Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 103 kayıt bulundu.
Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Sonuçta o kadar da farklı değiliz; İnsanlardaki hücreler ve sağlam mikroplar ortak bir atayı paylaşıyor

Bir araştırma ekibi, arkeal ve ökaryotik hücrelerin genetik materyalini nasıl paketlediğini ve depoladıklarını gösteren çarpıcı paralellikler buldu. Credit: Santangelo and Luger Labs

http://www.biyologlar.com/sonucta-o-kadar-da-farkli-degiliz-insanlardaki-hucreler-ve-saglam-mikroplar-ortak-bir-atayi-paylasiyor


Rosa dominica ile ilgili elinde kaynak olan varmı?

Familyası: Gülgillerden, Rosengaewchse, Rosaceae Drugları: Gül çiçeğinin yaprakları; Rossae flos (eskiden; Flores Rosae Gülün çiçek yaprakları kurutularak çay yapımında veya su buharı ile damıtılarak ve yahut da ekstresi yapılarak Gül yağı (gül esansı) elde edilir. Giriş: Vatanının Türkiye olduğu tahmin edilen Gülün günümüzde 400’ den fazla çeşidi vardır. Bizi ilgilendiren Isparta gülü (Rosa damacena) ve Mayıs gülü (Rosa cenlifloria) en önemlileridir. Isparta gülü sonradan Bulgaristan ve Fas’ta yetiştirilmeye başlanmış olmasına rağmen bütün dünyada en çok gül yağı üretilen ülke Bulgaristan’dır. Türkiye Isparta gülünün üretimini artırmak için birçok ilde gül üretimi teşvik edilmiş fakat çiftçilerin Gül yetiştirilmesi ve Gül esansı elde edilmesini bilme­diklerinden teşvikler başarısızlıkla neticelenmiştir. Genellikle Fransa’da yetiştirilen ve Mayıs Gülü Latince Rosa Centifolia diye anılan Gül daha çok parfüm yapımında kullanılmaktadır ve Türkiye’de Mayıs Gülü Van gülü diye anılır. Genellikle Almanya’da Kırmızı Gül Rosa Gallica L. Yetiştirilmekte ve bu gül öksürük ve bronşite karşı yapılan natürel ilaca karıştırılmaktadır. Isparta gülü ise genellikle aroma tedavisinde ve parfüm yapımında kullanılır. Botanik: Boyu 0,3-15m’yi bulur. Dalları dikenli, tüylü, bulunduğu yer­den kökleri ile kısa sürede çevresine sürünerekten genişler ve zamanla büyük yer kaplar. Yaprakları karşılıklı iki çift ve sonda bir tek olmak üzere beş yapraktan meydana gelir. Bileşik yapraktır, yaprakları oval, kenarları kertikli, koyu yeşil renkli, üzeri pürtüklü ve damarları belirgincedir. Çiçeklerin taç yaprakları yetiştiği yöreye göre açık pembe, pembe, koyu pembe ve kırmızı renk tonlarına sahip olabilir. Taç yap­rakları genellikle kalp şeklinde yan yana ve üst üste dizilerek katmerli bir tabaka oluşturur. Yetiştirilmesi: Gül Türkiye’nin hemen her bölgesinde, genellikle Orta Anadolu’da kolay yetişebilir fakat bilgisizlik verimsiz hasada neden olabilir. Bu nedenle çiçek yetiştiricilerin özel bir eğitimden geçirilmesi gerekir. Yaprak bitine karşı Güllerin yanına Lavanta ekilmelidir. Lavan­tanın olduğu yere bu haşere yanaşmaz. Şayet yaprak biti Güle dadanmış ise Isırgan suyu yapraklara püskürtülür. Isırgan otu toplanarak bir tencereye doldurulur. Üzerine su oldurulur. 3-4 sonra süzülerek Gül yapraklarına püskürtülür. Şayet sert olur ise yaprakları yakar. Hasat zamanı: En kaliteli Gül esansı biyolojik usullerle yani kimyasal ilaçlar (kimyasal gübre, böcek öldürücü ve insektisit) kullanılmadan elde edilen esanstır. Birçok ülkede inek pisliğinin iyice kurutulması ile elde edilen inek gübresi kullanılır. Böceklere karşı okaliptus esansı-Lavanta esansı ve Limon esansından 5’er damla bir kaşık balla karıştırılır ve sonra 10lt suda çözüldükten sonra güllere bu su fışkırtılır ise böcekler güllere gelmez. Bugün biyolojik (natürel) usullerle elde edilen Gül esansının (Gül eterik yağı, Gül uçucu yağı) 1kg’ı 15000 DM (Onbeşbin Alman Markı) tutmaktadır. Gül yağı zamanla daha kaliteli ve güzel kokulu bir hal alır bu nedenle Gül yağları siyah şişelerde muhafaza edilmeli ve şişenin kapağı gerekmedikçe açılmamalı zira oksitlenerek değerini kaybeder. Mümkün oldukça Gül yağının muhafaza edildiği yerde ısı değişimi fazla olmamalı, mümkünse aynı derecede muhafaza edilmelidir. Gül yağı 17-22C˚’de açık soluk sarı berrak bir renkte olup 14C˚’de kristalleşerek hafiften lapa görünümünü alır.Malesef şifalı bitkiler toplama, kurutma, paketleme ve depolama işlemleri sırasında çok yanlışlar yapılmaktadır. Bitkinin şifalı kısmı yaprak veya çiçekleri ise asla Güneş altında kurutulmaz ve mutlaka gölgede kurutulmalıdır. Ayrıca örneğin bitki 5 günde kurudu ise, 2 gün daha kurumada bırakmak mahzurludur, çünkü birleşimindeki eterik yağları kaybettiğinden kalitesi düşer. Sadece bitki kökleri Güneş’te kurutulur ve kurur kurumaz hemen paketlenip depolanması gerekir. Şifalı bitkilerin Aktarlar’da açıkta satılması kalitesini kısa sürede düşürür ve etkisini oldukca azaltır.   ISPARTA GÜLÜ ORİJİNİ (KÖKENİ)VE BOTANİK ÖZELLİKLERİ Soner KAZAZ Süleyman Demirel Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü - Isparta İnsanın günlük yaşamında çok özel bir yeri olan gül; aşkın, güzelliğin, sevginin ve saygının ifadesini en güzel bir şekilde bünyesinde toplayan bir çiçektir. Kuzey yarım küre bitkisi olan gülün orijini Doğu Asya'dır. Kesin olmamakla birlikte gül yağı ve gül suyunun ilk olarak İran veya Hindistan'da üretildiği, buradan Anadolu, Avrupa, Kuzey Afrika ve Doğu Asya'ya yayıldığı bildirilmiştir. (Widrlechner, 1981) Yağ gülü (Rosa damascena Mill.), bitkiler aleminin Spermatophyta (tohunlu bitkiler) bölümünün Angiospermae (kapalı tohumlular) alt bölümünden Rosales takımı, Rosaceae familyası, Rosa cinsi içerisinde yer almaktadır. Dünyada yaklaşık 1350 Rosa (gül) türü tanımlanmıştır. Türkiye florasında 24 gül türü kayıtlı (Davis, 1972) olmasına rağmen gül yağı elde etmek amacıyla kullanılan tür kültürü yapılan Rosa damascena Mill'dir. Yağ için ticari olarak yetiştirilen başlıca gül türleri Rosa damascena Mill., Rosa gallica L., Rosa alba L., Rosa centifolia L. ve Rosa moschata'dır. (Tucker ve Maciarello 1988). Günümüzde gülyağı eldesinde yaygın olarak kullanılan ve kültürü yapılan Rosa damascena Mill türünün Rosa moschata J. Herm ile Rosa gallica L.'nin melezi olduğu tahmin edilmektedir. Fakat bu türün çok eski dönemlerde Rosa gallica L. ile Rosa phoenica Boiss, türlerinden oluşmuş bir melez olduğunun kayıtlarına da rastlanmaktadır. (Baytop, 1990; Garnero, 1982). Sistematikte Rosa gallica var. damascena Voss., Rosa calendarum Borkh gibi bazı sinonimleri de bulunmaktadır. Rosa damascena türünün bir çok çeşidi olmakla birlikte özellikle "Trigintipetale" çeşidi başta Bulgaristan ve Türkiye olmak üzere Fas, Mısır, İran, Suriye, Hindistan ve Kafkaslar'da gülyağı elde etmek amacıyla yetiştirilmektedir (Widrlechner, 1981). Rosa damascena; Isparta Gülü, Pembe Yağ Gülü, Yağ Gülü, Sakız Gülü ve Şam Gülü adlarıyla da bilinen pembe renkli, yarım katmerli ve kuvvetli kokulu, çok yıllık, dikenli ve kışa dayanımı yüksek bir bitkidir. Rosa damascena bitkileri, 1,5 - 3 m arasında boylanmaktadır. Gövde silindir biçimli, içi dolu, esmer renkli, çok dallı ve dallar çok sayıdaki irili ufaklı sert dikenlerle çevrilidir. Yapraklar yumuşak yapılı ve ince tüylerle kaplı, alternans dizlişli, saplı ve stipulalı (kulakçık), 5-7 foliolludur. Folioller (yaprakçık) 3-4 cm uzunluğunda oval şekilli, basit dişli kenarlı ve alt yüzleri tüylüdür. Çiçekler hafifçe sarkık, az yada çok koyu pembe renklidir. Tek renkli olan çiçeklerde içteki taç yapraklar dıştakilerden daha küçük yapılı olup, çiçeklenme çalı formundaki bir bitkide görülen biçimdedir. Kaliks (çanak yapraklar), korollodan (taç yapraklar) daha uzun, çok parçalı 5 sepalden (çanak yaprak) ibarettir. Korolla çok petalli, petaller (taç yaprak) oval şekilli, soluk pembe renkli, kaideleri beyaz lekelidir. Stamen (erkek organ) sayısı çoktur. Dişi organlar çanak şeklinde çukurlaşmış olan reseptakulumun (çiçek tablası) içinde bulunur. Stilus (boyuncuk) uzunca, stigma (tepecik) baş şeklindedir. Reseptakulum zamanla etlenerek kırmızımtırak bir renk alır. İçinde etrafı tüylerle kaplı nukslar vardır. (Baytop, 1963; Krüsmann, 1974; Kürkçüoğlu, 1988, 1995)   sparta gülü (Rosa damascena): Çok eski bir kültür bitkisi olduğu için menşei belli değildir. Halen Isparta çevresinde bol miktarda yetiştirilmektedir. Isparta veya yağ gülü, Isparta çevresinde, 1,5-2 m aralıkla sıralar halinde ekilmektedir. Üretilmesi çelikle yapılır. Çelikler de Kasım ve Aralık aylarında ekilir. Ürün ikinci yıldan itibaren alınmaya başlar. Üçüncü ve dördüncü yaşlarda verim en fazladır. Daha sonra bu yaşlı güller kesilerek gençleştirme yoluna gidilir. Gül bahçelerinden gençleştirme suretiyle 15-20 sene faydalanılabilir. Gülün Tarihçesi: Gül İlimize 1889 yılında Ispartalı Müftüzade İsmail Efendi Bulgaristan’da görevli iken, Isparta’ya gelişinde getirdiği gül çubuğunun yöremize dikilip adapte olması sonucu girmiş ve yayılmıştır. Birinci Dünya savaşından önce gül Isparta’dan civar Vilayetlere de yayıldığı bilinmektedir. Birinci Dünya savaşından önce gül yağlarımız Avrupa ve Amerika piyasalarında çok aranmakta idi ancak savaş yıllarında, süratle gelişen Bulgar güçlülüğü karşısında,bu durumunu kaybettiği ve ekiliş miktarı bakımınrdan gül sahalarımız % 50 civarında azaldı.1953 yılında Gülbirlik’in kurulmasıyla ve Isparta, İslamköy ve Güneykent yerleşim merkezlerine gülyağı fabrikaları açıldıktan sonra, köy tipi gül yağı imbikleri ortadan kalkıp fabrikalarda daha kaliteli gülyağı üretimi başlamış ve Dünya piyasalarında gül yağlarımız aranmaya başlamıştır.türkiyede yağ gülü üretiminin % 80 Isparta,kalan %20 si bfurdur aüfyon vil hudutlarında gerçeklexştirilir.Ayrıca aydının Karacasu ilçesinde de az miktarda yağ gülü üretimi yapılmaktadır. Yağ gülünün diğer güller gibi değişik renkleri ve şekilleri yoktur,kesme çiçek olarakta ,vazo ömrü yoktur.Farkı sahip olduğu uçuçu yağ asitleri diğer güllerden farklı ve özel bir konuma sahiptir Isparta ilinde yağ gfülünden 40 a yakın ürün üretilmektedir. Gülün İklim İstekleri: Yağ gülü etrafı açık havadar, bol ışıklı, ilkbaharda kurak ve don olmayan ve çiçek zamanı çiğ düşen iklim bölgelerinden hoşlanır. Ülkemizde yağ gülü üretimi en çok Isparta ve civarında yapılmaktadır. Dolayısıyle de Isparta yöremiz gül yetiştirmek için müsait iklime sahiptir. Yaz aylarında azami sıcaklık 38 C dereceyi geçmeyen ve kış aylarında ise 15 C derecenin altına düşmeyen, yıllık yağış ortalaması 500-600 mm olan nispi nem % 60-70 civarında olan geçit bölgelerinden hoşlanır. Yöremiz göller bölgesi olduğu için nispi nemde yeterlidir. Gülün Toprak İstekleri: Gül, toprak istekleri yönünden pek seçici değildir. Fakat, fazla killi-kireçli ve ağır topraklardan hoşlanmaz. Hafif kumlu-tınlı ve milli, süzek topraklardan hoşlanır. Gül ağaçcık tipi bir bitki olduğundan ve ömrüde uzun olduğu için toprak işleme gerektiği için ve yukarıda saydığımız topraklarda işlemeye uygun toprakları olduğundan, toprak işlemede zorluk çekilmez. Gül Bahçesi Tesisi: Gül bahçesi yön bakımından büyük önem taşımaz. Az meyilli ve düz arazilerde gül bahçesi tesis edilinebilir. Gül bahçesi tesis ederken önce toprak eylül-ekim aylarında 40-50 cm. derinlikte krizma edilir. Bu esnada yabancı otlar temizlenir. Gül tesis edeceğimiz arazide sıra araları 1,5-2 m. Mesafede ve 40-50 cm. derinlikte hendekler açılır. Hendeklerin genişliği 40-50 cm.olmalıdır. Açılan hendekler arazi meyilli ise kuzey-güney istikametinde olmalıdır. Dikimden önce hendeğin alt kısmı, hendeğin üstünden çıkan üst toprakla 10-15 cm. kalınlığında doldurulur. Bu şekilde hazırlanmış hendeklere 6-7 yıllık gül bahçelerinden kesilen 100-150 cm. uzunluğundaki dalların önce kuruları ayıklanır. Dikim anında hendeklere dallar iki sıra halinde ve uç uca gelecek şekilde sıralanır. Dalların üzerleri yanmış ahır gübresi ve toprak karışımı ile 10-15 cm.kalınlığında kapatılır. Diğer kalan kısımlar toprakla doldurulur. Bir dekar gül bahçesi tesis etmek için 1000-1200 adet gül dalı kullanılır. Gül bahçesi ve dikim işleri güz mevsiminde yani kasım ve aralık aylarında yapılmalıdır. Gül Bahçesinde Yapılacak Bakım İşleri: Sonbaharda tesis edilen gül bahçerinde, ilkbahara gelindiğinde kaymak tabakası varsa tırmıklanır. Yabancı otlar temizlenir. Yeni çıkan filizlere zarar yapan toprak altı zararlılarına karşı mücadele yapılır. Yaz ayları boyunca sulamaya çapalamaya devam edilir. Verime yatmış gül bahçelerinde, erken ilkbaharda mart ve nisan aylarında budama yapılır. Budamada amaç kuru dallar temizlenir. Diğer dallarda ise 5-6 göz bırakılarak budama yapılmalıdır. Ayrıca daha bol ve kaliteli gül elde etmek için gül bahçesi ömrü boyunca, 7-8 yılda bir toprak seviyesinden dallar kesilir. Buna gençleştirme budaması denir. Ayrıca erken ilkbaharda, gül bahçelerine dk./150 kg. hesabiyle Kompoze gübre verilir. Gençleştirme budaması yapılan gül bahçelerinde ise dk./2-3 ton yanmış çiftlik gübresi verilmelidir. Gül bitkisinin ömrü ortalama 2 defa gençleştirme budaması yapıldığı takdirde 23-25 yıldır. Güllerde Hasat: Yağ güllerinde hasat işleri mayıs ayının ortasında başlar, 5-6 hafta sürer. Hasat sabah saat 03.00 ile 09.00 saatleri arasında yapılmalıdır. Hasat anında tak açmış olan çiçekler toplanmalıdır. Çuval veya sepetlere toplanır, bekletilmeden alım merkezlerine sevkedilmelidir. Bakımlı gül bahçelerinde bir dekardan bir sezonda ortalama kurak şartlarda 500-600 kğ.Taban arazilerde sulanabiliyorsa bu rakam bir sezonda dekardan ortalama 900-1000 kğ.kadar gül çiçeği hasat edilinebilinir. Tarihçesi ve özellikleri hakkında bir kaç bilgide ben ekleyim itedim... inşallah işinize yarar...

http://www.biyologlar.com/rosa-dominica-ile-ilgili-elinde-kaynak-olan-varmi

Hipotez, Olgu ve Bilimin Doğası

Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına… Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için… Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder. www.evrimcalismagrubu.org  

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik. Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor. Klonlar Klon, tek hücreden üremiş hücreler topuluğudur. İlkel kardeşlerimiz bakteriler, sürekli klonlar oluştururlar. Bir bakteri hücresini bir tabak yiyeceğin üzerine koyarsak, hemen bölünüp iki hücre, bu iki hücre bölünüp dört hücre olur ve bu böyle sürüp gider, iki gün içinde bakteri kütlesi çıplak gözle görülebilir hale gelir. Bu kütle bir klondur; bir tek orijinal hücreden üremiş milyonlarca yavru hücreden oluşur. Bu klondan bir tek yeni hücre alıp yine bir tabak yiyeceğin üzerine yerleştirirsek, birincisinde olduğu gibi bir klon oluşana kadar bölünecektir. Klon oluşturmak bakteri için oldukça kolay bir iştir, çünkü bütün hücreler birbirinin aynıdır. Daha gelişmiş bir organizmadan klon yapmak çok daha karmaşıktır. Ama teorik olarak mümkündür. Yaratıkların her hücresinde aynı DNA her şeyiyle tam bir bireyi oluşturmak için gerekli bilgiyi taşıdığına göre, tamamen teorik planda; herhangi bir hayvandan bir hücre alıp onu bir kap besinin üzerine veya beslenebileceği başka bir ortama koysak ve tam bir hayvan organizmasını üretmesini sağlasak, aslının kusursuz bir kopyasını geliştirmek için gerekli bütün bilgi, o tek hücrenin DNA'sında vardır. Bu olasılık, özellikle de insanın klon yoluyla oluşturulabileceği düşüncesi, yani bir tek insan hücresinden geliştirilmiş her şeyi tamam bir insan yaratmak, popüler yazarların hayal gücünü harekete geçirdi. Böyle bir olasılık gerçekleşmekten son derece uzaktır. Diğer yandan bir tek hücrenin aslında tam bir bireyi ortaya çıkarabildiğini biliyoruz; döllenmiş yumurta, tam bir yetişkin varlık olduğu zaman bu gerçekleşiyor. Ama olan biten tek yönlü bir işleme benziyor. Canlı yaratıklar, kolay kolay hücrelerinden herhangi birinin döllenmiş yumurta gibi bölünmeye başlayıp kendi tıpkı kopyalarını oluşturmasını sağlayamazlar, Bizim hücrelerimiz kendi uzmanlaşmış durumları üzerine sıkı bir denetleme uygularlar. Örneğin deri hücreleri deri hücresi olarak kalırlar, tıpkısı tıpkısına ayrı bir birey olmak şöyle dursun, değişip kas hücresi olmaya bile yeltenmezler. Hücrelerimizin, çevrelerinin etkisiyle mi böyle değişmez oldukları tartışılabilir. Bir hücreyi komşularından ayırsak, belki beklenmeyen bir davranışa yönelecektir. Böyle bir deney kurbağa larvası hücreleriyle aşağıda anlattığımız gibi yapılmıştır: Önce, kurbağa yumurtalarındaki hücre çekirdekleri ve dolayısıyla DNA'ları tahrip edilmiş, sonra genç larvaların rasgele bazı hücrelerinden alınmış çekirdekler, DNA'sız kurbağa yumurtası hücrelerine yerleştirilmiştir. Kısa sürede yumurtalardan yeni larvalar, hatta bazen kurbağalar gelişmiştir. Yani larvalar bir tek larva hücresinden üremiş birer klondurlar. Benzer klon yapma deneyleri, fareler ve başka hayvanlar üzerinde de yapılmış, ama başarıya ulaşılamamıştır. Klon başarısızlık, hücre karakterindeki dengeliliğini ortaya çıkartıyor. Her hücrenin DNA'sında bulunan, başka bir hücre olabilme potansiyeline karşın, hücreler bu potansiyel avantajı kullanmazlar. Genlerinin çoğu durdurulmuştur. embriyogenezi derinliğine araştırabilmek için genlerin ifade edilip edilmemesini neyin belirlediğini öğrenmeliyiz. Genlerin Başlatma - Durdurma Mekanizmasının Özelliği Hücreleri farklılaştıran gen çalıştırma mekanizması, insanın aklına keskin bir soru getiren ilginç bir bilinmeyendir. Genler nasıl harekete geçirilip durdurulabilirler? Daha önce de söylediğimiz gibi en açık yanıtlar en basit sistemlerden gelir. Yine, o alelade bakterilerin davranışlarına bakalım. Bazı hücreleri taze bir büyüme solüsyonu içine atıp, şeker olarak örneğin glukoz ekleyelim. Hücreler bölünmeye başlarlar ve sayılan hızla yükselir. Bu, glukoz tüketilene kadar sürer. Sonra büyüme durur. Aynı gözlemi, yine benzer bir hücre grubuyla bu sefer değişik bir şekerle, diyelim galaktozla deneyelim. Hücrelerin sayılan artar, ama glukozla olduğundan daha yavaş artar ve galaktoz bitince büyüme durur. Glukozun, daha hızlı tüketildiği için galaktozdan daha iyi bir besin olduğu sonucuna varırız. Ama her iki şeker de bakteri tarafından kullanılmıştır. Hiçbirini ziyan etmiyor bakteriler. Şimdi deneyi hem glukoz hem galaktoz kullanarak yineleyelim, ilginç birşey olur, glukozun tümü tüketilene kadar nüfus hızla artar. Sonra yirmi dakika kadar artış durur. Ve bu sürenin sonunda yeniden başlayıp galaktoz tüketilene kadar sürer. Hücrelerin glukozu yeğledikleri açıkça görülüyor. Ancak, yirmi dakikalık bir aradan sonra galaktozu kullanabilme yeteneğini kazanıyorlar. Bunun genleri harekete geçirmek ve durdurmakla ne ilgisi var? Bu basit sistemin analizi, 1950'lerin sonuna doğru, Fransız bilim adamları François Jacob ve Jacques Monod'ya gen ifadesinin denetlenmesi üzerine parlak bir ilham verdi. Şimdi bakterilerde mekanizmanın nasıl çalıştırılabildiği kanıtlanmış durumda; bu bizim gibi daha karmaşık organizmalarda da geçerlidir belki ama burası henüz kesinlikle bilinmiyor. Bakteriler, alışık olmadıkları bol şekerle uğraşırken içlerinde ne olup bitiyordu? Bakteri hücrelerinin glukoz kullanacak makineleri olduğu açıkça görülüyor, çünkü bu şeker verilir verilmez yemeye başladılar. Bu makine iki proteinden oluşuyor: Şekerin hücreye girmesini sağlayan bir enzim ve içeri girince onu hazmedecek bir enzim. İki enzim; iki gen. Bu makinenin galaktoz kullanan karşılığı henüz hücrede yok; veya en azından iki şekerin bulunduğu solüsyonda büyüme başladığı zaman yoktu. Glukoz tükenince galaktozu kullanacak makine kuruluyor. Glukozun bulunmaması, galaktoz kullanan makinenin geliştirilmesi için tetiği çekiyor. Glukoz, galaktozu kullanmak için gerekli enzimleri denetleyen genlerin ifadesini önlüyordu ve bastırıyordu. Glukoz bitince baskının etkisi kayboldu ve böylece galaktoz genleri, mesajcı RNA'ları yapmaya başlayıp proteine çevirebildiler. Bütün bunların bakteri için anlamını düşünün. Eli altındaki en iyi besini yiyor ve besin, bakteri içinde enerjinin başka besini kullanmak için enzimler yapılarak ziyan edilmemesini de ayarlıyor, iyi besin tükenince el altında yalnızca daha zayıf besin kalıyor. O zaman bakteri işe girişip bu besini kullanabilmesi için gerekli enzimleri yapıyor. Bakteriler Kendilerine Verilen Şeyleri Üretmezler Bahçenizde kendi kullanımınız için sebze yetiştiriyor olsanız ve birileri size düzenli olarak bu sebzelerden vermeye başlasa, belki de kendiniz yetiştirmekten vazgeçerdiniz. Bakteriler de buna benzer bir şey yaparlar. Kendi gereksindikleri amino asitleri yapabilirler (protein zincirindeki yirmi temel halka). Amino asitler olmadan, doğal olarak protein yapamayacaklardı ve üremeleri duracaktı. Eğer bakterilere hazır yapılmış amino asitler verirsek, içinde yaşadıkları solüsyona amino asitler eklersek, bakteriler kendi amino asitlerini yapmayı durdururlar. Amino asit armağanımız hücrelerin kendilerininkini yaparak enerji harcamalarını gereksizleştirir. Burada bir hayli enerji söz konusudur. Yirmi amino asidin her birini yapmak birkaç enzim gerektirir. Her enzim yapılışında, bir gen harekete geçirilmeli, mesajcı RNA yapılmalı, enzim proteinlerin yapıldığı ribosomlara gönderilmelidir. Genin böylece durdurulması yapı enerjisinde önemli bir tasarruf demektir. Enerji korumak, bütün canlı hücrelerde olduğu gibi, bakterinin de yaşamını sürdürebilmesi için son derece önemlidir. Gen İfadesinin Denetlenmesi İçin Şema İşte bakteriler üzerine çalışmalardan elde edilmiş gen ifadesinin genel resmi; 1. Genler harekete geçirilip durdurulabilirler. Bu, represör denilen protein moleküller tarafından yapılır. 2. Represörler, kendilerini genlerin ucuna bağlarlar. Böylece geni mesajcı RNA'ya geçirecek olan enzimin işini yapmasını engellerler. 3. Bu, genin yapmakla yükümlü olduğu proteinin yapılmasının istenmediği anlamındadır. 4. Represörler iki nedenle DNA'dan serbest bırakılabilirler: a) Glukoz gibi bir şekerin yokluğuyla (demek ki glukoz gene bağlanması için represöre yardım ediyor.) b) Bir amino asidin yokluğuyla. Şimdi daha önce anlattığımız glukoz-galaktoz. deneyinin açıklamasını görebiliriz. Glukoz bakterilerin eli altında bulunduğu sürece, onu yiyecek ve bu da galaktoz genleri represörünün galaktozu kapalı tutmasına yardım edecektir. Glukoz bitince, galaktoz geni represörleri işlevlerini yerine getirmezler, böylece gerekli enzimler yapılabilir ve galaktoz kullanılabilir. Aynı şekilde, bakterilere amino asitler verildiği zaman bu amino asitler, bütün amino asit yapmaya yarayan genlerin represörlerine yardımcı olup, genleri kapattırabilirler. Bakteri içinde işleri düzenleyen bu güzel sistemin insanlar dahil daha yüksek canlı biçimlerinde de işlediği görülüyor. Bu sistem genlerin ifadesini denetlemek için önemli bir yoldur. Ama İnsanlar Bakteri Değildir Bakteri hücreleri ile bizim gibi organizmaları daha karmaşık ve uzmanlaşmış hücrelerin kullandıkları yöntemler arasında, belirgin bir fark vardır. Bakteri hücreleri; çabuk tepki veren, esnek, çevredeki ciddî değişikliklere hızla kendini uydurabilen bir yaşam sürenler. Bu biraz, vahşî ormanlarda savaşarak varlığını sürdürmeye benzer; bir bakteri kendi başının çaresine bakar. Diğer yandan uzmanlaşmış hücrelerin yaşam biçimleri kalıcı olarak belirlenmiştir. Ömür boyu; "deri hücresi" deri hücresi olarak, "kas hücresi" kas hücresi olarak, "beyin hücresi" de beyin hücresi olarak kalır. Her hücre çeşidinde deri mi, kas mı, yoksa beyin mi olduğunu belirleyen bir kaç gen işletilir ve diğer bütün genler (diyelim ciğer, kemik ya da böbrek olmak için) durdurulur ve hücre neyse sonuna kadar da o olarak kalır. Bakteriler, buna göre genleri hızla ve kolayca harekete geçirip durdurabilecek araçlar gereksinirler. Uzmanlaşmış hücrelerde çoğu genler sürekli durdurulmuş, birkaçı da sürekli işletilir durumdadır. Bakterinin bu kolay çalıştırma-durdurma mekanizması, uzmanlaşmış hücrelerde kullanılana benzemeyebilir. Ne var ki şu anda elimizde en iyi anladığımız model, bakteri sistemidir. Hiç olmazsa teorik olarak, temelli durdurmayı veya çalıştırmayı sağlamak için kullanılmasını düşünmek zor değil. Biçimin Oluşumu Embriyogenezde temel problem olarak gen ifadesine bakıyorduk. Oysa ilk göze çarpan yan, biçimin oluşumu; heykel dökme sürecindeki hüner, yumurtadan bebeğe dönüşümün akıl almaz mimarî başarısı. Örneğin, bizi oluşturan tüm özel doku ve organlar, bir iskelete asılmıştır. Kemik, bütün diğer yapının yanı sıra embriyoda gelişir. Sıradan görünüşlü hücrelerden başlayarak, içinde kalsiyumun sert bir yapı oluşturmak için biriktirildiği yeni bir doku belirir. Bu doku sert ve olağanüstü güçlüdür, bir organizmanın ağırlığını ömür boyu taşıyabilecek nitelikte yapılmıştır. Kırıldığı zaman da yeniden kendini onarabilir. Böylesine bir yapısal biçimlendirme süreci nasıl ortaya çıkıyor? Bu anlaşılması zor bir problem ve yine bir model sisteme başvurmamız gerek. Bakteriler, insanlar gibi virüs enfeksiyonuna karşı dirençsizdirler. Her bakteri virüsünün (buna bakteri yiyen anlamında bakteriofaj denir) kutu gibi içinde DNA'nın saklandığı bir kafası ve enjektör iğnesi gibi kullandığı bir kuyruğu bu kuyruğun ucunda da bakterinin yüzeyini yakalayan örümcek gibi bacakları vardır. Sonra virüs kendisi bir enjektörmüşçesine -ki aslında öyledir de- DNA'sını kuyruğundan bakteriye geçirir. Virüsün DNA'sı bakteriye girer girmez idareyi ele alır.Bakterinin protein yapan makinesine, bundan böyle bakteri proteini yapılmayacağını belirten bir sinyal gider. Ribosomlar ve transfer RNA makinesi, virüsün kendi DNA'sından üretilen mesajcı RNA'lar tarafından çabucak kendi yararına işleyecek hale dönüştürülür. Kısa bir süre sonra, bakteri fabrikası virüs proteini parçalan yapmaya başlar. Yeni kafalar, kuyruklar ve bacaklar yapılır. Her şey virüsün DNA'sı tarafından yönetilir. Bundan kısa bir süre sonra, bakterinin içinde virüs kafalarının biriktiği görülür, yeni yapılmış virüs DNA'ları bunların içine yerleştirilir ve tamamlanmış virüsler ortaya çıkar. Her bakteri hücresinin içinde, yüz kadar virüs onu sıkı sıkıya dolduracak biçimde birikir. Zamanı gelince, virüsler bakterinin zarını yarıp, onu. öldüren bir enzim salgılayarak kaçarlar. Bütün bu vahşî yıkım yarım saatten az bir zamanda gerçekleşir. Bu olguda biçimin oluşumunun basit bir modelini görebiliriz. Ele geçirilen fabrikada, virüsün değişik parçaları, kendi DNA'sının verdiği talimatlarla, ufak bir bina yapar gibi bir araya getirilir. Bunun dikkatle programlanmış bir zaman aralığında, ortaklaşa gerçekleştirilen bir işlem olduğu görülebiliyor. Öyle ki genler virüsün değişik parçalarının yapımına bir sırayı izleyerek başlanmasını denetliyorlar. Doğru parçalar doğru sırada yapılıyorsa, belirli biçimin kendiliğinden bir anda oluşması çok güçlü bir olasılık gibi görünüyor. Bu modelin çok daha karmaşık, gerçek embriyogenez olgusuna ne kadar ışık tutacağı belirsiz. Ama modelin yararlılığı, bakteriden çok daha basit bir organizma olan virüsün gen kompozisyonu üzerine oldukça tam bir bilgi sahibi olmamızda yatıyor. Ayrıca, olayların sırasını denetleyip isteğimize göre ayarlayabiliyoruz ve çok karmaşık olmayan üç boyutlu bir biçimin oluşumunu bir elektron mikroskobuyla kolayca izleyebiliyoruz. Hücre Bölünmesini Başlatmak ve Durdurmak Embriyo hızla bölünen bir hücre kütlesidir. Bu korkunç hızlı büyüme işi, doğumdan sonra çocukluk boyunca gittikçe yavaşlayarak yetişkinliğe erişene kadar sürer. Yetişkinlikte hücre bölünmesi durur. Bir organizmanın bütününde; her organın, her dokunun hücreleri, büyümenin tamamlanmasına çok titiz ve dikkatli bir işbirliğiyle katılırlar. Hücreler büyümeyi ne zaman durduracaklarını nereden biliyorlar? Oluşumuna katkıda bulundukları organların tam büyüklüğe eriştiğini onlara söyleyen ne? Bu olgu, normal hücrelerin bedenin dışındaki davranışında da gözlemlenebilir. Birkaç normal hücre, bir cam kabın ortasına bırakıldıklarında, hemen yanlarındaki komşu hücrelerle sürekli ilişkili olarak bölünmeye başlarlar ve en uçtaki hücreler kabın kenarlarına dokununcaya kadar, kabın yüzeyini tek hücre kalınlığında bir tabaka halinde örterler. Kenara ulaşılınca bütün hücreler bölünmeyi durdurur. Bölünmeyi durduran sinyalin özelliği nedir? Bunun cevabını bilmiyoruz, ama araştırmayı sürdürüyoruz. Bilmecenin en azından bir bölümüne cevap getirebilecek, iddialı bir model sistemimiz var. Bu modelin uygulanabilme kolaylığına hayranım, üzerine yıllar harcadığım için ona karşı özel bir düşkünlüğüm var. Regenerasyon: Yenilenme Bir kurbağa yavrusunun kuyruğunu kesip onu yeniden suya bıraksam, yara çabucak iyileşir ve ondan sonraki üç haftada gerçekten ilginç olaylar olur: Tam ve mükemmel bir kuyruk. Bir salamenderin de buna benzer biçimde ayağını koparsam yerine yenisini yapar. Deniz yıldızı ve ıstakoz da öyle. Bu olguya regenerasyon: yenilenme denir. Bunun kendi bedenimizde de örneği vardır. Kopunca kollarımızı, bacaklarımızı yerine getiremeyiz ama karaciğerimiz bir kazada zarar görse, bir parçasının ameliyatla alınması gerekse karaciğer bir iki gün içinde eski büyüklüğüne erişir. Bu özel durumun, laboratuvarda benzerini yapabiliriz. Ameliyatla bir farenin karaciğerinin üçte ikisini alabilirim. Fare anesteziden birkaç dakikada ayılır, bir iki saat içinde yemeye başlar ve üç gün sonra karaciğerinin eksik üçte ikisi, normal ve sağlıklı olarak yerine gelmiştir; bir karaciğerin yapması gereken her şeyi yapmaktadır. Bütün bu olaylarda iki dramatik nokta görülür: Birincisi; hayvanın bir parçasının ayrılması, eskiden her şeyin sakin olduğu bu bölgede çok hızlı bir hücre bölünmesine yol açar. İkincisi; bu parça yerine gelince hücre bölünmesi durur. Şaşırtıcı olan; bu bölgedeki hücrelerin bölünmeye gerek olduğunu iş bitince durmak gerektiğini bilmeleridir! Bu hücrelerin içinde, onlara bölünmeye başlamalarını ve eksik organı tamamlamak için yeterince bölündükleri zaman durmalarım söyleyen nedir? Bir zamanlar bunun cevabım bulmak için, kopan parçanın yerine yeni hücreler üreten bir karaciğerden parçalar alıp, bunları normal, bölünmeyen karaciğer hücrelerine karıştırıyordum. Kopanı yerine getirmek için üreyen hücrelere, daha çok hücre yapmalarını söyleyen bir kimyasal sinyal varsa bunun normal hücreleri de etkileyip, onların daha hızlı protein yapmalarını sağlayacağını düşünüyordum. Diğer yandan, eğer normal hücreler yenileme hücrelerini yavaşlatacak bir kimyasal mesajı içeriyorlarsa, bunu da anlayabilecektim. İyi bir fikir, iyi bir model ama deneyler sonuçsuz kaldı. Sistem henüz çok karmaşık. Olanları bir türlü kavrayamıyoruz. Yaşamın kanunlarını açığa çıkartmakta üst üste sağlanan başarılardan söz eden öykümüzde; bir deneysel başarısızlığın yeri yok gibi gelebilir. Bence tersine; bu öykümüzün gerçekçiliğini arttırır. Aslında, şimdiye kadar bilim adamlarını yaptıkları deneylerin çoğu başarısızlıkla sonuçlanmıştır. Başarısızlıklarımızdan ders alıp, bize sonunda iyi bir ilham sağlayacak daha iyi deneyler tasarlayabiliriz. Meslektaşım Dr. Nancy Bucher, yenilenme olayı üzerine bilgiye belki de diğer bilim adamlarından çok daha fazla katkıda bulunmuştur. Önemli çalışmalarından bazıları, farelerden yapışık ikizler yapmayı içeriyordu İki fareyi iyi bir ortak dolaşımları olacak biçimde birbirine dikiyordu; kan ikisinin arasında kolayca dolaşıyordu. Sonra, farelerden birinin karaciğerinin üçte ikisini alıyor ve bu ciğerin eksik kısmı yerine gelene kadar, diğer farenin karaciğerinin de büyüyüp büyümediğine bakıyordu. Büyüdü! Bu; yenilenme yapan karaciğerin, kan dolaşımına bir şey kattığı ve bunun diğer farenin karaciğerine ulaşınca, onun da büyümesine neden olduğu sonucunu gösterdi. Nancy Bucher ve bir çok başka bilim insanları, bu maddenin ne olabileceğini anlamaya çalıştılar; ama henüz bir başarı elde edilmiş değil. Embriyogenez Üzerine Bilinmeyenler Bilinenlerden Çoktur Yinelersek, embriyogenez konusunda bazı ilginç şeyler üzerinde durduk. Bir arada kalabilecek yapışkanlığı elde etmek için bölünen hücrelerin özel yeteneklerinden; bir organizma oluşturmak için gerekli olan uzmanlaşma konusundan; biçimin oluşumundan ve son olarak uzun embriyogenez, sürecine dur emri veren, çocukluk ve yetişkinliğe ulaşma işleminin bittiğini bildiren sinyalden söz ettik. Bunlar son derece karışık olguların yalnızca bir iki önemli noktası. Cahilliğimiz hâlâ bildiklerimizi kat kat geçiyor. Bu hiç de şaşırtıcı değil. embriyogenez, bütün yeteneklerimizi kullanmamızı gerektiren bir probleme benziyor ve biyoloji biliminin temelinde yatıyor. Biraz heyecanlı, biraz da kışkırtıcı bir konu; çünkü, ilk bakışta çözülemeyecek hiçbir zor yanı yokmuş gibi görünüyor. Kısa bir süre sonra, daha önceki bölümlerde anlattığımız yaşamın evrensel kanunlarını kavradığımız gibi, embriyogenezi de anlayabileceğimize inanıyorum. Embriyogenezin anlamadığımız yanları, kanserin anlamadığımız yanlarına çok benziyor. Gerçekte, bazı araştırmacılar, kanserin açıklamasının, embriyogenezin anlaşılmasını gerektirdiğini düşünüyorlar. Kanser, bazı bakımlardan insanın embriyogenezindeki o çok üstün denetleme yeteneğini yitirdiği zaman ortaya çıkıyor gibi görünüyor. Örneğin, kanser hücrelerinin başıbozuk davranışları, hücre yapışkanlığının yok olmasıyla ilgili olabilir. Şimdi bu konuyu daha yakından incelemeliyiz.

http://www.biyologlar.com/embriyogenez

Tıbbi Atıklara Çözüm

Mikro dalgalar, buhar, sıcak hava ve gaz yıkayıcılar biyomedikal artıkları temizlemektedir. Çevre Koruma Kurumu'na göre Amerika Birleşik Devletleri'ndeki hastane ve klinikler her yıl 600.000 ila bir milyon ton atık üretmektedir ve bunun yüzde 15 kadarı potansiyel bir enfeksiyon tehlikesi içermektedir. Uzun yıllar boyunca, hastaneler tüm patojenlerin yok edilmesini sağlamak üzere kontamine şırıngalar, iğneler, kağıt, plastik, cam, bez ve insan dokularını ya sahada yakmış, ya da yakılmak üzere kendi alanlarının dışına göndermiştir. 1990 Tarihli Temiz Hava kanunu tarafından öngörülen - ancak üç sene önce yürürlüğe giren - tıbbi atık yakma emisyonlarına ilişkin yönetmelikler bu uygulamanın ekonomisini değiştirmiştir. ABD hastaneleri, anılan yönetmeliklerin şartlarını karşılamak üzere çöp fırınlarını, hidrojen klorit, sülfür dioksit, nitrojen oksit ve ağır metallerden kurşun, kadmiyum ve civanın arındırılmasını veya nötrleştirilmesini sağlayan pahalı gaz yıkayıcıları ile donatmak zorunda kalmıştır. Hastane ve tıp merkezlerinin büyük çoğunluğu, sahadaki çöp fırınlarının, başta mikro dalga sistemleri veya buhar otoklavları olmak üzere, alternatif atık arıtma teknolojileri ile değiştirilmesinin veya atıkların dezenfeksiyon teknolojileri ile donatılmış olan arıtma şirketlerine gönderilmesinin daha ekonomik olduğunu tespit etmişlerdir. West Caldwell, N.J.'deki Sanitec International Holding, alternatiflerin tıbbi atık çöp fırınlarında sebebiyet verdiği engellemeyi göstermektedir. Ticareti geliştirme müdürü Mark Taitz "Mikro dalga dezenfeksiyon sistemlerimizin yarısını hastanelere ve yarısını da atık arıtma firmalarına satmaktayız" demektedir. Sanitec dezenfeksiyon sistemi tüm hava şartlarına karşı dayanıklı bir çelik muhafaza içinde bulunmaktadır ve hastanenin elektrik ve su sistemlerine bağlıdır. Hastane çalışanları, toplanan atığı el arabaları ile otomasyonlu kaldırma ve yükleme sistemine getirmekte ve bu sistem el arabasını kaldırarak iç besleme hunisine boşaltmaktadır. Daha sonra huni kapatılarak parçalayıcı çalıştırılmaktadır. Parçalama işlemi atık hacmini yüzde 80 indirgemekte ve aynı oranda önemli olarak daha düşük sıcaklıklarda etkin şekilde arındırılabilecek daha düzenli bir atık akışı sağlayarak, sistemin topyekün güç tüketimi ile birlikte zararlı hava emisyonlarının serbest bırakılma potansiyelini asgari düzeye getirmektedir. PARÇALAMA İLE İLGİLİ ZORLUKLAR Tıbbi atıkların tanımı itibariyle heterojen bir karışım olması nedeniyle, tıbbi atık için parçalayıcı mekanizmasının tasarlanması lastik veya ağaç kütüklerini parçalayan bir mekanizmaya kıyasla daha zordur. Taintz "Sanitec sisteminin yumuşak bez örtüleri, önlük ve bandajları, kırılgan cam, plastik şırıngalar ve sert çelik iğne, bisturi ve kenetleri parçalamak zorundadır" açıklamasını yapmaktadır. "Önceleri başka imalatçılar tarafından imal edilen parçalayıcılara güvenmekteydik, ancak geçen sene tescilli bir parçalayıcıyı piyasaya sürdük. Bu, düzenlenmiş her tip hastane atığını, sıkı toleranslı bir elek içinden bir sonraki aşamaya geçmesini sağlamak üzere öğüten dişlilere sahip iki döner şafttan oluşmaktadır." Bir fan ile hava bir dizi filtre içinden, iç besleme hunisi üzerinden çekilmektedir. Yüksek yeterlilikte bir partiküllü hava veya HEPA ile filtrelenmekte ve bir karbon filtresi ile işlem sırasında koku kontrolü sağlanmakta ve zararlı emisyonların kaçması engellenmektedir. Paslanmaz çelik helezon konveyör ile parçalanmış atık, atığın nemlendirilmesi amacıyla saatte yaklaşık 8 galon suyu kullanan bir elektrikli buhar üretecinin içinden geçirilmektedir. Nemlendirilen atık daha sonra, Reggio Emilia, İtalya'da bulunan Alter tarafından imal edilen yarım düzine 1.400 watt mikro dalga birimi dizisinden geçmektedir. Mikro dalgalar, atık partikülleri içindeki su moleküllerini harekete geçirerek bir sürtünme yaratmakta ve atığın sıcaklığının 25 dakika süresince 205 ila 212 ¡F'ye yükseltilmesini sağlamaktadır. Yüksek sıcaklık ve rezidans süresi kombinasyonu patojenlerin imha edilmesi için yeterli olup bu işlem, hastane dezenfeksiyon sistemlerinin kontrolünde kanıtlanmış tekniklerin kullanıldığı düzenli nokta kontrolleri ile doğrulanmıştır. Taitz "3 m dahil olmak üzere şirketler tarafından yapılan, Bacillus subtilis bakteriyel sporları bulunan tüpler içeren küçük zarfları, zarfların buhar ve mikro dalga aşamalarından geçmesini sağlamak üzere, parçalayıcının mansabında olan bir besleme portundan sisteme besliyoruz." ifadesinde bulunmuştur. "Zarfları çıkarıp, tüpleri bakteryal büyüme açısından kontrol ediyoruz. Bakteryal sporların öldürülmesi hepatit veya tüberküloz gibi patojenlere göre daha zor olduğundan, herhangi bir bakteryal büyüme tespit edilmediğinde, bu komple bir patojen imhası anlamına gelmektedir." Belediye katı atık programındaki nihai konumuna bırakılmadan önce, ikinci bir helezoni konveyör ile arıtılan atık Sanitec biriminden alınarak standart bir atık kompaktörü veya bir atık kabına yerleştirilmektedir. İsteğe bağlı bir granülatör ile hastaneye atık hacmini daha da indirgeme imkanı sağlanmaktadır. Sanitec işleminin tamamı, atığın boşatılmadan önce dezenfeksiyonun tamamlanmasını sağlamak üzere rezidans süresi ve sıcaklık parametrelerini denetleyen bir bilgisayar programı ile donatılmış bir Bradley mikro işlemcisi tarafından denetlenmektedir. MERI’NİN KURULMASI Madison Wis'de bulunan Wisconsin Üniversitesi Hastane ve Klinikleri, Meteriter Hastanesi, Methodist Hastanesi ve St. Mary Hastanesi Tıp Merkezi' olmak üzere dört hastaneden oluşan bir grup, maliyetleri indirgemek amacıyla ortak bir tıbbi atık işlem tesisi oluşturmak üzere 1986 yılında güç birliği yapmışlardır. Son teknoloji çöp fırını ile donatılmış olan tesisin işletilmesi için hastaneler Madison Energy Recovery Inc. Şirketini (MERI) kurmuşlardır. 1994 yaşına geldiğinde, daha sıkı çevre yönetmelikleri çöp fırınının, maliyeti 500,000 Doları aşması muhtemel olan yeni kirlilik kontrol ekipmanı ile donatılması anlamına gelmiştir. Seçenekleri inceledikten sonra, MERI kurulu Sanitec dezenfeksiyon sistemini seçmiştir. MERI genel müdürü John Crha şu ifadede bulunmuştur "Sanitec sisteminin oldukça sessiz, temiz ve atık dezenfeksiyonu açısından oldukça yeterli olduğunu gördük." Sağlık bakım tesislerinin büyük çoğunluğu buna katılmaktadır ve günümüzde MERİ Sanitec sistemi, Janesville'deki Mercy Sağlık Sistemleri ve Fond du Lac'daki St. Agnes Hastanesi dahil olmak üzere eyalet çapında 12 ek hastane ve klinik tarafından üretilen, düzenlenmiş tıbbi atığın yılda 1,5 milyon libreden daha fazlasını arındırmaktadır. Her gün, özel olarak tahsis edilmiş olan MERI kamyonları 250 konumdan kırmızı torbalar veya plastik kaplar içinde paketlenmiş atıklar ile dolu plastik el arabalarını toplamaktadır. El arabalarının Sanitec sistemine boşaltılmasından sonra, hastanelere geri gönderilmeden önce bu el arabaları yıkanıp, temizlenerek dezenfekte edilmektedir Her el arabası, ilgili hastanenin faturalandırılmasında da kullanılan, işaretler ile işaretlenmiştir. İşlenmiş atıklar belediye katı atık depolama tesislerine gönderilmektedir. GEZİCİ TESİSLER Atığın bir dezenfeksiyon sahasına taşınması yerine, Charlotter, N C'de bulunan N.C SafeWest Inc. Şirketi, dört adet kamyon montajlı mobil birim ile Sanitec İşlemini kendi eyaleti ve Virginia'da hastanelere getirmektedir. Safe Waste'in Sanitec kamyonları Charlotte'daki Carolina Tıp Merkezi ve Fairfax, Va'daki Fairfax hastanesi dahil olmak üzere yaklaşık olarak 40 hastanenin atıklarını toplamakta ve her bir hastanenin kendi su ve güç bağlantılarını kullanarak bunları sahada işleme tabi tutmaktadır. Şirket doktor muayenehaneleri, taşra klinikleri, laboratuvarlar ve veteriner dahil olmak üzere 400'ü aşkın daha küçük tıbbi tesisin atığının arındırılmasında daha küçük kamyonetleri kullanmaktadır. Toplam olarak SafeWaste yılda 10 milyon libre potansiyel tehlikeli atığı arındırmaktadır. Sanitec hedefini, mikro dalga dezenfeksiyon sistemlerinin hastanelere ve atık arıtma şirketlerine satılmasına ilişkin olan geleneksel uygulamasının ötesinde belirlemiştir. Taitz, "Şimdi bizler Florence, Ky'deki Kentucky Sanitec ve Honolulu'daki Hawaii Sanitec gibi ortak girişimlerin kurulması ile kendi servis şirketlerimizi kurma konusunda odaklanmaktayız." diyerek söyle devam etmektedir: "Biz ortak girişime ekipmanlar temin ediyoruz ve gelirlere iştirak ediyoruz böylece, son kullanıcının sterilizasyon ekipmanına erişimini daha da genişletiyoruz. Tüm tıbbi atık üreticileri için gelecekte ulusal çapta bir arıtma yaratmayı ümit ediyoruz." Taitz ayrıca, Amerika Birleşik Devleti dışında da Sanitec sistemi için parlak bir gelecek görmektedir. "En büyük satış artışımız Brezilya, Japonya, Kore, Suudi Arabistan, Birleşik Kraliyet, Filipinler ve Kuveyt dahil olmak üzere uluslararası pazardadır." Hastane atığını arındırma sorunu sınır tanımamaktadır. Merkezi Valbonne'de bulunan Fransız Çevre ve Enerji Kontrol Kurumunun tıbbi atık departmanın sorumlu mühendisi olan Didier Gabarda Oliva'ya göre, 3,400 Fransız hastanesi ve kliniği yılda 700,000 metrik ton tıbbi atık üretmektedir. Fransa'da yaklaşık olarak 140,000 metrik ton kontamine hastane atığı yakılmaktadır ve ABD'de olduğu gibi burada da ağır metal partiküller ve bunların türevlerinin bir sağlık tehlikesi oluşturduğu yönünde haklı bir çevre endişesi mevcuttur. Yakma tesislerinin genellikle uzakta olması nedeniyle, biyomedikal atıkların yakılması Fransız hastaneleri açısından daha karmaşık bir işlemdir. Ülkenin tümünde sadece yaklaşık 50 hastanede yakma tesisleri işletilmekte ve buna ilaveten potansiyel olarak enfeksiyon riskli tıbbi atıkları yakma konusunda yetkili 24 adet saha dışı tesis bulunmaktadır. Burgundy, Franche-Comte, Picardy ve Poitou-Charentes gibi komple bölgelerin atıklarının yakılmak üzere önemli bir mesafeye sevk edilmesi gerekmektedir. Bu nedenlerle, Fransız şirketleri biyomedikal atıkların arındırılması için yakma içermeyen, özel teknikler geliştirmektedir. Oliva, "Söz konusu olan atığın mikrobiyal kontaminasyonun indirgenmesi ve fizyolojik nedenler ve emniyet unsurları için görünümünün değiştirilmesi ile ilgilidir." şeklinde açıklama yapmaktadır. Arıtılan atıklar mevcut atık depolama tesislerine ve ev atıklarını arıtan yakma tesislerine gönderilmektedir. PATOJENLERİN BUHARLA ARINDIRILMASI Fransız Sağlık ve Çevre Bakanlıkları potansiyel enfeksiyon riskli atıkların arındırılması konusunda, merkezi Roubaix'de bulunan Ecodas tarafından geliştirilen bir buhar sistemi de dahil olmak üzere çeşitli yakma içermeyen işlemi onaylamıştır. Oliva'ya göre, bu şirket alternatif biyomedikal atık arındırma işlemler konusunda lider sağlayıcıdır. Ecodas, tekstil endüstrisi için buharlı otoklavlar imalatına ilişkin 20 yıllık deneyimini, bir tıbbi atık arıtma sisteminin tasarımında kullanmıştır. Ecodas'ın idari müdürü Jaafar Squali, "Yenilik, bir yüksek kuvvetli öğütücünün güçlü bir sterilizör ile birleştirilmesinde yatmaktadır." ifadesini kullanmıştır. Ecodas arıtmanın birinci aşaması, kontamine atığın 20 döner bıçağa sahip bir öğütücüyü besleyen, hava geçirmez şekilde yalıtımlı bir bölmeye yüklenmesi ile başlatılmaktadır. Bu bıçaklar, bazen yanlışlıkla diğer klinik atıkları ile birlikte atılan paslanmaz çelik cerrahi cihazlarının parçalanmasını sağlayabilecek mukavemette bir alaşımdan imal edilmektedir. Öğütücü, sıkışmanın engellenmesi için belli aralıklarla rotasyonunu ters yöne çevirmektedir. Atık yükleri, otoklavı besleyen bir yükleme bölmesine boşaltılmaktadır. Otoklav içinde atık, atığın sterilizasyonu için 10 dakika süresince 280¡F sıcaklık ve beher inç için 55 libre basınçta buhara tabi tutulmaktadır. Sıcaklığın ayarlanması için atık içinde bulunan, otoklav merkezindeki bir sıcaklık mili tarafından bilgisayar kontrol sistemine sinyaller gönderilmektedir. Dezenfeksiyon tamamlandığında operatörler, işlenmiş atığın bir konteynıra boşaltılması için otoklavın alt kapağını açmaktadırlar. Tek bir yükün işlenmesi için gerekli olan işlem süresi yaklaşık bir saattir. Çeşitli atık hacimleri ve tesisat kurulumu için gerekli alana uyum sağlamak üzere Ecodas atık arıtma makinelerinin üç farklı sürümünü tasarlamıştır. TDS 300, 10 feet uzunluğunda olup saatte 35 ila 55 libre, TDS 1000 saatte 110 libre ve TDS 2000 ise saatte 132 libre işlem kapasitesine sahip bulunmaktadır. Fransa'da Ajaccio, Aurillac, Nevers ve Roubaix kamu hastaneleri atıklarını Ecodas otoklavları ile dezenfekte etmektedir. Danimarka Odense, İspanya Mayorka ve Macaristan Budapeşte'de bulunan hastanelerde aynı yöntemi kullanmaktadır. Ecodas sistemini kullanan arıtma şirketleri arasında Fransa'da Cosmolys ve Tecmed, Arjantin'de Tecsan, Brezilya'da Matmed ve Meksika'da Tremesa bulunmaktadır. SICAK HAVA SEÇENEĞİ En yeni klinik atık arıtma teknolojilerinden biri, parçalanmış hastane atıklarının dezenfekte edilmesinde sıcak havayı kullanmaktadır. Bu teknoloji, Dallas'tan KC MediWaste tarafından geliştirilerek pazarlanmaktadır. İlk MediWaste sistemi, geçen yaz, Teksas Laredo'da Sisters of Mercy Sağlık Sisteminde kurulmuştur. KC MediWaste şirket başkanı Keith Cox tarafından icat edilmiş olan kuru bir sterilizasyon sistemi ile Birleşik Kraliyet Reading'de bulunan Torftech Ltd.'nin ruhsatlı akışkan yataklı teknolojisini birleştirmektedir. Mercy Sağlık Sistemi yerel şebeke Merkezi ve Güney Batı Hizmetleri, yan kuruluşu Central Power & Light ve Palo Alto, Calif'de bulunan Elektrik Enerjisi Araştırma Kurumunun Sağlık Bakım Birimi tarafından sponsorluğu üstlenilen ortak bir projenin bölümü olarak Laredo hastanesinde kurulan ileri düzey, elektrik tabanlı teknolojilerden birini teşkil etmektedir. Bu teknolojiler, hastanelerin maliyetleri indirgemesine, işletme yeterliliklerini iyileştirmesine ve hasta hizmetlerini geliştirmesine yardımcı olacak şekilde tasarlanmıştır. Laredo tesisatının makina mühendisi ve proje mühendisi olan Sue Herbert, "İlk MediWaste sisteminin tasarlanmasında en zor olan husus, plastik atıklardan serbest bırakılabilecek olan uçucu organik bileşenleri engelleyecek kadar soğuk ancak atığın sterilizasyonu için yeterli sıcaklığa ulaştırılmasının sağlanması konusunda ortaya çıkmıştır." demiştir. "Hastane atık akışında bulunabilecek her şeyin numunelerini topladık ve en iyi ısı sıcaklığının tespit edilmesi için farklı plastik bileşenlerin flaş noktaları üzerinde çalışmalar yaptık." Mercy Sağlık Sistemi çalışanları MediWaste ünitesine atık malzemelerinin taşınmasında kapalı el arabaları kullanmaktadır. Her el arabası bir hidrolik kaldırma sistemi ile sistemin besleme hunisine boşaltılmaktadır. Dahili egzoz fanları, kokunun kontrol altında tutulması için MediWaste sistemi içinde ters basınç oluşturmaktadır. Birimin içinde ısıl işlemli paslanmaz çelikten mamul, yakın ara kilitlemeli dört şafttan oluşan bir parçalayıcı birimi bulunmaktadır. Parçalayıcı, atıkların işlemciye gitmeden önce öğütülmesini sağlamaktadır. Elektrikli rezistans ısıtıcıları ile 302¡F'ye ısıtılan hava sabit bıçaklı bir halka üzerinden yüksek hızla işlemci içine enjekte edilmektedir. Yer atığının işlemciye girmesi ile birlikte türbülanslı hava, siklonik bir karıştırma işlevi ve yüksek oranlarda ısı ve kütle transferi sağlayan bir akışkan yatak yaratmaktadır. Boşaltıma kapısının açılmasından önce, atık beş dakika kadar akışkanlı yatak içinde tutulmakta ve hacmin yüzde seksen oranında indirgenmesini sağlayan bir kompaktöre itilmektedir. Laredo hastanesi arındırılmış atığını bir konvansiyonel belediye atık depolama alanına göndermektedir. MediWaste sisteminden çıkan işlenmiş hava, atmosfere bırakılmadan önce üç aşamalı bir filtrasyondan geçmektedir. Önce iki fabrik ön filtre ile büyük partiküller ayrılmakta ve sonrasında yüksek yeterlikte partikül hava filtresi metal çerçeve içinde bulunan bir membran- ile daha küçük partiküller çıkarılmaktadır. Kömür filtreler ile hava akımındaki kokular giderilmektedir. Laredo'daki MediWaste sistemi, saatte 200 libreye kadar işlem yapabilecek kapasitededir ki, bu da günde üretilen 700 ila 800 libre arasındaki atığın arındırılması için fazlasıyla yeterlidir. Herbert, "Halen, saatte 1,000 libre malzeme dezenfekte edilebilecek bir üniteyi geliştirmekteyiz" demiştir. YAKMA İSTEĞİ Yakma alternatiflerinin popülerlik kazanıyor gibi görünmesine rağmen, klinik atıklarının çoğunun dezenfekte edilmesinde ve indirgenmesinde hala yakma kullanılmaktadır. Orlanda, FLA'daki Crawford Equipment and Engineering Co., saatte 20 ila 3,000 libre biyolojik tehlikeli atık işleme kapasitesine sahip tıbbi çöp fırınını tasarlayıp, pazarlamaktadır. Bu birimler, Temiz Hava Kanununun hükümlerinin karşılanmasını sağlamak üzere gaz yıkayıcılarla bağlantılı olacak şekilde tasarlanmaktadır. Crawford Equipment çöp fırınları tipik olarak doğal gaz ateşlidir ancak hali hazırda mevcut veya daha ekonomik olması halinde propan veya akaryakıt da kullanabilmektedir. Çöp fırınlarından her biri, yanmadan kaynaklanan yoğun sıcaklığa dayanacak şekilde refraktör kaplamalıdır. Hastane çalışanları atığı kırmızı torbalar veya plastik kaplar içinde ya el ile ya da hidrolik olarak, ana bölme kapısından yüklemektedir. Çalışanlar kapıyı kapatarak yakma işlemini başlatırlar. Önce, ana bölmeye paralel veya ana bölmenin altında bulunan ikincil bölme içindeki brülörler ateşlenir. Isı sonra, ana bölmenin sıcaklığının artırılması için refraktör malzeme üzerinden yayılır veya böylece artan oranda enerji tasarrufu sağlanır. Ana bölmede asgari 1.800¡F sıcaklık elde edildiğinde, atığın yakılması için bir sensör ana bölmenin brülörünü yakacaktır. Crawford Equipment Şirketi katı ve sıvı atık bertaraf sistemleri müdürü ve kimya mühendisi olan Luis Llorens "1.800¡ sıcaklık patojenlerini öldürüp, tüm organik atıkları oksidize ederek, bunları karbon dioksit ve su haline çevirmektedir" açıklamasını yapmaktadır. "Yanmadan kaynaklanan tüm duman ve kokular ikincil bölmeye aktarılmakta ve 1.800¡ ısı bunları yok edene kadar orada bir veya iki saniye tutulmaktadır." İkinci bölmeden gelen hava asitler ve kurşun, kadmiyum ve civa gibi ağır metallerden arındırılmak üzere, özel bir hava çıkışı üzerinden standart bir kirlilik kontrol sistemine yönlendirilmektedir. Sistem, baca gazları ile etkileşime girerek asit gaz emisyonlarının engellenmesi için su ve kaustik solüsyon gibi bir ayıraç ile püskürtme yapan ıslak gaz yıkayıcılarını kullanmaktadır. İlk hacminin yüzde doksanını aşacak şekilde tıbbi atık hacminin indirgenmesinin yanı sıra, Crawford çöp yakıcılarının ağırlığı da yüzde 95 ila yüzde 97 arasında indirgediği ve bunun da mikro dalga ve buhar otoklav sistemleri tarafında yapılamadığı Llorens tarafından bildirilmektedir. YİNE DE EN İYİ ÇÖZÜM Çöp fırını bölme duvarları tuğla, yalıtım, bir çelik kaplama ve ikinci bir dış çelik kaplamadan oluşmaktadır. Llorens, "Çöp fırınının dış duvarlarının soğuk tutulması için yan duvarların içinde fan ile hava dolaşımı sağlanmaktadır" ifadesinde bulunmuştur. Ek olarak Crawford, çöp fırınının refraktör kaplamalı bacasına bir hava akımının sağlanması için bir fan monte etmiştir. Bu, çöp fırınının daha temiz çalışmasına yardımcı olmakta ve gazların tam olarak yanmasının sağlanması için tutuşma sürelerini artıracak şekilde ikinci bölmede tutulmasını sağlamaktadır. Lorrens, "mikro dalga gibi başka, iyi tıbbi atık arıtma teknolojileri mevcuttur ancak yakma, doğru koşullar altında yine de en iyi seçenektir." demiştir. "Hastanenin seçimi topluluklarına ve ihtiyaçlarına bağlıdır." Örneğin, West Palm Beach, Fa'da bulunan Emekli İşleri Tıp Merkezi atıkları ile birlikte ve federal adli yetkililer tarafından el konan yasadışı uyuşturucu ve silahların işleme tabi tutulması için 1995'ten bu yana bir Crawford çöp fırınını kullanmaktadır. "West Palm Beach'te bulunan V.A. Tıp Merkezinin makina mühendisi ve tesisler yönetim şefi Wally Thompson, "Tüm malzemeleri sessiz ve etkin şekilde imha etmesi ve ön işlemli atığın yüzde 5 ila 10'u arasında ağırlıkta bir kül yaratması ve bunun da katı atık depolama alanlarında kullanılabilmesi nedeniyle Crawford çöp fırınını seçtik." demiştir. Crawford ünitesinin başarısının altında yatan anahtar, gaz yıkayıcısıdır. Saatte 500 libre atık işlem kapasitesine sahip bir çöp fırınının tasarımı konusunda. West palm Beach'deki V.A. temsilcileri Visalia, Calif'ten Emcotek ile birlikte çalışmıştır. Çöp fırınından 1.900 ila 2.100¡F sıcaklıkta çıkan sıcak gazlar Emcotek'in gaz yıkayıcısının ana söndürme tankına girmektedir. Püskürtme nozülleri, gazların yaklaşık olara 200¡F'ye soğutulması ve yakma sırasında üretilen hidroklorik asidin nötrleştirilmesi için su ve sodyum hidroksit püskürtmektedir. Gaz daha sonra püskürtme işleminin tekrarlandığı ikinci bir söndürme tankına girmekte ve böylece gazlar 120¡ ila 140¡F'ye soğutulmakta ve asitler daha fazla sodyum hidroksit ile tamponlanmaktadır. ASİT ATIĞIN NÖTRLEŞTİRİLMESİ Boru tesisat sistemi, bir programlanabilir lojik kontrolörüne (PLC) bağlı pH sondalarını içermektedir. PLC, asitli atıkların nötrleştirilmesi için gerekli olan sodyum hidroksit miktarını enjekte eden iki artı aktarma pompasını kontrol etmektedir. Söndürülmüş gazlar, radyal bir su perdesinin yaratılması için dönen bir disk merkezine bir dişli kutusu tarafından suyun pompalandığı rotari bir atomizör odasına girmektedir. Bu perde, partikülleri beher kuru standart kübik foot havayı yaklaşık 0.015 gram veya daha iyi bir değere indirgeyen, yüksek enerji ıslak gaz yıkayıcı işlevini görmektedir. Gaz akımının bacadan dışarıya bırakılmasından önce, çeşitli ağır metalleri ve partiküllü maddeleri taşıyabilecek olan fazla su damlaları bir buğu önleyici filtreler dizisi ile arındırılmaktadır. Emcotek gaz yıkayıcısı gaz akımından asitler, ağır metaller, dioksin ve çeşitli organik bileşenleri yüzde 95 ila 99 oranında arındırmaktadır. Gaz yıkayıcısının performansı tahliye bacası içinde bulunan çeşitli numunelendirme sondaları ile kontrol edilmektedir. Palm Beach Bölgesi'ndeki emisyon standartları nedeniyle V.A., ağır metallerin arındırılmasının optimize edilmesi için rotari atomizörü besleyen suyun sıcaklığını 80 veya 85¡F'ye indirgemek üzere bir titanyum ısı eşanjörünün eklenmesini Emcotek'ten istemiştir. Çevre şartnamelerine uygun birçok çöp fırınında olduğu üzere, West Palm Beach tesisi estetik hususlarını da dikkate almıştır. Thompson, "Ayrıca, zararsız ancak çirkin bir görünüme neden olan tüysü bulutun da ortadan kaldırılması için, soğuk gaz akımını yeniden ısıtmak üzere gaz yıkayıcı bacasına Emcotek tarafından bir titanyum buhar bobini ilave edilmesini sağladık." demiştir. Kaynak: Gen Bilim

http://www.biyologlar.com/tibbi-atiklara-cozum

Zaman Nedir ?

Çok az sayıda düşünce insan bilincine zaman kadar derin bir şekilde nüfuz etmiştir. Zaman ve uzay fikri, insan düşüncesini binlerce yıl işgal etmiştir. Bunlar, ilk bakışta basit ve kavranılması kolay şeylermiş gibi görünebilirler, çünkü günlük deneyimimizle çok sıkı bağları vardır. Her şey uzay ve zaman içinde varolur, bu nedenle de bu kavramlar tanıdık kavramlar gibi görünürler. Ne var ki, tanıdık olan şeyin mutlaka kavranmış olması gerekmez. Daha yakından bakıldığında, zaman ve uzay, kavranması o denli kolay olan şeyler değildirler. 5. yüzyılda, St. Augustine şunu fark etmişti: “O halde nedir zaman? Eğer bana birileri sormazsa, zamanın ne olduğunu bilirim. Ama eğer bana onun ne olduğunu soran birine zamanı açıklamak istersem, bilmiyorum.” Sözlükler de bu noktada pek yardımcı olmuyor. Zaman, “bir süre” olarak tanımlanıyor ve süre de “zaman” olarak. Bu bizi bir adım bile ileri götürmez! Gerçekte, zaman ve uzayın doğası, oldukça karmaşık bir felsefi sorundur. İnsanlar geçmiş ve geleceği birbirinden açık bir şekilde ayırt ederler. Fakat zaman duygusu, insanlara ve hatta hayvanlara özgü bir şey değildir. Gündüz bir yöne, gece başka yöne dönen bitkiler gibi organizmalar da, genellikle bir çeşit “iç saate” sahiptirler. Zaman, maddenin değişen durumunun nesnel bir ifadesidir. Ondan bahsetme biçimimizde bile bu ortaya çıkar. Zamanın “aktığından” söz etmek yaygındır. Aslında, sadece nesnel sıvılar akabilirler. Tam da bu metaforun seçilmesi, zamanın maddeden ayırt edilemez olduğunu kanıtlar. Zaman yalnızca öznel bir şey değildir. Fiziksel dünyada varolan gerçek bir süreci dile getiriş biçimimizdir. Zaman bu nedenle, tüm maddelerin sürekli bir değişim durumunda oldukları gerçeğinin ifadesidir aslında. Tüm nesnel varlıkların oldukları şeylerden başka bir şeye dönüşme kaderi ve zorunluluğudur. “Varolan her şey yok olmayı hak eder.” Her şeyin altında bir ritim duyusu yatar: Bir insanın kalp atışları, konuşma ritmi, yıldız ve gezegenlerin hareketi, gelgitin yükselişi ve alçalışı, mevsimlerin değişimi. Bunlar insan bilincine, keyfi hayaller olarak değil, evren hakkındaki esaslı bir hakikati dile getiren gerçek bir olgu olarak derin bir şekilde kazınmıştır. Bu noktada insan sezgisi yanılgı içinde değildir. Zaman, tüm biçimleriyle maddenin ayrılmaz özellikleri olan hareket ve durum değişikliğini ifade etme tarzıdır. Dilde kullandığımız zamanlar vardır, gelecek, şimdiki ve geçmiş zaman. Aklın bu muazzam keşfi, insanlığın, kendisini zamanın esaretinden kurtarabilmesini, somut durumun ötesine geçebilmesini ve yalnızca burada ve şu anda değil, en azından zihnimizde, geçmişte ve gelecekte de “var” olmasını mümkün kıldı. Zaman ve hareket birbirinden ayrılmaz kavramlardır. Bunlar, yaşamın tümüne ve, düşünme ve hayal gücünün her dışavurumu da dahil, dünya hakkındaki tüm bilgimize esas teşkil eder. Ölçme, ki tüm bilimin köşe taşıdır, zaman ve uzay olmaksızın imkânsız olurdu. Müzik ve dans zamana dayanır. Sanatın kendisi, yalnızca fiziksel enerjinin sunuluşunda değil tasarımda da mevcut bulunan bir zaman ve hareket hissi taşımaya çabalar. Bir tablonun renkleri, şekilleri ve çizgileri, göze yüzey üzerinde belli bir ritim ve tempoyla kılavuzluk ederler. Sanat faaliyetiyle iletilen bu özel ruhsal durumu, düşünceyi ve duyguyu ortaya çıkaran şey budur. Zamansızlık, sanat faaliyetini tanımlamakta sıklıkla kullanılan bir sözcüktür, ama bu sözcük amaçlananın gerçekten de tam tersini ifade eder. Zamanın yokluğunu tasarlayamayız, çünkü zaman her şeyde vardır. Zaman ve uzay arasında bir fark vardır. Uzay aynı zamanda konum değişimi olarak değişimi de ifade edebilir. Madde uzayda varolur ve onun içinde hareket eder. Ancak bunun gerçekleşme biçimi sonsuz sayıdadır: İleri, geri, yukarı, aşağı, şu ya da bu derecede. Uzayda hareket tersinirdir.* Zamanda hareket ise tersinmezdir. Bunlar maddenin aynı temel özelliğini, yani değişimi dile getirmenin iki farklı (ve aslında çelişik) yoludur. Mevcut yegâne Mutlaklık budur. Uzay, Hegel’in terminolojisini kullanırsak, maddenin “başkalığı”dır, zaman ise, maddenin (ve aynı şey olan enerjinin) onun aracılığıyla, olduğu şeyden bir başka şeye sürekli değiştiği süreçtir. Zaman –“içinde hepimizin tükendiği ateş”– çoğunlukla yıkıcı bir etken olarak görülür. Ancak zaman bir o kadar da, sürekli öz-oluşum sürecinin ifadesidir, ki bu süreç vasıtasıyla madde sürekli olarak sonsuz bir biçimler dizisine dönüşüp durur. Bu süreç, organik olmayan maddede, her şeyden önce de atomaltı düzeyde çok açık bir biçimde görülebilir. Değişim fikri, zamanın geçmesinde dile geldiği şekliyle, insan bilincine derin bir şekilde nüfuz eder. Edebiyattaki trajik unsurun, yaşamın geçip gitmesindeki keder duygusunun temelidir bu. Zamanın durmak bilmez hareketi hissini canlı bir biçimde ele alan Shakespeare’in sonelerinde en güzel ifadesine ulaşır bu duygu: Çakıllı sahillere yol alan dalgalar gibi, Kendi sonlarına koşuşturur dakikalarımız da; Geçip gidenin yerine gelen her biri, Hepsi ilerleyen bir yürüyüş kolunda. Zamanın tersinmezliği yalnızca canlı varlıklar için mevcut değildir. Yalnızca insanlar değil, yıldızlar ve galaksiler de doğar ve ölürler. Değişim her şeyi etkiler ama yalnızca olumsuz bir biçimde değil. Ölümün yanı başında yaşam vardır, ve düzen kaostan kendiliğinden çıkagelir. Çelişkinin iki tarafı birbirinden ayrılamaz. Ölüm olmaksızın yaşamın kendisi de mümkün olmazdı. Her insan yalnızca kendisinin değil, kendi olumsuzlanmasının ve kendi sınırlarının da farkındadır. Doğadan geliyoruz ve doğaya geri döneceğiz. Ölümlü varlıklar, birer fani varlık olarak kendi yaşamlarının ölümle sonuçlanmak zorunda olduğunu anlarlar. Eyüp Kitabı’nın hatırlattığı gibi: “İnsan ki, kadından doğmuştur. Günleri kısadır ve sıkıntıya doyar. Çiçek gibi çıkar ve solar; ve gölge gibi kaçar ve durmaz.”[1] Hayvanlar ölümden aynı şekilde korkmazlar, çünkü onun hakkında bir bilgileri yoktur. İnsanoğlu, ölümden sonra hayali bir doğaüstü varoluşa sahip ayrıcalıklı bir mezhep oluşturmakla, kendi kaderinden kaçmaya girişmiştir. Sonsuz yaşam fikri neredeyse tüm dinlerde şu veya bu biçimde vardır. Bu günahkâr dünyadaki “Gözyaşı Vadisi” için bir teselli sağlayacağı varsayılan Cennetteki hayali ölümsüzlüğe bencilce susamışlık duygusunun ardındaki itici güç budur. Böylece yüzyıllardır insanlara, öldüklerinde mutlu bir yaşam beklentisiyle dünyadaki sıkıntılara ve acılara uysalca boyun eğmeleri öğretilmiştir. Her bireyin göçüp gitmek zorunda olduğu iyi bilinir. Gelecekte, insan yaşamı kendi “doğal” uzunluğunun çok ötesine geçecektir; yine de bu yaşamın sonu gelmek zorundadır. Ancak tek tek insanlar için geçerli olan şey türler için geçerli değildir. Çocuklarımız sayesinde, dostlarımızın anıları sayesinde ve insanlığın çıkarlarına yaptığımız katkılar sayesinde yaşayacağız. Arzu etme hakkına sahip olduğumuz yegâne ölümsüzlük budur. Kuşaklar ölür gider, ama yerine insan eyleminin ve bilgisinin alanını geliştiren ve zenginleştiren yenileri gelir. İnsanlık dünyayı fethedebilir ve ellerini göklere uzatabilir. Gerçek ölümsüzlük arayışı, insanlar kendilerini öncekinden daha yüksek bir düzeyde yeniledikçe, insan gelişiminin ve mükemmelleşmesinin bu sonu gelmez sürecinde somutlanır. Bu nedenle, önümüze koyabileceğimiz en büyük hedef, öteki dünyadaki hayali bir cennetin hasretini çekmek değil, bu dünyada bir cennet inşa etmenin gerçek toplumsal koşullarını elde etmek için mücadele etmektir. İlk deneyimlerimizden, zamanın önemini kavrama noktasına gelmişizdir. Bu nedenle, birilerinin, zamanı bir yanılsama, aklın bir icadı olarak düşünmüş olması şaşırtıcıdır. Bu fikir günümüze kadar inatla sürdürülmüştür. Gerçekte, zamanın ve değişimin salt birer yanılsama olduğu düşüncesi yeni değildir. Bu fikir, Budizm gibi antik dinlerde ve Pythagoras, Platon ve Plotinus’un idealist felsefelerinde de mevcuttur. Budizmin özlemi, zamanın son bulduğu nokta olan Nirvana’ya ulaşmaktı. “Her şey hem kendisidir hem de değildir, çünkü her şey akar” ve “aynı nehre iki kere girilmez” derken zamanın ve değişimin doğasını doğru bir şekilde anlamış olan, diyalektiğin babası Herakleitos idi. Devirsel bir değişim fikri, mevsimlerin değişimine mutlak bağımlı olan tarım toplumunun bir ürünüdür. Eski toplumların üretim tarzına kök salan durgun yaşam tarzı, ifadesini durgun felsefelerde bulur. Katolik Kilisesi Copernicus ve Galileo’nun kozmolojisini içine sindiremezdi, çünkü bu kozmoloji, dünya ve topluma mevcut bakış açısına meydan okumuştu. Eski, ağır aksak köylü yaşamını ancak kapitalist toplumda sanayinin gelişimi altüst etmişti. Üretimde yerle bir edilen şey yalnızca mevsimler arasındaki fark değil, aynı zamanda, makineler günde 24 saat, haftada yedi gün, yılda elli iki hafta yapay ışıkların göz kamaştırıcı parlaklığı altında çalıştığına göre, gece ve gündüz arasındaki farktır da. Kapitalizm üretim araçlarını ve onunla birlikte insanın aklını da devrimcileştirmiştir. Ne var ki, bu sonuncusunun ilerleyişinin ilkinin ilerleyişinden çok daha yavaş olduğu da kanıtlanmıştır. Aklın muhafazakârlığı, fazlasıyla eskimiş düşüncelere, miadını çoktan doldurmuş eski kesinliklere, ve nihayet ölümden sonra yaşam umuduna dört elle sarılmaya dönük çabalarda açığa çıkar. Son onyıllarda, evrenin bir başlangıcı ve bir sonu olması gerektiği fikri kozmolojik büyük patlama teorileri tarafından yeniden canlandırıldı. Bu yaklaşım, evreni birtakım sırrına vakıf olunmaz planlara göre hiçlikten yaratan ve kendisi gerekli gördükçe onu sürdürmeye devam eden bir doğaüstü varlığı kaçınılmaz olarak içerir. Musa, İsa, Tertullian ve Platon’un Timaeusu’nun eski dini kozmolojisi, bazı modern kozmologların ve teorik fizikçilerin yazılarında inanılmaz bir şekilde tekrar baş gösteriyor. Bunda yeni olan hiçbir şey yok. Geri dönüşsüz bir çöküş aşamasına giren her toplumsal sistem, kendi ölümünü her zaman dünyanın ya da dahası evrenin sonu olarak sunar. Yine de evren, dünyadaki şu ya da bu geçici toplumsal formasyonun kaderinden bağımsız olarak varolmaya devam eder. İnsanlık, yaşamaya, mücadeleye ve tüm aksiliklere rağmen gelişmeye ve ilerlemeye devam eder. Böylece her dönem bir öncekinden daha yüksek bir düzeyde varolur. Ve genel olarak bu sürecin bir sınırı yoktur.

http://www.biyologlar.com/zaman-nedir-

BİTKİLERDE İÇTEN VE DIŞTAN GELEN SİNYALLERE VERİLEN YANITLAR

Bitki yaşamının her evresinde, çevreye duyarlılık ve yanıtlarında koordinasyon vardır. Bitkinin bir kısmından, diğer kısımlarına sinyaller gönderilebilmektedir. Örneğin; bir sürgün ucundaki tepe tomurcuğu birkaç metre uzaklıktaki yanal tomurcukların büyümesini baskı altına alabilir. Bitkiler, zamanı günlük ve yıllık olarak izlemektedirler. Yer çekimini ve ışığın yönünü algılarlar. Bitkinin morfolojisi ve fizyolojisi, çevresindeki değişkenlere göre sürekli olarak ayarlanır; bu çevresel uyartılar ve içsel sinyaller arasındaki kompleks ilişkilerle sağlanır. SİNYAL İLETİMİ VE BİTKİ YANITLARI Bitkiler dahil tüm organizmalar, özgül çevresel sinyalleri ve içten gelen sinyalleri alma ve bu sinyallere yanıt verme yeteneğindedir; organizmaların bu sinyallere yanıt vermesi, bir bakıma , yaşama ve üreme başarılarını artırır. Bitkiler de çevrelerindeki önemli değişiklikleri saptamak için hücresel reseptörlerini kullanırlar; bu değişiklik büyüme hormonunun konsantrasyonundaki bir artışı, yapraklar üzerinde beslenen bir çekirgenin verdiği zararı yada kış yaklaştıkça gün uzunluğunun azalmasını kapsayabilir. İç yada dış kaynaklı uyartının bir fizyolojik yanıtı başlatabilmesi için, organizmadaki belirli hücrelerin, uygun bir reseptöre sahip olması gerekir. Bir reseptör, özel bir uyartıya duyarlı ve ondan etkilenen bir moleküldür. Reseptör, bir uyartıyı alır. Bundan sonra iletim, bir dizi özel biyokimyasal basamağı, yani; sinyal iletim yolunu başlatır. Sinyal iletim yolu, uyartının algılanmasını organizmanın yanıtıyla eşleştirir. Sinyal iletimi, içten ve dıştan (çevreden) gelen sinyalleri hücresel yanıtlara bağlar Bir sürgün, güneş ışığına ulaşınca çok önemli morfolojik ve biyokimyasal değişiklikler geçirir. Bu değişiklikler yeşillenme olarak adlandırılır. Yeşillenme sırasında gövdelerin uzama hızı yavaşlar, yapraklar genişler, kökler uzamaya ve toprak üstü kısımlar klorofil üretmeye başlar; kısaca sürgün tipik bir bitkiye benzemeye başlar. Bu yeşillenme nasıl olur? Bu soruya cevap ararken; bir sinyalin (örn, ışık) bir bitki hücresi tarafından nasıl alındığını ve bu algılamanın bir yanıta (yeşillenme) nasıl dönüştürüldüğünü göreceğiz. İncelemelerimiz sırasında, mutantlarla yapılan çalışmaların, hücrede sinyal oluşumunun üç farklı evresinde (algılama, iletme ve yanıt verme) çeşitli moleküllerin oynadığı rollere nasıl ışık tuttuklarını göreceğiz Sinyal iletim yollarının genel bir modeli. Özel bir reseptöre bağlanan bir hormon (veya çevreden gelen diğer bir sinyal), sekonder mesajcılar üretmek için hücreyi uyarır. Sekonder mesajcılar, orijinal sinyale karşı hücrenin çeşitli tepkimeler üretmesini sağlar. Yukarıdaki şekilde reseptör, hedef hücrenin yüzeyinde görülmektedir. Diğer durumlarda, hormonlar hücreye girer ve hücre içinde özel reseptörlere bağlanır. Sinyalin Alınması Sinyaller ister içten ister dıştan gelsin, ilk olarak reseptörler tarafından saptanır. Reseptörler, özel bir uyartıya yanıt olarak yapısal değişiklikler geçiren proteinlerdir. Bitkilerde yeşillenmede yer alan reseptör fitokrom olarak adlandırılır. Fitokrom özel bir proteine bağlanmış, ışık absorblayan bir pigmentten oluşmuştur. Plazma zarındaki pek çok pigmentin aksine, yeşillenmede iş gören fitokrom sitoplazmada bulunur. Araştırmacılar, yeşillenme sürecinde fitokromun gerekli olduğunu, aurea isimli bir domates mutantıyla yaptıkları çalışmalarda ortaya çıkarmıştır. Normal düzeyden daha düşük miktarda fitokroma sahip olan bu mutant, ışığa maruz bırakılınca yabani tip domatesten daha az yeşillenmektedir. (Latince aurea altın-renkli anlamındadır. Klorofil yokluğunda, karetenoyit denilen sarı bitki pigmentleri, daha fazla belirginleşirler). Araştırmacılar, diğer bitkilerden elde ettikleri fitokromu mikro iğnelerle (mikro enjeksiyon yoluyla) aurea‟nın yaprak hücrelerine enjekte ettikten sonra bu bitkiyi ışığa maruz bırakarak normal bir yeşillenme yanıtının oluşmasını sağlamışlardır. Bu tür denemeler, yeşillenme sürecinde, ışığın algılanmasında fitokromun iş gördüğü varsayımını desteklemiştir. Sinyal İletilmesi Yeşillenme süreci, çok düşük düzeydeki ışık tarafından başlatılır. Örneğin; birkaç saniyelik ay ışığına eşdeğer ışık düzeyleri, karanlıkta büyüyen çavdar fidelerinin gövde uzamasının yavaşlatmaya yeter. Fitokrom gibi reseptörler, çok zayıf çevresel ve kimyasal sinyallere duyarlıdır. Bu çok zayıf çevresel ve kimyasal sinyallerden gelen bilgi nasıl çoğaltılmakta ve bitki tarafından bu algılama özel bir yanıta nasıl dönüştürülmektedir? Bu sorunun yanıtı, sekonder mesajcılardır (sekonder messenger veya ikincil mesajcılar). Bunlar bitkide üretilen küçük kimyasal maddeler olup sinyali çoğaltarak reseptörden proteine nakleder; bu proteinler özel bir yanıta neden olur. Örneğin; yeşillenmenin ortaya çıkması sırasında etkileşen her bir fitokrom, yüzlerce sekonder mesaj taşıyıcı molekül oluşturabilir. Bunlar da yüzlerce özel enzim molekülünü aktifleştirebilir. Sinyal iletim yolundaki bir sekonder mesajcı, bu tür mekanizmalarla sinyalin hızlı bir şekilde çoğalmasını sağlar. Şimdi, özel olarak sekonder mesajcıların oluşumunu ve yeşillenmenin ortaya çıkmasındaki işlevlerini inceleyelim. Bitkilerde sinyal iletimine bir örnek; yeşillenmede fitokromun rolü. Işık sinyali fitokrom reseptörü tarafından alınır. Daha sonra reseptör G-proteinlerini içeren iki sinyal iletim yolunu aktifleştirir. 1) yollardan biri, bir protein kinaz serisini aktifleştiren bir sekonder mesengera götürür. 2) diğer yol, özel bir protein kinazı aktifleştiren bir Ca+2 – kalmodulin kompleksinin oluşumuna götürür. 3) her iki yol yeşillenmede iş gören proteinlerle ilgili genlerin ifade (yeşillenmede iş görmek için dizilmesini) olmasını sağlar. Pek çok reseptör guanin-bağlı proteinlerle (G-proteinleri) ilişkiye girer. Fitokrom böyle bir reseptördür. Işık fitokromda konformasyonal bir değişikliğe neden olur. Daha sonra fitokrom, özel G-proteini ile ilişkiye girer. Aktifleşme sırasında, inaktif G-proteinine bağlı olan guanozin difosfat (GDP), guanozin trifosfat (GTP) ile yer değiştirir. Böylelikle, aktif hale gelen G-proteini, yeşillenmeyi sağlayan sinyal iletim yolundaki diğer enzimleri aktifleştirir. Örneğin; fitokromun aktifleştirdiği G-proteinleri, ikincil (sekonder) bir mesaj taşıyıcı olarak siklik-GMP‟ı (cGMP) oluşturan enzim olan guanil siklazı aktifleştirir. G-proteini inhibitöreleri, aurea domates hücrelerine, fitokromun mikroenjeksiyon yoluyla verilmesinden sonra yeşillenmeyi durdurur; buna karşılık G-proteini aktivatörleri, yanıtı uyarır. Siklik adenozin monofosfat (cAMP, siklik AMP) ve siklik guanozin monofosfatın (cGMP) dahil olduğu siklik nükleotidler özel protein kinazları (diğer proteinleri fosforlayarak aktifleştiren proteinler) aktifleştirir. Denemeler cGMP‟nin yeşillenme sürecinde yer aldığını göstermektedir. cGMP‟nin aurea domates hücrelerine mikroenjeksiyonu, fitokrom ilavesi olmaksızın bile, yeşillenme işlemini kısmen teşvik etmektedir. Sitoplazmadaki (sitosol) Ca+2 düzeyleri genel olarak çok düşüktür (yaklaşık 10-1M). Bununla bilikte, çok çeşitli hormonal ve çevresel uyartı, sitosoldeki Ca+2 düzeyinde küçük bir artışa sebep olabilir. Daha sonra, Ca+2, kalmodulin olarak isimlendirilen küçük bir proteine doğrudan bağlanır. Bundan sonra Ca+2-kalmodulin kompleksi birkaç enzime bağlanarak, onları aktifleştirir. Protein kinazlar, bu enzimlerin en belirginleridir. Şekilde yeşillenme mekanizması sırasında fitokromun aktifleşmesinin, sekonder mesenger olarak hem cGMP hem de Ca+2-kalmodulinle sonuçlandığına dikkat ediniz. Yanıtın Oluşması Sonuçta, sinyal-dönüştürme yolları, hücrede bir yada daha fazla aktivitenin düzenlenmesine yol açar. Çoğu durumda, özelliklede gelişimdeki değişiklikler söz konusu olduğu zaman, uyartıya (sinyale) karşı verilen bu yanıtlar belirli enzimlerin aktivitesini artırır. Sinyal oluşturan bir yol, bir enzimi iki ana mekanizma ile aktifleştirebilir. Bu mekanizmalardan biri, o enzimle ilgili mRNA‟nın transkripsiyonunun uyarılmasıdır, diğeri ise mevcut enzim molekülünün aktifleştirilmesidir (yani translasyon sonrası modifikasyon). Transkripsiyon: DNA kalıbı üzerinden RNA sentezlenmesi. Translasyon: Bir mRNA molekülü üzerinde kodlanmış genetik bilgiyi kullanarak bir polipeptidin sentezlenmesi. Transkripsiyon faktörü: DNA‟ya bağlanarak özgül genlerin transkripsiyonunu uyaran, düzenleyici protein. Transkripsiyon başlatma kompleksi: Promotere bağlanan RNA polimeraz ve transkripsiyon faktörlerinin tümünün oluşturduğu birlik. Gen: DNA‟daki (yada bazı virüslerde RNA‟daki) özgül bir nükleotit dizisinden (sekansından) meydana gelmiş kalıtsal bilgiyi taşıyan birim. Genler (DNA) ve bunların ürünleri (proteinler) bir organizmanın kalıtsal gelişimini belirler. Genom: Bir organizmanın genlerinin tamamı; bir organizmanın genetik materyali. Transkripsiyon Evresinde Düzenleme Trankripsiyon faktörleri doğrudan özel DNA bölgesine bağlanır ve özel genlerin transkripsiyonunu kontrol eder. Fitokromun teşvik ettiği yeşillenmede, uygun ışık koşullarına yanıt olarak birkaç transkripsiyon faktörü, fosforilasyonla aktifleştirilir. Bu transkripsiyon faktörlerinin bazısı cGMP‟a, buna karşılık diğerlerinin aktifleşmesi ise Ca+2-kalmodulin‟e gereksinim duyar. Bir sinyalin yeni bir gelişim sürecinin başlamasını sağladığı mekanizma, pozitif transkript faktörlerine (özel genlerin transkripsiyonunu artıran faktörler) yada negatif transkript faktörlerinin (transkripsiyonu azaltan proteinler) etkisizleşmesine yada her ikisine birden bağlıdır. Karanlıkta büyütüldüklerinde mat renkli olmalarının dışında, ışıkta büyütülmüş gibi morfolojik özelliklere (geniş yapraklar, kısa ve sağlam gövdeler) sahip Arabidopsis mutantları mevcuttur (bu mutantlar yeşil renkli değildir. Çünkü klorofil üretiminin son basmağında doğrudan ışığa gereksinim duyulur). Bu mutantların bir negatif transkripsiyon faktöründe bozukluklar bulunur. Bu transkripsiyon faktörü, normalde ışık tarafından aktifleştirilen diğer genlerin ifadesini engellemektedir. Negatif faktör, mutasyonla ortadan kalkınca, onu durduran yol aktifleşmektedir. Proteinlerde Translasyon Sonrası Oluşan Değişimler Transkripsiyon ve translasyonla yeni proteinlerin sentezi, yeşillenme ile ilgili önemli moleküler olaylar olmalarına karşın, mevcut proteinlerin translasyon sonrası değişimleri de önemlidir. Bu mevcut proteinlerin çoğu sıklıkla fosforilasyonla, yani proteine bir fosfat grubunun katılmasıyla, değişime uğramaktadır. Protein kinazlar olarak isimlendirilen belirli proteinler hedef proteinlerin fosforilasyonunu katalizlemektedir. cGMP ve bazı fitokrom formları dahil, bazı reseptörlerin kendileri doğrudan protein kinazları aktifleştirir. Tüm bitki genlerinin yaklaşık % 2-3‟ü protein kinazları kodlayabilir. Çoğunlukla bir protein kinaz başka bir protein kinaza, daha sonra diğerine, o da başkalarına fosfor kazandırır. Böylece kinazların ard arda harekete geçirilmesi, sonuçta başlangıçtaki uyartıya gen ifadesi düzeyinde yanıt verilmesini sağlar. Bu, genellikle transkripsiyon faktörlerinin fosforlanmasıyla gerçekleşir. Pek çok sinyal iletim yolu, bu tür mekanizmalarla yeni proteinlerin sentezini düzenler. Bunu, çoğunlukla özgül genlerin açılıp kapanmasını sağlayarak yapar. Fosforilasyon şelalesi. Bir fosforilasyon şelalesinde yer alan farklı moleküller, bu yolda sırasıyla fosforile edilirler. Dizideki her molekül, kendinden sonraki moleküle bir fosfat grubu ekler. Burada gösterilen fosforilasyon şelalesi, protein kinaz 1 olarak adlandırdığımız bir enzimin bir aktarım molekülü tarafından aktive edilmesinden sonra başlar. 1) Aktif protein kinaz 1 bir fosfat grubunu ATP‟den inaktif protein kinaz 2‟ye aktarır. Böylece ikinci kinaz aktifleşir. 2) Aktif protein kinaz 2 daha sonra protein kinaz 3‟ün fosforilasyonunu (ve aktivasyonunu) katalizler. 3) Sonuçta, aktif protein kinaz 3, sinyale verilecek hücresel cevabı ortaya çıkaracak olan proteini (pembe) fosforile eder. Kesikli çizgi ile gösterilen oklar fosforile olmuş proteinlerin inaktivasyonunu temsil etmektedirler. Fosfotaz enzimleri fosfat gruplarının proteinlerden uzaklaştırılmasını katalizler. Böylece bu proteinler yeniden kullanılamazlar. Aktif ve inaktif proteinler farklı yapılarda temsil edilmektedirler. Bunun nedeni, aktivasyonun genellikle molekülün biçim değiştirmesiyle birlikte cereyan ettiğini hatırlatmaktır. Sinyal iletim yolları, başlangıç sinyali ortadan kalkınca kapanma mekanizmasına da sahip olmalıdır. Özgül proteinlerin fosfor yitirmelerini sağlayan fosfataz enzimleri, bu kapama sürecinde yer alır. Herhangi bir anda bir hücrenin aktivitesi, pek çok proteinkinaz ve protein fosfataz enziminin aktivitesindeki dengeye bağlıdır. Yeşillenmeyi Sağlayan Proteinler Yeşillenme sürecinde hangi proteinlerin transkripsiyonu gerçekleşmekte yada fosforilasyonla aktifleştirilmektedir? Bu proteinlerin çoğu doğrudan fotosentezde iş gören enzimlerdir; diğerleri ise klorofil üretimi için gerekli kimyasal öncüllerin temin edilmesinde yer alır; bunların dışındaki enzimler ise, büyümeyi düzenleyen bitkisel hormonların düzeylerini etkiler. Örneğin gövde uzamasını artıran iki hormonun düzeyi sitokromun aktifleşmesinden sonra azalır. Bu nedenle, yeşillenmeyle birlikte gövde uzaması azalır. Yeşillenme gibi yalnızca bir tek sürecin altında yatan biyokimyasal değişikliklerin bile ne denli karmaşık olduğunu açıklamak için bitki yeşillenmesinde yer alan sinyal iletimini ele aldık. Her bitki hormonu ve her bir çevresel uyartı, karmaşık, bir yada daha fazla sinyal iletim yolunu başlatır.

