Biyolojiye gercekci yaklasimin tek adresi.

Arama Sonuçları..

Toplam 52 kayıt bulundu.

Hücre biyolojisi ve tıp alanında kök hücrelerle ilgili önemli gelişmelerin kronolojisi

1950’ler Kurbağa klonlama çalışmaları 1969 İlk kemik iliği nakli 1970’ler Kemik iliği stromasında fibroblastik hücrelerin belirlenmesi 1978 İlk IVF (tüp) bebeğin doğumu 1981 Fare embriyonik kök hücrelerin blastokistin iç hücre kütlesinden ayrıştırılması 1987 Embriyonik kök hücre temelli gen hedefleme teknolojisinin geliştirilmesi 1988 İlk göbek kordon kanı nakli 1989 Hematopoietik kök hücrelerin FACS yöntemiyle ayrıştırılması 1996 Somatik hücre çekirdek nakliyle ilk klon memeli olan, koyun Dolly’nin doğumu 1998 İnsan embriyonik kök hücrelerinin ilk defa ayrıştırılması 200 1İnsan embriyonik kök hücre çalışmalarının yasaklanması (Bush) 2002 Primordiyal eşey hücrelerinden pluripotent kök hücrelerin üretilmesi 2004 California Proposition 71 fonunun kök hücre araştırmalarına aktarılması 2005 Türkiye’de insan embriyonik kök hücre çalışmalarının askıya alınması 2006 Multipotent kemik iliği mezenkimal kök hücrelerin ayrıştırılması 2006 Fare uyarılmış pluripotent kök hücrelerin elde edilmesi 2006 Tek blastomerden embriyonik kök hücrelerin üretilmesi 2007 İnsan uyarılmış pluripotent kök hücrelerin elde edilmesi 2007 Martin Evans - Nobel Fizyoloji ve Tıp Ödülü (Embriyonik Kök Hücreler) 2009 İnsan embriyonik kök hücrelerle araştırma fonlarının serbestleştirilmesi (Obama) 2010 İnsan embriyonik kök hücrelerin omurilik hasarına yönelik kullanılması (Geron) 2012 Shinya Yamanaka - Nobel Fizyoloji ve Tıp Ödülü (Uyarılmış Pluripotent Kök Hücreler) 2014 Terapötik klonlama ile insülin üreten beta hücrelerinin üretilmesi 2014 Uyarılmış pluripotent kök hücrelerle insan klinik çalışmalarının başlatılması   Kaynak: TÜBA-KÖK HÜCRE ARAŞTIRMALARI veBİYOETİK SEMPOZYUMU RAPORU 19 Şubat 2015 – Ankara

http://www.biyologlar.com/hucre-biyolojisi-ve-tip-alaninda-kok-hucrelerle-ilgili-onemli-gelismelerin-kronolojisi

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

KÖK HÜCRELERE BAKIŞ:TANIMLAR, KAVRAMLAR ve SINIFLANDIRMALAR

İki binli yıllarla beraber kök hücrelerin rejeneratif tıp (yenileyici tıp) alanındaki öneminin giderek arttığını ve tıbbın geleceğini şekillendirme potansiyelini gözlemlemekteyiz.

http://www.biyologlar.com/kok-hucrelere-bakistanimlar-kavramlar-ve-siniflandirmalar

B2 Vitamini

B2 VİTAMİNİ: RİBOFLAVİN B2 suda eriyen bir vitamindir ve vücutta depolanmaz. Yararları: Biboflavin olarak da adlandırılan B2 vitamini enerji üretimi, enzim fonksiyonu, normal yağ asidi ve aminoasit sentezi için önem taşımaktadır. Besinlerden enerjinin serbest bırakılmasında rol oynar. A vitamini ile birlikte kullanıldığında solunum, sindirim, dolaşım ve boşaltım sisteminin mukozasının sağlıklı olmasını sağlar. Sinir sistemi, deri ve gözleri korur. Normal büyüme ve gelişmeye yardımcı olur. Enfeksiyon, alkolizm, yanık, mide ve karaciğer hastalıkları tedavisine yardımcı olur. Migren, katarakt, orak hücreli anemi tedavisinde kullanılır. Yetersiz kalorili diyet alanlar, beslenme bozukluğu olanlar veya kalori ihtiyacı artmış kişiler. Gebe veya emziren kadınlar, alkol veya diğer madde bağımlıları, kronik hastalığı olanlar, uzun süreli stres altında olanlar, yakın geçmişte operasyon geçirmiş kişiler, sporcular ve beden işçileri, sindirim sisteminin bir bölümü operasyonla alınmış olanlar, ağır yanık veya yaralanması olan hastalar, doğum kontrol hapı veya östrojen kullananlar yoğun B2 vitamini ihtiyacı duyarlar. Hangi besinlerde bulunur? Açık yeşil sebze ve meyvelerde bulunur. Diğer B2 kaynakları: badem, bira mayası, peynir, tavuk, sığır eti, böbrek, buğday. Eksikliği nelere yol açar? Ağır B2 eksikliğine nadir olarak rastlanır. Alkol bağımlılarında görülebilir. Ancak çok ağır olmasa da tehlikeli düzeyde riboflavin eksikliği yaşlıların yaklaşık yüzde 33'ünde görülebilmektedir. 2 eksikliği ağız kenarlarında çatlaklar, dil ve dudaklarda iltihaplanmalar, ışığa duyarlı gözler, ciltte kaşıntı, sersemlik, uykusuzluk, öğrenme güçlüğü, gözlerde yanma ve kaşıntı ve kornea hasarına yol açabilir.

http://www.biyologlar.com/b2-vitamini

Meyve ve Sebze Tüketimi Çocuklarda Astım Atağını Önlüyor

Meyve ve Sebze Tüketimi Çocuklarda Astım Atağını Önlüyor

Çocuk Göğüs Hastalıkları Uzmanı Prof. Dr. Elif Dağlı, meyve ve sebze açısından zengin diyetin astım atağını önlediğini vurgulayarak şunları söyledi: “Avustralya’da yapılan bir araştırma, iki hafta boyunca yüksek antioksidan içeren sebze ve meyve ile beslenen astımlı hastaların nöbet geçirme olasılığının azaldığını, solunum testlerinin daha iyi olduğunu gösterdi. Antioksidan maddeler besinlerimizde yer alır. Vücut oksijen kullandığında oluşan yan ürünler doku hasarına, iltihaba veya yaşlanmaya neden olabilir. Kalp hastalıkları, diyabet, kanser, oksidatif hasarın katkı yaptığı hastalıklardır. Antioksidanlar oluşan yan ürünleri temizleyen tamirat sırasında oluşan zedelenmeyi engelleyen maddelerdir. A vitamini, karotenoidler, havuç, kabak, brokoli, domates, şeftali, kayısı, C vitamini içeren narenciye, yeşil salata, biber, Vitamin E içeren fındık, ceviz, bitkisel yağlar antioksidandır.” Prof. Dr. Elif Dağlı, 1960-2000 yılları arasında küresel astım ve alerjik hastalık artışından kısmen diyet değişikliğinin sorumlu tutulduğunu belirterek şu bilgileri verdi: “Meyve ve sebzelerin daha az tüketilir olması antioksidan düzeylerinde düşmeye neden oldu. Hamilelerin bu tip gıdaları kullanmasının bebeğin ilk yılda hırıltılı solunum hastalığı ve astım ihtimalini azalttığı saptandı. Karoten içeren gıdalardan az tüketen hamilelerin bebeklerinde de daha sık hırıltı görüldü. Yapılan çalışmalar antioksidan içeriğini tablet halinde almanın etkili olmadığını, tam besin tüketiminin astım ve alerjide oluşan mikrop içermeyen iltihabı koruduğunu gösterdi.” Çocuk Göğüs Hastalıkları Uzmanı Prof. Dr. Elif Dağlı, fast food yemek yerine bol miktarda sarı, turuncu, kırmızı renkli sebze ve meyve tüketimine ağırlık verilmesinin alerji riski taşıyanlarda özellikle önem taşıdığını söyledi. http://tahlil.com

http://www.biyologlar.com/meyve-ve-sebze-tuketimi-cocuklarda-astim-atagini-onluyor

Transplantasyon immünolojisi

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir. TRANSPLANTASYON ve İMMÜN YANIT Prof. Dr. Mahmut Nezih Çarin İstanbul Tıp Fak. Tıbbi Biyoloji ABD, Transplantasyon Ünitesi MHC gen bölgesi 6. kromozom (6p21.31) üzerinde yerleşmiş olup, yaklaşık olarak 4 Mbp lik bir yer kaplar. En uzun haplotype (110-160 kb) DR53 grup haplotiplerdir. Jan Klein 1977 yılında Sınıf I, II ve III olmak üzere ilk tanımlamayı yapmıştır. Günümüzde HLA sınıf III’ e ait olan bölgenin telomerik ucundaki 0.3 Mbp kısmın sınıf IV bölgesi olarak isimlendirilmesi önerilmektedir. Klasik HLA antijenleri sınıf I geni icindeki HLA-A, -B, -C bölgesinde ve Sınıf II geni içindeki HLA- DR, -DQ, -DP bölgesinde kodlanır. Tüm sınıf I genler 3-6 kb, sınıf II genler ise 4-11 kb uzunluktadır. Klasik antijenleri kodlayan genler dışındaki sınıf I bölgesindeki diğer genler: HLA-E, -F, -G, -H, -J, -K, -L olup, bunlar arasından sadece HLA-E,- F,-G eksprese olmaktadır. Sınıf III bölgesinin ise gen yoğunluğu oldukça fazla olup bunların bir kısmı immün sistem ile ilişkili değildir. Sınıf II bölgesinde klasik antijenleri kodlayan genlerin yanısıra HLA-DM, -DN, -DO, TAP1, TAP2, LMP2 ve LMP7 gibi gen bölgeleride bulunmaktadır. İmmunolojik ve nonimmunolojik fonksiyonu olan bir dizi genden oluşan MHC bölgesi ilk kez farelerdeki transplantasyon çalışmaları ile Peter Gorer tarafından 1937 yılında ortaya çıkarılmıştır. Bu genlerin ürünleri olan moleküller 1958 yılında Jean Dausset tarafından (HLA-A2) tanımlamış, aynı yıl van Rood ve arkadaşları HLA-BW4 ve BW6 antijenlerini ve kan transfüzyonu yapılmış kişilerin ve çok doğum yapmış kadınların serumlarında lökositlere karşı oluşmuş antikorları göstermişlerdir. İlk doku antijenleri lökositlerde saptandığı için insan lökosit antijenleri (Human Leukocyte Antigens = HLA) olarak tanımlanmışlardır. Daha sonraki yıllarda eritrositlerin dışında bütün vücut hücrelerinde bulundukları ve çok önemli oldukları anlaşılarak bu grup antijen sistemi MHC molekülleri veya MHC antijenleri olarakta isimlendirilmiştir. MHC genel bir isimdir ve her bir türün ayrı bir MHC simgesi vardır . MHC molekülleri graft rejeksiyonun temel belirleyicileridirler. Bu nedenle aynı MHC moleküllerini eksprese eden bireyler birbirlerinin doku graftlerini kabul edebilirler veya farklı MHC gen bölgelerine sahip bireyler arasında graft rejeksiyonu gelişir. Bu lokusun keşfinden ancak 20 yıl sonra immun cevapta MHC’nin önemi ortaya çıkarılmıştır. Hugh McDevitt ve arkadaşları 1960’larda kobay ve fareler üzerine yaptıkları çalışmalarda basit polipeptidler ile yapılan immunizasyona karşı antikor oluşmadığını ve gelişen immun yanıtsızlığın MHC bölgesinin haritalanması ile otozomal dominant bir özellik olduğunu buldular. İmmun yanıtı kontrol eden genlere de İmmun yanıt genleri (Immune response =Ir ) adı verildi. Ir genlerinin protein yapıdaki antijenlere antikor yanıtında gerekli olan Th (T helper = yardımcı T) lenfositlerinin aktivasyonunu kontrol ettiğini gösterdiler. 1970’lerin sonunda MHC genlerinin protein antijenlere karşı olan esas rolü anlaşıldı. Her iki HLA antijen yapısı da iki yan yana alfa heliksi tarafından oluşturulan, hücre membranına distal konumda benzer bir girintiye sahiptir. Bu girintilere hem kendi antijenlerinden hem de yabancı antijenlerden kaynaklanan peptid antijenleri bağlanır. Böylece HLA antijenleri hem kendi hem de yabancı peptidleri T lenfositlerine sunma görevindeki moleküller olarak immün yanıt oluşumunda kilit bir fonksiyona sahiptir. Ayrıca HLA antijenlerinin kendileri de allogeneik transplantasyon, transfüzyon ve hamileliklerde güçlü immün yanıtları tetikleyebilen, fazlasıyla immünojenik moleküllerdir. MHC Sınıf I molekülleri Sınıf I molekülü a zincirinin b2 mikroglobulin ile non kovalen bağlanmasıyla oluşmaktadır. Alfa zinciri a1 (N terminal), a2 ve a3 olmak üzere üç adet ekstrasellüler domain içerir. MHC sınıf I molekülleri arasında a3 domaini oldukça korunmuş bir yapıdadır ve T lenfositlerindeki CD8 molekülü ile etkileşime giren bölgeyi oluşturmaktadır. Beta 2 mikroglobulin yapısındaki bir adet disülfit bağı ile stabilize edilmiştir. b2- mikroglobulin yokluğunda sınıf I molekülleri hücre membranında eksprese edilmez. Alfa-1 ve alfa-2 domainler 8 adet anti-paralel b strandı ve 2 adet anti-paralel a strandı ile platform oluşturmaktadır. Genel olarak çekirdekli hücrelerde eksprese edilmektedir. Ancak ekspresyon düzeyleri hücreler arasında değişmektedir. Lenfositlerde en yüksek düzeyde eksprese edilirken, Fibroblastlar, kas hücreleri, hepatositler, sperm, oosit, plasental ve merkezi sinir sistemi hücrelerinde sınıf I moleküllerinin ekspresyonu çok düşük ya da dikkate alınmayacak düzeydedir. HLA- C moleküllerinin hücre yüzeyinde HLA- A ve –B moleküllerinden 10 kat daha düşük düzeyde ortaya çıkmaktadır. Ancak HLA-C molekülleride işlevseldir ve NK (doğal öldürücüler ) tarafından tanınmak üzere ilk hedef noktalardır. MHC Sınıf II molekülleri Sınıf II molekülleri a ağır zinciri ile b hafif zincirinin non-kovalent bağlanması ile oluşan bir heterodimerdir. Alfa zincirinde a1 ve a2, beta zincirinde ise b1 ve b2 domainleri bulunmaktadır. Alfa-1 ve alfa-2 domainleri arasında kalan çukur peptid fragmanlarının bağlandığı bölgeyi oluşturmaktadır. Sınıf II molekülleri dendritik hücre, makrofaj, B ve aktive T lenfosit olmak üzere daha sınırlı sayıda hücrelerde eksprese edilmektedir. Transplantasyonda İmmun Yanıt İmmün sistemin birincil görevleri herhangi bir potansiyel infekte edici yabancı materyali tanımak ve birden çok efektör mekanizma yoluyla yanıt vererek yabancı materyali inaktif hale getirmektir. HLA antijenlerinin görevi hem kendi hem de yabancı proteinlerden türevlenen peptid fragmentlerini sunmaktır. Antijen sunum hücreleri (APCler) olarak görev yapan hücre tipleri dendritik hücreler, monositler, makrofajlar, B lenfositleri ve immün regülatör süreçlere katılan diğer hücreleri içerir. Protein moleküllerinin peptid parçalarına ayrılması ve antijenin T hücrelerine sunulması, immünitenin önemli bir bölümünü oluşturur. Sınıf I molekülleri endojen kaynaklı peptidlerin CD8 (+) T lenfositlerine, sınıf II molekülleri ise eksojen kaynaklı peptidlerin CD4 (+) T lenfositlerine sunumunda rol almaktadırlar. Peptidler önce degradasyona uğrar ve peptid fragmanları hücre içinde HLA sınıf I ve II moleküllerine bağlanır. Bu moleküller, bağlanan peptid ile birlikte hücre yüzeyine gelir. Hücrelerde proteinlerin yıkımını sağlayan iki büyük yol vardır. Bunlardan birisi lizozomal asidik ortamda gerçekleşen lizozomal proteolizis diğeri ise ubiquitin- proteasom yıkım yoludur. Çok sayıda ubiquitin ile işaretlenmiş olan protein, çok sayıda alt birimden oluşmuş olan proteaz kompleksi olan proteasom tarafından yıkılır. Ubiquitinin bağlanması ve işaretlenmesi için ATP enerjisi kullanılır. Endojen proteinler ubiquitin ile bağlanarak proteasoma yönlenirler. LMP2 ve LMP7, proteozom kompleksinin bileşenlerini oluşturan peptidleri kodlamaktadır. Proteozom, kısa ömürlü sitoplazmik proteinlerin çoğunun sindiriminde yer almaktadır. Burada 8-10 aa uzunluğunda kısa peptidlere yıkılan endojen proteinler TAP heterodimeri aracılığı ile ER aktarılırlar. TAP molekülleri zarlar arasında, oligopeptid ve daha büyük proteinler gibi farklı maddelerin taşınmasını sağlamaktadır. TAP1/TAP2 molekülleri ER zarında, sitoplazmadan lümene peptid taşıyıp yerleştiren bir kompleks oluştururlar. Taşınmış olan peptidler sınıf I molekülüne yüklenirler. Endoplasmik retikulumdan ayrılan bu yapılar golgi kompleksine gelir oradan taşıyıcı veziküller ile hücre membranına taşınarak sitotoksik T lenfositlerine sunulurlar. Eksojen kaynaklı proteinler (bakteriler gibi) ASH tarafından hücre içine endositik olarak alınıp lizozom ile birleşir ve lizozomal enzimlerin etkisi ile küçük peptidler haline dönüştürülürler. ER’da yeni sentezlenen sınıf II molekülleri invariant chain (Ii) molekülü ile bağlanarak taşıyıcı veziküller ile lizozoma gelir ve füzyon yaparlar. Lizozom icerisinde Ii molekülü küçük peptid haline dönüştürülür ve HLA-DM molekülüde peptid bağlama oluğunda bulunan parçalanmış Ii molekülü ile eksojen peptidin yer değişimini gerçekleştirir. Peptid yüklenmiş olan sınıf II molekülleri hücre membranına taşınarak CD4(+) T lenfositlerine sunulurlar. İmmün tanıma : İmmün yanıtın oluşumunda ilk basamak, kendi-HLA moleküllerince sunulan yabancı peptidin yardımcı T hücrelerince (CD4+ T hücreleri) tanınmasıdır. Tanınmanın sağlanabilmesi için T-hücre reseptörü (TCR) HLA-antijen kompleksine özgü olmalıdır. Hücrelerin birbiriyle teması üzerine TCR, yabancı peptid ve APC üzerinde yer alan MHC molekülünden oluşan trimoleküler bir kompleks meydana gelir. T hücreleri ve APC arasındaki etkileşim diğer lenfositler ve B7, CD40 gibi T hücreleri üzerinde yer alan CD4, CD8, CD28 VE CD11a/CD18 gibi APC hücre yüzey molekülleri (lökosit fonksiyonuyla bağlantılı antijen 1 [LFA-1]) ve interselüler adhezyon molekülü (ICAM-1) desteği ile sağlanır. Hücre yüzey reseptörleri ve sitokinler gibi immün modülatör molekülleri kodlayan genler uyarılır, transkribe edilir ve aktif ürünler vermek üzere translasyon geçirirler. Aktivasyonun erken evrelerinde yanıtlayıcı T hücrelerinin klonal genişlemesi ile sonuçlanan, interlökin 2 (IL-2) ve interferon-g (IFN-g) sitokinleri üretilir. Makrofajlar ve B hücreleri de ek sitokinler ve kemokinler katılarak çalıştırılmıştır ve böylelikle uyarılmış B hücrelerinin yanıtı genişletilerek olgun antikor oluşturan plazma hücrelerine dönüşmeleri sağlanır. İmmün yanıtın hem hücresel hem de hümoral kolları, nakledilen bir organın yabancı HLA antijenleri ile ilişki halindedir. Transplant yerleştirilmesinde, spesifik alloreaktif T hücrelerinin klonlarının allotanıma ve aktivasyonuna, akut rejeksiyon nöbetlerine, greft fonksiyonlarında aksamaya ve kronik rejeksiyona ve son olarak greft kaybına sebep olabilir. Direkt ya da indirekt allotanıma yolları olarak bilinen iki farklı yol, greftte yer alan yabancı HLA antijenlerin immünojenitesini oluşturur. Direkt yolda, donör MHC antijenlerinin tanınmasında spesifik TCR taşıyan alıcı T hücreler, greftin HLA antijenlerini tanırlar ve onlar tarafından direkt olarak aktive edilirler. Yabancı HLA antijeni kendi-HLA ve yabancı antijenin kombine halini taklit eder böylelikle TCR’ler ile başarılı bir şekilde bağlanırlar. Bu arada donör dendritik hücreleri, gratft ile birlikte “pessenger” lökositler olarak gelirler, ve greftten yuvalarına yani alıcı lenf nodlarına geçerler. Lenf nodlarında alıcı T hücreleri donör APCleri’nce sunulan yabancı MHC ve peptidlere yanıt verirler ve prolifere olurlar. Bu aktive olmuş alıcı hücreler daha sonra süzülerek grefte geçerler ve bozulmakta olan greftin biyopsisi sonucunda kolaylıkla gözle görülebilen red süreçlerini başlatırlar. İndirekt tanıma yolu ile oluşan yanıt, donör antijenlerinin alıcı APCleri tarafından işlenmesini ve sunulmasını gerektirir. Bu hem lenf “pessenger” lökositlerce işgal edilen alıcı lenf nodlarında gelebilir hem de greft antijeninin alıcı APCleri tarafından çıkarılan, geri alınan ve işlenen greft sitlerinde meydana gelebilir. Direkt yol grefte karsi verilen ilk yanıtlarda baskındır, indirekt yolun ise zaman geçtikçe red sürecinin sürmesinde ve yolcu lökositlerin bir uyarı olarak yok olduğu süreçte önemli olduğu var sayılmaktadır. Alloantikor yanıt: Transplantasyonun bir sonucu olarak, aktive edilmiş yardımcı T hücreleri B hücreleri ile etkileşime geçebilirler ve onları spesifik donör HLA antijenlerine yönelik alloantikor üretmeleri için stimule ederler. Transplantasyon sonrası bu tip alloantikorlar saptanması eşlik eden hücresel red yanıtının bir işaretidir. Transplantasyonun oluşturduğu uyarıya ek olarak HLA antijenlerine karşı immün yanıtlar, lökosit içeren kan transfüzyonu ile gelen HLA alloantijenlerine maruz kalma ve hamilelik gibi durumlarda oluşur. Birden fazla transfüzyon alan hastalar ve bazı multipar kadınlar HLA antijenlerine bağışıklık kazanabilirler, ve antikorlar ile spesifik HLA antjenleriyle etkileşime giren aktif T hücre klonları üretirler. Transplantları başarısızlıkla sonuçlanan hastalarda reddedilen greftin HLA antijenlerine karşı yüksek düzeyde antikor üretilmektedir. Potansiyel bir alıcı tarafından antikorlar oluşturulduğunda sensitizasyon (hassasiyet) meydana gelir ki bu da uygun bir organ donörü bulmada engel oluşturur. Hastanın sensitize olduğu belirli HLA antijen/leri içeren bir organın transplantasyonu hiperakut red ile sonuçlanabilir. Bu süreçte alıcı antikorları ile donör antijenlerinin oluşturduğu kompleksler anında greft damarlarında koagülasyonu tetikler, bu da grefte ve greft içindeki kan dolaşımının blokajı ve kesilmesi ile sonuçlanır ve böylelikle greft hızla yok edilir. Böbrek, kalp ve pankreas transplantasyonu bekleyen sensitize hastalar için önceden oluşmuş alloantikorlara hedef antijenlere sahip olmayan donörlerin seçimi kesin şarttır.Yabancı HLA antijenleri immün reddi tetiklediklerinden, alıcı ve verici arasında HLA antijen uyumunun sağlanması transplant başarısı için etkin bir stratejidir. KAYNAK: lokman.cu.edu.tr/anestezi/v_cag/new_page_2.htm VİDEO İLE İLGİLİ LİNGLER www.zaplat.com/video/saglik_videolari/41349/Organ_Nakli_Nedir www.zaplat.com/video/saglik_videolari/34884/Kalp_Nakli www.zaplat.com/video/saglik_videolari/43...alp_Transplantasyonu www.zaplat.com/video/saglik_videolari/28...migi_Tranplantasyonu

http://www.biyologlar.com/transplantasyon-immunolojisi

Hücre zedelenmesinin nedenleri ve zedelenmeye karşı hücrenin verdiği uyum yanıtları nelerdir; hasara uğrayan dokunun onarılması nasıl gerçekleşir?

