaman ve mekan dışında enerjinin DNA kaldırıldıktan sonra aktive edilmiş solucan deliklerinden akmaya devam ettiği tahmin ediliyor. İnsan hiper komünikasyonundaki en çok karşılaşılan yan etkiler ilgili kişinin çevresindeki açıklanamayan elektromanyetik alanlar. CD çalar gibi elektrikli aletlerin etkilenip saatlerce çalışmadığı olabiliyor. Elektromanyetik alan yavaşça yok olmasıyla beraber aletler tekrar normal çalışmaya başlıyor. Bir çok şifacı ve fizikçi bu alanı çalışmalarından dolayı biliyorlar: ortam ve enerji ne kadar iyi olursa, o anda çalışmayı durmasıyla beraber kayıt cihazları için daha zor olabiliyor. Çoğu zaman ertesi sabah herşey normale dönmüş oluyor. Bunu okumak çoğu kişiyi rahatlatıcı olabilir, çünki bu onların teknik olarak beceriksiz olmaları anlamına gelmediği, onların hiper komünikasyonda iyi olmaları anlamına geliyor. Grazyna Gosar ve Franz Bludorf Vernetzte Intelligenz kitaplarında kesin ve açık bir şekilde bu bağlantıları açıklıyorlar. Yazarlar ayrıca erken dönemlerde insanlığın tıpkı hayvanlar gibi, çok güçlü bir şekilde grup bilincine bağlı olduğu ve bundan dolayı grup olarak hareket ettiğini, varsayan kaynaklardan alıntı yapıyorlar. Oysa bireyselliği geliştirmek ve deneyimlemek için biz insanların hiper komünikasyonu neredeyse tamamen unutmak zorundaydık Şimdi biriysel bilincimizde oldukça stabil iken, zorlanmadan yada bu bilgiyle ile ilgili ne yapacağımıza dair uzaktan kontrol edilmeden DNA’mızla bütün bilgiye erişim sağlayabileceğimiz yeni bir grup bilinci şekli oluşturabiliriz. Şuan biliyoruz ki interneti kullanınca, DNA’mız doğru bilgiyle ağı besler, ağdan veri alabilir, ve ağdaki diğer katılımcılarla bağ kurabilir. Uzaktan terapi, telepati yada “uzaktan hissedebilme” bu şekilde açıklanabilir. Kimi hayvanlar sahiplerinin eve dönmeyi düşündüklerini uzaktan bilebiliyorlar. Bu henüz grup bilinci ve hiper komünikasyonla kavramlarıyla yorumlanabilir ve açıklanabilir. Belirgin bir bireysellik olmadan hiçbir kolektif bilinç anlamlı bir biçimde kullanılamaz, yoksa kolay manipüle edilebilir bir sürü içgüdüsüne geri dönüyor olurduk. Yeni milenyumdaki hiper komünikasyon tamamen farklı bir anlama geliyor. Araştırmacılar bireyselleşmiş insanlar tekrar grup bilincini yeniden elde ederse, yaratmak değiştirmek ve şekillendirmek için ilahi bir gücünün olacağını düşünüyor. VE insanlık kitlesel bir şekilde yeni bir grup bilincine doğru ilerliyor. Sistem herkesi bir araya topladığından ve kişilerin buna uyum sağlamasını beklemesinden dolayı çocukların yüzde ellisi okula gitmeye başladıkları andan itibaren bir sorun olacaklar. Bugünün çocuklarının bireysellikleri o kadar güçlü ki uyum sağlamakta direnecekler ve her şekilde kişisel özelliklerinden vazgeçmekte direnecekler. Aynı zamanda her geçen gün durugörülü doğan çocukların sayısı artıyor. Bu çocuklarda bir şeyler bu yeni grup bilincine doğru çabalıyor ve daha fazla bastırılamıyor. Bir kural olarak, örneğin hava sadece bir birey tarafından etki altına alınamaz. Ama grup bilinci tarafından etkilenebilir (kimi yerli kavimlere göre bu yeni bir şey değil. Hava Dünya rezonans frekansları (Schumann frekansları) tarafından güçlü bir şekilde etkileniyor. Aynı frekanslar bizim beyinlerimiz tarafından da oluşturuluyor, yada birçok kişi düşüncelerini senkronize ettikleri zaman yada bireyler (maneviyatta ilerlemişler, örnek olarak) düşüncelerini lazer benzeri bir biçimde odaklandırdıklarında, bu durumda hava üzerinde etkili olabilmeleri şaşılacak bir şey değil. Grup bilinci oluşturan günümüzün bir uygarlığının çevresel sorunu yada enerji yetersizliği olmaz, çünkü eğer birleşik bir medeniyet olarak bu tarz zihinsel güçleri kullanacak olsalar kendi gezegeninin enerjilerini doğal olarak kontrollerinde olurdu. Çok sayıda insan iyi bir niyet için örneğin barış üzerinde tefekkür etmek gibi, bir araya geldiklerinde - aynı zamanda şiddet potansiyeli de yok olur. Anlaşılan, DNA normal beden ısısında çalışabilen organik bir süperiletken olduğu gibi aynı zamanda görev yapabilmesi için 200 ve 140 arası A C gibi aşırı derecede düşük ısılar gerektiren yapay süperiletkenlerle de çalışıyor. Buna ek olarak, bütün süperiletkenler ışık ve böylece bilgi saklayabiliyorlar. Bu ayrıca DNA’nin nasıl bilgiyi saklayabildiğini açıklıyor. DNA ve solucan deliklerine ilişkilendirilen başka bir fenomen daha var. Normalde, bu aşırı küçük solucan delikleri son derece dengesiz ve sadece saniyenin çok kısa bir süresi var oluyorlar. Sağlam solucan delikleri belirli şartlar altında kendilerini organize edebiliyor, örneğin yerçekimini elektriğe dönüştürebilecek kendine özgü boşluk alanları yaratıyor. Boşluk alanları kendiliğinden ışık yayan iyonize edilmiş ve önemli miktarda enerji içeren gaz toplarıdır. Rusyada sıklıkla bu tarz ışıyan topların görüldüğü bölgeler var. Bunu takip eden karışıklıktan dolayı Ruslar büyük çaplı araştırma programları başlattılar ve nihayetinde kimi yukarıda belirtilen keşiflere neden oldu. Çok kişi boşluk alanlarını gökyüzündeki parlak balonlar olarak biliyor. Dikkatli kişi onlara hayretle bakarak kendine onların ne olabileceğini sorar. “Hey yukarida ki. Eğer bir UFO isen, üçgen şeklinde uç” diye düşünmüştüm bir keresinde. Ve aniden, ışık topları üçgen şeklinde hareket ettiler. Yada bir buz hokeyi topu gibi gökyüzünde boyunca atıştılar, sıfırdan başlayarak sessizce yüksek hızlara çıkarak. Bakakalarak bende, birçokları gibi onların UFO olabileceğini düşünmüştüm. Beni memnun etmek için üçgen şeklinde uçmalarından dolayı, dostane birileriydi anlaşılan. Ruslar boşluk alanlarının çoğunlukla görüldüğü bölgelerde kimi zaman ışık topu gibi yerden yukarıya gökyüzüne doğru uçtuklarını keşfettiler. O zamandan sonra boşluk alanlarının, beynimiz tarafından da oluşturulan, düşük dalga frekansları yaydıkları keşfedildi ve bu dalgaların benzerliğinden dolayı bizim düşüncelerimize tepki verebiliyorlar. Heyecan verici olsada yerdeki bir tanesiyle karşılaşmak çok iyi bir fikir olmayabilir çünkü bu ışık topları muazzam bir enerji içerebilirler ve bizim genlerimizi mutasyona uğratma kapasitesine sahipler. Bir çok ruhani eğitmen derin meditasyon yada enerji çalışması esnasında bu tarz, kesinlekle hoş duygulara neden olan ve hiç zarara neden olmayan, görünebilir ışık topları yada sütunları oluşturabiliyorlar. Anlaşılan bu boşluk alanının içsel düzenine, kalitesi ve orijine de bağlı. Örnek olarak genç ‘Englishman Ananda’ gibi kimi ruhani eğitmenlerde ilk başta hiçbir şey görünmüyor ama o oturup konuşuyorken yada hiper komünikasyonla meditasyon yapıyorken fotoğraf çekmeye çalıştığınızda sadece sandalye üzerinde bir beyaz bulutun resmi çıkıyor. Kimi, Dünya şifa projelerinde olduğu gibi, bunun gibi ışık etkileri fotoğraflarda da görülebiliyor. Basitçe söylemek gerekirse, bu fenomen solucan deliklerinin daha sağlam şekillerinden olan yerçekimi ve anti yerçekimi kuvveleriyle ve bizim zaman ve mekan strüktürümüz dışındaki enerjilerin hiper komünikasyon görüntüleriyle ilgili. Bu hiper komünikasyon ve görünür boşluk alanlarını deneyimleyen önceki jenerasyondakiler onlardan önce bir meleğin belirdiğine inanıyorlardı, ve biz hangi bilinc şekillerine hiper komünikasyon kullanarak erişim sağlayabileceğimizden emin olamayız. Varlığına dair bilimsel bir kanıtları olmadığı için, bu tarz deneyimler yaşayan kişiler halüsinasyondan mağdur DEĞİLLER. Hakikatımızı algılamada büyük bir adım daha attık. Resmi bilim dünyadaki yerçekimi anomalilerinin boşluk alanlarının oluşumunda katkıda bulunduğunu biliyor. Roma’nın güneyinde, Rocca di Papa’da yerçekim anomalilerine rastlandı. Bütün bilgi ‘Vernetzte Intelligenz’ Grazyna Fosar ve Franz Bludorf tarafından yazılan kitaptan, ISBN 3930243237 Barbael tarafından özetlenmiş ve yorumlanmış. Kitap maalesef şuan sadece almanca olarak var. Yazarlara buradan ulaşabilirsiniz: Kontext - Forum for Border Science www.fosar-bludorf.com Çeviren : Hülya Altınkaya Makalenin tamamı İngilizce olarak Kontext websitesinde görüntülenebilir. www.fosar-bludorf.com/index_eng.htm www.okyanusum.com

http://www.biyologlar.com/dnanin-titresimsel-davranislari-

Damarlarımız Ve Nitrik Oksit(NO)

Birçok insanın hayatı boyunca adını birkaç kez duyduğu ancak ne olduğunu tam olarak bilmediği bu bileşim, insan hayatının devam etmesine vesile olan çok önemli maddelerden birisidir. Nitrik oksit (NO); nitrojenin oksitlenmesiyle elde edilen, renksiz, zehirli bir gaz olarak tanımlanır. Bir nitrojen ile bir oksijen atomunun bileşiminden meydana gelen bir moleküldür. Son yirmi yılda yapılan yoğun araştırmalar, bu molekülün hücreler arası haberleşmede temel bir görev üstlendiğini ortaya çıkarmıştır. Nitrik oksit, insan vücudunda doğal olarak üretilen bir hormon, yani kimyasal bir habercidir; sinir, dolaşım, savunma, solunum ve üreme sistemlerinin hayati fonksiyonlarının düzenlenmesinde stratejik bir rol oynamaktadır. Nitrik oksidin çok önemli bir görev üstlendiği yerlerden biri de damarlarımızdır. Mükemmel molekül nitrik oksit sayesinde, vücudun farklı ortamlara göre değişen ihtiyaçları otomatik olarak sağlanır. Kan damarlarının, spor yaparken genişleyerek artan kan ihtiyacını sağlaması veya yaralanma sonrasında daralarak kanamayı azaltması sözü edilen kusursuz sistemin bir sonucudur. Nitrik Oksitin Damarlardaki Görevi Nasıl Keşfedildi? 1998 yılında Nobel Fizyoloji ve Tıp Ödülü'nü paylaşan üç bilim adamı, kanda bulunan nitrik oksit (NO) adlı molekülün damarda gevşetici bir etkisi olduğunu keşfetmişlerdir. Peki, bu molekülün yaptığı etki insana ne kazandırıyordu? Bu sorunun cevabı çok kısa ve net olmuştur. Hayatta kalmak. Çünkü nitrik oksit iki hayati organımız olan beynimiz ve kalbimizin çalışmasında düzenleyici rol oynar. Bu düzenleyici rolünü, kanın damarlarda rahat bir şekilde akmasını ve tüm organlarımızda rahat bir şekilde dolaşmasını sağlayarak gerçekleştirir. Böylece kan akışını düzenleyip rahatlattığı için beyin kanaması ve kalp krizi riski düşer. Kaslar Nasıl Çalışıyor? - Uyarı iletici veya hormon, atardamar üzerinde bulunan alıcılara bağlanır. Bu bağlanmanın ardından nitrik oksit (NO) açığa çıkar. - Endotel tabakadaki NO molekülleri düz kaslara doğru ilerler ve burada guanil siklaz (GC) enzimini harekete geçirirler. - GC, guanozin trifosfatı (GTP) siklik guanozin monofosfata çevirir (cGMP). - cGMP, kalsiyum iyonlarının hücredeki depo alanlarına gitmesine neden olur. Azaltılmış konsantrasyonlu kalsiyum iyonları (Ca++), aktin ve miyozinin kayarak birbirlerinden ayrılmalarını sağlayan hücresel reaksiyonları gerçekleştirir. - Düz kas hücreleri gevşer. - Kan damarları genişler. Nitrik oksit molekülünün hızı, günümüzün internet teknolojisiyle veya "e-mail" yoluyla iletişim kurmayı çağrıştırmaktadır. Gerçekten de nitrik oksit, adeta elektronik posta sistemi gibi hareket etmekte; büyük bir süratle çok sayıda mesajı yerlerine iletmektedir. Nitrik Oksit Nasıl Üretilir? İnsan yaşamı için hayati bir önem taşıyan nitrik oksidin üretim merkezi, endotel hücresidir. İsmi L-arjinin olan bir amino asit, nitrik oksit sentez enzimi, nikotinamid adenin dinükleotid fosfat, kalmodulin, oksijen, flavin mononükleotid, flavin adenin dinükleotid, tetrahidrobiyopterin… Bu kelimelerin büyük bir çoğunluğunu hayatınızda ilk defa duyuyor olabilirsiniz. Ancak endotel hücresi bu mikroskobik maddeleri çok iyi tanır ve bunları nitrik oksit molekülünü üretmek için kullanır. Endotel hücresi, nitrik oksit molekülünü üretmek için hangi kimyasal maddeden ne oranda kullanması gerektiğini çok iyi bilir. Yanlış veya hatalı bir üretim söz konusu olmaz. Örneğin, nitrik oksit (NO) yerine güldürücü gaz olarak bilinen nitröz oksit (N2O) üretmez. Nitrik oksit üretiminde çok hassas dengeler mevcuttur. Sözü edilen hücreler hayatımızın her anında üretim için hazır durumdadır; ihtiyaç baş gösterdiğinde hemen devreye girerek üretime başlarlar. Damarlarımızın derinliklerindeki bu olağanüstü fabrikaların istenmeyen zararlı yan ürünleri yoktur. Küresel ısınma, asit yağmurları, çevre kirliliği gibi dünya gündemindeki pek çok sorunun kimyasal atıklardan kaynaklandığı düşünülürse, endotel hücrelerinin ne kadar başarılı bir üretim tesisi olduğu daha iyi anlaşılır. Çünkü nitrik oksit molekülleri 10 saniye gibi kısa bir süre içinde görevlerini tamamlayarak "parçalanırlar". Böylece vücutta birikerek zararlı yan etkiler meydana getirmezler. Tüm bunlar şu anlama gelir ki, endotel hücreleri kimyasal mamullerin üretiminde, olabilecek en ideal yöntemi kullanırlar. Endotel hücreleri gerekenden az haberci üretseydi damarlarımız daralır, kan basıncımız hızla yükselir, bu da kalp krizine yol açardı. Fazla üretim yapması durumundaysa, damarlarımız aşırı genişler, kan basıncımız düşer, bu da şok durumuna neden olurdu. ...Alıntıdır...

