Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 77 kayıt bulundu.

Deniz Kaplumbağaları Hakkında Bilgi

Denizkaplumbağaları yaklaşık 95 milyon yıldan beri dünyamızda yaşamaktadırlar. Ataları, yıllar önce, dinazorların yaşadığı devirde deniz ortamına geçmiş dev kara kaplumbağalarıdır. İlk deniz kaplumbağaları bugünkülere pek benzemiyorlardı. Değişimleri milyonlarca yıl sürmüş ve ayakları yüzgeç şekline dönüşmüş, ağır ve kocaman gövdeleri yassılarak daha hafif ve su yaşamına elverişli bir biçim almıştır. Dinazorlar ve dev kara kaplumbağaları tamamen yok olmuşlardır; bugün ancak müzelerde fosillerini görebilmekteyiz. Fakat denizkaplumbağaları nasıl olduysa yaşamlarını sürdürebilmişlerdir. Bunların yedi değişik türü, dünyamızı çevreleyen sıcak ve ılıman okyanuslarda hâlâ yüzmektedirler. Dişilerin karaya çıkarak yuva yapıp yumurtladıkları kısa devreler dışında, bütün hayatlarını suda geçirirler. Denizkaplumbağaları denizi balıklarla, balinalarla, diğer deniz yaratıklarıyla ve bizlerle paylaşırlar. Ülkemiz sularında bu türlerden sadece iki tanesi yaşar: Sini Kaplumbağası (Caretta caretta) ve Yeşil Kaplumbağa (Chelonia mydas) Kristof Kolomb Yeni Dünya’yı keşfettiği zaman Karaib Denizi’nde milyonlarca denizkaplumbağası bulunuyordu. Kolomb ve onu onu takip eden diğer kâşifler, tüccarlar, sömürgeciler ve korsanlar özellikle bir tür denizkaplumbağasının etinin lezzetli olduğunun farkına vardılar. Bu kaplumbağa tamamen kahverengi olup, boyu 1 metreye, ağırlığı ise 136 kilograma kadar ulaşabiliyor ve kıyıya yakın sığ sularda yetişen deniz otlarıyla besleniyordu. Denizciler bu uysal hayvanı kolayca avlayabiliyorlardı. Onu, kabuğunun üzerine sırt üstü devirip savunmasız hale getirdikten sonra yüzgeçlerini bağlayıp taze ete ihtiyaçları olduğu zaman öldürmek üzere gemilerine götürüyorlardı. Bu kaplumbağa, vücudundaki yağın rengi yediği ottan dolayı yeşil olduğundan “yeşil kaplumbağa” diye isimlendirilmiştir. Otla beslenen tek denizkaplumbağası türüdür. Yüzyıllar sonra günümüzde de yeşil kaplumbağalar hâlâ avlanıp, öldürülmekte ve sayıları gün geçtikçe azalmaktadır. Sini Kaplumbağası (Caretta caretta) Sini kaplumbağası yeşilden biraz daha ufaktır. Ağırlığı 135-180 kilogram arasında değişer. Yengeç ve başka deniz hayvanlarıyla beslenir. Bu kaplumbağa mercan yuvaları ve kayaların yakınında avlanır. Büyük ve kalın kafası, geniş ve kısa boynuyla kolayca tanınabilir. Diğer denizkaplumbağaları gibi, bu da kara kaplumbağalarının tersine başını kabuğunun içine çekemez. Kabuğu bir zırh gibi olmakla beraber, başı ve yüzgeçleri korumasızdır. Bazı köpekbalıkları ve katil balinalar açıkta kalan bu kısımlara saldırabilirler. Fakat sini kaplumbağası iri ve hızlı olduğundan doğal düşmanı çok azdır. Yeşil Kaplumbağa Yumurtuyor Dişi yeşil kaplumbağa, her zaman yuvasını yaptığı kumsala tek başına çıktı. Bir süre önce yakın sularda bir erkek yeşil kaplumbağa ile çiftleşmişti. Artık yumurtlama zamanı gelmişti. Bir yumurtlama mevsiminde üç veya dört kere yumurtlayabilir. Suda ne kadar hızlı ve ortama uyumluysa, karada da tam tersine o kadar yavaş, hantal ve savunmasızdır. Dişi kendisini denizden dışarı zorlukla çekti ve kumsalda gelgit sularının erişemeyeceği kadar ilerledi. Yüzgeçleriyle vücuduna göre bir yuva kazdı. Yuvaya yerleşip arka yüzgeçlerini kürek gibi kullanarak şişe şeklinde bir delik kazdı. Sonra bu deliğe pingpong topuna benzer, beyaz ve kaplı görünümü veren yaklaşık yüz adet yumurta bıraktı. Kaplumbağa, yumurtlaması bittikten sonra yuvayı kumla örtecek ve arkasında traktör izine benzeyen bir iz bırakarak ağır ağır denize dönecektir. Ne yazık ki anne kaplumbağa yumurtalarını ne kadar çok tehlikenin beklediğinden habersiz. Çoğu kez insanlar, yumurtaları meraktan veya yemek için topluyor. Ayrıca köpek, tilki veya kum yengeci yumurtaları yemeye çok meraklı. Bu yüzden kaplumbağaların ürediği kumsallar mutlak koruma altına alınmalıdır. Yumurtadan Çıkan Yavrular Kumsala varan güneş ışınları kuma gömülü kaplumbağa yumurtalarını ısıtır. Yumurtalar yuvanın içinde gelişir ve iki ay sonra çatlamaya hazır hale gelirler. Yavrular burunlarının ucundaki sivri kısım ile yumurta kabuklarını delmeye başlarlar. Bu özel sivri kısım yumurtadan çıkınca kaybolur. Yavrular kabukları çatlatarak kırarlar. Hepsinin yumurtadan hemen hemen aynı zamanda çıkmaları gereklidir. Çünkü yuvadan kaçış işlemini elbirliğiyle yapmak zorundadırlar. Yavru kaplumbağalar başlarının üzerindeki kumu kazmaya başlarlar. Kum, boş kabuklarının üstüne düşerek çukurun içinde yükselmelerine olanak sağlayan basamaklar oluşturur. Birkaç gün içinde yuvanın tavanına varırlar. Derken bir gece veya bir sabah erken saatlerde kumsalda koyu renkli küçük kafalar ve yüzgeçler belirir. Beş santimetrelik yavrular sürünerek denize doğru yol alırlar. Denize Doğru Yarış Kaplumbağa yavruları deniz yönünü denizin pırıltısından hissederler. Suyun üzerindeki parlaklık onları çeker. Yuvadan çıkıp sel gibi akarak denize doğru yarışlarına başlarlar. Hayat dolu ama savunmasız yavrular, kumsal boyunca beceriksizce çabalayıp dururlar. Bunların da anneleri gibi denize varabilmeleri için etrafın tamamen karanlık olması gereklidir. Işık yanan bir ev, araba, sokak lambası varsa yavrular ışığa doğru ilerler ve sonunda hepsi ölürler. Yavruların gece çıkmalarının asıl sebebi ise kızgın güneşten korunmak içindir. Gündüz çıkacak olsalar güneşin kavurucu sıcaklığı onları derhal kurutup öldürecektir. Yumurtadan çıkan yavruların kabukları yumaşaktır ve kendilerini koruma nitelikleri çok az olduğundan pek çok doğal düşmana yem olur: Yengeç orduları onları yakalar veya deniz kuşları toplanıp, küçük kaplumbağaları keskin gagalarıyla yakalayıp kendilerine ziyafet çekerler. Yavrulardan çok azı denize varabilir ve bunların çoğu balıklara yem olur. Yavrulardan ancak bir, iki tanesi hayatta kalır. Yaşamlarının ilk yılını nerede geçirdikleri doğanın çok sayıdaki sırlarından biridir. Örneğin yeşil kaplumbağalar bir yaşına gelip kıyılardaki sığ sularda beslenmeye başlayana kadar hiç ortalıkta görünmezler. Bir yaşındaki yavrular bir yemek tabağı büyüklüğündedirler. Denizkaplumbağaları Nerelerde Yumurtlar? Denizkaplumbağaları dünya çevresindeki geniş, ılıman kuşak içinde yaşarlar. Akdeniz’de olduğu gibi Pasifik ve Atlantik okyanuslarında yaşayan kaplumbağa topluluklarının sayıları da her geçen gün azalmaktadır. Denizkaplumbağalarının başka bir özelliği büyüdükleri zaman yumurta bırakmak için doğdukları kumsallara geri dönmeleridir. Bu kaplumbağaların yumartlamak için binlerce kilometre yüzdükten sonra doğdukları yeri nasıl buldukları bilim adamlarınca halen tam anlaşılamamıştır. Akdeniz’deki denizkaplumbağalarının bir kısmının da sadece Akdeniz’de yaşadığı ve kışladığı sanılmaktadır. Kaplumbağaların bu göç hareketleri “markalama”, yani üzerlerine konan özel işaretler ile ancak izlenebilmektedir. Kaplumbağalar mı? Kaplumbağa Ürünleri mi? Denizkaplumbağaları dünyamızdan hızla yok olmakta. Oysa yok olan bir hayvan türü bir daha hiçbir zaman geri gelmeyecektir. Yok olma sebeplerinden biri de insanların kaplumbağaları çeşitli amaçlarla avlamasından ileri gelmekte. Bazı kaplumbağaların kabuğundan “bağ” denen taraklar, gözlük çerçeveleri, düğme vb. yapılmakta. Çok pahalı olan bu maddeleri artık insanların satması da alması da doğru değildir. Bazı kaplumbağaların derisinden çanta ve pabuç yapılmakta. Bazılarından ise çorba... Kimi yörelerde kaplumbağa kanının bazı hastalıklara iyi geldiği inancı yaygınsa da bunun doğru olmadığı artık anlaşılmıştır. Unutmayın, siz veya çevrenizdekiler yukarıda saydıklarımızı kullanıyorsanız, bu ender hayvanın yok olmasına sebep oluyorsunuz demektir. Kaplumbağa Avı Çok eskiden beri kıyılarda yaşayanlar, ailelerinin beslenmesine katkıda bulunmak için denizkaplumbağalarını avlamışlardr. Bazen tek bir balıkçı bir kaplumbağayı besin olarak kullanmak amacıyla zıpkınlamış; bazen de grup halindeki balıkçılar, soluk almak için su yüzüne çıkan kaplumbağları ağlarla yakalayıp yemek üzere köylerine götürmüştür. Yıllar boyunca denizkaplumbağalarının bol olduğu zamanlarda bu tip avlanmaların kaplumbağa sayısını çok az etkilediği zannediliyordu. Fakat denizkaplumbağasına istek giderek arttı. Ya kaplumbağa avlayıp satarak ya da kaplumbağadan yapılmış ürünler satılarak para kazanılıyordu. Denizkaplumbağası avlamak kazançlı bir iş haline gelmişti. Böylece avcılar kaplumbağaları kimi zaman denizde, kimi zaman da yumurtlamaya çıktıklarında daha yumurtalarını bırakamadan yüzlercesine yakalamaya başladılar. Kaplumbağalar giderek azaldılar ve hemen hemen yok oldular. Ülkemizde yasalar bütün denizkaplumbağalarını koruma altına almış ve kaplumbağa ürünlerinin ticaretini yasaklamıştır. Yine de bu yasaklara uymayan kişiler halen aramızda bulunmaktadır. Trolcüler ve Kaplumbağalar Dünyanın her yerinde ticari balıkçı tekneleri denizlerden yiyecek sağlar. Bu teknelerin bazıları kıyı sularında dolaşıp deniz dibini “Trol” denen büyük ağlarla tarayarak avlanırlar. Deniz dibini tarayarak yapılan bu tarz balıkçılık, balık, karides, mercan yuvalarına çok zarar verdiği gibi, ne yazık ki çoğu zaman Caretta Caretta cinsi kaplumbağalar da tesadüfen bu ağlara yakalanmaktadır. Örneğin, birçok kaplumbağa, karides trolcülerin büyük huni şeklinde ağlarına yakalanıp, karideslerle beraber ağın içinde sürükleniyorlar ve su yüzeyine çıkıp nefes alamadıkları için de boğulup ölüyor. Böylece az sayıda kalan denizkaplumbağaları daha da azalıyor. Bu soruna bir çözüm yolu bulunması gerekmekte. Amerika Birleşik Devletleri’nin güneydoğu kıyılarındaki karides balıkçıları bu konuda yardımcı olmakta ve sadece karidesi içine alıp, kaplumbağanın giremeyeceği şekilde yapılmış yeni ağlar yapmaktadırlar. Yumurtlayacak Yeri Yok Bir denizkaplumbağası Türkiye’nin güney sahillerinin cennet köşelerinden biri olan Side kıyılarında bir kumsala sürünerek çıkar, şaşırır. Bir de ne görür? Kumsalın büyük bir kısmını apartman ve oteller işgal etmiş. Geri kalan dar kumsal şeridinde ise insan kalabalığı vardır. Kaplumbağa tekrar denize açılıp gece geri döner. Bu sefer pencerelerdeki yüzlerce ışık ortalığı aydınlattığından kumsal pırıl pırıldır. Kumsalın bazı yerleri ise beton rıhtımlarla çevrelenmiş ve yükselmiş. Kaplumbağaya artık yumurtlayacak yer kalmamıştır. Kıyının başka bir yerinde başka bir kaplumbağa boş kalmış ufak ber kumsal şeridine çıkıp yumurtlar. Yavrular yumurtalardan çıkma günü gelince ışıklara doğru sürünürler. Fakat vardıkları yer deniz değil, yakındaki bir yolun sokak lambalarının ışığıdır. Ertesi gün yakıcı güneşin altında hepsi ölecektir. Bir zamanlar denizkaplumbağalarının güvence içinde yumurtlamalarına uygun yüzlerce kilometre uzunluğunda kıyılar vardı. Bugün artık her şey değişti. Bu bölüm hazırlanırken Doğal Hayatı Koruma Derneği'nin "Bütün Yönleriyle Denizkaplumbağaları" adlı yayınından faydalanılmıştır.

http://www.biyologlar.com/deniz-kaplumbagalari-hakkinda-bilgi

DENİZ ATI

Dünya ve ülkemiz sularinda nesli tükenmekte olan bir çok tür bulunmaktadir. Akdeniz foku , deniz kaplumbagalari , mercan türleri , deniz memelileri ve denizatlari nesli tükenmekte olan canlilar arasinda yer alir.Bizler size bu ilk yazimizda bu canlilardan biri olan Sngnathidae familyasi hakkinda bilgilerimizi paylasacagiz. Syngnathidae familyasi üyeleri yüzgeç durumlarina göre 2 ye ayrilir : - Pektoral yüzgeçleri (gögüs yüzgeci) ve anal yüzgeçleri olmayanlar ; Synganathus ve Neropsis genusu üyeleri olan denizigneleri - Iyi gelismis pektoral yüzgeçleri ve birkaç radiuslu (isinli) anal yüzgeçleri olan ancak caudal yüzgeci olmayan Hippocampus genusuna ait denizatlaridir. Benim denizatlariyla ilgili bilgi toplamaya baslamam 1 sene önce balikçi aglarina takilarak ölen bireylerin cesetleriyle karsilasmama dayanir. Caddebostan açiklarinda avlanmakta olan balikçilarin aglarina takilan 450 kadar denizati balikçilar tarafindan tekneye alinmis ve ölen bireyler elime ulasmisti. Bu durum beni gerçekten çok üzmüstü . Bir seyler yapabilecegimi düsünerek bilgi toplamaya basladim. Ilk buldugum bilgi bu canlilarin birer balik oldugu ve yumurtalari erkeklerin tasidigiydi.Bilgi toplarken onlari gözlemem gerektigini düsünerek balikçilarin gösterdikleri yerlerde dalislar yaptik. Marmara sahilinde Maltepe,Kartal ve Caddebostan kiyilarinda 10m dalislarinda zeminde alglere tutunmus olarak buldugum denizatlarindan 12 adet aldim.Hazirlamis oldugum akvaryumda mercan,bir deniz çayiri türü olan Zoestera ve beslenmeleri için bir zooplankton olan Artemia vardi.Su sicakligini 22oC ayarladiktan sonra denizatlarini akvaryuma koydum. Yaklasik boylari 10mm-300mm arasinda ve agirligi 25gramdan fazla olan bu genusun bilinen 40 türü olmasina karsin sularimizda yalnizca 2 türü bulunmaktadir.Hippocampus hippocampus ve Hippocampus ramulosus türleridir. Türler arasi farka gelince ; H. ramulosus da postanal bölgede (bas ile kuyruk ucu arasinda kalan bölge) halka sayisi 36-40, dorsal yüzgeçte (sirt yüzgeci) 18-21 ve pektoral yüzgeçte (gögüs yüzgeç) 15-18 adet isin bulunur.Bas boyu diger türlere göre daha uzundur ve gövdede deri uzantilari vardir.Renk genellikle kahve - siyah olmasina karsin sari yada kirmizi renge de rastlanir.Nokta ve çizgimsi süslerde tasiyabilen bu hayvanlar çevrenin hakim rengini alarak motifi veya alacali olarak da bulunur. H.hippocampus  da ise 38 den az halka bulunur. Pektoral yüzgeçte 15 , dorsal yüzgeçte ise 13-15 adet isin var . Burun nispeten kisa ve deri çikintilari çok az sayida yada hiç bulunmaz. Topladigim bilgiler isiginda elimdeki denizatlarinin H.hippocampus türüne ait bireyler oldugunu buldum.Akvaryumda sakin ve hareketsiz bu canlilarda bir hareketlenme baslamisti. Birbirlerini kuyruklarindan tutup bir süre hareketsiz kaliyor hayvanlardan biri renk degistirinceye kadar bu islem sürüyordu. Çesitli literatürlere baktim ve bunun bir çesit düello oldugunu ögrendim.Erkeklerin diger bir düello sekliyse burunlarini rakibe dogrultarak üfleyen erkek rakibi alabora olana kadar bu olaya devam etmesiymis.Yani erkekler begendigi disisini elde etmek için elinden geleni yapiyor. Akvaryumdaki 14 denizatindan yalniz bir çiftin çiftlesmesi ilgimi çekmisti.Daha sonra bu canlilarin yüksek monogami oldugunu ve bu olayinda nedenin bu oldugunu ögrendim. Oldukça zor es seçen bireyler bulduklari eslerine oldukça sagdik kalirlar.Çesitli nedenlerle birbirini kaybeden eslerden disi olani yasam alani içinde sabit kalip beklerken , erkek birey kendine en uygun disisini aramak için gezinir.Yasami boyunca disisine sadik kalan erkek yeni bir disi bulmak için bazen haftalarca dolanabilir.Genis dagilimi olmayan, enerjisi ve zamani kisitli olan bu hayvan tekrar bir es bulamayarak ölebilir bile.Bu olay eslerine sadik olmayan hayvanlar dünyasinda oldukça ilginçtir. Denizatlarinin üremeleri suyun isisina bagli olmakla birlikte genellikle nisan ve agustos aylari arasinda sig ve sakin sularda deniz çayirlari ve algler arasinda gerçeklesmektedir. Diger hayvanlarda oldugu gibi spermatozoitler erkekte , ovaryum ise diside bulunur. Farkli olan sey ise disilerin oldukça iri olan (2 - 2,5 mmØ) ve yasa göre 20-200 taneye kadar olan döllenmis yumurtalarinin erkeklerde bulunan kuluçka kesesi içine , salgiladiklari yapiskan bir salgi ile yapistirmalaridir.Familyanin bazi cinslerinde bu gibi kuluçka kesesi bulunmamaktadir.Bu durumda disiler gene yumurtalarini salgiladiklari yapiskan maddeyle dogrudan erkegin karnina yapistirmaktadir.(Syngnathus ve Nerophis denen deniz ignelerinin de bu familyanin üyeleri oldugunu unutmamak gerekir).Bu hamilelik memelilerinkine oldukça benzer.Deniz atlarinin erkeklerinde de prolaktin hormonu bulunmakta ve bu hormon hamileligi kontrol etmektedir. Embriyoyu erkek boyunca besler ve gerekli her seyi kendi yapar. Böylece erkegin kuluçka kesesine veya karin kismina yapistirilmis olan döllenmis yumurtalar 6-10 gün içerisinde kuluçka evresini tamamlayarak küçük birer yavru halinde babalari tarafindan suya birakilirlar.Bu olay tam olarak bir dogurma sayilmaz. Yumurtadan çikan genç yavrular kisa süre babalariyla birlikte dolasarak planktonla beslenirler ve yavas yavas uzaklasarak kendi baslarina serbest yüzmeye baslarlar. Çevre kirliliginin artmasiyla Zoestera ve Posedonia gibi bir çok deniz çayiri popülasyonu gittikçe azalmakta bununla birlikte mercan resifleri tükenmektedir.Bu olumsuz gelismelerse deniz atlarinin yasam alanlarinin yok olmasina neden olmaktadir.Genellikle tropik sularda yasamlarini sürdüren bu hayvanlarin en önemli sorununu çevre kirliligi olusturmasina karsin baska sorunlari da yok degildir.Planktonik organizmalarla beslenen bu baliklara diger balik türleri cazip bir besin olarak bakmamasina karsin bazi karides türleri , yengeç ve penguenler için iyi birer yiyecek sayilabilirler.Aktif yüzücü olmayan , su hareketleriyle hareket eden bu hayvanlar firtinalar sirasinda yasam alanlarindan koparak farkli yerlere sürüklenmekte hatta bazen enerjileri tükenerek ölmektedirler.Tüm bu çevresel kosullarin yani sira bu hayvanlarin ticareti de yapilmaktadir.Önceleri önemsemeyen bu meslek bu hayvanlarin nüfusunu tehdit edecek kadar artmistir.Çin halki deniz atlarini astim , damar sertligi, kemik kirilmalari, idrar kaçirma, böbrek yetmezligi, tiroid bezi hastaliklari gibi bir çok hastaligin tedavisinde kullanilir. Taiwan da deniz atlari öncelikle afrodizyak olarak veya losyon olarak kullanilir. Deniz atlari daha ziyade bir çok bitki ile beraber hastanin ihtiyaçlarini karsilamak için kullanilir.Alternatif tedaviler deniz atini haslamayi ve elde edilen siviyi içmeyi kapsar fakat deniz ati genellikle yenmez. Deniz atlari ayni sekilde, kuvvetli alkol içinde diger bazi tibbi maddelerle birlikte mayalanmaya birakilir ve bu sivi çogunlukla kuvvetli bir yenileyici veya genel kuvvetlendirici ilaç olarak içilir. 19965 yilinda Hong-Kong , Çin ve Vietnam da satisa sunulan orta boyda kurutulmus deniz atlarinin agirligi 3,6 gr olarak ölçülmüstür.Hong-Kong da satilan çogu deniz ati tüketici talebine istinaden kimyasal islemlerle beyazlatilarak satisa sunulur.Beyazlatilmis deniz atlari çogunlukla Hong-Kong dan üretici ülkelerde ki ( Endonezya ve Filipinler) gibi TCM (geleneksel Çin tibbi) dükkanlarina tekrar ithal edilir. Balikçilar deniz atlarini özellikle hedef alabilir, baska türleri yakalamak için onlari gözleyebilir ve diger baliklari avlama yöntemlerinde yem olarak kullanabilirler .Bazi balikçilar hedeflenen deniz atlarini , gün boyunca toplamada sandaldan uzatilan uzun, agli kepçelerden yararladirlar.Diger sahlar içinde koleksiyoncular deniz atlarini gece elle yakalarlar. Dünya genelinde hediyelik esya dükkanlarinda deniz atlari hatira esyasi veya anahtarliklarda, mücevherlerde ve çesitli süslerde kullanilirlar.Her ne kadar gida olarak tüketilmese de bazi özel restorantlar da menü de bulunabilirler. Deniz ati ticareti yapan ülkeler listesinde Avusturalya , Brezilya , Belize, Çin , Dubai , Ekvator, Misir ,Endonezya ,Japonya , Kuveyt , Meksika , Yeni Zelanda,Pakistan , Singapur , Ispanya ,Taiwan , Tayland ,Amerika , Vietnam vardir. Listedeki ülkelerle beraber etnik Çin toplumu deniz atlarini hem ithal hem de ihraç ederler. Çin en büyük kullanicidir (yaklasik 60 milyon deniz ati ).Bunu Taiwan 11,26 ton yani 3 milyon deniz ati kayitli ihracati ile , Hong-Kong yaklasik 3 milyon ve Singapur 2 - 3 milyon ile takip etmektedir. Japonya ve Kore denizati ihraç etmekle bilinirler ve büyük miktarlarda denizati tüketebilirler. Bunda tibbi geleneklerinin TCM ile ayni kökenden gelmesi etkilidir. Ölüler daha degerlidir çünkü fiyatlar ölüler için agirlikla çogalirken yasayanlar için sabittir.Akvaryum ticareti dünya çapinda milyonlarca canli denizatini kapsar ve hediyelik esya ticareti de Tayland ve Florida gibi turistik bölgelerde önemlidir.Kurutulmus denizatlari yüksek fiyatlarla alici bulabilirler. Örnegin; nisan 95 de Hong-Kong da orta boyda karisik türde beyazlatilmamis deniz atlarinin kilosu 280$ ; büyük ve beyazlatilmis deniz atlarinin kilosu 1200$ civarindadir. Korunmalari için henüz çok fazla harcanmamasina karsin 1995 yili Traffic Bulletin de yayinlanan açiklamaya göre korunmalari için uygulanmasi uygun olan yöntemler sunlardir: - Bölgesel topluluklara dayanan kaliplasmis koruma teknikleri olusturmak - Yakalama limitlerindeki ölçülerini degistirmek - Akvaryum kültürünü artan denizati sayimlari sayesinde degistirmek ve üreme alanlari oluşturmak.

http://www.biyologlar.com/deniz-ati

B12 Vitamini

Yararları: Suda eriyen B12 özellikle sinir sistemi fonksiyonları için gereklidir. Folik asit ile birlikte doğum defektlerini önlemekte önemli rol oynar. Yine folik asit ve B6 vitamini ile birlikte kalp hastalıklarını ve damar tıkanıklığını önleyici rol oynamaktadır. Asetilkolin üretimini arttırdığı ve beyinde sinir iletimini düzenlediği için Alzheimer hastalığında koruyucu rolü olabileceği düşünülmektedir. Normal büyüme gelişmede olumlu rol oynar. Sinir hasarlarında tedavi edici rol oynar. Pernisiyöz anemi tedavisinde kullanılır. Mide bağırsak sisteminin bir kısmı cerrahi olarak çıkartılmış hastalarda oluşabilecek B12 vitamin eksikliğine bağlı belirtileri önler. Vejeteryanlarda ve birtakım emilim bozukluğu olan hastalarda oluşabilecek B12 vitamin eksikliğine bağlı belirtileri önler. Bağışıklık sistemini ve sinir sistemini güçlendirir. DNA molekülünü sentezler ve kırmızı kan hücrelerini üretirler. Hangi besinlerde bulunur? B12 vitamini folik asit ile birlikte alınmalıdır. Karaciğerde, sütte, yumurta akında, peynirde, balıkta, ette ve karideste bol miktarda, bitkilerde ise son derece az miktarda bulunur. Dana eti, dana karaciğeri, böbrek, midye, dil balığı, ringa balığı, uskumru, sardalya B12 vitamini içeren yiyeceklerdir. Sebzelerde ise B12 vitamini bulunmaz. Eksikliği nelere yol açar? B12 vitamin eksikliklerinde zihinsel ve sinirsel fonkisyonlar bozulabilir ve kulak çınlaması, hissizlik gibi belirtileri görülür. Yaşlı insanlarda depresyonun en önemli nedenidir. Yaşlandıkça B12 vitamininin emilimi için gerekli olan mide asitimiz giderek düşer. Besinlerin emilim yeteneğini kaybeden yaşlı insanlarda, B12 gereksinimi giderek artar. Bu nedenle 50 yaş üzerindeki insanların B12 vitaminini harici alınması önerilir. Diğer suda eriyen vitaminlerden farklı olarak vücut dokularında depolanabilir. Bu yüzden eksiklik belirtilerinin ortaya çıkması yıllar alabilir. Ağır vitamin B12 eksikliğinde ise sinir fonksiyonlarının bozulduğu kronik hastalıklar ortaya çıkmaktadır. Yaş ilerledikçe vitamin B12 eksikliğinin görülme sıklığı artmaktadır. Araştırmalar 65 yaşın üstündeki kişilerin yaklaşık % 40'ında vitamin B12 eksikliği olduğunu göstermektedir. Bu yaşlarda görülen bazı zihinsel bozukluklar ve depresyonun bu nedenle oluşabileceği düşünülmektedir. Alzheimer hastalığına benzer belirtiler verebilir ve eksiklik uzun yıllar sürerse zihinsel bozulma geriye dönüşümsüz hale gelebilir. B12 vitamini eksikliğinin, iyileşmesi mümkün olmayan sinir tahribatlarına neden olması dolayısıyla, hayvansal ürünlerin hiçbirini yemeyen vejeteryanların, mutlaka ayrıca B12 vitamini alması gerekir. Hafif derecede B12 eksikliği çok sık görülür. Uyuşukluk, unutkanlık, sabahları yataktan yorgun kalkma gibi belirtiler HIV pozitif kişilerin yüzde 35 inde vitamin B12 eksikliği olduğu bulunmuştur. Yararı tam olarak kanıtlanamasa da AİDS tedavisinde vitamin B12 eklenmektedir.

http://www.biyologlar.com/b12-vitamini

Artropodların Yararlı Etkileri , Faydaları

Doğada mevcut milyonlarca tür artropod dikkate alındığında bunların zararlı etkilerinin yanında birçok yararlı etkileri de vardır. Dünyadaki böcek faunasının ancak % 5 kadarı zararlıdır. Geriye kalan %95’lik kısım faydalı türleri içermektedir. Böcekler; bitkilerin döllenmesinde, toprakta biyolojik ortam ve gübre oluşmasında, ekolojik dengenin korunmasında ve devamının sağlanmasında, doğal dengenin sağlanmasında, erozyon önlenmesinde, salgınların ortaya çıkmasına engel olmada, birçok adli vakalarda olayların aydınlatılmasında artropoda filumundaki türler önemli yer tutarlar. Bunlara ilaveten arı ve ipek böceği gibi direkt yolla faydası olan ve istakoz, karides gibi gıda olarak tüketilen artropodlar da besin değeri yönünden önemlidir. Artropodlarda çoğalma (Reproduction): Artropodlar genel olarak eşeysel çoğalırlar. Ancak nadiren bazı türlerde partenogenetik çoğalma (döllenmemiş yumurtalardan yeni fertlerin meydana gelmesi) görülür. Arı ve ipek böceği gibi Artropodlarda partenogenetik çoğalma görülür. Artropodlar eşeyli çoğalmada çiftleşmeden sonra çoğunlukla yumurtalarını, ender olarakta larvalarını bırakırlar. Artropodlarda cinsiyet ayrıdır ve farklı bireylerde bulunur. Bazılarının dişi ve erkekleri birbirlerine benzemez. Buna dimorfizm adı verilir. Döllenme sonunda bazı artropodlarda (sinekler) sırası ile larva, pupa ve erişkin (imago) formlar gelişir. Bunların larva ve pupası erişkin forrnlara hiç benzemez, bu duruma tam metamorfoz adı verilir. Bit, kene ve uyuz etkenleri gibi artropodlarda ise yumurtadan çıkan larva erişkin forma bazı eksiklikleri dışında genel olarak benzer ve bu form nymph adını alır. Bu tip gelişmeye ise tam olmayan metamorfoz adı verilir.

http://www.biyologlar.com/artropodlarin-yararli-etkileri-faydalari

Crustacea Sınıfı (Kabuklular)

Bu sınıftakilerin büyük bir kısmı sularda yaşarlar. Solungaçlarla solunum yaparlar. İki çift antenleri (Diantennata) vardır. Aynca thorax ile abdomenden çıkan çok sayıda ayakları bulunur. Crustacea 'ların üzerlerinde kireç birikmesiyle sertleşmiş bir kabuklan vardır, Bunun için bu sınıftaki artropodlara kabuklular adı verilir. Büyük bir kısmı sularda serbest olarak yaşarlar. Ancak tesbih böcekleri gibi bazı türleride karada yaşar. Bu sınıfa bağlı iki alt sınıf vardır. Bunlar; Alt sınıf: Entomostraca Bu alt sınıfta bulunan türler küçük kabuklulardır. Vücutları değişik sayıda bölümlere ayrılmıştır. Abdomenleri ise genellikle çatal şeklinde sonlanır. Küçük yapılı olan ve su piresi olarak da adlandırılan Diaptomus,Cyclops ve Daphnia’lar sularda zooplaktonları oluştururlar. Bunlardan Cyclops ve Diaptomus’lar helmintlerden Diphyllobothrium latum'a arakonakçılık yaparlar. Ayrıca Cyclops 'lar Dracunculus medinensis' e de arakonaklık yaparlar. Daphnia 'lar ise nematodlardan Acuaria ve Tetrameres'lere arakonaklık yaparlar. Bu alt sınıfta ki türlerden balıklarda ektoparazit olarak bulunan ve balıkların crustacealanrı olan cinsler önemlidir.Bunlar; Cins: Ergasilos : Tatlı su balıklarının solungaçları üzerinde ektoparazit olarak yaşarlar. Bu parazitler kanla ve epitelle beslenirler. Bu nedenlede solungaçlarda patolojik bozukluklara yol açarlar. Bu parazitle enfekte balılarda soluma güçlüğü, büyüme geriliği ve sexuel olgunluğa erişememe durumu görülür. Enfeste balıklar sekunder bakteri enfeksiyonlarına duyarlıdırlar. Özellikle mantar enfeksiyonlarına duyarlıdırlar. Ağır enfeksiyonlarda ölümler görülür. Özellikle sıcaklığın arttığı yaz aylarında kayıplar daha fazla olur. Cins: Salmincola : Vücutları cephalothorax ve abdomen olarak ayrılmıştır. Büyüklükleri 4 -7 mm' dir. Dişileri yumurta çıkarır ve bu yumurtadan çıkan larvalar balıkların solungaçlarına tutunarak 5 kez gömlek değiştirir ve olgunlaşırlar. Bu cinste tatlı su balıklarının yüzgeç ve solungaçlarında yerleşir. Cins: Achtheres : Çeşitli tatlı su balıklarının solungaçlarına yerleşir. 2 -7 mm büyüklüğündedir. Cins: Lernaea : Bu cins tatlı su balıklarında en yaygın olarak görülür. Bunların sadece dişileri parazittir. Erkek ile dişi çiftleştikten sonra dişi paraziter hayata geçer. Yumurtadan çıkan larva suda serbest yüzer ve birkaç kez gömlek değiştirerek olgunlaşır. Özellikle kültür balıklanrıda ölümlere neden olur. Parazitler balıkların pullarını tahrip ederler. Buralarda ülserler oluşur ve daha sonra buralardan bakteri, mantar ve virusların içeri girmesine zemin hazırlanır. Enfekte balıklarda büyümede gerileme ve yüzme bozuklukları görülür. Cins: Argolos: Bu cinse balık biti adı verilir. Erişkinleri 6 -22 mm uzunluğunda olup, tatlı su balıklarında yaygın olarak görülür. Vücutları caput, thorax ve abdomenden oluşur. Bu türün biyolojileri biraz karışıktır. Erişkin dişi konağı terkeder ve suda bulunan çeşitli maddeler üzerine yumurtalarını bırakır. Yumurtalar içinde larva gelişir ancak yumurtayı terketmez ve 3 larval dönem geçirip yumurtayı terkeder. Bir seri gömlek değiştirir ve her gömlek değiştirmede konağını terkeder. Bu gömlek değiştirme dönemlerinde de parazittir. Biyolojisini sıcaklığa bağlı olarak 40 -100 günde tamamlar, Argulus 'lar balıkların derisini delerek kanla beslenirler. Parazitlerin beslenme yerlerinde ülserler meydana gelir ve sekunder enfeksiyonlara neden olurlar. Balıklarda ektoparazit olarak bulunan ve yukarıda yazılan cinslerin kontrolünde parazitsiz balıkların havuza alınması ve balıksız su kaynaklarının kullanılması esastır. Havuzlarda kullanılan suların süzülmesi gerekir. Ayrıca enfestasyonun görüldüğü yerlerde enfeste balıklar toplanıp imha edilmelidir. Yine havuzlarda balık sayısı azaltılmalıdır. Havuza yeni balıklar konmadan önce havuzun suyu boşaltılır ve kurutulur. Genç balıklar koruyucu amaçla ilaçlanırlar. Ayrıca larval dönemlerin ortadan kaldırılması için de ; Kalsiyum klorür (% 0.85), Bakır sülfat (% 0.2), Magnezyum sülfat (% 1.7), Organik fosforlu bileşiklerden Dipterex 0.5 ppm, Malathion 0.25 ppm oranında haftada bir defa olmak üzere 5 hafta kullanılır. Alt sınıf: Malacostraca Bu alt sınıfta bulunan crustacealar daha büyük yapılıdırlar. Vücut segmentleri sabit sayıdadır. Genellikle thoraxda 8 ve abdomende 7 segment bulunur. Bu alt sınıfta istakoz, kerevides, yengeç ve karidesler bulunur. Serbest olarak yaşayan bu kabuklular insanlar tarafından gıda maddesi olarak tüketilirler. Bunların bazıları bazı helmintlere arakonakçılık yapması bakımından önemlidir.

http://www.biyologlar.com/crustacea-sinifi-kabuklular

İlginç Yaşamlar.... Deniz Canlıları

Suların vazgeçilmez canlıları. Kimi zaman soframızı, kimi zaman da evimizdeki akvaryumu dolduran balıklar. Torpido ya da iğ şeklindeki vücutları var. Bu vücut yapısı sayesinde su içerisinde daha az enerji harcayarak hareket edebiliyorlar. Bazen renk renk, göz alıcı güzelliğe sahip balıklarla karşılaşırız. Vahşi yaşamda bu balıklar, 0-200 m derinliklerde yaşar ve littoral balık olarak isimlendirilir. Littoral balıklar, bulunduğu bölgedeki taş, kum, resif ya da kayaların rengine sahipler. Yani kamuflaj yetenekleri var. Balıklar için bu özellik, düşmanlarından saklanmak için bir avantaj. Bu avantajı onlara verip, renk değiştirerek saklanmalarını sağlayan renk hücreleriyse dört çeşit. Kromotofor adı verilen bu hücreler, melanofor (siyah), ksantofor (sarı), eritrofor (kırmızı) ve gümüşi renkte olan iridositler. İridositler dışındaki diğer kromotoforlar, merkezi bir kısım ve uzantılarından oluşan karmaşık bir hücresel yapıya sahip. Işık, hormon ve sinirlerin etkisiyle kromotofor içerisindeki pigment granü’lleri, bu hücrenin merkezinde toplanırsa balığın rengi açık, tüm hücreye yayılırsa renk koyu oluyor. Bu özellik ani renk değişimi olarak biliniyor. Bazen de karanlık bir ortamda yaşayan ya da uzun süre böyle bir ortamda kalmış olan bir balık, yavaş yavaş kromotofor sayısını arttırarak, vücut rengini bulunduğu ortama göre ayarlayabiliyor. Bu renk değiştirme biçimi uzun süreli olup, kalıcı. İridositler dediğimiz gümüşi renkteki kromotoforlarınsa içinde özel bir renk maddesi bulunmuyor. Bunun yerine ışığı kuvvetlice kıran, guanin kristalleri içe-riyorlar. Bu kristallerin hücre içindeki yerine göre, ışığı az ya da çok miktarda yansıtmasıyla da bir gökkuşağı rengi meydana geliyor. Açık denizlerde yaşayan balıklardaysa renk karakteristik. Sırt, mavi yeşil parıltılı olup, balığın yanlarından karnına doğru gümüşi, karın tarafı da beyaz. Sofralarımızı dolduran hamsi, sardalye, uskumruda olduğu gibi… Dip balıklarından vatoz (Rajiformes), dil ve pisi (Pleuronectiformes) balıklarına bakacak olursak, sırt taraflarının koyu renkli ve karışık desenli, karın taraflarının da soluk renkli olduğunu görürüz. Karanlık çevreye uyum sağlamak için bu gibi dip balıklarında menekşe ya da siyah renk hakim. Ayrıca diplerde ve bulanık sularda yaşayan balıklarda gözler küçük. Besin aranmasında, düşmanın algılanmasında vs. gözler yerine bıyıklar ya da koklama organı gibi başka organlar görev alıyor. Bıyıklar üzerindeki reseptörler kimi zaman tat almada, kimi zaman da besin aranmasında rol oynuyor. Balıklardaki koklama organı kara hayvanlarında olduğu gibi solunum işine yaramıyor ve yutakla bağlantısı yok. Balığın gözü ile ağzı arasında bulunan burun delikleri, her iki yanında bir çift delikten oluşup burun boşluğu içinde koklama kapsülü bulunuyor. Yüzme sırasında su, ön delikten giriyor ve koklama kapsülünden geçtikten sonra arka delikten çıkıyor. Özellikle de sürü halinde gezen balıklarda bu organ, balığın kendi sürüsünden birinin ya da düşmanın kokusunu ayırt etmede kullanılıyor. Bazı balıklarda bir bireyin yaralanmış derisinden salgılanan koku maddesi, sürünün diğer üyeleri tarafından algılanarak, ortamda düşmanın var olduğunu anlamalarını sağlıyor. Balıkların birbirleriyle haberleşmesini sağlayan diğer bir yöntem de çıkardıkları sesler. Balıklarda gırtlak olmadığı için, memeli ve kuşlarda olduğu gibi ses çıkarmıyorlar. Bunun yerine sazangiller (Cyprinidae) ailesinde olduğu gibi yüzme kesesinden hava çıkarken oluşan ya da kırlangıç balığıgiller (Triglidae)ailesindeki balıklarda görülen ‘gurlama’ şeklindeki ses gibi karakteristik sesler çıkarıyorlar. Birçok balığın kendine özgü sesi var: Trachurus, Mola ve bazı Balistes türleri üst ve alt yutak dişlerini birbirine sürterek kaba bir ses çıkarıyorlar. Bazı balıklarsa süpersonik sesler çıkarıyorlar. Genellikle, süpersonik sesler çıkaran canlılar olarak yunuslar gelir aklımıza. Fakat yunuslar, denizlerde yaşayan memeli hayvanlar. Bu sevimli canlılar 2000 Hz’den az ve 100 000 Hz’den fazla olan ‘klik’ şeklindeki sesleriyle büyüklük, boyut, boşluk tayini ve aynı zamanda da doku ve objelerin yön ve yoğunluğunu algılıyorlar. Bizim duyamadığımız bu sesler, yunusun kafasının içindeki ‘melon’ adı verilen bölgeden kaynaklanıyor. Yunuslar su içerisinde hareket ederken, genellikle kafalarını yavaş biçimde bir yandan diğer bir yana döndürerek ve yukarı aşağı hareketler yaparak, çevreyi tarıyorlar. Bu tarama sırasında, çevrelerindeki nesnelerin şeklini, gönderdikleri seslerin frekansını değiştirerek ortaya çıkarırlar. Sesin geri dönüş süresi objenin yunusa olan uzaklığını belirliyor. Yunusun kafasının yan kısımları ve alt çenesi oldukça yağlı. Geri dönen ses yansımaları, bu bölge ile algılanır. Şişe burunlu yunus (Tursiops truncatus), tırtak yunus (Delphinus delphis), çizgili yunus (Stenella coeruleoalba) ve Karadeniz’de yaşayan, ama günümüzde sayıları oldukça azalmış olan mutur (Phocena phocena), yurdumuzun denizlerinde yaşayan yunus türleri. Kontrolsüz biçimde avlanma, ağlara takılmaları, besin azlığı nedeniyle sayıları oldukça azalmış bu sevimli hayvanlar hakkında ne yazık ki ülkemizde yeterli bilimsel araştırma yok. Azalan sayılarıyla halen yaşam mücadelesi veren, suların vazgeçilmez canlılarından bir diğeriyse, Mersin morinası (Huso huso). Acipenceridae ailesinden biri olan bu değerli balık, mersin balıkları içinde en büyüğü ve yurdumuzda Karadeniz’de 100-130 m derinliklerde yaşıyor. Karides, yengeç, çeşitli kabuklular ve kabuklularla beslenen bu muhteşem hayvanın boyunun 4 m ve ağırlığının 1300 kg’a ulaştığı ne yazık ki efsanelerde kaldı. Günümüzde Mersin morinasının boyu 2 m’yi bile bulmuyor. Havyarı ve lezzetli eti yüzünden aşırı avlanıyor. Yumurtlamak için tatlı sulara girmek istediğinde önüne kurulan setler yüzünden nehre giremeyen bu değerli üyemizi, gün geçtikçe kaybediyoruz. Normal olarak denizlerde yaşayıp da yumurtlamak için tatlı sulara göç eden balıklara anadrom balıklar deniyor. Mersin morinası gibi alabalıklar da (Salmonidae ailesi) anadrom balıklar grubuna giriyor. Salmonidae ailesini diğer balıklardan ayıran en önemli özellikleri sırtlarında bulunan yağ (adipoz) yüzgeci. Etleri çok lezzetli olan bu balıklar, küçük omurgasız ve balıklarla besleniyor. Ülkemizde temiz dağ sularında ve Karadeniz’de yaşıyorlar. Salmonidae ailesinin en ilginç yaşam öyküsüne sahip olan üyesi, Pasifik som balığı (Oncorhynchus sp.). 2 Aralık 1964′de, Prairie Creek balık çiftliğinde yaşanan bir olayla araştırılmaya başlandı. Yavru balıkların bulunduğu havuzda, büyük bir som balığı görüldü. Balık, iki yıl önce okyanusa bu çiftlikten bırakılmıştı. Çünkü, bu balık çiftliğinin metal klipsini taşıyordu. Balık çiftliğinin tahliye kanallarına bakıldığında 70 kadar daha som balığının havuza girmek için beklediği görüldü. Yapılan uzun süreli araştırmalar sonucu ülkemizde yaşamayan bu göçmen balığın yaşam yolculuğu belirlendi. Bir som balığının yaşamı, ekim-ocak aylarında annelerinin sığ bir akarsuda, çakıl ve kumlar arasına yaptığı yuvaya, yumurtalarını bırakmasıyla başlıyor. Suyun sıcaklığına göre gelişimini tamamlayan yumurtalar 3-5 ay sonra açılıyor. Yavrular iki ay kadar çakıllar arasında besin keseleriyle besleniyor, daha sonra aktif olarak beslenmeye başlıyor. Parlak pembe renkli ve üzeri koyu lekeli, gene som balığı yavrusuna ‘parr’ deniyor. Parr’lar gelişerek ertesi ilk baharda 25-35 gr ağırlığa ulaşıyorlar. Bu büyüklükteki bir som balığında, tuzlu suya geçiş için fizyolojik değişimler meydana geliyor ve balığın davranışları değişiyor. Renk değiştirerek gümüşi bir renk alıyorlar. Göç etmeye hazır duruma gelmiş som balığı yavrularına ise ’smolt’ adı veriliyor. 1-5 yıl boyunca okyanusta, çok uzun mesafelere göç ediyorlar. Kanada ve Alaska’da bulunan bu balıklar, Amerika, Alaska ve Japonya kıyılarında dolaştıktan sonra üremek için yumurtadan çıktıkları akarsuya geri dönüyorlar. Ne bir şelale, ne de kuvvetli bir akıntı yıldırabilir onları. Çok uzun mesafelerde gerçekleştirdikleri bu üreme göçü sırasında hiçbir şey yemiyorlar. Doğduğu akarsulara geldiğinde sığ kesimlere yumurtalarını bırakıyor ve kısa bir süre sonra da ölüyorlar. Bu şaşırtıcı yolculuğun nasıl yapıldığına ait araştırmalar, som balığının, dünyanın manyetik alanını algılayan doğal bir pusulasının bulunduğunu söylüyor. Kendi akarsularını nasıl bulduklarına gelince; dünyadaki bütün akarsuların kendine özgü bir kimyasal bileşimi var. Som balıkları da hassas koku alma sistemleriyle, yumurtadan çıktıkları akarsuların kokusunu algılayarak yolculuklarını tamamlarlar. Balıklarda göç, yalnızca denizlerden nehirlere olmaz. Normalde tatlı sularda yaşadığı halde, yumurtlamak üzere denizlere göç eden balıklar da var. Bunlar katadrom balıklar olarak biliniyor. Yılan balıkları (Anguilla anguilla) bu gruba giriyor. Ülkemizin denizlere dökülen akarsularında ve özellikle de Akdeniz bölgesinde yaşıyorlar. Okyanuslarda dünyaya gelen yılan balığı larvasına ‘Lepto-sephalus’ adı veriliyor. Leptosephalus, şeffaf ve yassı vücutlu olup, ilk günlerde iğne gibi sivri dişleriyle planktonlarla besleniyor ve hızlı bir şekilde büyüyor. Bu sırada yavaş yavaş deniz yüzeyine doğru yaklaşıyorlar. Larvaların başkalaşımı üç yılda tamamlanıyor. Eşeysel olgunluğa 6-7 yıldan sonra erişiyorlar. Erkekleri nehir ağzında kalıyor, dişilerse nehirlere doğru göç etmeye başlıyor. Tatlı suda kaldıkları sürece sırt yeşilimsi- kahve karın ve yan tarafları sarı. Bu nedenle ’sarı yılan balığı’ olarak adlandırılırlar. Tatlı sularda 15-18 yıla kadar devamlı olarak kalabilirler. Kışın soğuğundan rahatsız olan bu balıklar; göl ve nehirlerde, suyun derin kısımlarında ve çamurlar arasında kış uykusuna yatarlar. Sonbahar sonlarına doğru çok kuvvetli bir iç güdüyle tatlı sulardan denizlere göç ederler. Bu sırada renk değiştirirler. Sırt siyah, yan tarafları gümüş parlaklığındadır. Bunlara ‘gümüş yılan balığı’ da deniyor. Gümüş yılan balıklarının etleri oldukça yağlı. Baş, genç yaştakilere göre daha kısa, çeneler küçük ve dudakları ince. Denizle bağlantısı kesilmiş sularda yaşayan yılan balıklarının bile denize ulaşmak için ıslak çayırlar üzerinden geçtikleri biliniyor. Erkek ve yumurtalarını bırakan dişi yılan balıkları yumurtalarını bıraktığı yerde ölüyor. Yılan balıkları içinde bir tür var ki, bu kuvvetli göç etme içgüdüsünün yanında elektrik üretmesiyle de kendini özel kılmış. Elektrophorus electricus (elektrikli yılan balığı) 250 cm’lik boyu, 15-20 kg ağırlığıyla Güney Amerika’nın nehir ve bataklıklarında yaşıyor. Kuyruğunun her iki yanında bulunan 6000-8000 bölmeli elektrik organı, 550 volt ve 2 amper şiddetinde elektrik üretiyor. Çizgili kasların değişikliğe uğramasıyla oluşan elektrik organı, etrafı ara doku ile çevrili, disk şeklindeki elektroplakların arka arkaya dizilmesiyle oluşuyor. Bu plakların bir yüzünde sinirler, bir yüzünde kan damarları yerleşmiş. Plaklar, aynı yüzleri, aynı yöne gelecek şekilde dizilmiş. Elektrik akımının şiddeti, elektrik plaklarının sayısına ve balığın büyüklüğüne bağlı olarak değişiyor. Elektrikli yılan balığı, iki metrelik bir uzaklıktan 1 kilovvatt kuvvetinde bir etki gösterecek kadar tehlikeli. Elektrik organını genellikle korunma amacıyla kullanıyor. Elektrik akımına giren büyük memelileri ve hatta insanları bile rahatlıkla çarpıp, bayıltıyor ve şiddetli ağrılara neden oluyor.

http://www.biyologlar.com/ilginc-yasamlar-deniz-canlilari

Deniz alabalığı (Salmo trutta trutta)

Deniz alabalığı (Salmo trutta trutta)

Deniz alabalığı (Salmo trutta trutta), alabalıkgiller (Salmonidae) familyasından olup alabalıkların atası olarak görülür. Çoğu diğer alabalıklar gibi tatlısuda değil tuzlu suda yaşar. Ortalama 60 cm, ama iyi şartlar altında 130 cm ve 20 kilodan fazlasına kadar varabilirler. Mekik şeklinde olan vücutlarının yanları gümüşümsü gri, sırtları gri-yeşil ve karın kısımları beyazdır. Küçük balıklardan ve karideslerle beslenirler. Avrupa'nın denizlerinden kuzey denizine ve Biskaya'ya kadar yayılmışlardır. Deniz alabalığı aynı somon balığı gibi göçebe bir balıktır, ve bu balık ile birçok diğer özellikleri de ortaktır. Denizlerde büyük mesafeler kat eder ve yumurtlamak için küçük ırmakların bile dar üst kesimlerine kadar çıkar. Üreme zamanları kışın gerçekleşir. Akarsuların çakıllı kısımlarında kazdıkları kuyucuklara yumurtlarlar. Sonra bu yumurtalardan çıkan yavrular 1 ila 5 yıl bu tatlısuda yaşarlar ve sonra denize göç ederler. Göç ederken bir günde 40 kilometreye kadar geride bırakabilirler.   Alem:     Animalia (Hayvanlar)Şube:     Chordata (Kordalılar)Sınıf:     ActinopterygiiTakım:     Salmoniformes (Alabalıksılar)Familya:Salmonidae (Alabalıkgiller)Cins:     SalmoTür:     S. truttaAlt tür:S. t. trutta

http://www.biyologlar.com/deniz-alabaligi-salmo-trutta-trutta

 Bu resimdeki canlıyı tanıya bildinizmi

Bu resimdeki canlıyı tanıya bildinizmi

Odontodactylus scyllarus - Hint-Pasifik tavuskuşu mantis karidesidir. Fotoğrafta altında bulunan kırmızı kısım, dikkatle korunan döllenmiş yumurta kütlesidir. Dişiler yavrular yumurtadan çıkana kadar etrafında dolaşmaya devam edecek, ön uzantıları ile onları sürekli olarak muhafaza edecek ve temizleyecektir. Bu dönem boyunca yemek yiyemiyorlar, çünkü ön uzantıları genelde avlanmak için kullanılıyor. Görsel güzelliğinin yanı sıra, tavuskuşu mantis karidesleri bu ön uzantıların gücü ile ünlüdür. Mantis karidesleri salyangozları, yumuşakçaları ve diğer kabuklu hayvanları yakalamak için attıkları yumruklar çok güçlüdür. Bir mantis karidesi, yumruğunu atmak için uzuvlarını yerçekiminin 10.000 katı hızla ivmelendirebilir. Bu yumruğun hızı nedeniyle oluşan basınç dalgası o kadar güçlüdür ki, anlık olarak yumruğun etrafındaki suyu buharlaştırabilir. Bu yumruklar, dünyadaki en güçlü yumruklar olarak bilinir!   Fotoğraf: Filippo Borghi. Çeviren: Dr. Yalçın DEDEOĞLU

http://www.biyologlar.com/bu-resimdeki-canliyi-taniya-bildinizmi

Ortak atadan türeyiş

Geçiş fosilleri ve geçişi kanıtlayan diğer göstergeler Ortak atadan türeme düşüncesi ilk olarak sıralı bir biçimde tabakalaşmış kayalarda bulunana fosillerdeki sistematik değişikliklerin gözlenmesiyle oluştu. Bugün bu gibi tabakaların bazılarının birkaç kilometre kalınlıkta olabildiği ve 2.7 milyar yıllık bir birikime karşılık geldiğini biliyoruz. Zaman içinde geriye doğru gidildikçe fosiller günümüzdeki türlere daha az benziyor ve pek çok farklı tür tek bir türe indirgenebiliyordu. Ancak Darwin zamanında paleontoloji bilimi daha emekleme dönemindeydi ve tabakalaşmış kayaların çoğu ya hiç çalışılmamış, ya da yetersiz çalışılmıştı. Bu yüzden geçiş türü fosilleri eksikti ve bu Darwin’in endişelendiriyordu. Yaratılışçılar daha o zamandan beri evrim teorisindeki bu noktayı yakalayıp , teoriyi buradan vurmaya çalıştılar. Gerçekte bugün fosil belgelerinde aradaki boşlukların çoğu doldurulmuşsa da yine de boşluklar vardır. Gözlenen yaşam biçimlerinin ortaya çıkış sırası ve prokaryotlar (çekirdeksiz hücreler) dışında hepsinin aynı tür hücrelerden oluşmuş olması, bütün ana yaşam biçimi sınıflarının ilk ökaryotik (çekirdekli hücreler) hücreler düzeyinde aynı atayı paylaştıklarını göstermektedir. Ayrıca balıklarla amfibiler, amfibilerle sürüngenler, sürüngenlerle memeliler arasındaki geçişleri belgeleyen çok sayıda fosil bulunmuştur. Yaratılışçıların bahsettiği gibi bir tufan olayına ait hiçbir ize rastlanmamıştır. Ancak zaman zaman olağandışı çok yağışın olduğu dönemlerin olduğuna kuşku yoktur ama bütün dünya üzerinde dağları bile aşan bir su baskınını destekleyen tek bir bilimsel kanıt yoktur. Tüm canlıların geçmişi hakkında her basamaktaki canlının fosiline rastlamak mümkün değildir. Hiçbir fosile rastlanmayabilirdi de. Fosil elde etmenin ne kadar zor, şans eseri olabilecek bir olay olduğunu anlamak için fosillerle ilgili kısma bakınız.Ama eldeki fosillerden edinilen kanıtlar, bilmeceyi birleştirmek için önemli ipuçları sağlamaktadırlar. Şimdi bu geçiş fosillerine biraz değinelim, hani şu yaratılışçıların hiç bulamadığımız söyledikleri geçiş fosilleri. Eustropnepteron isimli balık, Labyrşndthodont adlı bir amfibiana evrimleşmiştir. Amfiabianlardan sürüngenlere evrimleşen canlılar bugün bile mevcuttur. Seymouria bu geçişe bir örnek teşkil eder. Ve her iki sınıfa ait özellikler taşır. Sürüngenlerden kuşlara evrimleşen canlılardan birkaçı ise Archaeptoryx, confuciusornis, Sinornis, Eoaluavis v.b. dir. Bunlardan Archaeptoryx , dincilerin en çok saldırıda bulunduğu bir türdür ve ona kesinlikle bir kuş gözüyle bakarlar. Ancak onun yarı kuş-yarı sürüngen olduğu kesinlikle ispatlanmıştır. Sadece bu canlı üzerine yazılmış bir makale Bilim Ve Ütopya dergisinin Kasım 98 sayısında mevcuttur. Sürüngenlerden memelilere geçişin bir örneği olan Monotreme’lerden Echidna yumurta ile üreyen bir memelidir, ancak memelilerden bir farkı REM uykusunun olmamasıdır. Yine aynı şekilde Cynognatus hem memeli hem sürüngen özelliklerini taşıyan kurt büyüklüğünde bir canlıdır. Burada yazmaya gerek duymadığım daha bir sürü geçiş fosili bulunmaktadır. Embriyolojik kanıtlar Embriyoloji, ortak ata düşüncesine başka bir koldan destek sağlayan bir bilim dalıdır. Bir midye türü ile karides, istakoz gibi deniz kabuklularınnın pek bir benzer tarafı yoktur. Ancak embriyolojik açıdan incelendiğinde bu midyenin gelişimi sırasında bir larva döneminden geçtiği ve bu sırada bu deniz kabuklularından hiçbir farkı olmadığı anlaşılmıştır. Bu da ikinsin ortak atadan geldiğini gösterir. Benzer biçime insan ve diğer memeli embriyonları gelişmeleri sırasında hiçbir yanılgıya olanak bırakmayacak şekilde balıklarda bulunan solungaç oyukları taşıyan ancak bunların kullanılmadığı bir durumdan geçerler ki bu da insanların ve diğer memelilerin solungaçlar yardımıyla solunum yapan uzak ataları paylaştıklarını gösterir. Hatta Bilim Ve Ütopya dergisinin Ekim 98 sayısının 27. sayfasına bakacak olursanız çeşitli hayvanların erken embriyon dönemlerinde birbirlerine ne kadar benzediklerini görürüsünüz. Bu da hepsinin ortak geçmişi yani ortak atayı paylaştıklarını gösterir. Moleküler biyoloji kanıtları Her şeyden önce kalıtımın kimyasal temelinin evrenselliği; yani tüm canlılar için aynı kalıtsal mekanizmanın geçerli olması ortak atadan türeyişin karşı konulmaz derece güçlü bir kanıtıdır. Bakteriler, bitikler, ve insanlar da dahil olmak üzere bütün hayvanlarda kalıtsal bilgi DNA içinde kodlanmıştır. Hücre çekirdeğinde bulunana DNA’da depolanmış bilgiyle protein sentezlenmesini mümkün kılan genetik şifre bütün canlılarda küçük farklılıklar dışında aynıdır. Ayrıca bugün bütün canlılarda protein sentezinde 20 çeşit aa’nın kullanıldığı bilinmektedir. Ancak moleküler biyolojide elde edilen kanıtlar daha da ileri gider. DNA’yı oluşturan nükleotidlerin ve proteinlerdeki aa’ların dizilişindeki benzerlik derecesi artık sayısallaştırılabiliyor. Mesela insanla şempanzenin bir protein çeşidini oluşturan aa’ların 104’ü de aynıdır. Başka bir tür maymunda ise 1 aa fark eder. Atta bu fark 11, bir balık türünde ise 23tür. Görüldüğü gibi aa farkı arttıkça canlının bize benzerliği de azalmaktadır.

http://www.biyologlar.com/ortak-atadan-tureyis

Kabuklular ( Crustacea) Istakozlar, Yengeçler

Kabukluların iki çift duyargaları, birleşik gözleri, çoğunlukla göğüsle kaynaşmış bir başları vardır. Bu sınıfa ıstakoz, yengeç gibi solungaçlarla donanan eklem bacaklılar dahildir. Kabuklular temel özellikleriyle öbür hayvanlardan ayrılır. Bedenleri bir baş ile iki ayrı bölgede toplanan (göğüs ve karın) bir dizi bölüt (yada halka) içeren bir gövdeden oluşur. Bölütlerin sayısı gelişmiş kabuklularda 19 yada 20’dir. Çoğunlukla bir yada birçok göğüs bölütüyle kaynaşarak baş, bir başlıgöğüs oluşturur. Göğüs bölütlerinin her birinde, pereiopot adı verilen ve çiğneyici organlara, kıskaçlara yada ayaklara(yürümeye yada yüzmeye yarar) dönüşebilen bir çift eklenti vardır. Malacostraca cinsinin her kalın bölütünde pleopot denen bir çift eklenti bulunursa da öbür öbeklerin üyelerinde genelliklebu eklentilere rastlanmaz. (Crustacea) sınıfı, ıstakozlardan, yengeçlerden, karideslerden, su pirelerinden, ördek midyelerinden ve iyi bilinen daha başka yaratıklardan meydana gelir. Bunların çoğu solungaçlar aracıyle solunan su hayvanlarıdır. Minik kabuklulardan milyonlarcası engin okyanusların yüzeyinde barınarak denizlerin daha iri hayvanlarının başlıca besinini vücuda getirir. Başkaları oldukça derin tuzlu sularda yaşarlar. Birçoklarına kıyılarda ve kumsallarda rastlanır. Birkaçı tatlı suların yerlisidir. Bazı türler suya batmış killi ortamlarda yaşarlar. Dalla başkaları yüksek dağların dik yamaçlarına tırmanır. Bu değişik türlerin irilikleri su piresinin çeyrek milimetrelik uzunluğu ile Japon yengecinîn 300 santimlik eni arasında oynar, Kabuklulartn başlıca özelliği, en azından beş çift bacakla iki çift duyargadır. Kafa ile göğüs, «sefaloto-raks» denilen ve hayvanı koruyucu bir zırhla saran tek bir parça halinde birleşmiştir. Bu hayvanlara «kabuklular» denilmesine, bir azot bileşiği olan bu kın veya kabuk sebep olmuştur. Kabuklular genellikle solungaçlarla solunurlar. Bu solungaçlar daima ayaklarının üzerinde veya yakınlarındadır. Kabukluların en önemli grubu «dekapodlar» dır. «On ayaklı» anlamına gelen bu gruba giren kabuklular, yanlışlıkla bazen »kuyruk» da denilen karınlarının durumuna göre üç kola ayrılırlar. Birinci kol üyelerinin karnı büyük, simetrik ve ser falotoraks kadar sert bir kabukla örtülür. Yüzmeye yarayan bir kuyruk yelpazesiyle son bulur. Karidesler, İstakozlar, kerevidesler ve lan-gustlar böyledir. İkinci koldaki kabukluların karınları da büyüktür, fakat simetrisizdir, üstelik yumuşak olduğundan, hayvan onu, boş bir yumuşakça kabuğunun içine gizlemek zorununu duyar. «Pagur» lar böyledir. Yengeçlerin karnı ise yarla yok arasıdır, üstelik sefalotoraks m altına katlanmış olduğundan üstten gözükmez bile.

http://www.biyologlar.com/kabuklular-crustacea-istakozlar-yengecler

Hayvanlarda Görülen Solunum Sistemleri

Tek hücreli canlılar ile vücut duvarı ince olan süngerler ve sölentereler gibi çok hücreli hayvanlar bu tür gaz değişimlerini özel bir yapıya ihtiyaç duymadan kolaylıkla yapabilirler. Ancak kompleks yapılı olanlar gaz değişimini özel doku ve organlardan oluşan bir sistem aracılığıyla gerçekleştirirler. Çünkü hayvanlarda evrimsel gelişim sonucu her hücrenin dışçevre ile doğrudan doğruya gaz alışverişi yapma olanağı ortadan kalkmıştır. Hayvanlar aleminde solunumda gaz değişimini gerçekleştiren organlar çeşitlilikgöstermesine karşılık, bunları dört ana grupta toplamak mümkündür. 1. Deri 2. Trake 3. Solungaçlar 4. Akciğerler Deri Solunumu ; En ilkel solunum biçimi olan deri solunumunun görüldüğü bazı basit yapılı hayvansal organizmalarda deriden difüzyonla giren oksijen yine difüzyonla diğer doku ve hücrelere iletilir. Basit çok hücreli hayvanlardan yassı solucanlar (Plathelminthes), bazı yuvarlak kurtlar (Nemathelminthes), karasal halkalı solucanlar (Annelida), mikroskobik yapıdaki omurgasız hayvanlar deri solunumunun görüldüğü hayvan gruplarıdır. Omurgalılardan kurbağalarda deri solunum önemli yer tutar. Ayrıca ağzın içini ve yutağıkaplayan zarlar da solunum organıgibi görev yapar.Deri solunum yapan organizmaların derilerinin hep nemli olması gerektiğinedikkat ettiniz mi?Gerçekten de deri solunumu yapan toprak solucanı, salyangozlar ve kurbağa gibihayvanlarda deri nemli tutulmak zorundadır. Bu nem derideki mukus bezleri ile sağlanmaktadır. Trake Solunumu ; Gelişmiş canlılarda vücut hacmının artması nedeniyle vucudun iç kısımlarında bulunan hücrelerin gaz değişimi ancak özel solunum sistemleriyle gerçekleşebilmektedir. Basit solunum sistemlerinden trakeler bunlardan biridir. Trakeler böceklere özgü, basit borulardan ibaret bir solunum sistemidir. Atmosferik hava, özel borular aracılığıile vücudun iç hücrelerine iletilerek gaz alışverişini sağlarlar . Vücudun abdomen kısmında her segmentte bulunan ve stigma adı verilen çift açıklıklardan hava alınıp verilir. Buradan giren hava, içorganlara kadar uzanan dallı hava borularınyla (trakeler) taşınır. Trakeler içi bir sıvı ile dolu ve trakeol adıverilen çok ince borucuklarla sonlanırlar. Oksijen ve karbondioksit değişimi bu sıvı ile dokular arasında gerçekleşir. Böcek hava alışverişini sağlayabilmek için vücudunu kasıp gevşetir. Vücut genişletildiğinde hava trakelere girer, kasılınca dışarı atılır.Özellikle arıların dinlenme sırasında sürekli karın kısımlarını hareket ettirdiklerini farketmişsinizdir. Bu sistemin diğer sistemlerden önemli bir farkı solunum havasının dokulara kadar yine bu sistemle götürülmesidir. Solungaç Solunumu ; Suda yaşayan hayvanlarda görülen genel solunum sistemi solungaçlardır. Omurgalılardan balıklar, kurbağaların larvaları, omurgasızlardan yumuşakçalar, sudayaşayan bazı solucanlar, eklembacaklılardan karidesler, yengeçler bu yapılara sahiptirler. Bunlar kendiliğinden hareket eden ya da su akımları ile hareket edebilen bir sistem şeklindedir. Omurgalı hayvanlarda solungaçlar akciğerli balıklarda, semenderlerde ve kurbağa larvalarında olduğu gibi vücut dışında olabileceği gibi, biroda içinde kapalı da olabilirler.Solungaçlar ince epitel çıkıntılarından oluşurlar. Solungaçların üzeri dolaşım sisteminin kılcal damarları ile örülmüştür. Gaz değişimi, solungaç epiteli ve kılcal damarların tek tabakalı yassı epitelleri arasında difüzyonla gerçekleşir. Suda erimiş oksijen solungaç epitelinden kılcal damarlara geçer. Karbondioksit ise ters yönde hareket eder. Solungacı olan her hayvan, bu organın üzerinde su akımını sağlayan bazı yapılarasahiptir. Örneğin balıklar ağzını açarak bir miktar su alır, sonra ağzını kapatarak ve ağız boşluğunu daraltarak suyun solungaçlar üzerinden geçmesini sağlarlar. Kurbağalar gibi bazı hayvan gruplarında birden fazla solunum görevi yapan organ bulunduğunu biliyormusunuz? Bazı hayvan grupları bu organların bir kaçı ile solunum yapabildikleri gibi, hayatdönemlerinin farklı dönemlerinde değişik solunum organları ile solunum yapabilmektedirler. Örneğin kurbağalar ergin devrelerinde deri ve akciğerlerle solunum yaparlarken, larva devrelerinde solungaç solunumu yaparlar. Başkalaşım sırasında kaybolan solungaçların yerini akciğerler almaktadır. Akciğer Solunumu ; Karasal omurgalıların ve sucul memelilerin solunum organı olan bu sistem temeliki kısımdan meydana gelir. Bunlardan birincisi havayı götüren yollar olan solukborusu (trake), bronş ve bronşcuklardır. İkincisi ise gaz değişiminin gerçekleştiği esnek zarımsı keseler olan alveollerden oluşan akciğerlerdir. Solunum sistemi gerçekte ağız ve burun boşluğu ile başlar. Burun boşluğu kıvrımlı yapısı ile burada ilerleyen solunum havasını hem ısıtır hem de nemlendirir. Ayrıca burun içindeki kıllar solunum havasındaki küçük zerrecikleri tutar. Alınan hava buradan gırtlak kısmına geçer. Gırtlak besin yutulmasının dışında sürekli açıktır.Yutkunma sırasında gırtlak yukarı doğru kalkar ve küçük dil geriye doğru yatarak soluk borusunu kapatır. Gırtlakta başka hangi yapı bulunur? Düşününüz.Ses tellerinin burada bulunduğunu hepiniz biliyorsunuz. Gırtlaktan sonra solunum sisteminde soluk borusu (trake) başlar. Soluk borusunun içi kirpikli epitel hücreleri ile döşelidir. Bu sillerle birlikte mukus salgısı hava içindeki yabancımaddeleritutarak akciğerlere ulaşmasını önler.Çok tozlu hava solunduğunda balgam oluşumunun arttığınıhepimiz biliyoruz.Soluk borusu kapanmaması için at nalı şeklinde olan kıkırdak halkalarla çevrilidir.Soluk borusu akciğerlere girmeden önce iki kola ayrılarak bronşları meydana getirir. Bronşlar da akciğerlere girince bronşçuklara ayrılırlar. Bronşcuklarda kıkır-dak halkalar bulunmaz. Akciğerlere sahip en ilkel omurgalılar kurbağalardır. Göğüs kemiğinin iki yanındaküçük birer köpük yumağı gibi görünürler. Sürüngenlerde de çift olmasına karşılık,genellikle uzun vücutlu formlarda (yılanlar) bir tanesi körelmiş durumdadır.Akciğerler özellikle kuşlarda değişik özellik gösterirler. Kuşlar omurgalılar içindeen etkin solunum yapan gruptur. Metabolizmalarının yüksek oluşu nedeniyle oksijene gereksinimleri oldukça fazladır. Bunu sağlayan akciğerlerde, memelilerde olduğu gibi alveoller yerine akciğerle bağlantılıhava keseleri görev yaparlar. Bu kese lerin yan çıkıntıları kemiklerin, kasların hatta derinin içine kadar girer. Çift yapılıkarın ve arka göğüs hava keseleri akciğerlerin havalandırılması için bir çeşit körükgibi görev yaparlar ve sistem içindeki hava borularının akışı ile kılcal damarlarınakış yönü birbirine terstir. Böylece hem soluk alışta hemde verirken gaz değişimigerçekleşebildiğinden, oksijenin az olduğu yükseklerde dahi rahatça oksijen gereksinimini karşılayabilirler. Memelilerin solunum sistemleri kuşlarınkinin aksine sürüngenler ve kurbağalardaki gibi kör kese ilkesine göre görev yapar. Memelilerin akciğerleri arkada diyaframla kapatılan göğüs boşluğu içinde yer alırlar. Bronşiollerin uçları alveol adı verilen hava keseleriyle sonlanırlar. Alveollerin duvarıtek tabakalı bir epitelden yapılmıştır. Hava bu keselere kadar taşınarak bunların yüzeyini döşeyen kılcal damarlarla arasında gaz değişimi gerçekleşir .

http://www.biyologlar.com/hayvanlarda-gorulen-solunum-sistemleri

Başkalaşım Geçiren Hayvanlar

Bazı canlılar dünyaya geldiklerinde ana canlıya benzerken bazıları da benzemezler. Ana canlıya benzemeyen canlılar gelişim dönemleri boyunca başkalaşım geçirerek ana canlıya benzer hale gelirler. Kurbağaların ve böceklerin yumurtadan çıktıktan sonra yapısal değişikliğe uğrayarak ana canlıya benzer hale gelmesine başkalaşım denir. (Kurbağaların ve böceklerin yumurtadan çıktıktan ergin hayvan oluncaya kadar geçirdikleri gelişim evrelerinin hepsine birden başkalaşım denir). ***Kurbağalar ve eklem bacaklılardan böcekler, başkalaşım geçiren hayvanlardır. 1- Kurbağalar : • Larva döneminde suda solungaç solunumu, ergin dönemde karada deri ve akciğer solunumu yaparlar. • Yumurta ile çoğalırlar. • Yavru bakımı görülmez. • Dış döllenme görülür. • Gelişimleri sırasında başkalaşım geçirirler. • Yavrularını sütle beslemezler. • Kalpleri üç odacıklıdır. • Kirli kan akciğerlerde temizlenir. • Kalplerinde temiz ve kirli kataşırlar. (Vücutlarında kirli ve temiz kan dolaşır). • Nemli bölgelerde yaşarlar. • Soğukkanlı canlılardır. 2- Eklem Bacaklılar : • Vücutlarının dışında kitin denilen örtü bulunur. Sert ve dayanıklı olan bu örtü vücuda diklik ve desteklik sağlar. • Vücutlarındaki halkalar ve deri kıvrımlarının birbirine eklenmesiyle oluşan yapıya dış iskelet denir. • Yumurta ile çoğalırlar. • Böcekler grubunda olan eklembacaklılar başkalaşım geçirirler. • Yumurtadan çıkan kurtçuğa larva denir. • Larvanın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir.• Pupa dönemi karasinekte kabuk içinde, ipek böceğinde ise kendi salgıladığı ipekten yaptığı koza içinde geçirilir. a) Böcekler :Arı, karasinek, sivrisinek, bit, pire, kene, çekirge, tahta kurusu, hamam böceği ve kelebek. b) Kabuklular :Yengeç, karides. c) Örümcekler :Örümcek, akrep. d) Çok Ayaklılar :Çıyan, kırkayak. Hamam Böceği Ev Sineği Peygamber Devesi Sinek kurdu Nimfitler, Çekirgeler ve YusufcuklaMayhoş(Mayfly)a) İpek Böceğinin Gelişim Dönemleri (Başkalaşım Evreleri) : • İpek böceği salgıladığı yapışkan bir maddeyle (iplikle) yumurtalarını birbirine bağlayarak etrafa dağılmalarını önler. • Tırtıl, yumurtaların gelişebilmesi için salgıladıkları iplikle kendilerine koza örmeye başlarlar. (Tırtıl bunu 3 – 4 günde örer). • Yumurta olgunlaşınca tırtıl oluşur. • Tırtılın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir. • Pupa dönemi sonunda koza yırtılır ve kelebek oluşur.İpek böceğinin gelişimi sırasında geçirdiği başkalaşım evreleri sırayla;Yumurta → Tırtıl → Erken Pupa → Genç Pupa → Kelebek b) Kurbağanın Gelişim Dönemleri (Başkalaşım Evreleri) : • Kurbağadaki döllenmiş yumurta hücresinin gelişmesi sonucu larva oluşur. • Balığa benzeyen larvalar gelişerek iribaş olur. • Zamanla iribaş büyüdükçe önce arka bacaklar, sonra ön bacaklar çıkar ve en sonunda kuyruk kaybolur. • Bundan sonra genç yavru kurbağa oluşur. Yavru kurbağa da gelişerek ergin kurbağa haline gelir.Kurbağanın gelişimi sırasında geçirdiği başkalaşım evreleri sırayla; Yumurta → Larva → İribaş → Yavru Kurbağa → Ergin Kurbağa

http://www.biyologlar.com/baskalasim-geciren-hayvanlar

Mysidacea hakkında bilgi

Kingdom: Animalia Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca (unranked): Mysidacea Subclassis (Alt sınıf): Malacostraca Çeşitli ortamlarda yaşayan ve vücut şekilleri farklılık gösterebilen yengeç türlerini kapsar. Vücutlarındaki segment sayısı sabittir ve tüm segmentlerde üye mevcuttur. Gözleri bileşik göz yapısındadır ve hareket ettirilebilen bir sapın ucunda konumlanmıştır. Damar sistemleri diğer gruplara göre daha zengindir. Eşeyler ayrıdır ve eşey açıklığının yeri, cinsiyet ayırımında önemlidir. Erkeklerin eşey açıklığı 8., dişilerinki ise 6. göğüs segmentinde konumlanmıştır. 1. Ordo (Takım): Isopoda 2. Ordo (Takım): Amphipoda 3. Ordo (Takım): Euphausiacea 4. Ordo (Takım): Leptostraca 5. Ordo (Takım): Stomatopoda 6. Ordo (Takım): Mysidacea 7. Ordo (Takım): Cumacea 8. Ordo (Takım): Bathynellacea (Genus: Bathynella) 9. Ordo (Takım): Thermosbaenacea (Genus: Monodella) 10. Ordo (Takım): Tanaidacea (Genus: Herpotanais, Apseudes) 11. Ordo (Takım): Amphionidacea (Genus: Amphionides) 12. Ordo (Takım): Peracarida (Genus: Potiicoara) 13. Ordo (Takım): Decapoda (On bacaklılar) Mysidacea Boyları 3 cm’ye kadar ulaşabilen, kerevit yada karidesleri andıran hayvanlardır. Vücutlarındaki uzantı veya ekstremiteler uzamış olmasına rağmen, çok sayıda seta taşır ve genel olarak aktif yüzme için büyük ölçüde değişikliğe uğramışlardır. Üreme sadece sonbaharın soğuk periyodu, kış ve ilkbaharın başlangıcında meydana gelir. Her bir kuluçkalamada yaklaşık 40 yumurta bulunur ve bu yumurtalar dişinin ventralindeki bir kesede (marsupium) tutulurlar. Solungaçları olmayışı yüzünden mysidler karapasları sayesinde solunum yaparlar. Fazla oksijene ihtiyaç duymaları ve soğuk seven formlar olmaları sebebiyle sadece oligotrofik göllerde dağılım gösterirler. En önemli iki cins olan Mysis ve Neomysis üyeleri, bariz ve hızlı diurnal göçler yaparlar.

http://www.biyologlar.com/mysidacea-hakkinda-bilgi

Böceklerin Gövde Yapısı - insecta

Yeryüzünde yaşayan bütün hayvan­lar içinde en kalabalık grubu böcekler oluştu­rur. Bu omurgasız hayvanlar Kuzey Kutbu'n-dan Antarktika'ya, dağ doruklarından çölle­re, ormanlardan akarsu ve göllere kadar her yere dağılmıştır. Buna karşılık içlerinden pek azının deniz yaşamına uyum sağlamayı başa­rabilmiş olması şaşırtıcıdır. Bilinen böcek türlerinin sayısı 1 milyonu bulur; bu sayı dünyadaki bütün öbür hayvan türlerinin en azından üç katıdır. Bu canlıların üstelik hızla ürediği düşünülürse, toplam bi­rey sayısı olağanüstü boyutlara ulaşır. Hatta bazı araştırmacılar, böceklerin öbür hayvan­lardan çok daha küçük oldukları halde yeryü­zündeki toplam ağırlıklarının bütün öbür hay­vanları geride bıraktığını öne sürerler. Ama denizlerdeki balıklarla birlikte bütün hayvan­lar hesaba katıldığında herhalde bu sav doğru olamaz. İnsanlar genellikle örümcek, akrep, tespih-böceği, kırkayak gibi bütün eklembacaklı hayvanlara böcek derler. Oysa böcekler ko­nusunda uzmanlaşmış bir doğa bilimci (ento-molog) için böcek sözcüğünün anlamı daha dar ve belirlidir. Bu uzmanların yaptığı sınıf­landırmada örümcek ve akrepler ayrı, böcek­ler ayrı bir sınıftır. Tespihböceği de gerçek böceklerle değil ıstakoz, karides, yengeç gibi kabuklu deniz hayvanlarıyla aynı sınıftandır. Kırkayaklar da öbürlerinden ayrı bir sınıf oluşturur. Kısacası böcekler ile bütün bu hayvanların tek ortak noktası hepsinin eklem­bacaklı olmasıdır. Kelebek, güve, karınca, sinek, çekirge, arı ya da bit gibi değişik gruplar oluştursalar da, bütün böceklerin bazı ortak özellikleri vardır. Bunlardan en önemlisi de bacak sayısının hiçbir zaman altıyı geçmemesidir. Bu özellik böcekleri bütün öbür eklembacaklılardan ayı­ran temel farklardan biridir. Gerçekten de erişkin bir böceğin dört bacağı olabilir; hatta bazılarının hiç bacağı olmayabilir. Ama larva evresindeki geçici bacakları, örneğin kelebek tırtıllarının sonradan kaybolan ek bacaklarını saymazsak, erişkin bir böceğin en çok altı (üç çift) bacağı olabilir. Oysa eklembacaklıların öbür sınıflarında bacak sayısı en az sekizdir. Böceğin Gövdesi Gelişmesini tamamlamış bir böceğin gövdesi baş, göğüs ve karın olmak üzere üç bölümdenoluşur. Bacaklar göğüs bölümünden çıkar; kalp, mide gibi iç organlar ise karın bölümün­dedir. Arı ya da kelebekte bu üç bölüm birbirinden kolayca ayırt edilebilir. Ama bö­ceklerin çoğunda göğüs ile karın tek bir parça gibi görünür ve gövdenin altını çevirip bak­madıkça bu iki bölüm arasındaki sınırı belirle­mek güçtür. Böceğin başının yapısı oldukça karmaşıktır; bu yüzden başın önemli bölümlerini inceleye­bilmek için bir büyüteçle bakmak gerekir. İri bir çekirgede ya da sinekte anten gibi uzanan bir çift duyargayı ve her biri çok sayıda küçük gözden oluşmuş iri bileşik gözleri görebilirsi­niz. Petekgöz denen bu bileşik gözlerden başka böceklerin üç basit ya da yalın gözü daha vardır. Hafifçe parıldayan bu küçük gözler birbirinden uzakta yer alır. Hayvan petekgözlerinin her peteğiyle, baktığı alanın küçük bir bölümünü görür ve bu görüntülerin birleşmesiyle mozaik gibi bir görüntü oluşur. Bu görüntü insandaki gibi ters değil düzdür. Üstelik böcekler renkleri, hatta insan gözü­nün algılayamadığı morötesi (ültraviyole) ışınları da algılayabilirler. Gözlerin altında çene ve dudaklarla birlikte ağız parçaları yer alır. Böceklerin alt ve üstçeneleri bizimki gibi aşağı-yukarı değil, iki yana doğru hareket eder. Ama bütün böcek­lerin çene ve ağız yapısı yiyeceklerini çiğne­meye değil, çoğununki emmeye uyarlanmış­tır. Örneğin ağustosböcekleri bitki özsularını, sivrisinekler ise insan ve hayvanların kanını emerek beslenir. Hatta bazı böcekler larva evresinden sonra hiçbir şey yemeden yaşadık­ları için, bunların erişkinlerinde ağız bile yoktur. Örneğin karıncaaslanı larva evresin-deyken bol bol beslenir, ama gelişmesini tamamladıktan sonra bilindiği kadarıyla hiç­bir şey yemez. Erişkin bir böceğin hareketlerini denetle­yen bütün organlar göğsünde toplanmıştır. Göğüs bölümü birbirine eklemlenmiş üç bölütten oluşur; ama bütün böceklerde bu bö-lütlü yapıyı görmek pek kolay değildir. Göğüs bölütlerinin her birinde bir çift bacak bulu­nur. Kanatlar ise hiçbir zaman ön bölüte değil, mutlaka orta ve arka bölütlere bağlan­mıştır. Göğsün içinde bacakları ve kanatlan hareket ettiren güçlü kaslar geniş bir yer kaplar. Böceklerde omurgalılarınki gibi bir iç iskelet olmadığı için, bu kaslar gövdeyi örten dış kabuğun iç yüzeyine bağlanır. Kütikül adı verilen bu gövde örtüsü kitin denen sert bir maddeden yapılmıştır ve hem iç organlan korur, hem de gövdeye biçimini veren bir dış iskelet ödevi görür. Böceğin gövdesinin içinde bir uçtan öbür uca uzanan iki sinir kordonu hayvanın bütün hareketlerini denetler ve baş bölümünde bir­leşerek küçük bir beyin oluşturur. Kuşkusuz böceklerin de dokunma, görme, işitme, koku ve tat alma duyuları vardır; ama daha gelişmiş canlılar gibi ağrı duyup duymadıkları yanıt­lanması güç bir sorudur. Böceğin kalbi sırtında, bütün karın bölgesi boyunca uzanan bir boru biçimindedir. Kanı arkadan öne doğru pompalayan bu borunun üzerinde kanın geri dönmesini engelleyen kapakçıklar bulunur. Aynı boru göğüs ve baş bölümünde de devam eder; ama burada kan pompalanmadan aktığı için adı artık kalp değil aorttur. Böceklerde, kalp ve aorttan oluşan bu uzun boru ya da sırt damarı dışında başka hiç damar bulunmadığı için açık kan dolaşımı görülür. Renksiz bir sıvı olan kan, sırt damarının açık ucundan akarak bütün iç organların çevresinde serbestçe dolaşır. Deri­si ince ve yumuşak olan tırtılın kalp atışlarını çıplak gözle bile görebilirsiniz. Böceklerin gövdesinin içinde dallanarak bütün dokulara ulaşan incecik soluk boruları vardır. Trake denen bu borular gövdenin yanlarında dışarıya açılan ve hayvanın soluk alıp vermesini sağlayan soluk deliklerine bağ­lanır. Hemen hemen bütün böceklerde eşeyli üreme görülür. Yani dişiler bir erkekle çiftleş-medikçe, yavruların çıkacağı döllenmiş yu­murtaları yumurtlayamaz. Yalnız balardan, yaprakbitleri ve yaprakarıları gibi bazı böcek­ler erkeğin katkısı olmadan da döllenmiş yumurta yumurtlayabilir. Hatta bazı türlerde tekeşeylilik görülür; bu böcekler de döllen­meden üreyebildikleri için, o türün bütün bireyleri dişidir ve aralarında hiç erkek bu­lunmaz. Böcek henüz larva evresindeyken kanatlan da ancak mikroskopla görülebilecek kadar küçük, katlanmış birer torbacık biçimindedir. Çekirgelerde olduğu gibi dıştan ya da tırtıllar-daki gibi içten göğüs duvarına yapışık olan kanat torbacıkları her deri değişiminde biraz daha büyür. Ama bu torbalann açılarak geliş­miş kanatların ortaya çıkması için böceğin en son deriyi değiştirmesi, örneğin kelebeklerin kozadan çıkması gerekir. Kanatlar zar gibi in­cecik iki katmandan oluşur; bu katmanların arasında da yoğun bir damar ağı vardır. Böceklerin bir bölümü tümüyle kanatsızdır ya da kanatlar körelmiş, yalnızca kalıntılan kalmıştır. Bazılarında da iki çift yerine yalnız­ca bir çift kanat bulunur. Çoğu kez bunun nedeni kınkanatlılarda olduğu gibi, ön kanat çiftinin sertleşerek arka kanatları koruyan bir kına dönüşmesidir. Solda en üstte: Sığırsineklerinin çok iri gözleri ve ısırıcı ağız parçaları vardır. Solda ikinci: Arısineği yumurtalarını arıların yuvalarına bırakır. Solda üçüncü: Bir yarımkanatlının yavrusu attığı son derinin içinden tam gelişmiş bir erişkin halinde çıkıyor. Solda dördüncü: Bir avcısinek güçlü ayaklarıyla tuttuğu bir çekirgenin derisini delici çeneleriyle parçalayarak avını yemeye hazırlanıyor. Solda en altta: Peru'nun yağmur ormanlarından garip görünümlü bir tırtıl (kelebek larvası).

http://www.biyologlar.com/boceklerin-govde-yapisi-insecta

Bir balığın ve kurbağanın cinsiyetini hangi özelliklerine bakarak nasıl anlayabiliriz?

Türkiye’de göl, dere, çay, nehir gibi iç sularda ve bazı nemli ortamlarda yaşayan pek çok kurbağa türü bulunmaktadır. Kurbağaların hemen hepsi üreme zamanlarında suya bağımlı olup, hayatlarının diğer zamanlarında karada yaşamaktadırlar. Kurbağalar, ilkbahar ve yaz aylarında sulara yumurta bırakır. Yumurtaların bırakıldığı bazı su ortamlarının yaz aylarında kuruması sebebiyle kurbağa yumurta ve larvaları olumsuz şekilde etkilenmekte ve hatta büyük bir kısmı ölmektedir. Buna rağmen ülkemizde doğal ortamlarda yetişen kurbağaların toplanarak yapılan üretim miktarları aşağıdaki gibidir. Amerika Birleşik Devletleri ve Uzak Doğu Ülkelerinde semi-intensif şekilde kurbağa üretimi yapılmakta olup, henüz ülkemizde doğadan toplamanın dışında üretim yapılmamaktadır. BİYOLOJİSİ Kurbağaların Türkiye’de 11 türü bulunmakta, bunlardan bazıları; Rana, Hyla, Bufo, Pelabotes, Bombina ve Palodytes tir. Bu türler içerisinde ekonomik değeri olan ve ihracaatı yapılan Rana cinsinin ülkemizde 5 türü yaşamaktadır. Kurbağalar, omurgalılar hayvanlar grubuna girip, bu hayvanlar arasındaki yerlerini şu şekilde belirlemek mümkündür: Şube (Phylum) : Chordata Alt-Şube (Subphylum) : Vertebrata Sınıf (Classis) : Amphibia Takım (Ordo) : Anura Aile (Familia) : Ranidae Cins (Genus) : Rana Tür (Species) : Rana ridibunda (Ova K.) Rana dalmatına (Çevik K.) Rana macrocnemis (Uludağ K.) Rana cameranoi (Şerit K.) Rana holtzi (Toros K.) ÜREMELERİ Kurbağaların cinsi olgunluğa gelmeleri dişilerde 1-2, erkeklerde 3-4 yaşları sonunda ulaşırlar. Eşeysel olgunluğa ulaşan kurbağalar üreme zamanı geldiğinde suya girerler ve larva safhalarının sonuna kadar da suda kalırlar. Daha sonraları kurbağalar karasal yaşama geçerler. Erkek kurbağaların vücut yapıları dişilerden oldukça iri (büyük) olduğundan ayırt etmek zor değildir. Erkeklerin kulak zarı daha büyük ve gözler daha iridir. Erkeklerin gırtlakları parlak sarı renkli dişilerinki ise beyaz ve kahverengi beneklidir. Yetişkin erkek kurbağalar üreme mevsiminde bazı sesler çıkartırlar ses çıkartma üreme zamanları Şubat ayı sonu ile Ağustos ayı sonuna kadar devam etmektedir ve bu sayede erkekler kolayca ayırt edilir. Kurbağalarda gerçek bir çiftleşme yoktur. Bunun için bu çiftleşmeye kucaklaşma (amplexus) denilmektedir. Kurbağaların çiftleşmeleri genelde geceleri olur ve senede 3-4 dönem yumurtlama olmaktadır. Her dönemde 5.000-10.000 adet arasında yumurta bırakmaktadırlar. Kurbağalar ayrı eşeylidirler. Erkek ve dişi üreme organları ayrı fertte bulunur. Erkeklerdeki testislerde olgunlaşan spermatozoonlar bir kanal ile böbreklere oradanda dışarıya atılırlar. Testisler üzerinde sarı renkli bir çift yağ cisimciği vardır. Bunlar kurbağaların kış uykularında beslenmelerini sağlar. Dişi kurbağalarda bir çift ovaryum bulunur. Ovaryumların büyüklükleri yaşa ve mevsime göre değişiklik göstermektedir. Ovaryumların üzerinde erkeklerde olduğu gibi bir çift yağ cisimciği bulunur. Bu yağ cisimleri kış aylarında dişi kurbağanın kış uykusunda beslenmesini sağlar. Yumurta ve Larvalar Ovaryumda olgunlaşan yumurtalar vücut boşluğuna dökülürler. Buradan yumurta kanalına geçer oradan uterusa ve daha sonra kloak yoluyla dışarıya atılırlar. Yumurta , yumurtlama borusundan geçerken etrafı jelatin bir kılıfla sarılır. Yumurta suya düşünce bir kılıf şiştikten sonraki halidir. Bu jelatin madde yapışkan olduğunda yumurtalar bir grup teşkil eder. Jelatin içindeki embriyo geliºerek larva meydana gelir. Bu larvalar kılftan hareketli bir halde çıkar ve serbest yüzmeye başlar. Bunlara iribaş veya tetar denir. İribaşların ilk safhasında dış solungaçlar gelişir ve solunumu bunlarla yapar. Kurbağa yumurtaları küreseldir. Yumurta çapı 7-10mm civarındadır. Bir dişi kurbağa ortalama olarak 9.000 yumurta yumurtlamaktadır. Yaşlı kurbağalar 12.000 adete kadar da yumurtlayabilirler. Yumurtalar yaklaşık 3 gün içerisinde açılır. 1-1.5 ay sonra iç solungaçlarla yüzgeçler gelişir. İribaşlar 2-2.5 aylık olunca arka bacaklar, 4 aylık olunca ön bacaklar gelişir. 6-6.5 aylık olunca metamorfoz (başkalaşım) geçirerek kuyruk, solungaç ve solungaç yarıkları tamamiyle yok olur. Yerine alkciğerler gelişir ve böylece kurbağalar karasal yaşama başlarlar. Bu safhada kurbağalar herbivordur (bitkiyle beslenirler). Kurbağalarda başkalaşım sonucu şekil değiştirme kuyruğun tamamen yok olmasıdır. Şekil değiştirmede önemli olan su ısısıdır. Su ısısı 16 C0 nin altına düştüğü zaman yavrular şekil değiştirmeyi yapamazlar. Bunun için yavrular güneş ışığında belirli zamanlarda tutularak şekil değiştirmelerine yardımcı olunmalıdır. Eğer yavrular şekil değiştirmeyi gerçekleştiremezlerse ölüm kaçınılmaz olur. Beslenmelerİ Ergin kurbağalar (Anura) yalnız canlı ve hareketli böcek, solucan ve küçük yumuşakçalarla beslenirler. Sucul formlardan büyük formda olanları küçük balık ve kuş gibi hayvanlarla da geçinebilirler. Hatta bazı türler kendi larvalarını da yiyebilirler (kanibalizm). Kuyruksuz kurbağada (Anura’da) olduğu gibi dil öne doğru fırlatılarak dilin yapışkan uçları ile avlarının yakalanmasını sağlar. Bir çok su kurbağasında (Ranidae) ava nişan alınarak dil fırlatılır. Kuyruksuz kurbağa larvaları ise sudaki alglerle ve ölü hayvan kırıntılarıyla geçinirler. Çünkü bunların ağızları büyük besinleri yutmaya elverişli değildir. Larvalar ile erginler birbirlerine rakip olmamak için aynı tür besinlerle beslenmezler. Besinleri protein açısından oldukça zengindir. Soğuk kanlı hayvanlar olduklarından vücütlarında çok fazla miktarda yağ ve glikojen depo etmeye gerek duymazlar. Çünkü bunların metabolizması oldukça düşük düzeydedir.Uygun sıcaklıklarda ve besin sunumunda kurbağalar çok miktarda besin alabilme yeteneğindedirler. Bunun yanısıra bir aydan fazla açlığa dayanabilirler. Yumurtadan çıkan yavrularda başın altında vitellüs (besin) kesesi vardır. Yavrular ilk bir hafta bu besinleri kullanırlar. Besin kesesi kullanımı bittikten sonra (asorbe olduktan sonra) dışarıdan besin almak zorundadırlar. Soğuk kanlı olmaları ve ince olan derileriyle fazla miktarda su kaybettiklerinden , aşırı sıcaklık ve kuraklığa karşı dayanıklı değillerdir. Sucul iki yaşamlılar kış uykusu için göl ve nehirlerin donmayan dip kısımlarına çekilirler. DüşmanlarI Kurbağa larvaları Rhynchota (Hortumlular), Coleoptera (Kin kanatlılar) gibi sucul böcekler tarafından yenir. Aynı zamanda Odonata (Tayyare böcekleri) larvalarıda genç evrelerinde kurbağa larvaları ile beslenmektedir. Lucilia adı verilen bir sinek yumurtalarını Bufo ve Rana türleri üzerine bırakır. Birkaç gün içinde çıkan larvalar bu kurbağalarda doku bozuklukları, daha sonrada ölümler meydana getirirler. Kurbağa Kültürü Diğer su canlılarında ( balıklar, kabuklular v.s.) olduğu gibi kurbağalarında suni üretiminde son yıllarda büyük başarı sağlanmıştır. Kurbağa kültüründe kullanılan yetiştirme havuzları ve özellikleri şu şekildedir. Yetİştİrme HavuzlarI Kurbağa yetiştirciliğinde kullanılan havuzların her birinin alanı değişik olabileceği gibi 50-60m2 olanlar tavsiye edilir. Bir kurbağa yetiştirme çiftliğinin kurulması için toplam 5-6 bin m2’lik bir alan yeterlidir. Böyle bir çiftlikte 5 çeşit havuz yapılması gerekmektedir. Bu havuzlar; · Yumurtlama havuzları · Kuluçka havuzları · Yavru ( iribaş ) havuzları · Genç yavru havuzları · Yetişkin havuzları Yumurtlama Havuzları Genel olarak bu havuzlar 10-15m2 arasında değişen büyüklüklerde yapılmaktadır. Bu havuzlar toprak olduğu için, etrafına ağaçlar ve yüksek bitkiler dikilmek suretiyle tabi bir ortam şekli yaratılmalıdır. Havuzların derinliği değişik olmakla birlikte herbir havuzda 1/3’lük kısmının derinliği 10cm. olmalıdır. Yumurtlama havuzlarına konacak anaç seçiminde kuvvetli olanlar seçilir ve bir erkeğe 3 yada 4 dişi gelecek şekilde seçilmeli ve yumurtlama havuzlarına bırakılırlar ve bekletilirler. Bu sırada havuzlarda bulunan anaçlar rahatsız edilmemelidirler. Kuluçka Havuzları Anaç havuzlarından elde edilen yumurtalar geniş bir kepçe yardımıyla toplanır ve bu yumurtaların %10-15’inden iribaş elde edilir. Yumurtaları havuzlara aktarılmasından sonra su hiç karıştırılmamalıdır. Yumurtaların açılmasında su, ısı ve zaman önemli bir faktördür. Yumurtalar 24-27Co arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş- çıkışı sağlanmalıdır. Kuluçka havuzları betondan inşaa edilmelidir ve havuzlar 40 cm. derinlikte olmalıdır. Havuzlarda bu devrede su akımı önemlidir. Bu nedenle havuzların su giriş ve çıkışı uygun şekilde yapılmalıdır. Larva (İribaş) Havuzları Yumurtadan çıkan larvalar bir hafta boyunca besin kesesini kullanırlar, daha sonra dışarıdan besin almak zorundadırlar. Bu aşamada yumurta sarısı ile beslenmeleri gerekir. İribaş yavruları ilk ay içerisinde balık ve yer fıstığı unu daha sonra tatlı patates unu, pirinç kepeği, mutfak artıkları ve değersiz yiyeceklerle beslenirler. Yiyecekler su yüzeyinde yüzecek şekilde altları delik kaplarla verilmelidir. Günde iki öğün yem verilmelidir. Çıkan yumurtalardan yaklaşık %10-15’inden iribaş elde edilir. Yumurtalar geniş bir kepçe ile su içinde alınarak kuluçka havuzlarına konulurlar. Yumurtalar havuza nakledilikten sonra havuzlar hiç karıştırılmamalıdır. Yumurtaların açılmasında su ısısı ve zaman önemli bir faktördür. Yumurtalar 24-27C0 arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş çıkışı sağlanmalıdır. Kuluçka havuzlarının; derinliği 30-40 cm. arasında ve zeminleri çamur olmalıdır. Böylece havuzların su ısısının sabit tutulması ile yavruların büyüme güvenliği sağlanmış olur. Larva havuzların dikdörtgen şeklinde olması tavsiye edilir. Uygulamada 1m2 ye 1.000 adet olacak şekilde kurbağa larvaları larva havuzlarına konulur. Eğer akarsuya larvalar konulacak ise m2ye 2.000 adet yavru konulmalıdır. Bu arada yavruları boylama eleklerinden geçirerek sınıflandırma yapılır ve ayrı havuzlara koymak gerekir. Genç Yavru Havuzları Genç yavru havuzlarının su derinliği 15-35 cm. arasında olmalı ve her bir havuzun 1/4 kadarlık kısmı sudan daha yüksekte olmalıdır. Yani yavrular gerektiğinde çıkabilmeleri için havuzda susuz bir sahaya gereksinimleri vardır. Yavrular bu havuzlara ancak 3. Aylarını doldurduktan sonra nakledilmelidirler. Genç havuzlarının 1 m2sine 100-120 arasında yavru konulmalıdır. Fakat yavrular 6-7 cm uzunluğunda iseler bu sayı 60-80 arasında olmalıdır.Bütün yavrulara şekil değiştirene kadar yem verilmez. Şekil değiştiren kurbağalar arasında yine bir seleksiyon uygulanır ve aynı büyüklükte olanlar seçilerek aynı havuzlara bırakılırlar. Bu işlem yavrular büyüyünceye kadar devam eder. Şekil bozukluğu gösterenler ve kuyruk atamayanlar ortamdan uzaklaştırılır.Çünkü kanibalizm olayı meydana gelir. Havuza bırakılan genç yavrulara toprak solucanları, sinek larvaları, küçük balıklar, küçük karidesler ile diğer canlı hayvansal besinler verilmelidir. Sinek larvalarının havuzların içinde çoğalmaları için balık artıkları konmalıdır. Çünkü bu artıklar sinekleri cezbeder ve sinek yumurtalarının çoğalmaları için uygun ortam sağlanmış olur. Buda ucuz bir şekilde yavruların ihtiyacının karşılanması demektir. Hava sıcaklığı 20-26 C0 olduğu zaman daha fazla besin verilmelidir ve verilen besin miktarı yüksek ve düşük ısıda azaltılmalıdır. Ortalama verilen besin miktarı %10 kadar olmalıdır. Günde iki defa beleme yapılmalıdır. Besinin kurbağalara eşit olarak verilmesi gerekir bunun içinde yem toprak yüzeyine dağıtılmalıdır. Daha sonra yem küçük tepsilere konulur, tepsinin yarısına toprak solucanı, kurtçuk diğer yarısına da küçük balık, karides, v.s. konur. Tepsi kısmen suya batırılır. Bu işlemde amaç kurbağaların doğadan yem yeme alışkanlığını geliştirebilmelerini sağlamaktır. Bu arada ölen kurbağalar ortamdan uzaklaştırılmalıdır. Yavrular doğal besinlerden alabilecekleri zamana kadar bu iºleme devam edilir. Yetişkin Havuzları Yetişkin kurbağa havuzları genç yavru havuzlarına benzer. Yalnız havuzlardaki su derinliği 30 ile 40 cm. de devamlı korunmalıdır. Bu havuzlarda genç yavru havuzlarındaki gibi kara kısmı yoktur. Yalnız bunun yerine yüzen yem platformları yapılmalıdır. Havuzların etrafı kurbağaların kaçmamaları düşmanları tarafından yenmemeleri için çitle çevrilmelidir. Bu çitler naylondon olabileceği gibi ağaç veya demirden de olabilir. Havuzun yüzeyi de yine böyle bir çitle kaplanmalıdır. Kurbağalar üçüncü aylarını doldurduktan sonra yetişkin havuzlarına nakledilirler. Yetişkin havuzlarında bazen larva veya genç yavrular bulunabilir. Bunları bir-iki haftada bir seçerek havuzdan ayırmak gerekir. Bu havuzların 1 m2sine 12 cm. boyundakilerden 50 adet, 15 cm. boyundakilerden 20-30 adet hesabıyla konulmalıdır. Yetişkin kurbağaların maliyetini düşürmek için iri salyangozların eti kıyılarak yem haline getirilerek verilmelidir. Kurbağalar soğuk kanlı hayvanlar oldukları için kış uykusuna yatarlar. Isı çok düştüğü zaman aktiviteleri ve beslenmeleri durma noktasına gelir, ısı yükseldiğinde ise tekrar aktif hale geçip yem alabilmektedirler. Isının fazla düşmediği kış aylarında bütün yıl beslenebilirler. Kurbağalar şekil değiştirmeyi (metamorfoz) tamamladıktan aşağı yukarı 7-8 ay sonra pazar ağırlığına ulaşırlar. PAZARLAMA Kurbağaların normal pazarlama ağırlığı 150-220 gr arasında değişmektedir. Kurbağalar bu ağırlığa 8-10ay gibi kısa bir sürede ulaşabilmektedir. Bu ağırlık ideal satış ağırlığıdır. Türkiye’de doğal ortamdan toplanan kurbağaların ihracaatı yapıldığı için standart bir ağırlık yoktur. Canlı, donmuş bacak, taze bacak ve konserve şeklinde ihracattaları yapılmaktadır. Türkiye’nin ihracaatının %80’ ini canlı ve donmuş bacak şeklindeki kurbağalar teşkil etmektedir. Konserve şeklindeki ihracaat toplam ihracaatın çok az bir kısmını oluşturur. AVLANMALARI Kurbağaların doğadan toplanmalarında çeşitli kepçeler kullanılmaktadır. Şekil- Kurbağalar avlanma zamanlarında suya bağımlı oldukları için, kullanılan kepçelerin sudan etkilenmeyen ve suyu geçiren ince ağlardan yapılmalıdır. Bunun için ergin kurbağa avlanma kepçesi daha uzun ve büyüktür. İstenilen uzunluğa getirilebilen bir seyyar sap vardır.Larvalar için kullanılan kepçeler daha küçük ve göz açıklıkları daha sıktır. Kurbağalar ellede yakalanabilir Bunun için gece tercih edilir. Işığının kuvvetli olması sonucu kurbağalar ışık etrafında toplanırlar rahatlıkla yakalanırlar.Yalnız derileri kısmen zehirli olduğundan, elle temastan sonra, göz ve dudak gibi ince derili ve nemli kısımlara, suyla yıkamadan ellerin sürülmemesi gerekir. TAŞINMALARI Canlı olarak taşınmaları kısa mesafelerdeki nakilleri naylon torba, çuval bez çanta ve buna benzer bir kap içinde yapılabilir. Uzak mesafelerdeki nakiller ise gemi ambarlarında, kara taşımacılığında frigo-frig tırlarda ısı yalıtımı olan kutular içine konulmalı ve bunlarla nakledilmelidir. Nakil esnasında ortamın serin ve nemli olmasına dikkat edilmelidir. LİTERATÜR 1. BAŞOĞLU, M.- ÖZETİ,N. 1973 Türkiye Amfibileri (The Amphibians of Turkey) E.Ü.fen Fakültesi Kitaplar Servisi No 50 2. TOLUNAY, A.M. Özel Zooloji 3. GÖKALP.N 1980 Kurbağaların Biyolojik Özellikleri ve suni üretimleri Su ürünleri Bölge Müdürlüğü 4. DEMİRSOY A. Yaşamın Temel Kuralları 5. KURU M. Omurgalılar Zooljisi

http://www.biyologlar.com/bir-baligin-ve-kurbaganin-cinsiyetini-hangi-ozelliklerine-bakarak-nasil-anlayabiliriz