Hücre Zedelenmesinin Nedenleri Hücre zedelenmesinde pek çok etken söz konusudur. Trafik dahil pekçok kazanın neden olduğu gözle görülen fiziksel travmalardan, belli bazı hastalıklarda neden olabilen defektli enzimleri oluşturan gen mutasyonlarına kadar sıralanabilir. Zedeleyici etkenler aşağıdaki gibi, sınıflanabilir. Oksijen Kayıpları: Hipoksi (oksijen azlığı- oksijen yetersizliği), hücre zedelenmesi veya ölümünün en önemli ve en çok görülen nedenidir. Hipoksi pekçok durumda görülür. Bunlar içinde en önemli olanı iskemidir. Hipoksi, iskemiden (kansızlık) farklıdır ve ayrılmalıdır. İskemi, dokulara gelen arteriyel akımın engellenmesi veya venöz dönüşün azalmasıyla ortaya çıkan dolaşımdaki kan kaybıdır. Bir bölgedeki kan akımının durması olarak özetleyebiliriz. İskemi, dokuları hipoksiden daha çabuk zedeler. Hipoksik doku zedelenmesi, karşımıza şu durumlarda çıkar. 1-İskemix: Mortalite (kalb hastalığı- miyokard enfarktüsü) ve morbiditenin (serebral ve renal iskemik hastalıklar) başlıca nedenidir. 2-Asfiksi (solunum zorluğu- solunum yetersizliği) nedeniyle, kanın oksijenizasyonundaki azalmaya bağlı olarak hücre zedelenmeleri ortaya çıkabilir. Buna kalb-akciğer hastalık- larında ve pnömonide görülen yetersiz kan oksijenlenmesi örnek verilebilir. 3-Anemixx veya karbon monoksit (CO) zehirlenmesinde görülen, kanın oksijen taşıma kapasitesindeki düşme, diğer bir örnek olabilir. Kimyasal Etkenler ve İlaçlar: Zehir olarak bilinen maddeler, tedavi amaçlı kullanılan bazı ilaçlar (hassas bünyeli kişilerde) ve ilaçların aşırı kullanılma durumlarında, hücre zede-lenmeleri meydana gelebilir. Hücrelerin bazı yaşamsal işlevlerini, örneğin membran permea-bilitesini, osmotik homeostazı (hücre içi denge) ve enzim entegrasyonunu (sistemi) bozarak, ciddi hücre zedelenmesi ve belki de tüm organizmanın ölümüne neden olabilir. Esasda zarar-sız olan glukoz ve tuz gibi kimyasallar, konsantre olduğunda osmotik çevreyi bozarak, hücre zedelenmesine ve hatta ölüme yol açabilir. Fiziksel Etkenler: Travma, sıcak ve soğuk olmak üzere aşırı ısı, ani ve farklı atmosfer basınç değişiklikleri, radyasyon ve elektrik şoku, hücre üzerinde geniş etkiler gösterir. Enfeksiyöz Etkenler: Bu grupta submikroskopik viruslardan, mikroskopik bakteri, riket- siya, fungus ve parazitlere kadar geniş bir mikroorganizma grubu bulunur. Mikrobiyolojik ajanlar olarak, salgıladıkları toksinler ve enzimlerle hücrenin metabolizmasını inhibe eder ve hücresel yapıları destrüksiyona uğratır. İmmunolojik Reaksiyonlar: Biyolojik etkenlere karşı vücudu koruyan immün sistem, bazı durumlarda immun reaksiyonlara neden olarak, hücre ve doku zedelenmesi meydana getirebilir. Yabancı proteinlere (antijen) karşı gelişen anaflaktik (allerjik) reaksiyon, önemli bir örnektir. Ayrıca bu grupta endojen antijenlerin sorumlu olduğu immunolojik reaksiyonlar söz konusu olabilir. Bunlar da “otoimmun hastalıklar” olarak sınıflanır. Radyasyon: Ultraviyole (noniyonize -güneş ışını) ışınlar hücrelere zarar vererek güneş yanıklarına neden olabilir. İyonize radyasyon hücrelerdeki moleküllere direkt etki yapıp, mo-lekül ve atomların iyonizasyonuna neden olarak veya hücre komponentleri ile etkileşen serbest radikal oluşumuna neden olarak hücrelere zarar verir. Genetik Defektler: Tek bir genin eksikliği veya yapısal bozukluğu, hastalığa neden olabi-lir. Doğuştan var olan metabolik depo hastalıkları ve bazı neoplastik hastalıklar gibi, bir çok hastalığın temelinde, genetik defektlerin rol oynadıkları bilinir. Beslenme Dengesizlikleri: Vücudun bazı aminoasitler, yağ asitleri, vitaminler gibi, orga-nik ve inorganik maddeleri besinlerle alması gerekir. Beslenme yetersizliğinde ortaya çıkan protein ve besin eksikliği, doku hasarlarına neden olabilir. Besinlerin eksikliği gibi, aşırılıkla-rında, ortaya çıkan şişmanlık ve atheroskleroz da morbidite ve mortaliteye zemin hazırlaya-rak, zarar verir. Obesite, tip 2 diyabetes mellitus riskini arttırır. Hayvansal yağ yönünden zen-gin olan gıdalar, atheroskleroz ve kanseri de içeren pekçok hastalığın oluşumundan sorumlu olabilir. Yaşlanma; hücre zedelenmesine neden olan diğer bir örnekdir. Yıllar geçtikçe hücrelerde çoğalma ve kendini onarma yeteneklerinde meydana gelen azalmalar ve buna bağlı ölümler oluşur. Hücre Zedelenmesinin Mekanizmaları Hücre zedelenmesine neden olan pek çok farklı yol vardır; fakat bunların hepsi öldürücü değildir. Bununla birlikte, herhangi bir zedelenmeden kaynaklanan, hücre ve doku değişiklik-lerine yol açan, biyokimyasal mekanizmalar oldukça karmaşıktır ve diğer intrasellüler olaylar ile sıkıca birbiri içine girmiştir. Bu nedenle, sebep ve sonuçları birbirinden ayırdetmek müm-kün olmayabilir. Bir hücrenin yapısal ve biyokimyasal komponentleri o kadar yakın ilişkide-dir ki, zedelenmenin başlangıç noktası önem taşımayabilir; fakat pek çok sekonder etki süratle oluşur. Yine de hücre zedelenmeleriyle ilgili bilinen pekçok özellik vardır. Örneğin siyanürle aerobik solunumun zehirlenmesi, intrasellüler osmotik dengenin korunması için elzem olan sodyum, potasyum ve ATP aktivitelerinde azalmalara neden olur. Bunlar korunamadığı za-man, hücre süratle şişer, rüptüre olur ve nekroza gider. Hücre hasarlarına neden olan, bazı zedeleyici ajanların patojenik mekanizmaları çok iyi ta-nımlanmıştır. Örneğin, siyanürle zehirlenmede mitokondriyada oksijen taşıyıcı bir enzim olan sitokrom oksidazın inaktive edilmesiyle, ATP’yi tüketerek, hipoksi yoluyla hasar meydana getirir, yani intrasellüler asfiksiye yol açar. Yine aynı şekilde anaerobik bazı bakteriler, fosfo-lipaz salgılayarak hücre membran fosfolipidlerini parçalayıp, hücre membranında direkt hasar meydana getirir. Hücre zedelenmesinin pekçok şeklinde, hücreyi ölüme götüren moleküler mekanizmalardaki bağlantıları anlamak bu kadar kolay değildir. Reversibl zedelenmenin neden olduğu hücresel bozukluklar onarılabilir ve zedeleyici etki hafifletilebilirse, hücre normale döner. Kalıcı veya şiddetli zedelenme, o bilinmeyen “dönüşü olmayan nokta” yı aşarsa irreversibl zedelenme ve hücre ölümü meydana gelir. İrreversibl zedelenme ve hücre ölümüne neden olan “dönüşü olmayan nokta”, hala yeterince anlaşılama-mıştır. Sonuç olarak; hücre ölümüne neden olan bilinen ortak bir son yol yoktur. Bütün bunla-ra rağmen, hücre ölümünü anlamak ve açıklayabilmek için, bir miktar genelleme yapılabilinir. İrreversibl hücre zedelenmesinin patogenezinde başlıca iki olay vardır. Mitokondrial disfonk-siyonun düzelmeyişi (oksidatif fosforilasyon ve buna bağlı ATP üretiminin yapılamaması) ve hücre membranındaki ağır hasardır. Bunu ispatlayan kanıtlar vardır. Lizozomal membran-lardaki zedelenme enzimatik erimeye neden olup, hücre nekrozunu ortaya çıkarır. Zedelenme İle İlgili Bazı Özellikler: -- Zedeleyici stimulusa hücresel yanıt, zedeleyicinin tipine, onun süresine ve şiddetine bağlı- dır. Bu nedenle düşük dozda toksinler veya iskeminin kısa sürmesi, reversibl (dönüşlü) hücre zedelenmelerine neden olur. Halbuki daha büyük toksin dozları veya daha uzun süreli iskemik aralar, irreversibl (dönüşsüz) zedelenme ile sonuçlanır ve hücre ölüme gider. -- Tüm stresler ve zararlı etkenler, hücrede ilk etkilerini moleküler düzeyde yapar. Hücre ölü- münden çok önce, hücresel fonksiyonlar kaybolur ve hücre ölümünün morfolojik değişiklikle- ri, çok daha sonra ortaya çıkar. Histokimyasal veya ultrastrüktürel teknikler, iskemik zedelen- medeki değişiklikleri birkaç dakika ile birkaç saat içinde görülebilir hale getirir. Örneğin, myokardial hücreler iskemiden 1, 2 dk sonra, nonkontraktil (kasılamama) olur. İskeminin 20- 30 dk’sına kadar, ölüm meydana gelmez. Ölümden sonraki değişikliklerin, ultrastrüktürel dü-zeyde değerlendirilmesi için, 2- 3 saat, ışık mikroskobu ile görülebilme düzeyine gelebilmele-ri için (örn. nekroz), 6- 12 saat geçmesi gerekir. Morfolojik değişikliklerin çıplak gözle görü-lebilir hale gelmesi, daha da uzun bir zaman alır. -- Zedeleyici stimulusun sonuçları; zedelenen hücre tipine, hücrenin uyum yeteneğine ve ge-netik yapısına bağlı olarak da farklılıklar gösterir. Örneğin, bacaktaki çizgili iskelet kası, 2- 3 saatlik iskemileri tolere edebilir. Fibroblastlar da dirençli hücrelerdir. Buna karşın kalb kası hücresi (myosit), yalnızca 20-30 dakikalık zaman içinde ölüme dayanabilir. Bu zaman, nöron- da 2- 3 dakikadır. -- Farklı zedeleyici etkenler, nekroz veya apoptoz şeklinde hücre ölümüne neden olur. ATP de kayıplar ve hücre zarı hasarları, nekrozla ilişkilidir. Apoptoz; aktif ve düzenli bir olaydır. Proğramlanmış bir hücre ölüm biçimidir ve burada ATP kayıpları yoktur. -- Hücre zedelenmesi hücre komponenetlerinden bir veya bir kaçında ortaya çıkan biyokimya-sal veya fonksiyonel bozukluklardan kaynaklanır. Zedeleyici stimulusun en önemli hedef nok-taları şunlardır: (a)Adenozin trifosfat (ATP) üretim yeri olan mitokondriler, (b)hücre ve organellerinin iyonik ve osmotik homeostazı için gerekli olan hücre membranı, (c)protein sentezi, (d)genetik apareyler (DNA iplikciğinin bütünlüğü) ve (e)hücre iskeleti çok önemlidir. Membran Permeabiltesindeki Defektler: Hücre membranı; iskemi, bazı bakteriyel tok-sinler, viral proteinler, kompleman komponentleri, sitolitik lenfositler veya birçok fiziksel- kimyasal etkenlerle direkt zarar görebilir. Ayrıca birçok biyokimyasal mekanizma, hücre membran hasarına etken olabilir. Kısaca gözden geçirelim. - Fosfolipid sentezinde azalma: Oksijendeki düşmeler ATP sentezinde azalmalara, ATP’nin azalması da fosfolipid sentezini düşürür. Fosfolipid kaybına bağlı olarak, membran hasarı meydana gelir. - Fosfolipid yıkımında artma: Hücre içi (sitozolik) kalsiyum artımı, fosfolipazları aktifleştirir. Bu da membran fosfolipidlerin parçalanmasını- yıkımını arttırır. - Lipid yıkım ürünlerinde artma: Fosfolipidlerin parçalanması, yıkılması, lipid yıkım ürünleri-ni arttırır. Bu ürünlerin birikimi, geçirgenliği bozarak zarar verir. - Reaktif oksijen türevleri (serbest radikaller): Hücre membranında lipid peroksidasyonuna neden olup, zarar verir. - Hücre iskelet anormallikleri: Hücre iskeleti iplikcikleri, hücre içini hücre zarına bağlayan ça-palar olarak görev yapar. Hücre içi kalsiyumun artması, proteazları aktifleştirerek hücre iske-leti proteinlerini parçalar, bu şekilde hücre zarını hasarlar. Hücre İskeleti: Sitoplazmik matriksde; mikrotübüller, ince aktin flamanlar, kalın flaman-lar ve değişik tiplerde ara flamanlardan oluşan, karmaşık bir ağ yapısı “hücre iskeleti” olarak tanımlanır. Bunlara ek olarak hücre iskeletinde, nonflamentös ve nonpolimerize proteinler de vardır. Bu yapısal proteinler sadece hücrenin şekil ve biçimini korumakla kalmaz, aynı za-manda hücre hareketinde de önemli bir rol oynar. Hücre iskelet bozuklukların da; hücre hare-keti ve intrasellüler organel hareketleri gibi, hücrelerde fonksiyon defektleri görülür. Ayrıca hücrenin fagositoz yetenekleri de kaybolur. Bunlar lökosit gibi özel hücreler ise, lökosit göçü ve fagositoz yeteneklerinde kayıplar ortaya çıkar. Mitokondriyal Zedelenme: Memeli hücrelerinin tümü, temelde oksidatif metabolizmaya bağlı olduğundan mitokondriyal bütünlük hücre yaşamı için, çok önemlidir. Mitokondri hüc-renin “enerji santralı” olarak bilinir. ATP hücredeki bütün intrasellüler metabolik reaksiyonlar için, gereken enerjiyi sağlar. Mitokondrilerde üretilen ATP deki enerji, hücrelerin yaşamı için elzemdir. Yine bu mitokondriler, hücre zedelenmesi ve ölümünde de çok önemli bir rol oynar. Mitokondriler sitozolik (hücre içi) kalsiyumun artmasıyla, serbest radikallerle (aktif oksijen türevleri), oksijen yokluğunda ve toksinlerle zedelenebilir. Mitokondriyal zedelenmenin iki ana sonucu vardır: 1)Oksidatif fosforilasyonun durmasıyla ATP nin progresif olarak düşmesi, hücre ölümüne götürür. 2)Aynı zamanda mitokondriler bir grup protein içerir. Bunlar içinde apoptotik yolu harekete geçiren protein (sitokrom c) de bulunur. Bu protein, mitokondride enerji üretimi ve hücrenin yaşamı için, önemli bir görev yapar. Eğer mitokondri dışına sitozo-le sızarsa, apoptozisle ölüme neden olur. Bazı nonletal patolojik durumlarda mitokondriaların sayılarında, boyutlarında, şekil ve fonksiyonlarında çeşitli değişiklikler olabilir. Örneğin hücresel hipertrofide, hücre içindeki mitokondri sayısında artma vardır. Buna karşın atrofide, mitokondri sayısında azalma görülür. ATP Tüketimi: Hücrelerin enerji deposu olarak bilinen ATP, adenozin difosfat (ADP) ve 1 fosfat (P1) ile mitokondride -üretilir- sentezlenir. Bu işlem oksidatif fosforilasyon olarak tanımlanır. Ayrıca oksijen yokluğunda glikolitik yol ile glukozu kullanarak ATP üretilebilir (anaerobik glikolizis). ATP, hücre içindeki tüm sentez ve parçalama işlemlerinde gereklidir. ATP, hücresel osmolaritenin korunması, membran geçirgenliği, protein sentezi ve temel metabolik işlevler gibi, hemen her olayda çok önemlidir. ATP kayıplarının başlıca nedenleri; iskemiye bağlı oksijen kayıpları ve besin alımında azalma, mitokondri hasarı ve siyanür gibi, bazı toksinlerin etkileri sayılabilir. Kalsiyum Dengesindeki Değişmeler: İskemi ve belli bazı toksinler, belirgin bir şekilde hücre dışı kalsiyumun plasma membranını geçerek hücre içi akışına yol açar. Bunu, hücre içi depolardan ( mitokondri, endoplazmik retikulum) kalsiyumun açığa çıkması izler. Bu hücre içi artan kalsiyum, sitoplazmada bulunana bazı enzimleri aktifleştirir. (1)Fosfolipazları aktive ederek, fosfolipid yıkımına neden olur. Fosfolipid azalması ve lipid yıkım ürünlerinin de açı-ğa çıkmasına neden olur. Bu katabolik (yıkım) ürünler, hücre membran zedelenmesine neden olur. (2)Proteazlarıx (protein parçalayan enzim) aktive ederek, hem membran hem hücre iske-leti proteinlerinin parçalanmasına neden olur. hücre iskeletinin hücre membranından ayrılma-sına ve böylelikle, membranda yırtılmalara neden olur. (3)Adenozin trifosfatazlara (ATPas) etki ederek adenozin trifosfat (ATP) azalmasını hızlandırır. (4)Endonükleazları aktive eder, DNA ve kromatin parçalanmasından sorumludur. Sonuç olarak intrasellüler kalsiyumun art-ması, hücrede bir dizi zedeleyici etki yaparak, hücre ölümüne sebebiyet veren en önemli et-kendir. Hücre Zedelenmesinde Serbest Radikallerin Rolü Hücre zedelenmesinde önemli mekanizmalardan birisi de, aktive edilmiş (reaktif) oksijen ürünlerine (serbest radikaller) bağlı zedelenmedir. Hücre membranına ve hücrenin diğer elemanlarına zarar verir. Serbest radikallerin sebep olduğu hasarlar; iskemi-reperfüzyon hasarıx, kimyasal (hava kir-liliği, sigara dumanı, bitki ilaçları gibi çevresel faktörler) ve radyasyon zedelenmesi, oksijenin ve diğer gazların toksisitesi, hücresel yaşlanma, savunma sisteminin fagositik hücrelerce mikropların öldürülmesi, iltihabi hücrelerin oluşturduğu hücre hasarı ve makrofajlarca yapılan tümör hücrelerinin destrüksiyonu şeklinde sıralanır. Serbest radikallerin hücrelerde yaptığı hasarlar: a)Lipidlerin peroksidasyonuna neden olarak hücre membran hasarı yapar. b)Protein hasarı yaparak, iyon (Na/K) pompası dengesini bozar. c)DNA yı haraplayarak, yetersiz prote- in sentezine neden olur. d)Mitokondrial hasar yaparak, ATP yokluğuna neden olup etkisini gösterir. Oksijen yaşamsal olarak çok gerekli bir molekül olmasına karşın, oksijenin aşırı miktarlar- da bulunduğu durumlar veya çeşitli kimyasal ajanlarla oluşturdukları oksidasyon reaksiyonları ile ortaya çıkan serbest oksijen radikallerinin, hücreye zarar verme riski vardır. Bunlar oksijen zararına örnektir. Paslanmanın bilimsel adı, oksitlenmedir. Vücudumuzdaki hücreler de oksit- lenir ve yaşlanır. Serbest radikallerin (bunlar oksidan moleküller, oksitleyiciler olarak da bili- nir) yıkımına karşı, hücrelerde harabiyeti önleyen, sınırlayan veya onaran gibi, pek çok koru- yucu mekanizma vardır. Bunlara “serbest radikal savaşcıları” (antioksidanlar- oksitlenmeyi önleyiciler) adı verilir. Bunları enzimatik ve nonenzimatik olarak iki ana grupta inceleyebili- riz. Bunların dışında serbest radikallerin, stabil olmadıklarından spontanöz (kendiliğinden) bozulmaları da söz konusudur. Enzimatik Antioksidanlar: Hücrede oluşan serbest radikallerin yok edilmeleri bir dizi enzi-matik olay ile gerçekleşir. Antioksidan enzimlerle yapılan savunmanın önemli bir bölümünü; süperoksit dismutaz, glutatyon peroksidaz ve katalaz oluşturur. Süperoksit radikali, süperoksit dismutasyonla; hidrojen peroksit ise, katalaz ve glutatyon peroksidaz enzimleri ile nötralize edilir. Hidrojen peroksitin parçalanmasında katalaz direkt etkilidir. Nonenzimatik Antioksidanlar: Bu savunma başlıca endogenös ve ekzogenös antioksidanlar tarafından sağlanır. Ekzogenöse örnek; vitamin E (tokoferoller), vitamin C (askorbik asid), beta karoten (A vitaminin yapı taşı) gibi vitaminlerdir. Ekstrasellüler antioksidan olarak serü-loplasmin sayılabilir. Vitamin C ve E’nin vücudu serbest radikallerin yıkıcı etkilerinden koru-duğu düşünülür. Bu antioksidanlar serbest radikallere kendi elektronlarından birini verip, elektron çalma reaksiyonunu sonlandırmasıyla nötralize eder. Antioksidan besinler elektron vermekle, kendileri serbest radikallere dönüşmez; çünki her iki şekilde de stabildir. Bunlar çöpcüler gibi hareket ederek hastalık oluşmasına neden olacak, hücre ve doku hasarlarını ön-ler. Antioksidan besinlere diğer örnekler; eser miktardaki mineraller bakır, çinko ve selen-yumdur. Bu mineraller bazı antioksidan enzimlerin gerekli komponentleri olduğundan, anti-oksidan görevi görür. Kimyasal (Toksik) Zedelenme: Kimyasal maddeler iki mekanizmadan birisiyle hücre zedelenmesine neden olur. (1)Bazı kimyasal maddeler, moleküler komponentlerle veya hüc-resel organellerle direkt birleşerek etki eder. Birçok antineoplastik kemoterapotik ajanlar, doğrudan sitotoksik etkileriyle hücre hasarlarına neden olur. (2)Diğer mekanizmada ise, bazı kimyasal maddeler, biyolojik olarak aktif değilken, toksik metabolitlere dönüştükten sonra, aktif olur ve hedef hücrelerde etkilerini gösterir. Burada indirekt etki söz konusudur. Bu tip değişme genellikle karaciğer hücrelerinde oluşur. x Kan akımının kesilmesiyle (iskemi) eğer hücreler reversibl olarak zedelenirse, kan akımının yeniden düzelme-siyle hücrelerde iyileşme görülür; fakat bazı durumlarda iskemiye uğramış bir dokuda, kan akımının yeniden sağlanmasına (reperfüzyon) rağmen, zedelenme giderek daha da kötüleşir. Buna “iskemi- reperfüzyon hasarı” (reperfüzyon nekrozu) adı verilir. Klinik olarak çok önemli olan, kalb ve beyin enfarktüslerindeki doku hasarla-rında bu şekilde bir zedelenmenin bariz katkısı vardır. Bu olayın nedeni, bölgede serbest radikallerin miktarının artması olabilir; çünki bu toksik oksijen ürünleri, reperfüzyon anında iskemik alana gelen lökositler tarafından bol miktarda ortama salınmıştır. İskemiye uğramış dokuda reperfüzyon oluşmasa bile, sonuçta bu bölgede letal iskemik hücre hasarı yine meydana gelecektir; fakat hasar, bu sefer serbest radikallerle değil, iskemik zedelen-me, hipoksi (oksijen yetersizliği) nedeniyle ortaya çıkacaktır. Serbest Radikaller: Serbest radikaller (oksidan ürünler) ile antioksidan etkileşimini anlamak için, ilk önce hücreler ve moleküller hakkında biraz bilgi sahibi olmak gerekir. İşte bu nedenle burada lise kimyasına kısaca bir göz atalım. İnsan vücudu pekçok farklı tip hücreden oluşmuştur. Hücreler de birçok değişik tip moleküllerden oluşmuştur. Mole- küller, bir veya daha fazla atomlardan, bir veya daha fazla elementlerin kimyasal bağlarla birleşmesinden mey-dana gelmiştir. Atomlar; tek bir nüve (çekirdek), nöronlar, protonlar ve elektronlanlardan oluşur. Atom çekirde- ğindeki protonların (pozitif yüklü parçacıklar) sayısı, atomu çevreleyen elektronların (negatif yüklü parçacıklar) sayısını belirler. Elektronlar kimyasal reaksiyonlarla ilgilidir ve molekül oluşturmak için, atomları birbirine bağ-layan maddedir. Elektronlar atomu yörünge biçiminde bir veya birkaç kat kabuk şeklinde çevreler. En içteki ka-buk iki elektrona sahip olduğunda dolar. İlk kabuk dolduğu zaman, elektronlar ikinci kabuğu doldurmaya başlar. Bir atomun kimyasal davranışını belirleyecek en önemli yapısal özellik, dış kabuktaki elektron sayısıdır. Dış ka-buğu tamamen dolu olan bir madde, kimyasal reaksiyonlara girme eğiliminde değildir, stabildir (hareketsiz). Atomlar maksimum stabiliteye ulaşmak için, dış kabuğunu dolu hale getirmeye çalışırlar. Atomlar genellikle di-ğer atomlarla elektronlarını paylaşarak dış kabuklarını doldurmaya çalışır. Serbest radikaller dış yörüngede eşleş-memiş (çiftlenmemiş) tek bir elektronu bulunan kimyasal moleküllerdir. Bu özellikleri nedeniyle son derece değişken- dengesiz yapıda olduğundan, kolayca inorganik ve organik kimyasallarla reaksiyona girer. Bunlar hem organik hem de inorganik moleküller halinde bulunur. Diğer bileşiklerle süratle reaksiyona girerek, stabilite kazanmak için, gerekli elektronu kazanmaya çalışır. İşte serbest radikaller en yakın stabil moleküle saldırarak o moleküllün elektronunu çalarak zararlı etkisini gösterir. Serbest radikal tarafından saldırılan molekül, elektro-nunu kaybedip serbest radikale dönüşür. Süreç bir kez başlayınca ardışık zincirleme olaylar, canlı hücrenin yaşa-mının bozulmasıyla sonuçlanır. Hücrelerde oluştuğu zaman, hücresel proteinler ve lipidler olduğu kadar nükleik asidlerle de süratle etkileşek onları parçalar. Buna ek olarak serbest radikaller otokatalitik reaksiyonları başlatır. Serbest radikallerle reaksiyona giren moleküller, yeni serbest reaksiyonlara dönüşerek zincirleme hasarlara yol açar. Hücre içinde pekçok reaksiyon, serbest radikallerin oluşumundan sorumludur. Çeşitli reaksiyonlar sonucu bunlar ortaya çıkar. Bunlar aşağıda özetlenmiştir. 