http://www.biyologlar.com/damarlarimiz-ve-nitrik-oksitno

Boy Uzamasını Belirleyen Gen

Harvard ve Oxford üniversitelerinin katkılarıyla yapılan bir araştırmada, insanlarda boyu belirleyen gen bulundu. 35 bin kişinin DNA'larını inceleyen uzmanlar, bazı insanların diğerlerinden daha uzun olmasının nedeninin genetik şifrelerinde yer alan tek bir harfte kaynaklandığını ortaya çıkardı. Araştırmaya göre, boyu belirleyen "HMGA2" adlı genin, şifresinde T yerine C harfi bulunan bir kopyasının çocuğa geçmesi halinde, bu kişinin boyunun yarım santimetre daha uzun olacağı anlamına geliyor. Tüm DNA'lar adenin (A), sitozin (C), guanin (G), ve timin (T) olarak adlandırılan temel yapı taşlarının farklı dizilimlerinden oluşuyor. İlk defa, boyu etkileyen tek bir gen keşfedildi. Ortalama beyazların dörtte biri, genin iki farklı 'uzun' genetik şifresini taşıyacaklar. Diğer dörtte biri ise iki 'kısa' genetik şifreyi taşıyacaklar. 5 bin beyaz gönüllü hastanın DNA örneklerini inceyen Harvard Üniversitesi, Boston Çocuk Hastanesi ile İngiliz araştırmacılar, HMGA2 adlı genin çok etkin bir rol taşıdığını belirlediler. Bilim adamlara, ayrıca bir genetik şifrenin değişmesiyle, vücüdun gelişiminde büyük bir fark yaratılabileceğini söylediler. 'Nature Genetics' dergisinde yayımlanan haberde, araştırma sorumlusu Joel Hirshhorn, "uzunluk çok karışık bir özellik, genetik ve genetik olmayan faktörler içeriyor. Genetik çerçeve hakkında bizim için değerli bir ders olucak. Ayrıca bu araştırmanın diyabet, kanser ve insan hastalıklarınada faydalı olacağını düşünüyoruz" şeklinde yorumladı. 2005'de yayımlanan bir araştırmada, HMGA2'nin tümör oluşumunuda etkileyebileceği ve uzun boylu insanların kanser olma ihtimallinin daha yüksek olduğu açıklanmıştı.