Denizlerimiz ve ekolojik önemleri

Deniz göl okyanus ekosistemi Denizel (Okyanus ekosistemleri Deniz ekosistemleri) Su ekosistemlerini kara ekosistemlerindeki gibi coğrafi sınırlarla belirlemek çok zordur. Çünkü sular atmosferik olaylardan karaların etkilendiği oranda etkilenmemektedirler. Ancak deniz tatlı su ve haliç gibi su havzalarının derinlikleri ve bileşimlerindeki farklı maddeler nedeniyle sularda da farklı canlı bölgelerinden söz edilebilir. Buradan hareketle su biyomları; deniz biyomları (tuzlu su) ve tatlı su biyomları olmak üzere iki başlık altında incelenebilir. DENİZ BİYOMLARI Denizlerdeki tür topluluklarının dağılımında en önemli etken derinliktir. Neiritik alan diye adlandırılan 200 m derinliğe kadar olan deniz ortamı tür topluluklarının en zengin oldukları bölgeyi oluşturmaktadır. Neiritik alanların akarsularla beslenmesi güneş ışınını fazla almaları oksijen ve birçok çözünmüş maddenin fazla olması nedeniyle deniz canlılarının en çok yoğunlaştığı bölgelerdir. Neiritik alan deniz canlılarının % 90’ını barındırmaktadır. Daha derin sahalara ise güneş ışınları daha az ulaştığı ve besin maddeleri az olduğu için canlı türleri çok azalmaktadır. Bu bölgelerdeki canlılar daha üst tabakalardan inen besinlerle beslenmektedir. NOT: Deniz ve okyanuslar doğada ısının dağılmasında ve atmosferde tuz dağılımında son derece önemlidir.Bu tuz kristalcikleri yoğuşma olayında son derece önemlidir.Aerosol denilen bu parcacıklar bulut oluşumuna yardımcı olur… TATLI SU BİYOMLARI Akarsular göller sulak alanlar ve bataklıklar tatlı su biyomlarını oluşturmaktadır. Akarsular ekosistemlerin önemli bir parçasını oluşturur. Akarsuyun yeraltına sızan kısmı akiferleri yüzeysel akışa geçen kısmı da deniz ve okyanusları besler. Akarsular birçok bitki ve hayvan türü için yaşam alanı oluşturur. Akarsuların akış hızı ve kimyasal özellikleri akarsuyun barındırdığı hayvan türü ve sayısı üzerinde etkili olan faktörlerin başında gelir. Bir akarsuda çağlayanlar varsa biyolojik üretim ve çeşitlilik az olur. Çünkü balıklar ve diğer canlıların çağlayanları aşmaları çok zor bir durumdur. Yatak eğiminin fazla olduğu yerlerde bol miktarda alüvyal malzeme taşınıyorsa akarsu bulanık bir görünüm arz eder. Suyun bulanık olması birçok canlı için olumsuz sonuçlar doğurur. Akarsu denize ulaşıyorsa ağız kesimlerinde tatlı su ve tuzlu su birbirine karışır. Buralar bitki ve hayvan türleri bakımından zengin alanlardır. Akarsuların taşıdığı elementler ve besin maddeleri buralardaki biyolojik çeşitliliği artırır. Akarsu ağızları mikroorganizmalardan kuşlara kadar birçok canlının barındığı yerlerdir. Tüm deniz balık üretiminin % 90’ı kıyı sularından özellikle de akarsu ağızlarından sağlanmaktadır. Göller karalar üzerindeki durgun su ekosistemlerini oluşturur. Göllerin çevresinde yer alan sucul bitkiler gerek su kuşları gerekse diğer canlılar için hem barınma hem de beslenme alanları oluşturmaktadır. SU DÖNGÜSÜ: Su yaşam kaynağıdır. Bütün canlıların ağırlıklarının önemli bir kısmını su oluşturur. Yeryüzündeki su miktarının yaklaşık % 5’ i tatlı sulardır. Güneş enerjisinin ısıtmasıyla çeşitli kaynaklardan atmosfere çıkan su buharı; yağmur kar dolu gibi yağış biçimleriyle yeniden yer yüzüne döner. Bu suyun bir miktarı yer altı sularına karışırken daha büyük kısmı göl ve deniz gibi kaynaklarda birikir. Su döngüsü de öteki tüm döngüler gibi süreklidir. Bitkiler terleme ile su döngüsüne katılır. Yer yeryüzündeki bütün sular katılmaktadır. Söz gelimi denizlerden buharlaşan su yağış olarak yer yüzüne dönmekte bir kısmı yüzeysel sularda birikip bir kısmı da yer altı sularına karışmaktadır.Yer altı sularının son toplanma yeri ise deniz ve okyanuslardır. Burada toplanan sular su döngüsüne devam eder ( uzun su devri ). Deniz ve okyanuslardan buharlaşan suyun karalara geçmeden tekrar yağmur kar dolu biçiminde deniz ve okyanuslara geçmesine ise kısa su devri denir. OKYANUS EKOSİSTEMİ Ekolojik şartları büyük bir çeşitlilik gösteren deniz ortamı homojen bir bütün olarak ele almak bilimsel açıdan çok kısıtlı bir bakış açısına neden olur. öncelikle iki büyük okyanus alanı ayırt edilmektedir.bütünüyle denizleri oluşturan �su kütlesi� ve kıyılardan derin abis çukurlarına kadar dipleri kapsayan �dip alanı� ;Dip alanı derinliğine göre üçe ayrılır. 0-200 metreler arasında uzanan ve okyanusların tabanının yüzde 76 sını oluşturan kıta sahanlığı; 200 metreden 2000 metreye kadar uzanan dipteki ani eğim bölgesinden meydana gelen ve tabanın yüzde 81 ni oluşturan kıta şevi; ve nihayet okyanusların tabanının yüzde 843 ünü meydana getiren abisler. (2000-6000 metre) ve çukurlar (6000 metreden bilinen en derin yer olan mariana çukurunda 11.000 metreye kadar) Gelgite maruz kalan ve hatta dalga serpintisiyle ıslanan kıyı şeritleri de okyanus alanına dahil edilmektedir. Gerçekten de bu bölgelerde yaşayan organizmalar gerek gelgitler sırasında birbirini ardınca su altında ve su üstünde kalarak gerek ortamın yüksek tuzluluğu sebebiyle okyanus etkilerine maruz kalmaktadır. Okyanusları ve denizleri oluşturan su kütlesi ikiye ayrılan kıta sahanlığını örten yüzey suları ve 200 metrenin altında kalan dip suları bu düzeylerde su kütlesi güneş ışınlarının nüfuz etmesi derecesine ve mevsimlik sıcaklık değişimlerine bağlı olarak düşey bir ekolojik katmanlaşma gösterir. Işığın ulaştığı epipelojik bölge ışık miktarının bitkilerin fotosentez yapabilmesi için yeterli olduğu 0 ila 50-100 metrelik yüzey sularına tekabül eder. Söz konusu bu bölgenin altında dip bitkileri ve fitoplankton yaşayamaz; yanlızca etçiler veya çürükçül beslenen hayvan türleri canlı kalabilir. Okyanus ekosisteminin alt bölümlere ayrılması karşılaşılan ekolojik şartların çeşitliliğiyle ilişkilidir; organizmaların uyum mekanizması ve üretkenliği bir bölgeden diğerine belirgin farklılıklar gösterir.   DENİZ KIYILARIMIZDA KİRLENME,EKOSİSTEM ACISINDAN BİR DEĞERLENDİRİLMESİ H. Özden Ege Üniversitesi, Müh.Fak. Mak. Müh. Bölümü ÖZET Denizlerimizde ekosistem dengesini olumsuz etkileyen başlıca nedenler: - kıyılarımızın yıllardan beri kentsel çöplerle ve kimyasal içerikli, mikrobik, bakteriyel ve radyoaktif içerikli endüstriyel atıklarla kirletilmesi, - topraksı hafriyatla, gelişigüzel doldurulması, - deniz ürünlerinin aşırı be bilinçsiz avlanılması ve toplanılması. Bunların sonucu olarak her gecen yıl birçok balık türü ve deniz bitkisi yok olurken deniz ürünlerinin avlama miktarlarında da büyük düşüşler tespit edilmektedir. Deniz kıyılarımızdaki bu olumsuz gelişmeleri basta balıkçılar olmak üzere herkesin bilmelerine ve zaman, zaman yakarmalarına rağmen, gereken yapılmıyor. Uluslar arası sivil örgütlerle bir dayanışma içerisinde toplumsal tepki gösterilmiyor. Uluslararası bir sorun haline gelen deniz kirliliği, Birleşmiş Milletlerde gündeme getirilmiyor, uluslararası çözümler üretilmiyor. Devlet yönetiminde bu kör zihniyet devam ettikçe, vatandaş ve sivil örgütler ses çıkarmadıkça ekosistem dengesi düzelmeyecek şekilde harap olmağa devam edecektir. Doğa harikası deniz kıyılarımızın katliamına hepimiz seyirci kalmaktayız. Bu çalışmada; - Deniz kirliğinin ulaştığı boyutlar, başlıca nedenlerine ve ekosistemdeki bazi olumsuz yansımalarına dikkat çekilmektedir.. Deniz kirliği hakkında ve alınması gereken bazı önlemler sıralanmaktadır. Ayni zamanda çekirdekten yetişme bir balıkçı ve gemici olarak bu konudaki gözlemlerim, tespitlerim ve değerlendirmelerim tartışmaya sunulmaktadır. Anahtar Kelimeler: Deniz kıyıları, kirlenme, kentsel çöpler, sanayi atıkları, eko sistem, önlemler. 1. GİRİŞ Kıyı denizlerimiz, limanlarımız, göllerimiz fosseptik çukuru ve çöplük ve her türlü ölümcül, hastalık atık deposuna dönüştürülmüştür. Deniz suyuna yayılan lağım artıkları, çöp yığınları ve iğrenç rengi nedeniyle bırakın balık avlamayı, denize bile bakılamıyor, Yeşil sağlıklı deniz bitkilerinin, yosunların yerini kahve renkli seyrelmiş hastalıklı yosunlar ve yaz sıcaklarında artarak çoğalan tiksindirici sümüksü mikroplu yosunlarla ve köpüklerle denizin üstünü kaplar olmuştur.. Deniz dibindeki altın sarısı kumlukların yerini laspa, (pis kokulu çamurumsu, bataksı zemin), poşetler ve plastik malzemeler kaplamıştır. Endüstriyel ve kentsel kirli atıklar yetmiyormuş gibi kıyılarımızın, bilhassa liman içi ve turistik kıyıların gelişi güzel ticari amaçlı doldurulması büyük bir sorumsuzluk göstergesidir. Denizin doldurulmasıyla açılan parklarda, kordon boylarında, rıhtımlarda bırakın oturup dinlenmeyi, güneşlenmeyi veya yüzmeyi; denizden bilhassa yaz sıcağında rüzgarsız günlerde ayılan pis kokudan insan nefes almakta zorlanıyor. Şekil 1 gözlenen deniz kıyıların kirlenmesine, kıyı tahribatına ait farklı örnekler gösterilmektedir. (1 ve 2. fotoğraflarda; Kanalizasyon boruları önündeki yüzen çöpler, 3. fotoğrafta; Yağmur sonrası İzmir liman denizinde su üstünde yüzen çöpler, 4. fotoğrafta; Denize acılan bir dere ağzındaki yüzen çöpler, 5. fotoğrafta; Denize dökülen bir derede ilaçlanma görüntüleri, 6. fotoğrafta; Bodrumda devlet ödüllü topraksı hafriyat deniz dolgusuna bir örnek gösterilmektedir). Benzeri kirlilikler ve kıyı tahribatları dünyanın birçok deniz ve göl kıyılarında rastlamaktadır. Kıyı yerel yönetimler deniz içini ve deniz kıyılarını konutsal ve endüstriyel çöplerle, atıklarla ve topraksı hafriyatla doldurup kirleteceklerine; kaynaklarını ve enerjilerini merkezi arıtma tesislerinin, çökeltme göletlerin yapımları gibi hizmetlerde harcasınlar. Denizi doldurarak yeşil saha açacaklarına ve bu yeşil sahalar üzerine gelişigüzel kamu binalarla, büfelerle, cay-kahve, düğün salonları ve sosyete gazinoları ve mafya lokalleri ile yeniden dolduracaklarına denizin dibine suyun içine kadar olan çarpık, geri zekâlılık abidesi olan yapılaşmayı önlesinler. Dolgular, kıyının doğal yapısını bozmakla kalmamakta; denizin kendi kendini yenileme ve temizleme doğal mekanizmasını tahribat etmektedir! 2. DENİZ SUYUNUN KİRLENME NEDENLERİ Deniz suyunun kirletilmesi ile denizdeki bir çok bitkinin, canlının yok olmasının bir çok nedenleri vardır. Bu nedenler örneğin; - Kentsel çöpler, (atıklar) - Sanayisel atıklar, - Tarımsal Atıklar, - Gemi-Teknesel atıklar, - Topraksı hafriyatlı dolgular, - Aşırı ve bilinçsiz avlanma, gibi gruplandırılarak sıralanabilirler. Diğer bir gruplandırma ise, kirli atıkların kati (denizdeki poşetler, lastikler, plastikler, suni maddeler v.b.) , sıvı (yanık yağlar, kimyasal asitli, renklendirici sanayi sıvıları, boyaları, deterjanlı temizlik suları v.b.), aeroskopik atık maddeleri, örneğin püskürtmeli tarımsal ilaçlar) ve radyoaktif özelliğine göre alt gruplandırmalar yapılabilmektedir. 2.1 Kentsel Atıklar: Buradaki kirlilik, evsel bilhassa mutfak artıkların örneğin, yanık yağların lavabo-kanalizasyon yolu ile direkt yada dolaylı denize ulaşmaları. Ayni şekilde temizlikte, hijyenikte kullanılan kimyasal sıvılar, tozlar ( deterjanlar, çamaşır tozları, klorak gibi asitler, sabunlar, macunlar v.b.) Önem sırası dikkate alınmadan aşağıdaki gibi sıralanabilir: ·Evsel-konutsal sıvısal atıkların, (deterjanlı bulaşık suların, asitli çamaşır kirli ve asitli suların, yağların v.b.) lağım, kanalizasyon yoluyla yıllardan beri arıtılmadan direkt yada dolaylı olarak denize akıtılmaları. ·Lağım çukurlarına biriktirilen konut artıklarının, bilhassa asitli, fosfatlı temizlik malzemelerinin, deterjanlı suların, yanmış yağ artıklarının direkt vidanjörlerle veya dere, kanalizasyon, boru gibi kanallarla denize boşaltılmaları, ·Konutsal kati artıkların örneğin poşet, plastik, lastik, sise, kağıt, kumaş gibi kati artıkların, kati çöplerin farklı yollardan direkt atılmaları yada dolaylı olarak dere akarsularla denize dökülmeleri, yayılmaları. ·Konutsal topraksı, taşlı, ağaçlı v.b. hafriyat atıkların denizin içine yada denizin kıyısına boşaltılması, ·Derde yataklarının, kanalizasyonların dezenfekte edilmesi daha sonra bu zehirli ilaçların deniz suyuna karışması, ·Dere yataklarında su birikintilerinde bilhassa sıcak yağışsız mevsimlerde oluşan mikrop, bakterilerin çoğalarak denize karışmaları, deniz deki canlı ve bitkilere bulaşmaları. (Yapılan bir araştırmada İzmir limanı içersinden avlanan balıkların etinde ve barsallarında insan sağlığını tehdit eden kanserojen kalıntıları, bakteriler bulunmuştur, bu bulgular İzmir limanın lağım çukuruna dönüştürüldüğünün diğer bir delilidir.!) 2.2 Endüstriyel Atıklar (Sanayisel ve Tarımsal Atıklar) ; Sanayisel kati, sıvı ve aerosol (sıvı, gaz ve toz karışımlı) artıkları denizlerimiz deki ekosistemi tehdit eden kirliliklerin başında yer alırlar. Bu atıklar Denizlerimde yakıcı, boğucu, bozucu, çökeltici, zehirli, engellemeci, radyoaktif, bulaşma ve yapışma özeliklerine sahiptirler. Tehlikeli hastalık saçan, kanserojen etkili, biyolojik mikrobik sanayi artıkları da arıtılmadan denize ulaşmaktadırlar. Miktar acısından da tehlikeli atıklardır. Sanayisel deniz kirliliğin başlıca nedenini aşağıdaki gibi özetleyebiliriz: “Her türlü Zehirli, çöktürücü, renklendirici, boğucu, radyoaktif sanayi artıkların denize arıtılmadan yada yetersiz artıma ile direkt yada dolaylı olarak dökülmeleri ve denizde yayılmaları” Tarımsal atıkları endüstriyel atıklar grubu icerisinde ele alınabilirler. Tarımsal amaçlı olarak kullanılan kimyasal gübrelerin, alıntılarının, bitkisel ve hayvansal hormonların, ilaçların, boyaların, havadan, yer altı veya yerüstü sularla direkt yâda dolaylı olarak deniz suyuna karışmalarıdır. Endüstriyel baca gazlarını ve aerosöl atıklarını, dünyadaki yanardağların meydana getirildiği kirlilik oranı ile karsılaştırıp Fabrika bacalarından ve eksozlardan yayılan cevre kirliliğini küçümseyen bazı bilim adamları gibi yanılgıya düşüp bilensiz ilaçlama, gübreleme ile meydana gelen kıyı denizlerimizdeki kirlilikte küçümsenmemelidir. 20 sene evveline kadar Edremit körfezinden ta Çandırlı körfezine kadar hemen, hemen her yıl zeytin ağaçlarının ilaçlanması, kanserojen DTT tozu ile uçaklardan püskürtülerek yapılıyordu. Aerosöl ilacın bir kimsi denize karışarak zaman, zaman bazı sahillide toplu balık katliamlarına neden oluyordu, Büyük küçük yavru ayırt etmeksizin balıkların bir kısmi ölü karaya vururken, bir kısmide oryantasyonu kaybedip su üstünde panik içerisinde yüzdükleri hala gözlerimin önündedirler. İşin ilginç ve acı tarafı; cahil vatandaşların bunları denizden toplayarak satması ve pişirip yemesi idi. Günümüzde deniz kıyılarımızda hala zeytin ağaçlarını ilaçlanması uçakla ve motorlu güçlü pompalarla yerden yapılmaktadır. Bu ilacın bir kısmi yine denize karışmaktadır. Tek fark, karaya vuran balıkların görülmemesidir. Bunun nedenini gayet basit sizde düşünün ve yorumlayın! (Denizlerimizde ilaçlardan etkilenip karaya vuracak balık kalmamıştır) 2.3 Gemi-Teknesel ve bot gibi deniz araçlarından denize karışan atıklar, Son yılarda denizlerimizde gemi, tekne, bot, yat gibi deniz vasıtaların sayıları artmıştır. Bu artışa paralel olarak denizlerimizdeki kirlilik artmıştır. Bu kirlilik farklı yollardan denize bulaşmaktadır: ·Petrol tankerlerinden ve diğer gemilerin kazaya uğrayarak kirletici maddelerin denize karışması, yayılması, ·sinte ve balast suların denize boşaltılmaları, ·gemi-evsel çöplerin denize atılması, ·gemi- tuvalet-lavabo suların, denize akıtılmaları, ·gemi ambar artıkların, süprüntülerin denize dökülmesi, ·zararlı yosunların, mikro organizmaların bir denizden diğerine taşınmaları, ·Gemi altlarının yosun, atırganalara (gemilerin sualtı dış gövdelerinde zamanla oluşan kabuklu organizmalar midye türü canlılar, Teknelerin hızını önemli ölçüde azalttığı, yakıt tüketimini artırdığı gibi gövdenin çürümesine de neden olmaktadırlar ) ve diniz kurtçuklarına karşın zehirli boya ile boyatılmaları, bu zehirli boya partiküllerin deniz suyuna karışması. 2.4 Topraksı hafriyatlı deniz kıyısı dolguları ·Her türlü çöpün, topraksı hafriyatın denize direkt veya dolaylı denize dökülmeleri, ·Deniz kıyılarının doğal yapısının betonlaştırılarak tahribat edilmesi, ·Deniz suyunun doğal devir-daimi, akıntıların gelişigüzel dolgu, barınak, dalgakıran, marina, kütiskele, dalyan, gibi yapılarla engellenmesi veya olumsuz yöne çevrilmesi, ·İnşaatlar için sahillerden, koylardan ve deniz dibinden kum, çakıl, taş toplanması, Kıyı dolgusunun her türlü hafriyat, toprak ve çöp artıkları dökülerek gelişigüzel, ciddiyetsiz yapılması ve yapımın üzün sürmesi halinde ortaya çıkan zararlar: ·Topraksı hafriyatın (Şekil 1 de fotoğraf 6) ve çöplerin rüzgar, akıntı, dalga gibi etkenlerle denizin derinliklerine yayılmaktadır, zamanla denizin dibine çökmektedirler, bir kısmı ise karşı sahillerde tekrar karaya vurmaktadırlar. (Günümüzde deniz kıyıları, alışveriş poşetlerinden, bira, kola kutularından, plastik kaplardan, şişelerden geçilmiyor, (Şekil 1) Topraksı, çöplü dolgunun suda eriyerek, dağılması ve yayılması sonucu su bulanmaktadır. Çamurlu su içindeki katıklar zamanla denizin dibine çökelmektedir. Suya karışan toprak ve denizin dibinde çamur seklinde çöken tabaka canlıların, bitki örtüsünün, mikro organizmaların ve balık yavrularının oksijensizlikten telef olmalarına neden olabilmektedir. Diğer yönden yosun gibi bitki örtülerin üzerini kaplayarak bir çok balık türünün besin kaynaklarını yok etmektedir. ·Deniz suyun berraklığına, temizliğine göre güneş ışınları derinliklere ulaşır ve havadaki oksijen denizin yüzeyinden çözünerek derinliklere yayılır. Bu acıdan değerlendirildiğinde, topraksı hafriyatla denizin bulanması sonucu uzun bir süre güneş ışınlarının deniz suyunun derinliklerine ulaşmasını, havadaki oksijenin deniz suyunda çözünüp derinliklerine kadar yayılmasını da büyük ölçüde kısıtlamaktadır. Deniz suyundaki oksijen konzetrasyonuna ve güneş ışınlarına hassas olan deniz bitkilerinin ve çanlılarının topluca katliamına sebebiyet vermektedirler. Bilhassa sıcak havalarda kıyılarda rastlanan sürü halindeki balık katliamlarının diğer bir nedeni budur. Bu katliamlar akarsu ve göletlerde boyalı suların döküldüğü zamanlarda daha yoğun rastlanmaktadır. ·Kıyıların betonlaştırılarak suyun kendi kendini temizleme (arıtma tesisi) mekanizması tahrip edilmektedir. Kumluk, taşlık gerekse de kayalık kıyılar birer canlı arıtma tesisi gibi çalışan bir çok mikro organizmaları, deniz canlıları ve yosunları barındırmaktadır. Kıyıların doldurulmasıyla ilk önce bunlar katledilmektedir daha sonra bunların yerine geçeceklerin yaşam ortamı da yok edilmektedir. Doğal kıyılarda barınabilen sağlıklı yosunlar, mikroorganizmalar, midyeler, kara dikenler, deniz patlıcanları, salyangozlar, yengeçler, deniz yıldızları, solucanlar, mamunlar (deniz böcekleri, kurtcuklar), karidesler v.d. suyun temizlenmesinde önemli rol oynadıkları bilinmektedir. Ayrıca bunlar bir çok balık türünün birer besin kaynağı olduğu da unutulmamalıdır. ·Plansız dolgu yapımları ile deniz suyunun akıntısı engellenmekte veya olumsuz bir yöne doğru yönlendirilmektedir. Deniz suyunun doğal devir-daiminin bozulası ile su kendi kendini tazeleme, yenileme işlevini sürdürememektedir. Suya karışan artıklar akıntı vasıtasıyla acık denizlere taşınamamakta, suyun dibine bir örtü şeklinde çökelerek birikmektedirler. Buraları zamanla bir nevi mikrop yuvasına dönüşmektedir, çevreye yayılmaktadır! Bunu en güzel örneği İzmir Limanında ve İstanbul Haliçte görülmektedir. ·Dolguların, Kordonların diğer bir olumsuz yanı ise, kıyını doğal güzelliğini yok ederken kıyılarda ki canlı arıtma tesislerinin yaşam ortamı da ortadan kaldırmaktadır. Genelde kıyılara en az 50 m ye kadar normal yapılaşmaya izin verilmemeliydi. Bu kural yeni yerleşim kıyı yerlerinde gelecek nesiller için uygulanmalıdır. Deniz kıyıları her kesin kullanımına doğa tahrip edilmeden açık tutulmalıdır. 2.5 Aşırı ve bilinçsiz avlanma ·Tırol, trata gibi kıyıların deniz dibini tarayarak harap eden ağ avlama yöntemlerin yıllardan beri sürmesi, ·Kıyılarda ışık destekli sürüklenmeli germeli ağ balık avlama yönteminin yoğunlaşması, (aşırı avlanma ·Deniz diplerinden, kayalık ve taşlıklardan midye, salyangoz, deniz patlıcanı, yıldız, kara diken, yosun, karides, mamun, (kabuklu kabuksuz deniz böcekleri, kurtları) gibi mamullerin yıllardan beri aşırı toplanması, ·Teknelerin, gemilerin sualtlarının zehirli boyalarla kaplanması, ·Katil yosunların, atırgana gibi zehirli mikroorganizmaların deniz taşıtları ile denizlerde yayılmaları ·Tekne, motor, yat, sandal gibi deniz taşıtlarındaki hızlı artış. Sinte, yakıtlı, yağlı tekne içi sularının limanlarda, koylarda denize boşaltılması.(Denizde suyun üstünde yayılan yağın, yakıtın bir çok bitkinin ve canlının besin kaynağı olan platkon, yakamoz gibi mikro organizmaları, yok etmektedir. ) 2.6 Kıyı denizlerdeki balık çiftliklerin ürettiği kirlilik Yerel yönetimlerin denize direk bıraktıkları arıtılmamış kanalizasyon suları, denize dökülen kentsel atıklar, denize karışan sanayi artıkları ve topraksı hafriyatın yanında balık çiftliklerin ürettiği deniz kirliliği hiç denecek kadar azdır. Aslında balık çiftlikleri denizdeki eko sitemin korunmasında yararlı oldukları gibi ülke ekonominse çok yönlü yararlar sağlamaktadırlar Balık çiftliklerini kaldıracağı yerde artırılması yönünde devletin tevsikleri vermelidir. Koylardaki doğal akıntıyı sekteye vurmayacak şekilde Türkiye’nin belli bölgelerinde kurulmalarında, deniz kirliliği açısından ben sakınca görmüyorum. Balıkçı kooperatifleri yeni balık çiftlikleri kurarak bilinçli isleterek düzenli ve sürekli bir geçim kayağını kendilerine sağlayabilirler. Kıyı yerel yönetimler her yıl milyonlarca metreküp kirli aratılmamış kanalizasyon suyunu, yüz binlerce ton kati atiği denize, limana döküyorlar. Bu kirlenmeğe karşın kamuoyunda ses getirilmiyor. Bula, bula balık çiftliklerindeki kirlenmeye karşın kamuoyunda yaygara koparmalarını manidar buluyorum. Sadece görüntü kirliliği yönünden turistik kıyılarda arsa fiyatlarını düşürdükleri ve ileride turistik tesislerin yapımlarını engelledikleri için belli çevrelerce arzu edilmemektedir, kapatılmaları ve taşınmaları istenmektedir. Denizdeki farklı sorunların üstesinden gelmek için ilgili bakanlığın, Denizcilik bakanlığının kurulma istemini bazı öğretim üyelerinin bu yöndeki önerilerini de anlamsız buluyorum. Balık çiftliklerin kapatılması için ciddi anlamda bilimsel araştırmalara dayalı nedenler bulunmamaktadır. Balık çiftliklerin ürettiği kirlilik üzerine yeterli bilimsel araştırmalar bulunmamaktadır. Kamuoyuna yansıyan bazı ölçümler, kirliliğin ana nedenleri ve boyutları hakinde bilgi vermemektedir. Bu ölçümlerde global kirlilik etkenleri dikkate alınmamıştır. Bazı balık çiftlikleri çevresindeki gözlenen deniz suyu kirliliğinin asil nedenleri, çevresel kirlilik araştırılmamıştır. Balık çiftliklerin koylarda akıntıyı büyük ölçüde sekteye uğratmayacak, görüntü kirliliği yaratmayacak şekilde ve turistik kıyı bölgeleri dışında kurulmalarına dikkat edilmelidir. 3. DENİZ SUYUNUN KİRLENMESİNE KARŞIN ALINACAK BAZI ÖNLEMLER Örneğin gereğinden fazla plastik poşet ambalajlarının kullanılmaması, Almanya’da olduğu gibi plastik şişeler yerine dönüşümlü cam şişelerin kullanılması. Gereğinden fazla temizlik maddelerinin kullanılmaması, Yağımsı, asitli maddelerin kanalizasyona dökülmemesi, Çökeltme ve eleme göletlerin, tagarlarin yapılması, Konutsal çöplerin artıkların ayrı çöp bidonlarına ayrıştırılması gibi çok basit ve ekonomik bazı önlemlerle deniz suyunun temiz kalmasına katkıda bulunabilir. Önem sırası dikkate alınmadan önlemlerin sıralanması: a.Zehirli, boğucu, renklendirici, mikroplu fabrika atıklarının merkezi arıtma ve dinlendirme tesislerinden sonra denize ulaşmalarını sağlamak. Organize sanayi sitelerinde, bölgelerinde merkezi arıtma tesislerin yapımının faaliyetini şart koşmak. Büyük kapasiteli atık üreten fabrikalarda ön amaçlı arıtma tesislerin mevcudiyeti aranmalıdır. b.Küçük büyük yerleşim birimlerin kanalizasyona bağlanması ve atıkların merkezi arıtma tesislerinde zararlı bileşenler arındırılması ve yapay göletlerde dinlendirildikten sonra sulamaya veya akarsulara, denize akıtılmaları. c.Akarsu, (dere, ırmak, nehir..) ve deniz kenarlarına her türlü hafriyatın. Çöpün, artığın dökülmesinin önüne geçmek. Her nedense Türkiye’de yaz aylarında genellikle kuruyan dere, ırmak, çay gibi akarsuların kıyıları, içleri çöplükle, her türlü pisliklerle, zehirli maddelerle doldurulmaktadır. Yaz mevsiminden sonra ilk yağan küvetli yağmurla karadaki çöpler, pislikler, zararlı ve zehirli maddeler denize dökülmektedir. Sekil 3. Parça resim III.1 de yağmurdan sonra İzmir Limanı bütününde deniz üstünde yüzen çöplükler görülmektedir. d.Akarsuların, derlerin denize dökülmeden evvel yapay göletlerden geçirilmeleri, dinlendirilmeleri.. süzgeç- bariyerlerden geçirilmelerini sağlamak e.Liman içlerinde ve sığ sularda balık avlanmasını belli bir süre yasaklamak, f.Kıyılara on mil kala balık avlanmasını kontrol etmek, sadece olta balıkçılığına örneğin, paragata izin vermek, Bu alan içerisinde sabit dikey ağlarla ve hareketli ağlarla örneğin, trata, trol ve gırgır gibi deniz dibini taraklayan balık avlama metotlarının yasaklanması,… g.Bilhassa liman içlerinden deniz diplerinden karadiken, (denizkestanesi) mideye, salyangoz, denizhıyarı ve yosun gibi deniz ürünlerin toplanılmasını yasaklamak, h.Deniz kıyılarının doğal yapısının korunmasına özen göstermek. Deniz su kenarından 50 m’ye kadar yapılaşmaya (konut, yazlık, otel v.b.) izin vermemek. i.Denizin devir daimini aksatacak dalyan, kordon, kütiskele, barınak, dalgakıran, balık, midye çiftlikleri gibi yapılara (Bilhassa liman içlerinde, boğazlarda) izin vermemek kumsalların her türlü araç trafiğine kapalı tutulması. j.Zaruri dolgularda çevreye en az zarar verecek şekilde yapılması, k.Deniz kenarlarından ve deniz diplerinden inşaatlar için kum, çakıl, taş toplanmasına izin vermemek. l.Deniz suyuna dik inen beton kordon duvarları yerine, su seviyesine kadar iri ufaklı topraksız kaya parçaların dökülmesi, m.Deniz uyunun devir daimini destekleyecek kanalların açılması. (Örneğin İzmir Limanında Bayraklı önlerinden denizin dibinde 2 –3 m genişliğinde, 2 m. derinliğinde tarak gemileri ile açılacak kanallar ve veya deniz dibine döşenecek borularla pis suyun acık denizlere taşınmasını kolaylaştıracaktır. Ayrıca açıktan temiz suyun liman girmesine de katkı sağlayacaktır. n.Denize acılan derelerde, deniz kıyısına yakın yerlerde tagarların açılması, (küçük kapasiteli pis, katıklı su dinlendirme havuzları, göletler Şekil 5) o.Halk yazılı ve görsel basınla konunun ehemmiyeti acısından bilgilendirilmelidir. Temiz çevre bilinci aşılanmalıdır. (Örneğin hanımların daha az sıklıkta çamaşır yıkamaları, daha az deterjan temizlik malzemeleri kullanmaları, gereğinden fazla poşet almamaları, Ağır atıkların, çöplerin, hafriyatın dere kenarlarına veya denize gizli dökülmemesi, kızartma yağlarının tuvalete dökülmemesi, Tamirhanelerde motor, fren yanık yağlarının kanalizasyona, dere kıyıların tenha yerlere boşaltılmaması gibi uyarılar. Evsel ve sanayi atik yağların haftanın belli günlerinde ücret karşılığında toplanması bu toplanan yağların rafine edilerek yakıt olarak kullanılması gibi projelere destek vermek ) p.Çevreyi kirletenlerin takibi, tespiti ve caydırıcı hapis ve para cezaların uygulanması q.Dolgu işleminin en kısa sürede tamamlanması, r.Dolgu işleminin suyun akıntısını engellemeyecek biçimde şekillendirilmesi s.Dolgu işlemi için hazırlanan projenin ilgili makamlar tarafından onaylı olması, Dolgu işlemi kıyı yerel yönetimlerin keyfine bırakılmamalıdır. 4. SONUÇLAR ·Deniz kıyıları her geçen gün farklı şekillerle kirletilerek deniz ekosistemini kendi kendini yenilenmeyecek, onarılmayacak derecede tahribat ediliyor. Birçok limanlarımızda, hatta büyük körfezlerde, Marmara denizi gibi kapalı denizlerde kirliliği ciddi boyutlara ulaşmıştır. Buraların deniz suyunda bırakın yüzmeyi, balık avlamayı; sahil şeritlerinde gezinmek, kordondaki banklarda dinlenmek, güneşlenmek bile denizden yayılan pis kokulardan, denizde yüzen lağımsı atıklardan, çöplerden, sümüksü mikroplu iğrenç yosunlardan, köpüklerden mümkün olmuyor. Deniz kirliliği Akdeniz`i tehdit eder boyutlara ulaşmıştır. ·Deniz kirliğin önemli nedenleri ve etkenleri bu çalışmada sıralanmıştır. Denizlerin eski temizliğine kavuşması için bu nedenler ve etkenler ortadan kaldırılması gerekir. Bu yapılmadıkça yürütülen mali külfetli projeler istenileni veremeyeceklerdir. ·Balık çitliklerinin deniz kıyılarındaki ürettikleri kirlilik, yerel yönetimlerin denize döktükleri arıtılmamış kanalizasyon suları yanında hiç denecek kadar azdır. Balık çiftlikleri deniz eko sistem için olmasa olamazlardandır. Öğretim üyeleri destekli Türk kamuoyunda balık çiftlikleri aleyhine koparılan yaygara manidardır! Balık çiftlikleri çevresinde gözlenen deniz suyu kirlenmesi, kıyı denizlerimizde yerel yönetimlerin ve bazı sanayicilerin sebep olduğu, kıyı deniz kirliliğinin bir parçasıdır. ·Deniz ekosisteminin bozulmasının nedenlerinden biri, kıyıların gelişigüzel topraksı hafriyatla, çöplerle v. b. artıklarla doldurulmasıdır. Kıyı dolgu işlemiyle deniz ekosistemine verilen zararın farkında ve bilincinde değillerdir. Her şeyden evvel kumlu, taşlı, kayalıklı kıyılarda yaşam ortamı bulan canlı arıtma tesisleri de yok edilmektedir. Deniz suyuna karışan toprak yayılarak daha sonrada denizin dibine çökerek deniz içindeki canlı ve bitkilerin havasızlıktan boğulmalarına sebebiyet verdiği göz ardı edilmemelidir. Bu nedenle kıyı dolgu işlerinde topraksı hafriyat yasaklanmalıdır. ·Kıyı yerel yönetimler, (bilhassa turistik sahillerde) kıyıları doldurularak yeşil saha, geniş yollar açacaklarına; - beldelerinin kanalizasyon ve arıtma sistemlerine ağırlık versinler, - toplu insan taşımacılıkta yaşanılan problemlerle ilgilensinler. ·Kıyı denizlerimizin ekosistem dengesinin berbat edilmesi ile o beldelerin turistik çekiciliği, balıkçılığı ve dolayısıyla önemli gelirleri, iş sahaları yok olacaktır. Deniz suyunun berraklığı, içindeki yaşam, su ürünleri, koyların temizliği, doğal güzelliği bu beldeleri ilgi çekici yaptığı unutulmamalıdır. Ve bu doğal güzellikler insanlığın geleceği için korunmalıdır.   PDF VERİLERİDE İNCELEYİN documents/k__y___deniz_11.doc documents/suyunonemiekolojiksorunlar.pdf  

http://www.biyologlar.com/denizlerimiz-ve-ekolojik-onemleri


Anguilla anguilla Yılan Balığı ve Özellikleri

Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Sınıf : Pisces (Balıklar) Alt Sınıf : Osteichthys (Kemikli Balıklar) Takım : Anguilliformes (Yılanbalığımsılar) Familya : Anguillidae (Yılanbalıkları) Tür : Anguilla anguilla (Anguilla vulgaris, Muraena anguilla) (Avrupa Yılanbalığı) Tarihçesi: M.Ö. 3. Yüzyılda yaşayan Aristo, "Toprağın bağırsakları" dediği solucanlara benzeyen bu canlılarla ciddi ciddi ilgilenmişti. M.Ö. 1. yüzyılda bir Romalı düşünür ise, "Yılanbalıklarının kaya parçalarına çarpan diğer balıkların derilerinden meydana geldiğini" ileri sürmüş. 17. yüzyılda Francesco Redi adlı doğabilimci, yılanbalığının bir balık olması nedeniyle ancak yumurta yoluyla üreyebileceğini belirtmiş. Sigmund FREUD'ta 19. yüzyılın sonlarına doğru çalışmalarında biyolojiye ağırlık verdiği dönemde, çağrıştırdığı cinsellik açısından yılan balığını tanımaya çalışmış ancak sonuçsuz kalmış. 1920 yılında Danimarkalı biyolog Johannes Schmidt, Atlantik Okyanusunda avlanırken, ağına takılan 77 mm boyunda yılanbalığı larvalarına rastladı.Bunları takip etti ve sonunda yılanbalığı larvalarının Atlas Okyanusunda, Amerikanın biraz açıklarında "Sargasso Denizi" denilen bölgede doğuyorlardı. Daha sonra uzun bir yolculuğa çıkıp Avrupa'ya kadar geliyorlar ve burada ulaştıkları tatlı sularda gelişip büyüdükten sonra yeniden denize dönüyorlardı. Avrupa kıyılarından Meksika'ya gidildikçe larvaların boyları küçülmekte, buna göre yılanbalıkları Meksika yakınlarında üremekte. Yılanbalıklarının yumurta ile üremelerine ilişkin ilk bilgi yumurtalıkların keşfi ile olmuş, ancak birçok bilim adamı yumurtaları bulmak için çok uzun bir süre uğraşmıştır. İtalyan bilim adamı Lazzaro Spallanzani, yılanbalıklarını 40 yıl boyunca incelemesine karşın yumurtalı bir bireye hiç rastlamadığını belirtmiş. 1974 yılında Japon bilim adamları yakaladıkları bir dişi yılanbalığını suni yolla döllemeyi denediler.Laboratuarda gerçekleşen deneyde,dişi yılanbalığı yumurtlar yumurtlamaz öldü.Karnı yarıldığında dönüş yolculuğunda hiç yiyeceği kalmadığı anlaşıldı. 1981 yılında Alman okyanus bilimci Friedrich Wilheim Tesch ilginç bir deney yaptı.Yakaladığı dört dişi yılanbalığını Sargasso Denizi'ne alıcılar bağlayarak bıraktı.Son sinyaller 700 metre derinlikten geldi ve daha sonra yılanbalıklarının izini kaybetti. Yılanbalığı gizemini ve efsane kimliğini hala koruyor. Genel Özellikleri Yılanbalıkları,her ne kadar sürüngene benzese de gerçek bir balık türüdür.Solungaçları vardır. Karın yüzgeçleri yoktur,ancak sırt ve göğüs yüzgeçleri vardır. Karın yüzgecinin olmaması bu balık türüne özgüdür. Üzerinde yoğun bir mukus tabakası olan, kaygan bir derileri var. Bundan dolayı çıplak elle tutulamaz.Yılanbalıkları geceleri hareketlidir,gündüzleri çamurun içine saklanırlar.Çayıra bırakıldıklarında suyun yönünü hemen bulabilirler. Susuz ortama karşı çok dayanıklıdırlar ve uzun süre su dışında kalabilirler. Çünkü bu hayvanlar,yağmurlardan sonra ıslak yerlerde, nemli çimenlerde kolaylıkla hareket edebilirler. Bundan dolayı bir nehirden başka bir nehre (yakın mesafede) bile geçebilirler. Turna balıkları,mersin balıkları ve su kuşları en büyük düşmanlarıdır.Kanları çok tehlikeli bir sinir zehiri içerir, kanı yara ve çatlaklara değmemesine özen gösterilmelidir.Isıtıldığında zehir parçalanır.Toplam 19 yılanbalığı türü vardır Vücut uzun yılan şeklinde, yanlarda hafif yassı olup küçük pullarla kaplıdır. Renk üreme zamanına kadar kahverengimsi sarı, üreme zamanı gelince gümüşidir. Ömürlerinin büyük kısmını (6-20 yaşa kadar) tatlı sularda geçirirler. Yumurtlamak üzere tatlı suları terk ederek denize açılırlar. Üremelerini Meksika Körfezinde gerçekleştirirler. Hayatlarında bir defa yumurta kaparlar. Yumurtlayan yılan balıkları ölür. Çıkan yavrular 3 yaşında, 65-70 mm boyuna geldiklerinde karasularımıza ulaşırlar. 20-60 yıl yaşarlar. Göçün ortaya çıkmasında en önemli nedenlerin başında; üremedir, yavruların yetiştirilmesi, kış gelmeden önce bulunulan bölgeden uzaklaşmaları gerekmektedir. Yaşam ortamındaki besin miktarında azalma, populasyonun artmasıyla birlikte yaşam alanının küçülmesi gelmekte.Yılanbalıklarını göçteki amacı; iç güdüsel olarak doğdukları yere ulaşıp üremek istemeleridir. Coğrafik Dağılımları: Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Larva Dönemleri Şubat ile nisan ayları arasında dünyaya geliyorlar. Larvalarına "Leptocephal" adı verilen larvalar küçük bir dil balığı biçiminde ve vücutlarına oranla iri siyah gözleri bulunur. Şeffaf görünümde olur,kasları iç organları görülür. Uzunlukları yaklaşık 5-6 milimetre arasındadır. Sargasso Denizi'nden Avrupa'ya kadar gelişi sırasında zooplanktonlarla ve küçük kabuklularla beslenirler. Bu hayvanları 14 dişiyle parçalayarak yer. Yolculuğunu, ya kendisini akıntılara bırakarak ya da küçük sürüngenler gibi hareket ederek tamamlıyor. Dokuz ayda tam 6000 km yol katettikten sonra Avrupa Kıyılarına ve 7000 km'den sonra da Akdeniz havzasına ulaşırlar. Yavru Dönemleri Larva Avrupa kıyılarına vardığında,tatlı su ortamına uyum sağlamak ve kıyıdaki haliçleri daha kolay aşmak için metamorfoz geçirip, saydam ve minyatür yılanbalığı haline dönüşür . Bu ortamda yaşayabilmek için iç basıncını ayarlar. Larva dönemindeki dişlerini kaybeder ve bundan dolayı beslenemez. Beslenmeme döneminin uzamaması gerekir . Nehirlerde ilerlerken büyümeye başlarlar. Yılda boyları yaklaşık 10 cm, kiloları da 20 gram artar. Tatlı suya ve nehirlerin içlerine ulaşmak için çok hızlı ve gruplar halinde hareket eder. Nehirleri tırmanmaya başlayıp bazen kıyıdan 200 km içerlere kadar sokulurlar. Ancak daha fazla ilerleyemezler. Çünkü akarsular üzerinde barajlar ve setlere takılırlar. Grup halindeki dolaşmaları, kıyıdaki haliçlerde beyaz lekeler oluşturur. Belli bir süre sonra bir yere yerleşirler. Burada ikinci metamorfoz olur. Küçüklük Dönemleri Halk arasında "sarı yılanbalığı" denilen 3. aşamaya ulaşırlar. Bu metamorfoz aşamasında cinsiyeti belirlenir ve bu dönemde çok saldırgan olurlar. Derisinde beliren pigmentler nedeniyle rengi yavaş yavaş koyulaşır. Yemek borusu açıldığından yeniden beslenmeye başlıyor. Geceleri avlanmaya çıkarlar; Kız böceği, sinek, çamca balığı yiyerek beslenirler. Kış aylarında sularında soğumasıyla da kendini çamura gömerek kış uykusuna yatar. Nehir boyunca günde birkaç kilometre mesafe katederek sonunda bir süre sabit kalacağı noktaya ulaşır. Bugün yeryüzündeki yılanbalığı sayısının azalmasının temel nedenlerinden biri de onun yol aldığı bu nehirlere insanoğlunun inşa ettiği baraj ve setler. Bu dönemde uzunluğu cinse göre farklılık gösterir. Erkeklerde 5-8 yıl sürerken, dişilerde 7-12 yıl devam eder. Bu süre sonunda geldikleri yere dönmek için yola çıkarlar. Amaçları, tamamen içgüdüsel biçimde Sargasso Denizi'ne ulaşmak ve orada çiftleşmek. Yolculuğa çıkmadan son metamorfozlarını da geçirirler. Yetişkinlik Dönemleri Açık ve tuzlu su için gerekli metamorfozları geçirir. Derisi kalınlaşır,derinliklerin karanlığında yolunu daha iyi görmesi için gözlerinin hacmi artar ve bilye büyüklüğüne ulaşır. Daha önce vücudunun üçte birini oluşturan yağ tabakasını eritmeye başlar. Başını ön tarafı daha sivrileşir;böylelikle daha ince,aerodinamik bir yapı kazanır. 6 ile 13 yıl arasında bir süre bu yeni mekanında yaşıyor ve irileşiyor. Derisinin rengi ;karın kısmı gümüşümsü,sırt kısmıysa daha koyu bir görüntü kazandıktan sonra,12 gün içinde açık denizdeki yeni yolculuğuna hazırlanıyor. Boyu 1.2 metreye ulaşıyor ve vücudunun iç basıncını yeniden tuzlu suya göre ayarlıyor. Dönüş yolunda,akıntılardan mümkün olduğunca kaçınır ve bunu tamamen içgüdüsel olarak yapar. Geri dönüş yapan bir yılanbalığı bugüne kadar ,Avrupa kıyısından başlayarak tüm Atlas Okyanusu boyunca izlenememiştir. Sargasso Denizine ulaştıktan sonradaki yaşamları konusunda da bilgiler tam değildir. Dönüşü 120-200 gün süren yılanbalığı çok derin sularda yüzdükleri ve çok ağır basınç altında kaldıkları belirtiliyor. Basınç sayesinde üreme organları gelişmektedir ve hormon salgılamaya başlarlar.Sargassso Denizi'nin 600 metreye varan derinliklerinde çiftleşmeye uygun konuma gelirler. Dişilerde yumurtalar toplam kilosunun yüzde 80'ine ulaşır,yani 800 gram yumurta taşır. Renkleri: Yılanbalıklarında çeşitli renklenmeler görülür. Doğduğunda saydamdır.Nehirlere girinceye kadar bu formunu korur, nehirlere girdikten sonra renk pigmentleri oluşur. Rengi kahverengi sarımsıya döner,cinsel olgunluğa tam erişmemiştir.Bu hayvanlara sarı yılanbalıkları denir. 10-15 yaşlarında ise sırtları siyah, karın kısımları gümüşi renk alır.Cinsel olgunluğa erişmiştirler.Bu hayvanlara parlak veya gümüşi yılanbalıkları denir. Habitat ve Coğrafik Dağılımları Dipte, çamura bağlı olarak,tatlı suda ve denizde yaşarlar.Atlantik Okyanusu, Akdeniz, Batlık Denizi, Karadeniz ve bunlara akan akarsularda bulunurlar. Kuzey Afrika'da Cezayir'de görülebilirler.70 ile 25 kuzey enlemleri arasında dağılım gösterirler.Göçleri bütün Akdeniz, Baltık Denizi, Kuzey Denizi, Atlas Okyanusu ve Adriyatik Denizine dökülen nehir ve göllerden yola çıkan Avrupa yılanbalıklarının göçü Meksika Körfezi'nin 800 ile 1000 metre derinliklerinde son bulur.Sadece Avrupa yılanbalığı (Anguilla anguilla) ülkemiz iç sularında yaşar.Akdeniz ve Ege 'ye dökülen bütün göl ve nehirlerimizde bol miktarda bulunan yılanbalığı Batı Karadeniz'den Sakarya Nehri'ne kadar yayılan bir yaşam alanına sahip. Ekonomik Önemi: Bir çok ülkede beğenilen ve oldukça fazla tüketilen bir besin.Balık yetiştiriciliğinde genelde suni olarak balıkları üretmek mümkünken, yılanbalıkları suni olarak henüz üretilebilmiş değil.Yetiştiriciliği göç sonucu nehir ağızlarına gelen yılanbalığı larvalarının yakalanarak büyük havuzlarda beslenmeye alınmasıyla yapılmakta.Yakalanan yavruların bir kısmı doğrudan besin olarak tüketilir.1 kg yılanbalığı yavrusu 2800 ile 3500 arasında birey içerir.Avrupa kıyılarında yakalanan yavru balık miktarının yıllık 300 ton civarında olduğu söylenmekte.Bu miktar 900 milyar ile 1 trilyon arasında yavru balık anlamına geliyor. Türkiye kıyılarına ulaşan milyonlarca yavru balık büyük sürüler oluşturarak iç sulara girer.Nehir üzerindeki barajlara,yakındaki nehirlere,geceleri karaya çıkarak çamur ve nemli çayırlar üzerinden ilerleyerek ulaşabilir.Ülkemizde Akdeniz ve Ege kıyılarına dökülen nehirler üzerine yapılan barajlarda,balıkların yukarı çıkabilmesi için şelaleler yaparak yükselen balık merdivenleri bulunmadığından özellikle Gediz Nehri üzerindeki barajlarda, yavru balıkların türbinlere girmeleri,karaya çıkarak yukarı çıkmak istemeleri sonucu büyük kısmı telef olmakta. Nehirlere girişi,denizlerdeki akıntıları yardımıyla güney kıyılarından itibaren başlıyor. Aralık ve mart ayları arasında nehirlere giren yılanbalıkları,6-9 sene için denizlere kitlesel göç yapıyor.Yılan formunda olduğu için yerli halk tarafından tüketilmiyor ancak ;yurtdışında oldukça yüksek düzeyde alıcı buluyor. FAO'nun (Dünya Tarım Örgütü) ülkemizde yetiştiriciliğini tavsiye ettiği üç su ürünü karides,yılanbalığı ve süs balıkları arasında,ekonomik olarak en hesaplısı olan yılanbalıkları için hiçbir girişim yapılmıyor. Türkiye su ısısının Avrupa'ya göre yüksek olması,bu balığın göç dönemlerinde farklılık oluşturuyor.Avrupa'da yılanbalığı avcılığı mayıs-ekim dönemlerinde,ülkemizde ise eylül-ekim dönemlerinde gerçekleştiriliyor.Meriç Nehri 9.kilometrede Yunanistan sınırları içine kıvrılmış durumda.Bu noktadan itibaren sularının büyük bir kısmı Yunanistan sınırları içinden denize dökülmekteyken yatağındaki bu değişim, beraberinde bir çok sorunu da getirmiş. Yılanbalıkları içgüdüsel olarak akıntıya karşı yolculuk etme eğiliminde olduklarından, debisi giderek artan Yunanistan sınırlarındaki Meriç ağzında giriş yapmaya başladılar.Balıklar,geri dönüşte de aynı yol izlediklerinden, epeydir Yunanlı balıkçılar tarafından 9. kilometrede ve Meriç ağzında kurulan ağlarla avlıyorlar.Bugün Enez'de yılda sadece 1.5 tonluk bir üretimimiz var.Meriç'in 9. kilometreden ayrılan Türkiye kolunun debisinin azalmasıyla artık nehir yatağı giderek mıcır, taş yığınlarıyla dolmuş bulunuyor. Ekonomik olarak önem kazandığı yörelerimizin başlıcaları: Enez, Çandarlı (İzmir), Söke (Dalyan), Güllük (Muğla), Köyceğiz dalyanı ,Oragon çayı... Göç Sırasında Yön Bulma Yetenekleri Göç eden hayvanların yön bulma yetenekleri bilim dünyasında pek çok araştırmaya konu olmuş. Bu görüşlerden bazıları şöyledir; 1-) Göç sırasında dünyanın manyetik alanını kullandıkları görüşü: Dünyamızın bir manyetik alanı vardır. Bazı deniz memelileri, kuşlar, bazı balıklar, bazı böcekler, bazı mikro organizmalarda bu manyetik alanı saptayabilen algılayıcılar bulunur. Manyetoreseptör denen bu algılayıcıları sayesinde hayvanlar, uzun mesafeli göçte veya gezintilerinde yönlerini kolayca bulabiliyorlar. Ama bunun dışında kullandıkları referanslarda vardır. Yılanbalıklarının doğdukları yere geri dönüşleri, manyetoreseptörler ve suyun kimyasal yapısını tanımalarıyla açıklanmakta, denizlerde dahil olmak üzere her suyun, hatta her bölgenin kendine özgü bir kimyasal yapısı olur. Rota bu kimyasal bileşime göre saptanır. 2-) Sargasso Denizi'nde doğan canlılar, gelişme bölgelerine doğru göçerken suyun kimyasal yapısını belleklerine kaydederler. Gelişme dönemini tamamlayıp geri dönerken de, belleklerinde kayıtlı olan üreme alanlarına geri dönerler. Bu göçün tam anlamıyla bir yanıtı olmamakla birlikte kabul edilen bir görüşe göre dünyamızdaki kıtalar henüz birbirlerinden ayrılmamışken, yılanbalıkları bugün üredikleri yerde ürüyorlardı. Kıtaların ayrılmaya başlamasıyla, kıtalar arasındaki mesafeler uzadı. Milyonlarca yıl sonra bugün ki durumuna geldi. Göç başta kısa mesafelerde yapılırken, kıtalar birbirinden ayrılıp uzaklaşınca göç mesafesi de arttı. Sargasso Denizi belki de onların yumurtlamak için en uygun koşulları ( suyun sıcaklığı, kimyasal yapısı, bölgenin jeomanyetik alanı vb) sağlayan bir bölge olduğu için binlerce yıldır aynı bölgeye gelip yumurtlamakta. Yılanbalıkları iç güdüsel olarak göç ederler,yani ilk doğdukları yere giderek orada doğurur ve ölürler.Bu olay tamamen kalıtsal bir davranıştır. Zaten bununla ilgili görüşler ileri atılmıştır. Yılanbalıkları belirli periyotlarda bu göç olayını gerçekleştirirler ,yani; belirli bir büyüme sonunda göç etmeye başlarlar ritimleri bellidir.Göç olayı çiftleşme ,solunum gibi düşünülebilir.Sadece yılanbalıkları göç etmezler ;kuşlar,balıklar..vb İkinci Göç Bu göç, yılan balıklarının doğduğu yere üremek için yaptıkları göçtür. Gümüşi yılan balıkları sonbaharda, tatlı suları terkettiklerinde cinsi olgunlukları tamamlanmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Sargossa"daki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaşacağı zamana kadar, denizde beslenmeden hayatta kalabilmektedir. 5000 km"lik uzun ve tehlikeli göçün tek hedefi, doğdukları yere ulaşıp üremektir. Üreme alanında deniz derinliği 4-5 bin metredir. Yılan balıkları yavruları ise 400-500 metrede güneş ışınlarının son ulaştığı derinliklerde yakalanırlar. Yılanbalıklarının yumurtladıktan sonra öldüğü tahmin edilmektedir. Avrupa Yılan Balığının Ürediği Yer: Sargossa Denizi Yılan balıklarının üreme alanları Peurto Rico ve Bermuda Adalarından eşit uzaklıklarda bulunmaktadır. Sargossa denizi bir kuyu şeklinde ve 1000 m derinliğe kadar bir bölgede tuzluluk oranı % 0,35 ve su sıcaklığı 17 dereceyle, yılan balıklarının üreme sahaları olarak diğer bölgelerden ayrılır. Yılan balıkları tam olarak nerede toplanıyorlar? Yumurtlamaları nerede oluyor? Erkekler nerede bu yumurtaları döllüyorlar? Bu yerler ve olaylar hiçbir kimse tarafından gözlenememiştir. Sadece bu olayların anılan bölgede olduğuna dair bir çok bilgiye sahibiz... Yılan balıkları derin su balıklarıdır. Tatlı sulara geçici olarak, büyümek için gelmektedirler. Sargossa denizinde 400 metre derinlikte yumurtadan çıkmış yılan balıkları, 15 yıl sonra tekrar üremek için aynı sulara geri dönmektedir. Üreme zamanına ulaşan yılan balıklarını, tatlı sulardan denizlere göç ettiği dönemde “gümişi yılan balığı” adı verilir. Bu dönemde yılan balıkları yumurtaları incelendiğinde üreme organı içinde yağ damlaları gözlenmektedir. Bu durum yumurtaların deniz dibinde değil orta sularda olabileceğini kanıtlamaktadır. Sargossa denizinde derinlik 4500 metre dolaylarındadır. 400-500 metre derinlik bu denizde güneş ışınlarının ulaşabildiği son derinlik olmakta, 500-600 metreden sonra ise hayat güçleşmektedir. Üremenin bu derinlikte olmasından sonra, yumurtadan çıkan larvaların büyüyerek yükselmeye başladıkları saptanmıştır. Örneğin 5-15 mm boyundaki yılan balığı larvaları 100-300 metre derinliklerde rastlanırken, biraz daha büyükleri ve bu denizden uzaklaşmış olanları 50 m civarındaki derinliklerde bulunmaktadır. Bütün bu bilgiler yılan balıklarının döllenmiş yumurtalarının bu bölgede izlenememiş olmasına rağmen, üremenin bu bölgede olduğunu kanıtlayan veriler olmaktadır. Aynı bölgede Mart ve temmuz ayında milyarlarca leptosefalus larvasının gözlenmiş olması, üremenin ilkbahar ve yaz başlangıcında olabileceğine işaret etmektedir. Yumurtlayan Yılan Balıklarına Ne Oluyor? Yumurtladıktan sonra yılan balıklarının akibetlerinin ne olduğu günümüzde hala bir bilinmezdir. Çünkü yumurtladıktan sonra Avrupa kıyılarına geri dönmüş tek bir yılan balığına raslanamamıştır. Bu durumda iki hipotez ileri sürülmektedir: Bunlardan ilki yılan balıkları yumurtladıktan sonra derin dip balığı olarak yaşamını sürdürür. Diğeri ise, yılan balıkları yumurtladıktan sonra kitle halinde ölürler. Bu iki görüşten ikincisini destekleyecek bir çok delil bulunmaktadır. Gümüşi yılan balığı olarak adlandırılan üremek için denizlere açılmaya yönelmiş bir yılan balığında anüs yapısının bozulduğu, sindirim sisteminin deforme olduğu ve kaslarda değişim başladığı gözlenmiştir. Bazı balık türlerinde de üremeden sonra ölüm olduğu bilinmektedir. Örneğin som balıkları yumurtlamak için denizlerden nehirlere göç ederler. Ve hepsinin yumurtladıktan sonra öldükleri gözlenir. Öyleyse yılan balıklarının da üredikten sonra öldüklerini kabul etmek yanlış olmayacak ve bunların 4500 m’ye varan derinliklere çöküp çürüdüklerini kabul etmekten başka yorum kalmayacaktır. Yumurtadan Çıkan Larvaların İlk Yolculuğu Yumurtadan çıktıktan sonra larvalar için önemli, uzun ve güç bir yolculuk başlar. Üreme alanının hemen çevresine üreme mevsiminde milyarlarca larva dağılarak yol almaya başlarlar. Larvalar kuzeyden Labrodor"dan gelen soğuk su akıntısı ve güneyden Ekvatordan gelen sıcak su akıntısının zararlı etkisi nedeniyle bu yönlere gitmezler. Amerika kıtasına gitmeyi tercih etseler, Amerika kıyılarına kısa sürede ulaşacaklar ve metamorfoz denilen normal vücut değişimlerini (3 yıl gerekir) sağlayamadan kıyılara ulaştıkları için ölmekten kurtulamayacaklardır. Aynı bölgede Amerikan yılan balıkları da üremesine karşın, onların yavruları tatlı suya girebilecek morfolojik değişime 1 yılda ulaşırlar, bu yüzden Avrupa kıyılarına doğru değil, Amerika kıyılarına doğru göçe başlar. Çünkü morfolojik değişimden hemen sonra beslenemez ise onlar da ölecektir. Böylece bu balıklarda, beslenme sahaları olan tatlı sulara ulaşma süreleri ile morfolojik değişimleri tamamlama süreleri birbirini takip etmektedir. Ilkbahar başında yumurtadan çıkan larvalar defne yaprağına benzer ve bunlara leptosefalus denir. Bu larvalar Meksika körfezinden başlayıp Batı Avrupa kıyılarına kadar gelen sıcak su akıntılarıyla Avrupa kıyılarına kadar göç ederler. Şimdiye kadar yakalanan en küçük larva 7 mm olup, 75- 300 metre derinliklerde rastlanmıştır. Avrupa kıyılarına yaklaştıklarında boyları 75 mm"ye ulaşmaktadır. Avrupa yılan balığı larvalarının kat ettikleri mesafe 5000 km, Amerikan yılan balıklarının 1000 km kadardır. Larvalar kıyılara ulaştıklarında, defne yaprağı şeklinden yılan balığına benzeyen silindirik bir şekle dönüşmeye başlar. Vücut büyüklüğü ve ağırlığı artar. Larva dönemine ait dişler kaybolur. Larva döneminde mikroskobik canlılarla beslenirler. Avrupa yılan balıkları su akıntılarıyla nehir ağızlarına geldiklerinde 2.5 yılı geçmiştir. Türkiye kıyılarına gelmeleri ise 3 yılı bulmaktadır. Nehirlere giren yılan balıklarının zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara "Sarı Yılan Balığı" denir. 14-15 yıl kadar sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenme, etçil olarak dip canlılarıyla ve diğer balıklarla olmaktadır. Büyümesi yaşadığı ortama bağlıdır. Dişi balıklar (45-150 cm), erkeklerden (50 cm) daha büyüktür. Büyümedeki farklılık ve yaşadığı ortam cinsiyetin ayırt edilmesini sağlar. Erkek balıklar nehir ağzında kalırken, dişi bireyler kaynağa yakın yerlerde bulunur. Su dışında uzun süre yaşayabilen, susuz ortamda dayanıklı olan yılan balıkları, ıslak zeminlerde, nemli çimler üzerinde kolayca hareket edebilir. Hatta deniz-tatlı su bağlantılı bataklık alanlarda çamur içinde çok rahat hareket edebilen, bu balıkları, bu alanlarda 1-1,5 metre çamur içinde bulmak hiç de şaşırtıcı olmaz. 15 yaşına kadar tatlı sularda büyüyen sarı yılan balıkları ikinci bir değişim geçirir. Karın kısmı, gümüşi, sırt kısmında koyu bir renklenme görülür. Vücutlarındaki yağ oranı artar (vücut ağırlığının %30"unu geçebilir) Bu aşırı yağlanma onun Sargossa denizine yapacağı zorlu göçte dayanmasını sağlar. Zira yılan balıkları yaklaşık 18 ay sürecek bu göçte hiçbir besin almazlar. KAYNAKÇA: Alpbaz A., Hoşsucu, H., 1988. Iç Su Balıkları Yetiştiriciliği, Ege Üniversitesi Su Ürünleri Y.O. Yayınları No:12, 1-98 s. Izmir. Güner, Y., Kırtık, A. 2000, Yılan Balığı Biyolojisi ve Yetiştiriciliği. Tarım Bakanlığı Hizmet içi Seminer Notları. 32 sayfa. Bilim ve Teknik Dergisi ; Kasım 2002 Atlas Dergisi ; Mayıs 2000 Focus Dergisi ; Eylül 1998 Omurgalı Hayvanlar, Prof.Dr.Mustafa KURU   Yılan Balığı Yetiştiriciliği Yılan balıkları modern sınıflandırmada balıklar sınıfından Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Avrupa yılan balığı dışında K.Amerika ve Grönland!a ait Anguilla rostrata; Çin ve Japonya'da Anguilla japonica; Avustralya ve Y.Zelanda'da A.dieffenbachi ve A.australis türleri bulunur. Yılan balıkları kesinlikle karasal bir hayvan değildir. Bir balık türüdür. Sadece karın yüzgeçleri yoktur. Hayatları boyunca yumurtadan çıktıktan sonra 5 dönem geçirirler. İlk dönem larvaların yumurtadan çıktıktan sonraki keseli dönemidir. İkinci dönem 1-3 yıl arasında değişen larva dönemidir. Üçüncü dönem larvanın leptocephalus safhasındaki elver tabir ettiğimiz safhaya geçiş dönemidir. Dördüncü dönem elver haline gelen balıkların nehirlere veya göllere girerek yaşamalarıdır. Beşinci dönem de yılan balıklarının üremek için denize seyahat ettikleri dönemdir. Yılan balıklarının yumurtlamak için Sargossa Körfezine gittiği ve yumurtladıktan sonra öldükleri sanılmaktadır. Avrupa'da uygulandığı gibi yılan balığı yavrularının stoklanması şekliyle yetiştiriciliği yapılabilir (extansive). Bu yöntemlerde acı su (%010-20 tuzluluk) tabir edilen dalyanlarda veya göllerde yavru yılan balıkları kontrollu bir alan bırakılır. Gelişme tamamen doğal koşullara bırakılır. Yapay yem kullanılarak gelişme desteklenebilir. Üretim oranının 5-20 kg/dekar arasında değiştiği bildirilmektedir. Japonya'da uygulandığı gibi kontrollü yetiştiricilik yapılabilmektedir (Intensive). Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. • Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. • Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. • Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. 1. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. 5.2. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Beş farklı yöntemi vardır: Durgun Su Yöntemi: En eski ve yaygın yöntemdir. Balıkların oksijen ihtiyacının fitoplanktonlar vasıtası ile karşılanması esasına dayalıdır. Yılan balıklarına 12 ºC'nin altında yem verilmez zaten gelişme de olmaz. Bu yetiştirme yönteminde 3-4 dekarlık havuzlar kullanılır. Metrekarede 2-4 kg. balık yetiştirilebilir. Başarılı bir yetiştirme için sıcaklığın 23-30ºC arasında olması gerekir. Başarılı bir üretimde balıkların 2 yıl veya daha az sürede 150-200 gr.a ulaşması beklenir. Akarsu Yöntemi: Bu yöntemde havuzlar küçük tutulur. Alanları 150-300 m² arasında olur. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyu bulunması gerekir. Yöntemin başarılı olması için su sıcaklığının 23ºC den yüksek olması gerekir. Bu yöntemde üretime alınacak balıkların başlangıç olarak 30 gr. Civarında tutulması gerekir. Ağ Kafes Yöntemi: 2 x 3 x 1,5 m ölçülerinde 18 x 7 mm. Ağ gözlü metal veya tahta kafesler kullanılabilir. Kafes başına 20-30 kg. arası yılan balığı konulabilir. Yöntem yenidir ve hala geliştirme çalışmaları devam etmektedir. Tünel Yöntemi: Bu yöntemde ticari bir işletme kurulmamış olup, bilimsel denemeler başarılı yetiştiricilik çalışmalarının yapılabileceğini göstermiştir. Yılan balıklarının karanlıkta yem alma eğilimlerine dayanarak yapılmıştır. Bu çalışmada amaç balıkların gündüz saklanması mümkün olabilecek karanlık tünellerin hazırlanmasıyla doğal ortama yakın bir ortamın yaratılmasıdır. Sirkülasyon Yöntemi: Devamlı olarak sirkle edilen suyun kullanılması yolu ile yetiştirme yapılmasına dayana yöntemdir. Bu tür çalışmada 2 tür havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan sı devamlı olarak bir motopomp vasıtasıyla filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel ve biyolojik temizlenmesi yapılır. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: • Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. • Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. • Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. • Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. • Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. • Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. • Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. • Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. • Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; • Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7’ nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. 5.5. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR   Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. Yusuf GÜNER Ali KIRTIK E.Ü. Su Ürünleri Fakültesi Yetiştiricilik Ana Bilim Dalı 35100 Bornova/İZMİR PDF DÖKÜMAN İNCELE : documents/ck37.pdf    

http://www.biyologlar.com/anguilla-anguilla-yilan-baligi-ve-ozellikleri

Alglerin içerikleri ve insanlar üzerine etkileri

ALGLERİN EKONOMİK VE EKOLOJİK ÖZELLİKLERİ, SINIFLANDIRILMASI VE ÜREME TİPLERİ

http://www.biyologlar.com/alglerin-icerikleri-ve-insanlar-uzerine-etkileri

Ahtapotlar Nasıl Renk Değiştirir?

Ahtapotlar Nasıl Renk Değiştirir?

Birçok hayvan kamuflaj yetenekleri sayesinde bulundukları yaşam ortamının rengini alarak kamufle olurlar

http://www.biyologlar.com/ahtapotlar-nasil-renk-degistirir

Hidrotermal Bacalarda Yaşamın Oluşumu: Demir Kükürt Kuramı

Yüzyıllarca insanoğlu canlı populasyonlarının sadece güneşe bağlı olarak yaşadığını ve bu şekilde evrildiğini düşünüyordu. Güneşe bağlı yaşamları bir piramit gibi düşündüğümüzde piramitin en alt kısımında fotosentez yoluyla organik madde üreten ototrof canlılar geliyordu. Piramitin orta kısmında bu ototrof canlıların ürettiği besinlerle beslenen otçul heterotrof canlılar, piramitin en üst kısmında ise bu canlılarla beslenen etçil heterotrof canlılar geliyordu. Tabi her populasyonda olduğu gibi tüm bu canlıların ölümü halinde çürümüş bedenleriyle beslenen ayrıştırıcı bakterileri de unutmamak gerekir. Ancak gelişen bilim ve teknoloji sayesinde tüm bu olgular kökten değişecekti. 1977 de John B. Corliss ve John M. Edmond ismindeki deniz araştırmacıları okyanusların tabanında yaşayabilen bir tür balina türünü izlemek üzere okyanus tabanlarının yüksek basıncına dayanıklı bir denizaltı aracı geliştirdiler. Alvin isminde iki kişi alabilen bu denizaltıyla yaklaşık 3000 metrelik okyanus tabanına daldılar. Aya benzeyen bir eğimin üzerinden geçtiklerinde aniden Alvin’in ışıkları biyologları şaşırtan rengarenk bir organizma topluluğunu aydınlattı. Altı ayaklı, kırmızı ağızlı tüp kurtları, büyük ve beyaz deniz tarakları, sarı midyeler ve yengeçler…Yüzeyden binlerce fit derinlikte bulunan bu canlı kümesine bilim insanları daha sonra "Gül Bahçesi " ismini verecektir. Ancak umduklarını bulamayan araştırmacılar, aslında farkında olmadan bilim dünyasını sarsacak farklı bir bilimsel keşife imza atmışlardı. Bu keşif sayesinde biyoloji kitapları yeniden yazılmak zorunda kalınacaktı. Aslında o derinlikteki basınç altında hiç bir canlının yaşayamayacağı düşünülüyordu. Su yüzeyene çıkan araştırmacaılar, beraberinde aşağıdaki resimde görülen siyah bir duman tüten hidrotermal bacaları ve bu bacalar etrafında yaşayan organizmaları görüntülemişlerdi. İlk başta bakıldığında hiç bir anlam ifade etmeyen bu fotoğraf zaman içerisinde araştırmaların daha sık artmasıyla önem verilmeye başlanacaktı. Peki bu bacaların yapısı neydi ve nasıl oluşuyorlardı? O dönemde bilim dünyasında büyük yankı uyandırmış olan hidrotermal bacaların çevresinde yaşayan organizmaların olması, aynı tarihlerde Alman bir kimyacı ve patent avukatı olan Günter Wächtershäuser'i farklı bir düşünceye götürmüştü. Acaba ilk yaşam bu bacaların çevresinde başlamış olabilirmiydi? Wächtershäuser hemen bu konuyla ilgili olarak bir hipotez ortaya atar. Hipotezine göre, erken dönem bir metabolizma biçiminin genlerden önce oluştuğunu savunmaktadır. Burada metabolizma diğer işlemler tarafından çalıştırılacak biçimde enerji üretecek bir kimyasal tepkime zincirini ifade etmektedir. Bu düşünceye göre bir kez ilkel metabolik zincir oluşturulduktan sonra bu daha karmaşık sistemler oluşturmaya başlamıştır. Teorinin anahtar fikirlerinden birisi bu erken dünya okyanuslarında ki yaşamın kimyasının yoğun solüsyonda değil de derin hidrotermal gölcüklerin hemen yanı başında (örnek: demir piritler) bulunan mineral yüzeyler üzerinde meydana geldiğidir. Ancak hipotez yıllar geçtikçe her yeni araştırma sonunda yeni bir kanıtın sunulmasıyla giderek bir kuram olmaya başlamıştı. Dünya ergimiş magma yapısı gereği sürekli hareket halindedir. Kıtalar adeta ergimiş magma üzerinde yüzercesine hareket edrler. Ayrıca okyanus tabanlarında da yerin altından gelen bu yüksek basıncın etkisiyle uzun yarıklar boylu boyunca uzanırlar. Bu yarıklardan sürekli olarak yerin altından gelen hidrojen (H2), metan (CH4), hidrojen sülfür (H2S), karbondioksit (CO2), hidrojen siyanid (HCN), formaldehit (HCHO), nitrojen (N2), kükürt dioksit (SO2) gazları çıkmaktadır. Bu yarıklardan giren su, 1200 °C lik sıcaklıkdaki ergimiş halde bulunan kayalar (magma) tarafından ısıtılır. Isınan su basıncın etkisiyle magmadaki Fe,Ni,Mn,Cu gibi metal iyonlarını, silisyum silikatlı, kalsiyum karbonatlı, demir sülfürlü ve bakır sülfürlü mineralleri bu yarıklardan suyun iç yüzeyine doğru fışkırtırlar. Fışkıran bu mineraller sıcaklığın etkisyle anında çökelir ve zamanla birikerek hidrotermal bacaları oluştururlar. Demir sülfür, bakır sülfür ve karbonatlı yapılardan oluşmuş bu bacalarda çok küçük mikro odacıklar yer almaktadır. Bu mikro odacıkların yapısını oluşturan pirit (FeS2) molekülleri ve kalkopirit (CuFeS2) molekülleri bir katalizör gibi (yani bir enzim gibi) magmadan gelen gazları tutarak adeta bir fabrika gibi organik madde sentezler. Bu mikro odacıkların birbirlerine bağlı olması sebebiyle de oluşan bu organik maddeler bacanın daha üst kısımlarına ulaşır ve buralarda daha komplex polimerleri oluşturur. Böylece en üst kısımlardan ilkel koaservat yapıda basit canlıların oluştuğu düşünülmektedir. Milyonlarca yıl sonunda bu oluşan bu ilk koaservat yapıların evrim mekanizmalarının etkisiyle evrim geçirerek daha kompleks hücreler dönüştüğü düşünülmektedir. Oluşan bu canlılarda enerjisinin hidrojen sülfür ve karbondioksit gazlarından elde ettiği glikoz ile elde eder. Yani kemosentetik bir yaşam sürüyorlardı. Bugün birçok deniz canlısının derilerinde demir sülfür, bakır sülfür gibi minerallerine rastlanılması ve bu canlıların hücre zarlarında işlevsiz halde hidrojen sülfür tutulmasında görev alan sadece kemosentetik bakterilerde bulunan proteinlerin sentezleniyor olması bu kuramı desteklemektedir. Tüm bu oluşumları kimyasal tepkimlerle anlatan figür aşağıda gösterilmiştir. Bu hidrotermal bacaların iç kısımlarında sıcaklık ortalama 350-400 °C arasındadır. Ağız kısımlarında ise ortalama 150 °C dolaylarındadır. Normalde 100 °C de kaynayan su, derinliğin sebep olduğu basınç yüzünden bu kadar yüksek sıcaklıkta bile kaynayamaz. 1953 de Stanley Miller'in yaptığı ünlü deneyden sonra o zamana kadar ilkel dünya atmosferinin sadece metan ve amonyak gazlarından oluştuğu sanılırken, bu keşifle bu bilgininde yanlış olduğu anlaşılmıştı. Artık bu tarihten sonra yapılacak deneylerde amonyak gazı kullanılmayacaktır. Bu gaz yerine nitrojen gazı kullanılacaktır. Ancak unutulmaması gereken nokta nitrojen gazı serbest haldeki hidrojen gazıyla 400 °C lik yüksek sıcaklık ve basınç altındaki suda birleşerek çözünmüş halde amonyumu oluşturmaktaydı. Bu derinliklerde bu ortama çok iyi uyum sağlamış derin su yengeçleri, karides türleri, deniz yıldızları, kemosentetik bakteriler, boyları 3 metreyi bulan dev solucanlar ve önceden hiç rastlanmayan derin su balıkları yaşamaktadır. Buradaki hayat türüyle ilgili bilinmesi gereken önemli bir özellik vardır. Burada hayat fotosenteze değil kemosenteze dayalıdır. Fotosentez güneş ışığına dayanan bir reaksiyondur. Oysa bu kadar derinlere güneş ışığının erişmesi imkansızdır ve zifiri karanlıktır. Bu ortamda konunun başında bahsettiğimiz beslenme piramidinin en altında kemosentetik bakteriler bulunur. Bunlar bacalardan sıcak suyla fışkıran karbondioksit ve hidrojen sülfür elementiyle beslenirler. Kemosentez, bakterilere enerji sağlayan ve kimyasallara dayanan reaksiyonun adıdır. Diğer canlılar da bu bakterileri yiyerek enerji elde ederler. Bu keşfin ardından bir çok bilim kuruluşu harekete geçerek yaşamın kökenini buralarda daha çok aramaya başlamışlardı. Bugün aralarında NASA, ESA, Harvard, Cambridge, Oxford, Science gibi bir çok saygın üniversite ve bilim kuruluşu yaşamın bu hidrotermal bacalar etrafında başladığını düşünmektedir. Hatta NASA, bu hidrotermal bacaların evrende herhangi bir yıldızın çevresinde dönen gezegende yada uydu üzerinde de oluşmuşsa hayatın orada da başlamış olabileceğini vurgulamaktadır. Bu konuyla ilgili olarak NASA gözünü Jüpiterin doğal bir uydusu olan Europaya çevirmiştir. Bu uydunun en büyük özelliği yüzeyinde kalın bir buz tabakası yer almaktadır. NASA kalın bu buz tabakası altında Jüpiterin güçlü kütle çekim kuvvetinin etkisiyle uydunun iç kısımlarında sıvı halde bir okyanus olabileceğini varsaymaktadır. Eğerki bu sıvı okyanus içerisinde dünyada olduğu gibi hidrotermal bacalar oluşmuşsa bu bacaların etrafında dünyadakine benzer yaşamın oluşmuş olabileceğini düşünmektedir. 2014 yılında NASA bu uydu üzerinde araştırma yapması için bir uzay sondası fırlatacak. 2015 de varması planlanan uzay sondası kalın buz tabakasının ısıtma yoluyla önce kıracak sonrasında da derin okyanusun içerisine dalacak ve araştırmalar başlayacak. Bu şekilde belki de evrende yalnız olup olmadığımız sorusunun da cevabını almış olacağız. NASA' da çeşitli projelerde görev almış ve aynı zamanda da Harvard Üniversitesinde çalışan Nobel ödüllü Prof. Dr. Jack Szostak bu uydu üzerinde canlı olabileceğini inan ender kişilerden birisi. Öyleki Szostak, bilgisayar teknolojisyle uydu üzerinde canlıların yaşam biçimiyle ilgili bir modelleme bile yapmış. Bu modellemeyle ilgili figür aşağıda görülmektedir. Yaşamın Kökeni Kaynakça: - NASA, Jack Szostak; Antartica Hyrothermal Vents 2001 - en.wikipedia.org/wiki/Hydrothermal_vent - Tyler, Paul; German, Christopher; Tunnicliff, Verena (2005). "Biologists do not pose a threat to deep-sea vents". Nature 434 (7029): 18. - Devey, CW; Fisher, CR; Scott, S (2007). "Responsible Science at Hydrothermal Vents" - Hydrothermal Vents – Life’s First Home, Stephen Hart. NASA Astrobiology Institute, Nov 06, 2001 - astrobiology.arc.nasa.gov/news/expandnews.cfm?id=1128 - Russell MJ, Daniel RM, Hall AJ, Sherringham JA (1994). "A Hydrothermally Precipitated Catalytic Iron Sulphide Membrane as a First Step Toward Life". J Mol Evol 39: 231-243. - Wächtershäuser, Günter (2007). "On the Chemistry and Evolution of the Pioneer Organism". Chemistry & Biodiversity 4 (4): 584–602. - Günter Wächtershäuser, G (1992). "Groundworks for an evolutionary biochemistry: The iron-sulphur world". Progress in Biophysics and Molecular Biology 58 (2): 85–201.

http://www.biyologlar.com/hidrotermal-bacalarda-yasamin-olusumu-demir-kukurt-kurami

Hayvanlar; Omurgasız Hayvan

Tamamı heterotrof (hazır besin alan) canlılardır. Hücre çeperleri yok­tur. Kloroplast taşımazlar. Hayvanlar omurgalı ve omurgasız olmak üzere iki büyük gruba ayrılır. Süngerler, Sölenterler, Yassı Solucanlar, Yuvarlak Solucanlar, Halkalı Solucanlar, Yumuşakçalar, Kabuklular, Örümcekgiller, Çokayaklılar, Böcekler ve Derisi Dikenliler omurgasız hayvanlar grubunu meydana getirir. Balıklar, Kurbağalar, Sürüngenler, Kuşlar, Memeliler omurgalı hayvanlar grubuna ait canlılardır. Omurgasız Hayvanlar ve Özellikleri Omurgasız olarak adlandırılan canlıların yapılarında bir iç iskelet bulunmaz. Omurgasız hayvanların vücudunun dış kısmını örten ve destekle­yen bir dış iskelet bulunur. Omurgasız hayvanlardan bazıları suda, bazıları da karada yaşamaya uyum sağlamıştır. Yaşamın hiçbir evresinde, vücuda desteklik yapan bir sırt ipliği (notokord) bulunmaz. Sinir sistemi gelişimi, il­kel gruplarda uyartılara bölgesel cevaplar verilmesi şeklindeyken, gruplarda gelişmişlik düzeyine göre değişiklik gösterir. Gerçek dokulara sahip oluşla­rına göre, omurgasızlar iki gruba ayrılır: 1. Grup: Parazoa (Gerçek dokulara sahip olmayan canlılar) 2. Grup: Eumetazoa (Gerçek dokulara sahip canlılar) 1. Grup: Parazoa (Gerçek dokulara sahip olmayan canlılar) Omurgasız hayvanların ilk grubunu oluşturan bu canlılarda, gerçek dokular bulunmaz. Bir hücrelilikten çok hücreliliğe geçişin temsilcileri ola­rak kabul edilen bu canlılar, sadece hücresel düzeyde özelleşme gösterebil­mişlerdir. Bu nedenle de, vücutta belirli organ sistemlerinin varlığından söz edilemez. Hücreler tabakalaşma gösterseler de bazal lamina adı verilen yapı­nın veya hücreler arasında bağlantı bölgelerinin bulunmaması nedeniyle, do­ku varlığı kabul edilmez. Parazoa grubu a) Placozoa b) Porifera (Süngerler) olmak üzere ikiye ayrılır. a) Placozoa: Şubenin tek üyesi olan Trichoplax adhaerens en basit çok hücrelidir. Aynı zamanda, şimdiye kadar bilinen en az miktarda DNA içeren hayvansal orga­nizmadır. Ağız ve sindirim sistemi bulun­maz. Vücudu yassı ve asimetriktir. Yassı vücut yüzeyindeki tek tabakalı yassı epitel hücrelerinin her biri, bir adet kamçı taşır. b) Porifera (Süngerler) En basit yapılı çok hücreli hayvanlardır. Hiçbir sistemleri yoktur. Sün­gerlerde sadece hücresel düzeyde farklılaşma görülür. Üreme organları vücut­larının belli bir yerinde değildir. İskelet elemanları görülmesine rağmen, ger­çek doku ve organ bulunmaz. Hem tatlı sularda hem de denizlerde yaşarlar. Vücutlarında por denilen delikleri çoktur. Çoğunlukla şekil bakımından bitkilere benzerler. Kırmızı, mavi, gri, sarımtırak ve siyah renkte olabilirler. Eşey­siz çoğalmaları tomurcuklanma ile olur. İskeletleri organik ve inorganik mad­delerden meydana gelmiştir. Su vücuda osteum adı verilen açıklıklardan girer ve oskulum adı verilen açıklıktan çıkar. Su, vücut içerisinde akışı esnasında süzülür ve içeriğindeki küçük organizmalar besin olarak kullanılır. Sadece hücre içi sindirim görülür. Boşaltımda görevli olan kontraktil (vurgan) kofullar, hayvanlar içinde sadece süngerlerde bulunur. Sinir sistemleri yoktur. Uyartılara verilen tepkiler bölgeseldir. Ergin bireyler, daima bir yere bağlı ola­rak (sesil) yaşarlar. Bazı türlerinin ekonomik değeri vardır. 2. Grup: Eumetazoa (Gerçek dokulara sahip canlılar): Omurgasız hayvanların geri kalan tüm şubelerini ve hatta omurgalıları da kapsayan bu grubun canlılarında, gerçek dokular bulunur. Özelleşme, do­ku düzeyinden organ ve sistem düzeyine kadar, çeşitli gelişmişlik seviyele­rinde ortaya çıkar. Sölenterler (Coelenterata) Vücutlarının merkezinde bir sindirim boşluğu bulunur. Bu kısmı hem ağız hem de anüs olarak kullanırlar. Vücut dokusu iki hücre sırasından oluşmuştur. Dışarıdaki hücre sırasında canlıyı koruyan yakıcı kapsüller vardır. Deniz anası, Hidra ve Mercanlar sölenterlere örnek olarak verilebilir. Bu şubede ilk defa ağız oluşumu gözlenir. Ağız, aynı zamanda anüs görevin­dedir. Sindirim boşluğu gelişmiştir. Böylece hücre dışı sindirim de başlamış olur. Sinir sistemi sadece sinir ağı yapısındadır. Nöronlar kutuplaşmadığı için, uyartı her yöne doğru iletilir. Boşaltım ve solunum sistemleri yoktur. Solucanlar Omurgasız canlılardan olan solucanların çoğu tatlı sularda ya da dip çamurlarında yaşar. Balçık içindeki organik besinlerle beslenirler. Bazıları başka canlıları avlayarak beslenir, bazıları da asalaktır. Az da olsa denizde yaşayan türleri de vardır. Yassı solucanlar, yuvarlak solucanlar ve halkalı so­lucanlar olarak incelenirler. a) Yassı Solucanlar (Platyhelminthes) Vücut dorsoventral olarak yassılaşmıştır. Solunum, iskelet ve dolaşım sistemleri bulunmaz. Basit duyu organlarına sahiptirler. Yassı solucanlarda anüs ve damar sistemi yoktur. Parazit yaşayanların bazılarında sindirim sis­temi yoktur. Ağız hem anüs hem de ağız görevini yapar. Sinir ve üreme sistemleri vardır. Boşaltım sistemleri bulunur. Alev hücreleri taşıyan protonefridiumları vardır. Küçük bir grubu tatlı su ve nemli toprakta serbest, diğerleri insan ve hayvanlarda parazit olarak yaşar. Planaria ve tenyalar yassı solucanların en tanınmışlarındandır. b) Yuvarlak solucanlar (Nematoda) Nemli topraklarda, tatlı sularda veya denizlerde dağılım gösterirler. Vücut yüzeyi yumuşak ve esnek bir kütikula ile örtülüdür. Çoğu ayrı eşeylidir ve erkekler, dişilerden daha küçük yapılı olmaları ve vücutlarının arka kısmının uç tarafta kıvrılmasıyla ayrılırlar. Şubenin çoğu temsilcisi, ekonomik değere sahip olan hayvan ve bitki türlerinde parazittir. Parazit olan türlerde, genellikle bir başkalaşım evresi görülür. Sindirim sistemlerinde anüs ve ağız ayrılır. Çoğu bitki ve hayvanlarda parazit olup bazıları da su ve toprakta serbest olarak yaşar. Kancalı Kurt (Trişin) ve Bağırsak Kurdu (Ascaris) en çok bilinen örnekleridir. c) Halkalı solucanlar (Annelida) Vücutları çok sayıda halkanın sıralanmasıyla oluşmuştur. Vücutların­da baş bölgesi ayırt edilebilir. Sindirim kanalı özel bölümlere ayrılmıştır. Kapalı dolaşım görülür. Hermofrodit olmalarına rağmen kendi kendilerini dölleyemezler. Deri solunumu yaparlar. Ağız ve anüs oluşumu ile tek yönlü sindirim sistemi görülür. Sülükler haricinde bütün gruplarda solom (vücut boşluğu) odacıklara bölünmüştür. İçi sıvı ile dolu olan vücut boşluğu, hid­rostatik iskelet görevindedir. Sülükler dışında tüm üyelerde kapalı dolaşım sistemi görülür. Bu grup, en gelişmiş rejenerasyon (kendini yenileme) yeteneğine sahiptir. Top­rak solucanı ve sülük en tanınmış örnekleridir. Yumuşakçalar (Mollusca) Vücutları üç belirgin bölgeden oluşur: baş, kaslı ayak ve visceral kitle (organlar). Dorsal vücut duvarında manto boşluğu bulunur. Manto boşluğu­na sindirim, boşaltım ve üreme sistemlerinin ürünleri atılır. Bazı gruplarda manto boşluğu değişikliğe uğrayarak akciğerleri meydana getirmiştir. Manto aynı zamanda kabuk salgılar. Yumuşakçalarda açık dolaşım sistemi görülür. Gaz değişimi vücut yü­zeyi, solungaçlar, akciğerler ve manto ile gerçekleştirilir. Çizgili kas ilk defa bu grupta ortaya çıkar. Vücutlarında hem çizgili hem de düz kaslar bulunur. Sinir sistemi, deri altı sinir ağı şeklindedir. Karın bölgesinde kaslı ayakları vardır. Solungaç solunumu yaparlar. Ahtapot, salyangoz, midye yumuşakça­lara örnektir. Eklem Bacaklılar (Arthropoda) Hayvanların en geniş şubesidir ve tüm bilinen türlerin yaklaşık %’ünü içerir. Segmentli vücutları, eklemli üyeleri ve oldukça iyi gelişmiş organ sis­temleri bulunur. Genel olarak her segmentte bir çift üye bulunur. Vücutları baş (cephalo), göğüs (thorax) ve karın (abdomen)’dan oluşmuştur. Karasal yaşama en iyi uyum sağlamış omurgasızlardır. Açık dolaşım sistemi görülür. Ayrı eşeylidir. Basit bir solumun ve sinir sistemi vardır. Ağız ve anüs geliş­miştir. Sindirim sistemi tam ve tek yönlüdür. Açık dolaşım sistemi görülür. Gaz değişimi; deri yüzeyi, solungaçlar, trake sistemi veya kitapsı akciğerler ile gerçekleştirilir. Su akrepleri, at nalı yengeci, deniz örümceği örnek olarak verilebilir. Kabuklular (Crustacea) Eklem bacaklılar içinde yer alan ve iki çift anten taşıyan tek gruptur. Ancak tespih böceklerinde (Isopoda), karasal formlarda sadece tek bir çift anten bulunur. Diğeri kaybedilmiştir. Çoğu sucul ortamlarda yaşar ve sucul faunadaki hayvanlardan zooplanktonların önemli bir kısmını teşkil ederler. Bir kısım kabuklu ise, çeşitli hayvanların severek tükettiği besinler arasında sayılır. Örneğin Artemia, flamingoların diyetinin önemli bir elemanıdır. Vü­cut, baş-gögüs (cephalo-thorax) ve karın (abdomen) olmak üzere 3 belirgin bölgeye ayrılır. Kabukta kalsiyum biriktirilmesi ile, yapıda sağlamlık kaza­nılmıştır. Yengeç ve İstakozlarda (Decapoda), birinci bacak çifti makas şek­lini almıştır. Solunum, solungaçlarla gerçekleştirilir. Bacaklar da solungaç görevi görebilir. Açık dolaşım sistemi görülür ve toplar damarlar bulunmaz. Ayrı eşeylidirler ve gelişmelerinde genellikle metamorfoz (değişim) görülür. Çoğu kabuklu, güneş ışığına veya günün saatlerine göre dikey göç içgüdüsü­ne sahiptir. Tatlı su ve denizlerde yaşarlar. Üyeleri eklemlidir. Bazıları mik­roskobiktir (Dafnia ve Syklops gibi). Bazı türleri besin değeri sebebiyle özel olarak üretilirler. Karides, yengeç, İstakoz, siklops, balanus en tanınmış ör­neklerindendir. Örümcekgiller (Arachnida) Ortalama 60.000′in üzerinde tür ile, oldukça kalabalık bir gruptur. Örümcekgillere dahil olan canlıların büyük çoğunluğu karasal yaşama uyum sağlamıştır. Solunum organı kitapsı akciğerler veya trakelerdir. Küçük yapılı örümceklerin bir kısmında ise deri solunumu görülür. Kalp sırt tarafında konumlanmıştır. Kanları renksizdir ve solunum pigmenti çoğunlukla hemosiyanin’dir. Beslenme çoğunlukla karnivordur (etçil) ve birçok tür, uzun süre açlığa dayanabilir. Bazı akrep türleri bir yıl boyunca, bazı örümcek türleri ise 2 yıl kadar açlığa dayanabilmektedir. Ayrı eşeylidirler ve erkek genellikle dişiden daha küçüktür. Yumurtaların korunmasında çeşitli strateji­ler görülür. Eklemli dört çift bacak taşırlar. Baş ile göğüs bölgesi birbiriyle kaynaşmış durumdadır. Antenleri yoktur. Bir çoğu bezler içinde zehir taşır. Su kenesi, örümcek, kene, akrep gibi örnekler verilebilir. Örümcekgillerden akar ve kenelerin çoğu parazit olarak, hayvan veya bitki özsuları ile beslenir. Büyük çoğunluğu kördür. Ender olarak, farklı sa­yılarda ve az gelişmiş gözlerin varlığına da rastlanır. Karada yaşayan hemen her canlıdan kan emebilen kenelerde, vücut kan emildikçe şişer. Birçok virüs ve bakteri taşıdıkları için, benekli humma ve tifüs gibi hastalıkları bulaştıra­bilirler. Çokayaklılar (Myriapoda) Karasal canlılardır. Vücutları uzun ve segmentlidir. Her segmentte ayak bulunur. Çıyanlarda her segmentte bir çift, kırkayakta ise her segmentte iki çift ayak bulunur. Gövdede, son segment haricinde her vücut segmenti bir çift üye taşır. Trake solunumu yaparlar. Deri, kalsiyum karbonat içermesi nedeniyle sert yapılıdır. Çıyan ve kırkayak bu grubun örneklerindendir. Böcekler (insecta) Canlılar dünyasının en geniş hayvan sınıfını oluştururlar. Vücutları baş (cephalo), göğüs (thorax) ve karın (abdomen) olmak üzere 3 bölümden oluşur. Bazı gruplarda bu vücut bölümlerinde kaynaşmalar görülebilir. Baş bölgesinde bir çift anten ve bir çift bileşik göz bulunur. Sınıf özelliği olarak göğüsleri 3 segmentlidir ve her segmentten bir çift bacak çıkar. Çoğunda 2. ve 3. göğüs segmentlerinden birer çift kanat çıkar. Hayvanlarda “uçma” ilk defa bu sınıfta ortaya çıkmıştır. Dış iskelet bulunur. Vücutlarında sadece çizgili kas bulunur. Solunum trake sistemiyledir. Açık dolaşım sistemi görülür. Vücutta dolaşan solunum sıvısı “hemolenf adını alır ve çoğunlukla renksiz, bazen de soluk yeşil-sarı renktedir. Vücutları bez bakımından zengindir. Çekici veya itici koku, mum, zehir, ipek, yağ, tükürük, antikoagülan madde gibi birçok maddeyi salgıla­mak üzere özelleşmiş çok sayıda bez taşırlar. Duyu organları ve sinir sistem­leri iyi gelişmiştir. Birçok grupta, özel görevleri olan duyu organlarına rast­lanır . Avlanmak veya avcılarından korunmak için son derece başarılı uyum­lar kazanmışlardır. Renklenmeleri büyük çeşitlilik gösterir. Bazılarında ışık çıkarma özelliği görülür. Yumurta ile çoğalırlar ve gelişmelerinde çoğunluk­la bir metamorfoz görülür. Bazı gruplarda koloni halinde sosyal yaşam ör­nekleri görülür (Karıncalar, Arılar, Termitler). Yaşam ve beslenme şekilleri­ne göre, ağız parçaları, anten ve bacak yapıları farklılık gösterir. Çoğu kara­da yaşar. Çekirge, kelebek, bit, sinekler ve yaprak bitleri tanınmış diğer ör­neklerindendir. Derisi Dikenliler (Echinodermata) Hemen hemen hepsi deniz hayvanları olup, çoğunlukla zeminde sürü­nerek yaşarlar. Kalker plakçıklardan oluşmuş iskeletleri vardır. İskelette ti­pik olarak dikenler bulunur. Bu nedenle derisi dikenliler olarak adlandırılır­lar. Açık dolaşım görülmektedir. Solungaç, deri ve kese solunumu vardır. Hareketlerini diken şeklindeki çok sayıda ayakla yaparlar. Deniz yıldızı, de­niz kestanesi ve deniz hıyarı en çok bilinen örnek türleridir.

