Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 4114 kayıt bulundu.

Davranış Biyolojisi Nedir

1)Yurt seçimi (Teritoryum Tesisi) Bireyler beraberliklerini sürdürüp belirli bir kuluçka alanının emniyetini sağlayabilmek için bir alana, gereksinim duyarlar. Bu alan yurt ve teritoryumdur. Kurulacak yurt alanının, çıkacak yavrulara besinin kolayca sağlanabileceği uygun bir arazi parçası olması gerekir. Yurt alanlarının sınırları, bireylerin (genellikle erkeklerin) şubat sonundan mayıs ayına kadar yoğun olarak sürdürdükleri yurt belirleme ötüşü ile saptanır. Bu ötüşlerin diğer bir amacı da yurdun kurulduğunu seçilecek eşe duyurmak ve rakip erkek bireylere gözdağı vermektir. Gözdağına rağmen kurulacak yurda bir saldırı olursa, erkekler arasında şiddetli kavgalar olur. Bu tür davranışlar aynı tür içinde (interspesifik) olduğu gibi farklı türler arasında (intraspesifik) olabilir. Yapılan kavgalar genellikle tarafların karşılıklı olarak birbirlerine, keskin ve kesik kesik bağırmaları ile başlar. Kavga esnasında bireyler kafalarını birbirlerine uzatarak kısık sesler çıkarırlar. Boyun ve kuyruk tüyleri dikleşir ve kanatları yanlara hafifçe açılır. 2)Yuva Sunumu Yuva sunumu erkek bireylerce yapılır. Erkekler şubat sonundan itibaren, dişilere sunacakları yuvalara girip çıkar ve ot parçası, tavuk ve güvercin tüyleri gibi materyaller getirirler. Erkeğin işgal ettiği yuvayı dişi kabullenirse yuva ikisi tarafından müştereken yapılır. Dişinin ilgisini çekip yuvayı ona beğendirmek için erkek bireyler yuvalara, her seferinde içeride daha az kalmak üzere girip çıkar. Bu arada erkek yuva sandığı üzerinde veya yuva deliğinden dışarıyı gözleyerek sağa-sola bakar. Yuvadan çıktıktan sonra yuvaya en yakın dala tüner, bazen yuvanın üstüne konar ve tekrar içeri gibi yapıp yuva giriş deliğini vücudu ile kapatır, hemen sonra geri çıkar. Dişi yuvaya yakın bir yere gelince, erkeğin daldan dala yer değiştirip çok sık öttüğü ve dişinin ilgisini çekmek istediği izlenir. Daha çok yuvanın üstünde yapılan bu hareketler: kendi ekseni etrafında dönme; kafayı sağa-sola oynatma, ileriye uzatma; kanatları yana açma ve kanat tüylerini titretme; kuyruk tüylerini yukarı kaldırma; bazen de bir kanadı aşağı itip telekleri yere sürme şeklidir. Yuva sunma ilgi çekme hareketlerine, dişi birey kayıtsız kalır ve sunulan yuvayı kabul ettiği anlamı taşıyan erkeğin faal olduğu yuvaya girme uçuşu yapmazsa, erkeğin ötüşünü daha canlı ve keskin olarak bir başka yuva veya dal üzerinde, fakat dişiyi gözden kaçırmayacak şekilde sürdürdüğü görülür. Dişi bu sırada sunulan yuvalardan birine yönelme uçuşu yapar. Yapılan ilk uçuş genellikle yuva deliğine yakın dallar üzerine olur. Burada kısık kısık ses çıkarıp kafasını sağa sola ve öne uzatarak, etrafını izler. Bazen yuva deliğine girmeye çalışır, ve hemen geri döner. Bu arada erkek yuva deliğinden içeri girerek dişiye kur hareketleri ve ötüşleri yapar. Dişi bu davranışlara karşılık vererek yuva deliğine konup onu izler ve içeriye kısa bir süre için de olsa girer çıkar. Dişinin yuvaya sıklıkla girip çıkması ve yuvada daha uzun süre kalması onun yuvayı kabul ettiğini gösterir. Yuvaya giriş çıkışların sıklaşması ve erkeğe daha yakın bir yere konma girişimleri ile birlikte, erkeğin çiftleşme öncesi yaptığı kur hareketleri görülür. 3)Çiftleşme Çiftleşmeden önce dişi ve özellikle erkeğin sürekli aktif oldukları ve dallar üzerinde oynaştıkları gözlenir. Bu kur hareketleri eşlerin uyarılması için yeterlidir. Çiftleşmede erkeğin dişinin üstüne çıktığı ve omuz kemeri yada ensesini gagası ile kavradığı görülür. Çiftleşme süresi genellikle 3-6 saniye arasında değişir. Erkek dişinin üzerinden inince kanatlarından birini yere doğru uzatarak tekrar çiftleşme teşebbüsünde bulunur. Mart-Kasım ortasına kadar olan dönemde çiftleşme faaliyetleri iklim koşullarına ve özellikle sıcaklığa bağlıdır. Dişi 4-5 yumurta bırakır. Kuluçka süresi 10-11 gün sürer. Yavrular 15-19 günde yuvadan uçar. Kuluçka başarısı % 90’dır. 4)Besin Arama Hareketleri Besinlerini genellikle toprağın üstünde ve ağacın yapraklı kısımlarında ararlar. Topraktaki yemi açığa çıkarmak için, toprağı tırnakları ile eşelerler. Topraktaki kurumuş yaprak ve otları yana atarlar. Ağaçtaki gizli zengin besinlere ulaşınca, dalın üstünde kanatlarıyla pırpır yaparak bunlara yakalar. Uçabilen böcekleri de çok yakından takip ederler. Besin olarak; kelebek tırtılı, böcek larvaları, böcekler ve sinekler hayvansal besinlerini oluşturur; buğday, arpa, mısır, tohumları taze ot yaprakları bitkisel besinlerini oluşturur. Beslenme grup halinde gerçekleşir. Bu sırada gruptan birkaç birey tehlikelere karşı gözcülük yapar. 5)Rahatlama (konfor) Hareketleri Serçeler güneş banyosu yaparken, vücut tüylerini kabartıp,kanatlarını hafifçe yere doğru açar, güneş ışınlarının vücudun bütün bölgelerine girmesi için kendi ekseni etrafında dönerler. Bunlarda sıklıkla gözlenen davranışlardan biri de kum ve su banyosundaki hareketlerdir. Bunun için, özellikle vücutlarının üst kısımlarındaki tüyleri gevşeterek, hızlı bir şekilde sağa-sola sıçrarlar. Su içine girince, su içer, kum banyosunda daima kumları gagalar ve içinde yiyebileceği besinler varsa onları yer. Tepinme hareketleri: Suda ve özellikle kumda tepinme hareketlerine rastlanır. Sudan veya kumdan çıkınca, kanadın biri sabit şekilde durur, diğeri omuzdan aşağıya inerek şiddetli bir şekilde silkelenir. Daha sonra diğer kanadı ile aynı hareketleri yapar. Yakında bulunan bir ağaca veya dal üzerine konarak tüylerini gagaları ile düzeltirler. Bazen ayak parmaklarıyla başın üst kısmını düzeltirler. Gagayı da bir dala sürterek temizlerler. 6)Ötüşler Yuva Çevresindeki Ötüşler: Kur yaparken ve rakiplerini korkutmak için aralıksız ve yüksek bir sesle öterler. Bu tür ötüşler sırasında tüylerini kabartırlar. Yalvarış Ötüşleri: Biraz gelişmiş civcivler ve uçma durumuna gelmiş yavrular kısık bir sesle ve çok sesli olarak öterler. Uçma durumuna gelmiş yavruların yer arama ötüşleri, tek düze yüksek sesledir. Ana-Babaları bu ötüşlere bir şeyler anlatır gibi yumuşak ve sessizce karşılık verir. Diyalog Kurma Ötüşleri: Yalnız kalan birey, grubu bulabilmek için kısa ve keskin bir şekilde öter. Tehlikeye Karşı Alarm Ötüşleri: Kuralsız olarak yüksek sesle ve uzatarak öterler. Yavrular tehlike altında ise tehdit unsuruna 1 metre kadar yaklaşacak şekilde alçak uçuşlar yaparlar. KAYNAKLAR 1) ERDOĞAN, Ali, Ankara/Beytepe Serçe Populasyonları ile İlgili Biyolojik Çalışmalar 19-27 (1982)

http://www.biyologlar.com/davranis-biyolojisi-nedir

Dünyanın Oluşumu Ve Yapısı

Yer'in oluşumu sorunu,yüzyıllar boyunca insanı düşündüren ve düşündürmeye devam etmekte olan,önemli bir bilimsel sorundur.Gerçi Yer'in oluşumu konusunda,bugün geçmişe oranla ,daha çok şey bilmekteyiz.Ancak yine de,problemle ilgili görüşler,hipotez düzeyindedir. Bunların delilleri güçlü olmakla birlikte,kesin birtakım sonuçlara ulaşıldığı ileri sürülemez.Yer’in yaşının 4,5 ile 5 milyar yıl dolayında olduğu sanılmaktadır.Bunun 10 milyar yılı bulduğunu ileri süren kaynaklara da rastlanır. Yer’in nasıl oluştuğu sorusunu cevaplamayı amaçlayan teoriler ve bunların eksikliklerini daha iyi anlayabilmek için Güneş Sistemi’nin nasıl oluştuğu sorusuna kısaca değinmek gerekir.Güneş sistemi bu sistemden çok daha büyük bir sistemdir.Fakat güneş sistemini de içine alan daha büyük bir dev sistem vardır.Bu sistemde pek çok sisteme ayıılmıştır.Bu sistemlerin herbirine Galaksi denir.Yer'in de içinde yer aldığı insalığın Galaksi’sine (Yun.süt demektir.),Türkçe bir terim ola Samanyolu denir.Batı kaynaklarda Samanyolu,Sütlü yol diye geçer.(Yani bu anlama gelir.) Samanyolu’nda bazı kaynaklara göre 100 milyar,bazı kaynaklara görede 200 milyar gök cismi vardır.Kuşkusuz bunlardan biri de şimdiki bilgilerimize göre insan barındıran tek gök cismi olan Dünya’mızdır.Yer Samanyolu’nun merkezi kabul edilen Güneş’ten149,6 milyon km. uzaktır. Çapı hemen hemen 300 milyon km yi bulan yörünge adı verilen bir düzlem üzerinde dolanır.Bu düzleme,eliptik düzlem (tutunma düzlemi) denir.Bunun üzerindeki dolanımını,bir yılda 365 gün 6 saatte tamamlar. Yerin oluşumu ile Samanyolu’nun oluşumu,aynı esaslara ve büyük bir ihitimalle de aynı zaman dilimine rastlanmaktadır.Bu konudaki ilk teori ünlü Franız gök bilimci Laplace (Laplaş;1749-1827) tarafından 1796 yılında ileri sürülmüştür.Teori’i ilme,Nebula kramı diye geçmiştir. Laplace’ın varsayımına göre,Güneş ve gezegenler ile Samanyolun’dakidiğer gök cisimleri, oluşum tarihinin (4.7 ile 5 milyar yıl) ilk evresinde,kütle çekimi etkisi altında sıkışarak dönmeye başlayan,bir toz kümesinin birleşmesi sonunucu oluşmıştur.İleri sürülen bu teoriye Birleşme hipotezi adı verilir.Teorinin kabülüne göre,nebula sıkıştıkça,halkalar teşkil etmeye başlamıştır.Oluşan halkaların giderek yoğuşması sonucu,gezegenler oluşmaya başlamıştır.Dolayısıyla iç gezegenler(Yer ile Güneş arasındakiler) önce ,dış gezegenler ise ,daha sonra oluşmuştur. Kısaca söylersek,Laplace’ın görüşüne göre Samanyolu ,milyarlarca yıl önce ,bir gaz ve toz kümesi idi.Ekseni çevresinde bir bulutsu,kütle çekimi etkisi altında çevresine gaz ve toz saçabilir. Esas kütleden uzaklaşan ve yine etkisi altında kalarak dönmeye,yani dolanıma devam eden kümeler zamanla yoğuşabilir.Gezegenler,bu esasa göre oluşmuştur. Bulutsu, ya da birleşme teorisi;uzun yıllar geçerliliğini korumuştur.Bundan sonra,gel-git kuramları diye ilme geçen,Laplace teorisini redetmeyen,fakat matamatiksel yanlışlıkların bulunduğunu doğrulayan bir dizi teori ortaya atılmıştır. Gel-git teorilerinin en güveniliri,ünlü İngiliz fizikçi ve gök bilimcisi James Jeans tarafından 1901'de ileri sürülenidir. Gerçi,matamatiksel olarak ispatı yapılmamıştır.Ancak yine de akla en yakındır.Ona göre gezegenler ve Yer Güneş'in çekim bölgesine girerek geçen bir gök cisminin,yan, yıldızın,çekim gücü etkisi ile,Güneş ten kopardığı puro şekilli maddelerden oluşmuştur. Gezegenler ve Güneş sistemi Galaksisindeki diğer gök cisimlerinin Güneşten koptuğu yani koparıldığı görüşü aslında söz konusu gel-git varsayımlarına dayanır.Ancak hem bu görüş de kanıtlanmış değildir,hem de,buna karşı savunulan,bir patlama-dağılma teorisi vardır. Güneş’in manyetik çekim gücü,diğer Gökada cisimlerine göre,çok yüksektir.İlk evrede oluşmuş dev bir Güneş’in nükleer enerji üretme evresinden sonra patlaması sonucu,farklı büyüklüklerdeki kütleler onun çekim alanına dağılıp,belli yörüngeler üzerinde dönmeye başlayabilirler. Bütün modern teoriler,bütün gezegenlerin,gaz ve ince toz bulutundan oluştuğunu Güneş’in,ilk evrede bu tür bir madde topluluğu olduğunu kabul ederler. Ancak şunu iyi biliyoruz ki,evrenin sırrı,henüz çok bilinmeyenli bir denklem olma özelliğni korumaktadır.Güneş ve gezegenlerin aslı kızgın gaz ve toz kümesi de olsa,bilim ve teknik esasta var olup da bilinmeyenleri keşfetme çabasındadır.Örneğin nebulaların maddeleri nasıl oluşmuştur;ya da uzay nerede başlar nerede biter;daha sonra ne başlar ve o da nerede biter gibi sonsuz denilen soruların cevabı henüz verilmemiştir.Ama bu güçlükler,müspet ilmi reddetmeyi gerektirmez.Çünkü ilim,sabırla düşünme-araştırma ve maraktan doğar;gelişir ve olgunlaşır.Peşin yargılar ve mistik düşüncelerin,objektif ilim kuralları arasında yer yoktur. Güneş sistemi elemanlarından biri olan Dünya,sahip olduğu başlıca üç doğal küreden oluşur.Bunlar ;katı yer kabuğu veya taşküre ,yaklaşık %71'lik payı sularla kaplı bulunan suküre,800-900 km hatta dah çok seyrelmiş şekilde,8000 km yüksekliğe kadar devam eden,havaküredir.Bu doğal kürelerin hayat veren şartlar sunması,bitkiler-hayvanlar ve insanların,türemesi ve yaşamasını sağlamıştır.Coğrafi yeryüzü terimi ile tanımladığımız bu üç doğal kürenin kesişmesi,madde ve enerji değişimi sürecinin oluşmasına ve bu doğal süreç de,hayat imkanlarının doğmasına yol açmıştır. Yer ,dıştan içe-yüzeyden merkezine doğru,başlıca üç farklı bölümden oluşur. 1-)Kabuk Bölgesi 2-)Manto Bölgesi a)Üst Manto b)Alt Manto 3-)Çekirdek Bölgesi a)Dış Çekirdek b)İç Çekirdek Bunlardan Kabuk bölgesi,yaklaşık 30 ile 40 km lik ortalama bir kalınlık gösterir.Bu değerler,yüksek sıra dağların derinliklerinde,70-75 km ye dek ulaşır. Okyanus kabuklarında ise,yaklaşık 5 ile 10 km ye iner.Yapısının,daha çok granit ve bazaltik olduğu kabul edilmektedir. Sismik hareketlerin odak noktaları,genel olarak bu bölge içindedir.Metalik madenler daha çok masif bir yapı gösteren granitik ve bazaltik bölgelerede doğal gaz ile hampetrol ve kömürler ise,bu kabuk içindeki tortul bölgelerinde rezerve olmuştur. Kabuk bölümün altında,deriniği 2900 km dolayında kabul edilen Manto yer alır.Yaklaşık 800-900 km lik dış bölüme dış manto,2000 km ye varan derinliğe kadarki bölüme ise,alt manto denilir.Radyometrik dalgalara uyarı vermesi nedeni ile bu bölümün de,katı yapıda olduğu kesindir. Teorik olarak,mantodan sonra,Yer'in çekirdeği diye adlandırılan bölüm gelir.Artık bu bölge,akışkan-sıvımsı bir maddeden oluşur.Çünkü,elektrmanyetik dalgalara uyarı vermez.Bu bölge de,dış manto(kalınlığı 5000 km ye uzanır.)ve iç manto diye ikiye ayrılır.Böylece,üzerinde dolaştığımız katı bölgeden Dünya’nın merkezine dek,ortalama 6370 km lik bir derinlik bulunduğu kabul edilmektedir. Yeryüzü DSG KABUK ÜST MANTO ALT MANTO ÇEKİRDEK Şekil:Yer’in iç yapısının kesiti Tablo:Yer’in iç yapı bölgeleri ve bileşimleri İç yapı bölgeleri Derinlikleri Bileşimleri KABUK 30-40(km) SİAL MANTO 35-2900 SİMA-MAGMA ÇEKİRDEK 2900-6370 NİFE Yer’in iç yapı bölgelerini oluşturan maddelerin,oran yüksekliğine göre de adlandırılmıştır. Nitekim kabuk bölgesinin hakim maddeleri,daha çok silisyum ve alüminyumdur.Bu madde adlarının ilk hecelerini kullanan kimi gök bilimci jeofizikçi ve coğrafyacılar,yerin kabuk bölgesini Sial diye adlandırmışlardır. Yer’in manto bölgesinin bileşiminde,en yüksek paylar,silisyum ve magnezyum elementlerine aittir.Bu nedenle de,Sima diye adlandırılmıştır. Yanardağ püskürmeleri,bu bölümden kaynaklanır.Dolayısıyla magma diye adlandırılır. Aynı şekilde, çok daha ağır madenlerden oluşan çekirdek bölgesinin hakim maddeleri,nikel ve demir madenleridir.Bundan dolayı,Nife şeklinde adlandırılmıştır. Derinliklere inildikçe,belli basamaklarda sıcaklık değerleri çok belirgin bir şekilde artar.Bu sıcaklığa,jeotermi denir.Jeotermide,her 33 m derinliğe inildikçe,yaklaşık 1 C artış olur.Bu artış çizgilerine,jeotermi basamağı denir. Jeotermi basamağı,genel olarak her 33 m de 1 C değişmekle birlikte,bu değişim,Yer’in bazı iç bölgelerinde 145 m bulur. Bu veriler esas alındığında,örneğin 40 km derinlikte sıcaklık yaklaşık 1200 C ,60 km de 2000 C ve iç çekirdek’te,yaklaşık 200 000 C dolayında bulunmaktadır.Kuşkusuz,derinliklere doğru sıcaklığın artışı kesin olmakla birlikte,hesaplanan bu değerler,teorik sonuçlardır.Çünkü Yer’in iç yapısı konusunda,şimdilik kısmen iyi tanına bilen iç bölge,kabuk bölgesi’dir.Öte yandan Yer içi sıcaklığını ölçmek mümkün değildir.Bu nedenle de,şimdilik kaydıyla bu konuda en iyi bilinen husus,Yer’in derin noktalarında sıcaklık derecelerinin,çok yüksek oluşu gerçeğidir. Zaten,yanardağ püskürmeleri,gayzer,su-buhar ve kaplıca gibi sıcak sularda,bu açıkça doğrulamaktadır. Güneş sistemi ve bu arada Yer’in oluşumu milyarlarca yıllık bir zaman sürecinde gerçekleşmiştir.Bu sürece,kısaca Güneş Sistemi ve Yer’in yaşı denir.Ancak biz burada sorunu,Yer’in yaşı terimi ile ifade edeceğiz. Yer yuvarlağının oluşumu ile uğraşan,bu sorunu aydınlatmaya çalışan ilimler,jeoloji yani yerbilimi alanları,jeofizik,jeodezi ve kısmen de coğrafya gibi ilimlerdir.Jeoloji,yer yuvarlağı üzerinde ve doğal olayları inceleyen bir bilimdir.Bu bilimin,özellikle Palecoğrafya ve Paleontoloji bilimleri yerin yapısını incelerler. Bunlardan Paleocoğrafya:yani jeoloji zamanlar ve devrelerinin coğrafya ilmi,Yer tarihi boyunca her bir jeoloji devrinde oluşmuş kıtalar,okyanuslar,dağ sistemleri ve jeosenklinaller gibi coğrafi ünitelerin dağılımlarını inceleyen bir bilim dalıdır.Nitekim Paleocoğrafi araştırmaların sonuçlarına göre Arkeen veya Arkeozik devrelerde günümüze dek,Yer’in Paleocoğrafyası’nda çok büyük değişiklikler olmuştur. Yer’in tarihi geçmişi ve gelişimini aydınlatan bir diğer bilim alanı da Paleontoloji’dir. Bu dalın ana uğraşı konusu,fosil kalıntılarıdır.Yer kabuğunda doğal süreçlerle oluşmuş fiziksel-kimyasal değişikliklere uğradığı halde,katmanlar arasında korunarak günümüze ulaşmış zoolojik vefitolojik her türlü kalıntılara fosil denir.Terim,jeoloji ilmi terimi olduğu kadar:Paleobiyoloji,Paleobotanik, Jeomorfoloji,paleontoloji ve paleocoğrafya terimidir de.Yine terimle ilgili olarak,fiziksel-kimyasal değişmeler geçirip taşlaşan hayvansal ve bitkisel kalıntıların bu nihayi şekline,fosilleşme denir. Fosiller,çok değişik özelliklerinin laboratuvar metodlarla incelenmesi sonucu,ait oldukları jeolojik zaman ve devirlerinin değişik coğrafi özellikleri hakkında,akıl yürütme metodu ile de olsa,bazı bilimsel sonuçlara varıla bilmektedir. Yeryuvarlağının yapı,bileşim ve gelişimini inceleyen bilim demek olan jeofizik de,Yer’in yapısı ve yaşının belirlenmesine yardımcı olan bir ilimdir. Örneğin,geliştirilen jeofizik metodlar ile,yeraltı yapı özelliklerinin incelenmesi giderek kolaylaşmoştır.Özellikle Sial bölümü hakkında,artık bu sayede geçmişe göre çok şey bilinmektedir.Bununla ilgili bir metod,radyoaktivite teorisi olarak ilme geçmiştir. Hatırlanacağı üzere radyasyon,sıcaklık veya ışın yaymak demektir.Bu fiziksel olaya kısaca ışınımda denir.Radyoaktif ise,nükleer sıcaklık veya ışınım etkinliği demektir.Terim,kısaca radyoaktivite diye de ifade edilir. Radyasyon’dan kaynaklanan yani nükleer ışınım yayma derecesinin ölçmeye yarayan jeofiziksel alete radyometre denir.A.B.D'li jeofizikçi J.Jolly, Rodyoaktiviteli,kayaçların parçalanma ayrışma hareketlerinin,yeryuvarı içinde ısınmaya yol açtığı;bunun deriniklerindeki kayaçlarda daha yüksek ısınmalar ve ergimelerle sonuçlandığını,Magma veya Sima’nın esas oluşma nedenin bu jeofiziksel değişime dayandığını;yeryuvarı kabuğunun yani kabuk bölgesinin de,aslında bu olayların eseri olduğunu ileri sürmüştür. Bu görüşlere,radyoaktivite teorisi denir.Teori kanıtlanmış olmazsada zamanla yapılan bir tür jeofizik ilmi çalışmaları ve radyometrenin kullanılması ile kayaçların yaşlarının belirlenmesi metodlarına,radyometrik metodlar denir.Bu tür metodlarla yapılan zaman belirlenmesi sonuçlarına göre Yer’in yaşı sorunu konusunda daha çok şey bilmekteyiz. Çok teknik bir dizi problem teşkil etmesine rağmen kayaçların yaşının belirlenmesi temelde şu esasa dayanır: En yüksek radyment,uranyum metalidir.Yer kabuğunun bileşiminde bütün kayaçlardai,onlardan oluşmuş topraklarla ve denizlerin sularında bulunur.Ekonomik olarak işletilmeyişini rezerv ve tenörler belirler. Uranyum atomlarını oluşturan partiküller,binlerce-hatta milyonlarca yıllık bir zaman sürecinde çözünürler ve sekiz elementin oluşmasını sağlar: Uranitit,peblend,carnotit,otunit…gibi.Buılardan en sonuncusu,kurşun bileşiğidir.Bu oluşum ve değişim çok,uzun bir zaman sürecinde gerçekleşir.Örneğin,1 g uranyum’un radyoaktivitesini yitirerek 1 g kurşun’a dönüşmesi için geçmesi gereken zaman sürecinin,7.6 milyar yıl olacağı hesaplanmaktadır. Söz konusu ettiğimiz bu oluşum süresinden yararlana uranyum ve kurşun elementleri bulunan kayaçların yaşlarını gerçeğe yakın bir şekilde hesaplaya bilmektedirler.Gerçekten de bu yapıdaki kayaçların incelenmesi bileşimlerindeki uanyum’un,kaç yılda kurşun2a dönüştüğü ve dolayısıyla da, Yaşlarının hesaplanmasını sağlamıştır.Bu yolda yaşları hesaplanmış kayaçların,3.5 ile 5 milyar yılı bulduğu anlaşımıştır. Bu metodla yapılan hesaplamalar,Yer’in kabuk bölgesi’nin ilk şekillenmeye başlamasının en az 4.5 - 5 milyar yıl eskiye dek uzandığını göstermiştir.Bunun 3.5-4.6 milyar yıl olabileceğini hesaplamış bilim adamlarınada rastlanır.

http://www.biyologlar.com/dunyanin-olusumu-ve-yapisi

Mantarlar ( Fungi)

Mantarlar (Fungi), çok hücreli ve tek hücreli olabilen ökaryotik canlıları kapsayan bir canlılar alemi ve şapkalı mantarların tümüne halk arasında verilen genel addır.

http://www.biyologlar.com/mantarlar-fungi

Biyocoğrafya Nedir

Biyocoğrafya, bitki ve hayvan türlerinin dağılımını ve bu dağılımın nedenlerini inceleyen bilim dalıdır. Biyocoğrafya araştırmaları yürütülebilmesi için yeryüzü, özellikle kıtalar ve adalar, öbür bölgelerden değişik ama kendi sınırları içinde ortak özellikte bitki ve hayvan varlığını barındıran belirli bölgelere ayrılmıştır. Bitki ve hayvan topluluklarının özelliklerini dağılışlarını ve insan yaşamı üzerine etkilerini inceleyen fiziki coğrafya alt dalıdır. Biyoloji, botanik, zooloji ve tıp canlılar biliminin yardımcı bilim dallarıdır.. Bitki coğrafyası bölgeleri Kuzey bölgesi Paleotropikal bölge Neotropikal bölge Güney Afrika bölgesi Avustralya bölgesi Antarktika bölgesi Hayvan coğrafyası bölgeleri Palearktik bölge Oryantal bölge Avustralyen bölge Etiyopyen bölge Nearktik bölge Antarktika bölgesi Neotropikal bölge

http://www.biyologlar.com/biyocografya-nedir

Vitamin türleri

Herkes tarafından bilinen 13 vitamin vardır. Bunlar temelde, yağda çözünenler ve suda çözünenler olarak iki gruba ayrılır ama gerçekte 20 vitamin vardır. En küçük vitamin A, C, D ve K vitaminleriyken, en büyük vitamin türü E vitaminidir. Orta boy moleküllü B vitaminleri ise pek kullanılmaz. Dört vitamin türü, yağda çözünebilir ve bu sayede vücudun yağ dokusunda depolanırlar. Bunlar: A vitamini, D vitamini, E vitamini ve K vitamini. A Vitamini Göz sağlığı için çok önemlidir. E vitaminiyle alınırsa daha iyi gözlere sahip olunur. Yumurta, avokado, karaciğer, süt, havuç, sebze, ceviz, balık yağı gibi besinlerde vardır. Oluşumu sırasında böbreklerin rolü vardır. Zaten A vitamini böbreklerde bulunan tek vitamindir. Yeşil sebzelerde bulunur. Kalorisi yüksektir. A vitamininin (diğer yağda eriyen vitaminler olan D, E, K vitaminleri gibi) fazlası zararlıdır. Özellikle gebe kalmayı planlayanlarla gebelerin A vitamini içeren ilaçlardan ve yiyeceklerden (karaciğer) uzak durması önerilmektedir. Gebelikte düşük ve anormallik yapma riski vardır. Çoklu vitamin içeren ve gebelerce çok tüketilen ilaçlarda da ne yazık ki A vitamini bulunmaktadır. Yağda eriyen, vücutta depolanan bu tarz ilaçların gebelere verilen dozun toksik (zehirleyici) dozda olmaması özgürce alınabileceği anlamına gelmemektedir. İlaç olarak alınan A vitaminin doğal yollarla alınan A vitaminine göre daha riskli olduğu kabul edilmektedir. Nitekim İngiltere Royal Kolej yayınladığı "Gebe Takip Kılavuzu"nda A vitamini içeren ilaçların ve yiyeceklerden karaciğerin gebelere verilmemesini önermektedir. A vitamini fazlalığı aşağıdakilere neden olabilir: Doğum anormallikleri, Karaciğer problemleri, Kemik mineral yoğunluğunda azalma ve osteoporoz, Uygunsuz kemik büyümesi, Deride uygunsuz renk değişimi, Saç dökülmesi, Yoğun cilt kuruluğu ve pullanmalar A vitamini eksikliğinde görülen hastalıklar: Gece körlüğü, Bağışıklık sistemi zayıflığı, Büyüme-gelişme yavaşlaması D Vitamini Provitamin şeklinde alınan D vitamini deri altında uv. ışınları ile aktifleşir. D vitamini Ca ve P'un emilmesini ve kemiklerde depo edilmesini sağlar. D vitamini eksikliğinde çocuklarda raşitizm,yetişkinlerde osteomalazi hastalıklarının oluşmasını sağlar. Fazlası kireçlenmeye neden olur. En önemli kaynak güneş ışınıdır. Ayrıca karaciğer, balık, yumurta, tereyağı, peynir ve mantarda bulunur. E Vitamini Çocukların büyümesi için E vitamini gereklidir. Yaralarının iyileşmesi için E vitamini gerekir (protein yarayı kötüleştirir). Karaciğer, yağ dokusu, ince bağırsak ve mide E vitamini sentezler. Kimyasal yapı itibarı ile bir tokoferol olup antisterilite vitamin olarak da bilinir. Tokol ve tokotrienoltürevlerinin farklı bileşikleri E vitamini aktivitesi gösterir. En aktifi alfa-tokoferoldür. Provitamin olarak kullanılır. D vitamininden daha güçlüdür. E vitamini sinir sisteminin, kasların, hipofiz ve sürrenaller gibi endokrin bezlerin ve üreme organlarının fonksiyonları için öneme sahiptir. E vitamini, biyolojik bir antidoksidan olup, atardamar hastalıklarının ve kanserin önlenmesi için gerekli olan bir antioksidandır. Bitkisel ve sıvı yağlarda, kırmızı et, karaciğer, tahıl, tahıl ürünleri vb. lerde bulunan E vitamini eksikliğinde kaslar gelişemez ve E vitamini yapıcı-onarıcı özelliğe sahip her şeyi yaptığı için, bazı kozmetik ürünleri de E vitamini içermektedir. Kozmetik ürünlerinde sadece B5 ve E vitaminleri bulunur. Tokoferol (E1) vitamininin tokoferolleri: Alfa tokoferol - E1A (Diğer adı: Provitamin E) Beta tokoferol - E1B (Diğer adı: Pro-E1B) Gama tokoferol - E1G (Diğer adı: EProteinToko1) Delta tokoferol - E1D (Diğer adı: DeltE1) Mega tokoferol - E1M (Diğer adı: Megadel) K Vitamini K vitamini, yeşil sebze, çay ve ciğerde bulunan ve kan pıhtılaşmasında önemli bir yeri olan vitamindir. Karaciğerde protrombin yapılmasında kullanılır. Yokluğunda kan ile ilgili belirtiler ortaya çıkar. Normal olarak bağırsaklarda bulunan bakteriler tarafından sentezlenir. Yetersizliğinde pıhtılaşmada sorunlar ve aşırı kanama ortaya çıkar. Vücudumuzdaki bakteriler tarafından da üretilir. Vücudumuzu hastalıklardan korur. yaraların iyileşmesi için K vitamini gereklidir. Suda çözünenler Diğer dokuz vitamin türü ise suda çözünür ve pek çoğu vücutta depolanmaz. Bunlar: C vitamini, tiyamin (B1), riboflavin (B2), niyasin (B3), pantotenik asit (B5), piridoksin (B6), siyanokobalamin (B12), biyotin, folik asit (folacin). C Vitamini (askorbik asit) C vitamini veya askorbik asit, turunçgiller, koyu yeşil sebzeler ve patateslerde bulunan ve kollajen sentezinde yer alan, antioksidan bir vitamindir. Ayrıca demir emilimini de olumlu etkiler. Yetersizliğinde eklem ağrıları, yaraların geç iyileşmesi, skorbüt gibi sorunlara neden olabileceği gibi enfeksiyonlara karşı kişiyi daha zayıf kılar. Küçük yaşlarda diş eti kanaması ve grip C vitamini eksikliğinde, fazlalığında da ishal görülür. B1 Vitamini (tiyamin) Hemen hemen tüm canlı dokularda bulunur ve pirofosforik ester şeklinde görülür. Pentozfosfat çeviriminde alfa-keto asit dekarboksilazların ve transketolazın koenzimidir. Eksikliği başta sinir ve kalp hücreleri olmak üzere beslenmeleri için özellikle glikoza gereksinim duyan hücrelerde metabolizma bozukluğuyla sonuçlanır ve beriberiye neden olur. B2 Vitamini (riboflavin) Tahıllar, et ve ciğerde bulunan bir vitamindir. FAD'ın içeriklerindendir. Yetersizliğinde ariboflavinoz görülebilir. B3 Vitamini (niyasin) Et, balık ve kuru yemişlerde bulunan ve NAD ile NADP koenzimlerinin içeriklerinden olan, solunum için önemli bir vitamindir. Yetersizliğinde pellagra görülebilir. B5 Vitamini (pantotenik asit) Birçok gıdada, özellikle de ciğer ve baklagillerde bulunan önemli bir vitamindir. E vitamininin içeriği olan pantotenik asit, karbonhidrat ve yağ metabolizmasında yer alır. Yetersizliğinde yorgunluk ve uyuşukluk hissedilebilir. B12 Vitamini (siyanokobalamin) Siyanokobalamin veya B12 ciğer, balık ve süt ürünlerinde bulunan ve DNA metabolizmasında koenzim olarak yer alan bir vitamindir. Alyuvarların olgunlaşmasında da gereklidir. Yetersizliğinde anemi ve kilo kaybı görülebilir.

http://www.biyologlar.com/vitamin-turleri

Viral Hepatit

Bütün dünyada oldukça yaygın bir hastalık grubu olan viral hepatitler, halk arasında "sarılık" olarak tanımlanıyor. Ancak sarılık, viral hepatitlerin yalnızca bir bulgusu. Karaciğer iltihabına yol açıyor Hastaların çoğu sarılık olmadan bu hastalığı geçiriyor. Viral Hepatit ;virüslerin yol açtığı karaciğer iltihabı. Virüsler vücuda kan yada ağız yolu ile girerek karaciğere yerleşip çoğalarak karaciğer hücrelerini hasara uğratıyor ve karaciğerin işlevlerini bozuyor. Bugüne kadar hastalık yapan beş tane hepatit virüsü saptandı. Bunlar A, B, C, D ve E tipi hepatit virüsleri. Viral Hepatit hastalığının belirtileri arasında aşırı halsizlik, çabuk yorulma, bulantı, kusma, çay rengi idrar, belirsiz eklem ve kas ağrıları, sarılık yeralıyor. Halk arasında bulaşıcı olarak biliniyor A ve E tipi viral hepatitler halk arasında "Bulaşışıcı Sarılık" olarak bilinen bir hastalık. Bulaşıcı sarılıkta ani başlayan ,belirgin işaretler veren hastalık tablosu oluşuyor ve kendiliğinden iyileşiyor. Koşulların kötülüğü tetikliyor Bulaşıcı sarılığa, koşulları kötü olan toplumlarda sık rastlanıyor. Bulaşıcı sarılığa neden olan A ve E tipi hepatit virüsleri hastaların dışkılarında bulunuyor. Dışkıların bulaştığı su ve yiyeceklerle yada yakın temas yolu ile geçiyor. Kan yolu temas sonucu bulaşma yok denecek kadar az. Bulaşıcı sarılığın en iyi tedavisi istirahat ,dengeli ve yeterli beslenme. Bulaşıcı sarılık, büyük oranda dışkı ve ağız yolu ile bulaşıyor. Bu yol ile bulaşmanın önlenmesi bir alt yapı sorunu. Kişisel korunmada ise,temizlik kurallarına dikkat etmek gerekiyor. En etkili kişisel korunma, hasta kişilerin sağlıklı kişilerle temasının denetlenmesi. Hastaya ait eşyaların kullanılmaması gerekiyor. Hasta kişilerin başkalarına kesinlikle yiyecek hazırlamaması gerekiyor. Kullanılan mutfak eşyası ,elbise ,çarşaf gibi eşyaların sabun ve sıcak suyla yıkanması gerekiyor. `Gizli sarılık` B,C,D tipi viral hepatitler, halk arasında "Gizli Sarılık" ya da "Kara Sarılık" olarak biliniyor. Gizli sarılık mikrobunu alan kişilerin bir kısmı bu mikrobu vücutlarında taşıyor ve başkalarına bulaştırıyor. Bu kişilere "taşıyıcı" deniliyor. Taşıyıcı olmak dahi ilerde siroz ve karaciğer kanseri gelişmesi için yeterli oluyor. Üstelik taşıyıcı kişilerin virüsü başka kişilere de bulaştırması toplumun geleceği açısından büyük bir sorun oluşturuyor. Gizli sarılık mikrobu, kan nakli,ortak enjektör kullanımı yada herhangi bir yolla kan teması, cinsel ilişki ve anneden bebeğe şeklinde yayılıyor. Gizli sarılıkta ani başlayan hastalıkta en iyi tedavi, istirahat, dengeli ve yeterli beslenme. Günümüzde eski yanlış inançların aksine ,bir çok değişik ilaçlarla sarılığın tedavisi yapılıyor. Gizli sarılıkta başlıca bulaşma , kan yoluyla olduğundan; kan yolu ile bulaşmaya yönelik önlemler alınmalı. Bunun için kan bankalarında ,hastane ve Kızılay`da virüs taramaları yapılıyor. Ortak iğne ya da enjektör kullanımından kaçınılmalı. Ayrıca her şüpheli cinsel ilişkide prezervatif kullanılmalı. Ailede sarılık geçiren kimse varsa ya da risk altındaki kişiler hekime başvurarak korunma sağlamalı.

http://www.biyologlar.com/viral-hepatit

Biyolojik Silahlar ve Biyosensörler

Bakterilerin bir kısmı görünmeyen dostlarımızdır; bazıları sindirim sistemimize yardım ederken, bazıları vücudumuzdaki zehirleri yok ederler. Kimi bakteriler ise bizleri hasta eder. Vücudumuzun içinde veya dışında yaşayan bu ilginç mahlukçuklar hayatımızın ayrılmaz parçalarıdır her hâlükârda. Ancak bir de ‘katil’ bakteriler var ki, zalim insanların ellerine geçtiklerinde biyolojik silah olarak kullanılabilirler. Biyolojik silahlar; insanları, hayvanları veya tarımsal ürünleri öldürücü veya ağır derecede hasta edici olan mikroorganizmalar ile, bunlardan üretilen zehirli maddelerdir. Hatta sadece hastalık ve ölüme yol açan mikropların kendileri değil; bunların taşıyıcıları da meselâ böcekler bu sınıfa dahildir. Biyolojik silahlar kitle imha silahları içindeki en problemli ve tehlikeli silahlardır. Nükleer veya kimyasal silahlardan çok daha fazla insanı hedef alırlar. Diğer silahlara göre maliyetlerinin düşük olması, rutin güvenlik sistemleriyle tesbit edilemiyor olmaları gibi değişik nedenlerle insanlık için ciddi tehdit unsurudurlar. Kimyasal silahların aksine hemen tesir etmezler. Yaklaşık 24-48 saatlik bir kerahet devresinden sonra tesirleri ciddi olarak görünür ve o zamana kadar da eğer mikrop kullanıldı ise çoğalarak etrafa yayılmaya devam ederler. Biyolojik silahlar kimyasal olanlara göre çok daha fazla öldürücüdür. Meselâ 10 gr. şarbon sporu, 1 ton sinir gazı Sarin’in öldürebileceği kadar insan öldürebilir. Biyolojik silah tehlikesine karşı yapılması gerekenler ise şöyle özetlenebilir: • Biyosensörler ile tehlikenin tesbiti ve tanımlanması. • Mikrobiyal zehirlere karşı antidotların hazırlanması. • Antibiyotik ve aşı geliştirilmesi. Bakteriler, virüsler ve toksinler biyolojik silah olarak kullanılabilirler ve hepsinin birbirinden farklı özellikleri vardır. Son yıllarda biyoteknolojik metodların hızla ilerlemesi bu bilgi ve teknolojilerin kötü amaçlara âlet edilme tehlikesini de beraberinde getirdi. Genetik mühendisliği çalışmalarındaki ilerlemeye paralel olarak biyolojik silahların etkisini artırıcı ve tesbit edilmelerini zorlaştırıcı gelişmeler ise, bu silahlara karşı yapılan savunmayı daha da güçleştirecektir. Genetik olarak dizayn edilmiş organizmalar, biyo-silah üretiminde kullanılabilir durumdalar ne yazık ki. Örneğin: • Mikroskobik toksin veya biyoregülator fabrikasına dönüştürülmüş mikroorganizmalar, • Antibiyotik, aşı gibi rutin kullanılan ilaçlara bağışıklık kazandırılmış organizmalar. • İmmunolojik profilleri değiştirilerek bilinen tesbit metodları ile tesbit edilemeyen organizmalar. • Antikor bazlı sensör sistemlerinin tesbitinden kaçabilecek organizmalar. Bilimi kötü ve vahşi amaçlarına alet etmeye çalışanlar biyolojik silahların etkisini artırıp tesbitini zorlaştırmaya çalışırken, bizlere de, biyolojik silahların zararlı tesirlerini gidermeye çalışmak ve onların üretiminde kullanılan maddelerin tesbitini kolaylaştıracak metodları bulmak düşüyor. Biyolojik silahlara karşı erken tesbit, uyarı ve tedavi metodlarının geliştirilmesi insanlık için bir zorunluluk haline gelmiş bulunuyor. Tehlikeli biyolojik maddelerin varlığının tesbitinde en önemli unsur biyosensörlerdir. Biyosensörler (biyo-alıcılar, biyolojik dedektörler) biyolojik materyallerin alıcılar ile tesbit edilip ölçülebilir sinyallere dönüştürüldüğü aletlerdir. Alıcılar tarafından tesbit edilen tanımanın sinyale dönüştürülmesinde kullanılan metodlara göre, bu biyosensörleri kabaca (1) optik sensörler ve (2) elektrokimyasal sensörler olarak iki gruba ayırabiliriz. Şu anda ticarî olarak piyasada olan kimyasal ve biyolojik analiz âletleri gözden geçirildiğinde, kimyasal dedektörlerin biyolojik olanlardan daha fazla gelişmiş oldukları görülecektir. Kimyasal dedektörler neredeyse saniyeler ve dakikalar içinde kimyasal maddeler hakkında bilgi verirlerken, biyolojik dedektörler için bu süre genellikle daha uzundur; çünkü daha kompleks ve yavaş çalışan mekanizmaları vardır. Problemlerden biri de, büyük ve ağır olmalarıdır. Bu sorunların çözülmesi gerekmektedir; çünkü artık, kimyasal silahların tesbitinde olduğu gibi, biyo-silahların tesbiti için de küçük boyuttaki robotlar ya da uçaklar kullanılmak istenmektedir. Son yıllarda optik sensörler biraz daha geliştirildi ve biyokimyacılar için çok önemli araçlar haline geldi. Sensörlerde kullanılan biyolojik materyalleri tanıma elementlerini genel olarak şöyle sıralayabiliriz: enzimler, mikroorganizmalar, bitkisel ve hayvansal dokular, antikorlar, reseptörler, nükleik asitler. Tesbit edilmesi gereken materyale ilgisi olan, bağlanabilecek olan alıcı element (veya elementler) biyosensör yüzeyine kimyasal metodlar ile sabitlenir, yani immobilize edilir. Daha sonra ortam içerisinde istenen molekül veya mikroorganizma olan çözelti ilave edildiğinde, alıcı ile bu biyolojik materyal birbirlerine bağlanırlar. Bu bağlanma ise kullanılan sensör cinsine göre elektrik veya optik metodlarla sinyale dönüştürülerek algılanır. Eğer ortamda istenen biyokimyasal yok ise, sinyal gönderilmez. Biyosensörlerin çalışma mekanizması biyolojik elementler arasındaki ilgiye dayanır. Meselâ, hücre içindeki pek çok hayatî faaliyette yer alan proteinler arasında anahtar-kilit ilişkisine benzer ilişkiler vardır. Hücre içindeki faaliyetler hep birbirine bağlanan veya bağlanamayan proteinlerin oluşturdukları biyokimyasal sinyaller ile devam eder. Meselâ, protein ailesinin üyelerinden olan antikorların vazifesi organizmaya giren yabancı molekülleri tesbit edip bunlara bağlanmaktır. Antikorlar vücudun savunma sisteminin en önemli elemanlarıdırlar. Aslında her birimiz mükemmel biyosensörler sahibi olarak yaratılmışız. Meselâ beş duyumuz—görme, işitme, dokunma, koklama, ve tat almamız—yine alıcılar tarafından hissedilen verilerin kimyasal ve elektriksel sinyallere dönüştürülüp, beynin değerlendirilmesine sunulmasıdır. Modern teknoloji biyosensörler ile bir ya da birkaç molekülü tanımaya, algılamaya çalışırken, sizlerin şu anda bir yandan gözleriniz dergiye bakıp her an sinyalleri beyne gönderiyor; diğer yandan kulağınız radyodan gelen hafif müziğin sinyallerini göndermekle meşgul; derginin sayfalarını hisseden parmaklarınız sinirlere uyarılar veriyorlar; burnunuz bardaktaki meyve çayını koklamak ve yine uyarıları beyne göndermekle meşgul; öteki yanda antikorlarınız yabancı madde avında ve buldukları anda gereken bilgileri beyne gönderip savunma mekanizmasını harekete geçirmeye çalışıyorlar. Ama bütün bunlar olurken siz “Ayy, şimdi benim beynim bu verilerin hangisini anlamaya yetişsin?” diye sızlanmak yerine, yazıda okuduklarınızı düşünmekle meşgulsünüz. Biyosensör çalışmalarında yaşanan zorluklar ve eksiklikler bize küçücük hücrelerden büyük organizmalara kadar canlıların muhteşem biyosensörler olarak yaratıldıklarını ve insanoğlunun teknoloji adına yaptığı herşeyin bu muhteşem mekanizmaları taklide çalışmaktan başka birşey olmadığını gösteriyor. Sadece biyo-silahların tesbitinde değil, aynı zamanda biyolojik mekanizmaların, proteinler arası ilişkilerin anlaşılmasında ve insan genom projesinin devamı olan proteomik çalışmalarında da biyosensörlerin büyük önemi vardır. İnsan genom projesi ve patojenik bakteri ve mikroorganizmaların genetik kodlarının ilaç geliştirme çabalari için belirlenmesi, bazı kötü niyetli insanların ilaç yerine zehir yapmasına da yardım etmektedir. Almanya, Fransa, Japonya, İngiltere, ABD, Rusya ve Irak’ın bu silahları üretmek için çalışma yaptıkları söylenmektedir. Birinci ve İkinci Dünya Savaşlarında biyo-silahlar kullanılmıştır. Hatta çok daha önceleri 1763’te İngilizler Kızılderililere çiçek hastalarının kullandıkları battaniyeleri vermiş ve bu hastalığa karşı bağışıklığı olmayan yerlilerin hasta olup ölmelerine sebep olmuşlardır. Görünen o ki, yıkma, yok etme ve zarar verme açısından insana kimse yetişemiyor. Eğer insan olma erdemleri ve Allah korkusu yok ise, insanoğlu en vahşi silahları bile kullanmaktan, insanları yok etmekten geri kalmayan, esfel-i sâfilîne lâyık varlıklara dönüşüyor. Bu tür insanların neden olabileceği biyolojik savaş/terör tehlikesine karşı uyanık olunması ve gereken erken uyarı, tesbit ve savunma sistemlerinin geliştirilmesine ülkemizde de çalışılması gerekmektedir.