http://www.biyologlar.com/boy-uzamasini-belirleyen-gen

Restriksiyon enzimi

Restriksiyon enzimi veya restriksiyon endonükleazı çift zincirli DNA moleküllerindeki belli nükleotit dizilerini tanıyan ve her iki zinciri birlikte kesen bir enzim türüdür.[1][2][3] Bu özel enzimler, bakteri ve arkelerde bulunurlar ve virüslere karşı bir savunma mekanizmasına aittirler. [4][5] Konak bakteri hücresinde restriksiyon enzimleri seçici olarak yabancı DNA'ları keserler; konak DNA'yı restriksiyon enziminin etkinliğinden korunmak için bir değiştirme (modifikasyon) enzimi (bir metilaz) tarafından metillenir. Bu iki süreç toplu olarak restriksiyon modifikasyon sistemi olarak adlandırılır.[6] Bir restriksiyon enzimi DNA'yı kesmek için DNA çift sarmalının her şeker-fosfat omurgasından (yani her zincirden) birer kere olmak üzere iki kesme yapar. Keşifleri İlk restriksiyon enzimi HindIII'ün saflaştırılmasını[7] takiben pekçok başka restriksiyon enzimi keşfedilmiş ve karakterize edilmiştir.[8] 1978'de Daniel Nathans, Werner Arber ve Hamilton Smith restriksiyon enzimini keşiflerinden dolayı Nobel Tıp Ödülünü almışlardır. [9] Bu keşifleri rekombinant DNA teknolojisinin gelişimine öncülük etmiş, bunun sayesinde örneğin insülinin büyük miktarlarda üretimi için E. coli bakterisi kullanılabilmiştir.[10] 3000 üzerinde restriksiyon enzimi detaylı olarak çalışılmıştır, bunlardan 600'den fazlası ticari olarak elde edilebilir.[11] Bu enzimler laboratuvarlarda DNA modifikasyon ve maniplasyonlarında rutin olarak kullanılmaktadırlar.[12][13][14] Tanıma bölgesi Restriksiyon enzimleri spesifik bir nükleotit dizisi tanır [2] ve DNA'da çift zincirli bir kesik oluşturur. Tanıma dizilerinin uzunluğu 4 ila 8 nükleotit olup, çoğu palindromiktir, yani DNA'daki azotlu bazların dizisi ileri ve geri aynı okunur.[15] Teorik olarak DNA'da iki çeşit palindromik dizi olabilir. Yansımalı palindrom normal metinlerdeki gibi olur, aynı DNA dizisi üzerindeki dizinin normal ve tersten okunuşu aynı olur (örneğin GTAATG gibi). Evirtik (İng. inverted) tekrarlı palindrom da iki yönden aynı okunur ama ileri ve geri diziler komplemanter dizilerde yer alır. Örneğin GTATAC dizisinde olduğu gibi, bu dizinin komplemanter dizisi tersten okununca CATATG elde edilir.[16] Evirtik tekrarlar restriksiyon enzimlerinde daha yaygındır ve yansımalı palindromik dizilerden daha önemli biyolojik role sahiptir. EcoRI retriksiyon enziminin yaptığı kesme "yapışkan" uçlar üretir, EcoRI restriction enzyme recognition site.svg buna karşın SmaI retriksiyon enziminin yaptığı kesme "küt" uçlar üretir SmaI restriction enzyme recognition site.svg Her restriksiyon enzimi için DNA'daki tanıma bölgeleri farklıdır, kesim sonucu meydana gelen yapışkan ucun iplik uzantısının uzunluğu, dizisi ve zincir yönü (5' veya 3' yönünde) farklılıklar üretir. [17] Aynı diziyi tanıyan farklı tanıma enzimleri neoşimerler olarak bilinir. Bunlar çoğunlukla diziyi iki farklı yerden keserler; eğer hem tanıma dizileri hem de kesme yerleri aynıysa bu enzimler izoşizomer olarak adalandırılır. Bakteriler ürettikleri restriksiyon enzimlerinin kendi DNA'larını kesmemesi için, DNA metilazasyonu yoluyla nükleotitlerini değiştirerek (modifiye ederek) korurlar.[4] Tipler Restriksiyon endonükleazlar üç[18][19] veya dört[20][21][22] genel grupta kategorize edilirler (Tip I, II ve III), bileşenleri, enzim kofaktör gereksinimleri, hedef dizilerinin özellikleri ve DNA kesim yerinin hedef diziyle ilişkisine bağlı olarak. Tip I İlk keşfedilen restriksiyon enzimleri Tip I restriksiyon enzimleri olmuştur ve bunlar E. colinin iki farklı suşuna (K-12 ve B) özgüdürler.[23] Bu enzimler tanıma bölgelerinden en azından 1000 baz çifti uzaklıktaki farklı bölgeleri keserler. Tanıma bölgesi asimetriktir ve 6-8 nükleotitlik bir boşlukla ayrılan iki kısımdan oluşur, biri 3-4 nükleotit içeren ve diğeri 4-5 nükleotit içeren. S-Adenozil metyonin (AdoMet), adenozin trifosfat (ATP) ve magnezyum iyonları (Mg2+) gibi birkaç enzim kofaktörü bu enzimlerin etkinliği için gereklidir. Tip I restriksiyon enzimleri, HsdR, HsdM ve HsdS olarak adlandırılan üç altbirime sahiptirler; HsdR kesme için; HsdM konağın DNAsına metil grupları eklemek için; ve HsdS metiltransferaz etkinliğine ek olarak, tanıma bölgesinin kesim özgüllüğü için gereklidirler.[18][23] Tip II Tip II enzimler tip I enzimlerden birkaç yönden farklıdır. Tek tip proteinden oluşmuş dimer yapıya sahiptirler; tanıma bölgeleri genelde bölünmüş değildir, palindromiktir ve 4-8 nükleotit uzunluktadır; DNA'yı tanıdıkları ve kestikleri yer aynıdır; etkinlikleri için ATP veya AdoMet'e gerek göstermezler, kofaktör olarak genelde sadece Mg2+ gereksinimleri vardır. 1990'lar ve 2000'lerde bu enzim sınıfının tüm özelliklerin taşımayan yeni enzimler keşfedildiği için bu büyük enzim ailesini alt sınıflara ayıran yeni bir adlandırma sistemi geliştirildi.[15] Bu altgruplar bir sonek harf ile belirtilir. Tip IIB restriksiyon enzimleri (örneğin BcgI and BplI) mültimeriktir, yani birden çok altbirimden oluşur.[15] DNA'yı tanıma dizisinin iki tarafından kesip çıkarırlar. Kofaktör olarak hem AdoMet hem de Mg2+ gereksinirler. Tip IIE restriksiyon endonükleazları (örneğin NaeI) tanıma dizilerinden iki kopyası ile etkileştikten sonra DNA'yı keserler.[15] Bir tanıma dizisi kesme hedefi olarak etkir, öbürü ie enzimin kesme verimini artıran, yani hızlandıran bir alosterik unsur olarak etkir. Tip IIF enzimler (örneğin NgoMIV) Tip IIE enzimlere benzer, onlar da tanıma dizilerinin iki kopyası ile etkileşir, ama ikisi birden keser.[15] Tip IIG enzimler (Eco57I gibi) tek bir altbirime sahiptir, klasik Tip II restriksiyon enzimleri gibi, ama etkin olmak için AdoMet kofaktörüne gerek duyarlar.[15] Tip IIM restriksiyon endonükleazları, DpnI gibi, metillenmiş DNA'yı tanıyıp kesebilirler.[15] Tip IIS restriksiyon enzimleri (FokI gibi) palindromik olmayan asimetrik tanıma dizilerinden beli bir uzaklıkta keserler.[15] Bu enzimler dimer olarak çalışabilir. Benzer olarak, Tip IIT restriksiyon enzimleri (örneğin Bpu10I ve BslI) iki farklı altbirimden oluşur. Bazıları palindromik dizileri tanır, bazılarının tanıma dizileri ise asimetriktir.[15] Tip III Tip III restriksiyon enzimleri (örneğin EcoP15) birbirine dönük olan iki ayrı, palindromik olmayan dizi tanırlar. DNA'yı tanıma yerinden 20-30 baz uzakta keserler.[25] Bu enzimler birden çok altbirime sahiptir; DNA metilasyonu ve restriksiyonu için, sırasıyla, AdoMet ve ATP kofaktörlerine gerek duyarlar.[26] Tip IV Tip IV restriksiyon enzimleri metillenmiş DNA'yı keser. Bunlar iki farklı altbirimden oluşur. DNA kesimi için Mg2 ve GTP kofaktör olarak gereklidir. Tanıma yeri iki parçalıdır. Metillenmiş bazlar arasında birden fazla kesim olur.[21] Yapay Restriksiyon Enzimleri Yapay restriksiyon enzimleri üretmek için doğal ve tasarımlı bir DNA bağlayıcı bölge ile bir nükleaz bölgesi (genelde FokI restriksiyon enziminin kesme bölgesi) birleştirilir.[27] Bu tür yapay restriksiyon enzimleri arzu edilen DNA dizilerini tanıyabilecek şekilde tasarlanabilir, ayrıca tanıma bölgelerinin uzunluğu 36 baz çifti uzunluğa varabilir.[28] Çinko parmak nükleazlar yapay restriksiyon enzimlerinin en yaygın kulanılanlarıdır, genelde genetik mühendislik[29][30][31][32] ve standart gen klonlama uygulamalarında da[33] Other artificial restriction enzymes are based on the DNA binding domain of TAL effectors.[34][35] kullanılırlar. 1970'lerde keşfedilmelerinden beri çeşitli bakterilerde yüzlerce restriksiyon enzimi tespit edilmiştir. Her enzim elde edildiği bakteriye göre adlandırılır, bakterinin cinsi, türü ve suşuna dayalı bir adlandırma sistemine göre.[36][37] Örneğin EcoRI restriksiyon enziminin adı yandaki kutuda açıklandığı şekilde türetilmiştir. Uygulamalar Saflaştırılmış restriksiyon enzimleri çeşitli bilimsel uygulamalardaki DNA manipülasyonlarında kullanılır. restriksiyon enzimleri gen klonlaması ve protein ifadesi deneylerinde, Plazmit vektörlerlerin içine genler sokmak için kullanilirlar. Gen klonlama deneylerinde kullanılan plazmitlerde genelde kısa bir "çoklu bağlayıcı" dizi (İng. polylinker; çoklu klonlama yeri) bulunur. Gen parçalarını plazmit vektörün içine sokarken bu diziler kolaylık sağlar; genin içinde doğal olarak bulunan restriksiyon yerleri DNA'yı kesmek için kullanılacak endonükleaz seçimini etkiler, çünkü arzu edilen DNA'ya zarar vermeden onun uçlarının kesilmesi gerekmektedir. Bir gen parçasının bir vektörün içine klonlamak için hem plazmit DNA'sı hem de gen parçası aynı restriksiyon enzimi ile kesilir, sonra bunlar DNA ligaz olarak adlandırılan bir enzimle birbirlerine yapıştırılır.[38][39] Restriksiyon enzimleri DNA'da bulunan tek baz değişikliklerini (tek nükleotit polimorfizmleri, veya "SNP"leri) spesifik olarak tanıyarak gen alellerini ayırdetmekte kullanılırlar.[40][41] Bunun için o alelde bulunan bir restriksiyon yerinin bir SNP tarafından değişikliğe uğraması gerekmektedir. Bu yöntemle, bir DNA numunesini dizilemeden, bir retriksiyon enzimi ile onu genotiplemek mümkün olur. Numune önce DNA parçaları oluşturacak şekilde restrilksiyon enzimi ile sindirilir, sonra farklı büyüklükteki parçalar jel elektroforezi ile ayrıştırılır. Genelde, doğru restriksiyon yerine sahip olan aleller jelde iki görünür bant meydana getirir, değişlikliğe uğramış restriksiyon yeri olan parçalar ise kesilmezler ve sadece bir bant oluştururlar. Bant sayısı kişinin genotipini gösterir. Bu işlem bir restriksiyon haritalaması örneğidir. Benzer şekilde, restriksiyon enzimleri Southern blot yöntemiyle genomik DNA'nın kesilmesinde kullanılır. Bu yöntem ile, bir kişinin genomunda bir genin kaç kopyası (veya paralogu) olduğu belirlenebilir. Bu yöntemin bir diğer uygulamasında belli bir toplulukta kaç tane gen mutasyonu (polimofizmi) olduğu belirlenebilir, buna restriksiyon parçası uzunluk polimorfizmi (İng. restriction fragment length polymorphism, RFLP) denir.[42] ^ Roberts RJ (November 1976). "Restriction endonucleases". CRC Crit. Rev. Biochem. 4 (2): 123–64. PMID 795607. ^ a b Kessler C, Manta V (August 1990). "Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3)". Gene 92 (1-2): 1–248. doi:10.1016/0378-1119(90)90486-B. PMID 2172084. ^ Pingoud A, Alves J, Geiger R (1993). "Chapter 8: Restriction Enzymes". Burrell, Michael. Enzymes of Molecular Biology. 16. Totowa, NJ: Humana Press. ss. pages 107-200. ISBN 0-89603-234-5. ^ a b Arber W, Linn S (1969). "DNA modification and restriction". Annu. Rev. Biochem. 38: 467–500. doi:10.1146/annurev.bi.38.070169.002343. PMID 4897066. ^ Krüger DH, Bickle TA (September 1983). "Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts". Microbiol. Rev. 47 (3): 345–60. PMC =pmcentrez 281580. PMID 6314109. ^ Kobayashi I (September 2001). "Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution". Nucleic Acids Res. 29 (18): 3742–56. doi:10.1093/nar/29.18.3742. PMC =pmcentrez 55917. PMID 11557807. ^ Roberts RJ (April 2005). "How restriction enzymes became the workhorses of molecular biology". Proc. Natl. Acad. Sci. U.S.A. 102 (17): 5905–8. doi:10.1073/pnas.0500923102. PMC =pmcentrez 1087929. PMID 15840723. ^ Danna K, Nathans D (December 1971). "Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae". Proc. Natl. Acad. Sci. U.S.A. 68 (12): 2913–7. doi:10.1073/pnas.68.12.2913. PMC =pmcentrez 389558. PMID 4332003. ^ "The Nobel Prize in Physiology or Medicine". The Nobel Foundation. 1978. Erişim tarihi: 2008-06-07. ^ Villa-Komaroff L, Efstratiadis A, Broome S, Lomedico P, Tizard R, Naber SP, Chick WL, Gilbert W. (August 1978). "A bacterial clone synthesizing proinsulin". Proc. Natl. Acad. Sci. U.S.A. 75 (8): 3727–31. PMC =pmcentrez 392859. PMID 358198. ^ Roberts RJ, Vincze T, Posfai J, Macelis D. (2007). "REBASE--enzymes and genes for DNA restriction and modification". Nucleic Acids Res 35 (Database issue): D269-70. doi:10.1093/nar/gkl891. PMID 17202163. ^ Primrose, Sandy B.; Old, R. W. (1994). Principles of gene manipulation: an introduction to genetic engineering. Oxford: Blackwell Scientific. ISBN 0-632-03712-1. ^ Micklos, David A.; Bloom, Mark V.; Freyer, Greg A. (1996). Laboratory DNA science: an introduction to recombinant DNA techniques and methods of genome analysis. Menlo Park, Calif: Benjamin/Cummings Pub. Co. ISBN 0-8053-3040-2. ^ Adrianne Massey; Helen Kreuzer (2001). Recombinant DNA and Biotechnology: A Guide for Students. Washington, D.C: ASM Press. ISBN 1-55581-176-0. ^ a b c d e f g h i Pingoud A, Jeltsch A (September 2001). "Structure and function of type II restriction endonucleases". Nucleic Acids Res. 29 (18): 3705–27. doi:10.1093/nar/29.18.3705. PMC =pmcentrez 55916. PMID 11557805. ^ Molecular Biology: Understanding the Genetic Revolution, by David P. Clark. Elsevier Academic Press, 2005. ISBN 0-12-175551-7. ^ Goodsell DS (2002). "The molecular perspective: restriction endonucleases". Stem Cells 20 (2): 190–1. PMID 11897876. ^ a b Bickle TA, Krüger DH (June 1993). "Biology of DNA restriction". Microbiol. Rev. 57 (2): 434–50. PMC =pmcentrez 372918. PMID 8336674. ^ Boyer HW (1971). "DNA restriction and modification mechanisms in bacteria". Annu. Rev. Microbiol. 25: 153–76. doi:10.1146/annurev.mi.25.100171.001101. PMID 4949033. ^ Yuan R (1981). "Structure and mechanism of multifunctional restriction endonucleases". Annu. Rev. Biochem. 50: 285–319. doi:10.1146/annurev.bi.50.070181.001441. PMID 6267988. ^ a b Rao DN, Sistla S (2004). "S-Adenosyl-L-methionine-dependent restriction enzymes". Crit. Rev. Biochem. Mol. Biol. 39 (1): -. doi:10.1080/10409230490440532. PMID 15121719. ^ Williams RJ (2003). "Restriction endonucleases: classification, properties, and applications". Mol. Biotechnol. 23 (3): -. PMID 12665693. ^ a b Murray NE (June 2000). "Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle)". Microbiol. Mol. Biol. Rev. 64 (2): 412–34. PMC =pmcentrez 98998. PMID 10839821. ^ PDB 1qps Gigorescu A, Morvath M, Wilkosz PA, Chandrasekhar K, Rosenberg JM (2004). "The integration of recognition and cleavage: X-ray structures of pre-transition state complex, post-reactive complex, and the DNA-free endonuclease". Alfred M. Pingoud. Restriction Endonucleases (Nucleic Acids and Molecular Biology, Volume 14). Berlin: Springer. ss. 137–178. ISBN 3-540-20502-0. ^ Dryden DT, Murray NE, Rao DN (September 2001). "Nucleoside triphosphate-dependent restriction enzymes". Nucleic Acids Res. 29 (18): 3728–41. doi:10.1093/nar/29.18.3728. PMC =pmcentrez 55918. PMID 11557806. ^ Meisel A, Bickle TA, Krüger DH, Schroeder C (January 1992). "Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage". Nature 355 (6359): 467–9. doi:10.1038/355467a0. PMID 1734285. ^ Kim YG, Cha J, Chandrasegaran S (February 1996). "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain". Proc. Natl. Acad. Sci. U.S.A. 93 (3): 1156–60. doi:10.1073/pnas.93.3.1156. PMC =pmcentrez 40048. PMID 8577732. ^ Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (September 2010). "Genome editing with engineered zinc finger nucleases". Nat. Rev. Genet. 11 (9): 636–46. doi:10.1038/nrg2842. PMID 20717154. ^ Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (May 2009). "High-frequency modification of plant genes using engineered zinc-finger nucleases". Nature 459 (7245): 442–5. doi:10.1038/nature07845. PMC =pmcentrez 2743854. PMID 19404258. ^ Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (May 2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases". Nature 459 (7245): 437–41. doi:10.1038/nature07992. PMID 19404259. ^ Ekker SC (2008). "Zinc finger-based knockout punches for zebrafish genes". Zebrafish 5 (2): 121–3. doi:10.1089/zeb.2008.9988. PMC =pmcentrez 2849655. PMID 18554175. ^ Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (July 2009). "Knockout rats via embryo microinjection of zinc-finger nucleases". Science 325 (5939): 433. doi:10.1126/science.1172447. PMC =pmcentrez 2831805. PMID 19628861. ^ Tovkach A, Zeevi V, Tzfira T (October 2010). "Expression, purification and characterization of cloning-grade zinc finger nuclease". J Biotechnol. doi:10.1016/j.jbiotec.2010.10.071. PMID 21029755. ^ Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (October 2010). "Targeting DNA double-strand breaks with TAL effector nucleases". Genetics 186 (2): 757–61. doi:10.1534/genetics.110.120717. PMC =pmcentrez 2942870. PMID 20660643. ^ Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (August 2010). "TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain". Nucleic Acids Res. doi:10.1093/nar/gkq704. PMID 20699274. ^ Smith HO, Nathans D (December 1973). "Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes". J. Mol. Biol. 81 (3): 419–23. doi:10.1016/0022-2836(73)90152-6. PMID 4588280. ^ Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SKh, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (April 2003). "A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes". Nucleic Acids Res. 31 (7): 1805–12. doi:10.1093/nar/gkg274. PMC =pmcentrez 152790. PMID 12654995. ^ Geerlof A. "Cloning using restriction enzymes". European Molecular Biology Laboratory - Hamburg. Erişim tarihi: 2008-06-07. [ölü/kırık bağlantı] ^ Russell, David W.; Sambrook, Joseph (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory. ISBN 0-87969-576-5. ^ Wolff JN, Gemmell NJ (February 2008). "Combining allele-specific fluorescent probes and restriction assay in real-time PCR to achieve SNP scoring beyond allele ratios of 1:1000". BioTechniques 44 (2): 193–4, 196, 199. doi:10.2144/000112719. PMID 18330346. ^ Zhang R, Zhu Z, Zhu H, Nguyen T, Yao F, Xia K, Liang D, Liu C (July 2005). "SNP Cutter: a comprehensive tool for SNP PCR-RFLP assay design". Nucleic Acids Res. 33 (Web Server issue): W489–92. doi:10.1093/nar/gki358. PMC =pmcentrez 1160119. PMID 15980518. ^ Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2002). Biochemistry. San Francisco: W.H. Freeman. ss. 122. ISBN 0-7167-4684-0. ^ Roberts RJ (January 1980). "Restriction and modification enzymes and their recognition sequences". Nucleic Acids Res. 8 (1): r63–r80. doi:10.1093/nar/8.1.197-d. PMC =pmcentrez 327257. PMID 6243774. ^ R.J Roberts, 1988, Nucl Acids Res. 16(suppl):271 From p.213 Molecular Cell Biology 4th Edition by Lodish, Berk, Zipursky, Matsudaira, Baltimore and Darnell. ^ a b c d e f g Monty Krieger; Matthew P Scott; Matsudaira, Paul T.; Lodish, Harvey F.; Darnell, James E.; Lawrence Zipursky; Kaiser, Chris; Arnold Berk (2004). Molecular Cell Biology. New York: W.H. Freeman and Company. ISBN 0-7167-4366-3. ^ "Stu I from Streptomyces tubercidicus". Sigma-Aldrich. Erişim tarihi: 2008-06-07. ^ Shimotsu H, Takahashi H, Saito H (November 1980). "A new site-specific endonuclease StuI from Streptomyces tubercidicus". Gene 11 (3-4): 219–25. doi:10.1016/0378-1119(80)90062-1. PMID 6260571.

