Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 1019 kayıt bulundu.

BİTKİ FİZYOLOJİSİ DERS NOTLARI

Bilindiği gibi fizyoloji organeller, hücre ve dokular ile organ ve organizmaların canlılığını sağlayan işlevlerini, ilişkilerini ve cansız çevre ile etkileşimlerini inceleyen bilim dalıdır. Bitki fizyolojisi de bu çerçevede mikroalglerden ağaçlara kadar tüm bitkilerde bu konuları araştırır. Günümüzde bilgi birikiminin ve iletiminin çok hızlı artışı nedeniyle bilim dallarının sayılarındaki artış yanında sürekli yeni ara dalların ortaya çıkması sonucu bilim dalları arasındaki sınırları çizmek zorlaşmış ve giderek anlamını yitirmeye başlamıştır. Fizyoloji fizik ve kimya ile moleküler biyoloji, sitoloji, anatomi ve morfoloji ile biyofizik, biyokimya verileri ve bulgularından yararlanarak tıp ve veterinerlik, ekoloji ve çevre, tarım ve ormancılık ile farmasi ve gıda, kimya mühendisliği gibi uygulamalı bilimlerrindeki gelişmeler için altyapı sağlamaktadır. Bitki fizyolojisi de bitkilerle ilgili olan konularda aynı şekilde çalışarak.diğer temel ve uygulamalı bilimlerin gelişmesine katkıda bulunmaktadır. Uzunca bir süre önce fizyoloji ile biyokimyanın konuları arasındaki sınır netliğini kaybetmiştir. Giderek diğer bilim dalları ile aradaki sınırlar da bilgibirikiminin artışı sonucunda zayıflayacaktır. BİTKİ FİZYOLOJİSİNİN KONUSU VE DALLARI Klasik olarak fizyoloji, beslenme fizyolojisi, metabolizma fizyolojisi ve büyüme gelişme fizyolojisi olarak üç ana dala ayrılır. Bu yaklaşımla bitki fizyolojisinde beslenme kara bitkilerinin havadan, su bitkilerinin de sudan sağladığı gazlar ve kara bitkilerinin havadan sağladığı su buharı ile toprak veya sudan sağladıkları mineral iyonları, nasıl alındıkları ile ilgili konular beslenme fizyolojisi başlığı altında toplanır. Metabolizma fizyolojisi de bu çerçevede alınan hammaddelerin, hangi maddelere dönüştürüldüğü ve kullanıldığı, işlevlerinin neler olduğu, hangi durumlarda bu tabloda ne yönde ve nasıl değişimler olduğunu inceler. Biyokimya ile en yakın olan daldır. Metabolizma fizyolojisinin karmaşık ve genişkapsamlı oluşu nedeniyle de primer ( birincil, temel ), sekonder ( ikincil ) ve ara Metabolizma, primer Metabolitlerin depolanan ve gerektiğinde sindirilen dönüşüm ürünlerini konu alan alt dallara ayırılması gereği ortaya çıkmıştır. Büyüme ve gelişme fizyolojisi ise beslenme ile alınan, Metabolize edilen maddelerin kullanılması ile organellerden, bitki hücrelerinin embriyo düzeyinden başlayarak organlar ile bitki organizmalarına kadar büyümelerini, belli bir yönde farklılaşarak özel işlevler kazanmalarını, bütün bu olayları etkileyen etmenleri ve etkileşimlerin mekanizmalarını inceler. Büyüme ve gelişme fizyolojisi hem moleküler biyoloji hem de biyokimya ve ekoloji ile yakından ilişkilidir. Çünkü büyümeyi ve sonra gelişmeyi tetikleyen mekanizma ve özellikle farklılaşmanın şekilleri açısından kapasite genetik yapı ve baskı, biyokimyasal özellikler ile çevre koşulları ile yakından ilişkilidir. Bilgi birikiminin artışı ile bitki gruplarına has özellikleri inceleyen veya yüksek bitkilerin yaşamında ve uygulamalı bilimlerde önemli yer tutan belli olgu ve gelişmeleri konu alan alt dallar ortaya çıkmıştır. Bitki hücre fizyolojisi, alg fizyolojisi, çimlenme fizyolojisi, çiçeklenme fizyolojisi, stres fizyolojisi, bunlardandır. Ayrıca fizyolojik olayların açıklanabilmesi gerekli temel bilgileri sağlayan fizik, enerjetik, kimya, fizikokimya ve biyokimya gibi dalların katkıları oranına göre de biyofizik, fiziksel biyokimya, biyo-organik veya inorganik kimya gibi dallara benzer şekilde biyofiziksel, biyokimyasal fizyoloji gibi alt dallara ayrılır. Günümüzde botaniğin ve diğer temel ve teknolojik bilimler ile dallarının konuları ile ilişkinin yoğunluğuna göre adlandırılan alt dallara da ayrılmıştır. Bitki ökofizyolojisi, ürün fizyolojisi, depolama fizyolojisi, fizyolojik fitopatoloji bu alt dallara örnek olarak verilebilir. Bu tür konu sınıflandırmaları çerçevesinde bitki fizyolojisini, fizyolojinin temel konularının bitkileri diğer canlılardan ayıran temel özelliklerin fizyolojik yönlerinden başlayarak ele almak ve bu temeller üzerinde açılım gösteren özel konulara yönelerek işlemek yararlı olabilir. Bilindiği gibi canlıların en temel özellikleri aldıkları enerjiyi belli sınırlar içinde olmak üzere çevreden alabilmeleri, kullanabilmeleri, depolayabilmeleri ve gerektiğinde açığa çıkarabilmeleri, biyolojik iş yapabilmeleridir. Cansızlardan enerjice etkin olmaları ile ayrılırlar, doğal cansız evren enerji karşısında tümüyle edilgendir. Bu nedenle de bitki fizyolojisini biyolojinin temeli olan biyoenerjetiğin temel konularını anımsayarak incelemeye başlamak gerekir.

http://www.biyologlar.com/bitki-fizyolojisi-ders-notlari

ARILAR YOK OLMASIN

TEMA Vakfı'nın ''Türkiye Arıcılığındaki Tehlikeler'' raporunda, arılarda 'yanlış arıcılık uygulamaları' ve iklim koşulları nedeniyle yüzde son iki kışta 50 azalma olduğu belirtildi. Raporda, Türkiye'deki 4,5 milyon bal arısı kolonisinin, koloni başına 17 kilogram bal verdiği ve yılda 50-60 bin ton bal üretildiği kaydedildi. Türkiye'deki 20 koloniden sadece bir tanesinin ana arısının değiştirilebildiği belirtilen raporda, şu görüşlere yer verildi: ''Bu ana arıların da damızlık vasıfları ve kaliteleri kontrol edilemedi. Türkiye'de bal kalitesi denetimi yok denecek kadar yetersiz ve göstermelik. Ticari früktozlu ve sakarozlu ballar yaygın olarak pazarlanıyor. Yanlış arıcılık uygulamaları ve olumsuz iklim koşulları nedeniyle son iki kışta yüzde 50'yi geçen koloni kayıpları oldu, bal üretimi düştü. İhracat durdu, ithalat başladı.'' ''BİR DAMLA BAL İÇİN 120 BİN ÇİÇEĞE ZİYARET'' Raporda, bal arılarının nektar ve polen toplamak için çiçekleri ziyaret etmesinin, onların döllenmesini ve ürünün oluşmasını da sağladığı belirtilerek, arıların bir damla bal üretimi için yaklaşık 120 bin çiçeği ziyaret ettikleri kaydedildi. Bitkilerin gelişmesinde, tarımsal ürünlerin oluşmasında ve hayvancılığın ana girdisi yem bitkilerinin veriminde, arıların, su ve gübre kadar önemli olduğu ifade edilen raporda, ''Özellikle zararlı böcek mücadelesi yapılan tarım alanlarında diğer dölleyici böceklerin ölmesi nedeniyle döllenmede mutlaka bal arısına ihtiyaç duyulduğu'' vurgulandı. Raporda, Türkiye'nin bir kıta gibi yedi ayrı iklim özelliği gösterdiği, 12 bin bitkisinin büyük bölümünün nektarlı ve polenli olduğu hatırlatılarak, bozuk mera ve orman alanlarının rehabilite edilmesine paralel olarak ballı bitkilerin miktar ve çeşit olarak daha da artacağı vurgulandı. ''AMERİKAN YAVRU ÇÜRÜKLÜĞÜ'' Türkiye'de eğitim, damızlık, arı sağlığı ve bal kalitesinin kontrolü gibi önemli sorunlar bulunduğu ve arıcılığın usta çırak ilişkisiyle öğrenildiği ifade edilen raporda, modern arıcılık tekniklerinin hala üretici tabanına benimsetilemediği savunuldu. Her yıl Türkiye'de damızlık değeri yüksek en az 2,2 milyon ana arı kullanılması gerektiği ve TÜBİTAK'ın yürüttüğü bir araştırma sonucunda Bitlis'te yüzde 42, Diyarbakır'da yüzde 49, Hatay'da yüzde 52 oranında ''Amerikan yavru çürüklüğü'' tespit edildiği bildirilen raporda, şu görüşlere yer verildi: ''Avrupa Birliği mevzuatına göre, 'Amerikan Yavru Çürüklüğü' görülen kolonilerin yakılması gerekir. AB'ye uyum kuralları gereği Bakanlar Kurulu 'Bu mevzuata uyacağım' diye imza atmıştır, ancak Türkiye'de böyle bir uygulama başlatılamamıştır. Üretimde neredeyse sağlıklı koloni yokken Tarım Bakanlığı'nda arı hastalıklarını teşhis edip doğru tedaviyi önerecek teçhizli ve yetkili bir arı hastalıkları laboratuvarı bulunmamaktadır. Yaygın olan hastalıklara karşın ülke genelinde uyulması gereken tedbirlerle ilgili bir politika da geliştirilememiştir. Üreticiler yoğun arı hastalıkları ile bulaşık kolonileri tedavi etmek amacı ile pek çok kimyasallar kullanmaktadırlar.'' ''PETEKLER, PETROL ÜRÜNÜ NAFTALİN VE PARAFİNDEN'' Türkiye'de naftalin kalıntısız ve parafin katkısız temel petek bulunmadığı bildirilen raporda, bu peteklerin balla birlikte tüketildiği iddia edildi. Naftalin ve parafinin petrol ürünü ve kanserojen olduğu, petekli bal tüketim alışkanlığına sahip tüketicilere temel petekler olmadan petekli balları nasıl yiyeceklerinin anlatılması gerektiği vurgulandı. Üreticilerin ise son yıllarda sakarozun yerine daha ucuz olduğu için glikoza ve früktoza yöneldikleri belirtilen raporda, şunlara yer verildi: ''Bu sahtecilik daha da yaygınlaşmış, hiç arı görmemiş ticari şekerler doğrudan bal diye satılır olmuştur. Ticari glikoz ve früktozun piyasa değeri 1 YTL civarındadır. Bu sanayi ürünleri doğrudan veya doğal balla karıştırılarak en az 7-8 YTL ye bal diye satılmaktadır. Bu durum şekersiz bal üreten ve pazarlayanların aleyhine haksız bir rekabet yaratmaktadır. Nitekim binlerce doğal bal üreticisi balını maliyetinin altında satmak mecburiyetinde kaldıkları için üretimden vazgeçmişler ve arıcılığı bırakmışlardır. Diğer taraftan bal diye ticari früktoza kilogram başına en az 7-8 YTL ödeyen tüketici kandırılmaktadır.'' ARI ÖLÜMLERİ YÜZDE 50-60'LARA ULAŞTI Türkiye'de son iki yıldır kitlesel arı ölümleri görüldüğü, ilk olarak 2007'de Hatay'da 32 bin koloninin öldüğü anımsatılan raporda, Adıyaman, Ardahan ve Ankara'da yüzde 50- 60'lara varan arı ölümlerinin gerçekleştiği bildirildi. Son yıllarda ülke genelinde yaşanan kuraklığın arıcılığı olumsuz etkilediği, 2006 ilkbaharında yaşanan soğukların arı florasını dondurduğu ve kolonilerin de sonbaharda genç nesil yetiştiremedikleri aktarılan raporda, damızlık arıların geniş ölçekli kullanılmaması, kullanılanların vasıfsız olmaları, arı hastalıklarının yaygınlığı ve arıların ''Genetiği Değiştirilmiş Organizma'' (GDO) içeren früktozla beslenmeleri gibi nedenlerden hassaslaşan ve zayıflayan kolonilerinin yaşanan olumsuz iklim koşullarının da tetiklemesi ile öldükleri kaydedildi. Raporda, şöyle denildi: ''Yıllık bal üretimi 60-65 bin tonken, arı ölümlerine paralel olarak iklimsel nedenlerle flora yetersizliği de etkili olmuş, 2007 üretim sezonunda bal üretimi yarı yarıya azalmıştır. Tarım ve Köyişleri Bakanlığı 8 bin ton bal ithaline izin vermiş, arı ve bal cenneti Türkiye, bal ithal eden ülke konumuna düşmüştür. Arılara pancar şekeri yedirilerek üretilen balların bir laboratuvar analiz yöntemi henüz Türkiye'de bilinmemektedir. Pancar şekeri ile bal üretimi Türkiye'de olduğu gibi başka ülkelerde de yaygındır. İthal ballar vitrinlerdedir. Nasıl üretildikleri bilinmeyen ancak dünya piyasasında yaklaşık 2 dolar olan bu balları tüketicimiz en az 10 dolara yemeye devam etmektedir.'' TEMA Vakfı'nın hazırladığı raporun tümüne şu linkten ulaşabilirsiniz.. www.tema.org.tr/TurkiyeAriciligindakiTehlikeler.pdf

http://www.biyologlar.com/arilar-yok-olmasin

Patoloji

Patoloji, eski Yunanca hastalık anlamındaki 'pathos' teriminden türetilmiştir ve hastalıkların bilimsel yöntemlerle incelenmesi anlamında kullanılır. Daha geniş anlamıyla patoloji, hastalıklara yol açan nedenleri, bunların doku ve organları etkileme biçimlerini, hastalıklı doku ve organların özellikle morfolojik (biçimsel, görüntüsel) özelliklerini inceler. Bu anlamda patoloji, tıbbın temelini oluşturur. Tarihçe İlk çağlarda; hastalıkların tanrıların insanları cezalandırmak için kullandıkları bir araç olduğuna inanılıyordu. Her hastalık bir günahın, suçun cezasıydı. Bu inanç, din adamlarının etkinliğini ve gücünü de artırıyordu. Batı Anadolu ağırlıklı eski Yunan uygarlığında ve sonraları ibni Sina'nın yaklaşımlarında, hastalıklar ile tanrı(lar) arasındaki bağı koparma çabaları olmuştur. Atardamarlarda hava değil, kan bulunduğunun anlaşılması bile, insanlık tarihinin yakın dönemlerindedir (Galen, MS 200). Orta çağ boyunca Avrupa'da hastalıkların içsel ve dışsal nedenleri olduğu yönünde (ilahi olmayan) düşünceler ortaya atılmış ve böyle düşünenler genellikle bundan zarar görmüşlerdir! Rönesans ile birlikte, hastalıklar konusunda fiziksel neden-sonuç ilişkileri gündeme gelmiş, salgın hastalıklardan insandan insana geçen etkenlerin sorumlu olabileceği gibi görüşler "gözleme dayanarak" ortaya atılmıştır. Dolayısıyla, "gözlem"in hastalıkları anlama açısından önem kazanması ve bugün anladığımıza yakın anlamda patolojik incelemeler yapılması rönesans ile başlar. Eski Mısır uygarlığında da "haruspex" isimli saray görevlilerinin belli hayvanların organlarını kesip inceledikleri bilinmektedir. Özellikle karaciğerin kesit yüzünü değerlendiren "haruspex"leri ilk patologlar olarak görmek mümkün olabilir. Ancak, "haruspex"lerin (sözcük anlamı:kâhin)incelemeleri o karaciğerde ne olduğunu açıklamayı değil, uğruna bir hayvanın karaciğeri çıkarılan kişinin geleceğinin ne olduğunu tahmin etmeyi amaçlıyordu! Patologluk, bu falcılık yönünü zamanla kaybetmiştir!. Patolojinin büyükbabası olarak kabul edilebilecek kişi, Padua Üniversitesi anatomi profesörü Giovanni Battista Morgagni'dir (1682-1771 veya 1777). Morgagni'nin 1761'de yayımladığı kendi yaptığı 700 otopsiyi anlattığı kitabı bir dönüm noktasıdır. Bundan sonraki dönemde "etiyoloji", "lezyon" ve "semptom" arasında ilişki kurularak bugün bildiğimize yakın, tanrısal yönü olmayan, bir "hastalık" kavramı oluşmuştur. Bu dönemde Bichat, Laennec, Dupuytren, Hodgkin, Addison, Paget, Rokitansky gibi; adları bugün de yaşayan hekimler, patoloji bilgisinin artmasına katkıda bulunmuşlardır. İnsan ve hayvanların aynı mikroskobik yapıtaşlarından (hücrelerden) yapıldığını ilk kez söyleyen, histolojinin babası olarak kabul edilen Theodor Schwann (1810-1882) da böyledir. Patolojinin 1980'lere kadar kullanılmakta olan yaklaşımlarının hemen tümünün kaynağı olarak "hücresel patoloji"nin kurucusu Rudolph Ludwig Karl Virchow (1821-1902) gösterilmektedir. Histopatolojik incelemeye dayanan bu yaklaşımda "hücre"; yaşamı, hastalıkları ve ölümü açıklamaya yönelik tüm çabaların odak noktasını oluşturur. "Omnis cellula a cellula" (her hücre bir hücreden doğar) sözü bu yaklaşımın temelidir. Virchow, hastalıklı hücrelerin de sağlam hücrelerden oluştuğunu vurgulayan ilk bilim adamıdır. Politik radikalliği ile de bilinen Virchow'un başyapıtı "Fizyolojik ve Patolojik Histolojiye Dayanan Hücresel Patoloji" art arda verdiği 20 konferansın ardından 1858'de yayımlanmış ve bilginin hızla biçim ve içerik değiştirmesine karşın, sonraki yüzyıl boyunca etkinliğini sürdürmüştür. "Tromboz", "lösemi", "atrofi", "hipertrofi", "miyelin" gibi pek çok terim ilk kez Virchow tarafından kullanılmıştır. Günümüzde, moleküler yöntemlerin gelişmesi ile bu tür yöntemler de patolojik incelemelerde gittikçe artan biçimde kullanılmaya başlanmıştır. Bunlar arasında, DNA başta olmak üzere, "genetik materyal" ile ilgili olanların önemi özellikle artmaktadır. Ülkemizde patoloji, Osmanlı döneminin tek tıp fakültesi olan askeri tıp fakültesinde (Gülhane) Alman bilim adamları tarafından ilk kez uygulanmıştır. Dolayısıyla, Patoloji Türkiye'ye Gülhane ile gelmiştir. İlk Türk patologlarının tümü askerdir. Ülkemizde patolojinin kısa bir tarihi bu konuda daha fazla bilgi edinmenizi sağlayabilir. Tıp eğitiminde patolojinin yeri Günümüzde tıp fakültesi düzeyindeki bütün okullarda patoloji en ağırlıklı derslerden biri olarak okutulmakta ve ders saati sayısının çokluğu açısından da pek çok kurumda ilk sırayı almaktadır. Bu dersler bir veya iki seneye yayılmaktadır. Gelişmiş ülkelerde de, yalnızca 'ders anlatma' yolu ile öğretim pek çok kurumda neredeyse tümüyle ortadan kalkmakta olmasına rağmen, öğrencinin başarısının değerlendirilmesinde patoloji bilgisinin ölçülmesi önemini korumaktadır. Patoloji öğretiminden beklenen; öğrencinin hastalıklı doku ve organları inceleyerek, neden (etiyoloji) ve sonuç (hastalık bulguları) arasındaki bağlantıları kavrayabilmesini sağlamaktır. Patoloji eğitimi, hastalıklar bilgisine görsel bir boyut kattığı için, öğrenilenlerin daha anlaşılır ve kalıcı olmasını sağlama açısından önemlidir. Bu yönleriyle patoloji, 'temel' bir tıp dalıdır. Patolojide öğrenilenler, hemen tüm klinik dallarda o dala özgü bilgilerin öğrenilmesini kolaylaştırır. Tıp pratiğinde patolojinin yeri ve patoloji uzmanının işlevleri Patolog, hemen yalnızca yataklı sağlık kurumlarında hizmet veren, hem cerrahi hem dahili bilim dalları ve servisler ile ilişkili bir uzmandır. Bu açıdan patoloji bir 'laboratuar' bilim dalı olarak görülebilir. Ülkemizdeki akademik uygulamalarda ise patoloji, 'cerrahi' bilim dalları arasında yer alır. Tıp Fakültelerinde Patoloji Anabilim Dalı, idari açıdan Cerrahi Tıp Bilimleri Bölüm Başkanlığı'na bağlıdır.

http://www.biyologlar.com/patoloji-1

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

SÜNGERLER HAKKINDA BİLGİ

SÜNGERLER HAKKINDA BİLGİ

Deniz diplerinin inanılmaz ren ve biçimlerdeki nazlı güzelleridir süngerler. Yüzyıllar boyuna hep biti sanılan bu ilginç hayvanların, sakin görünen yaşantıları gerçekte oldukça renklidir. Bu nedenledir ki çok uzun yıllardır insanların ilgisini çekmişlerdir. Sünger avcılığı günümüzde hala bir meslek olma niteliğini koruyor. Süngerlerle avcılar arasındaki amansız mücadeleye yüzyıllardır tanıklık ediyor denizler. Sünger avcılarının topladığı süngerler önceleri yalnızca banyo ve mutfaklarda temizlik gereci, boya fırçası, zırh ve miğfer astarı, kap, bebek emziği, tıbbi cihaz malzemesi ve tampon olarak kullanılırken, bugün artık biyokimya laboratuvarlarında ve ilaç endüstrisinde önemli araştırmalara da konu oluyor. Süngerler, en ilkel çok hücreli canlı gruplarındandır. Tanımlanmış yaklaşık 5000 türü vardır süngerlerin. Renkleri, vücut yüzeyindeki su alıp veren gözeneklerin büyüklükleri ve dizilişleriyle sivri, mikroskobik çıkıntıları sünger türlerinin tanımlanmasında yardımcı olur. Rengarenk, canlı süngerler laboratuvarlara taşındığında, örnek kavanozlarının dibinde önce renkleri solar sonra da sulu çamur haline dönüşürler. Bazen, süngerlerin kimliğini belirlemek için mikroskobik düzeyde analiz yapmak gerekir. Süngerlerin çok büyük bir bölümü denizlerde, geri kalanlar da tatlı sularda yaşar. Tüm okyanus ve denizlerde, hemen hemen her derinlikte süngerlere rastlamak olasıdır. Kimi yalnızca birkaç cm büyüklükte olan süngerlerin, 2 m olanları da vardır. Yüz milyonlarca yıldır değişmeden kalmış olan bu canlılarda kalp, beyin, ciğer gibi organlar, gerçek dokular ve sinir sistemleri bulunmaz. Karmaşık hareket yetenekleride yoktur. Bütün bu özellikleri ve hiç yer değiştirmiyormuş gibi gözükmeleri nedeniyle çok uzun yıllar hep bitki sanılmıştır süngerler. 1600’lü yıllarda İngiliz bitkibilimciler, “Sünger diye adlandırdığımız ve deniz köpüğünün oyduğu bazı maddelerden bilimsel yayınlarda söz etmek çok fazla yer kaplayacağı gibi, okuyuculara da pek katkısı olmaz” diyorlardı. İlk kez 1765’te hayvanlara özgü yapısal ve fizyolojik özellikleri ortaya çıkarılmış olan süngerler, 1600’lü yıllarda bilim adamlarının düşündüklerinin aksine, bugün birçok bilimsel araştırmaya konu oluyor. Süngerler yaşamlarını daha çok özelleşmiş hücreler yardımıyla sürdürürler, değişik hücreler değişik işlevler üstlenmiştir. İskeletleri kalkerli ya da silisli kristal iğneciklerden (spikül), sponjin denen bir proteinden ya da bunların karışımından oluşur. Por adı verilen gözenekler sayesinde suyu süzerek çekerler ve sonra minik boşaltım deliklerinden geri püskürtürler. Serin ve tuzlu sularda yaşayan süngerler, hareketsiz olduklarından kendi yakınlarına gelen yiyecekleri hidrolik sistemlerinin yardımıyla suhidrolik sistemlerinin yardımıyla sudan süzerler. Süngerler genellikle gözle görülemeyecek kadar küçük organik maddeleri, diatomları ve bazı tekhücreli mikroskobik bitkileri, ölü ya da canlı planktonları ve bakterileri besin olarak alırlar. Kısa bir süre önce Akdeniz’deki sualtı mağaralarında yaşayan bir sünger türünün etobur olduğu ve kabuklu minik hayvanları (Crustacea) yediği saptanmış. Bu etobur sünger, hayvanın dış kabuğuna iğnecikleriyle yaptıktan sonra, korumasız avının etrafında toplanan özel hücreleri sayesinde sindirim yaparlar. Süngerler hem eşeyli hem de eşeysiz üreme yapabilirler. Eşeyli üreyenlerinin çoğunluğu ayrı eşeyli, bir kısmı da hermafrodittir (hem dişi hem de erkek üreme organına sahiptir). Bunlar, yumurta ve spermleri farklı zamanlarda üretirler. Dışarı salınan bu spermler komşu süngerlerce alınır. Eşeysiz üreme yapan süngerlerse tomurcuklanmayla ürerler. Tatlı sularda yaşayan süngerler eşeysiz olarak çoğalırlar. Süngerler, güneş ışığı ve havayla karşılaştıklarında ölseler bile tekrar suya sokulduklarında tomurcukları yaşar ve bunlardan yeni süngerler oluşabilir. sci.ege.edu.tr

http://www.biyologlar.com/sungerler-hakkinda-bilgi

TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI

BİYOLOG MESLEĞİ, GÖREV ALANLARI, BİYOLOGLARIN YETKİ VE SORUMLULUKLARI İLE BİYOLOG ODALARI VE TÜRKİYE BİYOLOGLAR BİRLİĞİ KANUN TASARISI Genel Gerekçe Türkiye Cumhuriyeti Anayasası'nın 135 inci maddesinin verdiği hak ve teşvikten yola çıkarak, Biyologların görev alanları, yetki ve sorumlulukları ile Türkiye Biyolog Odaları ve Biyologlar Birliği kanunlarının teklif edilmesi kararlaştırılmıştır. 1933 Üniversite reformu ile ilk defa İstanbul Üniversitesinde nebatat ve hayvanat kürsüsü olarak öğretime başlayan Biyoloji bölümleri ilk mezunlarını 1937de vermiştir. 68 yıldır kadrosu olan ama yetki ve sorumluluğu belli olmayan Biyologların yetki ve sorumluluklarının belirlenmesi için bu kanun tasarısı hazırlanmıştır. Biyoloji biliminin eğitimini alarak Biyolog unvanını kullanmaya hak kazanmış kişilerin; tüm bilimsel, hukuki ve çalışma alanlarındaki görev ve sorumluluklarını belirlemek, mesleki özlük haklarını korumak ve mesleki faaliyetlerini kolaylaştırmak, bu kanun teklifinin temel gerekçesini oluşturmaktadır. Biyoloji, canlı sistemlerin bilimidir. Biyologlar ise; canlılarla ilgili araştırma, (deney, gözlem, koleksiyon, istatistik, koruma, kontrol, inceleme, test, tanı ve değerlendirme) yapar. Canlıların gelişimi, evrimi, kalıtımı, fizyolojisi, ekolojisi, korunması, tanı ve sınıflandırılması, davranışlarını ve özelliklere etki eden faktörlerin neden ve sonuç ilişkilerini araştırır, tanımlar. Aynı zamanda Biyolog, Biyoloji yada Biyolojinin özelleşmiş alt dallarında laboratuar ve arazi çalışmaları yapar. Bu çalışmalarla ilgili yetki ve sorumlulukları taşır. Çalışmalarını yaparken çeşitli biyolojik, matematiksel, fiziksel ve kimyasal yöntemlerle, uygun araç ve gereçlerden yararlanır. Çalışma sonuçları çevre, sağlık, üretim, eğitim, teknoloji ve ekonomi gibi yaşamsal alanlarda uygulanır. Ülkemiz iklim koşulları, coğrafi konumu ve jeomorfolojik yapısı nedeniyle çok zengin ve kendisine özgü bir Biyolojik çeşitliliğe sahiptir. Avrupa'nın sahip olduğu tür sayısına yakın bir flora (bitkiler) ve fauna (hayvanlar) zenginliğine sahip ülkemizin bu biyolojik zenginliğinin korunması konularında dünya ülkeleri arasında hak ettiği yeri alması Biyologların bu tür çalışmalara etkin bir biçimde katılmasıyla mümkün olacaktır. Ülkemiz Biyolojik zenginliklerinin belirlenmesi, korunması Türkiye Büyük Millet Meclisi tarafından değerlendirilmiş 1996 yılında 96/8857 karar sayısı ile Milletlerarası Biyolojik Çeşitlilik sözleşmesi kabul edilerek Biyolojik çeşitlilik daha da önem kazanmıştır Biyolojik zenginliklerle, kalkınma arasında sıkı bir ilişki mevcuttur. Zira tüm ekonomik faaliyetler temelde doğal kaynaklara dayanmaktadır. Bu da biyolojik sistemlerin etkin bir biçimde araştırılması ve anlaşılmasına bağlıdır. Canlı doğal kaynaklarımızı akılcı bir biçimde değerlendirerek kendilerini yenileme, kapasitelerini yitirmeden gelecek kuşaklara aktarabilmek için Biyologlara ihtiyaç vardır ve her zaman olacaktır. Biyologlar,çevre, eğitim, tarım,orman,tıp, sağlık ve ekonomi gibi hayati konularda ülkemizde önemli sorumluluklar yüklenerek hizmet vermektedirler. Bu yüzyılın Biyoloji çağı olacağı göz önüne alınarak Biyologların görev, yetki ve sorumlulukları ile Biyolog Odaları ve Türkiye Biyologlar Birliği Kanun tasarısı hazırlanmıştır. Ulusal Programda Biyologların yeri; Ülkemizin hazırladığı AB'ye uyum için ulusal programda kısa ve orta vadede yer alan beşeri tıbbi ürünler ve gıdaların piyasa kontrolü başlığı altında yer alan uyum yasalarının hazırlanmasında ve uygulanmasında biyologların rolü kaçınılmaz olacaktır. Bilindiği gibi 560 sayılı KHK r0; Gıdaların Üretimi Tüketimi ve Denetlenmesine Dair Yönetmelikr1; te ülke mevzuatında yer almayan hususlarda Uluslar arası mevzuata uyumlu işlem yapılacağı belirtilmektedir. Bu mevzuatın içeriğini bilen ve yorumunu yapabilecek kabiliyetteki biyologların varlığı ülkemiz için bir avantajdır. AB için hazırlanan Ulusal Programda Beşeri Tıbbı Ürünler başlığı içerisinde yer alan biyolojik ürünlerin İyi Üretim Uygulamaları (GMP) na göre üretilmesi, etkili ve güvenli sunumu için yasal olarak görev ve sorumluluklarının belirlenmesi zorunlu olan biyologlarının katkısı büyük olacaktır. Ayrıca tıbbi cihazlar konusunda AB ülkelerinde eğitim almasını önerdiğimiz teknik personel içerisinde mesleki yatkınlıklarından dolayı biyologların olması ülkemiz lehine bir durum olacaktır. Ulusal Programda bitkisel ürünler başlığı altında; transgenik bitkilere ilişkin düzenlemelerde, arıcılığın geliştirilmesi maksadıyla flora çeşitleri, flora mevsimi ve kapasitelerinin haritalandırılması ve de arıcılık Araştırma Enstitülerinin tüm ülkeye etkin bir şekilde hizmet vermesinin sağlanacağı ifade edilmektedir. Genetik, entomoloji, bitki anatomisi,patolojisi ve fizyolojisi konularında yeterli eğitim almış biyologların bu gelişmelere sağlayacağı katkı yadsınamaz düzeyde olacaktır. Aynı zamanda yerli hayvan gen kaynaklarının korunacağı ve bu maksatla Hayvan Gen Bankasının kurulacağı ifade edilmektedir. Tüm dünyada olduğu gibi ülkemizde de bitki ve hayvan gen bankalarının kurulması biyologların işbirliği ile sağlanacaktır. Ormancılık alanında;yaklaşık yarısı verimli durumda olan 20,7 milyon hektarlık ormanlık alanın 1,8'i biyolojik çeşitlilik olmak üzere yüzde 17,5'i korunan alanlar Olarak değerlendirilmektedir. Ormanların ekosistem yaklaşım dahilinde, devamlılık, çok amaçlı yararlanma, biyolojik çeşitlilik ile su ve yaban hayatının korunması doğrultusunda; eko turizm, verimlilik, kirlenme, yangın-böcek-heyelan-kar-çığ-sel-don ve kuraklık gerçekleri ile ergonomik faktörler dikkate alınarak işletilmesi, korunması ve geliştirilmesi için biyologların görev ve sorumluluklarına ihtiyaç duyulacağı açık bir gerçektir. Ayrıca korunan alanlar ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeniden incelenmelidir. Yeşil ve yaşanabilir bir çevre yaratma konusunda gerekli toplumsal iradenin oluşturulması amacına katkı sağlayacak olan Biyolog Odaları ve Biyologlar Birliğine ait yasa Tasarısının desteklenmesi AB uyum sürecinde olan ülkemiz için bir avantaj olacaktır. AB ülkelerinin üçüncü ülkelerle olan ticaretlerinde Bitki Sağlığı Sertifikası geçerlidir. Üye uygulaması mevcut değildir. Bu uygulamanın yürürlüğe konabilmesi için bitki anatomisi,fizyolojisi, morfolojisi,taksonomi ve sistematiği konusunda birikimi ve terminoloji yatkınlığı olan ülkemiz biyologlarının değerlendirilmesi esas olmalıdır. AB ülkeleri ile Ortak Balıkçılık Politikasının Belirlenmesinde; etkin bir koruma ve kontrol sisteminin oluşturulması ile denizlerdeki ve iç sulardaki doğal ortamın korunması, kontrolü, ve geliştirilmesini sağlamak, kaynakların rasyonel kullanımı ile ilgili tedbirleri almak gerekecektir. Yetiştiricilikle; yapılan üretimin çevre, turizm, ulaştırma ve diğer ilgili sektörlerle etkileşimi dikkate alarak geliştirmeye ve yaygınlaştırmaya önem vermek gerekecektir. Ayrıca gerekli altyapı tamamlandıktan sonra açık deniz balıkçılığına geçmek gerekecektir. Ülke sularının ekolojik ve limnolojik özellikleri belirlenecek, ortama en uygun ve ekonomik değeri yüksek türlerin yetiştirilmesi için balıklandırma faaliyetlerine geçilerek teknik ve hijyenik şartların sağlanması gerekecektir. Yetiştiricilikten elde edilecek deniz ürünlerinin yaklaşık yüzde 80r17;inin AB ülkelerine ihraç edileceği planlanırken, bu çalışmalar içerisinde aktif olarak yer alan biyologlarla ilgili Oda ve Birlik yasasının kabul edilmesi ülkemiz biyologlarının bu çalışmalara arzu edilen katkıyı sağlayacağı anlamını taşır. Ülkemizin farklı ekolojik karakterdeki ekosistem mozaiği, binlerce hayvan ve bitki türü ile bunların ırk ve populasyonlarının barınmasına imkan sağlamıştır. Ülkemizde üç bine yakın endemik olmak üzere dokuz binin üzerinde bitki türü tespit edilmiştir. Hayvan türlerinin ise seksen bin olduğu tahmin edilmektedir. Ülkemiz aynı zamanda yeryüzünün en önemli gen merkezlerindendir. Biyolog Odaları ve Türkiye Biyologlar Birliğinin hazırlayacağı ve hazırlanacak olan koruma projelerine katılması ve giderek karar süreçlerinde etkili olması; Türkiye'nin AB' ye uyum sürecinde, uluslar arası ilişkilerin güçlenmesinde Doğa Koruma konusunda avantajlı duruma gelmesine katkı sağlayacaktır. Ulusal Politikamızın belirlenmesinde; yukarıda sözü edilen tüm konu ve kavramlara sahip çıkabilecek, onları zenginleştirecek, takipçisi olabilecek nitelikteki insan gücü olan biyologlara ve onların meslek birliği olan Biyolog Odaları ve Türkiye Biyologlar Birliğir17;ne şiddetle ihtiyaç duyulacağı göz önüne alınmalıdır. Uluslar arası sözleşmeler ve Biyologlar; Dünyada, biyolojik çeşitlilikle ilgili uluslararası sözleşmelerde fauna ve flora ile birlikte doğal kaynakların yönetimi ve yok edilişinin durdurulması çalışmalarında daha çok biyologlar sorumluluk almaktadır. Avrupa'nın Yaban Hayatı ve Yaşama Ortamlarını Koruma Sözleşmesi olarak bilinen Bern Sözleşmesi ile ilgili olarak fauna ve floranın korunarak gelecek nesillere aktarılması konularında; CITES Sözleşmesi olarak bilinen "nesli tehlikede olan yabani hayvan ve bitki türlerinin uluslararası ticaretine ilişkin sözleşme" gereği yabani türler ya da onların derileri ve trofelerinin ihracatı, transit ve ithalatı ile ilgili konularda; Sulak Alanlar Sözleşmesi olarak ifade edilen Ramsar Sözleşmesi ile sulak alan ekosistemlerindeki bitki ve hayvan toplulukları ve su kuşlarının biyolojisi, ekolojisi ve yayılışı konularında; Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesinde biyolojik çeşitliliğin korunmasında, biyolojik kaynaklardan özellikle genetik çeşitlilikten sağlanan faydanın eşit ve adil paylaşımı konularında biyologlar görev almak zorundadır. Birleşmiş Milletlerin kuraklık ve çölleşmeye maruz ülkeler kapsamına aldığı Türkiye'de de çölleşme ile mücadelede asıl görev alması gereken biyologlardır. Birleşmiş Milletler Biyolojik Çeşitlilik Sözleşmesine ek Cartagena Biyogüvenlik Protokolü ile biyolojik çeşitlilik, transgenik canlılar, gen transferi ile ilgili konularda ve bu kapsamda taraf olacağımız diğer sözleşmelerin kapsamında olan alanlarda biyologların doğrudan görev, sorumluluk ve yetki almaları ulusal çıkarlar açısından çok önemlidir. Biyologların Şikayet ve İstekleri Türkiye'de biyologların çalışma yerlerinde konumları ile ilgili karşılaştıkları güçlükler son yıllarda aşılmaz hale gelmiştir. Bugün bu sorunlar biyologlarla ilgili gündemin ana konusunu teşkil etmektedir. Biyologların çalıştıkları sahalarda görev, sorumluluk ve yetkileri ile ilgili bir mevzuat yoktur. Ülkemizin doğal kaynaklarının korunmasında, temel tıpla ilgili uygulamalarda, ormancılık ve tarımla ilgili konularda doğrudan görev almaları gerekirken bu görevlerdeki biyologlara, araştırma, koordinasyon, inceleme, planlama, proje ve analiz aşamalarında bilfiil sorumluluk aldıkları halde yetki verilmemektedir. olarak çalışmaktadırlar. Avrupa birliğine tam üyelik aşamasında olan Türkiye'de bu yanlış uygulamalar Avrupa Birliği normlarına ve meslek standartlarına uymamaktadır. Bu nedenlerle demokratik bir ülke olan Türkiye'de biyologların hak ettikleri görev, sorumluluk ve yetkilerin tam olarak belirlenmesi ve bir mevzuat kapsamında görevlendirilmeleri bir zorunluluk haline gelmiştir. Düzenleyen karakecili Düzenleme Tarihi: 19/05/2008 Mehmet İPEK Eskişehir Osmangazi Üniversitesi Gokhan #2 Mesaj Tarihi 18/02/2008 Yönetici Mesaj Sayısı: 211 Katılım Tarihi: 07.02.08 Yasal girişimler 1991 yıllarda çok yoğunlaşmış. İlk yasa tasarısı çok yoğun tartışmalar sonucunda hazırlanmış kitap haline getirilmiş ve TBMM´ne Tınaz Titiz 'in bakanlığı döneminde verilmiştir. Meclis'de yoğun muhalefetle karşılaşılmış Tıp ve Ziraatçıların karşı çıkması ve meclisin tatile girmesi nedeniyle görüşülememiştir. Burada en önemli sorun odalaşmak isteyen meslektaşlarımızın etkin destek vermemeleridir. Bu 2007 yılına kadar böyle devam etti. Oda yasası 1995-1996 yıllarında yeniden güncellenerek TBMM için çalışmalara başlandı. Bu dönemde yasa, komisyonlarda görüşülmeye başlanmış Hükümet adına görüş otuşturmak üzere Sağlık Bakanlığı görevlendirilmiştir. Sağlık Bakanlığında yapılan toplantıya o dönemdeki yönetim ile birlikte Biyologlar Derneği danışmanı olarak üniversiteden hocalarımızda katılmıştır. Sağlık Bakanlığı, Meslek Yasası´nın çıkmasını ancak odalaşmanın karşısında olduğu konusunda bir görüş benimseyerek komisyona göndermiş ve yasanın çıkmasını engellemiştir. 2000 yılında 3. kez güncelenen yasa Osman Durmuş kanalıyla meclise gönderilmiş ama çıkarılamamıştır. 2005 yılında 4. güncellenen yasa tasarısı Kanunlar kararlar dairesine oradan da Salih Kapusuz'a verilmiş. Ne kadar haklı olursanız olun talep edenlerin hem örgütlülükleri hem de güç dengeleri üzerindeki etkinlikleri yasaların çıkması üzerinde çok etkilidir. Kanun yapma yetkisi siyasetin elindedir. Siyasetin zayıf noktası ise oy ve oy potansiyelidir. Eğer güç olamazsak hiç bir hak kazanamayız. Bunun için birlik olmalıyız ve dernek çatısı altında birleşmeliyiz. Şu anda resmi olarak kurulmuş iki dernek bulunmakta. En azından bunlardan her hangi birine üye olmalıyız ki sayı gücümüz olsun. Aksi taktirde değil meslek odası, ekmek yiyeceğimiz iş sahası bile bulamayız. Düzenleyen Gokhan Düzenleme Tarihi: 18/02/2008 BİYOLOGLAR BİRLİĞİ DERNEĞİ Genel Sekreter Gökhan KAVUNCUOĞLU Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/turkiye-biyologlar-birligi-kanun-tasarisi


Nörofizyolojik kuramlar

Nörofizyolojik kuramlar

Bu kuramın kurucusu Donald Hebb’dir. Bu kuram, daha çok sinir sistemleri ile ilgilendiği için öğrenmeyi zihinde meydana gelen biyokimyasal bir reaksiyon olarak açıklamaya çalışır.

http://www.biyologlar.com/norofizyolojik-kuramlar

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Brattas ve ark. ERV'lerin insan sinir öncü hücrelerinde TRIM28 ile bağlandığını bildirmiştir. Bu, gelişmekte olan insan beynindeki transkripsiyonel ağların kontrolünde ERV'ler için bir rol teşkil ederek, yakın gen ekspresyonunu etkileyen yerel heterokromatin oluşturulmasına neden olur.

http://www.biyologlar.com/genomda-insan-beyni-icin-onemli-endojenik-retrovirusler

Hepimiz Tek Bir Kişinin Torunlarıyız

Hepimiz Tek Bir Kişinin Torunlarıyız

Hepimiz tek bir kişinin torunlarıyız. Evet, çok şaşaırtıcı olsada bu doğru. İlk y kromozomuna sahip olan erkek 70 bin yıl önce Afrika’da Kenya-Etiyopya civarlarında yaşadı. İşte bu kişi bütün erkeklerin ortak atası.

http://www.biyologlar.com/hepimiz-tek-bir-kisinin-torunlariyiz

Bitkilerde Su İletimi

Yukarıda incelenmiş olan temel mekanizmalar ile topraktan su ve mineral madde alarak gene bu mekanizmalarla kabuk parankiması hücrelerine iletirler. Kabuk parankimasında da benzeri mekanizmalarla hücreden hücreye iletilen su ve mineral maddeler merkez silindirdeki cansız ksilem elementlerine, trake veya trakeidlere girerek kılcallık ve özellikle yaprakların stomalarındaki terlemenin sağladığı negatif basınçla, emişle yerüstü organlarına iletilir. Ancak uyku dönemi sonunda çok yıllık bitkilerde ilk yapraklar oluşuncaya kadar su yürümesi adı verilen ve tümüyle depo karbohidratlarının sindirimi ve solunumla yakılmasından elde edilen enerjiye dayalı kök basıncı ve kılcallıkla su iletimi görülür. Bitki yeni yapraklar fotosentez yapar hale gelinceye kadar da depolarının çok büyük kısmını eritir. Emici tüylerin sıklığı ve yenilenme hızı köklerin beslenme etkinliğinde önemli yer tutar ve bitki taksonları arasındaki rekabette çok önemli yer tutarsa da suberinleşmiş bölümler de lentiseller aracılığı ile bu kapasiteye önemli oranda katkıda bulunur. Toprak çok kuru veya soğuk olduğunda kök büyüme hızı çok büyük oranda düşer ve kök sisteminin süberinleşmemiş, hızlı büyüyerek toprağın nemi kullanılmamış kısmına doğru yürüyen kısmın oranı çok azalır. Buna karşılık kurak yaz aylarında ve herdem yeşil bitkilerde kış aylarında da terleme sürer, bu dönemlerde gerekli su alımının lentiseller ile çatlak ve yaralardan yayınımın oranı artar. Ölü kökler de suya karşı hiç direnç göstermediklerinden önemli katkıda bulunurlar. Özellikle odunlu bitkilerin köklerinin su ve suda çözünmüş besin elementi alınımında mikorhiza adı verilen mantarlar önemli rol oynar. ve ekto-mikorhiza şeklinde ikiye ayrılan, Korteks hücrelerinde misel ve kök yüzeyinde hif oluşturan endo- ve dışta gelişip korteks hücreleri arasına giren ekto- mikorhiza tipleri beraber gelişebilir ve toprağın su miktarına göre oranlarında değişim görülür veya kök sisteminin ana kök dışında ince köklerden oluştuğu sistemlerde yalnız endomikorhiza gelişir. Abietinae, Salicaceae, Betulaceae ve Mimosoidae familyaları ağaçları uzun ve kısa köklerden oluşan kök sistemlerine sahiptir. Hızlı büyüyen ve çok yıllık uzun köklerde mikorhiza gelişmezken 1 yıl ömürlü lateral kısa köklerde gelişir ve dallı yapıları ile kökün emici yüzeyinin çok artmasını sağlarlar. Özellikle verimsiz topraklarda ağaçların beslenmesine büyük katkı sağlarlar. Bu nedenle de erozyona uğramış toprakların ağaçlandırılmasında köklendirilmiş çeliklere mikorhiza inokülasyonu yapılması önerilir. Mikorhizanın gelişimi için toprak suyunun tarla kapasitesine yakın ve köklerdeki karbohidrat oranının yüksek olması gerekir, toprak fosfor ve azotça fakir olduğunda büyüme yavaşlar kökte karbohidrat birikebilir ve mikorhiza hızla gelişir. Bu da erozyona uğramış fakir topraklarda sık görülen bir durumdur. Epidermisden kortekse kadar enine iletimin bir kısmı plazmodezmler aracılığı ile olur ve bu enterkonekte sitoplazma sistemine simplazm adı verilir. Kaspari şeridine kadar olan su ve mineral iyonlarının iletiminin önemli bölümü ise korteks hücre çeperleri üzerinden gerçekleşir. Kaspari şeridi hücrelerinin çeperleri yağ asitleri polimeri olan süberinli ve sellülozik olmayan, pektin gibi polisakkaritler yanında az miktarda protein ve sağlam bir yapı oluşturmalarını sağlayan Ca ve diğer bazı makroelementler yanında silikatlar içeren çeperlerdir. Pektin esas olarak 1,4-bağlı a-D-galakturonik asitten oluşur ve karboksil gruplarının ( - ) yükleri Ca kelasyonu ile çok sıkı bağlı zincirli sağlam yapının oluşmasını sağlar. Bu anyonik yapı katyon / anyon alım dengesini katyonların lehine çeviren ve plazmalemmadan çok daha etkili şekilde iyonlar ve diğer maddelerin alımını sağlayan yapıyı oluşturur. İyonların hücre çeperlerini enine olarak geçmelerini ve plazmalemmaya da ulaşmalarını sağlayan ana mekanizma çeper porlarını dolduran su kanallarında gerçekleşen yayınımdır. Hücre çeperlerinin ve çepere bitişik GSA yayınım sabiteleri plazma membranlarınınkinden 10 - 100 000 kat daha fazladır ve plazmalemma kanalları genelde hücrelerin yüzey alanının ancak %0.1 - 0.5 kadarını oluşturur. Ksilemdeki iletim hücrelerinin hücre çeperlerindeki geçitler üzerinden de benzer şekilde enine iletim olur. Ksilem parankiması hücreleri de depo parankiması görevine sahip olan canlı hücrelerdir. Kökteki canlı hücrelerin canlılıklarını sürdürebilmeleri, büyüme, gelişme ve bölünmeleri, aktif alım ile iletim gibi enerji gerektiren etkinlikleri için organik madde sağlarlar. Yeşil yerüstü organlarında üretilen bu maddeler floem tarafından sağlanır. Terleme - transpirasyon su ekonomisinde ve dolayısı ile de mineral beslenmesinde çok önemli yer tutarsa da terleme olayı fotosentezle de çok yakından ilişkili olduğundan fizyolojisi daha sonra incelenecektir. Terlemenin yarattığı su potansiyeli farkı ile sağladığı emiş gücü yanında kılcallık ve suyun yüksek yüzey geriliminin sağladığı kohezyon kuvvetiyle su ağaçlarda toprağın derinliklerinden taçlarına kadar iletilmektedir.

http://www.biyologlar.com/bitkilerde-su-iletimi

Sitoloji (hücre biyolojisi)

Sitoloji (hücre biyolojisi), hücreleri inceleyen bir bilimGrekçe'deki kytos, barındırıcı, kelimesinden türemiştir. Sitoloji, hücrelerin fizyolojik yanlarını, barındırdığı yapıları, organelleri, ortamlarıyla ilişkilerini, hayat döngülerini, bölünmelerini ve ölümlerini inceler. Bu işlem hem moleküler hem de makroskobik ölçüde gerçekleştirilir. Sitoloji araştırmaları, bakteriler gibi tek hücreli organizmalardan, insan gibi çok hücreli organizmalara kadar büyük bir alana yayılır. Hücrelerin oluşumu ve görevleri hakkında bilgi edinmek, bütün biyolojik bilimlerin temelini oluşturur. Değişik hücre türleri arasındaki farklılık ve benzerlikleri ortaya çıkarmak, özellikle de moleküler biyolojiye çok büyük katkıda bulunur. Bir araştırmadan öğrenilen bilgiler, evrensel bazı teorileri ortaya çıkardığından, bir türün hücresinden edinilen bilgiler diğer türlere de uygulanılabilir hale gelir. Sitolojideki araştırmalar, özellikle de genetik, biyokimya, moleküler biyoloji ve gelişim biyolojisine katkıda bulunur.

http://www.biyologlar.com/sitoloji-hucre-biyolojisi


KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

Yayınlanan yeni araştırmaya göre, insan immün yetmezlik virüsü (HIV) ile enfekte olmuş kişiler arasında görülen hastalık ilerleme oranlarındaki farklılıkların yaklaşık üçte biri viral ve insan genetiğidir .

http://www.biyologlar.com/hiv-virusunun-seyrini-etkilemek-icin-hem-virusun-hem-de-hastanin-genetigi-birlikte-calisiyor

Hayvan Coğrafyası

Hayvan coğrafyası, hayvanların yeryüzündeki dağılımını inceler. Diğer bir deyişle, Hayvan coğrafyasının görevi, Dünyadaki hayvan türlerinin bugün bulundukları alanları ve geçmişteki yayılışlarını saptamaktır. Bu saptamaları yaparken, canlılarım çevreleri ile ilişkilerini de (özellikle yayılışlarını kolaylaştıran ya da zorlaştıran nedenleri) ortaya çıkarmaya çalışır. Evrim kuramının düzenlenişi sırasında ilk ve kesin kanıtlar hayvan coğrafyasından elde edilmiştir. Hayvan coğrafyası, Zoolojinin bir koludur. Ancak konuları ne tam Zoolojiye ve ne de tam Coğrafyaya göre düzenlenmiştir. Bu alan daha çok zoologlar tarafından benimsenmiş ve üzerinde çalışılmış, ancak Coğrafyacılar için aynı ölçüde ilginç bulunmamıştır. Bitkilerin yeryüzündeki dağılışını Bitki Coğrafyası inceler. Hayvan Coğrafyası ile Bitki Coğrafyası birlikte Biyocoğrafyayı oluşturur. Buna Canlı Coğrafyası da denir. Hayvan coğrafyasının oluşmasında Aristo (M.Ö. 350), Buffon (1750), Linne (1758) Lamarck (1820), Darwin (1852), Huxley (1868), Wallace(1878), Wegener (1912) gibi bilim adamları göze çarpmaktadır. Çoğu konuda olduğu gibi, hayvan coğrafyası konusunda da en eski çalışmalardan biri Aristo’nun Anadolu ve Ege Adaları’nda bulunan canlıları isimlendirerek yaptığı çalışmadır. Bu çalışma ilk yazılı zoocoğrafik gözlem olarak kabul edilmektedir. Buffon yaptığı çalışmayla Yenidünya’daki canlıların, Eskidünya canlılarından oldukça farklı olduğunu saptamıştır. Diğer bilim adamlarının yaptıkları çalışmalarla Eskidünya’da da bir çok bölgenin birbirinden çok farklı canlı türlerine sahip olduğu anlaşılmıştır. “Binomial Adlandırma” ilkelerinin kurucusu Carl Von Linne, “Habitat” kavramını canlıların sınırlı alanda dağılımını açıklamak için kullanmış ve bir çok hayvan ve bitki türünün tanımını yapmıştır. Lamarck, Darwin ve Wallace gibi bilim adamlarının öncülüğünde geliştirilen Evrim Kuramı canlıların sadece bir merkezden yayılma ile değil, her yayılan hattın gittiği yerde evrimleşmesiyle çeşitlenmenin sağlanabileceğini ortaya koymuşlardır. Bu yaklaşım hayvan coğrafyasına bazı kolaylıklar sağladı. Özellikle Darwin’in Galapagos adalarında yaşayan ispinoz kuşlarındaki çeşitliği anlaşılır bir şekilde açıklaması hayvan coğrafyasına önemli katkılar sağlamıştır. Çok sayıda fosilin bulunması, jeolojik bilgi birikiminin artması, fauna ve flora ile ilgili bilgilerin derlenmesi ve “Kıtaların Kayma Kuramı”’nın uzay çalışmaları sonucu kanıtlanması gibi olgulardan dolayı hayvan coğrafyası konusunda çok daha sağlam yaklaşımlar ve açıklamalar ortaya çıkmıştır. Hayvan coğrafyası, öncelikle dünyanın geçmişteki jeolojisiyle yakından ilgilenir. Geçmişte ortaya çıkan topografik değişikliklerin bilinmesi gerekir. Örneğin, iki kara parçası arasındaki karasal bir köprü ya da iki su ortamı arasındaki karasal bariyer fauna tarihini büyük ölçüde etkiler. Bu nedenle bir zoocoğrafyacı geçmişteki çoğrafik yapıyı (topografik yapı, geçitlerin fiziksel, kimyasal ve biyolojik nitelikleri gibi) iyi bilmesi gerekir. Jeolojik zaman içinde çok kısa sürelerle olan su seviyelerindeki değişmeler (yükselme ve alçalmalar) hayvan coğrafyası açısından oldukça önemlidir. İki fauna bileşiminin arasındaki tür ve cinslerin benzerliği, o iki faunanın geçmişten şimdiye kadar olan bağlantı oranını verir. Bu olayın tersi de (yani cins ve tür farklılığı) yalıtımın etkinliğini gösterir. Eğer iki fauna ana hatlarıyla benzer; fakat ayrıntılarda farklı ise, bu iki fauna arasındaki bariyerlerin yakın zamanda ortaya çıktığını veya bariyerlerin yalıtım düzeylerinin düşük olduğunu gösterir. Bugün saptanan hayvanlar, yaşadıkları bölgenin durumu hakkında da önemli bilgiler verir. Örneğin Avustralya’da yaşayan keseli memelilerin varlığı, bu bölgenin Tersiyer ( yaklaşık 65 milyon yıl önce)’in başından beri dünyanın diğer bölgelerinden yalıtıldığını gösterir. Tersiyer için en önemli zoocoğrafik bilgiler yaşayan memelilerden elde edilmiştir. Memeliler bu devirde hem dallanmış, hem yaygınlaşmış, hem de iyi fosiller bırakmışlardır.

http://www.biyologlar.com/hayvan-cografyasi

HÜCREYE AİT GENEL ÖZELLİKLER

Hücre terimi ilk kez 1665'te Robert Hooke tarafından kullanılmıştır. Hooke, basit bir mercekle incelediği şişe mantarındaki bal peteğini andıran boşluklara "Cellula" isimini vermiştir. Robert Brown (1831) orkide yaprak hücrelerini incelemiş ve her hücredeki nukleusu keşfetmiştir. 1838 yılında Botanikçi Matthias Schleiden, 1839 yılında Zoolgo Theodor Schwann daha önce başlatılan araştırmalar doğrultusunda hücre teorisine son şeklini vermişlerdir. Bu teoriye göre, tüm canlılar hücrelerden oluşurlar ve bağımsız olmalarına karşın birlikte görev yaparlar. Schwann'dan sonra ise "her hücre başka bir hücre bölünmesinden oluşur" diye düşünülerek üreme olaylarına yönelinmiştir. Purkinje (1839) ve Hugo V.Mohl (1846) hücrenin içini dolduran ara maddeye protoplazma adını vermişlerdir. Strasburger ve arkadaşları ise 1875 yılında nukleus bölünmelerini incelemişler ve önemli katkılarda bulunmuşlardır. Günümüzde ise özellikle son on yılda özel teknikler kullanılarak hücrenin moleküler yapısı ile ilgili araştırmalar yardımıyle hastalığın tanısı yapılmaktadır. İnsan gövdesi hücreler, hücrelerarası madde ve çeşitli sıvılardan oluşmuştur. Hücreler biraraya gelerek dokuları, dokular birleşerek organları, organlar ise sistemleri oluşturur. Sistemler topluluğundan da insan bütünlenir. Böylece herbir hücre, belirli bir sistem içinde özel bir görev üstlenerek canlıdaki yerini alır. Hücrelerin yaşama süresince görülen değişiklikler bölünme, farklılaşma, büyüme, gerileme ve ölüm evresi şeklindedir. İnsan gelişiminin ilk basamağında döllenme ile oluşan zigot yeni bireyi oluşturacak tüm güce sahiptir. Embriyoner Potens adını verdiğimiz bu güç, zigotun ilk bölünmesi ile çözülmeye başlar.

