Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 140 kayıt bulundu.
Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kanseri tedavi etmenin yolunun kanser kök hücrelerini yok etmekten geçtiğini belirten Anadolu Sağlık Merkezi İç hastalıkları ve Hematoloji Uzmanı Prof. Dr. Zafer Gülbaş, kanser hastalarında kök hücre uygulamalarıyla ilgili Medical Tribune’ün sorularını yanıtladı. MT: Kök hücre tedavisi ile ilgili yeni gelişmelerden bahsedebilir misiniz? Önceki yıllarda, kanseri dokudaki olgun hücrelerin yaptığını düşünüyorduk ama bugün kansere neden olan bir kök hücrenin var olduğunu biliyoruz. Kök hücre, kanserli hücreleri oluşturuyor ve bunlar çoğaldıkça hastalık ortaya çıkıyor. Kanseri tedavi etmek için birçok kemoterapi çeşidi, immünoterapi, radyoterapi ve cerrahi tedavi uygulandı.  Ancak kanserin birçok hastada tekrarlamasını önleyemiyoruz. Şu anki bilgilerimize göre kanseri tedavi etmenin yolu ise kanser kök hücresini yok etmekten geçiyor. Kanser kök hücresinin varlığını nasıl tanıyabileceğimiz ve nasıl ortadan kaldırabileceğimizle ilgili sorunun yanıtı aranıyor.  Bugün için en önemli konu bu. Dünyada birçok merkezde bu konu üzerinde çalışmalar yürütülüyor. Bütün kanser türlerinde kanser kök hücresinin olduğuna inanılıyor.  Johns Hopkins Üniversitesi Kemik İliği Programı Direktörü Prof. Dr. Richard Jones ve ekibi bu hipotezi miyeloma denilen hematolojik kanserde açıkladı. Richard Jones’un kanser kök hücre teorisinde  şöyle bir kuram kullanıyor. Yabani bir otu ne kadar çok temizlerseniz temizleyin eğer kökünü çıkarmıyorsanız bir süre sonra tekrar çıkacaktır. Kanser için de aynı durum sözkonusu olup, kök orada olduğu sürece kanser tekrar oluşuyor. Kanser kök hücresi önümüzdeki 5-10  yılın en çok çalışılacak konularından biri olup,  kanseri ortadan kaldırmanın belki de anahtarının yattığı konudur. MT: Kök hücrelerin kanser tedavisinde kullanıldığı alanlar hangileri? Hematopoetik kök hücre nakli dışında, kanser tedavisinde kanser kök hücresine karşı aşı üretme çalışmaları yeni bir alan. Oldukça ilgi çekici ve önümüzdeki süreçte yararlı olup olmadığını öğreneceğiz. Ayrıca kanser hücresine özgü T lenfositleri ve NK lenfositleri üretmek ve tedavide kullanmak ilgi çekici ümit verici gelişmeler. MT: Hematolojik kanserlerde kanser kök hücresini yok etmek mümkün mü? Hematolojik kanserlerde kemik iliği nakli yapmak için yüksek doz tedavi uygulandığında, hastanın kemik iliği bir daha üretim yapamaz hale geliyor. Bu da yüksek doz tedavilerin kök hücreyi ortadan kaldırabildiğini gösteriyor. Ancak yüksek doz tedavi her kanserde aynı sonucu vermiyor. Bu konuda yapılan çalışmalarda allojenik kök hücre nakliyle kanserli kök hücrenin ortadan kaldırılabileceğini gösteriyor. Yöntem, her kanser türünde aynı sonucu vermese de; özellikle lenfoma, lösemi gibi hematolojik kanserlerde kanser kök hücresinin ortadan kaldırılmasında etkili oluyor. MT: Şu an Türkiye’de kök hücre tedavisi hematolojik hastalıklarda yaygın kullanılıyor mu? Ülkemizde kök hücre nakli yapan birçok merkez var. Sağlık bakanlığı kök hücre naklinin yaygınlaşması ve hastaların bu tedaviden yararlanmasını sağlamak için önemli destek veriyor. Ancak her hastaya kök hücre nakli için uygun donör bulamıyoruz. Normalde biz kök hücre naklini HLA doku grubu uygun kişilerden yapıyoruz. HLA doku grubu uygun kişi bulma şansı kardeş sayısına göre değişmekle birlikte yüzde 25-50 civarında değişiyor. HLA doku grubu uygun donör bulunmadığında, donör bankalarına baş vuruyoruz ve %25 hastaya da bu şekilde çözüm buluyoruz. Bankada da bulmazsak hasta donörsüz kalıyor. Bu durumda yüzde 50 antijen uyumlu aile içindeki donörlerden haploidentik nakil yapabiliyoruz ve hastaların hemen hepsi allojenik nakil olma şansını yakalıyor. Böylece bu tedavi ile hastalıklarının ortadan kaldırılma şansı doğuyor. Johns Hopkins grubu ve İtalyan bilim adamları bu konuda çok çalışıyorlar. Ve elde ettikleri sonuçlara göre; doku uyumlu akraba dışı donörden yapılacak nakilde elde edilecek sonuç ile haplodentik  aile içi nakilin sonuçları benzer. Haplodentik nakil dediğimiz nakil bugün için donör bulunamayan hastalarda kemik iliği nakli yapılmasına imkan veriyor.    MT:Haploidentik nakilde başarıyı etkileyen faktörler nelerdir? Enfeksiyon ve graft versus horst hastalığı (GVHD) dediğimiz graftın alıcının organlarına karşı reaksiyon vermesidir. GVHD, donör hücrelerinin alıcının organlarını tanıyıp tahrip etmesidir. Donörün bağışıklık sistemi alıcıya yerleştikten sonra alıcının karaciğerine, cildine, barsaklarına, kemik iliğine zarar vermektedir. Bu zararı verdiğinde enfeksiyonlara  hastalar daha sık yakalanmaktadır. Hastaların ölümü, graft versus host hastalığından olduğu gibi  bazen hastalık tekrarından da  oluyor. Ama akraba dışı nakillerle bu tip nakilleri kıyasladığımızda ikisinin de başarı oranı benzerdir. Biz Anadolu Sağlık Merkezinde akrabadışı donör bulunamayan hastalara haploidentik nakil yapıyoruz. Sağlık Bakanlığı tüm organ nakillerini olduğu gibi kemik iliği nakline de önemli destek vermektedir. Bunlar zor nakiller. Bu nakli olanlara aile desteği de çok önemli. Anadolu Sağlık Merkezi’nde hastalarımıza bu olanağı sağlıyoruz. Anadolu Sağlık Merkezi Kemik İliği Ünitesi’nde son bir yıl içinde 166 nakil gerçekleştirdik, 21’i haploidentik nakildir. MT: Kemoterapi öncesi kök hücre saklama yönteminden bahsedebilir misiniz? Kemoterapi öncesi kök hücreler hastanın kendinden toplanacaksa, G-CSF dediğimiz ilacı tek başına 4-6 gün yada 1-3 günlük kemoterapi verip kemoterapi sonrası 7-10 gün cilt altı vererek kol kanından topluyor, sonra belirli solüsyonlarla karıştırarak otomatize alette adım adım dondurup saklıyoruz. Bu şekilde kök hücreleri güvenli olarak en az 5 yıl saklayabiliyoruz. Hastanın sağlıklı donoründen ise 4-6 gün G-CSF dediğimiz ilacı tek başına 4-6 gün cilt altı vererek kol kanından toplayarak donduruyoruz. Kol kanından toplama işlemini hücre ayırıcı denen cihazlarla yapıyoruz. Bu işleme kök hücre aferezi diyoruz. MT: Türkiye’nin kök hücre konusunda geldiği noktayı nasıl değerlendiriyorsunuz? Türkiye’de yeterli sayıda merkez var mı? Türkiye kemik iliği nakli konusunda uluslararası standartlarda başarılı işlemler gerçekleştiriliyor. Son 2-3 yılda nakil yapılan yıllık hasta sayısı, 800’lü değerlerden 2000’lerin üzerine  çıktı. Ancak halihazırda ülkemizde 1000-1500 hasta halen bu tedaviden yararlanamıyor. Merkezlerin aktivitesinin artması gerekiyor. Sağlık Bakanlığı bu konuda hastalarımızın yanında. Yeni yönerge  değişiklikleri  yapılarak kemik iliği nakli merkezlerinin kalite standartları da yükseltilmeye çalışılıyor. Kemik iliği naklinde,  nakil sonrası süreçte enfeksiyon riskinin olmaması başarıyı etkileyen en önemli unsurların başında geliyor. Bu nedenle yeni açılacak merkezlerde aranan kalite standartları daha da ağırlaştırılıyor.  http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-calismalari-kanseri-ortadan-kaldirabilecek-mi

Meme kanseri bakteriyel dengesizliklerle bağlantılı

Meme kanseri bakteriyel dengesizliklerle bağlantılı

Çalışma, sağlıklı ve kanserli göğüs dokusunda bakteriyel kompozisyonunun karşılaştırılmasını içermektedir. Credit: © Ivan / Fotolia

http://www.biyologlar.com/meme-kanseri-bakteriyel-dengesizliklerle-baglantili

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kanser Tedavisine Bakteriler ve Nano Robotlar

Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:KANSER TEDAVİSİNDE BAKTERİLER VE NANO ROBOTLAR     Kana enjekte edilen ilaçların hastalıklı hücrelere adrese teslim ve nokta atışı ulaştığı zamanların eşiğindeyiz. Bizleri gereksiz bıçakaltı işlemlerden ve ilaçların yan etkilerinden koruyacak, bakteri ve nano robotların insanların iyiliği için işbirliği yaptıkları tıbbi yöntemleri inceleyeceğiz.Askerleri küçültüp mikro boyutlara getirebilecek teknolojinin sırrına sahip bilim adamı Jan Benes, CIA ajanlarının yardımıyla SSCB’den kaçar. Ancak bu esnada profesörü Amerika’ya götüren konvoy KGB ajanları tarafında saldırıya uğrar. Kafasına darbe alan Benes’nin beyninde ne yazık ki bir pıhtı oluşur. Bir grup bilim adamı ve teçhizatlı askerler Benes’nin beynindeki tıkanıklığı açmak için küçültülerek profesörün beynine doğru yola çıkarlar. Bu görevi başarıp tekrar eski boyutlarına dönmek için sadece bir saatleri vardır. Bir bilim kurgu filmi olan Olağanüstü Yolculuk’un (Fantastic Voyage), minik bir geminin insan vücudundaki hastalıklarla savaşmasının kurgulandığı 1966 yapımlı senaryosunu okudunuz.Bundan neredeyse 40 yıl sonra Kanada’nın Montréal Politeknik Üniversitesi araştırmacıları aynı hedefe ulaşmak için kolları sıvadılar. Bu tarz bir gemi yaratmak için 70li ve 80li yılların klişe bilim kurgu teknolojisi olan küçültücü lazer ışınlarını kullanmadılar. İzledikleri yöntem nanoteknoloji sayesinde ürettikleri mikroskopik (bir saç telinden çok daha ince) aletleri damarlarımız içerisine vererek, doğrudan hastalığın merkezine yönlendirme üzerine kurulu. Bu sıradışı yöntemle ilaçların kanserli dokulara adrese teslim gönderilmesi ve böylece sağlıklı hücrelerin bundan zarar görmemesi mümkün. Ayrıca ameliyatsız, kesiksiz ve kansız bir işlem. Özellikle kanser tedavisi başta olmak üzere, neredeyse tüm tıbbi yöntemleri kökten değiştirebilecek olan bu yaklaşımın 2008′den 2012 yılına kadar gelişimine göz atacağız.Makaledeki tüm gelişmelerin arkasında yatan beyin Kanada Montréal Politeknik Üniversitesi bilgisayar mühendisliği profesörü Sylvain Martel. Martel’in araştırmalarının temelinde yatan teknik aslında basit bir nakliyat işini andırıyor. Damarlarımızdaki kan içerisinde rahatça dolaşan bir bakteri kirala, ilaçları bakteriye yükle, hastalığın adresini ver ve nakliyat sonlandığında bakteriyle işin bitsin. Ancak ne yazık ki bakteriler kredi kartı kabul etmiyorlar.Bu yüzden Profesör Martel, oldukça sıradışı bir fikir geliştiriyor. Kanda yüzebilen, canlı bakterileri alarak onlara mikroskopik boncuklar ekliyor. Bu boncuklar yük taşımak için ideal boyutlarda. Bu sayede bakterileri birer kamyonete çeviriyor. Martel’den önce de bu fikir vardı, ancak diğer bilim insanları bu bakterilerin kendi kendilerine yüzme özelliklerinden faydalanmaya çalışıyorlardı. Martel’in sıradışı fikri ise, bu minik kamyonları manyetik rezonans görüntüleme (MRI) yardımıyla kendi kontrolüyle sürüyor olmasıydı. Bunun için Martel doğal halinde manyetik zerreler (tanecikler) barındıran bakteriler kullanmayı düşündü. Doğada bu zerreler bakterilerin derin sularda oksijenden uzaklaşacakları şekilde ilerlemelerine yardımcı oluyorlar. Aynen bir pusulanın iğnesinin doğrultusunu kullanma prensibimiz gibi. İşte bu noktada MRI aleti devreye giriyor. MRI ile yaratılacak yapay manyetik alan sayesinde bu bakterilerin istenilen doğrultuda ilerlemesi sağlanıyor. Bu sebeple Martel bu bakterilerini nanobot olarak nitelendiriyor.Bahsi geçen bakteriler flagella adındaki kuyruklara sahip ve hızlı bir şekilde kan içerisinde yüzebiliyorlar. Her bir bakteri iki mikron çapında olduğundan insan vücudundaki en küçük damara bile rahatça sığabiliyor. 2008 yılında 150 nanometre büyüklüğünde olan bu römork boncuklarıyla ilk olarak antikor hücreleri taşımak üzere tasarlandı. Doğadan esinlenmekten de öte, doğayı kullanan bu yöntemde temel amaçlardan biri de boncuk hacminin büyütülmesi. Bu boncukların boyutlarının büyümesi daha çok madde taşınabilmesi anlamına geliyor. Yani kamyondan, tıra geçiş yapmak gibi. Sonuç: Deneylerde saniyede 10 santimetre ilerleyen bakterilerle, bir domuzun şahdamarında 1.5 milimetrelik bir boncuğu taşıtmayı başardı [1].Bu bakterilerin bir dezavantajı, geniş damarlarda kendi başlarına yüzemiyor oluşları. Debiye karşı koyabilecek kadar kuvvetli değiller. Bu yüzden araştırmacılar bakterileri de içinde taşıyacak büyüklükte manyetik olarak kontrol edilebilen bir aracı hastalıklı bölgeye kadar taşımayı önerdiler. Bir çeşit polimerden yapılan bu araç bakterileri salıverdikten sonra kanda çözünüyor. İçerdiği nano taneciklerle kontrol edilebilen bu araç saniyede yaklaşık 200 mikron hızla ilerleyebiliyor ve saniyede 30 defa yönü değiştirilebiliyor [2].Bu araştırmaya gelen eleştiriler kanda çözünen manyetik partiküllerin nasıl kandan uzaklaştırılacakları ve bakterilerin hedefe ulaşmadan vücudun bağışıklık sistemi tarafından yok edilip edilmeyeceği üzerine. Ancak Mantel deneylerde çıkan sorunçların bu tarz bir durumu yansıtmadığı ve bakterilerin bağışıklık sistemi tarafından zaten henüz tanınmadığı için nanobotların rahatlıkla hedefe ulaşacak kadar vakitleri olduğu yönünde görüş bildiriyor.Bakteriler illa gerekli mi?Peki ama bu nanobotlar neden bakterilere ihtiyaç duyuyor? Neden bilim insanları kendi pervanelerine sahip robotlarla antikorları veya ilaçları hasta bölgelere taşıyacak bir düzenek tasarlamıyorlar? Aslında bu mümkün. Bu tarz robotlar zaten tasarlanmış durumda. Ancak sorun bu robotlara gerekli olan gücü sağlayacak bir düzeneğin (örn:pil) henüz keşfedilmemiş olması. Ayrıca, büyük çaplı sistemlerde (örn: denizaltı, gemi) etkin olan tahrik sistemleri ve yüzme hareketlerinin mikro çaplı sistemlerde çok daha karmaşık olması. Bu sebeple robotları kontrol etmek oldukça güçleşiyor. İşte bu yüzden işinin ehli olan ve milyonlarca yıldır en iyi bildiği işi yapan bakteriler kullanılıyor. Seçilen bakteri, MC-1 adı verilen, dönen kırbaçımsı kuyruğu sayesinde çoğu türden 10 kat daha hızlı yüzebilen, ve saniyede 200 mikrometre hızlara çıkabilen bir bakteri.Aynı grubun 2009 yılında sıçanlar üzerinde yaptığı deneylerde 50 mikrolitrelik bakteri içeren bir çözeltiyi enjekte ettiklerini ve ne bakterilerin hayvanlara zarar verdiğini, ne de bakterilerin genel olarak zarar gördüğü gözlenmiş. Zehirlenmeye sebebiyet vermeden yaklaşık 40 dakika sonra kan içerisinde öldükleri ve daha sonra da bağışıklık sistemi tarafından temizlendiği belirtilmiş [3].Bakterileri robota dönüştürmek2010 yılında aynı araştırma ekibi bu sefer akıllara zarar bir demonstrasyona imza atıyorlar. Bakterileri mikro-manipülasyon işleri için kullanıp mikro-robotları sürmelerini sağlıyorlar.  Bu deneyin sonunda bize göstermek istedikleri şey, bu bakterilerin sadece basit nakliyat işleri için kullanmak zorunda olmadıkları. Eğer doğru şekilde kontrol edilebilirlerse, ilaç taşımanın yanında patojenleri algılamakta, farmakolojik ve genetik testleri bulundukları yerde ifşa edebilecek mikro laboratuvarlar inşa etmekte bakterileri kullanmanın mümkün olabileceğini kanıtlamak istiyorlar. Bunun için de bakterilere Mısır’daki Djoser piramidini örnek alan bir mikro-piramit inşa ettiriyorlar. 5000 bakterisinin bir sürü halinde çalıştıkları ve sadece minik epoksi tuğlalar kullarak 15 dakikada bir piramit oluşturdukları videoyu aşağıda seyredebilirsiniz [4]:Her bir bakteri 4 pikoNewtonluk kuvvet uygulayabilecek kuyruk organellerine sahip. Tek başına küçük olmasına karşın 5000 tanesini birlikte çalıştırdığınız zaman bir piramit yaptırabiliyorsunuz.Hayvanlar üzerindeki ilk klinik deneyler2011 yılının başında Mantel ve ekibi, hazırladıkları tüm sistemi gerçek anlamda ilk kez bir canlıda denediler, tek bir farkla bu kez bakterileri es geçtiler. MRI kullanarak yönlendirdikleri bir mikro taşıyıcı sistemi karaciğerinde tümör olan bir tavşana doxorubicin adlı bir kemoterapi ilacı taşımak için kullandılar. Bu taşıyıcı sistem iddia edildiği gibi vücut içerisinde yok olacak cinste bir polimerden üretilmişti. Polimerin tasarımı, farklı hızlarda çözünecek şekilde yapılmıştı, böylece yeterli dozda ilaç iletimi sağlanıyordu. Her bir taşıyıcının yüzde otuzu manyetik nano taneciklerken kalan yüzde yetmişi ilaçtı. Mantel sadece kemoterapi değil, radyoterapi ilaçları olan radyoaktif maddelerin de iletiminin mümkün olduğunu belirtti [5].Bazı kan damarları “Y” şeklinde çatallandıklarından geleneksel ilaç iletim sistemlerinin yaklaşık yüzde 50 ihtimalle tümörlü dokunun olduğu yöne, yüzde 50 ihtimalle de karaciğerin alakasız bir bölgesine gidip yan etkiye sebebiyet veriyorlar. İşte Mantel’in bu sistemi manyetik kontrolü sayesinde hiçbir çatallanmadan etkilenmeyecek bir özelliğe sahip olduğu için fark yaratıyor. Ayrıca hiçbir kan damarına zarar vermiyor. Geleneksel kemoterapide kateter (sonda) ile yapılan bir ilaç sevkiyatı, kateterin tümöre çok yaklaşıncaya kadar karaciğerin dibine kadar sokulması ve bu sırada da tabii ki bir çok damara zarar verilmesi anlamına geliyor. Bu sebeple de hastalar günlerce, hatta haftalarca damarlarının iyileşmesini bekliyorlar ki, yeni bir doz daha alabilsinler. Ancak manyetik mikrotaşıyıcı robotlar kullanıldığında, sondanın damarlara bu kadar yakınlaşmasına gerek kalmıyor. Zarar görmeyen damarlar sayesinde de hasta arka arkaya günler içerisinde birçok dozu az az ancak hızlı bir şekilde alabiliyor. Bu şekilde de kimyasal zehirlenmelerin önüne geçiliyor.Ekip, 2011 yılının sonunda tekrar bakterili nanobot sisteminin testlerine yöneldi. Ancak Mantel’in görüşüne göre bu metodlar her ne kadar hayvanlar üzerinde etkili olsa da pratik hayatımızdaki uygulamalarından 4-7 yıl uzaktayız.Not: Konuyla ilgili daha fazla bilgi sahibi olmak isteyenlere Sylvian Mantel’in İngilizce altyazılı Fransızca bir TEDx sunumunu seyretmelerini öneriyorum.Kaynaklar:[1] http://apl.aip.org/resource/1/applab/v90/i11/p114105_s1?isAuthorized=no[2] http://www.technologyreview.com/computing/21619/?a=f[3] http://www.newscientist.com/article/dn17071-bacteria-take-fantastic-voyage-through-bloodstream.html[4] Sylvain Martel, Mahmood Mohammadi: A robotic micro-assembly process inspired by the construction of the ancient pyramids and relying on several thousand flagellated bacteria acting as micro-workers. Intelligent Robots and Systems, pp 426-427,  2009.[5] http://www.healthimaginghub.com/feature-articles/digital-radiography/2945 Yazar hakkında: Gökhan İncehttp://www.acikbilim.com/2012/07/dosyalar/kanser-tedavisinde-bakteriler-ve-nano-robotlar.html

http://www.biyologlar.com/kanser-tedavisine-bakteriler-ve-nano-robotlar

İlk Gen Terapisi

İlk Gen Terapisi

İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi.

http://www.biyologlar.com/ilk-gen-terapisi

Kanser Tedavisinde Yeni Silahlar

Kanser Tedavisinde Yeni Silahlar

İnsanlık, bildiğimiz kadarı ile, yazılı tarih boyunca kendi tarihi kadar eski ve bir o kadar da ürkütücü kanserle mücadele etmiş ve hala bu mücadelesine devam etmekte. M.Ö. 3000 yıllarında yazıldığı tahmin edilen eski Mısır metinlerinde meme ülserlerinin (o zaman henüz kanser kelimesi literatürde yoktu) koterle yakılarak alındığı anlatılıyor. Günümüzde ise kanser hastaları radyoterapi, kemoterapi ve cerrahi müdahaleler ile tedavi edilmeye çalışılmakta. Bu tedavi yöntemlerinin kanserli hücre kadar sağlıklı hücrelere de saldırması nedeni ile kusma, saç dökülmesi, enfeksiyon riskinin artması gibi istenmeyen etkiler hastalarda sıklıkla görülüyor. Kanser araştırmacıları, sağlıklı hücrelere zarar vermeyecek, ancak kanserli hücreleri öldürecek ilaçlar ve tedavi yöntemleri geliştirmeye çalışmaktalar. Sağlıklı hücreler ile kanser hücrelerini birbirinden ayırmak için kanser hücrelerinin genetik yapısının anlaşılması önemli olduğu biliniyor. Nitekim, 2010 yılında yapılan bir meta-analiz çalışması, kanser araştırmacıları arasında tümör biyolojisi ve kanser genetiği araştırmalarının popüler olduğunu gösteriyor [1]. Meme ülserlerinden bahseden eski Mısır metinlerinin üzerinden 5000 yıl, Hipokrat’ın “karsinoma” terimini kullanarak çeşitli kanser türlerini tanımlamasından 2400 yıl sonra kanser araştırmaları on beş yıldır umut vaat eden yeni bir alanda seyrini sürdürüyor: Kanser kök hücreleri (KKH). Şekil 1: KKH’lerin kendilerini yinelemeleri ve farklılaşmaları. (A) karesi içerisinde mavi renkle gösterilen KKH kendini sınırsız yineleyebilme özelliğine sahiptir. Bu özellik dönümlü ok ile temsil edilmiştir. KKH kendini yinelerken (B) karesi içerisindeki gibi kendinin aynısı kanser kök hücrelerini üretebilir. Bu KKH’ler de hem sınırsız kök hücre üretme, hem de farklılaşma yetisine sahiptir. (A) karesindeki KKH farklılaşırken ise önce (C) karesinde açık mavi ile gösterilen hücreyi üretir. Bu hücre bir miktar (soru işaretinin gösterdiği üzere) kendini tekrar üretme yetisine sahipken bu hücreden bölünerek farklılaşan diğer hücreler artık sınırsız kendilerini yineleme ya da farklılaşma yetisine sahip değildir. Kanser, basitçe anlatımı ile hücrelerin kontrolsüz büyümesi nedeni ile oluşan yüzden farklı hastalığa verilen genel bir isimdir. Ancak bu kadar basitçe tanımlanabilmesi kanserlerin basit, kolay anlaşılır hastalıklar olduğu anlamına gelmiyor. Kanserli bir dokuda farklı kanser hücreleri bulunuyor. KKH hipotezine göre bu hücrelerin bir kısmı tedavi süresince ilaçlara dayanıklılık geliştirebilen kanser kök hücreleri. Kök hücreleri bölünmeleri sırasında kendilerinin birebir aynısı iki kopya yapmazlar. Oluşan yavru hücrelerin bir tanesi ana hücrenin tıpkı kopyası iken diğer hücre (Şekil C) planlanan işleve göre farklılaşır. Kanser kök hücreleri de benzer bir şekilde asimetrik olarak bölünür. Bu hücrelerin bölünmesi sırasında oluşan hücrelerden bir tanesi standart kanser hücresi olarak yaşamına devam ederken diğer hücre  (Şekil B)kanser kök hücresi olarak kalır ve daha fazla kanser hücresi üretmeye devam eder [Şekil 1]. Yavru kök  hücrelerinin kendilerini yeniden üretme yetilerine sahip oldukları kadar radyoterapiye ve kanser ilaçlarına direnç kazandıkları da gözlemlenmiştir. Kanser araştırmalarında kök hücre fikrinin aslında çok yeni bir fikir olmadığı söylenebilir. Tümörlerin heterojen histolojik (histoloji: doku ve hücrelerin mikroskobik anatomilerinin incelenmesi bilimi) özellikler gösterdiği 19. yüzyıldan bu yana araştırmacılar tarafından biliniyor. Ancak kanser kök hücrelerinin varlıkları akut myeloid lösemi (AML) üzerinde yapılan araştırmalar sonucunda ortaya çıkarılmış. AML hücrelerinin sık bölünmediğini gören araştırmacılar “temel” bir hücre tipinin AML hücrelerini ürettiği fikrini test etmek amacı ile fareler üzerinde çeşitli deneyler yapmışlar. Bu deneyler sırasında araştırmacılar insan kökenli AML hücrelerini fareye nakil etmişler ve bir tip hücrenin kemik iliğine yerleşerek lösemi hücreleri ürettiğini gözlemlemişler. Gözlenen bu hücreler kanser kök hücreleri olarak adlandırılmış. Daha sonraki çalışmalar meme ve kalın bağırsak kanseri başta olmak üzere pek çok katı tümörde de KKH’lerin bulunduğunu gösteren sonuçlara ulaşmış. Önceleri tümörlü bir yapı içerisinde kanser kök hücrelerinin oranının çok düşük (binde birden daha az) olduğu varsayılmaktaymış ama 2007 yılında yapılan bir çalışma farelere enjekte edilen lösemi ve lenfoma hücrelerinin %10 kadarının in vivo (canlı organizma içinde yapılan araştırmalar) ortamda kanser geliştirme yetisine sahip olduğunu göstermiş. Başka bir çalışma ise ileri derece melanomlardan (oldukça saldırgan bir cilt kanseri türü) toplanan hücrelerin %25’inin bağışıklık yetmezliği olan fareler üzerinde kanser hücreleri oluşturduğunu belirlemiş [2]. Tümörler içerisindeki KKH miktarı konusunda hala tartışmalar devam etmekte olsa da yapılacak çalışmalar ile önümüzdeki yıllarda bu sorunun yanıtına ulaşılacak gibi gözükmekte. Şekil 2. Kanser Kök Hücreleri – Olası tedavi hedefleri Kansere karşı etkili, tümör oluşturan hücreleri hedefleyen tedavi yöntemleri geliştirilerek tümörleri yok etmek için [Şekil 2], kanserli doku içerisindeki oranları ne olursa olsun KKH hipotezinin test edilmesinin gerekli olduğu araştırmacılar tarafından vurgulanıyor. Konu ile ilgili bilim insanları KKH’lerin kanser hücresi üretme yetilerine yol açan özel biyolojik ve genetik yapıları ile uyumlu olarak bu hücrelerin antitümör ilaçlarına karşı duyarlılıklarının da diğer kanser hücrelerinden farklı olabileceğini düşünmekteler. Bu hücrelerin nasıl yok edileceği sorusu ise bilim dünyasını meşgul eden diğer bir soru. Ama bu soruya yanıtlar gelmeye başlamış. Bilim insanları, KKH’lerin bölünmesi sırasında kullandıkları üç farklı moleküler yolağı tanımlamayı başarmışlar: Notch yolağı, Hedgehog yolağı ve Wnt/beta-katenin yolağı. Bu üç yolağı kullanarak kanser kök hücrelerinin tümör üretim aktivitelerini durduracak tedavi yöntemleri üzerine çalışmaların devam ettiği çeşitli kaynaklarda bildiriliyor. Her ne kadar tümör içindeki oranları, her bireyde ve kanserli yapıda gösterdikleri farklılıklar hala tartışmaya açık olsa da KKH hipotezi gelecekte kanser tedavileri için bir umut ışığı yakmış gibi görünmektedir. Üniversiteler ve araştırma kuruluşları AML hücrelerinde kanser kök hücrelerinin tanımlanmasından bu yana KKH araştırmalarına yüksek miktarlarda yatırım yapmışlardır. A.B.D. Ulusal Kanser Enstitüsü tarafından yönetilen Kanser Genom Atlası Projesi kapsamında binlerce tümör örneğinin gen dizilimlerinin belirlenmesi çalışmalarına önümüzdeki beş yıl içerisinde 1 milyar dolar harcanması planlanmaktadır. Bu çalışmaların kanser kök hücreleri ve kanser biyolojisine ait bilgilerimizi arttıracağı tartışma götürmezken, kanser tedavisinde yeni çığırlar açma olasılığı da hem bilim dünyası hem de kanser hastaları için heyecan vericidir. Kaynaklar 1. “A close look at cancer”, Allison Farrell, Nature Medicine, March 2011, Vol. 17, Number 32. “Solving an age-old problem”, Barbara Dunn, Nature, March 2012, Vol. 4833. “The cancer stem cell: premises, promises and challenges”, Hans Clevers, Nature Medicine, March 2011, Vol. 17, Number 34. “Recent advances in cancer stem cells”, Robert W Cho and Michael F Clarke, Current Opinion in Genetics & Development , 2008, 185. “Cancer stem cell: target for anti-cancer therapy”, Carol Tang, Beng T. Ang, and Shazib Pervaiz, The FASEB Journal, December 2007, Vol. 21 Bahadır Ürkmez http://www.acikbilim.com/2012/11/dosyalar/kanser-tedavisinde-yeni-silahlar.html

http://www.biyologlar.com/kanser-tedavisinde-yeni-silahlar

Kanserin İzini Süren Ajanlar Tümör Belirteçleri

Kanserin İzini Süren Ajanlar Tümör Belirteçleri

Tümör Belirteçleri Meme, prostat, kalın bağırsak ve karaciğer kanserlerinden, pankreas, yumurtalık, mesane ve böbrek kanserine kadar pek çok kanseri zahmetsiz bir yöntem olan kan tahliliyle işaret eden gizli ajanlar, “tümör belirteçleri” kanserin takibinde önemli bir rol üstleniyor. Neolife Tıp Merkezi’nden Medikal Onkolog Doç. Dr. Duygu Derin, tümör belirteçleri arasında içlerinde en sık adını duyduğumuz PSA’nın yanı sıra AFP, CEA, CA 199, CA 125 ve CA 153’ü sıralıyor. Birçoğumuzun adını ilk defa duyduğu bu testler daha çok kanserin takibinde  karşımıza çıkıyor.Serum, idrar, meme başı akıntısı veya bazı kanserli hastaların dokularında saptanabilen bu tümör belirteçleri kanser hücrelerinden üretilebildiği gibi kansere bir yanıt olarak vücut tarafından da üretilebiliyor. Bazı tümör belirteçleri bir tip kansere özgü olabildiği gibi bazıları birkaç kanser tipinde de ortaya çıkabiliyor ve bazen de kanserden farklı durumlarda kanda saptanabiliyorlar. Tümör belirteçleri tarama, tanıya yardımcı olma, evreleme, hastalık gidişatını öngörme, tedavi planlama, tedaviyi izleme ve nüksleri saptama amacıyla kullanılıyor.İşte kanser  takibinde izi sürülen testler ve dikkate alınması gerekenler:PSA:  Prostatta üretilen bir tümör belirtecidir. Daha çok prostat kanserinin tarama ve takibinde kullanılır. Ancak prostat kanserinde her zaman yükselmeyeceği de bilinmelidir.CEA: En sık kolorektal kanseri belirteci olarak dikkate alınmakla beraber meme, akciğer, tiroid, pankreas, mesane, yumurtalık, prostat, karaciğer ve pankreas kanserlerinde de yükselebilir. CEA, teşhis adımı olmaktan çok tedavi takibinde kullanılır.AFP: Primer karaciğer kanseri, yumurtalık veya testisin üreme hücreli  tümörlerinde yüksek bulunabilir. Siroz ve kronik aktif hepatit gibi kanser dışı olgularda da yükselebilir. Ancak unutulmamalıdır ki,  karaciğer kanseri tanısı konmuş hastaların büyük çoğunluğunda AFP normal sınırlarda bulunabilir.CA153:  Meme kanserinde, bazen de rahim kanserlerinde yükselebilir. Tanı ve tarama testi olarak kullanılması önerilmez. Kronik hepatit,verem, gebelikte değeri yüksek çıkabildiği gibi akciğer,yumurtalık,sindirim sistemi kanserlerinde de yükselebilir. İleri evre meme kanserinde nükslerin takibinde kullanılır.CA125: Yumurtalık kanserinin takibinde değerlidir. CA 125 düzeyleri sıklıkla tarama testi olarak kullanılır. Ancak burada dikkat edilmesi gereken nokta yumurtalık kanseri olmayan kadında da yüksek çıkabilmesidir. CA 125 çikolata kistlerinde, akciğer kanserinde, geçmişinde kanser hikayesi bulunan hastalarda ve akciğerinde sıvı birikmesi olan kişilerde de yükselebilir.CA199: Kolorektal kanser ve pankreas kanseri takibinde kullanılır. Bazı safra yolu tümörlerinde de düzeyi yükselebilir. Tanı amaçlı değil, takip amaçlı kullanılır. http://tahlil.com

http://www.biyologlar.com/kanserin-izini-suren-ajanlar-tumor-belirtecleri

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji

NANOBİYOTEKNOLOJİ

Nanobiyoteknoloji kelimesi iki kavramıiçinde barındırıyor: Bunlardan birincisi bir büyüklük tanımı: Nano, yani milimetrenin milyonda birine karşılık gelen bir büyüklük. İkincisi ise biyoteknoloji kavramı, yani biyoloji ve biyokimya temelli yöntemlerin uygulamalarını araştıran, ortaya koyan, onları ürüne dönüştüren, teknoloji temelli çalışma alanı. İkisinin birleşmesi ile ortaya çıkan nanobiyoteknoloji ise, bir yandan canlı hücrenin milyarlarca yıllık evrimi sırasında şekillenmiş nano-yapıları ve nanomakineleri, yani DNA’yı, RNA’yı, lipidleri, proteinleri, polisakkaritleri, bunların birbirleri ile etkileşimlerini ve hareketlerini araştırırken diğer yandan bu yapıları ve etkileşimleri daha dayanıklı, daha hızlı hareket eden, istendiği zaman planlanmış hedefe varacak materyaller ve yapılar kullanarak taklit edebilmeyi planlıyor. Nanobiyoteknolojinin bir üçüncü ilgi alanı ise moleküler biyoloji araştırmalarında nano seviyesinde bilgi toplayabilecek ve biyolojik sistemlerin nano düzeyde araştırılmasına olanak verecek sistem ve düzeneklerin tasarlanarak ürüne dönüştürülmesi olarak düşünülüyor. Nanobiyoteknolojinin İlaç Salınımına Etkisi Su an kullanılan ilaçların çoğu hedef hücrelerine ulaşma esnasında hidrofob alanlardan ve enzim yıkımından korunamadığı için etkilerini istenilen şekilde gösterememektedir. Ayrıca ilaçların istenilen süre etki gösterememesi ve hedef doku haricinde de etkisini tüm vücutta göstermesi istenmeyen olaylar olarak karsımıza çıkmakta. Bir diğer problem ise; verilen ilaçların vücuttaki bariyerleri aşıp hedef alana ulaşamaması(Parkinson hastalığı tedavisinde ihtiyaç duyulan dopaminin kan beyin bariyerini geçememesi. Bu nedenle kan-beyin bariyerini geçebilen L-DOPA kullanılır). Ortaya çıkan bu sorunların çözümünde nanoteknoloji bir takım çözümler sunuyor. Nanoboyutlarda üretilen taşıyıcılar, kan-beyin bariyeri, solunum sistemindeki bronşiyoller ve derideki sıkı bağlantılar gibi çeşitli anatomik ve biyolojik bariyerleri geçebilir ve ilaçların istenilen hedef dokuya ulaştırılmasını sağlar. Nanotaşıyıcılar vücuttaki dar alanlarda daha iyi dağılırlar ve düşük çözünürlüklü ilaçların çözünürlüğünü arttırabilirler. Nanoboyutta üretilen araçların olağanüstü özellikler göstermesinden yararlanılarak ilaçların fonksiyonu arttırılıp yeni özellikler kazandırılabilir. İlaç toksisitesini azaltabilir ve daha verimli ilaç dağılımını sağlayabilir. Küçük moleküller, proteinler, peptitler ve nükleik asitlerin hedef doku tiplerine bağlanması için modifiye edilebilir. Bunların yüzey özellikleri immün sistem tarafından tanınmaları için modifiye edilebilirler. Tüm bu işlemlerle ilacın sadece hasta bölgeye etki etmesi, tek uygulamada ilacın kanda uzun sure etkin bir şekilde kalması, ilacın belirli bir hızda ve gerekli miktarda salınması sağlanmış olur. Ancak ilaçların salınımında kullanılan bu nanotaşıyıcılar bir takım problemlere yol açabilir. Nanotaşıyıcıları elde etmek ve depolamak zordur. Düşük potansiyelli ilaçlar için uygun değildirler. Bazı durumlarda istenmeyen bölgelere ulaşarak zarara neden olabilirler. Hücrenin nükleer zarfını geçerek genetik hasara ve mutasyonlara yol açabilirler. Nanobiyoteknolojinin Kanser Araştırmalarında Kullanımı Kanser hücrelerinin sağlıklı hücrelere zarar vermeden öldürülmesi üzerine çok yeni ve farklı metotlar üstünde ve sadece dünyada birkaç laboratuvarda sürdürülen çok ileri düzeyde araştırmalar sürdürülmektedir. Örneğin, bakteri DNA’sının bizim DNA’mızdan yapısal farklılıklar gösterdiğinin keşfiyle DNA moleküllerinin bağışıklık sistemi üzerine olan uyarıcı etkisinden yararlanarak yeni DNA kökenli ilaçlar tasarlanmaktadır. bu ilaçları yeni jenerasyon aşı geliştirmekten, antikanser ve anti allerjik uygulamalara ve aşısı olmayan hastalıklardan immün koruyucu ajan olarak kullanmaya kadar geniş bir yelpazedeki araştırmalar başlamıştır. Sadece kanserli dokulara veya civarına kontrollü bir şekilde DNA’yı ve istendiğinde de kemoterapi ajanını da birlikte salabilen nanokeseciklerle antikanser terapileri geliştirilmekte ve bunların deney hayvanlarındaki etkinlikleri tayin edilmektedir. Bu terapi yöntemi ile, insanda baş ve boyun da oluşan ve çok hızlı bir şekilde ilerleyebilen bu kütle kanseri modeli farelerde %90’ın üzerinde bir başarıyla ortadan kaldırılabilmektedir. STARWARS21

http://www.biyologlar.com/nanobiyoteknoloji-1

CA 15-3 (Kanser antijen 15-3)

Normal Değer: 4,50-29,00 U/ml Kullanımı: Meme kanserli hastaların tanı, rekürrens ve tedavi takibinde kullanılır. Özellikle metastatik meme kanserlerinin %80’inde CA 15-3 düzeyi artar. Ayrıca diğer bazı maligniteler (pankreas, akciğer, over, kolon, karaciğer vb.), hepatit, siroz, sarkoidoz, tüberküloz ve SLE’de de CA 15-3 düzeyi yükselebilir. Tarama testi olarak kullanılmamalıdır. www.tahlil.com

http://www.biyologlar.com/ca-15-3-kanser-antijen-15-3

Kanserde aşının rolü

Kanserde aşının rolü

Aşı ne zaman koruyucu, ne zaman tedavi edici? Kanser tedavisi veya kanser oluşumunu engellemek amacıyla geliştirilen tümör aşıları, vücudun bağışıklık sistemini tümöre karşı duyarlı hale getiriyor. Aşı ile hedeflenen, bağışıklık sisteminin vücudun diğer hücrelerine zarar vermeden kanserli hücrelerin yok edilmesini kolaylaştırması. Neolife Tıp Merkezi Medikal Onkoloji Uzmanı Doç Dr. Duygu Derin, tümör aşılarının bağışıklık sistemini uyarma temeline dayandığını ifade ediyor ve aşıların koruyucu ve tedavi edici aşılar olarak iki gruba ayrıldığını belirtiyor. Derin, “Tümör aşıları bağışıklık sisteminin uyarılması esasına dayanıyor. Kanser hücrelerinin yüzeylerindeki yapılar bağışıklık sistemine tanıtılıyor. Bu yapılar bağışıklık sisteminin yanıt vermesini sağlayacak veya artıracak başka bir proteine eklenebiliyor veya hastanın kendisinden veya başka hastalardan elde edilen hücrelerden "tam hücre aşıları" hazırlanıp hastaya verilebiliyor. Aşılamada, kanser hücrelerini tanır hale gelen vücudun kendi bağışıklık sistemi hücrelerinin, sağlıklı hücrelere zarar vermeksizin doğrudan kanser hücrelerine karşı bir saldırıda bulunacağı varsayımı ile ilerleniyor.” diyor. Günümüzde uygulanan aşılar nasıl bir rol üstleniyor? Kanserde koruyucu aşılar arasında karaciğer kanserine karşı Hepatit B ve rahim ağzı kanserine karşı HPV aşısı yer alıyor. Toplumda yaygın görülen ve yüzde 10 oranında kronikleşen bir enfeksiyon hastalığı olan Hepatit B’ de kronikleşen vakaların yüzde 10’u karaciğer kanserine dönüşüyor. Hepatit B aşısı, kişilerde bu enfeksiyona karşı bağışıklık oluşturarak kronikleşmeyi ve kanserleşmeyi önlüyor. Rahim ağzı kanserinde ise kanser nedeni görülen HPV tip 16 ve 18 enfeksiyonuna karşı geliştirilen aşı ile bu bölgenin kanserleşmesi önleniyor. Kanserde tedavi edici aşılar ileri teknoloji ürünü olmakla birlikte henüz tedavide etkin bir yöntem olarak kullanılamıyor. Tedavi edici aşılar içinde kök hücre yöntemi olarak bilinen dendritik hücre aşıları ön plana çıkıyor. Hastadan alınan kandaki kök hücreler, laboratuvarda "dendritik hücre" denilen özelleşmiş hücrelere dönüştürülüyor. Bu hücreler kanser hücrelerinin yüzey yapılarına karşı duyarlı hale getirilip tekrar hastaya veriliyor. Bu yöntemin prostat, malign melanom ve böbrek hücreli kanserler üzerindeki tedavi edici etkisi araştırılıyor. Malign melanomda aşı tedavisinin etkinliği ise henüz tartışılıyor. Ancak bağışıklık sistemini uyaran tedaviler uzun zamandır uygulanıyor. Malign melanom tedavisinde yeni çıkan bir ilaç, kanser hücrelerini tanıyıp yıkan sitotoksik T lenfositlerini durduran mekanizmayı işlemez hale getiriyor. Bu şekilde dolaylı yoldan bağışıklık sistemini aktive ediyor.http://www.medical-tribune.com.tr

http://www.biyologlar.com/kanserde-asinin-rolu

HÜCRE ZARINDAN MADDE GEÇİŞİ

Hücre zarı,seçici geçirgen bir yapıya sahiptir.Molekülün büyüklüğüne,yağda veya suda çözünmesine,polaritesine, ortamdaki yoğunluğuna veya türüne göre zar üzerinden madde taşınmasını dört farklı şekilde gerçekleştirir. Hücre zarından madde geçişi • Pasif Taşıma • Difüzyon • Kolaylaştırılmış Difüzyon • Osmoz • Plazmoliz • Deplazmoliz • Diyaliz • Aktif taşıma • Endositoz • Fagositoz • Pinositoz • Ekzositoz Pasif taşıma Maddelerin enerji harcanmadan,yoğunluk farkından dolayı hücre zarındaki porlardan veya fosfolipid tabakadan doğrudan geçmesidir.Hücrelerde pasif taşıma üç şekilde görülür. Difüzyon Difüzyon,bir maddenin konsantrasyonunun yüksek olduğu yerden düşük olduğu yere doğru hareketine denir.Örnek olarak bir kokunun bütün odaya yayılması veya bir damla mürekkebin bir bardak suya atılınca bütün bardağı boyaması gibi.Aynı kural hücre için de geçerlidir.Örneğin sitoplazmada glikoz sürekli olarak tüketilmekte ve artık maddelerin yoğunluğu artmaktadır.Dış ortamda glikoz arttığında,iç ve dış ortam arasındaki yoğunluk farkı glikozun enerji harcamaksızın çok olduğu yerden az olduğu yere doğru hareketine sebep olur.Bu hareket her iki taraftaki glikoz yoğunluğu dengeleninceye kadar devam eder.Bir tarafta artı veya eksi yöndekibir değişiklik difüzyonu yeniden başlatır. Por içinden difüzyonla taşınacak maddenin porlardan geçecek kadar küçük olması ve suda çözünebilir olması gerekir.Büyük moleküller pordan geçemezler.Örneğin glikoz difüzyonla taşınırken,nişasta taşınamaz.Por sayısının fazla olması difüzyon hızını artırır.Yağda çözülen maddelerin difüzyonla taşınması için büyüklük sınırı veya por kullanma gereği yoktur.Hücre zarı lipid (yağ) yapısında olduğundan,bu maddeler zarın herhangi bir yerinden geçebilirler. Kolaylaştırılmış Difüzyon Su ve yağda erimeyen maddelerin (klor iyonları) ve glikoz,galaktoz,fruktoz gibi şekerlerin zardan geçişi,kolaylaştırılmış difüzyon denilen bir yolla olur. Taşınacak madde zarda bulunan taşıyıcı proteinle birleşir.Madde,birleştiği taşıyıcı proteinle “substrat-enzim” gibi yüzey uygunluğu gösterir (taşıyıcı protein taşınacak maddelerin yapısına göre şeklini değiştirir).Madde geçişi gerçekleştikten sonra taşıyıcı protein tekrar önceki orijinal şeklini alır.Geçişme yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama doğru olur.Por sayısındaki artış kolaylaştırılmış difüzyonu hızlandırır. Kolaylaşırılmış difüzyon,taşıyıcı sistemden ötürü aktif taşımaya benzerse de ikisi arasındaki en büyük fark;difüzyonda enerji kullanılmaması ve yüksek konsantrasyondan düşük konsantrasyona doğru olmasıdır. Osmoz Osmozu tanımlamadan önce yoğunluk kavramını iyi bilmek gerekir. Bir maddenin yoğunluğu, birim hacimde bulunan çözücü içindeki madde miktarıdır. Çözünenin çok olması durumunda ortam çok yoğun, az olması durumunda ise az yoğun olur. Ortamın yoğunluğu çözücünün miktarı ile ters orantılıdır. Yani çok yoğun ortamdaki çözücünün oranı,az yoğun ortamdaki çözücü oranından daha düşüktür. Örneğin, yarı geçirgen bir zarla ayrılmış iki ortamdaki nişasta çözeltilerini ele alalım. A kolunda, nişasta çok yoğun ise, birim hacimdeki su miktarı daha azdır. B kolunda, birim hacimdeki nişasta daha az, su ise daha fazladır. Doğal olarak bu konsantrasyon farkının dengelenmesi gerekir. Nişasta porlardan geçemeyecek kadar büyük olduğundan, su molekülleri nişastanın çok, suyun az olduğu ortama doğru geçer. A kolundaki toplam hacim koluna göre daha fazladır. Buna göre suyun, yarı geçirgen bir zar üzerinde çok olduğu ortamdan, az olduğu ortama doğru geçişine osmoz denir. Bu olayı canlılarda görmek de mümkündür.canlılarda,kapalı ortam,hücre zarıyla sınırlandırılmış olan sitoplazmadır.Sitoplazma içerisinde organik asitler, şekerler,organik ve inorganik tuzlar gibi maddeler bulunur(bu maddelerin potansiyel değerine osmotik değer denmektedir).Sitoplazma ve dış ortamın yoğunluğuna göre her iki ortam arasında su geçişi olur. Osmoz sonucu iki değişik olay gözlenir: • Plazmoliz:Hücre kendisinden yoğun (hipertonik) bir ortama konduğunda, yoğun ortama su vererek zarın her iki tarafındaki yoğunluğu dengelemek ister.Dolayısıyla su kaybederek büzülür.hücrenin daha yoğun bir ortama konulduğunda büzülmesine plazmoliz denir.bitki hücreleri hücre çeperleri bulunduğu için hayvan hücrelerine göre daha yavaş su kaybederler.deniz suyu içildiğinde dokular su kaybederek ölür.bunun nedeni deniz suyunun tuz oranının dokulardakine oranla çok daha fazla olmasıdır. • Deplazmoliz:Hücre kendisinden daha az yoğun (hipotonik) bir ortama konulursa ortamdan hücreye su girişi olur.dolayısıyla su alarak şişer.hücrenin ortamdan su alarak şişmesine deplazmoliz denir. Osmotik kuvvetler:plazmoliz ve deplazmoliz esnasında osmotik basınç ve turgor basıncı ortaya çıkar: • Osmotik Basınç:hücre içindeki maddelerin yoğunluğundan dolayı sıvıların hücreye girerken zara dıştan yaptıkları basınç şeklinde tanımlanır.Osmotik basıncı oluşturan maddeler çeşitli şekerler, organik asitler, organik ve inorganik tuzlardır.Dolayısıyla hücre içinde bu maddelerin yoğunluğuyla hücrenin osmotik basıncı doğru orantılıdır. Örneğin bitkinin köklerindeki emici tüylerde osmotik basınç yüksek olduğundan su topraktan kök hücrelerine geçer. Osmotik basınç atmosfer birimi ile ifade edilir.Osmotik basınç, plazmoliz halindeki hücrelerde yüksek deplazmoliz halindeki hücrelerde düşüktür.Hücrenin kendisi ile aynı yoğunlukta (izotonik) ortama konulduğunda osmotik basınç, iç basınçla denge halinde olur. • Turgor basıncı:Deplazmoliz esnasında sitoplazma sıvısının zara yaptığı basınçtır (iç basınç) . Hayvan hücreleri bu yüksek basınca dayanamaz, parçalanır. Mesela alyuvarlar kendilerinde daha az yoğun bir ortama konulursa, ortamdan alyuvar hücrelerine su girişi olur:daha sonra zarları parçalanır, hücre ölür (hemoliz). Bitki hücrelerinde selüloz çeper olduğundan turgor basıncından hayvan hücrelerine göre daha az etkilenirler.Ayrıca turgor basıncının bitkilere sağladığı bazı avantajlar da vardır.Bu avantajları; • Otsu bitkilerde destekliği, • Stomaların açılıp kapanması, • Küstüm otu gibi bitkilerde hareketi sağlaması şeklinde sıralayabiliriz. Emme Basıncı, Turgor Basıncı ve Osmotik Basınç Arasındaki İlişki Emme basıncı hücrenin osmotik basıncının oluşturduğu bir çekici kuvvettir.Diğer bir deyişle emme basıncı osmotik basıncın iç basınca üstün olduğu sürece hücreye su girişini sağlayan bir kuvvettir.Osmotik değer, osmotik basıncı meydana getiren eriyiğin çekim gücüne denir.Böyle bir değer her hücrenin kofulunda gizli olarak bulunur. Genel olarak emme basıncı (EB) bir hücre için, hücrenin osmotik değeri (OD) ile iç (turgor) basıncın (TB)arasıdaki farka eşittir. EB=OD-TB Diyaliz Diyaliz, çözünmüş maddelerin seçici geçirgen zardan difüzyonudur. Örneğin içi glikoz molekülleri ile dolu bir bağırsak saf su içerisine konursa glikoz molekülleri, zardan su içerisine iki tarafta da yoğunluk eşit oluncaya kadar geçer. * Bu prensip, suni böbrek aletinde (diyaliz kullanılır.Hastanın her seferinde 500ml kadar kanı bir diyaliz tüpünden geçirilir.Diyaliz tüpünün dışında, kanda bulunan ve difüzyon olabilen aynı yoğunlukta maddeleri taşıyan bir sıvı bulunur. Bu sıvı sadece uzaklaştırılacak maddeyi taşımamaktadır. Böylece kana gerekli olan maddeler dıştaki sıvıya geçmez.Uzaklaştırılması istenen madde (üre gibi) dış sıvıda bulunmadığı için,bu madde kandan dış sıvıya difüzyonla geçer ve kan bu maddeden temizlenmiş olur. Moleküllerin Pasif Olarak Taşınmasını Etkileyen Faktörler: Canlı hücrelerde hücre zarının her iki yönünde devamlı bir molekül hareketi gözlenir.Bu moleküller hücre zarından doğrudan veya porlar yardımıyla geçerler.Geçiş türü veya hızı aşağıdaki faktörlere göre değişmektedir. • Moleküllerin Büyüklüğü:Oksijen, su, iyot, karbondioksit gibi küçük moleküller hücre zarından rahatlıkla geçebilir.Mesela 6 karbonlu glikoz;oksijen, su ve karbondioksitten daha zor geçer. • Moleküllerin elektrik yükü:Hücre zarının iyonik yapısından dolayı, nötr moleküller iyonlardan daha kolay geçer. • Yağda çözünen maddeler:Hücre zarının yapısında yağ olduğu için yağda çözünen maddeler hücre zarından rahatlıkla geçebilir. • Yağı eriten maddeler:Yağı eriten maddeler de hücre zarından rahatlıkla geçebilir. • Zardaki por sayısı:hücre zarında por sayısı ne kadar fazla olursa madde girişi o kadar hızlı olur. • Konsantrasyon farkı:Yüksek konsantrasyonlu ortamdaki moleküllerin birbirine çarpma hızı, düşük konsantrasyonlu ortamlara göre daha hızlıdır.Bu ortamdaki potansiyel enerji, yüksek konsantrasyonlu ortamdan düşük konsantrasyonlu ortama madde geçişini hızlandırır. • Sıcaklık:Moleküller sıcak ortamda daha hızlı hareket ederler. Dolayısıyla yüksek sıcaklıkta difüzyon hızlıdır. • Hücre zarının deformasyonu:Hücre zarı alkol, eter, çeşitli zehirler ve kloroform gibi maddelere karşı aşırı duyarlıdır.Bu maddeler hücre zarına girerken veya çıkarken hücre zarını tahrip ederler. AKTİF TAŞIMA Bir maddenin konsantrasyonun düşük olduğu yerden yüksek olduğu yere doğru, enerji (ATP) harcanarak taşınmasına aktif taşıma denir.Bir başka ifade ile;aktif taşıma maddelerin yokuş yukarı hareketidir. Aktif taşıma, canlı zarlar üzerinde enzim ve taşıyıcı proteinlerle gerçekleştirilir. Aktif taşımada mutlaka enerji harcanır.Enerji yetersizliğinde aktif taşıma durur, pasif taşıma devam eder.Bu durumda bazı maddelerin hücre içi ve hücre dışı yoğunluk farkları ortadan kalkar ve bunun sonucu hücrede hayatsal faaliyetler durur,yani hücre ölür.Örneğin; büyüme ve protein sentezi için mutlaka gerekli olan potasyum hücre içinde hücre dışına göre 40 misli daha fazla bulunmak zorundadır.Eğer bu miktar azalacak olursa, hücre yeterli şekilde fonksiyonlarını gerçekleştiremez. Aktif taşımaya en güzel örnek,çeşitli hücrelerde görülen ”Sodyum-Potasyum Pompası”dır. Normal şartlarda sodyum hücre dışında,potasyum da hücre içinde yoğundur.Sodyum-potasyum pompası ile yoğunluk farkından dolayı hücre dışına çıkan potasyum hücre içine, hücre içine sızan sodyum da hücre dışına ATP enerjisi kullanılarak pompalanır. ENDOSİTOZ Pasif taşıma ve aktif taşıma ile taşınan moleküller doğrudan hücre zarından veya porlardan geçerken, büyük moleküllerden olan yağ,, nişasta, glikojen, protein vs geçemezler.Bu moleküller zarın değişikliğe uğraması ile enerji harcanarak hücre içine alınırlar.Bu olaya “endositoz” denir. Endositozla hücre içme alınan besinler, sitoplazmada besin kofulu şeklinde bulunurlar. Hücrelerde endositozla besin alınımı fagositoz ve pinositozla sağlanır. Fagositoz Endositozla katı yapıların hücre içine besin kofulu şeklinde alınmasıdır. Katı madde yalancı ayak yardımıyla oluşturulan cep içerisine alınır. Daha sonra içeri çekilen besin kofulu lizozomla birleşerek sindirilir. Akyuvarların mikropları yemesi, amiplerin beslenmesi buna örnektir. Pinositoz Sıvı maddelerin besin kofulu şeklinde hücreye alınmasına denir. Pinositoz olayında, sıvı maddelerin hücre zarına değmeleri sonucunda, sitoplazma içine doğru cep ya da kanal şeklinde yapılar oluşur.bu yapılardan pinositoz keseleri meydana gelir.Bu şekilde hücre içine alınan sıvı maddeler lizozomla birleşerek sindirilir. Fagositoz ve pinositoz genellikle hayvan hücrelerinde görülür. EKZOSİTOZ Daha önce de açıklandığı gibi hücrelere endositozla alınan maddeler lizozom enzimleri ile küçük moleküllere parçalanır (hücre içi sindirim). Kesecik içerisinde sindirim sonucu oluşan artık maddeler ve dışarı salgılanması gereken bazı metabolik ürünler hücreden dışarıya atılır.Bu olaya “ekzositoz” denir. Ekzositozda kesecik hücre zarına tutunur ve tutunan kısımları içeriğini dışarı boşaltır. Endositozda olduğu gibi ekzositozda da enerji harcanır. HÜCRE YÜZEYİNDE FARKLILAŞMALAR Hücrenin Serbest Yüzeyindeki Farklılaşmalar:Bu tür farklılaşmalara örnek olarak mikrovillus, oyuklar, silleri örnek verebiliriz. Mikrovillus Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır. Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki "Kaide Zarı" hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar. Oyuklar Oyuklar,mikrovilluslar arasında hücre zarının, hücre içine doğru torba şeklinde mağaramsı girintiler yapmasıyla oluşur.Bu oyuklar, hücre yüzeyini artırarak hücre içerisine büyük miktarda sıvı girişini sağlar (pinositoz); daha büyük oyuklara fagositik hücreler (makrofajlar) ve bazı salgı yapan hücrelerde rastlanabilir. Siller Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara "Kinetosilia", hareketsiz olanlara "Stereosilia" denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Sillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır. Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2'li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Sillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Siller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Sillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir. Hücreler Arası Bağlantılar (Juncturae Cellularum) İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır. Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir. Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler. Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4' + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır. Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar. Hücrelerin Taban Yüzeylerindeki Farklılaşmalar Bazı hücrelerin tabanında plazma zarı birçok katlanmalar meydana getirerek yüzey genişletirler.Bu oluşumlar, kan damarı olmayan çok katlı hücre tabakalarının beslenmesini sağlar. SİTOPLAZMA Sitoplazma; hücre zarı ile çekirdek zarı arasıda bulunan, hücre iskeleti, organeller ve sitozol adı verilen sıvıdan oluşan kısımdır.Sitoplazmadaki canlı yapıyı organeller, cansız yapıyı ise organik ve inorganik bileşikler oluşturur.Cansız yapı;katı sıvı arası yarı akışkan bir özellik gösterir. Sitoplazma,Ektoplazma ve endoplazmadan oluşur.Hücre zarının hemen altındaki yoğun kısma ektoplazma, ektoplazmayla çekirdek arasındaki daha az yoğun kısma endoplazma denir.Hücre organellerinin çoğu endoplazmada yer alır. HÜCRE İSKELETİ Bütün yüksek yapılı organizmalarda olduğu gibi hücrenin de bir iskeleti vardır.Bu iskelet hücrenin belirli bir şekle sahip olmasını ve hücre organellerinin gerekli olduğu bölümlerde bulunmasını sağlar.Aynı zamanda hücrenin değişik şekillerdeki hareketini, iğ iplikçiklerinin oluşturulmasını ve sitoplazma hareketini hücre iskeleti sağlar. Hücre sitoplazması , mikrotübül ve mikrofilamentlerden meydana gelmiş ağsı bir yapıyla doludur.Bu ağsı yapı hücrenin iskeletini meydana getirir. Aktin, miyozin ve tropomiyzinden meydana gelen mikrofilamentler, kasılıp gevşeyerek hücre hareketini sağlarlar. Hücre iskeletinin arası sitoplazma sıvısı (sitozol) ile doludur.Bu kısım özellikle glikoz enzimlerini taşır ve protein sentezinin basamakları bu kısımda gerçekleşir. Sitoplazma Hareketleri Sitoplazma durgun bir yapı göstermeyip canlı hücrelerde hareket halinde bulunur.Bu hareketleri iki şekilde ortaya çıkar: Rotasyon Hareketi:Rotasyon hareketi genellikle su bitkilerinde görülür.Örnek, elodea, nitella bitkilerindeki sitoplazma hareketleri.Bu harekette sitoplazma, hücre çeperine paralel olarak hareket eder.Sitoplazma ile birlikte çekirdek ve kloroplastlar da hareket edebilir. Sirkülasyon Hareketi:Genellikle kara bitkilerinde, özellikle tüy hücrelerinde kolaylıkla görülebilir.Sitoplazma hareketi çeşitli yönlerde olur. Hücre çeperine paralel olduğu gibi,düzensiz olarak çeşitli yönlere doğru da olabilir. Bu hareketler sitoplazmadaki yüzey gerilimi veya yoğunluğundaki değişiklikler sonucu ortaya çıkar sitoplazma hareketlerinde mikrotübül ve mikrofilamentlerin de rol oynadığı belirtilmiştir.sitoplazma hareketleri sonucu hücrenin belli bölgelerinde meydana gelen metabolik ürün ve artıklar hücrenin her tarafına dağılır.Böylece hücrenin belli bir bölgesinde oluşan artık maddelerden zarar görmesi engellenir. SİTOZOL (SİTOPLAZMA SIVISI) Sitozolun büyük kısmını (%90) su oluşturur.Bu oran bazı canlılarda %98’e kadar yükselebileceği gibi, sporlarda ve tohumlarda %5-15’e kadar düşebilir.Sitozolda organik ve inorganik (kuru madde) maddelerin oranı %10-40 arasında değişir.Kuru maddelerin %90’ını organik,%10’unu da inorganik maddeler oluşturur.Sitozolda en çok bulunan kuru madde protein molekülleridir.Bitki hücrelerinde ise karbonhidratlar daha çok bulunur.Ayrıca sitozolda; yağ, vitamin, hormon, organik ve inorganik asitler bulunur. Sitozolda bulunan önemli inorganik maddeler Na, Ca, K, P, Mg Fe’dir.Bu elementlerin hücredeki fonksiyonlarını şöyle özetleyebiliriz: • Bazı moleküllerin yapısına girerler.Örneğin Mg klorofilin, Fe hemoglobinin yapısına katılır. • Osmotik basıncın oluşmasını yani hücrede belli bir yoğunluk oluşturarak, suyun hücreye girmesini sağlar. • Düzenleyici olarak görev yaparlar. Sitoplazma yukarıda söylendiği gibi yarı akışkan,yoğun bir maddedir. Hücre sudan yoğun olup suyun içine atıldığında dibe çöker.

http://www.biyologlar.com/hucre-zarindan-madde-gecisi

Nanoteknoloji ve Mikrodünyalardaki Yaratılış

Nanoteknoloji ve Mikrodünyalardaki Yaratılış

Teknoloji ilerledikçe kullandığımız araçların boyutları giderek küçülüyor. İlk bilgisayar bir oda kadar büyüktü. Önce bir çalışma masasının, sonra da dizlerin üstüne konabilecek kadar küçüldü.

http://www.biyologlar.com/nanoteknoloji-ve-mikrodunyalardaki-yaratilis

Mesane kanserinin tedavisinde Türk doktorların önemli keşfi

Mesane kanserinin tedavisinde Türk doktorların önemli keşfi

Mesane kanserinin cerrahi tedavisi konusunda Üroonkoloji Derneği tarafından yapılan ve uluslararası tıp dergisi British Journal of Urology International’da ‘ayın makalesi’ başlığıyla yayınlanan araştırmaya göre, mesane kanserinin cerrahi yöntemle tedavisinde iki ameliyat arasındaki sürenin 6 haftadan az olması durumunda mesane kanserinin tekrarlama riskini %27 azaltıyor. Çalışma ile ilgili bir açıklama yapan Üroonkoloji Derneği Başkanı Prof. Dr. Sümer Baltacı, “Tümörün, mesanenin kas tabakasına inmemesi halinde yapılacak ikinci ameliyata kadar geçen süre hayati öneme sahiptir. Türk bilim insanları dünyada ilk kez iki ameliyat arasındaki sürenin ne kadar olması gerektiğine ilişkin araştırmaya imza attı. Sonuçların uluslararası dergiye kapak oldu” dedi.Türk bilim insanlarınca yapılan araştırma, yüksek risk taşıyan ve kas dokusuna kadar ilerleme olmamış mesane kanseri hastalarında, yaşamsal önem taşıyan iki ameliyat arasındaki sürenin altı haftadan az olması gerektiğini ortaya koydu. Bu alanda dünyada ilk olan ve sonuçları uluslararası tıp dergisinde yayımlanarak literatüre giren araştırma sonucuna göre, iki ameliyat arasındaki sürenin 6 haftadan az olması, mesane kanserinin tekrarlama riskini yüzde 27 azaltıyor.Mesane kanserinin, tüm kanserler içerisinde sıklık açısından 9. sırada yer aldığını ve dünyada her yıl 380 bin yeni mesane kanseri vakasının görüldüğünü belirten Prof. Dr. Baltacı, hastalığın yılda 150 binden fazla kişinin ölümüne yol açtığını vurguladı. Erkeklerde kadınlara oranla görülme sıklığı 3 kat daha fazla olan mesane kanseri tedavisinde cerrahi yöntemin çok önemli olduğunu söyleyen Prof. Dr. Baltacı, şu saptamalarda bulundu: “Ölümcül sonuçlar doğurabilen mesane kanserinde cerrahi, radyoterapi, kemoterapi ve immünolojik tedavi yöntemleri uygulanabilmektedir. Ameliyat, hastalığın tedavisinde en sık uygulanan yöntemdir. Uygulanacak cerrahi türü çoğunlukla tümörün derecesine ve derinliğine bağlı değişir.”Tedavinin başarısında tümörün derin kas tabakasına kadar yayılmamış olmasının çok önemli olduğunu belirten Prof. Dr. Baltacı, “Dünya literatürüne göre, tümörün kas dokusuna kadar ilerlemediği ama tekrarlama ve derine yayılma ihtimali açısından yüksek risk taşır ve hastalarda ilk ameliyattan belli bir süre sonra ikinci ameliyat yapılması gerekir. Bu, tedavinin başarı şansını artırır” dedi.Türk bilim insanlarının araştırması uluslararası yayındaTümörün, mesanenin kas tabakasına inmemesi halinde yapılacak ikinci ameliyata kadar geçecek sürenin hayati öneme sahip olduğuna dikkat çeken Prof. Dr. Baltacı, Türk bilim insanlarının dünyada ilk kez iki ameliyat arasındaki sürenin ne kadar olması gerektiğine ilişkin araştırmaya imza attığını söyledi. Prof. Dr. Baltacı, derneğe üye üniversite ve devlet hastanelerinin aralarında bulunduğu 10 hastaneden verilerin toplanarak, toplam 242 mesane kanserli hastanın araştırmaya dahil edildiğini anlattı.Prof. Dr. Baltacı, şunları kaydetti:”İlk ameliyat ettiğimiz, patoloji sonucu yüksek riskli ve tümör kas tabakasına geçmemiş olarak rapor edilen hastalarda, ikinci ameliyata kadar geçen sürenin, kanserin ileride tekrarlama ihtimaline ya da daha derin tabakalara geçme riskine bir etkisinin olup olmadığını ve ideal zamanın ne olması gerektiğini araştırdık. Yaklaşık 29 ay boyunca yapılan takip sonucunda, yüksek riskli ve tümörün kas tabakasına geçmediği hastalarda ilk ameliyat ile ikinci ameliyat arasındaki süre 6 haftadan az ise kanserin kendini tekrarlaması ihtimalinin, 6 haftadan sonra ameliyat olanlara göre yüzde 27 oranında düşük olduğu tespit edildi”Bugüne kadar iki ameliyat arasındaki sürenin ne olması gerektiğine ilişkin bilimsel bir çalışma yapılmadığının altını çizen Prof. Dr. Baltacı, “Bu, dünyadaki ilk çalışma oldu. Araştırmanın sonuçları, uluslararası tıp dergisi olan British Journal of Urology International(BJUI)’ın kasım sayısında ayın makalesi olarak yayımlandı. Derginin kapağında Anıtkabir fotoğrafı ile birlikte Türk bilim insanlarının öncü olduğu bu çalışmaya yer verildi. Araştırmanın sözlü sunumu da derginin internet sitesinde yayımlandı. Bu, Türk bilim insanları açısından büyük bir onurdur. Türkiye, bu alanda dünya literatürüne imza atmış oldu” diye konuştu.http://www.medikalakademi.com.tr

http://www.biyologlar.com/mesane-kanserinin-tedavisinde-turk-doktorlarin-onemli-kesfi

