Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 296 kayıt bulundu.

Dünyanın Oluşumu Ve Yapısı

Yer'in oluşumu sorunu,yüzyıllar boyunca insanı düşündüren ve düşündürmeye devam etmekte olan,önemli bir bilimsel sorundur.Gerçi Yer'in oluşumu konusunda,bugün geçmişe oranla ,daha çok şey bilmekteyiz.Ancak yine de,problemle ilgili görüşler,hipotez düzeyindedir. Bunların delilleri güçlü olmakla birlikte,kesin birtakım sonuçlara ulaşıldığı ileri sürülemez.Yer’in yaşının 4,5 ile 5 milyar yıl dolayında olduğu sanılmaktadır.Bunun 10 milyar yılı bulduğunu ileri süren kaynaklara da rastlanır. Yer’in nasıl oluştuğu sorusunu cevaplamayı amaçlayan teoriler ve bunların eksikliklerini daha iyi anlayabilmek için Güneş Sistemi’nin nasıl oluştuğu sorusuna kısaca değinmek gerekir.Güneş sistemi bu sistemden çok daha büyük bir sistemdir.Fakat güneş sistemini de içine alan daha büyük bir dev sistem vardır.Bu sistemde pek çok sisteme ayıılmıştır.Bu sistemlerin herbirine Galaksi denir.Yer'in de içinde yer aldığı insalığın Galaksi’sine (Yun.süt demektir.),Türkçe bir terim ola Samanyolu denir.Batı kaynaklarda Samanyolu,Sütlü yol diye geçer.(Yani bu anlama gelir.) Samanyolu’nda bazı kaynaklara göre 100 milyar,bazı kaynaklara görede 200 milyar gök cismi vardır.Kuşkusuz bunlardan biri de şimdiki bilgilerimize göre insan barındıran tek gök cismi olan Dünya’mızdır.Yer Samanyolu’nun merkezi kabul edilen Güneş’ten149,6 milyon km. uzaktır. Çapı hemen hemen 300 milyon km yi bulan yörünge adı verilen bir düzlem üzerinde dolanır.Bu düzleme,eliptik düzlem (tutunma düzlemi) denir.Bunun üzerindeki dolanımını,bir yılda 365 gün 6 saatte tamamlar. Yerin oluşumu ile Samanyolu’nun oluşumu,aynı esaslara ve büyük bir ihitimalle de aynı zaman dilimine rastlanmaktadır.Bu konudaki ilk teori ünlü Franız gök bilimci Laplace (Laplaş;1749-1827) tarafından 1796 yılında ileri sürülmüştür.Teori’i ilme,Nebula kramı diye geçmiştir. Laplace’ın varsayımına göre,Güneş ve gezegenler ile Samanyolun’dakidiğer gök cisimleri, oluşum tarihinin (4.7 ile 5 milyar yıl) ilk evresinde,kütle çekimi etkisi altında sıkışarak dönmeye başlayan,bir toz kümesinin birleşmesi sonunucu oluşmıştur.İleri sürülen bu teoriye Birleşme hipotezi adı verilir.Teorinin kabülüne göre,nebula sıkıştıkça,halkalar teşkil etmeye başlamıştır.Oluşan halkaların giderek yoğuşması sonucu,gezegenler oluşmaya başlamıştır.Dolayısıyla iç gezegenler(Yer ile Güneş arasındakiler) önce ,dış gezegenler ise ,daha sonra oluşmuştur. Kısaca söylersek,Laplace’ın görüşüne göre Samanyolu ,milyarlarca yıl önce ,bir gaz ve toz kümesi idi.Ekseni çevresinde bir bulutsu,kütle çekimi etkisi altında çevresine gaz ve toz saçabilir. Esas kütleden uzaklaşan ve yine etkisi altında kalarak dönmeye,yani dolanıma devam eden kümeler zamanla yoğuşabilir.Gezegenler,bu esasa göre oluşmuştur. Bulutsu, ya da birleşme teorisi;uzun yıllar geçerliliğini korumuştur.Bundan sonra,gel-git kuramları diye ilme geçen,Laplace teorisini redetmeyen,fakat matamatiksel yanlışlıkların bulunduğunu doğrulayan bir dizi teori ortaya atılmıştır. Gel-git teorilerinin en güveniliri,ünlü İngiliz fizikçi ve gök bilimcisi James Jeans tarafından 1901'de ileri sürülenidir. Gerçi,matamatiksel olarak ispatı yapılmamıştır.Ancak yine de akla en yakındır.Ona göre gezegenler ve Yer Güneş'in çekim bölgesine girerek geçen bir gök cisminin,yan, yıldızın,çekim gücü etkisi ile,Güneş ten kopardığı puro şekilli maddelerden oluşmuştur. Gezegenler ve Güneş sistemi Galaksisindeki diğer gök cisimlerinin Güneşten koptuğu yani koparıldığı görüşü aslında söz konusu gel-git varsayımlarına dayanır.Ancak hem bu görüş de kanıtlanmış değildir,hem de,buna karşı savunulan,bir patlama-dağılma teorisi vardır. Güneş’in manyetik çekim gücü,diğer Gökada cisimlerine göre,çok yüksektir.İlk evrede oluşmuş dev bir Güneş’in nükleer enerji üretme evresinden sonra patlaması sonucu,farklı büyüklüklerdeki kütleler onun çekim alanına dağılıp,belli yörüngeler üzerinde dönmeye başlayabilirler. Bütün modern teoriler,bütün gezegenlerin,gaz ve ince toz bulutundan oluştuğunu Güneş’in,ilk evrede bu tür bir madde topluluğu olduğunu kabul ederler. Ancak şunu iyi biliyoruz ki,evrenin sırrı,henüz çok bilinmeyenli bir denklem olma özelliğni korumaktadır.Güneş ve gezegenlerin aslı kızgın gaz ve toz kümesi de olsa,bilim ve teknik esasta var olup da bilinmeyenleri keşfetme çabasındadır.Örneğin nebulaların maddeleri nasıl oluşmuştur;ya da uzay nerede başlar nerede biter;daha sonra ne başlar ve o da nerede biter gibi sonsuz denilen soruların cevabı henüz verilmemiştir.Ama bu güçlükler,müspet ilmi reddetmeyi gerektirmez.Çünkü ilim,sabırla düşünme-araştırma ve maraktan doğar;gelişir ve olgunlaşır.Peşin yargılar ve mistik düşüncelerin,objektif ilim kuralları arasında yer yoktur. Güneş sistemi elemanlarından biri olan Dünya,sahip olduğu başlıca üç doğal küreden oluşur.Bunlar ;katı yer kabuğu veya taşküre ,yaklaşık %71'lik payı sularla kaplı bulunan suküre,800-900 km hatta dah çok seyrelmiş şekilde,8000 km yüksekliğe kadar devam eden,havaküredir.Bu doğal kürelerin hayat veren şartlar sunması,bitkiler-hayvanlar ve insanların,türemesi ve yaşamasını sağlamıştır.Coğrafi yeryüzü terimi ile tanımladığımız bu üç doğal kürenin kesişmesi,madde ve enerji değişimi sürecinin oluşmasına ve bu doğal süreç de,hayat imkanlarının doğmasına yol açmıştır. Yer ,dıştan içe-yüzeyden merkezine doğru,başlıca üç farklı bölümden oluşur. 1-)Kabuk Bölgesi 2-)Manto Bölgesi a)Üst Manto b)Alt Manto 3-)Çekirdek Bölgesi a)Dış Çekirdek b)İç Çekirdek Bunlardan Kabuk bölgesi,yaklaşık 30 ile 40 km lik ortalama bir kalınlık gösterir.Bu değerler,yüksek sıra dağların derinliklerinde,70-75 km ye dek ulaşır. Okyanus kabuklarında ise,yaklaşık 5 ile 10 km ye iner.Yapısının,daha çok granit ve bazaltik olduğu kabul edilmektedir. Sismik hareketlerin odak noktaları,genel olarak bu bölge içindedir.Metalik madenler daha çok masif bir yapı gösteren granitik ve bazaltik bölgelerede doğal gaz ile hampetrol ve kömürler ise,bu kabuk içindeki tortul bölgelerinde rezerve olmuştur. Kabuk bölümün altında,deriniği 2900 km dolayında kabul edilen Manto yer alır.Yaklaşık 800-900 km lik dış bölüme dış manto,2000 km ye varan derinliğe kadarki bölüme ise,alt manto denilir.Radyometrik dalgalara uyarı vermesi nedeni ile bu bölümün de,katı yapıda olduğu kesindir. Teorik olarak,mantodan sonra,Yer'in çekirdeği diye adlandırılan bölüm gelir.Artık bu bölge,akışkan-sıvımsı bir maddeden oluşur.Çünkü,elektrmanyetik dalgalara uyarı vermez.Bu bölge de,dış manto(kalınlığı 5000 km ye uzanır.)ve iç manto diye ikiye ayrılır.Böylece,üzerinde dolaştığımız katı bölgeden Dünya’nın merkezine dek,ortalama 6370 km lik bir derinlik bulunduğu kabul edilmektedir. Yeryüzü DSG KABUK ÜST MANTO ALT MANTO ÇEKİRDEK Şekil:Yer’in iç yapısının kesiti Tablo:Yer’in iç yapı bölgeleri ve bileşimleri İç yapı bölgeleri Derinlikleri Bileşimleri KABUK 30-40(km) SİAL MANTO 35-2900 SİMA-MAGMA ÇEKİRDEK 2900-6370 NİFE Yer’in iç yapı bölgelerini oluşturan maddelerin,oran yüksekliğine göre de adlandırılmıştır. Nitekim kabuk bölgesinin hakim maddeleri,daha çok silisyum ve alüminyumdur.Bu madde adlarının ilk hecelerini kullanan kimi gök bilimci jeofizikçi ve coğrafyacılar,yerin kabuk bölgesini Sial diye adlandırmışlardır. Yer’in manto bölgesinin bileşiminde,en yüksek paylar,silisyum ve magnezyum elementlerine aittir.Bu nedenle de,Sima diye adlandırılmıştır. Yanardağ püskürmeleri,bu bölümden kaynaklanır.Dolayısıyla magma diye adlandırılır. Aynı şekilde, çok daha ağır madenlerden oluşan çekirdek bölgesinin hakim maddeleri,nikel ve demir madenleridir.Bundan dolayı,Nife şeklinde adlandırılmıştır. Derinliklere inildikçe,belli basamaklarda sıcaklık değerleri çok belirgin bir şekilde artar.Bu sıcaklığa,jeotermi denir.Jeotermide,her 33 m derinliğe inildikçe,yaklaşık 1 C artış olur.Bu artış çizgilerine,jeotermi basamağı denir. Jeotermi basamağı,genel olarak her 33 m de 1 C değişmekle birlikte,bu değişim,Yer’in bazı iç bölgelerinde 145 m bulur. Bu veriler esas alındığında,örneğin 40 km derinlikte sıcaklık yaklaşık 1200 C ,60 km de 2000 C ve iç çekirdek’te,yaklaşık 200 000 C dolayında bulunmaktadır.Kuşkusuz,derinliklere doğru sıcaklığın artışı kesin olmakla birlikte,hesaplanan bu değerler,teorik sonuçlardır.Çünkü Yer’in iç yapısı konusunda,şimdilik kısmen iyi tanına bilen iç bölge,kabuk bölgesi’dir.Öte yandan Yer içi sıcaklığını ölçmek mümkün değildir.Bu nedenle de,şimdilik kaydıyla bu konuda en iyi bilinen husus,Yer’in derin noktalarında sıcaklık derecelerinin,çok yüksek oluşu gerçeğidir. Zaten,yanardağ püskürmeleri,gayzer,su-buhar ve kaplıca gibi sıcak sularda,bu açıkça doğrulamaktadır. Güneş sistemi ve bu arada Yer’in oluşumu milyarlarca yıllık bir zaman sürecinde gerçekleşmiştir.Bu sürece,kısaca Güneş Sistemi ve Yer’in yaşı denir.Ancak biz burada sorunu,Yer’in yaşı terimi ile ifade edeceğiz. Yer yuvarlağının oluşumu ile uğraşan,bu sorunu aydınlatmaya çalışan ilimler,jeoloji yani yerbilimi alanları,jeofizik,jeodezi ve kısmen de coğrafya gibi ilimlerdir.Jeoloji,yer yuvarlağı üzerinde ve doğal olayları inceleyen bir bilimdir.Bu bilimin,özellikle Palecoğrafya ve Paleontoloji bilimleri yerin yapısını incelerler. Bunlardan Paleocoğrafya:yani jeoloji zamanlar ve devrelerinin coğrafya ilmi,Yer tarihi boyunca her bir jeoloji devrinde oluşmuş kıtalar,okyanuslar,dağ sistemleri ve jeosenklinaller gibi coğrafi ünitelerin dağılımlarını inceleyen bir bilim dalıdır.Nitekim Paleocoğrafi araştırmaların sonuçlarına göre Arkeen veya Arkeozik devrelerde günümüze dek,Yer’in Paleocoğrafyası’nda çok büyük değişiklikler olmuştur. Yer’in tarihi geçmişi ve gelişimini aydınlatan bir diğer bilim alanı da Paleontoloji’dir. Bu dalın ana uğraşı konusu,fosil kalıntılarıdır.Yer kabuğunda doğal süreçlerle oluşmuş fiziksel-kimyasal değişikliklere uğradığı halde,katmanlar arasında korunarak günümüze ulaşmış zoolojik vefitolojik her türlü kalıntılara fosil denir.Terim,jeoloji ilmi terimi olduğu kadar:Paleobiyoloji,Paleobotanik, Jeomorfoloji,paleontoloji ve paleocoğrafya terimidir de.Yine terimle ilgili olarak,fiziksel-kimyasal değişmeler geçirip taşlaşan hayvansal ve bitkisel kalıntıların bu nihayi şekline,fosilleşme denir. Fosiller,çok değişik özelliklerinin laboratuvar metodlarla incelenmesi sonucu,ait oldukları jeolojik zaman ve devirlerinin değişik coğrafi özellikleri hakkında,akıl yürütme metodu ile de olsa,bazı bilimsel sonuçlara varıla bilmektedir. Yeryuvarlağının yapı,bileşim ve gelişimini inceleyen bilim demek olan jeofizik de,Yer’in yapısı ve yaşının belirlenmesine yardımcı olan bir ilimdir. Örneğin,geliştirilen jeofizik metodlar ile,yeraltı yapı özelliklerinin incelenmesi giderek kolaylaşmoştır.Özellikle Sial bölümü hakkında,artık bu sayede geçmişe göre çok şey bilinmektedir.Bununla ilgili bir metod,radyoaktivite teorisi olarak ilme geçmiştir. Hatırlanacağı üzere radyasyon,sıcaklık veya ışın yaymak demektir.Bu fiziksel olaya kısaca ışınımda denir.Radyoaktif ise,nükleer sıcaklık veya ışınım etkinliği demektir.Terim,kısaca radyoaktivite diye de ifade edilir. Radyasyon’dan kaynaklanan yani nükleer ışınım yayma derecesinin ölçmeye yarayan jeofiziksel alete radyometre denir.A.B.D'li jeofizikçi J.Jolly, Rodyoaktiviteli,kayaçların parçalanma ayrışma hareketlerinin,yeryuvarı içinde ısınmaya yol açtığı;bunun deriniklerindeki kayaçlarda daha yüksek ısınmalar ve ergimelerle sonuçlandığını,Magma veya Sima’nın esas oluşma nedenin bu jeofiziksel değişime dayandığını;yeryuvarı kabuğunun yani kabuk bölgesinin de,aslında bu olayların eseri olduğunu ileri sürmüştür. Bu görüşlere,radyoaktivite teorisi denir.Teori kanıtlanmış olmazsada zamanla yapılan bir tür jeofizik ilmi çalışmaları ve radyometrenin kullanılması ile kayaçların yaşlarının belirlenmesi metodlarına,radyometrik metodlar denir.Bu tür metodlarla yapılan zaman belirlenmesi sonuçlarına göre Yer’in yaşı sorunu konusunda daha çok şey bilmekteyiz. Çok teknik bir dizi problem teşkil etmesine rağmen kayaçların yaşının belirlenmesi temelde şu esasa dayanır: En yüksek radyment,uranyum metalidir.Yer kabuğunun bileşiminde bütün kayaçlardai,onlardan oluşmuş topraklarla ve denizlerin sularında bulunur.Ekonomik olarak işletilmeyişini rezerv ve tenörler belirler. Uranyum atomlarını oluşturan partiküller,binlerce-hatta milyonlarca yıllık bir zaman sürecinde çözünürler ve sekiz elementin oluşmasını sağlar: Uranitit,peblend,carnotit,otunit…gibi.Buılardan en sonuncusu,kurşun bileşiğidir.Bu oluşum ve değişim çok,uzun bir zaman sürecinde gerçekleşir.Örneğin,1 g uranyum’un radyoaktivitesini yitirerek 1 g kurşun’a dönüşmesi için geçmesi gereken zaman sürecinin,7.6 milyar yıl olacağı hesaplanmaktadır. Söz konusu ettiğimiz bu oluşum süresinden yararlana uranyum ve kurşun elementleri bulunan kayaçların yaşlarını gerçeğe yakın bir şekilde hesaplaya bilmektedirler.Gerçekten de bu yapıdaki kayaçların incelenmesi bileşimlerindeki uanyum’un,kaç yılda kurşun2a dönüştüğü ve dolayısıyla da, Yaşlarının hesaplanmasını sağlamıştır.Bu yolda yaşları hesaplanmış kayaçların,3.5 ile 5 milyar yılı bulduğu anlaşımıştır. Bu metodla yapılan hesaplamalar,Yer’in kabuk bölgesi’nin ilk şekillenmeye başlamasının en az 4.5 - 5 milyar yıl eskiye dek uzandığını göstermiştir.Bunun 3.5-4.6 milyar yıl olabileceğini hesaplamış bilim adamlarınada rastlanır.

http://www.biyologlar.com/dunyanin-olusumu-ve-yapisi

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Balıklarda Üreme

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs

http://www.biyologlar.com/baliklarda-ureme

Bilimin Önünü Açmak İçin Biyologlara Kulak Verin

Bilimin Önünü Açmak İçin Biyologlara Kulak Verin

Dünyada önde gelen meslek gruplarından olan biyologlar, ülkemizde özlük hakları açısından yaşadıkları mağduriyetleri Sağlık Dergisi’ne ileterek çözüm önerisinde bulundular. Türkiye Biyologlar Derneği Üyesi Yalçın Dedeoğlu, “Özellikle gelişmiş ülkelerde bilimsel problemleri çözenlerin başında biyologlar geliyor. Türkiye’de ise biyologlara önem verilmiyor” dedi. Bütün canlı varlıkları, birbirleri ve çevreleri ile olan etkileşimlerini, bilimsel yöntemlerle inceleyen Biyolog, bu yöntemler sonucunda elde ettiği verileri eğitim, tarım, orman, sağlık, çevre, gıda, endüstri, biyoteknoloji gibi alanlarda uygulayan ve uygulatan, bu sonuçları rapor haline getirerek imzalama yetkisine sahiptir. Türkiye’de Fen Fakültelerinde Biyoloji Bölümlerinde halen, ortalama 25 bin öğrenci okuyor ve her yıl ortalama 6 bin öğrenci Biyoloji bölümlerinden mezun oluyor. Şuan ülke genelinde 100 bin biyolog bulunuyor. “Biyologsuz Olmaz” sloganıyla ülkemizde bilimin gelişmesi için yeni adımların atılması gerektiğini belirten Biyologlar Dayanışma Derneği Yönetim Kurulu Üyesi ve Türkiye Biyologlar Derneği Üyesi ve Tıbbi Atık Uzmanı, Çevre Görevlisi Yalçın Dedeoğlu, yaşadıkları sorunlar hakkında şunları söyledi: “Kamuda meslek unvanımızı 1933 yılında almış bir meslek grubu olarak, dünyada gelişmiş tüm ülkelerde ve Avrupa Birliği ülkelerinde Çevre, Tarım ve Sağlık sektörleri başta olmak üzere profesyonel meslekler içinde önem sırasına göre en ön sıralarda yer alan Biyologlar, ülkemizde işsiz ve gizli işsiz durumuna düşmüşlerdir. Biyoteknoloji, Biyomühendislik, Biyogenetik, Biyogüvenlik, Biyorafineri, Biyogaz v.b. terimlerinin üzerine inşa edilen hiçbir yasa ve yönetmelikte meslek unvanımız hak ettiği konularda ve konumda yer almamaktadır. Sağlıkta Dönüşümde Biyologlar Yok Sağlıkta Dönüşüm Yasası tasarı metninde 2 yıllık meslek yüksek okulları mezunları dahil tüm sağlık çalışanları var ancak “biyolog” yok. Hastanelerde Genetik Tanı Merkezlerinde çalışacak personel içinde ve özel Hastanelerde asgarî bulundurulacak Sağlık Personeli içinde “biyolog” yok. Biyogüvenlik Yasasında Bile “Biyolog” Yok İş Güvenliği Yönetmeliğinde, Biyogüvenlik yasasında, Veterinerlik Hizmetleri, Bitki Sağlığı, Gıda ve Yem kanununda biyolog yer almıyor. Tarım ve Köyişleri Bakanlığı, Çevre ve Orman Bakanlığı gibi mesleği doğrudan ilgilendiren hiçbir bakanlıkta ayrıca “biyolog” yetiştiren fakültelerin biyoloji bölümlerinde kendi kadro unvanıyla istihdam edilemiyor. Sorun Var- Çözüm Üretecek İnsan Gücü Var- Kadro Yok Günümüzde ekolojik sorunların giderek arttığı dünyamızda, Türkiye sınırları dışındaki özellikle gelişmiş ülkelerde bu problemlerle boğuşan mesleklerin başında “Biyolog” geldiği halde Türkiye’de biyologlara önem verilmiyor. Ülkemizin stratejik konumu, korumamız ve sahiplenmemiz gereken biyolojik zenginliklerimiz, su sorunu, çevre kirliliği ve küresel ısınmanın beraberinde getirdiği ekolojik sorunların giderek artması, ulusal çıkarlarımızın korunması açısından biyolojinin kapsamı ve giderek artan önemi neden görmezlikten geliniyor.  Yalçın DEDEOĞLU

http://www.biyologlar.com/bilimin-onunu-acmak-icin-biyologlara-kulak-verin

Kserofitlik ve Su Ekonomisi Ökofizyolojisi

Protoplazmanın susuzluğa dayanıklılığı özellikle likenler, yosunlar, eğreltiler ve ciğerotlarında görülürse de yüksek bitkilerde susuz koşullara karşı geliştirilmiş olan daha karmaşık mekanizmalar etkili olur. Grup olarak bazı otsular, koniferler ve sklerofillerde yüksek dayanıklılık görülür. Susuzluk toleransı varyete ve genotipler düzeyinde bile büyük açılımlar gösterebilir. Örneğin ciğer otları türlerinde aynı düzeydeki su eksikliğine dayanma süresinin 6 kat düzeyinde açılım gösterdiği belirlenmiştir. Kurak ve sıcak iklimi olan bölgelere adapte olmuş çeşitli düzeylerdeki bitki taksonlarının geliştirdikleri mekanizmalar temelde dört tiptir: I. I. Kuraklıktan kaçanlar: Yağışlı mevsimde çimlenerek hızla büyüyüp, gelişen ve tohumlarını oluşturup kurak dönem öncesi yaşam devrelerini tamamlayan, kurak dönemi tohum halinde geçirenler; II. II. Kuraklıktan kaçınanlar: Su kaybını azaltacak morfoloji ve anatomiye sahip olduğu gibi su alımında etkili kök sistemi geliştiren ve özel fizyolojik, biyokimyasal mekanizmalara sahip olan bitkiler; III. III. Kuraklığa direnenler: Su depolayarak, alımının mümkün olmadığı dönemlerde bile normal yaşamlarını sürdürecek biyokimyasal ve fizyolojik mekanizmaları olan, su kaybını da en alt düzeyde tutan bitkiler. IV. IV. İğne yapraklılar, koniferler Alt gruplar olarak da: 1. 1. Derin köklü ve su kaybını azaltan bodur, dikensi yapraklı, freatofitler 2. 2. Yumrulu veya rizomlu jeofitler 3. 3. Herdem yeşil ve sklerenkimatik iskeletleri olan sklerofiller 4. 4. Kuraklıkta yaprak dökümü veya daha kserofitik olanlarla yenilenmesi ile su ekonomisi yapan odunlular 5. 5. Yapraksız ve etli, yeşil gövdeli olanlar 6. 6. Su depolayan sukkulentler 7. 7. Şiddetli kuraklukta tüm yaşamsal etkinliklerini durdurarak su bulduğunda tekrar canlılık kazanan “resurrecting” dirilen bitkiler. Çok yıllık bitkiler de mevsimsel değişimlerin getirdiği farklı koşullara karşı bu tür mekanizmaların bir kısmından oluşan gelişmeler ile uyum sağlayarak yaşamlarını sürdürürler. Kışın soğuk koşullarına karşı geliştirdikleri korunma mekanizmalarına benzer önlemlerle kurağa da direnmeye çalışırlar. Örneğin kışın su alımını ve dokularındaki suyu azaltır, su alımı ve büyümelerini tümüyle durdururlar, baharda su alımını tekrar başlatarak üreme etkinliklerini tamamlar ve kurak bölgelerde yaz süresince büyümelerini kısıtlarlar. Sonbaharda kışa hazırlanmaya başlarken kuraklığa dayanıklılıkları da artar ve kışın en üst düzeye çıkar. Kuraktan kaçanlar, adapte olanlar (evading) su kaybını az ve derin stomalar ile azaltan, kalın kütükülalı, küçük yapraklı, derin köklü olanlar, sukkulentler. Protoplazması zarar görmeden dehidrate olan toleranslılar Kuraktan kaçınanlar su kaybına stoma kapatma ve kütikülar evaporasyonu kısma, etkin su alımı ve iletimi ile yaşam devrini kurak dönemler arasına sığdıranlardır. Genelde genç doku ve organların, dokuların hücreleri yaşlı olanlardan kuraklık ve soğuğa daha dayanıklıdır. Bu durum gerek yaprak döken gerekse herdem yeşil bitkilerin yapraklarında kendini gösterir. Absisyon, yani dökülme öncesi yapraklar normal ömürlerini tamamlamadan yaşlanır, senesansa uğrar yani ihtiyarlar, sararıp, kururlar. Dokularındaki su ve tüm besin maddeleri boşalır ve gövde üzerinden genç yapraklara gönderilir. Tıpkı hayvanlardaki yavruları koruma içgüdüsü gibi bitkilerde de genç ve büyüme potansiyeli olan organları koruma mekanizmaları vardır. Graminelerin kurağa dayanıklılıkları hızlı büyüme dönemlerini tamamlayınca azalır ve kurakta büyüme hızları düşer, yaşam devirlerini tamamlayabilmek için bodur kalır ve daha erken tohum verirler. Kuraklık yeni gelişen yeraltı ve yerüstü organlarının dokularında da linyin / sellüloz oranı artışına neden olur. Bunun korunma ve adaptasyon mekanizması olarak bitkiye sağladığı avantaj ise linyinin hemisellüloz ve sellülozun hidrojen bağları ile adsorbe ederek ve zincirleri arasında tuttuğu su oranının %30 - 50 daha az oluşudur. Bu sayede de odunlaşmış çeperler üzerinden yeni büyüyen ve su gereksinimi yüksek olan hücrelere su iletimi daha bol ve hızlı olur. Kserofitik bitkilerin birçoğunun yapraklarında kokularından kolaylıkla algılanan uçucu yağ yapısında maddeler vardır. Bu maddelerin buharlaşması, terleme hızı düşük olan yaprakların serinlemesini sağlar. Hücre fizyolojisi açısından bakılınca görülen ilişki ise hücrede vaküolün oluşarak büyümesi ile dayanıklılığın azalmaya başlamasıdır. Örneğin şişmemiş tohumun embriyosu suyunu tümüyle kaybetmeye bile dayanıklıdır. Bekleneceği üzere bu ilişkilere aykırı bazı durumların varlığının gözlendiği olmuştur. Beklendiği gibi kök sistemini hızlı geliştiren, derin ve yaygın olduğu kadar büyük kütleli kökü olan bitkilerin sıcak veya soğuk kurak dönemlere dayanma gücü daha fazladır. Örneğin Pinus sylvestris ve Eucalyptus türleri toprak yüzeyine yakın lateral yayılan köklerden dibe doğru inen kökler geliştirdiklerinden kurağa dayanıklıdır. Çöl bitkilerinde 18 metreye kadar inen kök sistemleri görülmüştür. Bazı meşe türleri gibi bazı ağaçlar ise köklerinin derine inmesi yanında kök hücrelerinin saldığı asitlerle kalker kayaları gibi yumuşak ve su depolayan kayalara sızarak kayalardaki suyu bile kullanır. Diğer önemli bir parametre ise emici tüy çevrim hızıdır. Stomaların sıklığı, çukur konumu, kapanma oranı ve hızı, kütikülar terleme hızı ile kütikülanın yaprağın ısınması ile su kaybına neden olan kızılötesi ışınları yansıtma özellikleri, Stipa ve Festuca türleri gibi bazı bitkilerin yaprak ayalarının su stresinde kıvrılarak yüzey küçültmesi, güneşin geliş açısına göre büyüme ve yaprak dizilişi asimetrisi gibi mekanizmalar da cinsler ve türlerin korunma mekanizmaları arasında yer alır. Genelde kserofit bitkilerde su oranının mezofitlerden daha yüksek oluşu da oluşmuş olan korunma mekanizmalarının sonucu olan fizyolojik bir mekanizmadır. Tüm bu mekanizmaların sağladığı dayanıklılığın yanında etkili olan protoplazma fizyoloji ve biyokimyası özellikle diğerlerinin sınırlarına gelmesi halinde de tümüyle önem kazanır. Her stres dönemi etkilediği bitkinin sahibi olduğu genetik potansiyel çerçevesinde dayanıklılık mekanizmalarını harekete geçirdiğinde bitki aynı yöndeki daha şiddetli strese de hazırlık yapmış olur. Öte yandan sınır plazmolizden itibaren protoplazma üzerinde mekanik zorlama başlar ve zararlı olur, hatta membranlarda çatlama ve yırtılmalar dahi görülür. Bu nedenle de stresin kısa sürelerle tekrarlanması daha zararlı etki yapar. Kuraklık protoplazmanın akışkanlığını azaltıcı ve Ca/K oranının arttırıcı etki yaparak porların su geçirgenliğini azaltır. Yeni araştırmalar su stresi etkisi ile başlayarak yürüyen senesans olayındaki sembolik değişimler ile doğal yaşlanma sonucu olan ihtiyarlama sonucu olan sembolik madde boşalmasının birbirine çok benzer olmasına karşılık hidrolitik ve oksidativ enzim proteinleri ile aktivitelerinin farklılık gösterdiğini ortaya koymuştur. Günlük su miktarı değişimlerinin incelenmesi fotosentetik aktivitenin artışına neden olan ve nişasta taneleri gibi su oranı düşük taneciklerin biriktiği saatlerde kuru ağırlığa oranla su yüzdesinin arttığını, yapraktaki bu kuru maddelerin boşaldığı saatlerde yükseldiğini göstermiştir. Bu da taze ağırlığa oranla su yüzdesinin değil suyun toplam miktarının su ekonomisinin göstergesi olduğunu göstermiştir. Kserofitik karakterlerin, kalın kütikül, sukkulens, balmumsu örtü tabakası, küçük veya dikensi yaprak, çukur stoma, çok trikom, küçük hücreler, linyinleşme özelliklerin her zaman düşünülen sonucu sağlamadığı görülmüştür. Örneğin çöl bitkilerinin terleme düzeyi mezofitlerden yüksek olabildiği, Verbascum tüylerinin alınması gibi uygulamaların terleme düzeyini arttırmadığı, trikomların su kaybını azaltıcı değil yüksek su kaybının sonucu olduğu gibi bulgular tipik kserofitik karakterlerin fizyolojik dengelerle birlikte bir bütün oluşturduğunu göstermiştir. Kserofitlerin tipik yapıları çok farklı ekolojik koşullarda da görülebilir: Bitki örtüsünde çöllerden tuzlu, soğuk, rüzgarlı, aydınlanma şiddeti yüksek yüksek rakımlı yerlere kadar açılımlar görülebilir. Örneğin çok farklı familyaların kendileri için atipik bazı cins ve türleri sukkulent özellikte olabilir. Suyun protoplazmadaki termodinamik aktivitesi önemlidir ve bağıl değeri, aynı sıcaklık ve basınçta ölçülen bir su emici materyalin üzerindeki buhar basıncının saf su üzerindeki doymuş buharın basıncına oranıdır. Hidratür ise = bu p/po oranı x 100 dür ve hava nemini, çözelti veya hidrofil cisim üzerindeki bağıl su basıncını, % termodinamik bağıl su aktivitesini tanımlamakta kullanılabilir. Bitki hidratürü terimi protoplazma hidratürüdür, yani hücreler arası boşluk ve çeperleri içermez. Vaküollü hücrelerde özsu hidratürü ile dengededir. Protoplamik şişme ile özsu ve dış ortam arasında ilişki vardır ve özsu hidratürü osmotik potansiyel tarafından belirlenir.

http://www.biyologlar.com/kserofitlik-ve-su-ekonomisi-okofizyolojisi

KENELER BİYOLOJİK SİLAHMI

Türkiye`de 120 kişinin ölümüne neden olan keneler, biyolojik silah olarak kullanılıyor mu? Bilim adamları bu sorunun cevabını aradı. Kaynak:Haber Merkezi Kırım Kongo kanamalı ateşi (KKKA) Türkiye`de ilk kez 2002`de görüldü ve 28`i bu yıl olmak üzere toplam 120 kişinin ölümüne yol açtı. Bu yılın ilk 3 ayında 206 kişinin kene ısırması şikâyetiyle hastanelere başvurması, hastalığı `salgın` boyutuna taşıdı. Türkiye ile birlikte Afrika, Asya, Balkanlar ve Ortadoğu`da 30`dan fazla ülkeyi tehdit eden hastalığın tedavisi henüz bilinmiyor. Küresel ısınmanın virüsün yayılmasında etkili olduğu söylense de `Biyolojik silah mı?` sorusu tartışmaların odağına yerleşti. Hacettepe Üniversitesi Halk Sağlığı Bölümü`nden Prof. Dr. Levent Akın, bu soruya, `CIA ve FBI`ın biyolojik silahlar listesinde Kırım Kongo da var.` cevabını veriyor. Ancak mikrop üreten ve kullanmaya karar veren bir ülkenin elinde bunu durduracak maddenin olması gerektiğini vurgulayan Akın, dünyada henüz bu mikrobu öldürecek maddenin bulunmadığını hatırlatıyor. Cerrahpaşa Tıp Fakültesi`nden Prof. Dr. Ayşen Gargılı da, virüsün biyolojik silah listesinde yer aldığını doğruluyor. Fakat, bunun Türkiye`de denendiği tezine karşı çıkıyor. Sebebini ise `Kırım Kongo solunum yoluyla bulaşmaz ve kitlesel ölümler getirmez.` sözleriyle açıklıyor. `Çocukken ineklerden keneleri söker, öldürürdük. Hiçbir şey olmazdı. Bu kenelere ne oldu da şimdi hastalık saçıyor?` sorusu 35 yaşındaki Sivaslı Fatih Polat`a ait. Türkiye`deki hemen herkesin dilinde olan bu sorunun cevabını kimse bilmiyor. Bilinen bir gerçek var ki; hyalomma marginatum marginatum türü keneler 2002 yılından bu yana Türkiye`de hastalık saçıyor. İlk olarak 1944`te Kırım`da, 1956`da da Kongo`da görülen virüsün Türkiye`de 1970`li yıllarda da tek tük vakalara sebep olduğu biliniyor. Ancak ölümcül virüs taşıyan keneler Anadolu`daki 60`ın üzerindeki tür içinde hızla artıyor. 15 yıl öncesinde sayıları çok az olan keneler, şu anda en kalabalık nüfusa sahip tür olarak insanları tehdit ediyor. Cerrahpaşa Tıp Fakültesi Mikrobiyoloji ve Klinik Mikrobiyoloji Anabilim Dalı üyesi Prof. Dr. Ayşen Gargılı, hastalık taşıyan kenelerin gelişimini anlatırken, bugünkü durumu `kene salgını` olarak niteliyor. Gargılı, `Vakalardaki patlama salgının gidişatı açısından şaşırtan bir mesele değil. Olgu sayıları artarak devam eder, doygunluk noktasına çıkar ve insanlardaki bağışıklık oranı geliştikçe durur, daha sonra aşağıya iner.` diyor. Şu ana kadar dünyadaki en büyük KKKA salgınının Türkiye`de yaşandığını dile getiren Gargılı, `biyolojik silah Türkiye`de deneniyor` tezini doğru bulmuyor. Virüsün biyolojik silah ve terörizm listesinde bulunduğunu doğrulayan Gargılı, Kırım Kongo`nun solunum yoluyla bulaşmadığı ve kitlesel ölümler getirmeyeceği için çok etkin biyolojik silah olarak kullanılamayacağını söylüyor. Vakalar temmuz ayında patlama yapıyor Bir kene yılda 5-7 bin arasında yumurta bırakıyor. İlkbahardan itibaren toprağın üstüne çıkan keneler, önce hayvanlara yapışıyor. Daha sonra insanlardan kan emiyor. Nisanda başlayan vakalar eylül ayına kadar devam ediyor. En fazla vaka temmuz ayında görülüyor. Eylülün ortalarında keneler toprağa geri dönüyor. KKKA, hayvanlara ve insanlara kenelerin ısırmasıyla geçiyor. Hayvanlarda belirtisiz seyreden hastalık, insanlarda öldürücü olabiliyor. Türkiye`de vakaların yüzde 10`u ölümle sonuçlanıyor. Hastalık ani başlayan ateş, baş ve kas ağrıları, kırgınlık, halsizlik ve iştahsızlık gibi belirtilerle ortaya çıkıyor. Bulantı, kusma, karın ağrısı, ishal gibi şikâyetlerle devam ediyor. Hastalığın ilerlemesi durumunda diş eti, burun, kulak kanaması ve vücudun çeşitli yerlerinde dış kanama oluşuyor. Ankara Numune Hastanesi Mikrobiyoloji Klinik Şefi Hürrem Bodur, kene ısırdıktan 6 saat sonra virüsün salgılanmaya başlandığını belirtirken, iki hafta içinde kaybedilmeyen hastaların, KKKA`ya karşı bağışıklık kazandığını belirtiyor. Kelkit Vadisi`ndeki şehirlerde kene işgali var Orta Karadeniz, Orta Anadolu`nun kuzey kısımları, Toroslar`a kadar uzanan bodur alanlar. Virüslü kenelerin yaşamadığı yegane yer Akdeniz ve Karadeniz kıyıları. Nemli ve ıslak yerlerde yaşam sürdüremeyen bu tür keneler, Kelkit Vadisi olarak bilinen Tokat, Çorum, Yozgat, Sivas civarında yoğun olarak görülüyor. Bu illerin yanı sıra vakaların rastlandığı iller; Amasya, Ankara, Artvin, Aydın, Balıkesir, Bolu, Çankırı, Çorum, Düzce, Erzincan, Erzurum, Giresun, Gümüşhane, İstanbul, Karabük, Kastamonu, Kayseri, Kırşehir, Kocaeli, Muş, Ordu, Samsun, Şanlıurfa, Yozgat, Zonguldak. Keneler, Amerika`da `lyme` hastalığına, Almanya ve Avusturya ile Kuzey Avrupa ülkelerinde ise beyin iltihaplanmasına yol açıyor.

http://www.biyologlar.com/keneler-biyolojik-silahmi

Eklembacaklılar (Artropoda)

Eklembacaklılar (Artropoda) Tüm omurgasızlar arasında en başarılı ve çeşitli olanlar, kuşkusuz eklembacaklılardır. Bunların vücutlarının dış kısmı, sert parçalı bir dış örtü (dış iskelet) ile kaplıdır. Üyeleri eklemlidir. Böcekler Örümcekler, Akrepler, Çokbacaklılar Ve Kabuk¬lular günümüzün eklembacaklılarındandır. Fosil¬ler arasında bugün, soyları tükenmiş olan Trilobitomorflar ve Öyripteridler veya dev su akrepleri bu¬lunmuştur. Bütün bu gruplar başlangıca doğru iz¬lendiklerinde olasılıkla ortak bir atadan, Halkalı Kurt’tan meydana gelmiş gibi görünürler. Ancak birçok eklembacaklı türünün ayrı atalardan türemiş olmaları da aynı derecede güçlü bir olasılıktır. İlk eklembacaklılar, alt Kambriyum devrinde birdenbire ortaya çıkmışlar ve son derece çeşitli gruplar oluşturmuşlardır. Bu durum, söz konusu hayvanların geçmişinin Kambriyum öncesine kadar uzandığını; ancak bu devirdeki atalarının mineral-leşmiş bir iskeletlerinin bulunmadığını akla getirir. Kambriyum devrinin başlangıcında çeşitli eklem¬bacaklı sınıfları vardı. Bunların başlıcaları trilobitler ve trilobitoidlerdir ve bu iki grup Trilobitomorflar adı altında toplanır. Trilobitoidlerin çeşitleri daha fazlaydı: ancak iskeletleri ince ve mineralsiz olduğundan, fosillerine sadece Kanada'nın Kam¬briyum devri ortalarından kalma ince taneli kaya¬larında (Burges Shales) rastlanmaktadır. Burgessia ile Marella tipik trilobitoidlerdir. Burgessia, küçük bir Kral Yengeç benzer. Marella, geriye doğru uzantılarıyla ilginç bir eklembacaklıdır. Bun¬ların her ikisinde de trilobitlerinkine benzer ayak¬lar bulunur ve ayağın vücuda yakın tarafında bir solungaç dalı ve öteki tarafında ise yürüme bacağı vardır. Trilobitlerin gövdeleri ise üç loblu bir dış iskelet ile kaplıdır. Ön kısım baş (cephalon). orta kı¬sım göğüs (thorax) ve geri taraf kuyruk (pygidium) adını alır. İlk trilobitlere örnek olarak dikenli, kısa kuyruklu Olenelluslar ile küçük ve kör Agnostuslar gösterilebilir. Paleozoik, trilobitlerin şanslarının hem açıldığı hem kapandığı bir dönem olmuş; bu dönemde dikenleri kısalmış. göz yapılan gelişmiş ve iri kuyruklu türler ortaya çıkmıştır. Diğer eklembacaklı gruplarından olan kral yen¬geçler, kabuklular ve pnikoforalar da Kambriyum devrinde ortaya çıkmışlardır. Kral yengeçler. Orta Ordovik ve Perm devirleri arasında yaşamış dev Öyripteridlerle ilintilidir. Silür devrinde kara hayvanı olarak ilk gerçek akrepler ortaya çıktı; Devon devrinde keneler, örümcekler ve böcekler on¬lara katıldı. Denizde yaşamayan birçok eklemba¬caklı gruplarının fosilleri, ancak özel koşullarda birikmiş tortularda bulunur ve ''zaman içinde görü¬nüp kaybolsalar" bile, giderek artan bir çeşitliliği gösterirler. 1.2. Evrim Kavramının Gelişimi Kalıtım ve evrim, canlılığın tanımlanmasında birbiriyle çok yakından ilişkisi olan iki bilim dalıdır. Birini, diğeri olmadan anlamak olanaksızdır. Kalıtım bilimi, döller arasındaki geçişin ilkelerini açıklar. Evrim ise geçmiş ile gelecekteki olayların yorumlan¬ masını sağlayarak, bugün dünyada yaşayan canlılar arasındaki akrabalığın derecesini ve nedenini ortaya koyar. Evrimsel değişmeler kalıtıma dayalıdır. Çünkü bireysel uyumlar döllere aktarılamaz. Değişikliklerin genlerde meydana gelmesi ve gelecek¬ teki çevre değişimlerine bir ön uyum olarak varsayılması gerekir. Çeşitlenmenin ve gelişmenin değişikliklerle meydana geldiğini savunan bazı tarihsel gözlemlere kısaca göz atalım. 1.2.1. Gözlemler ve Varsayımlar Canlıların birbirinden belirli kademelerde farklılıklar gösterdiğine ve aralarında bazı akrabalıkların olduğuna ilişkin gözlemler düşünce tarihi kadar eski olmalıdır. Doğayı ilk gözleyenler, doğan yavrunun ana ve babadan belirli ölçülerde farklı oldu¬ğunu görmüşlerdir. Hatta aynı batından meydana gelen yavruların dahi birbirinden farklı olduğu ta o zamanlar farkedilmiştir. Bitki ve hayvanlarda türden başlayarak yukarıya doğru benzerlik derecelerine göre grupların oluşturulduğu (bugünkü anlam¬da cins, familya, takım vs. gözlenmiştir. Bu yakınlık dereceleri sıralanmakla beraber, kalıtsal bilgi yeterli olmadığı için tam anlamıyla bir, yorum yapılamamış ve en önemlisi bir türün binlerce yıllık tarihsel gelişimi, bir düşünür birey tarafından sürekli, olarak gözlenemediği için, evrim, daha doğrusu çeşitlenme ve akrabalık bağlan tam olarak tariflenememiştir. Çünkü bir canlının yaşamı süresince bu şekildeki bir farklılaşma kesinlikle gözlenemeyecektir. Bazı hayvan yavrularının, hatta bu yavrular içinde bazılarının yaşama şansının diğerlerine göre büyük olduğu gözlenmiş ve doğal seçme konusunda, bilinçsiz de olsa ilk adımlar atılmıştır. evrim fikri ancak yakın yıllarda gelişen bilimsel yöntemler aracılığıyla gerçek yatağına oturtulabilmiştir. Daha önceki yorumlar, bilimsel düşüncenin tarihi açısından değerli olmakla beraber, yeterince bilimsel kanıtla donatılmadığı için doyurucu olamamıştır. evrim, bir gelişimi, bir değişimi ifade eder. değişken ve sonlu bir evrende herhangi bir şeyin değişmez ve sonsuz olduğunu düşünmek bilimsel yargıya ters düşer. evrim kavramı değişik fikre saygıyı bir fikrin her ortamda, her zamanda geçerliliğini koruyamayacağını; yaşayan her şeyin zamanla, kısmen de olsa bulunduğu ortama bağlı olarak değişebileceği fikrini düşünce sistemimize sokmuştur. Dolayısıyla evrim konusundaki eğitim, toplumları yeniliklere açık yapmakla kalmaz, değişik seçeneklerin hepsinin yerine göre saygıde¬ğer ve değerli olduğu fikrini toplumlara yerleştirebilir. Biz geçmişteki evrim kavramı¬nın gelişimini kısaca vermeye çalışalım. 1.2.2. Evrim Konusundaki İlk Yorumlar Elimizdeki bilgilere göre evrim konusundaki gözlemler ve yorumlar çok eskiye dayanmaktadır. 1.2.2.1. Fosillerin Bulunması Fosiller bulunmaya başlayınca geçmişteki canlıların bugünkünden farklı oldu¬ğu anlaşılmıştır ve bunu açıklayabilmek için şu sav ileri sürülmüştür: Geçmiş devirler¬ de her canlı türü, ayrı ayrı olmak üzere, tüm canlılar bir defada yaratılmış, daha sonra bir felaket veya afetle ortadan kalkmışlardır. Bunu takiben tekrar farklı ve yeni canlı¬lar yaratılmıştır. Bilgilerin birikmesiyle fosillerin kesik kesik değil birbirini izleyen jeolojik tabakalarda sürekli ve kademeli değişim gösterdiği bulunmuştur. O zaman felaketlerin birbirini izleyen diziler halinde olduğu savunulmuştur (genellikle 7 defa olduğuna inanılmıştır). Bu kurama göre her defasında yeni canlılar yaratılmıştır. On dokuzuncu yüzyılın başlarına kadar bilimsel anlamda herhangi bir evrim kavramı gelişmemiştir. On dokuzuncu yüzyılın başlarında Georges CUVİER, Paris civarındaki kalkerli tortullardan fosil toplamış ve bugünkü hayvanlarla karşılaştırmıştır. Farklı jeofojik tabakalarda hayvanların değişik yapılan gösterdiğini ortaya koyarak zoolojik sınıflandırmaya fosilleri sokmuş ve yeni bir sınıflandırma yöntemi geliştirmiştir. 1.2.3. Evrim Fikrine Direnişler İnsanın yapısında yeni düşüncelere direnme eğilimi vardır; bu, evrim konusun¬da da kendini göstermiştir. Geçmişte ve bugün evrim kavramına birçok karşı koyma¬lar olmuştur. Hatta yerleşmiş tutucu inançları değiştirdiği için, evrim kavramını savu¬nanlar ölüme mahkum edilmiştir. Bu karşı koymalar zamanımızda, değişik ideolojile¬rin ve dinsel inancın bir parçasıymış gibi varsayılarak, birçok kişi tarafından, herhangi bir dayanağı olmaksızın, sadece dogmatizmin sonucu olarak, hâlâ sürdürülmektedir. Fakat açık olan birşey varsa, bilimsel gözlem ve bulgulara dayanmayan hiçbir düşün¬ce sürekli olamaz. Belki bugün evrim konusunda yanlış yorumlamalar olabilir; ama, gelecekteki bilimsel gelişmelerle bu yanlışlar düzeltilebilir veya eksikler tamamlanabi¬lir; çünkü bilimsel düşüncenin kapısı evrim fikriyle her zaman açık bırakılmıştır. Zaten evrimin özünde, ileriye dönüklük, değişim ve gelişim yatar. Halbuki tutucu düşünce, bilim kapısını kapattığı için yenilenemez ve zamanla tarih içine gömülerek kaybolur. Evrim, var olanı, sabitliği değil; geleceği ve değişimi inceler. Bu nedenle evrim kavra¬mının kendisi de sabit olamaz. Örneğin, Rusya'da, Stalin, 1940 yılında, bitki ıslatıcısı Trofim LYSENKO'nun gülünç savını resmi politika olarak benimsediği zaman, bu fikri benimsemeyen birçok değerli genetikçi tutuklandı, sürüldü ve bir kısmı da sonuçta öldü. 1950 yılında poli¬tika değiştiğinde, eski fikrine bağlı kalanlar için artık çok geçti. Dinsel baskılar, bu konuda çok daha yoğun ve acımasız olmuştur. Ortaçağda birçok kişi bu nedenle yaşamını yitirmiş veya savundukları fikri geri almaya zorlanmıştır. Haçlı seferleri, gibi kanlı savaşlar da yine inanç farklarından doğmuştur. Bununla beraber özellikle son zamanlarda her dinde bazı liderlerin ve keza bazı dini liderlerin yeni fikirlere açık olduğu görülmüştür. Fakat yine de yeni fikirlerin topluma yerleşmesi büyük çabalarla olmaktadır. Evrim hakkındaki fikirlerin de büyük itirazlarla karşılanması, özellikle yaratılış konusunda yeni yaklaşımlar getirmesi açısından, bazı dinlere veya din kitaplarına veya yerleşmiş tutucu inançlara ters düşmesi veya en azından bazı kişiler tarafından bilinçsizce ve belirli bir artniyet ile yanlış değerlendirilerek öyle gösterilmesi, yukarıda anlatılan insanın "itirazcı yaratılışı" bakımından doğal sayılmalıdır. Bugün birçok kişi hâlâ eski inançlara bağlı olmakla beraber, evrim kavramı, insanlar büyük emekle yetiştirilip bilimsel düşünceye sahip oldukça ve bu kayram bilimsel verilerle desteklendikçe, ancak o zaman toplumun malı olabilecektir. 2. EVRİM KONUSUNDA BİLİMSEL DÜŞÜNCELERİN GELİŞİMİ On dokuzuncu yüzyıl, bilimsel düşüncenin patlarcasına geliştiği bir dönemin başlangıcı olarak bilinir. Gözlenen olayların nedenini mistik ve spekülatif açıklamalar yerine, bilimsel deneyler ve analizlerle açıklamalar almaya başlamıştır. Sonuç olarak toplumları uzun yıllar etkisi altına alan birçok kavram, temelden sarsılmaya ve yıkıl¬maya başlamıştır. Bu akım kaçınılmaz olarak evrim ve kalıtımın ilkelerine de ulaşmış ve evrim konusunda birçok yeni fikirler geliştirilmiştir. Biz burada evrim konusuna damgasını basmış bazı gözde bilim adamlarına yer vermekle yetineceğiz. 2.1. Jean Baptiste Lamarck Ondokuzuncu yüzyılın başlarında J.B. LAMARCK adlı bir Fransız bilgini hayvanları karmaşıklığına göre düzenlemeye çalıştı. Birçok hayvan grubunun basitten kar¬maşığa doğru, bir ağacın dallara ayrılması gibi, çeşitlendiğini ve gruplara ayrıldığını gördü. Bu gözlem, O'na, evrimle, canlıların gelişebileceği fikrini verdi. Fikirlerini 1809 yılında "Philosophie Zoologique" adlı bir eserde topladı. Kitabında, basit canlılardan diğerlerinin nasıl oluştuğunu açıklamaya çalıştı. Her generasyonun çevre koşullarına daha iyi uyum yapabilmesinin nedenlerini araştırdı. Bu, dinsel dogmanın hakim olduğu bir devirde, oldukça köklü bir yaklaşımdı. Bu dönemde Fransa'da bazı idari kargaşalıklar da olduğu için, ileri sürülen bu sava dini liderlerin fazla bir itirazı olmadı. 2.1.1. Bir Organın Kullanılıp Kullanılmamasına Göre Değişimi Daha sonra yanlışlığı kesin olarak saptanan evrimsel bir kuramı ortaya attı: "Eğer bir organ fazla kullanılıyorsa; o organ gelişmesine devam ederek daha etkin bir yapı kazanır." Örneğin, bir demircinin kolları, kullandığı çekiçten dolayı güçlenir; fakat ayaklarını kullanamadığından dolayı gittikçe zayıflar. LAMARCK, bu ilkeyi, evrimin uyumsal düzeneğinin esası olarak benimsedi. Böylece kazanılmış bir özellik, bireyler tarafından döllere aktarılabiliyordu ve bir demircinin çocuğu kol kasları bakımından diğerlerine göre daha iyi gelişebiliyordu. Zürafaları örnek vererek savını desteklemeye çalıştı: Zürafalar, dibi çıplak ve çay irsi z olan ortamlarda yaşıyorlardı. Dolayısıyla besinlerini çalıların ve ağaçların yap¬raklarından sağlamak zorundaydılar. Ağaçların ucuna ulaşmak için bir zorlama vardı ve bu zorlama zürafaların zamanla ön ayaklarının ve boyunlarının uzamasına neden oldu. Her generasyon, boynunu biraz daha uzatarak, sonuçta ayaklarını kaldırmadan 4-6 metrelik yüksekliğe başını uzatabilir duruma geçtiler. LAMARCK'a göre kazanılmış özellikler dölden döle aktarılmaktaydı. Bu açıklama o zaman için geçerli görüldü. Çünkü kalıtımın yasaları henüz bulunamamıştı, özelliklerin kalıtım yoluyla geçtiğine dair fazla birşey bilinmiyordu. Daha sonra özelliklerin bireye bağlı olmadan kalıtıldığı bulununca, kuram tümüyle geçerliliğini yitirdi. Doğal olarak her birey çevre koşullarına belirli ölçülerde uyum yapar; fakat kazanılan bu özellikler bireyin ölümüyle "birlikte" yitirilir. Her generasyon kendi uyumunu, doğduğu zaman taşıdığı genlerin özellikleri içerisinde yapmak zorundadır. Vücut hücrelerinin yapacakları uyum, kalıtsal materyali etkilemeyeceği için, sonradan kazanılmış özelliklerin yavruya geçmesi olanaksızdır. 2.1.2. Lamarckizme İlişkin Diğer Örnekler LAMARCK, köstebeklerin atasının yer altında yaşadığını ve gözlerini kullanmadıkları için zamanla görme işlevine gerek kalmadığı ve dolayısıyla birkaç nesil sonra tümüyle gözlerin köreldiğini savunmuştur. Karıncaayısının, dişlerini kullanmadan, besinlerini yutarak aldığı için, dişlerinin köreldiğini ileri sürmüştür. Buna karşılık su kuşlarının birçoğunda, besin, suyun dibimde arandığından, boyun devamlı uzamıştır. Keza yüzücü kuşların parmakları arasındaki derimsi zar da kullanıldığından döller boyunca gelişerek perde ayakları meydana getirmiştir. Hatta daha ileriye giderek, doğan çocukların gözlerinin birinin devamlı çıkarılmasıyla, bir zaman sonra tek gözlü insanların da meydana gelebileceğini savunmuştur. Bütün bu görüşlere karşın iki nesil sonra CHARLES DARWIN kazanılmış özelliklerin kalıplamayacağını göstermiş ve kalıtsal olan özelliklerin içinde en iyi uyum yapanların ayakta kalabileceğini ortaya çıkarmıştır. Daha önce BUFFON ve ERASMUS DARWIN, ileri sürdükleri buna benzer fikirlerde ve açıklamalarda pek inandırıcı" olamamışlardır. Yukarıda anlatılan hayvanların ve bitkilerin çevrelerine nasıl uyum yaptıklarını açıklayan; fakat yaşantılarında kazandık¬ları özelliklerin gelecek döllere kalıtıldığını savunan (bugünkü bilgilerimizde yaşamı, süresince kazanılan özelliklerin kalıtsal olmadığı bilinmektedir) bu kurama "Lamarckizm" denir. 1887 yılında WElSMANN tarafından somatoplazma ve germplazma arasındaki kuramsal farklar bulununca, sonradan kazanılan özelliklerin kalıtsal olmadığı ortaya çıktı ve bu görüşe paralel tüm varsayımlar çürütüldü. 2.2. Charles Darwin C. DARWIN, getirdiği yepyeni yaklaşım nedeniyle, evrim biliminin babası olarak benimsenir. Evrim sözcüğü çoğunlukla Darwin ile eş anlamlı kullanılır ve bu nedenle Darwinizm denir. Biz, Darwin'in yaşamını diğerlerine göre daha ayrıntılı olarak öğreneceğiz. 2.2.1. Yaşamının İlk Evreleri ve Eğitimi Darwin, 12 Şubat 1809'da İngiltere'nin Shrewsburg şehrinde Dr. Robert Darwin'in oğlu olarak dünyaya geldi. Babası tanınmış bir doktordu ve oğlunun da doktor olmasını istiyordu. Darwin'in Latince ve Yunanca'ya ilgisi azdı. O, zamanının çoğunu böcek, bitki, kuş yumurtası ve çakıltaşı toplamakla geçiriyordu. Babası, O'nu, 16 yaşında, doktor olsun diye Edinburg Üniversitesine gönderdi. Öğreniminin ilk yıllarında bayıltılmadan bir çocuğa yapılan ameliyatı gözledi ve doktor olamayaca¬ğına karar vererek okulu bıraktı. Hukuk öğrenimi yapmak istedi; fakat bu mesleğin de kendine hitap etmediğini anladı. Son seçenek olarak babası O'nu Kambriç Üniversitesine dini bilimler (teoloji) öğrenimi yapmak için gönderdi. Orayı yeterli bir derece ile bitirdi. Fakat O'nun esas ilgisi başka bir konudaydı. DARWİN'in Edinburg'daki arkadaşlarının çoğu zooloji ve jeoloji ile ilgileniyordu. Zamanının çoğunu botanikçi arkadaşı John HENSLOW ile araziye gidip kınkanatlıları toplamakla geçirmeye başladı. Bu arada LAMARCK'ın çalışma¬sını ve kendi büyük babasının yazmış olduğu "Zoonomia" adlı şiir kitabını okudu. Kitaplarda geçen "canlılar belki tek bir soydan türemiştir" cümleciğini benimsedi; fakat genel olarak kabul edilen özel yaratılma fikrine de bağlı, kaldı. Bu arada; bir İngiliz gemisi" H.M.S. BEAGLER denizcilere hârita yapmak için, Güney Amerika'yı yakından tanımış kaptan ROBERT FITZROY'un yönetiminde/dünya turu yapmak üzere beş sene sürecek bir sefere hazırlanıyordu. Kaptan, daha önce güney Amerika'daki alışılmamış jeolojik yapıyı gözlemiş ve bu nedenle gemisine bu jeolojik yapıyı gözleyebilecek ve açıklayabilecek iyi yetişmiş bir doğa bilimcisini almak istiyordu. DARWIN, babasının itirazına karşın, arkadaşı HENSLOW'un ikna etmesiyle bu geziye çıkmayı kabul etti. 27 Aralık 1831 yılında 22 yaşındaki DARWIN, BEAGLE’nin güvertesinde, Devonport limanından denize açıldı. 2.2.2. İngiltere'deki Gözlemler Darwin, ileri süreceği fikrin yankı uyandıracağını, dolayısıyla tüm dünyanın inanması için yeterince kanıt toplanması gerektiğini biliyordu. bir şey canını sıkıyordu. Bütün kanıtlar canlılığın evrimsel işleyişini göstermekle beraber, nasıl çalıştığı konusunda herhangi doyurucu bir açıklama yapılamamıştı. Güvercin yetiştiricilerini ziyaret ederek, onların seçme yoluyla nasıl yeni özellikler elde ettiklerini öğrendi. Örneğin bir yetiştirici büyük kuyruklu bir güvercin yetiştirmek istiyorsa, yavrular arasında bu özelliği gösteren yavruları seçerek seçime devam ediyordu. Birkaç döl sonra da gerçekten büyük kuyruklu güvercinler elde ediliyordu. Buradaki evrimsel süreç, yapay seçme ile sağlanıyordu. Diğer hayvan ve bitki ıslahı çalışmalarını ve ya¬bani formların gösterdiği çevre koşullarına uymayı da dikkatlice not etti. Darwin bu düşüncelerini, 20 yıllık bir çalışmanın sonucu olarak, "Origin of Species = Türlerin Kökeni" adlı bir kitapta topladı. DARWlN'e yapay koşullar altında yapılan bu seçmenin, doğal koşullar altında da yapılabileceği fikri mantıki geldi. Bir türün tüm üyelerinin aynı uyumu gösteremeyeceğini de anlamıştı. Çünkü topladığı canlılar içinde, aynı türe bağlı bireylerin göster¬dikleri varyasyonları not etmişti. Doğanın güçleri, bu bireyler içerisinde o ortamda yasayabilecek özellikleri taşıyanları yaşatma, daha doğrusu yaygın duruma geçirme yönündeydi. 1838'in Ekim ayında THOMAS MALTHUS'un 1798 yılında yazdığı "An Essay onthe Principlesof Population = Populasyonun Kuralları Üzerine bir Deneme" adlı bir makaleyi okurken, evri¬min ikinci önemli bir işleyişini düşünmeye başladı. Bu makale, tüm türlerin, sayılarını sabit tutacak düzeyden çok daha fazla yavru meydana getirme yeteneğinde oldu¬ğunu savunuyordu. Açıkça yavruların büyük bir kısmı yaşamını sürdüremiyordu. MALTHUS, bu kavramı insana uygulamıştı ve insanların geometrik olarak çoğalması¬nın, savaş, hastalık, kıtlık ve diğer afetlerle belirli bir düzeyde tutulduğunu savun¬muştu. DARWIN, evrim sorununun açıklanamayan bir işleyişini MALTHUS'dan esinlene¬rek ortaya çıkardı. Tüm türler gerekenden fazla ürüyorlardı; bunların içerisinde başa¬rılı olan varyasyonlar uyum yaparak ayakta kalıyordu. Bu varyasyonlar özünde, gelecek için seçeneklerin doğmasını sağlıyordu. Biz tekrar DARWIN'in Türlerin Kökeni adlı yapıtına dönelim. Bu çalışmada iki gerçek ve üç varsayım ortaya çıkmıştı. Gerçekler: 1. Tüm organizmalar, gereğinden fazla yavru meydana getirme yeteneğine sahiptirler. Bununla beraber elemine edilenlerle populasyonlarda denge sağlanmak-tadır. 2. Bir türün içerisindeki bireyler, kalıtsal özellikleri bakımından farklıdır. Varsayımlar: 1. Yavruların çoğu ayakta kalabilmek için bir yaşam kavgası vermek zorundadırlar. 2. İyi uyum yapacak özellikleri taşıyan bireylerin çoğu yaşamını sürdürür; iyi uyum yapabilecek özellikleri taşımayanlar ortadan kalkar. Böylece istenen (çevre koşullarına uyum sağlayacak) özellikler kalıtsal olarak gelecek döllere aktarılır. 3. Çevre koşulları bir bölgede diğerinden farklı olduğundan özelliklerin seçimi her bölgede ve koşulda farklı olmak zorundadır. Canlılardaki varyasyonlar bu şekilde uzun süre saklanabilir ve yeterli bir zaman süreci içerisinde yeni türlere dönüşe¬bilir. Bu, çok çarpıcı bir varsayımdı ve DARWIN, bu savın desteklenmesi için yeterince kanıta da sahipti. Fakat eserini yayınlamaktan hâlâ çekiniyordu. Hatta düşüncesini arkadaşlarına açtı ve arkadaşları, O'nu, bu konuda daha ileri gelişmeleri beklemeden şimdiki durumuyla yayınlamasını istediler. O, ayrıntılı verilmiş dokümanlarla hazırlan¬mış dört bölümlük bir yayın planlamıştı. 3.4. Sınıflandırmadan Elde Edilen Kanıtlar Sınıflandırma bilimi evrim kavramından çok daha önce başlamıştır. Bu bilimin kurucusu sayılan RAY ve UNNAEUS, türlerin sabitliğine ve değişmezliğine inanmışlar¬dı. Fakat bugünkü sistematikçiler bir türün isminin ve tanımının verilmesini onun evrimsel ilişkileri içinde ele almayı zorunlu bulmuşlardır. Bugünkü sistematik akraba¬lık, gruplar arasındaki morfolojik benzerliklere dayandırılmaktadır. Bu karşılaştırma her zaman homolog (kökendeş) organlar arasında yapılmaktadır. Yaşayan canlıların özelliği, belirli bir hiyerarşik sıraya göre dizilip, tür, cins, familya, takım, sınıf ve filum meydana getirmeleridir. Bu hiyerarşik diziliş evrimin en belirli kanıtlarından biridir. Eğer bitki ve hayvanlar kendi aralarında akraba olmasaydılar, bu hiyerarşik sıra mey¬dana gelmeyecek ve birçok grup birbirine benzer olmayacak şekilde gelişmiş ola¬caktı. Sistematiğin temel birimi türdür. Tür, bir populasyondaki morfolojik, embriyolojik, fizyolojik özellik bakımından birbirine benzeyen ve doğal koşullar altında birbir¬leriyle birleşip döl meydana getirebilen, aynı fiziksel ve kimyasal uyarılara benzer tepki gösteren, aynı atadan meydana gelmiş birey topluluğudur diye tanımlanmıştır. Bütün canlılarda özellikle birkaç yaşam devresi olan türlerde (bazı sölenterlerde, parazit kurtlarda, larvadan gelişen böceklerde, kurbağagillerde vs.'de) bu tanım bir¬çok bakımlardan yetersiz kalmaktadır. Eğer bir populasyon geniş bir alana yayıl¬mışsa, kendi aralarında bölgesel birçok farklılıklara sahip olur ki biz buna alttür diyo¬ruz. Yapılan ayrıntılı araştırmalarda birçok türün kendi aralarında alttürlere bölün¬düğü ve her alttürün yanındakinden, küçük farklarla ayrıldığı (deme); fakat onlarla çiftleşebildiği gösterilmiştir. Fakat bu zincirin uçlarının bazı durumlarda farklı tür özel¬liği gösterebileceğini daha sonraki konularda anlatacağız. Bugün yasayan hayvanla¬rın büyük bir kısmının gruplandırılması kolaydır; çünkü aralarındaki geçit formları kaybolmuştur. Fakat bazı gruplarda geçit formları görüldüğü için, yani her iki grubun da özelliklerini belirli ölçüde taşıyan bazı formlar olduğundan, bu sefer iki grubu bir¬birinden nerede ayıracağımızı kestirmek oldukça zordur. Bugünkü türler, soy ağacı¬nın en uçtaki dallarıdır ve genellikle kendine en yakın olan diğer dallarla karşılaştırılır. Ana gövde ve ana dallar zamanımızda kaybolmuştur. Evrimde bütün sorun hangi dalın hangi ana daldan ve gövdeden çıktığını şematize edebilmektir. 3. EVRİMLEŞMEYİ SAĞLAYAN DÜZENEKLER 'Ayakta Kalmak için Savaşım' ve 'En iyi Uyum Yapan Ayakta Kalır' sözcükleri Darwin WALLACE Kuramının anahtarıdır. Fakat besin, yer, su, güneş vs. için bireyler arasındaki savaşımın, zannedildiği gibi büyük bir evrimsel güç olmadığı, buna karşın döller boyunca sürekli olan populasyonların evrimsel değişme için önemli olduğu daha sonra anlaşıldı. Bu durumda evrimsel değişikliklerin birimi birey¬ler değil, populasyonlardır. Biz, bir populasyonun yapısını döller boyunca süren bir etkiyle değiştiren evrimsel güçleri, önem sırasına göre inceleyelim. Özünde Hardy-Weinberg eşitliğini bozan her etki evrimsel değişikliği sağlayan bir güç olarak kabul edilir. 3.1. Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, mey¬dana gelen mutasyonlarla, populasyonlardaki gen havuzuna yeni özellikler verebile¬cek genler eklenir. Bunun yanısıra mayoz sırasında oluşan krossing -överler ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşullan her yerde ve her zaman (özellikle jeolojik devirleri düşü¬nürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına kar¬şın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döl¬lenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerin¬de, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanla¬rının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalar da, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yok¬sunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirile¬mez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerin¬den daha iyi uyum yapmanın yan/sıra, daha fazla sayıda yumurta ya da yavru meydana getirmek doğal seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir. Bunları sırasıyla inceleyelim. 3.1.1. Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevre¬ye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşulla¬rının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha,büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği,sapta¬yan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler de seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir 'Yönlendirilmiş Yaratıcı¬lık'. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarının yararına ise, bir zaman sonra suyu bol kullanan ilkel boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar İngiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betalarla) meydana gelen evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma koleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafın¬ dan görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacaların¬ dan çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellik¬le kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur 'Sanayi Melanizmi'. Günümüzde alı¬nan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar art¬ maya başlamıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır, örneğin, eskiden kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezleme ya da hücre içine alma yeteneğini yitirmiş olan, kân şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusur¬larla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşa¬masını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etki¬sinden büyük ölçüde kurtulmaya başlamıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10 - 15 bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden biri olan 'Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmala¬rının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır. 3.1.2. Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur, örneğin, Keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. 3.1.3. Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman soma, iki ya da daha fazla sayıda birbirinden farklı¬laşmış canlı grubu oluşur (ırk  alttür  tür  vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir-çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekildeki bir seçilim 'Uyumsal Açılımı' meydana getirecektir 3.2. Üreme Yeteneğine ve Eşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda Hardy-Weinberg Eşitliği uygulanamaz. Bireylerin çiftleşmek için birbirlerini rasgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca birkaç defa çiftleşenlerde erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (peygamber develerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir: Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (Tavuskuşunda ve Cennetkuşlarında vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen havuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırılır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının deği¬şimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. 3.3. Yalıtımın (İzolasyonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı,de¬vam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği kazanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Şekil : Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli döl meydana getiremeyecek kadar farklılaşırlar. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. 3.3.1. Coğrafik Yalıtım (- Allopatrik Yalıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬ rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadolu’yla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayılmıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erozyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç tür olarak giren bu hayvanların 50'den fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşullan, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür, Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır. 3.3.2. Üreme İşlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa-mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının nem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populasyon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine benzeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'ikiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu populasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: İki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda, öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücre¬lilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana ge¬lecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akra¬ba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farklılaşması gamet yalıtımına götürür. Melez Yalıtımı: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurta ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embri¬yonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların or¬taya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılaş¬malar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.  KAYNAKLAR   Hayvanlar ve Bitkilerin Evrim Ansiklopedisi-Remzi Kitapevi   Kalıtım ve Evrim – Prof.Dr.Ali DEMİRSOY   Yaşamın Temel Kuralları - Prof.Dr.Ali DEMİRSOY   www.bilimaraştırmavakfı.com