1- Hücre içi metabolik olaylar sırasında oluşan redüksiyon- oksidasyon (redoks) reaksiyonlarında görülür. Bu olaylarda; süperoksit radikali (O2-), hidrojen peroksitx (H2O2) ve hidroksil radikali (OH) gibi, önemli serbest radikaller oluşur. Hücre içinde oluştuğunda süratle çeşitli membran molekülleri olduğu kadar, proteinleri ve nük-leik asidleri (DNA) de parçalayarak hasar verir. Böyle DNA hasarları; hücre ölümünde, yaşlanmada ve malig-niteye dönüşümde söz konusudur. Normal koşullarda bu serbest radikaller, antioksidanlarla yok edilebilir. Eğer antioksidanlar yoksa veya serbest radikal üretimi çok artarsa, hücrelerde hasar kaçınılmaz olacaktır. 2- Radyasyon enerjisinin (ultraviyole ışık, X- ışınları) absorbsiyonunda iyonize radyasyonun etkisiyle hücre içindeki su hidrolize olur. Suyun bu radyolizisi sonucu hidroksil (OH) ve hidrojen (H) serbest radikalleri ortaya çıkar. 3- Demir ve bakır gibi değişimli metaller, bazı hücre içi reaksiyonlarda elektron alıp verme özellikleri nede-niyle serbest radikaller ortaya çıkar. 4- Ekzogenös (dış kaynaklı) kimyasal maddelerin enzimatik metabolizması sonucu karbon tetraklorid (CCl4) den, karbon tetraklorür (CCl3) serbest radikali oluşur. 5- Nitrik oksit (NO), endotel hücreleri ve makrofaj gibi, bazı tip hücreler tarafından sentez edilen, serbest radikal gibi davranan önemli bir kimyasal medyatördür. Nitrik oksit oksijenle reaksiyona girdiğinde, NO2 ve NO3 gibi, diğer serbest radikalleri de oluşturur. x Hidrojen peroksit (H2O2), kendisi serbest radikal değildir, bu nedenle reaktif oksijen türevi olarak adlandırılır. STRESE KARŞI HÜCRESEL ADAPTASYON Normal bir hücre, değişen çevre şartlarına göre, yapı ve fonksiyonunu (işlevini) belirli ölçülerde değiştirerek yaşamını devam ettiren bir mikro evrendir. Bu oluşum, stresler çok ciddi olmadığı sürece, kendini koruma eğilimindedir. Eğer hücre, aşırı fizyolojik strese veya bazı patolojik stimulasyonlara (uyarılara) maruz kalırsa, stresin devam etmesine rağmen, adaptasyon (uyum) göstererek sağlığını korur. Hücresel adaptasyon, normal hücre ile zedelen- miş hücre arasında kalan bir durumdur. Hücresel adaptasyonlar başlıca atrofi, hipertrofi, hiperplazi ve metaplazidir. Hücre adaptif gücü aşıldığında veya hiç adaptif yanıt sağlanamadı- ğında hücre zedelenmesi ortaya çıkar. Hücre zedelenmesi bir noktaya kadar reversibldir (geri dönüşlü); fakat ciddi veya kalıcı streslerle irreversibl (geri dönüşsüz) hale gelir ve hücre so-nuçta ölüme gider. İrreversibl zedelenme, hücre ölümüne yol açan, kalıcı patolojik değişiklik- leri. ifade eder. Reversibl hasardan, irreversibl hasara ne zaman geçtiği kesin olarak bilinme- mektedir. Bu bölümde özellikle patolojik olaylarda, hücre büyüme ve farklılaşmasıyla (diferansiyas-yon) ortaya çıkan adaptif değişikliklere değineceğiz. Bunlar; atrofi (hücre boyutunun küçül-mesi), hipertrofi (hücre boyutunun büyümesi), hiperplazi (hücre sayısının artması) ve meta-plaziyi (hücre tipindeki değişiklik) içermektedir. Ayrıca displazi (hücrelerde şekil bozukluğu) hipoplazi, atrezi, agenezis ve aplazinin anlamlarını açıklayacağız. Atrofi: Hücrenin madde kaybına bağlı olarak hacmının küçülmesi “atrofi” olarak bilinir. Atrofi, adaptif yanıtın bir şeklidir. Yeterli sayıda hücre etkilendiğinde, tüm doku veya organ hacmında küçülme olur ve organ atrofik şekle dönüşür. Gerçi atrofik hücrelerde fonksiyon azalmıştır ama bu hücreler ölü değildir. Atrofik hücre daha az mitokondria, myoflament ve endoplazmik retikulum içerir. Birçok durumda atrofiye, artmış bir otofaji (kendini yiyen) eşlik eder. Atrofinin nedenleri şunlardır: (1)İnaktivite atrofisi; iş yükünün azalması söz konusudur. Çalışmayan, fonksiyon görmeyen organ veya doku atrofiye uğrar. Uzun süre alçıda kalan ekstremitelerde kas atrofisi görülebilir. Felçlilerde, felçli taraf kaslarında inaktivite nedeniyle atrofi olur. (2)İnnervasyon (sinir uyarı) kaybı; poliomyelitisde olduğu gibi, innervasyon kay-bına bağlı meydana gelen paralizilerde söz konusu kas dokularında atrofiler görülür. Burada da fonksiyon kaybı söz konusudur. (3)Kanlanmanın azalması, (4)yetersiz beslenme, (5)endo-krin stimülasyon (uyarı) kaybı; menoposda hormon kayıpları örnek verilebilir ve (6)yaşlan-maya bağlı atrofiler meydana gelir. İleri yaşlardaki kişilerin beyinlerinde görülen atrofilere “senil atrofi” denir. Senil atrofi ve menoposda hormon stimülasyon kayıpları, fizyolojik atro-fiye örnektir. Patolojik atrofiye, innervasyon kaybı örnek verilebilir. Hipertrofi: Hipertrofi, hücrelerin hacımlarının artmasını tarif eder ve böyle bir değişiklik- te organın hacmı da büyüyecektir. Bu nedenle hipertrofiye organda yeni hücreler yoktur, yal- nızca büyük ve iri hücreler vardır. Hücre hacmının artımı, sıvı alımının artımı ile ilgili değil- dir. Sıvı alımıyla ilgili olanı, hücre şişmesi veya ödem olarak adlandırılır; fakat hipertrofide daha çok ultrastrüktürel komponentlerin (proteinler ve organeller) sentezinde bir artım söz konusudur. Hipertrofi, fizyolojik veya patolojik olabilir ve organdaki fonksiyonel artım veya spesifik hormonal stimülasyon, bunun oluşmasına neden olabilir. Gebelik anında, uterusun büyümesi, fizyolojik bir olaydır. Uterus düz kas hücrelerinde oluşan artım, hem hipertrofi ve hem de hiperplazi nedeniyledir. Patolojik hücresel hipertrofiye örnek, hipertansiyon veya aortik valvül hastalığı sonucu ortaya çıkan kardiyak büyüme gösterilebilir. Her bir myokard lifi hipertrofiye olarak, hücre büyümesi ve hacım artışı göstererek, bu artan yüke karşı, kalbin daha fazla bir güç ile pompalamasını sağlar. Kas kitlesinin büyümesi, bir sınıra ulaştıktan sonra, artan yükü kompanse edemez ve kalb yetmezliği ortaya çıkar. Bu safhada myokardiyal liflerde bir dizi dejeneratif değişiklikler ve hücre ölümü ortaya çıkar. Kalb ve iskelet kasında-ki çizgili kas hücreleri, en fazla hipertrofi gösterebilme yeteneğinde olan hücrelerdir. Belki de bu, hücrelerin artan metabolik gereksinimlere mitotik bölünme ve yeni hücre şekillenmesiyle 8 yanıt veremediğindendir. Hipertrofinin kesin mekanizması ne olursa olsun, Bunların en önem-lisi myofibriler kontraktif elemanlarının erimesi ve kaybıdır. Hiperplazi: Hiperplazi, bir doku veya organda hücre sayısındaki artışı belirtir ve böylelik- le volüm olarak da artış vardır. Hücreler, fonksiyonel gereksinim artmasına bir yanıt olarak nasıl hipertrofiye olursa, aynı şekilde stress altında kalınca veya stimüle edilince, mitotik bölünerek çoğalırlar. Bu şekilde organ veya dokuda hücre sayısının artmasına “hiperplazi” adı verilir. Hücre sayısı artması ile, organ veya dokunun büyümesi söz konusudur. Hiperplazi gösteren hücrelerin fonksiyonlarında artma olur. Özellikle bu, iç salgı gudde hücrelerinde belirgindir. Vücuttaki her hücre tipinin hiperplazik kapasitesi yoktur. Örnek; kalb ve iskelet kası ile sinir hücreleridir. Epidermis, intestinal epitel, hepatositler, fibroblastlar ve kemik iliği hücreleri hiperplaziye uğrar. Hiperplazi; fizyolojik ve patolojik olarak ikiye bölünebilir. Fizyolojik Hiperplazi: Fizyolojik hiperplazi de ikiye ayrılır. (1)Hormonal hiperplazi; en iyi örnek puberte (ergenlik) ve gebelikte; meme glandüler epitel proliferasyonu ve ayrıca gebelikte uterusda kas hücrelerinde hiperplazi ve hipertrofi görülür. Menstrüel siklusdaki “proliferatif faz” (endometrial proliferasyon) fizyolojik bir hiperplazidir. (2)Kompensatuvar hiperplazi; parsiyel hepatotektomi yaparak, karaciğer dokusunun bir parçasının çıkarılmasın-dan sonra, karaciğerin rejenerasyon kapasitesi ile yeni karaciğer hücreleri yapılır. Patolojik Hiperplazi: Patolojik hiperplazinin pek çok şeklinde, aşırı hormonal veya büyü-me faktörü stimülasyonu vardır. Normal menstrüel perioddan sonra, endometrial doku gudde-lerinde aşırı proliferasyon görülür. Bu endometrial proliferasyon esasda fizyolojik bir hiper-plazidir; fakat hormonal dengelerin bozulduğu bazı durumlarda (östrojen ve progesteron ara-sındaki balans) östrojenin artması durumunda, endometrium guddelerinde aşırı bir hücre artı-mı ortaya çıkar. Bu endometrial hiperplazi sonrası, kanser sürpriz olmamalıdır; çünki endo-metrial hiperplazilerde kanser riski vardır. Ayrıca, endometrial hiperplazi, anormal menstrüel kanamaların başlıca nedenidir. Prostat kanseri tedavisi için, östrojen hormonu verildiğinde veya karaciğer sirozunda oldu-ğu gibi, östrojenin inaktivite edilemediği durumlarda, hastalarda hiperöstrinizm (östrojen fazlalığı) ortaya çıkar. Bu gibi, erkek hastaların memelerinde büyümeler (jinekomasti) meyda- na gelir. Kanın kalsiyum düzeyindeki uzun süreli düşmeler, paratiroid salgılıklar üzerine uyarıcı etki yapar, paratiroid hiperplazisi (sekonder hiperparatiroidizm) saptanır. ACTH veril- mesi sonucu, sürrenal korteks hiperplazisi gelişir (Cushing sendromu)x. Patolojik hiperplaziye örnek olarak iltihabi iritasyon ve enfeksiyon hiperplazisini göstere- biliriz. Kötü yapılmış bir protez, alttaki dokuda epitel ve bağ dokusu olmak üzere hücre proli- ferasyonlarına neden olur. Bunlara “iltihapsal fibröz hiperplazi” denir. Protez vuruğu hiper- plazisi veya epulis fissuratum olarak adlandırılır. Hiperplazi, yara iyileşmesindeki bağ dokusu hücrelerinin verdiği önemli bir yanıt olabilir. Prolifere olan fibroblast ve kan damarı hücreleri bir onarım işlemine yol açarak bir granulasyon dokusunu oluşturur. Bu hücreler, fibroblast ve endotel hücreleri, büyüme faktörlerinin stimülasyonu (uyarısı) ile prolifere olarak hiperplazi- ye neden olur. Büyüme faktörlerinin stimülasyonu, keza human papilloma virus gibi bazı viral enfeksiyonlarda da hiperplazilere neden olarak karşımıza çıkabilir. Bu tür lezyonlara örnek, deride görülen bildiğimiz deri siğilleridir (verruka vulgaris). Gerçi hipertrofi ve hiperplazi tanımlamada iki farklı olaylarsa da, aynı mekanizma tarafından başlatılır ve pek çok durumda beraber oluşur. x Cushing Sendromu : Adrenokortikal hiperfonksiyonu, Cushing sendromuna neden olur. Bu fazlalığın nedenleri (1)adrenal bezinde (salgılığında) hiperplazi, (2)adenoma veya karsinoma gibi, tümörler (3)hastanın ağızdan uzun süre kortizon alması ve (4)hipofiz hiperfonksiyonu (ACTH hipersekresyonu) dur. Bütün bunlar, adrenal salgılığına aşırı salgı yaptırır. Klinik olarak, Buffalo tipi şişmanlık, düşük omuz, kalın boyun, aydede yüz hastalığın özelliğidir. Karın derisinde çizgilenme, akne, osteoporoz, hipertansiyon görülür. Kadınlarda hirsutizm (kıllanma) amenore ve mental bozukluk, diğer özelliklerdir. Metaplazi: Metaplazi adült (matür= erişkin) bir hücre tipinin (epitelyal veya mezanşimal) yerini, diğer bir adült hücrenin alması şeklinde olan reversibl bir değişikliktir. Olumsuz çevre koşullarına karşı dayanabilmek için, strese duyarlı hücrelerin daha dirençli hücre tipine dönü-şerek gösterdiği adaptif cevaptır. Bu tür adaptif metaplaziye en güzel örnek, “skuamoz meta-plazi” dir. Sigara (içme gibi, kötü) alışkanlığı olan kişilerde solunum yollarındaki (trakea ve bronş epiteli) silli- silendirik epitel yerini, stratifiye skuamoz epitel hücrelerinin almasıdır. Tükrük salgılığı kanalı ve safra kesesi kanalı taşlarının varlığında olan kronik iritasyon, bura-lardaki sekretuvar silendrik epitelin yerini nonfonksiyonel stratifiye skuamoz epitel alabilir. A vitamini yetersizliği de, solunum yolu epitelini skuamoz metaplaziye uğratır. “Müköz meta-plazi” kronik bronşitte psödostratifiye silli solunum yolu epiteli, mukus salgılayan basit silen-dirik epitele dönüşebilir. Metaplazi mekanizması, adaptif bir yanıt olarak, mezankim hücrele-rinde de oluşur. Fibroblastlar kemik ve kıkırdak yapan osteoblast veya kondroblastlara dönü-şebilir. Örneğin; osteoid ve kemik dokusu yumuşak dokuda özellikle zedelenme alanında nadiren oluşur, buna “osseöz metaplazi” denir. Hipoplazi: Özel yapısı aynı kalmakla beraber, normal boyutuna ulaşamayan organlar için kullanılan bir terimdir. Bu bir eksik gelişmedir. Organın görünümü normal, fakat hacım bakı- mından küçüktür. Beyinin tam gelişemeyerek küçük kalmasına “mikrosefali” adı verilir, bu hipoplaziye bir örnektir. Gelişmesini tamamlamamış ve küçük kalmış bir diş, hipoplazik diş olarak adlandırılır. Aplazi: Tam gelişememiş bir organı tarif eder. Bir organın çok küçük ve biçimsiz olması durumudur. Bir taraftaki böbreğin taslak halinde bulunmasıdır. Agenezi: Bir organ veya dokunun konjenital bir bozukluk nedeniyle taslak halinde bile bulunmamasına “agenezis” denir. Bir organa ait doku kalıntılarının olmaması durumudur. Dental agenez olarak, çok nadir de olsa rastladığımız lateral veya üçüncü molar dişlerdeki hiç gelişememe örnekleri vardır. Atrezi: Barsak karaciğer ve safra kanalı gibi, duktal veya lümenli organların kanal açıklı-ğının olmamasıdır. REVERSİBL VE İRREVERSİBL HÜCRE ZEDELENMESİNDE IŞIK MİKROSKOBİK DEĞİŞİKLİKLER Klasik patolojide öldürücü olmayan (nonletal) zedelenme sonucu ortaya çıkan morfolojik (yapısal- biçimsel) değişikliklere “dejenerasyon (yozlaşma)” olarak söz edilirdi; fakat bugün bunlara daha basit olarak, reversibl (geri dönüşlü) değişiklik adı verilmektedir. İki ana mor-folojik değişiklik şeklinde karşımıza çıkar: (1)Hücresel şişme ve (2)yağlanma. Hücresel Şişme: Hücre içi sıvı ve iyon dengesinin bozulduğunda görülür. Hidropik de-ğişme veya vakuoler dejenerasyon olarak da adlandırılan hücresel şişme, hücrede hemen her tip hasarın ilk göstergesi ekstrasellüler suyun, hücre içine geçmesi neticesi olan hücredeki büyüme “hücresel şişme” olarak bilinir. Hücre şişmesi, reversibl bir olaydır ve hafif hasarın (zedelenmenin) işaretidir. Makroskopik olarak hücresel şişmede organlar büyümüştür; sert ve soluk görünümlü olup, ağırlıkları artmıştır. Mikroskopik olarak hücre sitoplasması bulanık, nükleus (nüve= çekirdek) ise soluk görünümlüdür. Yağlı Değişme (Yağlanma- Steatozis): Yağlı değişme parankimal hücrelerde anormal yağ (trigliseritler, kolesterol ve kolesterol esterleri) birikimini belirtir. Yağlanma ise, daha az görülen bir reaksiyondur. Hücre içindeki küçük ve büyük vakuoller, hücrede lipid artışını gösterir. Yağlı değişme öldürücü olmayan (reversibl) zedelenmenin belirtisidir; fakat etken ortadan kaldırılmazsa, bazen öldürücü olabilir. Yağ metabolizmasının ana organı olması nede-niyle yağlı değişme, en sık karaciğer dokusunda görülür; fakat kalb, böbrek, kas ve diğer organlarda da oluşabilir. Karaciğerdeki yağlı değişmenin en önemli nedeni, alkol bağımlılığı-dır. Alkol bir hepatotoksiktir. Yağlı karaciğer daha sonra, siroz olarak adlandırılan ilerleyici karaciğer fibrozisine yol açabilir. Yağlı karaciğere neden olan diğer etkenler; obesite, toksin-ler, protein malnutrisyonu, diyabetes mellitus ve anoksidir. İskemik ve Hipoksik Zedelenme İskemi veya dokudaki kan akımı azalması, klinik tıpta hücre zedelenmesinin en yaygın görülen nedenidir. Hipoksinin ilk etkilediği yer, hücrenin solunum merkezidir (aerobik solu-numu) ki burası, mitokondrilerdeki oksidatif fosforilasyonun olduğu yerdir. Oksijen basıncı düştükçe ATP nin hücre içi yapımı, bariz bir şekilde azalır ve durur. ATP kaybı, hücrede genel olarak bir çok sistemi etkiler. Hücre dışı kalsiyumun, hücre içi girişine neden olur. Hipoksi ve ATP azalmasının en erken sonuçlarından birisi, hücresel şişmedir (hücresel ödem). Protein normalde hücre içinde daha fazla olduğu için, hücre içi osmotik kolloidal basınç yük-sektir. Diğer taraftan sodyum (Na) ve diğer bazı iyonların konsantrasyonu dış ortama göre, hücre içinde daha düşüktür. İntrasellüler sodyumun azlığı, hücre membranında ATP enerjisine dayanan “sodyum pompası” ile sağlanır. Potasyum (K) konsantrasyonu ise, dış ortama göre hücre içinde daha yüksektir. ATP azalmasıyla bu sistem bozulur. Potasyum dışarı çıkmaya, sodyum hücre içine girmeye başlar. Sodyum ile birlikte hücre içine su girişi olur. Sonuçta iç ve dış ortam dengeye vardığında, hücre içinde normalden çok fazla su bulunacaktır ve hücre şişecektir. Hücresel Yaşlanma: Bu deyim; hemen daima subletal (reversibl) zedelenmenin progresif (ilerleyici) birikimleri, hücresel fonksiyonla uyum içinde davranır ve hücre ölümüne yol açabilir veya en azından hücrenin bir zedelenmeye karşı verdiği yanıt kapasitesindeki azalma- yı anlatır. Yaş ile pekçok hücre fonksiyonu progresif olarak azalır. Mitokondrial oksidatif Fosforilasyon (aerobik solunum), strüktürel, enzimatik ve reseptör proteinlerinin sentezindeki gibi, giderek azalır. Yaşlanan hücrelerde besin alımlarında ve kromozomal hasarların onarı-mında belirgin azalmalar görülür. Yaşlı hücrelerin ultrastrüktürel yapılarında da morfolojik değişiklikler gözlenir. Şekil bozukluğu gösteren nüveler, pleomorfik vaküollü mitokondriler, endoplazmik retikulumda azalma ve lipofussin pigment birikimi vardır. Hücresel yaşlanmada serbest radikal hasarı, önemli hipotezlerden birisidir. İyonizan radyasyon olarak tekrarlayan çevresel etkilenme, antioksidan savunma mekanizmalarının (örn vitamin E, glutatyon peroksi- daz) progresif bir şekilde azalması veya her ikisi birden beraberce etki ederek serbest radikal hasarı oluşturur. Lipofussin birikimi yaşlanmış hücrelerde bu tür hasarın açıklayıcı bir göster- gesidir; fakat pigmentin kendisinin hücreye toksik olduğuna dair deliller yoktur. Serbest radi- kaller mitokondrial ve nükleer DNA hasarını harekete geçirebilir. Zedelenmeye Karşı Hücre İçi Yanıtlar Lizozomal Katabolizma (Parçalama): Primer lizozomlar esas fonksiyonu sitoplazma içi sindirim olan, çok sayıda ve çeşitte sindirici (hidrolitik) enzim içeren, membranla çevrili vezi- küllerdir. Her hücrede bulunursa da özellikle fagositik aktivite gösteren hücrelerde (makrofaj, lökosit) bol miktarda bulunur. Bugüne kadar 50’den fazla hidrolitik (parçalayıcı) enzim tanımlanmıştır. Lizozomal örneklerden bazıları; asid hidrolaz (organik materyale örn. Bakteri-ye karşı rol oynar), lizozim (lökositlerde olduğu kadar makrofajlarda da bulunur. Mikroorga-nizmaların hidrolizinde rol oynar), proteaz (proteinlerin parçalanmasına neden olur; elastin, kollagen ve bazal membranda bulunan proteini yıkar) ve diğerleri asit fosfataz, glukoronidaz, sülfataz, ribonükleaz, deoksiribonükleaz, elastaz, kollagenaz ve lipaz’dır. Lizozomlar tarafın-dan parçalanma şu iki yoldan birisiyle oluşur. Otofaji: Hücrenin kendi içeriğinin (komponentler), yine hücrenin kendi lizozomları tara-fından sindirilmesidir. Kendini yeme anlamındadır. Pekçok durumda mitokondri ve endoplaz-mik retikulum gibi, hücre organalleri zedelenmeye maruz kalırsa hücre normal fonksiyonları-nı koruyabilmek için, bunları yok edebilmelidir. Zedelenmiş veya yaşlanmış organellerin belli bir düzen içinde yok edilmesi bir hücresel yenilenmedir. Ayrıca besinsiz kalan hücrenin kendi öz içeriğini yemek suretiyle kendi yaşamını sürdürmesi olayıdır. Otofaji, özellikle atrofiye giden hücrelerde belirgindir. Heterofaji: Bir hücrenin özellikle makrofajın, dış ortamdan hücre içine aldıkları maddeleri sindirmesi olayına, heterofaji denir ve otofajinin karşıtıdır. Bir materyalin dış çevreden alın-ması olayı, genelde “endositozis” olarak adlandırılır. Büyükçe partiküler materyal için, “fago-sitozis” ve küçük solubl (eriyebilir) makromoleküller için de “pinositozis” terimi kullanılır. Dış ortamdan alınan partikül hücre içine girdiğinde, vakuolle çevrilir. Bunlar fagozom (fago-sitik vakuol) olarak adlandırılır. Bu fagozomlar, primer lizozomlarla kaynaşır, artık sekonder lizozom (fagolizozom) dur. Heterofaji, genelde “profesyonel fagositler” olarak bilinen lökosit (PNL -mikrofaj) ve makrofajlarca (histiosit) yapılır. Lökositler bakterileri, makrofajlar da hücre debrilerini sindirir. Sindirilmiş atıkların hücreden dışarı atılma olayına “ekzositozis” denir. N E K R O Z İ S Canlı organizmada (doku ve organ) ışık mikroskopi ile saptanan, hücre ölümü sonucu ortaya çıkan morfolojik değişikliklere “nekroz” denir. Nekrozis, Yunan dilinde ölüm anla-mındadır. Kan gereksinimi kesintilerinde (iskemik zedelenme) veya belli bazı toksinlerle karşılaşılması durumunda ortaya nekroz çıkar. Nekrozdaki morfolojik görünüm, aslında aynı anda oluşan iki olayın sonucu olabilir: (1)Hücrenin enzimatik yıkımı (organellerin parçalan-ması) ve (2)makromoleküllerin denaturasyonu (proteinlerde yapı değişiklikleri). Bir hücrenin enzimatik sindirimi, kendi lizozomal enzimlerinden kaynaklanıyorsa “otoliz” olarak tanımla-nır. Hücre kendi- kendini sindirir. Otosindirimde nekroz meydana gelir. Postmortem otoliz, tüm organizma öldükten sonra oluşur ve bu bir nekroz değildir. Çevreye gelen bakteri ve lökosit lizozomlarından türeyen hidrolitik (katalitik) enzimlerle olan sindirime de “heteroliz” adı verilir. Bu şekilde de hücre dıştan gelen enzimatik etki ile nekrotik olur. Biyopsi ve rezek-siyon gibi, cerrahi işlemlerle vücuttan alınıp fiksatife (%10’luk formalin) konulan doku parça-sındaki hücreler de ölüdür; fakat nekrotik değildir. Fiksatifler dokuların yapısal bütünlüğünü (morfolojiyi) korur. Hücre ölümünün temel işaretleri nüvede bulunur. Ölüme giden hücrelerde nüve değişiklik- leri şu üç görünümden birisini gösterir. Bunların hepsi kromatin ve DNA nın parçalanmasına bağlıdır. Nüve büzüşür ve küçülür, kromatin yoğunluğu artmıştır. Bazofilik nüve olarak söz edilir, (1)piknozis olarak adlandırılır. Piknozis apoptotik hücre ölümünde de görülür. Zaman içersinde piknotik nüvede parçalanma olayı meydana gelir. Nüve küçük düzensiz parçacıklara bölünmüştür (2)karyorekzis olarak adlandırılır ve (3)karyolizis olarak bilinen nükleer mater-yallerin çözülme ve erimesi söz konusudur. Kromatinin bazofilliği solabilir. Sonuçta, nekrotik hücrede nüve tümüyle kaybolur. Bu arada sitoplazmik değişiklikler de görülür. Sitoplazmada homojenizasyon ve belirgin eosinofili artışı vardır. Artık bu safhada nekrotik hücre; çekirdeği olmayan asidofilik bir atığa dönmüştür. Geleneksel olarak birçok farklı tiplerde nekrotik doku görünümleri tarif edilmiştir. Koagülasyon Nekrozu: En çok görülen nekroz tipi, koagülasyon nekrozudur. Genel