http://www.biyologlar.com/hucreye-ait-genel-ozellikler

SİSTEMATİĞİN TARİHÇESİ

Bugün yaşayan en geri insan topluluklarında dahi çevrelerindeki canlılara isimler verildiği görülür. Hayvanların ve bitkilerin tanınmasıyla insanların ilk ilgisi tarih öncesi devirlerde başlar. Akdeniz çevresinde bulunan mağaralarda ilkçağ insanlarının çizdiği hayvan ve bitki resimleri bunun en belirgin kanıtıdır. İlk çağlarda insanlar bitkileri yenen, yenmeyen, zehirli, zehirsiz gibi kullandıkları biçime göre sınıflandırmışlardır. Daha sonra bu sınıflandırma dış görünüşlerine göre yapılmış olup bitkiler 1800’lü yıllara kadar otsu, çalımsı, ağaçsı gibi gruplara ayrılmışlardır. Darwin’in evrim teorisini ortaya atışı ile tüm canlı organizmalarda filogenetik (akrabalık ilişkisi) sınıflandırma yapılmaya başlamıştır. Yani Darwin’den sonraki dönemde aşağı yukarı tüm sınıflandırmalar bitkilerin ve hayvanların evrimsel gelişmişliklerine göre yapılmıştır. Yaşayan canlıları gruplar halinde düzenleme konusunda ilk girişimler Mezopotamya uygarlığının bilginleri tarafından yapılmıştır. Bu zamanda Asur uygarlığında yaşayan filozoflar köpek, aslan, çakal gibi canlıları köpekgiller, at, eşek, deve gibi canlıları da atgiller gruplarına sokmuşlardır. Bununla birlikte bazı hatalar da yapılmıştır. Örneğin çekirgeler, kuşların, kaplumbağalar ise balıkların grubuna sokulmuştur. Bitkilerde Son Sınıflandırma Sistemlerini Yapan Bilim Adamları: Bu bilim adamları biyoloji bilimindeki gelişmelerden yararlanmışlardır. Sistematikde kimyasal analiz yöntemleri ile elektron mikroskoplarının (SEM ve TEM) kullanılması ile Biyokimyasal sistematik ve paleobotanik gibi alanlar yeni isimlendirmelerin daha anlamlı yapılmasına yol açmıştır. Son döneme ait bazı Bitki sistematikçileri şunlardır: Robert Thorne, Takhtajan, Arthur Cronquıist ve Rolf Dahlgren gibi. www.sistematiginesaslari.8m.com Hippocrates (M.Ö. 460-377) ve Democritus (M. Ö. 460-370) gibi Yunanlı bilginler hayvanlar üzerinde ilk bilimsel çalışmaları yapmışlardır. Hippocrates hayvan isimlerini saymış, fakat sınıflandırmasıyla ilgili işaretler vermemiştir. Aristo (M.Ö. 384-322) sınıflandırmada ilk rol oynayanlar arasındadır. Yaşamının bir kısmını geçirdiği Midilli Adasında özellikle deniz hayvanlarını inceleyip zoolojik araştırmalar yapmıştır. Sadece kıyaslamalı anatomi değil, embriyoloji, davranış ve ekoloji alanın da incelemeler yapmıştır. Aristo ilk kez hayvanların yaşamlarına, hareketlerine ve vücut yapılarına göre ayrılabileceğini belirtmiş ve hayvanları Ennaima (=Kanlı Hayvanlar) ve Anaima (=Kansız Hayvanlar) olmak üzere başlıca iki gruba ayırmıştır. Bitkilerle ilgili olarak Theophrastos (M.Ö. 372-287) Aristo’nun öğrencisi olup botaniği öncüsü olarak anılır ve 480 bitkinin ayrımını yapmıştır. Plinius (M.Ö. 23-M.S. 79) “Naturalis Historia” (Tabiat Tarihi) eseriyle 1000 kadar faydalı bitkinin kültürü üzerinde bilgi vermiştir. Daha sonra 1500 yıl boyunca kayda değer bir gelişme yaşanmamıştır. 16. Yüzyıla kadar bitkiler tıbbi özellikleri ile ele alınmıştır. 16. yüzyılda Andrea Cesalpino (CAESALPINUS) (1519-1603) “De plantis” (Bitkiler hakkında) adlı eseri ile bitkileri morfolojik esaslar üzerine ilk ayırımını yapan botanikçidir. Daha sonra Kaspar Bauhin (1550-1624) 6000 bitki türünün tasnifini yapmıştır. Bauhin adlandırmada yeni yöntemler kullanan ilk botanikçi olup bugünkü familyalara benzer gruplar oluşturmuş ancak isimleri ve özellikleri belirtmemiştir. Ayrıca bitkilere ikili isimlendirmenin esaslarını ilk ortaya koyan botanikçidir. İngiliz John Ray (1627-1708) bir bitkinin tüm kısımlarının gözönünde tutulmasının gerekliliğini vurgulayan botanikçidir. Bitkilerde varyasyonun iç ve dış nedenlere, bugünkü ifade ile genotipik ve fenotipik nedenlere dayandığını ileri sürmüştür. 1693 yılında “Synopsis Methodica Animalium Quadrupedum Et Serpentini Generis” isimli eserini yayınladı. Böcekler ve kuşlar üzerindeki eseri ise ölümünden sonra yayınlandı. Bu araştırıcı da Aristo kurallarını esas aldı ve sınıflandırmada iç morfoloji de kullandı.Ray’ın 1703’de 2. cildi yayınlanan “Metodus Plantarum” adlı eseri 18000 kadar bitki türünü kapsamaktadır. Fransız Pitton de Tournefort (1656-1708) bitkiler alemini ağaç, ağaçcık ve otlar olarak sınıflandıran ve bitkileri 22 sınıfta toplayan son botanikçi olmuştur. Tournefort’un sistematiğe en büyük katkısı CİNS (genus) kategorisini kurmuş olmasıdır. 698 cinsin isimlendirmesini yapmıştır. Populus, Betula, Fagus, Lathyrus bunlardan birkaçıdır. İsveçli Carl von LINNAEUS (1707-1778) hem botanik hem de zooloji alanına katkıları olmuştur. 1735 yılında sadece 11 sayfadan oluşan SYSTEMA NATURAE isimli meşhur eserini yayınladı. 1737 yılında tüm bitki cinslerini “Genera Plantarum” (Bitki cinsleri), “Species Plantarum” (Bitki türleri) adlı eserinde de 1000 cinse ait yaklaşık 6000 bitki türünün deskripsyonunu işlemiştir. 1753 yılında yayınladığı bu eser ile ikili adlandırma sistemi (Binominal Nomenklatür), yani 2 sözcükten oluşan (Cins adı+epitet adı= TÜR adı) bir sistem geliştirdi. Sistematiğin temelini oluşturan bir çalışma olmuştur. Bu sistem hem hayvan hem de bitki sistematiğinde halen geçerliliğini korumaktadır. Daha sonraları bu araştırıcı doğayı 3 kısımda inceleyerek (hayvan, bitki ve mineral ) hayvan ve bitkileri bir sistem dahilinde göstermiştir. Bu eserde 4 bacaklılar yerine ilk kez Mammalia terimini kullandı. Bu nedenle bugün herkes Linné’yi taksonominin babası olarak tanır. • Linné, canlıları 5 taksonomik kategori içine yerleştirdi. Bunlar: • Sınıf • Takım • Cins • Tür Bu sistemiyle Linné, kendinden sonraki bilginleri öylesine etkilenmiştir ki Systema Naturae isimli kitabın 1758 yılında yayınlanan 10. baskısı Zoologıcal Nomenclature (=Hayvansal isimlendirme)’nin resmi başlangıcı olarak kabul edilmiştir. Böylece canlıların bilimsel isimleri (Latince ve Yunanca) dünyanın her yerinde kullanıla gelmiştir. Bu eserin 10. Baskısında 312 cinse bağlı 4370 hayvan ismi bulunmakta olup, bunlar 6 sınıfa ayrılmıştır: Dört bacaklılar, Kuşlar, Amphibia’lar, Balıklar, Böcekler, Solucanlar. LINNE’ nin öğrencisi olan Fabricius (1745-1808) 1775, 1782 ve 1804 yıllarında yayınladığı “Systema Entomologica” adlı eseriyle bütün böcek faunasını ortaya koymaya çalışmıştır. Bu şekil bir çalışma, bugün bir insanın çalışma gücünün çok üzerindedir ve hatta olanaksızdır. Bu nedenle bu bilginden sonra gelen toksonomistler çalışmalarını tek bir familya veya alt familyaya, hatta bunların da belirli bir coğrafi yayılış alanında bulunan türlerine yöneltmişlerdir. A.L. Jussieu (1748-1836) bitkiler aleminde ilk olarak doğal sınıflandırmayı kullanan kişi olmuştur. A. Pyramus de Candollea (1778-1841) sstematiğin anahatlarını ortaya koyan bir çalışma yapmıştır. 161 familyanın sınırları belirlemiştir. Linne'den sonraki yüzyılda canlıların sınıflandırılması çalışmaları daha da hızlanmıştır. Ancak biyolojik çeşitliliğin fazlalığı karşısında bilim adamları belli gruplar üzerinde ihtisaslaşmaya yönelmek zorunda kalmışlardır. Linnaeus eserlerinde bütün bitki ve hayvanların yanısıra bunlara ait fosilleri dahi tanımlarken,19. yüzyıl araştırıcıları sadece belli canlı grupları üzerinde araştırmalarını sürdürmüşlerdir. A.Braun (1805-1877) Braun sisteminde bitkiler ilkselden gelişmiş formlara doğru kademeli olarak sıralanmıştır. A. Wilhelm Eichler (1839-1930) Braun’un filogenetik sistemini geliştirmiştir. Bitkiler aleminin Cryptogamae ve Panerogamae olarak iki büyük gruba ayırmıştır. Adolf ENGLER (1844-1930) Eichler sistemine dayanarak yeni bir sistem oluşturmuş daha sonra Karl Prantl (1849-1893) ile birlikte 60 botanikçinin yardımı ile 23 ciltte toplanan Engler Sistemini kurulmuştur. Bu sistemde bitkiler alemi organizasyon kademeleri gözönünde tutularak sınıflandırılmış olup filogenilerinden kısmen ayrılmış doğal bir sistemdir. Monokotil bitkiler 1964’de Angiospermlerin sonuna alınmıştır. Bu sistemi birçok bilim adamı ele almış ve geliştirmiştir. R. von Wettstein (1863-1931) 1901 yılında Engler sistemin filogenetik esaslara göre kullanarak bitkiler alemini 9 Filum’a ayırmıştır. Charles E.Bessey (1845-1915), Hans Hallier (1868-1932), John Hutchinson (1884-1972) Angiospermlerin yeni bir dekripsiyonlarını yapmıştır. Dikotil bitkiler otsular ve odunsular olarak iki gruba ayırmıştır.

http://www.biyologlar.com/sistematigin-tarihcesi

Biyolojik Çeşitlilik Sözleşmesi

1992 yılında imzalanan Biyolojik Çeşitlilik Sözleşmesi, biyolojik çeşitliliğin korunması, sürdürülebilir kullanımı ile genetik kaynakların kullanımından doğacak faydanın adil şekilde paylaşımı konularında atılan önemli bir adımı teşkil etmektedir. Ayrıca, uluslararası toplum biyolojik çeşitliliğin korunması konusunda, sektörel yaklaşım yerine ilk defa bütüncül bir yaklaşım sergilemiştir. Sözleşme, biyolojik çeşitliliğin ve biyolojik kaynakların, etik, ekonomik yarar ve insanların geleceği nedenlerinden ötürü korunması gerektiğini kabul etmektedir. Sözleşme, biyolojik çeşitliliğin korunması ve biyolojik kaynakların sürdürülebilir kullanımı konularını içermenin ötesine giderek genetik kaynaklar ve biyoteknoloji konularını da kapsamaktadır. Sözleşme’de ayrıca, biyolojik çeşitliliğin dünyada eşit olmayan şekilde dağıldığı belirtilmektedir. Eğer biyolojik çeşitlilik korunacak ise, bunun Güney ülkeleri üzerinde büyük baskı yaratacaktır. Bu yükün altından kalkabilmek için, gelişmekte olan ülkelerin gelişmiş ülkelere daha fazla katkı sağlamasına ve işbirliğinin artmasına ihtiyaç bulunmaktadır. Sözleşme, Taraflara, biyolojik çeşitliliğin korunması konusunun ulusal biyolojik çeşitlik stratejileri yoluyla karar verme mekanizmalarına dahil edilmesi yükümlülüğünü getirmektedir. Sözleşme, Tarafların, kamu bilincinin arttırılması amacıyla araştırma ve eğitim programları yürütmesini, bilgi değişimini desteklemesini, teşvik önlemleri almasını ve biyolojik çeşitlilik üzerinde olumsuz etkileri olabilecek projeler için çevresel etki değerlendirme yapmasını gerektirmektedir. Türkiye Biyolojik Çeşitlilik Sözleşmesi’ne 1996 yılında taraf olmuştur. Sözleşme’ye toplam 190 ülke taraftır. Türkiye, Sözleşme gereği, Üçüncü Ulusal Raporu’nu Şubat 2007’de Biyolojik Çeşitlilik Sözleşmesi Sekretaryası’na sunmuştur. Türkiye’de biyolojik çeşitliliğin korunması hedeflerine ulaşılabilmesi için gerekli olan eylemleri ortaya koymak üzere Biyolojik Çeşitlilik Sözleşmesi gereği, 2001 yılında hazırlanan “Ulusal Biyolojik Çeşitlilik Stratejisi ve Eylem Planı’nın güncellenmesine ilişkin çalışmalar Çevre ve Orman Bakanlığı’nın eşgüdümünde devam etmektedir. Türkiye, biyolojik çeşitliliğin korunması ve sürdürülebilir kullanımı üzerinde olumsuz etkilere sahip olabilecek ve modern biyoteknoloji kullanılarak elde edilmiş olan değiştirilmiş canlı organizmaların güvenli nakli, muamelesi ve kullanımı alanında yeterli bir koruma düzeyinin sağlanmasına katkıda bulunmak amacıyla hazırlanarak 2000 yılında imzaya açılan Biyolojik Çeşitlilik Sözleşmesi’nin eki Biyogüvenlik Kartagena Protokolü’ne 2004 yılı itibariyle taraf olmuştur. Kaynak: www.mfa.gov.tr

http://www.biyologlar.com/biyolojik-cesitlilik-sozlesmesi

2. Ulusal Alg Teknolojisi Sempozyumu

2. Ulusal Alg Teknolojisi Sempozyumu

KOngre Tarihi : 24-27 Mayıs 2016 Kongre Merkezi : Euphoria Aegean Otel Seferihisar / İzmir

http://www.biyologlar.com/2-ulusal-alg-teknolojisi-sempozyumu

BİYOTEKNOLOJİK ÜRÜNLER, ORGANİK ÜRÜNLER VE ULUSLARARASI TİCARETTEKİ GELİŞMELER

Modern biyoteknoloji ifadesi, genel olarak, modern bilgi ve tekniklerin uygulanması ile yapılan, genetik mühendisliğine dayalı tekniklerle gerçekleştirilen biyoteknolojiyi tanımlamakta kullanılmaktadır. Günümüzde özellikle tarım ve eczacılık sanayi alanlarında, modern biyoteknoloji yöntemleri kullanılarak çeşitli özelliklere sahip yeni canlı türleri elde etmek mümkün hale gelmiş, bu şekilde üretilen tarım ürünleri ve bunları içeren işlenmiş ürünler ile eczacılık sanayi ürünleri uluslararası ticarete giderek artan oranda konu olmaya başlamıştır. Pahalı ve ileri teknoloji altyapısını gerektiren bu ürünler bünyelerinde birtakım riskleri de barındırmaktadırlar. Çeşitli çevrelerde, bu ürünlerin doğal canlı çeşitliliğine, insan sağlığına ve sosyo-ekonomik yapıya zarar verebileceği öngörüleri bulunmakta, ancak bu zararın boyutları tahmin edilememektedir. Bu nedenle bir çok ülke, bu alandaki ulusal politikalarını tespit ederek, anılan ürünlerin ticaretini, doğaya salımını ve kullanımını disiplin altına almışlardır. Organik ürün ifadesi, üründen çok ilgili ürünün üretim sürecini öne çıkaran bir anlam içermektedir. Uluslararası Gıda Kodeksi tanımına göre, organik tarım; “topraktaki biyolojik hareketi, biyolojik dönüşümü ve biyolojik çeşitliliği de içeren tarımsal eko sistem sağlığını artıran ve zenginleştiren bir üretim ve işletim sistemidir”. Organik tarım denildiğinde, sentetik girdilerin kullanımının yasaklandığı, toprağın doğal zenginliğini artıran bir ürün ekim sıralamasına göre üretimin esas alındığı, insan ve çevre sağlığı üzerinde zararlı etkileri olmayan doğal girdilerin kullanımının gerekli tutulduğu bir üretim süreci anlaşılmaktadır. Son zamanlarda, özellikle gelişmiş ülkelerde organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları ortaya çıkarmıştır. Buna bağlı olarak, belirli ülkelerdeki organik ürün üretimi ve ihracatında büyük bir gelişme kaydedilmiştir (Örneğin: AB’- deki bebek gıda sanayiinin talebini karşılamak üzere üretilen tropik meyveler, Güney Afrika pazarı için üretilen Zimbabwe baharatları, AB pazarı için altı Afrika ülkesinde üretilen pamuk, vs.). Bu açıklamalar ışığında, bu çalışmada genelde tarım ürünlerinin, özelde modern biyoteknoloji yöntemleriyle üretilen ürünler ve organik ürünlerin uluslararası ticaretinde kaydedilen gelişmeler; uygulanan çok taraflı ticaret kuralları; Dünya Ticaret Örgütü (DTÖ)’ nde tarım ürünleri ticaretini ilgilendiren yeni müzakere sürecinde bu ürünlerle ilgili olarak ortaya çıkabilecek gelişmeler ve bu ürünlere yönelik tüketici yaklaşımları konusuna yer verilmektedir. I. Küreselleşme, Dünya Ticaretindeki Gelişmeler, Biyoteknolojik ve Organik Ürünler: Dünya ticaret hacmindeki gelişmeler, uluslararası sermaye hareketlerindeki artış, çok uluslu şirketlerin gün geçtikçe daha fazla büyümesi ve güçlenmesi küreselleşmede etkili olan unsurlardır. Bu unsurlar aynı zamanda tarım ve gıda sektöründeki gelişmelerde ve teknolojik ilerlemelerde de etkili olmuştur. Küreselleşme ve iletişim olanaklarındaki gelişmeler dünya ticaretinde değişikliklere yol açmış, yeni ürünleri ve kavramları ortaya çıkarmıştır. Modern biyoteknolojideki gelişmelere bağlı olarak biyoteknolojik ürünlerin ve ayrıca, refah ve bilinçlenme düzeyindeki artışa bağlı olarak organik ürünlerin ticareti konusu gündeme gelmiştir. Uruguay Round çok taraflı ticaret müzakereleri sonucunda kabul edilen anlaşmaların 1995 yılında hayata geçmesiyle birlikte tarım sektörünün küresel ekonomiye entegrasyonu hızlanmış ve çok taraflı ticaret sisteminde tarım ürünleri ticaretine uygulanacak kurallar hükme bağlanmış; teknik engel ve sağlık önlemi olarak yapılacak uygulamalar belirli bir disiplin altına alınmış; fikri mülkiyet hakları alanında uygulanacak kurallar belirlenmiş; yeni bir kurumsal yapıyla etkin olarak çalışan bir uluslararası kuruluşa -Dünya Ticaret Örgütü (DTÖ)- hayat verilmiştir. Günümüzde, genel olarak, konvansiyonel ürünler olarak tanımlanan geleneksel ürünler ile modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünler ve organik ürünlere uygulanan çok taraflı ticaret kuralları arasında farklılıklar bulunmamaktadır. Çok taraflı ticaret sisteminin bütün bu ürünler için geçerli olan en temel prensipleri; yerli ve yabancı ürünler arasında ayırım yapmamayı öngören milli muamele kuralı, bir ülke ürünlerine yönelik lehteki uygulamanın bütün diğer üye ülkelerin ürünlerine yönelik olması gerektiği konusundaki MFN kuralı ve ayrıca, dış ticaret uygulamalarında açıklığı öngören şeffalık kuralıdır. İlgili DTÖ Anlaşmalarına -Ticarette Teknik Engelller Anlaşması (TBT) Sağlık ve Bitki Sağlığı Önlemleri Anlaşması (SPS)- göre ticarette sağlık önlemi veya teknik önlem olarak yapılmasına izin verilen uygulamalarda, modern biyoteknoloji yöntemleriyle üretilen ürünler için özel düzenlemelere yer verilmemiştir. Fakat, ilgili Anlaşmalara göre, bilimsel temellerinin olması ve uluslararası standartlara dayanması koşuluyla, bu ürünlerin dış ticaretinde teknik önlem veya sağlık önlemi alınması mümkün bulunmaktadır. Diğer taraftan, DTÖ Ticaretle Bağlantılı Fikri Mülkiyet Hakları (TRIPS) Anlaşması, sanayide uygulanabilir olması ve bir yeniliği de beraberinde getirmesi koşuluyla teknolojik gelişmelerin patente bağlanabileceği hükmünü içermektedir. Bu kapsamda biyoteknolojik üretimdeki gelişmeler de patent konusu olabilmektedir. Modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretinde uygulanacak kurallar konusu 1999 yılının başlarında DTÖ gündemine gelmiştir. Bu ürünlerin büyük bir ticari potansiyel olarak ortaya çıkması, Biyolojik Çeşitlilik Sözleşmesi kapsamında hazırlanan ve Cartagena’da yapılan Biyogüvenlik Protokolü taraflar toplantısının başarısızlıkla sonuçlanması ve bunu izleyen dönemde çeşitli DTÖ üyesi ülkelerin biyoteknolojik yöntemlerle üretilen çeşitli ürünlerin ticareti, üretimi ve kullanımında bu ürünleri doğal ürünlerden ayıran kontrol mekanizmalarını oluşturduklarına ilişkin (izin, risk değerlendirme veya etiketleme zorunluluğu) bildirimlerini DTÖ’ ne iletmeleri sonucunda konu özellikle tarımla bağlantılı olarak DTÖ gündemine girmiştir. DTÖ’nün Seattle Bakanlar Konferansı hazırlıkları sırasında ABD, Japonya ve Kanada gündeme getirdikleri bir öneri ile, genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin ticaretindeki uygulamalar ve bunların ilgili DTÖ Anlaşmaları kapsamında incelenmesi amacıyla, bir çalışma grubu kurulmasını istemişlerdir. Dünya ticaretindeki diğer konuların yanısıra, tarım ürünleri ticaretinde de geniş kapsamlı yeni bir serbestleşme hareketini ve daha ileri bir entegrasyonu başlatması beklenen ve Millenium Round olarak tanımlanan ticaret müzakereleri; geçtiğimiz yıl Aralık ayında Seattle’da yapılan DTÖ’ nün III. Bakanlar Konferansında, gündemdeki konular üzerinde uzlaşmaya varılamaması nedeniyle başlatılamamıştır. Biyoteknolojik ürünler ve organik ürünlere uygulanacak kurallar konusu sadece DTÖ’ de değil, aynı zamanda farklı uluslararası kuruluşlarda da ele alınmaktadır. Temel gıda güvenliğini kontrol amacıyla uygulanacak genel standartları oluşturma görevi, Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO) ile Dünya Sağlık Örgütü (WHO) tarafından, ortak gıda standart programını uygulamak üzere kurulan "Codex Allimentarious Commission"a verilmiştir. Bu kapsamda anılan Komisyon, biyoteknolojik yöntemlerle üretilen ürünler ve organik ürünler için uygulanacak temel gıda standart programlarını oluşturmaktadır. Konuyla ilgili diğer uluslararası kuruluşlar ise; Birleşmiş Milletler Sanayi Kalkınma Teşkilatı (UNIDO), Birleşmiş Milletler Gıda ve Tarım Örgütü (FAO), Dünya Sağlık Örgütü (WHO), Uluslararası Genetik Mühendisliği ve Biyoteknoloji Merkezi (ICGEB), Ekonomik İşbirliği ve Kalkınma Teşkilatı (OECD), Birleşmiş Milletler Çevre Programı (UNEP), Biyolojik Çeşitlilik Sözleşmesi (CBD), Uluslararası Hayvan Hastalıkları Ofisi (OIE), Uluslararası Organik Tarım Hareketleri Federasyonu (IFOAM)dır. II.Gelişme Yolundaki Ülkeler, Seattle Konferansı ve Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretini yönlendiren kuralların belirlendiği tek uluslararası kuruluş olan DTÖ’ nün toplam 136 üyesinin %80’nden fazlası; gelişme yolundaki ülkeler, en az gelişmiş ülkeler ve pazar ekonomisine geçiş sürecini yaşayan ülkelerden oluşmaktadır. Günümüzde, çok taraflı ticaret kurallarının gelişmiş ülkelerin tekelinde şekillenmediğini belirtmek mümkündür. Dünya ticaretinde büyük beklentilere yol açan ancak, başarısızlıkla sonuçlanan Seattle Bakanlar Konferansı sırasında, gelişmiş ülkelerin dünya ticaretindeki gelişmeleri tek başlarına yönlendiremeyecekleri ve gelişmekte olan ülkelerin çıkarlarını da dikkate almak zorunda oldukları anlaşılmıştır. Seattle görüşmelerinin yeni çok taraflı ticaret müzakerelerini başlatmaktaki başarısızlığının altında yatan en önemli iki nedenden birincisi, gündemdeki konular üzerinde, özellikle de çevre, sağlık, tarım, kültürel çeşitlilik, tekstil, fikri mülkiyet hakları, sosyal standartlar, rekabet gibi hassas konularda, gelişmiş ve gelişme yolundaki ülke çıkarları ve beklentileri arasında önemli farklılıkların bulunması ve her iki tarafın da taviz vermemesidir. İkinci neden ise, kamuoyu baskısıdır. Küreselleşmeyle birlikte birçok konunun birbiriyle bağlantılı olarak ele alınması gerekliliği ortaya çıkmış ve kamuoyu kendisini ilgilendiren alanlardaki gelişmelere karşı duyarlılığını sivil toplum kuruluşları kanalıyla, yoğun bir biçimde ortaya koymuştur. Gelişme yolundaki ülkelerin ve kamuoyunun, modern biyoteknoloji yöntemleriyle üretilen ürünlerin ticaretiyle ilgili olarak, üzerinde önemle durdukları ve hassas oldukları konular şunlardır: Modern biyoteknolojinin tarım sektöründeki eski sorunlara yeni çözümler üreterek kırsal kalkınmaya katkı sağlayabileceği belirtilmektedir. Ancak, biyoteknolojik araştırma yöntemleri geleneksel yöntemlere göre daha pahalıdır ve daha zor uygulanabilmektedir. Bu nedenle araştırmalar az sayıdaki ülkede, belirli firmalar tarafından sürdürülmektedir. Geleneksel yöntemlere göre sürdürülebilir gıda üretimi iklim, toprak ve su koşullarına bağlıdır. Modern biyoteknolojik yöntemlerle yapılan üretimde bunlardan bağımsız olarak üretim yapabilme olanağı bulunmaktadır. Ancak bu tür bir üretimin biyolojik çeşitlilik, insan, hayvan ve bitki sağlığı üzerinde kısa, orta ve uzun dönemde oluşturabileceği olumsuzlukların bilinmesi ve önlenmesi gerekmektedir. Modern biyoteknoloji yöntemleriyle yapılacak üretimde, kullanılan teknolojinin ne kadarının dışarıdan ithal edileceği, ne kadarının içeride üretileceği önemlidir. Bu yöntemlere başvurulduğunda sadece ürünün alınması yeterli olmayacak, teknolojinin de alınması gerekecektir. Modern biyoteknoloji alanındaki pek çok yenilik patente bağlanmıştır. Patent uygulaması, teknolojiyi üretmeyen ancak kullanmak durumunda olan ülkeler açısından ağır bir bedel ödenmesi anlamına gelmektedir. Çok uluslu şirketlerin zengin biyolojik çeşitliliğe sahip gelişme yolundaki ülkelerdeki canlı türlerinin genetik materyallerini patente bağlamaları ve ticari ürün olarak kullanmalarının önüne geçilmesi gerekmektedir. III. DTÖ Tarım Müzakereleri ve Biyoteknolojik Ürünlerin Ticareti: Her nekadar, DTÖ Seattle Bakanlar Konferansı yeni ticaret müzakerelerini başlatmak konusunda başarısızlıkla sonuçlanmış ise de, bu durum DTÖ Tarım Anlaşması kapsamında yapılması gereken tarım müzakerelerinin başlatılmasına engel olamamıştır. DTÖ Tarım Komitesi’nin 23 Mart 2000 tarihinde başlayan toplantısında tarım ürünleri ticaretindeki çok taraflı ticaret müzakerelerinin başlatılmasına karar verilmiştir. Tarımdaki reform sürecinin devamı ile ilgili olarak, DTÖ Tarım Anlaşmasının 20. Maddesi kapsamında yapılması öngörülen ticaret müzakerelerinde: tarımsal desteklemelerde azaltma, tarımdaki korumaların azaltılması, doğrudan ticaretle ilgili olmayan konular (tarımın çok yönlülüğü), başlıkları altında; pazara girişin kolaylaştırılması, iç destekler ve ihracat desteklerinin azaltılması, “peace clause” olarak tanımlanan sulh hükmünün gözden geçirilmesi, tarımın çok yönlü etkilerinin tartışılması, gıda güvenliği ve kalitesi konularının ele alınması beklenmektedir. Müzakereler sırasında, gıda güvenliği ve tarım ürünleri ticaretindeki engellerin kaldırılması başlıkları altında, belirli ülkelerin, özellikle de ABD'nin, modern biyoteknoloji yöntemleri kullanılarak üretilen genetik ürünlerin ticaretini kolaylaştırmaya yönelik uluslararası çerçevenin oluşturulması konusunda ısrarlı davranmaları beklenmektedir. Bu doğrultuda, DTÖ’de, yeni tarım müzakereleri döneminde, üzerinde önemli pazarlıkların yapılabileceği alanlardan birinin modern biyoteknoloji ile üretilen tarım ürünlerinin ticaretinde uygulanacak kurallar olduğunu belirtmek yanlış olmayacaktır. IV.Tüketici Eğilimleri ve Organik Ürünlerin Ticareti: Son zamanlarda, özellikle gelişmiş ülkelerdeki tüketici talebi refah ve bilinçlenme düzeyindeki artışa, iletişim ve ulaşım olanaklarındaki gelişmeye bağlı olarak organik ürünlere yönelmektedir. Tarım ürünü üreticisi ve ihracatçısı bazı gelişmekte olan ülkeler, bu talebi karşılamak üzere, organik tarım ürünlerinin üretimi ve ticareti üzerine yoğunlaşmaktadırlar. Organik tarımın öneminin sürekli arttığını belirtmek mümkündür. Ancak, organik ürün ve pazarlarla ilgili araştırmalar sınırlı, geleceğe ilişkin tahminler ise yetersizdir. Diğer taraftan, Dünya ticaretinde, organik ürünlerin ticareti biyoteknolojik ürünlerin ticareti kadar hızla artmamaktadır. Organik tarım ürünlerine yönelen talep gelişme yolundaki ülkeler için yeni ihracat olanakları yaratmıştır. Ancak, organik tarım ürünlerinin, organik olmayan ürünlere göre daha pahalıya üretilmesi ve satılması; organik tarım işletmeciliğine geçişin belirli bir zamanı gerektirmesi; organik üretimin sertifikayla belgelenmek durumunda olması ve organik ürün ve pazarlarla ilgili araştırmaların sınırlı olması organik ürün ticaretinin yaygınlaşmasının önündeki en önemli nedenlerdir. 1997 yılı itibariyle dünyada 10.455 milyon dolar tutarında olduğu belirlenen organik ürün perakende satışlarının % 50'sinden fazlası Avrupa ülkelerinde gerçekleşmiştir. Avrupada en gelişmiş organik gıda ve içecek pazarına sahip olan ülkeler Almanya, Fransa, İtalya ve İngiltere'dir. 1997 yılındaki satışların yaklaşık % 40'ı ABD'de, %10'u ise Japonya'da yapılmıştır. V. Biyoteknolojik Ürünlerin Ticareti: Dünya ticaretinde biyoteknolojik ürünlerin pazar payı hızla artmaktadır. Bu yöntemle büyük ölçekli üretim yapılabilmesi ve ayrıca, biyoteknolojik ürünlerin üretilmesi için gerekli teknolojik gelişmenin patent haklarının saklı tutulabilmesi nedenleriyle ticari kazancın boyutları da hızla artmaktadır. Modern biyoteknoloji yöntemleriyle elde edilen ürünlerin yaklaşık %74'ü ABD'de, geriye kalanı ise Arjantin (%15); Kanada (%10); Avustralya, Meksika, İspanya, Fransa Güney Afrika ve Çin Halk Cumhuriyeti'nde (%1) üretilmektedir. Bugün için, modern biyoteknoloji yöntemleriyle üretilen yaklaşık 80 adet genetik ürünün uluslararası ticarete konu olduğu bilinmektedir. Yapılan araştırmalar, 1998 yılında biyoteknolojik yöntemlerle üretilen bitkilerin tüm satışlarının 1,5 milyar dolar civarında olduğunu, bu ürünlerin 1995-1998 dönemindeki satış gelirlerinin % 20 oranında arttığını göstermektedir. Bu trendin devam etmesi halinde, sözkonusu bitkilerin tüm satışlarının bu yıl 3 milyar dolara, 2005 yılında 8 milyar dolara, 2010 yılında ise 25 milyar dolara ulaşabileceği tahminleri yapılmaktadır. Biyoteknolojik ürünlerin tamamında, orta ve uzun dönemde, 100-150 milyar dolarlık potansiyel bir ticaret hacminden söz edilmektedir. VI. Tüketici Tercihleri ve Uluslararası Ticaret: Uluslararası ticareti yönlendiren unsurlardan biri tüketici tercihleridir. Tüketiciler bilimsel ve teknolojik gelişmeler karşısında daha bilinçli davranmak durumunda olan kesimdir. Bu kesim konuya sağlık, çevre ve etik kurallar olmak üzere üç farklı açıdan yaklaşmaktadır. Genel olarak tüketiciler, teknolojik gelişmelerin çok yönlü etkilerinin bulunduğunu ve bu etkilerin bazılarının olası riskleri de beraberinde getirdiğini bilirler ve kararlarını bilinçli olarak vermek isterler. Ayrıca, bunları bilimsel ve etik değerlendirmelerin gerektirdiği kritik kararlar olarak görürler. Yapılan araştırmalar, OECD ülkeleri arasında, Kuzey Amerika ülkeleri ile Avrupa ülkeleri arasında, biyoteknolojik ürünlere yaklaşım şeklinde önemli farklılıklar bulunduğunu ortaya koymaktadır. Bir kesim -Amerikalılar- gıda üretimi için modern biyoteknolojinin kullanımına olumlu yaklaşır ve modern biyoteknolojinin gıda üretimi açısından olduğu gibi, çevrenin de yararına olduğunu belirtirken, diğer kesim -Avrupalılar- bu düşüncenin aksine konuya şüpheyle yaklaşmaktadır. Amerika ve Avrupa ülkeleri arasındaki bu yaklaşım farklılığı mevzuat düzenlemelerine de yansımıştır. AB genetik olarak değiştirilmiş mikroorganizmalardan üretilen ürünlerin onaylanması konusunda ABD'den farklı bir süreç izlemekte ve uygulamaları "ihtiyatlılık" ilkesine dayanmaktadır. AB'nin Yeni Gıdalar Yasası, biyoteknolojik yöntemlerle üretilen ürünlerin etiketlenmesini gerektirmektedir. Biyoteknolojik ürünlerin ticaretinde uygulanacak kurallar konusunda, AB ile ABD arasında ciddi görüş farklılıkları bulunmaktadır. AB uluslararası kuruluşlardaki çalışmalarda, biyoteknolojik ürünlere yönelik etiket uygulamasının yaygınlaşması için çalışmaktadır. ABD ise, bu ürünlerin besin değeri, sağlık üzerine etkileri ve alerjik özellikleri bakımından incelendiğini ilgili kuruluşlar tarafından onaylanan genetik ürünlerin geleneksel benzerlerinden farklı bir sağlık riski taşımadığının kanıtlandığını belirtmekte, AB'yi ticarette korumacı uygulamalar yapmakla suçlamaktadır. Her iki taraf konuyu Transatlantik Ekonomik Ortaklığı, Transatlantik İş Diyaloğu ve OECD bünyesinde ve ayrıca, DTÖ tarım müzakereleri kapsamında görüşmektedir. Tüketiciler açısından esas olan kaygı, gıda üretiminde genetik biliminin kullanılmasının olası bilinmeyen riskleridir. Bu durum sağlık ve çevre açısından kabul edilebilir risk düzeyinin tanımlanmasını da güçleştirmektedir. Bu kaygılar tüketicileri, modern biyoteknoloji yöntemleriyle üretilen ürünlerin etiketlenmesi veya bu ürünlerin orta ve uzun dönemli etkileri konusunda risk değerlendirmesinin yapılması yönünde talepte bulunmaya yönlendirmektedir. VII. Etiketleme Uygulaması ve Uluslararası Ticaret: Çoğu kez, modern biyoteknoloji yöntemleriyle üretilen ürünler ile geleneksel yöntemlerle üretilen ürünleri birbirinden ayırt edebilmek mümkün değildir. Ancak, etkin pazar çözümlerine ulaşabilmek için, tüketicilerin aldıkları ürünle ilgili her türlü bilgiye ulaşabilmeleri gerekir. Bu doğrultuda etiketleme, uluslararası ticarette sıkça karşılaşılan ve tartışılan bir uygulamadır. Uluslararası ticarette önemli olan etiketleme uygulamasının ne şekilde yapılacağıdır. Uygulama gönüllü mü olmalıdır, yoksa zorunlu mu? Etikette ürünün içeriği mi tanımlamalıdır, yoksa üretim süreci mi? Etiketlerde yer verilecek bilginin kapsamı ne olmalıdır? Uluslararası ticarette yaygın olarak karşılaşılan uygulama, ürünün içeriğinin tanımlandığı etiket uygulamalarıdır. Genel olarak, üretim ve işleme yöntemleri (production and process methods) etiket programlarına konu olmamıştır. Genetik ürünlerin dış ticarete konu olmasıyla birlikte, OECD ve DTÖ'de, ticarette teknik engeller ve çevre ile bağlantılı ticaret önlemleri kapsamında, üretim ve işleme yöntemlerine ilişkin bilginin de etiketlemeye konu olabilmesi tartışılmaya başlanmıştır. Bu konu üzerinde henüz bir uzlaşmaya varılamamıştır. 1999 yılı içerisinde Japonya, Avustralya, Yeni Zelanda, AB, İsviçre, Norveç gibi ülkeler biyoteknolojik ürünlerle ilgili ulusal etiket programlarını devreye sokmuşlardır. Modern biyoteknoloji yöntemleriyle üretilen ve ayrıca, herhangi bir işlemden geçmeyen ürünlerde doğrudan etiketleme yapılabilmekte ancak, bunların işlenerek kullanılması durumunda etiketleme uygulamasında güçlük bulunmaktadır. Yapılan çeşitli araştırmalarda, bütün dünyada tüketiciye sunulan işlenmiş gıda maddelerinin yarısında modern biyoteknoloji yöntemleriyle üretilen genetik ürünlerin bulunduğu tahminleri yapılmaktadır. Ürünün çiftlikten alınıp nihai ürün olarak tüketiciye sunulmasına kadar geçen her aşamada, kullanılan girdilerin tanımlanmasını gerektiren ve üretici ve tüketiciler için gıda zincirindeki bütün ürünleri izleyebilme olanağı veren bir yöntem olan ve organik ürünler için de uygulanabilen "identity preservation" sisteminin getirdiği yüksek maliyet nedeniyle biyoteknolojik yöntemler kullanılarak üretilen ürünlere uygulanmasında güçlük bulunmaktadır. Genel olarak, ürünün paketi ile ilgili olan etiketleme uygulaması, ürünün niteliğini ilgilendiren ve sağlık önlemi olarak uygulanan ürün standartlarına göre ticareti daha az bozucu uygulamalar olarak kabul edilmektedir. Ayrıca biyoteknolojik yöntemlerle üretilen ürünler için tüketicinin satın alma kararını olumsuz yönde etkileyen bu uygulama, organik ürünlerin ticaretinde teşvik edici bir etki yaratmaktadır. VIII. Türkiye'de, Biyoteknolojik Ürünlerin İthalatı, Organik Ürünlerin İhracatı: Ülkemiz İthalat Rejimi kapsamında kamu ahlakı, kamu düzeni ve kamu güvenliği ile insan, hayvan ve bitki sağlığının korunması veya sınai ve ticari mülkiyetin korunması amacıyla ilgili mevzuat hükümleri çerçevesinde önlem uygulanan ürünler kapsamı dışındaki tüm ürünlerin ithali serbesttir. Ayrıca, bütün tarım ve gıda maddelerinin ithalatında Tarım ve Köyişleri Bakanlığı'ndan, eczacılık sanayi ürünlerinin ithalatında ise Sağlık Bakanlığı'ndan kontrol belgesi alınması gerekmektedir. Dış ticaretle ilgili veriler arasında, ülkemize modern biyoteknoloji yöntemleriyle üretilen tarım ve gıda maddelerinin ithal edildiği yönünde bir bilgi bulunmamaktadır. Ancak, önümüzdeki dönemde kaydedilecek gelişmelere bağlı olarak, bu konunun gündeme gelmesi kaçınılmaz olacaktır. Bu nedenle, modern biyoteknoloji yöntemleriyle üretilen ürünler için geçerli olacak çok taraflı ticaret kurallarının oluşturulmasından önce, bu alanı düzenleyen ulusal düzenlemelerin yapılmasında yarar bulunmaktadır. Ancak, ulusal düzenlemeler yapılırken, modern biyoteknoloji alanındaki gelişmelerin de düzenli bir şekilde izlenmesi ve bunun sonuçlarının ulusal düzenlemelere yansıtılması gerekmektedir. Bu kapsamda, çağdaş sistemlerde geçerli bir uygulama olan ve tüketicilere almak istedikleri ürünle ilgili her türlü bilgiye ulaşabilmeleri imkanını veren etiketleme uygulamasına geçilmesi etkin pazar çözümlerine ulaşabilmek bakımından yararlı olacaktır. Diğer taraftan, Türkiye'de 1997 yılı sonu itibariyle 18 000 hektar alanda organik tarım üretimi yapılmaktadır. 1998 yılı sonuna kadar bu miktarın % 25 oranında artması beklenmektedir. Türkiye'deki organik tarım üretimi ağırlıklı olarak ihracata yöneliktir ve en önemli ihracat pazarları AB ve ABD'dir. Tarım sektörünün geleceği ile ilgili stratejik değerlendirmeler kapsamında organik tarımın Türkiye'nin dış ticaretinde yeni açılımlar sağlayabilecek önemli bir üretim alanı olarak görülmesi mümkündür. Ancak, bu durumda organik tarım yöntemleriyle yapılacak üretimin gerektirdiği altyapının (bilgi, belgelendirme ve kurumsal yapı, vs.) oluşturulması ve desteklenmesi gerekmektedir. DTÖ'nde yeni başlayan tarım müzakereleri kapsamında bu konulara ilişkin olarak gündeme getirilen önerilerin dikkatle izlenmesi ve bu ürünlerin uluslararası ticaretinde uygulanacak prensipleri de içerebilecek yeni çok taraflı ticaret kurallarının ülkemiz şartları ve önceliklerine göre şekillendirilmesine çalışılmasında yarar görülmektedir. Kaynakça: DTÖ Belgeleri. OECD Belgeleri. FAO Belgeleri. Codex Allimentarious Commission Belgeleri. ITC, Organic Food and Beverages:World Supply and Major European Markets. Center For International Development at Harvard university (CID), Biotechnology in International Trade Gernot Brodnig; Weatherhead Center for International Affairs, Harvard University. DPT 8. Beş Yıllık Kalkınma Planı, Biyoteknoloji ve Biyogüvenlik Özel İhtisas Komisyonu Taslak Raporu İGEME Dış Ticaret Bülteni- Şubat 2000.

http://www.biyologlar.com/biyoteknolojik-urunler-organik-urunler-ve-uluslararasi-ticaretteki-gelismeler

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Çevre Kanunu (Bölüm-1)