http://www.biyologlar.com/eklembacaklilar-artropoda

Arid zon ve Çöl Toprakları

Aridizoller: Arid topraklar yılda 0-25 veya 0-50 cm yağış alan topraklardır. Sıcaklık ve yağış ilişkisi en önemli etmendir. Günlük, aylık ve mevsimsel açılımlar evapotranspirasyon, vejetasyon ve toprak mikroflorasını yakından etkiler. Vejetasyon seyrek ve kısa ömürlüdür. Toprakta organik madde birikimi yok veya çok azdır. U.S. Soil Conservation Service çöl topraklarını - Aridisol’leri okrik epifedonu ve tipik olan argillic-killi, natric-tuzlu, cambic; kalsik, jipsik veya salik; duripan tanı tabakalarından biri veya birkaçını içeren topraklar olarak 1967’de sınıflandırmıştır. Örneğin Mohave’daki loam - münbit toprak 100cm derinliktedir ve en altında kireç depozitleri, üstünde kahverengi, sıkı münbit kil tabakası 30-35 cm. dir, üstünde 25 cm. lik prizmatik çakıl blokajın üzerini 5-10 cm kahverengi kil, kumlu münbit ince tabaka ve kırmızımsı kumlu münbit tabaka, en üstünü ise kahverengi münbit tabaka örter. Aridizol oluşumunda rüzgarın önemli rol oynadığı, kaçan toz ve kumun cilalaması sonucu oluşan çakıllar ve kayaçlar görülür. Aridizollerde CaCO3 ve diğer tuzlar uçuşan ve yağmurda sabitleşen ince toz ve kumlardan yıkanarak aşağı süzülür. Yağış şiddeti ve süresi ile permeabilite ve ısı arasındaki dengeye göre bir derinliğe kadar inip yerleşir. Genelde denge yüzeye yakın bir yerde oluştuğundan kireçlenme ve heterojen dağılımı tipiktir. Jips te sıklıkla görülür. Entizoller: Aktüel yağışlar alan yamaçlardan gelen alüvyal çökelmeler arid toprakların incelenmesini daha da zorlaştırır. Topoğrafik yapıya göre bu kil, silt ve kum tabakalarının kalınlıkları büyük değişimler gösterir. Tüm bu etkenler genellemelerin ne kadar zor olduğunu gösterir. Litozoller, Regozoller: Arid ve yarıkurak bölgedeki entizoller olup, tabakalanmayan alüvyallerle birlikte erozyona uğrmakta olan yamaçlar, sel taşkını düzlükleri gibi erozyon materyali birikim noktalarında görülür. Çöllerde aktüel allüvyonlar-fluventler, ortentler-ince kolüvyal-alüvyal materyal, Psamentler-kumullar, kumluk alanlar önemli yer tutar. Üzerinde efemeral dahi olsa hiç vejetasyon bulunmayan alanlar topraksız sayılır. Bu konularda geniş yayınlar Arizona Univ. Office of arid Land Studiesweb sitesinde yer almaktadır. Alt tabakalar: B tabakalarıdır, fakat bir kısmı A tab.ları arasına sokulabilir özelliktedir. Arjilik: Silika kil minerallerinin hakim olduğu, erozyonun kil tabakasını açığa çıkartmış olabildiği veya üstte doğrudan yerel, veya taşınmış kil tabakasının bulunduğu üst tabaka. Genelde B, A’an daha killidir. Kambik: açık renkli, organik maddece fakir veya çok fakir, ince ve prizmatik daneli, A1 tabakası olmadığından yüzeyden görülen ve genelde CO3’ca zengin tabaka. Natrik: CEC’inin %15 veya fazlasını Na’un doldurduğu yüzey altı partikül tabakası. Prizmatik, kolonlu veya bloğumsu yapı tabakası. Salik : Soğuk suda jipsden daha yüksek çözünürlüğü olan tuzlarca enaz %2 - 25 ağ/ağ. veya daha zengin olan 5-10 cm.lik yüzeyaltı tabaka. Jipsik: Kalsik tabakaya benzer, farkı kireç yerine CaSO4-jipsce zengin oluşudur.En az 15 cm.dir ve C tabakası veya altındaki tabakadan en az %5 daha fazla jips içerir. Genel kalınlık ve jips içeriğinin en az %602ını içerir. Duripan: Bu alt tabakanın çimentosu silistir. Asitle köpürmez, genellikle demir oksitler ve karbonatlar da çimentoda yer alır. Arid topraklarda üstleri opal ve silika mikrokristalleri ile örtülüdür. Silika çimentolu kum taneleri de içerirler. Dünyada Sahra, Lut gibi gerçek, sıcak çöller azdır. 15 - 45. enlemler arasında kalanların büyük çoğunluğu steptir. Ana faktörler yağış, nem ve sıcaklık ile farkları ve topraktır. Kuru hava bu sıcaklık farklarına neden olur. Yıllık hava sıcaklığı açılımı 60, günlük olarak da 35 dereceyi bulabilir. Çölleşme rüzgarı getirir, örneğin Sahra’da 100km.ye kadar fırtınalar görülür, 15-30km hızında sürekli rüzgarlar tipiktir. Buharlaşma sıcaklık değişimi, kuruluk ve türbülansa neden olur. Sahra’da 2.5-6m, çoğu çölde 3m cıvarındadır. Tipik olarak çöllerde Bağ.nem yazın % 20-30, kışın %50 cıvarındadır, ancak vahalarda ise %90 a kadar çıkabilir. Aydınlanma/bulutluluk oranı Sahra’da %4 - 31 oluşu nedeniyle dehidrasyona ve ısınmaya neden olur. Sahra’da ortalama ışık+ısı gücü 1kW’dır ve 10000km2 ye 25 katrilyon kWh enerji düşerki 2 milyar ton yakıt eşdeğeridir. Kuraklık temelde sıcaklık ve yağışa bağlıdır ve vejetasyonu sınırlar. Canlılar açısından önemli olansa yağış/evaporasyondur. Yeraltısuyu çok derinde değilse ve porozite yeterli ise genelde varlığını yüzeydeki jips, kalsiyum ve klorürlerden oluşan tuzluluk ile ve jips kristalleri, seyrek de olsa bitkiler, özellikle Chenopodiaeae halofitleri ile belli eder. Fakat suyun çok saf olup bu tür tuzlanmaya neden olmaması da mümkündür. Toprakta su tutulma miktarı yağış sonrası giren suyun evaporasyonla kaybedilenden kalan olup arid zonda tipik olarak su üst toprak tabakalarında kalır. Aşağı iniş oranı ve derinliği tekstür ve tarla kapasitesine bağlıdır. Killi toprağın tarla kapasitesi kumlu toprağın tipik olarak 5 katı olduğundan 50mm.lik yağış kumlu toprakta 50, killi toprakta 10cm.yi TK’ine ulaştırır. Kayalık alanda çatlaktan sızabilen su ise 100cm.ye kadar inebilir. Yağış sonrası buharlaşma başlar. Killerde üst 5cm.lik tabaka hızla kurur. Süzülen suyun %50’si bitkilerce kullanılır,kum da 5 cm. kurur fakat suyun ancak %10’u buharlaşır. Kayalarda ise böyle bir kayıp sözkonusu olmaz. Sonuçta nemli iklimdekinden farklı olarak killi toprak bitkilere yararlı değildir. Üstü taşlık toprak ise en uygun yapıyı oluşturur. Ancak vadi ve çukurlardaki birikim, eğimle kayıp gibi jeomorfolojik yapı bu durumu etkiler. Necev çölünde killi toprakta bitkilerin 35mm su kullanabildiği, bu miktarın kumlut oprakta 90, kayalıkta 50mm, vadilerde 250mm olduğu görülmüştür. Bu nedenle derin kök gelişimi ancak permeabilitesi yüksek toprakta görülür, killi toprakta kök yatay gelişebilir. Kumlu ve taşlı topraklarda bu derinlik taban suyuna kadar ulaşabilir ve derin köklenebilen bitkiler kolayca gelişir. Irak’taki Basra çölünde taban suyu 15m. derinliktedir ve nehirlerce beslenir. Yıllık 120 mm.lik yağış ancak yüzeysel nemlenmeye yeterli olduğundan bitki kökleri taban suyuna erişemez ve yağışlar sonrası zayıf ve geçici bir efemeral örtü oluşur. Yerli halkın kuyular aracılığı ile çektiği su ile sulananan sebze tarımı tuzlanma nedeniyle 1 yıl ömürlü olmaktadır. Bu bitkilerin arasına serpiştirilen çok kolay köklenen Tamarix çelikleri yüzey suyunun taban suyuna ulaşabileceği kadar sulanarak köklerinin hızla geliştirilmesi ile ağaçlara dönüşmesi ormanlaştırılmıştır. Acacia tortilis’in arid zondaki kumlu topraklarda, yıllık 50 - 250mm. yağışlı Sudan steplerinde geliştiği, killi topraklarda ise ancak 400mm.lik yağışta bulunabildiği saptanmıştır. A. mellifera otsu örtü savanası da kumlu toprakta 250-400, killi toprakta ise yıllık 400 - 600mm. yağışla gelişebilmektedir. İklimsel olarak kurak alan yağışa karşı buharlaşmanın fazla, vejetasyonun zayıf ve örtünün <%25 olduğu bölge olarak tanımlanırsa da dünyanın çeşitli yerlerindeki kurak alanlar birbirine fazla benzemezler: Tropik kuşakta aylık sıcaklık ortalamaları fazla farklı değildir. Subtropik kuşakta yıl boyunca değişen sıcaklıklar donlara da neden olur. Ilıman zonda kışlar çok soğuk, yazlar sıcaktır. Vejetasyonu sınırlayıcı ana etmen aylık ve özellikle mesimlik yağış toplamlarıdır. İki yağış mevsimi olan bölgeler , yalnız kışın veya yazın yağış alan yöreler, azve rastlantısal olarak yağış gören yerler ve hiç almayanlar. Buralardaki vejetasyon üzerinde yöresel floranın değişen oranlarda etkisi vardır ve belli familyalar dominanttır. Örneğin K. Amerika’da Cactaceae, G. Amerika’da buna ek olarak bazı Bromeliaceae cinsleri, Holarktik’te Chenopodiaceae, en kurak Avustralya çöllerinde Atriplex vesicaria ve Kochia sedoides hakimdir. İklim yanında edafik faktörlerin farklılığı önemlidir. Aylık yağış ve sıcaklık seyri, kurak dönemlerin 10C / 20mm.lik birimlerinin oranı olarak sıc.ın yağışı aştığı dönemler esas alınarak kurak alan haritaları yapılır.

http://www.biyologlar.com/arid-zon-ve-col-topraklari

CANLILARDA DAVRANIŞ VE UYARLAMA

Tüm canlılar yaşadıkları çevre ile uyum içerisinde yaşarlar. Organizmalar acaba çevresindeki değişimlere karşı nasıl davranırlar? Aynı tür canlılar birbirleri ile karşılaştı-ğında nasıl tepki gösterirler? Canlılarda kalıplaşmış ve değişmez davranışlarla mı doğar yoksa çevrenin ve yaşadığı alanın özelliklerine göre bu davranışlar sonradan mı kazanı-lır? İnsanlar bu tür sorulara hem yanıt ararlar hem de bu tür soruları artırırlar. Etoloji = (Davranış bilimi ): Canlılardaki davranışları inceleyerek bu sorulara vb arayan bilim dalına yada adı verilir Davranış: Organizmanın iç ve dış ortamdan gelen uyarılar karşısında meydana getirdiği aktivitelerin tamamıdır. Uyarı :İç yada dış ortamda meydana gelen ve canlıda tepki oluşturabilecek fiziksel, kimyasal ve biyolojik değişiklikler olarak adlandırılır. Tepki: Uyarılara karşı efektör organların verdiği cevaba denir. Davranışlar uyarılar ve tepkilerin bir sonucudur. Davranış canlıya, eş, su, besin ve barınak bulmaya yada olumsuz çevre şartlarından( düşman, kıtlık, yangın, sel vb.) uzak-laşmada yardımcı olur. Örnek olarak aç bir köpek için besinin kokusu uyarıdır. Köpeğin besin kokusunu algıladığında tükürük salgısı artar. Tükürük salgısının oluşması ve artma-sı fizyolojik bir tepkidir. Bu tepki ile köpeğin besinin yerini bulmaya çalışması ise bir dav-ranıştır. İnsanlarda terlemeyi bu olaya örnek verebiliriz. Terleme olayı insan vücudunun aşırı ısınmasını önleyen ve homeostasiyi (iç dengeyi) sağlayan fizyolojik bir tepkidir. Ter-lediğimiz zaman, üzerimizdeki kalın giysileri çıkarmak, daha serin ve soğuk bir yer ara-mak, pencereleri açmak veya ılık duş almak ise davranıştır. Bir canlının tüm özelliklerinin yanında davranışlar genetik ve çevresel olayların bileşenleri ile ortaya çıkar ve gelişir. Davranışlarda bazen genetik etmenler bazen de çevresel faktör daha ağır basar. Yumurtadan henüz yeni çıkmış, gözleri açılmamış kuş yavrularının çoğu başları-nı yukarı kaldırıp ağızlarını açarlar ve öterek yiyecek istedikleri belirtebilir. Bu davranış doğuştan gelen kalıtsal yönü ağır basan davranıştır. Her davranışın sadece genlerle ortaya çıktığı bağlı söylenemez. Bazı davranışlarda çevresel faktörler kalıtsal faktörler-den daha fazla etkilidir. İnsanda lisan öğrenme o lisanın konuşulduğu çevresel ortamda gelişen bir davranıştır. Davranış; doğuştan gelen davranış, öğrenilmiş davranış ve sosyal davranış olarak üç grupta incelenir. 1.Doğuştan Gelen Davranışlar Canlıların doğuştan itibaren yaptığı, öğrenilmiş davranışlara doğal yada doğuştan gelen davranışlar denir. Doğuştan gelen davranışlar kalıtsaldır. Çevrenin bu davranışlar üzerindeki etkisi çok azdır. Aynı tür canlıların doğuştan gelen davranışları çevresel et-kenlere bağlı olmaksızın hemen hemen aynıdır. Örneğin aslanların avlanması veya so-mon balıklarındaki üreme gibi yapılan pek çok davranış doğuştan gelen davranışlara ör-nek verilebilir. Doğuştan gelen davranışlar, refleksler ve içgüdüler olarak iki grupta incelenir. a.Refleksler Refleks: Hayvanlarda çeşitli uyarılara karşı oluşan ani ve değişmez tepkilere denir.. Sinir sistemine sahip tüm canlılarda refleks görülür. Bir çok örnek vermek mümkün-dür. Bunlar elektrik şoku verilen bir solucanın otomatik olarak büzülmesi, yeni doğan be-beğin emmesi, kedinin fareyi görünce saldırması, yumurtadan yeni çıkan balıkların yüze-bilmesi birer reflekstir. b.İçgüdüler Doğuştan gelen bir davranış da içgüdülerdir. İçgüdüler bireyin yaşamını kolaylaştırıcı role sahiptir. Bunlar üreme, yuva yapma, yavru bakımı gibi davranışlardır. İçgüdüler kalıtsaldır, öğrenmeyle oluşmaz fakat bilinçli olarak gerçekleştirilir. Hayvanlar aleminde bir çok canlıda içgüdüsel davranışlar gözlenir. Her türün, türe ait tipik içgüdüsel davranışları vardır. Örneğin arıların buldukları besinin yerini kovandaki diğer arılara bildirmek için yaptıkları dans içgüdüseldir. Kazların göçler sırasındaki dizilimleri birer içgüdüsel davranıştır. Örümcekler ağlarını içgüdüleri ile yapar. Örümceklerin yaptığı ağın şekli farklı türlerin teşhislini yapılmasın kullanılır. Böceklerde yaşamın farklı evrelerinde gösteriler davranışlar içgüdüseldir. Örneğin mayıs böceği larvaları içgüdüsel olarak ışıktan kaçar ancak erginleri ışığa doğru hareket eder. Tırtırlar pupa evresine girmeden hemen önce içgüdüsel olarak etrafına koza örer. Hayvanlarda yuva yapımı da içgüdüseldir. Örneğin kuşlarda yuva yapılacak malzemelerin bulunması, taşınması ve yuvaya özel şeklinin verilmesi içgüdüsel olarak gerçekleşir. Balıklarda yuvalarını içgüdüleri ile yapar. Erkek güneş balığı örnek olarak verilebilir. Erkek güneş balığı gölün tabanına yuva yapar. Bu yuvaya dişi balık yumurtalarını bırakır ve bu yumurtalar erkek balık tarafından döllenir. Yumurtaların bakımını sadece erkek balık yapar. Örneğin; erkek balık, kuyruk yüzgeci ile yumurtaları oksijenlendirir ve yu-murtaları açılıncaya kadar korur. Kuşlardaki göç etme davranışları da içgüdüler ile kontrol edilir. Bir çok kuş türü kışı daha iyi yaşam şartlarında geçirmek için belirli zamanlarında sıcak bölgelere göç ederler. Göçmen kuşlar her yıl aynı rotayı izler. Norveç de bilim insanları tarafından yapılan bir araştırmada ayağına halka takılan bir grup yavru kutup deniz kırlangıcı uzun yıllar izlenmiştir. Kırlangıçların, üreme yerlerinin Kuzey Kanada, Grönland, Kuzey Avrupa, Sibirya ve Alaska olmasına rağmen , sonra güneye doğru göç ederek güney kutbun da yazı ge-çirdikleri belirlenmiştir. Kırlangıçlar bu yol boyunca yaklaşık 35 bin kilometrelik yolculuğun sonunda tekrar üredikleri yere döndükleri gözlenmiştir. Bu araştırmalar sonunda 27 yıl önce Norvec'de ayağına halka takılan bir kutup deniz kırlangıcı yine aynı bölgede görülmüştür. Araştırmalar pek çok göçmen kuşun kılavuz alarak güneşi yada yıldızları kullanarak yollarını bulduklarını göstermiştir. Bir çok göçmen kuş ve balığın ise dünyanın man-yetik alanını algılayarak göç ettikleri düşünülmektedir. I. İçgülerin Kontrolü Hipotalamus içgüdüsel davranışların kontrol merkezi olarak bilinir. Hipotalamus, yeme, içme, üreme, uyku, yavru bakımı ve sıcaklık değişimlerinde de etkilidir. Canlılarda açlık, susuzluk ve hormonlar gibi bir çok fizyolojik uyarıda içgüdüleri tetikler. İç dengenin bozulması da İçgüdüsel davranışların başlamasında önemli bir etkendir. İçgüdüsel davranışların incelendiği keçilerle yapılan bir deneyde, su içme ve su arama içgüdüsünün hipotalamus tarafından kontrol edildiği hipotalamus tarafından ve bu davranışın başlamasında kandaki ozmatik dengenin bozulmasının neden olduğu bulun-muştur. Keçinin kanındaki su miktarı düşerse keçideki su içme isteği ve su arama içgüdüsü başlar. Keçinin hipotalamusu, hipofiz bezini uyararak antidiüretik hormon salgılar. Antidiüretik hormon etkisi ile böbreklerden daha fazla su geri emilir. Hipotalamus ve hipofiz tarafından salgılanan hormonların bazıları üreme ve yav-ru bakımı davranışlarını da kontrol eder. Mevsimlere bağlı olarak artan güneş ışığı miktarı hipotalamusu etkiler. Bu uyarıyı alan hipotalamus, hipofiz bezini uyarır. Hipofiz bezi de üreme organlarından hormon salgılanmasını sağlar. Bu şekilde üreme ve yavru bakımı davranışlarının düzenlenmesini sağlar. Prolaktin hormonu güvercinlerde yavru besleme davranışını başlatır. Örneğin güvercinler yavrularını kursaklarında ürettikleri güvercin sütü adı verilen beyaz renkli bir sıvı ile besler. Bu salgılanan sıvı, yavrularının yumurtadan çıkmasına yakın bir zamanda prolaktin hormonu etkisiyle üretilir. Güvercinler böylece yavruyu besleme davranışını gerçekleşir. Kuşların göç etmelerinde hipotalamustan salgı-lanan hormonlarla kontrol edilir. Kuşlar bu şekilde yavruların daha uygun şartlarda büyü-yebileceği bölgelere doğru göç başlatırlar. 2.Öğrenilmiş Davranışlar Canlıların çoğu, öğrenme ile ortaya çıkan davranışlar gösterir. Davranış şekilleri aynı türdeki canlılar arasında bile bazı farklılıklar gösterebilir. Sonradan kazanılan bu davranışların oluşmasında en önemli etken öğrenmedir. Öğrenilmiş davranışlar: Deneyimler sonucu değişen davranışlar olarak adlandırı-lır. Hafıza: Deneyimler beyinde kayıt edilerek saklanır ve ihtiyaç duyulduğunda tekrar hatırlanır buna denir. Hatırlanan olay yeni bir durum karşısında davranışın düzenlenmesinde kullanılır. Doğuştan gelen davranışların aksine öğrenilmiş davranışlar uygun davranışın gösterilmesine yardımcı olur. Neticede öğrenme, hayvanı değişiklere karşı adapte eder. Doğuştan gelen davranışlar doğrudan genlerle kontrol edilir, öğrenilmiş davranışlarda ise genlerin kontrolü dolayı yoldan gerçekleşir. Kalıtım, sinir sisteminin yapısını ve öğrenme özelliklerini belirlerken canlının uyarılara karşı gösterdiği davranış da bu sırada etkilenir. Buna örnek olarak susamış bir hayvanın su arama davranışı içgüdüsel bir dav-ranıştır. Suyu bulan hayvanın suyun bulunduğu yeri öğrendikten sonra hayvanın her susadığında aynı yere gelmesi öğrenilmiş bir davranıştır. Sinir sistemi gelişmiş olan hayvanların öğrenme kapasiteleri gelişmemişlere göre daha fazladır. Örneğin maymunun öğrenme kapasitesi fareye göre daha fazladır. Uzun yaşam süresi ve yavru bakımı olan hayvanların çoğunlukla davranışlar ebeveynlerin davranışlarından öğrenir. Örneğin yavru çıtalar avlanmayı ailesinden öğrenir. Öğrenmenin çeşitli şekilleri vardır. Bunlar; Alışma Şartlanma İzleme yolu ileöğrenme Kavrama yolu ile öğrenme 1.Alışma Belirli bir uyarıya karşı tepkimenin bir süre sonra kararlı bir şekilde azalması ve zamanla ortadan kalmasına denir. Öğrenmenin en basit şeklidir. Bu öğrenme şeklinde hayvan art arda uyarıyla karşılaştığında gösterdiği tepkinin çeşidi ve şiddeti bir süre sonra azalır. Sonunda tepki tamamen ortadan kalkar. Çevremizde alışmayla ilgili çok sayıda örnek gözleyebiliriz. Bir örümceğin ağına dokunursanız, başlangıçta hayvan hızla dokunulan yere doğru hareket eder. Aynı hareket belirli aralıklarla tekrarlandığında tepkimenin giderek azaldığı ve bir süre sonra hiç tepki vermediği görülür. Hayvanat bahçesindeki bazı maymunlar insanlara alışkındır bu hayvanlar kafeslerine yaklaşıldığında kaçmaz, verilen yiyecekleri alıp yer. Ancak aynı türün ormanda yaşayan bir hayvan bu tür bir davranış gözlenmez. Bir başka örnek ise tarlaya konulan bostan korku-luklarıdır. Başlangıçta korkuluktan kaçan kargalar, bir süre sonra bostan korkuluğunun bir zararı olma-dığını öğrenir ve kaçmaz. Fazla sayıda aracın geçtiği yol kenarlarında yaşayan bazı kuşların ise zamanla gürültüye karşı tepki-leri azalır ve araba geldiğinde kaçmaz. Alışma durumunda hayvanlar kendileri için zararlı olmayan uyaranlara karşı tepki göstermemeyi öğrenir. Buda canlıya bir uyarı karşısında gereksiz davranışlar göstermesini önler. 2.Şartlanma Refleks hareketi; canlının doğuştan sahip olduğu davranışlardır. Bu davranışlardan bazıları zamanla değiştirilebilir bu olaya şartlanma denir. Şartlanma olayı ile ilgili ilk ciddi çalışmayı Rus bilim insanı İvan Pavlov (İvan pavlof) yapmıştır. A-Köpeğe zil çalındığı zaman tepki vermez. Burada zil nötr uyarıcıdır. B-Köpeğe zil çalıp yemek verdiğimiz zaman köpeğin salyası akar.Zil sesi nötr uyarıcı,yemek koşulsuz uyarıcı,salya koşulsuz uyarıcıdır. C-Köpeğe zil çaldığımız zaman köpeğin salyası akar. Burada zil koşullu uyarıcı, salya koşullu tepkidir. Böylece Pavlov, doğuştan gelen reflekslerin, doğal uyaranlarının değiştirebileceğini kanıtlamıştır. Burada uyaranın yerine bir başka uyaran almıştır. Pavlov 'un bu çalışması şartlı refleks yada şartlanma olarak tanımlanmıştır. Şartlanmanın iki şekli vardır. Birincisi klasik şartlanmadır. Bu şartlanmada Pavlov' un örneğindeki gibi basit bir uyaran başka bir uyaran ile aynı anda verilir, bu durumda uyaranlar eşleşirler ve basit bir refleks olur. İkincisi işlevsel (operant) şartlanmadır. Bu şartlanmada öğrenme; herhangi bir uyaranın yanında başka bir ödül yada ceza ile birleştirme sonucu gerçekleşir. Başka bir ifade ile canlıya ödül veya ceza verilerek bir davranış yapması yada yapmaması öğretilir. Örneğin bilim insanı B.F. Skinner (Sikınır) yaptığı deneyde farenin yaşadığı kafesin içine bir pedal koymuş, fare pedala bastıkça yiyecek düşmesini sağlamıştır. Fare bu şekilde pedala basmayı öğrenmiştir. Bu yöntemle hayvanların çeşitli davranışları yapmaları ve eğitilmeleri sağlanır. Atlar bu şekilde eğitilerek ;eğitimi sırasında istenilen davranış gerçekleştiğinde atlara şeker yada havuç verilir. 3.İzlenim yoluyla öğrenme 1935 yılında Avustralyalı bilim insanı biyolog Konratd Lorenz bazı canlılarda yeni doğan genç bireylerin izlenimle bazı davranışları öğrendiklerini fark etmiştir. Lorenzin, bu çalışmasından önce yumurtadan çıkan ördek ve kaz yavrularının annelerini takip etmele-rinin iç güdüleri düşünülmekteydi. Lrenz yaptığı çalışmada kuluçka makinesinden çıkan ördek yavrularını gözlemlemiştir. Lrenz, ördek yumurtalarını iki guruba ayırmıştır. Bir grubu anneleri ile bırakmış diğer grubu kuluçka makinesine yerleştirmiştir. Anneleri tarafından yetiştirilen bireyler normal davranışlar göstermiştir. Kuluçka makinesinden çıkanlar ilk saatlerini LORENZ ile geçirmiş ve kararlılıkla onu izlemişlerdir. Annelerine yada aynı türden başka bireylere karşı tepki göstermemiştir. Lorenz canlıların bu şekilde gördükleri objeleri taklit ederek öğrenmelerine izlenim yoluy-la öğrenme adı verilmiştir. İzlenim, basit bit öğrenme şeklidir. Diğer bir ifadeyle yaparak, yaşayarak öğrenmedir. Bu öğrenme şekli özellikle yeni doğmuş yada yumurtadan çıkmış yavrularda görülür. Bazı hayvanların yavruları, annelerin arkasında yürümeyi, avlanmayı saklanmayı izleyerek öğrenir. 4. Kavrama yoluyla öğrenme Gelişmiş omurgalı hayvanların yeni bir sorunla karşılaştığında önceki deneyimlerinden yararlanarak sorunu çözmelerine kavranma yoluyla öğrenme yada iç yüzüyle öğrenme adı verilir. Öğrenmenin en ileri şekli olarak kabul edilen davranıştır. Gelişmiş omurgalı hayvanlarda rastlanır. Kavrama yoluyla öğrenme yeteneğine sahip bir hayvanın besin kaynağına giden yol kapatılırsa, hayvan önceki deneyimlerinden yararlanarak uygun başka bir yol seçer ve yiyeceğe giden yolu bularak yiyeceğe ulaşır. Yapılan araştırmalar ve deneyler böyle bir durumda yalnızca maymunların ve şempanzelerin yiyeceğe ilk aşamada ulaştıklarını göstermiştir. Şempanzelerin denek olarak kullanıldığı deneyde tabandan aşağıya bir ip sarkıtılmış ve ucuna besin bağlanmıştır. Aç şempanzenin çevresindeki sandıkları kullanarak besine ulaştığı görülmüştür. şempanzeler ve maymunlarda problem çözme yetenekleri gelişmiştir.. Hayvanların bireysel olarak yaptıkları davranışlarının yanında, bazı hayvan gruplarında gözlenen sosyal davranışlar vardır. 3. SOSYAL DAVRANIŞLAR Hayvanların bazıları tek başlarına bazıları da gruplar halinde yaşar. Bir çok çok çevresel etken bazı hayvanları bir araya getirir. Çeşitli çevresel etkenlerle bir araya gelmiş canlılara topluluk adı verilir. Afrika'nın zengin otlakları zebra, antilop gibi canlıların bir araya geldikleri yaşam alanları örnek olarak verilebilir. Bu örneğin yanında bir sokak lambamsı böceği kendine çeker. Bu şekilde bir araya gelen canlılar organize olmuş gruplar değildir. Bazı hayvanlar sosyal grup adı verilen organize olmuş gruplar oluşturur. bir sosyal grup belirli görevleri yerine getirmek için özelleşmiş üyelerden meydana gelen ve kendi kendine yeterli olan bir populasyondur. Grubun hayatta kalması özelleşmiş olan üyelerin yakın iş birliğine bağladır. Bundan dolayı bir sosyal grubu çok hücreli bir organizmaya benzetebiliriz. Farklı görevleri üstlenen hücrelerden meydana gelen organizma bir bütün halinde çalışır. Bir sosyal grubu oluşturan bireyler de özel görevleri yerine getirmek içi farklılaşmışlardır. Çevremizi incelediğimizde çok çeşitli sosyal grup örnekleri ile karşılaşırız. Bu tür grupları oluşturan bireylerin sergiledikleri davranışlar sosyal davranışlar olarak adlandırılır. Sosyal davranışlar iş birliğine dayalı davranışlar, çatışma davranışları ve ileti-şim davranışları şeklinde gruplandırılarak incelenebilir. Sosyaldavranışlar 1-İş birliği 2-Çatışma ve baskınlık 3-Yurt savunması 4-Sosyal iletişim 1. İş birliğine dayalı davranışlar Aynı türü oluşturan bireyler, besin bulma, düşmana karşı koyma ve savunma, yaşam alanı bulma, çiftleşme, yavruları koruyarak soylarını devam ettirme gibi davranışları karşılıklı iş birliğine dayalı olarak sergilerler. Bu davranışları, bazı balık sürülerinde, bazı kuş sürülerinde, misk öküzlerinde, aslanlarda vahşi köpeklerde ve bir çok canlı gruplarında görebiliriz. grubu oluşturan bi-reylerin hayatta kalabilmesi iletişime dayanır. grup üyeleri arasında iletişim sesle, görsel ya da kimyasal uyarıcılar ile sağlanır. Örneğin grup üyelerinden birisi bir tehlike olduğunu hissettiğinde diğer bireylere de haber verir ve bütün grubu uyarır. Böylece grup, tehlikeden kaçma davranışı gösterir. gruplar ayrıca iş birliği yaparak avcılara karşı savunma davranışı sergiler. Örneğin erkek misk öküzleri tehlike karşısında halka oluşturur ve yavruları bu halkanın ortasına alır. böylece hem yavrularını hem de kendilerini korumaya çalışır. Küçük kuşlar ise iş birliği yaparak avlanma davranışı ile kurtlar aslanlar ve vahşi köpeklerde görülür. Aile içindeki ilişkiler ebeveyn ve yavrular arasındaki iş birliğine dayalı davranışları içerir. Bu ilişkiler hem ailedeki genç bireylerin besin bulmasını savunmasını ve korunmasını sağlamada hem de ebeveynlerin soyunu sürdürmesinde önemli rol oynar. 2 Çatışma ve baskınlık davranışları Sosyal gruplar halindeki bir arada yaşayan hayvanlarda bazen karşılıklı iş birliği yerine çatışma davranışları da görülebilir. Populasyonda canlı sayısı arttıkça canlılar arasında besin yaşam alanı ve eş için rekabet artar. Rekabet grup içindeki çatışmayı artıran bir etkendir. Bu olaylar grubu oluşturan hayvanlar arasında sosyal hiyerarşinin ortaya çıkmasına neden olur. Sosyal hiyerarşi bireylerinin üstünlüklerine göre sıralanarak birbir-lerini kontrol etmesidir. Üstünlük hiyerarşisi yada tecrübeli birey üstünlüğü tür içi kavgalar sonucu kurulur. Üstünlüğünü ispatlayan birey yaşam ihtiyaçlarını diğerlerinden önce karşılama hakkına sahiptir. Bu bireyler sembolik tehdit davranışları gösterir. Bu tehdit davranışları grubun diğer bireyleri tarafından açıkça anlaşılan ve galibiyeti gösteren davranışlardır. Baskınlık davranışına örnek olarak; kurt ve köpeklerde kaybedenin yenilgiyi kabul etmesi, kazananın önünde boyun eğmesi olarak gösterilebilir. Bu durumda kazanan köpeğin saldırgan davranışları son bulur ve üstünlük pozisyonunu kurulmuş olur. Tavuklarda , ördeklerde ve hindilerde ise üstünlük gagalama davranışı ile sağlanır. Hiyerarşik olarak üst düzeyde bulunan en tecrübeli birey ihtiyaçlarını en önce karşılar. Bu durumdaki canlı; besin, su ve tüneklere ilk önce sahip olur ve diğer bireyler ta-rafından da kabul edilir. Böylece toplulukta kimin neyi alacağı konusundaki kargaşayı ortadan kaldırır. Topluluğun alt düzeyindeki bireyler yemek ve su için beklemek zorunda kalır. En alt düzeydeki bireylerin yaşama sansı azdır. Bu şekildeki bir populasyonda güçlü olanların hayatta kalma güçsüzlere göre daha fazla olur. 3.Hayvanlarda Yurt Savunması Hayvanlar yaşadıkları çevrede bir çok aktivite içindedirler. Bunlar varlıklarını sürdürmek ve yaşamlarını devam ettirmek, beslenmek ve üremektir. Yurt (territoryum, savunak,egemenlik alanı) :Bir bireyin beslenme, eşleşme ve yavru büyütme amacıyla kendi türünden başka bireylere karşı koruduğu alana denir. Yurt savunması , kuşlarda kolayca anlaşılır. Üreme döneminde erkek kuş kendine bir yer seçer. Burası için diğer kuşlarla kavga eder ve sınırları belirler. Kuşlarda bu alan küçüktür bunun yanında aslanlarda yurt çok daha büyük alana sahiptir. Sumsuk kuşlarında yurt savunması şu şekilde olur; erkek kuşlarla sınırlar tamamen belirleninceye kadar boyunlarını uzatır ve birbirlerini gagalayabilecek kadar küçük mesafeler bırakacak şekilde yuva yapar,yutlarını bağırıp çağırırarak ve birbirlerini gagala-yarak yuvalarını savunur. Yurt edinme eğilimi hayvanların yaşadığı ortamı en verimli şekilde kullanmaya yöneliktir. Yurt savunması bireyler arasındaki; 1-Tür içi çekişmeyi azaltır. 2-Populasyon büyümesini kontrol altında tutar. 3- Bireylerin habitatları içinde eşit olarak dağılmasını sağlar. 4-Abiyotik (çevresel) kaynaklar en iyi şekilde kullanılır. 4.Sosyal Gruplarda İletişim iletişim, sosyal davranışların gerçekleşmesinde önemli bir yere sahiptir. bu sebepten sosyal grubu oluşturan bireyler aralarında iletişimi sağlayan çok çeşitli mesajlar oluşturur. Bu mesajlar 1-Kimyasal mesajlar, 2-Sesli mesajlar 3-Görsel mesajlar şeklinde olabilir. 1-Kimyasal salgılar: Bir çok hayvan tarafından haberleşmede kullanılan kimyasal salgılar vardır bunlara feromon denir. Aynı türe ait bireyleri uyararak davranışlarını etkiler. Feromonlar eşeysel çekim için kullanılabilir. Aynı tür canlıların salgıladığı feromon kendine özgüdür. Dişi ipek böceği, o kadar güçlü feromon salgılar ki 3 km den daha uzaktaki erkeği uyarabilir. Feromon salgılayan canlılara örnek olarak: ipek böceği, ağaç güvesi, hamam böceği ve diğer birçok böcek verilebilir. Bunlar karşı eşeyi çekici feromonlar da salgılar. 2-Sesli mesajlar: Böceklerde , kurbağalarda, kuşlarda, balinalarda sesli mesajlar önemlidir. Örneğin erkek cırcır böcekleri, oluşturdukları sesle dişleri cezbeder. Balinalar 10 km den fazla mesafe boyunca kendi aralarında su altı şarkılarıyla iletişim kurar. 3-Görsel mesajlar: Görsel mesajlar arılar arasındaki iletişimi kurmada önemli bir yere sahiptir.. Arılar aralarındaki iletişimlerini kendilerine has vücut hareketlerinden oluşan bir çeşit dans ile sağlar. Örneğin bir arı polence ve nektarca zengin bir çiçek tarlası veya alanı bulduğunda, bu alanın yönünü ve kovana uzaklığı diğer arılara haber verir. Arılardaki iletişim davranışlarını inceleyen bilim insanı K.V.Frisch (Friş) arıların iki çeşit dans yaparak haberleştiklerini bulmuştur. Bunlar 1-Halka dansı:Bu dans,besin kovana yakın olduğunda yapılır 2.Sallanma dansı: Arı bu dansı besin, kovana uzaksa yapar. Besinin yönünün de belirlenmesi sallanma dansı ile gösterilir. Arılar besinin yönünü anlatırken güneşin konumunu ve yiyeceğin bu konumu olan açısını esas alır.

http://www.biyologlar.com/canlilarda-davranis-ve-uyarlama

KITALARIN VE KARA PARÇALARININ KONUMLANMASI İLE İLGİLİ GÖRÜŞ VE KURAMLAR

Mevcut hayvan yayılışının açıklanmasında Kararlılık, Köprüler ve Kıtaların kayma kuramı olmak üzere üç temel kuramdan yararlanılmıştır. Bunlar: 1. Kararlılık (Permanenz) Kuramı Dünyadaki kıtaların ve bununla ilgili olarak ana karaların ve deniz tabanlarının oluşumundan beri ufak abzı değişiklilikerin dışında durumunu ve konumunu koruduğu ve değişmediğini varsayılmıştır. Bu kuramın en önemli savunucularından olan Wallace (1876) zoocoğrafik yayılışın, göçler ve bugünkü kara ve su bağlantıları ile açıklamaya çalışır. Bu kurama destek veren Darlington (1957) geç ortaya çıkmış olan memeli hayvanların günümüzde bu yoları etkin biçimde kullandıklarını öne sürmüştür. 2. Kara Köprüleri Kuramı Bir çok canlı grubunun yayılışını bugünkü kıta konumlanması ile açıklamak oldukça zordur. Bu nedenle 1800 yılların başından itibaren kara köprülerinin kabul edilmesi eğilimi ortaya çıktı. Bu kurama göre; Dünyadaki büyük kıta ve kara parçaları arasındaki hayvan geçişinin dar bağlantılar, suların buz ve kar halinde yüksek dağ başlarına veya kutuplarda tutulması sonucunda deniz seviyesinin düşmesiyle oluşan kara köprüleri aracılığı ile gerçekleşmiş olduğunu ileri sürmektedir. Wallace bu kurama da destek vermiştir. Farbes (1846) İngiltere’nin ana kıta ile olan bir karasal bağlantı yoluyla faunalarının bezerliğini açıklamıştır. Hooker (1847) Avustralya ve Güney Amerika kıtaları arasındaki bağlantıyı, bir zamanlar var olduğu öne sürdüğü “ Transokyanusya” kara parçasına bağlamaktadır. Bununla ilgili çok sayıda kara köprüleri ile ilgili kuramlar ortaya konulmuştur. Çoğu bilim adamının vardığı önemli kurama göre, büyük kıtalar arasındaki geçiş, ya dar bağlantılarla ya da suların buz ve kar halinde yüksek dağların başına ve kutuplara yığılması sonucunda denizlerdeki su seviyesinin düşmesi ile oluşan kara köprüleri aracılığı ile sağlanmıştır. ( örneğin Bering boğazının Asya ile Kuzey Amerika arasındaki geçişi sağlaması gibi). Kara köprüleri ile İngiltere ile Avrupa, Asya ile Japonya arasındaki geçişler açıklanmıştır. Afrika ile Güney Amerika arasındaki köprü (Atlantis) bir varsayımdan öte geçmemiştir. Ana kıtalara yakın ve sığ sularda bulunan adalara geçişler, bu yaklaşımlarla kolay açıklanabilmektedir. Uçamayan kuşların kıtalardaki dağılımı kara köprüleri kuramlarına göre de tam açıklanamıyordu. Günümüzde yaşayan deve kuşlarının yapısal özellikleri, hepsinin ortak bir atadan türediğini göstermektedir. Bu kanatsız kuşların okyanuslardaki büyük mesafeleri aşması olanaksız görülmektedir. Kıtaların kayma kuramı bu soruna açıklık getirmiştir. Kara köprüleri kuramı bir açıdan da geçerli bir kuramdır. 2.1. Buzullaşmalar ve Kara Köprülerinin Oluşumu Buzul dönemlerinde, bugünkü buz birikiminin yaklaşık 3 katı daha fazla buz birikimi olmuştur. Buzla kaplı alanların miktarı, Antartika hariç, bugünkünün 13 katı daha fazlaydı. Buzulların ortalama kalınlığı yaklaşık 2 km civarındaydı. Kuzey yarımküre’deki buz miktarı , Güney Yarımküre’den kabaca iki kat fazlaydı Güneyde, buzullar Antartika kıtasının dışına taşmamıştı. Buna karşın Kuzey Amerika ve Avrasya’da, buzlar karalara büyük ölçüde yayılmıştı. İskandinavya’daki buzullar 48o enleme kadar inmişti. Kuzey Amerika’daki nemli iklim ve büyük miktardaki kar yağışı ise 37 o enleme kadar inmişti. Son buzul dönemindeki, buzulların yayılışı, hareketi ve konumlanması ayrıntılı olarak haritalanmıştır. Avrasyadaki buzlar bir çok yeri tamamen örtmüştü (İngiltere, Benelüks ve İskandinavya ülkeleri Almanya’nın önemli bir bölümü ve Sibirya gibi yerler buzlar altında kalmıştı). Buzulların yığılmasıyla birlikte, altlarında bulunan taşküre, dengeyi sağlayabilmek için, magmaya gömülmeye başlar ve buzul arası dönemlerde de tersi ortaya çıkar. Böylece kara parçaları bir duba gibi yükselir ve alçalır. Buzulların erimesiyle karaların yükselmesi yaklaşık 15 000 yıldan beri sürmektedir. Suların buz halinde kıtalara yığılması deniz seviyesinin düşmesine, erimesi ise yükselmesine neden olmuştur. Denizlerde yaşayan kabuklu hayvanların fosillerini kıyılardaki katmanlarda saptamak ve izlemek yoluyla su seviyesindeki değişmeler gözlemlenebilir. Genel bir kabul, buzul devirlerde, deniz düzeyinin bugünkünden 100-150 m’den daha fazla düştüğü yönündedir. Buzullar arası dönemlerde ise deniz düzeyi bugünkünden yaklaşık 20 m. daha fazla yükseldiği kabul edilmektedir. Böylece kara ve su köprülerinin oluşmasının yanı sıra, keza bitki ve hayvanlar için yaşam alanlarının genişlemesi veya kısıtlaması durumu ortaya çıkmıştır. Hem buzul arası dönemin sürmesi, hem de CO2 birikimi ile dünya atmosferinin normal seyrinden daha fazla ısınması, dünyadaki buzların erime sürecini hızlandırmıştır. Antartika ve Grönland’daki buzların erimesi, dünya denizlerinin 6 m. yükselmesine, bu da bir çok kıyı şeridi ile birlikte bugünkü liman şehirlerinin bir çoğunun su altında kalmasına neden olacaktır. Buzullaşma dönemine girseydik, deniz düzeyi en an 100 m düşeceği için, kıyılarda bir çok yeni toprak elde edilecekti. Buzul dönemlerinde bölgeler arasındaki sıcaklık farkları çok daha fazla olduğundan, meydana gelen rüzgarların miktarı, şiddeti ve yönleri bugünkülerden farklıydı. Pleistosen’de (kuaterner’in ilk dönemi, 1 milyon 800 bin yıl önce başlamış, 10 bin yıl öncesine kadar devam etmiş olan jeolojik bölüm) ortaya çıkan buzullaşmalar zoocoğrafya açısından oldukça önemlidir. Pleistosen’de belirgin olarak 4 buzul dönemi saptanmıştır. Her buzul döneminin arasında, sıcaklığın bugünkü gibi yüksek olduğu bir dönem vardır. Tropiklerde ve subtropiklerde kurak (arid) ve yağışlı (pluvial) iklimler birbirini izlemiştir. Zamanımız buzularası (interglasiyal) evredir. Pleistsende meydana gelen buzul dönemleri, dünyanın tümünü etkilemiştir. Tundra yapısında olan Holarktik bir çok canlı için yaşanamaz duruma gelmiştir. Tersiyer türlerinin bir kısmı tamamen ortadan kalkmış, bir kısmı güneye sığınmıştır. Doğu-Batı yönünde uzanan sıradağlar (Alpler, Toroslar, v.s), güneye olan göçü büyük ölçüde önlemiştir. Sonuç olarak Tersiyer’in tür zenginliği ortadan kalkmıştır. Bir çok tür refigiyum (=sığınak) denen uygun ortamlara sığınarak, tür ve alttür oluşumuna zemin hazırlamış ve buzularası dönemde bu refigiyumlar yeniden bir yayılma ya da gen merkezi olarak görev yapmıştır. Anadolu önemli bir refigiyum olarak buzul dönemleri sırasında hizmet vermiştir. Bu dönemde Avrupa’da Alp dağları ve diğer dağlar arasına sığınmış türlere arktik-alpin türler denir. Deniz canlıları da buzullardan etkilenmiştir (suların soğumasından dolayı). Akdeniz, bu dönemde sıcak seven türlerinin hemen hepsini yitirmiştir. Suların buz halinde karalara yığılası ile birbirine 100-150 m sığlıktaki denizlerle bağlanmış kara parçaları arasında kara köprüleri kurulmuş; kara canlıları için yeni yayılma yolları açılmış; fakat daha önce yalıtılmış olan bazı adalarda oluşmuş birçok tür de, ana kıtadan gelen yeni türlerle ortadan kaldırılmıştır. İç sular arasında da buzulların etkisiyle su köprüleri kurulmuştur. Buzul dönemlerinde güneye göç edenlerin bir kısmı, buzul arası dönemlerde tekrar kuzeye gelirken , bir kısmı da yüksek dağların başına çekilerek soğuk yerler aramıştır. Böylece yüksek dağların belirli yüksekliklerinde Arktik Relikt adı verilen bir çok canlı yerleşmiştir. Darwin bu konuda da araştırma yapmıştır. 2.2. Kara Köprüleri Canlıların yayılmasında önemli rol oynayan kara köprüleri iki şekilde oluşmuştur. Birincisi tektonik nedenlerle, yani kara parçalarının yükselmesi ile "Isostatic"; diğeri ise buzul devirlerde deniz düzeyinin düşmesi ile (bu sonuncular "Eustatic" diye adlandırılır) ortaya çıkar. BERİNG KANALI VE KÖPRÜSÜ Senozoyik'in sonlarına doğru Kuzey Amerika ile Avrasya arasında oluşmuş geniş bir kara köprüsüydü. Deniz seviyesinin 100 m. düşmesiyle yaklaşık Alaska'nın genişliğinde bir köprü oluşmuştur (HOPKİNS, 1967). İlave olarak iki kıta arasında Senozoyik boyunca, Miyosen'den sonra, kısa aralıklarla da olsa zaman zaman açılıp kapanan kıstaklar "İsthmus" oluşmuştu. Bu kıstaklar. Kuzey Yarımküre'de, geniş ölçüde buz kütlesi oluşmadan önce, büyük bir olasılıkla, yer hareketiyle oluşmuştu. Fakat esas fauna ve flora alışverişinin olduğu dönem, deniz düzeyinin, östatik (= eustatic= buzullaşma) nedenlerle düşmesi sonucu gerçekleşmiştir. Bu kara köprüsü yaklaşık 12.000 yıl açık kalmıştır. Bering Köprüsü, en azından Geç Pleistosen'de, boreal ormanlardan arınmış, yağış miktarı oransal olarak az olan, tundra ve çayırlık özelliğinde bir köprüydü. Böyle bir bitki örtüsü, ancak, steplerde ve tundralarda yaşamaya uyum yapmış memelilerin göçlerine olanak sağlamıştı. Bununla birlikte, birçok dönemde, iklim, büyük bir olasılıkla, bugünkü boreal iklimden fazla farklı değildi; çünkü Kuzey Pasifik akıntısı kısmen buraları ısıtıyordu. Buradaki iklim ve bitki örtüsü, her defasında, bir süzgeç gibi görev yaparak, ancak, bazı farklı hayvan türlerinin geçmesine izin vermiştir. Bu da Amerika ya da Asya kıtasında bulunan her hayvanın neden diğer kıtaya göç edemediğinin açık kanıtıdır. Bu geçişten en çok yararlananlar, boreal sıcaklıkta, birincil olarak otlayan (çayır, mera ve otlağa bağlı) hayvanlardır. İNGİLİZ KANALI Avrupa Kıtası'nı, Britanya Adaları'na bağlamıştır. Tabanı, Kuzey Denizi ile bağlantılıdır. Buzullaşma olduğu; fakat bizzat bu bölgeler buzullarla örtülmediği zaman, su düzeyinin düşmesiyle kara köprüsü oluşmuştur. İngiliz Kanalı, en azından onun dar bir kısmı. Pleistosen boyunca ya da büyük bir kısmında, hatta deniz düzeyinin yükseldiği buzularası dönemin bir kısmında, kıstak (köprü) özelliğini korumuştur. Bu değişim sırasında, birçok türün yanısıra, fil, gergedan, geyik ve su aygırınm geçtiğini kanıtlayan fosiller bulunmuştur. Bu kıstağın tamamen kapanması, M.Ö. 8000 yıllarında gerçekleşmiştir. İRLANDA KANALI Buzul dönemleri sırasında Weichsel Buzullaşması'na kadar, köprü özelliğini korumuştur. Memelilere dayalı kanıtlar bunu göstermektedir. Örneğin Weichsel Buzullaşması'yla ilişkili (ve daha sonraki dönemler için) hiçbir karasal memeli fosili İrlanda'da henüz bulunmamıştır. İngiltere ve İrlanda arasındaki dar köprü, M.Ö. 8000 yıllarında deniz düzeyinin yükselmesi ile (Flandrian Yükselmesi) kesilmiştir.

http://www.biyologlar.com/kitalarin-ve-kara-parcalarinin-konumlanmasi-ile-ilgili-gorus-ve-kuramlar