Bakterilerin Biyoteknolojide Kullanım Alanları

Bakterilerin Biyoteknolojide Kullanım Alanları

Son on yılda biyokimya, moleküler biyoloji ve bakteriyolojideki ilerlemeler, bakterilerin antikanser ajan olarak kullanımının yanı sıra, antikanser ilaçların verilmesinde kemoterapiye duyarlı ajan ve gen tedavisi için vektör olarak kullanımına kadar kullanışlı bir çok yönlerini ortaya koymuştur.

http://www.biyologlar.com/bakterilerin-biyoteknolojide-kullanim-alanlari

BALIKESİR VE ÇANAKKALE’NİN ENDEMİK BİTKİLERİ

Milattan önce 1200’ler: Anadolu Yarımadasında kurulu, dünyanın iki süper devletinden biri olan Hitit İmparatorluğu aniden yıkılır. Bütün Hitit şehir kalıntılarında bu tarihlere ait kalın bir kül tabakası vardır. Söz konusu yıkım sadece Hititler değil, bütün Anadolu halkları için geçerlidir. Batıdan doğuya doğru hızlı bir şekilde genişleyen, vahşi bir yıkım göz önüne serilir. Öyle hızlı ve ani bir yıkımdır ki bu, Anadolu yazılı kaynaklarında işgalle ilgili bir belgeye rastlamak neredeyse olanaksızdır. Vahşi, göçebe ve savaşçı kuzey halkları (Deniz halkları) Balkanlardan Anadolu’ya saldırmışlar, burayı boydan boya tahrip ettikten sonra Doğu Akdeniz ve Mısır’a kadar dayanmışlardır. Mısır yazılı metinleri bu saldırıdan dehşetle, saldırganların Mısır’dan kovulmalarından ise övgüyle bahsetmektedir. Tarihin gördüğü en vahşi saldırı, belki de ilk dünya savaşıdır bu. Anadolu insanı barbar kabileler tarafından katledilmiş, uygarlık tamamen yok edilmiştir. Öyle etkili bir saldırıdır ki, yıkımdan sonra, bin yıldan beri Anadolu’da kullanılan ve uygarlık ölçütü olarak bilinen yazı ortadan kalkmıştır. Arkeoloji literatüründe “Karanlık Çağlar” olarak adlandırılan dönem bu yıkım ile başlamıştır. MÖ 1200-750 yılları arasında Anadolu kör bir karanlığa gömülmüştür. Yazının olmadığı, kentlerin ortadan kalktığı bu dönemle ilgili olarak ancak ilkel kabilelere özgü basit keramik parçalara ulaşılabilmiştir. Kuzey halklarının doğal olarak Anadolu’ya ilk saldırı noktası Kuzeybatı Anadolu olmuştur. Bu bölgede o zamanın en önemli siyasi ve ekonomik gücü ise Troya Uygarlığı’dır. MÖ. 3200’lerden MS. 500’lere kadar 4000 yıl sürekli iskan edilen antik kent MÖ 1200’lerde Yunanistan üzerinden gelen vahşilerin saldırısına uğramıştır. İzmirli hemşehrimiz Homeros’un İlyada ve Odessa adlı eserlerinde bu işgal epik ve lirik bir dille anlatılır. Tanrı ve tanrıçalar bu savaşı izlerken takım tutar gibi iki taraftan birini tutarlar. Tanrılar tanrısı Zeus bu savaşı Çanakkale ve Balıkesir arasındaki Kazdağlarından (İda Dağı) izler. 1756 metre rakımla en yüksek noktası olan Gargaros’tan (günümüzdeki ismi Kartal Çimeni) savaşı izleyen baştanrı insanlara benzer duygu, düşünce ve davranışlarıyla savaş süresince bu dağdadır. Aslında İda ismi anatanrıça inancını ifade eder. Roma döneminde bu dağa “Magna Mater İdae”, yani Anatanrıça İda denilirdi. Zeus kültünün, bu inancın üzerine, kuzey halklarından Dor’ların istilasıyla yerleştiği tahmin edilmektedir. Zeus bu dağın en üst noktasına yerleşmesine, dolayısıyla herkesten üstün olduğunu göstermek istemesine rağmen yöre insanı hiçbir zaman Anatanrıça inancından vazgeçmemiştir. Antik çağda Kazdağı ve dolayları bitkilerin ve bereketin tanrıçası olan Kibele ve onun devamı Artemis tapkısının en etkin alanlarındandır. Kazdağı eteklerinde, Altınoluk ile içiçe olan Antandros (Anti+andros=Erkek karşıtı)’da Artemis inancı egemendir. Anatanrıçayı savaş ve kıyımla ortadan kaldırmaya çalışan barbarların tanrılarına karşı yöre halkının günümüzdeki feminist harekete benzer bir tepki vermiş olması da mümkündür. Aksi halde önemli bir antik kenti “erkek karşıtı” olarak adlandırmazlardı. Yöre insanının erkeğe düşman olması mümkün olamayacağına göre, bu tepki ataerkil kültür ve erkek baştanrıya karşı olmalıdır. Günümüzde bile bu tepki yöre kültüründe görülmektedir. Genelde dağların en yüksek doruğu kutsal kabul edilirken, günümüzde yöre halkı Kazdağının zirvesi Kartalçimeni yerine dağa aşağıdaki Sarıkız Tepesi’ni inanç alanı olarak görmektedir. Özellikle Türkmen köyleri arasında kutsal bilinen bu tepede Sarıkız ile ilgili bir de açıkhava sunak yeri (Türbe) vardır. Yöre insanı bu sunağa gelmekte, Sarıkız Ana’ya mumlar adamakta, bez parçaları bağlamakta, ayrıca buradaki zirve defterine yazılar yazarak Sarıkız’dan sorunlarına çare bulmasını istemektedir. Sarıkız’ın hikayesi ve ritüeli ile Tanrıça Artemis’inki de birbirine çok benzer. Her ikisine de tepelerde tapınılır, her ikisi de bakiredir. Sarıkız’ın ölüm nedeni de bakire olmadığı yönündeki iftiralardır. Dağ, anatanrıça inancıyla ilgili bir yer iken, ataerkil kabilelerin işgali ile Anatanrıça zirveyi Atatanrıya bırakmıştır. Anatanrıça ikincil konuma düşerek, daha alçak bir tepeye yerleşince yöre insanı da onu takip etmiştir. (Sarıkız efsanesinin kökeninde de anatanrıçayı baştanrılıktan indirmek isteyen ataerkil halkların söylenceleri olduğu düşünülebilir ve söylence Troya savaşlarının olduğu Geç Tunç Çağına tarihlenebilir). Yöre insanı zirveye çıkarak Zeusa yakarmak yerine Sarıkız tepesine çıkıp anatanrıçaya (Kibele-Artemis) yakarmıştır. Zira anatanrıça bitkilerin, beslenmenin ve bitkisel ilaçların tanrıçasıdır. Zirveye çıkıp ne istenebilir ki yıldırımın ve şiddetin tanrısından. Besleyen ve sağaltan Anatanrıçaları ortaya çıkaran ise önemli bir endemizm merkezi olan Kazdağları’ndaki biyolojik zenginliktir. Kazdağları özgün bitkisel zenginlikleriyle gerek günümüzde ve gerekse antik çağlarda küskün (Erkekler tarafından mağdur edilmiş), ancak üretken ve hastalıkları iyi eden kadınların mekanıdır. Troya savaşları sırasında zehirli okla yaralanan Paris, Kazdağlarında yaşayan ve güzel Helene uğruna terkettiği karısı Oinone’den kendisini bitkilerden yaptığı ilaçlarla iyileştirmesi için Kazdağına çıkar. Ancak Oinone kendisine ihanet eden kocasını yüzüstü bırakır, Kazdağı bitkilerinden yapılmış ilaçlardan mahrum bırakır onu, Paris de bu dağda ölür (1). Homeros Oinone’nin hangi tür bitkilerden ilaçlar yaptığını bize söylemiyor. Dolayısıyla tıbbi potansiyeli olan bütün Kazdağı bitkilerinin sağaltıcı kadınlar tarafından kullanıldığını öngörebiliriz. Örneğin Digitalis trojana (Troya yüksük otu) tıbbi potansiyeli olan ve sadece Balıkesir ve Çanakkale’de yetişen (Kazdağındaki Kapıdağda ve Zeytinli’nin 5 km yakınında, 600-800 metrelerde) endemik bitkilerimizdendir. Nitekim batılı bilim adamları, aynı türden Digitalis purpurea adlı yüksük otunun kanserli hücreleri tedavi edici etkisini keşfetmişlerdir. Bu bitkinin kalp kaslarının güçlenmesini de sağladığı belirtilmektedir (2). Tıbbi etkileri araştırılmamış yüzlerce bitkimiz, özellikle endemik bitkilerimiz Türkiye’nin geleceğini şekillendirecektir. Bu bitkilerden elde edilecek ilaçlar -bitkilerimiz çok lokal alanlarda yetişebildiklerinden- gelecekte bizim uluslararası ilaç endüstrisi, gen teknolojisi ve farmakoloji alanında söz sahibi olmamızı sağlayabileceklerdir, yeterki koruyalım, yeterki yaşatalım endemik bitkilerimizi... Yöre insanı da Kazdağlarındaki özgün bitkileri hastalıklarını iyileştirmek için toplar. Günümüzde Kazdağının Türkmen kadınları, özellikle yaşlı olanları yörenin bitkilerini baştacı ederler (Resim 1) (3). Çünkü onların hepsi birer tanrıçadır; bitkileri onlar tanır, bitkilerden ilaçları damıtarak hastaları sağaltırlar. Başlarına çiçek takarak Kazdağına öykünürler, o zaman Anatanrıça İda’dır onlar. Yörenin endemik şakayıkını (Paeonia masculi subsp. bodurii) konduruverirler başlarına, ölmezotlarını veya diğer adıyla altınotunu taktıklarında başlarına; kocamışlıklarını unutuverirler de ölmeyeceklerini sanırlar, yoksulluktan takamadıkları beşibirliklerin yerine altınotu ile avunurlar. Balıkesir Etnoğrafya müzesine uğrarsanız (Kuva-i Milliye Müzesi), Altınotu süslemeli kadın başlığını görebilirsiniz. Sadece yaşlılar değil, evlenecek genç kızlar başlarına bitki motifli başlıklar takarlar, botanik bahçesine dönen gelin başlıklarının hepsi, murada ermeden hakka yürüyen Sarıkız’a adanmıştır, kuru bitkilerden oluşan gelin başlığını takan her genç kız Sarıkızdır artık... Her ne kadar Milli Park olması dolayısıyla Kazdağlarından bitki toplamak yasaklanmış olsa da bu yasağa uyulmadığı görülmektedir. Yöre insanını Kazdağlarına çıkmaktan alıkoymak oldukça zordur. Zira Sarıkız inancının gücü insanları bu dağa çıkarmaktadır. Binbir zorlukla, traktörlerle, tozdan heykellere dönmüş insanların Sarıkızı gördükten sonra zirvede bitki toplaması herhalde ritüel bir davranıştır. Zira zirvede karşılaştığımız her köylüye, adaçayı ve kekik gibi Kazdağı bitkilerinin toplanmasının yasak olduğu hatırlatıldığında “Biz hayır için topluyoruz” karşılığını vermektedirler. Yani bitkilerin toplanması kutsal bir amaca özgülenmektedir. İşte size Anatanrıça inancı, işte bu inançla bağlantılı bitkisel ritüel... Sarıkız tepesinin biraz aşağısında Kapıdağı denen yükseltide, sadece burada yetişebilen ve yok olma tehlikesi altındaki endemik kekiğimiz Thymus pulvinatus da bitki toplayıcılarından nasibini almaktadır (Resim: 2) (4). Yetişme alanı 30 metrekareyi geçmeyen, Temmuz ve Ağustosta çiçeklenen bu kekik türü Kazdağından başka bir yerde yetişmemektedir. Köylüler tarafından çay yapmak amacıyla köklenerek hasat edildiği için bitki yok olma tehlikesi altındadır. Bu tür, Anadoluda yetişen Thymus türleri içinde en dar yayılış alanına sahip olanıdır. Bu yüzden yetişme alanı acilen korumaya alınmalıdır. Sarıkız türbesine çıkarsanız bir gün, zirve defterine şöyle yazın: “Sevgili Sarıkız Ana, benim de sorunlarım var; hastalık, geçim derdi, sevdalık. Ama çok şükür hayattayım. Sen önce çocuklarının ölümüne çare bul, kekiğine sahip çık”. TROYA SAVAŞINDA ROL ALAN ÖZGÜN BİTKİLER Troya’ya girmek isteyen Akha ordusu, 10 yıl savaştıktan sonra bu amacına ulaşamayınca tahtadan bir at yapar, bunun içine savaşçılarını koyar ve Troya’yı bu yöntemle işgal eder. Ancak söz konusu tahta atı yapmak için savaş alanından bir hayli uzak olan Kazdağındaki köknar ağacını kullanırlar. Troya atının yapıldığı Kazdağı köknarının bilimsel adı da Abies nordmanniana subsp. equi-trojani’dir (Resim 3). Equus Latince de “At” anlamına geldiğinden. Kazdağı Köknarının literatürdeki adı aslında “Troya Atının Köknarı” dır. Anadolunun özgün söylencesinin kaynağında yine Anadolunun özgün bir bitkisi bulunmaktadır. Her ne kadar Akhaların Troya’yı tahta at ile alt ettikleri söylenmekteyse de Troyalıların bu kadar basit bir numarayı yutmayacakları akla daha yakındır. Köknardan tahta at yapılarak bir ülkenin yok edilmesini o zamanın ağaçlarla ilgili inançlarına bağlamak daha mantıklıdır. Nitekim Troyalıların çağdaşı olan Hitit Devletinin anlaşma metinlerinde Köknar ağacı ile ilgili hükümler bu konuda bizlere ipucu vermektedir. Hitit devleti ile Hurri Devleti arasında yapılan bir anlaşma metninde “Hurriler bu antlaşmanın ve yeminin sözlerine uymazsa, bir köknar ağacı kesilip devrildiğinde artık büyümeyeceği gibi...biz Hurrileri karımız, çocuklarımız ve ülkemizle birlikte bu köknar ağacı gibi bırak. (Kesilmiş) Köknar ağacının nasıl zürriyeti yoksa...biz Hurrileri ülkemizle birlikte ve çocuklarımızla birlikte zürriyetsiz bırak” (5). denilmektedir. Yukarıdaki Hitit metninden hareketle; Troya’yı alamayan yağmacı Akhaların en sonunda büyüsel ve simgesel bir yola başvurdukları, mahvetmek istedikleri ülkenin insanlarını yok edebilmek için Kazdağındaki Köknar ağaçlarını keserek bunlardan heykeller yaptıkları akla daha mantıklı gelmektedir. Zira ülkenin köknarlarının kesilmesi ile bu köknarların yetiştiği topraklardaki insanların yok olması arasında Hitit inancında paralellik kurulduğu görülmektedir. Troya bölgesi Hititlerle benzer kültüre sahip, onlara akraba Luvilerin ülkesidir. Belki de Akha ordusu yerel halkın bu inancını bildiğinden ve onların moralini bozmak istediğinden, Kazdağının Köknarlarını keserek Troya halkına umutsuzluk aşılamayı planlamış da olabilir. Diğer bir olasılık ta Troya’yı ele geçiren ve halkını öldüren Akhalar’ın yaptıkları bu soykırımın simgesi ve zaferlerinin sembolü olarak Köknar ağacından çeşitli heykeller yapmış olmaları da olabilir. Günümüzde yöre insanı endemik Kazdağı Köknarının yapraklarını, içtiği çayın içine atar, çayını reçine kokulu bir şekilde içer. Köknar ağacının çayın içine katılması muhtemelen antik çağlardan kalan bir uygulamadır. Zira üreme ve soyun devamı ile özdeşleştirilen bu ağacımızın yaprağının çaya sadece koku vermediği, muhtemelen insanların soyunu devam ettirmek istemesi ile ilgili bir uygulama olduğu akla gelmektedir. Troya savaşının ayrıntılarını öğrenmek için Homeros’un İlyada ve Odessa adlı şaheserlerini okumak gereklidir. İlyadada, Troya kralının oğlunun bir Akha tolgası vasıtasıyla ölümü ile ilgili olarak; “Bir bahçede, meyvesinin ve yaz yağmurunun altında/Haşhaş çiçeği nasıl yana eğerse başını/Tolganın ağırlığıyla baş öyle yana düştü” (6) denmektedir. Ne ilginçtir ki Balıkesir dolaylarında endemik bir haşhaş türü yetişir. Ancak Troyalıların kaderine benzer onun kaderi de. Papaver somniferum subsp. pullatum olarak adlandırılan bu haşhaş bitkimiz yok olma tehlikesi altındadır. Homeros muhakkak biliyordu bu haşhaşı, yoksa özdeşleştirir miydi ölen insanlarla bu narin bitkimizi. Hitit dilinde (Muhtemelen ona akraba Troyadaki Luvi dilinde de) Haşşika olarak adlandırılan haşhaş bitkisinin ismi 4.000 yıldan bu yana değişmeyen ender kelimelerden biridir. Kültürel sürekliliğin önemli göstergelerinden biri olan dil benzerliğinin temelinde de özgün bitkilerimiz vardır. Aslında bir gelinciktir Haşhaş ve gelincikgiller ailesindendir. Gelincik Çiçeği Kibele inancında Attis’in kanlarını temsil eder. Dolayısıyla ölen genç ve yakışıklı erkeklerin sembolüdür. İlyada’da da bunu görürüz. Sadece haşhaş mı, baharda çevresinde kıpkızıl gelincikler açan, Burhaniye ve Havran’daki Madra dağlarında yaklaşık 10 kadar Kibele Açıkhava sunağı da yok olmak tehlikesi altındadır. 1999 yılında, halen Adramytteion kazılarını yürüten Arkeolog Doç. Dr. Engin Beksaç tarafından keşfedilen ve hala koruma altına alınmamış olan bu açıkhava sunakları dinamitlenmektedir. Bunun en hazin örneği Bahadınlı Köyünün yakınında yer alan “Dedekaya” Kibele Açıkhava sunak alanıdır. Eğer bir gün yolunuz Bahadınlı köyüne düşerse ve Dedekaya Kibele Sunağı’nın dinamitlerle parça parça olduğunu görürseniz, ve aylardan baharsa, ve kan kırmızıysa tarlalar, bilin ki gelincikler göç yolundadır. İlyada da İris, Tanrı Zeus’un habercisidir. İlyada da; “Böyle dedi o, yel gibi giden İris fırladı/Vardı İda dağının doruklarından koca Olimpos’a” dizeleri vardır. Gerçekten de Kazdağında endemik bir İris (süsen) türü yetişir, İris kerneriana’dır onun bilimsel adı. Eğer Kazdağını gezerken bu süsenimize rastlarsanız, mutlaka Koca Tanrı Zeus size bir şeyler iletmek çabasındadır. Troya savaşının en yoğun döneminde Zeus’un karısı, kıskanç Hera Kazdağına çıkar; Zeus’u baştan çıkarmaktır amacı. Kadınlara hiçbir zaman hayır diyemeyen baştanrı Zeus Kazdağının doruğunda birlikte olur Hera ile. Homeros İlyada’sında şöyle anlatır bu olayı: “...Böyle dedi, aldı karısını koynuna, sarıldı/Tanrısal toprak yumuşak bir çimen saldı/Taptaze Lotos bir halı serdi toprakla aralarına/Safranlardan, sümbüllerden tatlı bir halı/Uzanıverdi ikisi de halının üstüne/Sardı onu güzel bir altın bulut/Buluttan çiğ damlaları akıyordu pırıl pırıl/Tanrıların babası yüksek Gargaros tepesinde/Koynunda karısı mışıl mışıl uyuyordu”. İlyadayı okuyan Alman araştırmacı Schliemann okuduklarının kılavuzluğu ile Troya’yı ve Troya hazinesini keşfetmişti. Botanik bilimcileri için de başlıbaşına bir rehber kitaptır İlyada. Neden derseniz, yukarıdaki dizelerde bahsedilen safran (çiğdem) ve sümbüller gerçekten de burada yetişir, hem de endemik olarak. Hatta bunlardan birisinin ismi de Gargaros tepesinin adıyla anılır: Crocus gargaricus (Gargaros çiğdemi) adlı endemik çiğdemin üzerinde sevişmiştir Zeus. Bu çiğdemin aynı zamanda güzel bir kokusu da vardır. Ayrıca Crocus candidus ve Crocus biflorus subsp. nubigena adlı çiğdemler de Kazdağının endemik bitkileridir, Muscari latifolium adlı endemik misksümbülü de Kazdağının 1100 metrelerinde yetişir. Şimdi sorarım sizlere, özgün çiçek ve bitki türleri arasında, binbir çeşit kokuyla çepeçevre bir ortamda, yanınızda da sevgiliniz varsa ne yaparsınız? Sevişirsiniz elbet. Tanrılar tanrısı Zeus bile Kazdağı florasının bu oyununa gelmişse, siz çiğdeme ve sümbüllere karşı gelebilir misiniz? Homeros çiğdem bitkisini şafakla özdeşleştirir ayrıca, “Safran urbalı şafak ta yayılınca denize” der. Homeros mutlaka çiğdem bitkilerince zengin, denizi gören ve güneşin en erken göründüğü bir yerde şafağın sökmesini gözlemiş olmalıdır. Kazdağının zirvesi bu açıdan en ideal yerdir. Troya savaşında ölen Troyalı savaşçılar hep keten kumaşa sarılır, cenaze törenleri için hazırlanırlar. İlyada’da, Troya’nın en önemli savaşçısı olarak anlatılan Hektor’un cenaze töreni ile ilgili olarak ozanımız şöyle der: “İki keten çarşafla bir entari bıraktılar arabada/Bunlar ölüyü eve götürürken sarmak içindi/Yıkadı hizmetçiler ölüyü, ovdular yağla/Sardılar bir entariye, güzel bir keten çarşafa”. Bir başka dizede de “Kızlar keten giymişlerdi ipince/ Kızlar güzel çelenkler takmışlardı başlarına” denmektedir. Görüleceği üzere keten törensel bir giysidir. Gerek cenaze ve gerekse kutlama törenlerinde keten özellikli bir yer tutmaktadır. Anadolu ve Troya kültüründe keten en önemli giysi hammaddesidir. Zira Anadolu endemik ketenler açısından çok zengindir. Balıkesir’in de endemik bir keteni vardır: Linum hirsutum var. platyphyllum olarak adlandırılan bu ketenimiz yöre kültürünün itici güçlerinden biridir. Ancak yaşamı tehlikededir onun, kültürünü biçimlendirdiği Troya’nın verdiği mücadele gibi yaşama tutunmak istemektedir. Troyalı yiğitlerin cansız bedenlerini sarıp sarmalayan, antik çağ kızlarına güzellik katan keten yok olursa, Troya kültüründen de bir parça yok olacaktır. Çanakkale ve Balıkesir yöresi endemik bitkiler kadar endemik olmayan nadir bitkiler açısından da zengindir. Örneğin yaşam alanı Ege’deki Yunan adaları olan, ülkemizde ise sadece Marmara adasında yetişen bir orkide türü vardır. Orkidenin üzerinde 4 nokta olduğundan botanikçiler ona ‘dört noktalı orkide’ ismini vermişlerdir (Orchis quadripunctata) (Resim 4) (7). Ayrıca Türkiyede İzmirde yetiştiği bilinen Orchis lactea (sütbeyaz orkide) bu ilimiz dışında sadece Balıkesir’in Alibey (Cunda) adasında yaşayabilmektedir. BİTKİ ADLARINDA YÖREDEN YANSIMALAR Çanakkale ve Balıkesir’in endemik bitkilerinden bir bölümü antik Troya kent ve uygarlığından isimlerini almışlardır: Çanakkale: Achillea fraasii var trojana, Beta trojana var. trojana (Troya pancarı), Digitalis trojana (Troya yüksük otu), Ranunculus pedatus subsp. trojanus (Troya düğünçiçeği), Sideritis trojana (Troya yayla çayı). Balıkesir: Armeria trojana, Carduus nutans subsp. trojanus (Troya devedikeni), Galium trojanum (Troya yoğurt otu) bunlardandır. Bazı endemik bitkiler Kazdağının antik dönem ve günümüzdeki ismiyle isimlendirilmişlerdir: Çanakkale: Erysimum idaea, Jasione idaea (Kazdağı uyuzotu). Balıkesir: Astragalus ideae (Kazdağı geveni), Hieracium idae (Kazdağı mercangüşü), Hypericum kazdagensis (Kazdağı koyunkıranı) bunlara örnektir. Balıkesir’in endemik bitkilerden biri bilimsel ismini Kazdağının zirvesi olan Gargaros (Kartalçimeni) yöresinden almaktadırlar: Bu bitki Crocus gargaricus (Gargaros çiğdemi)’tur. Endemik bitkilerden bir bölümü isimlerini yörenin ırmaklarından almaktadır. Balıkesir: Hieracium scamandris (Karamenderes mercangüşü), Verbascum simavicum (Simav Çayı Sığırkuyruğu). Çanakkale: Verbascum scamandri (Eskimenderes sığırkuyruğu) bu bitkilere örnektir. Balıkesir endemik bitkilerinden birisi Troya savaşının önemli kahramanlarından biri olan Odysseus’un ismini taşımaktadır. Bu bitki Centaurea odyssei (Odysseus peygamber çiçeği) dir. TEHLİKEDEKİ ENDEMİK BİTKİLER Çanakkale ve Balıkesir’in tehlike altındaki bitkileri aşağıdaki tabloda gösterilmiştir (8, 9). Tablonun incelenmesiyle de görüleceği gibi Kazdağında yetişen bitkiler yoğun bir tahribatla karşıkarşıyadırlar. Milli Park sınırları içerisinde olmasına karşın herkesin kolayca girebildiği ve yok olmak üzere olan endemik bitkilerini toplayabildiği bir dağdır Kazdağı. Hatta bu toplama faaliyeti evsel tüketimi aşmış, nadir bitkiler pazarlarda satılır hale gelmişlerdir. Kazdağının doruğuna adım attığınızda, yasak olmasına rağmen ızgarasını yakmış, rakısını yudumlayan keyif erbabının yanısıra, torbalarını dağın nadir bitkileriyle tıka basa doldurmuş insanları ve hatta keçi sürülerini bile görebilirsiniz. Bu manzarayı gördükten sonra diğer milli parklarımızın hali nicedir diye sormadan edemezsiniz. Çanakkale ve Balıkesir’in Yok Olma Tehlikesi Altındaki Endemik Bitkileri Bitkinin Bilimsel Adı Bitkinin Türkçe Adı Bitkinin Yetiştiği Yer ÇANAKKALE Achillea fraasii var. trojana - Kazdağı, Susuzdağı 1500 m, Allium kurtzianum Yabani soğan Kazdağı, Susuzdağı, mermerli alanlar Dianthus ingoldbyi Karanfil Gelibolu, Anzak’ta Peucedanum arenarium subsp. urbanii Domuzkuyruğu Kazdağı, 1500m Ranunculus pedatus subsp. trojanus Troya düğünçiçeği Erenköy, Menderes Dağı Tripleurospermum baytopianum (10) - Keşan ve Kadıköy arasındaki Kurudağ’da, 200 metrelerde Verbascum scamandri Eski Menderes sığırkuyruğu Kazdağında BALIKESİR Centaurea sericea Peygamber Çiçeği Dursunbey’de Papaver somniferum subsp. pullatum Haşhaş Thymus pulvinatus Kekik Kazdağında bulunan Kapıdağı bölgesinde, 1500-1600 metreler DİPNOTLAR 1-Şefik Can, Klasik Yunan Mitolojisi, İnkılap Kitabevi, İstanbul, 1994 2-“Kansere Karşı Yüksük Otu”, Cumhuriyet Bilim-Teknik Dergisi, 16.02.2002 tarihli nüsha 3-Atilla Erden, Anadolu Giysi Kültürü, Ankara, 1998 4-K.H.C. Başer, F. Satıl, G. Tümen, “Thymus Pulvinatus”, The Karaca Arboretum Magazine, TÜBİTAK Yayınları, Haziran 2001, 5-Güngör Karauğuz, Hitit Devletinin Siyasi Antlaşma Metinleri, Çizgi Kitabevi, Konya, 2002 6-Homeros, İlyada (Çev: Azra Erhat/A. Kadir), Can Yayınları,13. Basım, İstanbul, 2002 7- C.A.J. Kreutz, Die Orchideen der Türkei, B.J. Seckel, Netherland, Raalte, 1998 8-Tuna Ekim, Mehmet Koyuncu, Hayri Duman, Zeki Aytaç, Nezaket Adıgüzel; Türkiye Bitkileri Kırmızı Kitabı (Eğrelti ve Tohumlu Bitkiler); Türkiye Tabiatını Koruma Derneği, Van 100. Yıl Üniversitesi, Ankara, 2000 9- DAVİS, P.H., Flora of Turkey and the East Aegean Islands. Edinburg at the University Press,1969 10-Bu bitkinin resmi Bilim ve Ütopya Dergisinin Ağustos-2002 sayısında, “Turhan Baytop’un Ardından” adlı bölüm içerisinde yer alan, Prof. Dr. Ekrem Sezik’in yazısı içerisinde yayınlanmıştır.

http://www.biyologlar.com/balikesir-ve-canakkalenin-endemik-bitkileri

Proteom

DNA’nın kimlik kartı, ana hatlarıyla çıkartıldı. Bu işin kolay yanı. Şimdi sıra genlerin ürettiği proteinlerin gizini çözmeye geldi. Esas zor kısım şimdi başlıyor. İnsanın genetik yapısını deşifre etmeye çalışan bilim adamları konularında ne kadar uzman olursa olsunlar, daha işin başında olduklarını kabul ediyorlar. Son birkaç yıldır bir düzineden fazla genomu çözümleyen uzman ekipler, bulgularının tahminleriyle örtüşmemesi üzerine gelecek hakkında daha temkinli konuşma kararı aldılar. İnsanlarda 100.000 civarında gen olduğu yolunda tahminlerde bulunan bilim adamları, bu sayının 34.000 civarında seyrettiğini görünce tahminlerinde ne denli yanıldıklarını anladılar. Halkalı solucanda 19.099, meyve sineğinde 13.601, hardal bitkisinde bile 25.000 gen bulunduğunu öğrenmek bilim dünyasında farklı bir tartışmayı gündeme getirdi: ”Bu kadar az sayıda gen ile bu kadar karmaşık bir yapıya sahip olmamızın altında ne yatıyor?” İnsan genomu üzerinde uzun yıllardır çalışmalarını sürdüren kuruluşlar, (biri Amerikan Hükümeti’nin finanse ettiği konsorsiyum, diğeri ise Celera adlı özel biyoteknoloji şirketi) son bulgularını geçtiğimiz hafta, dünyanın 5 büyük kentinde düzenledikleri basın konferanslarıyla dünya kamuoyuna duyurdular. Sanayi kuruluşları ve bilim adamları, insan genomu projesinin bir bilgi hazinesi olduğunu kabul etmekle birlikte, projenin su yüzüne çıkarttığı beklenmedik sonuçlar karşısında şaşkınlıklarını gizlemiyorlar. En şaşırtıcı olanı, yüzlerce genin uzun süren bir süreç sonucunda bir bakteri vasıtasıyla insan genomuna karışması. Büyük bir olasılıkla söz konusu bakteri, omurgalı bir atamızı enfekte etmekle işe başlamış olabilir. Bu yabancı genler artık bizim bir parçamız; bunların bazıları çok önemli işlevler yüklenirken, bazıları hiçbir işe yaramıyor. Whitehead Enstitüsü’nden David Page, insan genomunun incelenmesi sonucu, spermdeki mutasyon katsayısının, yumurtadakinin iki misli olduğuna dikkat çekiyor. Mutasyonun, evrimin hammaddesi olduğunu düşünürsek, insanoğlunun bir yarısının ilkellikten kurtulmanın tüm sorumluluğunu yüklendiğini söylemek mümkün ve genomdaki 3 milyar kimyasal harfin (ünlü A’lar, T’ler, C’ler ve G’ler) içinde çok fazla varyasyon olduğunu söylemek de çok zor. Bu da bir Sumo güreşçisi ile Britney Spears’ın yüzde 99.95 oranında benzeştiği anl¤¤¤¤¤ geliyor. Bu temel bulguların yarattığı karmaşa içinde şimdi sıra genomun ikinci basamağında. Yeni oyunun adı ”proteom”. Genom sözcüğünün bir organizmadaki DNA’ların tümünü tanımlaması gibi, proteom da proteinlerin tümünü ifade ediyor; proteom bilimi ise proteinleri bütün olarak inceleyen bilim dalı anl¤¤¤¤¤ geliyor. Genomun çok karmaşık bir yapıya sahip olduğunu düşünüyorsanız, bir de proteomu görmeniz gerekecek. ”İnsan genomu ile karşılaştırıldığında proteom bilimi, bunun 1.000 misli daha fazla veri içeriyor”diye konuşan IBM Doğa Bilimleri Bölümü’nden Caroline Kovac, ”Karaciğer hücresindeki bir DNA, deri hücresindeki veya beyin nöronundaki DNA’ya benzer. Oysa proteinler birbirine benzemez. İşleri biraz daha ilginç kılan, hücre proteinlerinin (ki bunlar hemoglobin veya insülin gibi moleküller, serotonin ve dopamin gibi beyin kimyasalları, östrojen veya testosteron gibi hormonlar veya vücudumuzun işlevselliğini sağlayan diğer enzimlerden oluşur) hücrenin tipinden bağımsız olarak değişiklik göstermesidir. Bir hücrenin içerdiği proteinler sağlıklı veya hastalıklı olduğuna, yaşına, stres düzeyine, hatta günün saatine bağlı olarak değişir. Bilim adamlarına göre vücudumuz, 500.000 ile 1 milyon arasında protein içeriyor. Sayının büyüklüğüne karşın bilim adamları proteom konusunu çözmeye kararlı; çünkü proeinler hakkında elde edilecek en ufak bir bilgi hastalıkların teşhisine, tedavisine ve nedenlerinin ortaya çıkmasına yardımcı olacak. Rockefeller Üniversitesi’nden Brian Chait, bu konuda şöyle konuşuyor: ”Genom daha işin başlangıcı. Esas peşinde olduğumuz insandaki 100 milyar hücrenin hangi proteinleri ürettiği. Ne var ki bu bağlamda genom yeterli değil. Genom proteinlerin üretimi için gerekli olan direktifleri veriyor. Ancak direktifleri bilmek bizi fazla uzağa götürmez. Çünkü insan hücresindeki 34.000 gen sipariş formu gibi birşey. Bazı siparişler proteinlerimizi üreten hücresel fabrikalara kadar ulaşmaz bile. Fabrikaya ulaşanların bazıları ise üretim bandını terkeder etmez parçalara ayrılır, kullanılmaz hale gelir. Oysa bazı mallar o kadar popülerdir ki, fabrika bunlardan milyonlarca üretmek zorunda kalır. Bütün bunları sipariş formlarına bakıp söyleyemezsiniz. Üç gen, kurye vazifesi görerek protein A, protein B veya protein C için sipariş formunu taşır. Ancak fabrika bunları kabul etmek kibarlığını göstererek, Protein A,B ve C’yi üretir, ancak işi ilerleterek AB, AC, BC, AAB, ABC gibi daha gelişmiş ve hi-tech modelleri de üretir. Bu karıştırma ve birleştirme yeteneği insan genomunu diğer canlılarınkinden ayrırır.” California Institute of Technology’den John Richards, tek bir genden 10′dan fazla sayıda farklı protein elde edebileceğimizi söylüyor. Bu durumda genom analizi tek başına hangi proteinin üretileceği konusunda yeterli bilgiyi sağlamaz. Proteinleri teşhis etmenin ana gerekçesi hastalığa hasarlı genlerin değil, hasarlı proteinlerin yol açması. Ciphergen adındaki biyoteknoloji şirketinin yetkililerinden William Rich, ”Bir hastalık hakkında bilgi edinmek istiyorsanız, proteinlere bir gözatmanız gerekiyor”diye konuşuyor. Alzheimer hastalığı, proteom biliminin, genomdan ne kadar üstün olduğunu göstermesi açısından çok önemli bir örnek. Yaklaşık yarım düzine gen alzheimera yakalanma eğlimine yolaçıyor. Beta amiloid parçaları denilen yapışkan proteinlerin varlığı, hastalığın kesin teşhisi için yeterli. Ciphergen, ProteinChip’lerinin kısa süre sonra bu katil amiloidleri teşhis edebileceğini umut ediyor. Ancak beta amiloid geni diye bir gen olmadığı için alzheimer, bir DNA çipi ile teşhis edilemiyor. Halihazırda Merck&Co., Ciphergen’in çipleriyle alzheimer hastalığını tedavi edecek ilacı geliştirmeye çalışıyor. Çip, ilacın beta amiloid parçaları yok ettiğini kanıtlarsa, şirket bu işten kârlı çıkacak. Molecular Staging adında bir başka biyoteknoloji şirketi, kanser ve artrit gibi hastalıkların seyrini izleyen bir çip geliştirdi. Bu çip, proteinlerin değişken düzeylerini izleyerek hastalığın tehlikeli bir boyuta ulaşıp ulaşmadığını bildiriyor. Millennium Predictive Medicine isimli bir diğer şirket ise teşhisi zor olan yumurtalık kanserini teşhis ediyor. ABD’de hükümetin finanse ettiği bir kuruluş, normal akciğer, yumurtalık, göğüs ve kolon dokusundan alınan proteinleri, kanserli dokudaki protein ile karşılaştırıyor. Benzer şekilde PSA prostat kanserine ilişkin ilk bulguları gün ışığına çıkartıyor. Eğer proteinler hücrelerin kontrolsüz bir şekilde bölünmesine izin veriyorsa, proteini etkisiz hale getiren bir antikor etkin bir kanser ilacı olarak çözüm üretebilir. Large Scale Proteomics Corp. (LSP) ve Johns Hopkins Üniversitesi şimdiden depresyon, iki kutuplu psikolojik bozukluk ve şizofreniye yol açan proteinlerin bir listesini hazırladı. Geçen ay LSP, insan proteinleri üzerine ilk veritabanını açıkladı. 157 dokuda 15.693 protein olduğunu açıkladı. LSP’nin başkanı Leigh Anderson, bu açıklamanın bütün ile karşılaştırıldığında çok küçük bir parça olduğunu ileri sürüyor. ABD Enerji Bakanlığı’na bağlı Joint Genome Institute’dan Trevor Hawkins, protein bilimi konusunda iyimser: ”Protein bilimi şu anda insan genom projesinin sırtında gelişimini sürdürmeye çabalıyor. Bir süre sonra bağımsız bir bilim dalı olarak 21.yüzyılın temel taşlarından birini oluşturacak.” Kaynak: turksite.eu

http://www.biyologlar.com/proteom

Gen Terapi

Gen terapisi hastalıklarla mücadele etmek için tıbbın üzerinde çalıştığı yeni bir yöntem. Temelinde, hasta kişinin genlerini, iyileştirici proteinler üretecek şekilde değiştirmek yatıyor. Gen terapisi denilince ilk akla gelen, ölümcül hastalıkları ve çeşitli bedensel sakatlıkları iyileştirmek olduğu halde hastalıklardan korunmak da, gen terapisi ile mümkün olacağı öngörülen hedeflerden biri. Gen terapisi henüz emekleme aşamasında. Halen bir kaç temel araştırma laboratuarında yürütülen bu çalışmalar ve insanlar üzerinde yapılan deneyler sonucunda, gen terapisinin insan yaşamını nasıl değiştirebileceğine dair kavramlar belirginleşiyor; ortaya bir vizyon çıkıyor. Gen terapisini geliştirmek için en önemli unsur, hastalıkların genetik temelini kavramak. Ebeveynlerimizden aldığımız genler bize aynı zamanda hastalıkları da taşıyorlar. İnsan vücudunda yaklaşık 150000 farklı gen bulunuyor. Bütün bu genleri tanımlamak için başlatılan İnsan Genome Projesi Haziran ayının son haftasında tamamlandı. Genlerimizdeki farklılıklar, bireysel farklılıklarımızı meydana getiriyor. Boyumuzun uzunluğu, gözümüzün rengi gibi tüm bireysel nitelikler genlerimizdeki farklılaşmalar neticesinde ortaya çıkıyor. Hastalıklar da aynı şekilde kalıtımsal olarak nesilden nesile aktarılıyor. Gen terapisi işte bu noktada devreye giriyor ve hastalıkları, genetik köklerinde durdurmayı hedefliyor. İki tür gen terapisi var: Birincisi somatik gen terapisi. Hücrelerdeki genetik ifadeyi değiştirerek hastalıkları tedavi edici özellikler yaratmayı amaçlıyor. İkincisi ise "Germline Gen Terapisi". Bu yöntem, kalıtımsal olarak nesilden nesile aktarılan hücre çekirdeklerinin değiştirilmesi temeline dayanıyor. Ancak bu alanda araştırmalar, teknik ve etik nedenlerle son derece az ve dar kapsamlı yürütülüyor. Gen terapisinde karşılaşılan temel güçlüklerden biri değiştirilmiş genetik materyali hastanın doğru hücrelerine doğru ve güvenli bir şekilde yerleştirebilmek. Genlerin bir "ilaç" olarak kullanıldığı durumlarda hücre içine en etkin şekilde genleri yerleştirmek gerçekten de son derece zor bir iş. Hedefi şaşırmamak gerekiyor. Hedefin tutturulması durumunda ilaç genler hücre içerisinde ömür boyu kalabiliyor ve hastalığın tedavi edilmesini sağlıyor. Genlerin vücuda verilmesinde özel taşıyıcılar kullanılıyor. Vektör adı verilen bu taşıyıcılar, ilaç genleri içerisinde barındıran bir çeşit kapsül olarak tanımlanabilir. Virüslerle Mücadele Milyarlarca yıllık evrim tarihinde virüsler, hücreleri en etkin nasıl tahrip edebilecekleri ve genleri nasıl bozabilecekleri konusunda uzmanlaştılar. Bilim, bugün virüslerin hastalıklara yol açan bileşenlerini ortadan kaldırmaya ve hastalara, iyileştirici etkisi olan modife (değiştirilmiş) edilmiş genlerin doğru ve etkin bir şekilde verilmesine çalışmakta. Yapısı değiştirilmiş virüslerin hastanın vücudunda üremesi imkansız hale geliyor. Ama genetik materyal taşıma özelliğini etkin bir şekilde korumayı da sürdürüyor. Araştırmalar 1990 lardan beri sürüyor... İnsanlar üzerinde gen terapisi deneyleri 1990 da başladı. İlk deneyler laboratuar ortamında yapıldı. Hastalarda alınan hastalıklı hücrelere, vücut dışında, vektörler yardımıyla iyileştirici etkiye sahip genler verildi. Daha sonra bu hücreler hasta kişinin vücuduna geri verildi. Bu deneyler sonucunda bazı hastalıkların tedavisinin gen terapisiyle mümkün olabileceği anlaşıldı. Canlı denekler üzerinde yapılan deneyler de gen terapisinin umut verici bir yöntem olduğunu kanıtladı ve o günden bu güne konu hakkında araştırmalar sabırla sürdürülüyor. Kaynak: Hekimce.com   Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuvar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar.Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir.Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney,beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir

http://www.biyologlar.com/gen-terapi

Genlerin Vücuda Sokulma Yöntemleri ve İlk Gen Terapisi

Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanı sıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin de*****z enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığa yol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik deneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inanabiliriz.

http://www.biyologlar.com/genlerin-vucuda-sokulma-yontemleri-ve-ilk-gen-terapisi

Bitkilerde Kök Kanseri Hastalığı

Kök kanseri hastalığını yapan bakteri 0.4-0.8x1.0-3.0 mikron boyutlarında, Gram-negatif olup aside dayanıklı değildir. Optimum gelişme sıcaklığı 25-30 °C, minimum O °C ve maksimum gelişme sıcaklığı ise 37 °C'dir. Bakterinin termal ölüm noktası 50-52 °C'dir. Etmen, toprakta uzun süre yaşayabilmekte ve işlenen topraklarda da virülensini koruyabilmektedir. Alkali topraklarda, hafif asit karakterde olanlara oranla daha çok yayıldığı saptanmıştır. Bakteri bir yara parazitidir. Bitkiye köklerden böceklerin, nematodların ve mekanik işlemler sonucu açılan yaralardan kolayca girerek ur (tümör) oluşturmaktadır. Yaşayış Hastalık meyve ağaçları ile, bazı orman ve park ağaçlarının kök boğazlarında görülür. Asmada çubuklarda ve daha doğrusu kollarda meydana gelen bu hastalık, pancarda yumrularda oluşmaktadır. Hastalığın yerleşim yeri ağaçların kök boğazı olmakla beraber ender olarak kök ve toprak üstü aksamlarında da görülür. İnce ve derin köklerde hastalık hemen hemen görülmez. Kökler kalınlaştıkça ve kök boğazına yaklaştıkça hastalığın bulunma oranı artar. Bakterinin bulunduğu yerdeki parankima hücrelerinin aşırı çoğalmaları sonucu başlayan hastalığın ilk belirtisi küçücük urdur. Oluşan urların yüzeyi düzgün ve yumuşaktır. Ancak ur büyüdükçe dış yüzeyi kurur, esmerleşir ve pürüzlü bir görünüm alır. Ur irileştiği zaman yan kökleri yok eder. Yaşlı urlar parçalanarak dökülür ve toprağa karışırlar. Ölü olduklarından içlerinde bakteri yoktur. Asmada ise belirti, köklerde değil, gövde, kol ve çubuklarda görülür. Asmanın gövde, kol ve çubuklarında yaranın oluşumuna göre meydana gelen urlar farklı görünüm arz ederler. Don çatlakları boyunca oluşan bu kanser yaraları halk arasında ""sıraca"" yada ""uyuz"" adını alır. Fidanlıklarda ise, köklü asma çubuklarının kök boğazında ve köklerinde (fındık ve ceviz büyüklüğünde) tümörler görülür. Tümörler başlangıçta krem renkli olup sonra esmerleşir ve yüzeyleri çatlar , hastalığa şiddetli yakalanan fidanlar iyi gelişemezler. Genç ağaçlar enfeksiyondan çok etkilenirler ve kısa sürede kururlar. Yaşlı ağaçlar ise az ve kalitesiz meyve verirler. Hastalık, bulaşık fidan ve topraklarla yayılmaktadır Kültürel Önlemler Fidanlık veya meyve bahçesi plantasyonu kurulurken ağır ve nemli topraklardan kaçınılmalı, eğer tesis kurulmuşsa drenaj kanalları açılmalıdır. Toprağa fazla çiftlik gübresi vermek yerine kompoze gübre verilmelidir. Aşıda anaç kalem uyumuna dikkat edilmeli, yara yerinden bakteri girişini engellemek için aşı yerleri aşı macunu ile kapatılmalıdır. Toprak altı zararlıları ile mücadele edilmelidir. Kanserli fidanlar yok edilmelidir. Fidanlık kurarken önce fidanlık toprağının bu bakteriyle bulaşık olup olmadığını kontrol etmek gerekir. Bunun için ilkbaharda iyi işlenmiş toprağa 1-2 yaşında kökleri traş edilmiş ve temiz şeftali çöğürleri 1-3 m aralıklarla dikilir. Sonbaharda çöğürler sökülerek köklerde ur olup olmadığı kontrol edilir. Çöğürler bulaşık çıkarsa, bu toprakta fidancılık yapılmamalıdır. Bahçedeki kanserli ağaçlar sökülmeli çukur çevresine 40 cm. derinlik ve 20 cm. genişliğinde tecrit çukuru açılarak içerisi sönmemiş kireçle doldurulmalıdır. Kimyasal Mücadele Meyve ağaçlarındaki kök kanserine karşı, yazın birer hafta ara ile iki operasyonla tümörler bıçakla iyice temizlenerek yara yerine % 5 oranında göztaşı eriyiği ve kuruduktan sonra da nebati katran fırça ile sürülür. Yarısı açılmış kök ve kök boğazı tekrar toprakla kapatılır. Bağlardaki kök kanserine karşı budama işlerinde kullanılacak aletler (% 3 Lizol veya % 10 sodyum hypoklorit) bir dezenfektana batırılmalıdır. Hasattan sonra gövde ve dallardaki tümörler bıçakla iyice temizlendikten sonra % 5 oranında göztaşı eriyiği ve kuruduktan sonra da nebati katran sürülür. - See more at: ziraattube.com/m/137/kok-kanseri-hastali...sthash.JVrmjcw2.dpuf

http://www.biyologlar.com/bitkilerde-kok-kanseri-hastaligi

Doku Mühendisliği ile Yedek Organlar Oluşturma

Dünyada ve ülkemizde, organ yetmezliğinden dolayı hastanelerde tedavi gören ve organ bağışı için sıra bekleyen pek çok hasta bulunmaktadır. Organ naklinin yapılabilmesi için uygun bağışçıların bulunabilmesi çok uzun ve acılı bir süreçtir. Operasyon sonrasında da nakledilen organı vücuda kabul ettirebilmek için yan etkileri kaçınılmaz olan, bağışıklık sistemini zayıflatıcı ilaçlar kullanılır. Son yıllarda yapılan, doku mühendisliği alanındaki bazı çalışmalar organ naklindeki zorlukların aşılması için ümit verici bir hal aldı. Bu çalışmalar neticesinde, yakın zamanda doku mühendisliği çalışmaları ile yapay organlar üretilmesi mümkün olabilir. Doku mühendisliği alanında çok büyük bir önemi olan sağlık ürünlerinin üretilmesi için, doktorlar, kimyagerler, biyologlar ve malzeme mühendisleri ortak çalışmalara imza atıyorlar. Doku mühendisliğinin yaklaşımı, hastaya göre tedavi odaklı olduğu için yan etkilerin mümkün olan en az seviyede olması beklenir. Doktorlar hastalardaki rahatsızlıkları tespit ettikten sonra biyologlara bu sorunun temelinde yatan biyolojik bilgi için danışırlar. Buradan elde edilen bulgularla sorunun ne olduğu ve tedavi için gerekli olan yöntemle ilgili ihtiyaçlar belirlenir. Daha sonra kimyagerler ve malzeme mühendisleri gerekli olan araçları ve ilaçları üretmek için çalışmalar gerçekleştirirler. Geliştirilen araçlar doktorlara iletilir ve hastalıklara çareler bulunmaya çalışılır. Doku mühendisliği, mümkün olan en iyi çareyi bulmak için biyolojik mekanizmanın nasıl çalıştığına, biyolojik etkileşimlere müdahale etmek için nasıl davranmak gerektiğine uzmanlık seviyesinde hakim olmalıdır. Hassas etkileşimlerin en küçük ayrıntılarına kadar öğrenilmesi ve dikkat edilmesi başarıya ulaşmada büyük önem taşımaktadır. Doku mühendisliğinde tedavi için ilk baş vurulan yöntemlerden birisi vücuttaki hasta bölgeye büyüme faktörleri gibi bazı biyo-aktif moleküllerin doğrudan enjekte edilmesidir. Büyüme faktörleri hücre gelişimi ve çeşitlenmesi mekanizmalarında görev yapan doğal proteinlerdir. Büyüme faktörlerinin doku oluşumunda önemli rolü olduğu bilinmektedir. Vücudun farklı bölgelerinde hasarları tamir etmekte farklı büyüme faktörleri görev almaktadır. Örneğin, kemiklerde oluşan kırık ve çatlakların tedavi edilmesinde, kemik hücrelerinin gelişimini sağlamak için kemik morfojenez proteinleri gerekmektedir. Kemikte oluşan hasarın giderilmesinin mümkün olmadığı ya da iyileşmenin çok yavaş olduğu durumlarda, kemik büyüme faktörleri doğrudan hasarlı bölgeye uygulanarak kemik hücrelerinin hasarı tamir etmesi sağlanır. Bazı ciddi rahatsızlıklarda, tedavi için sadece biyo-aktif moleküllerin doğrudan enjeksiyonu yeterli olmayabilir. Bu durumlarda daha etkin bir tedavi için hastadan alınan sağlıklı hücrelerin çoğaltılması yöntemiyle yeni doku oluşumu sağlanır. Hücreler sağlıklı yaşayabilmek için doğal ortamlarına benzeyen yapay bir matris içinde bulunma ihtiyacı hissederler. Bu matris hücrelerin yaşaması için gerekli olan besin, oksijen ve mekanik desteği sağlamalıdır. Bir başka deyişle hücreler ile aynı dili konuşabilecek bir malzeme oluşturulması gerekir. Bu malzemenin tasarımı için en önemli model, doğal hücreler arası ortamdır. Yapay matrisler, hücrelerin yaşamsal faaliyetlerinin devamını sağlamanın yanı sıra hücrelerin çeşitlenmesine ve istenen dokuyu oluşturmasına yardımcı olmalıdır. Doku mühendisliğindeki en önemli konulardan birisi, gerekli yapay matrislerin ne şekilde tasarlanması ve sentezlenmesi gerektiğidir. Matris, hücrelerin rahatça beslenip oksijen almasına, hareket edip çoğalmalarına ve hücreler arası etkileşimin sağlanmasına yardımcı olmalı ve tedavi bittikten sonra doğal yollardan yok edilebilmelidir. Hücrelerin doğal yaşam ortamını oluşturan hücreler arası matristen gerekli olan bilgiler öğrenilmeli ve yapay matrisler için uygulanmalıdır. Doğal hücreler arası matris ile etkileşim halindeki birçok biyo-aktif molekül, hücrelerin yaşaması için çok önemlidir. Örneğin, kolajen ismindeki proteinler tutucu proteinler aracılığı ile hücrelere mekanik destek verirler. Hücrelerin üzerindeki integrin sınıfı proteinler de kolajenlere tutunmak için kullanılırlar. Doğal hücreler arası matris, içerisinde büyüme faktörleri de barındırır. Bazı büyüme faktörlerinin yardımı ile damar oluşumu sağlanarak hücrelere besin ve oksijen taşınması mümkün olur. Özet olarak yapay matrisler tasarlanırken birçok biyo-aktif molekülün doğru ve yerinde kullanılması gerekmektedir. Doku mühendisliğinde kullanılan matrisler bazı doğal veya sentetik malzemelerden yapılmaktadır. Bu matrisler en azından herhangi bir yan etkisi olmayan ve hücrelerin yaşamasına engel olmayan ve görevi bittikten sonra doğal yollardan uzaklaştırılabilen malzemeler olmalıdırlar. Doğal sistemlerden elde edilen matrislerden bir kısmı kolajen, kitozan ve glikozaminoglikenlerden oluşmaktadır. En çok kullanılan sentetik matrislerin başında da poli laktik asit, poli glikolik asit, poli kapralakton ve bir araya gelerek nanofiberler oluşturan moleküller gelmektedir. Doğal polimerler kolayca elde edilebilir olmasına rağmen, saflaştırma sonrasında içlerinde kalan hayvanlardan veya mikroorganizmalardan gelebilecek biyolojik kirlilik büyük tehlike oluşturmaktadır. Yapay polimerler, genelde kirlilikten kurtulmaya yardımcı olmakla beraber kimyasal tanımlanma, işlenebilirlik ve biyolojik aktiflik açılarından sorunludurlar. Matris üretiminde kullanılabilecek en ideal malzemelerden birisi bizim daha önce araştırmalarımızda geliştirdiğimiz programlanabilen moleküllerin oluşturduğu nanofiberlerdir. Bu çeşit malzeme kullanılarak yapılan matrisler biyolojik olarak aktif, zararsız ve tanımlanabilen küçük moleküllerden oluşmaktadır. Peptit içeren moleküller bir araya gelerek nanometre ölçeğinde kolajen nanofiberlerine benzeyen yapılar oluşturabilmektedir. Bu nanofiberler, üç boyutlu bir ortamda suyu hapsedebildikleri için hücrelerin yaşayabileceği uygun ortamlarda önemli biyoaktif molekülleri taşıyabilirler. Peptitlerden üretildikleri için de zamanla vücutta bulunan enzimler tarafından eritilirler. Peptitler içeren nanoyapıların oluşturduğu ortam protein etkileşimleri için biyo-aktif gruplar ile tasarlanabilir ve iç bölümde bazı ilaçlar kontrollü salınım için taşınabilir. Farklı kimyasal ve biyolojik grupların bu nanoyapılar üzerinde kullanılabilmesi ile çok farklı doku mühendisliği uygulamaları mümkün olmaktadır. Biyo-aktif peptidik nanoyapıların omurilik felci tedavisinde bir farede sinir hücreleri geliştirilmesiyle ve bir tavşanın kulağındaki yaraların damarlaşma sağlanarak hızlı iyileştirilmesi için nasıl kullanıldıkları gösterilmektedir. Bu malzemelerin yakın zamanda ilaç olarak üretilebilmesi için gerekli klinik deneyler halen devam etmektedir. Doku mühendisliği, kanser tedavisinde de yardımcı olabilir. Kanserli dokuların cerrahi yöntemlerle uzaklaştırılmaları sonrasında oluşan boşluğun, aktif doğal doku ile doldurulması gerekmektedir. Şu andaki cerrahi tekniklerle vücudun bir bölgesinden diğer bölgesine doku nakli yapılması mümkün olsa da nakledilen dokunun beklenen görevleri yerine getirmesi zordur. Bu yüzden uzaklaştırılan dokunun yerine benzer bir doku üretme ihtiyacı vardır. Örneğin, cerrahi yöntemlerle alınan bir dil parçasının yerine herhangi bir deri dokusu yerleştirilmesi çare olamaz. Tat alma duygusunun tekrar gelişebilmesi için doğal dil dokusunun üretilmesine ihtiyaç vardır. Kök hücre çalışmalarında yapılan araştırmaların sonuçlarının ortaya çıkması ile doku mühendisliğinin uygulama alanlarının ne kadar geniş olduğu görülmektedir. Kök hücrelerinin birçok yeni doku ve organı üretmek için kullanılması planlanmaktadır. Özellikle tedavisi henüz mümkün olmayan felç ve kalp krizi gibi durumlarda yeni tedavi yöntemlerine ihtiyaç vardır. Kalp krizi geçiren hastaların kalbinde oluşan zararın tedavi edilmesi en önemli uygulamaların başında gelmektedir. Kalp hücrelerinin çoğalmayan hücreler olması kök hücrelerin kullanılmasını gerektirmektedir. Yeni üretilecek yapay matrisler, biyoaktif moleküller ve hücrelerin kullanılmasıyla, organ yetmezliği çeken hastaların kendi organlarının yeniden üretilmesi, yakın zamanda mümkün olacaktır. Hayat kalitesinin yükseltilmesi için bu tür biyoteknoloji çalışmaları büyük önem taşımaktadır. Kısa vadede doku mühendisliği çalışmalarıyla bulunacak çareler ile kemik kırıklarının, ciddi yanıkların, felçlerin, diyabetik hastaların ve kalp krizlerinin tedavisi gerçekleştirilebilecektir.

http://www.biyologlar.com/doku-muhendisligi-ile-yedek-organlar-olusturma

DNA Onarımı ve Polimorfizm

DNA onarımında görev alan OGG1, ERCC1, XRCC1, XRCC2, XRCC3, XPC, XPD, XPF, BRCA2, MRE11, NBS1, Ku70/80, LIG4, RAD…vb. genlerin polimorfizmleri, proteinlerin işlevini ve bireylerin hasarlı DNA’yı onarma kapasitesini değiştirebilmektedir. Eksik onarım kapasitesi de genetik kararsızlığa ve dolayısıyla kanser oluşumuna neden olabilmektedir69. Ancak, DNA onarım genlerindeki polimorfizmler tek başlarına kanser risk çeşitliliğini açıklamak için yeterli değildir. Kanserle ilişkili somatik mutasyonların birikimi sadece DNA onarımındaki kusurdan değil, hücre ölüm mekanizmasının hasarlı hücreleri elimine etme yeteneğinin azalmasından da kaynaklanır70. DNA onarımı, genomik kararsızlık ve apoptozis birbirleriyle etkileşen olaylar olduğundan, her biri kanserin patofizyolojisinde çok önemli role sahiptir. Bir çalışmada DNA onarım mekanizmalarından (işlergelerinden) biri olan nükleotit kesme-çıkarma onarımında görev alan XPC (Asp312Asn) ve XPD (Lys751Gln) genlerinin polimorfizmleri ile akciğer kanseri arasında bir ilişki bulunurken, baz kesme-çıkarma ve çift zincir kırıklarının tamirlerinde görev alan XRCC1 (Arg399Gln) ve XRCC3 (Thr241Met) gen polimorfizmleri ile hastalık arasında ilişki bulunmamıştır71. Diğer bir çalışmada, XPD kodon 312 heterozigot ve homozigot A allelinin prostat kanseri için belirteç olabileceği önerilmiştir72. Bir başka çalışmada, XRCC1 ve XPD genlerindeki  polimorfizmlerin kolorektal kanser ile ilişkili olduğu bulunmuştur73. 507 meme kanserli hastada XRCC3 Thr241Met polimorfizmini araştıran bir çalışmada, 241Met taşıyıcılarında meme kanserine yakalanma riskinde artış olduğu belirlenmiştir74. Yeni tanı almış mesane kanserli 215 hasta ile yapılan bir araştırmada, XPD 156-22541C>A ve 751-35931A>C polimorfizmlerinin mesane kanserinin etiyolojisinde önemli rolü olduğu ortaya konmuştur75. Hepatosellüler karsinomlu hastalarda, XRCC1 AG ve GG genotiplerinin homozigot olan AA genotipli hastalara göre, p53 geninin 249. kodonundaki (hot spot) mutasyon frekansında artışa neden olabileceği gösterilmiştir76. Diğer bir çalışmada da, XPC 499val alleli taşıyıcılarının, nazofarengeal karsinoma yakalanma riskinde artış olduğu belirlenmiştir77. RAD51 135G>C polimorfizminin özellikle 50 yaş altındaki kadınlarda ailesel meme kanseri riskini arttırabileceği saptanmıştır78. DNA onarım genlerindeki genetik polimorfizmlerin kanser gelişimde etkin rolü olduğu bilinmesine rağmen, bu polimorfizmlerin infertiliteyi de etkileyebileceğine ilişkin bilgiler de vardır. Yapılan bir çalışmada, XPD 751 glutamin allelinin azospermi için risk alleli olduğu ve XRCC1 194 Arg/Arg ve 399 Arg/Arg genotipleri ile beraber değerlendirildiğinde de azospermiyi 5.100 - 3.064 kat arttırdığı belirlenmiştir79.