ola-rak doku yapısı korunmuştur. Nekrotik doku içinde, hücre elemanları hayalet hücre şeklinde görüntü verir, hücrelerin dış hatları seçilebilir. Nekrotik alan asidofilik opak görünümlüdür. Bu nekroz tipi, daha çok kan akımının kesilmesiyle iskemi (hipoksi) sonucu ortaya çıkan enfarktlarda oluşur. Bakteriyel toksinler, viruslar ve iyonize radyasyon gibi, pek çok etken de neden olabilir. Bu tip nekroz iltihabi yanıtı harekete geçirir. Hasarlı doku fagositler tarafından ortadan kaldırılır ve bölge onarım veya rejenerasyona uğrar. Kalb (myokard enfarktüsü) ve böbrek gibi, organlarda daha sık görülür. Kazeifikasyon Nekrozu: Bu nekroz, farklı- özel bir nekroz tipidir. Başlıca tüberküloz enfeksiyonlarında oluşur. Bu nekroz tipinin karakteristik makroskopik yapısı, bir çeşit peyniri hatırlatan yumuşak, parçalanabilir gri- beyaz görünümde olmasıdır. Bu görünümü nedeniyle “kazeös” terimi kullanılır. Mikroskopik olarak hiçbir hücre detayı görülmez, dokunun yapı özellikleri tamamen silinmiştir. Yerine amorfös, granüler ve eosinofilik bir doku geçmiştir. Likefaksiyon Nekrozu: Bu tip nekroz, iki durumda karşımıza çıkar. Bunlardan biri enzim sindiriminin baskın olduğu durumlarda söz konusudur. Güçlü hidrolitik enzimlerin aksiyonu sonucu oluşur. Başlıca fokal bakteri (özellikle pyojenik mikroorganizmalar) enfeksiyonların- da görülür. Dokuda belirgin yumuşama ve likefaksiyon vardır; abse buna bir örnektir. Hücre ölümü sonrası bölgede bulunan bakteri ve lökositlerin hidrolitik enzimleri ile çevre doku hüc- relerinin otolizi ve heterolizisi sonucu ortaya çıkar. Lökositlerle dolu abse kavitesi oluşturarak doku defekti meydana getirir. Püy’ün oluşmasıyla karakterli süpüratif enfeksiyondur. Diğeri, santral sinir sisteminde iskemi sonucu oluşan hücre ölümü, likefaksiyon nekrozudur. Hemorajik Nekroz: Venöz drenajda blokaj olduğu dokularda ekstravaze kırmızı kan hücrelerinin çevreyi kaplaması sonucu, dokuların nekroze olmasıdır. Gangrenöz Nekroz: Çoğunlukla diyabetli kişilerde, özellikle alt ekstremitelerde ayak ve ayak parmaklarında görülür. Dokuda iskemik hücre ölümü ile ortaya çıkan koagülasyon nek- rozunun özel bir formudur. Bölgede mevcut bakterilerin ve çevreden gelen lökositlerin like- faktif aksiyonunun oluşur. Koagülasyon nekrozu ön planda olduğu zaman, bu olay gelişir. İskemiye neden olan damar tıkanıklığı, lökosit göçünü engellerse, nekroza uğrayan hücrelerin parçalanması önlenir ve ortadan kaldırılmayan nekrotik hücreler mumyalaşır. Buna “kuru gangren” denir. Salim doku ile sınırı belirgindir. Nekrotik bölgeye bakteri invazyonu ve löko- sit göçü olursa, likefaksiyon nekrozu gelişir, “yaş gangren” terimi kulanılır. Yaş gangrene, putrefaksiyon (kokuşma) nekrozu da denir.Vincent spiroketleri, fusiform basiller ve daha bazı mikroorganizmaların eklenmeleri söz konusudur. Beslenme defektli direnci düşük çocuklarda orafasiyal dokularda ortaya çıkan “noma” (gangrenöz stomatit) olarak adlandırılan lezyon da bir çeşit yaş gangrendir. Noma (Gangrenöz Stomatitis- Şankrum Oris): Oral ve fasial dokularda destrüktif yapısı ile karakterize, süratle yayılan daha çok 2- 5 yaşlardaki beslenme defektli veya debilite (yıkıcı) sistemik hastalıklara sahip çocuklarda görülen nadir bir hastalıktır. Kişinin genel sağlığıyla belirgin bir uyum gösteren doku nekrozu, başlangıçta fuziform basiller ve Vincent spiroketleri gibi, anaerobik bakterilerin invazyonu ve sonrasında stafilokokus aureus, streptokokus pyo-gens gibi, diğer çeşitli mikroorganizmalar tarafından invazyona uğrayan spesifik bir enfeksi-yondur. Gerçi pnömoni, sifiliz, tüberküloz, lösemi ve sepsis gibi, zayıf düşürücü sistemik has-talıklar yanısıra malnütrisyon, en sık görülen predispozan faktörlerdir. Noma çok nadir görülür. Gelişmemiş ülkelerde, özellikle malnütrisyon veya protein defek- ti gösteren durumlarda ortaya çıkar. Lezyon özellikle gingival mukozada küçük ağrılı bir ülser şeklinde başlar. Çevre dokuya süratle yayılır. Alttaki yumuşak dokuya penetre olan, sonunda yüz derisini perfore eden akut gangrenöz bir hastalıktır. Nekrozlara bağlı olarak meydana ge- len doku kayıpları sonucu, kemik dokusu ve dişler açığa çıkar. Etkilenen bölgede dişler dökü- lür. Noma, çok sınırlı ve daha benign yapıda olan “akut nekrotizan ülseratif gingivitis”e (ANUG) bir çok özellikleriyle benzemektedir. Her ikisinde de etken aynı mikroorganizmalar-dır ve olay, doku nekrozu ile sonuçlanır. Ayrıca her iki lezyonda da bağışıklık yönünden düşük (immünosüprese) kişiler söz konusudur. Gerçi nadir de olsa, ANUG’dan noma’ya dönüşen olgular da vardır. Son zamanlarda yapılan araştırmalarda, HIV/AIDS’li hastalarda noma’nın görülme sıklığının artmış olduğu gözlenmiştir. Mikroskopi; nonspesifik yoğun nek-roz ve belirgin yaygın bir iltihabi hücre reaksiyon gösterir. Tedavi; enfeksiyonun kendisi kadar, hastalığa neden olan predispozan faktörlerin de yok edilmesini içermelidir. Uygulanan antibiyotik tedavisi yanında, hastanın sıvı- elektrolit denge- sinin ve beslenmesinin sağlanması gerekir. Eğer çevre dokuda yoğun destrüksiyon varsa, do- kudaki nekrotik debrilerin temizlenmesi gerekir. Noma’da mortalite; antibiyotiklerden önce yaklaşık %75 idi. Gerçi bu lezyon hala ciddi bir problemdir. “Gazlı gangren”; özellikle Clostrdium welchii’nin etken olduğu, sporlu anaerobik Clostri-dia grubunun yaptığı spesifik bir enfeksiyondur. Klostiridya sporlarının bulaştığı delici yara-lanmalarda, güçlü ekzotoksinler ile proteolitik enzimler çevre dokuyu haraplar, hatta fatal (öldürücü) olabilir. Yağ Nekrozu: Yağ dokusu hasarı iki şekilde oluşur. 1)Travmatik yağ nekrozu; meme gibi yağ içeren dokularda oluşan şiddetli zedelenme sonucu ortaya çıkar. 2)Enzimatik yağ nekrozu (lipolizis); pankreasdaki ağır bir iltihabın sonucu ortaya çıkan, akut hemorajik pankreatitisin komplikasyonudur. Proteolitik ve lipolitik pankreatik enzimlerinin aksiyonu sonucu, yağ do-kusunda ortaya çıkan bir tip nekrozdur. Fibrinoid Nekroz: Bu gerçek bir nekroz özelliği göstermez. Bazı hipersensitivite (aşırı duyarlık) reaksiyonlarında görülür. Genellikle immünolojik olarak zedelenen damar duvar- larında koyu eosinofilik boyanan fibrine- benzer homojen görünümlü bir madde birikimiyle karakterlidir. Bu birikim; fibrin, immünoglobulin ve plasma proteinlerinden oluşur. A P O P T O Z İ S Apoptozis, köken olarak apo (ayrı), ptozis (düşen) kelimelerinden oluşmuştur. Apoptoz (kopma, düşme) sonbaharda yaprak dökümünü tanımlayan bir kelimedir. Farklı ve önemli bir hücre ölümü biçimi olan apoptoz, proğramlanmış veya seçici hücre ölümüdür, hücre intiharı ile eş anlamlı olarak kullanılmaktadır. Bir grup içinde belli bazı hücrelerin kendi- kendilerini yok ettikleri proğramlı bu ölüm biçimi, diğer bir hücre ölümü olan nekrozdan farklı olduğu bilinmelidir. Nekroz, yalnızca patolojik durumlarda ortaya çıkar ve iltihabi reaksiyon mevcut-tur. Apoptoz, hiçbir zaman iltihabi reaksiyona neden olmaz. Organizmanın dengeli yaşamını sağlayan apoptoz, fizyolojik olduğu kadar patolojik olaylarda da rol oynamaktadır. Önemi, biyolojik olaylarda gereksiz ve zararlı hücrelerin yok edilişini sağlamasından, organizmanın kendi iç dengesinin devamlılığına katkıda bulunmasından ileri gelmektedir. Apoptoz, fizyolojik ve patolojik olmak üzere pek çok durumda karşımıza çıkar. Fizyolojik Apoptoz : 1-Embriyogenezis sırasında aşırı yapılmış hücrelerin proğramlı olarak ortadan kaldırılması olayında görülür. 2-Erişkinlerde hormon bağımlı dokuların gerilemesinde (involüsyon═ organ atrofisi) görü-lür: Postlaktasyonel (sütten kesilmiş) meme salgı hücrelerinde regresyon, menopozda ovarian follikül atrofisi, menstrüel siklusda endometrium hücrelerindeki ölüm, örnektir. 3-Prolifere hücre topluluklarındaki hücre kayıpları; buna örnek barsak kriptlerindeki epitel hücre sayılarının sabit tutulmaları için, hücre ölümü örnek verilebilir. 4-İltihabi yanıtın sonlandırılması; ekstravazasyondan sonra, iltihabi dokuda görevini ta-mamlamış lökositlerin ölümü, apoptozis ile olmaktadır. 5-Sitotoksik T lenfositler tarafından oluşturulan hücre ölümü: Virus ve tümör hücrelerine karşı oluşturulan bir savunma mekanizmasıdır. Bunların öldürülerek elimine edilmelerini sağ- lar. Patolojik Apoptoz : 1-DNA hasarı: Radyasyon, sitotoksik antikanser ilaçları, aşırı ısı (soğuk, sıcak) ve hipoksi, gibi, nekroz oluşturan bu etkenler, düşük dozlarda uygulandığı zaman hücre intiharını tetikler. DNA, direkt olarak veya serbest radikaller aracılığıyla zedelenebilir. Eğer hasar onarılamazsa, interensek (içsel) mekanizmalar tetiklenerek apoptoz indüke edilir. DNA daki mutasyonların malign değişme riski bulunduğu için, bu durumdaki hücrelerin apoptoz ile yok edilmeleri bir kazançtır. Apoptozda, tümör süpresör (baskılayıcı) gen olan TP53 (p53) ün aracılığı söz konu-sudur. Bir antionkogen olan bu genin (TP53), apoptozu harekete geçiriçi bir etkisi vardır. 2-Hatalı sarmalanmış proteinlerin birikimi. Gen mutasyonları ve serbest radikaller sonucu ortaya çıkan bu proteinler, endoplasmik retikulumda aşırı birikir ve hücrenin apoptotik ölü-müne neden olur. 3-Hücre zedelenmesine neden olan bazı infeksiyonlar, özellikle viruslar, apoptotik ölüme neden olur. 4-Paranşimal organlarda (pankreas, tükrük salgılığı ve böbrek) kanal tıkanmalarından son-ra ortaya çıkan patolojik atrofi. Apoptoz Mekanizması ve Morfolojisi Bu tip hücre ölümünün morfolojik yapısı, koagülasyon nekrozundan farklıdır. Apoptoz da gözlenen başlıca morfolojik değişiklikler, en iyi biçimde elektronmikroskopi ile gözlenebi- lir. Hücre, su ve elektrolit kaybı ile birlikte yapısal elementlerinin yoğunlaşması sonucu dansi-tesinde artma meydana gelir ve volümlerinin yarısını kaybeder ve hacım olarak küçülür. Apoptoz ışık mikroskobunda tanınabilir. Histolojik olarak tek hücre veya hücre gruplarında hematoksilen- eosin ile boyanmış kesitlerde yoğun eosinofilik sitoplazma içinde, yoğun nük- leer kromatin parçalarına sahip, yuvarlak veya oval kitleler olarak görülür. Nüve kromatini yoğundur (piknotik) ve sonuçta karyoreksiz oluşur. Bu sırada hücre süratle büzüşür, önce sito- plazmik tomurcuklar sonra, parçacıklar şeklinde beliren “apoptotik cisimcikler” oluşur. Bun-lar membranla çevrili nükleer ve sitoplazmik organeller içeren parçacıklardır. Bunlar süratle makrofajlar ve komşu doku hücreleri tarafindan fagosite edilir. HÜCRE İÇİ BİRİKİMLER Bazı koşullar altında normal hücreler, anormal miktarlarda çeşitli maddeler biriktirebilir. Bu maddelerin birikimi geçiçi veya kalıcı olabilir. Bunlar hücreye zarar vermeyebilir veya bazen toksik olabilir ve hücrede ciddi zedelenme yapabilir. Maddelerin birikim yeri sitoplaz- ma veya nüvedir; sitoplazmada en çok lisosomlardadır. Bu intrasellüler birikimler üç grupta incelenir: (1)Normal endogenös madde, normal miktarlarda üretilir; fakat bunu kullanacak metobolizma hızı yeterli değildir (normal bir maddenin çok fazla birikmesi). Buna örnek “karaciğer hücrelerinde görülen yağlı değişme” verilebilir. Ayrıca hücre içinde su, glikojen ve protein birikimleri, örnek verilebilir. (2)Anormal endogenös madde birikir; çünki bu endoge- nös maddeyi metabolize edebilecek enzimlerde defekt söz konusudur. Bunun önemli nedeni doğuştan varolan genetik enzimatik defektir ve bu metabolitin parçalanmasında yetersiz olur. Sonuçta hücre içi birikimler ortaya çıkar. Bunlar, “depo hastalıkları” olarak tanımlanır. Tay- Sacks hastalığında gangliosid, Gaucher hastalığında glukoserebrosid ve Niemann- Pick hasta-lığında da sfingomyelin birikimleri, örnek verilebilir. (3)Hücreye dışarıdan alınan anormal ekzojen madde depolanmasıdır. Bunları parçalayıp yok edecek yeterli metabolizma yoktur ve diğer alanlara da taşınamadığı için, bu birikimler ortaya çıkar. Solunum yoluyla alınan kar-bon- kömür veya silika partiküllerinin akciğerde birikimi ve tatuaj (döğme) pigmentleri buna verilebilecek en güzel örnekleridir. Bu pigmentler makrofajlardaki fagolisosomlarda dekatlar-ca kalabilir. Lipidler: Sayfa 11 de yağlı değişmeyi (yağlanma) tekrar okuyunuz. Kolesterol: Makrofajlar, iltihabi bir alandaki nekrotik hücrelerin lipid artıklarını fagositik aktiviteleri ile tutarlar. Bu da bir çeşit hücre içi lipid birikimidir. Bu hücrelerin sitoplazmaları, küçük lipid vakuolleri ile dolar ve köpüksü bir görünüm alır. Bunlara “köpük hücreleri” adı verilir. Aterosklerozda düz kas hücreleri ve makrofaj sitoplazmaları, lipid vakuolleri (koleste- rol) ile doludur. Bunlara aterosklerotik plak denir. Proteinler: Lipid birikimine oranla çok daha nadir görülür. Hücreler içindeki protein fazlalığı, morfolojik olarak sitoplazmada görülebilen pembe renkli hyalin damlacıklar şeklin-dedir. Hücre içindeki protein birikimi; (a)hücrenin aşırı proteine maruz kalıp, hücreye alınma-sı şeklinde olur veya (b)hücrede protein sentezinin aşırı yapılması şeklindedir. Bu birikim şe-killerine örnek vermek istersek; böbrek, albumini glomerüllerden filtre ederken, proksimal tüplerden az bir kısmını tekrar geri emer. Aşırı proteinüriye (idrarda fazla protein kaybı) neden olan böbrek hastalıklarında (glomerülonefritler), haliyle protein daha fazla miktarda reabsorbsiyona uğrayacaktır. Bu protein reabsorbsiyonu nedeniyle tüp epitel hücrelerinde aşırı birikme meydana gelir. Plasma hücrelerinde muhtemelen antijen uyarılarına yanıt olarak gra-nüllü endoplasmik retikulumda sentezlenen immünoglobulin birikimi olursa, “Russell cisim-ciği” olarak adlandırılan homojen eosinofilik inklüzyonlar (cisimcikler) görülür. Glikojen: Glikoz veya glikojen metabolizma bozukluğu olan hastalıklarda hücre içinde aşırı miktarda glikojen birikimi görülür. Glikojen birikimini, su veya yağ vakuollerinden ayır- mak gerekir. Glikojen, sitoplazmada PAS pozitif şeffaf (saydam) vaküoller şeklinde görülür. Diyabetes mellitus (şeker hastalığı), glikoz metabolizma bozukluğunun başlıca örneğidir. Bu hastalıkta glikojen; karaciğer hücreleri, pankreasdaki Langerhans adacıklarındaki beta hücre-leri ve kalb kası hücrelerinde (kardiyak myosit) olduğu kadar, böbrek tüp epitellerinde de biri- kir. Ayrıca “glikojen depo hastalıkları” veya “glikogenoz”lar olarak adlandırılan, birbiriyle yakın ilişkili bir grup genetik hastalıklarda hücre içinde glikojen aşırı birikir. Bu hastalıklarda glikojenin, yapım ve yıkımıyla ilgili enzim defekti nedeniyle metabolize edilemez ve aşırı birikim nedeniyle, sekonder hücre zedelenmesi ve hücre ölümü ortaya çıkar. Hyalin Değişiklik Hyalin terimi; hücre içi birikimin veya hücre incinmesinin spesifik işeretinden daha çok, tarif edici bir terim olarak kullanılır. Hücre içinde veya ekstra boşluklarda hyalin olarak tanımlanan değişiklikler hematoksilen- eosin ile boyanan rutin histolojik kesitlerdeki homoje- nös, camsı, saydamsı pembe görünümde madde birikimleridir. Bunlar intrasellüler birikimler veya ekstrasellüler depositler olarak tarif edilir. İntrasellüler hyalini değişikliklere örnekler şunlardır: (1)Aşırı proteinüri de, böbrek tüp epitel hücrelerinde geri emilen protein, hyalin damlacıklar şeklinde görülür. (2)Plasma hücrelerinde küresel hyalin depositler şeklinde immunoglobulin birikimleri olur (Russell cisimcikleri). (3)Bir çok viral enfeksiyonda, nüve veya sitoplazmada hyalin inklüzyonlar görünümünde oluşumlar vardır. Bunların bir kısmı, viral nükleoprotein birikimleridir. “İnklüzyon cisimcikler”i olarak adlandırılır. (4)Alkoliklerin karaciğer hücrelerinde “alkolik hyalin” denilen hyalin inklüzyonlar görülür. Ekstrasellüler hyalini analiz etmek bir dereceye kadar güçtür. Eski skar (nedbe) yerindeki kollagen fibröz doku, hyalinize bir görünüm alır. Uzun süren hipertansiyonda ve diyabetes mellitusda damar duvarları özellikle böbrek, hyalinize bir şekil alır. Ekstrasellüler hyaline diğer bir örnek, kronik haraplanmaya neden olan böbrek glomerüllerindeki hyalindir. Amiloid de Hematok-silen- eosin boyasında, hyalini bir görünüm verir. Görüldüğü gibi, çok sayıda ve birbirinden farklı mekanizmalar bu değişikliğe neden olabilir. Hyalini değişiklik görüldüğünde, etyoloji-deki farklı patolojik durumlar nedeniyle lezyonun tanımlanması önem arzeder. PİGMENTLER Pigmentler renkli maddelerdir, Latince boya- renk anlamına gelir. Melanin gibi, hücrenin normal içeriği olabilir, hücrenin içinde sentez edilir (endojen pigment). Diğer bir bölümde ise, bazı durumlarda organizmaya dış çevreden gelen birikimlerdir (ekzojen pigment). En sık görülen ekzojen pigment, karbon veya kömür tozudur. Bunlar medeni yaşamın en önemli hava kirliliği etkenleridir. Büyük sanayi şehirlerinde yaşayanlarda görülebildiği gibi, asıl kö- mür madenlerinde çalışan işçilerde çok belirgindir. Solunumla alındığında alveolar makrofaj- lar tarafindan tutulup, bölgesel trakeo- bronşial lenfatik kanallardan lenf düğümlerine taşınır. Akciğer dokusunun bu pigment birikimi ile kararması “antrakozis” olarak adlandırılır. Kömür tozu birikimleri, fibroblastik reaksiyona neden olarak anfizem ve hatta ciddi bir akciğer toz hastalığı olan “kömür işçisi pnömokonyozu” adı verilen akciğer patolojilerine neden olur. İnhalasyonla alınan İnorganik tozların cinsine göre; antrakozis dışında asbestozis (amyant) ve silikozis de örnek verilebilir. Bunlar, “pnömokonyoz” lar olarak adlandırılan, çevresel hasta-lıklardır. Bunların içersinde en zararsızı antrakozisdir. Metal, cam ve taş partiküllerine silika tozları denir. Bu alanlarda çalışan silika tozları etkisi altında kalan işçilerde, silikozis görülür. Asbestozisde, asbest tozlarının inhalasyonu söz konusudur. Diffüz interstisyel fibrozise neden olur ve bronkojenik karsinoma ile malign mezotelyoma gelişme riski vardır. HÜCRE ZEDELENMESİ, ADAPTASYON ve HÜCRE ÖLÜMÜ Tatuaj (Döğme) : Dekoratif amaçla vücudun değişik bölgelerindeki deriye boyalı şimik maddelerle değişik resimler yapılmasıdır. Deriye ekzojenös metalik veya bitkisel pigment verilmesi sonucu oluşur. İnoküle pigmentler, dermal makrofajlar tarafından fagosite edilir. Bu pigment herhangi bir iltihabi yanıt oluşturmaz ve zararsızdır; fakat kullanılan bu maddeye karşı allerjisi olanlarda reaksiyonlar gelişir. Ayrıca kullanılan malzeme aracılığıyla AIDS, he-patit B ve C’ye yakalanma riski olabilir. Amalgam Tatuaj : Dental dolgu yapımı sırasında amalgam parçacıklarının oral yumuşak doku içine implante olması durumunda, söz konusu olur. Klinik olarak mavi- kahverenkte ve hatta bazen siyah renkte pigmentasyon görülür. Mikroskopik düzeyde, dev hücre oluşumları gösteren bir reaksiyon vardır. Ayırıcı tanı için, hematom ve nevusu düşünmeliyiz. Endojen Pigmentler : Bu grupta lipofuskin ve melanin pigmentleri ile hemoglobin türev-leri olan hemosiderin ve bilirubin gibi, pigmentler vardır. Lipofuskin : Latince "kahverengi lipid" anlamına gelen sarı- kahverenk'de, ince granüler sitoplazmik bir pigmenttir. Yaşlı kişilerde, ciddi malnütrisyon ve kanser kaşeksisinde, özellik- le kalb ve karaciğer hücrelerinde görülür. Bu organlarda hacım küçülmesiyle beraber görüldü- ğünden “brown atrofi” olarak da bilinen bu yıpranma pigmenti, hücre içi sindirilmemiş mater- yale örnek verilebilir. Serbest radikal hasarı, lipofuskin birikimine neden olabilir. Antioksidan savunma mekanizmalarının kaybına yol açan çevresel etkenlerle oluşabilir. E vitamini gibi, antioksidanların eksik olduğu durumlarda karşımıza çıkmaktadır. Bu pigmentin hiçbir önemi yoktur. Lipofuskinin kendisi hücre ve fonksiyonlarına bir zarar vermez. Sadece fizyolojik ve patolojik atrofi veya kronik zedelenme gibi, regresif değişiklikleri işaret eder. Melanin : Melanin, tirozinin enzimatik oksidasyonu ile üretilen bir pigmenttir. Melanin sentezi, epidermisin bazal tabakasında bulunan melanositlerde yapılır. Kahverengi-siyah renk- te olan bu pigmentin adı Yunanca siyah anlamına gelen "melas" kelimesinden türemiştir. Melanositlerin prekürsörleri (öncüleri) olan melanoblastların, embriyonik gelişim devresinde nöral kristadan göç ederek son bulundukları yer olan bölgeye geldikleri düşünülür. Bu hücre-lerin yuvarlak gövdeleri bu gövdeden uzanan düzensiz uzantıları vardır. Bunlar epidermis içine doğru dallanarak, bazal ve spinal tabakadaki hücreler arasına uzanır. Melanin melano-sitlerde sentezlenir. Bu işlem tirozinaz enziminin varlığında olur. Tirozinaz aktivitesiyle tiro-zin önce dihydroxyphenylalanine (DOPA) oluşturur ve daha sonra bir dizi dönüşüm işlemi ile melanin ortaya çıkar. Ultrastrüktürel düzeyde tirozinaz, granüler endoplazmik retikulumda sentezlenir ve Golgi kompleksinin veziküllerinde biriktirilir. Membranla çevrili bu küçük organellere "melanozom" adı verilir. Bunlar ışık mikroskobunda görülebilen pigment granül-lerini oluşturur. Melanositlerin normalde görüldüğü yerler; deri, kıl follikülleri, retina pigment epiteli, lep-tomeninks ve iç kulak bölgesidir. Derimiz bu pigment sayesinde renk kazanır. Güneş ışınları-nın (ultraviyole)x etkisiyle derideki melaninin miktarı artar, derinin esmerleşmesi olarak kendini belli eder. Melanin ve melanositler birçok yönden öneme sahiptir. Melaninin fonksi-yonu koruyuculuktur. Bu pigment sayesinde deri ve göz, güneş ışığının zararlı etkisine karşı daha iyi korunur. Melanin pigmenti az olan beyaz derili kişiler, güneşin zararlı etkilerine karşı daha hassasdır. Güneş altında uzun süre çalışan beyaz derili çiftçilerde ve gemicilerde deri kanseri görülme oranı, kapalı yerlerde çalışanlara oranla çok daha yüksektir. Fazla güneşte kalan insanda, melanin pigmentasyonu artar. Kişi koyu renk alır, bronzlaşır. Bu bronzlaşma ile vücut kendini güneşin zararlı ışınlarından korumaya çalışır. Bir zaman sonra, pigment artımı deriyi korumak için yeterli olmaz. Vücut derisi kendini korumak için, bu sefer kalın-laşmaya başlar, hiperplazi gelişir. Sayıca artan hücrelerde dejenerasyon ve de mutasyonun oluşumuyla kansere dönüşme riski ortaya çıkar. Melanogenesisin lokal artması, çoğu kişilerde