ÇEVRE KANUNU (1) (2) Kanun Numarası : 2872 Kabul Tarihi : 9/8/1983 Yayımlandığı R.Gazete : Tarih : 11/8/1983 Sayı : 18132 Yayımlandığı Düstur Tertip : 5 Cilt : 22 Sayfa : 499 BİRİNCİ BÖLÜM Amaç, Tanımlar ve İlkeler Amaç: Madde 1 – (Değişik: 26/4/2006 – 5491/1 md.) Bu Kanunun amacı, bütün canlıların ortak varlığı olan çevrenin, sürdürülebilir çevre ve sürdürülebilir kalkınma ilkeleri doğrultusunda korunmasını sağlamaktır. Tanımlar: Madde 2 – (Değişik: 26/4/2006 – 5491/2 md.) Bu Kanunda geçen terimlerden; Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları biyolojik, fiziksel, sosyal, ekonomik ve kültürel ortamı, Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye, çevre kirliliğini önlemeye yönelik çalışmaların bütününü, Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkiyi, Sürdürülebilir çevre: Gelecek kuşakların ihtiyaç duyacağı kaynakların varlığını ve kalitesini tehlikeye atmadan, hem bugünün hem de gelecek kuşakların çevresini oluşturan tüm çevresel değerlerin her alanda (sosyal, ekonomik, fizikî vb.) ıslahı, korunması ve geliştirilmesi sürecini, Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların, sağlıklı bir çevrede yaşamasını güvence altına alan çevresel, ekonomik ve sosyal hedefler arasında denge kurulması esasına dayalı kalkınma ve gelişmeyi, Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleri, Doğal varlık: Bütün bitki, hayvan, mikroorganizmalar ile bunların yaşama ortamlarını, Doğal kaynak: Hava, su, toprak ve doğada bulunan cansız varlıkları, (1)19/10/1989 tarih ve 383 sayılı KHK'nin 25 inci maddesi; bu Kanun ile Çevre Müsteşarlığına verilen yetkilerin, Özel Çevre Koruma Kurumu Başkanlığına geçeceğini hüküm altına almıştır. (2)9/8/1991 tarih ve 443 sayılı KHK'nin geçici 1 inci maddesi ile çeşitli mevzuatta geçen "Çevre Müsteşarlığı" ve "Çevreden Sorumlu Devlet Bakanlığı" ibareleri "Çevre Bakanlığı", "Çevreden Sorumlu Devlet Bakanı" ve "Çevre Müsteşarı" ibareleri "Çevre Bakanı" olarak değiştirilmiştir. Kirleten: Faaliyetleri sırasında veya sonrasında doğrudan veya dolaylı olarak çevre kirliliğine, ekolojik dengenin ve çevrenin bozulmasına neden olan gerçek ve tüzel kişileri, Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemi, Atıksu: Evsel, endüstriyel, tarımsal ve diğer kullanımlar sonucunda kirlenmiş veya özellikleri kısmen veya tamamen değişmiş suları, Atıksu altyapı tesisleri: Evsel ve/veya endüstriyel atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve alıcı ortama verilmesinin sağlandığı sistem ve tesislerin tamamını, Arıtma tesisi: Her türlü faaliyet sonucu oluşan katı, sıvı ve gaz halindeki atıkların yönetmeliklerde belirlenen standartları sağlayacak şekilde arıtıldığı tesisleri, Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütününü, Sulak alan: Doğal veya yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, denizlerin gelgit hareketlerinin çekilme devresinde altı metreyi geçmeyen derinlikleri kapsayan, başta su kuşları olmak üzere canlıların yaşama ortamı olarak önem taşıyan bütün sular, bataklık, sazlık ve turbiyeler ile bu alanların kıyı kenar çizgisinden itibaren kara tarafına doğru ekolojik açıdan sulak alan kalan yerleri, Biyolojik çeşitlilik: Ekosistemlerin, türlerin, genlerin ve bunlar arasındaki ilişkilerin tamamını, Atık: Herhangi bir faaliyet sonucunda oluşan, çevreye atılan veya bırakılan her türlü maddeyi, Katı atık: Üreticisi tarafından atılmak istenen ve toplumun huzuru ile özellikle çevrenin korunması bakımından, düzenli bir şekilde bertaraf edilmesi gereken katı atık maddeleri, Evsel katı atık: Tehlikeli ve zararlı atık kapsamına girmeyen konut, sanayi, işyeri, piknik alanları gibi yerlerden gelen katı atıkları, Tehlikeli atık: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan atıklar ve bu atıklarla kirlenmiş maddeleri, Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünleri, Kirli balast: Duran veya seyir halindeki tankerden, gemiden veya diğer deniz araçlarından su üzerine bırakıldığında; su üstünde veya bitişik sahil hattında petrol, petrol türevi veya yağ izlerinin görülmesine neden olan veya su üstünde ya da su altında renk değişikliği oluşturan veya askıda katı madde/emülsiyon halinde maddelerin birikmesine yol açan balast suyunu, Çevresel etki değerlendirmesi: Gerçekleştirilmesi plânlanan projelerin çevreye olabilecek olumlu ve olumsuz etkilerinin belirlenmesinde, olumsuz yöndeki etkilerin önlenmesi ya da çevreye zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin, seçilen yer ile teknoloji alternatiflerinin belirlenerek değerlendirilmesinde ve projelerin uygulanmasının izlenmesi ve kontrolünde sürdürülecek çalışmaları, Proje tanıtım dosyası: Gerçekleşmesi plânlanan projenin yerini, özelliklerini, olası olumsuz etkilerini ve öngörülen önlemleri içeren, projeyi genel boyutları ile tanıtan bilgi ve belgeleri içeren dosyayı, Stratejik çevresel değerlendirme: Onaya tâbi plân ya da programın onayından önce plânlama veya programlama sürecinin başlangıcından itibaren, çevresel değerlerin plân ve programa entegre edilmesini sağlamak, plân ya da programın olası çevresel etkilerini en aza indirmek ve karar vericilere yardımcı olmak üzere katılımcı bir yaklaşımla sürdürülen ve yazılı bir raporu da içeren çevresel değerlendirme çalışmalarını, Çevre yönetimi: İdarî, teknik, hukukî, politik, ekonomik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve gelişmesini sağlamak üzere yerel, bölgesel, ulusal ve küresel düzeyde belirlenen politika ve stratejilerin uygulanmasını, Çevre yönetim birimi/Çevre görevlisi: Bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemeler uyarınca denetime tâbi tesislerin faaliyetlerinin mevzuata uygunluğunu, alınan tedbirlerin etkili olarak uygulanıp uygulanmadığını değerlendiren, tesis içi yıllık denetim programları düzenleyen birim ya da görevliyi, Çevre gönüllüsü: Bakanlıkça, uygun niteliklere sahip kişiler arasından seçilen ve bu Kanun ve Kanuna göre yürürlüğe konulan düzenlemelere aykırı faaliyetleri Bakanlığa iletmekle görevli ve yetkili kişiyi, Hassas alan: Ötrofikasyon riski yüksek olan ve Bakanlıkça belirlenecek kıyı ve iç su alanlarını, Çevreye ilişkin bilgi: Su, hava, toprak, bitki ve hayvan varlığı ile bunları olumsuz olarak etkileyen veya etkileme ihtimali bulunan faaliyetler ve alınan idarî ve teknik önlemlere ilişkin olarak mevcut bulunan her türlü yazılı, sözlü veya görüntülü bilgi veya veriyi, İş termin plânı: Atıksu ve evsel nitelikli katı atık kaynaklarının yönetmelikte belirtilen alıcı ortam deşarj standartlarını sağlamak için yapmaları gereken atıksu arıtma tesisi ve/veya kanalizasyon gibi altyapı tesisleri ile katı atık bertaraf tesislerinin gerçekleştirilmesi sürecinde yer alan yer seçimi, proje, ihale, inşaat, işletmeye alma gibi işlerin zamanlamasını gösteren plânı, Risk değerlendirmesi: Belirli kimyasal madde ya da maddelerin potansiyel tehlikelerinin belirlenmesi ve sonuçlarının hesaplanması yönünde kullanılan yöntemler bütününü, İyonlaştırıcı olmayan radyasyon: İyonlaşmaya neden olmayan elektromanyetik dalgaları, Elektromanyetik alan: Elektrik ve manyetik alan bileşenleri olan dalgaların oluşturduğu alanı, Koku: İnsanda koku alma duygusunu harekete geçiren ve kokunun algılanmasına neden olan uçucu maddelerin yarattığı etkiyi, Hava kalitesi: İnsan ve çevresi üzerine etki eden hava kirliliğinin göstergesi olan, çevre havasında mevcut hava kirleticilerin artan miktarıyla azalan kalitelerini, Bakanlık: Çevre ve Orman Bakanlığını, ifade eder. İlkeler: Madde 3 –(Değişik: 26/4/2006 – 5491/3 md.) Çevrenin korunmasına, iyileştirilmesine ve kirliliğinin önlenmesine ilişkin genel ilkeler şunlardır: a) Başta idare, meslek odaları, birlikler ve sivil toplum kuruluşları olmak üzere herkes, çevrenin korunması ve kirliliğin önlenmesi ile görevli olup bu konuda alınacak tedbirlere ve belirlenen esaslara uymakla yükümlüdürler. b) Çevrenin korunması, çevrenin bozulmasının önlenmesi ve kirliliğin giderilmesi alanlarındaki her türlü faaliyette; Bakanlık ve yerel yönetimler, gerekli hallerde meslek odaları, birlikler ve sivil toplum kuruluşları ile işbirliği yaparlar. c) Arazi ve kaynak kullanım kararlarını veren ve proje değerlendirmesi yapan yetkili kuruluşlar, karar alma süreçlerinde sürdürülebilir kalkınma ilkesini gözetirler. d) Yapılacak ekonomik faaliyetlerin faydası ile doğal kaynaklar üzerindeki etkisi sürdürülebilir kalkınma ilkesi çerçevesinde uzun dönemli olarak değerlendirilir. e) Çevre politikalarının oluşmasında katılım hakkı esastır. Bakanlık ve yerel yönetimler; meslek odaları, birlikler, sivil toplum kuruluşları ve vatandaşların çevre hakkını kullanacakları katılım ortamını yaratmakla yükümlüdür. f) Her türlü faaliyet sırasında doğal kaynakların ve enerjinin verimli bir şekilde kullanılması amacıyla atık oluşumunu kaynağında azaltan ve atıkların geri kazanılmasını sağlayan çevre ile uyumlu teknolojilerin kullanılması esastır. g) Kirlenme ve bozulmanın önlenmesi, sınırlandırılması, giderilmesi ve çevrenin iyileştirilmesi için yapılan harcamalar kirleten veya bozulmaya neden olan tarafından karşılanır. Kirletenin kirlenmeyi veya bozulmayı durdurmak, gidermek veya azaltmak için gerekli önlemleri almaması veya bu önlemlerin yetkili makamlarca doğrudan alınması nedeniyle kamu kurum ve kuruluşlarınca yapılan gerekli harcamalar 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre kirletenden tahsil edilir. h) Çevrenin korunması, çevre kirliliğinin önlenmesi ve giderilmesi için uyulması zorunlu standartlar ile vergi, harç, katılma payı, yenilenebilir enerji kaynaklarının ve temiz teknolojilerin teşviki, emisyon ücreti ve kirletme bedeli alınması, karbon ticareti gibi piyasaya dayalı mekanizmalar ile ekonomik araçlar ve teşvikler kullanılır. ı) Bölgesel ve küresel çevre sorunlarının çözümüne yönelik olarak taraf olduğumuz uluslararası anlaşmalar sonucu ortaya çıkan ulusal hak ve yükümlülüklerin yerine getirilmesi için gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. Gerçek ve tüzel kişiler, bu düzenlemeler sonucu ortaya çıkabilecek maliyetleri karşılamakla yükümlüdür. j) Çevrenin korunması, çevre kirliliğinin önlenmesi ve çevre sorunlarının çözümüne yönelik gerekli teknik, idarî, malî ve hukukî düzenlemeler Bakanlığın koordinasyonunda yapılır. 2690 sayılı Türkiye Atom Enerjisi Kurumu Kanunu kapsamındaki konular Türkiye Atom Enerjisi Kurumu tarafından yürütülür. İKİNCİ BÖLÜM Yüksek Çevre Kurulu ve Görevleri(1) Yüksek Çevre Kurulu(1) Madde 4 – (Mülga: 9/8/1991 - KHK - 443/43 md.; Yeniden düzenleme: 26/4/2006 – 5491/4 md.) Başbakanın başkanlığında, Başbakanın bulunmadığı zamanlarda Çevre ve Orman Bakanının başkanlığında, Başbakanın belirleyeceği sayıda bakan ile Bakanlık Müsteşarından oluşan Yüksek Çevre Kurulu kurulmuştur. Diğer bakanlar gündeme göre Kurul toplantılarına başkan tarafından çağrılabilir. Kurul yılda en az bir defa toplanır. Kurulun sekretarya hizmetleri Bakanlıkça yürütülür. Kurulun çalışmaları ile ilgili konularda ön hazırlık ve değerlendirme yapmak üzere, Bakanlık Müsteşarının başkanlığında ilgili bakanlık müsteşarları, diğer kurum ve kuruluşların en üst düzey yetkili amirlerinin katılımı ile toplantılar düzenlenir. Bu toplantılara gündeme göre ilgili kamu kurumu niteliğindeki kuruluşların birlik temsilcileri, meslek kuruluşları, sivil toplum kuruluşları, yerel yönetim temsilcileri, üniversite temsilcileri ve bilimsel kuruluşların temsilcileri davet edilir. Kurulun çalışma usûl ve esasları ile diğer hususlar yönetmelikle belirlenir. Yüksek Çevre Kurulunun görevleri(1) Madde 5 – (Mülga: 13/3/1990 - KHK - 409/12 md.; Yeniden düzenleme: 26/4/2006 – 5491/5 md.) Yüksek Çevre Kurulunun görevleri şunlardır: a) Etkin bir çevre yönetiminin sağlanması için hedef, politika ve strateji belirlemek. b) Sürdürülebilir kalkınma ilkesi çerçevesinde ekonomik kararlara çevre boyutunun dahil edilmesine imkân veren hukukî ve idarî tedbirleri belirlemek. c) Birden fazla bakanlık ve kuruluşu ilgilendiren çevre konularına ilişkin uyuşmazlıklarda nihai kararı vermek. Madde 6 – 7 – (Mülga: 8/6/1984 - KHK 222/30 md.) ÜÇÜNCÜ BÖLÜM Çevre Korunmasına İlişkin Önlemler ve Yasaklar Kirletme yasağı: Madde 8 – Her türlü atık ve artığı, çevreye zarar verecek şekilde, ilgili yönetmeliklerde belirlenen standartlara ve yöntemlere aykırı olarak doğrudan ve dolaylı biçimde alıcı ortama vermek, depolamak, taşımak, uzaklaştırmak ve benzeri faaliyetlerde bulunmak yasaktır. Kirlenme ihtimalinin bulunduğu durumlarda ilgililer kirlenmeyi önlemekle; kirlenmenin meydana geldiği hallerde kirleten, kirlenmeyi durdurmak, kirlenmenin etkilerini gidermek veya azaltmak için gerekli tedbirleri almakla yükümlüdürler. ______________________________ (1) 26/4/2006 tarihli ve 5491 sayılı Kanunun 4 üncü maddesiyle ikinci bölüm başlığı “Merkezi ve Mahalli İdari Bölümleri ve Görevleri”, 4 üncü madde başlığı “Merkez Çevre Kurulu” iken metne işlendiği şekilde değiştirilmiştir. Çevrenin korunması(1) Madde 9 – (Değişik: 26/4/2006 – 5491/6 md.) Çevrenin korunması amacıyla; a) Doğal çevreyi oluşturan biyolojik çeşitlilik ile bu çeşitliliği barındıran ekosistemin korunması esastır. Biyolojik çeşitliliği koruma ve kullanım esasları, yerel yönetimlerin, üniversitelerin, sivil toplum kuruluşlarının ve ilgili diğer kuruluşların görüşleri alınarak belirlenir. b) Ülke fizikî mekânında, sürdürülebilir kalkınma ilkesi doğrultusunda, koruma-kullanma dengesi gözetilerek kentsel ve kırsal nüfusun barınma, çalışma, dinlenme, ulaşım gibi ihtiyaçların karşılanması sonucu oluşabilecek çevre kirliliğini önlemek amacıyla nazım ve uygulama imar plânlarına esas teşkil etmek üzere bölge ve havza bazında 1/50.000-1/100.000 ölçekli çevre düzeni plânları Bakanlıkça yapılır, yaptırılır ve onaylanır. Bölge ve havza bazında çevre düzeni plânlarının yapılmasına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. c) Ulusal mevzuat ve taraf olduğumuz uluslararası sözleşmeler ile koruma altına alınarak koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan hassas alanların her tür ölçekteki plânlarda gösterilmesi zorunludur. Koruma statüsü kazandırılmış alanlar ve ekolojik değeri olan alanlar, plân kararı dışında kullanılamaz. d) Ülke ve dünya ölçeğinde ekolojik önemi olan, çevre kirlenmeleri ve bozulmalarına duyarlı toprak ve su alanlarını, biyolojik çeşitliliğin, doğal kaynakların ve bunlarla ilgili kültürel kaynakların gelecek kuşaklara ulaşmasını emniyet altına almak üzere gerekli düzenlemelerin yapılabilmesi amacıyla, Özel Çevre Koruma Bölgesi olarak tespit ve ilan etmeye, bu alanlarda uygulanacak koruma ve kullanma esasları ile plân ve projelerin hangi bakanlıkça hazırlanıp yürütüleceğini belirlemeye Bakanlar Kurulu yetkilidir. Bu bölgelere ilişkin plân ve projelerde; 3/5/1985 tarihli ve 3194 sayılı İmar Kanununun 9 uncu maddesi, 4/4/1990 tarihli ve 3621 sayılı Kıyı Kanununun plân onama yetkisini düzenleyen hükümleri, 21/7/1983 tarihli ve 2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanununun 8 inci maddesinin tabiat varlıkları, doğal sit alanları ve bunların korunma alanlarının tespit ve tescili dışında kalan yetkileri düzenleyen hükümleri ile aynı Kanunun 17 nci maddesinin (a) bendi hükümleri uygulanmaz. e) Sulak alanların doğal yapılarının ve ekolojik dengelerinin korunması esastır. Sulak alanların doldurulması ve kurutulması yolu ile arazi kazanılamaz. Bu hükme aykırı olarak arazi kazanılması halinde söz konusu alan faaliyet sahibince eski haline getirilir. Sulak alanların korunması ve yönetimine ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşü alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. f) Biyolojik çeşitliliğin sürdürülebilirliliğinin sağlanması bakımından nesli tehdit veya tehlike altında olanlar ile nadir bitki ve hayvan türlerinin korunması esas olup, mevzuata aykırı biçimde ticarete konu edilmeleri yasaktır. g) Doğal kaynakların ve varlıkların korunması, kirliliğinin ve tahribatının önlenmesi ve kalitesinin iyileştirilmesi için gerekli idarî, hukukî ve teknik esaslar Bakanlık tarafından belirlenir. h) Ülkenin deniz, yeraltı ve yerüstü su kaynaklarının ve su ürünleri istihsal alanlarının korunarak kullanılmasının sağlanması ve kirlenmeye karşı korunması esastır. Atıksu yönetimi ile ilgili politikaların oluşturulması ve koordinasyonunun sağlanması Bakanlığın sorumluluğundadır. Su ürünleri istihsal alanları ile ilgili alıcı ortam standartları Tarım ve Köyişleri Bakanlığınca belirlenir. Denizlerde yapılacak balık çiftlikleri, hassas alan niteliğindeki kapalı koy ve körfezler ile doğal ve arkeolojik sit alanlarında kurulamaz. Alıcı su ortamlarına atıksu deşarjlarına ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. ı) Çevrenin korunması ve kamuoyunda çevre bilincinin geliştirilmesi amacıyla, okul öncesi eğitimden başlanarak Millî Eğitim Bakanlığına bağlı örgün eğitim kurumlarının öğretim programlarında çevre ile ilgili konulara yer verilmesi esastır. –––––––––––––––––––– (1) Bu madde başlığı “Çevre Korunması” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 6 ncı maddesiyle metne işlendiği şekilde değiştirilmiştir. Yaygın eğitime yönelik olarak, radyo ve televizyon programlarında da çevrenin önemine ve çevre bilincinin geliştirilmesine yönelik programlara yer verilmesi esastır. Türkiye Radyo - Televizyon Kurumu ile özel televizyon kanallarına ait televizyon programlarında ayda en az iki saat, özel radyo kanallarının programlarında ise ayda en az yarım saat eğitici yayınların yapılması zorunludur. Bu yayınların % 20’sinin izlenme ve dinlenme oranı en yüksek saatlerde yapılması esastır. Radyo ve Televizyon Üst Kurulu, görev alanına giren hususlarda bu maddenin takibi ile yükümlüdür. j) Çevre ile ilgili olarak toplanan her türlü kaynak ve gelir, tahsisi mahiyette olup, öncelikle çevrenin korunması, geliştirilmesi, ıslahı ve kirliliğin önlenmesi için kullanılır. Çevresel etki değerlendirilmesi: Madde 10 – (Değişik: 26/4/2006 – 5491/7 md.) Gerçekleştirmeyi plânladıkları faaliyetleri sonucu çevre sorunlarına yol açabilecek kurum, kuruluş ve işletmeler, Çevresel Etki Değerlendirmesi Raporu veya proje tanıtım dosyası hazırlamakla yükümlüdürler. Çevresel Etki Değerlendirmesi Olumlu Kararı veya Çevresel Etki Değerlendirmesi Gerekli Değildir Kararı alınmadıkça bu projelerle ilgili onay, izin, teşvik, yapı ve kullanım ruhsatı verilemez; proje için yatırıma başlanamaz ve ihale edilemez. Petrol, jeotermal kaynaklar ve maden arama faaliyetleri, Çevresel Etki Değerlendirmesi kapsamı dışındadır. Çevresel Etki Değerlendirmesine tâbi projeler ve Stratejik Çevresel Değerlendirmeye tâbi plân ve programlar ve konuya ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. İzin alma, arıtma ve bertaraf etme yükümlülüğü (1) Madde 11 – (Değişik: 26/4/2006 – 5491/8 md.) Üretim, tüketim ve hizmet faaliyetleri sonucunda oluşan atıklarını alıcı ortamlara doğrudan veya dolaylı vermeleri uygun görülmeyen tesis ve işletmeler ile yerleşim birimleri atıklarını yönetmeliklerde belirlenen standart ve yöntemlere uygun olarak arıtmak ve bertaraf etmekle veya ettirmekle ve öngörülen izinleri almakla yükümlüdürler. Birinci fıkrada belirtilen yükümlülüğü bulunan tesis ve işletmeler ile yerleşim birimlerine; 1) İnşaat ruhsatı aşamasında bu yükümlülüğünü yerine getireceğini gösterir proje ve belgeleri ilgili kuruma sunmadıkça inşaat ruhsatı verilmez. 2) İnşaatı bitmiş olanlardan, bu yükümlülüğü yerine getirmeyenlere işletme ruhsatı ve/veya yapı kullanma ruhsatı verilmez. 3) İnşaat ruhsatına, yapı kullanma veya işletme ruhsatını haiz olmakla birlikte arıtma ve bertaraf yükümlülüklerini yerine getirmemeleri halinde, verilmiş yapı kullanma izni veya işletme izni iptal edilir. Faaliyetlerinde değişiklik yapmayı ve/veya tesislerini büyütmeyi plânlayan gerçek ve tüzel kişiler yönetmelikle belirlenen usûl ve esaslar çerçevesinde atıklarını arıtma veya bertaraf etme yükümlülüğünü yerine getirmek zorundadırlar. Atıksuları toplayan kanalizasyon sistemi ile atıksuların arıtıldığı ve arıtılmış atıksuların bertarafının sağlandığı atıksu altyapı sistemlerinin kurulması, bakımı, onarımı, ıslahı ve işletilmesinden; büyükşehirlerde 20/11/1981 tarihli ve 2560 sayılı İstanbul Su ve Kanalizasyon İdaresi Genel Müdürlüğü Kuruluş ve Görevleri Hakkında Kanunla belirlenen kuruluşlar, belediye ve mücavir alan sınırları içinde belediyeler, bunların dışında iskâna konu her türlü kullanım alanında valiliğin denetiminde bu alanları kullananlar sorumludur. Serbest ve/veya endüstri bölgelerinde bölge müdürlükleri, kültür ve turizm koruma ve gelişme bölgelerinde, turizm merkezlerinde Kültür ve Turizm Bakanlığı veya yetkili kıldığı birimler, organize sanayi bölgelerinde organize sanayi bölgesi yönetimi, küçük sanayi sitelerinde kooperatif başkanlıkları, mevcut yerleşim alanlarından kopuk olarak münferit yapılmış tatil köyü, tatil sitesi, turizm tesis alanları vb. kullanım alanlarında ise site yönetimleri veya tesis işletmecileri atıksu altyapı sistemlerinin kurulması, bakımı, onarımı ve işletilmesinden sorumludurlar. ––––––––––––––––––––– (1) Bu madde başlığı "İşletme izni ve haber verme yükümlülüğü:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 8 inci maddesiyle metne işlendiği şekilde değiştirilmiştir. Atıksu altyapı sistemlerini kullanan ve/veya kullanacaklar, bağlantı sistemlerinin olup olmadığına bakılmaksızın, arıtma sistemlerinden sorumlu yönetimlerin yapacağı her türlü yatırım, işletme, bakım, onarım, ıslah ve temizleme harcamalarının tamamına kirlilik yükü ve atıksu miktarı oranında katılmak zorundadırlar. Bu hizmetlerden yararlananlardan, belediye meclisince ve bu maddede sorumluluk verilen diğer idarelerce belirlenecek tarifeye göre atıksu toplama, arıtma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, atıksu ile ilgili hizmetler dışında kullanılamaz. Atıksu toplama havzasının birden fazla belediye veya kurumun yetki sahasında olması halinde; atıksu arıtma tesisini işleten kurum, atıksu ile ilgili yatırım ve harcama giderlerini kirletenlerden kirlilik yükü ve atıksu miktarı nispetinde tahsil eder. Atık üreticileri uygun metot ve teknolojiler ile atıklarını en az düzeye düşürecek tedbirleri almak zorundadırlar. Atıkların üretiminin ve zararlarının önlenmesi veya azaltılması ile atıkların geri kazanılması ve geri kazanılabilen atıkların kaynağında ayrı toplanması esastır. Atık yönetim plânlarının hazırlanmasına ilişkin esaslar, Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Geri kazanım imkânı olmayan atıklar, yönetmeliklerle belirlenen uygun yöntemlerle bertaraf edilir. Büyükşehir belediyeleri ve belediyeler evsel katı atık bertaraf tesislerini kurmak, kurdurmak, işletmek veya işlettirmekle yükümlüdürler. Bu hizmetten yararlanan ve/veya yararlanacaklar, sorumlu yönetimlerin yapacağı yatırım, işletme, bakım, onarım ve ıslah harcamalarına katılmakla yükümlüdür. Bu hizmetten yararlananlardan, belediye meclisince belirlenecek tarifeye göre katı atık toplama, taşıma ve bertaraf ücreti alınır. Bu fıkra uyarınca tahsil edilen ücretler, katı atıkla ilgili hizmetler dışında kullanılamaz. Üretici, ithalatçı ve piyasaya sürenlerin sorumluluğu kapsamında yükümlülük getirilen üreticiler, ithalatçılar ve piyasaya sürenler, ürünlerinin faydalı kullanım ömrü sonucunda oluşan atıklarının toplanması, taşınması, geri kazanımı, geri dönüşümü ve bertaraf edilmelerine dair yükümlülüklerinin yerine getirilmesi ve bunlara yönelik gerekli harcamalarının karşılanması, eğitim faaliyetlerinin gerçekleştirilmesi amacıyla Bakanlığın koordinasyonunda bir araya gelerek tüzel kişiliği haiz birlikler oluştururlar. Bu kapsamda yükümlülük getirilen kurum ve kuruluşların sorumluluklarının bu birliklere devrine ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Tehlikeli atık üreticileri, yönetmelikle belirlenecek esaslara göre atıklarını bertaraf etmek veya ettirmekle yükümlüdürler. Atık geri kazanım, geri dönüşüm ve bertaraf tesislerini kurmak ve işletmek isteyen gerçek ve/veya tüzel kişiler, yönetmelikle belirlenen esaslar doğrultusunda, ürün standardı, ürünlerinin satışa uygunluğu ve piyasadaki denetimi ile ilgili izni, ilgili kurumlardan almak kaydı ile Bakanlıktan lisans almakla yükümlüdür. Evsel atıklar hariç olmak üzere, atık taşıma ve/veya toplama işlerini yapan kurum veya kuruluşlar Bakanlıktan lisans almak zorundadır. Evsel atıkların taşıma ve toplama işlerini yapan kurum ve kuruluşlar Bakanlıkça kayıt altına alınır. Atıksu arıtımı, atık bertarafı ve atık geri kazanım tesisleri yapmak amacıyla belediyelerin hizmet birlikleri kurmaları halinde, bu hizmet birliklerine araştırma, etüt ve proje konularında Bakanlıkça teknik ve malî yardım yapılır. Tesis yapım projeleri ise bu Kanunun 18 inci maddesi çerçevesinde kredi veya yardım ile desteklenebilir. Kredi borcunun geri ödenmemesi durumunda 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre takip yapılır ve öncelikle 2380 sayılı Belediyelere ve İl Özel İdarelerine Genel Bütçe Vergi Gelirlerinden Pay Verilmesi Hakkında Kanunun ek 4 üncü maddesi hükümleri çerçevesinde ilgili belediyelerin İller Bankasındaki paylarından tahsil olunur. Arıtma ve bertaraf etme yükümlülüğüne tâbi tesis ve işletmeler ile yerleşim birimleri, bu yükümlülüğe istinaden kurulması zorunlu olan arıtma ve bertaraf sistemleri, atıksu arıtma ve ön arıtma sistemleri ile atıksu altyapı sistemlerinin kurulması, onarımı, ıslahı, işletilmesi ve harcamalara katkı paylarının belirlenmesi ile ilgili usûl ve esaslar Bakanlıkça yönetmeliklerle düzenlenir. Bu konuda diğer kanunlarla verilen yetkiler saklıdır. Bu Kanunun uygulanmasını sağlamak üzere alınması gereken izinler ve bu izinlerin tâbi olacağı usûl ve esaslar Bakanlıkça çıkarılacak yönetmeliklerle belirlenir. Faaliyetleri nedeniyle çevreye olumsuz etkileri olabilecek kurum, kuruluş ve işletmeler tarafından, faaliyetlerine ilişkin olası bir kaza durumunda, kazanın çevreye olumsuz etkilerini kontrol altına almak ve azaltmak üzere uygulanacak acil durum plânları hazırlanması zorunludur. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Bu plânlar dikkate alınarak Bakanlığın koordinasyonunda ilgili kurum ve kuruluşlarca yerel, bölgesel ve ulusal acil durum plânları hazırlanır. Liman, tersane, gemi bakım-onarım, gemi söküm, marina gibi kıyı tesisleri; kendi tesislerinde ve gemi ve diğer deniz araçlarında oluşan petrollü, yağlı katı atıklar ve sintine, kirli balast, slaç, slop gibi sıvı atıklar ile evsel atıksu ve katı atıkların alınması, depolanması, taşınması ve bertarafı ile ilgili işlemleri ve tesisleri yapmak veya yaptırmakla yükümlüdürler. Buna ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle belirlenir. Denetim, bilgi verme ve bildirim yükümlülüğü(1) Madde 12 – (Değişik: 26/4/2006 – 5491/9 md.) Bu Kanun hükümlerine uyulup uyulmadığını denetleme yetkisi Bakanlığa aittir. Gerektiğinde bu yetki, Bakanlıkça; il özel idarelerine, çevre denetim birimlerini kuran belediye başkanlıklarına, Denizcilik Müsteşarlığına, Sahil Güvenlik Komutanlığına, 13/10/1983 tarihli ve 2918 sayılı Karayolları Trafik Kanununa göre belirlenen denetleme görevlilerine veya Bakanlıkça uygun görülen diğer kurum ve kuruluşlara devredilir. Denetimler, Bakanlığın belirlediği denetim usûl ve esasları çerçevesinde yapılır. Askerî işyerleri, askerî bölgeler ve tatbikatların bu Kanun çerçevesindeki denetimi ve neticelerine ait işlemler; Genelkurmay Başkanlığı, Millî Savunma Bakanlığı, İçişleri Bakanlığı ve Bakanlık tarafından müştereken hazırlanacak yönetmeliğe göre yürütülür. İlgililer, Bakanlığın veya denetimle yetkili diğer mercilerin isteyecekleri bilgi ve belgeleri vermek, yetkililerin yaptıracakları analiz ve ölçümlerin giderlerini karşılamak, denetim esnasında her türlü kolaylığı göstermek zorundadırlar. İlgililer, çevre kirliliğine neden olabilecek faaliyetleri ile ilgili olarak, kullandıkları hammadde, yakıt, çıkardıkları ürün ve atıklar ile üretim şemalarını, acil durum plânlarını, izleme sistemleri ve kirlilik raporları ile diğer bilgi ve belgeleri talep edilmesi halinde Bakanlığa veya yetkili denetim birimine vermek zorundadırlar. Denetim, bilgi verme ve bildirim yükümlülüğüne ilişkin usûl ve esaslar Bakanlıkça çıkarılacak yönetmelikle düzenlenir. Tehlikeli kimyasallar ve atıklar(2) Madde 13 – (Değişik: 26/4/2006 – 5491/10 md.) Tehlikeli kimyasalların belirlenmesi, üretimi, ithalatı, atık konumuna gelinceye kadar geçen süreçte kullanım alanları ve miktarları, etiketlenmesi, ambalajlanması, sınıflandırılması, depolanması, risk değerlendirilmesi, taşınması ile ihracatına ilişkin usûl ve esaslar ilgili kurum ve kuruluşların görüşleri alınarak Bakanlıkça çıkarılacak yönetmelikle belirlenir. Yönetmelik hükümlerine aykırı olarak piyasaya sürüldüğü tespit edilen tehlikeli kimyasallar ile bu kimyasalları içeren eşya, bunları satış ve kullanım amacıyla piyasaya süren kurum, kuruluş ve işletmelere toplattırılır ve imha ettirilir. Nakil ve imha için gereken masraflar ilgililerince karşılanır. Bu yükümlülüğün yerine getirilmemesi halinde bu masraflar, ilgili kurum, kuruluş ve işletmelerden 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümlerine göre tahsil edilir. Başbakanlık Dış Ticaret Müsteşarlığı bazı yakıtların, maddelerin, atıkların, tehlikeli kimyasallar ile bu kimyasalları içeren eşyaların ithalini, Bakanlığın görüşünü alarak yasaklayabilir veya kontrole tâbi tutabilir. Tehlikeli atıkların ithalatı yasaktır. Tehlikeli atıkların tanımı ile tehlikeli atıkların oluşum aşamasından itibaren toplanması, ayrılması, geçici ve ara depolanması, geri kazanılması, yeniden kullanılması, taşınması, bertarafı, bertaraf sonrası kontrolü, ihracatı, transit geçişi, ambalajlanması, etiketlenmesi, denetimi ve atık yönetim plânlarının hazırlanması ile ilgili usûl ve esaslar Bakanlıkça yayımlanacak yönetmelikle belirlenir. Tehlikeli kimyasalların üretimi, satışı, depolanması, kullanılması ve taşınması faaliyetleri ile tehlikeli atıkların toplanması, taşınması, geçici ve ara depolanması, geri kazanımı, yeniden kullanılması ve bertarafı faaliyetlerinde bulunanlar, bu Kanun ile getirilen yükümlülükler açısından müteselsilen sorumludurlar. Sorumlular bu Kanunda belirtilen meslekî faaliyetleri nedeniyle oluşacak bir kaza dolayısıyla üçüncü şahıslara verebilecekleri zararlara karşı tehlikeli kimyasal ve tehlikeli atık malî sorumluluk sigortası yaptırmak zorunda olup, faaliyetlerine başlamadan önce Bakanlıktan gerekli izni alırlar. Sigorta yaptırma zorunluluğuna uymayan kurum, kuruluş ve işletmelere bu faaliyetler için izin verilmez. –––––––––––––––––––– (1) Bu madde başlığı "Denetim" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 9 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. (2) Bu madde başlığı”Zararlı kimyasal maddeler:” iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 10 uncu maddesiyle metne işlendiği şekilde değiştirilmiştir. Bu maddede öngörülen zorunlu malî sorumluluk sigortası, malî yeterliliklerine göre, Hazine Müsteşarlığınca belirlenen sigorta şirketleri tarafından ya da bağlı olduğu Bakanın onayı ile Hazine Müsteşarlığınca çıkarılacak bir yönetmelikle oluşturulacak bir havuz tarafından temin edilir. Havuzun yönetim ve işleyişi ile ilgili usûl ve esaslar da aynı yönetmelikle belirlenir. Havuz, sigorta ve/veya reasürans havuzu şeklinde oluşturulur. Kamu adına havuzda belirli bir payın korunmasına karar verilmesi hususunda Hazine Müsteşarlığının bağlı bulunduğu Bakan yetkilidir. Havuzun başlangıç giderleri için geri ödenmek üzere Hazine Müsteşarlığı bütçesinden avans kullandırılabilir. Havuzun yükümlülükleri; prim gelirleri ve bunların getirileri, piyasalardan sağlayacağı reasürans ve benzeri korumalar ve ödeme gücüyle sınırlıdır. Bakanlık, Hazine Müsteşarlığının uygun görüşünü almak kaydıyla, tehlikeli kimyasallar ve tehlikeli atıklarla ilgili faaliyetlerde bulunanların malî sorumluluk sigortası yaptırma zorunluluğunu, bu sigortaya ilişkin genel şartlar ile tarife ve talimatların yürürlüğe girmesinden itibaren en çok bir yıl ertelemeye yetkilidir. Her bir sorumlu tarafından yaptırılacak malî sorumluluk sigortasına ilişkin sigorta genel şartları Hazine Müsteşarlığınca onaylanır. Malî sorumluluk sigortası tarife ve talimatları Hazine Müsteşarlığının bağlı olduğu Bakan tarafından tespit edilir. Hazine Müsteşarlığının bağlı olduğu Bakan tarifeyi serbest bırakmaya yetkilidir. Gürültü: Madde 14 – (Değişik: 26/4/2006 – 5491/11 md.) Kişilerin huzur ve sükununu, beden ve ruh sağlığını bozacak şekilde ilgili yönetmeliklerle belirlenen standartlar üzerinde gürültü ve titreşim oluşturulması yasaktır. Ulaşım araçları, şantiye, fabrika, atölye, işyeri, eğlence yeri, hizmet binaları ve konutlardan kaynaklanan gürültü ve titreşimin yönetmeliklerle belirlenen standartlara indirilmesi için faaliyet sahipleri tarafından gerekli tedbirler alınır. Faaliyetlerin durdurulması: Madde 15 – (Değişik: 26/4/2006 – 5491/12 md.) Bu Kanun ve bu Kanun uyarınca yayımlanan yönetmeliklere aykırı davrananlara söz konusu aykırı faaliyeti düzeltmek üzere Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından bir defaya mahsus olmak üzere esasları yönetmelikle belirlenen ve bir yılı aşmamak üzere süre verilebilir. Faaliyet; süre verilmemesi halinde derhal, süre verilmesi durumunda, bu süre sonunda aykırılık düzeltilmez ise Bakanlıkça ya da 12 nci maddenin birinci fıkrası uyarınca denetim yetkisinin devredildiği kurum ve merciler tarafından kısmen veya tamamen, süreli veya süresiz olarak durdurulur. Çevre ve insan sağlığı yönünden tehlike yaratan faaliyetler süre verilmeksizin durdurulur. Çevresel Etki Değerlendirmesi incelemesi yapılmaksızın başlanan faaliyetler Bakanlıkça, proje tanıtım dosyası hazırlanmaksızın başlanan faaliyetler ise mahallin en büyük mülkî amiri tarafından süre verilmeksizin durdurulur. Süre verilmesi ve faaliyetin durdurulması, bu Kanunda öngörülen cezaların uygulanmasına engel teşkil etmez. Tehlikeli hallerde faaliyetin durdurulması: Madde 16 – (Mülga: 26/4/2006 – 5491/24 md.) DÖRDÜNCÜ BÖLÜM (1) Çevre Kirliliğini Önleme Fonu Fonun kurulması ve fondan yararlanma: Madde 17 – (Mülga: 21/2/2001 - 4629/6 md.) Çevre katkı payı alınması, diğer gelirler ve bütçe ödenekleri(2) Madde 18 – (Mülga: 21/2/2001 - 4629/6 md.; Yeniden düzenleme: 26/4/2006-5491/13 md.) Çevre kirliliğinin önlenmesi, çevrenin iyileştirilmesi ve çevre ile ilgili yatırımların desteklenmesi amacıyla; a) İthaline izin verilen kontrole tâbi yakıt ve atıkların CIF bedelinin yüzde biri ile hurdaların CIF bedelinin binde beşi oranında alınacak miktar, b) Büyükşehir belediyeleri su ve kanalizasyon idarelerince tahsil edilen su ve kullanılmış suları uzaklaştırma bedelinin yüzde biri, çevre katkı payı olarak tahsil edilir. Tahsil edilen bu tutarlar, ilgililerce en geç ertesi ayın onbeşine kadar ilgili mal saymanlıkları hesaplarına aktarılır ve bütçeye gelir kaydedilir. Ayrıca, yurt içi ve yurt dışından temin edilecek her türlü hibe, yardım ve bağışlar ile kredi anapara geri dönüşleri ve kredi faizleri de tahsil edilerek, Çevre ve Orman Bakanlığı Merkez Saymanlık Müdürlüğü hesabına yatırılır ve bütçeye gelir kaydedilir. Bu maddede sayılan gelirlerin tahsilatında 6183 sayılı Amme Alacaklarının Tahsil Usulü Hakkında Kanun hükümleri uygulanır. Bakanlar Kurulu (a) ve (b) bentlerinde yer alan oranları ayrı ayrı veya topluca sıfıra kadar indirmeye veya kanunî oranına kadar yükseltmeye yetkilidir. Atıksu arıtımı, atık bertarafı ve katı atık geri kazanım tesislerinin gözetim, fizibilite, etüt, proje ve inşaat işlerinin kredi veya yardım suretiyle desteklenmesi ile çevre düzeni plânlarının yapımı, hava, su ve toprak kalitesinin ölçüm ve izleme ağının oluşturulması, gürültünün önlenmesi ile ilgili etüt ve projelerin desteklenmesi, acil müdahale plânlarının hazırlanması, Çevresel Etki Değerlendirmesi faaliyetleri, havza koruma plânı çalışmaları, biyolojik çeşitliliğin korunması, çölleşme ve iklim değişikliği ile mücadele çalışmaları, stratejik çevresel değerlendirme, nesli tehlikede olan bitki ve hayvan türleri ile yaşama ortamlarının korunması, uluslararası sözleşmelerden kaynaklanan yükümlülüklerin karşılanması, çevre eğitimi ve yayını ile ilgili faaliyetler ve ihtisas komisyonları için yapılan harcamalar ile çevre kirliliğinin giderilmesi çalışmaları için Bakanlık bütçesine, yılı bütçe gelirleri içerisinde tahmin edilen yukarıdaki gelirler karşılığı ödenek öngörülür. Yukarıda sayılan gelirlerin tahsili ve bütçede öngörülen ödeneklerin kullanımı ile ilgili usûl ve esaslar, Maliye Bakanlığının uygun görüşü üzerine Bakanlıkça çıkarılacak yönetmelikle belirlenir. Fonun kullanılması: Madde 19 – (Mülga: 21/2/2001 - 4629/6 md.) –––––––––––––––––––– (1)“Dördüncü Bölüm” başlığı 21/2/2001 tarih ve 4629 sayılı Kanunun 6 ncı maddesiyle yürürlükten kaldırılmıştır. (2) Bu madde başlığı "Fonun gelirleri" iken, 26/4/2006 tarihli ve 5491 sayılı Kanunun 13 üncü maddesiyle metne işlendiği şekilde değiştirilmiştir.

http://www.biyologlar.com/cevre-kanunu-bolum-1

SÖLENTERLER

Vücutlarının merkezinde bir sindirim boşluğu bulunur. Vücutları iki tabakadan oluşmuştur. Dış hücre tabakasında yakıcı kapsüller vardır. Bu kapsüller canlıyı düşmanlarına karşı korur. Hayvanlar dünyasının ilk gerçek sinir hücreleri sölenterlerde bulunur. Deniz anası, hidra ve mercanlar sölenterlerdendir. MERCANLAR: Knidlilerin mercanlar üst sınıfına bağlı olan, özellikle tropikal denizlerde her zaman bir yere bağlanarak yaşayan ve iskeleti kireçtaşından oluşan hayvan. Kırmızı mercan üstünde, poliplerin yerlerini belirleyen küçük şişkinliklerin bulunduğu çok dallanmış lal rengi “küçük çalı” görünümündedir. Çiçek gibi açabilen poliplerin beyaz rengi, kırmızı renkli polipöbeği üstünde belirgin bir biçimde ayırt edilir. Bu tür bir ortocorallia olduğu için her polipin küçük çıkıntılarla örtülü sekiz dokunacı vardır. Söz konusu polipler, bir çeşit jelatinsi tabaka olan mezoglea içine kök salarlar. Mezoglea, iğnecik olarak adlandırılan kaynaşmış parçalardan oluşmuş kireçtaşından (kalker) bir eksen iskeletin üstünü kaplar: Bu iskelet kuyumculukta kullanılır. Polipöbeği, polipleri birbirine bağlayan ve besin dğimşimlerinin sağlayan kanallar nedeniyle derin çizgili bir görünüm almıştır. Kırmızı mercan özellikle 45 ve 90 metre derinlikler arasında yaşar; Octocorallia sınıfı, daha birçok önemli tipleri kapsar. Gorgonlarda renk daha az canlıdır ve eksen iskeleti kireçten daha çok boynuzsu yapıdadır. Kolonileri tek bir düzlem üstünde yassılaşmıştır ve dalları aralarında birleşebilen “yelpazeler” oluştururlar. Alkyone’de sert bir iskelet bulunmaz, kireçli olan iğnecikleri yalın bir biçimde mezokleanın içinde dağılmıştır. Kolonileri parmak biçimindedir. Sarı ya da portakal rengi olan bu koloniler özellikle deniz mağaralarının çeperlerini süslerler. Parerythropodium cinsinden bir Alkyone ölü bir gorgonun üstüne tutunarak onun biçimini alır. Hexacorallia dan olan madreporlar sürekli olarak mercan diye adlandırırlar. Bunların çoğu, kireçli bir dış iskeleti olan ve koloni halinde yaşayan hayvanlardır, sıcak ve berrak denizlerde gelişen bu mercanlar, biyoloji ve jeoloji açısından büyük önem taşıyan mercan resiflerini oluştururlar. Mercan Resifleri: Deniz düzeyinde çoğalıp yayılan mercan ve öbür deniz organizmaları yığınları olan mercan resifleri özellikle Büyük Okyanus’ta ve Hint Okyanusu’nda yaşarlar ve değişik görünümlerde olurlar. Bir resif, kıyıya yapışarak oluştuğunda kıyı resifi adını alır; ayrıca kıyıya paralel olarak ve belli bir uzaklıkta gelişen resifler de vardır (set resifi). Bunun en belirgin örneği, Avustralya açıklarındaki Büyük Set’tir. Yaşayan organizmalar tarafından oluşturulmuş en katkısız resiflerini mercan adasıdır (atom); bu, açık denizde yer alan dairesel biçimde ve suyun yüzüne çıkmış bölümünün içinde bir deniz gölcüğü (logon) bulunan çok basık bir adadır. Resiflerin oluşumuna karışan organizmalar çeşitlidir. Bunlar arasında önce fazla kireçleşmiş iskeleti olan madreporlar gelir, ama suyosunları ve yumuşakçalar da vardır. Mercanlar çok hareketli bir suda etkili bir biçimde yaşayamadıkları için bunların dayanaklarını suyosunları oluşturur. Büyük boy yassısolungaçlılar olan Tiridacna’lar resiflerin oluşumuna katılırlar. Knidliler dalının serbest yaşayan türü. Hemen hemen bütün medüzler denizde yaşarlar, ama seyrek olarak tatlı suda yaşayan türleri de vardır. Denizde serbest olarak yüzen ve çevresinden dalayıcı dokunaçlar çıkan çan biçimindeki jelatinsi medüzlere halk dilinde denizanası adı verilir. Bir medüz, şemsiye adı verilen ters dönmüş çanak biçimindeki bir bölümle, bunun alt yüzünün merkezine tutunmuş ağız borusu adı verilen dikey bir eksenden oluşur. Çevresine dokunaçların bağlandığı şemsiyedeki kasların kasılması, hayvanın ileriye doğru fırlayarak hareket etmesini sağlar. Medüzün çevresinde yer alan duyu organları bir sinir ağıyla bağlantılıdır. Ağız borusunun tabanında bulunan ağız, ışınsal kanallara bölünmüş karmaşık bir sindirim boşluğuna açılır. Çoğunlukla 4 tane olan bu ışınsal kanallar cinsellik bezlerini taşırlar. Suyun içindeki küçük hayvansal organizmalarla beslenen medüzlerin bedenlerinin büyük bir bölümü (%99’a kadar ) sudan oluşur. Çok büyük boylara erişenleri vardır: Sözgelimi, Cyanea capinnata’nın çapı 3m, dokunaçlarıysa 4m’dir. Medüzlerin üstderilerindeki yakıcı hücre ya da yakıcı kapsüllerin neden olduğu “dalama” öldürücü olabilir. Dokunaçlar insan bedenine deydikleri yerlerde ağrılı tahrişlere yol açarlar.

http://www.biyologlar.com/solenterler

Mantar Hastaliklarinda Epidemiyoloji

Giris; Mantar infeksiyonlarinin çikis, yayilis ve bunlari etkileyen faktörlerinin saptanmasi, özellikle, bulasma ve yayilma yönünden, kisa bir süre içinde önlemlerin alinmasi bakimlarindan deger tasimaktadir. Hastaligin kaynagini bulmak, etkeni izole ve identifiye etmek sagaltima erken baslamak ve infeksiyonu, etrafa yayilmadan söndürmek yönünden çok büyük yararlar da saglar. Mantar hastaliklari, insanlar ve hayvanlar arasinda, yeryüzünde çok yaygin olarak bulunurlar. Ancak, mantar infeksiyonlarinin sporadik karakterde ve belli yörelerde lokalize olmalari ve yavas gelismeleri gibi nedenler, bunlarin epidemik hale gelmesini engellemektedir. Buna, mantarlarin bulasma tarzlarinin da katkisi fazladir. Ayrica, sistemik infeksiyonlara neden olan mantarlardan bazilari bir sahistan digerine bulasma yetenegine sahip degildir. Bu durum da, yayilma ve bulasmada yer alan önemli faktörü ortadan kaldirmakta, ve bulasma zincirini kirmaktadir. Mantarlarin bazilari, hastalik olusturmayan bir karaktere sahiptirler. Bunlar dogada toprakta insan ve hayvanlarin solunum ve sindirim sistemlerinde, deri ve mukozalarinda, gübreler de (memeliler kanatli ve yarasa), barinaklarinda çürümüs yapraklar, odunlar, ot, saman, yem, gidalarda ayrica mantar sporlari havada oldukça fazla bulunurlar. Bu nedenle toprak, mantarlar için çok iyi bir rezervuar alistirmakta ve kusagindaki insan ve hayvanlara, özellikle, solunum sisteminden bulasmaktadirlar. Mantar sporlari, laboratuvarlara, toprak, toz ve gönderilen muayene materyalleri ile tasinir. Mantarlarin çogu, uygun kosullar olustugunda insan ve hayvanlara bulastigindan ve hastalik yaptigindan bir kontaminant özelligi tasimaktadir. Mantarlar, insan ve hayvanlarda baslica iki kategoriye ayrilmaktadir. Bunlardan birincisi, mantarlarin bizzat kendilerinin vücutta üreyerek infeksiyon (mikozes) olusturmalari ve digeri de, üzerinde üredikleri maddelerde (substratlarda) sentezledikleri toksinlerin (mikotoksinler) sindirim sisteminden alinmasi sonu gelisen mitotoksikozislerdir. Mikotik infeksiyonlar yerlestikleri yere göre 3 gruba ayrilirlar. Bunlarda, Kutan mikozesler, subkutan mikozesler ve sistemik mikozesler olarak adlandirilirlar. 02. Kutan Mikozeslerin Epidemiyolojisi Kutan mikozeslere (Dormatomikozis, dermatofitozis) yol açan mantarlar 3 cins içinde bulunmaktadir. Bunlarda, 1) Trikofiton cinsi, 2) Mikrosporum cinsi ve 3) Epidermofiton cisimleridir. Bu mantar ve sporlari deri, saç, tüy, kil, deri ve tirnaklarda lokalize olurlar. Bir kisma mantar hastaliklari hayvandan hayvana ve insana veya insandan insana bulasabilirler. Bu grup içindeki mantarlar, kutanöz bir yerlesim gösterdiginden solunum sisteminden bulasmazlar. Hastaligin olusmasinda çevreye ve konakçiya ait bazi predispoze edici faktörlerini de önemli rolleri bulunmaktadir. Insan ve hayvanlarda dermatomikozeslere neden olan mantarlar (dermatofitler) origin ve ekolojilerine göre 3 grupta incelenmektedirler. 1- Geofilik dermatofitler : Bazi dermatofitler, topraga adapte olmuslardir, burada yasar, gelisir ve çogalirlar. Bunlar, genellikle, saprofitik bir yasantiya sahiptirler. Böyle mantarlarin rezervuari topraktir. Çok nadiren, insan ve hayvanlardaki mantar lezyonlarindan izole edilmislerdir. Geofilik dermatofitler arasinda, Trichophyton terrestre tam bir geofilik olmasina karsin, Keratinomyces ajelloi, Microsporum cookei, M. gypseum, M. nanum gibi bazi dermatofitler de insan veya hayvanlardan izole edilmislerdir. 2- Zoofilik dermatofitler : Bu gruba ait dermotofitler genellikle hayvanlarda hastalik olusturur ve arasira da insanlara bulasabilirler. Böyle dermatofitler arasinda, Microsporum canis, M. distortum, Trichcophyton gallinae, T. simii, M. erinacei, vs. vardir. Bazi zoofilik mantarlarin yasam çemberleri asagida gösterilmistir. M. canis ve T. verrucosum ’un yasam çemberi yandaki sekilde gösterilmektedir. 3- Antropofilik dermatofitler : Bu tür dermatofitler genellikle insanlarda hastalik olustururlar ve kaynaklari da insanlardir. Ancak, ara sira hayvanlarda da infeksiyonlar meydana getirebilirler. Antropofilik dermatofitler arasinda T. audouinii, T. concentricum, T. ferrugineum, T. gourvilii, E. floccosum, T. megninii, T. rubrum, T. schoenleinii, T. tonsurans, T. violaceum, T. yaoundei bulunmaktadir. Dermatofitler, insan veya hayvan vücutlarinda bulunduklari zaman (parazitlik dönem) artrospor olusturmalarina karsin, saprofitik yasantida (toprakta, kültürlerde) ise artrospor, klamido spor, makrokonidia, mikrokonidia ve askopor meydana getirmektedirler. Parazitik dönemde tesekkül eden artrosporlar bir konakçidan digerini ve bazen de topragi kontamine edebilirler. Toprakta saprofitik perfekt ve/veya imperfekt döneme geçerler. Toprak, genellikle, birçok mantarin ve sporlarin bulundugu yer rezervuar olmasi bakimindan önemlidir. Bazi önemli dermatofitlerin ekolojilerine göre siralanmasi asagida gösterilmistir. I- Antropofilik dermatofitler Epidermophyton floccosum Microsporum audouinii Microsporum distortum Microsporum ferrugineum Trichophyton concentricum Trichophyton gourvilli Trichophyton megninii Trichophyton mentagrophytes (Zooantropofilik) Trichophyton rubrum Trichophyton schoenleinii Trichophyton soudanese Trichophyton tonsurans Trichophyton violaceum Trichophyton yaoundei II- Zoofilik dermatofitler Microsporum canis Microsporum nanum Microsporum vanbreuseghemii Microsporum simii Trichophyton equinum Trichophyton gallinae Trichophyton mentagrophytes III-Zooantropofilik dermatofitler M. canis T. mentagrophytes T. verrucosum IV- Geofilik dermatofitler Keratinomyces ajelloi Microsporum cookei Microsporum gypseum Trichophyton terrestre 03. Subkutan Mikozeslerin Epidemiyolojisi Subkutan infeksiyonlara yol açan Rhinosporidium seeberi 'in kültürü yapilamadigi için deneysel infeksiyonlar da olusturulamadigindan insan ve hayvanlara bulasma tarzlari tam açikliga kavusturulamamistir. Ancak, lezyonlarin burunda yerlesmesi, infeksiyonun solunum yolu ile bulasabilecegi süphesini uyandirmaktadir. Sporotrikozise neden olan Sporotrichum schenckii, dogada toprak, su, gübre, çürümüs bitkilerde, odunlarda saglikli ratlarin agzinda ve gastrointestinal sistemleri de bulunur. Vücuda derideki porantrelerden olmaktadir. Bir hayvandan digerine bulasmaz. 04. Sistemik Mikozeslerin EpidemiyolojisiHata! Yer isareti tanimlanmamis. Bu mantarlarda da Toprak, çürümüs yapraklar, odunlar, gübreler, barinaklar, yarasa gübreleri, yiyecekler dane yemler, vs. esas rezervuari olusturur. Buralarda üreyen mantarlarin sporlari soluk havani ile kolayca ulasabilir. Sistemik infeksiyonlar arasinda, Aspergillozis, Blastomikozis, Histoplasmozis, Kandidiazis (moniliazis), Koksidioidomikozis, Kriptokokkozis, Nokardiozis bulunmaktadir. Bunlar içinde tehlikeli olan infeksiyonlar (Koksidioidomikozis, kriptokokkozis, vs) bulunmaktadir. Prof. Dr. Mustafa Arda

http://www.biyologlar.com/mantar-hastaliklarinda-epidemiyoloji

Cumhuriyet'in Başlangıç Döneminde Patoloji

Prof.Dr. Hamdi Suat Aknar (1873-1936) (Soyadı kanunundan sonra Aknar) Tıp Fakültesi'nde patoloji kürsüsünü kuran, modern patoloji eğitimini temellerini atan, gerektiğinde cephede hekimlik yapan, gerektiğinde laboratuvarda o döneme göre son derece ileri araştırmalar yapan ve deneysel karsinogenez (Kanser gelişimi) konusunda çalışmalarıyla uluslararası ün kazanan bir Türk hekimidir. Tıbbiyeyi bitirdikten sonra (1899), Almanya'ya gönderilmiş, döneminin önde gelen tıp bilim adamları ile çalışmış, çok değerli araştırmalar yapmıştır. Patolojide Alman okulunu öğrenen Hamdi Suat, 1904'te İstanbul'a dönmüş ve Gülhane'nin patolojik anatomi hocalığına atanmıştır. 1909 yılında Haydarpaşa'da askeri ve mülki tıbbiyelerin birleştirilmesiyle oluşturulan Darülfünun Tıp Fakültesi Patolojik Anatomi Hocalığına getirilmiş, bu görevi 1933 Reformu'na kadar sürdürmüştür. Hamdi Suat, kendisinden önce daha çok teorik derslerden ibaret olan Patoloji'yi uygulama alanına sokmuştur. Patoloji laboratuarını kurmak ve daha sonra geliştirmek için çalışmış, eğitim sistemini değiştirerek pratik uygulamalara ve deneysel araştırmalara büyük önem vermiştir. Hamdi Suat çok sayıda araştırma ve inceleme yapmıştır. Almanca ve Fransızca yayınlanan 40 makalesi, ayrıca 5 de Türkçe makalesi vardır. Özellikle veba, deri hastalıkları, bitki ve hayvanlarda tümör gelişimi üzerine çalışmalar yapmıştır. Öğrenciler için Genel Patoloji (Teşrih-i Marazi-i Umumi, 1914), Otopsi ve Adli Tıpta Önemi (Fethi Meyyit ve Tıbbı Adlide Ehemmiyeti, 1921) adlı ders kitaplarını yazmıştır. Bu kitapların 1929 ve 1930'daki 4. baskılarını latin harfleri ile bastırarak, kitaplarını latin harfleri ile yayınlayan ilk üniversite hocası olmuştur. Ayrıca Hamdi Hoca kürsüsüne ilk kez kadın asistan doktoru kabul eden üniversite hocasıdır. Almanya'da tıp öğrenimi gören Dr. Semiramis Rıfat Tezel 'i ihtisasını yapmak üzere kürsüye kabul etmiştir. Kendi adıyla anılan "Hamdi Erili" içinde uzun yıllar bozulmadan ve renk değişikliğine uğramadan saklanabilen doku ve organlardan oluşan 1800 olguluk büyük bir patoloji müzesi kurmuştur. İlk Patoloji kürsüsünü Gülhane Askeri Hastanesi'nde 1904'te kurmuş, otopsi ve mikroskopiye dayalı ilk Patoloji eğitimini 1907'de başlatmıştır. Birinci Dünya Savaşı sırasında tifüs salgını üzerine araştırmalar yapmış ve ilk kez tifüs aşısı uygulamasını gerçekleştirmiştir. O dönemde ülke sağlık ortamının en önemli konularını ele alan Milli Tıp Kongresinin daha üçüncüsünde kanserin ana gündem olmasını sağlamıştır. Kanserin günümüzde kazandığı önemi neredeyse yetmiş yıl öncesinden görmüş ve bilim insanları kadar ulusal sağlık politikalarını belirleyenlerin ilgisini de çekmeyi başarmıştır. Kanser Araştırma ve Savaş Kurumu'nun öncülü sayılan "Kanserle Mücadele ve Taharri Cemiyeti" 1933'te Hamdi Suat Aknar'ın girişimleri ile kurulmuştur. Hamdi Suat Aknar, döneminin önde gelen patologları arasında saygın bir bilim adamı olarak yer almıştır. Alman Patoloji Cemiyetinin ilk Türk üyesi olmuş, çeşitli uluslararası toplantılarda ülkemizi başarıyla temsil etmiştir. 1930 yılında Bakü'de toplanan Rus Tıp Kongresi, ulaşımdaki zorluklar nedeniyle Hamdi Suat geciktiği için açılışını ertelemiştir. "Acta Cancrologica" dergisinin yayın kuruluna seçilmiştir. Türk ve dünya tıbbına büyük katkıları olmuş, çok değerli doktorlar, bilim adamları yetiştirmiştir. Bunlar arasında Kamile Şevki (Mutlu) ve Perihan Çambel, Hamdi Suat Okulu'nun temsilcileri olarak önemli hizmetler vermişlerdir. Ölümünden çok uzun bir dönem sonra 1974'te TÜBİTAK hizmet ödülüne layık bulunmuştur. Modern Patolojinin kurucusu olan Hamdi Suat Aknar 1933 de üniversite reformunun getirdiği ve uzun yıllar eleştiri konusu olan bir uygulama ile Darülfünun'dan uzaklaştırılmış, Sağlık Bakanı Dr. Refik Saydam'ın müdahalesiyle Vakıf Gureba Hastanesi'nde çalışmaya devam etmiş, 13 Mart 1936'da tüberkülozdan ölmüştür. Prof.Dr. Hamdi Suat Aknar (1873-1936) (Soyadı kanunundan sonra Aknar) Tıp Fakültesi'nde patoloji kürsüsünü kuran, modern patoloji eğitimini temellerini atan, gerektiğinde cephede hekimlik yapan, gerektiğinde laboratuvarda o döneme göre son derece ileri araştırmalar yapan ve deneysel karsinogenez (Kanser gelişimi) konusunda çalışmalarıyla uluslararası ün kazanan bir Türk hekimidir. Tıbbiyeyi bitirdikten sonra (1899), Almanya'ya gönderilmiş, döneminin önde gelen tıp bilim adamları ile çalışmış, çok değerli araştırmalar yapmıştır. Patolojide Alman okulunu öğrenen Hamdi Suat, 1904'te İstanbul'a dönmüş ve Gülhane'nin patolojik anatomi hocalığına atanmıştır. 1909 yılında Haydarpaşa'da askeri ve mülki tıbbiyelerin birleştirilmesiyle oluşturulan Darülfünun Tıp Fakültesi Patolojik Anatomi Hocalığına getirilmiş, bu görevi 1933 Reformu'na kadar sürdürmüştür. Hamdi Suat, kendisinden önce daha çok teorik derslerden ibaret olan Patoloji'yi uygulama alanına sokmuştur. Patoloji laboratuarını kurmak ve daha sonra geliştirmek için çalışmış, eğitim sistemini değiştirerek pratik uygulamalara ve deneysel araştırmalara büyük önem vermiştir. Hamdi Suat çok sayıda araştırma ve inceleme yapmıştır. Almanca ve Fransızca yayınlanan 40 makalesi, ayrıca 5 de Türkçe makalesi vardır. Özellikle veba, deri hastalıkları, bitki ve hayvanlarda tümör gelişimi üzerine çalışmalar yapmıştır. Öğrenciler için Genel Patoloji (Teşrih-i Marazi-i Umumi, 1914), Otopsi ve Adli Tıpta Önemi (Fethi Meyyit ve Tıbbı Adlide Ehemmiyeti, 1921) adlı ders kitaplarını yazmıştır. Bu kitapların 1929 ve 1930'daki 4. baskılarını latin harfleri ile bastırarak, kitaplarını latin harfleri ile yayınlayan ilk üniversite hocası olmuştur. Ayrıca Hamdi Hoca kürsüsüne ilk kez kadın asistan doktoru kabul eden üniversite hocasıdır. Almanya'da tıp öğrenimi gören Dr. Semiramis Rıfat Tezel 'i ihtisasını yapmak üzere kürsüye kabul etmiştir. Kendi adıyla anılan "Hamdi Erili" içinde uzun yıllar bozulmadan ve renk değişikliğine uğramadan saklanabilen doku ve organlardan oluşan 1800 olguluk büyük bir patoloji müzesi kurmuştur. İlk Patoloji kürsüsünü Gülhane Askeri Hastanesi'nde 1904'te kurmuş, otopsi ve mikroskopiye dayalı ilk Patoloji eğitimini 1907'de başlatmıştır. Birinci Dünya Savaşı sırasında tifüs salgını üzerine araştırmalar yapmış ve ilk kez tifüs aşısı uygulamasını gerçekleştirmiştir. O dönemde ülke sağlık ortamının en önemli konularını ele alan Milli Tıp Kongresinin daha üçüncüsünde kanserin ana gündem olmasını sağlamıştır. Kanserin günümüzde kazandığı önemi neredeyse yetmiş yıl öncesinden görmüş ve bilim insanları kadar ulusal sağlık politikalarını belirleyenlerin ilgisini de çekmeyi başarmıştır. Kanser Araştırma ve Savaş Kurumu'nun öncülü sayılan "Kanserle Mücadele ve Taharri Cemiyeti" 1933'te Hamdi Suat Aknar'ın girişimleri ile kurulmuştur. Hamdi Suat Aknar, döneminin önde gelen patologları arasında saygın bir bilim adamı olarak yer almıştır. Alman Patoloji Cemiyetinin ilk Türk üyesi olmuş, çeşitli uluslararası toplantılarda ülkemizi başarıyla temsil etmiştir. 1930 yılında Bakü'de toplanan Rus Tıp Kongresi, ulaşımdaki zorluklar nedeniyle Hamdi Suat geciktiği için açılışını ertelemiştir. "Acta Cancrologica" dergisinin yayın kuruluna seçilmiştir. Türk ve dünya tıbbına büyük katkıları olmuş, çok değerli doktorlar, bilim adamları yetiştirmiştir. Bunlar arasında Kamile Şevki (Mutlu) ve Perihan Çambel, Hamdi Suat Okulu'nun temsilcileri olarak önemli hizmetler vermişlerdir. Ölümünden çok uzun bir dönem sonra 1974'te TÜBİTAK hizmet ödülüne layık bulunmuştur. Modern Patolojinin kurucusu olan Hamdi Suat Aknar 1933 de üniversite reformunun getirdiği ve uzun yıllar eleştiri konusu olan bir uygulama ile Darülfünun'dan uzaklaştırılmış, Sağlık Bakanı Dr. Refik Saydam'ın müdahalesiyle Vakıf Gureba Hastanesi'nde çalışmaya devam etmiş, 13 Mart 1936'da tüberkülozdan ölmüştür.