http://www.biyologlar.com/dna-onarimi-ve-polimorfizm

GENETİK VE KANSER

İnsan yaşamı boyunca çevresi ile sürekli olarak ilişki içindedir. Bu uyum devam ede geldiği sürece de ayakta kalabilmektedir. Embriyo döneminde anne karnında kan dolaşımı yolu ile başlayan etkileşim, daha sonraları yerini daha geniş alanlara bırakır. Beslenme,solunum ve sosyal ilişkiler gibi geniş çerçevede devam eden etkileşim, ölüm zamanı gelinceye kadar devam eder. Etkileşimde, uyumun uyumsuzluğa dönüşümü ölüm olarak adlandırılır. Hücre, çevresi ile ilişkisini hücre zarı vasıtasıyla sağlar. Hücreler; doğrudan temas, salgıladıkları kimyasal maddeler (hormonlar,enzimler) ya da elektriksel impulslar yoluyla, komşu hücreler veya uzaktaki hücre ve hücre gruplarıyla iletişim halindedir. Hücre zarlarına yerleşmiş, protein yapılı alıcılar, gelen mesajları hücrelere iletirler. Hücrenin bir nevi anten vazifesini gören zardaki alıcı proteinler (reseptörler) ile gelen mesajlar, hücre tarafından değerlendirilir, ardından kendine uygun olan davranışı sergiler. Hücrenin çevresi ile ilişkisi, hem çevrede ortaya çıkan değişimlere ayak uydurması hem de günlük yaşamı yönüyle gereklidir. Embriyonik gelişim süresince farklılaşmada rol oynayan faktörlerden birisi, kontrollü hücre ölümleridir. Apoptosis olarak adlandırılan önceden programlanmış ölüm işlevi, bir hücreden bir bedenin oluşturulması (gelişim) noktasında temeldir. Sürekli düzenlenmesi gereken çoğalma-farklılaşma-ölüm programları, hücrenin kaderini belirleyen genlerin ürünü olan proteinler tarafından organize edilir. Sayıları yüzün üstünde olan proteinler, hücrenin çoğalmasını durdurup, bir çeşit kırmızı ışık görevi yaparak onu ölüme sürüklerler. Bu ölüm, insandaki hücre sayısının dengesinin sağlanması noktasında da önem arz etmektedir. Her hücrenin bünyesinde nasıl çoğal-çoğalma/ proteinini sentezle-sentezleme gibi hassas dengeler mevcutsa, aynı şekilde öl-yaşa dengesini ayarlayan bir denge de mevcuttur. Hücre her an ölmeye hazır durumda beklemektedir. Bir grup gen, hücreye büyüyüp bölünmesi gerektiğini söylerken, diğer bir grup gen de artık büyümenin yeterli olduğunu ve hücrenin büyümesini durdurarak kendi işlevini yerine getirmesini söylüyor. Kanser büyük ölçüde bu iki grup gen arasında dengesizlikten oluyor. Büyümeyi söyleyen genler normalden fazla çalışırlarsa veya büyümeyi frenleyen genler gerekenden az çalışır ya da herhangi bir nedenden ötürü bozulursa, hücre devamlı bölünüp büyüyor, yani kanserli hücre haline geliyor. Bugüne kadar bu görevi icra eden on kadar gen keşfedilmiştir. Bu şekildeki hücre ölümlerine hücre intiharı programı denilir. Ölüm programı uygulanan hücre, önce içe doğru büzülür daha sonra da hücre çekirdeğinde bulunan DNA zincirini parçalar. Parçalanan hücre, komşu hücreler ya da makrofajlar (özel parçalayıcı hücreler) tarafından fagosite edilir. Son araştırmalar ışığında P53 geninin, kanserin oluşumunda durdurucu bir role sahip olduğunu söyleyebiliyoruz. Sigaranın kanser yapmasının en önemli mekanizmalarından biri, dumanındaki kimyasalların P53’ü çalışmaz hale getirmesidir. Kanserde gen tedavisinin amacı, bozulan bu dengeyi yerine koymak yani çalışmayarak kanserleşmeye engel olmayan genleri tekrar çalışır hale getirmek. Bilinen bütün kanser olgularının ortak bir yanı ya da ortak bir nedeni vardır: İnsan bedenini oluşturan sayısız hücrenin her birinin çekirdeğinde değerli bir hazine gibi saklanan deoksiribonükleik asit (DNA) zincirinin kimyasal yapısının değişmesi, daha bilimsel bir deyimle DNA'nın mutasyona uğramasıdır. Kanser hastalığının başlangıcı, apoptosis işlevini var kılan genlerin, mutasyon neticesinde bozulması (mutasyona uğraması) esasına dayanmaktadır. Bazı kişilerde ise bu, kalıtım yolu ile geçen bir hastalık olarak kendini göstermektedir. Aynı genlerin yapısının bozulmasına yol açan kimyasal maddeler kanser hücrelerinin oluşumuna sebep olur. Yaşlanma ile hücrelerde biriken toksik maddeler de zamanla aynı genleri tahrip edip hücreleri tümör hücrelerine dönüştürebilmektedir. Kansere yol açan bozuklukları taşıyan genler ilk bulunduğu zaman onkogenler (kanser genleri) diye adlandırılmıştı. Onkogenler, hücre çoğalmasına itici görev yapan genlerdir. Onkogenlerin aslında proto-onkogenlerin (onkogen olmaya aday gen) mutasyona uğraması sonucu ortaya çıktığı fikri, yetmişli yılların sonunda sahiplerine Nobel Ödülünü getirmiş ve bu buluş kanser araştırmalarında bir dönüm noktası oluşturmuştur. Bu genlerin yanı sıra proto-onkogenlerin tersi işlevi ortaya koyan genler, hücrenin tümör hücresi olmasına mani olur. Bu gen gruplarının etkinliklerini kaybetmesi de kansere yol açar. Kanser hücrelerinin diğer tüm hücrelerden farkı, bölünmeyi durdurucu sinyallerin hücreler arası iletişimle iletilememesidir. Bölünmeyi durdurucu görevi yapan genlerin, protein sentezi sonucunda oluşan kimyasal sinyalleri, hücreler arası mevcut bağlar (neksus) aracılığı ile tüm hücrelere yayılması gerekir. Kanser hücrelerinde hücrelerin temas noktaları olan hücre zarlarında iletişimi sağlayacak köprüler mevcut değildir. Bu nedenle bir hücredeki sinyalin diğer hücreye geçişi mümkün olamamaktadır. Bu da durmaksızın hücrelerin kontrolsüzce üremesi anlamına gelmektedir. İkinci sınıf kanser tipi de çoğalmayı durdurucu görevi yapan genlerdeki mutasyonlar, etkinlikleri az ya da çok değişmiş proteinlerin yapımına neden olur. Genlerdeki bozukluklar, genellikle gen kaybı biçiminde gerçekleşir. Bu durumda protein sentezi durma noktasına gelir. Bu durum da hücrenin komşu veya uzaktaki her bir hücre ile iletişiminin kesilmesi olarak değerlendirilebilir. DNA sentezi ya da protein sentezi aşamalarını denetleyen ve onaran mekanizmalar mevcuttur. Mutasyonların sonucunda, geni şifreleyen çift zincirli DNA molekülünün bir sarmalında gelişen değişiklikler, onarım mekanizmasıyla orijinaline sadık kalınarak tamir edilir. Mutasyonların etkisi beklenenden daha fazla tahrip edici olması söz konusu olduğunda, tamir mekanizması DNA zincirinde aslına yakın düzeltmeler gerçekleştirir. Duplikasyon (parça eksilmesi) şeklinde gelişen mutasyonların onarımı ise mümkün olamamaktadır. RNA moleküllerinin tek zincirli olması dolayısıyla mevcut onarım sistemlerin aslına uygun düzeltme yapabilmesi mümkün değildir. Hücre çekirdeğindeki ana DNA’dan aldığı bilgiyi ribozoma taşıyan m-RNA, (mesaj ileten) mutasyonlara son derece açıktır. Oluşabilecek mutant m RNA'lar, sentezi durdurucu ya da yönünü değiştirici etkiler oluşturur. Kanserli hücrelerde ortaya çıkan mutasyonlar rasgele değildir. Özellikle tamir mekanizmalarında, farklılaşmada, programlı hücre ölümü ve hücre çoğalmasında rol alan proteinleri şifreleyen genlerde mutasyonlar gelişir. 2003 yılında tamamlanması beklenen insan genomu projesi,son verilere göre sayıları 30-40 bin kadar olan genin DNA dizilerinin tamamının belirlenmesini amaçlamaktadır. Bunu takip eden evrede , bu genlerin hangilerinin hangi tip insan hastalığında rol aldığının saptanması gündeme gelecektir. Onkoloji açısından bu çalışmalar hastalık etiyolojisi ile genetik mutasyonlar ilişkilerinin belirlenmesi, hastalığın tedavisinde gen tedavisi dahil, yeni tedavi yöntemlerinin denenmesi gibi konuları karşımıza çıkaracaktır. KAYNAK: canlibilimi.com

http://www.biyologlar.com/genetik-ve-kanser

CANLILARIN SINIFLANDIRILMASI

Canlıları, benzerlik ve akrabalık derecelerine göre gruplara ayırmaya sınıflandırma denir. 2 tiptir.a) Suni b) Doğal 1)Suni (Ampirik) Sınıflandırma Canlıların dış görünüşlerine ve yaşadığı ortama bakılarak yapılan sınıflandırmadır. Aristo tarafından yapılmıştır. Canlılar Þ Bitkiler Þ a) Otlar b) Çalılar c) Ağaçlar Þ Hayvanlar Þ a) Havada b) Karada c) Suda Yaşayanlar Yaşayanlar Yaşayanlar Dış görünüş dikkate alındığından nitel gözlemlere dayalı bir sınıflandırmadır. Suni sınıflandırmada analog organlar dikkate alınır. Analog organlar; yapıları farklı ama görevleri (yaptıkları işleri) aynı olan organlardır.Analog organları analoji inceler. Örnek : Kuşun kanadı – Arı kanadı – Sinek kanadı 2)Doğal (Filogenetik) Sınıflandırma Canlıların organ yapılarının benzerliğine, dolayısıyla evrimsel akrabalıklarına bakılarak yapılan sınıflandırmadır. Doğal sınıflandırmada homolog organlar dikkate alınır. Homolog organlar; yapıları aynı ama görevleri farklı olan organlardır.Homolog organları homoloji inceler. Örnek : İnsanın kolu – Kuşun kanadı – Balinanın yüzgeci Organları homolog olan canlılar akrabadırlar.Akraba canlıların proteinlerindeki amino asit dizilişleri, embriyonik gelişim evreleri, boşaltım artıkları da benzerdir. Nicel gözlemlere dayanır. Canlıların sınıflandırılmasında temel alınan bazı özellikler : Hücre tipi ve sayısı (Ökaryot – Prokaryot) (Hücresel organizasyon) Embriyo tabakalarının sayısı (Endoderm – Mezoderm – Ektoderm) Embriyonik örtülerin bulunuşu (Vitellus – Koryon – Amniyon – Allontois) Vücut boşluğu tipleri (Gastrovasküler – Sölom) Simetri şekilleri (Bileteral – Işınsal) Vücutta segmentlerin bulunuşu (Benzer parça) İskeletin bulunuşu (varsa kıkırdak veya kemik) Azotlu boşaltım maddelerinin benzerliği (NH3 – Üre – Ürik Asit) DNA’ daki baz dizilişi Sistemlerin varlığı (Sindirim, solunum, dolaşım vs.) SINIFLANDIRMA BİRİMLERİ Sınıflandırmanın en küçük birimi türdür. Ý Ý Ý Ý Ý Ý Birey sayısı artar. Alem Regnum Ý Ý Ý Ý Ý Ý Benzerlik artar. Hayvanlar Şube Filum Omurgalılar Sınıf Clasis Memeliler Takım Ordo Etçiller Aile Familya Kedigiller Cins Genus Kedi Tür Species Ev Kedisi İlk tür kavramını John Ray kullanmıştır.Ray’ e göre ortak ataları olan benzer bireyler topluluğuna tür denir. Bugünkü anlamda tür; ortak bir atadan gelen, yapı ve görev bakımından benzer organlara sahip, yalnızca kendi aralarında üreyebilen ve kısır olmayan döller meydana getiren canlıların oluşturduğu topluluktur. At ile eşek birbiriyle çiftleşebilmesine rağmen yavruları olan katırın kısır olmasından dolayı farklı tür olarak alınır. Ayrıca katır tür olmadığından dolayı sistematikte yeri yoktur. Kurt ile köpeğin çiftleşmesinden oluşan kurt köpeği üreyebildiği halde kurt ve köpek farklı türdendir. Bilimsel anlamda ilk sınıflandırmayı Carl Linne yapmıştır. Aynı türden olan canlıların; kromozom sayıları, yaşama ortamları, boşaltım ürünleri, embriyonik gelişimleri aynıdır.Protein yapıları ise bir başka canlıya göre birbirine daha çok benzer. Aynı türün bütün bireylerinin kromozom sayısı aynıdır..Ama kromozom sayısı ayı olan iki canlı aynı türden olmayabilir. Örnek : İnsan=46 kromozom ; Moli balığı=46 kromozom Türler yaşadıkları ortamlara adapte olduklarından çeşitlilik gösterebilir. Örnek : Irklar Bir canlının embriyonik gelişimi sırasında önce şube özellikleri, en son ise tür özellikleri ortaya çıkar. Türler iki kelimeyle, diğer birimler tek kelimeyle adlandırılırlar. Tür isminde ilk kelime cins ismi olup, ilk harfi büyük yazılır.İkinci isim ise o türün tamamlayıcısıdır. Felis domesticus Þ Ev kedisi Cins adı Tanımlayıcı ad CANLILAR PROKARYOTLAR ÖKARYOTLAR Elektron mikroskobunun geliştirilmesiyle birlikte biyologlar hücre içi yapıları inceleme fırsatı buldular. Bu araştırmalar sonunda canlılar aleminde iki temel hücre tipi olduğu ortaya çıktı: prokaryotik ve ökaryotik hücre. Yapısal olarak daha basit olan prokaryotik hücre yapısı sadece bakterilerde bulunur. Diğer bütün organizmalar yani protista fungi (mantarlar) bitkiler ve hayvanlar daha karmaşık olan ökaryotik hücre yapısına sahiptir. Her iki hücre tipinde ortak olan özellikler: * Benzer yapıda hücre zarı. * Genetik bilginin DNA aracılığıyla kodlanması ve aktarılması. * Transkripsiyon ve translasyon mekanizmalarının ve ribozomların benzer olması. * Ortak aaaabolik yolların bulunması. (ör: glikoliz) * Kimyasal enerjiyi ATP olarak depolamak için kullanılan mekanizmanın benzer olması (prokaryotların hücre zarında ökaryotların mitokondri zarında). * Benzer fotosenaaa mekanizmaları. * Zar proteinlerini senaaaleme ve hücre zarına yerleştirmede kullanılan mekanizmanın benzerliği. * Benzer yapıda proteazomlar (protein sindiren yapılar). Monera Alemi Protistalar Fungiler Bitkiler Hayvanlar A)PROKARYOT CANLILAR (Monera Alemi) Tamamı tek hücreli, basit yapılı canlılardır. Çekirdekleri ve zarla çevrili organelleri yoktur. Protistlerden bu yönleriyle ayrılırlar. 1) Bakteriler 2) Mavi-Yeşil algler 3) Virüsler 1)Bakteriler Ribozom hariç organelleri yoktur. Bütün bakterilerde hücre zarı ve hücre çeperi bulunur. Çeperin yapısında karbonhidrat, protein ve yağ bulunur.Bazı bakterilerde ise çepere ek olarak polisakkaritlerden meydana gelmiş kapsül bulunur. Hücre zarından oluşan mesozomları vardır.Mesozom, solunum enzimlerinin kullanılarak enerjinin üretildiği yerdir. Fotosentez yapan bakterilerde hücre zarının sitoplazma içinde kıvrımlar yapmasıyla oluşan tilakoidler ve bunların içinde de klorofil bulunur. Kalıtım maddesi DNA’ dır ve halkasaldır.Proteinle kaplı değildir. Her yerde yaşayabilirler.En çok et suyu ve ağarlı besin ortamlarında çoğalırlar. Depo maddesi glikojendir. Şekillerine göre; küre, çubuk, virgül, spiral Gram boyasına göre; gram(+) , gram(-) Solunumlarına göre; Aeroblar, Anaeroblar, Fakültatifler Beslenmelerine göre; a)Saprofitler : Organik maddeleri inorganik maddelere dönüştürürler.Sonuçta besin ve enerji elde edilir.Tabiattaki C, P ve N döngüsünde görevlidirler.Ensim sistemleri iyi gelişmiştir. b)Parazitler : Sindirim enzimleri olmadığı için başka bir canlıya ihtiyaç duyarlar. Hastalık yapanlarına patojen bakteriler denir. c)Fotosentetikler : Sitoplazmalarında serbest klorofil taşırlar.Hidrojen kaynağı olarak H2O, H2S ve H2 gibi maddeleri kullanırlar.Aerob, Anaerob ya da fakültatif olabilirler. d)Kemosentetikler : Organik maddelerin sentezi için gerekli olan enerjiyi inorganik maddelerin oksidasyonundan (oksitlenmesinden) temin eder. Işık ve klorofil gerekli değildir.Nitrit, nitrat, demir ve kükürt bakterileri kemosentetiktirler. Kemosentez sonucu: 1) Bazı zararlı maddeler ortadan kaldırılır. 2) Bitkilerin alabileceği tuzlar oluşturulur. 3) Kimyasal enerji kazanılır. 4) Organik besin sentezlenir. Üremelerine göre ; a)Bölünerek : Bütün bakterilerin esas üreme şeklidir.Amitoz şeklinde uygun bir ortamda 20 dakikada bir bölünürler. b)Sporla : Bazı bakteriler ortam şartları bozulunca endospor oluştururlar.Endospor kalıtım materyallerinin çok az bir sitoplazmayla beraber, sert bir çeperle çevrilmiş halidir. Endosporlarda metabolik faaliyetler minimum seviyededir. c)Konjugasyon : DNA yapısı farklı iki bakteri yan yana gelerek aralarında geçici bir zardan köprü oluştururlar.Bu köprü aracılığı ile DNA parçaları değiştirilir. Bakterilerin çoğu tüketicidir. 2)Mavi-Yeşil Algler Fotosentez yaparlar ama kloroplastları yoktur. Tatlı su birikintilerinde ve göllerde yaşarlar. Sitoplazmalarında yeşil renkli klorofil pigmenti ve mavi renkli fikosiyanin pigmenti bulunur. Yapışkan, jelatinimsi bir dış kılıf ile örtülüdür. 3)Virüsler Protein kılıf ve bir nükleik asitten meydana gelir.Bu yapıya nükleoprotein denir. Virüsün protein kılıfına kapsid, kılıfı oluşturan parçalara kapsomer, yönetici molekülüne ise genom denir. Sitoplazmaları yoktur. Enzim sistemleri olmadığından hücre içi mecburi parazittirler. Enzim sistemleri olmadığından antibiyotiklerden etkilenmezler. En küçük organizmalardır. Hücre dışında kristal yapıda bulunurlar. Özel dokularda çoğalırlar.Her virüsün çoğaldığı belli bir hücre çeşidi vardır. Bunun sebebi ise hücre zarındaki glikoproteinlerin virüslerle birleşebilme özelliği olmasındandır. Virüsler yüksek sıcaklık, ortam pH ı ve radyoaktif ışınlardan etkilenir ve ölürler. 3 tiptir. a)Bitkisel Virüsler : Kalıtım materyali hepsinde RNA dır. Tütün, patates, marul, mozaik virüsleri örnek olarak verilebilir. b)Hayvansal virüsler : Kalıtım materyali bazılarında DNA, bazılarında ise RNA dır.Grip, kızamık, kabakulak, suçiçeği, sarı humma, çocuk felci, uçuklar, siğiller ve aids örnek verilebilir. c)Bakteriyofaj : Kalıtım maddesi DNA’ dır. Sarı humma virüsleri karaciğerde; kuduz virüsleri beyin ve omurilikte ; çiçek, kızamık ve siğil virüsleri deride çoğalırlar. Hücreler virüslere karşı interferon salgılar.İnterferon, hücrelerin virüslere karşı ürettikleri bağışıklık maddesidir.Bu nedenle kabakulak, kızamık gibi hastalıkları geçirenler kolay kolay bu hastalıklara yakalanmazlar. Retrovirüsler; RNA bulundururlar.Hücre içine girdiklerinde önce özel bir enzimle (Reverztranskriptoz) RNA’ yı çift zincirli DNA’ ya dönüştürür.Sonra ise hücre DNA’ sını ele geçirerek işini yaptırır ve hücrenin kanserli hücreye dönmesine sebep olur. Canlı bir hücreye giren virüs şu etkilerden birini gerçekleştirir. Hücre içinde çoğalarak hücrenin parçalanmasına sebep olmasına lizis denir. Hücrenin DNA sına yapışarak hücrenin şeklinin değişmesine sebep olmasına transformasyon denir. Hücrenin aşırı ve düzensiz bir şekilde çoğalmasına sebep olmasına reprodüksiyon denir. Virüsün canlılık özellikleri Yönetici molekül taşırlar. Çoğalırlar. Enzim bulundururlar. Özel protein yapıları vardır. Virüsün cansızlık özellikleri Kristalleşirler. Sitoplazmaları yoktur. Hücre zarı ve ribozomları yoktur. Metabolik reaksiyonları yapamazlar.

http://www.biyologlar.com/canlilarin-siniflandirilmasi

FREE PSA

Örnek Cinsi : Serum Örnek Miktari : 0.5 mL (0.3 mL) Metod : ECLIA Genel Bilgiler : Serbest PSA düzeylerini ifade eder. Çalismalar prostatin iyi huylu ve kötü huylu hastaliklarinin ayriminda % PSA oranlarinin kullanilabilecegini göstermistir. Kanserli hastalarda bu oran daha düsük saptanmistir. Tedavi gören hastalarda FPSA / TPSA oranlarinin klinik faydasi olmamaktadir.

http://www.biyologlar.com/free-psa

Gen Nedir? Görevleri nelerdir ? Gen terapisi Nedir?

Gen Nedir? Görevleri nelerdir ? Gen terapisi Nedir?

Gen DNA zincirindeki belli bir uzunluktaki birimdir. Kromozom DNA'nın özel bir şekilde paketlenmesi sonucu ortaya çıktığına göre her kromozomda çok sayıda gen var demektir. Her bir gen diğerinden farklı bir şifre içerir ve farklı bir proteini kodlar. Eğer vücutta bir genin kodladığı proteine gereksinim varsa o gen aktif hale geçerek üzerindeki şifre, haberci RNA adı verilen bir yapı şeklinde kopyalanır. Bu yapı hücrenin sitoplazmasındaki ilgili birimlere gelerek kalıp vazifesi görür ve o proteinin yapımı sağlanır. a) Vücutta bulunan hücrelerin hepsinde aynı genler var mıdır? Her gen her hücrede vardır. Ancak hücrenin özelliğine göre bazı genler bazı hücrelerde çalışmaz yanı atıl durumdadır. Örneğin tiroit hücresinde hormon yapımını kontrol eden gen, mide hücresinde de vardır ancak işlev görmemektedir. Zaten aynı genleri çalışan hücreler bir araya gelerek dokuları oluştururlar. Diğer yandan bazı genler ortak gendir ve her hücrede aynı işlevlere sahiptir. b) Genlerin görevi nedir? Genler içerdikleri şifreler dolayısıyla vücuttaki her türlü olayı uzaktan kumanda sistemi sayılabilecek bir duyarlılıkla kontrol ederler. Bazı genler vücuda gerekli kimyasal yapıların ortaya çıkmasını sağlarken bazı genler diğer genler üzerinde düzenleyici olarak şifrelenmiştir. Bu genlerin çalışabilmesi için bir uyarana gereksinimleri vardır. Vücudun tiroit hormonuna olan gereksinimi artar yada herhangi bir nedenle kanda tiroit hormonlarının miktarı azalırsa önce beyinde bulunan hipofizdeki ilgili gen, TSH hormonunun yapımını sağlar bu hormon kan yoluyla tiroit hücresine ulaşır ve hücrenin zarına yapışarak çekirdekteki hormon yapımını sağlayacak olan genlere mesaj iletir. Bu mesajı iletecek olan kimyasal yapılar da başka bir gen tarafından yaptırılmakta ve hücre içindeki miktarı düzenlenmektedir. Çekirdekte bu mesajı alan gen tiroit hormonlarını yaptırmak üzere gerekli şifreyi RNA adı verilen bir haberci ile hücrenin sitoplazmasına gönderir ve hormon yapımı başlar. c) Genlerin işlevinde ne gibi değişiklikler olabilir? Herhangi bir nedenle yapısı değişen gen, ya fonksiyon göremez yani devre dışı kalır,ya da aşırı fonksiyon görmeye başlar. Her iki halde de genin kontrol ettiği işlevlerde bozulma ortaya çıkar. Örneğin kan şekerini kontrol eden insülinin yapımını sağlayan gende fonksiyon kaybettirici bir değişiklik olursa insülin yapımı azalır ve bireyde şeker hastalığı ortaya çıkar. d) Hücre bölünmesi nedir ? Ana hücreden yavru hücreye genetik şifre nasıl taşınmaktadır? Canlılar türlerini devam ettirebilmek veya hasara uğramış bölümlerini tamir edebilmek için hücresel seviyede bölünmeye gereksinim duyarlar. Bunun için genetik şifrenin aynısının yavru hücrelere aktarılması gerekir. Örneğin hormon yapımını da artırmak için bir tiroit hücresinin bölünmesi gereksin. Bu gereksinim ortaya çıkınca büyüme faktörlerinden bir kısmı ve TSH hormonu tiroit hücre zarına yapışır ve çekirdeğe çeşitli proteinler aracılığıyla bölünme işleminin başlatılması için sinyal gönderir. Bu sinyali alan özel bir gen aktive olarak protein üretir ve bu protein başka bir geni uyararak bölünme işlemini başlatır. Bunun için önce çekirdekteki şifreleri taşıyan DNA'nın bir eşinin yapılması gerekir. Enzim adı verilen özel proteinler daha önce DNA'nın yapısında olduğu belirtilen şeker,baz ve fosfat birimlerini kopyalama adı verilen bir işlemle orijinal DNA'daki sıraya göre dizmeye başlar ve işlem bittikten sonra birbirinin tamamen benzeri iki ayrı DNA ortaya çıkar. Eğer kopyalama sırasında yanlış bir dizilim olursa başka bir gen devreye girerek bunu düzeltmeye çalışır, düzeltmezse başka bir gen devreye girerek bölünme işlemini durdurur böylece yanlış genetik şifrenin yeni oluşacak hücrelere geçmesi önlenir. Şimdi kopyalama işleminin doğru yapıldığını varsayalım ve gelişmeleri izleyelim. Artık çekirdekte birbirinin tamamen benzeri olan iki DNA vardır ve bölünme işlemini durduracak bir emir gelmemişse DNA' lar daha öncede değinildiği gibi paketlenerek 46 çift kromozom haline döner. Diğer bir deyişle birbirinin aynısı olan 23 çift iki takım kromozom ortaya çıkar. Bu devreden itibaren 23 çift kromozom hücrenin bir ucuna doğru giderken diğer 23 çift kromozom diğer ucu gitmeye başlar ve hücre ortadan boğumlanıp her birini çevreleyen yeni zarla birlikte özellikleri tamamen aynı olan iki ayrı hücre ortaya çıkar. e) Gen Terapisi Nedir? Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. 1- Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikro parçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. 2- Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. 3- Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. 4- İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. 5-Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığa yol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. 6-Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik deneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inebiliriz. f) Genomun Getirdikleri Teknoloji insan bedenine girdi. Bunu normal kabul edip direnç göstermemekte yarar var. Belki ileride bambaşka şeyler gelişecek. Ama bugünlerde önemli bir buluşun heyecanı içinde yaşıyoruz. Dünyanın en gelişmiş altı ülkesinde bulunan 16 laboratuarda çalışan 1190 uzmanın 13 yıldır peşinde koştuğu genom projesinin tamamlandığı bildirilmekte ve bu projenin sonuçlanması ile gizli kalan insan genlerinin tümünün deşifre olduğu açıklanmaktadır. Basit anlamda bir tohum düşünün ektiğiniz zaman nasıl bir fidana sahip olursunuz bunun bilincindesinizdir. Yalnız bu kez genetik özelliklerin deşifre edilmesiyle tüm ayrıntılarla fidanın enini ,boyunu ,yapraklarının adedini ,kıvrımlarının biçimini, kaç dalı olacağını, her bir dalındaki yaprak sayısını bilmek mümkün. Ayrıca, o tohumda beğenmediğiniz yönlerin tespiti ile gerekli mutasyonla istediğiniz, arzu ettiğiniz şekilde yeşermesini de sağlayabilme imkanınız mevcut olacak. Anlatılan şartları günlük yaşamda bireyler üzerinde uygulamak şansını elde edebilsek, bir anlamda fakirle - zengini , güzellik ile çirkinlik kavramlarını dengeleyebilecek ve eşitlik ilkesine dayanan genetik adaletin ortaya çıkmasını sağlayabileceğiz. Derin bakış açısı ile astrolojik etkilerin insan üzerindeki yansımaları bir anlamda kısmen de olsa düzenlenebilecektir. İnsan için gerekli olan zekanın, aklın, güzelliğin, teminini bir bakıma belirli bir seviyeye getirildiğini düşünelim, acaba zenginlik vasfı nasıl elde edilebilecekti? Bu çok önemli bir sorun karşısında rızkı oluşturan genlerin –yani rızk genlerinin- de mutasyona uğraması gerekiyor. İlahi bir nizam ve düzeni deşifre edebilmek zoru başarmak demektir. Ancak makul olmak gerekirse istenileni elde etmek, açıkları, zaafları kapamak dengeli, stabil bir hale getirmek imkansız gibi görünüyor. Bilim tümüyle sorunlara ulaşabilme kapasitesini gösterse bile gerek zaman açısından gerekse ekonomik koşullar bakımından istenileni uygulamak kolay değil. Hatta imkansıza yakın gibi. Bugün bir kalp ameliyatı için vatandaşların altı ay gibi bir süreye yakın sıra bekledikleri herhalde hepimiz tarafından bilinen bir olgudur. Bu şartlarda gen haritası çıkarılan bir insanın istenilen niteliklere ne kadar zamanda ulaşabileceğini, arz/talebin karşılanıp karşılanamayacağını iyi bir düşünmek gerekiyor. Her şeye karşın genomun geliştirilmesi sadece,insana ait özellikleri değil onun varlığını oluşturan enerji alanlarının ve mutlak enerjinin de geninin deşifre edilmesini temin edebilir. Bu edilimin nihai noktası, bütün vasıf ve manaların ve hiçliğe giden yolun bulunmasıdır. Genom gelişmelerini sadece insan üzerinde değerlendirmek, sadece “bilinebilirliğe” kavuşmasını temin etmek popüler bilimin zaferi olarak kabul edilse bile bu aşamada duraksamak doğru olamaz. Genomun hakkı bu değildir. Amacı da bu şekilde olmamalıdır. Şayet bilimsel nedenlerin üzerinde durulmaz, evrensellik esas alınırsa bilim bütün gücünü evrensel geni deşifre edebilmek için harcaması gerekecektir. Varlığı tümüyle algılamak için bilim adamlarının gözlerini gökyüzüne yıldız kümelerinin manyetik alanlarına dikmesi mantıklı olur. Bilim insanının görevlerinden biri de bütün yeniliklere açık olması onları uygulama hevesi ve gayreti içinde olmalıdır. Sonsuzluğa ulaşabilmek belirsizlikten kurtulma anlamına geliyor. Resmi olarak Ekim 1990’da başlamış olan insan genom projesi (İGP), uluslararası niteliğe sahip olup insan kromozomlarının fiziksel haritasının çıkarılmasını, sayısı yaklaşık 100.000 adet olarak tahmin edilen insan genlerinin keşfedilmesini ve bu sayede bu genlerin daha ileri biyolojik çalışmalar için ulaşılır kılınmasını amaçlamaktadır. Günümüzde, tedavisi henüz olanaksız 3000’den fazla genetik hastalık milyonlarca insanın yaşamını etkilemektedir. Bu tip hastalıklardan sorumlu genlerin yapısının aydınlatılması ile “işlevi bozuk” genler için “düzeltmelerin” yapılabileceği, hastalıkların önceden teşhisi ve tedavisinin mümkün hale geleceği tartışmaları, bu projenin başlatılmasındaki en önemli etken olmuştur. Genetik bilimi, 1860’larda, Gregor Mendel’in kendi yetiştirdiği bezelyeler üzerine yaptığı çalışmalarla başladı. Mendel bezelyelerin çeşitli karakterlerinin (renk, büyüklük, vb. tohum ve çiçek özellikleri) daha sonraları “gen” olarak isimlendirilecek ünitelerle belirlendiğini, bu ünitelerin kalıtım faktörleri olduğunu gösterdi. Bunu, genetik bilgilerin kromozom adı verilen yapılar üzerinde taşındığının bulunması izledi. Watson ve Crick isimli iki araştırıcının deoksiribonükleik asitin (DNA’nın) yapısını keşfetmesi, insan genom projesinin geçtiğimiz günlerde popüler hale gelmesinden sadece yarım yüzyıl önce gerçekleşti ve bu dev buluş bugünkü gen teknolojilerine olanak veren bir dönüm noktası oluşturdu. 1970’lerde DNA üzerindeki belirli genlerin izole edilebildiği, bu genlerin kesilip biçildiği ve yeniden yapılandırıldığı “genetik mühendisliği” uygulamaları başladı. organizmayı oluşturmak için gerekli bilgilerin toplamına genom diyoruz. Bir diğer tarifle, bir hücredeki genetik materyalin tamamı o organizmanın genomunu oluşturur. Yine diğer bir tanımla genom, bir organizmanın DNA’sının tamamı olup o organizmanın yaşamı boyunca tüm yapı ve aktivitelerini belirleyecektir. Tüm bu tanımlar, genomun DNA materyalinden ibaret olduğunu, her iki terimin de genetik materyali ifade ettiğini göstermektedir. Bu materyal, sıkı bir yumak halinde biçimlenerek kromozom adını verdiğimiz silindirik yapıları oluşturur. Prokaryot adı verilen tek hücreli basit canlılarda (bakteriler) tek bir kromozom oluşturan bu materyal hücre içerisinde serbest iken, ökaryot adını verdiğimiz daha ileri canlılarda (algler, mantarlar, bitkiler, hayvanlar, insanlar) her hücrede birden fazla kromozom şeklinde bulunur ve bu kromozomlar özel bir kompartman olan hücre çekirdeği içinde yer alırlar. Serbestçe açılması halinde 2 metreye yaklaşan DNA molekülü, sıkı bir yumak oluşturması sayesinde mikroskobik büyüklükteki hücreye sığmaktadır. İnsan genom projesinin temel hedefi, insan genomunun detaylı bir fiziksel haritasını elde etmektir. Baz çifti sayısı temelinde genlerin dizilimi ve aralarındaki mesafeyi gösterecek bu haritanın elde edilmesi, ancak DNA üzerindeki nükleotidlerin dizilim analizi (sekanslama) ile mümkündür. Elde edilen insan genomu referans dizisi, yeryüzünde yaşayan her bireyin genom dizisine birebir uymayacaktır Örnekler çok sayıda gönüllüden özel bir protokolla alınmış olup bu örneklerden çok azı projede kullanılmaktadır. Örnekleri veren kişilerin ismi saklıdır; dolayısı ile hem örneklerin sahipleri, hem de bilim adamları bu projede kullanılan DNA’ların kimlere ait olduğunu bilmemektedirler. Kadınlardan kan örnekleri, erkeklerden ise sperm örnekleri alınmıştır, kadınlarda Y kromozomu bulunmadığından sperm örnekleri özellikle önemlidir. İlk referans genom dizisinin oluşturulmasının 10-20 birey bazında olacağı tahmin edilmektedir. Fiziksel haritanın elde edilmesi için öncelikle seçilen kromozomun çok küçük parçacıklara ayrılması, bu parçacıkların ayrı ayrı dizi analizlerinin yapılması ve elde edilen verilerin birleştirilmesi gerekir. Bu amaçla, restriksiyon enzimleri adı verilen ve DNA’nın belirli dizilerini tanıyıp molekülü o dizilerden kesen enzimler kullanılır.Daha sonra, elde edilen parçacıkların daha ileriki çalışmalarda kullanılabilmesi için klonlanması (çok sayıda kopyasının elde edilmesi) işlemine geçilir. Farklı DNA parçacıklarında birbiri ile örtüşen diziler belirlenmek suretiyle kromozom boyunca uzun bir segmenti, hatta tüm kromozomu temsil eden sıralı bir klonlar koleksiyonu (kontig) elde edilir. Bu yolla elde edilen harita “kontig harita” olarak isimlendirilir. Günümüzde nükleotid dizilimi analizi için DNA çiplerinin kullanıldığı yeni yöntemler de mevcuttur, ancak en yaygın olarak kullanılan yöntemde temel adımlar şunlardır: Öncelikle her bir kromozom (50-250 milyon baz çifti) enzimlerle çok daha küçük parçacıklara (yaklaşık 500 baz çifti; Celera Genomics’te geliştirilen yeni ve hızlı yöntemde 2000-10.000 baz çiftlik parçalarla başlandığı bildirilmektedir) bölünür. Makinelerle yapılacak olan dizi analizi için her bir parçacığın milyarlarca kopyası gerekir. Bu nedenle parçacıklar bakteri hücrelerinde klonlanırlar ve çok hızlı çoğalan bakteriler kopya makineleri gibi bu parçacıkları çoğaltırlar. Bu şekilde çoğaltılan DNA materyali, özel boyalarla muamele edilerek her bir baz çeşidinin (A, T, G, ya da C) lazer ışık altında farklı bir renk vereceği biçimde boyanır, daha sonra parçacıkların elektroforezleri yapılarak büyüklüklerine göre ayrılırlar ve bu süreçte lazer ışını ve kamera bazların boyanma rengini kaydederek 4 renkli kromatogram oluşturulur. Tüm bu işlemler insan eliyle değil, otomatik dizi analiz cihazı kullanılarak yapılmaktadır. Bazlar “okunduktan” sonra bilgisayarlar aracılığıyla dizilim analiz edilir. Katrilyonlarca hesaplama sonucu parçacıkların dizilim bakımından birbirleri ile örtüşen uçları yan yana getirilmek suretiyle dizilim yeniden düzenlenir. Analiz hataları, gen bölgeleri (insan genomunda bilinen fonksiyonel proteinleri kodlayan genler, toplam genomun sadece yaklaşık %5’ini oluşturmaktadır, geriye kalan kısım ise gen aktivitesini kontrol eden ya da henüz fonksiyonu bilinmeyen bölgelerdir), daha önce bilinen genlere ne oranda benzerlik gösterdiği, vb. belirlenir. Her bir DNA parçası 5 kez dizilim analizinden geçmişse, elde edilen bulgular “taslak” dizilimi oluşturur. Analiz 10 kez yapıldığında ise “final” dizilim (hata oranı 1/10.000) elde edilir. Bugünkü analiz sonuçları %90-95 doğrulukta bir müsvedde analiz sonuçlarıdır. Hatalar ve bazı boşluklar halen mevcuttur, yüksek kaliteli referans diziliminin 2003 yılında elde edileceği bildirilmektedir. Ancak, final dizilimin elde edilmesi projenin nihai amacı değildir; bulunan genlerin fonksiyonlarının ve birbirleriyle etkileşiminin anlaşılması çalışmaları sürecek, buna paralel olarak çeşitli hastalıkların tedavisi için geni ya da kodladığı proteini hedef alan yeni ve etkin ilaçların tasarım ve denenmesine devam edilecektir (sorumlu genin aydınlatılmış olduğu bir çok hastalık için halen bu yönde çalışmalar sürmektedir). Proje bünyesinde robotiklerin ve bilişim teknolojisinin önemi özellikle not edilmelidir. Sadece insan gücü kullanılarak projenin gerçekleştirilebilmesi neredeyse olanaksızdır. Robot kolları olan yüzlerce makine, aynı anda, DNA parçacıklarını dizilim analizi için ince cam tüplere pompalamaktadır. Bunun yanı sıra, veritabanı ve yazılım geliştirme alanlarındaki ilerlemeler de bu projeye hız kazandırmıştır. Teknoloji ilerledikçe ve dizilim bulguları çok büyük bir hacim tutacak şekilde biriktikçe, eldeki bilgilere sahip çıkmak, organize etmek ve bunları yorumlayabilmek için daha sofistike bilgi işlem kaynaklarına gereksinim olacaktır. Proje ile ilgili tüm araştırıcıların dünyanın her yerinden dizilim bulgularına ulaşıp onları kullanabilmeleri, projenin başarısının doğrudan ölçütüdür. Perkin Elmer, Celera Genomics için 1 milyar dolar harcamış, en hızlı analitik cihazları (300 adet) ve yüksek performanslı süper bilgisayar teknolojisini temin etmiştir. Özel bir yazılım ile 80 terabayttan fazla veri işlenebilmiştir. Bu nedenlerle, Celera Genomics’in gen dizilimi analizi yapan diğer tüm laboratuarlara göre en az 3 kat daha hızlı çalışabildiği ifade edilmektedir. Bunun vurgulanması için, Celera laboratuarlarının aylık elektrik faturasının 60.000 dolar olduğu belirtilmektedir. Şirket yöneticileri, 9 ay gibi kısa bir süre içinde etnik kökenleri farklı toplam 5 birey için (3 kadın, 2 erkek) 15 milyara yakın baz çiftinin diziliminin tamamlandığını açıklamaktadır.

http://www.biyologlar.com/gen-nedir-gorevleri-nelerdir-gen-terapisi-nedir

Genlerin Dünyası

Bu bölümde ise DNA dünyasinin birazdaha derinliklerine inerek hem egitici hem de ilgi çekici bilgiler edinecegiz. DNA nin canlilarin genetik sifresi oldugunu siklikla duyariz.Belgesellerde dergilerde gazetelerde vs.Fakat genlerle ilgili olarak her zaman kafamizda soru isaretleri kalir.DNA ne demek? genler insanin neresinde bulunur veya genlerle nasil oynarlar gibi sorulardir bunlar.Aslinda pekte bahsedildigi kadar karmasik bir konu degildir.En azindan burada anlatilanlardan DNA ve genler hakkinda kaba ama öz bilgiler edinebilirsiniz. Ilk olarak "DNA" ve "Gen" kavrami üzerinde durarak ne olduklarini izah etmeye çalistik.Sade tanimlarin ardindan ilginç konulara degindik.Zevkle okuyabilirsiniz. DNA nedir nerede bulunur?: DNA "Deoksi Ribo Nükleik Asit" isimli bir tür molekül grubunun kisaltilmis isimidir.DNA'nin çift zincirli ip merdivene benzediginden bahsetmistik.Çift zincirli yapidaki DNA zinciri oldukça uzun bir zincirdir.Bu zincir hücre içindeki özel enzimler ve proteinler araciligi ile paketlenir. Nasilki uzun bir ipi makaraya düzenli bir sekilde sariyorsaniz hücrede buna benzer bir mekanizma ile DNA yi paketleyerek çekirdeginin (Nukleus) içine yerlestirir.DNA her hücrede bulunur.Örnegin su an ekrana bakan gözlerinizdeki her hücrenin içinde DNA zinciri paketlenmis bir vaziyette yerlesik olarak bulunur.Veyahut klavyeyi kullanan ellerinizdeki herbir hücrenin içerisinde ayri ayri DNA molekülü bulunur.Böbreklerinizin hücrelerinde karacigerinizin hücrelerinde kemik hücrelerinizde kisacasi vücudunuzdaki her hücrede DNA molekülü mevcuttur. DNA uzun bir zincir olmasina karsilik üzerindeki baz siralari bir düzen içerisinde taksim edilmistir. Taksim edilen bu baz gruplarina ise" Gen "denir.Mesela bir canlinin DNA zincirinde 15.000.000 adet baz(Nukleotid) dizisi olsun ve bu baz dizileri 1000 ' er adet olmak üzere 15 gruba ayrilmis olsun.Iste bu 15 tane grubun her biri birer "gen" dir.Insan hücresinde ise yaklasik olarak 3 milyar adet gen bulunur.Tabii her genin içinde binlerce nükleotid dizisi vardir. Bir canlinin bütün karakterleri ise DNA daki genlerde saklidir.Bu genlerin nasil olupta bir canliyi meydana getirdigine ilerleyen bölümlerde deyinecegiz. Yukaridaki DNA zincirine bakacak olursaniz atg ve c olmak üzere 4 farkli bazin birbirleriyle karsi karsiya gelerek baglandigini görürsünüz.Bu baglanmalar belirli bir düzene göre yapilir. "a=adenin""t=timin""g=guanin" ve "c=sitozin" bazlari arasinda adenin bazi yanlizca timin ile guanin bazi ise yanlizca sitozin(c) ile bag yapar.Bunun nedeni ise oldukça ilginçtir. Adenin ve Guanin bazlari yapisal olarak büyük boylu moleküllerdir.Timin ve Sitozin ise küçük boylu moleküllerdir.Adenin ve timin bazlarini bir futbol topu guanin ve sitozin bazlarini ise tenis topu olarak düsünebilirsiniz. Eger adenin bazinin karsisina timin degilde guanin gelseydi heliks yapisinin düzgün ilerlemesi mümkün olmayacakti.Fakat DNA da küçük bazlara karsi büyük bazlarin gelmesiyle aradaki mesafenin her noktada sabit olmasi saglanmistir. DNA nin yapisi bazlarin bu sekilde ardi ardina siralanmasiyla uzayip gider. Eminizki bazlarin DNA üzerinde bu sekilde siralanmasinin canliligin "sifresi" ile ne ilgisi oldugunu merak ediyorsunuzdur.Az öncede belirttigimiz gibi bu sifrelerin bir canli organizmayi nasil meydana getirdigini simdi açiklayacagiz. DNA daki sifrelerden canli bir organizmanin meydana gelmesi aslinda hücre içinde oldukça karmasik bir dizi islem neticesinde meyadana gelir.Fakat yazimizda bu islemleri en kaba haliyle ele aldik. DNA daki sifrelerin desifre olup organizmayi meydana getirmesi asama asama meydana gelmektedir.Bu asamalar ise sirasiyla ; 1-) DNA dan RNA sentezi (Transkripsiyon) 2-) RNA dan protein sentezi (Translasyon) 3-) Proteini üretilen hücrenin farklilasmasi (Morfogenez) Simdi bu asamalari teker teker ele alarak yanlizca bir DNA molekülünden devasal bir canlinin nasil mükemmel bir sekilde meydana geldigini ögrenelim. 1-) DNA dan RNA sentezi (Transkripsiyon) : Erkek bir canlidan gelen spermin tasidigi bir miktar DNA ile disi bir canlidan gelen yumurtanin tasidigi DNA birleserek tam bir DNA yi verir.Bu DNA meydana gelecek yavrunun tüm özelliklerini içinde barindirir.Mesela bu canlinin DNA sinda 1 milyar gen var ise bu genlerin 500 milyontanesi anneden 500 milyon taneside babadan gelir.Yumurta ile spermin birlesmesinin ardindan DNA daki o essiz sifreler çözülerek küçücük bir yumurta (zigot) dan kocaman bir canliyi meydana getirmeye baslar. Ilk asama RNA sentezidir.Bu islem DNA nin açilmasiyla baslar.Biliyoruzki DNA daki bazlar karsi karsiya gelip el ele tutusarak her iki omurgayi birlestirmislerdi.Fakat bu bazlar ellerini birakarak yani aralarindaki baglari kopararak DNA nin çift zincirli yapisini tipki bir "fermuar" gibi açmaya baslar. DNA çözülmeye basladikça "RNA polimeraz" adi verilen özel bir protein DNA nin üzerinde gezerek onu okumaya ve RNA yi sentezlemeye baslar. Büyük mavi bölge RNA polimerazi temsil etmektedir.Yesil serit ise sentezlenen RNA dir. Anlasilacagi gibi DNA zinciri açilmis ve RNA polimeraz enzimi vasitasiyla DNA daki bazlara karsilik gelen diger bazlar birbirlerine eklenerek RNA üretilmektedir. Üretilen RNA nin DNA dan tek farki Adenin bazinin karsisina Timin yerin " U " harfiyle gösterilen " Urasil " bazinin gelmis olmasidir.Üretimi tamamlanan RNA daha sonra DNA üzerinden ayrilarak bir dizi isleme tabii tutulur. Bu islemler sirasinda RNA kaba olarak DNA dan üretildikten sonra üzerinde düzeltmeler yapilir.Nasilki bir marangoz kestigi tahtalari düzeltmek için yontuyorsa hücrede ayni sekilde üretilen kaba RNA yi düzeltmek için bir dizi enzimi görevlendirir. Not: Üretilen bu RNA mRNA (mesajci RNA) dir . 2-) RNA dan protein sentezi (Translasyon): Düzeltme islemleri tamamlanmis olan mRNA daha sonra çekirdek (nukleus) den çikarak "Ribozom" adi verilen bir organele dogru yol almaya baslar.Ribozoma ulasan mRNA ribozoma baglanir. mRNA nin bir özelligi ise DNA daki gibi siralanan bazlarin 3 lü gruplar halinde ayrilmis olmasidir.Bir örnek verelim ; DNA üzerindeki kodonlar " AATGCCGATGTA " seklinde ise sentezlenen mRNA nin görünümü " UUA-CGG-CUA-CAU " seklinde olacaktir.Dikkat ederseniz baz siralamasinda bir degisme yoktur yanlizca bazlar 3 lü gruplar halinde taksim edilmislerdir.Taksim edilen bu 3 lü gruplara ise "Kodon" adi verilir.Tabii RNA da adenin bazina karsilik urasil bazinin guanin bazina karsilik ise sitozin bazinin geldigini unutmamak gerekir. Bu sekilde üretilen mRNA ribozoma baglandiktan sonra 3 lü gruplarin okunmasina baslanir.tRNA adi verilen bir baska RNA çesidi ise bildigimiz mRNA veya DNA kadar uzun degildir.tRNA (Tasiyici RNA) üzerinde yanlizca 15-20 baz sirasi bulundurur.tRNA nin diger bir özelligi ise birbiri ardina siralanan bazlarin bir daire olusturacak sekilde baglanmasidir.Bunu halay çeken bir grup insana benzetebilirsiniz. tRNA halkasinin üzerinde iki önemli bölge vardir.Bu bölgelerden ilki tasiyacagi aminoasidin taninmasini saglayan bölgedir.Diger bölge ise tRNA nin mRNA ya baglanacagi 3 adet baz sirasindan olusan bölgedir.Bu bölgeye ise " Anti-kodon " adi verilir. mRNA üzerinde bazlarin 3 lü gruplar halinde dizildiginden bahsetmistik.Iste tRNA üzerinde bulunan " anti-kodon " adi verilen ve yanlizca 3 adet baz sirasindan olusan bu bölge ribozoma tutunmus mRNA üzerindeki " kodon " adi verilen 3 lü gruplara baglanir.Tabii tRNA larin anti - kodonlari mRNA üzerindeki kodonlara sirasiyla baglanirken beraberlerinde tasidiklari aminoasitleride getirmislerdir.Bu yüzden tRNA ya bu isim verilmistir." Aminoasiti tasiyan RNA " tRNA lar aminoasitleri tasiyip sirasiyla kodonlara baglandikça tRNA larin sirtlarindaki aminoasitlerde birbirleriyle baglanmaya baslarlar. .Görüldügü gibi mRNA daki kodonun baz dizilimi GCC bu kodona baglanan tRNA nin ise anti - kodonu CGG seklindedir. tRNA üzerinde bulunan pembe halka ise " aminoasit " i temsil etmektedir. Yüzlerce binlerce tRNA yanyana dizildiklerinde üzerlerindeki aminoasitlerde yanyana gelmis olur.Iste yanyana gelmis olan bu aminoasitler birbirleriyle bag yaparak proteini sentez etmeye baslar.Hatirlarsaniz protein molekülünün aminoasit zincirlerinden meydana geldigini soylemistik. Yukarida anlatmak istedigimiz olaylari yandaki sekil gayet iyi açikliyor.Sag tarafta yaklasmakta olan mavi renkli tRNA lar görülüyor.tRNA larin üzerlerinde ise yesil ve sari renklerle gösterilmis " aminoasit " ler görülüyor.Yesil renkli serit mRNA yi boynuzlu gri yapi ise ribozomu temsil etmektedir. tRNA lar sirasiyla mRNA üzerine yerlestikten sonra sirtlarindaki amino asitler bag yapar.Tam bu sirada isi biten tRNA yükünü bosaltmis olarak mRNA dan bagini kopararir ve ribozomdan ayrilir.Fakat tasidigi amino asit kendinden önceki tRNA nin getirdigi aminoasitle bag yapmis olarak protein zinciri olusumuna katilir. Bu gerçektende insani hayranlik içerisinde birakan bir sistemdir.Bugün dünya üzerinde yapay olarak üretilen proteinler bile canli bir hücre tarafindan üretilen proteinin adi bir taklidi olmaktadir. 3-) Proteini üretilen hücrenin farklilasmasi: Buraya kadar olan asamalar hücrede protein sentezi için gerekli islemleri kapsiyordu.Bundan sonra ise üretilen proteinin çesidine göre hücrenin kazandigi fonksiyondur. Bir yumurta ile bir spermin birlesmesiyle meydana gelen yapi zigot adini alir ve tek bir hücreden ibarettir.Zigot içerisinde DNA kendisinin bir kopyasini çikarir.Dolayisiyla hücrede DNA miktari iki katina çikmis olur.Fakat hücre derhal bölünmeye baslar bu DNA lardan birisi bir hücreye giderken diger DNA ise ikinci yavru hücreye aktarilir.Böylelikle hücre ikiye bölünmüs olur.Bölünmeler ta ki anne karninda bir bebegin meydana gelmesine dek sürer. Yani tek bir hücre o kadar çok bölünme geçirirki sayilari trilyonlari bulur ve bir canli embriyoyu (anne karnindaki bebek) meydana getirir.DNA sifrelemesi ise bu noktada devreye girer. Bir önceki basamagimiz protein sentezi ile ilgiliydi.Fakat proteinler çesitli hücreler için farkli tiplerde üretilir.Bir yavru anne karninda gelisirken yavrunun gözlerini olusturacak hücrelerdeki DNA lar yanlizca göz organi ile ilgili proteinleri üretirler.Ayni sekilde yavrunun beynini olusturacak hücrelerin DNA lari ise yanlizca beyin organi ile ilgili proteinleri üretirler. Burada önemli olan nokta sudur.Insanin kemik hücresi olsun karaciger hücresi olsun böbrek hucresi olsun kisacasi vücudunun her bolgesindeki hücrelerin içindeki DNA larda insanin bütün organlarini olusturacak bilgiler saklidir.Fakat saklanan bu bilgilerden yanlizca ilgili organ için üretilecek protinlerin meydana getirilmesi saglanir.Yani her hücrede insan vücudunun her organinin protein bilgileri saklanir fakat bu proteinlerin hepsi üretilmez.Yanlizca meydana getirilecek organla ilgili proteinler üretilir.Bir organda organla ilgili proteinler disinda DNA da saklanan diger proteinlerin üretilmemesi için DNA nin üzeri " Histon " adi verilen özel bir proteinle örtülür. Hücrelerin programlanmis bir sekilde farkli farkli proteinler üretip farkli organlara dönüsmesi olayina Tip dilinde farklilasma (morfogenez) denir.Bugün bilim adamlarinin kafasini kurcalayan en büyük problem ise hücrelerdeki " Histon " larin hangi genlerin üzerini örtüp hangilerinin üzerini açik birakacagini nereden bildigidir.Çünkü proteinlerde birer moleküldür ve moleküllerde atomlardan olusur.Dolayisiyla suursuz atomlarin bu derece zekice düsünülmüs bir mekanizmayi meydana getirmesi beklenemez. KLONLAMA (KOPYALAMA) Kopyalama konusunu açiklamadan önce bazi terimlerin en anlama geldigini belirtelim. Kromozom : Kromozomlar genetik materyalin (DNA) ' nin yardimci proteinlerle birlikte dönümler yapip katlanmasiyla ve kisalmasiyla olusan yogunlasmis yapilardir. Somatik hücre : Insanin veya baska bir canlinin esey hücreleri (üreme) disindaki tüm hücrelere somatik hücre denir.Örnegin deri hücresi karaciger hücresi kas hücresi gibi.Bu hücrelerin tasidiklari kromozom sayisi 2n ile gösterilir. Esey hücresi : Esey hücreleri bir canlinin disi ve erkek bireyleri tarafindan üretilen ve " n " sayida kromozom tasiyan üreme hücreleridir.Erkek canli tarafindan üretilen esey hücresi " Sperm " disi canlinin tarafindan üretilen esey hücresine ise " Yumurta " adi verilir. Örnek olarak insanin somatik hücrelerinde daima 46 tane kromozom bulunur.Ve bu 46 kromozom 2n harfiyle gösterilir.Tabii kromozom sayilari canlidan canliya degismektedir.Mesela sigir somatik hücrelerindeki kromozom sayisi 60 farede 40 kurbagada 26 dir.Sayisi ne olursa olsun eger kromozomlar somatik bir hücreye ait ise 2n harfiyle gösterilir. Canlinin esey hücrelerinde ise kromozom sayisi somatik hücrelerindekinin yarisi kadardir ve n harfiyle gösterilir.Insanin somatik hücrelerinde 46 kromozom esey hücrelerinde ise yarisi sayida yani 23 tane kromozom bulunur.Disi ve erkek esey hücreleri birlestigi zaman (buna döllenme denir) meydana gelecek yavrunun kromozom sayilari yine 46 olacaktir. Bir yavru anne ve babasina genetik materyal düzeyinde hiçbir zaman benzemez.Çünki anne birey esey hücrelerini (yumurta) meydana getirirken bu esey hücrelerine kendi DNA sinin yarisini nakleder.Ayni sekilde erkek bireyde esey hücrelerini meydana getirirken (sperm) somatik hücrelerindeki DNA nin yari miktarini esey hücrelerine nakleder.Dolayisiyla dünyaya gelecek yavrunun DNA si ne annenin nede babanin DNA sinin aynisidir.Yavrunun DNA si anne ve babasinin DNA larinin karisimi oldugu için bazi karakterleri annesine bazi karakterleride babasina benzer. Yukaridaki sekilde n sayida kromozom tasiyan disi ve erkek esey hücreleri rakam ve harflerle gösterilmistir. Disi ve erkek esey hücrelerinden her hangi ikisi birbiriyle birlestigi takdirde meydana gelecek yavru anneye de babaya da benzemez. Disinin somatik hücrelerinde " 1 - 2 " genlerini tasidigini varsayarsak disinin " 1 " genetik yapili esey hücresiyle erkegin herhangi bir esey hücresinin birlesmesi halinde meydana gelecek yavrunun DNA si ya " 1 - A " olacak yada " 1 - B " olacaktir. Ayni sekilde disinin " 2 " genetik yapili diger esey hücresinin erkegin herhangi bir esey hücresi ile birlesmesi halinde meydana gelecek yavru erkege de disiye de benzemeyecektir. Dogadaki çesitliligin diger bir nedeni ise " Krossing - over " olayidir.Krossin - over ' da kromozomlar arasinda parça degis tokusu yapilarak genetik materyalin çok daha degisik bir yapiya sahip olmasi saglanir.Esey hücreleri mayoz bölünme ile meydana getirilirken kromozomlar esey hücrelerine dagitilmadan önce krossing - over meydana gelir.Krossing - over ' da parça degis tokusu ise birbirinin esi olan iki kormozomun kromatidleri arasinda meydana gelir (Bkz.Hücre sayfasi - Bölüm : Hücre bölünmesi). Klonlama yöntemiyle esey hücrelerinden meydana gelecek olan canlinin anne veya babasinin aynisi olmasi saglanabilmektedir.Klonlama yönteminde temel olarak izlenen yol ise disinin yumurta hücresine yine disinin somatik hücrelerinden alinan 2n sayidaki kromozomun yerlestirilmesidir.Bu sekilde yumurtaya DNA si üzerinde hiçbir degisiklik yapilmamis somatik hücre kromozomlari enjekte edilerek yapay bir döllenme saglanmaktadir. Klonlamayi sekil üzerinde görelim. .Dogal döllenmede disi ve erkek esey hücreleri birleserek genetik düzeyde kendilerinden farkli bir yavru meydana getirirler. Sag tarafta ise klonlama yöntemi görülmektedir.Klonlama yönteminde ilk olarak disi bireyin somatik hücrelerinde bulunan 2n sayidaki kromozom özel yöntemlerle hücre disarisina çikarilir ve izole edilir.Daha sonra yine disi bir bireyin yumurta hücresinin n kromzom sayidaki genetik materyali çikarilir. Yumurtadan çikarilan n sayidaki kromozomlarin yerine disinin somatik hücrelerden izole edilen 2n sayidaki orijinal kromozomlari yerlestirilir.Bu kromozomlar annenin tüm genetik bilgilerini tasimaktadir.Somatik hücre kromozomlari yumurta hücresine yerlestirildikten sonra yumurta hücresine elektrik sinyalleri gönderilir.Bünyesinde 2n kromozom bulunan yumurta hücresi bu elektrik sinyallerini aldiginda sperm tarafindan döllendigini zanneder.Çünki sperm hücresi n sayidaki kromozomunu yumurtaya aktarirken yumurta zari üzerinde bir elektrik gradiyent meydana getirir. Yapay olarak elektrik sinyalleriyle aktif hale geçirilen yumurta hücresi sahip oldugu enzimlerle içerisine yerlestirilen DNA yi replike edip çogalmaya baslar .Hücrenin bölünerek çogalmasiyla nihayetinde embriyo (anne karininda gelismekte olan yavru) olusmaya baslar. Klonlanmis embriyo ile dogal yolla meydana gelen embriyo arasindaki fark DNA sinda yatmaktadir.Dogal yolla meydana gelen embriyonun genetik özellikleri anne ve babasinin genlerinin karisimi oldugu için her iki bireydende farkli bir genoma sahiptir.Fakat klonlanmis embriyonun DNA si annesinin DNA sinin aynisidir.Yani aralarinda en ufak bir baz sirasinda bile fark yoktur.Dolayisiyla dünyaya gelecek olan yavru annenin genetik ve morfolojik tüm özelliklerini tasir. Mesela annesinin DNA sindan bir insan embriyosu kopyalandigini var sayalim.Dünyaya gelecek yavrunun göz rengi saç rengi yüz sekli deri rengi kafa yapisi genlerinde tasidigi hastaliklari vücudunun üzerindeki benleri kaslarinin uzunlugu kisacasi vücudunun tamami annesinin aynisi olacaktir.Tipki tek yumurta ikizlerinde oldugu gibi. Klonlama islemi burada anlatildigi kadar basit olmayip oldukça karmasik islemler vasitasiyla gerçeklestirilir.Öyle ki yumurtanin yapay olarak döllenmesi için ortam sartlarinin olabildigince ana rahmine benzetilmesi gerekmektedir.Mesela ortamin pH ' i iyon konsantrasyonu sicakligi vb. gibi.Klonlamanin zor olmasi nedeniyle yanlizca tek bir yumurta hücresi üzerinde degil yüzlerce hatta binlerce yumurtasi üzerinde deneyler yapilmakta bu klonlama deneylerinden yanlizca bir kaç tanesinden netice alinabilmektedir. MUTASYONLAR Mutasyonlar bir canlinin DNA si üzerinde yani genetik bilgileri üzerinde meydana gelen degisikliklerdir.Dogada mutasyonlara çok nadiren rastlanilmasina karsin meydana geldigi canli üzerinde agir tahribatlara neden olmaktadir. Mutasyonlar "nokta" mutasyonu ve "kromozom" mutasyonu olmak üzere iki ana sinifa ayrilir.Bu iki ana mutasyon haricinde de mutasyonlar meydana gelmektedir fakat yazimizda diger çesitlerine yer vermedik."Nokta" mutasyonlari DNA nin yanlizca çok kisitli bir bölümünde meydana gelen mutasyonlardir.Bir veya birkac baz sirasinin kopmasi veya yerlerinin degismesi nokta mutasyonlarina örnek verilebilir."Kromozom" mutasyonlarina asagidaki sekillerden sonra deyinecegiz. Iplik gibi görünen bu yapi upuzun bir baz sirasindan olusur.DNA daki nokta mutasyonlari bu uzun baz sirasindaki bir veya birkaç bazin kopmasi veya yer degistirmesi seklinde meydana gelir. Sagdaki resimde ise DNA ipliginin dönümler yaparak paketlenmis hali görülmektedir (birisi solda birisi sagda iki karmasik yapi).Iste DNA nin bu sekilde paketlenmis haline " Kromozom " adi verilir. Kromozom mutasyonlarinda ise kromozomun bir parçasinda kopma veya crossing-over sirasinda yanlis bir kromozomla parça degis tokusu meydana gelmektedir.Dolayisiyla kromozom mutasyonlari nokta mutasyonlarindan daha agir hasarlara neden olur. Yukaridaki küçük resimde ise nokta mutasyonunu temsil eden bir çizim görülüyor. Mutasyonlarin gunumuzdeki en iyi örneklerine Down sendromu Palindromi(alti parmaklilik) Albinizm (Beyaz saç ve beyaz tenlilik) ve Kan kanserini verebiliriz. Bunlarin herbiri birbirinden korkunç hastaliklar olup çogu mutasyonlar canlinin ölümüne bile neden olabilmektedir. Dogada hiçbir yararli mutasyon yoktur.Meydana gelen mutasyonlar çesitlerine göre ya canlida agir bir hasara neden olur yada canli üzerinde etkisiz kalir. Asagidaki iki ayri karede görülen resimler "Kan kanseri"ne yakalanmis bir insandaki kan hücrelerini göstermektedir. Fakat kanserli bir insanin kan hücreleri "orak" sekline dönüsmüstür. Bunun nedeni kan hucrelerinin üretiminden sorumlu DNA molekülünün üzerinde bulunan sifrelerden birisinin dejenere olmasindan dolayidir.Bu hata kan hücresinin üretildigi proteinin 6.aminoasitinin yerine baska bir aminoasidin baglanmasina neden olur. DNA üzerindeki bu küçücük hata bile canli bir organizma üzerinde korkunç sonuçlar dogurabilmektedir. Belki zaman zaman televizyonlarda görmussünüzdür 6 ayakli koyun iki basli sigir veya yapisik ikizler.Bu canlilarin hepsi mutasyonlar sonucunda sakat kalmislardir.Özellikle "Çernobil" faciasindan sonraki kusaklarda korkunç derecede sakatliklar görülmüstür. Bunun temelinde ise "mutasyona yol acan etmenler" yatar.Bu etmenlerin basinda ise kimyasal maddeler fiziksel etkiler ve radyoaktif isima gelmektedir.Radyoaktif isinlar çok yüksek enerjili olup gen dizilerinde kopmalara neden olurlar.Çernobil ve Hirosima sehirlerinde meydana gelen her iki nükleer facianin üzerinden yillar geçmesine ragmen halen birçok çocuk ya sakat yada kanserli olarak dünyaya gelmektedir. Dogada nadiren de olsa kendiliginden mutasyonlar meydana gelebilmektedir.Fakat canli hücrelerindeki kusursuz kontrol sistemleri sayesinde DNA üzerinde herhangi bir hataya yer vermemek için bir çok enzim görevlendirilmistir.Bu enzimler DNA üzerinde sürekli dolasarak kompa kayma veya yer degistirme gibi hatalari düzelterek mutasyonun meydana gelmesini engellerler. Olaganüstü kusursuz bir sistemin yürüyüp gittigi canlilar ve onlarin hücrelerinde mutasyon gibi agir hasarlarin meydana gelmesi canlilarin iç yapilarinin ne kadar kompleks oldugunu ve canli hücrelerinde kesinlikle hata ve tesadüfe yer verilmedigini gözler önüne sermektedir.