görülen ve halk arasında "ben" adı verilen, melanositlerin proliferatif lezyonlarını (pigmentli nevusları) ortaya çıkarır. Bunlar deride çok yaygın olarak bulunan siyah- kahverenkte hafif kabarık oluşumlardır. Benign bir lezyon olan nevus'un malign karşıtı, kanserin oldukça öldürücü bir tipi olan, malign melanomadır (mela-no karsinoma). Dermis, ağız mukozası, retina ve çok nadir olarak da, leptomeninks’den geli- şen malign melanoma olguları vardır. Melanin sentezi, adrenalxx (sürrenal) ve hipofizin kontrolü altındadır. Hipofizden adreno- kortikotropik hormon (ACTH) yanısıra, melanosit stimüle eden hormon (MSH) da salgılanır. Adrenal korteksden salgılanan glikokortikoid (kortizol, kortikosteron, kortizon gibi, bir grup hormonu kapsar) ler ve mineralokortikoidler (aldosteron), feed-back regülasyonu ile hipofiz üzerinde ACTH salgılanmasını kontrol eder. ACTH ve MSH düzeyindeki artmalar, melanin pigmentasyonunda da artmalara neden olur. Addison hastalığıxxx (ki bunda primer adrenokor-tikal yetmezlik -hipoadrenalizm- söz konusudur) buna güzel bir örnektir. Hipoadrenalizmde, adrenal korteksden salgılanan ACTH antagonistleri olan adrenokortikal hormon (örneğin kortizol salgısı baskılandığı zaman) oluşamayacağı için, hipofiz üzerindeki feed-back frenleyi ci etkisi de ortadan kalkar. Adrenal korteksin hipofiz üzerindeki kontrolü yok olduğundan, haliyle kompensatuvar olarak hipofiz daha fazla ACTH ve MSH salgılayacaktır. Bunların aşırı salgılanmaları da, deri ve mukozalarda pigmentasyon artımına neden olur. x Ultraviyole (morötesi); çok kısa, enfraruj (kızılötesi); çok uzun dalga boyuna sahip, güneşin zararlı ışınlarıdır. xx Adrenal: ad- ek + renal Surrenal: sur(supra)- üst + renal xxxAddison Hastalığı(Kronik Adrenal Korteks Yetmezliği): Adrenal yetmezlik (hipoadrenalizm) primerdir; sürre-nalin kendisinde bir lezyon vardır veya hipofizin ACTH salgılanmasında bir yetersizlik söz konusudur ve sekon-der hipoadrenalizm olarak adlandırılır. Primer hipoadrenalizm, Addison hastalığı olarak da bilinir. Bunda böbrek üstü bezi hasarlanmıştır. Addison hastalığı, adrenal korteksin progresif destrüksiyonuna bağlı olarak ortaya çıkan, çok nadir rastladığımız bir hastalıktır. Klinik belirtilerin ortaya çıkması için, salgılığın % 90’ının harab olması gerekir. Bu genelde iki şekilde karşımıza çıkar. Otoimmün adrenalitis; olguların % 60-70’sini oluşturur. Enfeksiyonlar; Tuberküloza bağlı hasar en çok rastlanılan bir nedendir. Özellikle tuberküloz adrenalitis’i iltihabi olguların % 90’ını oluşturur. Klinik olarak, deride ve ağız mukozasında melanin pigmentasyonunda artma, hipo-tansiyon şiddetli anemi, halsizlik, kas zayıflığı, kilo kaybı, anoreksi (iştahsızlık) ve gastroentestinal semptomlar (kusma, diyare) görülür. Mineralokortikoid (aldosteron) yetmezliği nedeniyle, başta sodyum (Na) iyonları kaybı ve buna bağlı olarak su kaybı meydana gelecektir. Bu durum, kan hacmı azlığını ve hipotansiyon belirtilerini doğuracaktır. Aynı zamanda potasyum (K) iyonları retansiyonu (hiperpotasemi-hiperkalemi) görülür. Önemli tehlike, hipotansiyonun daha sonra, “kardiovasküler şok” tablosunu meydana getirmesidir. Hasta tedavisi, aldosteron ve tuz verilerek yapılır. -- Pigmentasyon artımı “hiperpigmentasyon” olarak adlandırılır. Aşağıdaki şu lezyonlar-da melanin artımı söz konusudur. Addison Hastalığı (Kronik Adrenal Korteks Yetmezliği): Multipl Nörofibromalar (Nörofibromatozis): Periferal sinirlerden kökenli değişik bü-yüklüklerde ve çok sayıda (multipl) nörofibromlar vardır. Bununla beraber, deride ve ağız mukozasında sütlü-kahve lekeleri (cafe-au-lait) halinde melanin pigmentasyonu görülür. Oto-zomal dominant geçişli bir hastalıktır. İki tipi vardır. Nörofibromatozis tip1 (von Recklingha-usen hastalığı) de, az da olsa malignleşme olasılığı vardır. Nörofibromatozis tip 2, bilateral akustik (vestibüler) schwannoma ve diğer beyin tümörleriyle beraber görülür. Bu her iki has-talık genetik ve klinik olarak birbirinden farklıdır. Olguların % 90 ı tip 1 dir. Tip 2, çok daha nadir görülür. Peutz- Jeghers Sendromu : İnce barsaklarda multipl polipozis ile beraber ağız mukoza- sında ve dudakta melanin pigmentli lekeler vardır. McCune-Albrigt Sendromu : Kemiklerde multipl odaklar halinde fibröz displazi ile bera- ber, deride ve ağız mukozasında melanin lekeleri vardır. Bunlara “cafe- au- lait (kahve) leke-leri denir. -- Deride melanin pigmentasyonunun azalmasına “hipopigmentasyon” denir ve görüldü-ğü durumlar: Skatris (Nedbe) Yerleri : Cerrahi işlem veya travmalar sonucu ortaya çıkan skatris yerle-rinde, lepra hastalarında lezyonların bulunduğu alanlardaki skatris yerlerinde pigment yoktur. Hormonal Nedenler : Kastre (hadım) erkeklerde ve ayrıca hipofiz hipofonksiyonunda vücuttaki pigment miktarı azalır. Albinolar : Bu tip kişilerde kalıtsal tirozinaz enzim defekti vardır. Bu enzim yokluğunda, tirozinin DOPA ya dönüşme yetersizliği söz konusudur. Bu nedenle albinolar, melanin sentez edemez, derileri ve kılları çok açık renktedir. Bu kişiler güneş ışığına ileri derecede duyarlıdır Vitiligo : Deride leke tarzında pigmentsiz alanların bulunmasıdır ve bu edinsel (kazanılmış akkiz, sonradan oluşan) bir lezyondur. Lezyonların dağılımı ve boyutları çeşitlilik gösterebilir. Bu hastalığın nedeni son araştırmalara göre, daha çok otoimmün bir bozukluk olduğu yönün- dedir. Hemosiderin : Hemoglobinden türeyen hemosiderin, altın sarısından- kahverengine kadar değişen renklerde görülen bir pigmenttir. Demirin hücre içinde birikme şekline örnektir. Kanamanın doğal sonucu hemosiderin pigmenti oluşur. Hücre içinde demir, apoferritin adı verilen proteine bağlı ferritin miçelleri şeklinde depolanır. Hücre ve doku içinde biriken demir histokimyasal olarak Berlin Mavisi denilen özel bir boya ile gösterilir. Makroskopik kanamalar veya yoğun vasküler konjesyonun neden olduğu mikroskopik ka-namalar, demirin lokal artımını ve bunu takiben hemosiderini ortaya çıkarır. Buna en iyi ör-nek, zedelenmeden sonra görülen çürüktür (ekimoz). Çürükler, lokalize hemosiderozisin en iyi örneğidir. Kanama bölgesindeki eritrositlerin yıkımıyla ortaya çıkan kırmızı kan hücre artıkları, makrofajlar tarafından fagoside edilir. Hemoglobin içeriği lisosomlar tarafından katalize edilir ve hemosiderine dönüştürülür. Çürükte görülen renk değişikliği, bu dönüşüm- deki aşamaları yansıtır. Kronik kalb yetmezliğinde uzun süreli staz nedeniyle oluşan konjesyon, akciğerde pig-mentasyon görülmesine neden olur. Akciğer alveollerinde kapillerlerin yırtılması ve geçirgen- liğinin artması nedeniyle eritrositler dışarı çıkar. Eritrositler alveolar makrofajlar tarafından fagosite edilir. Sonuçta hemosiderin oluşur. Akciğer alveollerinde bulunan hemosiderinle yüklü bu tür makrofajlara “kalb hatası hücreleri” adı verilir. Nedeni ne olursa olsun, demirin sistemik yüklenmesi, çeşitli organ ve dokularda hemosiderin birikimine neden olur. Bu şekle “hemosiderosis” adı verilir. Sistemik hemosiderozisin birçok şeklinde, intrasellüler pigment birikimi çoğu durumlarda paranşimal hücrelere zarar vermez veya organ fonksiyonunu boz- maz. Hemosiderozisi meydana getiren pigment birikimi; (1)besinlerle alınan demirin emili- mindeki artım ve kontrolsüz kan yapıcı tabletlerin alımı (2)demirin kullanımındaki yetersiz- lik, (3)hemolitik anemiler ve (4)kan nakillerinde (kırmızı kan hücre transfüzyonları), ekzoje- nöz demir yüklenmesine neden olur. Demirin normalden çok fazla (yoğun) birikimi “hemo-kromatozis” olarak bilinir. Biriken demir, çeşitli organlarda disfonksiyona ve hücre ölümleri-ne neden olur. Kalb yetmezliği (kardiyomyopati), siroz (kronik karaciğer hastalığı) ve diyabe-tes mellitusu (pankreas adacık hücreleri ) içeren doku- organ zararları oluşabilir. Bilirubin : Bilirubin, safrada bulunan ve safranın sarı- yeşil rengini veren başlıca pig- menttir. Kırmızı kan hücrelerinin mononükleer fagositik sistemde parçalanmasıyla (karaciğer- deki kupffer hücrelerinde) serbestleşen hemoglobinden türemiştir; fakat demir içermez. Orga- nizmada normal yaşam sürelerini (100- 120 gün) tamamlayan bu eritrositlerin parçalanma- sıyla konjuge olmamış (ankonjuge) bilirubin meydana gelir. Bu ankonjuge bilirubin, kan pro- teinlerine (albumin) bağlanarak karaciğer parankim hücrelerine (hepatosit) taşınır ve burada işlenerek konjuge bilirubine çevrilir. Bu işlem spesifik bir enzim (bilirubin uridindifosfat glukuronosil transferas) ile oluşur. Daha sonra safra aracılığıyla bağırsağa dökülür. Bağır-saktaki bakteriyel enzimlerin etkisiyle “urobilinojen”e dönüştürülür. Bu pigmentin bir bölümü (% 20) tekrar barsaktan geri emilerek (reabsorbe olarak), karaciğere döner. Bunun bir bölümü de idrarla atılır. Barsaktaki urobilinojenin geri kalan bölümü, daha ileri bir işlemle “ürobilin” (stercobilin)’e dönüşür. Dışkının bilinen rengini (sarı- kahverengi) veren bu maddedir. Kan plasmasında total bilirubinin normal miktarı 100 ml’de 0.3- 1 mg’dır. Kandaki biliru-bin düzeyi (hem konjuge hem de ankonjuge) 2- 3 mg’ın üzerine çıktığında (bazı durumlarda 30- 40 lara çıkabilir), deri ve sklerada sarı bir renk oluşur. Bu renk değişikliği, dokuların safra pigmenti birikimine bağlı olarak, sarıya boyanmasından ileri gelmektedir. Klinik olarak “sarı-lık” (ikter) diye tarif edilir ve meydana geliş biçimlerine göre şöyle incelenebilir. (1)yoğun eritrosit yıkımı (hemoliz artması), (2)hepatosellüler disfonksiyon ve (3)intrahepatik veya eks-trahepatik safra obstrüksiyonu ile safranın tutulması (kolestaz) sonucu sarılık ortaya çıkar. Konjuge bilirubin; suda çözünür, nontoksiktir ve idrarla atılır. Ankonjuge bilirubin suda çö-zünmez, idrar ile atılmaz, toksiktir ve bilirubinin bilinen bütün toksik etkilerinin nedenidir. (1) Hemolitik (Prehepatik) Sarılık: Kırmızı hücre parçalanmasına bağlı bilirubin artı- mını yansıtır. Eritrosit yıkımının yoğun olduğu durumlarda sarılık görülür. Hemolitik anemi- lerde, ağır enfeksiyonlarda, yılan zehiri gibi, dolaşımdaki toksik maddelerin neden olduğu eritrosit destrüksiyonlarında ve kan transfüzyon uyuşmazlıklarında bilirubin miktarı aşırı artar. Bu bilirubin, ankonjuge bilirubindir. Yeni doğanlarda fizyolojik olarak hemoliz fazladır. Ayrıca, karaciğerde bilirubin konju-gasyonu ve atılımını sağlayan hepatik mekanizmalar, hayatın ilk iki haftasına kadar tam ola-rak gelişmediğinden, bütün yenidoğanlarda geçici (2- 4 gün), hafif bir ankonjuge hiperbiliru-binemi ortaya çıkar. Buna yenidoğanın fizyolojik sarılığı (neonatal sarılık) adı verilir. Bu durum tehlikesizdir. Bebeklerde görülen diğer bir tehlikesiz olan sarılık, maternal (anneye ait) serum sarılığıdır. Anne sütü ile beslenen bazı bebeklerde muhtemelen anne sütündeki beta glukuronidazlar nedeniyle oluşur. Tehlikeli olanı, Rh uyuşmazlığı gibi nedenlerle karşımıza çıkanıdır. Rh uyuşmazlığında, aşırı hemoliz olduğundan, ankonjuge bilirubin düzeyi çok yükselir ve “yenidoğanın hemolitik sarılığı” (eritroblastosis fetalis)x gelişir. Bu hastalık nedeniyle meydana gelen yoğun eritrosit yıkımına bağlı olarak ortaya çıkan bilirubin, yeni doğanların kapiller damarlarının geçirgenliği fazla olduğundan beyin dokusuna geçerek, doğumdan sonra “kernikterus” (bilirubin ansefalopatisi) adı verilen ağır nörolojik hasara yol açarak, sekeller bırakabilir veya bebeğin ölümüne yol açar. Adültlerde ankonjuge bilirubin seviyesi yüksek olsa bile, kan- beyin bariyeri nedeniyle kernikterus oluşmaz. (2) Hepatosellüler (Hepatik) Sarılık: Karaciğer hücre hasarı olan yoğun hepatosellüler nekroz ve siroz gibi, durumlarda görülür. Fazla bilirubin konjuge ve ankonjuge olmak üzere karışıktır. Karaciğer hücresinin fonksiyon bozukluklarında, bilirubinin alımında azalma ola-bildiği gibi, karaciğer hücresinde yetersiz konjugasyon da söz konusu olabilir. Karaciğer parankim hücrelerinin zedelenmeleri sonucu, bilirubin salgılanmasında intrahepatik blokaj da olabilir. Karaciğer hücresine verilen zarar, enzim sistemini etkilemiş olabilir. Örneğin viral hepatitis, kimyasal veya ilaç toksisitesi yanısıra karaciğerin mikrobiyolojik enfeksiyonları, konjugasyonu ve safra ekskresyonunu (ifrazat) bloke edebilir. Bu şekilde dolaşımdaki biliru-binin miktarı artmış olur. (3) Obstrüktif (Posthepatik) Sarılık: Bu grupta genellikle safra kanalı obstrüksiyonu söz konusudur. Ekstrahepatik tıkanmaların başlıca nedeni; safra kanalı ve pankreas karsinomaları ile safra kanalı taşlarıdır. Bu tıkanmalar uzarsa, hepatositlerde nekrozlar ortaya çıkar ve “bili- er siroz” meydana gelebilir. Çok nadiren de yenidoğanlarda bir anomali olarak, intrahepatik ve ekstrahepatik obstruksiyon, hepatositlerdeki primer defekt veya safra duktuslarının atrezisi ve agenezisi şeklinde karşımıza çıkabilir. Karaciğerdeki konjuge bilirubin, safra yollarındaki tıkanma nedeniyle bağırsağa akamaz ise, bağırsakta safra pigmenti olmayacağı için, feçes açık renkte olur. Ayrıca bağırsakta safra eksikliği nedeniyle, K vitamini sentezi yapılamaz (Vita- min K; endojen olarak E. coli varlığında barsakda sentezlenmekteydi). Vitamin K eksikliği veya diffüz karaciğer hastalıklarında, hepatositlerdeki disfonksiyonun etkisiyle, vitamin K’ya bağlı koagülasyon faktörlerin (protrombin ve diğer pıhtılaşma faktörleri) sentezinde meydana gelen azalmayla koagülopati meydana gelir, hemorajik diatez’e (anormal kanamalar) neden olur. Bu spontanös kanama sonucu hematomlar, hematüri, melena, ekimozlar ve dişeti kana- maları görülür. Azalmış safra akışının diğer sonuçları; yağda eriyen A, D ve K vitaminlerinin yetersiz absorbsiyonudur. x Eritroblastosis Fetalis: Maternal ve fetal kan grubu uyuşmazlığı sonucu annede oluşmuş olan antikorların, fetus’da neden olduğu bir hemolitik anemidir. Rh(-) bir annenin fetusu, babanın ki gibi Rh(+) olursa, anne ve onun bebeği arasında Rhesus (Rh) uyuşmazlığı meydana gelebilir.Anne; Rh antijeninden yoksun (Rh-) ise, fetusda mevcut olan Rh antijenlerine (Rh+) karşı antikorlar üretir. Rh(-) anne eritrositleri, Rh(+) fetus eritrositle- ri tarafından sensitize edilmiştir. Fetal eritrositler gebelik boyunca plasentadan sızarak annenin dolaşımına katı- lır. En büyük geçiş, doğum esnasında olur. Oluşan bu antikorlar, sonraki gebeliklerde plasenta yolu ile fetusa geçerek, fetusa ait kırmızı hücrelerin destrüksiyonuna (lizise, hemoliz) neden olur. Ortaya çıkan sendrom, “eritroblastosis fetalis” olarak bilinir. Yenidoğanın bu hemolitik hastalığında meydana gelen anemi, uterus içinde fetal ölüme yol açabilecek kadar şiddetli de olabilir. Anemiye reaksiyon olarak fetal kemik iliği, olgunlaşmamış eritrositleri (eritroblastları) fetusun dolaşımına katar. Eritroblastosis fetalis terimi; oluşan eritrosit destrüksiyo- nunu kompanse etmek için, fetal dokulardaki kırmızı kan hücre prekürsörlerinin (hematopoesis) aşırı artmasını anlatır. Rh uyuşmazlığının patogenezindeki sensitizasyonun önemi anlaşıldıktan sonra, bu hastalık belirgin bir şekil- de kontrol altına alınmıştır. Rh sisteminin içerdiği pekçok antijenden yalnızca D antijeni, Rh uyuşmazlığının başlıca nedenidir. Rh(-) anneye, Rh(+) bebeğin doğumundan hemen sonra, anti- D globulin uygulanmaktadır. Anti- D antikorlar, doğum sırasında maternal dolaşıma sızan fetal eritrositlerdeki antijenik bölgeleri maskeleye- rek, Rh antijenlerine karşı olan duyarlılığı engeller. Eritroblastosis fetalis; belirtilerine göre üç sendroma ayrılabilir. Şiddetli komplikasyonlar olmadan yaşam mümkün olan, yalnızca hafif anemiyle seyreden “yeni doğanda konjenital anemi” olarak adlandırılır. Şiddetli hemoliz vakalarında anemiye bariz sarılık eşlik eder, “ikterus gravis” sendromu oluşur. Dolaşım bozukluğundan, anazarka denilebilecek kadar şiddetli bir ödemin ortaya çıkışı, buna eşlik eden sarılık, “hidrops fetalis” olarak adlandırılan bir klinik tabloyu da ortaya çıkarabilir. Hidrops Fetalis: Fetusdaki yaygın ödemi anlatmak için kullanılan bir terimdir. İntrauterin gelişim süresinde progresif sıvı birikimi sonucu oluşur, genellikle ölümle sonuçlanır. Geçmişte fetus ile anne arasındaki Rh uyuş- mazlığı sonucu ortaya çıkan hemolitik anemi, hidrops fetalisin en büyük nedeniydi. Bu tip, immun hidrops ola-rak bilinir. Gebelikdeki kan uyuşmazlığı tedavi edilebildiğinden, immun hidrops’un görülme sıklığı, zamanımız-da düşmüştür. Non- immun hidrops’un başlıca nedenleri ise; kardiovasküler defektler, kromozomal anomaliler ve fetal anemidir. Rh veya ABO uyuşmazlığı dışında başka nedenlerle de fetal anemi oluşur. Bu da hidrops feta-lis ile sonuçlanabilir. KARACİĞER Karaciğerin Normal Histolojik Yapısı Karaciğerin temel mimari yapı birimi, lobdur. Her lobun merkezinde, hepatik ven ağının uzantısı (santral ven) bulunur. Lobun periferinde, portal alan adı verilen bu bölgelerde fibröz doku içinde hepatik arter, portal ven dalları, sinir lifleri, safra kanalları ve lenfatik damarlar gibi, pek çok portal kanal bulunur. İki karaciğer hücresi arasında intralobüler safra kanalikül-leri denilen ince tübüler yapılar bulunur. Bunların içindeki safra, kan akımının ters yönünde, yani lobülün merkezinden portal alanlardaki safra kanallarına akar. Lobüller içindeki hepatositler ışınsal olarak dizilmiş ve bir duvarın tuğlalarına benzer biçimde düzenlenmiştir. Karaciğer hücrelerinin yaptığı bu tabakalar arasındaki boşluklara, karaciğer sinuzoidleri adı verilir. Bunlar labirent şeklinde ve sünger benzeri bir yapı oluştura- cak biçimde serbestçe anastomozlaşırlar. Bu sinuzoidal kapillerler, pencereli endotel tabakala- rından oluşan damarlardır. Endotel hücreleri ile alttaki hepatositler arasında kalan aralığa, Disse aralığı adı verilir. Endotel hücrelerine ek olarak, sinuzoidler Kupffer hücreleri adı veri- len makrofajları da içerir. Bu fagositik hücrelerin başlıca fonksiyonları; yaşlı eritrositleri me-tabolize etmek, hemoglobini sindirmek, immunolojik olaylarla ilgili proteinleri salgılamak ve kalın barsaktan portal dolaşıma geçen bakterileri ortadan kaldırmaktır. Karaciğere kan, iki farklı kaynaktan gelir: (a)Kanın %60- 70’i abdominal (pankreas ve da-lak) organlardan gelen oksijenden fakir, bağırsaklardan emilen besinleri içeren (besinden zen-gin) kanı taşıyan portal ven’den gelir; (b)%30- 40’ı ise, oksijenden zengin kanı sağlayan he-patik arter’ den gelir. Portal alana gelen arter ve ven kanı, karaciğer lobülünün çevresinden merkeze doğru sinuzoidler boyunca akar. Sinuzoidlerde karışan bu kan, vena santralis ve daha sonra da hepatik venlerle vena kava inferiyora akar. Karaciğerin vücudun metabolik dengesini sağlamak için, çok büyük ve önemli işlevleri vardır. Karaciğer dokusu; (1)besinlerle alınan proteinler, karbonhidratlar, yağlar ve vitaminle-rin metabolize edilmesi (işlenmesi) ve depolanması, (2)plasma proteinlerin ve enzimlerin sen-tezi, (3)pek çok endogen atık ürünlerin ve ekzogen toksinlerin detoksifikasyonu ve bunların safra ile atılması gibi, pek çok fizyolojik fonksiyona sahiptir. Çoğu ilaç, karaciğer tarafından metabolize edilir. Anlaşılacağı gibi, karaciğer dokusu; metabolik, toksik, mikrobiyal ve dola-şım bozuklukları olmak üzere çeşitli etkilere açıktır. Bazı durumlarda hastalık, karaciğerin primer olayıdır. Bunun dışında karaciğeri sekonder olarak etkileyen kardiyak dekompansas-yon, diyabet ve ekstrahepatik infeksiyonlar gibi, çok sık görülen hastalıklar vardır. Karaciğer muazzam bir işlevsel kapasiteye sahiptir. hepsi olmasa da çoğu fulminant hepa-tik hastalıklar dışında rejenerasyon oluşur. Normal bir karaciğerin %60’ının cerrahi olarak çıkarılması durumunda minimal ve geçici bir karaciğer fonksiyon yetersizliği görülür. Karaci-ğer kitlesinin büyük bir bölümü 4- 6 hafta içinde rejenerasyonla yeniden oluşur. Masif hepa-tosellüler nekrozlu kişilerde, hepatik retikulin çatı harap edilmemişse, mükemmele yakın bir restorasyon oluşabilir. Kronik sağ ventriküler kalb yetmezliği, karaciğerde kronik pasif venöz konjesyona neden olur. Hepatik vendeki basıncın artmasına bağlı olarak intralobüler santral vendeki basınç da artar. Ortaya çıkan sinuzoidal dilatasyon ve konjesyon, santral ven çevresindeki hepatositlerde hipoksi ve iskemiye bağlı hasarlar ortaya çıkarır. Buna bağlı olarak bu karaciğer hücrelerinde dejenerasyon, yağlı değişme ve sonuçta nekroz meydana gelirken, buna tezat periferdeki he-patositler (portal alan çevresi) normal kalabilir. Hepatosellüler nekroz sonucu fibrozis meyda-na gelebilir. Karaciğerin temel yapısındaki bağ dokusu ağı haraplanmışsa, siroz ortaya çıkar. SİROZ Siroz, kronik karaciğer hastalıklarının irreversibl bir şeklidir ve “siroz” adı da bu hastalığı tanımlayan bir terimdir. Çeşitli kronik karaciğer hastalıklarının son döneminde ortaya çıkan bir sekeldir. Batı ülkelerinde ilk on içindeki ölüm nedenlerinden birisidir. Alttaki etiyolojiyi belirtmesinden başka, sirozun doyurucu bir sınıflaması yoktur. Sirozun etiyolojisinde pek çok etken rol oynar: (a)Aşırı alkol alımının bir sonucu olarak görülen sirozun diğer nedenleri ara-sında bazı ilaç ve kimyasal maddelerin uzun süreli alınması, (b)viral hepatitler, bilier obstrük-siyon (safra yolu hastalıkları), hemokromatozis (aşırı demir yüklenmesi), (c)kalb yetmezliğine bağlı, karaciğerde kronik pasif konjesyon (d)Wilson hastalığıx ve doğuştan olan bazı metabo-lik bozukluklar sayılabilir. Siroz gelişmesi için, uzun zaman periyodunda hücre ölümü, buna eşlik eden bir rejeneratif olay ve fibrozise gerek vardır. Başlıca üç patolojik mekanizma kombinasyonu, sirozu yaratır. (1)Karaciğer hücrelerinin progresif hücre incinmesine bağlı hepatosellüler (paranşimal) ölüm, (2)hepatosellüler hasara ve ölüme bağlı olarak ortaya çıkan rejenerasyon ve (3)buna eşlik eden kronik iltihabın stimüle ettiği progresif (ilerleyen) fibrozis bu hastalığı karekterize eden özelliklerdir. Rejenerasyon, hücre ölümünü kompanse etmek için, normalde verilen bir yanıt-tır. Normalde hepatositlerin proliferatif kapasitesi sirkülasyondaki büyüme faktörleri ile regü-le edilir. Hepatosit nekrozu sonucu açığa çıkan büyüme faktörleri hepatosit proliferasyonunu stimüle eder. Bu progresif olaylar sonucu karaciğerin normal lobüler yapısı ortadan kalkar. Fibrozis bu rejenere karaciğer dokusunu çevreleyerek sirozun karakteristik özelliği olan, değişik boylarda nodül yapılarının oluşmasına neden olur. Fibrozis, bir yara iyileşme reaksiyonudur. Zedelenme yalnızca paranşimi değil, destek bağ dokusunu da tuttuğu zaman skar oluşumuna neden olur. Normalde interstisyel kollagenler, portal alanlarda ve santral ven çevresinde ince bandlar şeklinde bulunurken, sirozda bu kolla-genler, lobülün tüm bölümlerini tutmuştur. Sirozda mikroskopik düzeyde karaciğerin normal arşitektürünün yerini, diffüz olarak kalın kollagen fibröz bandlarla separe edilmiş rejenere ka-raciğer hücre gruplarından oluşan nodüller yer almıştır. Karaciğerin normal yapısının değiş-mesi mikrosirkülasyonu bozar ve buna bağlı hastalığın klinik özellikleri ortaya çıkar. Çoğu sirozlu hastalardaki ölüm; (1)progresif karaciğer yetmezliği, (2)portal hipertansiyona bağlı komplikasyonlar ve (3)hepatosellüler karsinom gelişmesi sonucudur. Tüm siroz çeşitle-rinde hepatosellüler gelişme riski fazladır. Sirozların sınıflandırılmalarında bir konsensus yoktur. Yapılan morfolojik sınıflama ile sirozlar üçe ayrılmıştır: (1)Mikronodüler siroz (nodüllerin çapı 3 mm den daha küçüktür), (2)makronodüler siroz (nodül çapları 3 mm den büyüktür ve 2-3 cm ye ulaşabilir) ve (3)mikst olanda ise, mikro ve makro nodüller birarada bulunur. Etiyolojik nedenlere göre şu şekilde sınıflanabilir. Alkolik karaciğer hastalığı %60- 70; viral hepatitis %10; safra hastalıkları %5- 10; herediter hemokromatozis %5 vs. Siroz tiplerini; oluş biçimleri ve özelliklerine göre şu şekilde sıralayabiliriz. Alkolik (Beslenmeye Bağlı) Siroz: Alkolle ilgili olan ve çok sık görülen şekildir, Laennec siroz olarak da bilinir. Mikronodüler yapıdadır Postnekrotik (posthepatik) Siroz: Çoğunlukla viral etiyoloji (Hepatit B Virus ve Hepatit C Virus) etkendir. Makronodüler yapıdadır. Biliyer Siroz: 1)Primer biliyer siroz; otoimmun kökenli olduğu savunulur. 