http://www.biyologlar.com/hayvanlar-omurgasiz-hayvan

YILAN BALIĞI BİYOLOJİSİ VE YETİŞTİRİCİLİĞİ

Yılan balıkları eski yıllardan beri insanların ilgisini çekmiştir. Su bulunan bir çok yerde yılan balığına rastlandığı halde yumurtlama ve yavrulama sırasında izlenememesi, yumurtalı veya karnında yavru bulunan bir balığa rastlanamaması bu ilginin çok eskiden beri doğmasına neden olmuştur. Dünyadaki toplam yılan balığı istihsali; Avrupa yılan balığı (Anguilla anguilla ) (1990-1991) 23 950 ton, Japon yılan balığı ( Anguilla japonica ) 109 100 ton, Amerikan yılan balığı ( Angıilla rostrata ) 2 850 ton, diğer yılan balığı türleri ise 1 500 ton olup toplam 137 400 tondur. Dünya su ürünleri istihsalinde çok önemli bir yer tutan yılan balıkları ülkemizde yetiştiricilikte bir yer bulamamıştır. İç su ve dalyanlarımızdan 400 ton yılan balığı yakalanmıştır (DİE, 1997). Yılan balıklarının büyük bir ekonomik önemi vardır. Özellikle fümesi sevilerek yenmekte olduğundan Avrupa’ya ihraç edilmekte ve ülkemiz için önemli bir döviz kaynağı oluşturmaktadır. Bu çalışma, yılan balığı yetiştiriciliği için gerekli bilgilerin derlenmesi ile oluşturularak ülkemiz için konunun önemini açıklanmıştır. Bu bilgilerin ışığında hiç de azımsanmayacak potansiyele sahip olduğumuz yılan balığı yetiştiriciliği konusunda devlet desteği ile gerekli girişimlerin yapılması önem arz etmektedir. Yılan Balıklarının Sistematikteki Yeri Yılan balıkları modern sınıflandırmada balıklar sınıfının Apodes takımından kemikli balıklar alt sınıfı Anguillidae familyasına dahildirler. Günümüzde Anguilla cinsi içinde 19 tür bulunmaktadır. Bunlar arasında en önemli yılan balığı türleri : Avrupa yılan balığı Anguilla anguilla Amerikan yılan balığı Anguilla rostrata Japon yılan balığı Anguilla japonica Yılan balıkları gerçek bir balık türüdür. Diğer balıklar gibi galsamaları vardır. İskeletleri balıklara özeldir. Omur sayılarından tür ayırımı yapılmaktadır. Omur sayıları Avrupa yılan balığında ortalama olarak 115, amerikan yılan balığında 107 , japon yılan balığında ise 116 adet olarak tespit edilmiştir. Sadece karın yüzgeçleri yoktur. Göğüs ve sırt yüzgeçlerine sahiptirler. Pulları gelişmemiş ve pulsuz olarak kabul edilebilmekle birlikte vücutları üzerinde tek tük dağılmış pullara sahiptirler. Deri kalındır ve üzerinde fazla miktarda mukus bulunur. Çenelerde ve vomer kemiğinde gayet ince tarak gibi dişler bulunur. Ayrıca karın yüzgeçlerinin yokluğu da yılan balıklarına özel bir durumdur. Yılan balıklarında diğer balıklarda olduğu gibi pektoral yüzgeçleri ve göğüs kemikleri de vardır. Alt çene, üst çeneden biraz daha uzundur. Baş solungaçların bulunduğu yarık ile son bulur. Solungaç kapağı oldukça küçüktür. Kuyruk bölgesi ise anüs ile başlar ve kuyruk sonuna kadar devam eder. Aynı tür içinde olmakla beraber bölgelere göre renk ve baş şekli bakımından birbirinden biraz farklı olan yılan balıklarına sık sık rastlanır. Sonbaharda yakalanan büyük boylu yılan balıkları genel olarak parlak renklidirler. Sırtları koyudur, yanlar bakırımsı alt kısımları ise beyazımsı parlaktır. Bu balıklar cinsel olgunlaşma döneminde olan ve tatlı sulardan çıkarak Sargossa körfezine doğru üreme için göçe çıkmış olan gümüşi yılan balıklarıdır. Bu yılan balıklarından ayrı olarak pek parlak olmayan normal yılan balıkları yakalanır ki bunlar da sarı yılan balıkları olarak tanımlanır. Bu balıklar cinsel bakımdan olgunlaşmamışlardır. Devamlı yem almakta ve gelişme döneminde bulunmaktadırlar. Göç döneminde bulunan gümüşi yılan balıklarının sindirim organları boştur. Bu üreme göçleri sırasında vücutlarında biriktirmiş oldukları yağı, besin ve enerji kaynağı olarak kullanmaktadırlar. Avrupa yılan balıklarında baş yapılarına göre de bazı farklılıklar bulunmaktadır. Renk ve baş yapısı gibi farklılıkların yem, yaşadıkları ortam, cinsiyet, cinsel olgunluğa ulaşma dönemi gibi birçok faktör tarafından etkilendiği saptanmıştır. Coğrefik Dağılım Avrupa yılan balıkları yayıldıkları bölgeler, Kuzeyde 71. Güneyde ise 23. enlemler arasında bulunmaktadır. Kuzeye doğru çıkıldıkça da yılan balıklarına daha az rastlanır. Pratik olarak yapılan yılan balığı avcılığı da 63. Enlem dairesine uzamaktadır. Kuzey Rusya ve Kuzey Sibirya’da yılan balıklarına rastlanmaz. Afrika sahillerine bakıldığında ise , Cezayir kıyılarında bulunmasına rağmen aynı sahilde bulunan Senegal’de görülmez. Bazı göllerde çok az ve bazılarında ise hiç bulunmadıkları görülmektedir. Bu durum yılan balıklarının bu göllere ulaşma imkanları ile ilgilidir. Yılan balığının yayıldığı bölgeler incelenirse pek çok yayılma alanı görülür ve ulaşabildikleri yüksek sularda bile yaşadıkları saptanmıştır. En tuzlu suda, tatlı kaynak sularında, bataklık az tuzlu sularda yaşama imkanı bulurlar. Amerikan yılan balıklarının, Avrupa yılan balıklarının çoğaldığı bölgelerde çoğaldıkları kabul edilmektedir. Kanada ve ABD kıyılarında yaygındırlar. Bu ülkelerde avcılık ve üretim az ve benzer düzeydedir. Japon yılan balığı doğu Asya kıyılarında bulunan bir türdür. Üredikleri alan kesin olarak bilinmemekle birlikte Tayvan’ın güney kısımlarında çoğaldıkları tahmin edilmektedir. Tayvan’da Taipei, İlan, Kan, Changua, ve Pingtung şehirlerine yakın nehirlerde fazla miktarda elver yakalanmaktadır. Japonya’da ise Shizuoka bölgesi nehirlerinde elver avcılığı yapılır. Japonya’da yılda 50 ton dolayında elver yakalandığı tahmin edilmektedir. Avrupa Yılan Balığının Yaşam Döngüsü Yılan balıklarının biyolojik döngüsünde başlıca üç nokta vardır. - Bu üç yılan balığının yaşam süresi oldukça uzundur(Avrupa yılan balığında 15 yıla kadar) - Yalnızca bir kez ürerler. - Hayatlarının büyük bir kısmı tatlı sularda geçer. Denizde uzun bir göç süresi vardır. Yumurtlama alanı Yılan balıklarının doğal ortamda üremesi gözlemlenememiştir. Ancak markalanan bireyler Atlantik okyanusunda takip edilmiştir (Tesch, 1973) ve pek çok avlama sahası ayrıntılı olarak incelenmiştir. Danimarkalı Schmidt 1904-22 yılları arasında yaptığı çalışmalar sırasında Avrupa yılan balığının yumurtalarını Meksika körfezine bıraktıklarını ispatlamıştır. İlk göç Avrupa yılan balıkları Bermuda adalarının güneydoğusunda tam olarak bilinmeyen bir derinlikte üremektedirler. En küçük larvalara (7 mm) 75 ile 300 metre derinlikler arasında rastlanmıştır. Leptosefalus larvaları ilk bahar başında yumurtadan çıkarlar ve Golfstrim akıntıları ile Avrupa kıyılarına doğru göç ederler. Bu sırada 75 mm boya sahip olan leptosefaluslar metamorfoz geçirirler ve söğüt veya defne yaprağı şeklinden yılan balığını andırır silindirik bir şekil alırlar. Başlangıçta şeffaf bir görünümde olan yılan balıklarında , 7-8 ay sonra pigmentleşme gerçekleşir ve akarsulara girerler. Hayatlarının ilk dönemine denizde başlarlar ve bu aşamada planktonik bir hayat sürerler. Yavrular su hareketlerine karşı direnç gösteremezler. Yanlardan yassılaşmış bir vücuda sahip olan leptosefalusler büyük gözlere ve büyük dişleri olan geniş bir ağza sahiptirler. Bu aşamada karnivordurlar ve besinlerini zooplanktonlardan sağlarlar. Larvalar gece gündüz periyodunda, farklı derinliklerde bulunurlar. Geceleri yüzeye yakın yerlerde (35-130 metre) yakalanırken gündüzleri 300-600 metre derinlikler arasında dağılım gösterirler. Leptosefaluslar Avrupa kıyılarına doğru yaklaştıkça büyümelerini tamamlamış olurlar. İlkbahardan yaza kadar İspanyanın kuzey kıyısından, Feroe adalarının batı kıyılarına kadar dağılım gösterirler. Metamorfozu başlamamış bireylere metamorfozu devam etmekte olan bireylerin bulunduğu kıyılardan çok daha uzakta rastlanmıştır. Genel olarak leptosefaluslerin kıta sahanlığına yaklaşmaları iki buçuk yıl sonra olur. Yumurtadan şeffaf elver konumuna yaklaşık üç yılda gelmektedirler ( Tesch, 1987). İlk Metamorfoz Larvaların büyük bir çoğunluğu metamorfoz sürecini kıta sahanlığında, ağustos-eylül aylarında tamamlarlar. Bu metamorfozda aşağıdaki değişikliklere rastlanmaktadır. - Ağırlık ve boyda meydana gelen bir azalma. Örneğin leptosefalus safhasında olan (tanesi yaklaşık 1,5 g) 75 mm boyundaki larvaların yaklaşık 700 tanesi 1 kg gelirken, elver haline geçmiş aynı boy larvaların yaklaşık on misli vücut ağırlıklarından kaybettikleri ve 7 000 tanesinin 1 kg geldiği görülür. - Morfolojik değişimi, Söğüt yaprağı şeklinde yassı olan leptosefaluslar silindirik bir yapıya ulaşırlar. Bu şekildeki yılan balığı yavrularına elver adı verilir. - Beslenme durur. Planktonik larvada bulunan dişler kaybolur. - Ağırlığı azalır ve sindirim organları kısalır. - Troid ve hipofiz etkinliğinin artması ile endokrin sistemin çalışmasının değişmesi, davranış değişikliğine, Gel-git akıntılarına ve tatlı sulara olan duyarlılığın artmasına ve iç sulara göç etmesine sebep olur. Tatlı suya ilk göç (anadrom göç) Şeffaf elverler su akıntılarını takip ederek kıyı sularında toplanırlar. Metamorfoz ergin yılan balığına benzeyinceye kadar devam eder. Pigmentasyon sonucunda sırt kısmı zeytin yeşili kahverengimsi, karın kısmı sarımsı beyaz rengi alır. Bu balıklara “sarı” yılan balığı denir. Sarı yılan balıklarının tatlı suda büyümesi On dört on beş yıl kadar süren bu aşamada sarı yılan balığı az-çok yerleşik olarak beslenir ve barınır. Beslenmenin başlaması pigmentasyonun son safhasında ve ağırlık artışı başladığında ortaya çıkar. Beslenme karnivor olarak bentik omurgasızlarla ve belli bir boyu aştıktan sonra diğer balıklarla olmaktadır. Büyüme oldukça yavaştır. Yılan balığının gelişimi yaşadığı ortam şartlarına bağlıdır. Dişiler, erkek bireylerden boy olarak daha uzun olup, erkekler 50 cm den küçük, dişiler 45-150 cm arasında, nadiren 200 cm boy ve 4-6 kg ağırlığa kadar ulaşmaktadırlar. Buna rağmen çoğunlukla, yakalanan dişilerde ağırlık 250-400 gram ve boy 70-80 cm kadardır. Gonatların dişi yönünde gelişmeye başlaması 15-20 cm. den itibaren olmaktadır. Cinsel farklılaşmanın başlıca belirtileri cinsiyet organları üzerinde görülmez. Büyümedeki farklılaşma ve erkek bireylerin nehir ağızlarında kalırken dişi bireylerin kaynağa yakın yerlerde bulunması ile cinsiyet ayırt edilir. Göç etme eğilimindeki bu farklılaşma çok erken safhalarda, şeffaf elver yada elver aşamasında görülür. İkinci metamorfoz Deniz suyuna geçmek üzere ikinci kez ortam değiştirmeleri sırasında yılan balıklarında oluşan morfolojik değişiklikler beş başlık altında toplanabilir. - Kahve rengi ve zeytin yeşili olan vücut rengi değişir, karın gümüşi beyaza döner. Sırt ve yüzgeç rengi koyulaşır. Dalgalı renklenme kaybolur. Yılan balıklarının tüketici tarafından en çok talep edildiği şekli gümüşi yılan balığı safhasıdır. - Etlerindeki yağ oranı artarak vücut ağırlığının % 30’ unu geçebilir. Bu yağlanma yılan balığının Saragossa’ya doğru yaptığı uzun göçe dayanmasını sağlar. - Tesch’e göre göz çapı iki katı kadar artar. Bu sayede daha az riskli bir yolculuk yapar. Bununla birlikte ışıktan kaçma davranışı ortaya çıkar. - Pektoral yüzgeçler yuvarlak şekillerini kaybederek erken olgunluk döneminde sivrileşirler. - Son olarak olgunlaşmanın ilerlemesi ile cinsel organlar gelişir. Vücutlarında çok fazla yağ depolarlar. Diseksiyon yapılarak cinsiyet teşhis edilebilir. Gonatların gelişimi deniz ortamına geçtikten sonra gerçekleşir. İkinci göç ( katadrom göç) Bu, yılan balıklarının doğduğu yere geri döndüğü üreme göçü olup, Anguilla anguilla için 5000 km. dir. Gümüşi yılan balıkları sonbaharda, tatlı suları terk ettiklerinde gonatlar hala tam olarak olgunlaşmamıştır. Gümüşi yılan balığının denizdeki yaşamı çok az bilinmektedir. Tatlı suda yakalanan örneklerde sindirim sisteminin köreldiği ve işlevini yitirdiği gözlenmiştir. Gümüşi yılan balıkları Saragossa’da ki yumurtlama alanına ulaşıncaya ve gonatlarının tam olgunlaştığı süreye kadar denizde beslenmeden hayatta kalabilmektedirler. Hayatlarında bir kez yaptıkları üreme sonucunda yaşam süreçleri son bulur. Yılan balıklarının bu göç sırasında yönlerini nasıl buldukları günümüzde hala bilinmemektedir. Avrupa yılan balığı yetiştiriciliği Yılan balığı yetiştiriciliğini etkileyen üç önemli zorluk bulunmaktadır. · Damızlıktan itibaren üretimi gerçekleştirilememektedir. Bu yüzden yetiştiriciler doğal ortamdan yakalanacak yavruları kullanmak zorundadırlar. Doğadan yakalanan yavru miktarı da bir yıldan diğer yıla büyük oranda değişiklik gösterir. Yavruların yakalanması şeffaf elver aşamasından itibaren başlamakta, daha sonraki aşamalarda da devam etmektedir. Örneğin, Fransa’da Languedoc kıyılarında yaklaşık 25 g ağırlığında yılan balığı yavruları yakalanmaktadır ( 9-13 Frank/kg ). Bu aşamada farklı yaş ve sağlık durumunda bireylerin bulunması, balıkların aynı kökenden gelmemesi, yem dönüşüm katsayısını yükseltir. Bu da besleme maliyetini artırmaktadır. · Tür içi rekabet fazladır. Büyük bireyler özellikle yem alımı sırasında populasyon üzerine baskınlık kurarak küçük bireylerin yeme ulaşmalarını güçleştirirler. Bu da stres olayının ortaya çıkmasına sebep olur. Yetiştirici bu durumda boy dağılımının homojen olmasını sağlamak için yavru aşamasında 3-5 haftada bir sınıflama yapmak zorundadır. Zira bu tür içi rekabet kanibalizme kadar gidebilmektedir. Bunu ortadan kaldırmak için yapılan tüm müdahaleler populasyonda belli bir strese yol açmaktadır. · Yoğun yetiştiricilikte karma yemi en iyi şekilde ete dönüştürerek eşit büyüyen bireylerin elde edilmesi gerekmektedir. Ancak bu pahalı bir besleme gerektirir. Yılan balığının çok kaygan olması, avlanmasını ve el ile tutulmasını güçleştirir. Halbuki yılan balığı yetiştiriciliği oldukça fazla el işçiliği gerektirir. Yılan balığı yetiştiriciliği özellikle Uzakdoğu’da önemli bir yer tutmaktadır. Ekstansif Yılan Balığı Yetiştiriciliği Yılan balığı yetiştiriciliğini iki kısımda incelemek mümkündür. Bunlardan birincisi Avrupa’da yapıldığı gibi yılan balığı yavrularının stoklanması ile üretim sağlanmasıdır. Bu yol ekstansif üretim olarak adlandırılır. Satın alınan elverler çeşitli göl veya akarsulara bırakılır. Bu yöntemle Hollanda ve Almanya’da yetiştiricilik yapılmaktadır. Kuzey İtalya’da Venedik yakınlarında Comacchio gölü yetiştirme merkezidir. Burada etrafı çevrili 32 000 hektar “valli”lerden 1 000 ton/yıl balık elde edilmektedir. Vallilere tatlı ve tuzlu su girişi kontrollü olarak verilmektedir. Elverler buraya ya kendileri gelirler veya sahilden yakalanarak getirilirler. Verimliliğin artırılması için yapay yemle beslemeye de başlanmış, üretim veriminin 5-20 kg/dekar arasında olduğu bildirilmiştir. Kuzey İrlanda’da nehirlerde tuzaklarla yakalanan elverler 38 000 hektarlık çeşitli göl ve göletlere bırakılarak yılda 800 ton üretim sağlanmıştır. Macaristan’da İrlanda ve Fransa’dan satın alınan elverler, Balata, Valence ve Ferta göllerine bırakılır. Stoklamanın hektara 400 elver olduğu 6 yıllık bir gelişmeden sonra balıkların ortalama 650 grama ulaştığı bildirilmiştir. Fransa’da ise Marsilya yakınlarındaki 8 000 hektarlık alanda 70 ton/yıl yılan balığı elde edilmiştir. Ülkemizde çeşitli yerlerde avcılığı yapıldığı gibi bu yerlerde gelişen balıklar hasat edilerek üretim sağlanır. İzmir körfezindeki bazı dalyan işleticileri güney bölgelerinden temin ettikleri yılan balığı yavrularını dalyanlara bırakarak üretimi artırma girişiminde bulunmuşlardır. Ülkemizde avcılığı yapılan yılan balıkları genel olarak bazı göl ve nehirlerden sağlanmaktadır. Yılan balığı üretiminde önde gelen göl ve nehir dalyanları : Bafa gölü ve buna bağlı Menderes nehri, Gölmarmara, az miktarda diğer sulardır. Yıllık yılan balığı istihsalimiz DİE verilerine göre 1991 yılında 603 ton, 1995 yılında 780 ton, 1997 yılında ise 400 tondur. Yılan balığı yetiştiriciliği Japonya’da 1970 li yıllarda başlamış olup karma yemlerin kullanıldığı yoğun yetiştiriciliğe dönüşmüştür. 1990-91 yılı verilerine göre Japonya’da Anguilla anguilla 1500 ton, A. japonica üretimi 40 500 ton olarak elde edilmiştir. Tayvan’da da son yıllardaki üretim çalışmaları ile 52 500 ton A. japonica elde edilmiştir. Almanya, Fransa ve İtalya’da yılan balığı yetiştiriciliği konusunda bazı girişimler yapılmışsa da Uzakdoğu’da olduğu gibi yaygın bir gelişme ortamı sağlanamamıştır. Avrupa Yılan balığı elverleri Avrupa yılan balığına hemen hemen sıcak su akıntılarının ulaştığı tüm kuzey Avrupa nehirlerinde rastlanılmaktadır. Ayrıca Akdeniz’de pek çok nehirde de görülür. Ülkemizde Büyük Menderes nehri ve bu nehirle bağlantılı olan Bafa gölünde, Küçük menderes ve Gediz, Bakırçay nehirlerinde, Adıyaman Gölbaşı, Silifke’de Göksu nehrinde, bu nehirle irtibatlı Akgöl ve Kuğu göllerinde, Marmarada Kocabaş, Gönen ve Susurluk çaylarında yılan balığı mevcuttur. Akdeniz ile irtibatlı nehirlerde görülen, yılan balığı tüm Cebelitarık boğazını geçerek bu nehirlere ulaşmaktadır. İtalya’da özellikle Kuzey Adriyatik’te ve Venedik yakınlarındaki dalyanlarda fazla miktarda yılan balığı bulunmaktadır. Elverlerin en çok yakalandığı ülkelerden biride Fransa’dır. Özellikle Biskay körfezinde Loire ve Girondo nehirlerine büyük miktarlarda girdikleri gözlenir. Fransa’nın yılda, bu bölgesinde 800 ton dolayında elveri yakalayarak pazarladığı tahmin edilmektedir. İrlanda da Eire ve Shonnon nehirlerinde yakalanan elverler, iç göllere stoklanmasında kullanılmaktadır. İngiltere’de Severn nehri ve daha az olmak üzere Poraft nehirlerinde de elver avcılığı yapılır. Avrupa kıtalarında elverlerin periyodik olarak görülmesi yıllık olmakla beraber Bertin isimli araştırıcıya göre 6 yılda bir tekrarlanan durum arz etmektedir. Bir yıl az miktarda elver avlanırsa gelecek yıl bir azalma olduğu belirtildiği gibi, 3 yıl bir yükselme izlenip bunu takip eden 3 yılda ise bir azalma görülebildiği kaydedilmektedir. Elverlerin leptosefalus safhasından yılan balığı şeklini almaları döneminde izlenen en önemli değişiklikler şeffaflığın kaybolması ile uzunluk ve ağırlığın azalmasıdır. Kıyılara ulaşan larvaların kıyılara ulaşma periyodunda ilk gelenlerin sonra gelenlerden daha iri cüssede oldukları bilinen bir durumdur. Hatta ilk gelenlerin en son gelenlerden 6 mm daha kısa oldukları saptanmıştır. İlk yakalandığında şeffaf olan elverlerin bir süre ışıklı ortamda tutulduklarında vücutlarında hemen pigmentleşme başladığı ve renginin koyulaştığı görülmektedir. Elverlerin Göçüne etkili olan faktörler Su Sıcaklığı Elverlerin göç etmesine etkili olan faktörlerden biri su sıcaklığıdır. Ilık sularda elverlerin nehirlere göçünün daha erken ve hızlı olduğu bilinmektedir. Sıcak denizlerde elver görülmesinin, soğuk denizlere nazaran daha erken olduğu bilinmektedir. Fakat bazı yerlerde bunun tersi durumlarda zaman zaman izlenebilmektedir. Avrupa kıyılarında elverlerin ilk görüldüğü dönemlerde su sıcaklığının 4 °C dolayında olduğu ve su sıcaklığı 1 °C düştüğünde hareketlerinin azaldığı gözlenmiştir. Havanın ılıklaşması elverlerin su yüzüne yaklaşmalarına dolayısıyla avcılığının daha kolay olmasını sağlamaktadır. Işık Yılan balığı yavrularının nehirlere ilk ulaşmalarında ışığın dağıtıcı bir etkisi olduğu görülmektedir. Sadece geçiş dönemlerinde ışığa doğru hareket ettikleri görülmektedir. Hatta bazı balıkçılar, bu dönemde av yerinde elverleri su yüzeyine çekmek için ışık kullanırlar. Açık bir ay ışığı gecesinde elverler zemine yakın derinlikte hareket ederler. Pratik avcılıkta avrupa yılan balığı elverleri, genel olarak karanlık gecelerde yakalanır. Özellikle nehirlere girişlerin en yoğun olduğu periyotta, gece elver avcılığı çok daha verimli olur. Fakat med-cezir olaylarında su yükselmesinin en fazla olduğu günlerde, gündüzleri de elver göçü olur. Fakat elver miktarı geceye oranla daha azdır. Elverler genel olarak gündüzleri kum içine girerek yada kayarak, taşlar altında saklanarak günlerini geçirirler. Med-cezir Avrupa ve Japonya’da elverlerin en çok yakalandığı zaman genel olarak su yükselmesinin en fazla olduğu dönemlerde, su yüzeyine yakın olan kısımlardır. Severn nehrinde su yükselmesi ile elver girişi arasında ilişki olduğu bilinmektedir. Bunun yanında Akdeniz’de bir çok nehirde med-cezir olayları az olmakla birlikte elver girişini sağlamaktadır. Tatlı su Elverlerin nehirlere girişi daima suyun tuzluluğunun azalması ile ortaya çıkar. Denizlerden gelen elverler için nehirlerden gelen tatlı sular cezbedici bir rol oynar. Nehirlerin döküldükleri noktada tuzluluğun düşmesi ve ani yağan yağmurlar ile nehir sularının artması, nehirlere olan yönelişi daha da çabuklaştırır. Rüzgar Japonya’da, nehirlere elverlerin girişinde güney rüzgarlarının esmesi, su sıcaklığının 8-10 °C olması ve bir gün önce yağmur yağmış olmasının etkili olduğu bildirilmektedir. Elver Yakalama Yöntemleri Elver yakalamada uygulanan yöntemler bakımından ülkeler bölgeler ve nehirler arasında farklılıklar vardır. Bazı yerlerde kepçeler, bazı yerlerde tuzaklar, bazı yerlerde ise ekosaundrlardan yararlanarak avcılık yapılır. İngiltere’de elverler 1 metre uzunluk 60 cm genişlik ve 60-70 cm derinliği olan 1.5 mm göz açıklığında kepçelerle avlanırlar. Avcı kepçeyi akıntı yönünde ve mümkün olduğu kadar kıyıya yakın tutarak yüzeye yakın su sathında geceleri elver yakalamaya çalışır. Kepçe suda 5 dakika kadar tutulur ve sonra kaldırılır. Daha sonra yakalanan elverler stok yerine alınarak pazara sevk edilirler. Kuzey İrlanda da nehir yatağında yavrular belli bir alana yönlendirilir ve buradaki tuzaklarla avlanır. Bu yöntemin en iyi tarafı bölgeden geçen elverlerin tümünü yakalayabilmesidir. Bonn nehrinde bu yöntemle bir mevsimde 5-6 ton elver yakalanabildiği bildirilmektedir. Fransa’da elver yakalama işleri büyük nehir ağızlarında bir motor ile hafifçe çekilen ağlar ile yapıldığı gibi kıyılardan da yürütülmektedir. Bazı tekneler balık bulucu elektronik aletlerden yararlanırlar. Fransa’da yakalanan elverlerin çoğunluğu Japonya’ya ve bir kısmı da Avrupa ülkelerine ihraç edilmektedir. Fransa genelindeki nehirlerde 1970 yılında toplam 1 345 ton yavru yakalanırken, bu rakam 1982 de 500 ton dolaylarına düşmüştür. 1 kg da yaklaşık 3 000 adet elver bulunmaktadır. Elverlerin nehirlere giriş zamanı tüm bölgelerde aynı değildir. örneğin Avrupa’da batı İspanya sahillerine aralık-ocak, Severn nehrine ise nisan-mayıs aylarında, Fransa Biscay ve Britany de ocak-mart aylarında girmektedirler. Yılan balığı yavrularının belirli bölgelere farklı zamanlarda gelmelerinin iki esas nedeni vardır. Birincisi üreme bölgelerine yakın olan bölgelere daha erken ulaşmasıdır. İkincisi ise yılan balığı yavrularının sıcaklığı 8-10 °C den daha az olan nehirlere girmek istememeleridir. Örneğin Avrupa yılan balıkları Atlantik kıyılarına aralık aylarında ulaştıkları halde suyun soğuk olması nedeniyle nehirlere girmezler, suların ısınması için mart ayına kadar kıyılarda beklerler. Tropikal bölgeler ele alındığında, genellikle yılan balığı yavrularının nehirlere girişi ilkbahar başında olur. Nehirlere giren yavruların büyüklüğü bölgelere göre farklılık arz eder. Leptosefalus safhasından metamorfoza uğrayarak normal yılan balığı şekline giren yavrular, tatlı sulara girinceye kadar yem almazlar. Bu nedenle nehirlerin ısınmasını beklerken ağırlık kaybederler. Bunun sonucu nehirlere geç giren yavrularda canlı ağırlık daha azdır. Akdeniz’de İtalya nehirlerine giren elverlerin canlı ağırlığı, yaşıtları olan İspanya nehirlerine girenlerden daha azdır. Elverlerin nehirlere girişi özellikle suların yükselmesi sırasında en fazla olur. Elverler sadece geceleri yüzerler ve kıyılara yakın hareket ederler. Severn nehrindeki bir balıkçının sadece bir kepçe ile bir seferde 25 kg yılan balığı yavrusu tuttuğu ve bu miktar yavrunun 87 500 bireyden oluştuğu bildirilmiştir. İrlanda’da ise Bonn nehrinde kurulan özel avlanma yerinde yılda 23 milyon adet elver yakalandığı kaydedilmişti. Elverler oldukça nazik canlılardır. El ile tutulmamaları gereklidir. Kepçe ile yakalanan yavruların hemen bir ağ kafese veya bir tanka alınarak temiz suda bekletilmeleri ve süratle yetiştirilecekleri yerlere ulaştırılmaları gereklidir. Aralık-şubat aylarının soğuk günlerinde yakalanacak yavruların taşınmasında dikkatli olmak gereklidir. Elverlerin Bekletilmesi ve Taşınması Elverler yakalandıktan sonra pazara veya yetiştirme yerlerine nakledilmeden önce özel tanklarda bir süre tutulurlar. Bu hem yeterli miktarda yavrunun toplanabilmesi için yeterli zamanın sağlaması, hem de yeni ortama konulmadan önce gerekli uyum ortamını oluşturmayı sağlar. Ayrıca bu sırada dayanıksız balıklar ölür sağlıklı ve kuvvetli balılar kalır. Yavrular elver tanklarında en az iki en çok beş gün kalırlar. Daha erken nakillerde ölüm oranı artar. Elverleri bu tanklarda uygun ortamda tutabilmek için devamlı akan tatlı suya ve havalandırmaya ihtiyaç vardır. Tankların üzeri örtülü olmalıdır. Bu amaçla yavruların duvarlara tırmanarak kaçmasını önlemek için, fiberglas tanklar kullanılmalıdır. 2x2x0.6 m boyutlarındaki böyle bir tanka 100-125 kg elver konulabilir. Günlük veya saat başına bakım, beyaz denen ölü balıkların tanklardan alınmasıdır. Ölüm oranı % 5 veya daha fazla olabilir. Ölümün çok olması elverlerin tanklara konulmadan ve soğuk bir gecede kova ve leğenlerde uzun süre tutulmasından ileri gelebilir. 2-5 gün içinde ölüm nedeniyle toplam ağırlığın % 15 i kaybedilebilir. Nakilden bir gün önce yemleme kesilir. Yılan balığı yavrularının taşınmasında bir kaç yöntem uygulanır. Birincisi özel havalandırılabilen tankerlerle yapılan taşımacılıkta ortalama 17 tonluk bir su kütlesi ile 1 ton elver taşınabilir. Taşıma suyunun yarı tuzlu olması faydalıdır. İkincisi, dip kısmı bezli kutular veya içinde oksijen ve su konulmuş naylon torbalarla taşıma yapılabilir. Üçüncüsü ise hava yolu ile yapılan taşımacılıkta genel olarak strafordan yapılmış malzemeler kullanılır. Bu malzemeler hafif olduğu gibi yavruları ani sıcaklık değişimlerinden korur. Her biri 0.5 kg bir tavada 1 kg elver taşınabilir. Bu taşımacılıkta buz kullanılmaz. Nakilde önce elverler 6 °C ye kadar soğutulurlar ve ıslak kalmaları için çok az su ilave edilir. Yılan Balığı yetiştirme Yöntemleri Yılan balığı kültüründe beş ayrı metot kullanılmaktadır. Bunlardan bazıları deneme çalışmaları olup büyük ölçüde yetiştiricilikte kullanılmamaktadır. Durgun Su Yöntemi Japonya ve Tayvan’da kullanılan en eski ve yaygın olan metottur. Balıkların oksijen ihtiyaçlarını su içindeki fitoplanktonlar ile karşılanması bu yetiştirmenin temel prensiplerinden biridir. Geceleri oksijen miktarını çok dikkatli bir şekilde takip edilmesi gerekir. Özellikle fazla balığın stoklandığı, suyun sıcaklığının fazla olduğu dönemlerde, konunun önemi daha da artmaktadır. Suya oksijen kazandırmak için suyu karıştıran makineler yada basınçlı hava veren düzenek kullanılır. Bu yetiştirme yönteminde havuzlara çok az (%10) su verilir. Verilen suyun havuz suyunu karıştırmaması havuzun bir köşesinden girip, diğer köşesinden dışarı çıkması sağlanır. Böylece havuzdaki plankton varlığının korunması ve suyla sürüklenip gitmesi önlenmiş olur. Bu yetiştirme yönteminde metre karede 2- 4 kg balık yetiştirilebilir. Başarılı bir yetiştirme için su sıcaklığının 23-30 °C arasında olması gereklidir. Bu şartlarda iki yıl veya daha az sürede 150-200 grama ulaşması gerekir. Bu ağırlığa Tayvan’da 1,5 yılda , İngiltere’de 4 yılda, Japonya’da 2 yılda ulaşır. Güney Ege ve Akdeniz’de yılın 8-9 ayı su sıcaklığı 20 °C den yukarıda tutulabileceğinden yılan balığı yetiştiriciliği bu bölgelerimizde karlı olabilir. Yılan balıklarına 12 °C nin altında yem verilse dahi gelişme olmaz. Bu yetiştirme yönteminde havuz alanı 3-4 dekar arasında tutulur. Akarsu Yöntemi Akarsu yönteminde havuzların alanı 150-300 m² dir. Bu yöntemin uygulanacağı yerde fazla miktarda tatlı su veya deniz suyunun olması gerekir. Birim sahada yetiştirilebilecek balık miktarı verilebilecek oksijene, dolayısıyla suya bağlı olarak değişir. Yöntemin başarılı olabilmesi için su sıcaklığının 23 °C üzerinde olması gerekir. Bu yetiştirme yönteminde üretime alınacak balıkların başlangıç olarak ağırlıklarının yaklaşık 30 g. olması tavsiye edilmektedir. Çünkü suyun hızla değiştiği ortamda yavrularda gelişme iyi olmamaktadır. Bu yöntemle yetiştiricilik yapan işletme sayısı oldukça azdır. Ağ Kafeslerde Yetiştirme Yöntemi Japonya’da ağ kafeslerde yapılan sazan ve alabalık yetiştiriciliğinin aynısıdır. Bu amaçla bu havuzlar iç sularda ve göllerde kullanılmaktadır. Japonya’da Şizouka balıkçılık deneme istasyonunda derinliği 1,5 m olan 8 mm göz açıklığında ağlar ile ağ havuzlarda yapılan deneme oldukça olumlu sonuçlar vermiştir. Bu denemede toplam 23,3 kg yılan balığı konulmuş, 38 gün sonra 38,6 kg balık, ortalama 180 g ağırlıkta hasat edilmiştir. Bu çalışmada dondurulmuş uskumru eti kullanılmış olup, yem dönüşüm katsayısı 7,35 bulunmuştur. Bu denemede ortalama su sıcaklığının 25,5 °C, tuzluluğun %0 21, birim alandaki verim 7,7 kg olarak tespit edilmiştir. Tünel Yöntemi Bu metotla ticari bir işletme kurulmamış olmakla beraber tünel yöntemi ile yılan balığı yetiştirilebileceği denemelerle gösterilmiştir. Bunda amaç, yılan balığının karanlık saklanacak yeri bulunan doğal ortamına benzeyen bir alanın sağlanmasıdır. Bunun için balıkların gündüz saklanmasının mümkün kılacak karanlık tüneller suya yerleştirilir. Havuzlarda ılık akarsu yöntemi kullanılmıştır. Sirkülasyon Yöntemi Devamlı olarak sirküle edilen suyun kullanılması, yetiştirme çalışmalarında olumlu sonuçlar alınmıştır. Bu tür bir çalışmada iki adet havuz kullanılır. Bunlardan biri yetiştirme havuzu diğeri filtre havuzudur. Yetiştirme havuzunda kullanılan su devamlı olarak bir motopomp vasıtası ile filtre havuzuna gönderilir. Filtre havuzunda suyun fiziksel temizlenmesinin yanı sıra biyolojik temizleme de gerçekleşir. Filtre kumu ve taşlarındaki bakteriler balıkların atıklarındaki nitrit, nitrat ve amonyak gibi toksik kimyasal bileşikleri azota kadar indirgeyerek zararsız hale getirirler. Bu tür bir çalışmanın başarılı olabilmesi için kullanılan havuzların kapasitesi, filitrasyon yüzeyi, filtre yapan temizleyici kütlenin kalınlığı, kullanılan pompaların kapasitesi, su kalitesi, sudaki oksijen miktarı, sıcaklık ve artık yemlerin temizlenmesi gibi pek çok konuyla ilgilidir. Bu tür bir yetiştirme yöntemi, ancak kullanılacak suyun kısıtlı olduğu yerlerde düşünülebilir. Bu yöntemle küçük bir alanda fazla miktarda balık üretimi mümkün kılınabilir. Yılan Balığının Durgun Su Yöntemi ile Üretimi İçin Alan Seçimi Yılan balığı yetiştiriciliği yapılacak bir alanda aşağıdaki koşullar aranır: - Öncelikle yeterli su bulunmalıdır. Bu su bir nehirden veya yeraltından sağlanabilir. Basit bir ifade ile 10 ton balık üretimi için günde 250 ton su gerektiği söylenebilir. - Su berrak veya az bulanık olmalı, ancak herhangi bir kirlenme söz konusu olmamalıdır. Az alkali veya nötr sular tercih edilir. Asitli sular yılan balığı için uygun değildir. içerisinde doğal olarak yılan balığı bulunan nehir veya göl suyunun ideal olduğu söylenebilir. - Arazini konumu havuzlardaki suyun tam olarak boşaltılabilmesini mümkün kılmalıdır. - Toprak az geçirgen olmalıdır. Bu nedenle tabanın killi olması istenir. - Üretim havuzlarının iyi güneş alması oksijen üretici fitoplanktonların üremesi bakımından yararlı olur. - Üretim alanının rüzgarlara açık olması suyun yüzeyi ile oksijen alışverişini kolaylaştırır. - Enerji sağlamada ve ulaşım şartlarında zorluk olmamalıdır. - Herhangi bir sel tehlikesi olmamalıdır. Japonya’da yılan balığı üretimine uygun olan su kaynağı ve nehir yakınlarında çok geniş yılan balığı yetiştirme alanları oluşmuştur. Bir çok işletmenin yan yana olması ekonomik ve diğer konularda faydalar sağlamıştır. Özellikle kurulmuş olan kooperatifler, işletmelerin pek çok ihtiyacını karşılamakta ve ürünün kar getirecek fiyatta satılmasını sağlamaktadır. Ayrıca bölgelerde devletin açtığı deneme istasyonları üreticinin sorunları yönünde çalışmalar yaparak devlet desteği sağlamaktadır. Yılan Balığı İşletmelerinin Kurulması Yılan balığı üretiminde çok başarılı olan uzak doğuda genel olarak durgun su yöntemi kullanıldığından bu yetiştirme yöntemi hakkında bilgi sunarak konu açıklanmaya çalışılacaktır. Yılan balığı üretiminde kullanılan havuzları dört grupta toplayabiliriz. Bunlar : 1. Birinci elver havuzları ( genellikle sera içerisinde ) 2. İkinci elver havuzları ( genellikle sera içerisinde ) 3. Yavru balık havuzları 4. Üretim havuzları Birinci ve İkinci Elver Havuzları Bu havuzlar genellikle sera içinde inşa edilir. Su sıcaklığı 25 °C de sabit tutulur. Böylece ilkbaharda yakalanan yavruların ilk gelişme dönemlerinin hızlı olmasına çalışılır. Yeni yakalanan elverler bu havuzlarda bir ay süre ile yetiştirilebilirler. Havuzlar 60 cm derinlikte ve 5 m çapında yapılır. Havuza verilen su kenardan ve hızlı olarak verilerek havuz içinde dairesel bir hareket elde edilmeye çalışılır. Havuzun orta kısmındaki bir boru ile fazla su tahliye edilir. Bir aylık dönemini burada tamamlayan elverler ikinci elver yetiştirme havuzuna alınırlar. İkinci elver havuzuna alınan yavrular 8-12 cm boyundadırlar. Havuzların ölçüsü 30-100 m. civarında olabilir. Derinlikleri ise 1 m dir. Her iki elver yetiştirme havuzuna da bol miktarda hava verilir. Elver havuzlarına verilen suların çok temiz olması gerekir. çünkü elverler çok hassastır. Yılan balığı yaşlandıkça dayanıklılığı artar. Yavru Balık Havuzları Yavru balık havuzları genellikle yuvarlak yapılır. Genişlikleri 200-300 m derinlikleri ise 1 m tutulur. Dip yapısının çamur olması gerekir. Yağmurlu gecelerde yılan balığı yavrularının kaçmaması için havuz kenarlarının beton olması arzu edilir. Özellikle küçük yavrularda kaçma eğilimi fazladır. Bu nedenle küçük yavruların bulunduğu havuzun kenarları içe doğru meyilli yapılarak kaçmaları engellenmeye çalışılır. 20 cm yi geçen yılan balığı yavruları pek fazla kaçma eğilimi göstermezler. Üretim Havuzları Bu havuzlar Japonya’da eskiden 6-10 dekar veya daha geniş şekilde yapılırlardı. Fakat son yıllarda daha küçük 2-3 dekarlık havuzlar tercih edilmektedir. Buna neden olarak yemleme ve hastalıklarla mücadelenin küçük havuzlarda daha kolay olması gösterilmektedir. Hatta son yılarda havuz alanı 500-1 000 m2 ye kadar küçük tutma eğiliminin arttığı gözlenmektedir. Özellikle Tayland’da bu eğilim daha fazladır. Doğal olarak akarsu yönteminin uygulandığı üretimlerde havuzlar durgun su yöntemine oranla daha küçük tutulur. Üretim havuzlarının derinliği 80-100 cm dolayında olmalıdır. Bu derinlik suyun girdiği bölgede 80-100 cm, suyun boşaltılacağı yerde 120 cm dolayında olabilir. Kenarları balıkların toprağı oyarak kaçmalarını engelleyecek şekilde taş, beton veya briketten yapılmalıdır. Havuz tabanının balıkların oyup girebileceği şekilde çamurlu olması uygun olur. Daha önceki bölümlerde belirtildiği gibi havuzun bir köşesinde su giriş ve çıkışının yapıldığı bir kısım bulunur. Suyun boşaltılmasında özel sistemler uygulanması lazımdır. Çünkü yılan balıkları kaçma eğilimi çok fazla olan ve fırsat bulduğu her yerden geçebilen balıklardır. Bu nedenle dikkatli olmak gereklidir. Aşağıda bu amaçla kullanılan bir su tahliye sistemi sunulmuştur. Durgun su yönteminin uygulandığı yılan balığı işletmelerinde verilen su miktarı çok az olduğundan su tahliyesinin kontrolü kolaylıkla yapılabilir. Bazı işletmelerde su boşaltımı havuzun sonundaki bir boru ile yapılır. Bu boru sayesinde hasat zamanında balıkların kolayca toplanmasında da yararlanılabilir. Bazı işletmelerde ise su boşaltım yeri yapılmaz. Bu tip işletmelerde her gün motopomp ile fazla su boşaltılır. Yılan balığı üretim havuzu kıyısında bir adet yemleme yeri yapılması gereklidir. Bu kısım 3x3 m ebadında ve üzeri kapalı olarak yapılır. Bu yemleme yerinin alt kısmı su yüzeyine doğru açıktır. Buradan bir kap içine konulan balık yemi suya sarkıtılır. Balıklar gündüzleri dahi loş olan bu yere gelerek rahatça yem alırlar. Bu yemleme yerleri genellikle su çalkalanmasının fazla olduğu aeratörlerin yanına kurulur. Böylece yemleme zamanında bu kısımda fazla miktarda toplanan balıkların artan oksijen ihtiyaçları karşılanmaya çalışılır. Elverlerin beslenmesi Yılan balığı üretiminin gerçekleştirilememesi nedeniyle, yetiştirilecek yavrular doğadan yakalanmak zorundadır. Ön büyütmede elverlerin mümkün olan en kısa sürede doğal yemden karma yeme geçişi gerekmektedir. Yetiştiricilik şartlarına en iyi uyum sağlayanlar seçilmelidir. Ergin yılan balıkları ile yavru yılan balıklarının beslenmeleri arasında önemli farklılıklar vardır. Özellikle ergin yılan balığı yeminde yağ oranı yüksek tutulması gerekirken, yavru balık yeminde bunun tersi bir uygulama vardır. Özellikle yeni yakalanan ve 6 000-7 000 tanesi 1 kg gelen elverlerin ağızları küçük olduğu için her yemi almak istemezler ve karma yem almaları ilk günlerde zor olmaktadır. Doğal ortamdan havuzlara alınan yılan balıkları doğrudan bu rasyonlarla beslemeye alınmaz. Şeffaf elverden, elver konumuna geçinceye kadar, yılan balıklarının yapay yeme adaptasyonu için taze sardalye kullanılması sık görülen bir uygulamadır. Başlangıçta sardalyeler bütün olarak, daha sonra balık unu ile karıştırılarak verilmektedir. Karışımdaki taze sardalye oranı tedrici olarak azaltılır ver birkaç hafta sonunda karışımdan tamamen çıkarılır. Diğer bir yöntem de ise başlangıçta küçük toprak solucanları küçük karidesler, tubifeks ve dafnia gibi canlı yem kaynaklarından yararlanır. Bu yemler tercihen geceleri bir sepet üzerine konularak verilir. Yemlemenin sabah 8:00 ile öğleden sonra 14:00 arası yapılması en uygundur. Elverlere tubifeks verilmeden bir saat süre ile %0 2 oranındaki sulfamonomethoksine solüsyonunda tutulur ve yıkandıktan sonra kullanılır. Bir kaç günlük veya tercihen haftalık bu tür beslemeden sonra diğer yemlere geçilmeye çalışılır. Elver yemlemesinde önemli bir konu da elverlerin aynı boylarda olmasıdır. Eğer küçük ve büyük balıklar aynı yerde kalırsa kanibalizm başlar. Aynı zamanda büyük balıklar küçük balıkların yem almasına da engel olur. Suyun Fiziko-kimyasal özellikleri Sıcaklık Su sıcaklığı büyüme oranını etkileyen en önemli faktördür. Yılan balığının 12 °C nin altında yem almadığı havuz tabanında hareketsiz kaldığı bilinmektedir. Bu sıcaklığın üzerinde balıkta yem alma arzusu artar ve gelişme hızlanır. Yem dönüştürme oranının en iyi olduğu sıcaklı 23 °C dir. Elverlerin gelişmesi 15 ile 25 °C arasında gerçekleşmektedir. Avrupa yılan balığı için optimum sıcaklık 23 °C , Japon yılan balığı için 26-27 °C dir (Querellou, 1974). Avrupa yılan balıkları yaşları ilerledikçe daha düşük sıcaklıkları tercih ederler. Descampes ve diğ. (1980), atom enerjisi santrali soğutma suyunda yaptıkları bir çalışmada, 15-27 °C arasında tutulan havuzlarla başlangıç ağırlıkları 13 g olan yılan balıkları 25 ay sonunda 210 g, ısıtma uygulanmayan kontrol grubunda ise (7-19 °C arası) 64 g canlı ağırlığa ulaşmışlardır. Isıtılan havuzlardaki biyomas 4 k/m3 den 34 m3 e ulaşmıştır. Başka bir önemli sonuç da ısıtılan havuzlardaki balıkların boy dağılımının homojenliğini kaybetmesidir. Uygulamada yetiştiriciler tesis yeri seçerken su sıcaklığının 20 °C nin üzerinde olduğu ay sayısını hesaplarlar. Uzak doğuda bu süre beş ay olup mayıs-eylül ayları arasına denk gelmektedir. Bazı üreticiler bu süreyi uzatmak için özel düzenekler yaparlar. Japonya ve Tayvan’da elverler için kapalı binalar özel ısıtma düzenleri kullanılır. Isıtma işlemi, elverlerin geldiği ilk ay olan kasımdan başlar nisana kadar devam eder. Dışarıda su sıcaklığı 5 °C iken içeride 20-25 °C dolayında tutulmaya çalışılır. Dışarıda su sıcaklığı 20 °C ye ulaşınca bütün ısıtma cihazları kapatılır. Yavrular dış havuzlara aktarılır. Son zamanlarda Avrupa ve Avustralya’da aynı uygulamalara başlanmıştır. Oksijen Yılan balıkları özellikle oksijen konsantrasyonu düşük olan kötü ortam şartlarına dayanıklıdırlar. Bazı araştırmacılar yılan balıklarının farklı oksijen ihtiyaçları olduğunu belirtmişlerdir. - Querellou, 1974 : 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 100mg/saat/kg; - Fish culture, 1972: 100 g ortalama ağırlıktan fazla olan bireyler için, oksijen tüketimi 4mg/saat/kg olduğunu bildirmişlerdir. Havuz suyundaki oksijen kaynağı fitoplanktonlar ve su girişidir. Özellikle gece solunumla su içindeki oksijen miktarı 1-2 mg/l seviyesine düşerse yılan balığı başını sudan çıkarmaya başlar. Bunu ölüm takip eder. Uygulamada yetiştiriciler, oksijen konsantrasyonunun 3 mg/l nin üzerinde olmasını isterler. Su içindeki oksijen seviyesini artırmak için suyu karıştırma ve havalandırma düzenekleri yerleştirilir. Özellikle gece su akışının, havuzun bir köşesinden fazla miktarda verilerek tüm havuzu karıştırmadan diğer bir köşeden tahliyesi yapılır. Böylece yılan balıklarının bu ortama gelerek oksijen ihtiyaçlarını karşılamaları sağlanır. Elverlerin oksijen ihtiyacı büyük balıklardan daha fazladır. Bu nedenle havuzlara devamlı akan su ve basınçlı hava verilmesi gereklidir. pH Ph değeri fotosentez sonucu oksijen miktarını, balık ve plankton solunumu sonucu sudaki karbonik asit miktarındaki azalma ve çoğalmaya bağlı olarak değişir. Gündüzün pH optimum değeri 8-9 arasıdır. Gece fotosentez olmadığından pH 7 ye düşer. PH değeri 4,5-6,5 olan asitli sularda yılan balığı yetiştiriciliği iyi sonuç vermez. Ayrıca PH ın amonyak indirgenmesi üzerine etkisi olup bu kirleticinin toksisite düzeyini belirler. Tuzluluk Yılan balıkları çok farklı tuzluluk şartlarına adapte olabilirler. Bu olayda iki organ önemli rol oynar. Deniz ortamında ( hipertonik) solungaçlar, aşırı miktardaki tuzların atılımını sağlar. Tatlı suda ( hipotonik), böbrekler üriner boşaltımla organizmada su girişlerini dengeler. Euryhalin özellik yetiştiricilik açısından bir sorun oluşturmaz. Bir günlük periyot içinde çoğu kez ara tuzluluktaki suları tercih ederler. Genç ve yetişkin yılan balıklarında bu euryhalin özellik hastalıklara karşı yapılacak olan uygulamalarda deniz suyu kullanılmasına izin verir (Querellou, 1974). Uygulamada yetiştiriciler, yetiştiricilik başarısının tatlı suda acı sudan daha fazla olduğunu belirtmişlerdir. Bu durum yılan balıklarının gelişmesi ve fizyolojik olgunlaşması için kendiliğinden nehirleri aramaları ile açıklanabilir. Fitoplankton Normal sağlıklı yılan balığı havuzu fitoplankton nedeniyle yeşil görünür. Durgun su havuzlarında fitoplanktonların, suyun oksijenini kontrol etmek, fotosentez yoluyla pH seviyesini etkilemek ve büyüme sırasında balık artıklarını absorbe etmek gibi önemli görevleri vardır. Ancak havuzda çok fazla miktarda fitoplankton birikmesine izin vermemek gereklidir. Uygun bir seviyedeki fitoplankton ile havuzdaki organik sedimantasyonun, dipteki bakteri faaliyetleri ile çözünmüş maddelerin absorbsiyon oranını kontrol etmek mümkündür. Kapalı günlerde ve gecelerde fotosentez yapamadıklarından balığın büyümesine olumsuz etki yaparlar. Fitoplanktonlar havuz zemininde organik maddelerin bozulması düzenli bir şekilde olmuyorsa gerekli büyümeyi yapamaz veya bol miktarda besin tuzları bulunmasına karşın, suda yeterli karbonik asit bulunmazsa büyüme durur ve bunu ölüm takip eder. Çok miktarda zooplankton üremesi de havuzdaki fitoplanktonları bitirebilir. Normal bir havuzda fitoplankton/zooplankton oranı 97:3 tür. Havuzda çok çeşitli fitoplankton bulunmaktadır. Her biri iklim,sıcaklık,diğer mevsimsel değişikliklere göre havuzun kimyasal dengesine etkide bulunur. Scenedesmus,Pediastrum ve Chlorella yeşil algleri ilkbahar ve sonbaharda ortaya çıkarlar. Microcystis ve Chlorococcus ilkbahar ve yazın, Anabaena ve Oscillatoria sonbaharda havuzlarda görülen mavi-yeşil alglerdir. Havuz suyunda daha çok Scenedesmus bulunursa yılan balıkları yemlerini daha iştahla yemektedirler. Pediastrum , Chlorella veya Oscillatoria, Anabaena çoğunlukta olduğu zaman iştah azalır. Havuzda bulunan zooplanktonların çoğunluğunu rotifer ve su pireleri teşkil eder. Fitoplankton ölümü,dışarıdan havuza bakıldığında rengin yeşilden koyu kahverengine veya açık renge dönüşmesiyle kolayca fark edilir. Renk değişimi aynı zamanda su kalitesinin değişimi demektir. Su yüzünde oksijen arayan balıklar daha sonra iştahlarını kaybederler. Çoğu zaman bunu toplu ölümler takip eder. Su kalitesindeki değişimler yağışlı havalarda da olmaktadır. Ph değeri sabah 9.5 üzerinde,öğleden sonra 7' nin altında seyretmesi suda amonyak formunda 3ppm azot bulunması su kalitesinin bozulduğunu göstermektedir. Su kalitesindeki değişimleri önleyebilmek için sezon başında ve sonunda havuzlara su doldurmadan önce 60-100gr/m2 sönmemiş kireç serpilir. Kireç zemin toprağını ve zemine yakın suyun kalitesini arttırır. Havuz suyunda zooplankton artışı olmaya başladığında organo fosforik asit esterleri (Dipterex) 0.2-0.3 ppm kullanılarak ortamdaki zooplankton gelişimi önlenmiş olur. Çok ileri safhalardaki su kalitesi bozukluklarında,havuz boşaltılır,balıklar başka havuza alınır. Boşaltılan havuzun dibi kurutulur. Boşaltma mümkün değilse, uygun fitoplankton gelişimi sağlanıncaya kadar havuzda karıştırıcı pedallar kullanılır. Havuz atığı Havuzda çürüyen plankton, yem ve balık artıkları kontrol edilmelidir. Çürüme ve bozulmanın ürünü olan amonyak balığı rahatsız eder, iştahını olumsuz yönde etkiler. Amonyak oksijen olmaması halinde ortaya çıkar. Her yıl havuz boşaltılarak zeminde toplanan artıklar havuzdan alınır. Bunun takiben toprak kurutulur ve kireçlenir. Sülfür Sülfat indirgeyici bakteriler suda bol bulunan sülfatları hidrojen sülfite dönüştürürler. Bu durumda balılar yetersiz oksijen nedeniyle başlarının su yüzeyine çıkarırlar. Bu şartların devam etmesi durumunda büyük kayıplar olabilir. Su demir ihtiva ederse zararsız olan demirsülfit ortaya çıkar. Bu nedenle hidrojensülfitin etkisini azaltmak için bir kaç haftada bir havuz suyuna demir oksit serpiştirilir. Azot,Fosfat, Potasyum Bu elementler fitoplanktonların gelişmesi için gereklidir. Başlangıçta yeni havuzlar gübrelenir. Bu elementlerin optimum miktarları azot için 12,7 ppm fosfat için 1,3 ppm, potasyum için 0,1 ppm dir. Yılan balığı yavrularının beslenmesi Yılan balkıları diğer pek çok balığa nazaran farklı özellik gösterirler. Genelde geceleri yem alma alışkanlığı olan türlerdir. Uzakdoğu’da yılan balığı yetiştiriciliğinin başlaması ile birlikte pek çok besleme yöntemleri denenmiştir. Bunlar ipek böceği pupu ile besleme, taze balık eti ile besleme ve karma yem ile beslemedir. Bu yemleme yöntemleri ayrı ayrı uygulanabildiği gibi karışık olarak da ele alınabilir. İpek böceği pupları Tayvan ve Japonya’da uzun süre yılan balığı yetiştiriciliğinde başarı ile kullanılmış ise de daha sonra ekonomik nedenlerle diğer maddelerle besleme ipek böceği pupları ile yemlemenin yerini almış bulunmaktadır. Yapılan hesaplara göre 1 kg canlı ağırlık artışı için 10 kg dolayında ipek böceği pupu harcanmıştır. Uzakdoğu’da günümüzde tek başına ipek böceği pupu ile yılan balığı besiciliği hemen hemen kalmamıştır. Özellikle Japonya’da insan gıdası olarak değerlendirilmesi mümkün olmayan balık etleri ile yılan balığı besisi yaygın olarak uygulanmaktadır. Bu balıkların başında okyanus uskumrusu gelmektedir. Ayrıca orkinos gibi iri balıkların temizlenmesi sırasında elde edilen kafa ve iç organlar gibi artıklar da yemlemede yararlanılmaktadır. Yılan balıklarına diğer balık etleri kıyılarak veya bütün halinde verilir. İri balıklar gözlerinden veya solungaçlarından bir tel üzerine dizilir ve havuza yem olarak asılır. Bu yemler verilmeden önce derilerine yumuşaması için bir kaç dakika kaynar suya batırılır. Bu yapılamazsa yılan balıkları, balıkların derisini parçalayamadığından deriye yapışmış şekilde olan et değerlendirilemez. Bu da havuzda kirlenme sorunları ortaya çıkarır. Bazı işletmelerde her türlü balık ve balık artığı mikserlerle parçalanarak hamur haline getirilir ve tel sepetlerle havuza sarkıtılarak yem olarak kullanılır. Hamur yapma işleminden önce balıkların pişirilmesi ve kılçıklarından temizlenmesi ile havuz dibine çöküp kokuşması önlenir. Japonya’da balık etleri ile besleme ipek böceği pupuna göre daha başarılı olmuştur. Ancak balık etinin temini, depolanması, hazırlanması ve beslemedeki kirlilik problemleri yetiştiricileri karma yemle beslemeye yöneltmiştir. Japonya’da yılan balığı yetiştiriciliğinde günümüzde karma yem kullanım oranı % 80’ e ulaşmış bulunmaktadır. Karma yemler diğer hayvansal yemler gibi balık unu, diğer yem maddeleri vitamin ve yem karışımından oluşur. Un şeklinde pazarlanır. Yılan balığının yoğun yetiştiriciliğinde kullanılan yemlerin protein oranları çok yüksektir. Elver ve büyük balıklarda en üst düzeyde gelişmeyi sağlayabilmek için karma yemdeki protein oranı değişmekte olup % 45 ile % 59 arasında bulunmaktadır. Tayvan’da yapılan bir araştırmaya göre karma yeme katılacak balık ununun beyaz renkli olmasının daha iyi sonuçlar verdiği saptanmıştır. Balık unları % 4 oranında morina karaciğer yağı ve %30-50 su ile ıslatıldıktan sonra yoğrularak elde edilir, ve canlı ağırlığın % 2-8 oranında verilir. Japonya’da karma yeme yağ katma oranı %10’a kadar çıkabilmektedir. Yapılan hamur bir tel sepet içerisinde havuzun yüzeyine yakın daldırılır ve 10-15 dakika süre ile balıkların yemesi için bırakılır. Bu süre sonunda tüketilmeyen yemlerin havuz suyunu kirletmemesi için ortamdan uzaklaştırılır. Yılan balıkları geceleri yemlenen tür olduklarından aydınlık yerlerde yem almaktan hoşlanmazlar. Bu nedenle havuz kenarlarına üstü kapalı yemleme yerleri yapılır. Yapılan çalışmalar göstermiştir ki sudaki oksijenin yükselmesi ile birlikte balıkların iştahları da artmaya başlar. Bu nedenle yemlemenin havuz içindeki fitoplankton varlığı nedeniyle sabah güneşin doğması ile birlikte başlaması gerekmektedir. Bazı işletmelerde suda oksijen çözünmesini sağlayan aeratörler yemleme zamanında devamlı olarak çalıştırılır. Yılan balıkları yemleme yeri ve zamanını öğrenebilen verilen yemi çok iştahla tüketen canlılardır. Yem almaları suyun sıcaklılığına, havanın bulutlu olmasına bağlı olarak değişir. Su sıcaklığı 23-28 °C arasında yem alımı en üst düzeydedir. Son yıllarda 1,5 kg karma yem ile 1 kg canlı ağırlık artışı sağlanabilmektedir. Küçük yavrularda yem oranı büyüklere nazaran daha fazla olur. Yaşlı yılan balıkları gençlere nazaran yağlı yemleri daha iştahla tüketirler. Genel A, D3, E, vitaminleri içeren ve bitkisel yağlar pahalı balık yağlarına tercih edilir. Sıcaklık ve balıkların gelişme dönemine göre verilecek olan yem ve yağ miktarları tablo-2,3 de verilmiştir. Yeme katılan mineral madde miktarı da büyümeyi etkileyen önemli bir faktördür. Karma yemde mineral madde oranı % 5 den daha az olmamalıdır. Mineral medde ihtiva etmeyen veya çok az içeren yemlerle yapılan beslemede yılan balıklarının iki hafta içinde zayıflamaya başladıkları ve daha sonra kitle halinde öldükleri saptanmıştır. Bu nedenle karma yemlerde yapılan çalışmalar sonucu % 8 mineral madde katkısı en iyi sonucu vermiştir. Yılan Balığı Yetiştirme ve İdaresi Stoklama yoğunluğu, ağırlık veya sayı olarak birim alana birim alana konulan balık miktarı olarak tanımlanır. Uygulanan kültür metoduna göre, yoğunluk bir tesisten diğerine göre değişir. Japonya’da 1 kg ağırlıkta her biri 0,17 g gelen 6 000 adet elver bulunur. Her elver tankına 3,5 x 6 000 elver konur (m² ye 2 000 adet yada 400 g elver ). Bu oldukça fazla bir miktardır. Bu nedenle elver tanklarına daha fazla oksijen verilir. Çalışmalar büyümeye izin veren belli bir alt sınırı olduğunu göstermiştir. Bir başka deyişle stoklama çok seyrek olursa gerekli büyüme sağlanamaz. Isıtılan havuzlarda elver ağırlığı başlangıç ağırlığının üç katına çıkar. Bu noktada yoğunluk çok fazladır. Balıkların seyreltilmesi gerekir. 1 kg ağırlıkta 1 500 elver olan balıklardan 400 m² alana 150 000 adet konulur. Buna göre m² ye 400 adet yada 100 g yavru düşer. Büyüme sırasında sık sık boylama yapılır. Bu şekilde büyüme daha iyi olur. Yetiştiriciliğin son safhası büyütme havuzlarında gerçekleşir. 660 m² havuza her biri 10 g olan ( 100 adedi 1 kg ) 300 kg balık yani m² ye 50-60 balık konur. Burada amaç 150-200 g ağırlığında pazarlanacak bireyler elde etmektedir. Büyüme oranı Japon yılan balıklarının ilk yıl içindeki büyüme oranları tablo x de verilmiştir. Balıkların büyütüldüğü havuz suyunda ısıtma işlemi uygulanmadığından büyüme oranı düşük çıkmıştır. Havuz suyunu ısıtarak yetiştiricilik yapan bazı işletmelerde, 7-9 ay sonunda 150-200 g canlı ağırlık elde edilebilmektedir. Geleneksel yöntemin uygulandığı daha basit şartlarda yetiştiricilik yapan işletmelerde yetiştiricilik süresi 2 yıla kadar uzar. İlk yılda 30-40 g gelen elverler hedeflenir. Boylama yapılamazsa boylar arasında büyük farklar ortaya çıkar. Bunun sonucu bazı balıklar 120 g ağırlığa ulaştığında bazıları hala 2 g ağırlıkta kalabilir. İyi bir yönetim uygulanmazsa ilk 3-4 ay içinde çok yüksek bir ölüm oranı görülür. Ölüm sebebi iyi yem alamamak ve hastalıktır. 30- 40 cm ye kadar erkek ve dişi bireyler arasında büyüme bakımından bir fark yoktur. Bu uzunluktan sonra özellikle avrupa yılan balığı erkek bireylerin büyümesinde bir düşüş görülür (Şekil x ). Erkekler en fazla 50 cm büyürler. Bu boydaki ağırlık 100-120 g dır. Dişi bireyler 50-70 cm ye kadar boya ve 300-500 g ağırlığa kadar büyüyebilirler. Erkek dişi arasındaki oran erkek lehine 20:1 dir. Cinsiyet farklılaşması 14-20 cm arasında olur. Bu boya kadar balık aynı zamanda hem erkek hem de dişi cinsiyet hücrelerini taşır. Verim Japonya’da yılan balığı Pazar ağırlığı 150-200 g dır. Durgun su kültüründe yetiştirme havuzu verimi 4 kg/m²/yıl dır. Bu verim 20 x 200 g/m²/yıl veya 40 ton/hektar/yıl şeklinde ifade edilebilir. Verim takip edilen uygulamalara, üreticinin işletmesini idare etmedeki bilgi ve becerisine göre değişir. Bazı işletmelerde 8 kg /m²/yıl verim sağlanırken bazı işetmelerde bu verim 1 kg / m²/yıl gibi düşük kalmaktadır. Bazı çiftlikler yavru yetiştirme konusunda ihtisaslaşırlar. “Futo” adı verilen bu çiftçiler balıklarını diğer yetiştiricilere satarlar. Yavru yetiştiriciliğinde amaç en kısa zamanda 10-40 g a gelen balık elde etmektir. Teorik olarak 1 kg elverden 1 ton balık elde etmek mümkündür. Teori, 1 kg balıkta 6000 elver, yaşama oranının % 80 ve yaşayan her balığın ortalama 200 g olduğu varsayımına dayanır. Fakat uygulamalardan elde edilen sonuçlar teorinin oldukça gerisine düşüldüğünü göstermiştir. Günlük bakım Su ürünleri yetiştiriciliğinde koruyucu tedbirler almak, tedaviden hem daha kolay hem de çok daha ucuza mal olur. Bu durumda kayıplar da en aza indirilmiş olur. Çok küçük kalan yada fungi taşıyan balıklar bu amaçla havuzdan ivedilikle uzaklaştırılır. Her gün suyun pH ve sıcaklığı (en düşük ve en yüksek değerleri) fitoplanktonların seviyesi ( secchi disk ile ), suyun oksijen miktarı ölçülmelidir. Tesis günde bir kaç kez dolaşılarak kontrol edilmelidir. Her havuzdaki balık sayısı dikkatle takip edilir. Her iki haftada bir örnek alınarak balık ağırlığı hesap edilir. Verilen ve artan yem miktarı hakkında kayıt tutulur. Balık hasadı ve ayrımı Havuz durumuna göre balıklar galsama ağları, kepçe ağlar ve havuzun boşaltılması ile yakalanır. Boşaltma sıcak rüzgarsız bir günde yapılır. Şayet havuz suyu tuzlu ise, hidrojen sülfitin toksik etkisini gidermek için bir gün önceden demir oksit serpiştirilir. Boşaltma günün erken saatlerinde başlar. Ve havuz yarıya indiğinde bütün boşaltma sistemleri açılarak su akıtılır. Boşaltma yapılırken balıkların bir kısmı yakalanır. Boşaltmanın erken yapılmasının nedeni gece su içinde dolaşan balıkların bazılarının gün başladıktan sonra zemin çamuruna gömülmesine müsaade etmeden su içinde yakalamaktır. Yakalanan ballıklar boylama kasalarından geçirilerek ayrılırlar. Büyük balıklar pazara gönderilir, küçükler havuza geri atılır. Japonya’da iç tüketimin % 50 si Tokyo’da, % 30 u Osaka’da geri kalanı ise diğer bölgelerde olur. 1960 yılından beri her yıl % 15 oranında artmaktadır. Japon yılan balığı Avrupa türlerine tercih edilir. Nakil öncesi aç bırakma Nakilden 3-4 gün önce yemleme tamamen kesilir. Bu sırada balıklar küçük bir yerde tutulur. Bunu yapmaktaki amaç yağ miktarını azaltmak, balık sindirim sisteminde bulunan ve ileride ortaya çıkabilecek artıklardan kurtulmaktır. Bu işlem verimliliği artırır, balığı nakil koşullarına hazırlar. Aç bırakmada üç metot kullanılır. 1 Balıklar elver tanklarında tutulur. Bol hava ve su verilir 2 Sepete konulan 20 kg balık tatlı su tankına konur. Bu amaçla kuyu suyu kullanılabilir. 3 Her biri 3 kg balık taşıyan sepetler üst üste konur. En yıkardan balıklar duşa tutulur. Bu işlem sonunda balık ağırlığı % 8 fire verir. KAYNAKLAR Alpbaz, A.,Hoşsucu, H., 1988, İç Su Balıkları Yetiştiriciliği, Ege Üniv. Su Ürünleri Y.O. Yay No:12, 1-98 s. İzmir. Anonim, 1985, Yılan Balığı, T.C. Ziraat Bankası Ege Bölge Müdürlüğü, Su Ürünleri Çalışmaları/1, (Çev) Hakkı Çakır, 62 s., İzmir. Çelikkale, M.,S., 1994, İç Su Balıkları ve Yetiştiriciliği, Cilt 1, 2. Baskı, Karadeniz teknik Üniv. Sürmene Den.Bil Fak. Yay NO: 2, 337-362 s Trabzon. DİE., 1991, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1583, Ankara 1995, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara 1997, Su Ürünleri İstatistikleri, TC. Başbakanlık Devlet İstatistik Enstitüsü Yay, No: 1995, Ankara Gault, J., 1986, L’élevage de l’anguille,(in) Aquaculture, (ed) Barnabe, G., Technique et Documantation-Lavoisier, 739-771 pp, Paris. Geldiay,R., Balık, S., 1996, E Ege Üniv. Su Ürünleri Fakültesi, Yay No:16, 2. Baskı, E.Ü. Basımevi, 204-209 s, İzmir. Tesch, F.,W., 1983, Der Aal, Biologie und Fischerei, Verlag Paul Parey, 340p, Hamburg und Berlin. Usui, A., 1974, Eel Culture, Fishing News (Books), Ltd.,186 p, England. Kaynak; tarim.gov.tr

http://www.biyologlar.com/yilan-baligi-biyolojisi-ve-yetistiriciligi

ALABALIK BİYOLOJİSİ ve YETİŞTİRME TEKNİKLERİ

A.Ü. Ziraat Fakültesi Su Ürünleri Bölümü. 06110 ANKARA Yaşam ortamı bakımından berrak, temiz, serin ve oksijen yönünden zengin suları tercih eden alabalık halkımız tarafından özel likle etinin lezzetli oluşuyla anımsanan balıklar arasında bulunmaktadır. Alabalık türleri sistematikte Salmonidae familyasında yer alırlar. Morfolojik bakımdan yağ yüzgeci ile karakterizedirler. Salmonidae familyasında ekonomik yetiştiricilik ve doğal suların balıklandırılması için önem arz eden çeşitli alabalıklar üç cinsin türleridir. Bu cinsler : a- Salmo b- Salvelinus c- Oncorhynchus Dünya genelinde ençok tanınan alabalık türleri aşağıda gösterilmiştir (Bruno ve Poppe 1996). - Salmo salar Linnaeus (Atlantik Salmonu) - Salmo trutta f.trutta Linnaeus (Deniz alabalığı) - Salmo trutta f.fario Linnaeus (Dere alabalığı) - Oncorhynchus mykiss Walbaum (Gökkuşağı alabalığı) - Salvelinus fontinalis Mitchill (Kaynak alabalığı) - Salvelinus alpinus Linnaeus (Alp alabalığı) - Salhvelinus namaycush Walbaum (Göl alabalığı) Ülkemizin yerel alabalık alt türleri ise şöyle sıralanabilir (Çelikkale 1994). - Salmo trutta macrostigma Dumeril (Anadolu Dağ alabalığı) - Salmo trutta abanticus Tortonese (Abant alabalığı) - Salmo trutta caspius Kessler ( Aras alabalığı) - Salmo trutta labrax Pallas (Karadeniz alabalığı) - Salmo trutta f.lacustris Linnaeus (Göl alabalığı) Yukarıda belirtilen alabalık türleri içerisinde yetiştiriciliği en yaygın olanı Kuzey Amerika kökenli Gökkuşağı alabalığı olmuştur. Gökkuşağı alabalığı ile Kaynak alabalığı hemen hemen aynı yıllarda yaklaşık 120 yıl önce Kuzey Amerika’dan Avrupa’ya getirilmelerine karşın kültür koşullarına uygun niteliklerinden dolayı Gökkuşağı alabalığı yetiştiriciliği hızlı bir artış göstermiş ve günümüzde bir endüstri haline gelmiştir. Gökkuşağı alabalığının yetiştiriciliğe uygun özel likleri aşağıdaki başlıklar halinde belirtilebilir (Steffens 1981). - Gökkuşağı alabalığının çevre koşullarına çok iyi uyum göstermesi yanında özel likle yüksek sıcaklıklara oransal olarak dayanıklı olması, - Aktif yem alması nedeniyle yemlenmesinin kolay olması ve yemi değerlendirmesinin daha iyi olması yönünden iyi bir büyüme göstermesi, - Daha yüksek ilkbahar sıcaklığında dere alabalığı ve kaynak alabalığı gibi diğer alabalık türlerine göre daha kısa süreli kuluçka dönemine sahip olması. Gökkuşağı alabalığının Türkiye’de yetiştiriciliği ise 1970’li yıllarda kamu ve özel girişimciler tarafından başlatılmıştır. Dünya genelindeki kültür balıkçılığının gelişimine koşut olarak ülkemizde de özel likle üstün yetiştirme avantajları nedeniyle Gökkuşağı alabalığı üretimi büyük aşamalar katetmiştir. Önceleri küçük işletmeler tarafından gerçekleştirilen Gökkuşağı alabalığı üretimi, 1990’lı yıllardan itibaren entegre üretim tesislerine dönüşmüştür. Hatta günümüzde ülkemiz Gökkuşağı alabalığı üreticileri Avrupa’ya füme halinde işlenmiş ürün ihraç eder duruma erişmişlerdir. SU KOŞULLARI Alabalık yetiştiriciliğinde kullanılacak su kaynağının orijini ve kalitesinin yüksek nitelikte olması arzulanan bir olgudur. Kaynak Tipleri Alabalık yetiştiriciliğinde yararlanılan su kaynaklarının başlıcaları şunlardır (Leitritz 1974). - Kaynaksuları - Dere veya ırmak suları - Göl veya gölet suları - Yeraltı suları Kaynak Suları Kaynak suları genellikle yerkürenin yüzeysel yada derin katlarından çıkmalarına bağlı olarak kaliteleri farklılık gösterir. Yaklaşık 40 m gibi yüzlek katlardan çıkan kaynak sularının miktar ve kalitesi yağmur ve kuraklığa bağlı olarak değişkenlik gösterir. Fakat oksijen düzeyleri yüksek, CO2 miktarları düşük, su sıcaklığı ise 6-12 oC arasındadır. Yer kabuğunun 1000 m ve daha derin tabakalarından köken alan kaynak sularının miktar ve kalitesi aynı, fakat ekseriya oksijen miktarları litrede 4 mg’ın altında, CO2 düzeyleri ise litrede 50 ppm’in üzerinde, su sıcaklığı ise 8-10 oC seviyesindedir. Dere veya Irmak Suları Irmak veya derelerin kaynaktan ilk birkaç yüz metrelik kesimlerinin su kalitesi aynı ve kirlenmemiştir. Orta ve alt kesimleri ise tarım, gübreleme, endüstri ve evsel atıkların etkisi altındadır. Fakat dere ve ırmakların su kalitesindeki belirtilen bu olumsuzluklara karşın, su miktarları çok fazladır. Kaliteli bir kaynaktan köken alan dere veya ırmak gibi akarsular litrede 8 mg’ın altında CO2’e sahip olmakla birlikte, sıcaklıkları yıl bazında 6-12 oC arasında oldukça değişkendir. Göl veya Gölet Suları Bu tip suların kalitesi de endüstriyel ve tarımsal faaliyetlerin etkisiyle mevsimsel olarak farklılık gösterir. Göl suları da yüksek düzeyde oksijen ve düşük miktarda CO2 içermeleriyle tanınırlar. Fakat 10 m den daha derin göllerde yaz aylarında su kütlesinin yüzey kesimlerinde su sıcaklığı 20 oC’a yükselebilir, yüzeyin yaklaşık 4 m altında ise 15-16 oC sıcaklıkta su bulunur. Yeraltı Suları Genelde kaynak veya iyi kalitede dere suyuna yakın kalitede sulardır. En büyük avantajları daima aynı miktar ve kalitede olmalarıdır. Fakat yerüstüne çıkarmada ekseriya yüksek düzeyde enerji giderine gereksinim duyulur. Ayrıca oksijen yönünden zenginleştirmeye de gereksinim vardır. Su Kalitesi Alabalık yetiştiriciliğinde ideali, yetiştirme ortamındaki balıklara düzenli bir şekilde daima aynı kalitede su temin etmektir. Aynı zamanda su miktarı ile kalite arasındaki sıkı ilişki de gözardı edilmemelidir. Bu bakımdan su miktarındaki ani değişimlerin suyun mevcut kalite değerlerini olumsuz veya olumlu yönde etkileyebileceği unutulmamalıdır. Alabalık yetiştiriciliğinde su kalitesine ilişkin suda incelenmesi gereken çeşitli parametrelerin sınır değerleri Tablo 1’de gösterilmiştir (Lindhorst-Emme 1990). Kuluçka Evinde Su Kriterleri Döllenmiş yumurtaların kuluçkasının gerçekleştirileceği kuluçka evine verilecek suyun kalitesine daha fazla özen göstermenin yararları yadsınamaz. Alabalık yumurtalarının kuluçkası ve larvaların gereksinimi için mümkün olduğu kadar temiz ve kirlenmemiş su kullanılmalıdır. Bu bakımdan kuluçka evine verilen suyun önceden filtre edilmesinde fayda vardır. Kuluçka evinin büyüklüğü döllenmiş yumurta miktarı ve kullanılan kuluçka gereçlerinin tipine bağlıdır. Orta büyüklükte bir kuluçka evinin su gereksinimi saniyede 3-5 litredir. Kuluçka evinde kullanılacak suya ilişkin uygun değerler Tablo 2’de gösterilmiştir (Lindhorst-Emme 1990). Su Miktarı ile Balık Üretimi İlişkisi Balık üretim miktarını, su kalitesi ile birlikte temel olarak suyun miktarı yani debisi etkilemektedir. Fakat bunlarla birlikte balık üretim miktarında yetiştirme sistemi ve kullanılan teknik donanımlarda etkilidir. Örneğin 1000 m2 havuz yüzlemi için saniyede 8 litre kaynak veya iyi kalitede dere suyuna gereksinim vardır. Bu örnekte teknik donanımlardan yararlanmaksızın 400-500 kg alabalık üretilebilir. Fakat ilave olarak havalandırma gibi ilave tekniklerden yararlanıldığında ise yılda 1500-2000 kg alabalık üretmek mümkün olabilir. 1000 m2’den büyük ve 3 m’den derin havuzlarda, küçük havuzlara oranla daha az suya gereksinim vardır. Böyle havuzlarda rüzgarın etkisiyle suyun kalitesi olumlu etkilenebilirse de işçilik yönünden büyük havuzlarda çok büyük güçlüklerle karşılaşılır. Diğer yandan akarsu kanallarında yetiştiricilikte geleneksel havuz yetiştiriciliğine göre 10-20 misli daha fazla suya gereksinim vardır. Yani 1000 m2 yüzleminde akarsu kanalında alabalık yetiştiriciliği için saniyede 80-160 litre suya ihtiyaç vardır. Alabalık üretiminde işletme tiplerine göre stoklama miktarları Tablo 3’de görülmektedir (Lindhorst-Emme 1990). Alabalık üretiminde ana ilke kullanılan suyun miktar ve kalitesinin esas alınarak üretim miktarının saptanmasıdır. Buradan yola çıkılarak önceleri havuzlarda su değişiminin günde 3-5 defa gerçekleşmesiyle saniyede 1 litre suyla yılda 50-75 kg mutfaklık balık üretilebileceği şeklindeydi. Fakat günümüzde yaygın kanı saniyede 1 litre suyla 100-150 kg sofralık balık üretilmesine dönüşmüştür (Bohl 1982). Günümüzde balık üretim miktarı genellikle m3’de kg olarak ifade edilmektedir. Havuzlarda değişimin günde 3-5 defa gerçekleşmesiyle 3-5 kg/m3 balık üretilebilir. Daha yoğun üretimde bu miktar 1 m3 suda 10 kg’a yükselmektedir. 0,30-0,50 m derinlikteki havuzlarda suyun saatte 3 defa değişimiyle m2’de 20 kg (=40-60 kg/m3) balık üretilebilmiştir. Hatta Fransa’nın Brötanya yöresinde havalandırmalı havuzlarda m3’de 100 kg balık üretimi gerçekleştirildiği bildirilmiştir (Bohl 1982). Benzer üretim miktarlarına su değişiminin saatte 5-10 defa gerçekleştirildiği tanklarda m3’de 50-100 kg’la ulaşılmıştır (Steffens 1981). Alabalık üretiminde su miktarı kadar kullanılan suyun sıcaklığı ve yetiştirme ortamına stoklanan bireylerin ortalama canlı ağırlığının dikkate alınması gerekmektedir. Bu faktörlerin dikkate alınmasıyla saniyede 1 litre su girişiyle yoğun üretim koşullarında üretilebilecek balık miktarları Tablo 4’de sunulmuştur (Steffens 1981). Belirli bir miktar su ile üretilebilecek balık miktarının saptanmasında yararlanılan bir diğer kriter suyun oksijen içeriğidir. Buradaki birinci temel ilke toplam 1 kg alabalığın 1 saatte tükettiği oksijenin esas alınmasıdır. Bu yöntemde 50 g’dan küçük balıkların toplam 1 kg’nın 1 saatte 500-600 mg oksijen tükettiği, 50 g’dan daha büyük balıkların ise toplam 1 kg’nın 1 saatte 400-500 mg oksijen tükettiklerinin dikkate alınmasıdır. Ayrıca kullanılan suyun havuzlardan çıkışta litrede 6 mg oksijen içermesi zorunludur. Havuzlara giren suyun içerdiği oksijen ile çıkış suyunun kapsadığı oksijen arasındaki miktar balıkların tüketebileceği kullanılabilir oksijeni ifade eder. Bu veriler esas alınarak (Steffens 1981), Örneğin havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile 50 g’dan küçük balıklar stoklandığında üretilebilecek sofralık balık miktarını hesaplamak gerekirse, Oksijenden yola çıkılarak üretilecek balık miktarını hesaplamada ikinci temel ilke 1 kg yemin balık tarafından tüketilmesinde harcanan oksijenin esas alınmasıdır. Bu tip hesaplamada yararlanılan formül aşağıda gösterilmiştir (Bohl 1982). d = debi = litre/sn 2= Beslenme fizyolojisi bakımından saptanmış katsayı Bu formüle göre havuzlara girişte litrede 11 mg oksijen içeren debisi saniyede 100 litre olan bir su kaynağı ile, günde %2 oranında yemlemeyle üretilebilecek balık miktarını saptamak gerekirse, Balıklar, günde canlı ağırlıklarının %2’si oranında yemlendiğine göre; Buraya kadar belirtilen veriler doğrultusunda saniyede 1 litre suyla genel olarak 100-200 kg pazarlık balık üretilebileceğini belirtebiliriz. DAMIZLIK BALIKLAR Damızlık populasyonu işletmenin sofralık balık üretiminin %1’i kadar yeterlidir. Yani 400 ton üretim kapasiteli bir işletmede 1 ton damızlık balık bulundurulacak demektir. Damızlık balıklar günlük su değişiminin defalarca olacağı kaliteli suyun verildiği havuzlara m2’ye 1-2 kg stok yoğunluğunda yerleştirilir. Erkek / dişi oranı 1: 5 ila 1 : 8 olmalıdır. Genellikle erkekler 2, dişiler ise 3 yılda cinsel olgunluğa ulaşır. İşletmenin yumurta üretim kapasitesini saptamada kg dişi başına 2000 Adet yumurta hesaplanır. Damızlığa ayrılacak bireylerin seçimi ön büyütme döneminden başlayarak gerçekleştirilmelidir. Ayrılan balıkların yetiştirilmesine devam edilerek populasyon içersinden damızlık balık ayrımında belirgin özel likler aranmalıdır. Bu nitelikler: - Hızlı büyümeyle birlikte yemi iyi değerlendirme, - Hastalıklara karşı dayanıklılık, - Düzgün ve uyumlu vücut formu, - Yüksek üreme verimi (Sayıca fazla ve çapı büyük yumurta, kaliteli sperma vb.) - Cinsi olgunluğa geç ulaşma. Yukarıdaki özel likler dikkate alınarak seçilen damızlık balıklar, damızlık havuzlarında kaliteli pelet yem yanında taze balık, karides gibi yaş yemle de beslenmelidir. Damızlık balıkları yemlemede aşırıya kaçılmamalıdır. Damızlıklar yılda yaklaşık 0,5 kg artış göstermelidir. Yoğun yemleme gonad ürünlerinden özel likle yumurtalarda yağ dejenerasyonuna neden olabilir (Bohl 1982). Damızlıkların Verimi Üç yaşındaki damızlık balıkların ortalama ağırlıkları 1-2 kg arasındadır. Dişi balıklar 6. yaşına kadar birbirini takip eden 4 üreme peryodunda kullanılır. Çünkü canlı ağırlık artışıyla birlikte damızlık balıkların kg vücut ağırlığına düşen yumurta miktarı azalır. Örneğin 6 yaşındaki balıklarda bu miktar kg canlı ağırlık için 1200 adet yumurtanın altına iner. Fakat çapı daha büyük yumurtalardan satış avantajı daha fazla olan canlılıkta larva elde edilir. Bu nedenle 4-5 yaşındaki dişiler her yönüyle büyük ekonomik değere sahiptir. Yapılan araştırmalar 3 yaşlı erkeklerin spermasının hiçbir zaman 4-5 yaşlı erkeklerin spermasının kalitesine ulaşamadığını göstermiştir. Fakat 3 yaşlı erkeklerin sperması miktar bakımından daha fazladır. Bu bakımdan yetiştiriciler damızlık balık giderini de dikkate alarak 3 yaşındaki erkekleri tercih ederler (Lindhorst-Emme 1990). Dişi damızlıkların yumurta verim özel liklerine ilişkin temel bilgiler aşağıdaki şekilde sıralanabilir (Steffens 1981). - Damızlık balıktan elde edilen toplam yumurta miktarı balık büyüdükçe artış gösterir. Örneğin 3 yaşında 750 g ağırlıkta balıktan 1800 adet yumurta elde edilirken; 4 yaşında 1300 g ağırlıkta balıktan 2500 adet yumurta alınır. - Balık büyüklüğü arttıkça kg vücut ağırlığına düşen oransal yumurta miktarı azalır. Örneğin 3 yaşında 750 g ağırlıktaki balıkta kg canlı ağırlığa düşen yumurta sayısı 2400 adet olurken; 4 yaşlı 1300 g ağırlıkta balığın kg canlı ağırlığa düşen yumurta sayısı ise 2000 adettir. - Yumurta sayısı, yemin miktar ve kalitesiyle etkilenebilir. - Yumurta sayısının bireylerde farklılığında genetik koşulların etkisi çok büyüktür. - Yaşlı ve büyük balıklar genç ve küçük balıklara oranla daha büyük yumurta geliştirirler ve bu suretle daha kuvvetli larva oluşumunu sağlarlar. Örneğin 178 g ağırlıkta 2 yaşlı balıkta yumurta çapı 3,9 mm olurken, 2700 g ağırlıkta 7 yaşlı balığın yumurtasının çapı ise 5,7 mm dir. Özgün bir çalışma sonucunda elde edilen damızlık dişilerin yumurta verimleri ve erkek damızlıkların sperma (süt) miktarlarına ilişkin veriler Tablo 5’de gösterilmiştir (Lindhorst-Emme 1990). Damızlıkların Cinsiyet Ayrımı Gökkuşağı alabalıkları kökenlerine göre yılın farklı dönemlerinde yumurtlama olgunluğuna erişirler. Yılın erken döneminde yumurtlayanlar Temmuz/Ağustos, Orta dönemdekiler Kasım/Aralık, geç dönemdekiler Mart/Nisan’da üremeye hazırdırlar. Damızlık balıklar üreme sezonundan 4 hafta önce cinsiyet ve yaşlarına göre ayrılmalıdır. Bu ayrım işleminde erkek ve dişi balığın vücut yapısına bakılır. Dişilerde karın daha şişkindir. Cinsiyet deliği etrafı kırmızı renkte görünümdedir. Üreme zamanı erkeklerde alt çene öne doğru uzamış ve bir kanca şeklinde yukarı kıvrılmıştır. Erkeklerde vücut daha yassıdır. Özellikle erkekler üreme zamanı yaklaştığında yanal çizgi boyunca daha koyu ve parlak kırmızı bir şerit taşırlar (Ekingen 1975,Özdemir 1994). SAĞIM VE YUMURTALARIN DÖLLENMESİ Balık üretiminde damızlık balıklara üreticiler eliyle hafif bir masaj uygulanarak dişi balıklardan yumurta ve erkek balıklardan süt (spermatozoa içeren beyazımsı renkte sıvı) alım işlemi sağım olarak adlandırılır. Sağım döneminden 2-3 hafta önce damızlıklara verilen yem miktarı azaltılır. Damızlık balıklarda sağıma hazırlığa yönelik son kontrollerin yapılmasından sonra, yani sağımın bir hafta öncesinde ise yemleme tamamen kesilir. Yumurtlama olgunluğuna ulaşmayan damızlıklar ise bir hafta boyunca canlı ağırlıklarının %0,5’i gibi düşük oranda yemlenir (Greenberg 1969, Wiesner 1968). Sağımda damızlıklara zarar vermemek, işlemi çabuk ve seri olarak gerçekleştirmek ile sağımı yürüten kişinin fazla güç sarfetmeden, çok sayıda damızlık balığı sağabilmesi için damızlıklara narkoz uygulanabilir. Damızlık balıkları bayıltmada anestezik olarak sıkça kullanılan preparatlar (Atay 1987, Bohl 1982). - MS-222 (Tricainemethansulphonat) - Trichlormethylpropanol (TCMP) - Quinaldin (2 Methylchinolin) Belirtilen anesteziklerden suda kolay eriyen MS-222 1:20.000-1:30.000 (1 g+ 20-30 lt su) konsantrasyonlarında kullanılır. Balıklar sağımdan birkaç dakika önce anestezik madde bulanan suya yerleştirilirler. Sağım işlemi bittikten sonra balıklar tekrar oksijen yönünden zengin temiz suya bırakılırlar ve burada 2-3 dakika içinde normale dönerler. Alabalık üretiminde sağımın ana kuralı işlemin kuru koşullarda gerçekleştirilmesidir. Çünkü yumurtanın su ile teması halinde spermanın yumurtaya giriş kapıcığı olan mikropil 1-2 dakika içersinde kapanır. Ayrıca erkek balıktan elde edilen sütün içerdiği spermatozoa’lar suda yaklaşık 1 dakika kadar yaşabilirler. Bu nedenlerle sağımda damızlık balıkların bir bez yada en iyisi havlu ile kurulanmasıdır. Alabalık sağımında dikkat edilmesi gereken bir diğer konu balıkların uygun sağım zamanının saptanmasıdır. Tam olgunluğa ulaşmış dişi alabalık sudan çıkarılıp kuyruğu aşağı gelecek şekilde tutulduğunda yumurtalar kendiliğinden akmaya başlar (Baran 1977, Erençin 1977). Genellikle sağımda balığın sırtının sağan kişiye dönük olması geleneksel tutuş şeklidir. Damızlık balıkların sağımı balığın boyutuna göre tek veya iki kişi tarafından gerçekleştirilir. Birkaç dişinin yumurtası küçük hacimli plastik kaba sağılır ve bu yumurtaların üzerine de birden fazla erkeğin sütü sağılır. Dişi balıklar yılda bir defa sağıldıkları halde, erkekler 15 gün ara ile birkaç defa sağılabilirler (Brown ve Gratzek 1980). Plastik bir küvete sağlan yumurta-süt karışımı elle veya plastik bir kaşıkla karıştırılır. Daha sonra bu karışım üzerine bir miktar temiz su ilave edilir. Yaklaşık 5 dakikada döllenen yumurtaların bir küvet içerisinde 30-45 dakika süreyle su alıp şişme işleminin tamamlanması beklenir. Bu evrenin sonunda yumurtalar birkaç defa temiz su ile yıkanarak kuluçka gereklerine yerleştirilir (Atay 1980). Kuluçka Balık üretiminde döllenmiş yumurtalardan embriyonal evrelerin (Morula, Blastula ve Gastrula) gelişimiyle yumurtadan larva çıkışının tamamlanmasına kadar geçen süreç kuluçka (Incubation) işlemi olarak adlandırılır. Gökkuşağı alabalığının döllenmiş yumurtalarının kuluçkası için uygun su sıcaklığı 7-10 oC arasındadır. Yumurtalardan larva çıkış süresi gün-derece olarak ifade edilir. Gün-derece; günlük ortalama su sıcaklıklarının toplamı olarak larva çıkış süresinin belirtilmesidir. Örneğin 10 oC su sıcaklığında larvalar 30 günde yumurtadan çıktığında, gün derece 300’dür. Buna göre döllenmiş yumurtalardan kaç gün sonra larva çıkabileceğinin gün-derece olarak göstergeleri farklı alabalık türlerine göre Tablo 6’da sunulmuştur (Bohl 1982). Kuluçka döneminde 10 oC su sıcaklığında gökkuşağı alabalığının döllenmiş yumurtalarından 32 ila 36 gün sonra vitellus keseli (yedek besin keseli) larvalar çıkar. Larvaların çıkışında su sıcaklığı ile birlikte kalıtsal etki ve damızlıkların yaşı yanında, suyun oksijen içeriği ve ışık yoğunluğu gibi çevresel faktörlerde etkilidir. Alabalık yumurtaları embriyonal gelişme sürecinde ışık etkisine karşı aşırı duyarlıdırlar. Bu bakımdan direkt güneş ışığından korunmaları gerekir. Kaliteli damızlıklardan elde edilen yumurtaların optimum koşullarda kuluçkasında kayıp oranı yaklaşık %10-20 olabilir. Büyük işletmelerde bu oran %20-30’u aşmamalıdır (Bohl 1982, Steffens 1981). Kuluçka Süresinde Koruyucu Önlemler Döllenmiş yumurtaların kuluçka döneminde su sıcaklığı, oksijen miktarı, suyun temizliği, ışık gibi faktörlere özen göstermekle beraber, ölü yumurtaların ayaklanması da çok önemlidir. Çünkü ölen yumurtalarda saprolegnia sp. mantarları kısa sürede infeksiyona neden olur ve sağlıklı yumurtalara bulaşarak onların da ölmelerine neden olurlar. Bu hastalık odağı ölü yumurtalar, sağlıklı yumurtaları zedelemeden cımbız (yumuşak ahşap materyalden özel imal edilenler tercih edilmelidir), özel pens yada maşalar, tıpta kullanılan lastik puarların ucuna 15-20 cm boyunda cam boru takılarak hazırlanan özel pipetler, ölü yumurtaların sifon edilmesi, tuz eriyiği (%10, 7’lik tuz eriyiğinde-960 g NaCl/8 lt su-ölü yumurtalar 3 dakikada dibe çökerler) ve fotosel sistemi ile çalışan elektrikli seçicilerden yararlanılarak ayıklanabilir. Fakat yinede fazla işçilik gerektirmesine rağmen en iyi sonuçlar elle temizlemeyle elde edilmektedir. Ölü yumurtaların canlı yumurtalardan ayrımında hangi yöntem tercih edilirse edilsin, bu işlem yumurtaların göz lekeli döneminde gerçekleştirilmelidir. Döllenmiş yumurtalar göz lekeli döneme 200-220 gün-derece sonra ulaşırlar. Gözlekeli dönemde yumurtaların mekanik işlemlere duyarlılıkları azalır. Fakat döllenmeden yaklaşık 8 saat geçtikten sonrası ile göz lekesi oluşana kadar ki dönemde ise yumurtalar fevkalade duyarlıdırlar. Kuluçka döneminde mantarlaşmaya karşı koruyucu olarak kimyasal maddelerle yumurtaları ilaçlamak faydalı olmaktadır. Bu amaçla kullanılan kimyasal maddeler Tablo 7’de belirtilmiştir (Steffens 1981). Bu maddelerin tamamı kuluçka sisteminin giriş suyuna ilave edilirler. Koşullara göre belirtilen tedavi 2 günde bir veya daha fazla süre arayla da uygulanabilir. Kuluçka döneminde yumurtalara saprolegnia infeksiyonuna karşı en yaygın kullanılan kimyasal madde Malachit yeşilidir. Çoğunlukla oxalat formu, kristalize veya sıvı konsantrasyonu kullanılmaktadır. Maalesef günümüzde henüz Malachit yeşilinin yerini alacak zararsız ve aynı değerde bir kimyasal madde bulunamamıştır. Bu dezenfeksiyon maddesinin son on yıldan beri yoğun şekilde kanser etkisinden bahsedilmekte ve kullanılırken özenli davranılması gerektiği belirtilmiştir. Özellikle pazarlık balık üretiminde kullanımı yasaklanmıştır. Çünkü balığın etinde insan sağlığı için zararsız düzeye inene kadar 108 gün geçmesi gerekmektedir. Bu nedenle Almanya’da Malachit yeşilinin satışı 1988 yılı sonundan itibaren veteriner hekim reçetesine bağlanmıştır. Ayrıca kullanımı da yumurta ve larva dönemi ile 6 cm boyunda yavru balıklarla sınırlandırılmıştır (Baur ve Rapp 1988, Lindhorst-Emme 1990, Schlotfeldt ve Alderman 1995). Balık yumurtalarının yüzeylerinde infeksiyon etkenlerinin bulunabildiği ve böylece hastalıkların yayılmasında rol oynadıkları bilinmektedir. Bu nedenle işletmelerin yumurta satışlarında, yumurtaların taşınmasından önce dezenfeksiyon işlemini uyguladıklarını garanti etmeleri istenmektedir. Bu hedefe yönelik olarak iyot preparatlarıyla banyo işlemine tabi tutulan yumurtaların, bu işlemin uygulanmadığı yumurtalara oranla daha az mantarlaştıkları bildirilmiştir (Bohl 1982). İyot içeren dezenfeksiyon maddesi olarak yaklaşık %1 aktif iyot kapsayan Actomar K30 önerilmektedir. Alabalık yumurtalarının bu maddeyle dezenfeksiyonu için ideal iki dönem vardır. Birinci uygulama zamanı döllenmeden 10 saat sonra yeşil yumurta dönemi, daha da iyi olan 2.ci dönem ise yumurtaların gözlekeli devresidir. Belirtilen dezenfeksiyon işlemi için 1 litre suya 15 ml Actomar K30 ilave edilir ve yumurtalara banyo uygulanır. Actomar K30 ile hazırlanan banyo solüsyonunun etkinliği rengi ile anlaşılır. Kullanılan eriyiğin rengi kahverengiden-sarıya kadar kullanılabilirliğini gösterir. Açık sarı renk oluştuğunda ise etkinliği garanti edilemez, hatta bazen tamamen etkisizdir (Baur ve Rapp 1988, Bohl 1982, Schlotfeldt ve Alderman 1995). Kuluçka Tipleri Alabalık üretim tesislerinde yaygın olarak kullanılan kuluçka tipleri ve temel nitelikleri Tablo 8’de belirtilmiştir. Tablo 8. Kuluçka tipleri Kuluçka gereci Su gereksinimi Kapasite Kuluçka kanalı 15-25 lt/dak. 100.000 Adet yumurta Zuger şişesi 1,5-3 lt/dak. 30-50.000 Adet yumurta Kuluçka dolabı 1,2-2 lt/dak. 100.000 Adet yumurta Kuluçka kanalları En eski ve halen günümüzde de yaygın olarak kullanılan kuluçka gereçleridir. Birkaç metre uzunluğunda kanal ve içerisine konulan özellikle tabanları gözenekli materyalden yapılan, yumurta yerleştirilen tablalardan (Kasetlerden) oluşur. Tablalar arasında kanalda enine bölmeler vardır. Bu sistemde su tablaya alttan girer ve yumurtaların oksijenini sağladıktan sonra üstten çıkar. Kuluçka kanallarının boyları farklı olmakla birlikte 2-3 m uzunluk tercih edilmektedir. Yumurta tablaları ise 45x45 cm boyutunda kare şeklindedir. Yumurta tablalarının tabanı için 1,5 mm çapında yuvarlak delikleri olan alüminyum materyal kullanılması daha uygundur. Yumurta tablaları kuluçka kanallarına üst üste değil, birbiri ardı sıra konulmalıdır. Kuluçka kanallarına 4-7 adet yumurta kaseti yerleştirilir. Bu kasetlere suyun kalitesine göre kuluçka için yumurtalar tek kat konulduğunda 5000 adet, çift kat konulursa 10.000 adet yumurta bırakılır. Kuluçka kanallarının herbirisine kuluçkanın ilk günlerinde 15 lt/dak. su girişi sağlanırken, bu miktar yumurtalardan larva çıkışına yakın 25 lt/dak düzeyine yükseltilir (Bohl 1982, Çelikkale 1994, Lindhorst-Emme 1990, Steffens 1981). Bu tip kuluçkalıklar alt kısımları huni şeklinde olan, ilk kullanan kişinin ismine atfen zuger şişesi olarak adlandırılan ve genellikle 6,5-8 lt kapasiteli gereçlerdir. Daha az yer kaplayan, daha az suya gereksinim duyan ve kurulmaları kolay olan bu gereçlerin, kapasiteleri 30.000 ile 50.000 adet yumurtadır. Taban kısımları açık olan ve ters yerleştirilen bu şişelerin, huninin alt kesimi gibi daraltılmış boğaz kısmından verilen su girişinin basıncının yumurtalara zarar vermemesi için, ağız kısmına 3 cm yüksekliğinde cam boncuklardan (yaklaşık 6 mm çapında veya aynı büyüklükte çakıl taşları) oluşan bir katman yerleştirilir. Normal boyutta bir zuger şişesi için 1,5-3 lt/dak. su gereklidir. İki zuger şişesi için 0,25 x 0,50 m, çift sıralı 8 zuger şişesi için ise 0,50 x 1.00 cm’lik alana gereksinim vardır. 8-10 zuger şişesine yerleştirilen yumurta miktarı, kanal sistemi kuluçkalıklarda 36 adet kuluçka kanalına konulan yumurta miktarına eşdeğerdedir. Belirtilen miktarda kuluçka kanalı için, kuluçka evinde 35 m2 yer ayırmak gerekir. Ayrıca zuger şişeleri fiyat bakımından da daha uygundur (Bohl 1982). Kuluçka dolaplarının kullanımı son yıllarda özel likle büyük kapasiteli işletmelerde hızla artmaktadır. Buna neden olarak çok az alana gereksinim duymaları, kaliteli, fakat az miktarda su kullanımı ve işçilik giderinden tasarruf gösterilebilir. Kuluçka dolapları damlalıklı ve vertikal akışlı dolaplar olmak üzere iki tiptir. Damlalıklı dolaplarda yumurtaların larva çıkışından kısa süre önce dışarı alınarak kuluçka kanallarında tablalara yerleştirilmesi zorunludur (Ekingen 1975). İkinci tipte ise larvalar yemleme dönemi öncesine (serbest yüzme) kadar dolabın tepsilerinde tutulabilmektedir. Bunlar Veco (İSVİÇRE)-Dolapları olarak adlandırılırlar. Bu dolapların yumurta tablaları tepsi şeklinde daireseldir. Her dolapta 10 tepsi bulunur. Her tepsi şeklindeki yumurta tablasına 10.000 adet yumurta konur. Bu dolapların su girişi üsttendir, önce birinci tepsiye su dolar, daha sonra ikinci vd. ne devam eder. Bu dolaplarda 100.000 adet yumurta için 1,2-2,0 lt/dak. su yeterli olmaktadır (Bohl 1982). Kuluçka döneminin sona erdiği günlerde 25-35 gün-derecede yada bir başka ifadeyle 10 oC su sıcaklığında 2,5 günde yumurtaların tamamından larva çıkışı tamamlanır. Bu arada ortamdaki yumurta kabukları sifonlanarak günde iki defa yumurta tablalarının delikleri tıkanmaması için ayıklanmalıdır. Yumurtadan çıkan larvalara Vitellus keseli larva denilir. Bunlar besin kesesi olarak da adlandırılan keselerini su sıcaklığına göre 12-17 günde tüketirler. Bu dönemde larvaların barındırıldığı gereçlerden en azından her iki gündebir beyaz renkli ölü yumurtalar yada ölen keseli larvalar vaya deforme ve anomalili larvalar sifonlanarak uzaklaştırılmalıdır. Belirtilen temizlik işlemi yapılmadığı durumda hızlı bir şekilde mantar enfeksiyonu ile karşılaşılır (Lindhorst-Emme 1990) Larvaların serbest yüzme dönemine ulaşmaları, besin keselerinin çoğunu tüketmeleri, larvaların yemlenmeye başlanmaları için önemli göstergelerdir. Vitellus keseli larvaların %10’u yem alma gücüne ulaştığında yada besin keselerinin 2/3’lük kısmını tükettiklerinde ve serbest yüzmeye başladıklarında yemlenmeye başlanmalıdır. Larvalar belirtilen evreye ulaştıklarında, kuluçka kanallarında yumurta tablaları arasındaki bölmeler kaldırılır, tablalarda bulunan larvalar yavaş bir şekilde kanallara stoklanırlar (Bohl 1982, Çelikkale 1994, Igler 1990, Steffens 1981). Serbest yüzme devresine ulaşmış ve suda aktif hareket eden larvaların bakım ve beslenmelerine özen gösterilerek ortalama 1 g canlı ağırlığa kadar yetiştirilmeleri genel olarak “ön büyütme” olarak tanımlanır. Bu devre 60-80 günde tamamlanır. Bu dönemde yetiştirme ortamı olarak daha ziyade büyütme kanalları kullanılır. Ayrıca ön büyütme dönemi kuluçka evinde tank yada kanallarda gerçekleştirilir. Su değişimi, stok yoğunluğuna ve su kalitesine bağlı olarak 4-8 kez/saat, olmalıdır. Belirtilen koşullarda stok yoğunluğu 100.000 larva/m3 sudur. Larvaların yemlenmesine her 30-60 dakikada bir günde 12 saat devam edilir. Bu dönemde kayıp oranı yaklaşık %30-35’dir. Optimum üretim koşullarında hasatta üretim hedefi en azından 1 g bireysel ağırlıkta m3’de toplam 25 kg veya 25.000 ön büyütülmüş yavru olmalıdır (Steffens 1981). Ön büyütme döneminde larvaların yetiştirilmesinde aşağıdaki önlemlerin alınmasında fayda vardır (Çelikkale 1994). - Kaliteli su temini, - Direkt güneş ışığından korumayla birlikte dolaylı aydınlık sağlama, - Yavruların köşelerde veya belli noktalarda birikmelerinin önlenmesi, - Yemlemenin sık olarak yapılması, fakat her defasında azar azar verilmesi ve yem artıkları ile dışkıların sürekli temizlenmesi gibi konularda özen gösterilmelidir. Alabalık larvalarının ön büyütülmesinde genellikle 3-4 m uzunluk ve 40-80 cm genişlikte kanallar kullanılmaktadır. Genelde betonarme inşa edilirlerse de, hijyenik açıdan polyester kanallar tercih edilmelidir. Populasyonun stok yoğunluğu, kullanılan suyun miktar ve kalitesine bağlıdır. Bu kanallarda su değişiminin optimum düzeyi saatte 4-8 defa olmalıdır. Derinlikleri 30-80 cm olan bu kanallarda su yüksekliği balık boyutuna koşut olarak yükseltilir. Örneğin 3,60 m uzunluk, 40 cm genişlik, 17 cm su derinliğinde kanala yaklaşık 30.000 adet gökkuşağı alabalığı larvası, yani 122.000 larva/m3 stoklanarak yemlenebilir. Yemleme dönemindeki larvalarda genellikle 100.000 adet/m3, yani 100 adet/lt stok miktarları uygulanır. Belirtilen stok miktarları uygulandığında kanallarda saatte 4-8 defa su değişimi için 1-2 lt/sn/m3 su gereklidir. Bu koşullar altında, 8-10 oC’lik su sıcaklığında 8 günlük yemleme sonunda stokta 50.000 yavru/m3, 15 günlük yemlemeden sonra ise 20.000-30.000 yavru/m3 şeklinde seyreltme yapılır (Bohl 1982). Kapasitesi 2-4 m3, genelde polyester olan, fakat beton yada eternitten de imal edilen kanal tipi tanklarda iyi düzeyde oksijen içeren suyla 30.000-60.000 adet larva 6-8 hafta beslenir. Bu tanklara su girişi 20-40 lt/dak./m3 su, olmalıdır. Stok yoğunluğu 8-12 adet larva/lt. Bu tanklarda taban eğimi %1,5-2 olduğunda iyi temizlenme olanağı yaratır (Lindhorst-Emme 1990). Bu tanklarda üst kısımdan basınçla geren su, tank içindeki suyu dairevi bir hareket halinde tutar. Dolayısıyla bu tankların her tarafında oksijen hemen hemen aynı düzeydedir. Bu tanklarda su çıkışı tabanın ortasındadır. Su çıkış kısmı üzerine 15-20 cm çapında 3,5-4,0 mm göz açıklığında, paslanmaz metalden yapılmış bir süzgeç yerleştirilir. Tankın alt kısmına yerleşmiş olan su çıkış borusu hareketli bir dirsekle dış kısmından yükselmektedir. Bu hareketli dirseklerle tank içindeki su seviyesi kolayca ayarlanabilmektedir. Diğer taraftan tankın tabanında orta su çıkış kısmına doğru yaklaşık %5 meyil vardır. 2 m çapında ve yaklaşık Fingerling (Parmak Büyüklüğünde Balık) Yetiştiriciliği Parmak büyüklüğünde yavru balık üretiminde stok materyali olarak ön büyütmesi yapılan genellikle en azdan 0,5-1 g bireysel ağırlıkta ve 4-5 cm boyunda yavrular kullanılır. Eğer ön büyütmesi yapılan yavruların stoklandığı havuzlarda ve kullanılan suda dönme hastalığına neden olan parazitin (Myxosoma cerebralis) sporları varsa, yavruların boyu en azından 6-7 cm olmalıdır. Çünkü belirtilen büyüklükteki yavruların omur ve kafa kemiklerinin kıkırdak kısımları oldukça dayanıklılık kazanmıştır ve deforme olmaz hale gelmiştir (Bohl 1982). Parmak büyüklüğünde yavru balıkların yetiştiriciliği yapılan bütün üretim donanımlarının, yavru balıklar stoklanmadan önce hijyenik yönden önlemlerinin alınması zorunludur. Bu önlemlerin başında dezefenksiyon gelir. Dezenfeksiyon etkisi sıcaklığa bağlıdır. Genel bir kural olarak, dezenfeksiyon maddesinin etkisi için 20 oC’da 30 dakika, 12 oC’da 1 saat, 4 oC’da 2,5 saat süre gereklidir. Dezenfeksiyon maddesi olarak genellikle formaldehyd (Ticari adı Formol) tercih edilir. Konsantrasyon olarak %5’lik eriyik (5 kısım Formol + 32 kısım su) önerilmektedir. Metal olmayan materyaller için NaOH (Sodyum hidroksit) %2 oranında, yani 20 g NaOH (Sud kostik) 1 litre suya ilave edilerek kullanılmaktadır (Bohl 1982, Baur ve Rapp 1988). Beton kanallarda finrgerling yetiştiriciliği Mevcut kapasiteyi daha iyi değerlendirmek için, 7-10 m uzunluk, 0.80-1 m genişlik ve 0,80-1 m derinlikte beton kanallar parmak büyüklüğünde yavru üretiminde kullanılmaktadır. Su koşullarına ve her 10 dakikada su değişiminin gerçekleşmesine bağlı olarak stok yoğunluğu 2000-5000 adet ön büyütülmüş yavru/m3 tercih edilir. Bu durumda hasatta elde edilen ürün 50 kg/m3 olur ve yavru balıkların bireysel ağırlıkları 10-15 g yada 30 g’a ulaşabilir. Bu tip yetiştiricilikte yavruların defalarca yemlenmesi çok zaman alırsada, aynı zamanda günde iki defa temizlik yapılmalıdır (Bohl 1982). Yavru yetiştirme kanallarının 8-10 m uzunluk ve 1-2 m genişlikte olanları fingerling üretimi için esas yönünden uygundur. Bu kanallarda su değişimi en azından 5-20 dakika sürede gerçekleşmelidir. Kanalların savaklarında 3,5 mm çapında delikli materyal kullanılmalıdır. Su değişimine göre stok yoğunluğu 2000-5000 adet/m3, yavru yada daha yüksek olabilir. Hasatta balık büyüklüğü ve su koşullarına göre 50 kg/m3 veya özel likle daha iyi koşullarda 100 kg/m3, ürün elde edilebilir (Steffens 1981). Havuzlarda fingerling yetiştiriciliği Parmak büyüklüğünde yavru balık yetiştiriciliği uygun koşullarda havuzlarda da yapılabilir. Bu havuzların betonarme yapılması daha uygundur. Dikdörtgen konumdaki havuzların genişlik/uzunluk oranları yaklaşık ¼-1/6 olmalıdır. Bu havuzlarda kullanılan suyun kalite ve miktarına bağlı olarak stok yoğunluğu 60-100 adet ön büyütülmüş yavru/m3 (ortalama 1 m derinlikte) şeklinde düzenlenir. Bu tip üretimde 50.000 adet fingerling yetiştiriciliği için yaklaşık 10 lt/sn suya gereksinim vardır. Ayrıca hafif asidik karakterde 3-5 lt/sn suyla, örneğin 450 m2 yüzleminde ve 1,5-2,3 m derinlikte havuzda ek havalandırma koşullarında 60.000-80.000 adet yavru ortalama 12-15 cm (2-3 kg/m2) boya kadar üretilir (Bohl 1982). Ağ kafeslerde fingerling yetiştiriciliği Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliği pazarlık boyutta (sofralık) balık yetiştiriciliği kadar uygun değildir. Bunun en büyük nedeni fingerling yetiştirilecek kafeslerde ağ göz açıklığının küçük olma zorunluluğudur. Çünkü ağın gözleri küçüldükçe ağlar daha çabuk tıkanır ve böylece su değişimi engellenir. Ayrıca kafeslere stoklanacak yavru balıkların genellikle ön beslemesi yapılmış ortalama 1 g ağırlıkta olmaları nedeniyle, kafesten kaçmamaları için 4 mm göz açıklığında ağlar gereklidir (Beueridge 1987). Belirtilen sorunlar dikkate alınarak ağ kafeslere stoklanacak yavruların en az 2 g ağırlıkta ve ağ göz açıklığının 6 mm olması daha uygundur. Ağ kafeslerde parmak büyüklüğünde yavru yetiştiriciliğinde stok yoğunluğu 300-500 adet/m3, yavru önerilmektedir. Bu tip yetiştiricilikte uygun su koşullarında yavru balıklar 8-10 cm boy yada 50 g ağırlığa kadar büyütülebilirler. Yalnız yavru balıklar büyüdükçe 1 cm balık boyu için 1 mm ağ göz açıklığı temel alınarak kafesin ağ torbası periyodik olarak yenilenmelidir (Kieckhäfer 1983, Steffens 1981). Pazarlık (Sofralık) Alabalık Yetiştiriciliği Yavruların fingerling (Parmak büyüklüğünde balık) üretiminde amaç, 140-150 günlük yemleme döneminde yavruları en azından ortalama 10 g bireysel ağırlığa ulaştırmaktır. Fakat daha iyisi 30 g bireysel ağırlığın üstüne çıkmak olmalıdır (Steffens 1981). Pazarlık alabalık üretiminde genel olarak sofralık balık büyüklüğü 250-330 g/adet (4 yada 3 adet/kg) olarak kabul edilmektedir. Mutfaklık balık yetiştiriciliğinde havuz, kanal ve kafes sistemleri kullanılır (Bohl 1982, Çelikkale 1994, Steffens 1981). Havuzlarda sofralık alabalık üretimi Bu havuzların ölçüleri, kullanılan suyun miktarı ve kalitesi ile havuz yapılan arazinin topoğrafik durumu ve toprak yapısına göre büyük değişiklik gösterir. Havuzların beton yapılmasında zorunluluk yoktur. Toprak yapısı killi ve suyu tutma özel liğinde ise havuzların kullanımı, beton havuzlara bakarak daha fazla işçilik gerektirirse de, sabit yatarım gideri daha azdır. Beton havuzlarda dezenfeksiyon ile bakım daha kolay, yemleme ve balıkların kontrolü daha iyi, fakat yapım gideri ise yüksektir (Atay 1995, Çelikkale 1994, Emre ve Kürüm 1998). Pazarlık alabalık besiciliğinin gerçekleştirildiği havuzların boyutları, genellikle 20-50 m uzunluk, 4-12 m genişlik ve en fazla 1.20 m derinlikte olmalıdır. Uygun stok yoğunluğu su değişimine ve kalitesine göre saptanır. Ayrıca yemleme, havuz hijyeni, teknik donanım kullanımı (Örneğin havalandırma gibi), üretim süresi gibi faktörlerde stok miktarını saptamada dikkate alınmalıdır (Lindhorst-Emme 1990, Steffens 1981). Optimum yetiştirme koşulları ve tam değerli pelet yem kullanımı ile gökkuşağı alabalığı yetiştiriciliğinde 8 aylık üretim sürecinde tüketim ağırlığına ulaşılabileceği beklenmelidir (Bohl 1982). Sofralık balık üretim miktarı genellikle kg/m3 olarak ifade edilir. Örneğin havuzlarda su değişimi günde 3-5 defa gerçekleştiğinde 3-5 kg/m3, balık üretilebilir. Yarı yoğun üretim koşullarında ise bu miktar 10 kg/m3’e yükselir. Derinliği 30-50 cm olan havuzlarda su değişiminin saatte 3 defa gerçekleştiği durumda 20 kg/m2 (=40-60 kg/m3) balık üretilir (Bohl 1982). Havuzlara verilen su miktarı esas alınarak da stok miktarı hesaplanabilir. Buna göre iyi kalitede 1 lt/sn’lik su girişine göre hasatta 100-150 kg sofralık balık üretileceği hedefine yönelik stoklama yapılır. Pazarlık alabalık büyüklüğü 200-250 g baz alınarak, 1 lt/sn debi için 400-600 adet fingerling stoklanır (Çelikale 1994). Kanallarda sofralık alabalık üretimi Derinlikleri 50-65 cm, genişlikleri bir kaç metre olan, betondan yapılan, uzunlukları birkaç yüz metre, su değişiminin saatte 2-3 defa gerçekleştiği üretim tesisleridir. Taban eğimi 30 m’de 10-20 cm dir. Birkaç yüzmetre uzunluğundaki bu kanallar ızgaralarla yaklaşık 30 m’lik bölümlere ayrılır. Üretim kapasiteleri genellikle 24-32 kg/m3’dür (Steffens 1981). Bu kanal tipi havuzlar, mekanik yemlemeye hastalıklarla savaşa ve otomatik seleksiyona uygun balık üretim tesisleridir (Atay 1995). Yavru balıkların pazarlık boyuta kadar büyütülmesinde suyun akış hızı 1,5-3 cm/sn olmalıdır. Benzer veriler Amerikan kaynaklarına (Westers’e göre) tablo 9’da belirtilmiştir (Bohl 1982). Bir hektar yüzleminde kanal tipi havuzlarda 1000 lt/sn su ile 100 ton alabalık üretilir. Bu hesaplama havuzlarda yarı intensif yetiştiricilik yöntemindeki 100 kg balık/lt/sn su ile hesaplanan geleneksel eski üretim miktarına eşdeğerdir (Bohl 1982). Kafeslerde sofralık alabalık üretimi Ağ kafeslerde yetiştiricilik göller, baraj gölleri, göletler, kum-çakıl göletleri, akarsu gölcükleri ve büyükçe yapılmış sulama kanallarında, belirli çerçevelere takılmış ağ kafesler içinde, balıkların kontrol altında büyütülmeleridir. Ülkemizde denizlerimizde ağ kafeslerde çipura ve levrek yetiştiriciliğine koşut olarak, son yıllarda kamunun da yönlendirmesiyle özel girişimciler tarafından tatlısu kaynaklarımızda da ağ kafeslerde alabalık yetiştiriciliği hızla yaygınlaşmaya başlamıştır (Atay 1994). Kafeslerde alabalık yetiştiriciliğinde öncelikli olarak su koşullarının uygun olması gerekir. Buna ilişkin koşullar Tablo 10’da özetlenmiştir. (Ruhdel 1977). Tablo 10. Ağ kafeslerde alabalık yetiştiriciliğinde su koşulları Nitelik Miktar Su sıcaklığı 20 oC’nin altında Oksijen 6 mg/lt’nin üzerinde (sabahları) PH 8’in altında NH4 0,5 mg/lt’nin altında Zehirli madde Olmamalı Su derinliği 4 m’nin üzerinde Oksijen tüketimi 600 g/ton/saat Kafesin yerleştirildiği ortamın tabanı ile kafesin ağ torbasının alt kısmı arasında en az 1 m aralık olmalıdır. Kafesin ağ torbası su ortamında geometrik şeklini tam olarak koruyamayacağından hacminin yaklaşık %15’i kaybolur. Kafesler uzun süre aynı yerde konuşlandırıldıklarında gölün yada göletin su kalitesini etkilerler. Sığ göllerde her üretim peryodunda kafeslerin yeri değiştirilmelidir. 10 m’den derin göllerde ise yer değiştirmeye gereksinim yoktur. Ağ kafeslerin büyüklükleri çok farklı olmakla birlikte 5 m x 5 m x 5 m boyutları en çok kullanılanıdır. Ağ kafesin göz açıklığı balığın boyunun 1/10’u olmalıdır. Ağ göz açıklığının bir başka ifadeyle pratikte 1 cm alabalık boyu için 1 mm ağ göz açıklığı esas alınır. Ağ kafeslere en azından ortalama 40 g ağırlıkta yavru balıklar stoklanır. Yılın Mart ayında stoklanan yavrular Haziran ayı ortalarında, Eylül ayında stoklanan balıklar Aralık ayında hasat edilirler (Bohl 1982, Kieckhäfer 1983, Ruhdel 1977). Normal su koşulları altında ağ kafeslerde stok yoğunluğu 50-100 adet ortalama 40 g ağırlıkta yavru balık/m3 olarak planlanır. Bu durumda hasatta üretim miktarı 20-30 kg/m3 olarak gerçekleşir. Örneğin Orta Avrupa göl ve baraj göllerinde ağ kafeslerde yetiştiricilikte ağ göz açıklığı 14 mm olarak düzenlenir. Stok yoğunluğu olarak 90 adet 40 g ağırlıkta yavru/m3 esas alınır. Bu koşullarda 100 ton alabalık üretimi için 4x3x3 m boyutlarında yaklaşık 180 kafese gereksinim vardır. Uygun koşullar altında stok yoğunluğu 100 adet fingerling/m3, olarak uygulanabilir (Steffens 1981). Ağ kafeslerde yetiştiricilikte 17-20 oC su sıcaklığında, gökkuşağı alabalıklarında ortalama 35 g ağırlıkta stoklanan yavrular yüksek büyüme oranıyla 300 g ağırlığa ulaşmışlardır. Bu durumda 2,5 ayda 265 g ağırlık artışı sağlanmış, yani yavrular günde 3,5 g büyümüşlerdir (Bohl 1982). Ağ kafeslerde yetiştiricilikte ortalama 50 g’lık balıkların, 90-100 yemleme gününde 250 g olan sofralık büyüklüğe ulaştırmak hedeflenmelidir. Bu hedefe yönelik olarak 20 m3’lük kapasiteli ağ kafese 500-1800 adet yavru balık yeterlidir. 20 m3 kapasiteli ağ kafeslere 700 adetten az balık stoklandığında, 1000 veya 1200 adet balık stoklamaya oranla büyüme daha yavaş olmuştur. Fakat 20 m3 kapasiteli ağ kafeslere 1200 adetten fazla balığın stoklanması da önerilmemektedir. Belirtilen maksimum stok yoğunluğu esas alındığında 1200 x 250 g= 300 kg balık üretilir. Aynı koşullarda bir sezon daha üretim yapıldığında 300 x 2= 600 kg yıl sürecinde alabalık üretimi gerçekleştirilir. Göllerde ağ kafeslerde yılda 600 kg sofralık alabalık üretildiğinde ortama balıklar tarafından bırakılan dışkı 1 hektar havuz yüzleminin kendini temizleme gücünü etkilemez (Kieckhäfer 1983). Ağ kafeslerde alabalık yetiştiriciliğinde Kieckhäfer’e (1983) göre m3’e ortalama 50 g ağırlıkta yavrulardan 60 adetten fazla stoklanmamalıdır. Bu stoklama miktarı uygulandığında ise 250 g sofralık balık bireysel hasat ağırlığına göre 15 kg balık/m3 ürün elde edilir. Fakat literatür verilerine (Mann 1974, Falk 1968) göre 20-30 kg/m3, mutfaklık alabalığı ağ kafeslerde üretmek olasıdır (Kieckhäfer 1983). Ağ kafeslerde gökkuşağı alabalığı yetiştiriciliği deniz ortamında da gerçekleştirilebilir (Atay 1994). Çünkü gökkuşağı alabalıklarının tuz konsantrasyonuna toleransları balıklar büyüdükçe artmaktadır. Yavru balıkların ağırlıkları 50 grama ulaştığında %0 12-15 tuz konsantrasyonunda, %0 0-1’lik konsantrasyona oranla büyümeleri %70 daha iyi olmaktadır. Parmak büyüklüğünde yavru balıklar sofralık balık büyüklüğüne kadar ‰30 tuzlulukta ve bununda üstünde konsantrasyonda deniz suyunda beslenebilirler (Steffens 1981). ALABALIKLARIN BOYLANMASI Alabalıkların sınıflandırılması yada boylarına göre ayrılması özenle uygulanması gereken bir işlemdir. Çünkü alabalıkların karnivor karakterde olmaları nedeniyle, balıklar arasındaki büyüklük farkı aşırı boyutlara ulaştığında, büyük bireylerin küçükleri yemeleri (Kannibalizm) olgusuyla karşılaşılır. Bu sakıncanın yanında verilen yem büyük balıklar tarafından alınır ve küçük balıklar ise yetersiz düzeyde beslenirler. Böylece yem dağılımının dengesiz olması bakımından büyük balıklar ile küçük balıklar arasındaki büyüklük farkı giderek artar. Sonuçta birim canlı ağırlık artışı için tüketilen yem miktarı (yem değerlendirme değeri) artar, bir başka tanımla yem değerlendirme oranı (FQ yada FCR= Food Conversation Rate) olumsuz yönde etkilenir (Vollmann-Schipper 1975). Alabalık üretiminde yavru balıkların boylarına göre ilk seleksiyonu, larvaların 6-8 hafta beslenmesinden sonra, yani ön büyütme dönemi sonunda yavruların yaklaşık 1 g ağırlığa ulaştığında gerçekleştirilmelidir. Bu işlemin uygulanmasında sabit yada ayarlı ayırma kutuları kullanılır. Belirtilen gereçler daha çok miktarı az ve boyu küçük yavruların sınıflandırmasında kullanılır. Eğer iyi bir gelişme elde etmek, kanibalizme engel olmak ve aynı büyüklükte balık elde etmek isteniyorsa seleksiyon yapmak zorunludur. Bütün balıklar aynı büyüklükte olurlarsa, günlük yem gereksinimi daha doğru ve havuzun toplam kapasitesi daha kolay tahmin edilir (Atay 1995, Bohl 1982). Hem yavru balıklar hem de daha büyük balıkları sınıflandırmada ise ızgaraları ayarlanabilen, havuzlara ve kanallara monte edilebilen boylama sistemleri kullanılabilmektedir. Bu sistemin ızgara aralığını 1,6-21 mm arasında ayarlamak mümkündür (Atay 1995). Ayrıca alabalıkları aynı anda ikiden fazla boya ayırmak için su püskürtme ve titreşim esasına göre çalışan sınıflandırma makinalarından da yararlanılabilir. Belirtilen boylama gereçlerinden farklı olarak kapasitesi büyük üretim tesislerinde ise; ayırmayı hızlandırmak, zaman ve işçilikten tasarruf etmek için; üretim tesisi dışında kurulan, su akıntısı verilebilen ve balıkları yakalama sırasında boylama yapabilen sistemlerin kullanılması önerilmektedir (Vollmann-Schipper 1975, Igler 1990). Yavru Alabalıkların Sınıflandırılması Alabalıkların boylanmasının pratikte iki önemli yararı vardır. Bunlar: 1- Farklı boyuttaki balıkların ayrılmasıyla kannibalizm önlenir. 2- Özellikle yavru balıklar satış için sınıflandırılmış olur. Yavru balık üreticileri yavru balıkları satış için pratikte 6 sınıfa ayırmaktadırlar. Bu sınıflar ve balık boyutları Tablo 11’de sunulmuştur (Lindhorst-Emme 1990). ALABALIKLARIN YEMLENMESİ Gökkuşağı alabalıklarının yemlenmesinde öncelikli olarak aşağıdaki faktörler dikkate alınmalıdır (Ruhdel 1977). a- Su sıcaklığı b- Suyun oksijen içeriği c- Suyun alkalinitesi d- Stok yoğunluğu Yemin İçeriği Gökkuşağı alabalığının yetiştiriciliği için optimum su sıcaklığı 15-20 oC olmasına karşın, yemlemeye uygun su sıcaklığı ise 14-16 oC’dır. Gökkuşağı alabalıklarının larva yeminde %40, yavru yeminde %30 ve sofralık balıkların yeminde ise %30 protein bulunması genel kullanım oranlarıdır. Bu oranlar larva yeminde %50’ye, mutfaklık balık beslenmesinde %46’ya kadar yükseltilebilmektedir. Yemleme metodu, su ve işletme koşullarına göre seçilir. Alabalık yemlerinde yağ içeriği başlangıçta %4-5 oranında önerilmektedir. Rasyonda protein miktarının yüksekliği ile birlikte yağ oranı %8’e kadar artırıldığında, yem değerlendirme ve balığın et kalitesi iyileşir. Alabalık pelet yemlerinde %8-12 oranında yağ ve %42-50 oranında protein üst sınır olarak kabul edilmektedir (Ruhdel 1977). Avrupa’da tanınmış bazı firmaların ürettikleri alabalık ticari besi yemlerinin içerikleri Tablo 14’de gösterilmiştir (Lindhorst-Emme 1990). Yem Tüketimi Dağılımı Alabalık üretim tesislerinde yem tüketimi işletme giderleri içerisinde yaklaşık %50-60 oranıyla en büyük payı oluşturur, İşletme giderinin yaklaşık 2/3’ünü oluşturan yemin yıl sürecinde kullanımının üretim dönemlerine göre dağılımı Tablo 15’de görülmektedir (Lindhorst-Emme 1990). Tablo 15’de görülen dönemlerden kuluçka evinde larvaların yemlenmesi günde 8-12 defa yapılmalıdır. Yem balıklara su yüzeyine serpilerek verilmelidir. Larva besiciliği döneminde 2000 adet larva için yem gereksinimi ilk bir ay yaklaşık 1 kg, ikinci ay ise 2 kg olarak hesaplanmalıdır (Bohl 1982). Daha sonraki dönemlerden yavru yetiştiriciliğinde yemleme sıklığı günde 3-4 defa, pazarlık balık besiciliğinde ise günde 2 defa olmalıdır. Balıklara haftada bir gün yemleme yapılmamalıdır (Ruhdel 1977). Yemin Boyutu Alabalıkların yemlenmesinde özel likle larva ve yavru dönemlerinde yemin boyutunun balıkların ağız açıklığına uygunluğu çok önemlidir. Bu konuya ilişkin veriler Tablo 16’de gösterilmiştir (Lindhorst-Emme 1990). Yemleme ve Su Sıcaklığı Alabalık besiciliğinin bütün evrelerinde su sıcaklığının etkisi yadsınamaz. Çünkü su sıcaklığı en başta suyun oksijen yönünden doymuşluğunu etkilemekle birlikte, aynı zamanda balıkların metabolizma hızına da tesir etmektedir. Yavru yetiştiriciliğinin ilk haftalarındaki yemlemede, su sıcaklığının etkisine ilişkin özgün örnek Tablo 17’de görülmektedir (Lindhorst-Emme 1990). Tablo 17’deki verilerin elde edilmesinde 4 m3 hacminde kanal tipi küvetlerde, yetiştirme için ideal su sıcaklığı olan 15 oC’da başlangıçta 100.000 adet olan stok yoğunluğu, 5. haftadan itibaren 60.000 adete indirgenmiştir. Yemleme Zamanı Ön büyütmesi yapılmış yavruların ilkbahar yaz döneminde, parmak boyunda yavru balık boyutuna kadar beslenmesinde, günlük yemleme öğünleri aşağıdaki gibi olmalıdır. 1. Yemleme 07.00-08.000 saatlerinde 2. Yemleme 11.00-12.00 saatlerinde 3. Yemleme 14.00-15.00 sularında Sonbahar döneminde fingerling dönemine ulaşan yavru balıklar ise aşağıda gösterilen saatlerde günde iki defa yemlenirler. 1. Yemleme 08.00-09.00 2. Yemleme 13.00-14.00 Yemleme (Besi) süresi Alabalık yetiştiriciliğinde bir diğer önemli konu yavru balıkların ne kadar süre beslenerek pazara sunulabileceğidir. Bu konu tamamen su ve yemleme koşullarıyla balığın kalıtımsal kökenli büyüme performansına bağlı bir durum olanak kabul edilse de, Tablo 18’de normal koşullarda gerçekleşmesi olası besi süreleri verilmiştir (Lindhorst-Emme 1990). Yem Değerlendirme Oranı Balık yetiştiriciliğinin verimliliğinin ölçütü olarak birim balık üretimi için harcanan yem miktarı kullanılmaktadır. Çünkü balık üretiminde girdilerin büyük çoğunluğunu yavru, işçilik ve yem giderleri oluşturmaktadır. Bu üç gider içerisinde de en büyük paya yem sahiptir. Belirli koşullar altında farklı kalitede 3 çeşit yemle yürütülen gökkuşağı alabalığı besiciliğine ilişkin veriler Tablo 19’da görülmektedir (Lindhorst-Emme 1990). Tablo 19’da görülen veriler irdelendiğinde birim balık üretimi için harcanan yem, yani yem değerlendirme oranı kadar, yemin fiatınında çok önemli olduğu anlaşılmaktadır. Yemleme Oranı Alabalık üretiminde başarılı besiciliğin temelini balıkları canlı ağırlıklarının %’si olarak doğru oranda yemlemek oluşturur. Yemleme oranını saptamada stok miktarı, su kalitesi ve miktarıyla birlikte, yetiştirme ortamında su değişimi gibi bir çok faktör dikkate alınabilir. Fakat balıklara günlük olarak verilecek yem miktarını saptarken iki ana ilke unutulmamalıdır. Bu iki ilke (Igler 1990): 1- Balıkların yem alımı su sıcaklığına bağlıdır. 2- Balıklar büyüdükçe yem gereksinimi oransal olarak düşer. Su sıcaklığı baz alınarak alabalık populasyonuna canlı ağırlıklarının %’si olarak günlük verilecek yem miktarı Tablo 20’den yararlanarak saptanır (Kieckhäfer 1983). Alabalıkların beslenmesinde günlük olarak verilecek yem miktarını tespit etmede, yine su sıcaklığının esas alındığı, fakat balıkların ortalama bireysel ağırlık ve boylarına göre gruplandırıldığı ve pratikte uygulanan yemleme oranları Tablo 21’de gösterilmiştir (Igler 1990). Alabalık Yemleme Yöntemleri En eski yemleme şekli olan elle yemleme halen kullanılan bir yöntemdir. Bu yöntemle yemlemede, balıklar özenle yavaş bir şekilde yemlenmeyi gerektirdiği için işçilik giderini artırır. Alabalık yetiştiriciliğinde büyük kapasiteli işletmelerde ve işçilik ücretinin yüksek olduğu ülkelerde yaygın olarak otomatik yemlikler kullanılmaktadır. Yem otomatları içerisinde en çok kullanılanlar, sarkaçlı yemlikler, yürüyen band sistemi ile çalışan yemlikler ve hava basınçlı yem otomatlarıdır (Çelikkale 1994). Sarkaçlı yemliklerde bir yem deposu, yemin düşmesini ayarlayan bir mantar, mantara takılan ve su içerisine uzayan bir çubuk bulunur. Balık havuzda yüzerken çubuğa dokunduğunda belli miktar yem suya dökülür. Bu sistemi balık 1-2 günde öğrenebilmektedir (Kieckhäfer 1983). Band sistemi yemliklerde, saat benzeri mekanizma yardımıyla yürüyen band üzerine yem konur. Band ilerledikçe yada döndükçe bandın yanlarından suya yem dökülür. Bu bandlar çalar saatlerin belirli zamana ayarlanarak kurulmasına benzer şekilde çalışırlar ve belirli zaman aralıklarıyla yavru yada özel likle larva yetiştirme kanallarına düzenli bir şekilde yem bırakırlar (Bohl 1982). Hava basınçlı yemliklerde, yem deposu havuz kenarındaki plastik bir boru üzerine yerleştirilmiştir. Yem deposu boru içine yem dökülecek şekilde boruya bağlıdır. Bir kompresör yardımıyla borunun, bir kenarından belli sürelerde hava basılır ve boru içine dökülmüş olan yem havuza fışkırtılır. Her havuz başına yerleştirilen bu sisteme merkezden otomatik olarak kumanda edilir (Lindhorst-Emme 1990). ALABALIKLARIN TAŞINMASI Alabalıkların yavru ve sofralık boyutlarında canlı olarak taşıma kaplarına konulmazdan önce uyulması gereken ilkeler aşağıda 4 madde halinde belirtilebilir. 1- Alabalıkların havuzlardan hasat sonrasında aşırı stresli oldukları bilinmeli, 2- Balıkların solungaçları temiz olmalı, 3- Balıklara havuzun taban yapısının kokusu sinmiş olabilir. Özellikle havuzlarda bulunan alg, çamur ve balçık vd. leri direkt olarak balığın etini etkiler. 4- Balıkların sindirim sistemi boş olmalıdır. Çünkü taşıma sırasındaki stresin etkisiyle balıkların barsak içeriğinin taşıma suyuna boşaltılmasıyla oluşacak bulanıklık taşımada büyük sorunlar yaratır (Lindhorst-Emme 1990). Alabalıkların taşıma sürecinde en büyük gereksinimleri oksijendir. Fakat diğer taraftan suyun oksijen içeriğinin su sıcaklığına göre değişken olduğu bilinen bir olgudur. Farklı su sıcaklıklarında oksijen doymuşluğu ve alabalıkların belirli süreçte tükettikleri oksijen Tablo 22’de özetlenmiştir (Koch et.al. 1976). Alabalıkların canlı olarak taşıması aşamasında taşıma gereçlerindeki balıkların oksijen gereksinimleri, oksijen tüplerinden yararlanarak taşıma suyuna oksijen verilerek karşılanır. Piyasada satılan oksijen tüplerinin özel likleri Tablo 23’de gösterilmiştir (Lindhorst-Emme 1990). Alabalıkların farklı büyüklük dönemlerinde taşınmalarında belirli sürede gereksinim duyulan oksijen miktarları Tablo 24’de görülmektedir (Lindhorst-Emme 1990). Alabalıkların canlı olarak taşınmaları öncesi havuz yada yavru yetiştirme kanal veya tanklarından yakalanmalarında ve taşıma kaplarına stoklanmalarında yararlanılan kepçelerde kullanılan ağ materyalin iplik kalınlığı ve ağ göz açıklıkları Tablo 25’de gösterildiği gibi olmalıdır (Lindhorst-Emme 1990). Yavru Balıkların Taşınması Alabalık yavruları özel likle küçük dönemlerinde plastik torbalarda oksijen ilave edilerek taşınırlar. Plastik torbalar 50 cm genişlik ve 1.20 m yükseklik boyutlarında dayanıklı materyalden üretilmiş olmalıdır. Plastik torbaların 1/3’üne temiz, soğuk su konur; 2/3’üne ise saf, gaz formunda oksijen doldurulur. Bu torbalarla 10-15 lt su içerisinde, 4-6 hafta yemlenmiş 1000 adedi 400-700 g olan 2000-3000 adet yavru emniyetli bir şekilde taşınabilir. Fakat yavruların taşınma ortamının su sıcaklığının, bulundukları havuz suyu sıcaklığı ile aynı olması zorunludur. Dayanıklı plastikten üretilen torbalarla 15-20 lt su hacminde 12-15 cm boyda olan 100 adet, toplam 2,5-3 kg yavru balığın taşınması mümkündür (Lindhorst-Emme 1990). Alabalık yavruları oksijen yönünden zenginleştirilmiş taşıma kaplarında (tanklarında) da taşınabilir. Bu tip taşımada 30-40 lt su hacminde 8000-10.000 adet yem alma yeteneğinde yavru taşınması mümkündür. Bu yavruların 1000 adedi toplam 120-160 g ağırlıktadır. Aynı koşullarda 3-4 hafta yemlenmiş 1000 adedi 400-700 g ağırlıkta olanların ise 4000-5000 adedi taşınabilir. Alabalık yavrularının yukarıda belirtilen ağırlıkta olanlar için bu koşullar altında taşınma süresi 1-2 saattir. Daha uzun süreli taşımalarda taşınacak yavru balık miktarı %10-20 oranında azaltılmalıdır. Taşıma tanklarının kapasitesi 100 lt olduğunda, 10-12 kg ön büyütmesi yapılmış yavru veya 15-20 kg parmak büyüklüğünde balık (Fingerling) taşınabilir. Sofralık Balıkların Taşınması Sofralık alabalıklar plastik torbalarda 15-20 lt su hacminde 250 g bireysel ağırlıkta 20 adet, yani toplam 5 kg ağırlığa kadar taşınabilir. Sofralık alabalıkların tanklarda taşınmasında 100 lt su hacminde 20-25 kg stok miktarı esas alınır. Daha fazla miktarda pazarlık balık taşımada ise kasalarına tank monte edilen kamyon, kamyonet ve ağır vasıtalardan yararlanır. Bu araçlarla taşımada araçta bulunan oksijen tüplerinden taşıma tanklarına düzenli bir şekilde oksijen verilir. Bu tip endüstriyel şekilde pazara alabalık sunmada 500 lt suda 75 kg yada 100 lt su içinde 150 kg alabalık taşınır. Belirtilen kapasitede tanklardan araçların çekiş gücüne göre bir adet yada birden fazla tank konabilir. Tam donanımla tankların monte edildiği ağır vasıtalarla oksijen miktarına bağlı olarak 4000 km yada daha fazla uzaklıklara 50-60 saat sürede sorunsuz olarak mutfaklık alabalık taşıyabilmek olasıdır (Lindhorst-Emme 1990). Çekici güçleri 1,5 ton ile 32 ton arasında değişen taşıma vasıtaları ile pazarlık balık taşınabildiği gibi küçük yavruları (larva) ve büyükçe yavruları (Fingerling) da taşımak olanak içerisindedir. Fakat 500 lt’de 75 kg, 1000 lt’de 150 kg, olarak belirtilen sofralık alabalık miktarlarını, larvalar için 2/3 ve parmak büyüklüğünde yavrularda ise 1/3 oranında azaltmak gereklidir. Ayrıca bu miktarlarda balıkların kondisyonu, taşıma süresi ve su sıcaklığına bağlı olarak değişiklik yapmak gerekebileceği de unutulmamalıdır. Alabalık Yumurtalarının Taşınması Gökkuşağı alabalığının yetiştiriciliğin dünya genelinde yayılmasında, döllenmiş yumurtalarının uygun koşullarda sorunsuz bir şekilde kıtalararasında kolayca taşınabilmesinin önemi yadsınamaz. Gökkuşağı alabalığının yumurtalarının döllenmesinden sonra 24-36 saat içerisinde daha çok kısa mesafelerde işletmeler arası taşındığı bilinmektedir. Bu sürede yumurtalar henüz duyarlı döneme ulaşmamışlardır. Fakat gökkuşağı alabalığı yumurtaları en emin bir şekilde göz lekesi oluştuktan sonra en uzak  Doç.Dr.Fikri AYDIN