http://www.biyologlar.com/genlerin-dunyasi

Hücre Döngüsü ve Polimorfizm

Hücre Döngüsü ve Polimorfizm

Gen değişimleri, onkogenlerin aşırı ifade edilmesi ve hücre döngüsü düzenleyicileri tümör gelişiminde önemli rol oynayan faktörlerdendir 1. Bunlardan hücre döngüsünün denetimi, çoğu biyolojik sürecin ve kansere yolaçabilen kontrolsüz hücre çoğalmasının anlaşılmasında asıl ilgi odağı durumundadır. Hücre döngüsünü düzenleyen sistemlerin pek çok bileşeninin kanserle bağlantısı olduğundan kanser, bir hücre döngüsü düzensizlik hastalığı olarak da tanımlanabilir. G1, S, G2 ve M evrelerinden oluşan hücre döngüsünün bir evresinden diğerine geçişi, döngü basamağına göre düzeyleri artan ya da azalan siklin proteinleriyle denetlenir. Döngüde rolü olan pek çok onkogen ve tümör baskılayan gen, G1kontrol noktasındaki hatalarla ilişkilidir 2. G1/S geçiş noktasının denetimi; siklinlerin sentezlerinin ve yıkımlarının denetlenmesi, kendisine bağlanan ve düzeyleri döngü boyunca değişmeyen ancak aktiviteleri denetlenen katalitik özgün kinazlarla birleşerek siklin-bağımlı kinaz (CDK) kompleksinin oluşumu, bu kompleksin otofosforilasyonla aktifleşmesi, Cip/Kip ve INK4/ARF gibi hücre döngüsü inhibitörlerinin etkisiyle inaktifleşmesi olaylarıyla sağlanır 3-5. D-tipi siklinler (siklin D1, D2 ve D3), CDK4 ve CDK6’yı aktive eder ve G1’in ilerleyişinden sorumludur6. Retinoblastoma (Rb), hücre döngü düzenleyicisi ve tümör baskılayıcısı olarak belirlenen genlerden biridir. Siklin ile oluşan CDK4 ve CDK6 kompleksleri Rb proteinlerini fosforile ederek onu inaktive eder. İnaktif Rb, aktifken kendisine bağlı olan transkripsiyon uzama faktörü-2 (E2F)’yi serbest bırakır (Şekil 1). E2F de, G1/S geçişi ve S evresine giriş için gerekli -siklin A, E ve CDK1, myb, dihidrofolat redüktaz, timidin kinaz gibi- genlerin ifade edilmesini sağlar 7. E2F, diğer döngü düzenleyicileri gibi DNA sentezi, DNA onarımı ve apoptozis olaylarında rol oynamakta ve bazı tümörlerde allele bağlı ifade edilme düzensizliklerine neden olabilmektedir 8. Hücre döngüsünün diğer önemli bir düzenleyicisi, tümör baskılayan p53 genidir. DNA hasarına yanıt olarak p53 gen ürünü aktive olur, hücre döngüsü durur. DNA onarımı ve apoptozis olayları başlatılır 9.Genomik bütünlüğün korunmasında hücre döngü düzenleyicisi olan p53 insan kanserlerinde mutasyonun en sık görüldüğü genlerden biridir 10. p53, DNA hasarına yanıt olarak etkisini, siklin-bağımlı kinaz inhibitörlerinden (CDKI) biri olan p21 proteininin ifade edilmesini sağlayarak gösterir 11.Hücre döngüsünün kontrolü, CDK aktivitelerinin düzenlenmesi, siklinlerin sentezi ve parçalanması, fosforilasyon ve defosforilasyonu, CDKI proteinlerinin sentezi, bağlanması ve parçalanmasını kapsayan pekçok düzeyde yapılabilmektedir 12. CDKI ailesinden biri olan Cip/Kip ailesi, çoğunlukla siklin/CDK komplekslerine bağlanarak etki gösterir. Örneğin p21, CDK2 ile etkileşir (p21, p27 ve p57 bu ailedendir). CDKI ailesinin bir başka üyesi ise INK4/ARF’dir. INK4 yalnızca CDK4 ve CDK6 ile etkileşir ve bunların siklin D ile birleşmelerini engeller (p15, p16, p18 ve p19 bu ailedendir). ARF ise p53’ün regülatörü olan MDM2 aktivitesini inhibe ederek p53 seviyesini arttırır (p14 bu ailedendir)13. Tüm CDKI molekülleri, hücrede fazla sentezlendiklerinde ve CDK moleküllerini etkisizleştirdiklerinde hücre döngüsünü G1 evresinde durdururlar. G1 düzenleyicilerinden siklin D1, CDK4 ve p16, over kanser gelişiminde önemli rol oynarlar14. Miktarı artan siklin D1, Rb proteinini fosforilasyonla inaktive etmek için CDK4 ve CDK6 ile birleşir (siklin D1, 11q13’te CCND1 geni ya da Prad1 geni tarafından şifrelenir; paratroid adenomda, Bhücre lenfomalarında bu genin translokasyonunun –t(11;14)(q13-q32)- rolü nedeniyle bu isim verilmiştir). Siklin D1’in ifade edilmesinin, bazı hücre tiplerinde hücre–hücre dokunmasının ortadan kalkmasıyla azaldığı ve bu döngü düzenleme etkisinin integrinler ve fokal adezyon kinazlar aracılığıyla gerçekleştiği gösterilmiştir15. Meme,özefagus, squamöz hücreli kanserde siklin D1 lokusunda artış olduğu gözlenmiştir16-20. Kolorektal kanserlerde, siklin D2 ve E genlerinin çoklu kopya oluşturması nedeniyle mRNA ve protein düzeyinde de aşırı ifade edildiği gösterilmiştir21. Bazı meme kanseri hücre hatlarında siklin E geninde artış olduğu22,23 ve bu artışın siklin E mRNA düzeyini yaklaşık 64 kat arttırdığı gösterilmiştir24. Herhangi bir hastalığın oluşumunda ve tedavi amaçlı uygulanan ilaca verilen yanıtta çevre, yaş, beslenme, yaşam biçimi gibi faktörlere ek olarak, kişinin genetik yapı değişikliklerinin rolü yadsınamaz. Bu nedenle toplumların genom yapısındaki varyasyonların, ve kişisel gen mutasyonlarının çalışılması kanser oluşum riskinin, ilaç toksisitesi ve etkinliğinin belirlenmesinde yararlı olmaktadır. Tek nükleotit değişimlerini (varyasyonları, polimorfizmleri) içeren genler, toplumda % 1’den daha fazla sıklıkta bulunan allel genler olarak tanımlanır25. İnsan genom dizilim çalışmaları her insan genomunda DNA’nın % 99.9 benzerlik gösterdiğini kanıtlamıştır26. Geriye kalan % 0.1’lik fark, bireysel genotip ve fenotipik değişikliklerin sorumlusudur. Tek nükleotit değişimleri insan genomunda en çok bulunan (ortalama her 1000 nükleotitte bir) DNA dizi değişimleridir27. Diğer genetik polimorfizm tipleri; değişik uzunlukta ikili ya da üçlü nükleotit tekrarları ve DNA’da eksilme ya da artmaları içerir28. İster döngü düzenleyici molekül isterse yüzlerce hücresel işlevden birinden sorumlu olan herhangi bir genin kodlayıcı bölgesindeki değişiklik, genin ürünü olan fenotipi etkiler. Genin ifadesi ise çoğunlukla genin promotör ya da enhancer gibi düzenleyici bölgeleri (cis elementlerdeki) ve bu bölgelere bağlanan transkripsiyon faktörleri ve diğer yardımcı düzenleyici moleküllerle kontrol edilir29. Genin kontrol bölgesindeki nükleotit değişiklikleri ve diğer genlerden oluşturulan ve bu düzenleyici bölgeleri tanıyıp bağlanan (trans etkili) düzenleyici proteinlerin genlerinin kontrol ve kodlayıcı DNA bölgesindeki nükleotit dizi değişiklikleri genin ifade edilme düzeyini, bir başka deyişle ürün oluşumu ve miktarını etkiler. Böylece bir genin ifade edilme düzeyi,hem genin kontrol bölgesindeki DNA diziliminin hem de bu bölgeye bağlanan düzenleyici transkripsiyon faktörlerinin farklılığından dolayı kişiden kişiye değişebilir. Hücre döngüsü denetim noktasında DNA onarımından sorumlu bir kinaz geni olan CHEK2 (CHK2 olarak da bilinir), meme kanser riskinin artmasında rolü olan bir başka döngü düzenleyici gendir. CHEK2 1100delC varyantının, kadınlarda meme kanser riskinin yaklaşık 2 kat, erkeklerde ise 10 kat artmasına neden olduğu gösterilmiştir30. p53 genindeki Pro72 polimorfizminin over kanseri için moleküler belirteç olabileceği belirtilirken, bu allele sahip olmayan meme kanserli hastaların tedavisinde tamoksifenden değil diğer tedavilerden sonuç alınabileceği önerilmektedir31. Siklin D1 geninin 4. ekzonunda tanımlanan A870G tek nükleotit polimorfizmi (SNP) farklı bir mRNA ve farklı bir proteinin oluşmasına neden olabilir32. Bu polimorfizmin, protein ifade edilme düzeyini değiştirerek özefagus kanserlerinde genomu kararsızlığa götürerek agresif bir klinik sürece götürdüğü gösterilmiştir33. Bir başka çalışmada ise bu polimorfizm bakımından AA genotipine sahip olan bireylerin, kolorektal kansere yakanma riskinde artış olduğu gösterilmiştir34,35. Ayrıca, endometriyum36, özefagus ve kardiyak kökenli37,38 kanser hastalarında yapılan çalışmalarda, siklin D1 geninin A870G polimorfizmi bakımından araştırıldığında, AA genotipi ve kanser gelişim riski arasında ilişki olduğu belirlenmiştir. Bunlara ek olarak siklin D1 A870G gen polimorfizmi sigaranın indüklediği akciğer kanser riskini de etkileyebilmektedir39. Buna karşın, östrojen/progesteron reseptör negatif ve ileri evre (III ve IV) meme kanserli hastalarda ise, 870 A allelinin sağkalım ile pozitif ilişkisi olduğu gösterilmiştir40. McKay ve arkadaşları41 yüksek düzeyde siklin D1 protein ifade edilmesi ile kolorektal kanser arasında pozitif ilişkili olduğunu, ancak, A870G polimorfizminin siklin D1 protein ifadesi ve sağkalım ile ilişkisi olmadığını göstermişlerdir. CDKI ailesi üyelerinden p16INK4A (CDKN2A) geninde tanımlanan A148T varyantı erken yaşta gelişen meme42, malign melanom ve akciğer43 kanserleri ile ilişkilendirilmiştir. Cip/Kip aile üyesinden biri olan p21CIP1/WAF1 (CDKN1A) geninin 31. kodonundaki C/A transversiyonu sonucu serin yerine arjinin aminoasitinin kodlanmasıyla sonuçlanan bir polimorfizm tanımlanmıştır44. AA genotipinin akciğer45, mesane46 kanser gelişimi ile, CC genotipinin ise özeferangal kanser oluşumu ile ilişkisi gösterilmiştir47. Genin 3′translasyona uğramayan bölgesinde yer alan stop kodonunun 20 bazçift aşağısında) ve 31. kodon polimorfizmi ile bağlantı gösteren C/T polimorfizmi tanımlanmıştır48. Bir çalışmada,CC genotipi ile karşılaştırıldığında, T alleli taşıyıcılarında (CT+TT genotipleri) prostat kanseri gelişim riskinin 2 kat arttığı gösterilmiştir49. Cip/Kip aile üyesinden biri olan p27KIP1 (CDKN1B ) geninin 109. kodonunda T/G değişimi sonucu glisin amino asiti yerine valin amino asiti kodlanmasıyla sonuçlanan bir polimorfizm tanımlanmıştır50. VV (çalışmada, CDKN1B geni kesim ürünlerine göre sınıflandırılmış) genotipi ile ileri evre prostat kanseri arasındaki ilişki gösterilmiştir49. Bir başka çalışmada ise, oral kanserli erkek hastalarda VV genotipinin kanser gelişimi ile bağlantısı belirlenmiştir51. Meme kanserli hastalarda GG genotipi ile lenf nodu metastazı arasında ilişki olduğu gösterilmiş ve bu polimorfizmin tumör prognoz belirteci olabileceği önerilmiştir52. Bir başka çalışmada ise, CDKN2A, p15INK4B (CDKN2B ), CDKN1B genlerinin kontrol bölgelerinde yeni polimorfizmler tanımlanmıştır. CDKN2A -222A, CDKN2B - 593A, CDKN1B -1608A varyantları ile çocukluk çağı pre-B akut lenfoblastik lösemi (ALL) gelişimi arasındaki bağlantı gösterilmiştir53. Özetlersek, siklinler, CDK kompleksleri ve CDKI molekülleri, hücre döngüsü, farklılaşma, DNA onarımı ve apoptozis sistemlerinin düzenlenmesiyle ilgili genlerin ifade edilmesini denetlemektedir. Hücre döngüsünün denetim noktalarını oluşturan sistemler, kromozomların doğru düzenlenmeayrılmalarından ve genomun bütünlüğünün sürdürülmesinden sorumlu olduğundan bu sistemlerdeki hatalar kanser hücrelerindeki aneuploidilerin ve genomik kararsızlığın asıl nedeni olabilmekte bu nedenle de tedavide ilaç hedefleri arasında yer almaktadır. KAYNAK: 1. Engelsen IB, Stefansson IM, Beroukhim R, et al. HER-2/neu expression is associated with high tumor cell proliferation and aggressive phenotype in a population based patient series of endometrial carcinomas. Int J Oncol 2008; 32 (2): 307-316. 2. Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432: 298-306. 3. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006; 97 (2): 261-274. 4. Malumbres M. Cyclins and related kinases in cancer cells. J BUON 2007; Suppl 1: S45-52. 5. Meeran SM, Katiyar SK. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 2008; 13: 2191-2202. 6. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-1512. 7. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999; 39: 295-312. 8. Bélanger H, Beaulieu P, Moreau C, Labuda D, Hudson TJ, Sinnett D. Functional promoter SNPs in cell cycle checkpoint genes. Hum Mol Genet 2005; 14: 2641-2648. 9. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39–85. 10. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54 (18) :4855-4878. 11. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75 (4): 805-816. 12. de Cárcer G, de Castro IP, Malumbres M. Targeting cell cycle kinases for cancer therapy. Curr Med Chem 2007;14 (9): 969-985. 13. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2 (10): 731-737. 14. D’Andrilli G, Kumar C, Scambia G, Giordano A. Cell cycle genes in ovarian cancer. Clin Can Res 2004; 10: 8132-8141. 15. Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001; 12: 4066- 4077. 16. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB. Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 1992; 52 (10): 2980-2983. 17. Schuuring E, Verhoeven E, van Tinteren H, et al. Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res 1992; 52 (19): 5229-5234. 18. Zhou DJ, Casey G, Cline MJ. Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 1988; 2 (3): 279-282. 19. Lammie GA, Fantl V, Smith R, et al. D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 1991; 6 (3): 439-444. 20. Proctor AJ, Coombs LM, Cairns JP, Knowles MA. Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene 1991; 6 (5): 789-795. 21. Leach FS, Elledge SJ, Sherr CJ, et al. Amplification of cyclin genes in colorectal carcinomas. Cancer Res 1993; 53: 1986-1989. 22. Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 1993; 90 (3): 1112-1116. 23. Buckley MF, Sweeney KJ, Hamilton JA, et al. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8 (8): 2127- 2133. 24. Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP. Deregulation of cyclin E in breast cancer. Oncogene 1995; 11 (5): 941-950. 25. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405: 847-856. 26. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921. 27. Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 2003; 33: 518-521. 28. Cariou A, Chiche JD, Charpentier J, Dhainaut JF, Mira JP. The era of genomics: Impact on sepsis clinical trial design. Crit Care Med 2002; 30 (5 Suppl): S341-348. 29. Sefton BM. Overview of protein phosphorylation. Curr Protoc Cell Biol 2001; Chapter 14: Unit14.1. 30. Meijers-Heijboer H, van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations, Nat Genet 2002; 31: 55-59. 31. Wegman P, Stal O, Askmalm MS, Nordenskjöld B, Rutqvist LE, Wingren S. p53 polymorphic variants at codon 72 and the outcome of therapy in randomized breast cancer patients. Pharmacogenet Genomics 2006; 16: 347-351. 32. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene 1995; 11: 1005- 1011. 33. Izzo JG, Wu TT, Wu X, et al. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol 2007; 25 (6): 698-707. 34. Jiang J, Wang J, Suzuki S, et al. Elevated risk of colorectal cancer associated with the AA genotype of the cyclin D1 A870G polymorphism in an Indian population. J Cancer Res Clin Oncol 2006; 132 (3): 193-199. 35. Le Marchand L, Seifried A, Lum-Jones A, Donlon T, Wilkens LR. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA 2003; 290 (21): 2843-2848. 36. Kang S, Kim JW, Park NH, Song YS, Kang SB, Lee HP. Cyclin D1 polymorphism and the risk of endometrial cancer. Gynecol Oncol 2005; 97: 431- 435. 37. Wang R, Zhang JH, Li Y, Wen DG, He M, Wei LZ. The association of cyclin D1 (A870G) polymorphism with susceptibility to esophageal and cardiac cancer in north Chinese population. Zhonghua Yi Xue Za Zhi 2003; 83 (12): 1089-1092. 38. Zhang J, Li Y, Wang R, Wen D, et al. Association of cyclin D1 (G870A) polymorphism with susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer 2003; 105: 281-284. 39. Gautschi O, Hugli B, Ziegler A, et al. Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer 2006; 51: 303-311. 40. Shu XO, Moore DB, Cai Q, et al. Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomarkers Prev 2005; 14: 91-97. 41. McKay JA, Douglas JJ, Ross VG, et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int J Cancer 2000; 88 (1): 77-81. 42. Debniak T, Cybulski C, Górski B, et al. CDKN2Apositive breast cancers in young women from Poland. Breast Cancer Res Treat 2007; 103: 355-359. 43. Debniak T, Scott RJ, Huzarski T, et al. CDKN2A common variant and multi-organ cancer risk-a population-based study. Int J Cancer 2006; 118: 3180- 3182. 44. Li YJ, Laurent-Puig P, Salmon RJ, Thomas G, Hamelin R. Polymorphisms and probable lack of mutation in the WAF1-CIP1 gene in colorectal cancer. Oncogene 1995; 10: 599-601. 45. Själander A, Birgander R, Rannug A, Alexandrie AK, Tornling G, Beckman G. Association between the p21 codon 31 A1 (arg) allele and lung cancer. Hum Hered 1996; 46: 221-225. 46. Chen WC, Wu HC, Hsu CD, Chen HY, Tsai FJ. p21 gene codon 31 polymorphism is associated with bladder cancer. Urol Oncol 2002; 7: 63-66. 47. Wu MT, Wu DC, Hsu HK, Kao EL, Yang CH, Lee JM. Association between p21 codon 31 polymorphism and esophageal cancer risk in a Taiwanese population. Cancer Lett 2003; 201: 175- 180. 48. Mousses S, Ozcelik H, Lee PD, Malkin D, Bull SB, Andrulis IL. Two variants of the CIP1/WAF1 gene occur together and areassociated with human cancer. Hum Mol Genet 1995; 4: 1089-1092. 49. Kibel AS, Suarez BK, Belani J, et al. CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res 2003; 63: 2033-2036. 50. Cave H, Martin E, Devaux I, Grandchamp B. Identification of a polymorphism in the coding region of the p27Kip1 gene. Ann Genet 1995; 38 (2): 108. 51. Li G, Sturgis EM, Wang LE, et al. Association between the V109G polymorphism of the p27 gene and the risk and progression of oral squamous cell carcinoma. Clin Cancer Res 2004; 10: 3996-4002. 52. Naidu R, Har YC, Taib NA. P27 V109G Polymorphism is associated with lymph node metastases but not with increased risk of breast cancer. J Exp Clin Cancer Res 2007; 26: 133-140. 53. Healy J, Bélanger H, Beaulieu P, Larivière M, Labuda D, Sinnett D. Promoter SNPs in G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia. Blood 2007; 109: 683-692. 54. Zhu L, Skoutchi AI. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 2001; 11: 91-97. 55. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25: 1620-1628. 56. Burd CJ, Petre CE, Morey LM, et al. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci USA 2006; 103: 2190-2195. 57. Sturm RA, Duffy DL, Box NF, et al. The role of melanocortin 1-receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res 2003; 16: 266-272. 58. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111. 59. Signoretti S, Loda M. Prostate stem cells: from to cancer. Semin Cancer Biol 2007; 17: 219-224. 60. Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 1995; 83: 859-869. 61. Chambon P. A decade of molecular biology of retinoic acid receptors, FASEB J 1996; 10: 940–954. 62. Si J, Mueller L, Collins S. CaMKII regulates retinoic acid receptor transcriptional activity and the differentiation of myeloid leukemia cells. J Clin Invest 2007; 117: 1412-1421. 63. Wang J, Yen A. A novel retinoic acid-responsive element regulates retinoic acid-induced BLR1 expression. Mol Cell Biol 2004; 24: 2423-2443. 64. Hu L, Crowe DL, Rheinwald JG, Chambon P, Gudas LJ. Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer Res 1991; 51: 3972–3981. 65. Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 2004; 89 (1): 272-280. 66. Zhang Z, Joh K, Yatsuki H, et al. Retinoic acid receptor β2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett 2007; 247 (2): 318-327. 67. Woolcott CG, Aronson KJ, Hanna WM, et al. Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Cause Control 2001; 12 (5): 395-404. 68. Hoyer AP, Jorgensen T, Rank F, Grandjean P. Organochlorine exposures influence on breast cancer risk and survival according to estrogen receptor status: a Danish cohort-nested case-control study. BMC Cancer 2001; 1: 8. 69. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11:1513- 1530. 70. Imyanitov E, Hanson K, Zhivotovsky B. Polymorphic variations in apoptotic genes and cancer predisposition. Cell Death Differ 2005; 12: 1004– 1007. 71. López-Cima MF, González-Arriaga P, García-Castro L, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain. BMC Cancer 2007; 7: 162. 72. Bau DT, Wu HC, Chiu CF, et al. Association of XPD polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res 2007; 27 (4C): 2893-2896. 73. Naccarati A, Pardini B, Hemminki K, Vodicka P. Sporadic colorectal cancer and individual susceptibility: a review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat Res 2007; 635: 118-145. 74. Sangrajrang S, Schmezer P, Burkholder I, et al. The XRCC3 Thr241Met polymorphism and breast cancer risk: a case-control study in a Thai population. Biomarkers 2007; 12: 523-532. 75. Shao J, Gu M, Xu Z, Hu Q, Qian L. Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 2007; 177: 30-36. 76. Long XD, Ma Y, Huang HD, Yao JG, Qu DY, Lu YL. Polymorphism of XRCC1 and the frequency of mutation in codon 249 of the p53 gene in hepatocellular carcinoma among guangxi population, China. Mol Carcinog 2007; 47(4): 295-300. 77. Yang ZH, Liang WB, Jia J, Wei YS, Zhou B, Zhang L. The xeroderma pigmentosum group C gene polymorphisms and genetic susceptibility of nasopharyngeal carcinoma. Acta Oncol 2007; 47(3): 379-384. 78. Jara L, Acevedo ML, Blanco R, et al. RAD51 135G>C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 2007; 178: 65-69. 79. Gu A, Ji G, Liang J, et al. DNA repair gene XRCC1 and XPD polymorphisms and the risk of idiopathic azoospermia in a Chinese population. Int J Mol Med 2007; 20 (5): 743-747. 80. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005; 26: 263– 270. 81. Zhivotovsky B, Orrenius S. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 2006; 27: 1939-1945. 82. Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stressinduced apoptosis and degenerative diseases. Biochim Biophys Acta 2004; 1655 (1-3): 400-408. 83. Dabrowska M, Pietruczuk M, Kostecka I, et al. The rate of apoptosis and expression of Bcl-2 and Bax in leukocytes of acute myeloblastic leukemia patients. Neoplasma 2003; 50 (5): 339-344. 84. Yang X, Sit WH, Chan DK, Wan JM. The cell death process of the anticancer agent polysaccharidepeptide (PSP) in human promyelocytic leukemic HL- 60 cells. Oncol Rep 2005; 13: 1201-1210. 85. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 2002; 13: 135– 141. 86. Lai HC, Sytwu HK, Sun CA, et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 2003; 103 (2): 221–225. 87. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 2004; 96: 1030–1036. 88. Shepelev V, Fedorov A. Advances in the Exon-Intron Database (EID). Brief Bioinform 2006; 7 (2): 178- 185. 89. Brent MR. Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat Rev Genet 2008; 9 (1): 62-73. 90. Li G, Sturgis EM, Wang LE, et al. Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2004; 25 (10): 1911–1916. 91. Hazra A, Chamberlain RM, Grossman HB, Zhu Y, Spitz MR, Wu Xl. Death receptor 4 and bladder cancer risk. Cancer Res 2003; 63: 1157–1159. 92. Shin MS, Kim HS, Kang CS, et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 2002; 99 (11): 4094–4099. 93. Park WS, Lee JH, Shin MS, et al. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 2002; 21 (18): 2919–2925. 94. Kim HS, Lee JW, Soung YH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 2003; 125 (3): 708–715. 95. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 2001; 20 (3): 399–403. 96. MacPherson G, Healey CS, Teare MD, et al. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 2004; 96 (24): 1866–1869. 97. Seker H, Butkiewicz D, Bowman ED, et al. Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 2001; 61 (20): 7430- 7434. 98. Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol 2002; 12: 89−96. 99. Hunter KW. Host genetics and tumour metastasis. Br J Cancer 2004; 90: 752−755. 100. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997; 80 (8 Suppl): 1529-1537. 101. Ekmekci A. Gen, Genetik Değişim ve Hastalıklar, Gazi Kitabevi. Ankara, Turkiye, 1st ed., 2006; 217- 245. 102. Risau W. Mechanisms of Angiogenesis. Nature 1997; 386: 671-674. 103. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) Gene: correlation with variation in VEGF protein production. Cytokine 2000; 12: 1232-1235. 104. Claffey KP, Robinson GS. Regulation of VEGF/ VPF expression in tumour cells: consequences for tumour growth and metastasis. Cancer Metastasis Rev 1996; 15: 165-176. 105. Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in reumatoid arthritis, J Immunol 1994; 152 (8): 4149-4156. 106. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 1997; 13; 37-50. 107. Saaristo A, Karpanen T, Alitalo K. Mechanisms of angiogenesis and their use in the ınhibition of tumor growth and metastasis. Oncogene 2000; 19: 6122- 6129. 108. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, et al. Isolation of angiopoietin-1, a ligand for the tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87 (7): 1161-1169. 109. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277 (5322): 55-60. 110. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. Lack of association between -460 C/T and 936 C/T of the vascular endothelial growth factor and angiopoietin-2 exon 4 G/A polymorphisms and ovarian, cervical, and endometrial cancers. DNA Cell Biol 2007; 26: 453-463. 111. Onen IH, Konac E, Eroglu M, Guneri C, Biri H, Ekmekci A. No association between polymorphism in the vascular endothelial growth factor gene at position-460 and sporadic prostate cancer in the Turkish population. Mol Biol Rep 2008; 1: 17-22. 112. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237. 113. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. An investigation of relationships between hypoxia-inducible factor-1 alpha gene polymorphisms and ovarian, cervical and endometrial cancers. Cancer Detect Prev 2007; 31: 102-109. 114. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799. 115. Hartsough MT, Steeg PS. Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 2000; 32 (3): 301-308. 116. Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043- 1050. 117. Ghilardi G, Biondi ML, Caputo M, et al. A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility. Clinical Cancer Res 2002; 8 (12): 3820-3823. 118. Ghilardi G, Biondi ML, Erario M, Guagnellini E, Scorza R. Colorectal carcinoma susceptibility and metastases are associated with matrix metalloproteinase-7 promoter polymorphisms. Clinic Chem 2003; 49: 1940-1942. 119. Eroglu A, Ulu A, Cam R, Akar N. Plasminogen activator inhibitor-1 gene 4G/5G polymorphism in patients with breast cancer. J BUON 2006; 11: 481- 484. 120. Lei H, Hemminki K, Johansson R, Altieri A, Enquist K, Henriksson R, et al. PAI-1 -675 4G/5G polymorphism as a prognostic biomarker in breast cancer, Breast Cancer Res Treat, DOI: 10.1007/s10549-007-9635-3 July 7; 2007. 121. van den Bemd GJ, Pols HA, van Leeuwen JP. Antitumor effects of 1,25-dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des 2000; 6: 717-732. 122. Haussler MR, Whitfield GK, Haussler CA. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 1: 325– 349. 123. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 2002; 277: 25125–25132. 124. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 1999; 277: F157–175. 125. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143–156. 126. Obara W, Suzuki Y, Kato K, Tanji S, Konda R, Fujioka T. Vitamin D receptor gene polymorphisms are associated with increased risk and progression of renal cell carcinoma in a Japanese population. Int J Urol 2007; 14: 483-487. 127. Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL, Bell DA. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996; 56: 4108-4110. 128. Kadiyska T, Yakulov T, Kaneva R, Nedin D, Alexandrova A, Gegova A, et al. Vitamin D and estrogen receptor gene polymorphisms and the risk of colorectal cancer in Bulgaria. Int J Colorectal Dis 2007; 22 (4): 395-400. 129. Lundin AC, Söderkvist P, Eriksson B, Bergman- Jungeström M, Wingren S. Association of breast cancer progression with a vitamin D receptor gene polymorphism. South-East Sweden Breast Cancer Group. Cancer Res 1999; 59: 2332-2334. 130. Oakley-Girvan I, Feldman D, Eccleshall TR, Gallagher RP, Wu AH, Kolonel LN, et al. Risk of early-onset prostate cancer in relation to germ line polymorphisms of the vitamin D receptor. Cancer Epidemiol Biomarkers Prev 2004; 13 (8): 1325-1330. 131. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci USA 1992; 89: 6665-6669. 132. Faraco JH, Morrison NA, Baker A, Shine J, Frossard PM. ApaI dimorphism at the human vitamin D receptor gene locus. Nucleic Acids Res 1989; 17: 2150. 133. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367 (6460): 284-287. 134. Onen HI, Ekmekci A, Eroğlu M, Konac E, Yeşil S, Biri H: Association of genetic polymorphisms in vitamin D receptor gene and susceptibility to sporadic prostate cancer. Exp Biol Med 2008; 233 (12): In Press. Abdullah Ekmekçi, Ece Konaç, H. İlke Önen Gazi Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji ve Genetik Anabilim Dalı, Ankara, Türkiye

http://www.biyologlar.com/hucre-dongusu-ve-polimorfizm

Hücre Yüzeyindeki Bazı Yapılar

Hücrenin işlevi île ilgili ya da diğer hücrelerle ilişkisini sağlayan yapılardır. Hücrenin yaptığı işe ve bulunduğu yere göre farklılıklar gösterirler. Mikrovillus Özellikle emme görevi fazla olan hücrelerde, örneğin bağırsak epitelinde, hücre dış yüzeyini artırmak için, hücre zarının bir miktar sitoplazma ile beraber dışarıya doğru meydana getirdiği, parmak şeklinde 0.6-0.8 mikron uzunluğunda 0.08-0.1 mikron kalınlığındaki çıkıntılardır, ince bağırsakta her bir hücrede aşağı yukarı 3000-4000 mikrovillus bulunmaktadır. Bu mikrovilluslar (çoğulu mikrovilli) makromolekülleri parçalayan ve hücre içine taşıyan enzimleri taşır. Sıvı geçirimine (alışverişine) kuvvetlice özelleşmiş (ozmoregülasyon yapan) hücrelerin taban kısımları (böbrek Malpiki tüplerinin epitel hücreleri) kaide labirenti denen birçok kıvrım ve girinti taşır. Epitel hücrelerinin alt kısmındaki "Kaide Zarı" hücre dışı bir yapı ve salgıdır; epitel hücrelerini alttaki bağ dokudan ayırmaya yarar. Fagositoz (Phagocytosis), Pinositoz (P/nocytosfs) ve Eksositoz (Exocytosis) ya da Eksturziyon (Extursion) Amikronlar, yani iyonlar ve moleküller (10 A°)rezorpsiyonla, submikronlar (10 A° - 0.1 mikron) athrocytos'la (atrositozla), mikronlar (0.1 mikrondan büyük) fagositozla alınırlar. Su gibi küçük moleküllerin birçoğu hücre içerisine ozmozla, hücre zarının değişmesine gerek kalmadan girebildikleri halde, bir kısmı, örneğin potasyum ve sodyum tuzları, diğer makromoleküller gibi pinositoz meydana getirir. Büyük moleküllerin ve bazı katı cisimlerin hücre içine alınabilmesi için hücre zarının yapısal olarak değişmesi gerekir. Sitoplazma, büyük bir cismi, yalancı ayak ya da içeriye çöken bir kesecik (vezikül) meydana getirerek hücre içine alabilir. Ayrıca hücre yüzeyinde bir takım yarık ve çukurlar vardır. Bunların içindeki sıvı ve katılar boğumlanmak suretiyle bir kesecik şeklinde sitoplazma içerisine alınır, işte bu yolla sıvı maddelerinin hücre içerisine alınmasına pinositoz (Yunanca, pinein = içmek demektir) katı maddelerin alınmasına fagositoz (Yunanca, phagein = yemek demektir) her ikisine birlikte "E n d o s i t o z" denir. Bu yolla, normal olarak bimoleküler yağ tabakasından geçemeyecek moleküllerin hücre içine nasıl girebildikleri anlaşılır. Hatta aç bırakılan bir amip % 1'lik globülin çözeltisinden, iki saat içinde vücudunun % 30-40'ı kadar molekülü bu şekilde alma gücüne sahiptir. Fagositozla meydana gelen kesecikler diğerlerinden çok daha büyüktür, içeriye giren bu kesecikler lizozomlarla çevrilerek, onların zarlarıyla kaynaşır ve böylece kesecik içerisindeki maddeler diffüzyonla zardan geçecek kadar küçük moleküllere parçalanır. Sadece su ve küçük moleküllü diğer temel besin maddelerini içeren kesecikler bu diffüzyonla gittikçe küçülür ve bir zaman sonra da çevresini saran zar birimiyle birlikte kaybolur. Bununla beraber içerisinde sindirilemeyen artık madde içeren kesecikler Golgi aygıtı (GA)'nın sisternlerine kaynaşır ve daha sonra anlatacağımız gibi ekstruziyon dediğimiz yolla dışarıya atılır. Buna karşın Golgi aygıtında oluşan salgılar ve sindirim artık maddeleri zar biriminden meydana gelmiş kesecikler içinde, zara doğru hareket ederek, orada hücre zarına birleşir ve kaynaşırlar. Daha sonra dışanya doğru balon yapan çıkıntılarla (meydana gelen delikten) atılırlar; buna "Ekstruziyon" (latince Ex= dışarı, trudere= atmak) ya da "E k s o s i t o z" denir. Kesecik plazmalem-maya yuvarlak bir testi gibi bağlanır. Testinin ağzı dışarıya dönüktür.Bu testi şeklindeki kesecik, içerisindeki sıvı aktıkça küçülür ve bir zaman sonra da kaybolur. Keseciğin de hücre zarına homolog olduğu varsayılmaktadır. Eksositoza örnek, insülinin kana verilişi gösterilebilir. Hücreler Arası Bağlantılar (Juncturae Cellularum) İki hücrenin birbirine bağlanmasını ve haberleşmesini sağlayan özel bölgeler olarak tanımlanır. Bu bağlanma çeşitli dokularda çeşitli şekillerde bulunur. Sinir, duyu ve bazı kas hücrelerinde sinapsis adım alır. Hücreler arasındaki bağlanmayı şu gruplara ayırabiliriz Sıkı Bağlantı: Dış etkilerden vücudu koruyan hücrelerde bulunur. Epitel hücreleri arasındaki kuvvetli bağlantı bu tiptir. Hücreler arasında aralık yok gibidir. Yalıtma özelliği genellikle fazladır. Desmozomlar: Aynı işlevi yürüten hücrelerin ortak hareket etmelerini ve birbirine yapışmalarını sağlayan sitoplazmik uzantılardır. Çoğunluk simetriktirler. Bu uzantılar küçük bölgeler halinde olabilir (düğme desmozom) ya da hücrenin etrafını çepeçevre sarar (kemer desmozom). Mekanik etki altında kalan hücrelerde düğme desmozom daha fazladır. Esasında hücre bağlantıları, hücrelerin serbest yüzünden derinlere doğru farklı bölgeler gösterir. Geçit Bölgeleri: Bir zigotun (çok hücrelide) gelişerek, aralarında düzenleme ve işbölümü oluşmuş, yapısal olarak farklılaşmış hücreleri meydana getirmesi, hücreler arasındaki bilgi iletimi ile mümkün olmaktadır. Bu iletişim madde ve elektrik iletimi şeklinde olabilir. Nitekim 1000 dalton büyüklüğündeki moleküllerin, hücreler arasında bulunan 10-20 A° çapındaki geçit bölgelerinden iletildikleri saptanmıştır. Bu geçitler iki hücrenin birbirine yaklaştıkları bölgelerde oluşan borucuklardır. Boruculardan, iyonların, şekerlerin, amino asitlerin, nükleotitlerin, vitaminlerin, steroyit hormonların ve siklik adenozin mono fosfatın geçtiği saptanmıştır. Keza elektriksel uyarımlar da diğer hücrelere bu geçit bölgelerinden iletilir, iyonların geçiş sırasında dış ortama sızmaması için geçiş borucuklarının geçirgenliği normal hücre zarına göre 1000-10.000 defa azaltılmıştır, iki canlı hücre yapay bir ortamda yan yana getirilirse, çok kısa bir sürede (saniyeler içinde) hücreler arası ulaşım bölgelerini oluştururlar. Hücre zarının üzerindeki özel almaçlar, aynı kökenden gelen diğer hücrelerin tanınmasını sağlarlar, örneğin embriyonik evrede karmakarışık edilen hücreler, geldikleri doku çeşidine göre birbirlerini tanıyarak bir araya gelebilirler. Hücreler arası ulaşım bölgelerinin oluşumunun ve geçirgenliğinin miktarı Ca + + iyonlarının hücre içindeki azlığına (normal olarak hücre içindeki derişimi düşüktür) ve hücre yüzeyindeki glikoproteinlerin fazlalığına bağlıdır. Hücreler arası bölgede Ca + + ve Mg + + derişiminin fazla olması, geçit tüpcüklerinin yalıtılmasına, bu da hücreler arası geçirgenliğin artmasına neden olur. Ca + + iyonları hücre zarına tutunarak belirli iyonların taşınımını önler, iki hücre arasında bağ meydana gelince, borucuğun açıldığı yerdeki Ca + + iyonları (borucuk içinde kalan ) hücre zarından aynlarak sitoplazma içine girer ve çoğunlukla da aktif pompalanma ile dışarıya atılır (ATP kullanılarak). ATP sentezi önlendiğinde, hücreler arasındaki bağ yerlerine tutunmuş Ca4' + iyonları atılmadığı için hücreler arasındaki geçirgenlik (bağ yapma gücü) azalacak ve hücreler birbirinden ayrılacaktır. Hücre arası geçitlerin en önemli görevi, embriyonik gelişim sırasında, bazı maddelerin hücreden hücreye bu yolla geçerek, doku ve hücre farklılaşmasını sağlamasıdır. Hücre çoğalmasının da bu yolla sınırlandığına ilişkin gözlemler vardır. Kanser hücresinde bu bilgi iletimi olmadığı için (büyük bir olasılıkla hücreler arası bağlantılar yok edildiği ya da oluşmadığı için), komşu hücrelerin durdurucu etkisini alamamakta ve sınırsız çoğalma sürecine girerek kötü huylu tümörleri yapmaktadır. Nitekim kanser hücreleri birbirine ya da normal hücrelere temas etse dahi bölünmesine devam eder; buna karşın normal hücreler komşu hücrelere ya da kanserli hücrelere temas ederse, bölünmesini durdurur ya da sınırlar. Siller (Cilia cellularia) Bazı hücrelerin yüzeyinde sil (kirpik) ve kamçı olarak isimlendirilen yapılar vardır. Hareketli olanlara "Kinetosilia", hareketsiz olanlara "Stereosilia" denir. Stereosiller, kinetositlerden uzundur ve kinetozom (dip taneciği) taşımazlar. Şillerin uzunluğu 5-10, kalınlıkları 0.2-0.25 mikrondur. Bulundukları hücrede sayıları çok fazladır. Flagellumlar (kamçılar) bulundukları hücrede ya bir ya da birkaç tanedir; uzunluğu 150 mikrona ulaşır, insandaki spermanın kuyruğu kamçı yapısındadır; uzunluğu 40-50 mikrondur. Çok sayılı kamçıya ependym (omurgalı hayvanların merkezi sinir sistemini örten epitel) hücrelerinde rastlanır. Bütün titrek siller ve kamçılar hemen hemen aynı yapıya sahiptir. Enine kesitte 11 adet boyuna uzanan mikrotubulustan meydana geldiği görülmüştür. Bunlardan iki tanesi ortada yer alır (Diplomikrotobulus Sentralis), diğer 9 tanesi 2'li mikrotubuluslar halinde çevreye sıralanmıştır (Diplomikrotubulus Periferiki). Ayrıca bir üçüncü mikrotubulusa ait olduğu sanılan ve belirli yönde yer almış çıkıntılar vardır. Kamçı ve Şiilerin enine kesitinde, ortadaki filamentum aksiyaleyi oluşturan kısım bu fibrillerdir. Bunun etrafında bir matriks kısmı ve en dışta da plazmalemma bulunur. Gerek siller gerekse kamçılar hücre dışında (Pars Ekstrasellularis) ve hücre içinde (Pars interselularis = Korpuskulum Bazale) kalan iki kısıma ayrılmıştır. Hepsi bir taban taneciğinden çıkmıştır (Bazal Granula). Bu taneciğe sinilerde Kinetozoma, kamçılılarda Blefaroplast ve çok hücrelilerin spermasında (kuyruk taneciğinde) Proksimal Sentriyol denir. Şillerin ve kamçıların bu taban taneciği ile bağlantıları kesilirse, hareket yeteneklerinin yitirildiği görülür. Şiller arasındaki eşgüdüm ilginçtir. Bir sildeki impuls diğer bütün Şillere, hatta komşu hücrelerdekine kadar geçerek, hepsinin belirli bir düzen içerisinde hareket etmesini sağlar. Kendi başlarına (otonom) hareket etme yetenekleri vardır, örneğin, ölen bir insanın, burun mukozasındaki ve böbrek kanallarındaki siller öldükten 2-3 gün sonra dahi hareketlidir. Kurbağaların, memelilerin ve yumuşakçaların ışığa karşı duyarlı hücreleri (çomakçılar ve koniler), sölenterlerdeki knidositler değişikliğe uğramış bir sildir.

http://www.biyologlar.com/hucre-yuzeyindeki-bazi-yapilar

Kanserin Genetik İle İlişkisi

Kanserin Genetik İle İlişkisi

İnsan yaşamını çevre ile ilişkide olarak sürdüren bir canlıdır. Çevre ile sürekli etkileşim söz konusudur. İnsan çevreyle uyumlu olduğu, çevreye ve değişen şartlara ayak uydurabildiği sürece ayakta kalır. Henüz embriyo iken göbek kordonu ile ilişki kurmaya başlayan insan zamanla daha geniş etkileşimlere kapı aralar. Çok yönlü olarak süren bu etkileşim, ölüm anı gelinceye dek devam eden bir süreçtir. Ölüm, uyumlu etkileşimin uyumsuza dönüşmesi hali olarak adlandırılır. Hücre çevre ile ilişkisini hücre zarı üzerinden yürütür. Hücreler etraflarındaki hücrelerle sürekli iletişim halindedir. Bu iletişim bazen elektriksel impluslarla, bazen hormonlarla, bazen de doğrudan doğruya temas yoluyla sağlarlar. Hücre zarında bulunan protein yapılı özelleşmiş reseptörler almış oldukları mesajları hücrelere iletme işini yürütür. Protein yapılı bu yapılar bir nevi anten görevi yaparak aldığı mesajları iletir. Mesajlar hücre tarafından değerlendirilir ve aldığı mesaja uygun davranış neyse o davranışta bulunur. Hücrenin çevre ile ilişkide olması, çevrede meydana gelen değişimlere uyum sağlayabilmesi ve günlük yaşama uygun davranma açısından önemlidir. Hücre ölümleri hücre farklılaşmasını oluşturan olaydır. Hücre ölümleri önceden planlanmıştır. Genetik kodda saklı bulunan bilgiler ışığında bir hücrenin bölünerek yeni hücreler oluşturması böylelikle de bedenin oluşması gerçekleşir. Hücre proteinleri tarafından sürekli bir döngü halinde bölünme farklılaşma ve ölüm işlemleri gerçekleşir. Yüzün üzerinde protein çeşidi bulunan hücrelerde, hücre ölümü bu proteinlerin kırmızı ışık görevini üstlenmesi ve çoğalan hücreyi durdurarak onu ölüme sürüklemesi ile gerçekleşir. Bu ölüm ve çoğalma dengesinin kurulması insanın hücre sayısının sabit kalmasını sağlar. Hücrenin yapısında buluna bilgide çoğal ya da çoğalma gibi bilginin mevcut oluşu gibi yaşa-öl bilgisi de mevcuttur ve bu bilgi ile hücre her an ölmeye hazır biçimdedir. Genlerin bir kısmı hücreye bölünmesi büyümesi gerektiğini söylerken bir kısmı da artık yeterince büyüdüğünü bölünmemesi gerektiğini söylemektedir. İşte kanser de bu noktada açığa çıkan bir olaydır. Genler arasında dengesizlik olursa dengesizlik doğarsa kanser bundan oluşmaya başlar. Hücreye büyüme emri veren genler normalden fazla çalıştığında ya da büyümeyi durduran genlerde bir sorun oluştuğunda hücre sürekli bölünüp büyür. Hücre devamlı devamlı bölünmeye devam ettiğinde de kanserli hücre denen hücreler oluşuyor. Hücre ölümlerinin bu şekli, hücre intiharı programı diye adlandırılır. İçe doğru bölünen hücre çekirdeğindeki DNA’yı parçalar. Parçalanmış olan hücre ya komşu hücreler tarafından ya da bu konu için özelleşmiş bazı hücreler tarafından fagosite(Vücuttaki yabancı organizma veya bazı maddeleri sindiren biyolojik hücreler fagosit denir. Hücre sindirme işlemine fagosite denir.) edilir. Bilim insanlarını ulaşmış olduğu son verilerin ışığında P53 geni denen genin kanserin oluşumunu durdurduğu söylenmektedir. Sigaranın kansere neden olduğunu söyleyen kimseler sigara dumanının yapısındaki kimyasalların P53 geninin yapısında değişim oluşturmasını öne sürmektedir. Kanser tedavisinde kullanılan gen tedavisi, bozularak kanser oluşumunu engelleme görevini yerine getiremeyen genlerin dengeleme işlevini yerine getirebilmesini sağlamak amacıyla kullanılmaktadır. Kanser vakalarının ortak noktası, hücre çekirdeğinde bulunan genetik şifre taşıyıcısı DNA molekülündeki gen bozulmalarıdır. Kimyasal yapısı bozulan DNA molekülündeki değişimler mutasyon adını alır. Kanserin başlangıcında da hücrenin büyüme ve ölüm işlevlerini dengede tutan genlerde oluşmuş mutasyonlar vardır. Bazen de kalıtım yoluyla aktarılma ile böyle durumlar görülmektedir. Kansere neden olan genlere onkogenler denir. Onkogenler hücre büyümesindeki itici güçtür. Onkogenler ise proto-onkogen diye adlandırılan yani onkogen yani kanser oluşturma potansiyeli olan genler olarak ortaya çıkmıştır şeklinde ortaya atılan fikir Nobel ödülü kazanmıştır. Bu fikrin ortaya atılmasından sonra kanser araştırmaları kırılma noktasını bulmuştur. Buradan yola çıkarak da bu genlerin tersi yönünde çalışan genlerin görevlerini yerine getirememelerinin de kanser oluşumuna neden olduğu sonucuna ulaşılmıştır. Peki, bu kanserli hücrelerin normal hücrelerden farkı nedir? Kanserli hücrelerle normal hücreler arasındaki fark yazımızın başında anlatmış olduğumuz hücreler arası iletişim konusundadır. Kanserli hücreler “yeterli büyüklüğe ulaştın artık bölünmeyi durdurmalısın” mesajını hücrelerden hücrelere iletemez. Oysa bölünmeyi durdurma işlevini sağlayacak bu mesajın hücreler arsındaki bağlar ile tüm hücrelere yayılması gerekmektedir. Ancak bu şekilde bölünme işleminin durması sağlanacakken kanserli hücrelerde hücre iletişimin temas noktası olan hücre zarlarında mesajları iletecek olan köprücükler eksiktir. Hücreler arası mesaj iletimi de bu nedenden mümkün olamaz. Bu da hücrelerin kendi başlarına durmadan çoğalmasını sağlar. Kanserin diğer tipinde ise büyümeyi çoğalmayı durduran genler yapısı değişmiş bir çeşit protein üretirler. Genlerde gen kaybı meydana gelir protein sentezi durma noktasına gelinceye değin azalır. Bu şekilde hücreler arası iletişim tamamen kesilir. DNA’yı onaran birtakım mekanizmalar vardır. Bu mekanizmalar sayesinde mutasyona uğrayarak bozulan genler onarılarak orijinal halinde eşlenir. DNA molekülünün bir tanesi bozulduğunda eşlenme sırasında kendini onarabilir. DNA’nın zincir şeklinde olması nedeniyle bu onarım gerçekleşse de RNA moleküllerinin tek zincirli yapıda oluşu herhangi bir mutasyonun onarımı sağlanamaz. DNA’dan bilgi alan RNA’ya taşıyan taşıyıcı RNA’larda mutasyon gerçekleştiğinde proteinlerin yapısı bozulur. Yapısı bozulan proteinlerden dolayı da hücrenin bölünme, çoğalma veya ölüm işlevleri bozulur. İnsan genomu projesi ile insanın genetik şifresinde yer alan tüm genlerin açığa çıkarılması planlanmaktadır. Hastalıkların hangi genlerle ilgili sorunlarla oluştuğunun bulunması bu proje ile mümkün görünmektedir. Kaynakça: http://www.kansergenetigi.com/tr/kanser-genetigi Yazar: Özlem Yüksel http://www.bilgiustam.com

http://www.biyologlar.com/kanserin-genetik-ile-iliskisi

Genetik hastalık

Bilinen tüm genetik hastalıklar üç tipten birine sınıflandırılabilir: tek gen bozuklukları, kromozom anormalileri ve poligenik hastalıklar. Tek gen bozuklukları bir otozom, bir seks kromozomu ve mitokondriyel DNA’daki tek bir gendeki mutasyon sebebi ile açığa çıkarlar. Mutasyonlar, dominant veya resesif ne olursa olsun, belirgin ve karakteristik pedigree paternleri gösterirler. Herhangi bir belirli tek gen bozukluğu tüm populasyonda nadir olabilir ama toplu halde populasyonun %2’sini, yaşamlarının herhangi bir evresinde etkiler. Ciddi tek gen bozukluklarının çocuklardaki insidansı % 0.36 iken hastaneye yatırılmış çocuklarda %6’ya çıkmaktadır. Kromozom anomalileri çeşitli formlarda olabilirler. Bunlar kromozomun bir kısmının veya tümünün fazlalığı veya eksikliği veya kromozomun bir kısmının yeni bir bölgeye translokasyonunu içermektedir. Bu çeşit anomaliler canlı doğumların %0.7’sinde meydana gelir fakat hamileliğin ilk üç ayında meydana gelen düşüklerde frekans %50’ye çıkmaktadır. Kromozom anomalileri kanserli hücrelerde yaygındır fakat bunlar somatik hücre mutasyonlarının klonal çoğalmasından kaynaklanır. Kalıtılan anomaliler değildirler fakat oluşabilme yatkınlığı kalıtılabilir. Günümüze kadar poligenik bozukluklar genetik hastalık olarak kabul edilmezlerdi çünkü karakteristik pedigree paternleri göstermezler ve hastalığın şiddeti yaşam tarzı ile ilişkili olarak değişiklik gösterir. Genetik bir bileşen içerdikleri tanımlandığında bile tam olarak anlaşılamamıştır. Poligenik bozukluklar bir gendeki tek bir mutasyon sebebi ile oluşmazlar. Daha çok birkaç gendeki küçük varyasyonların sonucudur ve birlikte bir bireye önemli etkileri olabilir. Poligenik hastalıkların frekansını belirlemek zordur fakat güncel tahminler çocuklarda %5’den en büyük etki yetişkinlerde olmak üzere tüm populasyonda % 60’a kadar değişir. Bugün kromozom anomalileri yüzünden sıkıntı çeken bireyler için çok az şey yapılabilmektedir. Fakat, biyoteknoloji ve genomikteki yeni gelişmeler tek gen bozukluğuna sahip hastalar için bir takım heyecan verici tedaviler sağlamaktadır. Bu gelişmeler terapötik proteinlerin sağlanması, antisense teknolojisi, gen terapisi ve gen tamirini içermektedir. Yeni moleküler tanı yöntemlerinin geliştirilmesi gelişmiş prenatal tanıya izin vermektedir fakat bunlar güç etik kararlara yol açabilir. Son beş yılda poligenik bozukluklar hakkındaki bilgimizde olağanüstü artış olmuştur. Bu bilgilerin kliniksel uygulamalara etkili olması için henüz erkendir ancak elde edilebilecek bir sonuç kişiselleştirilmiş ilaç olarak bilinir olmuş, hastalık fenotipine daha uygun ilaçların kullanılmasıdır. Aynı zamanda yeni ilaçların test edildiği klinik denemelerin şeklini değiştirebilir. Genetik hastalıkların tedavisindeki gelişmelerin anahtar yönlendiricisi insan genomunun tamamlanmış dizisinden ve fare gibi ilgili türlerin genomlarından elde edilen bilgilerin süre gelen analizi olacaktır. Bu bilgi pek çok hastalığa yeni bakış açıları getirecektir ve daha iyi diagnostik araçların, koruyucu önlemlerin ve terapötik metotların geliştirilmesine yardımcı olacaktır.  

http://www.biyologlar.com/genetik-hastalik

Nanoteknoloji Nedir ? Nerelerde Kullanılır ?

Bu yazımızda nanoteknolojinin hayatımızdaki yerini ve daha ne yenilikler katacağını göreceğiz. Nanoteknoloji sayesinde eskiden devasa boyutlarda olan bilgisayarlar önce masaüstü daha sonra dizüstü şimdi ise cep bilgisayarı olucak kadar küçüldüler. Mikron teknoloji denilen teknoloji alanında her geçen gün biraz daha ilerliyoruz bu ilerlemeler sayesinde yanlızca bilgisayar değil her alanda büyük yeniliklerle karşılaşıyoruz tarım, tıb ve mekanik gibi alanlardaki ilerlemeler hayatımıza yeni nesil hizmet olarak geri dönüyor. Bugünün lider şirketleri milyar dolarlarını sürekli nanoteknolojilerine yatıyor bu yatırımlar sayesinde bilim kurgu filmleri yavaş yavaş gerçeğe dönüyor. Mutlaka bilirsiniz bir zamanlar bilgisayarlar büyük bir oda boyutundaydı, 10 mhz hızında işlemciler ile çok kısıtlı işlemler yapılırdı şimdi 10 mhz hızında bir işlemci ile çalışmaya tahammül edebilirmisiniz ? Ama bilgisayarların neredeyse bir kol saati boyutuna ineceğini söylesem bu size daha olası gelir. Nanoteknoloji tabi ki tek bir çizgi üzerinde ilerlemiyor, bir oda büyüklüğündeki bilgisayarlar cep bilgisayarı olucak boyuta gelene kadar pek çok evrim geçirdi pek çok teknoloji kullanıldı ve nanoteknolojiyi geliştirmek için kullanılmaya devam ediliyor, her teknolojinin maksimum noktasına ulaştığımızda ilerleyebilmek için daha üstün bir teknolojiyi keşfetmemiz gerekiyor. Nanoteknoloji ancak mikroskopla görülebilecek transistörlerin yeni yongalar üzerine yerleştirilmesi ile oluyor, yeni teknolojilerin denenmesinde ki en büyük problem ısı. Yeni yonga denemelerinde önceden hesaplanandan daha üst düzeye çıkan ısı seviyesi genellikle yonganın zarar görmesine neden oluyor. Daha ileri teknoloji elde edebilmek için transistörler giderek küçülüyor, küçülen transistörler her ne kadar hayatımızı kolaylaştırsa da elbette bu küçülmenin bir durak noktası olucak. Gittikçe küçülen transistörler birkaç molekül haline geldiklerinde görevlerini yerine getiremez olucaklar. Dünya devi yonga firmaları gelecek planlarına oldukça umutlu bakıyor, yonga basım teknolojisi olan bu firmalar daha ileri teknoloji ile bir yonga üzerine daha az ısınan daha az elektrik harcayan ve sayıca daha fazla olan transistörler ekleyebileceklerini söylüyorlar. Birbirine yakın olan küçük transistörler ısıyı ve elektriği daha hızlı iletiyor bu sayede ısınma daha az gerçekleşmiş oluyor daha hızlı iletilen elektrik sayesinde de veri aktarım hızlarında artış sağlanıyor, işlemciler üzerinde uygulanan overclocking işlemi ile de bu sağlanıyor. IBM firması yonga üretim tekniklerine bir yenisini ekledi, silikon SOI teknolojisi yonga basımlarında bir ilk oldu. Yongalarda alimünyum yerine bakır kullanılması %20 gibi ciddi bir performans artışı sağladı, mevcut sistemlerde fazla değişiklik yapmadan uygulanabilen bu sistem diğer yonga üreticilerininde dikkatlerini topladı. Intel’de boş durmuyor, Intel’in üretmeyi planladığı yeni transistör teknolojisinin hayata geçmesine en az 5 yıl süre var bu teknoloji düzlemsel olmayan, üç geçitli ve yüksek performanslı transistörler üretmeyi amaçlıyor. Transistör üretimlerindeki bir etkende dünya işlemci lider Intel’in Moore yasasıdır, bu yasaya göre işlemcilerde ki transistör sayısı her 1.5 yılda bir iki katına çıkartılmalıdır, bu yasası Intel’in kurucusu Gordon Moore çıkartmıştır ve Intel’in kurulduğu 1965 yılından itibaren 10 yıl boyunca geçerli olmasını hedeflemiştir. Intel bugüne kadar her 1.5 yılda bir transistör sayısını 2 katına çıkartmayı başarmıştır. Nanoteknolojisi ve atomlar şüphesizki oldukça bağlantılı, günümüzde teknolojinin ne kadar ilerlediğinden bahsediyoruz ancak teknolojinin daha ne kadar ilerleyebileceğini Georgia Tech Üniversitesi profesörlerinden Ralph C. Merkle şu sözlerle anlatıyor “Şu anda gerçekleştirebildiğimiz işlemler, elerinde boks eldivenleri olan bir kişinin lego oyuncaklar ile bir şeyler yapmasına benzetilebilir.Bu küçük lego parçalarının kullanarak bir şeyler yapabilirsiniz, ama yaptıklarınız oldukça kaba bir halde olur.Halbuki bu parçaları hassas bir şekilde bir araya getirebilirsek çok daha hızlı bir biçimde daha hassas ürünler ortaya çıkabiliriz. İşte bu noktada nanoteknoloji devreye giriyor. Nanoteknoloji sayesinde bu eldivenleri çıkarma imkanına sahip olacağız. Doğanın temel taşlarını oluşturan atomları ucuz bir biçimde ve kolayca düzenleyebileceğiz. Bu şekilde üretilen ürünler daha dayanıklı, daha hafif ve daha hassas özelliklerle donatılmış olacak.” Nanoteknolojisi maddenin en küçük halinden yani atom düzeyinden başlıyor, nanoteknoloji ile atomun bir üst seviyesi yani nanolar düzenlenerek yeni maddeler elde ediliyor. Nanonun boyutunu örneklemek gerekirse bir nanometre bir milimetrenin milyonda birine denk geliyor, nano kelimesi ise Yunanca’dan gelmedir ve kelime anlamı “cüce”dir. Nanoteknoloji yanlızca elektronik cihazları küçültmek için kullanılmıyor, nanoteknolojinin günümüzdeki hedefleri ; Molekülleri ve atomları değiştirerek yeni, ideal, önceden planlanmış maddeler üretmek. Moleküllerin önceden planlanmış şekilde kendi kendilerini çoğaltmasını sağlamak. Moore yasasının ön gördüğünden daha hızlı bir ilerlemeye erişebilmek. Canlı ve cansızların bir arada ki işlevselliğini arttırmak. Dünya devi 1500 şirket her yıl artan bir miktarla her yıl nanoteknolojilerine on milyarlarca dolar ayırıyor ve sürekli nanoteknolojinin gelişmesi için uğraşıyor. Ülkemizde ise yanlızca 3 – 4 adet üniversite kendi imkanları ile nano araştırmaları yapıyor, ülkemizde Profesör Doktor Ali Erdemir yaptığı nano araştırmalarıyla 3 kez nobel ödülü kazanmıştır, Erdemir araştırmasında yapay elmas özelliği taşıyan bir buluş gerçekleştirmiş bunuda karbon ve nano’u birleştirip yapılarıyla oynayarak yapmıştır. Nanoteknoloji ile enerji tasarruflarında devrimler yaşanabilir, daha güvenli seyahatlar sağlanabilir hatta Lotus çiçeğinin hiç ıslanmama ve kirlenmeme sırrı çözülebilirse aynı şekilde eşyalar ve giysiler üretilebilir, insan oğlunun hep hayalini kurduğu akıllı nano robotlar hayata geçebilir. Tıbda da nanonun etkileri görülüyor nanoteknoloji kullanılarak üretilmiş elmaslar bakterilerin yaşamasını engelliyor veya zorlaştırıyor bu elmaslar aşılarda kullanılıyor. Nanoteknolojisinin kanser tedavisinde büyük yenilikler getireceği ön görülüyor, ayrıca nano robotlar ile insanlar hücrelerini yenileyip bağışıklık sistemlerini kontrol altında tutabilecek. Nanoteknolojisi kemik içine yerleştirilen protezlerde kullanılacak, kanser tedavisinde henüz kanserli hücreye erişemeden ölen ilaçların yerine kanserli hücreleri temamen yok eden ilaçlar geliştirilebilecek. Nanoteknolojisinin hayatımıza her alanda ne kadar yenilikler getireceği oldukça açık her ne kadar çok büyük olan hedeflerin hemen gerçekleşeceğini beklemiyorsakda sonuçta teknoloji hergün ilerliyor ve nanoteknoloji alanında da büyük gelişmeler yaşanıyor. Bilim adamları atomlar ve nanolar arasında bağlantıları düzenlemek için sürekli bir çalışma halindeler şimdiden küçük sevindirici olaylar yaşansa da bilim adamları atom ve nano arasındaki sırrı çözüp bu konuya hakim olduklarında Dünya şuanda olduğundan çok daha farklı bir yer haline gelicek. www.bilgiustam.com

http://www.biyologlar.com/nanoteknoloji-nedir-nerelerde-kullanilir-

Mutasyon Nedir? Çeşitleri ve Sebepleri Nelerdir?

Mutasyon Nedir? Çeşitleri ve Sebepleri Nelerdir?

Mutasyon, bireyde canlı hücresinin çekirdeğinde bulunan ve kalıtsal özelliklerinin ortaya çıkmasını sağlayan DNA molekülünün; radyasyon, X ışını,ultraviyole, ani sıcaklık değişimleri ve kimyasallar sonucunda  bozulmaya uğramasıdır.Mutasyonlar, genetik bilgiyi taşıyan DNA molekülünde, kopmalara, yer değiştirmelere sebep olur ve bu çoğu zaman yüksek tahribatlarla sonuçlanır. Bu durumda canlının protein veya enzim yapısı ve beraberinde metabolizması değişir.  Genlerde meydana gelen  bu değişmelere ‘mutasyon’ denirken, mutasyona neden olan maddelere  ‘mutajen maddeler’, mutasyona uğramış  gene de ‘mutant gen’ denir. Canlının vücut hücrelerinde gerçekleşen mutasyonlar sadece o canlıyı etkilerken, üreme hücrelerindeki mutasyonlar gelecek nesillere de aktarılmaktadır.DNA’nın Yapısı Ve Meydana Gelen MutasyonlarDNA, hücrenin yönetici molekülüdür ve  yapısında kalıtsal özelliklerimize etki eden genler bulunur. Kalıtsal bilgilerimiz bu genler tarafından taşınır. Ayrıca beslenme, solunum, üreme gibi canlılık faaliyetlerini de yönetmektedir.DNA’nın temel yapı birimleri nükleotitlerdir. Bir nükleotidin yapısında bulunan birimler;  fosfat, seker ve organik bazdır. Organik bazlar adenin (A), timin (T), sitozin (C) ve guanin(G)’dir. DNA’daki bilgiler bu dört  ayrı nükleotidin özel ve anlamlı bir sıra içinde dizilmesi ile oluşurlar. DNA molekülünün  kendisini eşlerken hata oluşturması ile bu sıralamada  karışıklık meydana gelir ve o yapı tamamen bozulur. Bu  da farklı genetik özelliklerin ortaya çıkmasına sebep olabilir.Mutasyonlar, DNA üzerindeki baz dizilimini değiştirirken bir kısmı  tamir edilebilen ve bir kısmı geri dönüşümsüz olan etkiler doğurabilmektedir.Mutasyon Çeşitleri Nelerdir? Mutasyonun en önemli etkilerinden biri, bir sonraki nesile farklı genetik özellikler aktarılmasına neden olmasıdır. Eşey(üreme) hücresi mutasyonları kalıtsal olan ve bir sonraki nesillere aktarılan mutasyonlardır. Canlıda farklı fiziksel özelliklerin oluşumuna sebep olmaktadırlar.Mutasyonlar, kromozom mutasyonları ve nokta(gen) mutasyonları olarak ikiye ayrılır:Gen (nokta) Mutasyonları Kromozomların yapısında ya da sayısında herhangi bir değişiklik olmadan  DNA’nın kısıtlı bir bölümünde doğal veya deneysel olarak meydana gelen mutasyonlardır. Mutasyona uğramış bir gen oluşan tahribat miktarına göre nadiren eski haline dönebilir. DNA’da bir veya birkaç baz sırasının (A;T;G;C) yer değiştirmesi, kopması, zincire başka bazların eklenmesi veya eksilmesi gibi sonuçlar bu mutasyona neden olabilmektedir.Üreme(eşey) hücrelerinde oluşan nokta mutasyonları döllere, yani nesilden nesile aktarılır.  DNA’ya baz ilavesi (insersiyon) veya DNA’dan baz çıkarılması (delesyon) en zararlı iki mutasyon tipi olarak bilinmektedir. Kod okuma çerçevesinin kayması ile gen yapısında önemli değişiklikler meydana gelir.Ultraviyole ışınları, X ışınları, radyasyon, ,radyoaktif materyaller, bazı mutajenik kimyasallar gen mutasyonlarına neden olurlar. Bu genlerin yayılmasını önleyebilmek, mutasyona uğramış canlının üreme yeteneğinin yok olmasına bağlıdır. Örneğin,  orak hücre anemisi bir nokta mutasyonu ile oluşmuştur ve kalıtsal bir kan bozukluğudur.Kromozom Mutasyonları Kromozom mutasyonları, kromozomun bir parçasında kopma veya parça değişimi ( crossing-over) sırasında yanlış yapısal ya da sayısal değişiklikler sonucu oluşur. Mayoz ve mitoz bölünme sırasında  meydana gelen hatalardan kaynaklanır ve daha ağır hasarlar oluşturmaktadır.Mayoz bölünmenin ilk evrelerinde crossing-over (homolog kromatitler arası parça değişimi) olayı gerçekleşir ve genetik çeşitlilik oluşumu sağlanılır.Bazen kromatitler, crossing-over olmadan parça değişimi gerçekleştirmektedir.  Kromozomun bir kısmının kendi kendini eşlemesi, bir kromozomun başka bir kromozoma tutunması, kromozomun bir parçasının kopup kaybolması, kromozomal materyalde eksilme veya artma, kromozomun uçlarının kopması ve halka şeklinde birleşmesi gibi değişiklikler kromozomun yapısında meydana gelen değişimlerdir.Kromozom sayısının değişmesi ise kromozom sayısı bakımından farklı hücreler meydana getirir ve kalıtsal açıdan  sorunlar doğurur. Her zaman  mitoz ve mayoz bölünme sırasında düzenli ayrılma gözlenmeyebilir. İnsanlardaki kromozom sayısı değişimleri bazı sendromlara sebep olmaktadır.Örneğin;Down Sendromu, Edward Sendromu, Patau Sendromu, Cri du Chat Sendromu, Kronik Miyelojenik Lösemi bunlardan birkaçıdır.Mutasyonun Sebepleri Ve Etkileri Nelerdir? DNA’nın kendini doğru olarak kopyalayamaması ve orijinal DNA’nın yapısının bozulması ile  DNA kopyalarının birebir  birbirini tutmaması doğal sebeplerle oluşan mutasyonları meydana getirir.Tek bir harfin değişimi ile başlayabileceği gibi büyük parça değişimleri ile de sonuçlanmaktadır. DNA’nın kendini kopyalaması ya da kromozom ayrılması sırasında oluşan büyük hatalardan meydana gelir.Dış etkenler de çoğunlukla mutasyona neden olabilmektedir. Mutasyon oluşturan tehlikeli kimyasal maddeler, fiziksel etkiler ve radyoaktif ışımalar buna örnek verilebilir. Özellikle nükleer patlamalarda yüksek enerjili radyoaktif ışınlar yayılmakta ve bunlar da genlerde dizilim değişikliklerine yol açmaktadır. Bunun sonucu olarak da sakat ve kanserli doğumlar artmaktadır.Güneşin morötesi ışınları deri üzerinde değişimler oluşturabildiği gibi, zararlı radyoaktif ışınlar uzun süreli mutasyonlar oluşturmaktadır. Özellikle tohumsal mutasyonların nesillere aktarımı ve yayılımı daha hızlı olmaktadır.Mutasyonların Hepsi Zararlı Mıdır? Hemen hemen bilinen  tüm  mutasyonlar zararlıdır ve genellikle ölümcüldürler. Zarar vermeyen mutasyonlar ise organizmaya fayda getirmeyen ve işlev bozukluğu oluşturan mutasyonlardır. Örneğin; meyve sinekleri üzerinde  yıllarca mutasyon denemeleri yapılmıştır ve olabilecek her türlü mutasyona maruz bırakılmıştır. Fakat hiçbirşekilde  faydalı  bir mutasyon gözlemlenmemiştir.Yazar: Meltem Türkhttp://www.bilgiustam.com