2)Sekonder biliyer siroz; uzun süreli ekstrahepatik safra kanalı obstrüksiyonu bunun nedenidir ve daha çok karşı-mıza çıkar. X Wilson Hastalığı: Bakır metabolizmasını otozomal resesif bir bozukluğudur. Bozukluklar karaciğer, böbrek ve beyinde anormal miktarlarda bakır birikimi meydana gelir. Hemokromatozis: (1)Herediter hemokromatozis; bağırsak mukozasında demir absorbsiyo-nunda (emiliminde) kalıtımsal bir defekt vardır; aşırı geri emilim görülür. (2)Sekonder hemo-kromatozis; aşırı demir yüklenmesi durumlarında sekonder olarak meydana gelir. Sirozda Klinik Özellikler: Fonksiyonel parankim kayıpları, sirozun başlıca şu klinik be-lirtilerini ortaya çıkarır. - Hepatosellüler hasar ve buna bağlı karaciğer yetmezliğiyle ilgili bulgular: a)Sarılık: Karaciğerin işlevlerinden birisi de safra üretimidir. Kandaki bilirubin (ankonjuge bilirubin) karaciğer hücrelerinde işlenir (konjuge edilir), safra yolları aracılığıyla barsağa dö-külür. Bu işlemin herhangi bir yerindeki aksama sonucu bilirubin kana karışırsa, sarılık (ikter) ortaya çıkar. Çoğunluğu karışık olmak üzere, konjuge ve ankonjuge bilirubin artımı söz konu-sudur. b)Hipoalbuminemi: Hepatosit hasarına bağlı albumin ve fibrinojen olmak üzere plasma protein sentezindeki azalma söz konusudur. c)Koagülasyon faktör eksiklikleri: Karaciğerde oluşan pıhtılaşma faktörlerinin sentezinde azalma ortaya çıkar. d)Hiperöstrinizm: Testikular atrofi, jinekomasti, palmar eritem (lokal vazodilatasyon) ve vücudun değişik kısımlarında, spider anjiomlar (örümcek şeklinde damarlanma). - Portal hipertansiyon: Portal akımla kan, batından vena kava inferiora döner. Portal kan akımındaki herhangi bir engelleme, portal venlerdeki hidrostatik basıncın artmasına neden olur. Üç farklı bölgedeki obstrüksiyona bağlı olarak ortaya çıkar. 1)Prehepatik: Portal vendeki tromboz nedeniyle oluşan obstrüksiyon, karaciğer içinde sinusoidlere dağılmadan öncedir. 2)İntrahepatik: Hepatik sinusoidlerdeki blokaj, bunun nedenidir. En önemli neden sirozdur, daha sonra yaygın karaciğer yağlanması gelir. 3)Posthepatik: Santral vendeki, hepatik vende-ki veya vena kavadaki blokaj nedendir. Bu, sağ kalb yetmezliği ve ağır perikardit gibi durum-larda karşımıza çıkar. Portal Hipertansiyona Bağlı Değişiklikler (Komplikasyonlar): Portal hipertansiyonun belli başlı bulguları; assit, venöz kollateraller (bazı bölgelerde venöz varisler), splenomegali (dalak büyümesi) ve bazen hepatik ansefalopatidir. - Assit (hidroperitoneum), hidrotoraks veya periferal ödem: Biriken kan geriye doğru ba-sınç yapar. Sirozdaki portal hipertansiyonun en önemli klinik sonuçlarından birisi, periton boşluğunda fazla sıvı birikimi (assit) oluşmasıdır: a)Portal vende hidrostatik basınç artımı, he-patik lenf sıvısı artımına neden olur. Bu sıvı peritona geçer. b)Hipoalbuminemiye bağlı olarak ortaya çıkan plasma onkotik (ödeme neden olan) basıncın düşmesi ve c)sodyum ve su tutulu-munun artması; Bu da hepatik hasara bağlı olarak aldosteronun karaciğerdeki yıkımının azal-ması (hiperaldosteronizm) ve renin- anjiyotensin sistem aktivasyonundaki artma, ödemi ve peritondaki sıvı birikimini açıklar. nedenidir. - Hepatik ansefalopati: Nöropsikiyatrik bir sendromdur. Karaciğer yetmezliklerinde ortaya çıkar. Normalde karaciğerde detoksifiye edilen amonyak ve nörotoksik maddelerin karaciğer-deki siroz gibi, bir defekt nedeniyle detoksifiye edilemeyen bu maddelerin doğrudan dolaşıma girmesi sonucu oluşur. Hafif konfüzyondan (bilinç kaybı) derin komaya kadar giden nörolojik belirtiler gösterir. Ölüm olağandır. x Etil alkol (etanol) - nontoksik Metil alkol (metanol) – toksik Alkolik Karaciğer Hastalığı Bu Karaciğer hastalığının başlıca nedeni, yoğun alkol (etanol)x alımıdır. Alkol alışkanlığı, ölüm nedenlerinin beşinci sırasında yer alır. Alkole bağlı siroz, ölümlerin önemli bir bölümü- nü oluşturur. Ölümlere neden olan diğer önemli bir neden ise, alkole bağlı otomobil kazaları sonucu meydana gelen ölümlerdir. Hastahanelerde yatan karaciğer hastalarının %20- 25 inde, alkol nedeniyle ortaya çıkan problemler vardır. Kronik alkol alımı birbiriyle bağlantılı üç farklı tipte karaciğer hastalıklarına neden olur. 1-Hepatik Steatoz (Yağlı Karaciğer): Hepatositler içinde önce küçük yağ damlacıkları biri-kir. Bunlar zamanla hücrenin içini tamamen doldurur, nüveyi kenara iter. Tamamen bir yağ hücresine döner. Bu değişme önce vena santralis çevresindedir, sonra perifere doğru yayılarak tüm lobülü tutar. Zamanla bu nekrotik parankimal hücreler yerini fibröz dokuya bırakır. Fib-rozis gelişmeden önce alkol alımı kesilirse, yağlı değişmeler gerileyebilir. 2- Alkolik Hepatitis: Hepatositler tek veya gruplar halinde şişer (balonlaşır) ve nekroza uğ-rar. Nekrotik ve dejenere hepatositlerin çevresinde polimorf nüveli lökositler birikir. Daha sonra lenfositler ve makrofajlar bölgeye gelir. Sonuçta belirgin bir fibrozis ortaya çıkar. 3- Siroz (Alkolik Siroz): Alkolik karaciğer hastalığının finali ve geri dönüşsüz şekli olan siroz, sinsidir ve yavaş gelişir. Karaciğerin makroskopik görünümü sarı- turuncu renktedir, yağlı ve büyümüştür, ağırlığı artmıştır. Oluşan fibröz septalar arasındaki parankimal hepato-sitlerin rejeneratif aktiviteleri, değişik büyüklükte nodüller oluşturur. İleri zamanlarda fibrozis geliştikçe karaciğer yağ kaybeder, progresif bir seyirle büzüşür, küçülür. Yağsız bir organ haline gelir. Organın ağırlığı düşmüştür ve sirozun karakteristiği olan değişik büyüklüklerde (mikro- makro) nodüller gelişir. PANKREAS : Pankreas, iki ayrı organın bir organda bulunma özelliğinde olan bir organımızdır. Yakla- şık %85-90 ekzokrin salgılıktır ve besinlerin sindirimi için, gerekli enzimleri salgılar. Geri kalan %10-15 endokrin salgılıktır ve insülin, glukagon ve diğer hormonları salgılayan Langer-hans adacıklarından oluşmuştur. Endokrin Pankreas : Endokrin pankreas Langerhans adacıkları adı verilen, bir milyon civarında mikroskopik hücre kümesinden oluşmuştur. Bu adacıklardaki hücrelerin tipleri, rutin hematoksilen- eosin boyası ile ayırt edilemez. Ancak bazı özel boyalarla elektron mik-roskobunda granüllerin şekillerinin görülmesiyle veya immunohistokimyasal yöntemle hücre tipi belirlenebilir.  (beta) hücreleri : Adacık hücre topluluğunun %70’ ini oluşturur. İnsülin hormonunu sentez eder ve salgılar. Hipoglisemik etkili hormondur.  (alfa) hücreleri : Adacık hücrelerinin %5- 20’sini temsil eder ve glukagon oluşturur. Kara-ciğerde glikojenolitik (glikojen parçalayan) etkinliği nedeniyle hiperglisemi oluşturur.  (delta) hücreleri: %5-10’luk bir bölümü oluşturur. İnsülin ve glukagon üretimini dengeleyen somatostatin hormonunu salgılar. PP (Pankreatik Polipeptit): %1-2 oranındadır ve yalnızca adacıklarda değil, pankreasın ekzo-krin bölümünden de salgılanır. Salgıladıkları polipeptidin, gastrik ve intestinal enzimlerin sal-gılanmasını uyarmak, intestinal hareketleri inhibe etmek gibi, etkileri bulunmaktadır. Adacık hücrelerinin önemli patolojik olaylarından birisi “Diyabetes Mellitus” dur. Diğeri “Adacık Hücre Tümörleri” dir. DİYABETES MELLİTUS Diyabet; insülinin yetersiz üretimi veya yetersiz işlevi nedeniyle ortaya çıkan hiperglisemi ile karakterize kronik, multisistemik bir hastalıktır. Karbonhidrat, yağ ve protein metaboliz-masını etkiler. Vücuttaki bütün hücrelerin glikoza (şeker molekülü- karbonhidrat) enerji kay-nağı olarak ihtiyacı vardır. Hücrelerin kandan şekeri alabilmeleri için, insülin hormonu şarttır. İnsülin, glikoz için regülatördür. Normalde kanda glikoz düzeyi yükselince insülin salgılanır. Tolere edilemeyen glikoz, hücre ölümlerine neden olur. Fazla glikoz, gerektiği zaman kan do-laşımına salınmak üzere, karaciğerde glikojen olarak depo edilir. İnsülin salgısının yokluğu (veya eksikliği) sonucu, glikozun kullanımında yetersizlikler meydana gelir. İnsülin salgısı duralarsa, kanda glikoz miktarı artar hiperglisemix durumu ortaya çıkar. Bu nedenle buna, halk arasında “şeker hastalığı” denir. Diyabetes mellitus hastalığında pankreasda yeteri kadar insülin üretilemiyordur veya vücut hücreleri bu insülinin etkisine karşı direnç geliştirmiştir. Her iki durumda da hücrelerin kan-dan glikozu almalarında problem vardır. Kan glikoz seviyesi yüksektir ve her ikisin de ortaya çıkan klinik sonuc aynıdır. Sınıflama ve Görülme Sıklığı Asıl özelliği hiperglisemi olan diyabetes mellitus, heterojen bir grup hastalıktır. Etyoloji-sine göre İki grup altında incelenir. Primer tip; en yaygın şeklidir (%95) ve insülin üretimin-deki veya işlevindeki bir defektten ortaya çıkar. Sekonder tip; infeksiyonlar (kronik pankrea-tit), herhangi bir nedenle pankreasın bir bölümünün cerrahi olarak çıkarılması, pankreas ada-cıklarının destrüksiyonuna neden olan bazı hastalıklar, aşırı demir yüklenmesi (hemokromato-zis), bazı genetik bozukluklar ve tümör gibi, pankreasın kendisini tutan lezyonlar yanısıra, in-sülinin antagonistleri olan hormonların hipersekresyonu söz konusudur. Akromegaliye neden olan aşırı büyüme hormonu (GH), Cushing sendromunda glukokortikoid artımı, feokromasito-mada (tümör) adrenalin artımı ve hipertiroidi gibi, bazı endokrin hastalıklar sonucu ortaya çı-kan diyabetes mellitusdur. Bu ikinci grup (sekonder tip) çok nadir görülür (%5). Diyabetes mellitusun en yaygın ve en önemli şekli, adacık hücresi insülin sinyali sisteminde primer bo-zukluğundan ortaya çıkanıdır. Bu primer diyabet; kalıtım özelliği, insüline verdiği yanıt ve köken olarak birbirinden farklı iki ana grupta (tip1 ve tip2) incelenir. Diyabetin iki ana tipinin farklı patogenetik mekanizmalara ve metabolik özelliklere sahip olmasına rağmen, kan da-marlarında, böbreklerde, gözlerde ve sinirlerde ortaya çıkan komplikasyonlar her iki tipte de mevcuttur. Bu hastalıktan meydana gelen ölümlerin en önemli nedenleridir. Patogenez : Önce insülin metobolizmasını kısaca gözden geçirelim. Normal İnsülin Fizyolojisi ve Glukoz Dengesi: Normal glikoz dengesi, birbiriyle ilişkili üç mekanizma ile sıkı bir şekilde denetlenir. Bunlar:(1)Karaciğerde glikoz üretimi, (2)glikozun çevre dokular tarafından (özellikle kas) alınması, kullanılması ve (3)insülin ve bunu den-geleyici karşıt hormonun (glukagon) salınımı. İnsülin salgılanması, glikoz üretimi ve kulanı-mını kan glikozun normal düzeyde kalacağı şekilde ayarlar. İnsülin pankreatik adacıkların beta hücre granüllerinde sentez edilir ve depolanır. Kan glikoz düzeyindeki yükselme, daha fazla insülin salımına neden olur. İnsülin sentezini ve salgılanmasını başlatan en önemli uya-ran glikozdur. İnsülin majör bir anabolik hormondur: İnsülinin en önemli metabolik etkisi, vü-cuttaki bazı hücre tiplerinde hücre içine glikoz girişini hızlandırmaktır. Bunlar myokordial hücreleri de içine alan çizgili kas, fibroblast ve yağ hücreleridir. Glikoz kas hücrelerinde gli-kojen olarak depolanır veya adenozin trifosfat (ATP) üretimi için oksitlenir. Glikoz yağ doku-sunda öncelikle lipid olarak depolanır. İnsülin, yağ hücrelerinde lipid üretimini (lipogenez) hızlandırırken diğer yandan da lipid parçalanmasını (lipoliz) inhibe eder. Aynı şekilde amino asid alımını ve protein sentezini hızlandırırken, diğer taraftan protein parçalanmasını durdu-rur. Böylelikle, insülinin etkileri anabolik olarak glikojen, lipid ve proteinin artan üretimi ve azalan parçalanması olarak özetlenebilir. x Yunanca; hiper- yüksek; glyk- şeker; emia- kan kelimelerinden köken alır. Açlık durumunda glikojen üretimi azaldığından (düşük insülin- yüksek glukagon durumu), karaciğerde glikoneojenezi (glikojen sentezi) ve glikojenolizi (yıkımı) arttırarak, hipoglisemi-yi önler. Bu nedenle açlık plasma glikoz düzeyi, karaciğerden salınan glikoz miktarı ile belir-lenir. İnsülin salınmasının başlıca tetikleyicisi, glikozun kendisidir. Salgılanan insülin, ilgili çevre dokularda insülin reseptörüne bağlanarak hücreiçi glikoz alımını tetikler. Böylelikle gli-koz dengesi kurulur. Tip1 Diyabetes Mellitus Patogenezi Tip1 Diyabet (İnsüline Bağımlı Diyabetes Mellitus): Tüm diyabet vakalarının %5-10 nu oluşturur. Çocuklukta gelişir, pubertede belirgin hale gelir ve şiddetlenir. Pankreasın insülin yapma özelliği kaybolmuştur. İnsülin sekresyonunda tam (veya tama yakın) yokluk söz konu-sudur. Hastaların hayatta kalmaları için, mutlak insüline gereksinim vardır. Bu nedenle “insü-lin bağımlı diyabet” olarak tanımlanır. Pankreas beta hücre antijenlerine karşı, T hücre lenfo-sitlerin oluşturduğu reaksiyon sonucu beta hücrelerinin destrüksiyona uğradığı otoimmun bir hastalıktır. Dışarıdan insülin alınmadığı takdirde diyabetik ketoasidoz ve koma gibi, ciddi metabolik komplikasyonlar gelişir. Beta hücre destrüksiyonuna iç- içe geçmiş pek çok meka-nizma katkıda bulunur: (1)Genetik eğilim, (2)otoimmünite ve (3)çevresel etkenler. Genetik Eğilim : Diyabetes mellitusun, ailesel özellik gösterdiği uzun zamandan beri bilin- mektedir. Genetik eğilimin kesin kalıtsal geçiş şekli tam olarak bilinmemektir. Tek yumurta ikizlerinin (eş ikizler) ikisinde birden görülme oranı yaklaşık %40’dır. Diyabetli ailelerde yaklaşık %6 sının çocuklarında bu hastalık gelişmektedir. Gerçi tip1 diyabet olgularının %80 inde ailevi bir hikaye yoktur. Otoimmünite : Tip1 diyabetin klinik başlangıcı ani olmasına rağmen, beta hücrelerine karşı olan kronik otoimmun atak, hastalığın başlamasından yıllar önce başlamıştır. Hastalığın klasik belirtileri olan hiperglisemi ve ketoz, beta hücrelerinin % 90 ından fazlası haraplandıktan son-ra, ortaya çıkar. Otoimmunitenin diyabet patogenezindeki rolü morfolojik, klinik ve deneysel birçok gözlemle desteklenmiştir: (1)Hastalığın erken dönemlerinde çoğu vakada adacıklarda hücre nekrozu ve lenfositten zengin iltihabi infiltrasyon (insülitis) gözlenir. (2)Diyabetli has-taların %80 inin kanlarında, beta hücre antijenlerine karşı oluşmuş antikorlar (otoantikor) gösterilmiştir. (3)T lenfositler beta hücre antijenlerine karşı reaksiyon gösterir ve hücre hasar-larına neden olur. (4)Sitokinler beta hücrelerini harplar. Çevresel Etkenler: Çevresel bozukluk beta hücrelere zarar vererek otoimmüniteyi tetikle-miş olabilir. Epidemiyolojik gözlemler, böyle bir tetiklemeyi virusların yaptığını düşündür-müştür. Tip2 Diyabetes Mellitus Patogenezi Tip2 Diyabet (İnsüline Bağımlı Olmayan Diyabetes Mellitus): Vakaların büyük bir çoğun-luğunu (%90) bu tip diyabet oluşturur. Hastalık olgun yaşlarda başlar ve daha çok 50-60 lı yaşlarda ortaya çıkar. Daha önceleri adult tipi diyabet olarak adlandırılırdı. Pankreas insülin üretir; fakat dokuların bu insülini kullanmasında problem vardır. Dokuların insüline karşı olan duyarlılığında azalma nedeniyle karbonhidrat, yağ ve protein metabolizmalarının bozukluğu ortaya çıkar. Dokuların insüline duyarlılığın azalmasına (azalmış duyarlılık) “insülin direnci (rezistansı)” denir. İnsülin direnci; glukoz alımında, metabolik işlevde veya depolanmasında, insülinin etkisine karşı bir direnç olarak tanımlanır. İnsülin direnci, tip2 diyabetli hastalarda görülen karakteristik bir özelliktir ve diyabetli bireylerde görülen obeslik, genel bir bulgudur. Tip2 diyabeti iki metabolik defekt karakterize eder. (1)Çevre doku hücrelerinde, insüline yanıt verme yeteneğinde azalma (insülin direnci) ve (2)bu insülin direnci ve hiperglisemiyi kom-panse etmek için, gerekli insülinin pankreas tarafından salgılanamaması. Bu patolojiye beta hücre disfonksiyonu adı verilir. Burada esas olay, insülin dirençidir. Tip2 diyabetli hastaların yaklaşık %80’i şişman kişilerdir. Patogenezde obesite söz konusu olduğundan, kişinin yaşam biçimi ve beslenme alışkanlıkları gibi, çevresel faktörlerin önemli bir rol oynadığı düşünülür. 27 Bir zamanlar adültlerin bir hastalığı olarak düşünülürdü. Şimdi obes çocuklarda da bu şeklin görülebildiği bilinmektedir. Obesite, insülin direnciyle ve böylelikle tip2 diyabetle, önemli bir ilişkiye sahiptir. Kilo verilmesi ve fizik ekzersiz, bu hastalarda glikoz tolerans bozukluğunu düzeltebilir. Tip2 diyabet çok daha fazla görülmesine karşın, patogenezi hakkında bilgi azdır. Otoim-mün mekanizmaya ait deliller yoktur. Bunun yerine göreceli olarak insülin yetmezliğiyle sonuçlanan, insülin direnci ve β hücre bozukluğu vardır. Hafifden tam’a kadar değişen bir in-sülin eksikliği söz konusudur ve tip1 diyabetten daha az şiddettedir. Tip2’de insülin yetmez-liğinin kesin sebebi bilinmemektedir. Tip1 diyabette olduğu gibi, beta hücrelerinde viral veya immün sistem kökenli zedelenmeyi gösterecek bir bulgu da yoktur. Genetik faktörler, Tip1 diyabete göre bu Tip2 de daha önemlidir. Tek yumurta ikizlerin ikisinde de birden görülme oranı %60-90 dır. Bu hastalığın görülme oranı tüm popülasyonda %5-7 iken, birinci derece akrabalarda hastalık gelişme riski %20-40 arasında değişmektedir. Diyabetes Mellitus Geç Komplikasyonlar ve Patogenezi İnsülin hormonunun bulunması ve bunun tedavide kullanıma başlanmasından sonra, hasta-ların ömrü uzamıştır; fakat bu hastalık tedavi edilememiştir Diyabet hastalığında, geç kompli-kasyonlar olarak adlandırılan hastalığın başlangıcından 10- 15 yıl sonra ortaya çıkan lezyonlar çok önemlidir. Hastalar arasında bu komplikasyonların çıkış zamanı, şiddeti ve tutulan organ-lar yönünden bariz farklar vardır. Pankreasda patolojik bulgular çok çeşitlidir ve mutlak dra-matik değildir. Komplikasyonların hemen tamamı damar lezyonlarına bağlıdır. Bugünün diya-betle ilişkili en önemli komplikasyonları; küçük damarların bazal membranlarında kalınlaşma (mikroanjiyopati), arterlerde (ateroskleroz), böbreklerde (diyabetik nefropati), retinada (reti-nopati), sinirlerde (nöropati) ve klinik olarak bütün bu organlarda disfonksiyonlar görülür. Yapılan gözlem ve çalışmalar, ortaya çıkan bu komplikasyonların doğrudan hiperglisemiye bağlı olduğunu düşündürmektedir. Buna ilaveten, diyabette hipertansiyonun varoluşu, atero-sklerozisi hızlandırır. En çok konuşulan bulgu, nondiyabetik donörlerden (verici) diyabetik hastalara yapılan böbrek transplantlarında 3- 5 yıl sonra, bu böbrekte diyabetik nefropatinin gelişmesidir. Buna tezat oluşturacak şekilde diyapatik nefropatili böbreklerin normal alıcılara transplante edildiği zaman, bu böbreklerde düzelmeler olduğu bilinir. Diyabette hayatı tehdit eden esas olay ateroskleroz ve mikroanjiyopati gibi, generalize vasküler hastalıktır. Ateroskleroz, diyabetin klinik seyrini hızlandırır; kalb, beyin ve böbrekde iskemik lezyonlar gelişir. Myokard infarktüsü, serebral infarktüs, renal yetmezlik ve alt eks- tremite gangrenleri diyabetlerde sık görülen lezyonlardır. Diyabetin patognomanik (tanı koy- durucu) ağız lezyonları (spesifik ağız yumuşak doku ve dental lezyonları ) yoktur. Diyabette Pankreas Değişiklikleri: Langerhans adacıklarında diyabetin etyolojisini ve pato-genezini açıklayacak spesifik bir patolojik lezyon gösterilememiştir. Pankreas lezyonları sabit ve patognomanik değildir. Tip1 deki değişiklikler, tip2 ye göre daha belirgindir. Gerçi diyabe-te eşlik eden, bazı morfolojik değişiklikler vardır. Adacıklar sayıca azalmıştır, buralarda fibro-zis ve lenfosit infiltrasyonu (insülitis) ve amiloid birikimi görülebilir. Amiloid birikimi za-manla hücrelerin atrofisine neden olabilir. Ayrıca beta hücrelerinde granül kayıpları dikkati çeker. Diyabetik Göz Komplikasyonları: Diyabetik retinopati olarak adlandırılan göz lezyonları, katarakt veya glakom (göz tansiyonu) gelişmesine bağlı olarak, görme bozuklukları ve körlü- ğe kadar gidebilen ağır lezyonlar gelişir. Retinada, düzensiz damar duvarı kalınlaşmaları ve mikroanevrizmalar sonucu lezyonlar ortaya çıkar. Diyabetik Nöropati: Geç komplikasyonlar