http://www.biyologlar.com/restriksiyon-enzimi

Yeni Hücre Atlası: Bilinmeyen Organeller

Yeni Hücre Atlası: Bilinmeyen Organeller

Mitokondri, çekirdek, endoplazmik retikulum ve kloroplast… Bunları zaten biliyorsunuz. Peki diğerlerini? Hücreler, lise biyoloji derslerinde duyduklarınızdan çok fazlasını içeriyor. Hatta çok sıradışı olanlarını. Bu yazıda, daha önce duymadığınız, çoğu yeni keşfedilen organellere göz atacağız. Elbette, bu yazıda yer alan yapılar, içinizdeki mikro-evrenin sadece küçük bir alanını içeriyor.Her Gün Yeni Bir Hücre Yapısı Keşfediliyor! 2008 yılında California Üniversitesi’nden doktora öğrencisi Chalongrat Noree, oldukça zahmetli bir dizi deneyi gerçekleştirmek için kolları sıvadı. Mikroskop altında, binlerce farklı maya hücresini (Saccharomyces cerevisiae) inceledi. İncelediği her bir maya hücresi, floresans boyalarla etiketlenmiş farklı proteinler içeriyordu. Boya ile etiketli proteinler, mikroskop altında parıldıyor; bu sayede, Noree, hangi proteinin hücrede nerede toplandığını görebiliyordu. (Floresans boyalar ile daha fazla bilgiyi Çağrı Yalgın‘ın Bir tavşanı nasıl yeşil yeşil parlatırız? başlıklı yazısından edinebilirsiniz)Henüz çalışması yeni başlamasına rağmen, Noree, çeşitli proteinlerin hücre içinde daha önce görülmemiş kümeler, yollar ve benzeri yapılar oluşturduğunu gördü. O günkü çalışmaları Noree’nin danışmanı Jim Wilhelm ”Her hafta yeni bir hücre yapısı buluyorduk. Gerçekleştirdiğimiz deneyler her defasında kazandıran bir kumar makinesi gibi sonuç veriyor.” sözleri ile özetliyor. Hücreler Arası  İletişim HatlarıHücre biyolojisine yeni giriş yapan yapılardan biri, hücreler arası uzanan nanotüpler… Bu zarla kaplı yapıların ortaya çıkışı ise tamamen bir rastlantı. 2000 yılında Heidelberg Üniversitesi’nde tümör hücreleri üzerinde gerçekleştirilen bir çalışmada, hücre boyama işlemlerini yapan master öğrencisi Amin Rustom’un deney protokolünde bir basamağı atlaması sayesinde, bu nanotüpler görülür hale geliyor.Araştırma takımının 2004′te yayınladığı çalışmada, bu hatların, hücreler arasında, küçük organellerin taşındığı bir otoyol olduğu ortaya çıkıyor. Aynı yıl, İngiliz immünolog Daniel Davis, gerçekleştirdiği araştırma sonucunda bağışıklık hücrelerinin birbirine bu nanotüpler ile sinyal gönderebildiğini gösteriyor.İlerleyen çalışmalar, bu nanotüplerin, çok çeşitli memeli hücrelerinde olduğunu gösteriyor. Bunlar araştırmalar arasında en heyecan verici olanı akyuvarlar ile ilgili olanı. Buna göre, lenfositler bu nanotüpleri bir zıpkın gibi kullanarak, tümör hücrelerini kendilerine çekebiliyor. Ya da kanser hücrelerine “ölüm sinyalleri” yollayarak, tümörün kendini yoketmesini sağlayabiliyor.2010 yılında gerçekleştirilen başka bir çalışmaya göre, bu nanotüpler, aynı zamanda elektriksel sinyalleri de taşıyabiliyor. Bu sayede hücre göçü veya yara iyileşmesi sırasında hücreleri yönlendirebiliyor. HIV‘nin veya prionların (hastalık yapıcı proteinler) da bu nanotüplerden geçebildiği biliniyor.Hücre İçinde Endüstriyel DevrimHücreler, laboratuvarlarda çok maliyetli işlemleri kolaylıkla ve yüksek verimle gerçekleştirebiliyor. Bilim insanları bu metabolik olayların bu kadar “iyi” bir şekilde çalıştığını uzun zamandır inceliyor.Hücredeki bir çok malzemenin üretimi, birbirinden farklı onlarca enzimin beraber çalışmasına ihtiyaç duyuyor. Bir enzim, bir ürünün bir parçasını yaparken; bir diğeri bu parçayı, ürünün bütününe bağlıyor. Bir diğer enzim, oluşacak ürünün kararlılığını koruyor. Bir diğeri ise, ürünü test ediyor. Tıpkı, bir otomobil fabrikasında, üretim hattındaki farklı robotlar gibi… Bir robot, kaportayı yerine yerleştirirken, diğeri cıvatalarla kaportayı sabitliyor. Bir diğeri ise motoru takıyor.Ancak, hücreler 3 boyutlu… Ve fabrikalarda gördüğümüz gibi, düz şekilde hareket eden sabit bir sistem bulunmuyor. Bir enzim tarafından işlenen malzeme hücre içine bırakılıyor. Bu malzemenin, bir şekilde, sıradaki enzime gidip, sonraki işlemleri gerçekleştirmesi gerekiyor. Elbette, hücre içi (sitoplazma) oldukça kalabalık olduğundan, enzimler arasında sorunsuz şekilde yol almak pek kolay değil. Hücreler bu önemli sorunu oldukça basit bir şekilde çözüyor. Benzer görevlere sahip enzimleri bir araya toplayarak…Örnekle açıklayalım. Hücrelerin genetik bilgileri DNA’larında Adenin, Sitozin, Guanin ve Timin olarak moleküllerinin kombinasyonları ile kodlanır. Ki bu harflere nükleotit denir. Bu genetik harfleri de hücre kendisi üretebilir. Ancak, bu üretim bir çok enzimin beraber çalışmasını gerektirir. Her enzim, kendisine has olan bir görevi yerine getirir ve elindeki malzemeyi diğer bir enzime verir. Bu şekilde enzimden enzime atlayan ürün, sonuç olarak Adenin veya Guanin‘e dönüşür. 2008′de ABD Pennsylvania Eyalet Üniversitesi’nde, bu üretimi sağlayan onlarca enzimin bir araya gelerek bir küme oluşturduğu keşfedildi. Purinosome adı verilen bu kümenin içinde, enzimler arasında hareket mesafesi kısaldığından, üretim veriminin arttığı ortaya çıkarıldı. 2010 yılında ise aynı araştırma grubu, ardışık görevlere sahip bu enzimlerin, hücre içinde mikrotübül adı verilen iplikçiklerle birbirine bağlanıp topaklar oluştuğunu gösterdi.Moleküler SandıklarÖkaryotlarda yeni yapılar bulunur da, bakteriler de bulunmaz mı? Günümüzde bazı araştırmacılar, bakterilerde yeni bulunan “protein sandıklarını” inceliyor. İlk defa 50 yıl önce gözlenen bu hücre içi konteynerler, yapıları gereği virüslere benziyorlar. Ancak, virüslerin aksine, içlerinde hastalık yapıcı genetik materyal yerine, bakteri için önemli reaksiyonları gerçekleştirecek olan enzimleri içeriyor. Karbondioksit’i, hücrenin kullanabileceği diğer karbon kaynaklarına çevirmek gibi.Enzimleri bu şekilde “moleküler sandıklarda” tutan bakteriler, enzimleri çevredeki toksik malzemelerden koruyabiliyorlar. Bu sayede enzimler daha yüksek verimde çalışabiliyor. 2005 yılında protein araştırmacılarının yaptığı çalışmalar sonucunda, 6 yüzlü olduğu ortaya çıkarılan bu sandıkların her bir yüzünde deliklerin olduğu görüldü. Bu delikler sayesinde, sandık içine ve dışına doğru madde akışı gerçekleşebildiği anlaşıldı. Buna göre biyolojik malzemeler, bu deliklerden sandığa giriş yapıyor; sandık içindeki enzimler tarafından işleniyor ve aynı delikten dışarı atılıyordu.Araştırmacılar, artık bu moleküler sandıkları, endüstriyel kullanım için inceliyor. İstenilen enzimlerin, bu sandıkların içine konulması durumunda, sadece bu yapılar kullanılarak büyük çapta biyoyakıt üretimi gerçekleştirilebilir. Ancak, bu yapılar hakkındaki bilgilerimiz oldukça az. İç yapısı ve barındırdıkları enzimler hakkında henüz bir şey bilmiyoruz.Hücrenin Kargo KonteynerleriGünümüzde dikkat çeken diğer bir hücresel yapı ise exosome‘lar. İlk defa 1980′de keşfedilen bu yapılar, yakın geçmişe kadar göz ardı edilmiş. Bugüne kadar, görevinin sadece, hücresel çöplerin dışarıya atılması olduğu sanılan exosome’lar, İsveçli araştırmacı  Jan Lötvall ile farklı görevlere sahip olduğunu gösterdi.Akyuvarlardan B lenfositler üzerinde çalışan Lötvall, bu hücrelerin exosome’lar sayesinde patojenlere ait proteinleri hücre dışına saldığını gösterdi. Bu salınım ile, çevre hücrelerin o patojene karşı savunma durumuna geçmesi dürtükleniyor.Exosome’ların daha şaşırtıcı bir görevi ise yine Lötvall’ın takımı tarafından 2008′de ortaya çıkarıldı. Bu çalışmaya göre, exosome’lar hücre içindeki mesajcı RNA’ları da dışarı salabiliyordu. Salınan bazı mRNA’lar da komşu hücreler tarafından alınıp protein yapımında kullanıldığı anlaşıldı. Bu bağlamda, exosome‘ların hücreler-arası iletişimde önemli bir potansiyelinin olduğu düşünülüyor.Araştırmacılar, exosome’ları kullanarak, dokuya spesifik ilaç taşınımı üzerinde çalışıyor. Bu yapıların doğal olması sebebiyle, toksik etkisinin olmaması ve bağışıklığı tetiklememesi önemli avantajlardan bir kaçı. Nitekim, Oxford Üniversitesi’ndefareler üzerinde gerçekleştirilen bir çalışmada, exosome’lar kullanılarak, Alzheimer hastalığına neden olan bazı proteinler, beyin içinde başarıyla etkisizleştirildi.Hücre YılanlarıYeni hücre yapılarını incelerken, son başlığımızda oldukça sıradışı, bir o kadar da bilinmeyen bir proteini göreceğiz. Tüm hücreyi baştan başa saran ipliksi proteinleri. Tüm hücreyi boydan boya dolaşan bu ipliksi proteinler, üzerlerinde binlerce enzimi barındırıyor. Bu yılana benzer proteinler, meyvesineklerinden bakterilere kadar bir çok hücrede bulunuyor.Ne işe yaradıklarına dair kesin bilgiler henüz bulunmuyor. Ancak fonksiyonları hakkında atılmış bazı hipotezler bulunuyor.Bunlardan birine göre, bu ipliksi proteinler, üzerlerinde barındırdığı enzimleri aynı anda aktif hale getirebiliyor. Bu yolla, hücre bir enzimin çalışmasına aniden ve yüksek miktarda ihtiyacı olduğunda, bu iplikçikleri kullanarak, binlerce enzimi aynı anda aktifleştirebiliyor. Diğer görüşlere göre, bu iplikçikler, hücreye yapısal bir iskelet sağlıyor ve hücrelerin şekillerini değiştirebiliyor.İncelenecek Milyonlarca Tür  Daha…Bu yazıda, yaşamın yapı taşı olan hücrelere ait yeni yapılardan sadece küçük bir kısmına değinebildik. Henüz keşfedilmeyi bekleyen onbinlerce tür canlı bulunuyor. Floresans boyama tekniklerinin yanı sıra, genomik bilginin okunmasındaki gelişmeler, yeni görüntüleme yöntemleri, hücrelere ait daha önce bilmediğimiz yapıları da gün yüzüne çıkarıyor. Hücre içinde yapılan bu keşifler, biyoteknoloji alanında, elimize yeni aletler sağlayacak gibi duruyor.Cell biology: The new cell anatomyYazar hakkında: Can Holyavkinİstanbul Teknik Üniversitesi'nde doktora yapan Moleküler Biyolog ve Genetikçi. Güncel biyoloji haberleri yayınlayan Biyo RSS adlı blogun hazırlayanı ve yazarı. http://www.acikbilim.com

http://www.biyologlar.com/yeni-hucre-atlasi-bilinmeyen-organeller

Biyoteknolojinin Tarihi Gelişimi

MÖ 1750: Sümerler, bira mayaladı. MÖ 500: Çinliler, küflü soya fasulyesini antibiyotik olarak kullandı. MS 100: Çinliler, toz haline getirilmiş krizantem biktisini böcek öldürücü olarak kullandı. 1590: Janssen, mikroskobu icat etti. 1663: Hooke 'hücre' tanımını getirdi. 1675: Leeuwenhoek, bakteriyi tanımladı. 1797: Jenner, ilk çiçek aşısı denemesini bir çoçuğa virüs inoküle ederek yaptı. 1830: Proteinler keşfedildi. 1833: İlk enzim ayrıştırması (izolasyonu). 1855: Escherichia coli (E. coli) bakterisi tanımlandı. Daha sonraları bu bakteri pek çok araştırma, geliştirme ve üretim uygulamasına temel oluşturdu. 1863: Mendel, bezelyeler ile yaptığı araştırmalarda karakteristik özelliklerin bir kuşaktan diğerine belirgin, bağımsız birimlerce aktarıldığını keşfetti. Bu birimler çok sonraları 'gen' olarak tanımlandı. Bu araştırma genetik biliminin temelini oluşturdu. 1869: Miescher, balık sperminde DNA keşfetti. 1877: Koch, bakterileri boyayarak ayrıştırma ve karakterize etmeye olanak sağlayan bir yöntem geliştirdi. 1878: Laval, ilk santrifüjü geliştirdi. 1879: Fleming, hücre çekirdeğinde küçük çubuklara benzeyen kromatin adlı bir yapı keşfetti. Daha sonra bu yapının kromozomları oluşturduğu anlaşıldı. 1879: William James Beal, Michigan'da ilk klinik kontrollü mısır çaprazlamasını yaptı. 1900: Sirkesineği (drosophila) ilk gen araştırmalarında kullanılmaya başlandı. 1902: 'İmmünoloji' (bağışıklık sistemini araştıran bilim dalı) terimi ortaya çıktı. 1906: 'Genetik' terimi ortaya çıktı. 1911: Rous, ilk kez kansere yol açan bir virüs keşfetti. 1914: İlk kez Manchester'da bakteriler atık işlemede kullanıldı. 1915: Bakteri virüsleri (bakteriofajlar) keşfedildi. 1919: Biyoteknoloji terimi ilk kez bir Macar mühendis tarafından kullanıldı. 1920: Evans and Long insan büyüme hormonunu keşfetti. 1928: Alexander Fleming, ilk tanımlı antibiyotik olan 'penisilin'i keşfetti. 1938: 'Moleküler biyoloji' terimi doğdu. 1940: Oswald Avery, DNA'nın kalıtımın temeli olduğunu ve genlerin yapısını oluşturduğunu keşfetti. 1941: Danimarkalı mikrobiyolog A. Jost ilk kez 'genetik mühendisliği' terimini Polonya'da verdiği bir derste kullandı. 1942: Elektron miksoskobu kullanılarak ilk kez bir bakteri virüsü tanımlandı ve karakterize edildi. 1944: Waksman, tüberküloza karşı etkin bir antibiyotik olan 'streptomycin'i ayrıştırdı. 1946: İlk genetik rekombinasyon örneği, değişik virüslerden alınan genetik materyalin birleştirilerek yeni bir virüs yaratmanın mümkün olduğu görüldü. 1947: Barbara McClintock, mısır bitkisinde zıplayan genleri (transpozonlar) keşfetti. 1949: Pauling orak hücre anemisinin hemoglobin molekülünde bir mutasyona bağlı olan genetik bir hastalık olduğunu keşfetti. 1950: Besi hayvanlarında dondurulmuş sperm kullanımıyla yapay döllenme sağlandı. 1953: James Watson ve Francis Crick, DNA molekülünün çift sarmal yapısını keşfetti. Bu çalışma modern genetiğin başlangıcı oldu. 1954: Hücre kültürü teknikleri geliştirildi.

http://www.biyologlar.com/biyoteknolojinin-tarihi-gelisimi

Tüm Ulusun Genetik Kodunu Çıkardılar!