http://www.biyologlar.com/mutasyon-nedir-cesitleri-ve-sebepleri-nelerdir-1

Glikoproteinlerin Yapısı ve Fonksiyonları

Glikoproteinler, bakteriden insana kadar pek çok canlıda bulunur ve farklı işlevlere sahiptir. Kısa oligosakkarit zincirlerine sahip bu proteinler pek çok hücresel olayda hormonlar, virüsler ve başka maddeler tarafından hücre yüzeyinin tanınmasında görev alırlar. Ayrıca hücre yüzey antijenleri, hücre dışı matriksin elemanı, gastrointestinal ve ürogenital yolun müsin salgısı olarak görev yaparlar. Bunların yanında albümin hariç plazmadaki globuler proteinlerin hemen hepsi, salgılanan enzimler ve proteinler glikoprotein yapısındadırlar. Bu derlemede glikoproteinlerin yapısı, fonksiyonları ve biyolojik önemi hakkında bilgi verilmiş, glikoproteinleri incelemede kullanılan yöntemlerden söz edilmiştir. Ayrıca, glikoproteinlerin klinik tedavide kullanılabilirliği ve kanserdeki önemi vurgulanmıştır. Başa Dön Glikoproteinler polipeptid iskeletlerine kovalent olarak bağlı oligosakkarit (glikan) zincirlerini içeren proteinlerdir 1-4. Glikoproteinler glikokonjugatların veya karma karbonhidratların bir sınıfıdır. Kompleks karbonhidratların üç sınıfı olan glikoproteinler, proteoglikanlar ve glikolipidler genellikle hep birlikte “Glikokonjugat “ olarak adlandırılır. Doğada yaygın Şekilde bulunan şeker zincirlerinin yapılarını, biyosentezlerini ve biyolojik görevlerini araştıran moleküler biyoloji dalına ise “Glikobiyoloji” denir 5-7. Modern biyoteknolojide glikobiyolojinin önemi her geçen gün daha iyi anlaşılmaktadır. Biyolojik aktif doğal moleküllerin çoğu glikokonjugatlar olup, şekerler bağlı oldukları moleküllerin sentezi, parçalanması, kararlılığı ve aktifleşmesinde çok önemli etkilere sahiptir 7. Glikoproteinlerin Yapısı Glikoproteinlerin karbonhidrat kısmında başlıca 7 çeşit monosakkarid bulunur. Bu monosakkaridler, değişik sıralama ve farklı bağ yapıları ile bir araya gelirler ve sonuçta çok sayıda karbonhidrat zinciri yapısı ortaya çıkar. Glikoproteinlerde yer alan monosakkaridler; glikoz, galaktoz, mannoz, fukoz, N-asetil glikozamin, N-asetil galaktozamin, N-asetilnöraminik asit (sialik asit)'tir. Bunlardan başka daha az sıklıkla rastlanan arabinoz ve ksiloz vardır 8. Oligosakkarit zincirleri glikoproteinlerin peptid omurgasına 5 ayrı amino asit artığının birinden bağlanmışlardır. Bunlar; asparajin, serin, treonin, hidroksilizin veya hidroksipirolindir 2, 4, 9-11. Glikoproteinlerin Sınıflandırılması İçerdikleri bağ tipine göre glikoproteinler, N-glikozidik bağı içerenler ve O-glikozidik bağı içerenler olmak üzere 2 ana sınıfa ayrılır. N-glikozidik bağı içeren glikoproteinlerde şeker asparajin yan zincirinin amid grubuna bağlanır (Şekil 1). Ovalbumin, immunglobulinler, orosomukoid başlıca N-bağlı glikoproteinlerdir. N-bağlı glikoproteinlerde karma, mannozdan zengin ve melez oligosakkaritler olmak üzere 3 ana sınıf oligosakkarit bulunur. Her 3 sınıf glikoproteinde de ortak bir pentasakkarit çekirdek bulunur. (Man3 Glc NAc2) Bu ortak pentasakkaritin varlığı bunların biyosentezlerinde ortak bir başlangıç mekanizmasının bulunması ile açıklanır 4, 12. Karma tip glikoproteinler genellikle uç NeuAc kalıntıları ile tabanda yatan Gal ve GlcNAc kalıntıları içerir. Karma glikoproteinler hayvan glikoproteinlerinde bulunur. 100'den fazla tipinin belirlenmiş olması kimyasal işaretleme ve tanıma olaylarında karbonhidratların farklılığını gösterir 13. Mannozdan zengin oligosakkaritler tipik olarak, pentasakkarit çekirdeğe bağlı 2-6 ek mannoz kalıntısı içerirler. Bütün N-bağlı oligosakkaritler başlangıçta mannozdan zengin yapılar halinde oluşurlar, daha sonra farklı tipte kompleks oligosakkaritlere farklılaşırlar. Bunlar hayvan glikoproteinleri içinde sınırlı sayıda yer alırlar. Daha çok düşük ökaryotlarda ve viral zarf glikoproteinlerinde bulunurlar. Melez oligosakkaritler ise diğer iki sınıfın her ikisine ait nitelikleri taşırlar 14, 15. N-bağlı glikoproteinler glikoproteinlerin ana sınıfını oluşturur. Kolayca erişilebilen proteinler (örn. Plazma proteinleri) esas olarak bu gruba ait oldukları için bu glikoproteinler daha fazla incelenmiştir. Bu grupta hem zara bağlı hem de dolaşımda yer alan glikoproteinler bulunur. O-glikozidik bağı içeren glikoproteinlerde, şeker serin veya treoninin R grubunun hidroksiliyle bağlanır (Şekil 2). Birçok membran proteini, müsinler, proteoglikanlar, kollajenler başlıca O-bağlı glikoproteinlerdir 7,11. Glikoproteinler başlıca memeli glikoproteinleri, balık glikoproteinleri, bitki glikoproteinleri, bakteri glikoproteinleri, viral glikoproteinler ve paraziter glikoproteinler olarak da sınıflandırılabilirler 16. Glikoproteinlerin Biyosentezi Nerede Gerçekleşir? N- ve O-bağlı glikoproteinlerin sentezi endoplazmik retikulumun lümeninde ve golgide gerçekleşir. O-bağlı glikoproteinlerin sentezi sırasında lipid taşıyıcılar olaya katılmazken N-bağlı glikoproteinler lipid yapısında olan dolikol ve onun fosforile türevi olan dolikol pirofosfata gereksinim gösterirler 1, 9, 17, 18. N-glikolizasyon olayı 2 evreye ayrılabilir: 1. Oligosakkarit P-P dolikol'ün bir araya gelmesi ve aktarılması 2. Oligosakkarit zincirinin işlemlenmesi O-bağlı oligosakkaritlerin sentezi ise şeker nükleotidlerden şekerlerin basamak basamak eklenmesi ile golgi'de gerçekleşir. Lipid taşıyıcılar olaya katılmaz 11. Glikozilfosfatidilinozitol (GPI) Bağlı Glikoproteinler Glikozilfosfatidilinozitol bağlı glikoproteinler glikoproteinlerin üçüncü büyük sınıfını oluşturur. GPI bağlı glikoproteinler plazma zarının dış katmanına fosfatidilinozitolün (PI) yağ asitleri ile tutunur. PI, bir Glc-NH2 parçası yoluyla, çeşitli şekerler içeren bir glikan zincirine bağlanır. Oligosakkarit zinciri daha sonra fosforiletanolamin yoluyla bir amid bağı ile bağlanan proteinin karboksil ucuna bağlanır. GPI çatılarının çoğu bir molekül fosforiletanolamin, üç Mannoz kalıntısı, bir molekül GlcNH2 ve bir molekül fosfatidilinositol içerir 2, 4, 12. Bazı GPI bağlı proteinler; Asetilkolinesteraz (alyuvar zarı), alkalen fosfataz (barsak, plasenta), yıkım hızlandıran faktör (alyuvar zarı), 5'-Nükleotidaz (T lenfositler), Thy-1 antijeni (beyin, T lenfositler), Değişken yüzey glikoproteinleri (Trypanosoma brucei) 4'dir. Glikoproteinleri İncelemede Kullanılan Başlıca Önemli Yöntemler 4, 19 Kromatografik yöntemler: Bunlardan en önemlileri İnce Tabaka Kromatografisi (Thin Layer Chromatography) (TLC), Yüksek Performanslı Sıvı Kromatografisi (High Performance Liquid Chromatography) (HPLC), Gaz Kromatografisi (Gass Chromatography) (GC) dir. Lektin Affinite Kromatografisi: Kullanılan özgül lektine bağlanan glikoproteinler ve glikopeptidleri saflaştırmak için kullanılır. NMR Spektroskopi: Özgül şekerlerin dizgisinin, bağlarının ve glikozid bağlarının anomer doğasının kimliklendirilmesinde yararlanılır. Kütle Spektroskopisi: Molekül kütlesi, bileşimi, dizgisi ve bazen bir glikan zincirinin dallanması hakkında bilgi verir. Fast Atom Bombardment Mass Spectrometry (FAB-MS), - Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry (MALDI-TOF MS), Electrospray Ionisation Mass Spectrometry (ESI-MS). Periodik Asit-Schiff Ayıracı: Elektroforetik ayırımdan sonra glikoproteinleri pembe bantlar halinde gösterir. Kültür Hücrelerinin Radyoaktif Şekerle İnkübasyonu: Elektroforetik ayırımdan sonra glikoproteinlerin radyoaktif bantlar halinde saptanmasını sağlar. Uygun Glikozidaz veya Fosfolipazla İşlemleme: Elektroforetik göçte oluşan kayma N-glikan, O-glikan veya GPI bağlarına sahip proteinler arasında ve büyük miktarda mannoz ve N-glikanlar arasında ayırım yapmaya yardım eder. Metilasyon Analizi: Şekerler arasındaki bağların belirlenmesini sağlar Amino Asit veya cDNA Dizgi Analizi: Amino asit dizisinin belirlenmesini sağlar. Glikoproteinlerin Oligosakkarit Zincirlerinin Fonksiyonları Glikoproteinlerin yapısındaki şekerlerin en önemli görevleri moleküller ve hücreler arası tanıma olaylarında görülür 7, 20, 21. Bundan başka; • Hücre içinden ve dışından gelen proteolize karşı korunma sağlar • Öncül proteinlerin daha küçük ürünlere proteolitik işlemlenmesini etkiler • Fizikokimyasal nitelikleri (örn: çözünürlük, akışkanlık, yük ve denaturasyon) değiştirir • Biyolojik etkinliğe katılır (örn: koriyonik ganadotropini) • Zarlara yerleşmeyi, hücre içi göçü, sınıflandırılmayı ve salgılamayı etkiler • Embriyonik gelişmeyi ve farklılaşmayı etkiler • Kanser hücreleri tarafından seçilen metastaz noktalarını etkiler 4, 11. N-bağlı oligosakkaritlerin en önemli görevleri protein katlanması sırasındadır. Endoplazmik retikulumdaki “şaperon” adı verilen proteinler yeni sentezlenen membran proteinlerinin doğru konformasyonda katlanmalarına yardım ederler 18. Şaperonlar, polipeptidlerin biyosentezleri sırasında katlanmaları ile organellere transportunu kolaylaştıran ve hücresel stres koşullarında protein agregasyonunun engellenmesine yardımcı olan “heat schock” proteinlerdir 22. Kalretikulin ve kalneksin adı verilen iki şaperon yapılarında kalan tek bir glikoza sahip mannozca zengin oligosakkaritleri tanıyarak katlanmamış glikoproteine bağlanır. Bu iki şaperon, lektinler gibi karbonhidrat bağlayıcı proteinler sınıfındadır. Spesifik karbonhidrat yapıları için bir tanınma ve bağlanma bölgelerine sahiptirler 11, 18. Birçok hücre bileşeninin hidrolizini ve dönüşümünü gerçekleştiren lizozomlar, proteazlar, lipazlar, glikozidazlar gibi birçok lizozomal enzimler içerirler. Bu enzimler N-bağlı glikoprotein yapısındadır. Mannozca zengin oligosakkaritler bazı proteinleri hücredeki spesifik bölgelere hedefler 13. Golgideki Man 6-P reseptörü enzimi tanır, bağlar ve lizozomlara yönlendirir. Man-6P reseptörü hücre yüzeyinde de vardır. Bu sinyali içeren ekstraselüler enzimler de endositozla alınır ve lizozomlara transfer edilir 17. Glikoproteinlerin oligosakkarit zincirleri proteinlerin çözünürlüğünü ve stabilitesini arttırır. Hücre dışına salgılanan pek çok protein (plazma proteinleri, maya ve mantarlardan salgılanan parçalayıcı enzimler) glikoprotein yapısındadır. N-bağlı glikoproteinler hayvan hücrelerinin yüzeyinde bulunur ve hücre-hücre etkileşimlerinde önemli rol oynarlar 15. Glikoproteinlerin Fertilizasyondaki Önemi Oositi saran zona pellusida (ZP) ZP-1, ZP-2 ve ZP-3 olmak üzere 3 glikoprotein içerir. Bunlardan en önemlisi sperm için bir reseptör olarak görev yapan ve O-bağlı glikoprotein olan ZP3'dür. Sperm yüzeyinde yer alan ve galaktozil transferaz olan bir protein ZP'nın oligosakkarit zincirleriyle etkileşir; proteazlar, hiyaluronidazlar ve sperm akrozomundaki diğer maddeler ortama salınır ve bu enzimler spermin ZP'yi aşmasına ve oositin plazma zarına ulaşmasına yardım ederler. Yine hamsterlerde bulunan bir glikoprotein olan PH-30'un sperm ve oosit plazma membranlarının birbirine bağlanmasında ve kaynaşmasında önem taşıdığı bilinmektedir. Bu glikoproteinlerin işlevlerini durduracak ilaç veya antikorlar geliştirilebirse döllenme engelleneceğinden bunların kontraseptif ajanlar olarak kullanılabilmesi mümkün olacaktır 11, 23. Glikoproteinlerin İnflamasyondaki Rolü Akyuvarların ve endotel hücrelerin yüzeyinde bunların hücreler arası adhezyona uğramasına katılan ve selektinler adı verilen özgül lektinlerin bulunduğu bilinmektedir. Vasküler endotel hücreleri hasara uğrarsa, inflamatuvar yanıt oluşur ve hasarlı dokudan sitokinler salınır, bunlar da akyuvarları çekerler. Bu etkileşim sonucunda lökositler damar duvarına yapışırlar. Akyuvarların damar duvarına yapışması enfeksiyonla mücadelede son derece önemlidir 14, 24. Yapısal Molekül Olarak Glikoproteinler Glikoproteinlerin hücre membranlarının önemli ve aktif komponentleri olduğu bilinmektedir. Hücre membranlarının glikoproteinleri iki lipid tabakası arasına yerleşmiştir. Glikoprotein molekülü membranın bir ya da her iki yüzeyi ile temas edebilmesine karşın karbonhidratlar hemen hemen yalnızca dış yüzeyde bulunurlar 10. Yaşamın temel birimi olan hücreler dokulara yerleşmiş olup çoğunlukla bağ dokusu adı verilen bir hücre dışı yatakla çevrelenmişlerdir. Hücre dışı yatak üç büyük biyomolekül sınıfı içerir: Bunlar; yapısal proteinler (kollajen, elastin, fibrillin) özgülleşmiş proteinler (fibronektin, laminin), proteoglikanlar (kondroitin sülfat, keratan sülfat, dermatan sülfat, heparin) dır. Kayganlaştırıcı ve Koruyucu Ajanlar: Müsinler; glikoprotein ve proteoglikanlardan oluşan sümüksel madde olup, mukusun büyük bir makromoleküler komponentidir 25. Solunum yolunda hücrelerin yüzeyini sıvar, girip çıkan ve ısısı ve rutubeti sürekli değişen havanın kurutucu etkilerinden hücreyi korur. Sindirim sistemindeki görevi ise yüzeyi kayganlaştırmak ve örtü epitel hücrelerini enzimlerin eritici etkilerinden korumaktır. Genital kanaldaki mukus içeriğinin kayganlığı sağlama dışında bakteriolitik etkisi de vardır. Zara bağlı müsinler çeşitli hücre-hücre etkileşimlerine katılır. Müsinler bazı yüzey antijenlerini maskeleme eğilimi de gösterirler 4. Plazma Proteinleri: Plazma proteinlerinin hemen hepsi glikoprotein yapısındadır. Buna göre bu proteinler N ya da O-bağlı oligosakkarit zincirleri ya da her ikisini içerirler. Albüminde ise şeker kalıntıları bulunmaz. İmmunoglobulinler Antikor olarak fonksiyon gören bu proteinler de glikoprotein yapısındadırlar. Temel immunglobulin molekülü bir çifti ağır zincir (H) ve diğer bir çifti ise hafif zincir(L) olmak üzere 4 polipeptid zincirinden kurulur. Antijen bağlama bölgesi komşu ağır ve hafif zincirler arasındadır. Zincirler disülfit bağları ile birleşmiştir. İmmunglobulinler üç büyük (IgA, IgG ve IgM) ve iki küçük (IgD ve IgE) sınıfa ayrılır 3. Kan Grubu Maddeleri İnsan eritrosit membranları antijenik maddeler içerir. Bunlardan 300'den fazlası yaklaşık 18 kan grubu içinde sınıflandırılır. ABO, Lewis, Duffy, Kell, Kidd, Lutheran sistemleri bunlardan bazılarıdır. Bu sistemler glikoproteinler, glikolipidler ya da proteoglikanlar şeklinde bağlanmış oligosakkaritler olarak bilinirler. Sözü edilen antijen moleküllerinin %80-90'ı karbonhidrattır ve kan grubunun tipi redükte olmayan terminale yakın şeker kalıntıları aracılığıyla belirlenir 10. Hormonlar Birçok hormon glikoprotein yapısında olup bunlar; Lüteinleştirici Hormon (LH), Folikül Stimüle Edici Hormon (FSH), İnsan Koryonik Gonadotropini (HCG), Gebe Kısrak Serum Gonadotropini (PMSG), Balık Gonadotropik Faktör (FGF), Tiroid Stimüle Edici Hormon (TSH), Eritropoietin'dir 3. Enzimler Birçok enzim glikoprotein yapısında olup bunlardan bazıları; oksidoredüktazlar (glioksidazlar, seruloplazma peroksidaz, kloroper-oksidaz), transferazlar (α-glutamil transpeptidaz, ribonükleaz), hidrolazlar (lipaz, kolinesteraz, atropinesteraz, α galaktozidaz, alkalen fosfataz, deoksi ribonükleaz, amilaz, β fruktofuranosidaz, N-asetil β glukozaminidaz, β glukuronidaz, hyaluronidaz, oksitosinaz, kallikrein, bromelain, enterokinaz ) ve pepsinojendir 3. Tümör Belirleyicileri Tümör belirleyicileri, Tümör hücreleri ve embriyoner hücreler tarafından sentezlenen ve çeşitli vücut sıvılarında kalitatif ve kantitatif yöntemlerle tayin edilen maddeler olup genellikle glikoprotein yapısındadırlar. Tümör belirleyicileri günümüzde diğer teşhis yöntemleriyle birlikte kanser tanısında, tedaviye cevabın değerlendirilmesinde ve nüks eden hastalığın işareti olarak kullanılabilmektedir. Bu amaçla çok sayıda tümör belirleyicilerinden yararlanılmaktadır 26. Tümör belirleyiciler arasında en çok ilgi çekeni karsinoembriyonik antijen (CEA) olup 180 kDA molekül ağırlığında bir glikoproteindir 27. Glikoproteinlerin Antijenik Özellikleri Protein ve glikoproteinler hücre içi iletişimi sağlamada etkili elemanlardır. Proteinlerin bir çok kompleks oligosakkarit yapılarla dekore edilmiş olmasının nedeni uzun süre anlaşılamamış ancak son yirmi yılda glikobiyoloji alanındaki gelişmeler glikolizasyonun rolünün kısmi olarak anlaşılmasını sağlamıştır. Protein glikozilasyonu proteinlerin en yaygın posttranslasyonel modifikasyonudur ve proteinin antijenik özelliklerine katkıda bulunur. Bağışıklık sisteminde yer alan çoğu molekül de (hücre reseptörleri, sitokinler, antikorlar) glikozile Şekilde bulunurlar. Glikozilasyona uğramış proteinler farklı tip antijenik epitoplar taşırlar 7, 28) ve glikoproteinler immun sistem efektörlerinin anahtar bileşenleridirler 29, 30. Ayrıca glikoproteinlerin detaylı analizleri konak-mikroorganizma ve konak-parazit arasındaki ilişkilerin aydınlatılmasına böylece immun cevabın araştırılmasındaki eksik bilgilerin tamamlanmasına yardımcı olurlar. Kanser Tanısında Glikoproteinler Kanser tanısında glikoproteinlerin ayrı bir önemi vardır. Kanser tedavisinin başarılı olmasında temel ilke olabildiğince erken tanıdır. Günümüzde bazı istisnaları dışında en yaygın kullanılan ve üzerinde yoğun çalışmalar sürdürülen yöntemler immunolojik ve biyokimyasal yöntemlerdir. Malign hücrelerin kaybettikleri matür hücre özelliklerinin ve kazandıkları yeni özelliklerin pek çoğunun hücre membranındaki çeşitli değişikliklere bağlı olduğu gerçeği, tümör belirteci çalışmalarını plazma membran komponentlerine, dolayısıyla glikoprotein ve glikolipidlere yöneltmiştir. 25 Pek çok malignitede hücre yüzeyi, tümör dokusu ve serumdaki glikoprotein fraksiyonlarında değişiklikler bildirilmiştir 4, 9, 12, 30. Glikoprotein ve glikolipid fonksiyonlarında belirleyici ve yardımcı rol oynayan oligosakkarit yan zincirlerinde yer alan çeşitli monosakkaritler araştırılmış, özellikle zincir sonlarında yer alan 2 şekerin; fukoz ve sialik asit'in pek çok malignitede serumda artmış olduğu tespit edilmiştir 31, 32. Tedavi Edici Glikoproteinler Günümüzde tedavi edici glikoproteinler biyoteknoloji ürünlerinin en önemli sınıfını oluşturur. Bunlar; eritropoietin, granülosit makrofaj koloni stimüle edici faktör ve doku plazminojen aktivatörüdür. İlave olarak halihazırda 60 rekombinant glikoprotein terapotik ajan olarak geliştirilmiştir. Bu glikoproteinler hücre kültürü sistemlerinde ya da transgenik hayvanlarda rekombinant ürünler gibi üretilmektedirler. Günümüzdeki en önemli biyoteknolojik ürünlerden biri eritropoietindir. Eritropoietin eritrosit progenitörlerinin çoğalmasını ve farklılaşmasını teşvik eder. Eritropoietinin kemoterapiden sonraki kemik iliği baskılanmasının tedavisinde önemli değeri vardır 12. Tümörlü hastaların tedavisinde lektinlerin kullanılabileceğine ilişkin birçok araştırma yapılmıştır. Örneğin galaktoza spesifik bir lektin olan Viscum album aglutinin bugün tüm Avrupa'da tümörlü hastalarda geniş bir kullanım alanı bulmaktadır. Bütün tümör hücrelerine karşı 1-2 ng/kg vücut ağırlığı hesabına göre subkutan olarak verilen bu lektinin interleukin 1 ve interleukin2 gibi sitokinlerle, tümör nekroz faktörünün monositlerde üretimini arttırarak immun sistemi uyardığı rapor edilmiştir 19. Mistletoe lektin de denilen bu lektin ökse otundan elde edilen 63 kDa ağırlığında bir glikoproteindir. Bu lektinin anti-karsinojenik etkisiyle ilgili pek çok çalışma yapılmış olup 33-36 Choi ve ark. (2004) bu lektinin sadece tümörlü dokuları öldürdüğünü, sağlıklı dokulara zarar vermediğini rapor etmişlerdir 37. Bock ve ark. (2004) yapmış oldukları çalışmada meme kanserli hastalara Mistletoe Ekstraktını deri altı yolla vermişler, bu hastalar ekstraktı almayan kontrol grubu hastalara göre hastalık semptomlarını daha az gösterirken, hayatta kalma süreleri de uzamıştır 38. Aynı lektinin hücre yüzeyi epitoplarına bağlanarak hücre içi kalsiyum seviyesini arttırdığı ve belli proteinlerin fosfatlanmasını indüklediği bildirilmiştir 19. Mistleteo lektinin apoptozisi indüklediğini bildiren çalışmalar da vardır 35, 37. Thies ve arkadaşları (2008) farelere verilen düşük doz Mistletoe lektinin melanom büyümesini yavaşlattığını bildirmişlerdir 39 Potansiyel anti-karsinojen olduğu düşünülen diğer bir lektin ise soya fasulyesi lektinidir 40. Lektinlerin kanser tedavisinde kullanılmasına yönelik geliştirilen bir görüş ise; anti kanser etkili ilaçların tümörlü dokularda yoğunluğunun ve etki zamanının arttırılması yönündedir. Bugün kullanılmakta olan kemoterapik ilaçların normal vücut hücreleri üzerine oldukça fazla yan etkileri bulunmaktadır. Hücreler için toksik olan ilaçlar, tümörlü dokular için spesifik olan bir karbonhidrat ünitesi ile bağlandıktan sonra vücuda verildiğinde toksik maddenin tümör hücresine lokalize olması ve bunun normal somatik hücrelerdeki etkisi minimuma indirilmesi beklenmektedir 19. Glikoproteinlerin ve Glikozilasyonun Önemi ve Hastalıklardaki Rolü Glikozilasyon sonucu proteinlere eklenen glikanlar immünolojik cevabın modifikasyonu, proteinlerin tanınması, hedeflenmesi ve proteinlerin katlanması gibi önemli rollere sahiptirler. Glikozilasyon mekanizmasındaki değişiklikler, glikozilasyonda kullanılan substrat moleküller ve oluşan ürünlerde yapı, fonksiyon ve miktar açısından meydana gelen değişiklikler çeşitli hastalıkların oluşum ve gelişimlerinde etkili olabilmektedir. Kompleks karbonhidrat zincirlerine ait yapısal anormalliklerin araştırılması insan hastalıklarının etiyolojisini ve patogenezinin anlaşılması için yeni ve önemli bir bakış açısı kazandırabilir 41. Enfeksiyonlar çoğunlukla bakteri, virüs yada parazitlerin salgıladığı Lektin benzeri moleküllerin konakçı hücrenin yüzeyinde bulunan oligosakkaritlerle bağ yapması ile başlar 42. Glikoproteinlerin O-ve N-glikan zincirleri ile glikoprotein düzeyi tümör hücrelerinde değişiklik gösterir. Tümörlü dokuda genelde O-glikanlar uçları kesik ve siyalilatlı iken N-glikanlar kanserde dallanmış ve siyalilatlıdırlar. Glikanların kanserdeki işlevsel önemi hakkındaki bilgilerimiz hala yeterli değildir. Bununla birlikte glikoproteinler kanser hücrelerinin yapısal niteliği tanı ve immunoterapi için yararlı olabilir 43. Yapılan çalışmalarda; birçok kanser türü glikoprotein sentezinin artmasına yol açmaktadır. Özellikle sialik asit değerlerinin kanserli olgularda yüksek olması, diğer klinik ve biokimyasal kriterlerle birlikte serum sialik asit ölçümleri tanı koyma, hastalığı evrelendirme ve tedavide değerli bir laboratuar kriteri haline getirmektedir 44, 45. Shamberger (1986) kanserli hastalarda yapmış olduğu çalışmada yüksek sialik asit değerleri saptamıştır. Kanserli hastalar üzerinde yapılan çalışmada sialik asit düzeylerinin belirli bir kanser tipine özgü olmaksızın yükseldiği gösterilmiştir ve serum sialik asit değerleri ile akut faz proteinleri arasındaki ilişki saptanmıştır 44. Ye ve ark. 46 tarafından karaciğer kanserli hastalarda yaptıkları çalışmalarda serum SE-selektin düzeyinin yükseldiği ve bunun hastalığın teşhisinde kullanım alanı bulabileceğini bildirmişlerdir. Takahaski ve ark. (1995) 52 kolon kanserli hasta üzerinde yaptıkları çalışmalarda SE-selektin düzeylerinin sağlıklı bireylerden yüksek olduğunu bildirmişlerdir 47. Serum sialik asit seviyelerinin inflamasyon ile seyreden daha pek çok hastalıkta yüksek bulunmuştur; Bunlar, Behçet hastalığı, merkezi sinir sitemi hastalığı, kardiyovasküler rahatsızlıklar, bakteriyel enfeksiyonlar, psoriazis ve romatoid artrit'tir. Romatoid artritte glikozilasyonda değişiklik söz konusudur ve bu değişikliğin derecesi hastalığın ciddiyetiyle doğru orantılıdır. Sağlıklı kişilerde serum IgG'nin oligosakkarit düzeni sabit kalırken romatoid artriti olan hastalarda dolaşımdaki IgG moleküllerinin N-glikan zincirlerinde görülen galaktozilasyon daha azdır. Bu nedenle de bu hastalar IgG moleküllerinin N-glikan zincirleri sonlarında Galaktoz (Gal) taşımazlar. Agalaktozil IgG olarak adlandırılan bu moleküllerin varlığı romatoid artrit için ayırt edici bir özelliktir ve hastalığın tanısında ve derecesinin belirlenmesinde kullanılan bir parametredir 48. İnsan plazmasında sialik asidin büyük miktarı orosomukoid, alfa-1 antitripsin, haptoglobin serüloplazmin, fibrinojen, kompleman proteinleri ve transferrinde bulunur. Bu sialize glikoproteinlerin bazıları akut faz-reaktanları olarak adlandırılırlar ve inflamatuvar reaksiyon veya yaralanmanın başlangıcından itibaren konsantrasyonları hızlı artar 49. Uysal ve arkadaşları (1997) yaptıkları çalışmada Tüberoskleroz'lu hastaların fibroblastlarından köken alan bir glikoprotein olan fibronektinin yüksek performanslı anyon değişim kromatografisi (HPAEC) ile analizinde proteindeki karbonhidrat kompozisyonunun kontrole göre 2-3 misli arttığını göstermişlerdir 50. Ayrıca, Uysal ve Hemming (1999) tarafından yapılan diğer bir çalışmada ise Tüberoskleroz'lu hastaların deri lezyonlarından köken alan fibroblastlar tarafından sentezlenen fibronektin, laminin, ve tenasin'in oranları belirgin bir Şekilde normal fibroblastlardan farklı bulunmuştur. Özellikle de tırnak fibromasından köken alan fibroblastların tenasin ve fibronektin glikoproteinlerinin çoğunluğunu sentezledikleri ve glikoproteinlerin hücre içerisinde (nükleus çevresi ile hücre yüzeyinde) yoğunlaştıkları bildirilmiştir 51. Lipid bağlı sialik asit (LASA yada LSA) serum düzeylerinin, lösemi (kan kanseri), Hodgkin Hastalığı, cilt kanseri, sarkoma ve ovaryum kanseri gibi hastalıklarda önemli bir işaret olabileceği bildirilmektedir 52. Veteriner hekimliği alanında, tümörlü köpeklerde α1-asit glikoprotein ve toplam sialik asit oranları arasında bir ilişkinin varlığı tespit edilmiştir. Meme tümörlü köpeklerin serumlarında sağlıklı olanlara göre toplam sialik asit düzeyleri yüksek bulunmuş, bu durumun da tümörlü köpeklerde alfa-asit glikoprotein sializasyonundaki artışa bağlı olarak oluşabileceği üzerinde durulmuştur 53. Kortizol ile sialik asit oranları arasındaki karşılıklı ilişkinin araştırıldığı diğer bir çalışmada immunosupresyon (savunma sisteminin baskılanması) oluşturulan genç buzağılarada serum sialik asit oranı çok yüksek bulunmuştur 54. Tümörlü sığırlarda ve bufalolarda sialik asit ve lipid bağlı sialik asitin belirgin bir Şekilde yükseldiği görülmüş bunun ise anormal hücre çoğalmasına bağlı olarak hücre yüzeyindeki glikoprotein ve glikolipidlerin artışından kaynaklanabileceği ileri sürülmüştür 55. Bir köpek türü olan Iscadorlar üzerine yapılan çalışmada, metastatik tümör büyümesi olan ve uyarılan NK hücreleri (doğal öldürücü) ile tedavi gören hayvanlarla, görmeyenler karşılaştırılmış ve sonuçta metastazın azaldığı ve bu durumun kalın bağırsaktaki hidroksi prolin içeriğindeki serum sialik asit oranlarının düşmesine bağlı olabileceği bildirilmiştir 56. Sonuç olarak, canlı vücudunda bulunan farklı işlevlere sahip birçok protein glikoprotein yapısındadır. Glikozilasyon, proteinlerin sentezlendikten sonra meydana gelen posttranslasyonel modifikasyonudur. Glikozilasyon endoplazmik retikulumda protein sentezi sırasında veya protein sentezlendikten sonra Golgi aygıtına transferi sırasında meydana gelir. Glikoproteinlerin karbonhidrat zincirlerinin fonksiyonu çeşitlidir; Proteini proteolitik parçalanmaya karşı korur ve denaturasyona karşı stabilize edebilirler, çözünürlüğü arttırırlar veya hücreler arası etkileşimlerde hücrelerin birbirini tanımasını sağlarlar. Glikoproteinlerin, antijenik özelliklerinin yanında, fertilizasyon ile inflamasyonda, kayganlaştırıcı ve koruyucu ajanlar ve yapısal moleküller olarak önemli görevleri vardır. Glikoproteinler konusunda yapılacak yeni çalışmalarla, yeni tedavi edici rekombinant glikoproteinler geliştirilebilecektir. Günümüzün en yaygın hastalıklarından biri olan kanserin tanı ve tedavisindeki öneminden dolayı glikoproteinler üzerinde daha geniş kapsamlı çalışmalara ihtiyaç vardır. Glikobiyoloji de önemli bir yeri olan glikoproteinler, veteriner hekimliğinden ziyade özellikle beşeri hekimlikte geniş bir çalışma ve uygulama alanı bulmuştur. Sonuç olarak hayvan hastalıklarının moleküler mekanizmasının anlaşılabilmesi ve hastalıkların teşhis ve tedavisinde glikoproteinlerin kullanılabilirliğinin tespiti açısından veteriner hekimliği alanında glikoproteinlerle ilgili daha fazla sayıda araştırmaya ihtiyaç duyulduğu kanaatine varılmıştır. Başa Dön Özet Giriş Kaynaklar Kaynaklar 1) Zubay GL, Parson WW, Yance DE. Principles of Biochemistry. 1st Edition, England: Wm. C. Brown Publishers 1994. 2) Gabius HJ, Gabius S, Glycosciences, 1st Edition, Weinheim: Chapman&Hall 1997. 3) Gottschalk A. Glycoproteins, 2nd Edition, Amsterdam: Elseiver Publishing Company 1972. 4) Murray RK, Granner DK, Mayes, PA, Rodwell V.W. Harper'ın Biyokimyası. Dikmen N, Özgünen T (Çevirenler). 24. Baskı, İstanbul: Barış Kitabevi 1998. 5) Hughes RC. Glycoproteins. London: Chapman and Hall.1983. 6) Karaçalı S. Glikobiyoloji Güncel Moleküler Biyoloji. Turk J Vet Anim Sci 2003; 27: 489-495. 7) Lisowska E. The role of glycosylation in protein antigenic properties. Cell Mol Life Sci 2002; 59: 445-455. 8) Rao VSR, Qasaba PK, Balaji PV, Chandrasekeran R. Confirmation of Carbonhydrates. 1st Edition, Australia: Harwood Academic Publishers 1998. 9) Champe PC, Harvey RA. Lippincott's illustrated Review's Serisinden Biyokimya. Tokullugil, A. (Çeviren). 2. Baskı, İstanbul: Nobel Tıp Kitabevleri 1994. 10) Montogomery R, Conway TW, Spector AA, Chappell D. Biyokimya Olgu Sunumlu Yaklaşım. ALTAN, N. (Çeviren). 6. Baskı. Ankara: Palme Yayıncılık 1996. 11) Yavuz. Ö. Glikoproteinler ve biyomedikal önemi. T Klin Tıp Bilimleri Dergisi 2001; 21: 517-522. 12) Allen HJ, Kisailus EC. Glycoconjugates: Composition, Structure and Function. 1st Edition, New York: Marcell Dekker Inc 1992. 13) Nelson DL, Michael MC. Carbonhydrates and Glycobiology. Kaçıncı baskı. Lehninger Principles of Biochemistry, United states of America: Word Publishers 2000. 14) Elbein, A. Complex Carbonhydrates: Glycoproteins. 1st Edition, Medical Biochemistry, John Baynes, Marek H. Dominiczak. England: Mosby Publishing 1999. 15) Kobata, A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 1992; 209; 483-501. 16) Faillard, H. The early history of sialic acids, in proceedings of the Japanese-German Symposium on Sialic acids (Eds. Schauer R, Tamakawa T.) 1998; 6-18. 17) Lennarz, WJ. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Press 1980. 18) Opdenakker G, Rudd P, Ponting C, Dweek R. Concepts and principles of glycobiology. FASEB J 1993; 7: 1330-1337. 19) Seyrek K, Bildik A. Lektinler. YYÜ Vet Fak Derg 2001; (1-2): 96-100. 20) Allen HJ, Kisailus EC. Glycoconjugates: Composition, Structure and Function. 1st Edition, New York: Marcell Dekker Inc 1992. 21) Feizi, T. Cell-cell adhesion and membrane glycosilation. Curr Opin Struc Biol 1991; 1: 766-770. 22) Akman Ş. Prion Hastalıklarının Patogenezine Biyokimyasal Yaklaşım. Gülhane Tıp Dergisi 2002; 44(2): 230-239. 23) Hedrick JL. Comparative structural and antigenic properties of zona pellucida glycoproteins. J Reprod Fertill Suppl 1996; 50: 9-17. 24) Hoke, D, Mebius R.E, Dybal N, et al. Selective modulation of the expression of L-selectin ligands by an immune response. Curr Biol 1995; 6: 670-678. 25) Voynow JA. What does mucin have to do with lung disease? Pediatric Respiratory Reviews 2002; 3; 98-103. 26) Chu TM. Biochemical markers of human cancer. Br J Cancer 1989; 59 :283-287. 27) Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999; 9: 67-81. 28) Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 2006; 24 (10): 1241-1252. 29) Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science 2001; 291: 2370-2376. 30) Zhang XL. Roles of glycans and glycopeptides in immune system and immune-related diseases. Curr Med Chem 2006; 13(10): 1141-1147. 31) Nigam VN, Cantero A. Polysaccharides in cancer: Glycoproteins and glycolipids. Adv Cancer Res 1973; 17: 1-80. 32) Schachter H., Jeaken J. Carbonhydrate-deficient glycoprotein syndrome type II. Biochim Biopys Acta 1999;1455(2-3): 179-192. 33) Bussing A, Stein GM, Pfüller U, Schietsel M. Differential binding of toxic lectins from Viscum Album L, MLI and ML III, to humans lymphocytes. Anticancer Res 1999; 9(6b): 5095-5099 34) Kuttan G, Menon LG. Anticarcinogenic and antimetastatic activity of Iscador Anticancer Drugs 1997; 8 :1515-1516. 35) Van Huyen Sd,Bayry J. Induction of apoptosis of Endothelial cells by Viscum Album:a role for Anti-Tumoral properties of mistletoe lectins. Mol Med 2002; 8(10): 600-606. 36) Zarcovic N, Vucovıc T. An overview on anticancer activities of the Viscum Album extract Isorel Cancer Biother Radiopharm 2001; 16(1): 55-62. 37) Choi SH, Lyu SY, Park WB. Mistletoe Lectin Induces Apoptosis and Telomerase Inhibition in Human A253 Cancer Cells through Dephosphorylation of Akt Arch Pharm Res 2004; 27(1): 68-76. 38) Bock PR, Friedel WE, Hanisch J, Karasmann M, Schneider B.) Efficacy and safety of long-term complementary treatment with standardized European mistletoe extract (Viscum album L.) in addition to the conventional adjuvant oncologic therapy in patients with primary non-metastasized mammary carcinoma. Arzneimittelforschung 2004; 54(8): 456-466. 39) Thies A, Dautel P, Meyer A, Pfüller U, Schumacher U. Low-dose mistletoe lectin-I reduces melanoma growth and spread in ascid mouse xenograft model. 1. Br J Cancer 2008; 15, 98(1): 106-112. 40) Mejia Eg, Bradford T, Hasler C. The Anticarcinogenic Potential of Soybean Lectin and Lunasin. Nutr Rev 2003; 61(7): 239-246. 41) Montreuil J, Vliegenthart JFG, Schachter H. Glycoproteins and Disease. Elsevier 1996. 42) Brockhausen I. Clinical aspects of glycoprotein biosynthesis. Crit Rev Clin Lab Sci 1993; 30: 65-151. 43) Brockhausen I, Kuhns W. Role and metabolism of glycoconjugate sulfation. Trends Glycosci Glycotechnol 1997; 9: 379-398. 44) Shamberger R.J. Evaluation of water soluble and lipid soluble sialic acid levels as tumor markers. Anticancer Research 1986; 6: 717-720. 45) Brockhausen I, Yang J, Dickson N, Ogata S. Itzkowitz S. Mechanisms leading to the expression of the cancer-associated sialyl-Tn and Tn antigens in human cancer cells. Glycoconj J 1998; 15: 595-603 46) Ye C, Kriyama K, Mistuoka C et al. Expression of E-selection on endothellal vells of small veins in human colorectal cancer. Int J Cancer 1995; 61: 455-460. 47) Takahashi N, Lee KB, Nakagawa H, et al. Enzymatic sialylation of N-linked oligosaccharides using an a-(2.3)-specific transsialidase from Trypanosoma cruzi: Structural identification using a three-dimensional elution mapping technique. Anal Biochem 1995; 230: 333-342. 48) Rademacher TW, Jones RH, Williams PJ. Significance and molecular basis for IgG glycosylation changes in rheumatoid arthritis. Adv Exp Med Biol 1995; 376:193-204. 49) Erbil K, Jones J, Klee G. Use and Limitations of serum total and lipid-bound sialic acid concentrations as markers for colorectal cancer. Cancer 1985; 55: 404-409. 50) Uysal H, Saxton J, Hemming FW. Changes in the secretion and glycosylation of fibronectin by human skin fibroblasts associated with tuberous sclerosis, Glycoconj J 1997; 14: 439-447. 51) Uysal H, Hemming FW. Changes in the expression and distribution of fibronectin, laminin and tenascin by cultured fibroblasts of skin lesions of patients with tuberous sclerosis. Brit J Dermatol 1999; 141: 658-666. 52) Schutter EMJ, Jelle JJ, Van Kamp GJ, et al.The utility of lipidassociated sialic acid (LASA or LSA) as a serum marker for malignancy. Tumor Biol 1992; 13: 121-132. 53) Thougoard AV, Heilmen E, Pederson HD, Jensen AL. Correlation between a1-acid glikoprotein and total sialic acid in serum from dogs with tumours. J Vet Med A 1999; 46: 231-237. 54) Sherblom PA, Smagula MR, Moody EC, Anderson WG. Immunosupression, sialic acid and sialytransferase of neonatal and maternal bovine serum. J Reprod Immunol 1986; 9: 365-375. 55) Murali MB, Sundararas A, Nagarin B, Shanmugam V. Biochemical Markers in the diagnosis of 7th word Carcinoma in cattle. Indian Vet Journal 1993; 70: 14-16. 56) Antony S, Kuttan R, Kuttan G. Role of natural killer cells in Iscador mediated inhibition of metastasis by adaptive Immunotherapy. Thrissur Immunol Invest 2000; 29 (3): 219-231. Serap ÜNÜBOL AYPAK1, Hamdi UYSAL2 1Adnan Menderes Üniversitesi Veteriner Fakültesi, Biyokimya Anabilim Dalı, Aydın, TÜRKİYE 2Ankara Üniversitesi, Veteriner Fakültesi, Biyokimya Anabilim Dalı Ankara, TÜRKİYE Anahtar Kelimeler: Glikoprotein, yapı, fonksiyon, kanser

http://www.biyologlar.com/glikoproteinlerin-yapisi-ve-fonksiyonlari

Proteinler - Protein Nedir - Protein çeşitleri - Proteinin yapısı

Proteinler - Protein Nedir - Protein çeşitleri - Proteinin yapısı Protein Nedir ? Amino asitlerin belirli türde, belirli sayıda ve belirli diziliş sırasında karakteristik düz zincirde birbirlerine kovalent bağlanmasıyla oluşmuş polipeptitlerdir. Amino asitlerin polimerleridirler. Canlı hücrelerin ana Maddesini oluşturan, genellikle sülfür, Oksijen ve karbon öğeleri bulunan amino Asit birleşiminden oluşmuş, yumurta akı, et, süt vb. yiyeceklerde bulunan, karmaşık yapılı doğal maddeye Protein denir. Proteinler hücrelerdeki bütün biyolojik olayların yapı taşıdırlar. Hücreler içerisinde gerçekleşen olaylar; yüz binlerce farklı Proteinin kendilerine verilmiş olan vazifeleri yerine getirmeleri ile gerçekleşir. Proteinlerin özellikleri Proteinler, çeşitli etkilerle denatüre olurlar. Proteinler, Amfoter maddeler yani amfoter elektrolit veya amfolittirler Proteinler, polipeptit zincirindeki peptit bağlarının Su girişi ile yıkılması sonucu hidroliz olurlar. Proteinin Yapısı Proteinler, amino asit dediğimiz ve karbon, Hidrojen, oksijen ve Azot atomlarından meydana gelen Moleküllerin tespih taneleri gibi yan yana dizilmeleri ile oluşur. Proteinler 4 yapıya ayrılır. Bunlar: I. Primer yapı II. Sekonder yapı III.Tersiyer yapı IV. Kuanter yapı Amino Asit Nedir ? Amino asit Proteini oluşturan yapı taşışıdır. Doğada 300’den fazla amino asit vardır, fakat memelilerde bunlardan yalnız 20 tane bulunur. Bunlar Hücrenin genetik materyali olan DNA tarafından kotlanan amino asitlerdir.Amino asitler arasındaki kovalent baglarpeptit bağlar olarak oluşturdukları zincirde polypeptit zinciri olarak adlandırılır. RNA’daki bilginin Proteine çevrilmesi işlemine translasyon denir. mRNA’da sadece dört farklı nükleotit bulunurken, Proteinlerde 20 değişik amino asit bulunur. Bu nedenle, m RNA ile proteinler arasında bire bir ilişki olamaz. Genlerdeki ve dolayısıyla mRNA’daki nükleotit dizisi ile proteinlerdeki amino asit dizisi arasındaki ilişki genetik şifre’dir. 1. Primer yapı : Bir Proteindeki aminoasitlerin dizilişine o Proteinin Primer yapısı denir. normal ve mutasyona uğramış Proteinlerin Primer yapıları bilindiği taktirde bu bilgi kullanılarak hastalığın tanısına gidilebilir. 2.Sekonder Yapı: Polipetit omurgası gelişi güzel bir üç boyutlu yapı oluşturmayıp genellikle lineer dizede birbirine yakın olan amino asitlerin kurallı düzenlemesiyle yapılanır. 3.Tersiyer Yapı: Bir polipeptit zincirinin Primer yapısı onun tersiyer yapısını da belirler. Tersiyer hem bölgelerin katlanmasını hem de bölgelerin polypeptit içindeki nihayi düzenini ifade eder. 4. Kuanternal Yapı: Birçok protein tek polipeptit zincirinden meydana gelir; bunlar monomerik proteinlerdir.Birçoğu da yapısal olarak benzer veya tamamen ilgisiz veya daha fazla polypeptit zincirinden oluşur.Bu polipeptit zincirlerinin düzenlenmesine proteinin kuanter yapısı denir. Proteinlerin Çeşitleri Proteinler Başlıca iki çeşide ayrılır: 1. Basit Proteinler 2. Bileşik ( konjuge ) Proteinler 3. Türev Proteinler Basit Proteinler Globüler proteinler: Albüminler, Globülinler, Globinler, Glutelinler, Prolaminler, Protaminler, Histonlar. Basit Proteinler Fibriler proteinler: Keratin, elastin, fibrinojen, miyozin. Bileşik Proteinler Glikoproteinler: Kollajen Proteoglikanlar Lipoproteinler Fosfoproteinler: Kazein Nükleoproteinler Metalloproteinler: Ferritin, transferrin, seruloplazmin Kromoproteinler: Hemoglobin, miyoglobin, sitokromlar, peroksidaz Türev proteinler Primer türev proteinler (denatüre tip proteinler): protean metaprotein koagule proteinler Sekonder türev proteinler: Proteozlar (albüminozlar) Peptonlar Oligopeptitler Peptitler Proteinlerin Denatürasyonu Protein denatürasyonu peptit bağları hidroliz olmadan proteinin yapısını çözülüp disorganize olması sonucunda meydana gelir. Denatüre edici etkenler; ısı,organik çözücüler, Mekanik karıştırma, kuvvetli asit yada baz, deterjan, kurşun, cıva gibi maddelerdir. Ender olarak denatüre edici maddeden uzaklaştırıldığında protein eski orijinal yapısına dönerek katlanır ve denatürasyon geri dönüşümlü olarak bozulur. Bu, proteinin katlanmasının protein sentezi başladıktan hemen sonra, yani katlama işlemini bozacak uzun bir amino asit zinciri oluşmadan başladığı kavramı gibi çeşitli faktörlere bağlana bilir. Denatüre proteinler genellikle çözünmezler ve bu yüzden çözeltide çökerler. Protein oluşumu DNA 4 harfli bir alfabeden(4 çeşit nükleotid(baz)) oluşurken protein 20 harfli bir alfabeden ( 20 çeşit aa) oluşur. Protein sentezi DNA sayesinde olur. Bunun için bu iki Alfabe arasında çeviri yapılması gerekir. Bu olay kısaca şu şekilde olmaktadır. .(bir genlik kısım). DNA MRNA DNA’nın bir genlik kısmı bir Enzim aracılığıyla RNA’ya kopyalanır/veya RNA oluşturulur. DNA: birçok genden oluşur RNA: bir genden Daha sonra MRNA ribozomlara yapışır ve ribozom bu RNA’daki kod dizilimini okumaya başlar, ribozomun çevresinde tRNA’lar vardır, bu tRNA’lara ise çeşitli aa’lar bağlanmıştır. mRNA’dan hangi baz dizilimi okunduysa ona ait aa’nın bağlandığı tRNA gelir ve ribozoma yapışır, bu işlem bu şekilde devam eder ve bir protein oluşur. GÜNLÜK PROTEİN İHTİYACIMIZ NEDİR? Protein vücut için çok gerekli bir bileşendir. Kasların ve bağlantı dokularının beslenmesi, yaşaması ve tamiri, vücudun su dengesinin düzenlenmesi, ana Hormon ve Enzimlerin üretilmesi ve bağışıklık sisteminin düzgün çalışmasını sağlar. Sağlıklı ergen erkek ve kadınlar için, günlük gerekli miktar, Kg başına 0,8 gram olarak hesaplanmıştır. Yani vücut ağırlığına göre, ortalama bir insanın, günlük 40-65 gr arası Protein alması gereklidir. Günlük 2000 kalorilik beslenme rejimi uygulayan bir ergen kişi için, 50 gram protein alması uygundur. Eğer düzenli egzersiz/spor yapan birisi iseniz, Bu miktarın egzersiz yaptığınız günlerin sayısına bağlı olarak % 25-50 arttırılması gerekir Bu miktarı Balık, Yağsız Et, Kümes hayvanlarının etleri, Az yağlı ya da yağsız süt ürünleri, Bakliyat, Tahıl ve Soya gibi sağlıklı ve protein açısından zengin ürünlerden alabilirsiniz. Protein Sentezi Bu soruya yanıt vermek için öncelikle proteinin nasıl oluştuğunu incelemek gerekiyor. Vücudumuzda DNA molekülleri ile depolanan genetik bilgiler, translasyon dediğimiz bir olay ile amino grup asitlerden oluşan protein haline gelmektedir. Bu olay sırasında önce belirli bir miktar DNA'dan buna karşılık gelen RNA dizisi oluşur. Transkripsiyon denilen bu olaydan sonra RNA yapısında bulunan ve aktif protein sentezine katılmayan intron dediğimiz RNA dizileri ortadan kaldırılır. Intronsuz RNA'ya MRNA diyoruz ve bu MRNA, ribozomlarda birçok karmaşık olaydan sonra amino grup asit haline çevrilir ( Transla yon) ve değişik aminoasitlerin birleşmesiyle proteinler meydana gelir. Bu sayede DNA'larda hazır bulunan bilgiler protein formunda dokularda ve hücrelerde faaliyet göstermeye baslar. Proteinin yanlış sentezlenmesinin ana nedeni DNA nin yapısında olabilecek bir değişikliktir ve buna mutasyon diyoruz. Ayrıca çeşitli proteinler sentezlendikten sonra bazı modifikasyonlara uğrarlar. Bunlar, proteinin bir kısminin kopması, fosfor, seker karbonhidrat molekülleri eklenmesi gibi olaylardır. Bu aşamalarda olabilecek bir bozukluk ta proteinin gerçek fonksiyonunu göstermesine engel olur. Özetle saydığım bütün aşamalarda olabilecek bir bozukluk, sonuçta proteinin sentezinde bozukluğa neden olacaktır. Protein yanlış sentezlenince ne olur sorusuna en basit ve kısa yanıt o proteinin fonksiyonunun bozulması olacaktır. Söz konusu proteinin fonksiyonu örneğin hücrelerin bölünmesine yardımcı olmaksa, bu proteinin sentezindeki bozukluk hücrelerin bölünmesinde sorun çıkartacaktır. Günümüzde birçok proteinin yanlış yada eksik sentezlenmesinin bazı hastalıklara neden olduğu bilinmektedir. Bazı tip kanserlerde örneğin çok özel proteinlerde mutasyon olduğu hem deney hayvanlarında hem de insanlarda gösterilmiştir. Tümör oluşumunu önleyen bazı proteinlerde olabilecek sentez hatalarının organizmaları Kanser gelişimine daha hassas hale getirdiği bilinmektedir. Yanlış protein sentezi sadece kanserli kişilerde görülmemektedir. Yapılan çalışmalar bir çok hastalıkta spesifik protein veya proteinlerde yanlış sentezlenme olduğunu göstermiştir. Uzayıp giden bu hastalıklara birkaç örnek vermek gerekirse, seker hastalığı, bazı akciğer hastalıkları, Alzheimer hastalığı, bir çok bağ dokusu hastalığı sayılabilir. Bu noktada bir önemli konuyu da belirtmek gerekir. yanlış sentezlenen her proteinin mutlaka bir hastalığa neden olması gerekmez. bazı sentezlenme hataları proteinin fonksiyonunda çok önemli bir değişikliğe neden olmaz. Yine ayni şekilde bazı durumlarda yanlış sentezlenme sonucu fonksiyonunu bozulan proteinin görevi ona benzer bir başka protein tarafından üstlenilebilir ve organizmada olabilecek herhangi bir fonksiyon eksikliği önlenmiş olur. Son olacakta yanlış sentezlenen proteinin organizma için hayati önemi olmayan bir fonksiyonu varsa, bunda olabilecek sentez hatalarının çok fazla önemi olmayabilir. Özetle tekrarlamak gerekirse, proteinler organizmaların effektor molekülleri olduğundan, sentez bozuklukları, sorumlu oldukları fonksiyonların bozulmasına neden olabilir. bazı proteinlerin sentez bozukluklarının çok ciddi ve hayati tehlikeye oluşturacak ya da yasamla bağdaşmayacak bir sonucu olabildiği gibi, bazı proteinlerde ise bu fonksiyon bozukluğu fark edilmeyebilir. Bu, söz konusu proteinin organizmada üstlendiği fonksiyon ve regule ettiği hücresel olaylarla ilgilidir. Karbonhidratlardan ve yağlardan farklı olarak C, H, O’ nun yanında N ve bazen de S bulundurur. Esas görevi yapı maddesi olmaktır. Yapıtaşları amino asitlerdir. Yüksek Sıcaklık proteinlerin yapısını bozar. Her Canlının protein yapısı kendine özgüdür. Proteinler hücre içi ve hücre dışında önemli yapı maddeleridir Bağ doku kollogen lifleri, kıl ve derideki Keratin ( Saç ve Tırnaklarımız) önemli hücre dışı proteinleridir Örneğin: Lipoprotein zar yapısı, Nükleoprotein kromozom yapısı. Kasların kasılmasında görev alan aktin miyozin iplikler protein molekülünden oluşmuştur. Bir moleküle bağlanıp onu diğer moleküle taşırlar. Örneğin : Hücre içinde sitoplazma ile çekirdek arasında bazı maddeleri taşırlar. Biyokimyasal reaksiyonlardaki biyolojik katalizörler yani Enzimlerin hepsi protein moleküllerinden meydana gelmişlerdir. Proteinler taşıyıcı moleküllerdir. Yüksek enerjili elektronu taşıyan sitokromlar, Oksijeni taşıyan hemoglobin protein moleküllerinden meydana gelmişlerdir. Not: Hemoglobin 9512 Atom bulundurur. C3032H4816N780O872S8Fe4 Vücuda dışarıdan giren hastalık yapıcı maddelere antijen denir. Vücudun antijenlere karşı korunmak amacıyla meydana getirdiği protein yapısındaki moleküllere ANTİKOR adı verilir. Virüslere karşı salgılanan interferon da protein yapısındadır. Hormonların büyük bölümü proteindir. Örneğin: kanda şeker seviyesini düzenleyen İnsülin, glukagon hormonları . Dolayısıyla proteinler düzenleyici rol oynarlar. Depo protein olarak Albümin, yılanlarda zehir üretilmesi ayrıca yakılmalarında CO2 , H2O, H2S, NH3, üre, ürik asit gibi artık maddeler oluşur. Proteinler hücrelerin madde alış verişini sağlayan osmotik Basıncın oluşmasında etkilidir. Örneğin: Doku hücrelerinden kılcal damarlara madde geçişini kandaki proteinlerin oluşturduğu osmotik Basınç sağlar. Yetişkin insanların vücutlarındaki dolaşım, solunum, sindirim, boşaltım gibi biyolojik olaylar olurken hücreler yıpranır. Yıpranan hücrelerin yerine yenilerinin yapılması yine protein varlığında olur. Hücre zarında bulunan proteinler aminoasit ve glikoz gibi Monomerleri tanıyarak hücre içine alırlar. Besin kaynağı olarak rol oynarlar. Örneğin: bazı Bitkilerin tohumları çimlenme ve gelişimin ilk safhalarında gerekli enerji için protein depolar. Süt içindeki kazein çocuklar için önemli hayvansal proteindir. Alınan proteinler ancak uzun açlıkta enerji hammaddesi olarak kullanılır. Bu durumda protein yıkımı, protein sentezinden daha fazladır. Bu yüzden aşırı zayıflama görülür. PROTEİNLERİN OLUŞMA MEKANİZMASI Yapı taşları aminoasitlerdir. Canlıların yapısındaki proteinlere 20 çeşit amino asit katılır. Yapay olarak sentezlenebilen 70 kadar aminoasit vardır. Bu 20 çeşit amino asitten 12 tanesi insanlarda sentezlenebilirken 8 tanesi dışarıdan hazır olarak alınır. Proteinler çok sayıda aminoasitin dehidrasyon sentezi yoluyla birleşerek oluşturdukları polipeptidlerdir. Proteinler her canlıda farklı olduğu gibi her canlının farklı dokularında da birbirinden farklıdır. Sadece tek yumurta ikizlerinin proteinleri aynıdır. Bu farklılık proteinleri oluşturan aminoasitlerin çeşidi, sayısı, sırası ve dizilişinden kaynaklanır. Bunun nedeni de her canlı ve dokudaki proteinlerin sentezlenmesini sağlayan genlerin farklı olmasıdır. Proteinlerin sentezlenmesi için gerekli olan aminoasit çeşitlerinden bir tanesi bile eksik olsa protein sentezlenemez. Proteinlerdeki aminoasitlerden bir tanesinin bile çeşidi, sırası,sayısı değişirse proteinin yapısı ve özelliği değişir. Örneğin: Hemoglobindeki glutamik asit yerine valin denilen aminoasit gelirse normal hemoglobin oluşmaz. Bu farklılık nedeniyle insanlarda orak hücre anemisi denilen hastalık oluşur. Ancak sitokrom C ‘ de 104 aminoasit vardır. Bunlardan 30-40 kadarı farklı sıralanabilir. Aminoasitlerdeki COOH Asit, NH2 baz özelliği taşır. Bu nedenle aminoasitler amfoterdir.( asit – baz özelliği )hücrede meydana gelen pH değişiklikleri bu şekilde tamponlanır. Bazı aminoasitler insanda sentezlenemez. Bunlar 8 tanedir. Besinlerle dışarıdan alınır. Vücutta üretilemeyen bu aminoasitlere zorunlu amino asitler denir. Proteinler Yapılarında karbon, hidrojen, oksijen ve azot bulunan proteinler yaşam için gerekli organik bileşiklerdir. Organizmanın genel yapı taşlarını teşkil ederler. Vücudun çalışmasında düzenleyici olarak görev alan bazı enzim (amilaz, lipaz, laktat dehidrogenaz vb.) ve Hormonların (insülin, büyüme Hormonu vb.) yapılarında protein vardır. Alyuvarlara rengini veren hemoglobin bir protein bileşiğidir. Kasların büyük kısmı myozin ve aktin diye adlandırılan protein türlerinden meydana gelmiştir. Vücudun mikroplara karşı savunmasında görev alan Antikor dediğimiz koruyucu maddeler ile bazı vitaminlerin yapımında proteinin etkinliği bulunmaktadır. Aynı zamanda proteinler bir enerji kaynağıdırlar ve 1 gram protein vücutta 4 kcal. enerji oluşturur. AMİNO ASİTLER Proteinlerin yapı taşı ise amino asitlerdir. Doğada bulunan 22 amino asitten 8 tanesi organizmada yapılamaz. Mutlaka dışardan besinlerle alınmaları gereken bu amino asitlere elzem amino asitler denir (esansiyel amino asitler). VALİN, LÖSİN, İZOLÖSİN, TREONİN, METİONİN, FENİLALANİN, TRİPTOFAN, LİZİN elzem amino asitlerdir. Ayrıca HİSTİDİN ve ARGİNİN çocuklar için özellikle ilk yıllarda elzem amino asit olarak kabul edilir. Spor performansı açısından GLUTAMİK ASİD'te önem kazanmaktadır. Glutamik asit büyümede, beynin ve sinir sisteminin metabolizmasında, dolaylı olarak sporcunun konsantrasyonunun düzenli olmasında etkendir. Elzem amino asitlerden valin, löysin ve izolöysin enerji temini için kasta kullanılan amino asitlerdendir. Alanin ve glutamat ise karaciğerde glikoza çevrilerek kana geçer, kan şekerinin seviyesinin korunmasına katkıda bulunur. Karbonhidrat depolarının tükenmesi durumunda amino asitler toplam enerji tüketiminin % 5-10 kadarını sağlar.

http://www.biyologlar.com/proteinler-protein-nedir-protein-cesitleri-proteinin-yapisi

Gen Terapisi

Hastalıkları tedavi etme ya da fiziksel etkilerini azaltma amacıyla hastanın vücuduna genetik materyalin sokulması, tıp tarihinde bir devrim olmuştur. İlk başlarda genetik hastalıkların tedavisi amacıyla planlanan gen terapisi artık, kanser, AIDS gibi diğer pek çok hastalığın tedavisi için de kullanılmaya başlanmıştır. Genlerin tanımlanması ve genetik mühendisliğinde kaydedilen önemli gelişmeler sonunda bilim adamları artık hastalıklarla savaşabilmek ve onlardan korunabilmek için bazı örneklerde genetik materyali değiştirme aşamasına geldiler. Gen terapisinin temel amacı, hücrelerin hastalığa yol açan eksik ya da kusurlu genleri yerine, sağlıklı kopyalarının hücreye yerleştirilmesidir. Bu işlem, gerçek anlamda bir devrimdir. Hastaya, genetik bozukluktan kaynaklanan semptomların kontrol edilmesi ve/veya tedavisi için ilaç verilmiyor. Bunun yerine, sorunun kaynağına inilip hastanın bozuk genetik yapısı düzeltilmeye çalışılıyor. Çeşitli gen terapisi stratejileri olmakla birlikte, başarılı bir gen terapisi için gereken ortak temel elemanlar vardır. Bunların en önemlisi hastalığa neden olan genin belirlenmesi ve klonlanmasıdır. "Human Genome Project" olarak adlandırılan ve insanın gen haritasını çıkarmayı amaçlayan proje tamamlandığında, istenilen genlere ulaşmanın çok daha kolay olacağına inanılmaktadır. Genin tanımlanmasından sonraki aşamada, genin hedeflenen hücrelere nakledilmesi ve orada ekspresyonu, yani kodladığı proteinin üretimi gelir. Gen terapisinin öteki önemli elemanlarıysa tedavi edilmek istenilen hastalığı ve gen nakli yapılacak hücreleri iyi tanımak ve gen naklinin olası yan etkilerini anlamaktır. Gen terapisi iki ana kategoride incelenebilir: Eşey hücresi ve vücut hücresi gen terapisi. Eşey hücresi gen terapisinde, genetik bir bozukluğu önlemek için eşey hücrelerinin (sperm ya da ovum) genleri değiştirilir. Bu tip terapide, genlerde yapılan değişiklik kuşaktan kuşağa aktarılabileceğinden, olası bir eşey hücresi gen terapisi hem etik, hem de teknik sorunlar yaratacaktır. Öte yandan vücut hücresi gen terapisi eşey hücrelerini etkilemez; sadece ilgili kişiyi etkiler. Günümüzde yapılan gen terapisi çalışmalarının çoğu vücut hücresi gen terapisidir. Gen terapisi aynı zamanda bir ilaç taşıma sistemi olarak da kullanılabilir. Burada ilaç, nakledilen genin kodladığı proteindir. Bunun için, istenilen proteini kodlayan bir gen, hastanın DNA'sına yerleştirilebilir. Örneğin ameliyatlarda, pıhtılaşmayı önleyici bir proteini kodlayan gen, ilgili hücrelerin DNA'sına yerleştirilerek, tehlikeli olabilecek kan pıhtılarının oluşumu önlenebilir. Gen terapisinin ilaç taşınmasında kullanılması, aynı zamanda, hem harcanan güç ve emeği hem de parasal giderleri azaltabilir. Böylece, genlerin ürettiği proteinleri çok miktarda elde etmek, bu ürünleri saflaştırmak, ilaç formülasyonunu yapmak ve bunu hastalara vermek gibi, çok zaman alan karmaşık işlemlere gerek kalmayabilir. Gen Terapisinin Temel Sorunları Bilim adamlarına göre gen terapisinin üç temel sorunu var: Gen nakli, gen nakli ve gen nakli. Bu alanda çalışan tüm araştırmacılar, gen nakli için etkili bir yol bulmaya çalışmaktadırlar. Genleri istenilen hücrelere taşıyabilmek için kullanılan yöntemler genel olarak iki kategoride toplanmaktadır: Fiziksel yöntemler ve biyolojik vektörler. Fiziksel yöntemler, DNA'nın doğrudan doğruya enjeksiyonu, lipozom formülasyonları ve balistik gen enjeksiyonu yöntemlerini içerir. Doğrudan DNA enjeksiyonunda ilgili gen DNA'sını taşıyan plazmit, doğrudan doğruya, örneğin kas içine, enjekte edilir. Yöntem basit olmasına karşın kısıtlı bir uygulama alanı vardır. Lipozomlar, lipidlerden oluşan moleküllerdir. DNA'yı içlerine alma mekanizmalarına göre iki guruba ayrılırlar: Katyonik lipozomlar ve pH-duyarlı lipozomlar. Birinci gurup lipozomlar artı yüklü olduklarından, eksi yüklü olan DNA ile dayanıklı bir kompleks oluştururlar. İkinci gurup lipozomlarsa negatif yüklü olduklarından DNA ile bir kompleks oluşturmaz, ama içlerinde taşırlar. Parça bombardımanı ya da gen tabancası olarak da adlandırılan balistik DNA enjeksiyonu, ilk olarak bitkilere gen nakli yapmak amacıyla geliştirilmiştir. Bu ilk uygulamalarından sonra, bazı değişiklikler yapılarak memeli hücrelerine gen nakli amacıyla kullanılmaya başlanmıştır. Bu yöntemde, genellikle altın ya da tungstenden oluşan 1-3 mikron boyutunda mikroparçacıklar, tedavi edici geni taşıyan plazmit DNA'sı ile kaplanır, sonra da bu parçacıklara hız kazandırılarak, hücre zarını delip, içeri girmeleri sağlanır. Basit olmalarına karşın fiziksel yöntemler verimsizdir; ayrıca, yabancı genler, sadece belirli bir süre fonksiyonal kalabilmektedirler. Bu nedenle araştırmacıların çoğu, genellikle virüs kökenli vektörlere yönelmişlerdir. "Vektör" kelimesinin bir anlamı da "taşıyıcı"dır. Benzer şekilde, gen terapisinde genleri hücrelere taşıma amacıyla kullanılan ve genetik olarak zararsız hale getirilmiş virüslere de vektör denir. Milyarlarca yıllık evrim sonucunda virüsler, hedefledikleri hücrelere kendi genetik materyallerini aktarmak için etkili yöntemler geliştirmişlerdir, ama ne yazık ki bu işlem duyarlı organizmalarda hastalıkla sonuçlanmaktadır. Günümüzde yapılan araştırmalarda, virüslerin hastalığa yol açan gen parçalarının yerine, hastaları iyileştirme amacıyla rekombinant genler yerleştirilmektedir. Bu amaçla değiştirilmiş hücreler kullanılmaktadır. Bu hücrelere tedavi edici geni taşıyan bir genetik yapı sokulduğunda, tedavi edici geni içinde taşıyan virüsler elde edilir. Bu şekilde değiştirilmiş virüsler hücreye girmek için kendi yöntemlerini kullanırlar ve genomlarının ekspresyonu sonucu, genin kodladığı protein üretilmeye başlanır. Öte yandan, virüsün kendisini çoğaltmak için ihtiyaç duyduğu genler, tedavi edici genlerle değiştirilmiş olduğundan, virüs çoğalıp hücreyi patlatamaz. Bunu yerine, hücrede virüsün taşıdığı hastalığı düzeltici genin ekspresyonu olur, genin kodladığı protein (yani ilaç) üretilir ve genetik bozukluk nedeniyle üretilemeyen proteinin yerini alır. En çok kullanılan viral vektörler, retrovirüsler, adenovirüsler, herpesvirüsler (uçuk virüsü) ve adeno-ilişkili virüslerdir. Ama her vektörün kendine özgü dezavantajları vardır: Bölünmeyen hücreleri enfekte edememek (retrovirüs), olumsuz immünolojik etkiler (adenovirüs), sitotoksik etkiler (herpesvirüs) ve kısıtlı yabancı genetik materyal taşıyabilme kapasitesi (adeno-ilişkili virüs). İdeal bir vektörde aranan özellikler yüksek titraj, kolay tasarlanabilme, integre olabilme yeteneği ve gen transkripsiyonunun kontrol edilebiliyor olmasının yanında, imünolojik etkilerin olmamasıdır. Genlerin Vücuda Sokulma Yöntemleri Genleri vücuda sokmanın çeşitli yolları vardır: Ex vivo, in vivo ve in situ. Ex vivo gen terapisinde, hastadan alınan hücreler laboratuvar ortamında çoğaltılır ve vektör aracılığıyla iyileştirici genler bu hücrelere nakledilir. Daha sonra, başarılı bir şekilde genleri içine almış hücreler seçilir ve çoğaltılır. Son aşamadaysa, çoğaltılan bu hücreler tekrar hastaya verilir. In vivo ve in situ gen terapisindeyse, genleri taşıyan virüsler doğrudan doğruya kana ya da dokulara verilir. Engeller Gen terapisinde, nakledilecek genler hücre içi ve hücre dışı engellerle de başa çıkmak zorundadır. Hücre içi engeller, naklin yapılacağı hücreden kaynaklanır ve hücre zarı, endozom ve çekirdek zarını içerir. Hücre dışı engellerse, belirli dokulardan ve vücudun savunma sisteminden kaynaklanır. Bütün bu engeller, gen transferinin etkinliğini önemli ölçüde azaltır. Bunun ölçüsü, geni taşımakta kullanılan vektör sistemine ve naklin yapılacağı hedef dokuya bağlıdır. Hücre zarı, geni hücreye sokma işleminde karşılaşılan ilk engeldir. Bu engel aşıldıktan sonra sırada endozomlar bulunur. Vektörün lizozomlara ulaşmadan önce endozomdan kaçması gerekir, yoksa lizozomlar taşınan tedavi edici geni enzimlerle parçalar, etkisiz hale getirirler. En son hücre içi engel çekirdek zarıdır. Yabancı DNA'ların çekirdek zarından içeri girmesi kolay değildir. Çapı 10 nm'den az olan bazı küçük moleküller ve küçük proteinler bu deliklerden kolayca geçebilirken, daha büyük moleküllerin içeriye alınması enerji gerektirir. Yabancı DNA'ların çekirdeğin içine girme mekanizması tam olarak bilinmemekle birlikte, mekanizmanın büyük moleküllerin çekirdeğe alınmasında kullanılan mekanizmaya benzediği tahmin edilmektedir. Çekirdeğin içinde ve sitoplazmada bulunan ve nükleik asitleri parçalayan nükleaz gurubu enzimler de ayrı bir problemdir. In vivo gen terapisinde, tedavi edici genlerin hastaya direkt yolla verilmesi sonucunda vektörler, hücre içi engellerin yanısıra hücre dışı engellerle de karşılaşırlar. Hücre dışı engeller iki kategoride incelenebilir: Dokuların kendilerine özgü yapıları ve savunma sistemi engelleri. Örneğin bağ dokusu, gen transferi için büyük bir engeldir. Eğer kas dokuya enjeksiyon yapılacaksa, kaslarda bulunan bağ dokusu katmanları, enjekte edilen vektörlerin yayılmasını ve enfekte etme yeteneklerini engeller. Epitel hücreleri vektörlerin daha derinlerdeki hücrelere ulaşmasına olanak vermez. Serumu oluşturan maddeler de çeşitli gen nakli vektörlerini etkisiz hale getirir. Örneğin çıplak DNA, serumda bulunan pek çok pozitif yüklü proteine bağlanıp etkisiz hale gelebilir. Serumdaki protein ve nükleik asitleri parçalayan proteaz ve nükleaz enzimleri de gen terapisi vektörlerini parçalayabilir. In vivo gen terapisinde adenovirüs ya da retrovirüslerin vektör olarak kullanıldığı bazı durumlarda, bunlara karşı vücutta antikor üretildiği gözlenmiştir. Savunma sisteminin etkilerinden kurtulmak için, tedavide savunma sistemini baskılayıcı ilaçlar da kullanılmaktadır, ama onların da bazı sakıncaları vardır. İlk Gen Terapisi İnsanda ilk gen terapisi denemesini 1990'da Dr. French Anderson gerçekleştirdi. Ex vivo gen terapisi stratejisinin kullanıldığı yöntemde, adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tipi kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA enzimini üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamsal tehlike yaratabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen terapisi denemesi olarak seçilmesinin bazı nedenleri vardır. Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen terapisinin başarı ihtimalini arttırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir: Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteininin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen terapisi 2 hasta çocuk üzerinde gerçekleştirildi. Terapide, hastaların hücreleri (T-lenfosit) alınarak laboratuvar şartlarında doku kültürü yoluyla çoğaltıldı. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledildi. Virüs hücrelere girerek genetik materyale geni yerleştirdi. Genetik olarak başarıyla değiştirilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltıldı. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verildi. Bu işlem, yani T hücrelerinin hastadan alınması, laboratuvar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlandı. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edildi. Tedavi sonucunda iki çocukta da iyileşme kaydedildi. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler, ve AIDS gibi hastalıklarla başa çıkmak için gen terapileri tasarlandı. Kanser tedavisi için bilim adamları, savunma sistemi hücrelerini gen terapisi yoluyla değiştirerek kanserli hücrelerin üzerine göndermeye çalışıyorlar. Amaç, vücuttan alınan bu hücrelerin, kanserle mücadeleyi sağlayan genlerle silahlandırılıp tekrar vücuda verilmesi ve böylece bu hücrelerin kanserle daha iyi savaşmalarını sağlamak. Bu konudaki klinik deneyler sürmektedir. Alternatif olarak, kanser hücreleri vücuttan alınıp, daha güçlü bir savunma tepkisi çekebilecek şekilde genetik olarak değiştirilebilir. Bu hücreler daha sonra, bir çeşit kanser aşısı gibi reaksiyon göstermeleri umuduyla tekrar vücuda verilebilir. Bu konudaki klinik deneylere başlanmıştır. Öte yandan tümörlere, bunları bazı antibiyotik ve diğer ilaçlar için çekici kılabilecek genler de nakledilebilir. Daha sonra yapılacak ilaç tedavisi, sadece bu genleri taşıyan (yani kanserli) hücreleri öldürecektir. Şu anda bu gibi iki klinik deney, beyin tümörlerinin tedavisi amacıyla yürütülmektedir. Gen terapisi vücudun savunma hücrelerini AIDS virüsüne karşı dirençli hale getirmek için de kullanılabilir. Gen Terapisinin Riskleri Virüsler normalde birden fazla hücre çeşidini enfekte edebilirler. Bu nedenle, vücuda genleri taşıyan virüs kökenli vektörler de, sadece hedeflenen hücreleri değil, başka hücreleri de enfekte edip, yeni geni bu istenmeyen hücrelere taşıyabilir. Ayrıca, ne zaman DNA'ya yeni bir gen eklense, bu genin yanlış bir yere yerleşme tehlikesi de vardır. Bu durum, kansere ya da başka bozukluklara yol açabilir. Bundan başka, DNA bir tümöre doğrudan doğruya enjekte edildiğinde, ya da gen nakli için lipozom sistemi kullanıldığında, taşınan yabancı genlerin, çok düşük de olsa istemeyerek eşey hücrelerine girmesi ihtimali vardır. Bu durumda yapılan değişiklik kalıtsal olacak ve sonraki kuşaklara aktarılacaktır. Ancak böyle bir duruma hayvan deneylerinde rastlanmamıştır. Başka bir sorun da, nakli yapılan genin ekspresyonunun çok yüksek oranda olması ve sonucunda da eksikliği hastalığayol açan proteinin yarardan çok zarar getirecek kadar çok miktarda üretilmesi olasılığıdır. Bilim adamları, bütün bu riskleri ortadan kaldırmak amacıyla hayvan deneyleri yapmaktadırlar. Alınan önlemler başarılı olmuştur, şu ana değin insanlara uygulanan gen terapilerinde bu potansiyel sorunlar görülmemiştir. Gen Terapisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorunsa, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır. Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Yukarıda açıklanan yöntemler bugüne değin 300 klinik daneyde 6000 hasta üzerinde kullanılmıştır. Ancak, şu ana değin gerçekten başarılı bir sonuç elde edildiği ileri sürülemez. Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeriyse denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Ayrıca, denemelerin büyük bir bölümünün kanser hastalarında yapılmış olması yeni bir sorun yaratmaktadır: Hastaların ölümlerinden dolayı tedaviyi izleyememek. Şu anki duruma göre, önümüzdeki yıllarda gen terapisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen terapisinin başarılı sonuçlar vereceğine inabiliriz.

http://www.biyologlar.com/gen-terapisi

CA 15-3 Kanser (Tümör) Antijeni Testi Nedir?