olarak periferal sinirler, beyin ve omurilik hasar görebilir. Refleks bozuklukları, duyu kusurları, gelip- geçici ekstremite ağrılarına neden olur. Schwann hücre hasarı, myelin dejenerasyonu ve akson hasarı ile karakterlidir. Bu hücrelerde- ki hasarın primer hasar olduğu düşünülmektedir. Buna, intrasellüler hipergliseminin yol açtığına inanılır. Hem bu intrasellüler hiperglisemi ve hem de mikroanjiopati sonucu gelişen iske- minin beraberce nöropatiye neden olduğuna inanılır. Pelvik organların innervasyonu bozula- rak; seksüel impotans (ereksiyon problemi), mesane ve barsak disfonksiyonu ortaya çıkabilir. Diyabetik Böbrek Değişiklikleri (Diyabetik Nefropati): En ağır lezyon gösteren organlar-dan birisi böbrektir. Myokard infaktüsünden sonra görülen en sık ölüm nedenidir. Ölüm çoğu kez, mikroanjiopati sonucu gelişen böbrek yetersizliğine bağlıdır. Vasküler Sistem: Diyabet vasküler sisteme ağır zararlar verir. Her çaptaki damarlar (aort ve küçük damarlar) etkilenir. Koroner arterlerin aterosklerozu nedeniyle ortaya çıkan myo- kard enfarktüsü, diyabetiklerde görülen en sık ölüm nedenidir. Diyabette ateroskleroz daha erken yaşta ortaya çıkar ve daha ağır seyreder. Ateroskleroz oluşmasına yatkınlık, birden fazla faktöre bağlıdır. Hiperlipidemi ve trombositlerin yapışma özelliğinin artması, şişmanlık ve hipertansiyon gibi, aterosklerozda rol oynayan diğer risk faktörleri de vardır. Damarlarda ülserasyon, kalsifikasyon, ve trombüs gelişimi sıktır. Damarların daralmasına bağlı olarak myokard infarktüsü gibi klinik bulgular ortaya çıkar. Yırtılma riski olan anevrizmalar gelişir. Diyabetlilerde normalden 100 kat fazla olan, alt ekstremite gangrenleri gelişir. Diyabette Klinik Özellikler Tip1 diyabet, çoğu hastada 35 yaşın altında poliüri (çok idrara çıkma), polidipsi (çok su içme), polifaji (iştah artışı) ve ciddi olgularda ketoasidozis ile kendini göstererek başlar. Bun-ların tümü metabolik bozukluklardan meydana gelir; çünki insülin vücuttaki başlıca anabolik hormon olduğundan, İnsülin salgılanmasındaki bir yetersizlik, yalnızca glikoz metabolizma-sını etkilemez, yağ ve protein metabolizmasını da etkiler. İnsülin eksikliğinde, glikozun kas ve yağ dokusu tarafından emiliminde, bariz azalma (veya yokluğu) söz konusudur. Karaciğer ve kasdaki glikojen depoları azaldığı gibi, glikojenoliz nedeniyle yedek depolar da tükenir. Şiddetli bir açlık hiperglisemisi izler. Tip1 de iştah artmasına rağmen katabolik etkinin baskın olması, kilo kaybı ve kas zayıflığı ile sonuçlanır. Polifaji ve kilo kaybının beraberliği bir tezat oluşturur. Böyle kişilerde her zaman bir diyabet şüphesi akla gelmelidir. Kandaki glikoz seviyesi artarsa, glomerüllere fazla glikoz gider, “glikozüri” (idrarda şeke-rin çıkması) başlar. Glikozüri osmotik diürezi başlatır, poliüriye neden olur. Yoğun bir su ve elektrolit (Na+, K+, Mg++, PO4-) kaybı ortaya çıkar. Sonuç olarak dolaşımda sodyum, potas-yum kayıpları ve kandaki glukoz seviyesinin artmasına bağlı olarak ortaya çıkan serum os-molaritesindeki artma (hiperosmolarite) ile kombine renal su kaybı, hücreler içi ve hücreler arası su kaybına neden olarak beyinde susuzluk merkezi uyarılarak su içme isteği doğar (polidipsi). İnsülin eksikliğinde metabolik dengenin bozulması ve ayrıca yağ katabolizması (yıkımı) aşırı artması, serbest yağ asidi düzeyini yükseltir. Bu serbest yağ asitleri, karaci-ğerde oksitlenerek keton cisimleri meydana gelir. İdrarla keton atılımı azalırsa, ketoasidoz oluşur. Tip2 diyabetes mellitus, poliüri ve polidipsi gösterebilir; fakat tip1 den farklı olarak hasta-lar genellikle 40 yaş üzeridir ve şişmandır. KALSİYUM METABOLİZMASI VE BOZUKLUKLARI Kalsiyum ve fosfat (PO4)x metabolizması, birbirleriyle çok yakın bir ilişki içindedir. Hem kalsiyum hem de fosfat dengesinin düzenlenmesinde, büyük ölçüde dolaşımdaki paratiroid hormonu (PTH), vitamin D ve bunlar kadar olmasa da kalsitonin hormonunun etkileri vardır. Kalsiyum; kemik ve dişlerin şekillenmesi, kasların kasılması, kanın pıhtılaşması, sinir uyarıla- rının iletisi ve hormon salınması gibi, pekçok fizyolojik olayda anahtar rol oynar. Bu nedenle kalsiyum dengesinin korunması kritik önem taşır. Vücuttaki kalsiyum depoları (iskelet siste- mi) ve plazma kalsiyum konsantrasyonunun korunması; besinlerle kalsiyum alımına, gastroin- testinal kanaldan kalsiyum emilimine ve böbreklerden kalsiyum atılımına bağlıdır. Dengeli bir beslenmeyle günde yaklaşık 1000 mg kalsiyum alınır. Bu da sütün 1 litresindeki miktara eşit- tir. Kalsiyumun esas atılımı dışkı ve idrar ile olmaktadır. Bunun yanısıra, barsaktan geri emi- lim de olmaktadır. D vitamini, kalsiyumun barsaklardan emilimini arttırır. Böbreklerde aktif vitamin D sentezixx arttırılarak, barsaktan kalsiyum emilimi arttırılır. Böbreklerde bir hasar mevcutsa, D vitamini etkisinin büyük bir bölümünü kaybeder ve barsak emilimi de azalır. Paratiroid hormonu; kalsiyum ve fosfat’ın barsaklardan reabsorbsiyonunu, böbreklerden atılmalarını ve ekstrasellüler sıvı ile kemikler arasındaki değişimleri düzenleyen bir hormon- dur. Paratiroid salgılığı (bezi) aktivitesinin artması, kemikten kalsiyum tuzlarının hızla rezorb- siyonuna yol açarak, ekstrasellüler sıvıda hiperkalsemi oluşturur. Bunu osteoklast aktivasyonu ile kemik rezorbsiyonu yani kalsiyumun mobilizasyonu arttırarak yapar. Bunun aksine, parati- roid salgılıklarının hipofonksiyonu, hipokalsemiye neden olur. D vitamini, kemik rezobsiyonu (yıkımı) ve kemik depolanması (yapımı) yani remodelas-yon üzerinde önemli etkilere sahiptir. Aşırı miktarda vitamin D fazlalığında, kemiklerde re- zorbsiyon oluşur. D vitamini eksikliğinde, paratiroid hormonunun kemik rezorbsiyonu üzerine olan etkisi büyük ölçüde azalır. Hipokalseminin Başlıca Nedenleri: 1-Hipoparatiroidizm: Paratiroid hormonunun eksikliği veya yokluğu nedeniyle, hipopara- tiroidizm ortaya çıkar. Başlıca özellikleri hipokalsemi ve hiperfosfatemidir. Özellikle tiroidek- tomi sırasında paratiroid salgılıklarının kaza sonucu çıkarılması veya hasar görmesiyle hipo-paratiroidizm meydana gelir. PTH yeterince salgılanamayınca kemiklerde osteolitik rezorb- siyon azalır. Vücut sıvılarında da kalsiyum düzeyi düşer. Kemiklerden kalsiyum ve fosfat re- sorbsiyonu olmadığı için, kemikler dayanıklılığını kaybetmez. Kronik hipokalsemide deride kuruma ve pullanma, tırnaklarda çatlama ve kırılma ile saç-larda sertleşme görülebilir. Kalsiyum konsantrasyonu ileri derecede azaldığında, tetani belirti- leri ortaya çıkar. Özellikle larenks kasları tetanik spazma duyarlıdır ve bu kasların spazmı, solunumu engeller. Gerekli tedavi uygulanmazsa, ölüme yol açabilir. 2-Vitamin D Eksikliği: Besinlerle yeterince D vitamini alınamaması (malnutrisyon) yanı- sıra, hepatobilier hastalık (karaciğer hastalıkları vitamin A, D ve K nın sentezini düşürür), barsaklardaki emilim bozuklukları (intestinal malabsorpsiyon), renal hastalıklar, belli bazı ilaçların alımı ve derinin güneş ışığını yeterince alamaması (İngilteredeki Müslüman kadınlar) gibi durumlar, vitamin D eksikliğinin önemli nedenleridir. Vitamin D, güneş ışını aracılığıyla deride sentez edilir; eksikliği hipokalsemiye neden olur. Eksikliğine bağlı olarak, çocuklarda raşitizm ortaya çıkar. Erişkinlerde diyete bağlı D vitamini veya kalsiyum yetersizliği oldukça seyrektir; çünki kemik büyümesi çocuklardaki gibi, çok miktarda kalsiyum gerektirmez. x Fosfor, insan vücudunda en çok bulunan elementlerden biridir. Vücuttaki fosforun çoğu oksijen ile beraber, fosfat (PO4) şeklinde bileşik halinde bulunur. Vücuttaki fosfat’ın yaklaşık % 85 i kemiktedir ve burada hidroksi-apatit kristalinin önemli bir bileşenini oluşturur2. xx Böbreklerde 1-α hidroksilaz enzimi tarafından vitamin D’nin en aktif formu olan 1, 25-dihidroksikolekalsife- rol’e [1,25(OH2) D3] çevrilir. Bu madde [vitamin D3 (kolekalsiferol)] barsaklardan kalsiyum emilimini arttırır. Önemli miktardaki vitamin D eksikliklerinde, erişkinlerde osteomalasi’ye yol açar. Bu, nor- mal gelişimini yapmış kemiklerdeki eksik mineralizasyonu yansıtır. Raşitizm’de ise yetersiz mineralizasyon çocuklarda gelişmekte olan kemikleri tutar. 3- Böbrek Yetersizliği: Böbreklerde vitamin D, aktif şekli olan dihidroksikolekalsiferol’a çevrilir. Böbrek hücrelerinin direkt hasar görmesinden dolayı; (1) aktif vitamin D oluşumu- nun azalması ve ayrıca (2) lezyonlu böbreklerde meydana gelen anormal kalsiyum kayıpları, hipokalsemiye neden olur. Fosfat’ın böbreklerden atılımının azalmasına bağlı olarak gelişen hiperfosfatemi de, tam anlaşılamamış bazı mekanizmalar yoluyla hipokalsemiye neden ol-maktadır. Hiperkalseminin Başlıca Nedenleri: Hiperkalsemi, kemik rezorbsiyonunun aşırı olma-sından kaynaklanır. Nedenleri şöyle sıralanabilir. 1- Primer Hiperparatiroidizm: Popülasyonda en sık rastlanılan hiperkalsemi nedenidir. Paratiroid salgılığındaki (bezi) bir bozukluk nedeniyle aşırı miktarda hormon salgılanması so-nucu meydana gelir. Nedeni paratiroid salgılıklarındaki bir hiperplazi veya tümördür. Bu tü-mör benign (adenoma) veya malign (karsinoma) olabilir. Eksesif paratiroid hormonu yapımın-da (hiperparatiroidizm) kemiklerde osteoklastik aktivite ileri derecede artmıştır, kemiklerden kalsiyumun açığa çıkmasına neden olur. Bu durum dolaşımda kalsiyum konsantrasyonunu arttırır, serum kalsiyum seviyesi yükselir. Osteoklastik aktivasyon (rezorbsiyon), osteoblastik depolanmadan çok fazla olduğu için, kemik yıkımı fazladır. Bu tür hastalarda patolojik kırık-lara çok rastlanır. Osteoklastların yaptığı lakunar rezorbsiyon, kemiklerde defektlere neden olacaktır ve kistik kaviteler şeklinde belirecektir. Bu bulgular da, hormon fazlalığının radyolo-jik ve histopatolojik göstergesidir. Paratiroid hormonunun kronik artımı, tüm iskelet sistemin-de herhangi bir kemiği tutabildiği gibi, çene kemiklerini de tutabilir. Bu hastaların kemikle-rinin radyolojik incelemelerinde, aşırı dekalsifikasyon kemik yıkımı nedeniyle multipl kistik alanlar görülür. Bu kistik alanlarda fibröz doku ve osteoklast tipi dev hücreler yoğun bir şekil-de bulunur. Bu histolojik özellik, çene kemiklerinin özel bir lezyonu olan, santral dev hücreli granulomanın benzeridir. Hiperparatiroidizme bağlı bu tür kistik kemik hastalığına, “osteitis fibroza kistika” adı verilir. Bu lezyon bazen kitleler oluşturarak tümörlerle karışabilir. Bu nedenle bu lezyonlar, “hiperparatiroidizmin brown (kahverengi) tümörü” olarak da bilinir. Osteoblastlar aktive olduğu zaman, bol miktarda alkalen fosfat salgılar. Bu nedenle, önemli tanı bulgusu plasma alkalen fosfat düzeyinde artıştır. Bu hastalar böbrek taşı oluşumuna aşırı yatkın olurlar. Bunun nedeni hiperparatiroidizmde barsakdan absorbe edilen ve kemikten mo-bilize olan kalsiyum ve fosfatın, böbrekler tarafından atılması sırasında idrardaki konsantras-yonlarının çok artmasıdır. Sonuçta, kalsiyum fosfat kristalleri böbreklerde çökmeye başlar ve böylece kalsiyum fosfat taşları oluşur. 2- Sekonder Hiperparatiroidizm: Sekonder hiperparatiroidizmde paratiroid hormon artı- şı, paratiroid salgılığındaki primer bir bozukluk yerine, önceden var olan hipokalseminin kompansasyonu sonucu ortaya çıkar. Böbrek yetersizliği en önemli nedendir. Barsakda mal- absorbsiyon sendromu gibi olaylarda, vitamin D eksikliği ve yetersiz kalsiyum alımları, hipo- kalseminin nedenleri olabilir. Kronik hipokalsemi sonucu, paratiroid salgılanmasında bir artış belirir. Buna “sekonder hiperparatiroidizm” denir. 3- Vitamin D fazlalığı: Aşırı vitamin D’nin alımı, vitamin D’nin toksik etkisini ortaya çı-karabilir. D vitaminin fazlalığı, çocuklarda gelişim geriliğine neden olabilir; adültlerde hiper-kalsiüri, nefrokalsinozis ve böbrek taşına neden olur. Vitamin D fazlalığı; kalsiyumun bar-saklardan emilimini arttırdığı gibi, normalin üstünde kemik rezorbsiyonuna (yıkımına) neden olarak kan kalsiyum seviyesini yükselterek, hiperkalsemiye neden olur. 4- Destrüktif Kemik Tümörleri: Destrüktif kemik lezyonlarına neden olan multipl mye- loma veya metastatik kemik tümörlerini sayabiliriz. Multipl myeloma, skuamoz hücreli karsi- noma, böbrek karsinomu, meme- over kanseri hiperkalsemiye neden olur. 5- Süt- Alkali Sendromu: Genellikle peptik ülser tedavisi sırasında uzun müddet ve aşırı miktarda antiasit olarak, kalsiyum (kalsiyum karbonat) ve emilebilir alkali alınması sonucu, hiperkalsemi ortaya çıkar. Bu olaya “süt- alkali sendromu” denir. Gerçi bu sendrom, büyük miktarlarda süt alan hastalarda da tanımlandı. Bu sendrom hiperkalsemi, hiperkalsüri, metabo- lik alkaloz (plasma bikarbonat düzeyinin artması), nefrokalsinozis ve böbrek yetmezliğine neden olabilir. 6- Hipertiroidizm 7- Sarkoidozis: Akciğerleri tutan kronik granulomatöz bir iltihaptır. PATOLOJIK KALSİFİKASYON Kalsiyum tuzlarının kemik ve dişlerden başka dokularda birikmesine, patolojik kalsifikas- yon denir. Normalde kalsifikasyon yalnızca kemik ve dişlerde oluşur. Bunların dışında oluş- ması, heterotopik kalsifikasyon olarak yorumlanır. Heterotopik kalsifikasyon iki farklı tipte tanımlanır. 1)Distrofik Kalsifikasyon: Serum kalsiyum ve fosfor seviyesinin normal olması- na ve kalsiyum metabolizmasında bir bozukluk olmamasına rağmen görülür. Kalsiyum tuzları ölü ve dejenere hücre ve dokularda (tüberküloz nekrozu) birikir. Ayrıca atherosklerozisde aterom plaklarında ve hasarlı kalb kapakcıklarında oluşur. 2)Metastatik Kalsifikasyon: Kalsiyum metabolizmasında bir bozukluk söz konusudur. Hiperkalsemi olan her durumda, normal ve canlı dokularda kalsifikasyonun oluşması görülür. Hatta hiperkalsemi, distrofik kalsifikasyonu da arttırır. Metastatik kalsifikasyonda özellikle bazı dokulara nedeni bilinme- yen bir meyil vardır. Böbrek tübulusları, akciğer alveolleri, mide mukozası ve kan damarları- nın mediası sıkça etkilenen organlardır. Bu organlarda yetmezlikler nedenidir. Metastatik kalsifikasyona neden olan hiperkalseminin nedenlerini daha önce de değindi- ğimiz gibi, şu şekilde sıralayabiliriz; (1)aşırı paratiroid hormonu salgısına neden olan, parati-roid tümörleri ve primer hiperparatiroidizm gibi, endokrin bozukluklar, (2)kemik yıkımını arttıran multipl myeloma, metastatik kanserler ve lösemi gibi tümörler ve (3)vitamin D fazla-lığı (intoksikasyonu) ve süt- alkali sendromu ile sarkoidozdur. Hatta hiperkalsemi, (4)ileri saf-hadaki böbrek yetmezliğinde ortaya çıkan sekonder hiperparatiroidizm’e bağlı olarak da geli-şebilir. Histolojik olarak kalsifikasyon intrasellüler, ekstrasellüler veya her iki lokalizasyonda da depolanabilir. Bu birikim bazofilik, amorfös (şekilsiz) granüler görünümdedir. Kalsifikasyon odağında zaman içinde, kemik gelişebilir, buna “heterotopik kemik” denir. KEMİK HASTALIKLARIİnsan iskeleti kompleks bir sistemdir. Yapısal olarak destek oluşturmaya iyi ayarlanmıştır. İskelet kasının aktivitesini harekete dönüştürür ve hassas iç organlar için, koruyucu bir çevre oluşturur. Ayrıca vücudun kan oluşturan (hematopoetik) elemanları için, iskeletten bir yapı oluşturur ve kalsiyum ile diğer birçok hayati minerallerin ana deposu olarak görev yapar. Pek çok beslenme bozukluğu ile endokrin bozukluklar, iskelet sistemini etkiler. Beslenme bozuk-luklarının neden olduğu kemik hastalıkları; C vitamini eksikliklerinde, skorbüt ve D vitamini eksikliklerinde, raşitizm ile osteomalazi görülen hastalıklardır. Mineralizasyon kaybıyla ka-rakterli bir grup hastalık vardır. Bunlar “osteopenik hastalıklar” adı altında incelenir. Osteo-peni (kemik kaybı), radyolojik olarak mineralize kemik kitlesindeki kayba verilen genel bir terimdir. Bu kolaylaştırıcı bir kavram olup, bunlardaki radyolojik görüntüler, belirli bir patolojiyi işaret etmez. (1)Osteoporoz en sık görülen bir osteopenidir. (2)Osteomalazi ileri yaşlarda, (3)raşitizm çocuklarda görülen kemik matriksindeki mineralizasyon kaybını anla-tır. (4)Osteitis fibroza kistika, hiperparatiroidizmde görülen, kemik kayıpları gösteren bir lezyondur. Osteoklastik kemik rezorbsiyonunda artım vardır. Ortaya çıkmış olan kaviteleri dolduran fibröz doku proliferasyonları görülebilir. Fibröz dokunun tam doldurmadığı kavite-ler, kistik kaviteler olarak tanımlanır. Bazı (5)malign kemik lezyonlu osteopenik hastalarda kemiklerinde bir azalma görülür. Bu artan osteoklastik aktivitenin delilleri olmasına rağmen,bir kısmında anormal osteoklastik aktivite yoktur. Tümör hücrelerinin kendileri kemik rezorb-siyonundan sorumludur. Osteoporoz: Osteoporoz, kemik kitlesinin azalmasıyla mikro- yapı bozulmasına bağlı ola-rak ortaya çıkan kemik inceliği ve zayıflığına bağlı olarak kırık olasılığının arttığı bir kemik hastalığıdır. Burada hem kemik yapımı azalmıştır, hem de kemik yıkımı artmıştır. Kemik in-celiği lokalize olabildiği gibi, tüm iskelet sistemini de tutabilir. Osteoporoz terimi nitelendiril-meden kullanılırsa, primer senil ve postmenopozal şekli anlaşılır. Senil osteoporoz, yaşlılarda ve heriki cinsde şiddeti artarak görülür. Postmenopozal osteoporoz, menopoz sonrası kadın-larda görülür. Yaşlı kadınlardaki femur başı kırığın başlıca komplikasyondur. Primer osteopo-rozis ileri derecede yaygın olarak görülür. Osteoporozisle ilgili kırıklara bağlı ortaya çıkan morbidite ve mortalite analiz edilirse, yıllık maaliyetin çok yüksek olduğu görülür. Patogenezis: Erişkinlerde kemik oluşumu ve rezorbsiyonu arasında dinamik bir denge var-dır. Bu dengenin osteoklastların kemik yıkım tarafına kaydığında olay osteoporoz ile sonuçla-nır. Bu dengesizliğin oluşumu bir sırdır. Gerçi kemik gelişimi ve yeniden modelizasyon (yı-kım- yapım) kontrol mekanizmalarında heyecan verici önemli kavramlar vardır. Bunların merkezinde, tümör nekroz faktörü (TNF) ailesine ait yeni bir molekülün, keşfi vardır. Nükle-er Faktör kB nin Reseptör Aktivatörü (RANK) olarak adlandırılan bu molekülün, osteo-klast fonksiyonunu (işlevini) etkilediği anlaşılmıştır. Bunu, kemik stromal hücreler ile osteo-blastların sentezlediği ve hücrenin membranına yerleşik olduğu bugün artık bilinmektedir. Bu liganların reseptörü, makrofajlarda bulunmaktadır. RANK- sunan (tanıtan) hücreler bu makro-fajlar (böylelikle osteoklastlar) dır. Makrofajların osteoklastlara dönüşebilmeleri için, stromal hücreler veya osteoblastlarda bulunan bu RANK ligandının, makrofajlardaki RANK reseptö-rüne bağlanması gereklidir. Aynı zamanda osteoblastlar ve stromal hücreler, makrofaj koloni stimüle eden faktör (M- CSF) olarak adlandırılan bir sitokin üretir. Bu uyaran faktör, makro-faj yüzeyinde bulunan farklı bir reseptöre bağlanır. RANK ligandı ve makrofaj koloni –stimü-le eden (uyaran) faktör beraberce etki ederek makrofajları, kemik- yiyen osteoklastlara dönüş-türür. Bunun dışında stromal hücreler/osteoblastlar tarafından salgılanan ve osteoprotegerin (OPG) olarak adlandırılan molekül, tuzağa düşürücü “yem reseptör” dür. RANK ligandını kaplayarak, bunun makrofajdaki RANK reseptörüne bağlanmasını önler ve böylece yeni osteoklastların oluşumu ve kemik yıkımı kesintiye uğramış olur. Öyle görülüyor ki, osteoporoz tek bir hastalık olmaktan çok, total kemik kitlesinin ve yo-ğunluğunun azalması gibi, benzer morfolojik görüntüyü veren hastalıklar grubudur. Normal durumlarda bebeklik ve çocukluktan itibaren, kemik kitlesi devamlı artar, genç adült yaşların- da zirveye çıkar. Bunu büyük ölçülerde genetik faktörler belirler. Gerçi fiziksel aktivite, diyet ve hormonal durumlar gibi, eksternal (dış) faktörlerin de büyük rolü vardır. Yaş Faktörü: Kemik dansitesindeki (yoğunluğu) yaşa bağlı değişiklikler, her bireyde görü- lebilir. Kemik dinamik bir dokudur ve yaşam boyu devamlı bir yıkım- yapım şeklinde devam eder. Bu remodelizasyon (yıkım- yapım), kemik rezorbsiyonu ve yeni kemik yapımı değişik- likleriyle karakterizedir. Maksimum kemik yoğunluğuna yaşamın üçüncü on yılında ulaşılır. Bundan sonra dansite giderek azalır. En büyük kayıplar, yoğun süngersi (trabeküler) kemikle- rin olduğu omurga ve femur boynunda ortaya çıkar. Bu nedenle osteoporozlu kişilerde kırıklar bu bölgelerde çok sık görülür. Yaşlı hanımlarda kalça kırıkları kayda değer sayılardadır. Bu tür kırıklardaki tedavide, yaşlı insanların uzun periyodlarda hareketsiz yatmaları gerektiğin- den, hareketsizliğe bağlı olarak pnömoni, akciğer ödemi ve pulmoner tromboembolizm gibi, komplikasyonlar çok sık görülür ve başlıca ölüm nedenidir. Mekanik Faktör: Özellikle beden ağırlığının taşınması normal yeni kemik yapımında önemli bir stimulusdur. Azalmış bir fiziksel aktivitenin, hızlanmış kemik kayıplarıyla yakın ilişkisi vardır. Bunun kötü örnekleri felçli veya hareketten yoksun ekstremiteler örnek verilir. Sıfır yerçekiminde bir müddet kalmış olan astronotlarda da kemik yoğunluğunda kayıplara rastlanır. Pekçok yaşlı insandaki yaşam biçimi, hiç şüphesiz osteoporozun ilerlemesinde kat-kısı olabilir. Diyet Faktörü: Osteoporozun oluşması, korunması ve tedavisinde, kalsiyum ve vitamin D nin alımını da içeren diyetin rolü, halen daha tam anlaşılamamıştır. Raşitizm ve Osteomalazi Raşitizm ve Osteomalazi, her ikisi de vitamin D eksikliğinin birer örneğidir. Başlıca deği- şiklik kemiğin mineralizasyonundaki eksikliktir ve buna bağlı olarak nonmineralize osteoid kitlesindeki artım ortaya çıkar. Kısaca, osteoid matriks kalsifikasyonundaki defekttir. Osteo- malazideki bu özellik, total kemik kitlesindeki azalmaya rağmen, kalan kemik kitlesinde mineralizasyonu normal olan, osteoporozise çelişki oluşturur. Osteoporozisde kemik kaybı vardır, mineralizasyon kaybı yoktur. Raşitizmde mineralizasyon defekti, çocuklarda gelişmekte olan kemiklerde ortaya çıkar. Osteomalazide ise, tamamen normal gelişimini tamamlamış kemikteki bozuk mineralizasyon tarif edilir. PROF. DR. Taha ÜNAL EGE ÜNİVERSİTESİ DİŞHEKİMLİĞİ FAKÜLTESİ 2011 ORJİNAL KAYNAK: dent.ege.edu.tr/dosyalar/kaynak/301_patoloji/11.pdf   documents/11.pdf