http://www.biyologlar.com/bitkilerde-icten-ve-distan-gelen-sinyallere-verilen-yanitlar

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

ANTİSENS TEKNOLOJİLERİ HAKKINDA BİLGİ

Antisens teknolojisi insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir. Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA mesajına spesifik olarak bağlanarak gen ifadesinin moleküler düzenlenişine engel olunmaktadır. Hastalıkların oluşumunda büyük bir paya sahip olan proteinlerin üretimini durdurmak için bu teknoloji, oligonükleotidler olarak adlandırılan modifiye olmuş ya da olmamış DNA/RNA segmentlerinin kullanımını içermekte ve hücre içinde, nukleus ve protein üretim bölgeleri arasındaki genetik bilginin iletimini bloke etmektedir (1). Antisens nükleik asit sekanslarının hedef olacak spesifik mRNA’ ya bağlanması veya hibridizasyonu, genin genetik mesajının kesilmesine yol açmaktadır. Bir genin genetik mesajının hücresel proses ile kesilmesi “Knock - Down” veya “Knock – Out” olarak isimlendirilir. Bu proses, bu genin işleyişini saptamak için araştırıcılara olanak sağlamıştır. Diğer bir önemli antisens teknolojisi ise"RNA interferens" olarak adlandırılır. Antisens alanındaki araştırmalar RNAi (RNA interferens) ’nin keşfi ile hız kazanmıştır. Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Çoğu ilaç (Drug) proteinlere bağlanırken, antisens moleküller kendilerine komplementer hedef RNA ile eşleşirler. Antisens oligonükleotidler mRNA’ nın translasyonunu bloke eder veya RNAaz – H ile mRNA’ nın degredasyonuna neden olurlarken, ribozim ve DNA enzimleri hedef RNA’ yı keserler. RNAi yaklaşımları, RISC ile etkileşen siRNA (small interfering RNA) molekülleri ile gerçekleştirilir (2). Antisens Oligonükleotidler Oligonükleotid bazlı antisens tekniklerin birçok ortak yanı vardır ve genetik mesajın eleminasyonu veya baskılanması üzerine çok başarılı yöntemler uygulanmıştır. Sentetik oligonükleotid sekansın antisens etkisi 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV)35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d(AATGCTAAAATGG)13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir (1). Şekil 1. Farklı antisens stratejilerinin karşılaştırılması Sentetik oligonükleotidler, genetik proseslerde bir ajan olarak kullanılmak isteniyorsa bir takım konular aydınlatılmalıdır. Bu konuların en önemlisi “Kalıcılık”tır. Sentetik oligonükleotidler yabancı bir hücreye verildiklerinde hemen endonükleazlara yem olurlar. Onun için bu oligonükleotidlerin endonükleazlardan korunması gerekir. Mümkün olan koruma modifikasyonları 2003 yılında Kurreck tarafından 3 tip olduğu ortaya çıkmıştır. Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan (Riboz) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. 1969 yılında araştırıcılar fosfat bağlarında köprü oluşturmayan oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. Bu modifikasyona fosforotiat denmiştir. 1990 yıllarında başka araştırıcılar kültüre edilmiş hücrelerde HIV replikasyonuna karşın fosforotiatın etkili bir hibridon olduğunu bulmuşlardır. Diğer yandan, fosforotiatlı nükleotidler azda olsa hibridizasyon kinetiği düşük ve spesifik olmayan proteinlere bağlanarak sitotoksik etkiye neden olan özelliklere sahiptirler (1). İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil (OMe) ve 2’-O-metoksi-etil (MOE)RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış ve daha düşük bir toksik etki yaratmışlardır. 2’-O-alkil modifikasyonlarının en önemli eksikliği, en güçlü antisens mekanizması olan RNAaz-H kesimine elverişli olmamasıdır. Buna karşın avantajı da, istenmeyen çeşitli kesimleri baskılayarak bazı proteinlerdeki beklenen değişik kesimlerin ifadesini arttırmasıdır. Antisens etki için, RNAaz-H kesimi, nukleazlara dayanıklılık için 2’-O-alkil modifikasyonlarının tercih edilmesi araştırıcıları yeni bir modele ihtiyaçları olduğu gerçeğini ortaya çıkarmış ve araştırmacılar, bu her iki karakteristiği bir araya getirerek antisens oligonükleotid formunda hibrid bir oligonükleotid oluşturmuşlardır. Bu oligonükleotid nukleazların degredasyonundan internal bloğu koruyan 2’-O-metil ile modifiye olmuş ribonükleotidler ile, RNAaz-H kesimini uyarmak için deoksinükleotidlerin merkezi bloklarını içermektedir(1). Bu model diğer antisens konularına cevap oluşturmak için henüz gelişmemiştir. Modifiye olmamış oligonükleotidler, DNA : DNA ve DNA : RNA dublekslerini oluştururken , DNA ve RNA hedeflerinin tanınmasına yüksek afinite sağlayan çeşitli modifikasyonların sentezleri büyük çaba gerektirmektedir. Modifiye olmamış DNA:DNA ve DNA:RNA dubleksleri ile karşılaştırıldığında, DNA ve RNA’lara hibridize olduğunda termal stabilitesi yükselmiş bir çeşit nükleik asit analoğu geliştirilmiştir. Bu modifikasyon üçüncü sınıf antisens oligonükleotidleri oluşturur. Bu sınıf 4’e ayrılır. Peptid nükleik asitler (PNAs), 2’-floro N3-P5’-fosforoamidler, 1’, 5’- anhidroheksitol nükleik asitler (HNAs) ve locked nükleik asitler (LNA)’dır. 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. PNA’lar, fosforotiat ve 2’-O-alkil RNA’lardan sonra üzerinde çalışılmış ve başarı sağlanmış oluşumlardır (2002). Bu 3.sınıf oluşumlar arasında en yeni olan LNA’lardır. LNA’larda da termal stabilitenin arttığı ve hedef tanınmasının zenginleştiği görülmüştür (1). RNA İnterferens (RNAi) İlaç sanayi, tedavi amaçlı gen baskılanması için her geçen gün kendini yenilemektedir. Daha önceki araştırmalar, antisens oligonükleotid ve ribozimleri kapsayan sekansa – spesifik RNA baskılanması üzerineydi. Bazı pozitif sonuçlar, bu ilaç platformunda elde edilirken, stabilite, hedefi bloke etme potansiyeli, hücreye iletimi ve hedef sekans seçimi gibi teknik konular, klinik olarak ilaçların etkinliğinin gelişimini yavaşlatmıştır. Son yıllarda, nükleik asit bazlı gen inhibisyon yaklaşımlarının klinik olarak gelişiminde yeniden bir etki yaratma potansiyeline sahip olan RNA interferens (RNAi), gen regülasyonunun yeni bir mekanizması olduğu gerçeğini ortaya çıkarmıştır (3). A. Normal transkripsiyon ve translasyon prosesi B. DNA’yı hedefleyen ajanlar ile transkripsiyonun önlenmesi C. pre–mRNA hedeflenmesi ile olgun mRNA’nın oluşumunun engellenmesi D. Translasyonel aparatürlerin engellenmesi ile translasyonun bloke edilmesi E. RNAaz- H ile mRNA’nın etkileşimi sonucu translasyonun önlenmesi (1). RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21-23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir (RNA inducing silencing protein compleks; RISC). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Bu endogenik RNA’lar, veya miRNA (microRNA ), dicer tarafından siRNA effektörlerine dönüştürülür ve çeşitli hücresel proseslerde örneğin, çoğalma, apoptozis ve farklılaşmada görev yapan genlerin ifadesinin düzenlenmesinde rol oynar. siRNA molekülleri, kimyasal olarak sentezlenip ekzogenik olarak memeli hücrelerine verildiğinde, hücresel RISC kompleksine maruz kalır ve siRNA’ya homolog olan RNA’ların parçalanmasına aracılık eder (3). RNAi, gen işleyişinin validasyonu ve hızlı identifikasyonunda, hedef ilaç keşfinde, biyolojik kaynak olarak devrim yapmış, hatta 2002 yılında, “Science Magazine” tarafından “yılın keşfi” olarak nitelendirilmiştir ve bazı şirketler, RNAi bazlı tedaviler geliştirme yönünde adımlar atmıştır (3). RNAi Tedavisinin Avantajları Spesifitesi Sekans bazlı gen inhibisyon teknolojilerinin potansiyel avantajlarından birisi, herhangi bir gen için tedavi amaçlı dizayn edilebilmesidir. Özellikle, tek bir allelde mutasyonla oluşan onkoloji ve genetik nörolojik hastalıklar alanında sadece defektif genin ifadelenmesini seçici olarak bloke etme fırsatı yaratılmıştır. Bunun yanında, tek bir polimorfizim ile ayırd edilebilen hedef sekansı identifiye etmek önemsiz değildir. Ayrıca, optimal siRNA’ nın hedef seçimi limitli olsada, RNAi aktivitesi önemli sayılmaktadır. Kanser ve nörolojik hedefler de, allele spesifik olacak kadar yeterli bir spesifiteye sahiptir (2). Şekil 3. Memeli sistemlerindeki RNA interference mekanizması (4) Potansiyel Etkinliği Optimal dizaynı ve hedef sekans seçiminde kurallardaki farklılıklardan dolayı gen inhibisyon teknolojisinin etkinliğini direk olarak karşılaştırmak zor olmakla birlikte, RNAi bazlı inhibisyon, antisens oligonükleotidler ile başarılmış çalışmalardan daha etkindir (2). Değişkenliği RNAi hedef bölgelerini identifiye etme kolaylığı, RNAi’ nin süper etkinliği ile ilişkili olabilir. Optimal RNAi etkinliliği için gerekli olan kurallar saptanmış olsa da, CG içeriği ve 3’ uçlarının kompozisyonu temel parametreler olarak karşımıza çıkmaktadır. Diğer yandan, ribozim ve antisens oligonükleotid hedef sekanslarını identifiye etmek, kesim için gerekli olan özel sekans motiflerinin uygunluğu ile sınırlandırılmıştır. Bir grup gende bulunan multipli sekansları uyarabilen RNAi – bazlı inhibisyon ile değişkenlik daha kolaydır (2). RNAi Tedavisinde Öne Çıkan Noktalar Hücreye İletimi Hücreye verilim problemi, sadece RNAi tedaviye özgü değildir fakat, RNAi bazlı ilaçların klinik olarak kullanımına önemli bir engel olarak görülmemektedir(2). RNAi Effektörleri RNAi effektörleri, 2 farklı yaklaşımla hücreye verilmektedir. İlki, laboratuvarda sentezlenmiş siRNA’lar bir ilaç gibi verilir. Diğeri ise, gen terapi yaklaşımı yani, shRNA (small hairpin RNA) kodlayan DNA, hücrelere verilir ve böylece shRNA’ nın hücre içi ifadelenmesi başlatılmış olur. Daha sonra shRNA’ lar, konukçu hücre tarafından aktif siRNA’ ya dönüştürülür. DNA yaklaşımının potansiyel avantajı, verilen plasmid DNA’ların yüksek stabilite içermesidir yani, her bireysel DNA kalıbından sentezlenmiş olan shRNA’ ların büyük miktarını içeren hücresel amplifikasyon basamağından oluşmaktadır. İlaveten, ister genoma integre olan, ister epizomal formda replike olabilen DNA’ yı stabil ifade vektörü şeklinde vermek de mümkündür (2). Lokal Verilimi Antisens ilaçların başarılı lokal uygulamasına en iyi örnek olarak “göz” verilebilir. Göz içine direk olarak siRNA’ların lokal injeksiyonu ile, yaşla ilişkili oluşan makular dejenerasyonun RNAi bazlı tedavisi geliştirilmiş ve ayrıca, merkezi sinir sistemi içine direk iletimi de mümkündür (2). Sistemik İletimi Sistemik verilim, siRNA’nın stabilizasyonuna, effektörün istenen dokuyu hedef alması ve hücresel alınımın kolaylığına gereksinim duyar. siRNA ilaçlarının hücresel alınımı ve stabilitesini geliştirmek için gerekli olan yaklaşımlar, nükleik asitin kimyasal değişimi ve koruyucu partiküller içine effektörün çeşitli yöntemler ile paketlenmesini içeren antisens oligonükleotid uygulaması için de geçerlidir. Effektörün özel hücre tiplerini hedef alması için, farklı ligand ve antikorların RNAi effektörü ile konjuge olması gereklidir. Viral vektörlerin kullanımı, RNAi effektörünün sistemik verilmesi için kullanılabilir fakat, viral vektörler klinik olarak hücreye iletilmesi için gerekli olan dokuya spesifik tropizm ve transdüksiyonu sağlasa da, her tip viral vektör, risk ve güvenlik sorunlarını beraberinde getirmektedir (2). Güvenlik İstenen etkilerin oranını en üst düzeye çıkarmak, her tedavinin ana temelini oluşturur. Kemoterapi, interferens tedavisi ve yüksek oranda aktif antiretroviral tedavilerde bu oran ideal değildir ve tedavi ile birlikte toksisite önemli bir seviyeye ulaşabilir. RNAi, hedeflenen genin spesifitesini arttırma yetisine sahip olurken, hücrenin herhangi bir ekzogenik (siRNA veya iletim ajanı) moleküle maruz kalması, normal hücresel işleyişini bozabilir (2). Hedef Dışı Etkileri Spesifite, en önemli avantajlardan biri olmasına karşın, hedef dışındaki etkileri hala sorundur çünkü, genin inhibisyonunda aracılık eden siRNA’ların minumum homoloji seviyesini saptayan parametreler henüz bilinmemektedir. İnhibisyon sonucunda siRNA’nın sekansına bağlı olarak tek iplikli RNA ile 11 baz çiftlik bir homoloji gösterdiği bulunmuştur (2). Spesifik Olmayan Etkileri Spesifik olmayan etkileri konusunda RNAi için toksisite 2 kattır. Çünkü, hem hücreye verilmesi hem de siRNA’nın kendisi beklenmedik hücresel tepkiler doğurabilir. İlk olarak, bazı katyonik lipozomlar, siRNA’nın hücreye verilmesinde kullanılmış ve interferon molekülleri uyarılmış; aynı şekilde, shRNA ifade kasetlerini hücre içine transport etmek için kullanılacak herhangi bir viral vektör, istenmeyen bir tepki ile karşılaşabilir. İkinci olarak, siRNA effektörlerinin kendileri, çift iplikli RNA hücresel savunma mekanizmasını tetikleyebilir. Bazı durumlarda, terapi için interferon indüksiyonu yararlı olmasına karşın; başlangıç defans mekanizmasının kontrolden çıkması durumunda sitotoksik olabilmekte ve bu yüzden sorun yaratmaktadır. Son yıllardaki çalışmalar, siRNA’nın interferonu uyarması ile oluşan farklılıkları sistematik olarak analize etmeye başlamıştır. Örneğin, interferon sinyalini uyaran bir siRNA effektörünün içeriğinde,"tehlikeli motif" olarak adlandırılmış 9 baz çifti identifiye edilmiş ve interferon indüksiyonunu başlatan siRNA’nın 5’ fosfat ucu olduğu belirlenmiştir (2). Stabilitesi Bazı veriler siRNA’nın, serumda ve memeli hücrelerinde antisens oligonükleotid ve ribozimlerden daha stabil olduğunu gösterse de, birçok araştırma in vivo’da siRNA’nın yarı ömrünü arttımak için siRNA’nın farmokinetik özelliğini değiştirmeyi hedeflemiştir. Özellikle, geniş spektrumlu kimyasal modifikasyonlar ile uyumlu siRNA’ların gen ekspresiyonunu inhibe ettiği kanıtlanmıştır. Araştırmacılar, enjekte edilen siRNA’nın %1’inden daha azının hedef organa ulaştığını kaydetmişlerdir (2). Tedavi Amaçlı Uygulamaları Viral İnfeksiyon Birçok şirket viral infeksiyonu inhibe etmek için, RNAi bazlı tedaviler geliştirmeye başlamışlardır (2). Hedeflenen Viral RNA’lar Birçok makalede, invivo ve invitro’da birçok virusun replikasyonunu veya ekspresiyonunu inhibe etmek için virusa spesifik siRNA’ların kullanıldığı belirtilmiştir. Özellikle RNAi’nın potansiyel antiviral yararları üzerine araştırmalar, HIV ve Hepatit viruslarına ışık tutmuştur. Her özelliği tanımlanmış HBV (hepatit B virusu)fare modelleri bu viruslara popüler bir hedef konsepti hazırlamıştır. Başlangıçta invivo’da transfeksiyon deneyleri, fare karaciğerine HBV’ ye spesifik siRNA ve HBV ekspresiyon plazmidlerinin aynı anda verilmesinin HBV’ nin gen ekspresiyonunu ve replikasyonunu bloke ettiğini ortaya çıkarmıştır. Bu çalışmaları genişletmek için, araştırıcılar fare modellerini kullanarak HBV tedavisi için, RNAi’ nin ileri tedavi etkinliğini incelemişlerdir. Bazı viral RNA’lar, baskılanmaya dirençlidir ve HIV’ e benzer bazı memeli virusları, RNAi aktivitesini engelleyen proteinlere sahiptir. HBV konusunda, RNAi effektörlerinin, viral gen ekspresiyonu ve replikasyonunu bloke ettiği görülmüştür. Aynı şekilde İnfluenza virusunun inhibisyonu, coxsackievirus B3 ve respiratör syncytial virus infeksiyonları, farede infeksiyon oluşumundan sonra verilen siRNA ile inhibe olmuşlardır (2). Konukçu Hücre Genlerinin Hedeflenmesi Bunun nedeni, virusların siRNA’lar kendi genomlarını hedeflediklerinde hızlı bir şekilde kaçış mutasyonları oluşturmasıdır; diğer bir potansiyel RNAi antiviral strateji ise, infeksiyonu devam ettiren hücresel faktörlerin ekspresiyonunu inhibe etmeye yöneliktir. Özellikle CD4 ve CCR5 gibi, HIV hücresel reseptörlerinden inhibisyon için yararlanılmaktadır. Viral temizlik için etkinliğe göre RNAi’nin viral RNA’ları parçalaması, viral infeksiyonu tamamen elemine etmeye benzemez. Eğer, konukçu immün yanıt, infeksiyon ile başarılı bir şekilde mücadele ederse, viral replikasyon ve virusun yayılması etkili bir şekilde azaltılmakta, böylece etkili bir antiviral olduğu kanıtlanmış olmaktadır. Örneğin, HBV konusunda, hatta kronik olarak infekte olmuş hastalarda infeksiyon süresince virusa spesifik sitotoksik T-lenfosit üretimi sürmektedir. Bu immün yanıt, virusu temizlemek için güçlü olmasa bile, HBV antijenlerini ifadeleyen hücreleri yok etmektedir (2). Nörolojik Hastalıklar Parkinson, hungtington, amyotrophic lateral sclerosis (ALS) ve spinobulbar muscular atropi, RNAi bazlı terapilerin yararlı olduğunu kanıtlayan sinirsel hastalıkların önde gelenlerindendir. Sekansa spesifik RNAi’ ler, mutant olan hedef genin ifadesini bloke etmektedir. Örneğin, siRNA’ lar, ALS modelinde gösterilmiş mutant ve yabani tip RNA’lar arasındaki farklılıkları tek nükleotidte fark eder. ALS, tedavisi olmayan letal bir motor nöronun dejenere olduğu bir hastalık olup, Cu/Zn süperoksid dismutazı (SOD1) kodlayan gende tek bir nükleotid’teki mutasyon sonucu oluşmaktadır. Diğer bir örnek, Alzheirmer, β – amiloid üretiminde artış ile tetiklenir. β amiloid , β sekretaz (BACE1) tarafından kesilir ve bu enzim, hastaların beyinlerinde yüksek seviyede regüle edilir. β-sekretazın regülasyonunu inhibe eden siRNA’lar, işleyişi bloke eder. Bunu kanıtlamak için, Kao adında bir araştırıcı primer fare nöronlarında β sekretaz ekspresiyonunu bloke etmiş ve böylece, β amiloid üretiminde azalma gözlemlemiştir (2). İnflamasyon ve Apoptozis Bazı hastalıklarda hücresel proseslerin aktivasyonunun neden olduğu patoloji gözlemlenmiş hatta bunun gelişiminde önemli rol oynayan kilit moleküllerin hedeflenmesi ile hücresel proseslerin kontrol altına alınması anlamında RNAi tedavisi yarar sağlayabilmiştir. Örneğin, Tümör nekrozis faktör (TNF-α ), rheumatoid arthritisin kronik patojenitesinde gerekli olan pro-inflatör sitokindir. TNF- α işleyişini bloke etmede kullanılan ilaçlar, inflamasyonun azalmasında etkili olduğu ve hastalığın yavaşladığı gözlemlenmiştir. Bazı riskler tabiki mevcuttur, TNF - α bloke edicilerin kullanılması ile ilişkili ciddi infeksiyonlar, lenfoma, sistemik eritomozus gibi hastalıklarda risk unsuru bulunmuştur. Son yıllarda lokal injeksiyon ve TNF- α’ ya spesifik siRNA’ların elektroporasyonu, faredeki paw inflamasyonunu inhibe ettiği görülmüştür (2). siRNA Gen ifadelenmesini spesifik olarak kesintiye uğratan moleküller, güçlü araştırma kaynaklarıdır. Bu moleküllerin gelişimine yönelik çalışmalar sonucunda farklı potansiyelde ajanlar ortaya çıkmıştır. siRNA’ lar, sekansa spesifik silencing ajanı olarak ortaya çıkan en son keşiftir. Çoğu kilit organizmanın sekansı ortaya konmuş ve nükleik asit bazlı yaklaşımlarla gen işleyişinin incelenmesi için fırsat doğurmuştur. Bu nükleik asit molekülleri, tedavi amaçlı olarak geliştirilmiş ve hastalığa sebep olan virusları hedef almıştır. siRNA’ lar, RNAi yol izinin effektör molekülleridir. Nematodlardaki RNAi’nın keşfi, bitkilerde post-transkripsiyonel gen silencing ve funguslarda "Quelling" gibi prosesler dubleks – RNA ile tetiklenir. Uygulamalarda, uzun dubleks RNA’ lar kullanılmış fakat, bu RNA’ lar çoğu memeli hücreleri için etkin değildir çünkü, antiviral interferon (IFN) yanıtını uyarmaktadır. Antiviral interferon yanıtı, hücre ölümüne neden olur. Farklı organizmalarda var olan RNAi mekanizmasının genetik ve biyokimyasal incelemeleri, bu hücresel mekanizmanın korunduğu gerçeğini ortaya koymaktadır. Bu mekanizma, dubleks RNA’yı keserek 21-28 nükleotid uzunluğundaki, siRNA’ya dönüştürür ve bu siRNA mRNA’ların sekansa spesifik degredasyonuna yol açmaktadır (5). Nükleik – Asit Bazlı Gen Silencing mRNA’ ların spesifik sekanslarını hedefleyerek gen ifadesini inhibe edecek birkaç farklı molekül istenilen düzeyde dizayn edilebilir. Başlıca 3 tip nükleik asit bazlı gen silencing molekülü vardır. Bunlar, kimyasal olarak modifiye olmuş antisens oligodeoksiribonükleik asitler (ODN ), ribozim ve siRNA’lardır (5). Tablo 1. İnvivo'da test edilmiş anti-kanser RNAi hedefleri i.v: intravenöz, i.t: intratumoral, hd: hidrodinamik infeksiyon CEACAM 6: karsinoembriyonik antijen ile ilişkili adhezyon molekül 6 ATA: aurintrikarboksilik asit (3). Antisens ipliği (kırmızı çizgi) içeren RISC’lerin oranını etkileyen siRNA veya siRNA’ların sens ipliklerinin ilk birkaç baz çiftinin termodinamik stabilitesi. Sens ipliğin 5’ ucundaki yüksek termodinamik stabilite (yeşil kutucuk) ile antisens ipliğin 5’ ucundaki düşük termodinamik stabilite (mavi kutucuk) karşılaştırıldığında termodinamik stabilite ile ilişkili olarak antisens iplik RISC ile etkileşime girmek için daha yatkındır. Antisens ipliği içeren birden fazla RISC daha fazla etkili siRNA demektir ve sens ipliğin neden olduğu hedef dışındaki etkinlik şansını azaltmış olur. siRNA’ların 3’ ucundan çok 5’ ucu hedef tanımada etkin rol almaktadırsiRNA ve mRNA ‘nın 5’ ucundan devam eden en az 11 – 14 baz çiftinde hedef genin baskılandığı gözlemlenmiştir. Bir siRNA için minimal substrat merkezinde 13 nükleotidten oluşmaktadır (5). Şekildeki turuncu renkli üçgen; mRNA’nın kesim bölgesini, nt; nükleotid, RISC; RNA’ca indüklenen silencing compleks, siRNA; small interfering RNA. Şekil 4. Etkili ve spesifik siRNA ‘nın özellikleri ODN: Genellikle 20 nükleotid uzunluğunda olup, pre-mRNA ve mRNA’ya hibridize olarak ribonükleaz-H için bir substrat oluştururlar. Bu enzim, RNA – DNA dublekslerinden, RNA ipliğini degrede eder. RNAaz-H aktivitesini engellemek için, modifiye olmuş ODN’ler mRNA’ların translasyonunu veya pre-mRNA’nın kesilmesine mani olmaktadır. ODN’ ler ve modifikasyonları bu yüzden, çift iplikli DNA’yı hedef alarak, 3’ lü heliks oluşumu ile transkripsiyonu inhibe etmek için kullanılmaktadır (5). Uzun çift iplikli RNA (dsRNA) RNAaz pol III enzimi olan Dicer tarafından tanınır ve 21 – 23 nükleotid uzunluğundaki siRNA dublekslerine dönüştürülür (1). Sentetik siRNA (2) veya endogenik siRNA ‘lar (3) RISC ile etkileşirler bundan dolayı Dicer prosesi bypass olmuş olur. siRNA’ lar multiprotein kompleksi olan RISC ile etkileşir (4). RISC kompleksindeki bir helikaz siRNA dubleksini açar ve tek iplikli siRNA’yı içeren RISC mRNA’ya komplementerize olur (5). (6) RISC içinde identifiye olmamış bir RNAaz (silecer) mRNA‘ yı degrede eder (6). Şekil 5. siRNA ‘nın mekanizması Ribozimler: Ribozimler, RNA’ya Watson – Crick modeli ile bağlanır ve fosfodiester bağlarının hidrolizini katalizleyerek, hedef RNA’yı degrede etmektedir. Ribozimler birkaç sınıf olup, en çok kullanılan “çekiç başlı“ adı ile anılan hammerhead ribozimlerdir. Hedef mRNA’ya hibridize olduğunda, tek bir sekonder yapı oluştururlar. Ribozimlerde katalitik olarak önemli parçalar, hedef RNA kesim bölgesinin içinde bulunduğu hedef – komplementer sekans ilişkisi ile bağlantılıdır. Ribozim ile kesim magnezyum gibi divalent iyonlara, hedef RNA yapısına ve hedefe ulaşılabilirliğine gereksinim duyar. Hücre içinde bu hedef RNA ile ribozimin birlikte lokalizasyonu, silencing etkinliğini arttırıcı sinyaller doğurur. Hammerhead ribozimler, kimyasal olarak sentezlenmesi veya vektörlerden transkribe olabilmesi için yeteri kadar kısadır ve hücre de ribozimin devamlı üretimine olanak sağlar (5). siRNA: RNAaz III (Dicer)enzimi ile dubleks RNA’nın stoplazmik prosesinden türevlenmiştir. Dicer, uzun dubleks RNA’yı keserek, 21-28 nükleotid’lik bir siRNA dubleksini oluşturur. Bu dubleks, 5’ fosfat ucunda 2-nükleotid eksik iken, 3’ hidoksil (OH) ucunda 2-nükleotid fazla şeklindedir. RNAi mekanizmasının bileşenleri spesifik olarak siRNA’yı tanır ve (RISC) RNA-uyarıcı silencing kompleksi olarak bilinen protein kompleksi ile siRNA’nın tek ipliği ilişkiye girer. mRNA’ları kesen RISC kompleksi, tek iplikli siRNA’nın 5’ ucundaki 10 nükleotide komplementer sekanslar içerir. Ribozimler gibi, siRNA ‘lar da sentetik olarak üretilebilir veya transkribe olan kısa çift iplikli hairpine benzer RNA’lar vektörlerden ifadelenip, daha sonra siRNA’ya dönüşmektedir. siRNA’lar, ODN ve ribozimler gibi memelilerde hedef pre-mRNA’nın degredasyonunda etkin değildir. Birkaç organizmanın, kromatin modifikasyonlarını ve transkripsiyonel olarak bloke edici genlerini hedef almak için, RNAi ile ilişkili mekanizmaları kullandığı hakkında deliller ortaya çıkmıştır. siRNA’lar, kod oluşturmayan RNA molekülleri olan miRNA’lara benzerler. Bu miRNA’lar, gen ekspresiyonunu regüle etmek için hücreler tarafından doğal olarak kullanılır. Olgun bir miRNA tek iplikli 21-22 nükleotid uzunluğunda ve stoplazmada, 70 nükleotid’lik hairpinden meydana gelir. Olgun miRNA ‘lar, protein kompleksi (miRNP) ile ilişkiye girmekte ve bu kompleks ribozom ile ilişkili olup, miRNA’ya bir kısım komplementer sekanslar içeren mRNA’ların translasyonunu inhibe etmektedir. Mükemmel bir substrat ile sıkı bir komplementerlik oluşursa , miRNA , siRNA gibi davranıp , mRNA degredasyonuna aracılık etmektedir (5). Gen Silencing Yaklaşımlarının Karşılaştırılması Bazı araştırıcılar, kültür modellerinde ODN ve siRNA’nın aracılık yaptığı gen tutuklanmasının farklı yönlerini karşılaştırmışlardır. Bu çalışmalardan çıkan sonuçlar pek belirgin değildir, çünkü gen tutuklanmasının etkinliği, ajanın konsantrasyonuna, transfeksiyon tekniğine, hücre tipine, hedef bölge seçimine, kimyasal modifikasyonlarına ve analize edilecek bilgilerin süresine bağlıdır. RNA’ya bağlanan proteinler ve mRNA’da oluşan tersiyer, quarterner yapılar, ODN’ ler ile hedef RNA molekülü arasındaki hibridizasyonu etkilediği ve bu varyasyonların siRNA’ların etkisini etkilediğine inanan araştırıcılar incelemelere başlamışlardır. Bu çalışmaların çoğunda, mRNA üzerindeki hedef pozisyonuna bağlı olarak ODN ve siRNA’ların etkinliği arasında bir korelasyon bulunmuştur. Modifiye olmuş fosfotiat ODN’ ler toksik olabilir, çünkü, endogenik proteinlere bağlanarak spesifik olmayan bir tavır sergilemektedirler. CpG (sitidin fosfat guanozin) motifi içeren ODN’ ler, IFN’nun ifadesini veya diğer başka immün yanıtta oluşan molekülleri uyardığı görülmüştür. Bu uyarı, Toll – Like reseptör (TLR)’ e bağlanılması ile oluşur. ODN’lerin bu spesifik olmayan özelliği, bazı ODN’lerin tedavi amaçlı olması sonucunda keşfedilmiştir. Ribozimler, ODN’ ler gibi hedeflerine herhangi bir molekülün yardımı olmaksızın hibridize olurlar ve bu hibridizasyon, genlerin baskılanması için ihtiyaç duyulan yüksek konsantrasyon ile ilişkilidir ayrıca, kimyasal olarak modifiye olmuş ribozimler spesifik olmayan etkiler oluştururlar. RNA lokalizasyon sinyallerinden yararlanma veye RNA şaperon’ ları bu problemi çözebilir. Böylece, ribozimin düşük konsantrasyonu ile ilişkili etkili bir gen baskılanmasını sağlamaktadırlar. En son bilgiler, insan ve farelerde ifadelenen TLR’ nin, üridin / guanozin veya üridin bakımından zengin olan tek iplikli RNA oligonükleotidler tarafından aktivite olduğunu ispatlamıştır (5). Tek iplikli RNA ile bu TLR ‘lerin aktivasyonu, plazmositoid dendritik hücrelerin endozomal kısımlarında oluştuğu ve böylece, IFN – γ ve diğer sitokinlerin ifadelenmesine neden olduğu görülmüştür. Kimyasal olarak modifiye olmuş siRNA veya ribozimler, invivo’da hücreye verilip denature olduğunda, siRNA sekansına bağlı olarak, bu özel TLR’leri aktive etmekdedir. Etkili bir gen baskılanması sağlamak için gerekli olan, siRNA’nın düşük konsantrasyonudur. Buna bağlı olarak siRNA’lar spesifik ve hızlı bir şekilde RISC kompleks ile etkileşmekte böylece, spesifik olmayan proteinlere bağlanma potansiyeli azalmaktadır. Bazı çalışmalar, normal konsantrasyondaki siRNA’ların transfeksiyonunun, gen ekspresiyonunda spesifik olmayan global etkilere neden olmadığını göstermiştir. Memelilerdeki RNAi uygulamaları, gen ekspresiyonunu spesifik olmayan şekilde etkiler, tabiki siRNA konsantrasyonuna, hücre tipine, siRNA ekspresiyonunun moduna ve ajanın hücreye veriliş şekline de bağlıdır. Bu spesifik olmayan etkiler, IFN yanıtının oluşmasından sorumlu genlerin stimülasyonunu içerir hatta, bu çalışmalardaki IFN’yi oluşturan genlerin indüksiyonu, hücresel büyümeyi engellemesede böyledir. Eğer, tam bir IFN yanıtı oluşursa, büyümeyi engelleyebilir. Uzun dubleks RNA ile transfekte olmuş, veya IFN tip 1 ile yada yüksek konsantrasyondaki siRNA ile tedavi edilmiş HeLa hücrelerinin mikroarray gen profillerinin bir kısmı birbiri ile çakışmaktadır. Bu çalışmalarda, tedavi ve araştırma çalışmalarındaki siRNA uygulamalarının potansiyel yan etkileri belirlenmiş ve tanımlanmış efektif siRNA’ların önemi üzerinde durulmuştur. Gen baskılanması için mümkün olan en düşük konsantrasyon kullanılmalıdır. Farelerin, kısa RNA hairpini üreten vektörler ile tedavi edildiğinde, IFN oluşturan genleri uyarması çok ilginç bulunmuştur. Spesifik olmayan etkileri yanında, nükleik asit bazlı gen baskılayan moleküller, hedefin etkilerini bloke etmeye hazırdır. Hedef etkilerinin yok edilme seviyesi, nükleik asit hibridinin stabilitesine ve baskının moduna bağlıdır. ODN’ler, hedef etkisini bloke etmeye eğilimlidir, çünkü 6 veya 7 sıralı DNA / RNA baz çiftleri RNAaz-H tarafından tanınmaktadır. Bu problemi çözmek için, antisens oligonükleotid gamper adında bir yapı geliştirilmiş, böylece ODN’lerin yaklaşık 10 nükleotidinden sadece bir tanesi RNAaz – H yanıtı göstermiştir. siRNA’lar dikkatlice seçilmez ise, bir mRNA hedefine kısmen komplementer olan siRNA’lar , endogenik miRNA’lar gibi davranıp translasyonu baskılar. Aynı transkripte karşı hedeflenmiş farklı siRNA’lar ile oluşmuş gen ekspresiyon profilleri karşılaştırıldığında, hem siRNA hem de mRNA ipliklerinin 5’ uçları arasındaki en az 11 – 14 nükleotidlik komplementerlik, transkript düzeyinde hızlı bir düşüşe sebebiyet verir. Antisens sekanslar olarak seçilmiş ODN, ribozim DNAzim ve siRNA’ lar, seçici olarak tek bir nükleotid ile hedefi diğerlerinden ayırabilir (5). siRNA’ların Hücrelere Verilimi ODN’ler ve ribozimler, farklı stratejiler kullanarak in vivo’da başarılı bir şekilde hücrelere verilir. Klinik denemelerde, ODN’lerin en popüler modu, intravenöz injeksiyonudur. siRNA-, siRNA üreten plasmid veya siRNA üreten virüslerin memeli model organizmalara verilmesinde çeşitli yöntemler kullanılmaktadır (5). Bu yöntemler içinde, elektroporasyon ve hem lokal hem de sistemik injeksiyonu yer almaktadır. Çok etkili bir silencing için hücreye verilim yöntemi hakkında genelleme yapmak zordur çünkü hücre içine injeksiyonda, farklı dokuların farklı istekleri söz konusudur. Özellikle farklı boyutlardaki hücreler için fare dokularına siRNA’ ların verilmesinde ilk prosedür, fizyolojik solusyondaki siRNA’ ların, damar ucuna injeksiyonudur. Bu yöntem ile karaciğerde %90 oranında hedef gen ekspresiyonunun azaldığı görülmüştür. Bu oran akciğer, böbrek ve pankreas’ta daha azdır. Silencing süresi, 1 haftadan fazla sürer ve silencing seviyesi tam net değildir çünkü hayvandan hayvana varyasyonlar mevcuttur. siRNA üreten virusların gelişmesi, özellikle insan hastalıkları için gen terapinin alternatif modudur. Birkaç çeşit virus, siRNA’ların üretimi için dizayn edilir. Virus çoğunlukla epizomal form’da bulunur yani, konukçu genomuna entegre olması düşüktür. siRNA üreten AAV (Adeno associated vektör)’nin fare beyni içine injeksiyonundan 7 hafta sonra etkili bir silencing sonucu alınmıştır. siRNA üreten Adenovirusun fare karaciğerine damar yolu ile veya fare beynine direk injeksiyonu ile verilimi gen ekspresiyonunda etkili bir baskılanma yaratmıştır. siRNA’lar tedavi amaçlı deneylerde kullanılıcaksa, in vivo’da siRNA’ların hücreye verilmesinde pozitif sonuç elde edilmesi ve Amerika’da FDA tarafından “yetim ilaç” statüsü verdiği kimyasal olarak modifiye edilmiş ODN’lerin hücreye verilimini de kapsayan yöntemler için çalışmaların sürdürülmesi gerekmektedir. Son yıllarda ODN’lerin de içinde bulunduğu birkaç makromolekülün transdermal penetrasyonunu sağlayacak küçük moleküller keşfedilmiş. Akciğerler içine gen enjeksiyonu için kullanılmış aerosol yöntemler, yakın gelecekte siRNA’ların hücrelere iletiminde de benzer şekilde kullanılacaktır (5). siRNA Bazlı Tedaviler Birkaç ODN ve ribozim molekülleri klinik denemelerde test edilmiştir. Gözdeki sitomegalovirusun infeksiyonunun tedavisi için, FDA tarafından onaylanmış bir antisens ODN (fomivirsen) geliştirilmiştir. Klinik deneylerde kullanılmış antisens oligonükleotidlerin çoğu, modifiye olmuş fosforatiat ODN veya "gamper" dedikleri ODN’lerdir (5). Fakat bunların hedef RNA’lara afinitesi düşük ve yüksek konsantrasyonda toksisiteye neden olan problemleri vardır. Kimyasal modifikasyonların tiplerini içeren ikinci generasyon antisens oluşumlar, klinik deneylerde kullanılmış ve fosforatiat ODN’ ler den daha yararlı olduğu görülmüş. Son çıkan yayınların içerikleri bu farklı ilaçlardan ve onların hedeflerinden bahsetmektedir. siRNA ve onların memeli hücrelerindeki fonksiyonları 3 yıl önce keşfedilmiş fakat henüz klinik denemelerde kullanılması çok erkendir. Klinik programların gelişimi üzerine siRNA bazlı şirketlerin kurulmasından sonra siRNA, tedavi amaçlı gelişimde ODN ve ribozimleri hızlı bir şekilde yakalamıştır. Birkaç deneme siRNA’nın tedavi amaçlı potansiyel yetisini göstermiş; fulminant hepatitlerden, viral infeksiyondan, sepsisden, tümör gelişiminden ve macular dejenerasyondan fareleri koruduğu kanıtlanmış. Yüksek basınç ile damar ucundan verilen siRNA’lar, fare karaciğer hücrelerinde etkilidir hatta, bir grup araştırıcı, çeşitli karaciğer hastalıkları için tedavi amaçlı ajan olarak siRNA’nın potansiyelini test etmişlerdir (5). Karaciğerde ifadelenen apoptozis ile ilgili genler olan caspase 8 ve FAS hücre ölüm reseptörlerinin hedeflenmesi ile fare karaciğerini, çeşitli ajanlar tarafından uyarılmış ani gelişen hastalıklardan korumuştur. Diğer bir grup araştırmacı, virus tarafından direk olarak meydana gelen Hepatit B (HBV) infeksiyonunun tedavisi için siRNA’ların tedavi amaçlı potansiyelinin olup olmadığını araştırmıştır. Protein üretimi ve viral replikasyonu etkili bir şekilde azaltmak için, HBV genomunun bazı kısımlarını hedefleyen siRNA’lar hücrelere verilmiştir (5). siRNA virus oranını azaltsada, infeksiyonu sonlandırıcı etkisi başarısızlıkla sonuçlanmıştır. Bu sonuçlar, siRNA’ların tedavi amaçlı potansiyelini ve uygulamalar için pozitif sonuçlar doğurabilecek yöntemler üzerinde çalışmaların yoğunlaşması gerekliliğini göstermiştir. Nükleik asit bazlı gen baskılanmasının etkinliğini optimize etmek için, birkaç parametreyi incelemek gerekmektedir. Silencing molekül, dokudaki gibi dolaşım sisteminde de stabil olmalı ve toksik etki yaratmadan kan proteinlerine bağlanmalı ancak boşaltım sistemine girmemelidir. Nükleazların etkini azaltmak için kimyasal olarak modifiye olmuş nükleik asitlerin identifikasyonu üzerine denemeler gerçekleşmiş ve bu gerçekleşen denemeler ile tedavi amaçlı gen silencing kullanım sağlanmıştır. Sistemik verilim için yapılan, yapılması gerekli olan oluşumlar, klinik denemelerde modifiye edilmiş fosforatiat ODN’ler için açıklanmıştır. Modifikasyon ODN’nin hedef RNA’sına olan afinitesini azaltsa da in vivoda, stabilite, hücre içinde kalma ve hücresel alınımlarının gelişmesi ile moleküllerin etkinliğini arttırmış. Fosforatiat modifikasyonlar ODN’ lerin kan proteinlerine afinitesini arttırır ve nükleazların aktivitesinden ODN’ leri uzak tutar. Tek iplikli spesifik endonükleazlardan korunmuş, siRNA dubleksleri, serumda hem ODN hem de ribozimlerden daha stabildir. Modifiye olmamış siRNA’lar hücreler tarafından tam olarak alınmaz, hatta kan proteinleri için etkili bir afiniteye sahip olmazlar. siRNA’lar tedavi amaçlı kullanılacak ise, modifiye edilirler. Virusların kullanımını içeren gen terapi bazlı platformlar hariçtir. siRNA’ların modifikasyonu, siRNA’nın RISC kompleksi ile etkileşimini engeller (helikaz aktivitesi ile siRNA dubleksinin açılması hedef kesme oranı ve ürün oluşumunu etkiler). Bazı araştırıcılar, iyi bir silencing etkisi yaratıcı ayrıca, siRNA stabilitesini arttırıcı kimyasal modifikasyonları identifiye etmeye başlamışlar. Fosforatiat modifikasyonları siRNA dublekslerini tolere edebilirler ve siRNA’ ların hücresel alınımlarını kolaylaştırırlar. İn vivo’da kimyasal olarak modifiye olmuş siRNA’ ların etkinliği üzerine bir gelişme yoktur. siRNA’ların yapılarına spesifik olan nükleik asit modifikasyonlarının yeni tiplerini geliştirmek için girişimler başlamıştır (5). miRNA miRNA’lar küçük RNA’nın ikinci sınıfıdır. Bitki ve hayvan genomlarının protein kodu oluşturmayan bölgelerinde kodlanır ve Dicer tarafından proses edilir. miRNA’lar RISC’e benzer bir kompleks ile etkileşirler. Hedef mRNA’ya komplementerizasyon derecesine bağlı olarak translasyonel baskılama veye mRNA kesimi oluşmaktadır (7). Bu gizli genlerin çoğu kod oluşturmayan RNA’ lardır ve protein için kod veya open reading frame (ORF) içermezler (8). Yaklaşık 22 nükleotidlik RNA‘lardır ve RNAi yol izinde gen ekspresiyonunu regüle ederler. miRNA’lar, RNA pol II tarafından (pri – miRNA) primer transkript olarak meydana gelirler. Bu tanskriptler ORF içersin ya da içermesin, splice edilir, poliadenillenir ve mRNA’lara benzerler. Bir intron veya ekzonda lokalize olmuş stem loop yapısı, fonksiyonel komponenttir. Örneğin miRNA genleri olan mir -106b, mir – 93 ve mir-25 protein kodlayan genin intronunda lokalize olmuşlardır. Stem loop yapısı ribonükleaz olan Drosha ve Dicer tarafından proses edilip, olgun miRNA oluştururlar. Bu RNA, RISC kompleksi ile etkileşir ve bu kompleks mRNA’ların baskılanmasını yönlendirir. İnsanda identifiye edilmiş miRNA genlerinin sayısı 300’den yüksek olup, hücre bölünmelerinde ve gelişimsel proseslerde rol alırlar (8). miRNA Genlerinin Kanserdeki Genomik Değişimler ile ilişkisi İnsan miRNA’ların çoğu genomlardaki kırılma noktalarının hemen yakınlarında lokalize oldukları görülmüştür (8). Örneğin, kromozom 13q14’teki delesyon yıllardır çalışılmaktadır, kronik lenfosit lenfoma ve birkaç tümörün oluşumuna neden olmaktadır. Bu lokustaki kansere neden olan şüpheli genlerin çoğu, miRNA diziliminden oluşur. Bu dizilim, mir - 15a ve mir – 16 – 1 içermektedir. Acaba, bu miRNA’ların delesyonu tümör oluşumunu nasıl etkiler? En son datalar, hem miR-15a ve miR-16, anti – apoptik gen olan BCL-2 genini hedeflemesi ile normal apoptik bir yanıt meydana getirdiğini göstermiştir. Bu bakımdan, bu miRNA’ların tümör supresör olarak fonksiyon göstermesi ve limfoma hücrelerindeki miR – 15a – 16‘ nın yeniden ekspresiyonu, apoptozisi ilerlettiği görülmüş. Buna ilaveten, delesyonlar için miRNA lokusları haritalanmıştır. Bunun bir örneği, akciğer, baş, dil, B-hücre ve foliküler limfomada amplifiye edilmiş 13q31 kromozomu çok iyi bir şekilde çalışılmış. Chr13orf25 (kromozom 13, open reading frame 25) genin ifadelenmesi ile hastalıkların ilişkisi vardır. Bu gen protein oluşturmayan küçük ORF’ye sahiptir. Bu transkripteki miRNA öncüleri miR – 17, 18, 19a, 20, 19b ve 92‘ dir. Bu dizilerden 28 miRNA’ların ekspresiyonunun artması, primer limfomada ve tümör oluşturan hücrelerin meydana gelmesini tetikler. Tümör oluşumundaki bu miRNA’ların rolleri, Burkitt’in lenfoma için fare modelinde gösterilmiştir. Tablo – 2 Kanser genlerinin siRNA tedavileri (6) Kök Hücreler, miRNA’lar ve Kanser Bir tümördeki hücrelerin bazı bölümlerini inceleyen tümör oluşum modelinde kök hücre özelliklerine sahip oldukları meydana çıkmıştır (8). Bu kanser kök hücreleri, tümör oluşumunu başlatma ve sürdürme özelliğine sahiptir. Halbuki tümör’deki hücre yığınları bazı farklılıklar gösterip, tümorogenik değildirler. Bunun miRNA’lar ile ilişkisi nedir? Tümörler, kök hücrelerini andıran bir biçimde miRNA profili sergiler. Çoğu miRNA’ların ekspresiyonunu azaltırlar fakat miR–17-92 içeren kök hücre miRNA’ların ekspresiyonunu etkilemezler. RNAi ve kök hücrelerin devamlılığı arasında biyokimyasal bir ilişki vardır. Drosophila ve bitkilerde, kök hücre devamlılığı için RISC komponenti olan Argonaute gereklidir. Dicer – 1 ‘in mutasyonu tarafından miRNA fonksiyonunun kaybı, Drosophiladaki üreme kök hücrelerinin çoğalmasını azaltmıştır. Siklin bağımlı kinaz inhibitörü olan Dacapo’nun ekspresiyonundaki artış, G1 ve S fazı arasındaki tutuklanmaya yol açmıştır (8). Tahmin edilen miRNA hedef bölgeleri, Dacaponun 3’UTR (Translate edilmemiş) kısmında bulunur. Önemli olan bu bölgelerin kök hücrelerde eksprese olmuş miRNA’lara uygunluğudur. Bir S-faz indüksiyon regülatörü olan p27 – Kip1, Dacoponun insandaki homoloğudur. Bu gen memelilerdeki bir miRNA hedefi olup olmadığı bilinmiyor, eğer öyle ise, hücre çoğalmasını ilerletmek için onkogenik miRNA‘ nın ekspresiyonunu engelleyici bir gen sağlanmış olur. Tedavi Amaçlı miRNA’lar İnsandaki kanser için miRNA’lar anahtar yapılar sunarsa, potansiyel tedavi amaçlı olarak gözden geçirilir (8). Tedavi amaçlı molekül hücresel alınımı ve serumdaki stabilitesi için modifiye edilmiş nükleik asit özelliğinde olmalıdır. Bir grup araştırıcı, kültüre olmuş hücrelerde miRNA fonksiyonunun antisens inhibitörü olarak modifiye olmuş 2’-O-metil RNA’ların görev yaptığını gözlemlemişler. Bu moleküller miR – 17, 92 olan hedef onkogenik miRNA’lar için kullanılır. Tümör suppresör miRNA’lar konusunda istenilen tedavi amaçlı strateji hücrelerdeki fonksiyonlarını arttırmak için olabilir. Serumda stabilize olmuş pre – miRNA’lar bunu başarabilir. Buna bir örnek, per–let-7‘nin hücreye verilimi RAS ekspresiyonunu durdurarak tümörün ilerlememesine neden olmasıdır. Ribozim Katalitik RNA’lar olarak bilinen ribozimler, intraselüler ortamda aktivitelerini optimize etmek için dizayn edilirler (10). Aktif ribozimlerin kütüphanelerinin hücre içine verilmesi gen işleyişinin identifikasyonuna olanak sağlar. Gen işleyişini saptamak için siRNA kütüphanelerini baz alan RNA bazlı araçlara, ribozim teknolojisi bir alternatif sunmaktadır. Tablo 3. Hastalıklarda ve hayvanlarda miRNA’ların biyolojik fonksiyonları (9) Pri – miRNA ‘lar nukleusta transkribe olmaktadır (1). dsRNA’ya spesifik olan Drosha nukleustaki pri-miRNA ‘yı degrede ederek stoplazmaya verilmeden önce pre-miRNA’ya dönüştürür (2). Exp5 (exportion-5) pre-miRNA’ların nukleustan stoplazmaya geçişinden sorumludur (3). siRNA’lara benzer olarak miRNA’lar dicer tarafından olgun miRNA‘ ya dönüştürülür ve bir ipliği ribonükleoprotein kompleksi olan miRNP ile etkileşir (4) (RISC kompleksine benzer). miRNA ve hedefi arasındaki baz eşleşmesi RISC kompleksinin mRNA’yı parçalamasına veya proteine translasyonunu durdurmaya sebebiyet verir (6). Şekil 6. miRNA ‘nın mekanizması İnvivo'da Ribozim Ekspresiyonunu Optimize Etmek Sekonder yapısının şeklinden dolayı ismi konan “hammerhead ribozim“, infekte olmuş bitkide orijinal olarak keşfedilmiş katalitik RNA moleküdür (10). Hammerhead ribozimin kendi başına kesim aktivitesi, tek iplikli yaklaşık 350 nükleotidlik, protein kılıfından yoksun RNA olan “virusoid“ moleküllerinin replikasyonu için zorunludur. Hammerhead ribozimler, herhangi bir RNA’yı kesmek için dizayn edilebilir (10). Bu dizayn, ribozimin substrat tanıma kısımlarında yapılır böylece, hedef sekansa komplementer tanıma bölgeleri içerebiliyor. Substrat kesimi, hedef RNA’daki NUX (N, herhangi bir baz ise X, A, C veya U dur.) sekansına göre ayarlanıyor. Dizayn edilen ribozimler, farklı RNA’ları kesebilir. Bu ribozimler, ya hammerhead veya hairpin ribozimlerdir. Ribozimler sentez ve modifikasyonları kolay ve yüksek oranda spesifik durumları ile hedef mRNA’ların ekspresiyonunu regüle ederler. İnvitroda, ribozimlerin kesim aktiviteleri, hücresel ortamdaki aktiviteleri ile koralasyon göstermek zorunda değildir. Bu yüzden memeli hücrelerindeki spesifik RNA’ların kesimi için ribozimlerin uygulamaları ifade sistemlerinin gelişimine gereksinim duyar (10). Tablo 4. Ribozimlerin invivo aktivitesini optimize etmede gerekli olan unsurlar (10) Şekil - 7 Hammerhead ribozimin ifadelenmesi a. Hammerhead ribozimin sekonder yapısı, onun substratı RNA (açık mavi) ve substratın kesim bölgesi gösteriliyor. N herhangi bir baz ve X A , C veya U ‘ yu simgelemektedir. b. Oklar, 3’ tRNaz veya RNaz P tarafından wild-type tRNAVAl (yabani tip)‘nın proses edilen bölgelerini göstermektedir. Transkripsiyon için RNA polimeraz III‘ ün etkileşimde bulunduğu promotor, internal promotordur; transkriptler, tRNA sekanslarının içindeki promotor elementlerini içerir (A ve B kısımları, kırmızı renkli). Ribozim sekansı doğal formdaki tRNA sekansının 3’ ucuna bağlanırsa, 3’ tRNaz ribozim – tRNA transkriptinden ribozim kısmını keser. Sonuçta oluşan ribozim endogenik RNaaz tarafından degrede olur. Bu yüzden modifiye olmuş yapıda, wild – type tRNA ‘nın 3’ kısmının bir bölümü linker sekans ile yer değiştirilir ve stem yapısı oluşur. Stem yapısı ribozimin tRNAval kısmından ayrılmasını bloke etmektedir (10). Yüksek İfade Seviyeleri RNA pol III tarafından tanınan promotorlar, tRNA ve küçük nüklear RNA olan küçük RNA’ların transkripsiyonundan sorumludur(10). Bu sebebten dolayı, Pol III ifade sistemleri, hammerhead, hairpin ribozimler ve siRNA olarak bilinen küçük RNA’ların transkripsiyonunda rol oynar. Pol III transkriptleri, pol II transkriptleri ile karşılaştırıldığında, ekstra sekanslar içermektedir (her transkriptin 3’ ve 5’ uçlarında polyA ve cap yapısı vardır). Bu özellikler, pol III sistemini ribozim ve siRNA’ların ekspresiyonu için ideal yapıyor yani, transkriptlerin yüksek seviyeleri güçlü aktivite için gereklidir ve ekstra sekanslar inhibitör etkisi yapar. tRNAmet tRNAva veya tRNAlys gen promotorunu veya U1, U6 veya adenovirus VA1 promotorunu içeren PoI III ifade sistemleri, hücrelerdeki hammerhead ve hairpin ribozimlerin ifadeleri için gereklidir. U6 promotoru çoğunlukla siRNA ifade vektörleri için kullanılır. Bunun yanında, farklı promotorlardan transkribe olmuş siRNA ve ribozimler sahip oldukları çeşitli özellikleri kendi promotorlarından alırlar (10). Kanser Biyolojisindeki Araştırmalar Tümör hücrelerine, hairpin ribozim transfeksiyonu yapılmış ve transforme olmuş hücreler birkaç hücresel proses olan apoptozis, kontak inhibisyonu ve üreme gibi normal regulasyonunu kaybetmiş (10). Hairpin ribozimleri alan hücrelerde tümör supressör gibi regülatör protein fonksiyonu olan bir gen hedeflenmiş ve biyolojik yol izlerinde birkaç yeni genler identifiye edilmiş. Bunların içinde insandaki gene homoloji gösteren D. melanogaster’de “ppan” ve"Mtert"geni keşfedilmiş. Ppan, hücre büyümesinin inhibitörü olarak, Mtert geni ise fibroblast transformasyonunun supressörü olarak identifiye edilmiş. Metastazi Genlerinin İdentifikasyonu Kanser hücrelerinin metastazisinde görev yapan genleri identifiye etmek için rastgele dizayn edilmiş ribozim kütüphaneleri kullanılmış. Kanserin erken safhalarında genellikle malignant hücreler lokalize olur. Hastalık ilerlediğinde metastazi için hücreleri uyaran çeşitli genler ifadelenir veya baskılanır. İnvaziv kanser hücrelerinin hareketi, invaziv olmayan veya zayıf invaziv özellik gösteren hücrelerden daha fazladır (10). Metastazinin mekanizması, kompleks ve çoğunlukla bilinmeden kalmıştır. Bu yüzden metastatik proseslerdeki basamakları identifiye etmek için, farklı prosedürler keşfetmişler. Bunlardan ilki, kemotaksi denemesi, rastgele dizayn edilmiş 33 genler yüksek oranda hareketli olan HT1080 hücrelerine verilir. Transfeksiyondan 24 saat sonra ekstraselüler matriks jeli ile çevrilmiş porlu filtre ile ayrılmış kemotaksi denemesine maruz bırakılmış. Kemoattranktant olarak fibronectin içeren bu denemede yüksek konsantrasyon içeren kısımdan daha düşük konsantrasyon içeren kısma doğru bir geçiş olur. 24 saat sonra yüksek konsantrasyonda bulunan çok az seviyedeki hücreler incelenmiş (invaziv olmayan hücreler). Ribozim taşıyan vektörleri alan bu hücrelerde migrasyonu tetikleyen genler bloke olmuş. İkinci yaklaşım, hücre invazyon denemesi. Bu deneme ilk denemeye benzer, sadece alt kısımın matriks jeli çevrelenmesi hariçtir. Retroviral vektörler (ribozim genlerini içerir)fare fibroblast NIH3T3 hücrelerine verilir. Bu hücreler jel ile çevrelenmiş filtre içinden çok zor geçer ve matriks jeline penetre olmuş hücrelerden RNA izole edilir. Bu RNA’nın, reverse transkripsiyonundan sonra, fibroblastların invaziv aktivitesini sağlayan 8 ribozim bulunmuş. Hücre kültür koşulları fizyolojik durumu tam olarak yansıtmasada, ribozim teknolojisi fare pulmonar tümörogenezis için bir yoldur. Ribozim kütüphaneleri, viral hayat çemberi, apoptik yol izleri, alzhemier hastalığı, kas ve neuronal farklılaşma fonksiyonu gösteren genleri identifiye etmede yararlanılır. Özellikle ribozim kütüphaneleri sinirsel kök hücrelerin farklılaşmasını regüle eden kod oluşturmayan RNA ‘yı identifiye etmede kullanılır. Şekil – 8 Metastazide görev yapan genlerin identifikasyonu a. Rasgele dizayn edilmiş ribozimler, hareketli HT 1080 hücrelerine veriliyor. b. Transfeksiyondan 24 saat sonra, hücreler ekstraselüler matriks jel ile kaplı porlu bir filtre ile ayrılmış alanda kemotaksi denemesine maruz bırakılmış. Üst kısımdan ekstraselüler matriks yolu ile alt kısma göç eden invaziv hücreler gözlemlenmiş. c. 24 saat sonra üst kısımdan göç edememiş hücreler alınmış. d. Alınan hücrelerdeki ribozimler çıkartılmış ve yeniden daha zor şartlar altında test edilmiş. e. Bu ribozim sekansları kullanılarak databazlı araştırmalarda istenen genler saptanmıştır (10). siRNA ve Ribozim Kütüphanelerinin Karşılaştırılması Son yıllarda RNAi, gen baskılanması için güçlü bir araç olarak dikkatleri üstüne çekmiştir (10). C. elegans hücresine dubleks RNA’nın verilmesi sonucunda ilk gen baskılanması ortaya çıktıktan sonra, bitkilerde, D. melanogaster, protozoa ve memeli türlerindeki varlığı saptanmıştır. RNAi mekanizmasında, ekzogenik dubleks RNA’lar 21-23 nükleotidlik siRNA oluştuktan sonra RISC kompleks ile ilişkiye girer. siRNA – RISC kompleksi, sekansa spesifik olarak hedef mRNA’yı keser. Bu reaksiyon, ribozimler tarafından hedef mRNA’nın kesimine benzemektedir. RNAi ‘nin potansiyel gücü, bilimsel kominitelere, genom analizleri ve gen işleyişleri için işe yarar bir araç olarak bakma cesaretini vermiştir. siRNA ifade vektörlerini ve kütüphanelerini kullanarak memeli genomunun karşılaştırmalı sistemik analizlerini yapılmıştır. siRNA kütüphaneleri ile, TRAIL ile indüklenmiş apoptozis, P53‘ e bağlı üremenin tutuklanması ve fosfadilinositol 3 – kinaz (P13)yol izlerinde yeni komponentler identifiye edilmiştir (10). Etkinliği ve Hedef Spesifitesi Ribozim ve siRNA teknolojileri arasındaki en büyük farklılık, siRNA’lar endogenik proteinler ile iş birliği içindedir (10). Halbuki ribozimlerin aktivitesi hücresel faktörlere bağlı değildir. Bu yüzden, siRNA’lar birçok hücresel enzimi kullanır örneğin helikaz ve RNAaz’lar, hedef mRNA’nın kesiminde görev yaparlar. Bundan dolayı, hedef mRNA’ların baskılanmasında ribozimlerden daha etkili bir araçtır. Her iki teknolojide de, hedef bölgelerin seçimi aktiviteyi belirlese de, daha düzenli bir mRNA’nın yapısı siRNA’dan çok, ribozim aktivitesini daha güçlü etkiler. Buna karşın siRNA’ların baskılayıcı aktivitesi, mRNA’nın düzenli yapısından çok, siRNA ve bir grup endogenik protein arasındaki etkileşime bağlıdır. siRNA’ların en önemli dezavantajı, spesifik olmayan baskılayıcı aktivitesidir. Bu baskılayıcı aktivite interferon üretiminin indüklemesi veya hedef olmayan genlere karşı sekansa spesifik silencing etki anlamına gelmektedir. siRNA’nın bir ipliği (antisens) hedef mRNA’ya komplementer, diğer ipliği (sense) değildir. Sense ve antisense iplikler, hedef olmayan mRNA’nın translasyonunu inhibe edebilir. Hedef olmayan genler üzerindeki etkilerin tahmin edilmesi zor olduğundan, bu konuda ribozimler daha düşük aktiviteye sahip olmalarına rağmen, siRNA’ların bir adım önünde bulunmaktadır. Son yıllarda siRNA alanındaki gelişmeler hız kazanmıştır (10). Örneğin, daha önceleri kullanılan 21 – 23 mer siRNA’ların nanomolar konsantrasyonları yerine günümüzde 27 mer’ lik siRNA’ların pikomolar konsantrasyonları kullanılmaktadır. Bu konsantrasyonun kullanılması, hedef dışındaki etkisini minimize edebilir Ayrıca, siRNA ifade vektörlerini dizayn etmek mümkün; shRNA (short haırpın RNA – sens ve antisens sekansları içermekte, Dicer tarafından shRNA siRNA‘ ya dönüştürülür.)‘ nın sadece sens ipliğinin degrede olacağı vektör düzenlenir ve böylece hedef dışı etkileri minimize edilmiş olur. İnterferon uyarılması, sekansa bağlı olmadan spesifik olmayan etki demektir yani, ekzogenik dubleks RNA tarafından immün yanıtın aktive olması demektir. siRNA’lar bu yanıtı uyarmayabilir. Uzun dubleks RNA 30bp’den büyük olursa bu yanıt oluşmaz. Ayrıca, siRNA ‘nın interferon yanıtını uyardığı ve bu yanıtın oluşmaması için bazı faktörler identifiye edilmiştir. Stem (gövde) bölgesinde bir mutasyonun meydana getirilmesi ile (C→U veya A→G) interferon yanıtı azaltılır. Yalnız bu çözüm dsRNA>100bp olduğu durumlar için geçerlidir. Antisens Teknolojisinin Çözüm Bekleyen Sorunları İlk sorun, genlerin insana verilmesini sağlayacak daha kolay ve etkili yöntemlerin bulunmasıdır. Bir başka sorun ise, nakledilen genin hastanın genetik materyalinin hedeflenen bölgesine yerleşmesini sağlamak ve böylece olası bir kanser ya da başka bir düzensizlik riskini ortadan kaldırmaktır (11). Bu konudaki başka bir sorun da, yerleştirilen yeni genin vücudun normal fizyolojik sinyalleriyle etkin bir biçimde kontrolünün sağlanmasıdır. Örneğin insülin, doğru zamanda ve doğru miktarda üretilmediği zaman, hastaya yarar yerine zarar getirecektir. Şu ana kadar yapılan çalışmalar sonrası iyi sonuçlar alınabilmiş fakat kalıcı tedavi çoğu zaman başarılı olamamıştır (11). Bunun bir nedeni, vektörlerin taşıdıkları genin uzun süreli ekspresyonuna izin vermeyişleri, diğeri ise denemelerde etkinlikten çok güvenliğin ön plana çıkmasıdır. Kanser tedavisi için antisens oligonükleotidleri major kaynak olarak görmeden önce, iki temel zorluğu çözmek gerekmektedir. İlaç verilmesinde en çok aranan özellik basitliktir (12). Oligonükleotidin hücresel alınımı sınırlı ve hücre tipleri arasında varyasyonlar göstermektedir. Örneğin, normal lenfositlerin antisens nükleotidleri çok zayıf aldığı gözlemlenmiştir. Lipozomal taşıyıcılarında içinde bulunduğu çeşitli formulasyonlar sonuçlarına bakılmaksızın denenmiştir. Antisens oligonükleotidlerin direk injeksiyonu en yüksek tümör konsantrasyonlarında verilir fakat sistemik tümör tedavisi için kullanımı limitlidir. Gut epitel hücreleri, antisens oligonükleotidleri çok iyi bir şekilde almaktadır, bu yüzden oral formulasyonu mümkündür ve uygulamalar arasında en çok umut veren olabilir. İkinci çözülmeyen konu, hedef onkogen zaman zaman mı aktif oluyor yoksa, bir tümör hücresi olarak mı kalıyor? Tümör hücreleri bazen hareketsiz kalabiliyor ve büyüme aktivitesi, antisens oligonükleotidin verilmesi ile eş zamanlı olmayabiliyor (12). Şu anki duruma göre, önümüzdeki yıllarda gen tedavisindeki eğilim, genleri istenilen hücrelere en etkin biçimde taşıyabilecek vektörlerin dizayn edilmesi yolunda olacak gibi görünüyor. O zaman, gen tedavisinin daha başarılı sonuçlar vereceği söylenebilir. Kaynaklar 1. IDT Tutorial. 2005. Antisense Technologies, 1-12. 2. Kurreck, J. 2003. Antisense Technologies improvement through novel chemical modifications. Eur. J. Biochem, 270: 1628-1644 3. Uprichard, S. L. 2005. The therapeutic potential of RNA interference. FEBS Letters, 579: 5996-6007. 4. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct applications of siRNAs. Journal of Bıotechnology, 124 (1): 12-25. 5. Dorsett, Y and Tuschl, T. siRNAs:2005. Applications in Functional Genomıcs and Potential as Therapeutics. Nature Biotechnology, 40-51. 6. Rychahou, G. P., Jackson, N. L., Farrow, J. B and Evers, M.B. 2006. RNA interference: Mechnanisms of action and therapeutic consideration. Surgery ; 140: 719-25. 7. Matzke, A.M and Birchler, J.A. 2005. RNAi – Mediated Pathways in the Nucleus. Nature Reviews Genetics, 6: 24-35. 8. Hammond, S. M. 2006. MicroRNAs as oncogenes. Current Opinion in Genetics and Development , 16:4-9. 9. Wienholds, E., Plasterk, H.A R.2005. MicroRNA function in animal development. FEBS Letters, 579: 5911-5922. 10. Akashi, H., Matsumoto, S. and Taira, K. 2005. Gene Dıscovery By Rıbozyme and siRNA Libraries. Nature Reviews Molecular Cell Biology, 6: 413-422. 11. Yaşar, Ü. 2006. Gen Tedavisi; Hastalıkların biyolojik temeli III. www.medinfo.hacetttepe.edu.tr/ders. 12. Cunnıngham, C.C. 2002. New modalities in oncology: antisense oligonucleotides. BUMC Proceedings, 15: 125-128.   PDF KAYNAK: documents/tipbil14_3_11.pdf

http://www.biyologlar.com/antisens-teknolojileri-hakkinda-bilgi

Bitki Hormonlarının Sınıflandırılması

Bitki hormonlarına, yapıca benzeyen kimyasal maddeler laboratuvarda sentetik yollarla elde edilmekte ve bunlar bitkiye dıştan uygulandığında bitki hormonu gibi fizyolojik etkiler göstermektedirler. Fakat bunlar, bitkide doğal olarak sentezlenmediğinden ve hormon tanımına girmediğinden büyümeyi düzenleyici maddeler olarak sınıflandırılır. Bitki hormonlarının (fitohormonların) bazı grupları büyümeyi teşvik edici etki gösterirken, bazıları ise engelleyici etki gösterirler. Fakat, bitkide düzenli bir büyüme için, büyümeyi teşvik eden ve engelleyen, her iki tip hormona da ihtiyaç vardır. Bitki hormonları; oksin, sitokininler, giberellinler, absisik asit, etilen ve brassinosteroidler olmak üzere altı gruba ayrılır. Büyümeyi teşvik edenler: oksin, sitokininler, giberellinler, etilen, brassinosteroidler Büyümeyi engelleyenler: absisik asit, etilen Hormon Bitkide Üretildiği Yer Ana İşlevler Oksin (IAA)----Tohumun embriyosu, apikal tomurcukların meristemleri, genç yapraklar.----Gövde uzamasını (yalnızca düşük konsantrasyonda), kök büyümesini, hücre farklılaşmasını ve dallanmayı teşvik eder; meyve gelişimini düzenler; apikal dormansiyi artırır; fototropizma ve gravitropizmada iş görür. Sitokininler (Zeatin)---Köklerde sentezlenir ve diğer organlara taşınırlar. ----Kök büyüme ve farklılaşmasını etkiler; hücre bölünmesi ve büyümesini teşvik eder; çimlenmeyi teşvik eder; senesensi geciktirir. Giberellinler (GA3)---Apikal tomurcukların ve köklerin meristemleri, genç yapraklar, embriyo.----Tohum ve tomurcuk çimlenmesini, gövde uzamasını ve yaprak büyümesini artırır; çiçeklenmeyi ve meyve gelişimini teşvik eder, kök büyümesini ve farklılaşmasını etkiler. Absisik asit---Yapraklar, gövdeler, kökler, yeşil meyve.----Büyümeyi engeller; su stresi esnasında stomalar kapanır; dormansinin kırılmasını engeller. Etilen----Olgunlaşan meyve dokuları, gövdelerin nodyumları, yaşlanan yaprak ve çiçekler.---Meyve olgunlaşmasını artırır; oksinin bazı etkilerini bastırır; türe bağlı olarak, köklerin, yaprakların ve çiçeklerin büyümesini artırır veya engeller. Brassinosteroidler (Brassinolid)----Tohumar, meyveler, gövdeler, yapraklar ve çiçek tomurcukları. ----Kök büyümesini engeller, yaprak absisyonunu engeller, ksilem farklılaşmasını artırır. OKSİN : Büyüme Hormonu Charles Darwin ve oğlu Francis, 19. yüzyılın sonlarında fototropizma üzerindeki ilk denemeleri gerçekleştirmiştir. Bu araştırmacılar, fototropik uyartının kuş yemi (Phalaris canariensis) koleptilinin ucunda oluştuğunu ve belli bir mesafede etki ettiğini gözlemiştir. Fototropizma üzerinde yapılan ilk deneyler. Sadece koleoptilin ucu ışığı algılayabilir; fakat kıvrılma uçtan belli bir uzaklıkta oluşur. Bir sinyal çeşidinin, uçtan aşağıya taşınması gerekir. Sinyal, geçirgen bir engelden (jelatin blok) geçebilir, fakat katı bir engelden (mika) geçemez bu, fototropizma sinyalinin taşınabilir bir kimyasal olduğunu göstermektedir. Koleoptilin ucu kesildiğinde, koleoptilin kıvrılmadığı gözlenmiştir. Koleoptilin ucu ışık geçirmeyen bir kapla örtüldüğünde de fideler ışık yönünde büyüyememişlerdir; buna karşılık, ne koleoptilin ucu şeffaf bir kapla örtüldüğünde, ne de koleoptilin alt kısmı ışık geçirmez bir kapla sarıldığında fototropizmanın oluşması önlenememiştir. Darwin, ışığın algılanmasından koleoptilin ucunun sorumlu olduğunu düşünmüştür. Bununla birlikte, gerçek büyüme yanıtı, yani koleoptilin kıvrılması, uçtan belirli uzaklıkta gerçekleşmekteydi. Darwinler, koleoptilin ucundan uzama bölgesine bazı sinyaller gönderildiğini ileri sürmüşlerdir Koleoptil: Bir yulaf (çim) tohumu embriyosunun genç kökünün örtüsü. Fototropizma: Bir bitki sürgününün ışığa doğru yada ışıktan uzaklaşarak büyümesi Birkaç on yıl sonra, Danimarka‟dan Peter Boysen–Jonsen, bu varsayımı sınamış ve sinyalin hareketli bir kimyasal madde olduğunu göstermiştir. Araştırmacı, koleoptil ucunu, hücreler arasındaki teması kesen, fakat kimyasalların geçişine izin veren jelatin bir blokla koleoptilin diğer kısımlarından ayırmıştır. Bu fideler, ışığa doğu kıvrılarak normal davranış göstermişlerdir. Buna karşın uç, koleoptilin alt kısmından geçirimsiz bir engelle ayrıldığında, fototropik yanıt oluşmamıştır 1926‟da Hollandalı bir lisans üstü öğrencisi olan Frits W. Went, Boysen-Jonsen‟in denemelerinde değişiklik yaparak fototropizmada iş gören kimyasal mesaj taşıyıcı elde etmeyi başarmıştır. Bu araştırmacı, koleoptil ucunu çıkartarak agara yerleştirmiştir, daha sonra agarı bloklara ayırarak koleoptillerin tek tarafına yerleştirmiştir Şöyle ki; agar blokları, karanlıkta tutulmuş ucu kesik koleoptillerin üzerine yerleştirmiştir Koleoptil tepesinin ortasına yerleştirilen bir blok, gövdenin dik büyümesine neden olmuştur. Fakat blok, merkezin uzağına yerleştirildiğinde (asimetrik olarak tek tarafa), koleoptil ucu, ışığa doğru büyümesinde olduğu gibi, agar bloğun bulunduğu tarafın aksi yönünde kıvrılmaya başlamıştır. Went’in Deneyleri. Ucun yerine bir blok konulduğunda, koleoptilden agar bloğa geçebilen bir kimyasal, kök koleoptilinin uzamasını teşvik eder. Eğer blok, karanlıkta tutulan ve ucu kesilmiş bir koleoptilin ucunun uzağına yerleştirildiğinde, organ, tek taraftan ışık alıyormuş gibi kıvrılır. Bu kimyasal, bir hormon olan oksindir. Oksin, sürgünde hücrelerin uzamasını teşvik etmektedir. NOT: Went deneylerinde Avena sativa (yabani yulaf) koleoptillerini kullanmıştır. Went, agar bloğun, koleoptil ucunda üretilen bir kimyasalı içerdiği sonucuna varmıştır. Went‟e göre, bu kimyasal koleoptile geçtikçe büyümeyi uyaran ve artıran bir kimyasaldı ve koleoptilin ışık almayan tarafında daha yüksek bir konsantrasyonda biriktiğinden koleoptil ışığa doğru büyüyordu. Wenti bu kimyasal mesaj taşıyıcı yada hormona, oksin (auxein = artmak) ismini verdi. Daha sonra oksin, Kaliforniya Teknoloji Enstitüsünden Kenneth Thimann ve arkadaşları tarafından izole edilmiş (saflaştırılmış) ve yapısı aydınlatılmıştır. Darwinler‟in ve Went‟in çalışmalarına dayalı olarak, koleoptillerin ışığadoğru büyümelerine neyin neden olduğu yönündeki klasik varsayım, oksinin, koleoptil ucundan aşağıya taşınarak asimetrik olarak dağılmasına ve ışık almayan taraftaki hücrelerin ışık alan taraftaki hücrelerden daha hızlı büyümesine neden olduğudur. Oksin Biyosentezi ve Metabolizması Kenneth Thimann ve arkadaşları tarafından izole edilen oksinin, indolasetik asit(IAA, indol-3-asetik asit) olduğuna karar verildi. Daha sonra bitkilerde çeşitli oksinlerin bulunduğuda anlaşıldı. Bunlar fenil asetik asit (PAA), indol butirik asit (IBA) ve 4-kloro indol-3-asetik asit (4-Cl-IAA) gibi maddelerdir. Bunlar gibi etki gösteren fakat doğal olmayan sentetik oksinlerde vardır; naftelen asetik asit (NAA), 2,4-dikloro fenoksi asetik asit (2,4-D), ve 2,4,5-trikloro fenoksi asetik asit (2,4,5-T), 2-metoksi-3,6-dikloro benzoik asit. Üç doğal oksinin yapısı. IAA, bütün bitkilerde; 4-Cl-IAA, bezelyede; IBA, hardal ve mısırda görülür. IAA, triptofan amino asitinden sentezlenir. IAA‟in bütün sentez yollarında başlangıç maddesi genelde triptofandır. IAA, gövde ve dal uçlarında sentezlenmekle beraber, tohumlarda ve genç yapraklarda da sentezlenir. Oksinin floem yoluyla yukarıdan aşağıya doğru taşınımı saatte 0,5-1,5 cm arasındadır. Oksinin, floem yoluyla az da olsa aşağıdan yukarıya taşındığı radyoaktif izleme yöntemiyle (C14 ile işaretlenmiş oksin kullanılarak) belirlenmiştir. Oksinin taşınımı sentetik bir madde olan 2,3,5-triiyodo benzoik asit (TIBA) ile engellenmektedir. Bunun dışında da doğal ve sentetik oksin inhibitörleri de vardır. Oksinin sürgün ucundan aşağıya, gövdeye doğru taşınma hızı saatte 10 mm dir. Bu taşınım hızı floem yoluyla taşınım hızından daha düşüktür. Oksin, bir hücreden diğerine, doğrudan parankima dokusundan taşınır. Taşınma sadece sürgün ucundan kaideye doğru gerçekleşir. Bunun aksi yönünde bir taşınım görülmez. Oksinin, bu tek yönlü taşınımı polar taşınım olarak adlandırılır. Polar taşınımın yer çekimiyle ilgisi yoktur. Bir gövde yada koleoptil parçası baş aşağı konumlandırıldığında oksin yukarı doğru taşınır. Şekil 10‟da plazma zarında ATP ile çalışan proton pompalarının oksin taşınımı için nasıl metabolik enerji sağladıkları gösterilmiştir (Oksin taşınma mekanizması, kemiozmozis ile hücrenin iş yapmasına diğer bir örnek teşkil eder. Kemiozmozis, proton pompalarının yarattığı H+ gradiyentlerini kullanır). Polar oksin taşınımı (kemiozmotik model). Oksin, büyüyen sürgünlerde, sürgün ucundan aşağı doğru tek yönde taşınır. Bu yol boyunca, hormon, hücrenin apikal ucundan girer ve basal ucundan çıkar. Bu esnada çeperden geçer ve bir sonraki apikal uçtan girer. 1) Oksin hücre çeperinin asidik ortamı ile karşılaşınca, elektriksel olarak nötrleşmek için bir hidrojen alır. 2) Nispeten küçük olan molekül plazma zarından geçer. (oksin hücreye girerken; yüksüz formda (AH), difüzyonla veya anyon (A-) olarak sekonder aktif taşımayla girer.) 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 3) Hücre içinde 7 olan ortam pH sında oksin iyonlaşır. Plazma zarının, iyonlara olan geçirgenliği aynı büyüklükteki nötr moleküllerden daha fazla olduğundan, hormon geçici olarak hücre içinde tutulur. 4) ATP ile çalışan proton pompaları hücrenin içi ve dışı arasındaki pH farkının sürmesini sağlar. 5) Oksin yalnızca hücrenin basal ucundan dışarı çıkar. Hücrenin basal ucunda yer alan zarda, özel taşıyıcı proteinler bu çıkışı sağlar. 6) Proton pompaları, zarın iki yanında bir zar potansiyeli (voltaj) oluşturarak oksin çıkışına katkı yapar. Bu, anyonların hücre dışına çıkmasını sağlar. Kemiosmozis: ATP sentezi gibi, hücresel bir olayı yerine getirmek için zarın karşı tarafında hidrojen iyonu gradiyenti oluşturmakla ortaya çıkan, depolanmış enerjiyi kullanan bir enerji elde etme mekanizması. Hücrede sentezlenen ATP‟nin çoğu, kemiosmozis yoluyla sentezlenir. Proton pompası: Zar potansiyeli meydana getirme işleminde, ATP kullanarak hidrojen iyonlarını hücrenin dışında tutan, hücre zarındaki aktif taşıma mekanizması. Apikal meristem: Kökün uç kısmında ve gövdenin tomurcuklarında bulunan embriyonik bitki dokusu; bitkinin uzunlamasına büyümesi (uzaması) için bitkiye hücre sağlar. Oksin düzeyi bitkide her zaman sabit değildir; mevsim ve çevre şartlarına göre azalıp çoğalabilir. Dolayısıyla oksinin bitkide sentezlendiği gibi parçalandığı sonucuna ulaşırız. IAA hormonu iki şekilde etkisiz hale gelir: birisi çeşitli maddelerle bir enzim aracılığıyla birleştirilerek oksinin inaktif edilmesidir; diğeri ise IAA oksidaz enziminin kataliziyle indol asetaldehit ve CO2‟e parçalanmasıdır. Ayrıca kuvvetli ışıkta da oksin parçalanabilir. Oksinlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Büyümesinde Oksinin Rolü Oksin, esas olarak bir sürgünün apikal meristeminde sentezlenir. Oksin sürgün ucundan hücre uzaman bölgesine taşındıkça, hücrelerin büyümesini uyarır. Bu etki, olasılıkla, oksinin plazma zarındaki bir reseptöre bağlanmasıyla gerçekleşir. Oksin büyümeyi sadece 10-8 ila 10-4 M‟lık konsatrasyon aralığında uyarır. Daha yüksek konsantrasyonlarda hücre büyümesini (uzamasını) engelleyebilir. Bu engellemeyi muhtemelen etilen üretimini teşvik ederek yapar(etilen, bu gibi oskin özelliklerini bastırabilir). Oksin aynı zamanda gen ifadesini hızla değiştirir. Gen ifadesinin değişmesi, dakikalar içinde hücrenin uzama bölgesinde yeni proteinlerin oluşmasını sağlar. Bu proteinlerin bazıları, diğer genleri baskı altına alan yada aktifleştiren kısa ömürlü transkripsiyon faktörleridir. Bu başlangıç hamlesinden sonra büyümenin sürmesi için hücrelerin daha fazla sitoplazma ve çeper maddesi alması gerekir. Oksin, aynı zamanda büyümeyle ilgili bu yanıtın devam etmesini sağlar. Oksine yanıt olarak hücre büyümesi (uzaması); asit büyüme hipotezi. Asit büyüme hipotezi olarak adlandırılan bir görüşe göre, proton pompaları hücrelerin oksine yanıtında büyük bir rol oynamaktadır. Oksin, bir gövdenin uzama bölgesinde plazma zarındaki proton pompalarını uyarır. Bu etkileşim sonucu dakikalar içinde zarın iki yanında zar potansiyeli oluşur (voltaj artar) ve hücrenin pH‟sı düşer (Şekil 11). Çeperin asitleşmesi, ekspansin olarak isimlendirilen enzimleri aktifleştirir. Ekspansinler çeperde selüloz mikrofibrillerin arasındaki bağlantıları (hidrogen bağları) koparır. Bunun sonucunda çeper gevşer. Zar potansiyelindeki artış hücreye iyon alınımını artırır. Bu da, suyun osmozla alınmaına neden olur. Çeperlerin esnekliğinin artışıyla birlikte olan su girişi, hücrenin uzamasını (büyümesini) sağlar. Yan Kök ve Adventif Kök oluşumu Oksinler, ticari olarak bitkilerin çeliklerle vejetatif olarak üretilmesinde kullanılmaktadır. Oksin içeren köklendirme tozu ile bir kesik yaprak yada gövdenin muamele edilmesi çoğunlukla kesik yüzeyin yakınında adventif kök oluşumuna neden olur. Oksin aynı zamanda köklerin dallanmasında da yer alır. Araştırmacılar, yan kökleri aşırı çoğalan bir Arabidopsis mutantının normalden 17 kat daha fazla oksin içerdiğini bulmuşlardır. Ayrıca oksin, apikal dominansinin sürdürülmesinde , absisyonun engellenmesinde, kambiyal faaliyetleri artırarak dikotillerde enine büyümenin teşvikinde, tohum çimlenmesinde, meyve gelişiminde, fototropizma, gravitropizma gibi olaylarda da rol alır. Oksin, primer büyüme için hücre uzamasını uyarmasının yanında, sekonder büyümeyi de etkiler. Bunu, demet kambiyumunda hücre bölünmesini teşvik ederek ve sekonder ksilemin farklılaşmasını etkileyerek yapar. Gelişmekte olan tohumlar oksin sentezlerler. Bu oksin, meyvelerin büyümesini artırır. Domates fidelerine oksin püskürtülmesi, tozlaşmaya gerek duyulmaksızın meyve gelişimini teşvik eder. Bu, normalde gelişmekte olan tohumlar tarafından sentezlenen doğal oksin yerine, sentetik (yapay) oksin kullanılarak, tohumsuz domates yetiştirilmesine olanak sağlar. Oksinlerin zirai amaçlı kullanımında aşağıdaki yöntemler kullanılır: 1) Yapraklara püskürtme. 2) Sulama suyuna karıştırma. 3) Kesik yüzeylere lanolin macunu içinde sürme. 4) Bitki organlarını hormon içeren çözeltiye batırma. 5) Belirli bir dokuya enjeksiyon yapma. Sentetik oskinler, daha ucuz olduğundan, bunları tanıyan yıkıcı enzimlerin bitkide bulunmadığından, bazılarının doğal olanlara göre daha etkili olduğundan pratik olarak daha çok kullanılırlar. Gravitropizma: Bitki yada hayvanların, yer çekimiyle ilişkili olarak verdikleri yanıt. Herbisit Olarak Oksinler 2,4-Dinitrofenol (2,4-D) gibi sentetik oksinler, yaygın bir şekilde herbisit (yabani ot öldürücü) olarak kullanılmaktadır. Mısır gibi monokotiller süratle bu sentetik oksinleri, etkisizleştirirken, dikotiller bunu yapamaz. Bu nedenle aşırı hormon dozları bu bitkileri öldürür. Tahıl tarlalarına 2,4-D püskürtülmesi, karahindiba gibi dikotil otları ortadan kaldırır. Böylece tahıllardan daha çok mahsul alınır. IBA ve NAA, çeliklerin köklendirilmesinde kullanılır. Çelikler bu maddelerin çözeltilerinde bir süre batırılarak köklendirilir. NAA seracılıkta domates ve salatalık gibi sebzelerde çiçeklenme ve meyve gelişimini artırmak için, elma ve armut gibi meyve ağaçlarında meyva tutumunu artırmak için kullanılır. Bu uygulamalar püskürtme ile yapılmaktadır. Bunların dışında, oksinler doku kültürü çalışmalarında kök geliştirilmek üzere besi ortamına ilave edilerek kullanılır. SİTOKİNİNLER : Hücre Büyüme Düzenleyicileri Doku kültüründe bitki hücrelerinin büyüme ve gelişimini artıran kimyasal katkı maddelerini bulmak için gösterilen çabalar, sitokininlerin keşfine yol açmıştır. New York‟ta Cold Spring Harbor Laboratuvarında çalışan, Johannes van Overbeek, 1940‟lı yıllarda, kültür ortamına, Hindistan cevizi tohumunun sıvı endosperminin (hindistancevizi sütü), bitki embriyolarının büyümesini uyardığını buldu, fakat bu madde tanımlanamadı. Bu maddeyi, 1974‟te Letham zeatin olarak tanımladı (ayrıca Letham mısır endosperminde de zeatin elde etmiştir). Daha sonra, t-RNA‟nın antikodon bölgesine yakın bir yerde bulunan izopentenil adenin (IPA) homonu keşfedildi. Bunlar bitkilerde sentezlenen-doğal- sitokinin hormonlarıdır. 1950‟de Wisconsin Üniversitesinden Folke Skoog ve Carlos O. Miller, kültür ortamına ilave ettikleri parçalanmış DNA örneklerinin, tütün hücrelerinin bölünmesini artırdığını gözlemlemişlerdir. Burada rol alan madde otoklavlanmış DNA‟da aydınlatılmış ve kinetin olarak adlandırılmıştır. Kinetin sentetik bir sitokinindir. Sentetik sitokinlere diğer bir örnek ise benzil adenin (BA)‟dir. Sitokininlerin aktif bileşeni, nükleik asitlerin bir elemanı olan adenin (amino pürin) bazının değişime uğramış formlarıdır. Sitokinezi yada hücre bölünmesini uyarması nedeniyle bu büyüme düzenleyicileri, sitokininler olarak isimlendirilmiştir. Bitkilerde doğal olarak oluşan sitokinin çeşitlerinden en yaygın olanı zeatindir. Zeatin, ilk kez mısır (Zea mays) bitkisinde keşfedildiği için bu isim verilmiştir. Sitokininlerin Biyosentezi ve Metabolizması Sitokininlerin sentezi amino pürin yani adeninden başlar. fakat yan grupların sentezi tam bilinmemektedir. Zaten sitokininlerin hormon aktivitesi gösteren kısmı yan gruplara bağlıdır. IPA, t-RNA‟nın yapısındayken hormon aktivitesi göstermez fakat t-RNA‟nın parçalanmasıyla serbest hale geçtiğinde aktivite gösterir. Büyük çabalara rağmen ne sitokininleri oluşturan enzimler bitkilerden izole edilebilmiş ne de onu kodlayan genler tanımlanabilmiştir. Hatta Salisbury Devlet Üniversitesinden Mark Holland, bitkilerin kendi sitokininlerini üretemeyebileceklerini ileri sürmüştür. Bu araştırmacıya göre, sitokininler bitki dokularında simbiyotik oalrak yaşayan ve metilobakteriler olarak isimlendirilen prokaryotlar tarafından üretilmektedir. Bu bakteriler in vitro kültürlerde bile aktif olarak büyüyebilmektedirler. Gerçekten metilobakteriler yok edilince normal gelişme süreci engellenmektedir. Bu süreç, metilobakterilerin yeniden uygulanması yada sitokininlerin yeniden verilemsiyle düzelmektedir. Bu kışkırtıcı varsayımın destek bulup bulmamasına bağlı olmaksızın, varacağımız yer şudur; genom sekanslanması bizi gerçek bilgiye götürecektir. Şu an Arabidopsis‟in gen dizisi analizi tamamlanmıştır. Dolayısıyla, eğer bir sitokinin üreten enzim mevcut ise bunun kolaylıkla tanımlanması gerekir. Bitki hücreleri sitokininlerin kaynağına bağlı olmaksızın sitokinin reseptörlerine sahiptir. Bazı kanıtlar, biri hücre içi, diğeri hücre yüzeyinde olmak üzere iki farklı sitokinin sınıfının varlığını göstermektedir. Sitoplazmik reseptör, sitokinine doğrudan bağlanır ve izole nukleusta transkripsiyonu uyarabilir. Sitokininler bazı bitki hücrelerinde plazma zarındaki Ca+2 kanallarını açarak, sitosolde Ca+2 artışına neden olur. Sitokinin sentezi ve sinyal iletimi hakkında tam olarak bilimsel veriler bulunamamıştır. Fakat bitki fizyolojisi ve gelişimi üzerindeki ana etkileri bilinmektedir. Sitokininlerin yıkımı, sitokinin oksidaz enzimi ile yan grupların uzaklaştırılması ve amino pürin kalmasıyla gerçekleşir. Amino pürin tek başına hormon etkisi gösteremez. Diğer bir yollada; sitokininler şekerlerle birleştirilerek glikozitlerin oluşmasıyla inaktif hale getirilebilir. Turpta rafanatin adı verilen glikozit (glikozil zeatin) bu şekilde meydana gelir. Sitokininlerin bitkide başlıca sentez yerleri tohumlar, genç yapraklar ve en çok kök uçlarıdır. Kök uçlarında sentezlenen sitokininler ksilem yoluyla gövdeye ordanda etki gösterecekleri hedef dokulara taşınırlar. Yaprak, tohum ve meyve gibi organlara sitokininlerin başlangıçta kökten taşınarak geldikleri kabul edilmektedir. Sitokininlerin yukarıdan aşağıya doğu taşınımları ile ilgili veriler çeşitlidir. Yapraklarda uygulanan sitokininler ağaç gibi bazı bitkilerde hiç taşınmayıp yaprakta biriktiği, ancak çilek gibi bitkilerde yavaşta olsa yapraktan diğer organlara taşındığı belirtilmiştir. Sitokininlerin Fizyolojik Etkileri ve Pratik Değeri Hücre Bölünmesi ve Farklılaşmanın Kontrolü Sitokininler, özellikle kökler, embriyolar ve meyvelerde olmak üzere, aktif olarak büyüyen dokularda üretilirler. Kökte üretilen (sentezlenen) sitokininler ksilem öz suyunda taşınarak hedef dokulara ulaşır. Sitokininler, oksin ile birlikte hareket ederek hücre bölünmesini teşvike eder ve farklılaşmayı etkiler. Doku kültüründe büyüyen hücreler üzerinde sitokininlerin etkileri, bu hormonun bütünlüğü bozulmamış bir bitkideki işlevi hakkında ipucu verir. Gövdeden alınan bir parankima dokusu parçası sitokinler olmaksızın kültüre alındığında hücreler çok fazla büyürler fakat, bölünmezler. Sitokininler tek başlarına etki göstermezler, oksin ile birlikte uygulandıklarında hücreler bölünürler. Sitokininin oksine olan oranı ise hücre farklılaşmasını kontrol eder. Bu iki hormonun konsantrasyonları dengelenince, hücre kütlesi büyümeyi sürdürmekle birlikte, farklılaşmaz ve küme oluşturur. Farklılaşmamış bu hücre kümesi, kallus olarak isimlendirilir. Eğer sitokinin oranı artırılırsa kallustan gövde tomurcukları gelişir. Oksin düzeylerinin artırılması halinde ise kökler oluşur. Simbiyoz: Birbirleriyle doğrudan temas halinde olan iki farklı türe ait organizma arasındaki ekolojik ilişki. Endosperm: Çifte döllenme sırasında bir sperm hücresinin iki kutup hücresi çekirdeği ile birleşmesiyle oluşan besince zengin doku; angiospermlerin tohumu içerisinde gelişen embriyoya besin sağlar. In vitro: Hücelerin, dokuların, organların ait oldukları organizmaların dışında yapay ortamlar içinde yetiştirilmeleri veya bulunmaları. Apikal Dominansinin Kontrolü Apikal dominansinin kontrolü için sitokininler oksin ve diğer faktörlerle etki gösterirler. Apikal dominansi, tepe tomurcuğunun yanal tomurcukların gelişimini baskı altına almasıdır. Son zamanlara kadar, apikal dominansinin hormonlar tarafından düzenlenmesi ile ilgili başlıca varsayıma göre (doğrudan engelleme varsyımı) yanal tomurucuk büyümesinin düzenlenmesinde oksin ve sitokinin antagonistik(birbirinin tersi etki göstermek) etki gösterir. Bu görüşe göre; tepe tomurcuğundan sürgünün alt kısımlarına taşınan oksin yanal tomurcukların büyümesini doğrudan engeller. Böylece gövde uzar, fakat yan dallar oluşmaz. Aynı zamanda, kök sisteminden gövde sistemine giren sitokininler büyümenin başlaması için yanal tomurcuklara sinyal göndererek oksin etkisini ortadan kaldırır. Buna göre; yanal tomurcuk engellenmesinin kontrolünde oksinin sitokinine oranı kritik bir etmendir. Pek çok gözlem doğrudan engelleme varsayımı ile uyumludur. Eğer başlıca oksin kaynağı konumundaki tepe tomurcuğu uzaklaştırılırsa (kesilirse), yanal tomurcuklar engellenmez ve bitki çalımsı görünüm alır. Ucu kesilmiş fidelerin kesik yüzeylerine oksin uygulanması yanal tomurcukların büyümesini baskı altına alır. Aşırı sitokinin üreten yada sitokininle muamele edilen bitkiler, normalin üstünde çalımsı görünüm alırlar. Doğrudan engelleme varsayımına göre, başlıca oksin kaynağı durumundaki tepe tomurcuğunun kesilmesi yanal tomurcukların oksin düzeyinde bir azalmaya neden olacaktır. Fakat, biyokimaysal çalışmalar bunun tersini göstermektedir. Ucu kesilen bitkilerin yanal tomurcuklarında oksin düzeyleri artmıştır. Böylece, doğrudan engelleme varsayımı tüm deneysel bulgular tarafından desteklenememektedir. Bu halen bir bilmecedir. Yaşlanmayı Önleyici Etkileri (senesensi geciktirme) Sitokininler, protein parçalanmasını (yıkımını) engelleyerek, RNA ve protein sentezini teşvik ederek ve etraftaki dokulardan besin elementlerini hareketlendirerek bazı bitki organlarının yaşlanmasını geciktirir. Eğer bir bitkiden alınan yapraklar bir sitokinin çözeltisine daldırılırsa, uzun süre yeşil kalırlar. Ayrıca sitokininler bütünlüğü bozulmamış bitkilerde yaprak bozulmasını yavaşlatır.Bu yaşlanmayı engelleyici etkisi nedeniyle, çiçek satıcıları kesilmiş çiçekleri taze tutmak için sitokinin spreyleri kullanırlar. Ayrıca sitokininler kloroplast gelişiminde, boy kısalığında, vasküler kambiyum faaliyetini artırıcı etkilerde etmendir. Kloroplast gelişiminde; karanlıktaki etiyole bitkiye sitokininle muamele edildiğinde, lamellere sahip kloroplastların meydana geldiği fakat klorofil oluşmadığı belirlenmiştir. Işık ve sitokinin etiyole bitkiye birlikte uygulanmasında ise, sadece ışık uygulanan bitkiye göre kloroplastların ve klorofilk sentezinin daha iyi ve hızlı oluştukları görülür. Kök ve gövdeye dıştan yüksek dozda uygulanan sitokinin enine büyümeyi artırarak boy kısalığına sebep olur. Etilende bu etkiye sahip olduğuna göre, sitokininlerde oksinler gibi bitkide etilen artışına sebep olurlar? Bu soruya cevap olarak; bu etkinin hücre çeperinde yeni sentezlenen (üretilen) mikrofibrillerin diziliş yönlerini değiştirmeleri öne sürülmüştür. Sitokininler oksinler gibi vasküler kambiyum faaliyetini artırıcı etkiye sahip olduklarından oksinlerle birlikte aşı macununa karıştırılarak aşı tutmayan bitkilerde aşılamayı kolaylaştırmada kullanılırlar. NOT: Sitokininler bazen oksinin tamamlayıcısı (büyüme), bazen de antagonisti (kök ve tomurcukların farklılaşması) gibi görünmektedir. Etki mekanizmaları bilinmemesine rağmen bu iki tip hormon arasındaki dengenin büyümeyi belirleyici faktörlerden biri olduğu açıktır. Apikal dominansi: Büyüme olayının, bitkinin gövdesinin uç kısmında yoğunlaşması ve buradaki terminal tomurcuğun, lateral tomurcukların büyümesini kısmen engellemesi. Senesens: Bitkilerde yaşlanma ile birlikte gerçekleşen ve bir dokunun, bir organın veya bir bikinin ölümüne yol açan katabolik olaylar dizisi. Kallus: Bitkilerde sürgünlerin kesilen ucunda yer alan, bölünme özelliği gösateren farklılaşmamış hücre kümesi. Dormansi: Büyümenin ve gelişmenin askıya alındığı, son derece düşük metabolik hız ile kendisini gösteren durum. Vernalizasyon: Bazı bitkilerinçiçeklenmesi için sadece uygun fotoperyod yeterli olammakta, belli bir süre düşük sıcaklığa maruz kalması gerekir. Absisyon: Yaprak, çiçek ve meyve gibi organların bitkiden koparak dökülmeleridir.

http://www.biyologlar.com/bitki-hormonlarinin-siniflandirilmasi

İndüklenmiş pluripotent kök hücreler

İndüklenmiş pluripotent kök hücreler

İnsan iPSC'lerinin hücre akıbetini kontrol etmek için kullanılan geniş bir hücre kültürü ortamı koleksiyonu, takviyeleri, biyoaktif küçük moleküller ve büyüme faktörleri sunuyoruz. Aşağıdaki tablo, insan iPSC'lerini farklı hücre soylarına ayırmak için kullanılan en yaygın şekilde kullanılan protokolleri, ortamları ve karakterizasyon antikorlarını vurgulamaktadır.

http://www.biyologlar.com/pluripotent-ozellik-nedir

Charles Darwin Balinaların Ayılardan Evrimleştiğini Gerçekten İddia Etti mi?