CA 15-3 Kanser (Tümör) Antijeni Testi Nedir?

Bir kanser antijeni olan 15-3 (CA 15-3) normalde meme hücreleri tarafından üretilmektedir. Meme kanserli hastalarda CA 15-3 düzeyi yükselmektedir.Bunun sebebi de,CA 15-3'ün kanser hücreleri tarafından üretilmekte olmasıdır. Bu nedenle CA 15-3 meme kanseri takibinde kullanılan bir testdir .Ancak meme kanseri tanısında kullanılması önerilmemektedir. Erken evrede meme kanseri olan her 10 bayandan birinde, metastaz yapmış meme kanseri olan her 10 bayanın ise 7 sinde yüksek çıktığı bilinmektedir. CA 15-3 kanser antijeni ayrıca sağlıklı bireylerde, siroz hastalarında, kalınbarsak ve akciğer kanserlerinde de yüksek çıkabilmektedir.  CA 15-3, Hepatit vakalarında da yüksek çıkabilmektedir. http://tahlil.com

http://www.biyologlar.com/ca-15-3-kanser-tumor-antijeni-testi-nedir

Mutasyon Nedir? Çeşitleri ve Sebepleri Nelerdir?

Mutasyon, bireyde canlı hücresinin çekirdeğinde bulunan ve kalıtsal özelliklerinin ortaya çıkmasını sağlayan DNA molekülünün; radyasyon, X ışını, ultraviyole, ani sıcaklık değişimleri ve kimyasallar sonucunda bozulmaya uğramasıdır. Mutasyonlar, genetik bilgiyi taşıyan DNA molekülünde, kopmalara, yer değiştirmelere sebep olur ve bu çoğu zaman yüksek tahribatlarla sonuçlanır. Bu durumda canlının protein veya enzim yapısı ve beraberinde metabolizması değişir. Genlerde meydana gelen bu değişmelere ‘mutasyon’ denirken, mutasyona neden olan maddelere ‘mutajen maddeler’, mutasyona uğramış gene de ‘mutant gen’ denir. Canlının vücut hücrelerinde gerçekleşen mutasyonlar sadece o canlıyı etkilerken, üreme hücrelerindeki mutasyonlar gelecek nesillere de aktarılmaktadır. DNA’nın Yapısı Ve Meydana Gelen Mutasyonlar DNA, hücrenin yönetici molekülüdür ve yapısında kalıtsal özelliklerimize etki eden genler bulunur. Kalıtsal bilgilerimiz bu genler tarafından taşınır. Ayrıca beslenme, solunum, üreme gibi canlılık faaliyetlerini de yönetmektedir. DNA’nın temel yapı birimleri nükleotitlerdir. Bir nükleotidin yapısında bulunan birimler; fosfat, seker ve organik bazdır. Organik bazlar adenin (A), timin (T), sitozin (C) ve guanin(G)’dir. DNA’daki bilgiler bu dört ayrı nükleotidin özel ve anlamlı bir sıra içinde dizilmesi ile oluşurlar. DNA molekülünün kendisini eşlerken hata oluşturması ile bu sıralamada karışıklık meydana gelir ve o yapı tamamen bozulur. Bu da farklı genetik özelliklerin ortaya çıkmasına sebep olabilir. Normal DNA Şifresi Mutasyona Uğramış DNA Şifreleri A G T G C A A T T G C G A T T G C G A G C T C T C A C G T T A A G C C T A G C A C A G Mutasyonlar, DNA üzerindeki baz dizilimini değiştirirken bir kısmı tamir edilebilen ve bir kısmı geri dönüşümsüz olan etkiler doğurabilmektedir. Mutasyon Çeşitleri Nelerdir? Mutasyonun en önemli etkilerinden biri, bir sonraki nesile farklı genetik özellikler aktarılmasına neden olmasıdır. Eşey(üreme) hücresi mutasyonları kalıtsal olan ve bir sonraki nesillere aktarılan mutasyonlardır. Canlıda farklı fiziksel özelliklerin oluşumuna sebep olmaktadırlar. Mutasyonlar, kromozom mutasyonları ve nokta(gen) mutasyonları olarak ikiye ayrılır: Gen (nokta) Mutasyonları Kromozomların yapısında ya da sayısında herhangi bir değişiklik olmadan DNA’nın kısıtlı bir bölümünde doğal veya deneysel olarak meydana gelen mutasyonlardır. Mutasyona uğramış bir gen oluşan tahribat miktarına göre nadiren eski haline dönebilir. DNA’da bir veya birkaç baz sırasının (A;T;G;C) yer değiştirmesi, kopması, zincire başka bazların eklenmesi veya eksilmesi gibi sonuçlar bu mutasyona neden olabilmektedir. Üreme(eşey) hücrelerinde oluşan nokta mutasyonları döllere, yani nesilden nesile aktarılır. DNA’ya baz ilavesi (insersiyon) veya DNA’dan baz çıkarılması (delesyon) en zararlı iki mutasyon tipi olarak bilinmektedir. Kod okuma çerçevesinin kayması ile gen yapısında önemli değişiklikler meydana gelir. Ultraviyole ışınları, X ışınları, radyasyon, ,radyoaktif materyaller, bazı mutajenik kimyasallar gen mutasyonlarına neden olurlar. Bu genlerin yayılmasını önleyebilmek, mutasyona uğramış canlının üreme yeteneğinin yok olmasına bağlıdır. Örneğin, orak hücre anemisi bir nokta mutasyonu ile oluşmuştur ve kalıtsal bir kan bozukluğudur. Kromozom Mutasyonları Kromozom mutasyonları, kromozomun bir parçasında kopma veya parça değişimi ( crossing-over) sırasında yanlış yapısal ya da sayısal değişiklikler sonucu oluşur. Mayoz ve mitoz bölünme sırasında meydana gelen hatalardan kaynaklanır ve daha ağır hasarlar oluşturmaktadır. Mayoz bölünmenin ilk evrelerinde crossing-over (homolog kromatitler arası parça değişimi) olayı gerçekleşir ve genetik çeşitlilik oluşumu sağlanılır. Bazen kromatitler, crossing-over olmadan parça değişimi gerçekleştirmektedir. Kromozomun bir kısmının kendi kendini eşlemesi, bir kromozomun başka bir kromozoma tutunması, kromozomun bir parçasının kopup kaybolması, kromozomal materyalde eksilme veya artma, kromozomun uçlarının kopması ve halka şeklinde birleşmesi gibi değişiklikler kromozomun yapısında meydana gelen değişimlerdir. Kromozom sayısının değişmesi ise kromozom sayısı bakımından farklı hücreler meydana getirir ve kalıtsal açıdan sorunlar doğurur. Her zaman mitoz ve mayoz bölünme sırasında düzenli ayrılma gözlenmeyebilir. İnsanlardaki kromozom sayısı değişimleri bazı sendromlara sebep olmaktadır. Örneğin; Down Sendromu, Edward Sendromu, Patau Sendromu, Cri du Chat Sendromu, Kronik Miyelojenik Lösemi bunlardan birkaçıdır. Mutasyonun Sebepleri Ve Etkileri Nelerdir? DNA’nın kendini doğru olarak kopyalayamaması ve orijinal DNA’nın yapısının bozulması ile DNA kopyalarının birebir birbirini tutmaması doğal sebeplerle oluşan mutasyonları meydana getirir. Tek bir harfin değişimi ile başlayabileceği gibi büyük parça değişimleri ile de sonuçlanmaktadır. DNA’nın kendini kopyalaması ya da kromozom ayrılması sırasında oluşan büyük hatalardan meydana gelir. Dış etkenler de çoğunlukla mutasyona neden olabilmektedir. Mutasyon oluşturan tehlikeli kimyasal maddeler, fiziksel etkiler ve radyoaktif ışımalar buna örnek verilebilir. Özellikle nükleer patlamalarda yüksek enerjili radyoaktif ışınlar yayılmakta ve bunlar da genlerde dizilim değişikliklerine yol açmaktadır. Bunun sonucu olarak da sakat ve kanserli doğumlar artmaktadır. Güneşin morötesi ışınları deri üzerinde değişimler oluşturabildiği gibi, zararlı radyoaktif ışınlar uzun süreli mutasyonlar oluşturmaktadır. Özellikle tohumsal mutasyonların nesillere aktarımı ve yayılımı daha hızlı olmaktadır. Mutasyonların Hepsi Zararlı Mıdır? Hemen hemen bilinen tüm mutasyonlar zararlıdır ve genellikle ölümcüldürler. Zarar vermeyen mutasyonlar ise organizmaya fayda getirmeyen ve işlev bozukluğu oluşturan mutasyonlardır. Örneğin; meyve sinekleri üzerinde yıllarca mutasyon denemeleri yapılmıştır ve olabilecek her türlü mutasyona maruz bırakılmıştır. Fakat hiçbir şekilde faydalı bir mutasyon gözlemlenmemiştir. www.bilgiustam.com

http://www.biyologlar.com/mutasyon-nedir-cesitleri-ve-sebepleri-nelerdir

Prostat Kanseri ve Prostat Kanseri Tanısında Kullanılan Tahlil ve Testler

Prostat Kanseri ve Prostat Kanseri Tanısında Kullanılan Tahlil ve Testler

Prostat Kanseri her 5 erkeğin birinde görülebilmektedir.Genellikle 50 yaş üstünde görülür.Prostat kanseri tanısı ise oldukça önemlidir.Prostat kanserinde kulaılan tanı yöntemlerini ilk tanı ve kanserin yayılmasındn sonra uygulanan tanı yöntemleri olarak 2 ana başlıkta inceleyebiliriz. Prostat Kanseri İlk Tanı Yöntemleri: 1)Parmakla prostat muayenesi:Doktor tarafından muayene sırasında yapılmaktadır.Muayene sırasında prostatta sert kitle tespit edilmektedir.Ancak sertlik olmaması prostat kanseri ihtimalini ortadan kaldırmaz..2)Kanda PSA testi araştırılması: PSA prostat kanserinde yükselmiştir. 3)Prostat biyopsisi: Ultrason yardımı ile makattan girilerek iğne ile prostattan parçalar alınır. Alınan prostat parçaları mikroskop altında patoloji uzmanınca incelenir.Kanser tanısı koyulur. Prostat kanserinin ilerlediği durumlarda kanser prostat dışındaki organlara da yayılmaktadır. Kanserin yayılmasını yani metastaz yapmasını tesbit etmek için de çeşitli tahliller yapılmaktadır.Bunlar da temel olarak 4 bölümde incelenir. 1)Kemik taraması: Kanserin kemiğe yayılımını gösterir. 2)Akciğer röntgen filmi: İlerlemiş prostat kanserli hastalarda ,kanser akciğere yayılırsa Akciğer filminde görülebilmektedir. 3)Tomografi ve MR gibi radyolojik tahliller:Kanserin etkilediği doku ve organlar saptanabilmektedir. 4)Lenf bezi biyopsisi: Prostatın yakınındaki lenf bezleri operasyonla alınır.Patologlarca incelenir.Yayılma olup olmadığı anlaşılır. http://tahlil.com

http://www.biyologlar.com/prostat-kanseri-ve-prostat-kanseri-tanisinda-kullanilan-tahlil-ve-testler

Protein Senaaai

Bu soruya yanıt vermek için öncelikle proteinin nasıl oluştuğunu incelemek gerekiyor. Vücudumuzda DNA molekülleri ile depolanan genetik bilgiler, translasyon dediğimiz bir olay ile amino grup asitlerden oluşan protein haline gelmektedir. Bu olay sırasında önce belirli bir miktar DNA’dan buna karşılık gelen RNA dizisi oluşur. Transkripsiyon denilen bu olaydan sonra RNA yapısında bulunan ve aktif protein senaaaine katılmayan intron dediğimiz RNA dizileri ortadan kaldırılır. Intronsuz RNA’ya MRNA diyoruz ve bu MRNA, ribozomlarda birçok karmaşık olaydan sonra amino grup asit haline çevrilir ( Transla yon) ve değişik aminoasitlerin birleşmesiyle proteinler meydana gelir. Bu sayede DNAlarda hazır bulunan bilgiler protein formunda dokularda ve hücrelerde faaliyet göstermeye baslar. Proteinin yanlış senaaalenmesinin ana nedeni DNA nin yapısında olabilecek bir değişikliktir ve buna mutasyon diyoruz. Ayrıca çeşitli proteinler senaaalendikten sonra bazı modifikasyonlara uğrarlar. Bunlar, proteinin bir kısminin kopması, fosfor, seker karbonhidrat molekülleri eklenmesi gibi olaylardır. Bu aşamalarda olabilecek bir bozukluk ta proteinin gerçek fonksiyonunu göstermesine engel olur. Özetle saydığım bütün aşamalarda olabilecek bir bozukluk, sonuçta proteinin senaaainde bozukluğa neden olacaktır. Protein yanlış senaaalenince ne olur sorusuna en basit ve kısa yanıt o proteinin fonksiyonu nun bozulması olacaktır. Söz konusu proteinin fonksiyonu örneğin hücrelerin bölünmesine yardımcı olmaksa, bu proteinin senaaaindeki bozukluk hücrelerin bölünmesinde sorun çıkartacaktır. Günümüzde birçok proteinin yanlış yada eksik senaaalenmesinin bazı hastalıklara neden olduğu bilinmektedir. Bazı tip kanserlerde örneğin çok özel proteinlerde mutasyon olduğu hem deney hayvanlarında hem de insanlarda gösterilmiştir. Tümör oluşumunu önleyen bazı proteinlerde olabilecek senaaa hatalarının organizmaları Kanser gelişimine daha hassas hale getirdiği bilinmektedir. Yanlış protein senaaai sadece kanserli kişilerde görülmemektedir. Yapilan calismalar bir çok hastalikta spesifik protein veya proteinlerde yanlış senaaalenme oldugunu gostermistir. Uzayip giden bu hastaliklara birkac ornek vermek gerekirse, seker hastaligi, bazı akciger hastaliklari, Alzheimer hastaligi, bir çok bag dokusu hastaligi sayilabilir. Bu noktada bir onemli konuyu da belirtmek gerekir. yanlış senaaalenen her proteinin mutlaka bir hastaliga neden olmasi gerekmez. bazı senaaalenme hatalari proteinin fonksiyonunda çok onemli bir degisiklige neden olmaz. Yine ayni sekilde bazı durumlarda yanlış senaaalenme sonucu fonksiyounu bozulan proteinin gorevi ona benzer bir baska protein tarafindan ustlenilebilir ve organizmada olabilecek herhangi bir fonksiyon eksikligi onlenmis olur. Son olarakta yanlış senaaalenen proteinin organizma icin hayati onemi olmayan bir fonksiyonu varsa, bunda olabilecek senaaa hatalarinin çok fazla onemi olmayabilir. Özetle tekrarlamak gerekirse, proteinler organizmalarin effektor molekülleri oldugundan, senaaa bozukluklari, sorumlu olduklari fonksiyonlarin bozulmasina neden olabilir. bazı proteinlerin senaaa bozukluklarinin çok ciddi ve hayati tehliaaae olusturacak ya da yasamla bagdasmayacak bir sonucu olabildigi gibi, bazı proteinlerde ise bu fonksiyon bozuklugu farkedilmeyebilir. Bu, soz konusu proteinin organizmada ustlendigi fonksiyon ve regule ettigi hucresel olaylarla ilgilidir. Karbonhidratlardan ve yağlardan farklı olarak C, H, O’ nun yanında N ve bazen de S bulundurur. Esas görevi yapı maddesi olmaktır. Yapıtaşları amino asitlerdir. Yüksek sıcaklık proteinlerin yapısını bozar. Her canlının protein yapısı kendine özgüdür. Proteinler hücre içi ve hücre dışında önemli yapı maddeleridir Bağ doku kollogen lifleri, kıl ve derideki keratin ( Saç ve Tırnaklarımız) önemli hücre dışı proteinleridir Örneğin: Lipoprotein zar yapısı, Nükleoprotein kromozom yapısı. Kasların kasılmasında görev alan aktin miyozin iplikler protein molekülünden oluşmuştur. Bir moleküle bağlanıp onu diğer moleküle taşırlar. Örneğin : Hücre içinde sitoplazma ile çekirdek arasında bazı maddeleri taşırlar. Biyokimyasal reaksiyonlardaki biyolojik katalizörler yani Enzimlerin hepsi protein moleküllerinden meydana gelmişlerdir. Proteinler taşıyıcı moleküllerdir. Yüksek enerjili elektronu taşıyan sitokromlar, oksijeni taşıyan hemoglobin protein moleküllerinden meydana gelmişlerdir. Not: Hemoglobin 9512 atom bulundurur. C3032H4816N780O872S8Fe4 Vücuda dışarıdan giren hastalık yapıcı maddelere antijen denir. Vücudun antijenlere karşı korunmak amacıyla meydana getirdiği protein yapısındaki moleküllere ANTİKOR adı verilir. Virüslere karşı salgılanan interferon da protein yapısındadır. Hormonların büyük bölümü proteindir. Örneğin: kanda şeker seviyesini düzenleyen İnsülin, glukagon hormonları . Dolayısıyla proteinler düzenleyici rol oynarlar. Depo protein olarak albümin, yılanlarda zehir üretilmesi ayrıca yakılmalarında CO2 , H2O, H2S, NH3, üre, ürik asit gibi artık maddeler oluşur. Proteinler hücrelerin madde alış verişini sağlayan osmotik basıncın oluşmasında etkilidir. Örneğin: Doku hücrelerinden kılcal damarlara madde geçişini kandaki proteinlerin oluşturduğu osmotik basınç sağlar. Yetişkin insanların vücudlarındaki dolaşım, solunum, sindirim, boşaltım gibi biyolojik olaylar olurken hücreler yıpranır. Yıpranan hücrelerin yerine yenilerinin yapılması yine protein varlığında olur. Hücre zarında bulunan proteinler aminoasit ve glikoz gibi monomerleri tanıyarak hücre içine alırlar. Besin kaynağı olarak rol oynarlar. Örneğin: bazı bitkilerin tohumları çimlenme ve gelişimin ilk safhalarında gerekli enerji için protein depolar. Süt içindeki kazein çocuklar için önemli hayvansal proteindir. Alınan proteinler ancak uzun açlıkta enerji hammaddesi olarak kullanılır. Bu durumda protein yıkımı, protein senaaainden daha fazladır. Bu yüzden aşırı zayıflama görülür.

http://www.biyologlar.com/protein-senaaai

Sitokrom-C

Sitokrom-C’nin mitokondrilerden salınımı olayı, halen tartışmalıdır. Sitokrom-C, a) PT poru yoluyla,[6] b) Bax ile mitokondrilerde sitokrom C’nin geçmesi için kanallar oluşması yoluyla[12] ve c) su dolan mitokondrilerin dış membranlarının patlaması yoluyla sitoplazmaya girebilir. p53 birçok genin kopyalanmasını sağlayan tümör supresör genlerden biridir ve “inducible NO” tarafından upregülasyonu gerçekleştirilir. MDM2 geni p53’ü etkinleştirir ve Bax genini de kopyalar. Böylece, sitokrom-C salgılanır, apaptozom oluşur ve apoptoz hızlanır (primer mitokondriyal yol).[13] PARP-1, DNA tamirinden sorumlu nükleer enzimdir. Aşırı aktive olursa apoptoz ve nekroza neden olur.[4] PARP-1 tek sarmallı DNA ile aktive olur. Aktif PARP-1, NAD+’yı ikiye böler. PARP–1’in aşırı aktivitesi NAD kaybına, dolayısıyla da ATP kaybına neden olur. ATP noksanlığı da iyon pompası yetersizliğine yol açar. Böylece, hücreler şişer ve osmotik basınç nedeniyle patlar; bu bir nekroz olayıdır. Karşı seçenek olarak NAD eksikliği, sitoplazmadan mitokondrilere AIF translokasyonuna neden olur. Bu da apoptoza yol açar. PARP-1 aktivitesinin eşik düzeyine göre, DNA tamiri, apoptoz veya nekroz oluşur. Apoptoz ATP’ye bağımlıdır.[10] Kaspazlar PARP-1’i bölerek ATP deplesyonunu önlerler. Protein kinaz B aktivitesi (PKB/Akt) ve MAPK (mitogen-activated protein kinase) sağkalım yolları Bu yollar hücrenin sağkalım yollarıdır. Sadece dışardan gelen sinyaller olduğu zaman aktifleşirler. Sağkalım sinyalleri eksikse, hücreler yanlışlıkla apoptoza de gidebilir. Sağkalım sinyallerine PDGF ve PDK-1 (phospholipid-dependent kinase-1) örnek teşkil eder.[10,14,15] a) PKB/Akt, bir taraftan BAD ve çatal başlı proteini sekestrasyona uğratarak CD95 transkripsiyonunu azaltır; diğer taraftan da, başka bir yolla NF-kB ve NOS-III aktivasyonuna neden olarak, bunların kopyalanmasını artırır. Bu durumda nitrik oksit, nonspesifik proteinlerin S-nitrolizasyonu yoluyla apoptozu inhibe eder.[16] b) MAPK yolu da PKB/Akt yolu gibi BAD fosforilizasyonu yaparak CREP proteinini (cAMP-response element binding protein) ve transkripsiyon genlerinin aktivasyonunu artırarak hücre sağkalımını teşvik eder. Tedavi stratejileri Yetersiz apoptoz ve neden olduğu hastalıklar Birçok kanser türünde ve otoimmün linfoproliferatif sendrom gibi hastalıklarda apoptoz çok ileri derecede azalır. Yetersiz apoptoz durumlarında apoptozun yapay olarak stimülasyonu yararlı olabilir. a) Otoimmün linfoproliferatif sendrom (ALPS). Bu hastalıkta mutasyonlara bağlı yetersiz apoptoz söz konusudur. Farklı tipleri vardır: Tip 1A’da CD95’in ölüm domeninde (DD) mutasyon görülür. Tip 1B’de CD95L mutasyonu vardır. Tip 2’de kaspaz-10’un aktivitesini azaltan mutasyon vardır. Bu mutasyonda yetersiz apoptoza uğrayan lenfosit sayısı artar ve birçok otoimmün hastalık ortaya çıkar.[2,17] b) Kanser. Hücre akümülasyonuna yol açan normal hücre siklus mekanizmasının disfonksiyonu olarak da tanımlanabilir. Hücreler ya aşırı proliferasyona uğrayarak ya da apoptotik yolların malfonksiyonu nedeniyle kanserli hücrelerin yok edilmelerinin yetersizliğine bağlı olarak yığılım gösterirler. İnsan organizmasında günde iki bin adet tümör hücresi oluşmaktadır. Apoptoz veya yetersiz mutasyon nedeniyle hücrelerin patlaması sonucunda bu tümör hücreleri yok olur. Kanserin oluşması için multipl genetik değişikliklere bağlı (mutasyon) olarak yapısı bozulmuş proteinlerin (altered proteins) ve onkojenlerin (HLA-A+ b2-Mikroglobulin+tümör antijeninin nanomerik peptid fragmanı) oluşması gerekmektedir. Kanser sıklığının yaşla artması, uzun yaşam süreci boyunca birçok mutasyonun meydana gelebileceğini düşündürmektedir. Bir malign tümörün oluşumunda üç ana dönem vardır: a) Başlama (bir onkojenin oluşmasını sağlayan mutasyon): Onkojenlerin bazıları fetal hayatta bulunur ve erişkinde bazı patolojik durumlarda tekrar ortaya çıkabilir (fetal onkojenler). b) Promosyon (phorbol esterleri ve safra asitleri gibi kimyasallar sorumlu olabilir): Tümör hücreleri salgıladıkları glikoproteinlerle kemoterapiye direnç geliştirirler. c) Progresyon: Bu dönemde kanser tüm vücuda yayılır. Bu progresyon süreci, i) immortalizasyon (ölümsüzlük) = telomeraz ekspresyonu, ii) sürekli angiyogenez ve iii) metastazlar ve apoptozdan kaçış şeklinde olur. Bazı kanserler sıklıkla apoptozun azalmasıyla ilişkilidir ve bu nedenle kanser tedavisinde apoptozun yapay yolla indüksiyonuna dayanan yeni bir tedavi stratejisi geliştirilmelidir.[7] Apoptozun azalması aşağıdaki nedenlere bağlı olabilir: i) Bazı tümör hücreleri CD95 reseptörlerini azaltır (downregulation). ii) Bazı tümör hücreleri CD95L’yi pasifize etmek için yüksek düzeyde solubl CD95 reseptör formunu sekrete ederler. iii) Bazı tümör hücrelerinin, kendilerine bağlanmak isteyen T hücrelerini öldürmek için kendi hücrelerinin yüzeylerinde CD95L eksprese ettikleri gösterilmiştir. iv) Teorik olarak tümör hücreleri, CD95L’yi bağlayan, fakat apoptotik sinyal yollarıyla eşleşmeyen tuzak reseptörler de eksprese ederler.

http://www.biyologlar.com/sitokrom-c

Kanser Nedir Nasıl Ortaya Çıkar ?

İnsanın gözüyle hiçbir zaman göremeyeceği, günlük hayatta farkında bile olmadığı herhangi bir organındaki herhangi bir hücre... Bu hücre diğer trilyonlarca arkadaşıyla uyum içinde yaşarken, birden ne olduğu bilinmeyen bir şey olur ve yapmaması gereken bir şeyi yapmaya başlarsa ne olur? Bu küçük canlı o güne kadar 24 saat görevini yaparken, bölünmemesi gereken bir anda birdenbire bölünmeye başlarsa ve durmaksızın çoğalmaya devam ederse ne olur? İşte, hiç farkında olunmayan o küçük canlı, bu işlem sonucunda milyonlarca insanın hayatının sona ermesine sebep olan kanser hücresini meydana getirir. Kanser Nedir? En genel tanımıyla, hücre tarafından ortaya konan ve sebebi henüz anlaşılamamış anormal bir davranıştır. Bu anormal davranış, bedenin herhangi bir yerinde, herhangi bir hücrede ve herhangi bir zamanda aniden başlayabilir. Normal Hücrelerden Hızlı Çoğalırlar… Kanser hücreleri, komşuları olan normal hücrelere göre daha hızlı çoğalırlar. Normal hücrelerin büyüme evreleri vardır ve hücreler, yetişkinliğe ulaşınca büyümeleri durur. Kanser hücreleri ise besin kaynağı buldukları sürece, hiçbir zaman bölünmeyi durdurmazlar. İlk akla gelen soru ise kanser hücrelerini normal hücrelerden ayıran en temel fark olan bu durumun, nasıl olup da birden ortaya çıktığıdır. Kanserli Hücre Nasıl Anlaşılır? Kanserli hücrelerin etraflarındaki hücrelerle her zamanki ilişkilerinde bir değişiklik olur. Eskisinden daha bağımsız, asi ve diğer hücrelerle uyumlu olmaktan çıkıp kendi başlarına hareket etmeye yani "bencil", hatta "kötü komşu" davranışı sergilemeye başlarlar. Örneğin hücre yapışkanlığını yitirirler. Bu yapışkanlık, gelişmenin en önemli faktörlerinden biridir; bölünen hücreler yüzeylerindeki özel proteinler sayesinde komşularıyla birbirlerine yapışma eğilimi gösterirler. Normal hücrelerin bu temel niteliğinin kaybolması, habis büyümeye diğer bir deyişle kansere yol açan önemli bir unsurdur. Kanser Hücreleri Nasıl Organize Olurlar? Yukarıdaki iki özelliğin birleşmesi; yani hücre bölünmesinin artan hızı ile birlikte, hücre yapışkanlığının kaybolması öldürücüdür. Bu durum, yeni ve uyumsuz, garip bir dokunun, doğduğu noktadan hızla yayılarak büyümesi demektir. Ayrıca kanserli hücreler "metastaz" da yapabilirler, başka bir deyişle kan dolaşımıyla bedenin başka yerlerine gidip, orada yeni kanserli koloniler oluşturabilirler. Zamanla bu habis hücreler, içinde doğdukları bedeni öldürürler. Kontrolden Çıkan Hücreler Normal hücrelerde bölünme programını durduran sınırlamalar ve yasaklar vardır. Hücre bölünmesinin yasaklanması, hücreler belli bir boşluğu doldurduklarında veya önceden belirlenmiş bir toplam kütleye eriştiklerinde ortaya çıkar. Bölünme programını durduran sınırların ne olduğu, nasıl çalıştığı, bölünmenin başlangıç ve bitiş emirlerini neyin verdiği, tıbben halen bilinmemektedir. Bilinen tek şey, bu yasaklamaların kalkmasının, kanserin başladığı anlamına geldiğidir. Kanserli Hücreler Nasıl Beslenir? Kanserli hücreler besin buldukça, sınır tanımaz çoğalmalarını sürdürürler. Besinlerinin kaynağını da içinde yaşadıkları beden oluşturur. Vücutta 100 trilyon hücreyi besleyen dolaşım sistemi, yani kan, kanserli hücrelere de ihtiyaçları olan besini götürür. Sağlıklı akciğerler, içlerinden kolaylıkla hava geçebilen temiz solunum borularına sahiptir. Sağlıklı olduklarında akciğerlerin küçük alveolleri tüm oksijen ihtiyacını karşılayabilir ve tüm karbondioksit yükünü boşaltabilirler. Sağlıklı akciğerlerin içindeki silia (solunum yolları yüzeyini kaplayan sivri uçlu kamçılar), kas tabakasının yutağa doğru hareket etmesinin devamlılığını sağlamak için sürekli ve şiddetli bir şekilde atarlar. Kanser akciğeri istila ettiğinde ise, silia zayıflar. Kanser hücreleri, bütün akciğer hücrelerinin normal işleyişine müdahale eder. Normal hücrelerden daha hızlı çoğaldıkları için de kısa bir süre sonra, kanser hücreleri sağlıklı hücrelerden sayıca daha fazla olurlar. Çok geçmeden normal hücreler zayıflar ve akciğer dokusunu sağlıklı tutan faaliyetlerini daha fazla sürdüremez hale gelirler. Kanserli Hücreler, Kan Damarlarını Çoğalmaya Zorlar Kanserli hücrelerin hızla çoğalmasıyla, mevcut damarlar, bu durmaksızın besin isteyen hücreleri beslemek konusunda yetersiz kalırlar. Ama kanser hücreleri bu engeli de aşarlar. Yakınlarındaki damar hücrelerini yeni kan damarları üretmeye zorlarlar. Kan damarları böylece kanser kütlesinin içine kadar uzar ve kanser hücreleri yeniden bölünmeye başlar. Kan damarları büyüyüp daha çok besin taşıdıkça, kanser kütlesi de giderek büyür. Yapılan araştırmalar kanserli hücrelerin, kan damarlarının büyümesine neden olan bir sıvı salgıladıklarını göstermektedir. Bu salgının ne olduğu, özellikleri ve hücreleri ne şekilde etkilediği tıbben tam olarak açıklığa kavuşmamıştır. Kanserli hücrelerin salgıladıkları ve kan damarlarının büyümesine neden olan sıvının tıbben açıklığa kavuşamamış olması, gerçekten de son derece dikkat çekici bir durumdur. Kanserli bir hücre yaşamını devam ettirmek için, modern teknolojiyle sentezlenemeyen, hatta ne olduğu bile bir türlü çözülemeyen bir maddeyi üretmektedir. Böylece damar hücrelerini etkileyerek kendisine besin taşıyacak yeni damarlar yaptırmaktadır. Kimya Uzmanı Kanserli Hücreler Kanserli hücrenin kan damarlarının büyümesine neden olan sıvıyı "kendi başına" salgılayabilmesi için; damar hücresinin üreme mekanizmalarındaki sırları çözmüş olması, bu bilgiler doğrultusunda ürettiği sıvıyla damar hücrelerini harekete geçirmesi ve kendisine hizmet ettirmesi gerekmektedir. Unutulmaması Gereken Önemli Bir Nokta !!! Vücuttaki kanseri başlatan ilk hastalıklı hücre de aslında doğuştan kanserli bir hücre değildir. Normal görünümde iken, hücre birden ne olduğunu bilmediğimiz bir emir ile bozulmaya uğrar ve bir kanser hücresi haline gelir. Kanser ve Mutasyon Bir hücrenin bu önüne geçilmez özellikleri kazanmasının ne gibi bir nedeni olabilir? Bu henüz bilinmiyor. Dönüşümün tetiğini neyin çektiği de büyük bir soru. Ama bedende kanserin başlama biçimi ile ilgili olarak elde edilen bazı bulgular, akla mutasyonu, başka bir deyişle bir tek hücrenin DNA'sındaki bir değişimi getiriyor. Kanseri, mutasyon ile ilişkilendiren bu bulgular şöyle; Kanser, her zaman bir tek hücredeki ani bir değişmeyle başlıyor. Hücre bir defa hastalanınca, ondan üreyenlerin hepsi hastalıklı oluyor. Yani, kötü özellik hücreden hücreye geçiyor. Kanserli hücreler, görünen o ki, kendilerinden üredikleri normal hücrelere göre daha dayanıklı oluyor ve hayatta kalmak için avantaj elde ediyorlar. Kanser yapan maddelerin çoğu, örneğin kimyasal maddeler, x-ışınları ve ultraviyole ışınları, aynı zamanda mutasyona da neden oluyorlar. Dolayısıyla, kanserin en muhtemel nedeni, DNA'daki bir değişme, yani mutasyon. Kuşkusuz bunun tersini de söylemek mümkün; yani DNA'da değişiklik yaratan bir mutasyon, insanın kanser olmasına neden oluyor. Bu durum ise, evrim teorisini bir kez daha çökerten önemli bir delili oluşturuyor. Çünkü, hatırlanırsa, evrimcilerin, canlıların nasıl tek bir kökenden gelip de böylesine farklı olabildiklerini açıklamak için kullandıkları açıklamalardan biri mutasyondur. Mutasyonların canlılarda "tesadüfi" değişiklikler yarattığını ve bu tesadüflerin bazılarının "yararlı" olduğunu; böylece yararlı bir özellik kazanmış yeni canlı türlerinin ortaya çıktığını öne sürerler. Oysa, daha önce de değindiğimiz gibi, evrimciler her ne kadar aksini iddia etseler de, "faydalı mutasyon" diye bir kavram yoktur. Mutasyonların tamamına yakını, kanser dediğimiz ölümcül hastalıklarla, Hiroşima, Nagasaki, Çernobil'de yaşanan türde hasarlarla sonuçlanmaktadır. Görüldüğü gibi evrimcilerin türlerin oluşumunu açıklamak için başvurdukları son çare olan mutasyonlar, sadece mevcut sistemi tahrip etmektedirler. Mutasyonun bu zararlı özelliği sayesinde, DNA'da yazılan milyonlarca şifrelik bilgideki ihtişam da bir kez daha ortaya çıkar. Kusursuz bir düzenle yazılmış olan DNA'da meydana gelecek bir değişim, canlının sonu olabilmektedir. Bu tek bir değişmenin bile kansere yol açması, insanın DNA'sının ve dolayısıyla bedeninin hiçbir parçasının tesadüfen oluşmuş olamayacağını da bir kez daha açıkça gösterir. Murat Kösedağ

http://www.biyologlar.com/kanser-nedir-nasil-ortaya-cikar-

Kansere sebep olan prokaryotik mikroorganizmalar ve etki mekanızmaları

KANSERE YOL AÇAN VİRUS VE BAKTERİLER www.google.com.tr/url?sa=t&rct=j&q=bakte...TRec3k843kYjMGnuFgEw infeksiyon.dergisi.org/pdf/pdf_INF_208.pdf HİSTOLOJİK OLARAK MİDE KANSERİ İLE HELİCOBACTER PYLORİ ARASINDAKİ İLİŞKİ www.istanbulsaglik.gov.tr/w/tez/pdf/gene...rahi/dr_aziz_ari.pdf MİDE KANSERİ VE HELİCOBACTER PYLORİ (HP) Mide kanseri dünyada ikinci önemli ölüm nedenidir. 1980 yıllarda 750 000 hasta da mide kanseri tanısı konmuş bunların 600 000 ni yılda, mide kanserinden öldü. Mide kanseri ile HP infeksiyonu ilişkisi ilk defa Marshall tarafından 1983 de işaret edildi. On yıl sonra 1994 de Uluslararası kanser çalışma grubu HP infeksiyon grup 1 i karsinogenik olarak belirledi. Üç prospektiv epidemiyolojik çalışmanın meta-analiz sonuçları HP + ( HP pozitif ) hastaların normallere göre 4 kat daha kanser gelişme riski taşıdığını göstermiştir. Gelişmiş ülkelerde HP + ve kanser riski ilişkisi %49 ( genel HP pozitifliği %35 ) iken gelişmekte olan ülkelerde ise % 70 e ( genel HP pozitifliği % 85 ) çıkmaktadır. Değişik çalışmalarda farklı yöntemler kullanılarak farklı sonuçlar çıkmasına rağmen en iyimser tahminlerde, gelişmiş ülkelerde en az % 31, gelişmekte olan ülkelerde % 52 mide kanseri, HP infeksiyonu ile ilişkilidir. Bu ortalama kanserlilerin üçte birinin sebebi HP infeksiyonu anlamına gelir. Tütün, İnsan pailloma virusleri ve hepatit viruslerinin de benzer şekilde kanser riski taşıdığı bilinmektedir. Bu gün hangi yaşta tarama yapılmalı ve HP eredikasyon tedavisinde nasıl bir yöntem takip edilmeli bunun için uzun dönem, yaş, cins, aile hikayesi, ve etnik grupları içine alan randomize kontrollu çalışmalara ihtiyaç vardır. Bu arada hangi tedavi protokollerinin uygulanacağının da belirlenmesine ihtiyaç vardır. HP direkt mutogenik ve karsinogenik değildir. İndirekt karsinojenik etkisi olan bir çok madde vardır. HP amonyak üretir bu da hücre bölünmesini ve fosfolipazları etkileyerek hücre epitel membranlarını hasara uğratır, citotoksinlerle defans mekanizmasını bozar ve kronik inflamasyon oluşur. Aynı zamanda ortamda askorbik asid azalır ki antıoksidan ve antikanser etkisi vardır. Son olarak HP; mide mukozasında kronik dejenerasyona neden olarak mide kanserinin başlamasına neden olabilir. Ancak neden infekte hastaların çok az bir kısmında kanser geliştiği ve ne kadar zaman sonra kanserleşme başlayacağı ve koruyucu çalışmaların ne zaman başlaması gerektiği konuları bu gün açıklığa kavuşturulamamıştır. HP infeksiyonu ile direkt ilişkilendirilen ikinci tümöral oluşum mide lenfomasıdır. Bunun ile ilgili önemli bir çalışmayıda size aktarmak istiyorum. Mide lenfoması ( MALT ) mukoza ile ilişkili lenfoid doku tümörüdür. Konturek, P.L. ve ark. ( 2000 ) yaptıkları araştırmalarda ; Mide kanserlerinde Cag-A + H. Pylori yüksek miktarda pozitiv bu da gastrin ve gastrin reseptorleri yoluyla otokrın yolla tümör büyümesini uyarabileceğini belirterek aşagıdaki araştırma sunuçlarını yayınlamıştır. MALT lenfomada HP infeksiyonu ilişkisi mide kanserinden çok daha belirgindir. Lenfomada HP infekiyon pozitifliği % 90 dır. Cag-A pozitıfliği ise % 70 dir. Kontrol grupların da ise %56 ve %33 dür. Serum gastrin seviyesi kontrol grupuna göre lenfomalılarda 6 kat fazladır. Lümen içi gastrin ise hastalarda 70 kez daha fazla bulunmuştur. Antrum mukozasına göre tümör dokusunda gastrin 10 kat fazladır. Çalışma da MALT lenfomasında Cag-A HP pozitifliğinin önemli olduğu görülmektedir. MİDE KANSERİNDE HELİCOBACTER PYLORİ'NİN ROLÜ endoskopi.tgv.org.tr/eskisayilar/11_3/07.pdf

http://www.biyologlar.com/kansere-sebep-olan-prokaryotik-mikroorganizmalar-ve-etki-mekanizmalari

Deri Kanseri

Bütün kanser türleri içinde deri kanseri en sık görülenidir. Deri kanserinden korunmak için yapılması gereken güneşten korunmaktır. Güneşe aşırı maruz kalma (bronzlaşma dahil olmak üzere özellikle su toplaması ile seyreden ikinci derece güneş yanıkğı) deri kanserinin temel sebebidir. Daha az önemli faktörler tekrarlayan tıbbi ve endüstriyel X ışınlarına maruz kalma, yanık veya yara izi bırakarak iyileşen cilt hastalıkları, kömür katranı veya arsenik içeren maddelere mesleki olarak maruz kalma ve ailede cilt kanseri bulunmasıdır. Açık tene sahip olup güneş yanığı ihtimali fazla olan kişiler, daha yüksek riske sahiptir. Güneş ışınları deri kanserine sebep olan en önemli neden olduğundan en önemli koruyucu önlem güneşten kaçınmaktır. Güneşin dünyaya en dik ulaştığı saatler olan saat 10.00 ile 16.00 saatleri arasında güneşten korunun. Güneşin yeryüzüne dik ulaştığı saatlerde gölgeniz kendi boyunuzdan daha kısadır. Açık renkli sıkı dokumalı koruyucu giysi ve geniş şapka kullanın. Koruma faktörü en az 15 olan güneşten koruyucu kremler kullanın. 20 dakika güneşte kaldığında güneş yanığı geçiren bir kişi, 15 faktörlü bir güneşten koruyucu kullandığında 15 kat daha fazla süre (300 dakika) yanmadan güneşte kalabilir. Bununla beraber güneşten koruyucu kremler kullanarak da güneşte fazla kalınmamalıdır. Çünkü UVA gibi güneş ışınları ki bunlar derideki bağışıklık sistemi ve deri yaşlanmasında sorumludur, güneş koruyucular olsa da deriye ulaşabilir. Güneşten koruyucu kullanımına çocukluk döneminde başlayın, çünkü yaşam boyu güneşe maruz kalmanın % 80'i 18 yaş altında olmaktadır. 6 ayın altındaki bebekler uzun süre güneşe maruz kalmamalı, eğer kalacaksa güneşten koruyucular kullanılmalıdır. Erken tanı kesin tedavinin en önemli ilk adımıdır. Derinizi belli aralıklarla muayene edin. Eğer benlerinizde büyüme değişiklik olursa, derinizde renk değişikliği ve iyileşmeyen yaralar varsa bir an önce Dermatoloji Uzmanına muayene olunuz. Kanser öncesi deri bulguları Aktinik keratozlar özellikle güneş ışınlarına aşırı maruz kalmış açık tenli kişilerin yüz, el sırtı ve kollarında rastlanılan küçük üzerleri pullu lekelerdir. Tedavi edilmezlerde deri kanserine dönebilir. Eğer erken evrede yakalanırsa buz tedavisi ile çıkartılabilir, kemoterapi ilaçları içeren krem veya losyonlar kullanılabilir, kimyasal peeling işlemi, dermabrasyon,laser tedavisi veya klasik cerrahi ile tedavi edilebilir. Güneşten koruyucular aktinik keratoz gelişimini engellerler. Deri kanseri Tipleri: Üç tip deri kanseri bulunmaktadır. Bazal hücreli karsinoma-Bu kanser tipi genellikle deride küçük etli kabarıklık şeklinde sıklıkla yüz, boyun ve el sırtlarında ortaya çıkar. Ara sıra gövdede kırmızı yama tarzı alanlar şeklinde görülebilir. Daha sıklıkla açık tenli kişilerde görülür. Bu kansere yakalanan kişiler açık tenli ve renkli gözlüdür ve güneş yanığına eğilimlidir. Bu tümörler hızlı yayılmazl. 1-2 cm boyutuna ulaşmaları için aylar yıllar gerekir. Tedavi edilmezse; kanserli alan kanamaya başlar, üzeri kabuklanır. Zaman zaman iyileşip, zaman zaman tekrarlama özelliği gösterir. Bu kanser tipi nadiren metastaz (diğer organlara sıçrama) yapmasına rağmen, derinin altındaki kemiğe yayılabilir ve kanserli dokunun yakınındaki dokuları harap edebilir. Squamöz Hücreli karsinoma - Bu deri kanseri deri de kabarıklıklar veya kırmızı kabuklu yaralar şeklinde ortaya çıkabilir. Squamöz hücreli Karsinoma açık tenli kişilerde en sık görülen ikinci kanser türüdür.Tipik olarak kulak, yüz, dudak ve ağızda görülür. Nadiren esmer kişilerde de görülebilir. Büyük kitleler oluşturabilir. Bazal hücreli karsinomanın tersine diğer organlara yayılabilir. Erken yakalandığında tedavi oranı yüksektir. Bazal hücreli karsinoma ve Squamöz hücreli karsinomada tedavi başarısı % 95 dir. Melanom - Bütün deri kanserleri içinde en öldürücü olanıdır. Bazal hücreli ve squamöz hücreli karsinoma da olduğu gibi melanomda da erken tanı tedavi şansını arttırır. Melanom melanin denen pigmenti (deriye rengini veren madde) üreten melanosit dediğimiz hücrelerde başlar. Melanin derimizin rengini verir ve güneşten kısmi olarak korur. Melanom hücreleri melanin üretmeye devam eder ve bu nedenle kanser alanı kahverengi veya siyahtır.Fakat melanom beyaz ve kırmızı da olabilir. Melanom yayılma özelliği gösterdiğinden muhakkak tedavi edilmelidir. Melanom dikkat çekmeden hızla büyüyebilir. Genellikle bir ben olarak veya kahve renkli bir benin üzerinde veya yakınında ortaya çıkar. Vücudunuzdaki benlerin yerleşimi ve şeklinden haberdar olmalısınız ki, bunlar üzerinde olan değişiklikleri ve yeni ben çıkışını fark edebilesiniz. Yapabileceğiniz en önemli adım benlerinizde herhangi bir değişiklik saptadığınızda hemen bir Dermatoloji uzmanına muayene olmanızdır. Bu sayede derinizdeki melanom tedavi edilebilir aşamada iken yakalanmış olur. Aşırı güneşe maruz kalmaktan, özellikle güneş yanıklarından kaçınma açık tenli kişilerde melanomdan korunmanın en iyi yoludur. Melanomun kalıtsal özelliği de vardır. Ailesinde melanom olan kişilerin riski daha fazladır. Sıra dışı beni olanlar, çok sayıda beni olanlar melanom açısından yüksek riske sahiptir. Koyu renkli tene sahip olmak melanoma olma riskini ortadan kaldırmaz. Esmer kişilerde de özellikle avuç içi, ayak tabanı, tırnak yatağı ve ağızda melanoma gelişebilir. Melanom şüphesi oluşturabilecek bulgular: kabuklanma, kanama, sızıntı, üzerinde kabarma, etrafındaki deriye doğru çıkıntı gösterme, kaşıntı, hassasiyet ve ağrı hissedilmesidir. Cilt kanserlerine nasıl tanı konulur? Deri biyopsisi kanserin tanısını koydurur. Erken tanı ve cerrahi tedavi şansını arttırır. Dermatoloji uzmanları kanseri erken yakalayabilmek için kişisel cilt muayenesinin önemine dikkat çekmektedir. Derinizdeki çiller, benler ve koyu renkli alanları büyüklük, şekil ve renk değişikliği açısından gözlemleyin. Herhangi bir değişiklik saptadığınızda Dermatoloji Uzmanına başvurunuz. Melanoma ait Bulgular Asimetri - Benin bir tarafının diğer tarafından farklı olması. Benin ortasından hayali bir çizgi çiziniz. Benin her iki yanı aynı büyüklük ve aynı şekilde mi? Melanomda genellikle asimetri vardır. Sınır Düzensizliği - Melanomun sınırı veya kenarı genellikle pürüzlü, çentikli veya bulanıktır. Renk - İyi huylu benler herhangi bir renkte olabilir, fakat genellikle tek renklidir. Melanom ise sıklıkla birden fazla rengi içinde barındırır. Büyüklük - İyi huylu benler küçük kalırken melanom büyümeye devam eder. Genellikle 6 milimetreden büyüktür çaptadır. Kendinizin yapacağı periyodik muayene melanom ve diğer deri kanserlerinden korunmak için en güçlü silahtır. Melanom ancak erken yakalandığında tedavi edilebilir. Aşağıda belirtilen sırayı takip ederek hiç bir yeri atlamadan tüm deri muayenenizi kendiniz yapabilirsiniz. Kendi deri muayenenizi yapmak için bir boy bir de el aynasına ve ışıklı bir odaya ihtiyacınız vardır. Gövdenizin ön ve arka yüzünü ve de kollar kaldırılarak gövdenin sağ ve sol yanını ayna karşısında muayene edin. Kolunuzu dirseğinizden kıvırarak avuçlarınıza, kol iç yüzüne ve üst kola dikkatlice bakınız. Sonra bacaklarınızın arkasına, ayaklara, ayak parmak aralarına ve ayak tabanına bakınız. Boynun arkasını, saçlarınızı kaldırarak el aynası ile kafa derinizi muayene edin. DERİ KANSERİNDEN KORUNMA Bütün dünyada deri kanseri en sık görülen kanser tipi olup, kanser nedeniyle meydana gelen ölümlerin % 2’sini oluşturur. Başlıca üç tip deri kanseri bulunur. Bunlar : Skuamöz hücreli karsinom (Melanoma olmayan deri kanseri de denir), bazal hücreli karsinom ve melanomadır. Bazal hücreli karsinom ve skuamöz hücreli karsinom deri kanserinin en sık görülen iki tipidir. Genellikle iyi seyreden, kanserler içinde en yüz güldürücü sonuçların alındığı kanser tipleridir. Melanoma ise daha saldırgan seyirli bir deri kanseri olup, diğerlerine göre daha kötü huyludur. Ultraviyole (UV) ışını, radyasyona maruziyet yada derinin UV ışınına duyarlı olmasının deri kanseri için risk faktörü olduğu bilinmektedir. Bununla beraber maruziyetin tipi (yüksek şiddette, bazen ya da sürekli) ve şekli (devamlı ya da aralıklı) deri kanserinin tipleri için değişik olabilir. Deri kanserine yatkınlığı olan (kanser öcüsü lezyonların olması, hassas deri tipi) kişilerde, derinin güneşe maruziyetinin azaltılması deri kanserinden korunmada esas temeli oluşturmaktadır. UV ya da radyasyon maruziyeti ile deri kanserinin önlenmesi konuları gözlem ve çalışmalara dayanmaktadır. Bu çalışmalara göre melanoma olmayan deri kanserlerinde güneşe maruziyetin bir risk faktörü olduğu ortaya konmuştur. Güneş ışınları ile derisi bronzlaşmayan ancak kolayca yanan kişilerin kanser riski yüksektir. Ancak koruyucu krem veya giysiler kullanılarak UV radyasyon maruziyetini veya maruziyet süresini azaltmanın melanoma olmayan deri kanserlerinde kanser oluşum sıklığını azaltıp azaltmadığı kesin olarak bilinmemektedir. Düzenli olarak güneş önleyici kremlerin kullanılmasıyla solar keratoz adı verilen ve skuamöz hücreli karsinomun öncülü olan lezyonların azaldığı ve varolan lezyonların gerilediği gösterilmiştir. UV radyasyon maruziyeti ile melanomanın ilişkisi net olarak bilinmemektedir. Zaman içinde yavaş yavaş güneş maruziyetine kıyasla aralıklı olarak ani güneş maruziyetinin çok daha fazla hasar verici olduğu düşünülmektedir. Özellikle çocukluk yada gençlikteki güneş ışığına ani maruziyetler çok daha tehlikelidir. Güneş yanıklarına yönelik koruma amaçlı ürünlerin UV radyasyon nedeniyle meydana gelen melanomayı önlemediği saptanmıştır. Yanmaya meyilli deriye sahip olma, fazla sayıda iyi huylu melanostik yada atipik benin olması gibi değiştirilemeyen faktörler de melanoma gelişimi için risk faktörü oluşturmaktadır. UV radyasyon maruziyetinin azaltılmasında ki en iyi silah; güneşten korunma konusunda eğitim yapılmasıdır. Bu yolla kişiler bilinçlendirilmekte ve deri kanserlerinin gelişim riski azaltılabilmektedir. Melanoma ile ilişkili olarak kişinin kendi kendini muayenesinin, özellikle riskli kişilerde yararlı olduğunu öne sürmüşlerdir. Izotretinoin, beta-karoten gibi kimyasal olarak önleyici ajanların etkinliği, melanoma olmayan deri kanseri riski yüksek olan kişilerde değerlendirilmiştir. Kseroderma pigmentozumlu hastalarda yüksek doz izotretinoin’in yeni kanserleri önlediği gösterilmiştir. Ancak; önceden bazal hücreli karsinom nedeniyle tedavi almış olan kişilerde uzun dönem izotretinoin tedavisinin yeni bazal hücreli karsinomu önlemediği fakat ızotretinoin’in yan etkilerinin ortaya çıktığı gösterilmiştir. Daha önceden melanoma olmayan deri kanseri nedeniyle tedavi edilmiş hastalarda uzun dönem beta-karoten kullanılmasının yeni deri kanseri gelişimini önlemede yararı olmadığı saptanmıştır. Günümüzde antikanserojen olarak popüler bir mineral olan selenyumun da uzun süreli kullanılmasının basal hücreli yada squamöz hücreli karsinomu önlemede ciddi bir etkisi olduğu gösterilememiştir.

http://www.biyologlar.com/deri-kanseri

Guatr

Boyun ön kısımda bulunan tiroid (kalkan) bezinin iltihap ve kanser dışındaki bir sebeble büyümesine guatr denir. Tiroid bezinin görevi nedir? Tiroid bezi boynumuzun ön kısmında yerleşik, iki parçalı, küçük bir içsalgı bezidir. Salgıladığı hormon ile vücudumuzun çalışma hızını belirler. Ürettiği hormon azalırsa vücudumuzun çalışma hızı düşer, fazla hormon salgılarsa vücudumuzun çalışma hızı artar. Hastalığın belirtileri nelerdir? Yukarıda saydığımız hastalık çeşitlerine göre guatr hastasının şikayetleri de değişir. Hormonların fazla üretildiği (zehirli guatr) tiplerde, ellerde titreme-terleme, kalp çarpıntısı, sinirlilik, gözlerin yuvalarından taşması, ishal, iştah artması ama kilo alamama, adet düzensizlikleri görülür. Hormonların az üretildiği durumlarda ise hareketlerde ve duygularda yavaşlama, ellerde kuruma, saçlarda kuruma-dökülme, adet düzensizlikleri görülür. Hormonal dengesizliğin olmadığı tiplerde sadece tiroid bezinde büyüme veya nodül oluşumu . Bu hastalıkların hepsinde tiroid bezi büyüyebilir, nodül oluşabilir. İç/dış guatr, dişi/erkek guatr, zehirli guatr nedir? Tıbbi olarak böyle bir sınıflama olmamasına rağmen hastalara durumunu açıklarken kullanılan terimlerdir. Tiroid bezinin büyümediği, muayenesinin normal olduğu, sadece hormon dengesizliği olduğu durumda guatr hastalığı iç guatr olarak açıklanmış olabilir. Fazla hormon salgılayan guatr hastalığını “zehirli” guatr olarak adlandırıyoruz. Ameliyat sonrası nüks eden guatr hastalığını açıklamak için de “dişi guatr” terimi kullanılmış. Yine de bu terimler tıbbi bir ayırımı ifade etmezler. Guatr hastalıklarının iyot ile ilgisi nedir? İyot alsak hastalığı engeller miyiz? Tiroid bezi İyot elementini kullanarak hormon üretir. Bu elementin eksik olduğu yerlerde guatr çok görülür. İyot eksikliğinin giderilmesiyle guatr hastalığı engellenir Guatr Tedavisi Guatrı yani tiroitte büyümesi olan hastaların tedavisini yönlendiren birkaç durum vardır. Guatrla beraber tiroit az veya çok çalışıyor olabilir. Bu durumların tedavisine daha sonra değinilecektir. Bu bölümde normal çalışan guatrların tedavisi anlatılacaktır. Bu tip guatrlar düzgün (diffüz guatr) ya da nodüllü büyümüş olabilir ve ülkemizde daha çok nodüllü guatra rastlamaktayız. Düzgün büyümüş guatr esas olarak tiroit hormonu içeren ilaçlarla tedavi edilir. Bu konuda zaman zaman iyot tedavisinin yararları konusunda sorularla karşılaşmaktayız. Genel kanı olarak guatr geliştikten sonra iyot verilmesinin tedavi edici etkisinin olmadığına inanılır. Ancak iyot eksikliği olan bölgelerde guatr gelişmeden iyot verilerek iyot eksikliği giderildiğinde, guatr olması önlenebilir ve az olasılıkla var olan guatrın büyümesi engellenebilir. Guatr geliştikten sonra fazla iyot kullanılması özellikle iyot eksikliği olan bölgelerde guatrın fazla çalışması yani hipertiroidizmle sonuçlanabilmektedir. Dolayısıyla düzgün büyümesi olan guatrlı hastalarda zaman zaman TSH testi de tekrarlanarak tiroit hormonu verilmesi ile guatrda gerileme sağlanabilir. Çok sık görülmemekle beraber büyük guatrı olan ve boyunda baskıya neden olarak solunum sıkıntısı yaratan düzgün büyümüş guatrlı hastalarda ilaçla istenen sonuç elde edilemiyorsa cerrahi tedaviye başvurulabilir. Bu hastalarda ilacın ne miktarda ve ne kadar kullanılması gerektiği tam açıklığa kavuşmamıştır. Ancak hastayı izleyen hekimin izleme süresinde hastada elde ettiği sonuçlara göre karar vermesi en uygun yoldur. Diğer bir deyişle hastanın kendi başına karar vermesi doğru değildir. Nodülü olan hastalarda yapılması gereken tedavi hakkında tam bir görüş birliği olduğu söylenemez. Ailede kanser öyküsünün olup olmaması, Nodülün çapı, nodülün yapısı (muayene ve görüntüleme yöntemlerine göre) ve bunların sonucuna göre yapılacak olan ince iğne biyopsisinin sonucu tedavinin nasıl olması gerektiğini belirleyebilir. Özellikle ince iğne biyopsisi ile kanser olmadığı sonucuna varılmış ve çapı 2.5 cm’den küçük nodülü olan hastalarda tiroidin çalışma durumuna göre tiroit hormonu ile baskılayıcı tedavi uygulanabilir. Bu yöntemle nodüllerde küçülme oranının yüksek olduğunu söylemek mümkün değildir. Nodül çapının 2,5-3 cm’den büyük olması, baskılayıcı tedavi altında büyüyen veya kanser olmadığı tam olarak belirlenememiş nodüllerin cerrahi yolla tedavi edilmelerinde yarar vardır. Ayrıca iyi huylu olmasına karşın, nefes darlığı gibi bası yakınmalarına yol açan veya kötü kozmetik görünüm veren nodüllü guatrlarda ameliyatla tedavi edilir. Bir diğer ameliyat nedeni hiçbir şikayete yol açmasa da hastanın mevcut guatrdan kurtulma isteğidir. Guatr ameliyatı nasıl yapılır? Guatr ameliyatlarında en çok boyunda iz kalıp kalmayacağı ve sesin kısılıp kısılmayacağı endişesi duyulur. Boyunda cilt pililerine paralel olan 3-4 santimetrelik bir kesi yapılarak ameliyat gerçekleştirilir. Bu kesi estetik dikildiğinde kalan iz hiç belli olmaz. Anestezin sırasında boğazın tahriş olmasına bağlı olarak, 1-2 gün süren ses kısıklığı olabilir. Yutkunmadaki 1-2 günlük ağrı ile birlikte ameliyat çok rahat geçer. Genellikle hastalar 1 gün hastanede yatıp ertesi gün taburcu olur. Erken teşhis önemlidir! Guatrda erken teşhis çok önemlidir. Geç kalınması durumunda hastalık ilerler, tedavi zorlaşır ve sistemlerde yaptığı hasarlar da artar. Ameliyat Sonrası Durum Opr. Dr. Hamzaoğlu, ameliyat sonası durumla ilgili olarak da şunları söylüyor: "iyi yapılan ameliyatlardan sonra tekrarlama ihtimali çok azdır. Kötü yapılan ameliyatlarda içerde fazla tiroid dokusu bırakıldığı için tekrar büyüme veya nodül gelişme ihtimali vardır. Ama bilateral subtotal tiroidektomi usulune uygun yapılırsa, çok az doku bırakıldığı için tekrarlama riski yok denecek kadar azdır .Kanserli vakalarda bilateral total tiroidektomi yani tüm tiroid dokusu çıkartılır. Ameliyatın en büyük riski ses kıslklığı veya tamamen ses kaybıdır. Genelde kanserli vakalarda bu durumla karşılaşılır. Ses tellerine giden sinir hemen tiroid dokusunun arkasında yer almaktadır .Dünyanın en iyi merkezlerinde 100 tiroid kanseri ameliyatında 1ses teli sinir kesilmesi oluyor. Şunu iftiharla söyleyebilirim ki, bugüne kadar birçok guatr ameliyatı yapmış olmamıza rağmen, kliniğimizde şimdiye kadar böyle bir komplikasyona rastlanmadı. Bazen ameliyat sonrası geçici ses kıslklığı oluşur, ama, bu ses kıslklığı birkaç gün ile birkaç ay içinde kendiliğinden kaybolur. Bu geçici ses kısıklığı ameliyat sonrası dokularda gelişen ödeme (şişkinliğe) bağlıdır."

http://www.biyologlar.com/guatr

Beyinde Ur-Tümör

Bir beyin tümörü beyinde anormal hücrelerin büyümesi ya da kütleleşmesidir. Beyindeki tümörler tipik bir şekilde birincil ya da ikincil olarak sınıflandırılırlar. Birincil beyin tümörleri beyinde oluşmaya başlar ve kanser olmayan (iyi huylu) ya da kanserli (kötü huylu) olabilirler. İkincil beyin tümörleri ise başka bir yerde başlamış ve beyne de sıçramış olan (metastaz yapmış) kanserin sonucudur. Birincil beyin tümörlerine ikincil beyin tümörlerinden daha az rastlanır. İyi huylu beyin tümörleri genellikle yavaş gelişen, alınması kolay (bulundukları yere bağlı olarak), ve kötü huylu beyin tümörlerine oranla tekrar etmeleri olasılığı daha az olan tümörlerdir. İyi huylu beyin tümörleri çoğunlukla etraflarındaki normal hücrelere ya da yakınlarında bulunan başka yapılara yayılmazlar, ancak yine de beyninizin hassas olan bölgelerine baskıda bulunabilirler. Kötü huylu beyin tümörleri yakınındaki beyin dokusunu sıkıştırarak ya da tahrip ederek hızla büyüyebilirler. Öte yandan, vücudunuzun başka yerlerindeki kanserlerin aksine, birincil kötü huylu beyin tümörleri beyninizden ender olarak yayılır. Beyin tümörleri çoğu zaman doktorların tedavi etmesi açısından zorluk yaratır. Ancak beyin tümörlerinin birçok türü bir veya daha fazla yöntem ile başarılı bir biçimde tedavi edilebilir. Buna ek olarak, teknoloji de doktorların tümörleri kesin bir biçimde hedef almasını sağlamaktadır. Beyin Tümörü Türleri Genel olarak ikiye ayırabileceğimiz beyin tümörleri iyi huylu ve kötü huylu beyin tümörleri olarak adlandırılırlar. 1- iyi huylu tümörler: Beyin dokusundan kolaylıkla ayrılabilir ve tamamına yakını çıkartılabilir. Bu nedenle operasyon sonrası sonuçları iyidir. Ancak tümör her ne kadar iyi huylu da olsa beyinde bulunduğu bölge hayati önem taşıyan bir bölge ise ameliyat sonrası sonuçlar maalesef yüz güldürücü olmayabilir. Yavaş üreme hızına sahip olmalarına rağmen öldürücü olmasalar dahi vücutta kalıcı harabiyete ve işlev bozukluklarına sebep olabilirler. 2- Kötü huylu tümörler: Çok hızlı üreyen, çamur kıvamında ve operasyonla alınması oldukça zor olan tümörlerdir. Opere edilseler dahi belli bir süreçten sonra tekrar nüksederek beyne baskı yapmaya devam ederler. Ameliyat sonrası 5 yıl yaşama şansı veren tümörler olduğu gibi 5-6 ayda da hastanın ölümüne sebep olacak türleri mevcuttur. Beyin Tümörü Tedavisi Beyin tümörlerinin tedavisi cerrahidir fakat bazı durumlarda cerrahi tedavi uygulamak mümkün olmayabilir. Eğer tümör beynin hayati bir bölgesine yerleştiyse bu bölgede operasyon yapmak hayati tehlike yaratacağından tümör olduğu yerde bırakılır, kemoterapi ve radyoterapi ile sorun halledilmeye çalışılsa da klasik tedavilerle beyin tümörlerinde yaşam şansı çok fazla değildir. Yapılan tedaviler yaşam kalitesini kısmen artırmaya ve ömrü bir müddet daha uzatmaya yöneliktir. Beyin Tümörü Bitkisel Tedavisi Yukarıdaki bilimsel açıklamalardan da anlaşılacağı üzere ölümcül bir hastalık olan beyin kanseri ile ilgilenen tek bilim dalı klasik tıp değildir. Alternatif tıp dünyasında da bir çok araştırmaya konu olan beyin kanserinin medikal anlamda klasik tıptan çok daha başarılı tedavileri herbalizm alanında keşfedilmiştir.

http://www.biyologlar.com/beyinde-ur-tumor

Nanoteknoloji ve Nano Tıp

Nanoteknoloji ve Nano Tıp

Nanoteknoloji Nedir : Atomları ve molekülleri tek tek işleme ve yeniden düzenleme yoluyla kullanışlı,materyal,araç ve sitem yaratma sanatı ve bilimi.