http://www.biyologlar.com/alabalik-biyolojisi-ve-yetistirme-teknikleri

KURBAĞA BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Türkiye’de göl, dere, çay, nehir gibi iç sularda ve bazı nemli ortamlarda yaşayan pek çok kurbağa türü bulunmaktadır. Kurbağaların hemen hepsi üreme zamanlarında suya bağımlı olup, hayatlarının diğer zamanlarında karada yaşamaktadırlar. Kurbağalar, ilkbahar ve yaz aylarında sulara yumurta bırakır. Yumurtaların bırakıldığı bazı su ortamlarının yaz aylarında kuruması sebebiyle kurbağa yumurta ve larvaları olumsuz şekilde etkilenmekte ve hatta büyük bir kısmı ölmektedir. Buna rağmen ülkemizde doğal ortamlarda yetişen kurbağaların toplanarak yapılan üretim miktarları aşağıdaki gibidir. Amerika Birleşik Devletleri ve Uzak Doğu Ülkelerinde semi-intensif şekilde kurbağa üretimi yapılmakta olup, henüz ülkemizde doğadan toplamanın dışında üretim yapılmamaktadır. BİYOLOJİSİ Kurbağaların Türkiye’de 11 türü bulunmakta, bunlardan bazıları; Rana, Hyla, Bufo, Pelabotes, Bombina ve Palodytes tir. Bu türler içerisinde ekonomik değeri olan ve ihracaatı yapılan Rana cinsinin ülkemizde 5 türü yaşamaktadır. Kurbağalar, omurgalılar hayvanlar grubuna girip, bu hayvanlar arasındaki yerlerini şu şekilde belirlemek mümkündür: Şube (Phylum) : Chordata Alt-Şube (Subphylum) : Vertebrata Sınıf (Classis) : Amphibia Takım (Ordo) : Anura Aile (Familia) : Ranidae Cins (Genus) : Rana Tür (Species) : Rana ridibunda (Ova K.) Rana dalmatına (Çevik K.) Rana macrocnemis (Uludağ K.) Rana cameranoi (Şerit K.) Rana holtzi (Toros K.) ÜREMELERİ Kurbağaların cinsi olgunluğa gelmeleri dişilerde 1-2, erkeklerde 3-4 yaşları sonunda ulaşırlar. Eşeysel olgunluğa ulaşan kurbağalar üreme zamanı geldiğinde suya girerler ve larva safhalarının sonuna kadar da suda kalırlar. Daha sonraları kurbağalar karasal yaşama geçerler. Erkek kurbağaların vücut yapıları dişilerden oldukça iri (büyük) olduğundan ayırt etmek zor değildir. Erkeklerin kulak zarı daha büyük ve gözler daha iridir. Erkeklerin gırtlakları parlak sarı renkli dişilerinki ise beyaz ve kahverengi beneklidir. Yetişkin erkek kurbağalar üreme mevsiminde bazı sesler çıkartırlar ses çıkartma üreme zamanları Şubat ayı sonu ile Ağustos ayı sonuna kadar devam etmektedir ve bu sayede erkekler kolayca ayırt edilir. Kurbağalarda gerçek bir çiftleşme yoktur. Bunun için bu çiftleşmeye kucaklaşma (amplexus) denilmektedir. Kurbağaların çiftleşmeleri genelde geceleri olur ve senede 3-4 dönem yumurtlama olmaktadır. Her dönemde 5.000-10.000 adet arasında yumurta bırakmaktadırlar. Kurbağalar ayrı eşeylidirler. Erkek ve dişi üreme organları ayrı fertte bulunur. Erkeklerdeki testislerde olgunlaşan spermatozoonlar bir kanal ile böbreklere oradanda dışarıya atılırlar. Testisler üzerinde sarı renkli bir çift yağ cisimciği vardır. Bunlar kurbağaların kış uykularında beslenmelerini sağlar. Dişi kurbağalarda bir çift ovaryum bulunur. Ovaryumların büyüklükleri yaşa ve mevsime göre değişiklik göstermektedir. Ovaryumların üzerinde erkeklerde olduğu gibi bir çift yağ cisimciği bulunur. Bu yağ cisimleri kış aylarında dişi kurbağanın kış uykusunda beslenmesini sağlar. Yumurta ve Larvalar Ovaryumda olgunlaşan yumurtalar vücut boşluğuna dökülürler. Buradan yumurta kanalına geçer oradan uterusa ve daha sonra kloak yoluyla dışarıya atılırlar. Yumurta , yumurtlama borusundan geçerken etrafı jelatin bir kılıfla sarılır. Yumurta suya düşünce bir kılıf şiştikten sonraki halidir. Bu jelatin madde yapışkan olduğunda yumurtalar bir grup teşkil eder. Jelatin içindeki embriyo geliºerek larva meydana gelir. Bu larvalar kılftan hareketli bir halde çıkar ve serbest yüzmeye başlar. Bunlara iribaş veya tetar denir. İribaşların ilk safhasında dış solungaçlar gelişir ve solunumu bunlarla yapar. Kurbağa yumurtaları küreseldir. Yumurta çapı 7-10mm civarındadır. Bir dişi kurbağa ortalama olarak 9.000 yumurta yumurtlamaktadır. Yaşlı kurbağalar 12.000 adete kadar da yumurtlayabilirler. Yumurtalar yaklaşık 3 gün içerisinde açılır. 1-1.5 ay sonra iç solungaçlarla yüzgeçler gelişir. İribaşlar 2-2.5 aylık olunca arka bacaklar, 4 aylık olunca ön bacaklar gelişir. 6-6.5 aylık olunca metamorfoz (başkalaşım) geçirerek kuyruk, solungaç ve solungaç yarıkları tamamiyle yok olur. Yerine alkciğerler gelişir ve böylece kurbağalar karasal yaşama başlarlar. Bu safhada kurbağalar herbivordur (bitkiyle beslenirler). Kurbağalarda başkalaşım sonucu şekil değiştirme kuyruğun tamamen yok olmasıdır. Şekil değiştirmede önemli olan su ısısıdır. Su ısısı 16 C0 nin altına düştüğü zaman yavrular şekil değiştirmeyi yapamazlar. Bunun için yavrular güneş ışığında belirli zamanlarda tutularak şekil değiştirmelerine yardımcı olunmalıdır. Eğer yavrular şekil değiştirmeyi gerçekleştiremezlerse ölüm kaçınılmaz olur. Beslenmelerİ Ergin kurbağalar (Anura) yalnız canlı ve hareketli böcek, solucan ve küçük yumuşakçalarla beslenirler. Sucul formlardan büyük formda olanları küçük balık ve kuş gibi hayvanlarla da geçinebilirler. Hatta bazı türler kendi larvalarını da yiyebilirler (kanibalizm). Kuyruksuz kurbağada (Anura’da) olduğu gibi dil öne doğru fırlatılarak dilin yapışkan uçları ile avlarının yakalanmasını sağlar. Bir çok su kurbağasında (Ranidae) ava nişan alınarak dil fırlatılır. Kuyruksuz kurbağa larvaları ise sudaki alglerle ve ölü hayvan kırıntılarıyla geçinirler. Çünkü bunların ağızları büyük besinleri yutmaya elverişli değildir. Larvalar ile erginler birbirlerine rakip olmamak için aynı tür besinlerle beslenmezler. Besinleri protein açısından oldukça zengindir. Soğuk kanlı hayvanlar olduklarından vücütlarında çok fazla miktarda yağ ve glikojen depo etmeye gerek duymazlar. Çünkü bunların metabolizması oldukça düşük düzeydedir.Uygun sıcaklıklarda ve besin sunumunda kurbağalar çok miktarda besin alabilme yeteneğindedirler. Bunun yanısıra bir aydan fazla açlığa dayanabilirler. Yumurtadan çıkan yavrularda başın altında vitellüs (besin) kesesi vardır. Yavrular ilk bir hafta bu besinleri kullanırlar. Besin kesesi kullanımı bittikten sonra (asorbe olduktan sonra) dışarıdan besin almak zorundadırlar. Soğuk kanlı olmaları ve ince olan derileriyle fazla miktarda su kaybettiklerinden , aşırı sıcaklık ve kuraklığa karşı dayanıklı değillerdir. Sucul iki yaşamlılar kış uykusu için göl ve nehirlerin donmayan dip kısımlarına çekilirler. DüşmanlarI Kurbağa larvaları Rhynchota (Hortumlular), Coleoptera (Kin kanatlılar) gibi sucul böcekler tarafından yenir. Aynı zamanda Odonata (Tayyare böcekleri) larvalarıda genç evrelerinde kurbağa larvaları ile beslenmektedir. Lucilia adı verilen bir sinek yumurtalarını Bufo ve Rana türleri üzerine bırakır. Birkaç gün içinde çıkan larvalar bu kurbağalarda doku bozuklukları, daha sonrada ölümler meydana getirirler. Kurbağa Kültürü Diğer su canlılarında ( balıklar, kabuklular v.s.) olduğu gibi kurbağalarında suni üretiminde son yıllarda büyük başarı sağlanmıştır. Kurbağa kültüründe kullanılan yetiştirme havuzları ve özellikleri şu şekildedir. Yetİştİrme HavuzlarI Kurbağa yetiştirciliğinde kullanılan havuzların her birinin alanı değişik olabileceği gibi 50-60m2 olanlar tavsiye edilir. Bir kurbağa yetiştirme çiftliğinin kurulması için toplam 5-6 bin m2’lik bir alan yeterlidir. Böyle bir çiftlikte 5 çeşit havuz yapılması gerekmektedir. Bu havuzlar; · Yumurtlama havuzları · Kuluçka havuzları · Yavru ( iribaş ) havuzları · Genç yavru havuzları · Yetişkin havuzları Yumurtlama Havuzları Genel olarak bu havuzlar 10-15m2 arasında değişen büyüklüklerde yapılmaktadır. Bu havuzlar toprak olduğu için, etrafına ağaçlar ve yüksek bitkiler dikilmek suretiyle tabi bir ortam şekli yaratılmalıdır. Havuzların derinliği değişik olmakla birlikte herbir havuzda 1/3’lük kısmının derinliği 10cm. olmalıdır. Yumurtlama havuzlarına konacak anaç seçiminde kuvvetli olanlar seçilir ve bir erkeğe 3 yada 4 dişi gelecek şekilde seçilmeli ve yumurtlama havuzlarına bırakılırlar ve bekletilirler. Bu sırada havuzlarda bulunan anaçlar rahatsız edilmemelidirler. Kuluçka Havuzları Anaç havuzlarından elde edilen yumurtalar geniş bir kepçe yardımıyla toplanır ve bu yumurtaların %10-15’inden iribaş elde edilir. Yumurtaları havuzlara aktarılmasından sonra su hiç karıştırılmamalıdır. Yumurtaların açılmasında su, ısı ve zaman önemli bir faktördür. Yumurtalar 24-27Co arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş- çıkışı sağlanmalıdır. Kuluçka havuzları betondan inşaa edilmelidir ve havuzlar 40 cm. derinlikte olmalıdır. Havuzlarda bu devrede su akımı önemlidir. Bu nedenle havuzların su giriş ve çıkışı uygun şekilde yapılmalıdır. Larva (İribaş) Havuzları Yumurtadan çıkan larvalar bir hafta boyunca besin kesesini kullanırlar, daha sonra dışarıdan besin almak zorundadırlar. Bu aşamada yumurta sarısı ile beslenmeleri gerekir. İribaş yavruları ilk ay içerisinde balık ve yer fıstığı unu daha sonra tatlı patates unu, pirinç kepeği, mutfak artıkları ve değersiz yiyeceklerle beslenirler. Yiyecekler su yüzeyinde yüzecek şekilde altları delik kaplarla verilmelidir. Günde iki öğün yem verilmelidir. Çıkan yumurtalardan yaklaşık %10-15’inden iribaş elde edilir. Yumurtalar geniş bir kepçe ile su içinde alınarak kuluçka havuzlarına konulurlar. Yumurtalar havuza nakledilikten sonra havuzlar hiç karıştırılmamalıdır. Yumurtaların açılmasında su ısısı ve zaman önemli bir faktördür. Yumurtalar 24-27C0 arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş çıkışı sağlanmalıdır. Kuluçka havuzlarının; derinliği 30-40 cm. arasında ve zeminleri çamur olmalıdır. Böylece havuzların su ısısının sabit tutulması ile yavruların büyüme güvenliği sağlanmış olur. Larva havuzların dikdörtgen şeklinde olması tavsiye edilir. Uygulamada 1m2 ye 1.000 adet olacak şekilde kurbağa larvaları larva havuzlarına konulur. Eğer akarsuya larvalar konulacak ise m2ye 2.000 adet yavru konulmalıdır. Bu arada yavruları boylama eleklerinden geçirerek sınıflandırma yapılır ve ayrı havuzlara koymak gerekir. Genç Yavru Havuzları Genç yavru havuzlarının su derinliği 15-35 cm. arasında olmalı ve her bir havuzun 1/4 kadarlık kısmı sudan daha yüksekte olmalıdır. Yani yavrular gerektiğinde çıkabilmeleri için havuzda susuz bir sahaya gereksinimleri vardır. Yavrular bu havuzlara ancak 3. Aylarını doldurduktan sonra nakledilmelidirler. Genç havuzlarının 1 m2sine 100-120 arasında yavru konulmalıdır. Fakat yavrular 6-7 cm uzunluğunda iseler bu sayı 60-80 arasında olmalıdır.Bütün yavrulara şekil değiştirene kadar yem verilmez. Şekil değiştiren kurbağalar arasında yine bir seleksiyon uygulanır ve aynı büyüklükte olanlar seçilerek aynı havuzlara bırakılırlar. Bu işlem yavrular büyüyünceye kadar devam eder. Şekil bozukluğu gösterenler ve kuyruk atamayanlar ortamdan uzaklaştırılır.Çünkü kanibalizm olayı meydana gelir. Havuza bırakılan genç yavrulara toprak solucanları, sinek larvaları, küçük balıklar, küçük karidesler ile diğer canlı hayvansal besinler verilmelidir. Sinek larvalarının havuzların içinde çoğalmaları için balık artıkları konmalıdır. Çünkü bu artıklar sinekleri cezbeder ve sinek yumurtalarının çoğalmaları için uygun ortam sağlanmış olur. Buda ucuz bir şekilde yavruların ihtiyacının karşılanması demektir. Hava sıcaklığı 20-26 C0 olduğu zaman daha fazla besin verilmelidir ve verilen besin miktarı yüksek ve düşük ısıda azaltılmalıdır. Ortalama verilen besin miktarı %10 kadar olmalıdır. Günde iki defa beleme yapılmalıdır. Besinin kurbağalara eşit olarak verilmesi gerekir bunun içinde yem toprak yüzeyine dağıtılmalıdır. Daha sonra yem küçük tepsilere konulur, tepsinin yarısına toprak solucanı, kurtçuk diğer yarısına da küçük balık, karides, v.s. konur. Tepsi kısmen suya batırılır. Bu işlemde amaç kurbağaların doğadan yem yeme alışkanlığını geliştirebilmelerini sağlamaktır. Bu arada ölen kurbağalar ortamdan uzaklaştırılmalıdır. Yavrular doğal besinlerden alabilecekleri zamana kadar bu iºleme devam edilir. Yetişkin Havuzları Yetişkin kurbağa havuzları genç yavru havuzlarına benzer. Yalnız havuzlardaki su derinliği 30 ile 40 cm. de devamlı korunmalıdır. Bu havuzlarda genç yavru havuzlarındaki gibi kara kısmı yoktur. Yalnız bunun yerine yüzen yem platformları yapılmalıdır. Havuzların etrafı kurbağaların kaçmamaları düşmanları tarafından yenmemeleri için çitle çevrilmelidir. Bu çitler naylondon olabileceği gibi ağaç veya demirden de olabilir. Havuzun yüzeyi de yine böyle bir çitle kaplanmalıdır. Kurbağalar üçüncü aylarını doldurduktan sonra yetişkin havuzlarına nakledilirler. Yetişkin havuzlarında bazen larva veya genç yavrular bulunabilir. Bunları bir-iki haftada bir seçerek havuzdan ayırmak gerekir. Bu havuzların 1 m2sine 12 cm. boyundakilerden 50 adet, 15 cm. boyundakilerden 20-30 adet hesabıyla konulmalıdır. Yetişkin kurbağaların maliyetini düşürmek için iri salyangozların eti kıyılarak yem haline getirilerek verilmelidir. Kurbağalar soğuk kanlı hayvanlar oldukları için kış uykusuna yatarlar. Isı çok düştüğü zaman aktiviteleri ve beslenmeleri durma noktasına gelir, ısı yükseldiğinde ise tekrar aktif hale geçip yem alabilmektedirler. Isının fazla düşmediği kış aylarında bütün yıl beslenebilirler. Kurbağalar şekil değiştirmeyi (metamorfoz) tamamladıktan aşağı yukarı 7-8 ay sonra pazar ağırlığına ulaşırlar. PAZARLAMA Kurbağaların normal pazarlama ağırlığı 150-220 gr arasında değişmektedir. Kurbağalar bu ağırlığa 8-10ay gibi kısa bir sürede ulaşabilmektedir. Bu ağırlık ideal satış ağırlığıdır. Türkiye’de doğal ortamdan toplanan kurbağaların ihracaatı yapıldığı için standart bir ağırlık yoktur. Canlı, donmuş bacak, taze bacak ve konserve şeklinde ihracattaları yapılmaktadır. Türkiye’nin ihracaatının %80’ ini canlı ve donmuş bacak şeklindeki kurbağalar teşkil etmektedir. Konserve şeklindeki ihracaat toplam ihracaatın çok az bir kısmını oluşturur. AVLANMALARI Kurbağaların doğadan toplanmalarında çeşitli kepçeler kullanılmaktadır. Şekil- Kurbağalar avlanma zamanlarında suya bağımlı oldukları için, kullanılan kepçelerin sudan etkilenmeyen ve suyu geçiren ince ağlardan yapılmalıdır. Bunun için ergin kurbağa avlanma kepçesi daha uzun ve büyüktür. İstenilen uzunluğa getirilebilen bir seyyar sap vardır.Larvalar için kullanılan kepçeler daha küçük ve göz açıklıkları daha sıktır. Kurbağalar ellede yakalanabilir Bunun için gece tercih edilir. Işığının kuvvetli olması sonucu kurbağalar ışık etrafında toplanırlar rahatlıkla yakalanırlar.Yalnız derileri kısmen zehirli olduğundan, elle temastan sonra, göz ve dudak gibi ince derili ve nemli kısımlara, suyla yıkamadan ellerin sürülmemesi gerekir. TAŞINMALARI Canlı olarak taşınmaları kısa mesafelerdeki nakilleri naylon torba, çuval bez çanta ve buna benzer bir kap içinde yapılabilir. Uzak mesafelerdeki nakiller ise gemi ambarlarında, kara taşımacılığında frigo-frig tırlarda ısı yalıtımı olan kutular içine konulmalı ve bunlarla nakledilmelidir. Nakil esnasında ortamın serin ve nemli olmasına dikkat edilmelidir. LİTERATÜR 1. BAŞOĞLU, M.- ÖZETİ,N. 1973 Türkiye Amfibileri (The Amphibians of Turkey) E.Ü.fen Fakültesi Kitaplar Servisi No 50 2. TOLUNAY, A.M. Özel Zooloji 3. GÖKALP.N 1980 Kurbağaların Biyolojik Özellikleri ve suni üretimleri Su ürünleri Bölge Müdürlüğü 4. DEMİRSOY A. Yaşamın Temel Kuralları 5. KURU M. Omurgalılar Zooljisi Su Ürün. Müh. M. Suat İNAN Tarım ve Köyişleri Bakanlığı, TÜGEM

http://www.biyologlar.com/kurbaga-biyolojisi-ve-yetistirme-teknikleri

ÇİPURA (Sparus aurata Lin., 1758) BALIĞININBİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Şahin SAKA-Kürşat FIRAT Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Günümüzde Akdeniz Bölgesi’nde oldukça iyi bir pazara sahip olan çipura balığına ait çalışmalar uzun yıllardır devam etmektedir. Yetiştiricilik çalışmalarında elde edilen bilgiler ise daha birçok konunun çalışılması gerektiğini ortaya çıkarmaktadır (Tandler ve Helps, 1985, Conides, 1992). Çipuraların fizyolojisi ve biyolojisi üzerine yapılan çalışmalar diğer türlere oranla daha azdır. Laboratuar şartlarında çalışmaların zorluğu ve çipura balığının kültür koşullarında üretiminin oldukça güç olması bu türle ilgili araştırmaları olumsuz etkilemiştir (Freddi ve ark., 1981, Camus ve Koutsikopoulos, 1984, Tandler ve Helps, 1985, Francescon ve ark., 1988 ). Ülkemizde bu tür ile ilgili çalışmalar larval dönem yaşama oranının arttırılması, larva yetiştirme protokollerinin hazırlanması, gelişim oranının yükseltilmesi ve hastalıkların tedavisi konularında devam etmektedir. ÇİPURA (Sparus aurata, Lin., 1758) BALIĞININ BİYOLOJİSİ Chrysophrys aurata sinonimi ile de adlandırılan çipura, Phylum: Vertabrata Subphylum: Pisces Clasis: Osteichthyes Ordo: Perciformes Subordo: Percoidei Familya: Sparidae Genus: Sparus Species: aurata (Linneaus, 1758) şekli ile sistematikteki yerini almıştır. Klimatik yapıdan çipura balığına tüm Akdeniz’de rastlanmakla birlikte doğu ve güney doğu Akdeniz ülkelerinde, Kanarya Adaları'nda, İngiltere kıyılarında, Verde Burnu’nda ve nadir olarak Karadeniz kıyılarında rastlanır. Genellikle tropikal, subtropikal ve ılıman kuşaklarda yayılım gösteren çipura deniz fenogramlarının bulunduğu kumlu–çamurlu ve çamurlu ortamlarda yaşamını sürdürür. Bunun yanı sıra nehir ağızlarına ve lagüner bölgelere de girer (FAO, 1987). Ülkemizde daha çok güney sahilleri ve Ege kıyılarında yayılım gösterir. 30-50 gram olanları ince lidaki, 100 gram olanları lidaki, 100-180 gram olanları kaba lidaki, 200 ve üzeri ağırlıkta olanları da çipura olarak adlandırılır (Alpbaz, 1990). 0-3 yaş arası çipuraların mide içerikleri incelendiğinde bu türün karnivor bir form olduğu ve özellikle ergin bireylerin Crustacea ve Mollusca familyasına ait türlerle beslendiği ortaya çıkmıştır. Sırt yüksekliği fazla olup lateralden yassılaşmış simetrik bir yapıya sahiptir. Baş iri, burun küt ve ağız terminal konumlu olup düzdür. Alt çenede dişler önde 4 adet kanin, arkada 4 sıra molar, üst çenede ön tarafta 4 adet kanin, arkada ise 3 sıra molar şeklindedir. Üst dudak, alt dudağa oranla daha kalın olup gözün başladığı noktanın paralelinde biter. Gözler orta derecede gelişmiştir. Göz çukuru önündeki mesafe, göz çapından en az iki kat daha uzundur. Gözler arasında V şeklinde yıldızsı bir bant vardır. Operkulum ve prooperkulum pullarla kaplıdır. Yanal çizgi hafif eğimli olarak operkulumdan kaudal yüzgece kadar kesintisiz olarak devam eder. Yanal çizgi üzerinde 73-85 adet pul bulunur. Dorsal yüzgeç anal yüzgeçten daha uzundur. Pektoral yüzgeç anüse kadar uzanır. Kaudal yüzgeç homoserk yapıdadır. Bu tür için yüzgeç formülü D XI/13-14, A III/11-12, P I/5, V 5/5 şeklindedir. Renk dorsalde gri-esmer, ventralde gümüşidir. Pektoral yüzgecin dorsalinde ve operkulum üzerinde kırmızı-menekşe renkli bir leke karakteristiktir. Hermafrodit özellik gösteren çipuralar 8. aylarında ovaryum oluşumlarıyla birlikte dişi özellik gösterirler. 12. ayda üremenin ilk sezonunda tüm bireyler erkek karakterdedir. Gonadın ventralinde olgun testiküller belirir. Gonadın dişi kısmında ise hiçbir gelişme gözlenmez. 23-24. aylardaki balıkların ikinci üreme periyodunda ise bireylerde erkeklikten dişiliğe geçiş söz konusudur. Bu dönemde gonadlarda belirgin bir olgunlaşma gözlenmektedir. Bu cinsiyet değişimi ani olmamakla birlikte özellikle 3. yaştaki bireyler intersex özelliğindedir. Ancak bu cinsiyet değişimi populasyonun tamamında değil sadece yaklaşık olarak %80’inde gözlenmektedir ki kalan %20’lik oran populasyonun ve devamının sağlanabilmesi için genetiksel bir emniyet marjı olarak nitelendirilebilir. Bu tip bir cinsiyet değişimine protandrik hermafroditizm adı verilmektedir. Bütün bu değişimlere genetik ve çevresel faktörler ile beslenme özellikleri etki yapmaktadır. Çipuraların üreme periyodu ülkemizde Ekim-Aralık ayları arasında olup en iyi gelişim 22-25 °C aralığında gözlenmektedir. Yaşayabilecekleri sıcaklık aralığı 3-34 °C, tuzluluk değeri ise ‰5-40 olarak belirtilmiştir. ‰1 tuzluluğa kadar yaşayabildikleri Chervinski ve Chanin (1985) tarafından bildirilmiştir. Genellikle 5-25 m arası derinliklerde yayılım gösterirler. Yaşları ilerledikçe derinlerde yaşamayı tercih ederler. Bunun için dalyan alanlarında ergin bireylere rastlanmaz. Yaz aylarında 0.5-9 m derinliğe kadar olan sığ sulara giriş yapan çipuralar, kış aylarında 35-40 m derinliğe kadar inerler. 2 yaşını aşan bireyler daha da derin sulara inebilmektedirler. Maximum boyları 70 cm’ye ulaşan çipuraların ortalama uzunlukları 25-40 cm. arasındadır. ÇİPURA BALIĞI YETİŞTİRİCİLİĞİ Çipuralarda Üreme Fizyolojisi Çipura balıklarının gonad gelişimi hermafrodit özellik gösterir. 21±3 oC de yapılan çalışmada 4 aylık çipuraların gonadlarında sitolojik ve topoğrafik olarak hiçbir farklılaşma olmadığını bildirmiştir. 5. ayda topoğrafik farklılaşma başlar. Bu dönemin başlangıcında konjektif doku (bağlayıcı doku) gonadın dorsalinde ve ventralinde gelişimi başlatır. Ortada merkezi bir boşluk vardır. Bu kısmın dorsalinde ovaryum, vetralinde testiküllerin oluşumu başlayacaktır. Ancak bu farklılaşma çok zor ayırt edilir. Bu iki kısım germinal hücre yuvaları ile birleşir. Çok sayıda ovogonium birleşmesi ile oluşan ovijel lameller görülür. Ancak bu ayda oositler deformasyona uğrar ve gonad merkezinin kenarında ovujel lameller şeklinde bir yatakta kalır. Gonadın ventralinde 5 aylık balığa göre daha fazla spermatogonium vardır. Ovogoniumlar bir yatak içinde sıkışmışlardır. 10-11. aylarda, gonadın ventral kısmında spermatogenez aktivitesi gelişerek sürmektedir. Testiküller tüplerdeki spermetozoitler spermatogoniumlardan yola çıkarak germinal hücrelerin bulunduğu bölüme yerleşir. Testiküller kısım gonadın dorsal kısmını çevirmeye başlar ve büyür. Spermatozoit kanalı uzayan merkezde olup spermatozoitlerin toplandığı kısımdır ve ovaryum ile testiküllerin arasındadır. 1-2 dişi germinal hücre yatağı merkezin kenarında sıkışıp kalır. Bunlar ovogoniumlardır ve oositleri mayoz bölünmesi ile primer vitellogenesis olayının oluşmasını sağlayacaklardır. 12. ay üremenin ilk sezonudur. Populasyonun tüm bireyleri erkek özelliği gösterir. Gonadın ventral kısmında olgun bir testikül vardır. Ancak düşük bir RGS değerine sahiptir. Spermatozoitlerin doldurduğu tüplerde spermiasyon olayı meydana gelir. Gonadın dişi kısmında ise hiçbir değişme gözlenmez ve iyice küçülmüştür. 13-16. aylar arasında cinsiyet dönüşümü başlar. Gonadın spermatozoit kısmında gonadların boşalıp dinlenme fazı başlar. Testiküler tüplerde yalnızca spermatogoniumlar vardır. Ovaryum kısmında ise ovogoniumlar hızlı bir şekilde çoğalmaya başlar. Primer oositler hızlı bir şekilde previtellogenesis dönemine girer. 16. ayda ovaryum gonadın %80'lik bölümünü kaplar. Dorsal kısımda oosit hücreleri previtellogenesisi tamamlar ve vitellogenesise geçer. Aynı zamanda ventraldaki spermatogoniumlar ölerek dejenerasyon başlar. 23-24 aylarda üremenin ikinci periyodunda dişiler olgun bir gonada sahiptir. Ventral kısımda ise dejenere olmuş bir testikül yer alır. Populasyonun geriye kalan %20'lik kısmında cinsiyet dönüşümü durur. Gonadın dorsal kısmındaki oositler atresiye uğrar ve dorsaldaki gelişim ventraldeki gelişimin içine sıkışır (Zohar ve diğ., 1984). Doğal koşullarda iki yaşında dişi özelliği gösteren anaçlar üç yaşında intersex özelliği taşırlar. Bu bireylere hormon müdahalesi yapılırsa erkek olarak görev yaparlar. Aksi halde 4 yaşında dişi özelliği gösterirler. Bu cinsiyet dönüşümleri bulundukları populasyonun dişi erkek oranına göre gecikmeler gösterebilir. Çipura balıklarının erkek bireylerinde spermatogenesis tamamlandığında dişilerin çoğunda oosit hücrelerinin olgunlaşması ve yumurtaların atılması için gereken hazırlık devam etmektedir. Çipura erkeklerinden ekim ve mart ayları arasında sperm almak mümkündür. Anaçlarda Yumurta ve Sperm Gelişimi Çipuralarda ovaryumlardaki yumurta hücresinin gelişimi 7 aşamada meydana gelir : * - İlkel yumurta hücreleri çok küçük olup boyutları 8-12 mikron arasındadır. Hücreler mitoz bölünme ile çoğalır. * - Yumurta hücresinin etrafında folikül oluşmuştur. Bu hücrenin ikinci katını oluşturur. * - Hücrelerin boyutları 40-200 mikron büyüklüğe ulaşır. Etrafları folikül ile tamamen çevrilidir. * - Vitellogenesis başlamıştır. Yumurta çapı 200-350 mikron arasındadır. Lipoid maddelerin stoplazma içinde birikimi başlamıştır. * - Stoplazma lipoid damlacıklarla doludur. Vitellogenesis hızlanmıştır. Yumurta büyüklüğü 300-350 mikron arasındadır. * - Yumurta sarısı tabakası lipoid damlasının ikinci halkanın oluşmaya başladığı yer olan hücre kenarına doğru iter. Çekirdek içi maddeler protein sentezinde ve besin maddesi birikiminde rol oynayan çekirdek içi maddelerin çekirdek zarına yapıştığı görülür. Yumurta çapı yaklaşık 600 mikrondur. Vitellogenesis tamamlanmıştır. Yumurta çapı 700-800 mikron arasındadır. Çekirdek içi maddeler merkeze doğru çekilmeye başlamıştır. Mikropil deliği bu dönmede oluşmuştur. Yumurta değişime uğramaksızın birkaç hafta bu durumda kalır. Uygun şartlar sağlandığında folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Testislerin oluşumu içerisinde (Bkz. 3.1.) spermlerin gelişimi spermatogoniumların aktif olarak testis kanalları duvarlarında çoğalması ile başlar. Önce spermatogoniumlardan primer spermatozittler, onlardan da sekonder spermatozitler meydana gelir. Testiküller kanal boşluklarında toplanan ve burada uygun koşullar oluşuncaya kadar bekleme pozisyonuna giren spermler gonadotropin etkisi ile döl vermeye hazır hale gelirler. Anaçlar ve Yumurtlama Anaç olarak 2-6 yaşındaki çipuralar kullanılır. Anaç olabilecek bireyler genç dönemlerinde seçilerek büyütülebileceği gibi doğal ortamdan olta ve pareketa ile yakalanabilirler. Anaçlardan yumurta doğal şekilde serbest ve müdahaleli (Hormon Uygulamalı-Dekalaj) olarak sağlandığı gibi kullanılmamakla birlikte sağım yöntemi ile de alınabilir. Yetiştiricilik ortamında tutulan erkeklerde spermatogenezis tamamlanmış olmasına rağmen, dişilerde oositler sadece vitellogenezis’in son safhasında gelişme gösterdiğinden ve sonra hızlı bir atresiye (dejenerasyon) uğradığından doğal ortamdan yakalanan anaçların kullanılması daha iyi sonuçlar vermektedir. Çipura dişileri ardışık yumurtlarlar. Vücut ağırlığının her kilogramı için ortalama 20.000-30.000 adet yumurta verecek şekilde 3-4 aylık periyotta hemen hemen her gün yumurta verirler. Böylece çipura dişilerinin fekonditeleri sezonluk her kg vücut ağırlına karşılık 2-3 milyon yumurtaya ulaşabilir. Anaçlar 4-7 m3' lük tanklara yoğunluğu 10-15 kg/m3 olacak şekilde stoklanır. Mevsim dışı yumurta elde etmek için tanklar, ışıklandırmanın ve sıcaklığın kontrol edilebileceği sistem ile donatılmalıdır. Stoklamada dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Balıklar günde 1-3 kez vücut ağırlığının (kg) %1-1.5’u kadar kalamar etine dayalı kuru pelet yemle beslenmelidir. Bunun yanı sıra taze midye sübye ve kalamar etleri ile de beslenebilirler. Verilen yemler %50-55 protein ve %10-15 deniz orjini canlıların yağlarından oluşmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır (Zohar ve diğ., 1995). Bu diet yumurtlamaya başlamadan en az 1-2 ay önce anaçlara verilmelidir. Su sıcaklığı yumurtlama döneminde 16-18°C arasında tutulmalıdır. Spermatogenesis erkeklerde tamamlandığında, dişilerin çoğunda oositlein olgunlaşması ve yumurta atılması için gerekli hazırlıklar devam etmektedir. Spermotogenez ve oogenez arasındaki bu fark hormon kullanımı ile oositlerin gelişim hızlandırılarak kapatılabilir. HCG hormonunun çipuralarda bağışıklık sistemini harekete geçirdiği, bu yüzden çipuranın olgunlaştırma gonotrophini için homolog radioimmunoussay (RIA) sistemi ile ölçüm teknikleri geliştirilmiştir. RIA kullanıldığında görülmüştür ki dişi çipuraların yetiştiricilik ortamında yumurta vermemesinin nedeni Gth’ın hipofizde birikmesine rağmen kan dolaşım sistemine girmemesidir. Bu olay yumurtlamanın başlaması için gonadotropin releasing hormonlarının (GnRH veya GnRHa) kullanılabileceğini göstermiştir. Bunun sonucunda çalışmalar polypeptitler ve proteinlerin yeni polymer tabanlı üretimleri üzerine kaymıştır. Bu sistemler çipuralar üzerinde uzun Gth salgısı ve başarılı bir yumurtlama için çok etkilidir (Gordin ve Zohar, 1978, Zohar ve Gordin, 1979, Zohar ve ark., 1989a, 1989b, 1990a). Çipura balıklarında yapılan çalışmalarda HCG 800-1500 IU/kg, GnRH 1-20 mgr/kg olacak düzeyinde kullanılmaktadır. Çipuralarda 1 mgr/kg olacak şekilde yapılan hormon uygulamasının yumurtlama periyodunu uzattığı, anomaliyi azalttığı, 7.5 mgr/kg tek enjeksiyon GnRH uygulamasının dişilerde %80 üzerinde yumurtlamanın teşvikini sağladığı tespit edilmiştir. Çevresel koşulların optimum olarak sağlanması ile birlikte, yumurtlama tüm yıl boyunca elde edilebilmektedir. Yumurtlama, hormon uygulamasından 48-72 saat sonra başlar. Hormon uygulamasından sonraki birkaç gün içinde, günün farklı zamanlarında yumurtlama meydana gelebilir. Yumurtlama başladıktan sonra yaklaşık 1 hafta içinde populasyon içindeki dişilerin yumurtlama zamanı aynı döneme rastlamaktadır. Yumurtlama genellikle gün batarken ve 24 saat aralıklarla olur. Yumurtlayacak populasyon strese karşı çok hassas olduğundan yumurtlama süresince stres faktörleri ortada kaldırılmalıdır. Yumurtlama sezonu süresince oositlerin bir kısmı vitellogenesis safhasına başlarken diğer bir kısmı vitellogenesisin son safhalarını geçirir. Bu yüzden vitellus maddesi yılın birkaç ayında yumurtalıklarda devamlı olarak bulunmaktadır. 3-4 aylık yumurtlama periyodu süresince, dişi çipuralar vücut ağırlığı başına toplam 0.5-2 kg. yumurta bırakır ki bu değer vücut ağırlığının 0.5-2 katına eşittir. Bu uzun ve zor yumurta üretimi sadece yüksek kaliteli ve enerji veren besinler tarafından desteklenebilmektedir. Çipura anaçlarına verilen besinin içeriği, yumurta ve larvalarının kalitesini direkt olarak etkiler. Canlı yumurtaların kalitesi fekondite, yağ damlası sayısı, larva çıkış oranları ve normal larvaların yüzdesi ile ortaya çıkar ki bu durum ancak anaçların kaliteli yemler ile beslenmeleriyle mümkündür. Yumurta Özellikleri ve Embriyolojik Gelişim Canlı yumurtalar ortalama 0.9-1 mm çapında ve saydamdır. Normalde tek yağ damlası içeren yumurtaları pelajik özellik gösterir. Koryon şeffaf ve ince olup mikropil deliği yaklaşık 14 mikrondur. Cansız ya da döllenmemiş yumurtalar birkaç saat içinde opak renge dönüşür ve tankın dibine çöker. Yumurtlama tankından canlı yumurtaları toplamak için tekli ve çiftli reküparatör sistemleri kullanılabilir. Çiftli sistemde ilk kollektöre atık maddeler toplanır. Buradan geçen su diğer kollektörde bünyesinde bulundurduğu canlı yumurtaların toplanmasını sağlar. Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. İnkübasyon sıcaklığı 16-18 0C arasında olmalıdır. İnkübatörlerde doğal deniz suyu tuzluluğu kullanılmalıdır. Yumurtalar inkübatörlere ortalama 1500-2500 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Ortam karanlıktır. Çipura yumurtalarının 18 0C embriyolojik gelişimleri Tablo 1'de verilmiştir (Alpbaz, 1990). Çipuralarda Prelarval ve Postlarval Dönem Çipura prelarvaları, yumurtadan çıktıklarında yaklaşık 2.6-2.8 mm boydadırlar. Vitellüs kesesi çapları ise 0.9-1 mm’dir. Vitellüs kesesinin posteriorunda 0.2-0.22 mm çapında bir yağ damlası bulunur. Ağız ve anüs kapalıdır. Baş vücuda oranla küçük, gözler büyük ve pigmentsizdir. Pigmentasyon sarı ve siyah olup sarı pigmentler başta birkaç tane, post-anal ve medio-ventralde bir sıra olarak bulunur. Vitellüs kesesi baş kısmının altında, su geçirmez bir zar ile sıkışmıştır. Yüzgeçlerden yalnızca pektoral yüzgeç bir taslak halinde önceleri yatay sonra dikey konumlu olarak 3. günde oluşur. Tek yüzgeçlerin yerine başın üstünde başlayan ve tüm vücudun medio-dorsali boyunca uzanıp kuyruk uçundan medio-ventrale dönüp vitellüs kesesine kadar uzanan primordial yüzgeç bulunur. Bu yüzgeç larvanın yüzeyini genişletip su üstünde kalmasını ve O2 ihtiyacını karşılar. Denge organı olan otositler gözlerin arkasında olup, burun delikleri tam gelişmemiştir. Sindirim sistemi düzensiz olmakla beraber, sindirim sistemi düz bir boru şeklindedir. Pankreas ve karaciğer oluşmuş fakat salgı bezleri ve lipit rezervleri mevcut değildir. Ağız açılmadan önce vitellüs kesesinin çoğu absorbe edilir. Prelarvalarda boydaki toplam artış ile vitellüsün azalması çok yakından ilişkili olup sıcaklığın etkisi altındadır. Çabuk tüketilen vitellüs boyda ani artış yaratmasına rağmen larva için iyi değildir. Düşük sıcaklıkta vitellüs absorbsiyonunda boy geç uzamakla birlikte toplam boy artışı fazla olmaktadır. Bu dönemde larvanın hareketinin az olması enerji tüketimini düşürür ve harcanan enerji larvanın organel gelişiminde kullanılır. Çok düşük sıcaklıklarda ise larva vücudunda deformasyonlar görülür. Larvanın ağız-anüsünün açılması ve gözlerde pigmentasyonun meydana gelmesi ile postlarval evre başlar. Hava kesesi oluşumu dördüncü günden itibaren gözlenebilir. Kesenin normal gelişiminin ilk safhası larva beş günlük ve 4 mm boyda iken meydana gelir. Eğer şişme gerçekleşmezse kese ilkel görünümünü korur ama fonksiyonel olmaz. İkinci gelişim safhası 13-15. günlerde yaklaşık 7-8 mm boyda meydana gelir (Chatain,1989b, Chatain ve Guschemann, 1990). Larva 5-6 mm boya ulaştığında preoperküler dikenler görülür. 7-8 mm boy uzunluğuna erişildiğinde önce kaudal, sonra dorsal ve anal olmak üzere tek yüzgeçler oluşur. 13 mm boyda yüzgeçler son şeklini alır. Bu dönemde melanaforlar tüm vücutta yatay siyah bantlar oluşturacak şekilde toplanır. Çipura Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliğide başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larval Dönem Çipura prelarvaları yoğun üretim koşullarında 80-100 adet/lt olacak şekilde tanklara yerleştirilir. Tanklar silindir-konik yapıda olup polyester veya fiberglas malzemeden üretilmiştir. Hacimleri 2m3’ten 15 m3’e kadar değişim gösterebilir. Bu tankların seçimi üretim kapasitesi ve uygulanacak larva yetiştirme tekniği ile ilgilidir. Su sıcaklığı 16-18 0C olup ortam karanlıktır. Oksijen değeri 5-6 mg/lt dir. Su girişi alttan, çıkışı ise üsttendir. 16-18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. Çipura larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Bunun yanı sıra değişik hacimlerde İngiliz tekniği olarak ta adlandırılan alg kullanımına dayalı yeşil su tekniği uygulanmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Yeşil su tekniği uygulandığında bu tanklara verilen debi oranları azaltılmalıdır. Bu teknikle yazın planlanan üretimlerde debi azlığına bağlı olarak tanklardaki suyun ısınmasının engellenmesi için ortamın soğutulması gereklidir. Aksi halde alg bozulmaları ortam suyunun amonyak dengesini bozarak kitlesel ölümlere neden olur. Çipuralar larval dönemde çok hassas bir üretim çalışması istediğinden su değişimlerindeki dalgalanmaların minimum düzeyde olması istenir. Bunun için hem enerji yönünden tasarrufun sağlanması hem de üretim kalite ve kantitesinin arttırılması için kapalı devre sistemlerin kullanılması gereklidir. Kapalı devre sistem tankların da larvalar tarafından kullanılan su önce toplama tankına gelir. Burada istenilen özellikte ve gerekli miktarda taze su yenilenmesi yapıldıktan sonra, mekanik temizlik için kum filtresine geçer. Beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılan su ultraviyole filtreye gönderilir. Ultraviyole filtreden geçen su bu sırada bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) temizlenerek biyolojik filtreye girer. Balık dışkıları, yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarını normal düzeye indirilmesi bu aşamada aerobik bakteriler tarafından yapılır. Amonyak önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. Bu aşamalardan geçen su havuzlara geri dönmek üzere sistemi terk eder. Biyolojik filtre çıkışında 1.2-1.8 mg/lt’ye düşen sudaki oksijen miktarını 5-6 mg/lt’ye ulaştırmak ve bünyesinde getirdiği azot gazı fazlasını atmak için saturasyon kolonları kullanılmalıdır. Saturasyon kolanlarının içerisine havalandırma sistemleri de kurulabilir. Bazı kapalı devre sistemlerin kurulmasında ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler. Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır (Timmons ve Losordo, 1994). Bunun yanı sıra kapalı devre sistemlerde, özellikle çipura gibi zor bir larva dönemi geçiren türlerin üretiminde suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Kapalı devre sistemlerde suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ve kitlesel ölümler ile karşılaşılır. Çipura larva yetiştiriciliği çalışmalarında kullanılan su sıcaklık aralığı 18-22 0C arasında değişim göstermiştir. Su sıcaklığı ilk 15 günlük dönem içerisinde 18-20 0C arasındadır. Sıcaklık 15. günden itibaren arttırılarak 22 0C’ye getirilir ve larval dönem sonuna kadar bu sıcaklık değeri korunur (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği çipura larva yetiştiriciliğinde uygulanmamaktadır. Oksijen değeri 5-6 mg/lt dir. Su girişi ilk 10 gün tank dibinden daha sonra tank yüzeyinden yapılır. Larvalar ağız ve anüsün açıldığı postlarval evreye kadar karanlıkta tutulur. 18 0C su sıcaklığında çipuralarda prelarval dönem 3. günde sona erer ve postlarval dönem başlar. 2. günde tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey genişliğine göre 1 veya 2 adet olacak şekilde yerleştirilir. Bu hava kesesinin ilk dolumu için çok önemlidir. Aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu, ve yaşama oranının etkiler. Larvaların gelişimi artan aydınlatma koşullarında yükselirken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına ağız açılana kadar ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 3.günde 3 lüks, 4.günde 30-50 lüx, 5-10. günde 600 lüx, 11. günde ve sonrasında 1500 lüx olarak ayarlanır. Aydınlatma süresi ilk gün 12 saat olup daha sonra 24 saat ışıklandırma uygulanır (Equip Merea, 1987). Henüz yoğun üretimde kullanılmamakla birlikte 12-14 saat arası ışıklandırma süresi ve ‰30-32 arası tuzlulukta larva üretimlerin yaşama oranlarına olan etkileri çalışılmaktadır. Çipura larval dönem beslemede rotifera (Brachionus plicatilis) ve artemia (Artemia sp.) kullanılır. Bunun yanı sıra larva tanklarına alg uygulaması yapılmaktadır. Alg uygulaması ortama verilen rotiferlerin canlılığını koruduğu gibi, ortamın pH dengesini sağlaması ve larvaya loş bir ortam yaratması açısından önemlidir. Bunun için Chorella ve Nannochloropsis sp türü algler ml’de 5-7x105 hücre yoğunluğunda kullanılabilir. Çipuraların ağız açıklığı küçük olduğundan (?100 μ) larva beslemede small tip rotiferler kullanılmalıdır. Bu rotiferlerin boyutları 40-80 mikron arasında değişim gösterir. Larvalara 3-5. günler arasında 15 adet/ml, 5-12. günler arasında 10-12 adet/ml, 12-15 günlerde 8-10 adet/ml, 15-20. günlerde 6-8 adet/ml, 20-30. günlerde 4-6 adet/ml ve 30-35. günlerde 2 adet/ml rotifer ile besleme yapılır. Çipuralara ancak 15 günden itibaren artemia nauplii ile beslenecek büyüklüğe ulaşırlar. Dünya üzerindeki rezervleri tükenmekle beraber Venezüella orjinli artemia yumurtalarının kullanımı, nauplilerin boyutlarının küçük olmasından dolayı larva yaşama oranını arttırır. Günümüzde aquakültür tesislerinde yoğun olarak kullanılan ve Artemia Systems’in üretiği AF tip artemiaları ile besleme yapılmaktadır. Kullanılan AF tip artemiaların nauplii boyları yaklaşık 480 μ, enleri ise 165-175 μ arasında olup 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Yumurtadan çıkan naupliilerin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. 30. günden sonra kullanılan EG tip artemialar ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup boyları 500-520 μ, enleri ise 175-190 μ arasındadır. Levrek larva yetiştiriciliğinde kullanılan EG1 formları boyca (740-780 μ) ve ence (225-240 μ) büyük olduğundan çipura larval dönemde kullanılmaz. Bu formlar sövraj döneminde kullanılmaktadır. Artemia nauplii 15-20 günler arasında ortama 0.5 adet/ml, 20-25. günlerde 1 adet/ml ve daha sonrada 40. güne kadar 2 adet/ml olacak şekilde verilir. Larval dönem sonunda uygulanan yetiştirme tekniklerine göre başarı oranı % 3-27 arasında değişim gösterir. Tablo 2’de alg tekniği uygulamalı larval dönem çipura yetiştirme protokolü verilmiştir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemim tamamlanması ile birlikte 40-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. 40 günün sonunda larval yetiştiriciliği biten larvaların karma yemlere adaptasyonu için kullanılan bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³ lük tanklar kullanılır. Tankların dip kısımları koniktir olup silindir yapıdadır. Tankların iyi dizayn edilmesi ve yeterli hacime sahip olması balıkların tanktaki pozisyonunu, yem tanktaki dağılımını, yem alımını ve su sirkülasyonunu etkilemesi açısından önemlidir. Tankların iç kısmı gel-coat kaplı olup bu yüzey sayesinde mikroorganizmaların kolonileşmesi engellenebilir. Sövraj bölümleri de istenildiği taktirde kapalı devre sistem kurularak çalıştırılmaktadır. Fakat bu bölümde su debisinin fazla olması, kullanılan yemin su kalitesini çabuk bozması, larvanın ürettiği azotlu bileşiklerin oranının artması ve hastalık riskinin yüksekliğinden dolayı açık devre sistemler bir çok tesiste tercih edilmektedir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinlerin göz açıklıkları 500µ,1000µ ve 2000µ arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma uygulanır. Ünitede aydınlatma süresi 16 saat olup otomatik olarak zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartükül yeme alıştırma dönemi, balıkların 25-30 mg ağırlığa ulaştıkları 40-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt kadar çıkabilir. Bu dönem beslemede kullanılan artemia HUFA bakımından zenginleştirilmelidir. Bunun için EG tip artemia naupliileri 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülür. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerirler. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 740-780 μ, enleri ise 225-240 μ arasında değişim gösterir (Artemia Systems, 1991). Sövraj sırasında kullanılan mikropartikül yemler ise % 56-64 ham protein, % 11-12 ham yağ, %11.4-11.7 kül, 5 1.4 ham selüloz, % 10 nem ve yeterli miktarlarda vitamin-mineral madde içermelidir. Mikropartikül yemler 80 mikron büyüklükten başlayarak larva gelişimine göre kullanılır (Tablo 3). Çipuralar levreklere oranla daha hızlı mikropartikül yeme adapte olabilmektedirler. Sövrage uygulaması 10-12 gün devem eder. Larvalara verilen günlük artemia miktarı azaltılırken mikropartikül yem oranı arttırılır. Bu dönemde besleme oranı %8-10 arasındadır Çipuralar aşırı kanibalistik özellik gösterdiklerinden dolayı ortamda mutlaka yeterli miktarda yem bulunmalı ve balıklar sürekli boylanmalıdır. Sövraj bölümünü terk etmeye hazırlanan larvaların ağırlığı 300-350 miligrama ulaşır. Sövraj boyunca su sıcaklığı 20-22 0C olup tanklarda su debisi %50-100 arasında değişim gösterir Çipuralar sövraj dönemine daha çabuk ve hızlı adapte olmaktadırlar. Larva yaşama oranı sövraj başarısına göre % 85-95 arasındır. Sövrajı tamamlayan balıklar ön büyütme ünitesine alınarak burada doğal deniz suyu ortamına adapte edilirler (Divanach ve diğ., 1986, France Aquaculture, 1987, Çörüş, 1993). Ön Büyütme Ön büyütme ünitesinde kullanılan tank özellikleri sövraj bölümü ile aynıdır. Bu bölümde açık devre su sistemi kullanılmaktadır. Gelişim özelliklerine göre 60-70 günlerde sövraj ünitesini terk eden yavrular boylarına ayrıldıktan sonra ön büyütme ünitesine alınırlar. Ayrıca boylama sırasında hava keseli ve hava kesesiz bireylerde birbirinde ayrılır (Chatain ve Corrao, 1992). Bu bölümde ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde de balıklar sürekli gözlenmeli ve kanibalizmin engellenmesi için sık sık boylama yapılmalıdır. Balıklara verilen su sıcaklığı 20-22 0C olup 16 saat ışıklandırma uygulanır. Yemleme otomatik yemlikler ile yapılmaktadır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %50-150 arasında değişmektedir. Yemleme oranı %7 başlayıp %3 kadar düşme gösterir (Tablo 3). Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasındadır. Büyütme Kuluçkahanelerden ve özellikle ülkemizde doğal ortamdan temin edilen çipura yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan yetiştirme sistemlerde farklı teknikler kullanılarak büyütülür. Bunlar içinde en çok kullanılanı yarı entansif ve entansif yetiştirme yöntemidir. Şu anda ülkemizde ekstansif yöntem Avrupa ülkelerindeki düzeyde değildir. Özellikle Bodrum ve Savran bölgelerinde yarı entansif üretim yapan çipura işletmeleri mevcuttur. Ekstansif Yetiştirme Yöntemi Bunun için açık denizden, kıyısal bölgelerdeki lagünlerden ve denize bağlantısı olan acı su birikintilerinden faydalanılır. Açık denizlerde yapılan yetiştiricilikte genel olarak deniz yosunları ve yumuşakçaların üretimi yapılmaktadır. Kıyı bölgedeki lagüner alanlarda ise başta çipura, levrek, kefal ve yılan balığı gibi türlerin yetiştiriciliği yapılır. Yavrular ilkbahar dönemlerinde barınmak ve beslenmek üzere lagüner alanlara girerler. Bu dönem içinde bir çok zoo ve fitoplanktonun yanı sıra küçük balık, karides yavruları mamun, sülines, midye ve akivades ile beslenirler. İzmir Körfez bölgesi dalyanlarına 2-10 gram ağırlıkta giren çipuralar, sonbaharda 80-120 gram ağırlığa ulaşırlar. 100 gram ağırlıkta girenler ise 200-300 gram ağırlığa kadar ulaşabilirler. Bu ağırlık artışları dalyan sahasının verimliliği ile ilgilidir. Çipuralar kış aylarına doğru dalyan sahasının soğuması ile daha sıcak olan derin sulara kaçma eğilim gösterirler. Deniz ile bağlantılı noktalara kurulan kuzuluk sistemlerinden yakalanan bu bireyler pazara sunulacağı gibi, canlı olarak yakalanıp toprak havuz ve ağ kafes sistemlerinde de büyütülebilir. Ekstansif yetiştiricilikte beslemeye ve çevre şartlarının kontrolüne ihtiyaç duyulmaz. Ancak bu alanlar kendi içinde parsellenerek derinleştirilebilir ve su değişimi sağlanabilir. Özellikle İtalya sahillerinde yoğun olarak valikültür adı verilerek yapılan bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Böylece küçük boylarda dışarıya kaçarken yakalanan yavrular kışlatılarak ağırlık kazanmaları sağlanmaktadır. Bu sistemlere dışarıdan da yavru takviyesinde bulunulur. Ekstansif lagün yetiştiriciliğinde 80-100.000 hektarlık alanlarda bir senede türlere göre 100-500 kg/hektar ürün elde edilebilir. Yarı Entansif Yetiştirme Yöntemi Bu sistem havuz yetiştiriciliği olarak ta adlandırılır. Genellikle balık ve eklembacaklıların yetiştiriciliğinde kullanılır. Bu sistemde toprak ve beton havuzların yanı sıra portatif yapıdaki polyester veya polymerden yapılmış branda havuzlardan yararlanılır. Ayrıca kıyısal alanlar ağ ile çevrilerek üretimde yapılmaktadır. Bu sistemlerde günlük su değişimleri kontrol altında olup ürün miktarının arttırılmasında oksijeneratörlerden yararlanılır. Toprak havuzlarda ise son yıllarda jeo-membran sistemi uygulanmaktadır. Su debisinin artırılmasına bağlı olarak bu sistemlerden stok yoğunluğu arttırılarak entansif amaçlı olarak ta yaralanılabilir. Ancak sistemde meydana gelecek aksaklıklar üretimi olumsuz etkiler. Bu yüzden stoklama yoğunluğunun düşük tutulmasında fayda vardır. Stok yoğunluğu beton havuzlar, brandalı havuzlar ve iç kısmı jeo-membran kaplı küçük hacimli toprak havuzlarda 2-5 kg/m3 arasındadır. Büyük yapıdaki toprak havuzlardan 1-4 ton/hektar ürün edilebilir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes sistemlerinde yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri geliştirilmiştir. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir. Bu sistemlerde su kalitesinin kıyısal bölgelere göre çok daha iyi olması, işletmenin kendini ve başkalarını kirletme etkisinin az olması, birim alana daha yoğun stoklama imkanının olması, daha hızlı balık gelişiminin sağlanması, uzun vadede ekonomik olması ve yüksek kapasite balık stoklanabilmesi gibi özellikler bu sistemleri çekici hale getirmektedir (Özden ve diğ., 1998). Kafes sistemlerinde sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler kullanılmaktadır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların hızlı şekilde gelişimi için besleme teknikleri ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı arasındaki ilişki dikkatli takip edilmelidir. Bu dönemde kullanılan yemlerdeki protein %46-52, selüloz %2-4, ham kül %12-13, ham yağ % 10-11, kalsiyum % 1.4-2.2, ve fosfor %1.15-1.5 arasında değişim göstermelidir. Bunun yanı sıra vitaminler ve iz elementler yeterli miktarda kullanılmalıdır. Tablo 4'te çipura balıklarının ağırlıklarına göre 16-25 C'de besleme oranları ve balıkların konulması gereken ağ göz açıklıkları verilmiştir. Kafeslerde düğümsüz ağ kullanılması solungaç takılmalarının engellenmesi, pul dökülmesi ve vücutta meydana gelen çizilmelerin önlenmesi için faydalıdır. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren çipura yavrularının ağ kafeslere çıktıktan itibaren 12-14 aylık sürede 3-4 gram ağırlıktan 350-400 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Çipura larva yetiştiriciliğinde günümüzde halen istenilen yaşama oranları sağlanamamıştır. Oldukça zor ve hassas bir üretim tekniği isteyen çipuraların başarı oranın arttırılmasında; ortam suyunun fiziko-kimyasal yapısının sürekli kontrol edilmesi, ani değişimlerden kaçınılması, yumurtaların temininde pestisitlerden, metalik iyonlardan, hipoklorid ve diğer kirliliklerden arındırılmış ortamlar yaratılması, hormon uygulamalarına dikkat edilmesi ve canlı yumurtaların inkübasyona alınmadan önce dezenfekte edilmesi, yumurta ve larva stok yoğunluğunun optimum oranlarda tutulması, ani abiyotik değişimlerden ve mekanik şoklardan kaçınılması, larval aşamada ışık yoğunluğunun çok iyi ayarlanması, postlarval döneme geçmeden önce tank yüzeyinde biriken yağ tabakasının yüzey alanı hesaplanarak hava süpürgeleri ile ortamdan uzaklaştırılması, 12-14 günler arasında ortam şartlarında değişim olmadan bazı larva tanklarının yaşama oranları diğer tanklardan önemli oranda düşük ise bu tankların klorlanarak iptal edilmesi, hava kesesi gelişimi süresince su şartları ve ortam düzeninde ani değişimler olmaması, larvalara verilen canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve artemiaların (Artemia sp.) gerekli yağ asitleri ve vitaminler ile zenginleştirilmesi, larva tanklarına uygulanan debinin larva yaşı ile doğru orantılı olarak arttırılması, debi hesaplarının yapılmasında larva hızı ve direncinin göz önüne alınması, özellikle hava kesesinin fonksiyonel olmamasına bağlı olarak deformasyona uğrayan larvaların 70-80. günlerde birbirinden ayrılması, bu ayırma tekniklerinin yavrular ağ kafeslere gönderilmeden önce mutlaka yapılması, hastalık etmenlerine karşı gerekli önlemlerin alınması, içerik yönünden yüksek besin değerine sahip yemlerin sövraj, ön büyütme ve büyütme dönemlerinde kullanılması başarının arttırılmasında yararlı olacaktır. Tüm bu koşullar yerine getirilmeye çalışılsa da üretimin çeşitli safhalarında değişik sorunlarla karşılaşılacaktır. Geliştirilen üretim tekniklerinin takibi ve ülkemiz koşullarına uygulanması sayesinde kalite ve kantite her geçen gün artacaktır. LİTERATÜR - Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium - Alpbaz, A.G., 1990. Deniz Balıkları Yetiştiriciliği. Ege Üniversitesi Su Ürünleri Yüksekokulu Yayınları No. : 20. - Camus, P., Koutsikopoulos, A., 1984. Incubation experimentale et developpement embryonaire de la daurade royale Sparus aurata (L.), a differentes temperatures. Aquaculture, 42, 117-128. - Chatain, B., 1989b. Problems Related to the Lack of Functional Swimbladder in Intensiv Rearing of Dicentrarchus labrax and Sparus auratus. Advances in Tropical Aquaculture. 699-709. - Chatain, B., Guschemann, N., 1990. Improved Rate of Swimbladder on Mortality of Dicentrarchus labrax During Weaning. Aquaculture 78: 55–61. - Chatain, B., Corrao, D., 1992. A Sorting Method for Eliminating Fish Larvae without Functional Swimbladders. Aquaculture, 107. 81-88. - Chervinski, J., Chanin, Y. 1985. Gilthead sea bream (Sparus aurata L.) a candidate for culture in ponds- Laboratory experiments. Bamidgeh 37 (2), 42. - Conides, A., 1992. Effects of salinity on growth, food conversion and maintenance of young gilthead sea bream, S. auratus. PhD thesis, University of Athens, Greece, 185 pp. - Çörüş, İ., 1993. Fransa’ da Levrek (Dicentrarchus labrax) Balığı Larvası Haçeri Sistemleri. E. Ü. Fen Bil. Ens. - Divanach, P., Kentouri, M., Dewarrin, G. 1986. Sur le sevrage et l’ evolution des perfomaves biologiques d’ alevins de daurades, Sparus auratus provevant d’ elevage extensif, apres replacement des nourrisseurs en continue par des distributeurs libre service. - Equipe Merea, 1987. Maitrise de la Qualite des Alevins de loup (Dicentrarchus labrax) Produits en Elevage Intensif. La Pis. Française, 85: 17–23. - FAO,1987. Identification sheets for the Mediterranean and Black Sea.Fishing Area 37.1343-1375. - France Aquaculture, 1987. Elevage Larvaire du Loup en Conditions Intensives. Rapport Interne. Centre National D’ Aquaculture Monastır, 87.07, 1-23. - Freddi, A., Berg, L.,Bilio, M., 1981. Optimal salinity-temperature combinations for the early life stages of gilthead sea brea, Sparus aurata. J. World maric. Society 12, 130-136 - Gordin, H.; Zohar, Y., 1978. Induced spawning of Sparus aurata (L.) by mean of hormonal treatments. Annales Biologie Animale Biochimie Biophysique, 18, 985-90. - Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 - Tandler, A., Helps, S., 1985. The effect of photoperiod and water exchange rate on growth and survival of gilthead sea bream (Sparus aurata) from hatching to metamorphosis in mass rearing system. Aquaculture 48, 71-82. - Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resume Systems: Engineering Design and management. Elsevier Science B.V., New York - Zohar, Y., Gordin, H., 1979. Spawning kinetics in the gilthead sea bream, S. aurata L. after low doses of human chorionic gonadotropin. Journal of Fish Biology, 15, 665-70. - Zohar, Y., Harel, M., Hassin, S., Tandler, A., 1995. Broodstock Management and egg and larval quality.94-118. Editors: Bromage, R., Roberts, R. Blackwell Science Ltd. Cambridge UK. - Zohar, Y.; Billard, R.;Weil, C., 1984. La reproduction de la daurade et du bar: Le cycle sexuel et l’induction de la ponte. In aquaculture de bar et des Sparides, (eds R. Billard; G. Barnabe), pp. 3-24. INRA Press, Paris. - Zohar, Y.;Tosky, M.; Pagelson, G.; Finkelman, Y., 1989a. Induction of Spawning in the Gilthead Sea bream, Sparus aurata, using [D-Ala6-Pro9NET] –LHRH: Comparison with the Use of hCG. Israel Journal of Aquaculture, 4, 105-13. - Zohar, Y., Goren, A., Tosky, M., Pagelson, G., Liebovitz, D., Koch, Y. 1989b. The bioactivity of gonadotroin-releasing hormones and its regulation in the gilthead sea bream, Sparus aurata, in vivo and in vitro studies. Fish Physiology and Biochemistry, 7, 59-67. - Zohar, Y., Breton, B., Sambroni, E., Fostier, E., Tosky, M., Pagelson, G., Liebovitz, D. 1990a. Development of homologous radioimmunoassay for a gonadotropin of the gilthead sea bream, Sparus aurata. Aquaculture, 88, 189-204.

http://www.biyologlar.com/cipura-sparus-aurata-lin-1758-baligininbiyolojisi-ve-yetistirme-teknikleri

LEVREK (Dicentrarchus labrax Lin., 1758) BALIĞININ BİYOLOJİSİ VE YETİŞTİRME TEKNİKLERİ