Ayıların balinalara evrildiği konusunda Darwin’ “Türlerin Kökeni” kitabının ilk sayısında tam olarak şöyle demiştir: “In North America the black bear was seen . . . swimming for hours with widely open mouth, thus catching, like a whale, insects in the water. Even in so extreme a case as this, if the supply of insects were constant, and if better adapted competitors did not already exist in the country, I can see no difficulty in a race of bears being rendered, by natural selection, more and more aquatic in their structure and habits, with larger and larger mouths, till a creature was produced as monstrous as a whale.“ Bunun Türkçe çevirisi şu şekildedir: “Kuzey Amerika’da siyah ayı, tıpkı balinalar gibi, ağzı açık bir şekilde suda böcek yakalayabilmek için saatlerce yüzerken görülmüştür. Bu her ne kadar çok uç bir izah olsa da, eğer sürekli olarak böcek sağlanırsa ve eğer iyi adapte olmuş rakipler ülkede henüz ortaya çıkmamışsa, ayı ırkının, doğal seleksiyon ile, yapılarında ve alışkanlıklarında fazla, daha da fazla suda yaşar hale gelerek değişime uğramalarında bir zorluk göremiyorum. Gitgide genişleyen, daha da genişleyen ağızlarıyla, ta ki bir balina kadar dev bir yaratık haline gelinceye kadar.” (Türlerin Kökeni, 1. baskı, 6. bölüm, s. 184) Şimdi yukarıdaki anlatımda da görüldüğü gibi Charles Darwin doğrudan balinaların ayılardan türediğini iddia etmiyor. Çoğu yaratılışçılar tarafından çarpıtılan ya da seve seve yanlış anlaşılan bu ifadede Darwin tarafından iddia edilen şey, ayıların balinalardan türedikleri değil, aksine bir ayının ağzının, gerekli ortam şartları oluştuğunda, doğal seçilim yoluyla balina ağzı gibi devasa bir boyuta ulaşabileceğidir. Yani ayıların evrimine dair geleceğe yönelik hipotetik bir düşünce bu. Dikkat edilirse balina gibi devasa bir yaratık diyor, yani balinanın kendisine değil balina büyüklüğünde bir yaratığa dönüşebilir diyor. Yaratılışçılar tarafından ısrarla yanlış anlaşıldığı ve çarpıtıldığı için yukarıdaki ifadesini kitabının diğer baskılarında kullanmayan Charles Darwin yazdığı başka bir mektupta, ayıların ağız yapısının ve büyüklüğünün gerekli ortam şartları oluştuğunda değişebileceğini düşündüğünü buna rağmen tekrar belirtmiştir. “Bir ayının ağzının, değişen alışkanlıklarına uygun gelecek derecede genişlemesinde hiçbir zorluk olmadığı konusunda hala ısrar ediyorum.” (More Letters of Charles Darwin, Francis Darwin, 1903, s. 162)

http://www.biyologlar.com/charles-darwin-balinalarin-ayilardan-evrimlestigini-gercekten-iddia-etti-mi

Evrim Teorisi ile İlgili 5 Soru 5 Yanıt

Charles Darwin’in meşhur “Türlerin Kökeni” isimli yapıtının yayınlanmasının üzerinden bir buçuk yüzyıl geçti. Bu süre içinde evrim kuramı sürekli sorgulandı. Darwin genetik ve moleküler biyoloji konusunda hiçbir şey bilmemesine rağmen modern biyoloji bu büyük bilim adamının şaşırtıcı fikirlerini hep doğruladı. Ne var ki bugün evrim biyolojisinin hâlâ yanıtlayamadığı sorular var. Saygın bilim dergisi New Scientist bunların içinden önemli bulduğu 5 tanesini seçerek, en son bulguların ışığı altında uzmanlardan bunları yanıtlamasını istedi. Aşağıda bu sorulara 5 bilim adamının verdiği yanıtları kısaltılmış şekliyle bulacaksınız. 1.Soru Yaşam nasıl başladı? Bu soruyu Glaskow’daki Scottish Üniversities Çevre Araştırmaları Merkezi’nden Michael Russell yanıtladı. 4 milyar sene önce, nükleer ve yerçekimsel enerji Dünya’nın içini kavururken, dışı asteroid darbeleri altında delik deşik olmuştu. Doğal olarak bu ortamda canlıların yaşaması olası değildi. Her şeye rağmen hayat başladı. Pek çok bilim adamı ”vivosentrik” bir yaklaşımla bu olağanüstü olaya açıklık getirmek istediler. Bu yaklaşımın amacı, bugünün hayat şekillerinden başlayıp, aşama aşama geriye doğru giderek organik yapı malzemelerinin kökenini bulmaktı. Bana kalırsa bu yaklaşım başarısızla sonuçlanmaya mahkumdu, çünkü bu bakış açısı ilk Dünya’nın jeokimyasını dikkate almaz ve yaşamın ortaya çıkış nedenini gözardı eder. Şikago Üniversitesi’nden Stanley Miller ‘ın proteinlerin yapı taşı olarak bilinen amino asitleri yaratmasının üzerinden 50 sene geçti. Metan, hidrojen ve amonyağı, kapalı bir cam gereç içinde ısıtan Miller, daha sonra karışımı elektrik kıvılcımı ile hareketlendirdi. Bu deneysel çalışma, kavurucu bir Dünya’da yaşamın bir yıldırım düşmesi ve morötesi radyasyonla başlamış olabileceğiiddiasını doğrulayan bir kanıt olarak ele alındı. Ancak bugün insanlar proteinlerin ilk başta varolduğuna inanmıyor. Bugün geçerli olan düşünceye göre hayat bir RNA dünyasında başladı. Ve bu dünyada RNA’ların sadece bilgi taşıyıcı olarak değil, ilk denizlerdeki organik bileşimlerden yararlanarak, yaşamın reaksiyonlarını katalize eden ilkel enzimler olarak davrandığı düşünülüyor. Ne var ki okyanusların, hayat için gerekli olan organik molekül konsantrasyonunu sağlamış olma olasılığı çok düşük. Kuramcılar bu soruna çözüm oluşturabilecek değişik düşünceler ortaya atıyor. Bazıları yaşamın kuru bir kara parçasında, -dönemsel olarak buharlaşan bir gölette- başlamış olabileceğini ileri sürerken, başkaları okyanusların donup, gerekli molekül konsantrasyonunun artakalan sıvıda birikmiş olabileceğini ileri sürüyor. Diğer bilim adamları, metabolizmanın bir kil ya da pirit yüzeyinde iki boyutlu başlama olasılığından söz ediyor ve bu iki boyutluluğun lipidlerin hücre zarı olarak kendilerini örgütleyinceye kadar sürdüğüne inanılıyor. İddialar bunlarla sınırlı değil. Uzayın dört bir yanında yaşayan organik moleküller hayatı başlatmış olabilir. Bunlar göktaşlarının üzerinde Dünya’ya inmiş, okyanus yüzeylerinde birikerek, organik reaksiyonların meydana geldiği küçük kesecikler oluşturmuş olabilir. İnandırıcı değil Ben bu kuramların hiçbirini inandırıcı bulmuyorum. Benim görüşüme göre yaşamın kökeni biyolojik değil, jeolojik. Evrim ağacını köklerine doğru irdelemek yerine, kökten başlayarak yukarı doğru çıkmakta fayda var. Bu arada ilk Dünya’nın jeolojik yapısını hesaba katmak gerekiyor. Evrenimizde, yapılar eldeki malzeme ile inşa edilir. Bu süreçte enerji bir düzeyden diğerine geçiş sırasında azalırken, entropi (herhangi bir sistemin evrenle beraber düzensizlik ve etkisizliğe doğru olan eğilimi) çoğalır. Dolayısıyla yaşamın kökenlerini ortaya çıkartma çabalarımızda, ilk Dünya’yı oluşturan malzemenin ve enerjinin yaşam-benzeri bir yapıyı oluşturmak için nasıl biraraya geldiğini sormamız gerekir; hangi termodinamik ve kimyasal reaksiyonların söz konusu olduğunu, atık ve aşırı ısıdan nasıl kurtulduğumuzu öğrenmemiz gerekir. Özetle, yanıt bulmamız gereken soru şu: Kendi kendini düzenleyen elektrokimyasal bir aracın, birkaç milivoltluk bir enerjiyle, redoks reaksiyonlarından yararlanarak, aynı anda çoğalarak ve dışkı atarak nasıl varolduğunu çözmemiz gerekir. Başlangıç noktası İlk Dünya yaşamın başlangıç noktası olarak iki adet saha adayı sunuyor. Biri okyanus sırtlarındaki asidik pınarların içindeki mineral tortul birikimleri; diğeri deniz tabanındaki alkalin sızıntıları. Bu iki tip pınar daha soğuk, karbonik okyanus tabanına sürekli olarak malzeme ve enerji taşır. Ayrıca bu iki ortam da bugün bile canlı organizmaların yaşamasına uygun alanlardır. Ama bana göre pek çok nedene bağlı olarak okyanus sızıntıları yaşamın başlangıç noktası olmaya daha yatkın. Bir kere bu okyanus sızıntıları dayanılabilir bir sıcaklık olan 75 derecedir. Oysa asidik pınarlarda sıcaklık 350 dereceye kadar çıkar ve burada organik moleküller yaşayamaz. Ayrıca alkalin sızıntılar organik moleküllerin eriyebilirliklerine uygundur. Ve alkalin sızıntıların asidik okyanus sularıyla birleştiği noktada daha çok enerji bulunur. Çünkü denizden gelen protonlar, sızıntıdaki elektronları güçlendirir. Sonuçta toplamda ortaya yarım voltluk akım çıkar. Bu da metabolizma için yeterlidir. Yaşam eski alkalin sızıntılarda başladıysa neye benziyor olabilir? Bana kalırsa bu ilk şekil hareketsiz demir sülfid bölmeleri şeklindeydi. Bunlar yarı geçirgen, yarı iletken olmakla birlikte, reaksiyonları katalize edebilecek özellikteydi. Ayrıca demir sülfid zarlar organik zarların öncüsü, atası olabilir. Daha da önemlisi bunlar moleküler yapı bloklarını biraya getirmiş olabilir. Dolayısıyla yaşamın kimyasal reaksiyonlarının olması için ideal bir ortam oluşturuyordu. Bu demir sülfid bölmelerinin içinde hidrojen, amonyak ve siyanür kaynayıp durur. Bunların birarada reaksiyona girmesi için gerekli olan enerji, derece derece değişen elektronlardan sağlanır. Sonuçta şeker, ribonükleik asitler ve amino asitler oluşur. Eğer demir sülfid bölmeler Dünya’da hayatı başlatacak yapı taşlarının biraya gelmesi için yeterli ortamı sağladıysa, evrendeki herhangi bir gezegende nemli, kayalık ve güneşin aydınlattığı ortamlarda aynı rolü oynamıştır. Dolayısıyla sıvı suyun bulunduğu her yerde hayat oluşabilir. 2. Soru Mutasyonlar evrimi nasıl gerçekleştirdi? Bu soruyu University College London’dan Andrew Pomiankowski yanıtladı. Genetik mutasyonlar evrimin hammaddesidir. Ama hangi tip mutasyonların önemli olduğunu belirtmek gerekir. Eskiden beri biyologlar genlerdeki değişiklikler üzerinde durmayı seçim eder. Bu da protein kodlarının DNA dizilimidir. Son yıllarda kabul gören görüş şudur: Mutasyon sonucunda, amino asit dizilimi biraz değişik proteinler oluşur. Proteinler organizmaya hayatta kalma avantajı sağlar. Ne var ki pek çok gen diziliminin değişimi milyonlarca senede ama gerçekleşir. Bu yavaşlıkta seyreden bir değişim, morfolojik ve davranışsal evrimi yaratmış olabilir mi? Ben ve benim gibi gelişim biyologları en son yıllarda buna alternatif oluşturan bir görüş ortaya attı. Bu görüşe göre evrim konusunda en önemli rolü oynayan unsur, DNA’nın gen ifadesini düzenleyen bölgesindeki mutasyonlardır. Aykırı yollar var Son 10 senede bu konuda gerçekleştirilen en önemli keşif, değişik hayvan grupları arasındaki ortak gelişim genetik yollarıdır. Klasik örnek ”Hox” genleridir. Hox genleri sorumludur. Bunlar ilkin meyve sineklerinde keşfedildi. Ama balıklarda, kurbağalarda ve insanlarda da aynı gen bulundu. Bu organizmalarda vücut şekli değişik olmakla birlikte, Hox geninin dizilimi birbirinin aynısıdır. Daha da önemlisi, Hox genlerinin uzak türler arasında değiş tokuş edilmesidir. Bundan da şu sonuç çıkıyor: Evrim, aslında genleri korumaya alıyor. Ama aralarındaki etkileşimle oynayarak meyve sineklerinden insanlara dek çok değişik türlerin oluşumunu hazırlıyor. Gen ifadesini denetim eden sistemlerin biri ”cis-regülasyonudur”. Cis-regülasyonu, transkripsiyon faktörleri olarak bilinen proteinlerin, DNA’nın “promoter bölgeleri”ndeki genlerine bağlanmasıdır. Her promoter’ın çoklu bağlanma siteleri vardır. Transkripsiyon faktör bağlama, genleri açık ya da kapalı konuma getirir. Bunun sonucunda gen ifadesi gelişim sırasında denetim edilir. Ayrıca transkripsiyon faktör bağlama, organizmanın aynı genlere sahip olmakla beraber değişik şekillere dönüşmesine izin verir. Sonuçta ortaya az değişik proteinler çıkar. Sözgelimi embriyo evresinden yetişkine dönüşmek ya da dişi/erkek form değişikliği gibi. Şimdi artık, cis-regülasyon’un gelişim için çok önemli olduğu biliyoruz. Son yıllara kadar genlerin birbiriyle nasıl iletişim kurduğunu bilmiyorduk. Ama en son araştırmalar genler arasındaki iletişim ağını yavaş yavaş aydınlatıyor. Bu bilgilerin ışığı altında mutasyonların şekil ve işlev açısından ne biçimde uyum sağladını anlayabiliyoruz. Ama bu konuda temkinli davranmakta yarar var. Tüm bilim dallarında yeni bulguları abartma eğilimi vardır. Gen ağlarındaki evrimsel değişikliklerin, morfolojik evrimi tetikleyen en önemli güç olduğu iddialarını değerlendirirken kuşku payı bırakmakta yarar var. Kuşkusuz, genlerin iç mutasyonlarının ve yeni gen mutasyonlarının evrim konusunda çok önemli rol oynadığını biliyoruz. Ayrıca bundan böyle gen dizilimi konusundaki fonksiyonel değişiklikleri izleyebiliyoruz. 3. Soru Yeni türler nasıl oluştu? Bu soruyu İngiltere’deki Hull Üniversitesi’nden George Turner yanıtladı: Son günlere kadar türlerin nasıl oluştuğunu bildiğimizi sanıyorduk. Bu sürecin popülasyonların tecrit edilmesiyle oluştuğu inancı yaygındı. Popülasyonlar ciddi bir ”gen darboğazı”ndan geçerse çeşitlenme başlıyordu. Sözgelimi hamile bir dişi, uzak ve izole bir adaya gider ve doğan çocuklar birbirleriyle çiftleşirse yeni bir tür doğabilir. “Kurucu etkisi” adı verilen bu modelin güzelliği laboratuvarda test edilebilme olasılığıydı. Ne var ki gerçek yaşamda bunu kimse başaramadı. Evrim biyologlarının çabalarına rağmen, kimse kurucu popülasyondan yeni bir tür yaratmayı başaramadı. Dahası, bildiğim kadarıyla, küçük organizmaların yabancı ortamlara bırakılması sonucu yeni türler oluşmadı. Son günlerde çabalar başka bir yöne yoğunlaştı. Biyologlar çeşitliliğin coğrafi tecritten kaynaklandığına inansa da bu bağlamda “şans” ve küçük popülasyon kavramları geçerliliğini yitirdi. Artık biyologlar, türleri hızlı bir biçimde değiştiren aykırı yolları incelemeyi seçim ediyor. Etkili olan belli başlı güçler ekolojik seleksiyon (Değişen çevre koşullarına uyum çabaları sonucunda ortaya yeni türler çıkar) ve seksüel seleksiyondur (Değişen cinsel tercihler popülasyonda değişiklik yaratır). İşte en kritik soru bu iki gücün önemi üzerine yoğunlaşıyor. Ekolojik seleksiyona en güzel örnek ”paralel çeşitlenme” olgusudur. Burada aynı türler, birbirinden bağımsız şekilde, benzer çevresel koşullara tepki olarak, değişik mekânlarda ortaya çıkar. Buna en iyi örnek Kanada göllerinde yaşayan dikenli balıktır (gasterostus). Kanada’daki göllerde iki çeşit dikenli balık bulunur. Biri dipteki yiyeceklerle beslenirken, diğeri planktonlarla beslenir. Mitokondriyal DNA’larının (mtDNA) incelenmesi sonucu bu iki türün paralel çeşitlenme sonucu ortaya çıktığı anlaşıldı. Bu bulgular, “simpatrik çeşitlenme” denilen yeni bir oluşumu da ortaya çıkarttı. Burada çeşitlenme coğrafi tecride bağlı değildir; melezleşme söz konusudur. Tecrit çeşitlenmesini savunanlar bu görüşe karşı çıksalar da mtDNA çalışmaları simpatrik çeşitlenmeyi destekliyor. Bazı biyologlar melezleştirme sürecinin yeni türlerin oluşumunda önemli bir rol oynadığını düşünüyor. Kuram olarak, bir türün paralel evrim sonucu mu, seksüel seleksiyon sonucu mu yoksa melezleştirme sonucu mu ortaya çıktığını ”çeşitlenme genleri” ne bakarak test edebiliriz. Çeşitlenme genleri, değişik organizmaları birbiriyle karıştırarak üretme olasılığını ortadan kaldırır. Her gün yeni bir genom diziliminin çözümlendiği en son dönemlerde, biyologlar bir gün bu tür genleri keşfedeceklerini umuyor. Ayrıca genlerin ifade farklılıklarının daha çok incelenmesi sonucu çeşitlenmeyi daha iyi anlayabileceğiz. Bana kalırsa çeşitlenme nedenlerini araştırırken en uygun yöntem Mendel tipi çapraz eşleştirmedir. Dolayısıyla çeşitlenmenin tek bir genden mi yoksa bir çift genden mi -erkeğin kur yapması ve dişinin bu sinyale yanıt vermesi gibi- kaynaklandığı netlik kazanabilir. Pek çok bilim adamı bu yöntemin genel tabloyu açıklamakta yetersiz kalacağını iddia etse de, çeşitlenmesini yeni tamamlayan türleri incelemenin en doğru yöntem olduğunu düşünüyorum. 4. Soru Evrim tahmin edilebilir mi? Bu soruyu Oxford Üniversitesi’nde ve Yeni Zelanda’daki Auckland Üniversitesi’nde çalışan Paul Rainey yanıtladı: Son yıllarda yitirdiğimiz Stephen Jay Gould ‘a göre evrim, gelişigüzel ve seçici güçlerin sürekli olarak birbirleriyle etkileşimi sonucu ortaya çıkar. Gelişigüzel unsurların (mutasyon, rekombinasyon ve göç) ve stokastik unsurların (hedefe ulaşmak için uygun olasılıkları seçme işlemi-eş bulma olasılığı gibi) varlığı, evrimin tekrarlanamadığını, tahmin edilemediğini, hatta hiçbir kuralın geçerli olmadığını ortaya koyar. Ancak, Darwin’in net bir biçimde belirttiği gibi, beklenmedik bir olay ile doğal seleksiyon yan yana, beraber etkili olabilirler. Aslında Darwin’in doğal seleksiyon kuramının öngörüsü şudur: Organizmalar çevrelerine uyum sağlar. Olasılık çerçevesi En önemlisi, Darwin’in kuramına dayanarak yapılan bütün tahminler olasılık çerçevesi içinde ele alınır. Bu bağlamda spesifik bir olaya karşı bütün olasılıkları öngörmek gerekir. Burada en önemli sıkıntı, bütün olasılıkların hiçbir zaman hesaba katılamamasıdır. Bugünün evrim biyologları “yasaları” fizik bilimindeki yasalar gibi ele almasalar da -Darwin ve başka 19.Yüzyıl biyologlarının yaptığı gibi- evrimle ilgili kimi temel kuralların varolduğuna dair somut kanıtlar elde ediyor. Evrimsel değişikliklerin mekanizması daha iyi anlaşıldıkça, kimi sonuçların olası başka sonuçlardan daha olası olduğu görülüyor. Tarihsel olasılıklara bir göz attığımızda, Gould’un iddiasına kesin bir yanıt getirmek olası değil. Ama işe başlarken, biyolojik sistemlerin temel yapıları hakkında elde ettiğimiz bilgilerin ışığı altında, evrimin nereye varacağına dair tahminlerde bulunabiliriz. Şimdiden organizmaların çevrelerine nasıl uyum sağlayacağına dair öngörülerde bulunabiliyoruz. Dolayısıyla gelecekte olası değişikliklere dair kantitatif (nicel) tahminlerde bulunmak da olası olabilir. 5. Soru Tanrı’nın evrimle ilgisi ne? Bu soruyu İngiltere’deki Liverpool Üniversitesi’nden Robin Dunbar yanıtılyor: Pek çok insan, bu konuda meşhur bilim felsefecisi Karl Popper ile aynı fikirdedir. Popper’a göre din metafiziğin dünyasına aittir; bilimsel sorgulamaya tabi tutulamaz. Biyologların çoğu bu görüşe katılarak Tanrı konusunu tartışmaların dışında tutar. Ancak din ve tanrıların kişi davranışı üzerinde çok büyük etkisinin olduğunu yadsımak da doğru değildir. İşte bu sebeple ben ve benim gibi düşünen biyologlar, dinlerin niçin varolduğunu ve kişi evriminin hangi noktasında devreye girdiğini araştırmaya başladık. İnsanlar hayvan standartlarına göre çok tuhaf bir özellik sergiler. Bu özellik içinde bulunduğumuz topluluğun isteklerini kabullenme konusunda gösterdiğimiz olağaüstü arzu, hatta bu yolda canımızı bile vermeye hazır durumda olmamızdır. Bu düzeyde bir özveri başarının anahtarıdır. İnsanlar, kollektif çözümlerden yola çıkarak kendi küçük dünyalarıyla sınırlı kişisel sorularına yanıt getirmeye çabalarlar. Bu çözümün yararlı olabilmesi için kişiler kısa vadeli kişisel çıkarlarını uzun vadeli kazançlarıyla değiş tokuş etmeyi öğrenmek zorundadır. Ve gruba uyum sağlama özelliği bizi başka bir tehlikeyle karşı karşıya bırakır. Bu tehlike, topluma ait olma özelliğinden yararlanıp, bunun bedelini ödemek istemeyen parazitlerdir. Tabi ki bu asalakları durdurmanın yolları vardır. Biri, yasalar yardımıyla denetleme, ikincisi toplumsal terbiye kurallarıdır. Ama bu iki yöntem de bir yere kadar yararlıdır: “Benim yaptıklarımı senin onaylayıp onaylamaman beni ilgilendirmez. Ben kazancıma bakarım” şeklinde düşünenlere bu iki yöntem etkili olmaz. İşte bu noktada din devreye girer; kontrolumuzun dışında kimi güçlerin müdahale etme olasılığı insanlarda tedirginlik yaratır. Dinin yarattığı ceza sistemi herhangi bir sivil kuruluşun uygulayacağı cezadan daha ağırdır. Ama bu sistemin çalışması, insanların doğaüstü bir dünyanın varlığına inanmasına bağlıdır. İşte bu aşamada türümüze özgü olan bir özellik önem kazanır. Bu, kişi beynini okuma yeteneğidir. Buna “Aklın teorisi” diyebiliriz. Bu kuramı şu cümleyle açıklayabiliriz: “Senin ve benim ahlaklı davranma arzusu duyduğumu bilen doğaüstü bir varlığın varolduğunu sandığına inanıyorum.” Bu düşünca tarzı, dini doğaüstü kişisel inançların ötesine geçirerek, herkesin paylaştığı toplumsal bir fenomen haline getirdi. Beynimiz tanrıları ve dinleri yaratmamıza izin veriyor. Ama bu, büyük beyinlerin tesadüfen ortaya çıkarttığı bir yetenek midir? Yoksa uyum kaygısı sonucu mu ortaya çıkmıştır? Benim çalışmalarımdan çıkarttığım sonuçlara göre insanların da dahil olduğu primatlarda neokorteksin hacmi -özellikle frontal lob- doğrudan grubun büyüklüğne ve sosyal yeteneklere bağlı olarak değişir. Başka bir deyişle, beynin boyutlarının evrimi, geniş grupların içinde istikrarı sürdürebilecek sosyal yeteneğe bağlı olarak gelişir. Söz konusu insanlar olduğu zaman, bu toplumsal uyum çabalarına din de dahildir. Dinin büyük ölçüde zihinsel güce gereksinim duyduğu gerçeğinden hareketle, dinin ne zaman evrimleştiğini sorabiliriz. Dinsel inançları destekleyecek zihinsel gelişime, evrimsel tarihimizin en son dönemlerinde eriştiğimizi söyleyebiliriz. Dinin, yarım milyon sene ilkin Homo sapiens’in ortaya çıkışından ilkin başlaması olanaksız görünüyor. Bu tarih büyük bir olasılıkla modern insanın 200.000 sene ilkin ortaya çıkışına denk gelebilir. Aynı dönem lisanın da ortaya çıkışına rastlıyor. Kaldı ki dinin varlığı büyük ölçüde lisana bağlıdır. Tabi ki din ödül kavramını da beraberinde getirir. Dini yasaklar toplum krallarına uyumu sağlamakla birlikte, dinsel faaliyetler grubun bir parçası olma duygusunu da yaratır. Son yıllarda sinirbilim beyindeki “Tanrı-noktası”nın yerini buldu. Bu bölge varlığımızın uzamdaki yeri ile ilgili duyulardan ve “evrenle tek vücut olma” duygusundan da sorumlu. Fakat gruba bağlılığı pekiştiren ön önemli araç endorfinler. Bu beyin salgısı, vücut stres altında olduğu zaman salgılanır. Pek çok dinsel törende dövünme, dans ve ilahilerden oluşan uzun ayinler sonucunda endorfinin salgılanması tesadüf değildir. Endorfinlerin uyuşturucu etkisi insanlarda rahatlama ve aynı deneyimi paylaşan grup bireyleriyle yakınlaşma duygusu uyandırır. Dolayısıyla dinler, asalakların toplumsal yaşamın bütün avantajlarından hiçbir bedel ödemeden yararlanmasını önlemek için büyük beyinler tarafından yaratılmıştır. Ama dinsel faaliyetler, doğal dünyanın acımasızlığına karşı toplumsal dayanışmayı artıran yararlı etkinliklerdir. Kaynak: “EVRİM ile ilgili 5 soru 5 yanıt”, Cumhuriyet Bilim Teknik, 5.7.2003, New Scientist’ten Reyhan Oksay çevirisi, 14 Haziran 2003 Bilim Bilmek

http://www.biyologlar.com/evrim-teorisi-ile-ilgili-5-soru-5-yanit

EVRİM TEORİSİNDE GÜNCEL GELİŞMELER

Bilimin, türlerin gelişimi ve evrimi hakkında bugün sahip olduğu bilgiler, bilimin çeşitli disiplinlerinden elde edilen verilerin birleştirilerek değerlendirilmesinden elde edilmektedir. Bu bulgular, türler çeşitliğinin nedenini evrime ve üreme, varyasyon, seçilim gibi bir dizi evrim faktörlerine dayandığını göstermektedir. Evrim hakkındaki konuşmalar ve yapılan bilimsel konferanslar bu faktörlerin ön koşulları ve detayları çerçevesinde gerçekleşmektedir. Bu anlamda Evrim teorisi şu temeller üzerinde oturmaktadır: Evrim her zaman gerçekleşir Evrim tersine döndürülemez (Louise Dolla Kuralları). Bazı genetik yapılar veya özellikler sahip oldukları eski durumlarını kopyalama yoluyla günümüze eski halleriyle dönebilirler ama baz aldıkları genler artık aynı yapıya sahip değillerdir. Evrimin son bir hedefi yoktur veya herhangi nihai bir amaca yönelik değildir. Evrim, eko sistemlerinden moleküler yapılarına kadar organizmaların tüm seviyelerinde çalışır Çeşitli Evrim Teorileri aynı hipotezleri ortaya çıkarmıştır. Bu hipotezler; Bir türe ait olan bireyler ve fenotipler, daima birbirinden farklı derecelerde çevreye uyum gösterirler Evrim, canlıların özelliklerinin sadece kalıtsal olduğu durumlarda gerçekleşir. Diğer bir deyişle evrim, ebeveynler özelliklerini sonraki yavru kuşaklara aktardığında ve bu özellikler populasyonda kalıcı olduğunda gerçekleşir Çevresel etmenlerin canlılar üzerinde devamlı süren etkileri sonucu, bazı organizmalar ve onların genetik planları da (genotipleri) seçilime uğrar. Bu genetik plan da bir türün bireylerinden oluşan popülasyonda egemen olur. Yani zaman içinde Genotipler (genetik plan) ve Fenotipler (bireyler) değişim gösterir. Theodosius Dobzhansky 1973′te bunu şöyle ifade etmiştir: “Nothing in Biology makes sense, except in the light of evolution” (Evrim ışığı olmaksızın biyolojide hiçbir şeyin anlamı yoktur) Evrim Teorisinin 19. yüzyıldaki erken dönemlerinde, daha ziyade kalıtsal fenotipik özelliklerin nasıl korunduğu ve bu özelliklerin gelecek nesillere nasıl aktarıldığı konusunda bilimciler arasında fikir farklılıkları varken, bugün bilimciler bunun büyük ölçüde hücre çekirdeklerindeki genler ve mitokondriler üzerinden gerçekleştiğinde fikir birliği içindedirler. Ek olarak bu konuda annesel ve babasal efektler ve faktörler hakkında da tartışılmaktadır. Bunun yanında uygun olan farklı fenotip özelliklerin çevrenin dışında da seçildikleri birden çok durumların ve mekan ya da yerlerin olduğu da bilinmektedir. Bu seçilimler mesela farklı genlerin birbirleriyle rekabet etmesi sonucu halihazırda genomlarda, bazı durumlarda gen ifadesinin transkripsiyondan sonra düzenlendiği gen ekspresyonlarında, yapısal kısıtlar nedeniyle embriyonik gelişimde, av-avcı ilişkileri bağlamında veya popülasyondaki kültürel fenomenlerde olabilmektedir. Bu son konu araştırmaya dair güncel tartışmaların günümüzdeki odak noktasıdır. kozmopolitaydinlar.wordpress.com

http://www.biyologlar.com/evrim-teorisinde-guncel-gelismeler

Hipotez, Olgu ve Bilimin Doğası

Hipotez, Olgu ve Bilimin Doğası http://evrimcalismagrubu.org/ceviriler/37-ceviriler/68-hipotez-olgu-ve-bilimin-doas.html Dilara Karadeniz tarafından yazıldı Çarşamba, 30 Nisan 2008 23:12 Douglas Futuyma, çeviren Mehmet Cem Kamözüt Örneğin, DNA’nın genetik malzeme olduğundan nasıl emin olabilirsiniz? Ya bunu “kanıtlamış” olan bilimciler bir hata yapmışlarsa? Kesinlikle doğru olduğu gerçekten kanıtlanmış bir şey var mıdır? Bilim, dünyayı algılamanın farklı ve eşit derecede geçerli biçimlerinden yalnızca biri, baskın Batılı biçimi midir? Evrim bir gerçek midir, yoksa bir kuram mı? Ya da tıpkı yaratılışçıların benimseme hakkına sahip oldukları karşı görüş gibi, bu da benim benimseme hakkına sahip olduğum görüş mü? Varsayımsal bir örneği ele alalım. Bilinmeyen bir hastalıktan ölmekte olan koyunların ölüm nedenini belirlemekle görevlendirildiniz. 50 hasta, 50 sağlıklı koyundan doku örnekleri aldınız ve hasta hayvanların 20 tanesinin, sağlıklı olanların da yalnızca 10 tanesinin karaciğerinde bir tekhücreli teşhis ettiniz. Bu farklılık, iki koyun grubunun söz konusu tekhücrelinin görünme sıklığı açısından bir fark göstermediğini söyleyen SIFIR HİPOTEZİNİ reddetmeye yeterli midir? Bu soruya yanıt verebilmek için istatistiksel testler yaparak bu sayılar arasındaki farklılığın sırf şans yoluyla ortaya çıkıp çıkamayacağına bakarsınız. Ki kare (χ2) istatistiğini hesaplarsınız (burada bu değer 4,76’dır), bir ki kare değerleri tablosuna bakar ve “0,025 < p < 0,05” ifadesini bulursunuz. Benzerleriyle neredeyse tüm bilimsel veri analizlerinde karşılaştığınız bu ifade ne anlama gelir? Bulduğunuz farklılığın (hasta ve sağlıklı koyunlardan aldığınız örneklerin rastgele olduğu varsayımı altında) sırf şans eseri gerçekleşmiş olma olasılığının –yani gerçekte hasta koyunlarla sağlıklı koyunların sözkonusu tekhücreli ile enfekte olma oranları arasında bir farklılık olmaması olasılığının– 0,05’ten küçük ama 0,025’ten büyük olduğu anlamına... Bilimdeki her deney ya da gözlem daha büyük olası gözlem evreninden (bizim örneğimizde tüm koyunlar) alınan örneklemlere dayanmaktadır ve her durumda eldeki verinin bu daha büyük evrene ilişkin gerçekliği yanlış temsil etme olasılığı vardır. Yani ilişkisizlik hipotezini –koyun grupları arasında bir farklılık olmadığı, deney sonuçlarıyla oynanmasına bağlı bir etki olmadığı, ya da belirli değişkenler arasında korelasyon olmadığı hipotezini– yanlışlıkla reddetmek her zaman olanaklıdır. Ne mutludur ki bazı durumlarda, doğru bir ilişkisizlik hipotezini reddetme ve yanlış olan alternatif hipotezi doğru olarak kabul etme olasılığı 0,00001 ya da daha az olabilir. Bu durumda ilişkisizlik hipotezini güvenle reddedebilirsiniz, ama kesin olarak emin olamazsınız. O halde 100 koyunla yapılan çalışma hasta koyunlarda söz konusu tekhücrelilere rastlama olasılığımızın daha fazla olduğu varsayımını desteklemektedir; ama yalnızca zayıf bir şekilde. Ölümün nedeninin tekhücreliler olabileceğini düşünüyor ama korelasyonun yetersiz olmasından dolayı endişe duyuyorsunuz. Siz de örnekleminizi 1000 koyuna çıkardınız, karaciğer biyopsisi yaptınız; örneklerinizi tekhücreliler açısından (düşük yoğunlukta olmaları nedeniyle ilk çalışmanızda gözden kaçırmış olabileceğiniz vakarı da açığa çıkarak biçimde) daha detaylı incelediniz; ertesi yıl hangi koyunların öldüğünü kaydettiniz. Büyük bir hoşnutlukla gördünüz ki tekhücreliye rastlamadığınız koyunların yalnızca %5’i ölürken enfekte koyunların %95’i öldü. Hayatta kalanlar yıl sonunda kesildiklerinde görünürde sağlıklı olan koyunlarda hala bir enfeksiyon belirtisine rastlanmadı. Zafererinizle övünen bir biçimde danışmanınıza ölüm nedeni olarak tekhücreliyi rapor ettiniz. Doğru mu? Yanlış, dedi size. Diğer hipotezleri elememişsiniz. Belki de hastalığa, tesadüfen koyunun görece zararlı tekhücreliye karşı direncini de azaltan bir virüs neden oluyordur. Belki bazı koyunlar ömürlerini kısaltan bir gene sahip ve bu gen aynı zamanda enfeksiyon dirençlerini de azaltıyor. “Yapmanız gereken” diyor, “bir deney”. “Rastgele seçtiğiniz bazı koyunlara tek hücreliyi içeren, diğerlerine de tek hücreli dışında tüm içeriği aynı olan bir sıvı enjekte etmek”. Bunu yapıyorsunuz ve başarısız birkaç denemeden sonra koyunların tek hücreliyi oral yollardan almadıkça enfekte olmadıkları ortaya çıkıyor. Sonuçta deneysel olarak enfekte edilmiş 100 koyunun 90’ının 3 ay içinde öldüğünü, 100 “kontrol” koyununun 95’inin deneyin sürdüğü 1 yıl boyunca yaşadığını memnuniyetle rapor ediyorsunuz. Ki kare testleri p’nin 0,0001’den küçük olduğunu gösteriyor. Yani elinizdeki sonuçların şans sonucu ortaya çıkmış olması son derece düşük bir olasılık. Bu noktada tek hücrelinin hastalığa ve ölüme neden olduğuna dair dikkate değer bir güveniniz olabilir. Ama bunu hala mutlak olarak kanıtlamadınız. Koyunlara yalıtıp enjekte ettiğiniz yalnızca tek hücreli değil de görünmeyen bir virüs de olamaz mı? Koyunlara enjeksiyonu rastgele yaptığınızdan emin misiniz? Yoksa enjeksiyon için farkında olmadan zayıf görünen hayvanları seçmiş olabilir misiniz? Hipotezinize uymayan 15 hayvanın durumunu sizce ne açıklıyor? Ve her ne kadar p < 0,0001 olsa da hala kötü bir “şanslı kura” tutturmuş olma şansınız var, yok mu? Örneği uzatmaya gerek yok, buradan çeşitli dersler çıkarabiliriz. Öncelikle veriler kendi başlarına hiçbir şey anlatmazlar, önceki bilgilerimiz ve kuramımız ışığında yorumlanmalıdırlar. Bu örnekte başka bazı şeylerin yanı sıra (ki kare testi gibi istatistklerin temelinde yatan) olasılık kuramına, deneysel tasarım kuramına ve virüslerin var olduğu ve sonuçlarımızı karıştırabileceği bilgisine gereksinim duyduk. Bilim tarihi, yeni kuram ve bilgiler ışığında düzeltilmesi ya da reddedilmesi gerekmiş olan sonuçların örnekleriyle doludur. Örneğin 1950’lerin sonlarına kadar neredeyse tüm jeologlar kıtaların sabit konumda olduğuna inanıyordu; şimdi tümü levha tektoniği ve kıta kaymalarına inanıyor ve pek çok jeolojik olgunun bunun ışığında yeniden yorumlanması gerekti. İkinci olarak varsayımsal araştırma deneyimimiz güvenilir bir sonuca ulaşmak için pek çok çalışma gerektiğini göstermiştir. Ders kitaplarındaki, bir gerçeği dile getirdiğini söyleyen her tümcenin genellikle en azından bir kişinin yaşamının en az birkaç yılı boyunca büyük bir çaba harcamasını gerektirdiğini gözden kaçırmak kolaydır. Bu nedenle bilimciler sonuçlarını, birazdan tekrar söz edeceğimiz gibi dikkate değer bir güçle savunurlar. Üçüncü olarak ve bu en önemlisidir araştırma, ne kadar dikkatlice ve yorucu bir biçimde tasarlanmış ve gerçekleştirilmiş olursa olsun kanıta yaklaşır ama asla onu tam olarak elde edemez. Kabul ettiğiniz hipotezinizin günün birinde, bugün hayal edemeyeceğimiz tümüyle yeni kuramlar ya da veriler ışığında düzeltilmesi ya da reddedilmesi olasılığı –neredeyse yokmuş gibi görünebilecek olsa da– her zaman vardır. Bunun sonucu olarak neredeyse tüm bilimsel makaleler sonuçlarını, kuşkuya yer bırakan bir biçimde sergilerler. Drosophila genetiği üzerine yeni yayımlanmış bir makalede şu sonucu okudum: Deney “sperm yerdeğiştirmesinin iki bileşenini bir araya getiren farklı mekanizmalar olduğunu düşündürtüyor” (Clark et al. 1995). Aslında veriler harikaydı, deney dikkatlice tasarlanmıştı, istatistiksel analizler örnek olacak nitelikteydi, ama yazarlar görüşlerini kanıtladıklarını savlamıyorlardı. Bilimciler genellikle sonuçlarına muazzam bir güven duyarlar, ama kesinliğe sahip değillerdir. Belirsizliği yaşamın bir gerçeği olarak benimsemek iyi bir bilimcinin dünya görüşü için kaçınılmazdır. Öyleyse bilimdeki her ifade bir HİPOTEZ olarak anlaşılmalıdır. Neyin doğru olabileceğini söyleyen bir ifade. Bazı hipotezler zayıfça desteklenmektedir. Başka bazıları (örneğin dünyanın güneş çevresinde döndüğü ya da DNA’nın kalıtsal malzeme olduğu gibileri) o kadar iyi desteklenmiştir ki, onları olgu olarak görürüz. Olgu denilince, tam bir kesinlikle mutlak olarak doğru olduğunu bildiğimiz bir şey anlamak bir hatadır. Hiçbir şeyi böyle bilmiyoruz (Bazı felsefecilere göre kendimiz de dahil herhangi bir şeyin var olduğunundan bile emin olamayız. Dünyanın tanrının zihnindeki tutarlı bir düş olmadığını nasıl kanıtlayabiliriz?). Doğrusu şudur: Bir olgu bir hipotezdir, ancak delillerle o kadar güçlü desteklenmektedir ki onu doğru olarak kabul ederiz ve doğruymuş gibi davranırız. Bilimcilerin, kuvvetle desteklenmiş hipotezler ya da olgular olarak ortaya koydukları ifadelere duydukları güveni neden paylaşmalıyız? Bilimin sosyal dinamikleri yüzünden. Tek bir bilimci yanılıyor olabilir (ve çok ender de olsa bir bilimci kasıtlı olarak verileri çarpıtabilir). Ama eğer konu önemliyse, alanın ilerlemesi (örneğin bütün moleküler biyolojinin, DNA’nın yapısı ve işlevine bağlı olduğu gibi) bu konuya bağlıysa, diğer bilimciler bulguları kuşkucu biçimde sorgulayacaklardır. Bazıları bilinçli olarak deneyi yinelemeye çalışabilir; başkaları da hipotezin doğru olduğu varsayımıyla araştırmalar yürütecekler ve eğer gerçekte yanlışsa uyumsuzluklar bulacaklardır. Başka bir deyişle bu alanda çalışan araştırmacılar hataları bulmaya çalışacaktır; çünkü kendi işleri ve kariyerleri söz konusudur. Üstelik bilimciler yalnızca entelektüel merakla değil (her ne kadar başarılı olmayı nadiren umabilirlerse de) tanınma ve ünlü olma güdüsüyle de hareket ederler. Yaygın kabul görmüş bir hipotezi yanlışlamak da profesyönel alanda tanınmaya giden yolu açar. Kalıtımın DNA’ya dayanmadığını ya da AIDS’in nedeninin HIV (Human Immunodeficiency Virus, İnsan Bağışıklık Yetersizliği Virüsü) olmadığını gösterebilen bilimci, alanında ünlü olacaktır. Elbette hipotezi ilk ortaya koyanların kaybedecek çok şeyi vardır. Yatırmış oldukları yoğun bir emek –ve hatta– itibarları. Dolayısıyla tipik tutumları, görüşlerini –bazen aksi yöndeki ezici delillere rağmen– tutkuyla savunmak olacaktır. Bu sürecin sonucu her bilimsel disiplinin karşıt hipotezlerin savunucuları arasındaki tartışmalar ve entelektüel savaşlarla dolu olmasıdır. Fikirler arasında, sonucu daha çok delilin ve daha dikkatli çözümlemenin belirlediği, en inatçı skeptiklerin bile uzlaşımsal görüşe kazanılacakları (ya da ölüp gidecekleri) zamana kadar sürecek bir rekabet –bir tür doğal seçilim– vardır. Olgu ve Kuram Olarak Evrim Evrim bir olgu mudur, kuram mıdır, yoksa hipotez midir? Bilimde sözcükler genellikle kesin bir anlamda ve gündelik yaşamdaki kullanımlarından farklı çağrışımlarla kullanılırlar. Bu aşırı önemli bir durumdur ve bu kitapta pek çok örneğiyle karşılaşacağız (uyum, rastgele, korelasyon). Bu sözcükler arasında hipotez ve kuram da vardır. İnsanlar –sanki hipotez delillerle desteklenmeyen bir fikir demekmiş gibi– sıklıkla bir şeyin “sadece” bir hipotez olmasından söz ederler (“sigaranın kansere neden olduğu yalnızca bir hipotezdir” örneğindeki gibi). Ancak bilimde hipotez, neyin doğru olabileceğine ilişkin bilgi birikimimize dayanan bir ifadedir. Zayıf biçimde desteklenmiş olabilir, özellikle de başlarda. Ama görmüş olduğumuz gibi neredeyse bir olgu olacak düzeyde destek de kazanabilir. Kopernik için Dünya’nın Güneş çevresinde dönmesi orta düzeyde desteklenmiş bir hipotezdi; bizim içinse kuvvetle desteklenmiş bir hipotezdir. Benzer biçimde, bilimde bir kuram, desteksiz bir spekülasyon değildir. Bundan ziyade, usavurum ve delillere dayanan, çeşitli gözlemleri açıklayan, uyumlu, olgun, birbiriyle ilişkili bir ifadeler bütünüdür. Ya da Oxford English Dictionary’nin tanımını alırsak bir kuram “bir grup olgu ya da görüngüyü açıkladığı ya da anlaşılır kıldığı düşünülen bir fikirler ve ifadeler sistemi ya da şablonudur; gözlem ya da deneyle desteklenmiş ya da yerleşmiş ve bilinen olguları anlaşılır kıldığı söylenen ya da kabul edilen bir hipotezdir; bilinen genel yasalar, ilkeler, bilinen ya da gözlemlenmiş bir şeyin nedeninin ifadesidir”. Dolayısıyla atom kuramı, kuantum kuramı ve levha tektoniği kuramı sırf spekülasyon ya da görüş değillerdir; (sigaranın kansere yol açtığı hipotezi gibi) hatta iyi desteklenmiş hipotezler de değillerdir. Her biri delillerle kuvvetle desteklenmiş çok çeşitli olguları anlaşılır kılan, iyi işlenmiş, birbiriyle ilişkili fikirler bütünüdür. Bir kuram bir ifadeler ağı olduğundan, genellikle tek bir kritik deneye dayanarak kabul edilmez ya da çürütülmez (basit hipotezlerin başına ise sıklıkla bu gelir). Bunun yerine kuramlar, yeni görüngüler ve gözlemlerle karşılaştıkça evrilirler; kuramın bazı parçaları atılır, düzeltilir, eklemeler yapılır. Örneğin kalıtım kuramı başlangıçta Mendel yasalarından parçacıklı karakterlerin kalıtımı, baskınlık ve farklı karakterleri etkileyen “etmenler”in (genlerin) bağımsız ayrılımından ibaretti. Kısa süre içinde baskınlık ve bağımsız ayrılıma ilişkin aykırı durumlar bulundu, ama parçacıklı karakterlerin kalıtımın çekirdek ilkeleri kaldı. Genetikçiler, yirminci yüzyıl boyunca bu çekirdeği işleyerek, ona eklemeler yaparak Mendel’in düşünebileceğinden çok daha karmaşık ve ayrınıtılı bir kalıtım kuramı geliştirdiler. Kuramın bazı kısımları son derece iyi oturtulmuştur, başka bazılarıysa hala iyileştirmeye açıktır. Kalıtımın ve gelişimin mekanizmaları daha da anlaşıldıkça pek çok ekleme ve değiştirme olması beklenebilir. Yukarıdaki tartışmanın ışığında evrim bir bilimsel olgudur. Ama evrim kuramıyla açıklanır. Türlerin Kökeni’nde Darwin iki büyük hipotez ortaya koymuştur. Biri –değişiklikler yoluyla– ortak bir atadan türeme hipotezidir (kısaca değişikliklerle türeme). Bu hipotezi “evrimin tarihsel gerçekliği” olarak da anacağım. Diğer büyük hipotezi de, Darwin’in değişikliklerle türeme için önerdiği nedendir: Doğal seçilim kalıtsal çeşitlilik içinden ayıklama yapar. Darwin, evrimin tarihsel gerçekliği –yani ortak bir atadan değişerek türeme– için fazlasıyla delil sağladı. 1859’da bile bu görüşün epey desteği vardı. Yaklaşık 15 yıl içinde birkaç bağnaz dışında tüm biyolojik bilimciler bu hipotezi kabul etmişlerdi. O günden beri paleontolojiden, biyocoğrafyadan, karşılaştırmalı anatomiden, embriyolojiden, genetikten, biyokimyadan ve moleküler biyolojiden yüzbinlerce gözlem bu görüşü destekledi. Kopernik’in Güneş merkezlilik hipotezi gibi, ortak bir atadan değişiklerle türeme hipotezi de uzun süredir bilimsel bir olgu statüsündedir. Nasıl ki bir kimyacı suyun hidrojen ve oksijenden oluştuğunu gösteren bir makale yayınlamaya çalışmazsa, bugün hiçbir biyolog da “evrim için yeni kanıtlar” konulu bir makale yayınlamayı düşünmez. Yüz yılı aşkın bir süredir, bilimsel çevreler bunu tartışılacak bir konu olarak görmemektedir. Darwin, evrimin nedeninin kalıtsal çeşitlilik üzerindeki doğal seçilim olduğu hipotezini öne sürmüştü. Argümanı mantığa ve çok çeşitli dolaylı delilin yorumuna dayanıyordu ama doğrudan hiç delili yoktu. Kalıtımın anlaşılmasının ve doğal seçilim delillerinin hipotezini tam olarak desteklemesi için 70 yıldan daha uzun bir süre geçmesi gerekecekti. Üstelik bugün biliyoruz ki evrimin Darwin’in fark ettiğinden daha fazla nedeni vardır ve doğal seçilim ve kalıtsal çeşitlilik onun sandığından daha karmaşıktır. Bu kitabın büyük kısmı evrimin nedenlerine ilişkin bugünkü anlayışımızı oluşturan mutasyon, rekombinasyon, gen akışı, yalıtım, rastgele genetik sürüklenme, doğal seçilimin çeşitli biçimleri ve başka etmenlerden oluşan karmaşık düşünceler bütününe ilişkindir. Evrimin nedenleri hakkındaki bu birbiriyle ilişkili düşünceler ağı evrim kuramı ya da evrimsel kuramdır. Bu “sırf spekülasyon” değildir; çünkü tüm fikirler delillerle desteklenmiştir. Bir hipotez de değildir. Çoğu iyi desteklenmiş bir hipotezler bütünüdür. Yukarıdaki bölümde tanımlandığı anlamda, bir kuramdır. Bilimdeki tüm kuramlar gibi, tam değildir. Tüm evrimin nedenlerini henüz bilmiyor olduğumuz ve bazı ayrıntılar sonradan yanlış çıkabileceği için... Ancak evrimin ana ilkeleri o kadar iyi desteklenmiştir ki, çoğu biyolog bunları büyük bir güvenle kabul eder.      

http://www.biyologlar.com/hipotez-olgu-ve-bilimin-dogasi-1

DNA YAPISI VE ÖZELLİKLERİ

Bütün tek ve çok hücreli organizma ile bir kısım virüslerde genetik materyal DNAdır. DNA yapı ve özellikleri başlığı altında, DNAnın moleküler yapısı, deoksiriboz, fosfat ve pürin ve primidin bazlarının yapıları ve birbirleri ile verdikleri reaksiyonlardan başlanarak anlatılmaktadır.nükleozid, nükleozit fosfat, nükleotid ve nükleozid-tri-fosfatlar hakkında bilgi verilmekte, nükleozit-tri-fosfatların DNA polimerini oluşturma reaksiyonları, purin pirimidin eşleşme özellikleri anlatılmaktadır. DNA çift sarmalının özellikleri, çeşitli ortam koşullarında biarbirine dönüşebilen DNA formları hakkında bilgi verilmektedir. DNA replikasyonunun yarı koruyucu (semikonservatif) özelliği deneysel örnek verilerek; ökaryotik ve prokaryotik DNA replikasyonu basamakları karşılaştırmalı olarak ve görev alan proteinlerle ilgili bilgileri de kapsamak üzere açıklanmaktadır. Ayrıca bu başlık altında DNA hasar tipleri, bunlara neden olan etkenler ve tamir mekanizmaları açıklanmakta; genom DNAsının farklı bölgeleri (tekrar dizinleri, gen aileleri, satellit DNA, gen kontrol bölgeleri, sessiz bölgeler gibi terimlere de açıklık getirilerek) ayrıntılı bir sınıflandırma yapılarak anlatılmaktadır. Gen aktivitelerinin ayarlanması (Genetik kontrol mekanizmaları) Çok hücreli bir organizmdeki bütün hücreler aynı genoma sahiptirler. Ancak, bu hücrelerdeki gen ürünleri ve bu ürünlerin düzeyleri hücreden hücreye, ya da aynı bir hücrede bir andan diğerine farklılık göstermektedirler Hücrelerin özelleştikleri fonksiyonlara ve o andaki gereksinimlere uygun ürünleri, uygun düzeylerde bulundurdukları gözlenmektedir.çok ya da tek hücreli organizmalarda her bir hücredeki gen ifadesi çeşitli mekanizmalarla ayarlanmaktadır.Bu kontrol mekanizmaları. Tek hücrelilerin çevre koşullarına; çok hücrelilerde ise hücrelerin birbirlerine uyumunu sağlamaktadır. Konunun kapsadığı alt başlıklar şunlardır: Bakteride enzim (protein) sentezinin ayarlanması, 1)Laktoz operonu örneğiyle anabolik/katabolik operon; konstitutif (zorunlu)/fakültatif (seçimli) enzim; katabolit aktivator proteini; indüktör; regülatör bölge; triptofan operonu örneğiyle, repressör; korepressör; son ürün inhibisyonu, genetik polarite terimleri ve mRNA düzeyinde genetik kontrol mekanizması, 2) arabinoz operonu örneği üzerinden ise gen aktivitesinin, gen ürünü tarafından negatif /pozitif kontrolu; RNA yapısına bağlı; küçük RNAlar ya da ribozomal proteinler veya alarmonlar aracılığı ile translasyon düzeyindeki kontrol ayrıntılı olarak açıklanmaktadır. Ökaryotlarda gen aktivitesinin ayarlanması ise, 1)Duplikasyon ya da amplifikasyon, 2)Metilasyon/demetilasyon v.b yollarla selektif gen inaktivasyonu/aktivasyonu, 3)Gen yeni düzenlenmeleri (rearrangement) ile kontrol, 4)Arttırıcı (enhancer) ve susturucu (silencer) DNA bölgeleri ile aktivite ayarlanması, 5)Posttranskripsiyonel kontrol ve 6)Hormonal kontrol ikincil başlıkları ile anlatılmaktadır. Mitoz ve amitoz bölünmeler Girişte, bilinen hücre bölünmesi tiplerinin genel sınıflandırması ve tanımları yapıldıktan sonra, insan dahil çok hücrelilerin kimi hücrelerinde normal olarak, kimi hücrelerinde ise kanser ya da çevre koşulları nedeniyle normal dışı gerçekleşen amitoz bölünme kısaca anlatılmaktadır. Konunun devamında ayrıntılı olarak, hücre döngüsü,ve bu döngünün G1, G0, G2, S (DNA biyosentezi) ve M (mitoz) bölümleri; mitoz bölünme fazların ve bu fazlar sırasında hücrede gerçekleşen moleküler olaylar, çekirdek ve hücreye ait hareket ve değişimler, ayrıca mikrotübüllerin yapımı, moleküler yapıları, S ve M fazlarına geçişleri kontrol eden moleküller ve çalışma prensipleri anlatılmakta; hücre döngüsü sırasında her bir basamakta hücrenin DNA düzeyi (n, 2n, 4n), çeşitli proteinlerin düzeylerindeki değişiklikler; kromozom, kromatid, sentromer, kinetokor, metafaz ve interfaz kromozomu ile kardeş kromatid değişimleri üzerinde durulmaktadır... Mayoz bölünme, ovogenez ve spermatogenez Mayotik bölünme, ovogonyal ve spermatogonyal kök hücrelerin ard arda geçirdikleri mitoz bölünmeler sonucunda oluşan ve özel moleküler sinyallerle uyarılan hücrelerin bir S fazı sonrasında geçirdikleri ard arda iki bölünmeyi (mayotik I. Ve Mayotik II. Bölünmeler) kapsar, birinci bölünme daha uzun sürmekte ve kendine özgü alt fazları, tamir mekanizmaları, sinaps, kiazma, krossing/over ve gen dönüşümü (gene conversion), sentromer bölünmesinin olmaması gibi olay ve özelliklerle mitoz bölünmeden ayrılır. İkinci bölünme ise mitoz bölünmenin aynıdır. Mayotik bölünmenin en önemli sonuçları, türe özgü kromozom sayısının korunması ve rekombinantların orta çıkmasıdır... Konu, birbirine paralel çizilmiş mitoz bölünme, mayoz bölünme, ovojenez ve spermatojenez şemaları üzerinden karşılaştırmalı ve ayrıntılı olarak sunulmakta, bu olaylar sırasında gerçekleşen hücre ve kromozom hareketleri, kromozom ve gen hareketlerinin ilişkileri, bu hareketlerin ovojenez ve spermatojenezdeki zamanlamaları ve farklılıkları üzerinde durulmaktadır... Mozaiklik ve şimerizm Bu başlık altında, aynı bir organizmde, farklı kromozom kuruluşlu hücrelerin birlikte bulundukları mozaiklik (mikzoploidi) ve şimerizm (freemartinizm) karşılaştırmalı olarak ele alınmakta, oluşum mekanizmaları, oluştukları düzeyler (gametik, zigotik, somatik gibi) ve bunlara göre etkileri, ayrıca mozaikliğin özel bir tipi olan Lyonizasyon ve kromozom sapmalarının saf formlarının oluşturdukları etkilerle karşılaştırmalar yapılmaktadır. Mendel Genetiği Konunun girişinde, Genetiğin babası olarak adlandırılan Mendel’in yaptığı deneyler, elde ettiği sonuçlar, başarılı olmasını sağlayan etkenler ve Mendel’in sonuçlarından, günümüzdeki DNA; gen; hücre bölünmeleri; kromozom hareketleri ve kalıtım arasındaki ilişkiler anlayışına ulaşılana kadar yapılanlar kısaca özetlenmektedir. Daha sonra, mayotik kromozom hareketleri ile allellerin ve farklı genlerin hareketleri karşılaştırılarak Mendel’in birinci ve ikinci kuralları verilmektedir... gen, allel, hibrit, parental döl, filial döl, çaprazlama, genotip, fenotip gibi terimler konunun akışı içerisinde açıklanmakta, genotiplerden gametlerin saptanması, mono-, di- ve trihibrit çaprazlama, kendileştirme, test çaprazlaması, çaprazlama tablolarının hazırlanıp, sonuçların değerlendirilmesi örnek problem çözümleri ile anlatılmaktadır. Alleller arasındaki ilişkiler (dominantlık, intermedier kalıtım, multipl allelizm gibi alt başlıklarla), farklı genler arasındaki ilişkiler (epistasi, modifikatör,süpressor genler letal genler gibi alt başlıklarla) ayrıntılı olarak anlatılmaktadır. Ayrıca bağlı (linked) genler ile krossing/over ilişkisinden yararlanılarak, incelenen genlerin kromozom üzerinde birbirlerine göre yerleşimlerinin bulunması, örnek problemlerle anlatılmaktadır. DNA metilasyonu Çoğu ökaryotik organizmanın DNAsı, replikasyon sonrasında bir takım değişikliklere uğrar. Bu değişikliklerden biri de baz metilasyonudur. Metilasyona uğrayan baz genellikle CG (sitozin_guanin) ikililerindeki C bazıdır. DNA metilasyonundan sorumlu enzimlerin genel adı, metil transferazlardır. C metilasyonu gen ifadesinin kontrolunda rol oynayan mekanizmalardan biridir. Bu konu başlığı altında, gen aktivitesinin kontroluyla ilgili metilasyonun DNA daki yerleşimi, nasıl rol oynadığı, DNA metilasyonu ile sınırlayıcı (restriction)enzimlerinin ilişkilerinden yola çıkılarak DNA metilasyonunun incelenmesinin temel prensipleri, bu inceleme metodlarının, onkogenlerin demetilasyonları ya da tümör supressör genleri metilasyonu ile ortaya çıkabilen kanser tiplerinin ve başka hastalıkların tanı ve sınırlı da olsa tedavisinde yararlı olabileceğini gösteren bulgular tartışılmaktadır... Hücreler arası haberleşme Tek hücrelilerde gözlenen fototaksi, kemotaksi gibi hücre-çevre ya da feromenler aracılığı ile olduğu gibi hücre-hücre haberleşmesi, çok hücrelilerde daha da gelişmiş ve karmaşıklaşmış bir organizma içi sosyal kontrol mekanizması şeklinde karşımıza çıkmaktadır. Hücreler arası haberleşme, büyüme; yaşama; çoğalma; ölüm v.b. olayların düzenlenmesini ve hücreler arasındaki koordinasyonu sağlar. Konunun akışı içerisinde, sinyal molekülleri (ligandlar), alıcı moleküller (reseptörler)in çeşitler, özellikleri ve çalışma mekanizmaları, hücreler arası haberleşmenin genel prensipleri, sinyal kaynağı ve hedef hücrelerin özelliğine göre haberleşme tipleri (parakrin, sinaptik, endokrin ve otkrin haberleşme gibi), hücre içerisindeki sinyal akışı ve enerji kullanımı modelleri ile hücresel aktivitelerin, diğer hücrelerin aktiviteleri ile uyumluluğunun nasıl sağlandığını gösteren örnekler konu kapsamına alınmıştır.      

http://www.biyologlar.com/dna-yapisi-ve-ozellikleri

HÜCRE VE ORGANİK MADDELER

[color=][/color][color=][/color]İnsanoğlu yapısı gereği sorgulayan ve araştırma yapmayı seven bir varlıktır.Tarih boyunca insanın bu özelliği değişmemiştir.Belki araştırma imkanı ve şartları farklı olmuştur,ancak araştırma sürmüştür.İlk yapılan araştırmalar biyoloji ve gökbilimleri olmuştur.Hakeza yapılan bu araştırmalar,biyolojide sistematik üzerine yoğunlaşmış ve gökbilimlerinde de falcılık üzerine yapılan astroloji üzerine olmuştur. Tarihte bilinen en eski araştırmacı olan Aristo,yapmış olduğu çalışmalar neticesinde sadece biyoloji ilminde değil birçok ilimde temelleri atmıştır.Ancak yapmış olduğu biyolojik çalışmalar daha çok gözle görünen olayları temel almış ve biyolojik olan binlerce canlının sistematiğinin oluşmasına yol açmıştır. Daha sonraki yüzyıllarda gelen bilginlerin araştırmaları ise biyoloji ilminin daha derin bir biçimde ele alınmasını ve bilinmesini sağlamıştır.Mikroskobun bulunması sonucu canlıların yapısı daha iyi ele alınmış ve canlıların çok küçük ve çok karmaşık yapılardan oluştuğu tespit edilmiştir.Ancak karmaşık yapının tespiti mikroskobun geliştirilmesinden sonra olmuştur.Yapılan ilk çalışmalarda görülen yapılar birer odaya benzetilerek odacık manasına gelen “hücre” adı ile adlandırılmıştır. İlk zamanlarda hücrenin basit bir yapı olduğu zannedilmiş ve bu zan nedeniyle yanlış olan abiyogenez hipotezi ve yanlış olan evrim teoremi ortaya sürülmüştür.Ancak zaman içerisinde,mikroskobun gelişmesi ve özelliklede elektron mikroskobunun bulunması ile beraber hücre yapısının çok karmaşık sistemler bütünü olduğu tespit edilmiştir.Bu çalışmalar ve deneylerden sonra bu yanlış hipotez ve teoremlerde rededilmiştir. Hücre ve yapısı ile ilgili çalışmalar,büyük bir sistemler bütününü ortaya koymuştur.Öyleki,sadece hücre zarının bile kompleks yapısı insanı hayrete düşürmüş ve de düşürmektedir. Hücrelerin bir araya gelmesi sonucu dokular,dokuların bir araya gelmesi sonucu organlar,organların bir araya gelmesi sonucu sistemler ve sistemlerin bir araya gelmesi sonucu ise organizma meydana gelmektedir.Organizmada yer alan her bir hücre,diğer hücreler ile uyum içerisinde çalışmakta ve bu sayede organizmadaki denge sağlanmaktadır. Sadece çok hücreli organizmalar değil,tek hücre formasyonuna sahip olan organizmalarda büyük bir denge içerisinde yaşamlarını sürdürmektedir.Bu Denge içerisinde organik besinlerde önemli bir yere sahiptir. Nedir organik besinler? Önce bu soruya cevap verelim…Genel manada hepimizin şahit olduğu olaylardan birisi, sobanın içerisinde yanan kömürü gözlemek olmuştur. Kömürün yanma olayı ise aklımızda bir çok soru ve sorunların cevaplanması gerektiği ifadesini beraberinde getirmiştir. İşte bu soru ve sorunlar yüzyıllar boyunca araştırmacıların aklını kurcalamış ve bunlara cevap aramışlardır. Yanma nedir? Neden gerçekleşir? Daha hızlı yanma var mıdır? Bu gibi sorular yüzlerce yıl boyunca bilginlerin ve bilgin olmayan insanların kafasını kurcalamıştır. Daha önceki yıllarda bilinen tek enerji modelinin ateş olduğu bulunmuş, ancak bu enerji şeklidir diye ifade edilmemiştir. Bu enerji insanların ısınmasında, yemek yapmasında, metalleri eritmesinde faydalı olmuş; ancak olayın matematiksel boyutu ve bilimsel nicelik ile nitelik bulguları yıllarca gizem olmayı sürdürmüştür. Termodinamik adı verilen temellerin yerli yerine oturmaya başlaması ile beraber yanmanın açıklamaları da matematiksel olarak boyut kazanmaya başlamıştır. Yanmanın genel ifadeler içerisinde oksijen ile yanıcı bir maddenin birleşme reaksiyonu olduğu ifadesi; olayın oluşturduğu soru işaretlerinin bir kısmını çözmek için yeterli olmuştur. Bu ifade sonucu sobada bulunan ve bir karbon izotopu olan kömür , oksijen ile birleşerek yanma adı verilen enerji oluşumunu gerçekleştirmektedir. Bu olay sonucunda ise borulardan çıkan karbon integrali maddeler ve sobanın dibinde kalan kül oluşmaktadır. Burada karbon integrali adını verdiğim şeyler arasında karbonmonoksit ve karbondioksit en önemlileridir. Netice itibari ile bir karbon izotopu olan kömürün oksijen ile birleşmesi sonucu, enerji ve artık maddeler oluşmaktadır. Bizim sobada kömür yakmamızın temeli ise, bir organizma olan bizim yaşamımızı sürdürmemiz ve vücutta bulunan proteinlerin ve buna bağlı olarak enzimlerin optimal düzeyde tutulmasını sağlamak içindir. Ancak bizim yaşamamız için sadece ısı yeterli değildir. Bizim yaşamamızı sağlamak için daha önemli olan faktör kendi enerjimizi sağlamak için organik bileşik kullanmamızdır. Kullanacağımız bu organik bileşikleri ise üç grupta sınıflandırabiliriz: Karbonhidratlar, proteinler ve yağlar. Bu üç organik molekülde temelinde aynı amaç için vardır, bu ise canlılığın devamını sağlamaktır. Bu organik bileşiklerin oluşumu ise yine organik varlıklarda gerçekleşmektedir. Böylece bu bileşiklerin temelde üreticiler adı verilen bitkilerden, tüketicilere ve oradan ayrıştırıcılara uzanan döngülerinden bahsetmemiz mümkün hale gelmektedir. İnsan vücudu bu bileşikleri enerji amacı için kullanırken önce karbonhidratları ve sonra yağları tercih etmektedir. Halbuki yağların enerji miktarı fazladır, ancak yanması zor ve uzun olduğu için, daha kolay yanan karbonhidratlar öncelikte birinci sırada yer almaktadır. Ancak yağ dediğimiz moleküller sadece enerji için değil; organizmanın deri altında ve organlar arasında bulunması ile onu soğuktan ve mekanik etkilerden koruması ile dikkate değer öneme haiz olduğu gerçeğini defalarca vurgulamaktadır. Burada enerji modellemesinde ilk önce karbonhidratların ve daha sonra yağların ve en sonunda da proteinlerin kullanılmasını soba örneği ile açıklamak isterim… Kömürün enerjisi fazladır, ancak siz odun yakmadan kömürü yakamazsınız; aynı şekilde yağların enerjisi çoktur, ancak karbonhidratlar bitmeden onları yakmanız mümkün değildir. Eğer vücut proteinleri enerji için yakıyorsa artık o vücut ölüyor demektir, buda çürümüş soba gibidir. Yağ molekülleri genel manada karbon(C), hidrojen(H) ve oksijen(O) atomlarından oluşmaktadır. Bazı yağ moleküllerinde ise bu maddeler yanında fosfor ve azotta bulunmaktadır. Yağların yapısındaki hidrojen miktarı diğer organik bileşiklerinden daha fazladır, bu nedenler enerji miktarı daha fazladır. Yağlar suda ya hiç çözünmez ya da çok az çözünürler. Aseton ve eter gibi organik çözücülerde çözünürler. Yağlar genel olarak dört grupta incelenir: Yağ asitleri, steroidler, fosfolipitler, steroidler ve nötral yağlar. Bunlardan yağ asitleri en basit lipidler olup uzun karbon zincirlerinden oluşmuştur. Karbonlar arasında bağlar tekli ise doymuş yağ asitleri, çiftli bağlar varsa doymamış yağ asitleri adı verilir. Doymamış yağ asitlerinin yüksek sıcaklık ve basınç altında hidrojene tabi tutulması sonucu margarinler elde edilir. [color=]Steroidler[/color] halkalı yapıya sahip olup, zarların yapısına katılır. Ayrıca steroidler vitamin ve hormon olarakta görev yaparlar. Fosfolipidler adı verilen yağlar ise fosfor içerip, zarların yapısına katılırlar. Nötral yağlar ise yağların depo şeklidir ve bir gliserol molekülüne üç yağ asidinin bağlanması sonucu oluşmaktadır.Karbonhidratlar içerisinde en basit molekül yapısına sahip olanlar monosakkaridler dediğimiz daha basit bileşenlere hidroliz edilemeyen şekerler söylenebilir. Bunlar içerisinde aktif grup olarak aldehit taşıyanlara aldoz, keton taşıyanlara ketoz adı verilmektedir. Bu şekerlerde adlandırma karbon sayılarına göre yapılıp üç karbonlu olanlara trioz, dört karbonlu olanlara tetroz, beş karbonlu olanlara pentoz ve altı karbonlu olanlara heksoz adı verilmektedir. Hidrolizlendikleri zaman aynı veya farklı iki monosakkaride ayrılan karbonhidratlara disakkaridler adı verilmektedir. Bunlara verilecek örnekleri ise şöyle sıralayabiliriz; sukroz-glukoz alfa (1-2) fruktoz; laktoz-glukoz beta (1-4) galaktoz; maltoz-glukoz alfa (1-4) glukoz, trehaloz-glukoz alfa (1-1) glukoz; sellobioz-glukoz beta (1-4) glukoz … Hidroliz edildikleri zaman iki ile on arasında monosakkarid oluşturan karbonhidratlara ise oligosakkaridler adı verilmektedir. Bunlara örnek olarak raffinozu verebiliriz. Raffinozun yapısında glukoz , galaktoz ve fruktoz monosakkridleri yer almaktadır. Hidroliz edildikleri zaman on ve daha fazla monosakkaride ayrılan karbonhidratlara polisakkaridler adı verilmektedir. Bunlardan selüloz beta D-glukoz polimerlerinden oluşmuştur. İnsanlarda beta amilaz bulunmadığı için selülozlu sindiremez. Başka bir örnek ise nişastayı verebiliriz. Alfa D-glukoz polimerlerinden oluşmuştur. İnsanlar sindirebilir. Bir başka örnek ise glikojeni verebiliriz. Glikojende alfa D-glukoz polimerlerinden oluşmuştur. Karbonhidratlar çok geniş bir konu olup hala araştırmaların sürmekte olduğu düşünülürse, bir makale ile ifade edilemeyeceği aşikar olur…

http://www.biyologlar.com/hucre-ve-organik-maddeler

Embriyogenez

Biyolojinin bütün problemleri arasında en büyüleyici ve en zor olanı embriyogenez yani embriyonun yaratılmasıdır. Embriyogenez; tek hücrenin döllenmiş yumurtanın, hedef aldığı çok hücreli karmaşık organizmaya ulaşırken attığı adımlarla ilgilidir. Bu hedef bütün ince ayrıntılarıyla, gelişme olayının orkestrasyonu üzerine talimatları içeren, DNA'da yazılıdır. Bu harikulade işin nasıl olduğunu henüz anlayamamış olduğumuzu hemen söyleyebilirim, ama en azından çevresinde araştırmalar yapıyoruz. Hücreler Birbirine Yapışır ve Uzmanlaşır Döllenmiş bir yumurta, diğer daha basit tek hücreli yaratıklar gibi yaşamına iki ayrı hücre oluşturmak için bölünerek başlar; bu iki hücre bölünüp dört olur ve bu böyle sürüp gider. Tek hücreli yaratıkları gözlemleyerek, her bölünmeden sonra hücrelerin ayrılacağını umuyoruz. Ama döllenmiş yumurtadan üreyenler ayrılmıyorlar, toplumsal bir girişime katıldıklarını bilirlermiş gibi birbirlerine sıkıca yapışıyorlar. Kısa bir süre sonra başka bir şey açığa çıkıyor. Hücreler birbirlerine benzemeyen ve değişik davranan gruplar oluşturuyorlar. Hücre grupları artık uzmanlaşmaktadırlar. Her grup belirli sayıda özel görevleri yapmakla yükümlüdür. Uzmanlaşma işinin geriye dönüşü yoktur. Erken embriyogenez iki özelliği, hücre yapışması ve hücre uzmanlaşması, bunlar gelişme işleminin temelinde yatıyorlar. Değişkenliğin Kökeni Şimdiye kadar organizmaların nasıl uzun zaman geçtikçe giderek farklılaştığım belirleyen ve bütün canlı yaratıklar için geçerli yasaları öğreniyorduk. Bütün canlı yaratıklar kendilerini oluşturan bilgiyi DNA'da biriktirirler, DNA'yı mesajcı RNA'ya kopya ederler, mesajcı RNA'yı proteine "tercüme ederler". Dahası, DNA'nın mutasyonla veya cinsel karışımla değişmesi proteinlerin kalıcı değişimine neden olur. Böylece organizmalar arasında gittikçe artan farklılıklar ortaya çıkar ve sonunda yeni türler doğar. Bazı bakımlardan embriyogenez, evriminin, kısa bir zaman aralığında ve mikrokosmosta tekrarı gibidir. Hayvan embriyosunun gelişmesini değişik aşamalardan geçerken gözlemleyelim. Embriyo, erişmesi beklenen yetişkin yaratığa benzemeden önce balığa benzer. Balığa benzerlik yalnız görünüşte değildir; erken embriyo oksijen ve besini göbek bağı yoluyla annesinden alır, ama gereksinimi olmadığı halde su altında nefes almaya yarayan solungaçlara da sahiptir. Açıkçası embriyonun evrimsel gelişmenin bir aşamasını yinelemesi için görünürde hiçbir neden yok. Ama embriyogenez süresince farklılık nasıl doğar, hücreler deri hücresi, kas hücresi, sinir hücresi olmaya ne zaman karar verirler diye sorsak, doğa boş bakışlarla cevap verir bize; hücrelerdeki bilgi işleminin evrensel mekanizması üzerine bir sürü şey öğrenmemize izin verdi, ama sıra hücreleri birbirinden farklı yapan nedenlere gelince bilgisizlik içinde oturuyoruz. Bazı bilim adamları embriyogenezin derinliklerine dalabilmek için tümüyle yeni kavramlara ve yöntemlere gereksinimimiz olduğuna inanıyorlar. Bunun böyle olduğundan kuşkuluyum. Yalnızca, hücreleri değişik yapan nedenler şimdiye kadar bulduklarımızdan daha karışığa benziyor. Tıbbın Embriyogenezle İlgisi Tıp bilimi için embriyogenezin anlaşılması önemlidir. Tıp adamlarının ilgilerini başka hiç bir olaya benzemeyen ölçüde bileyen, yalnızca bir tek hücrenin tam bir bireye dönüşebilmesi değil. Tıbbın; hamilelik, doğum kontrolü, çocuk ölümleri, doğuştan itibaren görülen hastalıklar, kalıtım hastalıkları ve kanser gibi problemlerin daha iyi denetlenmesi üzerine araştırmalarıyla da ilişkili. Bilim adamlarının embriyogenezin anlaşılmasının çok sayıdaki tıbbi probleme ışık tutacağı beklentileri var. Hücrelerin Yapışkanlığı Üzerine Birkaç Söz Daha Döllenmiş yumurta bölünmeye başladıktan sonra, hücrelerin birbirinden ayrılmayıp yapıştıklarından söz etmiştim. Yapışmalarını ne sağlıyor? insanın aklına bir yapışkan maddenin varlığı geliyor, ama gerçekte yapışkanlığı sağlayan bir madde değildir. Daha çok hücrelerin yüzeylerinde girintiler, çıkıntılar varmış gibi görünüyor (diğer hücrelerin çengellerine geçebilen ufacık çengeller). Hücrenin DNA'sı, gerçekte protein-yapan makineye, hücrenin dışına doğru göç edip orada girintili çıkıntılı bir yüzeyde çengel gibi davranacak belirli özel proteinler yapması talimatını vermiştir. Hücreler, bedenin değişik kısımlarını oluşturmak için uzmanlaşırken, yüzey protein çengelleri de amaca göre biçimlenirler. Bunlarla hücre tipleri birbirinden ayırt edilir. Embriyogenez İçin Enerji Şimdi bütün yapım işlerinde enerjinin gerekliliğine tümüyle duyarlı hale gelmiş olmalısınız. Hücrelerinin yakılıp ATP üretebilmesi için gelişmekte olan embriyoya şeker verilmelidir. Balıklarda, sürüngenlerde, kuşlarda ve embriyonun bir yumurta içinde büyüdüğü diğer yaratıklarda, yumurtanın sarısı embriyonun besinini sağlar. Annelerinin rahminde büyüyen hayvanlarda başka bir araç kullanılır. Anne iç duvarıyla embriyo arasındaki plasenta denen tabaka embriyo ile aynı hızla büyür. Plasenta, annenin kanıyla gelişen embriyonun kanının karıştığı yerdir. Annenin yediği besini getiren kan burada embriyonun kanına karışır. Yapım projesi için enerji böylece sağlanır. Bütün Hücrelere Aynı Bilgi Dağılmıştır Döllenmiş yumurta, anneden ve babadan aldığı tam büyüklükteki DNA ile yaşama başlar. Bölündükçe, yeni gelen her hücre kuşağı yetişkinliğe ulaşana kadar aynı büyüklükte DNA alır. Sonunda 60 trilyon hücreden oluşan bir insanda 60 trilyon birbirinin aynısı DNA kopyası bulunur! Bedenin her hücresinde, tamamen aynı bilgi bulunur. Yalnız üreme hücreleri diğer hücrelerin yarısı kadar DNA içerirler. Gen İfadesinin Denetlenmesi Embriyogenezin sırrının DNA'nın genlerinin ifadelerinin hücreler tarafından nasıl kontrol edildiğinin bilinmesinde gizli olduğu görülüyor. Bir yetişkini yaratmak için gerekli bütün bilgi hücrededir. Gelişen embriyonun her hücresinin içinin derinliklerini gözlemleyebilseydik, bazı şeylerin oluşumunu izleyebilecektik. Enzimler, döllenmiş yumurtanın DNA'sının genlerinin bazılarını mesajcı RNA'ya kopya etmeye başlayacaklardı. Mesajcı RNA'lar, daha en başta yumurtanın içinde bulunan, embriyoda etkin olan ribosomlara gideceklerdi ve burada gerekli proteinlerin sentezi başlayacaktı. Döllenmiş yumurta, reçetesinde yazılı proteinlerin tümünü biraz daha ribosomla birlikte toparladıktan sonra (ve DNA'sını iki katına çıkardıktan sonra) bölünecekti. Sonuçta oluşan hücre çiftlerinde, şimdi yeni bir tam ölçü DNA, yeni ribosomlar ve yeni her şey bulunacaktı. Kendisinden doğdukları hücrenin tümüyle tıpkısı olacaklardı. Protein sentezi işlemi ve yeni hücre yapımı kendi kendisim, yineleyerek, hücre sayısı dört hücreye ulaştırılacak, sekiz hücreye çıkmak için yeniden... Kısacası bunun böylece sürüp gittiğini görecektik.Buraya kadar işlem, bölünen bakteride sürüp gidenin hemen hemen aynı. Her kuşak hücre kendisinden öncekinin aynen yinelenmesi. Fakat uzmanlaşma başladığı zaman, yeni bir şeyler katılıyor olmalı. Eğer üreyecek hücrelerin bir grubu deri, diğeri kas, bir başkası beyin vb. olacaksa, DNA gerekli yönlendirmeyi sağlamalıdır. Yalnızca hücreler arasındaki sürekli artan farklılığı değil, aynı zamanda farklılığın ne zaman başlayacağını belirlemelidir. Gelişen hücre topluluğu içindeki her bir hücrede tamı tamına aynı ölçüde DNA bulunur. O zaman hücreler nasıl farklı olabilirler? Birincisi şunu hatırlayalım, deri hücresi, kas hücresi, beyin hücresi olsun, belli bir hücrenin karakterini, yaptığı proteinler belirler. Örneğin, deri hücreleri, keratin denilen özel bir protein yönünden zengindirler (deriye bizi koruyan özel yeteneğini veren protein). Kas hücreleri myosin denilen bir proteinle sarılmıştır. Bu proteinin özel yeteneği, bir eş proteinle etkileşip uzunluğunu değiştirebilmesidir. Böylece kas liflerinin kasılmasına yol açarlar. Beyin hücreleri elektrik güçler iletmeye yardımcı proteinler içerirler. Diğer bütün uzmanlaşmış dokuların hücreleri, hücrenin özel karakterini belirleyen kendilerine özgü proteinleri üreteceklerdir. Böylece bazı hücreler deri hücreleri olarak amaçlarını gerçekleştirmek için keratin üretmeye; diğerleri kas hücresi olabilmek için myosin üretmeye başlayacaklardır. Aslında, bütün hücrelerdeki DNA'larda keratin için bir gen myosin için diğer bir gen bulunur. Genler orada hazır bekliyorlar. Öyle görünüyor ki deri hücrelerinde keratin yapılması ifade edilirken, myosin baskı altına alınmak zorunda. Diğer yandan, kas hücrelerinde myosin ifade edilmeli ve keratin geni bastırılmalıdır. Yani deri hücrelerindeki keratin geni, keratin mesajcı RNA'sı olarak okunuyor. Ribosoma gidiyor orada keratin proteinine çevriliyor. Bütün bunlar gerçekleştikten sonra hücre deri hücresi haline geliyor. DNA, embriyo gelişimi sürerken, programlı bir sıralama ile genlerini her birinin sırası geldikçe ifade edip bastırabilmelidir. Belli türden bir hücre oluşumu yüzlerce protein gerektirir, yani bu hücrelerde. bir çok gen ifade edilirken daha çoğu da (başka, hücrelerin proteinlerini kodlayan genler) bastırılır. Gerçekten dikkate değer bir durum! DNA bütün genlerle birlikte, bu genlerin ne zaman işe koşulacağını ne zaman bastırılacağını da biliyor.