http://www.biyologlar.com/nanoteknoloji-ve-nano-tip

Gen Tadavi

Gen tedavisi, çeşitli pek çok klinik durumun gelecekteki tedavisi için ümit vermeye devam etmektedir. Alışılmamış, biçim verilmiş gen transfer vektörlerinin gelişimi, tedaviye yönelik gen ifadelerinin verimini ve stabilitesini arttıracaktır. Doku ve organ nakli konusunda ise gen tedavisinden nakledilmiş dokunun akut ve kronik reddedilmesini engellemek amacı ile ya reddetmeyi engellemede önemli yeni genler (örneğin: yardımcı uyarıcı blokaj molekülleri yada imünosupresif sitokinez) yada adezyon molekülleri gibi reddetme ile alakalı moleküllerin üretimini engellemek için anti-duyusal nükleik asitler aşılayarak yararlanılmaktadır.Genlerin yabancı donör antijenlerini (alloantijenler) kodlayan gen tedavisi vektörleri tarafından taşınımı ayrıca alıcıda donöre özel cevapsızlık (immunolojik tolerans) oluşturmanın etkili bir yolu olup, belki de potansiyel olarak zararlı bütün vücut immunosüpresyonuna olan ihtiyacı ortadan kaldırabilir. Hastalıklar üzerinde yapılan yüzlerce yıllık çalışmalar teşhis, tedavi ve araştırmada bugün kullanılan çeşitli pek çok sofistike tekniğin gelişmesine neden olmuştur. 1960'larda hastalıkların nedenini anlamak üzere yapılan araştırmalar hastalıklı hücrelerin biyokimyasını analiz etmek ve çeşitli protein etkileşimlerini incelemekle sınırlı idi. Bu araştırmalar değerli idiyse de, o zamanın bilim adamları hastalık proseslerini, tam olarak anlamak üzere onları oluşturan parçalara ayırıp incelemek için gerekli teknoloji ve ajanlardan yoksundular. DNA'yı spesifik noktalarından kesen kesme enzimleri ilk olarak 1970'lerde keşfedildi ve moleküler biyolojide kullanılmaya başlandı. Genleri kesmek, ayırmak ve bir araya getirmek için bu kesme enzimlerini kullanarak, araştırmacılar, genetik faktörlerin hastalıklarda oynadığı önemli rolleri anlamaya başladılar. Şu anda, İnsan Genom Projesi tamamlanmak üzereyken, bize açık olan bilgi hazinesini yorumlamaya çalışıp, hastalıklar ve genler arasında yeni bağlar kurabiliriz. Bir kere kurulduktan sonra, bu bilgi gen tedavisinin bir tedavi stratejisi olarak kullanımını hızlandırmaya yarayacaktır. Allograft reddedilmesi ve immonolojik toleransÖngörülebilen gelecekte, hastalara allojenik yani “major histocompatibility complex locus”ta aynı olmayan organlar nakil edilmeye devam edilecektir. İmmunnosupresif ilaçların verilmesi gibi herhangi bir tedavi uygulamadan, ana olarak T-hücrelerinin arabuluculuk yaptığı bağışıklık cevabı, böyle bir aşılamayı reddedecektir.?Şekil 1??Kendine tolerans (vücüdün kendi T hücrelerinin vücut dokularına reaksiyon gösterememesi) olgunlaşmamış T hücreleri, gelişip timustan geçerken kazanılır. Bunun olmasının nedeni potansiyel olarak otoreaktif T hücrelerinin çoğunun klonal silme işlemi ile "negatif olarak seçilmiş olmalarıdır" fakat klonal anerji (antijene karşı cevapsız kalan, varlığını sürdürebilen T hücrelerinin varlığı) ve düzenleyici T hücreleri populasyonu yaratılmasının bu konuda bir rolü olabilir. Nakil İmmünologlarının en büyük hedefi doku alıcılarında, alloantijenlere karşı uzun zamanlı nakil toleransı yaratmaktır. Bu tür bir bağışıklık durumunda hasta, yabancı antijenlere (örn. bakteriler, virüsler ve ortaya çıkan kötü niyetli hücreler) karşı normal reaksiyon gösterirken, doku naklini reddetmek yerine tolere edecektir. Bu tür ideal bir durumda, sistemsel immunosüpresif ilaçlara (getirdikleri bütün dezavantajlarla birlikte) gerek kalmayacak, ve doku alıcıları tüm fonksiyonlarını yerine getirebilen, sağlıklı bir bağışıklık sistemi sahibi olacaklardır. Gen tedavisi nedir?Bir gen, belirli bir proteini kodlayan çizgisel bir DNA zinciridir. Bazı nadir durumlarda, genellikle hücre bölünürken, bir genin nükleotit zinciri (DNA taban çiftlerinin sırası) birbirine karışıp, mutasyon geçirebilir ve böylece oluşan protein hatalı olur. Bu tür mutasyon olayları sistik fibrosis, adenosine deaminase (ADA) yetersizliği ve orak hücresi anemisi gibi genetik hastalıkların ana nedenidir. Örneğin sistik fibrosisten rahatsız kişiler, sistik fibrosis transmembran iletim düzenleyicisi adındaki hücresel taşıma proteinini hatalı olarak üretirler, ki bu akciğerlerinde mukoza birikmesine yol açar. Gen tedavisinin ilk uygulamaları, hatalı bir genin (ya da gen kombinasyonunun) neden olduğu bir hastalığın, eğer genler “doğru” versiyonları ile değiştirilebilirlerse kontrol altına alınabileceği, engellenebileceği yada tedavi edilebileceği prensibi üzerine kurulmuştu. Gen tedavisi doğuştan var olan yada sonradan edinilen pek çok genetik hastalık için kullanılmaktadır. Fakat pek çok hastalık birden fazla genetik faktör ile bağlantılıdır (polijeniktir). Hastalık sürecindeki çeşitli genlerin ve kodladıkları proteinlerin bağlantıları hatasız olarak kurulana dek, gen tedavisi klinik olarak, ancak ADA yetersizliği, familial hypercholesterolaemia ve sistik fibrosis gibi tek gen hataları için önleyici ve iyileştirici tedavi olarak etkili olacaktır. Gen tedavisi protokollerini kullanan pek çok klinik deneme zaten tamamlanmıştır, genel olarak kullanılan gen transfer vektörlerinin yetersizliği yüzünden protokollerin etkisi önceden öngörüldüğü kadar dramatik olmamışsa da sistik fibrosis ve ADA yetersizliğinden şikayetçi hastalarda bir takım başarılar elde edilmiştir. 1980’lerde aslen “gen değiştirme tedavisi” olarak bilinen gen tedavisi, ilk tanımını aşmıştır ve in vivo yada ex vivo, bir gen transferi öğesi içeren her türlü protokole uygulanmaktadır. Bu genlerin mutlaka hastalığa yol açıyor olması da gerekmemektedir. In vivo gen transferi genlerin hücrelere vücutta bulundukları yerde aşılanmasıdır. (örneğin: kol üzerindeki deri hücrelerine yada gen transfer vektörünün ciğerlere çekilmesinden sonra akciğer epitel hücrelerine) Ex vivo gen transferi, genlerin geçici olarak hastadan alınmış hücrelere verilip, tekrar hastaya aşılanmasıdır (örneğin: kemik iliği hücreleri). Gen tedavisi somatik hücre gen transferi (normal diploid hücrelere yapılan transfer), ve germline gen transferi (üreme sisteminin haploid sperm yada yumurta hücrelerine yapılan transfer) olarak alt gruplarına ayrılabilir. Germline gen transfer hakkındaki etik konular somatik gen transferi ile ilgili olanlardan çok daha karışıktır çünkü genler sadece alıcılara değil aynı zamanda onların çocuklarına da aktarılır. Germline gen transferi araştırmalar için transgenik hayvan üretiminde, tarım ve biyoteknoloji için çeşitli alanlarda gittikçe artarak kullanılmaktadır, fakat hayvanlarda transfer edilen her genin uzun dönem etkileri dikkatlice gözlenip analiz edilmelidir, eğer varsa kalmış olan vektör DNA’larda büyük önem taşır. Germline gen tedavisinin insanlara getirebileceği yararlar kayda değerdir. Ciddi ve acı verici kalıcı genetik hastalıkların gelişimi doğumdan önce önlenebilir ve izleyen kuşaklarda ortadan kaldırılabilir. Fakat, hatalı kullanım ve öjenik potansiyeli yüzünden, insanlarda gen tedavisi geniş bir biçimde tartışılmalı ve alakalı güvenlik konuları değerlendirilmelidir. Ancak bundan sonra bu yaklaşım hastalıkların tedavisinde kullanılabilir. Nakilde gen tedavisi kullanımıDNA’nın nakil araştırmalarında kullanımının kayıtlı ilk denemesi Haskova, onun meslektaşları ve verici soydan DNA naklinin, takip eden bir nakile karşı bağışıklığa (ani reddetmeye) neden olup olmayacağını araştırmakta olan Medawar tarafından uygulandı. Medawar tarafından yürütülen deneylerde, soy A bir verici farenin dalağından alınan DNA arındırılıp, 5 mg’ı daha önceden müdahale edilmemiş bir farenin (CBA soyu) peritoneal (karın) boşluğuna enjekte edildi. Alıcı fareye 3-5 gün sonra verici soy A farenin derisi nakledildi ve aşılamalar zaman içinde gözlendi. Aşılamalar DNA almayan farelerle aynı zaman içinde reddedildi, herhangi bir artış gözlenmedi. Medawar, nakil toleransı yaratmak için verici soy hücrelerini neonatelere enjekte etmekteki başarısının ardından gerçekleştirdiği bir başka deneyde, yine nakil toleransı yaratmak için yeni doğmuş farelere tekrar tekrar “yüksek dozlarda” verici soy DNA’sı aşılanmıştı; fakat bu yaklaşım deri aşılamalarının kabul edilme sürelerini uzatmadı. Bu erken deneylerin negatif sonuçları Medawar tarafından saf olmayan DNA preparatlarına ve polisakkaritlerle kontaminasyona bağlanmış olsa da, şimdi anlayabiliyoruz ki, kas içi enjeksiyon gibi farklı enjeksiyon yolları seçilseydi, - Geissler ve meslektaşları tarafından yakın zamanda ortaya konduğu gibi - çok daha değişik sonuçlar elde edilebilirdi. Organ nakli şu anda son safhasındaki organ yetersizlikleri için iyice yerleşmiş bir tedavidir. İmmünosupresif ilaçlardaki kayda değer gelişmeler (örneğin. Siklosporin, kortikosteroidler ve rapamisin) 1 yıllık ve 5 yıllık böbrek nakillerinin başarı şansını sırasıyla %85 ve %75’e çıkarmıştır. Bu etkileyici bir başarı olsa da, sağlıklı nakiller hala reddedilebilmektedir ve sistemsel immünosupresif ilaçların kullanımı da beraberinde kanser oluşumu riskinin artması, enfeksiyonlar ve iskemiye bağlı kalp hastalığı gibi kayda değer riskler getirir ve bu riskler uzun zamandır sorunsuz nakiller için de geçerlidir. Gen tedavisi var olan nakil ile alaklı problemlere yaklaşım için iyi bir stratejidir fakat genellikle sadece tamamlayıcı bir yaklaşım olarak kullanılmaktadır. Örneğin, nakil edilecek organların immünojenliklerini azaltmak amacıyla bu organlara, T-hücresi aktivasyonunu engelleyecek genler aşılanabilir yada alıcıya, vericiye ait Major Histocompatibility Locus (MHC) antijenleri aşılanıp nakil toleransı yaratılabilir. Her iki yöntemde potansiyel olarak kuvvetlidir. Nakil ile alakalı genlerMHC iyi korumalı fakat polimorfik bir gen lokusudur. MHC molekülleri, hücre içinde işlenmiş peptitleri heliksel bir yivde ligantlarına, T-hücresi alıcısına (TCR) sunan yüzey proteinleridir. Eğer uygun ko-uyarıcı moleküller antijen sunan hücrenin üstünde mevcut ise, antijen sunan hücreye peptit sunan MHC molekülü ve T-hücresi üzerinde belli bir TCR arasında “akrabalık etkileşimi” T-hücresi aktivasyonuna yol açabilir. MHC sınıf I molekülleri 3 alfa alanı ve MHC gen lokusu tarafından kodlanmamış bir ?2 mikroglobulin zincirinden oluşur. MHC sınıf II molekülleri iki alfa alanı ve iki beta alanından oluşur. Sınıf I molekülün üstünde sunulan peptitler genellikle hücre içi proteinlerden gelirken, sınıf II moleküller hücre dışı kaynaklı peptitler sunarlar. Peptitlerin gelişmemiş MHC moleküllerine taşınma mekanizması da bu iki sınıf molekül için çok farkldır. MHC, allograft (Bir canlıdan, genetik yapısı farklı başka bir canlıya doku yada organ nakli/aşılanması) reddini tetikleyen ana tanıma molekülüdür çünkü kendi (sinjeneik) ve kendi olmayan (allojeneik) arasındaki farkı saptar. Uygun bir organ vericisi aranırken, nakil edilen organa mümkün olduğu kadar çok çalışma şansı yaratabilmek için verici ve alıcı arasında karşılaştırılan antijenler MHC antijenleridir. Bahsi geçen durumlarda, MHC’nin bu potansiyelinden bağışıklık sistemininin dengesini bağışıklıktan toleransa kaydırmak için yararlanılmıştır. Tolerans yaratmak maksadıyla organ alıcısının, vericinin MHC antijenlerine maruz bırakılması, ilk olarak 1953’te Billingham ve meslektaşları tarafından bir fare modelinde, verici soydan hücreler alıcı farenin uterusuna enjekte edilmesiyle gerçekleştirildi. Bu ilk denemenin ve takip eden araştırmaların ardından nakil öncesi kan nakilleri (mutlaka organ vericisinden olması gerekmeden) MHC alloantijenlerini alıcıya verebilmek için klinik olarak kullanılmaya başlandı ama sınırlı başarı elde edildi. Fakat kan ürünlerinin kullanılması beraberinde enfeksiyonlar, nakil reaksiyonları gibi doğal riskler getirdiğinden, özelleşmiş bir yaklaşım kullanan daha yenilikçi bir tedavi organ alıcılarını kanda bulunan alloantijenlere karşı duyarlı hale getirme riskini ortadan kaldırmış olur. Verici genlerinin, alıcının hücrelerine yada dokularına verilmesi gayet özelleşmiş bir tedavidir, yabancı hücrelerle alakalı riskler taşımaz ve alıcıların verici dokusu vücuda girmeden önce yabancı genlerle ön-tedavi edilmesine olanak verir. Hayvan modellerdeki MHC gen transferleri ayrıca allojenik MHC antijenlerinin, diğer antijenlerin etkisi olmadan alıcının bağışık hücreleri üzerindeki etkilerini incelemek için yararlıdır. Bu tür bir yaklaşım ilk olarak Madsen ve meslektaşları tarafından, vericiden alınan tek bir MHC sınıf I geni, alıcı türü bir farenin hücre hattına transfekt edilip, ardından alıcıya verildiğinde yürütülmüştü. Bu çalışma ile takip eden kalp nakline karşı cevapsızlık sağlanmasının yanında alıcının, vericinin uyuşmayan her türlü MHC moleküllerine maruz kalmasına gerek olmadığı anlaşıldı. Bu deney bu yöntemin işe yarayabileceğini kanıtlamış olsa da, transfekt edilmiş alıcı hücrelerini kullanmak klinik olarak pratik bir çözüm değildir. Bundan sonraki adım Wong ve meslektaşları tarafından atılmıştır; alıcı fareden alınan kemik iliği hücreleri MHC sınıf I gen ile retroviral bir gen tedavisi vektörü kullanılarak ex vivo transdüksiyona uğratılmış (virüs ile enfekte edilmiş) Bu yaklaşım tarzı da tamamen allojeneik bir kalp naklinde uzun dönem cevapsızlık yaratmıştır ama alıcı daha önce MHC sınıf I genlerine maruz kalmadığı bir vericiden alınan 3. parti bir nakli reddetmiştir. MHC moleküllerinin bir başka enteresan özelliği de çözünebilir yada zara bağlı olmalarına bağlı olarak bağışıklık sisteminin cevabını değiştirebilme yeteneğidir. İnsan karaciğeri naklini izleyen gözlemler ortaya koymuştur ki, çözünebilir insan verici lökosit antijenleri (HLA; insan MHC antijenleri) nakil sonrasında yüksek konsantrasyonlardadırlar. Bu toleranslı duruma sadece verici lökositlerinin mikrokimerizminin (düşük düzeylerde verici hücrelerinin alıcıda varlığını sürdürmesi) yol açtığı hipotezi ileri sürülmektedir; lakin eşit miktarda geçerli başka bir açıklama ise bu toleransın karaciğerin doğal olarak salgıladığı bol miktarda çözünebilir MHC molekülünün etkisi olduğudur. Çözünebilir vericiye ait MHC sınıf I moleküllerin immünosupresif etkileri olabilir, ve bu organ nakillerinde, organın fonksiyonunu sürdürmesini iyileştirebilir. Geissler ve meslektaşları, alıcı soydan gelen hepatositlerin lipofektin ile zara bağlı yada çözünebilir MHC sınıf I molekülleri kodlanan plazmit kullanılarak bir fare modeli kullanmışlardır. Zara bağlı MHC sınıf I moleküllerini belirten hepatositlerin, sitotoksik T-lenfosit (CTL) öncü hücrelerini primelarken, çözünebilir MHC sınıf I hücrelerine maruz kalmanın CTL öncülerin sayısını (frekansını) düşürdüğü gözlendi ki bu çözünebilir HLA sınıf I hücrelerinin insan alloreaktif CTL’lerde apoptoza neden olabileceğinin göstergesidir. İmmunosüpresif Sitokinezİmmuno-ayarlayıcı moleküller kodlayan genlerin nakledilen organ civarına verilmesi, yada direkt nakledilen organa verilmesinin, akut yada kronik reddetmede yabancı dokuya karşı oluşan bağışıklık cevabını azaltmada geniş bir faaliyet alanı vardır.Sitokinezler bağışıklık sisteminin çözünebilir ayarlayıcılarıdır ve bazılarının immünosüpresif etkileri vardır. Interlökin 10’un viral formu (vIL-10) Epstein-Barr virüsü tarafından kodlanmış olan bir proteindir, yapı olarak insan ve fare için homologdur ve IL-10’un sahip olduğu T-hücresi ko-uyarıcı özelliklerine sahip değildir. T-hücresi aktivasyonun kapatılması yada aşağı çekilmesinin gerektiği dokulara gen transferi yapılmasında yararlı bir araçtır. DeBruyne ve meslektaşları, nakil edilecek sıçan kalbine DNA-lipozom kompleksleri kullanılarak vaskülater perfüzyon aracılığı ile yapılan vIL-10 gen transferi nakil edilen organın hayatta kalma süresini uzattığı görülmüştür. (8 gün yaşayan muamele görmemiş organlara karşı 16 gün) Sonuç vIL-10 genine bağlandı, çünkü vIL-10’a bir anti-duyu plazmidiyle yapılan tedavi yada vIL-10’a hedeflenmiş bir monoklonal antikor nakil-uzatma etkisini tersine çevirdi. Dönüşüm büyüme faktörü beta (TGF) gibi diğer sitokin genleri de ayrıca kayda değer immünosupresif etkiler göstermişlerdir. Lakin bu yaklaşım tarzının amacı immünologikal tolerans yaratmak değildir, fakat yine de yerel immünosüpresyon yaratmak için yararlı olabilir. Ko-uyarıcı sinyalin engellenmesiKendine özgü TCR-MHC etkileşiminden oluşan hücre içi ilk sinyalden ayrı olarak bir T-hücresinin tam aktivasyonu CD28 ve B7-1 yada B7-2 (sırasıyla CD80 yada CD86)nin etkileşiminden oluşan ikinci bir ko-uyarıcı sinyal gerektirir. Sitotoksik T-lenfosit antijen 4 (CTLA-4 yada diğer adıyla CD152) CD80 ve CD86 için alternatif bir liganttır ve CD28 ile homologdur. CTLA-4 ün T-hücresi aktivasyonu aşağı çekmekle ilgili bir rolü olduğu düşünülmektedir. Bu ko-uyarıcı sinyalin mesela bir füzyon proteini kullanarak engellenmesinin, pek çok mürin ve primat çalışmalarında hücre arabuluğunda oluşan in vivo hümoral bağışıklık cevaplarını engellediği görülmüştür. CTLA-4Ig genini [CTLA-4 ve bir immunoglobulin (Ig)] bir kalp naklinin ardından damar içinden vermek üzere adenoviral bir vektör kullanan bir çalışmada, ortalama yaşama süresi kontrol grubundaki 6 güne göre, CTLA-4Ig transgenin ifade eden adenoviral vektörle tedavi edilen grupta 23 gün saptandı. Chahine ve meslektaşları tarafından yapılan bir başka çalışmada ise, CTLA-4Ig transgeni sinjeneik ve allojeneik iki grup fare kas öncü hücresine (lökoblastlar) transfekt edildikten sonra, diabetik bir farenin böbrek kapsüllünün altına allojeneik pankreas adacık(?) hücreleriyle beraber nakil edilmiştir. Sinejeik lökoblastlar adacıkların yaşama süresinde kayda değer bir artışa neden olmuşlar ve 11 günden 31.7 güne çıkarmışlardır, allojeneik lökoblastların yararlı bir etkisi görülmemiştir. Sinejeik lökoblastlar aktif olarak CTLA-4IG salgılamışlar ve allojeneik adacıkların olduğu çevrede immünosüpresyon yaratmışlar ve onların fonksiyonlarına devam etmelerine izin vermişlerdir. Lökoblastlar allojeneik olduğunda ise, alıcıdaki MHC eşitsizliği onları yok etmeye yetmiş ve CTLA-4IG’nin üretimini engellemiştir. Kronik reddetmeyle alakalı genlerİmmünosupresif ilaçlar ve organ korumasındaki gelişmelere rağmen bir allograft nakilden yıllar sonra hasar görmeye devam edebilir, bu yüzden kronik reddetme nakledilen organların başarısız olmasındaki en önemli etkendir. Histolojik olarak, kronik reddetme sırasında düz kas hücrelerinin nakil edilen organın damar ağı(?) etrafında hızla çoğaldığı ve bazen nakil aterosklerozuna (Atar damar duvarının esnekliğini yitirmesi ve sertleşmesi) neden olduğu görülmüştür, durumun bu son noktaya gelmesine pek çok faktör katkıda bulunur. Hücreler arası yapışma molekülü 1 (ICAM-1) gibi yapışma molekülleri ve vasküler endotelial-hücre büyüme faktörü gibi büyüme faktörleri artar ve teşvik edilebilir (inducible) nitrik oksit sintazın dengesi bozulur. ICAM-1ICAM-1 Ig süperfamilyasının bir üyesidir ve hücresel yapışma ve T-hücresi ko-uyarılmasında çok önemlidir. ICAM-1’in etkilerini ortadan kaldırıp T-hücresi aktivasyonunu azaltmaya yönelik yöntemler, böbrek allograftı hastaları ve ICAM-1 molekülüne karşı hedeflenmiş antikorlar kullanan klinik deneyler başarıyla yürütülmüş durumda. 18 hastalık bir çalışmada, anti-ICAM-1 antikoru (BIRR1) ölü vericilerden böbrek nakledilen ve nakil fonksiyonu gecikmesi riski yüksek olan hastalara verildi. BIRR1 serumunun yeterli bir miktarı (>10?g/ml) hem nakil fonksiyonu gecikmesi hem de reddetme olaylarının (p<0.01) kayda değer bir miktarda azalmasına neden oldu. Bu terapi mürin modellerde ICAM-1’in mRNA’sına hedeflenen anti-duyu oligonükleotitleri kullanmak için geliştirildi. Nitrik dioksitNakledilen organlardaki, vesselların intimal (iç) çoğalmaları kronik reddetmenin başka bir göstergesidir. İç kaplar tabakadan kaynaklanan nitrik dioksidin vasküler yara oluşumunun endojen bir inhibitörü olduğu hipotezini test etmek için, bir Sendai virüs virosomu iç kaplar tabaka hücreleri kaynaklı nitrik dioksit sintaz genini in vivo olarak nakletmek için kullanılmıştır. Von der Leyen ve meslektaşları, bir balon yara modeli kullanarak farenin karotid arterinin iç kaplar tabakasının bozulmasının ardından endothelial-hücresi nitrik oksit sintaz geninin transfer edilmesinin neointimal çoğalmayı %70 kadar düşürdüğünü ortaya koydular. Oksijen serbest radikalleriNakilden önce, çoğu organlar soğuk ortamda, tam bir kan kaynağı olmadan saklanır, bu olay soğuk iskemi etkisine neden olur. Bu, yeniden bağlanan kan kaynağını reperfusionu ile birleşince oksijen serbest radikallerinin neden olduğu hücre hasarı yaratabilir. Bu durumun kronik reddetme şansını kuvvetlendirdiği düşünülmektedir. Ciddi bir hasarı önlemek için, serbest radikalleri temizlemek üzere çözünebilir süperoksit dizmutaz (SOD) ex vivo olarak nakledilecek organa verilmiştir. Bugüne kadar, gen transferinde SOD’un kullanıldığı birkaç çalışma yapılmıştır. Bir araştırmada oksidasyon hasarı ile ilgili hastalıklar için SOD (yada aynı etkiye sahip katalaz) şifreleyen rekombinant adenovirüs kullanıldı. Farelerdeki bu akciğer-perfüzyon modelinde, iskemi-reperfüzyon hasarı değerlendirildi; ve sürpriz bir şekilde SOD’un fazla ifadesi iskemi-reperfüzyon hasarını kötüleştirdi. Hem SOD hem katalaz transgenlerinin ifadesi iskemi-reperfüzyon hasarındaki bu artışı engelledi fakat ondan koruyamadı. Uygulama yöntemleri ve gen tedavisi vektörleri için hücre hedefleriTimus içi uygulamaTimusiçi T-hücresi gelişimi prosesinin, nakil ve tolerans yaratma için kullanımı ilk olarak Posselt ve meslektaşları tarafından betimlenmiştir. Kendine tolerans (kendi dokusunda meydana gelmiş antijene cevap verememe) CD4- ve CD8- (çift negatif) olan T-lenfosit öncü hücreleri timustan geçerken oluşur. T-hücreleri timik epitel hücrelerindeki antijene maruz kaldıkları için, timustaki atijenle etkileşmeye yüksek eğilimi olan ve bu nedenle otoreaktif olan hücreler klonal silme prosesiyle negatif seleksiyona uğrar. TCR’leri timusiçi antijenlere eğilimi olmayan (yada çok az olan) fakat kendi MHC’sine karşı etkileşime yüksek eğilimi olan hücreler pozitif seleksiyona uğrarlar; ve bu hücreler gelişip, çoğalabilir ve çevrede daha büyük klonal populasyonlara genişleyebilirler/yayılabilirler. Knechtle ve meslektaşları, bir fare modelinde, bir gen tedavisi yöntemi kullanarak tolerans yaratmanın mümkün olduğunu gösterdiler. İlk olarak sinejeik alıcı kas hücreleri aldılar ve in vitro olarak bu hücreleri vericiden alınmış olan MHC sınıf I genleri ile transfekt ettiler. Bu hücreler daha sonra alıcının timüsüne enjekte edildi. Daha sonra alıcının çevresel bağışıklık sistemi, anti-lenfosit serumu kullanılarak potansiyel alloreaktif T-hücrelerinden temizlendi. Bunu alıcının bağışıklık sisteminin cevapsız kaldığı bir karaciğer nakli izledi. Takip eden bir çalışmada, verici soydan fareden MHC sınıf I tamamlayıcı (koplementer) DNA (cDNA), timik hücreleri yerlerinde transfekt etmek için, direkt olarak alıcının timüsüne verildi; polimeraz zincir reaksiyonu (PCR) kullanılarak yapılan analizde timüste geçici olarak verici DNA’sına rastlandı (timositlerin timüsten dışarı verilmesi nedeniyle de bir süre daha sonra dalakta) Yukarıdaki yaklaşımlar ya DNA ile transfekt edilmiş hücreler yada çıplak DNA’nın kendisini kullanarak verici MHC genlerini alıcıya ulaştırmışlardır. DNA transfeksiyonu kullanılarak başarılmış gen tedavisinin verimi adenovirüs kullanılarak arttırılabilirdi. Adenovirüs vektörleri (yada sadece “Adenovirüs”) timüs içi uygulamalar için idealdir çünkü yüksek titrelerde üretilebilir ve çok çeşitli hücre türlerini transdüse edebilir. Genler, antijen sunan timik epitel hücrelerine değil gelişmekte olan timositlere de transfer edilebilir fakat immünojenik adenoviral antijenlere karşı merkezi tolerans (timüs, dalak ve kemik iliği gibi merkezi lenfoid organlardaki lenfositlerde oluşan tolerans) Ilan ve meslektaşları tarafından da ortaya konduğu gibi yaratılabilir. Çalışmalarında, rekombinant adenovirüsün timüs içine aşılanmasının nötralize edici antikorlar ve rekombinant adenovirüse karşı CTL’lerin orataya çıkışını inhibe ettiğini ortaya koymuşlardır. KaraciğerGen transferi ve organ nakliyle ilgili olarak karaciğerin pek çok ilginç özelliği vardır. Bazı durumlarda karaciğer organ nakli alıcılarının MHC-uyuşmazlığı olan nakilleri, nakil sonrası sistemik immünosupresyona gerek bırakmadan kendiliğinden kabul ettikleri olmuştur. Bu gözlemin nedeninin nakil sonrası verici MHC moleküllerinin çözünerek kan dolaşımına karışmasının ardından alloreaktif CTL cevabını aşağıya çekmesi olduğu hipotezi ortaya atılmıştır. Karaciğer kapı venası yada karaciğer arteri veya ikisi birden, viral yada non-viral gen tedavisi vektörlerinden herhangi birinin perfüzatını in vivo olarak vermenin en iyi yollarıdır. Chia ve meslektaşları bir çalışmalarında, perfüzyondan sonra etkili gen transferinin bir rapörtör gen kodlayan adenovirüs, tespit edilmiş soğuk korunmuş karaciğere hem karaciğer kapı venası hem de hepatik arterden verilerek elde edilebileceğini gösterdiler. Bu verim artışının nedeninin kısmen karaciğer içi mikro dolaşıma daha iyi ulaşımdan ve böylece virüs, hücre temaslarının artışından dolayı olduğu söylenmiştir.Fare modellerinde hepatik gen transferi için retroviral vektörlerde kullanılmıştır, lakin bu hücreler sadece aktif olarak bölünen hücrelerin transdüksiyonunda etkilidir bu yüzden hepatositleri bölünmeye teşvik etmek için retroviral transdüksiyondan önce kısmi bir hepatektomi gerçekleştirilmelidir. Kemik iliği hücreleriKemik iliği hücrelerinin, özelliklede haematopoietik gövde hücrelerinin önemi gen tedavisi de azımsanmaz. Kendini yenileme ve tüm kan hücresi yapıcı türlere farklılaşabilme potansiyeli, uzun dönem transgen ifadesi gerektiği durumlarda (genetik bozukluklar gibi) onları çok çekici hedefler haline getirir. HSC’lerin kemik iliği ve çevresindeki kanda aşırı düşük bir frekansta bulunması nedeniyle ne yazık ki ex vivo transdüksiyondan sonra takip eden in vivo bir biyolojik etki yaratacak kadar çok miktarda elde etmek çok zordur. HSC’lerin gen tedavisi için arındırılması ana olarak granülosit makrofaj koloni uyarma faktörü gibi bir ajan kullanarak, gövde hücrelerini kemik iliğinden hareketlendirip, çevre dolaşıma yöneltmek üzerine kuruludur; bundan sonra hücreler florasan-aktivasyonlu hücre sıralama yada antikor kaplı manyetik bilyalar gibi yöntemlerle seçilirler. Bu tür pozitif seleksiyon yöntemleri c-kit (faredeki gövde-hücresi faktörü alıcısı) ve CD38 (insanlarda) gibi gövde hücreleri için özel hücre yüzeyi izleri gerektirir. Negatif tüketme (kesinlikle gövde hücresi olmayan hücreleri dışarı atan) genellikle pozitif seleksiyonla kombine olarak kullanılan ayrı bir metottur. Gövde hücrelerine özgü yeni işaretler arama şu an üzerinde aktif olarak araştırma yapılan bir alandır. Klinik nakilleri göz önünde tutarsak, kemik iliği çok sık nakledilen bir dokudur, örneğin lökemiya yada başka hemotolojik hastalıklara karşı köklü bi sitotoksik terapi uygulanan hastalar için. Alıcıya, vericinin kemik iliği aşılanarak, alıcının nakilden önce uyumsuz bir organın alloantijenlerine maruz kalmasını sağlamak için kullanıldı. GvHD oluşması ihtimaline rağmen, bu yaklaşım harcanan emeğe değer. Alıcıların, vericilerden alınmış MHC transgenlerine maruz bırakılması daha özelleşmiş ve güvenli bir metottur; ayrıca canlı verici lenfositlerinin aşılanmasına gerek bırakmadığı için GvHD yaratan hücrelerin transferi olmadığı için bir risk taşımaz. MHC genlerinin sinejeik kemik iliğine ex vivo yada in vivo olarak transferi alıcıyı alloantijenlere maruz bırakma için bir yöntem olarak kullanılabilir. Kemik iliğine gen transferi kan yapıcı hücrelerdeki bağışıklık fonksiyonunu ayarlayan immüno düzenleyici molekülleri (sitokinler gibi) şifreleyen genleri nakletmek için kullanılabilir. Sykes ve meslektaşları radyasyona maruz bırakılmış bir fare üstüne ortaya koydular ki, retroviral bir gen tedavisi vektörü kullanarak, verici MHC sınıf I geninin verici soyu kemik iliği hücrelerine ex vivo olarak nakil öncesi transferi tek bir alloantijen yüzünden uyumsuzluk çıkaran deri aşılamalarının yaşama süresini arttırdı, fakat çoklu uyumsuz, tamamen allojeneik deri aşılamaları reddedildi.Wong ve meslektaşları, verici MHC sınıf I molekülü şifreleyen retroviral bir vektör kullanan benzer bir sistem üzerinde çalışma yaptılar. Bu sefer MHC haplotip H2k’li bir CBA fareleri nakil alıcıları olarak kullanıldı. İlk olarak 28 gün boyunca iki doz anti-CD4 monoklonal antikoru ve 5 X 106 kemik iliği hücreleri ile ön tedavi edildiler. Bu hücreler vericiye özel MHC sınıf I geni Kb taşıyan retroviral vektörlerle ex vivo olarak transdüksiyona uğratıldılar. Bu tolerizasyon rejiminin sonucu olarak, fareler vericiye özel [C57BL/10 (H2b)] kalp nakillerini süresiz olarak kabül edebildiler. Bu çalışmanın önemli bir klinik manası vardır, çünkü nakledilen bir organın uzun süreli kabul edilmesi için alıcının nakil edilen organ üzerinde bulunan her tür verici MHC molekülüne maruz bırakılmasına gerek olmadığını ortaya koymuştur. Bu tolerejenik (yada cevapsız) durum, bağışıklık sisteminin gücünü azaltmamaktadır; bağışıklık sistemi her hangi bir üçüncü parti antijene karşı yine tüm gücüyle saldırmaktadır. Gen transferi vektörleriVektörler gen tedavisinde, daha sonradan transgen(ler) trafından şifrelenmiş tedavi edici proteinleri ifade edecek alakalı genleri nakleden araçlardır. Alakalı genlerden ayrı olarak bir gen tedavisi protokolünde en önemli faktör vektör seçimidir ve bu başarı yada başarısızlığı belirler. Ne yazık ki, “iyi evrensel vektör” diye bir şey yoktur; şu anda kullanımdaki tüm vektörler hem avantajlara hem dezavantajlara sahiptirler. Örneğin bir vektör, hedef hücrelere çok etkili bir şekildi girebilir, fakat girdikten sonra güçlü bir bağışıklık cevabına neden olur ve bu da hücrenin bağışıklık sistemi tarafından yok edilmesine neden olur. Vektör seçerken pek çok faktörün göz önünde tutulması gerekir. En önemlileri: 1- transgenin ifade edilmesi gerekli zaman uzunluğu2- hedef hücrenin bölünme durumu3- hedef hücrenin türü4- transgenin büyüklüğü5- aşılanacak vektöre karşı bir bağışıklık cevabı oluşma potansiyeli ve bunun zararlı olup olmadığı6- vektörü birden fazla kez uygulama imkanı7- vektörün üretim kolaylığı8- mevcut tesisler9- güvenlik unsurları10- düzenleyici unsurlar Viral gen transferiMilyonlarca yıldır, virüsler bitki, hayvan ve insan hücreleri dahil her türlü hücreye gen transfer ediyorlar. Viral gen transferi deneysel tekniği bu doğal yetenekten gelişmiştir, ve bilim adamları ile hekimlere gerçek avantajlar sunmaktadır:1- özel hücre bağlama ve giriş özellikleri2- transgenin hücrenin çekirdeğine etkili bir şekilde hedeflenmesi3- hücre içi degradeden kaçınabilmesiViral vektör sistemlerinin çoğunun geliştirilmesinde kullanılmış olan genel prensip, yaban tipinde (doğada bulunan değişmemiş hali) bozulmamış bir virüsün güvenli ve etkili gen transferi için modifiye edilmesidir. Örneğin, viral replikasyonla ilişkili genler modifiye edilebilir yada silinebilir, ve böylece yeni rekombinant virüs “replikasyon arızalı” hale gelir ve gen tedavisi protokollerinde kullanılmak için daha güvenli hale gelir. (Şekil 4)Genelde, virüs tarafından nakledilmesi gereken transgen moleküler biyolojik teknikler kullanılarak viral genomun içine konmalıdır; transgenler genellikle viral replikasyon genlerinin çıkarılmasıyla oluşan boşluğa eklenir. Genelde, viral vektörün doğal hali ne kadar azaltılmışsa, (virulansla ilgili genlerin ne kadar büyük kısmı çıkarılmışsa) virüs gen tedavisi protokollerinde kullanılmak üzere o kadar emniyetlidir. Genin boyutu, viral genomdaki potansiyel boşluğa uydurulmalıdır, eğer yeni viral genom çok büyük ise, enfekte edici bir partiküle sığdırılamaz. Vektör olarak kullanılan virüslerin çoğu replikasyonyon genlerinden mahrum olup, kendilerini normal hücrelerde kopyalayamadıkları için, transgene sahip rekombinant virüs, hücre hattında daha yüksek titrelere kadar büyütülmelidir. Bu hücre hattı, virüsün replike olabilmesi için gereken tüm tamamlatıcı genleri (daha önceden çıkarılan genler) içeren bir hücre hattıdır. Rekombinant viral partiküller, daha sonra paketleyici hücre hattından canlı bulaşıcı virüsler olarak arındırılıp, in vivo yada ex vivo olarak hücreleri yada dokuları enfekte etmek (transdüksiyona uğratmak) için kullanılır. Retroviral VektörlerRetroviridae spumavirüs (köpüklü virüsler), Moloney-mürin-lentivirüs-ilişkili virüsler [örneğin, Moloney mürin lökemya virüsü (MMLV) ve insan endojen retrovirüsleri C familyası (HERV-C)] ve lentivirüsleri [örneğin. Human immünodeficiency virus tip 1 (HIV-1) ve tip 2 (HIV-2)] içeren geniş bir RNA virüsleri familyasıdır. Retroviral virionların çapları 80 nm’den 130 nm’e kadar değişir, ve genomları uzunlukları 3.5 ila 10 kb arasında olan, iki eş pozitif-duyu tek-iplikli RNA moleküllerinden oluşur. Genomlar, entegraz ve ters transkriptaz enzimleri ile birlikte bir kapsid ile örtülüdür. Retroviral vektörler şu an için klinik denemelerde en yaygın olarak kullanılan viral vektörlerdir.Retrovirüsler, sadece aktif olarak mitoza uğrayan hücreleri transdüksiyona uğratırlar, pluripotent (bir çok çeşitli hücre tipine gelişme yeteneğinde olan hücreler) HSC’lere gen transfer eden protokollere uygundurlar. Retroviral vektörler uzun dönemde iyi gen ifadesi oluştururlar ve teknik olarak üretilmeleri kolaydır. Fakat düşük viral titreler (genelde ml’de 1 x 107 koloni oluşturan ünite) verirler ve çok nadir olsa da yardımcı virüs kontaminasyonu olasıdır ve dikkatle izlenmelidir. MMLVMiller labaratuvarından LNSX serisinden vektörler gibi, bugün gen tedavisi uygulamalarında kullanılan retroviral vektörlerin çoğu MMLV bazlıdır. Replikasyon gag, pol ve env bölgeleri çıkarılarak engellenmiştir. gag bölgesi kapsid proteinlerini kodlar, pol bölgesi RNA bağımlı DNA polimeraz (ters transkriptaz) ve entegraz kodlar, env bölgesi ise alıcı tanıma ve kılıf demirleme içik gerekli proteinleri kodlar. Genom ayrıca, her iki ucunda uzun son tekrarları (LTR’ler) içerir ki bunlar DNA sentezlemede ve viral genlerin transkripsiyonun düzenlenmesinde hayati rol oynarlar. Örneğin, LNSX vektöründe, LTR bir neomisin-direnç işaretleyici geninin [neomycin-resistance-marker gene] (transdüksiyona uğramış hücreleri seçmek için kullanılan) transkripsiyonunu yürütür, bir iç Simian virüs 40 (SV40) promoteri ise transgenin transkripsiyonunu yürütür. gag, pol ve env gen ürünleri, daha önce bu genlerin transger edilip stabil bir biçimde ifade edildiği tamamlayıcı paketleme hücre hattı tarafından sağlanmalıdır. Bir retroviral vektör plazmidi paketleyici hücre hattına (pA317 gibi) sokulduğu zaman viral RNA üretilir, virionların içine yerleştirilir, ve ortama salgılanır. Ml başına 1 x 107 koloni-oluşturan üniteye kadar viral titreler bu şekilde elde edilebilir. Elde edilen viral partiküller gag, pol ve env genlerinden yoksun olduğu için her partikül sadece kendini hücrenin genomuna entegre edebilir, daha fazla viral partikül üretemez. Transdüksiyonla nakledilmiş DNA zincirleri kararlı bir şekilde hedef hücrenin kromozal DNA’sına entegre edilirler ve böylece hücrenin bölünmesiyle oluşacak oğul hücrelere de geçerler. LentivirüslerRetrovirüsler ailesinin en yeni keşfedilen üyeleri retrovirüsleri lentivirüsler olarak bilinen bir alt sınıfında üye olan insan bağışıklıkyetersizliği virüsleridir(HIV’ler). HIV’lerden türetilmiş olan gen tedavisi vektörleri, MMLV retrovirüs vektörlerine göre pek çok avantaja sahiptirler. Lentivirüs vektörleri aktif olarak bölünen hücrelerin yanı sıra, bölünmeyen hücreleri de transüksiyona uğratabilirler, bu yüzden gen transferi araçları olarak çok daha yararlıdırlar. Genetik materyallerini host hücrenin genomuna entegre ettikleri için, lentivirüslerin transgenlerin uzun zamanlı, stabil ifadesini sağlayacak potansiyel vardır. Lentivirüslerin, immünolojik amaçlarla gen tedavisi vektörleri olarak kullanılması çok heyecan vericidir çünkü lentivirüslerin CD4+ T hücreleri, makrofajlar ve HSC’lere karşı olan doğal bir tropizmaları vardır; bu lentivirüsleri HIV ve AIDS enfeksiyonunu önlemek yada tedavi etmek amacında olan gen tedavisi yaklaşımları için çok yararlı araçlar kılar. Vestikuler stomatitis virüsü G proteininin lentiviral kılıfa verilmesi gibi gen modifikasyonları bu vektörün tropizmasını genişletmiştir. Bu vektörler şimdi sistik fibrosisin gen tedavisi için solunum epitel hücrelerini hedeflemek üzere kullanılabilmektedir. AdenovirüslerAdenovirüsler, kapsid çapı 70-100 nm, 252 kapsomerden (240 hekzon, 12 penton) oluşan, kılıfsız, ikozahedral, çift iplikli DNA’lı virüslerdir. Hedef hücrenin genomuyla birleşmezler, bunun yerine host hücrenin çekirdeğinde ekstrakromozal bir yapı olarak kalırlar. Replikasyon-kusurlu rekombinant adenovirüsler klinik denemelerde en çok kullanılan ikinci viral vektör grubudur. Adenovirüsler insanları yaygın olarak enfekte ederler, ilk izole edilebilmeleri 1953’te aküt solunumsal semptomları olan ABD acemi erlerinden, Rowe ve meslektaşları tarafından başarıldı. Temel (dönüşmemiş) hücre kültürleri bu erlerin adenoitlerinden elde edilmiştir, ve kültürdeki hücrelerin virüsün varlığı yüzünden kendiliklerinden dejenere olduğu gözlenmiştir. Bugüne kadar 47 adenovirüs serotipi tanımlanmıştır, hafif soğuk algınlığından febrile paryngtise kadar pek çok rahatsızlıkla ilişkileri saptanmıştır. Ad2 ve Ad5 üzerlerinde en çok çalışılanlardır ve gen tedavisi uygulamalarında en yaygın olarak kullanılan serotiplerdir. Ağır rahatsızlıklarla alakaları yoktur, sadece hafif soğuk algınlığı oluştururlar. Adenovirüsün 36-kb genomu iki ana bölgeye bölünebilir, virüsün replikasyon çevrimi sırasında genlerin ifade edildiği zamana göre, erken (E) geç (G). Erken genlerin 4 bölgesi vardır, bunlar E1, E2, E3 ve E4 olarak isimlendirilirler, geç genlerin ise G1, G2, G3, G4 ve G5 (L1-5 ingilizce) 5 kodlama ünitesinde oluşan bir tek bölgesi vardırAdenovirüslerin E1 bölgesi E1A ve E1B olarak ikiye ayrılır. E1A gen ürünü viral prometerler bağlayarak diğer adenoviral transkripsiyon ünitelerinin ifade edilmesini aktive eden bir viral transkripsiyon ünitesidir. E1B bölgesi hücresel p53 tümör bastırıcı proteinle etkileşime giren 55-kD proteinini kodlar. p53, host hücrenin devrinin ilerleyişini G1 fazından S fazına ki bu faz viral replikasyon için optimaldir, regüle eder. E1B p53’den ayrı olarak viral E4 proteinlerini de bağlar, bu iki madde ortak olarak çalışıp hostun protein sentezini kapatırlar. E2 bölgesi viral DNA polimeraz ve anenovirüs tek iplikli DNA bağlama proteinini kodlar. E3 bölgesi adenovirüsün in vitro replikasyonu için gerekli değildir fakat virüse enfekte hücrelerin CTL’ler ve TNF-a tarafından öldürülmesini engelleyerek, host defans mekanizmalarına karşı bir miktar koruma sağlar. E4 bölgesi (1) viral ve hücresel protein ifadesi (2) viral DNA replikasyonu (3) host proteinlerinin sentezinin kapatılmasıile alakası olduğu bilinen proteinler kodlar. Geç genler (G1-G5) viral DNA replikasyonunun ilk adımında ifade edilir, ve virion oluşumu için gerekli yapısal polipeptitleri kodlarlar. Yeni sentezlenmiş viral partiküllerin birikmesinden kaynaklanan hücre iskeleti ve zarının bozulması, hücrenin çökmesine ve virüsün yayılmasına neden olur.E1 bölgesi viral replikasyon için gereklidir; bu yüzden E1 bölgesi suni olarak çıkarılmış adenovirüsler, replikasyon kusurlu olarak görülür. Replikasyon-kusurlu bir adenovirüste, E1 bölgesi ifade edilecek trangen ile doldurulabilir. Daha büyük genler yerleştirebilmek için ve bunun yanında virüsün immünojenliğini azaltmak için vektörden E3 ve E4 bölgelerinin silinmesi gibi bir işlemle daha fazla genetik materyal çıkarılması daha önce uygulanmıştır; bu tür rekombinant virüslere genelde “bağırsaksız” denir. Gen tedavisi için, hem in vivo hem de ex vivo olarak neredeyse her türlü hücre cinsinde adenovirüslerin transdüksiyon verimi diğer viral vektörlerle karşılaştırıldığında yüksektir. Nakiller için, adenovirüslerin belirgin bir avantajı düşük sıcaklıklarda (örneğin. 4ºC) hedef hücrenin yüzeyine tutunabilmesidir. Adenovirüsün kapsid polipeptitlerinin yapısal stabilitesinden dolayı, viral partiküller ml başına 1 X 1013 plak oluşturan ünite (pfu) gibi yüksek bir titreye arındırılıp konsantre edilebilirler, fakat ml başına 1 X 1010 pfu gibi bir titre daha alışılmıştır. Retroviral titreler çok daha düşüktür (ml başına 1 X 107 pfu) çünkü kapsidleri yapısal olarak kararsızdır ve sezyum klorid gradyanında arındırılıp, konsantre edilemezler. Adenovirüslerin bir başka avantajı da adenovirüs genomunun insan genomuna entegre olmayıp, hedef hücrenin çekirdeğinde kendini eşlemeyen ekstrakromozal bir yapı olarak kalmasıdır; lakin bunun ayrıca çok düşük bir ihtimalle de olsa, insan onkojenlerini aktive etme ve insan tümör bastırıcı genin işleyişini bozma ihtimali vardır. İn vivo olarak bir vektör olarak adenovirüs kullanılmasının bir büyük dezavantajı, kapsidden türemiş peptitlere karşı oluşan CTL cevabıdır; bu cevap vektör tarafından transdüksiyona uğratılmış hücrelerin yok edilmesine, lokal doku kaybına ve iltihaba neden olabilir. Adenovirüs tarafından kodlanan yabancı transgen ürünlerinin peptitlerini sunan host hücrelerin, CTL’nin aracılık yaptığı yıkıma hedef olduğu gösterilmiştir. Adenovirüsler çok rastlanan virüsler olduğu için, insanları büyük bir çoğunluğu spesifik serotiplerden en az bir tanesinin bağışıklığına sahip. Gen tedaviside bu aynı serotipin kullanılması durumunda neredeyse her zaman hızlı ve güçlü bir bağışıklık cevabı oluşur, öyle ki adenovirüs vektörünün verilmesinden günler sonra bile hastanın serasında yüksek miktarda anti-adenovirüs antikoruna rastlanır. Bu tür vektörlerin alıcılarını screen’erek daha önceden karşılaştıkları serotipler belirlenebilir, ve başka bir serotip vektör olarak kullanılabilir. Fakat, bu yaklaşım değişik serotiplerden çok geniş bir rekombinant vektörler panelinin mevcut olmasını gerektirir. Bir başka potansiyel problem ise, aynı serotipteki vektörün tekrar verilmesi ile oluşacak güçlü ikincil bağışıklık cevabıdır. Adenovirüs tarafından kodlanmış bir transgenin ifade edilme periyodu oldukça kısadır. İfade rapor edildiğine göre “makul” bir seviyede in vivo olarak 14 gün sürmektedir; ancak bağışıklık cevabının manipulasyonu daha uzun ifade periyotlarına da neden olmuştur. Bu kısa ifade süresi ana olarak bir ölçüye kadar da transgenin kendisine (özellikle transgen normalde kişide ifade edilmiş değilse [yabancı] CTL cevabına neden olan viral polipeptitlerin ifade edilmesinden kaynaklanır. Adenoviral genom kendisini hedef hücrenin genomuna entegre etmediği için, sadece oğul hücrelerden (eğer hedef hücreler bölünüyorsa) birisi transgene sahip olacaklardır ve böylece transgene sahip hücrelerin sayısı yarıya inecektir. Adenoviral gen transferi trangenin sadece bir kerelik transferinin gerektiği, büyüme faktörü terapisi gibi, uzun dönem ifadenin tersine büyüme faktörünün geçici ifadesinin gerektiği durumlar için idealdir. Nakil toleransı yaratmaya yönelik protokollerde, adenoviral vektörün alıcıya nakilden önce verilmesi, alıcıda uzun dönem immmünolojik tolerans yaratacak düzenleyici T-lenfosit populasyonunun oluşmasını sağlamaya yetecektir. Adeno-benzeri virüslerAdeno-benzeri virüs (AAV) vektörleri adenovirüs vektörlerinin sunduğu, geniş host hücre spektrumu dahil avantajların çoğuna sahip olup, bazı durumlarda nispeten daha yüksek transdüksiyon verimine sahiptirler. Ayrıca, yüksek derecede hücre ölümüne (sitopatojenisite) neden olan adenovirüsün tersine, AAV’ler hedef hücrelerde çok az hasara neden olurlar. AAV ayrıca stabil olarak belli yerlerde, host hücrenin genomuna (insanlarda kromozom 19’da) entegre olur ki bunun daha uzun süren transgen ifadesi gibi yararlı bir etkisi vardır. Bununla beraber, AAV’lerin ana-hücre kültürlerinin transdüksiyonunda retroviral vektörlere göre kayda değer bir biçimde düşük verimli olduğuna dair kanıtlar vardır. Ana-hücre transüksiyonlarında, AAV vektörlerinin çoğu host genomun içine entegre olmaz, onun yerine ekstrakromosal olarak kalır, bu verimsizlik in vivo uygulamalardaki yararlılığını azaltmaktadır. Herpes simpleks virüsüHerpes simpleks virüsü (HSV) vektörleri çeşitli uygulamalar için geliştirilmektedir, bunların içinde Parkinson hastalığı, habis gliomas (bir nevi beyin tümörü), beyinsel iskemisi (gerekli gıdayı alamayan beyin dokusunun beslenememekten zarar görmesi) gibi hastalıkların tedavisi gibi nöronal dokuyu hedefleyen gen transfer protokolleri vardır. HSV, host hücrenin çekirdeğinde ekstrakromosal bir DNA elemanı olarak kalır, çevre sinir sistemindeki duyusal nöronlarda ve bazı merkezi sinir sistemi dokularında uzun ömürlü belirtisiz enfeksiyonlar yaratma gibi kusursuz bir yeteneğe sahiptir. Bu olay, hedef nöronal dokuda uzun zamanlı gen ifadesi için fırsat yaratır. HSV vektörlerinin ayrıca geniş host hücre spektrumları vardır, ve büyük gen eklemelerini kabul edebilirler, ve replikasyon için gerekli en-erken (IE) genlerinden çoklu silme işlemleri ile hedef hücrelere karşı daha az sitotoksik hale getirilmişlerdir ve güvenlikle ilgili kaygılar azalmıştır. Şu anda HSV nin bir gen tedavisi vektörü olarak kullanılmasıyla ilgili en önemli sorum klinik kullanımındaki güvenliktir, çünkü bu virüsün yaban tipinin insan beyninde lytical bir şekilde çoğalıp, potansiyel olarak çok ciddi ensefalit (beyinin iltihabi lezyonu) e neden olduğu bildirilmiştir. Vaccinia virüsüVaccinia virüsü (ineklerde çiçek hastalığına neden olan virüs) şu anda nakil çalışmaları için vektör olarak kullanılmasada, kanser gen tedavisisi için geliştirme altındadır. Vaccinia virüsü, dünya çapında çiçek hastalığının yok edilmesinde kullanılmıştır, ve güvenli bir canlı aşı maddesi olduğunu ortaya konmuştur. Vaccinia virüs vektörleri host hücrenin genomuna entegre olmazlar, bununla birlikte büyük transgenler barındırabilirler ve aşırı şekilde immünojeniktirler. Vaccinia virüsü hastaları tümör antijenlerine karşı bağışık hale getirmek üzere büyük genomuna tümör antijen genleri yada bağışıklık cevabını kuvvetlendiren proteinler kodlayan genler yerleştirilerek kullanılabilir. Transgenlerin çoğu in vivo olarak yüksek seviyelerde ifade edilirler, bu tümor antijenine karşı normal durumda kanserli hücreyi öldürmeye yetmeyecek kuvvette olan, spesifik bir bağışıklık cevabına neden olur. Eğer gerekli ise, geniş kapasitesi sayesinde vektöre birden fazla gen klonlanabilir. Viral olmayan gen transferiViral vektörlerden transgenlere yer açmak, iltihabi cevapları azaltmak, yada güvenliklerini arttırmak amacıyla gerekli olmayan genler çıkarılabilir; bu virüsün basitleştirilmesini gerektirir, bazen de aşırı bir şekilde. Geri kalan, ilgili genlerin yüksek seviyelerde, yüksek bir derecede düzenlenmiş kendine özgü bir biçimde, kontrollü bir periyot boyunca (uzun yada kısa olabilir) ifade edilmesi için dizayn edilmiş suni bir vektör kabuğu olabilir. Aynı sonuçları elde etmek için başka bir yaklaşım tarzı ise, hücrelerin çekirdeklerine genetik materyali basit bir şekilde aşılayan bir sistem yaratmaktır. Bu bakış açısı, geçtiğimiz birkaç yılda yoğun araştırmaların odağı olmuştur ve bu araştırmalar birkaç viral olmayan vektörün geliştirilmesiyle sonuçlanmıştır. LipozomlarEn temel formunda, lipozomlar bir katyonik amfifil ve bir nötral fosfolipid (tipik olarak, dioleoyl- fosfatidiletanolamin) olmak üzere iki lipid türünden oluşurlar. İkiside de ticari olarak mevcuttur. Lipozomlar, kendiliklerinden DNA’ya bağlanıp, yoğunlaştırarak hücrelerin plazma zarlarına yüksek eğilimi olan kompleksler oluştururlar; bu endositoz olayı ile lipozomların sitoplazmaya alınmasına neden olur. Bu temel protokolün pek çok adaptasyonu denenmiştir ve değişen seviyelerde gen ifadesine neden olmuşlardır. Fuzijenik virozomlarÇok yakın geçmişte, viral transfer vektörlerinin bazı avantajları, lipozomların basitlik ve güvenliği ile birleştirildi ve ortaya fuzijenik virozomlar çıktı. Virozomlar, Sendai virüsünün zar birleşme proteinleri, plasmit DNA’yı kaplamayan lipozomlarla yada antiduyu uygulamaları için oligodeoksinükleotitlerle birleştirilerek oluşturuldu. Virozomlardaki viral proteinlerin doğasından kaynaklanan hücre zarlarıyla birleşme yeteneği sayesinde bu hibrid vektörler nükleik asitlerini hedef hücreye çok etkili bir şekilde transfer ederek, iyi gen ifadesi veriyorlar. Her viral vektörün genomuna eklenebilen transgenin büyüklüğü ile ilgili bir limiti vardır, virozom ve lipozom teknolojilerinde böyle bir limit bulunmamaktadır. 100 kilobaz çifte kadar genler ex vivo ve in vivo olarak fuzijenik virozomlar kullanılarak nakledilebilmiştir. DNA-ligant birleşmesi/çiftiDNA-ligant çifti iki ana bileşenden oluşur: DNA-bağlayıcı bir alan ve hüce-yüzeyi alıcıları için bir ligant. Transgen bu şekilde spesifik olarak hedef hücreye yönlendirilebilir ve orada alıcı-aracılığında endositoz ile ilçeri alınır. DNA-ligant kompleksi endositik yola girdikten sonra, çift, endozom lizozomla birleştiğinde muhtemelen yok olacaktır. Curiel ve meslektaşları, adenovirüsten türemiş bir domaini ligantın hücre yüzeyi alıcısı parçasıyla birleştiren bir metod kullanarak bundan kaçınabilmişlerdir. Çiftin bu noktadan sonra, özelleşikliği adenovirüsler kadardır, geniş bir host hücre spektrumuna bağlanabilirler; ayrıca çiftin endozom bir lizozom tarafından yok edilmeden önce endozomu terk edip sitoplasmaya (endozomoliz diye bilinen bir proses ile) girmesini sağlayan bir adenovirüs karakteristiğine sahiptirler. Çıplak DNAViral olmayan gen transferi teknikleri için en basit fikirlerden biri arındırılmış DNA’nın plazmitler şeklinde kullanılmasıdır. Bu yaklaşım, DNA aşılamaları için, diğer protokollerle birlikte kullanılmıştır, ve gen tedavisi ile ilgili pek çok durumda denenmiştir. Bu yaklaşımın basitliğine rağmen çalışmalar transfeksiyon veriminin çok düşük olduğunu ortaya çıkarmıştır ve kullanımını sınırlandırmıştır. Verici fare ırkından alınan MHC sınıf I antijenini kodlayan plazmit DNA’nın, bir doz anti-lenfosit serumu ile birlikte aşılanması, takip eden karaciğer nakillerinde vericiye özel tolerans yaratmıştır. Verici DNA’sına timüste enjeksiyondan 4 gün sonrasına kadar, dalakta ise enjeksiyondan 7 gün sonrasına kadar rastlanmıştır. Balistik gen nakliBu fiziksel metod mikro taşıyıcıların kullanımı gerektirir. (genelde altın partikülleri yada herhangi bir başka inert madde) Bu partiküller DNA ile kaplanır ve gen tabancası denilen patlayıcı yada gaz-itmeli bir balistik cihaz ile yüksek hızlarda ateşlenir. Partiküller hedef hücreye girdikten sonra, DNA micro taşıyıcılardan yavaşça ayrılır, ve yararlı olacak seviyelerde gen transkripsiyonu ve tercümesine neden olur. Bu teknik deneysel olarak geniş çapta kullanılmıştır, ama klinik kullanımı ortaya çıkarılabilir yüzeylerle sınırlıdır çünkü ateşlenen partiküller, dokunun derinliklerine ulaşamazlar. Muhtemel klinik kullanım alanları sidik torbası üretelyumu, kornea, epitel hücreleridir. CaPO4 transfeksiyonuCaPO4 transfeksiyonu, moleküler biyologlar tarafından transgenleri hücrelere in vitro olarak aşılamada yıllardır başarıyla kullanılan nispeten verimli kimyasal bir metottur (%10). Takip eden deneylerde ve klinikte kullanılan vektörlerin çoğunun üretimindeki protokollerin önemli bir parçası olsa da, bu metod in vivo uygulama için uygun değildir. Promoter daraltılmasıGen tedavisi vektörlerinin başarısı için alakalı gene uygun bir promoter bağlanması şarttır. Bir promoter genin üstünde bulunan, mRNA ve ardından protein sentezi için üzerine proteinlerin (transkripsiyon faktörleri, DNA polimeraz) bağlandığı düzenleyici bir DNA zinciridir. Deneysel ifade vektörlerinin ve gen tedavisi vektörlerinin çoğu, klonlayacakları esas (sürekli) genlerin yüksek seviyesi yüzünden patojen virüslerden elde edilen promoter elemanları kullanırlar Çeşitşi gen transfer çalışmalarında sitomegalovirüs(CMV), Rous sarkoma virüsü (RSV) ve SV40’tan elde edilen promoter ve arttırıcı elemanlar kullanmışlardır ve cesaret verici başarılar elde edilmiştir fakat ifade seviyesi, kullanılan vektör, vektörün verilme şekli ve transdüksiyona uğratılan hücrenin türü dahil pek çok faktöre bağlıdır. Araştırmacılar tarafından en çok karşılaşılan problemlerden biri trangenlerin çok düşük seviyelerde ve geçici olarak ifade edilmeleridir. Bu kötü ifadelerden sorumlu moleküler mekanizma çok yetersiz bir biçimde tanımlansa da, ana neden promoterin daraltılması olabilir. Promoter daraltmanın gen tedavisi alanındaki önemi göz önüne alınınca, bu problemle direkt olarak ilgilenmek için dikkate değer birkaç çalışma yapılmıştır. Deneysel sistemlerde gösterilmiştir ki, adenoviral vektörlerin in vivo olarak uygulanması belirli yada belirsiz bağışıklık cevapları aracılığıyla sitokin üretimine neden olmaktadır. Bu sitokinler daha sonra transgeni taşıyan adenovirüs tarafından enfekte edilmiş hücreleri etkileyip, sitokinlerin arabululuk ettiği hücresel sinyaller başlatacaklar ve transgen ifadesini ayarlayacaklardır/kontrol altına alacaklardır. Qin ve meslektaşları, pek çok viral promoter tarafından kontrol edilen transgen ifadesinin IFN ve TNF inhibe edildiğini ve bu iki sitokininde birlikte işleyen etkileri olduğunu keşfetmişlerdir. CMV ve RSV’den türetilen promoterler sitokin uygulamasına karşı en hassas olanlardır Yine rekombinant adenovirüs kullanan başka bir fare modelinde Harms ve Splitter, nötralize edici anti-IFN monoklonal antikorunun in vivo olarak verilmesinin transgen ifadesini arttırdığını göstermişlerdir. Moleküler seviyede, SV40, CMV ve RSV’den türetilen promoterlerin hepsi aynı interferon cevap zincirine sahiptir. IFN’in hücre yüzeyinde etkileşime girmesinden dolayı oluşan çekirdeksek faktörler bu viral promoterlerdeki elemanlara bağlanırlar ve bu transgenin ifade edilmesini inhibe eder. Yangıya neden olan sitokinlerin olmadığı bir ortamda güçlü, ana viral promoterler in vitro olarak memeli ifadelerinde kullanılmıştır ve başarı elde edilmiştir. Bu güçlü viral promoterlerin kullanımı doğal olarak klinik gen tedavisi protokollerinin geliştirilmesi bakımından ideal olarak kabul edilmiştir. Bununla beraber, transgen ifadesinin düşük seviyede olması genellikle rastlanan bir olgudur ve bunun nedeninin vektörün belirli bir bileşeninden çok, tamamının dizaynından kaynaklandığı düşünülmektedir. Gen tedavisi ifade sistemlerinin de yaygın iki olgu da viral promoter ve arttırıcı elemanlardır. İn vitro ifade vektörlerinde ve in vivo gen tedavisi vektörlerinde kullanılan virüsler ve izole edilmiş viral promoterler enfekte olmuş hücrelerin ürettiği sitokinlerden ters bir biçimde etkilenebilirler. Bu yüzden gen transferi için trangenin ifadesinin gerektiği anda ve yerde vektörün verileceği ortamda olacak faktörler tarafından yukarı çekilebilecek promoterler seçmek mantıklıdır. Örneğin MHC sınıf I promoteri immüno-ayarlayıcı gen tedavisi uygulamaları için daha uygun olacaktır çünkü, IFN gibi yangısal sitokinler aslında transkripsiyonu arttırmak için bu promoter üzerine tesir ederler. İlk Gen Tedavisi İnsanda ilk gen tedavisi denemesini 1990’da Dr. French Anderson gerçekleştirdi. Ex vivo gen tedavisi stratejisinin kullanıldığı yöntemde adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tii kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamı tehlikeye atabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen tedavisi denemesi olarak seçilmesinin bazı nedenleri vardır.Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen tedavisinin başarı ihtimalini artırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir:Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteinin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen tedavisi 2 hasta çocuk üzerinde gerçekleştirilmiştir. Tedavide, hastaların hücreleri (T-lenfosit) alınarak laboratuar şartlarında doku kültürü yoluyla çoğaltılmıştır. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledilmiştir. Virüs hücrelere girerek genetik materyale geni yerleştirmiştir. Genetik olarak başarıyla seçilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltılmıştır. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verilmiştir. Bu işlem yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlanmıştır. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edilmiştir. Tedavi sonucunda iki çocukta da iyileşme kaydedilmiştir. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler ve AİDS gibi hastalıklarla başa çıkmak için gen tedavileri tasarlanmıştır.