Yrd.Dç.Dr. Kürşat FIRAT & Şahin SAKA Ege Üniversitesi Su Ürünleri Fakültesi Yetiştiricilik BölümüYetiştiricilik Anabilim Dalı İskele-Urla, 35440 İZMİR GİRİŞ Su ürünleri yetiştirme teknolojisinin gelişimi ile beraber levrek kültürü üzerindeki çalışmalarda yoğunlaşmıştır. Ülkemizde önceleri çipura balığının besiye alınması ve daha sonrada larva üretimine geçilmesini takiben, levrek larvalarının kültür çalışmalarında yoğun artışlar gözlenmiştir. İlk defa Fabre-Domerque (1905) tarafından levreklerin yapay yolla üretilebileceği bildirilmiş olup, Barnabé (1971) levreklerin hormon müdahelesi ile kontrol altına alınabileceğini rapor etmiştir. Aynı araştırmacı (1972) levrekleri jüvenil hale kadar getirmeyi başarmış ve bugün Avrupa ülkelerinde yumurtadan pazar boyuna kadar geniş bir endüstri kolu haline gelmesine öncülük etmiştir. Ülkemizde ise levrek larva yetiştiricilik çalışmaları 1984 yılında özel bir işletme ve E.Ü. Su Ürünleri Fakültesi'nde başlamıştır. 1980'li yılların sonunda üretimlerini binli rakamlar ile ifade eden akuakültür tesisleri günümüzde yıllık larva üretimlerini milyonlara dayanan rakamlar ile ifade etmektedirler. Levrek larva üretiminde sağlanan bu gelişim, yeni türlerin aquakültürüne de öncülük etmektedir. LEVREK(Dicentrarchus labrax, L. 1758) BALIĞININ BİYOLOJİSİ Morone labrax ve Roccus labrax sinonimleri ile de adlandırılan levrek, Phylum : Vertabrata Subphylum : Pisces Classis : Osteichthyes Subordo : Percoidei Familia : Serranidae Genus : Dicentrarchus Species : labrax (Linneaus, 1758) şekliyle sistematikteki yerini almıştır. Levrek balıkları, tüm Akdeniz'den, İngiltere'nin kuzey sahillerine ve Kanarya Adaları'na kadar yayılım gösterir. Deniz fenogramlarının bulunduğu kumlu, çamurlu-sığ biotoplarda, sıcaklığa ve tuzluluğa karşı gösterdiği toleransı ile nehir ağızlarında ve lagüner bölgelerde yaşayan bir littoral bölge balığıdır. Havaların soğuması ile birlikte kışlamak için derin sulara göç ederler. Karnivor bir tür olan, bazen yalnız bazen de küçük sürüler halinde dolaşan levreklerin genç dönemlerinde eklem bacaklılardan Crangon, Gammarus ve Ligia gibi küçük karidesleri, ergin dönemlerinde küçük balıklardan özellikle Sardina türünü, kafadanbacaklılardan Sepiola ve Loligo'yu, eklembacaklılardan Carnicus, Crangon sp. ve Macropipus türlerini tercih ettiği yakalanan bireylerin mide içeriklerinden alınan örneklerden ortaya çıkmaktadır (FAO, 1991). Vücudu lateralden hafif yassılaşmış olan levrek balığının derisi ktenoid pullarla kaplıdır. Sikloid pullar ense ve yanaklar üzerindedir. Yanal çizgi üzerinde 65-80 arası pul bulunur. Birinci solungaç yayı üzerindeki brankiospin sayısı 18-27 arası değişir. Dorsal yüzgeç araları geniştir. Dorsal yüzgeçte 8-10 adet diken ışın mevcuttur. II. dorsalde 1 diken ve 10-14 adet yumuşak ışın bulunur. Muzoda pul yoktur. Operkulumda gri-siyah leke mevcuttur. Preoperkulum ve operkulum üzerinde sert diken ışınlar vardır. Renk dorsalde koyu gri-esmer, ventralde beyazdır. Göz kemiğinin üstünde siyah lekeler mevcuttur. Ağız geniş, dişler damakta ve dilde bulunur. Renkleri sırt kısmında koyu gri-esmer, yanlarda gümüşi, karın bölgesinde beyazdır. Ergin bireylerin sırt kısmı lekesiz koyu renkte olurken, gençlerde bazen siyah lekeler olabilir. 1 m'ye kadar uzayabilen boyu ortalama 50 cm. olup, ağırlığı da 12 kg' a ulaşabilir (Uçal ve Benli, 1993). Tatlı sularda büyüyebilirler, fakat üreyemezler. Levrekler 5-28 °C arası sularda yaşayıp 12-14 °C arasında yumurta bırakırlar. Doğal ortamda 1 kg'lık bir dişinin 293.000-358.000 adet yumurta bırakabildiği bildirilmişlerdir (Kennedy ve Fitzmaurice, 1972). Tuzluluk değişimlerine karşı dayanıklı olup, ‰3 tuzluluktan ‰50 tuzluluğa kadar yayılım gösterir. ‰0 tuzluğa adapte olabilir. Levreklerin düşük tuzluluk şartlarına adaptasyonu üzerine birçok çalışma yapılmış olup, bunlar adaptasyon teknikleri, düşük tuzlulukta beslenmeleri ve gelişimleri üzerinedir (Loy ve ark., 1996, Dendrinos ve Thorpe, 1985, Johnson ve Katavic, 1984). Levrek balıkları 1 yaşına gelene kadar gonadlarında bir gelişim gözlenmez. 13-15. aylarda testiküllerde ve ovaryumlar da farklılaşma başlar. Doğal şartlar altında levrekler hayatlarının ikinci yılında sperm salgılayabilirler. Ancak RGS değeri düşüktür. 3. yılda ise ergin bir birey gibi yüksek oranda sperm sağlayabilirler. Ovaryumlardaki farklılaşma, erkeklerde olduğu gibi 13-15 aylar arasında başlar ve nispeten daha uzun sürer (Brusle ve Roblin, 1984). Dişiler doğal şartlar altında ancak 3. yılda yumurta bırakabilir. Büyüme hızı bir yaş grubu bireylerinde en fazla durumdadır. Cinsi olgunluk dönemlerinde ağırlık artışının dişilerde erkeklerden daha fazla olduğu saptanmıştır. Üçüncü yaştan sonra alınan besinler gonad gelişiminde kullanılır. Akdeniz'de erkekler 2-3 yaş 25-30 cm boyda, dişiler 3-5 yaş, 30-40 cm boyda, Atlantik’te ise erkekler 4-7 yaş ve 32-37 cm boyda, dişiler ise 5-8 yaş ve 38-42 cm boyda cinsel olgunluğa ulaşırlar (Alpbaz, 1990). Levrek balıkları Akdeniz' de Ocak-Mart ayları arasında yumurta bırakırlar. LEVREK BALIĞI YETİŞTİRİCİLİĞİ Anaçlar ve Yumurtlama Anaçlarının tutulduğu tanklar, anaçların büyüklüğüne ve stok yoğunluğuna bağlı olarak değişim gösterir. Akuakültür ünitelerinde büyük, orta ve küçük hacimli anaç havuz sistemleri kullanılmaktadır. Büyük sistemler yoğun olarak Japonya ve kuzey doğu Asya ülkelerinde 50-100 m3 hacimlerde kullanılmakta ve tesis dışında kurulmaktadır. Orta büyüklükte hacime sahip tanklar Avrupa ülkelerinde kullanılmakta olup tesis içinde yer almaktadır. Tankların hacimleri 15-30 m3 arasındadır. Bunların ayrıca filtrasyon, ısıtma ve soğutma sistemleri de mevcuttur. Küçük hacimli sistemler ise 10-20 m3 arasında olup Akdeniz sahasındaki ülkelerde kullanılmaktadır (Licas, 1988). Bu tankların tüm sistemleri çevresel şartlara karşı kontrol altındadır. Tanklar genellikle koyu renkte olup yuvarlaktır. Anaç bireyler yetiştiricilik yolu ile yada doğal ortamdan çeşitli avlama metodları ile yakalanabilir. En ideali paraketa ile yapılan avcılıktır. Ağ ile yakalanan bireylerde adaptasyon dönemin de yoğun ölümler görülür. Anaç bireyler yumurtlama döneminden önce yüksek kalitede taze yem ile kalamar, sübye ve karides etine dayalı pelet yemlerle günde 1-3 kere vücut ağırlığının (kg) %1-1.5’ğu kadar beslenmelidir. Verilen yemler %50-55 protein ve %10-15 deniz orijinli canlıların yağlarından oluşan içeriğe sahip olmalıdır. Yağlar en az %5 n-3 HUFA içermeli ve temel olarak 22:6n-3 (DNA) tipinde olmalıdır. Bu durum yumurta kalitesini doğrudan etkiler. Balıklar 10-15 kg/m3 olacak şekilde stoklanır. Dişi erkek oranı anaç balığın durumuna göre 1:1, 1:2 veya 2:3 kg olacak şekilde ayarlanır. Tanklara saatte %10-20 arası debi uygulanır. Su sıcaklığı 14-15 0C olmalıdır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Yumurtaların pelajik yapısından dolayı tankların su çıkışları yüzeydendir. Bunun için tankların üst çıkışına 500 mikron göz açıklığına sahip tank içine yerleştirilmiş reküparatör sistemleri konulur. Anaç bireylerden doğal yollarla, sağım yöntemiyle ve hormon müdahalesi ile yumurta temin edilebilir. Sağım yöntemi yumurtaların küçük olmasından ve döllenme oranının düşüklüğünden dolayı uygulanmamaktadır. Yumurtaların doğal periyot içinde hormon müdahalesi olmadan alınması kaliteyi olumlu etkiler. Bunun yanı sıra doğal ortamdan yakalanan bireylerin yumurtlamaya teşvik edilmesinde hormon kullanımı oldukça başarılı sonuçlar vermektedir. Ayrıca levrek anaçlarına fotoperiyot uygulanması ile doğal yumurtlama zamanları değiştirilerek yılın çeşitli dönemlerinde yumurta sağlanabilir. Levrek balıkları hormon uygulamalarına karşı hassastır. HCG ile teşvik edilen anaçlarda kuvvetli bir bağışıklık sistemi oluşur. Hipofizden gonadotrapin (GtH) salgılanmasındaki başarısızlıktan dolayı daha önceden kullanılan anaçlarda yumurtlama ve yumurtaların oluşumu sırasında sorunlar oluştuğunu saptanmıştır. HCG enjekte edilen anaçlarda hipotalamus hipofiz eksenindeki eksilme sonucunda, anaçlarının yumurtalarını oluşturmasında azalma görülür. Bunun sebebi hipofizde gonadotropin seviyesinin artmasına rağmen dolaşım sistemine salgılanmamasıdır. LH-RH ve LH-RHa’nın çeşitli türlerin plazmalarındaki gonadotropin (GtH) düzeyini yükselttiği ve HCG hormonuna göre daha avantajlı olduğu saptanmıştır (Alvarino ve diğ., 1992a, 1992b). Bu hormonların HCG hormonuna göre avantajları şunlardır. 1. GnRH (LH-RH) balığın kendi GtH üretimini sağlar. 2. Küçük moleküllüdür. GnRH kolayca sentezlenebilir ve saf olarak temin edilebilir. 3. Yumurtlama sırasında kullanılan miktar azdır. 4. GnRH türlere göre düşük miktarda kullanılabilir. 5. Küçük polipeptidlidir ve bağışıklık yapmaz. Levreklerde LH-RH’ın uygulanmasında yumurta çapının 650 mm civarında olması istenir. Bu dönemde yani vitellogenesis safhasında toplam 10 mgr/kg olacak şekilde, 12 saat ara ile uygulanması sonucunda ilk 48 saat içinde ovulasyon görülebilir. Uygulamanın gündüz başlaması ovulasyonun hızını artırırken, gece başlaması yüzdesini etkiler. Levrek balıklarında yapılan çalışmalarda HCG 500-1800 IU, LHRH 1-20 mgr/kg olacak düzeyinde kullanılmasının yumurta kalitesi ve kantititesi üzerinde olumlu etkisi olduğu saptanmıştır (Barnabé ve Paris, 1984, Barnabé ve Barnabé-Quet, 1985, Alvarino ve diğ., 1992a,1992b). Anaçlarda Yumurta ve Sperm Olgunlaşması Üreme dönemine giren levrek balıklarının gonadlarında yumurta hücrelerinin oluşması ve atılması dört temel periyotta olur. a) Pregametik Periyot: Haziran ve Ekim aylarında gonadlarda olgunlaşma yoktur. b) Gametogenesis: Ekim ve Ocak aylarında oosit sitoplazmasında yağ damlacıkları, az sayıda yağ globülleri ve kortikol alveolleri görülür. Kasım-Aralık aylarına kadar yağ damlasında büyüme görülmekle birlikte erkeklerde sperm elde edilmesi mümkündür. c) Yumurtlama Periyodu: Ocak ayında başlar, Mart ayında biter. Bu dönemde yumurtalar dışarı atılır. d) Dinlenme Periyodu: Nisan-Mayıs ayları arasında gözlenir. Ovaryumlar da atretik oosit’ler, testislerde artık yapılar gözlenir. Levreklerin ovaryumlarındaki yumurta hücresinin gelişimi ise 12 temel aşama ile açıklanır. 1. Aşama: İlkel yumurta hücresi (Ovogenium) çok küçük bir yapıdadır. Fakat buna nazaran büyüklüğü diğer hücrelerden daha fazladır. Hücrenin çapı 10-12 µ arasındadır. Hücrelerde mitoz bölünme ile çoğalma görülür. 2. Aşama: Yumurta hücrelerinin çapları 12-20 µ ulaşır. Her yumurta hücresinin etrafında folikül oluşmaya başlamıştır. Folikül hücrelerin ikinci katını oluşturur. 3. Aşama: Bu dönemde sitoplazmanın homojenliği bozulmuştur. Hücre çekirdeğinin (Nukleus) bölümlenmesi ile çekirdeğin dış kısmının şekillenmesi başlamıştır. Hücre çekirdeğinin çapı 5-8 µ arasındayken, hücrenin bu aşamada çapı ise yaklaşık 20 µ civarındadır. 4. Aşama: Hücre içerisinde stoplazmik üç zon birbirinden ayrılmıştır. Bunlar kortikal zon, granüler yapılı orta zon ve tanecikli prinüller zon dur. 5. Aşama: Bu dönemde ilk oosit zarı farklılaşmaya başlamıştır. Ayrıca yumurta sarısının meydana gelmesi ve toplanması olarak bilinen previtellogenesis’in de ilk başlangıcı bu aşamada görülür. Bu sırada hücre çapı 30-50 µ arasındadır. 6. Aşama: Çekirdek zarında ilk yağ damlacıkları ve çekirdek çevresinde loplar meydana gelmeye başlar. Bu olay yumurta çapı yaklaşık 100 µ olduğunda başlar ve yumurta 300-350 µ gelinceye kadar devam eder. 7. Aşama: Vitellüsün iki farklı yapısının belirginleşmeye başladığı bu dönemde yumurta zarının şekillenmesi de başlamıştır. Yaklaşık 100 µ çapındaki yumurta hücresinde yağ damlacıkları ve yumurta sarısı üretimi hızla devam eder. 8. Aşama: Yumurtanın çapı yaklaşık 200 µ’dur ve vitellüsün iki karışımı görülmektedir. 9. Aşama: Bu aşamada yağ damlacıkları yumurta sarısı tarafından hücre kenarına doğru itilir ve vitellüsün üç karışımı izlenebilir. 10. Aşama: Yumurta çapı 350-400 µ civarında olup vitellogenesis sona ermiş ve çekirdek kutba doğru yönelmiştir. 11. Aşama: Yumurta 500-550 µ boya ulaşmış ve mikropil deliği bu aşamada meydana gelmiştir. Yumurta içinde vitellüs, hücre duvarı ve yağ damlası net şekilde görülmektedir. 12. Aşama : Yumurtanın gonadlardaki bu gelişiminden sonra yumurta herhangi bir değişime uğramaksızın 1-2 ay bekler. Dışarıya doğru çıkıntı yapmasına neden olurlar. Böylece folikül tekasındaki kasların kontraksiyonu ile ovulasyon meydana gelir. Eğer biotik ve abiotik şartlar uygun değilse foliküllerin deformasyonu ile yumurtaların emilimi ortaya çıkar. Levrek balıklarında spermlerin gonadlarda ki gelişimi spermatogoniumların aktif şekilde testis kanalları duvarlarında çoğalması ile başlar. İlk önce spermatogoniumlardan primer spermatozitler, onlardan da sekonder spermatozitler meydana gelir. Testiküler kanal boşluklarında toplanan ve burada uygun şartlar oluşuncaya kadar bekleme pozisyonuna giren spermler, gonadotropin etkisi ile dışarı atılmaya hazır hale gelir. Testislerde hareketsiz halde bekleyen spermler su ile temasa geçince hareketlenirler. Yumurta Özellikleri ve Kalite Kriterleri Kemikli balıkların yumurta boyları türlere ve türlerin kendi içindeki bazı koşullara göre değişiklik gösterir. Türün yumurta çapı büyüdükçe yumurta sayısı azalır, çıkan larvanın boyu ve yaşama oranı artar. Döllenmiş yumurtalar pelajik, küresel ve saydamdır. Yumurtanın kalitesi, yumurtanın yüzebilirliği, yağ damlası sayısı, açılım oranı ve normal yapıdaki larva miktarı ile orantılıdır. Levrek yumurtalarında biri merkezi konumlu olmak üzere ortalama 4-5 adet yağ damlası bulunur. Levrek yumurtalarının çapları ortalama 1150±85 µ, yağ damlalarının çapı ise 360-420 µ arasındadır. Yumurta çapları bölgelere göre değişim gösterir. İngiltere kıyılarında yumurta çapları 1.07-1.32 mm arasında ölçülmüştür. Akdeniz kıyıları boyunca yumurtaların çapları daha küçük (1.02-1.296 mm) olarak tespit edilmiştir. Kuzey Denizi'nde ise bu değerler 1.386 mm’ye kadar ulaşmıştır. Yumurta çapı su sıcaklığı ve besin içeriği ile ilişkilidir. Kış aylarındaki düşük sıcaklıkta doğal üreme periyodunda alınan yumurtaların diğer zamanlarda sabit sıcaklıklarda elde edilen yumurtalara göre daha büyük olduğu saptanmıştır. Aynı tür içindeki yumurtaların boyutları arasındaki farklılıklar anaçların beslenmesine, büyüklüğüne, yumurtlama zamanına, hormon uygulamalarına, ortam koşullarına, genetik faktörlere ve bölgesel farklılıklara bağlıdır. Bunlar aynı zamanda kaliteyi ve kantiteyi etkileyen faktörler arasında yer almaktadır. Yumurtalarda morfolojik ve genetiksel bozukluk yok ise inkübasyon koşulları aynı olduğunda yumurtanın büyük veya küçük olması larva çıkış oranını değiştirmez. İnkübasyona alınacak yumurtaların kaliteli olması ileride çıkacak larva kalitesi için çok önemlidir. Bu bozukluklar inkübasyon öncesinde ve inkübasyon süresince belirlenmelidir. Reküparatörlerden alınan yumurtaların %40’tan fazlası ölü ise bu grup üretime zorunlu kalınmadıkça alınmamalıdır. Blastomer bölünmelerinin eşit olmasına dikkat edilmeli, eksik bölünmelerin olup olmadığı tespit edilmelidir. Çok sayıda yağ damlası içeren yumurtalar yine zorunlu kalınmadıkça üretime alınmamalıdır. Yumurta içinde nokta şeklinde parçacıklar görülmesi ve blastoporun çıkıntı yapması embriyonik gelişim esnasında meydana gelen olumsuzluklardan kaynaklanan diğer bozukluklardır. Yumurtaların İnkübasyonu Uygun ortam şartlarında anaçlar tarafından bırakılan yumurtalar reküparatörlerden hassas biçimde toplanır. Yumurtalar toplama, tartım ve canlı-ölü ayrılması aşamalarında hava ile mümkün olduğunca az temas ettirilmeli ve çok miktarda yumurtanın üst üste birikmesi engellenmelidir. Yumurtalar uzun süre nakil edilecekler ise 15-20 litrelik plastik kaplar kullanılır. 24 saatlik bir taşıma için litreye 20.000 adet, 6 saatlik bir taşıma için ise litreye 80.000 adet yumurta konulur. Taşıma işlemi döllenmeden sonraki ilk 24 saat içinde yapılmalıdır. Taşıma kapları içerisindeki suyun oksijen değeri 9-11 mg/lt' ye yükseltilmelidir. Plastik kabın 3/2'sine su ve yumurta konulur. Kabın 3/1’ne ise saf oksijen basılır. Taşıma işlemi sonucunda açılım oranı %50-70 arasında değişmektedir. Yumurtalar inkübasyona alınmadan önce gerek duyulursa dezenfeksiyon işlemine tabi tutulmalıdır. Bunun için %5' lik Iadophor çözeltisinden bir litre deniz suyuna 10 ml konur ve yumurtalar içinde 8-10 dakika bekletilir. Ayrıca bu işlem için çinko içermeyen Malahit yeşili ile de 5 mg/lt oranında 40-60 dakika arası uygulama yapılarak tatbik edilir. Canlı yumurtalar temin edildikten sonra bunların inkübasyona alma işlemi başlar. İnkübatörlerin konulacağı havuzlar değişik yapıda olabilir. Yumurtaların inkübasyonu için en uygun sistem race-way tipinde olan havuzlara inkübatörlerin yerleştirilmesidir. Ayrıca larva tankları veya diğer yapıdaki tanklarda da bu işlem yapılabilir. Hassas bir çalışmanın yapılabilmesi ve kontaminasyonun engellenmesi için akuakültür tesisinde inkübasyon ünitesinin ayrı olması gereklidir. Bu ünitenin büyüklüğü ve ekipmanları tesis için gerekli yumurta miktarına göre dizayn edilir. İnkübatörlerin konulacağı tankların iç kısımları koyu renkli ve jel-kot kaplıdır. Kullanılan inkübatörlerin hacimleri 50-200 lt arasında değişebilir. İnkübatörler polyesterden yapılmış olup silindir koniktir. Silindir kısmı 300 m’luk plankton bezi ile kaplı olup konik kısım polyesterdir. Her inkübatöre alttan ayrı su girişi yapılabildiği gibi, bunların yerleştirildiği havuzlara da su giriş ve çıkışı direkt olarak yapılır. Tanklara gelen su önce 5 m' luk, sonrada 1 m'luk kartuş filtrelerden geçerek U.V. filtreye giriş yapar. Buradan da tanklara dağılır. Yapılan çalışmalarda levrek yumurtalarının ‰29-47 tuzlulukta çatladığı görülmüştür. Fakat iyi bir yumurta açılımı için tuzluluğun hem levrek hem de çipura yumurtaları için ‰34-38 arasında olması gerekir. ‰34 tuzluluğun altında yumurtalar semi-pelajik özellik gösterirler ve ‰33 tuzluluğun altında da tamamen çökerler. Levrek yumurtaları için en iyi inkübasyon sıcaklığı 14-16 0C arasındadır (Freddi, 1985). Temin edilen yumurtalar alındıkları ortamla aynı sıcaklıktaki inkübatör tanklarına yerleştirilmelidir. Sıcaklık farkı ±0.5 0C dereceyi geçmemelidir. Yumurtalar inkübatörlere ortalama 3000-5000 adet/lt olacak şekilde konulur. İnkübasyon süresince ışık kullanılmaz. İnkübatörlerin bulunduğu tanklarda saatte %40-60 su değişimi uygulanır. Su değişimi olmadan yapılan inkübasyonlar da açılım oranları %30-40 olarak tespit edilmiştir. Normal akışkanlı suda ise açılım %75-85 arasında olmaktadır. Yumurtaların Embriyolojik Gelişimi Spermin yumurtaya girmesi ile başlayan döllenme olayı, inkübasyon süresi adı da verilen embriyonun yumurtadan çıkışına kadar devam eden süreç ile son bulur. Tablo 1' de 15 ve 17 0C de levrek yumurtalarının embriyolojik gelişimleri diğer araştırmacılar ile birlikte verilmiştir. Levreklerde Larval Dönem Yumurtaların embriyolojik gelişimlerinin tamamlanması ve yumurta kapsülünü terk etmesi ile birlikte larval safhaya geçilir. Prelarval Evre Levrek larvalarının yumurtadan çıktıklarında ağız ve anüsleri kapalıdır. Larvalar pasif durumdadır, baş aşağı dururlar ve kendi vitellüs keselerinden sağladıkları enerji ile hayatlarını sürdürürler. Yumurtadan çıkan levrek larvalarının boyları 3.4-3.6 mm arasındadır. Vitellüs kesesi boyu 1.1-1.3 mm uzunluğundadır. Yağ damlası çapı ise 0.5-0.7 mm arasındadır. Ağız ve anüs kapalı olduğundan dışarıdan besleme söz konusu değildir. Larvanın sadece vitellüs kesesinden beslendiği bu döneme lecithotrophik periyot adı verilir. Vitellüs kesesi vücudun anteriorunda yer alır. Yağ damlası ise vitellüs kesesinin posteriorundadır. Anüs vücudun yaklaşık olarak ortasında yer alan 14-15. miyomerler altında yer alır. Su sıcaklığı vitellüs kesesinin tüketiminde ve ağız ile anüsün açılmasında en önemli faktördür. Pigmentasyon burunda, besin kesesinin ön kısmında, kuyruğun ventralinde, bağırsağın üstü boyunca, ağız bölgesinde ve anüsün üst tarafında yıldızsı yapıda belirginleşmeye başlamıştır. Pektoral yüzgeçler oluşmuştur, fakat kullanılmaz. İlk 24 saat içinde spazmadik yüzme vardır. İlk gün sonunda larvanın baş bölgesi yukarı doğru kalkar. Vitellüs absorbsiyonu devam etmektedir. Tuzluluğun düşürülmesi süresince ve vitellüsün absorbsiyonu ile larvalar tank ortamında yukarıdan aşağıya doğru homojen şekilde dağılırlar. Yumurtadan çıkmış prelarvaların davranışsal tepkileri esas olarak koklama duyusuna, ikincil olarak ise yanal çizgiye dayanır. Koku alma plakoidleri inkubasyonun 80. saatinde epidermal hücre katları içinde kabarcık şeklinde görülür. 65. saat civarında başın yan tarafında neusomast’lar görülür. Yumurtadan çıktıktan sonra vücut yüzeyinin yan tarafında 8 neuromast görülür. Yanal çizgideki neuromastlar baştakilerden daha büyüktür. Operkulum kenarlarında, gözlerin arasında ve kuyruk yarım dairesinde bulunurlar. Yanal çizgide de serbest neuromastlar mevcuttur. Larvanın tüm vücudunu saran bir primordial yüzgeç bulunur. Yüzgeç başın hemen arka kısmından başlayıp tüm kuyruğu geçer ve besin kesesinde son bulur. Yüzgeç ışınsız bir deri kıvrımı şeklindedir. Bu sayede larva suda hem yüzebilirliğini hem de gerek duyduğu O2 ihtiyacını karşılar. Yumurtadan henüz çıkmış larvaların ağız epitelyumu düzensiz bir şekilde ve yassı hücrelerden meydana gelen tek bir tabakadan oluşur. 3. güne doğru yer yer iki sıra hücreye rastlanır. Sindirim tüpü düz bir boru şeklinde ve 10 m kalınlığındadır. Sindirim tüpünün dorsalinde pankreas, ventral bölgesinde karaciğer farklılaşmamış küçük tomurcuksu yapıdaki hücrelerden oluşur. Mide bu dönemde bir kıvrım ve bir boğum ile belirlenir. Bağırsağın çapı mideninkinden daha fazladır. Bağırsak çeperi yumurtadan çıktıktan itibaren düz bir form izler. 1 ve 2. günlerde tek bir tabaka hücre vardır. 3. gün yoğun bir mitoz bölünme ile bu hücreler iki-üç tabaka haline gelir. Ağzı açılmamış larvanın bağırsak hücre çapları 40 hm dan daha küçük lipoprotein partiküllerinin taşınımını ve sentezini yapabilir (Diaz ve diğ., 1997). Lecithotropik dönemin sonunda larva bağırsak hücreleri fonksiyonel olmasına rağmen gelişim yavaştır. Vitellüs bol ve ana yağları içermesi ile temel besleyici rol oynar. İlk beslemeden sonra bağırsak hücreleri 200 hm çaplı lipoproteinleri sindirebilir. Lecithotropik dönem boyunca iç rezervler yavaş yavaş azalır ve sindirim kapasitesinin artması ile lecithoexotropik periyot denilen hem iç hem de dış besleme başlar. Bağırsak, larvada bir kapakçıkla postvalvular ve prevalvular bağırsak olmak üzere iki bölgeye ayrılır. Karaciğerdeki hepatik hücreler ilk günle beraber görülmeye başlar ve 10 m kalınlığındadır. 3. günden itibaren epetetial kanal ile larvaların sindirim tüpüne bağlanırken boyuda 110 m’a ulaşmıştır. Bu dönemde pankreasta gelişim proksimal, karaciğerde ise distal yöndedir. 2. günde sindirim tüpü 50 derecelik bir acı ile dönme hareketi yapar. Bununla beraber karaciğer sol laterale kayarken, pankreasta sağ laterale yerleşir. Safra kesesi karaciğer tarafından sarılır. Sindirim tüpünün dorsal bölümünde hava kesesinin ilk oluşumu başlar. Pankreas mesodermik hücre katmanları tarafından çevrilir. Hücre yapısı pyriformdur. Karaciğerde ise üçüncü günle beraber hepotoblast polirizasyon sonucu değişim redükte olunur. Bu dönemde henüz larva içinde organ oluşumları olduğundan sindirim olması söz konusu değildir. 3. günle beraber gözlerde pigmentasyon açıkça görülür. Hareket hala su debisi ile beraber olup larvalar 20-30 sn' de bir 2-3 sn yüzme hareketi yapar. Postlarval Evre Postlarval evre 15-16 0C 5.günde sonunda ağız ve anüsün açılması ile başlar. Bu dönmede ağız içinde mukositler oluşur. Bunlar ilk önce mukusla kaplanmış epitelium çukurları gibidir. Selüler çeperleri incedir. 7. güne doğru çene kıkırdakları ve kasları oluşmaya başlar. Salgı bezleri tam oluşmadığından sindirim mekanizması mükemmel değildir. Sindirim tüpü epitel yapıda dört-altı sıra hücreden oluşur ve kalınlığı 45 mikrondur. 8. güne doğru hücre sıra sayısı altı-sekiz adete ulaşır. Bu sırada bağırsak emici hücreleri işlevlik kazanmıştır. Bu dönem içinde 10-11. günlerde phanin dişlerin ilkel formları oluşmaya başlar. Mide bu dönemde daralmış bir yapı izleyerek boğumlaşmıştır. Bağırsaklara geçişi sağlayan valf mevcuttur. Midesel alt mukozayı çevreleyen kas dokusu bu günlerde iyice belirginleşmiştir. 12-15. günlerde rectum epitel hücrelerinin görülmesi proteinlerin yavaş yavaş emilmeye başlandığını gösterir. Protein emilimi pinoitosis ile hücre zarından yapılır. Yağların emilimi prevalvular bağırsaktan yapılmaktadır (Deplano ve ark., 1991). Karaciğer 13-14. günle beraber glikojeni depolayacağı bölgeyi oluşturur. 20. günle birlikte sindirim kanalı 60 µ boyuta ulaşır. Doğal olarak bu dönmede larvanın canlı yemler ile beslenmesi gerekir. Besin kesesinin çoğu absorbe olmasına rağmen az miktarda yağ damlası mevcuttur. Larva bu dönemde 60 derecelik açı içerisindeki besinleri görüp algılayabilir. İki gözün kesiştiği bölgedeki yansıması algıladıktan sonra 5-7 mm geri çekilme yaparak yılanvari şeklinde bir hareket ile avına saldırır ve tek hamlede yutar. Koku sistemleri ve yanal çizgi avlanmada diğer yardımcı faktörlerdir. Hava kesesi ilk dolumu da bu günlere rastlar. Hava kesesi oluşumu ve gelişimi, levrek larvalarında yaşama yüzdesini ve gelişimi sınırlayıcı temel fizyolojik yapıdır. Levrek genel olarak fizoglist türler içinde gösterilse de hava kesesi ile sindirim tüpünü birbirine bağlayan duktus pinomatikus’un post larval dönemde kopması ile parafizoglist türler içinde yer alır (Chatain, 1986). Levreklerde hava kesesi sindirim tüpünün dorsal diverkülünden köken alır. Üçüncü günde elektron mikroskobu ile hava kesesinin gelişen yapısı görülebilir. Larva 5.2 mm boya geldiğinde pankreasın sol tarafından gelişmeye başlar. Bu dönemde hava kesesi duktus pinomatikus ile sindirim tüpüne bağlıdır. Bu gelişim su sıcaklığıyla doğru orantılı olarak 5-6. günlerde şekillenir. Pankreas sağ taraftan hava kesesini sararken kese sindirim kanalının üstünde horizontal ve vertikal yapıda gelişmesine devam eder. Larva 5.8 mm boya ulaştığında vertikal büyüme açıkça görülür. Hava kesesinin gelişimi esnasında vitellüs kesesi ve yağ damlası hacimlerinde küçülme olur (Fırat, 1995). 5.2-6 mm boylarda hava kesesi içinde ilk hava kabarcığı görülür. Larva su yüzeyinden ilk hava kabarcığını yutarak kesesini şişirir. Hava kesesi hacim olarak büyümüş ve üzerinde peritenium parçaları şekillenmiştir. Hava kesesinin şişmesi iki safhada meydana gelir. Birinci safhada kendi içinde iki bölümde açıklanır. İlk dönem kırılgan bir hava kabarcığının olduğu şişme dönemdir. Hava kabarcığı kese hacmiyle sınırlanmamıştır. İkinci dönemi ise, ilk şişme olmadığında kesenin içinin loş ve karanlık bir yapı göstermesiyle tanımlanır. Bazen kese şişme gösterdiği halde içinde hava kabarcığı gözükmez. Bu şişme gibi gözüken yapı kese hücre duvarının kalınlaşmasından kaynaklanır. Bu anormal keseler lümenlerinde gaz yerine eosinofil jelatinöz madde içerir (Paperna ve diğ., 1977). Epitelyum hücrelerinin hipertrofisinin bileşimi ile oluşmuştur. İlk şişme olmadığı taktirde kese gelişimi şişmeden önceki dönemde durur ve fonksiyonelliğini kaybeder. Bu aşamadan sonra kesenin gelişimi imkansızdır (Chatain ve Dewavrin, 1989). Kese uzunluğu larva uzunluğunun % 3-5' i kadardır. İlk şişmenin gerçekleşebileceği maksimum. boy 6.5 mm' dir. 10.5 mm boyda kese içinde hava kabarcığı çok net bir şekilde görülürken, larva 11-12 mm boya ulaştığında ilk hava kabarcığının arkasında birincisinden daha küçük bir hava kabarcığı görülür ki buda ikici safhayı oluşturan bölümdür. Bu hava kabarcığı fizyon yoluyla ilk hava kabarcığı ile birleşerek keseye elipsoidal bir görüntü kazandırır ve keseyi arkaya doğru uzatır. Hava kabarcığı artık tek bir yapı gösterir. Bu dönemde kese boyu total uzunluğu 14 mm olan larva boyunun %10-12' si kadardır. 13-15 günlerde duktus pinomatikus dejenere olarak sindirim tüpünden ayrılır. Bundan sonra hava kesesinin doldurulması gaz bezi ve retya mirabilya ile gerçekleşir. Levrek Larva Yetiştirme Dönemleri Yumurtaların embriyolojik gelişimini tamamlayıp larvaların çıkması ile birlikte larva yetiştiriciliği de başlar. Larva yetiştiriciliği biyotik, abiyotik ve yabancı biyotik faktörlerin kontrol altına alındığı akuakültür tesislerinde yapılmaktadır. Larva yetiştirme periyodu larval dönem, sövraj (mikropartikül yeme geçiş) ve ön büyütme olarak üç bölümde gerçekleşir. Larval Dönem Prelarval dönemde, larvalar yoğun üretim koşullarında 80-200 adet/lt, olacak şekilde larva tanklarına yerleştirilir. İdeal stok yoğunluğu 100-125 adet/lt’dir. Tanklar silindir konik yapıda olup polyester malzemeden üretilmiştir. Hacimleri uygulanan tekniğe göre 2 m3'ten 15 m3'e kadar değişim gösterebilir. İdeal larva tankları 4-6 m3 hacmindedir. Havuzların iç yüzeyleri gel-coat ile kaplı olup koyu renklidir. Larvaların kolay izlenmesi için tanklara lomboz açılmalıdır. Havuzların etrafı rahat çalışmaya elverişli olmalı, alttan ve üstten su çıkışları mevcut olmalıdır. Bu tankların seçimi uygulanacak larva yetiştirme tekniği ile ilgilidir. Levrek larva yetiştiriciliğinde açık devre ve kapalı devre sistemler kullanılmaktadır. Açık devre sistemlerde su kriterleri larvanın gerek duyduğu şartlara göre ayarlanır ve üretim tanklarına gönderilir. Balıklar tarafından kullanılan su daha sonra deşarj edilir. Saatte %5 değişim ile başlayan su debisinin larva dönem sonunda saatte %50 çıktığı düşünüldüğünde kullanılan su miktarına bağlı enerji tüketiminin fazlalığı ortaya çıkar. Kapalı devre sistemlerde ise tanklarda kullanılan su önce toplama tankına gelir. Burada gerekli su yenilenmesi yapıldıktan sonra tuzluluğu tekrar ayarlanır. Buradan kum filtresine geçer ve beraberinde getirdiği süspansiyon haldeki partikül maddelerden ayrılarak ultraviyole filtreye gönderilir. Bu işlem sırasında bünyesindeki tüm canlı organizmalardan (bakteri, mantar, parazit, bazı virüsler vs.) arınarak biyolojik filtreye girer. Balık dışkıları yem atıkları ve ölü balıklardan dolayı yükselen amonyak miktarı bu aşamada aerobik bakteriler tarafından önce nitrite daha sonrada balıklar için zararlı etkisi olmayan nitrata indirgenir. İşlemleri tamamlayan su havuzlara geri dönmek üzere sistemi terk eder. Ancak havuzlara ulaşmadan önce bünyesinde getirdiği azot gazı fazlasını atmak ve oksijence %100 doygunluğa ulaşmak için saturasyon kolonlarından geçerek havuzlara gelir. Saturasyon kolonlarına girmeden önce suyun oksijen değeri 1.8-2.3 mg/lt'ye kadar düşmektedir. Bu sayede suyun O2 değeri tekrar 5-6 mg/lt’ye ulaşmaktadır. Ayrıca saturasyon kolonlarının içinde havalandırma sistemleri de mevcuttur. Kimi kapalı devre sistemlerde ultraviyole filtreler biyolojik filtrelerden sonra kullanılsa da havuzlarda gelişen patojen veya patojen olmayan mikroorganizmaların biyolojik filtrelere yerleşerek zaten zayıf yapıda olan aerobik bakterilerin yerini alması sistemin çalışmasını olumsuz etkiler (Timmons ve Losordo, 1994). Kapalı devre sistemler, suyun ısıtılmasında veya soğutulmasında kullanılan enerji açısından avantajlıdır. Bunun yanı sıra kapalı devre sistemlerde, larvalar için tehlikeli olan suyun fiziksel ve kimyasal değişimleri ani farklılıklar göstermez. Deniz ortamında özellikle yazın planlanan üretimlerde görülen bakteri patlamalarına karşı üretimi korur. Özellikle levrek larva yetiştiriciliğinde kullanılan düşük tuzluluk tekniğinin uygulanması ve tatlı su tasarrufu sağlanması yönünden avantajlıdır. Bununla birlikte kapalı devre suyunun her gün analizleri yapılarak amonyak miktarı kontrol edilmelidir, aksi halde ani ölümler görülebilir. Yetiştiricilikte sistem farkı gözetilmeksizin larva için gerekli olan fiziksel-kimyasal koşullar ve besleme özellikleri optimum düzeyde olmalıdır. İlk on günde ağız ve anüsün açılması, sindirim tüpünün faaliyete geçmesi ve hava kesesi doldurulması gibi çok önemli fizyolojik gelişimlerin olması ve larval başarıyı direkt olarak etkilemesi açısından yüksek sıcaklıkta çalışılmaktan kaçınılmalıdır. Su sıcaklığı ilk dönem 15-16 0C olup ortam karanlıktır (Bertolini ve diğ, 1991) (Tablo 2). Levrek larva yetiştiriciliğinde uygulan tuzluluk düşürme tekniği yaşama oranının olumlu yönde etkilemektedir (Johnson ve Katavic, 1986). Bunun yanı sıra hava kesesi oluşturma yüzdesini arttırması ve buna paralel olarak deformasyonun azalması bu tekniği daha da kullanılır hale getirmiştir. Tuzluluk ilk günden itibaren tedrici olarak düşürülür ve 5. günde doğal deniz suyu tuzluluğundan ‰26 tuzluluğa ulaşılır. 5-17. günler arasında bu tuzluluk değerinde sabit kalınır. 17-23. günler arasında aynı şekilde tuzluluk kademeli olarak arttırılarak doğal deniz suyu tuzluluğu düzeyine çıkarılır. Tuzluluk artırımında hava kesesi hipertrofisi ile karşılaşıldığında ‰26 tuzluluğa geri dönülmelidir (Saka, 1995). Oksijen değeri 5-6 mg/lt’dir. Türbitite miktarı 8.5-12 ITU'yu aşmamalıdır. Larva tanklarında nitritin (NO2) 0.013-0.016 mg/lt, nitratın (NO3) 0.062-0.068 mg/lt arsında olması üretim için idealdir (Equınoxe, 1990). 15-16 0C su sıcaklığında levreklerde prelarval dönem 5. günde sona erer ve postlarval dönem başlar. Ağız açılmadan önce tankların üzerinde biriken yağ tabakasının temizlenmesi için yüzey temizleyicileri tank yüzey alanına göre 1 veya 2 adet olarak yerleştirilir. Bu hava kesesi gelişimi için çok önemlidir. Larvalara uygulanan aydınlanma süresi ve yoğunluğu larvaların gelişimini, hava kesesi oluşumunu ve yaşama oranının etkiler (Cerqueria ve Chatain, 1991). Larva gelişimi artan aydınlatma koşullarında artarken, sürekli aydınlatma balıkların yaşama gücünü düşürür. Larva tanklarına prelarval evrede ışıklandırma uygulanmaz. Işıklandırma süresi ve şiddeti 5.günde 12 saat-50 lüks, 11.günde 13 saat-140 lüx, 17. gün ve sonrasında 16 saat–920 lüx olarak ayarlanmalıdır (Equipe Merea, 1990). Larval dönem beslemede canlı yem kaynakları olan rotifera (Brachionus plicatilis) ve çeşitli orijine sahip artemiaların (Artemia sp.) nauplii ve metanauplii formları kullanılır (Barnabé ve Guissi, 1993). Dünyanın çeşitli bölgelerinde farklı orijinlere sahip artemia yumurtaları temin edilmektedir. Bunların açılım oranları, besin içerikleri, bir gramdaki yumurta sayıları ve açılım sonrası nauplii boyları değişim gösterir. Artemia Systems’in ürettiği ve larva üretim tesislerinde yoğun olarak kullanılan AF tip artemiaların nauplii boyları yaklaşık 460-480 μ olup, 10 mg/gr’dan daha fazla miktarda HUFA içerirler. Bu artemiaların enleri 165-175 μ arasında değişim gösterdiğinden ağız açıklığı 400-420 μ olan levrek larvalarında ilk günden itibaren de kullanılabilir. Fakat bir haftalık dönemde rotifer ile besleme yapılması yaşama oranını olumlu etkiler. AF tip artemia naupliilerinin protein oranları %48-52, yağ oranları %19.3-21, karbonhidrat oranları %12-13, kül miktarları %8.1-8.7 ve nem oranları %4.8-5.2 arasında değişim gösterir. İkinci aşamada yine yoğun olarak kullanılan EG tip artemia naupliileri ise daha düşük oranda protein miktarına (%45-47) ve daha az doymamış yağ asitleri (5-7 mg/g HUFA) oranına sahiptirler. Ayrıca boyutları daha büyük olup 500-520 μ arasındadır. 16. günden itibaren EG1 olarak kullanılan artemia formları ise EG tip artemia naupliilerinin 24 saat boyunca SELCO türevli zenginleştirici maddeler ile beslenerek büyütülmesi ile elde edilir. SELCO ürünleri yüksek oranda HUFA (200 mg/gr), vitamin, antioksidan ve yağ (%60-65) içerdiklerinden larva gelişiminde önemli rol oynarlar. 24 saat sonunda metanauplii formuna gelen artemiaların boyutları 700-750 mikron arasındadır (Artemia Systems, 1991). Larvalara verilen canlı yemlerin tipleri ve mililitredeki oranları Tablo 2'de gösterilmiştir. Larval dönem sonunda yumurta kalitesine de bağlı olarak uygulanan yetiştirme tekniklerine göre başarı oranı %40'a kadar ulaşabilir. Sövraj (Mikropartikül Yemlere Geçiş) Dönemi Larval dönemin tamamlanması olarak kabul edilen 38-42 günler arasında larvalar canlı yemden mikropartikül yeme adapte olacakları sövraj bölümüne alınırlar. Bu bölümde işletmenin kapasitesine göre belirlenmiş sayıda 10-15 m³’lük tanklar kullanılır. Tankların dip kısımları koniktir. Su çıkışları merkezi ve diptendir. Balıkların yaşına bağlı olarak su çıkışlarına yerleştirilen krepinler göz açıklıkları 500, 1000 ve 2000 mikron arasında değiştirmektedir. Havuzlarda 1500-2000 lüx aydınlatma şiddeti sağlayacak ışıklandırma sistemleri mevcuttur. Ünitede aydınlatma süresi 16 saat olup otomatik zamanlayıcılar yardımıyla ayarlanmaktadır. Mikropartikül yemlerin dağıtımında otomatik yemlikler kullanılmaktadır. Bu bölümde de açık devre ve kapalı devre sistemler kullanılabilir. Ortama girilen toz yem su kalitesini çok hızlı değiştirdiğinden kapalı devre sistemlerde su kalitesinin sürekli kontrolü sağlanmalıdır. Hastalık risklerinin azaltılması yönünden açık devre sistemlerin bu aşamada kullanılması daha faydalı olmaktadır. Tanklara verilen su mutlaka kum ve ultraviyole filtreden geçirilerek larvalara verilmelidir. Bunların yanı sıra tanklarda saf oksijen girişi, debi metre, saturasyon kolonları ve yüzey temizleyicilerinin bulunması üretimi olumlu yönde etkiler. Mikropartükül yeme alıştırma dönemi, balıkların ortalama 19-21 mm total boya ve 35-40 mg ağırlığa ulaştıkları 38-42 günlerde başlar. Bu dönemde havuzlardaki balık yoğunluğu litrede 10-12 adettir. Saf oksijen kullanıldığı durumlarda bu oran 18-20 adet/lt'ye kadar çıkabilir. Mikropartikül yeme geçiş döneminde kullanılan Artemia’lar metanauplii II formunda olup HUFA bakımından larval dönemde metanauplii I formunda olduğu gibi zenginleştirilir. Levrek balıklarının sövrajında kullanılan mikropartikül yemler ilk dönem 80-150 mikron büyüklükten başlayarak larva gelişimine göre 500 mikron büyüklüğe kadar kullanılır. Sövraj uygulaması 15-16 gün devem eder. Larvalara günlük verilen artemia miktarı azaltılırken mikropartikül yem miktarı arttırılır. Bu dönemde mikropartikül yem besleme oranı canlı ağırlığın %8-10 kadardır. Sövraj boyunca su sıcaklığı ortalama 20 0C olup, tanklarda su debisi %50-100 arasında değişim gösterir. Ölümler sövrajın ilk günlerinde toz yeme adapte olamamaya bağlı olarak artma eğilimindedir. Larva yaşama oranı normal şartlar sağlandığı taktirde ortalama % 80-90 arasında değişim gösterir (Equipe Merea, 1990). Sövrajı tamamlayan larvalar ortalama olarak 350-400 mg ağırlığa kadar bu bölümde kaldıktan sonra ön büyütme ünitesine alınır. Ön Büyütme Bu sistemde kullanılan tankların teknik özellikleri sövraj ünitesinde kullanılan tanklar ile aynıdır Gelişim özelliklerine göre 70-80. günlerde sövraj ünitesini terk eden yavrular boylanarak, hava keseli ve hava kesesiz bireyler birbirinden ayrılır. Ön büyütmede kapalı devre sistem kullanılmaz. Balıklar burada ağ kafeslere çıkarılmak için gerekli olan 1.5-2 gram ağırlığa kadar büyütülürler. Ancak ülkemiz koşullarında yavru bireyler 0.5-1 gram arasında da kafes sistemlerine çıkarılmaktadır. Ön büyütme ünitesinde balıklar sürekli gözlenerek, hastalık risklerine karşı gerekli önlemler alınmalıdır. Ön büyütme ünitesinde de hacimleri 10-15 m3 arasında değişen silindir tanklar kullanılmaktadır. Su sıcaklığı 19-21 °C olup 16 saat ışıklandırma uygulanır. Tanklarda doğal deniz suyu tuzluluğu kullanılır. Tanklara 3000-5000 adet/m3 arasında yavru stoklanabilir. Su değişimi balık büyüklüğüne ve stok yoğunluğuna göre saate %80-150 arasında değişmektedir. Yemleme oranı %6 başlayıp %4 kadar düşme gösterir. Yaşama oranı hastalık çıkmadığı süre içinde %90-95 arasında değişim gösterir. Büyütme Akuakültür tesislerinden veya doğal ortamdan temin edilen levrek yavruları porsiyonluk boyuta getirilmek üzere karasal ve denizel ortama kurulan tesislerde farklı teknikler kullanılarak büyütülür. Ekstansif Yetiştirme Yöntemi Bunun için sahil şeridinde bulunan, dalyan ve gölet gibi doğal alanlardan yararlanılır. Buralarda yavru temini tamamen doğadan olup, ortamda diğer türlerle birlikte polikültür yapılmaktadır. Bahar aylarında daha bol besin içeriğine sahip olan dalyan alanlarına giren yavrular, yaz sonunda suların soğuması ile birlikte sıcaklığı sabit olan derin sulara göç ederler. Bu sırda dalyan sahasının çıkışına kurulan kuzuluklardan yakalanırlar. Yeterli pazar boyuna gelmeyen bireyler dalyan sahalarında yada kafes ünitelerinde besiye alınabilir. Bu amaçla dalyan alanları kendi içinde bölünerek derinleştirilir ve motopomplar ile su değişimi sağlanır. Özellikle İtalya sahillerinde yoğun olarak bu tür sistemlere rastlanmaktadır. Valikültür adı verilen bu teknikte dışarıdan besin takviyesinde de bulunulmaktadır. Bu tür alanlarda yatırım maliyetleri düşük olmasına rağmen sistemin kontrol zorlukları ve birim alandan alınan ürün miktarının az olması sistemi olumsuz yönde etkiler. Ancak ülkemizde dalyan sahalarında ortalama 20-50 kg/hektar olan verim, bu tür yapılarda hektar başına ortalama 200 kg olmaktadır. Su kalitesinin ve besleme tekniklerinin yükseltilmesine bağlı olarak 500 kg/hektar ürüne kadar çıkılabilmektedir. Yarı Entansif Yetiştirme Yöntemi Bu sistemler karasal alanlarda kurulu olan toprak veya beton havuz sistemleri ile portatif olarak kullanılan branda havuzları kapsamaktadır. Havuzların şekilleri ve büyüklükleri değişik yapılarda olabilir. Bu sistemlerde su değişimi ve beslenme kontrol altındadır. Su kalitesini arttırma için sistemlere oksijeneratörler eklenebilir. Ayrıca toprak havuzlar jeo-membran madde ile kaplanmakta ve su geçirmeyen özelliğe sahip olmaktadırlar. Bu sayede su debisi yükseltilmesi ile stoklama yoğunluğu arttırılmaktadır. Toprak havuzlarda hektar başına 1-4 ton arası ürün alınabilir. Bu oran beton havuzlarda ve iç yüzeyi kaplı toprak havuzlarda 2-5 kg/m3 arasında değişmektedir. Entansif Yetiştirme Yöntemi Dünyada ve ülkemizde yoğun olarak kullanılan bu yöntemde yüzer ağ kafes yapılarında yetiştiricilik yapılmaktadır. Akuakültür çalışmalarının gelişmesine paralel olarak birim alandan daha çok verim almayı sağlaması acısından su içerisinde yetiştirme sistemleri ağırlık kazanmıştır. Günümüzde kıyısal alanlarda, açık denizlerde ve okyanuslarda bile güvenlik içinde kurulabilecek sistemler planlanmaktadır. Günümüzde kıyı ötesi kafeslerde 2500-6000 m3' arası değişen hacimlerde tek bir sistemde yıllık 150 ton üretim yapılabilmektedir (Özden ve diğ., 1998). Kafes sistemleri sabit kafesler, yüzer kafesler, dalgıç kafesler ve döner kafesler olarak 4 ana grupta toplanır. Ağ kafeslere kurulduğu yerin özelliklerine ve su kalitesinin durumuna göre 15-30 kg/m3 arasında stoklama yapılabilir. Balıkların gelişiminde besleme ve su sıcaklığı önemli rol oynar. Besleme rejimlerinde yem kalitesinin yanı sıra balıkların ağırlıkları ile su sıcaklığı değerleri dikkate alınarak günlük besleme yapılmalıdır. Büyütme döneminde levreklerde kullanılan yemlerde protein %46-52, selüloz %2-3, ham kül %12-13, ham yağ % 10.5-11.5 kalsiyum % 1.6-2.2 ve fosfor %1.4-1.5 arasında olması, bunun yanı sıra vitaminler ve iz elementlerin yeterli miktarda kullanılması gelişimi olumlu yönde etkiler. Ege Bölgesi koşullarında 4 aylık süreyi akuakültür tesislerinde geçiren levrek yavrularının ağ kafeslere çıktıktan itibaren 14-15 aylık sürede 3-4 gram ağırlıktan 370-420 gram ağırlığa ulaşmaktadırlar. Bu süre ve ağırlık artışı yetiştirme ortamının ekolojik şartlarına, kullanılan yemin içeriğine, balık stok yoğunluğuna, hastalık etkenleri ve larva kalitesi göre değişim gösterebilir. SONUÇ Kompleks bir yapı izleyen levrek yetiştiriciliğinde meydana gelen sorunlar canlının gelişiminin yeteri kadar bilinmemesinin yanı sıra yönetim ve üretim tekniklerinin eksikliklerinden de meydana gelmektedir. Üretimlerde temin edilen yumurta ve larvaların kalitesi uygun şartlar sağlanarak kontrol altında tutulmalıdır. Cinsiyet kontrolü çalışmaları, suni seks dönüşümü için ideal periyodunun tayini ve ploidlik manuplasyonları için uygun deneysel şartlar (örneğin; monoseks üretimi için ginogenezis) üzerinde çalışılması gereken konulardır. Bu çalışmalara, premature dişilerin varlığının engellenmesi, deformasyon oranlarının azaltılması ve gelişimin yükseltilmesinin eklenmesi ile yeni ufuklar açılacaktır. Ayrıca, soy ve yumurtlamanın kalitesi üzerine anaç beslemenin etkileri ile ilgili çalışmalar oldukça hızlamıştır. Bu çalışmaların direkt sonucu, yumurta ve larval üretimin etkisini net bir şekilde arttıracaktır. Bunun yanı sıra ileri genetik çalışmalara hız verilerek, anaç seçim programları, çiftleştirme özellikleri ve yüksek kalite yem formulasyonları üzerine çalışmalar planlanmalıdır. Yetiştiricilik kalite ve kantititesinin arttırılması gelecekte uygulanacak bu tekniklerin başarısı ile ilgilidir. LİTERATÜR Artemia Systems, 1991. User’s guide Artemia Systems N.V. Belgium Alpbaz, A., G., 1990. Deniz Balıkları Yetiştiriciliği. E.Ü. Su Ürünleri Y.O. No: 20 Alvarino, J.M.R., Carrillo, M., Zanuy, S., Prat, F., Mananos, E., 1992a. Pattern of sea bass development after ovarian stimulation by LHRHa. Jour. of Fish Bio., 41, 965-70. Alvarino, J.M.R., Zanuy, S., Prat, F.Carrillo, M.,&Mananos, E., 1992b. Stimulation of ovulation and steroid secretion by LHRHa injection in the sea bass (Dicentrarchus labrax): effect of time of day. Aquaculture, 102, 177-86. Barnabé, G., 1971. Bases biologiques et ecologiques de l’aquaculture. Lavoisier-Tec. Doc. 55 pp. Barnabé, G., Rene, F., 1972. Reproduction Controlle du Loup Dicentrarchus labrax et Production en Masse D’alevins. C.R.Acad Sci, 275: 2741-2744. Barnabé, G. 1976. Chronologie de la morphogenese chez le loup ou bar Dicentrarchus labrax (L.) (Pisces, Serranidae) obtenu par reproduction artificielle. Aquaculture 8 : 351 - 363. Barnabé, G., Paris, J., 1984. Ponte avancée et ponte normale du loup Dicentrarchus labrax (L.) a la Station de Biologue Marine et Lagunaire de Séte. In L’Aquaculture du Bar et des Sparidés (eds. G. Barnabé & R. Billard), pp. 63-72. INRA, Paris. Barnabé, G., Barnabé-Quet, R., 1985. Avancement et amélioration de laponte induite chez le loup Dicentrarchus labrax (L.) a l’aide D’un analogue de LHRH injécte. Aquaculture, 49, 125-32. Barnabé, G., Guissi, A., 1993. Combined effect of diet and salinity on European sea bass Larvae D. Labrax. J. World Aqua Soc. 24 (4) :439-450. Bertolini B., Boglione G., Cataudella S., Finoia M.G., Marino G., Monaco G., 1991. Temperature induced developmental anomalies in sea bass (Dicentrarchus labrax) embryos and larvae. Acta Embryological Morphological Exp., 12 (1):77-79. Brusle, J., Roblin, C., 1984. Sexualite du loup Dicentrarchus labrax en condition d'elevage controle. In l'Aquaculture du bar et des Sparides. /eds Cerqueria, V. R., Chatain, B., 1991. Photoperiodic effects on the growth and feeding rhythm of European sea bass (Dicentrarchus labrax), larvae in intensive rearing. Larvi’ 1991 Fish and Crustacean larviculture symposium, 15: 304-306. Chatain, B., 1986. La vesie natoire chez Dicentrarchus labrax et Sparus auratus. aspects morphologiques du developement. Aquaculture 53: 303-311. Chatain, B, Dewavrin, G. 1989. Influence des anomalies de development de la vessie natatoire sur la mortalite de D. labrax au cours du sevrage. Aquaculture 78:55-61 Dendrinos, P., Thorpe, J. P., 1985. Effects of Reduced Salinity on Growth and Body Composition in the European Bass D. labrax( L.). Aquaculture 49(1985) 333-858, 25p. Deplano, M., Connes, R., Diaz, J. P., Barnabe, G., 1991. Variation in the Absorption of Macromolecular Proteins Larvae of the Sea Bass Dicentrarchus labrax L. During transition to the Exotrophic Phase. Marine Biology 110, 29 36 (1991). Devauchelle, N., Coves, D. 1988. The characteristics of sea bass (Dicentrarchus labrax) eggs: Description, biochemical composition and hatching performances. Aquatic Living Resourch. 1 : 223- 230. Diaz, J.P., Guyot, E., Vigier, S., Connes, R., 1997. First event in lipid absorption during post-embryonic development of the anterior intestine in gilthead sea bream. Journal of Fish Biology, Vol.51, No.1, pp.180-192. Equinoxe, 1990. Le magazine des reources vivan les de la mer. No.31 IFREMER Nantes-France pp.42-43 Equipe Merea, 1990. L’ elevage intensif du loup, Dicentrarchus labrax. Tec. Rapor. Chemin de Maguelone Palavas-France. Fabre-Domerque, B., 1905. Introduction a l'etude de la pisciculture marine, In ''Travail du Laboratoire de Zoolpgie Maritime de Concarneau''. Vuibert et Nony Ed. Paris, 205-243 FAO, 1991. Fiches FAO d'identification des especes. Zone de Peche 37. Medit. et M. noire Fırat, K. 1995. Levrek (D. Labrax) Larvalarında (0-45 gün) Hava Kesesi Oluşumu ve Larval Gelişim Üzerine Olan Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Freddi, A., 1985. Sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) larval rearing. FAO. Projet Regional Mediterraneen de Developpement de L’aquaculture, 62 pp. Jennings, S., Pawson, M. G., 1991. The Development of sea bass, Dicentrarchus labrax, eggs in relation to temperature. Journal of Marine Bilogie 71: 107 - 116. Johnson, D. W., Katavic, I., 1984. Mortality, Growth and Swim Blader Stress Syndrome of Sea Bass (Dicentrarchus labrax) Larvae Under Varied Environmental Conditions. Aquaculture 38(1984) 67-68. Johnson, D., Katavic,I., 1986. Survival and growth of sea bass larvae as influenced by temperature, salinity and delayed inital feeding. Aquaculture. 52 : 11-19. Kennedy, M., Fitzmaurice, P., 1972. The biology of the sea bass (Dicentrrachus labrax, in Irish waters. Journal of Marine Biological Association of the UK, 52, 557-597. Licas, D., 1988. Marine hatchery technology-Systems Reviews. In aquaculture Engineering Technologies for the Future. IchemE Symposium Series No: 111, pp. 65-76.EFCE Publication Series No: 66, Stirling, UK. Loy, A., Cataudella, S., Corti, M., 1996. Shape Changes During of the Sea Bass, (Dicentrarchus labrax L.) in Relation to Different Rearing Conditions. Envir. Biol. Fish. New York. Marino, G., Boglione, C., Finoia, M. G., Bronzi, P., Monaco, G., Bertolıni, B.& Cataudella, S. 1991. Effect of incubation temperature on embriyonic development and hatching of Dicentrarchus labrax (L.) eggs. Larvi ‘91-Fish and Crustacean Larviculture Symposium, EAS, 15 : 230 - 232. Özden, O., Güner, Y., Alpbaz, A. G., Altunok, M., 1998. Kıyı Ötesi Ağ Kafes Teknolojisi. E.Ü. Su Ürünleri Fakültesi Dergisi. Cilt:15 Sayı:1-2 Paperna, I., Colorni, A., Gordın, H., Kıssıl, G., 1977. Disease of Sparus aurata in Marine Culture at Elat. Aquaculture, 10: 195-213. Saka, Ş. 1995. Levrek (D. Labrax) Larva Yetiştirme Teknolojisinde Tuzluluk Değişimlerinin Üretime Etkileri. Doktora Tezi. E.Ü. Fen Bil. Ens. Saka, Ş., Fırat, K., Kamacı, O. 1999. The Development Of European Sea Bass (Dicentrarchus labrax L.) Eggs In Relation To Temperature. TÜBİTAK Türk Veteriner ve Hayvancılık Dergisi (Baskıda) Timmons, M.,B., Losordo, T.M., 1994. Aquaculture Water Resue Systems: Engineering Design and management. Elsevier Science B.V., New York Salvatorelli, F. B. G., Santulli, A., D’ Amelio, V., 1989. Otogenetic variation of same enzymes in Dicentrarchus labrax. Boll. Zool. 56 . 1 - 6. Uçal, O. 1985. Levrek ( Dicentrarchus labrax L. ) biyolojisi ve fingerling seviyesinde yetiştirilmesi. Doktora Tezi. E. Ü. Fen Bil. Ens. Uçal, O., Benli, H.A., 1993. Levrek balığı ve yetiştiriciliği. Tarım ve Köy İşleri Bakanlığı Su Ürünleri, Araştırma Enstitüsü Müdürlüğü. Bodrum. Seri A, Yayın No. 9, 72 s.

http://www.biyologlar.com/levrek-dicentrarchus-labrax-lin-1758-baliginin-biyolojisi-ve-yetistirme-teknikleri