Tüm Ulusun Genetik Kodunu Çıkardılar!

Söz konusu çalışmada İzlanda halkının soyağaçları ile DNA verileri birleştirildi. Ekip şimdi ‘bir düğmeye dokunarak’ örneğin meme kanseri riski yüksek her kadını bulmanın mümkün olacağını söylüyor.Nature Genetics dergisinde yayınlanan çalışmaya göre, veriler erkeklerin son ortak atasına dair tahminler de dahil, bir dizi keşifte kullanılmış. DNA nesilden nesile geçen bir veri. Eğer bir çocuğun ve büyükanne ile büyükbabasının DNA’sı hakkında her şeyi biliyorsanız, ana babasının DNA’sı hakkında da çok şeyi anlayabilirsiniz.Tıbbi uygulamalar Projenin İzlanda vatandaşlarına özellikle sağlık konusunda faydalı olacağı umuluyor. Kanser alanından örnek vermek gerekirse, BRCA genlerinde mutasyonlar yaşam boyu kanser riskini çok daha yüksek hale getirebiliyor. Bu mutasyon Hollywood yıldızı Angelina Jolie’nin de göğüs ve yumurtalıklarını aldırmasına yol açtı.İzlandalı ekibin yöneticisi Dr Kari Stefansson, “Biz, İzlanda’da bir düğmeye basarak BRCA2 geninde mutasyon taşıyan tüm kadınları bulabiliriz.“Böylece, temel önleyici müdahalelerle kanser riski ortadan kaldırılabilir.” diyor. Veriler şu anda tümüyle anonim. Tıpta bu tür verileri kullanan çalışmalar etik sorunlara neden oluyor.“Çok ilginç ve çok zarif”İngiltere’de 100.000 genom projesi ve ABD’de Başkan Obama’nın Hassas Tıp Girişimi de bu tür genetik bilgiyi kullanarak tıpta devrim yaratmayı hedefliyor.Genomics England projesinin başkanı olan Profesör Mark Caulfield İzlanda’daki çalışmayı “çok ilginç” ve “çok zarif” olarak niteledi.Caulfield BBC’ye yaptığı açıklamada, dünya çapında bu alanda kaydedilen ilerlemenin, “geniş ölçekte dönüştürücü genomik tıp uygulamalarında doruğa varıldığına işaret ettiğini” kaydetti.Ancak, BRCA2 mutasyonunun birçok türleri olduğu ve kadınları bilgilendirmeden önce emin olunmasının önemi konusunda da uyardı.Ortak atanın yaşı İzlanda’daki projede, Alzheimer hastalığı ile bağlantılı yeni bir gen de dahil olmak üzere, diğer bir çok keşif yapılmış.Ekip, erkek Y-kromozomu mutasyon oranına bakarak, bütün erkeklerin son ortak atasına ilişkin yeni bir tahmin ortaya koydu.Şimdi son ortak atanın 239.000 yıl önce yaşadığına inanıyorlar. Bir önceki tahmin 308.000 yıl öncesiydi.Keşifler ve kaygılarİzlandalı deCODE genetics ekibi 10.000 kişinin tüm genom dizisini aldı ve ulus çapında soyağaçları ile birleştirdi.İzlanda nüfusunun %8’inde bir genin tüm kopyalarının eksik olduğu da keşfedildi. Bu yararlı veya zararlı da olabilir, tümüyle etkisiz de. İzlandalı ekip bu insanların sağlık durumunu değerlendirmek için yeni bir çalışma başlatıyor. Ancak Nuffield Biyoetik Konseyi’nden Dr. Susan Wallace yapılan çalışmaya ilişkin kaygılar olduğunu da belirtiyor. Wallace “Endişelerden biri verilerin kamuya açık olması. Bu veri tabanlarının kullanımında ticari çıkarların söz konusu olacağı endişeleri var.” diyor.http://www.gazeddakibris.com

http://www.biyologlar.com/tum-ulusun-genetik-kodunu-cikardilar

Genler ve hastalıklar

Genler ve hastalıklar

Birçok hastalığın ortaya çıkması veya ilerlemesinde genetik faktörler önemli rol oynamaktadır. Şu ana kadar yapılan çalışmalarda genetik sebeplerden kaynaklanan 7000 civarında hastalık tespit edildi ve her geçen gün bunlara yenileri eklenmekte. Sadece son birkaç yıl içinde genomumuzun 12000 değişik noktasında 982 hastalığa ait noktasal mutasyonlar keşfedildi. Genetik rahatsızlıkların sınıflandırılmasıGenetik sebeplerden kaynaklanan rahatsızlıklar üç ana grupta toplanmaktadır.1.Kromozomal rahatsızlıklar: Kromozom sayısı veya yapısında meydana gelen değişikliklerden kaynaklananlar. Örnek; Down Sendromu…2.Monogenetik rahatsızlıklar: Tek bir gende meydana gelen değişikliklerden kaynaklananlar. Bu değişiklikler belirli bir enzim veya proteinin kayıp ya da hatalı sentezlenmesine sebep olur. Örnek; Talasemi, Hemofili…3.Poligenetik rahatsızlıklar: Birçok genden kaynaklananlar. Bir genin veya çevresel faktörlerin birçok genin faliyetini etkilemesi sonuçu ortaya çıkan rahatsızlıklardır. Örnek; Şeker hastalığı, yüksek tansiyon, obezite, arteriyoskleroz, şizofreni, alzheimer, depresyon gibi…Kolesterolün faydaları, zararları ve APOE geni ile olan ilişkisi.Kolesterol, vucut için yaşamsal öneme sahip çok önemli bir moleküldür. Hücre zarının önemli bir bileşeni olan kolesterol, membran stabilitesini artırırak hücre zarı içerisine çeşitli proteinlerin, kimyasalların ve iyonların giriş-çıkışına olanak sağlar. Kolesterol vücut için öyle gereklidir ki, bunu şansa bırakmaz ve ihtiyacının neredeyse tamamını kendisi üretir. Başka bir ifadeyle vücut kolesterol ihtiyacının sadece %10’nu gıdalar yoluyla dışardan alırken, geri kalanının tamamını bizzat kendisi üretir.APOE Geni: 19. kromozom üzerinde APO (Apolipoprotein) diye adlandırılan bir gen bulunmaktadır. Bu genin A,B,C ve E olmak üzere dört önemli formu(Allel) bulunmaktadır. Bu yazıda yüksek kollesterol ve ona bağlı rahatsızlıkları ilgilendiren E formu ele alınacaktır.APOE formunun görevi nedir:APOE(ApolipoproteinE), kanda bulunan Apolipopreteinlerden biridir. Yağ metabolizmasında önemli rol oynar ve bu nedenle bu genin mutasyonlu olup olmaması kalp ve damar hastalıklarının ortaya çıkmasında etkilidir.APOE, ligand özelliğine de bir sahip proteindir . APOE nin bu özelliği, kanda bulunan yağların hücrelerin yüzeyinde bulunan molekül yakalayacı Reseptörlere bağlanmasını ve hücre içerisine alınmasına olanak sağlar. Ayrıca APOE Trigliserid, VLDL, LDL, gibi kötü yağları katalize ederek karaciğere taşır ve orada parçalanmasına olanak sağlar. Bu da yağların damarlarda birikmesinin önüne geçer. APOE geni mutasyon geçirmesi durumunda kolesterol damarlarda birikerek damarların tıkanmasına yani Arteriyoskleroz sebep olur.APOE geninde meydana gelen mutasyonlar ve sebep olduğu hastalıklarAPOE formunun da mutasyondan kaynaklanan üç önemli Alt-Formu(Alleli) bulunmaktadır. Bunlar sırasıyla APOE2, APOE3 ve APOE4 formlarıdır. Bu formların en önemli özelliği reseptör sayılarının farklı olmasıdır. Kişinin sağlığı bu formlardan hangisine sahip olduğu ile yakından alakalıdır. Çünkü Alt-Formların çeşidi ileTrigliserid, LDL ve VLDL gibi kötü yağların kandan uzaklaştırılması arasında sıkı bir ilişki bulunmaktadır.1.APOE2 versiyonu: Genetik bir hastalık olan Tip III hiperlipoproteinemi oluşmasında rol oynar ve Arteriyoskleroz için düşük risk oluşturur. APOE2 formunun toplumda görülme sıklığı  % 6-72.APOE3 versiyonu: En iyi ve en yaygın olan versiyondur. APOE3 formunun toplumda görülme sıklığı % 80 dır.3.APOE4 versiyonu ile Arteriyoskleroz ve Alzheimer arasındaki ilişki: APOE4 versiyonu, en kötü olan versiyondur. İnsanların yaklaşık % 7 sinde bu versiyon bulunur. Bu versiyon bir yandan Arteriyoskleroza sebep olurken diğer yandan Alzheimer hastalığı ile bilişsel işlev bozukluklarına da sebep olur. Bunun dışında sinir hücrelerinin gelişimini de yavaşlatır.•apoe-genotip1APOE4 ve Kalp Krizi Riski: E4 Alt-Formu insanda altı değişik kombinasyonda bulunur. Örneğin genin iki kopyasının birden vucutta bulunuyor olması E4’ün en kötü kombinasyodur (Hem anneden, hem babadan E4’ün birer kopyasının çocuğa geçmiş olması). Bu gruptakiler kalp krizi konusunda en riskli grubu oluşturmaktadır ve toplumda görülme sıklığı % 4 dür.•APOE4 ve Azheimer Riski: APOE 19. kromozom üzerinde bulunan 864 harf uzunluğunda bir gendir. Alzheimer hastalığı 334. pozisyonundaki nükleotidin Adenin(A) yerine Guanin(G) gelmesi ile oluşurBuna göre;•Eğer kişi APOE4 formunun tek kopyasına sahipse, yani anne veya babadan sadece birinden mutasyonlu APOE4 geni alınmışsa bu kişilerin 75 yaşında Alzheimer hastalığına yakalanma riski % 47 dir.•Eğer kişi APOE4 formunun çift kopyasına sahipse yani hem anneden hemde babadan mutasyonlu APOE4 geni almışsa bu kişilerin 69 yaşında Alzheimer hastalığına yakalanma riski yaklaşık % 90 dir.•Eğer kişi APOE4 formuna hiç sahip değilse bu kişilerin 85 yaşında Alzheimera yakalanma riski sadece % 20 dirMehmet SaltuerkDipl. Biologe Mehmet SaltuerkInstitute for GeneticsUniversity of CologneReferanslar[1] http://www.ncbi.nlm.nih.gov/pubmed/2791332?dopt=Abstract[2] http://onlinelibrary.wiley.com/doi/10.1002/ana.24135/abstract[3] http://www.nia.nih.gov/alzheimers/publication/alzheimers-disease-genetics-fact-sheet#apoehttp://www.medikalakademi.com.tr

http://www.biyologlar.com/genler-ve-hastaliklar

Bağışıklık Sistemimizi Neandertallere ve Denisovalılara Borçluyuz

Bağışıklık Sistemimizi Neandertallere ve Denisovalılara Borçluyuz

Neandertallerden ve Denisovalılardan bize miras kalan genler, birçok hastalıkla mücadele etmemize yardım etmiş olabilir. Yapılan yeni araştırmalar, erken insan türlerinin melezlenmesinin, hastalıklarla mücadelede bize önemli bir geni sağlamış olabileceğini gösteriyor.Bilim insanları bir zamanlar atalarımızın kuzenleriyle çiftleştiği düşüncesiyle alay ederken, son 6 yılda yapılan önemli genetik keşifler bunun doğru olduğunu gösteriyor. Üstelik sadece eski atalarımızın Neandertallerle çiftleştiği değil, bir de üçüncü bir insan türü Denisovalılarla da çiftleştiği muhtemel. Ayrıca bu sadece bir defaya mahsus bir şey değildi. Araştırmalar, atalarımızın bu insan türleriyle DNA’larının %1 ila %2’sine etki edecek kadar çiftleştiğini gösteriyor. Şimdi ise bilim insanları, aynı sonuçları gösteren iki araştırma üstünde çalışıyor. Sonuçlara göre, Neandertal ve Denisovalılardan kalan genler, bizim hastalıklara ve enfeksiyonlara karşı gelişen bağışıklık sistemimizde çok önemli bir rol oynadı.Max Planck Enstitüsü’nden Michael Dannemann: “DNA’mıza geçen Neandertal genleri, enfeksiyonlara ve öldürücü patojenlere karşı bağışıklık sistemimizde bir avantaj sağlamış olabilir.” dedi.Dannemann ve meslektaşları, bağışıklık sistemimizin binlerce yıl içinde nasıl değiştiğini görmek için modern insan ve erken Homo sapiens genlerini inceledi. Modern insanın genleri incelenirken, bağışıklık sistemine bağlı birçok Neandertal DNA’sı keşfedildi. Aynı zaman içinde, Paris’teki Pasteur Enstitüsü’nde yürütülen başka bir projede, Neandertal ve Denisovalı DNA’sı taranırken aynı sonuçlara rastlandı. Yapılan iki araştırma da geçtiğimiz hafta içinde American Journal of Human Genetics’te yayımlandı.Afrika’dan ayrılan küçük bir modern insan grubunun fazla genetik çeşitlilik taşıyamayacağını belirten Max Planck Enstitüsü’nden Janet Kelso; “Mutasyonlar sonucu adapte olabilirsiniz, fakat zaten orada bulunan yerli nüfusla çiftleşirseniz, bazı adaptasyonları bedava elde edebilirsiniz.” dedi.Araştırmalar modern insanın, Neandertallerle ve Denisovalılarla ne zaman etkileşime geçtiğine bağlı olarak üç dalgada üç gen aldığını gösteriyor. İkisi Neandertallerden biri ise Denisovalılardan.Atalarımızın bu genler sayesinde hastalıklarla ve enfeksiyonlarla daha kolay savaşması bir yana, bu genler aynı zamanda bir yan etkiye sahipti: Alerji. Söz konusu üç gen, atalarımıza patojenlerle savaşması için fazladan bir koruma sağlarken, aynı zamanda zararsız polen ve ota karşı da bir reaksiyon bıraktı. Maalesef bu gereksiz ve aşırı reaksiyon da nesilden nesile aktarıldı.smithsonianmag.comBy Erman Ertugrul http://arkeofili.com

http://www.biyologlar.com/bagisiklik-sistemimizi-neandertallere-ve-denisovalilara-borcluyuz