http://www.biyologlar.com/biyolojik-silahlar-ve-biyosensorler

ADENOVİRÜS IgG

Normal Değer: Negatif Kullanımı: Üst ve alt solunum sistemi, konjonktivit ve ishal etkeni olan Adenovirüse karşı gelişen bağışıklığın gösterilmesinde kullanılır. Nadiren fatal enfeksiyonlara neden olmasına rağmen yenidoğan ve çocukluk döneminde %50 oranında uzayan enfeksiyonlara neden olabilir. Özellikle transplantasyon sonrasında ve immünsuprese şahıslarda ağır enfeksiyonlara neden olabilir. www.tahlil.com

http://www.biyologlar.com/adenovirus-igg

Aids

AİDS insan vücudunun immün sistemini yok eden ve bir dizi belirtilerle karakterize olan bır immün (bağışıklık) yetersizlik sendromudur. ""Normal olarak immün sistemi beyaz kan hücreleri ve vücuda mikroplar girdiğinde bunları etkisiz hale getirmek üzere oluşan antikorlar meydana getirir. Bu hücrelere T hücre lenfositleri adı verilir. Aids Belirtileri: Uzun süreli açıklanamayan yorgunluk. Lenf nodüllerinin açıklanamayan şişliği On günden daha uzun süren ateş Gece terlemesi Açıklanamayan kilo kaybı Derideki renk bozulumu ve iyileştirilemeyen mukoz membran iltihapları ilerleyen açıklanamayan öksürük ve boğaz ağrısı. Nefes darlığı ilerleyen üşüme Devamlı ishal. Ağızda mantar enfeksiyonu Kolay yaralanma ve açıklanamayan kanama Zihinde karışıklık ve sonunda koma. AIDS'Iİ kişilerde HIV-I denilen virüs tipi bu T hücrelerinin içine girer ve çoğalmaya başlar. Daha sonra da bu hücreleri öldürür. AİDS'ti kişilerde bt. imha immün sistemi zayıf bir hale getirir. Bu durumda ayrıca değişik enfeksiyonların ve tümörlerin ortaya çıkışı da kolaylaşır. HIV-I virüsüne ayn zamanda HTLV-III LAV ARV virüsleri de denilir Virüs değişik yollarla örneğin damardan kirli iğne-lerle yapılan iğneler cinsel ilişkiler veya anneder çocuğa olmak üzere vücuda girerler. Virüs T hücrelerinin içine girer ve çoğalır. Birkaç ay içinde vücut bu virüse karşı antikor üretir. Kan testleri bu yüzden pozitif bir sonuç verir. Semptomlar 1-2 haftada gelişir. Bunlar virüs vücuda girdikten birkaç ay sonra başlar. Bu sırada kanda antikor oluştuğu için ELİSA ve VVestern Blot gibi tahlillerle teşhis konulabilir. Semptomlar enfeksiyöz mononükleozu andırır ve lenf nodüllerinde şişme ağrılı boğaz ateş sıkıntı ve deri döküntüsü gibi durumları içerir. Semptomlar bir süre sonra azalabilir ve birkaç yıl hiç görülmeyebilir. Bu zaman zarfında vücuttaki virüs miktarı önceleri yavaş sonraları ise hızlı bir şekilde artar. Bu artışa paralel olarak T hücreleri azalır. Kişi bundan sonra AİDS'e sebep olan virüs enfeksiyonuna yakalanmış demektir. Fakat henüz AİDS tam meydana gelmez. Bununla birlikte kişi diğer insanlara bu virüsü bulaştırabilir. T hücreleri ortadan kalktığında immün sistem çöker ve vücutta çok kolay enfeksiyon ve tümörler meydana gelir. Lenf bezleri şişmesi düşük dereceli ateş gibi immün sistemin zayıflamasının işareti ola-rak bilinen semptomlar meydana geldiğinde hastalık AİDS Related Complex (ARC) adını alır. İmmün sistemin büyük çapta zayıflamasından sonra tüm belirtilerin tamamen belirmesi durumu ortaya çıkar ki bu da fırsatçı enfeksiyon durumunu içerir. (Fırsatçı enfeksiyon vücudun immün sistemi şiddetli bir şekilde bozulduğunda vücuda istila edebilen bakteri veya virüsler tarafından oluşturulur.) AİDS'in bütün etkileri virüs enfeksiyonunu takiben 5-10 yıl içinde gelişir. Ölüm ortalama 2-3 yıl içinde bu etkiler nedeniyle meydana gelebilir. Bu hastalık yeni tanımlanabilmiştir ve doğal yapısı konusundaki bilgilerimiz birkaç yıl içinde değişebilir. AİDS şu anda büyük bir salgındır. On yıl önce bu ülkede AİDS bilinmiyordu. Bugün halkın ilgi alanına giren büyük bir olaydır. Ocak 1981'den Ocak 1990'a kadar 140.00 Amerikalıya AİDS teşhisi konmuştur. Bu grubun yarısından fazlası semptomların ortaya çıkmasını takip eden 4 yıl içinde ölmüştür insanların bir çoğu da kanlarında AİDS virüsü taşımakta olup sonunda AİDS gelişecektir. Dünya Sağlık Organizasyonunun tahminlerine göre dünyadaki AlDS'li hasta sayısı 500.000 civarındadır. Diğer taraftan Amerika'da 1-1.5 milyon diğer ülkelerde 5-10 milyon AİDS virüsü taşıyan insan vardır. Muhtemelen bu insanların sayısı da gittikçe artmaktadır. AlDS'li hastalar ikiye ayrılır. Homoseksüel ve biseksüel erkekler ve iğne ile uyuşturucu kullanan erkekler ve kadınlar. Riskli olan diğerleri ise AlDS'liyle cinsel ilişkide bulunanlar AİDS virüsü taşıyan kadınların çocukları ve 1977-1985 Nisan'ı arasında çeşitli nedenlerle kan nakli yapılmış kişilerdir. Bu hastalığın kadından erkeğe erkekten kadına cinsel ilişkiyle geçebildiğini vurgulamak istiyoruz. Prezervatif kullanarak virüs geçişini azaltmak mümkün olabiliyorsa da tam korunma sağlanamaz.

http://www.biyologlar.com/aids

BİYOLOJİK TÜR KAVRAMININ UYGULANMASINDAKİ GÜÇLÜKLER

Biyolojik tür kavramının doğal taksonlara uygulanmasında bazı zorlukların ortaya çıkması gerçegi bu kavramın geçersiz olduğu anlamına gelmez. Bu durum Simpson (1961: 150) ve Mayr (1963: 21-22) tarafından gösterilmiştir. Genel olarak kabul edilen pek çok kavram belli durumlar veya spesifik örneklere uygulandığında benzer zorluklara sebep olmuşlardır. Örneğin bir ağaç kavramı yayılan juniperler, cüce söğütler, dev kaktüsler ve strangler fig’lerin mevcudiyetiyle geçersiz kılınmamıştır. Bir kavram ve onun özel bir duruma uygulanması arasında net bir ayrım yapılmalıdır. Biyolojik tür kavramının uygulanmasındaki daha ciddi problemler yetersiz bilgi, tek ebeveynli üreme ve evrimsel olarak orta durumluluk durumlarından kaynaklanmaktadır. Yetersiz Bilgi Bireysel varyasyonlar bütün çeşitleriyle belli bir morfotipin ayrı bir tür mü ya da değişken bir populasyon içinde sadece bir fenon mu olduğu hakkında şüphelere yol açar. Eşeysel dimorfizm, yaş farklılıkları, polimorfizm ve diğer varyasyon tipleri bir tabiat tarihi çalışması veya populasyon analizleri sırasında bireysel varyasyonlar olarak ortaya konulabilir. Normal olarak korunmuş örneklerle çalışan neontologlar da fenonları (morfotipler) tür olarak vermek zorunda olan paleontologların karşılaştığı aynı problemle karşılaşır. Tek Ebeveynli Üreme Pek çok organizmadaki üreme sistemleri, yeni bir bireyin oluşturulması sürecinde ebeveyn bireyler arasında genetik materyalin zorunlu bir rekombinasyonu prensibine dayanır. Kendini dölleyen hermafroditlik ve diger automixis, partenogenez, gynogenesis ve vejetatif üreme (bölünmüş parçaların gelişimi) tipleri tek ebeveynli üremenin bazı tipleridir. Bu durum aşağı omurgasızlarda nadir değildir, Partenogenez hatta böcekler arasında ve aşağı omurgalılardan sürüngenlere kadar bile vardır. Evrimsel biyolojide belirlendiği gibi, bir populasyon kendi içinde üreyen bir gruptur. Bu tanımlamaya göre eşeysiz bir biyolojik populasyon aksine bir durumdur. Buna rağmen populasyon kelimesi içinde eşeysiz olmanın aksine olmadığı bir kombinasyonu da kapsayan diğer kullanımlara da sahiptir. Kendi içinde üreme hayvanlarda conspesific’liğin en son testi olduğu ve bu kriter sadece eşeyli üreyen populasyonlarda geçerli olduğu için tek ebeveynli üreyen organizma taksonlarında kategorik sıranın belirlenmesi zordur. Taksonomist klonlar, saf hatlar, biotipler ve böyle organizmaların bu şekilde devam eden zincir veya stoklarını nasıl değerlendirecektir ? Bu şekildeki tek ebeveynli soylar zaman zaman agamospecies, binomlar veya paraspecies olarak tanımlanmaktadır. Hangi tanımlama seçilirse seçilsin bu şekildeki mevcudiyetlerin biyolojik türlerin bölümleri olmadığı hatta oldukça farklı olduğu bilinmelidir. Ghiselin (1987) tür teriminin eşeysiz klon gruplarına uygulanmasının uygunluğunu oldukça güzel bir şekilde sorgulamıştır. Özellikle afidler, gal waspları (Cynipidae), Daphnia (Crustacea), rotiferler, digenetik trematodlar gibi bazı hayvan gruplarında eşeyli ve partenogenetik jenerasyonlar arasında düzenli bir dölamaşı görülebilir. Bu gibi durumlarda jenerasyonlardan hiç birisi ayrı bir biyolojik tür statüsü kazanmaz, nomenklatürel tanımda olduğu gibi geçici klonlara bu statü verilmez. Ancak özellikle afidlerde partenogenetik jenerasyonlar bazen tekrar eşeyselliğe dönmekte başarısız olmakta ve partenogenez sürekli hale gelmektedir. Bu jenerasyonlar eşeysel ırklardan konak bitki tercihleri veya renk genleri bakımından farklı hale geldiklerinde bu partenogenetik taksonların farklı türler olarak isimlendirilebileceği önerisinin ciddi biçimde gözden geçirilmesi gerekmektedir. Sürekli olarak tek ebeveynli üreyen hatlar durumunda morfolojik farklılığın derecesi temelinde bunlara tür statüsünün verilmesi geleneklere uygundur. Tek ebeveynli üreyen organizma çeşitleri arasında genellikle iyi belirlenmiş morfolojik kesintiler vardır. Bu kesintiler açık bir şekilde eşeysiz klonlarda görülen çeşitli mutanlar arasında doğal seleksiyonla üretilmiştir. Bu şekildeki kesintilerin mevcudiyeti ve morfolojik farklılıkların miktarının tek ebeveynli üreyen tipler arasında tür sınırlarını çizmek için kullanılması geleneklere uygundur. Eşeysel organizmalarda tür tanımlanması sadece analojiye değil ayrıca diğer benzer gruplardan bir kesintiyle ayrılan her morfolojik grubun kendine ait bir ekolojik nişi işgal etmesine dayanır; yani her grup kendi evrimsel rolünü oynar. Bdelloid rotiferler gibi hepsi zorunlu olarak partenogenezle üreyen gruplarda tanımlanmış biyolojik türler için belli bir biyolojik anlamın delilleri vardır. Tamamen partenogenetik üreyen ve muhtemelen dallanıp ayrılmış olan biparental türlerin bilinmediği, ve içinde iyi biyolojik türler kadar farklı olan bir grup olan örnekler bilinmektedir. Nomenklatürel tanımlama böyle durumlarda maruz görülmüştür. Çeşitli crustaceanlarda (ör. Artemia salina L.) olduğu gibi bir “tür” içinde üreme izolasyonuna sahip çesitli kromozomal tipler bulunduğunda bunları nomenkletürel olarak tanımlamak uygun olabilir. Bunlar geleneksel olarak ırklar olarak tanımlanmasına rağmen üreme bakımından izole olmuş kromozomal populasyonları (mikro) species olarak tanımlamak daha mantıklıdır. Erkek eşeyin bulunmadığı veya fonksiyonsuz olduğu yaklaşık 1000 hayvan türü bilinmektedir. Bu şekildeki komple-dişi türler partenogenezin bu tipi için olan kullanılan özel bir terim olan thelytoky ile ürerler. Mayotik mekanizmalara dayanarak bu gibi türlerde homozigotluk veya heterozigutluğa doğru bir eğilim vardır. Homozigotluk üreten tip nadirdir, ancak birkaç böcek grubuyla sınırlıdır ve zaman zaman normal olarak iki eşeyli üreyen sibling türler bu thelytokous türlerle yan yana bulunmaktadır. Heterozigotluk oluşturan pek çok thelytoky durumunun, türler arası bir hibrit olarak ortaya çıkan bir bireyde partenogenez (thelytoky) için oluşan bir değişiklikten kaynaklandığı ani türleşmenin bir ürünü olarak görülmektedir. Bu kategorideki mevcut türler nispeten yakın zamandaki türleşme olaylarının sonucu olarak görülmektedir, bu kısa zaman taksonomik zorluklar oluşturmak için yeterli bireysel varyasyonları biriktirmek için yeterli zaman sağlayamamıştır. Belirtilen bu durum güney ABD ve Meksika’da bulunan hep-dişi bir kertenkele cinsi olan Cnemidophorus için de geçerlidir. Salamander ve balıklardaki bilinen thelytoky durumları çekirgelerde görülen bir durumda olduğu gibi hibridizasyonun bir sonucudur. Bazı özel durumlarda (ör. Rana esculenta, Poeciliopsis) mayoz boyunca erkek kromozomları yoktur ve ebeveyn türlerden (gynogenesis, veya pseudogamy) birinin erkek tarafından döllenmesi ile gelişen zigotun genotipine erkeklerin katkı sağlamamasına rağmen yumurtanın gelişimini uyarmak için gerekmektedir. Hayvanların iki uzak türü arasındaki hibridizasyon açık şekilde her zaman total sterilite veya eşeysel üremenin bozulmasıyla sonuçlanır. Sikluslu partenogenetik gruplarda bazı türlerde eşeyli üreme sürekli olarak yok olabilir. Bunun konak türdeki bir anahtar ile düzenlendiği durumlarda (bazı afidlerde oldugu gibi) tür statüsü hakkında bazı şüpheler oluşur. Hermafroditler çoğu zaman eşeyli ürer, yani yumurtanın döllenmesi farklı bir bireyin spermatozoası ile yapılır. Ancak bazı türler tamamen kendi kendini döller (automixis). Bu durum Foltz et al. (1982)’ın bazı salyangoz türlerinde buldugu gibi homozigotluğu artırır. Evrimsel Orta Durumluluk Populasyonlar arasındaki üreme ayrılığı olarak belirtildiği gibi tür ancak lokal bir faunanın boyutsuz durumunda komple klasik ayrılıkta mevcuttur. Uzay (enlem ve boylam) ve zaman boyutunda uzanan tür taksonlarından bahsedildiğinde, safha yeni başlayan bir türleşme için oluşturulur. Populasyonlar ayrı türler haline gelme aşamasındaki bu durumlarda bulunabilir. Bu durumdaki populasyonlar ayrı bir türün bazı özelliklerini kazanmış, bazılarını da kazanamamıştır. Ayrılma aşamasının hangi safhasında ayrılan populasyonlar bir tür olarak adlandırılır? Morfolojik ayrılığın kazanılması üreme izolasyonunun kazanılmasıyla yakından ilişkili değilse bir karar vermek özellikle zordur. Bir taksonomistin karsılaştığı ve evrimsel olarak orta durumlu olmaktan kaynaklanan çesitli zorluklar aşagıdaki gibi özetlenebilir. 1- Üreme izolasyonun eşdeger morfolojik değişim olmadan kazanılması: Morfolojik farklılığı olmayan (veya çok az olan), ancak üreme bakımından izole olmuş türler sibling türler olarak adlandırılır. 2- Üreme izolasyonu olmaksızın güçlü morfolojik farklılıkların kazanılması: Bazı hayvan ve bitki cinsleri temas kurdukları bölgelerde tesadüfi olarak kendi arasında üreyen ancak morfolojik olarak oldukça farklı populasyonlara sahiptir. Böyle durumlarda morfolojik olarak farklı her populasyonun tipolojik bir çözüm olarak ayrı türler olarak tanımlanması açıkça uygun değildir. Bunun tersi olarak iki türü arasındaki üreme izolasyonun ara sıra bozulduğu cinsler vardır. Böyle türleri conspesific olarak değerlendirmek zıt ekstremlere götürebilir. Morfolojik farklılık ve üreme izolasyonun aynı zamana rastlamadığı durumlarda genelleştirilmiş bir çözüm yoktur. Burada bir uzmana tek öneri türler biyolojik olarak anlamlı doğal mevcudiyetler oluşturduğu bir durumda türleri sınırlandırmasıdır. 3- İzolasyon mekanizmalarının ara sıra bozulması (hibridizasyon): İyi türler arasında bile üreme izolasyonu ara sıra bozulabilir. Bu durum çoğunlukla sadece steril veya düşük yaşama şansına sahip tesadüfi hibritlerin üretilmesine yol açar ve taksonomik bir probleme yol açmaz. Daha nadir olarak izolasyonun tamamen lokal bir bozulması söz konusudur ve bu durum geniş ölçüde hibrit swarmların ve az çok tamamıyla introgression üretilmesiyle sonuçlanır. Hibrit bireyler, hibrit yapıları keşfedilmeden önce bazen tür olarak tanımlanırlar. Bu isimler, hibrit durumları belirlenince geçerliliklerini yitirir. Sadece populasyonlar taksonlar olarak tanınır ve hibritler populasyon degildir. Bütün populasyonların bir hibridizasyonun sonucunda oluştuğu durumlar taksonomik olarak oldukça zordur. Orijinleri hibridizasyona dayanan çeşitli doğal populasyon tipleri bilinmektedir. a- Hibrit swarmlar: Belli türlerde pek çok simpatrik alanda devam ettirilen üreme izolasyonu lokal olarak bozulabilir, bu durum lokalize olmuş hibrit swarmların üretilmesiyle sonuçlanır. Böyle durumlarda ebeveyn türlerin tür statülerinin korunması önerilir. Meksika’da yasayan Pipilo erythrophthalmus ve P. occi türleri bu duruma örnek olarak verilebilir. Üreme izolasyonunun bu şekilde lokal bir bozulmasından kaynaklanan hibrit populasyonlara her hangi bir taksonomik tanımlama verilmemiştir. Sadece olabilecek bir istisnada üreme izolasyonu öyle bütün bir şekilde kırılabilir ki iki ebeveyn tür tek bir tür halinde birleşebilir. Taksonomik literatür bu durumu yorumlayan çok sayıda durum içerir, ancak bu durumu eksiksiz bir şekilde ortaya koyan tek bir analiz yoktur. b- Hibridizasyonla olusturulan partenogenetik türler: A ebeveyn türünden 1 kromozom takımı ve B ebeveyn tününden 1 kromozom takımına sahip bir bireyin üretilmesiyle sonuçlanan hibridizasyon, kromozom setinin allotetraploidi şeklinde tam olarak ikiye katlanmasına yol açar. Bitkilerde böyle bireyler derhal kendi kendini dölleyen hatta çapraz dölleme yapan allotetraploid bir tür oluşturur. Hayvanlarda çapraz döllenmenin olması neredeyse tamamen zorunludur, yeni bir allotetraploid ancak partenogeneze yol açarak kendini devam ettirebilir (thelytoky). Bu şekildeki hibrit türler genellikle morfolojik olarak iyi bir şekilde karakterize edilirler ve bunların orijin tarzı keşfedildikten sonra bile genellikle geçerli türler olarak tanımlanırlar. Daha kompleks durumlar kısmi partenogenezde ortaya çıkar; oligoketler, planarialar, buğday bitleri, güveler (Solenobia), diğer böcekler, bitler ve kabuklularda görüldüğü gibi bazen triploidi veya daha yüksek poliploidi ile kombine olur. Burada tek bir “türde” iki eşeyli diploidler, thelytokous diploidler ve thelytokous poliploid “ırklar” bulunabilir. Bu ırkların morfolojik olarak ayrılamamakla birlikte üreme bakımından izole olmuşlardır. Bu thelytokous ırklardan çoğu hibridizasyonun ürünüymüş gibi görünmezler. 4- Semispecies ve allospecies: Coğrafik izolatlar zaman zaman tür ve alttür arasındaki bir ara statüdedir. Bazı kriterler tabanında bunlar tür olarak değerlendirilebilir; diğer kriterler temelinde ise değerlendirilemez. Taksonomist tarafından bu şekildeki şüpheli populasyonların yakın olarak ilişkili oldukları türün alttürü olarak değerlendirilmesi genellikle daha uygundur. Diger bazı durumlarda böyle izolatlar açıkça tür seviyesine ulaşır ancak bir üsttürün üyeleri olarak kalırlar. Böyle populasyonlar allospecies olarak dizayn edilebilir. Dairesel çakışmalar ve sınır boyu çakışması durumları evrimsel olarak orta durumluluğun diğer örnekleridir. Sonuçlanan taksonların sıralanması metoduna, evrimsel olarak orta durumluluğun derecesi ve uygunluğu temelinde durumdan duruma karar verilmelidir. Tür ve alttür arasındaki taksonlar genellikle semispecies olarak nitelenir.

http://www.biyologlar.com/biyolojik-tur-kavraminin-uygulanmasindaki-guclukler

SÜNGERLER HAKKINDA BİLGİ

SÜNGERLER HAKKINDA BİLGİ

Deniz diplerinin inanılmaz ren ve biçimlerdeki nazlı güzelleridir süngerler. Yüzyıllar boyuna hep biti sanılan bu ilginç hayvanların, sakin görünen yaşantıları gerçekte oldukça renklidir. Bu nedenledir ki çok uzun yıllardır insanların ilgisini çekmişlerdir. Sünger avcılığı günümüzde hala bir meslek olma niteliğini koruyor. Süngerlerle avcılar arasındaki amansız mücadeleye yüzyıllardır tanıklık ediyor denizler. Sünger avcılarının topladığı süngerler önceleri yalnızca banyo ve mutfaklarda temizlik gereci, boya fırçası, zırh ve miğfer astarı, kap, bebek emziği, tıbbi cihaz malzemesi ve tampon olarak kullanılırken, bugün artık biyokimya laboratuvarlarında ve ilaç endüstrisinde önemli araştırmalara da konu oluyor. Süngerler, en ilkel çok hücreli canlı gruplarındandır. Tanımlanmış yaklaşık 5000 türü vardır süngerlerin. Renkleri, vücut yüzeyindeki su alıp veren gözeneklerin büyüklükleri ve dizilişleriyle sivri, mikroskobik çıkıntıları sünger türlerinin tanımlanmasında yardımcı olur. Rengarenk, canlı süngerler laboratuvarlara taşındığında, örnek kavanozlarının dibinde önce renkleri solar sonra da sulu çamur haline dönüşürler. Bazen, süngerlerin kimliğini belirlemek için mikroskobik düzeyde analiz yapmak gerekir. Süngerlerin çok büyük bir bölümü denizlerde, geri kalanlar da tatlı sularda yaşar. Tüm okyanus ve denizlerde, hemen hemen her derinlikte süngerlere rastlamak olasıdır. Kimi yalnızca birkaç cm büyüklükte olan süngerlerin, 2 m olanları da vardır. Yüz milyonlarca yıldır değişmeden kalmış olan bu canlılarda kalp, beyin, ciğer gibi organlar, gerçek dokular ve sinir sistemleri bulunmaz. Karmaşık hareket yetenekleride yoktur. Bütün bu özellikleri ve hiç yer değiştirmiyormuş gibi gözükmeleri nedeniyle çok uzun yıllar hep bitki sanılmıştır süngerler. 1600’lü yıllarda İngiliz bitkibilimciler, “Sünger diye adlandırdığımız ve deniz köpüğünün oyduğu bazı maddelerden bilimsel yayınlarda söz etmek çok fazla yer kaplayacağı gibi, okuyuculara da pek katkısı olmaz” diyorlardı. İlk kez 1765’te hayvanlara özgü yapısal ve fizyolojik özellikleri ortaya çıkarılmış olan süngerler, 1600’lü yıllarda bilim adamlarının düşündüklerinin aksine, bugün birçok bilimsel araştırmaya konu oluyor. Süngerler yaşamlarını daha çok özelleşmiş hücreler yardımıyla sürdürürler, değişik hücreler değişik işlevler üstlenmiştir. İskeletleri kalkerli ya da silisli kristal iğneciklerden (spikül), sponjin denen bir proteinden ya da bunların karışımından oluşur. Por adı verilen gözenekler sayesinde suyu süzerek çekerler ve sonra minik boşaltım deliklerinden geri püskürtürler. Serin ve tuzlu sularda yaşayan süngerler, hareketsiz olduklarından kendi yakınlarına gelen yiyecekleri hidrolik sistemlerinin yardımıyla suhidrolik sistemlerinin yardımıyla sudan süzerler. Süngerler genellikle gözle görülemeyecek kadar küçük organik maddeleri, diatomları ve bazı tekhücreli mikroskobik bitkileri, ölü ya da canlı planktonları ve bakterileri besin olarak alırlar. Kısa bir süre önce Akdeniz’deki sualtı mağaralarında yaşayan bir sünger türünün etobur olduğu ve kabuklu minik hayvanları (Crustacea) yediği saptanmış. Bu etobur sünger, hayvanın dış kabuğuna iğnecikleriyle yaptıktan sonra, korumasız avının etrafında toplanan özel hücreleri sayesinde sindirim yaparlar. Süngerler hem eşeyli hem de eşeysiz üreme yapabilirler. Eşeyli üreyenlerinin çoğunluğu ayrı eşeyli, bir kısmı da hermafrodittir (hem dişi hem de erkek üreme organına sahiptir). Bunlar, yumurta ve spermleri farklı zamanlarda üretirler. Dışarı salınan bu spermler komşu süngerlerce alınır. Eşeysiz üreme yapan süngerlerse tomurcuklanmayla ürerler. Tatlı sularda yaşayan süngerler eşeysiz olarak çoğalırlar. Süngerler, güneş ışığı ve havayla karşılaştıklarında ölseler bile tekrar suya sokulduklarında tomurcukları yaşar ve bunlardan yeni süngerler oluşabilir. sci.ege.edu.tr

http://www.biyologlar.com/sungerler-hakkinda-bilgi

Biyolojinin Önemi

Doğumdan ölüme kadar yasamin her evresinde bilinçli ve saglikli yasama , ekonomik gelismeyi sürekli kilma , çevreyi bozulmadan tutma , üretimin kalitesini ve miktarini artirmada biyoloji bilimi önemli yer tutar. Temel bilim olan biyoloji , canli ve doga ile ilgili her konuyu içine almaktadir , bu bakimdan arastiran düsünen insana sinirsiz sayida çalisma olanagi saglar. Burada basarili olmanin en önemli sirri, düsünerek dogayi izlemektir . Doganin bilinçsiz kullanilmasi , insan ve diger canlilarin yasami için tehlikeli sonuçlar ortaya çikarir . Çevre kirlenmesi , erozyon , madde kaybi , yesil alanlarin azalmasi , hizli nüfûs artisi , plânsiz kentlesme , biyolojik zenginliklerin ortadan kalkmasi bu sorunlarin basinda gelir. Örnegin orta Anadolu'nun çöllesme tehlikesi ile karsi karsiya kalmasi , nehirlerin kirlenmesi , kiyi güzelliklerimizin bozulmasi , dogal kaynaklarimizin iyi kullanilmamasi sonucunda ortaya çikan sorunlardir . Biyoteknoloji alanindaki çalismalarla , atik maddelerin temel yapilarina kadar parçalayabilen mikroorganizmalar kullanilarak daha temiz bir çevrenin yaratilmasi saglanacaktir . Biyoteknolojinin amaci , bir canlinin belirli özelliklerini sifreleyen genetik bilginin bir baska canliya nakledilmesidir . Böylece nakledilen bilginin geregi , ikinci canli tarafindan yerine getirilir . DNA molekülünün yapisi üzerinde yapilan bu degisiklikle amaca yönelik üretim yapilir . Biyoloji ; uygulama alanlarin olan tip , tarim , hayvancilik , ormancilik , endüstri ve diger alanlardaki çalismalar sayesinde , insanlarin gelecege daha umutla bakmalarini saglayan genis bir bilim dali olmustur . Biyoloji ile ilgili bilgilerin eksikligi , ne yazik ki basta çevrenin bozulmasi , önlenmesi mümkün olmayan saglik sorunlarinin ortaya çikmasi , dogal kaynaklarin sürekli ve verimli olarak kullanilmamasi , biyolojik zenginliklerden yeterince yararlanilamama gibi sorunlar dogmustur . Biyoloji ile bireyin kendisini ve çevresini tanimasi , çevresini koruma bilincini kazanmasi hedeflenmistir . Biyoloji bilgisine sahip olmanin bireyin yasamina getirecegi yararlar çevresini tanima , sagligini koruma biyolojik zenginlikleri tanima ve onlardan yararlanma , canlilarin temel yapisini ögrenme olabilir . Çevrenin bozulmasi ve kirlenmesine iliskin bilgi ve bilinci gelistirme , arastirma duygusunu ve kisiligini gelistirme , son gelismeleri tanima ve 21. yüzyila hazirlanma biyolojinin saglayacagi diger yararlarindandir . Biyoloji bilimine yeterli önemin verilmemesi sonucunda ortaya çikan sorunlar sunlardir : Çevrenin bozulmasi ile ilgili sorunlar : Erozyon , sulak alanlarin kurutulmasi , denizlerin ve göllerin kirlenmesi , ormanlarin ve meralarin tahrip edilmesi , Birçok canli türünün ortadan kalkmasiyla biyolojik çesitliligin azalmasi ve doga dengesinin bozulmasi , Canlilarin asiri ve yanlis tüketiminden dolayi , dogal kaynaklarin tahrip edilmesi , gibi sorunlar çevrenin bozulmasina sebep olurlar . Saglikla ilgili sorunlar : Yanlis beslenmeye bagli birçok hastalik , Akraba evliligine bagli anomalilerin artmasi , Kalitsal bozukluklarin zamaninda tanimlanamamasina bagli olarak sagliksiz soylarin ortaya çikmasi ve bunlar gibi birçok sorunlar . Ekonomiyle ilgili sorunlar Dünyanin en önemli kültür bitkilerini ve hayvanlarini barindiran ülkemizde , islah çalismalarinin yapilmamasi ve üretimin gereken sekilde artirilmamasi , ekonomik sorunlardandir . Sosyal yapiyla ilgili sorunlar : Çevre bozulmasina yada yaslanabilir bir çevre olusturulmamasina bagli olarak göçe sürüklenme , Saglikli ve güzel ortamlarda çocuklarin yetistirilmemesine bagli olarak , bedensel ve ruhsal yetersizlikler , sosyal yapiyla ilgili sorunlardir . Biyolojinin Gelecegi Dünyamizin kaynaklari , sürekli çogalan ve tüketimi gittikçe artan ,nsan topluluklarina yeterli olmayacak duruma gelmistir . Denizler , iç sular ve atmosfer kirlenmis , toprak yapisi yer yer yenilenemeyecek kadar bozulmustur . Tüm dünya yasam tehlikesine dogru sürüklenmektedir . Çözüm yolu , bazi yöntemlerle birlikte biyoloji bilimine dayanmaktadir. Önümüzdeki yüzyilin basinda su gelismelerin olmasi beklenmektedir . Insan topluluklarinda kalitsal hastaliklara neden olan genler , döllenme sirasinda saglamlariyla degistirilecek kanser , düsük ve yüksek tansiyon, seker hastaligi , cücelik v.b. hastaliklar önlenebilecekler . Canlilarin ömür uzunlugunu kalitsal olarak denetleyen genler kontrol altina alinarak yada degistirilerek , uzun bir yasam saglanabilecektir . 1996 yilindan bu yana ana karnindaki bir fetusun ne kadar yasayacagi artik tahmin edilebilmektedir . Bir canlida özelligi bir özelligi ortaya çikaran gen yada genler , diger canlilarin kalitsal yapisina eklenerek bazi eksikler bu yolla giderilebildigi gibi fazladan bazi özelliklerinde kazanilmasida saglanacaktir . Örnegin ; C vitamini karacigerde sentezlettirilecegi için vitamin olmaktan çikacaktir . Bitki ve hayvanlarin islahinda olaganüstü atilimlar gerçeklesecek , verim artirilacak bir çok maddenin sentezi özellikle büyük miktarda mikroorganizmalarda yaptirilabilecektir . Genlerdeki degisiklikler sonucu yeni hayvan ve bitki türlerinin ortaya çikmasi saglanacaktir . Yenilenme mekanizmasi aydinlatilacagindan kismi doku ve organ yitirilmeleri yerine konulabilecektir . Bugüne kadar doku ve organ nakli tekniginde , doku uyusmazligi nedeniyle basarisizliklar olmustur , ancak bu sorun doku ve organ nakli teknigindeki gelismelerle asilmaktadir . Bunun için simdiden organ bankalarinda çesitli organlar gerektiginde kullanilmak üzere korunmaktadir . Su anda genellikle sperm , kemik , deri ve bazi özel dokular saklanabilmektedir . Yakin gelecekte ise çesitli doku ve organlar , bir bütün olarak yapilari bozulmadan saklanabilceklerdir . Canlilardaki genlerin bütünü kataloglanabilecek , bunlarla ilgili bankalar kurulacak . Ilaç sanayii biyoteknolojik yöntemleri genis oranda kullanilacagi için birçok ilacin etkili ve ucuza üretilmesi saglanacaktir . Bütün bunlarin yaninda tehlikeli olabilecek mikroorganizmalari üretmek , dogal yasam görüntüsünü kismen de olsa bozma gibi biyolojik gelismelerin dogurabilecegi sakincalarida vardir.

http://www.biyologlar.com/biyolojinin-onemi

MİKROSKOP YAPISININ TANITILMASI HAZIRLIK SORULARI

1-Mikroskop ne işe yarar? Araştırınız. 2-Mikroskop çeşitleri nelerdir? Nerelerde kullanılır? Mikroskop genel anlamda gövde kolu ve alt kaide olmak üzere iki kısımdan oluşur. Bütün diğer parçalar bu iki parça üzerine yerleştirilir. Mikroskopların hareketli bir nesne tablası vardır. Bu nesne tablası kaba ve ince ayar kontrol düğmeleri ile aşağı ve yukarı hareket ettirilebilir.Lam ve lamel( preparat ) iki nesne klipsinin altına gelecek şekilde nesne tablasının üzerine yerleştirilir. 45 derece açılı tüpün üst kısmında değiştirilebilir bir oküler bulunmaktadır. Alt kısmında ise objektiflerin sabitlendiği bilye yataklı ve dört objektif yuvalı hareketli bir revolver vardır. Bir mikroskobun büyütmesi şu şekilde hesaplanır: MİKROSKOP BÜYÜTMESİ= OKÜLER X OBJEKTİF (Örneğin oküler 5x, objektif 40x olan bir mikroskobun büyütmesi = 5 X 40 = 200 olur.) Mikroskopta aydınlatma bir tarafı düzlem/ iç bükey ayna ve tablanın altındaki iris diyafram İle yapılmaktadır. Mikroskopta inceleme esnasında yapılması gerekenler şunlardır: ( Görüntünün odaklanması ) 1-Preparatı ( lam ve lameli ) nesne tablasının üzerindeki sıkıştırma klipslerinin altına yerleştirin. 2-Her zaman için en düşük büyütme seviyesi olan objektif ile çalışmaya başlayın. 3-Kaba ayar düğmesi ile nesne tablasını en üst seviyeye çıkartıncaya kadar tablanın kenarına bakın. 4-Daha sonra tüpe bakarak preparattaki görüntü belirinceye kadar kaba ayar düğmesini aşağıya doğru çevirin. 5-Kaba ayar yapıldıktan sonra ince ayar düğmesi ile keskin bir görüntü alıncaya kadar ayar yapın. 6-Büyütmeyi arttırmak için hareketli revolveri saat yönünde çevirerek ve her objektif değişikliğinde sadece ince ayar düğmesini ayarlayarak görüntüyü odaklayabilirsiniz. 7-Her büyütmede ışığa gereksinim artacağından iris diyafram daha fazla açılmalıdır. Mikroskop kullanımından sonra dikkat edilmesi gereken hususlar: 1- Mikroskop sadece gövde kolu üzerinden tutulmalı ve taşınmalıdır. 2-Objektifi tüpteki oküler ile birlikte en düşük büyütme seviyesine getirip bırakınız. 3-Aydınlatma sistemini kapatmayı unutmayınız. 4-Toz, mikroskop ve optik aksamın en kötü düşmanıdır. Bu nedenle mikroskobun hassas iç bölümlerine tozun girmesini engellemek için herhangi bir objektifi veya oküleri kesinlikle mikroskop üzerinden çıkartmayınız. 5-Eğer mikroskobun gövdesi ve tablası tozlu ise, tozun silinmesi için yumuşak pamuklu bez parçası kulanınız. 6-Tüm bu işlemlerden sonra artık mikroskobu koruma örtüsüyle örtebilirsiniz. (veya çantasına yerleştirebilirsiniz. )

http://www.biyologlar.com/mikroskop-yapisinin-tanitilmasi-hazirlik-sorulari

ALADAĞLAR MİLLİ PARKI

ALADAĞLAR MİLLİ PARKI

İli : ADANA Adı : ALADAĞLAR MİLLİ PARKI Kuruluşu : 1995 Alanı : 54.524 ha. Konumu : Niğde, Kayseri ve Adana illeri sınırları içerisindedir. Ulaşım : Niğde ili Çamardı ilçesine yaklaşık 15 km., Kayseri ili Yahyalı ilçesine ise 30 km. uzaklıktadır. Kaynak Değerleri :           Aladağlar Milli Parkı jeolojik yapı açısından değişik zamanlara ait formasyonlarla temsil edilmekle birlikte, en yaygın formasyon Mesozoik yaşlı kireç taşlarıdır. Bunun yanında sahada derinlik volkanizmanın ürünü olan gabro, piroksenit gibi kayaçlarla, subofiolitik metamorfitlere ve daha genç dönemleri karakterize eden Tersiyer ve Kuvaterner yaşlı oluşumlara da rastlanılmaktadır.           Aladağlar yöresi ülkemizin tektonik açıdan en faal bölgelerinden birisidir. Yöre özellikle Alp orojenezi sırasında şaryaj ve bindirmelere sahne olmuştur. Tektonik literatürüne “Ecemiş Kasidosu” olarak da giren bu sahada düşey ve yatay atımlı birçok fay bulunmaktadır. Aladağlar çeşitli jeolojik süreçler ve tektonizma sonucu oluşan naplar, klipler, tektonik pencereler gibi ilginç yapısal unsurlarıyla da dikkat çekmektedir.           Aladağlar Milli Parkı gerçek anlamda bir jeomorfolojik açık hava müzesidir. Yörenin şekillenmesinde yapı ile birlikte flüvial koşullar ve Pleistosen buzullaşması önemli bir rol oynamıştır. Yörede bu üç unsura ait değişik morfolojik birimlere rastlamak çok olağandır. Yörenin belli başlı jeomorfolojik karakteri derin vadilerle parçalanmış olmasıdır. Buzul morfolojisine ait birçok ize rastlanmakta, özellikle yöredeki birçok sirk gölleri ve morenler bu morfolojinin kılavuz şekilleri olarak göze çarpmaktadır.           Yöre klimatik açıdan kendine has özelliklere sahiptir. Yazları sıcak, kışları soğuk ve kar yağışlı olarak tanımlanabilecek bu klimatik yapı yörenin yüksek kesimlerinde kalıcı karların barınmasına imkan sağlamaktadır. Yörede gece ile gündüz sıcaklık farkı (günlük amplitüd) oldukça fazla olup, geceleri göllerin donmasına neden olan düşük sıcaklık, gündüzleri 30 dereceye kadar çıkmaktadır.           Aladağlar Milli Parkı vejetasyon açısından çok zengin olup, ormanı oluşturan hakim türler karaçam ve kızılçamdır. Karaçamdan kızılçama geçiş zonunda yer yer bu iki türün oluşturduğu karışık meşcerelere de rastlanmaktadır. Karaçamın yayılış alanındaki güney bakılı kesimlerde ise meşcere oluşturmayan sedir ve kuzey bakılı nem bakımından daha elverişli yerlerde de göknarlara rastlanılmaktadır.           Ormanın üst sınırından itibaren Alpin Zonu başlar. Bu zonda Alpin çayırları yer almaktadır. Alpin Zonu ve daha yüksek kesimlerde yükseklik ve eğim koşullarından kaynaklanan çıplak kayalık mostralara ulaşılmaktadır. Yaban hayatı sakinleri yaban keçisi, ayı, tilki, kurt, vaşak, sansar ve su samurudur.  Görünecek Yerler : Milli parkın peyzaj güzelliği ile Kapuzbaşı Şelaleleri ile buzul gölleri görülmeye değer niteliktedir. Mevcut Hizmetler : Milli parkta Yaban Hayatı Koruma Bölgesi ayrılmış olup, üretme istasyonu mevcuttur.          Kamp alanı, günübirlik alanlar, mola alanları, yürüyüş parkurları, doğa yürüyüş patikaları, bazı noktalarda yayla gelişimleri mevcuttur.           Akarsularında alabalık üretimi ve spesifik olta balıkçılığı yapma olanağı bulunan Aladağlar, ülkemiz turizmine alternatif seçenekler yaratacak potansiyele sahiptir. FLORA Aladağlar Milli Parkı ,730 rakamından 3756 rakıma kadar yaklaşık 3000 m. lik rakım farkına bağlı olarak ortaya çıkan farklı yaşam ortamlarında yaşayan bitki ve hayvan türleri ile muazzam bir biyoçeşitliliğe sahiptir. Belli başlı türler; Karaçam, ardıç, göknar, titrek kavak, meşe,sedir ağaç türeleri ile yabani yonca , ayrık, keven, papatya, sütlegen, sığır kuyruğu, kekik, menekşe, devedikeni gibi otsu bitkilerdir.. Aladağlar Milli Parkını orman açısından çok zengin olmamakla birlikte , Emli vadisindeki ormanı oluşturan hakim türler Karaçam ve Kızılçamdır. Karaçamın yayılış alanındaki güney bakılı kesimlerde Sedir ve nem bakımından daha elverişli kuzey bakılı yerlerde de göknarlara da raslanmaktadır. Alanda toplam 101 endemik takson ve tehlike altındaki takson 68 (66 endemik) bulunmaktadır. FAUNA Aladağlar Milli Parkı ,730 rakamından 3756 rakıma kadar yaklaşık 3000 m. lik rakım farkına bağlı olarak ortaya çıkan farklı yaşam ortamlarında yaşayan bitki ve hayvan türleri ile muazzam bir biyoçeşitliliğe sahiptir. Aladağlar’da 2000 metreden fazla yüksekliklerdeki alanlar ur kekliğin üreme ve barınma alanları olup aynı zamanda kral kartalın egemenlik alanı durumundadır. Yaban keçisine üreme, barınma ve beslenme zamanlarına göre her yerde rastlanabilmektedir. Yaban keçisi, kurt, yabani tavşan, tilki, gelengi, sincap, porsuk, kuyruk süren, kirpi, oklu kirpi, yaban domuzu, sansar, karakulak, kakım, gelincik, su samuru, köstebek, tarla faresi, cüce yarasa, nalburlu yarasa, sırtlan ve vaşak önemli yaban hayatı üyeleridir. http://www.milliparklar.gov.tr

http://www.biyologlar.com/aladaglar-milli-parki

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kök Hücre Çalışmaları Kanseri Ortadan Kaldırabilecek mi?