http://www.biyologlar.com/cumhuriyetin-baslangic-doneminde-patoloji

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

23. Ulusal Biyoloji Kongresi

23. Ulusal Biyoloji Kongresi

23. Ulusal Biyoloji Kongresi, 5-9 Eylül 2016 tarihlerinde sizlerin katılımıyla Gaziantep’ te düzenlenecektir.

http://www.biyologlar.com/23-ulusal-biyoloji-kongresi

Evrim Konusunda ilk Düşünceler

Dini Düşünceler: Düşünebilen insanin, dogadaki çeşitlenmeyi, canilar arasindaki benzerliklerin ve farkliliklarin derecesini gözledigi an evrim konusunda ilk düşünceler başlamiş demektir. İlk yaygın düşünceler, Asur ve Babil yazıtlarında; daha sonra bunlardan köken alan Ortadoğu kökenli dinlerde görülmüştür. Hemen hepsinde insanın özel olarak yaratıldığı ve evrende özel bir yere sahip olduğu vurgulanmış; türlerin değişmezliğine ve sabitliğine inanılmış ve diğer canlılar konusunda herhangi bir yoruma yer verilmemiştir. Bununla beraber Kuran’da yaratılışın kademeli olduğu vurgulanmıştır. Yalnız bir Türk din adamı, astronomu ve filozofu olan Hasankale’li İbrahim Hakkı(1703-1780), insanların değişik bitkilerden ve hayvanlardan köken aldığını belirtmiştir. 17. yüzyıla kadar, piskopos Ussher’in ve diğerlerinin savunduğu ‘türlerin olduğu gibi yaratıldığı ve değişmeden kaldığı fikri’ yani ‘Genesis’ geniş halk kitleleri tarafından benimsendi ve etkisini günümüze kadar sürdürdü. Ussher’e göre dünya İÖ 4040 yılında, Ekim ayının 4'ünde sabah saat 9.00'da yaratılmıştı. Bu düşünce Ussher tarafından İncil’e eklenmiştir. Daha sonra yine Hıristiyan din adamları olan Augustin (İS 354-430) ve Aquinas (İS 1225-1274) tarafından canlıların basit olarak tanrı tarafından yaratıldığı ve daha sonra değişerek çeşitlendiği savunulmuştu. Özellikle bizim toplumumuzda, birçok dini belgeden de anlaşilacagi gibi, Adem’in çamurdan yaratildigi, Havva’nin Adem’in kaburga kemiginden oluştugu ileri sürülerek, yaratilişin ilk olark inorganik kökenli oldugu ve daha sonra eşeylerin ortaya çiktigi savunulmuştur. Yunanlılardaki ve Ortaçağdaki Düşünceler: Yunan filozoflarından Empedocles, İÖ 500 yıllarında bitkilerin tomurcuklanma ile çeşitli hayvan kısımlarını, bu kısımların da birleşmesiyle hayvanların oluştuğunu savunmuştu. Thales(İÖ 624-548), Ege Denizindeki canlıları çalışmış ve denizlerin canlılığın anası olduğunu ileri sürmüştür. Aristo (İÖ 384-322) bitkiler ve hayvanlar konusunda oldukça geniş bilgiye sahipti. Onların doğruya yakın tanımlarını vermiş ve gelişmişliklerine göre sınıflandırmıştır. Canlıların metabiyolojik olarak değişerek birbirlerinden oluştuklarına ve her birinin tanrıların yeryüzündeki ilahi taslakları olduklarına inanmıştır. Daha sonra, canlıların kökenini Der Rerum Natura adlı şiirinde veren Lucretius (İÖ 99-55) u anmadan ortaçağa geçemeyeceğiz. Yeni Çağdaki ve Yakın Çağdaki düşünceler: Rönesans ile canlılar konusundaki bilgilerin, en önemlisi evrim konusundaki düşürnürlerin sayısı artmıştır. Hooke (1635-1703), Ray (1627-1705), Buffon ( 1707-1788) ve Erasmus Darwin (1731-1802) bu devrin en önemli evrimcileridir. Rönesanstan önce de bulunan hayvan kabuklarının, dişlerinin, kemiklerinin ve diğer parçalarının bugünkü canlıların benzer tarafları ve farkları saptanmıştır.Ayrıca yüksek dağların başında bulunan fosillerin, yaşayanlarla olan akrabaliklyarı gözlenmiştir. Bu gözlemlerin ışığı altında, her konuda çalışmış, düşünür ve sanatçı olan Leonardo da Vinci, canlıların tümünün bir defada yaratıldığını ve zamanla bazılarının ortadan kalktığını savunmuştur. Buna karşılık birçok doğa ibilimcisi, canlıların zaman zaman oluştuklarını doğal afetlerle tamamen ortadan kalktıklarını ve yeniden başka şekillerde yaratıldıklarını ileri sürmüştür. Bu şekilde farklı devirlerde 2arklı canlıların yaşaması kolaylıkla açıklanabiliyordu. Her doğal yıkımdan sonra, oluşan canlıların, organizasyon bakımından biraz daha gelişmiş olduklarına inanılıyordu. Bu kurama “Tufan Kuramı” denir. Bu yıkımın yedi defa olduğu varayılmıştır. Cuvier, 1812 yılında, fosiller üzerinde ünlü kitabını yanılayarak fosillerin, kesik, kesik değil, birbirlerinin devamı olacak şekilde olduklarını bilimsel olarak açıklamıştır. 18. yüzyılın sonu ile 19. yüzyılın başlangıcında, üç İngiliz jeoloğun çalışmalarıyla katstrofizm kuramı yerine ‘Uniformizmi’ kuramı getirildi. Hutton 1785'te geçmişte de bugünkü gibi jeolojik kuvvetlerin rol oynadığını, yükselmelerin ve alçalmaların, keza erozyonlaların belki de daha kuvvetli olurak meydene galdiğini ve yüksek dağlarda bulunan fosilli tabakalar ile sediman (katman) tayinlerinin yaılabileceğini buldu. John Playfair’in yapıtı 1802'de yayınlandı. Üçüncü araştırıcı, Charles Lyell, bir çok jeolojik soruna çözüm getirmenin yanısıra, canlıların büyük afetlerle değil, çevre koşullarının uzun sürede etki etmesiyle değiştiğini savundu. Kitabının bir yerinde ‘geçmişteki güçler bugünkünden hiç de çok farklı değildi’ diye yazmıştır. Bu yaklaşım, Nuh Tufanı’nın gerçeküstü olduğunu savunuyordu. Lyell’in fikirleri C.Darwin’i büyük ölçüde etkilemiştir. Lamarck’ın Düşünceleri Organik evrimi konusunda ilk kapsamlı kuram 1809 yılında ‘Philosophie Zoologique’ adlı yapıtıyla, Fransız zooloğu Jean Baptiste Lamarck’a (1774-1829) aittir. Lamarck, zamanının meslektaşları gibi, tüm canlıların, gelişimlerini ve işlevlerini denetleyen bir canlılık gücüyle donatıldığına ve değişen çevre koşullarına karşı bir savaşım gücünün olmadığına inanıyordu. Kitabında, hayvanları, karmıaşıkyıklarına göre düzenlemeye çalışırken, yanlışlığı daha sonra kesin olarak saptanan bir varsayımı ileri sürdü: “ Eğer bir onrgan fazla kullanılıyorsa, o organ gelişmesini sürdürerek, daha etkin bir yapı kazanır”. Bu varsayıma ‘lamarkizm’ denir. Ayrıca canlının yaşamı boyunca kazanmış olduğu herhangi bir özelliğin, gelecek döllere geçtiğine de inanmıştı. Örneğin demircinin oğlunun kol kasları diğerlerine göre daha iyi gelişir. Zürafalırın atası kısa boyunlu olmalıran karşın, yaşadıkları ortamın bir zaman sonra kuraklaşarak, dibi çıplak ve çayırsız ağaçların bulunduğu ortama dönüşmesi sonucu, zürafalar ağaçların yapraklarıyla beslenmek zorunda kaylmışlar ve böylece boyunları dölden döle uzamıştır. Körfarelerin gözlerini, karıncaayısının dişlerini yitirmesini; su kuşlarının perde ayakları kazanmasını bu şekilrde açıklamıştır. Bu üaçıklamalar,kalıtımın yasaları ortaya çıkarılmadan önce, çok iyi bir açıklama şekli olarak benimsendi. Fakat kalıtım konusunda bilgiler gelişince, özellikle Weismann tarafından somatoplazma ile germplazma arasındaki kuramsal farklar bulununca, evrimsel değişmenin, vücut hücrelerinde olmadığı, sadece eşeysel hücrelerdeki kalıtsal materyalin etkisi ile yürütüldüğü anlaşıldı. Böylece Lamarck’ın varsayımı tümüyle geçerliliğini yitirdi. Çünkü bir birey gerçekte belirli ölçüde çevre koşullarına uyum yapar; fakat ölümüyle birlikte bu özellikler de yitirilir. Halbuki her döl uyumunu, doğduğu zaman taşıdığı kalıtım materyalinin izin verdiği ölçüler içerisinde yapabilir ve ancak bu özellikleri gelecek döllere verebilir. Buffon ve Erasmus Darwin de buna benzer fikirler ileri sürmüşler, fakat inandırıcı olamamışlardır. Charles Darwin ve Alfred Wallace’ın Görüşleri Charles Darwin (1809-1882), evrim bilimine iki önemli katkıda bulundu. Birincisi, organik evrim düşüncesini destekleyen zengin bir kanıtlar dizisini toplayarak ve derleyerek bilim dünyasına sundu. İkincisi, evrim mekanizmasının esasını oluşturan ‘Doğal Seçilim’ ya da diğer bir deyimle ‘Doğal Seçim’ kuramının ilkelerini ortaya çıkardı.Evrim Kuramı, bilimsel anlamda 19. yy kuramıdır; ama bu kuram 20. yy’da büyük bir kuram niteliğini aldı. Bu nedenle Darwin’ i biraz daha yakından tanımalıyız: Darwin, 1809'da İngitere’de doğdu. Babas, onun hekim olmasını istiyordu; 16 yaşında Edinburg Üniversitesi’ne gönderdi. Darwin, ilk olarak başladığı hekimlik eğitimini ve daha sonra başladığı hukuk eğitimini sıkıcı bularak her ikisini de bıraktı. Sonunda Cambridge Üniversitesi’ne bağlı Christ Kolejinde teoloji (= dinibilimler) öğrenimi yaptı. Fakat Edinburg’daki arkadaşlarının çoğu jeoloji ve zooloji ile ilgileniyordu. Cambridge’de kırkanatlıları toplayan bir grupla ilişki kurdu. Bu bilim çevresi içerisinde botanikçi John Henslow’ u tanıdı ve onun önerileri ile dünya çevresinde beş sene sürecek bir geziye katılmaya karar verdi. Beagle, 1831 yılında Devonport limanından denize açıldı. Lyell’in kitabını gezisi sırasında okudu ve dünya yüzünün devamlı değiştiğini savunan düşüncesinden çok etkilendi. Gemidekiler harita yaparken, Darwin de sürekli bitki, hayvan, fosil topluyor; jeoljik katmanları inceliyor; sayısız gözlem yapıyor ve dikkatlice notlar alıyordu. Gemi, ilk olarak Güney Amerika’nın doğu sahilleri boyunca güneye inip, daha sonra batı kıyılarından kuzeye doğru yol aldı. Bu arada Arjantin’in Pampas’larında soyu tükenmiş birçok hayvanın fosilini buldu ve yine jelojik aktmanlardaki fosillerin değişimine özellikle dikkat etti. Bu gözlemleriyle, her türün özel yaratıldığına ilişkin düşüncelere olan inancını yitirmeye başladı. Yine insan da dahil, çeşitli bitki ve hayvan türlerinin değişik ortamylara yaptıkları uyumları, bu arada yaşadığı bir deprem olayı ile yeryüzünün nasıl değişebileceğini gözledi. Beagle, 1835 yılında, Güney Amerika kıtasının batı kıyısına yaklaşık 1000 km kadar uzak olar Galapagos adalarına ulaştı. Bu adalarda yaptığı gözlemlerde, büyük bir olasılıkla aynı kökenden gelmiş birçok canlının coğrafik yalıtım nedeniyle, birbirlerinden nasıl farklılaştıklarını ve her canlının bulunduğu ortamdaki koşullara nasıl uyum yaptığını bizzat gözledi. Örneğin ispinoz kuşlarının, dev kaplumbağaların, dev kertenkelelerin, adalara ve her adanın değişik koşulları taşıyan bölgeliren göre çeşitlenmelerini, yapısal uyumlarını, varyasyonlarını ve sonuç olarak uyumsal açılımlarını gördü. Buradaki bitkilerin ve hayvanların hemen hepsi, Amerika kıtasının güney sahillerindeki bitki e hayvan türlerine benzerlik gösteriyor; ama onlardan özellikle uzaklığı oranında farklılaşmalar gösteriyordu. Daha sonra araştirmalarina Pasifik Adalarindan, Yeni Zelanda’da, Avusturalya’da ve Güney Afrika Kiyilarinda devam etti. Tüm bu araştirma süreci içerisinde evrimsel uyumu destekleyecek kanitlari titizlikle topladi.1836 yilinda Ingiltere’ye ulaşti. Darwin, ileri süreceği fikrin yankı uyandıracağını, dolaysıyla yeterince kanıt toplaması gerekeceğini biliyordu. Kanıtlar evrimsel dallanmayı göstermekle birlikte, bunun nasıl olduğunu açıklamaya yetmiyordu. İngiltere’ye varışından itibaren 20 yıl boyunca biyolojinin çeşitli kollarındaki gelişmeleri de dikkatlice inceleyerek, gözlemlerini ve notlarını biraraya getirip doğal seçilim konusundaki düşüncesini ana hatlarıyla hazırladı. 1857 yılında düşüncelerini kabataslak arkadaşlarının görüşüne sundu. Bu sırada kendisi gibi, Malthus’un bilimse serisini okuyarak ve yine sekiz yıl Malaya’da ve Doğu Hindistan’da dört yıl Amazon ormanlarında bitkiler ve hayvanlar üzerinde gözlemler yaparak, bitkilerin ve hayvanların dallanmalarındaki ve yayılışlarındaki özelikleri görmüş ve doğal seçilim ilkesine ulaşmış, bir doğa bilimcisi olan Alfred Russel Wallace’ın hazırlamış olduğu bilimsel kitabın taslağını aldı. Wallace, Darwin’e yazdığı mektupta eğer çalışmasını ilginç bulursa, onu, Linnean Society kurumuna sunmasını diliyordu. Çalışmasının adı “ Orjinal Tipten Belirsiz Olarak Ayrılan Varyetelerin Eğilimi ” idi. Darwin’in yıllarını vererek bulduğu sonuç, yani canlıların yavaş yavaş değişmesine ilişkin görüş, Wallace’ın çalışmalarında yer almaktaydı. Durum, Darwin için üzücüydü. Fakat arkadaşlarının büyük baskısıyla, kendi çalışmasını, Wallace’ınkiyle birlikte basılmak üzere 1 Temmuz 1858'de Linnean Society’ye teslim etti Basılmadan duyulan bu düşünceler 24 Kasım 1859'da “Doğal Seçilim ya da Yaşam Savaşında Başarılı Irkların Korunmasıyla Türlerin Kökeni” kısaltılmış adıyla Türlerin Kökeni yayınlandı. İlk gün kitapların hepsi satıldı. Herkes, organik evrim konusunda yeni düşünceler getiren bu kitabı okumak istiyordu. Özünde organik evrimin benimsenmesi için zemin hazırladı. Çünkü jeolojide, paleontolojide, embriyolojide, karşılaştırmalı anatomide birçok aşama yapılmış ve birden yaratılmanın olanaksızlığı ortaya konmuştu. Darwin, uysal bir adam olduğundan, bir tepki yaratmamak için, eserinin son kısmını tanrısal bir yaratılış fikrini benimsediğini yazarak bitirmişti. Buna rağmen, başta din adamları ve bazı bilim adamları dini inançlara karşı geliniyor diye bu çalışmaya karşı büyük bir tepki başlattılar. Hatta eseriyle Darwin’e çok büyük yardımlarda bulunan Lyell ve gezisi sırasında geminin kaptanlığını yapan Fitzroy , bu karşı akımın öncüleri oldular. Bu arada Huxley, çok etkin bir şekilde Darwin’e destek oldu. Darwin, çalışmalarına devam etti, birinci eserinde değinmediği insanın evrimiyle ilgili düşüncelerini İnsanın Oluşumu ve Eşeye Bağlı Seçilim adlı eseriyle yayımladı. Bu eserde insanın daha önceki inançlarda benimsenen özel yaratılışı ve yeri reddeliyor, diğer memelilerin yapısal ve fizyolojik özelliklerine sahip olduğu ve iyne diğer çcanlılar gibi aynı evrimsel yasalara bağlıolduğu savunuluyordu. Ayrıca eşeyseyl seçmenin, türlerin oluşumundaki önemi belirtiliyordu. Darwin’in “İnsanın Oluşumu ” adlı eseri, başlangıçta birçok tepkiye neden olduysa da, zamanla, biyolojideki yeni gelişmeler ve bulgular, özellikle kalıtım konusundaki bilgilerin birdikmesi, Darwin’in görüşünün ana hatlarıyla doğru olduğunu kanıtlamıştır. Doğal Seçilim Kuramının Ana Hatları (Darwin- Wallace Temellerini atmıştı) Bu kuram, ana hatlarıyla iki gerçeği, üç varsayımı ortaya çıkarmıştır. Gerçekler şunlar: 1. Tüm canlılar, ortamdaki sayılarını koruyacak matematiksel oranların üzerinde çoğalma eğilimindedir. Elemine edilen bireylerle bu fazlalık azaltılır ve popülasyonların dengede kalması sağlanır. Doğal koşullar sabit kaldıkça bu denge korunur. 2. Bir türe ait popülasyondaki bireylerin kalıtsal özelliği birbirinden farklıdır. Yani canlı popülasyonlarınnın hepsi varyasyon gösterir. Darwin ve Wallace, bunun nedenini tam anlayamadılar ve varyasyonların canlıların iç özelliği olduğunu varsaydılar. Bugün bu varyasyonların mutasyonlarla oluştuğu bilinmektedir. Varsayımlar: 1. Ayakta kalan bireylerin sayısı, başlangıçta meydana gelenlerden çok daha az olduğuna göre, ayakta kalabilmek için canlılar arasında karşılıklı, besin, yer vs için, saöaşım, ayrıca sıcaklık, soğukluk, nem vs. gibi doğal koşullara karşı bir mücadele vardır. Bu savaşım ve mücadele bir ölüm kalım kavgasıdır. Gerek besin ve yer gereksinmesi aynı olan canlı türleri arasında ve gerekse normalden daha fazla sayıda bireyle temsil edilen popülasyonlardaki aynı türe bağlı bireyler arasında, yani doymuş popülasyonlarda bir yaşam kavgası vardır. Bu görüş ilk defa Malthus tarafından ortaya atılmıştır’Yaşamak İçin Savaş”. 2. İyi uyum yapacak özellikleri (= varyasyonları) taşıyan bireyler, yaşam kavgasında, bu özellikleri taşıayan bireylere karşı daha etkili bir savaşım gücü göstereceğinden, ayakta kalır, gösteremeylenler ise yok olur. Böylece bulunduğu bireye o koşullara en iyi uyum yapabilecek yeteneği veren özellikler, gelecek döllere kalıtılmış olur. Bu varsayımın anahtar cümleciği “Biyolojik olarak En İyi Uyum Yapan Ayakta Kalır”dır. 3. Bir bölgedeki koşullar digerlerinden farkli oldugundan, özelliklerin seçimi de her bölgede, koşullara göre farkli olur. Çevrede meydana gelecek yeni degişiklikler, tekar yeni uyumlarin meydana gelmesini saglar. Birçok döl boyunca meydana gelecek bu tipp uyumlar, daha dogrusu dogal seçilim, bir zaman sonra, atasindan tamamen degişik yeni bireyler toplulugunun ortaya çikmasini saglar’Uyumsal Açilim’. Farklilaşmanin derecesi, eskiyle yeni popülasyondaki bireyler bir araya getirildiginde çiftleşmeyecek, çiftleşse dahi verimli döller meydana getiremeyecek düzeye ulaşmişsa, artik bu iki popülasyon iki farkli tür olarak degerlendirilir. Bir ata popülsayondaki bir kisim bireyler, taşidiklari varyasyon yetenekleriyle herhangi yeni bir ortama uyum yaparken, diger bir kismi da taşidigi farkli varyasyonlar nedeniyle daha degişik bir ortama uyum yapabilir. Böylece uyumsal açilim ortaya çikar. Bununla beraber, bitkiler ve hayvanlar, yaşam kavgasinda, bulundugu koşullarda, yarari ya da zarari olmayan diger birçok varyasyonu da meydana getirebilir ve onlari daha sonraki döllere aktarabilir. Darwin’in kuramı o karar akla yatkın ve o kadar kuvvetli kanıtlarla desteklendi ki, birçok biyolog onu hemen kabul etti. Daha önceki varsayımlar, yararsız organların ve yapıların neden meydana geldiğini bir türlü açıklığa kavuşturamamıştı.Bugün, türler arasında görülen birçok farkın, yaşam savaşında hiç de önemli olmadığı bilinmektedir.Fakat bu küçük farkları oluşturan genlerdeki herhangibir değişiklik, yaşam savaşında büyük değerleri taşıyan fizyolojik ve yapısal değişikliklerin oluşmasına neden olabilir. Uyumsal etkinliği olmayan birçok özelliği oluşturan genler, kromozomlar içinde yaşamsal öneme sahip özellikleri oluşturan genlerle bağlantı halinde olabilir. Bu durumda bu varyasyonlar elenmeden gelecek döllere aktarılabilir. Bu uyumsal etkinliği olmayan genler, bir popülasyon içerisinde gelecekteki değişikliklerde kullanılmak üzere ya da genetiksel sürüklenmelerde kullanılmak üzere fikse edilmiş olarak bulunur. Evrim Kuramına Bilimsel İtirazlar Belki insanlık tarihinin ilk dönemlerinden beri uygulanmakta olan öğretim ve eğitim yöntemleri, belki dini inançların etkisi, belki de insanın doğal yapısı, insanın yeniliklere karşı itirazcı olmasına neden olmuştur. Bu direniş, en fazla da eksik kanıtlarla desteklenmekte olan Evrim Kuramı’na yapılmıştı ve yapılmaktadır. Özellikle dogmatik düşünceye yatkın olanlar, bu karşı koymada en önemli tarafı oluşturur. Bununla birlikte son zamanlarda, birçok aydın din bilimcisi de olmak üzere, iyi eğitim görmüş toplumların büyük bir kısmı Evrim Kuramı’na sahip çıkmaktadır. Evrim Kuramı’na, Darwin’den beri bilimsel karşı koymalar da olmuştur. Özellikle varyasyonların zamanla popülasyonlardan kaybolacağı inancı yaygındı. Çünkü bir varyasyona sahip bir birey, aynı özellikli bireyle çifleşmediği takdirde, bu varyasyonun o popülasyondan yitirileceği düşünülmüştü. Popülasyon genetiğinde, çekinik özelliklerin, yitirilmeden kalıtıldığı bulununca, itirazların geçerliliği de tümüyle kaybolmuş oldu. Darwin, Pangeneze, yani anadan ve babadan gelen özelliklerin, bir çeşit karışmak suretiyle yavrulara geçtiğine inanarak hataya düşmüşü. Eğer kalıtsal işleyiş böyle olsaydı, iyi özelliklerin yoğunluğu gittikçe azalacaktı ve zamanla kaybolacaktı. Halbuki, bugün, özelliklerin sıvı gibi değil, gen denen kalıtsal birimlerle kalıtıldığı bilinmektedir. İkinci önemli karşıkoyma, bu kadar karmaşık yapıya sahip canlıların, doğal seçimle oluşamayacağıydı. Çünkü bir canlının, hatta bir organın oluşması, çok küçük olasılıkların biraraya gelmesiyle mümkündü. Fakat cınlıların oluşmasından bugünekadar geçen uzun süre ve her bireyde muhtemelen ortaya çıkan küçük değişikliklerin, yani nokta mutasyonların, zamanla gen havuzunda birikmesi, sonuçta büyük değişikliklere neden olabileceği hesaplanınca, bu karşı koymalar da kısmen zayıflamıştır. Üçüncü bir karşikoymaya yanit vermek oldukça zordur. Karmaşik bir organ yarar saglasa da birden bire nasil oluşabilir? Örnegin omurglilarda, gözün bir çok kisimdan meydana geldigi bilinmektedir. Yalniz başina bir kismin, hehangi bir işlevi olamaz. Tümü bir araya geldigi zaman görme olayi saglanabilir. O zaman degişik kisimlarin ya ayni zamanda birden meydana geldigini varsaymak gerekiyor- bu popülasyon genetegi açisindan olanaksizdir- ya da yavaş gelşitigini herhangi bir şekilde açiklamak gerekiyor. Bir parçanin gelişmesinden sonra digerin gelişebilecegini savunmak anlamsizdir; çünkü hepsi birlikte gelişmezse, ilk gelişen kisim, işlevsiz olacagi için körelir ya da artik organ olarak ortadan zamanla kalkar. Bununla birlikte, bu teip organlarin da nokta mutasyonlarin birikmesiyle, ilkelden gelişmişe dogru evrimleştigine ilişkin bazi kanitlar vardir. Evrim Kuram’nda dördünrcü karanlık nokta, fosillerdeki eksikliktir. Örneğin balıklardan amfibilere, amfibilerden sürüngenlere, sürüngenlerden memelilere geçişi gösteren bazı fosiller bulunmakla birlikte(bazıları canlı olarak günümüzde hala yaşamaktadır), tüm ayrıntıyı verebilecek ya da akrabalık ilişkilerini kuşkusuz şekilde aydınlatabilecek, seri halindeki fosil dizileri ne yazık ki bazı gruplarda bulunanamımıştır. Bununla birlikte zamanla bulunan yeni fosiller, Evrim Kuramı’ndaki açıklıkları kapatmaktadır. Anorganik Evrim Bulutsuz bir yaz gecesi gökyüzüne bakan her insan, içinde yaşadigi evrenin nasil oluştugunu, onun sonsuzlugunu, içinde başka canlilarin, belki de düşünebilir canlilarin bulunabilecegini ya da sinirli oldugunu, özellikle o sinirin ötesinde neler olabelecegini, dünyadakilerden başka canli olmadigini, kapatilmiş oldugu evrensel yalnizligi ve karantinayi düşününce irkilir.Bu duygu coşkularimizin kaynagi, inançlarimizin temeli ve çok defa teslimiyetimizin nedeni olmuştur. Ilkçaglardan beri evrenin yapisi üzerinde varsayimlar ileriye sürülmüş ve çok defa da bu görüşler, belirli çevrelerce politik basiki araci olarak kullanilmiştir. Yüzyilimizin oyldukça güvenilir ölçümlerinin ve gözlemlerinin ışığı altında ortaya atılan Anorganik Evrim Kuramı’nı incelemeden, evrenin oluşumu konusundaki düşüncelerin tarihsel gelişimine kısaca bir göz atalım. Gerek ilkçağlarda, gerekse ortaçağda, evrenin merkezinin dünya olduğu ve dünyanın da sabit durduğu savunulmuş, diğer tüm gök cisimlerinin Dünya’nın ektrafını saran evrensel kürenin kabuğu üzerinde çakılı olduğu varsayılmıştır. Bu zarfın ötesi, Tanrısal gök olarak tanımlanmıştır. Bruno’ya kadar hemen tüm görüşler, evrenin sınırlı boyutlar içerisinde olduğu şeklindeydi. İlk -ve ortaçağın değişik bir çok toplumunda tanrı kavramının gök cisimler ile özdeşleştirildiği görülmektedir. Gökyüzünün mekaniği konusunda ilk ciddi gözlemler, Asurd, Babil, Mısır kültürlerinde yapılmış, bazı evrensel ölçümler ve ilkeler bulunmuştur.Fakat yaratılışı konusundaki düşünceler çoğunlukla din adamlarının tekeline bırakılmıştır. İlk defa Giordano Bruno, yıldızların da bizim Güneş sistemimiz gibi, gökte asılı olarak durduğunu ve evrenin sonsuz olduğunu zamanın din adamlarına ve filozoflarına karşı savundu. Çünkü Bruno’ya göre, evren, tanrının kendisiydi ve onu sınırlı düşühmek Tanrı kavramına aykırı düşmekteydi. Düşünüclerinden dolayı 17 Şubat 1600 yılında, Roma’da, halkın gözü önünde yakıldı. Immanuel Kant, Bruno’dan 150 yıl sonra, evreni Tanrının yarattığını savunarak, onun sonsuz büyük olması gerekeceğini, pozitif bir kanıta dayanmadan ileri sürdü. Daha sonra Olbers, gökyüzünün, geceleri neden karanlık olduğunu merak etti. Çünkü ışık veren gökkcisimlerinin, ana hatlarıyla evrende homojen bir dağılım gösterdiği bilinmekteydi. Fiziki yasalarından bilindiği kadarıyla, bir kaynaktan gelen ışık şiddeti uzaklığın karisi ile aazalmaktaydı.Fakat buna karşın küresel bir şekilde, hacim, yanrıçapın, yani uzaklığın küpüyle artmaktaydı. Dolaysıyla dühnyaya ışık gönderen kaynakların ışık şiddeti, uzamklıklarının karesi oranında çoğalmaktaydı. Bu durumda, evrenin çapının büyüklüğü oranında, dünyaya gelen ışık miktarı fazla olmalıydı.Halbuki geceleri karanlıktır, yani dünyanın gökyüzünü aydınlatacak kadar ışık gelmemektedir. Öyleyse evrenin boyutları sınırlı olmalıydı. Olbers’in bizzat kendisi, bu inanılmazı sınırlı evren tanımını ortadan kalrdırmak için, ışık kaynaklarının gittikçe azaldığını varsaymıştır. Yüzyılımızda, ünlü fizikçi Einstein, evren konusunda hesaplarını yaparken, onun sabit boyutlar içerisinde çıktığını gördü. Sonuç kendisine dahi inanılmız geldi. Bu nedenle sonucu değiştirmek için, denklemlerine, yanlışlığı sonradan saptanan, doğal kuvvetler dediği, bir takım kozmik terimler ekledi. Hubble, 1926 yılında, çıplak gözle görülmeyen; ama fotoğraf camında iz bırakan, bizden çok uzak birtakım spiral nebulalar saptadı. Spiral nebulaların, uzun dalgalı ışık (kırmızı ışık) çıkardıkları 1912 yılından beri bilinmekteydi. Hubble, 1929 yılında, bu nebulalaların ışığının kırmızıya kaymasını, Doppler etkisi ile açıklayarak, ünlü kuramını ortaya attı. Yani tüm nebulalar bizden ve muhtemelen birbirlerinden büyük hızlarla uzaklaşmaktaydı, yani evren her saniye yapısını değiştirmekte, genişlemekydi. Böylece dünyaya gönderdikleri ışığın frekansında, kaynağın hızla uzaklaşmasından domlayı, azalma, yani ışığın döküldüğü yerde, ışığın kırmızıya kaydığı gözlenmekteydi Işık kaynakları gözlenen yere doğru hızla yaklaşsaydı, ışıklarının maviye kaydığı, yani gözlem yerine ulaşan ışığın frekansında artma görülecekti. Bu cisimlerin hızı bizden uzaklaştıkça artmaktaydı.Gözlenebilen en uzaktaki gök cisimleri (dünyadan 8 milyar ışıkı yılı uzakta ve 240. 000 km/s hıza sahip) birkaç yıml içerisinde tamamen kayboluyor, yerlerini kuvvetli radyo dalgaları veren kuasarlara bırakıyorlardı Kuasarların nasıl birg ök cismi oldukları tam olarak bilinmemektedir. Birçok astrofizikçi, cisimlerin kuasarlara dönüştüğü bu bölgeleri, evrenin kıyıları olarak tanımlamada fikir birliği etmektedir. Hubble’ın bu bulgularını duyan Einstein, daha önce denklemlerine eklediği kozmik terimleri ve ilave sayıları sessizce geri çekti. Çünkü, onlarsız yaptığı tüm işlemler hemen henmen doğruydu. Böylece evrenin büyüklüğünün sonlu, yapısının değişken olduğu kesin olarak kanıtlanmaktaydı. Evren patlarcasına genişliyor, buna bağlı olarak birim hacimdeki madde miktarı, yani yoğunluk azalıyordu. Bu genişlemenin bir başlangıcı olmalıydı. (Demirsoy, Ali, Yaşamin Temel Kurallari Cilt-1, Kisim-1, Onbirinci Baski, Ankara 1998, s:543-555) Evrim Kuramında Bir Paradoks İngliz bilim adamı Charles Darwin (1809-1882) ve Alfred Russel Wallace (1823-1913) gerek yaptıkları seyahatler sonucunda elde etmiş oldukları coğrafik deller gerekse mevcut karşılaştırmalı anatomi çalışmalarıyla emriyoloji bilgilerini kullanmak suretiyle ve de Malthus’un da etkisiyle, şekkillendirdikleri evrim kuramında canlıların yaşamlaranı sürdürebilmelerinde iki gücün etkin olduğunu belirlemişlerdir. Bunlardan birisi doğal eleme gücüdür; canlı bu güç sayesinde çevre şartlarına uyum göstererek yaşamını devam ettirebilme şansına sahip olabilir; kendine nisbetle şartlara uyum göstermeyenler yaşamlarını sürdüremezler, yok olurlar. Uyum gösterenler ise çevre şartlarına uygun olarak değişim gösterirler. Böylece, meydana gelen değişimler sonucunda yeni türler ortaya çıkar. Ancak, canlılarda bir ikinci güç daha vardır; o da ataya dönüş gücüdür (atavizm). Canlı ne kadar asıl tipinden uzaklaşmış olursa olsun, atalarına dönüş meyli taşır ve dolaysıyla söz konusu dönüşü yapabilir. Bunun tipik örneğini Darwin, güvercinlerde göstermiştir. Evcilleştirilmiş güvercinlerin yabanıl kaya güvercinlerine dönüş göstermesi gibi. Evrim kuramını desteklemek üzere, bu iki güce ek olarak, Darwin ve Wallace ‘koruyucu benzerlik’ ten söz ederler. Buna göre canlılar yaşamlarını sürdürebilmek için doğal çevre şartlarına uyarlar; örneğin çölde yaşayan canlıların renkleri sarı tonlarındadır; ormanda yaşayan hayvanların renkleri çok parlaktır; kutuplardaki hayvanlar için ise aynı şekilde, çevreye uyum göstermiştir; genellikle beyaz renktedir. Buna paralel olmak üzere, hayvanların kendilerini korumak için bazı başka korunma yollarını da denedikleri görülmüştür. Bazı hayvanlar, sansarlar gibi, kötü koku salar ya da seslerini daha güçlü hayvanlara benzeterek düşmanlarına karşı kendilerini korur. Koruyucu benzerlik, aslında evrim kuramıyla garip bir şekilde zıt düşmektedir. Çünkü eğer canlı, mimikri, yani daha güçlüyü taklit etme şeklinde bir kuruyucu benzerlik gücüne sahipse, o takdirde, nisbeten kuvvetli olan canlılara karşı koruyucu bir silah geliştirmiş olur ve her ne kadar evrim kuramına göre, yaşamını sürdürebilmek için güçlü olması gerekiyorsa da, taklit kaabiliyeti sayesinde, zayıf olsa da, yaşamını sürdürebilme şansına sahip olur. Doğabilimler yapmış oldukları araştırmalarla, doğada birçok mimikri belirlemeyi başarmışlardır. (Esin Kahya, AÜ DTCF Felsefe Bölümü, Bilim ve Teknik, Mayıs 1995, 330. sayı) Bilgi Çocuklarımızın yüzüne aynaya bakar gibi bakıyoruz. Onlar bizim yeniden dirilişimizdir. Kendileri tıpkı bize benzer yapabilmeleri çin hücrelerinde bulunan, bizim fiziksel yapımızı belirleyen bilgiyi, onlara sperm ve yumurta olarak veriyoruz. Bu bilgi bizim geleceğe armağanımızdır. Hücre yapımı için gerekli bilgi; harita, plan veya taslak niteliğindedir. Bir rehber, bir kitap, bir broşür gibi de denebilir. Bu rehber çok özel bir yaratmayı gerçekleştirecek olan aracının veya makinenin, canlı üretme makinesinin “anlayacağı” eksiksiz bir bilgi anahtarı olmalıdır. Genler Genetek bilimi, her canlının özelliklerinin (örneğin göz rengi) kalıtımla geçtiğini, yani yavruda hassas bir şekilde yeniden ortaya çıktığını göstermişttir. Kişisel özelliklerini düzenleyen bilgi, “genler” denilen özel varlıklarla nesilden nesile geçer. Her belirgin kalıtımsal özelliğin ayrı bir geni daha vardır. Genetik biliminin kurucusu Gregor Mendel 1860'larda, genlerin kalıtımla gerçek şeyler gibi; sulandırılmadan, bölünmeden, karışmadan aktarıldığını açığa çıkardı. Öyleyse genler, her biri (s:19) organizmanın belirli bir özelliğini içeren, kalıtımla yavruya aktarılabilen küçük bilgi paketleridir diyebiliriz. 1920'lerde büyük genetikçi Thomas Hunt Morgan, genlerin hücrei içindeki yerlerini buldu. Bütün hücrelerde, çekirdek dedğimiz kapalı bir kap vardır. Hücre bölünüp iki hücre haline gelirken, ilk önce bu çekirdeğin bölündüğü, dolaysıyla hücre içinde önemli bir rolü olduğu daha önce de biliniyordu. Yani, tek hücrenin servetini yeni hücrelere eşit bölüştürme işlemi, çekirdekte başlıyordu. Dahası; mikroskop, çekirdeğin içinde kromozom denilen iplik gibi yapıları açığa çıkardı. Bu yapılar, çekirdeki bölünmeden kendilerini bir kat artırıyorlar ve her kromozom dizini, bir yeni “yavru” hücrenin içine yerleşiyordu. Bu düzenleme yüzünden, koromozomların genlerin yuvaları olmalarından kuşkulanıyorlardı. Morgan, adi meyve sineklerini deney hayvanı olarak kullanarak bunun gerçekten de doğru olduğunu, bir dizi ince deneyle kanıtladı. Bu işi tamamlandığında, genlerin kromozom ipliklerinin etrafında top top sarılmış oldukları artık biliniyordu. Genler Neden Yapılmışlardır? Kromozomlar (genler) neden yapılmışlardı? Biyolojide kuşkusuz çok önemli bir yeri olan Oswald Avery’nin deneyleri bu soruya çok açik ve parlak bir yanit getirdi. Çalişmalari, şimdi “moleküler biyoloji” dedigimiz modern çagi açti. 1940'larin başinda Avery, iki tarafli zatürreye (akciger iltihasbi) neden olan bakteriyle ugraşiyordu (penisilin bulunmadan önce, en büyük ölüm nedenlerinden biriyldi bu hastalik). Yaptigi deneylerde açiklayamadigi şaşirtici sonuçlar buldu. (s:20) Ölü zatürre bakterileri, kötü niteliklerini, zatürre yapmayan türden canli bakterilere geçirebiliyorlardi. Bu, tehlikeli ölü bakterilerin, canli ve zararsiz bakterileri tehlikeli hale getirebilmeleri demekti.Bu nitlik bir defa geçirilince artik kalici oluyor ve bir zamanlar iyi huylu olan bakterilerin gelecek kuşaklarina kalitimla geçiyordu. Hastaliga neden olabilme kapasitesi bir veya bir grup özellekten kaynaklanir. Bu özellikler, genler tarafindan kontrol edilir ve kalitimla geçirilirler. Avery, ölü baterilerin parçalandiklarini, vücutlarinin bilgi taşiyan kimyasal maddeler çikardigini, canli baketirelirn de bulari besin olarak kullandiklarini düşündü. Yani genler, canli bakterilere girip onlarin kalitimlarini belirtiyorlardi. Avery ve arkadaşlari, bu gene benzer maddeyi kesin olarak belirlemek üzere çalişmaya başladilar. İnsan, Tıp bilimi için, genlerin kimyasal özelliklerinin bulunmasından daha önemli bir problem olabileceğini düşünüemez. Ancak bu kesinlikle insanlar, hatta hayvanlar üzerinde de incelenebilecek bir problem değildi. Neyse ki zatürre yapan bakteriler, Avery’e uygun bir sistem getirdiler. Bu iyi ve değerli bir model-deney sistemi örneği oluşturuyordu. Aslında, bütün genetik bilgi birikimi, 100 yıl önce Gregor Mendel’le başlangıcından bugünkü araştırmalara kadar, büyük ölçüde basit deney modellerine dayanır. Bezelyeler, meyve sinektleri, ekmek küfü ve bakteriler... Avery’nin üzerinde çalıştığı bakteriler geretik olarak birbirinin tıpkısıydı. Başka cinslerle karışmamış, safkan bakterilerdi bunlar. Hızla üreyebiliyorlardı öyle ki kalıtım özelliklerini birçok kuşağın üzerinde izlemek olanaklıydı. Zatürreye neden olma yetenekleri, farelere verilerek kolayca ölçülebiliyordu. Avery’nin yaptığı önemli deneyleden biri, probleme açık bir yanıt getirdi. Ölü bakterilerden dağılan bir molekül karışımını aldı ve içine DNA’yı “bozan” bir enzim ekledi. DNA’nın bozulması, karışımın zararsız bakterileri zararlı bakteriye çevirebilme yeteneğine bir son verdi. Buna ek bir deneyle Avery ve arkadaşlari, zararsiz bakterileri hastalik yapan bakteriye çeviren maddenin “deoksiribonükleik asit” veya DNA oldugunu kanitladilar. DNA: Deoksiribonükleik Asit Aslında, DNA’yı Avery bulmadı. Bu işi, Avery’den altmış yıl önce Friedrich Miescher adında bir araştırmacı yapmıştı. O ve onu izleyen bilim adamları bu konuda bir sürü kimyasal bilgi toplamışlardı. DNA’nın zinci şeklinde birbirine bağlı, büyük miktarlarda fosforik asit içeren “nükleotid” denilen moleküllerden oluştuğu biliniyordu. Bunlar, o zamana kadar hücrede bilinen en büyük moleküllerdi. Avery, DNA’nın kalıtımın temel maddesi olduğunu gösterdi. Başka ir deyişle “bir şeyi kalıtımla geçirmek demek, bir parça DNA aktarmak demektir”. Genler DNA’dır. Bilgi DNA’dır ve DNA bilgidir. Avery’nin ispatından beri, DNA konusunda bilinenler öyle şaşırtıcı bir hızla arttı ki, 1960'larda (s: 22) artık bilginin DNA’da nasıl kodlandığını bu bilginin nasıl hücre maddesine dönüştüğü ve DNA’nın gelecek kuşakla paylaşılmak üzere nasıl kopya edildiğini biliyorduk. Bu zorlu yarışa bir çok bilim adamı katıldı; ama James Watson ve Francis Crick ’in DNA’nın doğru yapısının ikili sarmal, yani içiçe dönen iki zincir olduğunu düşünüp bulmaları en büyük aşamalardan biridir. Öyleyse işte DNA’nin temel özelliklerine bakalim: 1.Molekül zincir şeklindedir( Degişik basit molekül çeşitlerinin birbirine eklenmesinden oluşmuş zincir şeklindeki madde) 2.Olağanüstü uzun ve son derece incedir.Hücrenin çekirdeği 100 kere büyütülseyydi aşağı yukarı iğne ucu büyüklüğünde olacaktı, yani gözün ancak seçebileceği kadar. İte bu küçücük çekirdek içinde katlanmış durumda bulunan DNA açılırsa, boyu, bir futbol sahasının boyu kadar olur. 3. Zincirde dört çeşit halka vardir (nükleotid denilen moleküller). Isimleri adenilik asit, guanilik asit, sitidilik asit ve timidilik asit; kisaltmalari A. G, C ve T. 4. Bu dört tür halkanın bağlanma biçimi, adi bir zincirin halkaları gibi birbirinin aynıdır. 5. Halkaların şaşmaz bir düzeni vardır, bu kitaptaki harflerin düzeni gibi. Bundan sonra, zincirler üzerine söyleyecek çok şeyimiz olacak. Bir zinciri her resimleyişimizde, buradaki beş biçimden hangisi en uygun, en açiklayicisiysa onu kullanacagiz. Kuşkusuz, gerçek zincirlr bizim resimlerde gösterdiklerimizden çok daha uzundur. DNA = Dil = Bilgi Şimdi dört çeşit halkasi olan bir zincirimiz olsa ve bunun yeni bir bireyin oluşmasi için gerekli bütün bilgiyi içerdigini bilsek, bu sirrin halkalarin siralanmasinda veya düzenininde yattigi sonucunu çikarmamiz gerekir. Zincirin bu kadar çok anlam taşimasinin başka bir açiklamasi olamaz. Bilgi, böylece harita veya plan olmak yerine, düz bir yüzey üzerinde iki boyutlu bir şeye, daha dogrusu tek boyutlu “yazili” talimat dizinine dönüşür. Burada dille-benzetme (analoji) yapilabilir.DNA alfabesinin dört harfi var, ama bunlarla yazilabelecek mesajlarin sayisi sonsuzdur. Tipki iki harfli Mors alfabesiyle (nokta-çizgi) söylenebileceklerin sinir olmadigi gibi. Kitaplardaki harfler kağıt üzerindeki yerlerine göre diziler halinde bağlanmışlardır. DNA içindeki dört nükleotid halkası ise gerçek kimyasal bağlarla dizi halinde bağlanmıştır. Belli bir organizma içindeki toplam DNA’da bir kitap gibi düşünülebilir.(s:24) Bu kitapta, bütün harfler, deyimler, cümleler ve paragfraflar bir zincir oluşturacak biçimde birbirine eklidir. Organizmanın bütün bölümleri ve bütün işlevleri böylece tanımlanır. Bu organizmanın özdeş bir ikizi varsa, o da aynı DNA’ları içerir, aynı kitaptan bir tane daha diye düşünülebilir; ne bir harf, ne bir sözcük farklıdır ikisi arasında. Aynı türün başka bir organizması da, gramerda sık sık ve göze çarpıcı farklar olduğu halde, benzer bir kitabı oluşturur. Değişik türlerin kitapları, içlerinde bir sürü benzer cümleler de olsa oldukça değişik öyküler anlatırlar. Yukarıdaki benzetmede zincirin parçaları olan genler, aşağı yukarı cümlelerin krşılığıdırlar. Bir gen, organizmanın belirli bir yapısını oluşturan veya işlevini gören bir harf (nükleotid) dizidir. Genler, çok uzun bir DNA molekülünde arka arkaya eklenmiş cümleler gibidirler. Bir İnsan Oluşması İçin Ne kadar Bilgi Gerekli? Bilginin ne olduğunu gördükten sonra isterseniz, canlıları oluşturmak için ne kadar bilgi gerektiği üzerine kabaca bir fikir edinelim: 1. Bir bakteri, canlı yaratıkların en basitlerindendir, 2 000 civarında geni vardır. Her gen 100 civarında harf (halka) içerir. Buna göre, bir bakterinin DNA’sı en azından iki milyon harf uzunluğunda olmalıdır. 2. İnsanın, bakteriden 500 kat fazla geni vardır.Öyleyse DNA en azından bir milyar harf uzunluğundadır. 3. Bir bakterinin DNA’sı bu hebsaba göre, her biri 100.000 kelimelik 20 ortaama uzunlukta romana, insanın ki ise bu romanlardan 10.000 tanesine eşittir! Dilden Maddeye DNA dilinin anlamı, belirli bir canlı organizmayı tanımlamasındadır. Başka bir deyişle genler, maddenin, yaşamın gerçek özünün, gerçek canlı unsurun yaratılması için gerekli bilgiyi verirler. DNA dili fizik olarak yaşamaya, nefes almaya, hareket etmeye, et üretmeye nasıl çevrilebiliyor? Bu soruyu yanıtlamadan önce, nelerden yapılmış olduğumuzu bilmemiz gerekir. Proteinler Bu konu zor görünebilir ama aslında öyle değil. Bizi oluşturan en önemli malzeme proteindir denilebilir. Diğer yapı maddelerimiz (su, tuzlar, vitaminler, metaller, karbohidratlar, yağlar vb.) proteinlere destek olmak üzere bulunurlar. Proteinler yalnızca kütlemizin (suyu saymazsak) çoğnu oluşturmakla kalmayıp, aynı zamanda vücut ısımızı, hareketlerimizi ayarlarlar, düşüncelerimizin ve duygularımızın da temelini oluştururlar. Kısacası bizi oluşturan ve yaptığımız her şey proteinlere dayanır. Örneğin, kendimi gözlüyorum: bütün kütlesi proteindir; ne görüyorsam (kürkü, gözleri, hareket etmesi bile) proteindir. İçindeki her şyey de proteindir. Ayrıca kendime çok özel bir kişilik veren herşey de özel proteinlerle belirlenmiştir. DNA’nın yönlendirilmesiyle yapılan proteinler birey olmanın, tek olmanın, bütün türlerin fiziksel temelidir. Metal, otomobil için neyse, protein bizim için odur. Otomobilde başka malzemeler de vardır; ama yapıyı ve işlevi sağlayan en önemli eleman metaldir. Hem görünüşü, hem de işleme yeteneğini belirler. Bir arabanın diğerinden farkını; biçimini, niteliği ve metal kısımların durumu belirler.(s:26) Şimdi, yeni bir soru ve başka bir ayrintili inceleme için haziriz. Proteinler neden yapilmişlardir? İşte özelliklerinin listesi: 1. Zincir moleküldürler. 2. Uzundurlar ama DNA kadar değil. 3. Yirmi çeşit protein halkasi vardir. Bunalara amino asitler denir. 4. Yirmi birimin de bağlantı biçimi tamamen aynıdır. 5.Yirmi birimin veya halkanın düzeni veya diziliş sırası hassas ve kesindir. Bu düzen, hangi protein olduğunu ve sonuçta işlevinin ne olduğunu belirler. Amino asitler, isimlerinin ilk üç harfi eklenmiş zincir halkalariyla gösterilirler. Yirmi amino asit şunlardir: fenilalanin, leusin, izoleusin, metyonin, valin, serine, prolin, treoinin, alanin, tirosin,histidin, glutamin, asparajin, lisin, aspartik asit,glutamik asit, sistein, triptofan,arjinin,glisin. Çeviri Bu beş özelligin DNA zincirininkine ne kadar benzedigini gördünüz. Halkalari özel bir düzende olan zincirler, protein alfabesinde yirmi çeşit harften oluşuyor;DNA alfabesinde ise dört harf var. DNA bilgisinin protein maddesine dönüşmesinin aslinda dildeki gibi bir çeviri işlemi oldugu hemen (s: 27) görülebilir. Dört harfli bir alfabedeki harf dizisinden, yirmi harfli bir alfabenin harf dizisine geçilmektedir. Mors dilinden (iki harfli nokta-çizgi alfabesinden) Ingilizce gibi yirmisekiz harfli alfabesi olan bir dile çeviri yapmaya da benzetilebilir bu. Bütün olan biten aslında bu kadar.Hücerelerin protein zincirleri içinde binlerce çok ufak, son derece basit çeviri makinesi var. Bunlara “ribosomlar” deniyor. Şu şekilde çalışırlar: Önce DNA bilgisinin bir bölümü, bir gen, bir enzim (bu işlemin hızlanmasına yardım eden bir protein) tarafından kopye ediliyor. Mesajcı RNA (mesajcıribonükleik asit) dernilen bu gen kopyası da bir zincirdir. RNA molekülleri,DNA moleküllerinin hemen hemen aynı zincir moleküllerdir; ama onlar kadar uzun değildirler. Bir DNA molekülü bir çok geni içerir, bir mesajcı RNA molekülü ise yalnızca bir tek genin kopyasıdır. Bu RNA moleküllerine “mesajcı” denir, çünkü genin mesajının, ribosomlar yolu ile DNA’nın hücredeki yeri olan çekirdekten proteinlerin yapıldıkları hücrenin çekirdek dışındaki kısmına (stoplazma) taşırlar.(s:28) Gen kopyası mesajcı RNA bir ucunu ribosoma bağlar, Ribosom okuyucudur;mesajcı RNA’nın içindeki nükleotidlerin (harflerin) dizilişini okur; ama bildiğimiz anlamlı bir sözcük çıkarmak yerine protein çıkarır. Bu şu şekilde gerçekleşir: Özel enzimler amino asitleri “transfer” RNA (tRNA) denilen küçük bir RNA molekülüne bağlarlar. Yirmi amino asitin her biri özel RNA molekülüne bağlanır. Amino asite bağlanmış tRNA’lar kendilerini ribosoma yöneltirler. Ribosom, gerekli tRNA’yı (bağlı amino asitlerle birlikte) o anda mesajcı RNA’dan okuduğu deyimlere uygun olarak seçer. Yani eğere ribosom mesajcıdan ala amino asitini (alanin) belirleyen bir grup nükleotid mesajını okumuşsa, bu amino asitin (Hayatın Kökleri, s:29) bağlı olduğu gruba uygun nükleotidleri olan bir tRNA seçer. Mesajcı nükleotidin, belli bir amino asite uygunluğu, nükleotidlerin doğal uygunluk ilişkisine dayanır.Mesajcı üzerindeki her nükleotid dizisi, transfer RNA üzerindeki uygun nükleotid dizisiyle mükemmel bir şekilde eşleşir. Her yeni aminoasit ve onun tRNA’sı ribosoma gelip uygun biçimde yerleştikçe, amino asit kendisenden önce ribosoma gelmiş olan amino asitle kimyasay olarak birleşir. Böylece, halkalar sırayla birer birer bağlanır. Ribosom mesajı okudukça protein zincirinin boyu durmadan inin okunma ıbitince, bütühn protein halkası serbest bırakılır. Böylece yeni bir protein doğmuş olur. Bir genboyu DNA’nın içindeki nükleotid dizilişi, bir protein içindeki amino asit dizisini tam olarak belirler. Bir gen, bir protein. Bir gen; bir protein kavramı bizim proteinlerin nasıl oluştuğunu öğrenmemizden çok uzun zaman önce bulunmuştu.1930'larda ekmek küfü üzerine bir dizi parlak deney yapan biyokimyacı George Beadle, bir teks gen içindeki değişikyiklerin, bir tek proteinde bozulmaya yol açtığını göstermişti.Buna dayanılarak yapılan çcalışmalar bakteri kullanılarak ilerletildi ve genişletildi. Bu büyük çalışma ve burada anlatacağımız niceleri, herman Müller’in 1920'lerdeki DNA’daki değişmelerin (mutasyon), istenildiğinde canlı sistemleri x-ışınlarına tutarak sağlanabaleceğini gösteren önemli buluşu olmasaydı başarılamazdı. DNA, bir hücrdede bulunan değişik p;roteinler kadar gen içerir (bakteride 2000; insanda 200.000). Protein yapan makinenin bu çeviri işlemindeki şaşmayan hatasizligi,kuşkusuz dikkate deger. bir hücrenin yaşamasi için gerekli binlerce proteinin üretilmesinde ancak bir-iki yanlişligüa yer olabilir. Insanlarin yahptigi hiçbir makine, bunun gibi 200 romana eşdeger bir yaziyi bu kadar az yanlişla yazamaz. t-RNA’nın Bulunması Hocam Paul Zamecnik ve ben, 1956'da transfer RNA’yı birlikte bulduk ve neye yaradığını açıkladık. Zamecnik daha önce ribosomların, üzerinde proteinlerin biraraya getirildiği strüktürler olduğunu göstermişti.Ben de bu tarihten bir yıl önce amino asitlerin özel bir dizi enzimle aktif hale getireilebildiğini (yani diğer amino asitlerle reaksiyona hazırlandığını) kanıtlamıştım (bu dördüncü bölümde anlatılıyor). Ama arada eksik bir şey vardı: amino asitlerin bağlanabileceği ve onlara (Hayatın kökleri, s: 31), mesajcı RNA’ların gösterdiği yerlere yerleştirilmelerini sağlayan kimliği kazandıracak bir şey. Paul Zamecnikle birlikte, hücreler içinde amino asitlere önemli bir yatkılnığı olan, yani onlarla olağandışı bir sıklıkla bağlanabilen küçük RNA molekülleri olduğunu gördük. Proteinin yapılışnıda ki eksik olan halkayı bulduğumuzu hemen anladık. Bir sürü yoğun ve zevkli deneyden sonra, ondan sonraki yılın sonlarına doğru,tRNA’nın protein yapımına katılım yönteminin size daha önce açıkladığım oldukça tam bir resimini elde ettik. Zincirlerden Üç Boyutlu Varlıklara Buraya kadar öykü yeterince doyurucu; canlı mekanizmalar, zincirleri dil olarak kullanırlar. Plandan bitmiş üretime geçmek, basit bir çeviri işidir. Ama hala aşmamız gereken bir engelimiz var. Çeviri bir simgeyi başka bir simgeye, tek boyutu tek boyuta, bir zinciri başka bir zincire, nükleotitleri amino asitlere dönüştürülüyor. Zincirden “maddeye” nasıl varabiliriz? Protein moleküllerinin görevlerini yerine getirmelerine, dokunabildiğimiz, kavrayabildiğimiz şeylere, tohumlara, çiceklere, kurbağalara, size, bana bir boyuttan üç boyuta sıçramak zorundayız demek ki. Yanıt, protein zincirleri içindeki halkaların yani aminoasitlerin özelliğinde yatıyor. Protein molekülleri, zincir oldukları halde asılnrad (fiziki olarak) gerçek zincirlerde olduğu gibi üç boyutlu yapılardır. Proteinin yirmi değişik amino asiti, etkisiz simgeler değildirler. Herbirinin kendine özgü kimyasal özellikleri vardır. Bazıları zincirdeki ikiz eşleriyle kimyasal bağlar yapmayı yeğlerken, bazıları daha çok asit, bazıları da alkali özelliğini gösterir. Kimi suyu aramak eğilimindeyken, kimi de sudan kaçar. bazıları öyle biçimlendirilmişlerdir ki zinciri bükebilirler. (s: 32). Birkaç tanesinin de bir proteinin yalnızca bir tek işe yaramasına katkıda bulunacak özel marfetleri vardır.Bu amino asitler zincirdeki yerlerine göre zincirin son biçimini belirler. Zincirler tamamlandıkları zaman, bir çeşit ip yumağı oluşturmak için kendi kendilerine içiçe dolanıp katlanırlar. çözülmüş zincirdeki amino asitlerin “sırası”, molekülün katlanmak için hazır olduğu zaman nasıl davranacağını, ne yapacağını “şaşmaz” bir şekilde belirler. katlanma biçimi de protein molekülünün şeklini, özelliklerini, işlevini belirler. Kas proteinler için, bir gen, protein yapar makinelere son bitmiş biçiminde katlanabeilecek ve komşu liflerin üzerinedn kayabilecek çok uzun bir protein zinciri yapmasini emreder. Böylece kisalabilen uzun lifler oluşur. kan hücrelerindeki oksijen taşiyan protein zinciri hemoglobin, özel bir üç boyutlu katlahnma biçimine sahiptir. Böylece yalnizca kendisine özgü bir yolla oksijeni tutma ve serbest birakma işlevini yerine getirebilir. Sonuç olarak herbirini siralanişi, genler içindeki nükleotidlerin siralanişiyla belirlenmiş binlerce protein zinciri, özel biçimlerde katlanip, özel işlevler elde ederler. Düzen Yaratmak, Çoğu Kez Zincir Yapmaktır Birinci bölümde düzen konusunda söylediklerimizi hatırlayın: Yaşam, sürekli düzensizliğe giden bir evrende düzene yönelik çalışır.Şimdi bunun ne demek olduğunu çok daha açıkça görebiliriz. Canlı olmak, daha önceden şaşmaz bir kesinlikle tanımlanmış bir düzenle, halkaları zincire eklemektir. Düzen bir defa kurulunca, son biçimin ve işlevin elde edilmesi hemen hemen kendiliğinden gelir diye düşünülebilir. İsterseniz, bir parçayı bir başka parçanın önüne koymak (Hayatın Kökleri, s: 33) kendiliğinden sonuca götürüyor diye düşünebilirz bu düzeni. Zayıf Kimyasal Bağlantıların Önemi Hücrelerin önemli molekülleri yani DNA,RNA ve proteinler üzerine yapılan bir çalışmadan çok ilginç bir genelleme ortaya çıkmıştır. Aslında “zayıf” kimyasal bağlantılar, yaşam için son derece önemil işlevler taşırlar.Güçlü bağlantılar (sağlam kovalent bağlar), amino asitleri protein içinde birbirine bağlayanlar cinsinden veya RNA ve DNA içinde nükleotidleri bağlayanlar cinsinden olanlardır.Bunlar zincirin her halkasında komşuyu sıkıca tutarlar. Zayıf bağlantılar ise bütün büyük zincirlerde katlanma noktalarını belirleyen ve molekülün biçimini sağlayanlardır. DNA’da iki zinciri,çift sarmalı oluşturmak iççin birarada tutan nükleotidler arasında zayıf halkalar vardır. Bunlar ileride göreceğimiz gibi RNA üretiminde çok greklidirler. Proteinin içinde,onu işlevine uygun katlanmış biçimlerde tutan amini asitler arasındaki bağalantılar da zayıftır. Ribosomlar üzerinde yeni protein yapımında,transfer RNA üzerinde tamamlayıcı biçimdeki nükleotidlere uydurarak,tam yerlerini “bulurlar”. Bu önemli bağlantıların özelliği,zayı oluşları yüzünden çok kısa sürmeleridir. Görevlerini yaparlar ve sonra kolayca çözülüp yeniden kullanılabilirler. Hayatla İçli Dışlı Cansız Varlıklar: Virüsler Virüsler ya da DNA’lı ya da RNA’lı proteinden yapılmışlardır. Yani ya DNA ya da RNA biçiminde bilgiyi içerirler ve protein biçiminde birşyelerin yerine geçebilen bir kimlikleri vardır. Ama yardımcısız kendi kendilerine üreyemezler. Yardım (s:34) canlı hücereler tarafından sağlanır. Virüsün proteinleri,onun bir hücre bulup içine girmesine yol açar. Virüs, orada kandini üretecek makinaları;hücrenin makinalarının bulur. Üreme işini tamamladıktan sonra kendisi ve yeni virüsler,aynı tatsız işi başka hücrelerde yinelemek üzere o hücreden çıkarlar.Bu olaylar sırasında virüs,”ev sahibi” hücreyi öldürebilir,ona zarar verebilir,değiştirebilir veya hiçbir şey yapmaz;bu virüsün ve hücrenin cinsinei bağlıdır. Bir virüsün hücrede neden olabileceği önemli bir değişiklik de onu kansere dönüştürmesidir. Bu esrarlı olay, 8. Bölümde göreceğimiz gibi en son kanser araştırmalarındaki yoğun çabaların temelinde yatlmaktadır. Hücrelerden daha basit oldukları halde,virüslerin daha ilkel olmadıklarını sanıyoruz. çok uzak geçmişte bir zaman, normal hücerelerine parçalarıyken kopup kendi asalak “yaşama” biçimlerini kurmuş olmaları mümkün görünüyor. Virüslerin bağımsız olarak üreme yetenekleri olmadığı için kendi başlarına canlı olduklarını düşünemiyoruz. Ölümlülük ve Ölümsüzlük Şimdi,bir bireyin yaratilmasinin bir dizi yazili talimat gerektirdigini biliyoruz. Bunlar milyonlarca yildir dikkate deger bir baglilikla tekrar tekrar kopye edilmişlerdir; ama her birey yalnizca birkaç on yil içinde yaşar ve ölür. O zaman bu talimatlarin ölümsüz olup olmadiklarini sorabiliriz. En azindan bir biyolog için her hangi bir şey ne kadar ölümsüz olabilirse,genetik bilgi de o kadar ölümsüzdür diyebiliriz. Aslinda ölümlü her birey,gelecek kuşaklara geçirilecek tarifnamenin geçici koruyucusudur;sopanin DNA oldugu bir bayrak yarişinda koşucu... Bir birey yaşaminin,ancak atalarindan çocuklarina geçirdigi bilgi kadar önemi (Hayatin Kökleri, s:35) vardir. Bazi güveler agizsiz dogarlar ve dogduklari andan başlayarak açiliktan ölüme mahkimdurlar. Tek işlevleri,çiftleşip daha çabuk yumurtlayarak güve bilgisini gelecek kuşaga geçirmektedir. Eğer DNA ölümlünün ölümsüzlüğü ise,insanları inatçı merakı,daha ötesini de sormadan edemez;Bütün bunlar nasıl başladı?(Hayatın Kökleri, s:19-36). Başlangiç Hangisi önce geldi, tavuk mu yumurta mı? Bu çok duyulmuş bir sorudur ama yanıtlanamaz. Yanıtlanamamasının sebebi “tavuk yumurtadan, yumurta tavuktan vs.” diye zaman içinde bitmez tükenmez bir geriye doğru sayış gerektrmesi değil, bu şekilde geriye giderken biriken küçük değişikliklerle tavuğun tavukluktan,yumurtanın da yumurta olmaktan çıkmasıdır.Tavuğun bir milyar yıl gerilere giden soy ağacını incelersek;tüylü arkadaşımızı,hayal gücümüzü ne ölçüde zorlarsak zorlayalım adına “tavuk” diyemeyeceğimiz atalara bağlayan bir değişimle karşılaşırız. Benim tahminim, bir milyar yıl önceki tavuk atasının her halde,toplu iğne başından küçük ve okyanusta yaşayan bir yaratık olduğu. Kendi soyumuzu gerilere doğru izlersek,yine buna benzer bir sonuçlar karşılaşırız. Ne kadar geriye gidebiliriz? Bir başlangiç oldugunu düşünmemiz gerek. Bundan önçeki bölümde sözü edilen,DNA’nin ölümsüzlügünü benzetmesine şimdi daha iyi bir perspektiften bakmaliyiz.Dünyamizin şimdiki canli biçimlerini dogracak tüm bilgiyi taşiyan bu kocaman moleküllerin,çok uzak bir geçmiş zamanda, alçakgönüllü bir başlangiçlari olmasi gerek. (s: 37) En iyi tahminlere göre yaşam; bundan üç milyar yil önceki Dünya'da başladi.Üç milyar yil önce Dünya'miz iki milyar yaşindaydive canlilari barindiracak kadar sogumay başlamişti.Son derece küçük ve oldukça basit deniz yaratiklarinin iki milyar yildan daha eski fosilleri var. Bu fosilleşmiş yaratiklarin atalari herhalde daha da küçüktü.. En ilkel canli biçimi, belki de bugün bolca bulunan basit tek hücreli canlilara hiç benzemeyen bir tek-hücreydi. Öyleyse bizim yoğunlaşacağmız soru şu: bir hücre,yaşamaya ilk olarak nasıl başlamış olabilir, bu aşama nasıl mümkün olabilir? Soru”hücre nasıl yaşamaya başladı?” değil;bu hiçbir zaman yanıtlanayacak bir sorudur. Çünkü bu olaya tanıklık edecek kimse yoktu o zaman; ama yaşamın nasıl oluşabileceğini sormak hakkımızdır. Akıllıca tahminler ve olasilıkıları gösteren deneyler yapabiliriz. Gerekli Maddeler Jeologların, paleontologların, fizikçilerin,biyologların çalışmalarına dayanarak,dünyanın üç milyar yıl öncesi nasıl bir yer olabileceği konusunda oldukça iyi bir fikrimiz var. Bilim kurgu kitapları ve filmelri olayı çok canlı ve belki de doğru resimliyorlar;lav ve kayalardan oluşmuş,gri, tümüyle kısır,hiç yeşili olmayan manzaralar,patlayan yanardağlar,sivri dağ tepeleri,buharlaşan denizler,alçak bulutlar,arada çakan şimşeklerle gürültüyyle parçalanan ve sürekli yağan yağmurlar. Herhangi bir canlı tarafından görülmemiş ve duyulmamış olaylar. Kuşkusuz bu, sizin ve benim için çok sefil bir ortam olurdu. ÜAma yaşamın başlangıcı için iyi bir düzendi. Herşeyi harekete geçirmek için gerekenler şunlardı: 1. Ilık bir ortam 2. Çok miktarda su(s:38) 3. Gerekli atomların kaynakları/karbon,hidrojen,oksijen,nitrojen ve fosfor) 4. Enerji kaynağı. Su ve ısı, sorun değildi. Dünya soğurken, milyonlarca yıllık yağmur okyanusları doldurmuş hala sıcak olan Dünya bu okyanusyarı ısıtmıştı. Şimşekler bol bol enerji sağlıyorlardı. Bulutlar aralandığı sıralarda da Güneş’ten ulraviyole ışınları geliyordu(Bu ışınlar o zaman şimdi olduklarından çok daha güçlüydüler, çünkü atmosferimizi sarran ozon tabakası henüz oluşmamıştı. Ozon, yeryüzünde bitki yaşamının sonucu olarak yavaş yavaş birikmiş bir oksjijen tabakasıdır. Bu tabaka ultraviyole ışınlarını geçirmez). Bu koşullar;kuşkusuz başlangiçta,en basit birimlerin,bilgi zincirlerinin (DNA) ve hücre maddesi zincirlerinin (protein) oluşmasi için yeterince basitti. Ama zincirlerimiz olmadan önce halkalarimizin olmasi gerekir. Önce DNA nükleotidleri ve proteinlerin amino asitleri oluşmalidir. Bildigimiz gibi, bu halkalar ufak moleküllerdir. Bunlar, karbon, hidrojen,oksijen,nitrojen ve fosfor elementlerinin kimyasal olarak baglanip düzenlenmeleriyle oluşurlar. Basit Moleküllerin Doğuşu Öyleyse işte senaryomuz: Deniz suyunda erimiş karbon,hidrojen,oksijen,nitrojen ve fosfor içeren basit bileşikler, ultraviyole işinlari ve şimşeklerle sürekli bombardiman edilmiyorlar. Bu arada bir kismi kalici ve dengede olan,degişik kombinasyonlara da zorlaniyorlar. İşlem yüz milyonlarca yıl boyunca sürerken,denz, elemanlarının değişik kombinasyonları yönünden giderek zenginleşiyor. Yeni moleküller,bu arada nükleotidler ve amino asitler birikiyor. Sonunda denizin son derece bol ve bütün yeni molekül(s:39) çeşitlerini içeren koyu bir çorbaya dönüştüğüü bir zaman geliyor. Zamanın Önemi Sözkonusu süreçte zamanın önemini kavramak için biraz duralım. Zaman ne kadar uzun olursa bir şeylerin olması da o kadar olasıdır. Kimyasal tepkimeler için de bu doğrudur. Zaman sınırlaması olmazsa,yeterince uzun süre beklenirse en olanaksız tepkimeler gerçekleşebilir. Eğer bu tepkimelerin ürettikleri bileşikler kalıcı (dengeli) iseler, deniz suyunun nisbeten değişmez maddeleri haline geleceklerdir. İçinde canlı Olmadığı için Çorba Varlığını sürdürebilir Şimdidenizin çorba gibi olma düşüncesi size aşiri görünebilir. Bunun bugünkü deneylerimizle karşilaştiralabilecek hiçbir yani yoktur. Böyle zengin bir oluşumun birikmesi,canlilar onu hemen yiyip biterecegi çin bugün belik de olanaksizdir. Bakteriler ve diger açgözlü yaratiklar şimdi çok kalabaliklar ve ne zaman iyi bir besin kaynagi belirse,hemen onu tüketiyorlar. Kaynak kuruyana kadar üreyip sayilarini arttiriyorlar. Görüyorsunuz ki eskiden yaşam olmadiggi için okyanuslar çorba gibi olabilirdi. Eski Olayların Laboratuvardaki Benzerleri Aslında,anlattıklarımız hiçbir zaman kanıtlanamayacak bir hipotez. Yine de biz,laboratuvarda bunların olabileceğini gösterebiliriz,Eskiden olduğu öne sürülen koşulların laboratuvarda istenen tepkiyi sağlaması kuşkusuz olanaklıdır. Üç milyar yıl önce denizde bulunduğu (s: 40) düşünülen basit bileşikler bir cam kapta suda eritilebilirler. Kap, şimşekylerin enerji katkısını sağlamak üzere bir elektrik kaynağına bağlanır. Ssitemin bütün parçaları hiçbir canlı hücre olmadığından emin olabilmemiz için önceden sterilize edilir. sonra kaptakilerin bir süre pişmesi için elektrik verilmeye başlanabilir. sonunda kap açılıp içindekiler incelenir. Bu deneyin yapılmış olduğunu ve sonucun tümüyle inandırıcı olduğunu sevinerek söyleyebilirim. Hem nükleotidler hem amino asitler beş elementten bu şekilde oluşturulabildiler. yani yaşam zincirlerinin halkaları, deniz benzeri bir ortamda şimşikleri enerji kaynağı olarak kullanılmasıyla üretildi. Zincir Moleküllerinin Doğuşu Bundan sonraki adım,açıkça görülüyor ki halkaları,DNA gibi ve protein gibi zincirler oluşturmak için birleştirmektir.İlkel koşulların laboratuvarda yapılmış benzerlerinin,halkaların oluşumu aşamasını sağlamasına bakarak,çalışma ilerletilirse halkaların zincir biçiminde eklenebileceğini de düşünmek akla yakındır. Nitekim kısa zincirlerin oluştuğunu gröüyoruz. Basit kimyalarıyla bugünün DNA’larına ve proteinlerine benziyorlar. Yined hatırlayalım, bu deneyler yalnızca oylabileceğini gösterir, ne olduğunu değil. Durum, Thor Heyerdahl’ın Polinezya Adaları halkının Güney amerika’dan batıya yelken açarak, şimdiki yurtlarını buldukları savını kanıtlamaya çalışırken kaşılaştığından farklı değil. sal üzerinde aynı yolculuğu başarıyla yaparak,yalnızca polinezyalıların gerçekten bu yolculuğu yaptığını kanıtlamış olmadı, benzer taşıt kullanan herhangi birinin de aynı işi yapabileceğini gösterdi(s:41) Bir Hücreye Doğru Bu noktadan sonra,hücdreyi daha çok tanımak için beş önemli adıma daha göz atabiliriz. Hücrenin ikiye bölünmesi DNA’nın ikiye bölünmesi Zarlar Çift zincirli DNA Yapısal proteinler Enzimler tek zinciril DNA Proteinler Yağlar Nükleotidler Aminoasitler karbon, hidrojen,oksijen, azot(nitrojen) ve fosfor 1. Enzimlerin ortaya çıkması Enziler, hücre içindeki bütün kimyasal tepkimeleri hızlandıracak özel protein molekülleridir. Bugün canlı hücre;herbiri kenid özel işini yapan, besin maddelerini parçalayan,besinden enerji üreten, basit moleküllerden zincir yapımını kolaylaştıran ve sayısız başka işler yapan binlece enzim içerir. Olayların denizdeki başlangıt çağlarında yavaş gelişimleri, ancak enzimlerle hızlandırılabilirdi, İlk enzimler, raslatısal olaramk birbiren eklenmiş kısa aminoasit zincirleri olsa gerek. Tekrar tekrar “deneme-yanılma”yla bu kombinasyonların bazıları; birtakım reaksiyonları hızlandırabilecek,yalnız kenidlerine özgü bir yeteneği elde etmiş olmalılar.(s: 42) 2. DNA’nın çift Kat oluşu. Okyanuslar boyunca DNA zincirinin rasgele eklenen nükleotidlerle yavaş yavaş uzamasini gözünüzün önüne getirmeye çaliştiginzda baszi anlamli diziler oluşcaktir.Burada “anlamli”, birkaç yeni ilkel proteini yapmak için gereken bilgiyi içermek olarak kullanilmiştir. Bunladan bazilari, yararli enzimler veya önemli yapilarin parçalari olacktir. Basit bir çift kat halinde birleşme bunu sagladi. birbiren sarilmiş ipliklerin zarar görmesi,ayri ayri tek başlarini olduklari zamandan daha az olasiydi.Dahasi, çift kat olmak,DNA’nin üremesi için gereklidir. 3. DNA’nın Çoğalması Bu, çift sarmal DNA zincirindeki her ipliğin,kendisini tıpatıp bir kopyasını yapması,sonuçta ikinçci bir çift sarmalın(s:43) oluşması demektir. son erece basit ve zarif olan bubişlem,bir halatın çözülüp ayrılışı gibi iki zincirin birbirinden ayrılmasıyla baş