Birçok hastalığa iyi gelen yeni bir bitki türü keşfedi

Birçok hastalığa iyi gelen yeni bir bitki türü keşfedi

Bitlis Eren Üniversitesi (BEÜ) Fen-Edebiyat Fakültesi Biyoloji Bölümü Öğretim Üyesi Yrd. Doç. Dr. Murat Kürşat tarafından bitkiler üzerine uzun zamandır yapılan araştırmalar neticesinde birçok hastalığa iyi gelen yeni bir bitki türü keşfedildiği ve kayıt altına alındığı bildirildi. Yrd. Doç. Dr. Murat Kürşat, konuyla ilgili yaptığı açıklamada, "Uzun zamandır bitkiler üzerine yaptığım çalışmalar neticesinde daha önce dünyada keşfedilmeyen dünya için bir ilk olan bir bitki türü keşfettik aynı zamanda Türkiye kayıtlarında bulunmayan iki bitki türünü de kayıtlara ekledik." dedi.KEŞFEDİLEN YENİ BİTKİ TÜRÜ BİRÇOK HASTALIĞA İYİ GELİYOR Kürşat, "Yeni keşfettiğimiz 'Artemisia L.' cinsine ait bu bitki türü birçok hastalığa da iyi geliyor. Artemisia cinsi aromatik bitki türüdür. Çeşitli amaçlarla kullanılırlar.   İştah acıcı, kurt düşürücü, adet söktürücü, giysi aralarına ve eve konarak haşereleri uzaklaştırıcı, uyarıcı özelliklere sahiptir. Fakat fazla miktarda kullanıldığında zehirlenmelere yol açabilir. Bu bitki burada saydıklarımız ve buna benzer birçok hastalıkla mücadelede dünya insanına katkı sunacak. Bu bitkiye şimdilik bir isim koymadık ileriki günlerde uygun bir isim bulup vereceğiz." diye konuştu.BİTKİLERLE İLGİLİ BİR KİTAPTA YAZILDI Yrd. Doç. Dr. Murat Kürşat, "Türkiye’de bulunan bitkileri daha iyi anlatabilmek ve bilgileri kalıcı hale getirmek için 'Damarlı Bitkiler' adlı bir kitap da yazıldı. Prof. Dr. Adil Güner'in baş editörlüğünü yaptığı ve ülkemizdeki doksandan fazla bilim insanının katkısı ile hazırlanmış olan 'Türkiye Bitkileri Listesi (Damarlı Bitkiler)' adlı kitap bilim âlemi ve botanik dünyası için başvuru eseri olma özelliği taşıyor." şeklinde konuştu.Eserin 'Artemisia (Pelin otu-Yavşan)' cinsine ait bölümünü kendisinin yazdığını bildiren Kürşat, "Türkiye'nin tüm damarlı bitkilerinin aynı ciltte toplandığı ilk ve tek çalışma olan kitabın, önemli bir özelliği her bitkinin Türkçe adının olmasıdır. Aynı zamanda eser ülkemizdeki bitki zenginliği hakkında da önemli veriler sunmaktadır. Botanik alanındaki bu eser, ileride yazılması planlanan 'Türkçe ve Resimli Türkiye Florası' adlı çalışmanın da ilk basamağını oluşturmaktadır. Türkiye Bitkileri Listesi adlı eser üniversitemize ve botanik alanında çalışmalarını yürüten araştırmacılara önemli bir katkı sağlayacaktır." açıklamasını yaptı.

http://www.biyologlar.com/bircok-hastaliga-iyi-gelen-yeni-bir-bitki-turu-kesfedi

Y Kromozomuna Sahip Olmayan Erkek Fareler Yetiştirildi

Y Kromozomuna Sahip Olmayan Erkek Fareler Yetiştirildi

Araştırmacılar ilk kez Y kromozomuna ait hiçbir iz taşımayan ama testisleri ve diğer tüm özellikleri olan erkek fareler yetiştirmeyi başardı. Üstelik bu fareler sağlıklı olmakla kalmayıp, aynı zamanda üreyebiliyorlar; tabi küçük bir yardım ile. Science dergisinde yayımlanan çalışmanın bulguları, biyolojinin en temel prensiplerinden biriyle çelişiyormuş gibi görünüyor: eğer bir organizma babasından X kromozomu alırsa dişi, Y kromozomu alırsa erkek olur. Y kromozomu, uzun süredir erkekliğin bir simgesi durumundaydı. Fakat son yıllarda bilim insanları, Y kromozomunun sonsuza kadar var olmama olasılığına ilişkin kanıtlar buldular. Şöyle ki, Y kromozomu insan evrimi esnasında korkutucu bir biçimde giderek küçülmekteydi. “X kromozomu, çeşitli fonksiyonlara ait yaklaşık 1600 gen taşır. Fakat Y çok az gene sahiptir; yaklaşık 50 tane civarında ve bunların sadece 27’si Y’nin erkeğe özgü parçasındadır.” diye aktarıyor Avustralya’daki La Trobe Üniversitesi’nden genetikçi Jenny Graves. “Çok sayıda genin birden çok tekrarı mevcut. Bunların çoğu aktif olmayan bir şekilde, devasa DNA ilmekleri içerisinde yer alıyor. Y kromozomunun büyük bir kısmı tekrar eden “işe yaramaz DNA”dan oluşuyor. Dolayısıyla insanlarda Y kromozomu, ömrünün sonuna yaklaşmış, bozulmuş bir kromozomun bütün belirtilerini gösteriyor.” 166 milyon yıllık bir zaman aralığından bahsediyoruz; demek ki Y kromozomu her 1 milyon yılda, 1600 küsur tane geninden 10’unu kaybediyor. Graves’in hesabına göre şu anda üzerinde 4,5 milyon yıllık gen kalmış durumda; yani bilinen anlamda erkekliğin daha epey vakti var. Peki Y kromozomu olmadan, omurgalıların hayatı nasıl olurdu? 2013 yılında, Hawaii Üniversitesi’nde üreme biyoloğu Monika Ward önderliğindeki araştırmacılar, büyüyen embriyonun erkek olarak gelişmesi için Y kromozomunun nasıl bir etkide bulunduğunu anlamaya karar verdi. Bütün genleri, sadece iki gene indirgediler: SRY ve Eif2s3y. 1990 yılında SRY geninin testis gelişimini başlatmaktan sorumlu olduğu keşfedildi; SRY geni mutasyona uğrayan Y kromozomlu bebekler dişi olarak gelişiyordu. Öte yandan Eif2s3y, sperm üretiminin başlamasından sorumluydu. Yani eğer bu iki gene sahipseniz, testisli ve spermli bir erkek oluveriyordunuz. Peki bu iki gen de olmadan, bir organizma hala üreme yeteneğine sahip bir erkek olabilir mi? Yaptıkları son çalışmada Ward ve takımının öğrenmeyi amaçladıkları şey buydu. Sadece X kromozomuna sahip fareler yetiştirdiler ve bu iki önemli Y kromozomu genini, benzer fonksiyonları yüklenen X kromozomu genleri ile değiştirdiler. “SRY’nin yerini, genellikle SRY tarafından aktifleştirilen yani ‘bir sonraki’ gen aldı,” diye anlatıyor Ward. Bu genin aktif hale getirilmesini SRY’ye bırakmak yerine, araştırmacılar kendileri etkinleştirdi. Eif2s3y’nin yeri ise fareye sperm üretmesini söylemek için paralel çalışan X kromozomu genini aşırı sayıda çoğaltmakla dolduruldu. Ortaya çıkan erkekler, gebe bırakabilecek tam birer damızlık olmadı ve çiftleşme potansiyeli olan dişilerin ilgisini çekmedikleri görüldü. Hem testislerinin küçük, hem de spermlerinin karmakarışık vaziyette olduğu saptandı. Bu erkeklerin spermlerinin hepsi kuyruksuzdu; bu da ciddi bir yardım söz konusu olmadan üreyemeyecekleri anlamına geliyordu. Araştırmacılar, Y kromozomsuz erkeklerin kuyruksuz spermleri ile yapay döllenme gerçekleştirerek yavrular üretmeyi başardı. Y kromozomu olmayan bu farelerin erkek yavruları tamamıyla kısır oldu. Fakat dişi yavrular normal bir üreme yeteneğine sahipti; hatta tam anlamıyla üreyebilen erkek yavrular dünyaya getirdiler. İlginç bir şekilde, bu kusurlu spermleri üretmek için Eif2s3y’nin X kromozomu versiyonunun en az 5 kopyası gerekirken, Y kromozomundan alınan Eif2s3y’nin sadece bir tanesi milyonlarca sağlıklı sperm üretmek için yetiyor. “Bu da, bu Y kromozomu geninin önemli olduğuna işaret ediyor” diyor Ward, Science News’den Tina Hesman Saey’e. Bu önemli, çünkü Y kromozomunun kayıtsız şartsız varolmaya devam etmesi konusunda haklı nedenler ortaya koyuyor. Yoksa önümüzdeki birkaç milyon yıl içinde insan genomunun dışında bırakılması da olası. “Çalışmamız, Y kromozomunun yok olacağı fikrini desteklemiyor. Çünkü X kromozomu muadillerinden çok daha verimli. Bu nedenle evrimsel bakış açısından bakarsak, Y kromozomundan kurtulmak hiç de mantıklı gelmiyor,” diye anlatıyor Ward. Fakat Grave, çalışmanın sonuçlarının, insanların Y kromozomlarını muhtemelen kaybedeceğine dair fikirlerini doğruladığını söylüyor. “Bu, gayet önemli bir geninizi nasıl kaybedebileceğinize dair çok güzel bir örnek” diye anlatıyor. “Ayrıca Y kromozomunun hayatı sona erdiğinde ne olacağına dair bize bilgi sunuyor” diye de ekliyor. Omurgalıların çoğunun X=dişi Y=erkek sisteminin dışında, tamamıyla farklı üreme sistemleri geliştirdiği de bir gerçek. Şu ana kadar, vahşi doğada iki kemirgen türünün, bazı sürüngenlerin de yaptığı gibi Y kromozomu olmadan ürediği bulundu. Ayrıca bazı kuş türleri ve yılanlar da, tamamıyla farklı cinsiyet kromozomlarına sahip, erkeklerde ZZ, dişilerde ZW şeklinde. Fakat Y kromozomunda farklı birşeyler var ve Ward’ın anlamaya çalıştığı şey bu. “Y kromozomundaki diğer tüm genlerin sorumlu olduğu işlevler var, erkek sağlığı, sperm üretimi, sperm sayısı gibi.” diye anlatıyor. “Burada Y kromozomunu ve erkekleri ortadan kaldırmaya çalışmıyoruz, aslında üzerinde çalışmak için daha uzun yıllar var ve bu nedenle Y kromozomunun olmasını istiyorum.”   Kaynak: “Scientists have bred male mice with no Y chromosomes – and they can still reproduce”, http://www.sciencealert.com/scientists-have-bred-male-mice-with-no-y-chromosomes-and-they-can-still-reproduce Makale: “Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction”,  http://science.sciencemag.org/content/351/6272/514?dom=pscau&src=syn ,  DOI: 10.1126/science.aad1795 http://bilimfili.com/y-kromozomuna-sahip-olmayan-erkek-fareler-yetistirildi/

http://www.biyologlar.com/y-kromozomuna-sahip-olmayan-erkek-fareler-yetistirildi

Uçan Kurbağa, Gözsüz Örümcek

Uçan Kurbağa, Gözsüz Örümcek

Bilim insanları Mekong Bölgesi’nde son iki yılda 367 yeni tür keşfetti. Bunlar arasında gözleri olmayan bir örümcek ve dev bir uçan kurbağa da var.Dünya Doğayı Koruma Vakfı (WWF), Mekong Bölgesi’nde aralarında yaprak burunlu yarasa, uçan sincap ve kurbağanın da bulunduğu çok sayıda yeni türün keşfedildiğini açıkladı.‘Gizemli Mekong’ adı verilen raporda, bilim insanları 2012-2013 yıllarında 290 bitki, 24 balık, 21 amfibi, 28 sürüngen, üç memeli ve bir kuş türünün keşfedildiğini kaydetti.Mekong Nehri, Vietnam’dan okyanusa dökülmeden önce Güney Çin, Myanmar, Laos, Tayland ve Kamboçya’dan geçiyor.Gözsüz örümcekWWF Myanmar Koruma Programı Müdürü Michelle Owen, “Bu türlerin keşfi, Mekong Bölgesi’nin dünyanın en zengin ve biyolojik açıdan en seçkin bölgesi olduğunu kanıtlıyor“ dedi.Dr. Peter Jäger tarafından keşfedilen ve rapordaki türlerden biri olan avcı örümcek, Laos’taki bir mağarada bulundu. Yeni örümcek türü dünyada gözleri olmayan tek örümcek olarak açıklandı. Bunun nedeni olarak ise sürekli karanlıkta yaşıyor olması gösterildi.Çiçek burunlu yarasaBir diğer tür de Helen’in Uçan Kurbağası olarak adlandırıldı. Vietnam’ın Ho Chi Minh kentinden 100 kilometre uzakta bulunan kurbağa büyük gözlere sahip ve ağaçtan ağaca büyük ellerini ve ayaklarını kullanarak süzülerek gidiyor. Sadece üremek için yere iniyor. Vietnam’daki keşiflerden bir diğeri de yaprak burunlu yarasa. Yarasanın çiçeğe benzer bir burnu olduğu belirtildi.Laos’ta bir de uçan bir sincap bulundu. Kırmızı ve beyaz kürke sahip olan sincap, türünün ilk örneği.1997′den beri bölgede 2 bin 77 yeni tür bulunmuştu. Böylece sayı daha da artmış oldu.© Deutsche Welle Türkçehttp://www.gazeddakibris.com