Kanseri tedavi etmenin yolunun kanser kök hücrelerini yok etmekten geçtiğini belirten Anadolu Sağlık Merkezi İç hastalıkları ve Hematoloji Uzmanı Prof. Dr. Zafer Gülbaş, kanser hastalarında kök hücre uygulamalarıyla ilgili Medical Tribune’ün sorularını yanıtladı. MT: Kök hücre tedavisi ile ilgili yeni gelişmelerden bahsedebilir misiniz? Önceki yıllarda, kanseri dokudaki olgun hücrelerin yaptığını düşünüyorduk ama bugün kansere neden olan bir kök hücrenin var olduğunu biliyoruz. Kök hücre, kanserli hücreleri oluşturuyor ve bunlar çoğaldıkça hastalık ortaya çıkıyor. Kanseri tedavi etmek için birçok kemoterapi çeşidi, immünoterapi, radyoterapi ve cerrahi tedavi uygulandı.  Ancak kanserin birçok hastada tekrarlamasını önleyemiyoruz. Şu anki bilgilerimize göre kanseri tedavi etmenin yolu ise kanser kök hücresini yok etmekten geçiyor. Kanser kök hücresinin varlığını nasıl tanıyabileceğimiz ve nasıl ortadan kaldırabileceğimizle ilgili sorunun yanıtı aranıyor.  Bugün için en önemli konu bu. Dünyada birçok merkezde bu konu üzerinde çalışmalar yürütülüyor. Bütün kanser türlerinde kanser kök hücresinin olduğuna inanılıyor.  Johns Hopkins Üniversitesi Kemik İliği Programı Direktörü Prof. Dr. Richard Jones ve ekibi bu hipotezi miyeloma denilen hematolojik kanserde açıkladı. Richard Jones’un kanser kök hücre teorisinde  şöyle bir kuram kullanıyor. Yabani bir otu ne kadar çok temizlerseniz temizleyin eğer kökünü çıkarmıyorsanız bir süre sonra tekrar çıkacaktır. Kanser için de aynı durum sözkonusu olup, kök orada olduğu sürece kanser tekrar oluşuyor. Kanser kök hücresi önümüzdeki 5-10  yılın en çok çalışılacak konularından biri olup,  kanseri ortadan kaldırmanın belki de anahtarının yattığı konudur. MT: Kök hücrelerin kanser tedavisinde kullanıldığı alanlar hangileri? Hematopoetik kök hücre nakli dışında, kanser tedavisinde kanser kök hücresine karşı aşı üretme çalışmaları yeni bir alan. Oldukça ilgi çekici ve önümüzdeki süreçte yararlı olup olmadığını öğreneceğiz. Ayrıca kanser hücresine özgü T lenfositleri ve NK lenfositleri üretmek ve tedavide kullanmak ilgi çekici ümit verici gelişmeler. MT: Hematolojik kanserlerde kanser kök hücresini yok etmek mümkün mü? Hematolojik kanserlerde kemik iliği nakli yapmak için yüksek doz tedavi uygulandığında, hastanın kemik iliği bir daha üretim yapamaz hale geliyor. Bu da yüksek doz tedavilerin kök hücreyi ortadan kaldırabildiğini gösteriyor. Ancak yüksek doz tedavi her kanserde aynı sonucu vermiyor. Bu konuda yapılan çalışmalarda allojenik kök hücre nakliyle kanserli kök hücrenin ortadan kaldırılabileceğini gösteriyor. Yöntem, her kanser türünde aynı sonucu vermese de; özellikle lenfoma, lösemi gibi hematolojik kanserlerde kanser kök hücresinin ortadan kaldırılmasında etkili oluyor. MT: Şu an Türkiye’de kök hücre tedavisi hematolojik hastalıklarda yaygın kullanılıyor mu? Ülkemizde kök hücre nakli yapan birçok merkez var. Sağlık bakanlığı kök hücre naklinin yaygınlaşması ve hastaların bu tedaviden yararlanmasını sağlamak için önemli destek veriyor. Ancak her hastaya kök hücre nakli için uygun donör bulamıyoruz. Normalde biz kök hücre naklini HLA doku grubu uygun kişilerden yapıyoruz. HLA doku grubu uygun kişi bulma şansı kardeş sayısına göre değişmekle birlikte yüzde 25-50 civarında değişiyor. HLA doku grubu uygun donör bulunmadığında, donör bankalarına baş vuruyoruz ve %25 hastaya da bu şekilde çözüm buluyoruz. Bankada da bulmazsak hasta donörsüz kalıyor. Bu durumda yüzde 50 antijen uyumlu aile içindeki donörlerden haploidentik nakil yapabiliyoruz ve hastaların hemen hepsi allojenik nakil olma şansını yakalıyor. Böylece bu tedavi ile hastalıklarının ortadan kaldırılma şansı doğuyor. Johns Hopkins grubu ve İtalyan bilim adamları bu konuda çok çalışıyorlar. Ve elde ettikleri sonuçlara göre; doku uyumlu akraba dışı donörden yapılacak nakilde elde edilecek sonuç ile haplodentik  aile içi nakilin sonuçları benzer. Haplodentik nakil dediğimiz nakil bugün için donör bulunamayan hastalarda kemik iliği nakli yapılmasına imkan veriyor.    MT:Haploidentik nakilde başarıyı etkileyen faktörler nelerdir? Enfeksiyon ve graft versus horst hastalığı (GVHD) dediğimiz graftın alıcının organlarına karşı reaksiyon vermesidir. GVHD, donör hücrelerinin alıcının organlarını tanıyıp tahrip etmesidir. Donörün bağışıklık sistemi alıcıya yerleştikten sonra alıcının karaciğerine, cildine, barsaklarına, kemik iliğine zarar vermektedir. Bu zararı verdiğinde enfeksiyonlara  hastalar daha sık yakalanmaktadır. Hastaların ölümü, graft versus host hastalığından olduğu gibi  bazen hastalık tekrarından da  oluyor. Ama akraba dışı nakillerle bu tip nakilleri kıyasladığımızda ikisinin de başarı oranı benzerdir. Biz Anadolu Sağlık Merkezinde akrabadışı donör bulunamayan hastalara haploidentik nakil yapıyoruz. Sağlık Bakanlığı tüm organ nakillerini olduğu gibi kemik iliği nakline de önemli destek vermektedir. Bunlar zor nakiller. Bu nakli olanlara aile desteği de çok önemli. Anadolu Sağlık Merkezi’nde hastalarımıza bu olanağı sağlıyoruz. Anadolu Sağlık Merkezi Kemik İliği Ünitesi’nde son bir yıl içinde 166 nakil gerçekleştirdik, 21’i haploidentik nakildir. MT: Kemoterapi öncesi kök hücre saklama yönteminden bahsedebilir misiniz? Kemoterapi öncesi kök hücreler hastanın kendinden toplanacaksa, G-CSF dediğimiz ilacı tek başına 4-6 gün yada 1-3 günlük kemoterapi verip kemoterapi sonrası 7-10 gün cilt altı vererek kol kanından topluyor, sonra belirli solüsyonlarla karıştırarak otomatize alette adım adım dondurup saklıyoruz. Bu şekilde kök hücreleri güvenli olarak en az 5 yıl saklayabiliyoruz. Hastanın sağlıklı donoründen ise 4-6 gün G-CSF dediğimiz ilacı tek başına 4-6 gün cilt altı vererek kol kanından toplayarak donduruyoruz. Kol kanından toplama işlemini hücre ayırıcı denen cihazlarla yapıyoruz. Bu işleme kök hücre aferezi diyoruz. MT: Türkiye’nin kök hücre konusunda geldiği noktayı nasıl değerlendiriyorsunuz? Türkiye’de yeterli sayıda merkez var mı? Türkiye kemik iliği nakli konusunda uluslararası standartlarda başarılı işlemler gerçekleştiriliyor. Son 2-3 yılda nakil yapılan yıllık hasta sayısı, 800’lü değerlerden 2000’lerin üzerine  çıktı. Ancak halihazırda ülkemizde 1000-1500 hasta halen bu tedaviden yararlanamıyor. Merkezlerin aktivitesinin artması gerekiyor. Sağlık Bakanlığı bu konuda hastalarımızın yanında. Yeni yönerge  değişiklikleri  yapılarak kemik iliği nakli merkezlerinin kalite standartları da yükseltilmeye çalışılıyor. Kemik iliği naklinde,  nakil sonrası süreçte enfeksiyon riskinin olmaması başarıyı etkileyen en önemli unsurların başında geliyor. Bu nedenle yeni açılacak merkezlerde aranan kalite standartları daha da ağırlaştırılıyor.  http://www.medical-tribune.com.tr

http://www.biyologlar.com/kok-hucre-calismalari-kanseri-ortadan-kaldirabilecek-mi

Flores'in Küçük İnsanları

Flores'in Küçük İnsanları

Flores Adası’nın ismini hiç duydunuz mu? İlk bakışta Endonezya’da şirin bir tatil yeri gibi görünen bu ada aslında tarih öncesi çağlarda barındırdığı, küçük insanları yani “Homo Floresiensisleri” sebebiyle arkeoloji ve antropoloji dünyasında önemli bir yere sahip. Homo Floresiensis'lere ev sahipliği apan Flores Adası Kayıp medeniyetler üzerinde araştırma yaptığınızda karşılaşacağınız muhtemel isimlerden biri; Flores Adası. Burada yüzyıllar önce yaşadığı tespit edilen, fiziksel özellikleri açısından “küçük” olarak tabir edebileceğimiz Homo Floresiensisler ve onların bu alanda nasıl yaşam sürdükleri konusu oldukça ilgi çekici. Antrolopoloji ve arkeoloji alanları için ilk medeniyetler, ilk insanlar, kullandıkları aletler..vs. hakkında bilgi sahibi olmak oldukça önemlidir. Bulunan kalıntılar insanlık tarihine ışık tutar. Mısır, Mezopotamya uygarlıklarını çoğumuz biliriz, bu alanlar hala gözde alanlardır. Fakat dünyanın bilinmeyen noktalarında kazara keşifler yapmak ve aslında oldukça şaşırtıcı sonuçlara ulaşmak da mümkün. Bu durum Flores Adası için de geçerli bir durum. Flores Adası’ndaki insanlık tarihi için önemli bir adım sayılan keşif; New England Armidale Üni­versitesi’nden Michael Morwood, Endonezya Arkeoloji Mer­kezinden R. P. Soejono ve ekibi tarafından gerçekleştirilmiştir. Ekip 2003 yılında “Liang Bua” adı verilen bir mağarada kazı çalışması yaparken 800 bin yıl öncesine ait olduğu belirtilen taş aletler ve sonrasında “Homo Floresiensis” olarak adlandırılacak olan insan kalıntılarına ulaşmışlardır. Bu önemli bir buluştur çünkü bulunan insan kalıntıları normal olarak tabir edebileceğimiz fiziksel özelliklerden oldukça küçük niteliklere sahiptir. Şöyle ki; radyometrik tespitlere göre bulunan insan kalıntılarının yaklaşık 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilmiştir. Kafatasının oldukça küçük olması ilgi çeken diğer bir husustur. Kalıntıların en eskisinin 94.000 yıl en yenisinin ise 12.000 yıllık olduğu belirlenmiştir. Tüm bu bilgiler 2004 yılında Nature isimli dergide büyük bir heyecanla paylaşılmış ve yeni bir türün ortaya çıktığı belirtilmiştir. Bu durum da insanın evrimi üzerine yeni tartışmaları gündeme getirmiştir. Bu tartışmaları ve öne sürülen savları kısaca ele alacağız fakat öncesinde homo florensis’in insanın evrimi tablosunda aldığı konumdan kısaca bahsetmenin faydalı olacağı inancındayız. Homo Floresiensis’in aile içindeki yeri Soldan sağa: Homo Floresiensis, Lucy (Australopithecus Afarensis), Homo Erectus ve Homo Sapiens. Flores Adası’nda bulunan insan buluntularının yeni bir tür olduğu savı bir dönemin ses getiren konusu olmuştur. “Homo Floresiensis” olarak adlandırılan bu yeni türün Avrupalı Neandertalların doğu ayağını temsil eden; “Homo Erectus” ve modern insan olarak tabir edilen “Homo Sapiens”den önce yaşadığı “Australopithecus Afarensis” ile yakın özelliklere sahip olduğu savunulmuştur. Homo Floresiensis’in küçük ama oldukça zeki bir tür olduğunu savunan araştırmacılar bu savlarını onların kullandıkları karışık yapıda taş aletler ile güçlendirmeye çalışmışlardır. Homo Floresiensis’in beyin büyüklüğünün Homo Saphiens’in sahip olduğu beyin büyüklüğünün 1/3’ü olmasına rağmen zeki oldukları düşünülmektedir. Bu küçük insanların yaşadıkları çağın tehlikelerine karşı kendilerini korudukları, kullandıkları aletlere bakıldığında avcılıkla ilgilendikleri belirlenmiştir, bunların tümüne bakıldığında yüksek bir zekâyı temsil ettikleri savı güçlenmektedir. Homo Floresiensis’e yazın ve sinema tarihinde önemli yere sahip, J. R. R. Tolkien’in Yüzüklerin Efendisi isimli eserinden esinlenerek “Hobbit” adı da verilmiştir. Dünya çapında bilinen önemli eserlerden biri olan bu eserde önemli karakterlerden birini temsil eden hobbitler, küçük cüsseleri ve zekâlarıyla dikkat çekmektedir. Gerçekte de hobbitlerin var olabileceğinin savunulması heyecan uyandırmıştır. Homo Floresiensis’e dair tartışmalar Flores Adası’nda bulunan kalıntıların daha önce keşfedilmeyen yeni bir tür mü yoksa Homo Saphiens’in farklılık geçirmiş bir türü mü olduğu sorusu keşiften günümüze kadar devam eden bir tartışmaya neden olmuştur. Yazılan bilimsel makalelerde yıllara bağlı olarak gözlemlenen farklı yorumlar ilgi çekicidir. Keşfin yapıldığı 2003 yılında kesin bir şekilde dile getirilen yeni tür bulunduğuna dair sav, yapılan araştırmalar sonucu eski etkisini yitirmiştir. 1 metre boyunda, 25 kilo ağırlığında bir kadına ait olduğu tespit edilen kafatasının oldukça küçük olması dikkat çekicidir. Bulunan kalıntıların sadece dokuz tane olması, bu alanda kapsamlı bir fikir yürütmeyi engelleyici bir unsur olarak karşımıza çıkmaktadır. İlk bulunan kadın iskeletinin Homo Saphiens’in uzak bir türünü temsil ettiği, LB1 adı verilen iskeletteki anormallik nedeninin “Mikrosefali” isimli bir hastalık olduğu savı güçlenmeye başlamıştır. Mikrosefali; beyinde ortaya çıkan küçük bir urun sebep olduğu bir rahatsızlıktır ve zihinsel engele yol açmaktadır. Bu kuramı destekleyen anatomist Maciej Henneberg mikrosefalik kafatasıyla LB1 arasında muhtemel benzerlikleri vurgulamıştır. Ama az sayıda bulunan iskeletlerden yola çıkarak bir medeniyetin tamamında mikrosefali rahatsızlığının var olduğunu söylemek mümkün değildir. 2005 yılında Homo Floresiensis için en kapsamlı araştırma yapılmıştır. Florida Eyalet Üniversite­si’nden Dr. Dean Falk’un liderliğini yaptığı uluslar ara­sı bir uzman grubu LB1 kafatasının üç boyutlu bir maketini yapıp, bunu şempanze, modern insan(modern cüce), mirosefalik bir beyin ve Homo Eractus ile karşılaştırmıştır. Bu incelemeye göre LB1; modern cüce beyninden ve mikrosefalik beyinden daha farklı bir özellik taşımakta ve yeni bir türü temsil etmektedir. Bu araştırmanın doğruluğu halen tartışılan bir konudur. Kimi bilim adamlarına göre bu çalışmada mikrosefalik beyin örneği kullanılmamıştır. 2010 yılında gelindiğinde ise; bu türün Homo Saphiens’in bir türü olduğu, “Kretenizm” adı verilen hastalığın ve yaşanılan ortamın da getirisi olarak küçük bir yapıya sahip olduğu savı ortaya çıkar. Günümüzde o bölgede yaşayan halkın da minyon bir tipe sahip olması bu savı güçlendiren bir unsur olmaktadır. Bu sav belki doğru olabilir çünkü antopolojik çalışmalara göre yaşam alanının sahip olduğu coğrafi koşullar canlılarda fizyolojik farklılıklara neden olabilmektedir. Kazılarda Homo Floresiensis ile birlikte ortaya çıkan balık, kurbağa, yılan, kaplumbağa, dev sıçan, kuş, yarasa ve Stegodon (soyu tükenmiş bir tür cüce fil), Komodo ejderi ve dev kertenkele gibi diğer iri hayvanlara ait iskeletler Flores Adası’nın doğal ortamını gözler önüne sermiştir. Homo Floresiensis bu doğal ortamda varlığını devam ettirmeye çalışmıştır. Fiziksel yapının da zaman içersinde Flores’in kaynakları doğrultusunda şekillendiği inancı dikkat çekicidir. Aynı bölgede özellikle Stegodon(cüce fil)’in görülmesi bu inancı güçlendirmektedir. Homo Floresiensis’in yok oluşu Homo Floresiensis’in nasıl yok olduğu sorusunun cevabını aradığımızda kesin bir bilgiye ulaşmamız mümkün değil fakat bu konudaki en baskın görüş; Flores Adası’nda gerçekleşmiş olan bir volkanik patlama sonucu Homo Floresiensis’in yok olmasıdır. Bu görüşün kesin bir veriyi sunması imkânsızdır çünkü böyle bir doğal felaketten kurtulanların olup olmadığı ve başka bir yerde yaşamlarını devam ettirip ettirmediklerine dair bir iz yoktur. Homo Floresiensis keşfin yapıldığı 2003 yılından günümüze yaklaşık 9 yıldır tartışılan bir konu olma özelliğine sahiptir. Paleoantropologlar, anotomi uzmanları gibi farklı branşlardan bilim adamlarının ilgisini çeken bu konu her geçen sene farklı savları ortaya çıkarmaktadır. Bu konudaki son görüş; yeni bir tür olmadığı yönündedir. Fakat ilerleyen senelerde bu konuda belki de bulanacak başka veriler ışında çok farklı savlar ortaya çıkacaktır. İnsanın evrim süreci her daim merak uyandıran bir konu olduğundan bu açıdan dikkat çekici olan Homo Floresiensis’in yeni bir tür olup olmadığı sorunsalının daha pek çok yıllar tartışılması muhtemeldir. Kaynakça: Pennsylvannia State University Press Release, “No Hobbits in this Shire: Researchers say skeletal remains are pygmy ancestors”, 23 Ağustos 2006. http://insanveevren.wordpress.com/2012/04/15/tarih-oncesi-flores-adalilar-bilmecesi/ http://www.kesfetmekicinbak.com/ http://en.wikipedia.org/wiki/Homo_floresiensis http://www.sciencedaily.com/releases/2010/09/100928025514.htm http://www.sciencedaily.com/releases/2008/12/081217124418.htm Yazar hakkında: Sinem Doğan Açık Bilim Haziran 2012 http://www.acikbilim.com/2012/06/dosyalar/floresin-kucuk-insanlari.html

http://www.biyologlar.com/floresin-kucuk-insanlari

Kan nedir? Kanın bileşimini

Kan nedir? Damarlarımızda dolaşan kan yaşamsal önemi olan bir sıvıdır. Goethe’ye göre “Kan son derece özel bir özsudur” (Faust, Bölüm I, Perde I, Sahne IV, Dize 1740). Kanın bileşimini Kan başlıca iki kısımdan oluşur: 1) Plazma adı verilen sıvı kısmı, 2) Bu sıvıda süspansiyon halinde bulunan kan hücreleri. Plazma: Kanın yaklaşık % 60’ını oluşturur. Açık sarı renktedir. Bileşiminde başta su olmak üzere proteinler, şeker, yağlar, vitaminler, kimyasal elementler, vd  bulunur. Proteinler arasında albumini, hormonları, bağışıklık maddelerini (antikorlar) ve  kanın pıhtılaşmasını sağlayan faktörleri  sayabiliriz. Elementlerden demir, vitaminlerden B6, B12, folik asit, K vitamini, bağışıklık proteinlerinden antikorlar (immunglobulinler) ve çeşitli pıhtılaşma faktörleri hematolojiyi yakından ilgilendirir. Kan hücreleri: Kanın yaklaşık % 40 ını oluşturan kan hücreleri  üç gruba ayrılır: eritrositler (alyuvarlar, kırmızı kan hücreleri), lökositler (akyuvarlar, beyaz kan hücreleri) ve trombositler (pulcuklar). Tüm kan hücrelerinin yapım yeri kemik iliğidir.

http://www.biyologlar.com/kan-nedir-kanin-bilesimini

AMİNO ASİT TANIMA REAKSİYONLARI

Doğada 300’den fazla amino asit tanımlanmış olmasına rağmen memelilerde bunlardan yalnızca 20 tanesi proteinlerin yapısında yer almaktadır. Amino asitler prolin dışında aynı karbon üzerinde amino (-NH2) ve karboksil (-COOH) grubu bulundururlar. Prolin ise siklik bir yapıya sahiptir ve amino grubu yerine imino grubu taşır. Amino asitlerin genel gösterimleri R-CH-NH2-COOH şeklindedir. R grubu değişken gruptur. R grubunun değişmesiyle 20 çeşit primer veya standart amino asit meydana gelir. Bu 20 çeşit amino asitin değişik sayı ve sıra ile dizilimi çok sayıda proteinin ortaya çıkmasına yol açar. Glisin dışındaki tüm amino asitlerin en az bir tane asimetrik karbonu vardır ve optik olarak aktiftirler. Bunlar da D ve L olarak iki ayrı konfigürasyonda olabilirler. Ancak proteinlerin yapısında bulunan tüm amino asitler L konfigürasyonundadırlar. D amino asitler ise bazı antibiyotiklerde ve bakteriyel hücre duvarında bulunurlar.Amino asitler amfoterik moleküllerdir. Yani hem asidik hem de bazik gruplar içerirler. Monoaminomonokarboksilik asitler sulu çözeltilerde dipolar çözeltiler yani zwitterion şeklinde bulunurlar. a-karboksil grubu dissosiye ve negatif yüklüdür, a-amino grubu protonlanmış ve pozitif yüklüdür, yani molekül nötrdür. Asidik pH’da karboksil grubu bir proton alır ve molekülün net yükü pozitif olur. Bazik pH’da ise amino grubu proton kaybeder ve net yük negatif olur. Bir amino asidin net yükünün sıfır olduğu pH’a izoelektrik nokta denir. Amino asitler renksiz, suda tamamen, etil alkolde ise kısmen çözünmelerine karşılık, eterde hiç çözünme özellikleri olmayan organik bileşiklerdir. Amino asit çözeltilerinin görünür bölgede ışık absorblama özellikleri yoktur. Ancak UV bölgede (280 nm’de) tirozin, triptofan, fenilalanin ve histidin gibi halkalı yapıya sahip amino asitlerin ışık absorblama yetenekleri vardır. Bu özellik biyolojik sıvılardaki protein miktarının belirlenmesinde zaman zaman faydalanılabilen bir özelliktir.Amino amino asitler, bulundurduğu karboksil ve amino grupları, reaksiyon gücü oldukça yüksek fonksiyonel gruplar oldukları için bu grupların verdiği bütün reaksiyonları verirler. Amino asitlerin verdiği bu reaksiyonlar gerek biyolojik sıvılardaki serbest amino asitlerin cinsi ve miktarı, gerekse protein yapısına giren amino asitlerin miktarı, cinsi ve sırasını tespit etmede son derece önemlidir. I. Amino Asit Tayininin Klinik ÖnemiDolaşımdaki amino asitler böbrekte glomerüler membranlar tarafından filtre edilirler. Bu filtrattaki amino asit konsantrasyonu plazmadakine yakındır. Ancak filtrattaki amino asitlerin büyük bir kısmı tübüler sistemde özel transport sistemleri ile geri emilip dolaşıma verilirler. Çok az bir kısmı ise idrarla atılır. Normal yetişkin bir kişinin 24 saatlik idrar amino asit düzeyi 50-200 mg arasında değişir. Bu değişimde etkili faktör diyettin tabiatıdır. Kan amino asit seviyeleri yükseldiği zaman idrarla amino asit atılımında artış meydana gelir. Bu duruma aminoasidüri denir. İki tip aminoasidüriden bahsedilebilir. 1) Taşma tipi (overflow tipi) : Amino asit metabolizmasında rol oynayan enzimlerin eksik veya hatalı olması sonucu görülür. Böbrek eşik düzeylerinin aşılması sebebiyle böbrekler normal çalıştığı halde böbreğin reabsorbsiyon kapasitesi aşıldığından idrar amino asit düzeyi artar. Fenilketonüri, tirozinozis, alkaptonüri ve akçaağaç şurubu idrar hastalığı buna örnektir.2) Renal tip:Böbrek tubuluslarındaki bozukluk sonucu oluşan aminoasidüri türüdür. Bunu sebebi konjenital veya akkiz olabileceği gibi ağır metal zehirlenmeleri, fenol zehirlenmesi veya yanıklar da olabilir. Fankoni sendromu, sistinozis, Wilson hastalığı ve nefrotik sendrom gibi.II. Amino Asitlerin Kalitatif ve Kantitatif Tayininde Kullanılan MetotlarProteinlerin amino asit kompozisyonunu tespit belirlemek için kullanılan metotlar üç basamakta toplanır:1. Proteinlerin amino asitlerine hidrolizi (6N HCl, +110oC’de 24 saat ısıtma)2. Karışımdaki amino asitlerin ayırımı 3. Her bir amino asidin miktarının belirlenmesia) Ninhidrin Reaksiyonuα-amino grubunun en karakteristik reaksiyonu olan ninhidrin reaksiyonu amino asitlerin hem kalitatif hem de kantitatif tayininde sıklıkla kullanılan bir reaksiyondur. Bütün α-amino asitler ve peptidler bu renk reaksiyonunu verirler. Ancak bazı amino asitler mavi kompleks yerine değişik renklerle ortaya çıkarlar. Örneğin, prolin ve hidroksiprolin sarı, asparagin ise kahverengi renk oluşturur. Diğer amino asitler ise mavinin değişik tonları şeklinde kompleksler oluştururlar. b) Gazometrik ÖlçümAmino asitlerin α-amino grubu HNO2 (nitröz asit) ile reaksiyona girdiği zaman karboksilli asitlerin hidroksi türevlerini meydana getirir. Bu reaksiyon sırasında açığa çıkan N2 gazometrik olarak ölçülür. c) Kromatografik YöntemlerAmino asitleri ve peptidleri ayırmada kullanılan değişik kromatografik yöntemler vardır. Bunlar arasında kağıt kromatografisi, ince tabaka kromatografisi, iyon değiştirme kromatografisi, gaz kromatografisi ve yüksek basınçlı sıvı kromatografisi (HPLC) en sık kullanılanlardır. d) Elektroforetik YöntemlerYüksek elektrikli bir ortamda amino asitlerin yük ve büyüklük farklılıklarından faydalanılarak ayrılması tekniğidir. e) Amino Asit Sırası Tayinine Yönelik YöntemlerPeptid ve proteinlerin sırasının belirlenmesi birçok genetik kusurun ortaya çıkarılmasında faydalı olacaktır. Bir proteindeki amino asit sırasını belirlemek için N-terminal ya da C-terminal amino asit rezidülerine spesifik reaksiyonlar kullanılır. N-terminal amino asitlerin belirlenmesinde kullanılan yöntemler.Sanger YöntemiAlkali ortamda bir polipeptidin N-terminal amino asidinin amino grubu ile 2,4 dinitrofluorobenzen (DNF) reaksiyona girerek sarı renkli 2,4-dinitrofenol türevlerini meydana getirirler. Bu türevler elde mevcut olan amino asitlerin aynı reaktifle reaksiyona sokulmasıyla hazırlanmış olan standartları ile kağıt kromatografisi işlemine tabi tutulur. Kromatografi kağıdında elde edilen lekeler değerlendirilerek amino asidin cinsi tespit edilir. Dansil Klorür YöntemiBir polipeptidin N-terminal aminosidinin amino grubu ile floresans bir madde olan dansil klorür yüksek pH’da reaksiyona girer. Böylece dansil klorür ile işaretlenen amino asit florometrik olarak ölçülür. Bu metodla amino asit türevlerinin düşük miktarları (1 nM) bile belirlenir.Edman YöntemiEn önemli ve en çok kullanılan metoddur. Edman reaksiyonuyla sadece N-terminal ucu tanınmaz aynı zamanda bu reaksiyonun tekrarlanması ile uzun polipeptidlerin amino asit sırası tam olarak tespit edilir. Fenilizotiyosiyanat alkali ortamda peptidin N-terminal amino grubu ile reaksiyona girerek N-terminal amino asidin fenilizotiyosiyanat türevi oluşur. Sanger ve dansil klorür yöntemlerinden farklı olarak polipeptid parçalanmaz, sadece bir amino asit eksik polipeptid kalır. Daha sonra oluşan bu türev gaz kromotografisi ile tespit edilir.C-terminal amino asitlerinin belirlenmesinde kullanılan metodlarPolipeptidin C-terminal kalıntılarını tespit etmek için kullanılan metodlar N-terminali tespit etmek için kullanılanlar kadar kesin sonuç vermezler. Ancak bu amaç için kullanılan iki metod vardır.Hidrazinle parçalanma (Hidrazinoliz)Bu reaksiyon sırasında hidrazin ile C terminalindeki aminoasitler ayrılır. Karboksi peptidazla parçalanma Protein parçalayıcı bir enzim olan karboksipeptidaz bir proteindeki en son peptid bağına (C-terminal) etki ederek C-terminal amino asidinin koparılmasını sağlar. Elde edilen serbest amino asit, amino asitlere spesifik reaksiyonlarla tespit edilir. Bu işleme devam edilerek her defasında yeni bir C-terminal amino asit belirlenebilir. III. Kalitatif Amino Asit Tayin YöntemleriKalitatif amino asit tayini kan ve idrar örneklerinde yapılabilir. İdrar örnekleri günün herhangi bir saatinde alınan (rastgele) idrar örneği olabileceği gibi 24 saatlik idrar da olabilir. Hücre içi amino asit seviyesi kan dolaşımından (plazma) 10 kat daha yüksektir. Kan örneği alınırken bu özellik dikkate alınmalıdır. Amino asit seviyesine plazmada bakılır. Kan heparinize enjektörle alınmalıdır. Hemolizden sakınılmalıdır. Yapılacak DeneylerFenil Pirüvik Asit Deneyi4 ml idrar üzerine 1 ml magnezyum ayıracı (11 gr MgCl2, 14 gr NH4Cl ve 20 ml der-NH4OH/litre) konarak 5 dakika bekletilir, süzülür. Süzüntü 2 damla % 10’luk HCl ile asidik hale getirilir. 2 damla % 10’luk FeCl3 ilave edilir. Mavi-yeşil renk oluşursa deney pozitifdir. Fenilketonüride sıklıkla kullanılmaktadır. Triptofan Deneyi2 ml örnek üzerine 2 ml derişik CH3COOH ilave edilir. Bu karışımın üzerine damla damla tabaka oluşturacak şekilde tüp cidarından derişik H2SO4 sızdırılır. İki sıvının birleşme yerinde mor halkanın oluşumu örnekte triptofan bulunduğunu (pozitif reaksiyon) gösterir. (örnek: Hartnup hastalığı)Ninhidrin Deneyia) Deneyin PrensibiBu deneyde normalde sarı olan ninhidrin, amino asitlerle reaksiyona girerek mavi-menekşe rengine dönüşür ve bu metot bu renk oluşumunun tespitine dayanır.Bu reaksiyon sırasında 1. basamakta ninhidrin ile amino asit reaksiyona girerek amino asitten bir karbon eksik bir aldehit, redükte ninhidrin, NH3 ve CO2 meydana gelir. İkinci aşamada açığa çıkan NH3, bir mol okside ninhidrinle bir mol redükte ninhidrin arasında köprü kurarak mavi-mor renkli kompleks oluşturur.Ninhidrin NH2-C-COOH’daki serbest a-amino grubu ile reaksiyona girer. Bu grup tüm amino asitlerde, polipeptidlerde ya da proteinlerde bulunmaktadır. Dekarboksilasyon reaksiyonu serbest amino asitlerde meydana gelmekte iken, peptidlerde ve proteinlerde meydana gelmemektedir. Böylelikle teorik olarak yalnızca amino asitler renk değişimine neden olurlar. Ancak peptidler ya da proteinler her zaman için interferansa yol açabilirler.b) Reaktifler ve Malzemeler A. Malzemeler B. Reaktifler® Test tüpleri ® Ninhidrin Solüsyonu® Pipetler ° Ninhidrin: 0.35 g® Ocak ° 100 ml etanol® Spektrofotometre c) Deneyin Yapılışı1 ml ninhidrin solüsyonu (0.35 g ninhidrinin 100 ml etanole tamamlanması ile hazırlanır.) 5 ml numuneye (plazma) eklenir. Test tüpünün ağzı parafilm ile kapatılır. ( buharlaşmadan dolayı meydana gelebilecek kayıpları önlemek için) 2. Hafifçe karıştırılarak 4-7 dakika süreyle kaynatma işlemine tabi tutulur.3. Daha sonra soğuk su altında tutularak oda ısısına kadar soğutulur. Not: Isopropanol ya da 1/1 aseton/butanol karışımı ninhidrin solüsyonunun hazırlanmasında etanol yerine kullanılabilir.

http://www.biyologlar.com/amino-asit-tanima-reaksiyonlari-2

Kaplumbağa Türleri

Kaplumbağa Türleri

Kaplumbağa (ya da tosbağa) Testudines takımını oluşturan çok sert ve kemiksi bir kabuk içinde yaşayan, ağır yürüyüşlü, dört ayaklı, sürüngen bir hayvandır.Hareketleri yönünden ne kadar telaşsız ve ağır hayvanlarsa onların tarih boyunca gelişimi de o kadar yavaş olmuştur. Kaplumbağalar, öteki sürüngenlerle birlikte Mezozoik'in ilk dönemi olan Trias Çağı'nda ortaya çıktılar. 200 milyon yıldan beri kaplumbağaların vücut yapıları önemli hiçbir değişikliğe uğramamıştır. Hâlbuki kaplumbağalar, dünyada soyu henüz tükenmemiş en eski hayvanlardandır.Açlığa pek dayanıklıdırlar. Çok uzun ömürlüdürler. Yüz, yüz elli yıl kadar yaşarlar.Kaplumbağalar çeşitlerine ve yaşadıkları iklim kuşağına göre kış uykusuna yatarlar. Deniz kaplumbağaları kış uykusuna yatmazlar çünkü onlar göç eden hayvanlardır. Bu iç güdünün ortaya çıkmasının nedeni İklim değişikliğidir. Bol Güneş ışığı alan kuru topraklarda kendine bir delik kazıp bütün kışı orada geçirmek üzere içine girer.Günümüzde, soyunu sürdürmekte olan 250'ye yakın kaplumbağa türü bulunmaktadır.