http://www.biyologlar.com/embriyogenez-1

GENEL BİYOLOJİ LABORATUAR RAPOR HAZIRLAMA FORMATI

Raporun ismi (Raporun ismi çok uzun olmamalı ve laboratuarı kısaca özetler nitelikte olmalı. İyi bir isim, içinde çalışılan konu ile ilgili anahtar kelimeleri barındıran isimdir.) Raporu hazırlayanın ismi (Raporu hazırlayan kişinin ismi Adı ve Soyadı açık olacak şekilde yazılmalı, kısaltma kullanılmamalıdır. Numara tam yazılmalı varsa email adresi eklenmelidir). Özet (Bir özetin amacı, okuyucunun raporun tamamını okumasının kendisine bir yararı olup olmadığını inandırmaktır. İyi bir özet 100-200 kelimeden oluşur. Özette raporun kısa olarak amacı, verilerin sunulması ve yazarın bu raporu yazmadaki asıl amaç(lar)ı vurgulanmalıdır.) 1 cümle özet olamaz. Giriş (Raporun amacını belirler. Giriş, bilimsel amaç(lar)ın ana hatlarını belirtmeli ve okuyucuya raporun geri kalanını anlayabilmesi için yeterli bir altyapısal bilgi sunmalıdır. İyi bir giriş aşağıdaki sorulara cevap vermelidir.Abartılı olmamalı çok uzun yazılmamalı. Bu çalışma neden yapılmıştır? Bu soruya vereceğiniz cevap laboratuardaki veya doğadaki gözlemlerinize ya da literatürdeki bilgilerle dayanabilir. Bu konu ile ilgili mevcut olan bilgiler nelerdir? Bu soruya vereceğiniz cevap literatürün incelenmesiyle, var olan bilgideki destekleyici verilerin, çatışmaların, ve eksikliklerin tarihsel gelişiminin gösterilmesinden oluşmalıdır. Bu çalışmayla ne gibi özel bir amaç güdülmüştür? Araştırma konusu özel hipotezler ile açıklanmaya çalışılmalıdır). Materyal ve Metod (Adından da anlaşılacağı gibi laboratuarda kullandığınız materyal ve metod raporda açıklanmalıdır. Bu bölümü yazarken en çok dikkat edilmesi gereken husus, okuyucuyu sıkmadan gerekli detayları vererek deneyin anlaşılmasını sağlamaktır. Eğer işlemler bir laboratuar kitabından veya başka bir kaynaktan takip edilmiş ise, metodu uzun uzun anlatmak yerine kaynak göstermeniz yeterlidir. Bununla birlikte laboratuarda kullandığınız aletleri ve deneyde kullandığınız genel teoriyi yine de vermeniz gerekmektedir. Bunu kısa bir paragraf ile ya da çizim ile deney düzeneği üzerinde gösterebilirsiniz. Bu bölümde aşağıdaki sorulara cevaplar verilmiş olunmalıdır. Hangi materyaller kullanıldı? Bu materyaller nerede kullanıldı? Sonuç (Bu bölümde deney sonuçları herhangi bir yorum yapılmadan verilmelidir. Sonuçlar tablo, çizim, grafik, fotoğraf ve bunun gibi şekillerde verilebilir. Fakat bir tablodaki veri çizimlerde veya grafiklerde sürekli yinelenmemelidir. Bütün tabloların, grafiklerin, çizimlerin açıklayıcı isimleri olmalı, sembol, kısaltma veya kullanılan özel yöntem var ise belirtilmelidir. Çizimler, tablolar, grafikler ayrı ayrı numaralandırılmalı ve her numara mutlaka rapor içinde belirtilmelidir. Örneğin: ........Çizim 1 deney başladıktan 5 dakika sonra aktivitenin düşüşünü göstermektedir. ........Deney başladıktan 5 dakika sonra aktivite düşmüştür (Çizim 1). Raporunuzun bu bölümü genel eğilimlere ve farklılıklara odaklanmalı ve gereksiz detay içermemelidir). Tartışma (Bu bölüm sonuçları yeniden içermemeli, verileri yorumlamalı ve varolan teori ve bilgiye dayanarak veriler arasında ilişkiler kurulmalıdır. Eğer deneyinizdeki sonuçlar uygun ise spekülasyonlar yapabilirsiniz. Deney tekniği veya düzeneği ile ilgili geliştirme önerileriniz de bu bölümde yer alabilir. Bu bölümde sizin hipotezinizin kabul edilmesi veya reddedilmesi için mantıklı açıklamalar yazmalısınız. Aynı zamanda sonuçlarınızdaki şüpheleri giderecek ileride yapılabilecek deneyleri de bu bölümde önerebilirsiniz). Kaynaklar (Literatür) (Bu bölümde raporunuzda atıfta bulunduğunuz tüm makale veya kitapların listesini vermelisiniz. Listeyi herhangi keyfi bir sıra ile hazırlamamalısınız. Liste ilk yazarın ismine göre alfabetik olmalıdır. Farklı literatürler farklı formatta yazılır. En yaygın literatür tipleri için format aşağıda verilmiştir. Dergilerde basılmış makaleler için: Fox, J.W. 1988. Nest-building behavior of the catbird, Dumetella carolinensis. Journal of Ecology 47: 113-17. Kitaplar için: Bird, W.Z. 1990. Ecological aspects of fox reproduction. Berlin: Guttenberg Press. Kitaplardaki bölümler için: Smith, C.J. 1989. Basal cell carcinomas. In Histological aspects of cancer, ed. C.D. Wilfred, pp. 278-91. Boston: Medical Press. İnternet sayfları için: www.biology.arizona.edu/cell_bio/tutorials/cells/cells2.html. (04 Ekim 2006) Eğer rapor içinde bir atıfta bulunacaksanız dipnot kullanmayınız. Onun yerine yazarın adını ve literatürün yayınlanış yılını belirtiniz. Örneğin: Fox 1988’de kuşlardaki yuva yapma davranışlarında hormonların etkisini araştırdı. Kuşların yuva yapma davranışları üzerinde hormonların etkileri olduğu bilinmektedir (Fox, 1988). Eğer atıfta bulunduğunuz literatür iki yazar isminden oluşuyor ise her iki isimde yazılmalıdır. Ancak üç veya daha fazla isimden oluşuyor ise ilk yazar adından sonra Latince karşılığı “ve diğerleri” olan “et al.” kısaltması kullanılır. Örneğin literatür Smith, Lynch, Merrill, and Beam tarafından 1989’da yayınlanmış ise raporunuzun metin kısmında şu şekilde kısaltmalısınız: Smith et al. 1989’da yaptıkları bir araştırmada .... Bu kısaltma sadece rapor metni içinde yapılmalıdır. Literatür listelenmesi kısmında tüm yazar isimleri yazılmalıdır. Örneğin: 1. Simth, S., Lynch, C., Merrill, A., Beam, Y. 1989. A experimental study of .... Rapor hazırlarken uyulması gereken genel kurallar 1-Tüm cins ve tür isimleri italik yazılmalıdır (Eğer el yazısı veya daktilo kullanıyorsanız altı çizilmelidir). 2-Ölçümlerinizde metrik sistem kullanılmalıdır. 3-Raporda birinci tekil şahıs ve çoğul şahıs kullanımından kaçınılmalıdır. İfadeler üçüncü şahıslar üzerinden kurulmalıdır. “Kurbağaları tarttık ve kavanozların içine koyduk” yerine “Kurbağalar tartılır ve kavanozların içlerine konur” ifadesi kullanılmalıdır. 4-Argo ifadelerden kaçınıldığı gibi sürekli aynı tarz ifadelerden de mümkün olduğunca kaçınılmalıdır. 5-Rapor yazdıktan sonra bir kez okunmalı, tutarsızlık veya eksiklikler var ise giderilmelidir. 6-Rapor hazırlarken sanki konu ile ilgili bilgisi olmayan birine hazırlıyormuş gibi dikkatli olunmalıdır. 7-Rapor mutlaka yukarıda verilen formata uygun bir şekilde hiçbir bölüm atlanmadan tüm bölümlerin gerektirdiği bilgiler verilerek hazırlanmalıdır. İyi bir rapor İçin: Başlık -Basit, kısa, ilginç olmalıdır. -4-5 kelimeyi geçmemelidir. -Göz alıcı olmalıdır. -Gramer olarak doğru olmalıdır. -Buyurucu olmamalıdır. -Çalışma amacı ile uyumlu olmalıdır. -Çalışma düzenine işaret etmelidir. -Raporun konusunu (sonuçlarını değil) yansıtmalıdır. -Genelde kabul görmeyen kısaltma içermemelidir. Özet -İyi bir özet, özgün, raporu temsil eden ve laboratuar için uygun bir şekilde düzenlenmiş olmalıdır. -Birinci cümlede problemin tanımı yapılır. Amaçlar yeterince ve basitçe tanımlanır. -Sonra çalışmanın nasıl yürütüldüğü ve son olarak da önemli sonuçlar ve en önemli olarak da çıkarımlar tanımlanır. -Kısa olmalıdır: 100 kelime az 150 kelimeden çok olmamalı -Özette makale içinde kullanılan cümleleri aynen kullanmaktan kaçınmalıdır. -Özetin içine kısaltma, referans, şekil, tablo ve sitasyon konulmamalıdır. -Sonuna 3-10 adet anahtar kelime (key words) eklenmelidir. Giriş -İyi bir rapor giriş bölümü, okuyucucuda uyandırmayı hedefleyen "gökgürültüsü" şiddetinde olmalıdır (çoğu hocanızın, raporu en uygunsuz saatte, bir iş gününün sonunda, canı sıkkın, ön yargılı ve hatta uykulu olarak okuduğunu unutmayın). -Tarz olarak hayalperest, duygusal ve heyecanlı olunmalı ancak abartılı ve taklitçi olunmamalıdır. -İlk cümle çok önemlidir. Okuyucuyu kavramalıdır. -Önce, makalenin işaret edeceği problemin tanımına genel ama kısa bir yaklaşım yapılmalıdır. -Sonraki cümlelerde problemi ele almaya yardımcı olacak daha önceki çalışmalar tanımlanmalıdır. Materyel ve Metod -Materyel ve Metod, yazılması en kolay bölümdür, çünkü araştırma protokolü kapsamında, çalışma süresince ne yapıldıysa o yazılacaktır. -Ancak ilginçtir ki, bir raporun reddinin en önemli sebebi de zayıf ve/veya yetersiz bir Material ve Metod bölümüdür. Alt başlıklar -Çalışma türü: Retrospektif-Prospektif, Değişkenlerin tanımlanması, Veri toplanması, Çalışma yeri ayrıntılı olarak verilmelidir. -Çalışmaya alınma kriterleri (Eligibility): Hasta kaynağı, Çalışmaya alınma ve çalışma dışı bırakılma kriterleri (inclusion-exclusion criteria), Çalışmanın başlama ve bitiş tarihi detaylı olarak yazılmalıdır. -Randomizasyon ve Körleme (Randomization & Blinding): Randomizasyon ve körleme uygulandıysa detaylı açıklama yapılmalı, bilgilendirilmiş olurun (informed consent) alınıp alınmadığı belirtilmelidir. -Müdahele ve Uyum: İlaç-müdahalenin detayları, ilaç üretici firmanın detayları, klinik testlerin detayları verilmelidir. -Hedeflerin tanımı ve değerlendirilme yöntemleri açıkça yazılmalıdır. -Denek büyüklüğü ve Güç (sample size ve power) hesaplamaları açıkça belirtilmelidir. -İstatistik analiz: Uygun analiz kullanılmalı, bias'dan kaçınılmalı, tüm istatistik yöntemler açıkça yazılmalı, yeterince detaylı ancak uzun olmadan, tekrarlanabilen (reproducible) ayrıntılar verilmelidir. Sonuçlar -Birinci cümlede "çalışmaya alınma kriterlerine" uyan ve çalışmada kullanılan obje hakkında bilgi verilmelidir. -Bulguların heyecanı olmalı, düz ve sıkıcı olmamalıdır. -Okuma kolaylığı açısından Sonuç bölümü alt başlıkları içermelidir. -Sonuçların verilme yeri Sonuç bölümüdür. Sonuçlarda bahsedilmeyen bir bulgu kesinlikle Tartışma da veya Özette verilmemelidir. -Önemli bulgular yazıya, sıkıcı ve yığın rakamlar, detaylar tabloya konmalıdır. -Basit, kolay okunabilen Tablo-Şekil kullanımı önemlidir. Rakam yığınları, tablolarda, ve ustaca düzenlenmiş, şık, anlaşılması kolay grafiklerde verilmelidir. -P değerlerinin mutlak değerleri verilmelidir (ör: p=0.043), p<0.05 ifadesini kullanmaktan kaçınılmalıdır. Eğer p değeri 0.001'den küçük ise p<0.001 olarak yazılabilir. -Sayısal ifadelerde virgülden sonra yazılacak anlamlı rakam sayısı belirlenmeli (1, 2 veya 3) ve tüm yazı boyunca aynı olmasına dikkat edilmelidir (ör: 7.4, 7.43 veya 7.429). Tablolar -Tablolar sayılarla dolu ve karışık olmamalı, basit ve kolay anlaşılır olmalıdır. -Yazı içinde ve Tablodaki veriler birbirini tekrarlamamalıdır. -Tablo açıklamaları uygun olmalıdır -Bağımlı değişkenler sütunlarda, bağımsız değişkenler satırlarda yer almalıdır. -Her değişken için birim tanımlanmış olmalıdır. -Değerlerin yuvarlanması (anlamlı rakam) uygun yapılmış olmalıdır. -Kesin p değerlerini içermelidir. -Tabloda kısaltma kullanmakdan kaçınılmalı, eğer muhakkak kullanılması gerekiyorsa dipnotta belirtilmelidir. -Dipnotlara işaretler belirli sırada konulmalıdır: *, †, ‡, §, ¦, , **, ††, ‡‡, §§, ¦¦, -Çift aralıklı olmalıdır. -Vertikal çizgi olmamalıdır. Şekil-Grafik -Çoğu okuyucu, sayfalarca yazı yerine öncelikle ve sadece Şekillere bakmayı tercih eder. Tüm alt yazılarda tür cins isimlerine gereken dikkat verilmelidir. -Şekiller de, Tablo'da olduğu gibi yazının içinde verilmemiş bilgiyi göstermelidir. -Hangi tip veriye hangi grafiğin uygun olacağının seçilmesi kritiktir. Sanatçı titizliği gerektirir. -Birçok çeşitli şekil vardır: Grafik, Diagram, Akış şeması, Fotoğraf, Radyolojik görüntü, Mikrografi, Anatomik çizimler, Aile ağacı v.b. -Grafik çizimler: Bar, Pie, Çizgi, Scatterplot, Histogram. Multivariate analizler için 2 boyutlu bar grafik, Etkileşim grafiği için 3 boyutlu etkileşim grafiği. -Akış şeması (flow-chart) çalışmanın yürütülmesini anlaşılır kılmak için yapılır. -Dağılım (scatter) grafiği iki sürekli değişkenin ilişkisini gösterir. -Histogram tek bir değişkenin dağılımını gösterir -X axis'de bağımsız, Y axis'de bağımlı değişken olmalıdır. -Kolay okunabilir olması için çizgiler kalın ve yazılar büyük puntoda olmalıdır. -Aks etiketi (axis label) anlaşılması kolay olmalıdır. -Şekil başlığı (figure legend) ayrıntılı, kolay anlaşılabilir olmalıdır. -Şekillerin arka sayfasına üst tarafı işaret eden "­ Top" ifadesi eklenmelidir. Tartışma -Giriş/Sonuç/Tartışma'da tekrardan kaçınılmalıdır. -Çalışmanın ön sonuç mu yoksa kesin sonuç mu olduğu ilk fırsatta belirtilmelidir. -Tartışma, yazının yeni bir bulgu sunduğuna dair bir cümle ile başlamalıdır. -Kesinlikle sıkıcı tarih dersi ile başlamamalıdır. -Tartışma, sonuçların yorumlandığı ve daha önce yayımlanan yayınlar ile karşılaştırıldığı yerdir. Sonuçlarda verilmeyen hiçbir bulgu Tartışmaya konmamalıdır. -Okuyucunun "bu yazıda yeni bir şey yok" demesine izin verilmemelidir. Orijinal olmayan, tahmin edilebilen ve bulgularla desteklenmeyen çıkarımlar, raporun değerini azaltır. -Okuyucu ile tartışıyor gibi yazılmalıdır. Hataları ve eksikleri kabul etmeye hazır olunmalı ve mütevazi olmaya özen gösterilmelidir. -Tartışma gereğinden fazla uzatılmamalıdır. Kelime salatasından kaçılmalıdır. -Şüpheli ifadeler içeren bölümler yazıdan çıkarılmalı. -Spekülasyondan kaçınılmalı, ancak yapılması gerekiyorsa zekice yapılmalıdır. -Sonuçlarına alternatif açıklamalar bulunmalıdır (şeytanın avukatlığı yapılmalıdır). Okuyucu kandırmaya çalışmamalı, ve gerekirse itirafda bulunulmalı (çalışmanın kısıtlılığı, henüz açık olmayan problemleri işaret eden yorumlar, v.b.) ancak teslim bayrağı da çekilmemelidir. -En büyük kozlardan biri daha önce yayınlanmış yazılardaki metodolojik hatalar, eksiklikler ve zaaflardır. Bunlar dikkatle bulunup tartışılmalıdır. Öngörülmeyen ama bulunan sürpriz sonuçların tartışılması unutulmamalıdır. -Çıkarımlar (Conclusions) -İyi bir araştırma makalesi "gökgürültüsü" ile başlayıp "şimşekle" bitmelidir. -Böylece, yazının sonunda okuyucunun kafasında ışıklar belirmesi sağlanmalıdır. Çıkarımlar açık, kesin, haddini aşmayan, sonuçlar ile tamamen uyumlu, ve çarpıcı olmalıdır. -Ancak unutmayın ki sonuçlar ile desteklenmeyen çıkarımlar, makalenin reddi için en önemli sebeplerinden biridir. -Okuyucunun her an "eee nolmuş yani" sorusu ile karşılaşacağınız unutulmamalıdır. -Bulduğunuz sonuçların ışığında ileri çalışmaların gerektiği durumlar sebepleri ile anlatılmalıdır. Kaynaklar -Referansların formata uygun olarak yazılması gereklidir. -Makale içi referans numaraları ile referansların sırasının kesinlikle tutarlı olması gerekir. Aksi durumda okuyucu raporunuz ve yazınız ile yeteri derece özenli olmadığınızı düşünebilirler. -İdeal referans sayısı 5-10 arasıdır. Çoğu zaman 5 üstünde referansı olmalıdır. Referansların sadece güncel olması değil o konuda yapılmış en önemli çalışmaları da (eski tarihli olsa da) içermesi gerektiğinden, kaynak seçiminin dikkatle yapılması gerekir. Referans sistemleri Referans çeşitleri Dergi makaleleri (Journal articles) -Standard dergi makalesi (journal article): Goate AM, Haynes IR, Owen MJ, et al. Predisposing locus for Alzheimer's disease on chromosome 2 Lancet 1989;1:352-5. Yazar bir kuruluş ise (organization as author): The Royal Marsden Hospital Bone Marrow Transplantation Team. Failure of syngeneic bone marrow graft without preconditioning in post hepatitis marrow aplasia. Lancet 1977;2:742-4. Yazar ismi verilmemişse (no author given): Coffee drinking and cancer for the pancreas (editorial). BMJ 1991;283:628. Yazı dergi ekinde (supplement) çıkmışsa: Magni F, Rossoni G, Berti F. BN-52021 protects guinea pig from heart anaphylaxis. Pharmacol Res Commun 1988;20 Suppl 5:75-8. Yazı dergi eki içeren bir sayıda çıkmışsa (issue with supplement): Gardos G, Cole JO, Haskell D, et al. The natural history of tardive dyskinesia. J Clin Psychopharmacol 1988;8(4 Suppl):31S-37S. Yazı bölümlü ciltte çıkmışsa (volume with part): Hanly C. Metaphysics and innateness: a psychoanalytic perspective. Int J Psychoanal 1988;69(Pt 3):389-99. Yazı bölümlü sayıda çıkmışsa (issue with part): Edwards L, Meyskens F, Levine N. Effect of oral isotretinoin on dysplastic nevi. J Am Acad Dermatol 1989;20(2 Pt 1):257-60. Yazı cilt numarası olmayan sayıda çıkmışsa (issue with no volume): Baumeister A. Origins and control of stereotyped movements. Monogr Am Assoc Ment Defic 1978;(3):353-84. Yazıda sayı ve cilt numarası yoksa (no issue or volume): Donoek K. Skiing in and through the history of medicine. Nord Medicinhist Arsb 1982;86-100. Kitap ve Diğer Monograflar (books and other monographs) Sadece yazar (personal authors): Colson JH, Armour WJ. Sports injuries and their treatment. 2nd rev. ed. London: S. Paul, 1986. Editör(ler)in yazar olması (editor(s), compiler as author): Diener HL, Wilkinson M, editors. Drug induced headache. New York: Springer-Verlag, 1988. Bir kuruluşun yazar ve basımcı olması (organization as author and publisher): Virginia Law Foundation. The medical and legal implications of AIDS. Charlottesville: The Foundation, 1987. Kitap bölümü (chapter in a book): Weinstein L, Swartz MN. Pathologic properties of invading microorganisms. In: Sodeman WA Jr. Sodeman WA, editors. Pathologic physiology: mechanisms of disease. Philadelphia: Saunders, 1974;457-72. Konferans tebliğleri (conference proceedings): Vivian VL, editor. Child abuse and neglect: a medical community response. Proceedings of the First AMA National Conference on Child Abuse and Neglect; 1984 Mar 30-31; Chicago.: American Medical Association, 1985. Konferans makalesi (conference paper): Harley NH. Comparing radon daughter dosimetric and risk models. In: Gammage RB, Kaye SV, editors. Indoor air and human health. Proceedings of the Seventh Life Sciences Symposium; 1984 Oct 29-31; Knoxville (TN). Chelsea (MI): Lewis, 1985;69-78. Bilimsel ve teknik rapor (scientific and technical report): Akutsu T. Total heart replacement device. Bethesda (MD): National Institutes of Health, National Heart and Lung Institute; 1974 Apr. Report No.: NIH-NHLI-69-2185-4. İnternet kaynakları 1. WWW (World Wide Web) sayfaları "www" kısaltması ile elde edilen dökümanlar özelliklerine göre aşağıdaki gibi refere edilirler: Dosya dökümanları; *yazar adı (eğer verilmişse) açık olarak verilir. *www ortamına giriliş tarihi ya da son revizyon tarihi (eğer verilmişse) parantez içinde verilir. *belgenin adı açık olarak verilir. *tüm çalışmanın adı (eğer veriliyorsa) altı çizilerek verilir. *URL (tüm adres) köşeli parantez "<" ve ">" içinde verilir. *belgenin kullanım tarihi (parantez içinde) verilir. Örnekler: Kişisel sayfalar: Pellegrino, J. (1997, September 24). Homepage. <www.english.eku.edu/PELLEGRI /personal.htm> (1997, November 12). Genel web sayfası: Harris, J. G. (1997, April 19). The return of the witch hunts. Witchhunt Information Page. <liquid2-sun.mit.edu/fells .short.html> (1997, November 19). Shade, L. R. (1994, February 14). Gender issues in computer networking. <www.mit.edu :8001/people/sorokin/women/lrs.html> (1997, November 26). Kitaplar Darwin, C. (1845; 1997, June). The voyage of the Beagle. Project Gutenberg. <ftp://uiarchive.cso.uiuc.edu/pub/etext /gutenberg/etext97/vbgle10.txt> (1997, October 1). Elektronik dergiden bir makale veya derleme (ejournal) Browning, T. (1997). Embedded visuals: Student design in Web spaces. Kairos: A Journal for Teachers of Writing in Webbed Environments, 3(1). <www.as.ttu.edu /kairos/2.1/features/browning/index.html> (1997, October 21). Elektronik magazinden bir makale veya derleme (ezine) Myhrvold, N. (1997, June 12). Confessions of a cybershaman. Slate. <www.slate.com /CriticalMass/97-06-12/CriticalMass.asp> (1997, October 19). Devlet yayın ve raporları Bush, G. (1989, April 12). Principles of ethical conduct for government officers and employees. Exec. Order No. 12674. Pt. 1. <www.usoge.gov/exorders/eo12674 .html> (1997, November 18). 2. e-mail mesajları Kişisel konuşma niteliğinde olan, dolayısı ile başka araştırıcılar tarafından elde edilmesi mümkün olmayan e-mail mesajlarının kaynaklar bölümünde verilmesine olumlu yaklaşılmamaktadır. Bunun yerine, bu tip mesajlardan elde edilen bilgiler kişisel konuşma olarak (pers. comm.) kaynaklar bölümünde verilmeden metin içinde sunulabilirler. Ancak, dünya genelinde, konularında otorite olan ve tanınan bilim adamları ile yapılan üst düzeyli e-mail görüşmelerinin kaynaklar bölümünde verilebilmesi mümkündür. Bu durumda, şu kurallara uyulmalıdır. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizili olarak, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *iletişimin tipi verilir (kişisel e-mail mesajları, genel dağıtım sitesi e-mail mesajları, iş görüşmesi e-mail mesajları), kareli parantezler içinde verilir. *görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler Franke, N. <franke1@llnl.gov> (1996, April 29). SoundApp 2.0.2 [Personal email]. (1996, May 3). Robinette, D. <robinetted@ccmail.gate.eku.edu> (1996, April 30). Epiphany project [Office communication]. (1996, May 23). 3. "Web discussion forum" gönderimleri Web tartışma forumlarından gönderilen dökümanların kaynaklar bölümünde verilmesi için aşağıdaki bilgilerin sağlanması gereklidir. *yazar adı *yazarın e-mail adresi, altı çizili olarak, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilmelidir. *mesajdaki "subject" satırı ya da postalamada kullanılan başlık (title) verilir. *mesajın tipi eğer uygunsa, kareli parantezler içinde verilir. *URL, altı çizili olarak, köşeli parantezler içinde verilir. *görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler LaLiberte, D. <liberte@ncsa.uiuc.edu> (1996, May 23). HyperNews instructions. < http://union .ncsa.uiuc.edu/HyperNews/get/hypernews /instructions.html > (1996, May 24). Saffran, A. <saffran@wisbar.org> (1996, January 5). It's not that hard [Reply to HyperNews instructions, by D. LaLiberte]. <http:// union.ncsa.uiuc.edu/HyperNews/get/hypernews /instructions/90/1/1.html> (1996, May 24). 4. Listserv mesajları Bir listserv mesajını dökümanlamak için şu bilgiler sağlanır. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizilerek, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *listserv ın adresi, altı çizilerek, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Parente, V. <vrparent@mailbox.syr.edu> (1996, May 27). On expectations of class participation. <philosed@sued.syr.edu> (1996, May 29). Bir "list server" ya da bir "web address" inden alınabilen bir dosyayı dokümanlamak için şu bilgilere gereksinim vardır. *listserv adresi, köşeli parantezler içinde verilir. *listenin yer aldığı arşiv için ya da URL için adres, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Carbone, N. <nickc@english.umass.edu> (1996, January 26). NN 960126: Followup to Don's comments about citing URLs. <acw-l@uni corn.acs.ttu.edu> via <www.ttu .edu/lists/acw-l> (1996, February 17). 5. Haber grupları mesajı (newsgroup message) Bir haber grubu mesajından elde edilen bilginin dökümanlanması için şu bilgiler gereklidir. *yazar adı (eğer biliniyorsa) *yazarın e-mail adresi, altı çizilerek, köşeli parantezler içinde verilir. *yayın tarihi, parantezler içinde verilir. *mesajdaki "subject" satırı verilir. *haber grubunun adı, köşeli parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnek Slade, R. <res@maths.bath.ac.uk> (1996, March 26). UNIX made easy. <alt.books.reviews> (1996, March 31). Eğer, tüm çabalara rağmen yazarın adı temin edilemezse, yazarın e-mail adresi kullanılır. Bu durumda, kaynaklar bölümündeki alfabetik sıralamada yazarın e-mail adresindeki ilk harf esas alınır. Örnek <lrm583@aol.com> (1996, May 26). Thinking of adoption. <alt.adoption> (1996, May 29). 6. Anlık görüşme (real-time communication) MOO, MUD, IRC ve ICQ gibi bir karşılıklı anlık görüşme bilgisinin dökümanlanması için aşağıdaki bilgiler gereklidir. *Konuşmacı veya konuşmacıların isimleri (eğer biliniyorsa) ya da site adı. *konuşmanın tarihi, parantezler içinde verilir. *konuşmanın adı (eğer uygunsa). *bağlantını tipi (grup tartışması, kişisel görüş bildirimi) *URL yada komut satırı yönelimleri ile adres, açılı parantezler içinde verilir. * görüşmenin gerçekleşme tarihi, parantezler içinde verilir. Örnekler LambdaMOO. (1996, May 28). Seminar discussion on netiquette. <telnet://lambda.parc .xerox.edu:8888> (1996, May 28). Harnack, A. (1996, April 4). Words. [Group discussion]. telnet moo.du.org/port=8888 (1996, April 5). 7. Telnet bildirimleri Bir telnet sitesinin ya da telnet'ten elde edilebilecek bir dosyanın döküman haline getirilebilmesi için, aşağıdaki bilgilere gerek vardır. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı (eğer biliniyorsa) verilir.. *tüm çalışmanın adı.(eğer temin edilebiliyorsa) altı çizili (italik) olarak verilir. *telnet kelimesi verilir. *boşluk bırakmadan tüm telnet adresi verilir. *dökümanın kullanımındaki yönelimler verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir. Örnekler Aquatic Conservation Network. (n.d.). About the Aquatic Conservation Network. National Capital Freenet. telnet freenet.carleton .ca login as guest, go acn, press 1 (1996, May 28). California Department of Pesticide Regulation. (n.d.). Pest management information. CSU Fresno ATI-NET. telnet caticsuf.csufres no.edu login as super, press a, press k (1996, May 28). 8. FTP bildirimleri Dosya nakil protokolü (file transfer protocol) ile yüklenebilen dosyaların dökümanlanması için gerekli bilgiler aşağıdaki gibidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı (eğer biliniyorsa) verilir.. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *ftp kısaltması verilir. *FTP sitesinin adresi verilir. *dökümanın bulunabilmesi için tüm geçilen yollar verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnekler Altar, T. W. (1993, January 14). Vitamin B12 and vegans. ftp://wiretap.spies.com Library /Article/Food/b12.txt (1996, May 28). Fukuyama, F. (1993, May). Immigrants and family values. <ftp://heather.cs.ucdavis.edu/pub /Immigration/Index.html> (1997, November 19). U.S. Senate. (1997, January 21). Safe and Affordable Schools Act of 1997. Cong. Rec. <ftp://ftp.loc.gov/pub/thomas/c105/s1.is .txt> (1997, October 21. 9. Gopher bildirimleri Gopher araştırma protokolü (gopher search protocol) kullanılarak temin edilen bilgilerin dökümanlanması için aşağıdaki bilgiler gereklidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı verilir.. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *URL, köşeli parantezler içinde verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnek Smith, C. A. (1994). National extension model of critical parenting practices. <gopher://tinman.mes.umn.edu:4242/11/Other/Other/NEM_Parent> (1996, May 28). Gopher komutlarını kullanarak ulaşılan bir bilgi bölgesinin dökümanlanması için aşağıdaki bilgilerin temini gereklidir. *gopher kelimesi verilir. *site adı verilir *tüm menü seçimlerini içeren yollar ile ilgili komutlar bildirilir. Örnek Association for Progressive Communications. (1997, March). About the APC. <gopher://gopher/humanrights.org. About IGC Networks/Association for Progressive Communications/About the APC (1997, December 11). 10. Bağlantılı veri dökümantasyonu (Linkage data) Daha büyük bir web sayfasından bağlantı kurulan (links) başka sayfaların kaynaklarda kullanılması için aşağıdaki bilgiler gereklidir. * yazar adı (eğer biliniyorsa) verilir. *yayın tarihi (eğer biliniyorsa), parantezler içinde verilir. *dökümanın adı verilir.. *Bağlantının sağlandığı ana sayfanın adı lnk. ("linked from") kısaltması ile italik olarak verilir. *Dosyaya bağlanılan dökümanın başlığı verilir. *Ek bağlantı detayları (eğer mümkünse) verilir. *herhangi bir basılmış yayın bilgisi, altı çizilerek verilir. *URL, kaynak döküman için, köşeli parantezler içinde verilir. * uygulamanın gerçekleşme tarihi, parantezler içinde verilir Örnekler Miller, A. (n.d.). Allison Miller's home page. Lkd. EKU Honors Program Home Page, at "Personal Pages." <www.csc.eku .edu/honors> (1996, April 2). Teague, J. C. (1997, March 11). Frames in action. Lkd. Kairos: A Journal for Teachers of Writing in Webbed Environments at "Cover Web: Tenure and Techno-logy." <english.ttu.edu/kairos/2.1> (1997, November 19). Hazırlayan Arş. Gör. Dr. Utku Güner Trakya Üniversitesi Fen- Edebiyat Fakültesi Biyoloji Bölümü Kaynak: trakya.edu.tr

http://www.biyologlar.com/genel-biyoloji-laboratuar-rapor-hazirlama-formati

ANTİSENS TEKNOLOJİSİ

ANTİSENS NEDİR Sense, m-RNA veya DNA molekülünün 5’- 3’ ipliğidir. Sense’in komplementeri olan iplik de antisens olarak isimlenir. ANTİSENS TEKNOLOJİSİ Antisens teknoloji insan, hayvan ve bitkilerdeki hastalıkların daha spesifik tedavisi ve yeni keşifleri için ayrıca, fonksiyonel genomik çalışmalar için çok güçlü silahlardan oluşan uygun tekniklerdir Doğal olarak oluşan bu mekanizma sekansa spesifik olup ilk kez Caenorhabtidis elegans nematodunda keşfedilmiştir. Prensip : Antisens teknoloji olarak bilinen yöntemde, antisens RNA moleküllerinin hedef genin RNA(sense) ipligine spesifik olarak bağlandıgında system bu çift helix’I yabancı olarak algılar ve hatalı m-RNA molekülü daha translasyona girmeden parçalanaıp yok edilecektir ve gen ifadesinin moleküler düzenlenişine engel olunacaktır. Yani Antisens teknolojisi ile oluşmuş olan proteinin inhibisyonu degil proteinin oluşmadan önceki transkripsyon veya translasyon aşamasının inhibisyonu amaçlanır. Antisense teknolojisi proteinle ilgili hastalıkların ilerlemesini durdurmak için oligonükleotidler olarak adlandırılan sentetik DNA ve RNA segmentlerinin kullanımını içerir. Artık günümüzde bir proteinin aminoasit zinciri bilindiginde DNA’nın anmalı geri çevrilebilir vem-RNA sını hedef alacak bir antisense oligonukleotid dizayn edilebilir. Bu teknoloji ile ADIS, Kanser, Hepatid gibi tedavisi mumkun olmayan hastalıklara belki careler bulunacaktır. Anitsens ipliğinin bugun gelişritlen en son hipotezleri RNA splicing’in bloke edilmesi RNA molekülünün azalmasının hızlandırılması HnRNA intronlarının kesilmesi m-RNA nın sitoplasmaya taşınmasının engellenmesi Translasyonun engellenmesi Triplex DNA oluşumunun saglanması (Şekil Tez syf 5) Atisense RNA E.coli’deki ColE1 ve R1 plasmidleri ile yapılan çalışmalar esnasında bu plasmidlerin kopya sayılarını control eden plasmidlerin kodlandıgı küçük RNA regulatörleri bulunmuştur. ColE1 ile yapılan çalışmalar sırasında Antisense RNA lar hakkında önemli bulgular elde edilmiştir. Bu plasmidde DNA replikasyonu Replikasyon orjininden başlar ve RNA primerleri açılan RNA çift iplikleri ile hibrit oluşturur. DNA polimeraz, RNA primerlerine bazları ilave ederek orjini içeren iplige komplementer olan yeni bir DNA ipligi sentezlemektedir. Sense ve antisense iplikleri komplementer olduklarına gore sense RNA primeri ve antisense RNA molekülleri de birbirlerine komplementer olup hibrit oluşturabilirler. Böylece dublex RNA primerleri plasmidin orjini ile eşleşemeyecekleri için DNA replikasyonu başlayamayacaktır. Antisense RNAların yapısı Doğal olarak bulunan antisense RNAlar 35-150 nukleotid arası uzunlua sahiptir ve 1-4 arasında steem-loop yapısı içerirler. Etkili antisense RNAlar 8 nukleotidli G-C bakımından zengin ilmekler içerirler. Hem gövde hem de ilmek yapısı stabilize olma durumu açısından önemlidir çunku komplementer RNA ile hızlı etkileşim için yapı iskeleti oluşturur. Ve sense ve antisense etkileşiminin bozulmasına karşı yapıyı korur. Antisense RNAların etki mekanizmalrı antisens oligonükleotidlerinkine çok benzer. Antisens RNA ların etki mekanimaları şöyldedir. antisens, RNA transkripsiyonun inhibe eder. RNA splicing ve mRNAnın nükleustan dışarı taşınımını bloke eder. Translasyonu inhibe eder. Hedef mRNA ya bağlandıktan sonar RNAaz 3’ü indkleyip çift iplikli RNAnın bozulmasını sağlar. Kalıp DNA dan oluşan antisens RNA lar plasmid ve viral vektörler ile taşınırlar. Bu hususta anrisens RNA lar antisens oligonükleotidlere gore daha avantajlıdırlar. Çünkü kendi kalıpları etkili bir şekilde hedef hücreye viral vektörler ve diğer yollarla alınırlar. Aktif formları hücre içinde farklı promotorlar tarafından kontrollü bir şekilde oluşturulur. PROKAROTLARDA ANTİSENS RNA ARACILI REGÜLASYON SİSTEMLERİ Plasmid sistemleri Primer oluşum inhibisyonu Rep translasyonu için gerekli olan lider dizinin sentezinin inhibisyonu Plazmidin konjugasyon ve post segregasyon killing proseslerinin kontrolü transpozon sistemleri faj sistemleri Antisens Oligonükleotidler: Anitsense oligonukleotidler genellikle 15-20 nukleotid içeren ve hedef m-RNA ya kopmlamenter olan sentetik dizilerdir. 1970 yıllarında Zamecnik ve Stephenson tarafından gösterilmiştir. Bu araştırmacılar Rous Sarcoma virusün (RSV) 35SRNA’ sının 5’ ve 3’ uçlu nükleotid sekansını kullanarak viral integrasyonda önemli olarak görünen 21 nükleotidlik tekrarlayıcı sekansları identifiye etmişler ve viral sekansın bir kısmına komplementer olan d( AATGCTAAAATGG ) 13 mer’ lik oligonükleotidi sentezlemişlerdir. Bu sentetik oligonükleotid sekansı RSV ile enfekte olmuş fibroblast hücre kültürlerine verildiğinde, viral üretim büyük ölçüde inhibe olmuştur. Böylece araştırmacılar önemli sekanslara hibridize olarak onları bloke eden oligonükleotidlerin viral integrasyonu inhibe ettiği sonucuna varmışlardır. Hücreye verilen bu oligonükleotide “hibridon” adı verilir Antisens oligonükleotid aktivitesine katkıda bulunan başlıca 2 mekanizma vardır : Bir çok antisens oligonukleotid RnaseH enzimini active ederek active edecek şekilde dizayn edilmiştir. RNaseH; DNA-RNA heterodublexinin RNA kısmını keserek hedef m-RNA nın bozulmasını sağlar. Rnase H kesimini teşvik edemeyen oligonukleotidler şse translasyonun ribozonlar tarafından bloke edilmesinde kullanılırlar. Anitsense oligonukleotidlerin etkililigi : Oligonukleotidler de antisens RNAlar ile aynı etki mekanizlarına sahiptir. Fakat bazıe eksik yanları vardır. Bunlar ; Dagıtım özgüllüğü eksiktir In vivo da stabil kalamazlar Karaciğer ve böbreklerde birikime yol açarlar Düşük hücresel alınım vardır. Hücreler içindeki etkili konsanstarasyonlar kısa süreli muhafaza olurlar. Antisense Oligonukleotid Tipleri : Birinci Tip oligonukleotidler : m-RNA ya bağlanarak RnazeH aktivitesi ile translasyonu engeller. İkinci Tip oligonukleotidler : Ribozim aktivitesi ile Trasnlasyonu engellerler. Üçüncü Tip oligonukleotidler: DNA ç,ft sarmalına bağlanarak üçlü sarmal oluşturur ve Transkripsyon engellenir. Antisense oligonukleotidler restrüksiyon endonucleazlardan nasıl korunur ? Birinci sınıf modifikasyon, DNA ve RNA nükleotidlerindeki baz veya fosfat bağlarının değişimidir. DNA nükleotidlerinde olmayan, RNA nükleotidlerindeki 2’(OH) hidroksil grubu olan ( Riboz ) modifiye edilebilir. Bu modifikasyon, nukleaz degredasyonuna karşı bir tür kamuflajdır. Oksijen atomundan birini sülfür ile yer değiştirmişlerdir. Bu modifikasyon insan serumunda 10 saatin üzerinde nükleazlara karşı dayanıklı bir şekilde kalmış, aynı sekansa sahip modifiye olmamış oligonükleotid ancak 1 saat kalabilmiştir. İkinci sınıf modifikasyon, Riboz şekerinin 2’ pozisyonundaki alkil modifikasyonlar içeren RNA nükleotidleridir. Bu modifikasyonların en önemli ikisi, 2’-O-metil ( OMe ) ve 2’-Ometoksi- etil ( MOE ) RNA’ larıdır. Modifikasyona uğramış antisens oligonükleotidlerin hibridizasyon afinitesi arttırılmış 3.sınıf modifikasyonlar ile hibridizasyonda termal stabilite artmış ve hedefin tanınması zenginleşmiştir. Bu tipler arasında ençok bilinen PNA’dır (1991). Şeker fosfat bağları poliamid bağları ile tümüyle değişmiştir. Bu oluşumlar stabiliteyi arttırıcı ve yüksek hibridizasyon kinetiği sağlarkan, hücreye verilimi ve RNAaz H kesim mekanizması için elverişli değildir. RNA İNTERFERANS (RNAi) RNAi, bitkilerde, solucanlarda, mayalarda ve insanlar arasında yüksek oranda korunmuş, doğal olarak oluşan biyolojik bir prosestir. Hücre içinde iki bölümden oluşan bir yol izine sahiptir. Hücrede oluşan öncül dubleks RNA molekülü ilk olarak, Dicer endonukleaz ile 21- 23 nükleotidlik kısa fragmentlere ayrılır. siRNA (short interfering RNA) olarak bilinen bu effektör RNA’ lar, RNA uyarıcı protein kompleksi ile etkileşir ( RNA inducing silencing protein compleks; RISC ). Bu protein kompleksi, siRNA’nın bir ipliğini lider sekans olarak kullanarak, hedef homolog RNA’ları kesmektedir. Bitkilerde, RNAi hücre savunmasında rol oynar; virus infeksiyonundan, transpozonlardan (sıçrayıcı gen) ve tekrarlayıcı sekansların uygun olmayan ifadelenmesinden, hücreyi korumaktadır. Memeli hücreleri de benzer savunma sistemine sahiptir. Hazırlayanlar Orçun GÜNGÖR Zübeyde HANOL KAYNAK: reptile.fisek.com.tr/5.pdf

http://www.biyologlar.com/antisens-teknolojisi

Otizmin Genleri İlk Kez Tespit Edildi

ABD'li bilim insanlarının gerçekleştirdiği araştırmalar sonucu otizmin genlerin mutasyona uğramasıyla oluştuğu ortaya çıktı Bağımsız çalışan bir grup bilim insanı, tıp dünyasında ilk kez, çocuklarda otizme neden olan birçok genetik mutasyonu tespit ettiklerini açıkladı. Nature dergisinde yayımlanan araştırmalar, geçmişteki sayısız bulguya da göz önüne alarak, beyin gelişiminde yüzlerce, hatta binlerce genetik farklılığın olumsuz rol oynayabileceğini gösterdi. ABD’nin Yale, Harvard ve Washington Üniversiteleri tarafından gerçekleştirilen üç ayrı araştırmada ayrıca, çocuklarda otizm görülme riskinin anne-babanın yaşı ilerledikçe arttığını ve özellikle 35 yaş üstü babalar için bu riskin daha yüksek olduğu belirtildi. Bilim insanları yeni araştırmanın, otizmin biyolojik temelini anlamak adına doğru bir strateji kurmakta kendilerine yardımcı olacağını, geçmişte böyle bir imkanları bulunmadığını ifade etti. Ayrıca, otizmin kalıtımsal riskleri ve çevre faktörleriyle olan bağlantısı üzerinde on yıllardır süren tartışmaların ardından, otizmin güçlü bir genetik temeli olduğu anlaşıldı. Araştırmacılar, söz konusu genetik mutasyonlara çok nadir rastlandığı ve araştırmalarda yer alan çocukların çok azında bulunduğunu belirtti. Çok nadir genetik mutasyonların deşifre edilmesiyle, tüm otizm vakalarının yüzde 15-20’sinin anlaşılabileceği, beyin gelişiminde yaşanan sorunların anlaşılmasında yeni mekanizmalar elde edilebileceği ifade edildi. Üç araştırma, aynı sonuç Otizm araştırmalarına dönüm noktası olabilecek üç araştırmada da, de novo mutasyonlar olarak bilinen ve nadir görülen genetik bozukluklara odaklanıldı. Kendilerinde otizm belirtisi olmamasına rağmen, çocukları otizm olan çiftlerin kanlarındaki genetik materyal analiz edildi. Böylece, anne ve babadan gelmiş olabilecek genetik özelliklerin incelenmesi yerine, otizme neden olabilecek ilk mutasyonların tespit edilmesi amaçlandı. De novo mutasyonları kalıtsal olmasa da, gebeliğin başlarında veya gebelik süresince doğal olarak ortaya çıkabiliyor. Birçok insanda bulunan de novo mutasyonlarının çoğu, beden ve zihin sağlığına tehdit oluşturmuyor. Çalışmalardan ilkinde, Yale Üniversitesi’nde genetik mühendisi ve çocuk psikiyatri olan Dr. Matthew State, otizm ön teşhisi konulan ve otzim olduğu halde belirtisini göstermeyen anne-baba ve çocukların oluşturduğu 200 kişide de novo mutasyonlarını saptamaya çalıştı. Araştırmada, birbirleriyle akrabalığı olmayan, otistik iki çocuğun aynı genlerinde de novo mutasyonları tespit etti. Otizm ön teşhisi olmayan kişilerde ise benzerlik saptanmadı. Sate, “Bu sonuç, üzerinde 21 bin nokta bulunan bir dart tahtasında aynı noktayı iki defa vurmaya benziyor... Mutasyonun tespit edildiği genin otizme neden olma ihtimali yüzde 99.9999” dedi. State ve ekibi, otizm olan bir üçüncü çocuğun farklı bir geninde de de novo mutasyonu tespit etti. Ancak bu genin otizme sebep olma ihtimalinin daha düşük olduğu ifade edildi. İkinci araştırma ilkini doğruladı Washington Üniversitesi’nden Dr. Evan Eichler’in başını çektiği araştırmacılar, Yale Üniversitesi’ndeki araştırmanın benzerini 209 aile üzerinde yaptı. Aynı sonucu veren bu araştırmada, otizm olan bir çocukta, aynı gende genetik bozukluk tespit edildi. İki araştırmadaki benzerlik bununla sınırlı kalmadı. Araştırmacılar, akraba olmayan iki otistik çocukta, aynı gende de novo mutasyonu olduğunu tespit etti. Otizm teşhisi olmayan insanlar üzerinde yapılan incelemelerde ise benzer bir duruma karşılaşılmadı. Üçüncü doğrulama Üçüncü ve benzer bir araştırma, Harvard Üniversitesi’nden Mark Daly ve ekibi tarafından gerçekleştirildi. İlk iki araştırmadaki üç geni bulmaya çalışan Daly, bu genleri taşıyan daha çok vaka buldu. Daly, “Her insanda genel olarak en az bir de novo mutasyonu bulunuyor. Ancak bu araştırmada, otizm olan çocukların bu mutasyonları daha yüksek bir oranda bulundurduklarını ve mutasyonun etkilerinin çok daha güçlü olduğunu gördük” dedi. Yaş arttıkça risk artıyor Her üç araştırma, otizm riskinin anne-baba yaşınının ilerlemesiyle arttığını gösterdi. Dr. Eichler, 51 de novo mutasyonu üzerinde yaptığı analizde ise erkeklerdeki DNA’nın kadınlara kıyasla genetik bozukluğa neden olma ihtimalinin dört kat daha fazla olduğunu tespit etti. Otistik bir çocuğa sahip olma riskinin, 25 yaşındaki erkeklere kıyasla 35 yaşındaki erkeklerde artması, yaş faktörünün etkisi iyice gözler önüne serdi. Bilim insanları yaş farklıyla ortaya çıkan etkiyi, “yaşlı erkeklerin spermlerinin beyin gelişimini etkileyebilecek genetik bozukluklara neden olabileceği ihtimaline” dayandırdı. Tedavi üretilmesi uzun sürecek Elde edilen bulgular, geliştirilecek yeni tedavi yönteminin oldukça uzun zaman alacağına işaret ediyor. Ancak hem Eichler, hem de Daly, yüksek risk içeren genlerin, paylaşılan biyolojik süreçlerde etkileşim göstermesinin, tedavi bulunma sürecini azaltabileceğini belirttti. Eichler, “Henüz, buzdağının ucunu görüyoruz... Ama herkes nereden başlamamız gerektiği konusunda emin” ifadesini kullandı. Dr. State ise “Bence çok önemli bir yerdeyiz, çünkü yıllardan beri bu alanda çalışıyorum ve otizme neden olan bir geni bile bulamamıştık” dedi. Uzmanlar temkinli San Diego Üniversitesi’sinde molekület tıp alanında akademisyen olan Jonathan Sebat, “Bu araştırmaların bir atılım olduğuna inanmıyorum, çünkü benzer sonuçlar elde edilmesini bekliyorduk... Yine de bir dönüm noktası olabilir. Gelecek bir iki yıl içinde, 20-30 veya daha fazla genetik mutasyon keşfedebileceğimizi söyleyebilirim” dedi. Diğer uzmanlar ise konuya daha şüpheli yaklaşarak, çok nadir görülen mutasyonların genetiğinin deşifre edilerek, bu mutasyonların belli genler üzerindeki etkisi hakkında kesin açıklamalar yapılmayacağını savundu. Johns Hopkins Üniversitesi Genetik Tıp Enstitüsü’nden Dr. Aravinda Chakravarti, “Bu çok iyi bir başlangıç ancak nadir görülen mutasyonların nedenini, hatta genel popülasyondaki seviyesini bilmiyoruz... Daha çok çalışılması gerek” ifadesini kullandı

http://www.biyologlar.com/otizmin-genleri-ilk-kez-tespit-edildi

Biyolojik Bilimler

Yeni astronomi ve fiziğin nasıl da daha önceki akademik geleneklerle, iç çatışma ve felsefe ile, ilahiyattaki kurulu fikir ve ilgilerle ihtilaf sonucunda ortaya çıktığını görmüş olduk. Bunlar teorik ve kurumsal seviyede eş zamanlı olarak yer almıştır. Bununla birlikte Orta Çağ'ın sonundan itibaren üniversite geleneğinde ilahiyat, hukuk ve tipti yüksek öğrenimi teşkil eden ve akademik meslek­lerin öncülüğünü yapan. Yeni çağa geçiş esnasında bu disiplinlerin içerisinde de iç gelişmeler ve çatışmalar vardı. İlahiyatta kökleri nominalist anlayışlara kadar giden (doğrudan Luther'e ve dolaylı olarak Ockham'a) reform hareketle­ri vardı. Hukukta yasal kurumlar için daha seküler siyasal yapılar ve çeşitli sözleşme teorisi versiyonları ile doğal hukuk teorisi tartışmaları, Althusius ve Grotius, Hobbes ve Locke'tan Aydınlanma ve insan hakları bildirgesine (Kuzey Amerika ve Fransa'da) kadar süren tartışmalar vardı. Tıpta, diğerlerinin yanı sıra, mesela 17. yy.ın ilk yarısında Harvey'in kan dolaşımı teorisinin oluşturduğu modern, bilimsel bir perspektife geçiş yaşanıyordu. Tıbbı, başlangıç noktamız alarak biyolojik bilimlerin içerisindeki gelişmelere bakacağız. Fakat şunu not etmek uygun olabilir ki; zamanın üç yüksek öğrenim disipli­ni de- ilahiyat, hukuk ve tıp normatif ve yorumsamacı disiplinlerdi: İlahiyat Kutsal Metinleri, hukuk kanun ve yasal işleri, tıp ise hastalığı yorumluyordu. İlahiyat için normatif olan şey, vahiyde, hukuk için doğa kanunu ve yazılı ka­nunda, tıp için sağlık ve uzun yaşamı geliştirme fikrinde bulunuyordu. Mekanik dünya görüşünden esinlenerek tıp da mekanik açıklamaların peşine düştü. Geleneksel Aristocu biyolojik olgular görüşü ve yeni Galileo - Newtoncu bilim ideali arasında bir çatışma gelişti. Paracelsus (1493-1541) Theophrastus Bombastus von Hohenheim diye de bilinir-, İsveçli bir doktor ve bilim adamıydı. Aslında hâlâ Hippokrates ve Galen ile de bağlantılı olan Aristo geleneğinin içindeydi: Hastalık vücuttaki temel ele­mentlerin bir dengesizliğiydi. Paracelsus'a göre bu temel elementler tuz, sülfür ve cıva idi; burada zamanının simyacı geleneğiyle birleşiyordu. Bugün bizim için O'nun eleştirel olmayan spekülasyonlarını göstermek kolay iştir. Yine de simyacılar, laboratuar tekniklerinin gelişmesiyle birlikte, kimyanın ortaya çıkı­şında esaslarının belirlenmesi sürecinde rol almışlardır. Bu nedenle doktor Paracelsus, belirli hastalıkları iyileştirmek için otlarda özel muhteva da arıyordu. Bu araştırmada verimli bir bilimsel metodun izlerini buluruz, hangi muhtevanın ne tür sonuç vereceğine ilişkin sıklıkla oldukça fantastik fikirleri olsa da. Pahracelsus'un, daha yoruma dayalı tıbba olan eğilimin aksine (bu tıp anlayışında doktorlar hastalıkları iyileştirmeye değil de anlamaya ve açıklamaya daha faz­la vurgu yaparlar) tıbbî uygulama ve deneyimi vurgulamış olması anlamında, Hipokrat tıp geleneğinin bir örneği olduğu söylenebilir. Bununla birlikte tıp mesleğinin sınırları muğlaktır. Bu nedenledir ki ameliyatlar büyük ölçüde dok­torlar değil "berberler" tarafından yapılıyordu. Tıbbın bir bilime dönüşümü yeni fiziğin ve nihayet yeni kimyanın etkisi altında oldu ve bu süreç 19. yy.da ivme kazandı. Fakat bu süreç yenilenmiş anatomi ve fizyoloji bilgisi gerektiriyordu. Bu insan teşrih ve tetkiki üzerindeki yasağın kaldırılmak zorunda olduğu böylece doktorların antikitenin mirasından (istifade edilebileceği anlamına geliyordu. Burada Andreas Vesalius'tan da ,0514-1564) bahsetmek zorunda olmakla beraber Leonardo da Vinci (1452-J.JS19), teşrih yoluyla anatomik araştırmada bir öncüydü. William Harvey (1578-1657) incelemeleri devrimsel bir kavram olan kan dolaşımıyla sonuçlanan bir İngiliz anatomisiydi. Harvey kalp-damar sistemi içinde kalbi, bir pompa işlevi gördüğü kapalı bir sistem olarak görüyordu. Bu parlak mekanik - nedensel açıklama kalbin yok olup tekrar yaratıldığını öngören önceki teoriden çok çok daha iyiydi. Böylece tıp bir taraftan anatominin bir taraf­tan da fizik ve kimyanın gelişmesiyle uyumlu olarak yavaş yavaş bilimsel bir di­siplin olarak şekillendi. Aristo ve Galileo-Newton perspektifleri arasındaki ihtilaf, vitalizm ve biyolojik bilimlere ilişkin mekanik görüş arasındaki tezatta ifadesini buldu: Organik (yaşayan) doğanın bütün yönleri yeni fizik bilimlerinde gördüğümüz aynı mekanik ve materyalist kavramlarla anlaşılabilir mi, ya da biyolojik disiplinler yaşamın süreçlerini kavramak üzere eşsiz kavramlara mı ihtiyaç hisseder? Sonrakini iddia edenlere genellikle "vitalistler" ve bunu inkar edenlere de sık sık "in­dirgemeciler" adı verilir. İndirgemeciler (reductionistfer) yaşam süreçlerini inorganik doğanın olgularıyla aynı biçimde açıklamaya çalışırlar; sonuçta biyolojiyi fiziğe indirgerler (bkz. Bölüm 8, Hobbes'ta İndirgeme Problemi). Şu halde biyolojide Aristocular vitalist, Galileo-Newton görüşünün taraftarları da indir­gemecidirler. Tıp pratiğinde bir doktor aynı zamanda hem hastayı bilimsel olarak incele­meli hem de onun öz-imajı ve toplumsal durumunu göz önünde bulundurmalı­dır. Mesela, mekanik perspektifin tüm tıbbi problemler için yeterli olduğu görüşünü reddedebilir fakat yine de mekanik perspektifi biyolojik olguların bilimsel açıklamaları için korumaya devam edebiliriz. Şöylece akıl yürütebiliriz: As­lında yaşayan bir beden olarak tamamen bedenimizin eşsiz deneyimine sahi­biz. Cinselliklerini sadece biyokimyasal kavramlarla anlayanlar delidirler. Burada psikosomatik süreçlerin tanınmasını görüyoruz. Fakat soru geçerlidir: Hangi gözlem ya da bilimsel açıklamalar biyolojik disiplinlerde farklı olmalıdır? Bu ihtilaf, yoğunluğunun birazını yitirdi; lakin evrim ya da holistik tıpta iliş­kili olarak insanın doğası hakkındaki tartışmalarda benzer problemler ortaya çıkabilir. Belirli ölçüde aynı yargı, ekolojiyle ilgili tartışmada da geçerlidir..

http://www.biyologlar.com/biyolojik-bilimler

Bakterilerde Homolog rekombinasyon

Bakterilerde Homolog rekombinasyon

Homolog rekombinasyon bakterilerde önemli bir DNA tamir sürecidir. Bakteri topluluklarında genetik çeşitlilik oluşturmakta da önemlidir, ama bu süreç ökaryotik genomlarıa çeşitlilik getiren mayotik rekombinasyondan büyük farklılık gösterir. Homolog rekombinasyon Escherichia coli adlı bakteride ayrıntılı bir şekilde çalışılmıştır.[2] Bu yolağın iki versiyonu vardır, bunlar, çift iplikli kırıkların tamirini sağlayan RecBCD yolağı ve tek iplikli kırıkların tamirini sağlayan RecF yolağıdır.[3] RecBCD yolağı, bozulmuş veya duraksamış DNA ikileşme çatalını yeniden harekete geçirmeye, ayrıca transpozonlarda gen ifadesinin düzenlenmesinde kullanılır. RecBCD yolağı RecBCD yolağı, bakterilerde çift iplikli DNA kırıklarını onarmakta kullanılan ana rekombinasyon yolağıdır. Çift iplikli DNA'daki bir kırığın küt veya yaklaşık küt ucuna bağlanarak rekombinasyonu başlatır. RecBCD DNA'ya bağlanınca, RecB ve RecD altbirimleri, ATP hidrolizi ile yürüyen helikaz etkinliği sayesinde, birbirine sarılı DNA ikilisini çözmeye başlar. Bu iki altbirim sonra ayrılmış olan iplikleri endonükleotik olarak keser: RecB, 3' ucu, RecD'nin 5' ucu kesmesinden daha sık olarak keser. DNA'nın açılması ve kesilmesi RecBCD'nin Kay konumu (İng. Chi site) olarak adlandırılan spesifik bir nükleotit dizisine (5'-GCTGGTGG-3' ) varana kadar devam eder.[5] Kay konumuna varınca RecBCD enziminin etkinliğinde dramatik bir değişiklik meydana gelir.[6] RecBCD birkaç saniye kadar duralar, sonra ilk hızının yarısı bir hızla ilerlemeye devam eder. RecD kesme hızını artırır ve 5' ipliği daha parçalanmış bir hale getirir, bu arada RecB altbirimi kesme etkinliğini durdurur. Kay konumunun tanınması RecBCD enzimini değiştirir, öyleki 3'uzantıya birçok RecA proteinleri yüklemeye başlar. Meydana gelen, RecA kaplı nükleoprotein filaman, homolog kromozomda benzer diziler aramaya başlar. Başka bir DNA molekülünde benzer bir dizi bulunca RecA'lı iplik, iplik işgali denen bir süreç ile bu homolog DNA ikilisinin içine girer.[5] İşgalci 3' çıkıntı içine girdiği DNA ikilisindeki iki iplikten birinin yerini alır. Sonuç, Holliday bağlantısı olarak adlandırılan, X-harfi şeklinde bir yapıdır. RuvA Holliday bağlantısına bağlanır ve RuvB'yi seferber eder. Holiday birleşiminin DNA üzerinde yürümesi dal ilerlemesi olarak adlandırılır ve heksamerik bir ATPaz olan RuvB tarafından katalizlenir. RuvC zayıf spesifiteli bir endonükleazdır, junction ayrışmadan önce onun bir müktar ilerlemesine izin verir.[7] Rekombinasyon iki tip ürün verir, bunlar Holliday birleşiminin nasıl ayrıştığına bağlıdır bunlara uç birleştirme (İng. splice) veya yama (İng. patch) denir. Uç birleştirme ürünleri yarım krosover ürünleridir, bunun sonucu genler karılır. Buna karşın yama ayrışması krosover olmayan ürünler meydana getirir (8) RecF yolağı Bakteriler DNA'daki tek iplikli kırıkları onarmak için homolog rekombinasyonun RecF yolağını (RecFOR yolağı olarak da adlandırılır) kullanırlar. RecBCD yolağı mutasyonlar sonucu çalışmaz hale gelince RecF yolağı çift iplikli kırıkların tamirinde onun yerini de alabilir. RecF yolağı hâlen RecBCD yolağından çok daha az anlaşılmış durumdadır. İki yolak da iplik işgali için RecA'ya gerek duyar, ayrıca dal ilerlerlesi (İng. branch migration) ve ayrışma evrelerinde benzeşirler.[9][10] RecF yolağının başlangıcında, RecJ (tek iplikli DNA'yı 5' → 3i yönünde kesen bir eksonükleaz) DNA'daki tek iplikli bir kırıktaki 5' uca bağlanır, bu uçtan kırparak 3' doğrultuda ilerlemeye başlar. RecJ tek başına da çalışabilse de, tek iplik bağlayıcı protein (İngilizce single-strand binding protein veya SSBP) ve RecQ helikaz etkinliğinin mevcudiyeti 5' ucun ne kadar kırpıldığını (rezeksiyon miktarını) belirler. RecJ'nin 5' ucu kırpmasının ardından meydana gelen 3' çıkıntıya SSBP bağlanır.[10] Bu sayede tek iplikli 3' çıkıntının, komplementer diziler yüzünden kendi üzerine katlanmasının önüne geçilmiş olur.[11] RecA'nın SSBP-kaplı 3' çıkıntıya yüklenmesi iki farklı yoldan olabilir, bunlardan biri RecFOR enzimini gerektirir, öbürü ise RecOR enzimini.[12] RecFOR yolağında, 3' uca sahip tek iplikli DNA'nın çift ipliklikçikli DNA ile birleştiği konumda RecFR kompleksi bağlanır. RecO sonra tek iplikli DNA üzerinden SSBP'nin yerini alır ama SSBP RecO'ya bağlı kalır. RecFOR sonra bu tek iplikli DNA/çift iplikli DNA birleşmesindeki (junction) içeri girinti 5' uca RecA'yı yükler. RecFR'de bulunan RecR altbirimi RecO ile etkileşerek RecFOR kompleksini oluşturur. Bunun sonucu RecR hem RecO'dan SSBP'yi ayrıştırır hem de 3' çıkıntıya RecA proteinleri yükler.[13] RecOR tarafından RecA yüklemesi RecFOR yüklemesinden birkaç yönden farklıdır, özellikle moleküler etkileşim gereksinimleri ve ideal DNA substratı için.[12] RecFOR yolağında farklı olarak, RecOR yolağında RecO ile SSBP'nin C-ucu arasında etkileşim vardır. Ayrıca, RecOR yolağında 3' çıkıntıya RecA'yı bağlamak için tek iplikli DNA/çift iplikli DNA birleşmesine gerek yoktur, buna karşın verimli olması için RecFOR yolağında böyle bir gereksinim vardır. Bu yüzden recA yüklemesinde RecOR yolağı çoğu durumda RecFOR yolağından daha verimli çalışır.[12] Dal ilerlemesi İplik işgalinin hemen ardından, dal ilerlemesi olarak adlandırılan bir süreç ile, Holliday bağlantısı bağlanmış DNA üzerinde hareket eder. Holliday bağlantısının bu hareketi sırasında iki homolog DNA ikilileri arasında baz çiftleri birbiriyle yer değiştirir. Dal ilerlemesini katalizlemek için RuvA proteini Holliday bağlantısını önce tanır, sonra da ona bağlanır, ardından RuvB'yi de seferber ederek RuvAB kompleksini oluşturur. RuvB molekülü halkasal, altıgen şekillidir; iki RuvB molekülü Holliday bağlantısının iki tarafında yüklenirler ve dal ilerlemesine güç verecek birer pompa gibi çalışırlar. İki RuvA tetrameri Holliday bağlantısının kare-şekilli merkezinde yer alır ve DNA'yı sandviç gibi aralarına alırlar. Her bir DNA ikilisinin iplikleri RuvA'nın yüzeyinde çözülürler, protein onları bir ikiliden öbürüne yönlendirir.[14][15] Ayrışma Rekombinasyonun ayrışma (rezolüsyon) aşamasında, iplik işgal sürecinde oluşan Holliday bağlantıları kesilir, böylece tekrar iki ayrı DNA molekülü meydana gelir. Bu kesme işlemi, RuvC ile etkileşen RuvAB kompleksi beraberce oluşturduğu RuvABC kompleksi tarafından yapılır. RuvC bir endonükleazdır, 5'-(A/T)TT(G/C)-3' dizisini keser; bu dejenere kod, DNA'da sıkça bulunur (yaklaşık her 64 nükleotitte bir).[15] Kesmeden önce, RuvC Holliday bağlantısındaki iki RuvA tetramerinden birini yerinden çıkarıp oradaki DNA'ya temas eder.[14] RuvC'nin DNA'yı nasıl kestiğine bağlı olarak rekombinasyon ya "uç birleştirme" (İng. splice) ya da "yama" (İng. patch) ürünleriyle sonuçlanır.[15] Uçbirleştirme ürünleri krosover ürünleridir, rekombinasyon noktasının iki yanındaki genetik malzeme farklı şekilde biraraya gelir (asortisman olur). Yama ürünleri, buna karşın, krosover olmayan ürünlerdir, genetik malzemenin yeni bir bileşimi olmaz, rekombinasyon ürününde sadece hibrit DNA'dan oluşan bir "yama" vardır.[16] Genetik transferin kolaylaştırılması Yatay gen transferi, bir organizmanın, yavrusu olmadığı başka bir organizmaya ait yabancı DNA'yı edinme sürecidir. Yatay gen transferinde verici organizmanın DNA'sının alıcı organizmanın genomuna entegre olmasında homolog rekombinasyon önemli bir yoludur. Homolog rekombinasyon alınan DNA'nın konak genoma yüksek derecede benzer olmasını gerektirir ve bu yüzden yatay gen transferi genelde benzer bakterilerle sınırlıdır.[17] Pekçok bakteri üzerinde yapılan çalışmalar göstermiştir ki, verici ve alıcı organizmaların DNA'ların dizi benzerliği arttıkça rekombinasyon sıklığı log-lineer bir azalma gösterir.[18][19][20]

http://www.biyologlar.com/bakterilerde-homolog-rekombinasyon

EPİGENETİK

Merhaba arkadaşlar. Sizlere bu yazımda, epigenetik hakkında bilgi vermek, özelliklerini anlatmak, sonuçları hakkında bilgi vermek ve epigenetikle ilgili çalışmaları anlatmak istiyorum. Epigenetik, DNA dizisindeki değişikliklerden kaynaklanmayan, ama aynı zamanda irsi olan, gen ifadesi değişikliğini inceleyen bilim dalıdır. Yani fenotipik değişimi, gen ekspresyonu değişikliklerini, varyasyonları inceler. Değişimler, DNA’daki gen dizilimi etkilememekte fakat canlı organizmayı doğrudan etkilemektedir. Değişimler, nesilden nesile DNA’daki diziyle değil, mitoz veya mayoz bölünmeyle yoluyla aktarılır. Epigenetik çalışmaları Aristoteles’e kadar uzanmaktadır. O zamanlarda en çok kabul gören teorilerden birisi olmuştur. O zamanlar “önceden oluşum” a inanılırdı ve Aristoteles bu inanca ters olan epigenez teorisini oluşturdu. Teoriye göre; canlının şekli ve yapısı döllenme sırasında mevcut değildir. Yapı doğuma kadar başkalaşımlarla gelişir, farklılaşır, aşama aşama canlılın yapısı ve şekli oluşur. 1942’de Conrad Waddington tarafından, epigenez genetiği olarak bilime girdi. Waddington'a göre epigenetik; gelişim esnasında embriyodaki değişmelerdir. Waddington’un bu tanımındaki eksiklik, moleküler yöntemlerle tespit edilen ırsilik faktörü olmuştur. Benim epigenetiğe ilgim, okulumuz hocalarında Aydın Tunçbilek ile yaptığımız konuşmalarla başladı. Aydın hoca bana “bak, bilimciler gen haritasını çıkardılar ama hala istediklerini yapamıyorlar. Neden peki biliyor musun? Çünkü epigenetiği hesaplamadılar. Şimdi de onun üzerinde çalışıyorlar. Çevrenin, canlı üzerindeki etkisinin bu kadar yüksek olacağını hesaplamamışlardı” dedi ve de bana “epigenetiği sana ödev olarak veriyorum, yaz boyunca onu okuyacaksın” demişti. Sizlerin de bildiği gibi geçtiğimiz yıllarda genetik haritamız tamamlandı. Bilimciler çok çalışıp bu haritayı çıkarmayı başardılar; fakat bu haritadan istedikleri sonuçları alamadılar. Örneğin: Diyabete sebep olan genler belirlendi ve bu genler onarıldı; ama buna rağmen denek hayvanlarında diyabet olduğu gözlendi. Bunun üzerine araştırmacılar anladılar ki genlerimiz bizi belirleyen tek şey değil. Aydın hocamın da dediği gibi, çevrenin canlı üzerindeki etkisi çok fazla. Benim bildiğim kadarıyla da epigenetiğe bu deneyden sonra verilen önem arttı, çalışmalar bu alana kaydı, moleküler çalışmalarla ortak bir şekilde yürütülmeye başlandı. Araştırmacıların en çok çalıştığı alanlardan biri oldu. Epigenetikte yapılan çalışmalar, araştırılan olaylar ve yapılan deneyler, yanıtlamaya ve cevabını vermeye çalıştığı sorular, nasıl etki ettiği ve nasıl sonuçlar verdiğini de anlatmak istiyorum. Yanıtlamaya çalıştığı sorular: 1.Fenotipi belirleyen nedir? 2.Çok hücreli bir organizmada; örneğin bir karaciğer hücresi ile bir kas hücresi, tamamen aynı genotipi paylaşırlarken, nasıl olur da, apayrı – yine de stabil – gen ifade profillerine ve de farklı ve bağımsız hücre fonksiyonlarına sahip olabilmektedirler? 3.Fibroblastlar veya lenfositler gibi farklılaşmamış hücreler, nasıl hücre bölünmesi yoluyla fenotiplerini stabil bir şekilde korumaktadırlar? 4.Nasıl, bir farklılaşmamış kök hücre, bazen bölündüğünde iki yeni kök hücre verirken, bazen de bir kök hücre ve de bir farklılaşmış hücre verebilmektedir? 5.Memelilerin, bizim de dâhil olduğumuz Eutheria altsınıfına ait dişi bireylerinin her hücresinde; ayni nükleoplazma içinde bulunan ve de neredeyse özdeş DNA dizinlerine sahip iki X kromozomundan biri inaktive edilmektedir. İki X kromozomundan hangisinin inaktive edileceği nasıl belirlenmektedir ve de inaktivasyon hangi yolla/yollarla gerçekleşmektedir? 6.Tamamen aynı genotipe sahip tek yumurta ikizlerinin, nasıl olur da hastalıklara genetik yatkınlıkları farklı olur? 7.Çevremiz ve de yaşam tarzımız bizi (gen ifademizi dolayısıyla bizi) ne kadar ve nasıl etkiler? 8.Bu etkiler bizden sonraki kuşaklara da aktarılır mı? İşte epigenetik, cevabını alamadığız soruların, araştırmaların eksik çıkmasına sebep olanların ne olduğunu, nasıl olduğunu ve etkinin nasıl olduğunu araştırır. Epigenetiğin mekanizmalar Epigenetik mekanizmaları, doğrudan gen ifadesini etkileyen veya dolaylı yoldan gen ifadesini etkileyen şekildedir. Dolaylı yoldan gen ekspresyonunu etkileyen mekanizma, transkripsiyon sonrası oluşturulan transkripte, modifiye olmuş ya da olacak transkript dizisine, onunla ilişkili olan enzimlere(amino-açil transferaz gibi), transkriptin okunmasında gerekli olan mekanizmaya( shine dalgarno veya kozak dizisi, transkriptin ribozoma oturmasında ve ribozom üzerinde ilerlemesinde gerekli olan kalıplar ve yardımcı proteinlerle sentezden sorumlu enzimlere) etki ederek ifade değişikliğine sebep olur. Dolayısıyla da protein dizisine etkir. Doğrudan etkiyen mekanizmalar ise; kromatin düzeyinde modifikasyonlarla, DNA düzeyindeki modifikasyonlar, diye ayrılar. Bu modifikasyonlar kovalent ya da non- kovalent olabilir. Yani DNA’yı oluşturan atomlar arasındaki bağlara etki eder, yeni bileşikler ekler(metil). Ya da gen veya gen parçası kaybına sebep olur, genin sessizleşmesine yani ifade edilememesine sebep olur. Ki bunlar çok ciddi değişikliklere neden olduğunu genetik dersi alan bütün arkadaşlar bilir. Bir de transkripsiyon faktörleri tarafından feed-forward(ileri beslenme) otoregülasyonu da DNA üzerinde modifikasyona sebep olmaktadır. Bizim dersten de ne iyi bildiğimiz DNA metilasyonu en çok araştırılanıdır. Bunlar DNA’daki değişimlerdi. Kromatindeki modifikasyonlar da bağlara olan etki sonucu oluşur. Kovalent bağlara etkiyle oluşan modifikasyonlar, histon modifikasyonları olarak adlandırılmaktadır: 1. ◦Asetilasyon, ◦Metilasyon, ◦Fosforilasyon, ◦Übikitinasyon ve de ◦Sümoylasyondur Non-kovalent modifikasyonlar da: 1. ◦Histon takasları ◦Histon katımları ◦Kromatin tadilatı ◦Nonkoding RNA ile etkileşim ◦Diğer ajanlarla etkileşim (virüsler, farklı protein grupları) ◦Uzun-mesafe kromozom etkileşimleri (hem kromozom-içi hem kromozomlar-arası). Epigenetik olgular Birçok biyolojik hadise epigenetik mekanizmalarıyla meydana getirilmektedir. Epigenetik temelli bu olguları ortaya çıkarabilmek aslında hiçte kolay değildir, çünkü hem bir çok biyolojik olgunun moleküler temeli bilinmemekte, hem de daha epigenetik mekanizmaları tam anlamıyla ortaya konmamış, keşfi yapılmamıştır. Bu olguların başlıcaları şunlardır: •X kromozomu inaktivasyonu, •Genomik imprinting, •Paramütasyon, •Floral simetri, •Farelerde agouti lokusunun aktarılması, •Polycomb sessizleştirmesi, •Konum-etki çeşitliliği, •Drosophila’da Hox genlerinin modellenmesi, •Hücre farklılaşması, •Nöronal gelişim. Epigenetik mekanizmaların kalıtımı Hücreye kimliğini kazandıran, yani fenotipini ortaya çıkartan epigenetik mekanizmaların, mitoz sırasında bir sonraki hücre soyuna nasıl aktarıldığı, maalesef halen bir merak konusudur. Aynı şekilde, bu bilginin, organizmalarda, sonraki nesillere nasıl aktarıldığı da pek anlaşılamamıştır. Ancak, bu epigenetik işaretlerin ya da bu epigenetik regülâsyonun dölden döle aktarıldığına dair sayısız kanıt mevcuttur: •Erişkin sirke sineklerinin (Drosophila melanogaster L.) oluşumundan sorumlu embriyonik hücreler, ortamlarından çıkarıldıklarında, bölünmeye devam ederler. Gelişmekte olan embriyoya geri konduklarında da, bacak veya kanat gibi, ilişkili oldukları yapıyı oluşturmaktadırlar. Hücreler sadece kendi kimliklerini hatırlamakla yetinmemekte, aynı zamanda bu bilgiyi hücre bölünmesinde diğer hücrelere de aktarmaktadırlar. •Geniş çaplı bir araştırma, annenin davranışlarının, bebeğin DNA’sını etkileyebildiğini göstermektedir. Bu etkinin potansiyel mekanizması; anne sütü ile beslenen farelerin, glükokortikoid reseptör kodlayan geninin DNA metilasyonundaki değişimi ile açıklanmaktadır. Embriyonik farelerin, antiandrojenik bir bileşik olan vinklozin’e maruz kalmaları; spermatogenesisin azalmasına neden olmuştur. Ve de, bu fizyolojik etki, sonraki birçok nesilde de gözlenmiştir. Bitkilerle yapılan bir çalışma aşağıdaki sonuçları ortaya koymuştur: •Strese maruz kalan bitkiler, gen ifadelerini değiştirerek, değişen ortama adaptasyon sağlamışlardır. Bunun için gerekirse genomlarını destabilize bile etmişlerdir. Böylelikle yeni bir fenotip ortaya çıkarmışlardır. •Yeni fenotipe sahip bitkiler, stres ortamından uzaklaştırılmalarına rağmen, dört nesil boyunca bu adaptasyonu korumuşlardır. Yani stresten ortaya çıkan adaptif fenotipik değişiklikler 4 sonraki nesile kadar aktarılmıştır. •Strese maruz kalmanın hafızası mevcuttur ve de bu hafıza dölden döle aktarılabilmektedir. Döllenmeden hemen sonra, erken embriyonun genomu büyük çapta ve muazzam bir demetilasyon sürecine girer. Bu silinmeden kurtulan çok özel bölgeler dışında, implantasyon öncesi embriyonun genomu tamamen hipometiledir (az metillenmiş). Bu da embriyonun pluripotensisiyle mantıken bağdaşır. İmplantasyon sonrası, DNA yeniden metillenmeye başlar. Mitoz sırasında da benzeri bir durum yaşanır ve genom demetile olur. Genomun demetilasyona uğramasının ardından, nasıl tekrar aynı bölgelerin metilasyona uğradıkları, yani epigenetik bilginin nasıl korunup aktarıldığını açıklamaya çalışan muhtelif modeller mevcuttur. Epigenetik mekanizmaların bilgisinin, genellikle, mitoz veya mayoz sırasında, ‘silinmeyen’ kromatin modifikasyonları ve de bazı siRNA’larla aktarıldığı düşünülmektedir. siRNA ise: ökaryotlarda gen ekspresyonu, “RNA interference” olarak adlandırılan RNA’ya bağlı bir mekanizmayla transkripsiyon sırasında veya sonrasında kontrol edilmektedir. “small interference RNA” (siRNA) olarak adlandırılan küçük inhibe edici RNA’lar, çift zincirli RNA’nın (ds RNA) hücresel enzimler ile (dicer) parçalanması sonucunda oluşur. siRNA’lar heterokromatin oluşumu, dış kökenli nükleik asitlerin parçalanması gibi önemli hücresel görev üstlenmektedirler. siRNA’nın gen susturma yeteneğinden yararlanılarak yapılan ekspresyon vektörleri gen fonksiyon analizinde kullanılan güvenli ve kullanışlı bir araçtır. Bu vektörler tipik olarak siRNA’nın yapısına benzeyen küçük hairpin RNA’nın transkripsiyonunu ve ekspresyonunu sağlayan standart bir promotor (genellikle RNA polimeraz III) kullanır. Epigenetik mekanizmalar kendi aralarında etkileşim göstermektedir. Kromatin düzeyinde gerçekleşenler ana mekanizmalardır. Yazımı burada sonlandırıyorum arkadaşlar. Sonraki yazımda sizlerle; Epigenetik çalışmalar, metilasyon- diyabet ilişkisi, metilasyon-kanser ilişkisi, epigenetikle ilişkili hastalıklar, epigenomik-şizofreni gibi konular hakkındaki bilgilerimi paylaşacağım. Epigenetikle ilgili yazmamı istediğiniz başka konular olursa bana bildirirseniz onlarla da ilgili yazarım. Okuduğunuz için teşekkür ederim. Bir sonraki yazımda görüşmek dileğiyle, arkadaşlar. KAYNAKLAR; 1.^ Adrian Bird (2007). "Perceptions of epigenetics". Nature 447: 396–398. doi:10,1038/nature05913. PMID 17.522.671 2.^ Dr. S. Sinanoğlu, 1953. Yunanca – Türkçe Sözlük 3.^ Hayvanların Oluşumu Üzerine (Περὶ ζῴων γενέσεως De Generatione Animalium), Aristoteles 4.^ Universalis, Epigénèse 5.^ Aaron D. Goldberg (2007). "Epigenetics: A Landscape Takes Shape". Cell 134: 635–638. doi:10,1016/j.cell.2007.02.006. PMID 17.320.500 6. Mechanisms of epigenetic inheritance, April 2007, C. Martin and Y. Zhang, Review, Cell Biology 7. Epigenetics, A Historical Review, June 2006, Robin Holliday, Review, Landes Bioscience 8. Epigenetic Epidemiology of the Developmental Origins Hypothesis, April 2007, R.A. Waterland and K.B. Michels, Annual Review of Nutrition.

http://www.biyologlar.com/epigenetik

500 milyon yıllık geni canlandırdılar!

500 milyon yıllık geni canlandırdılar! Ağustos Çarşamba, Bilim insanları, “paleo-deneysel evrim” adı verilen bir yöntem kullanarak, 500 milyon yıllık bir bakteriden alınan geni, canlı bir bakteriye aktardı. ABD’nin Georgia Tech Üniversitesi’nde gerçekleştirilen deneyde, bilim insanları yüz milyonlarca yıl öncesine ait ‘antik genleri’ bir bakteri fosilinden alarak Escherichia Coli (E.Coli) bakterisine aktarmayı başardı. Yapılan deneyle, bin nesildir hayatta olan bakterinin milyonlarca yıldır süren evrimi daha kolay bir şekilde gözlemlenebilecek. Georgia Tech’in NASA (ABD Ulusal Havacılık ve Uzay Dairesi) Ribozomal Orijinler ve Evrim Merkezi’nde görevli olan moleküler biyoloji uzmanı Betül Kaçar, “Bu deney sayesinde evrim ve moleküler biyoloji hakkında uzun süredir cevaplanamayan soruların karşılık bulacağına inanıyoruz... Bunlar arasında, organizmanın geçmişinin, geleceğini ne kadar kısıtladığı ve evrimin gelecekte birçok soruya cevap verdiği, belirgin bir noktaya ulaşıp ulaşmadığı var” dedi. Kaçar, “E. Coli deneyi, hayatın moleküler bir kaset gibi nasıl tekrardan yaşandığı konusunda elde edebileceğimiz en detaylı bilgileri sunacak...Antik bir geni modern bir canlı üzerinde nasıl evrim geçirdiğini gözlemleme şansı, evrim sürecinin kendisini tekrar mı ettiğini yoksa belli bir yola mı yöneldiğini anlamamızı sağlayacak” ifadesini kullandı. HAYALİ VE GERÇEK KARIŞIMI BAKTERİ Kaçar’ın danışmanlarından biyolog Eric Gaucher, 2008 yılında, E.Coli için çok önemli bir protein olan Elongation Factor-Tu’nun (EF-Tu) antik genetik dizilimini deşifre etmeyi başardı. Bakterilerde bulunan en bol proteinlerden biri olan EF’ler, tüm hücresel yaşam örneklerinde yer aldığı gibi, bakterilerin hayatta kalması için de önemli bir role sahip. Bu özellikleri, bilim insanlarının EF’leri evrimle ilgili soruları cevaplamak için tercih etmelerini sağladı. EF-Tu’yu doğru kromozon düzeninde oluşturan ve modern E.Coli’ye doğru konumda yerleştiren Kaçar, birbirinin aynısı sekiz bakteriyal dizi ortaya çıkarmayı ve “antik yaşamın” yeniden evrim geçirmesini sağladı. Kaçar’ın ortaya çıkardığı hayali-gerçek bakteri genleri hayatta kalmayı başardı. Ancak sadece modern genlerle oluşan bakterilere oranla iki kat yavaş gelişme hızı gösterdi. Gaucher, “Üzerinde oynanan bakteri, modern kopyaları kadar sağlıklı değildi... ancak her geçen gün mutasyon geçirerek modern şartlara adapte olmaya çalışması, evrimi gözlemlemek adına en mükemmel ortamı sağladı” dedi. ANTİK GEN MODERN PROTEİN BİLEŞİMİ Beklendiği gibi antik genlere sahip bakterinin gelişme hızı zamanla arttı. İlk 500 evrimin ardından, bilim insanları bsekiz bakteriyal dizinin genomlarını (tüm genetik kodlarını) inceledi ve nasıl adapte olduklarına baktı. Birçok dizinin gelişme hızı modern kopyalarınınkine eşitlendiği gibi, bazıları modern bakterilerden bile daha sağlıklı hale geldiği görüldü. Daha detaylı inceleme yapıldığında, tüm EF-Tu genlerinin mutasyonlara neden olmadığı anlaşıldı. Tersine, modern proteinler antik proteinlerle etkileşime girerek, genleri değiştirilen bakterinin adaptasyonunu hızlandırdı. Kısaca, antik gen mutasyon geçirerek modern genlere benzemedi ancak, modern proteinler vasıtasıyla kendisine evrim geçirecek bir yol çizmiş oldu. Araştırmada elde edilen sonuçlar, NASA Uluslararası Astrobiyoloji Bilim Konferansı’nda açıklandı. Bilim insanları, evrim deneylerine devam edeceklerini ve bu sefer proteinlerin evrim alışkanlıklarını inceleyeceklerini belirtti.

http://www.biyologlar.com/500-milyon-yillik-geni-canlandirdilar

HIV'E MOLEKÜL ENGELİ

Teksas Üniversitesi kimyagerleri, insan DNA’sına 16 gün boyunca bağlı kalabilecek spesifik bir dizilime sahip molekül üretmeyi başardı. Molekülün, AIDS’e neden olan virüs ve kanser gibi genetik hastalıkların önüne geçilmesinde devrim niteliği taşıdığı belirtildi. Bilim insanları, yapılan keşfin, hatalı DNA’ların tedavi edilmesinde rol oynayacak ilaçlar üretilmesinde kullanılabileceğini düşünüyor. Teksas üniversitesi kimyageri ve biyokimya uzmanı Brent Iverson, “Eğer DNA’yı sarmal şeklinde bir merdiven olarak düşünürseniz, ürettiğimiz molekülü ileride merdivendeki basamakların arasına sokabileceğiz” dedi. Iverson, amaçlarının DNA zincirinceki spesifik bir gen dizisini aktif hale getirmek veya onu devre dışı bırakmak olduğunu belirtti ve şu örneği verdi: “HIV'i ele alalım. Virüsün canlılarda kalıtımı sağlayan genetik birimler olan kromozom üzerinde nerede bulunduğunu tespit etmek için ürettiğimiz molekülü kullanmak istiyoruz... Günümüzde HIV'i ilaçlarla tedavi etmeye çalışıyoruz. Ancak HIV, DNA’daki varlığını sürdürüyor. Ürettiğiniz molekül, HIV'i sessizce takip ederek onu kaynağında etkisiz hale getirebilir.” BAŞKA ÇALIŞMALARA İHTİYAÇ VAR Meslektaşlarıyla yaptığı çalışmanın sonuçları Eylül ayında Nature Chemistry dergisinde yayımlanan Iverson, devrim niteliğindeki gelişmeye rağmen, önlerinde hala aşılması gereken birçok engel olduğunu söyledi. Sentezlenen molekülün doğrultusunda üretilecek ilaçların, hücrelerin içine girebilmesi ve organizmalardaki tüm genetik bilgiyi barındıran genom içindeki spesifik DNA dizisini bulması gerekecek. Molekül bir sonraki aşamada, hatalı DNA dizisini tedavi etmesi için gereken süre boyunca spesifik dizine bağlı kalmak zorunda. Iverson, “DNA’nın bir ilaç için spesifik bir hedef olabileceğini düşünmek zor. Ancak bilim dünyasına bunun gerçekleşebileceğini göstereceğiz” dedi. SENTEZLEME İŞLEMİ NASIL YAPILDI? Iverson ve ekibi, DNA dizilerine bağlanabilen molekülü sentezlemek için 10 yıldan uzun bir süredir üzerinde çalıştıkları naphthalenetetracarboxylic diimide (NDI) molekülünü temel aldı. Çalışmada yer alan Amy Smith, “NDI birimlerini küçük parçalara böldük. Parçalar üzerinde yaptığımız reaksiyonlarla onların büyümesini sağladık ve istediğimiz düzende bir araya getirdik. Ardından ortaya çıkan parçaları bölerek istediğimiz molekülü elde ettik” ifadesini kullandı. Smith, NDI molekülüne ait parçalar üzerinde son derece kolay çalışabildiklerini belirterek, DNA dizinlerine daha uzun süre bağlı kalacak ve biyolojik anlamda etkin olacak moleküller üretebileceklerini” söyledi. Araştırmacılar, bir legonun parçalarını bir araya getirmeye benzettikleri genetik işlemin, ileride tıp dünyasına büyük katkılar sağlamasını bekliyor

http://www.biyologlar.com/hive-molekul-engeli

GENETİK ŞİFRE & PROTEİN SENTEZİ

Genetik Şifrenin Çeşitliliği DNA üzerinde, nükleotidlerin diziliş sırasının genetik şifreyi oluşturduğu belirtilmişti. Hücrenin yönetimi esnasında gerçekleşen bütün olaylarda, DNA üzerindeki bu şifreler kullanılır. Bu şifreler sayesinde sitoplazmaya bilgi aktarılır. Olaylar da bu bilgilere göre düzenlenir. DNA zincirleri üzerinde arka arkaya dizilmiş her üç nükleotid bir anlam ifade eder ve bir iş yaptırır. İşte, DNA ve RNA’daki bu üçlü dizilmelere (AAG, TSA, vs.) kodon ya da şifre kelime denir. Bunu şu benzetmeyle açıklayabiliriz; Biz insanlar, aramızdaki anlaşmayı ve derdimizin ifadesini bir alfabe kullanarak yapıyoruz. Alfabemizde 29 harf vardır. Harflerin birleşmesinden anlam ifade eden kelimeler, kelimelerin de bir kural dahilinde dizilmesinden, tam bir ifade olan cümleler meydana getirilir ve anlatmak istediğimizi bu cümlelerle anlatırız. İşte, DNA da aynen böyle bir alfabe kullanmaktadır. DNA ve RNA alfabesinde 4’er harf bulunmakta ve kural olarak her kelime (kodon) 3 harften oluşmaktadır. O halde DNA ve RNA’daki 4’er harf üçer kombinasyon yapacak olursa 64 farklı kodon meydana gelir. DNA bütün mesaj ve emirleri bu 64 farklı şifreyi kullanarak verir.Kodonlar genetik şifrenin en küçük birimleridir. Taşıyıcı RNA’daki kodonlara antikodon denilir. DNA üzerindeki kodonları kullanarak sitoplazmada protein sentezi yaptırır. Bir zincirinden bir proteinin sentezi için verdiği kodonlar dizisi bir cümle gibidir. Bu bilgileri şifreli olarak alan mRNA’ dır. DNA, ilgili mRNA’ ya adeta şu emri verir: “Sana verdiğim şu emirlere göre ban bir protein yaptır.” DNA’lar bu şekilde çok farklı proteinlerin şifrelerini verebilirler. DNA’nın bir protein için kaç nükleotidini kullanacağı, ilgili proteinin kaç amino asitten oluştuğuna bağlıdır. Proteinlerdeki amino asit sayısı 9 ile 700 arasında değişebildiğinden, mRNA’ ların nükleotid ve kodon sayıları da farklı olur. Mesela ; 9 amino asitten meydana gelen Vasopressin hormonunun yapımında görevli mRNA, en az 27 nükleotid ve 9 kodon bulunmalıdır. DNA’daki dört çeşit harf (A, G, C, T) ‘ten üçlü terkiplerle elde edilen şifre (kelime) sayısı 64’tür. Bu şifreler, protein yapısına katılan 20 amino asiti fazlasıyla ifade edebilir.

http://www.biyologlar.com/genetik-sifre-protein-sentezi

Domateste ‘böceksavar’ gen bulundu

Domateste ‘böceksavar’ gen bulundu Yapılan en son araştırmada, tarımsal olarak yetiştirilen domateslerin, böceklerden korunabilmek için yabani kuzenlerinden öğrenebileceği beceriler olduğu ortaya çıktı. Michigan Eyalet Üniversitesi’nde (MSU) yapılan son araştırmada, bilim insanları, domateslerin böceklere karşı savunmasında rol oynayan geni keşfederek, daha sağlıklı bitkilerin yetiştirilmesinde önemli bir adım attı. Tarımsal olarak uzun sürede yetiştirildiği için yabani domateslerde bulunan bazı yararlı özellikleri kaybeden domates ekinleri incelenerek, bu özelliklerden birini düzenleyen gen tespit edildi. DOMATES KİMYASALLARLA KENDİNİ SAVUNUYOR Domatesin sahip olduğu tüy gibi çıkıntılardan salgılanan özel kimyasallar, bitkinin çevreyle olan etkileşimini düzenliyor. Bunlardan bazıları, bitkiyi zararlı böceklere karşı korumak için ilk savunma hattını oluşturuyor. Salgılanan kimyasal sınıflarından birisi olan ‘asil şekerler’, böceklere karşı ön saflarda savaşıyor. Haberin devamı ↓reklam Proceedings of the National Academy of Sciences dergisinde yayımlanan araştırmada, bitkinin üstündeki çıkıntılardan salgılanan bu şeker türünün nasıl üretildiği incelendi. MSU’da biyokimya ve moleküler biyoloji alanında çalışan Antony Schilmiller, yaptıkları araştırmayla ilgili, “Bugüne kadar asil şekerlerin nasıl üretildiği hakkında çok fazla bilgiye sahip değildik. Ancak bu araştırmayla, tarımsal olarak yetiştirilen domateslerdeki koruyucu şekerlerin üretilmesinde rol oynayan geni tespit edip ayrıntılarıyla tanımladık” açıklamasını yaptı. “Asil şekerler, yabani domateslerin böceklere karşı savunmasında önemli bir role sahip” diyen Schilmiller, “Tarımsal süreçte yetiştirilen domateslerdeki asil şeker seviyesi, insanların tüketmediği yabani domateslere kıyasla çok düşük. Bu şekerin, bitki tarafından nasıl sentezlendiğini anlamak, bitkilerle beslenen böceklere karşı daha dayanıklı bitkiler üretmek için atılan ilk adım oldu” diye ekledi. SONUÇLAR DOMATESLE SINIRLI KALMAYABİLİR Patlıcangiller adı verilen bitki familyasındaki patates, biberler, patlıcan ve petunya gibi domates dışındaki bitkilerin de bu araştırmanın sonuçlarından yola çıkarak böceklere karşı daha dayanıklı hale getirilebileceği öne sürüldü. Schilmiller, asil şekerlerin tarımsal ürünlerde nasıl oluştuğunu anlayarak bunu başarabileceklerini belirtti. Bunun yanısıra, yapılan çalışmada, yeni keşfedilen genin sadece bir tüy gibi çıkıntının, spesifik bir hücresinde bulunduğu ortaya çıktı. Schilmiller, “Meyveyi etkilemeden domatesin üstündeki çıkıntıların gen ifadesini nasıl değiştirilebileceğini anladığımızda, sadece daha sağlıklı domatesler yaratmakla kalmayabiliriz. Bitkilerin böcek direncini artırmak ve başka yararlı özellikler kazandırmak için, yüzeylerine birtakım önemli kimyasallar ekleyebilmemiz mümkün olabilir” dedi. Araştırma, ABD Ulusal Bilim Vakfı tarafından finanse edildi.