ÇEVRE KİRLENMESİ

ÇEVRE KİRLENMESİ

I – HAVA KİRLENMESİ a) İnsana ve Çevreye Etkisi b) Sonuçları (Asit Yağmurları)   Asit Yağmurlarının Toprağa Etkisi   Asit Yağmurlarının Sulara Etkisi   Asit Yağmurlarının Yapılara Etkisi   Asit Yağmurlarının Bitkilere Etkisi   Asit Yağmurlarının İnsan Sağlığına Etkisi c) Çeşitli Gazların İnsan ve Çevresine Etkisi   İnsan Sağlığına   Hayvan ve Bitkilere   İklime d) Ormanların ve Yeşil Alanların Çevre Kirliliğini Önlemeleri Yönünden İşlevleri   Fiziksel İşlevler   Fizyolojik İşlevler e) Ormanların Su ve Toprak Kirliliği Üzerine Etkileri II – SU KİRLENMESİ a) Kirlenmeye Yol Açan Kaynaklar 1 – Tarımsal Çalışmaların neden olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 2.1.) Kimyasal Kirlilik 2.2.) Fiziksel Kirlilik 2.3.) Fizyolojik Kirlilik 2.4.) Biyolojik Kirlilik 2.5.) Radyoaktif Kirlilik 3 – Yerleşim Alanlarındaki Atıkların Neden Olduğu Kirlilik III – TOPRAK KİRLENMESİ 1 – Kentlerin Neden Olduğu Kirlilik 2 – Endüstrinin Neden Olduğu Kirlilik 3 – Toprak Uğraşlarının Neden Olduğu Kirlilik 4 – Toprak Kirliliğinin İnsan ve Çevresine Etkileri IV – DİĞER ETMENLER a) Gürültü Kirliliği   Gürültünün İnsan ve Çevresine Etkileri b) Radyasyon ÇEVRE KİRLENMESİ Her türlü madde ya da enerjinin (örn: ısı, ses...) doğal birikiminin çok üstündeki mik-tarlarda çevreye katılmasına çevre kirlenmesi denir. Kirlenme, kirleticilerin etkilediği ortamın niteliğine göre, hava, su, toprak kirlenmesi ve diğer etmenler olarak sınıflandırılır. İnsanın yaşamı sürekliliği için doğayı kullanması, do-ğayı değiştirmesi olağandır. Ancak bu kullanışta doğayı düşünmeksizin yalnızca insan açısın-dan ve tek yönlü yararlanma söz konusu olduğunda, umulan olumlu sonuçlar, bir süre sonra çözümü zor ve hatta olanaksız birçok karmaşık sorunlara neden olurlar. Bilimsel açıdan bakıldığında, bir ortamın fiziksel birleşiminde olmaması gereken şey “kir” dir. Yaşamın söz konusu olduğu her yerde muhakkak kir, yani artık madde bulunacak-tır. Fakat bu madde, oluştuğu ortam içinde belirli sınırlar altında kaldığı sürece doğal yapı bu artık maddeyi çözümlemekte ve sonuçta kirlenme çıplak gözle görülmemektedir. O halde ya-şamın getirdiği bir kirlenme hep olacaktır. Ama doğal denge bozulmadıkça, çevre ile etkileşen yaşam, kirlenmeden etkilenmeyecek ve dolayısıyla çevre kirlenmesi sorunu, doğal yapı içinde çözümlenecektir. HAVA KİRLİLİĞİ Erişkin bir insan, günde 2,5 kg kadar su ve 1,5 kg kadar besin almasına karşılık 15 kg kadar hava alır. O halde, insanın dışarıdan aldığı maddeler arasında hava, miktar bakımın-dan başta gelmektedir. Bir insan açlığa 60 gün, susuzluğa 6 gün dayanabildiği halde havasızlığa 6 dakika da-yanamaz. Barınak ve fabrika bacalarından çıkan dumanlar, otomobillerden çıkan eksoz gazları içinde bulunan ve canlılar için zararlı olan çeşitli maddelerin havaya karışması ve onun bileşimini bozması, 20. yüzyıl insanını hava kirliliği sorunu ile karşı karşıya bırakmıştır. Normal temiz bir hava içerisinde, % 78,9 hacim azot, % 20,95 hacim oksijen, %0,03 hacim karbondioksit, %0,93 hacim argon gazı bulunan fakat, duman toz tanecikleri, kükürt dioksit ve diğer gazlar bulunmayan ya da çok az bulunan hava demektir. Kirli hava ise fazla miktarda duman, kü-kürt di oksit, karbon mono oksit, azot oksit gibi gazları, ozon gibi oksidin maddeleri, kurşun, nikel gibi metalleri, lastik parçacıkları ve toz taneciklerini kapsayan ve fena kokan havadır. Diğer bir tanımla, hava kirliliği, atmosferde toz, gaz, duman, koku, su buharı şeklinde bulu-nabilecek kirleticilerin insan ve diğer canlılar ile eşyaya zarar verici miktara yükselmesi ola-rak ifade edilebilir. Metreküpü içinde 7 mikrogramdan fazla miktarda duman ve 100 – 150 mikrogramdan fazla SO2 gazı bulunması havanın kirliliği için bir ölçü olarak kabul edilmektedir. Özellikle duman ve SO2 gazının verilen bu miktarın üzerine çıkması, sağlık için zararlı bir ortamın meydana gelmesine neden olmaktadır. Hava kirliliğini oluşturan başlıca kaynaklar, endüstri merkezlerinden çıkan kirli dumanlar ve gazlar, kalorifer ve soba bacalarından dağılan isler ve dumanlarla motorlu taşıtların eksozlarından çıkan karbonmonoksit, kurşun, azot oksit gibi kimyasal maddelerdir. Bunlar-dan birkaçını tanıyalım: Karbon monoksit (CO): Havadan biraz daha hafif, renksiz, kokusuz, zehirli bir gazdır. Yanma sürecinde yakıttaki karbonun eksik yanma sonucunda tümüyle karbondioksite yük-seltgenmeyip bir bölümünün karbon monoksite dönüşmesiyle oluşur. Başlıca karbon monok-sit kaynağı içten yanmalı motorlardır. Katı ya da sıvı maddelerin parçacıkları, kurum ya da is biçiminde gözle görülebilen-lerden ancak elektron mikroskobuyla gözlenebilecek olanlara kadar değişen boyutlardadır. Çevreyi kirleten parçacıkların oluşumuna yol açan başlıca nedenler hareketsiz merkezlerde yakıt kullanımı ile sanayi etkinlikleridir; orman yangınları da küçük bir yüzde oluşturur. Kükürt oksitleri, kükürt içeren yakıtların yanmasıyla oluşan zehirli gazlardır. Her yıl açığa çıkan kükürt oksitlerin yaklaşık yüzde 60’ı kömürün yakılmasıyla oluşur. Kentsel böl-gelerde yoğunlaşmış olan akaryakıt kullanımı ve kükürtten yararlanan sanayi tesisleri de kü-kürt oksitlerinin oluşumuna yol açan önemli kaynaklardır. Hidrokarbonlar da, karbon monoksit gibi eksik yanan yakıtlardan kaynaklanır. Ama karbon monoksidin tersine, atmosferde normal olarak bulundukları yoğunlukta zehirli değil-lerdir. Bununla birlikte, fotokimyasal sise yol açtıklarından kirliliğin artmasında önemli rol oynarlar. Havadaki hidro karbonlar genellikle, çöp fırınları gibi büyük tesislerde atık madde-lerin yakılmasından, sanayide kullanılan çözücülerin buharlaşmasından ve odun ile kömürün yakılmasından kaynaklanır. Ama en önemli etken, buharlaşma yoluyla ve içten yanmalı mo-torların egzozundan havaya karışan benzindir. Bu yüzden havadaki hidrokarbonların yakla-şık yüzde 60’ı, çok sayıda motorlu taşıtın bulunduğu kentsel alanlarda yoğunlaşmıştır. Azot oksitleri, yakıtın çok yüksek sıcaklıkta yanmasıyla oluşur. Bu kirletici de gene motorlu taşıtlardan ve elektrik enerji santralleri ile sanayide kullanılan buhar kazanlarının yakım sistemlerinden kaynaklanır. Havada normal olarak eylemsiz halde bulunan azot, yan-ma sırasındaki yüksek sıcaklıkta oksijenle birleşir ve gaz halinde dışarı atıldığında çabuk so-ğursa, bu durumda kalır. Azot oksitleri, hidrokarbonlarla birleşerek fotokimyasal yükselt genleri oluştururlar. Bu yükselt genler de, havadaki katı ve sıvı parçacıklarla birleşerek hava kirliliğine yol açarlar. Fotokimyasal yükselt gen kirleticiler ozon, azot di oksit, aldehitler, akrolein ve peroksiaçillerdir. Kentsel bölgelerdeki hava kirliliğine yol açan bir başka önemli madde de kurşundur. Kurşun, sanayi tesislerinden, zararlı canlılarla mücadelede kullanılan kimyasal maddelerden, kömür ve çöp yakımından ve kurşunlu benzin kullanan otomobil motorlarından kaynaklana-rak havaya karışır. Kirleticiler dışında, bazı doğal etkenler de hava kirlenmesine yol açar. Güneş ışığındaki morötesi ışınlar, hidrokarbonlarla birleşerek fotokimyasal sis oluştururlar ve bu da sıcaklık terslenmesi dönemlerinde atmosfer durgunluğuna neden olur. Bu olay, sı-caklığın, yer yüzünde troposferin (alt atmosfer) içlerine doğru arttığı durumlarda görülür; olaya terslenme denmesinin nedeni de normal olarak sıcaklığın yükseklikle birlikte azalması-dır. Sıcaklık terslenmesi havanın yükselmesini engelleyerek kirletici içeren alt hava katmanı-nın asılı halde kalmasına yol açar. Havada önemli bir yanal hareket gerçekleşmediği sürece kirlilik kalıcı olur. İNSANA VE ÇEVREYE ETKİSİ Havada kirlenmeye yol açan maddelerin insanlar üzerinde çeşitli etkileri vardır. Ha-vadan solunan karbon monoksit, kandaki oksijenin yerini alarak vücuttaki hücrelere taşınan oksijen miktarının azalmasına yol açar. Kentlerin havasında bulunduğu miktarıyla karbon monoksit, zihinsel yetilerin gerilemesine ve en sağlıklı insanlarda bile tepkilerin ağırlaşmasına neden olur; bu da kent yaşamında görülen kazalarda önemli bir etkendir. Ayrıca kansızlık, kalp yetersizliği ve kan hastalıkları ile kronik akciğer rahatsızlıkları bulunan kişilerin sağlık durumu üzerinde daha da olumsuz etkilerde bulunur. Kükürt oksitleri, solunum borusunu ve akciğer dokularını etkileyerek, solunum siste-minde geçici ya da kalıcı rahatsızlıklara yol açabilir. Fotokimyasal yükselt genler göz rahat-sızlıklarına neden olur; ayrıca araştırmalar, azot oksitlerinin de insan sağlığına neden oldu-ğunu, özellikle çocuklarda gribe karşı direnci azalttığını ortaya koymuştur. Başka pek çok kirletici de, etkileri doğrudan ya da kısa sürede gözlenememesine kar-şın, halk sağlığı konusundaki kaygıların giderek çoğalmasına neden olmaktadır. Araştırma-lar, kentlerde yaşayan insanların vücudunda bulunan kurşun miktarının, vücudun kan üre-timini olumsuz yönde etkileyecek oranda olduğunu göstermektedir. Ama çevrede bulunan kurşunun insan sağlığına doğrudan mı zararlı olduğu, yoksa asıl tehlikenin gelecekte besin zincirinde ortaya çıkacak bir kurşun yoğunlaşmasına mı yattığı tartışması sonuçlanmış değil-dir. Hava kirliliği, insanların yanı sıra bitki yaşamı, yapılar ve çeşitli eşyalar üzerinde de son derece zararlı etkilerde bulunmaktadır. Pek çok büyük kentin çevresindeki bitki örtüsü hava kirliliği nedeniyle büyük ölçüde yok olmuştur. Ayrıca kentlerde kükürtlü kömür ve a-karyakıt kullanımı, buralardaki çelik ürünlerinin kırsal bölgelere oranla dört kat daha hızlı aşınmasına yol açmaktadır. Kükürt oksitleri de yapıların ve heykellerin aşınmasını hızlandı-rır; havadaki parçacıklar öteki kirleticilerin aşındırıcı etkisini arttırır; ozon ise, kauçuk ürün-lerinin daha çabuk parçalanmasına yol açar. Hava kirlenmesinden kaynaklanan ve 1980’lerin ortalarında gündeme gelen bir başka önemli tehlike de, atmosferin ozon tabakasının incelmesidir. Havalandırma sistemlerinde, spreylerde, otomobillerde ve buzdolaplarında kullanılan kloroflorokarbon kökenli kimyasal yapılarda maddelerin yol açtığı delinme, kutup bölgelerinde yoğunlaşmıştır. Yeryüzüne ula-şan morötesi ışınların zararlı etkilerini azaltan ozon katmanının delinmesi, bazı uzmanlara göre 20 – 30 yıl içinde etkisini gösterecek, yeryüzünde 40 milyon dolayında insanın cilt kanseri olmasına ve yalnızca ABD’de yaklaşık 800 bin kişinin ölümüne yol açacaktır. Bazı uzmanlar bu tahminlerde büyük yanılgı payının bulunduğunu öne sürmekle birlikte, ozon katmanının delinmesinin yeryüzü için büyük bir tehdit oluşturduğu üzerinde herkes aynı düşüncededir. HAVA KİRLİLİĞİNİN SONUÇLARI (ASİT YAĞMURLARI) Asit yağmurları, kendilerini çeşitli ortam ve canlılar üzerinde belli eder. ASİT YAĞMURLARIN TOPRAĞA ETKİSİ Asit yağmurlar, toprağın kimyasal yapısı ve biyolojik koşulları üzerinde etkide bulu-narak, bu topraklar üzerinde yetişen bitkilere zararlı olmaktadır. Toprağa erişen sülfürik asit, toprak çözeltisinin asitliğini yani aktif hidrojen iyonları-nın yoğunluğunu arttırmaktadır. Miktarı artan hidrojen iyonları, toprağın koloidal komp-leksleri olan kil mineralleri ve humus koloitleri tarafından tutulmakta olan başta Ca olmak üzere K, Mg ve Na gibi bitki besin elementlerinin yerine geçerek, bu elementlerin topraktan taban suyuna karışmak üzere yıkanmalarına neden olmaktadır. ASİT YAĞMURLARININ SULARA ETKİSİ Asit yağmurları, tatlı su göllerinde de asitliği arttırarak bu göllerde asitliğe duyarlı balık ve yumuşakçıların tür ve miktarının azalmasına etkili olmaktadır. Amerika Birleşik Devletlerinde bulunan 100 bin gölden yaklaşık 20 bininde ya hiç ba-lık kalmamış, ya da bu yönde olumsuz bir gelişme vardır. Halen birçok gölde aşırı asitliği gidermek üzere kalsiyum hidroksit püskürtülmektedir. İsveç’te bu amaçla her yıl 40 milyon dolar sarf edilmekte olduğu bilinmektedir. ASİT YAĞMURLARIN YAPILARA ETKİSİ Asit yağmurları maruz kalan özellikle kireç taşları, mermerden inşa edilen tarihi yapı-lar ve anıtlar orijinal durumlarını hızla kaybetmektedirler. Asit yağmurların binalarda meydana getirdiği diğer bir zarar da, binalarda çatı örtüsü olarak kullanılan çinko gibi metal levhalarda görülen yıpranmalardır. ASİT YAĞMURLARIN BİTKİLERE ETKİSİ Kükürt di oksit ve azot oksitler, stomlar yoluyla ibre ve yaprak dokularına girmekte, özellikle SO2 bir yönden oksijen alımını önlemekte, diğer yönden de bünyede H2SO4’e dönüşe-rek parçalama, yakma ya da kemirme etkisi yapmaktadır. Kükürt dioksitin yaprak ve ibre-lerde oluşturduğu sülfürik asidin sünger mezofil hücreleri içerisinde bulunan kloro – plastlardaki magnezyumu giderek kuruttuğu, klorofili ve plazmayı tahrip ettiği, dolayısıyla özümlemeyi engellediği, bunların sonuçta ölüme neden olduğu bilinmektedir. ASİT YAĞMURLARIN İNSAN SAĞLIĞINA ETKİSİ Asit yağmurları insan sağlığına olan etkileri kendini dolaylı şekilde belli eder. Asitleşen topraklardan kaynaklanan asitliği yükselmiş olan sular, mide asiditesini arttırarak mide ülse-rine neden olmakta, ayrıca asit yağmurlar topraktaki iyodu eriterek o topraklarda yetişen sebze ve meyvelerin ve içilen suların iyot miktarlarının düşmesini sonuçlandırarak bunları kullanan insanlarda troid bezi rahatsızlıkları (guatr) hastalığına neden olmaktadır. Asit yağmurlar, gazlar ve birlikte bulunan toksit metal iyonları ile insanlar ve hayvan-larda da zararlı olmaktadır. Havada dolaşan kuru kirleticiler be bunlar arasında sülfatlar, üst solunum yolu hastalıklarından kronik bronşit, astım ve anfizeme neden olmaktadır. ÇEŞİTLİ GAZLARIN İNSAN VE ÇEVRESİNE ETKİLERİ İNSAN SAĞLIĞINA ETKİLERİ Hava, yaşamın temel öğesi olduğuna göre, havadaki kirliliğin insan sağlığı yönünden önemi açıktır. Havanın taşıdığı karbon parçacıkları, ozon, karbon monoksit, kükürt dioksit, doyma-mış hidrokarbonlar, aldehitler ile kanserojen maddeler gibi kirleticiler insanların solunum yollarını etkileyerek normal mekanizmasını bozar; bronşlarda iltihaplara ve daralmalara neden olur. Bu değişmeler sonunda da, kronik bronşit ve anfizem meydana gelir. Araştırma-lar akciğer kanserinin meydana gelmesinde ve artmasında da hava kirliliğinin önemli bir ne-den olduğunu göstermektedir. Gaz ve buharlar içinde en tehlikelisi olan kükürt dioksit bilindiği gibi ev ve endüstri bacalarından ve bunlara oranla daha az olarak motorlu taşıtların bacalarından havaya karı-şır. Yapılan araştırmaların sonucuna göre, kükürt dioksitin bronşitten dolayı ölümleri arttırmak-ta olduğu saptanmış, atmosferde SO2 miktarının arttığı sisli havalarda kronik bronşitli bazı hastalarda nefes darlığının şiddetlendiği gözlenmiştir. Ayrıca kirlilik derecesinin yüksek ol-duğu zamanlarda bazı hastalıklara tutulmuş kişilerde ölümlerin bir hayli arttığı görülmüştür. Ozon gazı, ara madde olarak oluşur. Ozon, gözlerde ve bronşlarda iltihaplanma, akci-ğerlerde ödem yapar. Bazı durumlarda bellek zayıflığı yaptığı söylenmektedir. Milyonda bir kısım, göz ve akciğerlerde iltihaplanmaya neden olmaktadır. Nitrojen oksitler, SO2 gazından sonra en önemli hava kirleticisidirler. Kimyasal mad-delerin yapılması sırasında özellikle nitrik ve sülfürik asit ve naylon fabrikalarından, benzin, yağ, doğal gazların ve mazot yanması sonucu ve yine çeşitli petrol arıtma işlemlerinden sonra açığa çıkmaktadır. Dumanla ve sağlık arasında çok sıkı bir ilişki bulunduğunu herkes bilir. Duman, özel-likle sisle birlikte bulunacak olursa havada bulunan SO2 ile birlikte aerosol halinde hızla ya-yılmakta, sonuç olarak kısa veya uzun süreli dönemlerde duygulu olma haline, cinsiyete göre değişmek üzere özellikle bebek, çocuk ve yaşlı insanlarda, kalp, damar ve solunum yolu hasta-lıklarına yakalanmış olanlarda etkisini göstermektedir. Duruma göre farenjit, larenjit, solu-num güçlükleri, bronşit, kronik bronşit, astım ve anfizem meydana gelmektedir. Bu hastalık-lara tutulmuş olanlarda hastalığın şiddeti artmaktadır. Duman, güneşin özellikle ültraviyole ışınlarının yere inmesine engel olur. Bu şekilde havada bulunan mikrop ve virüslerin canlı kaldığı hatta antibiyotiklere karşı direnç kazana-cak şekilde fizyolojik değişikliklere uğradıkları bilinmektedir. Bunun sonucu olarak çocuk-larda raşitizm artmakta, kanda hemoglobin değeri ile birlikte renk indeksi ve B 1 vitamini azalmakta, alkali fosfatlarda yükselme ve proteinlerde değişme kemikleşmede gerileme gö-rülmektedir. Günümüzde kanserin oluşmasının nedeni kesinlik kazanmamış olmakla beraber, bazı etmenler vardır ki, bunları ortaya çıkarıcı ve kolaylaştırıcıdır. Bunlara, kanserojen maddeler denir. Kanserojen maddeler, insanların günlük yaşamını tehdit eder duruma gelmiştir. Kan-ser oluşmasında, kimyasal kanserojenler yüzde 80 oranında olup, yüksek düzeydedir. Bunla-rın büyük bir kısmı çevremizden, hava, besinler ve içecekler yoluyla vücuda alınmaktadır. Özellikle havadan alınan bu kanserojen maddeler şu şekilde sıralanabilir: is, katran, zift, as-falt, parafin gibi maddeler. HAYVAN VE BİTKİLERE ETKİLERİ İnsanlarda görülen hava kirliliği etkilerine, bir ölçüde hayvanlar da rastlamaktadır. İnsanlar ve hayvanlar dışında bitkilerde hava kirliliğinin etkileri ile karşı karşıyadırlar. Daha önce de işaret edildiği gibi, hava kirliliğini oluşturan gazlardan bazıları, özellikle SO2 gazı, bitkilerde fotosentez olayını yavaşlatmakta, bitkilerde oksidasyon işlemine engel olmakta, kloroplastlardaki magnezyumu kurutmaktadır. Flüoritler, bitkiler üzerinde toplanarak bunları kısmen kurutmakta, Aldehitler, bitki-lerde yaprakların stomaları etrafındaki hücrelerde tahribata neden olmaktadır. Ozon gazı, bitkiler üzerinde zehirli alanlar oluşturmakta, ağaçların zamanından öce yaprak dökmesine yol açmakta ve özellikle genç bitkileri etkilemektedir. Tüm bu olumsuz etkiler, özellikle kültür bitkilerinde bir ölçüde ürün azalmasına, geniş alanlar kaplayan orman vejetasyonunun kurumasına neden olmaktadır.   İKLİME ETKİLERİ Hava kirliliğinin değiştirdiği atmosfer koşulları, iklimi de etkilemektedir. Genel ola-rak, kentlerdeki ısı ortalamalarının kırsal alanlardan daha fazla olduğu görülmektedir. Ayrı-ca, meteorolojik ölçmeler, hava kirliliğinin arttığı, büyük kentlerde rüzgar hızının da düştü-ğünü göstermektedir. Rüzgarın ısıyı ve nemi etkilemesi nedeniyle, bu hız azalmasının önemi çok büyüktür. Hava kirliliği, ayrıca, büyük kentlerin yağış miktarlarının da artmasına neden olmaktadır. Havayı ısıtan enerji sonucu, mikroskobik maddelerin çokluğu bulutların oluşma-sını kolaylaştırdığından yağışlar artmaktadır. Diğer yönden hava kirliliği sonucu kentlerin üstünde oluşan tabaka, ültraviyole ışınlarının da önemli derece kaybına yol açmakta, bu ise gün ışığının azalması sonucu doğmaktadır. ORMAN VE YEŞİL ALANLARIN ÇEVRE KİRLİLİĞİNİ ÖNLEMELERİ YÖNÜNDEN İŞLEVLERİ Bir ormanın ekonomik yararları dışında fiziksel, fizyolojik bir takım işlevleri de bu-lunmaktadır. Yapılan çeşitli araştırmaların sonuçlarına göre bu işlevler aşağıdaki gibi özetle-nebilir:   FİZİKSEL İŞLEVLER: 1. Ormanlar rüzgarın hız ve yönünü önemli ölçüde değiştirir. Bu işlev, ormanın sıklılığına ve tepe kapalılığına göre değişir. 2. Ormanlar, fiziksel hava kirlenmesini oluşturan toza karşı filtre görevi yaparlar. 3. Ormanlar, park – bahçe ve benzeri bitki örtüsü, gürültüyü yansıtma ve absorbe etmek suretiyle azaltıcı bir etkiye sahiptirler. 4. Ormanların, radyoaktif hava kirlenmesine karşı koruyucu işlevleri vardır.   FİZYOLOJİK İŞLEVLER: 1. Ormanlar ve benzeri yeşil örtü, fotosentez olayı sonucu çok önemli ölçüde CO2 kullanarak atmosferdeki CO2 konsantrasyonunu etkiler. 2. Ormanlar ve yeşil alanlardan fotosentez reaksiyonu sonucu oksijen üretimi doğal olarak sağlanmakta, böylece doğal oksijen ve karbon dengesini koruyucu bir öğe olarak görev yapmaktadır. 3. Bir orman örtüsü altında topraktan sıcaklık etkisi ile fiziksel olarak meydana gelen bu-harlaşma, açık alanlara oranla önemli ölçüde azalmaktadır. 4. Orman vejetasyonu, serbest hava hareketlerini engelledikleri için bulundukları yerin hava ve toprak sıcaklıklarını etkilemektedir. Orman vejetasyonu tepe çatısına çarpan güneş ı-şınlarının bir kısmını yansıtıp bir kısmını absorbe edip bir kısmını da dağıttığından or-man içine daha az ışık girer. Bunun dışında gerek transprasyon, gerekse nem miktarı faz-la olan orman havasının ısıtılması için yüksek oranda enerji harcanır. Bu nedenlerle koyu gölgeli yerlerde yazın hava serin olur. Kışın ise ormanın tepe çatısı ve nemli havası ile ka-rasal radyasyona engel olduğundan, çıplak alanlara oranla daha sıcak olur. ORMANLARIN SU VE TOPRAK KİRLİLİĞİ ÜZERİNE ETKİLERİ Toprak ve buna bağlı olarak meydana gelen su kirliliğinin nedenleri arasında toprağa verilen gübreler ile toprak taneciklerinde tutulan pestisitler bulunur. Toprak yüzeyinde ölü veya diri örtünün bulunuşu yüzeysel akışı azaltır. Yüzeyden a-kan suyun hızını mekanik olarak engelleyerek toprağa sızması için zaman kazandırır. Böylece gübreleme için verilen kimyasal maddelerin ve zararlılara karşı kullanılan pestitlerin yüzeysel sularla akarsulara, göllere ve denizlere ulaşması engellenmiş olur. E-rozyon olayını durdurarak, barajların zamanla sedimentle dolması oranı da ortadan kal-kar. SU KİRLİLİĞİ Su, doğal durumunda pek çok çözünmüş madde, parçacık, canlı organizma içerir. Evlerde ve sanayide kullanılan suya çeşitli kimyasal maddeler de katılmıştır. Sulara karışan atıklar, çok çeşitlilik gösterse de, başlıca inorganik bileşenleri sodyum, potasyum, amonyum, kalsiyum, magnezyum, klorür, nitrat, bikarbonat, sülfat ve fosfattır. Zararlı organik bileşenler ise çok çeşitlidir ve tümü bilinmemektedir; buna karşılık belirlenmiş olanları, böcek ilaçları, deter-janlar,fenollü maddeler ve karboksilli asitlerdir. Kirlilik uzun vadede, sudaki canlıların ya-şamında ve dağılımında değişikliğe yol açar.; bazı balıkların sayısı azalırken, kirleticilere di-rençli başka canlılar sayıca artış gösterir. Su kirliliği ayrıca, göllerin yaşlanmasına ve kuru-masına yol açan ötrofikasyonu hızlandırır. Böylece suyun çeşitli amaçlarla insanlar tarafın-dan kullanılması da kısıtlanmış olur. Sanayi atıklarının, böcek ilaçlarının ve öteki zehirli madde atıklarının sudaki çözünmüş oksijeni tüketmesi, balıkların kitle halinde ölmesine ne-den olur. Organik ve ısıl atıklar gibi çeşitli kirleticilerin zararlı etkileri doğal süreçlerle ortadan kalkabilir ya da azalabilir. Sulardaki organik atıkların başlıca kaynağı kentlerdeki kanalizas-yon sistemleridir. Suda çok büyük miktarlarda yoğunlaşmadıkları sürece bu maddeler, bak-teriler ve öteki organizmalar tarafından kararlı inorganik maddelere dönüştürülebilir. Bu kendi kendini arıtma süreci sudaki oksijenin yardımıyla gerçekleşir. Ama eğer organik mad-de miktarı çok fazlaysa, yeterli oksijen olmadan arıtım kötü kokulara yol açabilir. Suda çözünen tuzlar, gazlar ve parçacık durumundaki maddeler ise bu yolla arıtıla-maz. Ayrıca, sanayiden kaynaklanan bu atıklarda kadmiyum, cıva ve kurşun gibi zehirli me-taller vardır. Bu maddelerin ne ölçüde zararlı olduğu bilinmemekle birlikte, büyük miktarda cıva içeren sulardan avlanan balık ve benzeri ürünleri yiyen kişilerde ölüm olayına ve sinir sisteminde kalıcı bozukluklara çok rastlanmıştır. Ayrıca sudaki asılı parçacıklar, öteki mad-deleri soğurarak bakteri gelişiminde ve başta DDT gibi böcek öldürücüler olmak üzere pek çok zararlı maddenin dip çamurlarında çökelmesine neden olur. KİRLENMEYE YOL AÇAN KAYNAKLAR Evlerden, ticaret ve sanayi kuruluşlarından kaynaklanan kanalizasyon atıkları, su kirlenme-sine yol açan başlıca etmenlerdendir. Genellikle kullanılan kanalizasyon sistemlerinde, atık sular yağmur suyundan ayrılamamaktadır. Bu yüzden toplam su miktarı sistemin kapasitesi-ni aştığında atık suların büyük bölümü doğrudan akarsulara boşalan kanallara akar. Büyük kentsel bölgelerde yağmur suyunu toplamak için ayrı sistemler ya da göletler yapılmasına yüksek maliyetler yüzünden başvurulamamakta, bu kirlenmesini ciddi biçimde etkilemekte-dir. Sudan yararlanan sanayi tesisleri de bir dizi değişik etkisi olan kirleticilerin sulara karışmasına yol açar. Sanayileşmenin hızla ilerlemesiyle, sanayi atıkları kanalizasyon atıkla-rını birkaç kat aşmıştır. Su kirliliğinde en önemli rolü oynayan sanayi dalları kağıt,kimya, petrol ve demir – çeliktir; enerji santralları da büyük miktarda atık ısının sulara karışmasına neden olur. Plastik üretiminde kullanılan polikloroditenil, insan,hayvan ve bitki yaşamı için büyük tehlike oluşturmaktadır. Bu madde canlı hücrelerde biriktiğinden ve besin zinciri için-de yoğunlaştığından, başlangıçta çok küçük miktarlarda bulunsa bile, besinler insanlarca kul-lanılmaya başlayana kadar tehlikeli miktarlara ulaşmış olur. Tarım ilaçları, böcek öldürücüler ve kimyasal gübreler de su kirlenmesinde önemli rol oyna-makla birlikte bu tarım atıklarının etkileri, kentler ile kentlerin çevresinde yoğunlaşmış yerle-şim birimlerinin atıkları ve sanayi atıkları kadar büyük boyutlarda değildir. Kentlerin dışın-da su kirlenmesine neden olan başka bir etken de, çoğunlukla bırakılmış madenlerdeki asitle-rin çevredeki akarsulara karışmasıdır. Atık ısı: Sanayi tesislerinde, atıkların taşınması gibi işlevlerin yanı sıra soğutma ama-cıyla da büyük miktarlarda su kullanılır. Bu tesislerin başında elektrik enerjisi santralları gelmektedir. Yoğunlaştırıcıların soğutulması için doğal bir kaynaktan alınan su, sıcaklığı 10 yaklaşık 7 C artmış olarak kaynağa geri boşaltılır. Nükleer santrallar, fosil yakıt kullanan aynı kapasitedeki santrallardan yaklaşık yüzde 50 daha çok su kullanır. Bu nedenle, enerji santrallarının soğutulması, çevre kirlenmesinde son derece önemli rol oynayan etkenlerden biridir. Isıl kirlenme, biyolojik ve kimyasal tepkimeleri hızlandırır ve çözünmüş oksijen mik-tarının hızla azalmasına yol açar. Su sıcaklığı, balıkların yaşamasına olanak vermeyecek dü-zeye yükselebilir; bu durum, zararlı alglerin gelişmesine de ortam hazırlayarak besleyici –madde atıkları , deterjan, kimyasal gübre ve insan atıkları gibi kirleticilerin etkisini çoğaltır. Sonuçta atık ısı, göllerdeki ötrofikasyonu hızlandırır. Su kirlenmesinin nedenleri üç gruba ayrılarak incelenebilir:   Tarımsal çalışmaların neden olduğu kirlilik Tarımsal çalışmaların gereği olarak bitki hastalıkları ile mücadele amacıyla uygulanan pestisidlerin, verimin arttırılması için toprağa verilen gübrelerin ve çeşitli kullanımlar altın-daki alanlardan oluşan yüzey akışı, erozyon ve toprağın sürülmesi sonucu oluşan katı ve sıvı atıkların neden olduğu kirliliğe tarımsal kirlilik denir. Tarımsal çalışmalarda daha fazla ürün elde etmek amacıyla arazilere uygulanan kimyasal gübrelerin neden olduğu kirlilikler vardır. Bunlar arasında en önemlileri ise azot ve fosforun doğal düzen içindeki dönüşümleri sonucunda kirlilik meydana gelmesidir. Kimyasal gübrelerin arazilere uygulanması ile verimde bir artış olacağı doğaldır. Ancak bu gübrelemenin, suların kirliliğine hangi oranda etkili olacağının da saptanması gerekir. Su kirliliğine neden olan bitki besin maddelerinden azot ve fosfor, tüm canlı varlıklar için belili miktarlarda gerekli ise da fazla miktarının çeşitli sakıncaları bulunmaktadır. Belli başlı etki-leri, akarsular ve göllerdeki ötrofikasyon olayına neden olmasıdır. Bunun yanında fazla mik-tarda azot nedeniyle, azot zehirlenmesinden ölen toplu balık gruplarına da rastlanmaktadır. Hayvansal artıkların yarattığı kirlilik ise, hayvancılıkla ilgili olarak ahır ve ağıllardan ya-ğışlarla yıkanan hayvan idrar ve dışkı artıklarının temizleme sularına, oradan yüzey sularına karışması ve ya hayvan gübresinin tarlalara serilmesinden sonra yağışlarla yıkanarak yüzey sularına karışması şeklinde oluşan bir kirlilik şeklidir.   Endüstrinin neden olduğu kirlilik Bugün bu konuda bilinen kirlilikler beş alt grupta toplanabilir. 1. Kimyasal Kirlilik Bu kirlilik, sularda organik ve inorganik maddelerin bulunmasıyla oluşur. En çok karşıla-şılan tipi ise, proteinler, yağlar, gıda maddeleri ve hidrokarbonlar nedeniyle oluşan organik kirlenmedir. Zamk ve jelatin üreten fabrikaların artıkları, mezbahaların artık sularında ol-dukça fazla miktarda protein bulunur. Kağıt ve tekstil fabrikalarının artıklarında ise fazla miktarda karbonhidrat bulunmaktadır. Sentetik deterjanlar da kimyasal kirliliğe neden olan maddeler arasındadır. Az miktarda bulunmaları halinde dahi sularda köpük meydana getirdiklerinden suyun havalanmasını ön-ler, arıtma sistemlerinin randımanına düşürürler. 2. Fiziksel Kirlilik Fiziksel kirlenme, suyun sıcaklık, renk, bulanıklık ve koku gibi fiziksel özelliklerine etki eden bir kirlilik tipidir. Termal kirlenme, fiziksel kirlenmenin diğer bir tipidir. Soğutma suyuna gereksinme du-yulan termal enerji üreten istasyonlarda ve endüstrideki soğutma işlemleri sonucunda ortaya çıkan sıcak suların, akarsu, göl ve körfezlere dökülmesi termal kirlenmeye neden olmaktadır. Alıcı suyun sıcaklığında meydana gelen artış,sudaki biyolojik faaliyeti durdurmakta, suyun oksijen miktarını düşürmekte, reaksiyonu değiştirerek bir kısım kimyasal maddelerin çökel-mesine ve bir kısım maddelerin açığa çıkmasına neden olarak sudaki canlılar üzerinde değişik etkiler yapmaktadır. 3. Fizyolojik Kirlilik Suyun tadını ve kokusunu etkileyen bir kirlilik tipidir. Gıda endüstrisi artıkları ile kent kullanma suyu artıkları azotlu maddelerce zengin olduğundan son derece kötü bir kokuya neden olurlar. Endüstri artık sularının demir, mangan, fenoller vb. kimyasal maddeler içe-renleri suya özel, hoş olmayan bir koku ve tad verirler. 4. Biyolojik Kirlilik Sularda patojenik bakteri, mantar, alg, patojenik protozoa vb. bulunması nedeniyle mey-dana gelen kirlilik tipi biyolojik kirlenmedir. Diğer bir deyişle, suların tifo, kolera, amipli di-zanteri vb. çeşitli hastalıkları yapan organizmalarla kirlenmesi olmaktadır. Endüstri artık maddelerinin ve özellikle kanalizasyon sularının herhangi bir arıtma işle-mine tutulmadan plajlara dökülmesi nedeniyle hastalık yapan maddeler çoğalmakta ve denize girenlerde başta kulak, burun, boğaz yanmaları; sinüzit, bağırsak hastalıkları karaciğer ra-hatsızlıkları ve tifoya neden olur. 5. Radyoaktif Kirlilik Atmosferdeki atom patlamalarının ve nükleer enerji santrallerinin neden olduğu kirlilik-tir. Atmosferdeki radyoaktif maddeler, yağışlarla yeryüzüne düşmekte, akarsulara karış-makta, bitkiler tarafından absorbe edilmekte, buradan ot yiyenlere oradan da et yiyenlere geçerek gıda zincirinin üst halkasını oluşturan insanlara ulaşmaktadır. Nükleer santrallerin artık maddeleri oldukça önemli çevre kirleticilerindendir. Bu atık-lardan deniz dibine depo edilenlerden meydana gelen sızıntılar, son yılların önemli deniz kir-leticisi olarak sayılmaktadır.   Yerleşim Alanlarındaki Artıkların Neden Olduğu Kirlilik Bu kirliliğin iki önemli kaynağı, kanalizasyon ve çöplerdir. Bulaşıcı hastalık tehlikesi, kentleri, kapalı kanalizasyon sistemine zorlarken, yine kentlerdeki su sistemleri ile kanalizas-yon arasında bir bağlantı göze çarpmaktadır. Kanalizasyon sistemine verilen pis suların bo-şaltılması genellikle akarsulara, göllere veya denizlere yapıldığından, kent artık suları, önemli bir kirlilik nedeni olmaktadır. Çeşitli şekillerde kirlenen karasal kaynaklı akar suların genellikle ulaştıkları en son nokta denizler ve okyanuslarıdır. Bu nedenle karasal kaynaklı akar suları kirleten kaynak ve işlev-ler denizleri de kirletiyor demektir. Bununla beraber denizlerin kirlenmesi olayını şöyle özet-leyebiliriz: 1. Denizlerin havadan kirlenmesi:   Hava taşıt araçlarının meydana getirdiği kirlenme   Endüstri ve yerleşim bölgelerinde oluşan hava kirliliğinin, kimyasal reaksiyonlar (asit yağmurlar) sonucu sudaki maddelerle birleşmesi 2. Denizlerin denizlerden kirlenmesi   Deniz trafiğinin meydana getirdiği kirlenme. Dünya denizlerinde deniz trafiğinin yoğun-laşmış olması, özellikle ham petrolün deniz yoluyla taşınması denizlerde önemli kirlenme-lere neden olmaktadır. Petrol yüklü tankerlerin herhangi bir nedenle kazaya uğraması so-nucu denize dökülen petrol, deniz eko sisteminde geniş çapta ve uzun süreli zararlar mey-dana getirmektedir. Şu yada bu şekilde denize dökülmüş petrol veya petrol artıklarının zararları başlıca üç grup altında toplanabilir: # Bir litre petrol artığı kırk bin litrelik deniz suyunda oksijeni yok ederek yaşamı ortadan kaldırabilir. # Suyun üzerini kaplayan yağ tabakası suyun buharlaşmasını engelleyerek bir ölçüde ya-ğışların azalmasına neden olmaktadır. # Suyun üzerindeki bu örtü güneş ışığının denizlerin derinliklerine ulaşmasını engelleye-rek oksijeni azaltmakta ve bu da canlıların yaşam olanağını azaltmaktadır. Benzer zararlara denize pasa kül, moloz, safra, yağ, çöp gibi maddeleri atan, tank yıka-yan yük, yolcu gemileri ve tankerler de neden olmaktadır. Deniz eko sisteminde ortaya çıkan dengesizlik üretimde kayıplar şeklinde kendini belli etmektedir. Bugüne kadar yapılmış ince-lemelerin sonuçları, petrol artıklarından en çok etkilenen toplulukların, yumurta, lavra ve genç fertlerden oluşan topluluklar olduğunu göstermiştir.   Limanlarda meydana gelen kirlilik.   Deniz dibi kaynaklarından petrolün çıkarılması sırasında meydana gelen sızıntı ve ka-çaklar.   Deniz ürünlerini elde etmede uygulanan yöntemler.   Denizlerde sürdürülen askeri faaliyetler ve savaş. 3. Denizlerin karalardan kirletilmesi:   Yerleşim yerlerinden denize dökülen kirlilik.   Çöpler.   Kullanılmış sular, kanalizasyon artık ve suları.   Endüstri kuruluşlarından denize atılan kirlilik.   Tarımdan gelen kirlilik.   Turizmin (örneğin yat turizminin) doğurduğu kirlilik. TOPRAK KİRLENMESİ Tarımsal ve mineral atıklar, yeryüzündeki toplam katı atıkların önemli bir bölümünü o-luşturmakla birlikte, kirletici olarak görece daha az zararlıdır. Bunun başlıca nedeni de, yer-leşim bölgelerinden ve sanayiden kaynaklanan atıklar gibi belli noktalarda yoğunlaşmış ol-mayıp daha geniş alanlara yayılmalarıdır. Katı atıklar: Hayvan dışkısı, mezbahalardan ve her türlü ekin biçme etkinliğinden gelen atıklar, toprak kirlenmesinin en önemli kaynağıdır. Sığır, domu, koyun ve tavuk gibi çiftlik hayvanları, toplam insan nüfusundan 1000 kat daha çok dışkı üretir. Geçmişte besin madde-leri, otlak ya da çiftlikteki hayvanların aracılığıyla yeniden toprağa dönerken, günümüzde kullanılan yenilikler bu atıkların belli alanlarda yoğunlaşmasına neden olmaktadır. Pek çok kimyasal madde içeren tarım ilaçlarının (örn. Böcek öldürücüler, ot öldürücüler, mantar ilaçları) su ve toprak kirlenmesinde önemli payı vardır. Bunlar, besin zincirinde daha ileri organizmalara geçtikçe, her aşamada giderek artan oranda yoğunlaşır ve giderek zinci-rin son halkasını oluşturan etçillere önemli zararlar verir. Yani zararlı kimyasal maddeler, basit organizmalarda çok küçük miktarlarda bulunur, bu organizmalar daha karmaşık orga-nizmalarca yendikçe yoğunlaşır; otçulları yiyen etçillere ulaştığında ise zararlı boyutlara varmıştır. Özellikle şahin, atmaca, kartal gibi yırtıcı kuşlarda ve pelikan, karabatak gibi ba-lıklarla beslenen kuşlarda zararlı ilaçlarının olumsuz etkileri gözlenmiştir. Hücrelerinde biri-ken DDT (Diklor difenil triklor) ve benzeri bileşikler bu canlıların üreme yeteneğini sınırla-maktadır. Örneğin dişilerin, üstünde kuluçkaya yatılamayacak biçimde yumuşak kabuklu ya da kabuksuz yumurta vermesi sonucunda, Avrupa, Japonya ve Kuzey Amerika’da bazı türle-rin sayısında önemli azalmalar olmuştur. Tarım ilaçlarının biyolojik etkileri üzerinde yapılan yeni araştırmalar, bu maddelerin za-rarlılar üzerindeki etkisinin giderek azaldığını ortaya çıkarmaktadır. Pek çok böcek türü bu maddelere bağışıklık kazanmış durumdadır; ayrıca, kalıtım yoluyla sonraki kuşakların zehir-li ilaçlara karşı direnci artmaktadır. Öte yandan bu kimyasal maddelerin sürekli olarak kul-lanılması, bazı bölgelerde de önceden bulunmayan zararlı topluluklarının türemesine yol aç-mıştır. Bunun başlıca nedeni, tarım ilaçlarının, otçul böcek nüfusunun denetim altında tutan etçil böcekleri yok etmesidir. Aşınma sonucu biriken tortullar, toprağın bozulmasına ve suların bulanıklaşmasına yol açan bir başka etmendir. Tortul üretimi, orman ve tarım alanlarının kötü kullanımından kaynaklanan ve giderek boyutları büyüyen bir sorundur. Madencilik ve inşaat etkinlikleri de bu alanda rol oynar. Mineral katı atıkların başlıca kaynağı, madencilik etkinlikleri ve ilgili sanayilerdir. Özel-likle açık kömür işletmeciliğinin yol açtığı kirlenme, akarsuları, ve akaçlama havzalarını etki-lediği gibi, toprağın da kıraçlaşmasına yol açmaktadır. Yerleşim bölgelerinden ve sanayi tesislerinden kaynaklanan katı atıklar arasında kağıt, besin maddeleri, metal, cam, tahta, plastik, kumaş, kauçuk ürünleri, deri ve çöp sayılabilir. Bu maddelerin bir bölümü açık çöp alanlarına boşaltılır, bir bölümü çöp çukurlarına atılıp üstü kapatılır, bir bölümü ise fırınlarda yakılarak yok edilir. geriye kalan küçük bir bölümü de rüzgarlarla taşınmaya ya da çürümeye bırakılır ya da başka biçimlerde değerlendirilir. Toprağı kirleten nedenleri şöyle özetleyebiliriz:   Kentlerin neden olduğu toprak kirliliği Kentleşmenin yoğun bulunduğu bölgelerde toprak niteliği hissedilir ölçüde bozulmakta-dır. Bunda arazinin kötü kullanılması kadar, inşaat tekniklerinin kirliliği, alt yapı yetersizlik-leri dolayısıyla kirli su ve kanalizasyonun toprağa karışması ve çöp birikmesinde rol oyna-maktadır. Ayrıca kent suyunun yetersizliği kirli suların pompalanmasında fazla yardımcı olmadığı için, daha kolay şekilde toprakta kalmaktadır. Kent çevresinde toprak kirliliğine yol açan en önemli nedenlerden birisi de fosseptik yöntemiyle kent artıklarının toprakta birikti-rilmesidir. Bu yolla yoğunlaşan kirlilik, toprağın daha derin tabakalarına sızarak yer altı su-larını da kirletmektedir. Çöp sorunu da aynı şekilde kirliliğe yol açmaktadır. Çöp yalnız toprak üzerinde kalan katı madde olarak değil, zamanla toprağa karışan bir kirlilik öğesidir. Kent çevresinde toprak kirliliğine yol açan diğer bir konu da hava kirliliğidir. Gerek ken-tin ısınması sırasında bacalardan çıkan zehirli gazlar, gerekse taşıtların egzoz gazları, yoğun-laşarak toprakla kaynaşmakta ve topraktaki canlı yaşamı öldürmektedir.   Endüstrinin meydana getirdiği toprak kirliliği Endüstri uğraşları sırasında meydana gelen su ve hava kirlilikleri kimyasal yollarla top-rağa karışma eğilimindedir. Bunun yanı sıra çeşitli endüstri artıklarının fabrikalar yöresinde ve ya daha açıkta bir yere yayılması alışıla gelmiş bir uygulamadır. Bazı endüstri kollarının, şeker endüstrisi gibi, toprağın üstüne atılan posa maddesi çok olmaktadır. Bazı uğraşlar, ba-kır gibi, önemli derecede kirleticiliğe sahiptir. Endüstrinin toprak kirlenmesine yol açan önemli bir kusuru da yer seçim kriterlerine uymakta özen göstermemesidir. Ele geçirilen herhangi bir arsa üzerine kurulan bir fabrika-nın kirlilik meydana getirmesi ve çevresindeki toprağın canlı yaşamını tahrip ederek verimini düşürmektedir.   Tarım uğraşlarının meydana getirdiği toprak kirliliği Yanlış toprak kullanımı, yanlış tarım yöntemleri veya yanlış ürün seçimi toprakta tahri-bat yapabilir. Ancak, genellikle tarım uğraşlarının oluşturduğu toprak kirliliğinden, tarım ilaçları ve gübreleme sonucu meydana gelen kirlilik anlaşılmaktadır. Toprağın böcek öldürücülerle veya ot öldürücülerle doğrudan doğruya ilaçlanması ya-nında, havadaki tozlara yapışarak toprağa karışanlar veya bitkilerin yapraklarında kalan miktarların yağmur ve sulama sularıyla yıkanması sonucunda toprağa karışanlar, toprağın kirlenmesine yol açmaktadır. Tarım ilaçlarının biyokimyasal özellikleri, topraktaki mikroorganizmaların ve diğer can-lıların yaşama ve büyüme fonksiyonlarını engellemektedir. Kalıcı ve birikici özellik taşıyan klorlanmış hidrokarbon pestisidler, toprakta mevcut toprak mikroorganizmalarını öldürebi-lir, geçici olarak miktarını azaltabilir veya toprak yapısında değişmelere neden olabilirler. Üretimi arttırmak amacıyla kullanılan yapay gübreler, çok görülen bir toprak kirlenme-sine neden olmaktadır. Bu gübreler içinde bazıları bitki besin maddelerinin tuzla tutulmasına bir neden olurken giderek toprakta tuzluluk sorununu yaratmaktadır. Toprak Kirliliğinin İnsan ve Çevresine Etkileri Toprak sorunları ve kirliliği insan yaşamına ve çevresine çok önlü olarak etkide bulun-maktadır. Bu etkiler başlıca beş ana başlık altında toplanabilir.   Erozyonun etkileri   Yaşlık ve çoraklığın etkileri   Taşlılık ve kayalığın etkileri   Gübre ve gübrelemenin etkileri   Tarım arazisi bozulmalarının etkileri Erozyonun etkileri, toprak kayıplarında artma, üretkenlik potansiyelinde azalma, bitki besin maddelerinin kaybı, ürünlerde nitelik düşüklüğü, su tutma kapasitesinde azalma, ve-rimli toprakların sedimentlerle örtülmesi, toprak yapısının bozulması, çeki gücüne duyulan gereksinmedeki artma, sel oyuntuları ile arazi kaybı, sedimantasyon, akarsu yataklarında ve rezervuarlarda kapasite ve depolama azalması, uygun su temini masraflarının artması, baraj ve sulama sistemlerinde yıpranma ve normal bakım masraflarının artması şeklinde kendini göstermektedir. Gübre ve gübrelemenin etkileri, toprağı tanımadan ve özelliklerini bilmeden yapılan güb-relemelerle, toprağın gereksinimi olmayan gübreyi toprağa uygulamakla kendisini belli eder. Yanlış cins ve aşırı miktarda kullanılan gübre, toprak ph’ nın normalden uzaklaşmasına, top-rak strüktürünün bozulmasına, mikroorganizma yaşamını olumsuz yönde etkilemesine neden olmaktadır. Gereğinden fazla kullanılan gübre, örneğin azotlu gübre kullanılması, topraktan yıkan-malara, içme suları ve akarsularda nitrat miktarının artmasına; aşırı ölçüde fosforlu gübre kullanılması içme suları ve akarsuların fosfor içeriğinin yükselmesine; yüksek düzeyde kulla-nılan nitrojenli gübreler, bitkilerde nitrozamin gibi kanserojen maddelerin oluşmasına yol açmaktadır. DİĞER ETMENLER GÜRÜLTÜ KİRLİLİĞİ Bilimsel yönden “düzensiz ses” olarak nitelendirilen gürültü, hoşa gitmeyen, rahatsız edi-ci duygular uyandıran bir akustik olgu veya beğenilmeyen, istenmeyen sesler topluluğu ola-rak tanımlanır. Gürültü, tüm dünyada özellikle büyük kentlerde hızla kentleşmenin, endüstrileşmenin, ulaşımın artan nüfusun vb. etkenlerin yarattığı önemli bir sorun olarak karşımıza çıkmakta-dır. Örneğin ülkemizdeki büyük kentlerde son yıllarda artan kara trafiğinin gürültünün ne denli etkili olduğu herkes tarafından bilinmektedir. Bunu gibi açık pazarlar, eğlence yerleri, çocuk parkı ve bahçeleri, endüstri kuruluşları, yapı ve yol yapım ve onarımları, hava ve deniz trafiği gibi gürültü kaynakları düşünüldüğünde, bunun da gerçekten önemli bir çevre kirliliği yarattığı söylenebilir. Gürültü düzeyleri “desibel” (dB) birimi ile değerlendirilir. Ses 35 – 40 desibele ulaştığın-da gürültü olarak değerlendirilmektedir. 100 dB’nin üzerindeki gürültüler çok şiddetli gürül-tüler olarak tanımlanır. Sokak gürültüleri 60 – 90 dB arasında, bazı zamanlar bunların dışın-da değerler gösterilebilir. Büro gürültüleri, ortalama 35 – 65 dB, eğer çok gürültülü çalışan makineler varsa 80 – 85 dB olabilir. Evlerde 40 – 50 dB fon gürültüsü düşünülebilir. Büyük kentlerde kent içi gürültüsü 103 dB’ e ulaşırken motosiklet gürültüsü 110 dB, hava kompres-yonu ile çalışan delici tabancalar 120 dB civarında gürültüye neden olurlar. Gürültünün İnsan ve Çevresine Etkileri Gürültünün de insan sağlığını en az hava ve su kirlenmesi kadar etkilediği saptanmıştır. Nabız ve soluma hızlarını arttırarak insanların fizyolojik durumunda değişikliklere yol aça-bildiği gibi, geçici ya da kalıcı işitme bozuklukları da yaratabilir. Gürültüden kaynaklanan işitme bozukluğu milyonlarca sanayi işçisini ve bazı askeri personeli tehdit etmektedir. Ayrıca gürültünün kalp krizine ve yüksek tansiyon, ülser gibi kronik rahatsızlıklara neden olduğu yolunda tıbbi bulgular vardır. Bununla beraber kulak çınlaması – sağırlık, kalp ritminin artması, kaslarda yorgunluk, iş ritminin artması, iş veriminde düşüş, salgı düzeni ve sindirim sisteminde bozukluk, dikkat dağılımı, uyku düzeninde aksaklıklar gibi durumlarda insana zarar verebilir. İnsan kulağı 165 dB şiddetindeki bir sese 0,003 saniye; 145 dB şiddetindeki bir sese ise 0,3 saniye süre ile kalıcı bir etki olmadan dayanabilmektedir. Bu şiddetteki seslerin uzun sürmesi için kulak zarı yırtılmaları, özengi kemiği çıkıkları, orta kulakta kanama, iç kulakta önemli arızalar ortaya çıkar. Sesin sürekli olması, kesikli olmasından daha tahrip edicidir. Günlük 8 saat çalışan kişinin bu süre içinde sürekli olarak çalışabileceği gürültü şiddeti 93 dB olursa günlük çalışma 4 saat, 96 olursa bu süre en fazla 2 saat olmalıdır. RADYASYON Çevreye zarar veren bir etken de radyasyondur. Düşük etkili, insan ürünü radyasyon X ışınlarından, radyoaktif maddelerden ve televizyon gibi elektronik aygıtlardan kaynaklanır. Tıpta kullanılan araçlardan kaynaklanan radyasyon, insan ürünü radyasyonun yüzde 94’ünü, ortalama bireyin aldığı toplam radyasyonun da yüzde 30’unu oluşturur. Yüksek doz-da radyasyonun lösemi ve öteki kanserlere, düşük düzeyde radyasyonun da kalıtsal hastalık-lara yol açtığı ortaya konmuştur. Atmosferde, uzayda ve su altında yapılan nükleer denemele-rin uluslar arası antlaşmalarla yasaklanması, 1960’lardan bu yana doğal çevredeki radyasyon düzeyinin azalmasını sağlamıştır. Doğal çevreye karışan radyoaktif atomların hemen hemen tümü nükleer santrallardan kaynaklanmaktadır. Açığa çıkan başlıca maddeler kripton – 85 ile trityum havaya ve su sis-temlerine karışır; ama bunlar, dünya nüfusunun aldığı radyasyon miktarını önemli ölçüde arttırmamaktır.

http://www.biyologlar.com/cevre-kirlenmesi

16 Nisan Biyologlar Günü

16 Nisan Biyologlar günü münasebetiyle, Biyologlar Birliği Derneği olarak bazı konularda hatırlatmalar yapmayı uygun gördüm. Değerli meslektaşlarım ve basın mensupları; biyoloji üç temel bilimden biridir. Bu nedenle yok sayılamaz. Son yıllarda kendimizi yeterince anlatamadığımızdan haklı olarak kamuoyu biyologların öneminin farkında değil. Dünyada gelişmiş ve gelişmekte olan ülkelerde lisans eğitimleri; Viroloji, Bakteriyoloji, Ekoloji, Hidrobiyoloji gibi dallarda verilmektedir. Nitekim, Nobel Bilim Ödülleri`nde fizik, kimya, tıp gibi biyoloji bilimi de ayrı bir kategoride ödüle layık görülmektedir. Oysa ülkemizde ise sadece biyoloji bölümleri bulunmakta ve biyolog olarak mezun olunmaktadır. Bu durum bilimde geri kalmışlığın göstergelerinden biridir. Günümüzde bilimin çok hızlı ilerlemesi çok daha fazla bilgi öğrenmeyi şart koşmaktadır. Bir kişinin biyoloji konusunda her şeyi bilmesi mümkün olmadığından, alt dallarda uzmanlaşması gerekmektedir. Çağımızda bu bir zorunluluktur. Bilimde gelişen ülkelerde biyologlara verilen önem çok yüksek iken, ülkemizde uygulamadan kaynaklanan tam tersine bir durum mevcuttur. Hala bir biyologun ne iş yapması gerektiği konusunda fikir birliğine varılamamıştır. Biyologların; Aldığı eğitimle ilgisi olmayan konularda görevlendirilmesi de yaygın bir uygulamadır. Genelde sadece laborantlık ve büro görevlerinde çalıştırılmaktadırlar. Biyoloji bilimi konusunda eğitim alan bu elit personel birçok kamu kurumunda, aldığı eğitimle doğru orantılı konularda görevlendirilmediğinden atıl personel durumuna düşürülmektedir. Bu uygulamayla kurumlarımız ve dolayısıyla halkımız biyologlardan ve bunun sonucu olarak çok değerli biyolojik bilgilerden yeterince istifade edememektedir. Örneğin; ABD´de bir yerde oluşan gıda zehirlenmesinde sebebini araştıran, bulan ve çözüm getiren komisyonların başında biyologlar bulunmaktadır. Bu işi de doktorlara vermek onların iş güçlerini arttırdığı gibi bazen konuya hâkim de olamayabilirler. Zira doktorun görev sahası hastayı tedavi etmektir. Ülkemizde istihdam politikası daha sağlıklı yapılabilse ve buna bağlı olarak kişilerin aldığı eğitimlere göre görevlendirmeler yapılabilse daha az sorunla karşılaşılır ve bunun sonucunda problemleri daha kısa sürede çözebiliriz. Bir biyolog nasıl eczacılık, kimyagerlik yapamaz ise, bu meslek mensupları gibi diğerleri de biyologluk yapamazlar. Çünkü aldığı eğitim ve öğrendiği bilgiler farklıdır. Çağımızda ayrı ayrı gördüğümüz tıp, ziraat mühendisliği, gıda mühendisliği ve veterinerlik gibi bilim dalları biyoloji biliminden doğmuştur. Bir biyolog bu bilimler hakkında bilgi sahibi olabilirken, oysa onlar bir biri hakkında bu bilimlerle ilgili yeterli bilgiye sahip olamazlar. Biyoloji canlı bilimidir. Tüm canlıları her yönüyle inceler. Buna dünyanın kendiside dâhildir. Bu nedenle biyoloji biliminin önemi bu yüzyılda çok fazla artmıştır. Dünyada küresel ısınma, ekolojik denge, insanın da içinde bulunduğu yaşam döngüleri gibi konular git gide daha da önem kazanmaktadır. Bozulan dengelerin tekrar nasıl sağlanacağı yine biyologların çalışma sahalarından biridir. Günümüz şartlarında şu gerçeği çok iyi anlamalıyız: Artık biliminin önde giden dalı biyoloji ve insan sağlığıdır. Bu nedenle yurtdışında biyologların önemi her geçen gün daha da çok arttığından, araştırma kaynaklarına geniş olanaklar sunulmaktadır. Bu kişiler faaliyetlerinin karşılığında çalışma sonuçlarını ticari karlı ürünlere çevirerek ülke ekonomilerine çok ciddi katkı yapmaktadırlar. Bizim ülkemiz ise maalesef bu anlayıştan yoksun durumdadır. Bu alanda gereken özen gösterilmediğinden günümüz şartlarında tüm bu bilimsel gelişmelerin sonuçlarını maalesef parayla yurtdışından satın almaktayız. Bu anlayışın sonucu olarak şu soruyu kendimize sormamız gerektiğini düşünüyorum. Paramızı başka ülkelere göndereceğimize, neden kendi araştırma çalışmalarımıza daha fazla imkân sağlayıp buluşlarımızı bizde dünyaya tanıtırken, hem insanlığa hizmet sunup, hem de satarak ekonomik girdi sağlamıyoruz? Biz çok zengin bir ülkemiyiz? Evet, zenginiz. Ama biyolojik zenginlik olarak, insan kaynağı olarak, zeki insanlar olarak. Biz kendi kaynaklarımızı neden yeterince değerlendiremiyoruz? Ülkemizde üniversitelerden ortalama yılda 3.000 biyolog mezun olmaktadır. Peki; bunların kaçı eğitim gördüğü konularda çalışabilmektedir? Maalesef üzülerek ifade etmeliyim ki onda biri. Diğer hiç bir meslek grubunda bu büyük oran yoktur. Her on kişiden yalnız biri kendi mesleğiyle ilgili çalışabilmektedir. Sebebi ise; bu güne kadar süregelen yanlış istihdam politikalarıdır. Örneğin; 2006 yılında Sağlık Bakanlığı “Özel Hastaneler Yönetmeliği” ´ni yayımladı. Bu yönetmelik öncesi özel hastanelerde çalışabilen biyologların şimdi çalışması engellendi. Önceden çalışanlar da mevcut işinden oldu. Peki; bu kişiler ne yapacak? Bunun için yapılmış bir proje çalışması maalesef yok. Oysa insanlar en verimli, eğitim aldığı konularda çalışır. Sonuçta insanlar yaşamlarını sürdürebilmek ve yaşadığı topluma karşı sorumluluğunu yerine getirebilmek için çalışmak zorundadır. Biyologların ülkemiz için ne denli önemli olduğunun anlaşılması dileğiyle tüm biyologların bu özel gününü kutlarım. Gökhan KAVUNCUOĞLU Genel Sekreter BİYOLOGLAR BİRLİĞİ DERNEĞİ Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/16-nisan-biyologlar-gunu

Laboratuvarda Kullanılan Cam Eşyaların Temizlenmesi ve Balkımı

Cam eşyalar fabrikadan yeni çıkmış gibi olsa dahi üzerinde bir yağ tabakası bulunur. Bu kaba kir herhangi bir deterjanla giderilebilir. Önce çeşme suyu sonra saf sudan geçirilir. Eğer cam kaplar reçine veya parafin gibi maddelerle kirliyse o zaman toluen veya ksilol ile temizlenir. Sonra sabunlu sıcak sudan geçirilir. Daha sonra da soğuk su ve saf sudan geçirilir.   Bu iş için boya serilerinde kullanılmış olan artık ksilolün saklanması gerekir. Erimeyen organik kalıntılar, boya çöküntüleri ve metalik tuzları ihtiva eden cam kaplar sülfokromik asit solüsyonu ile temizlenir. Bunun için cam kaplar sülfokromik asit solüsyonu içinde birkaç saatten birkaç güne kadar bırakılır. Bu solüsyondan çıkan kaplar uzun müddet çeşme suyu ile durulandıktan sonra saf sudan geçirilir. Cam eşya temizleme eriyiği (Sülfokromik asit) Hazırlanışı;Potasyum dikromat (K2CrO4) ………………………. 40 gr.Sülfürik asit  (H2SO4)  ……………………………… 100 mlSaf Su  …………………………………..………… 1000 ml Önce K2CrO4 hafifçe ısıtılarak suda eritilir, soğutulur ve iyice soğutulunca üzerine damla damla 100 ml sülfürik asit eklenir ve devamlı karıştırılır. İşlem sonunda Solusyonda bir ısınma oluşur. Solusyon soğuduktan sonra kapaklı bir şişede saklanır. Uzun süre kullanılan solüsyon koyu yeşil bir renk alınca kullanılamaz hale geldiği anlaşılır. Bu durumda yeni bir solüsyon hazırlanması gerekir. Bu solusyonda en az bir gece bırakılarak temizlenen cam eşya 24 saat akarsuda bırakılmalıdır.Uzun süreli mikroskop araştırmaları için doku yada hücrelerin mikroskopta incelenebilir hale getirilmesi daha başka bir ifade ile mikroskobik preparatların hazırlanması gerekmektedir.Bu tür mikroskop preparatların hazırlanması, çok küçük ve çabuk bozulabilen materyalin korunması ve mikroskop altında yapısının daha açık ve daha iyi görünmesini sağlamak gibi iki temel nedene dayanır.Hangi yolla olursa olsun preparat yapabilmek için her şeyden önce iyi hazırlanmış bir laboratuar gereklidir.

http://www.biyologlar.com/laboratuvarda-kullanilan-cam-esyalarin-temizlenmesi-ve-balkimi

BİYOLOJİK AJANLARIN ETKİLERİ

Biyolojik ajanlar ya yaşayan organizmalar ya da ölüm veya hastalıklara sebep olan toksin gibi türevlerden oluşur. Yaşayan organizmalar etkilerini gösterene kadar yaşayan hedeflerde çoğalırlarken, toksinlerini üremezler. Toksinler genellikle daha öldürücüdür, birkaç dakika veya saat gibi çok çabuk ölüm veya saf dışı bırakmaya neden olurlar. Yaşayan organizmalar enfeksiyon ve hastalık belirtileri görünmesi arasında 24 saat ila 6 hafta arasında kuluçka devri gerektirir. Biyolojik silahlar ilk bulaşmadan sonra birkaç hafta sonra dikkate değer bir etki bırakmaya devam edebilir. Benzer şekilde geciktirilmiş kuluçka periyodu bulaştığı yerde ajanın tamamen örtülü olarak gelişmesini sağlar ve etkisi ortaya çıktığında hastalığın tabii olarak geliştiği fikrini oluşturabilir. Bir biyolojik saldırı, bir bölgeyi birkaç saat ile birkaç hafta boyunca kirletir, teçhizatı kirletir ve birlikleri harekatı son derece sınırlayan, koruyucu elbise giymeye zorlar ve/veya koruyucu yan etkileri büyük ölçüde bilinmeyen antimikrobiyaller almak zorunda bırakırlar. Bu ajanların bazıları ölümcüldürler, diğerleri genellikle kapasite düşürücü olarak kullanılırlar. Literatürde klasik tedavi yöntemlerinin etki edemediği veya belli etnik gruplar üzerinde kullanılabilen genetik mühendisliği ürünü ajanlardan bahsedilmektedir. Kimyasal silahların bütün korkunçluğuna rağmen, biyolojik organizmanın çok küçük bir örneği bile çok daha ölümcül olabilir. Örneğin; Bacillus antraksis basilinin yol açtığı şarbon hastalığında solunum yoluyla havadan alınan dayanıklı sporlar akciğerler içerisinde açılarak çoğalmakta, başlangıçta soğuk algınlığı semptomlar ile kuluçka devresini geçirerek kısa sürede öldürücü tablolar ile karşımıza çıkabilir. Genetik mühendisliği öldürücülüğü artırmak için daha fazla patojen veya toksin üreten genlerin geliştirilmesi için potansiyel yaratmıştır. Bu şekilde normal halinden 100 defa daha fazla patojen olan ve toksin üreten hücreler elde edilmiştir. Enfeksiyonu yayarken etkinliği geliştirebilmek ancak genetik olarak güçlendirilmiş ajanlarla mümkündür. Bu şekilde kurumaya, ultraviyole ışınlarına, ısınmaya karşı patojenlerin dirençli olmaları sağlanarak sağlık üzerine olumsuz etkinlikleri artırılabilir. Belirli biyolojik ajanlara besleyici katkı maddesi kullanılması tutulduğu ortamda hayatta kalmalarını kuvvetlendirir. Bazı patojenlerin belli çevre şartları içinde kontrollü olarak mevcudiyetlerinin sağlanması bile mümkündür. Koşullara bağlı kendini yok eden genler adı verilen gelişme ile organizmalar belirli bir çevrede önceden belirlenen miktarlarda kopyalandıktan sonra tamamen yok olacak şekilde programlanabilmektedir. Böylece, enfekte olmuş arazi belirli bir zaman sonra zarara uğramış olur. SINIRLAMALARI 1- Biyolojik ajanlar, kimyasal silahların aksine etkilerinin tahmin edilmesi ve kontrolü son derece zordur. Etkileri, kimyasal ajanlardan daha fazla ısı, hava şartları ve topografik yapıya bağlıdır. 2- Böylece, her zaman yalnız hedefi kirletme riski vardır. 3- Bir çok biyolojik ajan etkili olabilmesi için solunum veya sindirim yoluyla alınmalıdır. Kimyasal ajanlarda olduğu gibi deri ile temas sonunda enfeksiyon yaratması mümkün değildir. Bu durumda, eğer biyolojik ajanlar doğru bir şekilde tespit edilebilirse buna karşı savunma kimyasal ajanlara karşı savunmadan daha kolaydır. 4- Anthraks sporları ve bazı toksinler gibi kuru ajanlar kalıcı olmalarına rağmen, bir çok biyolojik ajanın etkisi zamanla çok çabuk azalır. 5- Anthraks sporları toprakta ölümcül etkilerini onlarca yıl muhafaza ederler. Buna benzer ajanlar uzun vadede tehlikelerini sürdürürler. Bu şekildeki ajanların kullanım durumunda taarruzu gerçekleştiren tarafın işgal etmek veya geçmek istediği harekat alanı kirletilmiş olur ve koruyucu elbise kullanma ihtiyacı ile ciddi tekrar kontaminasyon gereksinimlerini beraberinde getirir. 6- Biyolojik silahlanmanın getirdiği depolama ve kullanma her zaman teknik zorlukları beraberinde getirir.

http://www.biyologlar.com/biyolojik-ajanlarin-etkileri

Balık hastalıklarında kullanılan tedavi yöntemleri

Balık hastalıklarında kullanılan tedavi yöntemleri sekiz tanedir.Bunlar aşağıda belirtilmiştir: 1.Fizyoterapi 2.Psikoterapi 3.Ameliyat 4.Diyet ve Beslenme Tedavisi 5.Çevrenin düzenlenmesi 6.Bağışıklık Kazandırma (Aşı) 7.Hormon tedavisi 8.Hastalıktan korunma usulü Fizyoterapi: Balık hastalıklarında fizyoterapi başlıca kullanım şekli, patojenik organizmaların hayat döngüsünü hızlandırmak için temparatürün yükselmesi,öyle ki bir ilaç parazitin hayat döngüsünün özel bir döneminde etki edebilir.Buna zıt olarak bir patojenik ajanın hayat döngüsünü yavaşlatmak için temparatürü düşürmekte önemli bir tedavi olabilir.Vücut kısımlarına masaj balıkta genellikle hiç yapılmaz. Bunun bir istisnası yumurta taşıyan bir dişinin sağılmasıdır.Isı darbesi nedeniyle oksijensizlik veya beyin hasarını önlemek için aşırı ısınma akvaryumda plastik bir torbada buz atılabilir.Bazı hastalıkların belirtisini gösteren her gün hasta balığa birkaç saat uzun dalgalı ultraviole ışık altına koyarak hafifletilebilir. Psikoterapi : Psikoterapi genellikle mümkün olan bir şey olarak düşünülmez veya tedavide sınırlı bir ilişkisi vardır; buna rağmen bir balığın psikolojik gereksinimleri için hazırlıklar tedavi edici veya koruyucu olabilir.Saklanacak uygun yerler sağlamak veya özel tip bitkiler temin etmek için kargaşadan oluşan şok ve/veya katı objeler veya cam duvarlara balığın vurduğu zaman oluşan doku incinmelerini önlemek için fazlasıyla önemli olabilir.Bazı ilaç tüpleri bir balığın normal davranış modellerine etki edebilmesi veya değiştirmesi de mümkündür.Işığı kapatmak ve balığın karanlıkta dinlenmesine müsaade etmek veya tank etrafına opak bir elek geçirmek akut şoktan iyileşmesi için gerekli olabilir. Ameliyat : Balık ameliyatı şu anda vücut yüzeyi ile sınırlıdır.Bir pensle dış parazitin alınması veya hasarlı veya hastalıklı yüzgecin ucundan kesilme işlemi yapılabilmektedir.Buna karşın vücut boşluğu içindeki bir ameliyat deneysel olarak başarıyla yapılmaktadır. Ameliyatta tümör alınması şimdilik yaygın değildir.Viral hastalık sonucu oluşan nodüller ameliyatta kesip alınabilir ve bu durum için tek etkili tedavi olarak bilinir. Diyet ve Beslenme Tedavisi : Diyet veya beslenme, tedavisi uygulamanın diğer bir yönüdür.Hastalık şartlarının düzeltilmesi veya önlenmesi yönünde bir yol olarak kabul edilmemektedir.Beslenmeye bağlı hastalıklar ve rahatsızlıklar özellikle A vitamini eksikliği, kuvvetten kesici ve sonra öldüren olduğu gibi patolojik organizmalar tarafından hastalık çıkışına yol açan dayanıklılığının azalması için büyük bir nedendir.Teknik olarak vitaminlerin kendileri ilaçtır.Yem ve beslenme ile anlaşılması güç ilişkiler sebebiyle bu çalışmaya dahil edilmemiştir ve diğer kaynaklar baştan yazılması için asıl gerekli detayın sağlayacağı gözükmektedir.Buna karşın beslenmeye bağlı rahatsızlıklar bu çalışmada özellikle karaciğer hastalıklarında ihmal edilemeyecektir. Çevrenin düzenlenmesi : Tedavi olarak çevrenin düzenlenmesi başlıca su kalitesi ve suyun fiziksel ve kimyasal veya mekanik yolla yönetimini gerektirir. Karbon veya odun kömürlü veya bunlar olmadan yeterli ve iyi düzenlenmiş filtrasyon sistemleri bu konu kapsamındadır.Hastalığın yayılmasının önlenmesi konusundaki önemi belirtilmemiştir.Diyatomeli toprak filtreler akvaryumda bakterileri yok eder.Bazı tip bakteriler aktive olmuş granüllerine absorbe dipte bambu kazıklar saplamak ve balıkların parazitlerden kurtulmaları için kendilerini sürteceklerini yerler oluşturmaktadır.Hepsi fiziksel kullanarak yapılan tedavi şekilleridir.Su kirliliği ve toksinlerde balık hastalıkları ve rahatsızlıkların devamlı gözlenerek yapılan bir tedavi şekli olarak değerlendirilebilir. Aşı : Aşılama balık hastalıklarının tedavisinde yararlanılan çok önemli bir araçtır.Antijenler ve antikorların doğal üretimleri ve onların aşılar ve serumların kullanımına doğru üretimine yönlendirilmesi enteresan bir çalışmadır.Bu sahada birçok şey (özellikle besin olarak kullanılan Salmonidae’nin viral hastalıklarında) yapılmalıdır.Metot ve işlemler balık bakım ve ummunizasyonu diğer sahalarda yavaş ve adım adım ilave ederek ilerisi için umut vermektedir. Hormon Tedavisi : Hormon tedavisi teknik olarak sınıflandırabilecek bir diğer tedavi tipidir.Bu tedavi daha çok balık yumurtlamada tercih ediliyor. Hastalıktan Korunma Usulü : Kullanılan tedavi yöntemleri içinde en önemli olanıdır.Su kalitesindeki bozulmayı, toksik maddeleri ve kirleticileri önleyerek hastalıklı veya rahatsızlığın kaynağını yok etmiş oluruz. Bir çok kanser yapıcı madde de buna benzer işlemlerle ortadan kaldırılır.Virüsler, bakteriler, tek hücreliler, mantar sporları ve helminthlerde krustaselerin larva formları UV sterilazyon birimleri kullanılarak elimine edilecektir.Ozon hem patojenleri öldürmede hem de fenoller, azotlu atıklar ve sudaki diğer organik toksinleri yok etmek için kullanılabiliriz. Kaynak: bakterim.com

http://www.biyologlar.com/balik-hastaliklarinda-kullanilan-tedavi-yontemleri

Fosil Yaşlarının Hesaplanması

Arkeolojide kullanılan tarihlendirme yöntemlerini radyoaktif olan ve radyoaktif olmayan diye kabaca iki bölüme ayırmak mümkündür. Radyoaktif olan yöntemler yine kendi içinde iki ayrı bölümde incelenir. Bunlardan birincisi radyoaktif maddelerin miktarının zamanla azalmasına dayanan, Karbon-14 ve Potasyum/Argon gibi yöntemlerdir. İkincisi ise, radyoaktiviteden dolayı çıkan enerjinin madde içinde biriktirilmesi olayına dayanır ki elektron spin rezonans bu tür tarihlendirme yöntemlerine bir örnektir. Uzun zamandır yaş tayininde kullanılagelen bu gruptaki termolüminesans (TL) yöntemiyle aynı prensibi paylaşmasına karşın ESR yönteminin TL yöntemine göre bazı üstünlükleri vardır. Bunlar şöyle sıralanabilir: 1. Ölçüm sırasında ESR merkezleri bozulmadığı için ölçü istenilen sayıda aynı örnekle tekrarlanabilir. 2. ESR yüzeysel olaylara karşı daha az duyarlı olduğu için kullanılan maddenin taneciklerinin belirli bir büyüklükte olma şartı yoktur. 3. Örnek hazırlama ve oda sıcaklığında ölçü alma işlemleri çok daha kolaydır. 4. Tekstil vs gibi organik maddelerin incelenmesinde de bu yöntem başarı ile kullanılmaktadır. ESR Yöntemi : Radyoaktif elementler kararsız olup parçalanarak kimyasal olarak farklı özellikte elementlere dönüşürler. Bu oluşum sırasında farklı adlarda (alfa, beta, gama) enerji taşıyan parçacık veya ışınım salarlar. Böyle radyoaktif elementler birçok kayaç ve minarellerin kristal yapısında eser miktarda bulunur ve saldıkları enerji taşıyan parçacıklar yapıdaki elektronları bağlı bulundukları yerlerden koparırlar. Normalde elektronlar bağlı oldukları çekirdek etrafında dolanırken kendi eksenleri etrafında da dönerler (spin hareketi) ve zıt yönde spio hareketi yapan elektron çiftleri şeklinde bulunurlar. Bunlardan birinin yerinden koparılması halinde geride tek elektron kalır. Buna çiftleşmemiş elektron da diyebiliriz. Böyle bir elektronun spin hareketi bu elektrona manyetik bir özellik kazandırır ve bu elektron bir mıknatıscık olarak düşünülebilir. Bu özelliğe sahip maddelere paramanyetik maddeler denir. Bir manyetik alana konmadığı takdirde madde içindeki bu mıknatıscıklar gelişi güzel yönlerde dağılmışlardır ve hepsi aynı enerjiye sahiptirler. Madde manyetik alana konduğunda bu mıknatıscıklar ya manyetik alan yönünde ya da buna zıt yönde yönlenirler. Manyetik alan H ise, H M kadar artacak, H nın aynı yönündenın zıt yönünde yönlenenlerin enerjileri elektronunH) azalacaktır. Burada yönlenenlerin enerjileri ise aynı miktar ( : Bohr magneton ve g: = : spin kuvantum sayısı, manyetik momenti olup elektronun çekirdek etrafında dolanmasının ve spin hareketinin mıknatıs özelliğine katkı derecesini gösteren faktör. Böylece elektronlar manyetik alanla aynı yönde yönlenenler veya zıt yönde yönlenenler olarak iki gruba ayrılırlar. H kadar enerji farkıİki grubun enerjileri farklı değerdedir ve aralarında g vardır. Enerjisi bu enerji farkına eşit olan bir elektromanyetik dalga maddeye gönderilirse düşük enerjiye sahip olan elektronlar bu enerjiyi alıp yüksek enerjili elektron grubuna dönüşürler. Diğer bir deyişle, H manyetik alanı yönünde yönlenmiş elektron mıknatısları elektromanyetik enerjiyi alınca H manyetik alanının zıt yönünde yönlenirler. TERMOLÜMİNESANS YÖNTEMİ İLE ARKEOLOJİK YAŞ TAYİNİ Keramik, pişmiş tuğla, yanmış çakmaktaşı ve obsidyen, volkanik, kül, meteor, curuf, sarkıt ve dikit gibi kalsit oluşumları ve benzeri inorganik obje ve malzemelerin içerisinde şifreli saat gibi çalışan fiziksel mekanizmalar vardır. Bu şifreli saat bir arkeolojik zaman-ölçer aygıtı gibi çalışır; hem sıfırlama özelliği vardır hem de otomatiktir. Temel problem, saatin şifresini çözerek gerçek zamanı, yani arkeolojik yaşı bulmaktır. Saati inceleyip şifresini çözen fiziksel yöntemlerden biri de termolüminesans (TL) yöntemidir. Burada amacımız TL yöntemini ve bu yöntemin arkeolojideki uygulamalarını kısaca anlatmak; bir başka deyişle saatin çalışma prensiplerini ve şifresinin çözüm tekniğini genel çizgileriyle sunmaktır. Yalnız yöntemi anlatmaya başlamadan önce TL olayının ne olduğunu, böyle bir amaç için nasıl kullanılabildiğini kısaca görelim. Termolüminesans : Bazı maddeler ısıtıldıkları zaman ışıma yaparlar. Bu fiziksel olaya ısıtma ile ışıma anlamına gelen termolüminesans (TL) denir. Hemen belirtelim ki, TL olayı başka bir olayın sonucunda oluşmaktadır. Maddelerin içlerinde ve çevrelerinde eser miktarda uranyum (U) toryum (Th) ve potasyum (K) gibi )) ve beta (radyoaktif elementler vardır. Bunlardan çıkan radyasyonlar [alfa ( ) ışınları] maddenin atomları ile etkileşerekparçacıkları ile gama ( enerjilerini yitirirler. Bu enerjinin bir kıssmı madde içinde birikir ve maddenin 300 0C – 500 0C ye kadar ısıtılma durumunda ışık olarak çıkar. Çıkan ışık miktarı maddenin biriktirdiği radyasyon enerjisi miktarına bağlıdır. Ne kadar çok enerji birikirse o kadar çok ışık çıkar. Hiç enerji birikmemiş ise, veya biriken enerji herhangi bir nedenle, örneğin ısınma ile, boşalmış ise, doğal olarak hiç ışık görünmeyecek yani hiç TL olmayacaktır. Demek oluyor ki TL, maddenin etkileştiği toplam radyasyon miktarı (dozu) sonucunda biriken enerjinin ve bu enerjinin birikmesi için geçen sürenin dolaylı bir ölçüsüdür. Yöntemin temel problemi de bu sürenin bulunmasıdır. Maddede enerji birikimi şu şekilde olmaktadır: maddenin atomları ile etkileşen radyasyonlar atomları bağlı elektronların bazılarını koparır ve enerji kazandırırlar. Bu elektronların bir kısmı kazandığı enerjiyi anında geri vererek eski yerlerine veya benzer yerlere geri dönerler. Bir kısmı ise maddenin kristal yapısınd çeşitli nedenlerle oluşan ve tuzak denilen yerlere bağlanırlar ve böylece eski yerlerine dönen elektronların tersine radyasyondan aldıkları enerjiyi geri vermeyip bu tuzaklarda biriktirmiş olurlar. Biriken enerjinin saklanabilme süresi, yani elektronların tuzaklarda kalma süreleri çevre şartlarına ve tuzak özelliklerine bağlıdır. Birkaç dakikadan bir milyon yıla kadar elektronları tutabilen tuzaklar vardır. Doğal olarak bizi ilgilendiren uzun ömürlü tuzaklardır. Çünkü, ancak bu tuzaklar baştan itibaren yakaladıkları tüm elektronları korurlar ve böylece radyasyonla sağlanan enerji tam olarak birikmiş olur. İleriki satırlarda da belirttiğimiz gibi, bu tarihleme için sağlanması gereken koşullardan biridir Karbon 14 izotopu ile nasıl yaş tayini yapılır? Onbinlerce yıl önce yaşamış olan canlıların kalıntıları bulunduğunda, hangi yıllarda yaşamış olduğu karbon-14 yöntemi ile saptanır. Bütün yaşayan organizmaların yapılarında karbon bulunmasından dolayı böyle bir yöntem geliştirilmiştir. Çekirdekte meydana gelen radyoaktif bozunma oranı sabittir. Onbinlerce yıl öncesine ait karbon içeren maddeler de C-14 ün yarılanma süresinden hareket edilerek bulunur. C-14 ün yarı ömrü 5730 yıldır. C-14 kozmik ışımalar bombardımanı sonucunda oluşur. Kozmik ışınlar uzaydan gelen radyasyonlardır ve alfa parçacıkları, protonlar ve daha ağır iyonlar içerir. Bu radyasyonlar atmosferin üst tabakasında çarpışarak nötronlar gibi değişik parçacıklar oluşturur. Nötron ile nitrojen-14 çekirdeğinin çarpışması ile karbon-14 çekirdeği meydana gelir. Karbon dioksit ve karbon-14 alt atmosferde karışır. Canlı organizmalarda atmosferdeki O2 yi kullandıkları için yapılarında C-12’nin yanı sıra belirli oranlarda C-14 ihtiva ederler. Ancak bu canlı organizmalar öldükleri andan itibaren yapılarındaki C-14 ile atmosferdeki C-12 arasında var olan denge bozulur. C-14 radyoaktif bozunmaya uğrar ve C-14 ün C-12 ye olan oranı giderek düşmeye başlar. Bu yol ile karbon izotopları arasındaki bu oransal değişim, bir çeşit saat görevi görür. Buradan hareketle canlıların ne zaman öldükleri bilgisini elde edebiliriz. Bugün yaşayan bir organizmadaki C-14'ün C-12'ye oranı 1/1012 dir. Eğer son 50.000 yıl içerisinde karbon izotoplarının oranının değişmediğini varsayarsak, herhangi bir ölü organizmanın, fosillerin vb. yaş tayinini yapmak mümkün. Bunun için C-14'ün radyoaktif bozunması sonucu oluşan beta ışımalarını ölçmek yeterli. C-14 → N-14 + eֿ Örneğin, volkanik patlamalar sonucu yanmış bir ağaç fosilinin yaşını tespit edelim. Bu fosilde 1 gram karbonda 1 dakikada 7,0 C-14 bozunması olduğu bilinsin. Günümüzde yaşayan bir organizmanda 1 gram karbonda 1 dakikadaki C-14 bozunması 15,3 tür. C-14 ün yarı ömrünün (t1/2) 5730 yıl olduğunu biliyoruz. t zaman sonra bir örnekteki çekirdek miktarını k = 0,693 / t1/2 olarak düşüneceğiz. Log Nt/N0=-kt/2,303=-0,693t/2.303 t1/2 <=> t=(2,303 t1/2 /0,693)xlog N0/Nt N0/Nt oranını bulmak için atmosferdeki C-14 ve C-12 oranının sabit kaldığını varsaymak gerekir. Aslında bu varsayım tam olarak doğru değildir. Bilim adamları, binlerce yıl önce doğada (atmosferdeki CO2 nin içerisinde) bulunan C-14 miktarının şimdikinden daha fazla olduğunu düşünüyor. Son yüzyılda yapılan atmosferik nükleer testler ve fosillerin yakıt olarak kullanılması da bu görüşü kuvvetlendiriyor. N0/Nt = 15,3 / 7,0 = 2,2 ve t1/2 = 5730 yıl olduğuna göre, fosilin yaşı yaklaşık olarak: t = (2,303 t1/2 / 0,693) x log N0/Nt = (2,303 x 5730 / 0,693) x log2,2 = 6500 yıl olarak bulunur. KAYNAK: maydalin.com  