http://www.biyologlar.com/kaplumbaga-turleri

Türkiye’de Biyologların Çalışma Alanlarının Listesi

Türkiye’de Biyologların Çalışma Alanlarının Listesi

– İlaç Üretimi Yapan Fabrikalar – İlaç Tanıtımını ve Satışı Yapan Firmalar – Gıda ve Yem İşletmelerinde – Kozmetik Üretimi Yapan Fabrikalar – Okullar – İlkyardım Eğitim Merkezleri – Hijyen Eğitmeni Veren Kurslar – Gıda Kontrol Laboratuvarları – Ulusal Gıda Referans Laboratuvarı – Çevre Ölçüm ve Analiz Laboratuvarları – Çevre Referans Laboratuvarı – İş Hijyeni Ölçüm, Test ve Analiz Laboratuvarları – Veteriner Teşhis ve Analiz Laboratuvarları – Yüzme Havuzu Suyunun Analiz Laboratuvarları – Toprak Analiz Laboratuvarları – Kanatlı Hastalıkları Teşhis Laboratuvarları – Bitki Sağlığı Laboratuvarları – Kriminoloji Laboratuvarları – Halk Sağlığı Laboratuvarları – Bilimsel Araştırma Merkezleri – Araştırma Enstitüleri – Üniversiteler – Hastane Laboratuvarları – Doku Tipleme Laboratuvarları – Mikrobiyoloji Laboratuvarları – Biyokimya Laboratuvarları – Çocuk Hematoloji Flow Sitometri Laboratuvarları – Kan Hizmet Birimleri – Kan Merkezleri – Transfüzyon Merkezleri – Kan Bağışı Merkezleri – Tüp Bebek Merkezleri – Terapötik Aferez Merkezleri – Genetik Hastalıklar Tanı Merkezleri – Kök Hücre Nakil Merkezleri – İnsan Doku ve Hücrelerinin Üretim, İthalat, İhracat, Depolama ve Dağıtım Faaliyetlerini Yürüten Merkezler – Total Parenteral Nutrisyon - Home Parenteral Nutrisyon - Kemoterapi İlaç Hazırlama Merkezleri – Kordon Kanı Bankaları – Perfüzyonist – Aplikasyon Uzmanlığı – IT Uygulama Destek Uzmanlığı – ÇED Raporu ve PTD Hazırlayan Firmalar – Çevre Danışmanlık Hizmeti Veren Firmalar – Çevreye Kirletici Etkisi Olan Faaliyet ve Tesislerde Çevre Görevlisi – İş Güvenliği Uzmanlığı – Tehlikeli Madde Güvenlik Danışmanlığı – Koruma Amaçlı İmar Planı Yapan Firmalar – Yetkili Sınıflandırıcı Olarak Kurulan ve İşletilen Laboratuvarlar – Tıbbi Cihazların Satış ve Servis Şirketleri – Rüzgar Enerji Santralleri – Biyoteknoloji – Biyosidal Ürün Uygulamaları Yapan Firmalar – Havuz Suyunda Kullanılan Yardımcı Kimyasal Maddelerin Üretimini ve İthalatını Yapan Firmalar – Kuvvetli Asit veya Baz İçeren Temizlik Ürünlerinin Üretimini ve İthalatını Yapan Firmalar – Tampon, Hijyenik Ped, Göğüs Pedi, Çocuk Bezi ve Benzeri Ürünlerin Üretimini ve İthalatını Yapan Firmalar – Hava Aromatize Edici Ürünlerin Üretimini ve İthalatını Yapan Firmalar – Peloid Üretim Tesisleri – Sperma, Ovum ve Embriyo Üretim Merkezleri – Doğal Çiçek Soğanlarının Üretimi, Doğadan Toplanması ve İhracatını Yapan Firmalar – Su Ürünleri Yetiştirilen Tesisler – Deneysel ve Diğer Bilimsel Amaçlar İçin Kullanılan Hayvanların Refah ve Korunması İçin Araştırma Yapılan Merkezler – Toprakta Kirlenmiş Saha Değerlendirme ve Temizleme Çalışmalarını Yapacak Olan Firmalar – Biyosidal Ürün veya Aktif Maddeler Üreten İşletmeler – Aktif Madde İçermeyen Biyosidal Ürünlerin Üretim Yerleri – Doğal Mineralli Su Tesisleri – İçme Suyu Tesisleri – Doku Kültürü İle Tohumluk Üreticisi – Deniz Çevresinin Petrol ve Diğer Zararlı Maddelerle Kirlenmesine İlişkin Risk Değerlendirmesi ve Acil Müdahale Planlarını Hazırlayacak Kurum ve Kuruluşlar – Akustik Rapor-Gürültü Haritası-Eylem Planı Hazırlayan, Çevresel Gürültü Konusunda Değerlendirme ve Arka Plan Gürültü Seviyesinin Ölçümünü Yapan Firmalar – İhracat Yapan Firmalar – Kaplıcalar – Örnek Avlaklar – Hayvanat Bahçeleri – Yüzme Havuzları – Atıksu Arıtma Tesisleri – Kamu Kurum ve Kuruluşları TÜRKİYE’DE BİYOLOGLARIN ÇALIŞMA ALANLARI 1) 31.12.2015 tarih ve 29579 sayılı (4.mükerrer) Resmi Gazete’de yayımlanan (Ekonomi Bakanlığından) “İHRACATTA TİCARİ KALİTE DENETİMLERİNİN RİSK ESASLI YAPILMASI AMACIYLA FİRMALARIN SINIFLANDIRILMASINA İLİŞKİN TEBLİĞ” gereğince özel veya kamuya ait kurum ve kuruluşlarda laboratuvar elemanı ve sorumlu denetçi olarak çalışabilirsiniz. 2) 29.07. 2015 tarih ve 29429 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “İLKYARDIM YÖNETMELİĞİ” gereğince İlkyardım eğitmeni sertifikasını alarak, özel veya kamuya ait kurum ve kuruluşların ilkyardım eğitim merkezlerinde mesul müdür, ilkyardım eğitmeni veya ilkyardım eğitimci eğitmeni olarak çalışabilirsiniz. 3) 03.07.2015 tarih ve 29405 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumu) “BEŞERİ TIBBİ ÜRÜNLERİN TANITIM FAALİYETLERİ HAKKINDA YÖNETMELİK” gereğince özel sektörde ürün tanıtım temsilcisi olarak çalışabilirsiniz. 4) 25.06.2015 tarih ve 29397 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TIBBİ CİHAZLARIN TEST, KONTROL VE KALİBRASYONU HAKKINDA YÖNETMELİK” gereğince özel sektörde sorumlu müdür olarak çalışabilirsiniz. 5) 03.06.2015 tarih ve 29375 sayılı Resmi Gazete'de yayımlanan (Türkiye Kamu Hastaneleri Kurumundan) “TÜRKİYE KAMU HASTANELERİ KURUMU DENETİM HİZMETLERİ YÖNETMELİĞİ” gereğince Türkiye Kamu Hastaneleri Kurumunda denetçi olarak çalışabilirsiniz. 6) 20.03.2015 tarih ve 29301 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ATIKLARIN KARAYOLUNDA TAŞINMASINA İLİŞKİN TEBLİĞ” gereğince atık taşıma faaliyetinde bulunan özel sektöre ait firmalarda tehlikeli madde güvenlik danışmanı ve çevre görevlisi olarak çalışabilirsiniz. 7) 20.03.2015 tarih ve 29301 sayılı Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “TÜRKİYE HALK SAĞLIĞI KURUMU DENETİM HİZMETLERİ YÖNETMELİĞİ” gereğince Türkiye Halk Sağlığı Kurumunda denetçi olarak çalışabilirsiniz. 8) 22.01.2015 tarih ve 29244 sayılı Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “HALK SAĞLIĞI LABORATUVARLARI VE YETKİLENDİRİLMİŞ LABORATUVARLARIN ÇALIŞMA USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince halk sağlığı laboratuvarlarında laboratuvar sorumlusu, laboratuvar birim sorumlusu, laboratuvar teknik personeli ve kalite yönetim temsilcisi olarak çalışabilirsiniz. 9) 12.12.2014 tarih ve 29203 sayılı Resmi Gazete’ de yayımlanan (Çevre ve Şehircilik Bakanlığından) “DENİZ ÇEVRESİNİN PETROL VE DİĞER ZARARLI MADDELERLE KİRLENMESİNE İLİŞKİN RİSK DEĞERLENDİRMESİ VE ACİL MÜDAHALE PLANLARINI HAZIRLAYACAK KURUM VE KURULUŞLARIN ASGARİ ÖZELLİKLERİNE DAİR TEBLİĞ” gereğince risk değerlendirmesi ve acil müdahale planlarını hazırlayacak özel sektöre ait kurum/kuruluşlarda biyolog olarak çalışabilirsiniz. 10) 30.09.2014 tarih ve 29135 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “ÜREMEYE YARDIMCI TEDAVİ UYGULAMALARI VE ÜREMEYE YARDIMCI TEDAVİ MERKEZLERİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların merkezlerinde ÜYTE laboratuvarı sorumlusu ve biyolog olarak çalışabilirsiniz. 11) 22.05.2014 tarih ve 29007 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “SAĞLIK MESLEK MENSUPLARI İLE SAĞLIK HİZMETLERİNDE ÇALIŞAN DİĞER MESLEK MENSUPLARININ İŞ VE GÖREV TANIMLARINA DAİR YÖNETMELİK” gereğince sağlık meslek mensupları ile sağlık hizmetlerinde çalışan diğer meslek mensuplarının iş ve görev tanımları yapılmıştır. 12) 22.05.2014 tarih ve 29007 sayılı Resmi Gazete’de yayımlanan (Ulaştırma, Denizcilik ve Haberleşme Bakanlığından) “TEHLİKELİ MADDE GÜVENLİK DANIŞMANLIĞI HAKKINDA TEBLİĞ” gereğince tehlikeli maddeleri taşıyan, gönderen, paketleyen, yükleyen, dolduran ve boşaltan özel sektöre ait işletmelerde tehlikeli madde güvenlik danışmanı olarak çalışabilirsiniz. 13) 15.05.2014 tarih ve 29001 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TIBBİ CİHAZ SATIŞ, REKLAM VE TANITIM YÖNETMELİĞİ” gereğince piyasaya arz edilen tıbbi cihazların satış, reklam ve tanıtım faaliyetlerinde bulunan özel sektöre ait firmalarda sorumlu müdür, satış-tanıtım elemanı ve klinik destek elemanı olarak çalışabilirsiniz. 14) 04.04.2014 tarih ve 28962 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “İNSAN DOKU VE HÜCRE ÜRÜNLERİNİN RUHSATLANDIRILMASI VE BU ÜRÜNLERİN ÜRETİM, İTHALAT, İHRACAT, DEPOLAMA VE DAĞITIM FAALİYETLERİNİ YÜRÜTEN MERKEZLER HAKKINDA TEBLİĞ” gereğince özel veya kamuya ait kurum ve kuruluşların merkezlerinde merkez sorumlusu, kalite yönetim birimi sorumlusu, kalite kontrol birimi sorumlusu ve doku-işleme birimi sorumlusu olarak çalışabilirsiniz. 15) 25.12.2013 tarih ve 28862 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE ÖLÇÜM VE ANALİZ LABORATUVARLARI YETERLİK YÖNETMELİĞİ” gereğince çevre mevzuatı kapsamında ölçüm ve analizleri yapacak, özel veya kamuya ait kurum ve kuruluş laboratuvarlarında laboratuvar sorumlusu, kalite yöneticisi/kalite yöneticisi temsilcisi ve ölçüm ve analiz yapacak personel olarak çalışabilirsiniz. 16) 21.11.2013 tarih ve 28828 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE GÖREVLİSİ, ÇEVRE YÖNETİM BİRİMİ VE ÇEVRE DANIŞMANLIK FİRMALARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda çevre görevlisi olarak çalışabilirsiniz. 17) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “HAVUZ SUYUNDA KULLANILAN YARDIMCI KİMYASAL MADDELERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 18) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “KUVVETLİ ASİT VEYA BAZ İÇEREN TEMİZLİK ÜRÜNLERİNİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 19) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “TAMPON, HİJYENİK PED, GÖĞÜS PEDİ, ÇOCUK BEZİ VE BENZERİ ÜRÜNLERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 20) 31.10.2013 tarih ve 28807 sayılı Resmi Gazete’de yayımlanan (Gümrük ve Ticaret Bakanlığından) “HAVA AROMATİZE EDİCİ ÜRÜNLERİN ÜRETİMİ, İTHALATI, PİYASA GÖZETİMİ VE DENETİMİ İLE BİLDİRİM ESASLARINA DAİR TEBLİĞ” gereğince özel sektöre ait firmalarda mesul müdür olarak çalışabilirsiniz. 21) 03.10.2013 tarih ve 28784 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığından) “SAĞLIK BAKANLIĞI DENETİM HİZMETLERİ BAŞKANLIĞI YÖNETMELİĞİ” gereğince Sağlık Bakanlığında sağlık denetçisi olarak çalışabilirsiniz. 22) 20.08.2013 tarih ve 28741 sayılı Resmi Gazete’de yayımlanan (Çalışma ve Sosyal Güvenlik Bakanlığından) “İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZİ YAPAN LABORATUVARLAR HAKKINDA YÖNETMELİK” gereğince iş sağlığı ve güvenliği mevzuatı kapsamında çalışma ortamındaki kişisel maruziyetlere veya çalışma ortamına yönelik fiziksel, kimyasal ve biyolojik etkenlerle ilgili iş hijyeni ölçüm, test ve analizleri yapacak özel veya kamuya ait kurum ve kuruluş laboratuvarlarında kalite yöneticisi ve laboratuvar yöneticisi olarak çalışabilirsiniz. 23) 02.08.2013 tarih ve 28726 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “AKTİF MADDE İÇERMEYEN BİYOSİDAL ÜRÜNLER TEBLİĞİ” gereğince özel sektöre ait üretim yerlerinde mesul müdür olarak çalışabilirsiniz. 24) 05.07.2013 tarih ve 28698 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığı, İçişleri Bakanlığı, Gıda, Tarım ve Hayvancılık Bakanlığından) “HİJYEN EĞİTİMİ YÖNETMELİĞİ” gereğince Hayat Boyu Öğrenme Müdürlüğü ile protokol imzalayan özel eğitim kurumlarında hijyen eğitimi verebilirsiniz. 25) 30.05.2013 tarih ve 28662 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TÜRKİYE İLAÇ VE TIBBİ CİHAZ KURUMU SAĞLIK DENETÇİLERİ YÖNETMELİĞİ” gereğince Türkiye İlaç ve Tıbbi Cihaz Kurumunda sağlık denetçisi olarak çalışabilirsiniz. 26) 29.05.2013 tarih ve 28661 sayılı Resmi Gazete’de yayımlanan (Milli Eğitim Bakanlığından) “MİLLİ EĞİTİM BAKANLIĞI ÖZEL MOTORLU TAŞIT SÜRÜCÜLERİ KURSU YÖNETMELİĞİ” gereğince özel motorlu taşıt sürücüleri kurslarında çalışabilirsiniz. 27) 30.04.2013 tarih ve 28633 sayılı Resmi Gazete'de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “TÜRKİYE İLAÇ VE TIBBİ CİHAZ KURUMU ÜRÜN DENETMENLİĞİ YÖNETMELİĞİ” gereğince Türkiye İlaç ve Tıbbi Cihaz Kurumunda denetmen olarak çalışabilirsiniz. 28) 27.04.2013 tarih ve 28630 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “BEŞERİ TIBBİ ÜRÜNLERİN İMALATHANELERİ HAKKINDA YÖNETMELİK” gereğince özel sektöre ait imalat yerlerinde ürün sorumlusu olarak çalışabilirsiniz. 29) 29.12.2012 tarih ve 28512 sayılı Resmi Gazete’de yayımlanan (Çalışma ve Sosyal Güvenlik Bakanlığından) “İŞ GÜVENLİĞİ UZMANLARININ GÖREV, YETKİ, SORUMLULUK VE EĞİTİMLERİ HAKKINDA YÖNETMELİK” gereğince kamu ve özel sektöre ait işyerlerinde iş güvenliği uzmanı olarak çalışabilirsiniz. 30) 19.07.2012 tarih ve 28358 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “DOĞAL ÇİÇEK SOĞANLARININ ÜRETİMİ, DOĞADAN TOPLANMASI VE İHRACATINA İLİŞKİN YÖNETMELİK” gereğince özel sektöre ait firmalarda teknik personel olarak çalışabilirsiniz. 31) 20.03.2012 tarih ve 28239 sayılı Resmi Gazete’de yayımlanan (Milli Eğitim Bakanlığından) “MİLLÎ EĞİTİM BAKANLIĞI ÖZEL ÖĞRETİM KURUMLARI YÖNETMELİĞİ” gereğince özel sektöre ait okullarda, kurslarda, dershanelerde, etüt eğitim merkezlerinde, hizmet içi eğitim merkezlerinde ve uzaktan eğitim merkezlerinde öğretmen, uzman öğretici veya usta öğretici olarak çalışabilirsiniz. 32) 30.12.2011 tarih 52388 sayılı Makam oluruyla yayımlanan (Sağlık Bakanlığından) “DOKU TİPLEME LABORATUVARLARI YÖNERGESİ” gereğince özel veya kamuya ait kurum ve kuruluşların doku tipleme laboratuvarlarında doku tipleme laboratuvarı sorumlusu, doku tipleme laboratuvarı sorumlu yardımcısı, tetkik ve analiz sorumlusu, laboratuvar teknisyeni ve kalite yönetim sorumlusu olarak çalışabilirsiniz. 33) 29.12.2011 tarih ve 28157 (3. mükerrer) sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “GIDA KONTROL LABORATUVARLARININ KURULUŞ, GÖREV, YETKİ VE SORUMLULUKLARI İLE ÇALIŞMA USUL VE ESASLARININ BELİRLENMESİNE DAİR YÖNETMELİK” gereğince Gıda, Tarım ve Hayvancılık Bakanlığının gıda kontrol laboratuvarlarında çalışabilirsiniz. 34) 24.12.2011 tarih ve 28152 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “SPERMA, OVUM VE EMBRİYO ÜRETİM MERKEZLERİNİN KURULUŞ VE ÇALIŞMA ESASLARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların üretim merkezlerinde sorumlu yönetici olarak çalışabilirsiniz. 35) 13.12.2011 tarih ve 28141 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “DENEYSEL VE DİĞER BİLİMSEL AMAÇLAR İÇİN KULLANILAN HAYVANLARIN REFAH VE KORUNMASINA DAİR YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda biyolog olarak çalışabilirsiniz. 36) 11.12.2011 tarih ve 28139 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “VETERİNER TEŞHİS VE ANALİZ LABORATUVARLARI YÖNETMELİĞİ” gereğince özel sektöre ait laboratuvarlarda teknik personel çalışabilirsiniz. 37) 24.08.2011 tarih ve 28035 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “AMBALAJ ATIKLARININ KONTROLÜ YÖNETMELİĞİ” gereğince özel sektöre ait toplama-ayırma tesislerinde çevre görevlisi olarak çalışabilirsiniz. 38) 17.06.2011 tarih ve 27967 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “TOPRAK KİRLİLİĞİNİN KONTROLÜ VE NOKTASAL KAYNAKLI KİRLENMİŞ SAHALARA DAİR YÖNETMELİK YETERLİLİK BELGESİ TEBLİĞİ” gereğince özel veya kamuya ait kurum ve kuruluşlarda proje koordinatörü ve biyolog olarak çalışabilirsiniz. 39) 29.04.2011 tarih ve 27916 sayılı Resmi Gazete’de yayımlanan “BAZI KANUN VE KANUN HÜKMÜNDE KARARNAMELERDE DEĞİŞİKLİK YAPILMASINA DAİR KANUN” gereğince 11.04.1928 tarihli ve 1219 sayılı Tababet ve Şuabatı San’atlarının Tarzı İcrasına Dair Kanunu’nda yapılan değişiklikle özel veya kamuya ait kurum ve kuruluşlarda perfüzyonist olarak çalışabilirsiniz. 40) 26.04.2011 tarih ve 27916 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ATIK ARA DEPOLAMA TESİSLERİ TEBLİĞİ” gereğince tehlikeli atıkların dışındaki özel sektöre ait ara depolama tesislerinde çevre görevlisi olarak çalışabilirsiniz. 41) 06.03.2011 tarih ve 27886 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “YÜZME HAVUZLARININ TABİ OLACAĞI SAĞLIK ESASLARI VE ŞARTLARI HAKKINDA YÖNETMELİK” gereğince Bakanlıkça yetkilendirilmiş özel sektöre ait laboratuvarlarda biyolog, yüzme havuzlarında ise mesul müdür ve havuz suyu operatörü olarak çalışabilirsiniz. 42) 13.06.2010 tarih ve 27610 sayılı Resmi Gazete’de yayımlanan “VETERİNER HİZMETLERİ, BİTKİ SAĞLIĞI, GIDA VE YEM KANUNU” gereğince özel veya kamuya ait kurum ve kuruluşların gıda ve yem işletmelerinde çalışabilirsiniz. 43) 04.06.2010 tarih ve 27601 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRESEL GÜRÜLTÜNÜN DEĞERLENDİRİLMESİ VE YÖNETİMİ YÖNETMELİĞİ” gereğince akustik rapor-gürültü haritası-eylem planı hazırlayan, çevresel gürültü konusunda değerlendirme ve arka plan gürültü seviyesinin ölçümünü yapan özel veya kamuya ait kurum/kuruluşlarda çalışabilirsiniz. 44) 10.03.2010 tarih ve 27517 sayılı Resmi Gazete'de yayımlanan (Sağlık Bakanlığından) “TERAPÖTİK AFEREZ MERKEZLERİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların terapötik aferez merkezlerinde sertifika alarak teknik sorumlu olarak çalışabilirsiniz. 45) 31.12.2009 tarih ve 27449 sayılı (4. mükerrer) Resmi Gazete'de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “BİYOSİDAL ÜRÜNLER YÖNETMELİĞİ” gereğince biyosidal ürün veya aktif maddeler üreten özel sektöre ait işletmelerde mesul müdür olarak çalışabilirsiniz. 46) 31.12.2009 tarih ve 27449 sayılı (5.mükerrer) Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KAN HİZMET BİRİMLERİNDE GÖREV YAPACAK SAĞLIK PERSONELİNİN EĞİTİMİ VE SERTİFİKALANDIRILMASINA DAİR TEBLİĞ” gereğince özel veya kamuya ait kan hizmet birimlerinde çalışabilirsiniz. 47) 18.12.2009 tarih ve 27436 sayılı Resmi Gazete’de yayımlanan (Çevre ve Şehircilik Bakanlığından) “YETERLİK BELGESİ TEBLİĞİ” gereğince Çevresel Etki Değerlendirmesi Raporu ve Proje Tanıtım Dosyası hazırlayan özel sektöre ait şirketlerde biyolog ve rapor koordinatörü olarak çalışabilirsiniz. 48) 30.10.2009 tarih ve 27391 sayılı Resmi Gazete’de yayımlanan (Ulaştırma, Denizcilik ve Haberleşme Bakanlığından) “DENİZ ÇEVRESİNİN PETROL VE DİĞER ZARARLI MADDELERLE KİRLENMESİNDE ACİL DURUMLARDA MÜDAHALE GÖREVİ VEREBİLECEK ŞİRKET/KURUM/KURULUŞLARIN SEÇİMİNE VE YETKİ BELGESİ BULUNAN ŞİRKET/KURUM/KURULUŞLAR İLE KIYI TESİSLERİNİN ÇALIŞMA USULLERİNE İLİŞKİN TEBLİĞ” gereğince petrol ve diğer zararlı madde kirliliğine müdahale yetki belgesi almak isteyen şirket/kurum/kuruluşlarda biyolog olarak çalışabilirsiniz. 49) 24.07.2009 tarih ve 27298 sayılı Resmi Gazete'de yayımlanan (Milli Savunma Bakanlığından) “TÜRK SİLAHLI KUVVETLERİ ÇEVRE DENETİMİ YÖNETMELİĞİ” gereğince Türk Silahlı Kuvvetlerinde Çevre yönetim işlem sorumlusu ve çevre denetim görevlisi olarak çalışabilirsiniz. 50) 15.05.2009 tarih ve 27229 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “TOHUMCULUK SEKTÖRÜNDE YETKİLENDİRME VE DENETLEME YÖNETMELİĞİ” gereğince Tarımsal Üretim ve Geliştirme Genel Müdürlüğü’nden doku kültürü ile tohumluk üretici belgesi alarak doku kültürü ile tohumluk üreticisi iş yeri açabilirsiniz. 51) 14.01.2009 tarih ve 27110 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “ULUSAL GIDA REFERANS LABORATUVAR MÜDÜRLÜĞÜ KURULUŞ VE GÖREV ESASLARINA DAİR YÖNETMELİK” gereğince Gıda, Tarım ve Hayvancılık Bakanlığına ait Ulusal Gıda Referans Laboratuvarında çalışabilirsiniz. 52) 21.11.2008 tarih ve 27061 ve 27110 sayılı Resmi Gazete'de yayımlanan (Çevre ve Şehircilik Bakanlığından) “ÇEVRE DENETİMİ YÖNETMELİĞİ” gereğince çevre denetim görevlisi olarak çalışabilirsiniz. 53) 11.08.2007 tarih ve 26610 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “HAYVANAT BAHÇELERİNİN KURULUŞU İLE ÇALIŞMA USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşların hayvanat bahçelerinde sorumlu yönetici olarak çalışabilirsiniz. 54) 25.06.2007 tarih ve 26563 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “SAĞLIK BAKANLIĞINCA YAPILACAK PİYASA GÖZETİMİ VE DENETİMİNİN USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince piyasa gözetimi ve denetimi yapan personel olarak çalışabilirsiniz. 55) 08.10.2005 tarih ve 25960 sayılı Resmi Gazete’de yayımlanan (Sanayi ve Ticaret Bakanlığından) “YETKİLİ SINIFLANDIRICILARIN LİSANS ALMA, FAALİYET VE DENETİMİ HAKKINDA YÖNETMELİK” gereğince özel veya kamuya ait kurum ve kuruluşlarda yetkili sınıflandırıcı personel olarak çalışabilirsiniz. 56) 26.07.2005 tarih ve 25887 sayılı Resmi Gazete’de yayımlanan (Kültür ve Turizm Bakanlığından) “KORUMA AMAÇLI İMAR PLANLARI VE ÇEVRE DÜZENLEME PROJELERİNİN HAZIRLANMASI, GÖSTERİMİ, UYGULAMASI, DENETİMİ VE MÜELLİFLERİNE İLİŞKİN USUL VE ESASLARA AİT YÖNETMELİK” gereğince imar planı hazırlayan özel sektöre ait firmalarda çalışabilirsiniz. 57) 05.07.2005 tarih ve 25866 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KORDON KANI BANKACILIĞI YÖNETMELİĞİ” gereğince kamu kurum ve kuruluşları ile özel sağlık kurum ve kuruluşlarının banka ekibinde çalışabilirsiniz. 58) 23.05.2005 tarih ve 25823 sayılı Resmi Gazete’de yayımlanan (Türkiye İlaç ve Tıbbi Cihaz Kurumundan) “KOZMETİK YÖNETMELİĞİ” gereğince kozmetik ürünler üreten özel sektöre ait imalathane ve fabrikalarda sorumlu teknik eleman olarak çalışabilirsiniz. 59) 21.04.2005 tarih ve 25793 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “PELOİDLERİN ÜRETİMİ VE SATIŞI HAKKINDA TEBLİĞ” gereğince özel sektöre ait peloid üretim tesislerinde mesul müdür olarak çalışabilirsiniz. 60) 17.02.2005 tarih ve 25730 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “İNSANİ TÜKETİM AMAÇLI SULAR HAKKINDA YÖNETMELİK” gereğince özel sektöre ait firmaların içme suyu işleme fabrikalarında mesul müdür olarak çalışabilirsiniz. 61) 27.01.2005 tarih ve 25709 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “BİYOSİDAL ÜRÜNLERİN KULLANIM USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince halk sağlığını ve huzurunu bozan zararlılara karşı biyosidal ürün kullanarak mücadele etmek isteyen özel sektöre ait firmalarda mesul müdür ve ekip sorumlusu olarak çalışabilirsiniz. 62) 31.12.2004 tarih ve 25687 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “AVCI EĞİTİMİ VE AVCILIK BELGESİ VERİLMESİ USUL VE ESASLARI HAKKINDA YÖNETMELİK” gereğince avcı eğitimi veren özel şirketlere ait kurslarda uzman öğretici olarak çalışabilirsiniz. 63) 01.12.2004 tarih ve 25657 sayılı Resmi Gazete’de yayımlanan (Türkiye Halk Sağlığı Kurumundan) “DOĞAL MİNERALLİ SULAR HAKKINDA YÖNETMELİK” gereğince özel sektöre ait doğal mineralli su tesislerinde mesul müdür olarak çalışabilirsiniz. 64) 31.07.2004 tarih ve 25539 sayılı Resmi Gazete’de yayımlanan (Adli Tıp Kurumu Başkanlığından) “ADLİ TIP KURUMU KANUNU UYGULAMA YÖNETMELİĞİ” gereğince Morg İhtisas Dairesinde ve Biyoloji İhtisas Dairesinde çalışabilirsiniz. 65) 29.06.2004 tarih ve 25507 sayılı Resmi Gazete’de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “SU ÜRÜNLERİ YETİŞTİRİCİLİĞİ YÖNETMELİĞİ” gereğince özel sektöre ait su ürünleri yetiştirilen tesislerde teknik personel olarak çalışabilirsiniz. 66) 16.05.2004 tarih ve 25464 sayılı Resmi Gazete’de yayımlanan (Orman ve Su İşleri Bakanlığından) “AVLAKLARIN KURULUŞU, YÖNETİMİ VE DENETİMİ ESAS VE USULLERİ İLE İLGİLİ YÖNETMELİK” gereğince özel sektöre ait örnek avlaklarda avlak yöneticisi olarak çalışabilirsiniz. 67) 24.07.2001 tarih ve 24472 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “KAPLICALAR YÖNETMELİĞİ” gereğince özel sektöre ait kaplıca tesislerinde mesul müdür olarak çalışabilirsiniz. 68) 04.09.2000 tarih ve 24160 sayılı Resmi Gazete'de yayımlanan (Gıda, Tarım ve Hayvancılık Bakanlığından) “ÖZEL GIDA KONTROL LABORATUVARLARININ KURULUŞ VE FAALİYETLERİ HAKKINDA YÖNETMELİK” gereğince özel gıda kontrol laboratuvarlarında laboratuvar personeli ve sorumlu yönetici olarak çalışabilirsiniz. 69) 10.06.1998 tarih ve 23368 sayılı Resmi Gazete’de yayımlanan (Sağlık Bakanlığından) “GENETİK HASTALIKLAR TANI MERKEZLERİ YÖNETMELİĞİ” gereğince özel veya kamuya ait kurum ve kuruluşların genetik hastalıklar tanı merkezlerinde çalışabilirsiniz. 70) Sağlık Bakanlığından çıkarılan “TÜRKİYE KÖK HÜCRE KOORDİNASYON MERKEZİ ÇALIŞMA ESASLARI YÖNERGESİ” gereğince Sağlık Bakanlığına ait kök hücre koordinasyon merkezinin tarama ve eşleştirme biriminde çalışabilirsiniz. NOTLAR Not 1: Biyologların kamu kurum ve kuruluşlarına atanması ile ilgili yönetmeliklere yer verilmemiştir. Not 2: Biyologların kamu kurum ve kuruluşlarında uzman ve uzman yardımcısı olarak görev yapması ile ilgili yönetmeliklere yer verilmemiştir. Not 3: 2 adet kanun, 50 adet yönetmelik, 16 adet tebliğ ve 2 adet yönergeden oluşan toplam 70 adet mevzuata yer verilmiştir. Hazırlayan: Yalçın Dedeoğlu

http://www.biyologlar.com/turkiyede-biyologlarin-calisma-alanlarinin-listesi

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

Cıvık Mantarlar Ögrendiklerini Diğer Cıvık Mantarlara Aktarabiliyorlar

P. polycephalum, bir hücreli organizma, daha çok cıvık mantar olarak bilinir. Laboratuarda agarda büyütülebilir. Credit: Audrey Dussutour (CNRS)

http://www.biyologlar.com/civik-mantarlar-ogrendiklerini-diger-civik-mantarlara-aktarabiliyorlar

Nörofizyolojik kuramlar

Nörofizyolojik kuramlar

Bu kuramın kurucusu Donald Hebb’dir. Bu kuram, daha çok sinir sistemleri ile ilgilendiği için öğrenmeyi zihinde meydana gelen biyokimyasal bir reaksiyon olarak açıklamaya çalışır.

http://www.biyologlar.com/norofizyolojik-kuramlar

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Genomda İnsan Beyni İçin Önemli Endojenik Retrovirüsler

Brattas ve ark. ERV'lerin insan sinir öncü hücrelerinde TRIM28 ile bağlandığını bildirmiştir. Bu, gelişmekte olan insan beynindeki transkripsiyonel ağların kontrolünde ERV'ler için bir rol teşkil ederek, yakın gen ekspresyonunu etkileyen yerel heterokromatin oluşturulmasına neden olur.

http://www.biyologlar.com/genomda-insan-beyni-icin-onemli-endojenik-retrovirusler

Amerikalı Bilim Adamları, İnsanlarda Kalıcı Gen Düzenlenmesini Destekliyor

Amerikalı Bilim Adamları, İnsanlarda Kalıcı Gen Düzenlenmesini Destekliyor

Tartışmalı bir adımla, ABD'li üst düzey bilimsel bir komite, sonraki nesiller tarafından miras alınacak olan insan embriyosuna yapılacak genetik değişimleri içeren en tartışmalı genom düzenleme biçimlerinden birine yeşil ışık yaktı.

http://www.biyologlar.com/amerikali-bilim-adamlari-insanlarda-kalici-gen-duzenlenmesini-destekliyor

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni çalışma sonuçlarına göre D vitamini soğuktan ve Gripten koruyor!

Yeni bir araştırmaya göre, D vitamini takviyesi soğuk algınlığı ve grip de dahil olmak üzere akut solunum yolu enfeksiyonlarına karşı özellikle çok eksik kişilerde korunmaya yardımcı olabilir.

http://www.biyologlar.com/yeni-calisma-sonuclarina-gore-d-vitamini-soguktan-ve-gripten-koruyor

Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar?  İşte evrimsel nedeni:

Ok kurbağaları kendilerini nasıl zehirlemeden yaşarlar? İşte evrimsel nedeni:

Zehirli kurbağalar sinir sistemleri yardımıyla toksinler üretirler. Bir ok kurbağasında bulunan zehir miktarı 150 insanı öldürebilecek güce sahiptir. Photo: Dirk Ercken/Shutterstock

http://www.biyologlar.com/ok-kurbagalari-kendilerini-nasil-zehirlemeden-yasarlar-iste-evrimsel-nedeni

Davranışın Üzerinde Genler ve Çevrenin Etkisi

Davranış nasıl türden türe aktarılır? Çevre mi Kalıtım mı daha etkilidir? Sorularını cevaplamaya yönelik yapılmış araştırmalardan ilginizi çekeceğini düşündüğüm iki tanesini sizlerle anlaşılır biçimde açıklayarak paylaşmak istedim. İlk araştırma, iki farklı kuş türünün ve çiftleşmelerinden oluşan melezlerin yuva yapım davranışlarının incelenmesi üzerine. Uzun materyal ile sıkıştırmadan yuva yapan tür: Parlak renkli Afrika papağanlarının çoğu türü ağaç kovuklarına yuvarlak kupa biçimli yuva yaparlar. Dişiler genellikle gagaları ile kestikleri bitki parçacıklarını (ya da labaratuvar ortamında kağıt) kullanarak yuvalar yaparlar. Fischer papağanları (Agapornis fischeri) isimli bir tür nispeten daha uzun parçaları kullanarak bunları bir seferde yuvasına taşır. Kısa materyal ile sıkıştırarak yuva yapan tür: Aynı gruptan pembe yüzlü papağanlar (Agapornis roseicollis) daha kısa bant biçimli bitkisel materyalleri keserler ve birkaç tur atarak yuvaya taşıdıktan sonra bunları sıkıştırarak yuvayı yaparlar. Bu sıkıştırma davranışı oldukça karmaşık bir dizi hareketi içermektedir. Zira her bir bant doğru bir düzenle yumuşak materyal ile birlikte kullanılarak yerleştirilmelidir. Bu iki türün hibriti olan dişilerin yuva yapımında orta materyal kullandığı ve ilk mevsimde başarısız oldukları gözlenir: Bu yukarıda bahsedilen iki tür oldukça yakın akrabadır. Deneysel koşullarda yapay olarak çiftleştirilebilirler. Ortaya çıkan yeni hibrit dişiler ortalama boyda olan yuva malzemeleri kullanır. Materyal ortalama boylarda kesilerek hazırlanmakta ve daha ilginci bunlar yine hibrit bir şekilde taşınmaktadır. Bazen bunları ince tüy materyalin arasına sıkıştırmakta bazen de bunu yapmadan yalnızca baş hareketlerini kullanarak dönmektedirler. Bazen de düzensiz biçimde bitkisel materyal aralara sıkıştırılmakta ya da basitçe bırakılmaktadır. Sonuçta kuşlar ince bant şeklindeki bitkisel materyali gagaları ile taşımayı öğrenmekte ve iyi-kötü bir yuva oluşturmaktadırlar. Sonraki mevsimlerde yalnızca baş çevirme gözlenir: Birkaç yıl sonra kuşlar yine baş çevirme hareketi yapmaya devam etmektedirler. Bu gözlemlere göre iki türdeki davranışa ait fenotipik farklılıklar değişik genetiplerinden kaynaklanmaktadır. Yine deneyim ile davranışta, zaman içinde düzelmeler olabileceğini gözlemledik. Örneğin, hibrit kuşlar bir süre sonra ince materyal taşımayı öğrenmiştir. Notlar: Hibrit: melez Baş çevirme hareketi: Kısa materyal kullanan pembe yüzlü papağanın yuva yaparken uyguladığı karmaşık davranışlar ritüeli. Genetip: Bir canlının sahip olduğu tüm genlerin toplamıdır. Fenotip: Bir canlının sahip olduğu genlerin o canlının davranışına, morfolojisine, fizyolojisine yansıyan özelliklerdir. Yani genotip'in canlıdaki etkin kısmı fenotip'i oluşturur. Genotipik özelliklerin tamamı aktif değildir. İkinci araştırma ise kazıcı yabanarılarının yuva yerini bulma davranışı, yani çevrenin davranışlara etkisi ile ilgili. Dişi bir kazıcı yabanarısı yer altında dört ya da beş farklı yuvaya sahiptir. Her gün düzenli olarak tüm yuvaları ziyaret eder ve larvalarına yiyecek taşır. Biyolog Niko Tinbergen yaban arılarının yuva yerini bulabilmek için bazı işaret noktaları kullandığını gösteren bir düzeneği hazırlamıştır. Tinbergen önce yuva yerilerinden birini bazı kozalakları kullanarak daire içine almıştır. Ana yabanarısı yuvayı ziyaret edip gittikten sonra Tinbergen kozalakları yuvanın birkaç metre uzağına taşıyıp aynı biçimde yeniden yerleştirmiştir. Yabanarısı geri döndüğünde yanlışlıkla, yuva yerine kozalakların oluşturduğu çemberin tam ortasına uçmuştur. Bu sonuçlar deneyin yabanarılarının yuva yerlerini bulabilmek için bazı görsel işaretleri kullandığı hipotezini doğrulamıştır. Deneyin ilerleyen aşamalarında Tinbergen kozalakları gerçek yuvanın olduğu eski yerine yerleştirmiş, ancak bu kez bunları üçgen biçiminde dizmiştir. Yuvanın yan kısmına da taşları kullanarak yuvarlak biçimli bir işaretleme hazırlamıştır. Yabanarısı geri döndüğünde taşlardan yapılmış yuvarlak işaretlere doğru uçmuştur. Bu sonuç böceğin fiziksel nesneleri değil onların düzenlenme biçimlerini gözlediklerini göstermektedir. Kaynak : Biyoloji - Campbell ; Reece- Palme Yayıncılık