OMURGASIZ HAYVANLAR SİSTEMATİĞİ

Canlılarla ilgili problemler ele alındığında organizmalar sınıflandırmak ve onları gruplara ayırmak zorunluluğu ortaya çıkmaktadır. Yeryüzünde milyonlarca canlı varlık vardır ve bunun yanı sıra geniş ölçüde bir çeşitlilik de görülür. Sınıflandırmanın Tarihçesi İnsanlar yaradılışlarından itibaren çevrelerinde bulunan bitki ve hayvanları öğrenmeye çalıştılar. İlk insanlar, bitki ve hayvanları kendileriyle olan ilişkisine göre tanıdıklarından, o zamanlarda yapılmış olan sınıflandırmalar fazla derin olmayan günlük tecrübe ve gözlemlere dayanıyordu. Daha sonra bilgiler arttıkça onların bir esasa göre sınıflandırılması ihtiyacı ortaya çıkmıştır. Milattan önce 4. asırda filosozofiyi ilk teklif eden Aristo ilk bilimsel sınıflandırmayı yapmıştır. Aristo ve öğrencisi Theophrastus bitkileri ot, ağaçcık, ve ağaçlar; hayvanları da havada, suda ve karada yaşayan kuşlar, balıklar, balinalar ve böcekler olmak üzere 4 gruba ayırıyorlardı. Böcekleri de ısırıcı, emici, kanatlı ve kanatsız olarak gruplamışlardır. Canlıları sınıflandırmada çeşitli gelişme ve kademelerden sonra John Ray (1627-1705) belli bir tür kavramı geliştirmiştir. Ona göre tür, ortak ataları olan, benzer bireylerin bir grubudur. Ray çok az farklılıkları olan çeşitli organizmaların aynı türe sokulabileceğine inanıyordu. Böylece canlılarla ilgili gözlemler türlerle ilgili bir hipotezle birleştiriliyordu. Ray ve onu destekleyenler tabiattaki türlerin sayısının değişmez olduğuna inanıyorlardı. Tür anlamı Ray’den sonra değişmiştir. Linnaeus.dan sonra Lamarck hayvanları 8 klasise ayırmış, hayvanlar için omurgalı ve omurgasız tabirini kullanmış daha sonra Cuvier (1796-1832) mukayeseli anatomiden faydalanarak hayvanları Vertebrata, Mollusca, Arthropoda, Radiata olmak üzere 4 ana gruba ayırmıştır. Sistematik bir esasa göre, yapı benzerliği esas alınarak bitki ve hayvanların sınıflandırılması ilk defa İsveçli biyolog Carl Von Linnaeus tarafından yapılmıştır (1707-1778). Sistematiğin babası olarak tanımlanan Linnaeus, Systema Naturae (1758) adlı yapıtında hayvanlar alemini sınıf, takım, cins ve türlere göre gruplara ayırmıştır. Linnaeus.un diğer bir önemi binominal nomenclature denen metodu kurmasıdır. Bu metoda iki adla adlandırma denir. Yani her çeşit canlı iki isimle anılır. Bunlardan birincisi yani o hayvanın ait olduğu cins (genus-çoğulu genera)’ın adı büyük harfle, tür adı ise küçük harfle yazılır. Her ikisi de latincedir. Dünyanın her yerinde bu şekilde kullanıldığından anlaşma zorluğu ve karışıklık olmaz. Linnaeus de tür sayısının değişmez olduğuna inanmıştı. Bugün tür¸ ortak atadan gelen, birbiriyle çiftleşebilen, doğurgan yavrular meydana getiren, kendi aralarında nesil veren dolayısı ile gen alışverişinin devam ettiği tabii topluluklara (Yani doğal populasyonlar) ait gruplar olup çok benzer diğer gruplardan üreme bakımından izole bireyler topluluğu olarak tanımlıyoruz. Belirli bir ekolojik nişe sahip olan bu populasyonlar, yapı ve işlevleri ile birbirine benzeyen fiziksel ve kimyasal koşullara benzer tepki gösterirler. Sınıflandırmada Kategoriler Sistematikte en küçük grup tür olduğuna göre yapı taşı da türdür. Türler birleşerek genusları onlar da sırasıyla daha büyük grupları oluştururlar. Örneğin 1. Tür - Species - Homo sapiens 2. Cins - Genus - Homo 3. Aile - Family - Hominidae 4. Takım - Ordo - Primates Super- Class - Enteria 5. Sınıf - Class - Mammalia 6. Phylum - Þube - Chordata 7. Regnum - Alem - Animale Bir canlı türünün tam olarak sınıflandırılabilmesi için en az 6 gruptan söz edilmesi gerekir. Bazı durumlarda ara gruplardan da faydalanılır. Böyle ara gruplar için Alt= sub, Üst = super terimleri kullanılır. Örneğin Sub species = Salmo trutta abanticus = Abant gölünde yaşayan bir tür alabalık. Ayrıca tür adını ilk kez kullanan araştırıcının adı da 2. isimden sonra ilave edilir. Leptinotarsa decemlineata (Say, 1879) Hayvanlar Alemini Sınıflandırmada Esas Alınan Başlıca Özellikler Hayvanlar alemini sınıflandırmada esas, hayvan populasyonları arasında var olan akrabalık ilişkileridir. Linnaeus’den sonra sistematik üzerine olan çalışmalar ilerlemiş evrim teorisinin kabul edilmesiyle de, yani Darwin.le, zoologlar evrimsel orijini birbirine çok yakın olan organizmaları bir gruba koymak suretiyle daha çok, doğal ilişkilere dayanan bir tasnif sistemi kurmaya çalışmışlardır. Yapısal benzerliklerin çoğu evrimsel akrabalığa bağlı olduğundan organizmaların modern tasnifi birçok bakımdan Linnaeus’nin ortaya koyduğu mantıki yapı benzerliğine uymaktadır. Özet olarak modern sistematik yapılırken hayvanların yanlız dış görünüşlerinden değil, karşılaştırmalı anatomilerinden ve embriyonal gelişmelerinden faydalanılarak evrimsel gidişlerine uygun akrabalık derecelerine göre sınıflandırma yapılır. Bu sınıflandırmada hareket noktası olan temel kavramlar şunlardır : Homoloji : Birbiriyle hiç ilgisiz gibi görünen bazı yapılar incelenecek olursa birçok temel köken benzerlikleri ortaya koyulabilir. Örneğin; fokun  yüzme ayağı, yarasanın kanadı, insanın kolu. Bunlardan ilki yüzmeye, ikincisi uçmaya, üçüncüsü yakalamaya yarar. Ancak bunların iç yapısı, kemik ve kasları incelenirse her üçünün de kökten birbirine benzediği görülür. Yüzme ayağı, kanat ve kol aynı orijinlidir, fakat zamanla her biri temel örneğe kıyasla belirli bir görevi yerine getirmek için değişmiştir. Orijinleri aynı olup yani aynı kökenden gelen ancak değişik işler görebilecek şekilde farklılaşarak evrimleşmiş yapılara homolog yapılar denir. Sınıflandırmada özellikle homolog yapılar göz önünde tutulur. Bunun dışında daha farklı benzerlikler de vardır. Örneğin hayvanlarda kanat; sinek ve yarasa kanadının her ikisi de uçmaya yarar. Ancak bu benzerlik yüzeyseldir. Benzerliklerin yüzeysel olduğu ve hemen hemen aynı işi gören yapılara analog yapı denir. Fakat bunların embriyonal dönemlerdeki durumları birbiriyle kıyaslanırsa tamamen farklı kökenden oldukları görülür. Orijinleri tamamen ayrı olan bu yapıları, evrimsel gidişleri, benzer işi gördüklerinden, birbirine benzeyen duruma getirmiştir. Yüzeysel olan bu benzerliklerin doğal sınıflandırmada hiçbir önemi yoktur. Fizyoloji ve biyokimyadan da yararlanılarak canlılar arasındaki akrabalık tesbit edilir. Son zamanlarda, biyologlar protein yapılarının benzerliğinden yararlanmışlardır. Hayvanların bir hücreden veya çok hücreden yapılmış olması yüksek kategorilerde önemli bir temel karakter olup böyle bir ayırım sonucunda hayvanlar alemi Protozoa ve Metazoa olmak üzere 2 büyük subregnuma (veya Regnum yani Aleme) ayrılır. Embriyodaki hücre tabakası , Diploblastik, (Porifera, Coelenterata.) Triptoblastik (diğerleri); Simetri (bilateral, lateral) ve segmentasyon büyük grupları sınıflandırmadaki ayırıcı özelliklerdir. Sindirim, dolaşım ve sinir sisteminin olup olmaması (Protozoa ve Porifera.da yok; Coelenterata ve Platyhelminthes’de sindirim gastrovasküler boşluk halinde, ağız açıklığı vardır, diğerlerinde sindirim borusu hem ağız hem de anüs var) ve söz konusu grubun kendine has morfolojik karakterleri yine başlıca ayırıcı özelliklerdendir. Aristo zamanından beri biyologlar canlılar dünyasını en basit anlamda bitkiler ve hayvanlar olmak üzere 2 aleme ayırmışlardır. Buna göre derinliğine düşünülürse birçok türü, mikroskop altında gözlenebilen ve bir hücreli organizmalardan pek çoğunu bitki veya hayvanlar aleminden birine dahil etmek kolay bir iş değildir. Bundan bir asır önce Alman biyolog Ernest Haeckel birçok özellikler bakımından bitkilerle hayvanlar alemi arasında yer alan bütün bir hücreli organizmaları kapsayabilen Protista’yı üçüncü bir alem olarak teklif etmiştir.Uzun süre dünya biyologlarının pek rağbet etmediği bu teklif ilk bakışta sınıflandırmayı basitleştireceği yerde daha da güç duruma sokacağı ortaya konmuştur. Çünkü bitki benzeri olan bazı protistalar bitkilerle çok yakın ilişki kurarlar. Birçok grup (veya türler) gösterdikleri  bazı karakterler nedeniyle bitkilerle hayvanların arasında yer alırken diğer karakterleri nedeniyle hem bitki hem de hayvanlardan çok farklı bir durum gösterirler. Hatta farklı biyologlar tarafından Protista alemi içerisinde gösterilen organizmalar da farklı olabilmektedir. Bazı sistematikçiler Protista içerisine sadece birhücreli formlar koydukları halde bazıları mantarları, çokhücreli algleri hatta bakteri ve mavi yeşil algleri de Protista.ya dahil etmektedirler. Daha yakın zamanlarda bazı biyologlar Monera diye dördüncü bir alem açılmasının uygun olacağını savunmuşlardır. Monera alemi, bakteriler ve mavi yeşil algler gibi pek çok ortak karakterlere sahip organizmaları içine almaktadır. Prokaryot maviyeşil alglerde çekirdek zarı bulunmadığı gibi mitokondri, kloroplast gibi zarla çevrilmiş organeller de bulunmaz. Diğer taraftan bitki ve hayvan bütün Protista’lar Eukaryottur ve çekirdek zarıyla çevrilmiş gerçek nukleus ihtiva ederler. Bitki ve hayvanlar arasında pek çok temel benzerlikler vardır : 1. Her ikisinde de yapı ve fonksiyon birimi hücredir. 2. Her ikisinde de metabolik olayların çoğu ortaktır. Ancak her iki grup çok bariz ve farklı bazı yollarla birbirinden kesinlikle ayrılır. 1. Bitki hücreleri hücreyi çevreleyen ve bitkiye destek vazifesi gören selülozdan ibaret sert bir hücre çeperi salgılar. Hayvan hücrelerinde böyle bir çeper yoktur. Ancak bazı bitkilerde selüloz çeper bulunmadığı gibi (bir grup hayvanda da) tunicat gibi ilkel Chordatlar.da hücrelerin etrafında aynen bitki hücrelerinde olduğu gibi, selüloz çeper vardır. 2. Bitki büyümesi genellikle sınırsızdır. (Bu büyüme ömür boyu aktif büyüme fazında kalan bazı bitki hücreleri ile gerçekleştirilir, tropik bitkilerde devamlı, ılıman bölge bitkilerinde ise daha çok ilkbahar ve yaz aylarında). Hayvanların çoğunda son vücut büyüklüğü belli bir büyüme devresi sonunda ortaya konmuş olur. Ancak timsahlar, kaplumbağalar ve istakozlar uzun süre büyümelerini devam ettirirler. 3. Hayvanların çoğu hareket eder, bitkiler ise istisnalar dışında 4. En önemli fark ise gıda temin etmeleridir. Bitkiler yeşil renkli klorofil pigmenti yardımı ile fotosentez yapar. Fotosentez ile suyu parçalayabilmek için ısı enerjisini kullanırlar ve neticede karbondioksiti karbonhidrata indirgerler. Klorofil ihtiva etmeyen mantarlar ve bakteriler bu kaideye uymazlar (bazı yüksek organizasyonlu bitkiler). Evrimsel olayların asırlar önce cereyan etmiş olması ve ilk formlara ait fosillerin yetersiz olması nedeni ile bugün bile önemli bitki ve hayvan phylumları arasındaki evrimsel yakınlık hakkındaki görüşler açık değildir. Örneğin, virus ve bakterilerin diğer organizmalara olan evrimsel yakınlığı fazla bilinmediği gibi önemli alg ve mantar cinsleri arasındaki akrabalığa dair eldeki mevcut deliller de yetersiz olup önemli Protozoa cinsleri ile çok hücreli hayvanlar arasındaki akrabalık ilişkileri hakkındaki bilgiler de henüz kesin değildir. Hayvan gruplarını incelerken; hücre tabakalaşmasını, solunum olup olmamasını, metameri durumunu, sindirim sistemini ele alıp kendine özgü morfolojik karakterleri vurgulayacağız. Canlılar alemi bitkiler ve hayvanlar olarak (genel bir ifade ile) ele alınmakta son zamanlarda aşağıdaki gibi gruplandırılmaktadır. I. Alem : Monera II. Alem : Protista - Birhücreliler III. Alem : Fungi - Mantarlar IV. Alem : Plantae - Bitkiler V. Alem : Animalia - Hayvanlar I. Alem : MONERA Prokaryot olan bu organizmalar çekirdek, çekirdek zarı, plastit, mitokondri ve tubuler yapı taşımayan, kamçıları olmayan ancak kamçı benzeri uzantılar taşıyan, birhücreli canlılardır. Bölünme ya da tomurcuklanma ile eşeysiz ürerler, kalıtsal madde alışverişi konjugasyon, transformasyon, transdüksiyon veya plasmit değişimi ile gerçekleşir. Eubacteria ve Archaebacteria şeklinde iki gruba ayrılırlar. 2700 farklı türü bilinmektedir. II. Alem : PROTİSTA Ökaryot canlılar olan (Yani zarla çevrili çekirdek, kamçı, sil, yalancı ayak ve organel içeren) bir ve çok hücreli fotosentetik algler, çok çekirdekli ya da çok hücreli heterotrof bazı mantarlar, bir hücreli ökaryotik canlıları içerir. Fotosentez, absorbsiyon ya da doğrudan yeme ile beslenirler. Eşeyli ya da eşeysiz çoğalırlar. 60.000 yaşayan, 60.000 de fosil türü ALT ALEM (SUBREGNUM): PROTOZOA Protozoa (Eski yunanca protos = birinci; zoon = hayvan) bir hücreli mikroskobik hayvanlardır. Bir protozoon’ın yapısı çokhücreli hayvanların (birhücreye) bir hücresine karşılıktır fakat fonksiyon bakımından çokhücreli bir organizmanın bütün temel görevlerini yapar. Birhücrelilerin hepsi çok küçük mikroskobik hayvanlar olmakla beraber büyüklükleri oldukça değişiktir. Bazıları 2-3 mikron boyunda olup çoğu 250 mm. den daha küçüktür. (Nadir olarak 15-16 mm. boyunda olanlara da rastlanır Sporozoa’dan Porospora gigantea ). 30.000’den fazla bir hücreli hayvan türü bilinmektedir. Bunlar tatlı sularda, denizlerde, rutubetli topraklarda yani sulu ortamda yaşarlar. Bir kısmı da diğer hayvanların vücudunda parazittir. Kuru yerlerde ancak kist halinde bulunurlar. Bu geçici bir korunma durumu olup aynı zamanda birhücrelilerin yayılması bakımından da avantaj sağlar. Þöyle ki bu durumda kuş, böcek ve rüzgarla her yere taşınabilirler. Denizde yaşayanlarda kuruma tehlikesi olmadığından genellikle kist oluşumu yoktur. Vücutları stoplazma ve nukleustan ibarettir. Stoplazma ekto ve endoplazma olmak üzere 2 kısma ayrılmıştır. Dışta yer alan ektoplazma granülsüz veya çok az granüllü ve yoğun, iç kısımda bulunan endoplazma ise granüllüdür. Ekto ve Endoplazma arasında geçiş vardır. Genellikle hücre zarı yani Pelikula (veya Pellicula) altında ektoplazma, anterior uçta cytostom (hücre ağızı) ve cytopharynx bulunur. Besin stoplazma içine geçerken etrafında bir zar şekillenerek koful oluşur. Sindirim bu kofulun içinde gerçekleşir. Posterior uçta cytopig (hücre anüsü) bulunur. Hücre anüsü bir çok kamçılıda ve özellikle sillilerde görülür. Hücre anüsü çok dar yapılı olduğundan, varlığı ancak dışkılama sırasında belirlenebilir. Bir veya daha fazla nukleuslu olabilirler. Tek nukleuslu formlara monoenergid , çok nukleuslulara da polyenergid adı verilir. Bir hücrelilerde bütün hayatsal olaylar organellerle yapılır. (Belirli bir ödevi olan stoplazma farklılaşmalarına organel denir.) Hareket organelleri pseudopod (yalancı ayak), flagellum (kamçı), sillerdir (kirpik). Pseudopodların yeri değişken olup vücudun herhangi bir yerinde teşekkül edebilir ve kaybolur. Buna karşın kamçı ve kirpikler yeri ve şekilleri sabit olan daimi organellerdir. Sporozoa ve Ciliatlar.da vücudun uzayıp kısalması myonem adı verilen kas lifleri ile yapılır. Parazit birhücrelilerde hareket organeli genellikle yoktur. Bununla birlikte bir kısmı (gelişimin erken evrelerinde) yer değiştirebilirler. Kayma şeklinde olan özel bir yöntem ile hareket edebilirler. Kirpik ve kamçılar hareketten başka duygu organı vazifesini de görürler. Bundan başka bazı flagellatlarda göz vazifesini gören ve ışıktan etkilenen kırmızı renkli stigma vardır. Ciliatlar.ın bir çoğunda uyartı nakleden organeller de tesbit edilmiştir.Bunlar sillerin dip cisimlerini birbirine bağlayan ektoplazmik fibrillerdir. Bir hücrelilerin bazılarında örneğin amiplerde vücut ince bir zarla örtülüdür. Plasmolemma adı verilen ve çok ince olan bu zar madde alış verişini düzenler. Fakat hayvanın vücuduna belirli ve sabit bir şekil vermez. Buna karşın bir çok tek hücrelilerde korunma ve destek organelleri vardır. Bu organeller sayesinde vücut şekilleri sabit kalır. Koruma ve Destek Organelleri: Yapılarına göre iki türlüdür. 1. Euplasmatic : Stoplazmanın farklılaşmasından meydana gelen organeller; fibriller aksopodların eksen çubukları radyolenlerin iç kapsülleri, pelikula vs. 2. Alloplasmatic : Stoplazmanın salgı maddesinden meydana gelen organeller; örtüler, kabuklar, evcikler, kistler ve iskeletler. Örtü ve kabuklar vücut yüzeyine yapışıktır. Evcikler ise yalnız belirli yerlerde yapışıktır. Kistler: Bunlar ya yalnız organik maddeden (jelatin, pseudokitin, sellüloz) veya inorganik maddeden SiO2 ve Ca2CO2 den yapılmıştır. Tatlısu protozoonlarında ve bir çok parazitlerde görülen geçici korunma organelleridir. Bunlar yaşamaya elverişli olmayan zamanlarda ve bazen çoğalma esnasında meydana gelirler. Kist meydana geleceği zaman hayvan bütün organellerini kaybeder. Yuvarlak bir şekil alır. Kendi etrafına saldığı jelatinli tabaka sertleşir. Böylece kist meydana gelmiş olur. Normal şartlar başlayınca kist parçalanır ve yeniden organeller teşekkül eder. Beslenme (4 tiptir) I. Ototrof : Bitkilerdeki fotosenteze karşılıktır. Yani anorganik maddeleri organik hale koyar. (Bir kısım flagellatlarda) II. Saprozoik : Erimiş haldeki organik maddelerle geçinirler. Bu maddeler bakteriler tarafından parçalanmış olan organik maddeler vücut sıvıları ve barsak sıvılarıdır. (Parazit yaşayanlar ve renksiz flagellatların bir kısmı). III. Miksotrof : Hem organik ve hem anorganik maddelerle geçinirler (Euglena). IV. Heterotrof : Katı organik maddelerle beslenir (serbest yaşayan birhücrelilerin çoğu). Beslenme ile ilgili organeller. Cytostom (Hücre ağzı), Cytopharynx (yemek borusu) Ciliatlar.da besin stoplazma içine geçerken bir sıvı vakuolü teşekkül eder. Sindirim bu vakuol içersinde olur. Artık maddeler vücudun herhangi bir yerinden veya hususi bir yerden (Cytopig ) dışarıatılır. Boşaltım organeli : Osmoz sonucunda ve besin maddeleri ile birlikte stoplazma içersine giren fazla suyun dışarı atılmasına yarayan Kontraktil vakuollerdir. Deniz formlarında çok nadir olarak bulunur; parazitlerde yoktur. Esas olarak tatlı su protozoonlarında mevcuttur. Katı atıklar çok defa stoplazmada biriktirilir. Öyle ki bu durum bir çeşit atık pigmentasyonuna (renklenmesine) neden olur. Çoğalma 11 1. Bölünme : Enine (Ciliata) veya boyuna olmak üzere (Ekseri flagellatlarda) ikiye bölünme. 2. Tomurcuklanma : İkiye bölünmenin bir modifikasyonuna tomurcuklanma adı verilir. Öncelikle tomurcuk taslağı meydana gelir. Bu taslak ana hayvanın büyüklüğüne erişince koparak ondan ayrılır veya koloniler oluşur. 3. Multible bölünme : Nukleus bir çok defalar bölünür. Sonra stoplazma nukleus sayısı kadar parçalanır. Çoğalma neticesinde fertler bazen bir arada kalarak kolonileri meydana getirirler. Cinsiyet ve Döllenme : Cinsiyet olayları bütün gruplarda görülür. Döllenme çok hücrelilerdeki gibi cinsiyeti farklı iki hücrenin haploid sayıdaki kromozomlarının birleşmesiyle 3 şekilde olabilir. 1. Konjugasyon, 2. Autogamie, 3. Kopulasyon Kopulasyon : Yüksek organizasyonlu hayvanlarda olduğu gibidir. Birleşen hücrelere gamet, birleşme mahsulüne zigot denir. Basit halde, kopulasyon yapan gametler normal vegetatif fertlerden farklı değillerdir. Yani bunlarda gametleri verecek olan fertler bir çoğalma safhası geçirmeden doğrudan doğruya gametlere değişirler. Böyle bir kopulasyonda eşeysel bir çoğalmadan bahsedilemez. Çünkü redüksiyon Diğer durumda ise gametler vegatatif fertlerden farklıdır. Esas ferdin ikiye bölünmesi (mayoz bölünmesi neticesinde) meydana gelir ve kromozom sayısı yarıya iner. Birbiri ile birleşen gametler ya görünüşleri aynı isogamet (isogamie) veya farklı anisogamet (anisogamie)’dir. Anisogamide yedek besin maddesi içeren gamete dişi veya macrogamet diğerine de erkek ya da microgamet denir. Sporozoonlarda izogamiden çok hücrelilerdeki oogamie’ye kadar bütün tipler görülür. Konjugasyon : Yalnız Ciliat’larda görülen özel bir döllenme şeklidir. 12 Autogamie : Kendi kendini döllemedir. Ekseriya bir kist içinde meydana Bazı tek hücrelilerin yapısı çok basit olduğu halde diğer bazıları çok kompleks bir yapı gösterir. Kompleks yapılı birhücrelilerde bütün hayatsal olaylar çeşitli organellerle yapılır. Protozoon’lar hareketlerini sağlayan yapının çeşidine göre sınıflandırılır. SUBREGNUM PROTOZOA 1. Class - Flagellata (Mastigophora) Kamçılılar 2. " - Sarcodina (Rhizopoda) Kökbacaklılar 3. " - Sporozoa (Sporlular) Hareket organeli yok, parazit 4. " - Ciliata (Infusoria) Kirpikliler Sub Class Protociliata " Euciliata " Suctoria Barnes ve Demirsoy.a göre de Phylum (Şube) : Sarcomastigophora 1. Class : Flagellata (Mastigophora) Kamçılılar 2. Class : Sarcodina (Rhizopoda) Kökbacaklılar Phylum Sporozoa Sporozoa (Sporlular) Hareket organeli yok, parazit Phylum Ciliophora - Ciliata Ciliata (Infusoria) Kirpikliler Subclass Protociliata Euciliata Suctoria 13 I. Class - FLAGELLATA (Mastigophora) , Kamçılı hayvanlar Flagellatlar bir veya birkaç kamçıya sahiptirler. Kamçı hareketi temin eder ve besin almaya yarar. (Çıkış yeri Flagellata sistematiğinde önemlidir). Nukleus zarından veya stoplazma içindeki dip taneciğinden (bazal granül) çıkar. Burada bir de kamçı kesesi teşekkül etmiştir. (Dip taneciği bazı flagellatlarda bölünme anında ikiye ayrılır, kutuplarda iğ iplikleri meydana getirir). Flagellatlarda kamçının dip kısmına yakın bir yerde göz lekesi (stigma) denen kırmızı pigmentli bir organel vardır. Bu organizmalarda karbonhidrat depo eden cisimcikler stoplazmada yer alır. Plastidler genellikle serbest yaşayanlarda bulunur. Kloroplast içerenler güneş ışığında besin yapabilirler. Bu karakterleri nedeniyle bitki olarak da sınıflandırılırlar. Ancak hepsinde selüloz bir hücre çeperi yoktur. Çoğalma uzun eksen boyunca bölünmek suretiyle eşeysizdir. Bölünme ön uçtan başlar, nukleus mitozla bölünür, organeller bölünür. Eşeysel çoğalma tam olarak ancak bir kaç Zooflagellat.da saptanmıştır. (Son zamanlarda yapılan çalışmalar çoğalma olaylarının günün karanlık peryodunda olduğunu göstermektedir). Klorofilleri olmasına rağmen yaşadıkları ortamda bazı amino asitlerin mevcut olmasını isterler. Flagellatlar ototrof, heterotrof bazısı da saprofit olarak yaşar. Katı haldeki besin maddeleri ile beslenen türlerde, besin vücudun ön kısmında, kamçı dibinde bulunan ağız yolu ile vücuda girer. Þimdiye dek bildiklerimizden bu grubun hem bitki hem de hayvansal organizmalara ait özellik gösterdiği anlaşılmaktadır. Bu özellik evrim bakımından bitki ve hayvanların aynı orijine sahip olduklarını destekler durumdadır. Bazı flagellatlar, örneğin Eudorina ve Volvox koloni teşkil eder, Volvox’lar, çok hücreli hayvanların embriyo gelişmelerinin blastula safhasına benzer. Tek hücreliler ve çok hücreliler arasında geçit gibi görülürler. 14 Uygun olmayan şartlar altında kist teşkil ederler veya palmella safhasına geçerler. Palmella safhasında kistlerden farklı olarak metabolizma devam ettiği gibi bölünme ve çoğalma olayları da görülür. Vücut küre şeklini alır ve kamçılar kaybolur. Tatlısu flagellatlarında boşaltım organeli olarak kontraktil vakuol bulunur. Bunlar ya tek ya da vakuol sistemi halindedir. Fazla suyun dışarı atımında da kullanılır. Flagellatlara yağmur suları, birikinti suları, dam olukları, nehir ve göl gibi sularda rastlanır. Bazıları hayvan ve insanlarda parazittir. 60.000 kadar flagellat türü bilinmektedir. Ordo - Cystophlagellata : Doğrudan gözle görülebilecek büyüklüktedirler. Pelikula ile örtülü vücut içi jelatinli bir madde içerir mahtut bir bölgede stoplazma toplanmıştır. Noctiluca   miliaris : 1-1,5 mm. çapında bir veya iki kamçılı ve genellikle küre biçimindedirler. Stoplazma vücudun ön kısmında bulunur ve küçük bir bölgeyi kaplar. Vücudun geri kalan kısmını jelatine benzer bir madde doldurmuştur. Stoplazma, jelatinsi madde içine ağ şeklinde uzantılar gönderir. Başka organizmaları yiyerek geçinir. Stigma ve plastidleri Çoğalmaları ikiye bölünme veya zoospor meydana getirmek suretiyle olur. Zoosporlar birleşerek zigotu teşkil eder. Çok sayıda Noctiluca bir araya gelirse, ışık salmaları nedeni ile yakamoz denen olayı meydana getirirler. Denizde pelajik yaşarlar. Ordo - Euglenoidina : İğ şekilli, oval, uzun vücutlu olup vücut yüzeyi kalın bir pelikula ile örtülüdür, renkli veya renksiz olabilirler. Renklilerde parlak yeşil kromatofor bulunur. Euglena   viridis : Oval görünüşlüdürler. Yeşil renkli kromatoforları ince uzun olup bir merkez etrafında toplanmıştır. Bol oldukları zaman su 15 yüzünde hareket ederler. Yeşil lekeler meydana getirirler. Stigma ve boşaltım organeli olan kontraktil koful, vücudun ön kısmında yer almıştır. Astasia sp. Kromatoforsuz ve çoğu stigmasızdır. Ordo - Phytomonadina : Sabit şekilli, oval ve uzun flagellatlar olup vücut yüzeyi ince veya kalın olabilen selüloz zarla örtülüdür. Stigmaları vardır. İki kamçılı olup çanak şekilli bir kromatoforları vardır. Soliter yaşarlar veya koloni teşkil ederler. Nematod gibi diğer omurgasızların bağırsaklarında kamçısız olarak bulunan parazit türleri de vardır. Volvox : Tatlısularda yaşarlar ve koloni teşkil ederler. Bir kolonide 4-128 fert bulunur. Bazı türlerde 20 bin kadar fertten oluşan koloniler de görülür. Kolonide hareket belirli bir bölgeden öne doğru görülür. Yüzlerce fert küre üzerinde sıralanmıştır. Her fert ucu küre merkezine uzanan 6 köşeli jelatin bir piramit içindedir. Komşu fertler stoplazma köprücükleri ile irtibatlıdırlar (Fertler küre veya yassı şekillidirler). Çoğalma eşeyli veya eşeysiz olabilir. Koloninin ön kısmında bulunan fertler çoğalma kabiliyetini kaybetmiştir ve beslenme işini görür. Her bir fertte aynı delikten çıkan eşit uzunlukta 2 kamçı, stigma, çanak şeklinde kromatofor ve kontraktil vakuol Gonium : 4-16 fertlik koloni teşkil ederler. Eudorina : Genel olarak 32 nadiren 16 fertlik koloniler teşkil eder. Ordo - Protomonadina : Parazit flagellatlardır. Hayvan karakteri gösterirler. Küçük renksiz, 1-2 kamçılı, ameboid hareketli olup çoğu besinini pseudopod teşkil ederek veya basit bir ağızla alır. Soliter veya koloni halinde yaşarlar.Bu takım içerisinde yer alan bir familya (Coanaflagellatidae) ön tarafında birbirine çok yakın mikrovilluslardan oluşmuş .Collare. = yakalık taşırlar. Kamçı, bu yakalığın içinde bulunur. Coanaflagellatlar,süngerlerin koanositlerine benzediklerinden belki çok hücrelilerin köken aldığı hat olabilecekleri düşünülmektedir. 16 Leismania : Bu genus’a bağlı türlerin bazısı böceklerde bazısı omurgalılarda yaşar ve önemli hastalıklara neden olur. Leishmania donovani (Visceral Leismaniasis): Kala-azar hastalığının etkenidir. Hindistan, Güney Rusya, Çin, Türkistan, Irak ve Akdeniz havzasında görülür. Başka memleketlerde hem çocuk hem de büyükler hastalığa yakalanabildikleri halde Akdeniz havzasında bilhassa 4 yaşın altındaki çocuklarda görülür. Parazit memeli konakçısında dalak, karaciğer, kemik iliği, barsak ve lenf bezlerinin kan hücrelerinde (reticulaendothelial) bulunur. İnsan vücudundaki hücrelerde kamçısını kaybetmiştir. Hücre içinde çoğalır, çoğalma sonucu hücreler patlar, genç fertler yeni hücrelere geçer. Bir kısmı da dolaşım sistemine geçer, ara konakçı sinek (Phlebotomus) böyle bir kanı emince hastalık etkenini alır. L. donovani sinek vücuduna geçince kamçılı hale geçer, orta barsakta (mide) çoğalır oradan ön barsağa ve tükrük bezlerine geçer. Hastalarda karaciğer ve dalak şişer. Kansızlık baş gösterir. Düzensiz nöbetler sonucu hasta tedavi edilmezse öldürücüdür. Leishmania tropica : Asya, Afrika, İran, Arabistan ve Türkiye.de bulunur. Avrupa memleketlerinden (İspanya, İtalya, Yunanistan ve nadiren Fransa’da rastlanır). Yurdumuzda Güney ve Güneydoğu illerinde vardır. Ara konakçısının insektisitler ile hemen hemen ortadan kaldırıldığı yerlerde çok nadir olarak ortaya çıkar. Böceklerden (Diptera) ara konakçısı Phlebotomus papataci dir. Parazit ara konağın orta barsak epitelinde çoğalır, ön barsağa doğru yayılır, epipharynxe yerleşir ve nihayet sineğin bir insanı ısırması ile memeli konukçuya geçmiş olur. Memeli konukçularındaki kuluçka süresi birkaç gün, haftalar ve hatta bazen 3-4 yıl olabilir. Deride önce sivilce şeklinde bir kabarcık daha sonra birkaç santimetrelik yara meydana gelir. (Bir yıl içinde yara kurur ve bir leke bırakır. Onun için hastalığın bir başka ismi "Yıl- çıbanı" veya "Þark- çıbanı"dır. Bazı hallerden sonradan bakterilerinde yaraya girmesi ile yara daha çok büyüyebilir. Þark çıbanı el, yüz, ayak gibi örtülmeyen yerlerde 17 Trypanosoma : Bu genus omurgalı hayvanlarda kan paraziti olan türleri ihtiva eder. Serbest olarak kanda yaşar onun dışında diğer sistemlerde de görülür. (Konakçılar arasında kan emen omurgasız hayvanlar vasıtasıyla yayılır). Parazit, omurgalı hayvanın vücudunda tam bir Trypanosoma karakteri gösterir. Burada parazitin vücudu uzar, iki uç sivrileşir, dalgalı bir zar içinde uzanan kamçı görünür. Trypanosoma türleri bütün hayvanlarda bulunabilir, ancak insanda ve evcil hayvanlarda patogendir. (muhtemelen bu konakların yeni olması nedeniyle) Hastalık yapan türler tropik bölgelerde yaşar. Trypanosoma lewisi : Fare kanında bulunur. Patojen değildir. Trypanosoma   brucei : Sığırlarda nagana hastalığına sebep olur. Güney Amerika.da görülür. Trypanosoma   gambiense : Afrika da uyku hastalığının etkeni olup en önemli patogen trypanosomalardandır. Glossina palpalis denen çeçe sineği ile taşınır.Parazit, sineğin sindirim kanalında çoğalır, gelişimini tamamlar. Tükrük bezine geçer. Sinek insanın kanını emerken paraziti memeli konukçusuna bulaştırır. Düzensiz aralıkla nöbet başlar. Hastanın ateşi yükselir, lenf bezleri şişer, Parazitin metabolizma sonucu meydana getirdiği maddeler hastada felç yapar ve "uyku" haline neden olur. Sinir sistemini istila ettiğinde genel olarak öldürücüdür. Termit ve selülozla (simbiyoz) beslenen diğer böceklerin barsaklarında yaşayan ve Beta glikosidaz enzimi salgılayan ve böylece selülozu glikoza çeviren birçok flagellat türü bilinmektedir. II. Class : SARCODİNA (Rhizopoda) Bu sınıfa dahil hayvanlarda vücut şekilsiz olup simetrisiz olduğu gibi küresel simetri gösterenler de vardır. Flagellatlar.dan daha basit olup, gelişim dönemlerinde bazen kamçı içerirler. Yine Flagellatlar.dan farklı olarak vücut yüzeyinde pelikula bulunmaz . Vücut ordolara göre çıplak 18 veya kabukludur. Stoplazma bariz biçimde ekto ve endoplazma kısımlarına ayrılmış veya ayrılmamıştır. Nukleus bir veya daha fazladır. Hareket ve besin alma organeli çeşitli tipteki yalancı (Pseudopod) ayaklardır. Yalancı ayaklar loblu (lobopod), iplik gibi (filopod) ağ (retikulopod) şeklinde yahut desteklidir (aksopod). Deniz ve tatlısularda yaşarlar. Tatlısularda yaşayanlarda l-2 kontraktil koful vardır. Bazılarında kabuk, evcik, bazılarında stoplazma içinde SiO2 den ibaret iskelet bulunur. Çoğalmaları ikiye veya daha fazla parçalara bölünme ya da tomurcuklanma ile olur. I. Ordo: Amoebozoa : Stoplazma ekto ve endoplazmaya ayrılmış hareket loblu lobopod veya iplik filopodlarla olur, bunlar ya bir yerden çıkar veya vücut yüzeyine dağılmıştır. Subordo - Amobina Amoeba (Çıplak amipler) : Bu subordo’nun en tipik örneği amip cinsidir. Amipler tatlısularda yaşarlar. Çapları 200-300 mikron kadardır. Stoplazma ekto ve endoplazma olarak belirli bir şekilde ayrılmıştır, bir veya birkaç tane besin vakuolü, küre şeklinde bir kontraktil vakuol (nadiren 2-3) ve disk şeklinde nukleusları vardır. Pseudopodları lobopod veya filopod şeklinde olup bu harekete amoeboid hareket denir. Amoeboid harekete birçok Protozoa.da rastlandığı gibi kan hücrelerinden akyuvarlarda da görülür. Pseudopodun meydana geldiği bölgede endoplazmanın kolloid hali değişir. Gel halindeki endoplazma sol haline geçer. Amibin kontraksiyonu ile arka bölgede sol haline geçen endoplazma pseudopod istikametinde akar. Amip sudaki besin parçasını çevirir ve onu içine alır. Sindirim vakuol içinde olur. Sindirilmeyen artıklar hücrenin herhangi bir bölgesinden dışarıya atılır. Çoğalma eşeysizdir. İkiye bölünme tomurcuklanma ve multible bölünme ile olur. Amoeba   proteus : Çapı 200-500 mikron olan en büyük amip türlerindendir. 19 Amoeba vespertilio : En çok görülen tatlısu formlarından biridir. Entomoeba coli : İnsan kalın barsağında kommensal olarak yaşar. Besin kofulu içinde yemiş olduğu bakteri maya ve diğer mikroorganizmalar vardır. Entomoeba   histolitica : İnsanlarda amipli dizanteriyi yapar. Barsak epitelini yer. Parazit barsak boşluğunda iken minuta adını alır. Minutalarda besin kofulu içinde bakteri yoktur (E. coli.den farklı). E. histolitica kistleri su vs. ile alınır. Kistler sindirim borusunda açılarak amipler barsak dokularına girer. Barsak duvarına yerleştikten sonra magna adını alır. (Barsak epitelini ve alyuvarları yediği için vakvuolde alyuvarlara rastlanır). Minutalar barsak boşluğunda kist teşkil eder ve ancak yeni bir konağa (insana) geçtiği zaman açılır. Subordo - Thecamoeba (Kabuklu amipler) Bu grupta kadeh, şişe yumurta vs. şeklinde olan bir kabuk meydana getirilir. Kabuğun organik maddesine dışardan alınan anorganik maddeler de karışır. Pseudopodların dışarı uzanabilmeleri için kabukta bir tane büyük veya daha fazla küçük delik bulunur. Arcella   vulgaris - Nukleus 2 veya daha fazladır. Saat camına benzeyen kabukları vardır. Pseudopodlar filopod cinsindendir. Difflugia : Balon şeklinde olan kabukları yabancı cisimlerle sertleşmiştir. Pek çok türü vardır. 2. Ordo - Foraminifera : Vücut plazmasında bariz bir ektoplazma ayrımı yoktur. Dallanan pseudopodları vardır. Hepsi kabukludur ve kabuğun üzerinde çok sayıda küçük delik bulunur. İlksel formlar kum, kitin, sünger spiküllerinden, yüksek formlar ise kalsiyum karbonattan yapılmış kabuk içerirler. Kabuk boşluğu ya tek bir odacıktan ya da ara bölmeler ile birbirinden ayrılmış olan bir çok odacıktan oluşmuştur. Foraminifer kabuklarının deniz dibinde birikmesi ile tebeşir ve kalker tabakaları 20 teşekkül etmiştir Denizlerde yaşarlar. (18.000 türü bilinmektedir). Pseudopodların hepsi ya büyük delikten çıkar veya buna ilave birçok küçük delik bulunur. Salyangoz kabuğu biçimindedir. Bölünerek çoğalırlar. Bir veya daha çok sayıda küçük nukleus içerirler. Ammodiscus - Kabuk bir odacıklı olup kumdan yapılmıştır. Az veya çok helezonlu boru şeklindedir. Nummulites - Çap 19 cm. büyük fosil formlar bu cinstendir. Kabuk mercimeğe benzer üzerinde ikinci bir kabuk vardır. Foraminiferlerden Fusulinidae familyası birinci zamanın son devrinde oldukça kısa bir süre (75 milyon yıl) içerisinde büyük bir gelişme göstermiş ve sonra yok olmuştur (bunların bazıları sığ deniz tabanını kaplayan çapı 2 cm. kadar olan büyük tek hücrelilerdir). Genellikle bu fosillere petrolün bulunduğu yataklarda rastlanır. (Bir petrol kuyusu kazılırken tortul kayaları arasında birbirini izleyen ince tabakalar halinde Fusilinidae türlerinden oluşan katlar görülür. Tabakalardaki (belli bir kısmı içinde bulunan) türlerin incelenmesiyle sondaj yapılan yerde paleozoik tabakada ne kadar ilerlendiği tahmin edilebilir. 3. Ordo - Heliozoa (Güneş hayvancıkları) - Küre şeklindedirler. Stoplazma ekto ve endoplazma bölgelerine ayrılmışlardır. (Dıştaki ektoplazma bir veya daha çok vakuollüdür. Endoplazma orta bölgede granüllü olup nukleuslar yer alır). Çoğu tatlısularda yaşar, vücut çıplak veya kabuk kafesle örtülüdür. Pseudopod destekli tipinde (aksopod) olup, ekto-endoplazma sınırından, ya da nukleustan hatta çok nukleuslu türlerde herbiri bir nukleustan çıkar. (Hususi bir destek noktasından çıkar). Actinosphaerium - Örtü ve iskeleti yoktur. Oldukça büyük çapı= l mm. Aksopodların eksen çubukları ekto-endo stoplazma sınırında olup endoplazmada 200 veya daha fazla nukleus var. (Ektoplazmada 2-14 kontraktil koful yer alır. Kokmuş bataklık sularında bulunur. 21 Clathrulina - Küre şeklinde büyük delikli pseudokitinden iskeletleri vardır. Boru şeklinde uzun bir sapla kendilerini tespit ederler. 4. Ordo - Radiolaria - Stoplazmaları iç ve dış olmak üzere kapsül ile iki bölgeye ayrılır. (Kapsül organik madde ve pseudokitinden yapılmıştır) kapsül üzerindeki delikler vasıtasıyla iki stoplazma bölgesi temas halindedir. Genellikle silisyum dioksitten pek azında da stransiyum sülfattan yapılmış (kalsiyum aliminyum silikatta olabilir) değişik şekillerde hayvanlar aleminin en güzel ve zarif iskeletlerini salgılarlar. Başlıca iskelet elementleri iğne, diken, dallı veya çatallı çubuklar ve muhtelif şekilde delinmiş küreledir. (Bunlar kapsülün iç ve dışında bulunabilirler) Bu iskeletler okyanus tabanında çamur haline gelir ve basınçla çakmak taşı gibi silisli kayalara dönüşür. Endoplazmada bir veya daha çok nukleus, yağ damlacıkları, ektoplazmada besin vakuolleri, pigmentler ve yağ damlaları (Tek hücreli alg) yer alır. Bir kısımdan çok sayıda pseudopodlar çıkar. Pseudopodlar çoğunlukla filopod veya aksopod tipindedir (bu ordoda kontraktil vakuol yok). Dış tabakalarını genişleterek suda farklı seviyelere iner ve çıkarlar. Denizlerde yaşarlar, genellikle plankton hayvanlardır. Heterotrofturlar, flagellatlar ve diatomeler ile beslenir. Theopilium - İskelet miğfer şeklinde-Akdeniz.de Heliosphaeera - İskelet kafes şeklinde - Akdeniz.de III. Class - SPOROZOA (Sporlular) Omurgalı ve omurgasız hayvanlarda hücre içi ve hücre dışında yaşayan parazitlerdir. Her tür belirli bir konakçıda yaşar. Yuvarlak veya oval bir hücreye benzerler. Tek bir nukleusları vardır. Parazit olduklarından hareket ve boşaltım organelleri yoktur. Sporozoonlar konakçı vücudunda bir süre eşeysiz olarak çoğalır. Bu tarz çoğalmaya Schizogonie ana sporozoona Schizont ve bölünme sonucunda 22 meydana gelen genç hayvana da Merozoit denir. Merozoitler sağlam konukçu hücrelere hücum ederler diğer hücreleri aşılarlar. Merozoitlerin büyümesi ile yine eşeysiz çoğalan Schizont’lar veyahut eşeyli olarak çoğalan gamontlar teşekkül eder. Parazit organizma ancak eşeyli çoğalma yani Sporogonie yolu ile başka konukçulara geçme imkanını bulur. Yaşam döngüleri üç bölüme ayrılabilir; 1. Sporogonie (eşeysiz çoğalır) 2. Schizogonie (eşeysiz çoğalır) 3. Gametogonie (eşeyli çoğalır). Bu ayrımda, schizogonie safhası iki bölüme ayrılarak schizogonie ve gametogonie olarak incelenmektedir. Schizogonie periyodunun sonuna doğru bazı gametler makro ve mikrogamete dönüşerek eşeyli çoğalırlar. Bu safha eşeysiz ve eşeyli iki bölüme ayrıldığından bir farklılık oluşmaktadır. Gamontlar çoğunlukla bölünerek veya doğrudan doğruya gametleri (mikro ve makro gamet) meydana getirir. Gametlerin birleşmesi ile ortaya çıkan zigot yardımı ile parazitin geçişi olur. Zigot’un etrafı koruyucu sert bir kabukla örtülür onun için buna Spor da denilir. Sporozoa adı buradan gelmektedir. Zigot=spor, içinde çok sayıda genç fert teşekkül eder. Spor başka bir konakçıya geçince muhafaza parçalanır ve genç Sporozoitler serbest hale geçer. Büyüyerek schizont haline gelir. Bazı türlerde zigotun bir konakçıdan diğerine geçişi kan emen bir ara konakçıyla olur. Bu halde zigot etrafında kabuk bulunmaz. Sporozoanın çoğunda, bir hayat devri içinde schizogonie ve sporogonie birbirini tabip eder. Bu çoğunlukla konakçı değişimi ile birlikte görülür. Ordo - Coccidiomorpha : Hücre içi parazitidirler. Hayvanların barsak epiteli veya iç organlarında yaşarlar. Eimeria - küçük bir çiyan cinsi olan Lithobiusların barsak epitelinde yaşar. Ayrıca kümes hayvanlarının barsaklarında da yaşar. Plasmodium - Anopheles cinsinden dişi bir sivrisinek bir insanı soktuğunda deride açtığı deliğe biraz da tükrük akıtır. Şayet bu sinek plazmodiumlu ise tükrük içerisinde bulunan sporozoidler kana geçer ve eritrositlere girerler. Sporozoidler eritrositin içinde büyüyerek amip şekilli 23 bir schizont haline geçerler. Oradan karaciğere geçer, burada multible füzyon (çok parçaya bölünme) geçirerek merozoitler oluşur. Bu şekildeki çoğalmaya Schizogonie denir. Bu faz yaklaşık 10 gün sürer, çıkan merozoitler tekrar karaciğer hücrelerine saldırarak schizogonie ile çoğalabilirler. Merozoitler daha sonra eritrositlere saldırırlar ve burada tekrar schizogonie geçirirler. Eritrositin içi merozoidlerle dolunca parçalanır ve serbest kalan merozoidler schizogonie’yi tekrarlamak üzere diğer eritrositlere girerler bu bir süre devam ettikten sonra schizontlar merozoitlere kıyasla daha büyük olan ve daha çok besin maddesi ihtiva eden erkek ve dişi gamontlara değişirler. Gamontlar ancak ara konak vazifesi gören bir sivrisineğin barsağına geçebilirlerse gelişmelerine devam ederler. Bu zamanda erkek gamontlar multiple bölünmeyle 4 veya 8 mikrogamet meydana getirir. Dişi gamontlar olgun makrogametlere değişirler. Döllenme sivrisineğin barsak boşluğunda olur. Zigot uzundur ve amoeboid hareket eder. Buna ookinet zigot denir. Ookinet sivrisineğin barsak epitelinden geçerek barsak kaslarına yerleşir ve etrafı kalın bir kılıfla çevrelenir. İçerde multiple bölünme ile pek çok sayıda sporozoid meydana gelir. Kılıfın patlaması ile serbest hale gelen sporozoidler sivrisineğin vücut boşluğundan geçerek tükrük bezlerine gelirler. Böyle bir sivrisineğin insanı sokması ile Plasmodium’un hayat devresi tamamlanmış olur. Nöbetler daima merozoidlerin kan içine dökülmesi zamanına rastlar. İlk nöbetten bir hafta sonra gametler teşekkül eder. Gamontlu kan emmek sureti ile sivrisinekler enfekte olur. sivrisinekteki gelişme 10-20 gün arasındadır. Enfeksiyondan sinek etkilenmez. Plasmodium   vivax : 48 saatte bir alyuvarlar parçalanarak merozoitler kana geçer. Alyuvarların patlamasından önce titreme, patlamasından sonra ateş gelir. Bu parazitin neden olduğu sıtmaya Tersiana denir. Plasmodium   falciparum (Lavenaria malaria) : Tropik sıtmaya sebep olur. 48 saatte schizogoni devresi tamamlanır. Eritrositlerin birbirine yapışması sonunda kılcal damarların tıkanma tehlikesi vardır. Beyin ve kalp damarları tıkanırsa ölüme sebep olur. 24 Plasmodium   malaria : Schizogoni devresi 72 saattir. Quartana tipi sıtmaya neden olur. Sıtma tedavisi 17. asırda cinchona denen bir ağaç kabuğunun Peru’dan Avrupaya getirilmesi ile başlar. O zamandan beri kinin, malarya tedavisinde kullanılmaktadır. Denilebilir ki bu ilaç insanlar tarafından keşfedilen ilaçlar arasında son zamanlarda keşfedilen sülfamidler ve antibiyotikler dahil en fazla nisbette insan hayatı kurtarmıştır. 2. Ordo - Gregarinida : Birçok omurgasız hayvanın barsak ve vücut boşluklarında parazit olarak yaşarlar. Gragarina   blattarum : Hamam böceklerinin barsaklarında parazit olarak yaşarlar. Vücutları epimerit, protomerit ve deutomerit olmak üzere üç bölümlüdür. Epimerit çengellidir. Hayvanın tutunmasına yardım eder. Nukleus bir tane olup deutomerit bölümünde yer alır. IV. Class : CILIATA (Infusoria) Birhücreli hayvanların en yüksek organizasyonlu grubunu teşkil ederler. Vücutları oval, küre, silindir, vazo vs. gibi değişik şekillerde olup pelikula ile sarılmıştır. Bazıları üzerini örten zarın (pelikula) elastiki olması sebebi ile şekillerini değiştirebilir. Stoplazmaları ektoplazma ve endoplazma bölgelerine ayrılmıştır. Ektoplazmada kirpikler (sil), miyonemler, besin alma ile ilgili olan organeller, kontraktil vakuoller ve savunma organeli olan trikosistler bulunur. Endoplazma granüllü bir sıvı halindedir. Burada besin kofulları yedek besin depoları (glikojen ve yağ) ve nukleuslar görülür. Hareket organeli olan siller beslenmede de etkili kısa iplikçiklerdir. Bunlar ektoplazmada bulunan dip taneciklerinden çıkarak pelikula’yı deler ve yüzeye geçerler. Uzunlamasına ve diagonal olarak sıralanmış vaziyettedirler. Ciliat’ların bir kısmı da dip taneciklerini birbirine bağlayan 25 ipliksi bir sistem mevcuttur. Siller yapı ve fonksiyonları bakımından flagellatların kamçılarına benzerlerse de boyları kısa ve sayıları fazladır. Vorticella gibi bazı Ciliat gruplarında düz veya çizgili kas liflerinden ibaret miyonemler vardır. Bu lifler sayesinde bütün vücut veya bazı kısımları kontraksiyon yapabilir. Heterotrofturlar, bazıları bakteri, küçük birhücreliler ve çürümüş besinler ile geçinir. Bunlarda peristom bölgesindeki tüylerin hareketi ile ağıza doğru bir su akımı oluşturulur. Besinler titrek tüylerin hareketi ile cytostom ve huni şeklindeki cytopharynxten geçer. Bu arada küresel biçimde toplanan besin koful içine alınır. Besin kofulları stoplazma içinde belirli bir yönde hareket ederler. Sindirilen besinler koful membranından stoplazmaya geçer, artık maddeler ise sitopig’den dışarı atılır. Tatlısularda yaşayan türlerin ektoplazmasında ve belli yerlerde kontraktil kofullar vardır. Paramecium’da kontraktil koful etrafında daire şeklinde sıralanmış toplayıcı kanallar vardır. Trikosistler, korunma organelidir. Bunlar ektoplazmada, vücut yüzeyine dik olarak sıralanmış oval veya çomak şeklinde küçük organellerdir. Mekanik veya kimyasal uyartı karşısında pelikulada bulunan delikten fırlatılarak sivri uçlu uzun iplik halini alırlar. Paramecium gibi bazı cinslerde bu organeller bütün vücutta, yahut vücudun belli bölgesinde bulunur (Didinium). Endoplazmada Macronukleus ve Micronukleus vardır. Macronukleus beslenmede rol oynar. Micronukleus, çoğalma ile ilgilidir, sayısı l-80 kadar olabilir. Bölünmeleri enine ikiye bölünme şeklindedir. Nadiren boyuna olur. Macronukleus amitoz, micronukleus mitozla bölünür. Vorticella ’da olduğu gibi yeni teşekkül eden fertler bir araya gelerek koloni meydana 26 getirebilirler. Yalnız Suctoria alt-sınıfında tomurcuklanma ile çoğalma görülür. Ciliatlar.da Protociliata hariç hepsinde eşeysel çoğalmaya benzetebileceğimiz konjugasyon görülür. Konjugasyonda bireyler ağızlarınının bulunduğu kısımdan yan yana gelerek bir çift teşkil ederler. Bu sırada çiftteki her organizmanın macronukleus’u parçalanarak kaybolur. Mikronukleus’lar ise, üst üste iki defa bölündüğünden her bir fertte 4 nukleus meydana gelir. Bunlardan üçer tanesi stoplazma içinde erir. Geriye kalan birer nukleus bölünerek ikişer nucleus meydana getirir. Bu sırada yan yana gelmiş olan iki ciliat’ın hücre zarı eriyerek arada bir stoplazma köprüsü teşekkül etmiştir. Her iki organizmanın nukleuslarından birisi stoplazma köprüsü yolu ile diğerine geçer ve orada bulunan nukleus ile birleşir. Bundan sonra fertler birbirinden ayrılır. Bu dönemden sonra örneğin Paramecium caudatum ’da üç bölünme ile 8 nukleus teşekkül eder. Bunlardan üç tanesi kaybolur. Geriye kalanlardan 4’ü macronukleuslar.ı bir tanesi de micronukleus.u meydana getirir. Paramecium ve micronukleus bölünür. Macronukleuslar taksim edilir. Paramecium ve micronukleuslar tekrar bölünür. Neticede bir macro bir micronukleusu olan 8 Paramecium meydana gelir. Ciliata sınıfı 3 alt sınıfa ayrılır: l- Subclass; Protociliata 2- Subclass; Euciliata 3- Subclass; Suctoria 1- Sub Class Protociliata : Vücut şekilleri yuvarlak veya yassı olup siller vücudun her tarafında bulunur. Hücre ağzı ve kontraktil koful yoktur. Nukleus iki veya daha çok bölünme ile ve konjugasyonla değil kopulasyon şeklinde eşeyli olarak çoğalırlar. Kurbağaların larva ve erginlerinde nadiren de diğer soğuk kanlı ve omurgalılarda barsak parazitidirler. 27 Opalina ranarum : Vücut yassı ve çok nukleuslu su kurbağalarının son barsağında parazittir. 2- Subclass Euciliata : Hücre ağzı vardır, genç ve ergin safhaları kirpikli olan Ciliatlardır. 1- Ordo - Holotrichia : Basit yapılı siller kısa ve eşit boyda bunlar ya boyuna sıralar halinde bütün vücut yüzeyini kaplar veya kemer oluşturacak şekilde sıralanırlar. Ağız yüzeyde veya içeri çökük bir çukur (peristom) dibindedir. Paramecium : Bu grubun en çok bilinen cinsidir. Þekli nedeniyle terliksi hayvan olarak da adlandırılır. En çok rastlanan türleri; Paramaecium bursaria- geniş ve yassı olduğundan yeşil renkli görülür (zooklorel= yeşil renkli alg, stoplazmada simbiyoz olarak bulunur). Paramecium caudatum : En çok rastlanan türdür. Colpidium colpoda : Şekil olarak böbrek gibidir. Dileptus: Ön uçta uzun ve kontraktil bir hortum bulunur, arka uç sivri, macronukleus tespih tanesi gibi bir veya birçok kısımlıdır. 2 - Ordo - Spirotricha : Peristomun sağından veya ön kenarından cytopharynx’e inen adoral membranal bölge içeren tüm Ciliatlar bu grupta yer alır. Kirpikler kaynaşıp zar şekline dönmüştür. Sub Ordo 1- Heterotrichae - Kirpikler vücudun her tarafında eşit ve uzun sıralar oluşturacak tarzda dizilmiştir. Ayrıca ağzın bulunduğu bölgede cytopharynx.e kadar devam eden bir kirpik bölgesi vardır Stentor (Borozan Hayvanı) : Vücut huniye benzer biçimdedir. Ağızları vücudun geniş tarafında olan ağız çukurunun (peristom) dibindedir. Membranel bölgesi peristomun etrafını sardıktan sonra helezonlar teşkil ederek sitofarinse iner. 28 Genellikle kendilerini bir yere iliştirirler ancak buradan ayrılarak serbest yüzdükleri görülür. Macronukleus tesbih şeklinde olup micronukleus bir veya birden fazladır. Balantidium : Omurgalı (Domuzlarda) ve omurgasız hayvanların barsaklarında parazit olarak yaşar. Sub Ordo 2-Entodinomorpha : Sınıfın en kompleks grubudur. Vücudun arka ucunda değişen sayı ve biçimde dikenimsi uzantılar yer alır. Ağız bölgesinden başka diğer bölgelerde de membranal bölgeler vardır. Entodinium : Siller yalnız adoral bölgede yer alır. Sığır, koyun, deve vs. geviş getiren hayvanların sindirim sisteminde yaşar. Arka ucu uzantılıdır. Ophryoscolex : Arka uçtaki uzantıların dışında bazı türlerde ön uçta da diken çelenkleri vardır. Daha çok keçilerde bulunur. Stylonychia : Arka uçta 3 uzantı vardır. Tatlısularda bulunur. 3 - Ordo - Peritrichia : Siller diğer ordolara göre daha azalmıştır. Vücudun ön ucunda daire biçiminde peristom vardır ve burada etrafı sillerle çevreli iç ve dış sil kemeri oluşturur. Adoral bölgedeki siller dalgalı bir zar görünümünde. Bazılarında vücudun arka tarafında halka şeklinde sıralanmış siller bulunur ve genellikle vücutları bir sapta tutunmuştur. Çoğalmaları diğer Ciliatlardan farklı olarak boyuna bölünme iledir. Konjugasyonda görülür. Vorticella : Saplı ve çan biçimindeki vücutta siller yalnız ön tarafta iki sıra helezon oluşturacak tarzda dizilmiştir. At nalı şeklindeki macronukleus’un girintisinde küçük bir micronukleus bulunur. Sap ile kendini bir yere tutturur ve sapta bulunan esnek iplikler (miyonem) ile ileri geri hareket edebilir. Kontraktil vakuol bir tanedir. Vorticella microstoma - Pis sularda görülür. Vorticella nebulifera - Temiz sularda. 29 3 - Sub Class Suctoria : Gençleri serbest yüzer ve kirpikli Ciliatlara benzer. Ergin safhada silleri yoktur. Yerine emme tentakülleri meydana gelmiştir. Doğrudan doğruya veya sap ile kendilerini bir yere tesbit ederler. Sap kutikuladan yapılmıştır. Uzayıp kısalamaz. Bir adet oval biçimli uzun veya dallı macronukleus veya daha fazla sayıda micronukleus bulunur. Besin alma organelleri emme tentakülleridir, bunlar ektoplazmanın tüp şeklindeki uzantılarıdır. Stoplazmalar ekto ve endo olmak üzere ikiye ayrılır. Emme tentakülleri avın üzerine yapışır ve av felce uğratılır. Sonra da emilir. Eşeysiz çoğalma iç ve dış tomurcuklanma ile olur. Eşeyli çoğalma ve konjugasyon da görülür. Ephelota   gemmipara : Emme tentaküllerinden başka sivri uçlu tentakülleri de vardır. Denizlerde yaşarlar. SUB-REGNUM : METAZOA Protozoaların dışında METAZOA adı altında toplayabileceğimiz diğer hayvan phylumlarında vücut çok hücreden yapılmıştır. Gelişmeleri sırasında çeşitli embriyo tabakaları ve bunlardan da farklı organlar teşekkül eder. Phylum : PLACOZOA En ilkel çok hücreliler olarak kabul edilirler. 1883 yılında Avrupa.daki bir deniz akvaryumunda küçük, hayvana benzer serbest yaşayan bir canlı bulundu ve adına Trichoplax adhaerens dendi. Bu canlı, yassı vücutlu (bazen küremsi) 0.1-3 mm çapında, gevşek yapılı, kasılgan, mezenşime benzeyen ince iç hücreleri örtmüş monosilli epitel hücreleri ile çevrilidir. Kenar kısımları düzensiz, amipler gibi şekil değiştiren hücrelerden oluşmaktadır. Renksizdirler. Üzerindeki silleri ile çok yavaş olarak sürünür gibi hareket ederler. Bir hücreli ve algler ile beslenirler. Bölünme ve tomurcuklanma ile eşeysiz olarak çoğalırlar. DNA miktarı bugüne kadar bilinen hayvanların hepsinden daha azdır. Birçok araştırmacı bunları süngerler ile birlikte incelemeyi teklif etmektedirler. 30 Phylum : PORİFERA (Spongaria) Süngerler radiyal simetrilidir. Farklılaşmış bir organ sistemleri yoktur. İlk defa Aristo tarafından hayvanlar alemi içersine ilave edilen bu canlılar, sonradan uzun yıllar bitkisel organizmalar olarak kabul edilmiş hatta bazıları cansız olduklarını iddia etmiştir. 18. Asrın başlarında Zoophyta grubu içersine konulmuş daha sonra Linnaeus bunları Coelenterata grubu içersine yerleştirmiştir. 19. asrın başlarında phylum Porifera adı altında ayırt edilerek hayvanlar alemindeki bugünkü yerini almıştır. Ancak bugün bile süngerlerin sistematik yeri münakaşalıdır. Birçok araştırmacı tarafından Protozoa ve Metazoa gibi ayrı ve bunlara eşit anlamda Parazoa adı altında incelenmektedir. Süngerlerin çoğu denizde (larvaları hariç) sesil olarak yaşarlar. Ufak bir grubu (Spongilidae familyası) tatlı sularda bulunur. Sahillerde ve derin sularda kendilerini taşlar, mercan resifleri, bitkiler veya herhangi bir sert yüzey üzerine tesbit ederler. Çeşitli vücut şekilleri de (vazo, kadeh, torba veya şekilsiz kümeler halinde) bazen de çeşitli cisimlerin üzerini örten kabuk şeklinde olur. Boyları birkaç mm. ile iki m. arasında olup çok değişiktir. Renkleri genellikle kirli sarıdan (kirli beyaz, gri, yeşil, mavi, kırmızı, hatta) siyaha kadar olur. Genellikle çoğalan fertler ana hayvandan ayrılmayarak koloni meydana getirirler. Soliter yaşayanları da vardır. Bütün metazoonlardan çok daha ilkel bir yapı şekli ile Protozoa kolonisinden biraz daha ileri hücresel yapı gösterirler. Tüm çok hücrelilerin atası olan Protozoa.nın koloni teşkil eden flagellat grubundan süngerler alınmış ancak bir yan kol olarak kalmışlardır. Yüksek organizasyonlu hayvanlardan herhangi birinin süngerlerden gelmiş olduğuna dair bir kanıt yoktur. Uyarmalara karşı duyarsız olduğu sinir sistemi ve sindirim boşluğu bulunmayan tek Metazoa phylumu olduğu bilinmekteydi. Ancak son elektromikroskobik çalışmalarla bir sinirsel düzenlenmenin olduğu gösterilmiştir. 31 Basit yapılı bir süngerde vazo şeklinde olan vücut ortada geniş bir boşlukla bunun etrafını saran ince bir çeperden teşekkül eder. Sünger kapalı olan dip kısmıyla vücudunu bir yere tesbit eder. Serbest kalan taraftaki deliğe osculum ortada kalan boşluğa da osculum boşluğu gastral boşluk veya spongocoel denir. Sünger vücut hücreleri yapı ve görevleri farklı iki tabaka meydana getirir. Vücut çeperi gastral ve dermal olmak üzere iki tabakadan yapılmıştır. Gastral tabaka : Osculum boşluğunu çevreleyen bu tabaka bir epitel gibi yanyana gelmiş başka hiçbir grupta görülmeyen kamçılı ve hunili hücrelerden (choanocyte) yapılmıştır. Bunlar, kamçıların devamlı burgu hareketiyle osculum boşluğundaki suyu harekete getirir ve su ile birlikte sürüklenen besin maddelerini içlerine alarak sindirirler. Dermal tabaka : Bu tabakanın dış yüzeyi büyük ve yassı Pynacocyte (Pinakosit) hücrelerinden yapılmıştır. Bu hücrelerin arasında Porocyte denen por hücreleri bulunur. Por hücreleri dermal tabakasından başlayıp osculum boşluğuna kadar devam eden uzun hücrelerdir. Ortalarında hücre içi bir kanal uzanır ve kanalın bir ucu vücut yüzeyinden dışarıya diğer ucu ise iç boşluğa açılır (Bu kanala ostium adı verilir). Dermal tabaka esasında mezenşim karakterinde olup, esas kısmı peltemsi bir yapı gösteren ara madde yani matrixten yapılmıştır. Bu kısım içinde Amoebocyte hücreler yer alır. Amoebocyte hücrelerin çeşitli tipleri vardır. Örneğin cinsiyet hücrelerinin orijinini teşkil eden ve regenerasyonda rol oynayan archeocyte hücreleri; besin maddesini bir yerden diğer bir yere nakleden gezici hücreler ve sünger iskeletini teşkil eden skleroblast ve spongioblast hücreleri. Süngerlerde su vücuda porlardan girer ve choanocyteler aracılığı ile osculumdan dışarı atılır. Özel bir sindirim kanalı olmadığından choanocyteler tarafından yakalanan besinler burada sindirilir (hücre içi sindirim şeklinde). 32 Süngerlerin besinini mikroskobik organizmalar ve organik parçacıklar (ölmüş bitki ve hayvan artıkları) teşkil eder. Süngerlerde yapı bakımından 1- Ascon, 2- Sycon ve 3- Leucon olmak üzere üç tip ayırt edilir. Yapı bakımından basit olan sünger Ascon tipinde olanıdır. Bu süngerlerde gastral boşluk ile dış ortam arasında vücut çeperine kat eden kısa ve düz kanallar bulunur. Sycon tipte vücut duvarı içersinde tüp şeklinde çöküntüler meydana gelmiştir. Bu çöküntülerin etrafında choanocyteler yer alır. Leucon tipte vücuttaki mezenşim tabakası çok kalındır. Vücut duvarının içersinde odacıklar oluşmuştur. Bu odacıklar etrafında choanocyteler yer alır. Bütün sünger tiplerinde vücut desteğini sağlayan iskelet mevcuttur. Bu, spongin liflerinden yapılmıştır. İskelet genellikle iğne şeklinde spiküller veya ağdan yapılmıştır. Mezenşim içersinde yer alan özel hücreler tarafından meydana getirilirler. Spiküller kalkerli ve silisli maddelerden yapılmış olup skleroblast hücreleri tarafından meydana getirilir (Spiküller eksen ve ışın sayısına göre tiplere ayrılır ve buna göre süngerler arasında bir ayırım yapılır). Lif ağı şeklinde olan iskelet ise bileşimi kollagene benzer bir protein olan sponginden yapılmıştır. Spongin spongioblast adı verilen hücreler tarafından salınır. Çoğalma : Eşeyli ve eşeysizdir. Eşeysiz çoğalma 1. tomurcuklanma ile olur ve koloniler meydana gelir. Tatlısularda yaşayan süngerlerde iç tomurcuklanma yani gemmula adı verilen özel bir eşeysiz çoğalma görülür. Tatlısu süngerleri bulundukları suyun kuruması ve donması gibi uygun olmayan yaşama şartlarında ölmeye mahkumdurlar. Bu gibi hallerde tatlısu süngerlerinde gemmula (iç tomurcuklar) meydana getirilir. Gemmula teşekkül edeceği zaman özel arkeositler (Amoebocyteler) bir araya gelir ve dışında epidermis hücreleri bulunan toplu iğne başı gibi yuvarlak ve kabuğu değişik ortam şartlarına dayanıklı olan sarı renkli 33 tanecikler gemmula meydana gelir ve ortam şartları normale dönünce tam bir sünger halini alırlar. Gemmula teşekkülü kurak mevsimlerde tatlısu süngerlerinde türlerinin devamını sağlar. Diğer bir eşeysiz çoğalma 2. Regenerasyon.dur. Yaralanan ve kopan yer Amoebocyte ile tamir edilir. (Bununla birlikte yavaş da seyredebilir. Bazen aylar yıllar alır.) Parçalanan kısımlar Amoebocyte hücre yardımı ile hemen onarılır. 3. Eşeyli çoğalma: Yumurta ve spermalarla olur. Ekserisi hermafrodittir. Dışardan su ile birlikte gelen sperma evvela bir choanocyte içine girer ve buradan yumurtaya iletilir. Döllenme ana hayvanın mezenşimi içinde olur. Döllenmeden sonra segmentasyon başlar (totalegual). Çoğalan hücreler bir blastula meydana getirirler. Silli epitel ihtiva eden embriyo kanala geçerek ana hayvanı terk eder. Bir süre serbest yüzdükten sonra invaginasyon ile dış yüzeydeki kamçılı hücreler içe dönerek vücudun iç yüzeyini örter. Daha sonra kendini bir yere tesbit eden larva ergin bir sünger halini alır (zoocoğrafik dağılış bu yol ile sağlanmış olur). Süngerler diploblastik olmakla beraber embriyonun ektodermi ergin ferdin iç kısmını, endodermi ise dış kısmını örtmüş olur. Bu durum süngerlerin karakteristik özelliğidir. Solunum : Amoebocyte hücreleri O2 ’yi vücut mezenşimi içinde vücuda dağıtır. CO2 ’yi de dışarı atar ve solunumla ilgili olaylar hücre içinde cereyan eder (Protozoa gibi). Süngerler çok basit organizasyonlu olmaları nedeniyle yüksek bir regenerasyon yeteneğine sahiptir. İpek parçadan geçirilen süngerin her parçası yeni bir sünger meydana getirebilir. 3 sınıf ayırt edilir. 1- Class - Calcarea (Calcispongia) 2- " - Hexactinellide 3- " - Demospongia 34 1- Class - CALCAREA Spikülleri Ca2CO3’den yapılmıştır. Vücut yüzeyi sert kıllarla örtülüdür. Hepsi denizlerin derin olmayan kayalık sahillerinde bulunurlar. Birkaç milimetre ile 15 cm. kadar yükseklikte olan küçük formlardır. Grantia : 2,5 cm. boyunda basit silindir şeklindedir. Akdeniz ve Atlantik sahilinde bol bulunur. (Sycon tipinde iskelet kalkerden yapılmıştır.) Leucosolenia : Grantia’ ya benzer, daha küçük, kanal şekli daha karışıktır. Akdeniz (Çok sayıda türü var.) 2 - Class - HEXACTİNELLİDA : Camlı süngerler. Spiküllerini ya ayrı ayrı veya silisli bir madde ile lehimleyerek ağ meydana getirirler. Radiyal simetrili silis sipiküllerinden yapılmıştır. Euplectella   aspergillum : Venüs sepeti sıcak denizlerde yaşar (güzel görünüşlü). 3 - Class - DEMOSPONGİAE : Deniz ve tatlı sularda yaşar. Ticari önemi olan bütün süngerler bu gruptandır. En büyük süngerlerdendir. İskeletleri spongin denen ve bir çeşit protein olan keratin liflerinden meydana gelmiştir. Denizde yaşayan formlar 150 cm. kadar olabilir. Bazılarında silispikül vardır. Euspongia officinalis (Banyo süngeri) : Karışık yapılıdır. Spongin lifleri ve diğer anorganik maddeler ağ şekilli iskelet oluşturur. Lifler ıslakken yumuşak, kuruyunca sertleşir. (Hayvanın oluşumundan sonra canlı kısım parçalanır, döğülür ve hazırlanır.) Memleketimizde Akdeniz’den toplanır. Spongilla   lacustris : (Spongiller ağ tarzındadır) Kanal sistemli Leucon tipinde karışıktır. Büyük formlar hoş olmayan kokuları ince dikenli iskeleti ve tadı nedeniyle özellikle balıklar tarafından yenmez. Küçük formlar birkaç yıl büyükler ise 50 yıl veya daha fazla yaşar. Ayrıca bir 35 takım canlıların Annelid, Crustacea vs. barınağıdır. Sonuç olarak hücre tabakaları Diploblastik, coelom yok, metameri yok, sindirim sistemi, hücre içi morfolojik karakterleri farklılaşmış organ sistemi yok. PHYLUM : COELENTERATA Doku ve kısmen organların bulunduğu ilk hakiki metazoalardır. 1- Embriyolarında iki bariz hücre tabakası (diploblastik) mevcuttur. Kelime olarak coel= boşluk, enteron= sindirim sistemi anlamına gelir ki bu grubun üyeleri içi oyuk kese biçiminde ve 2- ışınsal simetrili vücut yapısına sahiptir. 3- İç kısım dışarıya bir ağızla açılan sindirim boşluğudur. Coelenterata adı da bu nedenle verilmiştir. Phylumun öteki adı knidaria ise bu gruba 4- özgü knidoblast ’ ların varlığına dayanmaktadır. Bu grubun bütün diğer yüksek organizasyonlu hayvanlarla aynı kökenden geldiklerine ve bunların atası olduğuna inanılmaktadır. Sebep olarakta yüksek organizasyonlu hayvanlar gibi bunların da dışarıya bir ağızla açılan iç sindirim boşluğunun varlığı gösterilmektedir. Protozoonların Ciliatlardan geldiğine inanılır. Çünkü Coelenterata larvaları (Planula) silli yapısı ve serbest yüzen tek hücresi ile Ciliatlara benzetilmektedir (Süngerlerde ise böyle bir durum yok yan dal halinde kalmış). 5- Bu grupta ilk gerçek doku gelişimi görülür. Aynı zamanda epitel, bağ, kas, sinir dokuları ve üreme organları bulunmaktadır. Sindirim boşluğunu kaplayan hücrelerin oluşturduğu tabaka (Gastrodermis) endodermden, dışını örtenler ise epidermis (ektoderm) dir. Yüksek organizasyonlu hayvanların aksine bu ikisi arasında mezoderm tabakasının hücresi yoktur. 6- Aradaki mesoglea denen, boşlukta hücresiz veya çok az hücre kapsayan jelatimsi bir matrix ile doldurulmuştur. Epidermis genellikle yassı bir hücre tabakası, dışı ince bir kutikula ile örtülü veya siller ve kamçılar içerir. Buradaki epitel kas hücreleri vücudun kontraksiyonunu sağlar. Özellikle ağız ve tentakül civarında duygu hücreleri dağılmıştır veya toplanarak duygu epitelini oluştururlar. Duygu hücrelerinden, bundan başka, ağız ve tentaküllerde 36 knidoblastlar yer almıştır. İntertestial hücreler tomurcuk ve diğer hücreleri oluştururlar. Bu phylumdaki (dimorfizm) hayvanların çoğunda iki tip fert görülür ve genel olarak bu, iki tip döl değişimi ile ortaya çıkar. Bunlardan sesil yaşayana polip serbest yaşayana meduz adı verilir. 7- Metagenez yani döl değişimi eşeyli ve eşeysiz çoğalmanın biri ardından tekrarlanmasıdır. Polipten eşeysiz olarak meduzlerin, meduzden eşeyli olarak poliplerin oluşumu metagenez olarak bilinir. Meduz vücudunun yanlarında küçük birer çıkıntı halinde gonadlar bulunur. Dişi gonad, yumurtaları; erkek gonad, spermaları meydana getirir. Döllenme suya dökülen spermatozoonların ovaryum içindeki yumurta hücresi ile döllenmesi sonucu olur. Polip tomurcuklanma ile eşeysiz olarak meydana gelir. Bazen meduz bazen de polip nesli bulunmayabilir. Tomurcuklanma en çok rastlanan çoğalma tarzıdır. Ayrıca 8- regenerasyon kabiliyeti çok yüksek küçük bir parça kısa bir zamanda bir fert oluşturur. Polip torba şeklinde olup ortada gastral boşluk ve bunu çevreleyen çeperden meydana gelir. Ağız peristom adı verilen bölgenin ortasındadır. Bunun aksi tarafı ile kendilerini tesbit ederler. Peristomun kenarında yakalama kolları tentaküller yer alır. Meduz ters dönmüş bir polip şeklindedir ve bir şemsiyeye benzer. Üst taraf Uxumbrella polip vücuduna, alt taraf subumbrella ise peristoma tekabül eder. Þemsiye sapının üzerinde kısa bir ağız borusu manubrium yer alır. Sub ve Uxumbrella sonunda tentaküller yer alır. Gastral boşluk çevresinde halka kanal ise basit ve dallanmış kanalları ihtiva eder. Bu phylumun en önemli özelliklerinden biri de knidoblast denen hücrelerin içinde yakıcı kapsüllerin (nematocyte) bulunuşudur. Yakıcı kapsüller mikroskobik hücre organlarıdır. Kitine benzeyen bir maddeden yapılmış ve dışında knidosil denen bir iğne taşır ve bu iğnenin besine dokunuşu ile nematosit dışarı fırlatılır. Fırlamada besin hayvanından gelen kimyasal etkenin olduğu zannedilmektedir. 37 Yakıcı kapsüller üç tiptir. 1- Penetrante : Öldürücü kapsüller (minyatür şırıngayı andırır fırlatıldığında hyphotoxin akıtır). 2- Volvante: Sarıcı kapsüller (avını ya paralize eder ya da öldürür). Kapsül içinde kapsüle bağlı bir ip var. Hayvana sarılır kaçmasını önler. 3- Glutinante: Yapışkan kapsüller (avlamadan başka hidranın takla atar gibi hareketinde tentakülün sert zemine yapışmasını sağlar). Vücut duvarında Ektoderm hücreleri arasında epitel kas hücreleri bulunur. Bunlar elastikiyeti sağlar. Vücudun ve tentakülün hareketi. Bundan başka peristom orta ağız sahası ile tentakül hücreleri üzerinde duygu hücreleri Bu hücreler ya toplanarak duygu epiteli teşkil ederler ya da epitel hücreleri arasına dağılmıştır. Duygu hücreleri sinir hücreleriyle irtibattadır. Bunlar polarize (kutuplaşma) olmadıklarından uyartıları her yöne naklederler. Beyin ve omurilik gibi merkezileşme yok. Ektoderm hücreleri arasında İnterstitital adı verilen enbriyonal hücreler de vardır. Bunlar knidositleri meydana getirirler, cinsiyet hücreleri değişirler, regerenasyon ve tomurcuklanma ile diğer hücre tüplerini verirler. Knidoblast hücreleri yakıcı kapsüller ihtiva eder. Endoderm kısmında çok vakuollü ve uçları ekseriya iki kamçılı hücreler bulunur. Bunlara besin hücreleri denir. Bunların arasında sayıca daha az olan bez hücreleri vardır. Avlarını canlı olarak yakalarlar. Yakalanan avlar evvela nemotocytler ile uyuşturulur, öldürülür ve sonra yutulur. Sindirim kısmen hücre içinde kısmen de hücre dışında yapılır. Vücut boşluğuna alınan madde endodermden çıkarılan enzimlerle kısmen sindirilir. Daha sonra besleyici hücre pseudopodlar ile besini hücre içine alarak (interselular olarak) sindirir ve besin maddesi diffüzyonla diğer hücrelere iletilir. Artıklar ağız yolu ile atılır. 38 Solunum: Suda erimiş 02 vücut duvarındaki ektoderm hücreleri ile alınır ve CO2 i dışarı verir. Endodermde bu olayı tekrarlar. 1) Hydrozoa, 2) Scyphozoa, 3) Anthozoa olmak üzere 3 sınıfa (class) ayrılır. 1. Sınıf HYDROZOA : Döl değişimi vardır. Ekto ve endoderm arasındaki ara tabakada hücre bulunmaz. Cinsiyet hücreleri ektoderm kökenlidir. Hem polip hem meduz dölü var. Bir hidroid polipin vücudu kaide, sap ve esas vücut kısmı olmak üzere 3 bölgeden yapılmış olup gastral boşluk ince bir tüp gibidir. Kaide, vücudu tesbite yarayan küçük bir tutunma kısmıdır. Koloni teşkil eden formlarda kaidenin etrafında zemin üzerine yayılan boru şeklinde uzantılar, stolon vardır. Stolon koloniyi sabit tutmaya yaradığı gibi tomurcuklanma ile üzerlerinde yeni fertler de oluşabilir. Soliter poliplerde stolon yoktur. Hidromeduz umbrellasının kenarında tentatüller bulunur. Bundan başka Uxumbrella ile subumbrella sınırında şerit şeklinde bir saçak (velum) vardır. Velum Obelia dışındaki hidromeduzlar için karakteristiktir. Meduzların sinir dokusu poliplere nazaran daha iyi gelişmiştir. Duyu organları genel olarak statositlerdir. Meduz ve meduzitler ayrı eşeylidir. Gonadlar manibriumun çeperinde veya radyal kanalların da altlarında bulunur. Cinsiyet hücreleri ekseriya dışarıya bırakılır. Döllenme ve gelişme nadiren ana hayvanın vücudunda olur. Meduzlar plankton (deniz yüzeyinde) halinde yaşarlar. Yalnız hidralarla bazı koloni teşkil eden formları tatlısuda yaşar. 1. Ordo - Hydroida : Umbrellaları genel olarak yüksektir. Gonatları manibriyum etrafında teşekkül eder. (Soliter veya koloni teşkil ederler). Kolonide iş bölümü vardır. Poliplerin bir kısmı besin almaya yarar (hidront); bir kısmı ise üremeyi temin eder. Buna üreme polibi gonangium denir. Üreme polibi 39 üzerinde cinsiyet fertleri gonoforlar meydana gelir. Hidroid poliplerinin koloni teşkil edenlerinde ektoderm kökenli bir kitin dış iskelet bulunur. Bu iskelet bazen sapların ve stolonların etrafını çeviren bir ince boru halindedir. Bunun dışında bazı hallerde hydrantların etrafında bir dış iskelet (hidroteka veya hydrotheca) bulunur. Bu şekilde hydrantlar tehlike halinde kendilerini teka içine çekebilir. Bazen tekalarda 1 veya daha fazla parçalı kapak bulunur. 1- Fam : Hydridae : Soliter yaşarlar. 5-6 tentakülden ibaret bir tentakül çelenkleri vardır. Gastral boşluk tentaküllerin içine kadar uzanır. Meduz dölü yoktur. Dünyanın her tarafında göl veya gölcüklerde yaşarlar. Teka bulunmaz. Hydra vulgaris : Tatlısuda yaşar. Hydra viridis Chlorohydra viridissima : Endoderm hücrelerinde simbiyont olarak yaşayan yeşil renkli zooklorelleri ihtiva ettiğinden yeşil renklidir, berrak suda yaşar. 2- Fam : Campannularidae : Hidrantların etrafında yer alan çan biçimindeki hidrotekaları ile tanınırlar. Obelia : Tek bir bireyle yaşama başlayan fert zamanla çok dallı koloniler meydana getirir. 3 - Fam : Sertullaridae : Sapsız olan hidrotekalar 1-4 parçalı kapak ihtiva ederler. Hydrantlar tamamen teka içerisine çekilebilir, tekalar karşılıklı ve dönüşümlü dizilir. Sertularella 4 - Fam - Plumularidae : Koloni dalları tüy şeklindedir. Hydrotekalar dallar üzerinde bir sıra üzerinde bir tarafı daha yapışarak dizilir. Kapak yoktur. Genellikle meduz dölü yoktur. (Eşeysel fertler meduzoidler halinde kolonilere bağlı kalır). Aglophenia 2 - Ordo : Siphonophora 40 Yüksek polimorfizm gösteren suda yüzen veya sabit olan bu grup şekilleri değişmiş polip ve meduz tipleri ihtiva eder. Zehirlidir. Physalia - Serbest yüzen en tehlikeli deniz analarındandır. Zehiri kobra yılanınkine yakın olup , büyük ızdırap verir. 2. Class : SCYPHOZOA Genellikle büyük deniz analarının bulunduğu gruptur. Vücutları 4 ışınlı bir radial simetri gösterir. Mezoglea tabakası hücreli bir jelatin tabakası halindedir. Eşey hücreleri endodermden oluşur. Döl değişim vardır. Ancak polip dölü gerileyerek önemini kaybetmiş meduz dölü önem kazanmıştır. Bu grupta (umbrellanın kenarında velum yoktur) Subumbrellanın ortasındaki dört köşeli kısa bir manibriumun ucunda dört köşeli ağız vardır. Ağzın köşe kısımları genellikle uzayarak kısa veya uzun olabilen ağız tentaküllerini meydana getirir. Sifo meduzlarda duygu cisimlerine rhopalium adı verilir. Vücut kenarları eşit bölmeler halinde loblara ayrılmış ve Rhopaliumlar kenar lopları arasındaki girintilerde yer almıştır. Bazılarında ışık verme kabiliyeti vardır. Birçoklarında mesoglea içinde zooksantel ve zookloreller yer alır. Hepsi karnivordur. Bu hayvanlar çana benzer vücutlarının açılıp kapanması, nabız atışı şeklinde bir hareketle yayılırlar. Vücutları kase, kadeh, borozan, kubbe, tabak, piramit, küp şeklindedir. Ordo - Semaeostomeae Umbrellanın tabak veya kase şeklinde olması ve kısa manibrium ile diğer ordolardan ayrılır. Aurelia (deniz anası): Bütün dünya denizlerine dağılmıştır. Ters dönmüş bir kaseye benzer. Aurelianın periferinde eşit bölümler halinde 8 lob bulunur. Bu loblar arasındaki girinti kısmında rhopalium denen 8 adet duygu organı yer alır. Subumbrellanın merkezinden kısa bir manibrium uzanır. Ortasında kase şeklinde ağız açıklığı bulunur. Manibriumdan 4 ağız tentakülü çıkar ve su içerisinde uzanır. Bu kollar üzerinde çok sayıda yakıcı hücre yer alır. Aurelia’nın besinini teşkil eden küçük 41 hayvansal organizmalar bu kolların yardımı ile yakalanır. Mide umbrella bölgesinin hemen hemen yarısını kaplayan at nalı şeklinde 4 gastrik cep ihtiva eder. Bu gastrik ceplerin iç yüzeylerinde de yakıcı hücreler yer alır. Gastrik ceplerin dış kenarlarında sekizi dallı bir kanal sistemi vardır. Bunlar periferde halka kanallarla birleşir. Bu sistem hem sindirim hem de sindirilen besinin sirkülasyonu ile ilgilidir. Üreme bilindiği gibi meduzlarda eşeylidir. Gastrik ceplerin tabanında parlak pembe renkte gonatlar yer alır. Bunlardan gametler teşekkül eder (Endodermden). Gametler olgunlaşınca gastrik cepler içine dökülürler ve buradan ağız yolu ile dışarı atılır. Yumurta suda döllenir ve az bir zamanda kirpikli bir planula larvası meydana gelir. Kısa bir süre serbest yüzdükten sonra kendisini sert bir zemin üzerine tesbit eder ve genç bir polip gelişir. Daha sonra polibin serbest ucunda enine bölünmeler ile tomurcuklar ephyra meydana gelir. Ephyra’ların kenarları 8 girinti ile parçalara ayrılmıştır. Az sonra her bir ephyra ana fertten ayrılır. Vücudun altı üstüne döner ve bu suretle serbest yüzen bir meduz meydana gelir. Ve aynı devrede devam eder. Aurelia   aurita   - 5-40 cm. boyda olup bütün Avrupa denizlerinde yaşar. Büyük sürüler teşkil ederler. 3. Class : ANTHOZOA (Mercanlar) 6000 türü ile en geniş sınıftır. Pharynx ve mezenterin gelişmiş olması ile farklıdır. Pharynx tüp şeklinde olup dış ortamı gastrovasküler boşluğa bağlar. Mezenter gastrovasküler boşluğun içinde septumlar biçiminde ve arada mezoglea bulunan iki gastrodermis tabakasından yapılmıştır. Bitki benzeri tamamıyla polip evresindeki sölenteratlar olup denizlerde yaşarlar. 6-8 veya çok ışınlı vücut bilateral simetrilidir. Yalnız polip dölü bulunur ve çoğu koloni halinde yaşarlar. Gastral boşluk oluşmuş bölmeler odacıklara ayrılmıştır. Mercanların hemen hemen hepsinde iskelet ektodermik veya mezenşimik olup ektoderm hücrelerinin kalkerli veya keratinli salgılarından meydana gelir. Çoğalmalar eşeysiz yani 42 tomurcuklanma ile veya eşeylidir. Eşey hücreleri endodermden meydana gelir ve ayrı eşeylidirler. Denizlerde bulunur. Soliter veya koloni halinde sesil olarak yaşarlar. Koloniyi bağlayan ana doku mezoglea ve gastrodermal tüplerdir ve koloninin alt yarısını yapıştırır. Mercan kayalıklarında olduğu gibi ölü iskeletlerinden oluşan resifler (üstündeki bireyler canlıdır) yuva ödevi görür. Sıcak denizlerde bulunurlar (Deniz gülü, deniz kırbacı, deniz yelpazesi, deniz kalemi, mercan başlıca örneklerdir). Phylum - CTENOPHORA (Taraklılar) Knidositleri bulunmayan sölenterlerdir. Yalnız iki tentakülleri vardır. Vücutlarının yanlız bir boşluk ihtiva etmesi, organ sistemlerinin bulunmayışı sinir sisteminin subepitel oluşu ile knidlilere benzerler. Denizlerde 100 kadar türü olup ceviz büyüklüğündeki küçük hayvanlardır. Bir jel kütleyi çevreleyen iki hücre tabakasından oluşurlar. Ekto ve endoderm arasındaki jel kütle mezogleaya benzer olup daha gelişmiştir ve içinde hücre bulunur. Dış yüzey tarağa benzeyen ektoderm kökenli 8 sıra kirpikle örtülmüştür. Bunların yardımı ile su üstünde hareket ederler. Vücudun üst kutbunda primer eksenin ucunda karmaşık yapılı bir duygu organı yer alır. Vücut yüzeyindeki tarak benzeri organlar radial simetrili, iç organları ise bilateral simetrilidir. Bu organ hücrelerine bağlanan 4 kirpik demeti ile dengelenen kalker tanecikler kirpiklere daha çok yüklenir ve duygu hücrelerini uyarırlar. Bu durum bazı kirpiklerin daha çok vurularak normal duruma dönmesini sağlar. Sinir sistemi epidermis altında yer alan dağınık bir sistem şeklinde olup bir ağ halindedir. Duygu organında kirpiklere uzanan sinir uzantıları vuruşları kontrol eder. Ağız vücudun alt tarafındadır. Sindirim boşluğu gastrovasküler boşluk halindedir. Sölenterlerden başlıca farklılıkları çok değişik larva gelişimine sahip olmalarıdır. Hepsi hermafrodittir. Çoğu parlak renklidir. Boşaltım sistemi henüz gelişmemiştir. Hem sölenterlerde hem de bu grupta büyük regenerasyon yeteneği görülür. Ktenoforların hepsi karnivordur. 43 Pleurobranchia   ileus - Az çok küre biçiminde ve 13 mm. boyda olup kuzey denizi ve Atlas Okyanusu.nda bulunur. COELEMATA (Bilateria) Sölomatlar bilateral simetrili muhtemelen yerde sürünen hayvandan türemiştir, çünkü bunların ağızları aşağı doğru yönelik olarak vücut ventral ve dorsalde farklılaşmış böyle olunca bileteral simetri doğmuştur. Duyu organları öne yönelmiş bunu sinir sistemi izlemiş ve hayvanın hareket ettiği yönde bir baş ortaya çıkmıştır. Organların oluşumuna mezoderm de katılmıştır ve mezodermle astarlanmış ikinci bir karın boşluğuna rastlanır (Coelom). Phylum : PLATYHELMİNTHES (Yassı kurtlar) Vücutları dorso-ventral olarak yassılmış, genellikle yaprak şeklinde ve yumuşak yapılı olan hayvanlardır. Tatlısu, deniz ve karalarda yani nemli ortamlarda serbest olarak yaşayan türlerden başka parazit olanları da vardır. Gastrodermis ve epidermis arası (blastocoel) mezenşim dokusu ile doldurulmuştur. Yassı kurtlar vücudun ventral bölgesinin orta kısma yerleşmiş tek açıklık olan ağızla, dışarı ile ilişkili bir gastrovasküler boşluğa sahiptir. Bu boşluk bazen dallanmış da olabilir. Dolaşım sistemi yoktur. Bu nedenle de sölenterlere benzerlerse de simetri durumlarının farklılığı, gonatların da taşıma kanallarının oluşu ve boşaltım organlarının varlığı ile onlardan ayrılır. En dışta epitel tabaka ve salgıladığı kutikula ile siller olup, vücut derilerinin altında bir epitel ve kas tabakası yer alır. Bu tabaka ile barsak arasındaki boşluk yıldız şekilli hücrelerin meydana getirdiği (ve aralarında boşluklar bırakan) blastocoel ile doludur. (Blastocoel intercelular boşluk bırakan yıldız şekli hücrelerden oluşmuştur ve bütün organlar bu doku içine gömülüdür). Sindirim sistemi sert bir yutak ve orta barsak olarak ayırdedilir. Anüs yoktur (ağız her iki maksatla da kullanılır). Torba halinde olan barsak parazit içermez. Boşaltım organı protonefridium tipinde ve dallı bir kanal sistemi halindedir. Protonefridiumlar yüzlerce alev hücresi içerir, çift ya da tek, bazen de çok 44 sayıda delikle dışarı açılır. Bu delikler vücudun karın tarafında ya da son kısmında bulunurlar. Protonefridiumlar vücudun su miktarını da düzenlerler. Sinir sistemi ağ şeklinde olup bazen de bir beyin ganglionu ile ondan çıkan sinir kordonları biçimindedir. Vücutları dışta ektoderm, içte endoderm ve bu iki tabaka arasında organların bir çoğunu meydana getiren mezodermden oluşur. Bu organlar kaslı bir yutak, basit gözler, duygu organları, bir beyin ganglionu, bir çift birbirine bağlı karın sinir şeridi ve üreme organlarıdır (ovaryum ve testisler, bunlarla ilgili kanallar, penis ve vaginadır). Sölenterlerin aksine yüksek organizasyonlu hayvanlar gibi bilateral simetrili olup belirli bir ön ve arka uca sahiptirler. Hareket vücut yüzeyindeki kirpiklerle, kısmen de toprak solucanlarına benzer şekilde kas kasılmalarıyla yapılır. I - Class - Turbellaria Tatlı su, tuzlu su ve rutubetli topraklarda serbest yaşarlar. Boyları 0.1-500 mm. arasında değişir. Fam: Planariidae :Yassı vücutludurlar,belirli bir baş bölgesi ayırdedilmez. Fakat ön taraf daha geniş olup duygu organı, göz, statosit, tentaküller içerir. Ağız karnın orta bölgesindedir. Başın iki yanı kulak gibi çıkıntılı olup, bazen iki yanında tat ve koku çıkıntıları bulunur. Düz bir boru halinde olan yutak (pharynx) bazen etrafı kas kılıfı ile çevrili ve ağızdan dışarı çıkarılarak ava sokulan bir boru halindedir.Derileri bir tabakalı yumuşak ve silli epidermis şeklindedir. Dışarı doğru kutikula salınmaz. Derideki kas kılıfı kontraksiyonu ile sürünerek hareket eder (karın tarafındaki yoğun siller yaşlanma sonucu azalır veya suda dalgalanarak yüzen planariadaki gibi). Sillerin hareketi vücut çevresindeki suyun hareketini dolayısı ile solunumu kolaylaştırır. Boşaltım organı protonefridiumlardır. Protonefridium vücudun iki yanında uzanan çok dallı iki kanaldan oluşur. Vücut dokusu içine kadar ulaşan ve bu kanallarla ilgili her bir küçük kanal ucunda kirpik demetine sahip olan alev hücreleri vardır. Üremeleri enine bölünme ile eşeysiz ve hermafrodit olduklarından karşılıklı döllenme ile eşeylidir. Hepsi karnivordurlar (böcek, solucan yer). 45 Turbelleryalarda çok yüksek regenereasyon kabiliyeti vardır. Solunum vücut yüzeyi ile yapılır. Planaria - Vücut benekli gri ve siyaha yakın renklerde olup 5-25 mm. uzunluktadır. Bunları bıçakla keserek öldürmek hemen hemen olanaksızdır. Bir planaryadan kesilip ayrılan en küçük parçalar bile yenilenme yetenekleri sayesinde eksik kısımlarını tamamlayarak yaşamaya devam ederler. Kesilen parçanın baş kısmına olan uzaklığı yenilenme yeteneğinin başarısını etkiler. Yenilenme, paranşim içinde yer alan neoblastlar tarafından yapılır. II - Class - TREMATODA Ergin haldeyken çeşitli hayvan ve bazen insanların iç organlarında parazit olarak yaşarlar. Yapı olarak turbelleryalara benzerlerse de parazit yaşamalarından dolayı konakçıya yapışmaya yarayan bir ya da daha fazla vantuza ve kirpikler yerine kalın bir dış tabakaya yani kutikulaya sahip olmaları ile onlardan ayırt edilirler. Turbellaryaların bütün hayat boyunca muhafaza ettikleri silli epitelleri trematodların sadece larva döneminde görülür. Yer yer diken ve pullar bulunur. Sindirim, boşaltım ve üreme organları turbellayalara benzer. Ancak ağız ön uçta yer alır. Genellikle hermofrodit hayvanlardır. Beslenmeleri ağız ve barsakla, büyük kısmında ise sadece vücut yüzeyi ile gerçekleşir. Ordo - Digenea Fam. Fasciolidae -Vücutları dorso-ventral yönde yassılaşmış olup, 10 mm. kadar büyüklüktedirler. Biri ağız çevresinde diğeri ise karın ortasında olmak üzere iki vantuzları vardır. Karın vantuzunun yeri familya ayrımında kullanılır. Cins-Distomum : Bu cinse bağlı türler geviş getiren hayvanlarda görülür ve karaciğer sülüğü veya karaciğer kelebeği olarak isimlendirilirler. Tesadüfen insanlara geçerek ölüme sebep olabilir. Distomum lanceolatum (Küçük Karaciğer Kelebeği): Ergin halde koyun, keçi, sığır, at karaciğerinde bulunur. Gelişme safhasında salyangoz ve 46 karınca olmak üzere iki ara konukçusu vardır. Boyu en fazla 1 cm. kadardır. Yassı vücutludur. Önde yer alan ağız bir ağız vantuzu (çekemi) içinde bulunur (geriye doğru barsağın uçları kapalıdır). Ağız vantuzunun gerisinde karın vantuzu yer alır. Parazit konukçu hayvana bu vantuz vasıtası ile tutunur. İki vantuz arasında eşey deliği bulunur. Hermofrodittirler. Bir çift olan testislerden çıkan kanallar birleşerek bir tek kanal (vas defferens) oluşturur ve penise açılır (Penis, penis kesesi içindedir). Dişi üreme organını küçük bir ovaryum, kısa bir oviduct ve uterus takip eder ve penisin yanından dışarı açılır. Bir fert binlerce yumurta meydana getirir. Yumurtalar konukçu hayvanın safra salgısı ile dışarı atılır. Yumurta açılır, içinde tam olarak gelişmiş sillerle örtülü bir miracidium larvası çıkar ve besini ile birlikte kara salyangozunun sindirim kanalına geçer, yumurta kabuğu erir; miracidium larvası serbest hale geçer ve orta barsak duvarına yerleşerek Sporosist meydana getirir (Bunun içinde ikinci bir sporosist dölü), daha sonra içerde serkaria dölü meydana gelir. Serkarialar vena vasıtası ile salyangozun solunum organı boşluğuna gelir ve burada (grup halinde) kistler oluşur. Her kistte 300 kadar serkaria vardır. Kistler solunum organından mukusla dışarı atılır ve otlara yapışır. Bu otu karınca (Formica) yerse metaserkariaya değişir. Bu hayvan koyun keçi vs. tarafından yenirse kist midede açılır ve mide duvarını deler. Vena yolu ile karaciğere gider, safra kanalına yerleşir ve erginleşir. Yumurtalar safra ile barsağa gelir, oradan dışkı ile dışarı atılır. Konakçının zayıflamasına ve ölümüne neden Fasciola   hepatica: Boyu 20-30 mm. kadardır. Koyun, keçi ve sığırların safra kesesinde bulunur. Halk arasında karaciğer kelebeği denir. Kutikula üzerinde diken gibi kabartılar vardır (kirpikli epitel). Dışkı ile konukçunun vücudundan atılan yumurtalar ancak su ile temas ettiği takdirde açılır ve içinden miracidium larvası çıkar (larva su içinde serbest yüzerken). Limnea cinsinden su salyangozuna girer, karaciğere yerleşerek sporosist oluşturur. Sporosistin içindeki embriyonal hücreler redia’ları 47 bunlar da serkariaları meydana getirir. Serkarialar salyangozun barsağı yolu ile dışarı atılır. Bunlar su kenarında bir bitkiye tutunur ve orada kist haline geçer. Otu yiyen konukçu hayvanın midesinde kist açılır, serkaria karaciğere geçerek safra kanalı ve kesesine yerleşir. Yumurtaları idrar yollarında iltihaba sebep olur. Distomum 5-6 mm. en çok 1 cm boyda olmasına karşın bunlar 20-30 mm. boyda olduklarından safra kanallarını kolayca tıkayabilir. Barsak Distomum.daki gibi iki kola ayrılarak aşağı iner ve yanlara doğru kollar oluşturur. Opisthorcis sinensis : (Çin karaciğer kelebeği) İnsan, köpek, kedi, fok ve balık yiyen memelilerin safra kanallarında bulunur. Miracidium ve serkarialar için ana konak salyangoz ve balıktır. Oryantal bölgelerde yaygındır (İnsan dışkısı karışmış sularla sulama nedeni ile) safra ve karaciğerde tahribat yapar. Echinostoma   (Schistosoma)   haematabium: Erkek büyük ve kalın vücutlu olup vücut ventralinde boydan boya bir yarık taşır. Dişi iplik şeklinde daha ince olup erkekteki bu yarık içinde yaşar. İnsanların toplardamarlarında parazit olarak bulunur. Sıcak ülkelerde ara konak su salyangozu olup özellikle pirinç tarlalarında su ile temastaki insan derisinden girerek yumurtalarını kana bırakırlar. Biraraya geldiğinde böbrekten atılamayıp iltihap ve kanamaya neden olur. III. Class - CESTODA (şeritler) Endoparazittirler. Ergin halde omurgalıların barsaklarında, nadiren karın boşluğunda parazit yaşarlar. Dar ve yassı şerit şeklindeki hayvanlarda önde başın bulunduğu kısma scolex denir. Scolex baş ve boyun kısımlarını kapsar. Bu kısımda parazitin konukçu hayvana tutunmasına yarayan çengel ve vantuzlar bulunur. Vücudun geride kalan kısmı seri halinde proglottis denen bölmelerden ibarettir. Proglottisler boyun kısmından tomurcuklanma ile meydana gelirler. Bu nedenle en yaşlı proglottisler en sondadır. Bunlar zaman zaman atılır. Bütün vücut yüzeyi kutikula ile örtülüdür. Kutikulanın altında sırasıyla kaide (bazal) membranı ve bunun altında dış tarafta halka, iç tarafta ise boyuna 48 uzanan kas liflerinden oluşmuş kas tabakaları bulunur. Bunun dışında parenşim kaslar da bulunur. Boşaltım organları protonefridiumlardır. Sinir sistemi başta enine bir ganglion ile geriye doğru uzanan iki sinir şeridinden meydana gelmiştir ki bunlar ana boşaltım kanallarının dışında uzanırlar. Barsak sıvısı içinde yaşadıklarından sindirim sistemi ve ağız yoktur besinlerini barsaklardan osmos yolu ile alırlar. Hermafrodittirler ve proglottislerin her birinde erkek ve dişi üreme organları vardır. Her bir proglottis kendisi ya da başka bir proglottis ile çiftleşebilir. Döllenmiş yumurta ile dolan proglottis kopar ve konakçı vücudundan atılır. Ordo- Cestodes Fam.- Taeniidae Taenia   solium: (domuz tenyası) Ergin halde insan ince barsağında yaşar. Ara konakçısı domuzdur. Ara konağın sindirim kanalına geçen yumurtanın kabuğu erir serbest kalan onkosfer (kancalı embriyo larvası) barsak epitelini delerek kas dokusuna geçer ve sistiserkus (kist) meydana getirir. Böyle bir domuz eti iyi pişirilmeden yenirse, kist barsakta erir, scolex dışarı çıkarak barsak duvarına tutunur. Bundan sonra proglottisler gelişmeye başlar. Ergin halde boyu 3-4 m. kadardır. Taenia   saginata : (Sığır tenyası) Bu şeridin ara konakçısı yalnız sığırdır ve ergin halde insanda bulunur. Sığır etinde bulunan larva şekline Cysticercus adı verilir. Larvalı sığır eti çiğ veya az pişmiş olarak yendiği zaman insanın ince barsağında 8-10 m. boyunda olan şerit meydana gelir. Pişmeden veya az pişmiş olarak yendiği zaman parazit alınmış olur. Domuz şeridine benzer ancak kanca yoktur. Bu şeritler besine ortak olarak insanı zayıflatır. B12 vitamini sömürür, fakat aynı zamanda meydana getirdiği toksik maddelerle kansızlık ve sinir bozukluklarına sebep olur. Parazitleri düşürmek için ilaç verilir. Ama scolex düşmedikçe 2,5 - 3 ay içinde şerit tekrar eski halini alır. 49 Echinococcus   granulosus: (Köpek tenyası) İnsanlar için en tehlikeli olan şerit köpek tenyasıdır. Ergin halde köpeklerde bulunan bu şeridin gelişmesinde ara safha koyunda ve insanda geçer. Köpekle oynayan bir çocuğu, köpek yaladığı zaman yumurtaları kolayca alabilir. Yumurtalar çiğ olarak yenen sebze ve meyvalardan da alınırlar. O zaman parazitin larvası insanın özellikle ak ve karaciğerinde bazen bir çocuk başı büyüklüğünde kistler meydana getirir. İçerisinde birçok scolex oluşur. Kistler çiğ et yiyen köpeklerin barsağında ergin şerit haline geçer. Bu parazit evcil hayvanlarda büyük ekonomik zararlara sebep olur. Kistler delindiği zaman kanla nakledilen scolexler vücudun başka yerlerinde yeni kistler meydana getirirler. Bunlar kalp ve beyine, diğer önemli organlara geçtiği zaman hastanın durumu çok ciddi bir hal alır. Kistlerin tedavisi ancak operasyonla mümkün olmaktadır. PSEUDOCOELOMATA Blastocoel ergin dönemde vücut boşluğu biçiminde gelişir, pseudocoel denen bu boşluk bütünüyle periton zarla astarlanmamıştır. Madde iletimi, azotlu atıkların depolanması, gametlerin gelişme ortamı, eşey bezleri ve organların gelişme ortamı görevlerini üstlenmiştir. Vücut örtüleri tek tabakalı epiteldir. Kaslı yutağın ve anüslerinin gelişmiş olması bu hayvanları Platyhelmintlerden ayırır. Regenereasyon yetenekleri yoktur. Phylum- NEMERTEA (Hortumlu solucanlar) Bazı literatürde class olarak alınmaktadırlar; en yakın akrabalarının Platyhelmintler olduğu düşünülmektedir. Platyhelmintler ile Annelid arasında özelliklere sahiptirler. Paranşime sahip olması, rhabdit benzeri salgı salgılayan silli epitel ile örtülü olması ile Platyhelmintlere, dolaşım sistemlerinin oluşması ve anüse sahip olmaları ile de Annelidlere benzerler. Vücutları yassı veya yuvarlak olup belirli bir baş bölgesi gelişmemiştir. Küçük bir gruptur (550 tür) hemen hepsi denizlerle serbest olarak yaşar. Parazit değillerdir; bu nedenle de fazla bir ekonomik önemleri yoktur; ancak evrimsel açıdan ilk organ sistemlerinin 50 görüldüğü bu grupta boy ortalama 5-20 cm. olup siyah ya da renkli çizgileri olan hayvanlardır. Gruba adını veren proboscis (hortum) vücudun ön ucuna açılan içi boş ve besin yakalanmasında kullanılan kaslı bir tüptür. Bu grupta görülen ilk önemli gelişme bir uçta besin almaya yarayan bir ağız aksi tarafta artıkların atılmasını sağlayan anüs ve arada bir özafagus ve barsakla tam bir sindirim sisteminin bulunmasıdır. Su ve metabolik artıklar yassı kurtlarda olduğu gibi alev hücreleri (protonefridium) ile atılır. Diğer bir gelişme sindirim ve dolaşım işlevlerinin ayrılması olup ilk dolaşım sisteminin bu grupta görülmesidir. Bu sistem vücut boyunca uzanan birbirine enine damarlarla bağlanmış kaslı 3 tüpten meydana gelmiştir. Kalp ve kılcal damarlar yoktur. Kırmızı kan hücreleri içeren gruplar vardır. Kan hareketi, vücut kontraksiyonu ve kaslı kan damarlarının kasılması ile olur. Vücudun ön ucunda sinir halkası ile birbirine bağlanmış iki grup sinir hücresinden (ganglion) meydana gelen bir beyin yer alır. Ayrı eşeylidirler. Regenereasyon yetenekleri var. Gelişmeleri metamorfozla olup larvasına "pillidium" larvası denir. Cerebratulus marginatus: Yassı vücutlu olup 30-40 cm. boydadır. Akdenizde yaşar. Memleketimizde Ankara tavşanlarında rastlanmaktadır. Aschelminthes 1. Phylum: Rotifera 2. Phylum: Nematoda 3. Phylum: Nemotomorpha 1. Phylum - ROTİFERA (Rotatoria) Bunlara döner solucanlar da denir. Bütün dünya deniz ve tatlısularda taban cisimcikleri üzerinde ve alglerde bulunur; bir kısmı da planktoniktir. 51 Laboratuvarlarda Protozoa kültürlerinde de rastlanır. Protozoonlardan daha büyük, mikroskobik hayvancıklardır. Vücutları baş, gövde ve ayak olmak üzere 3 bölgeye ayrılır. Vücut ince bir kitin tabakası ile kaplı olup genellikle arka uçta bir ayak yer alır. Hayvanın tespit edilebilmesi salgı bezleriyle olur. Başta kenarı sillerle çevrili bir disk organı vardır. Buna tekerlek organı da denir. Bu organ harekete ve besin almaya yarar. Rotatorlar saydamdır. Hareket halindeyken iç organları görülür. Ağızdan sonra kaslı farinx (mastax) gelir. Farinx, kutikular bir çeneye sahip olup 7 parçadan oluşmuştur. Öğütücü mide kitinden öğütücü dişler içerir. Daha sonra kaslı mide yer alır. Sindirilmeyen maddeler anüs ile sonlanan bir barsakla dışarıya atılırlar. Başaltım organı protonefridiumdur. İyi gelişmiş bir sinir sistemi vardır. Dişiler partenogenetik olarak çoğalabilirler. Yumurtalar döllenmeden gelişebilir. Erkekleri dişilerinden daha küçüktür. Rotifera’lar arasında şekil ve yaşadıkları yerler bakımından çok büyük değişiklikler vardır. Göl sularında bulunanların vücudu uzun yapılıdır. Arka kısımları çatal şeklindedir (bu hayvanlar ağızlarının etrafında bulunan kirpiklerle suda yüzerler ve solucan şeklinde hareketler yaparlar). Diğer bazı Rotifera’lar silindiriktir ve içinde yaşayabilmek için kendilerine bir kabuk örerler, bu şekilde dış etkilerden kendilerini korumuş olurlar. Bu durum onların çok yaygın olmalarını sağlar. Rotiferlerde yalancı bir coelom bulunduğundan Nematoda ve Gastrotrichia.larla çok yakın akrabalıkları olduğu kabul edilmektedir. Rotifer ve Gastrotrichialar sabit hücreli hayvanlardır. Embriyonik gelişme sonunda mitoz durur. Büyüme ve regenereasyon görülmez. Yalnızca birkaç gün yaşarlar ve yaşlanma başlar ancak günde birkaç saat sodyum sitrat içinde tutulurlarsa insanlardaki gibi yaşlanma nedeni olan kalsiyum tümüyle alınır ve yaşam süresi uzatılabilir. Bu alanda yapılacak deneyler ile insanın ömür uzunluğunun uzatılabileceği sanılmaktadır. Rotatorlar kuru olarak yani latent safhada yılarca canlı tutulabilir. - 272° C.da 8 saat yaşarlar. Bu nedenle deneylerde de kullanılabilirler. 52 Fam - Philodinidae Philodina - Tatlı ve durgun sularda serbest olarak yaşarlar. Sürünerek hareket eden birçok rotator ihtiva ederler. Fam - Brachionidae Gövde kase şeklinde olup vücudunda çıkıntı şeklinde küçük dikenler bulunur. 2. Phylum - NEMATODA Rotifera ve Gastrotrichia ile akraba oldukları ileri sürülmektedir. 10.000 den fazla türü olan bu grup üyeleri denizlerde, tatlısularda, toprakta bitkisel ve hayvansal çürümüş maddeler içinde bulunur. Gruplar farklı ortamlarda yaşamalarına karşın vücut organizasyonları çok benzer. Vücutları uzun ve segmentsizdir; ön kısmı yuvarlak arka kısmı iğ şeklinde sivri, yassı veya çatallıdır. Büyüklükleri çok değişir, serbest yaşayan gruplar 1 mm. kadardır, parazit yaşayan at barsak nematodu 35 cm., Floria medinensis ise 2 metredir. Çoğu hayvan ve bitki parazitidirler. Hemen hemen her toprakta ekonomik önemi büyük olan çok sayıda nematod Başta halka biçimli bir serebral ganglion buradan karın tarafına inen sinir kordonları bulunur. Nematodlarda sindirim sistemi düz bir boru şeklindedir. Ön uçta ağız, arkada anüs bulunur. Bilindiği gibi bu grupta vücut duvarı ile sindirim sistemi arasında yer alan vücut boşluğu, pseudocoel (yalancı boşluk) tipindedir (hakiki coelomda bulunan mezodermik tabaka yoktur). Vücutları kalın fakat çok esnek olan epidermis tarafından salgılanan kalın, üstü partiküllü birkaç tabaka olabilen kutikula ile kaplanmıştır. Silli epitel yoktur. Yalnız boyuna kasları gelişmiştir. Bu nedenle kolaylıkla yılan gibi sürünerek hareket ettikleri halde zorlukla yüzerler. Ergin devrede hücre bölünmesi (mitoz) durur. Ancak hayvan hücre büyümesi ile gelişir. Genç bir nematodun ergin hale gelmesi sırasında kutikula büyümeyi engeller. Bu nedenle kutikula periyodik olarak değiştirilir (gömlek 53 değiştirme). Bu bir nevi deri değiştirmektir. Bu grupta genellikle ergin oluncaya kadar 4 kez deri değiştirme görülür. Her organ belli sayıda hücre içerir. Regenereasyon yoktur. Nematodların çoğu ayrı eşeylidir. Bu durum hayvanlar aleminde ilk defa görülür ve eşeyli olarak ürerler. Erkek eşey açıklığı anüsten, dişinin ise ön ventral taraftan (bir çift olarak) açılır. Fam - Ascaridae - Oldukça kalın vücutludurlar. Ascaris lumbricoides   (barsak solucanı): İnsanlarla domuzların ince barsağında (30 cm. yuvarlak açık pembe renkli) yaşarlar. Ayrı eşeylidirler. Parazit yaşadığı için ağız ve anüs küçülmüş olup, dolaşım sistemleri Döllenme vücut içinde olur, erkekten alınan spermalar uterusa gelerek yumurtayı döller. Sert bir kabuk ile çevrilen yumurtalar yaşadığı hayvanın barsağına inerek dışarı atılır, yumurtaların gelişebilmesi için birkaç hafta nemli toprak veya suda kalması lazımdır. Yumurtalar henüz dışkı içinde iken içlerinde küçük kurtçuklar gelişir. Bu yumurtalar domuz veya insan besinine karışarak alınırsa ince barsakta açılır. Genç kurtlar ince barsağı delerek kan damarlarına buradan da kalp ve akciğere geçerek, bronşlara girerler. Oradan hava boşluğuna ve yemek borusuna tekrar bronşa geçerek erginleşirler. Genç kurtlar çok sayıda ise iltihap, sıtma, kanama gibi nöbetlere sebep olur. Bir dişi askaris günde 200.000 döllenmiş yumurta bırakır. Ascaris   megalocephala (at askarisi) 20-30 cm. boyda olup at barsaklarında parazittir. Fam. Anguillulidae Tarımda ekonomik önemi olan türleri içerir. Anguillula tritici : Buğday zararlısı Anguillula dipsaci : Çavdarda zararlı Heterodera : Pancar ve domateste zararlı 54 Fam. Filariidae İplik kalınlığında ince uzun vücutludurlar. Erginleri lenf dokularında yaşar. Birkaç cm. boydadır. Küçük larvalar kana karışır ve kan emen sineklerle yeni konağa geçer. Filaria - Çoğu bağ dokusu içinde genellikle derinin altında yaşar. Filaria bancrofti - İnsanların lenf sisteminde yaşar ve lenf damarlarını tıkar (Dokularda şişme görülür vücudun altı ve bacaklar şişer). Fil hastalığı elephantiasisi yapar. İnsandan insana geçimi sinek ile olur. Fam. Trichinellidae Trichinella   spiralis: Hayat devresinin bir kısmını insanda geçirip, domuz ve sıçan ince barsağında parazit olup kana, dokulara, çizgili kaslara geçip orada kalker kist oluşturur. Kurtçuklar birkaç yıl sonra yeni konukçuya geçer, kistler sindirilir. Larvalar ince barsakta erginleşir ve hastalık Trichinosis başlar, barsak çeperlerinin delinmesi ateş ve ishal yapar. İkinci safha larvalar kas dokusuna yerleşir. Kas faaliyeti durur. Ağrılar başlar ölüm görülebilir. Fam. Strongylidae - Vücutları silindir şeklinde bazen de iplik gibidir. Kenarları ekseriye dişli olan büyük bir ağız kapsülü içerir. Ancylostoma   duodenale   (Kancalı kurt) Anemiye neden olur. Erginler insan ince barsağında beş sene kadar kalabilir. Barsağın mukozası ile beslenir ve dişleri ile barsak tümörlerini eritir. Fam. Oxyuridae - Çok küçüktür. Gelişmelerinde taşıyıcı ara konak yoktur. Omurgalı hayvanlarla arthropodların barsaklarında yaşarlar. Ağızlarının kenarı düz veya dudaklıdır. Oxyuris - Çoğu 3 dudaklı olup dişilerde vücudun arka ucu iğne gibi uzun ve sivri, erkeklerin ise küttür. Oxyuris   vermicularis - İnsanlarda genellikle çocuklarda görülen parazitlerden biridir (dişiler 2-5 mm, erkekler ise 9-12 mm. boyunda olur). 55 Genç hayvanlar ince barsakta, erginleri kör barsak ve kalın barsakta yaşarlar. Genellikle geceleri yumurta ile dolu dişiler anüsten çıkarak anüs çevresine binlerce (13.000 kadar) yumurta bırakırlar. Normal halde bunlar gelişerek larvaları meydana getirirler. Larvalar henüz yumurta kabuğundan çıkmamış bir halde ağız yolu ile insana geçtikleri taktirde 14 günde ergin hale gelirler. Parazitlerin cilt üzerindeki hareketleri kuvvetli bir kaşıntı yapar. Bazen kaşınan yerlerden tırnak aralarına giren yumurtalar bilhassa küçük çocuklarda parmakların ağıza sokulması ile tekrar aynı konağa döner. Önemli enfeksiyonlara sebep olur. 3. Phylum - NEMATOMORPHA Vücutları iplik şeklinde ve çok uzun olan çoğunlukla kaynak sularında rastlanan kıl kurtlarıdır. İki uçta biraz yassılaşmış olan vücut silindirik bir yapı gösterir. Larva parazitken, erginleri serbest yaşar. Vücutları hipodermis tarafından salgılanan kutikula tabakası ile örtülüdür. Hipodermis bir hücre sırasından meydana gelmiştir ve altında hücreleri epitel şeklinde sıralanmış bir kas kılıfı yer alır. Kas kılıfı yalnız boyuna uzanan liflerden yapılmıştır. Vücudun ön ucunda bulunan ağız ya çok küçülmüş veya tamamen kapanmıştır. Barsak karın sinusunun içinden geçer. Bütün vücut boyunca uzanan sindirim borusu ergin hayvanlarda yer yer körelmiş olabilir. Bu hayvanlarda özel bir boşaltım aygıtı yoktur. Hepsi ayrı eşeylidir. Yumurtalarını suya ve su bitkileri üzerine uzun iplikler halinde bırakırlar. Yumurtalardan küçük larvalar çıkar, bunlar böcekler tarafından besin ile alınırlar. Larvalar bu hayvanların sindirim borusundan vücut boşluğuna geçerler ve orada metamorfoz geçirerek süratle ergin boya ulaşırlar ve konağı terk ederek serbest olarak kaynak suları içinde yaşarlar. Fam- Gordiidae (tel kurtları) Gordius aquaticus - Kahve renkli bir tel şeklindedir. Avrupada bulunur 56 PHYLUM - GASTROTRİCHA Rotiferlere çok benzerler, ancak tekerlekler organı yoktur. Vücutları karın tarafı yassı bir şişeye benzer. Ön uçları baş şeklinde arka uçları çatallıdır. Vücut yüzeyi ince bir kutikula ile örtülüdür ve yüzeyde diken, pul gibi çıkıntılar görülür. Vücut yüzeyinde bazı bölgeler (karın yüzeyi ve ön uca yakın kısım) sillidir. Karın tarafındaki silli bölge yan yana uzanan iki şerit meydana getirir. Baş kısımda da kamçılardan meydana gelmiş dört püskül bulunur. Deride birçok bezler vardır. Ağız ön uçtadır. Sindirim borusu düz olarak arka uca kadar uzanır ve anüs ile sonlanır. Boşaltım organı vücudun yanlarında yer alan 7 çift protonefridiumdur. Boşaltım kanalları dolanmaz, ancak çok kıvrımlıdır. Sinir sistemi ön barsağın yan kısmında yer alır, iki parçalı beyin ve bundan ayrılan bir çift sinir kordonundan meydana gelir. Ancak mikroskopta görülebilen küçük hayvanlar olup havuzlarda, durgun sularda ve çok azı denizlerde yaşarlar. Besinleri bakteri ve alglerdir. Bu phylumda da rotororlarda olduğu gibi hücre sayısı sabittir. Bir kısmı hermofodittir. Bir kısmı da partenogenetik çoğalan dişilerden meydana gelmiştir. Erkeklere PHYLUM - BRYOZOA (Yosun hayvanları) Bir kısmı yosunlara çok benzer diğer bir kısmı da kayalar üzerinde ince dantelli kabuklar şeklinde görünürler. Genellikle koloni meydana getiren sesil hayvanlardır. Bazı türler kalsiyum karbonattan meydana gelen koruyucu bir kılıf salgılarlar. Ağız; üzerinde tentaküller bulunan daire veya at nalı şeklinde lopofofor adı verilen bir kenarla çevrelmiştir. Sindirim borusu "U" harfi şeklindedir (bu sebeple anüs ağıza yakındır). Hermofrodit hayvanlardır. Tatlısuda yaşayanlar statoblast adı verilen tomurcuklanma ile ürerler. 2 gruba ayrılırlar: 1. Entoprocta, 2. Ectoprocta 57 1. Entoprocta- Hakiki karın boşluğu (Coleom) yoktur. Yerine yalancı coelom (Pseudocoelom) mevcuttur. Anüs lopofoforun içindedir. 2. Ectoprocta- Gerçek coelom vardır ve anüs açıklığı lopofoforun dışında kalır. Kolonilerinde avicularium adı verilen ve kuş gagasına benzeyen bir organ bulunur. Kaslarla hareket eder ve ses çıkararak açılıp kapanır. Küçük hayvanların koloni üzerine yerleşmesine engel olur. PHYLUM - BRACHİOPODA (Kandil kabuklular) Kökeni eski devirlere dayalı, kaslarla açınıp kapanan ve kalsiyum karbonattan meydana gelmiş kabukları ile midyelere benzerler. Ancak midyelerde kabuk vücudun sağında ve solunda, bu grupta ise hayvanın altında ve üstünde yer alır. Alttaki kabuk bir sap kısmı ile sağlam bir zemine tutunur ve hepsi denizde yaşar. Sesil hayvanlardır. Jeolojik devirlerde çok daha zengin (3.000 tür) tür sayısına sahip olmakla birlikte bugün 200 kadar türle temsil edilirler. Ağızın iki yanında sillerle çevrilmiş lopofofor kolları tentakülleri bulunur. Boşaltım organları sindirim sistemi kontraktil çalışan kalp, gerçek coelom boşluğu vardır. Yumurtadan çıkan larva sillerle örtülüdür. COELOMATA Bu hayvanlar periton denen mezodermal zar ile yani epitelle tamamen çevrilerek astarlanmış ikinci bir karın boşluğu içerirler. İç organlar bu boşluk içinde yerleşmiş yine peritonla astarlanmışlardır. Coelomatlar ergin dönemde bilateral simetrilidirler. PHYLUM - ANNELİDA Tatlısu, deniz ve karada yaşayan halkalı kurtların bir kısmı diğer hayvanlarda parazittirler. Vücut homonom segmentlere ayrılmıştır. Gerçek coelom ve mezoderm (schizocoel) ihtiva ederler. Sindirim, boşaltım, üreme ve sinir sistemleri vücut boyunca uzanır veya kısmen metameri gösterir. 58 1. Annelitlerde deri ve kas çok iyi gelişmiştir. Vücut en dışta epidermisin bir salgısı olan kutikula ile sarılmıştır. Bunun altında tek tabakalı bir epidermis bulunur. Ondan sonra halka kaslar daha sonra da boyuna kaslar yer alır. 2. Sindirim sistemi Genel olarak önde ağızla başlayan ve anüsle sonlanan uzun bir boru şeklindedir. 3. Dolaşım sistemi kapalıdır. Barsağın üstünde, mezenter içinde uzanan kontraktil bir sırt damarı ile barsak ve karın sınırı arasından geçen bir karın damarından meydana gelir. Sırt ve karın damarı vücudun ön ve arkasında birleştikleri gibi her segmentte bu iki damarı birbirine birleştiren halka şeklinde damarlar vardır. Bazı hallerde sırt damarından başka halka damarlardan bazıları da kontraktil olabilir. Bu taktirde bunlara kalp adı verilir. Kan sırt damarında arkadan öne doğru karın damarında da önden arkaya doğru akar. Kan plazmasında az miktarda kan hücresi ve erimiş halde hemoglobin bulunur. Annelitlerde damar sistemi olmayan birkaç basit form da mevcuttur. 4. Solunum, deri ve bazı sucul gruplarda solungaçlarla yapılır. 5. Boşaltım organı segmental sıralanmış nefridium’lardır. Her segmentte bir çift nefridium vardır. Organları silli bir huni (nefrostom) ile coelom boşluğundan başlarlar ve huninin devamı olan silli boşaltım kanalı da aynı segmentten veya onu takip eden segmentin ventral kısmından dışarıya açılır. Nefridiumlar boşaltım maddelerinden başka coelom boşluklarına geçen eşey hücrelerini de dışarı taşırlar. 6. Sinir sistemi vücudun ön kısmında bulunan bir çift serebral ganglion ile başlar. Buradan ayrılan iki konnektif yutağın etrafını bir halka gibi sardıktan sonra ilk segmentin ventral bölgesinde yer alan karın ganglion çifti ile birleşir. Vücut boyunca her segmentte 1 ganglion çifti bulunur. Bir önceki segmentte bulunan ganglion çiftlerini birleştiren sinir ipliklerine konnektif, aynı segmentte bulunan iki ganglionu birleştiren ipliğe komisur denir. Annelitler ve Artropodlar için karakteristik olan bu tip sinir sistemine ip merdiven sinir sistemi denir. 59 7. Üreme, ayrı eşeyli veya hermafrodit olabilir. Bazı türlerde eşeysiz üreme de görülür. Gelişmelerinde bazı gruplarda sillerle kaplı bir trochophora larva evresi vardır. 8. Mezodermik orijinli olan coelomun içi bir epitel tabakası ile örtülü olup gerçek bir karın boşluğu meydana getirir. Vücut ile barsak arasında kalan coelom boşluğu yani epitel tabakanın barsağa dayanan kısmına splanchopleura, vücut duvarının kas kılıfına dayanan kısmına ise somatopleura adı verilir. 9. Annelitlerde genelde yüksek bir regenereasyon yeteneği vardır. I. Class- POLYCHAETA l. Hemen hemen hepsi denizlerde yaşayan, hafifçe dorso ventral yassı kurtlardır. 2. Belirli bir baş bölgesi vardır. Çenenin değişimi ile meydana gelmiş olan pharynx çevresinde prostomium ile örtülen bir peristomium gelişmiştir. Başın ön kısmı çevresinde 4 çift tentakül var. 3. Parapodiumun bulunması ile karakteristiktir. Parapodun üzerine çok sayıda kitin kıllar (setae) bulunur. 4. Kan kırmızı renkte olup nedeni kan sıvısında erimiº halde bulunan hemoglobin ve ameobosit hücreleridir. 5. Ayrı eşeylidirler. Her üreme mevsiminde coelom epitelinden geçici olarak ovaryum ve testisler meydana getirilir. Döllenme suda olur. Yumurtadan trochophor larvası çıkar. Sub.Class - Errantia Farinkslerini torba gibi ağızdan dışarıya uzatılabilir ve genellikle kitin çene veya diş ihtiva eder. 1-2 çift gözleri vardır. Vücut homonom segmentlidir. Geçici olarak borular içerisinde yaşıyorlarsa da genellikle serbest hareket ederler. 60 Fam. Nereidae Nereis Nereis diversicolor - (deniz kurdu) 8-8.5 cm. boyda olup. Avrupa denizlerinde bulunur. Nereis virens - Kum kurdu veya midye kurdu. Sub.Class - Sedentaria Segmentlere göre vücutları 2 veya 3 farklı bölgeye ayrılır. Gözleri ya çok küçüktür veya hiç bulunmaz. Devamlı olarak boruların içinde yaşarlar. Bazıları kuma gömülürler. Arenicola Arenicola marina - Boyu 12-15 cm. olup olta yemi olarak kullanılır. Akdeniz ve Atlas Okyanusu.nda yaşar. II. Class - OLYGOCHAETA 2000 kadar türü vardır. Tatlısularda ve nemli toprakta yaşar. Belirli bir baş bölgesi yoktur. Yarık biçiminde olan ağız ön uçta, anüs ise arka uçta yer alır. Barsak bütün sırt boyunca uzanan typhlosolis adı verilen girintiye sahiptir. Bu yapı barsakta emilim yüzeyini arttırmaktadır. Barsağın etrafında yer alan Chloragen hücreleri, karaciğer gibi ödev görüp, glikojeni sentez ve depo ederler. Class’ın ismi harekette rol oynayan Setae’lardan ileri gelir. Setaeları kaslar hareket ettirir. Parapod bulunmaz Polychaetlerden farklı olarak hermafrodittirler. Bununla birlikte eşeysiz çoğalan türler de vardır. Her solucan hem dişi hem erkek olabilir. Ancak döllenme vücut içinde olur. Yumurta içinde küçük bir solucan gelişir. Gelişmeleri esnasında, trochophor larvası yoktur . Olygochaetaların en belirgin özelliklerinden biri genellikle eşeysel olgunlaşma sırasında delikler civarında, 6, 7 segmenti kapsayan ve vücudu bir halka gibi saran clitellumun bulunmasıdır. Gelişme sırasında bir madde salınır. Bu, karından birbirine dönük olan hayvanların birbirine bağlanmasını sağlar. Bu kısımda ortalama 32. segmentten geriye 6-7 segmenti kapsar ve burada epidermis çok bezli ve şişkin bir hal alır. Her 61 segmentte kısa kitin setalar vardır. Clitellumda intersegmental boğumlar ve kıllar belirsizleşir veya tamamen kaybolur. Vücut yüzeyi ince bir kutikula ile örtülüdür. Bunun altında epidermis daha içte biri halka şeklinde diğeri de boyuna uzanan liflerden meydana gelmiş 2 kas tabakası ve coelom epiteli bulunur. Karada yaşayanlarda bazı segmentlerde sırt tarafta birer por bulunur. İç tarafta coelom boşluğuna açılan bu porlara coelom ve sırt porları denir. Kuruma tehlikesi olduğu zaman coelom sıvısının bir kısmı buradan dışarıya verilerek derinin nemli kalması sağlanır. Yüksek regenereasyon kabiliyetleri vardır. Besinleri Fam. Tubifidae Çok ince yapılıdırlar . Tubifex tubifex Tatlısularda. Suların dibinde başları dip çamuruna gömülü arka uçları serbest olarak yaşarlar. Boyları 8,5 cm. kadar olabilir. Fam. Lumbricidae - (Toprak solucanları) vücut kılları S şeklinde kıvrık ve sivri uçludur. Her segmentte 8 kıl bulunur. Bunlar yanlarda birer çift boyuna sıra teşkil edecek şekilde sıralanır. Dişi genital por 15, erkek genital porları ise genellikle 14’üncü segmentten dışarıya açılır. Lumbricus terrestris - Boy 30 cm. segment sayısı 140-180 kadar tarla ve bahçe toprakları içinde bulunur, clitellum 31-37 segmentler arasında yer alır. L. rubellus - Boy 15 cm. kadar, clitellum 26-32 segmentler arasında yer alır. Genellikle çürümüş yapraklar arasında bulunur. III. Class - HIRUDINEA Parazittirler ve vücutları sabit sayıda segment içerir. Derilerindeki sekonder bölmeler sebebiyle her iç segment dışta 2-14 halka gösterir. Hirudo medicinalis eskiden beri tıpta kullanılır. Vücutta belirgin bir baş bölgesi yoktur. Bugün bu hayvanlardan elde edilen hirudin maddesi kanın pıhtılaşmasını önlediğinden geniş ölçüde faydalanılmaktadır. Sülükler tatlısularda yaşarlar. Vücutları dorso ventral yassılaşmıştır. Vücudun her iki ucunda anterior ve posteriorde birer vantuz bulunur. 62 Sülükler vantuzlarla tutunarak ileri doğru hareket eder. Ön vantuzun içinde ağız, ağzın arkasında 3 köşe teşkil edecek şekilde sıralanmış 3 kitin diş bulunur. Bu dişlerle yara açıp kan emer. Kan emenlerde tükrük bezi salgısı kanın pıhtılaşmasını önleyen ferment içerir. Sindirim kanalında yan cepler vardır. Bunun için bir defa kan emince aylarca besin almadan yaşayabilir. Hermafrodittirler (Eşeysiz çoğalmazlar). Paraziter yaşama uygun olarak Parapodium veya setaeları yoktur, regenerasyon kabiliyetleri çok azdır, Trochophora larva dönemi Fam. Hirudinidae Hirudo medicinalis - Tıpta kullanılır. Boyu 15 cm. kadardır ve tatlısularda yaşar. Limnatis nilotica - 8-10 cm. boyda olup çeşme yalaklarında yaşar, memeli ve insana geçer. Burun ve ağız boşluklarına yapışarak kan emer. Phylum - ONYCHOPHORA Tropik bölgelerde yaygındırlar. Taşlar altında ağaç kovuklarında rastlanan geceleyin faal olan hayvanlardır. Vücut annelitlere benzer şekilde homonom segmenlidir. Ancak bu segmentler dış boğumlarla birbirlerinden ayrılmadıkları için dıştan görünmezler. Taşıdıkları üyeler segmentlerin yerini işaret eder. Ayrı bir baş bölgesi yoktur. Vücudun ön kısmında ventral olarak yerleşmiş ağız ve yanlarında papillalar bulunur (dorsalde anten gibi bir yapı). Dorsalde göz yer almıştır, ayaklar poliket parapodlarını andırır. Ancak yürümeye yaradığından homolog değildir. Ayrı eşeylidirler. Döllenme ve yumurtaların gelişmesinin bir kısmı vücut içindedir. Dolaşım açık olup kalp dorsaldedir. Kan kısmen hemocoel içinde dolaşır. Solunum püskül trakelerle olur. Boşaltım organı nefridiumlardır. Bu özellikleriyle arthropodlar ile annelitler arasında bir karakter gösterirler ve Arthropodaya geçişi oluştururlar. Fam. Peripatidae 63 Peripatus - Boyları 5 cm. olup geceleri faaldirler. Phylum - ARTHROPODA (Eklem bacaklılar) Karada, tatlı ve tuzlu sularda, havada yaşarlar. Ekvatordan kutuplara kadar geniş bir yayılış alanına sahiptirler. Arthropodlar, homonom segmentli olan annelidlerin aksine Heteronom segmentlidirler. Yani embriyo dönemlerinde muhtelif vücut bölgelerindeki segmentler değişik şekilde gelişerek bir takım bölgeler meydana getirmiştir. Bu bölgeler baş , toraks ve abdomen olmak üzere üç kısımdır. Arthropodlardaki simetri, annelidlerde olduğu gibi, bilateraldir. Hareket değişik sayıdaki segmentlerden yapılmış bacaklarla sağlanır. Kasları enine çizgilidir. Kontraksiyon süratli olduğundan, hareket de çabuk olur. Deri, kutikula ve Ca tuzlarının birikimi ile olağanüstü sertleşmiş ve bir dış iskelet meydana getirmiştir. Dış iskelet harekete engel olmamak için segmentler arasında kesintili olup yerini ince deri kıvrımlarına bırakır. Kaslara destek ödevini görür, zaman zaman atılır ve alttaki deriden yeniden meydana getirilir ki buna deri değiştirme denir. Böylelikle dış iskelet hayvanın büyümesine engel olmaz (her larva ergin hale gelinceye kadar belirli sayıda deri değiştirir. Bu sayı türe, sıcaklığa ve besine göre değişik olup 5-7 kadardır. Lahana kelebeğinde sıcaklığa göre 3-5, güvede ise besine göre 4-40 defa deri değiştirilir). Arthropodlarda her segmentte bir çift ekstremite yer alır. Ancak birçok grupta segmentler kaynaşmış olup dolayısıyla ekstremite sayısı segment sayısını belirler. Başta: Antenler, ağız ekstremiteleri ve gözler bulunur. Toraksta yer alan ekstremiteler hareketi sağlar ve çeşitli gruplarda yürüme, çoğalma, duygu organı, koşma gibi çok değişik görevleri görür. Sindirim borusu vücut boşluğunda serbest olarak uzanır. Dolaşım sistemleri açıktır. Kan kısmen damarlarda kısmen de vücut boşluklarında dolaşır. Boşaltım organları koksal bezler, maksil bezleri, anten bezleri veya böceklerde olduğu gibi malpiki boruları şeklindedir. 64 Solunum suda yaşayanlarda solungaç veya boru ve kitap şeklindeki trakelerle yapılır. Sinir sistemi beyin, yutak konnektifi ve karın ganglionlarından meydana gelmiştir. İp merdiven şeklindeki duyu organları iyi gelişmiştir. Antenler, basit ve bileşik gözler işitme organları ve denge organları bulunur. Ayrı eşeylidirler. Döllenme genellikle içte olur. Bazılarında partenogenez de görülür. Genel organizasyon ile Arthropodalar muhtemelen Annelidaya benzeyen vücudu segmentli kurt (larva) gibi bir atadan köken almışlardır. Bu köken canlıda, çok basit yapılı olan baş muhtemelen duyu kıllarını taşımaktaydı. Ağız ventral tarafta yerleşmiştir. Prostomiumun gelişmesindeki ilk basamak bir çift ventral üye yeni bacakların her vücut segmentinde meydana gelmesi ve hareketin buna ilavesidir. İkinci aşama da buna paralel biçimde başta duyu organları olan göz ve antenlerin gelişimidir. Phylum Oncopoda ve Onycophoranın yaşayan örnekleri bunu göstermektedir. Arthropoda evriminde üçüncü basamak bacakları oluşturan kısımların birbiriyle eklem oluşturacak biçimde bölümlere ayrılmasıdır. Bu gelişme birinci çift extremitelerin ağıza gıda atmaya veya almaya yarayacak şekilde gelişmesini dolayısı ile birinci vücut segmenti ile başın birleşmesini sağlamıştır. Trilobita’da anten ve gözler bu kademede iyi gelişmiştir. Bu kademeye yakın bir noktada Arthropodalar farklı iki dala ayrılır. Birinci grup Cheliserata yani örümceklerin bulunduğu grup diğeri ise (Insecta) böcekler Mryapodlar ve Crustaceae.leri içeren Mandibulata.dır. Günümüzde yaşayan eklembacaklılar iki altşubeye ayrılırlar. Antensiz olanlar keliser (cheliser) taşımaları nedeniyle Chelicerata altşubesine dahil olup bu grupta akrepler, örümcekler ve akarlar yer alır. Anten taşıyanlar ise, ağızın gerisinde yer alan ilk üye çiftinin mandibula olması nedeni ile Mandibulata altşubesi içerisinde incelenirler ve bu grup içerisinde böcekler, kabuklular, kırkayaklar ve çıyanların bulunduğu myriapoda grubu yer alır. 65 Zoologların çoğu böyle bir gruplandırmayı kabul etmektedir. Bununla birlikta bazı sistematikçiler Mandibulata altşubesi, birbirleri ile yakın akrabalıkları olmadıkları ileri sürülen grupları içerdiğinden yapay bir birlik oluşturmaktadırlar. Büyük bir olasılıkla Arthropoda evriminde, Mandibulata ve Chelicerata şeklinde iki daldan çok dört ana dal mevcuttur. Bu dallar; Trilobita (soyu tükenmiş), Chelicerata, Crustacea ve Uniramia altşubeleri ile temsil edilmektedir. Uniramia içerisinde kırkayaklar, çıyanlar ve böcekler yer alır. Diğer üç altşubenin üyeleri sucul olmasına karşın Uniramia karada evrimleşmiştir. Uniramia türleri mandibula ve bir çift anten taşırlar; Uniramia ismi bu hayvanların üyelerinin dallanmamış olduğuna ya da dallanmamış atasal bir üyeden köken aldığına işaret Bazı görüşlere göre, Uniramia üyelerinin ya da tüm altşubelerin farklı Annelida benzeri atadan köken aldığına ilişkin, karşılaştırmalı morfolojiden elde edilen bazı kanıtlar vardır. Eğer bu doğru ise, Arthropoda superphylumu (üstşube) olarak düşünülüp, Trilobita, Chelicerata, Crustacea ve Uniramia, şube (phylum) düzeyine yükseltilebilir. Arthropoda.nın polifiletik olduğu görüşünü bazı uzmanlar ve özellikle bir çok entomolog kabul etmemektedir. Arthropoda phylumunun sistematiği 1. Sub.phylum TRİLOBİTOMORPHA 2. Sub.phylum MANDİBULATA Class : Crustacea Sub.class : Entomostraca Sub.class : Malacostraca Grup Myriopoda Class Chilopoda Class Diplopoda Class Symphyta Class Pauropoda 66 Class Insecta 3. Sub.phylum CHELİCERATA Subphylum - TRİLOBİTOMORPHA (Fosil Formlar) Class - Trilobita Bütün arthropodlar içerisinde en ilkel gruptur. Hepsi denizlerde yaşamış olan bu grubun bugün yaşayan temsilcileri yoktur. Toraks segmentlerinde 1’er çift üye vardır. Son segment üyesiz telsondur. Başta 1 çift anten vardır. Sonra gelen 4 segmentin her biri segmentli üye taşır. Bu grupta vücut tipik olarak birisi dorsal, diğeri ventral, diğer ikisi de yanlarda olmak üzere 3 bölge halindedir ve bu bölgelerin herbiri lobus olarak adlandırılmıştır. Bu nedenle trilobit denmiştir. Subphylum - CHELİCERATA Vücut Cephalothorax (Baş ve toraks) ve abdomen olmak üzere iki kısımdan oluşmuştur. Cepholothorax’da 6 çift ekstremite bulunur. Bunlar : 1. çift Chelicer (ağızın ön tarafında) 2. çift Pedipalpus 3.- 6. çift Yürüme bacağı I. Class - Arachnida 1. Ordo - Scorpionida (Akrepler) Cephalothoraks 6 segmentlidir, abdomen iki kısım olup preabdomen 7, dar ve uzun olan post abdomen 6 segmentten oluşur. Abdomen Cephalothorakstan büyüktür, cephalothorax abdomene bütün genişliği ile bağlanır. Oldukça gelişmiş olan pedipalpusların dip tarafı geniş olup besinin ağıza alınmasına yardım eder. Pedipalpusun uçları kıskaçlıdır (örümcekten farkı) avlarını pedipalpleri ile avlar chelicerleri ile parçalayıp yerler. Chelicer ise küçük ve ucu makas şeklindedir (3 parçadan yapılmıştır). Postabdomenin son segmentindeki telson kısmında zehir iğnesi ile zehir bezi yer alır. Preabdomenin ventralinde 1. sternitin 67 ortasında genital kapak, genital delik ve 2. sternit üzerinde pectin adı verilen dokunma ve bulma organı olarak kabul edilen bir çift tarak bulunur. 3, 4, 5 ve 6. sternitte kitap trakelerine ait birer çift solunum deliği vardır. Akreplerde yürüme bacaklarında göze çarpan özellik ön bacakların diğerlerine göre küçük oluşudur. Cephalothoraks’ın ön orta kısmında 2 median göz ve yanlarda 2-5 tane nokta göz bulunur. Bileşik gözler daha iyi gelişmiştir. Ağız pedipalpler ile bacaklar arasındaki artrium içinde ve üst dudağın altındadır. Akreplerde yumurta dişinin vücudunda açılır ve yavru olarak dışarıya çıkar (doğuruyormuş gibi ancak uterus yoktur). Yavru sırtta taşınır ve bakılır. 700 türden 4 tanesi Türkiye’de vardır. Fam. Buthidae Buthus gibbosus - Batı, Orta ve Doğu Anadolu’da bulunur 6 cm. kadar boydadır. Androctanus crassicauda - Güney ve Güneydoğu Anadolu’da (Adıyaman) bulunur. Bizdeki akreplerin en büyüğüdür. Fam. Scorpionidae Pandinus imperator - Ülkemizde bulunmaz. Dünyanın en büyük akrebi olup Afrika’da yaşar 22 cm. kadar boydadır. Scorpio maurus fuscus - Kuzey Anadolu’da bulunur 6 cm. boydadır. 2. Ordo - Solpugida (Örümcek benzeri) Cepholothorax abdomenle tüm genişliği ile birleşir. Abdomen segmentlidir. Zehir bezleri yoktur. Hızla kaçarlar. Görünüşleri korkunçtur. Halk arasında büyü denir. 3. Ordo - Areneida (Örümcekler) Vücut, cephalothoraks ve abdomenden oluşur. Cephalothoraks ile abdomen dar bir bel (pedicel) bölgesi ile ayrılır. Abdominal bölgede segmentasyon kaybolmuştur. Yalnızca bir familyada segmentasyon görülür. Cephalothorax, karapaks denilen daha sert bir kitinle kaplıdır. Gözlerin sıralanışı sistematikte önemlidir. Bu kısımda 3-4 çift ocel göz 68 bulunur. Cheliserleri tipiktir. Geniş bir kaide kısmı ile kıvrık bir çengel kısmı vardır. Zehir bezinin salgısı bir kanal ile dışarı akıtılır (bu salgı sindirimde rol oynar). Pedipalpus kıskaçlı değildir ve kaide kısmı geniştir. Besin almada kullanılır. Erkekte uç kısım şişe şeklindedir. Kopulasyon sırasında spermleri alır ve dişiye nakleder. Dişide bu kısım çengel şeklindedir. Yürüme bacakları coxa, trochanter, femur, patella, tibia, metatarsus, tarsus segmentlerini içerir. Tarsus segmentinin apexinde çengel biçiminde dişler bulunur. 4. çift bacağın metatarsusu üzerinde 2 sıra halinde tarak şeklinde dikenler bulunur ki buna calamistrum denir. Yine bacakların tarsus kısmında bir çift çengel tarak şeklinde çıkıntılar yer alır. Bu yapılar ağlar üzerinde kolaylıkla yürümeyi sağlar. Örümcek bacaklarının çoğunda diken ve tüy bulunur ki bu sistematikte önemlidir. Abdomenin arka ucunda, anüs önünde 4-6 çift konik çıkıntı halinde görülür, son kısmında ağ papilleri yer alır. Koninin uç kısmında küçük deliklerden oluşmuş cribellum levhası yer alır. Ağı yapan sıvı buradan salınır. Opistosomada (abdomende) ventralde öne yakın bir kısımda eşey açıklığı ve bunun yan taraflarında da kitap trake şeklinde solunum organları yer alır. Boşaltım organları (Prosomada) Cephalothorax’ta yer alan 7 çift koksal bezleridir. Ayrı eşeylidir. Yırtıcı, dişi erkeği yer Fam. Aviculariidae- Büyük örümcekler Zehirli kuş ve memelilere dahi saldırırlar. Avicularia avicularia - Kuş örümceği. Fam. Theridiidae- Bütün dünyaya yayılmış vücut küre şeklinde bacaklar ince, zehirleri ölüme neden olur. Latradectus congulobatus- Boyu küçük petrol renginde karnının üstü kırmızı ayakların son parçası esmer kırmızı Akdeniz sahillerinde bizde de olabilir. Zehiri çok kuvvetli halk korkar. Latradectus lugubris, Güney Rusya Türkistan, İran ve Türkiye.de. Çok zehirlidir. At, deve ve sığırlarda ölüme sebep olur. Fam. Lycosidae Koşucu örümcekler, 69 Hognatarantula- boyu 3-3.5 cm. açık kirli kahve rengi kırmızı renkleri var. Halk arasında büyü denir. 4. Ordo- Acarina- (Kene ve uyuz böcekleri)- Toprak ve suda serbest bir kısım da sıcak kanlı hayvanların parazitidir. Cephalothorax ile abdomen birleşmiştir. Vücut segmenti hemen tamamen kaybolmuştur. Ağız yapıları delici ve emici tipte değişmiştir. Delici formlarda ve celiserler delme dikeni stilet şeklini almıştır. Pedipalpusların kaide parçası ve üst dudak bu kısım etrafını bir kılıf gibi sarar. Solunum püskül trakeler ile. Vücut ve bacaklarda kıllar bulunur. Boşaltım birkaç türde koksal bez. Genelde malpiki tüpleriyle yapılır. Bir kısmı basit bir kalp içerir. Diğerlerinde kalp yoktur. Kıl düzenim ve sayısı sistematikte önemlidir. Fam. Ixodidae- Sert kabuklu gerçek keneler Ixodes ricinus. Göz yok, pedipalp 3, 4 parçalı tokmak şeklinde hortum var. Evcil hayvan paraziti kan emer. Bacakların ucu çengelli ve tutunma alanı içerir. Fam. Argasidae- Yumuşak vücutlu keneler Argas   persicus tavuklarda evlerde çatılarda veya parazit hayvan yuvasında yaşarlar. Fam. Eriophyidae- Bitki özsuyu ile beslenen keneler. Eriophyes pini-sarı çamda düğüm şeklinde mazı oluşumuna sebep Fam. Phyllocoptidae- Uzun kurt şekilli yaprakların sararma ve dökülmelerine neden olur. Phyllocoptrata oleivorus (Turunçgil pas akarı)- Turunçgil meyvalarının kabuklarını tahrip eder. Kabuk kalınlaşır, meyvalar küçük kalır, suyu azalır, asit miktarı artar, dal ve yaprakların bazı hastalıklara hassasiyeti Fam. Tetranychidae- Birçok tür. Bitki .zsuyu emer. Tükrükle temasa geçen bitki hücrelerinde marazi gelişme ve büyümeler olur. Tetranychus ulmi- Avrupa kırmızı örümceği- Kışı yumurta halinde geçirir. Yaprakların renginin değişmesine ve vaktinden önce dökülmesine 70 neden olur. Mahsül azalır ve meyve kalitesi düşer. Elma, armut ve şeftali ağaçlarında görülür. Fam. Sarcoptidae (Acaridae)- Uyuz böcekleri mikroskobik hayvanlardır. Boşaltım organları küçülmüş kalp yoktur. Vücut tıknaz ince derili, ağız extremiteleri kısa bir emme konisi gelişir, Deri içinde veya üstünde yaşar. Sarcoptes scabiei- İnsanda, parlak kirli sarı yalnız dişisi insan epidermisi altında birkaç mm. ile 3-4 cm. arasında tüneller açar ve burada yumurtlar. Sarcoptes canis- Köpekte yatay tüneller açarak uyuz hastalığı Pseuroptes ovis- Koyunda Subphylum - MANDİBULATA Chelicerata’lardan farklı bu grupta anten, mandibul ve maxil vardır. Aynı zamanda bileşik göz ihtiva ederler. 1- Class - Crustacea- Sert kabukludurlar. Büyük bir kısmı denizlerde bir kısmı tatlısularda rutubetli bataklık yerlerde, az bir kısmı da acı sularda yaşar. Kaya, bitki veya hayvanlara yapışık olarak bulundukları gibi parazit olanları da vardır. Parazitlerin bir çoğu o kadar şekil değiştirmişlerdir ki erginlerinde sınıf karakterini görmek mümkün değildir. Bulundukları grup ancak biyolojk gelişmelerini takip etmekle anlaşılır çünkü biyolojik gelişmelerinde tipik ve ortak larva tipleri vardır. Vücut genel olarak baş (cephalo), göğüs (toraks) ve karın (abdomen) olmak üzere 3 kısma ayrılır. Baş birbiriyle kaynaşmış bir biçimde 5 segmentten meydana gelmiştir. Ancak bu segmentlere karşılık gelen ekstremiteler görülür. Bazen baş, toraksın 1. ve 2. segmenti ile veya tümü ile birleşmiş olabilir. Baş ile göğsün birleşmesi sonucunda cephalothorax meydana gelir. Başla toraks arasında bariz bir sınır yoktur. Başın arka kenarındaki dorsal deri katlanmasının geriye doğru uzaması sonucu oluşan, iki parçalı bir kabuk şeklinde carapax bütün vücudu içine alır. Bazen de vücudun bir kısmını örten dorsal bir kabuk şeklindedir. Değişik şekilli olan toraks (2-60) segment ihtiva eder. 71 Genellikle abdomen segmentleri dıştan görülebilecek şekilde belirgindir. Başta sırası ile 2 çift anten, 1 çift mandibula, 2 çift maksil yer alır Bu sınıfa özel bir karakter veren antenlerin 1. çifti 2. çiftten çok küçük, diğer üyelerin aksine bir kollu olup duyu almaçlarını içerir. 2. çift antenler yarık ayak biçiminde hareket eder ve yakalamayı sağlarlar. Antenlerden başka bu kısımda gözler vardır. Çoğunda bileşik gözler bir sap üzerinde olup özel kaslarla hareket ettirebilir. Başta bulunan 1 çift mandibula ile 2 çift maksilla ağız ekstremiteleridir. Besin almaya yararlar. Crustacea ekstremiteleri yarık ayak veya çatal ayak şeklindedir (Tipik olan ekstremitelerin kaide kısımları coxa ve precoxa’ dan ibaret olup bundan sonra 5 parçalı bir endopodit kısmı ile kama şekilli bir exopodit kısmı bulunur. Bu ekstremitelerin iç ve dış kollarında çeşitli şekilde uyartılar bulunabilir). Toraks ayakları (thorocopodlar) muhtelif grupların yaşayışına göre değişik biçimlidir. Yüzme ve besin toplamak gibi işlevleri yerine getirirler ve bunlar yarık ayak tipindedir. Bazı gruplarda abdomendeki ekstremiteler kaybolmuş bazılarında gelişmiştir. Bunlara pleopod denir ve yüzmeye, sıçramaya yararlar. Vücudun son kısmında üye olmayan telson denen bir çıkıntı vardır ve furka isimli 2 uzantı taşır. Birkaç parazit form hariç hepsi ayrı eşeylidir. Gelişmelerinde genel olarak metamorfoz görülür. Yumurtalardan nauplius (gelişme safhası) larvası çıkar. Bu larva, yumurta şeklinde 3 çift ekstremite alında ocel göz ve segmentsiz olan vücudu ile karakteristiktir. Bundan başka metanauplius, zoea ve mysis larva tipleri de görülür. Boşaltım organı 1 çift anten bezi ve 1 çift maxil bezidir. Gelişmiş Crustacea.lerde dolaşım sistemi sırttaki kalp dışında arter ve venaları da geliştirecek biçimde evrimleşmiştir. Solunum organı olarak abdomen bacakları üzerinde ve toraks bacakları bazalinde solungaçlar yer almış olup basit formlarda bu görevi deri almıştır. Ayrı eşeylidirler. 72 Sub. Class- Entomostraca- Segment sayısı çok değişik olup vücudun son kısmında çatal şeklinde uyartıları alan furca bulunur. Parazit formlar hariç, derileri fazla sertleşmemiştir. 1. Ordo- Phyllopoda- Fam. Branchipodidae- Uzun vücutludurlar. Carapax’ları yoktur. Abdomende ise ekstremite yoktur. Ucunda bölmesiz 2 furka bulunur. Branchipus schaefferi- Tatlısularda yaşar. Uzun ve hafifçe yanlardan basık bulunan vücutları 1 cm. boyundadır. 2. Ordo- Cladocera (Su Pireleri)- Vücut yanlardan basık ve 2 yan parçadan oluşmuş bir carapax ile örtülüdür. Baş bunun dışında kalır ve karın tarafına doğru yönelmiştir. Vücut az sayıda segmentli olup segment sınırları belirli değildir. Fam. Daphniidae- 7-8 mm. boyundadırlar. Balık yemi olarak önemlidir. Daphnia magna-, Bütün dünyada, küçük durgun göl, havuzlarda ve tatlısularda bulunur. Daphnia longispina - Ülkemizde Gölbaşı.nda tespit edilmiştir. Daphnia pulex- Bütün Avrupada 3. Ordo Copepoda - (Kürek Ayaklılar)- Sularda serbest yaşayanları olduğu gibi parazit olanları da vardır. Vücut yapıları yayılış tarzına göre değişmiş, bazıları Crustacea.den ziyade kurda benzer bu ancak gelişme safhalarından anlaşılır. Bunlarda carapax görülmez. Bunların birinci antenleri uzun ve kuvvetlidir. Erkeklerin l. çift antenlerinden biri (sağdaki) diğerine nazaran daha kuvvetlidir. Fam. Centropagidae, Tatlısu ve denizlerde yaşarlar. En az 24 segmentli antenleri iplik gibi uzundur. Diaptomus emiri - Emir gölünde dişiden 7 tek yumurta salkımı var. Fam. Cyclopidae (tepegöz) Çoğunluk tatlusuda yaşar. l. çift antenlerin her ikisi de erkek bireylerde dişiyi tutmaya yarar. Boyu thorax cephalo uzunluğunu geçmez. Dişide l çift yumurta salkımı bulunur. Cyclops stenur Çubuk barajı, Emir gölü.nde bulunur. 73 4. Ordo Cirripedia (Sülük ayaklılar) erginleri denizde yaşayan hayvanlar üzerinde yengeç, balina vs. veya taş, gemi, tekne iskele gibi yerlere kendilerini tespit ederler. Birinci anteni tutunma organı şeklinde olur. Bu kısım vantuz gibi genişlemiştir. Bazılarında tespit yeri bir safiha gibi genişler, bazılarında da bir sap gibi uzar. Vücutları 2 parçadan oluşmuş bir carapax ile tamamen örtülüdür. Bunun altında kalker plakaları bulunur. Yumurtadan nauplius larvası çıkar bir müddet sonra bu larva cypris larvasına dönüşür. l. anten bu dönemde iyi gelişmiştir. Bu dönemde deniz dibine çökerek kendini tesbit eder. Balanus- Genellikle vapurlara yapışırlar. Yenir. Sub.Class Malacostraca Cephalothorax ve abdomen olmak üzere 2 kısımdan meydana gelen vücut, sabit sayıda segmentten oluşur. (Gövde daima l4 segmentlidir yalnızca Lepostrakada da 15 segmentten yapılmıştır) Başta 5, toraksta 8, abdomende 6, nadiren 7 segment bulunur. Segmentlerin herbirinin dorsal kısmına tergum ventral kısmına sternum denir. Bunlar da yanlarda pleuron denilen kısımlarla birleşirler. Bazılarında cephalothorax segmentlerinde kalkan şeklinde bir karapax bulunur. Bütün extremitler ve abdomen karapaxın dışındadır. Abdomenlerinin son kısmı çoğunluk yassı bir telson ile sonlanır. Extremite ve ganglion ihtiva etmez. l çift büyük birleşik göz, alın gözü erginde yok. Bazen kollar çok dallı. Mandibulalarda çiğneyici kısımlar meydana gelmiştir. Toraksta 8 çift abdomende 6 çift ekstremite vardır. Toraks ayakları yarık ayak şeklindedir. ve yürümeyi sağlarlar. Abdomendekiler ve telson yüzmeyi sağlar. Solunum solungaç ile yapılır. Istakoz, karides gibi Crustacea.lerde sindirim sistemi çok iyi gelişmiştir. Squiilla- Akdenizde yaşar. Ordo-Decapoda (On ayaklılar) Crustacealer içinde en evrimli olan gruptur. Vücut baş ve thorax segmentlerinin oluşturduğu büyük bir cephalothorax ve abdomenden oluşmuştur. Cephalothorax’ın sırt tarafında büyük kalkan şeklindeki carapax vücuda yapışık yanlarda ve karına doğru sarkar. Baş carapax’ın altına çekilmiştir. Carapax rostrum denen öne doğru sivri bir uzantı meydana getirir. Vücut segmentleri veya kuyruk 74 yüzgeçleri yassı ve geniş bir alan oluşturup karına doğru kıvrıktır. Torakstaki ilk üç ekstremite besin sağlamak üzere maxilliped şeklinde değişikliğe uğramıştır. Birinci çift diğerlerinde büyük, ucu daima makaslıdır; 5 çift dış kollarını kaybederek bir kollu, yürüme bacağı haline dönüşmüştür. Bu grupta abdomen şekil ve büyüklüğü çok değişiklik gösterir. Bazılarında uropod ve telsondan meydana gelmiş bir kuyruk yüzgeci bulunur. Abdomende yüzmeye yarayan 5 çift pleopod vardır (karında bulunan birinci yüzgeç ayağı dişide çok küçülmüş veya kaybolmuştur. Erkekte ise protopodit ve endopodit kısımları kaynaşarak spermanın dişiye iletilmesini sağlarlar). Sinir sistemi gelişmiştir. Baş ganglionu ile ventral özofagusun altında 6 ganglionun kaynaşmasından meydana gelmiş subözöfegal ganglion bulunur. Karın ganglionları da kaynaşmıştır. l. antenlerinin kaide kısmında da ilk parçada denge organları statositler bulunur. Solunum larvalarda vücut yüzeyi, ergin de solungaçlarla yapılır. Boşaltım 2. antenlerin kaide kısmına açılan anten bezleri ile yapılır. Gelişimlerinde metamorfoz görülür. Zoea, metazoe larva safhaları ile çeşitli larva tipleri görülür. Sub.Ordo - Natantia Vücut hafifçe yanlardan basık, rostrum iyi gelişmiş toraks bacakları zayıf, abdomen bacakları ise iyi gelişmiş olup yüzücüdürler. Abdomen cephalothoraxtan uzun ve kuyruk yüzgeci içerir. Familya : Carididae Palaemon serratus (karides) yenir. Sub.Ordo - Reptantia Vücut sert karın yönünde yassıdır (Üstten basık). Rostrum küçük veya yoktur. Yürüme bacakları iyi gelişmiş ve ilk çiftinde makas gibi büyük kıskaç vardır ve hepsinden kalındır. Fam. Palinuridae (Zırhlı kabuklular) - Kutikula kalın olup zırh gibi vücudu sarar. Carapax üzerinde dikenler bulunur. Karın ayakları yüzme bacağı şeklinde ve zayıf dişilerde yumurta taşımaya yarar. Amacura - Vücut yuvarlak abdomen gelişmiştir. Carapax epistomla kaynaşmaz, rostrum gelişmiştir. Yürüme bacaklarının ilk üç çifti makaslı, birincisi çok kalındır. Fam. Nephropsidae 75 Homarus vulgaris (Astacus gammarus) - Istakoz. Koyu mavi renkli 30-45 cm. Yenir. Pişirince kızarır, yosunlu kayalık sahillerde bulunur. Fam. Potamobiidae Potamobius (Astaculus) fluviatilis - Tatlısu ıstakozu (yenir). Anumura - Abdomen iyi gelişmemiş ve yumuşak telson körelmiştir. Carapax epistomla kaynaşmaz. 3. yürüme bacağı makaslı değildir. Fam. Paguridae (Keşiş Istakozları) Abdomen yumuşak olduğundan diğer hayvanlar tarafından kolaylıkla yenir. Deniz salyangozlarının boş kabukları içerisine yerleşirler. Brachyura (Yengeçler)- Vücutları dorso-ventral yassılaşmış, kısa ve yassı olan abdomen cephalothorax’ın altına doğru kıvrılmıştır. Carapax epistomla kaynaşır. Kuyruk yüzgeçleri yoktur. Dişilerde abdomenin son segmenti yuvarlak, erkeklerde sivridir. Yürüme bacağının ilk çifti daima makaslıdır. 3. çiftte hiçbir zaman makas yok. Fam. Canciridae Cancer pagurus (pavurya) - Akdenizde 9-12 cm. yenir. Fam. Majiidae Maja- Deniz örümceği 12-18 cm. Bazı memleketlerde yenir. Fam. Potamonidae (tatlısu yengeci) - Cephalothorax enine oval biçimdedir, yüzme bacakları yoktur. Potamon fluviatilis - 5 cm. yenir. Göl ve nehir kenarlarında taş dibinde. Fam. Portunidae- (yengeç) İyi yüzücüdürler. Yürüme bacaklarının son kısımı levha şeklini almış yüzme bacağı haline gelmiştir. Portunus puber (Çalpara) - Karadenizde, tatlısularda bulunur. ORDO ISOPODA (Tesbih böcekleri), Boyları 1 mm. ile 25 cm. arasında değişir. Vücut dorso-ventral basıktır. Carapax hiçbir zaman tam olarak gelişmemiştir. Karada yaşayanlarda kitin tabakası çok sertleşmiştir. Baş toraksın birinci segmenti ile kaynaşmıştır. Toraks 7 veya 6 segmentlidir. Abdomen çok kısa ve segmentleri birbirine kaynaşmıştır. 76 Asellus   aquaticus - Tatlısuda bulunur. Boy l2 mm. kadardır. Kör kuyu mağara, derin göllerde yaşar. Oniscus   murarus (Asellus) (Duvar tesbih böceği)- 12 - 17 mm boyda kerpiç duvarlarda, mahsenlerde, serlerde, rutubetli depo, kiler, çürümekte olan bitki altında veya sağlam bitki üzerinde yaşarlar. ORDO-AMHIPODA - Dış görünüş olarak çok değişik şekilli olanları vardır. Çoğunda vücut yandan basıktır. 5- 20 mm büyüklüktedir. Baş toraks’ın 1 ve 2. segmenti ile kaynaşmıştır. Deniz ve tatlısularda yaşarlar. Ayrı eşeylidirler. Gelişmelerinde metamorfoz yoktur. Fam. Gammaridae Vücutları incedir. Suda karınlarının hareketiyle süratle yüzeler. Hızla akan acı ve tatlı sularda yaşarlar. Gammarus pulex - Boyu 12 -17 mm. Ülkemizde de tespit edilmiştir. MYRIAPODA’LAR Myriapodalar bir sınıf; Pauropoda, Symphyla, Diplopoda ve Chilopoda da ordo olarak ele alınıyordu. Sonra bu ordolar arasındaki benzerlik ve farklılıkların bir class seviyesinde olduğuna karar verildi. Biz de bu grupları class olarak inceleyeceğiz ancak bu classlara dahil olan hayvanların myriapodalar olarak ortak karakterleri şunlardır. Bu hayvanların hepsi karada yaşarlar. Vücutları baş ve gövde olmak üzere ikiye ayrılmıştır. Başta bir çift anten iki üç çift ağız ekstremiteleri ve değişik sayıda nokta göz bulunur. Myriapodlarda yavaş yavaş böcek başı gelişimi görülür, maksillalar kaynaşarak labiumu oluşturur. Solunum trake ile yapılır. Boşaltım organı malpiki borularıdır. Vücut değişik sayıda segment içerir. Her segmentte bir veya iki çift exremite bulunur. Myriapoda grubunu dört sınıfta inceleyeceğiz, Pauropoda, Symphyla, Diplopoda, Chilopoda. Class. Pauropoda - Genital açıklık (üçüncü segmenttedir) vücudun ön ucuna yakındır. Küçük boylu yuvarlak yassı şekildedirler. Antenleri farklı olarak iki kolludur. Ağız extremiteleri l çift mandibul ile l çift zayıf maxildir. Maxiller alt dudağı oluşturmak üzere kaynaşmıştır. Dolaşım 77 sistemi, gözleri ve trakeleri körelmiştir. Nemli yerlerde ormanlarda yaşarlar. Kutikula kitin içermez. Fam. Pauropodidae Pauropus huxlegi l-l,5 mm. dir. Rutubetli yerlerde yaşar. Class. Symphyla Genel olarak küçük boyludurlar (1-8 mm). Vücutları yumuşak ve pigment bulunmadığından beyazımsı, renksizdir. Genital açıklık üçüncü segmentte öndedir. Başta l çift ve bir kollu çok segmentli iplik şeklinde uzun anten bulunur. Bu grup Apterygotlara benzeyen bir sınıftır. Ağız l çift mandibula, l çift maxilla ve bir de ağız kapağı şeklinde labiumdan (2. maxil) ibarettir. Gövdeyi oluşturan segmentlerden birer çift ekstremite çıkar. Solunum organları püskül trakeler halindedir (Bu grup böceklere köken teşkil ettiği için önemlidir). Vücudun arka ucunda 2 büyük uzantı ve uçlarında ağ bezlerine ait kanallar açılır. Dünyanın her tarafında bulunur. Hareketlidirler. Işıktan kaçarlar. Scutigerella immaculata Class- Diplopoda (Kırk ayaklar) Çoğunluk uzun boyda ve silindirik yapılı hayvanlardır. Genital açıklık ön uçtadır. Deri fazla miktarda Ca2C03 içerdiğinden serttir. Tergit, sternit, pleura bölgeleri iyi gelişmiştir. 2,5 mm.den. 28 cm.’ye kadar olabilirler. Ağız parçaları l çift mandibula ile l çift 2. maxilla’dır. (l. maxilla bulunmaz). Başta l çift anten yer alır. Antenler çok kısa 8 parçalıdır. Genel olarak vücutları çok sayıda segmentten meydana gelmiştir. Bu segmentlerden ilk 4 çifti toraksı oluşturur (ilk defa) bu segmentlerden l. de ekstremite yoktur. Diğer 3’ünde l’er çift ekstremite vardır. Bacaklar karının orta çizgisine yakın yerinden çıkar. Abdomende 2 segmentin bir tek tergitle örtülmesi sonucu olarak her segmentten ikişer çift ekstremite çıkar gibi görülür. Bacakları genel olarak zayıf yapıdadır ve yanlarında büyük bir çengel ile bir de kıl gibi ince çengel bulunur. Sinir sistemleri büyük bir beyin ganglionu ile homonom metamerli karın ganglionları zincirinden ibarettir. Gözleri birçok ocel gözün biraraya 78 gelmesinden meydana gelmiş kümecik halindedir. Antenlerin üzerinde koku almaya yarayan çıkıntılar vardır. Sindirim sistemi çok basit olan bu grubun son barsağın başlangıcında bulunan malpiki boruları ekskrasyon (boşaltım) organı görevi yapar. Dolaşım sistemi iyi gelişmiştir. Solunum püskül trakelerle olur. Ayrı eşeylidirler. Fam. Julidae Vücut çok segmentlidir. Julus   terestris 30-70 segmentli geceleri faaldir. Dokununca helezon gibi kıvrılır. Class. Chilopoda (Çıyanlar) Vücut uzun dorso ventral basıktır. boyları 3 mm. ile 260 mm. arasında değişir. Baş gövdeden bariz olarak ayrıdır. Genital açıklık vücudun sonundadır. Başta basit yapıda çok sayıda segmentten ibaret l çift uzun kıl gibi anten, l çift mandibula ve 2 çift maxilla vardır. Gövde kısmında herbir segmentten l çift ekstremite çıkar. Birinci segmente ait ekstremite çifti şekil değiştirmiş olup bunun kaide kısmında yer alan zehir bezi kanalı sivrilmiş olan uç kısımdan dışarıya açılır. Sinir sistemi başta bulunan bir serebral ganglion ile ventralde homonom karın ganglion zincirinden ibarettir. Ayrıca böceklerdeki gibi bir visceral sinir sistemi de vardır. Sindirim sistemi basit; son barsağa ektodermik 2 malpiki borusu açılır. Ağıza 2 tükrük bezi açılır. Geceleyin faaldirler. Solunum boru trakelerle yapılır (böceklerdeki gibi). Diğer arthropodları avlayarak geçinirler. Ayrı eşeylidirler. Fam. Scolopendridae Gövde 25-27 segmentli, Bacaklar uzun olduğundan Áok hýzlý hareket ederler. Scolopendra   morsitans (çıyan) Ülkemizde tespit edilmiştir. Gündüzleri taşlar altına saklanır. S. cingulata 5-9 mm boyundadır. S.gigantea - 26 cm. Hindistan’da bulunur, zehiri insanı öldürür. Fam. Lithobiidae Vücut Scolopendridae’ye göre daha kısa ve segment sayısı az. Bacakları ise daha uzundur. Cins Lithobius- Ormanlarda bulunur. Fam. Scutigeridae Vücut kısa antenler kıl gibi ince. Bacaklar uzun ve vücudun arkasına doğru uzunlukları artar. 79 Scutigera   coleopterata Boy 16-24 mm. evlerde bulunur. Gece çıkar ve çok hızlı hareket eder. Phylum: MOLLUSCA (Yumuşakçalar) Bu phylum arthropod’lardan sonra en kalabalık grubu teşkil eder. Aşağı yukarı bugün 90.000 kadar yaşayan, 35.000 kadarda fosil türü Phylum üyelerinde vücut bilateral simetrili olup, baş, ayak ve iç organlar torbası olmak üzere üç bölge ayırt edilir. Ergin vücut yapısı diğer omurgasızlardan çok farklılık gösterir. Fakat ilkel mollusklarda görülen veliger larva tipi annelidlerin trochophor larvasına çok benzer. Bu mollusk ve annelidlerin ortak bir atadan geldiklerini düşündürmektedir. Ancak molluska, kendine özgü (amphineuralar dışında) segmentsiz bir vücut yapısı geliştirirken annelidler segmentli bir vücuda Başta ağız açıklığı cerebral ganglion ve göz bulunur. Karın bölgesinde geniş ve yassı kas dokusundan yapılmış bir ayak, ayağın üzerinde iç organlar kütlesi, bu kütleyi örten iki katlı bir deri olan manto ve mantonun üst yüzeyinde Ca2C03’ten oluşan kalkerli, sert bir kabuk yer almıştır, manto ile vücut boşluğu arasındaki kısım manto boşluğudur. Kabuk mantodaki salgı bezlerinin salgısıdır. Arthropodların dış örtülerine benzer olarak bu kabukta barınmayı sağlar, fakat hayvanın hareketini güçleştirir. Sindirim sistemi ağız, yutak, yemek borusu, mide, barsak ve anüsten meydana gelen tek bir tüpten ibarettir. Bu kısım bazen kıvrılmış olabilir. Yutak bir kas grubu yardımı ile hareket eden, tipik törpü şeklinde dili andıran bir yapıya (radula) sahiptir. Mollusklarda sadece bivalvlerde radula bulunmaz. Bunlar deniz suyunu süzerek besinlerini sağlayan hayvanlardır. Mollusklar da hem gerçek bir coelom, hem de dolaşım sistemi görülür. Coelom boşluğu, kalp, gonad ve boşaltım organı ile temas halindedir. 80 Dolaşım sistemleri açıktır. Ancak Cephalopoda sınıfının bütün üyelerinde kapalı dolaşım sistemi görülür. Çok gelişmiş olan kalp bir karıncık ve 2 kulakçıktan oluşmuştur. Kalp bazılarında bir bazılarında ise iki atriumlu olabilir. Kalp, omurgalı hayvanlarda olduğu gibi pericard ile çevrilmiştir. Kulakçıklar kanı toplardamarlardan alır, karıncığa pompalar. Kuvvetli kaslı karıncık atar damarlarla vücuda sevk eder. Boşaltım organı Annelidlerde olduğu gibi, bir çift olan ve kirpikli huni ile başlayan hakiki nefridiumdur. Kirpikli huninin bir ucu perikardial boşluğa, diğer ucu da manto boşluğuna açılır. Bu durumda perikard boşluğu coeloma karşılıktır. Cephalopodada nefridiumlar böbrek keselerini oluşturmuşlardır. Nefridiumlar boşaltım maddelerini manto boşluğu vasıtasıyla dışarı atarlar. Manto boşluğundaki solungaca ktenidium denir. Solunum genellikle solungaçlarla, ilkel formlarda hava teması ile gerçekleşir, ara formlarda akciğer gelişimi görülür. Sinir sistemi belirli sayıda çift ganglionlardan meydana gelmiştir. Tipik olarak üç çift ganglion bulunur: l- Serebral ganglionlar (beyin ganglionu), 2- Pedal ganglionlar (ayak gangalionu), 3 Vücudun arkasındaki Visceral ganglionlar (iç organlar torbası ganglionu). Birçok molluskda ayrıca bir çift 4. Pallial ganglion (manto ganglionu) bulunur. Bu ganglionlar sinir şeritleri vasıtası ile birbirine bağlıdır. Bütün yumuşakçalarda deri altında bu ganglionların oluşturduğu sinir ağı bulunur. Sinir ağına özellikle ayakta, mantoda ve cephalopodların tentaküllerinde rastlanır. l- Class Amphineura - Chiton ve bunların arkabaları ile temsil (tümü fosil) edilen bu grupta vücut elips şeklinde olup küçük ve kabuklu hayvanlardır. Chiton: Classa örnek teşkil eden bu hayvanın konveks olan dorsal yüzeyinde kiremit sırası gibi birbiri üzerine binmiş 8 adet Ca2C03 plakası bulunur. Bu plakalar yalnız yanlarından mantoya bağlı, manto ile ayak arasında pallial boşluk bulunur. Molluskların ekonomik önemi olan başlıca sınıfları şunlardır: l- Lamellibranchiata (Peleciopoda), 2- Gastropoda, 3- Cephalopoda (Cephalopodlar). 81 Class I- Lamellibranchiata (Bivalvia) (Midyeler) Balta ayaklılar Suda yaşarlar. Bilateral simetrilidirler. Kabuk ve manto sağ ve sol olmak üzere ikiye ayrılmış ve bu iki parça yer yer birleştiğinden 2-3 aralık kalmıştır. Bu aralıklar kullanılmış suyu dışarı atmaya ve solunum suyunu almaya yararlar ve bazen manto kenarları buradan sifon biçiminde dışarı çıkan birer yapı oluşturmuştur. Bu yapı suyun giriş çıkışını düzenler. Kabuk karın tarafından açılır. Dorsalden elastiki bir ligamentle bağlıdır, baş tamamen kaybolmuştur. Göz çoğunda yoktur. Ayak bazı türlerde körelmiş olabilir, varsa kuvvetli kaslardan yapılmış olup distal kısmı hayvanın ön ucundan dışarı çıkar ve hareketi sağlar. Ligamentin iki yanında her bir kabuk birer umbo içerir, bunun altında kabuk kenarına paralel büyüme çizgileri yer almıştır. Kalp hayvanın sırtında pericardium (coelom boşluğu) içindedir. 2 atriyum 1 ventriculus, yani 2 kulakçık, 1 karıncık içerir. Ventriculustan aorta çıkar ve aorta arterlere, daha küçük arterlere ve onlar da daha küçük kılcaldamarlara ayrılır. Arterler manto, sindirim sistemi ve ayak gibi organlara gider. Ayrıca venalar (toplar damarlar) da gelişmiştir, (böbrek venaları gibi). Kan, venalardan kulakçıklara oradan pompalanarak, karıncığa oradan da aort’lara (ön ve arka) oradan da vücuda dağılır. Kan sıvısı hemoglobin ve hemosiyanin içerir. Boşaltım organı nefridiumlardır. Yüksek formlarda böbrek oluşumu görülür. Ön uçta ağız bulunur. Midenin altında ayağın üst tarafında karaciğer yer almış olup salgısını mideye gönderir. Barsak çok kıvrım yapar ve yukarı dönerek perikardial boşluktan (coelom boşluğu) bazen karıncıktan geçer. Bazı türlerde manto kenarında dokunma ve ışığa duyarlı benekler vardır. Ayakta pedal ganglionun yanında statocyst denen denge organı vardır. İçindeki kum granülleri hayvanın hareketi doğrultusunda yer değiştirir. Sinir uçları uyarılarak mesajlar beyine gider. Kabuk parçaları sırt tarafta elastiki bir şerit (ligament) vasıtasıyla birbirine bağlanmıştır. Çoğunda ligamente ilave olarak kabuk parçalarının ön kenarlarında dişler bulunur. Bu dişler karşı parçada kendilerine karşılık gelen çukurluklara girerek bir çeşit menteşe oluştururlar. Dişlerin yapısı ve büyüklüğü eşit (homodont) 82 veya değişik (heterodont) olabilir. Her kabukta birbirinden diğerine uzanan ve kabukların kapanmasını sağlayan anterior ve posterior adduktor kasları vardır. Ayrıca anterior ve posterior retraktor kasları ile bir de sadece anteriorda yer alan protraktor kas bulunur. Bunlar ayağın hareketini kontrol ederler. Midye kabuğunun en içteki kalsiyum karbonattan yapılmış sedef tabakası, epitel hücreleri tarafından ince tabakalar halinde salgılanır. Eğer kabukla manto epiteli arasına bir madde girerse epitel hücre, yabancı madde etrafında merkezileşen Ca2CO3 tabakaları salgılamak üzere uyarılır. İnci bu yolla oluşur. Deniz ve acı su midyelerinde embriyonal gelişmeden sonra serbest yüzen silli veliger larvası vardır ki annelitlerin trochophora larvasına benzer. Burdan dibe inerek ergin midyeye erginleşir. Döllenme suda olur. Tatlısu midyelerinde ise parazit yaşayan glochidium larvası vardır. I. ORDO Protobranchiata Midyelerin en ilkel grubudur. Arka yan tarafta çift sıralı tarak şeklinde iki solungaca sahiptirler. Her ktenidium ayakla manto arasında uzanan yatay bir eksen ve iki sıra flamentten oluşur. İlkel midye flamentleri kısa ve yassı üçgenler şeklinde diğerleri iplik şeklindeki flamentler kıvrılarak serbest ucu uzayıp dış taraftan yukarı uzayarak U şeklini alır. Cins Nucula (Fındık midyesi)- Midyelerin en küçüğüdür. 4 mm. Kabuk yuvarlak ve üçgen şeklindedir. Avrupa denizlerinde yaşar. Cins Arca Kabuk parçalarının yüzeyi ışın şeklinde kaburgalı Arca noae (Nuhun gemisi midyesi) - 8-10 cm. Taxodont menteşeli (eşit yapılı birçok küçük diş). II. ORDO - Heterodonta Midyelerin çoğu bu ordodandır. Heteredont menteşeli ve [solungaçları çift yaprak şeklinde olup solungaç flamentleri enine köprülerle birbirine bağlıdır (kabuk çevresi eşit olmayan az sayıda dişi içermektedir). ] Adduktor kaslar (kapama) eşit büyüklükte ve iki tane. Fam. Unionidae - Nehir ve göl midyeleri kabuk parçaları uzunca ve eşittir. Dış yüzey esmer yeşil renkte iç yüzey sedeflidir (Menteşe az dişli veya dişsiz olur). 83 Cins - Unio - Kabuk kalın ön kısmı kısa arka kısmı çok uzundur. Margaritana margatirifera (Nehir inci midyesi) -Dağlardaki derelerde bulunur. 10 cm. İncisi makbul değil. Cins - Anodonta (Göl midyesi) Kabuklar çok ince ve geniş olup tipik tatlısu midyesidir, Menteşe dişsiz. Tüm dünyada yaygındır. Fam. Cardiidae Cins - Cardium (kalp midyesi)- Kabuk kalp şeklinde üzerinde ışınsal olarak sıralanmış çizgiler var. Bunlara kaburga denir (4-5 cm. kabuk dişli). Fam. Tridognidae Tridagna gigans (dev midye)- Boy 2 m. Ağırlık 250 kg. 10 kg. kadar da eti vardır, yenir. Hint okyanusunda yaşar. Kabukları çamaşır teknesi olarak kullanılır. III ORDO - Anisomyaria - Adduktorlar ya farklı büyüklükte veya bir tanesi hiç bulunmaz genellikle menteşede diş yoktur. Solunum solungaçları yaprak şeklindedir. Ekonomik önemi olan midyeler, denizlerde bulunurlar ve çoğunlukla sifonlarını su içine uzatarak kum ve çamura gömülü yaşarlar. Fam. Aviculidae - Kabuk parçaları eşit değildir, menteşe kenarları dişsiz veya zayıf dişli olup kanat biçiminde uzantılardan oluşmuştur. Cins Avicula (Kuş midyesi) Sol kabuk parçası sağdan daha kubbeli boyu 8 cm. dir. Meleagrina margaritifera (İnci midyesi) - Uzunluk 15-30 cm. şark incisi denilen kıymetli incileri meydana getirir ve kabuklarından da sedef elde edilir. Hint Okyanusunda yaşar. Fam. Ostreidae - Kabuk parçaları eşit değildir. Menteşe zayıf ve dişsiz olur. Daha büyük ve kubbeli olan sol kabuk parçası yere yapışır. Sağ parça bir kapak gibi onu örter. Ostrea edulis (İstiridye) - Kabuk büyüklüğü 8-l0 cm. kadardır. Kayalık yerlerde bulunur. Salgı ile kendilerini kayalara veya kabuklara yapıştırır. Fam. Mytilidae Kabuk parçaları eşit, menteşe yok. Ligament iç tarafta yer alır. 84 Cins- Mytilus (Deniz midyesi yenen) - Kabuk parçaları eşit, uzun arka tarafı yuvarlak üçgen şeklinde hemen bütün denizlerde bulunur. Menteşe yok. Ayakları küçülmüş olup salgısı ile kenetlenmiş sert zemine tespit Class : 2 - Gastropoda : Salyangozlar Karada yaşayan tek Mollusca sınıfıdır. Tatlısu ve denizlerde de bulunur. Tek bir dorsal kabuk var (İnsan besini) . Veliger larvasında ağız önde anüs arkadadır. İç organlar torbası embriyolojik gelişme esnasında 180 derecelik (torsiyon olayı) bir dönme yapar. Vücudun her iki tarafının eşit büyümemesinden dolayı bir tarafın, genellikle de sol tarafın daha fazla büyümesi ile torsiyon ortaya çıkar. Bu nedenle önce arkada bulunan kalp ve anüs ağzın üzerinde yer alır ve solungaçlar da ön tarafa gelmiş olur. Soldaki organlar gelişemez kaybolur. Sağdakiler sola geçer. Torsiyondan sonra vücut büyük ölçüde asimetrik bir yapı kazanır. Kabuk, torsiyon olayından bağımsız olarak bir düzlemde rulo gibi kıvrılır. Opisthobranciata.da ve diğer bazı gruplarda olduğu gibi torsiyona ilave olarak detorsiyon yani geri torsiyon görülür. Bu olayda vücut yine simetrisiz kalır; fakat önceden öne gelmiş organlar yana kayar. Torsiyon olayında, manto boşluğu öne kaydığından, tehlike anında hayvanın başını saklayabileceği bir odacık şekillenmiş olur ve hayvan bu odacığın ağzını gerektiğinde ayağı ile kapatarak korunur. Ayrıca buharlaşma ile su yitirilmesini önler. Detorsiyon ile, manto boşluğu vücudun yan tarafına kaydırılarak sindirim kanalı ile atılan atıkların solunum suyuna karışması engellenmiştir ve detorsiyon, büyük bir olasılıkla bununla ilgili geliştirilmiş bir uyumdur. Kuvvetli kaslardan yapılmış geniş bir ayak (çoğunlukla mukus salan hücrelerle kaplı ve ventral taraftan dışarı açılan bir bez içerir) ile sürünerek ve ayak yüzgeç gibi kullanılarak hareket sağlanır. Karada yaşayan ve karadan tatlısuya geçen Gastropodlarda solungaç küçülmüş, buna karşılık manto boşluğu solunum organı olarak gelişmiştir, ayrıca bazı gruplarda akciğer görür. Mantonun içi kılcal damarı ağ gibi örülmüş hava solunum deliğinden girer ve geri çıkar. Genellikle iç döllenme görülür. Bir kısım gastropodlar hermafrodittirler. 85 Genital delik sağ göz tentakülünün dibine yakın bir yerden dışarı açılır. Bu grupta iyi gelişmiş bir baş bulunur. Başın dorsalinde 1-2 çift tentakül ve 1 çift göz yer alır. Göz, ya tentakül dibindeki kabartının veya geriden çıkan özel tentakülün ucunda olabilir. Ağız içinde bir dili andıran radula, bunun üzerinde birkaç sıra halinde dizilmiş kitin dişler yer alır. Gastropodların ataları muhtemelen bilateral simetriliydiler. Fakat torsiyon sonucu sindirim, kalp, anüs, solungaç, boşaltım, sinir sisteminin bir kısmı bugün kaybolmuştur. Dişlerin uçları arkaya dönüktür. Aşındıkça alttan yenileri çıkar. Hem herbivor, hem karnivor olanları vardır (Dişlerin durumuna göre). Gastropodlarda veliger larva tipi görülür. I ORDO - Prosobranchia - En ilkel gruptur. Solungaçlar öndedir. Başta 1 çift tentakül bulunur ve gözler bunların dibinde yer alır. Genellikle denizde yaşarlar. Torsiyon vardır ve visceral konnektif buna bağlı olarak 8 şeklindedir. Bu sebeple manto ön tarafa gelmiş ve içinde bir ktenidium olup kalbin önünde yer alır. Çoğu denizde bir kısmı da tatlı ve acı sularda yaşarlar. Kabuk büyük ve kalındır. Fam. Patellidae - Cins - Patella (Çanak salyangozu) - Kabuğu çanak şeklindedir, Avrupa denizlerinde yaşar. Fam. Cypraeidae - Kabuk yumurta şeklinde iki taraftan kıvrık. Operkulum Cins - Cypraea (Porselen salyangozu) - Kabuğun üzeri parlak bir tabaka ile kaplıdır. Fam. Muricidae (Dikenli salyangoz) - Kabuk ağzının ön ucu kısa veya uzun olabilen düz bir kanal şeklinde uzamıştır. Tropik denizlerde, yırtıcı salyangozlardır. Cins - Murex -Kabuk üzerinde en az 3 sıra diken veya kabartı bulunur. II ORDO - Opisthobranchia - 86 İç organlarda az veya çok geri torsiyon (detorsiyon) görülür. Solungaçlar arkada yandadır. Başta 2 çift tentakül vardır. Gözler art tentakül dibindedir. Kabuk küçük veya hiç yoktur. Fam. Limacinidae - Cins - Limacina - Denizde yaşar. Balinaların besinini oluşturur. Sürüler halinde dolaşır. III ORDO Pulmonata - Akciğerli anlamına gelir. Kara salyangozlarında tekrar suya dönünce akciğer oluşmuştur. Düzenli aralıklarla hava için yukarı çıkarlar. Başta 1- 2 çift tentakül vardır. Ktenidium bulunmaz manto boşluğu fazla damarlı tavanı ile akciğere dönüşmüştür, manto açıklığı ise solunum deliği görevini görür. Hepsi hermofrodit. Larva evresi görülmez. Yumurta doğrudan doğruya gelişir. Genellikle karada, az bir kısmı suda yaşarlar. I - Sub.Ordo - Basommatophora - Bir çift tentakül bulunur. Gözler bunların dibindedir. Birkaçı denizde, çoğu tatlısuda yaşarlar. Fam. Limneidae - Kabuk ince, ağzı keskin kenarlı, tatlısularda yaşarlar. Cins - Limnaea - Kabuk koni şeklinde tepesi sivri, kabuk ağzı geniş ve oval biçimdedir. II - Sub.Ordo - Stylommatophora - İki çift tentakül bulunur. Gözler arka tentakülün ucunda yer alır. Karada yaşarlar. Fam. Helicidae - Kabuklu salyangozlar. Cins - Helix - Kabuk bütün vücudu içine alacak büyüklükte ve yüksekliği ile genişliği hemen hemen aynıdır. Kışın kabuk ağzı kapatılır. En çok tür içeren cinstir. Helix   pomata - Bağ-bahçe salyangozu, Avrupa kara salyangozu en büyüğüdür. Fam. Limacidae - Bütün türleri çıplaktır. Kabuk küçük plakalar şeklinde içte yer alır. Cins - Limax - Bahçe sümüklüböceği 87 Limax   agrestis - Üreme yeteneği fazla olan bir gruptur. Taze filizleri yiyerek zarar verir. III - Class - Cephalopoda Molluskların en yüksek organizasyonlu grubudur. Genel olarak ağız etrafındaki kollarla 1/2 m. olurlar. 5-10 cm. ve 17 m. olanlar da vardır. Bu durumda ağırlık birkaç tonu bulur. Bilateral simetrilidirler. Vücut baş ve iç organlar kitlesi olmak üzere iki bölgeye ayrılır. Büyük olan baş üzerinde çok iyi gelişmiş bir çift göz bulunur. Gözler ilkel gruplarda merceksiz, gelişmiş olanlarda merceklidir. Ayak bölgesi bu grupta büyük bir kısmı önde ağızın etrafını çeviren kollara dönüşmüş, geri kalan kısmı da manto önünde vücut çeperine yapışan huni şeklini almıştır. Ayrıca bir ayak bölgesi yoktur. Derin deniz formlarında ışık verme kabiliyeti vardır. Ağız başın tepesinde etrafı halka biçiminde bir kıvrımla (dudak) çevrilidir. Ganglionlar yutak etrafında bir ganglionlar kitlesi oluşturmuş, buccal, cerebral, pedal ve visceral ganglionlar gelişmiştir. Boşaltım organı nefridium ve böbrek keseleridir. Manto boşluğu muhtemelen ortadan boğumlanarak önde pericard boşluğu, arkada gonad Coelomunu oluşturmuş, içinde ovaryum ve testisler bulunur. Manto boşluğunda, solungaçlar, böbrek, genital delik ve anüs yer alır. Mürekkep balıklarında kıkırdaktan oluşan bir iç iskelet bulunur. Ayrıca bu grupta mürekkep kesesi vardır. Kese anüsün yanına açılır. Tehlike anında buradan manto boşluğuna siyah bir sıvı salınır, oradan sifonla dışarı püskürtülür ve hayvan kendini düşmana karşı saklar. Mürekkep seyreltilmiş melanin pigmentidir. Bugün yaşayan türlerin çoğunda kabuk kaybolmuş veya körelmiştir. Ayrı eşeylidirler. Döllenme vücut içinde olur. Kapsadıkları solungaç sayısına göre 2 gruba ayrılırlar. Ordo - Tetrabrahchiata - İki çift solungaç bulunur. İki nefridium vardır. Başta zayıf vantuzsuz 38 kol vardır. Bunlar kılıf içine çekilebilir. Çok odacıklı ve Ca2CO3’dan oluşan ve helezon şeklinde kıvrık kabukları vardır. Hayvan büyüdükçe en son meydana gelen en büyük odacığa çekilir. Bugün bu gruptan yalnız bir cins yaşamaktadır. Diğerleri fosil 88 formlardır. Göz merceksizdir. Göz basit bir boşluk olup içi ektodermik retina tabakasıyla kaplıdır ve küçük bir delikle dışa açılır. Fam. Nautilidae Cins- Nautilus - Hint Okyanusu ve Büyük Okyanusta yaşar. Dorsalde manto tarafından salgılanan iyi gelişmiş bir dış kabuk vardır. Ordo - Dibranchiata - Bir çift solungaç bulunur, bir çift nefridium vardır. Ağzın etrafında 8 veya 10 kol bulunur. 1.Sub. Ordo - Decapoda - İkisi ayrı tipte, 10 kol bulunur. Vücut çıplak, kabuk rudimenter (kalıntı) haldedir. On koldan uzun olan iki tanesine tentakül adı verilir. Uç kısımlarında vantuzları bulunur. Vücut uzun ve yanları yüzgeçlidir. Gözler gelişmiş merceklidir. Tehlike anında kullandığı mürekkep kesesi vardır. Fam. Loliginidae - Vücut oldukça uzun ve koni şeklinde, yüzgeçler büyüktür ve vücudun alt ucuna yakındır. Tentaküller geri çekilmez. İç kabuk kitinlidir. Loligo vulgaris - (kalamar) Yenen bir türdür Akdenizde ve Atlas okyanusunda bulunur. 45-60 cm boyundadır. Fam. Sepiidae - Vücut oval şekilli yan yüzgeçler uzun olur. İç kabuk kalkerlidir. Tentaküller geri çekilebilir. Sepia   officinalis - (Mürekkep balığı) Yüzgeçler gövde boyunca devam eder. Vücut uzunluğu 20-30 cm. 2.Sub.Ordo - Octopoda - Ahtopotlar. 8 kolu vardır. Tentaküller bulunmaz. Vantuzları sapsızdır. Vücut kısa ve yuvarlaktır. Fam. Octopodidae - Kollar büyük ve dip kısımda kısa bir zarla birbirine bağlı. Octopus vulgaris - Ahtopot, kolları üzerinde iki sıralı vantuzlar yer alır. PHYLUM : ECHİNODERMATA (Derisi Dikenliler) Larvaları bilateral, erginleri ise radial simetrili olan hayvanlardır. Vücut eksenden geçen düzlemlere göre beş kısma ayrılır. Genelde beş ışınlı veya küre şeklindedir. Gösterdikleri çok değişik karakterler nedeniyle sistematik yerleri oldukça şüphelidir. Vücut örtüsü genelde silli bir 89 epiteldir. Bunun altında mezodermal bağ doku kökenli dermal plakalardan oluşmuş bir kabuk yani iç iskelet bulunur. Bu mezenşim hücrelerden meydana gelen mezodermik deri iskeletinin oluşturduğu kalker cisimcikler ya dağınık ya kaslar ile bağlı ya da kaynaşarak kabuk oluşturur. Bazen yüzeye hareketli ve hareketsiz dikenler çıkar. Bunların modifiye olması ile pediseller oluşur (savunma organıdır, ambulakral ayakları korur) Dorsal yüzeyi büyük ve sabit dikenler ile örtülüdür. İskelet uzun dikenli Ca2CO3 tan oluşmuş eksoiskelet, dermal kalker plakalar endoiskeletten oluşur. Ca2CO3 tan yapılan dermal plakalar kaslarla ve konnektif doku ile bağlıdır ve bu da eksoiskelete hareket ve esneklik kazandırır. Sölom, yani vücut boşluğu üç ayrı boşluk sistemi halindedir. 1- Organların yer aldığı perivisceral sistem: Bu boşluk silli bir epitelle çevrilmiş olup hayvanın içerisinde içi hücreli bir sıvı ile dolu geniş bir alan oluşturur. 2- Perihemal sistem: Ağzın etrafında bir halka kanal ile buradan ayrılan beş radial kanal ve ayrıca uca doğru uzanan bir aksial kanaldan oluşmuştur. (oral halka kanal) Kan damarı sistemi gibi görülen ambulakral kanal sisteminin altında muhtemelen ambulakral ayaklara ve gonatlara besin taşıyan kesin işlevi henüz bilinmeyen, aboral bölgede bir halka kanal gelişmiş olabilir. 3-Ambulakral kanal sistemi: Aboral kısımda yeralır . Ağız ventralde yani oral tarafta; anüs ise dorsalde yani aboral tarafta olup arada sindirim borusu yer alır. Baş ve beyin yoktur. Hareket, su basıncına dayanan su-damarı (Ambulakral damar sistemi) sistemi ile yapılır. Ambulakral kanal sistemi ağız etrafında bir halka kanal ve bundan ayrılan beş radial kanal ile bu kanallardan çıkan küçük lateral kanallardan oluşur; lateral kanallar tüp biçimli deri uzantısı olan ambulakral ayakların içine açılır. Burada genellikle kontraktil bir ampul bulunur. Ambulakral kanal sistemi, halka kanaldan ayrılan medrapor kanalı (taş kanal) ile dışarıya bağlanır. Sistemin görevi hareket ve yer değiştirmeyi sağlamaktır. Ampul içindeki su, kontraksiyon ile ayağa itilir, ayak uzar ve yapıştığı 90 yerden çözülür; ayak çeperinin kontraksiyonu ile de su ampule geri döner. İçte basınç oluşur ayak ucundaki vantuz yere yapışır; vücut o yöne çekilir. Solunum dışa doğru deri çıkıntılarından oluşan çok sayıda dermal solungaçlar ve ambulakral ayaklar ile sağlanır. Dış ortamdaki su ve iç ortamdaki sölom sıvısı arasındaki gaz alışverişi bu dermal solungaçlar, ambulakral ayaklar ve vücut içine doğru yönelmiş deri çöküntüleri ile gerçekleşir. Gerçek bir dolaşım sistemi yoktur. Ağız çevresinde halka biçimli bir kanal ve ayrılan radyer kollar (Asterias). Kan, renksiz lenf yapısındadır ve amobosit hücreler içerir. Sillerin hareketi sölom sıvısının hareketini sağlar. Duygu organları iyi gelişmemiştir ancak deri epiteli hassastır. Ayrı eşeylidirler. Genital stolon ve gonatlar genital sistemi oluşturur. Sperm kesesi ve yardımcı bezler yoktur. Gonatlar, örneğin deniz yıldızında, kolların her iki tarafında birer tane, yani beş çift salkımdan oluşur. Eşey hücreleri aboral kutuptan kol bazaline yakın bir yerden küçük kanallar ile dışarı atılır. Döllenme suda olur. Zigot bipinnaria denen bilateral larva safhasını verir. Silli epitel ile örtülü bu larva Mollusk ve Annelidlerdeki trochophoraya ve de ilkel konlat larvasına benzer. Sinir sistemi ağız üzerindeki bir sinir halkası ve beş radial koldan ibarettir. Beyin yoktur. Epitel doku altındaki sinir hücresi ve liflerden oluşan ağlar halindedir. Sölom hücresi ile göçmen hücreler boşaltımı yapar. I- Class: Asteroidea (Deniz yıldızları) Genellikle 5 kolludurlar; daha fazla kollu da (40 kola kadar) olabilirler. Tüp ayaklar kolların altında bir oluk içinde bulunur. İstiridye ve deniz tarağının en büyük düşmanıdır. Büyük regenereasyon kabiliyeti vardır. Fam. Astropectinidae Astropecten auranticus 5 halkalı Fam. Asterinidae Cins. Asterina spp. Kolların kısalığı yüzünden vücut 5 köşeli görülür. Fam. Asteridae Kollar uzun sayıları 5-12 olur. 91 Cins. Asterias Deniz yıldızı II.Class: Echinoidea (Deniz kestaneleri) Bu sınıfta kol yoktur. Kabuk üzerinde bulunan pedisel ayaklar bütün vücutta dikenler arasındadır. Þekilleri basık yarım küreyi andırır. İskeletine testa adı verilir. Sindirim kanalının ön kısmında Aristo feneri denilen kalkerli dişli bir yapı bulunur. 1. Ordo: Regularia - Vücut az çok küre şeklindedir. Fam. Echinidae Cins. Echinus 2. Ordo: Clypeasteroidae - Disk şeklindedirler. Kabuk çok basık olur. Ağız düz veya konkav olan oval kısımda, anüs ayrı tarafta kenara yakın Fam. Clypeastridae Cins. Clypeaster 3: Ordo: Spatongoidae - Kalp şeklindedirler ve ağız tam ortada yer almaz. Anüs iki yüzeyin sınırında veya sınıra yakın yerde bulunur. Fam. Spatangidae Cins. Spatangus III: Class: Ophiuroidea (Yılan yıldızları) Yılana benzer kollar bulunur, bu hayvanlar kollarını yılan gibi oynatarak hareket ederler. İnce uzun gevrek yapılı bu kollar vücuttan belirli bir şekilde ayırtedilir. Harekette tüp ayaklar kullanılmaz. Tehlikede kollarının birisini bırakıp kaçarlar. Fam. Ophiolepididae Cins: Ophiura (Yılan yıldızı) IV: Class: Holothurioidea (Deniz hıyarları) 92 Bu sınıf diğer sınıflardan dikensiz uzun ve kaslı bir vücut yapısıyla ayrılırlar. Vücudun ön ucunda ağzın etrafında geri çekilebilen tentaküller bulunur. İskelet vücut içine gömülüdür. Küçük kalker plakalar halindedir. Fam. Cucumariidae V. Class: Crinoidea (Deniz zambakları) Genel olarak sesil olarak yaşayan çiçek, bitki benzeri hayvanlardır. Merkezi olarak yerleşmiş ve yukarı dönük bir ağız ve küçük vücudun üzerinde kollar yer alır. Aksi tarafta bulunan sap, kök benzeri bir yapı ile vücudu tespit eder. Kollar üzerinde tüy benzeri telekler bulunur. Fam. Pentacrinidae- Kollar halinde çok dallıdır.