http://www.biyologlar.com/domateste-boceksavar-gen-bulundu

Transpozonlar

Transpozonlar bİr hücrenin genomunda farklı yerlere, transpozisyon olarak adlandırılan bir süreçle hareket edebilen DNA dizileridir. Bu süreç ile mutasyonlara ve genomdaki DNA miktarının değişmesine neden olurlar. Çeşitli hareketli genetik elemanlar mevcuttur, bunlar transpozisyon mekanizmalarına göre sınıflandırılırlar. Retrotranspozonlar (veya Sınıf I transpozonlar) bir RNA ara ürün aracılığıyla kendilerini kopyalayarak hareket ederler. DNA transpozonları (veya Sınıf II transpozonlar) bir RNA ara ürün kullanmaz. Tranpozonların kimi kendini kopyalayarak, kimi kendini çevreleyen DNA'dan kesip çıkarıp başka bir yere taşıyarak hareket eder. Bu özelliklerinden dolayı, bilim adamları transpozonları canlılardaki DNA'yı değiştirmek için bir araç olarak kullanırlar. Barbara McClintock 1940'ta transpozonları ilk olarak mısır bitkisinde keşfetmesinden dolayı 1983'te Nobel ödülü almıştır.Transpozonlar, insan dahil, ökaryotik canlıların genomunun önemli bir bölümünü oluştururlar. Transpozonların hareket tipleri Transposonlar transpozisyon mekanizmalarına göre iki sınıfa ayrılırlar: 1.Sakınımlı transpozonlar (ing. conservative transposons) hareket edince eski yerde tranpozon kalmaz, yani transpozon sayısı sabit kalır. "Kes-yapıştır" tipi bir mekanizmayla hareket ederler. 2.İkilenmeli transpozonlar (ing. replicative transposons) genomda her hareket edişlerinde kendilerinin yeni bir kopyasını oluştururlar. "Kopyala-yapıştır" tipi bir mekanizmayla hareket ederler. Çoğalmalı transpozonların bir alt grubu retrotranspozonlardır, bunların çoğalmasında bir RNA ara adımı vardır. DNA transpozonlarında çoğalma mekanizmasında RNA bulunmaz. Transpozonların hareket mekanizmaları Tranpozonlar kullandıkları enzimler bakımından iki ana gruba ayrılabilirler. a)RNA ara ürün aracılığıyla hareket eden retrotranspozonlar RNA'nın DNA'ya çevriyazan ters transkriptaz enzimini kullanırlar. b)DNA transpozonlarının hareketi ise transpozaz enzimi ile gerçekleşir. --Retrotransposonlar (Sınıf I transpozonlar) Retrotransposonlar kendilerini kopyalayıp sonra bu kopyalarını genomda çeşitli yerlere yerleştirirler. Retrotranspozonlar önce transkripsiyon yoluyla kendilerini bir RNA molekülü olarak kopyalarlar, sonra bu RNA (çoğu zaman transpozon tarafından kodlanan) bir ters transkriptaz tarafından tekrar DNA'ya dönüştürülür ve genoma geri sokulur. Retrotransposonlar uzun uç tekrar dizilerine (ing. Long Terminal Sequence; LTR) sahip olup olmadıklarına göre iki gruba ayrılırlar : LTR'li retrotranspozonlar LTR dizilerinde promotörler ve retrotranspozisyon için gerekli olan en az iki enzimin genleri bulunur. LTR'siz retrotranspozonlar da promotör içerirler ve RNA polimeraz II tarafından çevriyazılabilirler (transkripsiyonları yapılabilir). LTR'siz retrotranspozonlara örnek olarak LINE ve SINE dizileri gösterilebilir: LTR'li retrotranspozonlar retrovirüslere çok benzerler ama virüs olarak paketlenmelerini sağlayan env genine sahip değildirler. Env genini edinmek veya kaybetmek yoluyla birbirlerine dönüşebilirler. Virüs benzeri retrotranspozonlar paketlenemedikleri için başka hücrelere bulaşmazlar. LTR'li retrotranspozonlar insan genomunun %8'ini oluştururlar. LINE dizileri (ing. Long interspersed nucleotide elements kısaltması), yaklaşık 6500 bç uzunluğundadır. Bunlar iki gen şifreler: ters transkriptaz ve entegraz (transpozaz). LINE'ler RNA polimeraz II tarafından çevriyazılır. Virüs benzeri retrotranspozonlardan farklı olarak uzun uç tekrarları (LTR) yoktur. İnsan genomunda bulunan 900.000 LINE dizisi, genomun %21'ini oluşturur. SINE dizileri (ing. Short interspersed nucleotide elements kısaltması) kısa (100-400 bç) DNA dizileridir, RNA polymeraz III tarafından çevriyazılmış bazı hücresel RNA'ların ters transkripsyonu sonucunda genoma dahil olmuşlardır. Bunların en iyi bilinen örnekleri Alu elemanlarıdır. Kendileri ters transkriptaz geni içermeseler de LINE'lerin ters transkriptazları onların da çoğalmasını sağlar. İnsan genomunda bulunan yaklaşık bir milyon SINE dizisi, genomun %13'ünü oluşturur. --DNA transpozonları (Sınıf II transpozonlar) DNA transpozonlarının transpoziyon mekanizmasında, retrotransposonlardan farklı olarak, RNA yer almaz. Bu mekanizma ile hareket eden transpozonlarda bulunan bir transpozaz, bir de rezolvaz enzimi bulunur (bazılarında bu iki fonksiyon bir proteinde bütünleşmiştir). DNA transpozonlarının iki ucundaki ters yönlü dizi tekrarları transpozaz enziminin rekombinasyon işlemi için gereklidir. Bir DNA parçası transpozaz enzimini şifrelemese (veya mutasyonla kaybetmiş olsa) dahi bu bu ters yönlü tekrarlara sahip olursa yardımcı bir transpozonun tranpozaz enzimi aracılığıyla genomda hareket etmeye devam edebilir. Transpozaz, transpozonun iki ucundaki DNA'yı ve hedef noktasındaki DNA'yı keserek genomdan transpozonu çıkarır ve yeni konumuyla bütünleştirir (entegre eder). Rezolvaz enzimi entegrasyon aşamasında gereklidir, tek zincirli kesikler yaratarak transpozon DNA'sının onu çevreleyen DNA ile düzgün bir şekilde bütünleşmesini sağlar. DNA transpozonlarının bazıları "kes yapıştır" yoluyla, bazıları ise "kopyala yapıştır" yoluyla hareket eder. Hangisinin olduğu transpozon enziminin verici transpozon uçlarındaki DNA'nın bir mi iki mi zincirinden kestiğine bağlıdır. Transpozazlar hedef yerdeki DNA'yı yapışkan uçlar yaratacak şekilde kaymalı (ing. staggered) keser, transpozon DNA'sını da (bir veya iki zincirden) keser ve onu hedef yerindeki DNA zincirlerine bağlar. Konak hücreye ait olan DNA polimeraz açık kalmış tek zincirli yerleri doldurur, DNA ligaz da şeker-fosfat zincirini kapayınca transpozisyon tamamlanmış olur. Kimi transpozon DNA molekülünün herhangi bir yerine bağlanabilir, dolayısıyla traspozonun hedefi genomda herhangi bir yerde olabilir, kimi transpozaz ise kendine özgün dizilere bağlanır. Bir bakteriyel birleşik transpozon. DNA transpozonları yapılarına bağlı olarak iki ana gruba ayrılabilir: Birleşik tranpozonların (örneğin bakterilerdeki Tn5, 9, 10, 903 ve 1681) iki ucunda biribirine çok benzer ama ters yönlü (evrik) diziler, "insersiyon dizileri" (ing., insertion sequence; IS) bulunur.Bu IS dizileri oldukça uzundurlar, transpozisyon için gerekli olan tranpozaz ve entegraz enzimlerinin genlerini kodlarlar. İki IS dizisi arasında ayrıca bir veya birkaç antibiyotik direnç geni bulunur. Her bir IS dizisi hem tek başına hem de yakınındaki öbür IS dizisi ile birlikte hareket etme yeteneğine sahiptir; beraber hareket ettiklerinde aralarında bulunan DNA bölgesini de taşırlar. Ortamda antibiyotik bulunması halinde aradaki antibiyotik direnç geninin taşınabildiği gözlemlenebilir, çünkü bu taşınma olayları konak bakteriye bir selektif avantaj sağlar. Bazı durumlarda, eğer genomda pek çok transpozon varsa, hareket eden bir IS, antibiyotik direnç geninin öbür yanindaki IS ile birlikte hareket etmek yerine, öbür tarafındaki bir IS ile hareket edebilir; bu durumda ikisi arasında yer alan bazı genler genomda başka bir yere taşınabilir. Birleşik transpozonlar hareket ettiklerinde ikilenmezler. Karmaşık tranzpozonların (örneğin bakterilerdeki Tn1, 3, 4, 7, 501 ve 551 ve bakteriyofaj Mu'nun) iki ucunda da tekrar eden diziler vardır ama bunlar kısadır (30-40 baz çifti), bu diziler arasında transpozaz ve antibiyotik direnç geni yer alır. Transpozonun hareketinde bu genlerin hepsi beraber hareket ederler. Bu sınıfta yer alan transpozonlar ikilenerek hareket ederler, yani hareketlerinin sonucunda genomdaki kopya sayıları artar. Sınıf III transpozonlar Minyatür Evrik Tekrarlı Traspozabl Elemanlar (ing. Miniature Inverted-repeats Transposable Elements; MITE), Sınıf II (DNA) transpozonlarına benzerler ama çok küçüklerdir (100-500 bç), transpozisyonları için gerekli olan genleri bulundurmazlar. Genomda bulunan başka transpozonların transpozazları aracılığıyla hareket ettikleri sanılmaktadır. İlk bitkilerde keşfedilmişler,sonra insan dahil çeşitli başka canlı gruplarında da bulundukları görülmüştür. Pirinç genomunun %6'sı MITE'lerden oluşur. İnsan genomunda bulunan 100.000 MITE, genomun yaklaşık %1'ini oluşturur. Örnekler McClintock bu tranpozonların neden olduğu insersiyon, delesyon ve translokasyonları farketmiştir. Genomda meydana gelen bu değişiklikler, örneğin mısır tanelerinin renginin değişmesine yol açabilir. Mısır genomunun %50'si transpozonlardan oluşmaktadır. McClintock'un tasvir etmiş olduğu Ac/Ds systemi retrotranspozonlardır. Sirke sineği Drosophila melanogaster 'de bulunan bir transpozon ailesi P elemanları olarak adlandırılır. Bu transpozonun bu böcek türünde ilk defa 20. yy ortalarında belirmiş oldukları sanılmaktadır. Yapay P elemanları kullanarak Drosphila genomuna gen sokma teknolojisi geliştirilmiştir. Bakterilerdeki transpozonlar, transpozisyon işlevini sağlayan transpozaz genine ek olarak çoğu zaman bir de antibiyotik direnç geni taşırlar. Bakterilerde transpozonlar kromozomdan plazmitler arasında gidip gelebilirler. Antibiyotik dirençli bakterilerin oluşmasına transpozonlar önemli rol oynar. Antibiyotik direnci gibi ek bir gen taşıyan bakteriyel transpozonlar Tn ailesine aittir. Ek geni olmayanlara insersiyon dizisi denir. insanlarda en yaygın transpozon Alu dizisidir. Yaklaşık 300 nükleotit uzunluğunda olan Alu dizisinden insan genomunda yaklaşık bir milyon adet bulunur. Bazı virüsler transpoziyon yolu ile konak hücrenin DNA'sının içine girerler. Mu fajı transpozisyonu DNA yollu replikatif transpozisyonun en iyi bilinen örneğidir. Onun transpozisyon mekanizması homolog rekombinasyona benzer. AIDS hastalığının etmeni olan HIV ise RNA yollu replikatif transpozisyonun bir örneğini oluşturur. Hastalığa neden olan transpozonlar Transpozonlar mutajendir, konak hücrenin genomuna çeşitli yollardan zarar verirler: İşlevsel bir genin içine giren bir traspozon büyük olasılıkla o geni çalışmaz kılar. Bir transpozon bir geni terk ettiği zaman geride kalan boşluk muhtemelen doğru tamir edilmeyecektir. Aynı dizinin pekçok kopyasının olması (Alu dizilerinde olduğu gibi) mitoz sırasında kromozomların doğru eşleşmesini engelleyebilir, bunun sonucunda eşitsiz çaprazlama meydana gelir, bu kromozom ikilenmesinin başlıca nedenidir.Transpozonlar tarafından sıkça meydana gelen hastalıklar arasında hemofili A ve B, porfiri, kanser yatkınlığı ve Duchenne muskuler distrofi sayılabilir. Ayrıca, çoğu transpozonda tranzpozaz geninin ifadesini sağlayan promotör, yakında bulunan konak hücre genlerinin uygunsuz ifadesine neden olur, bu da hastalıklara yol açabilir. Transpozonlar canlıların her dalında bulunur ancak kökenleri bilinmemektedir. En son ortak atada ortaya çıkmış olabilecekleri gibi bağımsız olarak pek çok kere oluşmuş olabilirler, veya bir kere oluşup sonra yatay gen transferi ile diğer biyolojik alemlere yayılmış olabilirler. Transpozonlar bazen konaklarına fayda sağlayabilseler de genel olarak bencil DNA olarak, yani konak hücrenin DNA'sında yaşayana parazitler olarak değerlendirilirler. Bu bakımdan virüslere benzerler. Nitekim, retrotranspozon ve retrovirüslerin kopyalanmasındaki benzerlikler ortak bir atadan evrimleşmiş olduklarına dair spekülasyonlara yol açmıştır. Aşırı transpozisyon bir genomu çalışmaz hale getirebileceğinden çoğu organizma transpozisyonu dayanılır bir seviyede tutmak için mekanizmalar geliştirmiştir. Örneğin, nematod Caenorhabditis elegans 'da RNA enterferans (RNAi) için gerekli olan bazı genler tranpozisyona da engel olurlar. Aşırı transpozisyondan dolayı konak organizmanın ölmesi transpozonun da varlığına son vereceği için transpozonlar da kendi hareketliliklerini kontrol altında tutarlar. Örneğin bakteriyel transpozonlar genelde yalnızca metillenmemiş DNA'ya kendilerini kopyalarlar. DNA kopyalandıktan kısa bir süre sonra metillendiği için transpozisyon çoğalan hücrelerde ve ancak bu kısa zaman aralığında mümkün olur. -Uygulama Moleküler biyolojide transpozonlar bir mutasyon aracı olarak kullanılır. Transpozon içine girdiği geni hem çalışmaz hale getirir, hem de çalışmaz hale gelmiş genin kolayca bulunmasını sağlar. Bazen bir transpozon bir genin içine girmesi onu tersinir bir şekilde inaktive eder; transpozaz aracılığıyla tranpozon genden çıkartılması genin fonksiyonunun geri gelmesini sağlar. Bitkilerde böylece birbirine komşu hücrelerin farklı genotipleri olabilir. Bu özellik sayesinde araştırmacılar bir hücrenin işlevini yerine getirmesi için bir genin o hücrenin içinde mi, yoksa başka bir hücrede mi çalışıyor olmasının yeterli olduğunu ayıredebilirler.

http://www.biyologlar.com/transpozonlar

Genom Projelerinin Faydaları

Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. İnsan genom Projesinin temel amacı, insan DNA’sında bulunan 3 milyar kadar baz çiftinin dizilimini ve bunların % 2-5 ‘ini oluşturan genlerin yerini bulmak. Bu aslında zor bir iş; çünkü insan genomunda kesin sayısı şimdilik bilinmiyor olsa da 40 bin ile 80 bin arasında gen olduğu sanılıyor. Dış görünüşümüzdeki onca farklılığa rağmen, aslında biz insanların kalıtsal yapısı büyük ölçüde birbirine benzer. İnsanların DNA yapılarının %99, 9’u ortaktır. İnsan Genom Projesi de bu ortak genleri bulmayı hedefliyor. Yaklaşık 15-20 yıldır bu projeyle uğraşılmasına rağmen henüz genom projesi tam olarak çözülebilmiş değildir. Ortaya çıkacak veri bankası, insanı insan yapan genlerin yanında bir insanı başkalarından ayıran genleri de gösteren eşsiz bir kaynak olacak. İnsan Genom Projesi (İGP); insanın tüm kalıtsal materyalinin şifresinin çözümlenmesini ifade etmektedir. Bu kalıtsal materyalin yani DNA’nın (Deoksiribonükleik asit) şifresi dört bazın (A= Adenin, T= Timin, C= Sitozin, G= Guanin) rastgele bir araya gelmesiyle oluşmaktadır. Yan yana gelen bu bazlar aynı zamanda karşılıklı eşleşerek DNA’nın ikili sarmal yapısını oluşturur. Vücudun tüm fonksiyonları DNA sarmalındaki anlamlı baz dizilerinden (gen) köken alan proteinlerle yapılır. İGP, 1989 yılında Amerika’da bir grup bilim adamının insan genomunda yer alan proteini kodlayan (ekzon) ve kodlanmayan (intron) bölgelerin baz dizilerinin bulunması amacıyla başlattıkları bir projedir. Bu amaçla oluşturdukları organizasyon (HUGO- Human Genom Organization), Amerikan Enerji Ajansı (DOE) ve Ulusal Sağlık Enstitüsünün (NIH) desteğiyle kurulmuş ve 1990 yılında projeye resmi bir nitelik kazandırılmıştır. Tüm insan genomunun baz dizisinin ortaya konmasını amaçlayan projeye kısa zamanda, İngiltere, Fransa, Almanya, Japonya, Rusya, Çin, Kanada’nın da içinde yer aldığı 18 ülke, birçok gönüllü kuruluş ve özel firmalar destek vermiş ve günümüzde binlerce bilim adamının çalıştığı uluslar arası bir proje halini almıştır. Bu proje Celera, IBM, Compag, Dupond, Sanger gibi dünyanın büyük şirketlerinin de katılımıyla her yıl 200 milyon dolar bütçeyle desteklenmiştir. Haziran 2000 itibariyle biten insan genom dizisi taslağı, Şubat 2001 yılında kamuoyuna duyuruldu ve Nisan 2003’te tamamlandı. İnsan genomunun dizisinin elde edilmesi önemli bir kilometre taşı olmakla birlikte, bunun işlevinin tam olarak anlaşılabilmesi daha uzun zaman alacaktır. Çünkü ortaya çıkacak bilgiler, işlenmesi gereken “ham” bilgiler olacaktır. Bunların işlenmesi, yani hangi genlerin hangi kalıtsal özelliklerle ya da hastalıklarla ilişkili olduğunu bulma işi genin ifadesinin (protein sentezi) anlaşılmasıyla mümkün olacaktır. Buda daha uzun ve komplike çalışmaları içeren bir süreci kapsamaktadır. Bununla birlikte şimdi elde edilen veri tabanıyla bile birçok hastalığın (Nörofibromatozis Tip1 ve Marfan Sendromu2) kromozomlar üzerindeki yerleşimi ve dizisi saptanmıştır. Yani genomik tıp birçok hastalığın tanı ve tedavisine umut getirecektir. İGP kapsamında birçok mikroorganizma, hayvan ve bitkinin (özellikle tarımsal bitkiler) genomlarının haritalanması ve dizi analizleri yapılmaktadır. Örneğin mikroorganizmaların genomunun dizilenmesi infeksiyon hastalıklarının tanı ve tedavisinde yeni olanaklar sağlarken diğer yandan tarımsal bitkilerin dizi analizi de gen aktarımlı, doğal olmayan ürünlerin geliştirilmesini gündeme getirmiştir.Moleküler mekanizmalar açıklandıkça ilaç teknolojisi değişecek ve metabolizmanın işlevini etkileyecek moleküller hücreye sentezlettirilerek veya özel taşıyıcı moleküller aracılığıyla spesifik olarak hücreye verilerek tedavi protokoller uygulanabilecektir. Bu proje ile elde edilen bilgilerin 21. y.y ’da tıp dünyasında çok büyük yenilikler ve keşifler getireceği beklenmektedir. Bu bilgiler aynı zamanda, bir çok genetik hastalığın tedavisini de mümkün kılabilecektir. İnsan Genom Projesi’nde ilk beş yıllık hedeflerin arasında aşağıdaki amaçlar bulunmaktadır: İnsan genomunun haritasını çıkarmak Model olarak kullanılabilecek diğer bazı canlıların da gen haritalarını çıkarmak Veri toplanması ve dağılımı Etik, kanuni ve sosyal düşünceler Araştırma eğitimi Teknoloji gelişimi Teknoloji transferi Bunlar da Olacak mı? Gen haritası talebi! 21. yüzyılın genetik mucizesine yetişenler gün gelecek yalnız eş seçerken değil, sağlık sigortası yaptırırken, birilerini işe alırken ya da birilerine ev kiralarken; muhataplarından birer adet “gen haritası” talep edebilecekler. Genom Projesi kaça mal oldu? Tüm deneyin maliyetinin 200 milyon dolar civarında olduğu hesaplanıyor. Türkiye de bu projenin içinde mi? Maalesef. Dünyada gelişmiş bir çok ülke bu çalışmanın içerisine girmişken, Türkiye’de henüz bu konuda parmakla gösterilecek örnek bir çalışma, ya da araştırma kurumları bulunmamaktadır. Üniversiteler bünyesinde kısmen yapılmaktadır. Çünkü henüz yetişmiş elemanlarımız yoktur. Ama geçtiğimiz 7-8 yıl içinde gerek okulumuzdan, gerekse ülkemizin diğer güzide okullarından yetişmiş, Genetik Mühendisliğinde okuyan, doktorasını yapmakta olan bir çok öğrencimiz bulunmaktadır. Bunların bir kısmı ülkemizde bir kısmı ise yurt dışında lisans ya da doktora seviyesinde eğitim almaktadırlar. İnancımız şudur ki; geleceğin Genetik Mühendisleri yetişmektedir ve yetiştiklerine inandıkları ve imkân sağladığımız gün ise ülkemize bu teknolojiyi taşıyacaklardır. Genom Projesi Tüm Hastalıklara çare olacak mı? Büyük bir ihtimalle. Bütün hastalıklar, insan genlerindeki arızalar ve yanlış diziliş nedeniyle oluştuğundan, genetik yapının tam olarak anlaşılması ve bunları “düzeltmenin” yolunun bulunması, hastalıkların da önlenmesi anlamına gelebilecek. Sadece genetik değil, çevresel faktörlerin neden olduğu hastalıklara da, daha ileri tedavi yöntemlerinin geliştirilebileceği sanılmaktadır. Genom Projesinin Faydalarını ne zaman görebileceğiz ? Alzheimer ve bazı kanser türlerinin tedavisinde, şimdiden bazı ilerlemeler sağlandığı biliniyor. Önümüzdeki birkaç yıl içinde yeni tedavi yöntemleri ve ilaçların, dünyanın çeşitli yerlerindeki araştırmacılar tarafından ortaya çıkarılması söz konusu olabilecek. Ancak kalp hastalığı gibi, hem genetik hem de çevresel nedenleri bulunan hastalıklar için daha uzun yıllar (20, 30, 40 yıl) beklenmesi gerekecek. Genom Projesinin Sakıncaları da olacak mı ? Elbette. Belirli hastalıklara neden olan belirli genler saptandığında, bu genlere sahip insanların kayıtları, işyerlerinin ve sigorta şirketlerini eline geçebilecek. Bu da, işe alınma ve sigortalama anında “tercih edilmeme” nedeni olabilecek. Doğumdan önce bebeğin genetik ‘arıza’sının ortaya çıkması, anne ve babalara “doğumdan vazgeçme” opsiyonu tanıyacak. Zengin ve yoksul ülkeler, bir ülkenin zengin ve yoksul bölgeleri ve vatandaşları arasında, genetik teknolojisinin kullanımı açısından farklılıklar, kaçınılmaz olarak yaşanacak. Bu da, sağlık ve yaş ortalaması açısından farkın açılmasına yol açacak. Genom Projesinin Deneyleri kimin genleriyle yapıldı? Tesadüfi olarak, her ırk ve cinsten önce 12, sonra da 24 insanın sperm ve kanları kullanılarak yapıldı. Her ne kadar her insanın genetik yapısı, bir diğerinden farklılık gösterse de genel farklılık oranı (varyasyon) binde 2 oranında yaşanıyor. Bu yüzden, elde edilen bulguların tüm insanlığa uygulanabileceği ve herkesin derdine çare olabileceği düşünülüyor. Genom projesinin Geldiği Son Nokta Genom projesi, ne basında abartıldığı gibi hastalıkları tamamen bitirip ölümsüzlüğü getiren ne de faydasız bir çalışma değildir. Elbetteki insan sağlığına faydaları olmuştur, olacaktır da. Ama bunlar hiçbir zaman için sanıldığı gibi ölümsüzlüğü getirmeyecektir. Yalnızca, yaşarken daha sağlıklı bir hayat sürülebilecek ya da birçok hastalık belki tarihe karışacaktır. Ama hiçbir zaman için bu proje sayesinde insanlık, sanıldığı gibi bütün hastalıklarına çare bulamayacaktır. Şu an itibariyle bu çalışmayı yürüten bilim adamları, genom projesine ek olarak yeni bir projeye daha imza attılar; “Proteom Projesi”. Bu projeyle vücuttaki bütün proteinlerin incelenmesi amaçlanmaktadır. En çok merak edilen sorular ve cevapları.. İnsan Genom Projesi nedir? 18 ülkenin destek verdiği proje, 1990 yılının ekim ayında başladı. Projenin amacı insanın gen haritasının, yani genetik şifresinin çözülmesi. Genom Projesine kimler katıldı? ABD’nin liderliğinde yürütülen araştırmaya 18 ülke katıldı. Avustralya, Brezilya, Kanada, Çin, Danimarka, Fransa, Almanya, İsrail, İtalya, Japonya, Kore, Meksika, Hollanda, Rusya, İsveç, İngiltere ve AB’ye bağlı enstitüler destek verdi. Gen haritası nedir? Her insanda trilyonlarca hücre var. Hücre çekirdeğinde ise insanın fiziksel ve sağlık durumunu belirleyen kromozomlar, kromozomlarda da DNA’lar var. Buna bilimde ‘‘genetik şifre’’ deniyor. DNA ne işe yarıyor? Kendi ekseninde dönen ve iplerle bağlanan bir asma merdiveni andıran DNA sarmalında anne ve babadan alınan 23′er kromozom bulunuyor. Kromozomların taşıdığı yaklaşık 100 bin gen, DNA sarmalının üzerinde yer alıyor. Genler DNA’nın küçük bir bölümünü oluşturuyor. Genler ne işe yarıyor? Genler insanın saç renginden, boyuna, ayak numarasından yakalanacağı hastalıklara kadar kişinin hayatını belirleyen kimyasal madde olan proteinlerin salgılanmasını sağlıyor. Gen haritası ne zaman tamamlandı? DNA 2003 yılında tam anlamıyla deşifre edildi ve proje tamamlandı. Genom Projesi nasıl işimize yarayacak? Hastalıkların teşhis ve tedavisi kolaylaşacak. Şeker, kalp, kanser gibi her yıl milyonlarca insanın ölümüne neden olan hastalıklar çok önceden teşhis edilip önlenebilecek. Gen terapisi nedir? Hastalığa neden olan değişime uğramış gen onarılarak hastalık önlenmeye çalışılıyor. Hatalı genin yerine sağlıklısı enjekte ediliyor. Human Genome Projesi sayesinde araştırmacılar, şimdiye kadar Alzheimer, ırsi bağırsak ve meme kanseri gibi birçok hastalık konusunda önemli genetik bilgi sahibi oldular. Hayvanların genetik haritaları niye çıkarılıyor? Fare ve meyve sineklerinin genetik işleyişiyle insanınki arasında büyük benzerlikler bulunuyor. Onların genetik yapısının deşifre edilmesi, insanın anlaşılmasını kolaylaştıracak. Sağlık dışında gen haritası ne işe yarayacak? Gen haritası, biyoarkeoloji, antropoloji, evrim süreci ve tarihi göçlerin anlaşılmasını kolaylaştıracak. Bu sayede insanların ne zaman, nereden göç ettiğini, kimlerle akraba olduğumuzu öğrenebileceğiz.

http://www.biyologlar.com/genom-projelerinin-faydalari

Velev Ki Genetik: Biliminsanları Yine ‘Eşcinsellik Geni’ Buldu!

Velev Ki Genetik: Biliminsanları Yine ‘Eşcinsellik Geni’ Buldu!

Biliminsanları uzun bir süredir cinsel yönelimin genlerle ilgili olduğunu kanıtlamaya çalışıyor. Yeni bir araştırma eşcinselliğin genetik olduğunu bir kez daha gündeme taşırken, bu durum LGBTİ’ler için ‘genetik mühendisliği‘ kaygısını da beraberinde getiriyor. ABD’nin Illinois eyaletindeki NorthShore Araştırma Enstitüsü’nün 409 gey ikiz üzerinde yaptığı araştırmaya göre erkeklerde cinsel yönelim X kromozomuyla, Kromozom 8’deki belli bölgelerle doğrudan ilişkili. Aralarında çift yumurta ikizlerinin de bulunduğu araştırmada 818 erkeğin DNA’sında bu iki kromozomun ortak olduğu ancak bu sonucun ‘İki gey geni bulundu’ diye sunulamayacağı vurgulandı. Araştırmanın başındaki isim Alan R. Sanders, bu iki kromozomda eşleşme kaydedilen bölgelerdeki genlerin daha ayrıntılı biçimde araştırılacağını ve ancak bundan sonra kesin bir sonuca varılabileceğini söyledi. Bu araştırma sonucunun anlamı ne? Bu araştırmaya göre ‘cinsel tercih‘ ifadesinin doğru olmadığı bir kez daha ortaya çıktı. İnsannların eşcinsel olmayı tercih etmediği ve cinsel yönelimin doğuştan geldiği argümanı ağırlık kazandı. Her ne kadar bu durum homofobik yaklaşımlara karşı savunulabilenecek bir tez gibi görünse de, geçmişte olduğu gibi genetik mühendisliği ve bu kromozomların ‘düzeltilmesi‘ şeklindeki görüşlere de fırsat tanıyor. Renki gözlüleri tedavi ediyor muyuz? Toplumda renkli gözlü olmak genetik bir rahatsızlık olarak kabul edilip tedavi edilmesi gerektiğine inanılmasa da eşcinselliğe gelince iş değişiyor. Öyle ki benzer bir çalışma 1993 yılında Dr. Dean Hamer tarafından yapılmış ve 40 gey ikiz üzerinde yapılan araştırmada benzer sonuçlar elde edilmişti. Bilim insanları her ne kadar bu araştırmaların eşcinseller üzerinde toplumsal baskıyı azaltma açısından yararlı olacağını düşünse de olaylar tam tersi şeklinde gelişmiş ve eşcinselliğin ‘kurtulunabilir‘ ya da ‘tedavi edilebilir‘ bir ‘bozukluk‘ olduğuna dair yorumlar yapılmıştı. ‘Eşcinsel bebeklere kürtaj’ Heteroseksizm ile genetik savının tehlikeli dansı Türkiye basınına “Sadece yoksullar eşcinsel doğacak” başlıklarıyla taşınmış ve haberlerde şöyle ifadelere yer verilmişti: “Eşcinsellik geninin bulunmasıyla birlikte, parası olan aileler, ana rahminde eşcinsel olduğu belirlenen bebeği kürtajla aldırabilecekler! (…) Bu işlemler büyük maddi güç gerektirdiği için “eşcinsellik” birçok hastalık gibi yoksul kesime özgü bir özür haline gelecek.” Kaos GL’den Ali Erol, 1996 yılında bu durum hakkında “Her şeyden önce iradeyi yadsıyan ve insanı kodlanmış ve önceden belirlenmiş bir yaratığa indirgeyen biyolojizm, eşcinselliğin genetik kökenli olduğunu, kendine göre “kanıt”larsa ne olur? Heteroseksizm var olduğu sürece bu sorunun yanıtı bir felaket olabilir!” eleştirisini yapmıştı. ‘Irkçı yaklaşımın kapısını aralar’ 2007’de Radyo ODTÜ’de yayınlanan ‘Hayatın Renkleri’ adlı programda Time dergisinin ‘Eşcinsellik genetik bir olgudur‘ kapağının fazlasıyla ses getirdiğini ve ‘Dünyaya eşcinsel olarak gelinir‘ savını güçlendirdiğini belirten Hasan Bülent Kahraman, gizli tehlikeye ise şöyle dikkat çekmişti: “Ama bu fizyolojik kabule rağmen ‘Eşcinsellik hastalık mıdır?’ sorusunun sorulması bile bireysel düzeyde dışlayıcı ve aşağılayıcıdır. Irkçı yaklaşımın kapısını aralar.” ‘Genetik savı yanlış ellere geçerse tehlikeli’ Bahsi geçen son araştırma üzerine konuştuğumuz Kaos GL’den Ömer Akpınar da eşcinselliğin nedenini sorgulamanın ‘yanlış ellerde‘ görüldüğü üzere tehlikeli olabileceğine dikkat çekti. Akpınar, “Biz bunun nedeninden çok eşcinsellerin ögürlükçü bir yaşama sahip olması için çabalıyoruz. Bu araştırmaların sonuçlarını ‘Bunu nasıl tedavi edebiliriz?’ soruları takip ediyor. Sıkıntılı olan durum bu” diye konuştu. LGBTİ’lerin çekincesi Her ne kadar genetik araştırmada yer alan eşcinsel fizikçi Chad Zawitz, cinsel yönelimin bir ‘tercih‘ olmadığını ispatlamak için bu çalışmada yer aldığını savunsa da, LGBTİ örgütleri de bu sonuçlarla homofobik medyanın el ele verdiğinde doğacak tehlikeler hakkında çekincelerini dile getiriyor. LGBTİ’ler kendilerinin neden böyle olduğunun sorgulanmasından daha faydalı bir tavsiyesi var: Asıl tedavi edilebilir olan homofobik ve transfobik kişilerin neden böyle olduklarını sorması… LGBTİ’ler bu soru sorulursa kendileri için talep ettikleri özgürlükçü yaşama daha fazla katkı sağlanacağı görüşünde.  Burak Şahin, Diken. http://www.gazeddakibris.com

http://www.biyologlar.com/velev-ki-genetik-biliminsanlari-yine-escinsellik-geni-buldu

Transkripsiyon PDF sunum

Transkripsiyon (veya yazılma veya yazılım , DNA''yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA''dan RNA''ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA''da bulunan genetik bilginin (bir Image:RNAP TEC small.jpg|thumb|''T. aquaticus'' RNA polimerazı RNA zincirini uzatması sırasındaki şematik görüntüsü. RNA ve DNA'nın aldığı şekiller daha belli olsun diye protein belli kısımları saydamlaştırılmıştır. Sarı renkli gözterilen magnezyum iyonu enzimin aktif bölgesinde yer almaktadır. ...Detaylı bilgi için linke tıklayınız.mesajcı RNA aracılığıyla) bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA''ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon Mikro RNA ya da mRNA, mesajcı RNA olarak bilinir. Sentezlenecek olan proteinin şifresini DNA'dan alarak ribozoma getirir. Ribozom birimlerini aktifleştirir ve ribozomda protein sentezine kalıplık yapar. mRNA üzerindeki nükleotitlerin üçerli olarak oluşturdukları gruplara kodon (şifre kelime) denir. ...Detaylı bilgi için linke tıklayınız.DNA çoğalması kadar aslına sadık değildir. DNA sentezinde olduğu gibi transkripsiyonda da RNA sentezi 5'' → 3''doğrultusunda ilerler. Yani, eski polimer 3'' → 5''doğrultusunda okunur; yeni, bkz. DNA ikileşmesi ...Detaylı bilgi için linke tıklayınız.tümleyici polimer 5'' → 3'' doğrultusunda oluşur. DNA''da bulunan bilgi işlevsel protein veya RNA ürünlerinin sentezini sağlar. Bu işlevsel ürünleri kodlayan DNA dizilerine gen, bunların oluşumuna da "Gen Alm. Gene (n), Fr. Gene (m), İng. Gene. Hücrenin kromozomlarında bulunan, canlı bireylerin kalıtsal karakterlerini taşıyıp ortaya çıkışını sağlayan ve nesilden nesile aktaran kalıtım faktörleri. Genetik unsurun en küçük parçası. Gen terimi ilk olarak 1909’da Johannsen tarafından o zamana kadar farklı isimlerle ifade edilen kalıtsal üniteler için kullanılmıştır. Canlıların atalarından aldıkları ve çoğunlukla değişmeden nesillerine aktardıkları özellik ...Detaylı bilgi için linke tıklayınız.gen ifadesi" denir. DNA''daki bilginin RNA olarak yazılmış haline "transkript" denir. resim:Homeodomain-dna-1ahd.png|thumb|250px|''Gen ifadesi'' DNA bazları tarafından sentezlenen proteinleri tanımlar. ...Detaylı bilgi için linke tıklayınız.Ribozomların protein sentezi yapmak için okuduğu RNA molekülü "Ribozom ribozomal RNA (rRNA) ve proteinlerden yapılmış, hücrenin protein sentez yerleri. ...Detaylı bilgi için linke tıklayınız.mesajcı RNA"dır. Mikro RNA ya da mRNA, mesajcı RNA olarak bilinir. Sentezlenecek olan proteinin şifresini DNA'dan alarak ribozoma getirir. Ribozom birimlerini aktifleştirir ve ribozomda protein sentezine kalıplık yapar. mRNA üzerindeki nükleotitlerin üçerli olarak oluşturdukları gruplara kodon (şifre kelime) denir. ...Detaylı bilgi için linke tıklayınız.Prokaryotlarda RNA polimerazın ürettiği RNA ile ribozomların okuduğu mRNA aynı moleküldür. bkz. Prokaryotik ...Detaylı bilgi için linke tıklayınız.Ökaryotlarda ise transkript bir takım işlemlerden geçtikten sonra olgun mRNA olur. Bu bakımdan, işlem görmemiş mRNA''ya "öncül mRNA", "prekürsör mRNA" veya "Ökaryotlar (Lat., Eukaryota), çekirdek zarı bulunduran organizmaları kapsayan canlılar üst âlemidir. ...Detaylı bilgi için linke tıklayınız.pre-mRNA" da denir. Aşağıda ökaryotik ve Ökaryotlar (Lat., Eukaryota), çekirdek zarı bulunduran organizmaları kapsayan canlılar üst âlemidir. ...Detaylı bilgi için linke tıklayınız.prokaryotik organizmalardaki transkripsiyonun benzer ve farklı yönleri ele alınarak konuya genel bir bakış verilmektedir. bkz. Prokaryotik ...Detaylı bilgi için linke tıklayınız.Arkelerin transkripsiyon mekanizması ökaryotlarınkine benzer. Ayrıntılar için bkz. Arkea ...Detaylı bilgi için linke tıklayınız.prokaryotik transkripsiyon ve ökaryotik transkripsiyon maddelerine bakınız. Gen ifadesinin düzenlenmesi== Bir genin okunmaya başlandığı noktanın hemen yukarısındaki bölgenin adı " promotör"dür ("Yukarı" ve "aşağı" terimleri transkripsiyon yönüne bağlı olarak kullanılır: transkripsiyon yönü aşağıdır, transkripsiyon yönünün tersi Moleküler biyolojide akış yukarı ve akış aşağı terimleri DNA veya RNA'da relatif konum belirtmek için kullanılan terimlerdir. Her DNA veya RNA iplikçiğinin bir 5' ucu ve bir 3' ucu vardır, bunlar riboz veya deoksiriboz halkasındaki karbonların numaralarıyla ilişkilidir. Nükleik asit iplikçiğinde söz konusu konuma göreli olarak, "akış aşağı" iplikçiğin 3' ucu tarafıdır. DNA iplikçikleri birbirlerine ters doğrultuda oldukları için bir iplikçiğin akış aşağısı ö ...Detaylı bilgi için linke tıklayınız.yukarıdır.). Promotör bölgesinde genlerin ifadesini kontrol eden DNA dizileri yer alır. Ökaryotlarda promotör bölgelerden başka, "Moleküler biyolojide akış yukarı ve akış aşağı terimleri DNA veya RNA'da relatif konum belirtmek için kullanılan terimlerdir. Her DNA veya RNA iplikçiğinin bir 5' ucu ve bir 3' ucu vardır, bunlar riboz veya deoksiriboz halkasındaki karbonların numaralarıyla ilişkilidir. Nükleik asit iplikçiğinde söz konusu konuma göreli olarak, "akış aşağı" iplikçiğin 3' ucu tarafıdır. DNA iplikçikleri birbirlerine ters doğrultuda oldukları için bir iplikçiğin akış aşağısı ö ...Detaylı bilgi için linke tıklayınız.hızlandırıcı" (İngilizce 'enhancer' adı verilen DNA bölgeleri de gen ifadesine etki eder. Bu hızlandırıcılar transkripsiyon başlama noktasından çok uzakta olsalar da üç boyutlu uzayda ona yakındırlar. Promotörlere ve hızlandırıcılara bağlanan bazı transkripsiyon faktörleri RNA polimerazla etkileşerek onun çalışmasını engeller veya onu uyarırlar. RNA polimeraz Ökaryotik transkripsiyonda üç farklı Resim:TATA-binding_protein.png|thumb|200px|DNA'ya (kırmızı) bağlanmış olan TATA bağlanma proteini transkripsiyon faktörü (mavi). ...Detaylı bilgi için linke tıklayınız.RNA polimeraz vardır, bunlar farklı sınıf genleri okumaktan sorumludur. {| border="1" |Image:RNAP TEC small.jpg|thumb|''T. aquaticus'' RNA polimerazı RNA zincirini uzatması sırasındaki şematik görüntüsü. RNA ve DNA'nın aldığı şekiller daha belli olsun diye protein belli kısımları saydamlaştırılmıştır. Sarı renkli gözterilen magnezyum iyonu enzimin aktif bölgesinde yer almaktadır. ...Detaylı bilgi için linke tıklayınız.RNA Polimeraz I |45S ribosomal RNA ( rRNA) genleri |- |bkz. RNA ...Detaylı bilgi için linke tıklayınız.RNA polimeraz II |Mesajcı RNA ( mRNA) genleri |- | RNA Polimeraz III |Taşıyıcı RNA ( tRNA), 5S rRNA ve bazı başka küçük RNA genleri |} Prokaryotik transkripsiyonda bütün genler tek bir RNA polimeraz tarafından okunur. Arkelerin de bir RNA polimerazı vardır ama çalışma mekanizması ökaryotik RNA polimerazlarınki gibidir. Çok alt birimli olan bu RNA polimerazların yanı sıra SP67 ve T7 gibi fajların ve mitokondrilerin kendilerine has, tek alt birimli RNA polimerazları vardır. Prokaryot polimerazı dört alt birimden (α2, β, β'' ve ω) oluşur. "Sigma (σ)" olarak adlandırılan bir diğer protein ise RNA polimerazın belli promotörlere bağlanmasını sağlar ama RNA''nın sentezi için gerekli değildir. Sigmanın birkaç çeşidi vardır ve hangi genin okunacağı RNA polimeraza bağlı olan sigma alt biriminin türüne bağlıdır. Ökaryotik polimerazların daha fazla sayıda alt birimi vardır. {{dergi belirt |yazar=Dirk Eick, Andrew Wedel and Hermann Heumann (1994) |başlık=From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases |dergi=Trends in Genetics |cilt=10 |sayı= 8 |sayfalar= 292-296}} Bir prokaryot olan ' E. coli'''nin RNA polimerazı en çok ökaryot RNA polimeraz II''ye benzer ve bunların evrimsel olarak ortak bir geçmişe sahip oldukları muhtemel görülür. RNA polimeraza yardımcı olan çeşitli kofaktör proteinler vardır. Tüm promotörlerden yapılan yazılmada rol oynayan bu proteinlere genel transkripsiyon faktörleri denir. Bunların hata kontrolü veya DNA tamiri gibi yardımcı işlevleri vardır. Diğer kofaktörler RNA polimerazın belli bazı genleri ifade edip etmeyeceğini belirler; bunlara sadece transkripsiyon faktörü denir. Gen ifadesini engelleyici transkripsiyon faktörlerine "represör", kolaylaştırıcı olanlara "aktivatör" denir. Bu sayede bir genin farklı metabolik şartlarda veya farklı dokularda uygun düzeyde ifadelenmesi mümkün olur. Mekanizma Prokaryot ve ökaryotlarda transkripsiyon mekanizmalarının ayrıntıları farklılık gösterir. Prokaryotların çekirdek zarları olmadığı için, oluşmakta olan RNA''nın aynı anda ribozomlar tarafından da okunup çevrimi yapılabilir. Oysa ökaryotlarda, RNA çekirdek içinde oluştuktan sonra ribozomların bulunduğu sitoplazma ve endoplazmik retikuluma taşınır. Dolayısıyla transkripsiyon ve translasyon farklı mekân ve zamanlarda gerçekleşir. Transkripsiyon üç aşamadan oluşur: başlama, uzama ve sonlanma. Buna ek olarak ökaryotlarda bir işlenme aşaması vardır. Başlama Prokaryotlar Prokaryot promotörlerinde iki önemli DNA dizisi vardır: biri, transkripsiyon başlama noktasınından 10 nükleotit yukarıda (-10 konumunda) olan TATAAT dizisi; öbürü de -35''de bulunan TTGACA dizisi. Prokaryotlarda RNA polimeraz DNA''ya bağlanır, sonra bir promotör bulana kadar onun üzerinde ilerler. Sigma altbirimi -35 dizisini tanıyıp RNA polimerazın daha sıkı bağlanmasını sağlar. Sonra sigma ayrılır ve geriye dört alt birimli çekirdek enzimi birakır. A-T baz çiftleri G-C baz çiftlerine kıyasla daha zayıf oldukları için -10 dizisinde DNA zincirleri birbirlerinden ayrılırlar. İki DNA zincirinin birbirinden ayrıldığı bölge "transkripsiyon kabarcığı" olarak tabir edilir. RNA polimeraz uygun noktadan itibaren RNA sentezine başlar. Ökaryotlar Ökaryotlarda -30''da TATAAA veya benzeri bir dizi (TATA kutusu) ve -80 civarında bulunan GGCCAATCT dizisi (CCAAT kutusu) vardır. Ökaryotlardaki TATA kutusuna önce TATA Bağlanma Proteini (TBP) bağlanır. Bu başlama kompleksi RNA polimerazı promotöre seferber eder ve oradan transkripsiyon sürecini başlatmasını sağlar. Bu proteinler temel düzeyde bir transkripsiyon için yeterlidirler. Daha yüksek seviyede transkripsiyon elde etmek için başka transkripsiyon faktörleri gereklidir. Promotör ve ökaryotlarda hızlandırıcılara bağlanan düzenleyici proteinler, RNA polimerazın DNA''ya bağlanmasına engel olarak veya bağlanmasını kolaylaştırarak transkripsiyonun seviyesini düzenlerler. Uzama Uzama, prokaryot ve ökaryotlarda benzer şekilde gerçekleşir. Uzayan RNA zincirinin 3'' ucuna nükleotitler eklenir. Yani, gelen nükleotidin 5'' fosfat grubu ile RNA zincirindeki 3'' hidroksil grubu arasında bir fosfodiester bağı oluşur. İki DNA zincirinden sadece biri, kendisini tümleyici bir RNA iplikçiğinin sentezi için kullanılır; buna "şablon zincir" denir. Sentez sırasında geçici bir DNA-RNA ikilisi oluşur ama sonra RNA DNA''dan ayrışır ve ilerleyen enzimin gerisinden DNA tekrar kapanıp normal çift sarmallı haline geri döner. Sonlanma Prokaryotlar RNA polimeraz bir sonlanma sinyaline rastlayınca RNA sentezi sona erer. Prokaryotik genlerde iki tip sonlanma vardır: "ro" adı verilen sonlanma proteininin gerekli olup olmadığına göre, ro''ya bağlı ve ro''dan bağımsız sonlanma. Bunların sinyalleri farklıdır. Ro''dan bağımsız sonlanmada sık G/C nükleotitli bir bölgeyi izleyen sık A/T''li bir bölge bulunur. G/C''li kısım RNA''ya yazılınca, oradaki nükleotitler firkete görünümlü bir şekil alırlar ve bu RNA polimerazı yavaşlatır. Bunu izleyen sık A/T''li kısımda ise polimeraz duraklar ve DNA''dan kopar. Ro''ya bağlı sonlanmada ise DNA''da sık C''li bir bölge olur. Transkripsiyon sırasında ro proteini büyümekte olan RNA''ya bağlanıp, onun üzerinden polimeraza doğru ilerlemeye başlar. Polimeraz sık C''li bölgeye gelince duraklar, bu sayede ro polimeraza yetişir ve yeni sentezlenmiş RNA''yı ondan kopartır. Ökaryotlar Ökaryotlarda prokaryotlardaki gibi belirgin sonlanma sinyalleri yoktur. RNA polimeraz mRNA''nın biteceği yerden 1000-2000 nükleotit daha ileriye kadar okumaya devam eder. Bu RNA sonradan işlenerek fazla uzamış kısmı çıkartılır. İşlenme Prokaryot RNAlar sentezlendikten sonra herhangi bir işlemden geçmeden ribozomlar tarafından okunarak protein sentezinde kullanılırlar; hatta bir RNA''nın sentezi bitmeden bir ribozom onun çevirisini yapmaya başlar. Ökaryotlarda en son mRNA''nın oluşması için sınıf II RNA polimeraz okumaları (transkriptleri) bir takım işlemlerden geçer. Bu işlemler arasında başlık takılması (İngilizce 'capping' , poliadenilasyon ve intron çıkarılması ( uç birleştirme; İngilizce 'splicing' vardır. Ribozomal ve taşıyıcı RNAlar da işlenir, ama ne başlık alırlar ne de poliadenile olurlar. Başlık RNA''nın 5'' ucunda olur. RNA''ya 5''-5'' fosfodiester bağlantısı ile metilli bir guanin nükleotidi eklenir. Bu "başlık", mRNA''nın çeviri sırasında ribozomlar tarafından tanınması için önemlidir. Poliadenilasyonda RNA''nın ucu kesilerek doğru olan 3'' uç ortaya çıkar ve buna bir dizi adenin nükleotiti eklenir. 3'' ucun konumu RNA içinde bulunan bir nükleotit dizisi tarafından belirlenir. Bu dizi, AAUAAA, poliadenilasyon sinyali olarak adlandırılır. Gerekli enzimler bu diziyi tanıyınca RNA bu sinyalden 10 - 30 nükleotit aşağıda kesilir ve sonra ona bir dizi adenin eklenir. Bu adeninlerin eklenmesinde bir şablon kullanılmaz; A''lar sadece peşpeşe RNA''nın 3'' ucuna eklenir. Bu poli(A) kuyruğu ortalama 200 nükleotit uzunluğunda olur ve RNA''yı yıkımdan korur. İntronlar, uçbirleştirme (ing. 'splicing' işlemi sonucu prekürsör RNA''dan çıkartılan bölümlerdir, kalan kısımlar ekson olarak adlandırılır. Çıkartılma mekanizmasına bağlı olarak iki tip introndan söz edilir. Tip I intronlarda RNA''nın katalizör özelliği vardır; kendi kendini kesip birleştirme yeteneğine sahiptir. Tip II intronlarda bu işlemden sorumlu olan splisozom (İngilizce 'spliceosome' adlı büyük bir RNA/protein kompleksi vardır. Splisozom, intron-ekson sınırını tanıyıp RNA''yı o noktada keser, sonra da bitişik eksonları birleştirerek ergin mRNA''yı meydana getirir. Ters transkripsiyon Bazı virüsler (örneğin AIDS hastalığına neden olan HIV) RNA''yı DNA''ya yazar. Bu tür yazılma ters transkriptaz adlı enzim tarafından gerçekleştirilir. HIV''da ters transkriptaz, viral genomdan bir tümleyici (komplementer) DNA iplikçiği ( cDNA) sentezler. Başka bir enzim, ribonükleaz H, RNA iplikçiğini sindirir. Ardından ters transkriptaz, cDNA''yı tümleyici bir DNA iplikçiği daha sentezleyerek çift sarmallı bir DNA oluşturur. Bu viral DNA, entegraz adlı bir enzim aracılığıyla konak hücrenin genomuna dahil olur. Bu sürecin sonucunda konak hücre yeni virüslerin oluşumu için gerekli olan viral proteinleri ve RNA iplikçiğini üretmeye başlar. Ardından hücre programlanmış ölüm mekanizmasıyla ( apoptoz) imha olur. Tarihçe RNA polimerazın in vitro olarak RNA sentezlediği çeşitli laboratuvarlarda 1965''te gösterilmiştir. Roger Kornberg ökaryotik transkripsiyon mekanizmasının moleküler ayrıntıları üzerinde yaptığı çalışmalardan dolayı Nobel Kimya Ödülü''nü kazanmmıştır. Kaynakça Molecular Cell Biology. 4th ed. Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. New York: W. H. Freeman & Co.; c2000. Molecular Biology of the Cell 4th ed. Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter. New York and London: Garland Science; c2002 The Cell - A Molecular Approach. 2nd ed. Cooper, Geoffrey M. Sunderland (MA): Sinauer Associates, Inc; c2000. Lehninger Principles of Biochemistry, 4th edition, David L. Nelson & Michael M. Cox Principles of Nuclear Structure and Function, Peter R. Cook Essential Genetics, Peter J. Russell Transkripsiyon PDF sunum :documents/transkripsiyon.pdf

http://www.biyologlar.com/transkripsiyon-pdf-sunum

Lipitler ( Yağlar) Hakkında Bilgi

Lipidlerin Tanımı Bloor’a göre lipidler, yüksek yağ asitlerini, bunların oluşturduğu doğal bileşikleri ve bunlarla kimyasal olarak bağlanan maddeleri kapsayan doğal bir madde grubudur. Suda çözünmezler. Ancak eter, benzen, kloroform gibi organik çözücülerde çözünürler.Yağ asitlerinin esteridirler veya esterleşebilirler. Canlı organizmalar tarafından kullanılabilirler. Lipidlerin Önemi Lipidler önemli depo yakıt maddeleridir. Isısal enerji değeri 9 kCal/g'dır. Karbonhidratlar için bu değer 4.5 kCal/g'dır. Deri altında ve bazı organların çevresinde bulunan yağlar ısı yalıtıcısıdır. Ayrıca çarpmalara karşı koruyucu destek görevleri de vardır. Sinir dokudaki lipid miktarı özellikle fazladır. Nonpolar lipidler elektriksel yalıtıcılar olarak miyelinli sinirler boyunca depolarizasyon dalgalarının hızla yayılmasına olanak sağlarlar. Hücre ve sitoplazmik organellerin membranlarının % 50'si lipidlerden oluşmaktadır. Bazı vitaminler ve hormonlar’ın biyosentezinde lipidler prekürsör olarak gereklidir. Bazı enzimleri aktive ederler. Ayrıca yağda eriyen vitaminlerin hedef doku ve organlara taşınması için lipidler gereklidir. Mitekondrionda elektron taşıma işlevine yardımcı olurlar. Bütün hücrelerde iletişim, tanıma (tür özgüllüğü) ve bağışıklık (doku immunitesi) olaylarında lipidlerin de önemli rolleri vardır. Yağ Asitleri Yağ asitleri genel olarak çift karbon sayılı, cis konfigürasyonda, dallanmamış ve düz dincirli (asiklik) monokarboksilik asitlerdir. Az olmakla birlikte doğada trans konfigürasyonda (elaidik asit), tek karbon sayılı (propiyonik asit, valerik asit gibi) ve dallanmış yağ asitleri (tüberkülostearik asit veya laktobasillik asit metil grubu ile dallanma gösteren doymuş yağ asitleridir) ile siklik yağ asitleri (hidnokarpik asit ve şolmugrik asit) yağ asitleri de bulunmaktadır. Yağ asitleri, hidrokarbon zincirdeki bağlara göre doymuş veya doymamış yağ asitleri olmak üzere iki grupta incelenebilir. Doymamış bağların sayısı bir veya daha fazla olabilir ve doymamış yağ asitleri doymuş hale getirilebilir. Doymamış yağ asitleri kolaylıkla okside olabilirler. Özellikle çift bağın sayısının artması oksidasyonu kolaylaştırmaktadır. Metaller, ısı, ışık vb. oksidasyonu hızlandırmaktadır. Yağ asitlerindeki karbon sayısı 2-34 arasında değişmektedir. Yağ asidi molekülünde karbon sayısı 6 dan az ise “kısa”, 6-10 arasında ise “orta” ve 12 ila daha fazla ise “uzun zincirli” yağ asidi olarak tekrar bir alt gruplandırma oluşturulabilir. Yağ asitleri doğal sıvı ve katı yağlar içerisinde esterler halinde bulunurlar. Ancak plazmada transport şekli olan serbest yağ asidi olarak esterleşmemiş halde bulunmaktadır. Hayvansal ve bitkisel yağlarda en çok bulunan başlıca doymuş ve doymamış yağ asitleri şunlardır. Doymuş Yağ Asitleri Asetik Asit C2H4O2 CH3 COOH Propiyonik Asit C3H6O2 CH3 CH2 COOH Bütirik Asit C4H8O2 CH3 (CH2)2 COOH Kaproik Asit C6H12O2 CH3 (CH2)4 COOH Kaprilik Asit C8H16O2 CH3 (CH2)6 COOH Kaprik Asit C10H20O2 CH3 (CH2)8 COOH Laurik Asit C12H24O2 CH3 (CH2)10 COOH Miristik Asit C14H28O2 CH3 (CH2)12 COOH Palmitik Asit C16H32O2 CH3 (CH2)14 COOH Stearik Asit C18H36O2 CH3 (CH2)16 COOH Araşidik Asit C20H40O2 CH3 (CH2)18 COOH Behenik Asit C22H44O2 CH3 (CH2)20 COOH Lignoserik Asit C24H48O2 CH3 (CH2)22 COOH Serotik Asit C26H52O2 CH3 (CH2)24 COOH Montanik Asit C28H56O2 CH3 (CH2)26 COOH Bunlardan en basit doymuş yağ asidi 2 karbona sahip asetik asittir. 2, 3 ve 4 karbonlu yağ asitleri olan asetik asit, propiyonik asit ve bütirik asit'e “uçucu yağ asitleri” denir ve bunların ruminant metabolizmasında önemleri büyüktür. Palmitik ve stearik asitler hayvansal lipidlerde en çok bulunan yağ asitleridir. Doymamış Yağ Asitleri Palmitoleik Asit C16H30O2 CH3(CH2)5 CH = CH(CH2)7 COOH Oleik Asit C18H34O2 CH3(CH2)7 CH = CH(CH2)7 COOH Linoleik Asit C18H32O2 CH3(CH2)4 CH = CHCH2CH = CH(CH2)7 COOH alfa -Linolenik Asit C18H30O2 CH3CH2CH = CHCH2CH = CHCH2CH = CH(CH2)7 COOH Araşidonik Asit C20H32O2 CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH Oleik asit doğada en yaygın bulunan yağ asididir. Bilinen tüm doğal yağların ve fosfolipidlerin hepsinde oleik asit saptanmıştır. Hayvansal lipdlerde en çok bulunan doymamış yağ asitleri palmitoleik, oleik, linoleik ve arahidonik asitlerdir Esansiyel Yağ Asitleri Hayvansal organizmada ancak bir tek çift bağlı yağ asitleri sentezlenebilmektedir. Birden fazla doymamış bağa sahip olan linoleik, alfa -linolenik ve arahidonik asitler hayvansal organizmada sentez edilemez ve mutlaka dışarıdan alınması gereklidir. İşte organizmada sentezlenemyen ve besinlerle/rasyonla birlikte alınması gerekli olan linoleik, linolenik ve araşidonik asitlere, esansiyel yağ asitleri denir. Bu yağ asitlerinin organizmaya yeterli miktarlarda alınamaması sonucunda büyüme durur, dermatitis oluşur. Böbreklerde harabiyet ve hematüri (kan işeme) görülür. Esansiyel yağ asitleri verilirse bu belirtiler kaybolur. Linoleik asit mısır yağı, yer fıstığı, pamuk yağı ve soya fasülyesi yağı gibi tohum yağlarında, linolenik asit ise bunların dışında keten tohumu yağında bulunmaktadır. Arahidonik asit ise aynı kaynaklarda, ancak yer fıstığı yağında daha fazla miktarda bulunmaktadır.   Genel manada hepimizin şahit olduğu olaylardan birisi, sobanın içerisinde yanan kömürü gözlemek olmuştur. Kömürün yanma olayı ise aklımızda bir çok soru ve sorunların cevaplanması gerektiği ifadesini beraberinde getirmiştir. İşte bu soru ve sorunlar yüzyıllar boyunca araştırmacıların aklını kurcalamış ve bunlara cevap aramışlardır. Yanma nedir? Neden gerçekleşir? Daha hızlı yanma var mıdır? Bu gibi sorular yüzlerce yıl boyunca bilginlerin ve bilgin olmayan insanların kafasını kurcalamıştır. Daha önceki yıllarda bilinen tek enerji modelinin ateş olduğu bulunmuş, ancak bu enerji şeklidir diye ifade edilmemiştir. Bu enerji insanların ısınmasında, yemek yapmasında, metalleri eritmesinde faydalı olmuş; ancak olayın matematiksel boyutu ve bilimsel nicelik ile nitelik bulguları yıllarca gizem olmayı sürdürmüştür. Termodinamik adı verilen temellerin yerli yerine oturmaya başlaması ile beraber yanmanın açıklamaları da matematiksel olarak boyut kazanmaya başlamıştır. Yanmanın genel ifadeler içerisinde oksijen ile yanıcı bir maddenin birleşme reaksiyonu olduğu ifadesi; olayın oluşturduğu soru işaretlerinin bir kısmını çözmek için yeterli olmuştur. Bu ifade sonucu sobada bulunan ve bir karbon izotopu olan kömür , oksijen ile birleşerek yanma adı verilen enerji oluşumunu gerçekleştirmektedir. Bu olay sonucunda ise borulardan çıkan karbon integrali maddeler ve sobanın dibinde kalan kül oluşmaktadır. Burada karbon integrali adını verdiğim şeyler arasında karbonmonoksit ve karbondioksit en önemlileridir. Netice itibari ile bir karbon izotopu olan kömürün oksijen ile birleşmesi sonucu, enerji ve artık maddeler oluşmaktadır. Bizim sobada kömür yakmamızın temeli ise, bir organizma olan bizim yaşamımızı sürdürmemiz ve vücutta bulunan proteinlerin ve buna bağlı olarak enzimlerin optimal düzeyde tutulmasını sağlamak içindir. Ancak bizim yaşamamız için sadece ısı yeterli değildir. Bizim yaşamamızı sağlamak için daha önemli olan faktör kendi enerjimizi sağlamak için organik bileşik kullanmamızdır. Kullanacağımız bu organik bileşikleri ise üç grupta sınıflandırabiliriz: Karbonhidratlar, proteinler ve yağlar. Bu üç organik molekülde temelinde aynı amaç için vardır, bu ise canlılığın devamını sağlamaktır. Bu organik bileşiklerin oluşumu ise yine organik varlıklarda gerçekleşmektedir. Böylece bu bileşiklerin temelde üreticiler adı verilen bitkilerden, tüketicilere ve oradan ayrıştırıcılara uzanan döngülerinden bahsetmemiz mümkün hale gelmektedir. İnsan vücudu bu bileşikleri enerji amacı için kullanırken önce karbonhidratları ve sonra yağları tercih etmektedir. Halbuki yağların enerji miktarı fazladır, ancak yanması zor ve uzun olduğu için, daha kolay yanan karbonhidratlar öncelikte birinci sırada yer almaktadır. Ancak yağ dediğimiz moleküller sadece enerji için değil; organizmanın deri altında ve organlar arasında bulunması ile onu soğuktan ve mekanik etkilerden koruması ile dikkate değer öneme haiz olduğu gerçeğini defalarca vurgulamaktadır. Burada enerji modellemesinde ilk önce karbonhidratların ve daha sonra yağların ve en sonunda da proteinlerin kullanılmasını soba örneği ile açıklamak isterim… Kömürün enerjisi fazladır, ancak siz odun yakmadan kömürü yakamazsınız; aynı şekilde yağların enerjisi çoktur, ancak karbonhidratlar bitmeden onları yakmanız mümkün değildir. Eğer vücut proteinleri enerji için yakıyorsa artık o vücut ölüyor demektir, buda çürümüş soba gibidir. Yağ molekülleri genel manada karbon, hidrojen ve oksijen atomlarından oluşmaktadır. Bazı yağ moleküllerinde ise bu maddeler yanında fosfor ve azotta bulunmaktadır. Yağların yapısındaki hidrojen miktarı diğer organik bileşiklerinden daha fazladır, bu nedenler enerji miktarı daha fazladır. Yağlar suda ya hiç çözünmez ya da çok az çözünürler. Aseton ve eter gibi organik çözücülerde çözünürler. Yağlar genel olarak dört grupta incelenir: Yağ asitleri, steroidler, fosfolipitler, steroidler ve nötral yağlar. Bunlardan yağ asitleri en basit lipidler olup uzun karbon zincirlerinden oluşmuştur. Karbonlar arasında bağlar tekli ise doymuş yağ asitleri, çiftli bağlar varsa doymamış yağ asitleri adı verilir. Doymamış yağ asitlerinin yüksek sıcaklık ve basınç altında hidrojene tabi tutulması sonucu margarinler elde edilir. Steroidler halkalı yapıya sahip olup, zarların yapısına katılır. Ayrıca steroidler vitamin ve hormon olarakta görev yaparlar. Fosfolipidler adı verilen yağlar ise fosfor içerip, zarların yapısına katılırlar. Nötral yağlar ise yağların depo şeklidir ve bir gliserol molekülüne üç yağ asidinin bağlanması sonucu oluşmaktadır.

http://www.biyologlar.com/lipitler-yaglar-hakkinda-bilgi

Aşılanan Bitki Genomları sRNA'lar Aracılığıyla İletişim Kuruyor

Aşılanan Bitki Genomları sRNA'lar Aracılığıyla İletişim Kuruyor

Bitki aşılamanın tarihi 3000 yıl öncesine kadar gider. Deneme yanılma metoduyla eski Çin’den, eski Yunanistan’a kadar insanlar mahsulleri iyileştirmek için bitkileri aşılamışlardır.Salk Enstitüsü ve Cambridge Üniversitesi’nden araştırmacılar eskilere dayanan bu tekniği modern genetik araştırmalarıyla birleştirerek aşılanan bitkilerin, epigenetik özellikleri paylaşabileceklerini gösterdiler. Araştırma, geçtiğimiz hafta Proceedings of the National Academy of Sciences dergisinde yayınlandı.Salk Enstitüsü Genomik Analiz Laboratuvarı’ndan Joseph Ecker “Aşılama ticari açıdan sürekli yapılan bir şey olsa da, bu iki bitki arasındaki sonuçları tümüyle anlamıyorduk. Fakat yaptığımız çalışma, bir bitkiden diğerine genetik bilgi aktarıldığını gösterdi" diyor.Bitkiler arasında paylaşılan genetik bilgi DNA değil, aşılanan iki bitki orijinal genomlarını koruyor  fakat epigenetik bilgi ile bitkiler iletişim kuruyor. Epigenetiklerde kimyasal etiketler bitkinin veya hayvanın DNA’sında genleri açıp kapatabilir. Epigenetikler hücrenin kas veya deri hücresi olmasını belirleyebilir. Böylece bitkinin farklı topraklar, iklimler ve hastalıklara karşı reaksiyonunu değiştirebilir. Yani onu uyumlu hale getirebilir. Araştırmanın yazarlarından Mathew Lewsey “Bu araştırma sayesinde, belki de yetiştiriciler epigenetik bilgiden yararlanarak, bitkileri ve verimi arttırabilir" diyor.Salk ve Cambridge ekipleri epigenetik bilgi akışını izlemek için küçük RNA moleküllerine yani sRNA’lara odaklandı. Farklı epigenetik proses tipleri olsa da sRNAların katkısıyla DNA metilasyon adı verilen işlemle genler susturulabiliyor. DNA metilasyonunda moleküler işaretçiler DNA boyunca bağlanarak, hücre mekanizmasın moleküler işaretçiler altında gen ifadesi ya da okumasını bloke ediyor. Cambridge tarafından yapılan önceki çalışmalarda sRNAların sürgünlerden köklere doğru hareket ettiği gösterilmişti. İşte bu nedenle araştırmacılar Arabidopsis thaliana (Fare kulağı teresi) bitkisinin üç farklı varyasyonunda aşılama deneyi yaptı. Bu iki tür yabani iken, bir tür sRNA’ya sahip olmayan mutant bir türdü.Her aşılamadan sonra araştırmacılar sürgün ve kök dokusunu analiz ederek DNA metileasyonu değişimlerini farklı genomlarda inceledi. Böylece sRNA’ların sadece yabani tür bitkilerden ilerlediğini, mutant tür sayesinde onayladılar.“Bu kurulum sayesinde eşsiz bir gözlem yapma şansımız oldu: gerçekten gen çiftine (allele) denk epialleleri aktarıyorlardı,” diyor Lewsey. Allele adı verilen gen türler arasında paylaşılıyor, fakat bireyden bireye değiştiğinden örneğin Huntington hastalığına neden oluyor. Bu doğrultuda araştırmacılar bitkilerin epigenomu boyunca, allelelerin epigenetik prosesler boyunca değiştiği bölgeleri aradı.Araştırmanın kıdemli yazarlarından David Baulcombe bu yeni bulguların tümüyle beklenmedik olduğunu belirtiyor. Önceleri yapılan küçük çaplı çalışmalar sRNA’ların orta epigenetik değişimler boyunca hareket edebileceğini göstermişti. Binlerce arabidopsis genom bölgeleri sRNA’lar tarafından susturuldu. Epiallelerdeki bu bölgeler incelenerek ipuçları arandı.Genelde epiallelerin genomlardaki transposon adı verilen değiştirilebilir bölgeleri susturduğu gözlendi.Transposonlar karanlık DNA adı verilen kısmı tamamlıyor ki, genomun büyük kısmında genler kodlanmıyor. Kökende “zıplayan genler” olarak adlandırılan transposonlar genom boyunca aşağı yukarı ilerleyerek, yakınlardaki gen ifadesini etkileyebilirler. Deneydeki sRNA’lar tarafından hedeflenen transposonlar aktif gen bölgelerine çok yakındırlar.Transposonlardaki bu sessizleşmeye karşın, yabani bitki türleri ve mutant bitkiler arasındaki bu gen ekspresyonu değişimi çok küçüktür. “Bunun A. Thaliana’nın genomunun kompakt doğasından kaynaklandığını düşünüyoruz. Daha uzun genom ve daha aktif transposonlara sahip türlere ilerledikçe daha fazla fark olacağını düşünüyoruz,”diyor Lewsey.Yeni gen düzenleme teknikleri sayesinde, benzer aşılama türlerini daha karmaşık genomlara sahip mahsullerde denemek mümkün olacaktır. Daha kompleks bitkilerde etkinin yüzlerce kat daha fazla olacağı düşünülüyor.Kaynak: http://www.sciencedaily.com/releases/2016/01/160119153508.htmAraştırma Referansı  : Mathew G. Lewsey, Thomas J. Hardcastle, Charles W. Melnyk, Attila Molnar, Adrián Valli, Mark A. Urich, Joseph R. Nery, David C. Baulcombe, and Joseph R. Ecker. Mobile small RNAs regulate genome-wide DNA methylation. Proceedings of the National Academy of Sciences, 2016; DOI: 10.1073/pnas.1515072113http://biomedya.com

http://www.biyologlar.com/asilanan-bitki-genomlari-srnalar-araciligiyla-iletisim-kuruyor

Sinyal transdüksiyonu nedir ?

Biyolojide sinyal transdüksiyonu bir hücrenin bir cins sinyal veya uyarıyı başka birine dönüştürme sürecidir. Çoğu zaman bu, hücre içinde enzimlerin yürüttüğü biyokimyasal reaksiyonlarla gerçekleşir, bunlar birbirine ikincil habercilerle bağlanıp bir "ikincil haberci yolu" oluştururlar. Bu süreçler genelde hızlı olur, iyon akıları durumunda milisaniyeler mertebesinde, protein ve lipit aracılıklı kinaz çağlayanı (cascade) durumunda dakikalar mertebesinde sürer. Çoğu sinyal transdüksiyonu işleminde sinyal ilk uyarandan ileri doğru yayıldıkça bu olaylara katılan protein ve diğer moleküllerin sayısı da artar ve böylece küçük bir sinyal büyük bir tepki doğurabilir; buna "sinyal kaskadı" denir. Bakteri ve diğer tek hücreli organizmalarda, hücrenin sahip olduğu sinyal trasndüksiyon süreçleri onun çevresine nasıl tepki vereceğini belirler. Çok hücreli organizmalarda organizmanın bir bütün olarak çalışmasını sağlamak için bireysel hücrelerin davranışlarını koordine eden pek çok sinyal transdüksiyon süreci gerekmektedir. Tahmin edileceği üzere, bir organizma ne kadar karmaşıksa organizmanın sahip olduğu sinyal transdüksiyon süreçlerinin repertuvarı da o derece karmaşık olmak durumundadır. Dolasıyla hücresel seviyede hem iç hem de dış çevrenin duyumu sinyal transdüksiyonuna dayalıdır. Çoğu hastalık, örneğin diyabet, ateroskleroz, özbağışıklık (otoimmünite), kanser, sinyal transdüksiyon yollarındaki bozukluklardan kaynaklanır. Bu durum, sinyal transdüksiyonunun biyoloji kadar tıpta da olan önemini ortaya koyar. Uyaran Sinyal transdüksiyon olaylarını uyaran çoğu molekül hücre dışından kaynaklanır ve hücre zarı içine yerleşmiş proteinlerle etkileşirler. Çok hücreli organizmalarda ikincil haberci sinyal kaskadlarını uyarıp hücrenin biyolojik etkinliğini organizmanın bütünü ile koordine etemeye yarayan pek çok küçük molekül ve peptit vardır. Bu moleküller işlevsel olarak hormonlar (örneğin melatonin), büyüme faktörleri (ör. epidermal büyüme faktörü), hücre dışı matriks bileşenleri (ör. fibronektin), sitokinler (ör. interferon gama), kemokinler (ör. RANTES), nörotransmiterler (ör. asetilkolin) ve nörotrofinler (ör. sinir büyüme faktörü) olarak sınıflandırılmışlardır. Bu sınıflandırmaların çoğu o sınıftaki moleküllerin moleküler yapısını göz önüne almaz. Örneğin, bir sınıf olarak nörotransmiterler endorfin gibi nöropeptitler ve serotonin ve dopamin gibi küçük moleküllerden oluşur. Hormonlar sinyal transdüksiyonunu başlatan jenerik bir molekül sınıfıdır, aralarında insülin (bir polipeptit), testosteron (bir steroit) ve epinefrin (bir küçük organik molekül) bulunur. Yukarıda sıralanmış uyaranlara ek olarak çevresel uyaranlar da sinyal transdüksiyon kaskadlarını uyarabilir. Retinaya düşen ışık, burun epitelinde bulunan koku reseptörlerine bağlanan kokular, tat tomurcuklarındaki tat reseptörlerini uyaran tatlar iyi bilinen örneklerdir. Tek hücreli organimalar da sinyal transdüksiyon yollarıyla birbirleriyle haberleşirler. Örneğin cıvık mantarlar aç kaldıkları zaman siklik AMP salgılarlar, bu da civarlarındaki hücreleri öbekleşmeleri için uyarır. Maya hücreleri eşeyli üremede birbirlerinin eşey tipini anlamak için üreme faktörleri kullanır. Tüm sinyal transdüksiyon uyaranlarının ortak özelliği, belli proteinlerin (hücre zarında veya hücre içinde) etkinliğini değiştirebilmeleri, ve bunun sonucunda hücrenin biolojik davranışının bir şekilde değişmesine yol açmalarıdır. Tepkiler Genlerin etkinleşmesi, metabolizmada değişimler, hücrenin çoğalması veya hayatta kalmaya devam etmesi, hücre hareketinin uyarılması veya bastırılması, sinyal üretimi sonucu hücrenin verdiği tepkilerden bazılarıdır. Gen etkinleşmesi sonucunda başka hücresel değişimler de olur, çünkü tepki veren genlerin protein ürünleri arasında enzimler ve transkripsiyon faktörleri de bulunur. Sinyal iletim kaskadı sonucu üretilen transkripsiyon faktörleri sonra başka genleri de etkinleştirebilirler. Dolayısıyla bir ilk uyaran, bir sürü başka genin ifadesini tetikleyebilir, bu da çeşitli sayıda karmaşık fizyolojik olayı harekete geçirebilir. Bu olaylara örnek olarak insülin uyarısı sonucu kandan glikoz alımı, ve bakteri ürünlerinin uyarısı sonucu nötrofillerin bir enfeksiyon bölgesine göç etmeleri sayılabilir. Bir uyaranın etkisiyle etkinleşen genler grubuna ve bunların etkinleşme sırasına "genetik program" denir. Çoğu memeli hücresi hem bölünmek için hem de hayatta kalabilmek için uyarılmaya gerek duyar. Büyüme faktörü uyarısı olmayınca programlı hücre ölümü meydana gelir. Bu tür hücre dışı uyarımlar, hem çok hücreli hem de tek hücreli canlılarda hücre davranışının kontrolü için gereklidir. Sinyal transdüksiyon yolları biyolojik süreçler için o kadar merkezî bir role sahiptir ki onların bozulması pek çok hastalığa yol açar.