http://www.biyologlar.com/davranisin-uzerinde-genler-ve-cevrenin-etkisi

Jeomorfoloji Nedir

Güneş Sistemi’nin Oluşumu Güneş Sistemi’nin oluşumu ile ilgili farklı teoriler ortaya atılmıştır. En geçerli teori sayılan Kant-Laplace teorisine Nebula teorisi de denir. Bu teoriye göre, Nebula adı verilen kızgın gaz kütlesi ekseni çevresinde sarmal bir hareketle dönerken, zamanla soğuyarak küçülmüştür. Bu dönüş etkisiyle oluşan çekim merkezinde Güneş oluşmuştur. Gazlardan hafif olanları Güneş tarafından çekilmiş, çekim etkisi dışındakiler uzay boşluğuna dağılmış ağır olanlar da Güneş’ten farklı uzaklıklarda soğuyarak gezegenleri oluşturmuşlardır. Dünya’nın Oluşumu Dünya, Güneş Sistemi oluştuğunda kızgın bir gaz kütlesi halindeydi. Zamanla ekseni çevresindeki dönüşünün etkisiyle, dıştan içe doğru soğumuş, böylece iç içe geçmiş farklı sıcaklıktaki katmanlar oluşmuştur. Günümüzde iç kısımlarda yüksek sıcaklık korunmaktadır. Dünya’nın oluşumundan bugüne kadar geçen zaman ve Dünya’nın yapısı jeolojik zamanlar yardımıyla belirlenir. Jeolojik Zamanlar Yaklaşık 4,5 milyar yaşında olan Dünya, günümüze kadar çeşitli evrelerden geçmiştir. Jeolojik zamanlar adı verilen bu evrelerin her birinde , değişik canlı türleri ve iklim koşulları görülmüştür. Dünya’nın yapısını inceleyen jeoloji bilimi, jeolojik zamanlar belirlenirken fosillerden ve tortul tabakaların özelliklerinden yararlanılır. Jeolojik zamanlar günümüze en yakın zaman en üstte olacak şekilde sıralanır. • Dördüncü Zaman • Üçüncü Zaman • İkinci Zaman • Birinci Zaman • İlkel Zaman İlkel Zaman Günümüzden yaklaşık 600 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İlkel zamanın yaklaşık 4 milyar yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Sularda tek hücreli canlıların ortaya çıkışı  En eski kıta çekirdeklerinin oluşumu İlkel zamanı karakterize eden canlılar alg ve radiolariadır. Birinci Zaman (Paleozoik) Günümüzden yaklaşık 225 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Birinci zamanın yaklaşık 375 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kaledonya ve Hersinya kıvrımlarının oluşumu  Özellikle karbon devrinde kömür yataklarının oluşumu  İlk kara bitkilerinin ortaya çıkışı  Balığa benzer ilk organizmaların ortaya çıkışı Birinci zamanı karakterize eden canlılar graptolith ve trilobittir. İkinci Zaman (Mezozoik) Günümüzden yaklaşık 65 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. İkinci zamanın yaklaşık 160 milyon yıl sürdüğü tahmin edilmektedir. İkinci zamanı karakterize eden dinazor ve ammonitler bu zamanın sonunda yok olmuşlardır. Zamanın önemli olayları :  Ekvatoral ve soğuk iklimlerin belirmesi  Kimmeridge ve Avustrien kıvrımlarının oluşumu İkinci zamanı karakterize eden canlılar ammonit ve dinazordur. Üçüncü Zaman (Neozoik) Günümüzden yaklaşık 2 milyon yıl önce sona erdiği varsayılan jeolojik zamandır. Üçüncü zamanın yaklaşık 63 milyon yıl sürdüğü tahmin edilmektedir. Zamanın önemli olayları :  Kıtaların bugünkü görünümünü kazanmaya başlaması  Linyit havzalarının oluşumu  Bugünkü iklim bölgelerinin ve bitki topluluklarının belirmeye başlaması  Alp kıvrım sisteminin gelişmesi  Nümmilitler ve memelilerin ortaya çıkışı Üçüncü zamanı karakterize eden canlılar nummilit, hipparion, elephas ve mastadondur. Dördüncü Zaman (Kuaterner) Günümüzden 2 milyon yıl önce başladığı ve hala sürdüğü varsayılan jeolojik zamandır. Zamanın önemli olayları :  İklimde büyük değişikliklerin ve dört buzul döneminin (Günz, Mindel, Riss, Würm) yaşanması  İnsanın ortaya çıkışı Dördüncü zamanı karakterize eden canlılar mamut ve insandır. Dünya’nın İç Yapısı Dünya, kalınlık, yoğunluk ve sıcaklıkları farklı, iç içe geçmiş çeşitli katmanlardan oluşmuştur. Bu katmanların özellikleri hakkında bilgi edinilirken deprem dalgalarından yararlanılır.  Çekirdek  Manto  Taşküre (Litosfer) Deprem Dalgaları Deprem dalgaları farklı dalga boylarını göstermektedir. Deprem dalgaları yoğun tabakalardan geçerken dalga boyları küçülür, titreşim sayısı artar. Yoğunluğu az olan tabakalarda ise dalga boyu uzar, titreşim sayısı azalır. Çekirdek : Yoğunluk ve ağırlık bakımından en ağır elementlerin bulunduğu bölümdür. Dünya’nın en iç bölümünü oluşturan çekirdeğin, 5120-2890 km’ler arasındaki kısmına dış çekirdek, 6371-5150 km’ler arasındaki kısmına iç çekirdek denir. İç çekirdekte bulunan demir-nikel karışımı çok yüksek basınç ve sıcaklık etkisiyle kristal haldedir. Dış çekirdekte ise bu karışım ergimiş haldedir. Manto Litosfer ile çekirdek arasındaki katmandır. 100-2890 km’ler arasında bulunan mantonun yoğunluğu 3,3-5,5 g/cm3 sıcaklığı 1900-3700 °C arasında değişir. Manto, yer hacminin en büyük bölümünü oluşturur. Yapısında silisyum, magnezyum , nikel ve demir bulunmaktadır. Mantonun üst kesimi yüksek sıcaklık ve basınçtan dolayı plastiki özellik gösterir. Alt kesimleri ise sıvı halde bulunur. Bu nedenle mantoda sürekli olarak alçalıcı-yükselici hareketler görülür. Mantodaki Alçalıcı-Yükselici Hareketler Mantonun alt ve üst kısımlarındaki yoğunluk farkı nedeniyle magma adı verilen kızgın akıcı madde yerkabuğuna doğru yükselir. Yoğunluğun arttığı bölümlerde ise magma yerin içine doğru sokulur. Taşküre (Litosfer) Mantonun üstünde yer alan ve yeryüzüne kadar uzanan katmandır. Kalınlığı ortalama 100 km’dir. Taşküre’nin ortalama 35 km’lik üst bölümüne yerkabuğu denir. Daha çok silisyum ve alüminyum bileşimindeki taşlardan oluşması nedeniyle sial de denir. Yerkabuğunun altındaki bölüme ise silisyum ve magnezyumdan oluştuğu için sima denir. Sial, okyanus tabanlarında incelir yer yer kaybolur. Örneğin Büyük Okyanus tabanının bazı bölümlerinde sial görülmez. Yeryüzünden yerin derinliklerine inildikçe 33 m’de bir sıcaklık 1 °C artar. Buna jeoterm basamağı denir. Kıtalar ve Okyanuslar Yeryüzünün üst bölümü kara parçalarından ve su kütlelerinden oluşmuştur. Denizlerin ortasında çok büyük birer ada gibi duran kara kütlelerine kıta denir. Kuzey Yarım Küre’de karalar, Güney Yarım Küre’den daha geniş yer kaplar. Asya, Avrupa, Kuzey Amerika’nın tamamı ve Afrika’nın büyük bir bölümü Kuzey Yarım Küre’de yer alır. Güney Amerika’nın ve Afrika’nın büyük bir bölümü, Avustralya ve çevresindeki adalarla Antartika kıtası Güney Yarım Küre’de bulunur. Yeryüzünün yaklaşık ¾’ü sularla kaplıdır. Kıtaların birbirinden ayıran büyük su kütlelerine okyanus denir. Kara ve Denizlerin Farklı Dağılışının Sonuçları Karaların Kuzey Yarım Küre’de daha fazla yer kaplaması nedeniyle, Kuzey Yarım Küre’de; • Yıllık sıcaklık ortalaması daha yüksektir. • Sıcaklık farkları daha belirgindir. • Eş sıcaklık eğrileri enlemlerden daha fazla sapma gösterir. • Kıtalar arası ulaşım daha kolaydır. • Nüfus daha kalabalıktır. • Kültürlerin gelişmesi ve yayılması daha kolaydır. • Ekonomi daha hızlı ve daha çok gelişmiştir. Hipsografik Eğri Yeryüzünün yükseklik ve derinlik basamaklarını gösteren eğridir. Kıta Platformu : Derin deniz platformundan sonra yüksek dağlar ile kıyı ovaları arasındaki en geniş bölümdür. Karaların Ortalama Yüksekliği : Karaların ortalama yüksekliği 1000 m dir. Dünya’nın en yüksek yeri deniz seviyesinden 8840 m yükseklikteki Everest Tepesi’dir. Kıta Sahanlığı : Deniz seviyesinin altında, kıyı çizgisinden -200 m derine kadar inen bölüme kıta sahanlığı (şelf) denir. Şelf kıtaların su altında kalmış bölümleri sayılır. Kıta Yamacı : Şelf ile derin deniz platformunu birbirine bağlayan bölümdür. Denizlerin Ortalama Derinliği : Denizlerin ortalama derinliği 4000 m dir. Dünya’nın en derin yeri olan Mariana Çukuru denzi seviyesinden 11.035 m derinliktedir. Derin Deniz Platformu : Kıta yamaçları ile çevrelenmiş, ortalama derinliği 6000 m olan yeryüzünün en geniş bölümüdür. Derin Deniz Çukurları : Sima üzerinde hareket eden kıtaların, birbirine çarptıkları yerlerde bulunur. Yeryüzünün en dar bölümüdür. Yerkabuğunu Oluşturan Taşlar Yerkabuğunun ana malzemesi taşlardır. Çeşitli minerallerden ve organik maddelerden oluşan katı, doğal maddelere taş ya da kayaç denir. Yer üstünde ve içinde bulunan tüm taşların kökeni magmadır. Ancak bu taşların bir kısmı bazı olaylar sonucu değişik özellikler kazanarak çeşitli adlar almıştır. Oluşumlarına göre taşlar üç grupta toplanır. • Püskürük (Volkanik) Taşlar • Tortul Taşlar • Başkalaşmış (Metamorfik) Taşlar UYARI : Tortul taşları, püskürük ve başkalaşmış taşlardan ayıran en önemli özellik fosil içermeleridir. Püskürük (Volkanik) Taşlar Magmanın yeryüzünde ya da yeryüzüne yakın yerlerde soğumasıyla oluşan taşlardır. Katılaşım taşları adı da verilen püskürük taşlar magmanın soğuduğu yere göre iki gruba ayrılır.  Dış Püskürük Taşlar  İç Püskürük Taşlar Dış Püskürük Taşlar Magmanın yeryüzüne çıkıp, yeryüzünde soğumasıyla oluşan taşlardır. Soğumaları kısa sürede gerçekleştiği için Küçük kristalli olurlar. Dış püskürük taşların en tanınmış örnekleri bazalt, andezit, obsidyen ve volkanik tüftür. Bazalt : Koyu gri ve siyah renklerde olan dış püskürük bir taştır. Mineralleri ince taneli olduğu için ancak mikroskopla görülebilir. Bazalt demir içerir. Bu nedenle ağır bir taştır. Andezit : Eflatun, mor, pembemsi renkli dış püskürük bir taştır. Ankara taşı da denir. Dağıldığında killi topraklar oluşur. Obsidyen (Volkan Camı) : Siyah, kahverengi, yeşil renkli ve parlak dış püskürük bir taştır. Magmanın yer yüzüne çıktığında aniden soğuması ile oluşur. Bu nedenle camsı görünüme sahiptir. Volkanik Tüf : Volkanlardan çıkan kül ve irili ufaklı parçaların üst üste yığılarak yapışması ile oluşan taşlara volkan tüfü denir. İç Püskürük Taşlar Magmanın yeryüzünün derinliklerinde soğuyup, katılaşmasıyla oluşan taşlardır. Soğuma yavaş olduğundan iç püskürükler iri kristalli olurlar. İç püskürük taşların en tanınmış örnekleri granit, siyenit ve diyorittir. Granit : İç püskürük bir taştır. Kuvars, mika ve feldspat mineralleri içerir. Taneli olması nedeniyle mineralleri kolayca görülür. Çatlağı çok olan granit kolayca dağılır, oluşan kuma arena denir. Siyenit : Yeşilimsi, pembemsi renkli iç püskürük bir taştır. Adını Mısır’daki Syene (Asuvan) kentinden almıştır. Siyenit dağılınca kil oluşur. Diyorit : Birbirinden gözle kolayca ayrılabilen açık ve koyu renkli minerallerden oluşan iç püskürük bir taştır. İri taneli olanları, ince tanelilere göre daha kolay dağılır. Tortul Taşlar Denizlerde, göllerde ve çukur yerlerde meydana gelen tortulanma ve çökelmelerle oluşan taşlardır. Tortul taşların yaşı içerdikleri fosillerle belirlenir. Tortul taşlar, tortullanmanın çeşidine göre 3 gruba ayrılır. • Kimyasal Tortul Taşlar • Organik Tortul Taşlar • Fiziksel Tortul Taşlar Fosil : Jeolojik devirler boyunca yaşamış canlıların taşlamış kalıntılarına fosil denir. Kimyasal Tortul Taşlar Suda erime özelliğine sahip taşların suda eriyerek başka alanlara taşınıp tortulanması ile oluşur. Kimyasal tortul taşların en tanınmış örnekleri jips, traverten, kireç taşı (kalker), çakmaktaşı (silex)’dır. Jips (Alçıtaşı) : Beyaz renkli, tırnakla çizilebilen kimyasal tortul bir taştır. Alçıtaşı olarak da isimlendirilir. Traverten : Kalsiyum biokarbonatlı yer altı sularının mağara boşluklarında veya yeryüzüne çıktıkları yerlerde içlerindeki kalsiyum karbonatın çökelmesi sonucu oluşan kimyasal tortul bir taştır. Kalker (Kireçtaşı) : Deniz ve okyanus havzalarında, erimiş halde bulunan kirecin çökelmesi ve taşlaşması sonucu oluşan taştır. Çakmaktaşı (Silex) : Denizlerde eriyik halde bulunan silisyum dioksitin (SİO2) çökelmesi ile oluşan taştır. Kahverengi, gri, beyaz, siyah renkleri bulunur. Çok sert olması ve düzgün yüzeyler halinde kırılması nedeniyle ilkel insanlar tarafından alet yapımında kullanılmıştır. Organik Tortul Taşlar Bitki ya da hayvan kalıntılarının belli ortamlarda birikmesi ve zamanla taşlaşması sonucu oluşur. Organik tortul taşların en tanınmış örnekleri mercan kalkeri, tebeşir ve kömürdür. Mercan Kalkeri : Mercan iskeletlerinden oluşan organik bir taştır. Temiz, sıcak ve derinliğin az olduğu denizlerde bulunur. Ada kenarlarında topluluk oluşturanlara atol denir. Kıyı yakınlarında olanlar ise, mercan resifleridir. Tebeşir : Derin deniz canlıları olan tek hücreli Globugerina (Globijerina)’ların birikimi sonucu oluşur. Saf, yumuşak, kolay dağılabilen bir kalkerdir. Gözenekli olduğu için suyu kolay geçirir. Kömür : Bitkiler öldükten sonra bakteriler etkisiyle değişime uğrar. Eğer su altında kalarak değişime uğrarsa, C (karbon) miktarı artarak kömürleşme başlar. C miktarı % 60 ise turba, C miktarı % 70 ise linyit, C miktarı % 80 – 90 ise taş kömürü, C miktarı % 94 ise antrasit adını alır. Fiziksel (Mekanik) Tortul Taşlar Akarsuların, rüzgarların ve buzulların, taşlardan kopardıkları parçacıkların çökelip, birikmesi ile oluşur. Fiziksel (mekanik) tortul taşların en tanınmış örnekleri kiltaşı (şist), kumtaşı (gre) ve çakıltaşı (konglomera)’dır. Kiltaşı (Şist) : Çapı 2 mikrondan daha küçük olan ve kil adı verilen tanelerin yapışması sonucu oluşan fiziksel tortul bir taştır. Kumtaşı (Gre) : Kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Çakıltaşı (Konglomera) : Genelde yuvarlak akarsu çakıllarının doğal bir çimento maddesi yardımıyla yapışması sonucu oluşur. Başkalaşmış (Metamorfik) Taşlar : Tortul ve püskürük taşların, yüksek sıcaklık ve basınç altında başkalaşıma uğraması sonucu oluşan taşlardır. Başkalaşmış taşların en tanınmış örnekleri mermer, gnays ve filattır. Mermer : Kalkerin yüksek sıcaklık ve basınç altında değişime uğraması, yani metamorfize olması sonucu oluşur. Gnays : Granitin yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Filat : Kiltaşının (şist) yüksek sıcaklık ve basınç altında değişime uğraması yani metamorfize olması sonucu oluşur. Yeraltı Zenginliklerinin Oluşumu Yerkabuğunun yapısı ve geçirmiş olduğu evrelerle yer altı zenginlikleri arasında sıkı bir ilişki vardır. Yer altı zenginliklerinin oluşumu 3 grupta toplanır: • Volkanik olaylara bağlı olanlar; Krom, kurşun, demir, nikel, pirit ve manganez gibi madenler magmada erimiş haldedir. • Organik tortulanmaya bağlı olanlar; Taş kömürü, linyit ve petrol oluşumu. • Kimyasal tortulanmaya bağlı olanlar; Kayatuzu, jips, kalker, borasit ve potas yataklarının oluşumu. İç Güçler ve Etkileri Faaliyetleri için gerekli enerjiyi yerin içinden alan güçlerdir. İç güçlerin oluşturduğu yerşekilleri dış güçler tarafından aşındırılır. İç güçlerin oluşturduğu hareketlerin bütününe tektonik hareket denir. Bunlar; 1. Orojenez 2. Epirojenez 3. Volkanizma 4. Depremler’dir. UYARI : İç kuvvetler gerekli olan enerjiyi mantodan alır. Deniz tabanı yayılmaları, kıta kaymaları, kıta yaylanmaları, dağ oluşumu ve tektonik depremler mantodaki hareketlerden kaynaklanır. Orojenez (Dağ Oluşumu) Jeosenklinallerde biriken tortul tabakaların kıvrılma ve kırılma hareketleriyle yükselmesi olayına dağ oluşumu ya da orojenez denir. Kıvrım hareketleri sırasında yükselen bölümlere antiklinal, çöken bölümlere ise senklinal adı verilir. Antiklinaller kıvrım dağlarını, senklinaller ise çöküntü alanlarını oluşturur. Jeosenklinal : Akarsular, rüzgarlar ve buzullar, aşındırıp, taşıdıkları maddeleri deniz ya da okyanus tabanlarında biriktirirler. Tortullanmanın görüldüğü bu geniş alanlara jeosenklinal denir. Fay Yerkabuğu hareketleri sırasında şiddetli yan basınç ve gerilme kuvvetleriyle blokların birbirine göre yer değiştirmesine fay denir. Fay elemanları şunlardır: Yükselen Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan yükselen kısma denir. Alçalan Blok : Kırık boyunca birbirine göre yer değiştiren bloklardan alçalan kısma denir. Fay atımı : Yükselen ve alçalan blok arasında beliren yükseklik farkına fay atımı denir. Fay açısı : Dikey düzlem ile fay düzlemin yaptığı açıya fay açısı denir. Fay aynası : Fay oluşumu sırasında yükselen ve alçalan blok arasındaki yüzey kayma ve sürtünme nedeniyle çizilir., cilalanır. Parlak görünen bu yüzeye fay aynası denir. Faylar boyunca yüksekte kalan yerkabuğu parçalarına horst adı verilir. Buna karşılık faylar boyunca çöken kısımlara graben denir. Horstlar kırık dağlarını, grabenler ise çöküntü hendeklerini oluşturur. Türkiye’de Orojenez Türkiye’deki dağlar Avrupa ile Afrika kıtaları arasındaki Tetis jeosenklinalinde bulunan tortul tabakaların orojenik hareketi sonucunda oluşmuştur. Kuzey Anadolu ve Toros Dağları Alp Orojenezi’nin Türkiye’deki kuzey ve güney kanadını oluşturmaktadır. Ege bölgesi’ndeki horst ve grabenler de aynı sistemin içinde yer almaktadır. Epirojenez Karaların toptan alçalması ya da yükselmesi olayına epirojenez denir. Bu hareketler sırasında yeryüzünde geniş kubbeleşmeler ile yayvan büyük çukurlaşmalar olur. Orojenik hareketlerin tersine epirojenik hareketlerde tabakaların duruşunda bozulma söz konusu değildir. Dikey yönlü hareketler sırasındaki yükselmelerle jeoantiklinaller, çukurlaşmalar sırasında ise okyanus çanakları, yani jeosenklinaller oluşur. UYARI : III. Zaman sonları, IV. Zamanın başlarında Anadolu’nun epirojenik olarak yükselmesi ortalama yükseltiyi artırmıştır. Bu nedenle Anadolu’da yüksek düzlükler geniş yer kaplar. Transgresyon – Regrasyon Epirojenik hareketlere bağlı olarak her devirde kara ve deniz seviyeleri değişmiştir. İklim değişiklikleri ya da tektonik hareketler nedeniyle denizin karalara doğru ilerlemesine transgresyon (deniz ilerlemesi) , denizin çekilmesine regresyon (deniz gerilemesi) denir. Volkanizma Yerin derinliklerinde bulunan magmanın patlama ve püskürme biçiminde yeryüzüne çıkmasına volkanizma denir. Volkanik hareketler sırasında çıkan maddeler bir baca etrafında yığılarak yükselir ve volkanlar (yanardağlar) oluşur. Volkan Bacası : Mağmanın yeryüzüne ulaşıncaya kadar geçtiği yola volkan bacası denir. Volkan Konisi : Lav, kül, volkan bombası gibi volkanik maddelerin üst üste yığılması ile oluşan koni biçimli yükseltiye volkan konisi, koni üzerinde oluşan çukurluğa krater denir. Volkanlardan Çıkan Maddeler Volkanlardan çıkan maddeler değişik isimler alır : • Lav • Volkan Bombası • Volkan Külü • Volkanik Gazlar Lav Volkanlardan çıkarak yeryüzüne kadar ulaşan eriyik haldeki malzemeye lav denir. Lavın içerisindeki SİO2 (Silisyum dioksit) oranı lavın tipini ve volkanizmanın karakterini belirler. Asit Lav : SİO2 % 66 ise asit lavlar oluşur. Fazla akıcı değillerdir. Orta Tip Lav : SİO2 oranı % 33 - % 66 ise lav orta tiptir. Bu tip lavların çıktığı volkanlarda volkanik kül miktarı azdır. Bazik Lav : SİO2 oranı < % 33 ise lav bazik karakterli ve akıcıdır. Patlamasız, sakin bir püskürme oluşur. Volkan Bombası : Volkan bacasından atılan lav parçalarının havada dönerek soğuması ile oluşur. Volkan Külü : Gaz püskürmeleri sırasında oluşan, basınçlı volkan bacasından çıkan küçük taneli malzemeye kül denir. Volkanik küllerin bir alanda birikmesiyle volkanik tüfler oluşur. Volkanik Gazlar : Volkanizma sırasında subuharı, karbon dioksit, kükürt gibi gazlar magmadan hızla ayrışarak yeryüzüne çıkar. Büyük volkanik bulutların oluşmasını sağlar. Püskürme Şekilleri Volkanik hareketlerin en yoğun olduğu yerler, yerkabuğunun zayıf olduğu noktalar, çatlaklar ve yarıklardır. Magmanın yeryüzüne ulaştığı yere göre adlandırılan, merkezi çizgisel ve alansal olarak üç değişik püskürme şekli vardır : Merkezi Püskürme : Magma yeryüzüne bir noktadan çıkıyorsa, buna merkezi püskürme denir. Çizgisel Püskürme : Magma yeryüzüne bir yarık boyunca çıkıyorsa, buna çizgisel püskürme denir. Alansal Püskürme : Magma yeryüzüne yaygın bir alandan çıkıyorsa, buna alansal püskürme denir. Volkan (Yanardağ) Biçimleri Volkanların yapısı ve biçimleri yeryüzüne çıkan magmanın bileşimine, miktarına ve çıktığı yere göre değişir. Tabla Biçimindeki Volkanlar : Akıcı lavların geniş alanlara yayılmaları sonucunda oluşur. Örneğin Hindistan’daki Dekkan Platosu Kalkan Biçimindeki Volkanlar : Akıcı lavların bir bacadan çıkarak birikmesi sonucunda oluşan, geniş alanlı ve kubbemsi bir görünüşe sahip volkanlardır. Örneğin : Güneydoğu Anadolu’daki Karacadağ Volkanı Koni Biçimindeki Volkanlar : Magmadan değişik dönemlerde yükselen, farklı karakterdeki malzemenin birikmesi ile oluşur. Bu volkanların kesitinde, farklı karakterdeki malzeme katmanları ardarda görüldüğü için tabakalı volkanlar da denir. Örneğin ülkemizdeki Erciyes, Nemrut, Hasan ve Ağrı volkanları koni biçimli volkanlardır. Tüf Konileri : Volkanlardan çıkan küllerin ve diğer kırıntılı maddelerin birikmesi ile oluşan konilere denir. Örneğin ülkemizde Kula ve Karapınar çevresindeki koniler kül konileridir. Volkanik Kuşaklar Yeryüzünde bilinen volkanların sayısı binlere ulaşmasına karşın ancak 516 kadarı tarihi çağlarda faaliyet göstermiş, bu nedenle aktif volkanlar olarak kabul edilmişlerdir. Yerkabuğunu bloklar halinde bölen kırıklar üzerinde bulunan volkanlar, bir çizgi doğrultusunda sıralanmakta adeta kuşak oluşturmaktadır. Dünya’daki Volkanlar Dünya üzerindeki aktif volkanlar üç ana bölgede toplanmıştır. Volkanların en yoğun olduğu bölge Pasifik Okyanusu’nun kenarlarıdır. Volkanların aktif olduğu ikinci bölge Alp-Himalaya kıvrım kuşağı, üçüncü bölge ise okyanus ortalarıdır. Okyanus Ortaları Yerkabuğunun üst bölümünü oluşturan sial okyanus tabanlarında daha incedir. Bu ince kabuk mantodaki yükselici hareketler nedeniyle yırtılarak ayrılır. Ayrılma bölgesi adı verilen bu bölümden magma yükselir ve okyanus tabanına yayılır. Bu durum okyanus ortalarında aktif volkanların bulunmasının nedenidir. Türkiye’deki Volkanlar Alp-Himalaya kıvrım kuşağında yer alan Türkiye’de volkanlar, tektonik hatlara uygun olarak beş bölgede yoğunlaşmıştır. Ancak günümüzde Türkiye’de aktif volkan bulunmamaktadır. Depremler Yerkabuğunun derinliklerinde doğal nedenlerle oluşan salınım ve titreşim hareketleridir. Yerkabuğunun titreşimi sırasında değişik özellikteki dalgalar oluşmakta ve bunlar depremin merkezinden çevreye doğru farklı hız ve özellikle yayılmaktadır. Deprem dalgaları P, S, L dalgaları olarak 3 çeşittir. Depremlere neden olan olayların kaynaklandığı yerden uzaklaşıldıkça depremin etkisi azalır. Oluşum nedenlerine göre depremler, 3 gruba ayrılır : • Volkanik Depremler • Çökme Depremleri • Tektonik Depremler P, S, L Dalgaları P dalgaları (Primer dalgalar), titreşim hareketi ile yayılma doğrultusunun aynı yönde olduğu ve yayılma hızının en fazla olduğu dalgalardır. S dalgaları (Sekonder dalgalar), titreşim hareketlerinin yayılma doğrultusuna dik ve bir düzlem üzerinde aşağı yukarı olduğu dalgalardır. L dalgaları (Longitidunal dalgalar), yüzey dalgaları veya uzun dalgalar olarak da tanımlanır. Bu dalgaların hızları diğer dalgalara göre daha azdır. Volkanik Depremler Aktif volkanların bulunduğu yerlerde, patlama ve püskürmelere bağlı oluşan yer sarsıntılarıdır. Etki alanları dardır. Çökme Depremleri Bu tür depremler, eriyebilen taşların bulunduğu yerlerdeki yer altı mağaralarının tavanlarının çökmesiyle oluşur. Ayrıca kömür ocaklarının ve galerilerinin çökmesi de bu tür depremlere neden olur. Çok küçük ölçülü sarsıntılardır. Etki alanları dar ve zararları azdır. Tektonik Depremler Yerkabuğunun üst katlarındaki kırılmalar sırasında oluşan yer sarsıntılarıdır. Bu sarsıntılar çevreye deprem dalgaları olarak yayılır. Yeryüzünde oluşan depremlerin büyük bölümü tektonik depremlerdir. Etki alanları geniş, şiddetleri fazladır. En çok can ve mal kaybına neden olan depremlerdir. Örneğin ülkemizde 1995’te Afyon’un Dinar ilçesinde, 1998’de Adana’da oluşan depremler tektonik kökenlidir. UYARI : Tektonik depremlerin en etkili olduğu alanlar dış merkez ve yakın çevresidir. Depremin İç ve Dış Merkezi Depreme neden olan olayın kaynaklandığı noktaya odak, iç merkez ya da hiposantr denir. Yeryüzünde depremin iç merkezine en yakın olan noktaya ise, dış merkez ya da episantr denir. Depremin en şiddetli olduğu episantrdan uzaklaşıldıkça depremin etkisi azalır. Yer sarsıntıları sismograf ile kaydedilir. Deprem’in şiddeti günümüzde Richter ölçeğine göre değerlendirilir. Depremin Etkileri ve Korunma Yolları Depremler önceden tahmin edilmesi mümkün olmayan yer hareketleridir. Ancak alınacak bazı önlemlerle depremlerin zarar derecesi azaltılabilir. Depremin Etkileri : Depremin yıkıcı etkisi deprem şiddetine, dış merkeze (episantr) olan uzaklığa, zeminin yapısına, binaların özelliğine ve kütlenin eski ya da yeni oluşuna bağlı olarak değişir. Depremden Korunma Yolları Depremin yıkıcı etkisi birtakım önlemlerle azaltılabilir. Bunun için, • Yerleşim yerlerini deprem kuşakları dışında seçmek • Yerleşim birimlerini sağlam araziler üzerinde kurmak • İnşaatlarda depreme dayanıklı malzemeler kullanmak • Çok katlı yapılardan kaçınmak gerekir. Deprem Kuşakları Genç kıvrım – kırık kuşakları yerkabuğunun en zayıf yerleridir. Bu nedenle bu bölgeler volkanik hareketlerin sebep olduğu depremlerin sık görüldüğü yerlerdir. • Dünya’daki Deprem Kuşakları Depremlerin görüldüğü alanlar volkanik kuşaklarla ve fay hatlarıyla uyum içindedir. Aktif volkanların en etkili olduğu Pasifik okyanusu kenarları birinci derece deprem kuşağıdır. Anadolu’nun da içinde bulunduğu Alp-Himalaya kıvrım kuşağı ikinci derece, okyanus ortaları ise üçüncü derece deprem kuşağıdır. • Türkiye’de Deprem Kuşakları Alp-Himalaya kıvrım kuşağında bulunan Anadolu’nun büyük bir bölümü ikinci derece deprem kuşağında yer alır. Bu durum Anadolu’nun jeolojik gelişimini henüz tamamlamadığını gösterir. Türkiye’deki deprem kuşakları 5 grupta toplanır : I. Dereceden Deprem Kuşağı : Tektonik çukurluklar ve aktif kırık hatları yakınındaki alanlardır. Burada meydana gelen depremler büyük ölçüde can ve mal kaybına neden olur. II. Dereceden Deprem Kuşağı : Depremlerin birinci derece deprem kuşağındakine oranla daha az zarar verdiği alanlardır. III. Dereceden Deprem Kuşağı : Sarsıntıların az zararla geçtiği alanlardır. IV. Dereceden Deprem Kuşağı : Sarsıntıların çok az zararla ya da zararsız geçtiği alanlardır. V. Dereceden Deprem Kuşağı : Sarsıntıların çok az olduğu ya da hiç hissedilmediği alanlardır. Dış Güçler ve Etkileri Faaliyetleri için gerekli olan enerjiyi Güneş’ten alan güçlerdir. Dış güçler çeşitli yollarla yerkabuğunu şekillendirirler. Dış güçler, akarsular, rüzgarlar, buzullar ve deniz suyunun hareketleridir. Dış güçlerin etkisiyle yeryüzünde bir takım olaylar gerçekleşir. Bu olaylar aşağıda sırlanmıştır. • Taşların çözülmesi • Toprak oluşumu • Toprak kayması ve göçme (heyelan) • Erozyon Taşların Çözülmesi Yerkabuğunu oluşturan taşlar, iklimin ve canlıların etkisiyle parçalanıp, ufalanırlar. Taşların çözülmesinde taşın cinsi de etkili olmaktadır. Taşların çözülmesi fiziksel ve kimyasal yolla iki şekilde gerçekleşir: • Fiziksel (Mekanik) Çözülme • Kimyasal Çözülme UYARI : Kaya çatlaklarındaki bitkilerin, köklerini daha derinlere salması sonucunda kayalar parçalanır ve ufalanır. Bu tür çözülme, fiziksel çözülmeyi artırıcı etki yapar. Ayrıca bitki köklerinden salgılanan özsular taşlarda kimyasal çözülmeye neden olur. Fiziksel (Mekanik) Çözülme Taşların fiziksel etkiler sonucunda küçük parçalara ayrılmasına denir. Fiziksel çözülme, taşları oluşturan minerallerin kimyasal yapısında herhangi bir değişikliğe neden olmaz. UYARI : Fiziksel (mekanik) çözülme, kurak, yarı kurak ve soğuk bölgelerde belirgindir. Fiziksel (Mekanik) çözülme üç şekilde olur : • Güneşlenme yolu ile fiziksel çözülme : Gece ile gündüz, yaz ile kış arasındaki sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık farklarının fazla olduğu yarı kurak ve kurak bölgelerde görülür. Gündüz, güneşlenme ve ısınmanın etkisiyle taşları oluşturan minerallerin hacimleri genişler. Gece, sıcaklık düşünce minerallerin hacimleri yeniden küçülür. Bu hacim değişikliği taşların parçalanmasına neden olur. • Buz çatlaması yolu ile fiziksel çözülme : Sıcaklığın çok zaman donma noktasına yakın olduğu ve yağışın yeter derecede olduğu yüksek dağlar ve yüksek enlemlerde görülen çözülme şeklidir. Yağışlardan sonra taşların delik, çatlak ve ince yarıklarına sular dolar. Sıcaklık donma noktasına kadar düşünce, taşın içine sızmış olan sular donar. Donan suyun hacmi genişlediği için basınç etkisiyle taşlar parçalanır ve çözülür. • Tuz çatlaması yolu ile fiziksel çözülme : Taşların tuzlu suları emmiş bulunduğu ve buharlaşmanın çok fazla olduğu çöl bölgelerinde görülür. Kurak bölgelerde buharlaşma ile kılcal taş çatlaklarından yeryüzüne yükselen tuzlu sular, yüzeye yaklaştıkça suyunu yitirir. Çatlakların kenarında tuz billurlaşması olur. Gece nemli geçerse, suyunu yitiren tuz billurları yeniden su alır ve hacmi genişler. Basınç etkisiyle taşlar parçalanır ve çözülür. Kimyasal Çözülme Kimyasal reaksiyonlar suya ihtiyaç duyduğunda ve sıcaklık reaksiyonu hızlandırdığından, sıcak ve nemli bölgelerde yaygın olan çözülme şeklidir. Kaya tuzu, kalker gibi taşlar suda kolayca erirler. Taşlar, kimyasal yolla parçalanıp ufalanırken kimyasal bileşimleri de değişir. UYARI : Kimyasal çözülme, ekvatoral, okyanus ve muson iklim bölgelerinde belirgindir. Toprak Oluşumu Toprak, taşların ve organik maddelerin ayrışması ile oluşan, içinde belli oranda hava ve su bulunan, yerkabuğunun üstünü ince bir tabaka halinde saran örtüdür . Toprağın içinde bulunan çeşitli organizmalar toprağın oluşumuna yardım eder. Toprağın üstündeki organik maddece zengin bölüme humus adı verilir. Toprak oluşumunu etkileyen etmenler : • İklim koşulları • Ana kayanın özellikleri • Bitki örtüsü • Eğim koşulları • Oluşum Süresi’dir UYARI : Mekanik çözülmeyle toprak oluşumu zordur. Kimyasal çözülmede ise toprak oluşumu daha kolaydır. Örneğin çöllerde toprak oluşumunun yavaş olması kimyasal çözülmenin yetersiz olmasına bağlıdır. Toprak Horizonları Yerkabuğu üstünde ince bir örtü halinde bulunan toprak, çeşitli katmanlardan oluşur. Bu katmanlara horizon adı verilir. Toprağın dört temel horizonu vardır. A Horizonu : Dış etkilerle iyice ayrışmış, organik maddeler bakımından zengin, en üstteki katmandır. Tarımsal etkinlikler, bu katman üzerinde yapılmaktadır. B Horizonu : Suyun etkisiyle üst katmanda yıkanan minerallerin biriktirdiği katmandır. C Horizonu : İri parçalardan oluşan ve ana kayanın üzerinde bulunan katmandır. D Horizonu : Fiziksel ve kimyasal çözülmenin görülmediği, ana kayadan oluşan, en alt katmandır. Toprak Tipleri Topraklar yeryüzünün çeşitli bölgelerinde farklı özellikler gösterir. Bazıları mineraller bakımından, bazıları da humus bakımından zengindir. Topraklar oluştukları yerlere ve oluşumlarına göre iki ana bölümde toplanır : • Taşınmış Topraklar • Yerli Topraklar Taşınmış Topraklar Akarsuların, rüzgarların, buzulların etkisiyle yüksek yerlerden, kopartılıp, taşınan ve çukur alanlarda biriktirilen malzeme üzerinde oluşan topraklardır. Akarsuların taşıyıp biriktirdiği maddeler, alüvyon, rüzgarların biriktirdiği maddeler lös, buzulların biriktirdikleri moren (buzultaş) adını alır. Taşınmış topraklar çeşitli yerlerden getirilip, farklı özellikteki taşların ufalanmasından oluştukları için mineral bakımından zengindir. Bu nedenle çeşitli bitkilerin yetiştirilmesi için uygun, verimli topraklardır. Yerli Topraklar Dış güçlerin etkisiyle yerli kaya üzerinde sonucunda oluşan topraklardır. Özelliklerini belirleyen temel etkenler ana kayanın cinsi ve iklim koşullarıdır. Yerli topraklar iki ana bölümde toplanır: • Nemli Bölge Toprakları • Kurak Bölge Toprakları Nemli Bölge Toprakları Yağışın yeterli olduğu bölgelerde oluştukları için, mineral maddeler, tuz ve kireç toprağın alt katmanlarına taşınmıştır. Tundra Toprakları : Tundra ikliminin görüldüğü bölge topraklarıdır. Yılın büyük bir bölümünde donmuş haldedir. Yaz aylarında sadece yüzeyde ince bir tabaka halinde çözülme görülür. Geniş bataklıklar oluşur. Bitki örtüsü çok cılız olduğundan humus tabakası yoktur. Verimsiz topraklardır. Buralardaki kısa boylu ot, çalı ve yosunlara tundra adı verilir. Podzol Topraklar : Tayga adı verilen iğne yapraklı orman örtüsü altında oluşan, soğuk ve nemli bölge topraklarıdır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Bu nedenle renkleri açıktır. Bu tip topraklar Sibirya, Kuzey Avrupa ve Kanada’da yaygındır. Kahverengi Orman Toprakları : Yayvan yapraklı orman örtüsü altında oluşan, ılık ve nemli bölge topraklarıdır. Kalın bir humus tabakası bulunur. Kırmızı Topraklar : Akdeniz ikliminin egemen olduğu bölgelerde kızılçam ve maki örtüsü altında gelişen topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Lateritler : Sıcak ve nemli bölge topraklarıdır. Yağış ve sıcaklığın fazla olması nedeniyle çözülme ileri derecededir. Buna bağlı olarak toprak kalınlığı fazladır. Demiroksit ve alüminyum bakımından zengin olduğundan renkleri kızıla yakındır. Topraktaki organik maddeler, mikroorganizmalar tarafından parçalandığı için toprak yüzeyinde humus yoktur. Kurak Bölge Toprakları Yağışların az buna bağlı olarak bitki örtüsünün cılız olması nedeniyle bu topraklarda humus çok azdır. Ayrıca yağışların azlığı nedeniyle toprak katmanları tam oluşmamıştır. Kireç ve tuzlar bakımından zengin topraklardır. Kurak bölge toprakları oluşturdukları iklim bölgesinin kuraklık derecesine göre farklılaşırlar. Çernozyemler : Nemli iklimden kurak iklime geçişte ilk görülen topraklardır. Orta kuşağın yarı nemli alanlarında, uzun boylu çayır örtüsü altında oluşan bu topraklara kara topraklar da denir. Organik madde yönünden zengin olan bu topraklar üzerinde, yoğun olarak tarım yapılır. Kestane ve Kahverenkli Step Toprakları : Orta kuşak karaların iç kısımlarındaki step alanlarının topraklarıdır. Organik maddeler ince bir tabaka oluşturmaktadır. Tahıl tarımına elverişli topraklardır. Çöl Toprakları : Çöllerde görülen, organik madde yönünden son derece fakir topraklardır. Kireç ve tuzlar bakımından zengin topraklardır. Renkleri açıktır. Tarımsal değerleri bulunmaz. Türkiye’de Görülen Toprak Tipleri Ilıman kuşakta yer alan Türkiye’de, iklim tiplerine ve zeminin yapısına bağlı olarak toprak tipleri çeşitlilik gösterir. Podzollar : İğne yapraklı orman örtüsü altında oluşan topraklardır. Toprağın aşırı yıkanması nedeniyle organik maddelerin çoğu taşınmıştır. Açık renkli topraklardır. Çay tarımına uygun topraklardır. Kahverengi Orman Toprakları : Orman örtüsü altında oluşan topraklardır. Humus yönünden zengindirler. Kırmızı Topraklar : Kızılçam ve maki örtüsü altında oluşan topraklardır. Demir oksitler bakımından zengin olduğu için, renkleri kırmızımsıdır. Kalkerler üzerinde oluşanlara terra rossa adı verilir. Bu topraklar turunçgil tarımına en uygun topraklardır. Kestane ve Kahverenkli Step Toprakları : Yarı kurak iklim koşulları ve step bitki örtüsü altında oluşan topraklardır. Yüksek sıcaklık nedeniyle kızılımsı renktedirler. Zayıf bitki örtüsü nedeniyle organik maddeler ince bir örtü oluşturur. Tahıl tarımına uygun topraklardır. Vertisoller : Genellikle kireç bakımından zengin, killi, marnlı tortullar üzerinde oluşan, toprak horizonlarının henüz gelişimini tamamlamadığı topraklardır. Aşırı miktarda kil içeren vertisoller yağışlı dönemde çok su çeker, kurak dönemde aşırı su kabedip, çatlar. Litosoller : Dağlık alanlarda, eğimli yamaçlarda veya volkanik (genç bazalt platolarının bulunduğu) düzlüklerde görülen ana kayanın ufalanmış örtüsüdür. Genelde derinliği 10 cm kadardır ve toprak horizonları gelişmemiştir. Alüvyal Topraklar : Akarsuların denize ulaştığı yerlerde görülür. Çeşitli yerlerden taşınan, farklı özellikteki taşların ufalanması ile oluşan bu topraklar mineral yönünden zengin ve çok verimlidir. Toprak Kayması ve Göçme (Heyelan) Toprağın, taşların ve tabakaların bulundukları yerlerden aşağılara doğru kayması ya da düşmesine toprak kayması ve göçmesi denir. Ülkemizde bu olayların tümüne birden heyelan adı verilir. Yerçekimi, yamaç zemin yapısı, eğim ve yağış koşulları heyelana neden olan etmenlerdir. UYARI : Heyelanın oluşumu yağışların fazla olduğu dönemlerde daha çok görülür. Yerçekimi : Heyelanı oluşturan en önemli etkendir. Yerçekimi gücü sürtünme gücünden fazla olduğu zaman yamaçtaki cisimler aşağıya doğru kayar. Yamaç Zeminin Yapısı: Suyu emerek içerisinde tutan taş ve topraklar kayganlaşır. Özellikle killi yapının yaygın olduğu yamaçlarda kil suyu içinde tuttuğu için heyelan daha sık görülür. Kalker gibi suyu alt tabakalara geçiren taşların oluşturduğu yamaçlarda ise heyelan ender görülür. Eğim : Yamaç eğimi yerçekiminin etkisini artırıcı bir rol oynar. Bu nedenle dik yamaçlarda heyelan olasılığı daha fazladır. Ayrıca tabakalar yamaç eğimine uyum sağlamışsa, yani paralelse yer kayması kolaylaşır. Yol, kanal, tünel ve baraj yapımları sırasında yamaç dengesinin bozulması, volkanizma, deprem gibi etkenler de heyelana neden olur. Yağış Koşulları : Yağmur, kar suları tabakalar arasına sızarak toprağı kayganlaştırır, toprağı doygun hale getirir. Böylece su ile doygun kütlelerin yamaç aşağı kayması kolaylaşır. Heyelan genellikle yağışlardan sonra oluşur. Heyelanın Etkileri ve Korunma Yolları Heyelan hemen her yıl can ve mal kaybına yol açmaktadır. Ancak alınacak bir takım önlemlerle heyelanın etkileri azaltılabilir. Heyelanın Etkileri İnsan ve hayvan ölümleri Tarımsal hasar ve toprak kaybı Bina hasarları Ulaşım ve taşımacılığın aksaması Heyelandan Korunma Öncelikle heyelan tehlikesi olan yerlerde setler yapılmalı, yamaçlar ağaçlandırılmalıdır. Ayrıca yol, kanal, tünel ve baraj yapımlarında yamacın bozulmamasına özen gösterilmelidir. Türkiye’de Heyalan Türkiye’de heyelan sık görülen, doğal bir felakettir. Türkiye’de arazinin çok engebeli olması toprak kaymalarını kolaylaştırmaktadır. Bölgeden bölgeye farklılık gösteren heyelanların en sık görüldüğü bölgemiz Karadeniz’dir. Bölgede arazi eğiminin fazla, yağışların bol ve killi yapının yaygın olması heyelanın sık görülmesine neden olur. Ülkemizde ilkbahar aylarında görülen kar erimeleri ve yağışlar heyelan olaylarını artırır. Erozyon Toprak örtüsünün, akarsuların, rüzgarların ve buzulların etkisiyle süpürülmesine erozyon denir. Yeryüzünde eğim, toprak, su ve bitki örtüsü arasında doğal bir denge bulunmaktadır. Bu dengenin bozulması erozyonu hızlandırıcı bir etki yapmaktadır. Dış etkenler ya da arazinin yanlış kullanılması erozyona neden olmaktadır. UYARI : Eğim fazlalığı ve cılız bitki örtüsü erozyonu artıran en önemli etkenlerdir. Bu nedenle kurak ve yarı kurak enlemlerde erozyon önemli bir sorundur. Dış Etkenler Akarsu, rüzgar gibi dış güçlerin yapmış olduğu aşındırma sonucunda toprak örtüsü süpürülür ve başka yerlere taşınır. Dış güçlerin etkisi bitki örtüsünün bulunmadığı ya da çok cılız olduğu yerlerde daha belirgindir. Ayrıca eğimin fazla olduğu yerlerde sular daha kolay akışa geçerek toprak örtüsünün süpürülmesini hızlandırır. Arazinin Yanlış Kullanılması Özellikle yamaçlardaki tarlaların yamaç eğimi yönünde sürülmesi, eğimli yerlerde tarla tarımının yaygın olması, arazinin teraslanmaması erozyon hızını artırmaktadır. Su Erozyonu Bitki örtüsünün cılız ya da hiç olmadığı yerlerde toprağın ve ana kayanın sularla yerinden kopartılarak taşınmasına su erozyonu denir. Kırgıbayır ve peribacası su erozyonu ile oluşan özel şekillerdir. Kırgıbayır : Yarı kurak iklim bölgelerinde sel yarıntılarıyla dolu yamaçlara kırgıbayır (badlans) denir. Peribacası : Özellikle volkan tüflerinin yaygın olarak bulunduğu vadi ve platoların yamaçlarında sel sularının aşındırması ile oluşan özel yeryüzü şekillerine peribacası denir. Bazı peribacalarının üzerinde şapkaya benzer, aşınmadan arta kalan sert volkanik taşlar bulunur. Bunlar volkanik faaliyet sırasında bölgeye yayılmış andezit ya da bazalt kütleridir. Peribacalarının en güzel örnekleri ülkemizde Nevşehir, Ürgüp ve Göreme çevresinde görülür. Rüzgar Erozyonu Bitki örtüsünün olmadığı ya da cılız olduğu yerlerde toprağın rüzgarlarla yerinden kopartılarak taşınmasına rüzgar erozyonu denir. Erozyonun Etkileri ve Erozyondan Korunma Yolları Oluşumu için milyonlarca yıl geçmesi gereken toprak örtüsünü yok eden ve her geçen gün etkilerini arttıran erozyon doğal bir felakettir. Alınacak bir takım önlemlerle etkileri azaltılabilir. Erozyonun Etkileri Tarım topraklarının azalması, sellerin artması, tarımsal üretimin ve verimin azalması, otlakların azalması, hayvancılığın gerilemesi, çölleşmenin başlaması. Erozyondan Korunma Yolları Var olan ormanlar ve meralar korunmalı, çıplak yerler ağaçlandırılmalı, ormanlık alanlarda keçi beslenmesi engellenmeli, yamaçlardaki tarlalar, yamaç eğimine dik sürülmeli, meyve tarımı ve nöbetleşe ekim yaygınlaştırılmalı, orman içi köylülerine yeni geçim kaynakları sağlanmalı. Türkiye’de Erozyon Türkiye’de arazi engebeli ve çok eğimli olduğu için toprak erozyonu önemli bir sorundur. Bazı bölgelerimiz dışında bitki örtüsünün cılız olması da erozyonu artırmaktadır. Ayrıca nüfusun hızla artması, tarım alanlarına olan gereksinimin artması, ormanların tahrip edilmesine yol açmaktadır. Bunlara bağlı olarak hemen hemen tüm bölgelerimizde toprak erozyon hızı yüksektir. Akarsular Yeryüzünün şekillenmesinde en büyük paya sahip dış güç akarsulardır. Yüzey sularının eğimli bir yatak içinde toplanıp akmasıyla akarsu oluşur. Akarsular küçükten büyüğe doğru dere, çay, öz, ırmak ve nehir şeklinde sıralanır. Bir akarsuyun doğduğu yere akarsu kaynağı, döküldüğü yere akarsu ağzı denir. Bir akarsu, birbirine bağlanan küçük, büyük, dar veya geniş birçok koldan oluşan bir sistemdir. Bu sistemin en uzun ve su bakımından en zengin olan kolu ana akarsudur. Akarsu Havzası (Su Toplama Alanı) Akarsuyun tüm kollarıyla birlikte sularını topladığı bölgeye akarsu havzası denir. Bir akarsu havzasının genişliği iklim koşullarına ve yüzey şekillerine bağlıdır. Akarsu havzaları iki bölümde incelenir : • Açık Havza : Sularını denize ulaştırabilen havzalara açık havza denir. Örnek : Yeşilırmak, Kızılırmak, Yenice, Sakarya, Susurluk, Gediz, Küçük Menderes, Büyük Menderes, Aksu, Göksu, Seyhan, Ceyhan, Fırat, Dicle Çoruh • Kapalı Havza : Sularını denize ulaştıramayan havzalara kapalı havza denir. Kapalı havzaların oluşmasındaki temel etken yer şekilleridir. Sıcaklık ve nem koşulları da kapalı havzaların oluşmasında etkilidir. Örnek : Van Gölü Kapalı Havzası, Tuz Gölü Kapalı Havzası, Konya Kapalı Havzası, Göller Yöresi Kapalı Havzası, Aras, Kura UYARI : Sularını Hazar Denizi’ne boşaltan Aras ve Kura ırmakları kapalı havza oluşturur. Su Bölümü Çizgisi Birbirine komşu iki akarsu havzasını birbirinden ayıran sınıra su bölümü çizgisi denir. Su bölümü çizgisi genellikle dağların doruklarından geçer. Su bölümü çizgisi; • Kurak bölgelerde, • Bataklık alanlarda, • Karistik alanlarda çoğunlukla belirsizdir. Akarsu Akış Hızı Akarsuyun akış hızı yatağın her iki kesitinde farklıdır. Suyun hızı yanlarda, dipte ve su yüzeyinde sürtünme nedeniyle azdır. Suyun en hızlı aktığı yer akarsuyun en derin yerinin üzerinde ve yüzeyin biraz altındadır. Akarsu yatağında suyun en hızlı aktığı noktaları birleştiren çizgiye hız çizgisi (talveg) denir. Akış hızı, yatağın eğimi ve genişliği ile taşınan su miktarına bağlı olarak değişir. Akarsu Akımı (Debisi) Akarsuyun herhangi bir kesitinden birim zamanda geçen su miktarına (m3) akım veya debi denir. Akarsuyun akımı yıl içerisinde değişir. Akım, akarsuyun çekik döneminde az, kabarık döneminde fazladır. Akarsu akımını; • Yağış miktarı rejimi • Yağış tipi • Zeminin özelliği • Kaynak suları • Sıcaklık ve buharlaşma koşulları etkiler. Akarsu Rejimi Akarsuyun akımının yıl içerisinde gösterdiği değişmelere rejim ya da akım düzeni denir. Akarsu rejimini belirleyen temel etken havzanın yağış rejimidir. Yağışların az, sıcaklık ve buharlaşmanın fazla olduğu dönemlerde akarsu akımı düşer. Yağışların fazla olduğu ve kar erimelerinin görüldüğü dönemlerde akım yükselir. Akarsu rejimleri 4 tiptir. Düzenli Rejim : Akımı yıl içerisinde fazla değişmeyen akarsuların rejim tipidir. Düzensiz Rejim : Akımı yıl içerisinde büyük değişmeler gösteren akarsuların rejim tipidir. Karma Rejim : Farklı iklim bölgelerinden geçen akarsuların rejim tipidir. Örneğin : Nil Nehri Sel Tipi Rejim : İlkbahar yağışları ve kar erimeleri ile bol su taşıyan, yaz aylarında ise suları yok denecek kadar azlan akarsuların rejim tipidir. Örneğin ülkemizdeki İç Anadolu Bölgesi akarsuları. İklim Bölgelerine Göre Akarsu Rejimleri Sıcaklık ve yağış koşulları ile akarsuların taşıdıkları su miktarı ve akım düzeni arasında sıkı bir ilişki vardır. Farklı iklim bölgelerindeki akarsuların rejimleri birbirinden farklı olabilir. Ancak iklim bölgelerinin yüksek ve karlı bölümlerindeki akarsuların rejimleri benzerdir. Kar erimelerinin olduğu dönemlerden akım yükselir. Kış aylarında kar yağışının fazla olması akımın düşük olmasına neden olur. Yağmurlu Ekvatoral İklimde Akarsu Rejimi : Bu iklim tipinde yağışlar bol ve yağış rejimi düzenli olduğu için Ekvatoral bölge akarsuları yıl boyunca bol su taşır. Örneğin Amazon ve Kongo nehirleri. Yağmurlu Okyanusal İklimde Akarsu Rejimi : Bu iklim tipinde yağışların bol ve düzenli olması nedeniyle akarsular yıl boyunca bol su taşır. Örneğin İngiltere’deki Thames Nehri Muson İkliminde Akarsu Rejimi : Bu iklim tipinde yaz yağışları nedeniyle akım yükselir. Kış kuraklığı akım düşer. Örneğin Ganj ve İndus nehirleri. Akdeniz İkliminde Akarsu Rejimi : Yaz kuraklığına, sıcaklık ve buharlaşmanın fazlalığına bağlı olarak yaz aylarında akım düşüktür. Kışın yağışlar, ilkbaharda kar erimeleri ile yükselir. Türkiye Akarsularının Özellikleri 1. Türkiye’nin dağlık ve engebeli bir ülke olması nedeniyle, akarsularımızın boyu genellikle kısadır. 2. Yağışlı ve kar erimelerinin olduğu dönemlerde taşan, kurak dönemlerde ise kuruyacak derecede suları azalan akarsularımızın rejimleri düzensizdir. 3. Karadeniz Bölgesi’ndeki akarsularımızın dışındakiler genellikle bol su taşımazlar. 4. Akarsularımız rejimlerinin düzensiz ve yatak eğimlerinin fazla olması nedeniyle ulaşıma uygun değildir. 5. Türkiye bugünkü görünümünü 3. ve 4. zamandaki orojenik ve epirojenik hareketlerle kazanmıştır. Bu nedenle akarsularımız henüz denge profiline ulaşamamıştır. UYARI : Türkiye’deki akarsuların yatak eğimleri ve akış hızları fazla olduğundan hidro-elektrik potansiyelleri yüksektir. Taban Seviyesi, Denge Profili Akarsuların döküldükleri deniz ya da göl yüzeyine taban seviyesi denir. Deniz yüzeyi ana taban seviyesini oluşturur. Göl yüzeyi ya da kapalı havza yüzeyi yerel taban seviyesi diye adlandırılır. Akarsular aşındırma ve biriktirmesini taban seviyesine göre yapar. Yatağını taban seviyesine indirmiş olan akarsular aşındırma ve biriktirme faaliyetini dengelemiştir. Aşınım ve birikimin eşitlendiği bu profile denge profili denir. Plato, Peneplen Akarsuların amacı bulundukları bölgeyi aşındırarak deniz seviyesine yaklaştırmak diğer bir deyişle denge profiline ulaşmaktır. Akarsuyun aşınım sürecinde görülen şekiller; plato ve peneplendir. Plato : Akarsu vadileriyle derince yarılmış düz ve geniş düzlüklerdir. Peneplen : Geniş arazi bölümlerinin, akarsu aşınım faaliyetlerinin son döneminde deniz seviyesine yakın hale indirilmesiyle oluşmuş, az engebeli şekle peneplen (yontukdüz) denir. UYARI : Bir akarsuyun denge profiline ulaşabilmesi ve arazinin peneplen haline gelebilmesi için tektonik hareketlerin görülmediği milyonlarca yıllık bir süre gerekmektedir. Denge Profilinin Bozulması İklim değişikliklerinde ve tektonik hareketlere bağlı olarak deniz seviyesinin alçalması ya da yükselmesi taban seviyesinin değişmesine neden olur. Taban seviyesinin alçalması ya da yükselmesi de akarsuyun denge profilinin bozulmasına neden olur. Taban Seviyesinin Alçalması Taban seviyesinin alçalması, akarsuyun denge profilini bozarak akarsuyun aşındırma ve taşıma gücünün artmasına neden olur. Bu nedenle akarsu yatağına gömülür. Taban Seviyesinin Yükselmesi Taban seviyesinin yükselmesi, akarsuyun denge profilini bozarak akarsuyun taşıma gücünün azalmasına neden olur. Bu nedenle akarsu menderesler çizerek birikim yapar. Menderes : Akarsuyun geni vadi tabanı içinde, eğimin azalması nedeniyle yaptığı bükümlere denir. Akarsuların Aşındırma Şekilleri : Dış güçler içerisinde en geniş alana yayılmış, nemli bölgelerde ve orta enlemlerde etkili olan en önemli dış güç akarsulardır. Akarsular aşındırma ve biriktirme yaparak yeryüzünü şekillendirir. Akarsu, hızının ve kütlesinin yaptığı etki le yatağı derine doğru kazar, yatağı boyunca kopardığı veya erittiği maddeleri taşır. Akarsu aşındırması ile oluşan şekiller vadi ve dev kazanıdır. UYARI : Akarsuların aşındırmasında yatak eğimi temel etkendir. Çünkü yatak eğimi akarsuyun akış hızını belirler. Yatak eğiminin fazla olduğu yukarı bölümlerinde derinlemesine aşındırma daha belirgindir. Vadi Akarsuyun içinde aktığı, kaynaktan ağıza doğru sürekli inişi bulunan, uzun çukurluklardır. Akarsuların aşındırma gücüne, zeminin yapısına ve aşınım süresine bağlı olarak çeşitli vadiler oluşur. UYARI : Vadi tabanları tarım, bahçecilik, ulaşım ve yerleşme bakımından elverişli alanlardır. Çentik (Kertik) Vadi : Akarsuların derine aşındırmasıyla oluşan V şekilli, tabansız, genç vadilere çentik vadi ya da kertik denir. Türkiye’nin bugünkü görünümünü 3. ve 4. zamanda kazanmış olması nedeniyle, Türkiye akarsuları henüz denge profiline ulaşmamış, geç akarsulardır. Bu nedenle ülkemizde çok sayıda çentik (kertik) vadi bulunmaktadır. Yarma Vadi (Boğaz) : Akarsuyun, iki düzlük arasında bulunan sert kütleyi derinlemesine aşındırması sonucunda oluşur. Vadi yamaçları dik, tabanı dardır. Akarsuyun yukarı bölümlerinde görülür. Türkiye’de çok sayıda yarma vadi (boğaz) bulunur. Karadeniz Bölgesi’nde, Yeşilırmak üzerinde, Şahinkaya yarma vadisi, Marmara Bölgesi’nde, Sakarya üzerinde Geyve Boğazı, Akdeniz Bölgesi’nde Atabey deresi üzerinde Atabey Boğazı başlıca örnekleridir. Kanyon Vadi : Klaker gibi dirençli ve çatlaklı taşlar içinde, akarsuyun derinlemesine aşındırmasıyla oluşur. Vadinin yamaç eğimleri çok dik olup, 90 dereceyi bulur. Kanyon vadiler Türkiye’de Toroslar’da yaygın olarak görülür. Antalya’daki Köprülü Kanyon, ülkemizdeki güzel bir örnektir. Tabanlı Vadi : Akarsu, yatağını taban seviyesine yaklaştırınca derine aşınım yavaşlar. Yatak eğiminin azalması akarsuyun menderesler çizerek yanal aşındırma yapmasına neden olur. Yanal aşındırmanın artması ile tabanlı vadiler oluşur. Menderes Akarsu yatak eğiminin azalması, akarsuyun akış hızının ve aşındırma gücünün azalmasına neden olur. Akarsu büklümler yaparak akar. Akarsuyun geniş vadi tabanı içinde, eğimin azalması nedeniyle yaptığı büklümlere menderes denir. Menderesler yapan akarsuyun, uzunluğu artar ancak akımı azalır. Taban seviyesinin alçalması nedeniyle menderesler yapan bir akarsuyun, yatağına gömülmesiyle oluşan şekle gömük menderes denir. Dev Kazanı Akarsuların şelale yaparak döküldükleri yerlerde, hızla düşen suların ve içindeki taş, çakıl gibi maddelerin çarptığı yeri aşındırmasıyla oluşan yeryüzü şeklidir. Akdeniz Bölgesi’ndeki Manavgat ve Düden şelalelerinin düküldükleri yerlerde güzel dev kazanı örnekleri bulunur. Akarsu Biriktirme Şekilleri Akarsular aşındırdıkları maddeleri beraberinde taşır. Yatak eğimleri azaldığında akarsuların aşındırma ve taşıma gücü de azalır. Bu nedenle taşıma güçlerinin azaldığı yerde taşıdıkları maddeleri biriktirirler. UYARI : Akarsuların yatak eğimi azaldığında hızları, aşındırma ve taşıma güçleri azalır. Biriktirmedeki, temel etken yatak eğimin azalmasıdır. Birikinti Konisi : Yamaçlardan inen akarsular, aşındırdıkları maddeleri eğimin azaldığı eteklerde biriktirir. Yarım koni şeklindeki bu birikimlere birikinti konisi adı verilir. Birikinti konileri zamanla gelişerek verimli tarım alanı durumuna gelebilir. Dağ Eteği Ovası : Bir dağın yamaçlarından inen akarsular taşıdıkları maddeleri eğimin azaldığı yerde birikinti konileri şeklinde biriktirirler. Zamanla birikinti konilerinin birleşmesiyle oluşan hafif dalgalı düzlüklere dağ eteği ovası adı verilir. Dağ İçi Ovası : Dağlık alanların iç kısımlarında, çevreden gelen akarsuların taşıdıkları maddeleri eğimin azaldığı yerlerde biriktirmesi ile oluşan ovalardır. Türkiye gibi engebeli ülkelerde dağ içi ovaları çok görülür. Taban Seviyesi Ovası : Akarsuların taban seviyesine ulaştığı yerlerde, eğimin azalması nedeniyle taşıdığı maddeleri biriktirmesi ile oluşturduğu ovalardır. Bu tür ovalarda akarsular menderesler yaparak akar. Gediz ve Menderes akarsularının aşağı bölümlerindeki ovalar bu türdendir. Seki (Taraça) : Yatağına alüvyonlarını yaymış olan akarsuyun yeniden canlanarak yatağını kazması ve derinleştirmesi sonucunda oluşan basamaklardır. Taban seviyesinin alçalması nedeniyle, tabanlı bir vadide akan akarsuyun aşındırma gücü artar. Yatağını derine doğru kazan akarsu vadi tabanına gömülür. Eski vadi tabanlarının yüksekte kalması ile oluşan basamaklara seki ya da taraça denir. Kum Adası (Irmak Adası) : Akarsuların yatak eğimlerinin azaldığı geniş vadi tabanlarından taşıdıkları maddeleri biriktirmesi ile oluşan şekillerdir. Kum adaları akarsuyun taşıdığı su miktarı ve akış hızına bağlı olarak yer değiştirirler. Kum adaları üzerinde yoğun bir bitki örtüsünün bulunması kum adalarının yer değiştirmediğini gösterir. Delta : Akarsuların denize ulaştıkları yerlerde taşıdıkları maddeleri biriktirmesiyle oluşan üçgen biçimli alüvyal ovalardır. Deltalar, taban seviyesi ovalarının bir çeşididir. Onlardan ayrılan yönü biriktirmenin deniz içinde olmasıdır. Bu nedenle deltanın oluşabilmesi için; • Gel-git olayının belirgin olmaması • Kıyının sığ olması • Kıyıda güçlü bir akıntının bulunmaması • Akarsu ağzında eğimin azalması gerekir. Yeraltı Suları ve Kaynaklar Yer altı Suyu (Taban Suyu) Yağış olarak yeryüzüne düşen ya da yeryüzünde bulunan suların, yerçekimi etkisiyle yerin altına sızıp, orada birikmesiyle oluşan sulardır. Yer altı suyunun oluşabilmesi için beslenme ve depolanma koşullarının uygun olması gerekir. Yer altı suyunun beslenmesini etkileyen en önemli etmen yağışlardır. Depolama koşulları ise yüzeyin eğimine, bitki örtüsüne ve yüzeyin geçirimlik özelliğine bağlıdır. Yer altı Sularının Bulunuş Biçimleri Bol yağışlı ve zemini geçirimli taşlardan oluşan alanlarda yer altı suyu fazladır. Az yağış alan, eğimi fazla ve geçirimsiz zeminlerde ise, yer altı suyunun oluşumu zordur. Kum, çakıl, kumtaşı konglomera, kalker, volkanik tüfler, alüvyonlar, geçirimli zeminleri oluşturur. Bu nedenle alüvyal ovalar ve karstik yöreler yer altı suyu bakımından zengin alanlardır. Kil, marn, şist, granit gibi taşlar ise geçirimsizdir. Yer altı suyu oluşumunu engeller. Yeraltında biriken sular Taban suyu Artezyen Karstik Yeraltı Suyu olarak bulunur. Taban Suyu Altta geçirimsiz bir tabaka ile sınırlandırılan, geçirimli tabaka içindeki sulardır. Bu sular genellikle yüzeye yakındır. Marmara Bölgesi’ndeki ovalar, Ege Bölgesi’ndeki çöküntü ovaları, Muş, Erzurum ve Pasinler ovalarındaki yer altı suları bu gruba girer. Artezyen Bu tür sular basınçlı yeraltı sularıdır. İki geçirimsiz tabaka arasındaki geçirimli tabaka içinde bulunan sulardır. Tekne biçimli ovalar ve vadi tabanlarında bu tür sular bulunmaktadır. İç Anadolu Bölgesi artezyen suları bakımından zengindir. Karstik Yer altı Suyu Karstik yörelerdeki kalın kalker tabakalar arasındaki çatlak ve boşluklarda biriken yer altı sularıdır. En önemli özelliği birbirinden bağımsız taban suları oluşturmasıdır. Karstik alanların geniş yer kapladığı Akdeniz Bölgesi karstik yeraltı suları bakımından zengindir. Kaynak Yeraltı sularının kendiliğinden yeryüzüne çıktığı yere kaynak denir. Türkiye’de kaynaklara pınar, eşme, bulak ve göze gibi adlar da verilir. Kaynaklar, yer altı suyunun bulunuş biçimine, yüzeye çıktığı yere ve suların sıcaklığına göre gruplandırılabilir. Sularının sıcaklığına göre kaynaklar, soğuk ve sıcak su kaynakları olarak iki gruba ayrılır : Soğuk Su Kaynakları Yağış sularının yeraltında birikerek yüzeye çıkması sonucunda oluşurlar. Genellikle yüzeye yakın oldukları için dış koşullardan daha çok etkilenirler. Bu nedenle suları soğuktur. Soğuk su kaynakları yeraltında bulunuş biçimine ve yüzeye çıktığı yere göre üç gruba ayrılır : Tabaka Kaynağı : Geçirimli tabakaların topoğrafya yüzeyi ile kesiştikleri yerden suların yüzeye çıkmasıyla oluşan kaynaklara tabaka kaynağı denir. Vadi Kaynağı : Yeraltına sızan suların bulunduğu tabakanın bir vadi tarafından kesilmesi ile oluşan kaynaktır. Genellikle vadi yamaçlarında görülür. Karstik Kaynak (Voklüz) : Kalın kalker tabakaları arasındaki boşlukları doldurmuş olan yer altı sularının yüzeye çıktığı kaynaktır. Bol miktarda kireç içeren bu kaynakların suları genellikle sürekli değildir. Yağışlarla beslendikleri için karstik kaynakların suları soğuktur. Toroslar üzerindeki Şekerpınarı en tanınmış karstik kaynak örneklerinden biridir. Sıcak Su Kaynakları Yerkabuğundaki fay hatları üzerinde bulunan kaynaklardır. Fay kaynakları da denir. Suları yerin derinliklerinden geldiği için sıcaktır ve dış koşullardan etkilenmez. Sular geçtikleri taş ve tabakalardaki çeşitli mineralleri eriterek bünyelerine aldıkları için mineral bakımından zengindir. Bu tür kaynaklara; kaplıca, ılıca, içme gibi adlar verilir. Sıcak su kaynaklarının özel bir türüne gayzer denir. Gayzer : Volkanik yörelerde yeraltındaki sıcak suyun belirli aralıklarla fışkırması ile oluşan kaynaklardır. UYARI : Yerin derinliklerinde bulunan suların sıcaklığı yıl içinde fazla bir değişme göstermez. Fay kaynakları volkanik ve kırıklı bölgelerde görülür. Türkiye’de Sıcak Su Kaynaklarının Dağılışı Türkiye kaplıca ve ılıca bakımından zengin bir ülkedir. Bursa, İnegöl, Yalova, Bolu, Haymana, Kızılcahamam, Sarıkaya, Erzurum, Sivas Balıklı Çermik, Afyon, Kütahya, Denizli çevresindeki kaplıca ve ılıcalar en ünlüleridir. Karstik Şekiller Yağışlar ve yer altı suları, kalker, jips, kayatuzu, dolomit gibi eriyebilen, kırık ve çatlakların çok olduğu taşların bulunduğu yerlerde, kimyasal aşınıma neden olurlar. Kimyasal aşınım sonunda oluşan şekillere karstik şekiller denir. Karstik Aşınım Şekilleri Yağışların ve yeraltı sularının oluşturduğu karstik aşınım şekillerinin aşınım şekillerinin büyüklükleri değişkendir. Karstik aşınım şekilleri şunlardır : Lapya : Kalkerli yamaçlarda yağmur ve kar sularının yüzeyi eriterek açtıkları küçük oluklardır. Oluşan çukurluklar keskin sırtlarda yan yana sıralandığından yüzey pür      