http://www.biyologlar.com/omurgasiz-hayvanlar-sistematigi


OMURGASIZ HAYVANLAR

• Çoğunluğu sularda ve nemli bölgelerde yaşarlar. • Hayvanların en basit bireylerini içerirler. Karada yaşayanları deri ve trake solunumu yaparken sularda yaşayanları yüzey ve solungaç solunumu yaparlar. Altı gruba ayrılarak incelenirler. 1. Süngerler • En ilkel hayvan grubudur. • Sularda bir yere tutunarak yaşarlar. • Vücutlarında doku ve organ farklılaşması yoktur. • Sudaki besin parçacıklarıyla beslenirler. • Yumurta oluşumu ve tomurcuklanma ile çoğalırlar. 2. Sölenterler • Vücutlarında tam bir doku ve organ farklılaşması görülmez. • Basit bir sindirim kanalı ve ağsı sinir yapılarını taşırlar. • Sölenterlerin üç çeşidi bulunur. Bunlar deniz adası, mercan ve hidradır. • Yumurta üretimi ve tomurcuklanma ile çoğalabilirler. 3. Solucanlar • Doku ve organ farklılaşması görülen ilk hayvan grubudur. • Kasları yardımıyla aktif hareket edebilirler. • Yumurta ile çoğalırlar. • Derileri ince ve nemli olup deri solunumu yaparlar. • Üç farklı çeşidi bulunur. • Yassı solucanlar : Vücutları ince uzun ve bölmelidir. Tenya ve planarya bu gruba girer. Tenya iç parazit olup baş, boyun ve yassı halkalardan oluşur. Ağız ve sindirim kanalı yoktur. İnsan ve bazı hayvanların vücudunda barınır. Büyüme ve çoğalması için 2 farklı canlının vücudunu kullanır. Büyümek için ara konak canlının, çoğalmak için son konak canlının vücudunu kullanır. Dört çeşit tenya insan yaşamını etkiler.Tenya yavrularına keseli kurt denir ve ara konağın kaslarında bulunur.Son konağın, ara konak olan canlıyı yemesiyle son konağın vücuduna bulaşır. • Yuvarlak solucanlar : Vücutları yuvarlak, uzun ve bölmesizdir. Tamamı iç parazittir. İnsan ve hayvanların iç organ ve bağırsaklarında barınırlar. Genelde iyi temizlenmemiş ve pişirilmemiş yiyeceklerle insan vücuduna bulaşabilir. Bağırsak solucanı, trişin, kıl kurdu gibi. • Halkalı solucanlar : Vücutları uzun ve bölmelidir. Bağımsız olarak yaşarlar. Toprak solucanı ve sülük bu gruba girer. Toprak solucanları toprakla birlikte aldığı organik besinleri yiyerek beslenir. Faaliyetleri sırasında toprağın havalanmasını, nemlenmesini, gübrelenmesini sağlar. Vücudun kopmasıyla rejenerasyon yapıp çoğalabilir. 4. Yumuşakçalar • Su ve nemli topaklarda yaşarlar. Vücutları nemlidir. • Karada yaşayanları deri suda yaşayan solungaç solunumu yapar. • Vücutları çevresinde kavkıları bulunur. • Ahtapot, midye, salyangoz, mürekkep balığı bu gruba girer. 5. Eklem Bacaklılar En fazla türe sahip olan hayvan grubudur. Vücutları çevresinde kitin yapılı dış iskelet bulunur. Karada yaşayanları trake ve suda yaşayanları solungaç solunumu yapar. Dört çeşit alt grupta incelenir. • Böcekler : Vücutları baş, göğüs ve karın kısımlarından oluşur. Yumurtayla çoğalırlar. Büyüme ve gelişmeleri sırasında başkalaşım geçirirler. Kelebek, Karınca, Arı, Çekirge, Karasinek gibi. • Çok ayaklılar : Her vücut halkasından bir çift ayak çıkar. Kırkayak ve çiyan gibi. • Örümcekler : Anten ve kanat taşımazlar. Akrep, bit, pire, kene, örümcek gibi. • Kabuklular : Eklem bacaklıların suda yaşayan grubudur. Yengeç, istakoz, karides gibi. 6. Derisi dikenliler • Vücut üzerinde dikensi sert çıkıntılar korunmayı sağlar. • Tamamı sularda yaşar. • Solungaçlarıyla solunum yaparlar. • Deniz yıldızı, deniz kestanesi, deniz hıyarı gibi canlılar bu gruba girer.

http://www.biyologlar.com/omurgasiz-hayvanlar

MÜREKKEP BALIĞI (SEPİİDA)

Kingdom: Animalia Phylum: Mollusca Class: Cephalopoda Order: Sepiida Suborder: Sepiina Family: Sepiidae Kafadanbacaklılar (Cephalopoda) sınıfının, Onkollular (Decapodiformes) grubundan denizlerde yaşayan bir yumuşakça. Hepsi ayrı eşeylidir. Solungaç solunumu yaparlar. Ağız bölgesinden çıkan 10 adet kolları vardır. İki kolu diğerlerinden daha uzundur. Dinlenme halinde içe çekilmiş olan bu kollarını avlarını yakalamak veya korunmak amacıyla ileri doğru fırlatırlar. Kollarının iç yüzeylerinde çok sayıda vantuz (emeç) bulunur. Vantuzların içleri dişli boynuzsu yapılarla bezenmiştir. Ilıman ve sıcak denizlerin kıyı sularında bol rastlanırlar. Boyları 17 cm ile 17 metre arasında değişen türleri vardır. Çoğu 50-60 cm arasındadır. Türkiye'de Akdeniz kıyılarında avlanırlar. Yırtıcı hayvanlardır. Balık, karides, yengeç ve diğer yumuşakçalarla beslenirler. Bazan balık sürülerine dalar veya ufak mürekkepbalığı kolonilerini takip edip karınlarını doyururlar. Mürekkepbalığı, avına arkasından yaklaşıp omuriliğini ısırarak kopartır ve felç etmek suretiyle öldürür. Bazan her avdan sadece bir ısırık alıp dinlenmeye çekilir. Vantuzlu dokunaçlarıyla avlarını yakalar, kollarıyla da ağıza götürürler. Mürekkepbalıkları olağanüstü bir beyin, heyecan hissi, hassas bir koku alma duyusu, oburluğa varan bir tat alma duyusu ve çok hassas gözlere sahiptir. İri gözlerinde 70 milyon görme hücresi vardır. Görüş alanları 360 dereceyi bulur. Arkalarını da rahatça görebilirler. Karanlık sularda koku alma duyusuyla avlarını tespit ederler. Sinir sistemleri tarafından kontrol edilen ve kromotofor denen renk değiştirme hücreleriyle her ortama kamufle olurlar. İridosist (?) denen deri hücreler de ışığı yansıtarak renk değiştirmeye yardımcı olurlar. Pusuya yattıklarında kuma gömülerek kendilerini gizlerler. Yanlarından bir av geçtiği zaman, uzun iki dokunacını ileri fırlatarak vantuzlu uçlarıyla avını yakalar, diğer kollarıyla da ağızlarına götürürler. Ağızlarında papağan gagasına benzeyen güçlü öğütücüleriyle bir yengeç kabuğunu veya balık kafasını rahatça öğütürler. Büyük bir mürekkepbalığı, sert ve sağlam gagasıyla kalın çelik telleri bile ısırıp koparabilir. Tükürüğü bazı hayvanlar için öldürücü zehir tesiri yapar. Sırt derilerinin altında küçük boynuzsu bir kabuk bulunur. Gözenekli olan bu kabuğun içi hava ile doludur. Özgül ağırlığı sudan azdır. Bunun sayesinde suda alçalıp yükselirler. Ayrıca vücuda destek ve hafiflik sağlar. Kaslar için de önemli bir bağlanma alanıdır. Kan dolaşım sistemleri kapalıdır. Solungaçları manto boşluğundadır. Bütün gövdeleri tek bir yüzgeçle çevrilidir. Yüzgeçlerinin yardımıyla ağır ağır yüzer ve gövdelerini döndürebilirler. Etki ve tepki sistemiyle de hareket edebilirler. Bunun için, manto boşluğuna alınan suyu, ağzı öne doğru olan karın kısmındaki huniden dışarı doğru fışkırtırlar. Suyun huniden dışarı itilmesiyle meydana gelen tepkiyle, hızla ileri-geri kaçarlar. Su püskürttüklerinde 37 km hıza ulaşırlar. Mürekkepbalığı saldırıya uğradığı zaman, mürekkep kesesinden suda dağılmayan ve ana hatlarıyla mürekkepbalığının vücut şeklini andıran koyu renkli bir sıvı püskürtür. Aynı zamanda mürekkepbalığının rengi açık bir hal alır. Böylece hayvanın püskürttüğü ve kendi şeklini alan mürekkep bulutu kendisinden daha fazla görünerek hasmını aldatır. O sırada da kendisi jet sistemiyle hızla oradan kaçar. Mürekkepbalıkları bazen de suda hızla yayılan ve hiçbir şey görünemeyecek şekilde bir duman bulutu oluşturan bir çeşit mürekkep fışkırtırlar. Askeri tabirle, kendileriyle hasımları arasında bir sis perdesi oluştururlar. Saldırgan bu durumda hiçbir şey göremez. Aynı zamanda koku duyusunda da kısmi bir felç olur. Mürekkepbalığı bu kargaşada hızla oradan uzaklaşır. Mürekkep kesesi bazı türlerde, içleri ışık verici bakterilerle dolu keseciklerle beraber çalışır. Böyle olanlarında dışarı püskürtülen mürekkep bir ışık patlaması gibi olacağından hasmının gözü kamaşır. En büyük düşmanları kedibalığı, köpekbalığı, foklar ve balinalardır. Mürekkepbalıkları yumurta ile çoğalırlar. Üreme dönemlerinde vücutları zebra gibi koyu çizgilerle süslenir. Eşler birbirlerine sarılarak saatlerce suda sürüklenir. Yumurtaların döllenmesi dişinin manto boşluğunda olur. Döllenmiş kapsüllü yumurtalar, tek tek veya mukusla örtülü kümeler halinde dişi tarafından bir yere yapıştırılır. Yaz aylarında kıyılara kadar yaklaşıp, yumurtalarını taşların, yosunların arasına bırakırlar. Bunları, çıkardığı mürekkeple siyaha boyar ve kara üzüm salkımını andırır şekilde çoğunlukla bir araya getirirler. Bu yumurta topluluklarına deniz üzümü de denir. Gelişme metamorfozsuzdur. Yumurtadan çıkan 12 mm boyundaki yavrular ergine benzerler. Doğar doğmaz mürekkep salabilirler, kuma gömülüp avlanabilirler. Derin deniz diplerinin daimi karanlıklarında ışıldayan mürekkepbalıkları da mevcuttur. Işık üreten organları fener görevi yaparlar. En küçük yetişkin mürekkepbalığının boyu 1 cm kadardır. Şimdiye kadar ölçülmüş olan en büyük mürekkepbalığı ise 1888'de Yeni Zelanda'da karaya vurmuş olan 19 metre uzunlukta bulunan ve ağırlığı bir tonu aşan bir mürekkepbalığıdır. Boyunun % 90'ını kolları meydana getirmektedir. Dev mürekkepbalıkları tam bilinmeyen yaratıklardır. Çünkü zamanlarının çoğunu derin ve karanlık sularda geçirirler. Derinlerde, Yeni Zelanda'da yakalanandan daha büyüklerinin bulunduğuna dair bazı ipuçları mevcuttur. İspermeçet balinaları mürekkepbalıklarına çok düşkündür. Balina gemileriyle avlanan bazı İspermeçet balinalarının vücutlarında vantuz yaraları görülmüştür. 15 metrelik bir mürekkepbalığı mücadele anında 10 cm çapında vantuz yarası bırakır. Halbuki balinalarda 26 cm çapında vantuz yaralarına rastlanmıştır. Mürekkepbalıklarının mürekkepleri yüzyıllarca sanatkarlar tarafından yazı ve çizimde kullanılmıştır.

http://www.biyologlar.com/murekkep-baligi-sepiida

SÜLÜK (HİRUDİNEA)

Alem: Animalia Şube: Annelida Sınıf: Clitellata Alt sınıf: Hirudinea Sülüklerin tatlı su, kara ve deniz formları vardır. Oligochaeta, şubesiyle yakın akrabalardır ve klitellum yapısını bulunudurular. Toprak solucanları gibi hermafroditlerdir. Bütün sülükler etçildir. Solucanlar, sümüklüböcekler, böcek larvaları, küçük kabuklular ile beslenebilirler ya da ikiyaşamlılar, sürüngenler, balıklar ya da bazı memelilerde kan emen parazit olarak bulunabilirler. Sülüklerin bilinen en büyük avcıları, balıklar, sucul böcekler, karidesler ve diğer sülük türleridir. Tıbbi sülük Hirudo medicinalis, Avrupa'da doğal olarak bulunan ve yüzyıllardır kan emmesiyle bilinen, tıbbi amaçla kullanılan sülüktür. Eklem bacaklılardan veya omurgalılardan kan emen parazit canlılardır. Vücutları dorso-ventral olarak (alt-üst yönünde) yassılaşmıştır. Parapod, Seta ve baş bölgelerinde üye taşımazlar. Vücutlarındaki segment sayısı sabittir (34 adet). Segmentler Annulus adı verilen daha küçük bölmelere ayrıldığı için, dışarıdan bakıldığında sayılamazlar. Tatlı su sülükleri dışında tüm sülüklerde sölom boşluğu indirgenmiştir. Septumların kaybolmasıyla içi bağ doku ve kas doku ile dolan sölom boşluğu, hidrostatik iskelet görevini yitirmiştir. Bu yüzden, arşınlama hareketi görülür. Diğer annelida üyelerinin aksine, açık dolaşım sistemi görülür. Kan emen sülükler, kan emme sırasında tükürük bezlerinden Hirudin adı verilen bir antikoagülan madde salgılarlar. Dokuya tutunma, ağız vantuzunda bulunan dişler sayesinde sağlanır. Ön vantuz 6, arka vantuz 7 segmentlidir. Sindirim sıvısında amilaz, lipaz veya endopeptidaz enzimleri olmadığı için, sindirim çok yavaş gerçekleşir. Kloragogen hücreleri, vücut boşluğu boyunca çoğalmıştır. Klitellum sadece üreme döneminde ortaya çıkar. Vücudun herhangi bir bölgesine penis batırılması ile spermler vücut boşluğuna boşaltılır. Bu olaya "Hipodermik impreginasyon" adı verilir. Sülüklerin tamamı hermafrodittir. Gelişmelerinde larva evresi yoktur. Avlanma ve beslenme zamanları dışında, ışığa karşı negatif (-) fototaksi görülür. 1. Ordo (Takım): Acanthobdella (Genus: Acanthobdella) 2. Ordo (Takım): Rhynchobdella (Genus: Hemiclepsis) 3. Ordo (Takım): Gnathobdella (Species: Hirudo medicinalis) 4. Ordo (Takım): Pharyngobdella (Genus: Herpobdella)

http://www.biyologlar.com/suluk-hirudinea

Biyolüminesans Nedir? Nasıl Çalışır?

Hayvanlar bir yerden diğer yere hareket etmek için görme duyularını kullanırlar. Genelikle ışıksız bir yerde hareket etmek için zorlanmaktadırlar. Baykuş gibi bazı hayvanlar çok büyük gözleriyle ışığın pek çoğunu gözlerinde toplayarak kullanır. Ayrıca onlar çevreleriyle ilgili bilgileri anlamak için diğer duyularını da kullanırlar. Diğer taraftan insanlar,taşınabilir bir yaratım içerisinde çok emek harcayarak buna sahip olmuşlardır ve suni ışık kaynaklarından LED’lere ve ampullere kadar pek çok gelişim yaşamışlardır. Bir organizma tarafından yayılan ışık (veya tarafından atılır) organizma içerisinde meydana gelen kimyasal reaksiyonlar serbest enerji ile üretilmesine “biyolüminesans” denir. Bazı biyolüminesans özelliği olan yaşam formları,tamamıyla farklı bir tarza sahiptir. Onlar kendi ışıklarını kendi üretir ve o ışığı vücutlarının çevresinde taşırlar. Işığı üreten hayvanlar ve insanlar aynı yolla ışığı kullanmaktadırlar.Fakat hayvanlar ampüllerin ürettiği ışıktan farklı olarak kendi ışıklarını üretirler.Geleneksel ampüller ışığı akkorlayarak üretirler.Bu da içerisindeki iplik şeklindeki metali ısıtır ve ışık ışınları meydana gelir.Ampülün icat edildiğinden beri bu,çok verimli bir olay değildir. Işıldayan hayvanlar, ışığı lüminesans olarak üretirler. Lüminesans üreten hayvanlar,kimyasal bileşimleri diğerleriyle karıştırarak parlaklık elde ederler.Bu da maddenin ışık çubuklarının iç kısmıyla biraraya getirerek ışığı elde etmelerini sağlar. Lüminesans,akkorlanmaya göre oldukça verimlidir.Çok fazla sıcaklık oluşturmadan ve sıcaklık gerektirmeden ışık elde edildiği için buna “soğuk ışık “da denmektedir. Bilim adamları, akkor ve lüminesans arasındaki farkın 2,500 yıldan daha uzak olmadığını düşünmektedirler. 1600′lü yıllarda,araştırmacılar hayvanların nasıl ışık ürettiğini araştırmaya başlamışlardır.Fakat farklı hayvanların farklı maddeleri kullanmasından beri, bilim adamları hala her biyolüminesans üreten türün nasıl ışık ürettiğini tam olarak bilmiyor.Araştırmacılar neden hayvanların neden ışık ürettiğini veya bunu nasıl açıp kapattıklarını anlayamamaktadırlar.Pek çok hayvanın lüminesans kabiliyeti bilindiğinden beri, biyolüminesans çalışılması oldukça zor bir konudur.Diğer bir deyişle,üretimin kontrolü ışık üreten maddelerin yıkılmasıyla olur. Biyolüminesanslı canlılar, deniz anası,ahtapot,karides, kril, deniz solucanları ve balıklardır vebu canlılar deniz diplerinde yaşarlar.Çoğunlukla bu canlılar 440-479 nanometre dalga boyuna sahip ışık üretirler. Bu bulgu mavi-yeşil güneş ışığı okyanusun bu kısmında bulunur. Parlayan hayvanlar uzun yollar katedebilir ve okyanusun üst kısımdan gelen ışıkla kendi ışığını harmanlayabilir. Bu hayvanlar okyanusun güneş ışığı almayan yerlerinde ışığın birincil kaynaklarıdır. Hayvanlar Nasıl Işık Üretir? Genel olarak, biyolüminesans ışık-üretim reaksiyonlarındaki maddelerin 2 tip kombinasyonunu kapsamaktadır.Birincisi, lüsiferindir (bir ışık üretici madde). Diğeri ise lusiferazdır. (reaksiyonları katalizleyen bir enzim). Diğer bir deyişle, lusiferin fotoprotein diye bilinen bir proteindir ve ışık üretme süreci için reaksiyonu aktive etmek üzere bir iyonu şarj etmek gereklidir. Nörolojik, mekanik, kimyasal ya da henüz çözülememiş bazı dürtüler ışık üretmek için reaksiyonları başlatabilir. Süreç, diğer maddelerin varlığını gerektirir. Örneğin; oksijen ya da ATP (Adenin Trifosfat).ATP, insan vücudunda da olan pek çok canlı organizmanın kullandığı,enerjiyi depo eden ve taşıyan bir moleküldür.Lusiferin-Lusiferaz reaksiyonları, oksilusiferin ve su gibi ürünler tarafından oluşturulabilir. Lusiferin ve Lusiferaz ikisi de Latince “Lucifer” olan “ışık getiren” anlamına gelmektedir. Onlar belirli kimyasalların adlarından daha geniş kapsamlıdır.Birçok farklı madde Lusiferin ve lusiferaz gibi davranabilir. Bu durum biyolüminesans yaşam formlarının türlerinde beklenebilir. Örneğin,lusiferin koelenterazin deniz biyolüminesansında genel olarak görülür. Dinoflagellatlar (ateş rengi algler), fotosenteze karşı olarak besin elde etmek için klorofile benzeyen bir lusiferin kullanırlar. Onların lüminesansları güneşli günlerden sonra daha parlaktır.Bazı karides ve balıklar diğer canlıları yemeden önce onlara kendi lusiferin ürünlerini gösterirler. Kaynakça: science.howstuffworks.com/zoology/all-ab...bioluminescence1.htm Yazar: Gülseren Billur Akdeniz www.bilgiustam.com

http://www.biyologlar.com/biyoluminesans-nedir-nasil-calisir

Dünyanın en büyük örümceği

En küçük bir örümceğin bile büyük korkulara sebep olabildiği dünyamızda, Theraphosa blondi'yi görenler hayretler içerisinde kalabilir. Güney Amerika’da yaşayan bu tarantula, dünyanın en büyük örümceği olarak tarihe geçti. Diğer örümceklerin daha uzun ayakları olmasına rağmen, T. blondi’nin geniş gövdesi 170 gram ağırlığında. Tüm Theraposa familyasına 'kuş yiyenler'ismini veren, Goliath kuş yiyen olarak bilinen bu devasa örümcek aslında göründüğü kadar tehlikeli değil.Takma ismine rağmen, Hayat Ansiklopedisi’nin belirttiğine göre, T. blondi, nadiren kuşlarla besleniyor. George Washington Üniversitesi’nden örümcek alanında uzman Gustavo Hormiga, T. blondi’nin daha çok eklembacaklılardan beslendiğini belirtiyor. “Bu örümcek, genel olarak yırtıcı ve küçük fare ya da kertenkele gördüğünde, onları da yiyebilir,” diyor Hormiga. Fakat bu örümcekten avını yakalaması için büyük bir ağ kullanmasını beklemeyin- T. blondi yemeğini eski yollarla buluyor: zehirli dişlerini kullanarak. Hormiga, zehrinin insanlar için zararlı olduğunu düşünmese de, çoğu örümcek gibi, T. blondi de zehir üretiyor. Isırması, daha çok arı sokmasını andırıyor, fakat neredeyse hiç tıbbi müdahale gerektirmiyor. Tüyünden sakının T. blondi, ağ yapmasa da, ip üretip kullanıyor. Örümcek, ormandaki çukur ve zemindeki oyuklarda yaşıyor. Bir memeli, lezzetli bir örümcek atıştırmak isteyip oyuğa girmeye çalışırsa, T. blondi’nin zehirden daha kullanışlı bir silahı var: tüyleri. “Bu tüylerin, mikroskoptan bakıldığında, zıpkın şeklini aldığı görülebilir,” diyor Hormiga. Bu da, tüylerin derinin içine işlemesini sağlıyor. “Bu örümcekler, tüylerini salmak için, dördüncü çift ayaklarını karınlarının üstüne sürtüyorlar. Bu tüyler, kaşınma hissi uyandırıyor.” Bu tüylerin zararlı olması için illa da salınmış olması gerekmiyor, araştırmacılar ve evinde örümcek besleyenler örümcekle ilgili herhangi bir şeyde ellerine eldiven takıp durum ile başa çıkmak zorundalar. İnsanlarda, bu tüyler sinir bozucu şekilde kaşıntı hissi uyandırabilir, fakat fareler gibi daha küçük memeliler için bu tüyler öldürücü olabilir. T. blondi dişileri, 30 mm bir kesenin içine 50-150 arası yumurta bırakırlar. Keseyi yırtıcılardan korumak amacıyla kesenin etrafının tüyleriyle örterler. Yeni doğmuş örümcek yavrularının olgunlaşması iki ya da üç yıl alır; Kendilerine bakmaya yetecek büyüklüğe ve olgunluğa ulaşana kadar, anneleriyle uzun zaman geçirirler. Dişileri 20 yıla kadar yaşayabilirken, erkekleri 3-6 yıl arası yaşar, erkeklerin ölümü genelde olgunluğa eriştikten ve çiftleştikten sonra olur. Tadı karidese mi benziyor? Güney Amerika’nın kuzeybatısındaki yerliler T. blondi'yi lezzetli bir atıştırmalık olarak görüyor. Öncelikle, örümceğin tüylerini yakıyorlar, daha sonra örümceği muz yapraklarına sararak kızartıyorlar. Venezuela’daki yerli Piarora insanlarıyla bir yemek masasına oturmuş ve bu örümceklerden yemiş olan tarantula uzmanı Rick West, T. blondi'nin şaşırtıcı şekilde lezzetli ve sulu olduğunu söylüyor. “Yapışkan karın içerikleri, sarılmış yaprak içerisinde çok pişmiş olsa da, beyaz kas ‘et’i, dumanlı karides tadında,” diyor West. 2 cm uzunluğundaki dişleri, yemekten sonra kürdan olarak kullanılıyor. Yemeğiniz her zaman böyle kürdanı içinde gelmez. Karides tadına rağmen, bu örümcek türünü yakın zamanda muhtemelen restoranlarda göremeyeceksiniz. Kaynak: newswatch.nationalgeographic.com

http://www.biyologlar.com/dunyanin-en-buyuk-orumcegi

Kurbağaların Anatomisi , Biyolojisi,

Türkiye’de göl, dere, çay, nehir gibi iç sularda ve bazı nemli ortamlarda yaşayan pek çok kurbağa türü bulunmaktadır. Kurbağaların hemen hepsi üreme zamanlarında suya bağımlı olup, hayatlarının diğer zamanlarında karada yaşamaktadırlar. Kurbağalar, ilkbahar ve yaz aylarında sulara yumurta bırakır. Yumurtaların bırakıldığı bazı su ortamlarının yaz aylarında kuruması sebebiyle kurbağa yumurta ve larvaları olumsuz şekilde etkilenmekte ve hatta büyük bir kısmı ölmektedir. Buna rağmen ülkemizde doğal ortamlarda yetişen kurbağaların toplanarak yapılan üretim miktarları aşağıdaki gibidir. Amerika Birleşik Devletleri ve Uzak Doğu Ülkelerinde semi-intensif şekilde kurbağa üretimi yapılmakta olup, henüz ülkemizde doğadan toplamanın dışında üretim yapılmamaktadır. BİYOLOJİSİ Kurbağaların Türkiye’de 11 türü bulunmakta, bunlardan bazıları; Rana, Hyla, Bufo, Pelabotes, Bombina ve Palodytes tir. Bu türler içerisinde ekonomik değeri olan ve ihracaatı yapılan Rana cinsinin ülkemizde 5 türü yaşamaktadır. Kurbağalar, omurgalılar hayvanlar grubuna girip, bu hayvanlar arasındaki yerlerini şu şekilde belirlemek mümkündür: Şube (Phylum) : Chordata Alt-Şube (Subphylum) : Vertebrata Sınıf (Classis) : Amphibia Takım (Ordo) : Anura Aile (Familia) : Ranidae Cins (Genus) : Rana Tür (Species) : Rana ridibunda (Ova K.) Rana dalmatına (Çevik K.) Rana macrocnemis (Uludağ K.) Rana cameranoi (Şerit K.) Rana holtzi (Toros K.) ÜREMELERİ Kurbağaların cinsi olgunluğa gelmeleri dişilerde 1-2, erkeklerde 3-4 yaşları sonunda ulaşırlar. Eşeysel olgunluğa ulaşan kurbağalar üreme zamanı geldiğinde suya girerler ve larva safhalarının sonuna kadar da suda kalırlar. Daha sonraları kurbağalar karasal yaşama geçerler. Erkek kurbağaların vücut yapıları dişilerden oldukça iri (büyük) olduğundan ayırt etmek zor değildir. Erkeklerin kulak zarı daha büyük ve gözler daha iridir. Erkeklerin gırtlakları parlak sarı renkli dişilerinki ise beyaz ve kahverengi beneklidir. Yetişkin erkek kurbağalar üreme mevsiminde bazı sesler çıkartırlar ses çıkartma üreme zamanları Şubat ayı sonu ile Ağustos ayı sonuna kadar devam etmektedir ve bu sayede erkekler kolayca ayırt edilir. Kurbağalarda gerçek bir çiftleşme yoktur. Bunun için bu çiftleşmeye kucaklaşma (amplexus) denilmektedir. Kurbağaların çiftleşmeleri genelde geceleri olur ve senede 3-4 dönem yumurtlama olmaktadır. Her dönemde 5.000-10.000 adet arasında yumurta bırakmaktadırlar. Kurbağalar ayrı eşeylidirler. Erkek ve dişi üreme organları ayrı fertte bulunur. Erkeklerdeki testislerde olgunlaşan spermatozoonlar bir kanal ile böbreklere oradanda dışarıya atılırlar. Testisler üzerinde sarı renkli bir çift yağ cisimciği vardır. Bunlar kurbağaların kış uykularında beslenmelerini sağlar. Dişi kurbağalarda bir çift ovaryum bulunur. Ovaryumların büyüklükleri yaşa ve mevsime göre değişiklik göstermektedir. Ovaryumların üzerinde erkeklerde olduğu gibi bir çift yağ cisimciği bulunur. Bu yağ cisimleri kış aylarında dişi kurbağanın kış uykusunda beslenmesini sağlar. Yumurta ve Larvalar Ovaryumda olgunlaşan yumurtalar vücut boşluğuna dökülürler. Buradan yumurta kanalına geçer oradan uterusa ve daha sonra kloak yoluyla dışarıya atılırlar. Yumurta , yumurtlama borusundan geçerken etrafı jelatin bir kılıfla sarılır. Yumurta suya düşünce bir kılıf şiştikten sonraki halidir. Bu jelatin madde yapışkan olduğunda yumurtalar bir grup teşkil eder. Jelatin içindeki embriyo geliºerek larva meydana gelir. Bu larvalar kılftan hareketli bir halde çıkar ve serbest yüzmeye başlar. Bunlara iribaş veya tetar denir. İribaşların ilk safhasında dış solungaçlar gelişir ve solunumu bunlarla yapar. Kurbağa yumurtaları küreseldir. Yumurta çapı 7-10mm civarındadır. Bir dişi kurbağa ortalama olarak 9.000 yumurta yumurtlamaktadır. Yaşlı kurbağalar 12.000 adete kadar da yumurtlayabilirler. Yumurtalar yaklaşık 3 gün içerisinde açılır. 1-1.5 ay sonra iç solungaçlarla yüzgeçler gelişir. İribaşlar 2-2.5 aylık olunca arka bacaklar, 4 aylık olunca ön bacaklar gelişir. 6-6.5 aylık olunca metamorfoz (başkalaşım) geçirerek kuyruk, solungaç ve solungaç yarıkları tamamiyle yok olur. Yerine alkciğerler gelişir ve böylece kurbağalar karasal yaşama başlarlar. Bu safhada kurbağalar herbivordur (bitkiyle beslenirler). Kurbağalarda başkalaşım sonucu şekil değiştirme kuyruğun tamamen yok olmasıdır. Şekil değiştirmede önemli olan su ısısıdır. Su ısısı 16 C0 nin altına düştüğü zaman yavrular şekil değiştirmeyi yapamazlar. Bunun için yavrular güneş ışığında belirli zamanlarda tutularak şekil değiştirmelerine yardımcı olunmalıdır. Eğer yavrular şekil değiştirmeyi gerçekleştiremezlerse ölüm kaçınılmaz olur. Beslenmelerİ Ergin kurbağalar (Anura) yalnız canlı ve hareketli böcek, solucan ve küçük yumuşakçalarla beslenirler. Sucul formlardan büyük formda olanları küçük balık ve kuş gibi hayvanlarla da geçinebilirler. Hatta bazı türler kendi larvalarını da yiyebilirler (kanibalizm). Kuyruksuz kurbağada (Anura’da) olduğu gibi dil öne doğru fırlatılarak dilin yapışkan uçları ile avlarının yakalanmasını sağlar. Bir çok su kurbağasında (Ranidae) ava nişan alınarak dil fırlatılır. Kuyruksuz kurbağa larvaları ise sudaki alglerle ve ölü hayvan kırıntılarıyla geçinirler. Çünkü bunların ağızları büyük besinleri yutmaya elverişli değildir. Larvalar ile erginler birbirlerine rakip olmamak için aynı tür besinlerle beslenmezler. Besinleri protein açısından oldukça zengindir. Soğuk kanlı hayvanlar olduklarından vücütlarında çok fazla miktarda yağ ve glikojen depo etmeye gerek duymazlar. Çünkü bunların metabolizması oldukça düşük düzeydedir.Uygun sıcaklıklarda ve besin sunumunda kurbağalar çok miktarda besin alabilme yeteneğindedirler. Bunun yanısıra bir aydan fazla açlığa dayanabilirler. Yumurtadan çıkan yavrularda başın altında vitellüs (besin) kesesi vardır. Yavrular ilk bir hafta bu besinleri kullanırlar. Besin kesesi kullanımı bittikten sonra (asorbe olduktan sonra) dışarıdan besin almak zorundadırlar. Soğuk kanlı olmaları ve ince olan derileriyle fazla miktarda su kaybettiklerinden , aşırı sıcaklık ve kuraklığa karşı dayanıklı değillerdir. Sucul iki yaşamlılar kış uykusu için göl ve nehirlerin donmayan dip kısımlarına çekilirler. DüşmanlarI Kurbağa larvaları Rhynchota (Hortumlular), Coleoptera (Kin kanatlılar) gibi sucul böcekler tarafından yenir. Aynı zamanda Odonata (Tayyare böcekleri) larvalarıda genç evrelerinde kurbağa larvaları ile beslenmektedir. Lucilia adı verilen bir sinek yumurtalarını Bufo ve Rana türleri üzerine bırakır. Birkaç gün içinde çıkan larvalar bu kurbağalarda doku bozuklukları, daha sonrada ölümler meydana getirirler. Kurbağa Kültürü Diğer su canlılarında ( balıklar, kabuklular v.s.) olduğu gibi kurbağalarında suni üretiminde son yıllarda büyük başarı sağlanmıştır. Kurbağa kültüründe kullanılan yetiştirme havuzları ve özellikleri şu şekildedir. Yetİştİrme HavuzlarI Kurbağa yetiştirciliğinde kullanılan havuzların her birinin alanı değişik olabileceği gibi 50-60m2 olanlar tavsiye edilir. Bir kurbağa yetiştirme çiftliğinin kurulması için toplam 5-6 bin m2’lik bir alan yeterlidir. Böyle bir çiftlikte 5 çeşit havuz yapılması gerekmektedir. Bu havuzlar; ·Yumurtlama havuzları ·Kuluçka havuzları ·Yavru ( iribaş ) havuzları ·Genç yavru havuzları ·Yetişkin havuzları Yumurtlama Havuzları Genel olarak bu havuzlar 10-15m2 arasında değişen büyüklüklerde yapılmaktadır. Bu havuzlar toprak olduğu için, etrafına ağaçlar ve yüksek bitkiler dikilmek suretiyle tabi bir ortam şekli yaratılmalıdır. Havuzların derinliği değişik olmakla birlikte herbir havuzda 1/3’lük kısmının derinliği 10cm. olmalıdır. Yumurtlama havuzlarına konacak anaç seçiminde kuvvetli olanlar seçilir ve bir erkeğe 3 yada 4 dişi gelecek şekilde seçilmeli ve yumurtlama havuzlarına bırakılırlar ve bekletilirler. Bu sırada havuzlarda bulunan anaçlar rahatsız edilmemelidirler. Kuluçka Havuzları Anaç havuzlarından elde edilen yumurtalar geniş bir kepçe yardımıyla toplanır ve bu yumurtaların %10-15’inden iribaş elde edilir. Yumurtaları havuzlara aktarılmasından sonra su hiç karıştırılmamalıdır. Yumurtaların açılmasında su, ısı ve zaman önemli bir faktördür. Yumurtalar 24-27Co arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş- çıkışı sağlanmalıdır. Kuluçka havuzları betondan inşaa edilmelidir ve havuzlar 40 cm. derinlikte olmalıdır. Havuzlarda bu devrede su akımı önemlidir. Bu nedenle havuzların su giriş ve çıkışı uygun şekilde yapılmalıdır. Larva (İribaş) Havuzları Yumurtadan çıkan larvalar bir hafta boyunca besin kesesini kullanırlar, daha sonra dışarıdan besin almak zorundadırlar. Bu aşamada yumurta sarısı ile beslenmeleri gerekir. İribaş yavruları ilk ay içerisinde balık ve yer fıstığı unu daha sonra tatlı patates unu, pirinç kepeği, mutfak artıkları ve değersiz yiyeceklerle beslenirler. Yiyecekler su yüzeyinde yüzecek şekilde altları delik kaplarla verilmelidir. Günde iki öğün yem verilmelidir. Çıkan yumurtalardan yaklaşık %10-15’inden iribaş elde edilir. Yumurtalar geniş bir kepçe ile su içinde alınarak kuluçka havuzlarına konulurlar. Yumurtalar havuza nakledilikten sonra havuzlar hiç karıştırılmamalıdır. Yumurtaların açılmasında su ısısı ve zaman önemli bir faktördür. Yumurtalar 24-27C0 arasında 72 saatte açılırlar. Bu devrede havuzlara suyun giriş çıkışı sağlanmalıdır. Kuluçka havuzlarının; derinliği 30-40 cm. arasında ve zeminleri çamur olmalıdır. Böylece havuzların su ısısının sabit tutulması ile yavruların büyüme güvenliği sağlanmış olur. Larva havuzların dikdörtgen şeklinde olması tavsiye edilir. Uygulamada 1m2 ye 1.000 adet olacak şekilde kurbağa larvaları larva havuzlarına konulur. Eğer akarsuya larvalar konulacak ise m2ye 2.000 adet yavru konulmalıdır. Bu arada yavruları boylama eleklerinden geçirerek sınıflandırma yapılır ve ayrı havuzlara koymak gerekir. Genç Yavru Havuzları Genç yavru havuzlarının su derinliği 15-35 cm. arasında olmalı ve her bir havuzun 1/4 kadarlık kısmı sudan daha yüksekte olmalıdır. Yani yavrular gerektiğinde çıkabilmeleri için havuzda susuz bir sahaya gereksinimleri vardır. Yavrular bu havuzlara ancak 3. Aylarını doldurduktan sonra nakledilmelidirler. Genç havuzlarının 1 m2sine 100-120 arasında yavru konulmalıdır. Fakat yavrular 6-7 cm uzunluğunda iseler bu sayı 60-80 arasında olmalıdır.Bütün yavrulara şekil değiştirene kadar yem verilmez. Şekil değiştiren kurbağalar arasında yine bir seleksiyon uygulanır ve aynı büyüklükte olanlar seçilerek aynı havuzlara bırakılırlar. Bu işlem yavrular büyüyünceye kadar devam eder. Şekil bozukluğu gösterenler ve kuyruk atamayanlar ortamdan uzaklaştırılır.Çünkü kanibalizm olayı meydana gelir. Havuza bırakılan genç yavrulara toprak solucanları, sinek larvaları, küçük balıklar, küçük karidesler ile diğer canlı hayvansal besinler verilmelidir. Sinek larvalarının havuzların içinde çoğalmaları için balık artıkları konmalıdır. Çünkü bu artıklar sinekleri cezbeder ve sinek yumurtalarının çoğalmaları için uygun ortam sağlanmış olur. Buda ucuz bir şekilde yavruların ihtiyacının karşılanması demektir. Hava sıcaklığı 20-26 C0 olduğu zaman daha fazla besin verilmelidir ve verilen besin miktarı yüksek ve düşük ısıda azaltılmalıdır. Ortalama verilen besin miktarı %10 kadar olmalıdır. Günde iki defa beleme yapılmalıdır. Besinin kurbağalara eşit olarak verilmesi gerekir bunun içinde yem toprak yüzeyine dağıtılmalıdır. Daha sonra yem küçük tepsilere konulur, tepsinin yarısına toprak solucanı, kurtçuk diğer yarısına da küçük balık, karides, v.s. konur. Tepsi kısmen suya batırılır. Bu işlemde amaç kurbağaların doğadan yem yeme alışkanlığını geliştirebilmelerini sağlamaktır. Bu arada ölen kurbağalar ortamdan uzaklaştırılmalıdır. Yavrular doğal besinlerden alabilecekleri zamana kadar bu iºleme devam edilir. Yetişkin Havuzları Yetişkin kurbağa havuzları genç yavru havuzlarına benzer. Yalnız havuzlardaki su derinliği 30 ile 40 cm. de devamlı korunmalıdır. Bu havuzlarda genç yavru havuzlarındaki gibi kara kısmı yoktur. Yalnız bunun yerine yüzen yem platformları yapılmalıdır. Havuzların etrafı kurbağaların kaçmamaları düşmanları tarafından yenmemeleri için çitle çevrilmelidir. Bu çitler naylondon olabileceği gibi ağaç veya demirden de olabilir. Havuzun yüzeyi de yine böyle bir çitle kaplanmalıdır. Kurbağalar üçüncü aylarını doldurduktan sonra yetişkin havuzlarına nakledilirler. Yetişkin havuzlarında bazen larva veya genç yavrular bulunabilir. Bunları bir-iki haftada bir seçerek havuzdan ayırmak gerekir. Bu havuzların 1 m2sine 12 cm. boyundakilerden 50 adet, 15 cm. boyundakilerden 20-30 adet hesabıyla konulmalıdır. Yetişkin kurbağaların maliyetini düşürmek için iri salyangozların eti kıyılarak yem haline getirilerek verilmelidir. Kurbağalar soğuk kanlı hayvanlar oldukları için kış uykusuna yatarlar. Isı çok düştüğü zaman aktiviteleri ve beslenmeleri durma noktasına gelir, ısı yükseldiğinde ise tekrar aktif hale geçip yem alabilmektedirler. Isının fazla düşmediği kış aylarında bütün yıl beslenebilirler. Kurbağalar şekil değiştirmeyi (metamorfoz) tamamladıktan aşağı yukarı 7-8 ay sonra pazar ağırlığına ulaşırlar. PAZARLAMA Kurbağaların normal pazarlama ağırlığı 150-220 gr arasında değişmektedir. Kurbağalar bu ağırlığa 8-10ay gibi kısa bir sürede ulaşabilmektedir. Bu ağırlık ideal satış ağırlığıdır. Türkiye’de doğal ortamdan toplanan kurbağaların ihracaatı yapıldığı için standart bir ağırlık yoktur. Canlı, donmuş bacak, taze bacak ve konserve şeklinde ihracattaları yapılmaktadır. Türkiye’nin ihracaatının %80’ ini canlı ve donmuş bacak şeklindeki kurbağalar teşkil etmektedir. Konserve şeklindeki ihracaat toplam ihracaatın çok az bir kısmını oluşturur. AVLANMALARI Kurbağaların doğadan toplanmalarında çeşitli kepçeler kullanılmaktadır. Şekil- Kurbağalar avlanma zamanlarında suya bağımlı oldukları için, kullanılan kepçelerin sudan etkilenmeyen ve suyu geçiren ince ağlardan yapılmalıdır. Bunun için ergin kurbağa avlanma kepçesi daha uzun ve büyüktür. İstenilen uzunluğa getirilebilen bir seyyar sap vardır.Larvalar için kullanılan kepçeler daha küçük ve göz açıklıkları daha sıktır. Kurbağalar ellede yakalanabilir Bunun için gece tercih edilir. Işığının kuvvetli olması sonucu kurbağalar ışık etrafında toplanırlar rahatlıkla yakalanırlar.Yalnız derileri kısmen zehirli olduğundan, elle temastan sonra, göz ve dudak gibi ince derili ve nemli kısımlara, suyla yıkamadan ellerin sürülmemesi gerekir. TAŞINMALARI Canlı olarak taşınmaları kısa mesafelerdeki nakilleri naylon torba, çuval bez çanta ve buna benzer bir kap içinde yapılabilir. Uzak mesafelerdeki nakiller ise gemi ambarlarında, kara taşımacılığında frigo-frig tırlarda ısı yalıtımı olan kutular içine konulmalı ve bunlarla nakledilmelidir. Nakil esnasında ortamın serin ve nemli olmasına dikkat edilmelidir. LİTERATÜR 1. BAŞOĞLU, M.- ÖZETİ,N. 1973 Türkiye Amfibileri (The Amphibians of Turkey) E.Ü.fen Fakültesi Kitaplar Servisi No 50 2. TOLUNAY, A.M. Özel Zooloji 3. GÖKALP.N 1980 Kurbağaların Biyolojik Özellikleri ve suni üretimleri Su ürünleri Bölge Müdürlüğü 4.DEMİRSOY A. Yaşamın Temel Kuralları 5.KURU M. Omurgalılar Zooljisi      

http://www.biyologlar.com/kurbagalarin-anatomisi-biyolojisi


Canlıların Çeşitliliği

Doğal ortamlarında çiftleştiklerinde verimli döller verebilen canlılara tür denir. Türü oluşturan bireylerin kalıtsal ve anatomik yapıları çok benzerdir. İnsan türü hamsi türü limon türü gibi. Yeryüzünde yaklaşık olarak 2 milyon civarında canlı türü bulunmaktadır.Bu canlı türlerini benzerlik ve farklılıklarına göre gruplara ayırmaya ise sınıflandırma denir. Sınıflandırma türlerin daha kolay hızlı ve ayrıntılı incelenmesine olanak sağlar. Yeryüzünde yaşayan canlılar altı büyük sınıflandırma grubuna ayrılarak incelenmiştir. (Virüsler - Bakteriler - Protistler - Mantarlar - Bitkiler - Hayvanlar) I. VİRÜSLER En küçük ve basit yapılı organizma olarak kabul edilir. Yapısı kalıtsal madde ve protein kılıftan ibarettir. Kalıtsal madde virüsün yaşamsal olayları gerçekleştirmesini ve çoğalmasını sağlar. Bazı virüslerde sadece DNA ve bazılarında da sadece RNA şeklinde bulunur. Protein kılıf kalıtsal maddenin etrafını çevreleyen bir kılıftır. Kalıtsal maddeyi dış etkilerden korur. Virüsler hücre zarı sitoplazma ve enzimleri taşımadıkları için beslenme solunum boşaltım büyüme senaaa sindirim gibi aktiviteleri gerçekleştirmezler. Bu nedenle mecburi parazit olup ancak canlı bir hücreye girdiği zaman çoğalabilir. Bu durum bulaştığı canlının hastalanmasına neden olur. (Nezle Grip Aids Kuduz Hepatit gibi.) Kendisine uygun bir hücreye girebilen virüs kalıtsal maddesiyle hücre yönetimini ele geçirir. Yeni virüsler konak hücrenin organelleri ve sitoplazması kullanılarak üretilir. II. BAKTERİLER Virüslerden daha büyük bir hücreli mikroskobik organizmalardır. En basit hücre yapısına sahiptirler. Hücre zarı sitoplazma hücre çeperi ve ribozomdan oluşurlar. Çok küçük oldukları için hava ve su yardımıyla dünyanın hemen her tarafına taşınabilirler. Çoğalma hızları yüksek olup dünyada fazla ve yaygın olarak bulunurlar. Bakterilerde şu yapılar bulunabilir. Hücre zarı : Bakterinin korunmasını ve madde alış verişinin kontrolünü sağlar. DNA : Bakterilerin kalıtsal maddesi olup hücre zarı ve sitoplazmadaki olayları denetler. Sitoplazma : Taşıdığı enzimlerle canlının yaşam olaylarını gerçekleştirir. Enzimler : Sitoplazmada bulunurlar.Beslenme solunum senaaa ve sindirim olaylarını sağlarlar. Ribozom : Her hücrenin kendisine ait özel proteinlerinin senaaalenmesini sağlar. Kamçı : Bazılarında bulunur. Sulu ortamlarda bakterinin aktif hareketini sağlar. Klorofiller : Bazılarında bulunur. Bakterilerin ışıklı ortamda fotosenaaa yapmasını sağlar. Hücre çeperi : Bakterinin zar ve sitoplazmasına desteklik sağlar. Şeker - protein karışımı bir maddeden oluşur. Bakteriler bölünerek çok hızlı bir şekilde çoğalırlar. Uygun olmayan şartlarda çevrelerine bir kapsül oluşturarak spor haline geçerler. Şekillerine göre dört çeşit bakteri grubu bulunur; Yuvarlak bakteriler : Üzüm tanesi şeklindedir ve kamçı taşımazlar. Çubuksu bakteriler : İnce uzun şekilli bakterilerdir. Spiral bakteriler : Kıvrık burgu şekilli bakterilerdir. Virgülsü bakteriler : Kamçıları tek ve uzun bakterilerdir. Beslenme şekillerine göre 2 çeşit bakteri grubu bulunur. a. Üretici bakteriler : Taşıdığı klorofilleri yardımıyla fotosenaaa yapar ve ihtiyaç duyduğu besinlerin üretilmesini sağlarlar. b. Tüketici bakteriler : İhtiyaç duyduğu besinleri dışarıdan hazır olarak alan bakterilerdir. Bunların da yaşama şekillerine göre farklı tipleri bulunur. Çürükçül bakteriler : Canlı artık ve kalıntılarını ayrıştırarak besin ihtiyacını karşılarlar. Parazit bakteriler : Başka canlıların vücudunda barınarak hazır besin alır ve hastalık oluştururlar. Ortak yaşam bakterileri : Birlikte yaşadığı canlıyla karşılıklı madde alış verişi yaparak beslenirler. Bakterilerin Faydaları Çürütücü bakteriler canlı kalıntılarını parçalayarak doğal temizliğin gerçekleşmesini ve toprağın mineral oranının artmasını sağlarlar. Maya bakterileri fermantasyon sonucu ürettiği asit ve alkolle besinlerin mayalanmasını sağlar. Turşu içki yoğurt oluşumu gibi. Ortak yaşam bakterileri Selülozun sindirilmesi vitamin üretilmesi ve azotun tutulması gibi olaylarda birlikte yaşadığı canlıya yardımcı olur. Bakterilerin Zararları Patojen ve bazı zararlı bakteriler insanlarda tifo kolera zatürre verem gibi hastalıların oluşmasına neden olurken bazıları da besinlerin gıda yapısında bozulmalara neden olurlar. III. PROTİSTLER Gelişmiş hücre yapısına sahip olan bir hücreli canlılardır. Vücutları; hücre zarı sitoplazma organeller çekirdek ve bazılarında hareket yapılarından oluşur. Sulu ortamlarda ve canlıların vücudunda yaşayabilirler. Çoğunluğu tüketici olup dışarıdan hazır besin alır. Tatlı sularda yaşayanlarda bulunan kontraktil koaaaaar fazla suyun boşaltımını sağlar. Hareket özelliklerine göre dört grubu bulunur. a. Kamçılılar : Aktif hareketini kamçıları yardımıyla sağlarlar. Öglena türlerinde kloroplast bulunur ve fotosenaaale besin üretebilirler. b. Kök ayaklılar : Hücre şekillerini değiştirerek yalancı ayak oluştururlar. Böylece besin alma ve aktif hareketlerini gerçekleştirirler. Amip gibi. c. Silliler : Hücreleri çevresi kısa sillerle kaplıdır. Sillerin faaliyeti hareket ve beslenmede etkili olur. Yapısında iki tane çekirdek bulunur. Paramesyum gibi. d. Sporlular : Çoğalmasını sporlar yardımıyla sağlar. Tamamı iç parazit olup hareket yapıları yoktur. Plazmodyum türü insanda sıtma hastalığını oluşturur. IV. MANTARLAR Bira mayaları haricinde çok hücreli olan canlı grubudur. Tamamı tüketici olarak beslenir. Spor üreterek çoğalırlar. Ancak çevre şartlarına göre başka üreme şekillerini yapan türleride bulunur. Hücreleri gelişmiş yapıda olup çevrelerinde şeker - protein yapısında olan hücre çeperi bulunur. Yedek besinini glikojen şeklinde depo ederler. Dört farklı grubu bulunur. a. Küf mantarları : Sporlarının çimlenmesiyle oluşan pamuksu yapıdaki hifleriyle canlı kalıntılarını çürüterek beslenirler. b. Şapkalı mantarlar : Sporlarının çimlenmesiyle çayır mantarlarını oluşturur. Topraktaki canlı kalıntılarını ayrıştırarak beslenir. Bir kısmı besin olarak kullanılır. c. Bira mayası mantarları : Tek hücreli olup tomurcuklanarak çoğalabilir. Etil alkol fermantasyonu yaparlar. Hamurun mayalanmasında etkilidirler. d. Parazit mantarlar : Dış parazit olarak yaşarlar insan hayvan ve bitkilerde mantar hastalıklarını oluştururlar. V. BİTKİLER Gelişmiş yapılı olan çok hücreli organizmalardır. Çoğunluğu üretici olarak beslenir. Eşeyli yollarla çoğalırlar. Bazı türleri suda bazıları da karada yaşar. Çoğalmalarındaki farklılığa göre iki grubu bulunur. A. ÇİÇEKLİ BİTKİLER En gelişmiş bitki grubudur. Vücudunda bütün bitkisel organları bulundurur. Tohum ve meyve oluşturarak çoğalır. Çiçekli bir bitki dört farklı kısımdan oluşur. 1. Kök Gövdenin toprak altındaki uzantısıdır. Bitkiyi toprağa bağlar ve dik tutar. Bitkinin ihtiyaç duyduğu su ve minarellerin topraktan alınmasını sağlar. Kök üç kısımdan oluşur. Ana kök : Kökün toprakta uzamasını sağlayan temel kısmıdır. Yan kök : Kökün toprakta yayılmasını sağlayan çıkıntı kısımlarıdır. Emici tüy : Kökün toprakla temasını artıran kılsı yapılardır ve kısa zamanda bol su alınmasını sağlarlar. Kök Çeşitleri Bitkilerde temelde iki çeşit kök bulunur. Kazık kök : Ana kök bir tane olup gelişmiş ve uzamıştır. Çevresinde çok sayıda yan kök bulunur. Genelde ağaçlarda bulunur. Çam söğüt gül gibi. Saçak kök : Ana kök gelişmemiş olup gövdeden çok sayıda yan kök çıkar. Genelde otsu bitkilerde bulunur. Çim buğday nohut gibi. Bunlardan başka özel görevler yapan besin depolayıcı depo kökler tırmanmayı sağlayan tutunma kökleri gövdeyi dik tutan destek kökleri bitkinin parazit yaşamasını sağlayan sömürme kökleri gibi kök çeşitleride vardır. 2. Gövde Bitkinin toprak üstünde kalan organlarıdır. Yapısında dallar iletim boruları yapraklar çiçekler ve tomurcuklar bulunur. Fotosenaaale besin üretilmesini besin depolanmasını ve madde iletiminin yapılmasını sağlar. Temelde iki çeşit gövde bulunur. Otsu gövde : Yeşil renkliince yumuşak ve zayıftır. Otsu bitkilerde bulunur. Yaşam süreleri bir mevsim ya da bir yıldır. Fasulye Buğday Marul Çim gibi. Odunsu gövde : Kahverenkli kalın sert ve dirençlidir. Ağaçsı bitkilerde bulunur. Yaşam süreleri uzundur. Gövde çevresinde kabuk şeklinde mantar tabakası bulunur. Gövde içinde yaşı gösteren yaş halkaları vardır. (Elma çam kavak söğüt sekoya gibi.) Bazı bitkilerde özel görevler yapan farklı gövde çeşitleri kullanılır. Örneğin yumru gövdeler besin depolar etli gövdeler su depolar sarılıcı gövdeler bitkinin desteğe tutunmasını sağlar sürünücü gövdeler toprakta uzamayı sağlar. 3. Yaprak Dallardaki yeşil renkli yapılardır. Genelde damarlı ve geniştir. Üzerinde gaz alış verişini sağlayan stomalar (gözenekler) bulunur. Hücrelerinde çok sayıda kloroplast bulunur. Yapraklar; – Fotosenaaale besin üretme – Solunumla oksijen ve karbondioksit değişimini sağlama – Dökülerek katı atıkları boşaltma – Terlemeye su ve ısı atma şeklinde görevleri gerçekleştirir. Bazı yapraklar bu görevlerden başka özel faaliyetlerde gerçekleştirirler. Örneğin depo yapraklar besin depolama diken yapraklar su kaybını azaltma kapan yapraklar böcek yakalama sülük yapraklar gövdeyi desteğe bağlama şeklinde faaliyet yaparlar. 4. Çiçek Bitkilerin eşeyli üremeyi sağlayan organına çiçek denir. Çiçekler genel olarak aşağıdaki kısımlardan oluşur. Çanak yaprak : Yeşil renkli olup içerisindeki çiçek kısımlarını dış etkilerden korur. Taç yaprak : Renkli ve hoş kokulu olup böcekleri çekerek tozlaşmanın yapılmasını sağlar. Erkek organ : Özel bölünmelerle polenlerin çok sayıda üretilmesini sağlar. Dişi organ : Vazo şeklinde olup yumurtaların oluşturulmasını ve döllenmesini sağlar. Çiçekli bitkilerde tohum oluşumu sırasında iki temel olay gözlenir. a. Tozlaşma olayı : Erkek organdaki polenlerin dişi organın üst kısmına taşınmasına denir. Su rüzgar kuş ve böcekler tozlaşmaya yardımcı olurlar. b. Döllenme olayı : Polenlerin yumurtalıkta bulunan yumurtalarla birleşerek zigotu oluşturmasıdır. Türün kromozom sayısını taşıyan zigot mitoz bölünmelerle hızla çoğalarak tohumun oluşmasını sağlar. tohumun yapısında bulunan kabuk içindeki canlı dokuyu korur. Çenekler depoladıkları besinlerle çimleninceye kadar canlı dokuya besin sağlar. Embriyo canlı dokuyu oluşturur ve çimlenerek bitkinin kısımlarını oluşturur. Tohumun Çimlenmesi Tohumun uygun koşullarda yeni bir bitkiyi oluşturmasına çimlenme denir. Çimlenmeyi sağlayan kısım embriyodur. Çimlenme embriyonun büyüme ve gelişmesiyle sağlanır. Tohumun çimlenmesi için üç temel şart gereklidir. Sıcaklık : Canlı dokudaki hücresel olayların yapılması ve enzimlerin çalışmasını sağlar. Su : Tohum kabuğunun çatlaması ve yeni hücrelerde sitoplazmanın oluşmasını sağlar. Oksijen : Tohumun solunumla ihtiyaç duyduğu enerjiyi üretmesini sağlar. B. ÇİÇEKSİZ BİTKİLER Gelişmemiş yapılı ilkel bitkilerdir. Çoğalmalarını spor keselerini kullanarak sağlarlar. Kök gövde ve yaprakları tam olarak gelişmemiştir. Nemli yerlerde yaşarlar ve fotosenaaale besin üretirler. İki ana grubu bulunur. 1. Damarlı Olanlar Basit yapıda kök gövde ve yaprakları bulunur. İletim demetleriyle madde taşıması yaparlar. Döl almaşı ile çoğalırlar. Bu gruba eğrelti otu ve kibrit otları örnek verilebilir. 2. Damarsız Olanlar Su ve kara yosunları bu gruba girer. Kök gövde ve yaprak taşımazlar. İletim demetleri yoktur. Döl almaşıyla çoğalmalarını gerçekleştirirler. VI. HAYVANLAR Dünyada en yaygın olarak bulunan canlı grubudur. Yaklaşık 15 milyon civarında türü bulunur. Tamamı tüketici olup genelde aktif hareket ederler. Hepsi eşeyli yollarla çoğalır. En gelişmiş canlı grubudur. İskelet yapılarındaki farklığa göre iki temel gruba ayrılırlar. A. OMURGASIZ HAYVANLAR Çoğunluğu sularda ve nemli bölgelerde yaşarlar. Hayvanların en basit bireylerini içerirler. Karada yaşayanları deri ve trake solunumu yaparken sularda yaşayanları yüzey ve solungaç solunumu yaparlar. Altı gruba ayrılarak incelenirler. 1. Süngerler En ilkel hayvan grubudur. Sularda bir yere tutunarak yaşarlar. Vücutlarında doku ve organ farklılaşması yoktur. Sudaki besin parçacıklarıyla beslenirler. Yumurta oluşumu ve tomurcuklanma ile çoğalırlar. 2. Sölenterler Vücutlarında tam bir doku ve organ farklılaşması görülmez. Basit bir sindirim kanalı ve ağsı sinir yapılarını taşırlar. Sölenterlerin üç çeşidi bulunur. Bunlar deniz adası mercan ve hidradır. Yumurta üretimi ve tomurcuklanma ile çoğalabilirler. 3. Solucanlar Doku ve organ farklılaşması görülen ilk hayvan grubudur. Kasları yardımıyla aktif hareket edebilirler. Yumurta ile çoğalırlar. Derileri ince ve nemli olup deri solunumu yaparlar. Üç farklı çeşidi bulunur. Yassı solucanlar : Vücutları ince uzun ve bölmelidir. Tenya ve planarya bu gruba girer. Tenya iç parazit olup baş boyun ve yassı halkalardan oluşur. Ağız ve sindirim kanalı yoktur. İnsan ve bazı hayvanların vücudunda barınır. Büyüme ve çoğalması için 2 farklı canlının vücudunu kullanır. Büyümek için ara konak canlının çoğalmak için son konak canlının vücudunu kullanır. Dört çeşit tenya insan yaşamını etkiler. Tenya yavrularına keseli kurt denir ve ara konağın kaslarında bulunur. Son konağın ara konak olan canlıyı yemesiyle son konağın vücuduna bulaşır. Yuvarlak solucanlar : Vücutları yuvarlak uzun ve bölmesizdir. Tamamı iç parazittir. İnsan ve hayvanların iç organ ve bağırsaklarında barınırlar. Genelde iyi temizlenmemiş ve pişirilmemiş yiyeceklerle insan vücuduna bulaşabilir. Bağırsak solucanı trişin kıl kurdu gibi. Halkalı solucanlar : Vücutları uzun ve bölmelidir. Bağımsız olarak yaşarlar. Toprak solucanı ve sülük bu gruba girer. Toprak solucanları toprakla birlikte aldığı organik besinleri yiyerek beslenir. Faaliyetleri sırasında toprağın havalanmasını nemlenmesini gübrelenmesini sağlar. Vücudun kopmasıyla rejenerasyon yapıp çoğalabilir. 4. Yumuşakçalar Su ve nemli topaklarda yaşarlar. Vücutları nemlidir. Karada yaşayanları deri suda yaşayan solungaç solunumu yapar. Vücutları çevresinde kavkıları bulunur. Ahtapot midye salyangoz mürekkep balığı bu gruba girer. 5. Eklem Bacaklılar En fazla türe sahip olan hayvan grubudur. Vücutları çevresinde kitin yapılı dış iskelet bulunur. Karada yaşayanları trake ve suda yaşayanları solungaç solunumu yapar. Dört çeşit alt grupta incelenir. Böcekler : Vücutları baş göğüs ve karın kısımlarından oluşur. Yumurtayla çoğalırlar. Büyüme ve gelişmeleri sırasında başkalaşım geçirirler. Kelebek Karınca Arı Çekirge Karasinek gibi. Çok ayaklılar : Her vücut halkasından bir çift ayak çıkar. Kırkayak ve çiyan gibi. Örümcekler : Anten ve kanat taşımazlar. Akrep bit pire kene örümcek gibi. Kabuklular : Eklem bacaklıların suda yaşayan grubudur. Yengeç istakoz karides gibi. 6. Derisi dikenliler Vücut üzerinde dikensi sert çıkıntılar korunmayı sağlar. Tamamı sularda yaşar. Solungaçlarıyla solunum yaparlar. Deniz yıldızı deniz kestanesi deniz hıyarı gibi canlılar bu gruba girer. B. OMURGALI HAYVANLAR Vücutlarında kemik ve kıkırdaktan yapılmış iç iskeletleri bulunur. En gelişmiş canlı grubudur. Doku ve organ gelişimi en yüksek derecede bulunur. Vücutlarında özel görevler yapan sistemler bulunur. Hepsi eşeyli yollarla çoğalırlar. Böbrekleriyle boşaltım yaparlar. Omurgalılar beş ayrı grupta toplanırlar. 1. Balıklar Tatlı ve tuzlu sularda yaşarlar. Solungaç solunumu yaparlar. Yüzgeçleriyle hareket ederler. Vücutları koruyucu olan pullarla kaplıdır. Kalpleri bir kulakçık ve bir karıncık olarak iki odacıklıdır. Kalpleri vücuttaki kirli kanı toplayıp solungaçlara gönderir. Bu nedenle kalpte sadece kirli kan bulunur. Soğuk kanlı canlılardır. Vücut sıcaklıkları suya bağlıdır. Kış uykusuna yatmazlar. Dış döllenme ve dış gelişmeyle yumurta üreterek çoğalırlar. Köpek balığı Hamsi Kefal Alabalık Palamut bu gruba girer. 2. Kurbağalar Derileri ince ve nemli olan canlılardan oluşur. Su keanarlarında yaşarlar. Yavruyken solungaç erginken deri ve akciğer solunumu yaparlar. Arka ayakları uzun olup perdelidir. Sıçramasını ve suda yüzmesini sağlar. Dilleri uzun ve yapışkanlıdır. Çoğunlukla böcekleri tutarak beslenirler. Kalpleri iki kulakçık ve bir karıncıktan oluşur. Vücuttan gelen kirli kan ile akciğerden gelen temiz kan karıncıkta karışır. Vücuda karışık kan gönderilir. Yeterli enerjiyi üretemediği için soğuk kanlıdırlar. Dış döllenme ve dış gelişme şeklinde yumurtayla çoğalırlar. Büyümeleri sırasında larvaları başkalaşım geçirir ve erginleşir. Kuyruklu ve kuyruksuz kurbağa olarak adlandırılan türleri bulunur. 3. Sürüngenler Gövdelerine oranla kol ve bacakları zayıf olduğu için karınları üzerinde sürünürler. Vücut çevresi pullarla kaplıdır. Akciğerleriyle solunum yaparlar. Kalpleri üç odalı olup iki kulakçık ve bir karıncıktan oluşur. Karıncıkta bulunan yarım perde kirli ve temiz kanın karışmasını azda olsa engeller. Vücutta karışık kan dolaşır ve soğuk kanlı canlılardır. İç döllenme ve dış gelişme şeklinde yumurtayla çoğalır. 4 farklı alt grubu bulunur. Kertenkeleler : Bazı türleri uzun ve hareketli olan kuyruklarını düşmanlarından kaçmak için kopartabilirler. Kopan kuyruk zamanla rejenerasyonla onarılır. Yılanlar : Kol ve bacakları yoktur. Kıvrılarak hareket ederler. Zehirli olanlar dişleriyle avlarını etkisiz hale getirirler. Hayvanları yutarak beslenirler. Büyümeleri sırısında derilerini değiştirirler. Kaplumbağalar : Vücut çevresinde bağa denen sert ve kalın bir kabuk korunmasını sağlar. Timsahlar : Ekvatoral kuşakta yaşarlar. Kış uykusuna yatmazlar. Üst çenesini hareket ettiren tek omurgalı grubudur. Kalpleri dört odacıklıdır. Vücutlarında karışık kan dolaşır. Su kenarlarında yaşarlar. 4. Kuşlar Vücutları tüylerle kaplıdır. Tüyler uçmayı ve vücut sıcaklığının korunmasını sağlar. Akciğer solunumu yaparlar. Ağız uçları gaga şeklindedir. Ağızlarında diş bulunmaz. Dişin görevini sindirim kanalındaki taşlık organı yapar. Kalpleri dört odacıklı olup sağ tarafta kirli sol tarafta ise temiz kan bulunur. Vücutta temiz kan ve kirli kan ayrı ayrı dolaşır. Sıcak kanlı canlılardır. Oluşturdukları yavrularına bakarlar. İç döllenme ve dış gelişme şeklinde yumurta oluşturarak çoğalırlar. Beslenme ve yaşama şekline göre yırtıcı tırmanıcı ötücü uçamayan suda yüzebilen türleri bulunur. 5. Memeliler Vücutları kıl ve ter bezleriyle kaplı olan canlı grubudur. En gelişmiş canlı grubu olup akciğer solunumunu yaparlar. Yeryüzünde ortam adaptasyonları (uyum yetenekleri) en yüksek olan canlılar olup hemen hemen her yerde bulunabilirler. Kalpleri dört odacıklı olup kirli ve temiz kan karışmaz. Vücutlarında temiz kan dolaşır. Sıcak kanlı canlılardır. Kış uykusuna yatmazlar. İç döllenme ve iç gelişme şeklinde yavrularını belli bir hamilelik sürecinden sonra doğurarak çoğalırlar. Doğan yavrularını sütle besleyerek yetiştirirler. Yavruların bakım ve korunmasını sağlarlar. Beslenme ve yaşama şekline göre altı çeşidi bulunur. Otçul memeliler : Besinlerini bitkisel kaynaklardan alırlar. Geviş getirenlerinin mideleri 4 odalıdır ve bağırsakları uzundur. Keçi koyun inek gibi. Etçil memeliler : Besinlerini hayvansal kaynaklardan alırlar. Ağız ve ayak yapıları yırtıcı özelliktedir. Aslan kurt çakal gibi. Etçil - otçul memeliler : Besin kaynağı olarak et ve ot kullanabilen canlılardır. Ayı fare kedi köpek gibi. Kemirici memeliler : Bitkilerin kök gövde ve tohumlarını kemirerek beslenirler. Tavşan sincap fare gibi. Uçan memeliler : Kollarını gövdeye bağlayan pelerin şeklindeki deriyle uçarlar. Yarasa gibi. Yüzen memeliler : Kol ve bacakları yüzgeç şeklinde olup su ortamında hareket ederler. Balina yunus fok gibi.

http://www.biyologlar.com/canlilarin-cesitliligi

Omurgasız Hayvanlar ve Omurgasız Hayvanların Özellikleri

Omurgasız Hayvanlar : Vücutlarında kemikten veya kıkırdaktan yapılmış iskelet sistemine sahip olmayan hayvanlara omurgasız hayvanlar denir. Omurgasız hayvanlar kendi aralarında; tek ve çok hücreli omurgasız hayvanlar olarak iki gruba ayrılırlar. İsim: omurgasız.jpg Görüntüleme: 31966 Büyüklük: 19,8 KB (Kilobyte) Bütün omurgasız hayvanlarda; • İskelet sistemi bulunmaz. Vücudun dik durmasını sağlayan başka yapılar bulunur. • Dolaşım sisteminde açık dolaşım görülür.(Açık dolaşımda kılcal damarlar bulunmaz) • Çeşit sayısı çok fazladır. • Karada ve suda yaşarlar. • Karada yaşayanları trake ve deri, suda yaşayanları solungaç solunumu yaparlar. 1- Solucanlar : • Nemli yerlerde yaşarlar. • Yapı bakımından üç çeşittirler. a) Halkalı Solucan :Toprak solucanı ve sülük. b) Yassı Solucan :Tenya = Şerit. c) Yuvarlak Solucan :Bağırsak solucanı, tirişin, kıl kurdu. 2- Eklem Bacaklılar : • Vücutlarının dışında kitin denilen örtü bulunur. Sert ve dayanıklı olan bu örtü vücuda diklik ve desteklik sağlar. • Vücutlarındaki halkalar ve deri kıvrımlarının birbirine eklenmesiyle oluşan yapıya dış iskelet denir. • Yumurta ile çoğalırlar. • Böcekler grubunda olan eklembacaklılar başkalaşım geçirirler. • Yumurtadan çıkan kurtçuğa larva denir. • Larvanın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir. • Pupa dönemi karasinekte kabuk içinde, ipek böceğinde ise kendi salgıladığı ipekten yaptığı koza içinde geçirilir. a) Böcekler :Arı, karasinek, sivrisinek, bit, pire, kene, çekirge, tahta kurusu, hamam böceği ve kelebek. b) Kabuklular :Yengeç, karides. c) Örümcekler :Örümcek, akrep. d) Çok Ayaklılar :Çıyan, kırkayak. 3- Süngerler : 4- Mercanlar : 5- Yumuşakçalar : Salyangoz, midye, istiridye, mürekkep balığı, sümüklü böcek, ahtapot. 6- Derisi Dikenliler : Deniz yıldız denizkestanesi. 4- Başkalaşım ve Başkalaşım Geçiren Hayvanlar : Bazı canlılar dünyaya geldiklerinde ana canlıya benzerken bazıları da benzemezler. Ana canlıya benzemeyen canlılar gelişim dönemleri boyunca başkalaşım geçirerek ana canlıya benzer hale gelirler. Kurbağaların ve böceklerin yumurtadan çıktıktan sonra yapısal değişikliğe uğrayarak ana canlıya benzer hale gelmesine başkalaşım denir. (Kurbağaların ve böceklerin yumurtadan çıktıktan ergin hayvan oluncaya kadar geçirdikleri gelişim evrelerinin hepsine birden başkalaşım denir). Kurbağalar ve eklem bacaklılardan böcekler, başkalaşım geçiren hayvanlardır. a) İpek Böceğinin Gelişim Dönemleri (Başkalaşım Evreleri) : • İpek böceği salgıladığı yapışkan bir maddeyle (iplikle) yumurtalarını birbirine bağlayarak etrafa dağılmalarını önler. • Tırtıl, yumurtaların gelişebilmesi için salgıladıkları iplikle kendilerine koza örmeye başlarlar. (Tırtıl bunu 3 – 4 günde örer). • Yumurta olgunlaşınca tırtıl oluşur. • Tırtılın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir. • Pupa dönemi sonunda koza yırtılır ve kelebek oluşur. b) Kurbağanın Gelişim Dönemleri (Başkalaşım Evreleri) : • Kurbağadaki döllenmiş yumurta hücresinin gelişmesi sonucu larva oluşur. • Balığa benzeyen larvalar gelişerek iribaş olur. • Zamanla iribaş büyüdükçe önce arka bacaklar, sonra ön bacaklar çıkar ve en sonunda kuyruk kaybolur. • Bundan sonra genç yavru kurbağa oluşur. Yavru kurbağa da gelişerek ergin kurbağa haline gelir.

http://www.biyologlar.com/omurgasiz-hayvanlar-ve-omurgasiz-hayvanlarin-ozellikleri

Fitoplankton kültürleri

Fitoplankton kültürleri aquakültür yetiştiriciliğinde gerekli olan kaçınılmaz olan kaçınılmaz malzemedir.özellikle çeşitli su canlılarının ilk dönemindeki beslenmesinde mikro alglerin çok büyük önemi vardır.örneğin karides larvası üretiminde ilk başlangıç yemi olarak algler vazgeçilmeyecek bir gıda kaynağıdır.bunun yanında balık larvalarına canlı yem olarak kullanılan rotifer yetiştiriciliğinde de rotiferlere yem olarak alglerin üretimi yapılır Fitoplanktonun karakteristik gelişme safhaları beş ayrı aşamada gerçekleşir. bunlar: Uyum safhası: ekimi yapılan alg hücreleri ortama uyum aşamasında olduğundan gelişmenin nispeten yavaş olduğu safhadır. Hızlı gelişme safhası: hücreler düzenli ve sürekli olarak sabit bir oranda bölünmeye başla­maktadır. bu aşamada gelişme oranı maksimum seviyededir. Yavaş gelişme safhası: bu aşama hızlı çoğal­ma ve durgunluk safhaları arasındaki gelişmenin yavaşladığı samadır. bu safha diğer kültür tankı­na ekim yapılma zamanı olarak tavsiye edilmektedir. Duraklama safhası: hücrelerin çoğalma ve yok olma oranlarının eşit olduğu bu evrede, hücre sayısında herhangi bir değişme olmamaktadır. Çökme safhası: bu safhada hücre sayısı ani olarak azalmaya başlar. bu safhadaki fitoplankton, larva veya rotifer kültürü için kullanılmamalıdır Yetiştiricilik açısından önemli olan bazı mikro alg türleri: dunaliella spp chaetoceros sp. chlorella spp nannochloropsis sp. skeletonema spp tetraselmis sp

http://www.biyologlar.com/fitoplankton-kulturleri

Başkalaşım Geçiren Canlılar

Kurbağalar : • Larva döneminde suda solungaç solunumu ergin dönemde karada deri ve akciğer solunumu yaparlar. • Yumurta ile çoğalırlar. • Yavru bakımı görülmez. • Dış döllenme görülür. • Gelişimleri sırasında başkalaşım geçirirler. • Yavrularını sütle beslemezler. • Kalpleri üç odacıklıdır. • Kirli kan akciğerlerde temizlenir. • Kalplerinde temiz ve kirli kan taşırlar. (Vücutlarında kirli ve temiz kan dolaşır). • Nemli bölgelerde yaşarlar. • Soğukkanlı canlılardır. Eklem Bacaklılar : • Vücutlarının dışında kitin denilen örtü bulunur. Sert ve dayanıklı olan bu örtü vücuda diklik ve desteklik sağlar. • Vücutlarındaki halkalar ve deri kıvrımlarının birbirine eklenmesiyle oluşan yapıya dış iskelet denir. • Yumurta ile çoğalırlar. • Böcekler grubunda olan eklembacaklılar başkalaşım geçirirler. • Yumurtadan çıkan kurtçuğa larva denir. • Larvanın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir. • Pupa dönemi karasinekte kabuk içinde ipek böceğinde ise kendi salgıladığı ipekten yaptığı koza içinde geçirilir. a) Böcekler :Arı karasinek sivrisinek bit pire kene çekirge tahta kurusu hamam böceği ve kelebek. b) Kabuklular :Yengeç karides. c) Örümcekler :Örümcek akrep. d) Çok Ayaklılar :Çıyan kırkayak. Süngerler : Mercanlar : Yumuşakçalar : Salyangoz midye istiridye mürekkep balığı sümüklü böcek ahtapot. Derisi Dikenliler : Deniz yıldız denizkestanesi. Başkalaşım ve Başkalaşım Geçiren Hayvanlar : Bazı canlılar dünyaya geldiklerinde ana canlıya benzerken bazıları da benzemezler. Ana canlıya benzemeyen canlılar gelişim dönemleri boyunca başkalaşım geçirerek ana canlıya benzer hale gelirler. Kurbağaların ve böceklerin yumurtadan çıktıktan sonra yapısal değişikliğe uğrayarak ana canlıya benzer hale gelmesine başkalaşım denir. (Kurbağaların ve böceklerin yumurtadan çıktıktan ergin hayvan oluncaya kadar geçirdikleri gelişim evrelerinin hepsine birden başkalaşım denir). Kurbağalar ve eklem bacaklılardan böcekler başkalaşım geçiren hayvanlardır. a) İpek Böceğinin Gelişim Dönemleri (Başkalaşım Evreleri) : • İpek böceği salgıladığı yapışkan bir maddeyle (iplikle) yumurtalarını birbirine bağlayarak etrafa dağılmalarını önler. • Tırtıl yumurtaların gelişebilmesi için salgıladıkları iplikle kendilerine koza örmeye başlarlar. (Tırtıl bunu 3 – 4 günde örer). • Yumurta olgunlaşınca tırtıl oluşur. • Tırtılın ergin hale gelinceye kadar geçirdiği uyku dönemine pupa denir. • Pupa dönemi sonunda koza yırtılır ve kelebek oluşur. b) Kurbağanın Gelişim Dönemleri (Başkalaşım Evreleri) : • Kurbağadaki döllenmiş yumurta hücresinin gelişmesi sonucu larva oluşur. • Balığa benzeyen larvalar gelişerek iribaş olur. • Zamanla iribaş büyüdükçe önce arka bacaklar sonra ön bacaklar çıkar ve en sonunda kuyruk kaybolur. • Bundan sonra genç yavru kurbağa oluşur. Yavru kurbağa da gelişerek ergin kurbağa haline gelir.