http://www.biyologlar.com/fosil-yaslarinin-hesaplanmasi

Biyolojik Silahlar

Kimyasal ajanlar gibi, biyolojik silahlar da neyse ki popüler kültürdeki şöhretlerine yakışır şekilde kullanılmış değiller henüz. 1971′de Kazakistan’daki bir iaboratuvardan kaçan ve silah olarak kullanılmak üzere hazırlanan çiçek hastalığı mikrobu yüzünden ölenlerin sayısı yalnızca 3. Üstelik hastalık salgın halinde ilerleme de göstermemiş. 1979′da şimdiki adı Ekaterinburg oian Sverdiovsk’taki bir fabrikadan sızan şarbon mikrobu içeren bir biyolojik silah yüzünden 68 kişi yaşamını yitirdi ve yine hastalık yayılmadı. İnsanların bu yüzden yaşamlarını yitirmeleri çok acı ama, yine de yaşam kaybı tek bir bombanın neden olacağından daha fazla değil. 1989′da Washington’da birkaç kamu işçisi kaza sonucu Ebola virüsüne maruz kaldı. Durum fark edilene kadar, birkaç gün boyunca bu işçiler sosyal yaşamlarını sürdürmüş, aile ve arkadaşlarıyla birlikte olmuşlardı. Buna karşın, bu olayda kimse yaşamını yitirmeden gerekli önlemler alınabildi. Gerçek şu ki, evrim milyonlarca yıl boyunca memeiilere, mikroplara karşı direnç gösterme özettiği kazandırdı. Örneğin kara veba, tarihte bilinen en kötü hastalıklardan biriydi; yetersiz sağlık hizmetleri ve kötü yaşam koşullarının hakim olduğu Orta Çağ Avrupası’nda at koşturdu. Ama salgın, insanlığı yok edemedi: birçok kişi hastalığı yendi. Bu senaryoların korku saçtığı günümüz batı toplumlarındaysa, hangi mikrop ya da virüs ortaya çıkarsa çıksın, daha sağlıklı insanlarla, gelişmiş sağlık hizmetleriyle ve biyoajanları yok etmek üzere geliştirilmiş ilaçlarla karşılaşacağı kesin. Belki günün birinde, bağışıklık sistemimizi ek-tisiz hale getirecek bir virüs üretebilen bir deli ortaya çıkar. Aslında mümkün olduğundan bir “süper hastalık” yaratılabilir ya da çiçek gibi, zaten var olan bir hastalık, mikrobun genleriyle oynanarak daha zararlı hale getirilebilir. Üstelik, zamanla biyoîeknolojinin gelişip, denetiminin daha güç olacağı düşünülürse, birtakım kişi ya da grupların, zararlı mikrop ya da virüsleri kolaylıkla üretebileceklerini de kabul edebiliriz. Ancak, yine de bilim adamları daha önce hiçbir korkunç hastalığın insanlığı ortadan kaldırmayı başaramadığı gibi, gelecekte de bunun pek olası olamayacağını söylüyorlar. Biyolojik silahlar diğer canlılar üzerinde zararlı etkiler yaratmak maksadıyla kullanılan bakteri, virüs, mikrobiyal toksinler, vb. ajanlardır. Bu tanım genellikle biyolojik olarak elde edilen toksinleri ve zehirleri de kapsayacak şekilde genişletilir. Biyolojik savaş araçları, yaşayan mikroorganizmaları (bakteri, protozoa, riketsia, virüs ve mantar) içerdiği gibi mikroorganizmalar, bitkiler ve hayvanlar tarafından üretilen toksinleri (kimyasallar) de kapsar. Yaşayan biyolojik maddeler kokusuz, tatsız ve havaya bulutu halinde atıldığı zaman 1 ila 5 mikron boyutunda son derece küçük parçacıklardan oluştuğundan insan gözüyle görülemez. Silah olarak kullanılabilecek biyolojik ajanlar şu şekilde sıralanabilir; Bakteriler: Küçük-serbest yaşayan organizmalar olup çoğunluğu katı veya sıvı kültür ortamında üretilebilirler. Bu organizmalar sitoplazma, hücre zarı ve nükleer materyaller içeren bir yapıya sahiptir. Basit bölünme ile ürerler. Oluşturdukları hastalıklar genellikle spesifik antibiyotik tedavilerine cevap verirler. Virüsler: İçlerinde çoğalabilecekleri canlı organizmalara ihtiyaç duyan organizmalardır. Bundan dolayı da enfeksiyoz etkileri büyük oranda konak hücrelere bağımlıdır. Virüsler genellikle antibiyotik tedavilere cevap vermeyen fakat antiviral bileşimlerin bir kısmına ve sınırlı kullanıma uygun preparatlara cevap veren hastalıklara neden olurlar. Riketsialar: Hem bakterilerin hem de virüslerin genel karakterlerini taşıyan mikroorganizmalardır. Bakteriler gibi metabolik enzimler ve hücre zarından oluşurlar ve oksijen kullanırlar ve geniş çaplı antibiyotiklere karşı duyarlıdırlar. Yaşayan hücreler içinde üremelerinden dolayı da virüsleri andırırlar. Klamidya: Kendi enerji kaynaklarını üretemediklerinden zorunlu hücre içi parazitlerdir. Bakteriler gibi geniş spekturumlu antibiyotiklere cevap verirler. Çoğalmak için virüsler gibi yaşayan hücrelere ihtiyaç duyarlar. Mantarlar: Fotosentez yapamayan, çürüyen bitkisel olgulardan besin ihtiyaçlarını sağlarlar. Toksinler: Yaşayan bitkiler, hayvanlar veya mikroorganizmalardan elde edilen zehirli maddelerdir. Bazı toksinler kimyasallara da dönüştürülebilirler. Toksinlere özel antiserum ve seçilmiş farmakolojik ajanlarla karşı konulabilir Literatürde çok sayıda biyolojik savaş ajanı belirtilmektedirler. Bunların arasında; Bacillus anthraksis (Şarbon Etkeni) Botulinum Toksinleri (Konserve Zehiri) Brucelloz (“Malta Humması” Etkeni) Vibrio Cholera ( Kolera Etkeni) Clostridium perfirenges (Gazlı Gangren Etkeni ) Salmonella typhi (Tifo Etkeni) Psoudomanas psoudomallei (Melioidozis hastalığı Etkeni) Psoudomanas mallei (Ruam hastalığı Etkeni) Yersinia pestis (Veba Etkeni) Francisella tularensis (Tularemi Etkeni) Coxiella burnetti ( Q Ateşi Etkeni) Smallpox virüs (Çiçek Hastalığı Etkeni) Congo-Crimean Hemorajik Ateşi Virüsü Ebola Virüsü Stafilokoksik Enterotoksin B Rift Valley Ateşi Virüsü Trichothecene mycotoxins Venezüella At Ensefaliti Plazmodium vivax (Sıtma Etkeni) Saxitoksin (predominant olarak doğada deniz dinoflajellileri tarafından üretilir) BİYOLOJİK AJANLARIN ETKİLERİ Biyolojik ajanlar ya yaşayan organizmalar ya da ölüm veya hastalıklara sebep olan toksin gibi türevlerden oluşur. Yaşayan organizmalar etkilerini gösterene kadar yaşayan hedeflerde çoğalırlarken, toksinlerini üremezler. Toksinler genellikle daha öldürücüdür, birkaç dakika veya saat gibi çok çabuk ölüm veya saf dışı bırakmaya neden olurlar. Yaşayan organizmalar enfeksiyon ve hastalık belirtileri görünmesi arasında 24 saat ila 6 hafta arasında kuluçka devri gerektirir. Biyolojik silahlar ilk bulaşmadan sonra birkaç hafta sonra dikkate değer bir etki bırakmaya devam edebilir. Benzer şekilde geciktirilmiş kuluçka periyodu bulaştığı yerde ajanın tamamen örtülü olarak gelişmesini sağlar ve etkisi ortaya çıktığında hastalığın tabii olarak geliştiği fikrini oluşturabilir. Bir biyolojik saldırı, bir bölgeyi birkaç saat ile birkaç hafta boyunca kirletir, teçhizatı kirletir ve birlikleri harekatı son derece sınırlayan, koruyucu elbise giymeye zorlar ve/veya koruyucu yan etkileri büyük ölçüde bilinmeyen antimikrobiyaller almak zorunda bırakırlar. Bu ajanların bazıları ölümcüldürler, diğerleri genellikle kapasite düşürücü olarak kullanılırlar. Literatürde klasik tedavi yöntemlerinin etki edemediği veya belli etnik gruplar üzerinde kullanılabilen genetik mühendisliği ürünü ajanlardan bahsedilmektedir. Kimyasal silahların bütün korkunçluğuna rağmen, biyolojik organizmanın çok küçük bir örneği bile çok daha ölümcül olabilir. Örneğin; Bacillus antraksis basilinin yol açtığı şarbon hastalığında solunum yoluyla havadan alınan dayanıklı sporlar akciğerler içerisinde açılarak çoğalmakta, başlangıçta soğuk algınlığı semptomlar ile kuluçka devresini geçirerek kısa sürede öldürücü tablolar ile karşımıza çıkabilir. Genetik mühendisliği öldürücülüğü artırmak için daha fazla patojen veya toksin üreten genlerin geliştirilmesi için potansiyel yaratmıştır. Bu şekilde normal halinden 100 defa daha fazla patojen olan ve toksin üreten hücreler elde edilmiştir. Enfeksiyonu yayarken etkinliği geliştirebilmek ancak genetik olarak güçlendirilmiş ajanlarla mümkündür. Bu şekilde kurumaya, ultraviyole ışınlarına, ısınmaya karşı patojenlerin dirençli olmaları sağlanarak sağlık üzerine olumsuz etkinlikleri artırılabilir. Belirli biyolojik ajanlara besleyici katkı maddesi kullanılması tutulduğu ortamda hayatta kalmalarını kuvvetlendirir. Bazı patojenlerin belli çevre şartları içinde kontrollü olarak mevcudiyetlerinin sağlanması bile mümkündür. Koşullara bağlı kendini yok eden genler adı verilen gelişme ile organizmalar belirli bir çevrede önceden belirlenen miktarlarda kopyalandıktan sonra tamamen yok olacak şekilde programlanabilmektedir. Böylece, enfekte olmuş arazi belirli bir zaman sonra zarara uğramış olur. SINIRLAMALARI 1- Biyolojik ajanlar, kimyasal silahların aksine etkilerinin tahmin edilmesi ve kontrolü son derece zordur. Etkileri, kimyasal ajanlardan daha fazla ısı, hava şartları ve topografik yapıya bağlıdır. 2- Böylece, her zaman yalnız hedefi kirletme riski vardır. 3- Bir çok biyolojik ajan etkili olabilmesi için solunum veya sindirim yoluyla alınmalıdır. Kimyasal ajanlarda olduğu gibi deri ile temas sonunda enfeksiyon yaratması mümkün değildir. Bu durumda, eğer biyolojik ajanlar doğru bir şekilde tespit edilebilirse buna karşı savunma kimyasal ajanlara karşı savunmadan daha kolaydır. 4- Anthraks sporları ve bazı toksinler gibi kuru ajanlar kalıcı olmalarına rağmen, bir çok biyolojik ajanın etkisi zamanla çok çabuk azalır. 5- Anthraks sporları toprakta ölümcül etkilerini onlarca yıl muhafaza ederler. Buna benzer ajanlar uzun vadede tehlikelerini sürdürürler. Bu şekildeki ajanların kullanım durumunda taarruzu gerçekleştiren tarafın işgal etmek veya geçmek istediği harekat alanı kirletilmiş olur ve koruyucu elbise kullanma ihtiyacı ile ciddi tekrar kontaminasyon gereksinimlerini beraberinde getirir. 6- Biyolojik silahlanmanın getirdiği depolama ve kullanma her zaman teknik zorlukları beraberinde getirir. BİYOLOJİK SİLAHLARDAN KORUNMA Biyolojik silahlardan korunma birbiriyle bağlantılı beş aşamadan oluşmaktadır; Önleme. Biyolojik silahların kullanılmasını engellemek için çeşitli çalışmalar yapılmaktadır. Uluslararası silahsızlanma ve teftiş rejimleri biyolojik ajanların biyolojik savaş durumunda üretimini ve kullanımını caydırmaktadır. İstihbarat çalışmaları sonucunda potansiyel tehlikeler belirlenerek gerekli önleyici tedbirler alınabilir. Doğal olarak ortaya çıkan ajanlara karşı aşılama önemli bir tedbirdir, ancak genetik mühendisliği ile bu aşıların etkisini sınırlayan ajanlar üretilmiştir. Korunma. Biyolojik ajanlara karşı korunma yöntemleri sınırlıdır. Koruyucu elbiseler, maskeler kısa süreli koruma sağlayabilirler. Bununla beraber, şarbon gibi etkinliğini uzun süre koruyabilen kimi ajanlar için bu tedbirler sadece ilk aşamada faydalı olabilirler. Herhangi bir şekilde yediğimiz yiyeceklerin biyolojik ajanlarla bulaşmış olabileceğini düşündüğümüz anda o yiyeceğin yenmemesi gerekir. Biyolojik tehlikenin olabileceği zamanlarda gıdalarımızın temizliğine özellikle yıkanmasına her zamankinden daha fazla özen gösterilmeli. Yıkama işlemi önemli ölçüde mikrobiyal yükü azaltır. Bunun yanında sebze türü yiyeceklerin 1 %’lik hipoklorit içerisinde iki üç dakika tutulması canlı mikroorganizmaların öldürülmesine yeterlidir, bu işlemden sonra mutlak surette iyice yıkanmalılar. Solunum kaynaklı bulaşmalar söz konusu olduğunda ıslak bir mendil gibi eşyaların ağız ve buruna tutularak o anda hava yoluyla oluşacak bulaşma engellenebilir. Herkesin koruyucu elbise giyemeyeceğine göre insanlar özellikle yiyeceklerinin, eşyalarının ve çevrelerinin temizliğine dikkat etmeli. Herhangi bir durumda bir bulaşmaya maruz kaldığını hisseden kişi hemen doktora başvurmalı. Çünkü biyolojik ajanın bulaşmasından sonra kişinin kendi başına tedavi olması mümkün değildir. Pişirilecek yemeklere yeterli ısısal işlem uygulanmalı, özellikle yüz dereceye varan ısı uygulanmalı. Biyolojik silah olarak kullanılabilen bazı bakteri sporları yüz derecelik ısıtmada 20-30 dakika canlı kalabilmektedir. Belirleme: Tedavi: Tedaviyi yukarda belirtildiği gibi kişi kendi yapamaz, biyolojik ajanlara karşı tedaviyi ancak bir hekim uygulayabilir. Tedavi yöntemleri enfeksiyon gelişen kişilerde maruz kalınan ajanın belirlenebilmesine bağlıdır. Eğer belirlenemiyorsa hekim farklı yöntemlerle tedaviyi sağlamaya çalışır. Ajanın tespiti durumunda ise duyarlı antibiyotikler tercih edilerek tedaviye başlanır. Örneğin şarbon etkeni tespit edilmişse; her iki saatte bir , iki milyon ünite penisilin tedavisi uygulanabilir. Toksinlere karşı uygun antiserumlar varsa kullanılır, yoksa destek tedavisi uygulanır. Bunların hepsi o anki hastanın durumuna göre gerekli tedaviyi hekim kararlaştırır. Dekontaminasyon-temizleme. Zamanla dağılarak etkilerini kaybeden kimyasal silahların tersine biyolojik silahlar zaman geçtikçe etkilerini artırıp çoğalabilirler. Şarbon toprakta en az kırk yıl aktif olarak kalır ve çevre şartlarına karşı dirençlidir. Bu sebeple biyolojik savaş ajanlarının etkilerinin ortadan kalkması yıllar alabilir. Biyolojik Savaş Ajanlarının gelişmesi ile beraber dünyada bu silahların kullanım ve üretimini sınırlamak maksadı ile 1925 yılında Cenova Protokolü, 1972 yılında Biyolojik Silahlar Konvansiyonu (BWC-Biological Weapons Convention) imzalanmış, farklı tarihlerde bu konvansiyonun gözden geçirildiği toplantılar yapılmıştır. İnsanların bu tür silahların yapımını düşünmeleri bile ürkütücüdür. Ancak bunun artık bir düşünce olmanın ötesine, bazı ülkelerde bu silahların yüksek miktarlarda stoklandığı da bir gerçektir. Bunu gelişmiş ülkelerdee gelişmemiş ülkelerde yapmaktadır. Gelişmemiş ülkelerin kontrolü gelişmiş ülkelerce sağlanabilmekte ama gelişmiş ülkelerin kontrolünü şu anda sağlamak imkanı yoktur. Çünkü bir süper güç anlaşmaları göz ardı edebiliyor ve kimse buna sesini çıkaramıyor. Bu nedenlerle biyolojik silah tehlikelerden insanlığın arındırılması mümkün değildir. Bu durumda ona karşı gerekli önlemler alınmalı ve insanları bu konuda bilinçlendirilmeli. Dünya klonlanma etiğini tartışırken asıl sorun olan genetik mühendislik yöntemi ile geliştirilmiş biyolojik silahlar gözden uzak kalmıştır. Olası bir biyolojik silah saldırısına karşı, yüksek teknik eğitim almış ekiplerin kurularak ulusal ve uluslar arası işbirliği ile potansiyel biyolojik silah üretici ve kullanıcılarının yakından takip edilmesi, hastanelerde bu tip saldırılar için özel donanımlı servisler oluşturulması, yapılacak olan ulusal felaket planlarının bir parçası olmalıdır. Dünya Tabipler Birliği 1990 yılında, 42. oturumunda Kimyasal ve Biyolojik Silahlar Konulu Bildirgeyi kabul etmiş, Tokyo bildirgesiyle de sağlık hizmeti vermesi beklenen hekimlerin, kimyasal ve biyolojik silahların araştırılmasına katılmasını, kişisel ve bilimsel bilgilerini bu silahların keşfi ve üretiminde kullanmalarının etik olmadığını bildirmiştir. (Alıntıdır) STARWARS21

http://www.biyologlar.com/biyolojik-silahlar-1

BİTKİLERDE TERLEME VE DAMLAMA

Terleme, otların biçildikten sonra kuruması olayında açıkça görülür. Kesilen yeri tıkansa bile biçilen bitkilerin otsu kısımları hemen pörsür. Demek ki bitkilerin bütün yüzeyi su kaybetmektedir. Bu su kaybı bitkinin belli bir süre içinde kaybettiği ağırlıkla ölçülebilir.Bu ölçümler şiddetli terleme döneminde nemcil bitkilerde saatte desimetrekare başına 10 gram su, mezofitlerde 1 gram ve kurakçıl bitkilerde 0,1 gram su atıldığını gösterir; 15 metre boyunda bir akçaağaç bir yaz gününde saatte 300 litre su kaybedebilir. Bir gram katı madde sentezlemek için 300 gramlık bir su iletiminin gerektiği hesaplanmıştır. Bu değerler, bitkilerin morfolojik ve anotomik özelliklerine (havadaki kısımların yüzeyi, dış koşullara uyum), gözeneklerin sayısına ve konumuna bağlıdır. Bitkinin çıkardığı su, birtakım kimyasal reaktifler kullanarak ortaya konabilir; Mesela kuruyken mavi olan kobalt klorür su buharıyla temas edince pembeleşir; Yahut çıkan su buharını emen kalsiyum klorür deneyden önce ve sonra tartılmak suretiyle emilen suyun miktarı ölçülür. Hücrenin içindeki su hücre zarını ıslatır, bitkinin damarlarında dolaşır. Bu su, bitkilerin üst derisi yoluyla çıkan su, bitkilere göre değişik olmakla beraber genellikle azdır; suyun çoğu asıl terleme organı olan gözenekler yoluyla çıkar. Gözeneklerin rolü Gareau deneyiyle anlaşılabilir: bunun için bir yaprağın her iki tarafındaki üst derinin belli bir kısmı içinde kalsiyum klorür bulunan iki çan arasına yerleştirilir. Böylece yaprağın her iki yüzünde çıkan suyun miktarı ölçülür. Bu miktar gözenekli olan yüzeyde çok daha fazladır. Böylece gözeneksiz olan yüzeyde dericik yoluyla ne kadar terleme olduğu ölçülebilir (dericik terlemesinin fazla olduğu körpe yapraklar dışında bu miktar toplam terlemenin 1/10’u veya 1/20’si kadardır.). Transpirasyon olarak da bilinen terleme bitkilerde su kaybıdır. Gözenekler yardımıyla olur. Gözenekler yaprak yüzeyinin %1’den az bir alanı kaplayan küçük solunum açıklarıdır. Karanlık, yüksek sıcaklık ve bitki dokularında su yetersizliği terlemenin durmasına yol açar. Buna karşılık aydınlık, bol su ve bitki için uygun sıcaklıklar terlemeyi arttırır. Terlemenin bitkideki gerçek işlevi kesin olarak saptanamadığından bilimsel tartışmalar sürüp gitmektedir. Bitkinin kökleri aracılığıyla aldığı suyu yukarıdaki organlara iletebilmesi için gerekli enerjiyi ve suyun buharlaşmasıyla oluşan soğuma sayesinde doğrudan gelen güneş ısısının dengeli bir biçimde dağılmasını sağlamak en yaygın görüştür. Bitkinin atmosferden karbondioksit alması ve fotosentezle havaya oksijen vermesi sırasında gözeneklerin rolünü ve önemini göz önünde tutan bazı uzmanlar ise terlemenin bu olaylar sırasında zorunlu olarak çıktığını savunurlar. Terlemeyi havanın nemi, rüzgar, toprağın yapısı ve nemi, sıcaklık ve ışık etkiler. Bitkilerin su alıp vermeleri havanın bağıl nemi ile sıcaklığa bağlı olarak mevsimden mevsime, mevsimler içinde de değişik günlerde, hatta saatlerde değişik olur. Çok şiddetli veya çok zayıf ışık gözeneklerin kapanmasına yol açar. Kırmızı, mavi veya mor ışınlar terlemeyi arttırır; nemde gözeneklerin açılıp kapanmasında önemli rol oynar (fazla nem açılmasına sebep olur); sıcaklıkta aynı şekilde bir etkendir. Bitkilerin sahip oldukları serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Bir nevi su mühendisliği olarak nitelendirilebilecek olan bu bitki faaliyetleri Allah'ın yaratışındaki kusursuzluğu gösterir. Aynı yerde bulunan bitki ve bir taş parçası, eşit miktarda güneş enerjisi almalarına rağmen aynı derecede ısınmazlar. Güneş altında kalan her canlıda mutlaka olumsuz bir etki oluşur. Öyleyse bitkilerin sıcaktan minimum derecede etkilenmelerini sağlayan nedir? Bitkiler bunu nasıl başarırlar? Muazzam bir sıcaklıkta, bütün yaz boyunca yaprakları güneşin altında kavrulmasına rağmen, bitkilere neden hiçbir şey olmamaktadır? Ayrıca bitkiler kendi bünyelerindeki ısınmanın haricinde, dışarıdan da ısı alarak dünyadaki ısı dengesini de sağlarlar. Bu ısı tutma işlemini yaparken kendileri de bu sıcağa maruz kalırlar. Peki gittikçe artan bu sıcaktan etkilenmek yerine, bitkiler nasıl olup da dışarının da ısısını almaya devam edebilmektedirler? Yapıları itibariyle sürekli güneş altında olan bitkiler, doğal olarak diğer canlılara oranla daha fazla miktarda suya ihtiyaç duyarlar. Bitkiler aynı zamanda yapraklarında oluşan terleme vasıtasıyla da sürekli su kaybederler. Daha önceki bölümlerde de değinildiği gibi, bu su kaybını önlemek için, yaprakların güneşe dönük olan üst yüzleri çoğunlukla "kütiküla" adı verilen bir tür su geçirmez, koruyucu cilayla örtülüdür. Bu sayede yaprakların üst yüzeylerindeki su kaybı önlenmiş olur. Peki ya alt yüzleri? Bitki bu bölümden de su kaybettiği için, gaz alış-verişini sağlamakla görevli özel deri hücreleri olan gözenekler genellikle yaprağın alt yüzünde bulunurlar. Gözeneklerin açılıp kapanması bitki tarafından karbondioksit alıp oksijen vermeye yetecek, ancak su kaybına yol açmayacak biçimde denetlenecektir. Bitkilerde Isı Dağıtım Sistemi Bunların yanı sıra bitkiler ısıyı farklı şekillerde dağıtırlar. Bitkilerde iki önemli ısı dağıtım sistemi bulunmaktadır. Bunlardan birincisi, yaprağın ısısı eğer çevrenin ısısından daha fazlaysa, hava dolaşımının yapraktan dış ortama doğru olmasıdır. Isı naklinden kaynaklanan hava değişimi, sıcak havanın soğuk havadan daha az yoğun olması nedeniyle, havanın yükselmesine dayanır. Bu yüzden yaprakların yüzeyinde ısınan hava yükselir ve yüzeyden ayrılır. Soğuk hava daha yoğun olduğu için yaprağın yüzeyine doğru iner. Böylece sıcaklık azaltılmış ve yaprak serinlemiş olur. Bu işlem yaprağın yüzey ısısı çevredeki ısıdan yüksek olduğu müddetçe devam eder. Çok kuru koşullarda, yani çöllerde dahi bu durum değişmez Bitkilerdeki ısı dağıtım sistemlerinden diğeri de yapraklardan su buharı verilerek terlemenin sağlanmasıdır. Bu terleme sayesinde su buharlaşırken bitkinin serinlemesi de sağlanmış olur. Bu dağıtım sistemleri bitkilerin yaşadıkları ortamın şartlarına uygun olacak şekilde ayarlanmıştır. Her bitki, neye ihtiyacı varsa, o sisteme sahiptir. Son derece karmaşık bir yapısı olan bu sistemin dağılımı tesadüfen gerçekleşmiş olabilir mi? Bu sorunun cevabını verebilmek için çöl bitkilerini ele alalım. Çöllerdeki bitkilerin yaprakları genelde çok kalındır. Suyu buharlaştırmaktan daha çok, muhafaza etme yönünde dizayn edilmişlerdir. Bu bitkiler için ısı dağıtma işlemini buharlaşma ile gerçekleştirmek ölümcül bir sonuç getirecektir. Çünkü çöl ortamında kaybedilen suyun telafisi mümkün değildir. Görüldüğü gibi, bu bitkiler ısılarını her iki yolla da dağıtabilecekken, sadece bu yollardan birini, üstelik de yaşamaları için tek geçerli olan yolu kullanmaktadırlar. Çünkü tasarımları çöl ortamına göre yapılmıştır. Bunun tesadüflerle açıklanması ise mümkün değildir. Bitkilerde Serinleme Bitkilerin sahip oldukları bu serinleme mekanizmaları olmasaydı, güneş altındaki birkaç saat bile bitkiler için ölümcül olurdu. Öğle saatlerinde bir dakika kadar direkt olarak alınan güneş ışığı, bir santimetrekarelik yaprak yüzeyinin ısısını 37oC'ye kadar yükseltebilir. Bitki hücreleriyse, bünyelerindeki sıcaklık 50-60oC'ye çıktığında ölmeye başlarlar. Yani bitkinin ölmesi için öğle vakti 3 dakika kadar güneş ışığı alması yeterlidir. İşte bitkiler öldürücü sıcaklıklardan bu iki mekanizma sayesinde mekanizması sayesinde korunabilirler.

http://www.biyologlar.com/bitkilerde-terleme-ve-damlama

BİYODİZEL NEDİR?

Ayçiçek, soya, kolza ( kanola), aspir gibi yağlı tohum bitkilerinden elde edilen yağların veya hayvansal yağların bir katalizör eşliğinde kısa zincirli bir alkol ile reaksiyonu sonucunda açığa çıkan ve yakıt olarak kullanılan bir ürün Biyodizel olarak adlandırılır. Evsel kızartma yağları ve hayvansal yağlar da biyodizel hammaddesi olarak kullanılabilir. Enzimatik ve süper kritik yöntemle de biyodizel elde etmek mümkün olmasına rağmen Biyodizel üretiminde kullanılan en yaygın yöntem transesterifikasyon yöntemidir. Transesterifikasyon reaksiyonunda yağ, monohidrik bir alkolle (etanol, metanol), katalizör (asidik, bazik katalizörler ile enzimler) varlığında ana ürün olarak yağ asidi esterleri ve gliserin vererek esterleşir. Stokiyometrik (teorik) transesterifikasyon yönteminde bir mol yağ için üç mol mono alkol kullanılır. Ürünler ise üç mol yağ asidi mono alkil esteri (biyodizel) ve yan ürün olan bir mol gliserindir. Metanol, gibi alkoller transesterifikasyon yönteminde kullanılabilir ve elde edilen ürün sırasıyla metil ester adını alır. Ayrıca esterleşme reaksiyonunda yan ürün olarak di ve monogliseridler, reaktan fazlası ve serbest yağ asitleri oluşur. Reaksiyonu hızlandırmak için baz (NaOH, KOH), asit (H2SO4, HCI) veya enzim (biyolojik) katalizör kullanılabilir. Asit ve enzim katalizörler, baz katalizörlere oranla çok daha yavaştırlar. Biyodizel (YAME Yağ Asitleri Metil Esteri) saf olarak kullanılabileceği gibi petrolden elde edilen dizel yakıtla belirli oranlarda karıştırılarak da kullanılabilir. Biyodizelin hammadde kaynakları, bitkisel ve hayvansal yağlar ile bunların kullanılmış atıklarıdır. Dünyada toplam 108 milyon ton bitkisel yağ üretilmekte olup halen bunun 6 milyon tonu biyodizel üretiminde kullanılmaktadır. Esasen Dünyada üretilen tüm bitkisel yağların tamamı biyodizele çevrilse dünya dizel yakıt ihtiyacının ancak %7’sini karşılayabilmektedir. Düne kadar nüfus artışları ve iklim şartlarının belirlediği Dünya bitkisel yağ üretiminde bundan böyle tek belirleyicinin biyodizel olduğu ifade edilmektedir. Tüm dünya ülkeleri, bitkisel yağ projeksiyonlarını artık biyodizele göre yapmaktadır. Dünya yağlı tohum ve Yağ Otoriteleri 2010 yılından itibaren yağlı tohum ticaretinde zorluklara işaret etmektedirler ve tüm ülkeler ‘neyin yağını çıkarırız, yağ üretimimizi nasıl artırırız’ı düşünmekte ve planlamaktadırlar. Bitkisel yağların, su ile birlikte 3’cü bin yılın en stratejik ürünü olduğu kabul edilmektedir. Gerek gıdadaki ihtiyaç gerekse enerjide kullanımı, bitkisel yağların önemini daha da artırmıştır. Biyodizelin yağ bitkileri üretimini artırmaya yönelik bir millî, stratejik yatırım, ekonomik ve yerli - yenilenebilir bir üretim programı olduğu iyi anlaşılmalıdır. Çünkü Biyodizel amaç değil,bitkisel yağ üretimini arttıran ve çevresel bir problem olan atık bitkisel yağların geri kazanımını sağlayan etkin bir araçtır. Biyoyakıtlar planlı gelişimini sağlayacak, kendini ifade eden ve küresel ısınma ile mücadelede zorunluluk kapsamında değerlendirilecek, “Yenilenebilir Enerji Kaynaklarına Öncelik Tanıyacak’’ bir kanun içinde yer almalıdır. Enerji tarımı ve Biyoyakıtlar stratejik alan kabul edilmeli, süreç planlanmalı, AB’nin de ilerleme raporlarında istediği Ulusal hedef ve programlar belirlenmelidir. Bu alandaki çalışmaları koordine etmek üzere ilgili Bakanlıklar, resmi ve bilimsel kuruluşlar ve sektör temsilcilerinden oluşan Biyoyakıt Kurulu oluşturulmalıdır. Verimli üretimi, standart ürünleri karşılayacak kapasiteler ve teknik yeterlilikler belirlenmelidir. Standart dışı, risk içeren üretim metotları ile biyoyakıtların imajını bozan makinelerin piyasaya sürümünü engellemek gerekmektedir. Biyoyakıt Teknolojileri Konusunda Faaliyet Gösteren Kobiler Desteklenmeli Biyoyakıt teknolojileri konusunda faaliyet gösteren Kobiler desteklenmeli, Ar-Ge yatırımlarına ağırlık verilmelidir. Biyoyakıtlar konusunda TSE bünyesinde oluşturulan “Biyoyakıt Ayna Komitesi” çalıştırılmalı, komite tarım ürünlerimizin teknik özelliklerini ve ülke şartlarını ifade eden çalışmaları ile AB Standartlarına ülke görüşü vererek müdahil olmalıdır. TOBB bünyesinde “Akaryakıt Sektör Meclisi’ne dahil edilmeyen Biyoyakıtlar için ayrı bir “Biyoyakıtlar Sektör Meclisi” oluşturulmalı, burada yapılacak çalışmalarla ülkemize ciddi kazanımlar sağlayacak “Ulusal Karbon Piyasası” kurularak Uluslararası Karbon Piyasalarına girilmelidir. Petrol ürünleri ile aynı kapsamda yer alan Biyoyakıtların hammaddelerine uygulanan gümrük vergileri nedeniyle yerli üretim karşısında haksız rekabet oluşmakta, bu da ülkemizde biyoyakıt ithalatını özendirmektedir. Biyoyakıtlar konusunda dış ticaret politikaları gözden geçirilmeli ve Türkiye’nin, potansiyelini ve konjonktürü değerlendiren ihracatçı ülke konumuna gelmesini sağlayacak düzenlemeler yapılmalıdır. Enerjide büyük kapasiteli özelleştirmeler AB’de örnekleri görüldüğü gibi tekelleşmeye sebebiyet vermemeli, bu tarz endişelerden özellikle biyoyakıtlar özel olarak korunmalıdır.

http://www.biyologlar.com/biyodizel-nedir

DENİZ EKOSİSTEMLERİNDEKİ BOZULMALAR

Deniz ekosistemlerindeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler. Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1. Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, toprak, hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir. - Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır. - Suların kirlenmesi sonucu suya ışık girişi azalır, suyun hava oranı düşer. - Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur. - Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur. 2. İklimin Değişmesi İklim şartlarının değişmesi , ekosistemdeki canlı yaşam ve dağılışını etkiler. İklimi değişen bir bölgede bazı canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur. 3. Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp , taşınmasına erozyon denir. Çevredeki bitki örtüsünün azalması, şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur. Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer. 4. Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır. Çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler. Su oranı azlan topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır. Kısacası çevre zamanla çölleşir. Doğal özelliklerini de zamanla kaybeder. 5. Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6. Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler. Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur. Örneğin, ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür.

http://www.biyologlar.com/deniz-ekosistemlerindeki-bozulmalar

ÇEVRECİ ÖRGÜTLER VE DERNEKLER

Birleşmiş Milletler Çevre Programı www.unep.org Birleşmiş Milletler çevre aktivitelerini koordine eden, gelişmekte olan ülkelere çevre politikaları konusunda yardımcı olan ve çevreye duyarlı kalkınma yöntemleri öneren BM kuruluşu. Haziran 1972'deki İnsan Çevresi üzerine Birleşmiş Milletler Konferansı sonrasında kuruldu. Merkezi Nairobi, Kenya'da. UNEP'in ayrıca altı bölge ofisi ve çok sayıda ülke ofisi var. Yeşil Barış / Greenpeace www.greenpeace.org/turkey Greenpeace Avrupa, Amerika, Asya ve Pasifik'te 40 ülkede faaliyet gösteren, kâr amacı gütmeyen bir çevre kuruluşu. 1971'den bu yana dünyanın dört bir yanında çevre katliamlarına karşı güçlü bir mücadele veren Greenpeace, çalışmalarını bağımsız olarak sürdürmek için devletlerden, şirketlerden ya da siyasi partilerden bağış ve sponsorluk kabul etmiyor; tüm çalışmaları sadece bireylerden aldığı maddi ve manevi destekle yürütüyor. Buğday Derneği www.bugday.org Buğday Ekolojik Yaşamı Destekleme Derneği, 2002 yılında kuruldu. 90 yılında Bodrum pazarında tam pirinç, zeytinyağı, adaçayı, kekik, deniz tuzu satan küçük bir tezgahla başlayan yolculuk, ertesi yıl Bodrum’da Başak Doğal Ürünler Dükkanı ve Başak Naturcafe ile sürdü ve nihayetinde derneğe dönüştü, çevrecilerin buluşma noktalarından biri oldu. ÇEKÜL Vakfı www.cekulvakfi.org.tr Çevre ve Kültür Değerlerini Koruma ve Tanıtma Vakfı ÇEKÜL; doğal ve kültürel mirası korumak amacıyla 1990’da kuruldu. Koruma-değerlendirme-yaşatma amaçlı projeler yürütüyor. ÇEVKO www.cevko.org.tr Çevre Koruma ve Ambalaj Atıkları Değerlendirme Vakfı, evsel atıkların değerlendirilmesi için sağlıklı, temiz ve ülke gerçeklerine uygun bir geri kazanım sistemi oluşturulması amacıyla 1991’de kuruldu. Doğa Derneği www.dogadernegi.org 2002 yılından beri faaliyet gösteren dernek, Ankara’daki merkezinin yanı sıra, İstanbul ofisiyle de iletişim ve kampanya çalışmalarını yürütüyor. Derneğin Bursa, Burdur, Hasankeyf ve Birecik'te de temsilcilikleri bulunuyor. Deniz Temiz Derneği www.turmepa.org.tr 1994’te kuruldu. Denizleri yaşatmaya çalışıyor. Doğal Hayatı Koruma Derneği www.dhkd.org Derneğin amacı; Türkiye'nin olağanüstü zengin bitki ve hayvan türleri ile bunların doğal yaşam alanlarının değerinin farkına varılmasını, koruma altına alınmasını sağlamak. Bölgesel Çevre Merkezi www.rec.org.tr REC'in en yeni ülke ofisi Mayıs 2004 tarihinde Ankara'da resmi olarak faaliyete geçti. Avrupa Birliği Çevre Ödülleri’nin sekreteryasını yürütüyor. Su Vakfı www.suvakfi.org.tr İklim değişikliği, küresel ısınma, su, temiz enerji konularında yoğunluklu ve bilimsel çalışma yapan sivil toplum kuruluşudur. TEMA Vakfı www.tema.org.tr Erozyonla mücadeleyi esas alan Vakıf, çöl olma tehlikelisine dikkat çekiyor. TEMA, siyasi güçleri, doğal varlıkların yok edilmesi ve erozyon sorununa çare bulmadan iktidar olamayacaklarına inandırma çabasında. TÜRÇEV www.turcev.org.tr Türkiye Çevre Eğitim Vakfı, lise çağındaki öğrenciler için oluşturduğu Çevrenin Genç Sözcüleri programıyla, gençlerde çevre bilinci yaratmayı ve daha temiz bir dünya için işbirliği olanaklarını arttırmayı hedefliyor. Yeşil Ekran yesil.ntvmsnbc.com/ Haber ve kültür kanalı NTV’nin çevreci kuşağı Yeşil Ekran bir süredir çevre gündeminden belgeseller, haberler ve sohbet programlarıyla doğal hayatın korunmasına destek veriyor.

http://www.biyologlar.com/cevreci-orgutler-ve-dernekler

Ekosistem Çeşitleri

Belirli bölgede bulunan ve birbiri ile dolaylı ya da dolaysız ilişkide olan canlılarla bu canlıların yer aldığı cansız çevre Ekosistemi oluşturur. Doğada büyük ekosistemler ve bunların içerisinde de daha küçük ekosistemler bulunur. Tabiat farklı özellikte pek çok ekosistemin birleşmesinden oluşur Kara ve su ekosistemi olmak üzere başlıca iki çeşit ekosistem bulunur. Kara ekosistemlerini çayırlar çöller, mağara, step, tundra, ova, dağ gibi daha küçük olan ekosistem parçaları oluşturur. Su ekosistemlerini de okyanus, deniz, Göl, ırmak, havuz, bataklık gibi ekosistem parçaları oluşturur. Çevredeki ekosistemlerin birleşmesiyle yeryüzünün doğal ortamı oluşmaktadır. Çevredeki her ekosistem çeşidinin kendisine has olan farklı fiziksel ve kimyasal özellikleri bulunur. Ekosistemdeki Bozulmaların Çevreye Etkileri Ekosistemdeki bozulma bir bütün olan çevrenin yapı ve işleyişini olumsuz etkiler Bazı varlıkların azalması diğer bazı varlıkların azalmasına da neden olur. Madde döngülerinin gerçekleşmesi zorlaşır. Sonuçta doğadaki enerji tükenmeye doğru gider. 1.Dünya Coğrafyasının Değişmesi Ekosistemin yapı ve işleyişini oluşturan iklim, Toprak, Hava, bitki hayvan gibi faktörlerin olumsuz yönde değişmesi çevrenin ekolojik özelliklerini de değiştirir Uzun süren kuraklıklar sonucu bir ekosistemdeki bitki ve hayvan sayısı hızla azalır suların kirlenmesi sonucu suya ışık girişi azalır, Suyun Hava oranı düşer Toprakta oluşan tahribat ve kirlenmeler önce bitkilerin sonrada diğer canlıların zamanla ölmesine neden olur Ormanların kesilmesi ve yanması çevrenin çölleşmesine ve sonrasında küresel ısınmaya etkide bulunur 2.İklimin Değişmesi İklim şartlarının değişmesi ekosistemdeki canlı yaşam ve dağılışını etkiler İklimi değişen bir bölgede bazı Canlılar göç ederken, bazı canlılar ölür veya şartlara uymaya çalışır. Ozon tabakasının incelmesi, ormanların azalması, Havanın kirlenmesi, yağışların azalması, çölleşmenin başlaması bir bölgedeki iklimin ve coğrafik yapının değişmesine etkide bulunur 3.Erozyonların Oluşması Toprağın su ve rüzgar etkisiyle aşınıp taşınmasına Erozyon denir çevredeki bitki örtüsünün azalması şiddetli yağmurların yağması, karların kısa sürede erimesi, fırtınaların oluşması, toprağın yanlış sürülmesi, eğimli alanlardaki ormanların yanması gibi etkenler erozyonların oluşmasına neden olur Erozyonlar sonucu bir bölgenin toprağı tahrip olur. Tarım toprağının ürün verimi azalır. Erozyonu önlemek için en etkili yöntem eğimli ve çorak Toprakların ağaçlandırılmasıdır. Çünkü bitki kökleri toprağı tutarak erozyonla sürüklenmesini önler. Erozyona uğrayan bir bölgede toprağın yapısı değişeceği için canlıların yaşamı da tehlikeye girer 4.Su Kaynaklarının Azalması Suların kirlenmesi ve kuruması sonucu çevredeki kullanılabilir su oranı azalır çevredeki su kaynaklarının azalmasına, yağışların düşmesine, tarımsal verimin düşmesine ve hidroelektrik santrallerdeki enerji üretiminin kısılmasına neden olur. Bu durum canlıların beslenmesini olumsuz olarak etkiler su oranı azlan Topraklarda daha az sayıda bitki yaşar. Ortama uyan bazı hayvanlar bu topraklarda barınır kısacası çevre zamanla çölleşir doğal özelliklerini de zamanla kaybeder 5.Enerji Kıtlığının Başlaması Madenlerin azalması sonucu termik santraller, su kaynaklarının azalması sonucu hidroelektrik santralleri, petrolün azalması sonucuda ulaştırma araçlarının kullanım oran ve verimi azalır. Enerji kıtlığının başlaması durumunda insanların sosyal yaşamı felç olur. Besin zincirinin oluşumunu sağlayan enerji nakli gerçekleşemez. Ortamın biyolojik dengesi bozulur. 6.Canlı Çeşitliliğinin Azalması Ekosistemdeki fiziksel ve kimyasal şartların değişmesi canlıların yaşama, yayılış ve üramesini etkiler Bozulan şartlara uyanlar yaşarken diğerleri yok olur. Çevredeki bitki sayısının azalması besin zincirindeki canlı tür ve sayısının azalmasına neden olur Örneğin ormanların yanma ve kesilmesi sonucu buralarda barınan tüketici canlıların büyük kısmı ölür. Ekosistem Çeşitleri Ekosistemelerin incelenmesinde kara ve su olmak üzere başlıca iki büyük sistem ayırt edilebilir. Bir su ekosistemi en küçük su birikintisinden okyanusa kadar değişen ortamlardaki karşılıklı ilişkileri kapsar. Ortamların farklılığına karşın, suyun canlılar üzerindeki etkisi bu Ekosistemde yaşayan Canlılarda benzer özellikler yaratmıştır Hem Su, hem çok daha karmaşık yaşam biçimlerinin gözlendiği kara ekosistemelerini tek tek incelemek olanaksızdır. Bu sistemlerin topluca incelenmesi ise birçok önemli ayrıntının, fiziksel ve kimyasal bileşenlerin canlıların değişik çevrelerin özelliklerine göre geliştirdiği uyum biçimlerinin enerji akışı ve besin çevriminde ortaya çıkan özelliklerin göz ardı edilmesine yol açar bu nedenle canlıların yaşadığı çevreler belli tipler altında toplanarak incelenir. Genellikle su ekosistemleri deniz Suyu ve tatlı su (ya da denizler ve iç denizler) olarak ayrılabilir iç sularda kendi içinde durgun Sular (göller) ve akarsular olmak üzere iki alt bölüme ayrılır Kara ekosistemleri yaşama ortamlarına ya da kara çevrelerine göre kutup bölgeleri ve tundra, kuzey ve ılıman bölge ormanları, çayır, otlak, çöl ve yarı çöl alanlar, cangıllar ve yağmur ormanları, savanlar ve öbür astropik ormanlar biçiminde ayrılır. Egemen bitki örtüsü temelinde belirlenen bu tiplerin yanı sıra değişik ölçütlere dayanarak farklı sınıflandırmalar da yapılmaktadır. Su ekosistemi: Okyanuslar, denizler veya tatlı sular (Ör: Gölet, bataklık, sazlık, ve nehirler…vb) gibi alanlardaki yaşayan canlıların çevre ilişkisini incelen bir çeşit ekosistemlerdir.

http://www.biyologlar.com/ekosistem-cesitleri

Ulusal ve Uluslar arası Çevre Koruma Kuruluşlar ve Amaçları

Çevre sorunlarının birçoğu insanın var olması ile birlikte başlamıştır. Önceleri nüfusun az olması ve teknolojinin günümüzdeki boyutlarına ulaşmamasından dolayı insanlar doğayla uyum içinde yaşamışlardır. Ancak sanayi ve endüstrileşme, nüfus artışı, teknolojik gelişmelerle bir­likte insanlar doğayı hızla tahrip etmeye başlamışlardır. Bunun sonu­cunda sera etkisi, küresel ısınma, asit yağmurları, çarpık kentleşme ve ik­lim değişiklikleri gibi pek önemli çok çevre sorunları oluşmuştur. Geçmişte bilinçsizce doğayı tahrip eden insanlar bir süre sonra doğa­nın bir parçası olduklarını, doğal dengenin önemini ve bu sistemle uyum içinde yaşamaları gerektiğini anlamışlardır. Çevre sorunları, insanları doğayı koruma konusunda ciddi önlemler almaya yöneltmiştir. Böylece önemli çevre faaliyetlerine girişilmiş ve konu küresel boyutta ele alın­maya başlanmıştır. Ulusal ve uluslar arası faaliyetler hız kazanmıştır. Ulusal ve uluslar arası çevre kuruluşlarından bazıları bu bölümde açıklanmaktadır. T.C. Çevre ve Orman Bakanlığı Çevre ve Orman Bakanlığı'nın; ormanların işletilmesi, korunması ve geliştirilmesi, orman saha bütünlüğünün korunması, Tabiatı Koruma Alanları, Milli Park ve benzeri korunan alanların geliştirilerek yaygınlaş­tırılması, orman ve mera planları, sürdürülebilir orman yönetimi ilkeleri doğrultusunda toplum ihtiyaçları, ekosistemin çeşitli fonksiyonları ve nesli tehlikede olan yaban hayatı ile bitki türleri dikkate alınarak yeni­den düzenlenmesi gibi amaçları vardır. Bunlardan başka, sosyal, kültürel ve çevresel nedenlerle yeşil kuşaklar ve parklar şeklinde ormanların ku­rulmasını özendirmek ve yaygınlaştırmak, orman yaygınlarını önleme ve mücadele, kirlenme ve sera etkisi, asit yağmurları, nesli tehlikede olan su ve yaban hayatını koruma konularım öncelikli olarak benimsemekte­dir. Orman Genel Müdürlüğü İlk ormancılık teşkilatı 1839 yılında kurulmuştur. Bu kuruluştan önce ülkemiz ormanlarının yönetim ve idaresinden sorumlu bir teşkilat bu­lunmamaktaydı. Ormanlarımızın ekonomik bir değer olarak kabul edil­mesi ve işletilmesi Tanzimat'tan sonra başlamıştır. Bu dönemde "Orman Müdürlüğü" kurulmuştur. 31.10.1985 tarih ve 3234 sayılı yasa ile ülkemizdeki ormancılık hizmet­lerinin yerine getirilmesi görevi, Orman Genel Müdürlüğüne verilmiştir. 07.08.1991 tarihinden 01.05.2003 tarihine kadar orman bakanlığına bağlı olarak görev yapmış, bu tarihte kabul edilen 4856 sayılı kanun kapsa­mında Çevre ve Orman Bakanlıklarının birleştirilmesi nedeniyle Orman Genel Müdürlüğü, Çevre ve Orman Bakanlığı bünyesinde faaliyetlerini sürdürmeye başlamıştır. Orman Genel Müdürlüğü'nün görevleri arasında; ormanları usulsüz ve kanunsuz müdahalelere, tabii afetlere, yangınlara, muhtelif zararlara karşı korumak, ormanların devamlılığını sağlayacak şekilde teknik ve ekonomik gerekliliklere göre idare etmek ve işletmek, orman ürünlerinin üretim, taşıma, depolama, pazarlama, ormancılık hizmetleri ile ilgili ge­rekli araç ve gereçleri tedarik etmektir T.C. Kültür ve Turizm Bakanlığı Kültür ve Turizm Bakanlığı 16. 04. 2003 tarihinde 4848 sayılı kanun ile kurulmuştur. Kanunun amacı kültürel değerleri yaşatmak, geliştirmek, yaymak, taratmak, değerlendirmek ve benimsetmek, tarihi ve kültürel varlıkların tahribini ve yok edilmesini önlemek, yurdun turizme elverişli bütün imkânlarını ülke ekonomisine olumlu katkı sağlayacak şekilde değerlendirmek, turizmin geliştirilmesi, pazarlanması, teşvik ve destek­lenmesi için gerekli önlemleri almak, kültür ve turizm konuları ile ilgili kamu kurum ve kuruluşlarını yönlendirmek ve bu kuruluşlarla işbirli­ğinde bulunmak, yerel yönetimler, sivil toplum kuruluşları ve özel sek­tör ile iletişimini geliştirmek ve işbirliği yapmak üzere Kültür ve Turizm Bakanlığının kurulmasına, teşkilat ve görevlerine ilişkin esasları düzen­lemektir. T.C. Tarım ve Köyişleri Bakanlığı Kuruluşundan bu yana dört ana dönemde bazen isim değiştirerek, bazen başka bakanlıklarla birleşerek, kimi zamanda ayrılarak veya kapa­tılıp tekrar kurularak günümüze kadar gelmiştir. 14 Aralık 1983 tarih ve 18251 sayılı resmi gazetede yayınlanan 183 sa­yılı kanun hükmünde kararname ile Köyişleri ve Kooperatifler Bakanlığı, Tarım ve Orman Bakanlığına bağlanarak, bakanlığın adı "Tarım Orman ve Köyişleri Bakanlığı" olarak değiştirilmiştir. Sonraki yıllarda bakanlı­ğın adı; Gıda-Tarım ve Hayvancılık Bakanlığı, Tarım ve Orman Bakanlı­ğı, Tarım Orman ve Köyişleri Bakanlığı, Tarım ve Köyişleri Bakanlığı o-larak değiştirilmiş, halen Tarım ve Köyişleri Bakanlığı olarak devam et­mektedir.

http://www.biyologlar.com/ulusal-ve-uluslar-arasi-cevre-koruma-kuruluslar-ve-amaclari

Doğal Hayatı Koruma Vakfı (WWF-Türkiye)

Doğa koruma kuruluşu olan bu vakıf iş dünyasından pek çok şirketle işbirliği içindedir. Panda logosu ile tanınan, uluslararası bir doğa koru­ma kuruluşu olan WWF, Lafarge, HSBC, Nokia, Nike gibi şirketlerle or­taklık yapmıştır. Bu ortaklıkların temelinde sürdürülebilir gelişmeye da­yalı ve hayal gücüne yönelik projeler yürütmek vardır. Doğal Hayatı Koruma Vakfı, sürdürülebilirliğe uzun vadeli bir katkı sağlamak için küresel ısınmayla mücadele etmek, yenilenebilir enerji sis­temleri ve temiz teknolojilere yönelmek, zehirli kimyasalları hayatımız­dan çıkarmak, kereste, balık ve tarımsal ürünler gibi ticari malların sür­dürülebilir kullanımını sağlamak gerektiğine inanmaktadır. WWF'nin bakış açısına göre, eğer kurumlar sorunların bir parçasıysa, çözümün de bir parçası olmalıdır. Bu vakfın projeleri arasında; Doğaya Yatırım-HSBC, Koruma Ortaklı­ğı: Lafarge, Nike ve İlkim Koruyucuları ve Öğrenen Bir Proje: Nokia vardır. WWF'nin öncelikli amacı gezegenimize yapılan tahribatı durdurmak ve bunu tersine çevirmektir. İnsanların doğayla uyum içinde ya­şayacakları bir gelecek kurulması ulaşmak istedikleri hedefler arasında­dır.

http://www.biyologlar.com/dogal-hayati-koruma-vakfi-wwf-turkiye

V.ULUSAL LİMNOLOJİ SEMPOZYUMU

V.ULUSAL LİMNOLOJİ SEMPOZYUMU

Değerli Katılımcılar; Yaşamın sürekliliğinde temel ilke olan çevresel denge yönünden kaynakların yenilenebilir, dizgelerin sürdürülebilir olması bir zorunluluktur. Bu açıdan bakıldığında doğal kaynakların ve çevrenin yoğun bir şekilde tüketildiği, küresel ısınmanın bir sonucu olan iklim değişimlerinin geleceğimizi kararttığı, ender canlı türlerinin yaşam alanlarından silindiği, insanın yalnızlık çağını yarattığı görülmektedir. Gezegenimizdeki suyun küçük bir bölümünü oluşturan içsular karasal yaşamın sürmesi yönünden önemlidir. Günümüzde doğal kaynaklar üzerindeki baskılar içsular, özellikle tatlısular üzerinde daha da yoğunlaşmış durumdadır. Tüm içsular insan etkinliklerine bağlı olarak ortaya çıkan tarımsal, endüstriyel ve evsel kirlilik etmenleri ile karşı karşıyadır. Nitelikli kaynak sularının tecimselleştirilmesi (ticari), her akarsu üzerine taşıyamayacağı sayıda hidroelektrik santrallerinin yapılması, baraj ve göletlerle doğal yaşam alanlarının bozulması; göllerin fiziksel, kimyasal ve biyolojik dengelerinin alt üst edilmesi günümüzün yadsınmaz gerçekleridir. RESMİ WEB SİTESİ  :  http://sempozyum.sdu.edu.tr/limno2012/index.php?dosya=kurullar&tur=2