http://www.biyologlar.com/sinyal-transduksiyonu-nedir-

DNA ve Özellikleri Hakkında Kapsamlı Bilgi

Deoksiribonükleik asit veya kısaca DNA, tüm organizmalar ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilginin uzun süreli saklanmasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Ama başka DNA dizilerinin yapısal işlevleri vardır (kromozomların şeklini belirlemek gibi), diğerleri ise bu genetik bilginin ne şekilde (hangi hücrelerde, hangi şartlarda) kullanılacağının düzenlenmesine yararlar. Kimyasal olarak DNA, nükleotit olarak adlandırılan basit birimlerden oluşan iki uzun polimerden oluşur. Bu polimerlerin omurgaları, ester bağları ile birbirine bağlanmış şeker ve fosfat gruplarından meydana gelir. Bu iki iplik birbirlerine ters yönde uzanırlar. Her bir şeker grubuna baz olarak adlandırılan dört tip molekülden biri bağlıdır. DNA'nın omurgası boyunca bu bazların oluşturduğu dizi, genetik bilgiyi kodlar. Protein sentezi sırasında bu bilgi, genetik kod aracılığıyla okununca proteinlerin amino asit dizisini belirler. Bu süreç sırasında DNA'daki bilgi, DNA'ya benzer yapıya sahip başka bir nükleik asit olan RNA'ya kopyalanır. Bu işleme transkripsiyon denir. Hücrelerde DNA, kromozom olarak adlandırılan yapıların içinde yer alır. Hücre bölünmesinden evvel kromozomlar eşlenir, bu sırada DNA ikileşmesi gerçekleşir. Ökaryot canlılar (yani hayvan, bitki, mantar ve protistalar) DNA'larını hücre çekirdeği içinde bulundururken prokaryot canlılarda (yani bakteri ve arkelerde) DNA, hücre sitoplazmasında yer alır. Kromozomlarda bulunan kromatin proteinleri (histonlar gibi) DNA'yı sıkıştırıp organize ederler. Bu sıkışık yapılar DNA ile diğer proteinler arasındaki etkileşimleri düzenleyerek DNA'nın hangi kısımlarının okunacağını kontrol eder. Nükleotit olarak adlandırılan birimlerden oluşan bir polimerdir.[1][2] DNA zinciri 22 ila 26 Ångström arası (2,2-2,6 nanometre) genişliktedir, bir nükleotit birim 3,3 Å (0.33 nm) uzunluğundadır.[3] Her bir birim çok küçük olmasına rağmen, DNA polimerleri milyonlarca nükleotitten oluşan muazzam moleküllerdir. Örneğin, en büyük insan kromozomu olan 1 numaralı kromozom yaklaşık 220 milyon baz çifti uzunluğundadır.[4] Dna'nın yarısı dişi bireyden yarısı da erkek bireyden gelir. Canlılarda DNA genelde tek bir molekül değil, birbirine sıkıca sarılı bir çift molekülden oluşur.[5][6] Bu iki uzun iplik sarmaşık gibi birbirine sarılarak bir çift sarmal oluşturur. Nükleotit birimler bir şeker, bir fosfat ve bir bazdan oluşurlar. Şeker ve fosfat DNA molekülünün omurgasını oluşturur, baz ise çifte sarmaldaki öbür DNA ipliği ile etkileşir. Genel olarak bir şekere bağlı baza nükleozit, bir şeker ve bir veya daha çok fosfata bağlı baza ise nükleotit denir. Birden çok nükleotidin birbirine bağlı haline polinükleotit denir.[7] DNA ipliğinin omurgası almaşıklı şeker ve fosfat artıklarından oluşur.[8] DNA'da bulunan şeker 2-deoksiribozdur, bu bir pentozdur (beş karbonlu şekerdir). Bitişik iki şekerden birinin 3 numaralı karbonu ile öbürünün 5 numaralı karbon atomu arasındaki fosfat grubu, bir fosfodiester bağı oluşturarak şekerleri birbirine bağlar. Fosfodiester bağın asimetrik olması nedeniyle DNA ipliğinin bir yönü vardır. Çifte sarmalda bir iplikteki nükleotitlerin birbirine bağlanma yönü, öbür ipliktekilerin yönünün tersidir. DNA ipliklerinin bu düzenine antiparalel denir. DNA ipliklerin asimetrik olan uçları 5' (beş üssü) ve 3' (üç üssü) olarak adlandırılır, 5' uç bir fosfat grubu, 3' uç ise bir hidroksil grubu taşır. DNA ve RNA arasındaki başlıca farklardan biri, içerdikleri şekerdir, RNA'da 2-deoksiriboz yerine başka bir pentoz şeker olan riboz bulunur.[6] Çift sarmalı iki ipliğe bağlı bazlar arasındaki hidrojen bağları DNA'yı stabilize eder. DNA'a bulunan dört baz, adenin (A olarak kısaltılır), sitozin (C), guanin (G) ve timin (T) olarak adlandırılır. Bu dört baz şeker-fosfata bağlanarak bir nükleotit oluşturur, örneğin "adenozin monofosfat" bir nükleotittir. Bazlar iki tip olarak sınıflandırılırlar: adenin ve guanin, pürin türevleridir, bunlar beş ve altı üyeli halkaların kaynaşmasından oluşmuş heterosiklik bileşiklerdir; sitozin ve timin ise pirimidin türevleridir, bunlar altı üyeli bir halkadan oluşur. Bir diğer baz olan urasil (U), sitozinin yıkımı sonucu seyrek olarak DNA'da bulunabilir. Kimyasal olarak DNA'ya benzeyen RNA'da timin yerine urasil bulunur. Oyuklar İki sarmal iplik DNA omurgasını oluşturur. Bu iplikler araındaki boşluklar takip edilerek iki tane hayali boşluk veya oyuk daha bulunabilir. Bu oyular baz çiftlerine bitişiktir ve onlara bağlanmak için bir yer olşuturabilirler. Bu oyuklar birbirlerinin tam karşısında olmadıkları için büyüklükleri aynı değildir. Bunlardan büyük oyuk (majör oyuk) olarak adlandırılanı 22 Å genişliğinde, küçük (minör) oyuk ise 12 Å genişliğindedir.[9] Küçük oyuğun darlığı nedeniyle bazların kenarlarına erişmek büyük oluktan daha kolaydır. Bu nedenle, DNA'daki belli baz dizilerine bağlanan, transkripsiyon faktörü gibi proteinler büyük oyuktan bazların kenarlarına temas ederler.[10] Hücredeki DNA'nın bazı bölgelerinde bu durum farklı olabilir (aşağıda "Alternatif çifte sarmal yapılar" bölüne bakınız) ama oralarda dahi, eğer DNA normal B biçimini alacak şekilde burulsaydı görülecek büyüklük farklılıklarına göre adlandırılır. Baz eşleşmesi DNA'nın bir ipliğindeki bir baz tipi, öbür iplikten tek bir baz tipi ile bağ kurar. Buna tümleyici (komplemanter) baz eşleşmesi denir: pürinler pirimidinler ile hidrojen bağı kurar, A yalnızca T'ye bağlanır, C'de yalnızca G'ye bağlanır. Çift sarmalda karşıdan karşıya birine bağlı iki baza bir baz çifti denir. Çift sarmalı kararlı kılan ayrıca hidrofobik etki ve pi istiflenmesi vardır, bunlar DNA dizisisinden bağımsızdır.[11] Hidrojen bağları kovalent bağlardan daha zayıf olduklarından kolayca kopup tekrar oluşabilirler. Dolayısıyla DNA zincirinin iki ipliği bir fermuar gibi kolayca birbirinden ayrılabilir, ya mekanik güç ile veya yüksek sıcaklıkta.[12] Komplementerliğin bir sonucu olarak bir DNA sarmalındaki iki iplikli dizideki tüm bilgi ipliklerin her birinde kopyalanmış durumdadır, bu da DNA kopyalanması için esas bir özelliktir. Aslında komplementer baz çiftleri arasındaki spesifik ve tersinir etkileşimler DNA'nın canlılardaki işlevleri için şarttır.[1] İki tip baz çifti farklı sayıda hidrojen bağları oluşturur, AT'nin iki hidrojen bağı, GC'nin üç hidrojen bağı vardır (bakınız şekil). Dolayısıyla GC çiftleri AT baz çiftlerinden daha güçlüdür. Dolayısyla iki DNA ipliğinin birbirine bağlanma gücünü belirleyen, hem DNA çift sarmalının uzunluğu hem de onu oluşturan GC baz çiftlerinin yüzde oranıdır. Yüksek oranda GC'li uzun DNA'ların iplikleri birbirine daha sıkı bağlıdır, AT oranı yüksek kısa sarmalların iplikleri ise birbiriyle daha zayıf etkileşirler.[13] Biyolojide, DNA çifte sarmalının kolay ayrılması gereken bölgelerinde AT oranı yüksek olur, örneğin bazı promotörlerde bulunan TATAAT Pribnow kutusu.[14] Laboratuvarda bu etkileşimin gücünü ölçmek için hidrojen bağlarını koparmak için gerekli sıcaklık, ergime sıcaklığı belirlenir (bu, Tm sıcaklığı olarak da adlandırılır). DNA çifte sarmalındaki tüm baz çiftleri eridikten sonra iplikler ayrışır ve çözeltide iki bağımsız molekül olarak varlığını sürdürür. Bu iki tek iplikli DNA molekülün tek bir biçimi yoktur, ama bazı biçimler diğerlerinden daha kararlıdır.[15] Anlam ve ters anlam Bir DNA dizisi, eğer ondan protein sentezlemeye yarayan mesajcı RNA kopyası ile aynı diziye sahipse, "anlamlı" olduğu söylenir.[16] Öbür iplikteki diziye "ters anlamlı" dizi denir. Aynı DNA ipliğinin farklı bölgelerinde anlamlı ve ters anlamlı diziler bulunabilir, yani her iki iplikte hem anlamlı hem anlamsız diziler bulunur. Hem prokaryot ve ökaryotlarda ters anlamlı, yani protein üretimine yaramayan, RNA'nın üretildiği olur, bu RNA'ların işlevi hâlen tam bilinmemektedir.[17] Bir görüşe göre ters anlamlı RNA, RNA-RNA baz eşleşmesi yoluyla gen ifadesinin düzenlenmesine yaramaktadır.[18] Bazı DNA dizilerinde anlam ve ters anlam kavramları birbirine karışır, çünkü bazen genler birbiriye örtüşebilir.[19] Böyle durumlarda bazı DNA dizileri çifte görev yapar, bir iplik boyunca okununca bir protein kodlar, öbür iplik boyunca okununca ikinci bir protein kodlar. Bakterilerde bu tür gen örtüşmeleri gen transkripsiyonunun düzenlenmesi ile ilişkili olduğuna dair bulgular vardır,[20] virüslerde ise, genlerin örtüşmesi küçük bir viral genoma daha çok bilginin sığmasını sağlar.[21] Süper burulma Süper burulma (İngilizce supercoiling) tabir edilen bir süreç ile DNA bir halat gibi burulabilir. "Gevşek" halinde DNA'daki bir iplik, her 10,4 baz çiftinde bir, çift sarmalın ekseni etrafında bir tam dönüş yapar. Ama, eğer DNA burulursa iplikler daha sıkı veya daha gevşek sarılı olabilirler.[22] Eğer DNA sarmalı sarılma yönünde burulursa buna pozitif süperburulma denir ve bazlar birbirlerine daha sıkı şekilde tutunurlar. Eğer ters yönde burulursa DNA, buna negatif süperburulma denir ve bazlar birbirlerinden daha kolay ayrışırlar. Doğadaki çoğu DNA molekülü az derecede negatif süper burguludur, bundan topoizomeraz adlı enzimler sorumludur.[23] Bu enzimlerin bir işlevi transkripsiyon ve DNA ikileşmesi gibi süreçler sırasında DNA ipliklerine etki eden burulmayı bertaraf etmektir.[24] Alternatif çifte sarmal yapılar DNA'nın çeşitli biçimleri (konformasyonları) mevcuttur.[8] Ancak, canlılarda sadece A-DNA, B-DNA, ve Z-DNA gözlemlenmiştir. DNA'nın hangi biçimi aldığı DNA dizisine, süperburulmanın yönü ve miktarına, bazlardaki kimyasal değişimlere, ve çözeltinin özelliklerine (metal iyonu ve poliamin konsantrasyonu gibi) bağlıdır.[25] Bu üç biçimden yukarıda betimlenmiş olan "B" biçimi, hücrelerdebulunan şartlar altında en sık görülenidir.[26] B biçimine kıyasla DNA'nın A biçimi daha geniş bir sarmaldır, küçük oluk daha geniş ve sığ, büyük oluk da daha dar ve derindir. A biçimli nükleik asitler, fizyolojik olmayan şartlarda, suyunu kaybetmiş DNA örneklerinde görülür, hücre içinde ise DNA ve RNA ipliklerinin birbirine sarılmasından oluşan karma (hibrit) eşleşmelerde, ayrıca bazı enzim-DNA komplekslerinde meydana gelebilir.[27][28] Metilasyonla kimyasal değişime uğrayan DNA parçaları daha büyük biçimsel değişiklik gösterip Z biçimini alabilirler. Bu durumda iplikler sarmal ekseni etrafında dönerek sol elli bir spiral oluşturur, bu daha yaygın olan B biçimimdekinin tersi yöndedir.[29] Bu sıra dışı yapılar Z-DNA bağlayıcı proteinler tarafından tanınır ve transkripsiyon kontrolü ile ilişkili olduğu sanılmaktadır.[30] Dörtlü yapılar Doğrusal kromozomların uçlarında telomer olarak adlandırılan özelleşmiş bölgeler bulunur. Bu bölgelerin ana fonksiyonu kromozom uçlarının telomeraz adlı enzim aracılığıyla kopyalanmasını sağlamaktır. DNA'yı normalde kopyalayan enzimler kromozomların en uç kısımların kopyalayamadığı için bu kopyalama telomeraz aracılığıyla yapılır.[32] Bu özelleşmiş kromozom başlıkları ayrıca DNA'nın uçlarını korurlar ve hücredeki DNA tamir sistemlerinin bunları tamir edilmesi gereken hasar olarak algılanmasını engeller.[33] İnsan hücrelerinde telomerler genelde TTAGGG dizisinin birkaç bin kere tekrarından oluşan tek iplikli DNA uzantılarıdır.[34] Bu guanin zengini diziler normal DNA'daki baz çiftleri yerine, dört bazlı birimlerden meydana gelmiş istiflenme kümeleri ile kromozom uçlarını stabilize ederler. Burada dört guanin bazı yassı bir tabaka oluştururlar, bunlar da birbiri üzerine istiflenerek kararlı bir G-dörtlüsü (G-quadruplex) yapısı oluştururlar.[35] Bu yapıların stabilizasyonu, bazların kenarları arasındaki hidrojen bağları ve her dört bazlı birimin ortasında yer alan bir metal iyonun şelasyonu ile gerçekleşir.[36] Bu G-dörtlüleri başka yollardan da oluşabilir: tek bir ipliğin birkaç kere katlanması ile bu dörtlü birim oluşabilir, veya ikiden fazla farklı paralel ipliğin her birinin ortak yapıya bir baz temin etmesi ile de bu dört baz bir araya gelebilir. Bu istiflenmiş yapıların aynı sıra, telomerler ayrıca telomer ilmiği (T-ilmiği; İngilizce: telomere loops veya T-loops) adlı yapılar oluştururlar. Bunlarda tek iplikli DNA, telomer bağlanıcı proteinler tarafından stabilize edilmiş bir halka olarak kıvrılır.[37] Bir T-ilmiğinin en ucundaki tek iplikli DNA, çift iplikli bir DNA bölgesine bağlıdır. Bu birleşme noktasında tek iplikli telomer DNA'sı, çift iplikli DNA'nın çifte sarmalını bozup iki sarmaldan biri ile baz eşleşmesi yapar. Bu üç sarmallı yapıya yer değişim halkası (İngilizce displacement loop veya D-loop) denir.[35] Baz değişimleri Kromatin adı verilen bir yapı içinde DNA'nın paketlenmesi ile kromozomlar meydana gelir. Bu paketlenme gen ifadesine etki eder. Baz değişimi (modifikasyonu) bu paketlenmeyle ilişkilidir, öyle ki gen ifadesinin az olduğu veya hiç olmadığı yerlerde sitozin bazları yüksek derecede metilasyona uğramıştır. Örneğin, sitozin metilasyonu ile 5-metilsitozin meydana gelir, bu X kromozomu inaktivasyonu için önemlidir.[38] Ortalama metilasyon düzeyi canlıdan canlıya farkeder: solucan Caenorhabditis elegans'da sitozin metilasyonu olmaz, buna karşın omurgalı DNA'sının %1'e ulaşan kadarı 5-metilsitozin içerebilir.[39] 5-metilsitozinin önemli bir baz olmasına rağmen, onun deaminasyonu sonucu bir timin bazı oluşur, bu yüzden metillenmiş sitozinler mutasyona eğilimlidirler.[40] Diğer baz modifikasyonarı arasında bakterilerde görülen adenin metilasyonu ve kinetoplastitlerde urasilin glikozilasyonu sonunda meydana gelen "J-bazı" sayılabilir.[41][42] DNA hasarı DNA çeşitli farklı mutajenler tarafından hasara uğrayabilir, bunun sonucunda DNA dizisi değişebilir. Mutajenler arasında başlıca, yükseltgen (oksitleyici) etmenler, alkilleyici etmenler ve yüksek enerjili elektomanyetik ışınlar (morötesi ışık ve X ışınları gibi) sayılabilir. DNA'da meydana gelen hasarın tipi mutagenin tipine bağlıdır. Örneğin, mor ötesi ışık timin ikilileri (timin dimerleri) oluşturarak DNA'ya hasar verir.[44] Buna karşın, serbest radikaller veya hidrojen peroksit gibi yükseltgen etmenler çeşitli farklı türden hasar oluşturabilirler, baz değişimi (özellikle guanozin) ve iki iplikli kırılmalar gibi.[45] Her bir insan hücresinde günde 500 baz yükseltgeyici zarar görür.[46][47] Bu yükseltgeyici hasarlardan en zararlısı çift zincirli kırılmalardır, çünkü bunların onarımı zordur, bunlar DNA dizilerinde noktasal mutasyonlara, insersiyonlara ve delesyonlara ayrıca kromozomal translokasyonlara yol açabilirler.[48] Çoğu mutajen, iki baz çifti arasındaki boşluğa girer, buna enterkalasyon denir. Çoğu enterkalatörler aromatik ve düzlemsel moleküllerdir, bunlara örnek olarak etidyum bromür, daunomisin ve doksorubisin sayılabilir. Bir enterkalatörün iki baz çifti arasına girebilmesi için bunların arasının açılması, bunun olabilesi için de DNA sarmalının normalin aksi yönde burularak gevşemesi gerekir. Bunlar olunca transkripsiyon ve DNA ikilenmesi engellenir, zehirlenme ve mutasyonlar meydana gelir. Bu yüzden DNA enterkalatörleri çoğunlukla kanserojendir, bunların iyi bilinen örnekleri olarak benzopiren diol epoksit, akridin türevleri aflatoksin ve etidyum bromür sayılabilir.[49][50][51] Tüm bunlara rağmen, DNA transkripsiyonuna engel olma özelliklerinden dolayı bu toksinler aynı zamanda hızla büyüyen kanser hücrelerini engellemek amacıyla kemoterapide kullanılırlar.[52] Biyolojik işlevleri DNA, ökaryotlarda doğrusal kromozomlar, prokaryotlarda ise dairesel kromozomlar içinde bulunur. Bir hücredeki kromozomlar kümesine onun genomu denir; insan genomu 46 kromozom içinde yer alan yaklaşık 3 milyar baz çiftinden oluşur.[53] Protein ve diğer işlevsel RNA molekülleri kodlayan bilgi, gen adı verilen DNA parçalarının dizisinde yer alır. Genlerdeki genetik bilginin aktarılması baz eşleşmesi ile gerçekleşir. Örneğin, transkripsiyon sırasında bir DNA dizisinin ona komplementer bir RNA dizisi olarak kopyalanması, DNA ile doğru RNA nükleotitler arasındaki çekim ile mümkün olur. Protein çevrimi (translasyon) denen süreç sırasında bu RNA dizisine kaşılık gelen bir protein sentezlenirken, RNA nükleotitleri arasında gene baz eşleşmesi olur. Bir diğer önemli biyolojik süreç, hücredeki genetik bilginin kopyalanması olan DNA ikilenmesidir. Bu işlevlerin ayrıntıları başka maddelerde işlenmiştir; burada DNA ile genomun fonksiyonlarını yerine getiren diğer moleküller arasındaki etkileşimler ele alınmıştır. Genler ve genomlar Genomu oluşturan DNA ökaryotlarda hücre çekirdeğinde, ayrıca az miktarda mitokondrilerde bulunur. Prokaryotlardaki DNA, sitoplazma içinde yer alan, düzensiz şekilli nükleoit denen cismin içindedir.[54] Genom tarafından kodlanan bilgi genlerde yer alır, bir canlı birey tarafından taşınan bu bilginin tamamına onun genotipi denir. Gen kalıtımsal bir birimdir ve organizmanın belli bir özelliğini belirleyen bir DNA dizisi ile tanımlanır. Ayrıca, bu DNA bölgesinin transkripsiyonunu düzenleyen diziler (promotör ve hızlandırıcılar gibi) de vardır. Çoğu biyolojik türde genomdaki dizilerin ancak ufak bir bölümü protein kodlar. Örneğin insan genomunun ancak %1'i protein eksonları kodlar, buna karşın insan DNA'sının %50'si protein kodlamayan, kendini tekrar eden dizilerden oluşur.[55] Ökaryot genomlarında bu kadar çok protein kodlamayan DNA'nın bulunması ve türlerin genom büyüklüğündeki ("C-değeri"ndeki) büyük farklılıkların nedeni henüz anlaşılamamıştır ve "C değeri muamması" olarak bilinir.[56] Ancak, protein kodlamayan (non-coding) DNA dizileri gene de işlevsel kodlamayan RNA molekülleri kodlamaktadır, bunlar da gen ifadesinin düzenlenmesinde rol oynarlar.[57] Bazı kodlamayan DNA dizileri kromozomlar için yapısal rol oynarlar. Telomer ve sentromerler tipik olarak çok az sayıda gen içerir, ama kromozomların işlev ve stabilitesi için önemlidir.[33][59] İnsanlarda bulunan kodlamayan DNA'ların önemli bir türü psödogenlerdir, bunlar mutasyon sonucu çalışmaz hale gelmiş genlerin kopyalarıdır.[60] Bu DNA dizileri genelde birer moleküler fosilden ibarettir ama bazen yeni genlerin oluşumuna ham madde olabilirler, gen ikilenmesi ve ıraksak evrim süreçleri sonucu.[61] Transkripsiyon ve çevrim Genler, işlevsel moleküller kodlayan DNA dizileridir, bunlar canlının fenotipini belirler. Protein kodlayan genler durumunda DNA dizisi bir mesajcı RNA dizisini tanımlar, bu da bir veya birkaç proteinin dizisini belirler. Genlerdeki DNA dizisi ile proteinlerdeki amino asit dizisi arasındaki ilişki, biyolojik çevrim (translasyon) kuralları tarafından belirlenir, bunlar topluca genetik kod ile özetlenir. Genetik kod, üç nükleotitlik dizilere karşılık gelen, üç harfli 'kelimelerden' oluşur (örneğin, ACT, CAG, TTT), bu üçlüler kodon olarak adlandırılır. Transkripsiyonda, protein kodlayan bir genin kodonları önce RNA polimeraz tarafından bir mesajcı RNA şeklinde kopyalanır. Bu RNA kopya, ardından bir ribozom tarafından deşifre edilir; ribozom, mesajcı RNA ile amino asit taşıyan taşıyıcı RNA'lar arasında baz eşlemesi yaparak onu okur. Dört bazın 3'lü kombinasyonları olabildiği için 64 olası kodon vardır (43 kombinasyon). Bunlar yirmi standart amino asidi kodlarlar, böylece çoğu amino asite birden çok kodon düşer. Ayrıca, protein kodlayıcı bölgenin sonuna işaret eden üç tane de 'stop' veya anlamsız (nonsense) kodon vardır, bunlar TAA, TGA ve TAG kodonlarıdır. İkileşme Canlıların çoğalması ve (çok hücreli canlıların) büyümesi için hücre bölünmesi gereklidir. Ancak bir hücre bölünürken DNA'sını da kopyalamak zorundadır ki iki yavru hücre ana hücredeki genetik bilginin aynısına sahip olsunlar. DNA'nın iki iplikli yapısı DNA ikileşmesi (DNA duplikasyonu) için basit bir mekanizma sağlar. İki iplik ayrışırlar, sonra her bir iplikteki dizinin komplementer dizisi DNA polimeraz adlı bir enzim tarafından imal edilir. Bu enzim, tümleyici ipliği sentezlemek için gereken her bazın doğru olanını baz eşleşmesi yoluyla seçer ve onu uzamakta olan ipliğe ekler. DNA polimeraz bir DNA ipliğini ancak 5' - 3' yönünde uzatabildiği için, bir çifte sarmalın antiparalel ipliklerininin kopyalanması için farklı mekanizmalar mevcuttur.[62] Böylece, eski iplikteki baz, yeni ipliğe eklenen bazları belirler, sonunda hücre DNA'sının mükemmel bir kopyasını elde eder. Proteinler ile etkileşim DNA'nın tüm işlevleri onun proteinlerle olan etkileşimine bağlıdır. Bu protein etkileşimlerinin bazıları özgül-dışıdır (non-spesifiktir), bazılarında ise protein ancak belli bir DNA dizisine bağlanabilir. Enzimler de DNA'ya bağlanabilir ve bunlar arasında DNA baz disini transkripsiyon ve DNA ikilemesi için kopyalayan polimerazlar özellikle çok önemlidir. DNA'ya bağlanıcı proteinler DNA'ya bağlanan yapısal proteinler, non-spesifik DNA-protein etkileşimlerinin iyi anlaşılmış örneklerindendir. Kromozomlarda bulunan DNA, yapısal proteinlerle beraber kompleksler oluşturur. Bu proteinler DNA'yı kromatin adlı kompakt yapı içinde organize ederler. Ökaryotlarda kromatinin oluşmasında DNA'nın histon adlı küçük, bazik proteinlere bağlanması önemli bir rol oynar; prokaryotlarda ise çeşitli başka protein türleri DNA'ya bağlanır.[63][64] Histonlar, nükleozom adlı disk şeklinde bir kompleks oluştururlar, çift iplikli DNA buna sarılarak iki kere bunun etrafında döner. Histonların bazik kalıntıları ile DNA'nın şeker-fosfat omurgasındaki asidik fosfatlar arasındaki iyonik bağlar, non-spesifik bir etkileşim oluşturur, baz dizisinden büyük ölçüde bağımsızdırlar.[65] Bu bazik amino asitlerin kimyasal değişimleri arasında metilasyon, fosforilasyon, ve asetilasyon sayılabilir.[66] Bu kimyasal değişimler, DNA'nın histonlarla etkileşimini etkiler, bunun sonucunda DNA'ya transkripsyon faktörlerinin erişimi ve transkripsiyon hızı değişir.[67] Kromatinde bulunan diğer non-spesifik DNA'ya bağlanıcı proteinler arasında bulunan yüksek hareketli grup proteinleri (ing. high-mobility group proteins) bükülmüş veya distorte olmuş DNA'ya bağlanır.[68] Bu proteinler, bitişik nükleozom gruplarını bükerek daha büyük ölçekli yapılar oluşturarlar ve kromozomları meydana getirirler.[69] DNA'ya bağlanıcı proteinler arasında bulunan başlıca bir protein grubu, tek iplikli DNA'ya bağlanıcı proteinlerdir (bunlar tek iplikli DNA bağlayıcı protein olarak da adlandırılırlar). İnsanda replikasyon protein A bu protein ailesinin en iyi anlaşılmış üyesi sayılır, bu protein, cifte sarmalın ayrıştığı durumlarda, örneğin DNA ikileşmesi, rekombinasyon ve DNA tamirinde işlev görür.[70] Bu proteinler tek iplikli DNA'yı kararlı kılar, onun sap-ilmik (stem-loop) oluşturmasına veya nükleazlar tarafında yıkımına engel olurlar. Yukarıda değinilen proteinlerden farklı olarak başka proteinler belli DNA dizilerine bağlanacak şekilde evrimleşmişlerdir. Bunların en iyi araştırılmış olanları transkripsiyon faktörleridir, bular transkripsiyonu düzenleyen proteinlerdir. Her transkripsiyon faktörü belli bir DNA diziler kümesine bağlanır ve bu dizilere yakın protörleri olan genlerin transkripsiyonu etkinleştirir veya engeller. Transkripsiyon faktörleri bunu iki farklı yoldan gerçekletirir. Birincisi, transkripsiyondan sorumlu olan RNA polimeraz bağlanırlar, bunu ya doğrudan ya da aracı proteinlerle yaparlar, bunun sonucunda polimeraz promotöre yakın bir konuma yerleştitilmiş olur ve transkripsiyona başlaması mümkün hale gelir.[72] Bir diğer yolda ise, transkripsiyon faktörleri promotörde yer alan histonları kimyasal değişime uğratan enzimlere bağlanırlar; bunun sonucunda polimerazın DNA'ya erişimi değişir.[73] Bu DNA bağlanma dizileri bir canlının genomunun her tarafında bulunabileceği için, bir transkripsiyon faktörünün etkinliğinde meydan gelen değişiklikler binlerce gene etki edebilir.[74] Dolayısıyla bu proteinler çoklukla, çevresel değişiklikler, hücresel başkalaşım ve gelişimi kontrol eden süreçlerle ilişkili olan sinyal iletim süreçlerinin hedefidirler. Bu transkripsiyon faktörlerinin DNA ile etkileşimindeki spesifisite, proteinin DNA bazlarının kenarları ile yaptığı temaslardan kaynaklanmaktadır, bu sayede bu proteinler DNA'nın dizisini "okurlar". Bazlarla olan bu etkileşimlerin çoğu, bu bazlara kolaylıkla erişilebilen büyük olukta meydan gelir.[75] DNA değiştirici enzimler Nükleazlar DNA iplikleri kesen enzimlerdir, fosfodiester bağlarının hidrolizini katalizlerler. DNA ipliklerinin uçlarındaki nükleotitleri hidrolizleyen nükleazlare eksonükleaz denir, ipliklerin iç kısımlarındaki bağları hidrolizleyenlere ise endonükleaz. Moleküler biyolojide en sık kullanılan endonükleazlar restriksiyon endonükleazlarıdır, bunlar DNA'yı belli dizilerde keserler. Örneğin soldaki resimde görülen EcoRV enzimi 6 bazlı 5'-GAT|ATC-3' dizisini tanır ve dik çizgi ile gösterilen noktada onu keser. Doğada bu enzimler, restriksiyon modifikasyon sisteminin bir parçası olarak, bakterileri fajlara karşı korumaya yararlar, hücrenin içine giren faj DNA'sını sindirerek.[77] Teknolojide bu enzimler moleküler klonlama ve DNA parmakizlemesi için kullanılır. DNA ligaz enzimleri kesilmiş veya kırık DNA ipliklerini birleştirir.[78] Ligazlar özellikle gecikmeli iplik DNA ikileşmesinde önemli bir rol oynarlar, çünkü replikasyon çatalında meydana gelen kısa DNA parçalarını birleştirirler. Ayrıca DNA tamiri ve genetik rekombinasyonda kullanılırlar. Topoizomeraz ve helikazlar[değiştir | kaynağı değiştir] Topoizomerazlar hem nükleaz hem de ligaz etkinliğine sahiptir. Bu proteinler DNA'daki süperburulma derecesini değiştirirler. Bu enzimlerin bazıları DNA sarmalının bir ipliğini kesip bunun öbürü etrafında dönmesini sağlar, sonra da DNA'daki kesiği tekrar birleştirir.[23] Bu enzimlerin diğerleri ise DNA sarmalının bir ipliğini kesip öbür ipliğin bu kesiğin içinden kesmesini sağlarlar, sonra kesiği tekrar birleştirirler.[79] Topoizomerazlar DNA'yla ilgili pek çok süreçte yer alırlar, DNA ikileşmesi ve transkripsiyonu gibi.[24] Helikazlar moleküler motor özellikli proteinlerdir. Nükleozit trifosfatlarda, özellikle ATP'de taşınan kimyasal enerjiyi kullanıp bazlar arasındaki hidrojen bağlarını kırarlar ve DNA çifte sarmalını ters yönde burarak onu tek iplikler halinde açarlar.[80] Bu enzimler DNA bazlarına erişmeye gerek duyan enzimlerin bulunduğu süreçlerde gereklidir. Polimerazlar[değiştir | kaynağı değiştir] Nükleik asit polimerazları, nükleozit trifosfatlardan polinükleotit zincirler sentezleyen enzimlerdir. Ürettikleri ürünler var olan polinükleotit zincirlerinin (bunlara kalıp denir) kopyalarıdır. Bu enzimler, bir DNA zincirindeki en son nükleotitin 3' hidroksil grubuna yeni bir nükleotit ekleyerek çalışır. Dolayısıyla tüm polimerazlar 5' - 3' doğrultusunda ilerler.[81] Bu enzimlerin aktif bölgesinde, gelen nükleozit trifosfat kalıp ile baz eşleşmesi yapar; bu sayede polimeraz, kalıba komplementer bir ipliği doğru bir şekilde sentezleyebilir. Polimerazlar kullandıkları kalıbın tipine göre sınıflandırılır. DNA ikileşmesinde, DNA-bağımlısı DNA polimeraz, bir DNA dizisinin kopyasını yapar. Bu süreçte hata olmaması hayatî önem taşıdığı için bu tip polimerazlarının çoğunda prova okuma aktivitesi bulunur. Bunlarda, sentez reaksiyonunda meydana gelen ender hatalar, baz eşleşmesinin doğru olmamasıyla anlaşılır. Eğer bir uyumsuzluk algılanırsa, 3'-5' yönünde çalışan bir eksonükleaz aktivitesi etkinleştirilir ve hatalı baz çıkartılır.[82] Çoğu canlıda DNA polimerazlar replizom olarak adlandırılan ve yardımcı altbirimler (DNA kıskacı ve helikazlar gibi) içeren büyük bir kompleks içinde yer alır.[83] RNA-bağımlısı DNA polimerazlar RNA ipliğinde bulunan diziyi DNA olarak kopyalayan özel bir polimeraz sınıfıdır. Ters transkiptazlar bu sınıfa dahildir, bunlar viral enzimler olup hücrelerin retrovirüsler tarafından enfeksiyonunda yer alırlar. Telomerazlar da bu sınıfa dahildir, bunlar da telomerlerin ikilenmesi için gereklidir.[32][84] Telomerazı diğer bu tip enzimlerden farklı kılan bir özelliği, kullandığı RNA kalbın kendi yapısının bir parçası olmasıdır.[33] Transkripsiyon, DNA-bağımlısı RNA polimeraz tarafından gerçekleştirilir, bu enzim DNA ipliğindeki diziyi RNA olarak kopyalar. Bir genin transkripsiyonu için RNA polimeraz, DNA üzerinde promotör adlı bir bölgeye bağlanır ve DNA ipliklerini ayrıştırır. Sonra genin dizisini bir RNA zinciri olarak kopyalar, ta ki terminatör (sonlayıcı, İng. 'terminator') adlı bir DNA bölgesine gelip orada durup DNA'dan kopana kadar. DNA bağımlı DNA polimeraz da olduğu gibi, RNA polimeraz II (ökaryotlardaki çoğu genin transkripsiyonun yapan enzim) de çeşitli düzenleyici ve yardımcı proteinlerden oluşmuş büyük bir protein kompleksinin parçası olarak çalışır.[85] Genetik Rekombinasyon Bir DNA sarmalı genelde başka DNA parçaları ile etkileşmez, ve hatta insan hücrelerinde farklı kromozomlar çekirdekte farklı bölgelerde yer alırlar.[87] Farklı kromozomların fiziksel olarak bu şekilde ayrı tutulması DNA'nın kararlı bir bilgi deposu olarak işlev görmesinde önemli bir rol oynar. Kromozomların birbiriyle etkileştiği zamanlar sadece rekombinasyona girdikleri krosover sırasındadır. Krosover sırasında iki DNA sarmalı kesilir, bir bölüm yer değiştirir ve kesik uçlar birleşir. Rekombinasyon sayesinde kromozomlar arasında genetik bilgi takası olur ve yeni gen kombinasyonları meydan gelir, bunun doğal seleksiyonun verimini artırdığı ve yeni proteinlerin hızlı evrimleşmesinde önemli olduğu düşünülmektedir.[88] Genetik rekombinasyon DNA tamiriyle de ilişkilidir, özellikle çift iplikli kırılmalara hücrenin tepkisinde.[89] Kromozom sarılmasının en yaygın şekli homolog rekombinasyondur, bunda iki kromozom birbirine çok benzer dizilere sahiptir. Non-homolog rekombinasyon hücreye zarar verici olabilir çünkü kromozomal translokasyon ve genetik anormalliklere yol açabilir. Rekombinasyon tepkimesi rekombinaz olarak adlandırılan enzimler (örneğin RAD51) tarafından katalizlenir.[90] Rekombinasyonun ilk adımı çift iplikli bir kesik oluşturulmasıdır, bu ya bir endonükleaz ya da DNA hasarı sonucunda meydana gelir.[91] Rekombinaz tarafından kısmen katalizlenen bir dizi adım sonucunda iki sarmal en az bir Holliday bağlantısı tarafından birleştirilir: her sarmalın bir ipliği, öbür sarmalda ona komplementer olan öbür iplik ile kaynaşır. Holliday bağlantısı, tetrahedral bir yapıdır, bu şekilde birleşmiş iki kromozomda bir ipliğin bir diğeriyle yer değiştirmesiyle bu yapı kromozomlar boyunca ilerler. Rekombinasyon tepkimesi, bağlantının kesilmesi ve serbest kalan DNA uçlarının tekrar birleşmesi ile son bulur.[92] DNA metabolizmasının evrimi DNA'da bulunan genetik bilgi tüm modern canlıların işlev görmesine, yani büyümesi ve çoğalmasına olanak sağlar. Ancak, 4 milyar yıldır sürmekte olan yaşamın tarihçesi boyunca DNA'nın bu işlevi yerine getirdiği belli değildir, yaşamın en eski biçimlerinin kullanmış olduğu kalıtsal malzemenin RNA olduğu öne sürülmüştür.[81][93] RNA, hem genetik bilgi aktarma hem de ribozimlerin parçası olarak katalizör özelliğine sahip olmasından dolayı ilk hücrelerin metabolizmasında merkezî bir rol oynamış olabilir.[94] Nükleik asitlerin hem kalıtımda hem de katalizde rol oynadığı bu eski RNA dünyası, günümüz genetik kodunun dört nükleotit bazından oluşmuş şekilde evrimleşmesine etki etmiş olabilir. Bunun nedeni, bir canlıdaki bazların sayısının azlığının replikasyon verimini artıracağı ama bazların çokluğunun ise ribozimlerin katalitik verimini artıracağı, bu iki zıt etki ile kalıtsal bilgiyi kodlayan baz sayısının dört olarak dengelenmiş olabileceği öne sürülmüştür.[95] Ne var ki, eski genetik sistemler hakkında doğrudan delil mevcut değildir, çünkü çoğu fosillerden DNA elde edilmesi mümkün değildir. Bunun nedeni, çevre etkilerine maruz kalan DNA'nın bir milyon yıldan az süre dayanması ve çözelti içinde zamanla küçük parçalara yıkımıdır.[96] Eski DNA'nın izole edilmiş olduğuna dair iddialar vardır, özellikle 250 milyon evvelden kalma bir tuz kristalı içinde canlı kalmış bir bakterinin izole edildiği iddia edilmiştir[97] ama bu iddialar tartışmalıdır.[98][99] Kaynak: ^ a b Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1. 2.^ Butler, John M. (2001). Forensic DNA Typing. Elsevier. ISBN 978-0-12-147951-0.pp. 14–15. 3.^ Mandelkern M, Elias J, Eden D, Crothers D (1981). "The dimensions of DNA in solution". J Mol Biol 152 (1): 153–61. doi:10.1016/0022-2836(81)90099-1. PMID 7338906. 4.^ Gregory S, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature 441 (7091): 315–21. doi:10.1038/nature04727. PMID 16710414. 5.^ Watson J, Crick F (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171 (4356): 737–8. doi:10.1038/171737a0. PMID 13054692. 6.^ a b Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company ISBN 0-7167-4955-6 7.^ Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Accessed 03 Jan 2006 8.^ a b Ghosh A, Bansal M (2003). "A glossary of DNA structures from A to Z". Acta Crystallogr D Biol Crystallogr 59 (Pt 4): 620–6. doi:10.1107/S0907444903003251. PMID 12657780. 9.^ Wing R, Drew H, Takano T, Broka C, Tanaka S., Itakura K, Dickerson R (1980). "Crystal structure analysis of a complete turn of B-DNA". Nature 287 (5784): 755–8. doi:10.1038/287755a0. PMID 7432492. 10.^ Pabo C, Sauer R (1984). "Protein-DNA recognition". Annu Rev Biochem 53: 293–321. doi:10.1146/annurev.bi.53.070184.001453. PMID 6236744. 11.^ Ponnuswamy P, Gromiha M (1994). "On the conformational stability of oligonucleotide duplexes and tRNA molecules". J Theor Biol 169 (4): 419–32. doi:10.1006/jtbi.1994.1163. PMID 7526075. 12.^ Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub H (2000). "Mechanical stability of single DNA molecules". Biophys J 78 (4): 1997–2007. PMID 10733978. 13.^ Chalikian T, Völker J, Plum G, Breslauer K (1999). "A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques". Proc Natl Acad Sci USA 96 (14): 7853–8. doi:10.1073/pnas.96.14.7853. PMID 10393911. 14.^ deHaseth P, Helmann J (1995). "Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA". Mol Microbiol 16 (5): 817–24. doi:10.1111/j.1365-2958.1995.tb02309.x. PMID 7476180. 15.^ Isaksson J, Acharya S, Barman J, Cheruku P, Chattopadhyaya J (2004). "Single-stranded adenine-rich DNA and RNA retain structural characteristics of their respective double-stranded conformations and show directional differences in stacking pattern". Biochemistry 43 (51): 15996–6010. doi:10.1021/bi048221v. PMID 15609994. 16.^ Designation of the two strands of DNA JCBN/NC-IUB Newsletter 1989, Accessed 07 May 2008 17.^ Hüttenhofer A, Schattner P, Polacek N (2005). "Non-coding RNAs: hope or hype?". Trends Genet 21 (5): 289–97. doi:10.1016/j.tig.2005.03.007. PMID 15851066. 18.^ Munroe S (2004). "Diversity of antisense regulation in eukaryotes: multiple mechanisms, emerging patterns". J Cell Biochem 93 (4): 664–71. doi:10.1002/jcb.20252. PMID 15389973. 19.^ Makalowska I, Lin C, Makalowski W (2005). "Overlapping genes in vertebrate genomes". Comput Biol Chem 29 (1): 1–12. doi:10.1016/j.compbiolchem.2004.12.006. PMID 15680581. 20.^ Johnson Z, Chisholm S (2004). "Properties of overlapping genes are conserved across microbial genomes". Genome Res 14 (11): 2268–72. doi:10.1101/gr.2433104. PMID 15520290. 21.^ Lamb R, Horvath C (1991). "Diversity of coding strategies in influenza viruses". Trends Genet 7 (8): 261–6. PMID 1771674. 22.^ Benham C, Mielke S (2005). "DNA mechanics". Annu Rev Biomed Eng 7: 21–53. doi:10.1146/annurev.bioeng.6.062403.132016. PMID 16004565. 23.^ a b Champoux J (2001). "DNA topoisomerases: structure, function, and mechanism". Annu Rev Biochem 70: 369–413. doi:10.1146/annurev.biochem.70.1.369. PMID 11395412. 24.^ a b Wang J (2002). "Cellular roles of DNA topoisomerases: a molecular perspective". Nat Rev Mol Cell Biol 3 (6): 430–40. doi:10.1038/nrm831. PMID 12042765. 25.^ Basu H, Feuerstein B, Zarling D, Shafer R, Marton L (1988). "Recognition of Z-RNA and Z-DNA determinants by polyamines in solution: experimental and theoretical studies". J Biomol Struct Dyn 6 (2): 299–309. PMID 2482766. 26.^ Leslie AG, Arnott S, Chandrasekaran R, Ratliff RL (1980). "Polymorphism of DNA double helices". J. Mol. Biol. 143 (1): 49–72. doi:10.1016/0022-2836(80)90124-2. PMID 7441761. 27.^ Wahl M, Sundaralingam M (1997). "Crystal structures of A-DNA duplexes". Biopolymers 44 (1): 45–63. doi:10.1002/(SICI)1097-0282(1997)44:1. PMID 9097733. 28.^ Lu XJ, Shakked Z, Olson WK (2000). "A-form conformational motifs in ligand-bound DNA structures". J. Mol. Biol. 300 (4): 819–40. doi:10.1006/jmbi.2000.3690. PMID 10891271. 29.^ Rothenburg S, Koch-Nolte F, Haag F (2001). "DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles". Immunol Rev 184: 286–98. doi:10.1034/j.1600-065x.2001.1840125.x. PMID 12086319. 30.^ Oh D, Kim Y, Rich A (2002). "Z-DNA-binding proteins can act as potent effectors of gene expression in vivo". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16666–71. doi:10.1073/pnas.262672699. PMID 12486233. 31.^ Created from NDB UD0017 koordinatlarından üretilmiştir 32.^ a b Greider C, Blackburn E (1985). "Identification of a specific telomere terminal transferase activity in Tetrahymena extracts". Cell 43 (2 Pt 1): 405–13. doi:10.1016/0092-8674(85)90170-9. PMID 3907856. 33.^ a b c Nugent C, Lundblad V (1998). "The telomerase reverse transcriptase: components and regulation". Genes Dev 12 (8): 1073–85. doi:10.1101/gad.12.8.1073. PMID 9553037. 34.^ Wright W, Tesmer V, Huffman K, Levene S, Shay J (1997). "Normal human chromosomes have long G-rich telomeric overhangs at one end". Genes Dev 11 (21): 2801–9. doi:10.1101/gad.11.21.2801. PMID 9353250. 35.^ a b Burge S, Parkinson G, Hazel P, Todd A, Neidle S (2006). "Quadruplex DNA: sequence, topology and structure". Nucleic Acids Res 34 (19): 5402–15. doi:10.1093/nar/gkl655. PMID 17012276. 36.^ Parkinson G, Lee M, Neidle S (2002). "Crystal structure of parallel quadruplexes from human telomeric DNA". Nature 417 (6891): 876–80. doi:10.1038/nature755. PMID 12050675. 37.^ Griffith J, Comeau L, Rosenfield S, Stansel R, Bianchi A, Moss H, de Lange T (1999). "Mammalian telomeres end in a large duplex loop". Cell 97 (4): 503–14. doi:10.1016/S0092-8674(00)80760-6. PMID 10338214. 38.^ Klose R, Bird A (2006). "Genomic DNA methylation: the mark and its mediators". Trends Biochem Sci 31 (2): 89–97. doi:10.1016/j.tibs.2005.12.008. PMID 16403636. 39.^ Bird A (2002). "DNA methylation patterns and epigenetic memory". Genes Dev 16 (1): 6–21. doi:10.1101/gad.947102. PMID 11782440. 40.^ Walsh C, Xu G (2006). "Cytosine methylation and DNA repair". Curr Top Microbiol Immunol 301: 283–315. doi:10.1007/3-540-31390-7_11. PMID 16570853. 41.^ Ratel D, Ravanat J, Berger F, Wion D (2006). "N6-methyladenine: the other methylated base of DNA". Bioessays 28 (3): 309–15. doi:10.1002/bies.20342. PMID 16479578. 42.^ Gommers-Ampt J, Van Leeuwen F, de Beer A, Vliegenthart J, Dizdaroglu M, Kowalak J, Crain P, Borst P (1993). "beta-D-glucosyl-hydroxymethyluracil: a novel modified base present in the DNA of the parasitic protozoan T. brucei". Cell 75 (6): 1129–36. doi:10.1016/0092-8674(93)90322-H. PMID 8261512. 43.^ PDB 1JDG koordinatlarından üretilmiştir 44.^ Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003). "Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation". Biochemistry 42 (30): 9221–6. doi:10.1021/bi034593c. PMID 12885257. 45.^ Cadet J, Delatour T, Douki T, Gasparutto D, Pouget J, Ravanat J, Sauvaigo S (1999). "Hydroxyl radicals and DNA base damage". Mutat Res 424 (1–2): 9–21. PMID 10064846. 46.^ Shigenaga M, Gimeno C, Ames B (1989). "Urinary 8-hydroxy-2′-deoxyguanosine as a biological marker of in vivo oxidative DNA damage". Proc Natl Acad Sci USA 86 (24): 9697–701. doi:10.1073/pnas.86.24.9697. PMID 2602371. 47.^ Cathcart R, Schwiers E, Saul R, Ames B (1984). "Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage". Proc Natl Acad Sci USA 81 (18): 5633–7. doi:10.1073/pnas.81.18.5633. PMID 6592579. 48.^ Valerie K, Povirk L (2003). "Regulation and mechanisms of mammalian double-strand break repair". Oncogene 22 (37): 5792–812. doi:10.1038/sj.onc.1206679. PMID 12947387. 49.^ Ferguson L, Denny W (1991). "The genetic toxicology of acridines". Mutat Res 258 (2): 123–60. PMID 1881402. 50.^ Jeffrey A (1985). "DNA modification by chemical carcinogens". Pharmacol Ther 28 (2): 237–72. doi:10.1016/0163-7258(85)90013-0. PMID 3936066. 51.^ Stephens T, Bunde C, Fillmore B (2000). "Mechanism of action in thalidomide teratogenesis". Biochem Pharmacol 59 (12): 1489–99. doi:10.1016/S0006-2952(99)00388-3. PMID 10799645. 52.^ Braña M, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A (2001). "Intercalators as anticancer drugs". Curr Pharm Des 7 (17): 1745–80. doi:10.2174/1381612013397113. PMID 11562309. 53.^ Venter J, et al. (2001). "The sequence of the human genome". Science 291 (5507): 1304–51. doi:10.1126/science.1058040. PMID 11181995. 54.^ Thanbichler M, Wang S, Shapiro L (2005). "The bacterial nucleoid: a highly organized and dynamic structure". J Cell Biochem 96 (3): 506–21. doi:10.1002/jcb.20519. PMID 15988757. 55.^ Wolfsberg T, McEntyre J, Schuler G (2001). "Guide to the draft human genome". Nature 409 (6822): 824–6. doi:10.1038/35057000. PMID 11236998. 56.^ Gregory T (2005). "The C-value enigma in plants and animals: a review of parallels and an appeal for partnership". Ann Bot (Lond) 95 (1): 133–46. doi:10.1093/aob/mci009. PMID 15596463. 57.^ The ENCODE Project Consortium (2007). "Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project". Nature 447 (7146): 799–816. doi:10.1038/nature05874. 58.^ PDB 1MSW koordinatlarından üretilmiştir 59.^ Pidoux A, Allshire R (2005). "The role of heterochromatin in centromere function". Philos Trans R Soc Lond B Biol Sci 360 (1455): 569–79. doi:10.1098/rstb.2004.1611. PMID 15905142. 60.^ Harrison P, Hegyi H, Balasubramanian S, Luscombe N, Bertone P, Echols N, Johnson T, Gerstein M (2002). "Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22". Genome Res 12 (2): 272–80. doi:10.1101/gr.207102. PMID 11827946. 61.^ Harrison P, Gerstein M (2002). "Studying genomes through the aeons: protein families, pseudogenes and proteome evolution". J Mol Biol 318 (5): 1155–74. doi:10.1016/S0022-2836(02)00109-2. PMID 12083509. 62.^ Albà M (2001). "Replicative DNA polymerases". Genome Biol 2 (1): REVIEWS3002. doi:10.1186/gb-2001-2-1-reviews3002. PMID 11178285. 63.^ Sandman K, Pereira S, Reeve J (1998). "Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome". Cell Mol Life Sci 54 (12): 1350–64. doi:10.1007/s000180050259. PMID 9893710. 64.^ Dame RT (2005). "The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin". Mol. Microbiol. 56 (4): 858–70. doi:10.1111/j.1365-2958.2005.04598.x. PMID 15853876. 65.^ Luger K, Mäder A, Richmond R, Sargent D, Richmond T (1997). "Crystal structure of the nucleosome core particle at 2.8 A resolution". Nature 389 (6648): 251–60. doi:10.1038/38444. PMID 9305837. 66.^ Jenuwein T, Allis C (2001). "Translating the histone code". Science 293 (5532): 1074–80. doi:10.1126/science.1063127. PMID 11498575. 67.^ Ito T. "Nucleosome assembly and remodelling". Curr Top Microbiol Immunol 274: 1–22. PMID 12596902. 68.^ Thomas J (2001). "HMG1 and 2: architectural DNA-binding proteins". Biochem Soc Trans 29 (Pt 4): 395–401. doi:10.1042/BST0290395. PMID 11497996. 69.^ Grosschedl R, Giese K, Pagel J (1994). "HMG domain proteins: architectural elements in the assembly of nucleoprotein structures". Trends Genet 10 (3): 94–100. doi:10.1016/0168-9525(94)90232-1. PMID 8178371. 70.^ Iftode C, Daniely Y, Borowiec J (1999). "Replication protein A (RPA): the eukaryotic SSB". Crit Rev Biochem Mol Biol 34 (3): 141–80. doi:10.1080/10409239991209255. PMID 10473346. 71.^ PDB 1LMB koordinatlarından üretilmiştir 72.^ Myers L, Kornberg R (2000). "Mediator of transcriptional regulation". Annu Rev Biochem 69: 729–49. doi:10.1146/annurev.biochem.69.1.729. PMID 10966474. 73.^ Spiegelman B, Heinrich R (2004). "Biological control through regulated transcriptional coactivators". Cell 119 (2): 157–67. doi:10.1016/j.cell.2004.09.037. PMID 15479634. 74.^ Li Z, Van Calcar S, Qu C, Cavenee W, Zhang M, Ren B (2003). "A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells". Proc Natl Acad Sci USA 100 (14): 8164–9. doi:10.1073/pnas.1332764100. PMID 12808131. 75.^ Pabo C, Sauer R (1984). "Protein-DNA recognition". Annu Rev Biochem 53: 293–321. doi:10.1146/annurev.bi.53.070184.001453. PMID 6236744. 76.^ PDB 1RVA koordinatlarından yaratılmıştır 77.^ Bickle T, Krüger D (1993). "Biology of DNA restriction". Microbiol Rev 57 (2): 434–50. PMID 8336674. 78.^ Doherty A, Suh S (2000). "Structural and mechanistic conservation in DNA ligases". Nucleic Acids Res 28 (21): 4051–8. doi:10.1093/nar/28.21.4051. PMID 11058099. 79.^ Schoeffler A, Berger J (2005). "Recent advances in understanding structure-function relationships in the type II topoisomerase mechanism". Biochem Soc Trans 33 (Pt 6): 1465–70. doi:10.1042/BST20051465. PMID 16246147. 80.^ Tuteja N, Tuteja R (2004). "Unraveling DNA helicases. Motif, structure, mechanism and function". Eur J Biochem 271 (10): 1849–63. doi:10.1111/j.1432-1033.2004.04094.x. PMID 15128295. 81.^ a b Joyce C, Steitz T (1995). "Polymerase structures and function: variations on a theme?". J Bacteriol 177 (22): 6321–9. PMID 7592405. 82.^ Hubscher U, Maga G, Spadari S (2002). "Eukaryotic DNA polymerases". Annu Rev Biochem 71: 133–63. doi:10.1146/annurev.biochem.71.090501.150041. PMID 12045093. 83.^ Johnson A, O'Donnell M (2005). "Cellular DNA replicases: components and dynamics at the replication fork". Annu Rev Biochem 74: 283–315. doi:10.1146/annurev.biochem.73.011303.073859. PMID 15952889. 84.^ Tarrago-Litvak L, Andréola M, Nevinsky G, Sarih-Cottin L, Litvak S (1994). "The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention". FASEB J 8 (8): 497–503. PMID 7514143. 85.^ Martinez E (2002). "Multi-protein complexes in eukaryotic gene transcription". Plant Mol Biol 50 (6): 925–47. doi:10.1023/A:1021258713850. PMID 12516863. 86.^ PDB 1M6G kordinatlarından üretilmiştir 87.^ Cremer T, Cremer C (2001). "Chromosome territories, nuclear architecture and gene regulation in mammalian cells". Nat Rev Genet 2 (4): 292–301. doi:10.1038/35066075. PMID 11283701. 88.^ Pál C, Papp B, Lercher M (2006). "An integrated view of protein evolution". Nat Rev Genet 7 (5): 337–48. doi:10.1038/nrg1838. PMID 16619049. 89.^ O'Driscoll M, Jeggo P (2006). "The role of double-strand break repair - insights from human genetics". Nat Rev Genet 7 (1): 45–54. doi:10.1038/nrg1746. PMID 16369571. 90.^ Vispé S, Defais M (1997). "Mammalian Rad51 protein: a RecA homologue with pleiotropic functions". Biochimie 79 (9-10): 587–92. doi:10.1016/S0300-9084(97)82007-X. PMID 9466696. 91.^ Neale MJ, Keeney S (2006). "Clarifying the mechanics of DNA strand exchange in meiotic recombination". Nature 442 (7099): 153–8. doi:10.1038/nature04885. PMID 16838012. 92.^ Dickman M, Ingleston S, Sedelnikova S, Rafferty J, Lloyd R, Grasby J, Hornby D (2002). "The RuvABC resolvasome". Eur J Biochem 269 (22): 5492–501. doi:10.1046/j.1432-1033.2002.03250.x. PMID 12423347. 93.^ Orgel L. "Prebiotic chemistry and the origin of the RNA world". Crit Rev Biochem Mol Biol 39 (2): 99–123. doi:10.1080/10409230490460765. PMID 15217990. 94.^ Davenport R (2001). "Ribozymes. Making copies in the RNA world". Science 292 (5520): 1278. doi:10.1126/science.292.5520.1278a. PMID 11360970. 95.^ Szathmáry E (1992). "What is the optimum size for the genetic alphabet?". Proc Natl Acad Sci USA 89 (7): 2614–8. doi:10.1073/pnas.89.7.2614. PMID 1372984. 96.^ Lindahl T (1993). "Instability and decay of the primary structure of DNA". Nature 362 (6422): 709–15. doi:10.1038/362709a0. PMID 8469282. 97.^ Vreeland R, Rosenzweig W, Powers D (2000). "Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal". Nature 407 (6806): 897–900. doi:10.1038/35038060. PMID 11057666. 98.^ Hebsgaard M, Phillips M, Willerslev E (2005). "Geologically ancient DNA: fact or artefact?". Trends Microbiol 13 (5): 212–20. doi:10.1016/j.tim.2005.03.010. PMID 15866038. 99.^ Nickle D, Learn G, Rain M, Mullins J, Mittler J (2002). "Curiously modern DNA for a "250 million-year-old" bacterium". J Mol Evol 54 (1): 134–7. doi:10.1007/s00239-001-0025-x. PMID 11734907.

http://www.biyologlar.com/dna-ve-ozellikleri-hakkinda-kapsamli-bilgi

Gen düzenlemesi nedir ?

Bir organizmanın genomu binlerce gen içermekle birlikte, bu genlerin hepsinin de belirli bir anda aktif olmaları gerekmez. Bir gen, mRNA transkripsiyonu gerçekleştiğinde (ve proteine çevrildiğinde) “ifade olmuş” demektir. Genlerin ifadesini denetleyen birçok hücre yöntemi vardır. Mesela proteinler yalnızca hücre ihtiyaç duyduğunda üretilirler. Transkripsiyon faktörleri genin transkripsiyonunu ya teşvik etmek ya da engellemek suretiyle düzenleyen proteinlerdir. Örneğin, Escherichia coli bakterisinin genomunda triptofan amino asitinin sentezi için gerekli bir seri gen vardır; fakat triptofanın hücrede kullanıma hazır hale gelmesinden sonra, bu genlere artık ihtiyaç kalmaz. Triptofanın varlığı genlerin faaliyetini doğrudan etkiler; triptofan molekülleri “triptofan represörü”ne (bir transkripsiyon faktörü) bağlanırlar, bağlanınca represörlerin yapısını öyle değiştirir ki, represörler genlere bağlanır. Triptofan represörü genlerin transkripsiyonu ve ifadesini durdurur, ve dolayısıyla, triptofan sentezi sürecinin “olumsuz geri beslemeli” (negative feedback) düzenlemesini sağlamış olur. Gen ifadesindeki farklılıklar, özellikle çok hücreli organizmalarda belirgindir, bu tip canlılarda hücrelerin hepsi aynı genomu içermelerine karşın, farklı gen kümelerinin ifadesinden kaynaklanan çok farklı yapı ve davranışlara sahiptirler. Çok hücreli bir organizmadaki tüm hücreler, tek bir hücreden türerler. Bu tek hücrenin farklı hücre tiplerine farklılaştığı süreç sırasında, dış ve hücreler arası sinyallere tepki verir, aşamalı olarak farklı gen ifade şekilleri kurarak farklı davranış tipleri oluşturur. Çok hücreli organizmalarda yapıların gelişiminden tek bir gen sorumlu değildir; bu farklı davranış tipleri birçok hücre arasındaki karmaşık etkileşimlerden doğar. Ökaryotlarda kromatinde yapısal özellikler genlerin transkripsiyonunu etkiler. Bu özellikler “epigenetik”tir (üst-kalıtsal), çünkü etkileri DNA dizisinin üzerinde yer alır ve bir hücre kuşağından diğerine aktarılan kalıta haizdir. Epigenetik özelliklerden olayı, aynı ortamda oluşan farklı hücre tipleri çok farklı özelliklere sahip olabilirler.

http://www.biyologlar.com/gen-duzenlemesi-nedir-

Transkripsiyon faktörü

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya (bir aktivatör olarak) kolaylaştırırlar veya (bir represör olarak) engeller. Biyolojik rolleri Transkripsiyon faktörleri DNA'daki genetik bilgiyi okuyup yorumlayan protein gruplarından biridir. DNA'ya bağlanırlar ve gen transkripsiyonunun artması veya azalmasına yol açarlar. Bu bakımdan pek çok önemli hücresel süreçte hayatî bir konuma sahiptirler. Transkripsiyon faktörlerinin ilişkili olduğu bazı önemli fonksiyonlar aşağıdadır: Bazal transkripsiyon düzenlemesi Ökaryotlarda transkripsiyonun gerçekleşmesi için "genel transkripsiyon faktörü" diye adlandırılan önemli bir transkripsiyon faktörü sınıfının üyeleri gereklidir. Bu faktörlerin çoğu doğrudan DNA'ya bağlı değildir, ama RNA polimeraz ile doğrudan etkileşirler. Bunların en önemlileri TFIIA, TFIIB, TFIID (ayrıca bakınız TATA bağlanma proteini), TFIIE, TFIIF ve TFIIH'dir. Gelişme Çok hücreli canlıların gelişmesinde pek çok transkripsiyon faktörü rol oynar. Uyarılara tepki veren bu transkripsiyon faktörleri, ilgili genleri çalıştırırlar veya durdurarlar, bu da hücre morfolojisinde, hücre kaderi belirlenmesinde ve hücresel başkalaşımda gerekli olan değişiklikleri mümkün kılar. Örneğin, Hox transkripsiyon faktör ailesi sirke sineğinden insana kadar pek çok canlıda vücut biçiminin oluşması için önemlidir. Bir diğer örnek, insanlarda cinsiyetin belirlenmesinde rol oynayan SRY genidir. Hücreler arası sinyallere tepki Hücreler, sinyal molekülleri salgılayarak birbirleriyle haberleşirler, bu moleküller alıcı hücrelerde sinyal silsileleri (ing. cascade) başlatır. Eğer sinyal, alıcı hücredeki genlerin ifadesinin değişmesini gerektiriyorsa sinyal silsilesinin akışaşağısında (ing. downstream) genelde bir transkripsiyon faktörü bulunur. Basit bir örnek olarak estrojen sinyallemesi verilebilir: estrojen, plasenta ve yumurtalık gibi dokular tarafından salgılanır, alıcı hücrenin hücre zarından geçip sitoplazmasındaki estrojen reseptörüne bağlanır; sonra estrojen reseptörü çekirdeğe gidip kendi DNA bağlanma yerine bağlanır, bu da ilgili genlerin transkripsiyon denetimini değiştirir. Çevreye tepki vermek Transkripsiyon faktörleri çevresel uyaranların doğurduğu sinyal silsilelerinin ucunda da yer alabilirler. Buna örnekler, yüksek sıcaklıkta canlı kalmayı sağlayan ısı şoku faktörü (ing., heat shock factor; HSF), düşük oksijenli ortamda yaşamı sağlayan hipoksiya indüklenebilir faktör (ing. hypoxia inducible factor; HIF) ve hücre içindeki lipit seviyelerini düzenleyen sterol düzenleyici elemana bağlanıcı protein (ing., sterol regulatory element binding protein; SREBP) olarak sayılabilir. Hücre döngüsü kontrolü Çoğu transkripsiyon faktörü, özellikle onkogen veya tümör bastırıcıları hücre döngüsünü düzenlerler, dolayısıyla bir hücrenin ne kadar büyeyeceğine ve ne zaman bölüneceğini belirler. Bunun bir örneği hücre büyümesi ve apoptozda önemli rol oynayan Myc oncogenidir. Transkripsiyon faktör etkinliğinin düzenlenmesi Biyolojik süreçlerin genelde birden çok kontrol ve düzenleme katmanı vardır. Bu, transkripsiyon faktörleri için de geçerlidir: bir gen ürününün miktarı transkripsiyon seviyesi tarafından belirlendiği gibi, transkripsiyon sürecinin kendi de denetime tâbidir. Aşağıda, bir transkripsiyon faktörünün denetlenme yollarının bazıları sıralanmıştır: Transkripsiyon faktör sentezi Transkripsiyon faktörlerinin sentezinde bir gen RNA'ya çevriyazılır (ing. transcribe), RNA da proteine çevrilir. Bu adımların her birinin denetimi bir transkripsiyon faktörünün seviyesine etki eder. Transkripsiyon faktörleri kendi kendilerini de denetleyebilirler: Örneğin, transkripsiyon faktörünün kendi represörü olması bir geri besleme döngüsü meydana getirir; transkripsiyon faktörü kendi geninin promotörüne bağlanarak kendi üretimini aşağı ayarlar (ing. downregulate), böylece transkripsiyon faktörünün hücre içindeki seviyesi düşük kalmış olur. Çekirdeğe taşınma Ökaryotlarda transkripsiyon faktörleri (çoğu protein gibi) çekirdekte okunur amd sonra sitoplazmaya taşınır, oysa işlev yerleri çekirdektir. Çekirdekte aktif olan proteinler çekirdeğe gitmelerini sağlayan bir çekirdek lokalizasyon sinyaline sahiptirler ama transkripsiyon faktörleri durumunda bu lokalizasyon otomatik olmaz, bu süreç onların denetiminin önemli bir noktasıdır. Çekirdek reseptörleri gibi bazı transkripsiyon faktörleri sitoplazmadan çekirdeğe geçebilmek için önce bir liganda bağlanmak zorundadırlar. Kimyasal modifikasyon veya ligand bağlanması ile etkinleşme Ligandlar bir transkripsiyon faktörünün nerede bulunduğunu belirlemekten başka, onun etkin halde olmasını ve DNA'ya veya başka kofaktörlere bağlanabilir olmasına da etki ederler. Transkripsiyon faktörünün kimyasal değişimi de onu etkinleştirebilir. Örneğin, STAT proteinleri gibi transkripsiyon faktörlerinin DNA'ya bağlanmaları için fosforile olmaları gerekir. DNA bağlanma yerinin erişilebilirliği Ökaryotlarda aktif olarak çevriyazılmayan genler heterokromatinde yer alır. Heterokromatin, kromozomun tıkız (kompakt) olduğu bölgeleridir; bu bölgelerde DNA'nın histonlara sıkıca sarılmasıyla oluşan kromatin iplikleri vardır. Bu sıkışıklık yüzünden heterokromatindeki DNA'ya çoğu transkripsyon faktörü tafarından erişilemez. Transkripsyon faktörünün DNA'ya bağlanabilmesi için heterokromatinin histon değişimleri (modifikasyonları) yoluyla daha gevşek yapılı olan ökromatine dönüştürülmesi gerekir. Bir transkripsiyon faktörünün DNA'ya bağlanamamasının bir nedeni de bağlanma yerinin başka bir transkripsyon faktörü tarafında işgal edilmiş olmasıdır. Bir genin denetiminde iki transkripsiyon faktörü (bir aktivatör ve bir represör) bu şekilde birbirine zıtlık yaratabilirler. Bir kompleksin oluşumu için gereken diğer kofaktörler veya transkripsiyon faktörleri Çoğu transkripsiyon faktörü tek başına çalışmaz. Genelde transkripsiyonun olması için birkaç transkripsiyon faktörünün DNA düzenleyici dizilerine bağlanması gerekir. Bu transkripsiyon faktörleri de ardından transkripsiyon kofaktörlerini seferber ederek başlama öncesi kopmpleks ve RNA polimerazın bağlanmasını sağlarlar. Dolayısıyla tek bir transkripsyon faktörünün transkripsiyonu başlatabilmesi için bu diğer proteinlerin hepsinin yerinde olması ve transkripsiyon faktörünün kendisin de onlara bağlanabilecek bir durumda olması gerekir. Yapı Transkripsiyon faktörlerinin yapıları modülerdir ve şu bölgelerden: DNA bağlanma bölgesi (DBB) düzenlenen genin bitişiğindeki promotör bölgesindeki, veya daha uzağındaki hızlandırıcı (ing. enhancer) DNA dizilerine bağlanır. Trans-aktivasyon bölgesi (TAB) transkripsiyon eşdüzenleyici (co-regulator) başka proteinler için bağlanma yerlerine sahiptir. Bazen bulunan bir sinyal algılama bölgesi, örneğin bir ligand bağlanma bölgesi, moleküler sinyalleri algılayıp transkripsiyon kompleksinin geri kalanına ileterek genin aşağı veya yukarı ayarlamasını yapar. Bazen DNA bağlanma bölgesi ve sinyal algılama bölgesi, transkripsiyon kompleksini oluşturan faklı proteinlerde yer alırlar. DNA bağlanma proteinleri Transkripsiyon faktörleri çoğu zaman DNA bağlanma bölgelerindeki benzerliğe göre sınıflandırılırlar: DNA'ya bağlanan başlıca transkripsiyon faktörü/DNA bağlanma bölgesi sınıfları aşağıda listelenmiştir: Lambda repressörü-gibi (SCOP 47413) (Şablon:InterPro) (SCOP 46894) İki parçalı tepki düzenleyicilerinin (ing. bipartite response regulators) C-uç efektör bölgesi (Şablon:InterPro) Serum tepki faktörü (ing. serum response factor; srf)-gibi (SCOP 55455) (Şablon:InterPro) Bazik-sarmal-halka-sarmal (SCOP 47460) (Şablon:InterPro) GCC kutusu (SCOP 54175) Zn2/Cys6 (SCOP 57701) winged helix (SCOP 46785) Zn2/Cys8 çekirdek reseptorü çinko parmağı (SCOP 57716) homeobölge proteinleri - Başka transkripsiyon faktörlerinin promotörlerinde yer alan homeokutuları DNA dizilerine bağlanırlar. Homeobölgeli (homeodomain) proteinler gelişimin denetlenmesinde önemli rol oynarlar. (SCOP 46689) Çoklu bölgeli Cys2His2 çinko parmaklılar (SCOP 57667) (Şablon:InterPro) bazik-lösin fermuarlı (ing. basic leucine zipper, bZIP) proteinler (SCOP 57959) Daha çok ayrıntı için Transkripsiyon faktör sınıfları listesi'ne bakınız. Transkripsiyon denetiminde önemli rol oynayan başka proteinler de vardır ama bunlar DNA'ya bağlanmadıkları için transkripsiyon faktörü olarak sayılmazlar. Örneğin, koaktivatörler, kromatin biçimlendiriciler, histon asetilazlar ve deasetilazlar, kinazlar ve metilazlar. Transkripsiyon faktörü bağlanma yerleri Transkripsyon faktörleri kendilerine has nükleotit dizilerinde DNA'ya bağlanırlar. Bu bağlanma yerleri ile etkileşirken kimyasal olarak hidrojen bağları ve Van der Waals bağları kullanırlar. Bir bağlanma yerindeki bu etkileşimlerden bazıları diğerlerinden daha zayıftır. Bu yüzden transkripsyon faktörleri tek bir diziye değil, birbiriyle yakın ilişkili bir grup dizye bağlanabilirler, her biriyle farklı güçte olmak üzere. Örneğin, TATA bağlanma proteininin (TBP) konsensus bağlanma dizisi TATAAAA olmakla beraber TBP transkripsiyon faktörü buna benzer olan TATATAT veya TATATAA dizilerine de bağlanabilir. Transkripsiyon faktörleri benzer dizilere bağlanabildikleri ve bunların kısa diziler olduğu için, yeterince uzun bir DNA zincirinde bir bağlanma yeri tesadüfen de bulunabilir. Buna rağmen bir transkripsiyon faktörü genomda bulunan kendisiyle uyumlu her bağlanma yerine bağlanmaz, çünkü DNA'ya erişilebilirlik ve kendisi için gerekli kofaktörlerin mevcudiyeti sınırlamalar getirir. Bu yüzden bir transkripsiyon faktörünün bağlanma yerini bilmek, bir canlı hücrede onun gerçekten nereye bağlandığını öngörmeye yetmez. Sınıflar Mekanizmaya göre Transkripsiyon faktörlerinin mekanizmalarına göre üç sınıfı vardır: Genel transkripsiyon faktörleri, transkripsiyon başlangıç öncesi kompleks oluşumuyla ilişkilidir. En yaygın olanlarının adları TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH olarak kısaltılır. Her yerde bulunurlar ve tüm Sınıf II genlerin transkripsiyon başlama noktasını çevreleyen çekirdek promotör bölgesi ile etkileşirler. Akışyukarı (upstream) transkripsyon faktörleri transkripsiyon başlama noktasının yukarı kısmına bağlanarak transkripsiyonu uyaran veya bastıran proteinlerdir. İndüklenebilir transkripsyon faktörleri akış yukarı transkripsyon faktörleri gibidirler ama aktivasyon veya inhibisyon gerektirirler. İşlevsel Alternatif olarak transkripsiyon faktörleri düzenleyici fonksiyonlarına göre sınıflandırılırlar: I. Yapısal etkin (constitutively active) -Tüm hücrelerde her zaman mevcut- genel transkripsiyon faktörleri, Sp1, NF1, CCAAT II. Şartlı etkin - aktivasyon gerektirir. II.A. Gelişimsel (hücreye özgün) - gen ifadesi sıkı kontrol altında ama başladıktan sonra ek atkinleştirme gerektirmez. II.B Sinyale bağımlı - etkinleşme için haricî bir sinyal gerektirir. II.B.1 Hücredışı ligand bağımlı - çekirdek reseptörleri II.B.2 Hücrediçi ligand bağımlı - küçük hücre içi moleküller tarafından etkinleşir. Örneğin, SREBP, p53, öksüz çekirdek reseptörleri. II.B.3 Hücre zarı resptörü bağımlı ikincil mesajcı sinyalleme silsilesi bir transkripsiyon faktörünün fosforile olmasına neden olur. II.B.3.b Gizli (latent) sitoplazmik faktörler - inaktif hali sitoplazmada yer alır ama etkinleşince çekirdeğe geçer - Örneğin, STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT. II.B.3.a yerleşik çekirdek faktörleri aktivasyon halinden bağimsız olarak çekirdekte yer alır. Örneğin, CREB, AP-1, Mef2. Farklı organizmalarda rolleri ve korunumları Transkripsiyon faktörleri gen ifadesinin düzenlenmesi için zaruridir ve dolayısıyla her canlıda bulunur. Canlılarda bulunan transkripsiyon faktörü sayısı genom büyüklüğü ile orantılıdır, daha büyük genomlarda gen başına transkripsiyon faktörü sayısı daha çoktur. İnsan genomunda DNA'ya bağlanabilen yaklaşık 2600 protein vardır, bunların çoğunun transkripsiyon faktörü olduğu tahmin edilmektedir. Dolayısıyla genomdaki genlerin yaklaşık %10'u transkripsiyon faktörlerini şifrelemektedir, yani bu protein grubu insan proteinleri arasında en kalabalık olanıdır. Genlerin genelde iki tarafında birkaç farklı transkripsiyon faktörünün bağlanma yerleri bulunmaktadır ve bu genlerin verimli olarak ifadesi için birkaç transkripsiyon faktörünün beraberce etkisi gerekmektedir. Yani 2000 insan transkripsiyon faktörünün belli bir alt kümesinin kombinezonları insan genomundaki her genin gelişim sırasındaki kendine has denetimini açıklamaya yeterlidir. Transkripsiyon faktörleri ve insan hastalıkları Gelişim, hücre içi sinyalleme ve hücre döngüsündeki önemli rollerinden dolayı bazı transkripsiyon faktörlerindeki mutasyonların hastalıklarla ilişkili olduğu bulunmuştur. İyi bilinen bazı örnekler aşağıda sıralanmıştır: Rett syendromu MECP2 transkipsiyon faktöründeki mutasyonlar Rett sendromu, nörogelişimsel bir bozukluktur. Diyabet Diyabetin ender bir biçimi olan Gençlerin erişkin başlangıçlı diyabeti (ing. Maturity onset diabetes of the young; MODY) hepatosit çekirdek faktörlerinde (ing. hepatocyte nuclear factors; HNF) veya insülin promotör faktörü-1'deki (ing. insulin promoter factor-1; IPF1) mutasyonlar neden olmaktadır. gelişimsel sözel dispraksi FOXP2 transkipsiyon faktöründeki mutasyonlar gelişimsel sözel dispraksi (ing. developmental verbal dyspraxia) ile ilişkilendirilmiştir, bu hastalıkta kişiler konuşma için gerekli olan hassas koordinasyonlu hareketleri yapamaazlar. Otoimmün hastalıklar FOXP2 transkipsiyon faktöründeki mutasyonlar ender bir otoimmün hastalık olan IPEX'e neden olur. Kanser Çoğu transkripsiyon faktörü tümör baskılayıcısı veya onkogendir, bu yüzden onları mutasyonu veya hatalı denetimi kanserle ilişkilidir. Örneğin Li-Fraumeni syndromu tümör baskılayıcısı p53'teki mutasyonlardan kaynaklanır.

http://www.biyologlar.com/transkripsiyon-faktoru

Nükleik Asitler

Nükleik Asitler

Nükleik asitler, bütün canlı hücrelerde ve virüslerde bulunan, nükleotid birimlerden oluşmuş polimerlerdir. En yaygın nükleik asitler deoksiribonükleik asit (DNA) ve ribonükleik asit (RNA)'dır. İnsankromozomlarını oluşturan DNA milyonlarca nükleotitten oluşur. Nükleik asitlerin başlıca işlevi genetik bilgi aktarımını sağlamaktır, ancak bazı RNA türleri katalizör olarak da işlev görürler. RNA'yı oluşturan kimyasal gruplar. P, fosfat; Z, riboz şeker; A, C, G, U, sırasıyla adenin, sitozin, guanin ve urasil. Zincirin doğrultusu şekerlerin 5' ve 3' karbonlarının sırası tarafından belirlenir. Nükleik asitler başlıca hücre çekirdeğindeheterosiklik bir baz, 2) beş karbonlu (pentoz) bir şeker ve 3) bir fosfat grubu. RNA'da bulunan şekerriboz, DNA'da ise deoksiribozdur. DNA ve RNA içerdikleri azotlu bazlarda da farklılık gösterirler: adenin, guanin ve sitozin her ikisinde, timin yalnızca DNA'da, urasil ise yalnızca RNA'da bulunur. bulunmalarından dolayı keşfedildiklerinde bu şekilde adlandırılmışlardır. Bu polimerleri oluşturan nükleotid birimlerin her biri üç bölümden oluşur: 1) Azotlu RNA molekülleri ilk sentezlendiklerinde bu dört temel bazdan oluşmalarına rağmen bazı RNA türleri sonradan enzimler tarafından modifikasyona uğrarlar ve başka tür bazlar da içerebilirler. RNA moleküllerinde bulunan, değişime uğramış (modifiye) baz türlerinin sayısı yüze yakındır. Nükleik asitlerin dizinleri onları oluşturan nükleotitler bir harflik kısaltmalarla yazılırlar. Adenin, sitozin, guanin, timin ve urasilin kısaltmaları sırasıyla, A, C, G, T ve U'dur. Dizinin yazılış yönü şekerlerin 5' ve 3' karbonlarının zincir üzerindeki sırasına göredir, bilimsel konvansiyonda dizinler şekerlerin 5'-3' karbonlarının doğrultusunda okunurlar. Nükleik asitler tek bir zincirden oluşabildikleri gibi birbirine sarılmış iki zincirden de oluşabilirler. Spiral merdiven görünümlü bu yapıya çift sarmal denir. Çift sarmallı bir nükleik asitteki iki zincir aralarında oluşmuş hidrojen bağları ile birbirlerine bağlıdırlar. Bazı tek zincirli nükleik asitler de kendi üzerlerine katlanıp iki sarmallı bölgeler oluşturabilir. DNA genelde çift sarmallı olmakla beraber bazı virüslerin içerdikleri DNA tek zincirlidir. RNA molekülleri de genelde tek zincirden oluşmakla beraber bazı virüslerin içinde çift sarmallı RNA bulunur. Nükleik asit zincirindeki şeker ve fosfat grupları değişimli olarak birbirine bağlıdır, oksijen atomlarının paylaşılmasıyla oluşan bu bağlara fosfodiester grubu denir. Fosfat grupları şeker molekülünün 3' ve 5' karbon atomlarına bağlıdır. Azotlu bazlar pentoz halkasının 1' karbonuna bağlıdır. Çift sarmallı nükleik asitlerde şeker-fosfatlı zincirler silindirik yapının dışında yer alır, azotlu bazlar ise bu yapının ortasına doğru uzanarak birbirleriyle hidrojen bağları oluştururlar. Hidrojen bağı kurmuş her bir baz çiftindeki bazlardan biri pürin sınıfından, öbürü pirimidin sınıfındandır, bunların toplam uzunluğu sabittir. Genelde çift sarmalın genişliği onu oluşturan baz dizininden bağımsız ve sabittir. DNA'da adeninin her zaman timin ile, guanin de her zaman sitozin ile eşlidir. Bu baz çiftelerine tümleyici bazlar denir. Bu eşlenmenin gerçekleşmesi için iki zincir birbirlerine göre ters yönde akarlar. Yani iki sarmalın dizini iki satır olarak yazıldıklarında bir satırdaki dizin 5'-3' yönünde, öbür satırdaki ise 3'-5' yönündedir. Bu iki dizinden biri öbürünün tümleyici dizinidir. Baz eşlenmesinin bir diğer sonucu da iki zincirin birbirlerine sarılarak spiral merdiven gibi bir yapı oluşturmalarıdır. Bu çift sarmal genelde sağ el kuralına göre döner, bir dönmesinde 10 baz çifti vardır. James Watson ve Francis Crick DNA'nın bu üç boyutlu yapısını keşfedip 1962'de Nobel Tıp veya Fizyoloji ödülünü kazandılar. İşlevleri Nükleik asitlerin hücrede, bilgi depolama ve aktarımında önemli bir rol oynarlar. Dört temel taştan uzun polimerler oluşturabilmeleri, ayrıca bazların birbiriyle hidrojen bağı kurma özelliği, DNA'nın kendini ikilemesi, DNA'daki bilginin RNA'ya kopyalanması (transkripsiyon) ve diğer önemli hücresel süreçlerde kullanılır. Bilgi aktarımı Baz eşlenmesinin genetikte bilginin kopyalanması ve korunumunda çok önemli bir rol oynar. Hidrojen bağları, eşlenmiş bazları bir arada tutacak kadar güçlü, ancak iki nükleik asit zinciri ona etki eden çeşitli enzimler tarafından birbirinden kolaylıkla ayrılabilecek kadar zayıftır. Örneğin, DNA polimeraz enzimi tarafından katalizlenen DNA'nın kopyalanmasında iki zincir birbinden ayrılır, ve her bir bazın karşısına onu tamamlayıcı bazı içeren nükleotid yerleştirilerek yeni bir zincir oluşturulur. DNA'daki bilginin RNA'ya kopyalanması da benşâzer bir mekanizmayla gerçekleşir. Baz eşlenmesinin hücreye sağladığı bir diğer fayda, çift sarmalda bilginin iki kopya olarak saklı olmasıdır. DNA kopyalamasında meydana gelebilen hatalar bu sayede hücredeki hata kontrol mekanizmaları tarafından algılanıp tamir edilir. DNA molekülünün çift sarmal yapısının aksine RNA, tek zincirli olmasından dolayı çok çeşitli şekiller alabilir. Bunları belirleyen, nükleotitlerinin diziliş sıralaması, yani dizinidir. Molekülün farklı bölgeleri tümleyici dizinlere sahipseler oralardaki bazlar birbirleriyle hidrojen bağları oluşturabilirler. Bu bölgeledeki nükleotitler yapısal bir görev görürler, molekülün diğer kısımlarının ilmik veya saç firketesi gibi şekillere girmelerini sağlarlar. Karmaşık üç boyutlu şekiller oluşturabilmek RNA'nın başka moleküllerle etkileşiminde ve katalitik işlevlerinde önemlidir. Bazı RNA molekülleri bir iskelet görevine sahiptir, çok sayıda proteinden oluşmuş komplekslerin biraraya gelmesi ve beraber kalmalarını sağlar. Bir örnek, protein sentezinde görev alan taşıyıcı RNA (tRNA) molekülleridir, bunların kendilerine has şekilleri hem ribozomdaki enzimler ve rRNA tarafından tanınmalarını sağlar hem de taşıdıkları aminoasitin ribozom üzerinde doğru noktaya yanaşmasını sağlarlar. Katalitik RNA molekülleri enzim gibi çalışabilirler. Bu moleküllerin üç boyutlu yapıları öyledir ki içerdikleri bazların reaktif grupları bir kimyasal reaksiyonu katalizleyebilecek bir konumdadır. Bazı mRNA molekülleri bu şekilde kendi kendilerini kesme özelliğine sahiptirler. Ribozomlardaki ribozomal RNAaminotransferaz (rRNA) molekülü de reaksiyonunu katalizleyerek protein sentezinin gerçekleşmesini sağlar. Gen ifadesinin denetimi DNA ve RNA'nın içerdiği bazı dizinler DNA ve RNA'yı okuyan enzimlerin işleyişine etki edebilirler. Bu dizinleri tanıyan bir protein doğrudan oraya bağlanabilir. Bunun gen ifadesine etkisi duruma göre olumlu veya olumsuz olabilir. Mesajcı RNA (mRNA) durumunda, kendisiyle baz eşleşmesi yaparak oluşabilen çift sarmallı bir yapı ya bir proteinin ona bağlanmasına neden olabilir, ya da, aksine, üzerinde ilerlemekte olan bir ribozomun ondan ayrışmasına neden olabilir. MikroRNA (miRNA) adı verilen kısa RNA'lar ise mRNA ile eşleşerek çift sarmallı bir yapı oluşturur, bu da o mRNA'nın proteine çevirisini engeller.

http://www.biyologlar.com/nukleik-asitler-1

Lipaz ve Lipaz Türleri

Lipaz, lipitlerin ester bağlarının hidrolizini katalizleyen bir enzimdir. Lipazlar esterazların bir alt sınıfıdır. Lipazlar, çoğu canlıda gıdasal lipitlerin (yani trigliseritlerin) sindirimi, taşınması ve işlenmesinde önemli rol oynarlar. Bazı virüslerde dahi lipaz genleri bulunur. Kobay pankreatik lipaz ilişkili protein İşlev Çoğu lipaz bir lipit substratın gliserol omurgasının belli konumlarında etkir. İnsanlarda sindirim sisteminde yağları sindirmekten sorumlu esas enzim olan pankreatik lipaz örneğinde, enzim, yağlarda bulunan trigliseritleri monogliseritlere ve yağ asitlerine dönüştürür. Fosfolipaz ve sfingomiyelinazlar da sayılırsa doğada çok büyük sayıda lipaz vardır. Yapı Amino asit dizisi bakımından birbirinden farklı çok çeşitli lipazlar vardır, bunlar protein yapıları ve katalitik yapıları bakımından incelendiğinde dahi birkaç tipten oluşurlar. Bunların çoğu alfa/beta hidrolaz katlanmasına sahiptirler (bkz resim). Kullandıkları hidroliz mekanizması kimotripsininkine benzer, bir serin nükleofil, bir asit kalıntı (genelde aspartik asit) ve bir histidinden oluşur. Gram negatif bakteriler tarafından üretilen çoğu lipaz, biyolojik olarak aktif biçimlerine kavuşabilmek için, doğru katlanmalarını sağlayan, kendilerine has bir yardımcı proteine gerek duyarlar. Fizyolojik Dağılım Lipazlar gıdasal trigliseritlerin rutin metabolizmasından, sinyal transdüksiyonu ve enflamasyona kadar çok çeşitli biyolojik süreçlerde yer alırlar. Bazı lipazlar hücre içinde belli bölmeler ile sınırlıdır, diğerleri ise hücre dışında mekanlarda işlev görürler. Lisozomal lipaz durumunda, enzim lizozom denen organele sınırlanmıştır. Başka lipazlar, pankreatik lipaz gibi, hücre dışına salgılanır ve orada gıdasal lipitleri daha basit moleküllere dönüştürürler, vücut tarafından daha kolay emilebilmeleri ve vücut içinde daha kolay taşınabilmeleri için. Mantar ve bakterilerin salgıladıkları lipazlar ortamdaki besinleri daha kolay içlerine alabilmelerini sağlar. Patojenik mikroplarda ise yeni bir konak organizmayı daha kolay istila edebilmeyi sağlar. Bazı arı ve eşekarısı zehirlerinde bulunan fosfolipazlar, sokmanın neden olduğu yara ve enflamasyonun daha etkili olmasını sağlar. Biyolojik membranlar hücrenin parçası oldukları için lipazlar hücre biyolojisinde önemli rol oynarlar. İnsanlarda Lipazlar İnsan sindirim sisteminin başlıca lipazları mide tarafından salgılanan gastrik lipaz ve pankreas tarafından salgılanan pankreatik lipaz ve pankreatik lipazla ilişkili protein 2 (PLRP2)'dır. İnsanlarda ayrıca bunlarla ilişkili birkaç enzim daha vardır, hepatik lipaz, endotel lipaz ve lipoprotein lipaz olmak üzere. Bu lipazların hepsi sindirim sistemi ile ilgili değildir. Endüstriyel Kullanım Mantar ve bakterilerden elde edilen lipazlar eski çağlardan beri yoğurt ve peynir yapımında önemli rol oynamışlardır. Ancak, bunların yanı sıra, modern uygulamalarda lipazlar lipitlerin yıkımı için kullanılan ucuz ve çok yönlü katalizörler olarak değerlendirilir. Örneğin, bir biyoteknoloji şirketi, ekmek ürünleri ve çamaşır tozu üretmek ve bitkisel yağları yakıta dönüştürmek gibi amaçlar için rekombinant lipaz enzimlerini pazarlamaktadır. HEPATİK LİPAZ Hepatik trigliserit lipaz veya hepatik triasilgliserol lipaz, yaygın adıyla da Hepatik lipaz, karaciğer, adrenal bezler ve overde, ayrıca makrofajlarda bulunan bir lipazdır. LIPC geni tarafından kodlanan hepatik lipazın iki işlevi vardır: trigliserit lipaz ve reseptör aracılıklı lipoprotein alımı. Gen Hepatik lipaz insanda LIPC geni tarafından kodlanır. İnsan LIPC geni, kromozom 15'te, 15q21 bandında konumlandırılmıştır. Farelerde kromozom 9'da bulunur. LIPC geninin ifadesi, ZNF202 ve HNF1 adlı transkripsiyon faktörleri tarafından düzenlenir. Ayrıca, serum adiponektin düzeyleri ile HL kan düzyeleri arasında korelasyon bulunmuştur. Hepatik lipaz, lipoprotein lipaz (LPL) ve endotel lipaz, hem aminoasit dizileri bakımından hem de ekson yapıları bakımından birbirlerine büyük benzerlik gösterirler, bu yüzden evrimsel olarak aynı trigliserit lipaz gen ailesine ait oldukları düşünülür. Bu proteinlerin artı yüklü bölgeleri vardır, bunların hücre yüzeyindeki asidik glikozaminoglikanlara bağlanmaya yaradığı tahmin edilmektedir Protein LPL geni, olgun hali 476 amino asit uzunluğunda bir protein kodlar. Protein kanda bir dimer (ikili) olarak bulunur. Proteinin dimer olması, bir lipoprotein ile bir hücre arasında köprü kurmasını sağlar. Trigliserit hidrolizine kıyasla fosfolipit hidrolizi HL'de, LPL'ye kıyasla daha yüksektir. Aradaki farkın aktif bölgeyi örten bir kapak bölgesinden kaynaklandığı gösterilmiştir. İşlev Hepatik lipaz, sn-3 fosfolipitlerin sn-1 yağ asil ester bağlarını hidrolizler; ayrıca mono-, di- ve tri-gliseritlerin sn-1 bağlarını hidrolizler. Trigliserit -> Diasil gliserol + yağ asidiDiasilgliserol -> Monoasil gliserol + yağ asidiFosfolipit -> Lizofosfolipid + yağ asidi HL ayrıca diasilgliserol sentezleyebilir: 2 monoasilgliserol'den, veya bir monoasilgliserol artı bir fosfolipitten Hepatik lipaz trigliserit ve fosfolipitleri hidroliz eder. Suni HDL tanecikleri üzerinde yapılan ölçümlerde HL'ın başlıca yüzeyde bulunan diasilgliserit ve fosfolipitleri hidrolizlediği bulunmuştur. Ayrıca HL, apoliporotein B içeren lipoproteinlerin LDL reseptörü ve LRP aracılığıyla, HDL'nin de SR-BI reseptörü aracılığıyla karaciğer içine alınmasını kolaylaştırır. Bunu işlev, her iki tip lipoproteinde bulunan proteoglikanlara bağlanarak gerçekleşir. Fizyoloji Hepatik lipaz (HL), plazma lipit düzeylerinin düzenlenmesinde önemli rol oynayan enzimlerden biridir. Lipoprotein lipaz ve HL, sırasıyla, karaciğer dışı ve karaciğer hücrelerinin yüzeyine bağlanır ve orada lipoproteinler üzerine etkirler. Patofizyoloji Hepatik lipaz, glukoz ve yağ asidi metabolizmasında görev alır. Enzim aktivitesindeki bozuklukla diyabet mellitus ve koroner arterioskleroza neden olur. Hepatik lipaz mutasyonu ender bir otozomal resesif bozukluktur. LIPC genindeki bir mutasyon sonucu kandaki HDL düzeyleri yüksek olur, ayrıca hem HDL hem de LDL'deki trigliserit oranı yüksektir. Hastalığın hayvan modellerinde ateroskleroz oluşması gecikir. LIPC geninde bulunan 9 polimorfizm (SNP) üzerinde yapılan bir araştırmada belli polimorfizmlerin düşük HDL ve yüksek LDL düzeyleri ile ilişkili olduğu bulunmuştur. Olumsuz SNP'leri taşıyan kişilerin kardiyovasküler hastalık vakaları yaşama sıklığı daha yüksek bulunmuştur. ENDOTEL LİPAZ Endotel lipaz (EL) veya endotel hücre kaynaklı lipaz (İngilizce endothelial cell-derived lipase, EDL) endotel hücreler tarafından salgılanan bir lipazdır. Gen Endotel lipaz, LIPG geni tarafından kodlanır. LIPG kromozom 18 üzerinde, 18q21.1 konumunda yer alır. Gen, 11 eksondan oluşur ve 71.4 kb uzunluğundadır. EL; hepatik lipaz, lipoprotein lipaz ve pankreatik lipaz enzimleri ile aynı evrimsel aileye aittir, bu proteinlerin amino asit dizisiyle, sırasıyla, %45, %40%, ve %27 oranında benzerlik gösterir. Proteinin, alternatif uçbirleştirmeden (splicing) kaynaklanan üç izoformu vardır. EDL1a olarak adlandırılanı tam uzunluktadır. EDL2a ve EDL2b'nin ilk 80 aminoasidi eksiktir. Ayrıca EDL2b'nin 74 aminoasitlik bir bölümü daha eksiktir, bu bölüm aktif bölgenin üstünü örten kapak bölgesidir. İşlev EL'nin başlıca fosfolipaz aktivitesi vardır, trigliserit hidroliz aktivitesi göreceli olarak daha azdır. Klinik Önem Gende bulunan 2 yaygın SNP üzerinde yapılan araştırmalar, bu gendeki varyasyonların HDL-kolesterol düzeylerine etki eden faktörlerden biri olduğunu göstermiştir. Farelerde aşırı ifadesi durumunda HDL kolesterolu ve apoA-I düzeyleri azalır. Aksine, gen delesyonu veya antikor etkisiyle EL ifadesinin azalması durumunda HDL tanecik sayısında önemli bir artış meydana gelir. Her iki çalışma da EL'in HDL metabolizmasında önemli bir rol oynadığını gösterir. LİPOPROTEİN LİPAZ Lipoprotein lipaz (LPL), kilomikron ve VLDL lipoproteinlerindeki trigliseritleri bir monoasilgliserol molekülü ve serbest yağ asitlerine hidrolizleyen, lipaz türü bir enzimdir. Reaksiyon ürünleri dokunun kullanımına yarar. Kofaktör olarak apolipoprotein C-II'ye gerek duyar. LPL, kılcal damarların çeperlerindeki endotel hücrelerde bulunur. Enzim, hücrelerin yüzeyinde, damar lümeni tarafında bulunan, eksi yüklü heparan sulfat-proteoglikan (HSPG) moleküllerine bağlıdır. Enzim reaksiyonu sonucu oluşan yağ asitleri hücreye girdikten sonra ya yakılırlar ya da depo cisminde tekrar triglserite dönüştürülürler. LPL bozuklukları taşıyan kişiler koroner kalp hastalığı, ateroskleroz ve/veya obezite riski taşırlar. Gen LPL geni (eski adıyla LIPD) liporotein lipaz proteinini kodlar. Gen, kromozom 8 üzerinde, 8p22 konumundadır. İki alternatif poliadenilasyon sinyali olması nedeniyle gen iki farklı mRNA kodlar. 10 eksonlu, 30 kb uzunluğundadır. Hepatik lipaz ve pankreatik lipaz enzimlerinin genleri ile aynı gen ailesine aittir. Geni düzenleyen transkripsiyon faktörleri arasında ZNF202 bulunmaktadır. Protein Lipoprotein lipazin olgun hali 448 amino asit uzunluğundadır. Kütlesinin yaklaşık %12'si karbonhidratlardan oluşur. Proteinin belli bölgeleri apoC-II'ye ve heparin'e bağlanır. LPL'nin farklı dokularda farklı izozimleri vardır. Adipositlerdeki biçimi insülin tarafından aktive olur ama kas ve miyokarddaki biçimi olmaz. İyi beslenme halinde yağ dokunun neden yağ biriktiği böyle açıklanabilir. İşlev LPL bir homodimer olarak çalışır ve iki işlevi vardır: hem trigliserit hidrolaz, hem de reseptör aracılıklı lipoprotein alımında ligand veya köprüleme faktörüdür. Trigliserit hidrolaz olarak aşağıdaki reaksiyonu katalizler: triasilgliserol → yağ asidi + 2-monoasilgliserol LPL hem lipoproteine hem de hücre yüzeyindeki reseptör moleküllere bağlanarak bir köprü işlevi görür. LPL'nin bağlandığı hücre proteinleri şunlardır: HSPG, LDL reseptörü, LDL reseptörü ilişkili protein, VLDL reseptörü, gp330 ve apoE reseptör 2. LPL, köprü işlevini bir lipoproteinle hücre arasında yapabileceği gibi, iki hücre tipi arasında da yapabildiği gösterilmiştir: LPL'nin, monosit yüzey HSPG ile arter endotel hücreler arasında köprü kurduğu gösterilmiştir. Fizyoloji LPL hidroliz ardından geriye kalan kilomikron artıkları karaciğerde apoE'yi tanıyan bir reseptör aracılığıyla dolaşımdan alınırlar. VLDL tanecikleri ise bu hidroliz işlemi sonucunda IDL taneciklerine olurlar. IDL, LPL tarafından işlenmeye devam eder ve apoE'yi kaybettikten sonra LDL taneciklerine dönüşür. LPL'nin sentezlendiği dokular başlıca yağ dokusu, düz kas ve miyokard, ayrıca süt veren süt bezleridir. Daha düşük düzeyde makrofajlarda, hormon yapan adrenal bez ve overlerde, bazı sinir hücreleri, aort, dalak, testisler, akciğer ve böbrekte üretilir. Fetal karaciğerde de bulunur ama doğum sonrasında karaciğerdeki üretimi son bulur. İnsülin adipositlerde LPL sentezini ve onu kapiler endotele yerleşimini hızlandırır. fizyolojik şartlarda onun enzim aktivitesini ya da RNA üretimini etkileyen düzenleyici faktörler arasında katekolaminler, büyüme hormonu, glukokortikoitler, insülin, östrogen, prolaktin, paratiroid hormonu, retinoik asit, tiroksin ve vitamin D3 sayılabilir. Patofizyoloji Genin ifadesi kalp, kas ve yağ dokularında olur. LPL eksikliğine neden olan mutasyonlar tip I hiperlipoproteinemia'ya neden olurlar, daha az aşırı mutasyonlar ise lipoprotein metabolizmasında çeşitli bozukluklarla ilişkili bulunmuşlardır. Bu durum kendini hipertrigliseridemia'ya (kanda yüksek trigliserit düzeyi olma haline) neden olur. Çok yağlı diyet belli dokulara spesifik aşırı LPL üretimine neden olur. Dokuya özgün insülin direnci ve bundan kaynaklanan tip 2 diyabet mellitus gelişmesi buna bağlanmıştır. Heterozigotlar normal LPL konsatrasyonunu yarısına sahipler. Belirgin bir lipit anormalliği yoktur ama postprandial lipemia (yemek sonrası kanda lipit düzeyinin artması) ile plazma TG düzeyleri bozulur, yani bozuk bir triglicerit toleransı gösterirler. Homozigotlarda ailesel kilomikronemia olur. Bu hastalarda erken ateroskleroz görülür. PANKREATİK LİPAZ Pankreatik lipaz, pankreasın duktal hücreleri tarafından salgılanan, trigliserit moleküllerini hidroliz eden, lipaz türü bir enzimdir. Kofaktör olarak kolipaz ve safra asitleri kullanır. Hidroliz reaksiyonu sonucu açığa monoasilgliserol ve yağ asitleri oluşur. Trigliserit hidroliz ürünleri ince bağırsak tarafından emilir, epitel hücrelerinde başka enzimler tarafından tekrar trigliserite dönüştürülürler, sonra da vücuda dağıtılmak üzere, kilomikronlar içinde lenf sistemine salgılanırlar. Pankreatik lipaz-kolipaz ve inhibitör kompleksi. İnsan pankreatik lipaz (ikincil yapısına göre renklendirilmiş; alfa sarmal kırmızı, beta yapraklar sarı, rassal kısımlar yeşil) ve domuz kolipaz (mavi) ve bir küçük inhibitör molekül (yukarı solda) ile bir kompleks oluşturmuş.

http://www.biyologlar.com/lipaz-ve-lipaz-turleri

Parazit Eklembacaklıların (Arhropoda) taşıyıcılığını yaptığı hastalık etkenlerini yazınız.