http://www.biyologlar.com/ucan-kurbaga-gozsuz-orumcek

Genetik çalışmalarda kullanılan organizmalar ve çalışma metodları

Mendelin denemeleri sonucunda ortaya koyduğu bulgular Mendel kanunları olarak ifade edilir bu kanunlara göre aynı karakterin iki ekstrem formuna halis saf hatların melezlerinden elde edilen döllerin tümü genotipleri birbirinin aynıdır. Bu olgu üniformite kanunu olarak ifade edilir. Böyle melez döller gamet meydana getirirken her gamet her özellik için bir çift olan allel genlerden sadece birini alır. Gametlerde hangi genlerin bir arada bulunacağı tamamiyle şansa bağlıdır. Bir melez muhtemel her gamet tipini eşit oranda oluşturur. Bir melez kendilenir ise yada aynı genetik yapıda başka bireyle birleşirse elde edilecek dölde melezin hibritlik derecesine göre belli bir açılım görülür. Bu sonuçlar Segregasyon (Açılım) ve independent Asortment (Bağımsız çeşitlenme) gibi iki kanun halinde ifade edilir. Canlıların üreme mekanizmaları 19. yy'a kadar tam olarak anlaşılmamıştır. 17. yy boyunca, boş inançlar ve önyargılar kabul gödü. Ve birçok türün (Böcek, solucan, kurbağa veya fare) kendiliğinden oluşabileceğine inanıldı. Bu öğretiye göre, türler, kokuşmuş etten veya kirli çamaşırlardan doğuyordu (Kendiliğinden üreme, Sponton generasyon). İlk olarak italyan F. Redi (1626-1698) cansız maddeden canlı varlık oluşamıyacağını ispat etti. Bu amaçla, bir ağzı açık, diğeri kapalı iki kapta et parçalarını bıraktı; ağzı açık olan kabın, hızla et kurtları ile dolduğunu gözlemledi. Bu kurtçuklar ancak, sineklerin etin üzerinde bıraktığı yumurtalardan çıkmış olabilird. (Buna rağmen Fransız L. Pasteur, her canlının bir başka canlıdan geldiğini ancak 200 yıl sonra, kabul ettirebilecekti). 17. yy'da üstün yapılı canlılarda önce tohumun sonrada dölütün içinde anne ve babaya ait döllerin karışık olarak bulunduğunu sıvı bir kitlenin mayalanması sonucunda oluştuğuna inanılıyordu. Ancak tohumun hangi dölden kaynaklandığı bilinmiyordu. YY'ın sonunda, spermada "Hayvancıklar" bulunduğu keşfedildi ve tohumun bunları taşıdığına inanıldı. 19. yy'da mikroskoptaki ilerlemeler, hücre teorisinin ortaya atılmasına yol açtı: Hücre ve bunun çekirdeği, yaşamın temel öğesini oluşturur. 1875'de, Alman O. Hertwig deniz kestanesinin döllenmiş yumurtasında iki çekirdeğin birleştiğini gözlemledikten sonra, yumurta ve spermatozoitlerin işlevlerini belirledi. Aynı çağda, E. Strasburger, hücre bölünmesinin (Mitoz) tarif etti ve ikiye ayrılan küçük cisimcikler (Kromozomlar) üzerinde durdu. Belçikalı E. Van Beneden, bağırsak solucanları ile yaptığı çalışmalar sonucunda, yumurta ve spermatozoitlerdeki kromozom sayısınının birbirinin aynı ve vücut hücrelerindekinin yarısına eşit olduğunu gös-terdi. Bu gözlemi ile eşey hücrelerindeki kromozom sayısının mitos'dan farklı bölünme olan mayoz bölünme ile yarıya indirgendiğini saptadı. Avusturyalı keşiş, G. Mendel'in 19. yy'ın sonlarında bezelyelerle yaptığı melezleme (Çaprazlama) çalışmalarından sonra, 1905'de, Alman A. Weismann kalıtımda kromozom teorisini ortaya attı. Daha sonra Amerikalı araştırmacı T. H. Morgan, kalıtsal karakterler ile kromozomların dağılımı arasındaki bağıntıyı belirledi ve kromozomların genetik bilgiyi taşıdığını öne sürdü. Eşeyli üremenin, aynı yapısal süreç içinde belli bir türe çok çeşitlilik kazandıracağını belirtti. Anne ve Babadan kalıtım yoluyla geçen karakterler arasında o kadar fazla sayıda düzenleme ihtimali vardı ki, aynı türden hiçbir birey bir diğerine tıpatıp benzemez. Mendelin çalışmalarında kullandığı bitki olarak bezelyeyi seçmesi büyük bir şanşdı. Ancak bir bilim adamının dediği gibi şans ancak hazırlıklı dımağlara yardımcı olabilir. Bu bitki gibi (pisim satıvum) genetik çalışmalar için uygun bir organizmanın farkedilebilir özellikler bakımından farklı formları bulunmalı (varyasyon) ve gene böyle elverişli bir organizmanın rekombinasyon niteliğinde olması gerekir. Yani bir özelliğin bir ifadesi ile (göz renginin kahverengi hali) ile özelliğin diğer bir ifadesi (mavi göz rengi) arasında karşılaştırma yapabilmek için seksüel üreme sonucu olarak iki gametin dölllenmiş yumurta da (zigotla) kombine olabilmesi veya kombine olmuş bir özelliğin yuvrularda yeniden kombine (rekombine) olabilmesi gerekir. Genetik araştırmalar için elverişli organizmaların diğer nitelikleri ise çok sayıda döl verebilmesi, kısa hayat devresi bulunması, kontrollu çiftleşmeye uygun olabilmesi, yürütülmesinin kolay ve masrafsız olabilmesi şeklindedir. Bezelye bitkisi, drozofilalar nisbeten bıldırcınlar yukarıdaki özelliklere sahipdir. Mendelin planlı çiftleştirme denemelerinin sonuçları daha sonraki bölümlerde verilecektir. Burada yeri gelmişken kontrollu çiftleştirmenin imkansız olduğu hallerde kullanılan pedıgri analizlerine ilişkin bir örnek verelim. aşağıdaki pedıgri çok parmaklılık (6 parmaklılık) kalıtımını incelemek üzere verilmiştir. Bu pedigrilerde generasyonlar romen rakamı ile, bireyler normal rakamları ile gösterilir. Gene böyle pedigrilerde kareler erkekleri daireler dişileri gösterir. Böyle pedıgrilerde evlilikler böyle iki kare ve daire arasında ortadan yatay çizgi ile gösterilir. Pedigrilerde incelenen bir özelliği gösterenler tarama ile göstermeyenler açık ile belirtilir. Pedigrilerde kardeşler daire ve karelerin üstünden bir yatay çizgi ile birleştirilerek belirtilir. Diğer bir değişle genetik çalışma metodları kontrollü çiftleştirme deneyleri ve pedigri analizleridir. Genetik çalışmalar da yukarıda belirtilen kontrollu çiftleştirme sonuçların analizi ve pedigri analizleri sonuçlarının incelenmesinde istatistiki analizlerden yararlanılır. özellikle yapılmamış çaprazların sonucunun tahmini ve belirli bir genetik mekanizma teorisine ilişkin güven derecesinin ortaya konulmasında istatistik analizlere başvurulur. Tasfiri genetik ile ilişkin bir çok bulgunun elde edilmesinden sonra araştırıcıların ilgileri irsiyetin ne olduğu sorusuna değilde nasıl olduğu sorusunun cevabına yönelmiştir. Böylece kalıtım modeli ile hücrelerin yapı ve davranış nitelikleri arasındaki paralellikler araştırılmış ve Sitoloji ilimi populerlik kazanmıştır. Bu konudaki önemli bir bilim adamı olan “Sutton” 1902’de kromozomların davranışlarının mendel kalıtım kurallarının temelini oluşturduğu sonucuna varmışlar. Daha sonraları özellikle meyva sineği Drosophilada, mısır bitkisinde ve labaratuvar farelerinde yapılan çalışmalarla genetik haritalar çıkarılmış hangi özelliğin hangi komozonun neresinde olduğu belirlenmeye çalışılmıştır. Daha sonraları genetikçilerin ilgileri genin moleküler yapısını anlamaya yönelmiş ve bugünkü seviye elde edilmiştir. Netice olarak insan genetiği, populasyon genetiği, ekolojik genetik, sitogenetik, kalitatif genetik, kantitatif genetik, moleküler genetik, gen teknolojisi, DNA teknolojisi gibi çeşitli alt çalışma alanları oluşmuştur. Bu süreçte klasik genetik; mendel prensipleri, krozomal kalıtım, mayoz ve mitoz bölünme, cinsiyetin belirlenmesi, cinsiyete bağlı kalıtım, kromozom haritaları, sitogenetik, kromozamal sayosal değişmeler ile ilgilenir. Moleküler genetik ise; DNA’nın fiziksel ve kimyasal yapısı, replikasyonu, transkripsiyonu, translasyonu, ekspresyonu, klonlanması, mutasyonu, tamiratı, kromozom dışı kalıtımla ilgilenir. Moleküler genetik, rekombinant DNA teknolojisi (genetik mühendisliğinide) inceler. Populasyon genetiği ise; Populasyonda mekana ve zamana göre gen ve genotip frekanslarının değişimi ve bu değişime etkili faktörleri konu olarak alır.

http://www.biyologlar.com/genetik-calismalarda-kullanilan-organizmalar-ve-calisma-metodlari

1000 Yıllık Mumyada Antibiyotiğe Dirençli Genler <b class=red>Keşfedildi</b>

1000 Yıllık Mumyada Antibiyotiğe Dirençli Genler Keşfedildi

Antibiyotiklerin bulunuşundan çok önce, 11. yüzyıldan kalma bir mumyanın kalınbağırsağında ve dışkısında antibiyotiğe karşı dirençli genlere rastlandı. Antibiyotiklerin aşırı kullanımına maruz kalmamış 1,000 yıllık bir bakterinin bu direnci göstermesine gen mutasyonlarının sebep olduğu düşünülüyor.1000 Yıllık Mumyada Antibiyotiğe Dirençli Genler Keşfedildiİnka imparatorluğunun başkenti Cuzco’da bulunan mumya, Profesör Ernesto Mazzei’nin uğraşları sonucu 19. Yüzyılın ikinci yarısında İtalya’ya getirildi. Şu an Floransa Üniversitesi’nin bünyesindeki Antropoloji ve Etnoloji Müzesi’nde diğer 11 mumya ile birlikte koruma altında tutuluyor.Bütün vücudu liflere sarılı bir şekilde bulunan mumyanın yalnızca yüzü ve ellerinin bir bölümü açıkta bırakılmış. Mumyayı bütünüyle saran liflerde bırakılmış bu açıklık,  ölenlerin yüzlerinin rahatlıkla görülebilmesini sağlıyor.Pisa Üniversitesi’nden Profesör Gino Fornaciari, mumyanın cenaze geleneklerine göre hazırlandığını; tütsülenip, liflere sarılarak cenin pozisyonunda gömüldüğünü söylüyor. Ayrıca Fornaciari ve meslektaşları, And dağlarının soğuk ve kuru ikliminin mumyanın muhafazasında önemli bir rol oynadığını da belirtiyorlar.Otopsi SonuçlarıYapılan otopsi çalışmalarında, mumyanın 18 ile 23 yaşları arasındaki bir kadına ait olduğu tespit edildi. Mumyanın yemek borusunda, kalbinde ve kalın bağırsağında gözlemlenen anormal ölçülerdeki genişlemeler ise muhtemelen bu genç kadının Güney Amerika’da sıkça görülen Chagas hastalığına yakalandığını ve bu sebepten hayatını kaybettiğini gösteriyor.1000 Yıllık Mumyada Antibiyotiğe Dirençli Genler KeşfedildiÇoğunlukla öpücük böceği olarak bilinen (Triyatomine) kan emici bir böcek türü aracılığıyla yayılan bu hastalığa, günümüzde çoğunluğu Latin Amerika’da yaşayan 6-7 milyon insanın yakalanmış olduğu tahmin edilmektedir.Toksikolojik analizler sonucu kurbanın saçından elde edilen bulgular  psikoaktif madde kullanımını işaret eder nitelikte. Fornaciari, bu bulgular ışığında genç kadının hastalık süresince bir takım uyuşturucularla, muhtemelen koka yapraklarıyla, tedavi edildiğini söylüyor.Mumya üzerinde yapılan mikrobiyom analizleri ise kurbanda, başka bir bakteriye bağlı olarak gelişen “Clostridium Difficile” adlı hastalığın varlığını ortaya çıkarıyor. İshal ve kolite yol açan bu bakterinin yanısıra kurbanda cinsel yolla bulaşan HPV virüsüne de rastlandığı gelen haberler arasında.Mumya’da izine rastlanan ve Chagas hastalığına yol açan “Trypanosoma Cruzi” adlı parazitin modern formlara göre biraz daha ilkel olduğu tespit edilse de yapısal olarak günümüz virüslerine  %98 – %99 oranında benzediği gözlemlendi.Yapılan analizlerde  araştırmacılar antibiyotiğe karşı dirençli bir çok gen de tespit ettiler. Bilinen şartlarda bu dirençli genlerin artan antibiyotik kullanımı sonucu ortaya çıkması gerekirken Cuzco’da bulunan bu mumya, antibiyotiğe dirençli genlerin ortaya çıkışının antibiyotiklerin terapötik kullanımından çok öncesine dayandığını gösteriyor.Fornaciari modern tıpta pratik etkiler yaratacak olan bu bulgunun, patojenlerin evrimini anlama açısından da bilim insanlarına yardım edeceği görüşünde.news.discovery.com http://arkeofili.com

http://www.biyologlar.com/1000-yillik-mumyada-antibiyotige-direncli-genler-kesfedildi

Bağırtlak Familyası Kuşları Nasıl Canlılardır?