http://www.biyologlar.com/v-ulusal-limnoloji-sempozyumu

Biyoteknoloji ve Tarım Güvencesi

Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Özet Hızla artmakta olan dünya nüfusunun 2025 yılı itibariyle 8 milyarı geçmesi ve bu artışın % 95’inin gelişmekte olan ülkelerde oluşması beklenmektedir. Gelişmiş ülkelerde önemli bir tarımsal üretim fazlası bulunmakla beraber, halen 830 milyon insanın yeterli ve dengeli beslenemediği gelişmekte olan bazı ülkeler yeni tarım teknolojilerini kullanarak tarımsal üretimlerini artırmada yeterli olamamaktadırlar. Yeşil devrim olarak da isimlendirilen dönemde hastalık ve zararlılara dayanıklı, yüksek verimli çeşitlerin geliştirilmesi, kimyasal gübre ve tarımsal mücadele ilacı kullanımının artması, mekanizasyon ve sulama teknikleri son 5 yıl içerisinde önemli verim artışları sağlamış olmakla beraber bu denli yoğun tarımsal faaliyetler çevre üzerinde de önemli baskılar yaratmıştır. Halen mevcut tarım alanları üzerinde ve kullanılan mevcut tarımsal tekniklerle önümüzdeki 20 yıl içerisinde artacak dünya nüfusuna yetecek gıda maddeleri üretimi mümkün görülmemektedir. Bu itibarla tahıllarda birim alana verimin % 80 oranında artırılması gerekmektedir. Bunun için de modern biyoteknolojik yöntemlerin önemli avantajlar sunduğu görülmektedir.Modern biyoteknolojik yöntemler arasında genetik mühendisliği en fazla umut bağlanan ve aynı ölçüde de tartışılan bir yöntemdir. Ancak, diğer moleküler ıslah yöntemleriyle birlikte kullanıldığında genetik mühendisliği teknikleri hastalık ve zararlılara; kuraklık ve tuzluluk gibi çevre koşullarına dayanıklı, bitki besin maddeleri içeriği iyileştirilmiş yüksek kaliteli ve verimli yeni çeşitlerin geliştirilmesi için bitki ıslahçılarına büyük kolaylıklar sağlayacaktır. Halen A.B.D., Arjantin, Kanada, Brezilya ve Çin gibi 18 gelişmiş ve gelişmekte olan ülkede yetiştirilen transgenik soya, mısır, pamuk ve kolza bitkileri böceklere ve bazı herbisitlere dayanım özelliği taşımaktadırlar. Bu ürünler, insan sağlığı ve çevre üzerindeki olası olumsuz etkileri bilimsel esaslara göre değerlendirildikten sonra yetiştirilmelerine ve tüketilmelerine izin verilmektedir. Türkiye gibi gelişmekte olan ülkelerin modern biyoteknolojik yöntemlerden yararlanarak tarımsal üretimlerini artıracak çeşitleri geliştirmeleri, belirlenecek sorunların çözümüne yönelik güdümlü projelere yeterli araştırma desteği ve altyapı sağlayarak mümkün olabilir. Ancak, bunun için gerek fikri mülkiyet hakları gerekse biyogüvenlik ile ilgili mevzuatın bir an önce hazırlanarak yürürlüğe girmesi de gerekmektedir. Giriş Avcı-toplayıcı kültürden tarımcı kültüre geçen insanlık, binlerce yıldır seçmiş olduğu bitkileri yetiştirip, geliştirerek ve evcilleştirdiği hayvanları daha da iyileştirerek tarımsal üretimi artırma yönündeki çabalarını sürdürmektedir. Dünya üzerindeki nüfusun artmasıyla birlikte bu çabalar daha da hızlanmış, zamanla yeni teknikler geliştirilmiş ve tarımla uğraşan yeni bilim dalları ortaya çıkmıştır. Malthus’un insanların yeterli gıda maddesi bulamayarak büyük bir felakete uğrayacakları öngörüsü (Malthus, 1798) de tarımsal tekniklerin gelişmesi ve üretimdeki artış nedeniyle gerçekleşmemiştir. Geçtiğimiz yüzyıl içerisinde hızla artan dünya nüfusunu beslemeye yetecek kadar tarımsal üretimin sağlanmasında şüphesiz “Yeşil Devrim” olarak da adlandırılan gelişmelerin önemli etkisi olmuştur. Yirminci yüzyıl başlarından itibaren, genetik biliminde meydana gelen gelişmelerin bitki ve hayvan ıslahında yaygın olarak kullanılması yüksek verimli bitki çeşit ve hayvan ırklarının geliştirilmesine olanak sağlamıştır. Bunun yanında tarımda mekanizasyonun gelişmesi, kimyasal gübre kullanımının yaygınlaşması, hastalık ve zararlıların neden olduğu kayıpların kimyasal mücadele ilaçları ile önlenmesi ya da en az düzeye indirilmesi, bitkisel üretimde sulama sistemlerinin yaygınlaştırılması ikinci dünya savaşından sonra bitkisel ve hayvansal üretimde % 100’ü aşan artışlara yol açmış, bunun sonucu özellikle gelişmiş ülkelerde üretim fazlası oluşmuştur. “Yeşil Devrim” sayesinde 1960’lı yıllardan itibaren, bu yeni çeşitler ile yeni tarım teknolojileri Türkiye’ye ve diğer çoğu gelişmekte olan ülkelere de kısa sürede girmiş ve genelde yerel nüfusun ihtiyacı olan gıda maddeleri üretiminde yeterlilik sağlanmıştır. Ülkemizdeki tarımsal üretim özellikle ikinci dünya savaşından sonra önemli ölçüde artmış olmakla beraber, verimlilik artışı oranı ekilebilir alanların artışı oranıyla karşılaştırıldığında bu artışın pek de sağlıklı olmadığı söylenebilir. Tarımsal üretim artışındaki temel öğeler incelendiğinde: 1950’lerden itibaren mekanizasyonun artmasıyla mera alanlarının bozularak tarlaya dönüştürüldüğü, aynı şekilde ormanların tahribiyle tarıma müsait olmayan dik eğimli alanlarda ekim yapıldığı, özellikle 1960’lardan itibaren göllerin ve sulak alanların kurutularak yeni tarım arazilerinin yaratıldığı, sulama ve/veya elektrik üretimi amaçlı göl ve göletler oluşturularak vadi içi habitatların tahrip edildiği ve geniş alanlarda sulu tarıma geçildiği ve böylece doğal dengenin olabildiğince bozulduğu ve biyolojik çeşitliliğimizin olumsuz etkilendiği görülmektedir. Bunların yanında, kimyasal gübrelerin ve tarımsal mücadele ilaçlarının gittikçe artan düzeylerde ve bilinçsizce kullanımı, üretimi artırmış olmakla beraber doğal çevre ve insan sağlığını da olumsuz yönde etkiler hale gelmiştir. Yine bu bağlamda, “Yeşil Devrim” ile birlikte kimyasal gübre kullanımına ve sulamaya iyi tepki veren yeni çeşitlerin kullanılmaya başlamasıyla verim artışı sağlanmış, ancak tarımsal biyoçeşitliliğin belkemiğini oluşturan yerel genotipler verimsiz bulunarak, bunların kullanımı azalmıştır. Dünya genelinde tarımsal üretimin gelişmesine bakıldığında, yine Türkiye’dekine benzer gelişmelerin olduğu ve tarımsal üretimin artırılmasında ekolojik dengenin aleyhine bir gelişme olduğu görülmektedir. Son yıllarda, tarımsal üretim fazlasının olduğu özellikle Avrupa Birliği ve diğer gelişmiş ülkelerde aşırı kimyasal gübre kullanımı ve hastalıklarla mücadele ilaçlarının çevre üzerindeki olumsuz etkileri tartışılmaya ve bu tip tarımsal üretimin kısıtlanmasına yönelik tedbirler alınmaya başlanmıştır. Nüfusun hızla arttığı gelişmekte olan ülkelerde ise durum pek de iç açıcı değildir. Nüfus baskısı nedeniyle tarım alanı açmak için tropik yağmur ormanlarının yakıldığı, suların kirlendiği, toprakların çoraklaşıp çölleşmenin hızla arttığı görülmektedir. Ancak, tarımsal alanların böylesi sağlıksız biçimde artması tarımsal üretimin sürdürülebilir şekilde artırılmasına ve bu yörelerdeki insanların gıda ihtiyacını karşılamaya yetmemiştir (SOFA, 2004). Bu nedenle, 2025 yılında 8 milyarı aşması beklenen dünya nüfusunun beslenmesi gerçekten önemli bir sorun olarak karşımıza çıkmaktadır. Ekilebilir alanları artırmak pek mümkün olmadığı gibi, tarımsal üretimde kullanılabilecek su kaynakları da hızla azalmaktadır. Dolayısı ile artan nüfusu besleyecek miktarda üretim için ekilebilir alanların genişlemesi değil, birim alandan alınan ürün miktarının artırılması gerekmektedir. Bu da, Nobel ödüllü bitki ıslahçısı Norman Borlaug’a göre buğday ve mısır gibi tahıllarda verimin % 80 artırılması demektir (Borlaug, 2003). Klasik ıslah yöntemleriyle elde edilebilecek biyolojik verim artışının da artık sınırlarına gelindiği düşünüldüğünde, bitki ıslah çalışmalarında yeni teknolojilerin kullanılması kaçınılmaz görünmektedir. Son yıllarda önemli gelişmeler gösteren biyoteknolojik yöntemlerin özellikle de moleküler tekniklerin tarımsal üretimi artırmada önemli avantajlar sağladığı bir gerçektir. Genelde biyoteknoloji olarak adlandırılan ve klasik biyoteknolojiden modern biyoteknolojik yöntemlere kadar uzanan ve gittikçe karmaşıklık düzeyi artan bu teknolojilerin (Şekil 1) ülkelerin bilim ve teknolojideki gelişmişlik durumlarına göre tarımda farklı düzeylerde kullanıldığı görülmektedir. Biyolojik azot fiksasyonu gelişmekte olan ülkelerde kolayca kullanılabilmekte, bitki doku kültürü teknikleri ise birçok ülkede hastalıklardan arındırılmış bitki materyali üretiminde yaygın olarak uygulanmaktadır. Genomik çalışmalar, biyoinformatik, transformasyon, moleküler ıslah, moleküler tanı yöntemleri ve aşı teknolojisi olarak gruplandırılabilen modern biyoteknolojiler ya da gen teknolojileri ise Çin ve Hindistan gibi birkaç gelişmekte olan ülke dışında genelde gelişmiş olan ülkelerde etkin olarak kullanılmaktadır (Persley ve Doyle, 1999). Moleküler teknikler halen hayvan, bitki ve mikrobial gen kaynaklarının karakterize edilmesinde yaygın olarak kullanılmaktadır. Aynı teknikler kullanılarak hastalık etmenlerinin tanısının yanında veterinerlikte aşı üretimi de yaygınlaşmış bulunmaktadır. Son yıllarda, genom araştırmaları da önemli bir evrim geçirmektedir. Yeni teknolojilerin kullanımı ile artık tek tek genlerin izole edilip tanımlanması yerine, tüm genlerin ya da gen grupların belirli bir organizma içerisindeki işlevlerini belirlemeye yönelik araştırmalar öne çıkmaya başlamıştır. Bu konularda, büyük ölçekli DNA dizinleme yöntemlerinin geliştirilmesi, bilgisayar ve yazılım programlarının oluşturulması bu ölçekteki verilerin değerlendirilmesini mümkün kılmaktadır. Burada, biyoinformatik ile “DNA yongaları” gibi teknolojiler biyolojik sistemlerin genetik yapılarına ayrıntılı olarak incelemeye olanak sağlamaktadır. Moleküler tekniklerin tarımsal üretimin artırılmasında önemli olanaklar sunduğu yadsınamaz bir gerçektir. Ancak, geçtiğimiz 20 yıl içerisinde yenidenbileşen [rekombinant] DNA ya da genetik mühendisliği teknikleri olarak da adlandırılan modern biyoteknolojik yöntemlerle geliştirilmiş hastalık ve zararlılara dayanıklı bitki çeşitlerinin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun şekilde tartışılmakta, bu yeni teknolojinin sunduğu olanaklar farklı açılardan sorgulanmaktadır. Bu makalede modern biyoteknolojik yöntemlerle elde edilmiş ve genelde Genetiği Değiştirilmiş Organizmalar (GDO) olarak tanımlanan bu transgenik ürünlerin tarımsal üretimin artırılmasında sunduğu olanaklar, bu ürünlerin insan sağlığı ve çevre üzerindeki olası olumsuz etkilerin yanında GDO’larla ilgili sosyo-ekonomik kaygılar ele alınmaya çalışılacaktır. Transgenik Ürünlerde Dünya’da Mevcut Durum Bitki biyoteknolojisi ve özellikle gen teknolojisi alanındaki gelişmeler 1980’li yıllardan itibaren hız kazanmış, ilk transgenik ürün bitkisi olan uzun raf ömürlü domates FlavrSavr adı ile 1996 yılında pazara sürülmüştür. Bunu gen aktarılmış mısır, pamuk, kolza ve patates bitkileri izlemiştir. 1996 yılından itibaren transgenik ürünlerin ekim alanları hızla artmış ve 2005 yılında 90.0 milyon hektara ulaşmıştır (Çizelge 1). Halen yetiştirilmekte olan transgenik ürünlerin ekim alanları incelendiğinde, bu ekim alanlarının % 99’unun A. B. D., Arjantin, Kanada, Brezilya ve Çin’de olduğu, genetiği değiştirilmiş ürün ekimi yapan ülkelerin sayısı 18’e ulaşmış olmakla beraber (Güney Afrika, Avustralya, Hindistan, Romanya, Uruguay, İspanya, Meksika, Filipinler, Kolombiya, Bulgaristan, Honduras, Almanya ve Endonezya) bu ülkelerde geniş ekim alanları bulunmadığı görülmektedir (James, 2005). Çin’deki ekim alanları ise özellikle Bt içeren pamuk ile hızla artmaktadır. Yine, Hindistan’da Bt içeren pamuk ekimine izin verilmesiyle bu ülkede de transgenik pamuk ekim alanlarının hızla artması beklenmektedir. Transgenik ürünlerin ekim alanları 2005 yılı itibariyle 90.0 milyon hektara ulaşmış olmakla beraber, bu ekim alanlarının artmasındaki şüphesiz en önemli engel özellikle Avrupa Birliği kamu oyunda bu ürünlere karşı oluşan olumsuz tepkiler, dolayısı ile bunun üreticiler üzerinde oluşturduğu olumsuz beklentilerdir. Aynı şekilde, gelişmekte olan ülkelerde aşağıda daha detaylı olarak değerlendirilecek olan biyogüvenlikle ilgili yasal mevzuatın henüz oluşturulmamasının getirdiği belirsizlik de ekim alanlarının genişlemesine engel olmaktadır. OECD BioTrack On-line verilerine göre 2000 yılı itibariyle transgenik ürünlere ait 15 000 üzerinde tarla denemesi yapılmıştır. Bu ürünler arasında tarla bitkileri, sebzeler, meyve ağaçları, orman ağaçları ve süs bitkileri bulunmaktadır. Burada dikkate değer bir husus ise 100’e yakın transgenik ürün çeşidi için ticari üretim izni alınmış olmasına rağmen bunlardan ancak birkaç tanesi pazara sürülmüştür. Buna paralel olarak, geniş ölçekte yetiştiriciliği yapılan türlerin oldukça sınırlı sayıda olduğu, ancak soya, mısır, pamuk ve kolza gibi önemli ürün türleri olduğu görülmektedir (Çizelge 2). Pazara sürülen ilk transgenik ürün olan uzun raf ömürlü FlavrSavr domatesi pazarlama stratejilerindeki yanlışlıklar ve tüketiciler tarafından fazla tutulmaması nedeniyle üretimden kalkmıştır. Bt patates ise çevrecilerin tepkisinden çekinen büyük “Fast Food” gıda zincirlerinin talep etmemeleri nedeniyle pek geniş ekim alanları bulamamıştır. Herbisitlere dayanıklı transgenik buğday çeşidi de gerek çevrecilerin tepkisi gerekse bu ürünü geliştiren çokuluslu şirketin pazarlama kaygıları nedeniyle henüz ticarileştirilmemiştir. Virüse dayanıklı papaya Hawaii adalarındaki papaya endüstrisini kurtarmış olmakla beraber sadece burada yetiştirilmektedir. Geniş ölçekte yetiştirilen tür ve çeşitlerin yine çok uluslu şirketlere ait tohumculuk şirketleri tarafından pazarlanıyor olması ayrıca dikkat çekmekte olup, bunun nedenleri ileriki bölümlerde incelenmeye çalışılacaktır. Halen ticari olarak üretimi yapılmakta olan transgenik ürünlere aktarılmış özellikler incelendiğinde, bunların daha çok girdiye yönelik, yani doğrudan çiftçiyi ilgilendiren herbisitlere dayanıklılık, böceklere dayanıklılık, virüslere dayanıklılık gibi özellikler olduğu görülmektedir (Çizelge 3). En yaygın olarak aktarılan özellik herbisitlere dayanıklılık olup, bu çiftçilerin üretim maliyetlerini önemli ölçüde azaltmaktadır. Yine Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin geni (Bt), özellikle mısır ve pamuk yetiştiriciliğinde zararlı olan tırtıllara karşı etkili olmakta; dolayısı ile tarımsal mücadele ilaçları kullanımını azaltmakta böylece hem üretim maliyetini düşürmekte hem de kimyasal ilaçların çevre ve insan sağlığı üzerindeki olumsuz etkilerini ortadan kaldırmaktadır. Bundan sonra piyasaya sunulması beklenen transgenik ürünlerin ise üretim maliyetlerini düşürücü özelliklerin yanında tüketicileri doğrudan ilgilendiren özellikler üzerinde de yoğunlaşması beklenmektedir. Bunlara en güncel örnek “altın pirinç” olarak adlandırılan beta karoten/A vitamini içeriği yükseltilmiş çeltiktir. Gelişmiş ülkelerde özellikle Güneydoğu Asya’da A vitamini eksikliği çeken 170 milyon kadar kadın ve çocuğun bu şekilde yeterli A vitamini alması ümit edilmektedir. Greenpeace örgütü ise, Altın Pirinç’in sadece çokuluslu şirketlerin bir pazarlama stratejisi olduğunu, bölgede günlük yaklaşık 300 gram pirinç tüketildiğini, ancak bir insanın önerilen günlük dozda provitamin A alabilmesi için bu miktarın yaklaşık 12 katını yemesi gerektiğini iddia etmektedir. Altın pirinci geliştiren araştırmacılar, Dr. Peter Beyer ve Prof. Ingo Potrykus ise bu hesaplamanın gerçekleri yansıtmadığını söylemektedirler. Onlara göre, çocuklar için günlük tavsiye edilen A vitamini dozajı 0,3 mg/gün’dür. Ancak hastalıklar ve körlükten korunmak için gereken A vitamini miktarı bu dozajın %30-40’ı civarındadır. Altın Pirinç’te bulunan provitamin A miktarı 1,6 – 2,0 mg/kg’dır. Provitamin A’nın A vitaminine dönüşme faktörü Amerikan Ulusal Bilim Akademisi (NAS) Sağlık Enstitüsü’nce (IOH) '12', Dünya Sağlık Örgütü (WHO) ve Gıda ve Tarım Örgütü’nce (FAO) '6', Hindistan Sağlık Araştırma Kurulu’nca '4' olarak alınmaktadır. Bu veriler ışığında ve Altın Pirinç’in biyoyararlılık değerleri %100 veya %50 olarak kabul edildiğinde yapılan hesaplamalarda Çizelge 4'teki rakamlar ortaya çıkmaktadır. Hesaplama için bir örnek verelim: IOH'in dönüşüm faktörü olan '12' esas alınırsa: körlükten korunmak için gereken 0,1 mg A vitamini için gerekli provitamin A miktarı 0,1 X 12 = 1,2 mg'dir. Altın Pirincin 1 kilogramında 2 mg provitamin olması hâlinde ve biyoyararlılık oranı %100 ise, bir günde yenmesi gereken Altın Pirinç miktarı 1,2 / 2 = 0,6 kg çıkar. Ancak, Çizelge 4'ten görülebileceği gibi, dönüşüm faktörü ve biyoyararlılık oranına göre bu miktar çok daha küçük olabilmektedir. Hatta Hindistan Sağlık Araştırma Kurumu’nun hesaplamaları kullanılırsa bu miktarda provitamin A alınabilmesi için gereken Altın Pirinç tüketimi 180 gramdır. Kaldı ki, Altın Pirinç İnsani Yardımlaşma Ağı’na (Humanitarian Golden Rice Network) da üye olan Syngenta firmasının yatırımı ile 2005 yılında “Altın Pirinç 2” adı verilen ve öncekine göre yaklaşık yirmi kat daha fazla provitamin A içeren yeni bir pirinç çeşidi geliştirilmiştir. Firma yıllık 10.000 dolardan düşük gelirli çiftçilere tohumları ücretsiz vermeyi planlamaktadır. Ayrıca bu tohumlara sahip olan çiftçiler ileriki senelerde kendi tohumlarını firmaya bedel ödemeden çoğaltabileceklerdir(*). “Altın Pirinç” örneğinin dışında doymuş yağ asit oranı değiştirilmiş yağlı tohumların, gerekli amino asit içeriği yükseltilmiş tahıl ve patateslerin, mikroelementlerce zenginleştirilmiş tahılların, aroma maddeleri yüksek ancak düşük kalorili ürünlerin yakın gelecekte piyasaya çıkması beklenmektedir. Hepatit B aşısı içeren patates ve muz bitkilerinin yanında, transgenik bitkilerin önemli bir kullanım alanı da ilaç hammaddesi ve monoklonal antikor üretimi için büyük potansiyel sunmalarıdır. Gen aktarılmış bu bitkilerin sera ve tarla denemeleri halen devam etmektedir. Bunlara paralel olarak, üzerinde en fazla araştırma yapılan konular arasında biyotik ve abiyotik stres koşullarına dayanıklı bitki çeşitleri gelmektedir. Yukarıda da değinildiği üzere, şimdiye kadar sağlanan üretim artışı tarım alanlarının genişlemesi, yaygın kimyasal gübreleme ve sulama ile sağlanmış ve bunlar ekolojik dengeyi olumsuz yönde etkilemiştir. Artık herkes tarafından kabul edilen bu sorunlar nedeniyle, bundan böyle tarımsal üretimin artırılmasındaki temel iki hedef sürdürülebilir tarım teknikleri ve birim alandan alınan verimliliğin artırılması yönünde olacaktır. Bunun için de bitkilerin yüksek verimli genotipe sahip olmalarının yanında biyotik ve abiyotik stres koşullarına dayanıklı olmaları da istenmektedir (SOFA, 2004). Bunlar arasında hastalık ve zararlılara dayanıklılık özelliği başta gelmektedir. Zira özellikle gelişmekte olan ülkelerde, bitkisel üretimin yarıya yakın kısmı hatta bazen fazlası üretim sırasında veya hasat sonrası hastalık ve zararlılar nedeniyle kaybolmaktadır. Bunlara karşı tarımsal mücadele ilaçlarının kullanıldığı durumlarda ise bu hem üretim maliyetini artırmakta, hem de insan sağlığını ve çevreyi olumsuz yönde etkileyebilmektedir. Dolayısı ile hastalık ve zararlılara karşı dayanıklılık genleri aktarılmış bitkilerin geliştirilmesi verimliliği artırdığı gibi tarımsal üretimin çevre üzerindeki baskısını da azaltacaktır. Bu alanda şimdiye kadar elde edilmiş en başarılı uygulama Lepidopter’lere dayanıklılık sağlayan Bacillus thuringiensis endotoksin genleri aktarılmış bitkilerden elde edilmiştir. Ancak, bitkisel üretimde zararlı olan çok sayıdaki diğer zararlı böceklere karşı aynı başarı henüz elde edilememiştir. Aynı şekilde, bazı virüs hastalıklarına karşı dayanıklı bitki çeşitleri geliştirilmişse de bunların sayısı pek fazla değildir. Bitkilerde önemli kayıplara neden olan fungal ve bakteriyel hastalıklara karşı direnç kazandırmaya yönelik araştırmalar da yoğun biçimde devam etmektedir. Ancak, bu hastalıklara dayanıklılık mekanizmalarının karmaşıklığı, dayanıklılık mekanizmalarının bitkiler ve patojenler arasında farklılık göstermesi, patojenlerin özellikle fungusların kendi dayanıklılık mekanizmalarını sürekli geliştirme yetenekleri nedeniyle henüz bakteriyel ya da fungal hastalıklara dayanıklı transgenik bitki çeşitleri üretim zincirine girecek aşamaya gelmemiştir. Bilindiği üzere küresel ısınma ve yanlış arazi kullanımı gibi nedenlerle 21. yüzyılda kuraklığın ve çölleşmenin gittikçe artması beklenmektedir. Bu durumdaki arazilerin çoğu ise Afrika gibi nüfus artış hızının en fazla olduğu ülkelerde bulunmaktadır. Bu nedenle, kurağa dayanıklı ya da az suyla yetişebilen bitki çeşitlerinin geliştirilmesi büyük önem taşımaktadır. Aynı şekilde tuzlu veya mikroelement eksikliği ve alüminyum gibi metal fazlalığı sorunu bulunan topraklarda yetişebilen bitkilerin geliştirilmesi de bu gibi ülkelerdeki marjinal tarım alanlarında üretim yapılabilmesine olanak sağlayacaktır. Eldeki bilgiler, dünyada mineral eksikliği ve metal (özellikle alüminyum) toksisitesi nedeniyle bitkisel üretimin sınırlandığı toprakların tüm topraklar içerisindeki payının % 60 dolayında olduğunu göstermektedir (Çakmak, 2002). Hem bu tür toprak sorunlarına hem de olumsuz çevre/iklim koşullarına karşı dayanıklılık kazandırmaya yönelik çalışmalar da yoğun bir şekilde devam etmekle beraber, bu özelliklerin birden fazla gen veya gen grupları tarafından belirleniyor olması, bunların gerek belirlenip klonlanmaları gerekse bitkilere aktarma teknolojilerinin yetersizliği sebebiyle henüz beklenen başarı düzeyine ulaşılamamıştır. Moleküler Bitki Islahı Gen teknolojileri denildiği zaman ilk akla gelen transgenik bitkiler ise de yukarıda belirtilen teknik kısıtların yanında transgenik bitkiler konusunda oluşan olumsuz kamu oyu baskıları da göz önünde bulundurularak, bu teknolojilerin klasik ıslah yöntemlerini geliştirerek daha etkin kılacağı alanlara yönelmek belki de daha akılcı bir yaklaşım olacaktır. Çoğu biyotik ve abiyotik stres koşullarına dayanım birden fazla gen tarafından kontrol edildiğinden bunların klasik ıslah yöntemleriyle belirlenmesi mümkün olmamaktadır. Ancak bu alanda gerek ulusal gerekse uluslararası ıslah kuruluşlarında, önemli miktarda bitki gen bankaları oluşturulmuş ve klasik ıslah konusunda önemli deneyimler kazanılmıştır. İşlevsel genomik çalışmalarının yaygınlaşmasıyla oluşan bilgi birikimini klasik ıslah yöntemleriyle birleştirmek mümkün olduğunda, stres koşullarına dayanıklı bitki ıslahı da yeni bir boyut kazanacaktır. Arabidopsis genetik haritasının yanında, çeltik, domates ve Prunus gibi türlerin genetik haritalarından kaydedilen gelişme, çoğu metabolik tepkimeyle ilgili gen dizinlerinin evrim boyunca korunmuş olması, elde edilen bu bilgi birikiminin diğer türlerde kullanım olanağını artırmaktadır. Yine moleküler işaret genleri konusunda oluşan bilgi birikimi moleküler bitki ıslahında yaygın olarak kullanılmaya başlanmıştır. Bu moleküler teknikler özellikle buğday gibi genomu karmaşık bitki türlerinde hastalıklara dayanım mekanizmaları ve kalite özellikleri açısından ıslahta çok önemli avantajlar sunmaktadır. Benzer şekilde meyve ya da orman ağaçları gibi generatif yaşam evreleri uzun dolayısı ile melezleme ıslah süreçlerinin çok uzun olduğu bitki türlerinde de moleküler işaret genleri çok önemli olmaktadır. Öte yandan, dünyada, özellikle gelişmekte olan ülkelerde insanlarda başta demir ve çinko olmak üzere mikroelement eksiklikleri ve buna bağlı ciddi sağlık sorunları çok yaygın biçimde ortaya çıkmaktadır. Yapılan tahminler problemin dünya nüfusunun yarısını etkilediğini göstermektedir. Sorunun başlıca nedeni olarak, mikroelementlerce çok fakir olan tahıl kökenli gıdaların yoğun biçimde tüketilmesi gösterilmektedir. Tahıllar hem mikroelementlerce fakir hem de mikroelementlerin vücutta kullanımını sınırlayan maddelerce zengindir (Cakmak ve Ark., 2002). Günümüzde birçok araştırma grubu ve konsorsiyumu buğday, çeltik ve mısır gibi bitkilerin mikroelementlerce zenginleştirilmesi için ıslah programları başlatmış ve bu programlarda moleküler markör destekli moleküler teknikler vazgeçilmez bir araç olarak kullanılmaktadır (www.harvestplus.org). Tüketici Tepkileri ve Biyogüvenlik Düzenlemeleri Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri uzunca süredir tartışılmaktadır. Yukarıda değinildiği üzere, ilk transgenik ürünler A.B.D.’de yetiştirilmeye başlanmış olup, yine en geniş ekim alanları bu ülkede bulunmaktadır. Bu ürünlerin tamamı Amerikan Gıda ve İlaç İdaresi (FDA), Amerikan Tarım Bakanlığı (USDA/APHIS) ve Çevre Koruma Dairesi (EPA) tarafından çok kapsamlı bilimsel incelemeler yapıldıktan sonra ticari üretimleri yapılmakta ve yine bu ülkede insan gıdası ve/veya hayvan yemi olarak tüketilmektedir. Üretim fazlası olan mısır ve soya gibi ürünler ise Avrupa Birliği dahil diğer ülkelere satılmaktadır. Özellikle Avrupa Birliği ve diğer bazı ülkelerde transgenik bitkilerin insan sağlığı ve çevre üzerine olası olumsuz etkileri çok yoğun bir şekilde tartışma konusu olmaktadır. Bunların bilimsel bazlı tartışmalardan ziyade duygusal, kişisel ve ekonomik tercihler ağırlıklı olduğu yadsınamaz. Örneğin, endişe konusu gerekçelerden bir tanesi transgenik ürün geliştirme çalışmaları sırasında kullanılan antibiyotik işaret genleridir. Avrupa Konseyi’nin 1999 yılında uzman bilim adamlarından oluşan bir panele hazırlatmış olduğu rapor, bu endişenin bilimsel nedenlerle açıklanamayacağını bildirmiş, ancak bundan sonra geliştirilecek transgenik bitkilerde antibiyotik işaret genlerinin kullanılmamasını tavsiye etmiştir. Avrupa Gıda Güvenliği Otoritesi (EFSA) GDO Paneli ise 2 Nisan 2004 tarihide yayınlamış olduğu Bilim Paneli Görüş Dokümanı’nda antibiyotik işaret genlerini 3 grupta toplamış ve halen üretilip tüketilmesine izin verilen GD ürünlerde bulunan npt II işaret geninin insan ve çevre sağlığı açısından her hangi bir sorun oluşturmayacağını, klinik tedavide kullanılan diğer antibiyotik işaret genlerinin ise araştırmalarda kullanılmaması gerektiğini bildirmiştir (EFSA, 2004). İnsan sağlığı açısından öne sürülen diğer bir olumsuzluk ise transgenik ürünlere aktarılan genlerin insanlarda alerji yapacağı ve toksik etkileri olabileceğidir. Ancak, bu ürünlerin ticari ekimlerine izin verilmeden önce yoğun ve kapsamlı laboratuar ve klinik testlerin yapılması ve bulguların bağımsız bilim kurulları tarafından inceleniyor olması, bu tip yan etkilerin en az düzeyde olmasını sağlamaktadır. Burada hatırlanması gereken husus, transgenik ürünlerin alerji oluşturma olasılığının klasik ıslah yöntemleri ile elde edilen ürünlerden daha fazla olmamasıdır (König ve ark., 2004) Nitekim, Avrupa Birliği ülkelerindeki yoğun kamuoyu endişelerini giderebilmek amacıyla, 13 AB üyesi ülke’den 65 bilim insanının katılımıyla, 3.5 yıl süren ve 11.5 milyon euro harcanarak yürütülen ENTRANSFOOD projesi, halen üretilip tüketilmekte olan genetiği değiştirilmiş ürünlerin insan sağlığı açısından klasik yöntemlerle elde edilen ürünlerden daha tehlikeli olmadığını ortaya koymuştur (Kuiper ve ark., 2004). Transgenik ürünlerin çevresel etkilerini değerlendirmek ise insan sağlığı üzerindeki etkilerini değerlendirmekten çok daha zor ve karmaşık görünmektedir. Burada şüphesiz tarımsal üretim yapılan ekosistemlerin birbirlerinden çok farklı olması en büyük etkendir. Çevre üzerindeki olası olumsuz etkilerin başında, transgenik bitkilerin ekosistemdeki diğer canlılarla etkileşimi gelmektedir. Örneğin Bt aktarılmış mısır bitkilerini yiyen tırtılların yanında diğer hedef olmayan canlıların örneğin Kral kelebeğinin de olumsuz etkilenebileceği endişesi (Losey, 1999) son birkaç yıldır yoğun tartışma konusu olmuş hatta GDO karşıtı örgütler tarafından hala yaygın olarak kullanılmaktadır. Ancak, Bt mısır polenlerinin Kral kelebeği ve diğer hedef dışı organizmalar üzerindeki olumsuz etkilerini tarla koşullarında incelemek üzere yapılan kapsamlı araştırmalar bu riskin çok düşük bir düzeyde olduğunu ve Kral kelebeklerinin yaşam döngüsünü olumsuz etkilemediğini göstermiştir (Oberhauser ve ark., 2001; Pleasants ve ark., 2001; Sears ve ark., 2001; Zangerl ve ark., 2001). Burada genetiği değiştirilmiş organizmaların çevre üzerindeki etkileri tartışılırken, Bt geni aktarılmış bitkiler yerine normal mısır yetiştiriciliğinde kullanılan kimyasal mücadele ilaçlarının hedef olmayan organizmalar üzerinde çok daha fazla olumsuz etkilerinin bulunduğunu göz önünde bulundurmakta yarar vardır (Gianessi ve ark., 2002). Burada asıl endişe konusu, sürekli Bt aktarılmış mısır ile beslenen tırtılların belirli bir süre içerisinde dayanıklılık mekanizması geliştirmesinin kaçınılmaz olmasıdır. Onun için bu tırtılların dayanıklılık geliştirmelerini geciktiren tedbirler alınmaya çalışılmaktadır. Ancak, bu yine de güncel ve geçerli bir sorun olarak çözüm beklemektedir. Diğer bir husus ise transgenik bitkilerden gen kaçışı yoluyla biyoçeşitliliğin bozulmasıdır. Burada, transgenik bitkilerle akraba türlerin bulunduğu ekosistemlerde transgeniklerin kesinlikle yetiştirilmemesi öngörülmektedir. Ancak, çiftçi eğitim düzeyinin oldukça sınırlı olduğu gelişmekte olan ülkelerde bunun ne şekilde sağlanabileceği hala bilinmemektedir. Nitekim, mısır bitkisinin gen kaynağı olarak bilinen Meksika’da A. B. D.’den kaçak olarak getirilen transgenik mısırların ekilmesi ve bunlardan Meksika’daki yerel mısır çeşitlerine gen kaçışı biyoçeşitlilik üzerinde önemli etkiler yaratacaktır. Transgenik bitkilerin insan sağlığı ve çevre üzerindeki olası olumsuz etkileri yoğun olarak incelenip tartışılmakta olup, buna yönelik çeşitli ulusal, bölgesel ve uluslar arası mevzuat oluşturma çabaları bulunmaktadır. Ancak ülkeler arasında henüz tam bir uyum sağlandığı söylenemez. Örneğin A.B.D.‘deki biyogüvenlik mevzuatı Avrupa Birliği mevzuatından çok farklı olup mevzuatın uygulanmasında bile ülkeler arasında hala uyum sağlanamamıştır. Ancak, yeni oluşturulan European Food Safety Authority ve 2004 yılında yürürlüğe giren genetiği değiştirilmiş ürünlerin etiketlenmesi ve izlenebilirliğini amaçlayan yönetmelikler bu uyumu sağlamada önemli bir adım sayılabilir. Son olarak, Uluslararası Biyolojik Çeşitlilik Anlaşması bağlamında hazırlanan ve uzun görüşme ve tartışmalardan sonra 2000 yılında üzerinde anlaşmaya varılan Uluslararası Biyogüvenlik Protokolü, transgenik ürünlerin sınır ötesi taşınmaları ve kullanımı yönünde olumlu bir gelişmedir. Türkiye’nin de imzalamış olduğu bu Protokol 11 Eylül 2003’te yürürlüğe girmiş olmasına rağmen, Protokol’ün uygulanabilir hale gelmesi daha bir süre alacaktır. Bunun için özellikle gelişmekte olan ülkelerin, kendi biyogüvenlik mevzuatlarını hazırlamalarının yanında, bu mevzuatı uygulayacak laboratuar altyapısını oluşturmaları, bu laboratuarlarda çalışacak teknik elemanları yetiştirmeleri ve en önemlisi karar verici konumdaki bürokratları eğitmeleri gerekmektedir. Aksi takdirde, bu mevzuat transgenik ürünlerin ticaretini engelleme dışında, gelişmekte olan ülkelerin kendi biyolojik kaynaklarını verimli şekilde değerlendirecek bilimsel ortamı yaratmaları açısından olumlu bir etki oluşturmayacaktır. Fikri Mülkiyet Hakları Giriş kısmında bahsedilen ve tarımsal üretimin artırılmasında oldukça başarılı sayılan “Yeşil Devrim”, büyük ölçüde kamu kuruluşları veya kamu yararına çalışan uluslararası araştırma enstitüleri tarafından gerçekleştirilmiştir. Bu nedenle, gerek yüksek verimli çeşitlerin geliştirilmesi gerekse bu tohumlukların çoğaltılarak gelişmekte olan ülke çiftçilerine ulaştırılması normal ticari kurallar içerisinde süregelmiştir. Benzer şekilde, mekanizasyon, kimyasal gübre ve tarımsal mücadele ilaçları kullanımı, sulu tarım teknikleri gibi yeni teknolojilerin transferi hatta sulama projelerinin kurulması gibi konularda uluslararası finans kuruluşları veya yardım kuruluşları önemli katkılarda bulunmuşlardır. Bugünkü “Biyoteknoloji Devrimi” ise büyük ölçüde özel sektör tarafından yapılmaktadır. Halen bu alandaki Ar-Ge çalışmalarının % 80 oranında özel sektör yatırımlarıyla gerçekleştiği tahmin edilmektedir. Hal böyle olunca, özel sektör yatırımcıları tarafından geliştirilen her teknik veya ürünün hemen patent veya benzeri yöntemlerle korunmaya alınması ve bunlardan kısa sürede ticari gelir sağlanması istenmektedir. Aksi halde, özel sektörün gelir getirmeyecek Ar-Ge faaliyetlerine girmesini beklemek pek gerçekçi olmayacaktır. Örneğin, halen ticarete intikal etmiş transgenik ürünlerin mısır, soya ve pamuk gibi büyük ürün gruplarında olması, gelişmekte olan ülkelerdeki tatlı patates ve sorgum gibi ürünlere özel sektör tarafından pek yatırım yapılmaması şaşırtıcı değildir (SOFA, 2004). Son yıllarda, yine uluslararası yardım kuruluşlarının desteği ile veya biyoteknoloji alanında yoğun Ar-Ge faaliyeti olan çokuluslu şirketlerin işbirliği ile kamu araştırma kuruluşlarında yeni transgenik çeşitlerin geliştirilmesine yönelik araştırma faaliyetlerinin arttığı gözlenmektedir. Ancak, burada da fikri mülkiyet haklarına ilişkin sorunların yoğun olarak tartışıldığı görülmektedir. Bunun en güncel örneklerinden birisi de yukarıda sözü edilen “Altın Pirinç”tir. Rockefeller Vakfı tarafından finanse edilen ve Prof. Ingo Potrykus ve Prof. Peter Beyer önderliğindeki araştırmacılar tarafından geliştirilen “Altın Pirinç”te 30 civarında farklı şirket ve üniversiteye ait 70 adet patent bulunması, bu ürünün ticari olarak değerlendirilmesinde ve hatta gelişmekte olan ülkelere transferinde önemli bir sorun olarak ortaya çıkmıştır. Bu konuda, Latin Amerika ülkelerinde yapılan bir çalışma (Cohen ve ark., 1998), bu ülkelerde yürütülen biyoteknolojik araştırmaların ve ürün geliştirme çalışmalarının hepsinde çok sayıda patentli teknik veya materyalin kullanıldığını göstermiştir (Şekil 2). Tüm bunlar, biyoteknolojik araştırmalardan gelişmekte olan ülkelerdeki fakir çiftçilerin ve halkın nasıl yararlanabileceği sorusunu akla getirmektedir. Dünya Ticaret Örgütü’ne (WTO) üye ülkelerin imzalamış oldukları TRIPS (Trade Related Intellectual Property Rights) antlaşması, bazı istisnai hükümlerine rağmen, gelişmiş ülkelerdeki çok uluslu şirketleri korur niteliktedir. Bu nedenle, gelişmekte olan ülkelerdeki araştırma kuruluşlarının, biyoteknolojik araştırmalarını planlarken ve yürütürken fikri mülkiyet haklarıyla ilgili konuları yakından izlemeleri ve ona göre tedbir almaları yararlı olacaktır. Bu bağlamda yine transgenik bitkilerden ziyade moleküler bitki ıslahı yöntemlerinin Türkiye gibi gelişmekte olan ülkeler açısından daha avantajlı olduğu söylenebilir. Yine burada, Türkiye gibi zengin gen kaynaklarına sahip ülkelerin, bu gen kaynaklarını tespit edip karakterize ederek, hatta bunlardaki ticari öneme sahip genleri saptayıp patentleyerek önemli bir konum yakalamaları mümkün olabilir. Bu konuda, FAO örgütü tarafından 2001 yılında kabul edilen Uluslararası Bitki Genetik Kaynakları Antlaşması işlerlik kazandığında, zengin gen kaynağı olan ülkelerin bu kaynaklardan daha etkin yaralanmalarına yardımcı olacaktır. Bu alandaki gerek yasal ve gerekse araştırma altyapısının şimdiden oluşturulması yararlı olacaktır. Şekil 2. Latin Amerika Ülkelerinde Kullanılan Patentli Teknikler ve Materyaller (Cohen ve ark., 1998). Türkiye’de Tarımsal Biyoteknoloji ve Transgenik Ürünlerin Durumu Türkiye zengin gen kaynaklarına sahip olması nedeniyle, tarımsal biyoteknoloji alanında çok önemli bir avantaja sahiptir. Ancak, Türkiye’nin modern biyoteknolojik yöntemlerin sunduğu nimetlerden yararlanabilmesi için dünyadaki gelişmeler ve Türkiye’deki mevcut durum çerçevesinde önceliklerini çok iyi saptaması gerekmektedir. Türkiye’de biyoteknolojinin gelişmesi için mutlak gerekli olan biyoloji, biyokimya, moleküler biyoloji gibi temel bilim alanlarına gerekli önemin verilmemesi, bu alanda yetişmiş eleman sayısının düşük kalmasına ve dolayısı ile kapsamlı araştırmaları yürütebilecek kritik kitleye sahip araştırma birimlerinin oluşturulmasına engel olmuştur. Bu sorun, 1980 yılından beri hazırlanan tüm 5 yıllık kalkınma planlarında vurgulanmış olmasına karşın, bu konuda henüz belirgin bir gelişme sağlandığı ne yazık ki söylenemez. Burada en önemli sorun, belirli düzeyde bilgi birikimine ve tecrübeye sahip araştırmacıları bir araya getirerek “uzmanlık merkezleri” oluşturmak yerine tek tek laboratuvarların oluşturulmasından kaynaklanmaktadır. Son yıllarda, yurt dışında moleküler biyoteknoloji alanında eğitim görmüş ya da moleküler bitki ıslahı konusunda eğitim almış genç araştırmacıların sayısı artıyor olmasına rağmen, bunları bir araya getirerek güdümlü projeler üzerinde çalışacak “uzmanlık merkezleri” ya da laboratuvarları oluşturacak bir çaba görülmemektedir. Gerekli tedbirler alınmadığı taktirde, geçtiğimiz 30 yıldır yapılan girişimlere ve harcanan çok önemli miktarda kaynaklara rağmen Türkiye’nin tarımsal biyoteknoloji alanında, bugün bulunduğu noktadan daha farklı bir konuma gelmesi mümkün olamayacaktır. Burada, Türkiye’de bitki doku kültürü yatırımlarının 1974 yılında başlamış olmasına ve halen hemen hemen tüm Ziraat Fakültelerinde ve Tarım Bakanlığı araştırma enstitülerinde birer doku kültürü laboratuvarı kurulmuş olmasına rağmen Türkiye’nin, son derece basit bir teknoloji gerektiren patates tohumluğu ihtiyacını bile, hemen tamamını her yıl milyonlarca dolar ödeyerek yurt dışından karşılaması en çarpıcı örneklerden birisidir. Türkiye’nin biyoteknolojiye ve tarımsal araştırmalara yaklaşımını ortaya koymak amacıyla, 2001-2005 yıllarını kapsayan VIII. Beş Yıllık Kalkınma Planının ilgili bölümleri incelendiğinde, bilgi toplumu olma amacı doğrultusunda bilimsel ve teknolojik gelişmeler sağlayarak uluslararası düzeyde rekabet gücü kazanmanın esas olduğu ilkesi dikkati çekmektedir. Bu ilke çerçevesinde biyoteknolojinin de içinde bulunduğu bazı yüksek teknolojiler öncelikli konu olarak belirlenmiştir. Ayrıca, ekonomik, sosyal, çevresel boyutunu bütün olarak ele alan rekabet gücü yüksek, sürdürülebilir bir tarım sektörünün oluşturulması temel amaç olarak tespit edilmiştir. Tarımsal araştırmalarda koordinasyonun sağlanmasının ve araştırma konularının belirlenmesinde üretici ve sanayicinin taleplerinin dikkate alınmasının gerekliliği de vurgulanmaktadır. Hedefler bu şekilde belirlenmekle birlikte, Türkiye’nin Ar-Ge konusunda diğer ülkelere oranla oldukça geride olduğu bilinen bir gerçektir. Halen Ar-Ge harcamalarının GSMH içindeki payı % 0,64 düzeyindedir. Üniversiteler toplam Ar-Ge çalışmalarında ve tarımsal araştırmalarda en fazla payı alan kurumdur. Dolayısıyla, diğer gelişmekte olan ülkelere paralel olarak Türkiye’de de özel sektör araştırmaları kısıtlı olup, üniversiteler % 70’lere varan payla en fazla araştırmanın yapıldığı kurum olmaktadır. TÜBA (2003) tarafından gerçekleştirilen “Moleküler Yaşam Bilimleri ve Teknolojileri Öngörü Projesi” kapsamında Türkiye’nin biyoteknoloji ile ilgili altyapısı ortaya konmaktadır. Çalışma, yaklaşık 150 araştırma biriminin ve 2000 araştırıcının biyoteknoloji konusunda çalıştığını göstermektedir. Bu sayının önemli bir insan altyapısını işaret ettiğini vurgulayan çalışma, araştırıcıların verimliliklerinin bir göstergesi olan araştırıcı başına bilimsel yayın verilerine bakıldığında mevcut altyapının etkin bir şekilde kullanılmadığını, kurumsallaşmanın ve teknoloji üretme kaygısının bulunmadığını .belirtmektedir. Türkiye’de biyoteknoloji alanında yapılan bilimsel yayınların yaklaşık % 42’si endüstriyel biyoteknoloji alanında olup tarımsal biyoteknoloji % 11,5 ile en az yayın çıkarılan biyoteknoloji dalı olmuştur. Stres toleransı, rejenerasyon ve propagasyon, farmasötik ve moleküler markörler en fazla çalışılan tarımsal biyoteknoloji konularıdır (Özcengiz, 2003). Biyoteknoloji araştırmaları için devlet TÜBİTAK, kamu kurumları ve üniversitelere destek verdiği gibi özel sektöre de belli oranlarda destekler sağlamaktadır. Kamu yatırım bütçesinden üniversitelere araştırma projelerinin desteklenmesi amacıyla ödenekler tahsis edilmekte olup, desteklenen projeler arasında genetik kaynakların korunması projeleri, transgenik bitki geliştirilmesine ve üniversitelerin altyapılarını geliştirmeye yönelik projeler önde gelmektedir. Öte yandan, firmaların biyoteknoloji araştırma geliştirme faaliyetlerine de TÜBİTAK bünyesindeki Teknoloji İzleme Değerlendirme Birimi (TİDEB) ve Türkiye Teknoloji Geliştirme Vakfı (TTGV) kanalıyla destek sağlanmaktadır. TİDEB firmaların Ar-Ge proje maliyetlerinin en fazla % 60’ı oranında ve hibe şeklinde destek vermektedir. Bu program dahilinde, gen mühendisliği-biyoteknoloji 6 öncelikli konudan biri olarak tespit edilmiş olup biyoteknoloji projelerinin toplam desteklenen projeler içindeki payı % 3,1’dir. TTGV ise proje maliyetinin en fazla % 50’sini karşılamakta ve geri ödemeli bir sistem içinde destek vermektedir. Biyoteknolojinin bu kapsamda desteklenen projeler içerisindeki payı ise % 7’dir. Tarımsal biyoteknolojide gelişme kaydetmiş ülkelerdeki kurumsal yapılanma üniversiteler, kamu Ar-Ge kuruluşları ve özel sektör olmak üzere 3 farklı ayaktan meydana gelmekte ve her bir kurumun kendi kapasiteleri ve görev tanımları içinde belirlenmiş rolleri bulunmaktadır. Örneğin üniversiteler ve kamu Ar-Ge kuruluşları temel araştırma konusunda uzmanlaşırken, özel sektörün uygulamalı araştırma ve ürün geliştirmeye yönelik çalıştığı görülmektedir. Birbirinin tamamlayıcısı olan bu roller içinde bir kurumun eksikliği sistemin iyi çalışmamasına neden olmaktadır. Bu noktadan hareketle Türkiye’deki yapıya baktığımızda, araştırma sistemi içerisinde üniversitelerin temel kuruluş olduğu ve en önemli ayaklardan biri olan özel sektörün sistem içinde yer almadığı dikkati çekmektedir. Dolayısıyla, özel sektörün ve kamu Ar-Ge kuruluşlarının rolünü üstlenecek bir kurumsallaşma olmadığı için hedefe yönelik ve verimli çalışan bir sistem mevcut değildir. Bununla beraber, yukarıda da belirtildiği gibi araştırmaların önemli bir kısmını yürüten üniversitelerin de verim ve etkinlik sorunları bulunmaktadır. Son yıllarda, çok önemli kaynaklar sağlanarak, moleküler biyoloji altyapısına sahip laboratuarların kurulduğu ve yine yeterli yetkin kadroların bulunup bulunmadığı aranmaksızın önemli miktarda proje destekleri sağlandığı görülmektedir. Ancak, bu projeler incelendiği zaman bunların çoğunun gerçekçi hedeflere odaklanmadığı ve ürün geliştirme niteliği taşımadığı da bir gerçektir. Transgenik ürün geliştirmeye yönelik bir kısım araştırma projelerinin başarılı olmaları için gerekli özel sektör katılımı ya da desteğinin olmaması da ayrıca düşünülmesi gereken bir husustur. Yine bu bağlamda, geliştirilmesi muhtemel transgenik ürünlerin risk analizleri ve pazara sunumları için gerekli yasal çerçevenin çizilmemiş olması da bunların uygulamaya geçirilme şansını ortadan kaldırmaktadır. İlk defa 1998 yılında yabancı firmalara ait transgenik çeşitlere ait tarla denemelerinin yapılabilmesi için Tarım ve Köyişleri Bakanlığı tarafından hazırlanarak yürürlüğe sokulan “Transgenik Kültür Bitkilerinin Alan Denemeleri Hakkında Talimat” ise bu amaca hizmet etmekten çok uzaktır. Hal böyle iken, söz konusu çeşitlerin tarla denemelerinin 1998 yılından bu yana bizzat Tarım ve Köyişleri Bakanlığı’na ait Araştırma Enstitü’leri tarafından yürütülüyor olmasına rağmen elde edilen sonuçların resmen açıklanmamış olması da üzerinde durulması gereken önemli bir konudur. Türkiye Cartagena Biyogüvenlik Protokolünü imzalayan ilk ülkelerden biri olmuşsa da buna yönelik yasal mevzuat çalışmalarını aynı hızda yürütememiştir. Aynı şekilde, Avrupa Birliği mevzuatına uyum için gerekli yönetmelikler de henüz hazırlanarak yürürlüğe sokulamamıştır. Biyogüvenlikle ilgili bu mevzuat boşluğunun yanında, fikri mülkiyet hakları kapsamında Bitki Islahçı Haklarıyla ilgili mevzuat yıllar sonra oluşturulmuşsa da UPOV üyeliği henüz gerçekleştirilememiştir. Türkiye’de transgenik ürünlerin ticari olarak ekimlerine izin verilmezken, yurtdışından gıda hammaddesi olarak ithal edilen mısır ve soya ürünlerinin transgenik olma ihtimali oldukça yüksek görünmektedir. Sonuç ve Öneriler Kısaca biyoteknoloji olarak da isimlendirilen modern gen teknolojileri, hızla artan dünya nüfusunun yeterli ve dengeli beslenmesini sağlamak amacıyla tarımsal üretimin artırılmasında önemli olanaklar sunmaktadır. Burada, sürdürülebilir tarım tekniklerinin uygulanmasının yanında biyotik ve abiyotik stres koşullarına dayanıklı, yüksek verimli ve kaliteli bitki çeşitlerinin geliştirilmesi önemli bir önceliktir. Bu bitkilerin geliştirilmesinde sadece transformasyon yoluyla elde edilen transgenik bitkiler değil, ağırlıklı olarak moleküler bitki ıslahı teknikleri üzerinde yoğunlaşmak kısa ve orta vadede daha doğru olacaktır. Türkiye gibi zengin gen kaynaklarına sahip gelişmekte olan ülkelerin, öncelikli alanlarını saptayarak moleküler biyoloji çalışmaları için yeterli altyapıyı oluşturmaları ve kritik kitleyi oluşturacak sayıda yetkin araştırmacı yetiştirmeleri, ellerindeki genetik potansiyeli en iyi şekilde değerlendirmelerine yardımcı olacaktır. Ancak, teknolojik gelişmelere paralel olarak, gerek bu tekniklerin ve ürünlerin geliştirilmesi sırasında gerekse bunların doğaya salımlarında biyogüvenlikle ilgili yasal düzenlemelerin yapılması ve bu mevzuatı uygulayacak yetkin kişilerin eğitilmesi gerekmektedir. Burada, hazırlanacak mevzuatın bilimsel esaslara dayalı olması, yurt içinde yapılacak çalışmaları engelleyici değil kolaylaştırıcı tedbirleri içermesi önem taşımaktadır. Aynı şekilde, biyoteknolojik uygulamalar ve ürünlerle ilgili fikri mülkiyet haklarına yönelik Bitki Islahçı Hakları, Patent Kanunu gibi mevzuatın bir an önce uygulanabilir hale getirilmesi, bu alanlarda araştırmacıları bilgilendirecek ve destekleyecek düzenlemelerin yapılması küreselleşen dünya ticaretinde rekabet edebilecek bir konuma gelebilmemiz için önem taşımaktadır. Prof. Dr. Selim ÇETİNER Sabancı Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi Tuzla, İstanbul

http://www.biyologlar.com/biyoteknoloji-ve-tarim-guvencesi

İnsan Aklının Evrimi

4.5 milyon yil önceden sonra fosil kayitlari gelistiginde, australopithecinelerin Dogu Afrika’da ve muhtemelen bu kitanin baska herhangi bir yerinde yerlesmis olduklarini görürüz. A. aferensis, hem agaçlar üzerinde hem de karada sürdürülen yasam biçimine saglanan uyumu sergiler. 3.5 ile 2.5 milyon yil önceye ait fosiller, beyin boyutlari açisindan bu dönemin bir denge dönemi oldugunu gösterir. Devamli gelisen bir sosyal zekanin ve bunun sonucu büyüyen beyin yönündeki spiral baskinin sona ermesi, ya da en azindan bir duraklama geçirmesi niçin gereklidir? Bu sorunun muhtemel yaniti, evrimin simdi iki güçlü sinirlama ile karsi karsiya oldugudur: Daha büyük beyinlerin daha çok yakita gereksinimi vardir ve serin tutulmalari gerekir. Yakit açisindan beyinler son derece aç gözlüdürler. Dinlenme halindeyken, kas dokusunun gereksinim duydugunun 22 kati enerjiye gerek duyarlar. Isi açisindan ise, yalnizca 2 derecelek bir artis bile beynin çalismasinin zayiflamasina yol açar. Australopithecineler daha çok vejetaryen olmaliydilar ve muhtemelen agaçlikli ekvatoral savanalarda yasiyorlardi. Bu yasam biçimi beyne sunulabilecek enerji miktarini kisitliyor ve australopithecineleri sürekli olarak fazla isinma riskiyle karsi karsiya birakiyordu, Bu yüzden seçilime yönelik baskilar mevcut olsa bile beyin genislemesi gerçeklesmiyordu. Eger kosullar sasirtici sekilde bir araya gelmemis olsaydi, australopithecinelerin hâlâ Afrika’da yiyecek ariyor olmalari ve Homo soyunun evrimlesmesinin gerçeklesmemis olmasi mümkündü. Ama yaklasik 2 milyon yil önce çok hizli bir beyin büyüme dönemi baslamis ve bu olay Homo soyunun baslangicini isaretlemisti. Bunun gerçeklesmesi ancak beyin büyümesi ile ilgili kisitlamalar gevsetilirse ve kuskusuz, seçilime yönelik baskilar varsa mümkün olabilirdi. Bunun nasil oldugunu açiklamaya çalisirken, aklin, beyin ve vücudun evrimi arasindaki karsilikli iliskiler son derece önem kazanmisti. Bu dönemde iki çok önemli davranissal gelisme olmustu: Bipedalizm, yani iki ayak üzerinde yürüme ve et tüketimindeki artis. Iki ayakliligin nedenleri Ikiayakliligin evrimi 3.5 milyon yil önce baslamistir. Bununla ilgili kanitlar A. aferensisin aratomisinden ve daha etkin olarak da Tanzanya , Laetoli’de günümüze kadar korunabilmis olan australopithecine ayak izlerinden elde edilmistir. Bipedalizme neden olan en muhtemel seçilimci baski Dogu Afrika’nin agaçlikli savanalarinda yiyecek arayan australopithecinelerin sikintisini çektigi termal stres olabilirdi. Agaçlara tirmanan ve dallar arasinda sallanan atalariyla australopithecineler zaten dik durmaya yatkin bir vücut yapisina sahiptiler. Antropolog Peter Wheeler, australopithecinelerin ikiayakliliga uyum saglamakla, günes tepedeyken karsi karsiya kaldiklari radyasyon miktarini yüzde 60 eksiltmeyi basardiklarina dikkat çekmistir. Üstelik, bu sekilde, hareket için gerekli enerjji maliyetlerini de düsürmüs oluyorlardi. Bipedalizm, australopithecinelerin gida ve suya gereksinim duymadan daha uzun süreler yiyecek arayabilmelerini, daha az dogal gölgelige sahip yerlerde arastirmalarini sürdürebilmelerini, böylece dogal gölge ve su kaynaklarina daha bagimli olan diger yagmacilara açik olmayan yiyecek arama köselerinden yararlanmalarini sagliyordu. Giderek daha etkinlesen ikiayakliliga geçisin bir nedeni de, 2.8 milyon yil önce Afrika’da çevresel kosullarin daha kuru ve açik çevrelere dogru degismesi olabilirdi. Çünkü dik durus pozisyonunun benimsenmesiyle, günes radyasyonunun etkisinin azaltilmis olmasi daha çok deger kazanmis oluyordu. Ellerin özgürlesmesi, beynin büyümesi Denge ve hareket için gerekli kas kontrolünü saglayabilmek açisindan ikiayaklilik daha büyük bir beyin gerektiriyordu. Ama ikiayaklilik ve kara yasaminin, beyin büyümesiyle ilgili birçok baska sonuçlari da vardi. Bunlardan bazilari antropolog Dean Falk tarafindan incelenmistir. Falk, ikiayaklilikla birlikte, beyin için bir sogutma sistemi -ya da kendi deyisiyle bir radyatör- olusturmak üzere, beyni kaplayacak bir damar aginin da seçilmis olmasi gerektigini ileri sürer. Sogutma sistemi bir kez yerini bulunca, beynin daha fazla büyümesinin neden olacagi fazla isinma konusundaki baski rahatlamisti. Çünkü bu, üzzerinde kolayca degisiklik yapilabilir nitelikte bir radyatördü ve dolayisiyla beynin yeniden büyümesi olasiligi (gereksinimi degil) ortaya çikiyordu. Dean Falk, bipedalizmin, beyindeki nörolojik baglantilarin da yeniden düzenlenmesine yol açtigini ileri sürer: “Ayaklar bir kez, yürümek için agirlik tasiyicilar haline gelip (ikinci bir çift el gibi) yakalayici durumlarindan kurtulunca, daha önce ayak kontrolü için kullanilan korteks alanlari, korteksi baska fonksiyonlar için özgür birakarak küçülmüstü.” Kuskusuz bu durum, tasima ve alet yapma olanaklarinin zenginlesmesini ve ellerin “özgürlesmesini” de beraberinde getiriyordu. Dogal çevrenin algilanmasi açisindan da önemli degisiklikler yasanmis olabilirdi, çünkü simdiye kadar (beynin) tarama alanina giren uzaklik ve yönler de artmisti; yüz yüze iliskiler çogaldigi için sosyal çevrede de bir degisim yasanmis, yüz ifadeleri yoluyla iletisim kurabilme olanaklari zenginlesmisti. Bununla birlikte, belki de bipedalizmin en önemli sonucu les yiyicilige uygun köselerden yararlanmayi kolaylastirmis olmasiydi. Etçiller için bir gölgelik bulma gereksinimi duyulan günün belirli saatlerinde, ikiayaklilarin hayvan leslerinden yararlanabilmesini saglayan bir “firsat penceresi” açilmisti. Leslie Aiello ve Peter Wheeler'in ileri sürdükleri gibi, diyetlerde et miktarinin artmasi ile mide boyutlarinin daha da küçülmesi ve böylece beyin için daha fazla metabolik enerjinin özgür kalmasi, bu arada da sabit bir metabolizme hizinin korunmasi mümkündü. Bu sekilde, beynin büyümesiyle ilgili bir baska sinirlama daha ortadan kalkmis oluyordu. Steven Mithen

http://www.biyologlar.com/insan-aklinin-evrimi

Küresel ısınma kapıda

Dünya, İkinci Dünya Savaşı`ndan bu yana artan bir sanayileşme ve gelişim süreci yaşıyor. Teknoloji ilerliyor, yeni fabrikalar kuruluyor, trafiğe çıkan araç sayısı her geçen gün artıyor. Amaç insanoğlunun yaşam kalitesini artırmak. Ancak insanlığı, hatta tüm canlıları tehdit eden `küresel ısınma` yine bu sürecin bir sonucu. Eriyen buzullar. Kuruyan su kaynakları. Doğal ortamları yok olan ve günden güne sayıları azalan canlı türleri... Bunlar, küresel ısınmanın sonuçlarından sadece birkaçı. Küresel ısınmanın en önemli nedeni sera gazları. Fabrika bacalarından yükselen dumanlar, egzoslardan çıkan gazlar ve enerji üretimi için kullanılan fosil yakıtlar sera etkisinin baş sorumluları. Karbondioksit, metan, subuharı gibi gazlardan oluşan sera gazları, dünyadan yansıyan güneş ışınlarını tutarak dünyanın ısınmasına neden oluyorlar. Sera gazlarının atmosferdeki miktarı arttıkça tutulan ışın miktarı artıyor ve dünya her geçen gün daha fazla ısınıyor. Küresel ısınmanın etkileri en yüksek zirvelerden, okyanus derinliklerine, ekvatordan kutuplara kadar dünyanın her yerinde hissediliyor. Sıcaklık artışı nedeniyle su kaynakları kuruyor, buzullar eriyor. Deniz seviyesinin yükselmesi sonucu kıyı kesimleri sular altında kalıyor. Bu bölgelerde yaşayan insanlar çareyi yüksek yerlere göç etmekte buluyorlar. Doğal yaşam ortamlarını kaybedenler sadece insanlar da değil. Kutup ayıları günden güne eriyen buz kütlelerini çaresizlik içinde izliyorlar. Her sene yüzlerce kuşun uğradığı mekanlarsa artık sessiz. Isınan okyanuslardan da iç denizlere doğru bir göç var. Gün geçmiyor ki Ege denizinde, ancak okyanuslarda rastlanan büyüklükte bir köpek balığı ağlara takılmasın. Akdeniz ise artık okyanusların zehirli balık türlerine ev sahipliği yapıyor. Aşırı sıcaklar yüzünden çıkan yangınlarda da her sene binlerce hektarlık orman kül oluyor. Atmosferdeki gaz dengesini sağlayan ormanların yok olması sonucu küresel ısınma artıyor. Bilimadamları son 50 yıldaki sıcaklık artışının insan hayatı üzerinde farkedilebilir etkileri olduğunu belirtiyorlar. Yaz aylarında yaşanan çöl sıcaklarında onlarca insan hayatını kaybederken, dünya yüzyıllardır görmediği kadar sert kış mevsimleri yaşıyor. Azalan içme suyu kaynakları ve çölleşme de iklim değişikliğinin sebep olduğu ciddi sorunlardan. Halihazırda birçok ülke temiz içme suyu sıkıntısı yaşıyor. Küresel ısınmayla birlikte su kaynaklarının beklenenden çok daha hızlı kuruması ve devletler arasında su savaşları çıkması artık çok olası bir senaryo. Şu an için uzak görülmekle birlikte ortaya çıkma ihtimali bulunan bir başka sorun ise besin zincirinin kırılması. Bilimadamları birçok canlı türünün küresel ısınmanın etkileri sonucu yok olacağı, bunun da besin zincirinde kırılmaya yol açacağı görüşündeler. Tüm canlıları yakından ilgilendiren bu durumun insanoğlu için doğuracağı sonuç ise açlık. Bu senaryonun gerçek olması halinde milyonlarca insanın açlıktan ölebileceği ve büyük göçlerin yaşanabileceği belirtiliyor. Doğal dengedeki bu büyük bozulma ve ortaya çıkabilecek korkutucu sonuçların baş sorumlusu insanoğlu. Bu olası senaryoların gerçekleşmesini önlemek de yine insanoğlunun elinde. Bu amaçla 1997`de hazırlanan Kyoto protokolü küresel ısınmayı ve yol açtığı bozulmaları durdurma yönünde büyük önem taşıyor. Protokolü imzalayan ülkeler sera gazı salınımını sınırlama sözü veriyorlar. Türkiye de Kyoto Protokolü`ne taraf olunmasını öngören kanun tasarısını geçen hafta mecliste onayladı. Bilimadamları, kötü gidişe dur demek için geç olmadığını söylemekle birlikte, küresel ısınmanın bozduğu doğal dengelerin düzelmesi için bile yüzlerce yıl gerektiğini belirtiyorlar.

http://www.biyologlar.com/kuresel-isinma-kapida

Fosil Nedir

Fosilleri inceleyen bilim dalına paleontoloji, fosil toplayıp bunlar üzerinde çalışma yapan kişilere de paleontollog denir. Fosiller bir polen tanesi küçüklüğünde ya da dev bir dinazorun kemiği büyüklüğünde olabilir. Bir hayvan ya da bitkinin fosilleşmesi için milyonlarca yıl devam eden bir süreç gerekmektedir. Genellikle hayvan ya da bitkilerin sert kısımları bu uzun süreç boyunca dayanıklılık gösterebilir. Jeolojik zamanlarda yaşamış olan canlıların tortul kayaçlar içinde taşlaşmış olarak bulunan her çeşit kalıntı ve izine FOSİL adı verilir. Fosiller, bugün yaşayan bir çok grubu temsil ettikleri gibi, soyları tümüyle ortadan kalkmış grupları da tanımamıza yardımcı olurlar. Bilinen en eski fosiller günümüzden 3.6 milyar yıl önce yaşamış olan fotosentetik siyanobakterilerdir (mavi-yeşil algler). Fosiller Nerelerde Bulunur? Fosiller karasal ve denizel ortamlarda yaşamış hayvan ve bitkiler ile onların izlerine aittir. Daha çok kumtaşı, kireçtaşı, çamurtaşı ve şeyl gibi tortul kayaçlarda bulunurlar. Grönland'dan Antartika' ya, okyanus tabanlarından dağların en yüksek zirvelerine kadar dünyanın her tarafında dağılım gösterirler. Fosillerin dünya coğrafyası üzerindeki geniş dağılımı, yerküre yüzeyinin jeolojik zamanlar boyunca sürekli değiştiğini kanıtlar   En genel anlamıyla fosil, uzun zaman önce yaşamış canlıların yapılarının, doğal koşullar altında korunarak günümüze kadar ulaşan izidir. Fosiller, kimi zaman organizmanın bir parçasının kimi zaman da canlının hayattayken bıraktığı izlerin (bunlara iz fosil denir) günümüze kadar gelmesidir. Ölen hayvan ve bitkilerin, çürümeden korunarak, yer kabuğunun bir parçası haline gelmesiyle fosil oluşur. Fosilleşmenin meydana gelebilmesi için, hayvanın veya bitkinin -üzerini çoğunlukla bir çamur katmanının örtmesiyle- ani ve hızlı bir şekilde gömülmesi gerekir. Bu gömülmeyi genellikle kimyasal bir süreç takip eder. Bu süreçte yaşanan mineral değişimleriyle de koruma sağlanmış olur. Fosiller, canlılık tarihinin en önemli delilleridir. Dünyanın çeşitli bölgelerinde elde edilmiş yüz milyonlarca fosil bulunmaktadır. Fosillerin sağladığı temel bilgi, canlılığın tarihi ve yapısı hakkındadır. Milyonlarca fosil, canlılığın aniden, kompleks yapısıyla, eksiksiz olarak ortaya çıktığını ve milyonlarca yıl boyunca hiçbir değişikliğe uğramadığını göstermektedir. Bu da canlılığın yoktan var edildiğinin yani yaratıldığının önemli bir delilidir. Canlıların aşama aşama oluştuğunu, yani evrim geçirdiğini gösteren ise tek bir fosil dahi yoktur. Evrimcilerin ara fosil olduğunu iddia ettikleri fosil örnekleri yalnızca birkaç tanedir ve bunların geçersizliği de bilimsel olarak ispatlanmış durumdadır. Aynı zamanda yine Darwinistlerin ara fosil olarak dünyaya tanıttıkları bazı örneklerin sahte çıkması da, bu konuda sahtekarlık yapacak kadar çaresiz olduklarını gözler önüne sermektedir. 150 yılı aşkın süredir, dünyanın dört bir yanında yapılan kazılarda elde edilen fosil kayıtları, balıkların hep balık, böceklerin hep böcek, kuşların hep kuş, sürüngenlerin hep sürüngen olduğunu ispatlamıştır. Canlı türleri arasında bir geçiş olduğunu -yani balıkların sürüngenlere, sürüngenlerin kuşlara dönüştüğü gibi- gösteren tek bir tane bile fosil görülmemiştir. Kısaca, fosil kayıtları, evrim teorisinin temel iddiası olan, türlerin uzun süreçler içinde değişimlere uğrayarak birbirinden türediği iddiasını kesin olarak çürütmüştür. Fosiller canlılık hakkında verdikleri bilginin yanı sıra, kıta tabakalarının hareketlerinin yeryüzü yüzeyini nasıl değiştirdiği, Dünya tarihinde yaşanan iklimsel değişikliklerin neler olduğu gibi yeryüzünün geçmişiyle ilgili de önemli bilgiler sunarlar. Fosiller, antik Yunan döneminden beri araştırmacıların ilgisini çekmiş, ancak 17. yüzyıl ortalarından itibaren fosillerin incelenmesi bir bilim dalı olarak gelişmeye başlamıştır. Araştırmacı Robert Hooke'un eserlerini (Micrographia (Mikrografi), 1665; Discourse of Earthquakes (Deprem Konuşmaları), 1668), Niels Stensen'in (Nicolai Steno ismiyle bilinir) çalışmaları takip etmiştir. Hooke ve Steno'nun fosiller üzerinde çalışma yaptıkları dönemlerde, düşünürlerin büyük bir kısmı fosillerin gerçekten yaşamış canlıların izleri olduğuna inanmıyorlar, doğanın bir şekilde canlıları taklit ettiğini iddia ediyorlardı. Fosillerin gerçek canlıların izi olup olmadığı yönündeki tartışmanın temelinde, fosillerin bulunduğu yerlerin dönemin jeolojik bilgileriyle açıklanamaması vardı. Fosiller genelde dağlık bölgelerde bulunuyor, ancak örneğin bir balığın nasıl olup da su seviyesinden bu kadar yüksek bir mekanda fosilleşmiş olabileceği teknik olarak açıklanamıyordu. Steno, tıpkı geçmişte Leonardo Da Vinci'nin öne sürdüğü gibi, tarih boyunca su seviyesinde geri çekilmeler olduğunu iddia ediyordu. Hooke ise, dağların okyanus tabanlarındaki depremler ve iç ısınma nedeniyle oluştuğunu söylüyordu. Hooke ve Steno'nun, fosillerin geçmişte yaşamış canlıların izleri olduğunu ortaya koyan açıklamalarının ardından, 18. ve 19. yüzyılda jeolojinin de gelişmesiyle, fosil toplama ve araştırma sistemli bir bilim dalına dönüşmeye başladı. Fosillerin sınıflandırılması ve yorumlanmasında, Steno'nun belirlediği prensipler izlendi. Özellikle 18. yüzyıl itibariyle madenciliğin gelişmesi ve demiryolları inşaatlarının artması, yer altının daha çok ve daha detaylı incelenmesine imkan tanıdı. Modern jeoloji, yeryüzü yüzeyinin "tabaka" adı verilen katmanlardan oluştuğunu, bu tabakaların, kıtaları ve okyanus tabanını taşıyarak Dünya üzerinde hareket ettiğini, tabakalar hareket ettikçe Dünya coğrafyasında değişiklikler olduğunu, dağların da büyük tabakaların hareketleri ve çarpışmaları sonucunda meydana geldiğini ortaya koydu. Dünya coğrafyasında uzun zaman dilimleri içinde meydana gelen değişimler, şimdi dağlık olan bazı bölgelerin bir zamanlar sularla kaplı olduğunu da gösteriyordu. Böylece kaya katmanlarında bulunan fosillerin, yeryüzünün farklı dönemleri hakkında bilgi edinmenin önemli yollarından biri olduğu ortaya çıktı. Jeolojik bilgiler, öldükten sonra çökeltiler içinde korunan canlı izlerinin yani fosillerin, çok uzun dönemler içinde, kayaların oluşumu sırasında yeryüzünün kabuğuna doğru yükseldiklerini gösteriyordu. Fosillerin bulunduğu kayaların bazıları, yüz milyonlarca yıl öncesine aitti. Yapılan araştırmalarda, belli fosil türlerinin yalnızca belli katmanlarda ve belli kaya tiplerinde bulunduğu gözlemlendi. Üst üste gelen kaya katmanlarının her birinde kendisine has, o katmanın bir tür imzası olarak nitelenebilecek fosil grupları olduğu görüldü. Bu "imza fosiller", hem zaman dilimlerine göre hem de mekana göre farklılık gösterebiliyordu. Örneğin, aynı döneme ait bir fosil yatağında, biri eski bir göl yatağı diğeri de mercan kayalığı olan iki farklı çevre koşulu ve tortuyla karşılaşılabiliyordu. Ya da bunun tam tersine, birbirinden kilometrelerce uzakta iki farklı kayalıkta, aynı fosil "imzasıyla" karşılaşmak mümkündü. Bu izlerin sağladığı bilgilerle, günümüzde halen kullanılmakta olan jeolojik zaman çizelgesi tespit edildi.