http://www.biyologlar.com/jeomorfoloji-nedir

Herbaryum Örneklerinin Kullanim Alanlari

Herbaryum örneklerinin kullanilma amaçlari ise asagidaki gibi siralanabilir; a) Herbaryumlarda bulunan bitki örnekleri, morfolojik çalismalar yaninda söz konusu bitkinin kök, gövde, yaprak ve çiçek gibi degisik organlarinin mikroskobik olarak incelenmesinde materyal olusturur. b) Florasi incelenen bölgelerde, bitki gruplarinin dagilisi büyük oranda herbaryum kayitlarina göre belirlenir. c) Bitkisel üretim, ekoloji ve taksonomi gibi konularda, okul içi egitimde ögrenim amaçli herbaryumlardan faydalanilmaktadir. Ögrencilere özellikle iklim ve mevsimin uygun olmadigi ortamlarda, bitki karakterlerinin gösterilmesi, cins ve türlerin tanitilmasi, herbaryumlardaki bitki örnekleri ile pratik olarak gerçekleşir. d) Çayır - mera vejetasyonlarını olusturan türlerin, süs bitkilerinin, kültür bitkilerinin ve yabanci otlarin teshisinde herbaryumlar en değerli kaynağı olusturur. Zira son yillarda taksonomik yayinlari inceleyerek bitki tanima teknigi önemini büyük ölçüde kaybetmistir. e) Özellikle tür ve varyete isimleri temel kabul edilerek, düzenlenen herbaryumlardaki bitki örnekleri kromozomlarla yapilan poliploidi çalismalarinda (zaman içinde seri olustugundan) degerli birer belgesel kayit anlami tasir. f) Entomolojik ve fitopatolojik çalismalarda konukçu bitkiye bagli teshislerde de büyük önem arz eder.

http://www.biyologlar.com/herbaryum-orneklerinin-kullanim-alanlari

Yağda Eriyen Vitaminler

A VİTAMİNİ: A Vitamini yağda eriyen vitaminlerdendir.Balıkyağında, karaciğerde, tereyağı ve kremada, peynirde, yumurta sarısında bulunur.Sonradan A vitamini (retinol) ne dönüşecek olan Beta Karoten ve diğer karotenoidler ise yeşil yapraklı ve sarı sebzelerde ve tahıllarda bulunur.A vitamini karaciğerde depolanır. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vitamin A miktarı Retinol Equivalant ile ölçülür. Vücuttaki Fonksiyonları Sağlıklı deri ve saçlar için gereklidir. Diş, dişeti, ve kemik gelişiminde önemli rol oynar Normal iyi görme de ve gece görme de etkilidir. Bağışıklık sistemini kuvvetlendirir. Akciğer, mide, üriner sistem ve diğer organların koruyucu epitelinin düzeninde rol oynar. Eksiklik Belirtileri 1)Gece körlüğü 2)Xerophthalmia ( korneanın anormal kuruması ve kalınlaşması = göz kuruluğu) 3)Bağışıklık sisteminin zayıflaması, enfeksiyonlara elverişli hale gelme 4)Akne (sivilce) oluşumunda artış 5)Yorgunluk 6)Diş, diseti ve kemiklerde deformiteler Aşırılık ve Zehirlenme Belirtileri 1)Karaciğer bozuklukları 2)Mide bulantısı ve kusma 3)Saç dökülmesi (saçlar çabuk kopar) 4)Başağrısı 5)Eklem ağrıları 6)Dudak çatlamaları 7)Saç kuruluğu 8)İştah kaybı D VİTAMİNİ: D Vitamini yağda eriyen vitaminlerdendir. Daha çok iki şekilde bulunur.Bunlardan aktif ergosterol, kalsiferol ve D2 vitamini gibi adlarla da bilinen ergokalsiferol ışınlanmış mayalarda bulunur.Aktif 7-dehidrokolesterol ve D3 vitamini gibi adlarla da anılan kolesalsiferol ise insan derisinde güneş ışığı ile temas sonucu meydana gelir ve daha çok balık yağında ve yumurta sarısında bulunur. Isıya karşı sabit ve pişirilmeye dayanıklıdır.Yüksek miktarlarda alınması toksik reaksiyonlara (zehirlenme) neden olabilir. Vücuttaki Fonksiyonları İnce barsaklardan kalsiyum ve fosforun emilimini düzenleyerek kemik büyümesi, sertleşmesi ve tamiri üzerinde etkili olur. Raşitizmi önler Böbrek hastalıklarında düşük kan kalsiyumu seviyesini düzenler. Postoperatif kas kasılmalarını önler. Kalsiyumla birlikte kemik gelişimini kontrol eder. Bebekler ve çocuklarda kemik ve dişlerin normal gelişme ve büyümesini sağlar. Henüz kanıtlanmamış olası etkileri: Artrit, yaşlanma belirtileri ,sivilce,alkolizm, kistik fibrozis uçuk ve herpes zoster tedavisi, kolon kanserinin önlenmesi. Vitamin D alınımına dikkat edilmesi gereken durumlar: Güneş ışığı bakımından yetersiz bölgelerde yaşayan çocuklar. Yetersiz gıda alan ve fazla kalori yakan kişiler 55 yaşın üzerindekiler, özellikle menapoz sonrası kadınlar. Emziren ve hamile kadınlar. Alkol veya uyuşturucu kullananlar. Kronik hastalığı olanlar, uzun süredir stress altında olanlar, yakın geçmişte ameliyat geçirmiş olanlar. Mide-barsak kanalının bir kısmı ameliyat ile alınmış olanlar. Ağır yaralanma ve yanığı olan kişiler. Eksiklik Belirtileri Raşitizm/(Çocuklarda D vitamini eksikliği ile oluşan hastalık)Çarpık bacaklar, kemik veya eklem yerlerinde deformasyonlar, diş gelişiminde gerilik, kaslarda zayıflık, yorgunluk, bitkinlik. Osteomalazi (yetişkinlerde D vitamini eksikliği ile oluşan hastalık) kaburga kemiklerinde,omurganın alt kısmında, leğen kemiğinde, bacaklarda ağrı, kas zayıflığı ve spazmları, çabuk kırılan kemikler. Aşırılık ve Zehirlenme Belirtileri 1)Yüksek kan basıncı 2)Mide bulantısı ve kusma 3)Düzensiz kalp atışı 4)Karın ağrısı 5)İştah kaybı 6)Zihinsel ve fiziksel gelişme geriliği 7)Damar sertliğine eğilim 8)Böbrek hasarları E VİTAMİNİ: E Vitamini yağda eriyen vitaminlerdendir.Alfa,beta,gama ve delta tokoferolleri içerir. Bitkisel yağlar ve buğday tanesi en iyi kaynağıdır. Isıya karşı sabit ve pişirilmeye dayanıklıdır. Vücuttaki Fonksiyonları En iyi Antioksidandır.Hücre zarı ve taşıyıcı moleküllerin lipid kısmını stabilize ederek hücreyi serbest radikaller, ağır met@ller, zehirli bileşikler, ilaç ve radyasyonun zararlı etkilerinden korur. İmmun sistemin aktivitesi için gereklidir.Timus bezini ve alyuvarları korur.Virütik hastalıklara karşı bağışıklık sistemini geliştirir. Göz sağlığı için hayati önem taşır.Retina gelişimi için gereklidir.Serbest radikallerin katarakt yapıcı etkilerini önler. Yaşlanmaya karşı koruyucudur.Serbest radikallerin dokular, deri ve kan damarlarında oluşturduğu dejenaratif etkiyi önler.Yaşlanmayla ortaya çıkan hafıza kayıplarını da önleyici etkisi vardır. Eksiklik Belirtileri Çocuklarda hemolitik anemi ve göz bozuklukları Yetişkinlerde Dengesiz yürüme, konsantrasyon bozukluğu, düşük tiroid hormonu seviyesi, sinir harabiyeti, uyuşukluk, anemi, bağışıklık sisteminde zayıflama. E vitamini eksikliğinde kalp hastalıkları ve kanser riski artmıştır. K VİTAMİNİ: K Vitamini yagda eriyen vitaminlerdendir.Kan pıhtılaşmasında önemli rol oynar. Lahana, karnıbahar, ıspanak ve diğer yeşil sebzelerde, soya fasülyesi ve tahıllarda bulunur.Genellikle vücutta bağırsak bakterileri tarafından sentez edilir. Vücuttaki Fonksiyonlari Kan pıhtılaşmasını sağlar. Bazi çalışmalar özellikle yaşlılarda kemikleri güçlendirdiğini göstermektedir. Pıhtılaşmada ve kemik yapımında kalsiyum'a yardımcıdır. Eksiklik Belirtileri Kontrolsuz kanamalara neden olan K vitamini eksikliği malabsorbsiyon hastaları hariç ender görülür.Doğumdan sonraki ilk 3-5 gün içerisinde bağırsak florası henüz tam gelişmemiş olduğundan K vitamini eksikliği vardır. Günlük Vitamin K ihtiyaci: Genellikle sebzelerle alınan günlük 60-85 mg. herhangi bir eklemeye gerek kalmadan yeterli olmaktadır.

http://www.biyologlar.com/yagda-eriyen-vitaminler

Bitkilerde Su İletimi

Yukarıda incelenmiş olan temel mekanizmalar ile topraktan su ve mineral madde alarak gene bu mekanizmalarla kabuk parankiması hücrelerine iletirler. Kabuk parankimasında da benzeri mekanizmalarla hücreden hücreye iletilen su ve mineral maddeler merkez silindirdeki cansız ksilem elementlerine, trake veya trakeidlere girerek kılcallık ve özellikle yaprakların stomalarındaki terlemenin sağladığı negatif basınçla, emişle yerüstü organlarına iletilir. Ancak uyku dönemi sonunda çok yıllık bitkilerde ilk yapraklar oluşuncaya kadar su yürümesi adı verilen ve tümüyle depo karbohidratlarının sindirimi ve solunumla yakılmasından elde edilen enerjiye dayalı kök basıncı ve kılcallıkla su iletimi görülür. Bitki yeni yapraklar fotosentez yapar hale gelinceye kadar da depolarının çok büyük kısmını eritir. Emici tüylerin sıklığı ve yenilenme hızı köklerin beslenme etkinliğinde önemli yer tutar ve bitki taksonları arasındaki rekabette çok önemli yer tutarsa da suberinleşmiş bölümler de lentiseller aracılığı ile bu kapasiteye önemli oranda katkıda bulunur. Toprak çok kuru veya soğuk olduğunda kök büyüme hızı çok büyük oranda düşer ve kök sisteminin süberinleşmemiş, hızlı büyüyerek toprağın nemi kullanılmamış kısmına doğru yürüyen kısmın oranı çok azalır. Buna karşılık kurak yaz aylarında ve herdem yeşil bitkilerde kış aylarında da terleme sürer, bu dönemlerde gerekli su alımının lentiseller ile çatlak ve yaralardan yayınımın oranı artar. Ölü kökler de suya karşı hiç direnç göstermediklerinden önemli katkıda bulunurlar. Özellikle odunlu bitkilerin köklerinin su ve suda çözünmüş besin elementi alınımında mikorhiza adı verilen mantarlar önemli rol oynar. ve ekto-mikorhiza şeklinde ikiye ayrılan, Korteks hücrelerinde misel ve kök yüzeyinde hif oluşturan endo- ve dışta gelişip korteks hücreleri arasına giren ekto- mikorhiza tipleri beraber gelişebilir ve toprağın su miktarına göre oranlarında değişim görülür veya kök sisteminin ana kök dışında ince köklerden oluştuğu sistemlerde yalnız endomikorhiza gelişir. Abietinae, Salicaceae, Betulaceae ve Mimosoidae familyaları ağaçları uzun ve kısa köklerden oluşan kök sistemlerine sahiptir. Hızlı büyüyen ve çok yıllık uzun köklerde mikorhiza gelişmezken 1 yıl ömürlü lateral kısa köklerde gelişir ve dallı yapıları ile kökün emici yüzeyinin çok artmasını sağlarlar. Özellikle verimsiz topraklarda ağaçların beslenmesine büyük katkı sağlarlar. Bu nedenle de erozyona uğramış toprakların ağaçlandırılmasında köklendirilmiş çeliklere mikorhiza inokülasyonu yapılması önerilir. Mikorhizanın gelişimi için toprak suyunun tarla kapasitesine yakın ve köklerdeki karbohidrat oranının yüksek olması gerekir, toprak fosfor ve azotça fakir olduğunda büyüme yavaşlar kökte karbohidrat birikebilir ve mikorhiza hızla gelişir. Bu da erozyona uğramış fakir topraklarda sık görülen bir durumdur. Epidermisden kortekse kadar enine iletimin bir kısmı plazmodezmler aracılığı ile olur ve bu enterkonekte sitoplazma sistemine simplazm adı verilir. Kaspari şeridine kadar olan su ve mineral iyonlarının iletiminin önemli bölümü ise korteks hücre çeperleri üzerinden gerçekleşir. Kaspari şeridi hücrelerinin çeperleri yağ asitleri polimeri olan süberinli ve sellülozik olmayan, pektin gibi polisakkaritler yanında az miktarda protein ve sağlam bir yapı oluşturmalarını sağlayan Ca ve diğer bazı makroelementler yanında silikatlar içeren çeperlerdir. Pektin esas olarak 1,4-bağlı a-D-galakturonik asitten oluşur ve karboksil gruplarının ( - ) yükleri Ca kelasyonu ile çok sıkı bağlı zincirli sağlam yapının oluşmasını sağlar. Bu anyonik yapı katyon / anyon alım dengesini katyonların lehine çeviren ve plazmalemmadan çok daha etkili şekilde iyonlar ve diğer maddelerin alımını sağlayan yapıyı oluşturur. İyonların hücre çeperlerini enine olarak geçmelerini ve plazmalemmaya da ulaşmalarını sağlayan ana mekanizma çeper porlarını dolduran su kanallarında gerçekleşen yayınımdır. Hücre çeperlerinin ve çepere bitişik GSA yayınım sabiteleri plazma membranlarınınkinden 10 - 100 000 kat daha fazladır ve plazmalemma kanalları genelde hücrelerin yüzey alanının ancak %0.1 - 0.5 kadarını oluşturur. Ksilemdeki iletim hücrelerinin hücre çeperlerindeki geçitler üzerinden de benzer şekilde enine iletim olur. Ksilem parankiması hücreleri de depo parankiması görevine sahip olan canlı hücrelerdir. Kökteki canlı hücrelerin canlılıklarını sürdürebilmeleri, büyüme, gelişme ve bölünmeleri, aktif alım ile iletim gibi enerji gerektiren etkinlikleri için organik madde sağlarlar. Yeşil yerüstü organlarında üretilen bu maddeler floem tarafından sağlanır. Terleme - transpirasyon su ekonomisinde ve dolayısı ile de mineral beslenmesinde çok önemli yer tutarsa da terleme olayı fotosentezle de çok yakından ilişkili olduğundan fizyolojisi daha sonra incelenecektir. Terlemenin yarattığı su potansiyeli farkı ile sağladığı emiş gücü yanında kılcallık ve suyun yüksek yüzey geriliminin sağladığı kohezyon kuvvetiyle su ağaçlarda toprağın derinliklerinden taçlarına kadar iletilmektedir.

http://www.biyologlar.com/bitkilerde-su-iletimi

Virüslerin Kesifi

Virüs latince zehir anlamına gelir. Virüsler 19. Yüzyılın sonlarına doğru keşfedilmiştir. Robert KOCH, Louis PASTAEUR ve diğer bakteriyologlar , canlılarda görülen birçok hastalıklara bakterilerin sebep olduğunu bulmuşlardır. Fakat bazı hastalıklar onları çok şaşırtıyordu. Çünkü hastalığın meydana geldiği organizmada, bu hastalığa sebep olabilecek bir bakteri bulunamıyordu. Araştırmacıların dikkatini çeken böyle bir hastalığa tütün yaprağında rastlanmıştı. Hasta bitkinin yaprakları , mozayik bir şekilde lekelenip buruştuğu için , bu hastalığa tütün mozaiyik hastalığı adı verilmiştir. Virüsler önceleri bakterilerin salgıladığı bir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak bakterilerin salgıladığıbir zehirli madde olarak kabul ediliyordu. Daha sonra, virüsün bir organizmaya bulaşarak hastalık yapabileceği gösterildi. Hasta olan tütün bitkisinden çıkarılan özüt, porselen bir filtreden geçirilerek bakteriler tutuldu. Süzülen özüt, sağlıklı tütün bitkisinin yapraklarına sürüldüğünde, bitkinin hastalandığı görüldü. Hollandalı mikrobiyolog M.W. BEIJERINCK hastalığın kısa zamanda bitkinin bütün organlarına yayıldığını tespit etmiştir. Özütte hiç bakteri kalmadığı halde, sağlıklı bitkiyi hastalandıran bu faktöre, BEIJERINCK, “hastalık yapan canlı sıvı” adını vermiştir. 20. yüzyılın başlarında, tütün mozayik virüsünden başka, bitki, insan ve hayvanlarda çeşitli hastalıklar yapan virüsler keşfedilmiştir. Mesela bunlar arasında salatalık, marul ve patateste mozayik hastalığı yapan virüsler sayılabilir. Ayrıca insanlarda sarı humma, çocuk felci, grip, kızamık, kızamıkçık, kabakulak ve suçiçeği gibi hastalıklara sebeb olan virüsler de bilinmektedir. 1930 yılına kadar, virüslerin sebeb olduğu bir çok hastalık tanımlanmasına rağmen, virüslerin yapısı ve özellikleri hakkında fazla bilgi elde edilememiştir. Amerikalı mikrobiyolog Wendell M. STANLEY, 1935 yılında tütün mozayik virüsünü, yaşadığı bitkiden ayırmayı başarmıştır. Bu araştırmacı, saf olarak elde ettiği virüs kitlesini mikroskopta incelediğinde, iğne şeklinde kristaller görmüştür. Daha sonra bu kristallerin nükloproteinler olduğu anlaşılmıştır. Aynı yıllarda STANLEY, izole ettiği tütün mozayik virüsü (TMV) kristallerini elektron mikroskobunda inceleyerek çubuk şeklinde yapılar olduğunu görmüştür. İzole edilmiş tütün mozayik virüsleri cansız gibi görünmesine rağmen, suda biraz bekletilerek tütün yaprağına sürüldüğünde, bitkinin hastalandığı tespit edilmiştir. Bu çalışmalarla, virüslerin ancak canlı hücrelere üreyebildiği anlaşılmıştır. Virüsler, canlı hücrelerde yaşayan mecburi parazitler olup, içinde yaşadığı hücrenin metabolik mekanizmasını kendi hesabına kullanabilen canlılardır. Gerçekten, bir virüs konukçu hücreye girdikten sonra, kendisi için gerekli proteinleri ve nükleik asitleri üretebilmektedir. Yani virüsler, girdiği hücrelerde, metabolizma makinasının direksiyonunu ele geçirmekte ve onu kendi lehine yönlendirebilmektedir. Virüslerin Özelikleri genom: Bir organizmanın sahip olduğu genleri taşıyan DNA’nın tamamıdır. Her organizmanın kendi genomu vardır. Kalıtım maddeleri (genomları) DNA veya RNA olabilir. Sadece proteinkılıf + DNA dan oluşurlar. Bu yapılarından dolayı kopmuş kromatin parçasına benzerler. Hücre organelleri, sitoplazmaları, enerji üretim sistemleri ve metabolizma enzimleri yoktur.Hem canlı hem cansız olarak sayılırlar. Virüslerin canlı sayılmasının nedeni cnalı bir hücre içine girdiğinde DNA eşlemesi yapabilmeleridir. Virüslerin cansız sayılmalarının nedeni hücre dışında cansızların özelliği olan kristal yapıda bulunmalarıdır. Bazı virüslerde virüsün bir hücrenin içine girmesini sağlayan enzimlerde buluna bilir.virüsün üremesi için canlı bir hücreye girmesi şarttır. Virüs girdiği hücrenin ATP’sini ,enzimlerini, nükleotitlerini kısaca herşeyini kendi leyhine kullanan tam bir parazittir. Virüs DNA sının içine girdiği bakteri DNA sından baskın olması ve bu bakteriyi kendi hesabına yönetmesi DNA nın yönetici özelliğine en iyi örnektir.bakteri içine girenvirüse bakteriyofaj denir. Virüs bir hayvan hücresine girdiğinde interferon denilen hormon benzeri bir madde salgılar. Bu madde diğer hücrelere vücutta virüs bulunduğunu haber vererek korumayı sağlar. Virüslerin Büyüklüğü ve Şekli Bütün virüsler o kadar küçüktür ki , bunlar ışık mikroskobunda ayrı parçalar halinde görülemezler. Ancak elektron mikroskobunda belirli şekilde görülmektedir. Büyüklükleri genel olarak 15-450 milimikron arasında değişir. Çocuk felci virüsünün elektron mikroskobuyla alınan fotoğrafı, virüs parçacıklarının pinpon topuna benzer minik yuvarlaklar halinde olduğunu göstermiştir. Virüslerin Yapısı Biyologlar virüslerin canlı tabiatının eşiğinde yani en alt basamağında bulunan varlıklar olarak kabul ederler. Çok küçük çok ilksel organizmalardır. Bu bakımdan virüsler hakkındaki bilgilerimiz henüz çok değildir. Biyologlar çok ince ve dikkatli araştırmaları sonucu virüslerin bir nükleit asit RNA öz maddesi ile bunu saran bir protein kılıftan meydana geldiğini bulmuşlardır. Öz madde virüsün çeşidine göre bir RNA veya DNA olabilir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer, onların içinde çoğalırlar. Bu virüslere Bakteriyofaj (bakteri yiyen virüs) denir. Bakteriyofajlar bakterileri yiyerek yaşarlar. Bakterilerin içinde ürer ve en sonunda içinde yaşadıkları hücreleri yok ederler. İnsan ve hayvanlarda hastalık yapan virüslerin çoğu da, etrafı protein kılıf ile çevrili DNA ipliğinden başka bir şey değildir. Yapısında DNA bulunan bir virüs çeşidi vardır ki, bunlar bakteri hücrelerine girer ve onların içinde çoğalırlar. Bu virüslere bakteriyofaj veya kısaca faj (faj virüsleri) denir. Faj bakteri yiyen anlamına gelir. Virüslerin Yaşama Şekilleri Canlı hücrelerden alınan virüsler hücre dışında yaşayamazlar; fakat, yeniden bir hücreye bulaştırılırlarsa hemen çoğalmaya başlarlar. Şu halde, virüsler mecburi parazit olup, ancak canlı hücrelerin içinde yaşayabilirler. Virüsler; çiçekli bitkilerde, böceklerde, bakterilerde, hayvan ve insan hücrelerinde yaşarlar. Bazen çeşitli hastalıklara sebep olurlar. Hattâ bir görüşe göre, bazı kanserlerin bile sebebi virüslerdir. Çiçekli bitkilerden tütün, patates, domates, şeker kamışı ve şeftali gibi faydalı bitkilerin hastalıkları üzerinde yapılan çalışmalarda, 100’den fazla değişik bitki virüsü bulunmuştur. Arı, sinek ve kelebek gibi bazı böcek takımlarının bir çok türlerinde yaşayan virüsler vardır. Bu virüsler, özellikle böcek larvalarında hastalıklara sebep olurlar. Böceklerde hastalık yapan virüsler, zararlı böcveği ortadan kaldırmak için biyolojik mücadelede de kullanılmaktadır. Birçok bakteri ve bazı mantarlarda yaşayan fajlar bulunmuştur. Omurgalılardan sadece balıklarda, kurbağalarda, memelilerde, kuşlarda ve bihassa kümes hayvanlarında yaşayan virüsler tespit edilmiştir. Her virüs çeşidi çoğunlukla vücudun belli bir kısmına girer ve belirli hücreler içinde çoğalabilir. Sarı humma virüsleri karaciğerde;kuduz virüsleri beyinde ve omurilikte; çiçek, kızamık, siğil virüsleri ise deride çoğalır. Virüsler sadece hücre içinde faaliyet gösterdiklerinden hücreye zarar verir ve antibiyotiklerden etkilenmez. Belli bazı virüslerin bulaştığı hücreler, aynı tipten ikinci bir virüs enfeksiyonuna karşı bağışıklık kazanır. Hücre, canlı veya sıcaklıktan öldürülmüş bir virüsle muamele edilince “interferon” denilen bir madde salgılar. İnterferon bazı hastalıklar için hücrelerde bağışıklık meydana getirir. Meselâ kızamık, kabakulak ve kızıl gibi hastalıkları geçirenler, kolay kolay bu hastalığa yeniden yakalanmazlar. Vücudun ve virüslerin bu özelliğine dayanarak bazı virüs hastalıklarına karşı aşılar geliştirilmiştir. Çiçek, sarı humma ve kuduz aşıları belli başlı virütik aşılardır Virüslerin Üremesi Virüsün canlılığını sürdürmek için bulunduğu canlıya konak canlı adı verilir. Virüs konak canlıya girdiğinde konak canlının DNA sı virüsün hesabına çalışmaya başlar. Yani virüs girdiği canlıyı yönetimi altına alır. Artık konak canlı kendi eşlenmesi yerine virüsün yönetici maddesini eşler. Ribozomlarıyla virüsün proteinlerini sentezler. Konak canlıda sayısı hızla artar. Konak canlının hücre zarı parçalanarak virüsler açığa çıkar. Kendilerine yeni konak canlı ararlar. Eğer canlı bir hücre yoksa kristaller meydana getirirler. Devamlı üreyen virüslere Litik Virüs denir.bazı hallerde virüs girdiği konak canlıya zarar vermeden kalabilir. Virüsün yönetici maddesi konak canlının yönetici maddesine yapışırsa konak canlı virüsün yönetimine girmez. Konak canlının yönetici maddesinin bir parçası haline gelebilir. Virüs çoğalamadığı içinde konak canlıya zarar veremeyecektir. Böyle virüslere Lizogenik Virüs denir. Virüsler bitkilerde ve hayvanlarda hastalık meydana getirirler. Ancak bu zarar girdikleri bitki veya hayvan hücresinde yönetimi ele geçirirlerse mümkündür. Virüslerin nükleik asitlerindemutasyonlar meydana gelebilir. Biyolojik açıdan eniyi incelenen virüsler “Bakteriyofaj”lardır. Bunlara bakteri yiyen virüslerde denilebilir. Birde kuyrukları vardır. Kuyruk bakteriye deydiğinde bakterinin o bölgesini eritir. Yönetici molekülü böylece bakteriye geçer. Lizogenik virüsse bakteri kromozomuna yapışır, orada profajı oluşturur.(Girdiği bakterinin kromozomuna yapışarak üremeden kalabilen Lizogenik virüs kromozomuna profaj denir.) Özet Olarak Virüsler 1-Canlı ve cansız arasında geçit oluştururlar. 2-Protein kılıf ve nükleik asitten oluşurlar.(DNA veya RNA) 3-Kristalleşebilirler 4-Kompşex enzim sstemleri yoktur. 5-DNA taşıyanlar bakterileri yiyebilir bunlara bakteriyofaj veya faj denir. 6-Grip, nezle, kızamık, frengi, kabakulak gibi hastalıkları yaparlar. 7-Virüs bir canlı hücrenin (örneğin bakterinin) çeperine yapışır. 8-Virüs DNA’si bakterinin içine enjekte olur. 9-Bakteri DNA’sının eşlenmesi durur. 10-Virüs DNA’sı bakterinin bütün biyokimyasal sistemlerini kullanarak kendini eşlemeye başlar. 11-Bakterinin protein sentezi sistemi virüs için gerekli protein kılıfı v.s. gibi yapıları bakteri malzemesi kullanılarak sentezlenir.bu yolla 100’den fazla virüs oluşur. 14-Bakterinin hücre duvarını delici enzimlerinde sentezlenmesi ve hücre duvarının erimesiyle virüsler dışarı çıkar.