http://www.biyologlar.com/evrim-konusunda-ilk-dusunceler

Biyoinformatik ve Veri Analizi

Bu yazı değerli çalışma arkadaşım Deniz'in bakış açısıyla ortaya çıktı, katkısından ötürü çok teşekkür ediyorum. Ahmet Bey'e blogunda ki bu değerli alanı ayırdığı için teşekkürlerimi sunarak başlamak istiyorum. Biyoinformatik, dünyada önemli bir araştırma konusu olan ve ülkemizde de yeni yeni tanınmaya, adından söz ettirmeye başlayan ve kendine yer edinen disiplinler arası bir alandır. Ayrıca temelini moleküler biyoloji oluşturup, bilgisayar ve istatistik alanlarından yararlanarak problemlerine cevap arayan bir disiplindir. Özellikle insan genom projesinin tamamlanması ve teknolojinin ilerlemesi genetik çalışmaları hızlandırmış, genlerin ve proteinlerin arka sokaklarında gizlenenlerin keşfine zemin hazırlamıştır. Bu keşifler sırasında oldukça büyük boyutlu veriler elde edilmektedir. Elde edilen bu verilerin saklanması için veritabanı oluşturulması ve bu büyüklükteki verilerinin analizi için yeni tekniklerin geliştirilmesine önem verilmiştir. Gen çiplerinin gelişmesiyle beraber yüzlerce genin aynı anda incelenmesi kolaylaşmıştır. Bu çipler genlere ve proteinlere ait işlevlerin arasındaki ilişkinin bulunmasında önemli rol oynamaktadır. Bu da bahsettiğimiz büyük boyutlu verilerin analizini gerektirmektedir. Verilerin analizi için var olan istatistiksel analiz yöntemlerinin yanında veri madenciliği(data mining) ve makine öğrenmesi (machine learning) teknikleri kullanılmaktadır. Biyoinformatikçiler için buradaki temel sorun da doğru bir analiz için hangi yöntemlerin hangi durumlarda kullanılacağıdır. Her bir yöntemin oluşumunun kendine ait koşulları ve varsayımları vardır. Bu varsayımlar sağlanmadığında yöntemin geçerliliğinin yitirilmesi söz konusu olacağı için elde edilecek sonuçlar da yanlış olacaktır. Örneğin; Yapılan bir veri analizinde kullandığınız yöntemin doğru seçilmemesi durumunda BRCA1 geninin göğüs kanseriyle bir ilişkisinin olmadığı sonucuna varabilirsiniz. Oysa ki çalışmalar bu genin ifade düzeyinin artması ile göğüs kanseri görülme olasılığının arttığını göstermektedir.

http://www.biyologlar.com/biyoinformatik-ve-veri-analizi

Toprağın Mineral Madde Verimliliği

Toprakta bitkilerin gereksinim duyduğu maddeler de toprak suyu gibi değişik formlarda bulunur ve bu formların bazıları bitkilerin yararlanmasına uygun, diğerleri ise yararsızdır. Bu değişik formların bir kısmı arasında dinamik ilişkiler olması bitkilerin sürekli besin sağlayabilmesine olanak verir. Topraktaki su iyi bir çözücü olduğundan serbest haldeki, çözünür iyonik mineral maddelerin çözünmesini sağlar ve bitkilerin en kolay şekilde besin elementi sağlayabildiği toprak çözeltisini oluşturur. Bu çözeltideki iyonların bitki köklerince tüketilmesi ile doğan kimyasal potansiyel ile çözelti toprak taneciklerinden ve toprak organik maddesinden çözünebilir iyon çeker. Yukarıda bitki hücreleri için anlatılmış olan ve canlılık olayları ile doğrudan ilgili olmayan pasif kuvvetlerin etkili olduğu mekanizmalar ile toprak çözeltisi ve toprak tanecikleri arasında dinamik dengeler kurulur. Bu dengeler toprak çözeltisinin bileşimini belirler. Toprak çözeltisinin iyonik maddelerce zenginliği çözeltinin elektriksel iletkenliği ile ölçülür. Canlı materyalden farklı olarak toprağın pH değeri geniş bir aralıkta değişir. Canlıların solunumla çıkan CO2 in suda çözünmesi ile oluşan bikarbonat (HCO3 - ) ve sembolik olarak sentezlenen organik asitlerden bazik karakterli  hidroksitlerine kadar açılım gösteren maddeler yanında red-oks tepkimeleri ve özellikle amfoter karakterli proteinler arasındaki dengelerle sağladıkları aktif tamponlama kapasitesi ürünü olan fizyolojik pH aralığı toprak için söz konusu değildir. Toprağın pH değerinin farklılığı ise toprak çözeltisindeki mineral elementi kompozisyonunda büyük değişikliklere yol açar. Çünkü maddelerin iyonlaşarak çözünmeleri yanında iyon değişimi olayları pHa bağlıdır. Asidik ve alkali veya nötr topraklar için seçicilik bitki türlerinin farklı yayılışlar göstermesine neden olan çok önemli bir etmendir. Bunun da nedeni bu farklı toprak tiplerinin bitkilere sağladığı besim elementi kompozisyonunun da çok farklı oluşudur. Toprağın tamponlama kapasitesi, yani pH değişimlerine karşı direnme gücü toprak taneciklerinde ve bitki artıklarının bozunması ile oluşmuş olan toprak organik maddesi, humusda adsorbe edilmiş olan iyon kapasitesi ve bileşimi ile iyon değişimine girebilen iyon miktarı ve bileşimine bağlıdır. Bu ilişkiler toprak çözeltisinin aktüel pH değeri, çözünmüş besin elementi yanında depo pH değeri ve değiştirilebilir katyon kapasitesi (CEC) ile belirtilir. Genelde K+, Na+, Ca++ ve Mg++ un mek.gr. olarak çözünür tuzları haline geçirilmesi için gereken H3O derişimi veya tersi olarak belirtilir ve 20-200 mek=mg H+/kg. toprak aralığında değişir. Toprak mineral maddesinde ortalama %70-80 oranında silis, %10-15 alümina, %5 kadar demir oksitler, % 2 civarında potasyum oksit, %1 kadar kalsiyum oksit ile aynı oranlarda mağnezyum oksit bulunur ve diğer tüm element oksit ve tuz formları ancak %3 oranı civarındadır. Yani temel olarak toprak silikatlar ile oksitler ve organik maddeden oluşur, su e haa içerir. Toprak azotlu mineral içermez, çünkü bu inorganik azot tuzları yüksek sıcaklıklarda durağan yapılı değildir ve mağma soğurken gazlaşmışlardır. Bundan dolayı atmosferin %78i azot gazıdır. Toprakta azot organik maddede bulunur. Bu nedenle de uzun süre bitki örtüsüz kalan ve mikroflorası zayıflamış topraklar azotça fakirleşir. Toprağın azotça zenginliği humus adı verilen, nemli ortamda mikrobiyolojik aktivite ile bozunmuş organik madde miktarına bağlıdır. Humus mineral partiküllerini çevirerek örter ve koyu kahve rengini renk verir. Bunun en tipik örneği kahverengi orman toprağıdır. Humus kolloidaldir, oluşumu gereği toprağın en üst tabakasında, toprağın A horizonunda yığılır. Bunun altındaki B tabakası genelde killi, Al silikatlarınca zengin tabakadır. Bu en ince tanecikli Al silikat mineralleri tabakası da kolloidal özelliği nedeniyle su adsorbe ederek şişme özelliğine sahiptir. Al silikatların zamanla bozunma eğilimleri farklıdır, bu nedenle toprak yaşlandıkça B tabakasında bozunmaya daha dayanıklı olan Al silikatlar kalır, bozunanlar daha alt tabakalara iner. Çünkü A tabakası güneş, rüzgar ve yağış ile donma ve çözülmenin etkilerine açıktır. Sonuç olarak toprak yaşlanması üst tabakada dirençli ve toprak çözeltisine yeni mineral madde sağlama kapasitesi düşük tabaka oluşmasına neden olur. Çok yaşlı topraklarda killerin büyük kısmı süzülen su ve yerçekimi etkisiyle B tabakasına toplanır ve A - B horizonları farklılaşır. Erozyona uğramadan çok yaşlanan topraklarda B horizonu da aynı şekilde fakirleşir. Erozyon ile üst tabakaları sürüklenen topraklar organik madde ve kilce fakirleştiğinden verimliliğini kaybeder. Eğimli yerlerde bitki artıklarının ve organik maddelerin sürüklenmesi sonucu aynı anakayadan oluşan topraklar düz arazidekinden farklı yapıda olur. Toprakların temel karakteristikleri oluşum kaynağı olan anakayanın özelliklerine bağlıdır. Anakayanın jeolojik devirlerdeki temel özellikleri ve parçalanma eğilimleri, topografya, etkisinde kaldıkları iklim koşulları gibi etkenlere göre mineralojik ve kimyasal özellikleri farklılık gösterdiğinden üzerlerinde oluşan topraklar da çok farklı olur. Ayrıca anakayanın su altında kalması ile üzerinde sedimanter kayaç oluşması gibi ikincil gelişmeler etkili olur. İklim de aynı anakayadan oluşan topraklar arasında farklılıklara neden olan önemli etkenlerdendir. Sonuç olarak toprak anakaya, topoğrafya, iklim ve bitki örtüsü ile süreç, tarihçenin ürünüdür. Bu 5 değişkenin 10(5) farklı tip oluşturması mümkündür. Temel kimyasal yapıları ise alüminyum ve demir silikatlar, yani Si, Al ve Fe ile Oksijenin ana elementleri olması, önemli miktarlarda Ca, Mg ve K ile Na içermeleri nedeniyle benzerdir. Bu katyonlar topraktaki silikat ve karbonatların bozunması ürünüdürler, toprak organikmaddesine bağlanmadıklarından anak iyondeğişimi dengesine girdikleri oranda toprakta tutunabilir, aksi halde yıkanarak derinliklere doğru süzülürler. Esas makroelementlerin diğer grubu olan azot, fosfor ve sülfür ise organik maddeyle yakın ilişkili olan elementlerdir ve organik madde bozulumu ile toprağa karışırlar. Fe ve Al gibi polivalentlerin iki değerlikleri hidroksille ve ancak bir değerlikleri diğer bir anyonla birleşir. Fosfatın -1, 2 veya üç değerlikli formlarının birbirine oranı ise toprak pHdeğerine bağlıdır. Topraklar içerdikleri kum, silt, kil ve organik madde oranlarına göre tekstür sınıflandırması sisteminde kum, kil ve silt üçgenine yerleştirilen organik maddeli kum, kumlu organik madde gibi sınıflara ayırılır. Bu sınıflandırma elek analizine, yani tanecik boyutlarına göre oranlamaya dayanır. Killer, kolloidal düzeye kadar çok ince taneciklere kadar ayrışmış toprak mineralleri karışımıdır. Bu incelme mineral kristallerinin parçalanmasına kadar ilerlemiş olduğundan anyonik ve katyonik bileşikler içerirlerse de çok büyük oranda - yükler hakimdir ve bu nedenle killi toprakların CEC değeri yüksektir. Bu kapasitenin hidroksonyum veya Ca, Mg, K veya Na tarafından doyurulması toprağın depo pH değerini belirler. Topraktaki K kaynağı genellikle Al silikatları olan biyotit, muskovit gibi minerallerdir ve depo K oranı yüksektir. Fakat bitkilere yarayışlı K oranı düşük olduğu gibi bunun bir kısmı da az yarayışlıdır. Çünkü K lu silikatların bozunma ürünlerindeki K tuzları büyük oranda kolay çözünüp suyla yıkanır maddelerdir ve toprak CEC inin büyük kısmı H+, Na+, Ca++ ve Mg+ tarafından kullanılır. Çünkü K+ un su zarfı / iyonik çekim kuvveti oranı diğerlerinden büyüktür ve tipik olarak kapasitenin %5 ini kullanabilir, diğer kısmını Ca >% 60, H >%20, Mg>%10 oranında paylaşır. Bu üç K fazı arasında kinetik bir denge vardır ve tipik oranları >%90 depo, % 1 - 2 tam yarayışlı çözünür K fazı, aradaki fark da değiştirilebilir fazdır. Bu fazlar arası dengeler de organik madde ve kil, mineralojik bozunum düzeyi, K ile değişim kapasitesi rekabeti gösteren katyonlar, toprak nemi gibi etmenlere bağlıdır. K+ su sferi genelde birçok killerin kristalografik kafes yapısına uyumlu olduğundan adsorpsiyonu ve iyon değişim kapasitesine girmesi kolay olmakta ve bu sayede bitkilere sağlanması süreklilik kazanmaktadır. Ancak kaolen gibi su alarak şişme özelliği düşük olan bazı killer ile uyuşmadığından toprakların K değişim kapasitesi farklı olmaktadır. Önemli bir etmen de toprak pH sıdır, asitleşme H3O rekabeti ile, alkalileşme ise su sferi küçük ve iyonik kuvveti daha çok olan Ca+2 rekabeti ile K bağlama kapasitesini azaltır, bu nedenle tipik olarak pH 5.5 - 8.5 aralığında değişebilir K oranı artar. K+ bağlayan killerin tutma kapasitesi için benzeri özelliklere sahip amonyum da rekabet eder. Ayrıca toprağın donması ve çözülmesi, ıslanıp kuruması olaylarının tekrarı da değişim kapasitesini arttırırken çözünmüş K miktarını azaltır. Yağış bitki örtüsü zayıf toprakta K yıkanması ile kaybına neden olur ve bu nedenle seyrek, düzensiz ve şiddetli yağış alan bölgelerde bitki örtüsünün giderek daha da zayıflamasına neden olur. Bitki örtüsü yeterli olan yörelerde de otlatma, hasat gibi olayların tekrarı aynı şekilde etkili olur. Çünkü, ancak derindeki yıkanmış K kapasitesini kullanabileek derin köklü bitkiler ve taban suyuna kadar inen K un yüzeydeki buharlaşmanın emme kuvveti ile dipten K çekmesi dışında toprakta N gibi K döngüsü yoktur. Kum oranı yüksek ve kili az topraklar su tutma kapasitesi ve mineral verimliliği düşük topraklardır. Havalanmaları iyidir ve suyu kolay alırlar. Bu nedenle de organik maddeleri yüksek verimli topraktırlar. Killi topraklar iyi tekstürlü topraklardır, iyon değişim kapasiteleri yüksektir, yalnız yaşlandıkça bu kapasiteleri azalır, toprak çözeltisiyle birlikte iyonları alt tabakalara doğru yıkanarak (leaching) kil dağılımı A zonunda %10, B zonunda %50 oranına kadar çarpılabilir. Nemli ılıman bölgelerde verimlilikleri yüksektir, ancak derindeki kil tabakası şiddetli yağışlarda taşmaya da neden olabilir. Kurak ve sıcak bölgelerde ise az killi topraklar daha yüksek verim sağlar, çünkü üst tabakadaki kilin tuttuğu su buharlaşarak kaybolur ve bitki köklerine ulaşamaz. Buralarda ancak saçak köklü ve yüzeye yakın kök sistemi olan bitki türleri yaşamlarını sürdürebilir. Böyle ortamlarda kilin aşağı tabakalar indiği yaşlı topraklar daha yüksek verimlilik sağlar. Yaşlı topraklarda C horizonunda biriken kum e siltin bozunarak kile dönüşmesi de görülür. Kum, kil ve organik madde dengesi iyi olan ve derin üst tabaka yeterli su tutma ve iyon değişimi, düşük buharlaşma ve yüksek su geçirgenliği (permeabilitesi) ile ideal üst horizon tabakasıdır. B tabakasında yeterli kil bulunursa süzülen su da bitkilerce kullanılabilir ve buharlaşma halinde de yukarıya yönelerek su deposu oluşturur. Yeterince killi topraklar topaklanarak ideal strüktür sağlarlar, kumlu veya siltli ve organik maddeli olanlar ise masif yapılar oluşturur ki bunların porozitesi çok düşüktür. Toprak taneciklerinin agregalar halinde topaklanması, fungus ve aktinomiset miselleri, kolloidal kil taneciklerinin katyonları ile organik maddelerin anyonları veya kil anyonları ile organik anyonların mineral katyon kelatları halinde birleşmesi gibi mekanizmalarla olur. Organik madde en üst tabakanın % 1 - 6 sını, ortalama olarak %3 ünü oluşturur. Kuru ağırlık olarak %20 civarında organik madde içeren topraklara organik, diğerlerine mineral toprak adı verilir. Organik madde bitki ve hayvan artıkları, bozunma ürünleri ve canlı eya ölü mikroorganizmaları içerir. Organik madde azot kaynağıdır ve özellikle humus su tutma kapasitesini, iyon dezorpsiyonu ve değişimi kapasitesini arttırarak bitkilerin büyüyüp, gelişme şansını arttırır. Kimyasal ve biyolojik ayrışma ve dönüşümler sonucunda kolloidal, gri - kahverengi - mor - siyah renk aralığında ve ortalama olarak % 60 C, % 6 N ile P ve S içeren humus meydana gelir. Bakteriler, fungi ve protozoa ile mikro artropod, solucan gibi canlıların etkinlik ürünü olarak meydana gelir. Bol miktarda polimerleşmiş organik asitleri içerir. Humik asit adı verilen bu yapı jel halinde, kil tanecikleri arasında çimento oluşturarak sağlam bir su ve iyon tutucu yapı meydana getirir. Renk polimerleşmenin ilerlemesi ile koyulaşır. Humuslaşma bitki artıkları, mikro populasyonların etkinlik oranları ve ortam şartları ile toprağın mineralojik yapısına göre farklılıklar gösterir ve buna göre gerek humus tipleri, gerekse topraklar sınıflandırılır. Örneğin mor tip humus asidiktir ve özellikle soğuk bölgelerdeki iğne yapraklı ormanlarında görülür, fulvik asit denen az polimerleşmiş humik asit podzoller adı verilen toprakları oluşturur. Humus tipi podzollerin kil oranını değiştirmesine göre de alt toprak tiplerini ortaya çıkartır. Canlı artıklarında C/N oranının düşük oluşu mikrobiyal aktiviteyi arttırarak bozunmayı hızlandırır. C mikroorganizmalar tarafından kullanıldıktan sonra CO2 olarak salındığından zamanla toprak organik maddesindeki C/N oranı düşer e bu oran 1/17 oranına geldiğinde mikroflora azotu kendi metabolizması için kullanamaz hale gelerek NH3 halinde salgılar ve toprak organik maddesi bozunması bu iki gazın çıkışı ile sürer. Oran 1/11 civarına indiğinde de organik madde bozunması dengeye yaklaşır ve yavaşlar. Kayaçlarda azotlu mineral bulunmaması, mağmanın soğuması sırasında azotun gaz halinde atmosfere geçmesi nedeniyle yeryüzündeki tüm azot canlılar tarafından fikse edilmiş olan azottur. Havadaki azot kozmik ışınlar ve yıldırım düşmesi gibi enerji sağlayan olaylarla toprakta fikse edilebilirse de bu önemsiz düzeydedir. Havadaki azotun fikse edilmesini, bitkiler tarafından kullanılır hale getirilmesinde rol alan mikroorganizmalar Azotobacter, Beijerinckia, Clostridium, Nitrobacter, Nitrosomonas ile bitkilerle ortak yaşayan Rhizobium ve Spirillium bakterileridir. Rhizobium Leguminosae ve Mimosoidae familyaları cins ve türleri bitkilerin köklerinde ortak yaşayarak azot fikse eden nodüller oluşturduğundan, Spirillium ise Graminae türleri simbiyontu olarak diğer serbest yaşayan cinslerden farklıdır. Azotobacter hava azotu fiksasyonunda rol alan ototroflar arasındaki en önemli gruptur ve tümü toprak organik maddesinde C/N oranı yüksek olduğunda çoğalıp etkili olmaya başlarlar. Serbest azot termodinamik açıdan çok kararlı bir molekül olduğundan tepkimeye sokulması için çok enerji gerekir. Bu açıdan azot fikse eden bakterilerin canlılığın sürmesindeki rolü fotosentetik canlılar kadar önemlidir. Tipik olarak toprak üst tabakasında %3 - 5 oranında olan organik maddede %5 civarında azot bulunur. Oran bunun altına doğru azaldıkça bu bakteri grubunun etkinliği artar. Karbohidratları kullanarak havanın azotunu amonyak ve nitrata çevirirler. Ortalama olarak 1 ton topraktaki 100 kg. karbohidratı uygun nem ve sıcaklıkta 20 günde tüketirler, arazi koşullarında ise 1 dönümde ancak 10 - 15 kg. azotlu biyomas oluştururlar. Fakat ortamda diğer mikroorganizmalarca sağlanan inorganik azot bileşikleri varsa tercih ederler. Mavi - yeşil alglerden Anabaena, Nostoc cinsleri de havanın azotunu fikse edebilen canlılardır. Bakterilerle funguslar arasında bulunan aktinomisetler gene kalsiyumca zengin ve otların hakim olduğu topraklarda bulunur, funguslar ise asidik topraklara dayanıklıdır ve orman topraklarında boldurlar, bakterilerden daha az sayıda olmakla birlikte toplam kütleleri daha yüksektir. Toprakta mikrobiyolojik aktivite artışına paralel olarak onlarla beslenen protozoa da artarsa toprak organik madde artışına önemli katkıda bulunur. Topraktaki amonyak ve amonyumu nitrata oksitleyen ototrofik nitrifikasyon bakterileri çevrimi nemli ve sıcak, iyi havalanan toprakta en etkin olarak yürüten aerobik canlılardır. Enerjiyi canlı artıklarından, azotu havadan sağlayan bakteriler yanında Leguminosae ve Mimosoidae türlerinin kök nodüllerinde yaşayan ve enerji ile karbon gereksinimini bitkiden sağlayan bakteriler de vardır. Nitrifikasyon yüksek sıcaklıklarda solunumun artışı sonucu fosfor dekompozisyonunun da maksimum olmasını sağlar. Genellikle kalsiyum gereksinimleri yüksek olduğundan hafif alkali topraklarda gelişirler. Nemli, sıcak ve iyi havalanan hafif alkali topraklarda 1 gr. toprakta yoğunlukları 1 milyar bakteri / 1 gr. toprağa kadar yükselebilir. Amonyaklaşma canlı artıklarının anaerobik ortamda mikrobiyal bozunma ürünüdür ve havaya karışır veya amonyum hidroksit halinde çözünür, ya da oksitlenerek fikse edilir. Nitrobacteriaceae familyasından Nitrosomonas, Nitrosospira, Nitrosococcus ve Nitrosolobus nitrozobakterileri amonyağı nitritlere yükseltger. Bitki ve hayvanlar için toksik olan nitritler ise özellikle Nitrobacter ve Nitrospina, Nitrococcus tarafından nitratlara yükseltgenir. Organik maddenin bozunması sırasında proteinlerin azotu amonyak haline açığa çıkarsa da suyla hemen oluşturduğu amonyum hidroksit bakterilerce oksitlenerek nitrata dönüştürüldüğünde çözünürlüğü yüksek tuzlar yapar. Cinsler arasında amonyum ve nitrat alım oranları açısından farklılıklar görülür, örneğin bazı Graminae cinsleri özellikle ilk büyüme ve gelişme dönemlerinde amonyumu daha etkili kullanırken pamukta durum tersinedir. Azotobacter, Clostrodium, Nitrosomonas ve Nitrobacter havanın azotunun amonyağa ve daha sonra da oluşan amonyum hidroksitin nitröz asidi üzerinden nitrik aside oksidasyonunu sağlar, son ürün olarak ta CaNO3 başta olmak üzere tuzlar oluşur, bitkilerce alınarak kullanılır. Rhizobium ise legümler ve Mimosoidae türleri ile diğer bazı odunlu cinslerinin köklerinde oluşturdukları nodüllerde azot fiksasyonu yaparlar ve özellikle nötr-hafif asidik, yeterli P, Ca, Mo içeren topraklarda etkilidirler. Azotobacter alkali, Clostrodium ise asidik topraklarda daha etkindir. Azotobacter C/N oranı 33 den büyük ve P, Ca, Fe ve Mo elementleri yeterli topraklarda yeterli etkinlik gösterebilir. Toprakta azot iz miktarlardaki N2O, NOx ve daha yüksek olabilen NH3 gazları, NH4+, NO2- , NO3- iyonlarının asit ve özellikle tuzları halinde bulunur. Tuzlar bitkilerce alınamazsa kolayca yıkanarak alt horizonlara iner. Bu nedenle erozyon toprağın azotça fakirleşmesine neden olur. Günümüzde artan hava kirliliği nedeniyle atmosferde biriken NOx gazlarının yağışla toprağa inmesi sonucu oluşan azotlu asitler ve toprakta dönüştükleri tuzları bitkilere önemli oranda azot kaynağı sağlayabilmektedir. Öte yandan azotlu gübrelerin kullanımı da kirletii azotlu gazların oluşumu ile hava kirliliğine, yıkanan nitrit ve nitratlarla da toprak ve su kirliliğine katkı yapmaktadır. Nemli koşullarda organik maddece zengin ve fakir topraklar arasında da CO2 ve NH3 çıkışı toplamı arasında 1/11 gibi büyük bir fark vardır. Toprağın alt horizonlarında ise C/N oranı 6/1e kadar düşebilmektedir. Toprak organik maddesindeki proteinler ve peptidlerin bozunması ile amino gruplarını içeren maddelerin bir karışımı oluşur. Bu aminasyon ürünleri mikrobiyolojik aktivite sonucu su ile birleşerek amonyağa dönüşür. Amonifikasyon sonrası açığa çıkan amonyağın bir kısmı ototrof nitrifikasyon bakterilerince nitrite yükseltgenir. Bu bakteriler enerji kaynağı olarak inorganik tuzları, C kaynağı olarak da CO2 i kullanırlar. Amonyağı oksijenle birleştirerek nitritlere dönüştürürken hidroksonyum açığa çıkışı olur ve bakteriler enerji elde ederler. Nitritlerin oksijenle nitratlara yükseltgenmesi de eksotermiktir. Oksijen gereksinimi nedeniyle bakteryel etkinlik iyi havalanan, kaba tekstürlü topraklarda artar ve toprak organik maddesinin pH değeri biraz düşer. N2 + 10 H3O + 8 e- ® 2 NH4 + 3O2 ® 2 NO2- + 2 H2O + 4 H3O+ + E ® 2 NO3- + E nitrojenazlar Özellikle anaerobik koşullarda organik biyoması sübstrat olarak kullanan ve elektron kaynağı olarak Mo, Fe veya Cu, V içeren nitrit redüktaz etkisiyle denitrifikasyon sonucu serbest N2 çıkışı azot çevrimini tamamlar. Anaerob koşullar N2 benzeri koordinasyon molekülü olan O2 in rekabetini engeller, aerobik koşullarda ise heme proteinleri gibi Fe li O2 akseptörleri ile bakteri rekabeti önler. Amonyak ve nitrat bitkiler tarafından alınarak organik azot bileşiklerine çevirilebilen azot formlarıdır. Amonyum ise killerce değişebilir ve sabitleşmiş şekilde adsorbe edilir ve çözeltiye geçen oranı düşüktür. Köklerce özellikle iyon değişimi ile alınır. Killerin mineralojik bileşimlerine göre amonyum değiştirme ve fikse etme oranları değişir. Fiksasyon oranı arttıkça mikrobiyolojik veya bitkilerce kullanılabilir oran uzun vadeli olarak düşer. Topraktaki tipik yararlı/ toplam azot oranı %2, organik maddece zengin üst katmanda fikse azot ise %7dir. Derinlere doğru fikse azot oranı %60 a kadar artar. Bu nedenle toprak ıslahı için derin köklü ve azot fikse edebilen nodüllere sahip bitki dikiminden yararlanılır. Bitkiler genelde nitratın birkaç ppm düzeyindeki miktarlarından yararlanabilir. Çünkü daha yüksek miktarları toksiktir. Ancak kumul bitkileri organik maddesiz ortamda normal gelişimlerini gösterebilir. Organik madde bozulumu moleküler düzeye kadar sürdüğünden iyon bağlama kapasiteleri yüksektir. Özellikle linyin gibi dayanıklı moleküller CE depo kapasitesini arttırırlar. 1 gr. toprak organik maddesinin CEC değeri 1 gr. kilinkinden daha yüksek olduğundan en verimli topraklar orman topraklarıdır. Organik maddede de CEC > AECdir, çünkü reaktiv grupların çoğunluğunu karboksiller oluşturur. Sülfür bakterileri de topraktaki S formu dönüşümlerinde çok önemli yer tutar. Topraktaki pirit (-2 değerlikli iyonik FeS2 ) veya FeS, CuS, CuFeS2 içeren mineralleri ve elementel S ü, CO2 i redükte ederek elde ettikleri elektronlarla suda sülfürik asit olarak çözünen SO3 e oksitleyen Thiobacillus türleri gibi kemoototroflar ağır toksisitesi ve düşük pH a dayanıklılıkları ile dikkat çekicidirler. Topraktaki S kaynakları iklim bölgelerinde farklılık gösterir. Nemli iklimlerde özellikle pirit- FeS2, jips - CaSO4 mineralleri halinde bulunur ve tipik olarak %0.01 - 0.15 oranında toplam S ile 50 - 500 ppm çözünür sülfat sağlar. Kurak ve yarı-kurak bölgelerde ise toplam miktarının çoğunu çözünür toprak alkali sülfatları oluşturursa da toplam S %80 -90 oranında organik maddede bulunur. Sülfat killerce, özellikle Al ve Fe oksitleri tarafından AEC çerçevesinde depo olarak tutulabilmektedir. Organik maddedeki biyolojik S büyük oranda proteinlerdeki -S-H ve S-S bağları ile bağlı olan, az bir kısmı ise çözünür sülfat tuzlarından oluşur. Aerobik koşullarda sülfat mikroorganizmalar ve bitkilerce alınır veya yıkanarak derinlere inerken proteinlerdeki sülfürün bir kısmı oksitlenir, diğer kısmı ise önce redüklenerek hidrojen sülfür gazına dönüşür. S ancak mikrobiyolojik canlıların O2 ile H2S ü tersinir bir tepkimeyle oksitleyerek sülfata dönüştürmesiyle yararlı hale geçebilir. Bu arada toprak asitleşirse de fosfatdan farklı olarak toprak kolloidlerince adsorplanabildiğinden toprağın organik ve kil kolloid miktarı artışı asitleşmeyi azaltır. Topraktaki S yıkanma ve bitkisel tüketime ek olarak erozyon etkisiyle tükenebilir. Özellikle bazı türler çok S kullanırlar ve toprağı fakirleştirirler, hava kirliliği ve asit yağmurları ise toprağa S sağlar. Topraktaki S genelde %0.05 civarındadır ve üst tabakada 500 kg/dönüm kadar bulunur.

http://www.biyologlar.com/topragin-mineral-madde-verimliligi


Topraktan Mineral Madde Alımı

Bitki kökleri toprak çözeltisinden daha önce belirtilen mekanizmalarla su ve mineral madde alırlar, toprağın havasını kök solunumu için kullanırlar. İdeal olan tarla kapasitesindeki toprağın por hacminin su ve hava tarafından yarı yarıya paylaşılması ideal durumdur. Nemli ortamlarda toprak havalanmasına porozite artışı yolu ile solucanlar gibi hayanlar önemli katkıda bulunur. Toprağın yapısını bitkiler kökleri ile destekler, ölü kökler toprakta çeşitli çaplarda kanallar oluşturarak poroziteyi ve permeabiliteyi arttırdığı gibi organik madde oluşumuna katkı sağlar. Bu açıdan derin ve yaygın kök sistemleri ile yüzeysel kök sistemi olan türleri içeren ekosistemler sürdürülebilir özellik kazanır.Bu açıdan toprak sıcaklığı da önemlidir. Mikrobiyal aktivite yanında evaporasyon ve bunun serinletici etkisi gibi etkilerin karmaşık ilişkileri söz konusudur. Toprak mikrobiyolojisi özellikle bitkilerin azot beslenmesi ve organik madde içeriği açısından çok önemlidir. Toprak organik maddesinin yaklaşık yarısına kadar olan kısmını mikro canlılar oluşturur.Topraktan alınan su miktarı ile iyon miktarı paralellik göstermez, yani bitki iyon alımını denetimi altında tutar. Kökler katyonları özellikle protonla iyon değişimi yaparak alırlar, azot NH4 katyonu ve NO3 anyonu, P özellikle H2PO4 ve S de SO4 halinde alınır. Tuzları halinde bulunan iyonların alım oranları farklıdır, örneğin NaCl çözeltisinden aynı miktarda Na ve Cl alınmaz, bu oran da denetim altında tutulur. Fosforun toplam miktarı ile bitkilerin kullanabildiği fosfor miktarı paralellik göstermediğinden faydalı fosfor analizi ile sonuca gidilir.