http://www.biyologlar.com/fosil-nedir

Evrimleşmeyi Sağlayan Düzenekler

Doğal Seçilim Bir populasyon, kalıtsal yapısı farklı olan birçok bireyden oluşur. Ayrıca, meydana gelen mutasyonlarla, populasyondaki gen havuzuna (türün üreme yeteneğine sahip tüm bireylerinin oluşturduğu genler) yeni özellikler verebilecek genler eklenir. Bunun yanısıra mayoz sırasında oluşan Krossing-Over'lar (Mayoz bölünmede gen parça değişimi) ve rekombinasyonlar, yeni özellikler taşıyan bireylerin ortaya çıkmasını sağlar. İşte bu bireylerin taşıdıkları yeni özellikler (yani genler) nedeniyle, çevre koşullarına daha iyi uyum yapabilme yeteneği kazanmaları, onların, doğal seçilimden kurtulma oranlarını verir. Yalnız çevre koşulları her yerde ve her zaman (özellikle jeolojik devirleri düşünürsek) aynı değildir. Bunun anlamı ise şudur: Belirli özellikleri taşıyan bireyler, belirli çevre koşullarına sahip herhangi bir ortamda, en başarılı tipleri oluşturmalarına karşın, birinci ortamdakinden farklı çevre koşulları gösteren başka bir ortamda, ya da zamanla çevre koşullarının değiştiği bulundukları ortamda, uyum yeteneklerini ya tamamen ya da kısmen yitirirler. Bu ise onların yaşamsal işlevlerinde güçlüklere (döllenmelerinde, embriyonik gelişmelerinde, erginliğe kadar ulaşmalarında, üremelerinde, besin bulmalarında, korunmalarında vs.) neden olur. Böylece erginliğe ulaşanlarının, ulaşsalar dahi fazla miktarda yavru verenlerinin, verseler dahi bu yavruların ayakta kalanlarının sayısında büyük düşmeler görülür. Bu çevre koşulları belirli bir süre (genellikle uzun bir süre) etkilerini sürdürürse, belirli özelliklere (gen yapısına) ahip bireyler devamlı ayıklanacak ve taşıdıkları genlerin gen havuzundan eksilmesiyle, gen frekanslarında (bir özelliğin, bireylerde ortaya çıkış sıklığı) değişmeler ortaya çıkacaktır. Bu seçilim, çoğunluk döller boyunca sürer. Bir zaman sonra da bu gen bileşimindeki bireyler topluluğu tamamen ortadan kalkmış olur. (jeolojik devirlerdeki birçok canlının çevre koşulları nedeniyle soyunun tükenmesi) Buna karşın, başlangıçtaki populasyonlarda bu çevre koşullarına uyum yapabilecek özelliklere (gen bileşimlerine) sahip bireyler korunduğu için sayıları ve dolayısıyla taşıdıkları genlerin frekansı gen havuzunda sürekli artar. Böylece, bir zaman sonra, yeni mutasyonların ve rekombinasyonların meydana gelip, uygun olanlarının ayıklanmasıyla da, başlangıçtaki populasyona benzemeyen, tamamen ya da kısmen değişmiş populasyonlar ortaya çıkar. Burada dikkat edilecek husus, bireylerin ayakta kalmalarının yalnız başına evrimsel olarak birşey ifade etmemesidir. Eğer taşıdıkları genler, gelecek döllere başarılı bir şekilde aktarılamıyorsa, diğer tüm özellikleri bakımından başarılı olsalarda, evrimsel olarak bu niteliklere sahip bireyler başarısız sayılırlar. Örneğin, kusursuz fiziksel bir yapıya sahip herhangi bir erkek, kısırsa ya da çiftleşme için yeterli değilse, ölümüyle birlikte taşıdığı genler de ortadan kalkar ve evrimsel gelişmeye herhangi bir katkısı olmaz. Ya da güçlü ve sağlıklı bir dişi, yavrularına bakma içgüdüsünden yoksunsa, ya da yumurta meydana getirme gücü az ise, populasyonda önemli bir gen frekansı değişikliğine neden olamayacağı için, evrimsel olarak başarılı nitelendirilemez. Demek ki doğal seçilimde başarılı olabilmek için, çevre koşullarına diğerlerinden daha iyi uyum yapmanın yanısra, daha fazla sayıda yumurta ya da yavru meydana getirmek gerekir. Doğal Seçilim çevre koşullarına bağımlı olarak farklı şekillerde meydana gelir; 1.Yönlendirilmiş seçilim 2.Dengelenmiş Seçilim 3.Dallanan Seçilim Yönlendirilmiş Seçilim Doğal seçilimin en iyi bilinen ve en yaygın şeklidir. Özel koşulları olan bir çevreye uzun bir süre içerisinde uyum yapan canlılarda görülür. Genellikle çevre koşullarının büyük ölçüde değişmesiyle ya da koşulları farklı olan bir çevreye göçle ortaya çıkar. Populasyondaki özellikler bireylerin o çevrenin koşullarına uyum yapabileceği şekilde seçilir. Örneğin nemli bir çevre gittikçe kuraklaşıyorsa, doğal seçilim, en az su kullanarak yaşamını sürdüren canlıların yararına olacaktır. Populasyondaki bireylerin bir kısmı daha önce mutasyonlarla bu özelliği kazanmışlarsa, bu bireylerin daha fazla yaşamaları, daha çok döl vermeleri, yani genlerini daha büyük ölçüde populasyonun gen havuzuna sokmaları sağlanır. Bu arada ilgili özelliği saptayan genlerde meydana gelebilecek mutasyonlardan, yeni koşullara daha iyi uyum sağlayabilecekler seçileceğinden, canlının belirli bir özelliğe doğru yönlendirildiği görülür. Bu, doğal seçilimin en önemli özelliğinden biridir. Her çeşit özelliği meydana getirebilecek birçok mutasyon oluşmasına karşın, çevre koşullarının etkisi ile, doğal seçilim, başarılı mutasyonları yaşattığı için, sanki mutasyonların belirli bir amaca ve yöne doğru meydana geldiği izlenimi yaratılır. Yukarıda verdiğimiz örnekte, uyum, suyu artırımlı kullanan boşaltım organlarından, suyu en idareli kullanan böbrek şekline doğru gelişmeyi sağlayacak genler yararına bir seçilim olacaktır. Su buharlaşmasını önleyen deri ve post yapısı, kumda kolaylıkla yürümeyi sağlayan genişlemiş ayak tabanı vs. doğal seçilimle bu değişime eşlik eden diğer özelliklerdir. Önemli olan, evrimde bir özelliğin ilkel de olsa başlangıçta bir defa ortaya çıkmasıdır; geliştirilmesi, mutasyon-doğal seçilim düzeneği ile zamanla sağlanır. Bu konudaki en ilginç örnek, bir zamanlar ingiltere'de fabrika dumanlarının yoğun olarak bulunduğu bir bölgede yaşayan kelebeklerde (Biston betularia) meydana gelmesi evrimsel değişmedir. Sanayi devriminden önce hemen hemen beyaz renkli olan bu kelebekler (o devirden kalma kolleksiyonlardan anlaşıldığı kadarıyla), ağaçların gövdelerine yapışmış beyaz likenler üzerinde yaşıyorlardı. Böylece avcıları tarafından görülmekten kurtulmuş oluyorlardı. Sanayi devrimiyle birlikte, fabrika bacalarından çıkan siyah renkli kurum vs. bu likenleri koyulaştırınca, açık renkli kelebekler çok belirgin olarak görülür duruma geçmiştir. Bunların üzerinde beslenen avcılar, özellikle kuşlar, bunları kolayca avlamaya başlamıştır. Buna karşın sanayi devriminden önce de bu türün populasyonunda çok az sayıda bulunan koyu renkli bireyler bu renk uyumundan büyük yarar sağlamıştır. Bir zaman sonra populasyonun büyük bir kısmı koyu renkli kelebeklerden oluşmuştur. ''Sanayi Melanizmi''. Günümüzde alınan önlemler sayesinde, çevre temizlenince, beyaz renkli olanların sayısı tekrar artmaya başlamıştır. Yönlendirilmiş doğal seçilime, diğer bir ismiyle ''Orthogenezis'' e en iyi örneklerden biri de atın evrimidir. birçok yan dal (cins ve tür düzeyinde) ortama daha az uyum yaptığı için ortadan kalkmış, bugünkü Equus'u yapacak kol başarılı uyumu ile günümüze kadar gelmiştir. Birçok durumda, bazı yapıların gelişmesindeki yönlendirme, yararlı noktadan öteye geçebilir. Örneğin İrlanda geyiğinin boynuzları, kama dişli kaplanın üst kesici dişleri o kadar fazla büyümüştür ki, bir zaman sonra bu türlerin ortadan kalkmalarına neden olmuştur. işte, çok defa bir canlının organları arasında belirli bir oranın bulunması, bu seçilimle düzenlenir ve buna ''Allometrik İlişki'' denir. Yani organlar arasındaki oran her türde kendine özgü ölçüler içinde bulunur. Bu özellikler, daha doğrusu oranlar, sistematikte(Canlıların Sınıflandırılması) ölçü olarak alınır. Yapay Seçme ile çok kuvvetli bir yönlendirme sağlanabilir. islah edilmiş birçok hayvan ırkında bunu açıkça görmek mümkündür. İnsanların gereksinmeleri için yararlı özellikleri bakımından sürekli olarak seçilen bu hayvanlar, bir zaman sonra doğada serbest yaşayamayacak duruma gelmiştir. Nitekim sütü ve eti için ıslah edilen birçok inek ve koyun türü, yumurtası için ıslah edilen birçok tavuk türü, süs hayvanı olarak ıslah edilen birçok kuş, köpek, kedi vs. türü, artık bugün doğada serbest olarak yaşayamayacak kadar değişikliğe uğramıştır. Son zamanlarda tıp bilimindeki gelişmeler ile, normal olarak doğada yaşayamayacak eksiklikler ile doğan birçok birey, yaşatılabilmekte ve üremesi sağlanmaktadır. Böylece taşıdıkları kalıtsal yapı, insan gen havuzuna eklenmektedir. Dolayısıyla bozuk özellikler meydana getirecek genlerin frekansı gittikçe artmaktadır. Örneğin, eskiden, kalp kapakçıkları bozuk, gözleri aşırı miyop ya da hipermetrop olan, gece körlüğü olan, D vitaminini sentezlemede ya da hücre içine alma yeteneğini yitirmiş olan, kan şekerini düzenleyemeyen (şeker hastası), mikroplara direnci olmayan, kanama hastalığı olan; yarık damaklı, kapalı anüslü, delik kalpli ve diğer bazı kusurlarla doğan bireylerin yaşama şansı hemen hemen yoktu. Modern tıp bunların yaşamasını ve üremesini sağlamıştır. Dolayısıyla insan gen havuzu doğal seçilimin etkisinden büyük ölçüde kurtulmayı başarmıştır. Bu da gen havuzunun, dolayısıyla bu gen havuzuna ait bireylerin bir zaman sonra doğada serbest yaşayamayacak kadar değişmesi demektir. Nitekim 10-15bin yıldan beri uygulanan koruma önlemleri, bizi, zaten doğanın seçici etkisinden kısmen kurtarmıştır. Son zamanlardaki tıbbi önlemler ise bu etkiyi çok daha büyük ölçüde azaltmaktadır. Böylece doğal seçilimin en önemli görevlerinden bir olan ''Gen havuzunun yeni mutasyonların etkisinden büyük ölçüde korunmasının sağlanması ve mutasyonların gen havuzunda yayılmalarının önlenmesi, dolayısıyla gen havuzunun dengelenmesi ve kararlı hale geçmesi, insan gen havuzu için yitirilmeye başlanmıştır.'' Dengelenmiş Seçilim Eğer bir populasyon çevre koşulları bakımından uzun süre dengeli olan bir ortamda bulunuyorsa, çok etkili, kararlı ve dengeli bir gen havuzu oluşur. Böylece, dengeli seçilim, var olan gen havuzunun yapısını devam ettirir ve meydana gelebilecek sapmalardan korur. Örneğin, keseliayılar (Opossum) 60 milyon, akrepler (Scorpion) 350 milyon yıldan beri gen havuzlarını hemen hemen sabit tutmuşlardır. Çünkü bulundukları çevrelere her zaman başarılı uyum yapmışlardır. Dengeli seçilimde, üstteki ve alttaki değerleri (aşırı özellikleri) taşıyan bireyler sürekli elendiği için, populasyon dengedeymiş gibi gözükür, Örneğin, bebeklerde kafatasının, dolayısıyla beynin ve keza vücudun büyüklüğü dengeli seçilimin etkisi altındadır. Belirli bir kafatası ve vücut büyüklüğünün üstünde olanlar, doğum sırasında ananın çatı kemiğinden geçemedikleri için elenirler; çok küçük olanları da uyum yeteneklerini yitirdikleri için elenirler. Böylece, örneğin bebeklerde beyin ve vücut büyüklüğü belirli sınırların içinde kalır. Keza serçelerde de kanat uzunluğu/ vücut ağırlığı oranı, belirli bir sayının altında ve üstünde olanlar yönünde seçilime uğradığı saptanmıştır. Bu nedenle serçelerin belirli bir büyüklükte kalmaları sağlanır. Birçok hayvan grubu için (özellikle vücutlarının ve organlarının büyüklükleri için) bu işleyiş geçerlidir. Bu nedenle bazı hayvan gruplarının kalıtsal olarak neden büyük, bazılarının neden küçük olduğu kısmen açıklanabilir. Doğal seçilim, etkisini üç farklı şekilde gösterir: Koşullara uyum gösteren fenotipler kararlı kalır (dengelenmiş seçilim), değişik uyuma sahip olanlar arasında sadece başarılı olanlar seçilir (yönlendirilmiş seçilim); değişik uyuma sahip olanlar arasında, iki ya da daha fazla başarılı fenotip seçilir (dallanan seçilim). Dallanan Seçilim Dengeli seçilimin tersi olan bir durumu açıklar. Bir populasyonda farklı özellikli bireylerin ya da grupların her biri, farklı çevre koşulları nedeniyle ayrı ayrı korunabilir. Böylece aynı kökten, bir zaman sonra, iki ya da daha fazla sayıda birbirinden farklılaşmış canlı gurubu oluşur (ırk--alttür--tür--vs.). Özellikle bir populasyon çok geniş bir alana yayılmışsa ve yayıldığı alanda değişik çevre koşullarını içeren bir çok yaşam ortamı (niş) varsa, yaşam ortamlarındaki çevre koşulları, kendi doğal seçilimlerini ayrı ayrı göstereceği için, bir zaman sonra birbirinden belirli ölçülerde farklılaşmış kümeler, daha sonra da türler ortaya çıkacaktır. Bu şekilde bir seçilim ''Uyumsal Açılımı'' meydana getirecektir. Dallanan seçilim, keza benzer özellikli bireylerin, çiftleşmek için birbirini tercih etmesiyle de ortaya çıkar. Bunun tipik örneğini insanlarda verebiliriz. Yapısal olarak farklı birçok insan ırkı biraraya getirildiğinde, bireyler genellikle kendi ırkından olanlarla evlenmeyi tercih ederler (hatta dil, din, kültür benzerliği ve parasal bakımdan zenginlik bu seçimi daha da kuvvetlendirir.) Üreme Yeteneğine Ve Eeşemlerin Özelliğine Göre Seçilim Populasyonlarda, bireyler arasında şansa dayanmayan çiftleşmelerin ve farklı üreme yeteneklerinin oluşması HARDY - WEINBERG Eşitliğine ters düşen bir durumu ifade eder. Bu özellikleri taşıyan bir populasyonda HARDY - WEINBERG Eşitliği uygula¬namaz. Bireylerin çiftleşmek için birbirlerini rastgele seçmelerinden ziyade, özel nite¬liklerine göre seçmeleri, bir zaman sonra, bu özellikler bakımından köken aldıkları ana populasyondan çok daha kuvvetli olan yeni populasyonların ortaya çıkmasına neden olur. Bu özel seçilim, yaşam kavgasında daha yetenekli olan (beslenmede, korunmada, gizlenmede, yavrularına bakmada vs.) populasyonların ortaya çıkmasını sağlayabilir. Eşemlerin Arasındaki Yapısal Farkların Oluşumu: Dişiler genellikle yavrula¬rını meydana getirecek, koruyacak ve belirli bir evreye kadar besleyebilecek şekilde özellik kazanmıştır. Özellikle memelilerde tam olarak belirlenemeyen bir nedenle dişiler başlangıçta çiftleşmeden kaçıyormuş gibi davranırlar. Dişilerin kuvvetli olduğu bir toplumda çitfleşme çok zor olacağından, seçilim, memelilerde, kuvvetli erkekler yönünden olmuştur. Bugün birçok canlı grubunda, özellikle yaşamları boyunca bir¬kaç defa çiftleşenlerde (insan da dahil), erkekler, dişileri çiftleşmeye zorlar; çok defa da bunun için kuvvet kullanır. Bu nedenle erkekler dişilerinden daha büyük vücut yapısına sahip olur. Buna karşın, yaşamları boyunca bir defa çiftleşenlerde ya da çift¬leştikten sonra erkeği besin maddesi olarak dişileri tarafından yenen gruplarda (pey¬gamberdevelerinde ve örümceklerde olduğu gibi), erkek, çok daha küçüktür. Çünkü seçilim vücut yapısı büyük dişiler, vücut yapısı küçük erkekler yönünde olur. İkincil eşeysel özellikler, çoğunluk eşey hormonları tarafından meydana getirilir (bu nedenle ikincil eşeysel özellikler, bireylerde eşey hormonlarının üretilmeye başla¬masından sonra belirgin olarak ortaya çıkar). Eşeysel gücün bir çeşit simgesi olan bu özellikler, eşemler tarafından sürekli olarak seçilince, özellikler gittikçe kuvvetlenir. Bu nedenle özellikle erkeklerde, yaşam savaşında zararlı olabilecek kadar büyük boy¬nuz (birçok geyikte, keçide vs.'de), büyük kuyruk (tavuskuşunda ve cennetkuşların¬da vs.), hemen göze çarpacak parlak renklenmeler (birçok kuşta, memelide); dişiler¬de, süt meydana getirmek için çok büyük olmasına gerek olmadığı halde dişiliğin simgesi olan büyük meme bu şekilde gelişmiştir. Birçok canlı grubunda bu arzu farklı şekilde geliştiği için, farklı yapılar ortaya çıkmıştır. Örneğin birbirine çok yakın adalar¬da yaşayan Japon ırkı ile Ainu ırkı arasında vücut kılı yönünden büyük farklar vardır. Ainu kadınları çiftleşmek için kıllı erkekleri, buna karşın Japon kadınları kılsız erkek¬leri tercih ettikleri için, Ainu ırkı dünyanın en kıllı, Japon ırkı ise en kılsız erkeklerine sahip olmuştur. Çünkü eşeysel seçim zıt özelliklerin tercihi şeklinde olmuştur. Keza siyah ırklar kalın dudağı, beyaz ırklar ince dudağı daha çekici bulduğu için, seçilim bugünkü siyah ırkıarın kalın dudaklı, beyaz ırkıarın ise ince dudaklı olmasını sağlaya¬cak şekilde olmuştur. Bu arada eşemlerin birbirlerini karşılıklı uyarabileceği birtakım davranış şekilleri (kur, dans, gösteri vs.) gelişmiştir. Özellikle bu davranışları en iyi şekilde yapan erkekler, dişileri tarafından tercih edilir. Davranışların değişmesini sağlayacak etkili bir mutasyon, çok defa, meydana geldiği bireyin eş bulamamasına neden olacağı için, populasyondan elenir. Bu davranış şekillerine, yine genellikle ve çoğunluk erkeklerde eşeysel çiftleşmeden belirli bir süre önce, vücuttaki renklerin değişmesi, özellikle parlaklaşması (kuşları ve memelileri anımsayınız!), değişik kokuların ve fero¬menlerin salgılanması (tekelerin zaman zaman çok keskin olarak koktuğunu anımsa¬yınız!) eşlik eder. Parlak renkler ve keskin kokular dişiyi daha etkili bir şekilde uyara¬cağı için seçim bu özelliklerin kuvvetlendirilmesi yönünde olmuştur. Işte, DARWIN, dişinin erkeği, erkeğin dişiyi uyarabildiği bu özelliklerin seçimine Eşeysel Seçilim = Seksüel seleksiyon ismini verdi. Erkeklerin, erkekliklerini simgeleyen özelliklerine göre seçilimleri, onların, bu özellikleri bakımından, yaşam savaşında etkinlik kazandırmasa dahi kuvvetlenme¬sine neden olmuştur. Nitekim erkeklerin çok daha renkli olması bu nedene dayanır. Ayrıca kuşlarda kuluçkaya yatan dişiler üstten belirgin olarak görünmesin diye, çoğunluk yaşadığı ortamın rengine uyum yapmıştır. Yalnız erkekleri kuluçkaya yatan bir kuş türünde, bu durum tersinedir; bunlarda dişiler parlak renkli, erkekler toprak rengindedir. En güçlü erkeğin, dişileri dölleyebilmesini sağlamak için, evrimsel olarak bir yarışma oluşmuştur ''Erkek Kavgaları'', Bu nedenle geyiklerde, dağ keçilerinde vs.'de kuvvetli boynuz oluşumları meydana gelmiştir. Seçilim her zaman saldırgan ve kuvvetli erkekler yönünde olur. Dişiler, kavgaya katılmadığı için, boynuzları küçük kalmıştır. Çünkü büyük boynuz yönünden herhangi bir seçilim baskısı yoktur. Daha önce öğrendiğimiz gibi bir özelliğin gelişebilmesi için seçilim baskısının sürekli etki etmesi gerekir. Bu arada, güçlerine göre, erkeklerin belirli alanları etkinlikleri altına alma eğilimleri; bir territoryum davranış zincirinin oluşmasına neden olmuştur. Tüm bu eşeysel seçilim etkileri, dişiler ve erkekler arasında belirgin bir yapı ve davranış farklılaşmasına neden olmuştur. Bu farklılaşmaya ''Eşeysel Farklılaşma = Seksüel Dimorfizm" denir. Üreme Yeteneğinin Evrimsel Değişimdeki Etkisi: Daha önce de değindiği¬miz gibi bir bireyin yaşamını başarılı olarak sürdürmesi evrimsel olarak fazla birşey ifade etmez. Önemli olan bu süre içerisinde fazla döl meydana getirmek suretiyle, gen bavuzuna, gen sokabilmesidir. Bir birey ne kadar uzun yaşarsa yaşasın, döl Meydana getirmemişse, evrimsel açıdan hiçbir öneme sahip değildir. Bu nedenle bu bireylerin ölümü 'Genetik Ölüm' olarak adlandırlır. Canlıların çok büyük bir kısmında, canlılığın mayasını oluşturan eşeysel hücre¬lerdeki DNA'nın taşınması, bireylere verilmiş bir görevdir. Tek bir üreme dönemi olan canlılarda, döllenmeden hemen sonra erkekler (birgünsineklerini hatırlayınız!), yumurta bıraktıktan ya da yavru doğurduktan sonra da dişiler ölür. Birçok üreme dönemi olan canlılarda, her iki eşemin de ömrü uzamıştır. Bu sonucu grupta, erkek¬ler, çoğunlukla döllenme sonrası yavru bakımında belirli görevler yüklenmiştir (hatta denizatlarında döllenmiş yumurtayı ortamdan özel keselerine alan erkekler hamile olur). Hemen hemen tüm canlı gruplarında ve ilkel insan topluluklarında, bireyin ya¬şı, eşeysel etkinliğinin süresine denktir. Yalnız gelişmiş insan toplumlarında, kazanıl¬mış deneyimlerin genç kuşaklara aktarılması için, yaşlılar özenle korunur; bu nedenle ömür uzunluğu, eşeysel aktiflik dönemini oldukça aşmıştır. Evrimsel gelişmede en önemli değişim, gen havuzundaki gen frekansının değişimidir. Gen frekansı ise birey sayısıyla saptanır. Bu durumda bir populasyonda, üreyebilecek evreye kadar başarıyla gelişebilen yavruları en çok sayıda meydana getiren bireylerin gen bileşimi bir zaman sonra gen havuzuna egemen olur. Buna 'Farklı Üreme Yeteneği' denir. Farklı üreme yeteneği, meydana getirilen gamet (genellikle yumurta) sayısı de¬ğildir; üreyebilecek olgunluğa ulaşan yayruların sayısıdır. Değişik gametlerin birleş¬mesiyle, gen bileşimi bakımından, daha iyi embriyolojik gelişim (embriyo, larva, pup vs.) yapabilen, daha başarılı uyum sağlayabilen yavruların seçimi yapılır. Bu nedenle fazla sayıda yumurta meydana getiren canlılarda, bu seçilim, çok sayıdaki zigot ara¬sından yapılacağı için, başlangıçta başarılı bir seçim olacaktır ve ayrıca fazla sayıda embriyo ya da yavru ile yaşam kavgasına gireceği için, sonuçta büyük sayılardaki yu¬murtadan, belirli bir sayıda erginleşmiş yavru ortaya çıkabilecektir. Örneğin alabalık¬larda meydana getirilen 1.000.000 yumurtadan, en fazla 20'sinin üreyebilecek yaşa ulaştığı bilinmektedir. Çok yumurta oluşturan canlılarda, yumurtanın korunmuş yer¬lere bırakılması ve embriyoya ya da yavrulara bakım gelişmemiştir (birçok balıkta, parazitte, amfibide, sürüngende vs. 'de). Bu nedenle büyük kayıplar verirler. Halbuki yumurtaya, embriyoya ve yavruya bakımın gelişmesi oranında, yumurta sayısında azalma görülür. Bu sayı, gelişmiş memelilerde bire düşmüştür. Çünkü özenli bir ba¬kımla yavruların olgunluğa ulaşma olasılığı çok yükseltilmiştir. Memelilerde ve kuş¬larda, yavru ve yumurta sayısı optimal sayıda tutulur. Fazla yumurtanın kuluçkada embriyonik olarak gelişmesi ve gelişse de yavruların ana tarafından beslenmesi zor olur. Bu nedenle yumurta sayısı sabit sınırlar içerisinde kalacak şekilde evrimsel seçi¬lim olmuştur. Bunun yanısıra bir canlının diğer yırtıcı hayvanlar tarafından sürekli yenmesi (bunlarda fazla yumurta meydana getirilir) ya da düşmanlarının az olması (bunlarda az yumurta meydana getirilir) yumurta sayısını saptayan faktörlerden biri¬dir. Yalıtımın (=İzolosayonun) Evrimsel Gelişimdeki Etkisi Türlerin oluşumunda, yalıtım, kural olarak, zorunludur. Çünkü gen akımı devam eden populasyonlarda, tür düzeyinde farklılaşma oluşamaz. Bir populasyon, belirli bir süre, birbirlerinden coğrafik olarak yalıtılmış alt populasyonlara bölünürse, bir zaman sonra kendi aralarında çiftleşme yeteneklerini yitirerek, yeni tür özelliği ka¬zanmaya başlarlar. Bu süre içerisinde oluşacak çiftleşme davranışlarındaki farklılaş¬malar, yalıtımı çok daha etkili duruma getirecektir. Kalıtsal yapı açısından birleşme ve döl meydana getirme yeteneklerini koruyan birçok populasyon, sadece çiftleşme davranışlarında meydana gelen farklılaşmadan dolayı, yeni tür özelliği kazanmıştır. Üreme yalıtımının kökeninde, çok defa, en azından başlangıç evrelerinde, coğrafik bir yalıtım vardır. Fakat konunun daha iyi anlaşılabilmesi için üreme yalıtımını ayrı bir başlık altında inceleyeceğiz. Populasyonlar arasında çiftleşmeyi ve verimli döller meydana getirmeyi önleyen her etkileşme 'Yalıtım = izolasyon Mekanizması' denir. Coğrafik YaIıtım (= Allopatrik YaIıtım) Eğer bir populasyon coğrafik olarak iki ya da daha fazla bölgeye yayılırsa, ev¬rimsel güçler (her bölgede farklı olacağı için) yavaş yavaş etki ederek, populasyonlar arasındaki farkın gittikçe artmasına (Coğrafik Irklar) neden olacaktır. Bu kalıtsal farklılaşma, populasyonlar arasında gen akışını önleyecek düzeye geldiği zaman, bir zamanların ata türü iki ya da daha fazla türe ayrılmış olur Allopatrik yalıtım ile tür oluşumu. Eğer bir populasyonun bir parçası coğrafik olarak yalıtılırsa, değişik evrimsel güçler yavaş yavaş bu yalıtılmış populasyonu (keza ana populasyonu) değiştirmeye başlar ve bir zaman sonra her iki populasyon aralarında verimli,döl meydana getiremeyecek kadar farklılaşırlar. Karalar, özellikle çöller, tuz bileşimi ve derişimi farklı sular, buz setleri su hay¬vanları için; denizler, nehirler, yüksek dağlar, büyük sıcaklık farkları, buzlar, kara hayvanları için yalıtım nedenleridir. En iyi coğrafik yalıtım adalarda görülür. Çok yakın bölgelerde yaşayan bazı akraba hayvan gruplarında da bu yalıtım görülebilir. Örneğin suda yaşayan bazı türlerin çok yakın akrabaları, su kenarlarındaki yaprakların altlarında bulunan nemli yerlerde; keza iki yakın akraba populasyondan biri toprak diğeri ağaçlar üzerinde yaşayabilir (Ekolojik Yalıtım). Bu populasyonların birbirleriyle teması çok az olacağından ve her birine farklı evrimsel güçler etki edece¬ğinden, bir zaman sonra aralarında daha büyük farklılaşmalar meydana gelir. Anadolu'daki Pamphaginae'lerin Evrimsel Durumu: Coğrafik yalıtıma en iyi örneklerden biri Anadolu'nun yüksek dağlarında yaşayan, kanatsız, hantal yapılı, kışı çoğunluk 3. ve 4. nimf evrelerinde geçiren bir çekirge grubudur. Özünde, bu hay¬vanlar, soğuk iklimlerde yaşayan bir kökenden gelmedir. Buzul devrinde, kuzeydeki buzullardan kaçarak Balkanlar ve Kafkaslar üzerinden Anadolu'ya girmişlerdir. Bu sı¬rada Anadolu'nun iç kısmında Batı Anadoluyla Doğu Anadolu'yu birbirinden ayıran büyük bir tatlısu gölü bulunuyordu. Her iki bölge arasındaki karasal, bağlantı, yalnız, bugünkü Sinop ve Toros kara köprüleriyle sağlanıyordu. Dolayısıyla Kafkaslar'dan gelenler ancak Doğu Anadolu'ya, Balkanlar'dan gelenler ise ancak Batı Anadolu'ya yayıımıştı. Çünkü Anadolu o devirde kısmen soğumuş ve bu hayvanların yaşayabil¬mesi için uygun bir ortam oluşturmuştu. Bir zaman sonra dünya buzul arası devreye girince, buzullar kuzeye doğru çekilmeye ve dolayısıyla Anadolu da ısınmaya başla¬mıştı. Bu arada Anadolu kara parçası, erezyon sonucu yırtılmaya, dağlar yükselmeye ve bu arada soğuğa alışık bu çekirge grubu, daha soğuk olan yüksek dağların başına doğru çekilmeye başlamıştı. Uzun yıllardır bu dağların başında (genellikle 1500 - 2000 metrenin üzerinde) yaşamlarını sürdürmektedirler. Kanatları olmadığı için uçamazlar; dolayısıyla aktif yayılımları yoktur. Hantal ve iri vücutlu olduklarından rüzgar vs. ile pasif olarak da yayılamamaktadırlar. Belirli bir sıcaklığın üstündeki böl¬gelerde (zonlarda) yaşayamadıklarından, yüksek yerlerden vadilere inerek, diğer dağsilsilelerine de geçemezler. Yüksek dağlarda yaşadıklarından, aşağıya göre daha yoğun morötesi ve diğer kısa dalgalı ışınların etkisi altında kalmışlardır; bu nedenle mutasyon oranı (özellikle kromozom değişmeleri) yükselmiştir. Dolayısıyla evrimsel bir gelişim ve doğal seçilim için bol miktarda ham madde oluşmuştur. Çok yakın mesafelerde dahi meydana gelen bu mutlak ya da kısmi yalıtım, bir zamanlar Ana¬dolu'ya bir ya da birkaç türü olarak giren bu hayvanların 50'de fazla türe, bir o kadar alttüre ayrılmasına neden olmuştur. Bir dağdaki populasyon dahi, kendi aralarında oldukça belirgin olarak birbirlerinden ayrılabilen demelere bölünür. Çünkü yukarıda anlattığımız yalıtım koşulları, bir dağ üzerinde dahi farklı olarak etki etmektedir. Coğrafik uzaklık ile farklılaşmanın derecesi arasında doğru orantı vardır. Birbir¬lerinden uzak olan populasyonlar daha fazla farklılaşmalar gösterir. Bu çekirge gru¬bunun Hakkari'den Edirne'ye kadar adım adım değiştiğini izlemek mümkündür. Batı Anadolu'da yaşayanlar çok gelişmiş timpanik zara (işitme zarına) ve sırt kısmında tarağa sahiptir; doğudakilerde bu zar ve tarak görülmez. Toros ve Sinop bölgelerinde bu özellikleri karışık olarak taşıyan bireyler bulunur. Coğrafik yalıtım populasyonlar arasındaki kalıtsal yalıtımı ve üreme davranışla¬rındaki yalıtımı tam sağlayamamışsa (populasyonlar arasında kısırlık tam oluşmamış¬sa) , bir zaman sonra biraraya gelen bu populasyonlarda, aralarındaki gen akımından dolayı, tekrar bir karışma ve bir çeşit homojenleşme oluşabilir. insan ırkıarı sürekli; ama belirli ölçülerde birbirleriyle temasta bulunduğu için, aralarındaki gen akımı tü¬müyle kesilmemiş, dolayısıyla melezlenme kısırlığı oluşmamış ve böylece ayrı tür özellikleri kazanamamıştır. Bununla beraber gen akımının sınırlı olması ırk özellikleri¬nin kısmen korunmasını sağlamıştır. Her türlü yalıtım mekanizmasında, ilk olarak demelerin, daha sonra alttürlerin, sonunda da türlerin meydana geldiğini unutmamak gerekir. Aynı kökten gelen; fakat farklı yaşam bölgelerine yayılan tüm hayvan gruplarında bu kademeleşme görülür. Ayrıca tüm coğrafik yalıtımları kalıtsal bir yalıtımın izlediği akıldan çıkarılmamalıdır... Üreme işlevlerinde Yalıtım (= Simpatrik Yalıtım) Yalıtımın en önemli faktörlerinden biri de, genellikle belirli bir süre coğrafik yalı¬tımın etkisi altında kalan populasyonlardaki bireylerin üreme davranışlarında ortaya çıkan değişikliklerdir. Bu farklılaşmaların oluşumunda da mutasyonlar ve doğal seçi¬lim etkilidir. Yalnız, üreme işlevlerindeki yalıtımın, coğrafik yalıtımdan farkı, ilke ola¬rak, farklılaşmanın sadece üreme işlevlerinde olması, kalıtsal yapıyı tümüyle kapsa¬mamasıdır. Deneysel olarak döllendirildiklerinde yavru meydana getirebilirler. Çünkü kalıtsal yapı tümüyle farklılaşmamıştır. Coğrafik yalıtım ise hem kalıtsal yapının hem davranışların farklılaşmasını hem de üreme işlevlerinin yalıtımını kapsar. Eşeysel çekim azalınca ya da yok olunca, gen akışı da duracağı için, iki populas¬yon birbirinden farklılaşmaya başlar. Böylece ilk olarak hemen hemen birbirine ben¬zeyen; fakat üreme davranışlarıyla birbirinden ayrılan 'İkiz Türler' meydana gelir. Bir zaman sonra mutasyon - seçilim etkileşimiyle, yapısal değişimi de kapsayan kalıtsal farklılıklar ortaya çıkar. Üreme yalıtımı gelişimin çeşitli kademelerinde olabilir. Bun¬lar; Üreme Davranışlarının Farklılaşması: Birbirlerine çok yakın bölgelerde yaşayan populasyonlarda, mutasyonlarla ortaya çıkan davranış farklılaşmalarıdır. Koku ve ses çıkarmada, keza üreme hareketlerinde meydana gelecek çok küçük farklılaşmalar, bireylerin birbirlerini çekmelerini, dolayısıyla döllemeyi önler. Daha sonra, bu popu¬lasyonlar bir araya gelseler de, davranış farklarından dolayı çiftleşemezler. Üreme Dönemlerinin Farklılaşması: iki populasyon arasında üreme dönemlerinin farklılaşması da kesin bir yalıtıma götürür. Örneğin bir populasyon ilkbaharda öbürüsü yazın eşeysel gamet meydana getiriyorsa, bunların birbirlerini döllemeleri olanaksızlaşır. Üreme Organlarının Farklılaşması: Özellikle böceklerde ve ilkel bazı çok hücreIilerde, erkek ve dişi çiftleşme organları, kilit anahtar gibi birbirine uyar. Meydana gelecek küçük bir değişiklik döllenmeyi önler. Gamet Yalıtımı: Bazı türlerin yumurtaları, kendi türünün bazen de yakın akraba türlerin spermalarını çeken, fertilizin denen bir madde salgılar. Bu fertilizinin farkIılaşması gamet yalıtımına götürür. Melez Yalıtım: Eğer tüm bu kademeye kadar farklılaşma olmamışsa, yumurt ve sperma, zigotu meydana getirir. Fakat bu sefer bazı genlerin uyuşmazlığı, embriyonun herhangi bir kademesinde anormalliklere, ya da uygun olmayan organların ortaya çıkmasına neden olur (örneğin küçük kalp gibi). Embriyo gelişip ergin meydana gelirse, bu sefer, kalıtsal yapılarındaki farklılanmalar nedeniyle erginin eşeysel hücrelerinde, yaşayabilir gametler oluşamayabilir (katırı anımsayınız!). Genlerin kromozomlar üzerindeki dizilişleri farklı olduğu için, sinaps (gen alışveriş yapıları) yapamazlar ya da kromozom sayıları farklı olduğu için dengeli bir kromozom dağılımını sağlayamazlar.. Kalıtsal Sürüklenme Küçük populasyonlarda eşlerin seçimi ve çiftleşme, büyük ölçüde şansa daya¬nır. Böylece gen havuzlarındaki denge, doğal seçilimden ziyade, şansla meydana ge¬len olaylarla değişir. İşte küçük populasyonlarda, şansa bağlı olarak meydana gelen üreme olaylarının evrimsel gelişmelerdeki etkisi, SEWALL WRIGHT tarafmdan 'Genetik Drift = Kahtsal Sürüklenme' olarak adlandırılmıştır. Küçük populasyonlarda, ben¬zer bireyler kendi aralarında çiftleştikleri için, allel genlerden birçoğunun, doğal seçi¬limden ziyade, şansla, heterozigot(karma) halden homozigot(saf) hale geçme eğilimleri vardır. Bu arılaşma, belirli zararlı ya da yararlı özelliklerin fenotipte kendilerini göstermeleri¬ne ve bir zaman sonra da doğal seçilimle o populasyondan elenmelerine ya da korun¬malarına neden olabilir. Bu homozigotlaşma, birçok türde, uyumsal değer gösterme¬mesine karşın, birçok anormal ve anlaşılmaz yapıların nasıl kazanıldığını açıklayabilir. Genetik sürüklenme, HARDY -WEINBERG eşitliğine aykırı bir durumu (HARDY ¬WEINBERG eşitliğinde homozigotların oranı sabitti) yani, homozigot birey sayısının de¬ğişimini ifade eder. Evrimleşmede ne ölçüde önemli rol oynadığı, birçok bilim adamı arasında hala tartışmalıdır. Bununla beraber birçok bitki ve hayvan grubunun, doğa¬da, kalıtsal sürüklenme ile, yani şansa bağlı olaylarla çeşitlendiği ve geliştiği bilin¬mektedir. Öyleki, evrimsel çizgi boyunca, özel koşullara uyum yapmak için izlenen birçok yol, şansa bağlı olarak seçilmiştir. Her kademesinde çatallaşan bir yol gibi. In¬san oluşuncaya kadar, sayısız çatallanmış yoldan şansa bağlı olarak geçilmiş ve bu¬güne gelinmiştir. Koşullar tamamen aynı olsa da, başlangıçtan, hatta bir primat evre¬sinden, tekrar bugünkü insana benzer bir canlının gelişmesi, kural olarak olanaksız¬dır. Çünkü her çatallanmış kavşakta, insana götüren yolun, doğrulukla tekrar seçilmesi çok az bir olasılıkla olabilir. Bunun için çok tipik birkaç örnek verelim: a) Birçok bitki, geçmişte, gerekli olmadığı için petallerini yitirmiştir (örneğin böcekler yerine rüzgarla tozlaşmaya başladıkları için). Bir zaman sonra tekrar bö¬ceklerle tozlaşma zorunluluğunu duyunca, petallerini aynı şekilde oluşturamamış, bunun yerine, üreme zamanlarında çiçeklerine yakın yapraklarını renklendirecek özellikleri kazanmıştır (Atatürk Çiçeğinin kırmızı yapraklarımanımsayınız!). b) Birincil su hayvanları (balık gibi) oldukça etkin bir solunumu yürütebilecek solungaç sistemlerini, karmaşık bir yol izleyerek geliştirmiştir. Kara yaşamına uyum yaptıktan sonra, bir kısım canlı, tekrar suya dönmüştür (balinalar, yunuslar vs.); fa¬kat hiçbiri, embriyonik gelişimlerinde kalıntı halinde solungaç yapısını gösterdikleri halde, tekrar solungaç yapısını geliştirememiştir. Hemen hepsi yine akciğeriyle so¬lunuma devam eder. Fakat bunun yanısıra oksijeni uzun süre tutabilecek ya da depo¬layabilecek yapıları geliştirmişlerdir. Keza hiçbiri balıklardaki gibi yanlardan basılmış kuyruk yüzgecini geliştirememiş; bunun yerine üstten basık kuyruk yüzgeçlerini ge¬liştirebilmişlerdir. Evrimde bir yapının tekrar ortaya çıkma olasılığı yok denecek kadar azdır. Örneğin balıkların kuyruk yüzgeci yanlardan basılmıştır. Kara yaşamından tekrar su yaşamına dönmüş hayvanlar (şekilde yunus) ancak üstten basık kuyruk yüzgecini geliştirebilmişlerdir (Kosswig'den) Ön bacakları kürek şekline dönüşmüştür; fakat hiçbir zaman balık yüzgeçlerine benzemez. Çünkü evrimsel olarak bir kere yitirilen bir yapı¬mn tekrar kazanılması hemen hemen olanaksızdır. ya da çok küçük olasılıklarla tekrar¬lanabilir. Burada yönlendirici unsur çevre koşullarının farklılığı değil, şansa bağlı seçi¬limlerin etkisidir. Mutasyonların bir kısmı dönüşlüdür. (Geri Mutasyonlar); bununla beraber ev¬rimsel gelişmeler geriye dönük değildir (Dollo Yasası). Örneğin bir kuşun, tekrar sü¬rüngene; bir balinanın karada yaşayan atasına dönüşmesi; parazitlerin serbest yaşa¬ması; atın tekrar beş parmaklı olması olanaksızdır. Çünkü gerekli tüm geri mutasyon¬ların şansa bağlı olarak elde edilmesi, olasılık açısından hemen hemen sıfırdır. Keza aynı nedenle, körelmiş organların ve yapıların da tekrar işlev görebilecek eski halleri¬ne dönmesi olanaksızdır. Kalıtsal Sürüklenmenin işleyişi Eğer bir populasyon HARDY - WEİNBERG eşitliğini gösteremeyecek kadar küçük¬se, ya da köken aldığı populasyondan küçük gruplar halinde ayrılmışsa, şansa bağlı döllenmeler sonucu bir zaman sonra köken aldığı populasyonun yapısından belirgin olarak farklılaşır. Kalıtsal sürüklenmeyi sağlayan olayları kısaca görelim. Göç ya da Sürüklenme: Oldukça büyük olan bir populasyondan, küçük bir grup koparak ayrılırsa, bu küçük grubun ileride meydana getireceği yeni populasyo¬nun gen havuzu köken aldığı populasyonunkinden farklı olur. Çünkü bu küçük grup ayrılırken bu grubun gen havuzu, ana populasyonun gen havuzundan belirli bir fark¬lılık gösterir. Örneğin Anadolu'da yaşayan insanlarda mavi göz geni frekansının orta¬lama % 10 olduğunu varsayalım. Mavi göz geni frekansı % 30 olan bir ailenin ya da aşiretin Anadolu'dan Mısır'a göç ettiğini ve orada yıllarca kendi içerisinde çoğaldığını düşünelim. Bir zaman sonra oluşacak bu yeni populasyonda mavi göz geninin fre¬kansı % 30 olmakla ana populasyondan farklılık gösterecektir. Çünkü başlangıç gen frekansı farklıdır. Özellikle insan populasyonlarında bu sürüklenmeler çok görülür. Çünkü göç eden toplumlar uzun yıllar kendi içlerinde evlendikleri için, başlangıçta taşıdıkları gen bileşimlerini koruma ve yaygınlaştırma eğilimi gösterirler. Bir zaman sonra içine göç ettikleri toplumlarla karışmaya, başlangıçta taşıdıkları gen bileşimIe¬rini yitirmeye ve belirli bir derecede göç ettikleri toplumun gen bileşimini değiştirme¬ye başlarlar. Anadolu'ya büyük ve küçük birçok göçün olduğu ve bunların uzun yıllar kendi içlerinde evlendikieri bilinmektedir. Bu nedenle insan toplumuna ilişkin kalıtsal sürüklenmenin en iyi örneklerini Anadolu'da görmek mümkündür. Keza adalara göç etmiş insanlarda da bu kalıtsal sürüklenmeler çok belirgin olarak görülür. Kan grup¬ları üzerinde doğal seçilimin çok büyük etkisi olmadığından, göç eden toplulukların kan grupları incelenmekle koptukları populasyonlar tahmin edilebilir. Eğer bir populasyon sürekli olarak genişliyorsa, bir zaman sonra populasyonun kenarındaki gen bileşimleri, merkezdekilerden daha farklı olmaya başlar ve bu fark gittikçe artabilir. Birçok canlı grubu, küçük populasyonlar halinde yeni ortamları işgal ederek, ana populasyona bağımlı olmadan çoğalabilir ve yeni özellikli populasyonlar oluştu¬rabilir. Küçük populasyonların kendi içinde çiftleşmesiyle meydana gelen evrimsel değişiklikler, doğal seçilimden ziyade şansa dayanır.Bir populasyondan bir parça koptuğunda, o parça, populasyonun gen ortala¬masına etki edecek bir miktar geni de beraberinde götürmüşse, ana populasyonun gen bileşimi bir miktar bozulabilir (ana populasyon çok büyük olmamak koşuluyla). Örneğin demin verdiğimiz misalde, % 30'luk mavi gen göçü, ana populasyonun ortalamasının (% 10) bir miktardüşmesine neden olabilir. Bu nedenle, bir populas¬yondan dışa göç de HARDY - WEiNBERG eşitliğini bozabilir. Afetlerin ve Sığınmaların Etkinliği: Herhangi bir zamanda meydana gelecek bir afet, populasyonun büyük bir kısmını ortadan kaldırabilir ve arta kalan pek az bir kısmından sonunda yeniden bir toplum oluşabilir. Fakat arta kalan küçük parça, eğer önceki toplumun tam özelliğini taşımayan bir gen havuzuna sahipse, yeni meydana gelen toplumun yapısı öncekinden çok farklı olur. Özellikle yangın, fırtına, su bas¬kını, deprem, hatta savaş, bu yeni özellikleri ortaya çıkarabilir. Sığınma: Çoğunlukla kışı saklanarak geçiren canlılarda, bir sonraki yazda yine küçük populasyonların etkisi görülür. Örneğin soğuk bir kış, saklanan bireylerin büyük bir kısmını yok ederken, iyi saklanmış küçük bir grup, bu yıkımdan kurtulur ve ger havuzunu, yazın oluşacak tüm populasyona verir. Bazı böceklerde, bazı özelliklerin en azından bazı yıllarda neden yaygın olduğu bu yolla açıklanabilir. Diğer Sürüklenme Şekilleri Doğal seçilimde ve uyumda başarılı olmasa dahi bazı özelliklerin dölden döle aktarılma olasılığı vardır. Bunu sağlayan kalıtsal mekanizmalar şunlardır. Pleiotropik Sürüklenme (= Özellik Sürüklenmesi): Doğal seçilim, genelolarak tek bir genin fenotipi üzerinde değil, tüm genomun fenotipi üzerinde etkisini gösterir.(yani tek bir geni seçmekten çok o geni bulunduran DNA'yı -yani bireyi- seçer) Bu nedenle bazı özellikler uyumsal değer göstermemesine ve yarar sağla¬mamasına karşın yine de varlığını devam ettirir. Çünkü bu özellikler, bireye çok yarar sağlayan özelliklerle birlikte aynı bireyde bulunur. Yararlı özellikler seçilirken, zararı olanlar da beraberce kalıtılır. Bu tip özelliklerin sürüklenmesinde pleiotropi çok önemlidir. Bilindiği gibi bir gen birden fazla özelliği denetliyorsa, pleiotropik etki gösteriyor demektir. Özelliğin biri canlıya yarar sağlıyorsa ve canlının uyum yeteneğini artırıyorsa, sürekli seçilir, buna bağlı olarak yararsız ve uyum yeteneği olmayan özellik de kalıtılır. Örneğin kır¬mızı renkli soğan insanlar tarafından tercih edilmez ve dikilirken ayıklanır. Fakat kırmızı rengi meydana getiren gen, aynı zamanda mantarlara karşı fungusit bir madde de salgıladığı için, bulunduğu bireylere yaşamsal uyum yeteneği verir; bu nedenle, kırmızı renkli soğanlar, beyaz renkli soğanların arasında varlığını sürekli koruyabilir. Gen Sürüklenmesi (= Kalıp İlkesi): Birçok gen yakınlıklarından dolayı bera¬berce kalıtılma eğilimi gösterir. iki gen birbirine çok yakın ise, parça değişimiyle bir¬birlerinden çok zor ayrılırlar. Işte bu genlerden biri yararlı, diğeri zararlı özellik sağlar¬sa ve yararlı genin özelliği, zararlı genin özelliğinden çok daha fazla öneme sahipse, zararlı özellik meydana getiren gen de yararlı özellik meydana getiren genle birlikte sürekli kalıtılır ve korunur. Buna 'Kalıp İlkesi' denir. Prof.Dr.Ali Demirsoy Kaynak: www.istanbul.edu.tr

http://www.biyologlar.com/evrimlesmeyi-saglayan-duzenekler

BİYOLOJİK SİLAH NEDİR ?

BİYOLOJİK SİLAH NEDİR ?

Biyolojik silah kavramını açıklayabilmek için "biyoloji" ve "silah" kavramlarının tanımlanması gerekmektedir.

http://www.biyologlar.com/biyolojik-silah-nedir-

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

CANLILAR ARASI ETKİLEŞİM VE EKOLOJİK NİŞ

Her tür kendi tarzı yaşamını sürdürebilmek için doğa ve diğer canlılarla mücadele etmek zorundadır.

http://www.biyologlar.com/canlilar-arasi-etkilesim-ve-ekolojik-nis

Küresel Isınma Nedir ? Küresel ısınmayı engellemek için neler yapmalıyız ?

İnsan tarafından atmosfere verilen gazların sera etkisi yaratması sonucunda, dünya yüzeyinde sıcaklığın artmasına küresel ısınma deniyor. İklim sisteminde vazgeçilmez bir yere sahip olan sera gazları, güneş ve yer radyasyonunu tutarak, atmosferin ısınmasında başlıca etkendirler. Sera gazlarının bulunmaması durumunda yeryüzünün sıcaklığının bugüne göre 30oC daha soğuk olacağı hesaplanmıştır. Son yıllarda atmosferde çeşitli insan aktivitelerinden kaynaklanan nedenlerle karbondioksit, metan, ozon ve di azot monoksit gibi gazlardan oluşan sera gazları, yeryüzü sıcaklığında belirgin artmalara sebep oluyor. Sera etkisinin artması, troposferin ısınmasında, stratosferin de soğuması nda en önemli etken olarak gösteriliyor. Ne yapmalıyız ? 1 Mısır yakıtı kullanın ÇÜNKÜ dünyadaki otomobillerin yarısı, petrol yerine mısırdan üretilen etanol yakıtını kullanırsa küresel ısınmaya yol açan gazları atmosfere salınımı yüzde 7 düşer 2 Evinizi izole edin ÇÜNKÜ küresel ısınmaya yol açan gazların yüzde 16’sından konutların enerji tüketimi sorumlu. Evlerin izole edilmesi ısınma enerjisini yüzde 40 azaltır. 3 Ampulleri değiştirin ÇÜNKÜ sadece 7 watt harcayan çevre dostu ampüller 40 watt’lık standart bir ampül kadar ışık yayabiliyor. 4 Sokakta LED ampül ÇÜNKÜ cadde aydınlatmalarının 18 ayda bir yenilenmesi gerekiyor. Yüzde 40 daha az elektrik harcayan LED ampüller, 2 kat daha pahalı ama 5 yıl kullanılıyor. 5 Ciplere ağır vergi ÇÜNKÜ 1.8 litre motor hacmine sahip bir sedan otomobil kilometrede 170 gram karbon gazının atmosfere salınmasına yol açıyor. Ciplerde bu oran 2 kat fazla. 6 Organik kıyafet giyin ÇÜNKÜ içinde tamamen doğal ortamda yetişmiş pamuktan yapılan yüzde 100 organik kıyafetler üretilirken yüzde 60 oranında daha az enerji harcanıyor. 7 Yolculuğu paylaşın ÇÜNKÜ araştırmalar otomobil kullananların yüzde 38’inin yalnız seyahat ettiğini gösteriyor. İşe gidip gelirken otomobille topluca seyahat edin. 8 Jeotermal ısıtma ÇÜNKÜ 13 dereceye kadar ısıtılan suyun merkezi bir sistemden binaya dağıtırak, doğalgazlı ısıtmaya destek sağlanabilir ve enerji tüketimi düşürülebilir. 9 Hybrid otomobil ÇÜNKÜ elektrik ve benzin olmak üzere iki motora sahip olan hybrid otomobiller, yüzde 20’ye varan yakıt tasarrufu sağlıyor. 10 Ekolojik makyaj ÇÜNKÜ içerdiği kimyasal maddelerden dolayı kozmetik ürünlerin bir çoğu çevreye zarar veriyor. Bitki özlerinden yapılan organik makyaj ürünleri moda oldu. 11 Kırmızı et yemeyin ÇÜNKÜ kırmızı et yemeyi azaltarak ısınmaya yol açan sera gazlarının oranı yüzde 4 azaltılabilir. Dünyada 1.7 milyar inek, 1.5 milyar koyun var. 12 Plastik kullanmayın ÇÜNKÜ plastik doğadan 1000 yılda temizleniyor. Yılda 500 milyar poşet kullanılıyor. Sadece yüzde 3’ü kağıttan... 13 Geridönüşümlü kağıt ÇÜNKÜ geri dönüşümlü kağıdın üretimi yüzde 60 enerji tasarrufu sağlıyor. Yılda 900 milyon ağaç kağıt üretimi için kesiliyor. 14 Toplu taşıma kullanın ÇÜNKÜ sera gazlarının yüzde 14’ü araçlar yüzünden atmosfere salınıyor. Otobüse binerek bu oran yarıya yarıya azaltılır. 15 Bekleme modu ÇÜNKÜ araştırmalar evlerde harcanan elektriğin yüzde 75’ini bekleme modunda tutulan televizyon ve bilgisayar gibi elektronik cihazların harcadığını ortaya koyuyor. 16 İnik lastiklere dikkat ÇÜNKÜ havası inik lastiklerle seyahat etmek benzin tüketimini yüzde 10 oranında artırır. 17 Küçük evde oturun ÇÜNKÜ 200 metrekarelik bir evi ısıtmak için, 100 metrekarelik bir evden 2.5 kat daha fazla enerji harcanması gerekiyor. 18 Eski kıyafeti verin ÇÜNKÜ eski kıyafetlerin eritilip yeniden kumaş haline getirilmesiyle yüzde 76 enerji tasarrufu sağlanabiliyor. 19 Gökdelene izin verin ÇÜNKÜ cam dış cepheye sahip olan gökdelenlerin ışıklandırma ve ısıtma giderleri, beton bir binaya göre daha az. 20 Kravat takmayın ÇÜNKÜ kravat takmayarak sıcaklamazsınız. Erkek çalışanların tümü kravat takmazsa, klimalar daha az çalışır ve daha az enerji harcanır. 21 Pamukluları atmayın ÇÜNKÜ pamuklu kıyafetler, sentetik madde içermediği için geri dönüşüm yapılamıyor. Ne kadar giyilirse o kadar kardır. 22 Ofis değil evde çalışın ÇÜNKÜ imkanı olanlar ev-ofislerde çalıştığında ulaşım nedeniyle ortaya çıkan sera gazlarının azalması bekleniyor. 23 Karbon gazı denize ÇÜNKÜ atmosfere her yıl salınan 7.3 milyar ton karbon gazının yüzde 10’u okyanus tabanında depolanabilir. 24 Yazın pencere açın ÇÜNKÜ klima yerine bir pencere açarsanız yıllık 22.7 ton olan kişibaşı karbon gazı salınımınızı 1.8 ton azaltırsınız. 25 Bahçenize bambu ÇÜNKÜ sadece çapı geniş dallara sahip olan bitkiler, saldıklarından daha çok karbon gazını emebiliyor.

http://www.biyologlar.com/kuresel-isinma-nedir-neler-yapmaliyiz-

Küresel ısınmanın sebepleri nelerdir?

İnsanlar tarafından atmosfere salınan gazların sera etkisi yaratması sonucunda dünya yüzeyinde sıcaklığın artmasına küresel ısınma deniyor. Daha ayrıntılı açıklamak gerekirse dünyanın yüzeyi güneş ışınları tarafından ısıtılıyor. Dünya bu ışınları tekrar atmosfere yansıtıyor ama bazı ışınlar su buharı, karbondioksit ve metan gazının dünyanın üzerinde oluşturduğu doğal bir örtü tarafından tutuluyor. Bu da yeryüzünün yeterince sıcak kalmasını sağlıyor. Ama son dönemlerde fosil yakıtların yakılması, ormansızlaşma, hızlı nüfus artışı ve toplumlardaki tüketim eğiliminin artması gibi nedenlerle karbondioksit, metan ve diazot monoksit gazların atmosferdeki yığılması artış gösterdi. Bilimadamlarına göre işte bu artış küresel ısınmaya neden oluyor. 1860’tan günümüze kadar tutulan kayıtlar, ortalama küresel sıcaklığın 0.5 ila 0.8 derece kadar artığını gösteriyor. Bilimadamları son 50 yıldaki sıcaklık artışının insan hayatı üzerinde farkedilebilir etkileri olduğu görüşünde. Üstelik artık geri dönüşü olmayan bir noktaya yaklaşılıyor. Hiçbir önlem alınmazsa bu yüzyıl sonunda küresel sıcaklığın ortalama 2 derece artacağı tahmin ediliyor. 2007’nin de dünya genelinde kayıtların tutulmaya başlandığı son 150 yıllık dönem içinde en sıcak yıl olabileceği öngörüsü var. Peki bu sıcaklık artışı yani küresel ısınma nelere yol açıyor, hayatımızı nasıl etkiliyor? Dünya iklim sisteminde değişikliklere neden olan küresel ısınmanın etkileri en yüksek zirvelerden, okyanus derinliklerine, ekvatordan kutuplara kadar dünyanın her yerinde hissediliyor. Kutuplardaki buzullar eriyor, deniz suyu seviyesi yükseliyor ve kıyı kesimlerde toprak kayıpları artıyor.Örneğin 1960’ların sonlarından bu yana Kuzey Yarıküre’de kar örtüsünde yüzde 10’luk bir azalma oldu. 20’inci yüzyıl boyunca deniz seviyelerinde de 10-25 cm arasında bir artış olduğu saptandı. Küresel ısınmaya bağlı olarak dünyanın bazı bölgelerinde kasırgalar, seller ve taşkınların şiddeti ve sıklığı artarken bazı bölgelerde uzun süreli, şiddetli kuraklıklar ve çölleşme etkili oluyor. Kışın sıcaklıklar artıyor, ilk bahar erken geliyor, sonbahar gecikiyor, hayvanların göç dönemleri değişiyor. Yani iklimler değişiyor. İşte bu değişikliklere dayanamayan bitki ve hayvan türleri de ya azalıyor ya da tamamen yok oluyor. Küresel ısınma insan sağlığını da doğrudan etkiliyor Bilimadamları, iklim değişikliklerinin kalp, solunum yolu, bulaşıcı, alerjik ve bazı diğer hastalıkları tetikleyebileceği görüşünde. Biz neler yapabiliriz ? sorusunun cevabı, Neler yapabiliriz ? başlıklı içeriğimizde. Ayrıca Yapmamız Gerekenler başlığına da bakabilirsiniz. Kaynak: kuresel-isinma.org Küresel Isınmanın Nedenleri: Hava koşullarının uzun bir zaman kesiti içinde ortalama durumu iklim olarak tanımlanır. Dünya son bir milyar yıl içinde yaklaşık ikiyüzelli milyon yıl süren sıcak dönemler ve bunların ardından gelen dört büyük soğuk dönem geçirmiştir. Dünya yaklaşık elli milyon yıl önce soğuk bir döneme daha girmiş, bu dönemde yüzbin yılda bir on bin yıl süreyle görülen sıcak dönemlerin haricinde soğuma eğilimi göstermiştir. Şu an bu sıcak dönemlerden biri yaşanmaktadır. Dört bin yıl önce başlayan sıcaklık düşüşleri sonucunda Dünya'nın soğuma eğiliminin artması beklenmekteydi fakat bu artış son yüzelli yıldır gerçekleşmemiştir. Güneş gibi doğal etkenlerle büyüyen bu artışın nedeni, özellikle son dönemlerde, büyük ölçüde insan kaynaklı olan sera etkisiyle oluşan küresel ısınmadır.

http://www.biyologlar.com/kuresel-isinmanin-sebepleri-nelerdir

Küresel ısınma sebepleri

Doğal Nedenler : Güneşin Etkisi: ESA bilim adamlarından Paal Brekke; iklim bilimcilerinin uzun süredir Güneş beneklerinin 11 yıllık döngüsel hareketini ve Güneş'in yüzyıllık süreçler içinde parlaklık değişimini incelediklerini belirtmiştir. Bunun sonucunda Güneş'in manyetik alanı ve protonlar ile elektronlar biçiminde ortaya çıkan güneş rüzgarının, Güneş sisteminde kozmik ışımalara karşı bir kalkan görevinde olduğu açıklanmaktadır. Güneş'in değişken aktivitesiyle zayıflayabilen bu kalkan, kozmik ışımaları geçirmektedir. Kozmik ışımaların fazla olması bulutlanmayı arttırmakta, Güneş'ten gelen radyasyon oranını değiştirerek küresel sıcaklık artışına neden olmaktadır. Güneş'ten gelen ultraviyole ışınım aynı zamanda kimyasal reaksiyonların oluştuğu (ve dolayısıyla atmosferin tamamını etkileyen) ozon tabakası üzerinde değişikliğe yol açacaktır. Dünya'nın Presizyon Hareketi: 1930 yılında Sırp bilim adamı Milutin MİLANKOVİÇ Dünya'nın Güneş çevresindeki yörüngesinin her doksanbeş bin yılda biraz daha basıklaştığını göstermiştir. Bunun dışında her kırkbir bin yılda Dünya'nın ekseninde doğrusal bir kayma ve her yirmi üç bin yılda dairesel bir sapma bulunduğunu belirtmiştir. Günümüz bilim adamlarının bir çoğu Dünya'nın bu hareketlerinden dolayı zaman zaman soğuk dönemler yaşadığını ve bu soğuk dönemler içindeyse yüz bin yıllık periyotlarda on bin yıl süreyle sıcak dönemler geçirdiğini bildirmektedir. Bu da Dünya'nın doğal ısınmasının bir nedenini oluşturmaktadır. El Nino'nun Etkisi: "Güney salınımı sıcak olayı" olararak tanımlanabilecek El Niño hareketi, 1990-1998 yıllarında tropikal doğu Pasifik Okyanusu'nda deniz yüzeyi sıcaklıklarının normalden 2-5º daha yüksek olmasına neden olmuştur. Özellikle 1997 ve 1998 yıllarındaki rekor düzeyde yüzey sıcaklıklarının oluşmasında, 1997-1998 kuvvetli El Niño olaylarının etkisinin önemli olduğu kabul edilmektedir. 1998'deki çok kuvvetli El Niño bu yılın küresel rekor ısınmasına katkıda bulunan ana etmen olarak değerlendirilebilir. Yapay nedenler : Fosil Yakıtlar: Kömür, petrol ve doğalgaz dünyanın bugünkü enerji ihtiyacının yaklaşık u'lik bölümünü sağlamaktadır. Yapılarında karbon ve hidrojen elementlerini bulunduran bu fosil yakıtlar, uzun süreçler içerisinde oluşmakta fakat çok çabuk tüketilmektedir. Dünyanın belirli bölgelerinde toplanmış bu yakıtların günümüz teknolojisiyle ¾'ünün yarısının çıkarılması imkansız; diğer yarısının ise çıkarılması teknik olarak çok pahalıdır. Bu da fosil yakıtları yenilenemeyen ve sınırlı yakıtlar sınıfına sokmaktadır. Sera gazları: Sera Gazları Oluşumu: Güneş'ten gelen ışınların bir bölümü ozon tabakası ve atmosferdeki gazlar tarafından soğurulur. Bir kısmı litosferden, bir kısmı ise bulutlardan geriye yansır. Yeryüzüne ulaşan ışınlar geriye dönerken atmosferdeki su buharı ve diğer gazlar tarafından tutularak Dünya'yı ısıtmakta olduğundan yüzey ve troposfer, olması gerekenden daha sıcak olur. Bu olay, Güneş ışınlarıyla ısınan ama içindeki ısıyı dışarıya bırakmayan seraları andırır; bu nedenle de doğal sera etkisi olarak adlandırılır Sera etkisinin önemi: Sera etkisi doğal olarak oluşmakta ve iklim üzerinde önemli rol oynamaktadır. Endüstri devrimi ile birlikte, özellikle 2. Dünya Savaşı'ndan sonra, insan aktivitesi sera gazlarının miktarını her geçen yıl arttırarak yüksek oranlara ulaştırmıştır. Bu etkinin yokluğunda Dünya'nın ortalama sıcaklığının -18ºC olacağı belirtilmektedir. Ancak yaşamsal etkisi olan sera gazlarının miktarının normalin üzerine çıkması ve bu artışın sürmesi de Dünya'nın iklimsel dengelerinin bozulmasına neden olmaktadır. Bu doğal etkiyi arttıran karbondioksit, metan, su buharı, azotoksit ve kloroflorokarbonlar sera gazları olarak adlandırılmaktadır. Ozon tabakasının incelmesi de başka bir etkendir. Sera Gazları : Karbondioksit (CO2): Dünya'nın ısınmasında önemli bir rolü olan CO2, Güneş ışınlarının yeryüzüne ulaşması sırasında bu ışınlara karşı geçirgendir. Böylece yeryüzüne çarpıp yansıdıklarında onları soğurur. CO2'in atmosferdeki kosantrasyonu 18. ve 19. yüzyıllarda 280-290 ppm arasında iken fosil yakıtların kullanılması sonucunda günümüzde yaklaşık 350 ppm'e kadar çıkmıştır. Yapılan ölçümlere göre atmosferdeki CO2 miktarı 1958'den itibaren %9 artmış ve günümüzdeki artış miktarı yıllık 1 ppm olarak hesaplanmıştır. Dünyada enerji kullanımı sürekli arttığından, kullanılmakta olan teknoloji kısa dönemde değişse bile, karbondioksit artışının durdurulması olası görülmemektedir. Sera Gazları: Metan (CH4): Oranı binlerce yıldan beri değişmemiş olan metan gazı, son birkaç yüzyılda iki katına çıkmış ve 1950'den beri de her yıl %1 artmıştır. Yapılan son ölçümlerde ise metan seviyesinin 1,7 ppm'e vardığı görülmüştür. Bu değişiklik CO2 seviyesindeki artışa göre az olsa da, metanın CO2'den 21 kat daha kalıcı olması nedeniyle en az CO2 kadar dünyamızı etkilemektedir. Amerika ve birçok batı ülkesinde çöplüklerin büyük yer kaplaması sorun yaratmaktadır. Organik çöplerden pek çoğu ayrışarak büyük miktarda metan salgılamakta, bu gaz da özellikle iyi havalandırması olmayan ve kontrol altında tutulmayan eski çöplüklerde patlamalara ve içten yanmalara neden olmaktadır. Daha da önemlisi atmosfere salınan metan oranı artmakta ve bunun sonucu olarak da sera etkisi tehlikeli boyutlara varmaktadır. Sera Gazları: Azotoksit ve Su Buharı: Azot ve oksijen 250ºC sıcaklıkta kimyasal reaksiyona giren azotoksitleri meydana getirir. Azotoksit, tarımsal ve endüstriyel etkinlikler ve katı atıklar ile fosil yakıtların yanması sırasında oluşur. Arabaların egzosundan da çıkmakta olan bu gaz, çevre kirlenmesine neden olmaktadır. Sera etkisine yol açan gazlardan en önemlilerinden biri de su buharıdır. Fakat troposferdeki yoğunluğunda etkili olan insan kaynakları değil iklim sistemidir. Küresel ısınmayla artan su buharı iklim değişimlerine yol açacaktır. Sera Gazları: Kloroflorokarbonlar (CFCs): CFC'ler klorin, flüorin, karbon ve çoğunlukla da hidrojenin karışımından oluşur. Bu gazların çoğunluğu 1950'lerin ürünü olup günümüzde buzdolaplarında, klimalarda, spreylerde, yangın söndürücülerde ve plastik üretiminde kullanılmaktadır. Bilimadamları bu gazların ozonu yok ederek önemli iklim ve hava değişikliklerine neden olduklarını kanıtlamışlardır. Bu gazlar; DDT, Dioksin, Cıva, Kurşun, Vinilklorid, PCB'ler, Kükürtdioksit, Sodyumnitrat ve Polimerler'dir. Sera Gazları: Kloroflorokarbonlar (CFCs): 1- DDT: 1940-1950 yılları arasında dünya çapında tarım alanlarındaki böcekleri zehirlemek için kullanılmıştır. Kimyasal adı 'diklorodifeniltrikloroetan'dır. Klorin içeren bu gazın insan dahil diğer canlılar için de öldürücü olduğu fark edildikten sonra üretimden kaldırılmıştır. 2- Dioksin: 100'ün üstünde çeşidi vardır. Bitkilerin ve böceklerin tahribatı için kullanılır. Çoğu çeşidi çok tehlikelidir; kansere ve daha birçok hastalığa neden olmaktadır. 3- Cıva: Cıvanın en önemli özelliği diğer elementler gibi çözünmemesidir. 1950-1960 yılları arasında etkisini önemli ölçüde göstermiş, Japonya'da birkaç yüz balıkçının ölümüne neden olmuştur. Bir ara kozmetik ürünlerinde kullanılmışsa da daha sonra son derece zehirli olduğu anlaşılıp vazgeçilmiştir. 4- Kurşun: Günümüzde kalemlerin içinde grafit olarak kullanılmaktadır. Vücudun içine girdiği takdirde çok zehirleyicidir; sinir sistemini çökertip beyne hasar verir. 5- Vinilklorid: PVC yani 'polyvinyl chloride' elde etmek için kullanılan bir gaz karışımıdır. Solunduğunda toksik etkilidir. 6- PCB'ler: PCB, İngilizce bir terim olan 'polychlorinated biphenyls' ten gelmektedir. Bu endüstriyel kimyasal toksik ilk olarak 1929'da kullanılmaya başlanmış ve 100'ün üstünde çeşidi olduğu tespit edilmiştir. Bunlar büyük santrallerdeki elektrik transformatörlerinin yalıtımında, birçok elektrikli ev aletlerinde aynı zamanda boya ve yapıştırıcıların esneklik kazanmasında kullanılmaktadır. Bunun yanında kansere yol açtığı bilinmektedir. 7- Sodyumnitrat: Füme edilmiş balık, et ve diğer bazı yiyecekleri korumak için kullanılan bir çeşit tuzdur. Vücuda girdiğinde kansere yol açtığı bilinmektedir. 8- Kükürtdioksit (SO2): Bu gaz sülfürün, yağın, çeşitli doğal gazların ve kömürle petrol gibi fosil yakıtların yanması sonucu açığa çıkar. Kükürtdioksit ve azotoksidin birbiriyle reaksiyonu sonucunda asit yağmurlarını oluşturan sülfürürik asit (H2SO4) oluşur. 9- Polimerler: Doğal ve sentetik çeşitleri bulunmaktadır. Doğal olanları protein ve nişasta içerirler. Sentetik olanlarıysa plastik ürünlerinde ve el yapımı kumaşlarda bulunup naylon, teflon, polyester, spandeks, stirofoam gibi adlar alırlar. Sera Gazları: Ozon: Ozon tabakasının incelmesi "Küresel Isınma"yı dolaylı yoldan arttırmaktadır. USNAS'ın 1979'da yayınladığı raporda, ozon tabakasında %5 - arasında bir azalma olduğu gözlemlendiği öne sürülmüştür. Oysa bundan bir yıl önce Kasım 1978'de uzaya fırlatılan Nimbus-7 uydusundan alınan verilere göre toplam atmosferik ozon seviyesi 1979-1991 yılları arasında orta enlemlerde %3-%5, yukarı enlemlerde %6 ila %8 arasında azalmıştır (Gleason 1993). 1992 yılında Antartika'daki Ozon seviyesi ise 1979'daki seviyenin P'sine inmiştir. 1950 ve 60'lı yıllardaki ozon kalınlığı da 1990'lı yıllardan sonra 1/3'üne kadar inmiştir. "The National Research Council"ın 1982 Mart raporuna göre CFC salınımı bu şekilde devam ederse 21. yy'nin sonunda stratosferdeki ozon miktarı %5 ile arasında bir değerde azalacaktır. Sera Gazlarının Bilinen ve Olası Etkileri: Dünyanın sıcaklığı sanayi devriminden bu yana 0,45ºC artmıştır. Bunun esas nedeni fosil yakıtların yanması sonucu açığa çıkan CO2 ve diğer sera gazlarıdır. Artan nüfus ve büyüyen ekonominin enerji gereksinimleri de fazlalaşmaktadır. Bu gereksinimin karşılanması ise fosil yakıt tüketiminin artmasına ve atmosferdeki CO2 miktarının büyük ölçüde çoğalmasına neden olmaktadır. Sıcaklık artışının olası etkileri teoriler biçiminde incelenmektedir. Şehirlerin Isı Adası Etkisi: Güneşli ve sıcak günlerde, yoğun nüfuslu ve yüksek binaların sıklıkla görüldüğü kentsel bölgelerin çevrelerine göre daha sıcak olmaları, şehirlerin ısı adası etkisini oluşturur. Bu asfaltlanmış alanlar,bitki topluluklarının köreltilmiş olduğu bölgeler ve siyah yüzeyler "ısı adası etkisi"nin başlıca nedenleridir. Kentleşmiş alanlarda hava dolaşımının yapılaşmanın artışıyla engellenmesi ve doğal iklim ortamının bozulması yerel bir ısınmaya yol açar. Bu tür yerel ısınmalar da küresel ısınmayı arttırıcı etkidedir. Şehir planlamasında ve bina yapımında güneş ile yapı arasındaki ilişkinin iyi ayarlanması ısı adası etkisini engelleyecektir. Örnek Şehirler:Detroit (USA), Los Angeles (USA) ,Hong Kong (ÇİN)... Smog: Havaya salınan fazla miktardaki gazlar, atmosferdeki havayı yoğunlaştırır, gaz tabakasını kalınlaştırır. Bu yüzden gelen güneş ışınları daha fazla emilir, daha az yansıtılır ve yapay bir sera etkisi oluşur. Gazlar, özellikle büyük şehirlerde, Hava Yoğunluğu (Smog) oluşturarak etkili olmaktadır. Smog oluşumunun bulunduğu yerleşim yerlerinde yaşayan insanlarda - Akciğer ağrıları - Hırıltı - Öksürük - Baş ağrısı - Akciğer iltihapları görülür. Sera Gazlarının Bilinen ve Olası Etkileri: Kuraklık ve seller: Sera etkisi çeşitli iklim değişikliklerine yol açacaktır. Önlem alınmadığı takdirde bazı doğa olaylarının olumsuz etkileri çok büyük boyutlara ulaşacaktır. Güç üretiminde azalma: Elektrik güç santrallerinin tamamı suya ihtiyaç duymaktadır. Sıcak geçen yıllarda elektrik istemi artacak fakat su miktarının azalmasından dolayı elektrik üretimi düşecektir. Bu da devlet ve halklara ekonomik sıkıntılar yaşatacak, çeşitli sorunlara neden olacaktır. Nehir ulaşımında problemler: Sıcaklık artışına bağlı olarak nehir sularının alçalması, suyolu ticaretine engel oluşturup ulaşım giderlerini arttırmaktadır. kaynak:www.gsl.gsu.edu.tr/gwp/tr/index.html www.kuresel-isinma.org

http://www.biyologlar.com/kuresel-isinma-sebepleri

Böceklerde Vücut Isısı

Böceklerin vücut ısısı genel olarak dış ortam ısısına eşittir. Ancak uçus ve faaliyet halinde vücut isisi (40 dereceye kadar) yükselebilir. Böcekler genel olarak düsük isilarda hareketsiz kalir, havanin isinmasi ile faaliyete baslar. Böceklerin optimal isi derecesi 260 C olarak kabul edilmistir. Bu derecede, bütün fizyolojik olaylar en aktif halde devam eder. Bunun üstündeki isilarda böcekler daha aktif olur. 350 C' nin üstünde rahatsiz olurlar. 400 C' den sonra normalin üstünde hareket baslar. Bu derece devam ederse çesitli organlarda felç, 500 C' nin üstünde de ölüm görülür. Ancak bu neme de baglidir. 40-500 C' de hava çok kuru ve vücuttan su kaybi fazla olacagindan ölümde artar. Nemlilik fazla ise ölüm orani azalir. Düsük isiya böceklerin adaptasyonu fazladir. Bazi larvalar -4 ve -420 C' de, erginler ise -1--350 C' ye kadar devamli uyusuk kalabilir. Bu devam ederse ölüm görülür. Böceklerde Üreme ve Gelisme Böcekler yumurta yardimi ile ürerler. Yumurtalar yavrularin gelisebilecekleri ortama ya serbest olarak ve teker teker veya bir çogu bir arada yumurtlanir. Bazilarinda yumurtalar dis etkilere dayanikli kokonlar içerisinde yumurtlanir. Yumurtalar dis ortama birakildiktan sonra yumurtlamadan önce baslayan embriyonal gelisim ilerlemeye baslar ve yumurtadan genç yavru (larva veya nimf) disariya çikar. Iste bu tip üremeye OVIPAR tip denir. Bazi gruplarda yumurtalar, yumurtalanir yumurtlanmaz açilir ve yavru çikar. Bu durumda yumurta vücut içersinde meydana geldikten sonra embriyonal gelisim çok ilerler ve yumurtlamanin hemen ardindan açilir. Bunada OVOVIVIPAR tip üreme denir. Ovipardan farki, embriyonal gelisimin ana vücudu içersinde çok ileri bir devreye kadar sürdürülmesidir. Bu iki tipten farkli olarak bazi türlerde embriyonik gelisim ana vücudu içersinde tamamlanir ve disi böcek yumurta koyacagi yerde yavru meydana getirir. Buna canli-dogurma anlamina gelen VIVIPARITE adi verilir. Bu tipler arasinda daha bazi kompleks üreme sekillerine de rastlanmaktadir. Vivipar Tip Dörde Ayrilir 1- Ovovivipar tip: Bu tipte yumurta embriyonik gelisimi için yeter derecede vitellus içerir. Yumurta korionu ince, ovaryumun ovariol sayisi azdir. Bu tip böceklerde genislemis bir vagina yoktur. Döllenme ovariollerde olur. Hamam böcekleri, bazi Dipter ve Coleopterlerde görülür. 2- Adenotrophic vivipar: Yumurtanin ince bir korionu vardir. Ve yumurta içersinde bulunan vitellus sayesinde embriyolar gelisir, yalniz bir özellikleri, meydana gelen ve gelisimi çok ilerlemis olan larvalarin barsaklarinin son kismi kapalidir. Ancak dogduktan sonra açilir. Bu larvalar ananin gelismis ve kaslarla çevrilmis olan vaginalarinda bulunur. Bezlerin salgisi ile beslenirler. Bu arada gömlek degistirir ve anayi terk ederler. Çikar çikmaz da pup olurlar. Ör. Glossina'lar. 3- Maemocoelous vivipar: Bu oldukça özellik gösteren bir tiptir. Böyle böceklerde ovaryumlari vücudun yag kütlesi içinde serbest olarak uzanirlar. Oviduktlari bulunmaz. Olgun yumurtalarda korion da yoktur. Yalniz gelisimin ilk devrelerinde, yumurta etrafi ince bir zarla çevrilidir. Embriyonal gelisimini tamamlayan larvalar disariya çikar. Ör. Strepsiptera takimi. 4- Pseudoplacental vivipar: Yumurtalarin korionu yoktur ve hemen hemen vitellus da bulunmaz. Genellikle yumurtalar ovidukta döllenir. Yumurtalar genislemis olan vagina (bir nevi uterus) içinde gelisimini tamamlar. Burada ana veya embriyon dokularindan meydana gelen ve placentaya benzer yapida bir baglantiyla beslenmeye devam eder. Ör. Bazi Aphid ve Hemipterlerde, Dermopteralardan Arexenialan. PARTHENOGENESIS : Döllemsiz yumurta ile yani parthenogenesis seklinde çogalma çesitli böceklerde görülür. Bu üreme seklinde 3 ayri tip ayird edilir. 1- Arrhenotokie: Disi böceklerin biraktiklari döllenmemis yumurtadan sadece erkek yavrular meydana gelir. En taninmis örnek Apis mellifera. 2- Thelytokie: Döllemsiz yumurtalardan sadece disi yavrular meydana gelir. Ör: Orthoptera takimi, Phasmidae familyasinin bazi türleri ve Lepidopteralardan Lymantria dispar ve Lasiocampa pini. 3- Amphytokie: Döllemsiz yumurtalardan her iki eseyde de yavru meydana gelebilir. Ör: Saga spp. (Orthop.)