http://www.biyologlar.com/baskalasim-geciren-canlilar

Dünyanın en büyük örümceği

Dünyanın en büyük örümceği

En küçük bir örümceğin bile büyük korkulara sebep olabildiği dünyamızda, Theraphosa blondi'yi görenler hayretler içerisinde kalabilir. Güney Amerika’da yaşayan bu tarantula, dünyanın en büyük örümceği olarak tarihe geçti. Diğer örümceklerin daha uzun ayakları olmasına rağmen, T.  blondi’nin geniş gövdesi 170 gram ağırlığında.Tüm Theraposa familyasına 'kuş yiyenler'ismini veren, Goliath kuş yiyen olarak bilinen bu devasa örümcek aslında göründüğü kadar tehlikeli değil.Takma ismine rağmen, Hayat Ansiklopedisi’nin belirttiğine göre, T. blondi, nadiren kuşlarla besleniyor. George Washington Üniversitesi’nden örümcek alanında uzman Gustavo Hormiga, T. blondi’nin daha çok eklembacaklılardan beslendiğini belirtiyor. “Bu örümcek, genel olarak yırtıcı ve küçük fare ya da kertenkele gördüğünde, onları da yiyebilir,” diyor Hormiga.Fakat bu örümcekten avını yakalaması için büyük bir ağ kullanmasını beklemeyin- T. blondi yemeğini eski yollarla buluyor: zehirli dişlerini kullanarak.Hormiga, zehrinin insanlar için zararlı olduğunu düşünmese de, çoğu örümcek gibi, T. blondi de zehir üretiyor. Isırması, daha çok arı sokmasını andırıyor, fakat neredeyse hiç tıbbi müdahale gerektirmiyor.Tüyünden sakınınT. blondi, ağ yapmasa da, ip üretip kullanıyor. Örümcek, ormandaki çukur ve zemindeki oyuklarda yaşıyor. Bir memeli, lezzetli bir örümcek atıştırmak isteyip oyuğa girmeye çalışırsa, T. blondi’nin zehirden daha kullanışlı bir silahı var: tüyleri. “Bu tüylerin, mikroskoptan bakıldığında, zıpkın şeklini aldığı görülebilir,” diyor Hormiga. Bu da, tüylerin derinin içine işlemesini sağlıyor. “Bu örümcekler, tüylerini salmak için, dördüncü çift ayaklarını karınlarının üstüne sürtüyorlar. Bu tüyler, kaşınma hissi uyandırıyor.”Bu tüylerin zararlı olması için illa da salınmış olması gerekmiyor, araştırmacılar ve evinde örümcek besleyenler örümcekle ilgili herhangi bir şeyde ellerine eldiven takıp durum ile başa çıkmak zorundalar. İnsanlarda, bu tüyler sinir bozucu şekilde kaşıntı hissi uyandırabilir, fakat fareler gibi daha küçük memeliler için bu tüyler öldürücü olabilir.T. blondi dişileri, 30 mm bir kesenin içine 50-150 arası yumurta bırakırlar. Keseyi yırtıcılardan korumak amacıyla kesenin etrafının tüyleriyle örterler. Yeni doğmuş örümcek yavrularının olgunlaşması iki ya da üç yıl alır; Kendilerine bakmaya yetecek büyüklüğe ve olgunluğa ulaşana kadar, anneleriyle uzun zaman geçirirler. Dişileri 20 yıla kadar yaşayabilirken, erkekleri 3-6 yıl arası yaşar, erkeklerin ölümü genelde olgunluğa eriştikten ve çiftleştikten sonra olur.Tadı karidese mi benziyor?Güney Amerika’nın kuzeybatısındaki yerliler T. blondi'yi lezzetli bir atıştırmalık olarak görüyor. Öncelikle, örümceğin tüylerini yakıyorlar, daha sonra örümceği muz yapraklarına sararak kızartıyorlar. Venezuela’daki yerli Piarora insanlarıyla bir yemek masasına oturmuş ve bu örümceklerden yemiş olan tarantula uzmanı Rick West, T. blondi'nin şaşırtıcı şekilde lezzetli ve sulu olduğunu söylüyor. “Yapışkan karın içerikleri, sarılmış yaprak içerisinde çok pişmiş olsa da, beyaz kas ‘et’i, dumanlı karides tadında,” diyor West. 2 cm uzunluğundaki dişleri, yemekten sonra kürdan olarak kullanılıyor.  Yemeğiniz her zaman böyle kürdanı içinde gelmez. Karides tadına rağmen, bu örümcek türünü yakın zamanda muhtemelen restoranlarda göremeyeceksiniz.Kaynak: newswatch.nationalgeographic.comhttp://www.bilim.org

http://www.biyologlar.com/dunyanin-en-buyuk-orumcegi-1

Vitaminler

Koruyucu hekimlik alanında aşamalar katedilmesi, vitaminlerin de giderek daha çok kullanılmasına neden oluyor. Özellikle Amerika Birleşik Devletleri gibi gelişmiş ülkelerde vitamin kullanımı bir çılgınlık halini aldı. Bu moda giderek tüm dünyayı, bu arada ülkemizi de sarıyor. Vitamin sözcüğündeki, Vita hecesi hayat anlamına gelmektedir. Gerçekten de yaşayabilmek için bazı vitaminlerin bulunması şart, ayrıca bazılarının da yüksek dozlarının yararlar sağlayabileceği yolundaki görüşler, bu modanın süratle yayılmasına neden oluyor. Hemen herkes eşin, dostun tavsiyeleriyle bazı vitaminleri kullanıyor. Kullanıyor da, acaba doğru mu yapıyor? Bunları kullanması gerekli mi? Gereksiz yere kullanmak zarar verir mi? Ne kadar vitamine gerek var? Gıdalardan alınmıyor mu? Bundan sonraki satırlarda, sık kullanılan bazı vitamin ve minerallerle ilgili olarak bu soruların cevaplarını arayacağız. VİTAMİN A: Kadınların günde 4 bin, erkeklerin 5 bin ünite A vitaminine ihtiyaçları var. Süt ve yumurta en iyi kaynak, sık sık süt ve yumurtalı yiyecekler yiyen birisi A vitaminini yeterince ve hazır olarak almaktadır. Gereğinden fazla alınmasının bir yararı olmadığı gibi tehlikeleri de vardır. 50 bin ünitenin üstünde alındığında bulantı, kusma, başağrısı, iştahsızlık, görme bozukluğu ve eklem ağrıları gibi şikayetlere neden olur. Gebelik sırasında, birkez 20 bin ünite A vitamini bebekte sakatlıklara neden olabilir. Normal koşullarda günde 10 bin üniteye kadar güvenli kabul edilmektedir. BETA KAROTEN: A vitamininin yapı taşıdır. Vücutta A vitamini haline dönüştürülür. Ispanak, lahana gibi yeşil yapraklı sebzeler, kavun, şeftali, kayısı gibi meyveler ve havuç en önemli kaynaklarıdır. Yüksek dozda alınmasının yararları konusunda çalışmalar halen sürmekle birlikte, kanser, damar sertliği ve katarakt gibi hastalıkları önlediği yolunda önemli bulgular elde edilmiştir. Yüksek dozda alınmasının toksik (zehirleyici) etkisi olmamakla birlikte günde 50 mg.(83 bin ünite) den fazla alınması tavsiye edilmez. VİTAMİN B6: Günlük ihtiyaç, kadınlarda 1.6 mg., erkeklerde ise 2 mg.dır. Tavuk, balık, ıspanak, patates, muz, kepekli ekmek, kuruyemiş en önemli kaynaklarıdır. Bunların dışında, birçok gıdada B6 vitamini bulunduğu için, eksikliği konusunda endişeye düşmemek gerekir. Fazla dozda alınması, yaşlılarda bağışıklık sistemini güçlendirmek ve bazı sinir sorunlarını tedavi etmekte kullanılırsa da, 6 ay süreyle günde 100 mg.dan fazla kullanmak sinirleri tahrip edebilir. Günde 2 bin mg. üstündeki dozlarda, sinir sistemi tahripleri çok daha kısa sürede olabilmektedir. VİTAMİN B12: Kadınlarda ve erkeklerde günlük ihtiyaç 2 mikrogramdır. En önemli kaynakları et, tavuk, balık ve süt gibi hayvansal ürünlerdir. B12 vitamini eksikliğinin, iyileşmesi mümkün olmayan sinir tahribatlarına neden olması dolayısıyla, hayvansal ürünlerin hiçbirini yemeyen vejetaryanların, mutlaka ayrıca B12 vitamini alması gerekir. Günlük 100 mikrograma kadar alınmasının güvenli olduğu bilinmesine rağmen aşırı dozlarının zararlı etkileri konusunda da bir bilgi yoktur. VİTAMİN C: Kadınlarda ve erkeklerde her gün alınması gereken en az miktarı, 60 miligramdır. Sigara içenlerin en az 100 mg. C vitamini almaları gerekir. Her gün taze sebze ve meyve, özellikle narenciye, lahana, ıspanak, kıvırcık salata gibi yeşil yapraklı sebzeler, yeşil biber yiyen kişiler, tavsiye edilen en düşük günlük dozun üzerinde C vitamini aldıklarından emin olabilirler. Yüksek dozda alınması halinde ne gibi yararlar getireceği yolunda çalışmalar sürmekle birlikte, beta karoten gibi antioksidan etki nedeniyle, kanser, kalp-damar hastalıkları ve katarakta yakalanma ihtimalini azalttığı belirlenmiştir. Ayrıca, soğuk algınlığı gibi hastalıklara karşı da direnci arttırmaktadır. Günde 1 grama kadar güvenle alınabileceği belirlenmiştir. Daha yüksek dozları sindirim sisteminde tahrişlere neden olabilir. Uzun süre yüksek dozda kullanılmasının, böbrek taşı ihtimalini arttırdığı da bilinmektedir. VİTAMİN D: Kadın ve erkeklerde her gün alınması gereken en az doz 200 ünitedir. Düzenli süt içenler ya da süt ürünleri tüketenlerin yeterince D vitamini aldığı söylenebilir. Ayrıca vücut güneş ışınlarına maruz kaldığında, kendisi de D vitamini üretir. Yaşlılıkta kemiklerin zayıflamasına (osteoporoz) karşı, günde 400-800 ünite kadar D vitamini takviyesi alınması yararlı olmaktadır. Günde bir litreden fazla süt içen ya da buna yakın süt ürünü tüketen kişilerin ayrıca D vitamini almaları risk yaratabilir. Günde 1000 üniteye kadar D vitamini alınması güvenli olarak nitelendirilirken, günde 5 bin üniteden fazla alınınca böbrekler ve kalpte hasar riski doğabilir. VİTAMİN E: Kadınların her gün 12 ünite, erkeklerin de 15 ünite almaları gerekir. Bitkisel yağlar, kuruyemiş, etler ve yeşil yapraklı sebzelerde bol miktarda bulunur. A ve C vitamini gibi bunun da antioksidan etkisi bulunmaktadır. Kalp-damar hastalıkları, kanser ve katarakta karşı koruyucu olduğu bilinmektedir. Diğer ilaçlarla birlikte kullanıdığında Parkinson hastalığında olumlu etkiler gösterdiği, kalp krizlerinde hasarın azaltılmasında yararlı olduğu ve yaşlılarda bağışıklığı arttırdığı ileri sürülmektedir. Günde 1000 üniteye kadar güvenli olduğu bilinmektedir. B-2 vitamini Bu vitamin sadece yiyeceğin enerjiye dönüşmesini sağlamakla kalmaz, aynı zamanda kanda alyuvarların oluşmasını, derinin ve gözlerin sağlıklı olmalarını sağlar. Aşırı derecede alkol tüketimi vücuttaki B-2 vitaminini azaltır. Ayrıca antibiyotikler, yatıştırıcılar da vücuttaki B-2 vitaminini azaltır. Et, tavuk eti, balık, süt ve süt ürünleri, turp,ıspanak, yumurta, mısır ve beyaz undan yapılmış ekmek bol miktarda B-2 vitamini içerir. B-6 vitamini Vücudun protein ve yağı öğütmesini sağlar, ayrıca bağışıklık ve sinir sistemlerinin düzenli çalışmalarına yardım eder. Kanda hemoglobin oluşmasını sağlar. Hemoglobin bildiğiniz gibi vücuda oksijen taşır. Beyinde depresyonla savaşan kimyasal madde olarak bilinen serotoninin oluşmasına yardım eder. Aşırı derecede alkol kullanmak, sigara alışkanlığı ve kan basıncını düşüren ilaçlar bu vitamin için zararlıdır. Tavuğun göğüs eti, böbrek, karaciğer, domuzeti, yumurta, pirinç, soya fasulyesi, yulaf, fındık, fıstık, muz, patates, avokado ve somon balığı en fazla B-6 vitamini içeren besinlerdir. Folik asit Vücutta hücrelerin gelişmelerini folik asit sağlar. Yaşlılık, alkollü içki kullanmak, doğum kontrol hapları vücudun folik asit rezervlerini azaltır. Çok uzun bir süre düzenli olarak aspirin almak kolesterol miktarını düşüren ilaçlar, sara ilaçları da vücuttaki folik asit miktarını azaltır. Folik asidin azalması, kanser riskini artırır, kansızlık yaratabilir. Hamile kadınlarda yeterli miktarda folik asidin bulunmaması, doğacak bebeklerin özürlü olmalarına yolaçabilir. Karaciğer, yumurta sarısı, ıspanak, yeşil yapraklı sebzeler, brokkoli, portakal ve portakal suyu bol miktarda folik asit içerir. Kalsiyum Dişlerin ve kemiklerin güçlü olmaları için öncelikle kalsiyum gereklidir. Kalsiyum aynı zamanda kalp atışlarını düzenler, kanın gerektiği gibi pıhtılaşmasını sağlar, kaslar ve sinirler için yararlıdır. Kalsiyum kan basıncının yükselmesini ve kalın bağırsak kanserini önleyebilir. Ancak yapılan araştırmalara göre her on kadından sekizi, bol miktarda kalsiyum içeren yiyeceklerle beslenmek istemiyor. Hamilelik, bebeği anne sütüyle emzirme, menopoz, kafeinli içecekler vücuttaki kalsiyum miktarını azaltır süt ve sütlü besinler, mısır, sardalya balığı, kalamar, ıstakoz ve brokkoli bol miktarda kalsiyum içeren besinlerdir.   Vitaminler, vücudun metabolik gereksinimleri için vazgeçilmez olan ve vücutta yeterince ya da hiç elde edilemediği için dışarıdan alınması gereken küçük organik moleküllerdir. Klasik olarak vitaminler, yağda ve suda eriyenler biçiminde iki gruba ayrılır. Yağda eriyen vitaminler yağlarda, pişmemiş sebzelerde, tahıllarda, tereyağında, balık karaciğeri ve balık yağında, kaymak ve süt gibi yağlı besinlerde bulunur. Genelde safra gibi emülsiyon yapıcı maddelerin varlığında bağırsaktan emilerek kan dolaşımına geçer ve proteinlere bağlanarak karaciğerde birikirler. Yağda eriyen vitaminler A, D, E ve K vitaminleridir. Suda eriyen vitaminler B grubu vitaminler ile C vitaminidir.Bunlar bağırsaktan emildikten sonra böbrek yoluyla atılır.Vitamin yoksunluğuna bağlı olarak gelişen hastalıklara avitaminozlar denir.Günümüzde B grubu vitaminlere ve folik asit eksikliğine bağlı olarak gelişen hastalıklar daha çok geri kalmış bölgelerde görülür ve genel beslenme bozukluğunun bir yönünü oluşturur. Bütün vitaminlerin molekül yapısı ayrıntılı olarak belirlenmiş olduğundan, bunların belirli ya da bütün vitaminleri içeren haplar biçiminde üretimi olanaklı hale gelmiştir. A vitamini (retinol veya akseroftol) Yalnızca hayvanlarda bulunan ve yağda eriyen doymamış bir alkoldür.Sütte, yumurta sarısında, ton ve morina balıklarının karaciğer yağında (balıkyağı) bulunur.Havuç ve havuç benzeri sarı-turuncu renkli sebzelerde A vitamininin ön maddeleri vardır. A vitamini eksikliğinde gözde ve deride keratoz, kseroftalmi (göz akı ve korneanın parlaklığını kaybederek kuruması), foliker hiperkeratoz ( deri hastalığı) ve gece körlüğü görülür. D vitamini Daha etkili olduğundan tedavide daha çok kullanılan D2 vitamini (ergokalsiferol) ve D3 vitamini (kolekalsiferol) olmak üzere iki tipi vardır.Molekül yapısı steroidlerle aynıdır.D2’ nin kaynağı deridir; derideki 7- dehidrokolestrol, mor ötesi ışınların etkisiyle vitamin D2’ ye dönüşür. D3 vitamininin kaynağı besinlerdir; daha çok et, süt ve yumurta sarısında bulunur. Normal olarak güneş ışığı alan insan vücudunda D vitamini yeterince üretilir. Ama yenidoğanlarda, büyüme çağındaki çocuklarda, gebelik ve süt emzirme dönemlerindeki kadınlarda besinlerle dışardan daha fazla miktarda alınması gerekir. D vitamini eksikliğinde çocuklarda raşitizm, yetişkinlerde osteomalazi (kemik yumuşaması) gelişir. E vitamini (alfa-tokoferol) Başta tahıl olmak üzere ıspanak, kabak, lahana, marul gibi yeşil sebzelerde bol miktarda bulunur. İnsanda karaciğerin yanı sıra yağlı dokularda, böbrekte, kalpte, kaslarda ve böbreküstü bezi kabuğunda depolanır. Fazla olan bölümü idrar ve dışkıyla atılır. Antioksidan özellik gösterir. E vitamini eksikliği son derece ender görülür ve kansızlık biçiminde ortaya çıkar. K vitamini Sebzelerin yeşil bölümünde, ıspanakta, kabakta, marulda, yeşil domateste, çam ignesinde, yeşil biberde bol bulunur. K vitamini insan bağırsağındaki bir grup bakteri tarafındanda üretilir. K vitamininin tamamına yakını kullanılır, yanlızca küçük bir bölümü karaciğerde depolanır. K vitamini eksikliği son derece nadirdir ve kafada, sindirim sisteminde, idrar yollarında, akciğerlerde ve deride kanamalara yol açar. K vitamini yanlızca kanamalı hastalarda eksikliğini gidermek için kullanılır. B vitamini Suda eriyebilen, molekül yapılarında bir azot atomu bulunan, bazı enzim sistemlerinin etkinliğini arttırıcı koenzimler olarak işlev gören 15’ e yakın değişik maddeden oluşan bir vitamin gurubudur. B1 vitamini (tiyamin) Buğday başağı, kepek, bira mayası, sebzeler gibi bir çok besinde bol miktarda bulunur. Memelilerin karaciğer, böbrek, kalp, beyin ve bağırsaklarında az miktarda bulunur. Sebzelerin pişirilmesi, sütün kaynatılması ve sterilize edilmesi (mikroptan arındırılması) çok miktarda tiyamin kaybına yol açar. Tiyamin ince bağırsaklardan etkin taşınma mekanizmasıyla emilir. Vücutta depolanmaz ve kullanılmayan bölümü yemekten üç saat sonra böbrekler yoluyla tamamen dışarı atılır. B1 vitamini yetersizliğine bağlı olarak gelişen hastalık tablosunda depresyon, huzursuzluk, bellek zayıflığı ve dikkat azalması, hipotoni (kas gevşekliği) ve anoreksi (iştahsızlık) yer alır. B2 vitamini (riboflavin) Hayvansal besinlerde, bira mayası, buğday başağı, yeşil sebzeler, havuç, enginar, fındık, yerfıstığı ve mercimek gibi bitkisel besinlerde bol miktarda bulunur. B2 vitamini eksikliğinde protein oluşması azalır ve deride yaralar, sinirsel bozukluklar ve göz bozuklukları biçiminde ortaya çıkar. B3 vitamini (nikotinamid veya PP vitamini) Hayvansal besinlerin yanısıra kabuklu buğday, limon, kabak, soya, domates, patates, bira mayası, hurma, incir, portakal gibi bitkisel besinlerde bol miktarda bulunur. B3 vitamini eksikliğinde deriyi, sinir sistemini ve sindirim sistemini tutan pellegra adlı hastalık ortaya çıkar. B5 vitamini (pantotenik asit) Doğada çök yaygındır.Yumurta, karaciğer, kalp, süt, bal, bira mayası, kabak, tahıllar, sebzeler, havuç, portakal, mantar ve taze meyvelerde bolca bulunur. B5 vitamini eksikliği çok enderdir. Bu durumda hipoglisemi (kan şekeri düşüklüğü), anemi (kansızlık), lökopeni (kanda alyuvarların az olması), dermatit (deri iltihabı), mide-bağırsak rahatsızlıkları, kas krampları, hareketlerde uyumsuzluk, asteni, uyku bozuklukları ve iştahsızlık ortaya çıkar. B6 vitamini (piridoksin) Hayvansal ve bitkisel besinlerde düşük dozda bulunur. B6 vitamini eksikliği son derece enderdir.Bu durumda deri, sindirim sistemi rahatsızlıkları ortaya çıkar. B8 vitamini (biyotin ya da H vitamini) Karaciğerde, yumurta sarısında, bira mayasında, pirinç kabuğunda ve yeşilliklerde bulunur. Eksikliği yanlızca uzun süre çiğ yumurta beyazı tüketiminde ya da bağırsak florasını ortadan kaldıran sülfamitlerin ve antibiyotiklerin çok fazla alınmasından sonra görülür.Bu durumda dermatit (deri iltihabı), iştahsızlık, zayıflama, depresyon ve kas ağrıları ortaya çıkar. B9 vitamini (folik asit) Bitkilerin yeşil bölümlerinde, kabakta, lahanada, ıspanakta, yeşil sebzelerde, patateste, havuçta, bira mayasında, sütte, yumurtada, peynirde ve karaciğerde bol miktarda bulunur. Gelişmiş ülkelerde eksiklik sendromuna hiç rastlanmaz.Bu tablo yanlızca emilim bozukluklarına bağlı olarak ortaya çıkabilir. Folik asit eksikliğinde megaloblastik anemi denen bir kansızlık biçimi gelişir. Emilim bozukluğunda ise kansızlığa, glossit (diz iltihabı), stomatit (ağıziçi iltihabı) ve ishal eşlik eder. B12 vitamini (kobalamin) Karaciğerde, sütte, yumurta akında, peynirde, balıkta, ette ve karideste bol miktarda,bitkilerde ise son derece az miktarda bulunur. B12 vitamini eksiklği, folik asit eksikliğinde olduğu gibi, alyuvar yapısında biçim bozukluğuna yol açarak persinyöz ya da megaloblastik anemi denen kansızlığa neden olur.Ayrıca sindirim sistemi düzeyinde ve epitel dokunun beslenmesinde bazı etkileri görülür. Kansızlığın yanı sıra hafif sarılık, iştahsızlık, ishal, parestezi (karıncalanma) ve uyuşma gibi duyumsama bozuklukları, ataksi, işitme siniri iltihabı ve zihinsel bozukluklar ortaya çıkabilir. C vitamini (askorbik asit) İnsanlar tümünü dışardan almak zorundadır.Turunçgillerde bol miktarda, ayrıca taze sebzelerde, maydonozda, kabakta, soğanda ve domatesde bulunur. C vitamini eksikliğinde skorbüt denen ve kıl diplerinde kanamalı döküntüler, dişeti kanamalarıyla belirlenen hastalık ortaya çıkar. P vitamini Doğada bol bulunur.Bir çok P vitamini faktörü kanamalı skorbüt tedavisinde C vitaminiyle sinerjik (arttırıcı) etki gösterir.Ayrıca hepsi direncin artmasında ve kılcal damar geçirgenliğinin azalmasında önemli rol oynar.

http://www.biyologlar.com/vitaminler-1

HAYVANLAR ALEMİ (ANİMALİ)

Omurgalı ve omurgasız olmak üzere ikiye ayrılır. Çok hücreli, heterotrof ve yer değiştirebilen canlılardır. 1) Omurgasızlar I) Süngerler : Basit yapılıdırlar. İskeletleri inorganik maddelerden yapılmıştır. Tatlı su ve denizde yaşayabilirler. Mezenşim adı verilen sıvının etrafında hücre tabakasının sarmasıyla oluşmuşlardır. Herhangi bir sisteme sahip değillerdir. II) Sölenterler : Sindirim boşlukları vardır. Boşluk hem ağız hem anüs görevini yapar. Vücutları iki hücre tabakasından oluşur. Dışta yakıcı kapsülleri vardır. (Düşmana karşı koruyucu) Örnek : Deniz anası, Hydra, Mercanlardır. III) Yassı solucanlar : Genellikle parazittirler. Sindirim sistemleri gelişmemiştir. Vücutta bulunan tek açıklık ağız ve anüs görevini yapar. Sinir ve üreme sistemi vardır. Örnek : Planaria, Tenya, Karaciğer kelebeği. IV) Yuvarlak solucanlar : Sindirim sistemlerinde ağız ve anüs olmak üzere iki açıklık vardır. Bazıları hayvanlarda parazit olarak yaşarlar. Örnek : Barsak solucanı, kancalı kurt. V) Halkalı solucanlar : Sindirim sistemlerinde özelleşmiş bölümler vardır. Kapalı dolaşım sistemine sahiptirler. Örnek : Toprak solucanı, Sülük. VI) Yumuşakçalar : Vücutları yumuşaktır ve iskeletsizdirler. Bazıları kabukludur (midye). Suda ve karada yaşarlar. Örnek . Ahtapot, midye, salyangoz. VII) Kabuklular : Dış iskeletlidirler. Üyeleri eklemlidir. Tatlı su ve denizlerde yaşarlar. Örnek : Karides, yengeç, istakoz. VIII) Örümcek, Akrep ve Keneler : Eklemli dört çift ayak taşırlar. Antenleri yoktur. Zehir bulunduran bir bez taşırlar. IX) Böcekler : Çoğu karada yaşar. Vücutları baş, göğüs ve karın olarak üç bölmeye ayrılır. Genellikle üç çift ayak, iki çift kanat taşırlar. Trake solunumu yaparlar. Dolaşım sistemleri açıktır. Örnek : Bit, arı, çekirge, sinek, ipek böceği. X) Derisi dikenliler : Deniz hayvanlarıdır. Açık dolaşım görülür. Solunum solungaç, deri veya keselerle yapılır. Hareketlerini vücutlarından çıkardıkları diken gibi çok sayıda ayakları ile yaparlar. Örnek : Deniz kestanesi, deniz yıldızı gibi. 2) Omurgalılar : Ortak Özellikleri : 1- Sırtta sinir kordonu ve sinir ipi bulunur. 2- Solunum organları yutak ile bağlantılıdır. 3- Omurga denilen ortak bir iç iskelet yapıları vardır. 4- Dolaşımları kapalıdır. Bu şubede 5 sınıf canlı grubu vardır. I) Balıklar : İç iskeletleri kıkırdak veya kemiktendir. Genellikle yüzgeçli ve pulludurlar. Solungaç solunumu yaparlar. Kapalı dolaşım sistemine sahiptirler. II) Kurbağalar : Karada ve suda yaşayabilirler. Larva döneminde solungaç, ergin dönemde akciğer solunumu yaparlar. Soğuk kanlı canlılardır. Örnek : Su ve Kara kurbağaları, semenderler. III) Sürüngenler : Vücutları keratin pullarla kaplıdır. Derilerinde ter bezleri yoktur. Örnek : Yılan, Kertenkele, Timsah, Kaplumbağa soğuk kanlı canlılardır. IV) Kuşlar : Vücut sıcaklılkları sabittir. Bu yüzden sıcak kanlıdırlar. Kanat ve tüy taşırlar. Kalpleri 4 odacıklıdır. Dolaşım sistemleri kapalıdır. V) Memeliler : Sıcak kanlıdırlar. Derilerinde genellkle kıllar bulunur. Yavrularını sütle beslerler. Kalpleri dört gözlüdür. Denizde ve karada yaşayabilirler. Örnek : Yarasa, Fok balığı, Kirpi, Sincap, Tavşan, Balina, Yunus, İnsan vs.

http://www.biyologlar.com/hayvanlar-alemi-animali

Myriapodlarla ilgili (clasislerinin-ordolarının-familyalarının özelliklerini açıklayan)

Kırkayaklar (Myriapoda) Üst alem: Eukaryota - Ökaryotlar Alem: Animalia - Hayvanlar Alt alem: Eumetazoa - Gerçek dokulular (Grup) Bilateria - Bilateral simetrililer Şube: Arthropoda -Eklem bacaklılar Alt şube: Myriapoda 1. Küme : PROGONEATA 1. Takım : Symphyla – Yumuşak Kırkayaklar 2. Takım : Pauropoda – Çatal antenli kırkayaklar 3. Takım : Diplopoda : Binayaklar 2. Küme : OPISTHOGONEATA = CHILOPODA 4. Takım : Chilopoda – Çiyanlar 1. Alttakım : Geophilomorpha 2. Alttakım : Scolopendromorpha 3. Alttakım : Lithobiomorpha 4. Alttakım : Scuterigeromorpha Vücut, baş ve birçok ayak taşıyan gövde olmak üzere iki bölgeden oluşmuştur. Diğer sınıflara göre oldukça homojen bir gruptur. Son zamanlarda Myriapoda sınıfında takım olarak verilen gruplar, yeni eğilimde sınıf olarak ele alınmaktadır. Başta bir çift anten, iki ya da üç üye ve bir çift basit göz bulunur. Gerçek bileşik göz hiçbir zaman bulunmaz. Ağız üyeleri başın alt tarafında ve öne yönelik olarak konumlanmıştır. Karasal hayvanlardır. Nemli ya da gölge yerlerde, taşlar, yapraklar vs altında, gevşek topraklar içinde, saklanarak yaşarlar. Sıcak yerleri yeğlerler. Çok bacaklılar (Myriapoda), eklem bacaklılar (Arthropoda) şubesinin bir alt şubesidir. Yaklaşık 13.000 türü vardır ve tamamı karada yaşarlar. Myriad sözcüğü Yunanca 10.000 anlamına gelir. Myriapoda adı ayak adetlerinin çokluğuna binaen verilmiştir. Türün ayak adedi genellikle 10 - 750 arasında değişir. Ondan az ayaklı olanlarına da rastlanılır. Bir çift antenleri ve basit yapılı gözleri vardır. Tachypodoiulus niger, Bir Kırkayak Çıyan ile Kırkayak en bilinenleridir. Kırkayak'ta (Millipede) her boğumda iki çift bacak varken, çıyan'da bir bacak bulunması ve Kırkayağın çok yavaş hareket edebilmesi bu ikisini ayırt eder. Zararlılarla beslenen ve daha hızlı olan Çıyan ise zehirli olsa da çoğu insan derisini delemez, oldukça utangaçtır iri boyları ezildiğinde ya da tutulduğunda ısırabilir. [1] Kırkayak ise çürükçül ve zehirsizdir[2], sokmaz ya da ısırmaz. Kırkayaklar normal ortamlarından soğuk ve yağışlı havada ya da baharda yumurtadan yeni çıktıklarında Çıyanlar ise genellikle aşırı kuru ılıman havalarda evlerin çatlakları ve kuytu köşelerine gizlenebilir. Genellikle boş zemin konutlarda görülür rahatsız olunca terkederler. Yiyecek ve eşyalara zararlı değillerdir fakat varlıkları nahoştur.Tehlike anında kıvrılarak ölü taklidi yapan kırkayakın iri cinsleri bu durumda iken cilt porelerinden hafif bir allerjen salgılayabilir. Göze ve ağıza değerse suyla yıkanmalıdır.  Kırkayaklar yumuşakçaların birer üyesi olup çok ayaklı bir haşeredir. Kırk ayaklar ismini özelikler şu şekildedir kırk ayakların vücudu üzerinde türüne bağlı olarak çok sayıda ayak vardır. Kırk ayaklar bu ayakları ile yürüyerek yer değiştirirler fakat solucanda bu ayak denen organlar yoktur. Solucanlar hareketlerini yerden sürünerek yaparlar. Yine kırk ayakta anten denen iletişim organları vardır. Kırk ayaklar besinlerini ve kendisine gelen tehlikeleri bu antenler sayesinde algılarlar. Kırkayaklar nemli ve sıcak bölgelerde daha çok bulunurlar. Bu haşere gurubu kuru ve soğuk havaları sevmezler. Kırkayakların boyları ve yapıları türlerine bağlı olarak değişir. Bazı bölgelerde yaşayan kırkayaklar birkaç cm olurken bazı bölgelerde ise 5 – 10 cm kadar olabilirler. Kırkayaklar renk yapı olarak çok farklılık gösterirler. Kırkayağın rengi beslenmesine ve yaşam alanına bağlı olarak değişir. Kırkayak genellikle sarı, siyah, kızıl ve kahverengi olabilmektedir Kırkayakların vücudu bölmeli haldedir ve her bölmesinde 1 ayakları vardır bölmeler farklı farklı renklerde olabilmektedir. İnsanlar arasında kırkayak ile çıyan çok karıştırılır. Kırkayak ile çıyanı birbirinden ayıran belirgin özelikler vardır. Kırk ayağın her bölmesinde 1 adet ayak varken çıyanda ise 2 adet ayak vardır. Kırkayağın ayakları etkisiz olurken çıyanın ayakları ise genellikle hepsi zehirlidir. Kırkayaklar besin olarak hem bitkiseldir hem de etçildir. çıyanlar ise çoğunluğu etçildir. Kırkayaklar bitkilerin yeni sürgü vermiş dallarını ve taze kısımlarını yerken bazen de ufak tefek börtü böcek denen küçük haşere türlerini de yerler. Kırkayak dış ortamlarda nemli buldukları her yerde rastlamak mümkündür. Kırkayaklara dağlarda, taş diplerinde, mağaralarda, ormandaki ağaç diplerinde, çayırlarda ve su kenarlarında bulunurlar. Kırkayaklar evlerimize besin arayışı için gelirler. Kırkayaklar evlerde çatı, bodrum, evin kapı ile pencere diplerinde ve evlerin her kısmında da bulunabilirler. Kırkayaklar besin olarak meyvelerin öz suyunu tüketirler. Ağaç ve bitkilerin çürümüş kısımlarını, ölü hayvan leşinden yiyerek beslenirler Kırkayaklar üremek ve çoğalmak için besinin bol olduğu yerleri tercih ederler. Dişi kırkayak yumurtasını nemli ve besinin bol bulunduğu ortamı seçerek bu ortama bırakır. Bir kırkayak bir defasında 10'larca yumurta bırakır ve bu yumurtalar belli bir sıcaklığa bağlı olarak yumurtadan çıkar ve 3 -4 ay içinde ergin bir kırkayak olur ve her biri ayarı ayrı yumurta bırakmaya başlarlar. Bu bakımdan bir kırkayağın ne kadar çok ve çabuk çoğaldığını görürüz. Kırkayakların birçoğu tehlikelidir ve insanı ısırıp zarar verebilirler. Hatta çoğu kez insanı zehirleyebilirler. Kırkayak ısırması sonrası mutlaka doktora gidilmeli aksi takdir de insanlar ciddi sıkıntılar yaşayabilirler. Kırkayaklar, myriapoda altbölümünü (İngilizce: subphylum) meydana getiren eklem bacaklı canlılar. Yaklaşık 13.000 türü vardır ve tamamı karada yaşarlar. Myriad sözcüğü Yunanca 10.000 anlamına gelir. Myriapoda adı ayak adetlerinin çokluğuna binaen verilmiştir. Türün ayak adedi genellikle 10 - 750 arasında değişir. Ondan az ayaklı olanlarına da rastlanılır. Bir çift antenleri ve basit yapılı gözleri vardır. Davranışları Islak bitkiler, yaprak döküntüleri gibi yerlerde buldukları ölü organik maddelerle beslenirler. Kırkayakların her vücut segmentinde iki çift ayakları olmasına karşılık, çıyanların bir çift ayakları olması bu iki türün ayırt edilmesini sağlar. Dış alanlarda çok görülmelerine rağmen, iç alanlarda kırkayağa pek rastlanmaz çünkü rutubetsiz ortamda kısa sürede ölürler. Koşullar uygun olduğunda ve yeterli gıda olduğunda, kırkayaklar binlerce sayıya ulaşabilirler. Ortam koşulları değiştiğinde veya nüfusları çok arttığında, birlikte göç etmeleriyle tanınırlar. Yaşam Alanları Bina içerisinde; bodrumda, katlarda ve evlerin balkonlarında, bina dışarısında; rutubetli yerlerde, yaprak altı ve gübrelik yerlerde yaşarlar.Dış alanda yaprak döküntüsü, peyzaj alanları, çimenlikler, zemindeki çeşitli malzemelerin altında; iç alanda garajların ve bodrumların rutubetli bölgelerinde yaşarlar. Çok bacaklılar (Myriapoda) sınıfının “Diplopoda” takımının Julidae familyası türlerinin genel adı. Vücutları belirgin bir baş ve çok sayıda benzer halkalardan (bölüt) meydana gelmiş eklem bacaklılardır. Her halkada ikişer çift bacak bulunur “Diplopoda” çift bacaklı demektir. Başlarında bir çift anten ve ikişer gözü vardır. Gözleri az çok böceklerin bileşik gözüne benzerse de, dikkat edildiğinde basit (osel) gözlerin meydana getirdiği bir çift küme olduğu anlaşılır. Bazı türlerinde göz bulunmaz. Yaşayışlarına uygun olarak antenlerinde koku alma tüyleri çok hassastır. İç anatomisi çıyanınkine benzer. Çıyanlar etçil, kırkayaklar otçuldur. Çok ayaklı olmalarına rağmen çok yavaş hareket ederler. Kırkayakların vücut halkalarından ikişer çift bacak çıkmasına karşılık çıyanlarda birer çift çıkar. Bacakların sayısı, türlere göre değişir. Kırkayakların çoğunda 115 çift bacak bulunur. Çıyanlarda 15 çiftten 173 çifte kadar değişir. Çok bacaklılarda her zaman tek sayıda bacak çifti vardır. Kırkayakların embriyon döneminde her halkada bir çift ayak bulunur. Yetişkinlerin her halkası iki embriyon parçası ihtiva ettiğinden iki çift bacaklı olurlar. Trake (özel solunum boruları) sistemiyle solunum yaparlar. Kırkayaklar sıcak ve ılıman bölgelerde yaşayan kara hayvanlarıdır. Genellikle koyu kahverenklidirler. Gündüzleri nemli yerlerde yaprak, ağaç kabukları ve taşlar altında gizlenir, gece beslenmeye çıkarlar. Çoğunlukla çürümüş bitkisel besin yerler. Bazen tarlalarda, sürüler halinde, bitkilerin kök ve filizlerini de yediklerinden büyük zararlar yaparlar. Çileklere çok musallat olurlar. İnsan ve hayvan dışkılarını da yediklerinden, tenya (şerit) yumurtalarının yayılmasına yardım ederler. Yuttukları barsak parazitlerinin yumurtalarını, sindirmeden tekrar dışarı atarlar. Boyları 1-20 cm arasında değişir. Benekli kırkayak (J.gutularus) 10-18 mm boyundadır. Memleketimizde bulunanların boyları 10-46 mm’dir. Tropik memleketlerde 15-20 cm’ye ulaşanları vardır. Yumurta ile ürerler. Yumurtalar, topraktan yapılmış bir yuvaya yumurtlanır ve dişi tarafından korunur. Genellikle yavrular 12-15 gün sonra yumurtalardan çıkarlar. Hayatları boyunca birkaç defa deri değiştirirler. Her deri değiştirmede, vücut halkalarının sayısı artar. Larvalar, bir yıl içinde erginleşirler. Kitinli derileri, antibiyotik etkisi olan pis kokulu, zehirli bir sıvı salgılar. İri olanlarının salgısı, insan elini tahriş eder. Testiden su içerken yutulursa, zehirlenmeye sebeb olabilir. Bazan yapraklar üstünde dolaşırlar. Korkutuldukları zaman kendilerini yere atarak, saat zembereği gibi helezoni kıvrılır, ölü taklidi yaparlar. PROGONEATA 1. Ordo (Takım): Symphila (Yumuşak kırkayaklar) Çoğu yönleriyle böceklerle benzerlik gösterirler. Deri örtüsü kalsiyum ve pigment içermez. Bu nedenle yumuşak ve renksizdirler. Gövdede toplam 13 segment bulunur. Bunlardan sonuncusu hariç hepsi bir çift üye taşır. Son vücut segmentinin ucunda "Cercus" adı verilen iki büyük uzantı bulunur. Gözleri yoktur ve renksiz olmalarının da etkisiyle ışıktan kaçarlar. 2. Ordo (Takım): Pauropoda (Çatal antenli kırkayaklar) Bu takıma özgü olarak, antenler iki kolludur. Bacakları 9 çifttir. Bacakların uç kısmında yastık veya tırnak bulunabilir. Dolaşım organları, trake sistemleri ve gözleri yoktur. 3. Ordo (Takım): Diplopoda (Bin ayaklılar) Vücutları uzun ve silindirik yapıdadır. Siyah, kahverengi, koyu kırmızı veya portakal renginde olabilirler. Nadiren vücut üzerinde benek veya desenler bulunabilir. Gövdede çok sayıda segment ve 11-300 arası bacak bulunur. Baş, toprak ve çöpler arasında hareket etmeye uygun olarak özelleşmiştir. Deri değişimi görülür ve değiştirilen derinin yenmesiyle, kalsiyum ihtiyacı karşılanır.Yumurtalar yuva içerisine bırakılır ve dişiler tarafından korunur. Polyxenus spp. Julus spp. Glomeris spp. OPISTHOGONEATA = CHILOPODA 4. Ordo (Takım): Chilopoda (Çıyanlar) baş bölgesi, belirgin bir şekilde gövdeden ayrıdır. İlk vücut segmentinin üyeleri, avın öldürülmesinde kullanılan ve "zehir tırnağı" adı verilen büyük bir yakalama bacağına dönüşmüştür. Sadece tropiklerde yaşayan türlerin zehir tırnakları insan derisini delebilecek güçtedir. Son üye çifti genellikle diğer üyelerden daha büyüktür ve arkaya doğru uzanır. Scolopendra spp. Lithobius spp. Polyxenus spp. Julus spp. Glomeris spp. Çıyanlar (Chilopoda) Çiyanlar - Chilopoda Belirgin bir başları ve her biri bir çift üye taşıyan 15-177 gövde segmenti vardır. 3000 kadar türü tanımlanmıştır. Uzun ve yassı vücutludurlar. Büyüklükleri geniş sınırlar arasında değişir (3 mm-35 cm). Baş bölgesi belirgin olarak gövdeden ayrılmıştır. Ilıman bölgelerde yaşayanlar kırmızı-kahverengi, tropiklerde yaşayanlar kırmızı, sarı, yeşil, mavi ya da bunların değişik şekillerinden oluşan renktedir. Hepsi koşucudur (Geophilomorphia dışında), dolayısıyla üyeleri uzundur. Çok hızlı hareket eden, uzun vücuda sahip, eklembacaklılar şubesine ait bir Çok bacaklılar sınıfı. İri türleri zehirlidir, fakat allerji vakaları haricinde tehlikeli değildir,[1][2] birçoğu boy olarak küçük olduğundan deriyi delemez, Antarktika dışında heryerde yaşarlar. Arı'larda olduğu gibi şahdamar, göz gibi organlar sakınılmalıdır, ısırılan yere buz uygulanması ağrıyı geçirir. Boyları 1 mm ile 30 cm arasıda değişir. Zararlıları yiyerek beslenir. Tesbih böceğinin bir akrabası olup, daha yavaş ve zararsız olan diğer çöpçül Kırkayak'ta (Millipede) her boğumda iki çift bacak varken, Çıyan'da bir çift bacak olması ikisini ayırteder. Etçil beslenen Çıyanın irilerinin utangaç olsada tehdit esnasında ısırabilmesine karşın Kırkayak ise genel kanının aksine sokmaz ve ısırmaz, dokunulduğunda veya tehlike sezince hemen kıvırılıp ölü taklidi yapar, bazı dev kırkayak türlerinin kitinli derisinden tehlike anında kıvrılınca salgıladığı antibiyotik toksin nedeniyle ezilmesi allerjilere yol açabilir. Göze dokunulursa su ile yıkanmalı, yutulmamasına dikkat edilmelidir. Gösterişli türleri pet olarak evcilleştirilebilir. Bilinen en sosyal kırkayak türü Tanzanya asıllı Pembe ayaktır. Asabi olmayıp, evcilleştirildikten sonra kıvrılmamaktadır. Tropik iklimlerde'deki çıyanlar en fazla 30 cm olabilirler. Böcek olmaktan çok karides türevi eklem bacaklılar'dır.

http://www.biyologlar.com/myriapodlarla-ilgili-clasislerinin-ordolarinin-familyalarinin-ozelliklerini-aciklayan

Biyolojideki Son Gelişmeler

Biyolojik çeşitlilik Dünya üzerinde yaşamın sürdürülmesine olanak tanıyan sağlıklı ve dengeli bir küresel ortamın temelini oluşturur. Bir biyolojik gelişme, biyolojinin tüm çeşitliliğini içerisinde bulundurur. Bu gelişmeler aşağıda ana başlıkları ile anlatılmaktadır. EVCİLLEŞTİRME SÜRECİ, KÖPEĞİ İNSANLAŞTIRDI Köpek, insana şempanzeden daha benziyor. Bilim adamları köpeğin ilk olarak hangi tarihte ve nerede evcilleştiğini tartışa dursun, son araştırmalar köpeğin iyice insanlaştığı gösterdi. Evcilleşen köpek artık doğuştan mesajları kullanma yetisini geliştirdi. İnsanoğlu yalnızca kendi davranışlarını kavrayan saldırgan olmayan ve sadık türleri evcilleştirerek köpekler arasında doğal ayıklama gerçekleştirdi. Giderek bakıcılık görevi bile üstlenen köpek, sahibinin kan şekeri düştüğünde onu daha dikkatli izliyor ve hasta düzelene kadar yanından ayrılmıyor. 39 kromozom çiftine sahip köpeğin hızlı üreme yetisi sayesinde insanoğlu köpeği çok kısa süre içinde istediği gibi yetiştirebilmişti. Köpeğin insanla yakınlaşması evrim açısından büyük bir başarıyla sonuçlanmıştır. Köpeklerin neden bu şekilde davrandıkları bilimsel açıdan henüz kesin olarak kanıtlanmamışsa da bilim adamları düşük kan seviyesi sırasında salgılanan tipik ter kokusunun köpekler tarafından algılandığını tahmin ediyorlar. İNSAN ASLINDA BİR BUKALEMUN MU? Bazı insanların koyu kazı insanlarınsa açık rengine sahip olmasının sırrı nihayet çözüldü. Dünyanın çeşitli yerlerinde yaşayan insanların deri renkleri güneşin ultraviyole ışınlarının soğurulması ve yansıtılması arasında çok hassas bir dengeye göre ayarlanan hayati bir mekanizma var. Deri rengi biyolojik bir gereksinim. Kuzey ülkelerinde yaşayan insanlar sarışın, çünkü sarı saçlar daha fazla ışığın kafatasından içeri girmesini sağlıyor. Ekvatora doğru inildikçe deri rengi koyulaşıyor, çünkü siyah saç ve ten güneş ışığının gereğinden fazla bedenimize girmesini engelliyor. Ten rengi bedenimizde hayati bir madde olan folik asitin yıkılmasını önlemek için koyulaştı. Folik asit bedenimizde sağlam kalarak gelişmekte olan Embriyo sinirlerinin gelişmesinde çok önemli rol oynar. Hem biyolojik olarak yaşamsal hem de UV’ye karşı duyarlı. Bir diğer önemli madde olan Melanin, UV ışığını soğurur ve yayar. Deriyi renklendiren pigmentler ile UV arasında bir bağlantı var. Melanin güneş yanığından korumanın yanı sıra folik asitin bozulmasını da önlüyor. BEBEK OLUŞUMUNUN BÜTÜN SIRLARI AYDINLANDI Bilim adamları bir bebeğin büyümesini gün ve gün izleyerek bütün gelişme aşamalarını saptadı ve Embriyonun gelişiminde bilinmeyen sırları da ortaya çıkardı. İşte ilk 9 ay hakkında yeni öğrenilen bilgiler. Bebek ana gelişimini ilk üç ay içinde tamamlıyor. Kalp,akciğer ve beyin gibi hayati organların oluşumunu tamamlıyor. İnsan dahil bütün canlıların oluşumunda aynı biyolojik tornavidalar, alet-edevatlar kullanılıyor. Bebeğin sağlığı can alıcı noktalar annenin aldığı hava, içtiği su, aldığı ilaçlar, yediği yemeğin kalitesi, taşıdığı hastalıklar ve geçirdiği zorluklar. Ayrıca çevredeki zehirleyici maddeler. Bütün bunlar bebeğin hastalıklardan arınmış olması için çok önemlidir. Hamileliğin dördüncü günü İlk göze çarpan değişim hamileliğin dördüncü gününde gerçekleşir. Morula adlı 32 hücreli bir parça içi sıvıyla dolu bir çekirdek etrafına birbirinden farklı iki tabakanın oluşmasını sağlar. Blastosist denilen bu küre kütle rahminin duvarına yuva yapar kısa bir süre sonraysa hücrelerin dış tabakası plasenta ve amniyon kesesine dönüşürken iç tabakada Embriyoyu oluşturur. 1. Hafta: Döllenmeden birkaç saat sonra oluşan zigot bir yaşam boyu sürecek olan hücre bölünmelerinin ilkine başlar. Bir hafta sonra hücrelerden oluşan bir küme, kendini rahim duvarına bağlar. 23. Gün: İlk gelişen, kendi üzerinde katlanarak Embriyonun sırtında bir tüp oluşturan sinir sistemi olur. 32. Gün: Gelincikten daha büyük olmayan Embriyodan kalp, gözler ve kas damarları oluşur. Beyin, hücrelerin dizildiği oyuklardan oluşan bir labirenti andırırken gelişen kollar ve bacaklar yüzgeçlere benzer. 40. Gün: Bu dönemde Embriyo; bir fiil, domuz veya tavuk Embriyolarından farklı gözükmez hepsinde kuyruk, sarı kese ve temel solunum organları bulunur. 42. Gün: Embriyo artık koku duyusunu geliştirmeye başlar eller birbirinden kaba şekilde ayrılmış parmaklar belirginleşir. Boyutları Embriyo,ilk 3 aylık dönemde hızla gelişir. 12. Haftayla birlikte minyatür boyutlarda da olsa bir çok vücut sistemi bulunur. 52. Gün: Üzüm tanesinden çok büyük olmayan fetüs, artık burun deliklerine ve pigment leşmiş gözlere sahiptir. Gelecek 4 ay boyunca göre sinirleri oluşacağından fetüs, görme duyusunu kullanamayacaktır. 54. Gün: 2 ay sonunda yapılmasının büyük bir kısmını tamamlamıştır. Fetüsün tüm organları yerlerini almış gelişmeyi beklemeye başlar. Beyin hala herhangi bir bilişsel fonksiyona sahip olmayan hücre topluluklarından ibaret olan beyin, yeni oluşan kafatası içinde yer alır. Kalp: Fetal kalp bir yetişkin kalbin yalnızca %20 si oranında kan pompalasa da, kapakçıklara, 4 farklı odacığa ve şanta sahiptir. Mide: Annenin besin zengini kanı sayesinde mide doğumdan önce sindirim gerçekleştiremez. Göbek bağı: Başlangıçta bir saç teli boyutlarında olan göbek bağı Embriyoyu annenin plasentasına bağlamak için genişler ve gelişen bağırsakları içine alır. Yemek borusu: 4 hafta sonunda boru, nefes alma organlarından ayrılır ve sonunda da ağzı mideye bağlar. Böbrekler: artık böbrekler maddeleri kandan ayırmaya başlar 4. Haftadan itibaren tomurcuklanmaya başlayan akciğerler, ufak tüplere dallanmaya doğumdan sonra bile devam eder. Omurlar: bir kolyedeki inciler gibi omurgaya ait bu bölümler, daha sonra beyni vücudun geri kalan kısmına bağlayacak olan sinirlerle birbirlerine bağlanırlar. Karaciğer: doğuma kadar kırmızı ve beyaz kan hücreleri pompalayan karaciğer doğumla birlikte gerçek işlevine kavuşur. 84. Gün: hala plasenta içinde korunan fetüste küçük bir göğüs kafesi ve gözler ve kulaklar bulunur. Fetüs artık parmaklarını bile emmeye başlar. 7. Ay: İçeride ve dışarıda gelişim neredeyse tamamlanmıştır. Tırnaklar görünür ve beyin vücut sıcaklığını, ritmik solunumu ve böbreklere ait gerilmeleri kontrol etmeye başlar. 8 Ay: Depolanmış olan yağ, fetüsü dış ortamdan ayırır ve enerji kaynağı görevi görür. Giderek azalan alan, fetüsün ellerini ve ayaklarını gövdesine doğru çekmesine neden olur. 9 Ay: Bebek artık, spiral CT tarayıcısına sokulan annenin doğum kanalından çıkarılır. ÇOCUĞUNUZ KIZ MI OLSUN ERKEK Mİ? Bebeğin cinsiyetini anne mi yoksa baba mı belirliyor? Bilim adamları hangi koşulların çocuğun cinsiyetinde baskın rol oynadığı konusunda çeşitli teoriler ortaya attı. Birçoğumuz çocukların cinsiyetinin şans işi olduğunu düşünürüz. Kız veya erkek mi olacağı eşit olasılıklarla karar verilen rastlantısal bir işlemdir. Bilim adamları ise doğanın, sadece yazı tura atmadığına inanıyor. Bilim adamlarını buna inanmaya iten birçok olay var. • Araştırma sonuçları, doğan erkek sayısının kadınlardan biraz daha fazla olduğunu gösteriyor. • Her 100 kıza karşılık 106 erkek Bunun yanında daha ilginç bulgularda söz konusu. • Başkanlar ve lordlar gibi yüksek konumdaki erkeklerin erkek. • Dalgıç test pilotları ve marangozlarınsa kız çocuğa sahip olma eğilimleri daha fazla. • Mevsim normallerinin üzerindeki sıcaklarda daha fazla erkek dünyaya geliyor. • Yaşlı erkeklerin ve baskın altındakilerin kızları oluyor. • Her savaş döneminde ve sonrasında ise etrafta düzinelerce erkek çocuk dolaşıyor. Tüm bu sonuçlar; erkeklerin bazı durumlarda erkek çocuk sahibi olama olasılıklarının daha fazla olduğunu gösteriyor. Bu yıl yapılan araştırma ise günde 20 den fazla sigara içen ebeveynlerin oğul sahibi olma olasılıklarının %45, hiç sigara içmeyenlerin ise %45 olduğunu belirlediler. Bilim adamları; ebeveynler farkında olmadan çocuklarının cinsiyetini belirleyebilir mi? Sorusu hala yanıtını arıyor. ZEKADA BALIK TEORİSİ Aklımızı deniz kenarında bulmuşuz! Bilim adamları insanoğlu zekasının gizini buldu: balık, şempanze beyinli atalarımız ıstakoz, midye, karides ve diğer deniz ürünlerini tercih etmelerinden ötürü, şimdi dünyayı yöneten akıllı yaratıklara dönüşebildik. Bu şaşırtıcı fikir, sinir bilimcilerini, beslenme uzmanlarının , antropologların ve arkeologların katıldığı “insanın ileri zekasının kökenleri” konulu bir konferansta dile getirildi.Toronto üniversitesinden prof. Stehen Cunnane, “İnsan beynindeki evrimin gerçek nedeni, deniz ürünleriyle beslenmesidir” diyor. Bu “Balık teorisi”, balık ve balık ürünleri tüketmenin günümüz hastalıklarının tedavisine yardımcı olduğunu, öne süren çalışmalarda evrimsel destek sağlıyor. GÜNEŞ IŞIĞI GİZLİ BİR KANSER ÖNLEYİCİSİ Mİ? Bildiğimiz ve bilimin sıkça önümüze koyduğu bir gerçek: Aşırı güneş ışınları cilt kanserine yol açıyor. Ama şimdi yeni ve aykırı bir keşfin daha kapısı aralanıyor: Güneş ışığı aslında diğer kanserlere karşı koruyucu özellik taşıyor. D vitamini çeşitli kanserlerin riskini azaltıyor mu? Bu aslında yeni fikir değil 22 yıl önce , iki salgın hastalıklar araştırmacısı ( epidemiyolog ) güneş ışılarına maruz kalan cildin ürettiği D vitamini, bir şekilde kötü huylu hücrelerin büyümesini engellediği görüşünü orta atmıştır. Bu görüşlerini çeşitli bulgu ve bilgilerle destekledi. Örneğin: kutuplara daha yakın ve az güneş alan bölgelerde yaşayan insanlar daha az miktarda D vitamini ürettikleri için tümörlere karşı daha açık ve hassas olabiliyorlar. D vitamini ve güneş ışığı eksikliğinin kansere neden olduğu hipotezi tartışmalı ve kesin kanıtlanmamış olmasına rağmen, bazı araştırmacılar D vitamini kansere karşı olası çare olarak inceliyor. YAPAY KAS GELİŞTİRİLDİ Japon araştırmacılar gerçek kas bileşkelerinden yapay kas geliştirdiler. Kabuklu deniz ürünlerinin kaslarından iki proteini alan araştırmacılar bunları iki farklı jel yığınına dönüştürdüler. Araştırmacılar yeniden oluşturulan kasın yapay kol ve bacaklarda kullanılabileceğine, bedenin bağışıklık sisteminin insan kasından oluşturulan protezleri kabul edebileceğine dikkat çekiyorlar. BİYOLOJİK RİTMİ RETİNA BELİRLİYOR Organizmamız gözdeki hücreler sayesinde günlük tempoya ayak uydurabiliyor. Bu duyarlılığın kökeniyle ilgili önemli bilgiler elde edildi Işığa duyarlı ve biyolojik ritimlerimizi doğrudan etkileyebilecek yeni bir hücre sınıfı belirlendi. Görme hücrelerinde bağımsız olacak bu hücreler, beynin biyolojik saatine ışık bilgisi gönderilmesinde temel aracı olarak görülen pigment niteliğindeki melanopsini üretiyor. Retinada ilk kez gözlenen bu sinir hücreleri gündüz-gece değişimi hakkında organizmayı uyarıyor NEDEN BAZILARIMIZ DAHA FAZLA YİYOR? Bilim adamları metabolizmayı ve iştahı düzenleyen 250 gen ve en az 40 nörokimyasal madde belirledi. Ancak sosyal çevrede en az biyolojik belirleyiciler kadar güçlü. Bilim adamları, bu acımasızca hastalığı inceleyerek iştahın karmaşık biyolojisini anlayabilir. Araştırmacılar bu hastalığa bağlı genetik anormalliklerin iştahı tam olarak nasıl ateşlediği belirlemeye çalışıyor. Bu başarılırsa 20 bin Amerikalı tedavi edilmekle kakmayacak aynı zamanda neden bazılarımız diğerlerinden daha fazla yediği de anlaşılacak. ÜLKEMİZDE 146 KUŞ TÜRÜ YOK OLMA TEHDİDİ ALTINDA 9 bin kuştan 426’ sı ( %4,7) Anadolu’da yaşıyor. İnsanlığın ortak hazinesi ve mirası olarak korumakla görevli olduğumuz bu kuşlardan 146 türü dünya çapında tehlike altında. Bunların nüfusları ülkemizde de tehlike altında. Tepeli pelikan, küçük karabatak, yaz ördeği, pas baş, dikkuyruk, kara akbaba, şah kartal, küçük kerkenez, huş tavuğu, toy ve boz kiraz kuşu, ülkemizde ürüyebilen ender türlerden. Türkiye’de uluslar arası karakterde 100’den fazla önemli kuş alanı var ve bu sayı Türkiye’yi dünyanın önemli kuş ülkelerinden biri kılıyor. Soyu tehlike türlerden; küçük sakarca kazı, sibirya kazı, ak kuyruklu kartal bozkır delicesi, büyük orman kartalı, bıldırcın, kara kanatlı bataklık kırlangıcı, sürmeli kız kuşu büyük su çulluğu gibi kuşlar sadece bunlardan bazıları dır. Türkiye’de pek çok kuş türü çeşitli tehlikelerle karşı karşıya bulunduğuna hiç şüphe yoktur. Bu tehlikelerden bazıları; • Çeşitli nedenlerle insanlar tarafından izlenme ve yoğun av baskısı, • Turizm gelişmesi sonucunda kuşların doğal yaşam alanlarının daraltması, • Bitki koruma ilaçları ile evrensel ve sanayi artıklarının çevreye verdiği zarar, • Kuluçka, beslenme, geceleme, dinlenme veya kışlama alanlarının tahrip edilmesi • Sulak alanların kurutulması, • Tarımın yoğunlaşması, • Ormanların, meraların . çayırların yok edilmesi, • Yüksek gerim hattı ile yol yapımı veya trafiğin verdiği zarar, • Yoğun ve bölgesel sanayileşme ile belli bölgelerdeki canlı varlıkların yok oluşu. Kuşların, biyolojik bir varlık olarak en az insanlar kadar yaşama hakkı ve her türün biyolojik denge içinde önemli yeri ve görevi vardır. BOŞANMA VE AYRILIKLARIN SUÇLUSU BULUNDU: HORMONLARIMIZ Uzmanlar evliliklerin başarılı olması ya da başarısızlığa uğramasının biyolojik ve psikolojik nedenlerini araştırdı. Bu araştırmanın sonuçlarında da tartışmanın ardından yükselen hormon oranlarının başında çok önemli bir rol oynadığını belirlediler. Bu hormonlar ise stresle bağlantılı olanlardır. Gözlemler, stres yaratan bir olaya yanıt olarak beyindeki hipofizin ACTH adlı bir hormonu serbest bıraktığını bununda böbrek üstü bezleri aracılığıyla kortizol salgıladığını ortaya koydu. İNSAN OLMA TARİHİNDE YENİ BİR SAV Yeni bir araştırmaya göre konuşmamızı sağlayan dil genine olsa olsa 200 bin yıldır sahibiz. Şimdi ‘Dil geni’ olarak nitelendirdiğimiz genin değişimine (mutasyon) uğramasıyla konuşma yetisi kazandık. Bu mutasyonla birlikte çağdaş insan tüm dünyaya yayıldı. İri maymunlar ise dil genlerinde ‘vida ve somunlardan’ yoksun oldukları için bizler gibi konuşamıyorlar. YAPAY SİNİR HÜCRELERİNE MERHABA Amerikalı nörobiyolog Theodor Berger hastalıklı beyin hücrelerinin görevini yerine getirebilecek protezler üzerinde çalışılıyor. Bu önemli gelişmedeki anahtar rolü tıpkı sinir hücreleri gibi davranan ‘yapay beyin hücresi’ elektronik çipler üstleniyor. Beyinle ilişki kurarak öğrenen çipler sağırların duymasını sağlayacak, felçlilere hareket olanağı verilecek. İNSAN GELİŞİMİNDEKİ EN ÖNEMLİ ETKEN BESLENME İnsan olmamız ve bugüne ulaşmamızı , beslenmenin yüzyıllar içinde değişimi sağladı. Ancak bugünkü sağlık sorunlarımızın kaynağında da beslenme biçimimiz var. Çünkü aldığımız kadar enerjiyi harcayamıyoruz. Enerji alımı ve tüketimi arasındaki dengesizlik, hastalıkların kaynağı. Atalarımızın besinlerden aldığı enerjiyi ve beslenmenin kalitesini artırmaya yönelik gelişmeleri insanlığın en çok evrim geçirmesinde ve diğer primatlardan ayrılmasında ana özelliklerinden biri olmuştur. İki ayak üzerinde yürümemiz ve beyinlerimizin büyüklüğü bizi diğer insanlardan hızla ayırdı. Beyinlerimizin bir enerji oburu, dinlenirken yetişkin bir insanın beyni, vücut enerjisinin %20 ile %25’ini alır. Bu oran insan olmayan primatlarda %8 ile %10’dur. HASTALIKTAN ARINMIŞ İLK BEBEK DOĞDU Erken yaşta Alzheimera yakalanan anneye Alzheimer’den arınmış bebek doğurtuldu. Annenin Alzheimerli yumurtası çöpe atılarak sağlıklı yumurta döllendirildi. Böylece yeni bir tartışma başladı. Uzmanlar artık yumurtalarda Alzheimer hastalığına neden olan hatalı genleri belirleyebiliyorlar. Böylece hastalığı taşıyan annelerin çocuklarına hastalıklı genleri aktarması engelleniyor. O HALA YAŞIYORDU DOLLY 6 YAŞINDA VE ŞİMDİ DONDURULDU Dolly’nin doğumuyla beklenmedik bir sürpriz yaşanmıştı. İnsanlık 6 yıl önce bugüne kadar alışık olduğumuz doğal bir doğum değildi. Gerçekleşen alıştığımız sperm ile yumurtanın döllenmesi sonucu her doğanın tamamen farklı özelliklere sahip olmasıydı. Ancak bu defa var olan bir canlının genetik ve biyolojik olarak “tıpkı benzerleri yaratılmıştı” buna “klonlama” dendi veya Türkçesiyle “kopyalama” işte dünyanın ilk kopya canlısı 6 yıldır yaşıyor. Bazı sorunlar olsa bile. Dolly ile birlikte insan kopyalamanın da kapısı aralandı. Ancak bu fikirden ve gelişmeden insanlık korktu. Kopya insanlar belki de bu korku nedeniyle henüz ortada yok. Dolly’yi yaratan “büyük deney” belki henüz kopya insanı yaratamadı ama onlarca yeni kapı açtı. Bilim adamları Dolly’yi şimdi dondurdu çünkü ciğerlerinde meydana gelen rahatsızlıktan dolayı öldüğü sanılan fakat dondurulmuş olduğu bilinmektedir. ZEKAYI KADINLARA BORÇLUYUZ İnsan zekasında kadın parmağı ortaya çıktı. Erkeklerin pek hoşuna gitmese de insan soyunun zeki olmasında kadınların önemli payı var. Eski çağlarda dişi soydaşlarımız eş seçiminde güçlü kuvvetli ve pazılı erkekler yerine, zeka kıvılcımları ile parıldayan gözleri tercih edince insanoğlunun zekası gelişti. Ne kadar akıllıca! Özellikle de erkekler, bu tavırlarından ötürü kadınlara çok şey borçlu. Çünkü, eski kadınlar göz kamaştıran kaslara vurulmuş olsalardı günümüzde erkekler bu özellikleriyle şimdi Afrika da ki goril ve şempanzelerle boy ölçüyor olacaklardı. SAKAT DOĞUM ARTIŞI, YOK OLUŞUN İŞARETLERİ Yeni bir teori kanıtlandı. Bir tür (canlı) yok olamaya ne kadar yakınsa, o türdeki asimetrik canlıların sayısı o derece de artıyor. Yani çarpık ya da sakat bacaklılar hızla çoğalıyor. Daha kısa kanat, sakat bacaklar hayatlarının kısalığı ve yok olma tehlikesinin belirtileri. Böylece tükenme tehlikesi ile karşı karşıya olan türler bu yöntemlerle hızla belirlenecek. UZAYDA GALİBA HAYAT VAR Bilim insanların yıllardır sordukları Dünyaya uzaydan mikrop mu yağıyor ? yaşamın ilk tohumları kuyruklu yıldızlardan mı atıldı? Uzayda hayat var mı? Biçimindeki sorulara artık rahatça evet olabilir yanıtı veriliyor. Uzaya gönderilen bazı bakteriler, uzay soğuğunda günlerce canlı kalabildiler. Son araştırmalar bakteri sporlarının uzayda binlerce yıl yaşayabildiklerini gösteriyor ve yaşamı başlatan temel taşlar, çok zor koşullar altında bile kendiliğinden gelişiyor. Uzay bakterileri ve bunların dünyamıza saldırıları, şimdiye dek sadece felaket filmlerinde görülüyordu. Ancak bilim adamlarına göre, artık uzaydan gelebilecek bir salgını hayal olmaktan çıktı. YAŞAMIN TADI “Yaşamın tatlı ve acı duygularını”, dilimizdeki tat hücrelerine girip çıkan bir çift proteine borçluyuz. Bu tat algılayıcılarını ortaya çıkaran buluşun, besinlerin tatları üzerinde kontrolümüzü güçlendirmesi bekleniyor. Araştırmacılar ayrıca beslenme biçimi konusundaki seçimlerin genetik temellerini de bu yolla aydınlatabilmeyi umuyorlar. Biyologlara göre bazı insanlar, bünyemize uygun bir beslenme için anahtar olmak üzere bir tat duyusu oluşturduk. “Tatlı şeker anlamına geliyor ve bu da enerjiyi sağlıyordu; demek ki iyi bir şeydi. Buna karşılık aşırı acı, zehir demekti ve kötüydü.” İlk araştırmacı da, tat algılayıcıları saptayabilmek için, dilimizdeki tat tepeciklerinde var olan ancak dilin bunları çevreleyen bölgelerinde bulunmayan RNA’ları aramaya başladılar. Sonunda tat algılama işlevi için gerekli donanıma sahip görünen ve TR1 diye adlandırdıkları bir protein üreten bir gen bulmayı başardılar. Sonuç olarak yiyeceklerin içindeki acı tadı yok etmek için kullanılan, tuz şeker ve yağa veda edilebilir. Artık tek bir madde ile yiyecek ve ilaçlardaki acılık giderilebilecek. GERİ DÖNÜŞÜMLÜ BİYOLOJİK KUMAŞ Amerikan Cargill Dow ve Unifi firması yüze yüz doğal olan bir biyoteknoloji dokuması üretti. “Ingeo” olarak adlandırılan kumaş türü, hammaddesi tahıla dayanan bir plastikten elde ediliyor. Üretici firmalara göre Ingeo doğal dokumaların tüm olumlu yönleri ile birlikte sentetik ipliklerin kalitesine de sahip ve kullanım alanları giyimden, mefruşat ve otomobil sanayine kadar uzanmakta. Ingeo üretiminde tahıllarda fotosentez sırasında açığa çıkan karbondan yararlanılmakta. Karbon ise mesela mısırda nişasta olarak depolanıyor ve doğal şekere dönüştürülebilmekte. Basit yalıtım ve fermantasyon yöntemi sayesinde ise doğal şeker ayrıştırılarak polimer üretiminde kullanılmakta. DÜNYANIN EN KÜÇÜK BİYOLOJİK BİLGİSAYAR MODELİ Araştırmacılar tarafından geliştirilen biyolojik bilgisayar; DNA ile işlediği gibi enerji ihtiyacını da aynı kaynaktan karşılıyor. DNA bilgisayarların öncüleri enerji kaynağı olarak ATP molekülünden yaralanıyordu. DNA molekülleri ve enzimlerinden oluşan bir bilgisayar üretmişti. Ancak yeni modelde, kalıtım, veri girişini işlediği gibi işlemcinin enerji ihtiyacını da karşılamakta. Ayrı ayrı DNA molekülleri her işlem adımında birbirine uygun olarak input ve yazılım molekülü olarak ikişer iki şer birleşiyorlar. Bili adamlarının açıklamalarına göre biyolojik bilgisayar işlemleri buna rağmen %99.9’luk doğruluk payıyla tamamlamakta. DNA bilgisayarları o kadar küçük ki aynı anda 3 bilyon bilgisayarı yalnızca bir mikrolitre sıvıya yerleştirmek mümkün. 3 bilyon bilgisayarın ise bir saniyede 66 milyar işlem yapacak kapasitede olduğu bildirildi. HERKESİN YAŞAM TANIMI FARKLI “YAŞAYAN” la “yaşam”ı karıştırmamak gerekiyor. Biyoloji yaşayan varlık özerk bir biçimde üreyebilip evrim geçirebilen bütün tanımıyla yetinse de, “yaşam” farklı şekillerde tanımlanan, bilimsel olmaktan çok felsefi bir kavram. Dünya üzerinde yaşamın ortaya çıkışıyla ilgili bir teori, canlının proteinlerini oluşturan aminoasitlerin meteor yağmuruyla uzaydan dünyaya taşındığını varsayıyorlar. Araştırmacılar da kısa bir süre önce, yıldızlar arası boşluktaki koşullara benzer bir ortamda aminoasitler oluşabildiler. ŞARBON AŞISI ISPANAKLA İYİLEŞTİRİLECEK AMERİKAN Mikrobiyoloji Birliğinin biyolojik silahlar konferansında konuşan bilim adamları, ıspanağın içinde bulunan bir maddeyle şarbon aşısının daha etkili kılınabileceğini bildirdiler. Önemli yan etkileri bulunan halihazırdaki şarbon aşısı Amerika’da sadece askerlere uygulanmakta. Oysa Amerika’da günden güne büyüyen biyolojik silah korkusu daha etkili bir şarbon aşısı ihtiyacını doğurdu. Halen üretilmekte olan şarbon aşısında kullanılan, etkisi azaltılmış şarbon virüsü kas ağrıları, ateş ve baş ağrısı gibi rahatsızlıklara sebep veriyor. Thomas-Jefferson Üniversitesi’nden Alexander Karasev, şimdi ıspanak içerikli yeni bir aşı türü geliştirdi. DİĞER ÖNEMLİ GELİŞMELER Paleontoloji : 1. 90 Santim boyunda kolları, ayakları ve kuyruğu tüylerle kaplı modern kuşlara benzer bir dinazor fosili bulundu. 2. 56 Milyon yaşında olduğu tahmin edilen en yaşlı primatların iskeleti bulundu. 3. Nijer’de 110 milyon yaşında 60 santim boyundaki bir timsaha ait olduğu sanılan bir kafatası bulundu. Uzay Biyolojisi : 1. Kara maddenin içinde görülmeyen galaksiler keşfedildi. 2. Kömür gibi kara kuyruklu yıldız bulundu. 3. Evrenin renginin pembemsi bej olduğu anlaşıldı. Ancak bu tonun yıldızlarla yaşlanıp öldükçe kırmızıya dönüşebileceği ileri sürülüyor. 4. Güneş sistemi süper nova kırla dolu bölgelerde geçerken dünyanın yeni bir buz çağına girebileceğini söylüyor. 5. Dünyanın orta kısımlarından kilo aldığı tespit edildi. Bunun nedeni 1998 yılından sonra kütle çekimi alanının kutuplarda zayıflaması, ekvator bölgesinde kuvvetlenmesidir. 6. Kara deliklerin varlığı somut verilerle kanıtlandı. Embriyoloji : 1. Çocukların suçiçeği hastalığına karşı aşılanmaları yetişkin evrelerinde zonaya yakalanma olasılığını arttırılıyor. 2. Erken yaşta ortaya çıkan alzheimer hastalığının geni tespit edildi. Bu geni taşıyanlara uygulanan bir teknik ile DNA’ları bu genden arındırılıyor. Bu uygulama, hastalıklı genlerden arındırma konusunun tıp etiği açısından yeniden tartışmaya açılmasına neden oldu. 3. Yumurtalık kanserine yakalanan kadınlara sağlıklı çocuk sahibi olma yolu açıldı. Kanser tedavisine başlamadan alınıp dondurulan yumurtalık, hasta iyileştikten sonra yeniden nakil yapılabilecek. Fareler üzerinde denen teknik başarılı sonuç verdi. 4. Yaygın olarak kullanılan ağrı kesiciler, kırık kemiklerin kaynamasını geciktiriyor ya da engelliyor. 5. Tüp bebek uygulaması doğan bebekler açısından sanıldığından daha riskli olabilir. Çevre (Ekoloji) : 1. Yok olma tehlikesiyle karşı karşıya kalan türlerin sayısı artıyor. 2. Tatlı suları bir takım kimyasal maddeleri tespit eden yeni yöntemler geliştirildi. 3. Balinaların neslinin giderek tükendiği kesinleşti. Genetik : 1. Nükleer santrallerden veya bomba denemelerinden yayılan yüksek radyasyon DNA’yı nesiller boyu etkileyebiliyor. 2. Çocuk felci virüsünün sıfırdan üretilebileceği kesinleşti. Bu keşif biyoterör endişelerini körüklüyor. ULUSAL BİYOLOJİ KONGRESİ BİLDİRGESİ XVI. Ulusal Biyoloji Kongresi’nde şu görüşler kamuya açıklandı: 1. Avrupa birliği uyum sürecinde biyolojik araştırmaların planlanması, desteklenmesi ve yürütülmesi aşamalarında üniversitelerimiz biyoloji bölümleri akademik programların Avrupa Birliği ülkelerindeki üniversitelerde okutulan programlar ile AB akreditasyon standartlarına uygun hale gelmeli. 2. Biyologların iş hayatındaki yetki ve sorumlulukları en kısa sürede belirlenmeli ve ‘Türkiye Biyologlar Birliği Yasası’ çıkartılmalı. 3. Biyoloji bölümünden mezun olan biyologlar eğitim sertifikaları almaları koşulu ile öğretmenlik yapabilmeli. 4. ‘Ulusal Doğa Tarihi Müzesi ve Botanik Bahçesi’ acilen kurulmalı. 5. Biyologların mağduriyetlerinin giderilmesi için biyoloji alanındaki doçentlik bilim dalları yeniden düzenlenmeli.

http://www.biyologlar.com/biyolojideki-son-gelismeler

Biyoçeşitliliğin Korunması

Biyoçeşitliliğin korunması ve sürdürülmesine verilen değeri, objektif bir biçimde belirlemek güçtür. Çünkü bu değerlendirme, değerlendirmeyi yapan kişinin bakış açısına fazlasıyla bağlıdır. Ancak yine de, tanımlanmış olan genel nitelikteki 3 neden; biyoçeşitliliğin yeterince korunması için destek sağlamaktadır; Yararlılık açısından, biyoçeşitliliğin (elemanlarının) biyolojik kaynak olarak kullanımı; en büyük ilgiyi çekmektedir. Bu şekilde biyoçeşitlilik temelde, kazançlı (karlı) işlerin geliştirilmesi için bize imkanlar sağlamaktadır.   Üstelik, biyoçeşitliliğin korunması için yapılan bir seçim; kendi canlı çevremiz için yapılmış bir seçim olmaktadır. İnsanoğlu, ekolojik sistemin bir parçasıdır ve bu yüzden de sisteme saygı duymalıdır. Biyoçeşitliliğin değeri; nihayetinde estetik, kendine özgü ve etik bir yolla karakterize edilebilir. Doğanın, ressamlara, sairlere müzisyenlere ilham verme biçimi ve onlar tarafından kullanım şekli; el ile tutulamaz olan bu servete bağlanmamızı sağlamaktadır.   Biyoçeşitliliğin Korunmasındaki Zorluklar: Ekonomik ; ülkelerin makro-ekonomik göstergeleri arasına biyoçeşitliliğin dahil edilmesi yoluyla, biyolojik çeşitliliğin değeri aşağıdaki şekilde tanımlanabilir: a) gerçek değeri ile (TIP ve genetik mühendisliği), b) faaliyetlerden gelen kazanç ile (eko-turizm, bozulan biyoçeşitliliğin düzeltilmesi maliyeti) idari ; kamusal ve ticari örgütlerin, donanma ve ordunun, sivil toplum örgütlerinin, yerel popülasyonların ve halkın genel katılımı yoluyla ortaklık yapısının oluşturulması Yasal ; biyoçeşitlilik öğelerinin yürürlükteki tüm kanunlara dahil edilmesi, biyoçeşitliliğin korunmasını destekleyen yasaların çıkarılması Bilimsel ; karar-verme sürecine resmi nitelik kazandırılması, biyoçeşitlilik göstergelerinin aranması (biyoçeşitlilik göstergelerine çalışmalarda yer verilmesi), biyoçeşitlilik ölçütlerinin belirlenmesi, izleme sürecinin geliştirilmesi    'Artemia salina' Örneği: ( Biyoçeşitliliğin Potansiyel-Ekonomik Değeri ) 'Artemia' olgusu ve bu türün kültür-balıkçılığı ile ilişkileri; biyoçeşitliliğin ekonomik değeri henüz keşfedilmemiş ve büyük bir potansiyele sahip olan örneklerinden biridir.   'Artemia salina'; kabuklular familyasından bir 'zooplankton'dur. Muhtemelen yıllarca 'tuzlu su karidesi' ('salina shrimp') olarak bilinmektedir. Çünkü bu tür; yaşam döngüsünün tamamını tuzlu sularda geçirmektedir. 'Artemia salina'; tuza oldukça dayanıklı olup, 3-30 ppt tuzluluk değeri ile 15-55 oC sıcaklık değeri arasında yaşamını sürdürebildiği ikili yaşam biçimi (modu) bulunmaktadır: -Mod.1; 'nauplii' ('Artemia salina'nin yüzmedeki ilk safhası) yavrusu olarak; annesinin 'ovisac' dağarcığından canlı olarak doğmaktadır. -Mod.2; 'Artemia salina' türünün yetişkinlerinin yaşadığı ortam dahilindeki habitatın kuruduğu ve tuzluluk oranının yükselmeye başladığı bir durumda, sert bir kapsül veya kist içine alınmaktadır. Böylece embriyolar, bir uyku dönemi yaşayarak, bu esnada tamamen kurumaya, 100 oC 'nin üzeri veya 0 oC sıcaklık değerlerine, yüksek enerjili radyasyona ve çeşitli organik çözücülere karşı bir direnç kazanırlar. Kurumuş olan kistler, yavru popülasyonunda herhangi bir kayıp olmaksızın yıllarca saklanabilmektedir. 'Artemia salina' embriyosunun, normal gelişimini başlatmak için yalnızca su ve oksijen gerekli olmaktadır (Treece, 2000). 1930 yılında bazı araştırmacılar 'Artemia salina'nin, yeni yavrulamış olan balık larvalarınca bir besin maddesi olarak kullanıldığını belirlemişlerdir. 1950 yılında A.B.D.'nin Kaliforniya Eyaletindeki San Francisco Körfezinde bulunan tuz yatakları ile Utah Eyaletindeki 'Büyük Tuz Gölü' ('Great Salt Lake') olmak üzere, iki farklı kaynaktan elde edilen ticari ürünler, 'akvaryum' ticareti için çok düşük kalan bedellerle (1 Kg fiyatı 10 ABD Dolarından daha az) piyasaya sürülmüştür (Dhont ve Sorgeloos, 2002). 1960-1970'lerde ise, kültür-balıkçılığının gelişmesi ile birlikte, 'Artemia salina'nin kullanımı; kolaylığı ve larval organizmalar için bir besin değeri oluşturması açısından daha yaygın bir duruma gelmiştir. 'Artemia salina'nin uyumakta olan kistlerinin, konserve kutuları içinde uzun süreler boyunca saklanabilir özellikte olması ve yalnızca 24 saatlik bir inkübasyon (kuluçka süreci) ile 'hazır besin' elde edilebilir özellikte olması gerçeği; 'Artemia salina' türünü, kültür-balıkçılığı açısından en uygun ve işçiliği düşük bir canlı besin kaynağına dönüştürmektedir (Bengston ve diğerleri, 1991). 1980'lerin ortasından bu yana, 'Artemia salina' kist'i tüketimi; deniz balığı ve karidesinde küresel bir artışın bir sonucu olarak, ticari larva kültürü üretimi yılda birkaç yüz ton'lara ulaşmış bulunmaktadır. Son yıllarda kültür-balıkçılığına aday olabilecek birkaç tür içinden 'Artemia salina'nin kullanılması sonucunda, pilot bölge uygulaması ile başlatılmış olan bir projeden, ticari larva kültürü üretimine doğru başarılı bir geçiş yapılabilmiştir. Örneğin, Akdeniz'de tuza dayanıklı deniz balıkları ile ilgili kültür-balıkçılığında gözlenen ticari patlama; esas olarak 1970'ler sonrasında 'Artemia salina'nin kullanılmasına bağlı kalmıştır (Gerakis ve Koutrakis, 1996). Günümüzde ise yeryüzü üzerindeki 'Artemia salina' kistlerinin ticari yayılımının yaklaşık olarak %90 oranı; A.B.D.'nin Utah Eyaletindeki 'Büyük Tuz Gölü' ('Great Salt Lake')'den karşılanmaktadır (2001 yılındaki ham ürün ağırlığı: 8,150 ton). 'Artemia salina' kistleri; küresel anlamda kültür-balıkçılığını destekleyen bir sektör olarak, kilogram başına 25-150 ABD Doları arasında değişen bir bedel ile satılmaktadır (normalde yüksek kaliteli kistlerin her bir gramında 200.000-300.000 adet 'Artemia salina'nin doğan formu olarak 'nauplii' yavrusu bulunmaktadır).

http://www.biyologlar.com/biyocesitliligin-korunmasi-1

Lesepsiyen göçü

Görünüşe göre Lesepsiyen göç, Akdeniz’in canlı yapısını yavaş yavaş tropik denizlerinkine benzetiyor. Bugün kıyı kesiminde yapılan herhangi bir dalışta bir zamanlar Kızıldeniz’de yaşayan türlerle karşılaşmak çok olağan. Sokar balıkları, trompet balıkları, balon balığı, deniztavşanları bunlardan bazıları. Göç nedeniyle Akdeniz, özellikle Doğu Akdeniz, dinamik bir ekosistem yapısına bürünmüş durumda. Ekosisteme yeni giren Lesepsiyen türlerin etkileri bölgede devamlı olarak dengeleri değiştiriyor. Bu nedenle de dinamik bir eko göçmenler olarak da adlandırılan bu türler benzer besinleri tükettikleri, benzer ortamlarda üredikleri ve benzer davranış biçimleri gösterdikleri yerel canlılar ile rekabete girer ve çoğu zaman galip gelir. Örneğin dip omurgasızlarıyla beslenen Lesepsiyen türlerden Paşa barbunu ve Nil barbunu Doğu akdeniz’e girdikten sonra, aynı besinle beslenen yerli türlerden barbun ve tekir nüfusu üzerinde baskı oluşmuş ve yerli türlerin sayısının Doğu Akdeniz’de azalmıştır. Diğer yandan ekonomik değeri olan Paşa barbunu ve Nil barbunu bölge balıkçılığına hayli destek olmuştur. Bununla birlikte sokar balığı gibi bazı otçul Lesepsiyen göçmenler, Akdeniz’in yerli balıkları tarafından yeterince kullanılmayan alglerle kaplı yerleri değerlendirerek yayılışlarını ve nüfuslarını diğer türlerle rekabete girmeden artırmıştır. Diğer yandan balıkçılığı olumsuz etkileyen türler de var. Bunlardan üzgün balığı (Callionymus filamentosus) vücudunda bulunan dikenlerden dolayı balık ağlarına zarar verebiliyor. Bir başka Lesepsiyen tür olan balon balıklarıysa (Lagocephalus sp) dikenlerinde ve bazı organlarında zehir taşıdığından yendiği zaman ciddi tehlike yaratabilir. Lesepsiyen türlere diğer bir örnek lokum balığıdır (Saurida undosquamis). Lokum balığı, yerel bir tür olan berlâm balığı (Merluccius merluccius) üzerinde baskı kurarak (yani besinine ve yaşama ortamına ortak olarak) onu kendisinin girmediği daha derin bölgelerde yaşamaya itmiştir. Balıklar dışında çok sayıda omurgasız ve alg de Akdeniz ekosistemine girmiş ve uyum sağlamıştır. 2009 yılında Mantis karidesinin Kuzeydoğu Akdeniz kıyılarından kaydı verildi. Ardından da bu tür çok kısa denebilecek bir zaman içinde bölgede çok yüksek bir nüfusa ulaştı ve yakın akrabası olan karideslerden Squila mantis ve Erugosquilla massavensis’in sayısının çok azalmasına neden oldu. Bunun yanı sıra denize girenler için tehlikeli olabilecek omurgasız iki Lesepsiyen türe daha değinmekte yarar var. Bunlardan Rhopilema nomadica adlı zehirli denizanasının sayısı yaz aylarında zaman zaman patlama yaparak çok artıyor ve insanlar için tehlike yarattığı biliniyor. Diğer bir zehirli Lesepsiyen tür olan uzun dikenli denizkestanesi (Diadema setosum) de özellikle Antalya kıyılarında, kıyıdan denize girenler için tehlike oluşturuyor. Deniz alglerinden “terörist yosun” olarak da bilinen Caulerpa recemosa türüne 2000’li yıllarda kıyı ekosisteminde yaygın biçimde rastlanması bilim insanlarını heyecanlandırdıysa da günümüzde bu türe rastlanma oranı çok düşmüştür.

http://www.biyologlar.com/lesepsiyen-gocu

OMURGASIZLARIN EKONOMİK ÖNEMİ

Kişi başına 6–7 kg su ürünlerinin tüketildiği ülkemizde, çoğumuzun bildiği balık ismi bir elin parmaklarını geçmez. Belki de bugüne kadar, karides yememiş milyonlarca insan vardır ülkemizde. Antenli görüntüleri yanı sıra 5 çift yürüme ve yüzme bacakları ile birçok kişinin, karidesten çok “böcek” diye adlandırdığı sevimli canlılardır karidesler. Türleri farklıda olsa büyüklerine "jumbo" dediğimiz, isimleri bölgeden bölgeye göre değişen, balıkçının yüzünü güldüren, lüks lokantaların vitrinlerinde boy gösteren denizlerimizin değerli eklembacaklılarındandır karidesler. Bugüne kadar denizlerimizde, 61 tür karides tespit edilmiş olmasına karşın, bunlardan 7 tanesi ticari öneme sahiptir. Bu türlerin içersinde ise “kuruma” veya “Japon karidesi(Penaeus japonicus)”, “ yeşil kaplan karidesi(Penaeus semisulcatus)”, “oluklu (Penaeus kerathurus)” türleri diğerlerine göre iri boyda olmalarıyla dikkat çeker. Boyca küçük türlerede genel olarak "çim çim" karides denilmektedir. Bunlarda “kırmızı karides”, “derin su pembe karidesi”, “benekli karides”, “şahin karidesi” ve “çamur karidesi”dir. Karidesler kabuklular (Crustacea) sınıfının on ayaklılar(Decapoda) takımındandır, Boyları,çok degişken olup, birkaç, mm'de n 35 cm'ye kadar olabilir. Bu özellikler inegöre de bölgesel olarak adlandırılır. Türkiyede küçük boylu türler genelde "teke",(çimçim) büyük boylu tüler ise "karides" olarak adlandırılır. Fransızca’da "crevette" olarak adlandırılan karidesler, İngilizce’de "shrimps" ve "prawns" olarak iki alt gruba ayrılır. Genelde shrimps, küçük boylu türler; praws ise, büyük boylu türleri için kullanılmaktadır. Tatlı su karidesi Kıskaçlı ve dikenli istakozlar Midye türleri Kerevitler Süngerlerin biyoekolojisi, sistematiği ve ekonomik önemi  

http://www.biyologlar.com/omurgasizlarin-ekonomik-onemi

KARİDESLERİN EKONOMİK ÖNEMİ

Tatlısu karidesi genellikle canlı olarak pazarlandığında iyi fiyat getirmektedir. Ancak, dondurulmuş yada buzlanmış olarak da pazarlanabilmektedir. M. rosenbergii ’de et verimi yaklaşık %35 - 45 civarındadır. Uzakdoğu'da genellikle küçük çiftlikler ürünlerini tesislerinin kenarında kurdukları lokantalarda pişirip satarak değerlendirirler. Karidesler çiftlikten uzak lokantalara da havalandırılan tanklarda canlı olarak gönderilebilmektedir. Karidesler istenirse bütün halinde veya sadece abdomen olarak, donmuş ya da pişirilmiş olarakda pazarlana bilmektedir. Dondurulmuş bir ürünün 6 ay boyunca tadında bir değişiklik olmadığı bildirilmektedir. Ülkeden ülkeye büyük değişiklik göstermekle birlikte, 1 kg iri karides (8-12 adet/kg) 8 ABD $, orta boy (12-16 adet/kg) 7$, küçük boy (16-24 adet/kg) karidesler ise 5,5$ civarına pazarlanabilmektedir. Tayland'ta süpermarketler de canlı satıldığında M. rosenbergii'nin 18 $ civarına fiyat bulabilmesi mümkün olmaktadır. Karidesler pazarlama ağırlığına ulaştıklarında hasat ya sürekli olarak iri karideslerin avlanması şeklinde ya da tam hasat şeklinde gerçekleştirilmektedir. M. rosenbergii heterojen büyüme özelliği gösteren bir türdür. Örneğin; 6 aylık bir se mirtme periyodundan sonra ortalama 47,8 g'a ulaşan karideslerde bireysel ağırlık 10 gile 110 g arasında bir varyasyon göstere bilmektedir (Menasveta ve Piyatiratitvokul,1982). Büyümede görülen bu farklılık M.rosenbergii populasyonu içindeki hiyerarşik etkileşimlerden kaynaklanmaktadır (Lee ve Wickins, 1992). Hızlı büyüyen ilk erkek karidesler büyük kıskaçlar oluşturarak dominant hale geldikten bir süre sonra yavaş bir büyüme dönemine girerler. Bu karideslerin hasat edilmelerinden sonra, daha önce yavaşbüyüyen küçük erkek karidesler, bu kez, daha hızlı büyümeye başlar ve yeni dominant erkekler haline dönerler. Bu arada, bazı erkek karidesler hiyerarşik yapılanmanın en alt basamağında çok küçük boyutlarda kalırlar. Ancak, bunlar da fırsat bulurlarsa iri bireyler haline geçebilmektedirler. Bu nedenle, belli periyotlarla yapılan hasat iri karideslerin seçilerek uzaklaştırılmaları neticesin de küçük kalan bireylere daha hızlı bir gelişim fırsatı yaratmış olur. Tam hasatta; semirtme periyodu sonunda havuzlardaki su tamamen boşaltılarak karideslerin tümü hasat edilir. Bu amaçla, havuzların drene edildikleri su çıkış kapılarına torba veya kafesağlar yerleştirilmektedir. Tayland'ta karidesler semirtme havuzlarına m2’ye 5-10 adet olarak stoklanır ve 8 ay sonra havuzun suyu boşaltılarak karideslerin tümünün hasadı yapılır. Bu ülkede 8 aylık bir semirtme sonunda 70 g pazar boyutunda karides üretmek için m2 ’ye ortalama 5 karides stoklama yapılması önerilirken, yarı tropik ülkelerde 6-7 aylık bir semirtme periyodu sonunda 25 gr ağırlığında bireyler elde etmek içinstoklama oranının m2’ye 4’ten daha az olması gerektiği bildirilmiştir (D'Abramo ve ark.,1989).Genel olarak, tropik ülkelerde önbüyütme aşamasında m2’ye 20-25 karides stoklanmakta ve bu dönem 2,5-3 ay sürdürülmektedir. Büyütmede ise genellikle m2'ye 3-5 adet stoklanan karidesler 3-5 ayda pazar boyuna ulaştırılabilmektedir. Stoklamadan 5 ay sonra iri bireyler ayda bir veya iki kez ığrıplarla hasat edilir. Havuzlardan 45 g ve daha iri olanlar alınarak pazarlanırken, küçük karidesler tekrar aynı havuz içine geri salınır. Bu sistemde stoklamadan itibaren yaklaşık 8 ay sonra tam hasat yapılabilmektedir. Hasat esnasında karideslerin ezilmemesi ve derhal 0°C’de buzlu su içine alınmaları sağlanır. Canlı satılacak olanların 20-22°C’de taşınarak perakende satış noktalarında veya lokantalarda yine bu su sıcaklığında akvaryum veya tanklarda barındırılmaları önerilmektedir. Karidesler istenirse sadece abdomen olarak (kabuklu veya kabuksuz) şoklanıp -20°C’de uzun süreler depolanabilmektedir. Çalı Karidesi Crangon crangon (L, 1758) Crangon vulgaris (Fabricus, 1798) Çalı karidesi Crongonidae familyasından, vücudu sarı-karın bölgresinde hafif yassı, rostrumu kısa ve olukludur. Karapaksi dikdörtgen şeklinde ve ilk dörtte bir kısmında üç diken bulunur. Gözü büyük ve küre şeklindedir. Rengi genel olarak koyu gri bazen açık sarı veya yeşilimsi, koyu kahve noktalıdır. Diğer karideslerden rostrumunun kısalığı ve yürüme ayaklarından ilk çiftinin çok kuvvetli ve yarım kıskaçlı oluşu ile ayrılır. Çalı karidesi Crangonidae familyasının Akdeniz de bulunan türleri içinde tek ekonomik değeri olanıdır. Boyu en fazla 9 cm uzunluğa erişebilir ve genellikle 4 ile 6 cm dir. Akdeniz ve Karadeniz'de bulunur, 50 m. derinliğe kadar kumlu, çamurlu ortamda yaşar, nehir ağızlarına ve dalyanlara girerler. Deniz kıyısında genellikle dreçler ve dip trolleri ile, dalyanlarda trol ağları ile avlanır ve taze olarak değerlendirilir. Teke Karidesi Palaemon serratus (Pennant, 1777) Leander serratus (Pennant, 1777) Teke, Palaemonidae familyasındandır. Rostrumu kuvvetli ve karapaksin geri kalan kısmı uzunluğunda olup testere şeklinde dişlidir. Rostrumun üst kenarında 6-9, alt kenarında 4-6 diş bulunur. Birinci ve ikinci çift yürüme bacakları gelişmiş kıskaçlı ve ikinci çift yürüme bacakları birinciden daha kuvvetlidir. Sırtı yeşilimsi pembe renginde ve geçirgendir. Karapaksi üzerinde çizgiler bulunur. Sularımızdaki bu familyanın diğer türlerinden (7 cm ve daha küçük) büyük oluşuyla kolaylıkla ayrılır. Boyu en fazla 11 cm. uzunluğa erişebilir ve genellikle 8-9 cm. dir. Akdeniz'de yaygın olarak fakat Karadeniz'de nadiren bulunur. Zostera gibi yosunlarla kaplı, kayalık kıyı bölgelerde 10 m. derinliğe kadar rastlanır. Dreçler ve dip trolleri ile kıyılarda ve dalyalarda avlanır, taze olarak pazarlanır. Edtvard Karidesi Plesionika edwardsi (Brandt, 1851) Edward karidesi, pandalidae familyasındadır. Rostrumu karapaksın iki katı uzunluğunda olup üst kenarı yaklaşık 33, alt kenarı 50 dişlidir. Vücudu pembe renkte, karnı kırmızı bantlı, yumurtalık ve yumurtaları mavi renkli ve karapaksi düzgündür. Boyu en fazla 12 cm uzunluğa erişebilir ve genellikle 8-10 cm. dir. Akdeniz'de yaygın, Doğu Akdeniz'de nadiren bulunur. Karadeniz'de yoktur. Deniz dibinde ve genellikle 300 ile 500 m derinliklerde yaşar. Dip trolü" ile avlanır. Taze olarak pazarlanır. Penaid karidesler Penaid karidesler, Penaidae familyasından, Akdeniz'de karidesler içinde ticari önemi çok büyük olan, ilk üç yürüme ayağının kıskaçlı oluşu ile diğerlerinden ayrılan karideslerdir. Kırmızı Karides Aristeus antennatus (Risso, 1816) Kırmızı karidesde karapaks düzgün, hepatik dikensiz olup alt kenarında ince bir omurga ve rostrumun karapaksa bağlı kısmında üç adet kuvvetli diş bulunur. Karının I. ve II. seğmenden kaburgasızdır. III ve IV segmentlerinin sırt bölgesindeki kaburga geriye doğru uzayarak keskin diş oluşturur. Telson ortadan uzunlamasına oyukludur. Antenin üst kamçısı çok kısa ve yassıdır. Rostrumu ergin erkeklerde kısa, dişiler ve genç erkeklerde uzun ve yukarı doğru kıvrıktır. Boyu en fazla 22 cm. uzunluğa erişebilir ve genellikle 15-18 cm. dir. Akdeniz'in genellikle batısında 200-250 m. derinlikteki çamurlu ortamında yaşar. Nadiren 1500 m. derinliğe kadar bulunabilir. Taze olarak pazarlanır. Dip trolü ile avlanır. Kırmızı Den Karides Aristeomorpha foliacea (Risso, 1827) Kırmızı dev karideste karapaks kısa tüylerle örtülüdür. Karapaksın her iki yanının alt taraflarında uzunlamasına eğri ve uzun birer adet, ayrıca yanlarda küçük kaburgalar (çıkıntılar) bulunur. Kuvvetli bir hepatik dikeni vardır. Karapaksin üst tarafı şarap kırmızı ile çok açık menekşe rengindedir. Rostrumu dişilerde ve genç erkeklerde uzun ve yukarı kıvrık, erkeklerde daha kısa olup üst tarafı 5-6 dişlidir. Karnının I. II segmentleri kaburgasız, diğerlerinde geriye uzanan kısa dişli birer sırt kaburgası bulunur. Telson ortadan uzunlamasına olukludur. Üst antenleri kısa ve yassı kamçılıdır. Boyu en fazla 22 cm. uzunluğa erişebilir ve genellikle 15-18 cm. dir. Karadeniz'de bulunmaz, Akdeniz'in her tarafında, genellikle 250-350 m. derinlikteki çamurlu ortamda yaşar ve 1300 m. derinliğe kadar bulunabilir.Dip trolü ile avlanır ve taze olarak pazarlanır. Derinsu Pembe Karidesi Parapenaeus longirontris (Lucas, 1846). Derin su pembe karidesinde karapaks çok kısa, gözle zor görülen tüylerle kaplıdır ve hepatik dikenlidir. Rostrumu yılankavi eğri, üstü 7-8 dişlidir (Şekil 9). Bir diğer sırt dişi karapaksin ön bölgesine yerleşmiştir. Karnın ilk üç segmenti kaburgasız, son üç segmenti geriye uzanan kısa ve keskin bir sırt kaburgalıdır. Telsonun üst tarafında derin ve uzunlamasına basıktır. Her iki antenin kamçıları uzundur. Boyu en fazla 12 cm. uzunluğa erişebilir ve genellikle 8-10 cm. dir. Karadeniz'de bulunmaz. Akdeniz, Ege ve Marmara denizlerinde genelikle 100-400 metre derinliğindeki çamurlu ve çamurlu kumlu ortamda yaşar ve 50 - 70 metre derinlikleri arasında bulunabilir. Kıta sahanlığında sığ ve meyilli bölgelerde dip trolü ile avlanır, taze olarak pazarlanır. Kuruma Karidesi Penaeus Japonicus (Batı, 1888) Kuruma karidesi oluklu karidese benzer. Rostrumun üst kenarında 9-11, alt kenarında ise l diş bulunur. Sefalatoraksi yanlamasına basıktır. Oluklu karidesten sefalatoraksm orta sırt bölgesinde bulunan oluğun geriye ulaşamaması ile ayrılır. Rengi sarımsı olup kahverengi grimsi noktalarla süslüdür. Boyları ortalama 18-20 cm dir. Erkekleri en fazla 19 cm ye ve dişileri 22,5 cm ye ulaşabilir. Doğu Akdeniz'de bulunur. Derinliği 0-90 m olan zemini kumlu ve kumlu çamurlu sularda yaşar. Trollerle avlanır. Japonya, Kore, Tayvan ve Fransa gibi ülkelere yetiştiriciliği yapılır. Genellikle taze olarak değerlendirilir. Yeşil Kaplan Karidesi Penaeus semisulcatus (De Haan, 1844) Yeşil kaplan karidesinde sefalatoraks yanlardan şişkince, sırt orta bölgede bir oluk bulunur. Rostrumu uzun olup üst kenarında 7, alt kenarında ise 3 diş vardır. I. antenlerin kaide pulları rostrumun boyunda ve kamçılan eşittir. II. anten kaide pulları rostrumun boyunda toplam uzunluğu vücut uzunluğundan biraz fazladır. Birinci ve üçüncü ayakları zayıf kıskaçlı diğerleri ise sivri tırnaklıdır. Telsonu üropoddan çok kısadır ve üzeri geniş olukludur. Renkleri sarımsıdır. Boyları ortalama 17 cm kadardır. Erkekleri en fazla 18 cm, dişileri 22.8 cm ye ulaşabilir. Güney sularımızda bulunur. Derinliği 2 ile 130 m olan zemini çamurlu kumlu sularda yaşar. Trollerle avlanır. Tayvan ve Tayland da yetiştiriciliği yapılır. Genellikle taze olarak değerlendirilir. Benekli Karides Metapenaeus monoceros (Fabricus, 1798) Benekli karidesin vücudu tüberkülümsü görünüşlüdür. Rostrumu düz, üst kenarı 8-9 dişli, alt kenarı dişsizdir. I. antenlerinin kaide parçalan rostrumdan daha uzun, uçları geniş kamçılıdır. II. antenleri vücut boyundan iki misli daha uzundur. Abdomeni yanlamasına basıktır ve ilk segmenti hariç diğerlerinin dorsalinde bir karina vardır. Renkleri protakal sarısı ve mor pembemsi olup daha koyu lekelerle süslüdür. Boyları ortalama 14-16 cm kadardır. Erkekleri, enfazla 15 cm, dişileri 19.5 cm ye ulaşabilir. Akdeniz'in Güney kıyılarımızda bulunur. Derinliği l ile 60 m ve genellikle 10 ile 30 m olan zemini kumlu, çamurlu, tuzluluğu % 05 ile 35 arasındaki sularda yaşar. Trollerle avlanır ve genellikle taze olarak değerlendirilir.Şahin Karidesi Metapenaeus stebbingi (Nobii, 1904)Şahin karidesi, benekli karidese benzer ve rostrumun yılankavi oluşu ile ayrılır. Rostrumun üst kenarı 8-9 dişli alt kenarı dişsizdir. Rengi açık kül rengindedir. Boyları ortalama 10-12 cm dir, en fazla 13.9 cm ye ulaşabilirler. Akdeniz'de de, güney kıyılarımızda, derinliği 90 m ye kadar olan zemini çamurlu veya kumlu çamurlu sularda yaşar. Trollerle avlanır ve genellikle taze olarak değerlendirilir. Çamur Karidesi Solenocora membranacea (Risso, 1816) Çamur karidesi, Solenoceridae familyasından karapaksi kısa tüylü üzeri çok sayıda noktalı, ön kısmı derin ve şeffaf olukludur. Rostrumu kısa ve yedi dişlidir. Göz çukurundan sonra kuvvetli bir diken ile bir hepatik diken bulunur. Antenleri silindir şeklinde ve uzundur. Rengi portakal kırmızısı ve aşağı yukarı şeffaftır. Birinci ve ikinci abdomen segmentleri kaburgasız olup III. den VI. kadar olan segmentlerinde arkası dişli birer sırt kaburgası bulunur. Boyu en fazla 12 cm. uzunluğa erişebilir ve genellikle 8 ile 10 cm. dir. Akdeniz, Marmara denizlerinde bulunur. 20 ile 700 m. ve genellikle 100-400 m. derinlikteki çamurlu ortamda yaşar. Kıta sahanlığının sığ ve meyilli yerlerinde dip torlü ile avlanır. Genellikle taze olarak pazarlanır.

http://www.biyologlar.com/karideslerin-ekonomik-onemi

TROPİK KEREVİTLERİN EKONOMİK ÖNEMİ

Tüm Cherax türleri doğal olarak havuzlarda üreyebilmektedir. Yumurta verimlilikleri dişi başına en fazla 1.000 adettir. Yumurtaların inkübasyonu 3-6 hafta sürer. Yumurtalı dişiler bir havuzda yavrular çıkana kadar bekletilir ve sonrasında havuzdan alınır. Juveniller havuzda 1-2 grama ulaştıklarında büyütme havuzlarına aktarılırlar. Kırmızı kıskaçlı kerevit yumurtlayabilmek için soğuk bir periyoda (16-22°C) ihtiyaç duymaktadır. Yeni açılan kerevit yavruları anneye yapışık olarak birkaç (2-3) hafta kaldıktan sonra bağımsız hale geçerler. Meksika’da yapılan bir çalışmada 9,6 g ağırlığında C. quadricarinatus yavruları 0.02 hektar havuza stoklandıklarında ve yaklaşık 5 ay yapay karides yemi ile beslendiklerinde (145 gün) düşük stoklama yoğunluğunda (4 adet/m2 ) karışıkcinsiyette ortalama ağırlık 76,8 g olmuş, daha yüksek yoğunlukta (6 adet m2) 59,3g olarak ger çekleşmiştir (Rodgers ve ark., 2006). Bu çalışmada elde edilen ürün miktarı 1.040 kg ile 1.490 kg arasında değişmiştir. Ayrıca, İsrail’de yaz periyodu boyunca büyütüldükten sonra kışlatılan ve yeniden 226 gün boyunca büyütülen erkek (monosex) kırmızı kıskaçlı kerevitlerin 100g ve üzerine çıkabildikleri belirlenmiştir (Sagi veark., 1997). Tropik kerevitlerde hasat genellikle deniz karideslerinde yapıldığı gibi havuzun suyunun tamamen boşaltılması şeklinde, ığrıpla ya da içine yem konmuş sepetlerle yapılmaktadır. Bu kerevitlerin 15-20°C'de başarıyla taşınabildikleri ve kerevitlerin su dışında 80 saat canlı kalabildikleri bildirilmektedir. Tüketimlik kerevitlerin sindirim sitemlerini boşaltmalarını sağlamak için en az 24-48 saat temiz suda tutulmaları gereklidir. Canlı, dondurulmuş, taze,pişirilmiş, soyulmuş ve baharatlarla tatlandırılmış olarak pazarlanırlar. Mevsim, boyut ve alıcılara göre değişmekle birlikte çiftlik çıkış fiyatı Avustralya da 15-20$’a kadar çıkabilmektedir. Canlı satıldıklarında ise fiyat 35$/kg çıkabilmektedir Bu kerevitler karides, tatlı su karidesi ve füme salmon gibi özel ürün olarak kabul görmektedir Cherax türleri Avrupa’da da kabul görmeye başlamıştır ve AB ülkeleri halen tropik kerevitler için önemli bir pazardır. Asya ülkelerinde de bu kerevitlerin satışı gittikçe yaygınlaşmaktadır. Kaynak: Türkiye’nin Ilıman Akdeniz Ġklim KuĢağındaki Tatlı Su Kaynaklarında Bazı Tropik Krustase Türlerinin YetiĢtiricilik OlanaklarıMetin KUMLU

http://www.biyologlar.com/tropik-kerevitlerin-ekonomik-onemi

 
3WTURK CMS v6.03WTURK CMS v6.0