http://www.biyologlar.com/topraktan-mineral-madde-alimi

Yassı Solucanların Anatomisi

Polycclad Yassı Solucanların Anatomisi İsmininin de önerdiği gibi, serbest yaşayan solucanlar dorso-ventrally yassılanmış olup birkaç milimetreden daha kalın değildirler Boyutlar bir milimetreden daha azdan balar ve 30 cm nin üzerine kadar uzanır. Çoğu polycladler son derece hassastırlar ve tipik olarak düz bir dorsal yüzey içeren ve/veya oval şekillerine sahiptirler. Bununlar birlikte, dorsal papillae (Acanthozoan, Thysomozoan) sergilerler. Solucanların anteriorlarında uç kısımlarda dokanaç (tentacle) yer aldığından ve çok parlak renklere sahiptirler ve nadiren de olsa bazen yanlışlıkla nudribranc olarak kabul edilirmişlerdir. Fakat nudribranclara karşıt olarak, anterior sınırında dokanaçlar çoğunlukta basit bir yapı halinde tutunmuşlardır. Onlar yol boyunca nudribranclara nazaran daha fazla hareket ederler ve aynı zamanda çok ince yapıya sahiptirler ve elle tutulduklarında kırılmaya çok eğilimlidirler. Bununda ötesinde, onların özel terleme organları (gills) yoktur ve terleme solucanların tüm yüzeylerinde difuzyon yoluyla gerçekleştirilmektedir. Tüm yüzeylerinde difuzyon yoluyla gerçekleştirilir. Polycladler geniş bir renk çeşitliliği ve yapısı sergilerler. Onlar marginal buruşukluklara sahiptirler ve boyutları ile sayıca artmaya eğilimlidirler. Donük türler haricinde (siyah ve esas itibariyle siyah renkli) türler transparenttirler ve iç organları epidermis boyunca görülebilir. Özellikle ovarisleri parlak veya koyu renkli mor renklere sahiptir ve dorsal yüzeyin en dış kısmı binlerde vurucu cilia ile beraber engelleyici epidermistirler (ectodermal orijinli bir tek hücre tabakası). Onun da altında, dairesel kasın dış tabakası ve kasların iç tabakası birbirine parallel uzantı şeklindedir ve aralarında vucut plastisitesi mevcuttur. Dorsal ve ventral epidermis arasındaki boşluk parenchymal doku ile dolmuştur ku bu çok sayıda gizli hücrelere sahiptir ve bununla sümükler dışarı atabilirler ve diğer bileşenler epidermal boşluklarla oluşmuştur. Dorsal ve ventral epidermis arasındaki boşluk parenchymall doku ile dolmuştur ve çok dallanmış bağırsak ve üreme sistemi gibi organları içermektedir. Parenchymal doku mesodermal kökenli olup sümük dışarı ataliben çok yüksek sayıda gizli hücreler ve epidermal boşluklar içermektedir. Polyclad hidrostatik iskelete sahiptir ki bu sulu hayata çok güzel adapte olmasını sağlamaktadır. Mesodermdeki içsel vucut sıvısı kapalı vucut kompartmanında basınç altında tutulmakta ve vucut duvar kaslarının hareketine destek sağlama amacıyla hidrostatik iskelete karşı kuvvet uygulamaktadırlar. İki yönle hareket vardır. Küçük boyutlu türler ince kıla benzeyen ventral cilia ile vuruşlarla taban boyunca kaymasını sağlar. Büyük boyutlu türleri ise (Tysanozoan sp. gibi) aşağıda sol panelde gösterildiği gibi vucut kaslarının ritmik vuruşlarıyla yüzmeye muktedir olabilirler. Solucanlar vucutlarını ileri ve kıyıya atarak bir seri dalgalandırma yaratırlar ve yer üzerinde ileriye doğru sürünürler. Polycladlerin iki yönlü vucut şekilli hali cephalize olmuştur, bu tanımlanabilen baş bölgelerine sahip olduğu anlamındadır ve orada sinir fonksiyonları ve duyu yapıları yer almaktadır. Solucanların sinir sistemi merdiven şekline benzeyen uzun boylu sinir ipi çiftine sahiptir ve bunlar çapraz olarak birleşmişlerdir. Beyinsel anteriordaki ganglion düğümde son bulurlar ve kafanın içinde veya dışında yeralan sinirsel büyük bir top şekline sahiptirler. Son zamanlarda bazı poyclad türlerinde küçük ama iyi tanımlanmış beyin sinirbiyolojisinde model sistem olarak servis yapan beyin cytoarchitecture ve sinirsel tamir mekanizmasını araştırmalar yapılmıştır (Bakınız Bölüm: Polyclads ve Neurobiology). Başın görünen karakteri dokunaçların oluşumudur ki çoğu durumlarda anterior sinirinin belirtilmesi (=pseudotentacle) gereklidir. Bu kör bir basit boru şeklinde veya geniş kapaklı olarak olarak gösterilirler. Çoğunlukla, Thysonozoon sp.‘nın kafa bölgesinde görüldüğü gibi kulağa benzerler (sol panel). Anterior beyinsel ganglion düğüm ve onun büyük iç sinirlerine benzerler ve solucanların “beyin” i çok sayıda foto ve kimyasal hassas hücrelerinden oluşan sinir sinyallerinin analizi esas olarak, kafada ve Pseudotentaclelerde konsantre olmuşlardır. İlave olarak, yüksek sayıda mekaniksel alıcılar epidermiste dağılmış vaziyette yer almışlardır. Fotoya duyarlı hücreler beyinsel göznoktalarında bulunur ki orada yuvarlak salkım olarak çeşitli gözler yeralmışlardır. İleri gözler, ventral ve dorsal yalancı dokanaçlarda yeralmışlardır. Bu gözler gelen görüntünün şekillenmesine kabiliyetli değildirler ama ışık istikameti ve yoğunluğunun değişimine hassatırlar. Yassı kurdun parlak ışığa duyarlı olduğu zaman, özellikle koyu yerlere doğru geri çekilirler. Vertebrateler ile mukayese edildiklerinde, poycladlerin gözlerinin organizasyonu oldukça basittir. Bu tip göz, birçok lens ile kapatılmış olup “pigment cup ocellus” olarak tarif edilirler. Ocelli beyinsel göznoktasının bir parçasıdır ve çeşitli ışığa duyarlı hücrelerden oluşurlar ve konkav kap şekline sahiptirler. Kabın duvarları pigment içermektedir ve bunlar uç taraftan gelen ışığın sızmasını enlellerler. Hücrelerin ışığa duyarlı kısımları (microvilli) opak kabın içersinde düzenlenmişlerdir ve yanlızca bir yönden gelecek ışığa karşı duyarlıdırlar. Gelen ışığın açısına bağlı olarak, loş kısımler ışığa duyarlı yapıların üzerine gölge olarak düşerler. Kap aktif olarak kaslar tarafından döndürüldüğünden çabuk değişen gölge izleri yaratılır. Sinir sinyallerine karşılık olarak, beyinsel ganglion’a gönderilirler ki orada bilgiler analiz edilirler, uç boyutlu oryentasyon ve uygun davranış reaksiyonu gösterirler. Polycladlerin görsel duyularından dolayı çevresel oryentasyonu için yeterli olmayabilir ve polycladler iyi gelişmiş kimyasal dedektörlü batarya vardır ve molekülleri tanımaktadırlar. Kimyasal bileşenlerin besin ve eş bulmada önemli rol oynadıkları düşünülmektedir. Besin ve eş bulmada belirgin moleküller boşalarak akış ile içeri girerler. Bu solucanlar kimyasal alıcıları tarafından algılanarak koku yayarlar. Bunlar özellikle ventral yalancı dokanaçlarda yerleşmişlerdir ve orada yivli ciliate şeklinde salkımlanmışlardır. Aktif solucanlardaki yalancı dokanaçlar hareket halinde meşgul görülürler ve bu kimyasal duyarlı alet solucanların yönünü bulmalarında ve koku çıkarmalarında temel karar veren davranış olarak kabul edilir. Auricle ve göz noktalarına ilave olarak (Bakınız: yukarıdaki sol foto ve alçak panel) yassı solucanlar statocyst adı verilen ilkel denge organları vardır ki basınca duyarlı saç ve küçük taneli materyalli hücreler içerirler ve bu hayvanların yukarıya doğru gitmesinde büyük rol oynarlar. Yassı solucanın dinlenme, tamirat ve cam slaylarda hazırlanmasından sonra (wholemounts) ventral bakış karakterlerinde ölü solucanlar gözlenerek incelenir. Bu karakterlerin coğu türlerin taxonomi belirlenmesinde önemli rol oynarlar ki bu oldukca zor bir görevdir. Basın yanında ağız ve pharynx gözlenebilir. Genel olarak, polycladlar pharynx plicatus’a sahiptirler. Bu tip pharyngeal tüb uzun be dairesel kas tabakası sergiler ki o pharynx’in şeklini çok fazla değiştirir ve sıvıyı bağırsak boşluklarına doğru pompalar. Bununda ötesinde, pharyngeal ceplerini ayıran özelliğine sahiptir ki orada kullanılmadığında dışarı atılırlar. Pharynx boru şeklinden çeşitli şekillere kadar yapı gösterirler (örneğin, yuvarlak veya oval çok sayıda pharyngeal lob içeren çok buruşuk şekiller). Beslenmede, pharynx ağızdan çıkıntı yapar ve Pseudobiceros türünün bazı tiplerinde tüm hayvanları yutacak boyutta açılırlar. Ventral yanın ortasında, alt sınıf Cotylea yapışkan organa sahiptir ve vantuz olarak adlandırılır. Arazi gözlemlerinde bu organ hayvanların alt tabakalara yapışmasında kullanılır. Küçük invertebratelerin yakalanmasında ve yiyeceklerin hazmında işlev görür. Ender olarak, Pseudobiceros örneğinde ve Pseudoceros’da iki eşit olmayan vantuz bulunmuştur. Diğer tür polycladlerin belirgin karakterleri erkek ve dişi üreme sistemlerinin anotomisidir. Polycladler hermaphrodiktir. Onların ikiside erkek ve dişi üreme organları yumurta ve sperm üretirler. Yetişkin solucanlar, ki esas olarak üremeye geçmişlerdir, vucut hacminin yüksek yüzdesi testes ve ovarislerden oluşmuştur. Çoğu türlerde, bu serpistirilmiş haldedir ve ventral ve dorsal parenchyma da yerleşmiştir. Bununla birlikte, dışarıdan yanlızca erkek ve dişi gonophore’lar gözlenmiştir. Genel olarak, erkek boşluk pharynx’de posterior olarak bulunmuştur ve penis papilla ve penial stylet tutarlar, organları eş için uzanırlar. Pseudobiceros türünün çift erkek üreme sistemi, iki erkek boşluk ve erkek organları ile karakterize edilirler. Dişi boşluk daima açıkca erkek boşlukta ayrılmıştır ve posterior’da yerleşmiştir. Çoğu türler (Pseudoceros, Pseudobiceros)’in bir tek dişi boşluğu vardır bununla fakat Nymphozoon’in çok sayıda dişi boşluğu vardır. Dişi üreme sistemi yumurtalık, yumurta sarısı, kabuk beze, bir yarı hazne, ve döl yatağı bulunur ve orada yumurtalar döllenir. Eşleşmeden sonra (Bakınız, Bölüm: Eşleşme ve yeniden üreme) spermler dişi vucuda enjekte edilir (Hypodermal insemination) dişinin üreme aygıtına ve yarı hazneye doğru depolanma amacıyla göçederler. Yumurtalar yumurtalıktan oviduct’a doğru geçerler ve yarı haznede sperm tarafından döllenirler ve yumurta sarısı ile kaplanmış ve kabuk beze ile gizlenirler. Daha sonra üreme organlarına geçerler ve düzensiz yumurta kütlesi şeklinde depolanırlar. Yeniden üreme sisteminin yanında, çok sayıda yanal dallara sahip bağırsak solucanlarının vücut hacminin yüksek yüzdesini teskil eden ikinci organdır. Nutrientlerin vücut hücresine transferinde bağırsak sistemi (intestial), vucudun hemen hemen her tarafına uzanmış olup vurucu cilia ile kaplanmışlardır. Yarı saydam solucanların haricinde (Aquaplana sp.) bağırsak dallarının dağılımı ve onların anotomik detayları gözlenmede çok zordur. Polycladlerin kör sindirme sistemi bulunduğundan sindirilemeyen materyaller pharynx’e doğru yani yiyeceklerin geldiği aynı açıklığa doğru dışlanırlar. Soldaki foto (PHOTO © Bill Rudman) Paraplanocera oligoglena’nin ventral gorünüşünü vermektedir ve hemen hemen transparent olan vucudun çoğu organlarını gosterirler. Beyaz kollu merkezi yapı cok buruşuk pharyngeal tüpdür (pharynx plicatus) ve ağıza doğru ağız vucudun merkezinde yerlemiştir. Donuk beyazımsı network, vucudun çoğu bolgelerine uzanmış çok dallı bagırsak ki bu solucanlara “polyclad” (yunanca = çok dallı) adı verilir. Erkeğin ve dişinin diğer tüm organları yeniden üreme sistemidir. Salgı ve osmoregulation için polycladler özel fonksiyonlu birimlere sahiptirler, bunlara protonephridia (tekil protonephridium) denir. Onlar iki veya daha fazla kapalı uzun tüp dalları halindeki networka benzerler ve vucut boyunca uzanırlar. Osmotik su dengesini kontrol eden özel yapılara sahiptirler ve böbreklerin atık suyu çıkarttığı gibi çalışırlar. Vucut boyunca Protonephridium dallanma yüksek özellikli hücreler tarafından cilia izli kap şeklindeki yapılarla kapatılmıştır. Cilia vurusu, kırpışan aleve benzediği için bu hücreye “alev hücresi” adı verilmiştir. Bu hücrelerden bir kaçı tüplü fonksiyonlar ile hücrelere bağlantılıdır. İç sıvı nitrojen atıkla yüklenmiştir, tübe doğru gitmesinde zorlanır ve alev hücreleri ile akan tüp sistemi yardımıyla bir veya daha fazla boşluktan taşınırak yol alırlar ve son bölümde atıklar gizlenir. Protonephridium ilkel böbreğe bir örnektir ve salgı çıkaran ve osmoregulator bir sistem olarak gözönüne alınırlar. Yassı Solucanlara Genel Giriş Platyhelminthes (Yunanca: platy – flat, helminthes: worm) Kingdom Animalia’ya ait olup bir baş ve uçta bir kuyruk ile bölümlenmeyen yassı solucanlardır. Onlar en ilkel iki bacaklı, iki yanal simetrik hayvan olarak düşünülürler. İki yanlı simetrik anlamı, vucutlarının kıç eksen boyunca, üst ve alt yüzeyler olmak üzere tariflenen anterior ve posterior bitişin bir ayna görüntüsünde olmasıdır. Vucudun iki taraflı şekilli olması önemli bir özelliktir çünkü bu cephalization’a bir örnektir ve kafanın duyu yapılarının konsantrasyonu ve sinir fonksiyonu (kafa ganglion) yeralir. Bu da gelişimde önemli bir eğilimdir. Bunun ötesinde, yassı solucanlar triploblastikdir, bunun anlamı vucut yapısı uç temel hücre yapısından meydana gelmesidir (endoderm, mesoderm ve ectoderm). Üçüncü karaktere göre, onların barsaktan başka vucut boşlukları yoktur (coclom) ve organizasyona acoelomate adı verilmektedir. Anüsleri yoktur, bu nedenle, aynı pharyngeal açıklığından hem yiyecek alımı ve hem de atığın dışarıya atılması sağlanır. Dış hücre tabakası (=epidermis) ile belirgin ic organların arasındaki boşluk bir yumuşak doku ile dolmuştur (parenchyma). Mesodermal orijinli bu doku boşluklar tarafından ayıklanır (=schizocoelium) ve nütrientleri vucudun kısımlarına taşımak için cok dallanmış bağırsak mevcuttur. Terleme sistemi ve kan taşıma sistemi tamamen yoktur ve bu nedenle oksijenin transferinde difüzyon kullanılır. Bu da yassı solucanların düz olmasını sağlamaktadır. Metabolizimin tesisinde, hiç bir hücre dışarıdan uzakta değildir, zorunlu olan vucut şeklinin yassılanmasını sağlarlar. Hemen hemen bütün türler sahip oldukları oldukca kompleks üreme sistemiyle hermaphrodites’lerdir. Çoğu durumlarda, erkek ve dişi üreme yapılarının sayısı ve ayarlanması ile oldukca belirgin özel türlerdir ve çok benzer türlerin morfolojisinin ayırt edilmesinde taksonomik çalışmalarda kullanılabilirler. Yassi solucanların uzunluğu bazı serbest yaşayan türlerde 0.4 mm ve parasitik şekillilerde çeşitli metrelerde (fish tapeworm, Diphyllobothrium latum: 25 m in length) bulunurlar. Yassı solucanlar üç gruba ayrılırlar; 20,000 türü bilinen, 14,000 parasitler Cestoda (tapeworms) veya Trematoda (flukes) sınıfına aittirler. Tapeworm vertebrate’de bağırsak parasitleridir ve anatomik ve parasitims’in hayat tarihi ve modifikasyonlarını gösterirler. Flukes tamamen parasitik olarak bilinirler ve tape wormlara kıyasla kompleks hayat zincirine sahiptirler. Bir kaç genç stepden geçerler; bir, iki veya daha fazla hayvanın üzerinde yetişkin düzeye gelirler ve sonunda bir hayvanın üzerinde parazitik olarak yaşarlar. Bunun karsıtı olarak, Turbellaria serbest olarak yaşamakta olup tatlı suda ve nemli karasal ortamda coğunluktadırlar. Turbellarian yassı solucanların çoğu denizel ortamlarda ve okyanuslarda bentik olarak bulunurlar ve ayrıca sığ sularda da çok bulunurlar. Turbellaria’nin bir taksonomik alt grubu yüksek belirgin serbest yaşayan yassı solucanlar içeren order Polycladida’dir. Bu order’in üyeleri anatomik olarak çok dallanmış ve düzensiz bağırsak pharynx plicatus olarak buruşuklu pharygeal tüb ıle karakterıze edilirler. İlk bakışta, polyclad’ler çarpıcı şekilde goze hoş gelen renkli yassı solucanlardır. Tropikal resiflerde 150 yıldır yasadıkları bilinmektedir. Tropikal sularda yüzlerce türleri olduğuna inanılmasına rağmen şimdiye kadar çok az kısmı tamamen tarif edilebilmiştir. Rejenerasyon Karşıt olarak, yüksek vertebrates, bazı serbest yaşayan yassı solucanlar yeniden oluşmada muhtesem kabiliyetli olduklarını göstermektedir. Kafasının kesilmesi ve bir yenisinin büyümesidir. Kafanın yanal olarak ikiye, üçe veya daha fazlaya bölünmesiyle bir, iki, üç veya çok başlı solucan ile sonuçlanmasıdır. Solucanlar on parçaya bölünebilirler on tamamlanmış küçük solucan meydana gelir (Bakiniz: alt şekil, sol panel-tatlısu triclad Dagesia tigrina). Biyologların yeniden büyümeye büyük ilgi duymaları nedeniyle yeniden oluşumun üzerinde yapılan yoğun çalışmalar çeşitli yassı solucan taxa sistem modeline servis yapmaktadır (Bakınız: Bölüm: Sinirbiyolojisi’nde polycladler). Son zamanlarda, yeniden oluşum ile ilgili detaylı bilgi temelde polycladler üzerindedir (Order: Polycladida) ve tatlı su triclads (Order:Tricladida-üç-dört bağırsaklı anlamına gelir) ve diğeri planarians olarak bilinir (Bakınız: Bölüm: Phytogeny). Biyologların yeniden oluşumun üzerinde yüzyıldır yaptığı çalışmalara rağmen, bazı sorulara cevaplar, özellikle yeniden oluşumun kontrolu ve moleküler mekanism işleminin yakalanması zor görünmektedir. Bilim adamları planaria’nin temelde yeniden oluşumun yeteneğine sahip olduğuna hemfikirdirler ve neoblast adı verilen emriyonik dal hücreleri depolanmasını kullanırlar. Türlere bağlı olarak neoblastlar yetişkin solucanlarda toplam hücre sayısının 30% ‘unu kapsarlar. Bu totiponent hücreler, solucanın vücudunda serpiştirilmiş olup diğer hücre türlerinin büyümesinde yeteneklidirler ve iki rol oynarlar. Onlar, normal fizyolojik koşullarda ölenin yerine yeni hücre alarak yeniden oluşum için ham materyalini ve daha sonra iyileşmeyi sağlarlar. Yeniden oluşum oldukça hızlıdır. Kesilmeden 15 dakika içinde yaranın ucundaki epithelilal hücreler lesion’a yakındır. Birgün içersinde, yüksek sayıda neblast yaralı epithelium altındaki yeni diferansiyel yapılar büyüyen blastema içinde delil haline gelir ve yeniden oluşumun kesilmeden 10 gün içersinde optimal koşullar altında kaybolan kısımları tamamlanır (Baguma vd., 1994). Planaria kuvvetli kafa-kuyruk organlarına sahiptir (anterior-posterior kutuplanma). Kesildiğinde, anterior kesim yüzeyi hemen hemen daima yeniden oluşur ve yeni bir kafayı üretir ve aynı zamanda posterior kesim yüzeyi kuyruk yapıyı yeniden üretir. Solucanların bilgilerinin belirlenmesinin yeniden üretimde bir baş ve bir kuyruktan olup olmadığına dair bir mekanizmasının olması gereklidir. Şu anda, anterior ve posterior kutuplaşmasını açıklayan iki adet hipotez mevcuttur. Biri yeni oluşan epithelium arasında tumevarımsal iç hareket, başlangıç iyileşme işlemini kapsar ve blastema hücrelerinin altından geçer. Diğer hipotez ise anterior-posterior belirlenmesinde faktörlerinin moleküler gradientinin sıralanmasını önerir. Deneysel datanın çokluğuna rağmen her bakış için kesin bir delil yoktur. Çoğu tatlısu planaria sexual olarak yeniden oluşur ve oviparoustur (yumurtanın kuluçkası ile depolanır). Bazı türler parthenogenesis ile asexual yenide oluşum gösterirler. (spermsiz olarak yumurtanın aktivitesi). Bununla birlikte, taxonomik ailenin yassısolucanları Dugesiidae ve Planariidae (Order: Tricladida) nadir olarak ikili bölünme ile yeniden ürerler (Bakınız: üst şekil, sağ panel-tatlısu triclad Planarıa fissipara). Yetişkinler ikili bölünme ile bir küçük kuyruk parçası pharynx diferansiyeli ve iki hafta içinde de beslenen solucan haline gelir. Dugesia trigria’nin tabi olduğu toplulukta yeniden üreme araştırmalarında optimal sıcaklık koşullarının 24 C altında solucanların 20% si bölünme ile olduğu ortaya çıkmıştır. Çift bölünme ile asexual üreme bu dokumanda da belirtildiği gibi deniz polycladlerde de mümkündür (Bakınız: soldaki foto). Prostheceraeus (Familya: Euryleptidae)’nin polyclad’i de bölünme işlemini vermektedir. Kuyruk parçası ok ile belirlenmiş ve bölünmeden sonra yeni bir solucan oluşturarak ve alt hücre yeniden organasyon olacaktır. Bununla birlikte, yeniden üreme işlemi hakkında diğer bir açıklama, diğer hayvanların atağından ve “kuyruk kısmının bölünmesi” nden sonra beslenme amaclı ataklar neticesinde (Bakınız: Bölüm. Predation ve Defence) oluşmasıdır. Yiyecek ve Beslenme Çoğu bilinen, polycladler aktif etobur hayvanlardır ve leşle beslenirler ve aynı zamanda çeşitli sessile invertebrateslerin beslenmesinde kullanılırlar. Bazı türleri herbivorous olup yeşil alg ve bentik diatom’da özelleşmişlerdir. Acoella order’inin bir kaç yassı solucan türlerinde (bir eski taksonomik order, Polycladida’den ayırt edilen) sindirilen mikroalgler derecelenmemiştir ama endosymbionts (Zoochlorella) haline gelmiştir. Bu symbiotik ilişkide bağırsakta alg fotosentezde aktif olarak kalarak pareneyma hücre ve solucanların energy depolanmasında önemli katkılarda bulunur. Convoluta (canvolata reocoffansis - sağdaki foto Arthur Hauck)’nın bazı türleri genç solucanlar yüksek sayıdadırlar (Tetraselmis convolata, her bireyde takriben 25,000 adet). Yetişkin duruma geldiklerinde, canalıcı anotemiksel olarak değişimlerinin yansımasında endosysmbiontlara bağlıdır ve pharynx ve ağız fonksiyonlarının kaybederler. Beslenme için, C. roscoffensis alçak gelgitin parlak ışığında yüzeye gelir ve orada symbiotic alg vücudun epidermis boyunca serpilmişlerdir ve aktif olarak fotosentetiktirler (Holligan vd., 1977). Algler tarafından üretilen yiyecek (şeker) yassı solucanlar tarafından kullanılır. Bu manzara Fransa’nın korunmus kumlu sahillerinde ve İngiltere’nin bazı bölgelerinde gözlenebilir. Optimum cevresel pozisyonlarda bu solucanlar alçak gelgitte kumda mükemmel yeşil yapılar yapar. Pseudocerotidae familyasının birçok türü koloni yaşamayı tercih etttikleri düşünülmektedir ve katı ascidianlar, süngerler, ve bryozoonlar rejimlerinde normal özellik göstermezler. Beslenmede, çok buruşuk pharynx (pharynx plicatus) niçin ve nezaman kullanılmadığında bir cep içinde, çıkıntılarda koloni ascidianlarda bireysel zooidlerde genişlemis olabilirler. Proteolytic nesneleri dışarı atarken dokusal dallı bağırsak oluşmuştur. Gastrovascular boşluk, bütün besin parçalarını vucudun tamamına transfer eder. Pseudobiceros türlerinin gözlemi önerilir, av hayvanı dokusal pharynx tarafından yütülür (Bakınız: aşağıdaki görüntü) ve bütün hayvanlarda aynı ölçüde genişlerler. Bu türler, katı ascidian Corella willmeriana mantosuna sızar ve delme deliğini kullanarak birkaç saatte tamamını emerler. Tunicate’nin içersinde gençler bile bulunmuştur. Bütün şeyleri yedikten sonra, kayalara çapraz olarak sürünürler. Yassı solucanların yığını oluştuğunda insanlık açısından denizel ortamında bir felaket etkisi sözkonusudur. Tropikal polycladler istiridye’nin musibetidir ve dev deniz taraklarıdır (Stylochus matatası). Gastrovasküler boşluğundaki besinler yiyecek parçacıklarının ileri enzimatik derecelenmesinden sonra bağırsak dallarına doğru transfer olurlar ve yüksek bir absorb edebilen yüzeye benzerler. Çoğu yiyecek parçacıkları gastrodermal hücre tabakasının phagocytosis tarafından yutulurlar ve ileri enzimatik düzeyde iç hücresel parçalanma oluşur. Sindirilemeyen materyal pharynx’a doğru, yani yiyeceklerin girdiği deliğe doğru atılırlar, çünkü yassı solucanların kör sindirim sistemi bulunmaktadır. Bazı türlerde bu gözlenmiştir ve sindirimin tamamlanmasından sonra bağırsak fıskırtılan su yardımıyla temizlenir. Tür çeşitliliği ve polyclad yassı solucanların değişimi tropikal suların inanılmaz değişimi ile taxon’a benzer (Newman & Cannon, 1994), Bakınız.Bölüm: Taxonomi). Oldukça uzun zamanda, renk izleri muhteşem renklenmiş olan solucanlar sınıflandırılmada yeterli düşünülmüştür (Hyman, 1954, 1959). Bununla birlikte, birçok türlerin tanımlanmasında yeterli kimliğe sahip değildirler (Faubel, 1983, 1984). Newman & Cannon (1994)’de yaptıkları arazi çalışmalarında farklı genera’da (Pseudoceros - Pseudobiceros; Pseudoceros - Pseudoceros) çok benzer ve hemen hemen tamamen aynı renkli izleri taşıdığı ortaya çıkmıştır ve türler arası farklılığında farklı aileler üzerinde (Pseudocerotidae-Euryleptidae) daha detaylı inceleme gereklidir. Mukayese anatomisi uygun karakterleri kullanılarak göz numarası, göz ayarı, yalancı dokanakların şekli, pharynx ve özellikle üreme sisteminin ince yapısının analizi kanıtlanması için turbellarianlarin tür diagnosisleri için temel araçtır (Newman & Cannon, 1994). Erkek ve dişi üreme yapılarının seri olarak yeniden yapımı zordur ve özel lab aletlerine ihtiyaç vardır ve uzmanlar tarafından arzu edilir. Son zamanlarda, benzer polyclad türlerini ayırt etmede, molekuler data (DNA) sıklığı kullanılmıştır. Böyle araçları kullanmadan, polyclad yassı solucanların sınıflandırılması bazı durumlarda hatalı olabilir. Benzer renk izleri büyük farkla benzemesine rağmen ayni genetiksel olarak belirlenmiş renk ve örnek çeşitliliği ayni tür özellilerine sahiptir. Diğer bir değişle, tamamen aynı renkteki örnek belki farklı türde genera’ya veya hatta familya üyesi olabilir. Bu nedenle, eğer benzer renk örneklerinde olan iki polyclad örneği mukayese edıldiklerinde, çeşitli mümkün senaryolar akla uygundur. 1) Farklı genera ve hatta familyaya sahip solucanlarda, genel seçilmiş basınç ve aynı çevre kosulları altında aynı renk örneklerinin gelişiminde evrimsel gelişim kuvvetlidir. Phylogenetik terim açıklaması; bir benzer renk ilişkili gene seti (=allels) veya bir müşterek gene farklılığı phenotype sonuçlari üzerinde secilmiş basınç tarafından tercih edilir. Bu gibi olayların sıklığı analogous gelişim olarak düşünülür. 2) İkinci senaryoda, iki solucan aynı atayı paylaşırlar. Tahminler ışığında, bu ata daha önce avantajlı renklere ulaşmıştır, her iki örneğin renkli izlerinin mukayesesi hatta anotomiksel ve diğer genetik farklılıklara rağmen çok benzer olabilir. 3) Evrim gelişmekte olan işlemdir ve hiçbir zaman durmaz! Genesin renk örnek ilişkisinde gelişigüzel müşterekliliği, protein kodlama bölgelerinde veya düzenli DNA sıklığında, ışık, sıcaklık, beslenme gibi çevresel faktörlerin etkileri ile beraber polyclad renk izlerini etkilemektedir. Rahatça söylenebilir ki, evrim renkler ile oynamadır. Varsayılan predatörlerin farklılığı daha etkilidir: Mimicry ve Predation ve Defence). Phylogenetik zaman aralığında, bir türün görünümünde veya spectation değişim atlamasında, yeni türlerin tehlikesinde önder olabilir. Takip eden foto paneli açıkca ortaya koymakta ve farklı türler ile bir tek türün üyeleri arasında renk izlerini açıkca göstermektedir. Solucanların morfolojik ve DNA sıklığının kilitlenmesi nedeniyle hangi tariflenmiş senaryoların örnek için uygun olduğu gerçekte belirsizdir. Toxin Aposematic renklenme (Bakiniz.Bölüm: Mimicry) denizel invertebrate hayvanların içersinde bilinen genel defense mekanizmasıdır. Çok sayıda göze çarpan renkli slugları toxic alıkonmuştur. Polyclad yassı solucanlar açısından doğrudur. Polyclad yassı solucanların Pseudoceron concineu ve Planocera tentaculata kimyasal defens araştırması ve staurosporine türevlenmesi gibi yüksek toxic kimyasal bileşen açığa çıkarmıştır (Schupp vd., 1977 ve 1999) ve tetrododoxin (Miyazama vd., 1987). Tetrodotoxin proteinsiz bileşen (aminoperhydroqumazoline) olup günümüzde bilinen en kuvvetli paralytic toxinlerden birisidir. Sodyum (Na+) kanallarında voltaj-kapılı cok belirgin engelleyicidir ve büyük integral protein üyesi sinirsel hücrelerin plazma membranına doğru boşluk oluşturur ve Na+ iyonlarına izin verir. Çeşitli uyarıcı cevaplar, boşluklar (=genes), ve açık ve kapalı mebrane potensiyelinin değişimi gibi hücre dışı ve içi belirli kimyasalların varlığı ve uygun fonksiyonelliği sinirsel hareket potensiyelinde temel teşkil etmektedir. Bunula birlikte, tetrododoxin kanalları bloke eder. Tetrodotoxin ve onun habercisi yüksek konsantrasyonlu mukus, sindirim organlarında, polyclad Planocera multietentacula (Miyazawa vd. 1987, Noguchi vd, 1991) yumurtalarda ve üreme organlarında önerirler. Yassı solucanlar predatorlere karşı defans ve alarm maddesi tetratoxine sahiptir. Tetratoxin geniş farklı hayvan örnekleri tarafından izole edilmiştir bunlar pufferfish (photo: Arothon nigropunctatus, order: Tetraodontiformers), parrotfish, genus Atelopus’un zehirli oklu kurbagalar, mavi-cevreli ahtopot, deniz yıldızı, angelfish ve xanthid crabdir. Japon mutfağında pufferfish hassas olduğundan, tetrodoxoxinden zehirlenme Japonya’da halk sağlığını ilgilendirmektedir. Yumurtalık, çiğer, bağırsak ve pufferfish derisi tetradotoxin miktarını içerir ve bu da hızlı ve zorlu üremeye yeterlidir. Geleneksel olarak çok küçük miktarda ciğer et ile tüketilir. Dudakların oluşum duygusu ve dil gercek akşam yemeği tecrübesidir. Fugu’nun hazırlanması ve satışı özel restaurantlarda olduğundan oradakiler eğitilir ve evde hazırlanmasından ve tüketiminden yanlış tanımlandığı ve yanlış donmuş balık ürünleri nedeniyle bireysel olarak zehirleme olayı (30/100 kışı/yıl) olur. Pufferfish zehirliliği hakkında daha fazla bilgi için Bakınız. FDA/CFSAN web sitesinde Amerikan Besin Emniyeti & Nutrient Aplikasyonu’na başvurunuz. Eşleşme ve Üreme Polycladler oldukça ilkel oldukları için kimyasal bilesenler besin bulmada ve partneri ile arkadaşlık kurmasında anahtar rol oynarlar. Büyük yalancı dokanaclarda anterior sinirinin ayrıntıyla donatılması bir delildir ve bu solucanlar temelde resif çevrenin kavranmasında ve davranışlarıyla kararda kimyasal duyu aleti olarak kullanılır. Genel olarak, polycladler derialtında erkek ve dişi üreme organlarina sahiptirler. Onlar karşılıklı dollenme ile birleşerek çiftleşirler. Bir kere, aynı türe sahip yetişkin solucan oldukca kaba çiftleşme hareketi yaparlar, bu derialtı döllenme olarak tarif edilir (üst görüntü, Pseudoceros bifurcus). Solucanların çiftleşme zamanında birbirlerine doğru hareket ettiği, değdiği ve birbirlerine sarıldıklarında (sol görüntü aşağıda, Pseudoceros graveri) eş zamanlı olarak penis papillae ve stylet dışarı çıkar (İki görüntü aşağı sağda, Pseudobiceros bedfordi). Onlar, daha sonra birbirlerini başka yere çekmeyi denerler, bazen de kendi ortaklarına zarara sebep verirler. Yaralı solucanlar 24 saatte sağlıklarına yeniden kavuşurlar. Ne zamanki biri diğerine penetre ederse, birkaç dakika partnerinin epidermiste içine oturtur. Bu zamanda, erkek dol hücresi partnerine enjekte edilir (Üst görüntü, sağ). Son zamanlarda, Pseudoceros bifus’in eşleşme davranışları gözlenmesinde (Michiels& Newman, Nature, vol.391:647), bireysel polyclad sperm vermeyi arttırır. Erkekler için, spermlerin enjeksiyonu direk yumurtalara gider ki orada dişi yarasının iyileşmesinin maliyeti taşıma kapasitesini ve döllenmede kontrolu kaybeder. Bu nedenle, dişilerdeki çok kuvvetli secme bu maliyetten kaçınmaktadır. Bu arka yukarı ile buna ulaşılır, bir eş davranışı her iki striking ve parrying’de etkilidir. Bireyselde her ikisi de deneme cekingesiyle davranırlar. Gelişme olarakta bu girişim sperm donatısında daha fazla sperm verilmesini sağlar. Daha fazla başarılı döllenme ile daha iyi döllenme sağlar. Derialtı döllenmeden sonra sperm aktif olarak parenchyma yumurta kanalına doğru hareket eder. Onlar muhtemelen oocytes tarafından veya dişi üreme kanalının değer hücrelerde serbest hale getirilen moleküllerin gradienti tarafından cazip olurlar. Döllenmiş yumurtalar daha sonra birkaç yüz yumurtanın düzensiz yumurta yığını halinde depolanir ki daha sonra sıkıca paketlenmiş bir tabaka haline gelirler. Diğerinde, iri çakılların altında ascidian kolonileri halinde bulunurlar ve tercih ettikleri avlanmadan biridir. Serbestce yüzmenin gelişmesinden on gün sonra, transparent larva kuluçkası oluşur (=Muller’s larva). Çizelgeden de anlaşılacağı gibi gelişmelerinde bibirini takip eden üç step vardır. Müller larvası sekiz lob tarafından karakterize edilirler. Loblar vurus yapan cilia taşırlar ki bu ciliate’e benzer yüzmeye izin verir (en soldaki foto: koyu arazi mikroskobu altındaki larva stepi). Larva plaktonik bölüme girerek yerleşmeden ve metamorfize olmadan önce birkaç gün yüzer. Gelişmesi esnasında, larva lobları absorbe olmaya devam eder ki orada sindirimleri gelisir. Minyatür yetişkin solucanlar haline gelindiğinde metamorfoz tamamlanır, yanlızca birkaç mm boyutundadırlar ve hayatın bentik bölümüne girerler. Larvaların nudibranch metamorfisinde yapılan gelişmiş ileri düzeyde çalışmalardan elde edilen bilgilere göre, türlerin tercih ettiği besinler tarafından kimyasal bileşikler üretilmesi hedeflenir. Bu mekanizma, yerleşme alanı genç organizmaların yetişmesinde yeterli yiyecek sağlamasına emin olur ve bu nedenle, bu hayatta kalabilmek için daha büyük bir şanstır. Polycladler lab. koşullari altında larva halinde yerleşmeksizin kuluçka olduktan sonra iki hafta içersinde solucan olabildikleri için, polycladlerin bentik hayat bölümüne girmelerinde dış güçlerin zorunluluğu bilinmemektedir. Polycladlerin Taksonomisi Polycladida (class: Turbellaria)’nin taksonomik order’i bir kaç yüz tanımlanmıs türleri kapsar. Bunların çoğunluğu (7 adet genera’da 200 kadar tür) ve Pseudocerotidal familyasında toplanırlar ki bu bugünün en iyi tropikal polyclad familyası olarak kabul edilir. Pseudocerotis en muhteşem renkli yassı solucanlardır ve daha sonraki en belirgin tropikal polyclad ailesinden Euryleptidae (130 türle birlikte) buruşuk pharynxleri tarafından karaterize edilirler ve ayırt edilirler ve aynı zamanda onlarda tüp halinde pharynx mevcuttur. Pseudocerotidsin diğer genera’si daha az yanıltıcı olmakla birlikte çok az bilinmektedir. Bazıları hatta monospecific’tir. Polyclad yassı solucanlar için Tayler. S & Bush L.F, 1988 web sayfasına giriniz. Turbellarian platyhelminths Taxonomisi Polyclad yassı solucanlar üzerinde taxonomik çalışmalar oldukça zordur. Onların uygun boyut, şekil, renk ve markalamaları, göz ayarlamaları, yalancı dokanaçlar, pharynx, gonopore’ların topoğrafyası ve emme gibi karakteleri gözonüne alınmalıdır. Bazı durumlarda, tanımlamada bu karakterler yetersiz ise, üreme sisteminin karşılaştırmalı morfolojisi özel lab. aletleri kullanılması temel araçtır ve uzmanlar tarafından tercih edilir. Son zamanlarda, moleküler DNA (DNA sıklığı) ayni türdeki benzer polycladlerin farklılığının ayırt edilmesinde kullanılmaktadır (Bakınız.Bölüm:Phylogeny). Takip eden tablo dalan ve UW fotoğrafcılar için polyclad yassı solucanların tanımlanmasında faydalı bir araçtır. Filojeny İlk Metozoa’nın hemen hemen radyal hayvan olduğu için, iki taraflı simetrik (Bilateral) nin radyal atalarından yayılmıştır ve radyalden iki taraflı simetri arasında değişim olmuştur. Bu değişim hala oluşmaktadır ve çeşitli yüksek düzeyde spekulatif bağlantılar yapılmıştır (Brusca & Brusca, 1995). Paleontolojik ve moleküler data gösterir ki çoğu iki taraflı phyla ve Cambrian explosion zamanında bölünmüşlerdir, M.O. 56 ve 520 yıllarında oluşmuştur (Wang, vd., 1999). Phylum platyhelminthes erken Metasoanın farklı grup oluşturduğu ki bu metazoa’nin orijini ve evriminin anlaşılmasında anahtar rol oynamıştır. Coğu zooloji ders kitaplarında, erken ortaya çıkan clade formasyonu, iki taraflı simetri (Bilatera) ile bütün hayvanların kızkardeş grubu olarak tarif edilmiştir. Diğer yazarlar görmüşlerdir ki, çoğu Protostomia’nin kızkardeş grubu veya grup protostome coelomate atalarından türemişlerdir. Filojenik yerleşmenin doğruluğu esas zorluluktur ve bütün Platyhelminthes için synapomorfilerin iknasının kapanmasıdır. Bu belirtir ki onlar polyphyletic’tir. Basitleştirilmiş taxonomik şekilde, phylum Platyhelminthes dört sınıfı tutar. Trematodal (fluxes), monogenea ve Cestoda (tapeworms) ki bunlar vertabratenin endo/ectoparasiteyi sunar. Bazıları kompleks, hayat döngüşü, ve sınıf Turbellaria ana serbest yaşayan yassı solucan türlerini verir. Turbellaria 9 adet order içerir. Coğu açıklanan orderler bu çizelgede gösterilmemiştir. Acoel yassı solucan (Acoela) uzun zamandır, Turbellaria’nin order’i olarak sınıflandırılmıştır. Onlar en ilkel turbellarian order olarak düşünülmüş ve bazal metazoan olarak manzaralanmıştır ki ciliate protozoans (=syncytial veya ciliate=acoel theory) veya diploblast ve triploblast arasında direk link vardır (=planuloid-acoeloid theory)’den evrim geçirerek oluşmuşlardır. Onların basit organizasyonu yorumlanmıştır ve daha kompleks ataları (regressive evrim) ikincil özelliklerinin kaybolması incelenmiştir. Bugün, teorinin destek delillerinin birçok çizgisi, bilinmeyen iki taraflı atalardan Kambrien radyasyondan önce. acoels dallanmasıyla olmuştur. Örneğin, aceoller diğer platyhelminthes iki loblu ve neuropile’li beyinleri var olup sinir hücreleri ile cevrilmiş olduğunu sinir sistemi yapısı işaret eder (Bakınız. Bölüm: Polyclad ve Neurobiology). Karşıt olarak, acoellerin sinir sistemi sinir hücrelerinin salkımı tarafından basit beyin olarak oluşmuştur ve cok sayıda uzun sinir kordları ortagon yapmazlar (Ruitz-Trillo vd., 1999). Son zamanlarda, DNA (desorxy-bonucleic acid) moleküler teknik ve protein sıklığı başarılı kullanılmıştır. Phylogenetic hayat ağacı kurulur ve hayvan taxa’ları arasında filojenetik ilişkisi araştırılır. En yaygını, DNA sıklığı yüksek düzeydeki gene’leri muhafaza etmesidir, mesela, ribozomal RNA (rRNA) genes kodu bu gibi çalışmalarda kullanılmıştır. 18 S ribozomal DNA genesinin sıklık datası mukayesesinde ve diğer Metazoa kanıtları Acoel’in Platyhelminthes’e ait olmadığı belirlenmiştir. Bu buluşlar önerirki basit radyal simetrik organizma (jelyfish gibi) ve daha komplex iki taraflı simetrik organizmalar (arthropods ve vertebrates) boşluk (gap) vardır. Onlar kendi phylum’larına yerleştirilmelidirler (Ruisz Trillo vd., 1999). Bazı çarpıcı özellikleri vermesi polyclad genera’da en yaygın tanımlamada yardımcı olacaktır. DNA sıklılığı dataları aynı zamanda aynı organizmaların morfolojilerinin ayırt edilmesinde de kullanılır. Bu Goggin & Newmann (1996) tarafından pseudoceroid turbellarianlar için teşhir edilmiştir. Ribozomdaki RNA (rRNA) gene salkımındaki spacer-1 (JTS-1)’dan elde edilen Nucleotide sıklığı dataları (Pseudoceros jebborun, Pseudoceros paralaticlavus) ve pseudocerotid polycladların generasında (Ps. jebborum ve paralatic lavus versus Pseudobiceros gratus) türlerin ayırt edilmesinde kullanılmıştır. Ps’in ITS-1’nin nukleotide sıklığı Ps. paralatic lavus’dan 6% farklıdır ve Pseudobiceros gratus’tan 36% farklıdır. Beklenildiği gibi bu sonuçlar aynı genusun türleri farklı genera’dan alınan türlere kıyasla phylogenetiksel olarak yakın ilişkili olduğunu kanıtlamaktadır. Bu nedenle, ITS-1’den elde edilen data sıklığı pseudocerotid yassı solucanlar ayırt edilmesinde faydalı bir taksonomik araçtır. Ribozomal DNA Salkımı Büyümekte olan bir hücre 10 Mio ribozomlar ihtiva eder, protein üretiminde hücresel araçtır (mRNA’nin proteine transferi). Ribozomal RNA her tip ribozomal RNA molekülü (5 S, 5.8 S, 18 S, 28 S rRNA) nin temel yapısal komponenttir ve protein sentezinde hücre ihtiyaçlarında birleşmesi açısından her hücre generasyonunda sentez edilmelidir. Ribozomal RNA’nın yeterli miktarda üretimi için eukaryotic hücreler ribosomal RNA (rRNA genes = rDNA) nın kollanmasında çok sayıda genes kopyası içerirler. İnsan hücreleri her haploid genome’de aşağı yukarı 200 rRNA gene kopyası içerirler ve beş farklı kromozomda (chromosomes 13, 14, 15, 21, 22) küçük salkımlar halinde dağılmışlardır. Kurbağa hücreleri Xenopus leveis bir kromozomda bir tek salkımda 600 rRNA gene kopyası içerir. Bununla birlikte, genel rRNA izleri bir kromozomda bir tek salkımda rRNA gene organizasyonunun genel izinde bütün eukayot hücrelerde tamamen aynıdır. Verilen kromozomda yüksek dereceden rRNA genesinin çok sayıda kopyasının gelişigüzel serileri ayarlanmıştır, her bir gene diğer bolgedekinden ayrılmıştır, DNA boşluk yaratıcı olarak da bilinir ve türler içinde uzunluğu ve sıklığı değişmektedir. Bir tek salkım rRNA genes’i 18 S, 5.8 S, ve 28 S rRNA molekülü içerir ki o (ITS-1 ve ITS-2) tarafından içten ayrılır. Bitişik salkımlar 10,000 nucleotide uzunluğundadır ve herbiri dışsa açıklı bölgeler (ETS) olarak ayrılmıştır. rRNA genes’i RNA polymerase tarafından kopya edilmiştir ve her bir genes seti aynı temel RNA’yi üretir, 45 S öncü rRNA (pre-rRNA) olarak bilinir. Önce kurulmuş ribozomal partiküllerindeki nukleusu terkeder, 45 S pre-rRNA (takriben 5,000 nucleotides, 18 S Rrna (takriben 2,000 nucleotides, ve 5.8 rRNA ( takriben 160 nucleotides). Geri kalan kısımda her temel kopya (ETS, ITS-1 ve ITS-2) olarak derecelenmistir. Takriben 200 farklı hücresel protein ve bir 5 S rRNA diğer kromozom locus’tan türetilir ve ribozomların paketlenmesinde yeni sentezlenmiş rRNA kullanılmıştır. Bu paketleme nucleusta oluşur ve bu büyük geçirgen yapı nucleus olarak adlandırılır. Bozulmamış rRNA molekulleri ribosome üretiminde temel olduğu için, protein sentezi ve hüçre fonksiyonu, kuvvetli basınç seciminde (evrim) fonksiyonel rRNA mevcuttur. Böylece, ecukaryotic hücrelerde çoğu genişler ribosomal genese bağlıdır bu da müthiş bir benzerlik sıklığı gösterir ve hatta phylogenetik taxa dahil olmak üzere. Bununla birlikte, iç alan bölgede (ITS-1 ve ITS-2) daha az homoloji bulunmuştur çünkü bu DNA bölgeleri yapısal RNA’ya katkıda bulunmaz. Bu nedenle, daha az secilmiş basınç uygulanmakta ve DNA sıklığı da farklı olmaktadır (müşterek nokta), aynı genusun türleri arasında bile bu bölgede elde edilmiştir. Bu ilişki rDNA datasındaki molekuler özellikler (Hayat ağaçi) çok faydalıdır ve yakın ilişkili türlerin ayırt edilmesinde kullanılır. Neurobiyolojide Polycladler Serbest yaşayan polyclad yassı solucanlarda Notoplana acticola gibi beyin ve peripheral sinir network araştırma halindeki en ilkelsinir sistemini sunar. Küçük ama iyi tanımlanmış beyin (sağ panel) ve uzun sinir ipleri ve çapraz hatlar tarafından çok sayıda dairesel motoneuronlarla bağlanmıstır. Bu sinir sistemi yassı solucanların cevresel değişimlerinin iç ve dış etkileri mümkündür. Yüzeysel olarak Netoplama articola’nin beyni diğer invertebratedekilere benzemesine rağmen hücreleri cok sayıda vertebrate özelliklerine sahiptir. Hücre tiplerinde tamamlanmış, dallanmış izlerle beraber çok şaşırtıcı farklılık vardır. Çok kutuplu neurone’ler yaygın tipik, iki kutuplu hücreler olarak ayırt edilebilir. Küçük çok kutuplu hücreler glial veya interneurones beyinde serpiştirilmiş olarak bulunmuştur (Keenaneld, 1981). Daha önceki çizimden çıkartıldığı gibi, bazı tabaka tarafından çevrilmiştir. Uzun sinir kordları ve neuronlar dairesel alıcı hücreleri bağlar (ocellinin fotoduyarlı hücreleri) beyinden direk olarak uzanırlar. Ventral sinir kordu dorsal sinir korduna nazaran daha kuvvetli gelişmiştir. Yassı solucanlar Sinirbiyolojisi araştırmaları, beyin araştırmaları açısından en mükemmel model sistemidir cünkü oldukça ince olup beyinleri birkaç mm büyüklüğünde yanlızca birkaç 100 – 1000 hücre içeriler ve deneysel çalışmalarda hazırlanmıştır. Son zamanlarda, çeşitli konular sinirselbiyoloji ve elektrofizyoloji ilgisi adreslenmiştir. Cytoarchitecture’in Analizi ve Sinirsel Bağlantılar Bu sayfadaki bilgilerin Powerpoint Sunumunu (ppt dosyasını) www.sunumbankasi.net adresinde bulabilirsiniz You can find the powerpoint presentation of this web page content at www.sunumbankasi.net Polyclad yassı solucanların beyinlerinin üç boyutlu yapısınin kontrolu için sinir hücreleri özel olarak boyanmıştır. Camillo Golpi (1843-1926) metoduna göre yürütülmüştür (20. yüzyil biyologlar tarafından bilinenlerden en iyisi). Florosan boyaları kullanılarak ic hücrelerdeki iontofarlar ile beyin içindeki sinir konfigürasyonu araştırılmıştır. Bu deneysel yaklaşımda, Koopwitz ve arkadaşları (1966) tarafında belirlendiği gibi, Notoplana articula’nin örneği aneztezi edilmiştir. Sonuç olarak, sinir sistemi dakika cubuğu ve aletleri kullanılarak belirlenmiştir. Beyin örtüsü protesae sindirimi ile ortadan kaldırıldı, beyine ve ganglion hücrelerine direk girebilmek için tek sinir hücrelerinde ultra ince cam mikroelektrot tekniği kullanılmıştır ve lucifer yellow gibi florosan boya ile doldurulmuştur. Enjekte edilen boya hücre içinde sağa doğru axonların ucuna kadar göç etmiş ve florosan mikroskopta izlenmiştir. Laser taramalı florosan mikroskobu kullanarak digital data serili iki-boyutlu resimlerden üç-boyutluya çevrildi ve mümkün olan polyclad beynindeki sinirsel cytoarchhitecture gelişmeler harita haline getirilmiştir. Sinir Tamir ve Sinirsel Plastisite Çalışmaları Şimdiye kadar incelenen bütün invertebrate ve vertebrate türlerideki çalışmalara göre, Notoplana acticola beyin dokusu yeniden üretemez. Bununla birlikte, sinirsel tamir hızlı ve yüksek oranda elverişlidir. Polyclad beyni yassı solucana taşındığında yeni bağlantılar organ nakli edilen beyin ile dairesel network sinir alıcı uçları ameliyattan 24 saat sonra tesis edilmiştir. Bunun gibi organ nakli deneyler Davies ve çalışma arkadaşları (1985) tarafından tarif edilmiştir. Deneylerde dört beyin organ nakli oryentasyonu; normal, ters, ters yüz, ve ters ters yüz olmak üzere kullanılmıştır. Beyin organ naklinin fonksiyonu test edildi ve her iki davranış ve elektrofizyolojik kriterler olçülmüştür. 23 gün içinde, organ naklinin 56% si solucan ve diğerleri organ naklinin iyileştirilmesindeki doğru davranış, kaçınma dönüşü, ditatix hareket, ve beslenme gibi dört davranışta test edilmislerdir. Beyindeki mevcut sinirler kendilerine en yakın dairesel sinirlerle birleşirler. Ameliyattan 36 sonra bazı normal davranışlar gözlenebilir. Kontrol eksikliği olan yassı solucanlar organ nakli olmadan davranışlarını kurtaramazlar. Birkaç beyin davranışında hücre içi kayıtlar da dairesel sinir hücreleri ile uygun bağlantılar yeniden kurulmuştur. Bu sinirlerdeki boyanmış hücreler ters oryentasyonlu beyin ortaya çıkarmıştır, bireysel sinir hücre işlemlerinin beyini terketmesinden sonra uygun olmayan bir şekilde sinir kordu ile ilişki kurmakta olup, bazı işlemlerde 180 0 li sinir kordu , ki onlar normal olarak yerleşen operasyona maruz kalmamış solucanlardır (Davies vd, 1985). Molekuler temeli ve yeniden bağlanan belirgin sinirleri ortaya çıkarmak çok ilginçtir. Konakladığı hayvanın davranışında bazı bilgiler çok önemlidir, paraplegia veya kazadan sonra sinir sisteminin ciddi olarak yaralanması gibi. Dağıtım ve Buluş Polycladler boyutları, renk örnekleri, sıvı içindeki hareketleri nedeniyle SCUBA dalgıçları tarafından tesbit edilebilirler. En yaygını, gün esnasında onlar resif eğimlerin dışında, üzerinde veya uçlarında görülebilirler. Onlar yarıklarda, kaya altlarında, bazende çıplak sedimentlerde veya çamurlu tabakalarda bulunurlar. Bazı türleri resif sırtlarında yüzerken görülmüşlerdir. Polycladler tercih ettikleri yiyeceklerin üstünde veya yanında dinlenirler çok nadiren de olsa süngerlerin veya koloni ascidianlarin üzerinde , çoğu resif sırtında çok iri çakılların altında bulunmuşlardır. Crytic türleri çok ender bulunurlar çünkü kendilerinin normal hayatları zamanında yeraltında karışmışlardır. SCUBA dalgıçlarına ve UW fotoğrafçılarından ilgi duyanlara polyclad türlerini bulmak için çakıl altlarında ve çoral taşlarının etrafında bulabileceklerini tavsiye ederiz. Şans ve sabırla polyclad türleri bulunabilir. Bununla birlikte, bu hassas solucanlara dikkatlice değmek ve ele almak gerekmektedir. Polycladler stress altında kendi-kendini imha etme özellikleri vardır. Onlar otoliz, mukoz parçalarını kirarlar veya buruştururlar ve daha sonra yapılacak incelemeler için fotoğraf çekilmesini imkansız hale getirirler. Bununda ötesinde, kendi belirgin renkli örneklerini kaybederler. Bu nedenle çoğu fotoğraflar mümkün olduğu kadar onlari yaşam yerinden rahatsız edilmemelidir.Yeni türlerin tarifi, örneklerin toplama, koruma, ve detaylı çalışmada, tamirde özel teknikler mümkündür. Polyclad’e ilgi duyan dalgıçlar yeni türlerin tanımlanmasında katkıda bulunacakların Dr.Leslie Newman ile kontak kurmaları (Schooling Resource Science and Management, Southern Cross University, P.O. Box 117, Lismore, NSW, Australi 2480) çünkü kendisi tamir ve koruma konusunda güvenilir metod geliştirmiştir. Leslia şimdi Indo-Pacific polycladlar üzerinde çalışmaktadır. Dünya capında 350 tür içeren database ile onların besin ve üremeleri hakkında bilgi vermektedir. Oya Bezen Çakın  

http://www.biyologlar.com/yassi-solucanlarin-anatomisi

Patolojik yöntem ve yaklaşımlar

Patolojinin bir tıp dalı olarak yöntemleri ve işleyişi diğer dallardan kısmen farklıdır. Klinik bir dal olmamasına rağmen, patoloji, çoğu kez klinik çalışmaların ya içinde yer alır veya çalışmalarından elde ettiği verilerle hastaların tanı ve tedavilerine doğrudan katkılarda bulunur. Patolojinin çalışma alanı hastalıklı organ ve dokuların incelenmesiyle sınırlı değildir. Deneysel, teorik ve teknik pek çok konuda patolojik çalışmalar yapılmaktadır. Patolojik inceleme ve çalışmalar ancak yeterli anatomi, histoloji ve fizyoloji bilgisine sahip kişilerce yürütülebilir. Patolog, ilgili uzmanların bulunabildiği akademik ortamlar dışında, çoğu kez bu konulardaki klinik soruları en kolay cevaplayabilecek kişi konumundadır. Bir hastanenin işleyişi içinde patoloji bölümünün katkısı; hastalardan tarama veya tanı amacıyla hücre/doku örneklerinin alınmasıyla veya organların çıkarılmasıyla başlar. Bu örneklerin önce dış görünümleri (makroskobi) değerlendirilir ve mikroskop altında incelenmesi gerekli görülen kısımlar seçilerek ayrılır. Patolojik incelemenin en kritik ve en çok deneyim gerektiren aşamasının bu olduğu kabul edilebilir. Patolojiyi en iyi yansıttığı düşünülen kısımlar örneklenip, çok ince (4-5 mikron kalınlıkta) kesitlerin alınabilmesine olanak verecek işlemlerden (doku takibi) geçirilir ve hazırlanan kesitler rutin olarak "hematoksilen-eosin" yöntemiyle boyanır. (Hücre çekirdekleri mavi, sitoplazmalar kırmızı boyanır). Daha sonra, bu boyanmış kesitlerin ışık mikroskobunda incelenmesiyle morfolojik (biçimlere ağırlık veren) bir değerlendirme yapılır. Morfolojik değerlendirme, patoloğun tanıya ulaşmada kullandığı yollardan yalnızca birisidir. Patolog, yeri geldiğinde biyokimyasal, farmakolojik, mikrobiyolojik, genetik, moleküler biyolojik verileri kullanabilir; özel yöntem ve düzeneklerin yardımıyla dokular üzerinde nitel (kalitatif ) veya nicel (kantitatif) incelemeler yapabilir. Bunlar arasında •histokimya, •immunohistokimya, •doku kültürü, •in situ hibridizasyon, •DNA sitometrisi, •digital görüntü analizi , gibi yöntemler sayılabilir. Patoloğun en sık kullandığı düzenek ışık mikroskobudur. Işık mikroskobu ile sağlanabilecek büyültme yaklaşık x 1000 ile sınırlıdır ve görünür ışığın dalga boyundan kaynaklanan bu sınırın teknolojik ilerleme ile aşılması mümkün değildir. Laser, X ışını, ultrasound kullanarak veya digital yöntemlerle değişik mikroskoplar yapılmakta ve bunların kendilerine özgü kullanım alanları bulunmaktadır. Günümüzde, tek tek atomların görüntülenmesine izin veren özel mikroskoplar (scanning tunneling microscope) bile geliştirilmiştir. 'Elektronmikroskop' ise, temel olarak "tarayıcı" (scanning) ve "geçişimsel" (transmission) adlı iki biçimde kullanılmaktadır. Bunların ilki, çok çarpıcı "üç boyutlu" görüntüler sağlayabilmesine rağmen, dar bir kullanım alanına sahiptir ve sık görülen hastalıkların tanısında hemen hemen hiç rolü yoktur. "Transmission" elektronmikroskopi ise daha çok araştırma amacıyla kullanılmakta, nadiren tanısal açıdan da gerekli olabilmektedir. Bu mikroskopların büyültme gücü ışık mikroskobundan yüzlerce kere fazladır. Ancak, büyültme ne kadar fazlaysa tanının o kadar kolay ve doğru olacağını düşünmek yanlış olur. Her inceleme yönteminin olduğu gibi, elektron mikroskobinin de kendine özgü bir kullanım alanı vardır. Patoloji; doku kültürü, in situ hibridizasyon, immunohistokimya, akım sitometrisi, digital görüntü analizi gibi daha pek çok yöntemi tanısal veya araştırma amaçlı olarak kullanır. Bunların kullanımı gittikçe artmakta ve patolojik incelemede morfolojinin rolü yıldan yıla azalmaktadır. Bu, Virchow ekolünün yerini artık moleküler yaklaşımların almakta olduğunun göstergesidir; buna göre, hastalıkların değerlendirileceği temel birimler artık "hücre altı" yapılardır... Patolog, yukarıdaki yöntemlerden biri veya birkaçı ile yaptığı incelemesinin sonunda bir rapor düzenler. Bu rapor yalnızca bir tanı içerebileceği gibi, bir ayırıcı tanı veya öneriler listesi biçiminde de olabilir. Patolog, tıbbi konsültasyon ve danışma mekanizmasının bir parçasıdır; bu nedenle, bir hasta ile ilgili düşüncesi sorulduğunda (kendisine organ veya doku örneği gönderildiğinde) bütün klinik bulgular ve değerlendirmeler hakkında bilgilendirilmelidir.

http://www.biyologlar.com/patolojik-yontem-ve-yaklasimlar

3. Uluslararası Biyosidal Kongresi

3. Uluslararası Biyosidal Kongresi

Kongre Tarihi : 22-25 Kasım 2016 Kongre Merkezi : Antalya Maritim Pine Beach Hotel

http://www.biyologlar.com/3-uluslararasi-biyosidal-kongresi

16 Nisan Biyologlar Günü

16 Nisan Biyologlar günü münasebetiyle, Biyologlar Birliği Derneği olarak bazı konularda hatırlatmalar yapmayı uygun gördüm. Değerli meslektaşlarım ve basın mensupları; biyoloji üç temel bilimden biridir. Bu nedenle yok sayılamaz. Son yıllarda kendimizi yeterince anlatamadığımızdan haklı olarak kamuoyu biyologların öneminin farkında değil. Dünyada gelişmiş ve gelişmekte olan ülkelerde lisans eğitimleri; Viroloji, Bakteriyoloji, Ekoloji, Hidrobiyoloji gibi dallarda verilmektedir. Nitekim, Nobel Bilim Ödülleri`nde fizik, kimya, tıp gibi biyoloji bilimi de ayrı bir kategoride ödüle layık görülmektedir. Oysa ülkemizde ise sadece biyoloji bölümleri bulunmakta ve biyolog olarak mezun olunmaktadır. Bu durum bilimde geri kalmışlığın göstergelerinden biridir. Günümüzde bilimin çok hızlı ilerlemesi çok daha fazla bilgi öğrenmeyi şart koşmaktadır. Bir kişinin biyoloji konusunda her şeyi bilmesi mümkün olmadığından, alt dallarda uzmanlaşması gerekmektedir. Çağımızda bu bir zorunluluktur. Bilimde gelişen ülkelerde biyologlara verilen önem çok yüksek iken, ülkemizde uygulamadan kaynaklanan tam tersine bir durum mevcuttur. Hala bir biyologun ne iş yapması gerektiği konusunda fikir birliğine varılamamıştır. Biyologların; Aldığı eğitimle ilgisi olmayan konularda görevlendirilmesi de yaygın bir uygulamadır. Genelde sadece laborantlık ve büro görevlerinde çalıştırılmaktadırlar. Biyoloji bilimi konusunda eğitim alan bu elit personel birçok kamu kurumunda, aldığı eğitimle doğru orantılı konularda görevlendirilmediğinden atıl personel durumuna düşürülmektedir. Bu uygulamayla kurumlarımız ve dolayısıyla halkımız biyologlardan ve bunun sonucu olarak çok değerli biyolojik bilgilerden yeterince istifade edememektedir. Örneğin; ABD´de bir yerde oluşan gıda zehirlenmesinde sebebini araştıran, bulan ve çözüm getiren komisyonların başında biyologlar bulunmaktadır. Bu işi de doktorlara vermek onların iş güçlerini arttırdığı gibi bazen konuya hâkim de olamayabilirler. Zira doktorun görev sahası hastayı tedavi etmektir. Ülkemizde istihdam politikası daha sağlıklı yapılabilse ve buna bağlı olarak kişilerin aldığı eğitimlere göre görevlendirmeler yapılabilse daha az sorunla karşılaşılır ve bunun sonucunda problemleri daha kısa sürede çözebiliriz. Bir biyolog nasıl eczacılık, kimyagerlik yapamaz ise, bu meslek mensupları gibi diğerleri de biyologluk yapamazlar. Çünkü aldığı eğitim ve öğrendiği bilgiler farklıdır. Çağımızda ayrı ayrı gördüğümüz tıp, ziraat mühendisliği, gıda mühendisliği ve veterinerlik gibi bilim dalları biyoloji biliminden doğmuştur. Bir biyolog bu bilimler hakkında bilgi sahibi olabilirken, oysa onlar bir biri hakkında bu bilimlerle ilgili yeterli bilgiye sahip olamazlar. Biyoloji canlı bilimidir. Tüm canlıları her yönüyle inceler. Buna dünyanın kendiside dâhildir. Bu nedenle biyoloji biliminin önemi bu yüzyılda çok fazla artmıştır. Dünyada küresel ısınma, ekolojik denge, insanın da içinde bulunduğu yaşam döngüleri gibi konular git gide daha da önem kazanmaktadır. Bozulan dengelerin tekrar nasıl sağlanacağı yine biyologların çalışma sahalarından biridir. Günümüz şartlarında şu gerçeği çok iyi anlamalıyız: Artık biliminin önde giden dalı biyoloji ve insan sağlığıdır. Bu nedenle yurtdışında biyologların önemi her geçen gün daha da çok arttığından, araştırma kaynaklarına geniş olanaklar sunulmaktadır. Bu kişiler faaliyetlerinin karşılığında çalışma sonuçlarını ticari karlı ürünlere çevirerek ülke ekonomilerine çok ciddi katkı yapmaktadırlar. Bizim ülkemiz ise maalesef bu anlayıştan yoksun durumdadır. Bu alanda gereken özen gösterilmediğinden günümüz şartlarında tüm bu bilimsel gelişmelerin sonuçlarını maalesef parayla yurtdışından satın almaktayız. Bu anlayışın sonucu olarak şu soruyu kendimize sormamız gerektiğini düşünüyorum. Paramızı başka ülkelere göndereceğimize, neden kendi araştırma çalışmalarımıza daha fazla imkân sağlayıp buluşlarımızı bizde dünyaya tanıtırken, hem insanlığa hizmet sunup, hem de satarak ekonomik girdi sağlamıyoruz? Biz çok zengin bir ülkemiyiz? Evet, zenginiz. Ama biyolojik zenginlik olarak, insan kaynağı olarak, zeki insanlar olarak. Biz kendi kaynaklarımızı neden yeterince değerlendiremiyoruz? Ülkemizde üniversitelerden ortalama yılda 3.000 biyolog mezun olmaktadır. Peki; bunların kaçı eğitim gördüğü konularda çalışabilmektedir? Maalesef üzülerek ifade etmeliyim ki onda biri. Diğer hiç bir meslek grubunda bu büyük oran yoktur. Her on kişiden yalnız biri kendi mesleğiyle ilgili çalışabilmektedir. Sebebi ise; bu güne kadar süregelen yanlış istihdam politikalarıdır. Örneğin; 2006 yılında Sağlık Bakanlığı “Özel Hastaneler Yönetmeliği” ´ni yayımladı. Bu yönetmelik öncesi özel hastanelerde çalışabilen biyologların şimdi çalışması engellendi. Önceden çalışanlar da mevcut işinden oldu. Peki; bu kişiler ne yapacak? Bunun için yapılmış bir proje çalışması maalesef yok. Oysa insanlar en verimli, eğitim aldığı konularda çalışır. Sonuçta insanlar yaşamlarını sürdürebilmek ve yaşadığı topluma karşı sorumluluğunu yerine getirebilmek için çalışmak zorundadır. Biyologların ülkemiz için ne denli önemli olduğunun anlaşılması dileğiyle tüm biyologların bu özel gününü kutlarım. Gökhan KAVUNCUOĞLU Genel Sekreter BİYOLOGLAR BİRLİĞİ DERNEĞİ Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/16-nisan-biyologlar-gunu