http://www.biyologlar.com/viruslerin-kesifi

ÖRÜMCEĞİN HAYAT HİKAYESİ

Latince örümcek anlamına gelen arakne kelimesinin kökeni, Ovid'in Metamorfozlar adlı eserindeanlattığı mitolojik bir hikayedir. Buna göre, bilgelik tanrıçası Atene, çok güzel örgüler ören köylü kızı Arakne'yi kıskanır; onu bir örgü örme yarışmasına davet eder. Yarışma yapılır. Atene, güzel örgüsünde, olimpiyatlarda intikam tanrıçası Nmesis'in, tanrılara meydan okuyan ölümleri taşımasını tasvir etmiştir. Lakin, Arakne'nin örgüsü daha güzel olmuştur. Arekne örgüsünde ölümlere adaletsiz ve haksız davranışlarda bulunan tanrıları tasvir etmiştir. Yenilgiyi hazmedemeyen Atene, Arekne'nin örgüsünü yırtar ve Arekne'nin başına örgüde kullandığı mekikle vurur. Üzüntüyle oradan kaçan Arekne, bir ağacın dalına kendisini asar. Bunu gören Atene, Arekne'yi bir örümceğe çevirir; böylece tanrılara meydan okuyan Arekna hem cezalandırılmış olur, hem de örgü örmeye devam eder. Bu ilginç hikayeden sonra örümceklerin genel özelliklerini açıklayalım. Örümcekler böcek değildir. İkisinin en önemli farkı, böceklerin altı bacağı varken örümceklerin sekiz bacağı olmasıdır. Ayrıca böceklerin vücudu üç bölütlü, örümceklerinki ise iki bölütlüdür. Son olarak genelde böceklerin binlerce minik gözden oluşan bileşik gözleri vardır, örümceklerin ise genelde tane basit gözü vardır. Örümceklere duyulan aşırı tiksinti ve korkuya araknofobi denir. Aksine çoğu zararsızdır ve birçok zararlı böcekleri avlayarak tabiatı temizleyen bir yaratıktır. Antaktika dışında bütün kıtalarda, çok çeşitli iklim şartlarında ve çöllerde yaşayabilirler. Birçok örümcek türü, özellikle sonbaharın ılık günlerinde, ürettikleri iplikçikleri paraşüt gibi kullanarak, rüzgar yardımıyla kıtalardan çok uzak okyanus adalarına kadar yayılabilirler. 4500 metre yükseklikte bu şekilde uçmakta olan örümcekler görülmüş, en yakın karaya 1500 kilometre uzaklıktaki bir gemide bu tip örümcekler bulunmuştur. Örümcekler farklı kalitede ipekler üreten fabrikalar gibidirler. Karın bölgelerinin alt kısmında meme şeklindeki konik çıkıntılardan salgılanan ipeğimsi maddeyi çok çeşitli amaçlar için kullanırlar. Çoğu örümcekte salgısı ve yapısı farklı en az iki çeşit ipek bezi vardır. Bu bezlerin ürettiği ipliği kimyasal özelliklerine göre farklı işlerde kullanırlar. Her ipliğin esnekliği, dayanıklılığı, kalınlığı ve yapışkanlığı farklı olduğundan, hangi iplik hangi işe daha uygunsa orada kullanılır. Bazı ipleri av yakalamak için tuzak ağları kurmada, bazı ipleri yuvalarının içini döşemede, bazı ipleri de yumurta ve sperm topaklarını korumak için kullanırlar. Milimetrenin binde birinden daha ince olan bu iplik aynı kalınlıktaki çelik telden daha sağlamdır. Bu iplik kendi uzunluğunun dört katı kadar esneyebilir. Ayrıca çokta hafiftir; dünyanın çevresine sarılacak bu ipliğin ağırlığı sadece 320gr'dır. Örümceğin ipliği ve kurduğu yuva kendisi için çok uygundur. Fakat aynı yuva avları için bir tuzaktır. Örümceğin ağı büyüklüğüne göre çok geniş bir sahayı işgal eder ama bu görüntü aldatıcıdır. Asıl yuvası ortada küçük bir yerdir. Gerisi ise avlar için tuzaktır. Örümcek İpliğinin Yapısı Sentetik ve tabii liflerden daha güçlü olan örümcek ipeğinin üretimi, sentetik iplik üreten fabrikalardakine kısmen benziyor. İpek yapımında kullanılan keratin isimli protein; tırnak ve saçlarımızda, kuşların tüylerinde, memelilerin boynuzlarında, yılanların pullarında bulunan çok yaygın bir proteindir. İçinde birçok protein bulunan sıvı ipek maddesi, iplik haline gelmeden önce fışkırtılmak üzere bez kanalında ilerlerken, bu kanalın duvarını teşkil eden hücreler tarafından çok hızlı bir şekilde suyu çekilir; diğer kanaldaki hücrelerde hidrojen atomlarıyla bu suyu aside dönüştürürler. Yoğunlaşmış proteinler asit havuzuna girince, köprülerle birbirine bağlanarak iplik haline dönüşür. Bu sürecin alt birimlerinde, farklı iplik çeşitlerine göre farklı keselerde, farklı yollara sokularak daha değişik iplikler meydana getirilir. Farklı kimyevi maddeler, farklı oranlarda ihtiyaca göre karıştırılarak çok farklı çeşitte ip üretilmesine olanak sağlar. Böylece avlanmada kullanılan iplikler yapışkan, avlanma sonunda avla yuvaya dönerken örümceğin üzerinde yürüdüğü ipler daha sağlam ve esnektir. Ayrıca avın sarıldığı ipler şerit şeklinde ve hareket ettikçe sertleşen özellikte, yumurta keselerini koruyan ipler mikroplara karşı antibiyotikli, asansör olarak kullandığı ipler kaygan, yuvanın ilk kuruluşundaki temel ipler ayrı kalınlıkta, aralarındaki atkılar ise daha incedir. Bütün bu iplikleri örümcek, ayaklarının estetik hareketleriyle yönlendirir ve yerli yerine yapıştırır. Bazı iplikleri örümcek ayağındaki tarakla tarayarak düzeltir. İpliklerin gerilime maruz kaldığında üzerinde çatlaklar oluşmaması için her tarafı sıvı bir malzeme ile kaplanır. Estetik cerrahları bazı örümcek türlerine ait ipliği, hassas tendon ve eklem ameliyatlarında kullanmaya başlamışlardır. Örümcekler ağlarını kurmada iplerini yapıştırdığı noktaları aralarındaki açıları, dengeli ve gerginliğin hesaplarını da yapar. Örümcekler genelde böceklerle beslenirler. Aklımıza gelmeyecek taktiklerle birçok böceği yiyerek, ekolojik dengede önemli görevleri vardır. Böylece böceklerle baş etmemize yardımcı olurlar. Aksi halde böceklerin çokluğu ve mahsüllere verdiği zarar karşısında pes ederdik. Bunun yanında balık, hatta kuş ile beslenen örümcek türleride vardır. Alıntı Yapılarak hazırlanmıştır

http://www.biyologlar.com/orumcegin-hayat-hikayesi

HİSTOLOJİDE KULLANILAN MİKROSKOP TÜRLERİ VE MİKROSKOBİK YÖNTEMLERİ

Klasik ışık mikroskobunun bulunmasından bu yana bilim ilerledikçe yeni mikroskop türleri histolojinin hizmetine girmiştir. Elektron mikroskoptan sonra daha da hızlı gelişen yöntemlere yenileri eklenmekle beraber eski yöntemler ve mikroskop türleri hala kullanılmaktadır. 1. Işık Mikroskobu İmmersiyon yönteminin yardımına rağmen büyültmesi ikibinin altında olan optik cihazlardır. Mekanik kısım büyütülmüş görüntünün foküsünü yapmak için optik tüpü ya da preparat tablasını hareket ettirmeye yarar. Optik kısımda görüntüyü sağlayan iki ayrı büyültücü mercek sistemi vardır. Değişik büyültmeler sağlayabilmek için dönen bir rovelver üzerinde 3-5 objektif bulunur. İkinci büyültücü mercek sistemi, büyültülmüş görüntünün araştırıcının retinasına düşmesini sağlar ve oküler adını alır. Bir mikroskobun büyültmesi oküler ve objektif büyültmelerinin çarpılmasıyla elde edilir. 2. Faz-Kontrast Mikroskobu Görülmeyen, boyanmamış dokuların yeterli kontrast ile ayrıntılı olarak görülmelerini sağlayan mikroskop türüdür. Böylece tespit ve boyama yapılmadan canlı hücre ve dokuların incelenmesini sağlar. 3. Polarizasyon Mikroskobu Bu mikroskop ışığı çift kırma yani anizotropi özelliği gösteren yapıların (kas lifleri, silya, kollajen lifleri) incelenmesinde kullanılır. Işık Nikol prizmasından ya da poloroid filtreden geçerken tek yönde kırılır. Polarizör ve analizör olarak birbirine dik olarak konulan iki nikol prizması karanlık alan meydana getirir. İki prizma arasına konan cisim anizotropi özelliği gösteriyorsa karanlık alan içinde parlak olarak görülür. Bir ışık mikroskobunda büyütme nasıl hesaplanır? Faz-kontrast mikroskubunda ne tür incelemeler yapılır? Anizotropi nedir? Hangi yapılar polarizasyon mikroskobunda incelenmeye uygundur? 4. Ultraviyole Mikroskobu Nükleik asitler gibi ultraviyole ışığını absorbe eden yapıların araştırılmasında kullanılır. Ultraviyole çıplak gözle görülmediği için ya bir floresans ekran ya da fotoğraf plağı üzerinde görüntü alınır. Alanda ultraviyole ışınlarını absorbe eden yapıları varsa bunların yoğunluk derecelerine göre griden siyaha varan koyu alanlar şeklinde görüntü verir. 5. Floresans Mikroskobu Bazı maddeler dalga boyu kısa, yüksek enerjili ışınlarla aydınlatılırlarsa daha büyük dalga boylarında ışınlar salarlar. Bu olaya floresans denir. Bu floresans bazen canlı bir yapının (Riboflavin, Noradrenalin) kendi özelliğidir. Buna doğal floresans denir. Ya da floresans özelliği olan boyalar dokuya çöktürülür. Buna da yapay floresans adı verilir. Ultraviyole ışık veren kaynağın önüne normal ışığı geçirmeyen, sadece ultraviyole ışığın geçişine izin veren filtreler konur. Oluşacak floresans karanlık alanda incelenir. Ultraviyole ışıklar gözle görülmemelerine rağmen bu ışıkları kesecek filtreler oküler bölgesine yerleştirilmelidir. Çünkü ultraviyole ışık gözler için zararlıdır. Floresans nedir? Kaç türlü floresans vardır? 6.İmmersiyon Mikroskobu Normalde ışık mikroskopta objektif ile preparat arasında hava vardır. Lamelden maksimum açı ile çıkan kenar ışınları kırma indisi farklı bir ortam olan havaya geçerken kırılırlar ve büyültme gücü yüksek olan objektifler tarafından alınamazlar. Eğer preparat ile objektif arasına kırma indisi camınkine yakın bir sıvı konulursa preparattan çıkan ışık havada olduğu gibi fazla yayılmadan objektif içine girer. İmmersiyon sıvısı olarak sedir yağı ya da bazı sentetik immersiyon yağları kullanılmaktadır. 7. Elektron Mikroskobu Işık mikroskopta ışık kaynağı olarak kullanılan foton yerine elektron kullanılan bir yüksek teknoloji ürünüdür. Bir fitilden salınan elektron demeti ışık mikroskoptaki mercekler yerine elektrostatik ve elektromanyetik alanlardan geçilerek saptırılır ve genişletilir. Angström düzeyinde yapıları inceleyecek büyültmeler sağlar. Kesitlerde atom ağırlığı yüksek metal tuzları dokularda kendisiyle ilgili kısımlar üzerine çöktürülerek boyama yapılır. Görüntü floresan bir ekrandan izlenir. İki türü vardır. Dokuları, hücrelerin içini kesitler halinde inceleyen türüne transmisyon elektron mikroskubu denir. Hücre ve dokularda yüzey özelliklerini üç boyutlu bir görüntü tarzında sağlayan türüne ise scanning elektron mikroskop denir.

http://www.biyologlar.com/histolojide-kullanilan-mikroskop-turleri-ve-mikroskobik-yontemleri

Sitoloji (hücre biyolojisi)

Sitoloji (hücre biyolojisi), hücreleri inceleyen bir bilimGrekçe'deki kytos, barındırıcı, kelimesinden türemiştir. Sitoloji, hücrelerin fizyolojik yanlarını, barındırdığı yapıları, organelleri, ortamlarıyla ilişkilerini, hayat döngülerini, bölünmelerini ve ölümlerini inceler. Bu işlem hem moleküler hem de makroskobik ölçüde gerçekleştirilir. Sitoloji araştırmaları, bakteriler gibi tek hücreli organizmalardan, insan gibi çok hücreli organizmalara kadar büyük bir alana yayılır. Hücrelerin oluşumu ve görevleri hakkında bilgi edinmek, bütün biyolojik bilimlerin temelini oluşturur. Değişik hücre türleri arasındaki farklılık ve benzerlikleri ortaya çıkarmak, özellikle de moleküler biyolojiye çok büyük katkıda bulunur. Bir araştırmadan öğrenilen bilgiler, evrensel bazı teorileri ortaya çıkardığından, bir türün hücresinden edinilen bilgiler diğer türlere de uygulanılabilir hale gelir. Sitolojideki araştırmalar, özellikle de genetik, biyokimya, moleküler biyoloji ve gelişim biyolojisine katkıda bulunur.

http://www.biyologlar.com/sitoloji-hucre-biyolojisi

Dünyada Patolojinin Gelişimi

Patolojinin gelişimi insan bedenini ve işleyişini araştıran diğer bilim dallarındaki gelişmelerden etkilenmiştir. Önce insan anatomisi ayrıntılarıyla ortaya konulmuş, sonra histoloji, biyoloji, fizyoloji ve biyokimya hakkındaki bilgiler derinleşmiştir. Hastalıkların nedenlerinin anlaşılması için mikrobiyoloji, dahili ve cerrahi tıp dalları, son olarak da genetik ve moleküler biyoloji alanındaki atılımlar bilimin ve patolojinin yolunu aydınlatmıştır. Tıp dallarındaki bilginin günümüzdeki kadar yoğun olmadığı çağlarda bilim insanlarının birden çok bilim dalında çalışmalar yapmalarının nedeni, farklı dallar arasında işbirliği ve bilgi paylaşımının yarattığı avantajlardan yararlanmış olmalarıdır. Patolojide önde giden bilim insanı aynı zamanda anatomi, histoloji veya fizyoloji alanında da en ileri bilgilere sahip olmuştur. Yine de patolojinin 17. yüzyıldan itibaren sıçrama yapmasında Avrupa'da rönesans ("Yeniden doğuş") döneminin yarattığı bilimsel özgürlük ortamında otopsi incelemelerinin yaygınlaşması etkili olmuştur. Otopsi: Hastalıkların anlaşılmasında önemli aşama Hastalıkların nedenleri konusunda araştırmalar hasta bedenlerin ve beden sıvılarının incelenmesiyle giderek bilimsel zemine oturmuş, otopsi bu gelişmede önemli bir aşamayı oluşturmuştur. Otopside hastalıkların organ ve dokularda yol açtığı değişiklikler açığa çıkarılmıştır. Otopsi bulguları aynı zamanda hastalıkların tanısı ve ölümle sonuçlanan mekanizmaların anlaşılması için somut kanıtlar olarak değer kazanmıştır. İlk otopsinin 1286 yılında veba salgını sırasında İtalya'da Cremona şehrinde yapıldığı bilinmektedir. Şüpheli olgularda aileden ilk otopsi iznini isteyen hekim ise Antonio Benivieni (1440-1502)'dir. Giovanni Battista Morgagni (1682-1771) Patolojik anatominin babası kabul edilir. 700'den çok otopsi üzerinde elde ettiği bulguları kaydetmiş, 60 yıl sonra yayınladığı "De Sedibus et Causis Morborum" adlı 5 ciltlik bir eserde toplamıştır. Morgagni çalışmalarında Galen'in "Gerçeği arayanlar, nedeni kendisini doğrulamasa da gördükleri herşeyi dikkatle rapor etmelidir" öğüdüne uymuştur. Marcello Malpighi (1628-1694) Dokularda ilk mikroskopik incelemeleri gerçekleştirmiştir. 18. yüzyılın ilk yarısında histolojinin kurucusu Bichat da otopsi çalışmaları yaparak dokuları damar, kas, bağ dokusu ve kemik olarak dört ana kümede toplamıştır. 18. yüzyılın ikinci yarısında Fransız cerrah Guillaume de Puytren (1777-1823), klinikçi Mathew Baillie (1761-1823) otopsiyle uğraştı. İngiliz R. Bright otopsi serilerini inceleyerek böbrek hastalıklarının ilk sınıflandırmasını yaptı. Aynı dönemde Alman patolog ve anatomist Johann Friedrich Mecker (1781-1833) çok sayıda otopsi yaptı. Aynı zamanda fizyoloji, anatomi hocası ve arkeolog olan Johannes Müller (1801-1858), tümörleri makroskopik görünümlerine göre ilk sınıflandıran kişi oldu. Thomas Hodgkin (1798-1866) 7 Otopside lenf düğümünde tümör gelişimini değerlendirerek Hodgkin Lenfoma'yı tanımlamıştır. Karl F.Rokitansky (1804-1878) Viyana Üniversitesi'nde 30 yıl Patoloji hocalığı yapmış, bu süre içinde 70.000'den fazla otopside çeşitli hastalıkları gözlemlemiştir. Septal defektler ve diğer konjenital kalp anomalilerini tanımlamış, arter hastalıkları üzerine geniş makaleler yayınlamış, infektif endokarditlerde ilk kez bakterileri görmüştür. Eş zamanlı olarak Berlin'de Rudolf Ludwig Karl Virchow (1821-1902) "Hücresel patoloji" düşüncesinin fikir babasıdır. Otopsilerden elde ettiği 23.000 parçadan oluşan bir müze kurmuştur. Aynı zamanda arkeolog, antropolog, politikacı olan Virchow 1879'da Truva'yı görmek ve tarihi eser kaçırmak için 2 kez ülkemize gelmiştir. Milletvekilliği sırasında Berlin'in su ve kanalizasyon sistemlerinin kurulması için çalışmış, tifüs salgını hakkında daha 20 yaşında iken yazdığı bir rapor nedeniyle Berlin'den sürülmüştür. Virchow tıbbı bir sosyal bilim olarak nitelendirmiştir. Lösemi, tromboz, yangı ve tümörleri ilk kez ayrıntılı olarak tanımlamış, emboli, amiloid ve hemosiderin ile ilgili araştırmalar yapmıştır. Modern patoloji, hücresel patoloji İnsan anatomisi, fizyoloji, histoloji ve mikrobiyolojideki gelişmeler, normal ve hastalıklı sistem-organ-doku-hücre-inceyapının karşılaştırılmasına olanak tanımıştır. Modern patoloji, "Hücresel patoloji", "Fizyopatoloji", "Moleküler patoloji" bölümlerinden oluşmaktadır. 19. yüzyılda Virchow tarafından ortaya konulan "Hücresel patoloji" düşünce sistemi şöyle özetlenebilir: "Yaşamın temel birimi hücredir. Hastalıklar da hücre yapısı ve işlevlerinin bozulmasıyla başlar. Hasta hücrenin üremesiyle diğer hasta hücreler ortaya çıkar. Hastalığı anlamak için hücreyi incelemek gerekli ve yeterlidir. Yangı, dejenerasyon, tümör gelişimi bu şekilde açıklanabilir." Virchow, teorisini kendinden önce gelen bilim adamlarının bulgu ve düşüncelerine dayandırmıştır: Robert Hooke 1665'te bitki gözeneklerini gösterip bunlara "hücre" adını vermiştir. Lorenz Oken 19. yüzyılın başında "Bitkiler gibi insan ve hayvan bedenlerinde de bulunan hücrenin yaşamın en küçük birimini oluşturduğu" görüşünü öne sürmüştür. Histolojinin kurucusu Xavier Bichat "Hastalıkların dokuların bozulması sonucunda oluştuğunu" savunmuştur. Zamanının en büyük fizyologlarından biri olan Virchow'un Hocası Johannes Müller (1801-1858) ise yapı ile işlev arasındaki ayrılmaz bağı vurgulamıştır. Virchow'un hücresel patoloji kuramını ortaya koyarken hücrenin inceyapısından ve moleküler yapısından da söz ettiğini bu bilim adamının ileri görüşlülüğünü göstermesi bakımından eklemek gerekir. Alman bilimadamı Julius Cohnheim (1839-1884)Virchow'un öğrencisidir. İltihap patogenezi ve deneysel patoloji alanındaki çalışmalarla iz bırakmıştır. Cohnheim kurbağalardaki deneysel araştırmalarda iltihap bölgesine gelen elemanların kandan taşındığını, doku değişikliğinin, hücreye değil damara yönelik etkilerle oluştuğunu, hücre zedelenmesinin bunun sonucu olduğunu ortaya koymuştur. Dokuları dondurarak kesmeyi ilk deneyen bilim adamıdır. Virchow'un bir başka öğrencisi Elie Metchnikoff 1845-1916 fagositoz konusundaki çalışmalarıyla 1906 Nobel ödülü alıştır. İlk patoloji kürsüsü Jean Cruveilhier (1791-1873) tarafından Paris'te, 1836'da Hotel Dieu'da kurulmuştur. Dönemin eğitim merkezleri Almanya ve Avusturya, en tanınmış hocaları Müller, Rokitansky, Virchow ve Cohnheim olmuştur. Avrupa'da bu gelişmeler yaşanırken ABD izleyici durumundadır. Welch, Osler, Councilman, Delafield, Flexner gibi başlıca Amerikalı patologlar eğitimlerini Avrupa'da Rokitansky, Virchow ve Cohnheim'in yanında almıştır. Osler, 19. yüzyıl başında yaptığı otopsilerde birçok hastalığı ilk kez tanımlamıştır. Cohnheim'in öğrencisi Henry Welch (1850-1934), ABD'de ilk patoloji kürsüsünü John Hopkins'te kurmuştur.

http://www.biyologlar.com/dunyada-patolojinin-gelisimi

VARYASYON NEDİR

Bir tür içinde pek çok karakterleri bakımından önemli ölçüde faklılıklar bulunmaktadır. Yani tür içinde aynı gen havuzunu paylaşan bireyler arasında farklılıklar mevcuttur. Başka bir deyişle, aynı türün değişik alanlarda yaşayan populasyonları (populasyonlar arası) ve aynı yöredeki bir populasyonun bireyleri arasında (populasyonlar içi) pek çok özellikleri bakımından bir çeşitlilik vardır. Populasyon içinde her bir karakter, ya da karakter kümeleri bakımından farklı morfolojiye sahip bireyler bulunmaktadır. Nitekim, Linnaeus dahil, birçok taksonomist geçmişte bu hatayı yapmışlardır. Örneğin, atmacagillerden çakın kuşu adı verilen kuşun genç bireyleri ile ergin bireylerinin fenotipleri arasında, tüy deseni bakından önemli morjolojik farklılıklar bulunmaktadır. Linnaeus, başlangıçta bunları iki ayrı tür içinde yerleştirmiştir. Erginlere Accipiter palumbanus L., Genç bireylere A. gentilis L. adını vermiştir. Fakat, türün biyolojisi hakkında bilgiler artıkça, ergin ve genç bireyler arasındaki “morfolojik” farkı anlaşılmış, hepsi artık, doğru olarak, A.gentilis içine konulmuştur. Bugün dahi, -genetik, ekolojik, evrim ve populasyon biyolojisi bilgileri ile yeteri ölçüde donatılmamış olan – bazı taksonomistler, benzer hataları tekrar yapmaktadırlar. Bir populasyon içerisinde bireylerin taşıdıkları özellikler birbirinin hiçbir zaman aynı değildir. Boy, renk ve desen gibi kalitatif ve kantitatif özelliklerde az ya da çok değişkenlik görülür. Bu değişime varyasyon diyoruz. Sistematikte varyasyonlar iki grupta ele alınmalıdır. Genetik yapıyla ilgili olmayan ve ilgili olan varyasyonlar. Genetik olmayan varyasyonların ayırdedici özellikleri olmadığından sınıflandırma çalışmalarında önemli yoktur. Buna karşılık taksonların genetik yapısına işlenmiş, nesilden nesile taşınabilen genetik varyasyonlar sınıflandırmada ve sistematikte önemlidir. Bunlar; • I. Genetik olmayan varyasyonlar • A. Bireysel Varyasyonlar • a. yaş, b. mevsimsel, c. nesillere ait • B. Toplumsal varyasyonlar • C. Ekolojik varyasyonlar • a. habitat varyasyonu, b. iklimsel varyasyon, c. konukçu varyasyonu, • d. populasyon yoğunluğuna bağlı varyasyon, e. allometrik varyasyonlar • D. Traumatik varyasyonlar • a. parazit nedeniyle, b. çeşitli anormallikler • II. Genetik Varyasyonlar A. Cinsiyetle ilgili varyasyonlar • a.Primer eşey özellikleri, b.Sekonder eşey özellikleri, c. Gynandromorph’lar B. Cinsiyet ile ilgili olmayan varyasyonlar • a. Devamlı varyasyonlar www.sistematiginesaslari.8m.com

http://www.biyologlar.com/varyasyon-nedir

GÖLLER VE ÖZELLİKLERİ

Karalar üzerindeki çukur alanlarda birikmiş ve denizle bağlantısı olmayan durgun su kütlelerine göl denir. Bir gölün oluşabilmesi için öncelikle bir çanağa ihtiyaç vardır.Göller yeryüzündeki tatlı suların % 87’sini oluştururken, göllerin karalar üzerinde kapladığı alan % 2’dir. Göllerden faydalanma: 1-Tarım alanlarını sulamada, 2-İçme ve kullanma suyu sağlamada, 3-Taşımacılıkta, 4-Elektrik üretimi, 5-Su ürünleri yetiştirme, 6-Tuz ve soda üretimi, 7-Turizm açısından önemlidirler. GÖLLERİN ÖZELLİKLERİ: Gölün Büyüklüğü: Dünya üzerindeki göllerin büyüklükleri değişkendir. Hazar Gölü Dünya’nın en büyük gölüdür. ( 424.000 km kare) Gölün Beslenmesi: Göller, yağış suları, akarsular ve kaynaklar tarafından beslenir. Göllerin su seviyeleri beslenmeye bağlı olarak değişir. Bazı göller fazla sularını bir akarsu ile denize boşaltır. Bu akarsulara göl ayağı ya da gideğen denir. Göle su taşıyan akarsulara ise geleğen denir. Örneğin Manyas ve Ulubat göllerli bir akarsu ile sularını Marmara Denizi’ne boşaltır. Gölün Derinliği: Tektonik ve krater göllerinin derinlikleri genellikle fazladır. Dünya’nın en derin gölü tektonik bir göl olan Baykal Gölü’dür. Göl Suyunun Tuzluluğu: Göl sularının içinde çözünmüş halde madensel tuzlar bulunmaktadır. Buharlaşma nedeniyle göl suyunun tuz yoğunluğu artar. Özellikle kapalı havzalarda yüzeyden akış olmadığı için göl suları tuzludur. Örneğin ülkemizdeki Burdur Gölü ve Tuz Gölü’nün suları tuzludur Göllerin Sularının Özelliğinde (acı, tuzlu, tatlı olmasında) Etkili Faktörler: 1. Gölün büyüklüğü ve derinliği:Büyüklük ve derinlik arttıkça tuzluluk azalır. 2. Gölün gideğeninin olup olmaması: Göl sularını bir gideğen ile boşaltabiliyorsa suları tatlı olur. 3. İklim: Nemli iklim bölgelerinde göllerin tuzluluğu daha azdır. Genelde tatlı suludurlar. 4. Göl çanağını oluşturan kayaların özelliği Dünya üzerindeki en büyük göl 424.000 km² yüz ölçümü ile Hazar Gölü’dür. Dünya’nın en derin gölü ise 1.740 m derinliğindeki tektonik bir göl olan Baykal Gölü’dür. Göller yer altı ve yer üstü suları ile yağışlar tarafından beslenmektedir. Göllerin suları tatlı, tuzlu, acı ve sodalı olabilir. Göl sularının kimyasal özellikleri, gölü besleyen akarsuların kimyasal özelliğine, iklim özelliklerine ve göl çanağını oluşturan kayaçların özelliklerine göre farklılık gösterir. Özellikle dışa akışı olmayan kapalı havzalardaki göllerin suları içinde eriyik halde madensel tuzlar bulunmaktadır. Buharlaşmanın şiddeti göl suyunun tuz yoğunluğunu belirler. Tuz Gölü’nün suları tuzlu, Van Gölü’nün suları ise sodalıdır. Açık havzalar içerisindeki göller ise fazla sularını gideğenler vasıtası ile boşalttığı için suları tatlıdır. Göller, yağışlar, akarsular ve kaynaklar tarafından beslenir. Göllerin su seviyeleri beslenmeye bağlı olarak değişir. Bazı göller fazla sularını bir akarsu ile deniz boşaltır. Bu akarsulara göl ayağı veya gideğen denir. Gölün beslenmesine ve havzadaki iklim koşullarına bağlı oluşan seviye farkı nedeniyle su seviyesinde değişiklik olur.

http://www.biyologlar.com/goller-ve-ozellikleri

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

CARETTA CARETTA ( DENİZ KAPLUMBAĞALARI ) MORFOLOJİK ÖZELLİKLERİ

Deniz kaplumbağalarının yaklaşık 100-200 milyon yıldan beri dünyamızda yaşadığı bilinmektedir. Karadan denize geçen en eski sürüngen türü olan deniz kaplumbağaları artık yaşamlarını denizde geçirmektedirler. VİDEOLAR İÇİN TIKLAYINwww.cyprusseaturtles.org/videolar/Turler..._Chelonia_mydas.html www.cyprusseaturtles.org/videolar/Turler...Caretta_caretta.html Günümüzde Dünyada yaşayan sekiz tür deniz kaplumbağası (Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta ) vardır. Ancak Akdeniz’de düzenli olarak yuvalayan türler Chelonia mydas ve Caretta caretta’dır. Dünyamızı çevreleyen ılıman denizlerde ve okyanuslarda yaşam mücadelesi vermektedirler. Günümüzde Dünyada yaşadığı bilinen sekiz tür deniz kaplumbağası; Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys olivacea, Chelonia mydas, Chelonia agassizi, Natator depressus, Caretta caretta vardır. Caretta caretta (Deniz Kaplumbağası): >> Yeşil kaplumbağadan biraz daha ufak olan bir türdür. Kabuk boyu 1 metreye, ağırlığı 100-120 kiloya kadar ulaşabilir. Besinlerini deniz kabukluları, omurgasız deniz canlıları(yumuşakcalar), yengeçler, deniz anaları, deniz hıyarları, deniz kestaneleri ve diğer deniz canlıları oluşturur. Büyük ve kalın bir kafasının oluşu ile diğer türlerden kolayca ayırt edilir. Kabuğu açık kahve yada koyu kızıl kahve renktedir. Üreme mevsiminde her yuvaya yaklaşık 100 kadar yumurta bırakabilmektedir. Chelonia mydas (Yeşil Kaplumbağa): >> Günümüzde yaşamlarını devam ettiren deniz kaplumbağaları içerisinde önemli bir yer tutar. Kabuk rengi zeytin yeşilinden gri-kahverengiye, hatta koyu kahverengiye kadar değişir. Kabuk boyu 1.20 m. olabilir. Ağırlıkları 100-150 Kg kadardır. Dişileri sadece üreme mevsiminde karaya çıkar. Her seferinde yaklaşık 100- 150 yumurta bırakır. Kıyılara yakın sığ sulardaki deniz otlarını yiyerek beslenirler. Deniz otlarıyla beslenmesinden ve vücudundaki yağın renginin yeşilimtırak olmasından dolayı “Yeşil Kaplumbağa” diye adlandırılmıştır. Akciğer solunumu yaparlar. Dermochelys coriacea: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Dünyada geniş bir dağılım gösterirler. Kabuk boyları 120-240 cm, ağırlıkları 210-520 kg. Kadardır. Vücutlarında boynuzsu plaklar yoktur. Kabuk deriyle kaplı ve uzunlamasına yedi adet kabartılı çizgi bulunur. 2-3 yılda bir yuva yaparlar ve her üreme sezonunda 6-9 defa yuva yapabilirler. Her yuvaya ortalama 80 döllenmiş ve 30 adet küçük döllenmemiş yumurta bırakırlar. Kuluçka süresi yaklaşık 65 gündür. Chelonia agassizi: Güney ve Kuzey Amerika’nın pasifik kıyılarında bulunur. Yaklaşık 125 kg ağırlığında ve 115 cm. boyundadırlar. Yeşil kaplumbağanın çok yakın bir türüdür adını renginin siyahımsı olmasından dolayı almıştır. Eretmochelys imbricata: IUCN tarafından “CR” “Kritik Olarak Tehlike Altında” ilan edilen bir türdür. Atlantik, pasifik ve Hint Okyanuslarının tropikal bölgelerinde bulunurlar. Kabuk boyları 76-91 cm, ağırlıkları yaklaşık olarak 40-60 kg. Kadardır. 2-3 yılda bir yuva yaparlar ve her yuvaya ortalama 160 yumurta bırakırlar. Kuluçka süresi ortalama 60 gündür. Lepidochelys kempii: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Meksika körfezi çevresinde sınırlı olarak bulunurlar. Kabuk boyları 62-70 cm, ağırlıkları 35-45 kg. Kadardır. Her üreme sezonunda 2 kez yuva yaparlar ve her yuvaya ortalama 110 yumurta bırakırlar. Kuluçka süreleri yaklaşık 55 gün kadardır. Lepidochelys olivacea: IUCN tarafından “EN” “Tehlike Altında” ilan edilen bir türdür. Atlantik, Pasifik ve Hint Okyanusunun tropical bölgelerinde dağılım gösterirler. Erginlerde Kabuk boyu 62-70 cm, ağırlıkları 35-45 kg. kadardır. Baş oldukca Küçük, Kabuk karinasız ve plaklar oldukca büyüktür. Sırtta 6 veya daha fazla lateral plak bulunur. Her yıl yumurtlamak için sahillere çıkarlar ve her sezonda 2 defa yuva yaparlar. Her yuvaya ortalama 105 yumurta bırakırlar. Kuluçka süresi 55 gün kadardır. Natator depressus: IUCN tarafından “DD” “Yetersiz Bilgi” olarak ilan edilen bir türdür. Avustralya, Papua Körfezi ve Gine’nin kuzey batı, kuzey ve kuzey doğu bölgelerinde çok kısıtlı oranda bulunur. Kabuk boyları 97 cm., ağırlıkları yaklaşık 80 kg. Kadardır. Her üreme sezonunda 4 defa yuva yaparlar ve her yuvaya yaklaşık olarak 50 yumurta bırakırlar. [Morfolojik özellikler] Deniz kaplumbağalarında türlerin tanımlanması için kabuk ve baş üzerinde yer alan plak diziliş ve sayıları kullanılmaktadır. » Caretta caretta Başta prefrontal plak sayısı 2 çifttir. Ancak zaman zaman bu dört plak arasında fazladan bir plak daha bulunabilir. Oval şekilde olan karapaks arkaya doğru daralma gösterir. Karapaksı örten keratin plakların üst üste binme durumu yoktur. 5 çift kostal plağın ilk çifti nukal plakla temas etmektedir. Genelde 11-12 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. » Chelonia mydas Başta prefrontal plak sayısı 1 çifttir. Karapaks oval şekildedir, karapaksın arkası önüne oranla daha dardır. Karapaksı örten keratin plakların üst üste binme durumu yoktur. Kostal plak sayısı tipik olarak 4 çifttir ve birinci çift nukal plakla temas etmez. Genelde 11 çift marjinal plak ve geride 2 adet suprakaudal plak vardır. İskelet yapıları Deniz kaplumbağaları, omurgalı hayvanlar sınıfına dahil olan türlerdir. Kollar değişime uğrayarak yüzme görevini yerine getirebilecek forma gelmiştir. İskelet Karapaks (Dış kabuk), Plastron (Alt kısım), baş ve kollardan oluşmaktadır. Besinleri Chelonia mydas ve Carretta caretta türü deniz kaplumbağalarının yavruları karnivordurlar, yani etçil olarak beslenirler. Besinlerini deniz kabukluları, deniz anaları ve yumuşakcalar oluşturur. Genç bireylerde beslenme alışkanlıklarında farklılaşma başlar. Caretta caretta türü kaplumbağa genç bireyleri etcil olarak beslenmeye devam ederken Chelonia mydas genç bireyleri otcul olarakta beslenmeye başlar. Ergin bireylerde ise farklı beslenme şekli belirgin bir hal almaktadır. Caretta caretta erginlerinin besinlerini deniz kabukluları, deniz kestaneleri, süngerler, yumuşakcalar ve deniz hıyarları oluştururken, ergin Chelonia mydas’ların besinlerini ise sadece deniz algleri oluşturmaktadır. Üreme biyolojileri Sahile çıkma: Sahile yaklaşan dişi kaplumbağaları zemine basıp dinlenebilecekleri bir yerde başlarını sudan çıkarıp sahili bir süre izlerler. Bu sırada oldukca duyarlıdırlar. Sahilde ya da belli bir uzaklığa kadar sahil gerisinde doğal olmayan görüntü, ses, hareketli nesneler, yapay ışıklar ve en küçük bir tehlike sezinlediklerinde hemen geri denize dönerler. Duraklama esnasında herhangi bir tehlike sezinlememe durumunda dişi kaplumbağalar sahile çıkarlar. İleri doğru harekette baş ve boyun alçaltılır, duraklama sırasında ise baş yukarıya kaldırılarak çevre izlenir. Bazı hallerde dişi, yuva yapmadan sahilde geniş bir bölgede gezinebilir. Bu davranış sırasında dişi kaplumbağa yumurtlayabileceği uygun yer arar. Gövde çukurunun oluşturulması: Uygun yuva yeri seçen dişi kaplumbağa, her dört ayağınıda kullanarak kumda gövdesinden biraz büyük C.caretta türü sığ, C.mydas türü ise tüm gövdesini sığacak şekilde bir çukur oluşturur. Çukur içerisine yerleşerek çevreden daha az farkedilecek bir konuma gelmiş olur. Genelde gövde çukuru hayvanın arka kısmında daha derin bir şekildedir. Yumurta çukurunun oluşturulması: Arka ayakların aşağı doğru kazma hareketleriyle bu dönem başlamış olur. İki ayağın birlikte hareket etmesi sözkonusudur. İlkinde bir dönme hareketi ile kum yumuşatılır, ikincisinde ayak kum içerisine daldırılarak “avuçlama hareketi” ile kum dışarı taşınır ve oluşturulmakta olan yumurtlama çukurunun olabildiğince uzağına savrulur. Yumurta çukurunu kazılmasında arka ayakların uyumlu bir şekilde hareket edebilmesi için gövde arkası sağa sola kaydırılır. Bu sırada ön ayaklar gövdenin ön kısmının sabit kalmasını sağlar. Yumurta çukuru derinleştikce kaplumbağa ön ayakları üzerinde vücudunu yükselterek arka ayakların yuva dibine ulaşabilmesini sağlar. Her bir kazma döngüsü 30-40 saniye zaman alırken ara sıra 10-15 saniyelik dinlenme periyotları gözlemlenir. Arka ayaklar yuva dibine ulaşamaz hale geldiğinde bir süre de yumurta çukurunun zemininin yan taraflarından kum alınarak kazmaya devam edilir ve sonuçta alt kısmı üst açıklığa oranla daha geniş bir yuva kazılmış olur. Yuva kazma süresi C.caretta türü kaplumbağalarda 10-20 dakika, C.mydas türü kaplumbağalarda ise 20-40 dakika kadardır. Yumurta çukuru oluşturan dişi kaplumbağanın yaşına bağlı olarak yuva derinliği farklılıklar gösterebilmektedir. Ancak C.caretta’larda ortalama 40-50 cm C.mydas larda ortalama 60-70 cm kadardır. Yuva ağız çapı ise yaklaşık her iki türdede 20-30 cm kadardır. Yumurtlama: Yumurta çukurunun kazılmasından sonra 15-20 saniye ile birkaç dakika arasında sınırlı olan bir dinlenme süresinden sonra yumurtlama başlar. Yumurtalar tek tek bırakılabildiği gibi 2-4 lü guruplar halinde de bırakılabilir. Bu yumurta bırakmalar arasında 5-30 saniyelik dinlenmeler olmaktadır. Yumurtalma süresi C.caretta türlerinde C.mydas türlerine oranla daha kısa olmaktadır. Yumurtlama başlayana kadar çevreye çok duyarlı olan dişi kaplumbağalar yumurtlama başladıktan sonra çevreden etkilenme eşiği giderek yükselir, yani çeşitli ürkütücü faktörlerden artık etkilenmez olur. Bu durum tüm yumurtalar bırakılıncaya kadar sürer. Yumurta çukurunun kapatılması: Yumurtlamasını bitiren dişi kaplumbağa bir süre dinlendikten sonra arka ayaklarını kullanarak yumurtaların üzerini örtmeye başlar. 10-15 dakika süren kapatma işleminde gövdesi ile sağa sola doğru hareketler yapan dişi yuva üzerinin iyice kumla örtülmesini sağlar. Yuva kapatma işlemi yaklaşık 5-15 dakika sürer. Gövde çukurunun kapatılması ve yuva yerinin gizlenmesi: Yumurtaların üzeri örtülüp kumun sıkıştırılmasından sonra dişi kaplumbağa yavaş yavaş öne doğru ilerlerken ön ayakları ile arkaya kum atmaya başlar. Bu hareketler sonucunda geride kalan gövde çukuru kum ile doldurulur. Bu önden kazıp arkaya doldurma hareketi, gövde çukurunun öne doğru taşınmasına, asıl çukurun ise örtülüp gizlenmesine yol açar. Yüzeysel yapılacak olan bir inceleme ile yuvanın nereye kazılmış olduğunu anlamak oldukca zordur. Yuvanın örtülmesi ve gizlenmesi yaklaşık olarak 10-30 dakikalık bir süreyi gerektirmektedir. Denize dönüş: Yumurtlamasını tamamlayan deniz kaplumbağası ortalama 15 gün sonra birkez daha yumurtlamak üzere denize doğru yol almaya başlar.

http://www.biyologlar.com/caretta-caretta-deniz-kaplumbagalari-morfolojik-ozellikleri