http://www.biyologlar.com/gen-tadavi

Çevresel kanserojen maddeler ve insan sağlığına etkileri

Çeşitli çevresel faktörler insan sağlığı için ciddi bir risk oluşturabilir. Belli çevresel ve mesleksel kirleticilere maruz kalınmasının kansere yakalanma riskini arttıdığını gösteren çok sayıda kanıt vardır. Bunlara örnek olarak (ki bunlarla sınırlı değildir) aşağıdakileri sıralayabiliriz: İçme suyu’nun kirlenmesi Su yaşamı sürdürebilmek için gereklidir. Düşük su kalitesi insan sağlığı için büyük tehdit oluşturur. 2004 yılı verilerine göre ishalli hastalıklar her yıl tek başına 1.8 milyon ölüm vakasından sorumludur. Çeşitli mikrobiyal, kimyasal ve radyolojik faktörler (radon gibi doğal radyonüklidler) su kalitesinin düşmesinde rol oynamaktadır. Hava Kirliliği Kirli hava, her yıl dünya çapında tahmini 3,1 milyon ölüm olayından sorumludur. Hava kirletici etmenler ile solunum yolu enfeksiyonları, kalp damar hastalıkları, akciğer kanseri ve diğer başka hastalıklar arasında bir dizi bağlantı bulunmaktadır. Kimyasal maddeler (asbest gibi) Asbest maruziyeti çoğunlukla çalışma ortamında bulunan asbest liflerinin solunması yoluyla gerçekleşir, ama aynı zamanda asbest içeren binalarda ve evlerde, asbest fabrikalarınında asbestli havanın solunması ile de olur. Bugün, dünya üzerinde yaklaşık 125 milyon kişi işyerlerinde asbeste maruz kalmaktadır. Asbest solunması akciğer kanseri, mezotelyoma, gırtak, yumurtalık kanserlerine ve asbestosis’e (akciğer fibrozis) neden olur. 2004 yılında, iş yerinde maruz kalınan asbest ile ilişkili akciğer kanseri, mezotelyoma ve asbetosis hastalıklarından 107.000’i ölümle sonuçlandı. Bunun yanı sıra mesleki maruziyet dışında asbestle ilgili her yıl birkaç bin ölüm vakası gerçekleşmektedir. Gıda kimyasalları (dioksin gibi) Dioksin ve dioksin benzeri maddelerin, insanın gelişimsel ve nörogelişimsel, tiroid ve steroid hormonları ile üreme gibi pek çok vücut fonksiyonu üzerinde birtakım toksik etkilerine neden olmaktadır. Iyonlaştırıcı radon radyasyonu Radon, yeraltı ve yerüstü sulardan yayılan, çevresel radyoaktiviteye en önemli kaynak olduğunu kabul ettiğimiz bir doğal gaz türüdür. Açık havada genellikle oldukça düşük konsantrasyonda bulunurken, evlerde daha yüksek düzeylere ulaşabilrmektedir. Radon maruziyeti sigaradan sonra akciğer kanserinin ikinci önde gelen nedenidir. ABD'de, yıllık toplam 160.000’i bulan akciğer kanseri ölümlerinden yaklaşık 21.000’i radon radyasyonu ile ilişkilidir (US EPA, 2003). www.dunyakansergunu.org Kanserojen maddeler Doğal kanserojenler Kanserojen maddeler kanser riskini artırabilir. Dört grup kanserojen madde vardır. Doğal kanserojenler Yemek hazırlama esnasında oluşan kanserojenler Yemeklere eklenen koruyucu ve renklendiriciler Bazı maddeler vücutta kanserojene dönüşebilir Doğal kanserojenler Buna örnek aflatoksindir, mantar tarafından üretilen bir mikotoksindir. Tahıl ve kabuklu yiyecekler mantar tarafından bulaşabilir, aflatoksin adı verilen kimyasallar üretebilir. Afrika’da ve Uzak Doğuda karaciğer kanserine sebep olduğu bilinmektedir, özellikle hepatit virüsü taşıyan insanlarda görülür. Yemek hazırlama esnasında oluşan kanserojenler Poliklik hidrokarbonlar, benzopyrene gibi, açık havada barbekü sırasında şekillenir. Bu poliklik hidrokarbonlar aynı zamanda akciğer kanserine yol açan sigaranın içindeki ana unsurlardan biridir. Geleneksel olarak çok fazla kızartılan yada ızgara yapılan etler, meme kanseri, distal kolon, prostat ve pankreas kanseri riskini artırır. Çoğu araştırma göstermiştirki kızarmış veya ızgara yapılarak yenilen et kolon ve meme kanseri riskini 2 kattan daha fazla artırmaktadır. Bunun gibi 20’den fazla kimyasal tanımlanmıştır. Şimdi oldukça küçük miktarlardadırlar, fakat hareketleri ilerlermektedir, etkisi hayvan ve insan çalışmalarında enerjilerinin %30-40’ı kadarında nasır ve aspur yağı gibi doymamış yağlarla n-6 birleşmektedir.Düşük yağ alımı, enerjinin %15-22’si bu gibi etkiler yüzünden çarpıcı bir şekilde düşmektedir. Yemeklere eklenen koruyucu ve renklendiriciler Yemek renklendiriciler yemeğin cazibesini artırmak için eklenir, fakat sağlığımız için iyi bir şey değildir. Mesela sarı renkli tereyağı. Yapay tatlandırıcılar (sakarin gibi) ve nitrosamin üreten koruyucular mesane ve mide kanserine yol açmaktadır. Bazı maddeler vücutta kanserojene dönüşebilir Nitrosamin sodyum nitritten oluşmaktadır. Sodyum nitrit içtiğimiz suda ve sebzelerde bulunmaktadır. Çevresel Faktörler ve Kanser Yapılan araştırmalara göre insanda görülen kanserlerin önemli sayılabilecek bir bölümü çevresel faktörlerin etkisi ile ortaya çıkmaktadır. Dolayısıyla bu faktörler yeterince kontrol edilebilirse kanserlerin önemli bir bölümünün önlenebileceği söylenebilir. Kansere neden olabilecek çevresel faktörler içinde en önemli olanları yaşam tarzı, radyasyonla karşılaşma, infeksiyona neden olan ajanlar ile hava, su ve toprakta bulunan bazı maddeler olarak sıralanabilir. Diyet, tütün, alkol kullanımı, fazla kilo (obezite) ve fiziksel inaktivite yaşam tarzının en önemli alt birimleridir. Geçmiş yıllarda yapılan ve günümüzde de geçerliliğini koruyan araştırmalar, tütün ve radyasyonun kansere neden olduğunu açık bir şekilde ortaya koymuştur. Ancak yukarıda belirtilen diğer faktörlerden bir kısmı için aynı yargıya varılamadığı da bir gerçektir. Bunun nedeni bu faktörlerle ilgili yapılacak olan araştırmaların fazla karmaşık olmasıdır. Bu karmaşanın ilk örneği diyetin kanser gelişmesi üzerindeki etkileridir. Bu konu araştırılırken bireylerin yaşamı boyunca kullandığı diyetin tam olarak bilinmesi ve diğer kanserojen faktörlerle karşılaşıp karşılaşmadığının tam olarak saptanması önem kazanır ve bu bireylerin uzun bir dönemde izlenmelerini gerektirir. Günümüzde geliştirilen sorgulama teknikleri ve moleküler düzeydeki bazı değişkenlerin saptanabilmesi önemli ipuçları vermesine karşın bu konuda doğru bir yol haritasının çıkarılması halen çok güçtür. İkinci örnek günlük yaşamda kullanılan çeşitli kimyasal maddelerlerin kanser gelişmesi üzerindeki etkileridir. Amerika birleşik devletlerinde yaklaşık 100.000 kimyasal madde çeşitli nedenlerle günlük yaşamda kullanılmakta ve her yıl bu sayı artmaktadır. Ancak bunların çok azı şüpheli bulunarak test edilebilmektedir. Bunların bir kısmının gerçekten zararlı olduğu ileri sürülürken bir kısmının ise kanser nedeni olabilecek maddeleri kontrol edebildiği de belirtilmektedir. Diğer yandan bu maddelerin hangi mekanizma ile kansere neden olduğunun araştırılması yöntemi de önem kazanmaktadır. Bu maddelerden bir kısmı genetik yapıyı değiştirirken diğer bir kısmı vücudun savunma sistemini etkileyerek kansere neden olabilmektedir. Dolayısıyla bir yöntemle yapılan bir testin negatif çıkması o maddenin kanserojen olmadığını göstermeyebilir. Bunu tersi de doğrudur. Ayrıca hayvan deneylerinde kansere yol açmadığı görülen bir maddenin insan da kansere yol açmayacağını ileri sürmek çok akılcı olmaz. Tüm bu açmazlara karşın günümüze değin elde edilen veriler ışığında bazı önermeler gündeme getirilebilir. Bu yazıda diyet üzerinde durulacaktır. Gelişmiş ülkelerde kansere bağlı ölümlerin %10-30’unda sağlıksız diyetin rolü olduğu tahmin edilmektedir. Ancak yukarıda da değinildiği gibi tek bir yiyeceğin kanser üzerindeki etkisinin belirlenmesi çok zordur. Dolayısıyla aşağıda bazı bilimsel verilerden elde edilen bilgilere yer verilecektir. Kırmızı et ve çeşitli işlemlerden geçirilen etler: Yapılan çalışmalara göre günde 2 kez 80gr kırmızı et tüketen bireylerde kalın bağırsak kanseri gelişme riski günde 20gr kırmızı et tüketen bireylere göre 3 kat daha fazladır. Benzer şekilde günde 100gr’dan fazla kırmızı et tüketen bireylerde mide kanseri gelişme riskinin daha fazla olduğu ileri sürülmektedir. Bu tür yiyeceklerde bulunan ve “hem” adı verilen yapılar bağırsaklarda bakterilerin etkisi ile kanserojen olabilen diğer kimyasal ürünlere dönüşebilmektedir. “Hem” ve bu kimyasal ürünler bağırsakların iç örtüsüne etki ederek kansere kadar giden süreci başlatabilirler. Beyaz ette “hem” yapısı daha az olduğundan bireylerin daha fazla beyaz et tüketmeleri önerisi bu özellikten kaynaklanmaktadır. Diğer yandan etin pişirilme şekli de önemlidir. Kızartma ve ızgara ile yüksek sıcaklıkta pişirilen etlerde açığa çıkan kimyasal maddeler hücrenin DNA yapısını değiştirebilir. Benzer şekilde sucuk, sosis gibi çeşitli işlemlerden geçirilerek elde edilen etler fazla miktarda nitrit adlı kimyasal madde içermektedir. Yapılan çalışmalarda yüksek oranda “nitrit” içeren yiyeceklerin mide kanseri riskini arttırdığı gösterilmiştir. Bu nedenle günümüzde marketlerde satılan yiyeceklerin bir kısmında katkı maddesi içermediği belirtilmektedir. Balık: Kesin olmakla beraber günde 80gr balık yiyen bireylerde bağırsak kanseri gelişme riski haftada birden az balık yiyen bireylere göre 3 kat daha azdır. Tam olarak kanıtlanmamış olmamakla beraber bunun nedeni balıklarda omega 3 yağ asidinin fazla olması ve balık etinin beyaz et olarak kabul edilmesidir. Lifli yiyecekler: Çalışmaların yapıldığı ülkelere göre değişmekle birlikte fazla lifli yiyecek tüketen ülkelerde özellikle kalın bağırsak kanserlerinin daha az ortaya çıktığı belirtilmektedir. Bağırsaklardaki bakteriler lifli yiyeceklerden bir çok kimyasal yapının açığa çıkmasına neden olurlar. Bunlardan “bütirat” adı verilen kimyasal yapı bağırsaklarda kanser oluşmasını engeller. Ayrıca lifli yiyecekler bağırsak hareketlerini arttırarak bir çok zararlı maddenin bağırsak ile temas süresini kısaltarak bağırsak iç örtüsünün olumsuz yönde etkilenmesini önler. Sebze ve meyva: Günde 5 porsiyon sebze ve meyva tüketen bireylerde ağız, yemek borusu, akciğer, mide, meme, prostat ve böbrek kanserlerinin daha az görüldüğü öne sürülmektedir. Bu bağlamda yeterli sebze ve meyva tüketen bireylerde ağız ve yemek borusu kanserinin üçte bir, akciğer kanserinin ise dörtte bir oranda daha az görüldüğü belirtilmektedir. Bunun nedeni sebze ve meyvaların çok yüksek oranda besleyici madde içermesinden kaynaklanmaktadır. Bu maddeler bir yandan kanser riskini azaltabilirken diğer yandan kalp hastalıkları ve diyabet gibi diğer hastalıkların ortaya çıkma riskini de azaltabilmektedir. Ancak bu maddelerden yeterince faydalanabilmek için her renkteki sebze ve meyvaların aynı oranlarda tüketilmesi gerekmektedir. Bir porsiyon sebze ya da meyva yaklaşık 80gr sebze ya da meyvaya karşılık gelir. Örneğin bir potakal veya bir elma ya da haşlanmış 2 servis kaşığı brokoli veya havuç bir porsiyon olarak kabul edilir. Diğer yandan sebze ve meyvalardaki besleyici maddeleri içeren ilaç şeklindeki destekleyicilerin bu konuda yeterli etkisi olmadığı da bilinmektedir. Sebze ve meyvaların bir diğer faydası fazla lif içermeleridir. Bu konuya yukarıda değinilmişti. Tuz: Yemeklere fazla tuz katılması ya da tuzda saklanan yiyeceklerin fazla tüketilmesi mide kanseri riskini arttırabilmektedir. Japonya’da mide kanserinin fazla görülmesi bununla ilişkilendirilmiştir. Tuz bir yandan mide iç örtüsünü tahriş ederken diğer yandan midede bulunabilen H. Pilori adlı bakteri ile ilişkiye girererek mide kanserine giden süreci başlatabilmektedir. Diğer yandan fazla tuz kalp-damar hastalıkları üzerinde de olumsuz etkiye sahiptir. Yağlar: Normal şartlarda günlük toplam kalori gereksinimin en fazla %30’u yağlardan karşılanmalıdır. Örneğin günde 2100 kalori alması gereken bir bireyin tüketeceği yağ miktarı yaklaşık 75gr’dan daha az olmalıdır. Daha fazla yağ tüketilmesi çeşitli sorunlara yol açmaktadır. Kanser açısından bakıldığında meme, kalın bağırsak, ve prostat kanseri başta olmak üzere pankreas, over ve rahim kanserlerinin fazla yağ tüketen bireylerde daha fazla görüldüğü ve bunun tüketilen yağ çeşidi ile ilgili olmadığı ileri sürülmektedir. Bununla birlikte menapoza girmiş kadınların doymuş yağları (katı yağ), doymamış yağlardan (sıvı yağ) daha fazla kullanması meme kanseri riskini arttırdığı belirtilmektedir. Sonuç olarak yukarıda verilen bilgiler ışığında dengeli beslenmenin başta kanser olmak üzere bir çok hastalığı önleyebileceği söylenebilir. tiroidhastaliklaritedavisi.com KANSER VE KANSEROJEN MADDELER Hücre muazzam bir matematiksel programla dizayn edilmiş biyolojik bir enformasyon fabrikasıdır. Nitekim kazaen bir parmağımız ya da vücudumuzun herhangi bir yeri kanadığında o bölgede hızla bölünüp çoğalabilen hücreler arızalı olan kısmı tamir edebiliyor. Ne zaman ki iyileşme sağlanır, o zaman görevlerinin bittiğine dair talimat gelmesiyle birlikte çoğalmaları durdurulur. Böylece yeni hücreler ile aralarında denge sağlanmış olur. Fakat hücre âleminde istisnai bir durum var ki, o da kanser hücreleridir. Çünkü bu hücreler talimat filan dinlemezler, bölünmeye ve çoğalmaya ara vermeksizin devam edip habire etrafına zarar vermekteler. Malumunuz daha düne kadar hücreyi kompleks bir moleküler yığınından ibaret bir donanım sanıyorduk. Ta ki çağımızın baş ağrısı amansız hastalık(kanser) çıkana kadar bu bilgilerle oyalandık durduk. Derken bu amansız hastalığı yenme adına hücre ile ilgili çalışmalar hız kazanıp söz konusu mikro âlemin sıradan bir moleküler yığınlardan ibaret olmadığını anlamış olduk. Hatta hücrenin içerisine daldıkça matematiksel şah eser bir kod dünyası ile karşı karşıya kaldığımızı fark ediverdik. Öyle ki DNA yapısının keşfiyle birlikte hiçbir hücrenin kendi diriliş şifresini değiştirmediği, genetik kodlarına itaatkâr kaldığı gerçeği ile yüzleşiverdik. Zira doku hiyerarşisi gereği hücreler arasında mükemmel bir işbirliği esastır. Ancak bu düzene uymayan bir tek hücre tipi var ki o da hepimizin bildiği kanser hücresinden başkası değildir. Bu yüzden kanser hücreleri yaramaz asi evlat rolünde gayrinizamî bir yol takip ettiğinden ona anarşist gözüyle bakılmaktadır. Kanser hücresinin bağımsız olarak sergilediği bu isyankâr tavır yine de tam manasıyla kendisini özgür kılamamakta, sadece yaptığı tahribat bulunduğu dokuya zarar vermekle sınırlı kalmaktadır. Tabi bu bir kazanç sayılırsa. Oysa doku hayatı ortak yaşamayı gerektirir. Dolayısıyla bu birlikteliğin dışında bir eylem hoş karşılanmaz. Bu arada özellikle T- lenfositler kurulu bir sistemin tamamını kanser hücresinin keyfi çıkarları uğruna terk ettirmez, dahası onun emrine teslim etmemek için sonuna kadar direnir de. Böylece T-Lenfositler sayesinde birçok insan bilmediği nice kanser cinsini bertaraf etmiş olur, ama bundan birçoğumuz bihaberizdir. Demek ki kanser organizma içerisinde bir takım hücrelerin anormal büyümesi, hücre sitoplâzmasının azalması, hücre çekirdeğinde birden fazla çekirdeğin türemesi, hücre zarının seçicilik özelliğinin yitirmesi ve genetik şifrelerde bozulma hallerinin görülmesi gibi birtakım genel sapmalarla kendi damgasını vurabiliyor. Bu nedenle kendileri hücre anarşisti olarak nitelendirilir. Şurası muhakkak, bir hücrenin normal şartlarda bölünmesiyle gerçekleştirdiği çoğalma ile kanserli dokuların (tümörlü dokular) çoğalması aynı şeyler değildir. Çünkü normal şartlarda bölünerek çoğalan hücrelere ait dokularda nizami hayat söz konusu iken kanserli hücrelerin istila ettiği dokularda sancı ve anormal bozulma vardır. Bu yüzden sıhhatli dokularla anormal dokular birbirinden düzen bakımdan farklıdırlar. Hele kanser hücresi bir organa sıçramaya dursun, bir anda vücudun kontrol mekanizmalarına aldırış etmeksizin durdurulması imkânsız ur'a dönüşmektedir. Hatta bu ur'un yayılmayla birlikte hücrenin ortak kompüter programı altüst olabiliyor. Dolayısıyla kanser hücresinin başıboş bir şekilde büyümesinin matematik programla ilgisinin olduğu ihtimalini hesaba katmakta yarar vardır. Belli ki bir anormal plan ve hesabın gereği kanser hücreleri hızını alamayıp sapkın bölünmeler neticesinde süratle metastaz yapıp diğer dokulara sıçrayabiliyor. Mesela bir kanser hücresi incelendiğinde DNA ve RNA’ların anormal fonksiyon icra ettikleri gözlenir. Bir başka ifadeyle kanser hücreleri bazı genlerin çalışmalarını durdurarak hatalı genlerin çalışmalarına fırsat verebiliyor. Ayrıca kromozomlar iki kutupta toplanması gerekirken üç kutuplu halde toplanırlar. Dahası çekirdekler anormal derecede bir yandan büyürken çekirdekçik ise tam tersi eriyip genetik kodları işlemez hale getirebiliyor. Aslında normal bir hücre bölünmesinde olduğu gibi kanser hücrelerinin de mitoz bölünmeyle iki eşit hücre meydana getirmesi beklenir. Tabi bu boşa bir bekleyiştir. Çünkü kanser hücresi normal hücrenin tam aksine hareket ederek arızalı diyebileceğimiz biri büyük, diğeri küçük ölü hücre olarak sahne almaktadır. O halde T-Lenfositlerin saldığı toksinler karaciğerde imal edildiğinden bu organın sıhhatli olarak korunmasında sayısız faydalar var elbet. Ancak kanser hücresi bir şekilde kemik iliğinden yol alıp kan vasıtasıyla metastaz yapıp akciğere ya da karaciğere yerleştiyse akabinde vücut hem hızla bölünüp çoğalabilen, hem de bölünmeksizin hızla çoğalabilen hücrelerin istilasına uğrayacaktır. Artık bu noktada yapılacak bir şey kalmadığından kanser hücreleri ister istemez itaat etmeyip kendi başına buyruk hareket edeceklerdir. Kelimenin tam anlamıyla adeta isyankâr bir grup olarak etrafa dehşet saçacaklardır. Bu arada kansere neden olan bir takım görüşler mevcut olup, bu konuda kimileri değişikliğe uğrayıp arızalı hale gelen kromozomun bölünürken kanser hücresine dönüştüğünü savunurken, kimileri hücre zarı ya da endoplazmik retikulumda cereyan eden bir takım arızalara (defektlere) veya DNA ve RNA’ya kadar sirayet etmiş bir takım denge bozukluğuna bağlamaktadır. Hakeza kimileri mitokondrilerin bünyesinde teşekkül etmiş bir anomalinin ribozomlara taşınmasıyla birlikte protein zincirlerinde yanlış eşleşmelerin yol açtığı bozulmalara, kimileri de dış kaynaklı virüslerin, kronik iltihapların, bazı fiziki ajanların (röntgen, ultraviyole ve x ışınları) neden olabileceğini ileri sürmektedir. Kansere neden olan tartışmalar devam ede dursun bu arada genel kanaat en çok kimyasal ajanların kanser oluşumunda birinci etken kaynak olduğu yönündedir. O halde bazı kanserojen maddeleri şöyle sıralayabiliriz: Karbontetraklorür- Kuru temizlemede kullanılan bir kanserojen maddedir. Dioksan- Kozmatik sanayii ve deoderan da kullanılır. Benzidin- Boya yapımı ve plastik sanayinde kullanılıp mesane kanseri yaptığı düşünülmektedir. Ayrıca plastik petro kimya sanayinde eritici olarak kullanılan vinil klorür ve anilin boyaları da kanserojen maddelerden sayılmaktadır. Naftilamin-Cam sanayii ve ağartıcılıkta kullanılır. Ayrıca gözlük camı kesiminde kullanılıp deri yoluyla geçebiliyor. Yine nükleer sanayinde önemli madde olan benzil oksitte kanserojen sayılıp bazı cins camlarda mevcuttur. Floranilasetilamin-Yem depolamada kullanılır. Özellikle otçul formları yok edici bir maddedir. Dimetil fenilizoanilin-Gıda renklendirici olarak kullanılır. Nitrozoaminler- Insectısıt maddeler (böcek öldürücü ilaçlar) ve yağlayıcı bileşiklerde kullanılır. Benzpyrene- Katran, is, sigara ve kömür dumanında bulunur. Zaten karsinojenler genellikle sigara ziftine benzer yapıda olup hidrokarbonlar olarak sahne almaktadır. İlk defa İngiltere’de baca temizleyici çalışanlarında cilt kanserine rastlanması katranı ilgi odağı haline getirmiştir. Hakeza sigara zifiri de katran içermektedir. Dolayısıyla nikotin maddesinin tek başına kansere yol açtığı söylenemez. Buna rağmen şurası bir gerçek hala kamuoyunda sigara kanserin tek müsebbibi lider gözüyle bakılıp günah keçisi ilan edilmiş durumda. Oysa sigara kanser üreten faktör olmayıp sadece kanser eğilimini tetikleyici rol oynamaktadır. Kansere kanserojen maddelerin yanı sıra kromozom defektleri, genler üzerindeki birtakım arızalar, genetik şifrelerin silinmesi, kromozom sayısı değişmeleri gibi anormalliklerin neden olabileceğini de hesaba katmak gerekir. DDT- Böcek öldürücü diye bilinen bu ilacın hücre içerisinde DNA ve RNA spiral merdiven basamaklarına olumsuz etki sonucu genetik kartların bozulmasına neden olduğundan kanser yapabileceği düşünülmektedir. Tiner- Boyacılıkta inceltici madde olarak kullanılıp hücre içi erime ve lenfosit yapımını durdurucu etkisinden dolayı kanser nedeni olarak sayılmaktadır. Tıpta kullanılan bir takım ilaçlar- Kanser tedavisinde kullanılan ilaçların büyük çoğunluğu kanserojendir. Çünkü kemoterapi (kimyasal tedavi) ilaçlar hücreyi doğrudan tahrip etmektedir. Bu tahrip edici özelliğinden dolayı kanser hücrelerinin tamamının öldürülmesi hedeflenmektedir. Ancak kaş yapayım derken bu arada vücudun normal hücreleri telef olabiliyor. Sakarin- Şeker yerine tatlandırıcı olarak kullanılan sakarinin karaciğere toksik zehir etkisi yaptığı ileri sürülmektedir. Aspestos- Bu tozun akciğer kanserine yol açtığı tahmin edilmektedir. Alkol- Özellikle alkollü içecekler karaciğerin zehir gücünü azaltıcı etken olup zehirli artık maddelerin vücutta birikmesi ihtimalini güçlendirmektedir. Aynı zamanda alkolün yağları eritmesinden dolayı bilhassa yemek borusu ve yutakta kansere neden olduğu tahmin edilmektedir. O halde alkolün karaciğer ve diğer organlar üzerinde kanserojen etki yaptığını asla göz ardı etmemek gerekir. Radyoaktif maddeler- Bilim adamları karanlıkta resim çeken, aynı zamanda hummalı ve görünmeyen bir şey keşfettiklerinde doğrusu çok heyecanlanmışlardı. Belli ki yüz ifadelerinden bunca çabadan sonra bir takım kaya ve kimyasal madde filizlerinden bin bir güçlükle elde ettikleri söz konusu gizemli maddeyi bulduklarına pişman olmamışlardı. Hatta daha sonra bu maddenin sadece kaya ve kimyasal madde içeren filizlere has bir ürün olmayıp elektrik ampulünde gördüklerinde öylesine es geçilebilecek bir madde olmadığını iyice fark etmişlerdir. Dahası söz konusu ürünün bazen elektrik molekülleri tarzı ışık yayıp, maddenin hareket eden görünmez partikülleri şeklinde sahne alan radyasyon olduğu anlaşılmış oldu. Keza bu gizemli maddenin bir kısmı elektrik moleküllerine dönüşebildiği gibi küçük enerji paketleri şeklinde tezahür edebiliyor. Sadece tezahür etmekle kalmıyor farkına bile varmadan vücudumuza sinmektedir. Yani bu radyoaktivite olayı ile etrafa neşredilen alfa parçacıklarının (atom parçacıkları) insan vücuduna girmesiyle çıkması bir olup biyokimyamız bir anda altüst olabiliyor. Bundan öte hücrelerimizin ana kumandası DNA molekülleri üzerinde de değişikliklere neden olmasıyla birlikte vücudun savunma sistemini çökertip kansere yol açabiliyor. Kelimenin tam anlamıyla radyasyonun en küçük dozu bile vücutta çalışan kimyasal maddeleri anormal hallere sokmasının ardından kansere neden olduğu artık bir sır değil. Demek ki; DNA bünyesinde anlık değişikliklerin vuku bulması gen veya gen grubunun gereği gibi çalışamaması anlamına gelmektedir. Bu durum ister istemez radyoaktif maddelerden sızan radyasyonların DNA üzerinde bozulmalara yelken açıp ciddi bir kanser riski doğurmaktadır. Mesela güneşten gelen ultraviyole ışınlarının cilt üzerinde mutagenik etki yapması bunun tipik bir misalidir. Şu da bir gerçek işin ehli bir doktor radyasyon ışınların zararlarına rağmen vücudun hasar görmüş dokulara hedefleyerek kanserli hücreleri kurutup bir anda faydalı bir hale dönüştürebiliyor. Ki; Tıpta bu tür uygulamaya ışın tedavisi denmektedir. Hakeza kırılan kemikler veya bir takım klinik vakalarda röntgen filmi çekilerek bir noktada radyasyon teşhiste avantaj sağlamaktadır. Stres- Stresin hormonal dengeyi bozduğunu, dolayısıyla ruhsal bozuklukların kanseri tetiklediği ileri sürülmektedir. Bu yüzden bir kez daha moral değerlerin ve inanç faktörünün çok önemli bir sermaye olduğunu fark ederiz. Zaten kendi kendine iyileşen kanser vakaları duyduğumuzda anlayın ki o hasta sağlığını kazandığı maneviyatına ve moral çekim alanına borçludur. Çünkü hormonal denge moral ve motivasyonla hayat bulur. Kanser genetik olup olmadığı kesin bilinmese de, ama hormonal ve lenfatik yapının genetik olduğu kesin. Dolayısıyla irsi olan sistemin moral değerlerle güçlendirilmesi şarttır. Görüldüğü üzere kanser hücresine neden olan etkenler mütemadiyen kanser riski doğurmaktadır. Bilhassa kanser hücrelerinin lenfositler tarafından imha edilmesi ister istemez dikkatleri bu hücre üzerine çekmektedir. Dolayısıyla kemik iliğinde yeteri kadar lenfosit üretilmemesi veya dayanıksız zayıf lenfositlerin imal edilmesi kanserle mücadelede başarısız kılmaktadır. Bu yüzden kemik iliğine doğrudan etki yapan ışın, benzol, benzpyrene vs. gibi kanserojen maddelerden uzak kalmalıdır. Nitekim kemik iliğinin sağlıklı lenfosit üretebilmesi için temiz hava ve bitki ağırlıklı ortamlarda yaşamayı tercih etmekte fayda vardır. Hatta sadece kemik iliği değil, vücudun kimya fabrikası olan karaciğer organımıza da göz bebeğimiz gibi bakmalı. Çünkü karaciğerimiz ne kadar sağlıklı ise kanserojen zehirli maddeleri bertaraf edecek güç var demektir. Bir insan düşünün ki kansere yakalansa bile karaciğer kuvvetli ise önemi yok, şunu iyi bilin ki sağlam olan karaciğer dış kaynaklı zehri temizlemesini bilecektir. Madem lenfositler kansere karşı savaşan hücreler olarak adından söz ettiriyor, o halde lenf damarların geçtiği bölgeleri korumamız gerekiyor. Zira birtakım kaza sonucu meydana gelen büyük yanıklar kapansa da deri altında lenf kanallarının işlevsiz hale gelmesi kanser riskini tetikleyebiliyor. Çünkü bu yanık nedbelerde (yanık izleri) kanserle savaşacak lenfositlerin ortamda bulunmaması o bölgeyi kanser hücrenin insafına terk etmek anlamına gelecektir. Dolayısıyla deri deyip geçmemeli. Keza herhangi bir darbenin yol açtığı travmalardan ötürü meydana gelen kemik kanserleri de öyledir. Belli ki travma sonucu o bölgelerde lenf damarlarının tahrip olmasıyla birlikte savunmasız kalacağı muhakkak. Bu arada lenf bezleri merkezlerimizi de unutmamak gerekir. Çünkü isminden belli lenf merkezi. Yani kanser hücrelerinin baş düşmanı olan lenfositlerin konakladığı alanlar olması hasebiyle bu merkezlerin problem yaşamaması icap eder. Mesela herhangi bir iltihabı durumda rastgele antibiyotik kullanımı lenf merkezlerini savunmasız hale getirebiliyor. Bu yüzden bademcik, apandis gibi savunma misyonu yüklenmiş lenf merkezlerini sağlam veya yarı sağlam olduğu halde hemen cerrahi müdahale ile aldırmaya kalkışılmalı. Aksi takdirde o bölgeyi iş göremez hale getireceğinden kanser hücrelerine davetiye çıkarmak demek olacaktır. Ancak mecburi durum veya kronik vaka hale geldiğinde söz konusu lenf merkezleri alınmalıdır. Kanserde risk faktörü her kanser için aynı değildir. Mesela sigara rahim kanseri için risk faktörü değildir, ama akciğer için etken faktördür. Hakeza kirli hava, kronik bronşit ve bronşektazi hastalığı da öyledir. Kadınlarda çocuğuna süt emdirmemek meme kanseri için risk faktörüdür. Yine proaktin hormonunun uzun süre salgılanması, hormonal siklusların bozuk olması ve kiste yol açacak kronik iltihaplanmalar gibi etkenler de risk faktörüdür. Ayrıca sık sık kürtaj yaptırmak, kadınlık hormonların bozuk olması, rahim içi kronik iltihaplar ve o bölgenin devamlı tahriş edilmesi gibi etkenler rahim kanseri için risk faktörüdür. Lenf kanseri için kimyasal üretimin gerçekleştiği alanlar, marangozlukta kullanılan benzol, Tıp alanında veya başka alanlarda sürekli ışına maruz kalmak, hormonal dengesizlikler ve immun bağışıklık sisteminin yetersizliği gibi etkenler risk faktörüdür. Özellikle kanserin yaşlılarda daha sık görülmesi ister istemez bağışıklık sisteminin zayıflamasıyla ilgili bir durum olma ihtimalini güçlendirmektedir. Çünkü çoğalan kanser hücreleri karşısında savunma sistemi bozulup vücut bir noktada korunaksız kalmaktadır. Çocuk yaştan beri sürekli ilaç almak, özellikle sık sık ateş düşürücü ilaçlara başvurmak bağışıklı sistemini güçsüz kılacağından tüm bu etkenler kan kanseri için risk teşkil etmektedir. Hakeza radyoaktif ışınlar, röntgen ışınları ve çevre kirliliği gibi faktörlerde öyledir. Dolayısıyla bağışıklı sistemini güçlendirmek adına kırsal alanlarda bolca yürüyüş yapmak, mümkünse o bölgelerde ikamet etmek ve doğal yiyeceklerle beslenmek sağlıklı hayat için en doğru yöntem olsa gerektir. Vücudumuzun çalışkan, itaatkâr ve vefakâr akyuvar hücreleri bile bir gün gelip başımıza bela olabiliyor. Yani bilinmeyen bir nedenle ansızın huy değiştirip kendi başına buyruk bir vaziyette çoğalıp gereksiz yere hücrelerin yerini işgal edebiliyor. Böyle bir durumda şekil yapıları anormalleşip miskinleşmiş halde rehavete bürünürler. Artık bu noktadan sonra savaşmak yerine çoğalmayı yeğlerler. Tabii bu arada olan insana oluyor, derken hastanın savunma sisteminin zayıflaması, kan pıhtılaşması, oksijen faaliyetleri gibi birçok vücut fonksiyonlarının hezimete uğramasıyla birlikte lösemi (kan kanseri) olayı kaçınılmaz bir alın yazısına dönüşür. Malum olduğu üzere fazla güneşte kalmak, yukarıda belirttiğimiz yanık nedbeleri veya darbe sonucu meydana gelen birtakım ezilmeler, xeroderme ve keratoz senil türü cilt rahatsızlıkları, röntgen ışınına maruz kalmak gibi etkenlerin her biri cilt kanseri için risk faktörüdür. Mide ve bağırsak kanseri için mide nezlesi (hipertrofik gastrit), bağırsak nezlesi, spazmlar, dengesiz beslenmeler, safra kesesi iltihapları, bayatlamış yiyecek ve içecekler gibi etkenler birer risk faktörüdür. Kanserde erken teşhis çok önemlidir. Her ne kadar insanoğlu kanında taşıdığı lenfositler kadar kanseri anında teşhis edemese de Tıp dünyasının önümüze koyduğu biyopsi metodu ve patolojik teşhis gibi daha nice metotları ihmal etmemek gerekir. Çünkü kanser hastalığı konum itibariyle bulunduğu yere göre gizlenebiliyor. Bu yüzden hemen kendini ele vermekten kurtarabiliyor. Kanser teşhisinde aşırı kanamalar akciğer, rahim, bağırsak ve deri kanseri için bir gösterge olabiliyor. Ağrısız yumrular veya şişlikler ciddi bir kanser emaresi teşkil eder. Zira birçok hastalıklar ağrılı geçtiği halde kanser genel itibariyle başlangıçta ağrısız ilerleyen bir hastalıktır. Yorgunluk, bitkinlik, ateş gibi haller lenf ve kan kanseri belirtisi olarak düşünülüp erken teşhis tanı testlerini ihmal etmemelidir. Zayıflama ise halk arasında kanser belirtisi olarak addedilse de aslında en son aşamada oluşan bir belirtidir. Hematolojik incelemeler sonucunda belirlenen sedimantasyonun (kanın çökme hızının) yüksek olması da kanser emaresi sayılabiliyor. Basit bir öksürük bile solunum yolu, akciğer ve hançere türü kanserlerin habercisi niteliğindedir. Kusma, çift görme, görme bozukluğu veya körlük, baş ağrısı, denge bozukluğu beyin tümörü için birer işaret taşları olabiliyor. İdrar yollarında sürekli kan gelmesi böbrek ve mesane kanserini düşündürebilecek belirti sayılabiliyor. Bu arada terleme deyip geçmemeli, bilhassa lenf kanserlerinde sıkça rastlanılan bir durum olduğundan ihmale gelmez olgu olarak bakmakta yarar var. Anlaşılan bu sıraladığımız unsurlar kanser belirtileri olmakla birlikte illa kanser oldu manasına gelmemelidir. Mesela öksürük, üst solunum yolları enfeksiyonlarına bağlı nükseden bir hastalık türüdür. Dolayısıyla her türlü belirtiyi göz ardı ederek bir çekap yaptırayım demekle işi geçiştiremeyiz. Çünkü kanser check-up'la teşhis edilemez. O halde kanseri teşhisinde kullanılan bazı metotları şöyle sıralayabiliriz: Kan kanseri kemik iliği analizleriyle teşhis edilebiliyor. Lenf kanseri (Lymphoma ve Hodgkin hastalığı) Hemogram (kan sayımı), lam üzerine periferik yayma ile mikroskop altında kan formülü sayımı, sedimantasyon, karaciğer ve dalak sintigrafisi, akciğer röntgeni, elektroforez incelemesi ve biyopsi ile teşhis edilebiliyor. Solunum yolu kanseri (Hançere) için röntgen, tomografi, akciğer sintografisi ve bronkoskobi teşhiste önemli muayene metotları olarak kabul edilir. Meme kanserinde monografi filmi, sonografi (ultrason) ve biyopsi önemli teşhis metotlarıdır. Rahim kanserinde vajen sıvı simiri ( patolojik hücre muayenesi), jinekolojik ve biyopsi muayenesi yöntemi uygulanır. Mide kanseri için röntgen, endoskopi muayenesi, kanda CEA testi, anüsten endoskopi veya rektoskobi muayeneleri teşhis için büyük bir önem arz etmektedir. Yumurtalık ve prostat tümörleri için biyopsi, plasenta tümörü içinse kanda hormon testi yapılarak teşhis edilebiliyor. Böbrek tümörleri için röntgen ve böbrek sintigrafisi iyi bir teşhis araçlarıdır. Beyin tümörleri için kompüter tomografi, aniografi, elektroansefalografi, göç kökü muayenesi teşhiste yardımcı metotlardır. Demek ki CEA ve prolaktin, alfa-fetoprotein (AFP), bilgisayarlı tomografi, sintigrafi ve sonografi muayeneleri her ne kadar pahalı muayene metotları olsa da sağlık için başvurulması gereken ve özellikle erken tanı araçları olması bakımdan önem arz etmektedir. O halde önce erken teşhis sonra tedavi derken, “Olmaya devlet cihanda bir nefes sıhhat için yola devam” demeli. Kanser tedavisinde kanserli dokunun kontrolünün yanı sıra metastazın durdurulması veya yok edilmesi hedeflenir. Bu yüzden kanser tedavisi dört ana başlıkta toplanır: Birincisi cerrahi tedavi olup halk arasında her ne kadar “Yaraya neşter atılmaz, yara daha da azar” denilse de bu söz cerrahi yöntemlerin gelişmediği çağlara has söylenilmiş bir söz olduğundan bugünkü kriterler itibarı ile havada kalmaktadır. Belki gereksiz yere biyopsi aldırmalardan kaynaklı birtakım kronik iltihapların gözlemlenmesi bu söylemi haklı kılar gibi gözükse de, bu anlayış genele şamil değildir. Zira cerrahi müdahale son derece titizlikle kanserin yerleştiği alana neşter atılması ile gerçekleşen can simidi bir yöntemdir. Operasyon yapılan bölgeden alınan parçaların patolojik inceleme sonucunda elde edilen değerler normal çıkarsa tedaviye cevap verdiği anlaşılır. Aksi takdirde diğer yöntemlere geçilir. İkinci tedavi yöntemi ise röntgen ışınlarıyla yapılan özellikle kan kanseri, kemik kanseri ve beyin tümörlerinde uygulanan radyoterapi (ışın tedavisi) tedavisidir. Bu ışınların en meşhuru kobalt–60 olup, bundan başka elektron ve nötron tedavi yöntemlerde söz konusudur. Hakeza radyum elementinin saldığı radyoaktif ışınlar da kanser hücrelerinin yok edilmesinde önemli bir etken kaynağıdır. Bilhassa bu yöntemle radyo frekans radyasyonların oluşturduğu ısıyla kanser hücrelerinin zayıflatılması hedeflenmektedir. Böylece ışın tedavisi metodunda normal hücrelerin dayanabileceği, kanser hücrelerinin ise bu ısıya dayanamayacakları noktaya kadar ısı uygulaması yapılmaktadır. Üstelik bu metotla hastanın kemik iliği etkilenmediği gibi saç kaybı da olmamaktadır. Dahası yan etkileri diğerlerine göre çok daha hafif seyretmektedir. Üçüncü tedavi şekli kemoterapi (kimyasal ilaç tedavisi) olup uygulanan yöntemlerin en yaygınıdır. Bu yöntem özellikle kan kanseri, lenf kanseri, plasenta kanseri, Ewing sarkomu gibi kanserlerde başarılı sonuçlar vermektedir. Dördüncü tedavi yöntem ise özellikle lösemi(kemik iliği kanseri), lenf kanseri (BCG-F), cilt kanseri, meme kanseri, kemik kanseri ve mide kanserinde kullanılan immunoterapi tedavi yöntemidir. Ki bu yöntemle kanser hücrelerini verem aşısı örneğinde olduğu gibi vücudun bağışıklık sistemini güçlendirmeye yönelik kanserin (lenfositlere takviye edici kuvvet olarak) mağlup edilmesi hedeflenir. Bu dörtlü tedavi uygulamalarının yanında birtakım yardımcı tedavi metotlarda var elbet. Mesela ağrı tedavisi ağrısı geçmeyen hastalar için kullanılan bir yöntem. Aslında kanser illa da ağrı yapacak diye bir kural yok. Bu tür ağrılar daha çok hastanın son demlerine yakın birtakım zehirlerin hatta tedavide kullanılan kemoterapi ilaçların vücut içerisinde birikmesiyle oluşan zehirlerin toksik tesirinden kaynaklanan ağrılar olarak sahne almaktadır. Velhasıl; kanserden korunmak adına fabrikasyon besin mamullerini terk edip tabii beslenmeye yönelmek, temizlik kurallarına riayet etmek, oksijenli ve bol bitki ağırlıklı çevrede kalmak, sıcaklık değişmelerine paralel uygun giysi giyinmek (soğukta yün sıcakta pamuk tercih edilmeli), risk faktörlerini nazarı itibara almak, her türlü toksik maddelerden kaçınmak, moral tempomuzu yüksek tutmak, maneviyatımızı güçlendirmek veya her şeyden öte Allah'a; “Kahrında hoş lütfünde hoş” diyebilecek yüreğe sahip olmakla sağlıklı hayata kavuşabiliriz ancak. Neden olmasın ki?  

http://www.biyologlar.com/cevresel-kanserojen-maddeler-ve-insan-sagligina-etkileri

KANSER VE KANSEROJEN MADDELER

Hücre muazzam bir matematiksel programla dizayn edilmiş biyolojik bir enformasyon fabrikasıdır. Nitekim kazaen bir parmağımız ya da vücudumuzun herhangi bir yeri kanadığında o bölgede hızla bölünüp çoğalabilen hücreler arızalı olan kısmı tamir edebiliyor. Ne zaman ki iyileşme sağlanır, o zaman görevlerinin bittiğine dair talimat gelmesiyle birlikte çoğalmaları durdurulur. Böylece yeni hücreler ile aralarında denge sağlanmış olur. Fakat hücre âleminde istisnai bir durum var ki, o da kanser hücreleridir. Çünkü bu hücreler talimat filan dinlemezler, bölünmeye ve çoğalmaya ara vermeksizin devam edip habire etrafına zarar vermekteler. Malumunuz daha düne kadar hücreyi kompleks bir moleküler yığınından ibaret bir donanım sanıyorduk. Ta ki çağımızın baş ağrısı amansız hastalık(kanser) çıkana kadar bu bilgilerle oyalandık durduk. Derken bu amansız hastalığı yenme adına hücre ile ilgili çalışmalar hız kazanıp söz konusu mikro âlemin sıradan bir moleküler yığınlardan ibaret olmadığını anlamış olduk. Hatta hücrenin içerisine daldıkça matematiksel şah eser bir kod dünyası ile karşı karşıya kaldığımızı fark ediverdik. Öyle ki DNA yapısının keşfiyle birlikte hiçbir hücrenin kendi diriliş şifresini değiştirmediği, genetik kodlarına itaatkâr kaldığı gerçeği ile yüzleşiverdik. Zira doku hiyerarşisi gereği hücreler arasında mükemmel bir işbirliği esastır. Ancak bu düzene uymayan bir tek hücre tipi var ki o da hepimizin bildiği kanser hücresinden başkası değildir. Bu yüzden kanser hücreleri yaramaz asi evlat rolünde gayrinizamî bir yol takip ettiğinden ona anarşist gözüyle bakılmaktadır. Kanser hücresinin bağımsız olarak sergilediği bu isyankâr tavır yine de tam manasıyla kendisini özgür kılamamakta, sadece yaptığı tahribat bulunduğu dokuya zarar vermekle sınırlı kalmaktadır. Tabi bu bir kazanç sayılırsa. Oysa doku hayatı ortak yaşamayı gerektirir. Dolayısıyla bu birlikteliğin dışında bir eylem hoş karşılanmaz. Bu arada özellikle T- lenfositler kurulu bir sistemin tamamını kanser hücresinin keyfi çıkarları uğruna terk ettirmez, dahası onun emrine teslim etmemek için sonuna kadar direnir de. Böylece T-Lenfositler sayesinde birçok insan bilmediği nice kanser cinsini bertaraf etmiş olur, ama bundan birçoğumuz bihaberizdir. Demek ki kanser organizma içerisinde bir takım hücrelerin anormal büyümesi, hücre sitoplâzmasının azalması, hücre çekirdeğinde birden fazla çekirdeğin türemesi, hücre zarının seçicilik özelliğinin yitirmesi ve genetik şifrelerde bozulma hallerinin görülmesi gibi birtakım genel sapmalarla kendi damgasını vurabiliyor. Bu nedenle kendileri hücre anarşisti olarak nitelendirilir. Şurası muhakkak, bir hücrenin normal şartlarda bölünmesiyle gerçekleştirdiği çoğalma ile kanserli dokuların (tümörlü dokular) çoğalması aynı şeyler değildir. Çünkü normal şartlarda bölünerek çoğalan hücrelere ait dokularda nizami hayat söz konusu iken kanserli hücrelerin istila ettiği dokularda sancı ve anormal bozulma vardır. Bu yüzden sıhhatli dokularla anormal dokular birbirinden düzen bakımdan farklıdırlar. Hele kanser hücresi bir organa sıçramaya dursun, bir anda vücudun kontrol mekanizmalarına aldırış etmeksizin durdurulması imkânsız ur'a dönüşmektedir. Hatta bu ur'un yayılmayla birlikte hücrenin ortak kompüter programı altüst olabiliyor. Dolayısıyla kanser hücresinin başıboş bir şekilde büyümesinin matematik programla ilgisinin olduğu ihtimalini hesaba katmakta yarar vardır. Belli ki bir anormal plan ve hesabın gereği kanser hücreleri hızını alamayıp sapkın bölünmeler neticesinde süratle metastaz yapıp diğer dokulara sıçrayabiliyor. Mesela bir kanser hücresi incelendiğinde DNA ve RNA’ların anormal fonksiyon icra ettikleri gözlenir. Bir başka ifadeyle kanser hücreleri bazı genlerin çalışmalarını durdurarak hatalı genlerin çalışmalarına fırsat verebiliyor. Ayrıca kromozomlar iki kutupta toplanması gerekirken üç kutuplu halde toplanırlar. Dahası çekirdekler anormal derecede bir yandan büyürken çekirdekçik ise tam tersi eriyip genetik kodları işlemez hale getirebiliyor. Aslında normal bir hücre bölünmesinde olduğu gibi kanser hücrelerinin de mitoz bölünmeyle iki eşit hücre meydana getirmesi beklenir. Tabi bu boşa bir bekleyiştir. Çünkü kanser hücresi normal hücrenin tam aksine hareket ederek arızalı diyebileceğimiz biri büyük, diğeri küçük ölü hücre olarak sahne almaktadır. O halde T-Lenfositlerin saldığı toksinler karaciğerde imal edildiğinden bu organın sıhhatli olarak korunmasında sayısız faydalar var elbet. Ancak kanser hücresi bir şekilde kemik iliğinden yol alıp kan vasıtasıyla metastaz yapıp akciğere ya da karaciğere yerleştiyse akabinde vücut hem hızla bölünüp çoğalabilen, hem de bölünmeksizin hızla çoğalabilen hücrelerin istilasına uğrayacaktır. Artık bu noktada yapılacak bir şey kalmadığından kanser hücreleri ister istemez itaat etmeyip kendi başına buyruk hareket edeceklerdir. Kelimenin tam anlamıyla adeta isyankâr bir grup olarak etrafa dehşet saçacaklardır. Bu arada kansere neden olan bir takım görüşler mevcut olup, bu konuda kimileri değişikliğe uğrayıp arızalı hale gelen kromozomun bölünürken kanser hücresine dönüştüğünü savunurken, kimileri hücre zarı ya da endoplazmik retikulumda cereyan eden bir takım arızalara (defektlere) veya DNA ve RNA’ya kadar sirayet etmiş bir takım denge bozukluğuna bağlamaktadır. Hakeza kimileri mitokondrilerin bünyesinde teşekkül etmiş bir anomalinin ribozomlara taşınmasıyla birlikte protein zincirlerinde yanlış eşleşmelerin yol açtığı bozulmalara, kimileri de dış kaynaklı virüslerin, kronik iltihapların, bazı fiziki ajanların (röntgen, ultraviyole ve x ışınları) neden olabileceğini ileri sürmektedir. Kansere neden olan tartışmalar devam ede dursun bu arada genel kanaat en çok kimyasal ajanların kanser oluşumunda birinci etken kaynak olduğu yönündedir. O halde bazı kanserojen maddeleri şöyle sıralayabiliriz: Karbontetraklorür- Kuru temizlemede kullanılan bir kanserojen maddedir. Dioksan- Kozmatik sanayii ve deoderan da kullanılır. Benzidin- Boya yapımı ve plastik sanayinde kullanılıp mesane kanseri yaptığı düşünülmektedir. Ayrıca plastik petro kimya sanayinde eritici olarak kullanılan vinil klorür ve anilin boyaları da kanserojen maddelerden sayılmaktadır. Naftilamin-Cam sanayii ve ağartıcılıkta kullanılır. Ayrıca gözlük camı kesiminde kullanılıp deri yoluyla geçebiliyor. Yine nükleer sanayinde önemli madde olan benzil oksitte kanserojen sayılıp bazı cins camlarda mevcuttur. Floranilasetilamin-Yem depolamada kullanılır. Özellikle otçul formları yok edici bir maddedir. Dimetil fenilizoanilin-Gıda renklendirici olarak kullanılır. Nitrozoaminler- Insectısıt maddeler (böcek öldürücü ilaçlar) ve yağlayıcı bileşiklerde kullanılır. Benzpyrene- Katran, is, sigara ve kömür dumanında bulunur. Zaten karsinojenler genellikle sigara ziftine benzer yapıda olup hidrokarbonlar olarak sahne almaktadır. İlk defa İngiltere’de baca temizleyici çalışanlarında cilt kanserine rastlanması katranı ilgi odağı haline getirmiştir. Hakeza sigara zifiri de katran içermektedir. Dolayısıyla nikotin maddesinin tek başına kansere yol açtığı söylenemez. Buna rağmen şurası bir gerçek hala kamuoyunda sigara kanserin tek müsebbibi lider gözüyle bakılıp günah keçisi ilan edilmiş durumda. Oysa sigara kanser üreten faktör olmayıp sadece kanser eğilimini tetikleyici rol oynamaktadır. Kansere kanserojen maddelerin yanı sıra kromozom defektleri, genler üzerindeki birtakım arızalar, genetik şifrelerin silinmesi, kromozom sayısı değişmeleri gibi anormalliklerin neden olabileceğini de hesaba katmak gerekir. DDT- Böcek öldürücü diye bilinen bu ilacın hücre içerisinde DNA ve RNA spiral merdiven basamaklarına olumsuz etki sonucu genetik kartların bozulmasına neden olduğundan kanser yapabileceği düşünülmektedir. Tiner- Boyacılıkta inceltici madde olarak kullanılıp hücre içi erime ve lenfosit yapımını durdurucu etkisinden dolayı kanser nedeni olarak sayılmaktadır. Tıpta kullanılan bir takım ilaçlar- Kanser tedavisinde kullanılan ilaçların büyük çoğunluğu kanserojendir. Çünkü kemoterapi (kimyasal tedavi) ilaçlar hücreyi doğrudan tahrip etmektedir. Bu tahrip edici özelliğinden dolayı kanser hücrelerinin tamamının öldürülmesi hedeflenmektedir. Ancak kaş yapayım derken bu arada vücudun normal hücreleri telef olabiliyor. Sakarin- Şeker yerine tatlandırıcı olarak kullanılan sakarinin karaciğere toksik zehir etkisi yaptığı ileri sürülmektedir. Aspestos- Bu tozun akciğer kanserine yol açtığı tahmin edilmektedir. Alkol- Özellikle alkollü içecekler karaciğerin zehir gücünü azaltıcı etken olup zehirli artık maddelerin vücutta birikmesi ihtimalini güçlendirmektedir. Aynı zamanda alkolün yağları eritmesinden dolayı bilhassa yemek borusu ve yutakta kansere neden olduğu tahmin edilmektedir. O halde alkolün karaciğer ve diğer organlar üzerinde kanserojen etki yaptığını asla göz ardı etmemek gerekir. Radyoaktif maddeler- Bilim adamları karanlıkta resim çeken, aynı zamanda hummalı ve görünmeyen bir şey keşfettiklerinde doğrusu çok heyecanlanmışlardı. Belli ki yüz ifadelerinden bunca çabadan sonra bir takım kaya ve kimyasal madde filizlerinden bin bir güçlükle elde ettikleri söz konusu gizemli maddeyi bulduklarına pişman olmamışlardı. Hatta daha sonra bu maddenin sadece kaya ve kimyasal madde içeren filizlere has bir ürün olmayıp elektrik ampulünde gördüklerinde öylesine es geçilebilecek bir madde olmadığını iyice fark etmişlerdir. Dahası söz konusu ürünün bazen elektrik molekülleri tarzı ışık yayıp, maddenin hareket eden görünmez partikülleri şeklinde sahne alan radyasyon olduğu anlaşılmış oldu. Keza bu gizemli maddenin bir kısmı elektrik moleküllerine dönüşebildiği gibi küçük enerji paketleri şeklinde tezahür edebiliyor. Sadece tezahür etmekle kalmıyor farkına bile varmadan vücudumuza sinmektedir. Yani bu radyoaktivite olayı ile etrafa neşredilen alfa parçacıklarının (atom parçacıkları) insan vücuduna girmesiyle çıkması bir olup biyokimyamız bir anda altüst olabiliyor. Bundan öte hücrelerimizin ana kumandası DNA molekülleri üzerinde de değişikliklere neden olmasıyla birlikte vücudun savunma sistemini çökertip kansere yol açabiliyor. Kelimenin tam anlamıyla radyasyonun en küçük dozu bile vücutta çalışan kimyasal maddeleri anormal hallere sokmasının ardından kansere neden olduğu artık bir sır değil. Demek ki; DNA bünyesinde anlık değişikliklerin vuku bulması gen veya gen grubunun gereği gibi çalışamaması anlamına gelmektedir. Bu durum ister istemez radyoaktif maddelerden sızan radyasyonların DNA üzerinde bozulmalara yelken açıp ciddi bir kanser riski doğurmaktadır. Mesela güneşten gelen ultraviyole ışınlarının cilt üzerinde mutagenik etki yapması bunun tipik bir misalidir. Şu da bir gerçek işin ehli bir doktor radyasyon ışınların zararlarına rağmen vücudun hasar görmüş dokulara hedefleyerek kanserli hücreleri kurutup bir anda faydalı bir hale dönüştürebiliyor. Ki; Tıpta bu tür uygulamaya ışın tedavisi denmektedir. Hakeza kırılan kemikler veya bir takım klinik vakalarda röntgen filmi çekilerek bir noktada radyasyon teşhiste avantaj sağlamaktadır. Stres- Stresin hormonal dengeyi bozduğunu, dolayısıyla ruhsal bozuklukların kanseri tetiklediği ileri sürülmektedir. Bu yüzden bir kez daha moral değerlerin ve inanç faktörünün çok önemli bir sermaye olduğunu fark ederiz. Zaten kendi kendine iyileşen kanser vakaları duyduğumuzda anlayın ki o hasta sağlığını kazandığı maneviyatına ve moral çekim alanına borçludur. Çünkü hormonal denge moral ve motivasyonla hayat bulur. Kanser genetik olup olmadığı kesin bilinmese de, ama hormonal ve lenfatik yapının genetik olduğu kesin. Dolayısıyla irsi olan sistemin moral değerlerle güçlendirilmesi şarttır. Görüldüğü üzere kanser hücresine neden olan etkenler mütemadiyen kanser riski doğurmaktadır. Bilhassa kanser hücrelerinin lenfositler tarafından imha edilmesi ister istemez dikkatleri bu hücre üzerine çekmektedir. Dolayısıyla kemik iliğinde yeteri kadar lenfosit üretilmemesi veya dayanıksız zayıf lenfositlerin imal edilmesi kanserle mücadelede başarısız kılmaktadır. Bu yüzden kemik iliğine doğrudan etki yapan ışın, benzol, benzpyrene vs. gibi kanserojen maddelerden uzak kalmalıdır. Nitekim kemik iliğinin sağlıklı lenfosit üretebilmesi için temiz hava ve bitki ağırlıklı ortamlarda yaşamayı tercih etmekte fayda vardır. Hatta sadece kemik iliği değil, vücudun kimya fabrikası olan karaciğer organımıza da göz bebeğimiz gibi bakmalı. Çünkü karaciğerimiz ne kadar sağlıklı ise kanserojen zehirli maddeleri bertaraf edecek güç var demektir. Bir insan düşünün ki kansere yakalansa bile karaciğer kuvvetli ise önemi yok, şunu iyi bilin ki sağlam olan karaciğer dış kaynaklı zehri temizlemesini bilecektir. Madem lenfositler kansere karşı savaşan hücreler olarak adından söz ettiriyor, o halde lenf damarların geçtiği bölgeleri korumamız gerekiyor. Zira birtakım kaza sonucu meydana gelen büyük yanıklar kapansa da deri altında lenf kanallarının işlevsiz hale gelmesi kanser riskini tetikleyebiliyor. Çünkü bu yanık nedbelerde (yanık izleri) kanserle savaşacak lenfositlerin ortamda bulunmaması o bölgeyi kanser hücrenin insafına terk etmek anlamına gelecektir. Dolayısıyla deri deyip geçmemeli. Keza herhangi bir darbenin yol açtığı travmalardan ötürü meydana gelen kemik kanserleri de öyledir. Belli ki travma sonucu o bölgelerde lenf damarlarının tahrip olmasıyla birlikte savunmasız kalacağı muhakkak. Bu arada lenf bezleri merkezlerimizi de unutmamak gerekir. Çünkü isminden belli lenf merkezi. Yani kanser hücrelerinin baş düşmanı olan lenfositlerin konakladığı alanlar olması hasebiyle bu merkezlerin problem yaşamaması icap eder. Mesela herhangi bir iltihabı durumda rastgele antibiyotik kullanımı lenf merkezlerini savunmasız hale getirebiliyor. Bu yüzden bademcik, apandis gibi savunma misyonu yüklenmiş lenf merkezlerini sağlam veya yarı sağlam olduğu halde hemen cerrahi müdahale ile aldırmaya kalkışılmalı. Aksi takdirde o bölgeyi iş göremez hale getireceğinden kanser hücrelerine davetiye çıkarmak demek olacaktır. Ancak mecburi durum veya kronik vaka hale geldiğinde söz konusu lenf merkezleri alınmalıdır. Kanserde risk faktörü her kanser için aynı değildir. Mesela sigara rahim kanseri için risk faktörü değildir, ama akciğer için etken faktördür. Hakeza kirli hava, kronik bronşit ve bronşektazi hastalığı da öyledir. Kadınlarda çocuğuna süt emdirmemek meme kanseri için risk faktörüdür. Yine proaktin hormonunun uzun süre salgılanması, hormonal siklusların bozuk olması ve kiste yol açacak kronik iltihaplanmalar gibi etkenler de risk faktörüdür. Ayrıca sık sık kürtaj yaptırmak, kadınlık hormonların bozuk olması, rahim içi kronik iltihaplar ve o bölgenin devamlı tahriş edilmesi gibi etkenler rahim kanseri için risk faktörüdür. Lenf kanseri için kimyasal üretimin gerçekleştiği alanlar, marangozlukta kullanılan benzol, Tıp alanında veya başka alanlarda sürekli ışına maruz kalmak, hormonal dengesizlikler ve immun bağışıklık sisteminin yetersizliği gibi etkenler risk faktörüdür. Özellikle kanserin yaşlılarda daha sık görülmesi ister istemez bağışıklık sisteminin zayıflamasıyla ilgili bir durum olma ihtimalini güçlendirmektedir. Çünkü çoğalan kanser hücreleri karşısında savunma sistemi bozulup vücut bir noktada korunaksız kalmaktadır. Çocuk yaştan beri sürekli ilaç almak, özellikle sık sık ateş düşürücü ilaçlara başvurmak bağışıklı sistemini güçsüz kılacağından tüm bu etkenler kan kanseri için risk teşkil etmektedir. Hakeza radyoaktif ışınlar, röntgen ışınları ve çevre kirliliği gibi faktörlerde öyledir. Dolayısıyla bağışıklı sistemini güçlendirmek adına kırsal alanlarda bolca yürüyüş yapmak, mümkünse o bölgelerde ikamet etmek ve doğal yiyeceklerle beslenmek sağlıklı hayat için en doğru yöntem olsa gerektir. Vücudumuzun çalışkan, itaatkâr ve vefakâr akyuvar hücreleri bile bir gün gelip başımıza bela olabiliyor. Yani bilinmeyen bir nedenle ansızın huy değiştirip kendi başına buyruk bir vaziyette çoğalıp gereksiz yere hücrelerin yerini işgal edebiliyor. Böyle bir durumda şekil yapıları anormalleşip miskinleşmiş halde rehavete bürünürler. Artık bu noktadan sonra savaşmak yerine çoğalmayı yeğlerler. Tabii bu arada olan insana oluyor, derken hastanın savunma sisteminin zayıflaması, kan pıhtılaşması, oksijen faaliyetleri gibi birçok vücut fonksiyonlarının hezimete uğramasıyla birlikte lösemi (kan kanseri) olayı kaçınılmaz bir alın yazısına dönüşür. Malum olduğu üzere fazla güneşte kalmak, yukarıda belirttiğimiz yanık nedbeleri veya darbe sonucu meydana gelen birtakım ezilmeler, xeroderme ve keratoz senil türü cilt rahatsızlıkları, röntgen ışınına maruz kalmak gibi etkenlerin her biri cilt kanseri için risk faktörüdür. Mide ve bağırsak kanseri için mide nezlesi (hipertrofik gastrit), bağırsak nezlesi, spazmlar, dengesiz beslenmeler, safra kesesi iltihapları, bayatlamış yiyecek ve içecekler gibi etkenler birer risk faktörüdür. Kanserde erken teşhis çok önemlidir. Her ne kadar insanoğlu kanında taşıdığı lenfositler kadar kanseri anında teşhis edemese de Tıp dünyasının önümüze koyduğu biyopsi metodu ve patolojik teşhis gibi daha nice metotları ihmal etmemek gerekir. Çünkü kanser hastalığı konum itibariyle bulunduğu yere göre gizlenebiliyor. Bu yüzden hemen kendini ele vermekten kurtarabiliyor. Kanser teşhisinde aşırı kanamalar akciğer, rahim, bağırsak ve deri kanseri için bir gösterge olabiliyor. Ağrısız yumrular veya şişlikler ciddi bir kanser emaresi teşkil eder. Zira birçok hastalıklar ağrılı geçtiği halde kanser genel itibariyle başlangıçta ağrısız ilerleyen bir hastalıktır. Yorgunluk, bitkinlik, ateş gibi haller lenf ve kan kanseri belirtisi olarak düşünülüp erken teşhis tanı testlerini ihmal etmemelidir. Zayıflama ise halk arasında kanser belirtisi olarak addedilse de aslında en son aşamada oluşan bir belirtidir. Hematolojik incelemeler sonucunda belirlenen sedimantasyonun (kanın çökme hızının) yüksek olması da kanser emaresi sayılabiliyor. Basit bir öksürük bile solunum yolu, akciğer ve hançere türü kanserlerin habercisi niteliğindedir. Kusma, çift görme, görme bozukluğu veya körlük, baş ağrısı, denge bozukluğu beyin tümörü için birer işaret taşları olabiliyor. İdrar yollarında sürekli kan gelmesi böbrek ve mesane kanserini düşündürebilecek belirti sayılabiliyor. Bu arada terleme deyip geçmemeli, bilhassa lenf kanserlerinde sıkça rastlanılan bir durum olduğundan ihmale gelmez olgu olarak bakmakta yarar var. Anlaşılan bu sıraladığımız unsurlar kanser belirtileri olmakla birlikte illa kanser oldu manasına gelmemelidir. Mesela öksürük, üst solunum yolları enfeksiyonlarına bağlı nükseden bir hastalık türüdür. Dolayısıyla her türlü belirtiyi göz ardı ederek bir çekap yaptırayım demekle işi geçiştiremeyiz. Çünkü kanser check-up'la teşhis edilemez. O halde kanseri teşhisinde kullanılan bazı metotları şöyle sıralayabiliriz: Kan kanseri kemik iliği analizleriyle teşhis edilebiliyor. Lenf kanseri (Lymphoma ve Hodgkin hastalığı) Hemogram (kan sayımı), lam üzerine periferik yayma ile mikroskop altında kan formülü sayımı, sedimantasyon, karaciğer ve dalak sintigrafisi, akciğer röntgeni, elektroforez incelemesi ve biyopsi ile teşhis edilebiliyor. Solunum yolu kanseri (Hançere) için röntgen, tomografi, akciğer sintografisi ve bronkoskobi teşhiste önemli muayene metotları olarak kabul edilir. Meme kanserinde monografi filmi, sonografi (ultrason) ve biyopsi önemli teşhis metotlarıdır. Rahim kanserinde vajen sıvı simiri ( patolojik hücre muayenesi), jinekolojik ve biyopsi muayenesi yöntemi uygulanır. Mide kanseri için röntgen, endoskopi muayenesi, kanda CEA testi, anüsten endoskopi veya rektoskobi muayeneleri teşhis için büyük bir önem arz etmektedir. Yumurtalık ve prostat tümörleri için biyopsi, plasenta tümörü içinse kanda hormon testi yapılarak teşhis edilebiliyor. Böbrek tümörleri için röntgen ve böbrek sintigrafisi iyi bir teşhis araçlarıdır. Beyin tümörleri için kompüter tomografi, aniografi, elektroansefalografi, göç kökü muayenesi teşhiste yardımcı metotlardır. Demek ki CEA ve prolaktin, alfa-fetoprotein (AFP), bilgisayarlı tomografi, sintigrafi ve sonografi muayeneleri her ne kadar pahalı muayene metotları olsa da sağlık için başvurulması gereken ve özellikle erken tanı araçları olması bakımdan önem arz etmektedir. O halde önce erken teşhis sonra tedavi derken, “Olmaya devlet cihanda bir nefes sıhhat için yola devam” demeli. Kanser tedavisinde kanserli dokunun kontrolünün yanı sıra metastazın durdurulması veya yok edilmesi hedeflenir. Bu yüzden kanser tedavisi dört ana başlıkta toplanır: Birincisi cerrahi tedavi olup halk arasında her ne kadar “Yaraya neşter atılmaz, yara daha da azar” denilse de bu söz cerrahi yöntemlerin gelişmediği çağlara has söylenilmiş bir söz olduğundan bugünkü kriterler itibarı ile havada kalmaktadır. Belki gereksiz yere biyopsi aldırmalardan kaynaklı birtakım kronik iltihapların gözlemlenmesi bu söylemi haklı kılar gibi gözükse de, bu anlayış genele şamil değildir. Zira cerrahi müdahale son derece titizlikle kanserin yerleştiği alana neşter atılması ile gerçekleşen can simidi bir yöntemdir. Operasyon yapılan bölgeden alınan parçaların patolojik inceleme sonucunda elde edilen değerler normal çıkarsa tedaviye cevap verdiği anlaşılır. Aksi takdirde diğer yöntemlere geçilir. İkinci tedavi yöntemi ise röntgen ışınlarıyla yapılan özellikle kan kanseri, kemik kanseri ve beyin tümörlerinde uygulanan radyoterapi (ışın tedavisi) tedavisidir. Bu ışınların en meşhuru kobalt–60 olup, bundan başka elektron ve nötron tedavi yöntemlerde söz konusudur. Hakeza radyum elementinin saldığı radyoaktif ışınlar da kanser hücrelerinin yok edilmesinde önemli bir etken kaynağıdır. Bilhassa bu yöntemle radyo frekans radyasyonların oluşturduğu ısıyla kanser hücrelerinin zayıflatılması hedeflenmektedir. Böylece ışın tedavisi metodunda normal hücrelerin dayanabileceği, kanser hücrelerinin ise bu ısıya dayanamayacakları noktaya kadar ısı uygulaması yapılmaktadır. Üstelik bu metotla hastanın kemik iliği etkilenmediği gibi saç kaybı da olmamaktadır. Dahası yan etkileri diğerlerine göre çok daha hafif seyretmektedir. Üçüncü tedavi şekli kemoterapi (kimyasal ilaç tedavisi) olup uygulanan yöntemlerin en yaygınıdır. Bu yöntem özellikle kan kanseri, lenf kanseri, plasenta kanseri, Ewing sarkomu gibi kanserlerde başarılı sonuçlar vermektedir. Dördüncü tedavi yöntem ise özellikle lösemi(kemik iliği kanseri), lenf kanseri (BCG-F), cilt kanseri, meme kanseri, kemik kanseri ve mide kanserinde kullanılan immunoterapi tedavi yöntemidir. Ki bu yöntemle kanser hücrelerini verem aşısı örneğinde olduğu gibi vücudun bağışıklık sistemini güçlendirmeye yönelik kanserin (lenfositlere takviye edici kuvvet olarak) mağlup edilmesi hedeflenir. Bu dörtlü tedavi uygulamalarının yanında birtakım yardımcı tedavi metotlarda var elbet. Mesela ağrı tedavisi ağrısı geçmeyen hastalar için kullanılan bir yöntem. Aslında kanser illa da ağrı yapacak diye bir kural yok. Bu tür ağrılar daha çok hastanın son demlerine yakın birtakım zehirlerin hatta tedavide kullanılan kemoterapi ilaçların vücut içerisinde birikmesiyle oluşan zehirlerin toksik tesirinden kaynaklanan ağrılar olarak sahne almaktadır. Velhasıl; kanserden korunmak adına fabrikasyon besin mamullerini terk edip tabii beslenmeye yönelmek, temizlik kurallarına riayet etmek, oksijenli ve bol bitki ağırlıklı çevrede kalmak, sıcaklık değişmelerine paralel uygun giysi giyinmek (soğukta yün sıcakta pamuk tercih edilmeli), risk faktörlerini nazarı itibara almak, her türlü toksik maddelerden kaçınmak, moral tempomuzu yüksek tutmak, maneviyatımızı güçlendirmek veya her şeyden öte Allah'a; “Kahrında hoş lütfünde hoş” diyebilecek yüreğe sahip olmakla sağlıklı hayata kavuşabiliriz ancak. Neden olmasın ki?

http://www.biyologlar.com/kanser-ve-kanserojen-maddeler

Yapay genler kullanılarak ilk kez yapay enzimler üretildi!

Yapay genler kullanılarak ilk kez yapay enzimler üretildi!

Bilim insanları, ilk defa, doğada bulunmayan yapay/sentetik genetik materyalleri kullanarak enzimler üretmeyi başararak bilim tarihinde çığır açtılar. Bu heyecan verici çalışma sadece Dünya’da yaşamın başlangıcıyla ilgili yeni bilgiler vermiyor; aynı zamanda Dünya dışı yaşamla ilgili de önemli çıkarımlar yapabilmemize izin verecek. Araştırma sonuçları Nature dergisinde yayımlandı.Araştırmanın temelleri daha önceden İngiltere’de yapılan bir çalışma sonucunda üretilen sentetik DNA’lara dayanıyor. Bilindiği üzere DNA ve onun yakın kuzeni RNA, Dünya üzerindeki bütün canlıların içerisinde, onların genetik bilgilerini taşıyan moleküllerdir. Sentetik genetik malzemeler ise DNA ve RNA’da bulunan yapıtaşlarını kullanarak üretilir; ancak normalde bu moleküllerde olanın aksine, bilim insanları bu genetik malzemenin içerisine başka molekülleri de katabilirler. Bu işlem sonucunda oluşan moleküllere XNA adı veriliyor: yani xeno (yabancı) nükleik asit. Bu yapay genetik malzemenin de, doğal versiyonu gibi genetik bilgiyi taşıyıp aktarabildiği tespit edildi.Her ne kadar DNA, RNA ve proteinlerin, enzimleri üretebilecek yegane unsurlar olduklarına yaygın biçimde inanılıyorsa da, aynı araştırmacılar sentetik enzimlerin XNA’lar kullanılarak üretilebileceklerini gösterdiler. “XNAzimler” olarak isimlendirilen bu moleküller, tıpkı doğal enzimler gibi, RNA’yı parçalarına ayırıp o parçaları tekrar birleştirmeyi başarıyorlar. Hatta bu sentetik enzimlerden bir tanesinin, XNA’yı bile parçalayıp birleştirebildiği tespit edildi!Enzimler, doğanın hızlandırıcılarıdırlar (katalizör). Dünya’daki yaşam için temel yapılardır, çünkü neredeyse tüm biyokimyasal tepkimeler, doğal ortamların sıcaklıklarında son derece verimsiz ve yavaş çalışırlar. Bu nedenle enzimler, DNA’nın sentezlenmesi ya da besinlerin parçalanması gibi biyokimyasal tepkimelere hız verirler ve yaşamın sürdürülebilmesi için gerekli olan hızlara ulaşabilmelerini sağlarlar.Her ne kadar enzimlerin önemli bir kısmı proteinlerden oluşsa da, bazı RNA moleküllerinin de katalitik (hızlandırıcı) faaliyet gösterdiği tespit edilmiştir. Günümüzde yaygın bilimsel kanıya göre, genetik bilginin en erken formları, muhtemelen RNA-benzeri moleküllerdi ve kendi kendilerini kopyalayabilme yetenekleri olduğu için Dünya’da yaşamın başlangıcına izin verdiler. Bu nedenle bu çalışma, yaşamın başlangıçtaki ilk adımlarına ait bazı kesitleri yeniden yaratabilmemiz açısından önem taşıyor. Dahası bu araştırma, yaşamın DNA veya RNA olmaksızın da başlayabileceğini bize gösteriyor. Bu önemli, çünkü bu iki molekülün yaşamın başlayabilmesi için gerekli olduğu düşünülüyordu. Baş araştırmacı Philip Holliger şöyle söylüyor:“Bizim çalışmamız, prensipte, doğanın moleküllerine birden fazla alternatif olabileceğini gösteriyor. Yani yaşamın DNA ve RNA’yı başlangıçta katalizör olarak ‘seçmesi’, tarih öncesi kimyanın basit bir hatasından ibaret olabilir. Bu da, diğer gezegenlerde yaşamın farklı moleküler omurgalar üzerine inşa edilebileceği fikrini doğuruyor. Bu durum, üzerinde yaşam barındırabileceğini düşündüğümüz dış gezegenlerin sayısını arttırmamızı sağlıyor.”Araştırmacıların söylediğine göre bu çalışma aynı zamanda birçok hastalığa yeni tedavi yöntemleri geliştirebilecek bir akımın başlangıcı demek olabilir. Dr. Holliger’ın anlattığına göre, kanserli hücrelerdeki veya virüslerdeki genler tarafından üretilen RNA’yı parçalayabilen XNA’lar üretilebilir. Ayrıca XNA’lar doğada bulunmadıkları için, vücuttaki diğer enzimler tarafından tespit edilip parçalanmaları da pek mümkün gözükmüyor.Kaynaklar ve daha fazla detay için;1.Nature2.University of Cambridge3.IFLS4.EAhttp://www.medikalakademi.com.tr

http://www.biyologlar.com/yapay-genler-kullanilarak-ilk-kez-yapay-enzimler-uretildi

 
3WTURK CMS v6.03WTURK CMS v6.0