BİYOTEKNOLOJİK GELİŞMELER

BİYOTEKNOLOJİK GELİŞMELER

Bu makale iki bölümden oluşmuştur. Birinci bölümünde, biyoteknoloji ile değişen dünya düzeninde olası devrimsel gelişmeler ve söz konusu gelişmelerin eğitim bilimleri açısından öngörülen doğurgusu ele alınmıştır.

http://www.biyologlar.com/biyoteknolojik-gelismeler

Toplu Sözleşme Sağlık Personeline Neler Getiriyor

2012-2013 dönemini kapsayan kamu görevlileri toplu sözleşme görüşmeleri neticesinde sağlık personelinin de önemli kazanımları olmuştur.  Bu çerçevede konu ile ilgili Sağlık Bakanlığı Strateji Geliştirme Başkanlığımız tarafından bir çalışma gerçekleştirilmiştir. Bu çalışma ile sağlık çalışanlarımızın ek ödeme ve mali haklarına yönelik getirilen önemli düzenlemeler aşağıda başlıklar halinde özetlenmiştir: 1- Yemek yardımı; 01/07/2012 tarihinden geçerli olmak üzere sözleşmeli personel de diğer memurlar gibi Devlet Memurları Yiyecek Yardımı Yönetmeliğinden yaralanacaktır. Buna göre sözleşmeli personel de yataklı tedavi kurumlarında ücretsiz yemek yiyebilecektir. Bu düzenleme ile sözleşmeli personele aylık yaklaşık 80 TL katkı sağlanmaktadır. 2- 112 acilde şoförlük de yapan acil teknisyenlerine ilave performans puanı; 01/07/2012 tarihinden geçerli olmak üzere, Sağlık Bakanlığı 112 acil sağlık hizmetleri kapsamında sağlık teknikeri (acil tıp teknikeri) ve sağlık memuru (acil tıp teknisyeni, toplum sağlığı teknisyeni) olarak görev yapan ve asli görevlerinin yanında süreklilik arz edecek şekilde ambulans şoförlüğü görevini de yürüten personelin performans puanlarına 10 puan daha ilave edilecektir. Budüzenlemenin personele aylık getirisi yaklaşık 50 TL olacaktır. 3- Mesleki üst öğrenimi tamamlayan sözleşmeli personelin ücretlerinin artırılması; 01/07/2012 tarihinden geçerli olmak üzere, sözleşmeli personel pozisyonlarında görev yapan sağlık personeli sağlık hizmetleri sınıfına atanılabilecek mesleki bir üst öğrenimi bitirirse sözleşme ücretleri, hizmet yılları dikkate alınarak aynı pozisyon unvanındaki üst öğrenimliler için öngörülen sözleşme ücreti esas alınarak ödenir. Bu düzenleme ile lise mezunu iken 4 yıllık yükseköğrenim tamamlayan sözleşmeli personelin ücretinde 180 TL civarında artış sağlanacaktır. 4- Tabip dışı personelin ek ödemelerinin aylıklarla birlikte ödenmesi; 01/06/2012 tarihinden geçerli olmak üzere tabip dışı personelin ek ödemesi her hangi bir katkıya bağlı olmaksızın aylıklara ilişkin hükümler uygulanmak suretiyle her ay aylıklarıyla birlikte ödenecektir.  Uygulama ile her ay maaş ödemesi ile birlikte denge tazminatı tutarı peşin olarak ve herhangi bir şarta bağlı olmaksızın yapılacaktır. Yıllık izin, rapor gibi nedenlerle döner sermaye gelirine herhangi bir katkıda bulunmasa bile, anılan personele bu tutar peşin olarak verilmeye devam edilecektir. Böylece anılan personelin eline her ayın 15’inde maaş ile denge tazminatı tutar garanti olarak geçecektir. Ödenen bu tutar takip eden ayda ödenecek performans ek ödemesi tutarından düşülecek ve kalan kısım personele performans ek ödemesi olarak ödenecektir. Mayıs ayı ek ödemesi ile birlikte hekim dışı personel Haziran ayında en az 2,5 aylık sabit ek ödeme alacaktır.  Örneğin 10. derece hemşire, ebe veya sağlık memurunun Haziran ayı içerisinde çalışmış olduğu dönem olan 1-31 Mayıs için en az 584 TL, 1 Haziran-14 Haziran dönemi için 272 TL, 15-Haziran-14 Temmuz dönemi için ise 584 TL olmak üzere asgari 1.440 TL ek ödeme yapılacaktır. Bunun dışında Mayıs ayına ait varsa performans ödemesi ayrıca ödenecektir. Bu uygulama üniversiteler ve adli tıp kurumu için de geçerlidir. 5- 112 acil sağlık hizmeti personelinin ek ödeme tavanının artırılması; 01/07/2012 tarihinden geçerli olmak üzere 209 sayılı kanuna göre daha önce ek ödeme tavanı % 150 olan 112 acil sağlık hizmeti personeli için bu oran % 200’e çıkarılmıştır.  Bu tavan artışı ile bir hemşirenin veya sağlık memurunun ortalama net ek ödemesi 250 TL civarında artacaktır. 6-        Dini bayramlarda nöbet ücretinin artırılması; Nöbet ücretleri dini bayram günleri için % 20 artırımlı ödenecektir. Örneğin normal günlerde lise ve dengi mesleki öğrenim görmüş hemşirenin saatlik nöbet ücreti 3,31 TL iken  %20 (0,68 TL) oranında arttırılarak dini bayram günlerinde 3,97 TL ye yükseltilmiştir. Normal günlerde saat başına 6,20 TL nöbet ücreti alan bir pratisyen hekim dini bayramlarda 7,44 TL nöbet ücreti alacaktır. 7-Pratisyen hekim ve diş hekimlerinin garanti ek ödeme miktarının yükseltilmesi; 01/07/2012 tarihinden geçerli olmak üzere, pratisyen hekim ve diş hekimlerinin ek ödemesi 375 sayılı Kanun Hükmünde Kararnamenin ek 9 uncu maddesi uyarınca kadro ve görev unvanı veya pozisyon unvanı itibarıyla belirlenmiş olan ek ödeme net tutarından az olamaz. Buna göre örneğin 4. derece pratisyen tabiplerin garanti ek ödemesi 400 TL civarında diş hekimlerinin garanti ek ödemesi 370 TL civarında artacaktır. 8- Vekalet eden personelin ek ödeme matrahının artırılması; 15/07/2012 tarihinden geçerli olmak üzer uygulama ile artık sağlık müdür yardımcısı, şube müdürü, hastane müdürü veya hastane müdür yardımcılığına vekalet edenlere yapılacak ek ödemeler vekalet edilen kadronun matrahı üzerinden hesaplanacaktır. Uygulama ile örneğin bir sağlık memurunun şube müdürlüğüne vekâlet etmesi durumunda ortalama net 350 TL civarında, il sağlık müdür yardımcılığına vekalet etmesi halinde 400 TL civarında ek ödemesi artacaktır. 9- Vergi yükünden dolayı yıllık geliri emsali personelden düşük gerçekleşen personele fark ödemesi yapılması; Uygulama ile sağlık personeline bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağın; 375 sayılı KHK’dan yararlanan emsali personele bir mali yıl süresince mali hakların tutarı olarak ödenen toplam meblağdan az olması durumunda aradaki fark mali yılın sonunda döner sermaye bütçesinden ödenir. Bu durumda olan personelin yıllık 200-250 TL civarındaki mali kayıpları telafi edilmiş olacaktır. 10- Taşınır kayıt kontrol yetkilisine mali sorumluluk tazminatı; Mali sorumluluk zammı almayan aynı zamanda taşınır kayıt kontrol yetkilisi olarak görevlendirilenlere kadro veya görevleri itibarıyla öngörülen mali sorumluluk zammı ödenecektir. Uygulama ile memur, hemşire, ebe, sağlık memuru vb. kadrolarda bulunan personelden taşınır kayıt kontrol yetkilisi olarak görev yapanlar mali sorumluluk zammı almazken bu uygulama ile aylık net 12 TL civarında tazminat alacaklardır. 11- Sosyologların zam ve tazminatlarının yükseltilmesi; Uygulama ile Sağlık Bakanlığında sosyolog olarak görev yapanların maaşları 300 TL civarında artırılmaktadır. 12-Burs alan veya Devletçe okutulan çocuklar için aile yardımı ödeneği verilmesi; 15/07/2012 tarihinden geçerli olmak üzere devletçe okutulan veya burs verilen çocuklar için aile yardımı ödeneği verilecektir. 13- Maaş farkı (5,5 aylık ) ve geç ödeme farkının ödenmesi; Uygulama ile yeni belirlenen katsayı, artış oranı ve ücret tavanları uyarınca kamu görevlileri ve emeklilerine 01/01/2012-14/06/2012 dönemi için yapılması gereken fark ödemeleri, hesaplanmaları müteakiben ödenecektir. Söz konusu artışların geç ödenmiş olması nedeniyle fark ödemesi yapılacak kamu görevlileri ve emeklilerine, söz konusu döneme ilişkin toplam fark ödemesinin % 2,25'i oranında geç ödeme farkı ayrıca ödenir. Buna göre 4. derecedeki bir uzman hekim gecikme zammı dahil 420 TL, 4. derece bir pratisyen hekim 370 TL ve 8. derece bir hemşire, ebe veya sağlık memuru 240 TL civarında fark alacaktır. Aile hekimleri ve aile sağlığı elamanlarına da fark ödemesi yapılacaktır.  Ayrıca varsa nöbet ücret farkları da ödenecektir. 14-Emekli olanlara ödenen tazminatın artırılması; 01/07/2012 tarihinden geçerli olmak üzere emeklilik tazminatı 100 TL artırılacaktır. Kamuoyunun bilgisine saygıyla duyurulur. http://www.saglik.gov.tr

http://www.biyologlar.com/toplu-sozlesme-saglik-personeline-neler-getiriyor

Listeria Besiyerleri

FRASER Listeria Selective Enrichment Broth (Merck)Listeria 'nın 2 aşamalı selektif zenginleştirmesi için kullanılan bu besiyerinde Listeria, yüksek besin içeriği ve geniş tampon kapasitesi ile iyi bir gelişme gösterirken refakatçi flora lithium chloride, nalidixic acid ve acriflavine hydrochloride ile inhibe edilir. Listeria 'nın ß-D-glucosidase aktivitesi esculin ve ammonium iron (III) citrate ile belirlenir. Glucoside esculin, ß-D-glucosidase ile esculetin ve glukoza parçalanır, esculetin ise demir (III) iyonları ile zeytin yeşili-siyah bir renk veren bileşik yapar. Dolayısı ile bu besiyerinde Listeria varlığına bağlı olarak bir renk kararması olur.2 aşamalı selektif zenginleştirmenin birinci adımında yarı konsantrasyonda hazırlanmış FRASER Broth, materyal ile inoküle edilir ve 30oC'da 18-24 saat inkübe edilir. 2. adımda ise 1. adım kültüründen 0,1 mL alınarak 10 mL FRASER Broth besiyerine aşılanır, 37oC'da 24 saat inkübe edilir. İnkübasyonun 18. ve 24. saatlerinde Listeria için geliştirilmiş selektif katı besiyerlerine sürme yapılır.L-PALCAM Broth (Merck)İstenmeyen mikroorganizmaların gelişimi polymyxin-B-sulfate, acriflavine, lithium chloride ve ceftazidime ile inhibe edilir. Soya lesitini, yumurta sarısı emilsiyonu yerine kullanılır. Esculin, ammonium iron (III) citrate, mannitol ve phenol red Listeria 'nın ayrımında kullanılır. 30oC'da 24-48 saat inkübasyondan sonra besiyeri renginde kararma olursa, buradan Listeria için selektif bir katı besiyerine sürme yapılır ve inkübasyondan sonra koloni izole edilebilir.PALCAM Agar (Merck) Dışkı, biyolojik örnekler, gıdalar ve yoğun kontamine olmuş çevre örneklerinde Listeria 'nın doğrudan geliştirilmesi ve dolayısıyla sayımı için geliştirilmiş bir besiyeridir. İstenmeyen mikroorganizmaların inhibisyonu polymixin, acriflavine, ceftacidim ve lithium chloride ile sağlanırken Listeria kolonileri zeytin yeşili-siyah renk ile ayrılır. İnhibe olmayan mannitol pozitif enterokok ve stafilokoklar sarı zonlu sarı koloni yaparlar.Cl. perfringens için TCS Agar (Merck)Yüksek besin içeriği Clostridium 'lar için uygundur. H2S oluşumuna bağlı olarak Clostridium perfringens kolonileri siyah renk alır. Cycloserine, refakatçi floranın inhibisyonunu ve zayıf kolonizasyonunu sağlar. Bu besiyeri için hazırlanan özel katkı 4-Methylumbelliferyl-phosphate (MUP) alkali ve asit fosfotaz için fluorejenik bir substrattır. Asit fosfotaz Cl. perfringens için yüksek spesifiklik gösteren bir indikatördür.Asit fosfotaz MUP 'u uzun dalga boylu UV ışığı altında fluoresans veren 4-methylumbelliferone 'a parçalar. İnkübasyon sonucunda oluşan siyah renkli ve fluoresans veren koloniler Cl. perfringens kolonileridir.

http://www.biyologlar.com/listeria-besiyerleri

Virüsler Hakkında Bilgi

Virüsler Hakkında Bilgi

Virüs, canlı hücreleri enfekte edebilen mikroskopik taneciktir. Virüsler ancak bir konak hücreyi enfekte ederek çoğalabilirler.

http://www.biyologlar.com/virusler-hakkinda-bilgi

BİYOLOJİK AJANLARIN ETKİLERİ

Biyolojik ajanlar ya yaşayan organizmalar ya da ölüm veya hastalıklara sebep olan toksin gibi türevlerden oluşur. Yaşayan organizmalar etkilerini gösterene kadar yaşayan hedeflerde çoğalırlarken, toksinlerini üremezler. Toksinler genellikle daha öldürücüdür, birkaç dakika veya saat gibi çok çabuk ölüm veya saf dışı bırakmaya neden olurlar. Yaşayan organizmalar enfeksiyon ve hastalık belirtileri görünmesi arasında 24 saat ila 6 hafta arasında kuluçka devri gerektirir. Biyolojik silahlar ilk bulaşmadan sonra birkaç hafta sonra dikkate değer bir etki bırakmaya devam edebilir. Benzer şekilde geciktirilmiş kuluçka periyodu bulaştığı yerde ajanın tamamen örtülü olarak gelişmesini sağlar ve etkisi ortaya çıktığında hastalığın tabii olarak geliştiği fikrini oluşturabilir. Bir biyolojik saldırı, bir bölgeyi birkaç saat ile birkaç hafta boyunca kirletir, teçhizatı kirletir ve birlikleri harekatı son derece sınırlayan, koruyucu elbise giymeye zorlar ve/veya koruyucu yan etkileri büyük ölçüde bilinmeyen antimikrobiyaller almak zorunda bırakırlar. Bu ajanların bazıları ölümcüldürler, diğerleri genellikle kapasite düşürücü olarak kullanılırlar. Literatürde klasik tedavi yöntemlerinin etki edemediği veya belli etnik gruplar üzerinde kullanılabilen genetik mühendisliği ürünü ajanlardan bahsedilmektedir. Kimyasal silahların bütün korkunçluğuna rağmen, biyolojik organizmanın çok küçük bir örneği bile çok daha ölümcül olabilir. Örneğin; Bacillus antraksis basilinin yol açtığı şarbon hastalığında solunum yoluyla havadan alınan dayanıklı sporlar akciğerler içerisinde açılarak çoğalmakta, başlangıçta soğuk algınlığı semptomlar ile kuluçka devresini geçirerek kısa sürede öldürücü tablolar ile karşımıza çıkabilir. Genetik mühendisliği öldürücülüğü artırmak için daha fazla patojen veya toksin üreten genlerin geliştirilmesi için potansiyel yaratmıştır. Bu şekilde normal halinden 100 defa daha fazla patojen olan ve toksin üreten hücreler elde edilmiştir. Enfeksiyonu yayarken etkinliği geliştirebilmek ancak genetik olarak güçlendirilmiş ajanlarla mümkündür. Bu şekilde kurumaya, ultraviyole ışınlarına, ısınmaya karşı patojenlerin dirençli olmaları sağlanarak sağlık üzerine olumsuz etkinlikleri artırılabilir. Belirli biyolojik ajanlara besleyici katkı maddesi kullanılması tutulduğu ortamda hayatta kalmalarını kuvvetlendirir. Bazı patojenlerin belli çevre şartları içinde kontrollü olarak mevcudiyetlerinin sağlanması bile mümkündür. Koşullara bağlı kendini yok eden genler adı verilen gelişme ile organizmalar belirli bir çevrede önceden belirlenen miktarlarda kopyalandıktan sonra tamamen yok olacak şekilde programlanabilmektedir. Böylece, enfekte olmuş arazi belirli bir zaman sonra zarara uğramış olur. SINIRLAMALARI 1- Biyolojik ajanlar, kimyasal silahların aksine etkilerinin tahmin edilmesi ve kontrolü son derece zordur. Etkileri, kimyasal ajanlardan daha fazla ısı, hava şartları ve topografik yapıya bağlıdır. 2- Böylece, her zaman yalnız hedefi kirletme riski vardır. 3- Bir çok biyolojik ajan etkili olabilmesi için solunum veya sindirim yoluyla alınmalıdır. Kimyasal ajanlarda olduğu gibi deri ile temas sonunda enfeksiyon yaratması mümkün değildir. Bu durumda, eğer biyolojik ajanlar doğru bir şekilde tespit edilebilirse buna karşı savunma kimyasal ajanlara karşı savunmadan daha kolaydır. 4- Anthraks sporları ve bazı toksinler gibi kuru ajanlar kalıcı olmalarına rağmen, bir çok biyolojik ajanın etkisi zamanla çok çabuk azalır. 5- Anthraks sporları toprakta ölümcül etkilerini onlarca yıl muhafaza ederler. Buna benzer ajanlar uzun vadede tehlikelerini sürdürürler. Bu şekildeki ajanların kullanım durumunda taarruzu gerçekleştiren tarafın işgal etmek veya geçmek istediği harekat alanı kirletilmiş olur ve koruyucu elbise kullanma ihtiyacı ile ciddi tekrar kontaminasyon gereksinimlerini beraberinde getirir. 6- Biyolojik silahlanmanın getirdiği depolama ve kullanma her zaman teknik zorlukları beraberinde getirir.

http://www.biyologlar.com/biyolojik-ajanlarin-etkileri

Botaniğin Tarihçesi

Bugünkü sistematik botanik adına yaşanan en büyük ilerlemeler, 20. yüzyılın ikinci yarısında meydana gelmiştir. O dönemlerin kötü koşulları ve maddi sıkıntılarına rağmen, dünyanın bir çok yerindeki çok sayıda flora yazarı, önemli çalışmalar başlatmış ve bu konuda büyük adımlar atmışlardır. Dünya tarihinde, bilinen ilk Flora yayınları, küçük bir alanda yetişen bitkilerin isim listesinden bile daha dar kapsamlıydı. Bugün ise, en iyi ve modern çalışmalar içerik olarak sub-monografiktir. 1950 ve 1960’lı yıllarda G.B. Asya’nın çeşitli bölgelerinde birkaç Flora projesi başlatılmış, bu çalışmaların durumu ve ilerleyişi devamlı olarak takip edilmiş ve bölgeler tekrar tekrar incelenmiştir. Bu araştırmalar, Floristik bir çalışmadan elde edilecek bilgilerin geliştirilmesi ve üzerine yeni bilgilerin eklenmesi için yerel botanikçilere ihtiyaç duyulduğunu göstermiştir. Çünkü bir bölgenin floristik açıdan tam olarak ortaya konması çalışmaların sürekliliğine bağlıdır. Bu çok uzun bir zaman alabilir. Devamlılığı olmayan ve kısa süreli çalışmalarla bir bölgeye ait sağlıklı bir floristik tanımlama yapılamaz, dolayısıyla tam olarak ortaya konmuş bir çalışma, o bölgede sürekli araştırmalarda bulunan yerel botanikçilerin varlığına bağlıdır. Botaniğin çok geniş bir bilim dalı olduğu ve bir bütün olarak değerlendirilmesi gerektiği düşünülürse, Floristik çalışmalar, botaniğin ne tamamı olarak ne de botanik bilimi içinde küçük bir ayrıntı olarak ele alınmalıdır. Aslında bu çalışmalar, botaniğin vazgeçilmez bir parçası şeklinde düşünülmelidir. İLK FLORALAR GüneybBatı Asya’nın bugünkü durumu hakkında konuşmaya başlamadan önce, konuşulması gereken diğer bir nokta ise, Flora terimi ile temsil edilmiş olsun yada olmasın, genel Flora yazımının kökeni ve bilinen en eski Flora çalışmalarının durumu olacaktır. En eski Floristik çalışmalar hakkında bilgi edinmek, bu çalışmaları bugün için ortaya koymak, oldukça zor bir iştir. Konuyla ilgili bilinen en eski kayıtlar, 16. yüzyılın ikinci yarısına aittir. O dönemde bilimsel bir Flora çalışması diye nitelendirilebilecek uğraşılar, sınırları belli bir bölgedeki bir veya birkaç çeşit bitki türü hakkında yazılmış bir botanik rehberi olmaktan daha ileri gidememiştir. Bu bilgilere ise, Deutchman Corolus Clusinius’un o tarihlerde yapmış olduğu çalışmalardan elde edilmiştir. Clusinus’un yazdığı iki eserden ilki, 1567 yılında İspanya ve Portekiz’e ilk Flora çalışmalarıdır ve bu ülkelere 1563, 1565 yıllarında yaptığı kısa seyahatleri sonucu ortaya çıkmıştır. Diğer eseri ise 1583 de yayınlanmış Avusturya ve Macaristan bölgelerinin çevrelerine ait olan Flora çalışmalarını içermektedir. Bu yayında sadece doğal olarak yetişen türlerden bahsedilmemiş, aynı zamanda Tulipa, Lilum, Fritillaria gibi ornomentallerden hatta Amerika kökenli Solanum ve Mirabilis gibi birkaç türden daha bahsedilmiştir. Yapılan çalışmalarda, tam ve kesin lokalite bildirimi ve diskripsiyon hatalarını önlemek amacıyla Clisinus, Floristik çalışmalara bir standart getirmeye çalışmış ve bunun için uzun yıllar uğraş vermiştir. Stafleu(1967) Clusinus’un bu çalışmalarının dikkate değer ve takdir edilir cinsten olduğunu aktarmıştır. Clusinus, bu iki eserinde de Flora terimini ne başlık ne de başka bir şekilde kullanmıştır. Ama bu çalışmalar, kökeni 500 yıl önceye dayanan Flora yazımının başlangıcı ve menşeidir. Aynı zamanda ise bilimsel birer Flora çalışması olduklarına kuşku yoktur. Daha önce dediğimiz gibi, bilinen en eski Botanik rehberinin ve Floristik çalışmaların tespit edilip ortaya konması çok zordur. Aynı şekilde eserlerinde Flora terimini ilk kimin kullandığı da bilinmesi zor olan bir diğer konudur. 1647 yılında Flora Dannica adlı eseri yayınlanan Simon Pauli’nin Flora terimini ilk kullanan botanikçi olduğu ileri sürülmektedir. Bundan sonra ise İsveçli ünlü tabiat bilgini olan Karl Von Linneaus zamanına kadar Flora terimi ile temsil edilen pek çok eser yayınlanmıştır. Almanya’nın Jena bölgesi için yayınlanmış olan, Ruppius’un yazdığı Flora Jenesis (1718), ayrıca Bryne’nin yazdığı Flora Capensis (1724-G. Afrika) bunlara örnek olarak verilebilir. Flora Capensis tam bir Floristik çalışmadan ziyade bitki koleksiyonu şeklinde hazırlanmıştır. Bunların dışında, gerçek Floristik çalışmaları içeren modern botaniğin bir çok bölümüne ait ilk çalışmaları başlatan kişinin Linneaus olduğu bilinmektedir ve O, dönemin botanik üzerine çalışanları arasında en mükemmel olanıdır. 1737’de Linneaus’un yazdığı Flora Lapponica adlı eser, Flora yazımında bir dönüm noktası olarak kabul edilmektedir. Species Plantarum adlı eserinde nomenklatür kullanılmış ve türler binomial olarak adlandırılmıştır. İçeriği ise nispeten moderndir. Synonimler ve habitat detayları verilmiş ayrıca Cryptogamlardan da bahsedilmiştir. Belli bir alanda yayılış gösteren bitki topluluklarını ifade eden flora terimi ile Floristik çalışmalar sonucu oluşturulan eserleri ve kitapları ifade eden Flora terimi arasında bir ayırım yapmak istenirse, durumu aydınlığa kavuşturmak açısından, yayınlanan kitaplar ve eserler için “F” harfi, bitki topluluklarını ifade içinde “f” kullanılmalıdır. Böyle bir düzenleme yapıldığında aradaki farkı ayırt etme bakımından bu durum günümüz botanikçilerine oldukça faydalı olacaktır. Flora kelimesi “Çiçeklerin Romalı Tanrıçası (Roman Goddes of Flowers)” adından türemiştir. İlk botanikçiler doğal ve kültür bitkileri arasında, bugün yapıldığı gibi bir ayırıma gitmemişler ve bitkilerin tamamını göz önüne almışlardır. Onlara göre bu iki bitki gurubu, birbirlerinin ayrılmaz birer parçasıydı. Thornton’un yazdığı Floranın Mabedi (The Temple of The Flora ) adlı eser çok sonra post-Linneaus’un en güzel örneklerinden biri olmuştur (Linneaus’a ait olan Sexual Sistem’in yeni örneklerinin resmedildiği levhalar). Linneaus hayatayken ve daha sonraki dönemlerde Floristik çalışma, eser yazımı ve yayınlanmasında önemli ölçüde artış olmuştur. Britanya’da gerçekleştirilen ilk Floristik çalışmalar ve yine Avrupa’da yapılan en eski ve temel bir çok çalışmanın kökeni de bu döneme dayanmaktadır. Britanya Florasının kökeni 200 yıl önceye yada daha eskilere dayanmaktadır. Bu 200 yıl boyunca daha önce yapılmış veya şuan yapılmakta olan bir çok çalışma vardır. Çalışmalar devam etmektedir ve bulunan her yeni bilgi eskilere eklenmektedir ve şu durumda son söz hala söylenmemiştir. Her ne kadar, geçmişten günümüze kadar yapılmış ve yayınlanmış olan Floristik çalışmaları düzenleyip sınıflamak ve bir sıraya sokmak taksonomik açıdan zor bir durum ortaya çıkarsa da (bu çalışmaların sırası ve düzeni yavaş yavaş birbirine karışmaktadır.) bu konuda 3 ana ve esas dönem kabul etmek gerekir. Bunlar Linneaus öncesi dönem, Linneaus’un yaşadığı dönem (Victorian dönemi 1850’lerden yüzyılın sonuna kadar olan dönemi içerir.) ve şuan ki Floristik dönem( içinde bulunduğumuz yüzyılın ortalarından bugüne kadar olan süreyi kapsamaktadır). Özellikle bu dönemde G. B. Asya’da oldukça modern düzeyde bir çok Floristik çalışma gerçekleştirilmiştir. VICTORIAN DÖNEMİ 19. yüzyıla ve Victorian dönemine baktığımızda o dönemde pek çok Floristik çalışma yapıldığını ve yayınlandığını görmekteyiz. Bu çalışmalar genel olarak, karşılaştırmalı morfoloji, bugün olduğu gibi bir nebze nomenklatür, tipifikaston, örneklerin sitasyonu, ekoloji ve sitoloji göz önüne alınarak oluşturulmuştur. George Bentham dönemin ünlü ve büyük bir botanikçisi ve matatikçisiydi. Bentham, (1861) Flora Honkongensis ve 7 ciltlik Flora Australiensis (1863-780) eserlerinin yazarıdır. Bentham bu iki eseriyle, daha sonra yapılan tüm Floristik çalışmaları özellikle de Kew’un yayınladıklarını bir standarda sokmuştur. Bentham (1874) Flora yazımı hakkında kendi dönemiyle ilgili olduğu kadar günümüzde de hala etkili olan çeşitli açıklama ve yorumlar yapmıştır. Ona göre Flora yazımının prensipleri; “belli bir alandan alınan herhangi bir bitkinin teşhisini kullanıcıya mümkün olduğunca kolaylaştırmaktır.” Ve yeni başlayan bir kimse örnekler hakkında uzun diskripsiyonlar düzenleyebilir, fakat bir tür hakkında kısa bir diskripsiyon hazırlarken, bitkinin ayırt edici ve tanımlayıcı özelliklerini ortaya koyarken karakter seçimini tam ve yerinde yapması gerekir. Bunun için de kişinin tam ve mükemmel bir metodolojik seviyeye, incelediği bitki gurubu hakkında geniş bir bilgi birikimine sahip olması gerekir.” Yani uzun bir diskripsiyon hazırlamak daha kolaydır. Diskiripsiyonlar basitleşebilir fakat eksiksiz ve doğru olmalıdır. Bentham günümüzün diskripsiyonları hakkında ne düşünürdü bilemiyorum ama (kesin olan şu ki; bizim diskripsiyonlarımız daha uzun.) onun yaptığı tüm çalışmalarda diskiripsiyonların yüksek standartlarda olduğundan kuşku yoktur. Bentham çalışmalarının çoğunu tek başına bazen de Hooker ile yapardı. Özellikle Genera Plantarum yazılırken (1862-83). Bu çalışmanın da yine büyük bir bölümünü Bentham hazırlamıştır. 80 yaşının üzerindeyken bile, işine gösterdiği hırsın günümüze dek gelen hikayesi, botaniğe yeni yaklaşımlar ve katkılar sağlamıştır. “Orchidae’ler üzerine bir yıldan fazla, yoğun ve aralıksız süren çalışmaların ardından (Genera Plantarum için) bir cumartesi öğleden sonra, sıkıntılı bir şekilde ve zorluklar içinde yaptığı revizyon çalışmalarında bir sonuca ulaşmıştı; Bu işler sırasında hiç durmaksızın otsu bitkileri tanımaya ve tanımlamaya çalışmış ve hala çok zor olan bu görevi uzun yıllar üstlenmiştir. Bu çalışma Bentham’ın en son ve neredeyse en büyük işi olmuş, aynı şekilde başlangıçta kendisine materyal sağlayan ve çalışma süresince yardımcı olan insanları çok rahat ve kolay bir şekilde idare etmiş ve zamanı çok iyi kullanmıştır.” Kew; Boissier zamanında da şimdi olduğu gibi dünyanın en büyük taksonomi araştırma merkezlerinden biriydi. Fakat Geneva’da Edmond Boissier, G. B. Asya’da ilerleyen botanik biliminin sonuçlarına bağlı olarak başlatılan bir çalışmaya (Flora orientalis) katılmıştı; Artık dev bir anıt haline gelmiş olan Flora Orientalis’e ait olan birinci cilt 1867’de 5. ve sonuncu cilt ise 1884’de yayınlanmıştır. Boissier’in ölümünden sonra, suplamenteri olan 6. cilt ise 1888’de yayınlanmıştır. Boissier yaşadığı süre içinde 6000 yeni tür tanımlamıştır (Burdet, 1985). Bu 6000 türün çoğunu yine Flora Orientalis çalışmaları sırasında ortaya koymuştur. Tanımladığı türlerin bugün bile geçerliliğini koruyor olması, onun bu büyük botanik zekasına yapılmış bir övgüdür. Bir konuda tüm insan aktivitelerinde olduğu gibi eğer bir gelişme kaydediliyor ise önemli olan onun öncesinin ve sonrasının biliniyor olmasıdır. Yani nereden gelip nereye gittiğinin biliniyor olması gerekir. Bu durumu politik ekonomi, motorlu arabalar, çamaşır makineleri ve futbolda da görebiliriz. Bu genellemeyi sistematik botanik içinde yapabiliriz. Linneaus, De Candolle, Bentham, Boissier ve Hooker’ın bıraktığı bu büyük ve sağlam mirası, varisleri devralacaklar ve geliştireceklerdir. Bugün bu düşünüldüğü gibi olmuştur. Çünkü günümüzde onların bıraktığı bu temeli geliştirmeye çalışan botanikçiler vardır. G. B. Asya ile ilgili olarak tüm flora (küçük “f” ile) çalışanları, boissier’in Flora Orietalis’i oluşturduğu böyle geniş ve kısmen doğal bir alanda çalıştıkları için şanslı sayılırlar. Yani bu çalışma tam doğru olan ve azımsanamaz bir çalışmadır. Flora Orintalis örnekleri Geneva’da bulunmakta ve çok iyi korunup saklanmaktadır. G. B. Asya’daki Floristik çalışmalarda da bir çok modern Flora çalışmasında olduğu gibi taksonomik kavramlara uygunluk oldukça üst düzeydedir. Bundan dolayı G. B. Asya Boissier’e çok şey borçludur. O bu konuda gerçekten büyük bir devdir. GÜNEY BATI ASYA FLORASININ BUGÜNKÜ DURUMU Eğer 3. Flora dönemi dediğimiz devreye bakacak olursak aslında bugün hakkında konuşuyor oluruz ve aynı zamanda bugün için belli bir çizgiye gelmiş olduğumuzu görürüz. Muhtemelen bu doğrudur çünkü, sözünü ettiğimiz bu 3 dönemin Floristik çalışmaları göz önüne alınırsa 20. yüzyılın 2. yarısına rastlayan periyotta çok büyük gelişmeler ve en azından çok sayıda yayın üretilmiştir. Dünyanın hemen her yerinde inanılmaz sayılarda Flora projesi uygulamaya konulmuştur (Avrupa’da, Afrika’da ve yeni dünyada). Eğer önümüzdeki birkaç yüzyıl içinde hala çevrede botanikçi var olursa, öyle sanıyorum ki 20. yüzyıldaki bitki sistematiği adına yaşanan tüm gelişmelerde göz önüne alınırsa, botanik tarihçilerinin dikkatini en çok günümüz Flora yazım aktiviteleri çekecektir. Bu projelerden birkaç tanesi çok büyük olarak tasarlanmıştı ve hala bu derecede büyük Flora projeleri tasarlanmaktadır. 30 veya daha uzun yılar alan Flora SSCB 1964’de tamamlanmış ve bu çalışmada 17000’den fazla bitki türünden bahsedilmiştir. Bu 17000 türün yaklaşık %10’u yani 1700 tanesi ise tamamen yeni tür olarak bilim dünyasına tanıtılmıştır( 19?7 Shetler). Büyük Çin Florası (Flora Republicae popularis Sinicae) çalışmalarında 28000 vasküler bitkinin incelendiği bilinmektedir. Bu çalışama için 200 Çinli botanikçiye ihtiyaç duyulmuştur. Bunun nedeni ise ilk cildin bir an önce 1959’da çıkartılmak istenmesidir. Bu çalışma yüzyılın sonlarına doğru 80 cilt olarak tamamlanmıştır. Bu iki devasal projenin de (Çin ve SSCB) komünist-sosyalist yönetimlerce desteklendiği gerçeği de oldukça ilginçtir. Aynı dönemlerde dünyanın diğer pek çok yerindeki benzer Flora projeleri ile karşılaştırılacak olursa, diğerleri sürekli finansal sıkıntılar çekmişler ve kaynak arayışı içine girmişlerdir. Çok ilginçtir ki o dönemde dünyanın çok zengin iki ülkesi olan Amerika ve Suudi Arabistan’da böyle bir Flora çalışması yapılmamıştır. Doğu ile Batı arasında ilginç bir karşılaştırma; “bir insanı aya göndermek” yada “yeni petrol kaynakları bulup milyarlar kazanmak” dururken neden bitkileri anlamak için para harcasınlar ki? Şimdi oldukça ilginç ve önemli olan G.B. Asya Florasının bugünkü durumuna yeniden dönüyoruz. Kısaca ele alacağımız üç çalışma var. Türkiye Florası, İran Florası, Pakistan Florası. Bence neresi olursa olsun, herhangi bir yerin florasının kökenin araştırmak oldukça ilginç bir konudur. Bu çok özel olan üç bölgenin tamamı, buralardaki Floristik çalışmaları başlatan ve ilerleten birkaç kişiye çok şey borçludur (ne bir hükümete, ne bir enstitüye, nede bir tavsiye komitesine). Peter Davis, Karl Heinz Rechinger ve Ralph Steward isimleri şu an Türkiye İran ve Pakistan Floralarıyla eş anlamlı ve özdeş hale gelmişlerdir. Aynı şekilde Komarov ismi de SSCB Florası ile (hatta bu çalışma onun ölümünden sonra tamamlanmış olsa bile) eş anlamlı tutlmaktadır; babası Mouterde ise Nouvelle Flore du Libani et de la Syrie Florası ile özdeşleşmiştir. Peter Davis bir zamanlar şöyle demişti, “Kişisel ve iyimser bir görüş olarak düşündüğüm Türkiye Florasının yazımı fikri tesadüfi bir şekilde, bende büyük bir ilgi uyandırmıştır.” Peter Davis 20 yaşındayken, yüzyılın başlarında daha önce Boissier’in gelip inceleme yaptığı Batı Türkiye Dağlarını, botaniksel anlamda incelemiş ve örnekler toplamıştır(1938). Daha sonraki ilk Türkiye seyahatinde, ülkenin bitki örtüsünden ve vejetasyonundan dolayı büyülenmiştir. Savaştan sonra Davis, Edinburg’da derece almış, bir çok madalya hak etmiş ve üniversiteye konuşmacı olarak atanmıştır(1950). Ardından yakın bir zamanda Türkiye’ye yapacağı 10 büyük bitki toplama seyahatlerinin ilkini gerçekleştirmiştir; yaklaşık 27.000 hatta bunun 3-5 katı kadar örnek toplamıştır(Davis & Hedge 1975). Bu keşif seyahatlerinin bir kısmı oldukça uzun sürmüştür. Hedge de onunla birlikte yaklaşık 7 ay süren bir geziye katılmıştır. 1950’lerden sonra uygun ve iyi durumda olan tüm herbaryum materyalleri gerçekçi bir Flora yazımı için bir araya getirilmiştir. Bunun dışında Dr. A. Huber Moarth ise Türkiye‘ye düzenlemiş olduğu çeşitli seyahatler sonucu Davis’in yaptığı çalışmalardan bağımsız olarak Edinburg ve Basal’da Türkiye Florası üzerine çalışmalarda bulunmaktaydı. 1961’de Davis, Endüstriyel ve Bilimsel Araştırma Departmanından aldığı personel yardımı ile küçük bir takım kurmuştur. Bu personeller Edinburg ve Royal Botanic Garden’de yetişmiş full-time çalışma asistanlarıydı. Davis bu çalışmaları sırasında Royal Botanic Garden ve hükümetin bu konu ile ilgili departmanları arasında kurulan koordinasyon sonucu üst düzeyde desteklenmiştir. Bu yardımlar ve destekler, ancak Türkiye Florası’nın çok hızlı çalışılması ve işlerin planlandığı şekilde gitmesi durumunda devam edecekti. Proje tamamlanana kadar karşılıklı bu olumlu ilişkiler ve işler planlandığı şekilde devam etmiştir. Türkiye Florasının ilk cildi 1965 yılında Edinburg’da basılmıştır. Son cilt olan 9. cilt ise 1985’de, ayrıca ek cilt olan 10. cilt 1988’de yayınlanmıştır(Türkiye Florası üzerine devam eden çalışmalar sonucu 2000 yılında 11. cilt basılmıştır). 10. cilt Davis tarafından 2 araştırma asistanı ile birlikte (Robert Mill & Kit Tan) çok geniş bir şekilde hazırlanarak yazılmıştır. Net istatistiklere göre 20 yıllık bir periyotta tamamlanmış olan ilk 9 ciltte 8800 tür üzerinde inceleme yapılmıştır. Yani bu, her yıl 400’ün üzerinde türün incelenmesi anlamına gelmektedir. Boissier’in yazmış olduğu Flora Orientalis, Türkiye Florası oluşturulurken temel kaynak olarak kullanılmıştır. Flora of Turkey ve Flora Iranica gibi birer çalışma yapmak oldukça yerinde ve orijinal araştırma olmuştur. Dr. Mill son zamanlarda Türkiye’de 1332 tür tanımlamıştır. Bu süreç 1945’den bugüne kadar olan süreyi kapsamaktadır. Bu sayı toplam tür sayısının %15.5’ini karşılamaktadır. Ayrıca sonradan meydana gelen değişiklikler ve sinonim olan (yaklaşık 150 tane) türlerde göz önüne alınırsa yüzde dilim hala %13.5 gibi yüksek bir orana sahiptir. Endemizm durumu ise ayrıca yüksek bir orana sahiptir. Şu ana kadar Türkiye Florasının kökeni hakkında pek çok şey söyledik. Tabi ki çalışmaların tam ve doğru biçimde tamamlanması oldukça metronomik bir işlemi kapsamaktadır. Türkiye Florasının bugünkü durumu nasıl acaba? Çalışmalar süresince bu kadar sıkıntı çekmeye ve para harcamaya değer miydi? Şu an Türkiye Florası hakkında 25 yıl önce bildiğimizden çok daha fazlasını biliyoruz. Bu da çok önemli bir sonuçtur. Diğer bir sonuç ise şuan Türkiye’deki her üniversitede işin ehli olan bir çok botanikçi vardır. Bu botanikçiler zamanında Türkiye Florası yazılırken ve bu konuda çalışmalar sürerken, üst düzeyde efor sarf eden ve yardımcı olan botanikçilerin öğrencileri ve eserleridir. 1950’li yıllarda Türkiye’de sistematik botanik çalışan kimse neredeyse yoktu. Türk botanikçilerin sayısı oldukça azdı. Türkiye Florası yazılırken genç Türk botanikçiler Edinburg’a gelmişler ve olanaklarından yararlanışlardır. Bu da onlara pek çok fayda sağlamıştır. Hala bu bağlantılar ve ilişkiler olumlu bir şekilde devam etmektedir. Şuan Türkiye’de bitki sistematiği çalışmaları hayattadır ve işler yolunda gitmektedir. Bu durum diğer alanlarda da sevindirici boyutlardadır. Yani orman botaniği, korumacılık, sitoloji, biyokimya, bitki sosyolojisi ve foto kimya. Tüm bu olumlu gelişmelere rağmen botaniksel uzmanlık anlamında hala sağlam bir alt yapı oluşturulamamış ve maalesef laboratuarlarla ilişkili, kütüphane olanakları olan ve en önemlisi araştırmalarla desteklenen, bundan kaynak alan ulusal bir herbaryum hala kurulamamıştır. Bu türlü bir herbaryum dünyanın herhangi bir yerinde botanik araştırmalarının vazgeçilmez bir parçası olmalıdır. Hala tamamlanamamış olan Türkiye Florası hakkında bu kadar konuşmamızın ana nedeni tarihsel açıdan çok ilginç olması, aynı zamanda özellikle Flora yazımına ve genel olarak taksonomik botaniğe uygun bir çok yönünün olmasından kaynaklanmaktadır. Galiba bu konuda peşin hüküm gösteriyor ve duygusal davranıyorum, fakat bu Flora projesi, pek çok yönden modern ve bilimsel bir Flora projesinin nasıl olması gerektiğine çok güzel bir örnek olmuştur. Bu çalışma kolay kullanım özelliğinde, içerdiği türler hakkındaki gözlemleri aydınlatıcı ve ayırt edici olan özet bir çalışmadır. Daha da önemlisi tahmin edilen ve tasarlanan sürede tamamlanmıştır. Dünyanın diğer bir çok yerinde, şuan tamamlanmak üzere olan bir çok Flora çalışmasında, çok sayıda taksondan bahsedilmektedir. En kötü ihtimali göz önüne alırsak, Floralarda adı geçen ve bugün yaşayan bir çok takson, en fazla bizden birkaç nesil sonra belki de nesli tükenmiş olacaktır. Flora of Southern Africa ve Flora Malesia monografiktir. Fakat tam olarak gerçekçi çalışmalar sonucu oluşturulmamışlardır. Flora Tropical East Africa floristik çalışmaları (yaklaşık 40 yıl önce başlamıştır.), Flora Thailand çalışmaları bunlara birer örnektir. Son olarak, Hooker’ın ortaya koyduğu bir çalışma olan Flora of British India’nın yerini tamamlanmış haliyle ve Fascicle Flora of India adıyla anılan bir çalışma ne zaman alacak? Yani bu bölgelerin başlı başına, ayrıntılı ve gerçekçi çalışmalara ihtiyacı vardır. Prof. Dr. Rechinger, İran Florası hakkında yakın zamanda konuştuğu için bu konuda fazla bire şey söylemeyeceğim. Üzerinde durmak istediğim bir konuda şudur; Böyle geniş ve büyük bir proje nasıl oluyor da, bir kadın(karısı Wilhemine) ve bir erkek tarafından başlatılıp tamamlanabiliyor. Bu, üzerinde konuşulup düşünülmesi gereken bir noktadır. Flora Iranica’ya ait oldukça ince olan ilk fasikül 1963 yılında yazılmıştır. Bu çalışma zamanımıza ait tam ve doğru diğer çalışmalar içinde geliştirilmiştir. Yakın zamanda yayınlanmış olan Caryophyllaceae (no:163) familyası da benzer bir şekilde bir durum sergilemektedir. Bu familyada 450’nin üzerinde türden bahsedilmektedir ve bu muhtemelen tüm Floranın ¼’ünü oluşturmaktadır. Tanımlanan bu 450 tür, familya hakkındaki bilgilerimizin gelişmesine önemli ölçüde katkıda bulunmaktadır; bazı cinsler yüksek oranda endemizm içermektedir. Örneğin Silene cinsinin yaklaşık %40’ı ile %60’ı endemiktir. Rechinger’in tarihsel özelliği göz önünde tutulursa, eğer Flora yayınlamayı yaklaşık 25 yıl önce bitirmiş olsaydı, şaşırtıcıdır ki O, Büyük İran Florası için ilk bitki toplama seyahatlerine 50 yaşının üzerindeyken (Rechinger 1989) başlamış olurdu. 50 yaşının ortalarındayken de aşağı yukarı 10.000 tür içeren bir Flora çalışmasına girişmiş olurdu. Elbetteki O, dünyanın bir çok yerindeki çok değerli bir çok botanikçiyle bağlantı ve yardımlaşma içindeydi. Daha 1990’da 8.000 üzerinde tür incelemiştir. Flora of Turkey üzerine yapılan bir eleştiride, bu çalışmanın çok yetersiz oluşuydu. Bu kesinlikle İran Florasının düzenlemesine yapılan bir eleştiri değildir; İran Florası fotoğraf, şekil ve grafiklerle desteklenmiş ve oldukça iyi bir şekilde ortaya konmuştur. Fakat bu arzu edilen ekler kitaplara konunca, fiyatlarda yukarı fırladı. Buna bağlı olarak korsan ve kopya kitaplar kullanılmaya başlandı. Avrupa’da sınırlı olarak basımı yapılan bilimsel yayınların fiyatlarının yüksek olması da yine üzücü bir gerçektir. Örneğin bir adet Flora of Turkey seti almak için £500 ödemeniz gerekir. Aynı şekilde Flora Iranica seti de benzer fiyatlardadır. İran Florası üzerinde duracağımız son bir nokta ise şudur; Genel botanik topluluğu (G.B.T.), usulen bu gerçeği taktir ettiğini göstermelidir. Boissier’in Flora Orientalis’inde olduğu gibi onun Flora çalışmalarının sınırları siyasi sınırlara dayanmaz. Daha çok bu sınırlar doğal olarak ayrılmış olan bölgelerle ilgilidir. Kaçınılmaz olan şudur ki harita üzerine bir çizik atsanız bu, yapay sınırlar yarattığınızın bir işaretidir. Söz konusu olan ve yayınlanan bu üç Floristik çalışmaların sonuncusuna ait yorumlar Pakistan Florası üzerine olacaktır. Pakistan Florası diğer ikisinden çok önemli ve büyük bir farklılık arz etmektedir. Bu çalışma Pakistan’ın kendi botanikçilerinin bir ürünüdür ve iki özerk editör tarafından yapılmıştır. Bu iki editörden ilki Karachi’de bulunan Prof. Ali diğeri ise Kuzey Kavalpindi’de yaşayan Prof. E. Nasır’dır. Büyük ve geniş familya tanımlamaları bu iki botanikçi tarafından hazırlanmışlardır. Yine sanatsal ve estetik çalışmalarda aynı şekildedir. Bu proje 1960’larda başlamış gözükse de (USA ziraat departmanı sermayesiyle) aslında başlangıcı daha eskilere dayanmaktadır. Dr. Steward, Ladak’da iken 1911 yıllarında yani 80 yıl önce bitki toplamaya başlamıştır(Steward 1982). Sonraki 50 yıl veya daha fazla yıldır O, botaniğin özüne inmiş, öğrencileri cesaretlendirmiş ve eğitmiştir. Bugün Pakistan’daki tüm yerleri dolaştı ve bitki topladı. Tüm bu seriler boyunca çeşitli yayınlar çıkardı. Bu yayınlar genelde değişik yerlerin Floraları hakkındaydı. O’nun bu aktiviteleri Pakistan florasının gerçek kökenini bulmaya yönelikti. 1972’de Keşmir ve Pakistan’daki vasküler bitkilerin izahlı bir katalogunu yayınladı. Son zamanlarda Labiatae familyasını kaleme alırken (Hedge 1991) edindiğim deneyimleri göz önüne tutarsak, bu çalışmanın ne kadar önemli, doğru ve tam bir iskelet çalışması olduğu ortaya çıkar. Maalesef bu çalışmanın küçük bir kısmı da kaybolmuştur. Ali bu katalog hakkında ilk defa şunları söylemiştir(1978). –“Biz bu Flora projesindeki ilk günlerde eserin müsveddesini oluşturmaya doğru ilerleme kaydettik ve bu katalog mütevazı çalışmalarımıza temel olmuştur. Flora of Pakistan’ın ortaya konması sırasında çalışmalara yardım edenlerin ve editörlerin karşılaştığı zorlukları hatırlamak çok önemli olacaktır. Onlar ne Edinburg’un sahip olduğu gibi bir bahçeye, ne herbaryum olanaklarına, ne de kütüphanelere sahiptiler. Tüm bunlara rağmen onlar Pakistan’da bulunan tip örnek sayısında küçükte olsa bir artış sağlamışlardır. Yinede parasal desteğin devamlılığı konusunda da çok sık ve tahmin edilemez oranlarda sıkıntı çekmişlerdir. Bu noktada çok eleştirmeden şunları söylemek yerinde olacaktır; sonraki fasiküller ilk çıkanlara nazaran daha iyi durumdaydı. Çünkü ilk çıkan fasiküllerde yeni taksonlar ve türler yaratmaya, tartışmalı olan, aslında informal incelenmesi daha iyi olacak varyasyonlara formal sıralama verilmesine bir eğilim vardı. Her ne kadar taxonomistlerin doğasında var olan yeni tür ve takson yaratma eğilimi oldukça üst düzeyde olsa da, onlar taxonomik cesaretlerini sergileme hissindeydiler - şahsi olarak - artık yok olamaya başlayan fedakar taxonomistler (hepimizin olması gerektiği gibi) biliyorlar ki yeni bir tür yaratmaktansa, bir türü indirgeyip synonim yapmak, botaniğe daha büyük katkılar sağlayacaktır. Fakat ben, Pakistan Florasının ilk bölümüne olan eleştirimin aynısını Türkiye ve İran Florasının ilk bölümlerine de yapmıştım. Bazen böyle durumlar tanımlama yaparken yetersiz materyal kullanımından kaynaklanmaktadır. Buna örnek olarak Türkiye Florasındaki Chenopodiaceae tanımları verilebilir ve bu tanımlar 1966’da 2. ciltte yayınlanmıştır. Fakat sonraki 35 yıl içinde materyal toplanarak diskripsiyonlara açıklık kazandırılması ve bunların birleştirilerek yeniden yazılmaya ihtiyaçları olmuştur. Her ne kadar Pakistan Florası hala tam olarak bitmemiş ve tanımlanmamış olsa da öyle sanıyorum ki Prof. Ali ve Nasır yaptıkları botaniksel sanat çalışmaları ve sayısız diskripsiyonu başarıyla oluşturdukları için samimi ve içten kutlamalara layık olmuşlardır. Flora of Pakistan çok iyi tanımlanmış bir flora kitabı ve çalışmasıdır. Son Sözler ve Kat Edilen Mesafe Bir bölgede yapılan ilk floristik çalışmalarla, yöre florasını tam olarak bitmiş düşünemeyiz. Bu araştırmaların tam olarak bitmiş sayılabilmesi, uzun sürekli ve kesintisiz çalışmaların varlığına bağlıdır. Yani herhangi bir alanda yapılacak birkaç arazi çalışması, söz konusu bölge florasını tam olarak ortaya koymak için yeterli sayılamaz. Britanya’daki floristik çalışmalar hakkında daha önce konuşmuştuk. Britanya florasının küçük ve büyük birçok bölgenin florasını içerdiğinden, çalışmaların 250 yıldan buyana sürdüğünden ve hala devam ettiğinden bahsetmiştik. Eğer G.B. Asya’da da 250 yıl boyunca etrafta hala botanikçilerin etkin bir şekilde çalışmaları şartıyla, belki o zaman bölge florası Britanya’nınki kadar iyi bilinen ve ortaya konmuş duruma gelecektir. Bölgesel flora çalışmaları ancak sınırlı oranda objektif olabilir ve sadece herbaryum materyalleri ile sağlanabilecek sınıflamaları içerebilir. Fakat bu herbaryum materyalleri azımsanmamalı ve yabana atılmamalıdır. Bu münasebetle yazarın daima, sınıflamaları oluştururken dürüst olması gerekir. Bu çok önemlidir. Örneğin, iki tür arasında farklılıklar tam olarak ortadaysa bu durumda Flora yazarının görevi, bu iki tür arasındaki ayırımı anlaşılır biçimde ortaya koymaktır. Pek çok flora yazarını kendini isteklerine düşkün ve bencil (yani onlar bunu yapıyorlar çünkü bu onların hoşuna gidiyor ve maalesef sadece kendileri için yazıyorlar) yada işinin ehli olan ve bilimsel düşünebilen botanikçiler olarak iki guruba ayırabiliriz. İdeal, mükemmel ve işinin ehli olan flora yazarları hazırladıkları anahtarları, diskripsiyonaları ve tanımlamaları oluştururken başkalarının da kullanacağını daima düşünür ve çalışmalarını buna göre yapar. Bazı flora yazarları ise anahtarlarını ve diskripsiyonalrını farkında olarak yada farkında olmayarak araştırmacıların kullanamayacağı tarzda oluşturur. Yani kullanıcı anahtardaki ayıt edici özelliklerle tam ve kesin bir sonuca ulaşamaz. Bu tip yazarlara örnek vermeyeceğim..! Yakın bir gelecekte yaklaşık olarak tüm G. B. Asya florası tamamlanacaktır. Dolayısıyla şu soruyu sormak yerinde olacaktır. “bundan sonra ne yapacağız ve nereye gideceğiz!” Şüphesiz ki, bitki ve onun çevresi hakkında yapılan arazi çalışmaları konusunda reel gelişmeler yaşanmaktadır. Bu gelişmeler ise kendi bölgelerinde, daha önce yapılan Floristik çalışmalardan elde edilen bilgiler ışığında, yerel botanikçiler tarafından devam ettirilmeli ve tamamlanmalıdır. İyi ve modern Flora çalışmalarını içeren sistematik botanik dalına aşırı önem verip botanik biliminin tamamı gibi düşünmek yanlış olacaktır. Bunun yerine bu sahayı botanik bilimi içinde genişçe bir alan olarak düşünmek gerekir. Daha önce dediğimiz gibi taxonomiyi küçük bir ayrıntı olarak görmekte yine doğru ve yerinde bir yaklaşım olmaz. Örneğin Pakistan Florası için Labiatae familyasının diskripsiyonlarını ve İran Florası için ise Chenopodiaceae diskripsiyonlarını hazırlarken tür “çiftlerinin” ayrımına gitmeyi gerektiren bir çok problemle karşılaştım. Yani birbirine çok yakın akraba olan veya henüz akrabalıkları kanıtlanmamış 2 tür düşünelim. Dolayısıyla bu türlerin birbirlerinden karakter yönünden farklılıkları halen tanımlanmamış olanları, çok yakın ve benzer habitatları paylaşanları ve hemen hemen aynı alanlarda yayılış gösterenleri bulunmaktadır. Genç türlerin ayrımı neden hala tam anlamıyla yapılamamıştır. Bu durum gelecekteki araştırma projeleri için, Flora diskripsiyonlarında tamamlanması ve düzeltilmesi gereken önemli problemlere sadece bir örnektir. Eski bir gazetede (Davis & Hedge 1975) Davis ile birlikte modern botaniğin çeşitli bölümlerinin yerel botanikçiler tarafından araştırılıp geliştirilebileceğini tartışmıştık. Gelecekte G. B. Asya’nın doğal bitkilerinin koruma altına alınmasını garanti eden dev projelere gerek kalmayacaktır. Çünkü bu bölgeler yerel botanikçiler tarafından ayrıntılı bir biçimde ele alınacak ve çalışmalar sürekli devam ettirilecektir. Son olarak G. B. Asya, Boissier’den Davis, Rechinger ve Steward’a ve elbetteki Prof. Ali ve Nasır’a kadar bir çok botanikçinin ilgisini çekmiştir. Dolaysısıyla botanikçiler açısından daima şanslı bir bölge olmuştur. Yeni nesil botanikçileri açısından gelecek hala parlak ve araştırmaya açıktır. Türkçeye Çeviren: Barış BANİ (I.C. HEDGE Royal Botanic Garden,Edinburg EH3 5LR, Scotland, UK. I. PLoSWA)