Balıklarda Üreme

Balıkların üreme organları genellikle gonadlar olup, bunlar dişide ovaryum, erkekte ise testis adını alırlar. Ovaryumlar (dişi üreme organları) genellikle bir çifttir. Büyüklük ve ağırlıkları türlere göre değişmekle beraber, olgun oldukları zaman balık ağırlığının % 25’i kadar olabilirler. Genellikle üreme mevsimi yaklaşmış ergin bir balıkta ovaryumlar açık sarı veya kahverengimsi bir renk alır, daneli bir görünüş kazanır ve yüzeyinde bol miktarda kılcal kan damarları bulunur. Ovaryumda gelişen yumurtalar genellikle oviduct (yumurta kanalı) denilen bir boru ile vücut dışına atılırlarsa da bazı balıklarda (örneğin, Anguillidae ve Salmonidae familyalarında ve Cyclostomata grubunda) yumurta kanalı tamamen körelmiş olup, yumurtalar ve spermler sadece bir delikle dışarı atılabilirler. Testisler ise erkek üreme organları olup, genellikle bütün tatlı su balıklarında çifttir. Büyüklükleri üreme mevsimiyle ilgili olarak çok değişir. Ergin haldeki bir balıkta, üreme mevsiminde testislerin rengi beyazımsı olur, lekesiz düz bir görünüş arz eder ve üzerinde kılcal kan damarları da görülmez. Ağırlıkları da ovaryuma nazaran daha az olup, ergin halde iken en çok vücut ağırlığının %12’si kadar olabilirler. Tatlısu balıklarının çoğu ovipar (yumurta ile çoğalan) karakterli oldukları halde, bazılarında (Gambusia affinis) ovovivipar bir durum görülmektedir. Ovipar olanlarda döllenme haricidir. Yani dişinin ve erkeğin suya bıraktığı yumurta ve spermler su içerisinde döllenirler, bunun için de böyle formlarda çiftleşme organları gelişmemiştir. Balıklarda spermler çeşitli şekillerde olabilirlerse de genel yapıları diğer omurgalılarınkine çok benzer. Nadir bir olay olmakla beraber, Gambusia cinsinde döllenme dahili olduğundan, özellikle erkek bireylerinde, çiftleşme organı olarak anal yüzgeç modifiye olmuştur ve adeta yüzgecin bir kısmı penis görevi yapmaktadır. Gambusia’da görülen bu yarı doğurma hali, hiçbir zaman memelilerdeki doğurmaya benzemez. Zira memelilerde yavru, ana rahmindeki gelişimi esnasında plasenta denilen bir göbek bağı ile annenin dolaşım sistemine doğrudan bağlanmış olup, beslenmesi anadan gelen kan içindeki besinler ile olur. Halbuki Gambusia’da plasenta mevcut değildir. İç döllenme ile meydana gelen zigot, yumurtanın vitellüs maddesi ile beslenir. Fakat yumurtanın açılması, embriyonun açılması, balığın vücudu içerisinde olduğu için, yavrular kloak boşluğundan dışarı atılırlar. Bu nedenedir ki, Gambusia’da görülen üreme tarzına viviparlık değil fakat ovoviviparlık diyebiliriz. Genellike bir çift bez halinde olan ovaryumlar, granüllü bir görüntüde olup, hava kesesi bulunan balıklarda bu keseye yapışık vaziyette yer alırlar. Yumurtlama mevsimi yaklaştığında ovaryumların büyüklüğü giderek artar ve visceral boşluğu doldururlar. Olgunlaşmış olan yumurtalar gözle ayırt edilebilecek kadar birbirlerinden ayrılmış olurlar. Yumurtanın büyüklüğü tiplere göre çok değişik olup, balığın büyüklüğü ile ilgili değildir. Bununla beraber, yumurta büyüklüğü yumurta sayısı ile alakalı olup yumurta ne kadar küçük ise sayısı o nisbette fazla olur. Örneğin Dere Kayası olarak bilinen Çöpçü balığı, Nemacheilus yumurtalarının büyüklüğü, Cyprinus carpio gibi çok iri vücutlu balıklarınkinden bile büyüktür. Döllenmesi harici olan balıklarda, döllenmiş yumurtanın gelişmesi su içinde ve bırakıldığı yerde gerçekleşir. Embriyonik gelişim sırasında genellikle şeffaf olan yumurtanın içindeki yavrular, dışarıdan rahatlıkla izlenebilirler. Yumurta sayısı da balık türüne göre oldukça değişmektedir. Örneğin, tatlı su formlarından acı balık (Rhodeus)’ta yumurta sayısı 40-100 arasında iken, bir Mersin Balığı olan Acipenser sturio’da bir defada 3 milyondan fazla ymurta bırakılmaktadır. Balıkların bu kadar fazla yumurta bırakmaları kendi nesillerinin sürdürülmesi için gereklidir. Zira dişi balığın bıraktığı yumurtaların büyük bir kısmı diğer karnivor hayvanlar tarafından yenilir, bir kısmı da suların içinde döllenmeyerek çürüyüp kaybolur. Hal böyle olunca, bırakılan yumurtanın durumuna göre % 60-70’i telef olur, ancak %30 kadarı açılarak yavruları meydana getirir. Yumurtadan yeni çıkmış yavrular vitellüs keselerini absorbe etmeden önce, oldukça pasif davranışlı ve kendilerini korumaktan aciz olduklarından bu safhada iken de büyük bir kısmı diğer yırtıcılara yem olmaktan kendilerini kurtaramazlar. Ancak %10-20 civarında yeni neslin ebeveynlere ilavesi mümkün olur. Yukarıda verilen değerlerden de anlaşılacağı gibi bırakılan her bir yumurtanın yavru verebilmesi, dolayısıyla ebeveynlerin yaşamlarını sürdürebilme oranı oldukça düşüktür. Bu nedenledir ki balıkların yumurta ve sperm verimleri diğer hayvanlara nazaran çok daha fazla olmaktadır. Zira birkaç cins hariç (Gobius, Gambusia), balıklarda döllenme haricidir. Bu sebepten balıkların meydana gelmesinden evvel, yumurta ve yavru balıkların telef olma sebepleri dikkate alınacak boyuttadır. Bir türün yumurtaları ne kadar çok döllenir ve açılırsa kuşkusuz o nispette yavru balık gelişir. Bunların da gelişerek ergin boya ulaşabilmeleri ve düşmanlarının az olması için çevre şartlarının uygun olması söz konusudur. Balıklar yumurtalarını genellikle ya dişi tarafından hazırlanan bir yuvaya veya sadece çukur bir zemin üzerine veya su yosunları ve köklü su bitkileri üzerine veyahut da çıplak taşlar üzerine bırakırlar. Tatlı su balıklarının çoğu, yumurtlamak için daima az derin suları tercih ederler. Yumurtlama yerleri ya hızlı akıntılı taşlık bir zon olabilir (Lampiridler, Salmonidler, Barbuslar, Aspiuslar, Chondrostomlar, Phoxinuslar vb.) yahut da vejetasyonca zengin durgun bir su olabilir (Cyprinus, Abramis, Cobitidler, Percidler vb.) Tatlı su balıklarında olgunlaşan yumurtaların tümü bazı türlerde bir defada bırakılırken (Esox, Perca ve Rutilus’ta ); diğerlerinde birkaç gün aralıklarla iki veya daha çok defada bırakılırlar (Tinca, Cyprinus, Alburnus, Blicca, Leuciscus vb.) Çok zaman şeffaf ve biraz da vizkoz karakterli olan balık yumurtaları şayet sudan daha ağır iseler, mukus maddesi sayesinde taşlar veya bitkiler üzerine yapıştırırlar. Bazı formlarda ise (Alosa ve Lota gibi) tamamen serbest ve hafif olan yumurtalar, açılıncaya kadar su üzerinde yüzerler, bu nedenlerle balıkların bıraktıkları yumurtalar genel olarak 5 grup altında toplanabilirler. 1- Yüzücü yumurtalar 2- Yarı yüzücü yumurtalar 3- Hafif ve yapışkan olan yumurtalar 4- Ağır fakat yapışkan olan yumurtalar 5- Ağır fakat yapışkan olmayan yumurtalar Balıkların çoğu yumurtalarını gelişi güzel suyun içine bıraktıkları halde bazı formlar yumurtalarının başka balıklar ve diğer su hayvanları tarafından yenmelerini önlemek amacıyla özel olarak yaptıkları yuvalara bırakırlar. Balık yuvaları ya hayvanın tercih ettiği bir barınaktan ibaret olabilir veyahut da Dikence balığında (Gasterosteus aculeatus) olduğu gibi yosun ve bitki kırıntıları ile kendilerine özgü yuva kurarlar. Hakiki yuva kurma içgüdüsü olan bu balıkların büyük bir gayretle kurdukları yuvaya dişi tarafından bırakılan yumurtalar, erkek balık tarafından yavrular çıkıncaya kadar (yaklaşık 15 gün) dikkatlice korunurlar. Erkek bu bekçiliği esnasında yuvanın içindeki suyu sirkülasyon yaptırmak amacıyla yüzgeçlerini de devamlı olarak hareket ettirir. Buna benzer şekilde yumurtaların erkek bireyler tarafından korunma içgüdüsü Gobiidae ve Cichlidae temsilcilerinde de vardır. Diğer taraftan acı balık (Rhodeus) cinsinde az sayıda olan yumurtaların açılıncaya kadar emniyet altında bulundurulmaları için tedbir alınmaktadır. Şöyle ki dişi balık olgunlaşan yumurtalarını uzunca bir ovipozitörü sayesinde bir tatlı su midyesi olan Anadonta ve Unio’ların solungaç-manto boşluğu arasına bırakırlar. Çok az miktarda albümine karşı bol miktarda vitellüs içeren ve etrafı ince ve şeffaf bir zarla çevrili bulunan balık yumurtaları çeşitli şekillerde ve değişik ortamlarda suya bırakılmalarını müteakip erkeğin aynı suya bıraktığı çok daha fazla sayıda sperm hücreleri tarafından döllenirler. Kısa bir süre sonra (5-10 dak.) döllenen yumurtalar üzerinde döllenme lekesi adı verilen küçük bir iz büyümeye başlar ve bu kısım bir müddet sonra daha da ilerlemiş bir değişmenin merkezi haline gelir. Bu gelişmeyi zarın şeffaflığı nedeniyle çıplak gözle dahi takip etmek mümkündür. Yumurtalarını döken balıklar genellikle gıda almak üzere avlanmazlar, çünkü yumurtalarını döktükten sonra halsiz, bitkin bir duruma düşerler. Hatta bazı türlerde bu haldeki balıklara hasta balık nazarıyla bakılır. Örneğin Onchorhynchus adı verilen pasifik alası denizden tatlı su göllerine yumurta bırakmak üzere göç ettikleri zaman yuurtalarını orada döktükten sonra sahile çekilip ölürler. Bu meyanda yılan balıkları da Meksika körfezinde bin metre derinliğe yumurta bıraktıktan sonra ölüme giderler. Kuşkusuz bu özellik tüm balıklarla ilgili olmayıp, istisnai bir durumdur. Balıklarda kuluçka süresi türden türe çok değişik olur. Bu süre genellikle suyun sıcaklığı ile çok yakından ilgili olup, suyun ısınmasıyla (belli sınırları aşmamak şartıyla) ters orantılıdır. Bu nedenledir ki suyun ısısını yükseltmek veya düşürmekle kuluçka müddetini kısaltmak veya uzatmak da mümkündür. Örneğin Salmo trutta’nın kuluçka süresi 5ºC de 82 gün iken 10ºC de 41 güne indirilebilmektedir. Demek oluyor ki döllenmiş olan yumurtaların açılabilmesi kuluçka süresince alacağı toplam ısı miktarına bağlıdır. Bu da Derece/gün orantısı olarak ifade edilmektedir. Örneğin bu değer alabalık için 410 ºC/gün olduğu halde, sazan balığı için 100 ºC/gün olarak hesap edilmiştir. Buna göre 20ºC de bırakılan sazan yumurtalarının kuluçka süresi 100/20 5 gün olacaktır. Yavru balıklar embriyonik gelişmeleri esnasında vitellüs kesesi içindeki besin maddesiyle beslenirler ve yumurtadan çıktıkları zaman da bu kesenin bir kısmını yine karınlarında taşırlar. Bu kese onlara doğumdan sonra bir müddet daha besleyici besin maddesi temin etme bakımından önemlidir. Belirli bir süre sonra bu kese kendi kendine absorbe edilerek kaybolur gider. Bu absorbsiyon müddeti balıklar için türlere göre değişmekte olup, sazanlar için 20 gün, alabalıklar için ise 40-50 gün devam eder, hatta deniz alası için (Salmo salar) bu süre daha da fazla olup, 70-120 gün kadardır. Vitellüs kesesinin absorbsiyonu tamamlandıktan sonra küçük yavrular kendi besinlerini kendileri aramaya başlarlar. Bu çağdaki balıklar özellikle su içinde bol miktarda bulunan bitkisel ve hayvansal planktonik organizmalarla beslenirler. Yumurtadan çıkmış yeni bir balık yavrusu aşağı yukarı yumurta çapının üç katı boyundadır ve türe göre değişen pasiflik devresini geçirdikten sonra (şayet hava kesesi bulunan bir balığın yavrusu ise) hava keselerini doldurmak için suyun yüzeyini doğru tırmanırlar. Balık yavruları gelişme esnasında genellikle büyük değişmelere uğramazlar (yılan balıkları, dil balıkları ve lampiridler hariç). Bu nedenle balık yavrularına larva demek pek doğru olmaz. Zira besin keseleri hariç şekil itibariyle tamamen ebeveynlerine benzerler. Fakat yukarıda da belirttiğimiz gibi Yılan balıkları (Anguilla anguilla) ile Lamprilerin (Lampetra fluviatilis) Leptocephalus adı verilen yavruları aşağı yukarı 3 yaşına kadar ebeveynlerinden çok farklı olan hakiki bir larva safhası geçirirler. Diğer taraftan bir tatlı su pisi balığı olan Pleuronectes flesus türünde ise yavrular başlangıçta bilateral simetri iken uzun bir gelişmeden sonra ebeveynlerde görülen asimetrik durum ortaya çıkar. Bundan dolayı yumurtadan çıktıktan sonra belli bie metamorfoz geçirerek ebeveynlerine benzeyen bu balıkların genç formları için larva tabiri kullanmak zorunlu olmaktadır. Aşağıda tatlısularımızda yaşayan bazı balık türlerinin üreme periyotları gösterimiştir. Latince İsmi Türkçe İsmi Üreme Periyotları Alburnus escherichi (Tatlı su sardalyası) Nisan-Mayıs Acipenser sturio (Mersin balığı) Mayıs-Temmuz Anguilla anguilla (Yılan balığı) Şubat-Nisan Abramis brama (Çiçek balığı) Mayıs-Haziran Vimba vimba (Aptalca balığı) Mart-Temmuz Barbus plebejus lacerta (Bıyıklı balık) Mart-Temmuz Carassius carassius (Sarı havuz balığı) Mayıs-Temmuz Carassius auratus (Kırmızı havuz balığı) Mayıs-Temmuz Chondrostoma nasus (Kababurun balığı) Nisan- Mayıs Cobitis taenia (Taş yiyen) Nisan-Mayıs Cyprinus carpio (Sazan balığı) Mayıs-Ağustos Esox lucius (Turna balığı) Şubat-Mart Gobio gobio (Dere kayası) Nisan-Temmuz Leuciscus cephalus (Tatlı su kefali) Nisan-Haziran Nemacheilus angorae (Çöpçü balığı) Nisan-Mayıs Perca fluviatilis (Tatlısu levreği) Şubat-Haziran Rutilus rutilus (Kızılgöz balığı) Nisan-Mayıs Phoximus phoximus (Ot balığı) Nisan-Temmuz Salmo trutta macrostigma (Dere alası) Kasım-Ocak Scardinius erythrophtalmus (Kızılkanat) Nisan-Ağustos Silurus glanis (Yayın balığı) Haziran-Ağustos Blicca björkna (Tahta balığı) Mayıs-Haziran Rhodeus cericeus amarus (Acı balık) Mart-Ağustos Tinca tinca (Yeşil sazan) Mayıs-Haziran Aspius aspius (Kurt balığı) Nisan-Mayıs

http://www.biyologlar.com/baliklarda-ureme

Kuşlar neden göç ederler?

Bu sorun, hala ornitolojide en zorlu sorulardan birisi. Genellikle kuş göçleri üreme ve üreme dışı dönemlerin aynı bölgede geçirilmesinin avantajlı ya da mümkün olmadığı durumlarda görülür. Ancak, bazen daha yakında elverişli kışlama alanları varken türün neden binlerce kilometre öteye göç ettiğini açıklamak her zaman kolay değil. Göç, olanca risklerine karşın hala vazgeçilmediğine göre kuşlara hatırı sayılır yararlar sağlıyor olmalı. Uzun göç yolculuğu, tamamlamak için harcanan enerjinin yanısıra yorgunluk, kaybolma, yırtıcılara yem olma gibi riskleri nedeniyle tehlikeli bir girişim. Kuzey Yarımküre'den güneye göçen küçük kuşların yarısından fazlası asla geri dönmüyor. Örneğin diğer akrabalarının aksine çok daha geç, Ağustos ayında yuva yapan Ada Doğanı (Falco eleonorae) bu gibi küçük göçmenlerle beslenerek yaşamak için evrilmiş bir yırtıcı. Buna, insanoğlunun ve olumsuz hava koşullarının etkilerini eklersek göç ve kışlama sırasında ölüm oranının yüksekliği bizi şaşırtmamalı. Kuşların, kış aylarının olumsuz çevre koşullarından güneye kaçmaları kolay anlaşılsa da belki de daha ilginç bir soru neden uygun koşullar tropikal bölgelerde yıl boyu hüküm sürdüğü halde tekrar kuzeye döndükleri. Burada önemli nokta, her ne kadar kış boyunca düşmanca koşullar hüküm sürse de, kuzey enlemlerinde ilkbahar ve yaz ayları boyunca üremek için tropikal bölgelere göre daha uygun özelliklerin bulunması. Tropikal enlemlerde gece-gündüz uzunluğu neredeyse sabit olduğu halde, ilkbahar ve yaz boyunca kuzey enlemlerinde gündüzler gecelerden belirgin derecede uzun. Diğer taraftan ılıman ve tropikal bölgelerde yerli kuş populasyonlarının yoğunluğu özellikle üreme sırasında yüksek rekabet oluştururken, daha az türe sahip sahip kuzey enlemlerinde bu rekabet daha düşük. Bu bakış açısına göre, kuzey enlemlerdeki çoğu göçmen kuş türleri (kuzeyin zorlu kışından kaçıp tropik bölgeye tahammül eden ılıman kökenli kuşlar değil) kuzeydeki geçici yaz bolluğundan faydalanan tropikal kökenli kuşlardır. Aynı türün farklı coğrafyalarda yaşayan toplulukları göç davranışını sonradan kazanabilir ya da kaybedebilirler. Örneğin Küçük İskete (Serinus serinus) son yüzyıl içinde Akdeniz havzasından kuzeye, Avrupa'ya yayıldı. Atasal Akdeniz toplulukları yerliyken, yeni kuzey populasyonları artık göçmen oldular. Tam tersi bir gelişme, Güney Afrika'da kışlayan Kara Leylek (Ciconia nigra) ve Arıkuşu (Merops apiaster) gibi bazı göçmen türlerin bir kısmının artık orada üreyen yerli türlere dönüşmeleri. Genel olarak, tropikal bölgeye göç eden kuşlar geride ılıman bölgede kalanlara göre kışı daha iyi atlatırken, geride kalan yerli türler üreme açısından göçmenlerden daha başarılı olurlar. Tropikal bölgedeki yerli türler ise uzun yaşamayı düşük üremeye feda ederler. Kurdukları yuvaların pek azı başarılıdır, yavru sayıları düşüktür ve her çift yılda birçok kere üremeyi dener, ama erginler uzun ömürlüdürler. Göç, yerel koşullar yakındaki yörelere fırsatçı hareketleri teşvik ettiği durumlarda evrilir. Populasyonun sadece bir kısmında başlayan bu davranış eğer avantajlı ise, bir süre sonra göç etmeyen toplulukların yeryüzünden silinmesi sonucunda o türün tüm bireyleri için bir kural haline gelir. Farklı göç şekilleri Farklı türlerin kışlama ve üreme alanları arasında izledikleri rota ya da kışlama alanlarında yerleşme şekilleri değişik göç şekilleri oluşturuyor. En belirgin farklılıklardan biri süzülen kuşlarla, kanat çırpan aktif uçucular arasında. Uçabilmek için termallere bağımlı süzülen kuşlar, geniş su kitlelerini aşamadıklarından kıyı kenarını izleyerek gündüzleri uçarlar ve denizleri karaların birbirlerine en çok yaklaştıkları bölgelerden geçerler. Diğer taraftan pek çok ötücü kuş, yağmurcun ve su kuşu yer şekillerine bağlı kalmaksızın geniş bir cephe şeklinde geceleri göç ederler. Bazı durumlarda ilkbahar ve sonbahardaki göç rotası aynı olmaz. Örneğin, Sibirya’da üreyen Kara Gerdanlı Dalgıç (Gavia arctica) toplulukları sonbaharda doğrudan bir uçuşla Karadeniz’e iner, ancak ilkbaharda aynı rotadan geri dönmek yerine önce batıya Baltık Denizi’ne, sonra doğuya uçar. Havalanabilmek için donmamış su yüzeyine gerek duyan dalgıçların, buzu geç çözülen gölleri ilkbaharda kullanamaması nedeniyle bu tip bir göçün ("halka göç") daha avantajlı olduğu sanılıyor. Pek çok ötücü kuş türünde erkek bireyler, dişilere göre daha kısa mesafe göç eder. Bu durumun, erkeklerin ilkbaharda en iyi üreme alanlarını ele geçirmek için giriştikleri yoğun rekabetin sonucu olduğu sanılıyor. Yine muhtemelen aynı nedenden dolayı sonbahar göçü neredeyse aylar süren bir sürede gerçekleştiği halde, ilkbahar göçü çok daha dar bir zaman aralığında gerçekleşir. Süper yakıt: İçyağı Göç eden kuşların büyük çoğunluğu bir seferde uzun mesafeleri aşabilmek için deri altında yağ depolar. Yağ parçalandığında, aynı miktarda karbonhidrat veya proteinle karşılaştırılırsa onların iki katı enerji ve su üretir. Biriktirilen yağ, bazen vücut ağırlığının iki katına çıkmasına neden olabilir. Bu denli çok yağın kısa sürede biriktirilebilmesi için uygun metabolik ve davranışsal değişiklikliklerin oluşması gerekiyor. Bu değişiklikler arasında aşırı yeme (hiperfagi), metabolizmalarının nitelik değiştirmesi, iç organların bazılarının küçülmesi sayılabilir. Yağ, normal zamanlarda küçük kuşların vücutlarının %3 ila %5'ine karşılık gelir. Oysa göç sırasında bu değer %25'e, bazı kıyı kuşlarında % 45'e ulaşabiliyor. Ötücü kuşlar tipik olarak bir seferinde birkaç yüz kilometre uçtuktan sonra 1 ila 3, bazı durumlarda daha da uzun süre dinlenip azalan rezervlerini yeniden tamamlarlar. Uzun mesafeler kateden kıyıkuşları da göçlerini üç veya dört ayakta gerçekleştirirler. Her yolculuk ayağı sırasında dinlendikleri bu mola noktaları birçok tür için yaşamsal önem taşır. Yapılan araştırmalar, küçük kuşların bir saatlik bir uçuş sırasında vücut ağırlıklarının yaklaşık %1'ini kaybettiklerini göstermiş. Ünlü göç araştırmacısı Peter Berthold, ağırlığının %40'ı yağ olan bir göçmen kuşun 100 saat boyunca durmadan uçabileceğini ve bu süre zarfında 2500 km. yol katedeceğini hesaplamış. Yakıtı tasarruflu kullanma açısından hiçbir insan yapısı motor kuşların metabolizmasıyla baş edemez!

http://www.biyologlar.com/kuslar-neden-goc-ederler

Biyologlar Hakkında Kanun Teklifi Maddelerinin Gerekçeleri

BİRİNCİ KISIM BİRİNCİ BÖLÜM Amaç,Kapsam ve Tanımlar MADDE 1- Bu madde ile bu kanunun amacı Biyologların yetki ve sorumluluklarının belirlenmesi ve Biyolog Odaları ile Türkiye Biyologlar Birliğinin kurulması,işleyişi ve faaliyetlerine ilişkin esas ve usuller belirtilmiştir. MADDE 2- Bu madde ile kamu ve özel kurum ve kuruluşlarında çalışan biyologlar ile gerçek ve tüzel kişileri kapsadığı belirtilmiştir. MADDE 3- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir. İKİNCİ BÖLÜM Biyolog Unvanının Kazanılması, Görev, Yetki ve Sorumluluklar MADDE 4- Biyologların mesleki görevlerini düzenli, sürekli, verimli bir şekilde yürütebilmeleri için görev yetki ve sorumluluklarının belirlenmesi amaçlanmıştır. Ayrıca Türkiye'de mevcut Fen ve Fen-Edebiyat Fakültelerinin ve ayrıca Eğitim Fakültelerinin de biyoloji bölümlerinden değişik lisanslarla lisans diploması verilmesi kavram kargaşası yaratmaktadır. Bu nedenle bu meslek grubunun tarifine ihtiyaç duyulmuştur. MADDE 5- Biyologların çalışma alanları ve bu alanlarda neler yapabilecekleri genel olarak belirlenmesi amaçlanmıştır. Ayrıca resmi kurum ve kuruluşlarda çalışan biyologların mesai saatleri dışında da mesleklerini serbestçe yapabilmeleri amaçlanmıştır. MADDE 6- Biyologların yetkili olarak çalıştıkları alanların tarifi amaçlanmıştır. MADDE 7- Değişik hizmet sektörlerinde çalışan biyologların çalışma alanlarına göre yetki ve sorumluluklarının tek tek belirlenmesi amaçlanmıştır. MADDE 8- Özellik arz eden birim ve alanlarda çalışacak olan biyologların yeterlilik belgesi almalarının gerektiğini açıklamak için düzenlenmiştir. MADDE 9- Biyologların sahip oldukları belgelerle çalışabilecekleri alanlar tarif edilmiştir. MADDE 10- Biyologlara kanun ve yönetmeliklerde verilmemiş görev ve sorumluluklar ile başka adlar altıda çalıştırılamayacakları ifadede edilmek istenmiştir. ÜÇÜNCÜ BÖLÜM Meslekte Yeterlilik, Danışma Kurulu MADDE 11- Biyolog unvanını kullanan kişiler, gelişen bilim, teknoloji,yeni uygulamalar ve ülkenin gereksinimleri doğrultusunda mesleki bilgi ve becerilerini ilgili bakanlıkların,meslek birliklerinin, üniversite ve diğer ilgili kurum ve kuruluşların birlikte belirliyecekleri esaslar çerçevesinde sürekli geliştirmekle yükümlüdürler. Bu konu çeşitli eğitim düzeylerinden mezun olan biyologlar açısından da çok önemlidir. Biyologların eksik ve yanlış uygulamalarının önüne geçilebilmesi amacıyla bu madde düzenlenmiştir. MADDE 12- Avrupa Birliği Konseyi kararları doğrultusunda Biyolog eğitim seviyesinin yükseltilmesi,verilen hizmetlerin kalitesinin artırılması için çalışmalar yapmak, önerilerde bulunmak, mesleki alanda Ülke içinde ve uluslararası kurum ve kuruluşlar arasında mesleki bilgi alışverişinde bulunabilmek için bu madde düzenlenmiştir DÖRDÜNCÜ BÖLÜM Serbest Çalışma MADDE 13- Mesleğin serbestçe yapılabilmesi için gerekli koşulların sağlanması amacıyla bu madde düzenlenmiştir. Biyologların lisans ve uzmanlık alanlarına göre çalışma alanlarına açabilecekleri işyerleri ve alabilecekleri sorumluluklara açıklık getirilmek istenmiştir. BEŞİNCİ BÖLÜM Çeşitli Hükümler MADDE 14- Diğer meslek gruplarının haklarının korunması amaçlanmıştır. MADDE 15- Biyologların çalışma alanlarında halen çalışmakta olanların haklarının korunması amaçlanmıştır. MADDE 16- Biyolog mesleğinin ve unvanının yanlış kişiler tarafından kullanılmasının önlenmesi amaçlanmıştır. MADDE 17- Mesleki yetkilerin, hangi durumlarda kullanılmayacağı açıklanmaya çalışılmıştır. MADDE 18- Hazırlanması gereken yönetmelik ve tüzükler için düzenlenmiş bir maddedir MADDE 19 ve MADDE 20 yürürlük maddeleridir İKİNCİ KISIM Türkiye Biyologlar Birliği Kanunu Amaç ve Kapsam MADDE 1- Türkiye sınırları içinde meslek ve sanatlarını kullanmaya yetkili olan biyologların üye olmak zorunda oldukları Biyolog Odaları ile Türkiye Biyologlar Birliğinin nitelik, amaçlarının ve kapsamlarının neler olduğu açıklanmak istenmiştir. MADDE 2- Bu madde ile bu kanunda geçen Biyolog, Bakanlık,Oda ve Birlik deyimlerinin ne ifade ettiği belirtilmiştir BİRİNCİ BÖLÜM Odalar MADDE 3- Biyologların üye olacakları Biyolog Odaların tanımı amaçlanmıştır. MADDE 4-Bu madde ile odaların kuruluş usulleri,temsilciliklerin açılışına ilişkin hükümler düzenlenmiştir. MADDE 5- Bu madde ile Oda organlarının neler olduğu belirtilmiştir. MADDE 6- Bu madde ile Oda Genel Kurulunun oluşumu düzenlenmiştir. MADDE 7- Bu madde ile Oda Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 8- Bu madde ile Oda Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 9- Bu madde ile Oda Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 10- Bu madde ile Oda Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 11- Bu madde ile Oda Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 12- Bu madde ile Oda Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 13- Bu madde ile Oda Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 14- Bu madde ile Oda Disiplin Kurulunun görev ,toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 15- Bu madde ile Oda Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 16- Bu madde ile Oda Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 17- Bu madde ile Biyologların mesleklerini icra edebilmek için Biyolog Odalarına kayıt olma zorunluluğu açıklamak amacıyla düzenlenmiştir. MADDE 18- Bu madde ile odaların çalışmalarının sürdürebilmek için edinecekleri gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. İKİNCİ BÖLÜM Türkiye Biyologlar Birliği MADDE 19- Bu madde ile Türkiye Biyologlar Birliğinin kuruluşu, amaçları ve nitelikleri açıklanmaya çalışılmıştır. MADDE 20- Bu madde ile Birliğin organları tarif edilmiştir. MADDE 21- Bu madde ile Birliğin Kurulunun oluşumu düzenlenmiştir. MADDE 22- Bu madde ile Birlik Genel Kurulunun görev,yetki ve sorumlulukları düzenlenmiştir. MADDE 23- Bu madde ile Birlik Genel Kurulunun olağan,olağan üstü toplantıları ile toplantı yeter sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 24- Bu madde ile Birlik Yönetim Kurulunun üç yıllık dönem için seçilen asıl ve yedek üyelerinin sayısına ilişkin esas ve usuller düzenlenmiştir. MADDE 25- Bu madde ile Birlik Yönetim Kurulunun görev paylaşımının nasıl olacağı ve Odanın kimler tarafından temsil edileceğine ilişkin usuller düzenlenmiştir. MADDE 26- Bu madde ile Birlik Yönetim Kurulunun görev ve yetkileri ayrıntılı olarak düzenlenmiştir. MADDE 27- Bu madde ile Birlik Yönetim Kurulunun hangi zaman aralıklarında ve nerede toplanacağına, kararların nasıl alınacağına açıklık getirilmek istenmiştir. MADDE 28- Bu madde ile Birlik Disiplin Kurulunun teşkili,seçileceklerde aranan özellikler ve görev paylaşımına açıklık getirmek istenmiştir. MADDE 29- Bu madde ile Birlik Disiplin Kurulunun görev, toplantıları ve yetkileri ile soruşturmalarda taraf olanların görevlendirilemeyeceğine açıklık getirilmek istenmiştir. MADDE 30- Bu madde ile Birlik Denetleme Kurulunun teşkiline açıklık getirmek istenmiştir. MADDE 31- Bu madde ile Birlik Denetleme Kurulunun görev ,toplantıları ve yetkilerine açıklık getirilmek istenmiştir. MADDE 32- Bu madde ile Birliğin çalışmalarının sürdürebilmek için edinebileceği gelirlere açıklık getirebilmek amacıyla düzenlenmiştir. ÜÇÜNCÜ KISIM Ortak Hükümler BİRİNCİ BÖLÜM MADDE 33- Bu madde ile Oda ve Birlik organlarına seçilebilme yeterliliği için gerekli düzenlemeler açıklanmaya çalışılmıştır. Bu madde düzenlenirken 765 sayılı Türk Ceza Kanunundan istifade edilmiştir. MADDE 34- Bu madde ile Odalar ve Birliğin organlarının seçiminde yargı gözetimi,gizli oy açık tasnif esaslarının uygulanacağı,genel kurul toplantılarına katılacakların listesinin İlçe Seçim Kurulu Başkanlığına verilişine ilişkin usul ve esaslar ile listelere yapılacak itirazların incelenmesine ilişkin esas ve usuller düzenlenmeye çalışılmıştır. MADDE 35- Bu madde ile Odalar ve Birlik organlarının denetimin Başbakanlıkça hazırlanacak yönetmelikler doğrultusunda yapılacağı anlatılmıştır. MADDE 36- Bu madde ile uluslar arası toplantılara katılımın koşulları düzenlenmiştir. MADDE 37- Bu madde ile Oda ve Birlik organlarının seçim dönemleri düzenlenmiştir. İKİNCİ BÖLÜM Çeşitli Hükümler MADDE 38- Biyologluk mesleği üzerine yaptığı çalışma ve yayımladığı eserler dolayısıyla onur üyeliği verilecek olanlara ilişkin olarak bu madde düzenlenmiştir. MADDE 39- Bu madde ile Oda ve Birlik toplantılara katılma oy kullanma zorunluluğu düzenlenmiştir. MADDE 40- Bu madde ile Biyologların açtıkları laboratuarlarda yapılacak tahlil ücretlerinin düzenlenmesi amaçlanmıştır. MADDE 41 Bu madde Oda ve Birlik organlarında görev alacaklara verilecek olan ödeneklerin cins ve miktarının Genel Kurullarca kararlaştırılacağı düzenlenmiştir. MADDE 42- Bu madde ile Biyologların ikinci görev yasağı ve bildirim için yönetim kurullarının yetki ve sorumlulukları düzenlenmeye çalışılmıştır. MADDE 43- Biyologların kayıtlı bulunduğu odalar tarafından üyeleri için bir sicil dosyası tutulacağı, bu dosyanın özelliği, biyologların nakil, tayin, işten ayrılma ve benzeri değişiklikleri en geç bir ay içinde bulundukları yerin odalarına bildirme zorunluluğu bu madde ile düzenlenmiştir. MADDE 44- Bu madde ile verilecek disiplin cezaları,meslek mensubu hakkında savunma almadan disiplin cezası verilemeyeceği, disiplin cezalarına itirazın usul ve esasları ve cezaların tebliğinin nasıl yapılacağı düzenlenmiştir. ÜÇÜNCÜ BÖLÜM Ceza Hükümleri MADDE 45- Mesleği ile ilgili işlerde simsar kullanmak, simsarlık yapmak ve yetkisi olmadığı halde mesleği icra edenlere verilecek cezalar düzenlenmiştir. MADDE 46- Bu madde ile yasaklara ve bildirim mecburiyetine uymayanlara karşı yaptırımlar düzenlenmeye çalışılmıştır. DÖRDÜNCÜ BÖLÜM Yönetmelik MADDE 47- Bu kanunda çıkarılması öngörülen tüzük ve yönetmeliklerin kanunun yayımı tarihinden itibaren bir yıl içinde çıkarılması bu madde ile düzenlenmiştir. BEŞİNCİ BÖLÜM Kayıt Zorunluluğu MADDE 48- Bu madde ile Serbest çalışan biyologların çalıştıkları bölgede kurulu olan odalara en geç bir içinde üye olmaları düzenlenmiştir. ALTINCI BÖLÜM Geçici Hükümler Geçici Madde 1- Bu kanuna göre seçilmeye engel bir hali olmayan Biyologlardan Oda kurucusu olmak isteyenlerin tabi olacak kurallar düzenlenmiştir. Geçici Madde 2- Bu kanunun kapsadığı diğer biyologlar tarif edilmiştir MADDE 49- Yürürlük maddesidir. MADDE 50- Yürütme maddesidir. Kaynak: www.biyologlarbirligi.org

http://www.biyologlar.com/biyologlar-hakkinda-kanun-teklifi-maddelerinin-gerekceleri

Kromozom nedir

Her canlı gibi insan da trilyonlarca hücreden meydana gelir. Hücre, bitkisel ya da hayvansal her türlü yaşam biçiminin en küçük birimidir. Her hücre bir sitoplazma ve çekirdekten meydana gelir. Çekirdeğin içinde ise kromozom adı verilen ipliksi parçalar bulunur. Kromozomlar, elektron mikroskobunda İ, V, J harfleri gibi biçimlerde görünür ve boyutları mikronla ölçülür. Kromozomların sayısı canlı türleride değişiklik gösterir. Örneğin sirke sineğinde 8, kurbağada 26, farede 42, köpekte 78 kromozom vardır. İnsanın kromozom sayısı ise 46'dır. 22'si çift otozom kromozomdur. İnsan hücresinde 1 çift de eşeysel kromozom bulunur ve toplam sayı 46 eder. Kromozomlar, molekül yapıları çok iyi bilinen DNA (dezoksiribonükleik asit) zinciri ile ‘‘histon’’ denilen protein zincirinden oluşur. DNA zincirleri de özgül proteinleri sentezlemekle görevli ‘‘gen’’ adı verilen birimlerden oluşur. Döllenme sırasında annenin yumurtasındaki 23 kromozom, babanın spermindeki 23 kromozomla birleşir. İşte bu 46 kromozom insanın yaşamında belirleyici rol oynar. Kromozomlarda yer alan ve sayıları 25 bin ile 100 bin arasında olduğu tahmin edilen genlerin oluşturduğu zincir, kişinin göz renginden boyuna, yaşam süresinden yakalanacağı hastalıklara kadar pekçok şeyi programlar. Bu genetik programlar, DNA altünitesi denen (A, T, C, G) kimyasallarıyla programlanır. Bilim adamları özellikle, 21. kromozomun içindeki 14 geni tam bir saatli bomba olarak niteliyorlar. Bu 14 genden birinde meydana gelen en ufak bir arıza Alzheimer, epilepsi, Parkinson veya lösemi hastalığına neden oluyor. Ayrıca halk arasında ‘‘Mongolluk’’ denilen Down sendromu ortaya çıkabiliyor. Her insan hücresinde yaşamın yapı taşları kabul edilen 24 çift kromozom bulunuyor. Gen bilgilerini taşıyan ip biçimindeki kromozomlar uç uca eklenseydi 1.5 metrelik bir kordon oluştururdu. Kromozomların bozuk oluşumu sonucu, insanın yaşamında değişik dönemlerde, çeşitli hastalıklar ortaya çıkıyor. Bilim adamları, hangi kromozomun bozuk olduğunda hangi hastalığa neden olduğunu biliyorlar. 1.kromozom Alzheimer, ağır işitme 2.kromozom Belleğin oluşumuyla ilgili bilgiler 3.kromozom Akciğer kanseri 4.kromozom Çeşitli kalıtımsal hastalıklar 5.kromozom Akne, saç dökülmesi 6.kromozom Diyabet, epilepsi 7.kromozom Kronik akciğer iltihabı, şişmanlık 8.kromozom Erken yaşlanma 9.kromozom Deri kanseri 10.kromozom Bilinmiyor 11.kromozom Diyabet 12.kromozom Metabolizma hastalıkları 13.kromozom Göğüs kanseri, retina kanseri 14.kromozom Alzheimer 15.kromozom Doğuştan beyin özrü 16.kromozom Crohn hastalığı 17.kromozom Göğüs kanseri 18.kromozom Pankreas kanseri 19.kromozom Bilinmiyor 20.kromozom Bilinmiyor 21.kromozom Down sendromu, Alzheimer, Parkinson, lösemi, depresyonlar 22.kromozom Yeni keşfedildi, kemik iliğinin olumuşumu düzenliyor 23.kromozom (Y) Erkeklik cinsiyetini belirliyor, cinsel organların gelişimini düzenliyor 24.kromozom (X) İki adet X kromozomu taşıyan bebek, kız oluyor. Bu kromozomdaki dejenerasyon kas erimesi, cücelik ve gece körlüğüne yol açıyor.

http://www.biyologlar.com/kromozom-nedir-1

Lökositlerin işlevleri

Lökositler (akyuvarlar) vücudumuzu çeşitli mikroplara ve yabancı maddelere karşı savunan ve bağışıklığı sağlayan kan hücreleridir. İşlevlerine göre farklı alt gruplara ayrılırlar. Nötrofil parçalılar (granülositler). Vücudumuza giren  mikropları ve yabancı maddeleri yutarak yok ederler (fagositoz). Kemik iliğinden kana geçen nötrofiller dolaşımda  eritrositler gibi uzun süre kalmazlar, dokulara ya da iltihap bölgelerine geçerler. Dolaşımda kalma süreleri  kısadır (4-6 saat).  Dokularda yuttukları  mikropları sindirdikten sonra  dejenere olur  ve ölürler. Nötrofil sayısı çok azaldığında (nötropeni) , gelişen infeksiyonların bir belirtisi olarak hastalarda yüksek ateş görülür. Eozinofil parçalılar. Eozinofil hücrelerin de nötrofiller gibi bakterileri yutma ve öldürmeyetenekleri vardır. Buna ek olarak özellikle allerji ve bağışıklık olaylarında rol alırlar. Bazofil parçalılar. Bazofiller ve bunların doku şekilleri olan mast hücreleri (mastosit) bazı allerji  (aşırı duyarlık) reaksiyonlarının gelişiminde rol oynarlar. Monositler. Nötrofiller gibi fagositoz yeteneğine sahip hücrelerdir. Ancak çevre kanını nötrofillere göre daha yavaş terkederler (12-24 saat). Dokulara geçtikten sonra makrofaj adı verilen büyük hücrelere dönüşürler. Dokularda aylarca yaşayabilen makrofajlar vücuda yaygın bir şekilde dağılmışlardır (akciğerler, karaciğer, dalak, lenf düğümleri, kemik iliği, vd). Monosit  ve makrofajların çok sayıda önemli işlevleri vardır. Bunların başında   yaşlanmış ya da bozuk kan hücrelerini ortadan kaldırma,  bağışıklık olaylarının gelişmesinde  lenfositlerle sıkı iş birliği içinde bulunma gelir. Lenfositler. Bağışıklık sistemimizin en önemli hücreleri, bir anlamda baş aktörleridir. Dolaşan kandan daha çok lenf düğümleri ve lenf yollarında, dalakta, sindirim, solunum yollarının içini döşeyen zarların altında yoğunlaşmışlardır. Yıllarca ölçülecek denli uzun ömürlüdürler. Lenf, lenf yolları ve lenfositler, ilerde daha ayrıntılı olarak ele alınacaktır. Şimdilik çevre kanında, lenfositlerin yapı ve işlevlerine göre üç gruba ayrıldıklarını söylemekle yetinelim: B lenfositler, T lenfositler ve NK lenfositler (NK: ing. naturel killer: doğal katil hücreler).

http://www.biyologlar.com/lokositlerin-islevleri

Histolojide Kullanılan Özel Yöntemler

Freeze-Fracture-Etch(Dondurup Kırma ve Asitle Eritme)Hücre zarının ve hücrelerarası bağlantıların incelenmesinde kullanılan bir yöntemdir. Esası sıvı nitrojen gibi bir ortamda dokuyu kristalleşme olmadan çabucak dondurduktan sonra vakum altında kırmaktır. Bu kırılma esnasında iki lipid tabakalı hücre membranı ortasındaki hidrofobik yüzlerinden ayrılır. Daha sonra hücre yüzeyleri ince bir metal tabakası ile kaplanır.Organik kısımlar bir asit ile eritilip alınır. Geriye hücrenin yüzey özelliklerini ortaya koyan metal bir kalıbı kalır. Bu da elektron mikroskopta incelenerek hem hücrenin dış yüzeyi hem de protoplazmaya bakan iç yüzeyi üzerinde inceleme olanağı sağlar.4.2. Differential Centrifugation (Ayırıcı Santrifüjleme)Yüksek devirli santrifüj kullanarak hücre elemanlarını grup grup ayırmak prensibine dayanır.Bunun için organ ya da doku parçaları bir homojenizatör içinde ezilip parçalanır. Bu işlem esnasında hücreler parçalanarak organeller ve diğer sitoplazmik içerikleri sıvı içine geçer.Daha sonra değişik hız ve sürede santrifüj edilerek dipte oluşan çökeltiden değişik hücre elemanları elde edilir. En düşük devirde ilk olarak hücrelerin çekirdekleri çöker. Her defasında dipteki sediment alınarak değişik hız ve sürelerin sonunda sırasıyla, mitokondri ve lizozomlar,  sonra mikrozomlar, daha sonra endoplazmik retikulum ve en son olarak ribozomlar elde edilir. Böylece değişik hücre elemanlarının histolojik, biyokimyasal, fizyolojik çalışmaları yapılabilir.

http://www.biyologlar.com/histolojide-kullanilan-ozel-yontemler-1

Serum lipitlerinin kalitatif ve kantitataif tayini

Bol miktarda C, H ve O nin yanı sıra az miktarda P, N gibi elementleri de taşıyan lipidler, suda çözünmeyen ancak eter, kloroform ve aseton gibi nonpolar organik çözücülerde çözünen bir grup organik biyomoleküldür. İnsan plazmasında bulunan başlıca lipidler kolesterol, kolesterol esterleri, triaçilgliseroller, fosfolipidler ve serbest yağ asitleridir. Dolaşımda lipoproteinler şeklinde bulunurlar. Lipoproteinler lipidler ile proteinlerin birleşmesinden meydana gelirler. ( Şilomikronlar, çok düşük yoğunluklu lipoproteinler, düşük yoğunluklu lipoproteinler, yüksek yoğunluklu lipoproteinler ) Serbest yağ asitleri plazmada albuminebağlanarak taşınır.Lipidlerin organizmada bir çok görevi vardır. Bunlardan yapısal eleman oluşu, enerji kaynağı oluşu, enerjinin uzun süreli depo şekli oluşu, vitaminlerin bazıları için çözücü oluşu ve önemli bazı bileşiklere ( safra asitleri, hormonlar vs ) kaynaklık edişleri en önemlileridir.1- 1- Zeytinyağının çözünürlüğü ve çift bağların doyurulması deneyi : Gliserol vedoymuş-doymamış yağ asitlerinden meydana gelen zeytinyağının kloroformda çözündüğünü ve çift bağların halojen katılarak doyurulması renk değişiminin incelenmesi ile izlenebilir. Bu amaçla 2 ml kloroform üzerine 3-4 damla zeytinyağı ilave edilerek çözünmesi sağlanır. Üzerine bromlu kloroformdan ( 1 ml/ 20 ml kloroform ) 1-2 damla ilave edilir. Örnek içerisinde doymamış yağ asidi bulunuyorsa ortamın rengi yavaş yavaş kaybolacaktır. Bu renk kaybı, bromun çift bağlara katılmasından dolayıdır. Sonuç, zeytinyağı damlatılmamış tüple ( kloroform ) karşılaştırılarak kontrol edilir.2- 2- Ester oluşturma deneyi : Esterler yağ asitleri ile alkollerin birleşmesinden meydana gelir. Bu reaksiyonu izlemek için bir deney tüpüne 1 ml etil alkol, 1 ml asetik asit ve 1 ml derişik H2SO4 konup birkaç dakika beklenir. Karışım, içerisinde su bulunan bir behere dökülürse asetik asidin iğneleyici kokusunun yerine asetik asidin etil esterlerinin hoş, meyve esansı kokusu meydana gelir. 3- 3- Serumda total lipid tayini : Total lipid tayini ile serumda mevcut tüm lipidler ( trigliserit, fosfolipid, kolesterol, yağ asdi vs ) tayin edilmiş olur. Trigliserid tayinin yapıldığı laboratuvarlarda total lipid tayinine gerek yoktur. Çünkü total lipid seviyelerinde meydana gelen değişiklikler genellikle trigliserid seviyesindeki değişiklikleri yansıtır. Fosfovanilin metodu ile total lipid tayinin prensibini, lipidin sülfürik ve fosforik asitli ortamda vanilin ile pembe renkli kompleks meydana getirmesi oluşturur. Reaktifler :1- Derişik H2SO44- 4- Renk reaktifi : 1 gr vanilin ısıtılarak distile suda eritilir, sonra çeşme suyu altında soğutmak sureti ile 400 ml ortofosforik asit ( % 84 ) karıştırılarak ilave edilir. Soğutulduktan sonra oda ısısında renkli şişede saklanır. Bu çözelti birkaç hafta stabildir.5- 5- Standart : 1 gr ( % 1000 mg ) saf zeytinyağı mutlak etanolde eritilir, son hacmi etanol ile 100 ml.ye tamamlanır. Bu hazırlanan çözeltiden % 600 mg lık çalışma çözeltisi hazırlanır. Deneyin yapılışı : Standart ve numune olarak işaretlenen tüplere aşağıdaki gibi pipetlemeler yapılır.Standart Numune Serum - 0.1Der H2SO4 2.0 2.0Standart ( % 600 mg ) 0.1 -Hazırlanan bu tüpler ağızları kapatılarak kaynar su banyosunda 10 dakika bekletilir. Musluk suyu ile soğutulur. Daha sonra standart, numune ve kör olarak işaretlenen tüplere aşağıdaki pipetlemeler yapılır.Kör Standart NumuneStandart karışımı - 0.1 -Numune karışım - - 0.1Der H2SO4 0.1 - -Renk reaktifi 2.5 2. 2.530 dakika oda sıcaklığında bekletilir. 560 nm de absorbanslar okunur. Aşağıdaki formüle göre total lipid miktarı hesaplanır.Total lipid miktarı : ( numune absorbansı / standart absorbansı )X standart konsantrasyonuTotal lipid miktarı hiperlipidemiler, diyabet, kronik pankreas hastalığı, hipotiroidizm,gut, hipofiz yetmezliğinde artarken, akut enfeksiyonlar, hipertiroidizm, hepatit ve bazı anemilerde azalır.

http://www.biyologlar.com/serum-lipitlerinin-kalitatif-ve-kantitataif-tayini

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

Laboratuvarda Donör Organ Üretimi Gerçekleştirildi

Laboratuvarda Donör Organ Üretimi Gerçekleştirildi

Bir domuz embriyosuna, gelişiminin ilk safhalarında insan hücreleri enjekte edildi ve dört haftadır gelişimini sürdürüyor. Fotoğraf: Juan Carlos Izpisua Belmonte

http://www.biyologlar.com/laboratuvarda-donor-organ-uretimi-gerceklestirildi

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Bilim Kurguyu Gerçeğe Dönüştüren 5 Nanobilim Yolu

Rus yazar Boris Zhitkov, 1931'de anlatıcının karışık ameliyatları gerçekleştirmek için minyatür eller oluşturduğu kısa hikayesi olan Mikrohand'leri yazdı.

http://www.biyologlar.com/bilim-kurguyu-gercege-donusturen-5-nanobilim-yolu

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

HIV virüsünün seyrini etkilemek için hem virüsün hem de hastanın genetiği birlikte çalışıyor!

Yayınlanan yeni araştırmaya göre, insan immün yetmezlik virüsü (HIV) ile enfekte olmuş kişiler arasında görülen hastalık ilerleme oranlarındaki farklılıkların yaklaşık üçte biri viral ve insan genetiğidir .

http://www.biyologlar.com/hiv-virusunun-seyrini-etkilemek-icin-hem-virusun-hem-de-hastanin-genetigi-birlikte-calisiyor

 
3WTURK CMS v6.03WTURK CMS v6.0