Bağırtlak Familyası Kuşları Nasıl Canlılardır?

Bağırtlaklar, olağanüstü kuşlar familyasıdır. Her bağırtlak, net olarak tanınabilen özellikleri paylaşmasına rağmen, familyanın sınıflama planı, uzun süren bir tartışma konusu olmuştur. Sorun,  kuşlarının morfolojik bakımdan muhtelif diğer kuşların Özelliklerini ödünç almalarından kaynaklanmaktadır: tüylü ayaklarını keklik familyasından (dolayısıyla ismini); kısa gagalarını, boyun ve bacaklarını güvercin familyasından; sivri uçlu kanatlarını ise çamurda yürüyen dalıcı kuşlar familyasından. Fakat bağırtlaklar, hangileriyle ilişkilidir? Son zamanlarda elde edilen biyokimyasal kanıtlar, dalıcı kuşları işaret etmektedir fakat bu konudaki anlaşmazlık süreceğe benzer. 16 tür bağırtlak vardır. Hepsi, güvercinlerin ki gibi baş ve gövdeleri olan bodur, tıknaz kuşlardır. Bacakları kısa olmasına rağmen, uzun, zarif kanatları, ve kuyrukları vardır. Bu olağandışı birleşim onları ayırt edilir yapar, iyi uçarlar ve toprakta koşarlar fakat pençeleri, (Pterocles türlerindeki gibi) ya çok küçüktür ya da (Syrrhaptes türlerindeki gibi) hiç yoktur. İşte bu yüzden dolayı üstünde tüneyemezler. Ayaklarındaki tüyler, onları çöllerde aşırı sıcaktan korurken, kalın ayakaltı derileri, sert ve kaba yerlerde yürürken aşınma ve yırtılmalardan korur. Sessiz Yaşamlar En büyük çeşitliliği Afrika’da olmak üzere bütün bağırtlaklar Eski Dünya’da yaşar. İşlenmiş arazilerden gerçek çöllere kadar bir dizi doğal yaşam alanında yaşayan verimsiz, kıraç ve çorak bölgelerin kuştarıdır. Sessizce yerlerde beslenerek tohum, yaprak ve yeşil filiz arayarak günlerinin 6048_bagirtkançoğunu kendi hallerinde mütevazı bir hayat sürerek geçirirler. Bu kuşlar gizemli yaşam şekillerini sadece su içmeye gereksinimleri olduğu vakit terkeder. Bu, tamamen zamanlaması çok iyi ayarlanan ve günde bir defa, sabah yapılan bir etkinliktir. Küçük sürüler, daha büyük sürüler oluşturmak üzere büyük sürülere karışarak bazen üç-beş bine varan sayılarda bütün yönlerden su kaynağına doğru uçar. Kuşlar, suyun etrafında bir tur atar ve sonunda sahilden biraz uzağa iner. Sonra Ölçülü ve zarif adımlarla, sessizce su kıyısına tırmanırlar. Her bir kuş, birkaç yudum su içer ve hemen gider. Nadir olarak havalanmadan önce suyun başında 10 saniyeden fazla kalırlar. Havalandıktan sonra yiyecek aramaya giderler.Basit YuvalarYuva, genellikle sığ bir çukura, yere yerleştirilir. Bu çukur, deve gibi büyük memeliler tarafından yapılmıştır ve bunlar kuşların en sevdiği yuva yerleridir. Çoğu tür, herhangi bir malzeme koymadan doğrudan toprağın üstüne yumurtlar. Yuvaya mümkün olduğu kadar az dikkat çekmek için, ebeveynler yumurtaların üstünde saatler süren, uzun vardiyalar halinde kuluçkaya yatar. Erkek geceleri, daha çok kamuflaj tüyü olan dişi ise gündüzleri kuluçkaya yatar. 1896 yılında, su tutma özelliği yüksek olan karın tüyleriyle, erkek bağırtlakların yavrularına su taşıdığı keşfedildi. Erkek bağırtlaklann karınlarındaki tüyler, bir süngerin tutabileceği su miktarından üç kat daha fazla su emer. Üreme mevsimi esnasında, su kaynaklarını ziyaret ederken erkek bağırtlaklar gövdelerini suya daldırarak göbek tüyleri suya doymuş vaziyette yuvalarına geri uçar. Erkek bağırtlak yuvasına vardığında, yavrular kendilerini erkek kuşun tüylerine iliştirirler ve sıcak çöl güneşi altında babalarının tüyleri arasındaki nemi emerek susuzluklarını giderir. Bu özellik; uçsuz bucaksız çöl arazisinin ortasında, su kaynaklanndan uzaklarda güvenli yuva yeri seçen bir kuş için mükemmel bir uyumdur.Kaynakça:Reader’s DigestYazar: Tuncay Bayraktar http://www.bilgiustam.com

http://www.biyologlar.com/bagirtlak-familyasi-kuslari-nasil-canlilardir

7,000 Yıllık İskelette Bilinen En Eski Lösemi Vakası Bulunmuş Olabilir

7,000 Yıllık İskelette Bilinen En Eski Lösemi Vakası Bulunmuş Olabilir

7,000 Yıllık İskelette Bilinen En Eski Lösemi Vakası Bulunmuş OlabilirAlmanya’da 7,000 yılllık bir iskelette dünyanın ilk lösemi vakası keşfedilmiş olabilir. 30-40 yaşlarında bir kadına ait olan iskelet, 1982 yılında Stuttgart-Mühlhausen yakınlarında bir erken Neolitik dönem kazısında ortaya çıkarıldı. Güneybatı Almanya’da bulunan kazı alanında 72 gömüt daha keşfedilmişti.İskeletin yanında yuvarlak dipli bir çömlek de bulundu. İskeletlerin keşfedildiği yerleşim alanı, Linearbandkeramik (LBK) kültürüyle bağdaştırılıyor. Bu kültürün adı, ürettikleri çanak-çömleklerde bulunan bu kültüre özgü çizgisel desenlerden geliyor. Linearbandkeramik kültürü MÖ 5500-48000 yılları arasında Batı ve Orta Avrupa’da gelişen bir erken tarımcı kültürdü. Tübingen Üniversietesi Senckenberg İnsan Evrimi ve Paleo-Çevre Merkezi’nden ekip lideri Heike Scherf “Şimdiye kadar bu bireyde sadece, diş yuvası iltihaplanmasıyla birlikte şiddetli diş çürükleri bulundu.” diyor.dünyanın en eski lösemi vakasıYüksek çözünürlüklü CT taramaları yapan Scherf ve meslektaşları, hem humerus (üst kol kemiği), hem de sternum kemiklerinin (göğüs kafesi kemiği) dokusunda, süngerimsi kemiğin büyük oranda hasar görmüş ve kaybolmuş olduğunu fark etti.Araştırmacılara göre, bu kemiklerde orta süngerimsi dokuda görülen erime, aynı yerleşimdeki aynı yaş grubuna ait örneklere göre çok daha yüksekti. Erime, modern yetişkin örneklerde görülene kıyasla da olduça yüksekti.Scherf “Sonuçlarımız kemik iliğindeki hematopoietik (kan yenileyici) kök hücreleri etkileyen, erken aşamalardaki bir lösemi vakasına işaret ediyor.” diyor.Humerus ve sternum kemikleriyle bölgesel olarak sınırlı kalan kemik tahribatı, osteoporoz, kemik tümörü ve hiperparatiroidizm gibi diğer hastalık seçeneklerini de eliyor.Scherf Discovery News’e yaptığı açıklamada “And Dağları mumyalarında daha önce özel bir tip lösemiyle (T-hücreli lösemi) bağdaştırılan bir virüs bulunmuştu. Fakat bizim yaptığımız keşif, büyük ihtimalle, bir arkeolojik bir örnekte bilinen ilk lösemi vakası oldu” diyor.Araştırmacılar, Neolitik kadını etkilemiş olan lösemi tipini belirlemek gibi daha detaylı varsayımlar yapmanın imkansız olduğunu da kabul etti.Zürih Üniversitesi’nde Evrimsel Tıp Enstitüsü müdürü Frank Rühli “Bu en modern tarama teknikleriyle bile insan, böyle bir paleopatolojik bulgu konusunda yüzde yüz emin olamaz. Bununla birlikte, lösemi gibi büyük bir etkisi olan modern ve sık görülen bir hastalığın en erken paleopatolojik örneğine dair bir belirtiyi keşfetmek bile, hastalığın evrimi açısından çok önemli birşey” dedi Discovery News’e yaptığı açıklamada. Yazan: Ayşe BursalıAraştırma Avrupa Birinci Evrimsel Tıp Konferansı’nda sunuldu.Discovery News Görsel: UNIVERSITY OF TÜBINGEN http://arkeofili.com

http://www.biyologlar.com/7000-yillik-iskelette-bilinen-en-eski-losemi-vakasi-bulunmus-olabilir

Kızılderili Köyünde 1000 Yıllık Tohumlar Bulundu

Kızılderili Köyünde 1000 Yıllık Tohumlar Bulundu

Güney Dakota’daki tarihöncesi kızılderili köyünde her yıl yeni bir kalıntı gün yüzüne çıkarılmaya devam ediyor.  Bu sene yapılan keşiflerin boyu küçük ama önemleri çok büyük. Toprağın 1,5-2 metre derinlerinde keşfedilen tohumlar bölgedeki tarımcılığın tarihine ışık tutuyor.Mitchell Gölü çevresindeki kazı alanında uzun süredir çalışmalarına devam eden arkeologlar,  1000 yıl boyunca el değmemiş, birkaç milimetre boyundaki kömürleşmiş mısır taneleri ve ayçekirdeklerine ulaştılar. Aynı zamanda, mısır koçanları da bulduklarını ifade eden araştırmacılar, bu kalıntıların tarımcılığın ne kadar büyük bir değişim geçirdiğini ve bölge insanlarının beslenme biçimlerinde çeşitlilik olduğunu kanıtladığını dile getirdi.Bölgedeki Tarımın Tarihini Aydınlatan TohumlarKazı alanında 12 yıldır öğrencileriyle beraber çalışmalarını sürdüren Exeter Üniversitesi Arkeoloğu Alan Outram, ekibin son 1 ay içerisinde, 11 yılda keşfedilenden daha fazla kömürleşmiş bitki ürünü keşfettiğini dile getirdi. Alan Outram, “Bu bölge bir tarım alanı ve buluntular buradaki tarımcılığın tarihini aydınlattığı için gerçekten çok önemli.” dedi. Proje Direktörü, Augustuna Koleji Arkeoloji Profesörü Adrien Hannus, kazı alanındaki çalışmalar ışığında bölgede yaşamış Amerika yerlilerinin günlük hayatları hakkında geniş bilgi sahibi olmayı amaçladıklarını dile getirdi. Hannus, “Bu köy, tarihöncesi tarımın kökenini yansıtmasa da,  bölgedeki tarımı anlamak için incelenmesi gereken en önemli kazı alanlarından bir tanesi.” dedi.Mısır taneleri ve ayçekirdekleri, yiyeceklerin ve çeşitli aletlerin saklandığı derin çukurlar içerisinde keşfedildi. Bu çukurlar, o dönemde insanların yemeklerini ve aletlerini muhafaza etmek için kullandıkları depolardı. Bölge insanları, yemeklerini saklamak için bu derin çukurların yeterli olmadığını anladıklarında,  çukurları çöp depoları olarak kullanmaya başladılar. Arkeoloji öğrencileri bu çukurlarda çanak çömlek parçaları ve başka eşya kalıntıları da buldular.Hannus, ülkenin bu kısmında yer alan tarihöncesi çukurların geniş bir ağzı olduğunu ve 1,5-2 metre derinde çukurların gitgide genişlediğini belirtti. Bu çukurların çevresi kil ve kül ile kaplıydı. Araştırmacılara göre bunun nedeni, böceklerin böylesine kalın bir kül tabakasını canlı bir şekilde geçemeyecek olmasıydı. Bu yıla kadar, araştırmacılar bölgede, etrafındaki kil ve kül kaplaması zarar görmemiş bir depolama çukuruna ulaşamamışlardı.Mısır koçanlarının boyunun bir yetişkinin parmağını geçmediği görüldüğünden, Hannus, burada yaşayan insanların koçanların tamamını közlediklerini ya da kaynattıklarını öne sürdü.  Alan Outram, “Bu kalıntılar bize bitki yapılarının zaman içinde ne kadar değişime uğradığını gösteriyor. Mısır taneleri günümüzdeki ile aynı boyda olsa da koçanlar çok daha küçük ve üzerlerinde daha az mısır tanesi var.” dedi. “Kömürleşmiş olmaları, tanelerin günümüze kadar korunmasını sağlamış. Aksi takdirde bu tohumlar zaman içinde büyüyerek toprağın dışına çıkardı.”Günümüz Kırsal Hayatının İzleriHannus, “Kalıntılar, bölgedeki Amerika yerlilerinin karmaşık bir beslenme biçimi olduğunu ve tamamen ilkel canlılar olmadıklarını kanıtlıyor.” dedi. “Burada asıl önemli ve güzel olan, bu köydekilerin başarılı çiftçiler, avcı ve toplayıcılar olmaları.  Bu insanlar balık tuttular, çeşitli vahşi hayvanları topladılar;  bizon, geyik ve daha küçük memelileri avladılar. Burada bir açlık hikayesi yok. Burada, çok canlı ve önemli bir topluluğun hikayesi saklı.”31 yıldır bölgede çalışmalarını sürdüren Hannus, bu tarihöncesi köydeki yaşamın, Güney Dakota’daki günümüz kırsal yaşamından çok da farklı olmadığını belirtti. “Kazı alanını ziyaret eden insanlara, buradaki yaşayışın çok yabancı veya farklı bir kültüre ait olmadığını anlatmaya çalışıyorum. Bugün Güney Dakota’daki küçük kasabalar, aynı buradakine benzer şekilde işleyen bir hayat sürdürüyorlar.”mitchellrepublic.com http://arkeofili.com

http://www.biyologlar.com/kizilderili-koyunde-1000-yillik-tohumlar-bulundu

 
3WTURK CMS v6.03WTURK CMS v6.0