http://www.biyologlar.com/botanigin-tarihcesi

E. coli Besiyerleri

Geliştirme koşullarından bağımsız olarak yeterli bir aktivite gösteren karakteristik yapısal enzimlerin belirlenmesi bakterilerde hızlı bir identifikasyon sağlamaktadır. E. coli, bir kaç Salmonella ve Shigella suşu dışında ß-D-glucuronidase (MUGase) enzimine sahip Enterobacteriaceae üyesi olan tek türdür. Bu enzim, 4-methylumbelliferyl-ß-D-glucuronide (MUG)'i uzun dalga boylu UV ışığı altında fluoresans veren 4-methylumbelliferon 'a parçalar. E. coli aranması/sayılması için hazırlanan besiyerlerine MUG ilave edilmesi, geliştirilmesin bu besiyerinde yapılması ve sonuçta sıvı kültürün/koloninin uzun dalga boylu UV lamba ile kontrolü E. coli tayinini hemen hemen bitirmektedir. Sahte pozitif reaksiyonlardan kurtulmak için indol testi yeterli olmaktadır. Hepsi Merck/fluorocult cinsi olmak üzere; BRILA (Brillant Green Bile Broth), CASO (Tryptic Soy) Agar, DEV Lactose Peptone Broth, ECD (E. coli direct) Agar, Lauryl Sulphate Broth, LMX Broth besiyerlerinde UV ile fluoresans pozitif alındıktan sonra doğrudan sıvı besiyerinde gelişen kültürün üzerine veya katı besiyerinde gelişen koloni üzerine Kovac's indol ayıracı damlatılarak indol testi yapılır. Floresan ve indol pozitif tek bakteri E. coli 'dir.Bazı kültürlerde MUG reaksiyonu (fluoresans) net bir şekilde belirlenemez. Bu gibi durumlarda 1N NaOH 'den 1 mL kadar ilave edilmesi ile fluoresans reaksiyon netleşir. MUG, selektif katkı olarak besiyeri üreten diğer firmalar tarafından da pazarlanmaktadır.E. coli 0157: H7 Agar (Merck)Enterohemorajik E. coli 0157: H7 'nin izolasyonu ve ayrımı için geliştirilmiş bir besiyeridir. Bileşimindeki sodium deoxycholate gram pozitiflerin gelişimini inhibe eder. Bromothymol blue pH indikatörü olarak sorbitolun kullanımını gösterir. Sorbitol pozitif bakteri kolonileri sarı renk alırken sorbitol negatif koloniler yeşil renkli olarak kalırlar. Sodium thiosulphate ve ammonium iron (III) citrate, H2S oluşturan patojenlerin ayrımında rol alır. E. coli 0157: H7, diğer E. coli suşlarından farklı olarak MUG negatif bir özellik gösterir. Bu besiyerinde gelişebilen farklı bakterilerin kültürel özellikleri aşağıdaki gibidir.Bakteri Koloni rengi Presipitat MUG SorbitolE. coli 0157: H7 yeşilimsi - - -E. coli sarı ± + +Proteus mirabilis siyah-kahve - - -Shigella sonnei yeşilimsi - + -Enterobacter aerogenes sarı ± - +Chromocult Coliform Agar (Merck)Karakteristik bakteriyel enzimlerin kromojenik bir substrat ile belirlenmesine yönelik hızlı bir identifikasyon yöntemi ve bu yönteme dayalı besiyeridir. Kromojenik substrat besiyeri bileşimine dahil edilmiştir. İdentifikasyon, karakteristik koloni rengi ile bir anlamda tamamlanır. Renk bir kaç gün stabil kalır, pH 'dan sıcaklıktan ve ışıktan etkilenmez. Renk, besiyerine difüze olmadığı için yüksek sayıda koloni varlığında dahi tek koloni izolasyonu mümkündür.Besiyeri formülasyonu içinde yer alan seçilmiş peptonlar, pyruvate ve fosfat tampon aşırı hasar görmüş koliformlar için gelişme ortamı sağlar. Lauryl sulphate koliform bakteriler için bir olumsuzluk yaratmazken Gram pozitif bakterilerin gelişimini önemli ölçüde inhibe eder.Koliform grubu bakteriler için karakteristik olan ß-D-galactosidase enzimi kromojenik bir substrat olan Salmon-GAL ile, E. coli için karakteristik olan ß-D-glucuronidase enzimi ise yine kromojenik bir substrat olan X-glucuronide ile belirlenir.35-37 oC 'da 24-48 saat inkübasyon sonunda koyu mavi-menekşe renkli koloniler üzerine Kovac's çözeltici damlatılarak indol reaksiyonu belirlenebilir. Bu besiyerinde gelişen bakterilerin kültürel özellikleri aşağıdaki gibidir.Salmon X-Bakteri Koloni rengi -GAL Glucuronide IndolE. coli koyu mavi/menekşe + + + Citrobacter freundii kırmızı + - -Klebsiella pneumoniae kırmızı + - -Enterobacter cloacae kırmızı + - -Salmonella enteritidis renksiz - - -Shigella flexneri renksiz - - -

http://www.biyologlar.com/e-coli-besiyerleri

3. Ulusal Klinik Mikrobiyoloji Kongresi-2015

3. Ulusal Klinik Mikrobiyoloji Kongresi-2015

Sizlere “3. Ulusal Klinik Mikrobiyoloji Kongresi-2015” in bilimsel programını duyurmanın onuru içindeyiz. Klinik mikrobiyoloji uzmanlık alanında daha ileri düzeyde hasta ve eğitim hizmeti sunabilmemizin, daha fazla bilgi paylaşımında bulunarak, doğru uygulamaları yaygınlaştırmamız ile mümkün olabileceğini düşünüyoruz. Bu nedenle bilimsel programı oluştururken ana prensip olarak öncelikle uzmanlık alanımızın uygulamalarına yönelik konuların seçilmesini önemsedik. Ülkemizde klinik mikrobiyoloji uygulamalarında görev alan herkesi kapsayacak bir program oluşturmaya çalıştık. Kongremizde klinik mikrobiyoloji alanındaki güncel bilgiler, sorunlar, çözüm önerileri, deneyimler ve teknolojik ilerlemeler çeşitli konferanslar, paneller, olgu sunumları, yuvarlak masa toplantıları, sözlü sunum oturumları, eğitsel kurslar ve uydu sempozyumlar aracılığıyla aktarılacaktır. Bu noktada sizlerin kongre sürecinin tamamında bizimle aynı sorumlulukla hareket etmenizi bekliyoruz. Bu kongre hepimizin olacaktır ve her bir meslektaşımızın katkısı çok değerlidir. Kongremizin camiamıza ve bilim alanımıza katkı sağlamasını amaçlarken daha fazla sayıda meslektaşımızın kongreye katılımını sağlamak hedefine ulaşmak için “Kongremize Gelemeyen Meslektaşımız Kalmasın” sloganı ile yola çıktık. Bu amaçla kongremize katılmak isteyen meslektaşlarımıza destek olabilmek için ilk kongremizden itibaren sağladığımız “Konaklama Bursu”na ek olarak bu kongrede olanaklarımız ölçüsünde “Konaklama Desteği” de vereceğiz. Burs ve desteklerle ilgili ayrıntılı bilgiyi web sayfamızda ilgili bölümlerde bulabilirsiniz. Konaklama bursu ve konaklama desteği verilmesinde 2015 yılında yapılan Tıbbi Mikrobiyoloji Yeterlik Sınavı’nda başarılı olan meslektaşlarımıza öncelik tanınacaktır. Burs almak üzere başvuran adayların 17 Ağustos 2015 tarihine kadar bildiri özetlerini sisteme yükleyerek (sistem hakkında bilgi daha sonra duyurulacaktır) kongre web sayfasında bulunan “Burs Başvuru Formunu” doldurmaları gerekmektedir. Konaklama bursu kongreye gönderilen bildiriler arasından kongre düzenleme kurulu tarafından seçilecek olan ve sözlü sunuma layık görülen çalışmaların sahiplerine verilecektir. Kongremizde; bu yıl farklı bir uygulama yaparak sözlü sunumların bir bölümünün ilgili oturumların içinde bursiyerlerimiz tarafından sunulması, böylelikle sahadaki durum hakkında bilgi sahibi olunarak oturuma geçilmesi hedeflenmektedir. Bu uygulama ile sahada çalışan meslektaşlarımızın daha çok bilgi üretmesini ve bu verilerin daha geniş bir zeminde paylaşılmasını sağlamayı arzu ediyoruz. Kongrelerimiz öncesinde yapılması gelenekselleşen kurslarımızı bu yıl daha da zenginleştirerek sizlere sunmanın gururu içindeyiz. Kurslarımızı her konumdaki meslektaşımıza bire bir ulaşabildiğimiz aktiviteler olarak değerlendiriyor ve özellikle genç meslektaşlarımızın katılımını çok önemsiyoruz. Bu amaçla kurslarımızı farklı temalarda gerçekleştirmek üzere hazırlıklarımızı tamamladık. Kurslarla ilgili ayrıntılı bilgileri “Kurslar” uzantısında bulabilirsiniz. Uzmanlık uygulamalarımızda davranış değişikliği yaratma arzusu ile gerçekleştireceğimiz bu kongrede karşılıklı paylaşımların değerine inanıyor ve bu anlamda kongreye olan bilimsel desteklerinizi çok önemsiyoruz. 3. Ulusal Klinik Mikrobiyoloji Kongresi-2015’de birlikte olmayı diliyor, saygılarımızı sunuyoruz. Prof. Dr. Faruk AYDIN Klinik Mikrobiyoloji Uzmanlık Derneği Başkanı Kongre Başkanı  Prof. Dr. Z. Çiğdem KAYACAN                                                                                                                              Türk Mikrobiyoloji Cemiyeti Başkanı     Prof. Dr. Burçin ŞENER Klinik Mikrobiyoloji Uzmanlık Genel Sekreteri Kongre Sekreteri

http://www.biyologlar.com/3-ulusal-klinik-mikrobiyoloji-kongresi-2015

Bitkilerde Beslenme Fizyolojisi

Bitkilerde Beslenme Fizyolojisi

Bilindiği gibi canlıların ortamdan sağladığı, olduğu gibi tüketerek kullandıkları besin maddeleri büyük canlı gruplarında farklılıklar gösterir.

http://www.biyologlar.com/bitkilerde-beslenme-fizyolojisi

Geri dönüşüm hakkında kısa bir bilgi

Plastiklerin kaynağı ; ham petrol, gaz ve kömürdür. Plastiğin genelde ana kaynağı petrol rafinerisinden arta kalan bakiye maddelerdir. Dünyada üretilen toplam petrolün sadece %4’ü plastik üretimi için kullanılmaktadır. Plastikler ,çöpe atıldığı zaman çürümez, paslanmaz, çözünmez, biyolojik olarak bozulmaz ve doğada bozulmadan uzun yıllar kalır.. Suyun ve toprağın kirlenmesine neden olur. Sulardaki canlılara zarar verir hatta ölümlerine neden olur. Plastiklerin geri dönüşümü; Cam, metal, plastik ve kağıt/karton gibi değerlendirilebilir atıklar çeşitli fiziksel ve kimyasal işlemlerden geçirilerek yeni bir hammaddeye veya ürüne dönüştürülebilirler. Bu atıkların bir takım işlemlerden geçirildikten sonra ikinci bir hammadde olarak üretim sürecine sokulmasına Geri Dönüşüm denir. Bu süreç her bir atık türü için malzemenin cins ve niteliğine göre farklılık gösterir. Geri kazanım terimi ise tekrar kullanım ve geri dönüşüm kavramlarını da içerdiği için biraz daha geniş kapsamlıdır. Değerlendirilebilir atıkların kaynağında ayrı toplanması, sınıflandırılması, fiziksel ve kimyasal yöntemlerle başka ürünlere veya enerjiye dönüştürülmesi işlemlerinin bütünü Geri Kazanım olarak adlandırılır. Geri dönüştürülebilir atıklardan yeni ürün ve malzemeler üretmek için en temel konu bu atıkların oluşturdukları kaynakta temiz ve türlerine göre ayrılmış olarak biriktirilmesidir. Değerlendirilebilir atıklar, diğer atıklar ile karıştırılırsa kirleneceği için elde edilecek yeni ürünün kalitesi düşük olur.Bu nedenle geri dönüştürülebilir atıklar, diğer atıklardan yani çöplerden ayrı ve temiz olarak toplanmalıdır. Geri dönüşümün yararları nelerdir; Doğal kaynaklarımız korunur. Kullanılmış ambalaj ve benzeri değerlendirilebilir atıkların bir hammadde kaynağı olarak kullanılması, yerine kullanıldığı malzeme için tüketilmesi gereken hammaddenin veya doğal kaynağın korunması gibi önemli bir tasarrufu doğurur. Doğal kaynaklarımız, dünya nüfusunun ve tüketimin artması sebebi ile her geçen gün azalmaktadır. Bu nedenle doğal kaynaklarımızın daha verimli bir şekilde kullanılması gerekmektedir. • Enerji tasarrufu sağlanır. Geri dönüşüm sırasında uygulanan fiziksel ve kimyasal işlem sayısı, normal üretim işlemlerine göre daha az olduğu için, geri dönüşüm ile malzeme üretilmesinde önemli bir enerji tasarrufu sağlanır. Geri dönüşüm ile tasarruf edilen enerji miktarı atık cins ve bileşimine bağlı olarak değişmektedir. Örneğin bir alüminyum kutunun geri dönüşümü ile %90, kağıdın geri dönüşümü ile %60 oranında enerji tasarrufu sağlandığı bir çok uzman tarafından ifade edilmektedir. • Atık miktarı azalır. Geri dönüşüm sayesinde çöplüklere daha az atık gider ve buna ek olarak bu atıkların taşınması ve depolanması kolaylaşır, çünkü artık daha az çöp alanı ve daha az enerji gerekmektedir. • Geri dönüşüm ekonomiye katkı sağlar. Geri dönüşüm sayesinde hammaddelerin azalması ve doğal kaynakların tükenmesi önlenecek, böylelikle ülke ekonomisine katkı sağlanacaktır. Plastiğin geri dönüşümden elde edilen bazı malzemeler şunlardır: Sera örtüsü, otomotiv sektöründe plastik torba, marley, pis su borusu, elyaf ve dolgu malzemesi, araba yedek parçası yapımında Deterjan şişeleri, çöp kutuları ve benzeri ürünler Yağmursuyu ve atık su boruları Marley ve çeşitli plastik dolgu malzemeleri Çeşitli plastik oyuncak ve kırtasiye malzemeleri oluşmaktadır. Kaynak: hurplastik.com

http://www.biyologlar.com/geri-donusum-hakkinda-kisa-bir-bilgi

ARITMA TESİSLERİ VE PROTOZOA

Çalışma metodları birbirinden farklı olsa da arıtma tesislerinin tamamı çeşitli protozoon gruplarını barındırır (Çizelge 1). Biyolojik unsurlar organik madde üzerinden beslenerek organik maddenin topaklaşmasını ve çökmesini sağlarlar. Bakteri bu maddelerin sıvı fazdan uzaklaştırılmasında rol alan en etkin organizma grubunu oluştur. Protozoonlar, atık su arıtma sistemlerinde biyolojik parçalanmadan sorumlu bakteriler üzerinden beslendiklerinden dolayı, önceleri sistem için zararlı organizmalar oldukları düşünülmekteydi. Fakat daha sonraları yapılan çalışmalar protozoal predasyonun bakteriyel aktiviteyi teşvik ettiği ve dolayısıyla mikrobiyal parçalanma hızını artırdığı sonucunu ortaya çıkarmıştır. Günümüzde aktif çamur sistemlerinde, protozoonların çıkış suyu kalitesi üzerinde hayati öneme sahip organizmalar oldukları bütün otoriteler tarafından kabul edilen bir gerçektir [5, 12, 24]. Aktif çamur sistemi ile çalışan arıtma tesislerinde protozoonların rolünü belirlemek amacıyla çeşitli çalışmalar yürütülmüştür [5, 32, 33]. Bu çalışmalarda laboratuvar koşullarında geliştirilen arıtma modelleri protozoonlu ve protozoonsuz olarak çalıştırılmış, çıkış suları analiz edilmiştir. Protozoonsuz olarak çalışan arıtma modellerinin tamamında düşük kaliteli, protozoonlu çalışanların ise daha yüksek kaliteli çıkış suları ürettikleri görülmüştür (Şekil 7). Daha sonra protozoonsuz çalışan ünitelere aktif çamur protozoonları aşılandığında çıkış suyu kalitesinde önemli iyileşmelerin olduğu gösterilmiştir. Şekil 7. Protozoonlu ve protozoonsuz çalışan aktif çamur arıtma modellerinin çıkış suyu parametrelerinin karşılaştırılması (Curds, 1992’den). Protzoonların bakteri predasyonu, mikrobiyal aktiviteyi uyardığı gibi aşırı bakteriyel üremeyi kontrol ederek, çıkış suyundaki bakteri süsbansiyonunun azaltılması açısından da önem arz ederler. Protozoonlar genel olarak bakterileri besin olarak kullanmakla birlikte bazı türleri ortamda bulunan çözünmüş ve partiküler organik maddeleri de tüketerek arıtım sürecine doğrudan katılırlar. Ayrıca kesin veriler olmamakla birlikte, protozoonların sil ve kamçı hareketleri mikrosirkülasyon sağlayarak bakterilerin organik maddeyi kullanmalarına katkıda bulunduklarına dair görüşler de mevcuttur KAYNAKLAR [1] Corliss, JO. 2000. Biodiversity, Classification, and Numbers of Species of Protists. In: Nature and Human Society: The Quest Sustainable World (ed. PH. Raven, T. Williams ), pp.130-155, National Academy Press, Washington DC. [2] Foissner W, 1999. Soil Protozoa as Bioindikators: Pros and Cons, Methods, Diversity, Representattive Examples. Agriculture, Ecosystems and Environment, 74:95-112. [3] Fenchel T, 1987. Ecology of Protozoa. Science Tech. Inc., Wisconsin, U.S.A. [4] Anderson OR, 1988. Comparative Protozoology-Ecology, Physiology, Life History. Springer-Verlag, New York Inc. [5] Curds CR, 1992. Protozoa in the Water Industry. Cambridge University Pres, U.K. [6] Sudo R, 1984. Role and Function of Protozoa in the Biological Threatment of Polluted Waters. Advances in Biochemical Enginering/Biotechnology, 29:117-141. [7] Augustin H, Foissner W, 1992. Morphologie und Ökologie einiger Ciliaten (Protozoa: Ciliophora) aus dem Belebtschlamm. Arch. Protistenkd., 141:243-283. [8] Foissner W, Berger H, 1996. A User-Friendly Guide to the Ciliates (Protozoa, Ciliophora) Commonly Used by Hydrobiologists as Bioindicators in Rivers, Lakes and Waste Waters, with Notes on their Ecology. Freshwater Biology, 35:375-482. [9] Şenler NG, Bıyık H, Yıldız, İ. 1999. A Study of the Relationships Between Microfauna and Water Quality in Biological Sewage-Treatment Plant of Yüzüncü Yıl University in Van. Bio-Science Research Bulletin, 15:37-47. [10] Campell NA, Reece JB, Urry LA, Cain ML, Minorsky PV, Wasserman SA, Jackson RB, 2008. Biology. Pearson Education Inc., 8. Edition, San Francisco. [11] Atatür KA, Budak A, Göçmen B, 2003. Omurgasızlar Biyolojisi. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, N0: 187, İzmir. [12] Sleigh MA, 1989. Protozoa and Other Protists. Edward Arnold, New York, 342p. [13] Demirsoy A, Türkan İ, Gündüz E, 2004. Genel Biyoloji (Keton WT, Gould JL, Gould CG.’den çeviri). Palme Yayıncılık, Sıhhiye, Ankara. [14] Corliss JO, 1994. An Interim Utilitarian (“User-Friendly”) Hierarchial Classification and Characterization of the Protists. Acta Protozool. 33:1-51. [15] Lynn DH, Small EB, 2002. The Illustrated Guide to the Protozoa (ed. Lee JJ, Leedale GF, Bradbury P), 2. Edition. Allen Pres, Lawrence, Kansas. [16] Cavalier-Smith T, 2003. Protist Phylogeny and the High-Level Classification of Protozoa. Europ. J. Protistol., 39:338-348. [17] Finlay BJ, Esteban GF, 1998. Freshwater Protozoa: Biodiversity and Ecological Function. Biodiversity and Conservation, 7:1163-1186. [18] Fenchel T, Esteban F, Finlay BJ, 1997. Local Versus Global Diversity of Microorganisms: Cryptic Diversity of Ciliated Protozoa. Oikos, 80:220-225. [19] Finlay BJ, 1998. Global Diversity of Protozoa and Other Small Species. Int. J. Parasitol., 28:29-48. [20] Finlay BJ, 2002. Global Dispersal of Free-Living Microbial Eukaryote Species. Science, 296:1061-1063. [21] Finlay BJ, Fenchel T, 2004. Cosmopolitan Metapopulations of Free-Living Microbial Eukaryotes. Protist, 155:237-244. [22] Foissner W, 1999. Protist Diversity: Estimates of the Near-Imponderable. Protist, 150:363-368. [23] Foissner W, 1997. Global Soil Ciliate (Protozoa, Ciliophora) Diversity: A Probability-Based Approach Using Large Sample Collections From Africa, Australia and Antartica. Biodiversity and Conservation, 6:1627-1638. [24] Laybourn-Parry J, 1994. A Functional Biology of Free-Living Protozoa. London & Sydne,. UK, 218p. [25] Porter KG, Sherr EB, Pace M, Sanders MW, 1985. Protozoa in Planktonic Food Webs. J. Protozool., 32:409-415. [26] Pratt JR, Lang BZ, Kaesler RL, Cairns J, 1986. Effect of Seasonal Changes on Protozoans Inhabiting Artificial Substrates in a Small Pond. Arch. Protistenkd., 131:45-57. [27] Sherr EB, Sherr BF, 2002. Significance of Predation by Protists in Aquatic Microbial Food Webs. Antonie van Leeuwenhoek, 81: 293-308. [28] Patterson DJ, Hedley, S, 1992. Free Living Freshwater Protozoa. Wolfe Publishing Ltd., England. [29] Urawa S, Awakura T, 1994. Protozoa Diseases of Freshwater Fishes in Hokkaido. Sci. Rep., Hokkaido Fish Hatchery, 48:47-58. [30] Göçmen B. 2002. Genel Parazitoloji. Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, No: 168, Ege Üniversitesi Basımevi, Bornova-İzmir. [31] Kim J-H, Hayward CJ, Joh S-J, Heo, G-J, 2002. Parasitic Infections in Live Tropical Fishes İmported to Korea. Diseases of Aquatic Organisms, 52:169-173. [33] Curds, CR, 1973. The Role of Protozoa in the Activated – Sludge Process, Amer. Zool., 13: 161-169. [34] Madoni, P., Davoli, D., Chierici, E. 1993. Comparative Analysis of the Activated Sludge Microfauna in Several Sewage Treatment Works, Wat. Res., 27(9): 1485-1491. Naciye Gülkız ŞENLER İsmail YILDIZ Yüzüncü Yıl Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, 65080, Van, TÜRKİYE

http://www.biyologlar.com/aritma-tesisleri-ve-protozoa

Türkiye Biyogüvenlik Protokolü

Türkiye´de biyogüvenlikle ilgili bir protokol Çevre Bakanlığı tarafından yürürlüğe konmuştur. Bu protokolün tanımlamaları ve düzenlemeleri şunlardır: Türkiye Biyogüvenlik Protokolü Modern biyoteknoloji rekombinant DNA nükleik asitlerin hücre veya organellere doğrudan enjeksiyonu farklı taksonomik gruplar arasında uygulanan hücre füzyonu gibi doğal fizyolojik üreme- çoğalma ve rekombinasyon engellerini ortadan kaldıran ve klasik ıslah ve seleksiyon yöntemlerince kullanılmayan in vitro nükleik asit tekniklerinin tamamı olarak tanımlanmaktadır. Modern biyoteknoloji kullanılarak elde edilen organizmalara Genetik Yapısı Değiştilmiş Organizmalar (GDO) veya uluslararası kullanımı ile Living Modified Organism (Değiştirilmiş Canlı Organizmalar) adı verilmektedir. Modern Biyoteknolojik yöntemlerle kendi türü haricinde bir türden gen aktarılarak belirli özellikleri değiştirilmiş bitki hayvan ya da mikro-organizmalara Transgenik de denilmektedir. Modern biyoteknoloji ile: Doğal olmayan rekombinasyonlar yaratılır Yeni veya yabancı genler veya DNA dizinleri önceden planlanamayan lokasyonlara yerleştirilir. Gen aktarımı için etken genetik parazitler taşıyıcı (vektör) olarak kullanılır: vektörler en etken genetik parazitlerden çıkartılmış genetik element ve sıraların mozaiğidir hareketli genetik elementler taşırlar; özel olarak türlerin bariyerlerini kırmak üzere yapılmışlardır konukçu aralığı geniştir; yeni veya mevcutu artıran halk sağlığı ve çevresel problemler yaratabilecek direnç genleri bu günkü kullanımı ile antibiyotik ve herbisitdirenç genleri taşırlar. Modern biyoteknolojinin temel işlevi türlerin tür olma özelliğini korumak için binlerce yılda oluşturduğu üreme-çoğalma engellerini kırmak böylece farklı türler hatta canlı familyaları arasında gen aktarımı yapmaktır. Bu işlem sonucu doğada doğaya ve kendi türüne yabancı yeni çeşitler üremeye-çoğalmaya başlayacaktır. Genetik yapısı değiştirilmiş canlıların ve ¤¤¤¤bolik ürünlerinin kısa ve uzun vadede ekosistem süreçleri ve işlevleri üzerinde nasıl bir etki yapacağı henüz bilinmemektedir. Bu belirsizlik nedeniyle konu 1992 yılında yapılan Rio Konferansında dikkate alınmış ve Rio Konferansının çıktılarından birisi olan Biyolojik Çeşitlilik Sözleşmesinde hem ulusal önlemler almak hem de uluslararası bağlayıcılığı olan bir protokol hazırlama ihtiyacını değerlendirmek anlamında yer almıştır. Modern biyoteknoloji yeni ve doğal olmayan canlı çeşitlerinin ortaya çıkması ile sonuçlanmaktadır. Bu sonuç dünyada biyoteknolojide güvenlik tedbirlerinin geliştirilmesini gerektirmiş ve modern biyoteknoloji kullanılarak elde edilmiş olan genetik yapısı değiştirilmiş organizmaların insan sağlığı ve biyolojik çeşitlilik üzerinde oluşturabileceği olumsuz etkilerin belirlenmesi sürecini (risk değerlendirme) ve belirlenen risklerin meydana gelme olasılığının ortadan kaldırılması veya meydana gelme durumunda oluşacak zararların kontrol altında tutulması için (risk yönetimi) alınan tedbirleri ifade eden biyogüvenlik terimi güncel hale gelmiştir. Biyoteknoloji uygulamalarında teknolojinin kullanımı sonuç ürün ve ürünün kullanım amacı ile yeri farklı riskler oluşturduğundan ayrı tedbirler gerektirmektedir. Bu nedenle biyogüvenlik laboratuar ve sera çalışmaları; gıda güvenliği ve çevreye salım durumları için ayrı düzenlemeleri içermektedir. Konunun küresel ölçüdeki önemi nedeniyle BM Biyolojik Çeşitlilik Sözleşmesine ek Biyogüvenlik Protokolü 24 Mayıs 2000 tarihinde taraf ülkelerin imzasına açılmıştır. Protokol transgenik canlıların biyolojik çeşitlilik üzerinde oluşturabileceği olumsuz etkilerin önlenmesini amaçlamaktadır. Protokolün yürürlüğe girmesi ile herhangi bir transgenik canlı çevreye salımı gerçekleştirilmeden önce tam bir risk değerlendirmeye alınacak ve bir başka ülkeye üretim ve doğrudan çevreye salım amacıyla ihrac edilmeden önce ithalatçı ülkenin önceden onayı alınacaktır. Tüketim veya işleme amacıyla ihracı yapılacak olan transgenik canlılar ve ürünleri hakkında ise takas mekanizması vasıtasıyla önceden bilgilendirme sağlanacaktır. Protokole taraf olan her ülke kendi iç mevzuatında transgenik canlıların kontrolü için gerekli yasal kurumsal ve idari tedbirleri almak ve idame ettirmekle yükümlüdür. Transgenik canlılardan kaynaklanacak zararların telafisi konusunda uluslararası bir sistem kurulması ve bu canlıların ve ürünlerinin etiketlenmesine ilişkin standartların oluşturulması Protokolün yürürlüğe girmesinden sonra yapılacak olan Taraflar Toplantısına bırakılmıştır. Protokolün yürürlüğe girmesi biyogüvenlik alanında küresel seviyede yaşanan hukuki boşluğu doldurmakla birlikte transgenik canlılardan ve ürünlerinden kaynaklanacak çevresel ve ticari sorunların önlenmesi ulusal seviyede alınacak kurumsal tedbirlere ve ulusal seviyede risk değerlendirme ve risk yönetimi için teknik kapasitesinin oluşturulmasına bağlıdır. Türkiye´de Durum Türkiye´de Transgenik Bitkilerle ilgili mevzuat hazırlığı çalışmalarını Tarım ve Köyişleri Bakanlığı 31 Mart-1 Nisan 1998 tarihlerinde Tarımsal Araştırmalar Genel Müdürlüğünde “Transgenik Bitkiler ve Güvenlik Önlemleri” konusunda ilgili araştırma kuruluşları ve Genel Müdürlükler ile Üniversitelerden temsilcilerin katılımıyla yapılan bir toplantı ile başlatmıştır. Belirlenen ana esaslar çerçevesinde teknik uygulamalara temel teşkil edecek görüş ve raporlar oluşturulmuştur. Bu kapsamda konu “1. Transgenik Kültür Bitkilerinin Alan Denemeleri; 2. Transgenik Kültür Bitkilerinin Tescili; 3. Genetik Yapısı Değiştirilmiş Organizmaların (GDO) Üretilmesi Pazara Sürülmesi ve Gıda Olarak Kullanımı” olarak üç kısma ayrılmıştır. Bunlardan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” Makamın 14.5.1998 gün ve TGD/TOH-032 sayılı Makam Olur’u ile yürürlüğe konulmuştur. "Transgenik Kültür Bitkilerinin Alan Denemeleri" ile ilgili talimatın aksayan yönlerinin düzeltilmesi amacıyla adı geçen talimatta yapılan değişiklikler 25.03.1999 tarihli Makam Olur'u ile yürürlüğe girmiştir. Belirtilen geçici düzenleme çerçevesinde Türkiye´de resmi yollardan genetik yapısı değiştirilmiş canlıların üretim amacıyla girişi önlenmiş durumdadır. Talimat gereği genetik yapısı değiştirilmiş bir tarım çeşidinin Türkiye´ye ithal edilmesinden önce alan denemesine alınması gerekmektedir. Ancak her genetik yapısı değiştirilmiş tohumun da alan denmesine alınması söz konusu değildir. Alan denemesine alınabilmesi için transgenik tohumun geliştirildiği ülkede ve biyogüvenlik düzenlemeleri olan ülkelerde kayıtlı olması ve 5 yıldır üretiliyor ve tüketiliyor olması şartı aranmaktadır. Böylece hiç denenmemiş risk değerlendirmesi daha önce yapılmamış bir transgenik canlının Türkiye´de denenmesi yani Türkiye´nin deneme tahtası olarak kullanılması önlenmektedir. Bu tedbirler acil olarak alınmış tedbirlerdir. Orta ve uzun vadede ülkemizin daha kapsamlı tedbirler alması ve risk değerlendirme-risk yönetimi sistemleri kurması gerekmektedir. Biyogüvenlik Protokolü Hükümetimiz adına Çevre Bakanı Fevzi AYTEKİN tarafından 24 Mayıs 2000 tarihinde imzalanmıştır. Protokole taraf olma çalışmaları devam etmektedir. Protokolün uygulanması ve ülkemizin genetik kaynaklarının zarar görmemesi için biyogüvenlik sisteminin kurulması doğrultusunda insan kaynağı ve teknik altyapı oluşturulması gerekmektedir. Bu kapsamda kaçak girişlerin önlenmesi için gümrük kontrollerinde yeni bir yapılanmaya da ihtiyaç duyulmaktadır. Protokolün Amacı Çevre ve Kalkınma Hakkındaki Rio Deklarasyonunun 15 numaralı prensibinde yer alan ön tedbirci yaklaşıma uygun olarak bu Protokolün amacı insan sağlığı üzerindeki riskler göz önünde bulundurularak ve özellikle sınır ötesi hareketler üzerinde odaklanarak biyolojik çeşitliliğin korunması ve sürdürülebilir kullanımı üzerinde olumsuz etkilere sahip olabilecek ve modern biyoteknoloji kullanılarak elde edilmiş olan değiştirilmiş canlı organizmaların güvenli nakli muamelesi ve kullanımı alanında yeterli bir koruma düzeyinin sağlanmasına katkıda bulunmaktır. Protokol ön tedbirlilik prensibine dayanmakta riskleri önceden belirlemeye ve önlem almaya yönelik bir sistem içermektedir. Hükümler GDO nun doğaya veya insan sağlığına olabilecek olumsuz etkileri konusunda bilimsel verilerin yetersiz olması veya belirsizlik içermesi durumunda veriler tamamlanıncaya ve belirsizlik giderilinceye kadar söz konusu GDO nun doğayla etkileşime girmesine izin verilmemesinden yanadır. Doğayla etkileşim protokolün kapsamını ve uygulama şeklini belirlemekte temel kriterdir. Tüm GDO lar yaşamsal aktivitelerinden dolayı doğanın biyotik ve abiyotik bileşenleri ile etkileşime girebilir bunedenle Protokol doğal üreme-çoğalma engellerini aşarak elde edilmiş tüm canlıları yani tüm GDO ları kapsamaktadır. Yani protokolün öngördüğü risk değerlendirme risk yönetimi bilgi alışverişi kaza ve acil durum tedbirleri kaçak sınıraşan hareketlere karşı önlemler sosyo-ekonomik yapının karar sürecinde dikkate alınması ve halkın bilgilendirilmesi maddelerinden oluşan genel tedbirler tüm GDO lar için geçerlidir. Genel tedbirler ulusal seviyede yapılacak düzenlemelere dayanmaktadır. Protokolün öngördüğü ve uluslararası seviyede düzenleme gerektiren temel mekanizmalar ise takas mekanizması ön bildirim anlaşması ve dokümantasyon sistemleridir. Bu mekanizmalar uygulamada doğayla etkileşim kriterine dayanarak GDO ları kasıtlı olarak çevreye salımı gerçekleşek olan ve kasıtsız olarak çevreye salınabilecek olan GDO lar şeklinde ayırmaktadır. Kasıtsız çevreye salım kapsamında gıda yem ve işleme amaçlı GDO lar transit geçişler ve kapalı kullanıma tabi GDO lar ayrı ayrı ele alınmaktadır. Kasıtlı çevreye salımı yani açık ve geniş alanlarda üretimi söz konusu olan GDO lar Ön Bildirim Anlaşması na tabidir. Ön Bildirim Anlaşması işlemi gereğince ihracatçı taraf ithalatçı tarafa Protokolün Ek-I de belirtilen bilgileri içeren bir bildirimde bulunacaktır. İthalatçı ülkenin yetkili mercii bildirimi aldığında uygulayacağı karar sürecini yani bildirimdeki bilgilerin yeterliliğine ve sınıraşan hareketin hangi şartlar altında başlayabileceğine dair bilgileri belirterek bir ön cevap verecektir. İthalatçı ülke GDO nun ithalatı konusunda karar vermeden önce GDO yu Protokol Ek-III de belirlenen metodoloji doğrultusunda vaka vaka (case by case) risk değerlendirmeye alacaktır. Aksi ithalatçı ülke tarafından belirtilmediği sürece GDO nun sınıraşan hareketi ithalatçı ülkenin yazılı izni alınmadan başlamayacaktır. GDO nun taşınması sırasında eşlik eden belgelerde GDO olduğu açıkça belirtilecek GDO nun kimliği özellikleri güvenli muamele depolama taşıma ve kullanım şartları ihracatçının irtibat bilgileri hareketin protokole uygun olarak gerçekleştiğine dair deklerasyon bulunacaktır. Gıda yem ve işleme amaçlı GDO lar için uygulanacak işlemler 11. madde ile belirlenmiştir. Buna göre her bir taraf ülke dahilde doğrudan gıda veya yem veya işleme amacıyla kullanımını ve pazara sürülmesini onayladığı bir GDO ile ilgili olarak 15 gün içinde protokol Ek-II de belirtilen bilgileri içeren bildirimini takas mekanizması vasıtasıyla tüm taraf ülkelere yapacaktır. Yine takas mekanizması vasıtasıyla her bir taraf ülke gıda yem ve işleme amaçlı GDO lar için öngördüğü ulusal yasa ve işlemlerini diğer ülkelere bildirecektir. Böylece her ülke uluslararası pazara sürülmeden önce gıda yem veya işleme amacıyla kullanımı onaylanmış yeni bir GDO dan haberdar olacak ve iç mevzuatını harekete geçirecektir. Bu tür GDO lara eşlik eden belgelerde GDO içerebilir ibaresi açıkça konacak ve kullanım amacının çevreye salımı içermediği belirtilecektir. Transit geçişteki GDO lar için protokol yine uygulanacak işlemi ulusal sistemlere bırakmıştır. Aksi o ülke tarafından belirtilmediği sürece transit geçişteki GDO lar ön bildirim anlaşmasına tabi değildir. Ülkeler bu konudaki düzenlemelerini takas mekanizması vasıtasıyla diğer ülkelere bildirecektir. Kapalı kullanıma tabi GDO lar da ön bildirim anlaşmasına tabi değildir. Her ülke kapalı kullanım şartlarını ve standartlarını kendisi belirleyecek ve takas mekanizmasına bildirecektir. Bu kapsamdaki GDO lara eşlik eden belgelerde GDO olduğu açıkça belirtilecek güvenli taşıma depolama kullanma bilgileri bulunacaktır. İşleme tabi tutularak yaşamsal aktivitesini yitirmiş olan ancak yeniden çoğalabilir nitelikte genetik materyal içeren GDO ürünlerinin doğaya kontrolsüz olarak salımını önlemek üzere protokol gereği yapılan bildirimlerin bu tür GDO ürünlerine ilişkin bilgileri ve ürünün kullanım amacını içermesi öngörülmektedir. GDO nun risk değerlendirmesi yapılırken de GDO nun ürünleri dikkate alınacaktır. GDO ürünlerine ilişkin bilgiler takas mekanizması vasıtasıyla diğer ülkelere bildirilecektir. Protokolün temel hükümlerinden birisini oluşturan risk değerlendirme GDO nun olası potansiyel alıcı çevrede vaka vaka yeni genotipik ve fenotipik özelliklerinin belirlenmesi olumsuz etkilerinin ortaya çıkma olasılığının ve gerçekleşmesi halinde ortaya çıkacak sonuçların değerlendirilmesi sebep olduğu genel riskin tahmin edilmesi sebep olduğu riskin kabul edilebilirliğinin ve yönetilmesine ilişkin stratejilerin belirlenmesi alıcı çevre içerisinde gözlenmesi yoluyla bilgi eksikliklerinin ve belirsizliklerin giderilmesi amaçlarını taşımaktadır. Tüm işlemler tamamlanıp GDO piyasaya sürüldükten sonra da olabilecek olumsuzlukların önceden belirlenmesi amacıyla risk yönetimi öngörülmektedir. Risk yönetimi GDO nun bulunduğu çevrede izlenmesi esasına dayanmaktadır. Protokol 50. ülkenin onay belgesi BM Sekreteryasına ulaştıktan sonra 90. günde dünyada yürürlüğe girecektir. Protokol yürürlüğe girinceye kadar protokolün temel mekanizmalarının alt yapısı oluşturulacaktır. Bu kapsamda takas mekanizmasının kurulması gelişmekte olan ülkelerde protokolün uygulanması için gereken teknik kapasitenin oluşturulması ve ulusal yasal düzenlemelerin yapılması öncelik taşımaktadır. Protokol yürürlüğe girdikten sonra ise belgeleme ve etiketleme standartları protokole uygunluk şartları sorumluluk ve telafi mekanizması Protokol taraflarınca belirlenecektir.

http://www.biyologlar.com/turkiye-biyoguvenlik-protokolu

TOPRAK KİRLİLİĞİ SORUNLAR VE ÇÖZÜM YOLLARI

TOPRAK KİRLİLİĞİ SORUNLAR VE ÇÖZÜM YOLLARI 1-Hızlı Nüfus Artışı - Toprak İlişkileri : Hızlı nüfus artışı çok sayıda sosyoekonomik ve politik sorunların ortaya çıkmasına yol açmanın yanında, yanlış arazi kullanma ve toprak kayıpları nedeniyle ekonomimize ve kalkınmamıza önemli etkileri olan sorunlar da yaratmaktadır. Diğer yandan hızlı nüfus artışı gereksinimlerin karşılanması açısından, üretim ve tüketim ilişkilerini de olumsuz yönden etkileyecektir. Özellikle tarımsal üretimde birim alandan daha yüksek ürün almayı özendiren olumlu sayılabilecek etkisi yanında, orman ve meraların tarım arazilerine dönüştürülmesi gibi olumsuz ve zararlı yöndeki gelişmelere de neden olmakta ve bunları hızlandırmaktadır. Nüfus artışı hızı 1990’ da % 2.4 iken 2000 yılında % 1.9’ a inmiştir. Türkiye’nin potansiyel kaynakları artan nüfusu beslemeye belli bir süre için yeterli bir potansiyeldir. Nüfus artışının zamanla düşürülmesi bu hızlı artıştan kaynaklanan sorunları da azaltacaktır. 2- Toprak Kaynaklarının Sorunları ve Çözüm Yolları : Türkiye’nin önemli yaşamsal sorunlarından birisi toprak kaynaklarında ortaya çıkan sorunlardır. Bu sorunlar genelde su ve rüzgar erozyonu ile oluşan sorunlar, yanlış arazi kullanımı ve toprakların fiziksel ve kimyasal etmenlerle kirlenmesi ya da kalitelerin bozulması, üretim gücünün yitirilmesi şeklinde ortaya çıkmaktadır. 27.7 milyon hektar olan toplam tarım arazisinin 19.7 milyon hektarında çeşitli şiddetlerde erozyon tehlikesinin mevcut olduğu araştırmacılar tarafından saptanmıştır. Tarım arazilerimizin yaklaşık 2/3’ ünde toprak kaynaklarımızı kemiren ve azaltan erozyon tehlikesi vardır. Yine yapılan bir araştırmaya göre yılda 500 milyon ton toprağın akarsularla denizlere taşındığı belirlenmiştir. Ayrıca erozyonla taşınan toprakların tarıma elverişli toprakların üst kısımları olduğu göz önünde tutulursa tarımsal toprakların ne denli büyük bir sorunla karşı karşıya kaldığı daha net anlaşılacaktır. Erozyonun oluşumuna ve şiddetine etki yapan önemli etmenler iklim, topografya, toprağın özellikleri, bitki örtüsü gibi türlü etmenler yanında insanın kendisidir. Erozyonu önleyici toprak işleme, ekim ve dikim yöntemlerinin kullanılmamasının neden olduğu toprak kayıpları ağırlık taşımaktadır. Erozyonun hızlanmasında baş rolü toprağı yanlış işleyen ve kullanan insan oynamaktadır. Bu konuda yapılan çalışmalar göstermektedir ki her yıl on binlerce hektar tarımsal alan tarım dışı amaçlar için kullanılmaktadır. İl ve İlçeler bazında organize sanayi ve küçük sanayi sitelerinin kapladığı arazilerin 18000 hektar olduğu ve bunun % 62’ lik kısmının tarıma elverişli araziler üzerine kurulmuş olduğu saptanmıştır. Yanlış arazi kullanımı, bilimsel araştırmalarla da kanıtlanmıştır. Kentleşme sürecinde ve kıyılarımızın turizme açılmasında da yanlış arazi kullanımı uygulamaları sürmektedir. Hızlı kentleşme, kent nüfuslarının hızlı artışı ve gecekondu olayının süregelmesi, kent topraklarının genişletilmesini ve bu arada plansız ve bilinçsiz arazi kullanımı sorunu ve tarımsal toprakların yerleşim yeri olarak kullanılması olayını da birlikte getirmektedir. İstanbul Boğazı yamaçlarında mevcut bitki örtüsünün kaldırılması suretiyle yapılaşmalara açılan topraklar, yanlış toprak kullanımının öncüleri olmaktadır. Kentleşme ve sanayileşmenin çevre üzerindeki olumsuz etkileri birkaç yönde sürecektir. Birincisi, değerli tarım topraklarının özellikle kıyılarda hızla kentsel kullanımlara açılmasıdır. Kamu eliyle tarıma elverişli duruma getirilmeleri için para harcanan verimli topraklar bile kamunun kayıtsızlığına kurban gidebilmektedir. Sanayi sektöründe gelişmeler, organize sanayi bölgeleri için yer seçimi, genellikle altyapıların ekonomik kolaylıklar sağladığı yörelerde kurulacak biçimde yapıldığı gözlenmektedir. Hiçbir düşünce, ham maddesinin üretildiği birinci sınıf tarım alanı üzerine, bu ürünü işleyen sanayi tesislerinin kurulmasına olanak vermez. Çukurova’da pamuk üretimine elverişli, sulama tesisleri tamamlanarak sulamaya açılmış birinci sınıf alanlardaki tekstil fabrikalarının kuruluşu, oradaki yol, su ve elektrik enerjisi olanaklarından kolayca yararlanma amacından kaynaklanmaktadır. Tarım topraklarının, artık üzerinde tarım yapılamaz hale getirilerek yok edilmelerinin diğer bir biçimi de, bunların toprak sanayilerinde kullanılmak üzere satın alınmalarıdır. Tapuda herhangi bir işlem yapılmasına gerek kalmadan satılan, toprak sanayiine elverişli, fakat uzun yıllarda oluşmuş alüviyal topraklar, ana kaya düzeyine ininceye kadar alınmakta ve fabrikalara taşınarak tuğla, kiremit, seramik vb. yapımı amaçlarıyla ham madde olarak kullanılmaktadır. Tarıma elverişli topraklar dışında, aynı amaçla kullanılabilecek kaynaklar ilgili kuruluşlarca saptanarak ilgililere önerilmekte ise de, çeşitli nedenlerle bu ocakların kullanılmaları sağlanılamamaktadır. Toprakların verim güçlerinin kaybolmasına neden olan diğer bir kirlenme şekli de, kimyasal kirlenmelerdir. Bu tür kirlenmelerde ana etmenler atmosferik çökelmeler, asit yağmurları, atık sular ve bunlarla kirlenmiş suların toprakta bıraktığı kirletici elemanlar, arıtma tesislerinden çıkan kirli çamurların toprakta yaptığı kirletici etkiler, tarımsal ilaçların bazılarının toprakta birikmeleri ile oluşan kirlenmelerdir. Ayrıca sulama yoluyla ortaya çıkabilecek, tuzlanma ve çoraklaşma gibi toprağın verim gücünü azaltan, hatta giderek tarımsal üretimde kullanılmasını önleyen fiziksel ve kimyasal kirlenmeler de toprak kaynaklarına olumsuz etkiler yapmaktadırlar. Görüldüğü gibi toprağı kirleten dış etmenler yanında, tarımsal üretim sürecinde bizzat bu üretimin yarattığı kirlenmeler de tarım topraklarına olumsuz etkiler yapmaktadır. Bir örnek olarak, Çukurova, Aşağı Seyhan Projesi alanından hatalı sulamaların ve gerekli tarım tekniklerinin kullanılmaması vb. nedenlerle oluşan tuzluluk sorunu, taban suyunun yükselerek tarımsal üretimi olumsuz bir şekilde etkilemiş olması gösterilebilir. Türkiye’nin diğer sulama projelerinde de gözlenen bu olumsuz sonuçların, GAP sulamalarında yinelenmemesi için toprak kayıplarını önleyici önlemlerin alınması gereği de vurgulanmalıdır. Toprağın özellikle ağır metaller, toksik maddelerle kirletilmeleri, bu topraklar üzerinde yetiştirilen bitkiler aracılığı ile besin zincirine karışmakta ve insan sağlığını etkileyici zararlı düzeylere ulaşabilmektedir. Topraklarımızın korunması ve geliştirilmesi, tarım topraklarımızın verimlerini artırarak kullanılmaları ve korunmaları konusunda temel mevzuatın yetersizliği de toprak kayıplarına neden olan önemli etmenlerden birisini oluşturmaktadır. Mevcut mevzuatın da ülke topraklarının gereği gibi korunmaları için etkili olarak kullanılmamaları var olan boşluğu daha da genişletmektedir. 3- Orman - Toprak Kaynaklarımızın İlişkileri, Sorunları ve Çözüm Yolları: 20 Milyon hektar civarında bilinen ormanımız vardır. Bunların 11 Milyon hektarı koru ormanı, dokuz milyon hektarı da bataklık ormanıdır. Ancak sadece dokuz milyon hektarlık orman iyi (verimli) orman niteliğindedir. Bozuk (verimsiz) olarak nitelendirilen 11 milyon hektarlık orman ise iyileştirilmelidir. Türkiye’de gözle görülür bir orman azalması olayı yaşanmaktadır. Araştırmalar bu olumsuz gelişmeyi doğrulamaktadır. Orman azalması, orman ürünlerinin azalmasını ortaya çıkarması, dolayısıyla ormanlardan yararlanma hızını artırarak, orman tahribatını artırmakla kalmıyor, yeşil örtünün fotosentez yolu ile CO2 ve oksijen dengesini korumasını da bozarak ,yaşamsal sorunların temel nedeninin oluşmasına destek olmakta, toprağın koruyucu örtüsü tahrip edildiği için de toprakların erozyonla kaybolmasına neden olmaktadır. Orman azalmasına, ormanların yok olmasına neden olan etmenlerin başında nüfus baskısı nedeniyle ortaya çıkan izinsiz ve düzensiz ormandan yararlanma olayı gelmektedir. Ayrıca ormanlarda tarla açma yoluyla usulsüz olarak yararlanma, orman yangınları, biyolojik etmenlerle ortaya çıkan hastalıklar, hava kirliliğinin ve asit yağmurlarının ortaya çıkardığı tahribat, orman azalması sürecini hızlandıran ana nedenleri oluşturmaktadır. Türkiye’de erozyonu önleyici teknik ve biyolojik önlemlerin alınması ve ağaçlandırılması gereken beş milyon hektar civarında bir potansiyel alan mevcuttur. Orman içi ağaçlandırma alanları ile birlikte 18 milyon hektar alanın ağaçlandırılması, erozyon denetimi çalışmaları yapılması bir hedef olarak saptanmıştır. Bütün çabalara karşın, başta finansman sorunları olmak üzere diğer nedenlerin etkisi ile henüz bu hedefe ulaşılamamıştır. Türkiye’de ilk defa özel ağaçlandırma sisteminin uygulamaya konulmuş olması ümit verici bir başlangıç olmuştur. Sayıları 159’ a ulaşmış olan fidanlıklarda 700 milyon kadar fidanların Türkiye’nin yeşillenmesinde, toprakların korunmasında önemli katkıları olmuştur. Bu ağaçlandırma çalışmaları, erozyonun önlenmesinde de etkili olmuştur. Ekosistemlerin önemli bir öğesi, yaratıcısı ve koruyucusu olan ormanların tahribi, doğrudan doğruya toprakların da yok olmasıyla sonuçlandığı için ekosistemlerin korunması, toprağın da korunmasına sebep olacaktır. Ormanların korunmasını kapsayan çok yönlü tedbirlerin orman ve toprak koruma politikaları olarak geliştirilmesi ve bunların uygulamaya geçirilmesiyle topraklarımız korunacak ve varlığını sürdürme olanağına kavuşacaktır. Çayır - Mera ve Toprak Kaynakları İlişkileri, Sorunları ve Çözüm Yolları: Çayır ve mera kaynakları, hayvansal üretimin yem kaynağı olma özelliği yanında, birçok önemli görevleri de yerine getirmektedir. Bunların arasında yeşil örtü olarak fotosentez olayıyla oksijeni desteklemesi, toprak ve su kaynaklarının korunması gibi görevleri ile doğal dengenin korunmasına ve ekosistemlerin oluşmasına çok önemli destek vermektedir. Yapılan araştırmalara göre yeşil örtü olarak çayır ve meralar, toprak ve su kaynaklarının su ve rüzgar erozyonu ile yok olmalarına engel olan en etkin görevi üstlenmektedir. Makinalı tarımın gelişmeye başladığı 1950 yıllarından beri 13 milyon hektardan fazla tarım arazisi, sürülerek tarla arazisi haline getirilmiştir. Ayrıca aşırı otlatma, erken ve geç otlatmalar, mera iyileştirme önlemlerinin alınmaması, bu kaynakların giderek tahribine yol açmaktadır. Karapınar ilçesini tehdit eden şiddetli rüzgar erozyonunun oluşturduğu kum fırtınaları, bu ilçeyi oturulmaz hale getirmiştir. Ama başlatılan çalışmalar sonucunda birkaç yılda çözüme ulaşılmıştır. 5- Su-Toprak Kaynaklarının Geliştirilmesi, Kullanımı, Sorunları ve Çözüm Yolları: Su; eritici, taşıyıcı ve besleyici özellikleri ile, tüm canlıların yaşamsal önemde yararlandığı bir doğal kaynaktır. Topraklar ile birlikte ekosistemlerin önemli bir öğesini oluşturur. Ekosistemleri besler. Bunlara karşın suyun, bozulan ekosistemleri tahrip etme, toprağı aşındırma, taşıma ve su erozyonunu oluşturma gibi özellikleri de vardır. Türkiye gibi erozyona müsait toprak ve iklim koşullarına sahip ülkeler için, bu özellikler tahrip edici olayları ortaya çıkarmaktadır. Çeşitli nedenlerle hızla yok edilen yeşil örtü, bu tip erozyonun baş nedeni olmakta, toprak kaynaklarını bir daha kullanılamayacak hale getirmektedir. Erozyondan etkilenen 57 milyon hektar toprağın önemli bir bölümü, bu tip erozyonla yok olmuştur. 6- Biyolojik Zenginliklerimiz - Toprak İlişkileri, Sorunları, Çözüm Yolları: Biyolojik zenginlikler yönünden Türkiye dünyada önde gelen ülkelerden birisidir. Çok sayıda bitki kaynağının vatanı Türkiye’dir. Yalnız ülkemizde yetişen endemik bitki türleri bakımından çok önemli bir kaynağa sahibiz. Bilimsel ve ekonomik yönden yararlanabildiği takdirde, çok yararlı sonuçlar alınabilecek biyolojik bir zenginlik potansiyelimiz vardır. Bu zengin potansiyel kaynaklarımızla yaşamsal bir bağlantı içerisindeyiz. Maalesef bu zenginliklerimizi de hızla yok etmekteyiz. Bitkisel kökenli doğal zenginliklerimizi; yanlış arazi kullanımı, aşırı tüketim ve bitkisel zenginlik kaynaklarımızın yaşamlarının sürdürülebilirliğini tehlikeye sokacak biçimde aşırı düzeylerde tahrip edilmeleri, bu kaynaklarımızın kaybına neden olmakta, çıplaklaşan toprağın erozyonla taşınmaları ve yok olmaları ile sonuçlanmaktadır. Ayrıca hızlı nüfus artışının toprak istemlerinde ortaya çıkardığı baskılar, bu doğal kaynakların ve zenginliklerin tahribine neden olmaktadır. SONUÇ : Dünya gittikçe küçülmektedir. Canlıların yaşayabildiği ya da yaşayabileceği bir başka gezegen henüz keşfedilmemiştir. Çok uzun yıllar ve yüzyıllar boyunca bu dünya üzerinde yaşayacağız. Dünyanın tahribi, ekolojik dengelerin bozulması, sadece bir ülkeyi değil, tüm dünyayı tehdit etmektedir. Brezilya ormanlarının tahribi, dünya ikliminin değişmesine neden oluyor, atmosferdeki oksijen - karbondioksit dengesini etkiliyor. Tüm dünya ülkelerinin bilinçli ya da bilinçsiz olarak çevreyi tahrip etmeleriyle ekolojik dengenin bozulması ortaya çıkmaktadır. Orman azalması ve çölleşme, dünyanın önde gelen problemi haline gelmiştir. Eğer dünyada milyonlarca kişi açlık çekiyorsa, bu olaylar insan oğlunun geçmiş dönemde yaptığı hataların, kaynak tabanlarını tahrip etmelerinin faturası olarak karşımıza çıkmaktadır. Bu hataların faturalarını gelecek kuşakların ödemesini istemiyorsak, ekolojik dengelerin bozulmasına neden olan hatalı uygulamalardan vazgeçmeliyiz.

http://www.biyologlar.com/toprak-kirliligi-sorunlar-ve-cozum-yollari

 
3WTURK CMS v6.03WTURK CMS v6.0