SITMA Sıtma, anofel ya da sıtma sivrisineği olarak bilinen Anopheles cinsi sivrisi­neklerinin taşıdığı bulaşıcı bir hastalıktır. Hastalıkta yinelenen nöbetler görülür. Düzenli aralıklarla başlayan ve genellik­le titreme-ateş-terleme evrelerinden ge­çen nöbetler hastalığın tipik özelliğidir. Sıtma ulusal ve uluslararası sağlık örgüt­leri için hâlâ önemli bir sorundur. NEDENLERİ Sıtmanın etkeni protozoonlar olarak bili­nen tekhücreliler grubundan Plasmodi­um cinsi asalaklardır. Asalağın üreme çevrimi iki ayrı konakta tamamlanır, in­san ya da başka bir omurgalı konakta eşeysiz olarak çoğalan sıtma etkeni, da­ha sonra Anopheles cinsi sivrisineklerin içinde eşeyli olarak üreyip omurgalı bir konakta yeniden hastalık yaratabilecek duruma gelir. İnsanda hastalığa yol” açan dört Plas-modium türü vardır: Bunlardan Pîasmo-dıum vivax, nöbetleri genellikle 48 saatte bir gelen tersiyana sıtmasının; Plasmodi­um malariae, nöbetleri 72 saatte bir ge­len kuartana sıtmasının; Plasmodium falciparum, nöbetleri 36-48 saatte bir ge­len, beyin sıtması ve karasu humması denen ölümcül biçimleriyle çok ağır bir gelişme gösterebilen, kötü huylu tersiya­na sıtması ya da öbür adıyla falciparum sıtmasının; Plasmodium ovale ise nöbet­leri 48-50 satte bir gelen iyi huylu tersi­yana sıtmasının etkenidir. Sivrisinek sokmasıyla vücuda giren asalak, karaciğere yerleşerek çoğalmaya başlar. Bu asalaklar daha sonra dolaşıma katılıp alyuvarlara girer ve çoğalmayı sürdürür. Alyuvar asalakla dolduğunda parçalanır. Kana yayılan asalaklar başka alyuvarlara girer. İnsan vücudunda ger­çekleşen bu çoğalma süreci asalağın eşeysiz üreme evresini oluşturur. Birkaç kuşak sonra bazı asalaklar eşey hücresi (gamet) üretecek biçimde değişikliğe uğrar. Bölünerek çoğalama-yan ve alyuvarlar içinde uzun süre varlı­ğını sürdürebilen bu hücrelere gametosit denir. Sivrisinek kan emerken bu hasta­lık etkenini içeren alyuvarları da sindi­rim sistemine alır. Sivrisineğin midesin­de etkinleşen erkek ve dişi gametositler arasında döllenme sonucu zigot oluşur. Bu eşeysel üreme evresinde zigot ooki-nete dönüşür. Anofelin mide duvarını geçen ookiııetler epitel ve kas katmanla­rı arasında kapsülle sarılarak ookist adıyla tanınan birer kist biçimini ahr. Bu kistlerden daha sonra sporozoit denen binlerce asalak çıkar. Sporozoiüer sivri­sineğin tükürük bezlerine ulaşır ve ısırık yoluyla yeni bir kişiye aktarılır. Böylece asalağın eşeysiz üreme evresi başlar. Alyuvarlarda gerçekleşen eşeysiz üreme evresinin süresi Plasmodium türüne göre değişir. Ateş nöbetleri bu üre­me çevrimiyle ilgilidir. Asalakların kana dağılmasıyla sıtma nöbeti görülür. ENFEKSİYON KAYNAKLARI Kanında asalağın gametosit biçimini ta­şıyan hastalar sıtmanın enfeksiyon kay­nağım,oluşturur. İnsanlarda akut, kronik ya da belirti vermeden gizli biçimlerde görülebilen enfeksiyon, anofeller aracılı­ğıyla bulaşır. YAYILIMI Sıtma daha çok tropik ve ılıman bölge­lerde yaygındır. Günümüzde başarılı bir mücadele sonucu birçok ülke sıtmadan arınmıştır. Ama Orta ve Güney Ameri­ka’da, Afrika ülkelerinde, Akdeniz ülke­leri ve Ortadoğu’da, Afganistan, Pakis­tan ve Hindistan’da, Japonya dışındaki Uzakdoğu ülkelerinde sıtmaya yaygın biçimde rastlanmaktadır. Türkiye’de son yıllarda, hemen yalnız P. vivax türünün etken olduğu tersiyana sıtması görülmek­tedir. Bu, aynı zamanda bütün dünyada en çok görülen sıtma türüdür. Falcipa­rum sıtması genellikle tropik bölgelerle sınırlıdır ve en tehlikeli sıtma türünü oluşturur. Yakmdoğuda ve Balkanlar’da,bu arada Türkiye’de de görülmüştür. Ku­artana sıtması ılıman ve astropik bölge­lerde yaygındır. Ender rastlanan iyi huy­lu tersiyana sıtması ise Afrika’nın doğu­sunda ve Güney Amerika’da dar bir yayı-hm gösterir. BELİRTİLERİ Sıtma sivrisineğinin sokması ve ilk belir­tilerin ortaya çıkması arasında geçen ku­luçka süresi, kuartana sıtması dışında 10-14 gün dolayındadır. Kuartana sıtmasın­da ise 18 günden başlayarak çok daha uzun bir süreye yayılabilir. Sıtmanın en tipik belirtisi yol açtığı nöbetler sırasında üşüme ve ateş basma duyumunun birbiri­ni izlemesidir. Bu nöbetler ilk birkaç günden sonra, asalakların alyuvarlardan kana yayılmasıyla eşzamanlı olarak ger­çekleştiğinden düzerdi aralıklarla ortaya çıkar. Nöbetler sırasında bir-iki saat sü­ren üşüme ve titreme evresinin ardından ateş hızla 40°C-41°C’ye kadar yükselir; 3-4 saat sonra yaygın terlemeyle birlikte hızla düşer. Tersiyana sıtmasında nöbet­ler günaşırı gelir. Ama yeni asalak ku­şaklarının dönüşümlü olarak 24 saat arayla kana yayılması durumunda her gün ateş nöbeti görülür (çift tersiyana). Kuartana sıtmasında nöbetler iki gün arayla gelir. Kanda iki asalak kuşağının bulunduğu durumlarda iki gün süren ateş nöbetini ateşsiz bir gün izler (çift kuarta­na). Üreme evresini ayrı zamanlarda ta­mamlayan üç kuşağın bulunduğu durum­larda ise her gün nöbet görülür. Tedavi edilmezse kısa sürede ölüme yol açan falciparum sıtmasında ise nöbet süreleri ve araları daha düzensizdir. Hastanın ge­nel durumu hızla bozulur. Aralarında yinelemeyen ve kompli-kasyonlara yol açmayan falciparum sıt­masının da bulunduğu bütün sıtma olgu­ları tedavi edilmeseler bile, asalağın türü­ne bağh olarak değişen bir süreden sonra geriler. Bunun başta gelen nedeni enfek­siyona karşı bağışıklığın gelişmesidir. Sıtma bölgelerinde yaşayan kişilerde yeni enfeksiyonlar görülebilir. Bu kişi­lerde kansızlık, dalak ve karaciğer büyü­mesi, aşırı kilo kaybı ortaya çıkar (sıtma kaşeksisi). Belirli coğrafi bölgelerde sıt­ma enfeksiyonunun sürmesi yalnızca sivrisineklerin varlığıyla açıklanamaz. Hastalığın doğal kaynağı olan insanların bir bölgede yaygın biçimde bulunması, sıtmanın yerleşik hastalık biçiminde or­taya çıkmasında en az anofeller kadar belirleyicidir. * HASTALIĞIN ÖZEL KLİNİK BİÇİMLERİ Hastalık asalak türüne ve bulaşma, biçi­mine göre değişen klinik belirtiler verir. Zehirli sıtma. Çok ağır seyreden ve ikincil hastalıklara yol açan sıtma tipleri için kullanılan ortak bir addır. Ama bu tür ağır sonuçlan doğuran sıt­ma etkeni hemen her zaman Plasmodi­um falciparum ‘dur. Nöbetler birbirine eklenerek süreklilik kazanır. Alkolizm, beslenme eksikliği, aşın yorgunluk, güneş çarpması gibi etkenler hastalığın zehirli sıtmaya dönüşmesini kolaylaştı­rır. Bu durum beyin sıtması, tifomsu sıtma ve karasu humması gibi, belirti­lere göre adlandırılan, çeşitli tiplere ay­rılır. Beyin sıtması sürekli baş ağrısıyla kendini belli eder. Tedavi edilmezse bilinç kaybı, kasılma nöbetleri gibi merkez sinir sistemi hastalıklarını dü­şündüren çeşitli belirtiler ortaya çıkar. Çok geçmeden ölümle sonuçlanan de­rin koma durumu görülür. Tifomsu sıt­mada tifoyu taklit eden belirtilere rast­lanır. Karasu hummasında böbrek yet­mezliği sonucu Önce kırmızı olan idrar, daha sonra siyaha döner. İdrann bütü­nüyle kesilmesi hastalığın kötüleştiğini gösteren bir belirtidir. Filariasis veya Fil hastalığı Filariasis veya Fil hastalığı kıla benzer yuvarlak solucanların neden oldugu bulaşıcı bir tropik hastaliktir. Bu hastaliga yol actigi bilinen insanlari son konak olarak kullanan 9 yuvarlak solucan turu vardir. Yerlesme bolgelerine gore 3 gruba ayrilirlar: Lenf Filariasisi: Wuchereria bancrofti, Brugia malayi, Brugia timori solucanlari tarafindan olusturulur. Lenf sistemine, lenf dugumlerine yerlesir ve kronik durumlarda Fil hastaligina yol acarlar. Deri Filariasisi: Loa loa (Afrika goz solucani), Mansonella streptocerca, Onchocerca volvulus, Dracunculus medinensis (Gine kurdu) tarafindan olusturulur. Cildin yag katmanina yerlesir. Kasik Filariasisi: Mansonella perstans, Mansonella ozzardi tarafindan olusturulur. Karinda kasik bosluguna yerlesir. Butun bu vakalarda hastalik kan emen bocekler (sinek veya sivrisinek) veya Dracunculus medisensis'te Copepod crustaceans tarafindan bulastirilir. Bu hastalıkların ana taşıyıcıları (vektörleri); ülkemizde pek sık karşılaşmadığımız ve daha çok tropik ve subtropik iklim kuşağındaki ülkelerde görülen, Aedes cooki, Aedes fijiensis, Aedes horrensces, Aedes kochi, Aedes marshallensis, Aedes polynesiensis, Aedes pseudoscutellaris, Aedes rotumae, Aedes tabu, Aedes upolenis, Ochlerotatus oceanicus, Ochlerotatus samoanus, Ochlerotatus tutuilae, Ochlerotatus vigilax, An punctulatus complex, Anopheles farauti, Culex quinquefasciatus ve Mansonia uniformis cinsi sivrisineklerdir. Insanlarda gorulen yuvarlak solucanlarin genelde 5 safhadan olusan karmasik bir yasam sureci vardir: Disi ve erkek solucanlarin ciftlesmesinden sonra, disi binlerce mikro-solucan dogurur. Mikro-solucanlar gecici konak olan bir bocek tarafindan alinirlar. Gecici konakta ilk kan emme sirasinda kabuk degistirerek bulasici hale gelirler. Ikinci kan emme sirasinda bocek bulasici larvayi cilde zerk eder. Bulastiktan yaklasik 2 yil kadar sonra larvalar deri degistirerek yetiskin solucanlar haline gelirler. Belirtiler En onemli belirti ciltte ve cildin altindaki dokularda kalinlasmadir (Fillesme). Fillesme ya da doku buyumeleri buralara yerlesen solucanlarin yuzbinlerce kez uremesi ve olen solucanlarin damarlara yigilmasi sonucu olusur. Degisik solucanlar vucutta degisik yerleri etkilerler. Ornegin Wuchereria bancrofti bacaklar, kollar, vulva ve gogusleri etkiledigi halde Brugia timori cinsel organlara dokunmaz. Onchocerca volvulus gozlere yerlesir ve korluge yol acar. Korlugun dunyadaki en yaygin 2. sebebidir. 2. grup solucanlar deri dokuntulerine artoroza, deride renk degisikliklerine yol acar. 3. grup solucanlar, karin bosluguna yerlesir ve burada agrilara yol acar. Tedavi Hastalardaki yetiskin solucanlari oldurmek icin albendazole ve ivermectin kullanilir. Dietilkarbamazin (DEC) ve albendazole de etkilidir. 2003 yilinda, yaygin bir antibiyotik olan doxycyclinein da Fil hastaligi tedavisinde kullanilabilecegi bildirilmistir. SARIHUMMA HASTALIĞI Sarı hummaya Flaviviridae ailesinden pozitif iplikçikli tek dizili bir RNA virüsü olan arbovirus sebep olur. Enfeksiyon hastalıklı eklem bacaklının tükürüğünde bulunan virüsü deri yoluyla bırakması sonucunda başlar. Bu sivri sinekler Afrika'da Aedes simpsaloni, A. africanus, ve A. aegypti, Güney Amerika'da Haemagogus cinsi ve Fransa'da Sabethes cinsini kapsar. Enfeksiyondan sonra virüs ilk önce yerel olarak çoğalır bunu takiben bağışıklık sistemi yoluyla vücudun kalanına yayılır. Tanım: Sarı humma kanamalarla seyreden ve son derece öldürücü bir viral hastalıktır. Etken: Küçük bir RNA virusudur. Isı ve dezenfektanlara dayanıksızdır. Sarı humma virusu maymun, fare, kobay ve sivrisineklerde kolayca ürer. Vektör: Aedes aegyoti cinsi sivrisineklerle bulaşan viral bir hastalıktır. Sivrisinek viremi halindeki bir kimseyi ısırarak enfekte olur ve sağlam canlıları ısırarak onlara bulaştırır. Epidemiyoloji: Dünyada sık olduğu yerler tropikal Afrika ve Amazon bölgeleridir. Orta Doğuda ve ülkemizde de A. aegypti cinsi sivrisinekler görülmektedir. Yapılan şiddetli sivrisinek savaşı ile şehir veya insan topluluğu tipi sarı humma ortadan kalkmıştır. Fakat bugün hala tropikal Afrika ve Güney Amerika'nın bazı yerlerinde endemik odaklar halinde bulunmaktadır. Klinik: Kuluçka devri bir haftadan kısadır. Ateş, baş ağrısı, sırt ağrısı, kusma ile başlar. Hastalık ilerledikçe kanamalar görülmeye başlar. Midedeki kanamalardan kusma siyah renklidir. Diş eti kanamaları, kanlı idrar, melena, uterus kanamaları da görülür. Hastalık komaya kadar ilerleyerek %20-50 ölümle sonuçlanır. Tanı: Hastalığın görülebildiği bölgelere gitmiş olmak uyarıcıdır. Tedavi: Özel bir tedavisi yoktur. İyi bir bakım, parenteral yoldan gerekli solüsyonlar ve bazen kortikosteroitler verilebilir Korunma: Aşı canlı virus aşısıdır. Aşı tek doz yapılır. 10 gün sonra bağışıklık başlar. 10 yıl süreyle korur. Sarı humma aşı belgesi dünyanın bazı bölgelerine giderken ibraz edilmesi zorunlu bir belgedir. Hastalığın olduğu bölgeye gitmeden 10 gün önce aşılanmalıdır. KIRIM-KONGO KANAMALI ATEŞİ Kırım-Kongo Kanamalı Ateşi Nedir? Kırım-Kongo Hemorajik Ateş (KKHA),keneler tarafından taşınan Nairovirüs isimli bir mikrobiyal etken tarafından neden olunan ateş, cilt içi ve diğer alanlarda kanama gibi bulgular ile seyreden hayvan kaynaklı bir enfeksiyondur. Son yıllarda tedavide görülen gelişmelere rağmen, bu enfeksiyonlarda ölüm oranları hala yüksektir. Keneler Nasıl Tanınır ve Nerelerde Bulunur? Keneler otlaklar, çalılıklar ve kırsal alanlarda yaşayan küçük oval şekillidir. 6-8 bacaklı, uçamayan, sıçrayamayan hayvanlardır. Hayvan ve insanların kanlarını emerek beslenirler ve bu sayede hastalıkları insanlara bulaştırabilirler. Ülkemiz kenelerin yaşamaları için coğrafi açıdan oldukça uygun bir yapıya sahiptir. Türlere göre değişmekle beraber kenelerin, küçük kemiricilerden, yaban hayvanlarından evcil memeli hayvanlara ve kuşlara (özellikle devekuşları) kadar geniş bir konakçı spektrumları mevcuttur. Kimler Risk Altındadır? Hastalık genellikle meslek hastalığı şeklinde karşımıza çıkar. Tarım ve hayvancılıkla uğraşanlar Veterinerler Kasaplar Mezbaha çalışanları Sağlık personeli özellikle risk gurubudur. Kamp ve piknik yapanlar, askerler ve korunmasız olarak yeşil alanlarda bulunanlar da risk altındadır. Henüz ergin olmamış Hylomma soyuna ait keneler, küçük omurgalılardan kan emerken virüsleri alır, gelişme evrelerinde muhafaza eder; ergin kene olduğunda da hayvanlardan ve insanlardan kan emerken bulaştırır. Kuluçka Süresi Ne Kadardır? Kene tarafından ısırılma ile virüsün alınmasını takiben kuluçka süresi genellikle 1-3 gündür; bu süre en fazla 9 gün olabilmektedir. Enfekte kan, ifrazat veya diğer dokulara doğrudan temas sonucu bulaşmalarda bu süre 5-6 gün, en fazla ise 13 gün olabilmektedir. Belirtileri Nelerdir? Ateş Kırıklık Baş ağrısı Halsizlik Kanama pıhtılaşma mekanizmalarının bozulması sonucu; - Yüz ve göğüste kırmızı döküntüler ve gözlerde kızarıklık, - Gövde, kol ve bacaklarda morluklar - Burun kanaması, dışkıda ve idrarda kan görülür - Ölüm karaciğer, böbrek ve akciğer yetmezlikleri nedeni ile olmaktadır. Kırım-Kongo Kanamalı Ateşinin Tanısı Nasıl Konulur? Kanda virüse karşı oluşan antikorların taranması tanı için en sık kullanılan yöntemdir. Bu göstergeler hastalığın başlangıcından sonra 6. günden itibaren belirlenebilir. Kırım-Kongo Kanamalı Ateşi Nasıl Kontrol Edilir ve Nasıl Korunulur? Hastalığın bulaşmasında keneler önemli bir yer tutmaktadır. Bu nedenle kene mücadelesi önemlidir fakat oldukça da zordur. 1. İnsanlar kenelerden uzak tutulabilir ise bulaş önlenebilir. Bu nedenle de mümkün olduğu kadar kenelerin bulunduğu alanlardan kaçınmak gerekir. 2. Kenelerin yoğun olabileceği çalı, çırpı ve gür ot bulunan alanlardan uzak durulmalı, bu gibi alanlara çıplak ayak yada kısa giysiler ile gidilmemelidir. 3. Bu alanlara av yada görev gereği gidenlerin lastik çizme giymeleri, pantolonlarının paçalarını çorap içine almaları, 4. Görevi nedeni ile risk grubunda yer alan kişilerin hayvan ve hasta insanların kan ve vücut sıvılarından korunmak için mutlaka eldiven, önlük, gözlük, maske v.b. giymeleri gerekmektedir. 5. Gerek insanları gerekse hayvanları kenelerden korumak için haşere kovucu ilaçlar (repellent) olarak bilinen böcek kaçıranlar dikkatli bir şekilde kullanılabilir. (Bunlar sıvı, losyon, krem, katı yağ veya aerosol şeklinde hazırlanan maddeler olup, cilde sürülerek veya elbiselere emdirilerek uygulanabilmektedir.) 6. Haşere kovucular hayvanların baş veya bacaklarına da uygulanabilir; ayrıca bu maddelerin emdirildiği plâstik şeritler, hayvanların kulaklarına veya boynuzlarına takılabilir. 7. Kenelerin bulunduğu alanlara gidildiği zaman vücut belli aralıklarla kene için taranmalıdır. 8. Vücuda yapışmış keneler uygun bir şekilde kene ezilmeden, ağızdan veya başından tutularak bir cımbız veya pens yardımıyla çıkartılır. Isırılan yer alkolle temizlenmelidir. Mümkünse kenenin tanı için alkolde saklanması uygun olur. (detaylı bilgi için http:/kidshealth.org/parent/general/body/tick_removal.html) 9. Diğer canlılara ve çevreye zarar vermeden, haşere ilacı (insektisit) ile uygulamanın uygun görüldüğü durumlarda çevre ilaçlanması yapılabilinir. Kırım-Kongo Kanamalı Ateşinin Tedavisi Nedir? Hastalığın kesin bir tedavisi bulunmamaktadır. Hastaya destek tedavisi yapılmalıdır. Konuyu Hazırlayan: Dr. Alp Akay - Dr. Selcan Başak Soyluoğlu Kaynaklar: www.saglik.gov.tr www.tvhb.org.tr/ www.who.int/mediacentre/factsheets/fs208/en/ www.cdc.gov/ncidod/dvrd/spb/mnpages/dispages/cchf.htm www.medicine.ankara.edu.tr/fakulte/files/20054_9 www.hssgm.gov.tr www.cumhuriyet.edu.tr Uyku hastalığı ÇEÇE SİNEKLERİ 1 santimden biraz iri sineklerdir. Koyu renk tonları, grimsi esmer ile koyu sarımsı - esmer arasında oynar. Yatay ve zayıf hortumlarından ve sırtlarından makas gibi caprazlanmış kanatlarından derhal tanınırlar. Kafaları geniş, torakstan az daha dardır. Bir çift iri petek gözleri vardır. Erkekler, dişilerden ancak cinsiyet organlarından ayırt edilirler. Çeçe sinekleri yalnız Afrika'da bulunurlar. Orta Afrika'nın geniş bir alanında insanlarla evcil ve yabani hayvanların ölümüne sebep olduklarından, «Glossinidae» ailesi bütün kitaplarda yer alır. Çeçe sinekleri'nin çok garip bir üreme usulleri vardır. Döllenen dişi, rahminin içinde gelişen ve özel bir salgıyle beslenen bir tek yumuşak, hacimli ve beyazımsı larva doğurur. Anne bunu doğurmak için, kumlu bir alanda bir bitki dibi veya devrilmiş bir ağaç altı arar. Larva doğduktan sonra beslenmeyerek derhal toprağın içine girer ve birkaç saatin içinde küçük bir fıçı biçiminde, siyahımsı bir pupa olur. Çeçe sineği altı hafta sonra pupanın içinden çıkar. Her iki eşey de kan emicidir. Çeçe sinekleri'nin birçoğu, insanların ölümüne sebep olan Afrika uyku hastalığının amilleri tripanozoma'ların ileticisidir. Ufak, fakat tehlikeli bir aile: «Glossinidae» ailesi çok ufaktır. Yirmi bir türün hepsi «Glossina» grubundandır. Bu türler üç gruptur: Adını «Glossina fusca» türünden alan «fusca» grubundan on tür vardır. Bunların, Afrika uyku hastalığını bulaştırıcı rolleri yoktur. Adını «Glossina palpalis» ten alan «palpalis» grubunda beş tür bulunur. Bu grubun üyeleri, Gambiya uyku hastalığının âmili «Trypanosoma gambiense» yi insanlara, suma hastalığına sebep olan «Trypanosoma uniforme» yi koyunlarla keçilere, «Trypanosoma vivax» ı ise sığırlarla atlara bulaştırırlar. Adını ««Glossina morsitans» tan alan «morsitans» grubunda altı tür vardır. Bu çeçe sinekleri, Rodezya uyku hastalığı'mn âmili «Trypanosoma rhodesiense'yi insanlara, öldürücü nagana hastalığının âmili «Trypanosoma brucei» yi sığırlarla atlara, suma hastalığına sebep olan «Trypanosoma caprae» yi sığırlara ve otlayan yabani hayvanlara, «Trypanosoma suis» i ise domuzlara bulaştırırlar. Hastalığı İnsanın kanında Trypanozoma Gambiense ve Trypanozoma Rhodesiense türlerinin parazitlenmesiyle meydana gelen bir hastalık. Hastalığın yayılması ve bulaşması Tse-Tse sineği vasıtasıyla olur. Akut ve müzmin olarak ilerleyebilir. Akut halde yüksek ateş, adenit, deride kırmızı döküntüler ve geçici ödemler olur; müzmin halde ise parazit beyne yerleştiğinden meningo-ensefalit, meningo-miyelit sonucu sinir dokusunun hücre yıkımıyla şuurunun kaybolması ve ilerleyen koma ile ölüm meydana gelir. Belirtileri: Uyku hastalığı düzensiz ateş, özellikle boyun arka hattındaki lenf bezlerinde şişme, deride kırmızı döküntüler ve ağrılı lokalize ödemle karakterizedir. Titreme, başağrısı, havale geçirme gibi merkezi sinir sistemi belirtileri daha sonra gelişir ve koma ile ölüme götürür. Trypanozoma Rhodesiense ile olan hastalık diğer tipe göre daha ciddi ve öldürücü seyreder. Teşhis: Hastalığın teşhisi tripanozomların görülmesine bağlıdır. Hastalığın erken devresinde parazitler periferik kandan yapılan yaymada veya büyümüş lenf bezinden alınan sıvıda görülürler. Hastalığın ilerlemiş safhasında parazit sadece beyin omurilik sıvısında bulunur. Korunma: Uyku hastalığına karşı korunmada aşağıdaki metodlar vardır: a) Bulaşma kaynağı olan enfekte kişileri tarama muayeneleriyle ortaya çıkararak tedavi etmek. b) Trypanozoma Rhodesiense'de enfeksiyonunun tabiat nidalitesini sürdüren yabani hayvanlarla savaşmak. c) Tripanozomların vektörleri olan Tse-Tse sinekleriyle kalıcı insektisidler vasıtasıyla geniş ölçüde ve sürekli olarak savaşmak. d) İnsanlarda koruyucu olarak ilaç uygulamak (Kemoterapi). Tedavi: Gambiense tipinde erken safhada pentamidin kullanılabilir. Pentamidin 10 gün süreyle 4 mgr/kg/gün olarak adeleye zerk edilir. Rhodesiense tipindeki hastalıkta ise erken safhada Suramin damar içine tatbik edilir. Melarsoprol diğer ilaçlara göre çok toksiktir, fakat her iki tip hastalığa da bütün safhalarda etkilidir. Hastada hafif veya orta derecede sinir tutulması olduğunda bu ilaç 2-3 gün müddetle 3,6 mgr/kg/gün damar içine verilir. Bu ilacın meydana getirdiği arsenik zehirlenmesi neticesi sindirim sisteminde, böbreklerde ve sinir sisteminde çeşitli arızalar olabilir. Leishmaniasis Leishmaniasis cins '' Leishmania'' ait protozoan parazitlerin neden olduğu bir hastalıktır ve kum fly (Alt familya Phlebotominae) belirli türlerin lokma tarafından iletilir. İki cins aktarmak '' Leishmania'' insanlara: Yeni Dünya ve eski dünya '' Phlebotomus'' '' Lutzomyia''. Hastalığın çoğu form yalnızca hayvanları (Zoonoz) bulaşan, ama bazı insanlar arasında yayılabilir. İnsan enfeksiyonu yaklaşık 21 memeliler bulaştırmak 30 tür tarafından kaynaklanır. Bunlar '' l. donovani' kompleksi ile üç tür içerir ('' l. donovani, l. Infantum'' ve '' l. chagasi'); 3 ana türler ile '' l. mexicana'' Kompleksi ('' l. mexicana, l. amazonensis'' ve '' l. venezuelensis'); '' l. tropica; l. büyük; l. aethiopica '; ve dört ana türleri ('' l. (v.) braziliensis, l. (v.) guyanensis, l. (v.) panamensis'' ve '' l. (v.) peruviana'') ile subgenus '' Viannia''. Farklı türlerin morphologically ayırt edilemez, ama onlar isoenzyme analizi, dna dizi analizi veya monoklonal antikorlar farklılaşmış. Kutanöz leishmaniasis leishmaniasis en yaygın şeklidir. Viseral leishmaniasis, hangi hayati organlara parazitler geçirdikten şiddetli bir formdur. Leishmaniasis sınıflandırma Leishmaniasis aşağıdaki türlere bölünebilir: Kutanöz leishmaniasis Mukokutanöz leishmaniasis Viseral leishmaniasis Post-Kala-Azar dermal leishmaniasis Viscerotropic leishmaniasis Leishmaniasis belirtileri Leishmaniasis belirtileri olan ay sonra etkilenen kişi kum sinekleri tarafından ısırıldı hafta patlak deride yaralar vardır. Olabilmesi için diğer sonuçları her yerde birkaç aydan yıl enfeksiyon sonra ateş arasında dalak ve karaciğer ve kansızlık zarar için apaçık. Tıp alanında leishmaniasis karaciğer bile büyük hale gelebilir bir belirgin ölçüde genişlemiş dalak ünlü nedenlerinden biridir. Leishmaniasis dört ana biçimi vardır: Viseral leishmaniasis – en ciddi formu ve potansiyel olarak ölümcül eğer tedavi edilmezse. Kutanöz leishmaniasis – Boğaz bir yıl birkaç ay içinde iyileşmek, ısırık sitesinde neden olan en yaygın biçimi nahoş görünümlü bir iz bırakarak. Bu formu diğer üç biçimlerden birini devam edebileceği. Diffüz Kutanöz leishmaniasis-bu form, cüzzam benzer yaygın deri lezyonlari üretir ve özellikle tedavi etmek zordur. Mukokutanöz leishmaniasis – başlar ile olan (özellikle) burun ve ağız neden doku hasarı yayılan deride ülserler Leishmaniasis mekanizması Leishmaniasis kadın phlebotomine sandflies lokma tarafından iletilir. Sandflies Enfektif aşaması, metacyclic promastigotes, kan yemek sırasında enjekte. Yara ponksiyon ulaşmak metacyclic promastigotes phagocytized makrofajlar tarafından ve amastigotes dönüştürmek. Amastigotes enfekte hücrelerde çarpın ve hangi '' Leishmania'' türler dahil olduğu kısmen bağlı olarak farklı dokularda etkiler. Bu farklı doku özelliklerine leishmaniasis çeşitli şekillerde farklı klinik belirtileri neden. Ne zaman amastigotes ile enfekte makrofajlar Station Sandflies virüslü bir ana bilgisayar üzerindeki kan yemek sırasında bulaşabilir. Sandfly's midgut içine promastigotes, çarpma, metacyclic promastigotes ayırmak ve hortum geçirmek parazitler ayırt etmek. Leishmaniasis patojen '' Leishmania'' ile enfeksiyon nedeniyle oluşur. Üç '' Leishmania'' türü ('l. büyük '', '' l. Infantum'' ve '' l. braziliensis'') genleri sıralı ve bu parazit biyolojisi hakkında çok bilgi sağlamıştır. Örneğin şimdi '' Leishmania içinde '' protein kodlayıcı genlerin büyük polisistronik birimi olarak head-to-head veya kuyruk kuyruklu bir biçimde düzenlenir ki anlaşılmaktadır; RNA polimeraz II uzun polisistronik iletileri tanımlı rna pol II Organizatör yokluğunda ökaryotlardaki; ve '' Leishmania'' ortamındaki değişiklikler gen ifadesinin Yönetmeliği göre benzersiz özelliklere sahiptir. Bu çalışmalar yeni bilgiden acilen gerekli ilaçlar için yeni hedefler belirlemek ve aşıların geliştirilmesine yardım yardımcı olabilir. Leishmaniasis önleme Şu anda hiçbir aşı rutin kullanımı vardır. Ancak, '' Leishmania' genom dizisini aşı adayları zengin kaynağı sağlamıştır. Genom tabanlı yaklaşımlar kullanılan ekrana Roman aşı adayları. Bir çalışmada 100 rasgele seçilen genler dna aşıları karşı fareler '' l. büyük '' enfeksiyon olarak tarandı. On dört Roman reproducibly koruyucu aşı adayları belirlendi. Ayrı bir çalışmada iki adımlı prosedür t hücresel antijenlere tanımlamak için kullanılır. Altı benzersiz klonlar tespit: Glutamin sentetaz, geçici endoplazmik retikulum ATPaz, uzama faktörünü 1gamma, kinesin k-39, tekrarlayan proteini A2 ve varsayımsal bir depolanmış protein. Bu iki çalışmalarda belirlenen 20 antijenleri daha fazla aşı geliştirme için değerlendirmeye alınır. Leishmaniasis tedavi Antimon (olgusu antimonials olarak bilinir), meglumine antimoniate ('Glucantime') ve sodyum stibogluconate ('Pentostam') içeren iki ortak tedaviler vardır. Bu tamamen bu ilaçların parazit karşı nasıl hareket anlaşılır değil; onlar kendi enerji üretim veya trypanothione metabolizma bozabilir. Ne yazık ki, dünyanın birçok bölgelerinde, parazit dirençli antimon ve visseral veya Mukokutanöz leishmaniasis olmuştur ama direnç seviyesinin türler göre değişir. Amfoterisin (AmBisome) şimdi seçim tedavisi ise; viseral leishmaniasis ('' Leishmania donovani'') tedavisi için bazı durumlarda onun hatası Sudan'da bildirdi, ancak bu parazit yerine HIV veya tüberküloz direnci ile ana faktörler co-infection gibi ilgili olabilir. Miltefosine (Impavido), visseral ve Kutanöz leishmaniasis için yeni bir ilaç olduğunu. Faz III klinik miltefosine tedavi oranı % 95 olduğunu; Etiyopya çalışmalarda da Afrika'da etkili olduğunu gösteriyor. Leishmaniasis ile coinfected HIV immunosuppressed insanlar dirençli durumlarda bile bu yeni tedavi için 2/3 kişi cevap verdi göstermiştir. Klinik Kolombiya Kutanöz leishmaniasis için yüksek bir etkinlik gösterdi. Mukokutanöz durumlarda, L.brasiliensis göre neden daha başka ilaçlar etkili olduğu göstermiştir. Miltefosine onayı Hint düzenleyici otoriteleri tarafından 2002'de ve Almanya'da 2004 yılında aldı. 2005 Yılında Kolombiya Kutanöz leishmaniasis için ilk onay aldı. Miltefosine da şu anda araştırıldı Mukokutanöz leishmaniasis, Kolombiya, '' Leishmania braziliensis'' neden olduğu için tedavi olarak (More, '' et al.'', 2003). Ekim 2006'da yetim uyuşturucu durumu ABD Gıda ve ilaç Yönetimi'nden aldı. Uyuşturucu genellikle diğer ilaçların daha iyi tolere. Sindirim bozukluğu tedavisinin etkinliğini etkilemez 1-2 gün içinde ana yan etkileri vardır. Sözlü bir formülasyon kullanılabildiğinden, gider ve hospitalizasyonda rahatsızlık kaçınılması, da cazip bir alternatif yapar. OneWorld Health Enstitüsü leishmaniasis hangi sonuçlarla sahipsiz bir uyuşturucu olarak onay yol açtı, tedavisi için ilaç paromomisin yeniden girmesini. İhmal edilen hastalıklar girişimi için ilaçlar da etkin olarak Roman therapeutics ara kolaylaştırılması. Bir tedavi ile paromomisin yaklaşık 10 $ mal olacak. İlaç, ilk olarak 1960'larda tespit vardı ancak hastalık çoğunlukla fakir insanları etkileyen bu karlı olmaz çünkü terk edilmişti. Hint hükümeti Insurance paromomisin Ağustos 2006'da onayladı. Paromomisin 21 günlük elbette kesin bir çare üreten > viseral leishmaniasis hastaların % 90. Uyuşturucu dayanıklı leishmaniasis parazit öldürmek için vücudun kendi bağışıklık sistemini uyarmak hedefleyen immünoterapi (aşı ve parazit antijenleri plus bir adjuvan) yanıt vermeyebilir. Birkaç olası aşılar, Dünya Sağlık Örgütü baskısı altında geliştirilmekte olan ama hiçbiri kullanılabilir. Swiss Federal Institute of Technology (eth) Zürih Organik Kimya Laboratuvarı ekibi '' Leishmania büyük '' parazit genomu, muhtemelen patojen ama değil insanlar tarafından kullanılan proteinlerin tanımlanması için izin sıralı karbonhidrat tabanlı bir aşı tasarlamak çalışıyoruz; Bu proteinler, ilaç tedavileri için potansiyel hedefleridir. Bileşik vasicine (peganine), bulunan bitki '' Peganum harmala'', '' in vitro'' '' Leishmania donovani'', viseral leishmaniasis hastalığının promastigote sahne karşı test edilmiştir. Bu bileşik apoptosis in '' Leishmania'' promastigotes ikna gösterildi. "Peganine hidroklorür dihydrate, yanında olmak güvenli, l. donovani üzerinden mitokondrial transmembran potansiyel kaybı safhalarında apoptosis teşvik bulundu." '' Peganum harmala'' içinde bulundu başka bir alkaloid harmine ".. ecause Intracellular parazitler de gibi non - hepatotoxic ve non - nefrotoksik doğa, veziküler formlarına harmine yok içinde onun sezilebilir etkinliğinin insanlarda klinik uygulama için kabul." HIV proteaz inhibitörleri, Kanada ve Hindistan iki '' in vitro'' çalışmalarda Leishmania türlerin karşı aktif olması için bulunmuştur. Çalışmada Leishmania parazitler Intracellular büyüme nelfinavir ve ritonavir insan monosit hücre satır ve ayrıca insan birincil monosit türetilen makrofajlar tarafından kontrollü bildirdi. Leishmaniasis Epidemiyoloji Leishmaniasis birçok tropikal ve subtropikal ülkede bulaşabilir ve yaklaşık 88 ülkede bölümlerinde bulundu. Yaklaşık 350 milyon kişi bu alanlarda yaşıyor. İçinde leishmaniasis yağmur ormanları arasından Orta ve Güney Amerika için Batı Asya ve Ortadoğu çölleri bulunan ayarları. Bu kadar 12 milyon kişi 1.5–2 milyon yeni vaka ile her yıl dünya çapında etkiler. Viseral leishmaniasis şeklinde, her yıl 500.000 yeni vakalar ve 60.000 ölümler tahmini bir insidansı vardır. Hindistan, Bangladeş, Nepal, Sudan ve Brezilya viseral leishmaniasis olgunun dünyanın yüzde 90'ından daha vardır. Leishmaniasis aracılığıyla çok Güney Teksas Amerika Kuzey Arjantin Uruguay veya Şili olsa bulunur ve son zamanlarda Kuzey Teksas yayıldığı için gösterilen. 2004 Sırasında bazı 3.400 birlikleri ülkede (özellikle çevresinde Meta ve Guaviare bölümler), güneyinde yakınındaki ormanlarda çalışan Kolombiyalı ordudan Leishmaniasis ile enfekte hesaplanır. Görünüşe göre etkilenen askerlerin birçoğu resmen sağlanan böcek kovucu, onun iddia edilen rahatsız edici koku nedeniyle did değil kullanma o bir faktör oldu. Bu hastalığın yaklaşık 13.000 durumlarda tüm Kolombiya 2004 boyunca kaydedildi ve askerler arasında hastalığın yaklaşık 360 yeni örnekleri Şubat 2005'te bildirmişti tahmin edilmektedir. Hastalık across much of Asia, gerçi Güneydoğu Asya ve Ortadoğu'da görülürler. Afganistan içinde leishmaniasis sık kabil - kısmen kötü Sanitasyon ve kum sinekleri, parazit yayılan olumlu buldukları bir ortam sağlayan sokaklarda toplanmamış yaptı atıkları nedeniyle oluşur. Enfekte kişi sayısı en az 200.000 tahmini Kabil ve üç diğer şehirler (Herat, Kandahar ve Mazar-ı-Sharif) yaklaşık 70.000 daha fazla olabilir, kim 2002'den rakamlara göre. Özellikle Doğu Afrika ve Kuzey, ev sahipliği Leishamaniasis durumda. Hastalığın Güney Avrupa'ya yayılıyor ama Avustralya ya Oceania bulunamadı. Leishmaniasis çoğunlukla gelişmekte olan dünyanın bir hastalıktır ve nadiren dışındaki durumlarda çoğunlukla nereye asker uzağa--dan ev ülkelerini konuşlu örnekleri az sayıda gelişmiş dünyada bilinir. Leishmaniasis viseral leishmaniasis gibi 1990 Körfez Savaşından beri Suudi Arabistan ve Irak'ta konuşlu ABD askerleri tarafından bildirilmiştir. Eylül 2005'te hastalığın Mazari Şerif, Afganistan'da konuşlu ve daha sonra tedavi için repatriated en az dört Hollandalı Deniz Piyadeleri tarafından sözleşmeli. Leishmaniasis geçmişi Göze çarpan lezyonlar Kutanöz leishmaniasis (cl) benzer açıklamaları keşfetti tabletler Kral Ashurbanipal dan 7 yüzyıl m.ö., Tarih bazıları daha önceki metinlere 2500 m.ö. 1500'den itibaren elde edilmiş. Avicenna 10th yüzyıl Reklamda da dahil olmak üzere Müslüman hekimler ne Balkh Boğaz denilen detaylı açıklamalar verdi. 1756 Alexander Russell, bir Türk hasta inceledikten sonra bir hastalığın klinik en ayrıntılı açıklamasını verdi. Hekimler de Hindistan Kala-azar (telaffuz '' kālā āzār'', '' siyah ateş '', '' kālā'' anlamı siyah ve '' āzār'' anlamını ateş ya da hastalık Urduca ve Hintçe Hindustani ifadesinin) olarak tarif olur. Yeni Dünya gelince, Ekvador ve Peru pre-Inca sarayın deri lezyonlari ve ilk yy uzanan deforme yüzleri tasvir eden hastalık Kutanöz şeklinde bir kanıtı bulundu. 15th and 16th century texts İnka döneminden ve İspanyol colonials "Vadisi hastalık", "Andean hastalık" ya da "beyaz cüzzam cl. Peter Borovsky, Taşkent'de çalışan Rus askeri cerrah, yerel olarak bilinen 'Sart Boğaz '' olarak ve 1898'de oryantal Boğaz etiyolojisi içine araştırma yaptı olması muhtemel olan" sorumlu ajan ilk ayrıntılı açıklaması Yayınlandı söz, parazit'ın ilişkisi ana dokulara doğru açıklanan ve doğru Protozoa için anılacaktır. Çünkü onun sonuçları were published in Russian bir günlükte düşük dolaşımı ile ancak, onun önceliği Uluslararası yaşamı boyunca kabul edildi değil. 1901 Yılında, "dum-dum ateş" ölen hasta dalak alınan smear bazı organizmalarda Leishman tespit (Calcutta yakın bir bölgesine Dum Dum'dir) ve 1903 yılında Yüzbaşı Charles Donovan (1863–1951) onlara yeni organizmalar olarak açıklanmıştır. Sonunda Ronald Ross hastalığı olan bağlantının kurulmuş ve organizmanın '' Leishmania donovani'' adlı. Hastalık Müttefik askerleri, İkinci Dünya Savaşı sırasında Sicilya'da mücadele için büyük bir sorun, ve Leonard Goodwin tarafından araştırma Pentostam etkili bir tedavi olduğunu gösterdi sonra oldu. LEKELİHUMMA-EPİDEMİK TİFÜS Lekeli-hummanın etkeni olan “Riketsia provazeki”, bitler aracılığıyla insanlara bulaşır. Lekelihumma başağrısı, ateş yükselmesiyle başlayıp deride yaygın dökmelere yol açan, yaklaşık iki hafta süren, oldukça önemli bir bulaşıcı hastalıktır. Lekelihumma tarih boyunca büyük insan kitlelerinin ölümüne yol açmıştır. Mikrobun asıl giriş kapısı deridir. Bulaşma infekte bitlerin kan emme sırasında deriye pisliyerek riketsiaları ısırık yarasına bulaştırması ile olur. Bunun yanı sıra solunum yolları ve gözden de girebilir. Etken, girdiği bölgede kılcal damarların iç yüzünü örten endotel hücrelerinin içinde parazitlenir. Bir süre burada çoğaldıktan sonra endotel hücrelerini parçalayarak, kan dolaşımına katılır ve böylece bütün vücuda yayılır. Bu yayılma sırasında daha çok merkezi sinir sistemi, kalp kası, böbreküstü bezi ve testislerdeki küçük damarların, ayrıca da kılcal damarların endotel hücrelerinin içine girerek buralarda ikinci parazitlenme odaklarını oluşturur. Bu organlardaki damarların da endotel hücrelerini bir süre sonra parçalayarak bu parçaların damar boşluğuna dökülmesine, onların tıkanmalarına neden olurlar. Hastalığın kuluçka süresi yaklaşık 10-14 gündür. Hastalık belirtileri genellikle ani olarak başlar. Ancak, halsizlik, baş ağrısı, zayıflama, hafif bir ateş yükselmesi gibi ön belirtiler de bulunabilir. Hastalığın ilk belirtileri baş ağrısı, ürperme, iştahsızlık, bacak ve sırt kaslarında ağrı biçiminde olur. Ateş yükselmesi hasta iyileşince -ye ya da ölünceye dek varlığını sürdürür. Hastalığın 4-6. günlerinde göğüs yanlarında pembe renkte deri dökmesi lekeleri belirir. Bunlar 1-2 gün içinde tüm vücuda yayılırlar, ancak iz bırakmadan kaybolurlar. Hastalığın gününde yüksek ateşle birlikte nabız yükselmesi saptanır. Hasta ışıktan rahatsız olur (fotofobi) gözleri sulanır, yüzü kızarır. Kalbin kasılma ritminde bozukluklar ayak parmaklarında kulak ve burun ucunda yada topukta nekrozlar gelişebilir. Vakaların yaklaşık % 50’sinde dalak büyümesine (hepatomegali} rastlanabilir. Böbrek yetmezliğinin gelişmesi de oldukça sık rastlanan bir bulgudur. Bu durumda hastada eğer oligüri ve üremi gelişiyorsa, durum tehlikelidir. Lekeli hummada merkezi sinir sistemi bozukluklarına da sık rastlanır. İlk haftalarda hastalar huzursuz ve hırçındırlar. Uykusuzluk çekerler. Genellikle bilinç bulanıktır. Hasta konuşma ve işitme güçlükleri içindedir. Hastalığın en tehlikeli dönemi 2. ve 3. haftalardır. Bu dönemde hasta ileri derecede halsizleşmiştir. Başkasının yardımı olmadan yatakta oturamaz, yiyip içemez. Hastanın bilinci tam kapanabilir, sağırlaşabilir ve hatta komaya girebilir. Hastalarda bazen kuru bir ‘öksürük gelişebilir. Kan basıncı (tansiyon) sürekli olarak düşüktür. Hasta bu dönemi de atlatırsa iyileşmeye başlar. Yaşlılarda ölüm oranı daha yüksektir (% 40 kadar]. Hasta 2-3 aylık bir süre içinde iyileşir. Hastalık hiçbir iz bırakmayabilir. Lekelihumma tedavisinde kullanılan ilaçlar “Klortetrasiklin”, “Kloramfenikol” ve “Oksitet-rasiklin” antibiyotikleridir. Hastanın yüksek kalorili ve vitaminli sıvı besinlerle beslenmesi gerekir. Bunun dışında uygulanacak tedaviler hastada gelişen bozukluklara göre ayarlanır. Kişilerin temizlik kurallarına uyarak bitlenmekten kaçınmaları hastalığın bulaşmasına karşı alınabilecek en iyi önlemlerden biridir.

http://www.biyologlar.com/parazit-eklembacaklilarin-arhropoda-tasiyiciligini-yaptigi-hastalik-etkenlerini-yaziniz-

Gen Tadavi

Gen tedavisi, çeşitli pek çok klinik durumun gelecekteki tedavisi için ümit vermeye devam etmektedir. Alışılmamış, biçim verilmiş gen transfer vektörlerinin gelişimi, tedaviye yönelik gen ifadelerinin verimini ve stabilitesini arttıracaktır. Doku ve organ nakli konusunda ise gen tedavisinden nakledilmiş dokunun akut ve kronik reddedilmesini engellemek amacı ile ya reddetmeyi engellemede önemli yeni genler (örneğin: yardımcı uyarıcı blokaj molekülleri yada imünosupresif sitokinez) yada adezyon molekülleri gibi reddetme ile alakalı moleküllerin üretimini engellemek için anti-duyusal nükleik asitler aşılayarak yararlanılmaktadır.Genlerin yabancı donör antijenlerini (alloantijenler) kodlayan gen tedavisi vektörleri tarafından taşınımı ayrıca alıcıda donöre özel cevapsızlık (immunolojik tolerans) oluşturmanın etkili bir yolu olup, belki de potansiyel olarak zararlı bütün vücut immunosüpresyonuna olan ihtiyacı ortadan kaldırabilir. Hastalıklar üzerinde yapılan yüzlerce yıllık çalışmalar teşhis, tedavi ve araştırmada bugün kullanılan çeşitli pek çok sofistike tekniğin gelişmesine neden olmuştur. 1960'larda hastalıkların nedenini anlamak üzere yapılan araştırmalar hastalıklı hücrelerin biyokimyasını analiz etmek ve çeşitli protein etkileşimlerini incelemekle sınırlı idi. Bu araştırmalar değerli idiyse de, o zamanın bilim adamları hastalık proseslerini, tam olarak anlamak üzere onları oluşturan parçalara ayırıp incelemek için gerekli teknoloji ve ajanlardan yoksundular. DNA'yı spesifik noktalarından kesen kesme enzimleri ilk olarak 1970'lerde keşfedildi ve moleküler biyolojide kullanılmaya başlandı. Genleri kesmek, ayırmak ve bir araya getirmek için bu kesme enzimlerini kullanarak, araştırmacılar, genetik faktörlerin hastalıklarda oynadığı önemli rolleri anlamaya başladılar. Şu anda, İnsan Genom Projesi tamamlanmak üzereyken, bize açık olan bilgi hazinesini yorumlamaya çalışıp, hastalıklar ve genler arasında yeni bağlar kurabiliriz. Bir kere kurulduktan sonra, bu bilgi gen tedavisinin bir tedavi stratejisi olarak kullanımını hızlandırmaya yarayacaktır. Allograft reddedilmesi ve immonolojik toleransÖngörülebilen gelecekte, hastalara allojenik yani “major histocompatibility complex locus”ta aynı olmayan organlar nakil edilmeye devam edilecektir. İmmunnosupresif ilaçların verilmesi gibi herhangi bir tedavi uygulamadan, ana olarak T-hücrelerinin arabuluculuk yaptığı bağışıklık cevabı, böyle bir aşılamayı reddedecektir.?Şekil 1??Kendine tolerans (vücüdün kendi T hücrelerinin vücut dokularına reaksiyon gösterememesi) olgunlaşmamış T hücreleri, gelişip timustan geçerken kazanılır. Bunun olmasının nedeni potansiyel olarak otoreaktif T hücrelerinin çoğunun klonal silme işlemi ile "negatif olarak seçilmiş olmalarıdır" fakat klonal anerji (antijene karşı cevapsız kalan, varlığını sürdürebilen T hücrelerinin varlığı) ve düzenleyici T hücreleri populasyonu yaratılmasının bu konuda bir rolü olabilir. Nakil İmmünologlarının en büyük hedefi doku alıcılarında, alloantijenlere karşı uzun zamanlı nakil toleransı yaratmaktır. Bu tür bir bağışıklık durumunda hasta, yabancı antijenlere (örn. bakteriler, virüsler ve ortaya çıkan kötü niyetli hücreler) karşı normal reaksiyon gösterirken, doku naklini reddetmek yerine tolere edecektir. Bu tür ideal bir durumda, sistemsel immunosüpresif ilaçlara (getirdikleri bütün dezavantajlarla birlikte) gerek kalmayacak, ve doku alıcıları tüm fonksiyonlarını yerine getirebilen, sağlıklı bir bağışıklık sistemi sahibi olacaklardır. Gen tedavisi nedir?Bir gen, belirli bir proteini kodlayan çizgisel bir DNA zinciridir. Bazı nadir durumlarda, genellikle hücre bölünürken, bir genin nükleotit zinciri (DNA taban çiftlerinin sırası) birbirine karışıp, mutasyon geçirebilir ve böylece oluşan protein hatalı olur. Bu tür mutasyon olayları sistik fibrosis, adenosine deaminase (ADA) yetersizliği ve orak hücresi anemisi gibi genetik hastalıkların ana nedenidir. Örneğin sistik fibrosisten rahatsız kişiler, sistik fibrosis transmembran iletim düzenleyicisi adındaki hücresel taşıma proteinini hatalı olarak üretirler, ki bu akciğerlerinde mukoza birikmesine yol açar. Gen tedavisinin ilk uygulamaları, hatalı bir genin (ya da gen kombinasyonunun) neden olduğu bir hastalığın, eğer genler “doğru” versiyonları ile değiştirilebilirlerse kontrol altına alınabileceği, engellenebileceği yada tedavi edilebileceği prensibi üzerine kurulmuştu. Gen tedavisi doğuştan var olan yada sonradan edinilen pek çok genetik hastalık için kullanılmaktadır. Fakat pek çok hastalık birden fazla genetik faktör ile bağlantılıdır (polijeniktir). Hastalık sürecindeki çeşitli genlerin ve kodladıkları proteinlerin bağlantıları hatasız olarak kurulana dek, gen tedavisi klinik olarak, ancak ADA yetersizliği, familial hypercholesterolaemia ve sistik fibrosis gibi tek gen hataları için önleyici ve iyileştirici tedavi olarak etkili olacaktır. Gen tedavisi protokollerini kullanan pek çok klinik deneme zaten tamamlanmıştır, genel olarak kullanılan gen transfer vektörlerinin yetersizliği yüzünden protokollerin etkisi önceden öngörüldüğü kadar dramatik olmamışsa da sistik fibrosis ve ADA yetersizliğinden şikayetçi hastalarda bir takım başarılar elde edilmiştir. 1980’lerde aslen “gen değiştirme tedavisi” olarak bilinen gen tedavisi, ilk tanımını aşmıştır ve in vivo yada ex vivo, bir gen transferi öğesi içeren her türlü protokole uygulanmaktadır. Bu genlerin mutlaka hastalığa yol açıyor olması da gerekmemektedir. In vivo gen transferi genlerin hücrelere vücutta bulundukları yerde aşılanmasıdır. (örneğin: kol üzerindeki deri hücrelerine yada gen transfer vektörünün ciğerlere çekilmesinden sonra akciğer epitel hücrelerine) Ex vivo gen transferi, genlerin geçici olarak hastadan alınmış hücrelere verilip, tekrar hastaya aşılanmasıdır (örneğin: kemik iliği hücreleri). Gen tedavisi somatik hücre gen transferi (normal diploid hücrelere yapılan transfer), ve germline gen transferi (üreme sisteminin haploid sperm yada yumurta hücrelerine yapılan transfer) olarak alt gruplarına ayrılabilir. Germline gen transfer hakkındaki etik konular somatik gen transferi ile ilgili olanlardan çok daha karışıktır çünkü genler sadece alıcılara değil aynı zamanda onların çocuklarına da aktarılır. Germline gen transferi araştırmalar için transgenik hayvan üretiminde, tarım ve biyoteknoloji için çeşitli alanlarda gittikçe artarak kullanılmaktadır, fakat hayvanlarda transfer edilen her genin uzun dönem etkileri dikkatlice gözlenip analiz edilmelidir, eğer varsa kalmış olan vektör DNA’larda büyük önem taşır. Germline gen tedavisinin insanlara getirebileceği yararlar kayda değerdir. Ciddi ve acı verici kalıcı genetik hastalıkların gelişimi doğumdan önce önlenebilir ve izleyen kuşaklarda ortadan kaldırılabilir. Fakat, hatalı kullanım ve öjenik potansiyeli yüzünden, insanlarda gen tedavisi geniş bir biçimde tartışılmalı ve alakalı güvenlik konuları değerlendirilmelidir. Ancak bundan sonra bu yaklaşım hastalıkların tedavisinde kullanılabilir. Nakilde gen tedavisi kullanımıDNA’nın nakil araştırmalarında kullanımının kayıtlı ilk denemesi Haskova, onun meslektaşları ve verici soydan DNA naklinin, takip eden bir nakile karşı bağışıklığa (ani reddetmeye) neden olup olmayacağını araştırmakta olan Medawar tarafından uygulandı. Medawar tarafından yürütülen deneylerde, soy A bir verici farenin dalağından alınan DNA arındırılıp, 5 mg’ı daha önceden müdahale edilmemiş bir farenin (CBA soyu) peritoneal (karın) boşluğuna enjekte edildi. Alıcı fareye 3-5 gün sonra verici soy A farenin derisi nakledildi ve aşılamalar zaman içinde gözlendi. Aşılamalar DNA almayan farelerle aynı zaman içinde reddedildi, herhangi bir artış gözlenmedi. Medawar, nakil toleransı yaratmak için verici soy hücrelerini neonatelere enjekte etmekteki başarısının ardından gerçekleştirdiği bir başka deneyde, yine nakil toleransı yaratmak için yeni doğmuş farelere tekrar tekrar “yüksek dozlarda” verici soy DNA’sı aşılanmıştı; fakat bu yaklaşım deri aşılamalarının kabul edilme sürelerini uzatmadı. Bu erken deneylerin negatif sonuçları Medawar tarafından saf olmayan DNA preparatlarına ve polisakkaritlerle kontaminasyona bağlanmış olsa da, şimdi anlayabiliyoruz ki, kas içi enjeksiyon gibi farklı enjeksiyon yolları seçilseydi, - Geissler ve meslektaşları tarafından yakın zamanda ortaya konduğu gibi - çok daha değişik sonuçlar elde edilebilirdi. Organ nakli şu anda son safhasındaki organ yetersizlikleri için iyice yerleşmiş bir tedavidir. İmmünosupresif ilaçlardaki kayda değer gelişmeler (örneğin. Siklosporin, kortikosteroidler ve rapamisin) 1 yıllık ve 5 yıllık böbrek nakillerinin başarı şansını sırasıyla %85 ve %75’e çıkarmıştır. Bu etkileyici bir başarı olsa da, sağlıklı nakiller hala reddedilebilmektedir ve sistemsel immünosupresif ilaçların kullanımı da beraberinde kanser oluşumu riskinin artması, enfeksiyonlar ve iskemiye bağlı kalp hastalığı gibi kayda değer riskler getirir ve bu riskler uzun zamandır sorunsuz nakiller için de geçerlidir. Gen tedavisi var olan nakil ile alaklı problemlere yaklaşım için iyi bir stratejidir fakat genellikle sadece tamamlayıcı bir yaklaşım olarak kullanılmaktadır. Örneğin, nakil edilecek organların immünojenliklerini azaltmak amacıyla bu organlara, T-hücresi aktivasyonunu engelleyecek genler aşılanabilir yada alıcıya, vericiye ait Major Histocompatibility Locus (MHC) antijenleri aşılanıp nakil toleransı yaratılabilir. Her iki yöntemde potansiyel olarak kuvvetlidir. Nakil ile alakalı genlerMHC iyi korumalı fakat polimorfik bir gen lokusudur. MHC molekülleri, hücre içinde işlenmiş peptitleri heliksel bir yivde ligantlarına, T-hücresi alıcısına (TCR) sunan yüzey proteinleridir. Eğer uygun ko-uyarıcı moleküller antijen sunan hücrenin üstünde mevcut ise, antijen sunan hücreye peptit sunan MHC molekülü ve T-hücresi üzerinde belli bir TCR arasında “akrabalık etkileşimi” T-hücresi aktivasyonuna yol açabilir. MHC sınıf I molekülleri 3 alfa alanı ve MHC gen lokusu tarafından kodlanmamış bir ?2 mikroglobulin zincirinden oluşur. MHC sınıf II molekülleri iki alfa alanı ve iki beta alanından oluşur. Sınıf I molekülün üstünde sunulan peptitler genellikle hücre içi proteinlerden gelirken, sınıf II moleküller hücre dışı kaynaklı peptitler sunarlar. Peptitlerin gelişmemiş MHC moleküllerine taşınma mekanizması da bu iki sınıf molekül için çok farkldır. MHC, allograft (Bir canlıdan, genetik yapısı farklı başka bir canlıya doku yada organ nakli/aşılanması) reddini tetikleyen ana tanıma molekülüdür çünkü kendi (sinjeneik) ve kendi olmayan (allojeneik) arasındaki farkı saptar. Uygun bir organ vericisi aranırken, nakil edilen organa mümkün olduğu kadar çok çalışma şansı yaratabilmek için verici ve alıcı arasında karşılaştırılan antijenler MHC antijenleridir. Bahsi geçen durumlarda, MHC’nin bu potansiyelinden bağışıklık sistemininin dengesini bağışıklıktan toleransa kaydırmak için yararlanılmıştır. Tolerans yaratmak maksadıyla organ alıcısının, vericinin MHC antijenlerine maruz bırakılması, ilk olarak 1953’te Billingham ve meslektaşları tarafından bir fare modelinde, verici soydan hücreler alıcı farenin uterusuna enjekte edilmesiyle gerçekleştirildi. Bu ilk denemenin ve takip eden araştırmaların ardından nakil öncesi kan nakilleri (mutlaka organ vericisinden olması gerekmeden) MHC alloantijenlerini alıcıya verebilmek için klinik olarak kullanılmaya başlandı ama sınırlı başarı elde edildi. Fakat kan ürünlerinin kullanılması beraberinde enfeksiyonlar, nakil reaksiyonları gibi doğal riskler getirdiğinden, özelleşmiş bir yaklaşım kullanan daha yenilikçi bir tedavi organ alıcılarını kanda bulunan alloantijenlere karşı duyarlı hale getirme riskini ortadan kaldırmış olur. Verici genlerinin, alıcının hücrelerine yada dokularına verilmesi gayet özelleşmiş bir tedavidir, yabancı hücrelerle alakalı riskler taşımaz ve alıcıların verici dokusu vücuda girmeden önce yabancı genlerle ön-tedavi edilmesine olanak verir. Hayvan modellerdeki MHC gen transferleri ayrıca allojenik MHC antijenlerinin, diğer antijenlerin etkisi olmadan alıcının bağışık hücreleri üzerindeki etkilerini incelemek için yararlıdır. Bu tür bir yaklaşım ilk olarak Madsen ve meslektaşları tarafından, vericiden alınan tek bir MHC sınıf I geni, alıcı türü bir farenin hücre hattına transfekt edilip, ardından alıcıya verildiğinde yürütülmüştü. Bu çalışma ile takip eden kalp nakline karşı cevapsızlık sağlanmasının yanında alıcının, vericinin uyuşmayan her türlü MHC moleküllerine maruz kalmasına gerek olmadığı anlaşıldı. Bu deney bu yöntemin işe yarayabileceğini kanıtlamış olsa da, transfekt edilmiş alıcı hücrelerini kullanmak klinik olarak pratik bir çözüm değildir. Bundan sonraki adım Wong ve meslektaşları tarafından atılmıştır; alıcı fareden alınan kemik iliği hücreleri MHC sınıf I gen ile retroviral bir gen tedavisi vektörü kullanılarak ex vivo transdüksiyona uğratılmış (virüs ile enfekte edilmiş) Bu yaklaşım tarzı da tamamen allojeneik bir kalp naklinde uzun dönem cevapsızlık yaratmıştır ama alıcı daha önce MHC sınıf I genlerine maruz kalmadığı bir vericiden alınan 3. parti bir nakli reddetmiştir. MHC moleküllerinin bir başka enteresan özelliği de çözünebilir yada zara bağlı olmalarına bağlı olarak bağışıklık sisteminin cevabını değiştirebilme yeteneğidir. İnsan karaciğeri naklini izleyen gözlemler ortaya koymuştur ki, çözünebilir insan verici lökosit antijenleri (HLA; insan MHC antijenleri) nakil sonrasında yüksek konsantrasyonlardadırlar. Bu toleranslı duruma sadece verici lökositlerinin mikrokimerizminin (düşük düzeylerde verici hücrelerinin alıcıda varlığını sürdürmesi) yol açtığı hipotezi ileri sürülmektedir; lakin eşit miktarda geçerli başka bir açıklama ise bu toleransın karaciğerin doğal olarak salgıladığı bol miktarda çözünebilir MHC molekülünün etkisi olduğudur. Çözünebilir vericiye ait MHC sınıf I moleküllerin immünosupresif etkileri olabilir, ve bu organ nakillerinde, organın fonksiyonunu sürdürmesini iyileştirebilir. Geissler ve meslektaşları, alıcı soydan gelen hepatositlerin lipofektin ile zara bağlı yada çözünebilir MHC sınıf I molekülleri kodlanan plazmit kullanılarak bir fare modeli kullanmışlardır. Zara bağlı MHC sınıf I moleküllerini belirten hepatositlerin, sitotoksik T-lenfosit (CTL) öncü hücrelerini primelarken, çözünebilir MHC sınıf I hücrelerine maruz kalmanın CTL öncülerin sayısını (frekansını) düşürdüğü gözlendi ki bu çözünebilir HLA sınıf I hücrelerinin insan alloreaktif CTL’lerde apoptoza neden olabileceğinin göstergesidir. İmmunosüpresif Sitokinezİmmuno-ayarlayıcı moleküller kodlayan genlerin nakledilen organ civarına verilmesi, yada direkt nakledilen organa verilmesinin, akut yada kronik reddetmede yabancı dokuya karşı oluşan bağışıklık cevabını azaltmada geniş bir faaliyet alanı vardır.Sitokinezler bağışıklık sisteminin çözünebilir ayarlayıcılarıdır ve bazılarının immünosüpresif etkileri vardır. Interlökin 10’un viral formu (vIL-10) Epstein-Barr virüsü tarafından kodlanmış olan bir proteindir, yapı olarak insan ve fare için homologdur ve IL-10’un sahip olduğu T-hücresi ko-uyarıcı özelliklerine sahip değildir. T-hücresi aktivasyonun kapatılması yada aşağı çekilmesinin gerektiği dokulara gen transferi yapılmasında yararlı bir araçtır. DeBruyne ve meslektaşları, nakil edilecek sıçan kalbine DNA-lipozom kompleksleri kullanılarak vaskülater perfüzyon aracılığı ile yapılan vIL-10 gen transferi nakil edilen organın hayatta kalma süresini uzattığı görülmüştür. (8 gün yaşayan muamele görmemiş organlara karşı 16 gün) Sonuç vIL-10 genine bağlandı, çünkü vIL-10’a bir anti-duyu plazmidiyle yapılan tedavi yada vIL-10’a hedeflenmiş bir monoklonal antikor nakil-uzatma etkisini tersine çevirdi. Dönüşüm büyüme faktörü beta (TGF) gibi diğer sitokin genleri de ayrıca kayda değer immünosupresif etkiler göstermişlerdir. Lakin bu yaklaşım tarzının amacı immünologikal tolerans yaratmak değildir, fakat yine de yerel immünosüpresyon yaratmak için yararlı olabilir. Ko-uyarıcı sinyalin engellenmesiKendine özgü TCR-MHC etkileşiminden oluşan hücre içi ilk sinyalden ayrı olarak bir T-hücresinin tam aktivasyonu CD28 ve B7-1 yada B7-2 (sırasıyla CD80 yada CD86)nin etkileşiminden oluşan ikinci bir ko-uyarıcı sinyal gerektirir. Sitotoksik T-lenfosit antijen 4 (CTLA-4 yada diğer adıyla CD152) CD80 ve CD86 için alternatif bir liganttır ve CD28 ile homologdur. CTLA-4 ün T-hücresi aktivasyonu aşağı çekmekle ilgili bir rolü olduğu düşünülmektedir. Bu ko-uyarıcı sinyalin mesela bir füzyon proteini kullanarak engellenmesinin, pek çok mürin ve primat çalışmalarında hücre arabuluğunda oluşan in vivo hümoral bağışıklık cevaplarını engellediği görülmüştür. CTLA-4Ig genini [CTLA-4 ve bir immunoglobulin (Ig)] bir kalp naklinin ardından damar içinden vermek üzere adenoviral bir vektör kullanan bir çalışmada, ortalama yaşama süresi kontrol grubundaki 6 güne göre, CTLA-4Ig transgenin ifade eden adenoviral vektörle tedavi edilen grupta 23 gün saptandı. Chahine ve meslektaşları tarafından yapılan bir başka çalışmada ise, CTLA-4Ig transgeni sinjeneik ve allojeneik iki grup fare kas öncü hücresine (lökoblastlar) transfekt edildikten sonra, diabetik bir farenin böbrek kapsüllünün altına allojeneik pankreas adacık(?) hücreleriyle beraber nakil edilmiştir. Sinejeik lökoblastlar adacıkların yaşama süresinde kayda değer bir artışa neden olmuşlar ve 11 günden 31.7 güne çıkarmışlardır, allojeneik lökoblastların yararlı bir etkisi görülmemiştir. Sinejeik lökoblastlar aktif olarak CTLA-4IG salgılamışlar ve allojeneik adacıkların olduğu çevrede immünosüpresyon yaratmışlar ve onların fonksiyonlarına devam etmelerine izin vermişlerdir. Lökoblastlar allojeneik olduğunda ise, alıcıdaki MHC eşitsizliği onları yok etmeye yetmiş ve CTLA-4IG’nin üretimini engellemiştir. Kronik reddetmeyle alakalı genlerİmmünosupresif ilaçlar ve organ korumasındaki gelişmelere rağmen bir allograft nakilden yıllar sonra hasar görmeye devam edebilir, bu yüzden kronik reddetme nakledilen organların başarısız olmasındaki en önemli etkendir. Histolojik olarak, kronik reddetme sırasında düz kas hücrelerinin nakil edilen organın damar ağı(?) etrafında hızla çoğaldığı ve bazen nakil aterosklerozuna (Atar damar duvarının esnekliğini yitirmesi ve sertleşmesi) neden olduğu görülmüştür, durumun bu son noktaya gelmesine pek çok faktör katkıda bulunur. Hücreler arası yapışma molekülü 1 (ICAM-1) gibi yapışma molekülleri ve vasküler endotelial-hücre büyüme faktörü gibi büyüme faktörleri artar ve teşvik edilebilir (inducible) nitrik oksit sintazın dengesi bozulur. ICAM-1ICAM-1 Ig süperfamilyasının bir üyesidir ve hücresel yapışma ve T-hücresi ko-uyarılmasında çok önemlidir. ICAM-1’in etkilerini ortadan kaldırıp T-hücresi aktivasyonunu azaltmaya yönelik yöntemler, böbrek allograftı hastaları ve ICAM-1 molekülüne karşı hedeflenmiş antikorlar kullanan klinik deneyler başarıyla yürütülmüş durumda. 18 hastalık bir çalışmada, anti-ICAM-1 antikoru (BIRR1) ölü vericilerden böbrek nakledilen ve nakil fonksiyonu gecikmesi riski yüksek olan hastalara verildi. BIRR1 serumunun yeterli bir miktarı (>10?g/ml) hem nakil fonksiyonu gecikmesi hem de reddetme olaylarının (p<0.01) kayda değer bir miktarda azalmasına neden oldu. Bu terapi mürin modellerde ICAM-1’in mRNA’sına hedeflenen anti-duyu oligonükleotitleri kullanmak için geliştirildi. Nitrik dioksitNakledilen organlardaki, vesselların intimal (iç) çoğalmaları kronik reddetmenin başka bir göstergesidir. İç kaplar tabakadan kaynaklanan nitrik dioksidin vasküler yara oluşumunun endojen bir inhibitörü olduğu hipotezini test etmek için, bir Sendai virüs virosomu iç kaplar tabaka hücreleri kaynaklı nitrik dioksit sintaz genini in vivo olarak nakletmek için kullanılmıştır. Von der Leyen ve meslektaşları, bir balon yara modeli kullanarak farenin karotid arterinin iç kaplar tabakasının bozulmasının ardından endothelial-hücresi nitrik oksit sintaz geninin transfer edilmesinin neointimal çoğalmayı %70 kadar düşürdüğünü ortaya koydular. Oksijen serbest radikalleriNakilden önce, çoğu organlar soğuk ortamda, tam bir kan kaynağı olmadan saklanır, bu olay soğuk iskemi etkisine neden olur. Bu, yeniden bağlanan kan kaynağını reperfusionu ile birleşince oksijen serbest radikallerinin neden olduğu hücre hasarı yaratabilir. Bu durumun kronik reddetme şansını kuvvetlendirdiği düşünülmektedir. Ciddi bir hasarı önlemek için, serbest radikalleri temizlemek üzere çözünebilir süperoksit dizmutaz (SOD) ex vivo olarak nakledilecek organa verilmiştir. Bugüne kadar, gen transferinde SOD’un kullanıldığı birkaç çalışma yapılmıştır. Bir araştırmada oksidasyon hasarı ile ilgili hastalıklar için SOD (yada aynı etkiye sahip katalaz) şifreleyen rekombinant adenovirüs kullanıldı. Farelerdeki bu akciğer-perfüzyon modelinde, iskemi-reperfüzyon hasarı değerlendirildi; ve sürpriz bir şekilde SOD’un fazla ifadesi iskemi-reperfüzyon hasarını kötüleştirdi. Hem SOD hem katalaz transgenlerinin ifadesi iskemi-reperfüzyon hasarındaki bu artışı engelledi fakat ondan koruyamadı. Uygulama yöntemleri ve gen tedavisi vektörleri için hücre hedefleriTimus içi uygulamaTimusiçi T-hücresi gelişimi prosesinin, nakil ve tolerans yaratma için kullanımı ilk olarak Posselt ve meslektaşları tarafından betimlenmiştir. Kendine tolerans (kendi dokusunda meydana gelmiş antijene cevap verememe) CD4- ve CD8- (çift negatif) olan T-lenfosit öncü hücreleri timustan geçerken oluşur. T-hücreleri timik epitel hücrelerindeki antijene maruz kaldıkları için, timustaki atijenle etkileşmeye yüksek eğilimi olan ve bu nedenle otoreaktif olan hücreler klonal silme prosesiyle negatif seleksiyona uğrar. TCR’leri timusiçi antijenlere eğilimi olmayan (yada çok az olan) fakat kendi MHC’sine karşı etkileşime yüksek eğilimi olan hücreler pozitif seleksiyona uğrarlar; ve bu hücreler gelişip, çoğalabilir ve çevrede daha büyük klonal populasyonlara genişleyebilirler/yayılabilirler. Knechtle ve meslektaşları, bir fare modelinde, bir gen tedavisi yöntemi kullanarak tolerans yaratmanın mümkün olduğunu gösterdiler. İlk olarak sinejeik alıcı kas hücreleri aldılar ve in vitro olarak bu hücreleri vericiden alınmış olan MHC sınıf I genleri ile transfekt ettiler. Bu hücreler daha sonra alıcının timüsüne enjekte edildi. Daha sonra alıcının çevresel bağışıklık sistemi, anti-lenfosit serumu kullanılarak potansiyel alloreaktif T-hücrelerinden temizlendi. Bunu alıcının bağışıklık sisteminin cevapsız kaldığı bir karaciğer nakli izledi. Takip eden bir çalışmada, verici soydan fareden MHC sınıf I tamamlayıcı (koplementer) DNA (cDNA), timik hücreleri yerlerinde transfekt etmek için, direkt olarak alıcının timüsüne verildi; polimeraz zincir reaksiyonu (PCR) kullanılarak yapılan analizde timüste geçici olarak verici DNA’sına rastlandı (timositlerin timüsten dışarı verilmesi nedeniyle de bir süre daha sonra dalakta) Yukarıdaki yaklaşımlar ya DNA ile transfekt edilmiş hücreler yada çıplak DNA’nın kendisini kullanarak verici MHC genlerini alıcıya ulaştırmışlardır. DNA transfeksiyonu kullanılarak başarılmış gen tedavisinin verimi adenovirüs kullanılarak arttırılabilirdi. Adenovirüs vektörleri (yada sadece “Adenovirüs”) timüs içi uygulamalar için idealdir çünkü yüksek titrelerde üretilebilir ve çok çeşitli hücre türlerini transdüse edebilir. Genler, antijen sunan timik epitel hücrelerine değil gelişmekte olan timositlere de transfer edilebilir fakat immünojenik adenoviral antijenlere karşı merkezi tolerans (timüs, dalak ve kemik iliği gibi merkezi lenfoid organlardaki lenfositlerde oluşan tolerans) Ilan ve meslektaşları tarafından da ortaya konduğu gibi yaratılabilir. Çalışmalarında, rekombinant adenovirüsün timüs içine aşılanmasının nötralize edici antikorlar ve rekombinant adenovirüse karşı CTL’lerin orataya çıkışını inhibe ettiğini ortaya koymuşlardır. KaraciğerGen transferi ve organ nakliyle ilgili olarak karaciğerin pek çok ilginç özelliği vardır. Bazı durumlarda karaciğer organ nakli alıcılarının MHC-uyuşmazlığı olan nakilleri, nakil sonrası sistemik immünosupresyona gerek bırakmadan kendiliğinden kabul ettikleri olmuştur. Bu gözlemin nedeninin nakil sonrası verici MHC moleküllerinin çözünerek kan dolaşımına karışmasının ardından alloreaktif CTL cevabını aşağıya çekmesi olduğu hipotezi ortaya atılmıştır. Karaciğer kapı venası yada karaciğer arteri veya ikisi birden, viral yada non-viral gen tedavisi vektörlerinden herhangi birinin perfüzatını in vivo olarak vermenin en iyi yollarıdır. Chia ve meslektaşları bir çalışmalarında, perfüzyondan sonra etkili gen transferinin bir rapörtör gen kodlayan adenovirüs, tespit edilmiş soğuk korunmuş karaciğere hem karaciğer kapı venası hem de hepatik arterden verilerek elde edilebileceğini gösterdiler. Bu verim artışının nedeninin kısmen karaciğer içi mikro dolaşıma daha iyi ulaşımdan ve böylece virüs, hücre temaslarının artışından dolayı olduğu söylenmiştir.Fare modellerinde hepatik gen transferi için retroviral vektörlerde kullanılmıştır, lakin bu hücreler sadece aktif olarak bölünen hücrelerin transdüksiyonunda etkilidir bu yüzden hepatositleri bölünmeye teşvik etmek için retroviral transdüksiyondan önce kısmi bir hepatektomi gerçekleştirilmelidir. Kemik iliği hücreleriKemik iliği hücrelerinin, özelliklede haematopoietik gövde hücrelerinin önemi gen tedavisi de azımsanmaz. Kendini yenileme ve tüm kan hücresi yapıcı türlere farklılaşabilme potansiyeli, uzun dönem transgen ifadesi gerektiği durumlarda (genetik bozukluklar gibi) onları çok çekici hedefler haline getirir. HSC’lerin kemik iliği ve çevresindeki kanda aşırı düşük bir frekansta bulunması nedeniyle ne yazık ki ex vivo transdüksiyondan sonra takip eden in vivo bir biyolojik etki yaratacak kadar çok miktarda elde etmek çok zordur. HSC’lerin gen tedavisi için arındırılması ana olarak granülosit makrofaj koloni uyarma faktörü gibi bir ajan kullanarak, gövde hücrelerini kemik iliğinden hareketlendirip, çevre dolaşıma yöneltmek üzerine kuruludur; bundan sonra hücreler florasan-aktivasyonlu hücre sıralama yada antikor kaplı manyetik bilyalar gibi yöntemlerle seçilirler. Bu tür pozitif seleksiyon yöntemleri c-kit (faredeki gövde-hücresi faktörü alıcısı) ve CD38 (insanlarda) gibi gövde hücreleri için özel hücre yüzeyi izleri gerektirir. Negatif tüketme (kesinlikle gövde hücresi olmayan hücreleri dışarı atan) genellikle pozitif seleksiyonla kombine olarak kullanılan ayrı bir metottur. Gövde hücrelerine özgü yeni işaretler arama şu an üzerinde aktif olarak araştırma yapılan bir alandır. Klinik nakilleri göz önünde tutarsak, kemik iliği çok sık nakledilen bir dokudur, örneğin lökemiya yada başka hemotolojik hastalıklara karşı köklü bi sitotoksik terapi uygulanan hastalar için. Alıcıya, vericinin kemik iliği aşılanarak, alıcının nakilden önce uyumsuz bir organın alloantijenlerine maruz kalmasını sağlamak için kullanıldı. GvHD oluşması ihtimaline rağmen, bu yaklaşım harcanan emeğe değer. Alıcıların, vericilerden alınmış MHC transgenlerine maruz bırakılması daha özelleşmiş ve güvenli bir metottur; ayrıca canlı verici lenfositlerinin aşılanmasına gerek bırakmadığı için GvHD yaratan hücrelerin transferi olmadığı için bir risk taşımaz. MHC genlerinin sinejeik kemik iliğine ex vivo yada in vivo olarak transferi alıcıyı alloantijenlere maruz bırakma için bir yöntem olarak kullanılabilir. Kemik iliğine gen transferi kan yapıcı hücrelerdeki bağışıklık fonksiyonunu ayarlayan immüno düzenleyici molekülleri (sitokinler gibi) şifreleyen genleri nakletmek için kullanılabilir. Sykes ve meslektaşları radyasyona maruz bırakılmış bir fare üstüne ortaya koydular ki, retroviral bir gen tedavisi vektörü kullanarak, verici MHC sınıf I geninin verici soyu kemik iliği hücrelerine ex vivo olarak nakil öncesi transferi tek bir alloantijen yüzünden uyumsuzluk çıkaran deri aşılamalarının yaşama süresini arttırdı, fakat çoklu uyumsuz, tamamen allojeneik deri aşılamaları reddedildi.Wong ve meslektaşları, verici MHC sınıf I molekülü şifreleyen retroviral bir vektör kullanan benzer bir sistem üzerinde çalışma yaptılar. Bu sefer MHC haplotip H2k’li bir CBA fareleri nakil alıcıları olarak kullanıldı. İlk olarak 28 gün boyunca iki doz anti-CD4 monoklonal antikoru ve 5 X 106 kemik iliği hücreleri ile ön tedavi edildiler. Bu hücreler vericiye özel MHC sınıf I geni Kb taşıyan retroviral vektörlerle ex vivo olarak transdüksiyona uğratıldılar. Bu tolerizasyon rejiminin sonucu olarak, fareler vericiye özel [C57BL/10 (H2b)] kalp nakillerini süresiz olarak kabül edebildiler. Bu çalışmanın önemli bir klinik manası vardır, çünkü nakledilen bir organın uzun süreli kabul edilmesi için alıcının nakil edilen organ üzerinde bulunan her tür verici MHC molekülüne maruz bırakılmasına gerek olmadığını ortaya koymuştur. Bu tolerejenik (yada cevapsız) durum, bağışıklık sisteminin gücünü azaltmamaktadır; bağışıklık sistemi her hangi bir üçüncü parti antijene karşı yine tüm gücüyle saldırmaktadır. Gen transferi vektörleriVektörler gen tedavisinde, daha sonradan transgen(ler) trafından şifrelenmiş tedavi edici proteinleri ifade edecek alakalı genleri nakleden araçlardır. Alakalı genlerden ayrı olarak bir gen tedavisi protokolünde en önemli faktör vektör seçimidir ve bu başarı yada başarısızlığı belirler. Ne yazık ki, “iyi evrensel vektör” diye bir şey yoktur; şu anda kullanımdaki tüm vektörler hem avantajlara hem dezavantajlara sahiptirler. Örneğin bir vektör, hedef hücrelere çok etkili bir şekildi girebilir, fakat girdikten sonra güçlü bir bağışıklık cevabına neden olur ve bu da hücrenin bağışıklık sistemi tarafından yok edilmesine neden olur. Vektör seçerken pek çok faktörün göz önünde tutulması gerekir. En önemlileri: 1- transgenin ifade edilmesi gerekli zaman uzunluğu2- hedef hücrenin bölünme durumu3- hedef hücrenin türü4- transgenin büyüklüğü5- aşılanacak vektöre karşı bir bağışıklık cevabı oluşma potansiyeli ve bunun zararlı olup olmadığı6- vektörü birden fazla kez uygulama imkanı7- vektörün üretim kolaylığı8- mevcut tesisler9- güvenlik unsurları10- düzenleyici unsurlar Viral gen transferiMilyonlarca yıldır, virüsler bitki, hayvan ve insan hücreleri dahil her türlü hücreye gen transfer ediyorlar. Viral gen transferi deneysel tekniği bu doğal yetenekten gelişmiştir, ve bilim adamları ile hekimlere gerçek avantajlar sunmaktadır:1- özel hücre bağlama ve giriş özellikleri2- transgenin hücrenin çekirdeğine etkili bir şekilde hedeflenmesi3- hücre içi degradeden kaçınabilmesiViral vektör sistemlerinin çoğunun geliştirilmesinde kullanılmış olan genel prensip, yaban tipinde (doğada bulunan değişmemiş hali) bozulmamış bir virüsün güvenli ve etkili gen transferi için modifiye edilmesidir. Örneğin, viral replikasyonla ilişkili genler modifiye edilebilir yada silinebilir, ve böylece yeni rekombinant virüs “replikasyon arızalı” hale gelir ve gen tedavisi protokollerinde kullanılmak için daha güvenli hale gelir. (Şekil 4)Genelde, virüs tarafından nakledilmesi gereken transgen moleküler biyolojik teknikler kullanılarak viral genomun içine konmalıdır; transgenler genellikle viral replikasyon genlerinin çıkarılmasıyla oluşan boşluğa eklenir. Genelde, viral vektörün doğal hali ne kadar azaltılmışsa, (virulansla ilgili genlerin ne kadar büyük kısmı çıkarılmışsa) virüs gen tedavisi protokollerinde kullanılmak üzere o kadar emniyetlidir. Genin boyutu, viral genomdaki potansiyel boşluğa uydurulmalıdır, eğer yeni viral genom çok büyük ise, enfekte edici bir partiküle sığdırılamaz. Vektör olarak kullanılan virüslerin çoğu replikasyonyon genlerinden mahrum olup, kendilerini normal hücrelerde kopyalayamadıkları için, transgene sahip rekombinant virüs, hücre hattında daha yüksek titrelere kadar büyütülmelidir. Bu hücre hattı, virüsün replike olabilmesi için gereken tüm tamamlatıcı genleri (daha önceden çıkarılan genler) içeren bir hücre hattıdır. Rekombinant viral partiküller, daha sonra paketleyici hücre hattından canlı bulaşıcı virüsler olarak arındırılıp, in vivo yada ex vivo olarak hücreleri yada dokuları enfekte etmek (transdüksiyona uğratmak) için kullanılır. Retroviral VektörlerRetroviridae spumavirüs (köpüklü virüsler), Moloney-mürin-lentivirüs-ilişkili virüsler [örneğin, Moloney mürin lökemya virüsü (MMLV) ve insan endojen retrovirüsleri C familyası (HERV-C)] ve lentivirüsleri [örneğin. Human immünodeficiency virus tip 1 (HIV-1) ve tip 2 (HIV-2)] içeren geniş bir RNA virüsleri familyasıdır. Retroviral virionların çapları 80 nm’den 130 nm’e kadar değişir, ve genomları uzunlukları 3.5 ila 10 kb arasında olan, iki eş pozitif-duyu tek-iplikli RNA moleküllerinden oluşur. Genomlar, entegraz ve ters transkriptaz enzimleri ile birlikte bir kapsid ile örtülüdür. Retroviral vektörler şu an için klinik denemelerde en yaygın olarak kullanılan viral vektörlerdir.Retrovirüsler, sadece aktif olarak mitoza uğrayan hücreleri transdüksiyona uğratırlar, pluripotent (bir çok çeşitli hücre tipine gelişme yeteneğinde olan hücreler) HSC’lere gen transfer eden protokollere uygundurlar. Retroviral vektörler uzun dönemde iyi gen ifadesi oluştururlar ve teknik olarak üretilmeleri kolaydır. Fakat düşük viral titreler (genelde ml’de 1 x 107 koloni oluşturan ünite) verirler ve çok nadir olsa da yardımcı virüs kontaminasyonu olasıdır ve dikkatle izlenmelidir. MMLVMiller labaratuvarından LNSX serisinden vektörler gibi, bugün gen tedavisi uygulamalarında kullanılan retroviral vektörlerin çoğu MMLV bazlıdır. Replikasyon gag, pol ve env bölgeleri çıkarılarak engellenmiştir. gag bölgesi kapsid proteinlerini kodlar, pol bölgesi RNA bağımlı DNA polimeraz (ters transkriptaz) ve entegraz kodlar, env bölgesi ise alıcı tanıma ve kılıf demirleme içik gerekli proteinleri kodlar. Genom ayrıca, her iki ucunda uzun son tekrarları (LTR’ler) içerir ki bunlar DNA sentezlemede ve viral genlerin transkripsiyonun düzenlenmesinde hayati rol oynarlar. Örneğin, LNSX vektöründe, LTR bir neomisin-direnç işaretleyici geninin [neomycin-resistance-marker gene] (transdüksiyona uğramış hücreleri seçmek için kullanılan) transkripsiyonunu yürütür, bir iç Simian virüs 40 (SV40) promoteri ise transgenin transkripsiyonunu yürütür. gag, pol ve env gen ürünleri, daha önce bu genlerin transger edilip stabil bir biçimde ifade edildiği tamamlayıcı paketleme hücre hattı tarafından sağlanmalıdır. Bir retroviral vektör plazmidi paketleyici hücre hattına (pA317 gibi) sokulduğu zaman viral RNA üretilir, virionların içine yerleştirilir, ve ortama salgılanır. Ml başına 1 x 107 koloni-oluşturan üniteye kadar viral titreler bu şekilde elde edilebilir. Elde edilen viral partiküller gag, pol ve env genlerinden yoksun olduğu için her partikül sadece kendini hücrenin genomuna entegre edebilir, daha fazla viral partikül üretemez. Transdüksiyonla nakledilmiş DNA zincirleri kararlı bir şekilde hedef hücrenin kromozal DNA’sına entegre edilirler ve böylece hücrenin bölünmesiyle oluşacak oğul hücrelere de geçerler. LentivirüslerRetrovirüsler ailesinin en yeni keşfedilen üyeleri retrovirüsleri lentivirüsler olarak bilinen bir alt sınıfında üye olan insan bağışıklıkyetersizliği virüsleridir(HIV’ler). HIV’lerden türetilmiş olan gen tedavisi vektörleri, MMLV retrovirüs vektörlerine göre pek çok avantaja sahiptirler. Lentivirüs vektörleri aktif olarak bölünen hücrelerin yanı sıra, bölünmeyen hücreleri de transüksiyona uğratabilirler, bu yüzden gen transferi araçları olarak çok daha yararlıdırlar. Genetik materyallerini host hücrenin genomuna entegre ettikleri için, lentivirüslerin transgenlerin uzun zamanlı, stabil ifadesini sağlayacak potansiyel vardır. Lentivirüslerin, immünolojik amaçlarla gen tedavisi vektörleri olarak kullanılması çok heyecan vericidir çünkü lentivirüslerin CD4+ T hücreleri, makrofajlar ve HSC’lere karşı olan doğal bir tropizmaları vardır; bu lentivirüsleri HIV ve AIDS enfeksiyonunu önlemek yada tedavi etmek amacında olan gen tedavisi yaklaşımları için çok yararlı araçlar kılar. Vestikuler stomatitis virüsü G proteininin lentiviral kılıfa verilmesi gibi gen modifikasyonları bu vektörün tropizmasını genişletmiştir. Bu vektörler şimdi sistik fibrosisin gen tedavisi için solunum epitel hücrelerini hedeflemek üzere kullanılabilmektedir. AdenovirüslerAdenovirüsler, kapsid çapı 70-100 nm, 252 kapsomerden (240 hekzon, 12 penton) oluşan, kılıfsız, ikozahedral, çift iplikli DNA’lı virüslerdir. Hedef hücrenin genomuyla birleşmezler, bunun yerine host hücrenin çekirdeğinde ekstrakromozal bir yapı olarak kalırlar. Replikasyon-kusurlu rekombinant adenovirüsler klinik denemelerde en çok kullanılan ikinci viral vektör grubudur. Adenovirüsler insanları yaygın olarak enfekte ederler, ilk izole edilebilmeleri 1953’te aküt solunumsal semptomları olan ABD acemi erlerinden, Rowe ve meslektaşları tarafından başarıldı. Temel (dönüşmemiş) hücre kültürleri bu erlerin adenoitlerinden elde edilmiştir, ve kültürdeki hücrelerin virüsün varlığı yüzünden kendiliklerinden dejenere olduğu gözlenmiştir. Bugüne kadar 47 adenovirüs serotipi tanımlanmıştır, hafif soğuk algınlığından febrile paryngtise kadar pek çok rahatsızlıkla ilişkileri saptanmıştır. Ad2 ve Ad5 üzerlerinde en çok çalışılanlardır ve gen tedavisi uygulamalarında en yaygın olarak kullanılan serotiplerdir. Ağır rahatsızlıklarla alakaları yoktur, sadece hafif soğuk algınlığı oluştururlar. Adenovirüsün 36-kb genomu iki ana bölgeye bölünebilir, virüsün replikasyon çevrimi sırasında genlerin ifade edildiği zamana göre, erken (E) geç (G). Erken genlerin 4 bölgesi vardır, bunlar E1, E2, E3 ve E4 olarak isimlendirilirler, geç genlerin ise G1, G2, G3, G4 ve G5 (L1-5 ingilizce) 5 kodlama ünitesinde oluşan bir tek bölgesi vardırAdenovirüslerin E1 bölgesi E1A ve E1B olarak ikiye ayrılır. E1A gen ürünü viral prometerler bağlayarak diğer adenoviral transkripsiyon ünitelerinin ifade edilmesini aktive eden bir viral transkripsiyon ünitesidir. E1B bölgesi hücresel p53 tümör bastırıcı proteinle etkileşime giren 55-kD proteinini kodlar. p53, host hücrenin devrinin ilerleyişini G1 fazından S fazına ki bu faz viral replikasyon için optimaldir, regüle eder. E1B p53’den ayrı olarak viral E4 proteinlerini de bağlar, bu iki madde ortak olarak çalışıp hostun protein sentezini kapatırlar. E2 bölgesi viral DNA polimeraz ve anenovirüs tek iplikli DNA bağlama proteinini kodlar. E3 bölgesi adenovirüsün in vitro replikasyonu için gerekli değildir fakat virüse enfekte hücrelerin CTL’ler ve TNF-a tarafından öldürülmesini engelleyerek, host defans mekanizmalarına karşı bir miktar koruma sağlar. E4 bölgesi (1) viral ve hücresel protein ifadesi (2) viral DNA replikasyonu (3) host proteinlerinin sentezinin kapatılmasıile alakası olduğu bilinen proteinler kodlar. Geç genler (G1-G5) viral DNA replikasyonunun ilk adımında ifade edilir, ve virion oluşumu için gerekli yapısal polipeptitleri kodlarlar. Yeni sentezlenmiş viral partiküllerin birikmesinden kaynaklanan hücre iskeleti ve zarının bozulması, hücrenin çökmesine ve virüsün yayılmasına neden olur.E1 bölgesi viral replikasyon için gereklidir; bu yüzden E1 bölgesi suni olarak çıkarılmış adenovirüsler, replikasyon kusurlu olarak görülür. Replikasyon-kusurlu bir adenovirüste, E1 bölgesi ifade edilecek trangen ile doldurulabilir. Daha büyük genler yerleştirebilmek için ve bunun yanında virüsün immünojenliğini azaltmak için vektörden E3 ve E4 bölgelerinin silinmesi gibi bir işlemle daha fazla genetik materyal çıkarılması daha önce uygulanmıştır; bu tür rekombinant virüslere genelde “bağırsaksız” denir. Gen tedavisi için, hem in vivo hem de ex vivo olarak neredeyse her türlü hücre cinsinde adenovirüslerin transdüksiyon verimi diğer viral vektörlerle karşılaştırıldığında yüksektir. Nakiller için, adenovirüslerin belirgin bir avantajı düşük sıcaklıklarda (örneğin. 4ºC) hedef hücrenin yüzeyine tutunabilmesidir. Adenovirüsün kapsid polipeptitlerinin yapısal stabilitesinden dolayı, viral partiküller ml başına 1 X 1013 plak oluşturan ünite (pfu) gibi yüksek bir titreye arındırılıp konsantre edilebilirler, fakat ml başına 1 X 1010 pfu gibi bir titre daha alışılmıştır. Retroviral titreler çok daha düşüktür (ml başına 1 X 107 pfu) çünkü kapsidleri yapısal olarak kararsızdır ve sezyum klorid gradyanında arındırılıp, konsantre edilemezler. Adenovirüslerin bir başka avantajı da adenovirüs genomunun insan genomuna entegre olmayıp, hedef hücrenin çekirdeğinde kendini eşlemeyen ekstrakromozal bir yapı olarak kalmasıdır; lakin bunun ayrıca çok düşük bir ihtimalle de olsa, insan onkojenlerini aktive etme ve insan tümör bastırıcı genin işleyişini bozma ihtimali vardır. İn vivo olarak bir vektör olarak adenovirüs kullanılmasının bir büyük dezavantajı, kapsidden türemiş peptitlere karşı oluşan CTL cevabıdır; bu cevap vektör tarafından transdüksiyona uğratılmış hücrelerin yok edilmesine, lokal doku kaybına ve iltihaba neden olabilir. Adenovirüs tarafından kodlanan yabancı transgen ürünlerinin peptitlerini sunan host hücrelerin, CTL’nin aracılık yaptığı yıkıma hedef olduğu gösterilmiştir. Adenovirüsler çok rastlanan virüsler olduğu için, insanları büyük bir çoğunluğu spesifik serotiplerden en az bir tanesinin bağışıklığına sahip. Gen tedaviside bu aynı serotipin kullanılması durumunda neredeyse her zaman hızlı ve güçlü bir bağışıklık cevabı oluşur, öyle ki adenovirüs vektörünün verilmesinden günler sonra bile hastanın serasında yüksek miktarda anti-adenovirüs antikoruna rastlanır. Bu tür vektörlerin alıcılarını screen’erek daha önceden karşılaştıkları serotipler belirlenebilir, ve başka bir serotip vektör olarak kullanılabilir. Fakat, bu yaklaşım değişik serotiplerden çok geniş bir rekombinant vektörler panelinin mevcut olmasını gerektirir. Bir başka potansiyel problem ise, aynı serotipteki vektörün tekrar verilmesi ile oluşacak güçlü ikincil bağışıklık cevabıdır. Adenovirüs tarafından kodlanmış bir transgenin ifade edilme periyodu oldukça kısadır. İfade rapor edildiğine göre “makul” bir seviyede in vivo olarak 14 gün sürmektedir; ancak bağışıklık cevabının manipulasyonu daha uzun ifade periyotlarına da neden olmuştur. Bu kısa ifade süresi ana olarak bir ölçüye kadar da transgenin kendisine (özellikle transgen normalde kişide ifade edilmiş değilse [yabancı] CTL cevabına neden olan viral polipeptitlerin ifade edilmesinden kaynaklanır. Adenoviral genom kendisini hedef hücrenin genomuna entegre etmediği için, sadece oğul hücrelerden (eğer hedef hücreler bölünüyorsa) birisi transgene sahip olacaklardır ve böylece transgene sahip hücrelerin sayısı yarıya inecektir. Adenoviral gen transferi trangenin sadece bir kerelik transferinin gerektiği, büyüme faktörü terapisi gibi, uzun dönem ifadenin tersine büyüme faktörünün geçici ifadesinin gerektiği durumlar için idealdir. Nakil toleransı yaratmaya yönelik protokollerde, adenoviral vektörün alıcıya nakilden önce verilmesi, alıcıda uzun dönem immmünolojik tolerans yaratacak düzenleyici T-lenfosit populasyonunun oluşmasını sağlamaya yetecektir. Adeno-benzeri virüslerAdeno-benzeri virüs (AAV) vektörleri adenovirüs vektörlerinin sunduğu, geniş host hücre spektrumu dahil avantajların çoğuna sahip olup, bazı durumlarda nispeten daha yüksek transdüksiyon verimine sahiptirler. Ayrıca, yüksek derecede hücre ölümüne (sitopatojenisite) neden olan adenovirüsün tersine, AAV’ler hedef hücrelerde çok az hasara neden olurlar. AAV ayrıca stabil olarak belli yerlerde, host hücrenin genomuna (insanlarda kromozom 19’da) entegre olur ki bunun daha uzun süren transgen ifadesi gibi yararlı bir etkisi vardır. Bununla beraber, AAV’lerin ana-hücre kültürlerinin transdüksiyonunda retroviral vektörlere göre kayda değer bir biçimde düşük verimli olduğuna dair kanıtlar vardır. Ana-hücre transüksiyonlarında, AAV vektörlerinin çoğu host genomun içine entegre olmaz, onun yerine ekstrakromosal olarak kalır, bu verimsizlik in vivo uygulamalardaki yararlılığını azaltmaktadır. Herpes simpleks virüsüHerpes simpleks virüsü (HSV) vektörleri çeşitli uygulamalar için geliştirilmektedir, bunların içinde Parkinson hastalığı, habis gliomas (bir nevi beyin tümörü), beyinsel iskemisi (gerekli gıdayı alamayan beyin dokusunun beslenememekten zarar görmesi) gibi hastalıkların tedavisi gibi nöronal dokuyu hedefleyen gen transfer protokolleri vardır. HSV, host hücrenin çekirdeğinde ekstrakromosal bir DNA elemanı olarak kalır, çevre sinir sistemindeki duyusal nöronlarda ve bazı merkezi sinir sistemi dokularında uzun ömürlü belirtisiz enfeksiyonlar yaratma gibi kusursuz bir yeteneğe sahiptir. Bu olay, hedef nöronal dokuda uzun zamanlı gen ifadesi için fırsat yaratır. HSV vektörlerinin ayrıca geniş host hücre spektrumları vardır, ve büyük gen eklemelerini kabul edebilirler, ve replikasyon için gerekli en-erken (IE) genlerinden çoklu silme işlemleri ile hedef hücrelere karşı daha az sitotoksik hale getirilmişlerdir ve güvenlikle ilgili kaygılar azalmıştır. Şu anda HSV nin bir gen tedavisi vektörü olarak kullanılmasıyla ilgili en önemli sorum klinik kullanımındaki güvenliktir, çünkü bu virüsün yaban tipinin insan beyninde lytical bir şekilde çoğalıp, potansiyel olarak çok ciddi ensefalit (beyinin iltihabi lezyonu) e neden olduğu bildirilmiştir. Vaccinia virüsüVaccinia virüsü (ineklerde çiçek hastalığına neden olan virüs) şu anda nakil çalışmaları için vektör olarak kullanılmasada, kanser gen tedavisisi için geliştirme altındadır. Vaccinia virüsü, dünya çapında çiçek hastalığının yok edilmesinde kullanılmıştır, ve güvenli bir canlı aşı maddesi olduğunu ortaya konmuştur. Vaccinia virüs vektörleri host hücrenin genomuna entegre olmazlar, bununla birlikte büyük transgenler barındırabilirler ve aşırı şekilde immünojeniktirler. Vaccinia virüsü hastaları tümör antijenlerine karşı bağışık hale getirmek üzere büyük genomuna tümör antijen genleri yada bağışıklık cevabını kuvvetlendiren proteinler kodlayan genler yerleştirilerek kullanılabilir. Transgenlerin çoğu in vivo olarak yüksek seviyelerde ifade edilirler, bu tümor antijenine karşı normal durumda kanserli hücreyi öldürmeye yetmeyecek kuvvette olan, spesifik bir bağışıklık cevabına neden olur. Eğer gerekli ise, geniş kapasitesi sayesinde vektöre birden fazla gen klonlanabilir. Viral olmayan gen transferiViral vektörlerden transgenlere yer açmak, iltihabi cevapları azaltmak, yada güvenliklerini arttırmak amacıyla gerekli olmayan genler çıkarılabilir; bu virüsün basitleştirilmesini gerektirir, bazen de aşırı bir şekilde. Geri kalan, ilgili genlerin yüksek seviyelerde, yüksek bir derecede düzenlenmiş kendine özgü bir biçimde, kontrollü bir periyot boyunca (uzun yada kısa olabilir) ifade edilmesi için dizayn edilmiş suni bir vektör kabuğu olabilir. Aynı sonuçları elde etmek için başka bir yaklaşım tarzı ise, hücrelerin çekirdeklerine genetik materyali basit bir şekilde aşılayan bir sistem yaratmaktır. Bu bakış açısı, geçtiğimiz birkaç yılda yoğun araştırmaların odağı olmuştur ve bu araştırmalar birkaç viral olmayan vektörün geliştirilmesiyle sonuçlanmıştır. LipozomlarEn temel formunda, lipozomlar bir katyonik amfifil ve bir nötral fosfolipid (tipik olarak, dioleoyl- fosfatidiletanolamin) olmak üzere iki lipid türünden oluşurlar. İkiside de ticari olarak mevcuttur. Lipozomlar, kendiliklerinden DNA’ya bağlanıp, yoğunlaştırarak hücrelerin plazma zarlarına yüksek eğilimi olan kompleksler oluştururlar; bu endositoz olayı ile lipozomların sitoplazmaya alınmasına neden olur. Bu temel protokolün pek çok adaptasyonu denenmiştir ve değişen seviyelerde gen ifadesine neden olmuşlardır. Fuzijenik virozomlarÇok yakın geçmişte, viral transfer vektörlerinin bazı avantajları, lipozomların basitlik ve güvenliği ile birleştirildi ve ortaya fuzijenik virozomlar çıktı. Virozomlar, Sendai virüsünün zar birleşme proteinleri, plasmit DNA’yı kaplamayan lipozomlarla yada antiduyu uygulamaları için oligodeoksinükleotitlerle birleştirilerek oluşturuldu. Virozomlardaki viral proteinlerin doğasından kaynaklanan hücre zarlarıyla birleşme yeteneği sayesinde bu hibrid vektörler nükleik asitlerini hedef hücreye çok etkili bir şekilde transfer ederek, iyi gen ifadesi veriyorlar. Her viral vektörün genomuna eklenebilen transgenin büyüklüğü ile ilgili bir limiti vardır, virozom ve lipozom teknolojilerinde böyle bir limit bulunmamaktadır. 100 kilobaz çifte kadar genler ex vivo ve in vivo olarak fuzijenik virozomlar kullanılarak nakledilebilmiştir. DNA-ligant birleşmesi/çiftiDNA-ligant çifti iki ana bileşenden oluşur: DNA-bağlayıcı bir alan ve hüce-yüzeyi alıcıları için bir ligant. Transgen bu şekilde spesifik olarak hedef hücreye yönlendirilebilir ve orada alıcı-aracılığında endositoz ile ilçeri alınır. DNA-ligant kompleksi endositik yola girdikten sonra, çift, endozom lizozomla birleştiğinde muhtemelen yok olacaktır. Curiel ve meslektaşları, adenovirüsten türemiş bir domaini ligantın hücre yüzeyi alıcısı parçasıyla birleştiren bir metod kullanarak bundan kaçınabilmişlerdir. Çiftin bu noktadan sonra, özelleşikliği adenovirüsler kadardır, geniş bir host hücre spektrumuna bağlanabilirler; ayrıca çiftin endozom bir lizozom tarafından yok edilmeden önce endozomu terk edip sitoplasmaya (endozomoliz diye bilinen bir proses ile) girmesini sağlayan bir adenovirüs karakteristiğine sahiptirler. Çıplak DNAViral olmayan gen transferi teknikleri için en basit fikirlerden biri arındırılmış DNA’nın plazmitler şeklinde kullanılmasıdır. Bu yaklaşım, DNA aşılamaları için, diğer protokollerle birlikte kullanılmıştır, ve gen tedavisi ile ilgili pek çok durumda denenmiştir. Bu yaklaşımın basitliğine rağmen çalışmalar transfeksiyon veriminin çok düşük olduğunu ortaya çıkarmıştır ve kullanımını sınırlandırmıştır. Verici fare ırkından alınan MHC sınıf I antijenini kodlayan plazmit DNA’nın, bir doz anti-lenfosit serumu ile birlikte aşılanması, takip eden karaciğer nakillerinde vericiye özel tolerans yaratmıştır. Verici DNA’sına timüste enjeksiyondan 4 gün sonrasına kadar, dalakta ise enjeksiyondan 7 gün sonrasına kadar rastlanmıştır. Balistik gen nakliBu fiziksel metod mikro taşıyıcıların kullanımı gerektirir. (genelde altın partikülleri yada herhangi bir başka inert madde) Bu partiküller DNA ile kaplanır ve gen tabancası denilen patlayıcı yada gaz-itmeli bir balistik cihaz ile yüksek hızlarda ateşlenir. Partiküller hedef hücreye girdikten sonra, DNA micro taşıyıcılardan yavaşça ayrılır, ve yararlı olacak seviyelerde gen transkripsiyonu ve tercümesine neden olur. Bu teknik deneysel olarak geniş çapta kullanılmıştır, ama klinik kullanımı ortaya çıkarılabilir yüzeylerle sınırlıdır çünkü ateşlenen partiküller, dokunun derinliklerine ulaşamazlar. Muhtemel klinik kullanım alanları sidik torbası üretelyumu, kornea, epitel hücreleridir. CaPO4 transfeksiyonuCaPO4 transfeksiyonu, moleküler biyologlar tarafından transgenleri hücrelere in vitro olarak aşılamada yıllardır başarıyla kullanılan nispeten verimli kimyasal bir metottur (%10). Takip eden deneylerde ve klinikte kullanılan vektörlerin çoğunun üretimindeki protokollerin önemli bir parçası olsa da, bu metod in vivo uygulama için uygun değildir. Promoter daraltılmasıGen tedavisi vektörlerinin başarısı için alakalı gene uygun bir promoter bağlanması şarttır. Bir promoter genin üstünde bulunan, mRNA ve ardından protein sentezi için üzerine proteinlerin (transkripsiyon faktörleri, DNA polimeraz) bağlandığı düzenleyici bir DNA zinciridir. Deneysel ifade vektörlerinin ve gen tedavisi vektörlerinin çoğu, klonlayacakları esas (sürekli) genlerin yüksek seviyesi yüzünden patojen virüslerden elde edilen promoter elemanları kullanırlar Çeşitşi gen transfer çalışmalarında sitomegalovirüs(CMV), Rous sarkoma virüsü (RSV) ve SV40’tan elde edilen promoter ve arttırıcı elemanlar kullanmışlardır ve cesaret verici başarılar elde edilmiştir fakat ifade seviyesi, kullanılan vektör, vektörün verilme şekli ve transdüksiyona uğratılan hücrenin türü dahil pek çok faktöre bağlıdır. Araştırmacılar tarafından en çok karşılaşılan problemlerden biri trangenlerin çok düşük seviyelerde ve geçici olarak ifade edilmeleridir. Bu kötü ifadelerden sorumlu moleküler mekanizma çok yetersiz bir biçimde tanımlansa da, ana neden promoterin daraltılması olabilir. Promoter daraltmanın gen tedavisi alanındaki önemi göz önüne alınınca, bu problemle direkt olarak ilgilenmek için dikkate değer birkaç çalışma yapılmıştır. Deneysel sistemlerde gösterilmiştir ki, adenoviral vektörlerin in vivo olarak uygulanması belirli yada belirsiz bağışıklık cevapları aracılığıyla sitokin üretimine neden olmaktadır. Bu sitokinler daha sonra transgeni taşıyan adenovirüs tarafından enfekte edilmiş hücreleri etkileyip, sitokinlerin arabululuk ettiği hücresel sinyaller başlatacaklar ve transgen ifadesini ayarlayacaklardır/kontrol altına alacaklardır. Qin ve meslektaşları, pek çok viral promoter tarafından kontrol edilen transgen ifadesinin IFN ve TNF inhibe edildiğini ve bu iki sitokininde birlikte işleyen etkileri olduğunu keşfetmişlerdir. CMV ve RSV’den türetilen promoterler sitokin uygulamasına karşı en hassas olanlardır Yine rekombinant adenovirüs kullanan başka bir fare modelinde Harms ve Splitter, nötralize edici anti-IFN monoklonal antikorunun in vivo olarak verilmesinin transgen ifadesini arttırdığını göstermişlerdir. Moleküler seviyede, SV40, CMV ve RSV’den türetilen promoterlerin hepsi aynı interferon cevap zincirine sahiptir. IFN’in hücre yüzeyinde etkileşime girmesinden dolayı oluşan çekirdeksek faktörler bu viral promoterlerdeki elemanlara bağlanırlar ve bu transgenin ifade edilmesini inhibe eder. Yangıya neden olan sitokinlerin olmadığı bir ortamda güçlü, ana viral promoterler in vitro olarak memeli ifadelerinde kullanılmıştır ve başarı elde edilmiştir. Bu güçlü viral promoterlerin kullanımı doğal olarak klinik gen tedavisi protokollerinin geliştirilmesi bakımından ideal olarak kabul edilmiştir. Bununla beraber, transgen ifadesinin düşük seviyede olması genellikle rastlanan bir olgudur ve bunun nedeninin vektörün belirli bir bileşeninden çok, tamamının dizaynından kaynaklandığı düşünülmektedir. Gen tedavisi ifade sistemlerinin de yaygın iki olgu da viral promoter ve arttırıcı elemanlardır. İn vitro ifade vektörlerinde ve in vivo gen tedavisi vektörlerinde kullanılan virüsler ve izole edilmiş viral promoterler enfekte olmuş hücrelerin ürettiği sitokinlerden ters bir biçimde etkilenebilirler. Bu yüzden gen transferi için trangenin ifadesinin gerektiği anda ve yerde vektörün verileceği ortamda olacak faktörler tarafından yukarı çekilebilecek promoterler seçmek mantıklıdır. Örneğin MHC sınıf I promoteri immüno-ayarlayıcı gen tedavisi uygulamaları için daha uygun olacaktır çünkü, IFN gibi yangısal sitokinler aslında transkripsiyonu arttırmak için bu promoter üzerine tesir ederler. İlk Gen Tedavisi İnsanda ilk gen tedavisi denemesini 1990’da Dr. French Anderson gerçekleştirdi. Ex vivo gen tedavisi stratejisinin kullanıldığı yöntemde adenozin deaminaz enziminin (ADA) eksikliğinden kaynaklanan hastalığın tedavisi amaçlanmıştı. ADA eksikliği, çok seyrek rastlanan genetik bir hastalıktır. Normal ADA geninin ürettiği enzim, savunma sisteminin, normal fonksiyonlarını yerine getirebilmesi için gereklidir. ADA eksikliği olan hastalarda genin yaban tii kopyası yoktur ve sahip olunan yetersiz ya da mutant kopyalarsa, işlevsel ADA üretememektedirler. ADA eksikliğiyle doğan çocuklarda, ciddi boyutlarda bir savunma sistemi sorunu vardır ve sık sık ağır enfeksiyonlara yakalanırlar. En ufak bir virüs enfeksiyonu bile yaşamı tehlikeye atabilir. Eğer tedavi edilmezse, hastalık genellikle çocuğun birkaç yıl içinde ölümüyle sonuçlanır. ADA eksikliğinin ilk insan gen tedavisi denemesi olarak seçilmesinin bazı nedenleri vardır.Bu hastalık, tek bir gendeki bozukluktan kaynaklanır ve bu durum olası bir gen tedavisinin başarı ihtimalini artırır. Ayrıca bu gen, çok daha karmaşık kontroller altındaki pek çok başka genin aksine, basit bir sistemle kontrol edilmektedir:Sürekli ekspresyon. Enzimin çok az miktarda üretilebilmesi bile klinik yararlar sağlamakta, yüksek miktarda üretilmesiyse zarar vermemektedir. Sonuç olarak, üretilecek ADA proteinin miktarının çok doğru şekilde kontrol edilmesi gerekmez. Bu ilk insan gen tedavisi 2 hasta çocuk üzerinde gerçekleştirilmiştir. Tedavide, hastaların hücreleri (T-lenfosit) alınarak laboratuar şartlarında doku kültürü yoluyla çoğaltılmıştır. Daha sonra normal insan ADA geni, retrovirüs vektörü yardımıyla bu hücrelere nakledilmiştir. Virüs hücrelere girerek genetik materyale geni yerleştirmiştir. Genetik olarak başarıyla seçilen hücreler seçilerek, yaklaşık 10 gün boyunca çoğaltılmıştır. Son aşamada da, düzeltilmiş bu hücreler kan naklini andıran biçimde damardan hastalara geri verilmiştir. Bu işlem yani T hücrelerinin hastadan alınması, laboratuar ortamında düzeltilmesi ve hastaya geri verilmesi, tedavinin ilk 10 ayı içinde her 6-8 haftada bir tekrarlanmıştır. Daha sonraysa bu nakillere 6 ile 12 ayda bir devam edilmiştir. Tedavi sonucunda iki çocukta da iyileşme kaydedilmiştir. Bu ilk insan denemesinden sonra sistik fibrosis, yüksek serum kolesterolü (hiperkolesterolemi), bazı kanserler ve AİDS gibi hastalıklarla başa çıkmak için gen tedavileri tasarlanmıştır.

http://www.biyologlar.com/gen-tadavi

Genetik Kod Nedir ?