http://www.biyologlar.com/boceklerde-vucut-isisi

Dünya 4 derece ısınsa yaşam nereye gider

Dünyamızın 4 derece ısınması durumunda – ki içinde bulunduğumuz yüzyılda çok büyük bir olasılık- insan türü hayatta kalmak için çok büyük bir savaş verecek. Su baskınları, kuraklık, açlık, susuzluk nedeniyle dünyanın büyük bir kısmı yaşanamaz hale gelirken, Kanada, Sibirya, Grönland ve Antarktika`nın batı kıyıları gibi çok az bölge, insan türünün yaşamını sürdürebilmesine izin verecek. En fazla bir milyon kişinin barınabileceği bu dünyada, enerji ve gıda üretimi de zor koşullarda sürdürülecek. Böyle karamsar bir senaryonun yaşanmaması için tek umut, var olan ulusal sınırların ortadan kalkması ve yepyeni bir dünya düzeninin kurulması. Timsahlar, İngiltere sahillerinde kol gezerken, Saygon, New Orleans, Venedik ve Mumbai gibi kentler sular altında kalacak. İnsan türünün %90`ı yok olacak. Bu bir film senaryosu değil; içinde bulunduğumuz yüzyılda dünyanın dört derece ısınması durumunda ortaya böyle bir tablonun çıkması çok büyük bir olasılık. Açıkça kimse böyle bir geleceğe sahip olmak istemese de, bugünkü göstergeler daha farklı bir geleceğin mümkün olmadığını gösteriyor. Sera gazı emisyonlarını azaltma girişimlerinin sonuçsuz kalması veya gezegenin iklim geribesleme mekanizmalarının ısınmayı hızlandırma olasılıkları, bilim insanları ve ekonomistlerin yalnızca bu dünyanın geleceğinden değil, giderek artan insan popülasyonunun sürdürülebilirliğinden de kaygı duymalarına yol açıyor. Bugünkü insan sayısının hayatta kalabilmesi için dünyada köklü bir düzen değişikliğine ihtiyaç olduğunu düşünüyorlar. Bu arada iyi haber, insan türünün yok olma olasılığının çok düşük olması. İnsan türünün, sayıları birkaç yüz bine düşse bile yeryüzünden silinmesi çok zor. Fakat yaklaşık 7 milyarı bulan bugünkü nüfusu devam ettirmek gerçekten çok ciddi bir planlama yapılması gerekiyor. `DÖRT DERECELİK ISINMA NEDİR Kİ` DEMEYİN! Dört derecelik bir ısınma, ilk bakışta çok fazla değilmiş gibi görünüyor. Bu, gece-gündüz sıcaklık farkından bile az. Öyle ki bu kadarcık bir ısınmanın keyifli bile olabileceğini düşünebilirsiniz. Böylece kuzeyin soğuk ve karanlık kentlerinden Akdeniz`in sıcak ve güneşli sahillerine taşınmaya gerek kalmaz. Ancak tüm gezegenin ortalama 4 santigrat derece ısınması, çok farklıdır ve bu farklılık insanoğlunun felaketine yol açabilir. Bu ısınma 18.yüzyıldan başlayan insan faaliyetlerinin bedelidir. `Yeni Jeolojik Çağ` olarak tanımlanan bu döneme bazı bilim insanları (Başta Almanya, Mainz`deki Max Planck Enstitüsü`nden Nobel ödüllü atmosfer kimyası uzmanı Paul Crutzen) `Antroposen` adını veriyor. Sıcaklıkta dört derecelik artışın meydana gelmesi de çok zor değildir. 2007 yılında İklim Değişikliği Üzerine Hükümetlerarası Panel`in (IPCC- Intergovernmental Panel on Climate Change) yayımladığı bir rapor, içinde bulunduğumuz yüzyılda 2 ile 6.4 derecelik bir ısınmayı öngörüyor. IPCC`nin eski başkanı Bob Watson`a göre dünya dört derecelik ısınma olasılığına karşı önlemleri şimdiden almalı. ISINMA KAÇINILMAZ Daha sıcak bir dünya ile nasıl başa çıkacağız? Bu konuda en önemli faktör, bu aşamaya gelmeye ne kadar süremizin kaldığı ile ilgilidir. Dört derecelik artışın ne zaman başlayacağı ise atmosfere ne kadar sera gazı pompaladığımıza değil, dünyanın ikliminin bu gazlara ne kadar duyarlı olduğuna bağlıdır. Ayrıca bu, iklim geribesleme mekanizmasının ısınmayı hızlandırdığı `geri dönüşü olmayan noktaya` erişip erişmediğimiz ile de ilgilidir. Modeller dünyanın dört derecede `pişmesi`nin 2100 yılında gerçekleşeceğini gösterse de bazı bilim adamları bu noktaya 2050 yılında erişebileceğimizi öngörüyor. Bu aşamaya geldiğimizde bilim insanları Dünya`da yaşamın kâbusa dönüşmesinden korkuyor. İngiltere`deki Exeter Üniversitesi`nden iklim sistemlerinin dinamiği konusundaki çalışmalarıyla tanınan Peter Cox, görüşlerini şöyle dile getiriyor: `İklim bilimciler başlıca iki gruba ayrılır: Biri, sera gazı emisyonunu vakit geçirmeden kesmemiz ve yüksek küresel sıcaklıkları aklımızdan çıkartmamız gerektiğini söyleyen ihtiyatlı bilim insanları. Diğeri ise, ne yaparsak yapalım felaketin kaçınılmaz olduğuna inanan ve her şeyi bırakıp yüksek tepelere kaçmamız gerektiğini söyleyen karamsarlar. Ben orta noktadayım. Değişiklikler kaçınılmaz ve bizler adımlarımızı bu değişikliklere göre atmalıyız.` SICAK BİR GELECEK NELERE GEBE? Şu anda hayatta olan insanların bu felaketi yaşayabileceği olasılığını aklımızdan çıkartmadan, mümkün olan en az kayıp ile hayatta nasıl kalabileceğimizi düşünmemiz gerekiyor. Böyle bir gelecek bize nelere mal olacak? Dünya buna benzer bir sıcaklık artışını son olarak 55 milyon yıl önce Paleosen-Eosen Termal Maksimum olayında yaşamıştı. O dönemde suçlunun `klatrat`lar (iki kimyasal cismin kristalsel birleşmesi; bu birleşmede cisimlerden birinin molekülleri, diğer cismin moleküllerinin oluşturduğu kristal örgüdeki atom boşluklarına yerleşir-kimyasal olarak kafeslenmiş ve donmuş metanın bulunduğu geniş topraklar) olduğu düşünülüyor. Metanın derin deniz dibinden serbest kalıp, atmosfere püskürerek 5 gigaton karbon oluşturduğu tahmin ediliyor. Zaten sıcak olan gezegen 5 veya 6 derece ısınınca, buzlardan arınmış olan kutup bölgelerinde tropik ormanlar yetişmiş ve okyanus suları o kadar asidik hale gelmiş ki deniz canlıları kütlesel olarak ortadan kalkmış. Deniz seviyesi bugüne göre 100 metre yükselmiş ve güney Afrika`dan Avrupa`ya kadar olan bölge tümüyle çölleşmiş. Deniz seviyesinin yükselmesi kıyılarda suların iki metre yükselmesine yol açabilir. Öyle ki eğer Grönland buzul tabakası ve Antarktika`nın bir kısmı erirse bu yükselme daha da fazla olabilir. New York`ta NASA`nın Goddard Uzay Çalışmaları Enstitüsü`nden iklim bilimcisi James Hansen, su seviyesindeki yükselme konusunda şunları söylüyor: `Batı Antarktika`daki buzul tabakalarının bu yüzyıldaki ısınma karşısında direneceğini hiç sanmıyorum. Bu da deniz seviyesindeki yükselmenin en az 1 veya 2 metre arasında olacağı anlamına geliyor. CO2 yoğunluğunun 550 ppm (parts per million) seviyesine (bugün yoğunluk 385 ppm seviyesinde) yükselmesi ise kıyamete yol açacak. Bu da deniz seviyesinin 80 m veya daha fazla yükselmesi demek oluyor.` HANGİ BÖLGELER ETKİLENECEK? Dünya yüzeyinin yarısı 30 ve -30 derece enlemleri arasında tropik bölgelerde yer alıyor ve burası özellikle iklim değişikliğinden en fazla etkilenecek bölgeler. Örneğin Hindistan, Bangladeş ve Pakistan daha şiddetli muson yağmurlarına maruz kalacak. Bu da bu bölgelerin şimdi olduğundan daha yıkıcı su baskınlarına hedef olacağı anlamına geliyor. Yine de toprak daha da sıcak olacağı için bu su daha çabuk buharlaşacak. Sonuçta Asya büyük bir kuraklığa teslim olacak. Bangladeş`in topraklarının üçte birini kaybedeceği düşünülüyor. Afrika musonlarının, daha az bilinmesine karşın, daha da yoğun olması bekleniyor. Bu da Sahel Bölgesi`nin –Sahra Çölü`nün güneyinde kıtayı bir ucundan diğerine bölen kuşak- yeşillenmesine yol açabilir. Ancak diğer modellere göre Afrika`daki kuraklık daha da kötüleşecek. İçme suyu sıkıntısı dünyanın her yerinde hissedilecek. Çin`de, güney-batı ABD`de, Orta Amerika`da, Güney Amerika`nın büyük bir kısmında ve Avustralya`da daha sıcak havalar, toprağın nemini buharlaştıracak ve kuraklık başlayacak. Dünya`da bugün var olan çöller daha da genişleyecek. Öyle ki Sahra çölü Orta Avrupa`ya kadar ilerleyecek. Buzulların erimesi, Tuna`dan Ren`e, Avrupa nehirlerinin kurumasına neden olacak. Benzer etkiler Peru`daki And Dağları, Himalayalar, Karakurum Dağları`nda da hissedilecek. Dolayısıyla Afganistan, Pakistan, Çin, Butan, Hindistan ve Vietnam susuz kalacak. KARAMSAR BAKIŞ `Yeterli su garantisine yalnızca yüksek enlemlere çıktıkça sahip olabileceğiz` diye konuşan NASA`da görevli James Lovelock, `Bu bölgede her şey çıldırmış gibi gelişecek. İşte yaşam yalnızca burada barınacak. Dünya`nın geriye kalanı birkaç vahanın bulunduğu koskoca bir çöl olacak` diyor. `Gaia Kuramı`nın kurucusu olan Lovelock, bu kuramıyla Dünya`yı kendi varlığını koruyabilen ve düzene sokan bir organizma olarak değerlendiriyor. Bu durumda gezegenin yalnızca bir kısmında insanlar yaşayabilecekse bu kadar geniş bir popülasyon nereye sıkışacak? Lovelock gibi bilim insanları bu konuda çok da iyimser değiller: `İnsanlar çok güç bir durumda ve önlerindeki bu zorlu evreyi aşabilecek kadar da akıllı olduklarını sanmıyorum. Tür olarak varlıklarını sürdürecekler ama çok fire verecekler` diye konuşan Lovelock, `Bu yüzyılın sonunda sağ kalan insanların sayısı bir milyarı geçmeyebilir` diyor. İYİMSER BAKIŞ Almanya`daki Potsdam İklim Değişikliği Araştırmaları Enstitüsü`nden John Schellnhuber gelecekle ilgili daha iyimser görüşlere sahip. Dört derecelik bir ısınmanın çok büyük bir etkisi olacağını kabul ediyor ama insanoğlunun bu felaketin üstesinden geleceğine de inanıyor. Hayatta kalabilmek için insanların radikal değişiklikler yapması gerekiyor. Schellnhuber topluma jeopolitik açıdan değil, kaynak dağılımı açısından bakılmasının daha doğru olduğunu söylüyor. `Her ülkenin yiyecek, su ve enerji bakımından kendi kendine yetmesi gerektiğine inanmak gibi bir yanılgı içindeyiz` diye konuşan Cox, `Dünyayı daha farklı ve taze bir bakış açısıyla değerlendirmemiz gerekiyor. Başka bir deyişle, kaynakların nerede bulunduğuna bakıp, popülasyonu, yiyecekleri ve enerjiyi, planlamamız gerekiyor. Eğer uzaylılar Dünyamıza inse, Pakistan ve Mısır gibi dünyanın en kurak bölgelerinde pirinç gibi çok fazla su isteyen bitkilerin yetiştirilmesini delilik olarak nitelendirebilir` diyor. POLİTİKAYI DEVRE DIŞI BIRAKMAK Doğal kaynaklar üzerindeki çatışmaların, iklim değişiklikleri ile birlikte artması kaçınılmaz. Kaldı ki dünya liderlerinin siyaseti bir kenara bırakarak, kendi serbest iradeleriyle sahip oldukları yetkilerden vazgeçeceklerini düşünmek bile hayaldir. `İnsanoğlunun tek şansı siyasi engellerin üstesinden gelmektir` diye konuşan Mikronezya`da sular altında kalmak üzere olan ada devleti Kiribati`nin Devlet Başkanı Anote Tong, `Bizim için artık çok geç. Halkımızı yavaş yavaş Avustralya ve Yeni Zelanda`ya taşıyoruz. Dünyanın diğer bölgelerinin de benzer bir akıbete maruz kalmasını engellemek için ulusal sınırları ortadan kaldırmak gibi sert tedbirler almalıyız` diyor. Cox da aynı fikirde: `Hayatta kalmamızın önündeki tek engel ulusal sınırlar ise bu konuda gerekli adımları atmalıyız. Hayatta kalmamız her şeyden önemli.` İklim madellerinin çoğu gezegenin kuzey ve güney uçlarının daha fazla yağış alacağını öngörüyor. Kuzey yarıkürede Kanada, Sibirya, İskandinavya ve Grönland`ın buzullardan temizlenen kısımları, güney yarıkürede ise Patagonya, Tasmanya, Avustralya`nın ve Yeni Zelanda`nın kuzeyi, Antarktika`nın buzullardan arınmış batı kıyıları insan yaşamına uygun görünüyor. Bir insana gerekli olan yerleşim alanının 20 metre kare olduğunu varsayarsak, 9 milyar insana 18.000 kilometre kare genişliğinde bir alan gerekir. Kanada`nın tek başına 9.1 milyon kilometre kare olduğuna göre ve Alaska, Rusya ve İskandinavya gibi yüksek enlem ülkeleriyle birleştirildiğinde, herkesin yerleşmesine yetecek miktarda toprak bulunduğu sonucu çıkıyor. Suya erişimi olan bu değerli topraklarda yiyecek üretmek mümkün olabilecek. Dolayısıyla insanlar, yüksekte kalan bu bölgelerde kalabalık kentlerde yaşayabilecek. Ne var ki bu kadar sıkışık ortamlarda yaşam sürdürmek beraberinde birçok sorunu da getirecek. Örneğin salgın hastalıklar kolayca yayılabilecek ve kitlesel ölümlere yol açabilecek. VEJETARYEN BİR DÜNYA İnsanların yeni bir yaşam kurduğu bu bölgelerde büyük bir olasılıkla vejetaryen bir dünya kurulacak. Isınma ve asitlenmeye bağlı olarak denizlerde balık kalmayacak. Kümes hayvanı yetiştiriciliği yalnızca çiftliklerden arta kalan bölgelerde görülecek. Hayvancılık da otlak azlığına bağlı olarak yalnızca keçi gibi çöl bitkileriyle beslenen hayvanlarla sınırlı tutulacak. Et azlığı sentetik etlerin üretimini artıracak. Yosun temel gıda maddeleri arasına girecek. Bataklık ve sulak arazilerde tarım yapılması sağlanacak. ENERJİ ÜRETİMİNDE DARBOĞAZLAR Yeni kentlere enerji sağlamak için de yaratıcı fikirler yaşama geçirilecek. Afrika, Ortadoğu ve Güney ABD`yi kapsayacak şekilde geniş bir kuşak, güneş enerjisi üretim tesislerine ayrılacak. Yüksek-voltaj doğru akım nakil hatları bu enerjiyi kentlere taşıyacak veya bu enerji hidrojen olarak depolandıktan sonra nakledilecek. Eğer güneş enerjisi üretim tesisleri Ürdün, Fas ve Libya`da 2010 yılında devreye girerse, 2020 yılında toplam enerji sevkiyatı yılda 55 teravat saate çıkabilir. Bu da 35 milyon insanın evde kullanacağı elektrik gereksiniminin karşılanacağı anlamına geliyor. 9 milyara çıkacak olan dünya nüfusunun enerji talebini karşılamaktan çok uzak olan bu miktarın arttırılması için güneş enerjisi üretim tesislerinin geniş bir alana yayılması gerekiyor. Nükleer, rüzgâr, hidro-enerji, jeotermal ve açık deniz rüzgâr jeneratörleri de devreye girerek, enerji arzına katkıda bulunacak. ESKİ, YEŞİL DÜNYA UMUDU Toprak, enerji, yiyecek ve suyu planlı bir şekilde kullandığımız takdirde insan popülasyonunun hayatta kalma şansı artar. Ancak buna yaşamak denirse... Bir kere Dünya`daki biyolojik çeşitlilik azalacak, çünkü pek çok organizma yüksek sıcaklığa, susuzluğa, ekosistemlerinin yok olmasına dayanamayacak veya aç insanlar tarafından avlanacaklardır. Schellnhuber, koşulların bu kadar elverişsiz olduğu bir dünyada insanların eski yeşil dünyalarını geri getirmek için ellerinden geleni yapacaklarına inanıyor: `İnsan türünün hayatta kalması CO2 düzeyini 280 ppm`ye çekmesine bağlıdır. Artan sıcaklık yüzünden ormanları yeniden oluşturamazsak da bazı bölgelerde yeni ağaçlar yetiştirebiliriz. Böylece az sayıda ağaç, yerel iklimi değiştirerek yağmur miktarını arttırmaya yetebilir. Bu da ormanların gelişmesi için uygun zemini yaratır.` GERİ DÖNÜŞÜ OLMAYAN NOKTA Dört derece ısınmış bir dünya ile ilgili en korkutucu senaryo bugünkü dünyamızın koşullarına bir daha sahip olamayacak noktaya gelmemizdir. Daha da kötüsü pek çok model, dört derecelik sıcaklık artışının bir kere meydana geldikten sonra durdurulamayacak hale geleceğini öngörüyor. Daha da sıcak bir dünyada bilim insanları insan türünün akıbeti hakkında hiç de olumlu şeyler düşünülmüyor. Crutzen iyimser olmaya çalıştıklarını ancak bugünkü verilerin buna izin vermediğini söylüyor: `Gelecek hakkında iyimser düşünmek için karbon emisyonunu 2015 yılına kadar %70 oranında düşürmemiz gerekir. Oysa biz ne yapıyoruz? Karbon emisyonunu her yıl %3 oranında arttırıyoruz.` Derleyen: Reyhan Oksay (Cumhuriyet Dergi)

http://www.biyologlar.com/dunya-4-derece-isinsa-yasam-nereye-gider

Jeolojik Zamanlar Hakkında Bilgi

Hadeen (4,6 – 4,0 milyar yıl) Dünya’nın bir gezegen olarak şekillendiği ve gezegen haline dönüştüğü dönemdir. Bu dönemde yeryüzüne sürekli bir meteor yağışı görülürken volkanlar da çok aktifti. Aktif olan volkanların püsküttüğü metan, amonyak, su buharı, hidrojen sülfür, kükürt gibi gazlardan oluşan zehirli bir atmosfer bulunuyordu. Canlılığın temel yapıtaşı olan aminoasitler, DNA ve RNA moleküllerinin ilk kez bu dönemde ortaya çıkması ile 4,3 – 4 milyar yıl önce ilk canlı moleküller görüldü. Demirin damlacıklar halinde Dünya’nın merkezine doğru inerek yoğunlaşması ile çekirdek oluştu. Arkeen (4,0 – 2,5 milyar yıl) Eğer Arkeen dönemine geri dönebilseydik, muhtemelen içinde bulunduğumuz gezegeni tanıyamayacaktık. Bilinen en eski kayaçlar bu döneme aittir. Serbest oksijen içermeyen atmosfer yaşam için hala zehirliydi. Yaşamın ilk izleri olan, bilinen en yaşlı fosiller özellikle siyanobakterilerin oluşturduğu ve 3,5 milyar yıl yaşındaki stromatolitlerdir. Siyanobakterilerin yaptığı fotosentez sonucu okyanuslara oksijen salınmaya, yeryüzü kabuğunun yavaş yavaş soğumasıyla kıtasal plakalar oluşmaya başladı. Proterozoyik (2,5 milyar – 542 milyon yıl) Bu dönemin en önemli özelliği oksijenli atmosferin oluşmaya başlamasıyla birlikte birçok bakteri grubunun yok olması, 1,5 milyar yıl önce bir hücreli, gelişmiş ve eşeysel üreme yeteneğine sahip ökaryotik hücrelerin ortaya çıkasıdır. Dönem ortalarına doğru atmosferde oksijenin artmasıyla birlikte çok hücreli, yumuşak gövdeli canlılar ortaya çıktı. FANEROZOYİK - PALEOZOYİK(542 – 251 milyon yıl) Kambriyen (542 – 488,3 milyon yıl) Bu dönem yeryüzü yaşamı için bir dönem noktasıdır. Bilinen hayvan şubelerinin nerdeyse tamamı Kambriyan’de ortaya çıktı. Belli başlı hayvan gruplarının birdenbire ortaya çıkması, yaşam çeşitliliği ve yaygınlığının en fazla düzeye ulaşması “Kambriyen Patlaması” olarak bilinir. Bu dönemde ilk kez ortaya çıkan canlılar arasında Nautilus gibi yumuşakçalar, bryozoalar, hydrozoalar, süngerler, mercanlar, derisidikenliler ve trilobit gibi ilkel eklembacaklılar bulunur. Sudaki bu zengin yaşama karşı karada henüz yaşam yoktu. Ordovisiyen (488,3 – 443,7 milyon yıl) Bu dönemde denizel canlılarda büyük çeşitlenme görüldü. Ayrıca kırmızı-yeşil algler, ilkel balıklar, Ammonoidler, mercanlar, deniz laleleri ve karındanbacaklılar (Gastropoda) da bu dönemde okyanuslarda bulunuyordu. Dönemin sonlarına doğru karasal bitkiler ortaya çıktı. Ordovisiyen’in sonunda birçok canlı grubunun ortadan kalkmasına neden olan büyük kitle yokoluşu meydana geldi. Silüriyen (443,7 – 416 milyon yıl) Silüriyen, çevre ve canlıları önemli derecede etkileyecek yeryüzü değişimlerinin meydana geldiği bir dönemdir. Büyük iklim değişimlerinin sona ermesiyle iklim dengeye ulaştı. Deniz seviyesinin yükselmesiyle birlikte mercan resifleri ilk kez oluştu ve çeneli, çenesiz balıklar ile tatlı su balıklarındaki çeşitlenmeyle birlikte balık türlerinin evriminde belirgin gelişmeler yaşandı. Kara yaşamına ait ilk kanıtlar olan örümcek, akrep, kırkayak ve akrabaları ile ilk damarlı bitkiler ortaya çıktı. Devoniyen (416 – 359,2 milyon yıl) Bu dönem, balıklarda görülen büyük çeşitlenme nedeniyle “Balık Çağı” olarak bilinir. Çeneli balıkların çeşitliliği artarken kıkırdaklı balıklar ilk kez ortaya çıktı. Lob yüzgeçli balıkların yaklaşık 397 milyon yıl önce karaya ayak basmaları ve üyelerin evrimleşmesi ile ikiyaşamlılar (Amphibia) ortaya çıktı. Bu dönemin sığ ve sıcak denizleri çok çeşitli omurgasız gruplarına ev sahipliği yapıyordu. Mercanlar, süngerler, algler ve dallı bacaklılardan (Brachiopoda) oluşan resifler çok yaygındı ve ilk ammonitler ortaya çıktı. İlk toprak oluşumu ve ilk böcek fosili Devoniyen’den bilinir. Karbonifer (359,2 – 299 milyon yıl) Karbonifer, dünya ölçeğinde geniş yayılımlı kömür yataklarının zenginliği ile bilinir. İklim oldukça ılımandı. Karada eğrelti otları ve ilk tohumlu bitkilerden oluşan dev boyutlu bitki örtüsü ile birlikte dev boyutlu böcekler, kırkayaklar ve akrepler hakimdi. Bu dönemde omurgalılar karaya tam olarak ayak basıp çeşitlenmeye başladı ve sürüngenler büyük bir evrimsel değişim gösterdi. Permiyen (299 – 251 milyon yıl) Bu dönem memeliler, kaplumbağalar, lepidosaurlar ve archosaurların atası olan amniyotların çeşitlenmesi ile karateristiktir. Karasal iklimin görülmeye başlaması ile sulakalanlar azaldı ve ikiyaşamlılar yerine sürüngenler daha fazla yayılım gösterdi. Dönem sonlarına doğru memelilerin atası olan Synapsidler ve günümüz sürüngenleri, dinozorlar, pterosaurlar ve timsahların atası olan Diapsidler oldukça başarılı şekilde geniş alanlara yayıldılar. Permiyen sonunda karasal canlılarla birlikte daha çok sucul canlıların yok olmasına neden olan büyük bir kitlesel yokoluş meydana geldi. - MESOZOYİK (251 – 65,5 milyon yıl) Triyas (251 – 199,6 milyon yıl) Triyas’tan önce meydana gelen büyük yokoluştan kurtulan canlılar boş alanları doldurdu. Sucul ortamda yeni mercanlar ve aralarında Ichthyosaur ve Plesiosaur’un da bulunduğu sucul sürüngenler ortaya çıktı. Dönem sonlarında ilk memeliler, uçan sürüngenler (Pterosaur) ve ilk dinozorlar görüldü. Triyas sonunda yine daha çok sucul canlıların etkilendiği büyük bir yokoluş meydana geldi. Jura (199,6 – 145,5 milyon yıl) Jura “Sürüngenler Çağı” olarak bilinir. Bu dönem Brachiosaurus, Diplodocus gibi büyük otçul dinozorlar için altın bir çağdı. Eğrelti otları ve palmiye benzeri ağaçlarla beslenen bu otçul dinozorlar Allosaurus gibi o dönemin etçil dinozorları tarafından avlanırdı. Sucul yaşamda balıklar ve sucul sürüngenler hakimdi. Dönemin sonlarına doğru ilk kuş olan Archaeopteryx ortaya çıktı. Kretase (145,5 – 65,5 milyon yıl) Kretase ılıman iklimi ve yüksek deniz seviyesi ile karakteristiktir. Okyanus ve denizler günümüzde nesli tükenmiş olan sucul sürüngenler, ammonitler ve rudistlerle, karalar ise içlerinde büyük etçil Tyrannosaurus rex’in de bulunduğu dinozorlarla kaplıydı. Yeni memeli ve kuş gruplarıyla birlikte çiçekli bitkiler ve birçok yapraklı ağaç türü ortaya çıktı. Dönemin başlarında erken keseli memeliler (Marsupialia), sonlarına doğru ise gerçek plasentalı memeliler görüldü. Kretase sonunda meydana gelen büyük yokoluş sonucunda kuş olmayan dinozorlar, pterosaurlar ve büyük sucul sürüngenler tamamen ortadan kalktı. - SENOZOYİK(65,5 milyon yıl – günümüz) 1. Paleojen Paleosen (65,5 – 55,8 milyon yıl) Bu dönemde meydana gelen en önemli olay birçok yeni memeli türünün ortaya çıkması, hızlı bir şekilde evrimleşmesi ve dinozorlardan boşalan alanları hızlar doldurmasıdır. Bu dönemdeki memelilerin küçük boyutlu olmalarından dolayı fosil kayıtları çok az sayıdadır. Karada modern bitkiler gelişti, kaktüs ve palmiye ağaçları ortaya çıktı. Denizlerde yeni tip foraminiferler ve günümüzde bulunan gruplara çok benzer formlar ile gastropodlar ve bivalvler bulunuyordu. Paleosen’de ortaya çıkan grupların birçoğu günümüze ulaşamadan ortadan kalktı. Eosen (55,8 – 33,9 milyon yıl) Eosen devrinin başlangıcı ilk modern memelilerin çıkışı ile karakteristiktir. Çift toynaklılar (Artiodactyla), tek toynaklılar (Perissodactyla) ve Primatlar gibi memeli gruplarının küçük boyutlu formları ile birlikte hortumlu memeliler (Proboscidea), kemirgenler (Rodentia) gibi modern memeli gruplarının erken formları ve balina, deniz ineği gibi deniz memelileri ilk kez görülmeye başladı. Eosen modern kuş takımlarının ilk kez ortaya çıktığı dönemdir. Bu dönemin sonunda meydana gelen yokoluş ile Asya faunası Avrupa’ya giriş yaptı. Oligosen (33,9 – 23,03 milyon yıl) Bu dönemde otlak alanların yayılmasıyla birlikte tropik geniş yapraklı ormanlar ekvator bölgesine çekildi. Karadaki canlıların boyutlarında artış görüldü ve Baluchitherium gibi gergedan benzeri memeliler çok büyük boyutlara ulaştı. Atlar, gergedanlar ve develer gibi memeli grupları açık alanlarda koşmaya uyumlu hale geldi. Sucul ortamdaki canlılar günümüzdekilere oldukça benzerdi. 2. Neojen Miyosen (23,03 – 5,33 milyon yıl) Bu döneme ait bitki ve hayvanlar günümüzde yaşayanlara oldukça benzemekteydi. Bitkiler açısından iki önemli ekosistem dikkat çekiciydi. İlki ot yiyici hayvanların evrimi üzerinde etkili olan genişleyen çayırlık alanlar, diğeri ise azalan tropik ormanlardır. Memeli çeşitliliği en üst düzeydeydi. Geyikler ve zürafalar ilk kez görülmeye başladı. Köpekler, rakunlar, atlar, kunduzlar, geyikler, develer ve balinalar gibi memelilerin günümüzde yaşayan türlerine benzer formlar ortaya çıktı. Pliyosen (5,33 – 2,58 milyon yıl) Bu dönemde dünya coğrafyası, iklim ve hayvan toplulukları günümüze oldukça benzerdi. Kıtalar hemen hemen bugünkü konumlarını aldılar. Daha soğuk ve kurak iklim koşulları sonucunda tropik bitki türleri azalırken, yapraklarını döken ağaç ormanları hızla çoğaldı, otlak alanlar Antaktika hariç tüm kıtalara yayıldı. 3. Kuvaterner Pleyistosen (2,58 milyon – 10.000 yıl) Bu dönemde görülen en önemli olay, sürekli devam eden iklimsel bir soğuma ve buzul çağlarıdır. İklim oynamaları sonucunda aşağı yukarı 50 ile 100’er bin yıl süren buzul ve buzularası dönemler görüldü. Büyük memeli faunası hızla yayıldı ve hominid primatlar biyolojik ve kültürel alanda evrim geçirdi. İnsan soyu Homo erectus, Homo neanderthalensis ve Homo sapiens (modern insan) olarak evrimsel bir sıra izledi. Deniz seviyesinin düşük olduğu buzul dönemlerde kurulan kara köprüleri ile karasal hayvanların kıtalar ve adalar arası göçleri gerçekleşti. Pleyistosen sonlarında özellikle büyük memelileri etkileyen yokoluş sonucunda mamutlar, mastodonlar, kama dişli kediler, yer tembelhayvanı ve mağara ayısı gibi memeliler yokoldu. Holosen (10.000yıl – günümüz) İnsan Çağı olarak da adlandırılan bu devir, içinde bulunduğumuz zamanı ifade eder. İnsanın doğaya egemen olduğu, insan kültürünün hızla geliştiği ve yayıldığı çağ olarak kabul edilir. Bu devirde başlayan küresel ısınmanın önümüzdeki yıllarda da devam edeceği düşünülmektedir. İnsanın neden olduğu olaylar sonucunda doğa dengesinin bozulması nedeniyle birçok tür yokoldu ve yokolmaya devam etmektedir.

http://www.biyologlar.com/jeolojik-zamanlar-hakkinda-bilgi

KİMYASAL MADDELER NERELERDE KARŞIMIZA ÇIKAR?

Sigara kullanmayanlar, pasif içiciler de dahil olmak üzere yukarıda sayılanlardanbaşka ne gibi kimyasal maddelerle haşır neşirler hiç düşündüler mi acaba? En basit yoldan şunu sorabiliriz kendimize insan beslenmeden yaşayabilir mi? Elbette hayır. Peki vücudumuza giren kimyasalların besin yolunu da kullandıklarını biliyor muyuz? O şahane görünen şekerler, pastalar, sucuk, salam, buz gibi kola, kostiklizeytinler, cipsler ve daha sayamadığımız neler neler…Oysa sağlık için bizler bütünbunları tercih etmek yerine bol bol su, maden suyu, şifalı bitki çayları içmeli, besinleriseçerken taze olmasına dikkat etmeliyiz. Dışarıdan aldığımız yiyecekleri bol su ileyıkadıktan sonra tüketmeye özen göstermeliyiz.Yediğimize giren kimyasallar başka nerelerde karşımıza çıkar acaba? Gelin beraber bir düşünelim; günde kaç kere ellerimizi yıkıyoruz acaba? Ellerimizin temizliği için sabun tercih ederiz. Sabunun içeriği genellikle basittir. Bir alkalinin yağlı bir madde üstüne etkisiyle elde edilir. Bazıları antiseptik, antibakteriyelve mantara karşı olanlar gibi. İşte bütün bu sayılan bize çok da tanıdık gelmeyen bumaddeler vücudumuza da tanıdık gelmemektedir.Evet sabah kalktık bir duş aldık ve ter kokmamak için deodorantımızı sıktık…Yoksa hiç sıkmasa mıydık? Tabi ki insan olarak temiz kokmaya, güzel görünmeye özengöstermeliyiz. Bunlar modern toplumların görünmeyen gerekleridir. Ve bugörünmeyen gereklerin görünmeyen birçok etkileri vardır. Biz insanlar güzel kokmanın yanı sıra güzel görünmeye de çok fazla önem veririz.Elbette bunun da bir bedeli vardır. Örneğin taktığımız takılar, kullandığımız makyaj malzemeleri vs. Korkmayın. Bunların hepsi ölümcül ya da çözümsüz sonuçlar doğurmuyorlar. Dikkat çekmek istediğimiz şey sadece biraz daha duyarlıdavranılması. İnsanların iyiliği için yapılan birçok şey insanlara kötülük olarak dönebiliyor ne yazık ki… Bizler için yapılan fabrikalar, nükleer santraller bizlere faydalarının olmasının yanı sıra dikkat edilmezse tamiri çok zor zararlar verebilmekteler. Çoğumuz evlerimizin "tertemiz", "mikropsuz" olması için çeşitli kimyasal maddeler kullanıyoruz. Tuvalet ve fırını temizlemek için asit, banyoyu dezenfekte etmek içinfenol, mobilyaları cilalamak için damıtılmış petrol ürünleri, çamaşırlarımızıbeyazlatmak için klor ve evlerimizi temiz tutmak için çeşit çeşit diğer zehirli kimyasalmaddeleri kullanıyoruz. Günlük yaşamda kullandığımız ürünler 50 bin’in üzerindekimyasal madde çeşidini içeriyor ve her yıl bunlara yüzlerce yenisi ekleniyor. Birçoğu ise yeterince test edilmeden ve belirli bir mevzuata tabi olmadan piyasaya sürülüyor.Bu ürünlerin büyük kısmı doğrudan kanalizasyona akıp sonunda da su sistemlerimizekarışıyor. Sözünü ettiğimiz kimyasallar, sonunda "fazla yüklenme" olasılığıoluşturarak vücudumuzda depolanıyor ve zehirli olma düzeyine ulaştığında çeşitli hastalıklara yol açıyor (Kronik yorgunluk sendromu, alerjiler, karaciğer sorunları, lenfkanseri gibi).Evsel temizlik malzemeleri sadece toprağı ve su kaynaklarını değil, teneffüs ettiğimiz havayı da tehdit ediyor. Sprey boyalar, fırın temizleyiciler, dezenfektanlar, mobilyaparlatıcıları ve diğer tüm sprey ürünler, birkaç gün sonra soluyacağımız havanın bir parçası oluyor. Sadece kentlerde yaşayanların değil, kırsal kesimde yaşayanların da atık su sistemlerine neler gönderdiklerine dikkat etmeleri gerekiyor. Fosseptik sistemler atık su sorununu çözmüyor; boyalar, çözücü, inceltici, ağartıcı kimyasallar, aseton, tuvalettemizleyiciler ve lavabo açıcılar ile diğerlerinde bulunan belirli kimyasal maddeler organik maddeleri parçalayan organizmaları zehirleyebiliyor. Oysa organik maddelerin parçalanması doğal döngünün işlemesi açısından zincirin olmazsa olmaz halkalarından birini oluşturuyor. Bunun yanı sıra nefes alıp verirken bile artık o kadar rahat bir “oh!” çekemiyoruz. Bunun nedeni ise fosil yakıtların ısınma ve güç üretimi için, motorlu taşıtlarda,endüstride ve katı yakıtların yakma yoluyla her tarafında kullanılması, şehirlerde atmosfere verilen havanın kirlenmesini hızlandırmaktadır.

http://www.biyologlar.com/kimyasal-maddeler-nerelerde-karsimiza-cikar

Doğa Tarihi Çalışmaları Kronolojisi

MÖ 2500-600: Babiller matematik çalışmalarına başlamışlardı. Bir çemberi 360 dereceye bölmüşler, 60 dakika ve 60 saniyeyi belirlemişlerdir. Tarımsal faaliyetlerini düzenlemek için sel baskınlarını hesaplamaya yönelik bir takvim oluşturmuş ve bir yılı 4.5 dakikalık yanılma payı  ile  hesaplamışlardı.  MÖ  2000  e  gelindiğinde  arkeolojik  kayıtlardan  ele  geçen papirüslerde Mısırlıların tedavi yöntemleri geliştirdiklerini görüyoruz. Nil’in hareketlerine göre seneyi dörder aylık üç mevsime ayırmışlardı ve bir yılı 365 gün olarak belirlemişlerdi.     MÖ  6.  Yüzyıl: MÖ  570’li  yıllarda  Yunan  filozof  Xenophanes  dağlarda  bulduğu  deniz kabuklarından ilham alarak ilk jeolojik teoriyi oluşturdu. Dünyanın ardışık tufanlar yaşadığı fikrini ortaya attı. İnsanların yaratıldıkları formda kaldıklarını ve hiç değişmedikleri fikrini savunan  dine  eleştiri  getirdi.  530’lı  yıllarda  ise  başka  bir  Yunan  filozof  ve  astronom Anaximander evrim fikrini ortaya attı. Canlıların ilk önce balçıktan oluştuklarını ve insanların diğer  türlerde  evrimleştiğini  dile  getirdi.  Aynı  dönemde  Yunan  matematikçi  ve  filozof Pythagoras ise dünyanın yuvarlak olduğunu savundu.  MÖ 5. Yüzyıl: Bu yüzyıl tarihin babası olarak adlandırılan Heredot’un yaşadığı yüzyıldır (484-425). Historia adlı eserinde genel olarak tarihi konulara yer verse de coğrafya ve sosyolojik bilgiler de içerir. Heredot insan çeşitliliğinin çevresel şartlardan kaynaklandığını savunuyordu; ona göre bu çeşitlilik çevreye yapılan uyuma göre belirleniyordu. Deneysel araştırmalar da yaptı.  Mısır  ve İran’dan  topladığı  kafataslarına  taş  ile  vurarak  dayanaklıklarını  ölçtü  ve Mısırlıların  daha  kalın  kafatasına  sahip  olduğu  sonucuna  vardı  ve  İranlıların  kafalarını korumak için bu yüzden başlık taktıklarını ve mısırlıların takmadıklarını açıkladı. Tıp tarihini en  önemli  kişilerinden  Yunanlı  bilgin  Hipokrat  da  bu  dönemde  yaşamıştır  (460-377). Çalışmaları Corpus Hippocraticum adlı eserinde toplanmıştır. Hipokrat vücudu bir organizma olarak görmüş ve vücudun anlaşılmasının ancak çevre ve davranışlar ile ilişkisinin anlaşılması ile mümkün olabileceğini iddia etmiştir. MÖ 4. Yüzyıl: Yunan bilgin Aristo bu dönemde yaşamış ve felsefi konuların yanında zooloji ve anatomi  üzerine  de  çalışmalar  yapmıştır  (384-322). Historia   Animalium adlı  yapıtında insanlar,  maymunlar ve kuyruksuz büyük maymunlar arasındaki benzerlikleri tanımlamış ve aralarında  önemli  bir  bağ  olduğunu  söylemiştir.  Aristo  da  insan  çeşitliliğinin  çevresel nedenlerden kaynaklandığını savunmaktadır. MÖ 314 yılında Yunan filozof ve botanikçi Theophrastus yazdığı iki botanik kitabı ile –Historia  plantarum ve Plantarum  causae-450 bitkiyi kaydetti. Bu daha sonraki botanik kitaplarına temel olmuştur. Botaniğin kurucusu olarak anılan Theophrastus ayrıca bilinen ilk jeoloji kitabının da yazarıdır.MÖ 3. Yüzyıl:MÖ 240’lı yıllarda Yunan coğrafyacı ve matematikçi Eratosthenes dünyanın çevresinin 46.000 km olduğunu hesapladı. Ayrıca eylem ve boylamları gösteren ilk dünya haritasını da üretti. MÖ  1.  Yüzyıl: MÖ  20’li yıllarda  Yunan  coğrafyacı  Strabo  var  olan  tüm  coğrafi   bilgiyi Geographicaadını verdiği 17 ciltlik eserinde topladı.MS 2. Yüzyıl: Bu dönemin bilginlerinden Mısır-Yunanlı bilgin Ptolemy organik dünya ile inorganik dünyanın yaradılışta oluşturulduğunu ve yaradılıştan beri herhangi yeni bir türün olmadığını savunmuştur.  MS  11.  Yüzyıl: 1086  yılında  bir  Çin  kitabında  erozyon,  yerkabuğunun  yükselmesi  ve sedimantasyon gibi jeoloji kavramları açıklandı. Bu yüzyılın sonlarına doğru (yaklaşık 1190 yılında) Avrupa’da manyetik pusula kullanılmaya başlandı. MS 15.Yüzyıl: Bu yüzyıl ünlü İtalyan bilgin Leonardo da Vinci’nin yaşadığı yüzyıl olarak bilim tarihinde  önemli  bir  yer  yutar  (1452-1519).  Fizik,  biyoloji,  jeoloji,  anatomi,  mimarlık, mühendislik, resim, heykel, müzik, botanik ve matematik gibi alanlarda çok önemli çalışmalar yaparak gerçek anlamda bir bilgin olma sıfatına layık olmuştur. Ölü canlılar üzerinde yaptığı çalışmalar ile 750 den fazla anatomi çizimi yaparak anatomi anlamında çok faydalı bilgileri ortaya çıkarmıştır, ayrıca kan ve damarlar üzerine yaptığı çalışmalar kan dolaşımı sisteminin anlaşılması  için  zemin hazırlamıştır.  Yaptığı  birçok  mekanik  çizimin  yanında  (helikopter, paraşüt, matbaa, İstanbul’a boğaz köprüsü gibi), fosiller üzerine yaptığı çalışmalar ile de doğa bilimlerin büyük katkılar sağlamıştır.   MS 16. Yüzyıl: 1517 yılında İtalyan bilim insanı Girolamo Fracastoro fosilleri organik kalıntılar olarak açıkladı. 1543 yılında modern astronominin kurucusu olarak anılan Polonyalı Nicolaus Copernicus güneşin merkezde olduğu gezegen hareket sistemini De  revolutionibusorbium coelestium(Göksel Kürelerin Devinimleri Üzerine) adlı eserin açıkladı ki bu bilim dünyasında bir  devrim  oldu. Heliosentrik  (güneş  merkezli)  bir  sistem  olduğunu  ve  gezegenlerin mükemmel birer dairesel yörüngelerde hareket ettiklerini savundu. Kitabı 1616 yılında kilise tarafından yasaklansa da 1835 yılında yasaklar listesinden çıkarıldı. Aynı yıl (1543) bilim dünyasında başka bir önemli gelişme daha yaşandı. Modern anatominin kurucusu olarak bilinen Hollanda’lı anatomist Andreas Vesalius insan anatomisi üzerinde yaptığı çalışmalarını De humani corporis fabrica libri septem (insan vücudu yapısı üzerine yedi kitap) adlı eserinde topladı. Kitabı birçok insanı kesip inceleyerek yaptığı çalışmalara dayanmakta olup, daha önceki bir çok çalışmayı da çürütmüştür. 1544 yılında Alman teolog Sebastian Münster ilk dünya coğrafyası dergisini bastı. Alman mineralog Georgius Agricola 1546 yılında yazdığı eseri  olan De natura fossilium’de (Fosillerin doğası üzerine) ‘fosil’ terimini yer altından kazılarak çıkarılmış her şey olarak tanımladı. 1570 yılında ilk geniş kapsamlı dünya haritası Hollandalı coğrafyacı Abraham Ortelius tarafından basıldı. Bu yüzyılın sonlarında yine doğa tarihinin önemli bilginlerinden İtalyan Galileo Galilei (Galileo olarak bilinir) önemli keşifler yapmıştır. Aristoteles’in hareket teorilerini çürütüp, Copernicus’un güneş merkezli evren teorisini desteklemiştir. MS 17. Yüzyıl: 1608 yılında Hollanda’da optikçi Hans Lippershey ilk teleskopu icat etti ki bu gökbilim açısından dönüm noktalarından biri oldu. Bundan hemen bir yıl sonra Galileo teleskop yardımı birçok gezegene ait tanımlamalar yaptı. Aynı yıl Lippershey yine optik ile uğraşan Zacharias Jansen ile beraber mikroskobu icat ettiler. Mikroskop da teleskop gibi bilim tarihinde dönüm noktası olan icatlardan biri oldu. 1643 yılında İtalyan fizikçi Evangelista Torricelli  hava  basıncını  ölçemeye  yarana  barometreyi  icat  etti.  1654 yılında  İrlandalı başpiskopos James Ussher Annlium  pars  postierior adlı eserinde, yaptığı hesaplamalara dayanarak dünyanın milattan önce 23 Ekim 4004 tarihinde yaratıldığını öne sürmüştür.  17. Yüzyılın ikinci yarısında İngiliz fizikçi Sir Isac Newton’un önemli buluşlarına sahne oldu. 1665 yılında evrenselyerçekimi fikrini ortaya attı.  1668 yılında da aynalı teleskopu icat etti. 1687 yılında  3  ciltlik  büyük  eseri  olan Philosophiae  naturalis  principia  mathematica’yı (Doğa felsefesinin  matematiksel  ilkeleri) bastı ki bu eser şimdiye kadar yazılmış en büyük bilim kitaplarından biridir. Bu yüzyılın en öneli bilim adamlarından birisi de Danimarkalı anatomist ve jeolog Nicolaus Steno’dur. İnsan ve hayvanların beyinlerini incelemiş ve beyin epifizlerinin benzer olduğunu göstererek bunların insanlara özgü olduğunu söyleyen Descartes’in tezlerini çürütmüştür. Anatomi çalışmaları olsa da asıl ününü jeoloji çalışmaları ile kazanmış ve jeolojinin babası unvanını almıştır. Üst üste yerleşmiş olan tabakalardan aşağıda olanın daha önce oluşmuş olduğunu belirleyerek jeoloji ve paleontoloji bilimine çok büyük katkı sağlamıştır.  Bu ilkeyi ve keşfettiği diğer ilkeleri 1669 yılında yayınladığı De  Solido  Intra  Solidum  Naturaliter  Contento Dissertationis Prodromus adlı eserinde açıklamıştır.  MS 18. Yüzyıl: 1714 yılında Alman fizikçi Daniel Gabriel Fahrenheit termometreyi icat etti. 1735 yılı biyoloji anlamında çok önemli bir yıldı. İsveçli botanikçi Carl Linnaeus yayınladığı eseri Systema naturaeile biyoloji dünyasında çok önemli bir yer aldı. Linnaeus canlıların cins ve tür isimleri ile sınıflandırılmasını öngören çalışması ile taksonominin temellerini attı. 1743 yılında İngiliz doğa bilimci Christopher Packe ilk jeoloji haritalarından birini çizdi.  18. Yüzyılın ikinci  yarısında  biyolojik  bilimler  anlamında  Fransız  doğa  bilimci  Georges-Louis  Leclerc, Comte de Buffon önemli çalışmalar yaptı. 1749-1804 (öldükten sonra da çalışmaları basıldı) yılları arasında 44 serilik Historie  naturelle adlı eseri yayınlandı. Hayvanların aynı olmadığını ve çeşitlilik gösterdiğini savunan Buffon benzer türlerin ortak atadan geldiğini de savunarak daha sonra gelişecek evrim teorilerine de katkı yapmıştır. Büyük ölçekte bir evrimi inkâr etse de  canlılar  arasında  çevre  şartlarına  göre  değişimler  olduğunu  savunmuştur.  Ayrıca çalışmaları Lamarck ve Cuvier gibi önemli bilim insanlarına esin kaynağı olmuştur. 1775 yılında On  the  Natural  Variety  of  Mankind adlı eserinde Alman anatomist ve antropolog Johann  Friedrich  Blumenbach insanları kafatasları üzerinde yaptığı çalışmalara göre beyaz, siyah, sarı, kırmızı ve kahverengi ırk olmak üzere 5 ırka ayırmıştır. Köken olarak beyaz ırkın kafatasının  oluştuğunu  ve  diğer  ırkların  çevreye  uyum  sonucu  bundan  farklılaştıklarını savunmuştur. Ayrıca morfolojinin çevreye uyum sonucu değişebileceğini ancak türleşmenin özel bir oluşum süreci ile meydana geldiğini savunmuştur. Yine aynı dönemde yaşamış olan Amerikalı teolog  Samuel  Stanhope  Smith  ise Essay  on  the  Causes  of  Variety  of  Complexion and Figure in the Human Species adlı eserinde insan çeşitliliğinden bahsetmiştir (1810). Ona göre insanoğlu ırksal kademelere ayrılamaz ve tekdir. Farklılıkları sadece çevresel etkiler belirler. Deri renginin de iklimden etkilendiğini savunmuştur. 1779  yılında İsviçreli jeolog Horace Bénédict de Saussure ‘jeoloji’ terimini kullanmıştır. Yüzyılın sonunda 1799 yılında Alman doğa bilimci Alexander von Humboldt Jura dönemini tanımlamış ve yine aynı yıl İngiliz jeolog  William  Smith  kayaç  tabakalarının  içerdiğifosilleri  ile  tanımlanabileceğini  ortaya atmıştır.   MS 19. Yüzyıl: Evrim çalışmaları anlamında altın bir yüzyıldır. Fransız doğa bilimci Jean-Baptiste Lamarck daha sonra teorisi çürütülse de evrim teorilerinin başlaması açısından çok önemli bir bilim adamı olarak bilinir. 1809 yılında yayınladığı eseri Philosophie zoologique ou exposition des considerations relatives a l’histoire naturelle des animaux’de (Zoolojik felsefe: hayvanların doğal tarihlerininin yorumlanması) canlıların çevresel şartlar gereği özellikler kazandığı ve kazanılmış bu yeni özellikleri sonraki nesillere aktardığını savunmuştur. Yine bu dönemde  yaşamış olan  Georges  Cuvier  yaptığı  çalışmalar  ile  karşılaştırmalı  anatomi  ve omurgalı  paleontolojisinin  öncüsü  konumundadır.  Evrim  fikrine  karşı  çıkan  Cuvier’in görüşüne göre dünya belirli zamanlarda büyük tufanlar geçirmiş ve bu tufanlar ile canlılar yok olup ardından yeni canlılar ortaya çıkmıştır (katastrofizm). Bu dönemde yaşayan İngiliz nüfus bilimci Thomas Malthus da doğa bilimcisi olmamasına rağmen evrim teorisine önemli katkılar sağlamıştır. 1729 ile 1826 yılları arasında 6 baskı olarak yayınlanan eseri An  Essay  on  the Principle   of   Population‘da;  nüfusların  besin  kaynakları  aşacak  şekilde  büyüdüğünü,  bu büyüme sonucu toplumlarda besin kaynağı için çekişme olacağı ve bu çekişmeye herkesin ayak uyduramayacağını ve dolayısıyla sadece bazı canlıların hayatta kalacağını savunmuştur. Bu eseri Wallace ve Darwin tarafından okunarak doğal seçilim fikrine ilham kaynağı olmuştur.   Darwin’le berabermodern evrim teorisinin öncülerinden birisi de Galli doğa bilimci Alfred Russel Wallace’dir. Doğal seçilim fikrini Darwin’den bağımsız olarak bulan Wallace Darwin’e 1858 yılında yazdığı mektupla fikirlerini belirtmiş ve bu mektup Darwin’in kitabını yazmasını hızlandırmıştır. Darwin gibi çıktığı yaptığı bir yolculuk sonrası fikirleri gelişmiştir (Malay takımadaları, Güneydoğu Asya). 1871 yılında yayınladığı eseri Contributions to the Theory of Natural  Selection (Doğal seçilim teorisine katkılar) kendi fikirlerini açıklayarak Darwin’in teorisine destek olmuştur. 1815 yılında William Smith fosillere dayalı kayaç sınıflandırması ile ilgili kitabını yayınladı (Strata  Identified  by  Organized  Fossils). 1822 yılında Kretase dönemi Omalius d’Halloy tarafından tanımlandı. Aynı yıl Mary Mantell bir iguanadona ait olan ilk dinozor fosilini buldu. 1830 yılında İskoç jeolog Charles Lyell dünyanın yüzeyinin geçmişte geçirdiği fiziksel, kimyasal ve biyolojik süreçlerin aynılarının bugün de geçirdiğini öne sürdüğü üniformitarizm’ teorisini ortaya attı. 1830-1833 yıllarında yayınladığı 3 ciltlik eseri Principles of  Geology modern jeolojinin gelişmesinde çok önemli bir yer tutmuştur. Bu kitabın Charles Darwin’i de etkilediği düşünüldüğünde sadece jeoloji değil aynı zamanda biyoloji  bilimi üzerinde de ne kadar etkili olduğu ortaya çıkar. Ayrıca Lyell Pliyosen, Miyosen ve Eosen dönemlerini de tanımlamıştır. Arka arkaya gelen bir süreçte; 1834 yılında da Friedrich August von Alberti Trias dönemi, 1835 yılında Roderick Murchison Silüryen dönemi ve Adam Sedgwick Kambriyen dönemi, 1839 yılında Adam Sedgwick ve Roderick Murchison Devoniyen dönemi, 1841 yılında ise yine Roderick Murchison Permiyen dönemi tanımladı. 1840 yılında İsviçreli zoolog ve jeolog Louis Agassiz  buz  devirleri  teorisini ortaya attı. Alp’lerde yaptığı çalışmalar sonucu buzulların hareket ettiğini gösterdi ve önceki dönemlerde dünyanın buz çağı yaşadığını iddia etti. Bu yüzyılında özellikle evrim ve paleoantropoloji anlamında çok önemli keşifler yapıldı. 1856 yılındaAlmanya’nın  Neander  vadisinde,  daha  sonra Homo   neanderthalensis olarak sınıflandırılacak, Neandertal fosilleri bulundu. 1858 yılında Amerikalı jeolog Antonio Snider-Pellegrini kıta kayması teorisini ortaya attı. 1869 yılında İsviçreli fizikçi Friedrich Miescher yaptığı deneyler sonucu saf DNA elde etti ve bu genetik çalışmalar anlamında bir dönüm noktası oldu. Bu dönem genetik bilimi için başka bir anlam daha ifade eder. 1822-1884 yılları arasında yaşamın olan Avusturyalı botanikçi Gregor Mendel bezelyelerüzerinde yaptığı çalışmalar ile bir türün özelliklerinin kalıtım yoluyla sonraki kuşaklara aktarıldığını bularak genetik biliminin temellerini atmıştır.Mendel’in kalıtım yasaları 20. yüzyılın başlarına kadar pek  kabul  görmese  de  bu  tarihlerde  yapılan  deneyler  ile  ispatlanarak  genetiğin  temel ilklerinden biri halini almıştır.Yüzyılın sonlarına doğru İsveçli kimyager Svante Arrhenius küresel ısınma kavramını dile getirdi. Özel Bölüm ‘Charles Darwin ve Evrim Teorisi’: Bu yüzyılın bilim tarihi açısından şüphesiz en önemli olaylarından biri, hatta en önemlisi, Charles Darwin’in geliştirdiği evrim teorisidir. Biyolojinin temellerinin atıldığı bu önemli olay için ayrı bir yer açmakta fayda var. 1809 -1882 yılları arasında yaşayan İngiliz doğa bilimci Darwin yaptığı işle ironik olarak teoloji eğitimi almak üzere Edinburgh’a gönderilse de içindeki doğa bilimi tutkusu onu orada 3 seneden fazla tutamadı. HMS Beagle adlı askeri araştırma gemisi ile 1831 de başlayan ve 5 yıl süren gezisi daha sonra biyolojinin en önemli konularından biri olacak evrim teorisinin kurulmasını sağladı. Lamarck’ın teorisi gibi bazı değişim teorileri olsa da o zamana kadar genel görüş canlıların olduğu şekilde yaratıldıkları idi. Darwin Galapagos adalarında yaptığı incelemelerde farklı ortamlarda birbirlerine benzer ancak farklı hayvanlar olduğunu tespit etti. Buradan yola çıkarak canlıların zaman içerisinde değişen çevre şartlarına uyum sağlamak için değişim geçirdiklerini, değişimi daha iyi geçiren ve uyum sağlayan canlıların hayatta kalırken güçsüz canlıların ise yok olduğunu öne sürerek doğal seçilim tezini ortaya attı. Geziden döndükten sonra kitap çalışmalarına başlayan  Darwin 1858 yılında Wallace’den aldığı  mektupta  fikirlerinin  aynı  olduğunu  görüp  çalışmalarının  hızlandırdı. 1859  yılında biyoloji ve doğa bilimleri tarihinin belki de en önemli kitabı olan ‘On the Origin of Species by Means  of  Natural  Selection,  or  the  Preservation  of  Favoured Races in the Struggle for Life’ı’(Doğal Seçilim Yoluyla Türlerin Kökeni ya da Hayat Kavgasında Avantajlı Irkların Korunumu Üzerine) yayınladı.Burada değinilmesi gereken nokta, Darwin’in bu teoriyi ve çalışmayı hazırlarken  birçok  farklı  disiplindenbilim  insanının  çalışmalarını  okuması  ve  onlardan esinlenmesidir (Lyell ve Malthaus gibi). Ayrıca Darwin’in hiçbir genetik bilgisi olmadan ve kalıtım yasasını bilmeden bu teoriyi geliştirmesi de zekâsının göstergesidir. Genel evrim kuramının yanında Darwin insan evrimi üzerine de çalışmış ve bu konuda 1871 yılında The Descent  of  Man,  and  Selection  in  Relation  to  Sex (İnsanın türeyişi ve seksüel seçme) adlı eserini  yayınlamıştır.  Darwin  bu  kitabında  değindiği  seksüel  seçme  doğal  seleksiyon kavramının temellerinden biri lup; karşı cins tarafında tercih edilmek için daha iyi özelliklere sahip olmayı ifade eder. Daha büyük vücut yapısı, daha kuvvetli olma, daha becerili olma, daha zeki olma gibi özellikle bunların arasında sayılabilir. Bu kitapların yanında, jeoloji, zooloji ve botanik üzerine birçok eseri de vardır.   MS 20. Yüzyıl: 1927 yılında Belçikalı astronom Georges Lemaitre evrenin yaklaşık 13,7 milyar yıl önce aşırı yoğun ve sıcak bir noktadan meydana geldiğini savunan‘Big Bang’ teorisini ortaya attı(Big Bang ismi sonradan verildi).1947 yılında Amerikalı kimyager Willard F. Libby karbon tarihleme metodunu bulmuştur ki bu tarih öncesi bilimler için çok önemli bir dönüm noktasıdır. 1953 yılında genetik çalışmalar için başka bir dönüm noktası oldu ve Amerikalı James Watson ve İngiliz Francis Crick DNA’nın çift sarmallı yapısını çözdüler. 1968 yılında bazı kayalar üzerinde 3 milyar yıl öncesine giden canlı kalıntıları bulundu. 1984 yılında Russ Higuchi  150  yıl önce  ölmüş bir  hayvandan DNA örneği  almayı başarmış  ve  antik DNA çalışmalarının başlamasını sağlamıştır. İlk çalışmayı Higuchi’nin yapmasına rağmen antik DNA’nın çalışmalarının lideri konumunda İsveçli bilim insanı Svante Pääbo bulunur. 1985 yılında bir insan mumyasından DNA çıkarmayı başararak bu çalışmaların öncüsü olmuştur.  1988 yılında İsrailli ve Fransız bilim insanları tarafından bulunan fosiller, Homo sapiens’in önceki düşünülenin neredeyse iki katı bir zaman dilimi olan 90.000 yıllık bir süreç öncesinde yaşadıklarının ortaya koydu. 1987 yılında Amerikalı bilim adamları Rebecca Cann, Mark Stoneking ve Alan Wilson yaşan insanlar üzerinde yaptıkları DNA çalışmaları ile mitokondriyalDNA’larının kökeninin yaklaşık 200 bin yıl öncesi muhtemelen Afrika’da yaşayan bir kadına gittiğini tespit ettiler (bu yüzden mitokondriyal  Havva  olarak  da  adlandırılır).  Afrika’dan  çıkış  kuramını  desteklemesi  ve modern insanın kökeni hakkında bilgi vermesi açısından çok önemli bir gelişmedir.  1991 yılında Amerikalı jeologlar dünyaya 65 milyon önce bir göktaşı çarptığını onayladılar. 1994 yılında Etiyopya’da Amerikalı paleoantropolog Tim White liderliğindeki ekip 4,4 milyon yıllık hominid kalıntıları buldular (Ardipihtecus ramidus). Bu buluntu iki ayak üzerinde dik yürüme yetisinin  bilinenden  daha  eski  bir  zamanda  başladığını  göstermiş  olmakla  beraber,  bu hominidlerin ormanlık bir alanda yaşamış olmaları iki ayak üzerinde dik yürüme yetisini ortaya çıkaran mekanizmalar ile ilgili teorilerin tekrar gözden geçirilmesini sağladı. 1995 yılında İspanya’da bulunan taş aletler Homo cinsinin 1 milyon yıldan daha önce Avrupa’da yaşadıklarının gösterdi.  MS 21. Yüzyıl: 2002 yılında Güney Afrika’da Blombos mağarasında bulunan ve 70.000 yıl öncesine tarihlenen iki adet boyalı süs eşyası insanın soyut düşünme yeteneğinin sanılandandaha önce başladığını ortaya koymuştur. 2000 yılında Kenya’da (Orrorin tugenensis) bulunan ve 6 Milyon yıl ile tarihlendirilen hominid ile 2002 yılında Çad’da bulunan 7 milyon yıllık hominid kalıntıları(Sahelantropus tchadensis) 21. Yüzyılın başında paleoantropoloji bilgilerini geliştirmiş ve en eski hominid kalıntıları konumuna geçmişlerdir. 2006 yılında Svante Pääbo liderliğinde  başlayan  Neandertal  genom  projesi  2010  yılında  sonuçlarını  açıklamış  ve Neandertaller  ile  modern  insan  arasında  gen  alışverişiolduğu  açıklanıp,  Afrika  dışında yaşayan  insanların  belli  oranlarda Neandertal geni  taşıdıkları ortaya koyulmuştur.  2008 yılında Sibirya’da Altay dağlarında yer alan Denisova mağarasında yaklaşık 40 bin yıllık bir parmak kemiği bulundu. Bu kemik üzerinde yapılan DNA çalışmaları bu kemiğin ne modern insana ne de Neandertallere ait olduğunu ortaya koydu. Özel Bölüm ‘Leakey Ailesi’: İnsan evrimi çalışmalarında en önemli malzemeler olan fosillerin bulunması konusunda Leakey ailesinin yeri çok önemlidir ve bu yüzden ayrı bir başlıkta  değinmekte fayda var. Ailenin ilk nesil paleoantropologları Mary ve Louis Leakey’dir. Louis Leakey Kenya’da görevli bir İngiliz misyonerin oğlu olarak dünyaya geldikten sonra Cambridge’de antropoloji okudu. 1926-1935 yılları arasında doğa Afrika’da bir dizi arkeolojik ve paleoantropolojik çalışma gerçekleştirdi. 1960 yılında Olduvai Gorge’da Homo  habilis olarak sınıflandırılan, erken hominidlere göre daha büyük beyne sahip olan ve alet yapabilen bir hominid keşfetti. Louis Leakey’in buluntuları insanlığın kökeninin Afrika olduğunu ve bu kökenin  sanılandan  çok  daha  eskiye  gittiğini  gösterdi.  1936  yılında  yine  bir  İngiliz paleoantropolog  olan  Mary  Leakey  ile  evlendi.  Mary  Leakey  Londra’da  eğitimini tamamladıktan sonra 1935 de Tanzanya’ya gelerek 1 yıl sonra evleneceği Louis Leakey’in kazısına katıldı. O da Louis Leakey gibi hayatının çok büyük bir kısmını doğa Afrika’da fosil arayarak geçirdi. 1959 yılında Australopithecus boisei cinsine ait 1.75 milyon yaşında hominid fosillerini keşfetti. 1976 yılında çalışmalarını Tanzanya’nın başka bir bölgesi olan Laetoli’ye kaydırdı ve 1978 yılında o zamana kadar insan atalarına ait bulununmuş en eski izleri keşfetti. Bunlar 3.75 milyon yıl ile tarihlendirilen 2 farklı hominidin volkanın küller üzerinde bıraktığı ayak izleriydi. Eski olmasının yanında iki ayak üzerinde dik yürüme ile ilgili de önemli bilgiler vermesi açısından bu buluş çok önemlidir. Leakey ailesinde üçüncü nesli Mary ve Louis Leakey’lerin oğlu Richard Leakey ve eşi Meave Leakey temsil eder. 1944 doğumlu Richard Leakey Omo, Koobi Fora ve Batı Turkana’da çalışmalar yaptı. 1967 yılında Omo’da yaptığı çalışmalar esnasında şimdiye kadar bulunmuş en eski Homo  sapiens fosillerinden  biri  olan Omo kafatasını ve bazı vücut kemiklerini keşfetti. Yaklaşık 160.000 yaşında olan bu kafatası Homo  sapeins’inen  eski  örneklerinden  biri  olup  modern  insanın  ortaya  çıkışının  tarihi açısından çok önemli bir fosildir. Daha sonra Koobi Fora’da çalışmalara başlayan Richard Leakey 1969 yılında kaba yapılı Australopithecus olarak bilinen Paranthropus boisei‘ye ait bir kafatası buldu. 1.7 milyon yıl ile tarihlendirilen bu kafatası ile beraber taş alet olduğu düşünülen buluntular da ele geçmesi bu türün taş alet yapan veya kullanan ilk hominid olabileceğiniakla getirdi. Yine Koobi Fora’da yapılan kazılarda; 1972 yılında Homo rudolfensis sınıflandırılan 1.8 milyon yıllık; 1975 yılında Homo  erectus olarak sınıflandırılan 1.75 milyon yıllık ve 1976 yılında yine Homo  erectus olarak sınıflandırılan 1.6 milyon yıllık kafatasları bulmuştur.   Hazırlayan: Ahmet İhsan Aytek Kaynaklar: Birkx, J.H. (ed).2006. Encyclopedia of Anthropology. Sage Publications. Demirsoy, A. 2000. Kalıtım ve Evrim(11.baskı). Meteksan Matbaacılık. Günergün, F. 2010. Mektebi Tıbbıyei Şahane’nin 1870’li Yılların Başındaki Doğa Tarihi Koleksiyonu. Çeviri Yazı, Osmanlı Bilimi Araştrmaları338 Xl/ 1-2: 337 -344. Gürel, A.O. 2001. Doğa Bilimleri Tarihi. İmge Kitabevi. İslamoğlu, Y. 2012. Kemaliye ‘Prof. Dr. Ali DEMİRSOY Doğa Tarihi Müzesi’. Popüler Bilim. Haziran-Temmuz sayısı, 37-40.  Keleş, V. 2003. Modern Müzecilik ve Türk Müzeciliği. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. Cilt 2, Sayı 1-2. Millar, D., Millar, I, Millar, J. ve Millar, D. 200. The Cambridge Dictionary of Scientists(second edition). Cambridge University Press. http://www.amnh.org/ http://www.anadolumedeniyetlerimuzesi.gov.tr/ http://www.biltek.tubitak.gov.tr/bilgipaket/jeolojik/ http://www.britannica.com/ http://www.childrensmuseum.org http://www.childrensmuseums.org http://www.hands-on-international.net http://icom.museum/ http://www.istanbul.edu.tr/eng/jeoloji/muze/M.htm http://www.jeoloji.itu.edu.tr/Icerik.aspx?sid=8819 http://kemaliyemyo.erzincan.edu.tr/40 http://www.kulturvarliklari.gov.tr http://www.mnhn.fr/ http://www.mnh.si.edu/ http://www.mta.gov.tr http://www.naturkundemuseum-berlin.de http://www.nhm.ac.uk http://www.nhm-wien.ac.at http://www.stratigraphy.com http://www.tabiattarihi.ege.edu.tr http://www.wikipedia.org/

http://www.biyologlar.com/doga-tarihi-calismalari-kronolojisi

EKOLOJİK TERİMLER

Çevre: Canlıların yaşamları boyunca ilişkilerini sürdürdükleri ve karşılıklı olarak etkileşim içinde bulundukları fiziki, biyolojik, sosyal, ekonomik ve kültürel ortamıdır. Çevre korunması: Çevresel değerlerin ve ekolojik dengenin tahribini, bozulmasını ve yok olmasını önlemeye, mevcut bozulmaları gidermeye, çevreyi iyileştirmeye ve geliştirmeye yönelik çalışmaların bütünüdür. Çevre kirliliği: Çevrede meydana gelen ve canlıların sağlığını, çevresel değerleri ve ekolojik dengeyi bozabilecek her türlü olumsuz etkidir. Sürdürülebilir kalkınma: Bugünkü ve gelecek kuşakların çevreyi koruyarak, sağlıklı ve dengeli bir çevrede yaşamasını güvence altına alan kalkınma politikalarıdır. Alıcı ortam: Hava, su, toprak ortamları ile bu ortamlarla ilişkili ekosistemleridir. Doğal kaynak: Bütün bitki, hayvan ve mikroorganizmalar ile bunların yaşama ortamları olan hava, su ve toprak ve doğada bulunan cansız varlıklardır. Kirleten: Eylem veya işlemleri sonucu doğrudan veya dolaylı olarak çevre kirliliğine ve çevrenin bozulmasına neden olan gerçek ve tüzel kişilerdir. Ekosistem: Canlıların kendi aralarında ve cansız çevreleriyle ilişkilerini bir düzen içinde yürüttükleri biyolojik, fiziksel ve kimyasal sistemdir. Canlı organizmanın içerisinde bulunduğu ortamı meydana getiren, canlı ve cansız varlıkların tümüne Ekolojik Çevre denir. Ekolojik denge: İnsan ve diğer canlıların varlık ve gelişmelerini doğal yapılarına uygun bir şekilde sürdürebilmeleri için gerekli olan şartların bütünüdür. Sulak alan: Yaban hayatın yaşama ortamı olan, doğal ve yapay, devamlı veya geçici, suları durgun veya akıntılı, tatlı, acı veya tuzlu, deniz ve okyanusların gel-git hareketlerinin çekilme devresinde derinliği altı metreyi geçmeyen suları, bataklık, sazlık ve turbiyeleridir. Atık: Herhangi bir faaliyet sonunda çevreye veya bırakılan her türlü maddedir. Tehlikeli atık: Tehlikeli fiziksel, kimyasal ve/veya biyolojik özellikleri nedeniyle canlılarda ve alıcı ortamda olumsuz etkilere yol açan atıklar ve bu atıklarla kirlenmiş madde ve malzemelerdir. Radyoaktif atık: İlgili mevzuat uyarınca yetkili kılınan merciler tarafından belirlenen serbest bırakma seviyelerinin üzerinde aktivite ve konsantrasyonda radyoizotopları bulunduran veya bu radyoizotoplarla bulaşmış ve tekrar kullanılması düşünülmeyen madde ve malzemelerdir. Tehlikeli kimyasallar: Fiziksel, kimyasal ve/veya biyolojik yönden olumsuz etki yaparak ekolojik denge ile insan ve diğer canlıların doğal yapılarının bozulmasına neden olan her türlü kimyasal madde ve ürünlerdir. Çevresel etki değerlendirmesi; Gerçekleştirilmesi planlanan faaliyetlerin çevreye olabilecek etkilerinin belirlenmesinde, olumsuz etkilerin önlenmesi ya da zarar vermeyecek ölçüde en aza indirilmesi için alınacak önlemlerin tespitinde, yer ve teknoloji alternatiflerinin değerlendirilmesinde ve faaliyetlerinin uygulanmasının izlenmesi ve denetlenmesinde sürdürülecek çalışmalardır. Stratejik çevresel etki değerlendirmesi: Plan, politika ve programların kabulünden önce çevresel etkilerinin incelenmesidir. Çevre Yönetimi: Ekonomik, idari, hukuki, politik, sosyal ve kültürel araçları kullanarak doğal ve yapay çevre unsurlarının sürdürülebilir kullanımını ve kalkınmasını sağlamak üzere yerel, ulusal, bölgesel ve küresel düzeyde politika ve stratejilerin geliştirilmesidir. Çevre Koruma Planı: Bitki ve hayvan türleri ile bunların yaşam alanlarını ve alıcı ortamları korumak ve geliştirmek üzere ülke, havza veya alan bazında yapılan planlardır. Çevre ile uyumlu teknoloji: Her türlü faaliyet sırasında doğal kaynak ve enerjinin verimli kullanılmasını ve geri kazanılmasını sağlayan ve atık oluşumunu azaltan teknolojilerdir. Küresel ısınma; bütün dünyada sıcaklığın sistematik bir şekilde artması sürecidir. Bu yolla bir iklim değişikliği meydana gelmektedir. Çünkü sıcaklık artınca buharlaşma artmakta, yağışlar ve hava hareketleri değişmektedir. Erozyon (toprak aşınımı); toprağın aşınmasını önleyen bitki örtüsünün yokedilmesi sonucu koruyucu örtüden yoksun kalan toprağın su ve rüzgarın etkisiyle aşınması ve taşınması olayıdır. Erozyonun nedeni; toprağı koruyan bitki örtüsünün yok olmasıdır. Arazi eğimi, toprak yapısı, yıllık yağış miktarı, iklim faktörleri, bitki örtüsü, toprak ve bitkiye yapılan çeşitli müdahaleler, erozyonun şiddetini belirleyen öğelerdir. Toprak; kayaların ve organik maddelerin çeşitli derecedeki ayrışma ürünlerinden meydana gelen, içinde geniş bir canlılar topluluğu barındıran, bitkilere durak yeri ve besin kaynağı olan ve katı yer kabuğunun, uzun zaman içerisinde belirli özellikler kazanan en üst kısmını saran doğal, dinamik bir yapıdır. Bitki Örtüsü; Bir arazi parçası üzerinde bir arada yetişip yaşayan, birbirleri ve çevreleriyle sürekli etkileş im içinde bulunan, çeşitli otsu ve odunsu bitki türlerinin oluşturduğu topluluğa denir. Orman; genel anlamda ağaç topluluğunu ifade etmektedir. Fakat bununla beraber, çağdaş orman anlayışına göre oldukça eksik bir tanımlamadır. Çünkü orman, içerisinde ağaçların dışında diğer bitkiler, hayvanlar ve mikroorganizmalardan oluşan başka canlı varlıkları da barındırır. Öyleyse; orman, ağaçlar ve öteki canlıların tümüyle birlikte, toprak, hava, su, sıcaklık ışık, gibi fiziksel çevre unsurlarından oluşan bir doğa parçasıdır Çölleşme: iklim değişiklikleri ve insan faaliyetleri de dahil olmak üzere muhtelif faktörlerin etkisi altında kurak, yarı kurak ve az yağış alan bölgelerdeki toprağın doğal özelliklerini yitirmesi veya kısaca toprağın aşınmasıdır.