Hemoglobinin dinamik yapısı, memelinin kanındaki oksijen aktarımından sorumludur. Tek bir aminoasit değişikliği hemoglobinin lifler oluşturmasına yol açabilir. Genler, fonsiyonel etkilerini, genellikle, hücredeki fonksiyonların çoğundan sorumlu, proteinlerin üretimiyle ifade ederler. Proteinler amino asit zincirleridir ve bir genin DNA dizisi (bir RNA aracılığıyla) bir proteinin kendine has dizisini üretmede kullanılır. Yazılım (transkripsiyon) denilen bu süreç, genin DNA dizisine kaşılık gelen bir diziye sahip bir RNA molekülü üretimiyle başlar. Ardından, bu mesajcı RNA molekülü translasyon denilen bir süreçle, RNA dizisindeki enformasyona karşılık gelen bir amino asit dizisi üretmede kullanılır. RNA dizisindeki her üç nükleotitlik grup bir kodon olarak adlandırılır, bu kodonların her biri proteinleri oluşturan 20 amino asitten birine karşılık gelir. RNA dizisi ile amino asitler arasındaki bu ilişkiye genetik kod adı verilir. Bu enformasyon akışı tek yönlü olur; yani enformasyon nükleotit dizilerinden proteinlerin amino asit dizisine aktarılır, proteinden DNA dizisine aktarılmaz. Bu olgu Francis Crick tarafından “moleküler biyolojinin merkezî dogması” olarak adlandırılmıştır. Genetik kod: DNA, bir mesajcı RNA aracılığıyla, protein kodlamak için üçlü bir kod kullanır. Bir proteini amino asit dizisi, o proteinin üç boyutlu yapısını oluşturur, ki, bu da proteinin fonsiyonuyla yakından ilişkilidir. Bunlardan bazıları, kollajen proteinince oluşturulmuş lifler gibi, basit yapılı moleküllerdir. Enzim denen proteinler başka proteinlere ve basit moleküllere bağlanabilirler, bağlandıkları moleküllerdeki kimyasal reaksiyonları kolaylaştırarak (proteinin kendi yapısını değiştirmeksizin) katalizör rolü oynarlar. Proteinin yapısı dinamiktir; örneğin hemoglobin proteini, memeli kanında oksijen moleküllerinin alınması, taşınması ve salınmasını kolaylaştırırken eğilip bükülerek farklı biçimler alır. DNA’daki tek bir nükleotitin farkı bile, bir proteinin amino asit dizisinde bir değişikliğin olmasına neden olabilir. Proteinlerin yapıları kendi amino asit dizilerinin sonucu olduğu için de, böyle bir değişiklik o proteinin özelliklerini değiştirebilir; örneğin proteinin özelliklerini, o proteinin yapısında istikrarın bozulmasına veya o proteinin diğer protein ve moleküllerle etkileşiminde değişiklikler olmasına yol açacak şekilde, değiştirebilir. İnsanlardaki kalıtımsal hastalıklardan orak hücre anemisi adlı kan hastalığı bu duruma örnek olarak gösterilebilir. Bu hastalık, hemoglobinin β-globin bölümünü belirleyen kodlama bölgesindeki tek bir baz farklılığından kaynaklanır; bu bir bazın farklı olması, hemoglobinin fiziksel özelliklerinin değişmesine yol açan bir amino asiti değişikliğine neden olur. Fiziksel özelliklerinin değişmesinin sonucunda ortaya çıkan hemoglobinin “orak hücre” versiyonları, birbirlerine yapışırlar, üstüste yığılarak lifler oluştururlar. Bu lifler proteini nakleden alyuvarların biçiminin bozulmasına yol açar. Orak biçimli hücreler kan damarları içinde rahat akamazlar, parçalanma veya damarı tıkama eğilimlidirler. Bu sorunlar sonunda kişide bu hastalıkla ilgili tıbbi rahatsızlıklara yol açar. Bazı genler RNA’da kopyalanmakla birlikte proteine çevrilmezler ki, bunlara “kodlamayan RNA” molekülleri denir. Bu ürünler, bazı durumlarda, kritik hücre fonksiyonlar ile ilgili yapılarda rol alırlar (Ribozomal RNA, taşıyıcı RNA gibi). RNA aynı zamanda, diğer RNA molekülleriyle "hibridizasyon" etkileşimleri yoluyla düzenleyici etki rolüne sahip olabilir. (Örneğin mikroRNA) Doğuştan gelenler - sonradan kazanılanlarSiyam kedilerinin, pigment üretiminde ısıya-duyarlı bir mutasyonları vardır. Genler, bir organizmanın işleyişiyle ilgili tüm enformasyonu içermekteyse de, çevre, nihai fenotipin belirlenmesinde önemli bir rol oynar. Genetik faktör ile çevre faktörü ikilemi, “doğuştan gelenler ile sonradan kazanılanlar” anlamında kullanılan, İngilizce “nature versus nurture” (kısaca, nature vs. nurture, doğaya ve yetişme ikilemi) deyişiyle ifade edilir. Bir organizmanın fenotipi kalıtım ile çevrenin etkileşimine bağlıdır. “Isıya duyarlı mutasyonlar” olgusu bu duruma örnek olarak gösterilebilir. Genellikle, bir protein dizisi içinde değişen bir amino asit, onun davranışını ve diğer moleküllerle etkileşimini değiştirmez; fakat yapının istikrarını bozar. Yüksek sıcaklıkta moleküller daha hızlı hareket ettikleri ve birbirleriyle çarpıştıkları için, böylesi bir amino asit değişimi, proteinde yapısının bozulmasıyla ve işleyişinin zayıflamasıyla kendini gösteren bozukluklara yol açar. Düşük sıcaklıklı ortamlarda ise proteinin yapısı istikrarlı kalır ve işleyişi normal halde devam eder. Bu mutasyon türü siyam kedisinin kürkünde renk bakımından gözle görülür halde kendini gösterir: Pigment üretiminden sorumlu bir enzimdeki mutasyon, derideki yüksek sıcaklıklı bölgelerde yapısal istikrarının bozulmasına ve işleyişinin zayıflamasına yol açmaktayken bacak, kulak, kuyruk gibi daha soğuk bölgelerde protein, işleyişini zayıflatmadan sürdürür; böylece kedi, uç bölgeleri koyu renkli bir kürke sahip olur. Gen düzenlemesi Transkripsiyon faktörleri DNA’ya bağlanarak ilgili genlerin transkripsiyonuna etkide bulunur. Bir organizmanın genomu binlerce gen içermekle birlikte, bu genlerin hepsinin de belirli bir anda aktif olmaları gerekmez. Bir gen, mRNA transkripsiyonu gerçekleştiğinde (ve proteine çevrildiğinde) “ifade olmuş” demektir. Genlerin ifadesini denetleyen birçok hücre yöntemi vardır. Mesela proteinler yalnızca hücre ihtiyaç duyduğunda üretilirler. Transkripsiyon faktörleri genin transkripsiyonunu ya teşvik etmek ya da engellemek suretiyle düzenleyen proteinlerdir. Örneğin, Escherichia coli bakterisinin genomunda triptofan amino asitinin sentezi için gerekli bir seri gen vardır; fakat triptofanın hücrede kullanıma hazır hale gelmesinden sonra, bu genlere artık ihtiyaç kalmaz. Triptofanın varlığı genlerin faaliyetini doğrudan etkiler; triptofan molekülleri “triptofan represörü”ne (bir transkripsiyon faktörü) bağlanırlar, bağlanınca represörlerin yapısını öyle değiştirir ki, represörler genlere bağlanır. Triptofan represörü genlerin transkripsiyonu ve ifadesini durdurur, ve dolayısıyla, triptofan sentezi sürecinin “olumsuz geri beslemeli” (negative feedback) düzenlemesini sağlamış olur. Gen ifadesindeki farklılıklar, özellikle "çok hücreli organizmalar"da belirgindir, bu tip canlılarda hücrelerin hepsi aynı genomu içermelerine karşın, farklı gen kümelerinin "ifadesi"nden kaynaklanan çok farklı yapı ve davranışlara sahiptirler. Çok hücreli bir organizmadaki tüm hücreler, tek bir hücreden türerler. Bu tek hücrenin farklı hücre tiplerine farklılaştığı süreç sırasında, dış ve hücreler arası sinyallere tepki verir, aşamalı olarak farklı gen ifade şekilleri kurarak farklı davranış tipleri oluşturur. Çok hücreli organizmalarda yapıların gelişiminden tek bir gen sorumlu değildir; bu farklı davranış tipleri birçok hücre arasındaki karmaşık etkileşimlerden doğar. Ökaryotlarda kromatinde yapısal özellikler genlerin transkripsiyonunu etkiler. Bu özellikler “epigenetik”tir (üst-kalıtsal) ; çünkü etkileri DNA dizisinin üzerinde yer alır ve bir hücre kuşağından diğerine aktarılan kalıta haizdir. Epigenetik özelliklerden olayı, aynı ortamda oluşan farklı hücre tipleri çok farklı özelliklere sahip olabilirler.   Kaynak: http://tr.wikipedia.org

http://www.biyologlar.com/genetik-kod-nedir--1

Transpozonlar ve Hareket Mekanizmaları

Transpozonlar bİr hücrenin genomunda farklı yerlere, transpozisyon olarak adlandırılan bir süreçle hareket edebilen DNA dizileridir. Bu süreç ile mutasyonlara ve genomdaki DNA miktarının değişmesine neden olurlar. Çeşitli hareketli genetik elemanlar mevcuttur, bunlar transpozisyon mekanizmalarına göre sınıflandırılırlar. Retrotranspozonlar (veya Sınıf I transpozonlar) bir RNA ara ürün aracılığıyla kendilerini kopyalayarak hareket ederler. DNA transpozonları (veya Sınıf II transpozonlar) bir RNA ara ürün kullanmaz. Tranpozonların kimi kendini kopyalayarak, kimi kendini çevreleyen DNA'dan kesip çıkarıp başka bir yere taşıyarak hareket eder. Bu özelliklerinden dolayı, bilim insanları transpozonları canlılardaki DNA'yı değiştirmek için bir araç olarak kullanırlar.Barbara McClintock 1940'ta transpozonları ilk olarak mısır bitkisinde keşfetmesinden dolayı 1983'te Nobel Ödülü almıştır.. Transpozonlar, insan dahil, ökaryotik canlıların genomunun önemli bir bölümünü oluştururlar.Transpozonların hareket tipleriTransposonlar transpozisyon mekanizmalarına göre iki sınıfa ayrılırlar:    Sakınımlı transpozonlar (ing. conservative transposons) hareket edince eski yerde tranpozon kalmaz, yani transpozon sayısı sabit kalır. "Kes-yapıştır" tipi bir mekanizmayla hareket ederler; örn. piggyBac ve Uyuyan Güzel transpozonları.    İkilenmeli transpozonlar (ing. replicative transposons) genomda her hareket edişlerinde kendilerinin yeni bir kopyasını oluştururlar. "Kopyala-yapıştır" tipi bir mekanizmayla hareket ederler. Çoğalmalı transpozonların bir alt grubu retrotranspozonlardır, bunların çoğalmasında bir RNA ara adımı vardır. DNA transpozonlarında çoğalma mekanizmasında RNA bulunmaz.Transpozonların hareket mekanizmalarıTranpozonlar kullandıkları enzimler bakımından iki ana gruba ayrılabilirler. RNA ara ürün aracılığıyla hareket eden retrotranspozonlar RNA'nın DNA'ya çevriyazan ters transkriptaz enzimini kullanırlar. DNA transpozonlarının hareketi ise transpozaz enzimi ile gerçekleşir.Retrotransposonlar (Sınıf I transpozonlar)Retrotransposonlar kendilerini kopyalayıp sonra bu kopyalarını genomda çeşitli yerlere yerleştirirler. Retrotranspozonlar önce transkripsiyon yoluyla kendilerini bir RNA molekülü olarak kopyalarlar, sonra bu RNA (çoğu zaman transpozon tarafından kodlanan) bir ters transkriptaz tarafından tekrar DNA'ya dönüştürülür ve genoma geri sokulur.Retrotransposonlar uzun uç tekrar dizilerine (ing. Long Terminal Sequence; LTR) sahip olup olmadıklarına göre iki gruba ayrılırlar .: LTR'li retrotranspozonlar LTR dizilerinde promotörler ve retrotranspozisyon için gerekli olan en az iki enzimin genleri bulunur. LTR'siz retrotranspozonlar da promotör içerirler ve RNA polimeraz II tarafından çevriyazılabilirler (transkripsiyonları yapılabilir). LTR'siz retrotranspozonlara örnek olarak LINE ve SINE dizileri gösterilebilir:    LTR'li retrotranspozonlar retrovirüslere çok benzerler ama virüs olarak paketlenmelerini sağlayan env genine sahip değildirler. Env genini edinmek veya kaybetmek yoluyla birbirlerine dönüşebilirler. Virüs benzeri retrotranspozonlar paketlenemedikleri için başka hücrelere bulaşmazlar. LTR'li retrotranspozonlar insan genomunun %8'ini oluştururlar.    LINE dizileri (ing. Long interspersed nucleotide elements kısaltması), yaklaşık 6500 bç uzunluğundadır. Bunlar iki gen şifreler: ters transkriptaz ve entegraz (transpozaz). LINE'ler RNA polimeraz II tarafından çevriyazılır. Virüs benzeri retrotranspozonlardan farklı olarak uzun uç tekrarları (LTR) yoktur. İnsan genomunda bulunan 900.000 LINE dizisi, genomun %21'ini oluşturur.    SINE dizileri (ing. Short interspersed nucleotide elements kısaltması) kısa (100-400 bç) DNA dizileridir, RNA polymeraz III tarafından çevriyazılmış bazı hücresel RNA'ların ters transkripsyonu sonucunda genoma dahil olmuşlardır. Bunların en iyi bilinen örnekleri Alu elemanlarıdır. Kendileri ters transkriptaz geni içermeseler de LINE'lerin ters transkriptazları onların da çoğalmasını sağlar. İnsan genomunda bulunan yaklaşık bir milyon SINE dizisi, genomun %13'ünü oluşturur.DNA transpozonları (Sınıf II transpozonlar)DNA transpozonlarının transpoziyon mekanizmasında, retrotransposonlardan farklı olarak, RNA yer almaz. Bu mekanizma ile hareket eden transpozonlarda bulunan bir transpozaz, bir de rezolvaz enzimi bulunur (bazılarında bu iki fonksiyon bir proteinde bütünleşmiştir). DNA transpozonlarının iki ucundaki ters yönlü dizi tekrarları transpozaz enziminin rekombinasyon işlemi için gereklidir. Bir DNA parçası transpozaz enzimini şifrelemese (veya mutasyonla kaybetmiş olsa) dahi bu bu ters yönlü tekrarlara sahip olursa yardımcı bir transpozonun tranpozaz enzimi aracılığıyla genomda hareket etmeye devam edebilir. Transpozaz, transpozonun iki ucundaki DNA'yı ve hedef noktasındaki DNA'yı keserek genomdan transpozonu çıkarır ve yeni konumuyla bütünleştirir (entegre eder). Rezolvaz enzimi entegrasyon aşamasında gereklidir, tek zincirli kesikler yaratarak transpozon DNA'sının onu çevreleyen DNA ile düzgün bir şekilde bütünleşmesini sağlar.DNA transpozonlarının bazıları "kes yapıştır" yoluyla, bazıları ise "kopyala yapıştır" yoluyla hareket eder. Hangisinin olduğu transpozon enziminin verici transpozon uçlarındaki DNA'nın bir mi iki mi zincirinden kestiğine bağlıdır. Transpozazlar hedef yerdeki DNA'yı yapışkan uçlar yaratacak şekilde kaymalı (ing. staggered) keser, transpozon DNA'sını da (bir veya iki zincirden) keser ve onu hedef yerindeki DNA zincirlerine bağlar. Konak hücreye ait olan DNA polimeraz açık kalmış tek zincirli yerleri doldurur, DNA ligaz da şeker-fosfat zincirini kapayınca transpozisyon tamamlanmış olur.Kimi transpozon DNA molekülünün herhangi bir yerine bağlanabilir, dolayısıyla traspozonun hedefi genomda herhangi bir yerde olabilir, kimi transpozaz ise kendine özgün dizilere bağlanır.Bir bakteriyel birleşik transpozon.DNA transpozonları yapılarına bağlı olarak iki ana gruba ayrılabilir: Birleşik tranpozonların (örneğin bakterilerdeki Tn5, 9, 10, 903 ve 1681) iki ucunda biribirine çok benzer ama ters yönlü (evrik) diziler, "insersiyon dizileri" (ing., insertion sequence; IS) bulunur.[5] Bu IS dizileri oldukça uzundurlar, transpozisyon için gerekli olan tranpozaz ve entegraz enzimlerinin genlerini kodlarlar. İki IS dizisi arasında ayrıca bir veya birkaç antibiyotik direnç geni bulunur. Her bir IS dizisi hem tek başına hem de yakınındaki öbür IS dizisi ile birlikte hareket etme yeteneğine sahiptir; beraber hareket ettiklerinde aralarında bulunan DNA bölgesini de taşırlar. Ortamda antibiyotik bulunması halinde aradaki antibiyotik direnç geninin taşınabildiği gözlemlenebilir, çünkü bu taşınma olayları konak bakteriye bir selektif avantaj sağlar. Bazı durumlarda, eğer genomda pek çok transpozon varsa, hareket eden bir IS, antibiyotik direnç geninin öbür yanindaki IS ile birlikte hareket etmek yerine, öbür tarafındaki bir IS ile hareket edebilir; bu durumda ikisi arasında yer alan bazı genler genomda başka bir yere taşınabilir.Birleşik transpozonlar hareket ettiklerinde ikilenmezler.Karmaşık tranzpozonların (örneğin bakterilerdeki Tn1, 3, 4, 7, 501 ve 551 ve bakteriyofaj Mu'nun) iki ucunda da tekrar eden diziler vardır ama bunlar kısadır (30-40 baz çifti), bu diziler arasında transpozaz ve antibiyotik direnç geni yer alır. Transpozonun hareketinde bu genlerin hepsi beraber hareket ederler. Bu sınıfta yer alan transpozonlar ikilenerek hareket ederler, yani hareketlerinin sonucunda genomdaki kopya sayıları artar.Sınıf III transpozonlarMinyatür Evrik Tekrarlı Traspozabl Elemanlar (ing. Miniature Inverted-repeats Transposable Elements; MITE), Sınıf II (DNA) transpozonlarına benzerler ama çok küçüklerdir (100-500 bç), transpozisyonları için gerekli olan genleri bulundurmazlar. Genomda bulunan başka transpozonların transpozazları aracılığıyla hareket ettikleri sanılmaktadır. İlk bitkilerde keşfedilmişler,[8] sonra insan dahil çeşitli başka canlı gruplarında da bulundukları görülmüştür. Pirinç genomunun %6'sı MITE'lerden oluşur. İnsan genomunda bulunan 100.000 MITE, genomun yaklaşık %1'ini oluşturur. Örnekler    Transpozonlar ilk defa mısır bitkisinde Barbara McClintock tarafından 1948'de keşfedilmiştir, bu keşfinden dolayı ona 1983'te Nobel Ödülü verilmiştir. McClintock bu tranpozonların neden olduğu insersiyon, delesyon ve translokasyonları farketmiştir. Genomda meydana gelen bu değişiklikler, örneğin mısır tanelerinin renginin değişmesine yol açabilir. Mısır genomunun %50'si transpozonlardan oluşmaktadır. McClintock'un tasvir etmiş olduğu Ac/Ds systemi retrotranspozonlardır.    Sirke sineği Drosophila melanogaster 'de bulunan bir transpozon ailesi P elemanları olarak adlandırılır. Bu transpozonun bu böcek türünde ilk defa 20. yy ortalarında belirmiş oldukları sanılmaktadır. Yapay P elemanları kullanarak Drosphila genomuna gen sokma teknolojisi geliştirilmiştir.    Bakterilerdeki transpozonlar, transpozisyon işlevini sağlayan transpozaz genine ek olarak çoğu zaman bir de antibiyotik direnç geni taşırlar. Bakterilerde transpozonlar kromozomdan plazmitler arasında gidip gelebilirler. Antibiyotik dirençli bakterilerin oluşmasına transpozonlar önemli rol oynar. Antibiyotik direnci gibi ek bir gen taşıyan bakteriyel transpozonlar Tn ailesine aittir. Ek geni olmayanlara insersiyon dizisi denir.    insanlarda en yaygın transpozon Alu dizisidir. Yaklaşık 300 nükleotit uzunluğunda olan Alu dizisinden insan genomunda yaklaşık bir milyon adet bulunur.    Bazı virüsler transpoziyon yolu ile konak hücrenin DNA'sının içine girerler. Mu fajı transpozisyonu DNA yollu replikatif transpozisyonun en iyi bilinen örneğidir. Onun transpozisyon mekanizması homolog rekombinasyona benzer. AIDS hastalığının etmeni olan HIV ise RNA yollu replikatif transpozisyonun bir örneğini oluşturur.Hastalığa neden olan transpozonlarTranspozonlar mutajendir, konak hücrenin genomuna çeşitli yollardan zarar verirler:    İşlevsel bir genin içine giren bir traspozon büyük olasılıkla o geni çalışmaz kılar.    Bir transpozon bir geni terk ettiği zaman geride kalan boşluk muhtemelen doğru tamir edilmeyecektir.    Aynı dizinin pek çok kopyasının olması (Alu dizilerinde olduğu gibi) mitoz sırasındakromozomların doğru eşleşmesini engelleyebilir, bunun sonucunda eşitsiz çaprazlama meydana gelir, bu kromozom ikilenmesinin başlıca nedenidir.Transpozonlar tarafından sıkça meydana gelen hastalıklar arasında hemofili A ve B, porfiri, kanser yatkınlığı ve Duchenne muskuler distrofi sayılabilir.Ayrıca, çoğu transpozonda tranzpozaz geninin ifadesini sağlayan promotör, yakında bulunan konak hücre genlerinin uygunsuz ifadesine neden olur, bu da hastalıklara yol açabilir.Transpozonlarin evrimiTranspozonların evrimi ve genom evrimine olan etkileri halen etkin bir araştırma konusudur. Transpozonlar canlıların her dalında bulunur ancak kökenleri bilinmemektedir. En son ortak atada ortaya çıkmış olabilecekleri gibi bağımsız olarak pek çok kere oluşmuş olabilirler, veya bir kere oluşup sonra yatay gen transferi ile diğer biyolojik alemlere yayılmış olabilirler. Transpozonlar bazen konaklarına fayda sağlayabilseler de genel olarak bencil DNA olarak, yani konak hücrenin DNA'sında yaşayana parazitler olarak değerlendirilirler. Bu bakımdan virüslere benzerler. Nitekim, retrotranspozon ve retrovirüslerin kopyalanmasındaki benzerlikler ortak bir atadan evrimleşmiş olduklarına dair spekülasyonlara yol açmıştır.Aşırı transpozisyon bir genomu çalışmaz hale getirebileceğinden çoğu organizma transpozisyonu dayanılır bir seviyede tutmak için mekanizmalar geliştirmiştir. Örneğin, nematod Caenorhabditis elegans 'da RNA enterferans (RNAi) için gerekli olan bazı genler tranpozisyona da engel olurlar. Aşırı transpozisyondan dolayı konak organizmanın ölmesi transpozonun da varlığına son vereceği için transpozonlar da kendi hareketliliklerini kontrol altında tutarlar. Örneğin bakteriyel transpozonlar genelde yalnızca metillenmemiş DNA'ya kendilerini kopyalarlar. DNA kopyalandıktan kısa bir süre sonra metillendiği için transpozisyon çoğalan hücrelerde ve ancak bu kısa zaman aralığında mümkün olur. UygulamaMoleküler biyolojide transpozonlar bir mutasyon aracı olarak kullanılır. Transpozon içine girdiği geni hem çalışmaz hale getirir, hem de çalışmaz hale gelmiş genin kolayca bulunmasını sağlar.Bazen bir transpozon bir genin içine girmesi onu tersinir bir şekilde inaktive eder; transpozaz aracılığıyla tranpozon genden çıkartılması genin fonksiyonunun geri gelmesini sağlar. Bitkilerde böylece birbirine komşu hücrelerin farklı genotipleri olabilir. Bu özellik sayesinde araştırmacılar bir hücrenin işlevini yerine getirmesi için bir genin o hücrenin içinde mi, yoksa başka bir hücrede mi çalışıyor olmasının yeterli olduğunu ayıredebilirler.

http://www.biyologlar.com/transpozonlar-ve-hareket-mekanizmalari

Transkripsiyon (genetik) Nedir

Transkripsiyon (veya yazılma veya yazılım), DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin (bir mesajcı RNA aracılığıyla) bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.DNA sentezinde olduğu gibi transkripsiyonda da RNA sentezi 5' → 3'doğrultusunda ilerler. Yani, eski polimer 3' → 5'doğrultusunda okunur; yeni, tümleyici polimer 5' → 3' doğrultusunda oluşur.DNA'da bulunan bilgi işlevsel protein veya RNA ürünlerinin sentezini sağlar. Bu işlevsel ürünleri kodlayan DNA dizilerine gen, bunların oluşumuna da "gen ifadesi" denir. DNA'daki bilginin RNA olarak yazılmış haline "transkript" denir. Ribozomların protein sentezi yapmak için okuduğu RNA molekülü "mesajcı RNA"dır. Prokaryotlarda RNA polimerazın ürettiği RNA ile ribozomların okuduğu mRNA aynı moleküldür. Ökaryotlarda ise transkript bir takım işlemlerden geçtikten sonra olgun mRNA olur. Bu bakımdan, işlem görmemiş mRNA'ya "öncül mRNA", "prekürsör mRNA" veya "pre-mRNA" da denir.Aşağıda ökaryotik ve prokaryotik organizmalardaki transkripsiyonun benzer ve farklı yönleri ele alınarak konuya genel bir bakış verilmektedir. Arkelerin transkripsiyon mekanizması ökaryotlarınkine benzer. Ayrıntılar için prokaryotik transkripsiyon ve ökaryotik transkripsiyon maddelerine bakınız.Gen ifadesinin düzenlenmesiBir genin okunmaya başlandığı noktanın hemen yukarısındaki bölgenin adı "promotör"dür ("Yukarı" ve "aşağı" terimleri transkripsiyon yönüne bağlı olarak kullanılır: transkripsiyon yönü aşağıdır, transkripsiyon yönünün tersi yukarıdır.). Promotör bölgesinde genlerin ifadesini kontrol eden DNA dizileri yer alır. Ökaryotlarda promotör bölgelerden başka, "hızlandırıcı" (İngilizce enhancer) adı verilen DNA bölgeleri de gen ifadesine etki eder. Bu hızlandırıcılar transkripsiyon başlama noktasından çok uzakta olsalar da üç boyutlu uzayda ona yakındırlar. Promotörlere ve hızlandırıcılara bağlanan bazı transkripsiyon faktörleri RNA polimerazla etkileşerek onun çalışmasını engeller veya onu uyarırlar.RNA polimerazÖkaryotik transkripsiyonda üç farklı RNA polimeraz vardır, bunlar farklı sınıf genleri okumaktan sorumludur.RNA Polimeraz I     45S ribosomal RNA (rRNA) genleriRNA polimeraz II     Mesajcı RNA (mRNA) genleriRNA Polimeraz III     Taşıyıcı RNA (tRNA), 5S rRNA ve bazı başka küçük RNA genleriProkaryotik transkripsiyonda bütün genler tek bir RNA polimeraz tarafından okunur. Arkelerin de bir RNA polimerazı vardır ama çalışma mekanizması ökaryotik RNA polimerazlarınki gibidir. Çok alt birimli olan bu RNA polimerazların yanı sıra SP67 ve T7 gibi fajların ve mitokondrilerin kendilerine has, tek alt birimli RNA polimerazları vardır.Prokaryot polimerazı dört alt birimden (α2, β, β' ve ω) oluşur. "Sigma (σ)" olarak adlandırılan bir diğer protein ise RNA polimerazın belli promotörlere bağlanmasını sağlar ama RNA'nın sentezi için gerekli değildir. Sigmanın birkaç çeşidi vardır ve hangi genin okunacağı RNA polimeraza bağlı olan sigma alt biriminin türüne bağlıdır. Ökaryotik polimerazların daha fazla sayıda alt birimi vardır.Bir prokaryot olan E. coli'nin RNA polimerazı en çok ökaryot RNA polimeraz II'ye benzer ve bunların evrimsel olarak ortak bir geçmişe sahip oldukları muhtemel görülür.RNA polimeraza yardımcı olan çeşitli kofaktör proteinler vardır. Tüm promotörlerden yapılan yazılmada rol oynayan bu proteinlere genel transkripsiyon faktörleri denir. Bunların hata kontrolü veya DNA tamiri gibi yardımcı işlevleri vardır. Diğer kofaktörler RNA polimerazın belli bazı genleri ifade edip etmeyeceğini belirler; bunlara sadece transkripsiyon faktörü denir. Gen ifadesini engelleyici transkripsiyon faktörlerine "represör", kolaylaştırıcı olanlara "aktivatör" denir. Bu sayede bir genin farklı metabolik şartlarda veya farklı dokularda uygun düzeyde ifadelenmesi mümkün olur.MekanizmaProkaryot ve ökaryotlarda transkripsiyon mekanizmalarının ayrıntıları farklılık gösterir. Prokaryotların çekirdek zarları olmadığı için, oluşmakta olan RNA'nın aynı anda ribozomlar tarafından da okunup çevrimi yapılabilir. Oysa ökaryotlarda, RNA çekirdek içinde oluştuktan sonra ribozomların bulunduğu sitoplazma ve endoplazmik retikuluma taşınır. Dolayısıyla transkripsiyon ve translasyon farklı mekân ve zamanlarda gerçekleşir.Transkripsiyon üç aşamadan oluşur: başlama, uzama ve sonlanma. Buna ek olarak ökaryotlarda bir işlenme aşaması vardır. BaşlamaProkaryotlar: Prokaryot promotörlerinde iki önemli DNA dizisi vardır: biri, transkripsiyon başlama noktasınından 10 nükleotit yukarıda (-10 konumunda) olan TATAAT dizisi; öbürü de -35'de bulunan TTGACA dizisi. Prokaryotlarda RNA polimeraz DNA'ya bağlanır, sonra bir promotör bulana kadar onun üzerinde ilerler. Sigma altbirimi -35 dizisini tanıyıp RNA polimerazın daha sıkı bağlanmasını sağlar. Sonra sigma ayrılır ve geriye dört alt birimli çekirdek enzimi birakır. A-T baz çiftleri G-C baz çiftlerine kıyasla daha zayıf oldukları için -10 dizisinde DNA zincirleri birbirlerinden ayrılırlar. İki DNA zincirinin birbirinden ayrıldığı bölge "transkripsiyon kabarcığı" olarak tabir edilir. RNA polimeraz uygun noktadan itibaren RNA sentezine başlar.Ökaryotlar: Ökaryotlarda -30'da TATAAA veya benzeri bir dizi (TATA kutusu) ve -80 civarında bulunan GGCCAATCT dizisi (CCAAT kutusu) vardır.Ökaryotlardaki TATA kutusuna önce TATA Bağlanma Proteini (TBP) bağlanır. Bu başlama kompleksi RNA polimerazı promotöre seferber eder ve oradan transkripsiyon sürecini başlatmasını sağlar. Bu proteinler temel düzeyde bir transkripsiyon için yeterlidirler. Daha yüksek seviyede transkripsiyon elde etmek için başka transkripsiyon faktörleri gereklidir.Promotör ve ökaryotlarda hızlandırıcılara bağlanan düzenleyici proteinler, RNA polimerazın DNA'ya bağlanmasına engel olarak veya bağlanmasını kolaylaştırarak transkripsiyonun seviyesini düzenlerler.UzamaUzama, prokaryot ve ökaryotlarda benzer şekilde gerçekleşir. Uzayan RNA zincirinin 3' ucuna nükleotitler eklenir. Yani, gelen nükleotidin 5' fosfat grubu ile RNA zincirindeki 3' hidroksil grubu arasında bir fosfodiester bağı oluşur. İki DNA zincirinden sadece biri, kendisini tümleyici bir RNA ipliğinin sentezi için kullanılır; buna "şablon zincir" denir. Sentez sırasında geçici bir DNA-RNA ikilisi oluşur ama sonra RNA DNA'dan ayrışır ve ilerleyen enzimin gerisinden DNA tekrar kapanıp normal çift sarmallı haline geri döner.Sonlanma RNA'da bir firkete yapısıProkaryotlar: RNA polimeraz bir sonlanma sinyaline rastlayınca RNA sentezi sona erer. Prokaryotik genlerde iki tip sonlanma vardır: "ro" adı verilen sonlanma proteininin gerekli olup olmadığına göre, ro'ya bağlı ve ro'dan bağımsız sonlanma. Bunların sinyalleri farklıdır. Ro'dan bağımsız sonlanmada sık G/C nükleotitli bir bölgeyi izleyen sık A/T'li bir bölge bulunur. G/C'li kısım RNA'ya yazılınca, oradaki nükleotitler firkete görünümlü bir şekil alırlar ve bu RNA polimerazı yavaşlatır. Bunu izleyen sık A/T'li kısımda ise polimeraz duraklar ve DNA'dan kopar.Ro'ya bağlı sonlanmada ise DNA'da sık C'li bir bölge olur. Transkripsiyon sırasında ro proteini büyümekte olan RNA'ya bağlanıp, onun üzerinden polimeraza doğru ilerlemeye başlar. Polimeraz sık C'li bölgeye gelince duraklar, bu sayede ro polimeraza yetişir ve yeni sentezlenmiş RNA'yı ondan kopartır.Ökaryotlar: Ökaryotlarda prokaryotlardaki gibi belirgin sonlanma sinyalleri yoktur. RNA polimeraz mRNA'nın biteceği yerden 1000-2000 nükleotit daha ileriye kadar okumaya devam eder. Bu RNA sonradan işlenerek fazla uzamış kısmı çıkartılır.İşlenmeProkaryot RNAlar sentezlendikten sonra herhangi bir işlemden geçmeden ribozomlar tarafından okunarak protein sentezinde kullanılırlar; hatta bir RNA'nın sentezi bitmeden bir ribozom onun çevirisini yapmaya başlar.Ökaryotlarda en son mRNA'nın oluşması için sınıf II RNA polimeraz okumaları (transkriptleri) bir takım işlemlerden geçer. Bu işlemler arasında başlık takılması (İngilizce capping), poliadenilasyon ve intron çıkarılması (uç birleştirme; İngilizce splicing) vardır. Ribozomal ve taşıyıcı RNAlar da işlenir, ama ne başlık alırlar ne de poliadenile olurlar.Başlık RNA'nın 5' ucunda olur. RNA'ya 5'-5' fosfodiester bağlantısı ile metilli bir guanin nükleotidi eklenir. Bu "başlık", mRNA'nın çeviri sırasında ribozomlar tarafından tanınması için önemlidir.Poliadenilasyonda RNA'nın ucu kesilerek doğru olan 3' uç ortaya çıkar ve buna bir dizi adenin nükleotiti eklenir. 3' ucun konumu RNA içinde bulunan bir nükleotit dizisi tarafından belirlenir. Bu dizi, AAUAAA, poliadenilasyon sinyali olarak adlandırılır. Gerekli enzimler bu diziyi tanıyınca RNA bu sinyalden 10 - 30 nükleotit aşağıda kesilir ve sonra ona bir dizi adenin eklenir. Bu adeninlerin eklenmesinde bir şablon kullanılmaz; A'lar sadece peşpeşe RNA'nın 3' ucuna eklenir. Bu poli(A) kuyruğu ortalama 200 nükleotit uzunluğunda olur ve RNA'yı yıkımdan korur.İntronlar, uçbirleştirme (ing. splicing) işlemi sonucu prekürsör RNA'dan çıkartılan bölümlerdir, kalan kısımlar ekson olarak adlandırılır. Çıkartılma mekanizmasına bağlı olarak iki tip introndan söz edilir. Tip I intronlarda RNA'nın katalizör özelliği vardır; kendi kendini kesip birleştirme yeteneğine sahiptir. Tip II intronlarda bu işlemden sorumlu olan splisozom (İngilizce spliceosome) adlı büyük bir RNA/protein kompleksi vardır. Splisozom, intron-ekson sınırını tanıyıp RNA'yı o noktada keser, sonra da bitişik eksonları birleştirerek ergin mRNA'yı meydana getirir.Ters transkripsiyonBazı virüsler (örneğin AIDS hastalığına neden olan HIV) RNA'yı DNA'ya yazar. Bu tür yazılma ters transkriptaz adlı enzim tarafından gerçekleştirilir. HIV'da ters transkriptaz, viral genomdan bir tümleyici (komplementer) DNA ipliği (cDNA) sentezler. Başka bir enzim, ribonükleaz H, RNA ipliğini sindirir. Ardından ters transkriptaz, cDNA'yı tümleyici bir DNA ipliği daha sentezleyerek çift sarmallı bir DNA oluşturur. Bu viral DNA, entegraz adlı bir enzim aracılığıyla konak hücrenin genomuna dahil olur. Bu sürecin sonucunda konak hücre yeni virüslerin oluşumu için gerekli olan viral proteinleri ve RNA ipliğini üretmeye başlar. Ardından hücre programlanmış ölüm mekanizmasıyla (apoptoz) imha olur.

http://www.biyologlar.com/transkripsiyon-genetik-nedir

Promotör Nedir

Promotör, biyolojide genlerin transkripsiyonunu başlatan, DNA'parçasıdır. Promotörler, ilgili genin transkripsiyon başlangıç bölgesine yakın kısımlarda ve genle aynı DNA iplikçiği üzerinde bulunular. Promotörler, transkripsiyonunu başlattıkları gen dizisindan önce karşıt tamamlayıcı DNA dizisinin 3' ucuna doğru olan kısımda bulunurlar. Promotörler genelde farklı nukleotid uzunluklarına sahip olmakla beraber, 100 ila 1000 nukleotid çifti uzunluğunda olurlar.Transkripsiyon gen ifadesinin ilk basamağıdır, belirli bir DNA ipliği üzerindeki bilginin RNA polimeraz enzimi aracılığı ile bir RNA molekülüne aktarılması işlemidir. RNA polimeraz enzimi, bu işlem sırasında aslında mRNA olarak adlandırılan bir RNA molekülünü sentezlemektedir. Sentezlenen bu mRNA molekülüne transkript denir. mRNA'nın sentezlendiği bu işleme de transkripsiyon denmektedir. Promotörler, transkripsiyon işlemi için gerekli olan ve RNA polizmerazın sağlam bir şekilde bağlanabildiği özgün DNA parçacıklarını içerirler. Bu özgün DNA parçaçıklarına RNA polimerazın yanı sıra, RNA polimerazın çalışmasını güçlendirebilecek proteinler, transkipsiyon faktörleri, bağlanabilirler. Transkripsiyon faktörleri spesifik promotör dizilerine gen ifadesinin düzenlenmesinde aktivatör ya da baskılayıcı olrak görev yapmak üzere, özgün DNA dizisini tanıyarak bağlanırlar.

http://www.biyologlar.com/promotor-nedir

RNA polimeraz nedir

RNA polimerazlar (kısaca RNAP veya RNApol), bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün 3' ucunda ribonükleotitlerin polimerleşmesini sağlar.RNA polimerazlar iki ana kategoride gruplandırılırlar. Bakteri, ökaryot ve arkelerde bu enzim en az beş altbirimden oluşur. Bakteriyofaj, mitokondri ve kloroplastlardaki enzim ise tek altbirimden oluşur. Her gruptaki enzimlerin ortak özellikleri o gruptakilerin evrimsel olarak ilişkili olduklarına işaret eder.TarihçeRNAP, Sam Weiss ve Jerard Hurwitz tarafından, birbirlerinden bağımsız olarak, 1960'da keşfedilmiştir. Oysa, 1959 Nobel Tıp veya Fizyoloji Ödülü Severo Ochoa ve Arthur Kornberg'e RNA polimeraz zannettikleri enzimin keşfi için verilmiş, sonrasında bunun ribonükleaz olduğu ortaya çıkmıştır. Bakteriyel RNA polimerazın üç boyutlu yapısı 1999'da [1], maya RNA polimeraz II enzimininki ise 2000'de çözülmüştür.2006 Nobel Kimya ödülü Roger Kornberg'e, transkripsiyon sırasında RNA polimerazın ayrıntılı görüntülerini elde etmiş olmasından dolayı verilmiştir.Transkripsiyon kontrolüGen transkripsiyonunun kontrolü gen ifadesini etki ederek hücrenin ortamına uyum sağlamasını, organizma içinde özelleşmiş işlevlerini yerine getirmesinin ve canlı kalmak için gerekli olan temel metabolik süreçleri sürdürmesini sağlar. Dolayısıyla, RNA polimerazın etkinliğinin hem karmaşık olması hem de sıkı bir sekilde düzenlenmesi gereklidir. Escherichia coli bakterisinde RNA polimeraza etki edebilen 100'den fazla faktör tanımlanmıştır.RNA polimeraz, DNA üzerinde promotör olarak adlandırılan özel bölgelerden başlayarak transkripsiyonu başlatır. Kendisine şablon olarak kullandığı DNA zincirini tümleyici bir RNA zinciri meydana getirir. RNA zincirine nükleotidler eklenme sürecine uzama (elongasyon) denir; ökaryotlarda RNA polimeraz 2,4 milyon nükleotit uzunluğunda (distrofin geninin uzunluğu) zincirler oluşturabilir. Genin sonunda bulunan ve sonlayıcı (terminatör) olarak adlandırılan özel DNA dizgelerine gelince RNA polimeraz oluşturmuş olduğu RNA'yı salar.RNA polimerazın ürünleri arasında aşağıdakiler bulunur:    mesajcı RNA (mRNA)- ribozomlar tarafından protein sentezlenmesi için bir şablon işlevi görür.    Kodlamayan RNA - Protein kodlamayan genlerin ürünleridir. Bunların en belirgin örneği taşıyıcı RNA (tRNA) ve ribozomal RNA (rRNA)'dır, bunlar protein sentezinde görev alırlar. Ancak, 1990 sonlarında pek çok yeni tür RNA geni keşfedilmiştir. RNA genlerinin hücre biyolojisinde çok daha fazla rolleri olduğu artık bilinmektedir.        Taşıyıcı RNA (tRNA), spesifik amino asitleri protein sentezi sırasında büyümekte olan polipeptide eklenmek üzere ribozoma getirirler.        Ribozomal RNA (rRNA), ribozomların bir parçasıdır, peptid bağların oluşmasına katalizörlük yapar.        Mikro RNA (miRNA), gen ifadesini düzenler.        Katalitik RNA (ribozim), katalizör özellikli RNA molekülleridir.Transkripsiyon kofaktörleriRNAP'ye bağlanıp onun davranışı değiştirebilen, transkripsiyon faktörü (veya kofaktörü) olarak adlandırılan çeşitli proteinler vardır. Örneğin E.coli 'de greA ve greB proteinleri, RNA polimerazın büyümekte olan RNA zincirini koparma yeteneğini artırırlar. Bu sayede, hatalı bir baz eklenmesi yüzünden duraklamış olan bir RNA polimeraz kurtarılıp yeniden çalışır hale gelir. Bir diğer kofaktör olan Mfd, transkripsiyon eşlikli tamirde görev alır, bu süreç sırasında RNAP, DNA'daki bozuklukları farkedip DNA tamiri için gerekli olan enzimleri seferber eder. Diğer kofaktörlerin düzenleyici rolleri vardır, yani RNAP'nin bir geni ifade edip etmeyeceğini belirlerler.Çalışma mekanizmasının ana hatlarıAşağıda ana hatlarıyla verilen bakteri RNA polimerazının çalışma mekanizması genel olarak RNA polimerazların nasıl çalıştığı hakkında fikir vermek amacıyla özetlenmiştir. Diğer RNA polimerazlarda bulunan ek yardımcı proteinler bu mekanizmanın bazı ayrıntılarının farklı olmasına neden olabilir. Dolayısıyla belli bir enzim hakkında spesifik bilgi edinmek için onun maddesine bakınız. Bağlanma ve uzamaRNA polimerazın DNA'ya bağlanması için α altbiriminin RNA başlama noktasının yukarısında, -40 ila -70 konumları arasında bir DNA dizgesini tanıması, ayrıca sigma (σ) faktörünün de -10 ile -35 arasındaki bölgeye bağlanması gerekmektedir. Gen ifadesini düzenleyen çeşitli σ faktörleri vardır, bunlar belli gen sınıfları için özelleşmişlerdir. Örneğin σ70 normal şartlarda bulunur ve hücrenin normal çalışması için gerekli genlere RNA polimerazın bağlanmasını sağlar, buna karşın σ32 ısı şokuyla ilişkili genlere bağlanmayı sağlar.RNA polimeraz DNA'ya bağlandıktan sonra bu protein-DNA kompleksi "kapalı"dan "açık" hale dönüşür. Bu değişim sonucunda yaklaşık 13 bazlık bir bölümde DNA iplikleri birbirlerinden ayrılırlar. Ribonükleotitler şablon DNA zinciriyle baz çiftleri oluştururlar, Watson-Crick baz eşleşmeleriyle.Yanlış nükleotidin zincire katılması durumunda RNA polimeraz geri gidip hatalı nükleotit (ve ondan bir evvelkini) çıkarıp uzatmayı yeniden dener T. aquaticus RNA polimerazı RNA zincirini uzatması sırasındaki şematik görüntüsü. RNA ve DNA'nın aldığı şekiller daha belli olsun diye protein belli kısımları saydamlaştırılmıştır. Sarı renkli gözterilen magnezyum iyonu enzimin aktif bölgesinde yer almaktadır.UzamaTranskripsiyon uzaması sırasında açık kompleks bir transkripsiyon kompleksine dönüşür ve yeni ribonükleotitler eklenir. RNA transkript oluşurken polimerazın önündeki DNA daha çok açılır ve 13 çift bazlık açık kompleks 17 çift bazlık bir transkripsiyon kompleksine dönüşür. Bu aşamada promotörün -10 ile -35 arasındaki bölgesinin şekli bozulur, ve σ faktör RNA polimerazdan ayrışır. Bu sayede RNAP'nin kalan kısmı DNA üzerinde ilerleyebilir, çünkü daha evvel σ faktör polimerazı yerinde tutmaktaydı.17 çb'lik transkripsiyon kompleksinin içinde 8 çb'lik bir DNA-RNA hibridi vardır, yani RNA transkriptinin 8 bazı DNA ipliğindeki bazlarlar eşlenmiştir. Transkripsiyon devam ettikçe RNA transkriptinin 3' ucuna ribonükleotitler eklenir ve RNAP kompleksi DNA üzerinde ilerler.RNA'ya ribonükleotitlerin eklenme mekanziması DNA polimerizasyon mekanizmasına çok benzer, bu yüzden DNA ve RNA polimeraz enzimlerinin evrimsel olarak birbiriyle ilişkili olduğu tahmin edilir. RNAP'de aspartik asit kalıntıları Mg2+ iyonlarına bağlanırlar, bunlar da ribonükleotitlerin fosfatlarını koordine ederler. İlk Mg2+, eklenecek NTP'nin α-fosfatına bağlanır. Bu sayede RNA zincirindeki 3' OH grubundan nükleofilik bir saldırı mümkün olur ve zincire bir NTP daha eklenir. İkinci Mg2+ NTP'nin pirofosfatına bağlanır. Toplam reaksiyon denklemi şöyledir: (NMP)n + NTP --> (NMP)n+1 + PPiSonlanmaE. coli RNA polimerazında transkripsiyonun sonlanması rho'ya bağımlı veya rho'dan bağımsız olmak üzere iki türlü olabilir. Rho'dan bağımsız sonlanmada DNA'daki palindromik bir bölgenin okunması sonucunda oluşan RNA kendi kendisiyle baz eşlemesi yaparak firkete gibi bir şekil alır. Bu firkete yapı G-C zenginidir, DNA-RNA hibridinden daha kararlıdır. Bunun sonucundan Transkripsiyon kompleksi içinde yer alan 8 çb'lık DNA-RNA hibridi 4 bazlık bir hibride dönüşür. Bu 4 baz-çift de zayıf bağlı A-U baz çiftleridir ve bu yüzden tüm RNA transkripti polimerazdan kopar.RNA polimeraz türleriBakterilerde RNA polimerazBakterilerde aynı enzim hem mRNA, hem rRNA hem de tRNA'yı sentezler.RNA polimeraz göreli olarak büyük bir moleküldür. Toplam 400 kDA büyüklüğünde olan çekirdek enzim 5 altbirimden oluşur:    α2: İki α altbirimi enzimi bir araya getirirler ve düzenleyici faktörlerle etkileşirler. Bu altbirimlerin karboksil uç bölgesi, promotöre bağlanır, amino uç bölgesi polimerazın geri kalan kısmına bağlanır.    β: Polimeraz etkinliğine sahiptir, zincir başlatma ve uzatma dahil, RNA sentezini katalizler.    β': DNA'ya özgül olmayan şekilde (non-spesifik olarak) bağlanır.    ω: RNA polimerazın altbirimlerinin bir araya gelmesini sağlar. Denatüre olmuş RNA polimerazı tekrar çalışır hale getirir, koruyucu ve şaperon işlevine sahiptir.Promotörlere bağlanabilmek için çekirdek enzimin sigma (σ) adında bir altbirime daha gereği vardır. Sigma faktörü RNA polimerazın (non-spesifik) DNA'ya affinitesini iyice azaltıp bazı promotör bölgelere olan spesifiteyi artırır. Tüm holoenzim dolayısıyla 6 altbirimden oluşur: α2ββ'σω (~480 kDa). RNAP'nin bir kenarında, β ve β' arasında, 55 Å (5.5 nm) uzunluğunda ve 25 Å (2.5 nm) çapında bir oluk vardır, bunun içine 20 Å (2 nm) çapındaki DNA rahatça oturur. 55 Å (5.5 nm) uzunluk, 16 nükleotide karşılık gelir.RNA polimeraz çalışmadığı zamanlar DNA üzerinde düşük affiniteli yerlere bağlı olur, yani hücre içinde serbestçe dolaşmaz.Ökaryotlarda RNA PolimerazÖkaryotlarda birkaç tip RNAP vardır, bunlar farklı RNA tipleri sentezler.    RNA polimeraz I 45S pre-rRNAyı sentezlerler, bu olgunlaşıp ribozomda yer alan 28S, 18S ve 5,8S rRNA moleküllerini oluşturur.    RNA polimeraz II, mRNA'ların öncüllerini ve çoğu snRNA ve mikroRNA'yı sentezler. Bu polimeraz üzerinde en fazla araştırmanın yapılmış olanıdır. Pek çok transkripsiyon faktörü onun promotörlere bağlanmasına etki eder.    RNA polimeraz III, tRNA, 5S rRNA ve diğer bazı küçük RNA'ları sentezler.Arkelerde RNA polimerazArkelerde tek bir RNAP vardır, ökaryotlardaki üç polimeraza çok benzer. Bu yüzden arke polimerazının ökaryotlardaki özelleşmiş polimerazların atasına benzediği öne sürülmüştür.Virüslerde RNA polimerazÇoğu virüs kendi RNA polimearazını kodlar. En çok çalışılmış viral RNAP, bakteriofaj T7'de bulunan T7 RNA polimerazdır. Çoğu viral polimerazın DNA polimerazdan evrimleşmiş olduğu ve yukarıda tarif edilen çok alt birimli ökaryotik polimerazlarla doğrudan ilişkilerinin olmadığı düşünülmektedir. Buna rağmen RNA zincirinin oluşmasının mekanizmasını ayrıntıları temelde yukarıda anlatılan çok altbirimli RNA polimerazlarınki gibidir.GruplandırmaRNA polimeraz etkinliğine sahip olan çeşitli enzimler yapısal olarak iki ana grup oluştururlar.    Birinci grup RNA polimerazlar çok altbirimli olup, bakteri RNA polimerazı, ökaryotlardaki RNA polimeraz I, II ve III'ü, arke RNA polimerazı, ve plastit DNA'sında geni bulunan kloroplast RNA polimerazını kapsar.    İkinci gruptakiler ise tek bir altbirimden oluşurlar, bu grupta SP6, T3, T7 fajlarının RNA polimerazları ve çekirdek DNA'sında geni bulunan mitokondri ve kloroplast RNA polimerazları bulunur. Birinci gruba ait olan bakteri RNA polimerazının büyüklüğü 380 kDA iken, ikinci gruptaki polimerazların büyüklüğü 100 kDA civarındadır. Bu yüzden bu RNA polimerazların ortak bir atadan evrimleşmiş oldukları muhtemel sayılmaktadır.Burada RNA polimeraz enzimleri hakkında genel bilgiler verilmektedir, belli RNA polimerazlar hakkında daha fazla bilgi edinmek için ilgili maddelere bakınız.Çok altbirimli RNA polimerazlarBakterilerdeki RNA polimeraz ile ökaryotların RNA polimeraz II'si çeşitli benzerlikler gösterirler:bakteri RNA polimerazı     β'     β     αI     αII     ωarke RNA polimerazı     A'/A     B     D     L     K     +6 diğerökaryotik RNA polimeraz I     RPA1     RPA2     RPC5     RPC9     RPB6     +9 diğerökaryotik RNA polimeraz II     RPB1     RPB2     RPB3     RPB11     RPB6     +7 diğerökaryotik RNA polimeraz III     RPC1     RPC2     RPC5     RPC9     RPB6     +11 diğerBu RNA polimerazların üç boyutlu yapıları karşılaştırıldığında bir yengeç kıskacına benzerler. Kıskacın ortasında DNA için uygun boyutta yaklaşık 25 A'lık bir aralık bulunur. Enzimin aktif merkezinde bulunan Mg iyonu kıskacın tabınındadır, bakteri polimerazında β ve β' olarak adlandırılan altbirimler kıskaçları ve tabanın bir kısmını oluşturur. Birbirinin aynı olan αI ve αII altbirimleri kıskaçların dış kısımlarındadır, biri β, öbürü β' ile temas eder. ω altbirimi β' altbiriminin oluşturduğu kıskacın tabanında, DNA bağlanma aralıpından uzaktadır. Prokaryotik altbirimlerin her birinin üç boyutlu yapısı ile yukarıdaki tabloda ona karşılık gelen ökaryotik altbirimin üç boyutlu yapısı pek az bir farkla çakışır. Bu alt birimlerin birbirlerine göre olan konumları da prokaryotik ve ökaryotik enzimde ufak açı farklılıkları ile çakışır. Bu benzerliklerin yanı sıra aşağıdaki benzerlikler de vardır:    Her iki enzimin aktif merkezi aynı yerde (kıskacı tabanında) yer alır ve içinde bir Mg2+ barındırır.    Her iki enzimde de RNA'nın çıkması için benzer boyutlarda, konumda ve yapıda bir kanal vardır.    Her iki enzimde de RNA'ya eklenecek nükleotidin içeri girmesi için benzer boyutlarda, konumda ve yapıda bir kanal vardır.    Her iki enzimin de aktivasyon faktörleri tarafından etkinleştirildiği eşdeğer konumlu bir bölge vardır.    Transkripsiyon mekanzimasında da benzerlikler vardır. Her iki polimeraz da DNA'ya bağlanınca 14 baz çiftlik bir bölgenin açılmasına neden olur. Uzayan RNA 9-11 baz uzunluğa varınca RNA polimeraz promotörden ve başlama fakt,rlerinden kopup DNA üzerinde ilerlemeye başlar.Tek altbirimli RNA polimerazlarDNA'yı (kırmızı ve mavi zincirler) okuyarak bir mRNA (yeşil) oluşturmukta olan T7 RNA polymeraz (şematik olarak, mor renkli). Resim PDB 1MSW'den elde edilmiştir.Tek altbirimli RNA polimerazları DNA polimerazlarina ve ters trasnkriptaz enzimlerine benzerler. Tek altbirimli RNA polimerazların mekanizmaları faklılık gösterir. Başlama kompleksinde RNA-DNA hibiridinin uzunluğu sadece iki-üç nükleotittir, bu çok altbirimli RNA polimerazlardan oldukça farklıdır. Ancak uzama aşamasındaRNA-DNA hibridinin boyu E. coli polimerazındaki gibi 8-9 nükleotit uzunluktadır. Mitokondri RNA polimeraz, T3 ve T7 RNA polimerazdan farklı olarak, bakteriyel sigma faktörüne benzer bir yardımcı proteinle kompleksleşip sonra DNA'ya bağlanır.Tek protein birimli RNA polimerazlar DNA polimeraz ile aynı yapısal özelliklere sahip oldukları için "DNA/RNA polimerazları" adlı protein familyasında yer alırlar. Bu familyadaki diğer proteinler 1) DNA polimeraz I, 2) hata baypas DNA polimeraz katalitik bölgesi, 3) ters transkriptaz, 4) T7 RNA polimeraz, 5) RNA-bağımlı RNA polimeraz ve 6) çift iplikli RNA faj RNA-bağımlı RNA polimeraz.Mitokondri ve kloroplastların RNA polimerazları da bu familyaya aittir.

http://www.biyologlar.com/rna-polimeraz-nedir

Transkripsiyon faktörü nedir Biyolojik rolleri nelerdir

Moleküler biyolojide bir transkripsiyon faktörü genlerin transkripsiyonunu düzenlemek için DNA üzerinde belli bir diziye bağlanabilen bir proteindir. Bunlar diziye-özgün DNA bağlanma proteini olarak da adlandırılır. Transkripsiyon faktörleri tek başına veya bir komplekste yer alan başka proteinlerle beraber, RNA polimeraz tarafından bir genin transkripsiyonunu ya (bir aktivatör olarak) kolaylaştırırlar veya (bir represör olarak) engeller Biyolojik rolleri nelerdir Transkripsiyon faktörleri DNA'daki genetik bilgiyi okuyup yorumlayan protein gruplarından biridir. DNA'ya bağlanırlar ve gen transkripsiyonunun artması veya azalmasına yol açarlar. Bu bakımdan pek çok önemli hücresel süreçte hayatî bir konuma sahiptirler. Transkripsiyon faktörlerinin ilişkili olduğu bazı önemli fonksiyonlar aşağıdadır:    Bazal transkripsiyon düzenlemesi Ökaryotlarda transkripsiyonun gerçekleşmesi için "genel transkripsiyon faktörü" diye adlandırılan önemli bir transkripsiyon faktörü sınıfının üyeleri gereklidir. Bu faktörlerin çoğu doğrudan DNA'ya bağlı değildir, ama RNA polimeraz ile doğrudan etkileşirler. Bunların en önemlileri TFIIA, TFIIB, TFIID (ayrıca bakınız TATA bağlanma proteini), TFIIE, TFIIF ve TFIIH'dir.    Gelişme Çok hücreli canlıların gelişmesinde pek çok transkripsiyon faktörü rol oynar. Uyarılara tepki veren bu transkripsiyon faktörleri, ilgili genleri çalıştırırlar veya durdurarlar, bu da hücre morfolojisinde, hücre kaderi belirlenmesinde ve hücresel başkalaşımda gerekli olan değişiklikleri mümkün kılar. Örneğin, Hox transkripsiyon faktör ailesi sirke sineğinden insana kadar pek çok canlıda vücut biçiminin oluşması için önemlidir. Bir diğer örnek, insanlarda cinsiyetin belirlenmesinde rol oynayan SRY genidir.    Hücreler arası sinyallere tepki Hücreler, sinyal molekülleri salgılayarak birbirleriyle haberleşirler, bu moleküller alıcı hücrelerde sinyal silsileleri (ing. cascade) başlatır. Eğer sinyal, alıcı hücredeki genlerin ifadesinin değişmesini gerektiriyorsa sinyal silsilesinin akışaşağısında (ing. downstream) genelde bir transkripsiyon faktörü bulunur. Basit bir örnek olarak estrojen sinyallemesi verilebilir: estrojen, plasenta ve yumurtalık gibi dokular tarafından salgılanır, alıcı hücrenin hücre zarından geçip sitoplazmasındaki estrojen reseptörüne bağlanır; sonra estrojen reseptörü çekirdeğe gidip kendi DNA bağlanma yerine bağlanır, bu da ilgili genlerin transkripsiyon denetimini değiştirir.    Çevreye tepki vermek Transkripsiyon faktörleri çevresel uyaranların doğurduğu sinyal silsilelerinin ucunda da yer alabilirler. Buna örnekler, yüksek sıcaklıkta canlı kalmayı sağlayan ısı şoku faktörü (ing., heat shock factor; HSF), düşük oksijenli ortamda yaşamı sağlayan hipoksiya indüklenebilir faktör (ing. hypoxia inducible factor; HIF) ve hücre içindeki lipit seviyelerini düzenleyen sterol düzenleyici elemana bağlanıcı protein (ing., sterol regulatory element binding protein; SREBP) olarak sayılabilir.    Hücre döngüsü kontrolü Çoğu transkripsiyon faktörü, özellikle onkogen veya tümör bastırıcıları hücre döngüsünü düzenlerler, dolayısıyla bir hücrenin ne kadar büyeyeceğine ve ne zaman bölüneceğini belirler. Bunun bir örneği hücre büyümesi ve apoptozda önemli rol oynayan Myc oncogenidirTranskripsiyon faktör etkinliğinin düzenlenmesiCandida albicans 'ta beyaz/opak geçişi kontrol eden transkripsiyon faktörlerinin birbirini denetimi. Ucu oklu cizgiler aktivasyonu, ucu kesik çizgiler ise baskılamaya karşılık gelirBiyolojik süreçlerin genelde birden çok kontrol ve düzenleme katmanı vardır. Bu, transkripsiyon faktörleri için de geçerlidir: bir gen ürününün miktarı transkripsiyon seviyesi tarafından belirlendiği gibi, transkripsiyon sürecinin kendi de denetime tâbidir. Aşağıda, bir transkripsiyon faktörünün denetlenme yollarının bazıları sıralanmıştır:    Transkripsiyon faktör sentezi Transkripsiyon faktörlerinin sentezinde bir gen RNA'ya çevriyazılır (ing. transcribe), RNA da proteine çevrilir. Bu adımların her birinin denetimi bir transkripsiyon faktörünün seviyesine etki eder. Transkripsiyon faktörleri kendi kendilerini de denetleyebilirler: Örneğin, transkripsiyon faktörünün kendi represörü olması bir geri besleme döngüsü meydana getirir; transkripsiyon faktörü kendi geninin promotörüne bağlanarak kendi üretimini aşağı ayarlar (ing. downregulate), böylece transkripsiyon faktörünün hücre içindeki seviyesi düşük kalmış olur.    Çekirdeğe taşınma Ökaryotlarda transkripsiyon faktörleri (çoğu protein gibi) çekirdekte okunur amd sonra sitoplazmaya taşınır, oysa işlev yerleri çekirdektir. Çekirdekte aktif olan proteinler çekirdeğe gitmelerini sağlayan bir çekirdek lokalizasyon sinyaline sahiptirler ama transkripsiyon faktörleri durumunda bu lokalizasyon otomatik olmaz, bu süreç onların denetiminin önemli bir noktasıdır. Çekirdek reseptörleri gibi bazı transkripsiyon faktörleri sitoplazmadan çekirdeğe geçebilmek için önce bir liganda bağlanmak zorundadırlar.    Kimyasal modifikasyon veya ligand bağlanması ile etkinleşme Ligandlar bir transkripsiyon faktörünün nerede bulunduğunu belirlemekten başka, onun etkin halde olmasını ve DNA'ya veya başka kofaktörlere bağlanabilir olmasına da etki ederler. Transkripsiyon faktörünün kimyasal değişimi de onu etkinleştirebilir. Örneğin, STAT proteinleri gibi transkripsiyon faktörlerinin DNA'ya bağlanmaları için fosforile olmaları gerekir.    DNA bağlanma yerinin erişilebilirliği Ökaryotlarda aktif olarak çevriyazılmayan genler heterokromatinde yer alır. Heterokromatin, kromozomun tıkız (kompakt) olduğu bölgeleridir; bu bölgelerde DNA'nın histonlara sıkıca sarılmasıyla oluşan kromatin iplikleri vardır. Bu sıkışıklık yüzünden heterokromatindeki DNA'ya çoğu transkripsyon faktörü tafarından erişilemez. Transkripsyon faktörünün DNA'ya bağlanabilmesi için heterokromatinin histon değişimleri (modifikasyonları) yoluyla daha gevşek yapılı olan ökromatine dönüştürülmesi gerekir. Bir transkripsiyon faktörünün DNA'ya bağlanamamasının bir nedeni de bağlanma yerinin başka bir transkripsyon faktörü tarafında işgal edilmiş olmasıdır. Bir genin denetiminde iki transkripsiyon faktörü (bir aktivatör ve bir represör) bu şekilde birbirine zıtlık yaratabilirler.    Bir kompleksin oluşumu için gereken diğer kofaktörler veya transkripsiyon faktörleri Çoğu transkripsiyon faktörü tek başına çalışmaz. Genelde transkripsiyonun olması için birkaç transkripsiyon faktörünün DNA düzenleyici dizilerine bağlanması gerekir. Bu transkripsiyon faktörleri de ardından transkripsiyon kofaktörlerini seferber ederek başlama öncesi kopmpleks ve RNA polimerazın bağlanmasını sağlarlar. Dolayısıyla tek bir transkripsyon faktörünün transkripsiyonu başlatabilmesi için bu diğer proteinlerin hepsinin yerinde olması ve transkripsiyon faktörünün kendisin de onlara bağlanabilecek bir durumda olması gerekir.YapıÖkaryotik transkripsiyon başlangıcının basit bir modeli. 1. Transkripsiyon başma noktası. 2. RNA polimeraz ve genel transkripsiyon faktörlerinin bulunduğu TATA kutusu. 3. Bir aktivatör proteinin bağlı olduğu hızlandırıcı (ing. enhancer) diziTranskripsiyon faktörlerinin yapıları modülerdir ve şu bölgelerden:    DNA bağlanma bölgesi (DBB) düzenlenen genin bitişiğindeki promotör bölgesindeki, veya daha uzağındaki hızlandırıcı (ing. enhancer) DNA dizilerine bağlanır.    Trans-aktivasyon bölgesi (TAB) transkripsiyon eşdüzenleyici (co-regulator) başka proteinler için bağlanma yerlerine sahiptir.    Bazen bulunan bir sinyal algılama bölgesi, örneğin bir ligand bağlanma bölgesi, moleküler sinyalleri algılayıp transkripsiyon kompleksinin geri kalanına ileterek genin aşağı veya yukarı ayarlamasını yapar. Bazen DNA bağlanma bölgesi ve sinyal algılama bölgesi, transkripsiyon kompleksini oluşturan faklı proteinlerde yer alırlar.DNA bağlanma proteinleriTranskripsiyon faktörleri çoğu zaman DNA bağlanma bölgelerindeki benzerliğe göre sınıflandırılırlar:DNA'ya bağlanan başlıca transkripsiyon faktörü/DNA bağlanma bölgesi sınıfları aşağıda listelenmiştir:    Lambda repressörü-gibi (SCOP 47413) (Şablon:InterPro)    (SCOP 46894) İki parçalı tepki düzenleyicilerinin (ing. bipartite response regulators) C-uç efektör bölgesi (Şablon:InterPro)    Serum tepki faktörü (ing. serum response factor; srf)-gibi (SCOP 55455) (Şablon:InterPro)    Bazik-sarmal-halka-sarmal (SCOP 47460) (Şablon:InterPro)    GCC kutusu (SCOP 54175)    Zn2/Cys6 (SCOP 57701)    winged helix (SCOP 46785)    Zn2/Cys8 çekirdek reseptorü çinko parmağı (SCOP 57716)    homeobölge proteinleri - Başka transkripsiyon faktörlerinin promotörlerinde yer alan homeokutuları DNA dizilerine bağlanırlar. Homeobölgeli (homeodomain) proteinler gelişimin denetlenmesinde önemli rol oynarlar. (SCOP 46689)    Çoklu bölgeli Cys2His2 çinko parmaklılar (SCOP 57667) (Şablon:InterPro)    bazik-lösin fermuarlı (ing. basic leucine zipper, bZIP) proteinler (SCOP 57959)Daha çok ayrıntı için Transkripsiyon faktör sınıfları listesi'ne bakınız.Transkripsiyon denetiminde önemli rol oynayan başka proteinler de vardır ama bunlar DNA'ya bağlanmadıkları için transkripsiyon faktörü olarak sayılmazlar. Örneğin, koaktivatörler, kromatin biçimlendiriciler, histon asetilazlar ve deasetilazlar, kinazlar ve metilazlar.Transkripsiyon faktörü bağlanma yerleriTranskripsyon faktörleri kendilerine has nükleotit dizilerinde DNA'ya bağlanırlar. Bu bağlanma yerleri ile etkileşirken kimyasal olarak hidrojen bağları ve Van der Waals bağları kullanırlar. Bir bağlanma yerindeki bu etkileşimlerden bazıları diğerlerinden daha zayıftır. Bu yüzden transkripsyon faktörleri tek bir diziye değil, birbiriyle yakın ilişkili bir grup dizye bağlanabilirler, her biriyle farklı güçte olmak üzere.Örneğin, TATA bağlanma proteininin (TBP) konsensus bağlanma dizisiTATAAAAolmakla beraber TBP transkripsiyon faktörü buna benzer olanTATATAT veya TATATAAdizilerine de bağlanabilir.Transkripsiyon faktörleri benzer dizilere bağlanabildikleri ve bunların kısa diziler olduğu için, yeterince uzun bir DNA zincirinde bir bağlanma yeri tesadüfen de bulunabilir. Buna rağmen bir transkripsiyon faktörü genomda bulunan kendisiyle uyumlu her bağlanma yerine bağlanmaz, çünkü DNA'ya erişilebilirlik ve kendisi için gerekli kofaktörlerin mevcudiyeti sınırlamalar getirir. Bu yüzden bir transkripsiyon faktörünün bağlanma yerini bilmek, bir canlı hücrede onun gerçekten nereye bağlandığını öngörmeye yetmez.SınıflarMekanizmaya göreTranskripsiyon faktörlerinin mekanizmalarına göre üç sınıfı vardır:Genel transkripsiyon faktörleri, transkripsiyon başlangıç öncesi kompleks oluşumuyla ilişkilidir. En yaygın olanlarının adları TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH olarak kısaltılır. Her yerde bulunurlar ve tüm Sınıf II genlerin transkripsiyon başlama noktasını çevreleyen çekirdek promotör bölgesi ile etkileşirler.    Akışyukarı (upstream) transkripsyon faktörleri transkripsiyon başlama noktasının yukarı kısmına bağlanarak transkripsiyonu uyaran veya bastıran proteinlerdir.    İndüklenebilir transkripsyon faktörleri akış yukarı transkripsyon faktörleri gibidirler ama aktivasyon veya inhibisyon gerektirirler.İşlevselAlternatif olarak transkripsiyon faktörleri düzenleyici fonksiyonlarına göre sınıflandırılırlar:    I. Yapısal etkin (constitutively active) -Tüm hücrelerde her zaman mevcut- genel transkripsiyon faktörleri, Sp1, NF1, CCAAT    II. Şartlı etkin - aktivasyon gerektirir.    II.A. Gelişimsel (hücreye özgün) - gen ifadesi sıkı kontrol altında ama başladıktan sonra ek atkinleştirme gerektirmez.        II.B Sinyale bağımlı - etkinleşme için haricî bir sinyal gerektirir.            II.B.1 Hücredışı ligand bağımlı - çekirdek reseptörleri            II.B.2 Hücrediçi ligand bağımlı - küçük hücre içi moleküller tarafından etkinleşir. Örneğin, SREBP, p53, öksüz çekirdek reseptörleri.            II.B.3 Hücre zarı resptörü bağımlı ikincil mesajcı sinyalleme silsilesi bir transkripsiyon faktörünün fosforile olmasına neden olur.                II.B.3.b Gizli (latent) sitoplazmik faktörler - inaktif hali sitoplazmada yer alır ama etkinleşince çekirdeğe geçer - Örneğin, STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT.                II.B.3.a yerleşik çekirdek faktörleri aktivasyon halinden bağimsız olarak çekirdekte yer alır. Örneğin, CREB, AP-1, Mef2.Farklı organizmalarda rolleri ve korunumlarıTranskripsiyon faktörleri gen ifadesinin düzenlenmesi için zaruridir ve dolayısıyla her canlıda bulunur. Canlılarda bulunan transkripsiyon faktörü sayısı genom büyüklüğü ile orantılıdır, daha büyük genomlarda gen başına transkripsiyon faktörü sayısı daha çoktur. İnsan genomunda DNA'ya bağlanabilen yaklaşık 2600 protein vardır, bunların çoğunun transkripsiyon faktörü olduğu tahmin edilmektedir. Dolayısıyla genomdaki genlerin yaklaşık %10'u transkripsiyon faktörlerini şifrelemektedir, yani bu protein grubu insan proteinleri arasında en kalabalık olanıdır. Genlerin genelde iki tarafında birkaç farklı transkripsiyon faktörünün bağlanma yerleri bulunmaktadır ve bu genlerin verimli olarak ifadesi için birkaç transkripsiyon faktörünün beraberce etkisi gerekmektedir. Yani 2000 insan transkripsiyon faktörünün belli bir alt kümesinin kombinezonları insan genomundaki her genin gelişim sırasındaki kendine has denetimini açıklamaya yeterlidir.Transkripsiyon faktörleri ve insan hastalıklarıGelişim, hücre içi sinyalleme ve hücre döngüsündeki önemli rollerinden dolayı bazı transkripsiyon faktörlerindeki mutasyonların hastalıklarla ilişkili olduğu bulunmuştur. İyi bilinen bazı örnekler aşağıda sıralanmıştır:    Rett syendromu MECP2 transkipsiyon faktöründeki mutasyonlar Rett sendromu, nörogelişimsel bir bozukluktur.    Diyabet Diyabetin ender bir biçimi olan Gençlerin erişkin başlangıçlı diyabeti (ing. Maturity onset diabetes of the young; MODY) hepatosit çekirdek faktörlerinde (ing. hepatocyte nuclear factors; HNF) veya insülin promotör faktörü-1'deki (ing. insulin promoter factor-1; IPF1) mutasyonlar neden olmaktadır.    gelişimsel sözel dispraksi FOXP2 transkipsiyon faktöründeki mutasyonlar gelişimsel sözel dispraksi (ing. developmental verbal dyspraxia) ile ilişkilendirilmiştir, bu hastalıkta kişiler konuşma için gerekli olan hassas koordinasyonlu hareketleri yapamaazlar.    Otoimmün hastalıklar FOXP2 transkipsiyon faktöründeki mutasyonlar ender bir otoimmün hastalık olan IPEX'e neden olur.    Kanser Çoğu transkripsiyon faktörü tümör baskılayıcısı veya onkogendir, bu yüzden onları mutasyonu veya hatalı denetimi kanserle ilişkilidir. Örneğin Li-Fraumeni syndromu tümör baskılayıcısı p53'teki mutasyonlardan kaynaklanır.

http://www.biyologlar.com/transkripsiyon-faktoru-nedir-biyolojik-rolleri-nelerdir

Metilasyon, asetilasyon, siRNA hakkında döküman

Kimyada metilasyon veya metillenme, bir kimyasal bileşiğe bir metil grubunun bağlanması veya ornatılmasıdır. Bu terim kimyada, biyokimyada, toprak bilimlerinde ve hayat bilimlerinde yaygınca kullanılır. Biyokimyada metilasyon daha spesifik olarak bir hidrojen atomunun bir metil grubuyla yer değiştirmesi anlamında kullanılır. Biyolojik sistemlerde metilasyon enzimler tarafından katalizlenir; bu reaksiyon, ağır metallerin modifikasyonunda, gen ifadesinin denetlenmesinde, protein işlevlerinin denetlenmesinde ve RNA metabolizmasında yer alır. Ağır metallerin metilasyonu biyolojik sistemler dışında da olur. Histolojide doku örneklerinin kimyasal metilasyonu bazı histolojik boya artifaktlarının azaltılmasında kullanılan bir yöntemdir. Biyolojik metilasyon Epigenetik Epigenetik kalıtıma etki eden metilasyon DNA metilasyonu veya protein metilasyonu ile meydana gelir. DNA metilasyonu omurgalılarda tipik olarak CpG bölgelerinde (sitozin-fosfat-guanin bölgeleri; yani DNA dizisinde sık olarak sitozinin hemen ardından guaninin geldiği yerler); bu metilasyon sonucu sitozinden 5-metil sitozin meydana gelir. Me-CpG oluşumu DNA metiltransferaz enzimi tarafından katalizlenir. Omurgali hayvanlarin genomlarinda CpG dizileri genelde seyrek olmakla beraber gen promotörlerinde normalden yüksek sıklıkta görülürler ve toplu olarak bu bölgelere CpG adaları denir. Bu CpG bölgelerinin metilasyon durumu gen ifadesi üzerinde büyük etkide bulunur. Protein metilasyonu tipik olarak protein dizisindeki arginin veya lizin amino asit kalıntılarında yer alır.[1] Arginin peptidilarginin metiltransferazlar tarafından bir kere (monometillenmiş arginin) veya iki kere metillenebilir; iki kere metillenme durumunda ise ya her iki metil grubu birden uçtaki azot üzerinde bulunabilir (asimetrik iki metilli arginin) veya her bir azot atomu üzerinde birer metil grubu bulunur (simetrik iki metilli arginin). Lizin ise lizin metiltransferazlar tarafından bir, iki veya üç kere metillenebilir. Protein metilasyonu en çok histonlar için çalışılmıştır. S-adenozil metyoninden metil gruplarının histonlara aktarılması histon metiltransferaz olarak adlandırılan enzimler tarafından gerçekleştirilir. Belli amino asit kalıntıları üzerinde metillenmiş olan histonlar epigenetik biçimde etki ederek gen ifadesini etkinleştirebilir veya engelleyebilirler.[2][3] Protein metilasyonu bir tip çevrim sonrası değişimdir. Embriyonik gelişim Memelilerin erken gelişiminde (döllenmeden sekiz hücre aşamasına kadar) genom metilsizlenmiştir. Sekiz hücre aşamasından morulaya kadar genomda yeni baştan metilasyon olur, böylece genomdaki epigenetik bilgi değişir veya yeni epigenetik bilgi eklenir. Blastula aşamasında, metilasyon tamalanmıştır. Bu süreç "epigenetik yeniden programlama" olarak adlandırılır.[4] DNA metiltransferaz enzimi olmayan gen nakavt mutant hayvanların morula aşamasında öldüğünün gözlemlenmesi ile metilasyonun önemi ortaya çıkmıştır.[kaynak belirtilmeli] Doğum sonrası gelişim Metilasyon ile çevresel faktörlerin etkileşiminin gen ifadesine olan etkisine dair deliller gittikçe çoğalmaktadır. Sıçanlarda ilk altı ay zarfında anne bakımındaki farklılıklar bazı promotörlerde farklı metilasyon örüntülerine yol açmakta ve dolayısıyla gen ifadesine etki etmektedir.[5] Buna ilaveten, interlökin sinyalizasyonu gibi daha da hızlı süreçlerin de metilasyon ile denetlendiği gösterilmiştir.[6] Kanser Metilasyon örüntüleri kanser alanında önemli bir araştırma konusu olmuştur. Normal dokularda gen metilasyonu başlıca kodlayıcı bölgelerde konumlanmıştır, ki bunlar CpG-fakiridir. Buna karşın genlerin promotör bölgeleri metillenmemiştir, CpG adalarının bu bölgelerdeki çokluğuna rağmen. Neoplazi metilasyon dengesizliği ile karakterizedir; genom çapında hipometilasyon olmasına karşın yerel olarak hipermetilasyon bölgeleri vardır ve DNA metiltransferaz ifadesi artmıştır.[7] Bir hücrenin toplam metilasyon durumu karsinogeneze sürükleyici bir faktör olabilir, çünkü genom çapında metilasyonun kromozom istikrarsızlığı ve artan mutasyon oranına yol açtığını gösterir deliller vardır.[8] Bazı genlerin metilasyon durumu tümörigenez için bir biyomarker olarak kullanılabilir. Örneğin, pi-sınıf glutatyon S-transferaz geninin (GSTP1'in) aşırı metilasyonu (hipermetilasyonu) prostat kanseri için ümit verici bir diagnostik indikatör olarak görünmektedir.[9] Kanserde genetik ve epigenetik gen susturmalarının mekanizmaları çok farklıdır. Somatik genetik mutasyonlar mutan genden işlevsel proteinlerin üretmini engeller. Eğer hücreye selektif bir avantaj sağlarsa bu mutasonu taşıyan hücreler klonal şekilde çoğalarak bir tümör meydana getirirler, bu tümördeki tüm hücreler o proteini üretmekten acizdir. Buna karşın, epigenetik modifikasyon aracılığıyla gen susturması tedrici olur. Önce transkripsiyonda az farkedilir bir azalma ile başlar, bunun sonucu çevreleyen heterokromatin tarafından CpG adalarının koruması azalır. Bu kaybı takiben CpG adalarındaki metilasyon seviyesi artmaya başlar, bu değişiklikler farklı hücrelerde bulunan aynı genin kopyaları için farklı farklı kendini gösterir. [10] Bakteriyel konak savunması Adenozin ve sitozin metilasyonu çoğu bakteride bulunan restriksiyon modifikasyon sisteminin parçasıdır. Bakteriyel DNA periyodik olarak tüm genomda metillenir. Metilaz, belli bir DNA dizisini tanıyan ve bu dizi içinde veya yakınındaki bazlardn birini metilleyen bir enzimdir. Bu şekilde metillenmeden hücre içinde giren yabancı DNA'lar diziye özgün restriksiyon enzimleri tarafından yıkılır. Bu restriksiyon enzimleri bakteriyel genomik DNA'yı tanımazlar. İçsel DNA'nın metilasyonu bir çeşit ilkel bağışıklık sistemi olarak etki eder, bakterileri bakteriyofaj enfeksiyonuna karşı korur. Metilasyon Kanser Genetiği Metilasyon Tümör süpressör genler (TSG), genellikle nokta mutasyonlar ve delesyonlar neticesinde inaktive olurlar. İnaktivasyona neden olan bir diğer önemli mekanizma ise promoter bölgesinin metilasyonudur. Bu mekanizma, CpG adalarını içeren promoter gen bölgesinde gözlenir. Normal hücrelerde CpG adacıklarının çoğu metile olmamış durumdadır. Tümör hücrelerinde, bazı genlerin promoter bölgesinde bulunan ve normalde unmetile olması gereken CpG adalarının metile olduğu gözlenir. CpG adacıklarının metilasyonu, gen ekspresyonu engelleyerek ilgili genin inaktivasyona neden olur. Gen bölgelerinin metilasyon yolu ile inaktivasyona duyarlılıkları farklılıklar gösterir. MSH2 gibi bazı genler sadece mutasyon yolu ile inaktive olurlar. MLH1 gibi bazı bölgeler ise sıklıkla nokta mutasyonlarla fonksiyonlarını kaybederken alternatif olarak metilasyon mekanizması da etkili olabilmektedir. RASSF1A ve HIC1 genleri ise sadece metilasyon değişiklikleri ile inaktif olurlar. Metilasyon Analizi Genomik DNA’da Sitozin-Guanin (CpG) dinükleotitlerinin metilasyonu gen susturmayla karşılıklı olarak ilişkilidir. Metilasyon, epigenetik durumlarda son derece önemlidir. Özellikle bazı genlerin promotor bölgesindeki CpG metilasyonu tümör baskılayıcının inaktivasyonuyla oluşan bazı kanserlerde erken dönemlerde gözlenmiştir. Metillenmiş CpG’lerin belirlenmesinde bisülfit ile muamele edilmiş DNA’nın dizi analizinin yapılması basit ve kullanışlı olan bir yöntemdir. Servisin Tanımı: DNA izolasyonu Genomik DNA’nın PCR ve DNA dizi analizi Metillenmemiş sitozinlerin bisülfat dönüşümü Sadece dönüştürülmüş DNA’nın amplifikasyonu için primer tasarımı yapılması PCR ürünlerin subklonlanması veya dizi analizinin yapılması Real time PCR deneyi ile belirleme Dizi karşılaştırılması ve 5MeCpG’lerin analizi Asetilasyon Asetilasyon (veya IUPAC adlandırma sistemi ile etanoylasyon), organik bir bileşiğe bir asetil fonksiyonel grubu eklenme tepkimesidir. Deasetilasyon ise asetil grubunun çıkartılmasıdır. Bir diğer deyişle, asetilasyon bir bileşiğe bir asetil grubu eklenmesi, yani bir hidrojen grubu yerine bir asetil grubunun substitusyonudur. Bunun sonucundan bir asetoksi grubu meydana gelir. Bir hidroksit grubundaki hidrojen yerine bir asetil grubunun (CH3CO) gelmesi bir ester tipi olan asetatı meydana getirir. Asetik anhidrit serbest hidroksil grupları ile tepkimek için kullanılan yaygın kullanılan bir asetilasyon reaktifidir. Örneğin aspirin sentezinde kullanılır. Proteinlerin asetilasyonu Hücrelerde asetilasyon hem çevrimle eşzamanlı hem de çevrim sonrası bir değişim olarak meydana gelir. Asetilasyona uğrayan proteinler arasında histonlar, p53, ve tübülin sayılabilir. N-alfa-uç asetilasyonu Proteinlerin N-ucundaki alfa amin grubunun asetilasyonu ökaryotlarda çok yaygın görülen bir modifikasyondur. Maya proteinlerinin %40-50'si ve insan proteinlerinin %80-90'ı bu şekilde değişime uğrar, ve modifikasyonun şekli evrimsel olarak korunmuştur. Bu değişim N-alfa-asetiltransferazlar (NAT'lar) tarafından yapılır. NAT'lar, asetiltransferaz üst ailesi GNAT'ların bir alt ailesidir. GNAT'lar asetil-koenzim A'dan amin grubuna bir asetil grubu aktarırlar. NAT'lar en çok mayada çalışılmışlardır. Bu canlıda üç NAT kompleksi, NatA, B ve C çoğu N-alfa-uç asetilasyonunu gerçekleştirir. Substratlarının dizileri için spesifiteleri vardır. Bu enzimlerin ribozomlarla ilişkili olduğu, ve sentezlenen yeni peptitleri çevrim ile eşzamanlı olarak asetile ettikleri düşünülmektedir. İnsanlarda, insan NatA ve NatB kompleksler tespit edilmiş ve karakterize edilmiştir. NatA kompleksinin altbirimlerinin kanserle ilişkili süreçlerde yer aldığı bulunmuştur: hipoksia tepkisi ve beta katenin yolu gibi. NatA'nın papiler tiroid karsinom ve nöroblastomada aşırı ifadesi gözlemlenmiştir. İnsan NatB kompleksi hücre döngüsü ile ilişkilidir. NatB kompleksinin Nat3 altbirimi bazı kanserlerde yüksek düzeyde ifade edilmektedir. Korunmuş ve yaygın bir modifikasyon olmasına rağmen, N-alfa-uç asetilasyonunun biyolojik rolü bilinmemektedir. Aktin ve tropomiyosin proteinlerinin, düzgün aktin filamanları oluşturmak için NatB asetilasyonuna muhtaç oldukları bulunmuştur. Halen asetilasyonun biyolojik önemini gösteren başka örnekler bilinmemektedir. Lizin asetilasyonu ve deasetilasyonu Histon asetilasyonu ve deasetilasyonunda, histonlar N-uçlarındaki lizin kalıntılarında asetile ve deasetile olurlar, bu süreç gen düzenlemesi ile ilişkilidir. Tipik olarak bunu "histon asetiltransferaz" ve "histon deasetilaz" etkinliği olan enzimler yapar, ama bu enzimler histon olmayan proteinleri de modifiye edebilir.[1] Transkripsiyon faktörleri, efektör proteinler, moleküler şaperonlar ve hücre iskeleti proteinlerinin asetilasyon / deasetilasyon yoluyla düzenlenmesi, çevrim sonrası değişim yoluyla gerçekleşen önemli mekanizmalardan biridir.[2] Bu bakımdan kinaz ve fosfatazlar tarafından gerçekleştirilen fosforilasyon ve defosforilasyon değişimlerine benzemektedir. Bir proteinin asetilasyon durumu onun etkinliğini belirlemektedir. Bu çevrim sonrası değişim, diğer değişimlerle (fosforilasyon, metilasyon, ubikuitinasyon, sumoylasyon, ve diğerleriyle) etkileşerek hücre sinyalizasyonunun dinamik kontrolüne sağlamaktadır.[3] Tübülin asetilasyon ve deasetilasyon sistemi Chlamydomonas'da iyi anlaşılmıştır. Aksonemin ucunda yer alan bir tübülin asetiltransferaz, bütünleşmiş mikrotübülinde α-tübülin altbirimindeki belli bir lizin kalıntısını asetiller. Mikrotübülin ayrıştıktan sonra bu asetilasyon sitozolda bulunan spesifik bir deasetilaz tarafından çıkartılır. Bu iki enzimin etkinliklerinin sonucu, aksonemal mikrotübüllerdeki α-tübülin'in yarı ömrü uzun olması, sitozolik mikrotübüllerdekinin ise kısa ömürlü olmasıdır. Asetilasyon Tepkimesi Asetilasyon (veya IUPAC adlandırma sistemi ile etanoylasyon), organik bir bileşiğe bir asetil fonksiyonel grubu eklenme tepkimesidir. Deasetilasyon ise asetil grubunun çıkartılmasıdır. Bir diğer deyişle, asetilasyon bir bileşiğe bir asetil grubu eklenmesi, yani bir hidrojen grubu yerine bir asetil grubunun substitusyonudur. Bunun sonucundan bir asetoksi grubu meydana gelir. Bir hidroksit grubundaki hidrojen yerine bir asetil grubunun (CH3CO) gelmesi bir ester tipi olan asetatı meydana getirir. Asetik anhidrit serbest hidroksil grupları ile tepkimek için kullanılan yaygın kullanılan bir asetilasyon reaktifidir. Örneğin aspirin sentezinde kullanılır. Proteinlerin asetilasyonu Hücrelerde asetilasyon hem çevrimle eşzamanlı hem de çevrim sonrası bir değişim olarak meydana gelir. Asetilasyona uğrayan proteinler arasında histonlar, p53, ve tübülin sayılabilir. N-alfa-uç asetilasyonu Proteinlerin N-ucundaki alfa amin grubunun asetilasyonu ökaryotlarda çok yaygın görülen bir modifikasyondur. Maya proteinlerinin %40-50'si ve insan proteinlerinin %80-90'ı bu şekilde değişime uğrar, ve modifikasyonun şekli evrimsel olarak korunmuştur. Bu değişim N-alfa-asetiltransferazlar (NAT'lar) tarafından yapılır. NAT'lar, asetiltransferaz üst ailesi GNAT'ların bir alt ailesidir. GNAT'lar asetil-koenzim A'dan amin grubuna bir asetil grubu aktarırlar. NAT'lar en çok mayada çalışılmışlardır. Bu canlıda üç NAT kompleksi, NatA, B ve C çoğu N-alfa-uç asetilasyonunu gerçekleştirir. Substratlarının dizileri için spesifiteleri vardır. Bu enzimlerin ribozomlarla ilişkili olduğu, ve sentezlenen yeni peptitleri çevrim ile eşzamanlı olarak asetile ettikleri düşünülmektedir. ınsanlarda, insan NatA ve NatB kompleksler tespit edilmiş ve karakterize edilmiştir. NatA kompleksinin altbirimlerinin kanserle ilişkili süreçlerde yer aldığı bulunmuştur: hipoksia tepkisi ve beta katenin yolu gibi. NatA'nın papiler tiroid karsinom ve nöroblastomada aşırı ifadesi gözlemlenmiştir. ınsan NatB kompleksi hücre döngüsü ile ilişkilidir. NatB kompleksinin Nat3 altbirimi bazı kanserlerde yüksek düzeyde ifade edilmektedir. Korunmuş ve yaygın bir modifikasyon olmasına rağmen, N-alfa-uç asetilasyonunun biyolojik rolü bilinmemektedir. Aktin ve tropomiyosin proteinlerinin, düzgün aktin filamanları oluşturmak için NatB asetilasyonuna muhtaç oldukları bulunmuştur. Halen asetilasyonun biyolojik önemini gösteren başka örnekler bilinmemektedir. Lizin asetilasyonu ve deasetilasyonu Histon asetilasyonu ve deasetilasyonunda, histonlar N-uçlarındaki lizin kalıntılarında asetile ve deasetile olurlar, bu süreç gen düzenlemesi ile ilişkilidir. Tipik olarak bunu "histon asetiltransferaz" ve "histon deasetilaz" etkinliği olan enzimler yapar, ama bu enzimler histon olmayan proteinleri de modifiye edebilir. Transkripsiyon faktörleri, efektör proteinler, moleküler şaperonlar ve hücre iskeleti proteinlerinin asetilasyon / deasetilasyon yoluyla düzenlenmesi, çevrim sonrası değişim yoluyla gerçekleşen önemli mekanizmalardan biridir.[2] Bu bakımdan kinaz ve fosfatazlar tarafından gerçekleştirilen fosforilasyon ve defosforilasyon değişimlerine benzemektedir. Bir proteinin asetilasyon durumu onun etkinliğini belirlemektedir. Bu çevrim sonrası değişim, diğer değişimlerle (fosforilasyon, metilasyon, ubikuitinasyon, sumoylasyon, ve diğerleriyle) etkileşerek hücre sinyalizasyonunun dinamik kontrolüne sağlamaktadır. Tübülin asetilasyon ve deasetilasyon sistemi Chlamydomonas'da iyi anlaşılmıştır. Aksonemin ucunda yer alan bir tübülin asetiltransferaz, bütünleşmiş mikrotübülinde α-tübülin altbirimindeki belli bir lizin kalıntısını asetiller. Mikrotübülin ayrıştıktan sonra bu asetilasyon sitozolda bulunan spesifik bir deasetilaz tarafından çıkartılır. Bu iki enzimin etkinliklerinin sonucu, aksonemal mikrotübüllerdeki α-tübülin'in yarı ömrü uzun olması, sitozolik mikrotübüllerdekinin ise kısa ömürlü olmasıdır. siRNA Tasarımı ve Ekspresyon vektör oluşturulması siRNA Nedir? Ökaryotlarda gen ekspresyonu, “RNA interference” olarak adlandırılan RNA’ya bağlı bir mekanizmayla transkripsiyon sırasında veya sonrasında kontrol edilmektedir. “small interference RNA” (siRNA) olarak adlandırılan küçük inhibe edici RNA’lar, çift zincirli RNA’nın (ds RNA) hücresel enzimler ile (dicer) parçalanması sonucunda oluşur. siRNA’lar heterokromatin oluşumu, dış kökenli nükleik asitlerin parçalanması gibi önemli hücresel görev üstlenmektedirler. siRNA’nın gen susturma yeteneğinden yararlanılarak yapılan ekspresyon vektörleri gen fonksiyon analizinde kullanılan güvenli ve kullanışlı bir araçtır. Bu vektörler tipik olarak siRNA’nın yapısına benzeyen küçük hairpin RNA’nın transkripsiyonunu ve ekspresyonunu sağlayan standart bir promotor (genellikle RNA polimeraz III) kullanır. Servisin Tanımı: siRNA tasarımı Kimyasal sentez Ligasyon Klonlama DNA dizi analizi ile çift zincir doğrulama Gliserol stok veya liyofilize klon karışımı şeklinde teslimat

http://www.biyologlar.com/metilasyon-asetilasyon-sirna-hakkinda-dokuman

Kanser Çalışmaları

Kanser Çalışmaları

Kanser Çalışmaları İlaçları ve Hastaları Birbirlerine Daha Sıkı Bağlayıp Ayrılmaz Bir Çift Haline Getiriyor

http://www.biyologlar.com/kanser-calismalari

 
3WTURK CMS v6.03WTURK CMS v6.0