http://www.biyologlar.com/ekolojik-terimler

Bağırsak Enfeksiyonu Nasıl Ortaya Çıkar

Bağırsak Enfeksiyonu Nasıl Ortaya Çıkar

Havaların ısınmasıyla  haşrelerinde artması ve bakterilerin daha uygun bir zemin bulması sebebiyle mikrop üremesini artırır. Sıcak havalarda,  başta karasinek olmak üzere kanalizasyon ve içme suyu gibi altyapıların yetersizliği, yüzme amacıyla girilen deniz gibi ortamların temiz olmaması, tatil amacıyla büyük bir nüfusun altyapısı olmayan köy, kasaba gibi yerlere gitmesi bu hastalıkların daha sık görülmesine sebep oluyor. Bağırsak Enfeksiyonunun Belirtileri;şiddetli karın ağrısı, kusma, ishal görülebilir. Mide iç zarının etkilendiği durumlarla mikroplara ait toksinlerin yoğun olduğu hallerde bulantı ve kusma görülebilir.http://tahlil.com

http://www.biyologlar.com/bagirsak-enfeksiyonu-nasil-ortaya-cikar

BALIKLARDA ÜREME SİSTEMİ

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs Bütün bu anlatılanların yanı sıra görsel olarak dişi ve erkeklerin türlere göre kendine göre ayırt edici özellikleri mevcuttur. Örneğin Afrika bölgesinde Tanganyika ve malwi göllerinde yaşayan balıklarda genellikle erkeke bireyler dişilere göre renklidir. Diğer dere ve göllere yaşayan vatoz türlerinde ise erkek bireylerde boynuz adı verilen başın dorsal kısmında çıkıntılar ( dikensi ) yapılar mevcuttur. Bazı bireylerde ise dişi ve erkek ayrımı balığı elinize aldığınızda anlaşılabilir. ( Ergin Dişi bireylerin karnını bastırdığınızda ( sağdığınızda) yumurta dökerler. erkek bireylere aynı işlemi uyguladığınızda ise beyaz renkli sperm bırakırlar. Yayın balıklarında Üreme döneminden önce erkek ve dişiyi birbirinden ayırt etmek oldukça zordur. Üreme safhasının hemen öncesi dişilerin karınlarının şiş olmasıyla cinsiyet ayrımı daha kolay olur. Deniz baliklarinda genelde erkekler daha koyu renkli ve sirt alt ve kuyruk yuzgecleri daha sivri bir sekilde biter kafa yapilari disilere gore bazi turlerde daha kabarik siskin olur...ve genelde erkekler daha duz vucuda sahiptir.. disilerde ise renkler daha soluk olmakla beraber sirt,alt,ve kuyruk yuzgeci daha kisa duser...bazi turlerde arkeklerden daha iri ve bazi turlerde daha kucuk yapida olabilir disi baliklar daha genis karin kismina sahiptir ve anus bolgesi daha genis olur havyar doneminde olan balikta karin yanlarindan bir tombullasma gorulur ve anus disa yakindir.... Tatlı suda ise ureme zamanlarinda erkek baliklarda sazan familasi icindekilerde kafada beyaz benekler olusur bu baligin es zamaninda oladugu icin dir ve dolleme yapmaya hazir bir baliktir...ve erkek baliklar daha duzgun ve zayif bir vucuda sahiptir genelde... disi baliklar ise daha genis vucudlu ve ureme zamaninda unus disa cikar ve siskin bir karna sahipti..kafa altin anuse kadar oval bir gorunumu olur.. evet bazi balik turleri bellirli yas ve zamanlarda cinsiyet degistirme ozelligine sahiptir bildigim kadariyla denizde hanigiller familayasinda bazi turlerde ama tam hatirlamiyorum. BU BÖLÜM TAMAMEN KİŞİSEL TECRÜBELERİMLE KALEME ALINMIŞTIR... YAZILI BİR KAYNAK GÖSTERMEM MÜMKÜN DEĞİLDİR...İNŞALLAH İŞİNİZE YARAR

http://www.biyologlar.com/baliklarda-ureme-sistemi-1

NASTİLER

Nastik hareketler, bitki organlarının uyartı yönüne bağlı olmaksızın uyartıya karşı daima aynı yönde yaptıkları hareketlere denir. Nastik hareketler genellikle turgor asimetrisine dayanır. Bazıları da büyüme asimetrisinden kaynaklanır. Büyüme asimetrisine dayanan nastik hareketlere en tipik örnek "epinasti" ve "termonasti" hareketleridir. Turgor asimetrisinden kaynaklananlara ise "niktinasti" ve "tigmonasti" örnek verilebilir. Turgor asimetrisiyle meydana gelen hareketler büyüme asimetrisiyle oluşanlara göre daha hızlıdır. Ayrıca turgor asimetrisine dayanan hareketlerde "turgorinler" adı verilen ve hormon oldukları tahmin edilen kimyasal maddelerin rol oynadıkları ileri sürülmektedir. BÜYÜME ASİMETRİSİNE DAYANAN NASTİLER Epinasti Yaprak sapı petiolün aşağıya doğru kıvrılmasına epinasti denir. Bunun sebebi önceleri yerçekimine bağlanıyordu. Fakat sonradan yapılan klinostat deneyleri epinastinin geotropistik bir hareket olmadığını göstermiştir. Çünkü klinostata konulan bitki de ve konulmayan da epinastik cevap göstermektedir. Epinastide rol oynayan hormonun oksin olduğu anlaşılmıştır. Oksin fazlalığında etilen oluşumuyla izah edilen olayda petiolün dorsaline göre ventralinde daha çok oksin ve bundan kaynaklanan etilen oluşur. Bu durumda alt kısım büyüme inhibisyonuna uğrayarak üst kışını lehine bir büyüme asimetrisi oluşur ve yaprak sapı aşağıya bükülür.Dolayısıyla oksin fazlalığına veya etilen artışına sebep olan her türlü dış ve iç uyartı epinastik hareketin uyaranıdır. Bazen epinastinin tersine yaprak sapının yukarı kıvrılarak yaprağı yukarı kaldırdığı da görülür. Buna da hiponasti denir. Hiponastide giberellin hormonlarının rol oynadığı tahmin edilmektedir. Termonasti Lâle (Tulipa) bitkisinde tipik olarak görüldüğü gibi diğer bazı Liliaceae familyası bitkilerinde de görülen çiçeklerin sıcaklığa bağlı olarak açılıp kapanması büyüme asimetrisine dayanan termonastik bir harekettir. Gece-gündüz sıcaklık farkından dolayı bu çiçekler gündüz açık gece kapalıdır. Özellikle lâle bitkisinde yoğun olarak araştırılan bu hareket, tepallerin dış ve iç yüzey dokularının sıcaklıktan farklı etkilenmesi sonucu meydana gelir. 10°C'nin altındaki sıcaklıklar tepallerin dış yüzey hücrelerinin büyümesine ve çiçeğin kapanmasına sebep olur. 17°C ve yukarısındaki sıcaklıklar ise tepallerin iç yüzey hücrelerinin büyümesine ve çiçeğin açılmasına sebep olur. Diğer bir ilginç sıcaklık mdikatörü, orman gülü (Rhododendrori) bitkisinin yapraklarıdır. Bitkinin daimi yeşil olan yapraklan, kışın sıcaklık -15°C civarına düştüğünde aşağıya doğru gövdeye kapanırken, sıcaklık 0°C üzerinde olduğunda yukarı doğrularak horizontal pozisyona geçer. TURGOR ASİMETRİSİNE DAYANAN NASTİLER Niktinasti (Uyku Hareketi) Bazı Leguminaceae familyası bitkilerinde görülen bu harekette yapraklar ritmik olarak gündüz horizontal pozisyonda açık iken geceleyin dikey pozisyonda kapalı bir pozisyon gösterir. Bu yüzden insanların gece uyuması gündüz uyanmasına benzetilerek uyku hareketleri adı da verilmiştir. Bu tanımdan da anlaşıldığı gibi bu harekette uyarıcı faktör ışıktır. Yaprağın hareketini sağlayan yapı yaprak veya yaprakçıkların sap veya gövdeye birleştikleri yerde bulunan pulvinus'tur. Yaprak hareketleri, pulvinusun motor hücreleri adı verilen subepidermal korteks hücrelerindeki turgor değişimine bağlıdır. Dorsal motor hücrelerindeki suyun ventral motor hücrelerine geçmesi sonucu dorsaldeki hücreler turgorunu kaybederken ventraldekiler turgor durumuna geçer ve bu durumda yaprak açılır. Tersi durumda ise dorsaldeki hücrelerin turgor haline geçmesiyle yaprak kapanır. Yaprağın kapanma yaptığı tarafı ventral, aksi tarafı ise dorsaldir. Uyku hareketleri en tipik olarak akasya ağacı ve ipek ağacı (Albizzia julibrissin) yapraklarında görüldüğünden bu bitkiler üzerinde daha çok çalışılmıştır. Bu bitkilerin yapraklan bileşik yaprak tipinde olup her bir yaprak üzerinde çok sayıda karşılıklı yaprakçıklar yer alır. Lâle çiçeğinin açılıp kapanmasında değişen sıcaklığın etkisi. Solda kapalı çiçek ve dış yüzey dokusunu gösteren ok, sağda ise açık çiçek ve iç yüzey dokusunu gösteren ok yer almaktadır Albizzia julibrissin yapraklarının solda gündüz sağda ise geceleyinki durumları. Alttaki şekiller her iki durumda yaprakçıklann anatomisinden birer kesit göstermektedir (Salisbury ve Ross, 1985). Niktinastik harekette uyartının alınmasında fitokrom pigmentinin rol oynadığı tahmin edilmektedir. Yaprakların açılmasında ışığın mavi ve kırmızı ötesi dalga boylarının etkili oldukları deneylerle gösterilmiştir. Fitokrom ışığı aldıktan sonra pulvinuslardaki motor hücrelerinin zar geçirgenliğini etkileyebilir. Zardaki aktif transporttan sorumlu ATPaz gibi enzimleri kontrol etmek suretiyle bu iş başarılmış olabilir. Böylece hücreler arasında K+ iyonlarının geçişi ve dağılımı sağlanır. Gerçekten yapılan deneylerde motor hücrelerinin turgor veya plazmoliz durumuna geçmelerinde K+ iyonlarının rol oynadığı belirtilmiştir. Hücrelere K+ girişi turgora, K+ çıkışı ise plazmolize sebep olmaktadır. Bu hareketin ilginç bir yönü de bir günlük sürelerle ritmik olarak meydana gelmesidir. Coleus bitkisinde yapılan araştırmalarda bitkinin devamlı karanlık veya devamlı ışık gibi şartlara konulması durumunda dahi 24 saatlik sürelerde yaprakların açılıp kapanma ritmi gösterdikleri belirlenmiştir. Bu da olayda ışığın rolü olmakla birlikte esas olarak iç ritm adı da verilen biyolojik saatin rol oynadığını gösterir. Tigmonasti Tigmonastik hareketler dokunma ve benzeri uyartılara karşı bazı bitkilerin gösterdikleri nastik cevaptır. Mekanik bir uyartıyla meydana gelen asimetrik turgor değişimi sonucu hareket ortaya çıkar. Bu olay en tipik olarak Mimosa pudica küstüm otu bitkisinde görüldüğünden bu bitki üzerinde çalışmalar yoğunlaşmıştır. Bir uyartı verildiğinde bu bitkinin bileşik yapraklarının önce yaprakçıklan sonra da yaprakların kendisi hızla kapanır. Bu hareket birkaç saniyede tamamlanan en hızlı bitki hareketidir. Mimosa'daki bu hareket sadece dokunmaya değil sarsıntıya karşı da meydana geldiği için bu harekete aynı zamanda "sismonasti" adı da verilmiştir. Tek bir yaprak uyarıldığında dahi bu uyartı bitkinin her tarafına yayılıp diğer yaprakların da kapanmasına sebep olur. Tigmonasti hareketinin mekanizması da niktinastide olduğu gibidir. Pulvinustaki ventral motor hücrelerinin K+ iyonu ve buna bağlı su büzülmesi ile yaprak kapanır. 15-20 dakika sonra K+ iyonları ventral motor hücrelerine tekrar geri dönerek hücrelerin su almasına ve şişmesine sebep olur. Böylece yaprak açılır. Mimosa'daki hareketin dokunma ve sarsıntı dışında ısınma, elektrik ve kimyasal uyartılara karşı da meydana geldiği belirlenmiştir. Uyartının sadece yapraklarda değil bütün bir bitkinin her tarafında 50cm/sn hızla taşındığı anlaşılmıştır. Bitkide uyartının bu kadar hızlı nasıl taşındığı hale bir sırdır. Bazı fizyologlara göre hayvanlarınkine benzer bir sinir sisteminin varlığından söz edilir. Bazı araştırıcılara göre hormon taşınımıyla iletilmektedir. Ancak hormon taşınımı bu kadar hızlı değildir. Tigmonastik hareketin bitkiye faydası muhtemelen sinek ve böcekleri ürkütüp kaçırmak içindir. Tigmonastik hareketin başka bir çeşidini böcek kapan bitkilerde görmekteyiz. Bu bitkilerin yapraklan, sinek ve böcekleri yakalamak üzere tuzak adı verilen özel yapılarla donatılmıştır. Genellikle böcek, yaprak ayasına konduktan sonra yaprak sineğin üzerine kapanarak onu hapseder ve salgıladığı enzimlerle onu sindirir. Hususan Dionaea bitkisinin yaprak ayası kurt kapanı şeklinde iki parçalı olup yaprak kenarlarının çıkıntıları birbiri arasına geçen özelliktedir. Böcek yaprağa konduğunda dokunma uyartısı aya üzerindeki küçük tüyler vasıtasıyla alınmakta ve ayanın iki parçası karşılıklı kenetlenmektedir. Dionaea muscipula bitkisinin böcek kapan yapraklan. Sol öndeki yaprağa böcek konmuş, sağ önde kapanmış yaprak. Drosera genusuna giren böcekçil bitkilerde yapraklar yapışkan uçlu tentaküllerle donatılmıştır. Tentaküllerin hareketi böceklerin tentakiillere dokunnıasıyla uyarılır ve böcek buraya yapışarak yaprağın merkezine alınır ve burada sindirilir. Droseradaki hareket daha yavaştır. Ancak böcek yapıştığı için kaçamıyacaktır. Hidronasti Bir çok otsu bitkide yapraklar kuraklık stresine maruz kaldığında rulo şeklinde yaprağın uzun ekseni boyunca katlanır. Bu sırada stomalar da kapanır. Hareketin mekanizması, Şekil'de görüldüğü gibi yaprağın ana damarının iki tarafında dizilmiş bulliform adı verilen motor hücreleriyle ilgilidir. Kuraklık durumunda bu hücreler komşu hücrelere su vererek büzülürler ve yaprak kapanır. Normal şartlarda turgor durumuna geçerler ve yaprak açılır. Bu hareketin uyaranı kuraklıktır amacı ise yaprak yüzeyini küçülterek su kaybını azaltmaktır. DİĞER HAREKETLER Buraya kadar gördüğümüz tropistik ve nastik hareketler bir düzlemde meydana gelen hareketlerdir. Oysa nadir de olsa iki düzlemde oluşan ve burulma şeklinde ortaya çıkan "torsiyon hareketleri" de vardır. Bu tür hareketlerin mekanizması dokunmaya bağlı tigmotropistik özellikte ise de esasen çok daha karmaşıktır. Bu sayede bitkiler iki hatta üç düzlemde devam eden burulma ve sarılma hareketleri yaparlar. Fasulye gibi sarılıcı bitkilerde görülen bu hareket, organların tek tarafında değil, ön, arka, sağ yan, sol yan gibi farklı kısımlarında beliren büyüme farklılığı sonucu meydana gelir. Bu harekette farklı kısımlardaki büyüme farkının büyüme hormonlarının farklı konsantrasyonundan kaynaklandığı tahmin edilmektedir. Bazı bitkilerde özel görevlerin yerine getirilmesi amacıyla patlama ve fırlatma şeklinde beliren ve o organda ancak bir defa meydana gelen hareketler görülür. Ecbalium ve Impatiens balsamına bitkilerinde tohumların fırlatılmasını sağlayan patlama hareketleri turgor değişimiyle meydana gelir. Anterlerin patlamasında, eğreltilerde sporangiumların açılmasında iş gören mekanizmanın bu organlardaki su kohezyon kuvvetlerindeki değişmeyle ilgili olduğu ileri sürülmüştür. Ayrıca bitkilerin cansız dokularında şişme asimetrilerinden meydana gelen hidratasyon hareketleri de vardır. Ancak bu hareketler canlılıkla ve büyümeyle ilgili olmayıp, sadece belli organlardaki cansız yapılarda farklı su alışverişiyle ortaya çıkan şişme derecelerinden kaynaklanan fiziki olaylardır. Çeşitli kuru meyve kısımlarında görülen kıvrılma, eğilme, spiralleşme gibi değişmeler halinde ortaya çıkan bu hareketler meyvalann açılmasında ve tohumların yayılmasında görev yapar.

http://www.biyologlar.com/nastiler

NÜKLEER SANTRALLERİN ÖNEMİ,YARARLARI ve ZARARLARI

1)Santral Türleri Bir ülke Elektrik enerjisini hemen hemen her alanda kullanır.Bu elektrik enerjisini santrallerden sağlanır.Santraller üç gruba ayrılır. a)Hidroelektrik santralleri b)Termik santraller c)Nükleer santraller Hidroelektrik santrallerde Suyun potansiyel enerjisinden, termik santrallerde yakacaklar yakılmasından ve nükleeer santrallerde Atomun çekirdeğinin parçalanmasından açığa çıkan enerji kullanılılır. 2)Nükleer Santrallerde Enerji Üretimi Nükleer santralde enerji,istasyonun merkezindeki reaktörün içinde üretilen ısıyla sağlanır.Bu ısı,uranyum Atomunun zincirleme reaksiyonu sonucu elde edilir.Bu reaksiyon kontrollü bir şekilde yapılır.Nötronların sürati önce modülatörden geçirilerek yavaşlatılır ve böylece diğer çekirdekleri parçalamaları kolaylaştırır.Reaktörde açığa çıkan nötronlar emme yeteneği olan kontrol çubukları vardır.Buradan nötronları bırakarak veya çekerek reaksiyonlar kontrol Altına alınır.Bölünen uranyumatomları ısı verir. Kaynak: www.diyadinnet.com Çubuklardan çıkan bu ısı reaktörün çevresini saran Gaz tabakası tarafından emilir.Isınan gaz,ısı değiştiricisi de denilen ısı eşanjörüne alınır.Bunlara ısı değiştiricisi de denmesinin nedeni,gazda bulunan ısıyı ufak boruların içindeki suya vermeleridir.Isı eşanjörünün üstündeki su,aşırı ısınma sonucu buharlaştırılır.Bu şekilde oluşturulan buhar sadece yüksek bir ısıya değil,aynı zamanda yüksek bir Basınca da sahiptir.Bu yüksek Basınç ve Sıcak buhar kalın borular aracılığıyla türbinlere yollanıTürbin içinde bulunan pervane basınlı Gazla döner,türbin jeneratöre bağlıdır ve süratle dönünce enerji üretir.Oluşan buhar yeniden ısı haline gelir,su yine buharlaşır. Uranyum sadece Su üretmez,radyasyon da üretir ve radyasyon insan sağlığı için son derece zararlı ve tehlikelidir.Bu nedenle reaktör içindeki reakasiyonu dışarıya çıkaramayacak şekilde çelik ve çok kalın betonla örtülüdür.Kontrol odasında herşey büyük bir dikkatle monitörden izlenir.Burada çalışanlar oluşan elektrik enerjisinin büyük bir kentin enerji ihtiyacını karşılayacak kadar olmasını sürekli bir şekilde denetler. Atıkların Korunması ve Saklanması Sonunda reaktörün içinde yeterli ısıyı üretecek enerji kalmaz. Uranyum atomlarındaki enerji tükenmiştir.Bu çubuklar son derece sıcak hem de taşıdıkları radyasyon nedeniyle tehlikelidir. Bu nedenle özel,kalın muhafazalı yöntemlerle alınırlar. Uranyum çubukları soğuyuncaya,radyasyon normal seviyeye gelinceye kadar suyun altında muhafaza edilirler.Zamanı gelince de bunlar kalın muhafazalar içinde dikkatle analizlerinin yapılacağı istasyonlara nakledilirler.Burada yapılan analizler sonucu radyasyon seviyesi yüksek olanlar ayrılır. Radyasyonu normal düzeye inen katı cisimler toprağa gömü- lürken,sıvı denize verilir.Radyasyonu yüksek olanlar,bu amaçla yapılmış özel binalara alınır.Reaktörümüzde uranyum atomlarının bölünmesiyle elektrik üretmeye daha yıllarca devam eder. 1kg uranyumun vereceği enerjiyi ancak 25ton kömürün yanmasıyla elde edilir.Uranyum çok daha fazla enerji üretebilir ama işlem sırasında sadece %1'i kullanılır. Bugün İngiltere'nin elektrik enerjisinin %20'sini ve gelecekte daha çok bu enerjiyi karşılayacak olan uranyum sağlar. Nükleer Santrallerin Önemi ve Zararları Nükleer santrallerde Atom çekirdekleri parçalanarak enerji sağlanır.Atomun çıkardığ ısı enerjisi yüksektir,ama çıkardığı radyasyon ancak özel binalarda veya kurşun mezarlarda saklanır ve uzun yıllar radyasyon yayar. 1970'li yıllarda yaşanan petrol darboğazında Nükleer enerjiyle kurtulunmuş ama saklanması da çok pahalı olduğundan talep azalmıştır. Ayrıca santraldeki ufak bir sızıntı milyonlarca Canlının radyasyona maruz kalmasına sebep olacaktır.Örneğin;1986 yılında Rusya'da Çernobil Nükleet Santrali'ndeki sızıntıdan 3milyon insan radyasyona maruz kalmış,radyasyon,Karadeniz kıyılarına kadar ulaşmıştır. Türkiye'de de 1976'dan beri Akkuyu'da nükller santral kurulması gündeme gelmiştir ama çevre örgütlerinin baskılarıyla ertelenmiştir.Ayrıca 25km açığından geçen Ecemiş Fayı'da burayı tehdit etmektedir. ATOM ENERJİSİ İLE İLGİLİ KURULUŞLAR 1)Atom Enerjisi Ajansı(Uluslararası) Birleşmiş Milletlerin koruyuculuğu altında,özerk eğilimde hükümetler arası örgüt.957'de kuruldu,merkezi Viyana'dadır. Genel amacı,atom enerjisinin tüm dünyada barışa,sağlığa ve refaha katkılarını çabuklaştırmak ve arttırmaktır.5 Mart 1970'te yürürlüğe giren nükleer silahların yayılmasının önlenmesi Antlaşması ajansı,atom ve enerjisinin barışçı amaçlarla kullanılmasının nükleer silah üretimine yol açmaması için çalışmalar yapmakla görevlendirilmiştir.IAEA 110 üye devleti biraraya getirir.Türkiye, 14 Haziran 1957 tarihi ve 7015 yasa uyarınca ajansa üyedir. 2)Atom Enerjisi Kurumu(Türkiye) Türkiye'de,atom enerjisinin kalkınma planlarına uygun olarak,barışçı amaçlarla ve ülke yararına kullanılmasını sağlamak;temel ilke ve politikalar belirleyip önermek; bilimsel teknik ve idari çalışmalar yapmak, düzenlemek, desteklemek,kordine etmek ve denetlemek üzere yasayla kurulmuş bir kamu tüzel kişidir. 6821 sayılı yasayla 956'da kurulan Atom Enerjisi Komisyonu'nun yeniden örgütlenmesine ilişkin 2680 sayılı yasa uyarınca 1982'de faaliyete geçen Atom Enerjisi Kurumu(kısa adıTAEK)Atom Enerjisi Komisyonu,Danışma Kurulu,İhtisas Daireleri ve bağlı kuruluşlardan oluşur.TAEK başkanı,konusunda bilgi ve uzmanlık sahibi kişiler arasından başbakan tarafından seçilir ve ortak kararname ile atanır.Atom Enerjisi Komisyonu,TAEK başkanının başkanlığında Başkan yardımcıları,Milli savunma,dışişleri enerji ve tabi kaynaklar bakanlıklarından birer üye ile nükleer alanda eğitim,öğretim ve araştırma yapan dört öğretim üyesinden;Dannışma Kurulu da nükleer alanda çalışan öğreten üyeleri ile öteki ilgili kamu kurum ve kuruluşlarındaki uzmanlar arasından,Atom enerjisikomisyonu'nun önerisi ve başbakanın onayı ile görevlendirilen kişilerden oluşur.Kurumun başlıca ihtisas daireleri;Nükleer güvenlik dairesi;Radyasyon sağlığı ve güvenliği dairesi; Araştırma-geliştirme-koordinasyon dairesi ve Teknoloji dairesi'dir.Kurum,ayrıca nükleer alanda çalışmalar yapmak üzere,araştırma ve eğitim merkezleri,laboratuvarlar,deneme merkezleri ve güç üretimine dönük olmayan pilot tesisler gibi bağlı kuruluşlar oluşturulabilir.Halen kuruma bağlı olarak çalışan dört kuruluş bulunmaktadır: 1962'de İstanbul'da kurulan Çekmece nükleer araştırma ve eğitim merkezi, 1966'da Ankara'da çalışmaya başlayan Ankara nükleer araştırma ve eğitim merkezi,1981'de kurulanAnkara-Lalahan veteriner hekimlik hayvancılık nükleer araştırma enstitüsü,1986'da Karadeniz Üniversitesi'nde kurulan ve 1987 yılında çalışmaya başlayan Deniz ve çevre radyobiyolojisi araştırma enstitüsüdür. 3)Nükleer Bilimler Enstitüsü Ankara'da Hacettepe Ünüversitesi'ne bağlı olarak nükleer bilimler alanında lisansüstü eğitim ve araştırma yapan yükseköğretim kurumudur.1982'de kurulan enstitü, Türkiye'de nükleer teknoloji'nin kurulup geliştirilmesi için gerekli bilimadamlarını yetiştirmeyi amaçlar;nükleer reaktör tasarımı ile ilgili çeşitli düzeylerde araştırmalar yapar.Çalışmalar arasında nötronik alanındaki ve termikleşme hesapları ile ilgili kurumsal ve sayısal araştırmaların yanında,deneysel araştırmalar da yer alır;nötron etkinleştirme konusundaki çalışmalar sürdürülmektedir. 4)Nükleer Enerji Ajansı Ekonomik işbirliği ve kalkınma teşkilatı üyesi Avrupa ülkeleriyle Avust-ralya,ABD,Kanada ve Japonya'nın üyesi olduğu kuruluştur.Avrupa toplulukları komisyonudur. Nükleer enerji ajansı'nın çalışmalarına katılır.Kuruluşun merkezi Paris'tedir.Amacı,nükleer enerjinin barışçı amaçlarla kullanılmasını uyumlu bir biçimde geliştirmektedir. Öteki ululararası kuruluşlarla ve özellikle de Uluslararası atom enerjisi ajansı ile işbirliği yapar.

http://www.biyologlar.com/nukleer-santrallerin-onemiyararlari-ve-zararlari

Asit yağmuru nedir?

Çeşitli endüstriyel faaliyetler, konutlarda ısınma amaçlı olarak kullanılan yakıtlar, fosil yakıtlara dayalı olarak enerji üreten termik santraller ile egzoz gazları havayı kirletmekte ve kükürtdioksit (SO2), azotoksit (NO), hidrokarbon ve partikül maddeler havada 2-7 gün asılı kalabilen bu kirleticiler, su partikülleri ile tepkimeye girerek asit meydana getirmekte ve yağmurlarla birleşerek yeryüzüne asit yağmurları olarak inmektedir. Asit Yağmurlarının Zararları: * Asit yağmurları göl ve akarsularda asit dengesini bozarak, tüm canlıları etkilemekte, hatta bazı türlerin ölümüne yol açmaktadır, * En büyük etki ormanlar üzerinde görülmektedir. Asidik yağışlar, ağaçların yapraklarındaki büyüme ve gelişmeyi engellemektedir, * Yeryüzüne inen asit yağmurları, suya ve toprağa geçerek yapılarını değiştirmekte, bunun sonucunda toprak ve suyla ilişkide olan canlılar zarar görmektedir. Kaynak:timeturk.com

http://www.biyologlar.com/asit-yagmuru-nedir

Deniz timsahları

Her şey bundan tam 200 milyon yıl önce başlıyor. O tarihlerde de var olan timsah, henüz bir kara hayvanı... Ayakları üstünde yükselen gövdeleri ve gittikçe daralan yüz yapılarıyla, timsahtan çok yarış köpeklerini anımsatıyorlardı. Sadece içlerinden bir tanesi, bilinmeyen bir nedenle ayaklarından birini sudan hiç çıkarmıyordu. Bu türün su aşkı, aradan geçen 200 milyon yıla karşın hâlâ sürüyor. Dün, tek ayağını suya daldırmakla yetinen "Crocodylus porosus", bugün, tam 22 farklı timsah türü arasında, hem tatlı hem de tuzlu suda yaşayan tek örnek... Ancak hemen belirtelim, asıl tercihi Avustralya ve Hint Okyanusu'nun tuzlu suları... Deniz timsahları, pek aşina olmadıkları tuzlu sularda varlıklarını sürdürmek için bazı anatomik farklılıklar geliştirmişler. Ve bu farklılıkları ta atalarından beri korudukları ileri sürülüyor. En belirgin özellikleri, farklılaşmış tükürük bezleri... Hayvanın dilinin üstünde bulunan bu bezler, deniz suyunun içinde erimiş olan tuzun organizmaya girmesine engel oluyor. Böylece de, canlı bir salamuraya dönüşmesini engelliyor. Bütün dev görünüşüne karşın, deniz timsahları, türlerinin "XL" örneği değiller. En azından bazı organlarının yapısı nedeniyle... Örneğin, timsahtan çok kuşları anımsatıyorlar. Kalp sistemleri, onlar gibi dört bölmeli. Yine, kuşlar gibi çok gelişmiş bir işitme duyuları var. Oysa, diğer sürüngen türlerinin büyük çoğunluğu sağır yaratıklar... Son, ama tartışmalı bir nokta da, bu hayvanların bir görme yeteneğine sahip olup olmadıkları... Kimi araştırmacılara göre, böyle bir duyuları, özellikle de renkleri ayrıştırma yetileri var. Ancak henüz bilimsel olarak kanıtlanmış değil... Çünkü, bu oldukça iri ve vahşi hayvanlarla laboratuvar deneylerinin zorluğunu hemen hemen herkes kabul ediyor. . Suyun içindeyken, deniz timsahının gözleri bir üçüncü gözkapağı ile korunuyor. Deniz timsahları, kesinlikle aptal canlılar değil. Tam tersine, tüm sürüngenler arasında, ortalama zekâ düzeyinin üstüne çıkıyorlar. Bunun kanıtı olarak da, bilim adamları, bu hayvanlar arasında son derece gelişmiş bir hiyerarşi anlayışını gösteriyorlar. Gruplar halinde yaşayan deniz timsahları ailesinde, erkekler yaşam alanını kontrol ediyorlar. Dişilerin görevi ise, yavruların beslenmesi ve yetiştirilmesi... Bu minik grup içindeki tüm üyeler, özel sesler çıkararak birbirleriyle anlaşıyorlar. Deniz timsahlarının dilinde böğürme bir sevgi ve aşk gösterisi, homurdanma ise "dikkatli ol" mesajı... Eğer bir deniz timsahı çok koyu bir sessizliğe bürünmüşse, bu bir av peşinde olduğu anlamına geliyor. Bu deniz devleri, özellikle avlanma konusunda olağanüstü bir sabır örneği gösteriyorlar. Bir deniz timsahı, avının kendisine iyice yaklaşması için, tam 2 gün boyunca hiç kımıldamadan durabiliyor. Suyun içindeyken en tercih ettiği avlar, iri balıklar ve deniz yılanları... Yine içinde bulunduğu ortama göre avlanma stratejileri geliştiriyor. Denizdeyken açıktan açığa avlanan deniz timsahları, nehirlerde süper bir kamuflaj ustası kesiliyorlar. Suya yarı batmış olarak hareketsiz duruyorlar ve sadece gözlerini, kulaklarını ve burun deliklerini su üstünde bırakıyorlar. Deniz timsahı gerçek bir etobur... Üstelik, öyle özel bir tercihi de yok. Kendi cinsine yakın omurgasızlardan ördeklere, yılan balıklarından bufalolara kadar her hayvanın etiyle kendisine ziyafet çekebiliyor. Avını bir bütün olarak yuttuktan sonra, çok asitli özsuyu sayesinde, onları kemiklerine kadar sindirmeyi başarıyor. Enerji fazlasını ise, yağ biçiminde kuyruğunda ve sırt bölümünde depoluyor. Bu olağanüstü yağ depolarını kullanarak, yeni doğan bir deniz timsahı yavrusu 4 ay, bir ton ağırlığındaki yetişkin ise tam bir yıl boyunca yemek yemeden hayatta kalabiliyor. Vahşi, ama kesinlikle açgözlü olmayan deniz timsahları, kendi yavrularına karşı ola-ğanüstü şefkatliler... Yumurtalarını, humus (kara toprak) ve bitkilerden oluşturduğu yuvanın içine bırakan dişi deniz timsahı, iklim koşullarına bağlı olarak, 2-3 ay bunların üstünde kuluçkaya yatıyor. Bu dönemde çok sinirli olan dişi timsah, her türlü sese karşı duyarlı bir hale geliyor. Yavrularının ilk seslerini duyar duymaz, titizlikle yumurta kabuklarını kırıp parçalıyor. Böylece, yavrularının daha kolay biçimde dışarıya çıkmalarını sağlıyor. Bilindiği gibi, birçok timsah türü, yumurtaların kabuğunu kırmak için, onları ağızlarına alıp, dillerinden kaydırma yönteminden yararlanıyorlar. Deniz timsahlarının da bu şekilde davranıp davranmadıkları bilinmiyor. Ancak, ne biçimde olursa olsun yavrularına kavuşan dişi deniz timsahları, aylarca onların beslenmesini ve güvenliğini sağlıyorlar. Onları bir an bile yanlarından ayırmıyorlar. Küçük yavrular ısınmak için annelerinin sırtına çıkıyorlar. En küçük bir tehlike durumunda, anne timsah sırtında yavrularıyla suyun derinliklerine dalıyor. Annelerin yavrularını tehlikeye karşı uyarmak için kullandıkları bir yöntem de, kaslarını titretmek... Bu kas titreşimleri suyun içinde ses dalgalarına dönüşüyor ve çevredeki diğer annelerle yavruları tehlikeye karşı uyarıyor. Denizlerin bu ürkütücü yaratığının en büyük düşmanları yine kendi cinsleri. Zaman zaman, özellikle bölgesel egemenlik ve dişilere sahiplenme konularında aralarında ölümcül kavgalara tanık olunuyor. Bu hayvanların asıl düşmanı ise, insanoğlunun ta kendisi... 60'lı yıllarda, derilerinden hediyelik eşya, ayakkabı, çanta vb. yapmak için çok geniş kapsamlı bir deniz timsahı katliamı yaşandı. Bu hayvanların türü ciddi bir biçimde yok olma tehlikesiyle karşı karşıya geldi. Günümüzde, Avustralya'da "ulusal servet" olarak koruma altına alınan deniz timsahlarının sayısı her geçen gün artıyor. Bu artışın en büyük dinamiği ise, sayıları hızla çoğalan timsah çiftlikleri.

http://www.biyologlar.com/deniz-timsahlari

MİNERAL (İYON) METABOLİZMASI

Bitkilerin kimyasal kompozisyonu: Bitkilerin % 75 su ve % 25 kuru madde Kuru maddenin % 90’ ı organik % 10’ u inorganik Organik maddelerin başlıcalarını karbonhidrat, yağ ve protein olduğu, yağ ve karbonhidratların C, H, O ve N’ dan oluştuğu yani organik maddelerin 4 temel elementten meydana geldiği bilinmektedir. Bu 4 elementi sırasıyla P, S, K, Ca ve Mg izler. Yapılan analizlerde bitkilerde 60’ dan fazla elementin bulunduğu test edilmiştir. Bunlardan 16 elementin bitki için mutlak gerekli olduğu da saptanmıştır. Bunlara esas elementler denir. Esas elementlerin bir kısmı bitkilerde bol miktarda bulunur. Bunlara makro elementler (C, H, O, N, P, S, K, Ca, Mg), bir kısmı da az miktarda bulunur ki bunlara da mikro elementler (Fe, Cu, Zn, Mn, Mo, B, Cl) adı verilir. Mikro elementlerin az olması onların önemsiz olduğunu göstermez. Mikro elementlerde makro elementler kadar bitkiler için önemlidirler. Ancak az bulunmaları gerekir, fazlası toksiktir. Bitkilerde bunların dışında bulunan elementlere iz elementler ( Na, Al, Li, Si, Se, V, Co) adı verilir. Bu elementler de değişik amaçlar için bitkiler tarafından kullanılırlarsa da eksikliğinde belirgin aksaklıklar yaşanmaz. Esas elementler bitkide başlıca yapısal, elektrokimyasal ve katalitik olmak üzere üç role sahiptirler. Her element bunlardan en az birini yapmakla yükümlüdür. Yapısal olarak organiklerin yapısına katılırlar. Elektrokimyasal olarak; iyon dengesini, zar geçirgenlini, tamponluğu, osmotik regülasyonu, makro moleküllerin sabitlenmesini sağlarlar. Katalitik olarak; enzimlerin kofaktörü olarak görev yapmaktadırlar. Bitkilerde Mineral Madde Eksikliği Bitkiler O2 ve C’ u gaz olarak (CO2, O2) havadan ve H’ i ise sudan temin etmektedirler. Diğer elementler ise çeşitli iyonlar halinde (katyon ve anyon olarak) topraktan su ile beraber alınmaktadır. Hangi mineral maddenin eksikliğinde hangi bitki büyüme ve gelişme kusurlarının ortaya çıktığı, su kültürleri ve kum kültürleri deneyleri ile test edilmiş olup ve tablolar halinde yayınlanmıştır. Bitkilerde elementlerin görevleri ve eksikliğinde gözlenen olumsuzluklar tablo halinde yanda verilmiştir. Faydalı Toksik Elementler : Bazı toksik elementler (ör. Na, Se, Si, Co, Ti), değişik ortam şartlarında yetişen bitkilerde faydalı olabilmektedirler. Ör: Halofit bitkiler için Na, osmotik basıncı arttırarak su alınımını kolaylaştırır. Bitkilerin çoğu için toksik olan Se, Astragalus sp. (Geven) bitkilerinde bol miktarda bulunmaktadır. Yapılan araştırmalar fosfora hassas olan bitkilerin Se sayesinde fosfor toksitesinden kurtulduklarını göstermiştir. Ayrıca Atkuyruğu, buğday gibi silisyum içeren bitkilerin bu element sayesinde Fe ve Mn toksitesini azalttıkları test edilmiştir. Bazı yosunlar B12 vitamini sentezi için Co ve Ti gibi toksik maddelere ihtiyaç duymaktadırlar. Madensel Tuzların Alınması ve Kullanılması (Bitkilerde Mineral Madde (İyon) Alınımı) Bitkiler yaşadıkları sürece su ve suda çözünmüş maddeleri birlikte almak zorundadırlar. Bitki kökleri topraktaki mineralleri ancak iyonlar halinde alabilirler. Bitkilerde iyon alınımı su alınımı kadar basit olmayıp daha karmaşıktır. İyon alınımını bazı prensiplerin ışığında pasif ve aktif iyon alınımı mekanizması şeklinde izah etmek mümkündür: 1- Madensel Tuzların kaynağı olan toprak: Toprak irili ufaklı parçacıklarla kolloid çaptaki partiküllerden oluşur. Bu karışımın ısınması, su tutması, besin tuzlarını tutması gibi fizikokimyasal özellikleri toprağın daha çok kolloidal durumundaki bileşiklerine bağlıdır. Birçok toprakta toprağın inorganik kolloidal kısmını kil parçacıkları oluşturur. Ölmüş bitki ve hayvan artıklarından oluşan maddelerde toprağın organik kolloidal kısmını oluşturur. Kil mineralleri genellikle (-) yüklüdürler. Bundan dolayı dış yüzeylerinde (+) yüklü iyonlar absorbe edilirler (Ca++, Mg+, H+, K+ vs.) 2- Kökler tarafından madensel tuzların alınması mekanizması: Pasif iyon alınımı : Herhangi bir metabolik olaya bağlı olmaksızın sadece difüzyon gibi olaylarla gerçekleşen iyon alınımıdır. Yapılan araştırmalarla köklerin (kaliptra hariç) emici tüy bulunmayan en uç kısımları tarafından madensel tuzları aldığı gösterilmiştir. Özellikle meristematik bölge bu bakımdan çok aktiftir. Bu absorbsiyonun kök hücrelerince nasıl yapıldığını iki ayrı mekanizma ile açıklamak mümkündür. a) Kitle akımı : Bitkide transpirasyon hızlandığında beliren bir iyon alınımıdır. Olay, transpirasyon etkisiyle ksilemdeki tuzların yukarı çekildiği, dolayısıyla ksilemde tuz konsantrasyonunun azalması sebebiyle köklerin iyon alma kapasitesinin arttığı şeklinde izah edilmektedir. b) İyonik Değişim Mekanizması (iyon alış-verişi): Hücreler katyonları iyon alış-verişi ile sağlarlar. Hücre alış-veriş dengesini, fazla aldığı katyonun yerine kendininkilerden aynı miktarda dışarı vermekle sağlamaktadır. Eğer katyon içeri fazla alınırsa dış ortam asitleşir, anyon fazla alınırsa dış ortam bazlaşır. Örneğin; bir bitkiye (NH4)2SO4 verilirse solunum sonucu ortamda fazlalaşan H+ iyonu dışarı verilirken, NH4 katyonları içeri alınır. Bu durumda dış ortam, H+ ve SO4- iyonlarına bağlı olarak asit özelliği gösterir. Buna fizyolojik asitleşme denir. Eğer bitkiye KNO3 verilirse NO3 anyonu zardan geçer. Ama içerden dışarı bir katyon verilmez. Ortamda kalan K+ suyun OH’ nı bağlayarak KOH oluşturur ve ortamın baz olmasına neden olur. Bu olaya da fizyolojik bazlaşma denir. c) Donnan Dengesi: Hücrede madde alış-verişinde rol oynayan ve difüzyon edemeyen iyonların etkilerine dayanan elektriksel bir olaydır. Ör: Çözelti ortamındaki hücre içinde negatif yüklü ve büyük, difüzyon edemeyen bir iyon bulunsun. Diğer katyon ve anyonlar hücrenin her iki tarafına geçebilsinler. Bu durumda iyonların difüzyonu sonucunda bir potansiyel gradiyenti oluşur. Elektrokimyasal denge kurulduğunda iyonların konsantrasyonu hücre içinde ve dışında aynı olmayacaktır. Bu durum difüzyon edemeyen iyonların elektriksel dengesizliğine dayalı bir konsantrasyon dengesizliğidir. Donnan dengesi eşitliğine göre pozitif yüklü iyonlardan içerdekilerin dışarıdakilere oranı, negatif yüklü iyonlardan dışarıdakilerin içerdekilere oranına eşit olması gerekir. İçerdeki pozitif iyonlar = Dışarıdaki negatif iyonlar Dışarıdaki pozitif iyonlar İçerideki negatif iyonlar Örneğin bir hücrede 6 tane zarı geçemeyen anyona 6 potasyum iyonu bağlı olsun. Bu hücreyi KCl çözeltisine koyduğumuzda içte ve dışta iyon dağılımı değişecektir. Bu değişim Donnan dengesiyle şöyle açıklanır: dışarıda da 6 KCl bulunduğunu farz edersek yukardaki eşitliğe göre hücreye 2 K ve 2 CL iyonu alındığında Donnan dengesi sağlanmış olur. İçteki K (8) = Diştaki Cl (4) Dıştaki K (4) = İçteki Cl (2) Buna göre yukarıdaki eşitliği sadeleştirdiğimizde 2=2 sonucu ortaya çıkar. Donnan dengesi ile hücre içindeki bir maddenin konsantrasyonu dışarıdaki yada çevredeki konsantrasyonun 30 katına çıkabilir. Pasif iyon alınımında hücre zar yapısının seçici geçirgen özelliği ve moleküler dizayeni de önemli iş görmektedir. Hücre zarının transport yeteneği zar yapısına ve filogenetik orijinine göre değişir. Ör: Bakteri membranı Ca+ ve K+ iyonlarını kolay geçirmesine karşın maya hücreleri membranı bu iyonları geçirmezler. Çeşitli moleküllerin ve madensel tuz iyonlarının hücre zarlarından geçişine ilişkin şu aktiviteler de bilinmektedir. d) İyon Birikimi: Bazı bitkilerde bir iyonun bitkinin bulunduğu ortamdan daha fazla biriktiği görülür. Ör: Deniz alglerinde K deniz suyundakinden yüzlerce kat daha fazla bulunmaktadır. Bunun sebebi hücre bünyesinde bulunan maddelerce iyon molekülleri absorbe edilmekte veya çözünmeyen maddelerle birleşerek çökelmektedir. e) İyon antagonizması : Farklı değerlere sahip iyonların bitki tarafından alınmasında iyonların birbirine zıt etki göstermeleri olayıdır. Ör. Na , K, gibi bir değerlikli iyonlar hücrelerde fazla miktarda bulunmaları halinde toksik etki gösterirler. Bu karşın ortama az miktarda çok değerlikli iyonlar ( Ca, Mg) ilave edildiğinde bu iyonlar hücre zarının koloidal yapısını değiştirerek geçirgenliğini arttırırlar ve toksik etkiden hücreyi kurtarırlar. Ör: buğdayda yapılan bir araştırmada 0.12 m NaCl bulunan bir ortamda toksik etki görülürken, ortama 0.0012 m CaCl ilave edilmesi toksik etkinin giderilmesi için yeterli olmuştur. f) Zar potansiyeli : Zarın her iki tarafında bulunan iyonların eşit olmayan dağılımı nedeniyle ortaya çıkan bir durumdur. Bu olay basit ve kolaylaştırılmış difüzyonla ortaya çıkar. Basit difüzyon: Su, Oksijen, CO2 ve etanol gibi küçük ve elektrik yükü taşımayan bazı moleküller stoplazmik zarı kolaylıkla geçerler. Buna basit difüzyonla geçiş denir. Basit difüzyonla geçişte moleküller kendi kinetik enerjileri sayesinde difüzyon kurallarına göre hareket ederler. Kolaylaştırılmış difüzyon: Glikoz ve diğer bazı büyük moleküllü, suda çözünebilen fakat elektrik yükü taşımayan molekülerle çeşitli madensel tuz iyonları (H+, Na+, K+, Ca++, Cl-, CO3-, HCO3- …) ve ayrıca lipitlerde çözünebilen maddeler stoplazmik zar sisteminden difüzyonla geçebilirler. Ancak bu geçiş basit difüzyonda olduğu gibi sadece moleküllerin kinetik enerjileri ile olmaz. Çünkü hücre zarı lipitte erimeyen moleküllerin geçişine izin vermez. Ancak stoplazmik zardaki membran proteinleri (integral protein) lipitte çözünemeyen moleküllerin geçişini sağlarlar. İşte stoplazmik zardaki bu proteinler aracılığı ile yapılan bu difüzyon yada taşınma olayına pasif transport adı verilir. Buna kolaylaştırılmış difüzyon da denilmektedir. Bu difüzyon olayı protein tipine bağlı olarak iki şekilde gerçekleşir: 1- Kanal proteinleriyle 2- Taşıyıcı (carrier) proteinlerle Aktif taşıma konsantrasyon gradiyentine karşı yapılır. Yani aktif transporta moleküller yada iyonlar az yoğun olarak bulundukları bir ortamdan daha çok yoğun olarak bulundukları bir ortama doğru taşınırlar. Bu taşınım sayesinde hücre içinde bulunduğu ortama göre daha fazla iyon birikir (Na+, K+..) Hücredeki en önemli aktif transport sistemi Na-K pompasıdır. Bu pompa hücre içinde K+ oranının yüksek, Na+ oranının düşük tutulmasını sağlar. Aktif metabolizmanın nasıl olabileceğini açıklayan çeşitli hipotezler mevcuttur. Bunlardan en çok ilgi göreni taşıyıcı (carrier) hipotezidir. Bu hipoteze göre: a) Önce hücrede taşıyıcı (carrier) molekülleri sentezler. b) Sonra her iyon kendi taşıyıcısı ile kompleks yapar. c) Bu iyon-taşıyıcı kompleksi hücre zarının dış yüzeyinden iç yüzüne yani vakuole doğru hareket eder. d) Stoplazmik zarın iç yüzüne (tonoplast) giden iyon-taşıyıcı kompleksi parçalanır. e) Parçalanan kompleks iyonu vakuole serbest bırakır ve taşıyıcı yüksüz olarak dış yüzeye geri döner. Bu hipotezi daha iyi anlayabilmek için iyon taşıyıcı kompleksinin hareket mekanizmasını açıklayan görüşleri de değerlendirmek gerekir. a) Bu kompleks lipitlerde çözünebilen bir yapı gösterdiği için lipoprotein zardan kolayca geçer. b) Taşıyıcı iyon kompleksi sitoplazmik zar içinden yarım rotasyon hareketi ile geçer. c) Taşıyıcı yüzeye sıkıca yapışmış olabilir. Ancak kayma hareketi ile iç yüzeye ilerler. d) Taşıyıcı proteinlerin bir miktar kontraksiyon hareketi ile ilerler. e) Zarda küçük veziküller (vakuol oluşumu) yardımı ile iyonlar içeri alınırlar.

http://www.biyologlar.com/mineral-iyon-metabolizmasi

Avrupa'da sıtmanın durumu

Sıtmanın Güney Avrupa ve Balkanlardaki etkisi Kuzey Avrupa ülkelerinde olandan çok daha fazladır. Bununla birlikte Güney Avrupa'da hastalık oldukça önemlidir (Bruce-ChWatt and Zulueta, 1980). Avrupa'nın değişik bölümlerindeki sıtma durumu Alman ordusu tarafından 1917-1918 tarihleri arasında belirlenmiştir. Buna göre, o yıllar itibariyle, kıtanın batısında 2.600, doğusunda 12.800, Balkanlarda 132.400 ve Türkiye'de 183.700 sıtma vakası tespit edilmiştir. Bruce-Chwatt and Zulueta (1980) "Avrupa'da sıtmanın yükselişi ve düşüşü" isimli kitaplarında, kıta için sıtmanın tarihçesine göz atmışlardır. Araştırıcılar, en yüksek endemik alanları Avrupa kıtasının güneyi olarak belirlemişler ve ülkeleri sıtma durumlarına göre sınıflandırmışlardır. Buna göre, Yunanistan Avrupa kıtasının belki de en yüksek vakalarının olduğu ülke olarak belirlenmiştir. 1931-1935 yılları arasında, Yunanistan'da sıtma paraziti ile enfekte olmuş insan sayısı 1-2 milyon dolayında olmuştur. Sıtma ölümleri ise yüzbinde 74 olarak kayıt edilmiştir. Avrupa'daki önemli birkaç sıtma epidemisi ise, yüzyılın başında 420.000 vaka ile Romanya'da, 1942-1943 yılları arasında 600.000 vaka ile Yugoslavya'da, 1905 yılında 300.000 vaka ile İtalya'da, 400.000 vaka ile 1943 yılında İspanya'da görülmüştür. Merkezi Avrupa'da, sıtma olgusu Güney Avrupa'ya göre çok daha düşüktür. Bugüne kadar ne Avusturya'da ne Çek Cumhuriyeti ne de İsviçre gibi bir ülkede hiçbir zaman geniş ölçekti bir sıtma mücadele operasyonuna ihtiyaç duyulmamıştır. Orta Avrupa'da temel sıtma alanları Macaristan çevresindeki kırsal alanlardır. Özellikle, Macaristan'ın kuzeydoğusundaki ovalar, dere yatakları ile güneybatısındaki bataklık alanlar ve balık yetiştirme havuzlan önemli kaynaklardır. Kuzeybatı Avrupa'daki sıtma alanları, kıyı bölgesiyle sınırlandırılmıştır. Zaman içerisinde İngiltere ve İskoçya'da orta dereceli birkaç salgın ve vaka kayıt edilmiştir. Bununla birlikte, Hollanda'nın kuzey bölgelerindeki tuzlu bataklıklarda, Belçika'da kıyı zonunda, Almanya'da Ren Nehri vadisi boyunca, Fransa'da ülkenin orta kesimlerindeki çamurlu arazilerde ve batı kıyısının kuzey sahillerinde sıtma vakalarına rastlanmıştır. Geçmişte, sıtma vakalarının sıklıkla görüldüğü en önemli ülke Danimarka ve komşusu olan İsveç ve Finlandiya'dır. 1880 yılına kadar İsveç'te, her yıl 4.000-8.000 sıtma vakası tespit edilmiştir. Polonya Orta Avrupa'nın sıtma yönünden endemik ülkesidir. 1919-1922 yılları arasında doğu Polonya'da her 100.000 kişiden 200'ünde sıtma teşhis edilmiştir. Bunun gibi, o zamanki Sovyetler Birliği’nin birçok bölgesinde, özellikle Ukrayna'da, çok sayıda sıtma vakası saptanmıştır. Günümüzde, Güney Avrupa'nın birçok ülkesinde özellikle kıyı şeritleri boyunca, ilkbahar ile sonbahar arasında sıtma vakalarına rastlanabilmektedir. Ancak bu sorun artık Kuzey Avrupa ülkeleri için ortadan kalkmıştır. Avrupa'da temel olarak Plasmodium vivax ve Plasmodium falciparum olmak üzere iki parazit türü bulunmaktadır. Bunlardan P. vivax tüm kıtada yaygın olarak bulunurken, diğeri güney bölgelerde sınırlı bir yayılım göstermektedir. Balkanlarda ve İtalya'da sıtmanın epidemiyolojisi tipik bir model göstermektedir. İlkbaharda P. vivax'ın epidemisi ile başlayan sıtma, sonbaharda P. falciparum epidemisi ile devam etmektedir. Bulaşım, Romanya'da haziran-ekim, Yunanistan ve Güney İtalya'da nisan-mayıs ile kasım ayının başlarında olmaktadır (Bruce-Chwatt and Zulueta, 1980). Portekiz'de kuzey bölgelerinde P. vivax yaygınken, güneyde P. falciparum vakalarına rastlanmaktadır. Öte yandan, Fransa'nın güney kıyılarında hüküm sürmekte olan iklimsel durum, P. falciparum 'un yayılmasını sınırlamıştır. Arnavutluk ve Sardunya'da, sıtma vektörlerinin populasyonu nisan, mayıs ve haziran aylarında çok hızlı bir şekilde artmakta ve birdenbire düşmektedir (Logan, 1953). Endemik sıtma, 2. Dünya Savaşı'ndan önce tüm Avrupa kıtasında bulunmaktaydı. Savaş sırasında Avrupa'nın genelinde büyük bir sıçrama yapan sıtma, savaşın son bulmasıyla birlikte yavaş yavaş ortadan kalkmıştır. Sıtma vakalarıyla İlgili en son kayıt 1975 yılında Makedonya'da yapılmıştır (Bruce-Chwatt et al., 1975). Öte yandan, çok uzun bir aradan sonra günümüzde Balkanların bazı ülkelerinde ve özellikle Bulgaristan'da sıtmanın yeniden ortaya çıkmaya başladığını biliyoruz. Sıtmanın, öncelikle Kuzey Avrupa'da, sonrasında güney kıyı şeridinde büyük oranda azalmasının çeşitli nedenleri vardır. Herşeyden önce Dünya Sağlık Teşkilâtı ile Rockfelier Fonu’nun sıtmanın eradikasyonuna yönelik ortak kampanyası en önemli rolü oynamıştır. Bu kampanya sırasında, kalıcı insektisitlerin devreye sokulması, epidemiyolojik araştırmalar ve aktif vaka takibi gibi çalışmalar kısa zamanda büyük başarı getirmiştir. Bunun yanında, yeni ilaçların ortaya çıkarılması, bina inşaatındaki yenilikler, yeni tarımsal tekniklerin devreye sokulması, sosyal ve ekonomik koşullarda iyileştirme ve halk sağlığına yönelik hijyenin iyileştirilmesi gibi faktörler, sıtma vakalarındaki hızlı düşüşün diğer nedenleri olmuştur. Ayrıca, sıtma vektörünün üreme ve gelişme habitatlarındaki vejetasyon temizliği, drenaj ve sulama sistemlerinin rehabilitasyonu, insektisit kullanımı, aşırı kirlenme ve deterjanlar, Anopheles türlerinin populasyonlarını oldukça fazla etkilemiştir (Bruce-Chwatt and Zulueta, 1980). Örneğin, Hollanda'daki domuz çiftliklerinin modernize edilmesi, Anopheles türlerinin kışlama faaliyetlerini ve mevsimsel populasyon artışlarını engellemiştir (Van Seventer, 1969). Endemik sıtmanın ortadan kaldırılmasına rağmen, Avrupa'da bu konu üzerine çalışan birçok kuruma göre, her yıl belirlenen onbinlerce sıtma vakası, turistler, göçmenler ve diğer yolcular aracılığı ile endemik sıtma alanlarından kıtaya sokulmaktadır. Bu durum kısmen doğru olsa da, bize göre Avrupa'da endemik sıtma alanları ve dolayısıyla sıtma vakaları tümüyle ortadan kaldırılmamıştır. Nitekim, yukarıda da belirtildiği gibi 30 yıl aradan sonra Bulgaristan'ın birçok bölgesinde yeniden sıtma vakalarına rastlanmış ve Bulgar bilimadamları bunun Yunanistan kökenli olduğunu ileri sürmektedirler. Bu durum, en azından kıtanın güney kıyı şeridinde bir sıtma potansiyelinin hâlâ ortadan kaldırılmadığını göstermektedir. Öte yandan, bu sıtmanın Avrupa kıtasına yeniden girişi değil, olan potansiyelin değişik etkiler nedeniyle ortaya çıkmasıdır. Bu etkilerin en başında, bize göre, küresel ısınma, iklimsel değişiklikler ve sera etkisi gelmektedir.

http://www.biyologlar.com/avrupada-sitmanin-durumu

Türkiye'de sıtmanın durumu

Sıtma Türkiye için tarihler boyunca sorun yaratmış bir hastalıktır. Ancak konunun hemen başında söylemek gerekirse Türkiye, ılıman zonun son ülkesi olarak, bilimsel temellere oturtulmuş, teknoloji destekli ve kapsamlı, sosyo-ekonomik yönden de desteklenmiş entegre mücadele programı ya da programlarıyla, dünya üzerinde sıtmanın eradike edilebileceği nadir ülkelerdendir. Anadolu'nun geçmişinde sıtma, salt yaygın olmakla katmamış, aynı zamanda medeniyetleri de çökertecek ağırlıkta olmuştur {Akdur, 1997). Sıtma yüzünden Anadolu üzerinde kurulmuş Aydın-Akköy ve Yoran gibi birçok medeniyet ortadan kalkmıştır (Erel, 1973; Kasap ve ark., 1981; Unsal ve ark., 1982). Efes ve Kaunos gibi bazı antik yerleşim merkezlerinde bu medeniyetlerin "Bataklıktan Gelen Hastalık" yüzünden çöktüğünü anlatan birçok yazıt bulunmuştur. Kurtuluş Savaşı yıllarında sıtma ve tifüs yüzünden Türk Ulusu'nun insan kaybı, savaş alanlarında çarpışarak ölenlerden kat kat fazladır (Erel, 1973). O yıllarda, dağıtılmış bir ülke, yoksul ve geri kalmış bir ekonomi ile birlikte sıtma gibi hastalıklar ülkenin en büyük sorunlarını oluşturmaktaydı. Öte yandan, Kurtuluş Savaşı'ndan sonraki yeniden yapılanma sürecinde, yaratılmak istenen Modern Tarım Üretim Çiftliklerinin önündeki en önemli engellerden birisi köylünün eğitimsizliği diğeri de yine sıtma olmuştur ( Akdur, 1997). Cumhuriyetin ilk yıllarında, sıtmanın böylesine büyük toplumsal öneme sahip olması, Cumhuriyet Hükümetlerinin sıtma kontrol programlarını öncelikli işler olarak görmesine neden olmuştur. Hatta zamanın Sağlık Bakanlığı'nın bütçesinin % 35'i bu programlara ayrılmış ve sıtma bu dönemin sonunda kısa zamanda 2000'lerin altına düşmüştür. 1957 yılında Dünya Sağlık Teşkilâtı programları uyarınca "Sıtma Eradikasyonu Kampanyası" başlatılmış ve Sağlık Bakanlığı Sıtma Savaş Personelinin de üstün gayretiyle sıtmalı sayısı ülke genelinde 1200'lü rakamlara düşürülmüştür. Ancak, bize göre sürekli baskı altında tutulması gereken hastalık, bu azalıştan sonra gerek hükümetler gerekse Sağlık Bakanlığı düzeyindeki önemini kaybetmiş ve 1970'li yıllardan sonra tekrar tırmanışa geçmiştir. 1977 yılında 115.512 hasta ile yine büyük bir epidemi yapmış ve bu tarihten sonra çalışmalara ve eradikasyon programlarına hız verilmiştir. Anadolu'nun geçmişinde her üç sıtma parazitinin de bulunduğuna ait bilgiler mevcuttur. Ancak, günümüzde, Türkiye'de etkin olan tür P. vivax'tır. Diğer türler ülke dışından giren olgular halinde görülmekte, yaygın ve belirgin bir seviyeye ulaşmamaktadır. Ancak, yine de potansiyel bir durumdadır. Türkiye'de sıtma kontrol çalışmaları hiçbir dönemde belli bir süreklilik ve düzene sahip olmamıştır. Yürütülen programlar birçok nedenden dolayı sık sık değiştirilmiştir. Eldeki bilgiler, yürütülen bu programlar ve anlayışlar sonunda saptanan ya da diğer bir anlatımla resmi bildirimi yapılan sayılarla sınırlı kalmıştır. Bu nedenle, vaka sayılarının yıllara dağılımı ve bu dağılımın gerçek bir zaman dağılımının özelliklerini verip vermediği kuşkuludur (Akdur, 1997). Buna karşın, veriler kendi içlerinde tutarlı kabul edilerek, bildirimi yapılan vakaların 1985-1997 yılları arasındaki sayıları Tablo 1 'de verilmiştir (Anonymous, 1997). Görüldüğü gibi, 1991 yılından itibaren sıtmalı sayısında hızlı bir artış söz konusudur. Bunun en önemli nedenlerinden bir tanesi, 1990'lı yılların başıyla birlikte Türkiye'de iki yönlü göçün başlamasıdır. Bunlardan bir tanesi Güneydoğu Anadolu bölgesinden Batı Anadolu bölgesine doğru, diğeri ise Güneydoğu Anadolu bölgesi içindeki göçlerdir. Ayrıca sosyo-ekonomik düzeyde bölgeler arasında yaşanan dengeli olmayan dağılım ve en önemlisi GAP (Güneydoğu Anadolu) projesinin bölümler halinde faaliyete başlamasıdır. Bu artış, 1996 yılından itibaren tekrar kontrol altına alınmış ve 1997'de yüksek oranda düşürülmüştür. GAP'ın tamamlanmasından sonra ortaya çıkması muhtemel olan hastalıklar ve taşıyıcı grupları üzerinde önemle durulması ve Sağlık Bakanlığı bünyesinde yeni bir düzenlemeye gidilmesi gerekmektedir. Ayrıca, bölgedeki koşullar ve sosyo-ekonomik durum dikkate alınarak sulak alanların çevresel yönetim planlarının hazırlanması, daha da önemlisi bölge için ayrıcalıklı, bilimsel ve kapsamlı bir sağlık planının oluşturulması gerekmektedir. Bu durum bugün daha da netleşmiş olup GAP kapsamında yer alan Gaziantep, Adıyaman, Şanlıurfa, Mardin, Diyarbakır, Siirt ve Şırnak gibi illerde sıtmalı hasta sayısında artışlar görülmektedir. Bir bakıma, eskiden Çukurova bölgesi ve çevresinde yaygın olan sıtmanın, günümüzde yavaş yavaş Güneydoğu Anadolu bölgesine, ağırlıklı olarak kaydığı söylenebilir. Sıtma Türkiye'de de mevsimsel bir dağılım göstermektedir. Vaka sayıları mart ayından itibaren yükselmeye başlamakta, temmuz, ağustos ve eylül aylarında en yüksek sayılara ulaşmakta, buna koşut olarak sıtma vektörü olan Anopheles türlerinin populasyonları da aynı dönemlerde yükselmekte ve ekim ayından sonra ise hızlı bir azalma göstermektedir. Bu tarihten itibaren ülkenin büyük bir bölümünde vektör türler de kışlak davranışına başlamaktadır. Bu açıdan sıtma mücadelesinin, vektör mücadelesinden ayrı olmaması önemli bir olgudur. Bir ülkede sıtma riskinin belirlenmesi ve kontrol çalışmalarının sağlıklı bir biçimde planlanması ve yürütülmesi için, o ülkenin sıtma haritasının çıkarılarak, risk ve hizmet öncelikleri açısından bölgelere ayrılması gerekir (Akdur, 1997). Bize göre, tamamıyla doğru olan bu söylemin, eksik tarafları bulunmaktadır. Çünkü, sıtma mücadelesi klinik ve entomolojik olmak üzere kesinlikle iki boyutlu ve entegre bir biçimde sürdürülmelidir. Bu açıdan, entomolojik boyutta, sıtma bölge haritalarının yanı sıra, vektör türlerin dağılımlarını, üreme ve gelişme habitatlarını ve mümkünse mevsimsel populasyon dinamiklerini gösteren oldukça ayrıntılı yöresel haritalara da ihtiyaç vardır. Ülkemizde bu hastalığın uzun yıllardır yapılan başarılı ve özverili çalışmalara rağmen bir türlü eradike edilememesinin en önemli nedeni budur. Ülkemizin sıtma açısından riskli bölgelerini belirlemek amacıyla düzenlenmiş haritalara göre, Türkiye dört bölgeye (strata) ayrılmıştır. Birinci derecede riskli bölge, Güney ve Güneydoğu Anadolu, ikinci derecede riskli bölge Akdeniz, Ege ve Marmara bölgesinden, üçüncü derecede riskli bölge İç Anadolu illerinden ve dördüncü derecede riskli bölge Karadeniz ve Kuzeydoğu Anadolu illerinden oluşmaktadır. Sıtma, gerek Türkiye gerekse dünyada önümüzdeki yüzyılın en önemli hastalıklarından birisi olacaktır. Bunun en önemli nedenlerinden bir tanesi küresel ısınma ve buna bağlı olarak büyük ölçekli iklimsel değişikliklerdir. Ayrıca, yoğun ve bilinçsiz insektisit kullanımı vektör canlılarda direnç problemi oluşturmaktadır. Özellikle gelişmemiş ve gelişmekte olan ülkelerdeki hızlı nüfus artışı ve bunun neden olduğu sosyo-ekonomik dengesizlik ile hızlı insan göçü hareketi diğer faktörlerdir. Bu durumun engellenebilmesi için, yöresel bazda yapılan çalışmaların ülke bazında bir kampanya havasında sürdürülmesi, sonrasında ise yakın ülkelerden başlamak üzere küresel ölçekte bir entegrasyona gidilmesi gerekmektedir.

http://www.biyologlar.com/turkiyede-sitmanin-durumu

 
3WTURK CMS v6.03WTURK CMS v6.0