http://www.biyologlar.com/hucre-zedelenmesinin-nedenleri-ve-zedelenmeye-karsi-hucrenin-verdigi-uyum-yanitlari-nelerdir-hasara-ugrayan-dokunun-onarilmasi-nasil-gerceklesir

NÜKLEER MATRİKS PROTEİN 22 (NMP22)

Normal Değer : 0-10 U/ml Kullanımı: Üriner traktus transizyonel hücre karsinomlarında idrar NMP22 düzeyi yükselir. Bu hastalıklarda NMP22 düzeyi le hastalığın derecesi doğru orantılıdır. Ayrıca postoperatif rekürrens takibinde de kullanılır. Egzersiz ve sistemik kemoterapi yanlış yüksek sonuçlara neden olabilir. Sistoskopi ve üriner kateterizasyon sonrasında doku hasarına bağı olarak 5 gün süre ile NMP22 yüksekliği görülebilir. www.tahlil.com

http://www.biyologlar.com/nukleer-matriks-protein-22-nmp22

NÜKLEER MATRİKS PROTEİN 22 (NMP22)

Normal Değer : 0-10 U/ml Kullanımı: Üriner traktus transizyonel hücre karsinomlarında idrar NMP22 düzeyi yükselir. Bu hastalıklarda NMP22 düzeyi le hastalığın derecesi doğru orantılıdır. Ayrıca postoperatif rekürrens takibinde de kullanılır. Egzersiz ve sistemik kemoterapi yanlış yüksek sonuçlara neden olabilir. Sistoskopi ve üriner kateterizasyon sonrasında doku hasarına bağı olarak 5 gün süre ile NMP22 yüksekliği görülebilir. www.tahlil.com

http://www.biyologlar.com/nukleer-matriks-protein-22-nmp22-1

TRANSPLANTASYON İMMÜNOLOJİSİ VE TARİHÇESİ

İmmünoloji İnsan İmmün (Bağışılık) sistemi zararlı olan organizmaları vücuttan uzaklaştırmaktadır. Bu sistem, vücudumuzun yaklaşık iki trilyon hücresini koruyan, antibadi ve sitokinler üreten hareketli askerleridir. Virüs, bakteri ve tümör hücreleri veya transplante edilmiş hücreler gibi yabancı ya da vücuda ait olmayan hücrelerle koordineli bir biçimde hızlıca çok yönlü bir atağa geçmektedir. Her ne kadar çevre immün cevabı stimüle etse de, immüniteyi kontrol eden genlerdir. Genler antibadi ve sitokinlerin hücre yüzeyini spesifik olarak kodlamaktadır. Genler aynı zamanda sitokinleri tutan hücre yüzey proteinlerini kodlamaktadır (Antijen başka bir bireyde immün cevaba neden olan bir moleküldür. Antijenler genellikle protein veya karbohidratlardır). Yabancı antijen, vücuda ait olmadığından dolayı, bir immün cevaba neden olmaktadır. Genler immüniteyi kontrol ettiğinden, oluşan değişiklikler immünolojik fonksiyonları engelleyebilmektedir. Immünitede oluşan bozukluk, otoimmün hastalıklara, allerjiye ve kansere neden olabilmektedir. Genlerin immünitede büyük rol oynamasından dolayı, teknoloji ile birlikte, hastalıkların tedavisi amacıyla immün sistem güçlendirilmeye çalışılmaktadır. Transplantasyon nedir nasıl yapılır Transplantasyon yöntemi günümüzde oldukça yaygındır. Kalp, böbrek ve başka organların bir kişiden diğerine nakledildiğini sık sık duyarız. Dişlerin transplantasyonunda iki yöntem vardır: Aynı kişiden ve başka kişiden transplantasyon. Aynı kişide bir diş bir çene yarısında dizi dışı bulunur ve normal diş sayısına oranla artıklık gösterirken, diğer tarafta herhangi nedenlerle bir dişin dizide eksik olduğu da görülebilir. Bu durumda iki olasılık vardır: Ya bir diş yuvası önceden hazırdır ya da operatör bu dişi transplante edebilmek için ilkin böyle bir yuva oluşturmalıdır. Bu durumda en uygunu, önceden hazır olduğu için yeni çekilmiş bir dişin boş olan alveolüdür. Ayrıca aynı kişiden transplantasyon dışında, dişin başka kişiden alındığı, kişiden – kişiye transplantasyon da vardır. Kişiden – kişiye transplantasyon çok eskidir de. Örneğin, ortaçağda varlıklı bir bayan bir dişini yitirdiğinde bir kölenin benzer dişini çektirttiği sık sık görülürdü; sonra bu yabancı diş çenesine transplante edilirdi. Oysa her zaman uygun dişli bir köle bulunamazdı. Bayan böyle durumlarda da transplantasyon amacıyla uygun dişini çektirtecek olan bir başka kişiye belirli bir tutar para önerirdi. Kişi artık günümüzde transplantasyonda biraz daha dikkatlidir. Benimsenme olasılığı için en uygunu; plantat-vericisi ve plan-tatralıcısının kardeşler, ana-baba, çocuklar gibi yakın akraba olmalarıdır. Ancak yabancı plantat-vericisi plantat-alıcısıyla aynı kan grubundan ise, bu plantat-vericisinin dişi de kullanılabilir. Kan uyuşmazlığının göz önüne alınmaması eskiden bir çok başarısızlıklara neden olurdu. Tüm plantasyonlarda plantat kökünün vücutta yabancı madde sayılarak atılma tehlikesi vardır. Bu nedenle, transplantat’ın sürekliliği olabildiğince uzatılsın diye gereken her şey yapılmalıdır. Genel diş ve kök tedavisi tıpkı replantasyondaki gibi uygulanır. Çoğu zaman başarı replantasyondaki kadar iyi değildir ve atılmazlığı bütünüyle plantat-alıcısmın kendisine bağlıdır. Tüm transplantasyonlarda ope­rasyondan sonra şineleme son derece önemlidir. Transplantasyon Sonrası Immün Sistemin Yeniden Programlanmasında Monoklonal Antikorların Kullanımı Transplantasyon sonrası immün sistemin yeniden yapılanması sürecinde temel amaç, graftı T lenfositlerinin yıkıcı etkilerinden korumaktır. Monoklonal antikorlar da bu amaca yönelik olarak mevcut immünsüpresif ilaçlara yardımcı olarak kullanılmaktadır. Bazıları indüksiyon tedavisinde, rejeksiyon önlenmesine yönelik olarak, bazıları da dirençli akut rejeksiyon tedavisinde kullanılırlar. Monoklonal antikorların en yaygın kullanılanları basiliksimab ve daklizumabdır. Bu IL-2 reseptör blokerleri, akut rejeksiyon oranlarında önemli azalmalar sağlamaları ve yan etkilerinin olmayışı nedeni ile oldukça benimsenen ilaçlardır. Bunların yanında rituksimab (anti-CD20) ve Campath (anti-CD52) gibi ajanlar da giderek daha çok kullanılmaya başlanan monoklonal antikorlardır. Transplantasyon immünolojisinde, T hücre aktivasyonunda görevli, bazı yeni aracı moleküllerin bulunması monoklonal antikorların da giderek çeşitleneceğini göstermektedir. Transplantasyon Hakkında Sık Sorulan Sorular 1. Canlı veya kadavra vericilerden transplantasyon yapılacak adayların hazırlıkları arasında bir fark var mıdır? Hayır, Kadavra böbreği bekleme listesindeki adaylar da tıpkı canlı vericiden transplantasyon yapılacak adaylar gibi incelenir. Ancak bir kadavra böbreği bulunma olasılığının ne zaman gerçekleşeceği belli olmadığı için. zaman geçtikçe önceden yapılmış muayene le bazı laboratuar incelemelerinde değişiklikler olabilir. Bu nedenle kadavra böbreği bekleme listesindeki hastaların belli aralıklarla, fizik muayene ve laboratuar incelemeleri yineletmeleri ger eklidir. Kısaca; kadavra böbreği bekleyen hastalar ameliyata her an hazır durumda olabilir. 2. Transplantasyon adayı hastaların kendi böbreklerine herhangi bir müdahale yapılır mı? Genellikle hastaların kendi böbreklerine dokunulmaz. Ancak, inatçı hipertansiyon, böbreklerde tedaviye dirençli infeksiyon, idrarın mesaneden böbreğe taşması, çok büyük kistik böbrekler söz konusu ise, hastalıklı böbrekler çıkarılır. Bu ameliyat bazı merkezlerde transplantasyondan önce yapılır ve 3-4 hafta sonra yeni böbrek takılır. Bazı merkezlerde ise böbrek nakli ameliyatı yapılırken aynı anda hastanın kendi böbrekleri de çıkarılır. Yalnız her iki ameliyatın aynı seansta yapılması oldukça uzun sürer ve biraz daha risklidir. 3. Kadavra böbrek listesine kayıtlı hastalar için bekleme süresi ne kadardır? ÜIkemizde bugün için kesin bir süre belirtmek mümkün değildir. Listeye çok yeni giren bir hasta, uygun tipte böbrek çıkması ile kısa zamanda transplantasyon şansına kavuşabileceği gibi bazen de uygun bir böbrek çıkmadığı için uzun süre beklenebilir. Olanaklar elverdiğince, uygun böbrek çıktığında daha uzun süre beklemiş olan hastaya öncelik tanınır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. Halkımızın bilinçlenerek daha fazla organ bağışında bulunması bekleme süresini kısaltacaktır. 4. Kadavra böbrek bulunduğunda hastalara nasıl haber verilir? Transplantasyon ünitesinde bilgisayarda kadavra böbreği bekleyen tüm hastaların telefon numaraları kayıtlıdır. Uygun bir kadavra böbreği çıktığında günün herhangi bir saatinde size telefonla haber verilere!,, transplantasyon ünitesine gelmeniz istenecektir. Size daha kolay ve kısa sürede haber verebilmemiz için. varsa, birden fazla telefon numaranızı ve yakınlarınızın da telefon numaralarını bildirmeniz faydalıdır. Telefon numaranızda bir değişiklik olduğunda bunu hemen üniteye bildirmelisiniz. 5. Böbrek bulunduğu haberi ile transplantasyon ünitesine çağrılmanız mutlaka böbreğin size takılacağı anlamına mı gelir? Hayır. Bir kadavradan elde edilen iki böbrek için yaklaşık 10 hasta üniteye çağrılmaktadır. Burada, hemen yapılan fizik muayene ve acil laboratuar incelemeleri sonucunda, ünite hekimlerinden oluşan bir kurul tarafından karar verilmekte ve durumu en uygun olan 2 hastaya böbrek takılmaktadır. Böbrek takılmayanlara ise bunun nedenleri açıklanır ve hastalar evlerine gönderilir. 6. Kadavra böbrek, transplantasyon için haber verildiğinde neler yapılmalıdır? Öncelikle bu saatten itibaren hiçbir şey yenilmemeli ve içilmemelidir. Bekleme listesindeki bu hastanın küçük bir çantada, kişisel eşyaları (pijama, terlik gibi) her an hazır olmalıdır. Özelikle şehir dışından gelecek hastaların telaşa kapılmamaları ve hazırlanmakla vakit kaybetmemeleri için önemlidir. Çağrıldığınızda yanınıza eşyaları da alarak en hızlı ulaşım aracı ile. uzak bir şehirde oturmaktaysanız mümkünse uçakla, üniteye gelmelisiniz. 7.Kadavra böbreğin size takılmasına karar verildiğinde ne tür işlemler yapılacaktır? Bu karardan sonra, artık hastanede kalacaksınız. O gün diyalize girmediyseniz acil olarak hemodiyalize alınacak ve bitiminde transplantasyon ünitesine yatırılacaksınız. Gerekli ameliyat hazırlıkları ve transplantasyon öncesi ilaç uygulamalarından sonra böbrek nakli ameliyatına alınacaksınız. Artık yeni böbreğiniz takılacak ve sizin için yeni bir yaşam dönemi başlayacaktır. TRANSPLANTASYON İMMÜNOLOJİSİ TARİHÇESİ Prof.Tbp.Kd.Alb.Ali ŞENGÜL Tarihçe; MÖ 200: Çin?de Kalp nakilleri denemeleri MÖ 600: otolog deri transplantasyonları (Hindu cerrah Sushruta- yüz plastik cerrahisi) Modern transplantasyon dönemi ise 18. Yüzyılın sonlarında deneysel cerrahinin babası olarak da bilinen Hunter tarafından başlatılmış olarak kabul edilmektedir. Carrel 1912?de vasküler anastomoz tekniği ile nobel ödülü almış ve teknik olarak başarılı nakillerin yolunu açmıştır. Daha sonra biyolojik özelliklerden immün sistem üzerine yoğunlaşılmış ve gerçek başarı ancak immünolojik gelişmelerden sonra mümkün olabilmiştir. İlk kan transfüzyonları 17. yy?da hayvanlar ve insanlar arasında denenmiş ve alınan korkunç sonuçlar nedeniyle bu konu 150 yıl boyunca bir daha gündeme gelememiştir. 1900 yılında Landsteiner ve Miller insanları kanlarındaki aglutininlere göre gruplandırarak transfüzyonları tekrar gündeme getirirken, doku tiplendirmesinin de yolunu açmışlardır. 1923 de Williamson homolog ve otolog graftlemeyi kıyaslayarak doku tiplendirmesi için çalışmaların başlamasına sebep olmuştur. 1930 larda moleküler genetikçi George Snell farelerde histokompatibilite lokusu olan H-2 lokusunu keşfetmiştir. 1937 de Gorer insanlarda ilk histokompatibilite antijenini tanımlamış ve self-nonself ayrımını izah etmiştir. 1943 de Medawar tavşanlarda deri grefti çalışmaları yapmış ve otograft-homograft ayrımında akraba olanlarla olmayanların farklılığını ortaya koymuştur. II. Dünya savaşında yanıklı hasların tedavisinde plastik cerrah Gibson ile işbirliği yaparak immün yanıtın 3 temel özelliğini (tanıma, yıkım ve hafıza) tanımlamıştır. 1952 de Dausset multiple kan transfüzyonu yapılanlarda lökoaglutininler oluştuğunu gözlemleyerek insanlarda HLA lokuslarının keşfine giden yolu açmıştır. 1964 de Terasaki ve arkadaşları sitotoksik antikorları kullanarak mikrolenfositotoksisite yöntemi ile antijenlerin serolojik olarak tanımlanmasını sağlamışlardır immünosupresyon 1950 lerde John Loutit tarafından total vücut radyasyonu (TBI) ile farelerde denenmiş, 1958 de Murray (Boston) ve Hamburger (Paris) tarafından ayrı ayrı insanlara uygulanmıştır. 1960 larda AZT geliştirilmiş ve transplantasyonda kullanılmış. Ardından Starzl AZT ile kortikosteroidi kombine ederek başarının artmasını sağlamıştır. 1960 ve 1970 lerden itibaren poliklonal antikor teknolojisi, siklosporinin keşfi, 1980 lerde monoklonal antikor teknolojisinin keşfi ile bu konudaki gelişmeler hız kazanmış, daha modern immünosupressif ajanların keşfi ile neredeyse doku uyumuna bakılmaksızın transplantasyonlar yapılmaya başlamıştır. TANIMLAR Transplantasyon: Donör / verici : Recipient / alıcı: Ortotopik transplantasyon Heterotopik transplantasyon. Rejeksiyon / red Birincil rejeksiyon ikincil rejeksiyon (Hafıza). TANIMLAR (2) Otolog greft / otogreft Oto transplantasyon / otolog transplantasyon Isogreft / syngeneik greft / syngreft Allogeneik greft / allogreft Xenogeneik greft / xenogreft Alloantijen Xenoantijen alloreaktif antikor xenoreaktif antikor ALLOGENEİK TANIMANIN MOLEKÜLER TEMELİ Haplotip identik, inbred farelerde yapılan hücre ve doku nakillerinde rejeksiyon oluşmamaktadır. Farklı inbred fareler arasında yapılan transplantasyonlarda hemen daima rejeksiyon oluşmaktadır. Farklı iki inbred fareden olan F1 dölünde, anne ve babadan alınan greftlerde rejeksiyon oluşmamaktadır. Farklı iki inbred fareden olan F1 dölünden alınan greft, anne ve babaya transplante edildiğinde rejeksiyon oluşmaktadır. MHC / HLA Minör doku uygunluk antijenleri MHC molekülleri dışındaki polimorfik alloantijenler daha zayıf ve daha yavaş bir rejeksiyon reaksiyonu oluştururlar. Bunlara Minör doku uygunluk antijenleri (minor histocompatibility antigens) adı verilmektedir. Birçok minör doku uygunluk antijeni self veya greft MHC molekülleri tarafından işlenip T hücrelerine sunulabilen protein yapısındaki moleküllerdir. MHC moleküllerinden farklı olarak bu minör antijenlerin tanınabilmesi için işlenip MHC molekülleri tarafından sunulmaları gereklidir. ALLOGENEİK TANIMANIN HÜCRESEL TEMELİ Rejeksiyon reaksiyonu, transplante edilen dokuların hem CD4+ ve hem de CD8+ hücreler tarafından tanınması sonucunda gelişir. Değişik T hücre popülasyonlarının alloantijenleri tanımalarını anlamak için mikst lenfosit reaksiyonu (MLR) güzel bir model olarak kullanılmaktadır. MLR ile şu sonuçlara ulaşılabilir: Eğer hücrelerin MHC-sınıf I antijenleri arasında farklılık yoksa CD8+ CTL oluşmayacaktır. Uyarıcı hücrenin MHC-Sınıf-I antijenlerine karşı antikorlar kullanılırsa, hücre lizis’den korunacaktır. Eğer uyarıcı ve uyarılan hücreler arasında MHC Sınıf-II antijen farklılığı varsa alloreaktif CD4+ T hücreleri uyarılacak ve prolifere olarak sitokin üretecektir. Uyarıcı hücre ile aynı MHC sınıf-II antijenlere sahip üçüncü grup hücre kültüre eklenirse alloreaktif CD4+ T hücreleri tekrar uyarılacaktır (İkincil MLR). Uyarıcı hücrenin MHC sınıf–II antijenlerine karşı antikor kullanılırsa, bu antikorlar ikincil MLR’nu önleyecektir. Rejeksiyon Rejeksiyonun değişik formlarının olduğu ve bunların her biri için farklı bulgu ve belirtilerden oluşan tanımlar olduğu bilinmektedir. Ancak çoğu kez bunları biri birinden kesin olarak ayırt edecek kriterler bulunamaz. Gerçekte aynı greftte akut ve kronik rejeksiyon sıklıkla birliktelik gösterir. Sınıflandırmada, transplantasyonu takibeden sürenin uzunluğundan çok, major sınıflandırma kriteri olarak histolojik değişikliklere dikkat etmek gereklidir. Hiperakut rejeksiyon (HAR) : Greft damarlarında hızlı trombotik oklüzyon ile karakterize bir tablodur. Anastomozu takiben dakikalar içerisinde başlar. Özellikle IgM tipi antikorların endotele bağlanarak komplemanı aktive etmesi söz konusudur. Endotelden Von Willebrand faktör sekrete edilir. Kompleman aktivasyonu da endotel hücre hasarına yol açarak koagülasyonu başlatır. Subendotelyal bazal membran proteinlerinin de trombositleri aktive etmesi sonucunda tromboz ve vasküler oklüzyon oluşarak, organda kalıcı iskemik hasar meydana gelir. Hiperakut rejeksiyon (HAR) : (2) IgM türü allo antikorlar: Bu tür antikorlara en iyi örnek ABO kan grubu antikorlarıdır. Normal barsak florasında bulunan bazı bakterilerin karbonhidrat antijenlerine karşı geliştiği düşünülen doğal antikorlar. Doğal Xenoantikorlar. IgG izotipinde alloantikorlar: Eski transplantasyonlar veya multiple gebelik durumlarında oluşurlar. Bu antikorlar Lenfosit Cross Match (LCM) ile ortaya çıkarılabilir. AKUT REJEKSİYON Transplantasyondan sonra 1 hafta ile 4 ay arasında ortaya çıkar ve ilk yıldan sonra da ataklar görülebilir. a) Akut Sıvısal Rejeksiyon : Akut sıvısal rejeksiyon, greft kan damarlarındaki bazı hücrelerde nekroz ile karakterize bir durumdur. Histolojik olarak hiperakut rejeksiyondaki trombotik oklüzyondan çok bir vaskülit sözkonusudur. Akut sıvısal rejeksiyondan endotelyal hücre antijenlerine karşı gelişmiş IgG izotipinde alloantikorlar sorumludurlar. Bu antikorlar kompleman aktivasyonuna da yol açarak etkili olurlar. Bu olaya lenfositlerin de katılması nedeniyle alternatif bir şekilde “akut, vasküler rejeksiyon” olarak da isimlendirilmektedir. Akut Hücresel Rejeksiyon : Bu tip rejeksiyon parenkimal hücrelerde nekroz ile karakterize ve genellikle lenfosit ve makrofaj infiltrasyonu ile birliktedir. Bu infiltrasyondaki lökositler greft parenkim hücrelerinin lizis’inden sorumludurlar. Akut hücresel rejeksiyondan birçok farklı effektör mekanizma sorumlu tutulabilir: CTL’e bağlı lizis, Aktive makrofajlara bağlı lizis (geç tip aşırı duyarlılık reaksiyonunda olduğu gibi), Doğal öldürücü (NK: Natural killer) hücre lizisi. KRONİK REJEKSİYON : Normal organ yapısının kaybolduğu, fibrozis ile karakterize bir durumdur. Patogenezi akut rejeksiyona oranla daha az anlaşılmıştır. Fibrozis, akut rejeksiyondaki hücre nekrozunun iyileşme sürecinde gelişiyor olabilir. Kronik geç tip aşırı duyarlılık reaksiyonunda olduğu gibi aktive makrofajların, trombosit kaynaklı büyüme faktörü gibi mezanşimal hücre büyüme faktörü salgılaması ile ya da kan damarlarındaki hasarlara bağlı olarak ortaya çıkan kronik iskemiye bir yanıt şeklinde gelişmesi ihtimali de vardır. Kronik rejeksiyonun bir başka formu, musküler arterlerde intimal düz kas proliferasyonu ile karakterize olan formdur. Bu düz kas proliferasyonu da geç tip aşırı duyarlılık reaksiyonunun bir sonucu olarak gelişebilmektedir. Greftteki damar duvarlarında bulunan alloatijenlerle uyarılan lenfositlerin makrofajları uyararak, düz kas hücresi büyüme faktörü salgılanmasına yol açtıkları düşünülmektedir Bu form özellikle renal ve kardiyak transplantasyonlarda görülmüştür. Bu şekilde gelişen bir arterioskleroz geç tip greft kayıplarındaki en önemli sebeplerden biridir. Birçok olguda arteriel hasardan önce herhangi bir histolojik bulgu tespit edilmemiştir. ALLOGRAFT REJEKSİYONDAN KORUNMA VE TEDAVİ: İmmün sistemi tam olarak fonksiyonel bir alıcıya aktarılan bir allograft eninde sonunda mutlaka rejeksiyonun bir şekli ile karşılaşacaktır23,24. Rejeksiyondan korunmak ya da rejeksiyonu geciktirmek için gerek klinik çalışmalarda, gerekse deneysel modellerde iki yöntem geliştirilmeye çalışılmıştır: Greftin immünojenitesini azaltmak Alıcının immün sistemini baskılamak Dokuların immünojenitesi Kemik iliği Deri Gastrointestinal kanal Langerhans adacıkları Kalp Böbrek Karaciğer Greftin immünojenitesini azaltmak: İnsanlardaki transplantasyonlarda graft immünojenitesini azaltmak için takip edilen ana strateji, donör ve alıcı arasındaki alloantijenik farklılıkları minimalize edecek bir seçim uygulamaktır. HAR’dan korunmak için donör ve alıcının ABO kan grubu antijenlerinin daima uyumlu olmasına dikkat edilmektedir. MHC moleküllerinin allelik farklılıklarının hem sınıf-I ve hem de sınıf-II lokusları bakımından mümkün olduğu kadar az olmasına ya da tamamen uygun olmasına dikkat edilmekte, bu amaçla donör ve alıcının HLA antijenlerini belirleyen test yöntemleri, moleküler düzeyde analiz yöntemleri ile geliştirilmektedir. Greftin immünojenitesini azaltmak (2) Kan grubu ve HLA tiplemeleri yanında mevcut bir immünizasyon varsa bunun tespiti de çok önemlidir. Bu amaçla hücresel immünizasyonun araştırılması için mikst lenfosit reaksiyonu (MLR) testi yapılmaktadır. Sıvısal bir immünizasyon için ise dolaşan antikorların varlığının araştırılması önemlidir. Lenfosit Cross Match (LCM) Panel reaktif Ab (PRA) Alıcının immün sistemini baskılamak: Greft dokularına karşı reaktif antikorların varlıklarını belirlemek ve plazmaferez gibi yöntemlerle bu antikorları azaltmak. Transplantasyondan önce alloantijenler vererek allografta tolerans oluşturmak: İmmünosupressif tedavilerle T hücrelerini baskılamak veya lizise uğratmak: İMMÜNOSUPRESYON Kortikosteroidler, Metabolik toksinler (azathioprine, cyclophosphamide v.b.), lenfoid dokuların irradiasyonu, spesifik immünosupressif ilaçlar (Cyclosporine, FK506 v.b.), T hücre yüzey moleküllerine spesifik antikorlar kullanılmaktadır. Graft Versus Host Hastalığı (GVHD) İmmünosupressif alıcıda yerleşme fırsatı bulan donör kaynaklı lenfositlerin alıcı dokularına karşı reaksiyon vermesiyle ortaya çıkar. İmmünosupressif kişilere iatrojenik olarak verilmiş immünopotent hücrelerle de ortaya çıkabilir. (Kan transfüzyonu, solid organ transplantasyonları v.b.) Allogenik kemik iliği transplantasyonunun önündeki en büyük engeldir. GVHD Deri, Gastro-intestinal sistem, karaciğer, akciğer başlıca hedef organlardır. Akut reaksiyonlar post-transplant 7-80 günlerde, Kronik formlar ise 3. Aydan sonra ortaya çıkar. Solid organ transplantasyonları sonrasında oluşan GVHD’da transplante organ self kabul edildiğinden o organa karşı reaksiyon oluşmaz. Ortaya çıkan patolojilerin GVHD’na ait olup olmadığını destekleyecek en önemli bulgu periferik kanda kimerizm araştırarak elde edilebilir. Bunun yanında daha invaziv bir yöntem olan Biyopsi de çok değerli bilgiler verebilir.

http://www.biyologlar.com/transplantasyon-immunolojisi-ve-tarihcesi

Hücre Döngüsü ve Polimorfizm

Hücre Döngüsü ve Polimorfizm

Gen değişimleri, onkogenlerin aşırı ifade edilmesi ve hücre döngüsü düzenleyicileri tümör gelişiminde önemli rol oynayan faktörlerdendir 1. Bunlardan hücre döngüsünün denetimi, çoğu biyolojik sürecin ve kansere yolaçabilen kontrolsüz hücre çoğalmasının anlaşılmasında asıl ilgi odağı durumundadır. Hücre döngüsünü düzenleyen sistemlerin pek çok bileşeninin kanserle bağlantısı olduğundan kanser, bir hücre döngüsü düzensizlik hastalığı olarak da tanımlanabilir. G1, S, G2 ve M evrelerinden oluşan hücre döngüsünün bir evresinden diğerine geçişi, döngü basamağına göre düzeyleri artan ya da azalan siklin proteinleriyle denetlenir. Döngüde rolü olan pek çok onkogen ve tümör baskılayan gen, G1kontrol noktasındaki hatalarla ilişkilidir 2. G1/S geçiş noktasının denetimi; siklinlerin sentezlerinin ve yıkımlarının denetlenmesi, kendisine bağlanan ve düzeyleri döngü boyunca değişmeyen ancak aktiviteleri denetlenen katalitik özgün kinazlarla birleşerek siklin-bağımlı kinaz (CDK) kompleksinin oluşumu, bu kompleksin otofosforilasyonla aktifleşmesi, Cip/Kip ve INK4/ARF gibi hücre döngüsü inhibitörlerinin etkisiyle inaktifleşmesi olaylarıyla sağlanır 3-5. D-tipi siklinler (siklin D1, D2 ve D3), CDK4 ve CDK6’yı aktive eder ve G1’in ilerleyişinden sorumludur6. Retinoblastoma (Rb), hücre döngü düzenleyicisi ve tümör baskılayıcısı olarak belirlenen genlerden biridir. Siklin ile oluşan CDK4 ve CDK6 kompleksleri Rb proteinlerini fosforile ederek onu inaktive eder. İnaktif Rb, aktifken kendisine bağlı olan transkripsiyon uzama faktörü-2 (E2F)’yi serbest bırakır (Şekil 1). E2F de, G1/S geçişi ve S evresine giriş için gerekli -siklin A, E ve CDK1, myb, dihidrofolat redüktaz, timidin kinaz gibi- genlerin ifade edilmesini sağlar 7. E2F, diğer döngü düzenleyicileri gibi DNA sentezi, DNA onarımı ve apoptozis olaylarında rol oynamakta ve bazı tümörlerde allele bağlı ifade edilme düzensizliklerine neden olabilmektedir 8. Hücre döngüsünün diğer önemli bir düzenleyicisi, tümör baskılayan p53 genidir. DNA hasarına yanıt olarak p53 gen ürünü aktive olur, hücre döngüsü durur. DNA onarımı ve apoptozis olayları başlatılır 9.Genomik bütünlüğün korunmasında hücre döngü düzenleyicisi olan p53 insan kanserlerinde mutasyonun en sık görüldüğü genlerden biridir 10. p53, DNA hasarına yanıt olarak etkisini, siklin-bağımlı kinaz inhibitörlerinden (CDKI) biri olan p21 proteininin ifade edilmesini sağlayarak gösterir 11.Hücre döngüsünün kontrolü, CDK aktivitelerinin düzenlenmesi, siklinlerin sentezi ve parçalanması, fosforilasyon ve defosforilasyonu, CDKI proteinlerinin sentezi, bağlanması ve parçalanmasını kapsayan pekçok düzeyde yapılabilmektedir 12. CDKI ailesinden biri olan Cip/Kip ailesi, çoğunlukla siklin/CDK komplekslerine bağlanarak etki gösterir. Örneğin p21, CDK2 ile etkileşir (p21, p27 ve p57 bu ailedendir). CDKI ailesinin bir başka üyesi ise INK4/ARF’dir. INK4 yalnızca CDK4 ve CDK6 ile etkileşir ve bunların siklin D ile birleşmelerini engeller (p15, p16, p18 ve p19 bu ailedendir). ARF ise p53’ün regülatörü olan MDM2 aktivitesini inhibe ederek p53 seviyesini arttırır (p14 bu ailedendir)13. Tüm CDKI molekülleri, hücrede fazla sentezlendiklerinde ve CDK moleküllerini etkisizleştirdiklerinde hücre döngüsünü G1 evresinde durdururlar. G1 düzenleyicilerinden siklin D1, CDK4 ve p16, over kanser gelişiminde önemli rol oynarlar14. Miktarı artan siklin D1, Rb proteinini fosforilasyonla inaktive etmek için CDK4 ve CDK6 ile birleşir (siklin D1, 11q13’te CCND1 geni ya da Prad1 geni tarafından şifrelenir; paratroid adenomda, Bhücre lenfomalarında bu genin translokasyonunun –t(11;14)(q13-q32)- rolü nedeniyle bu isim verilmiştir). Siklin D1’in ifade edilmesinin, bazı hücre tiplerinde hücre–hücre dokunmasının ortadan kalkmasıyla azaldığı ve bu döngü düzenleme etkisinin integrinler ve fokal adezyon kinazlar aracılığıyla gerçekleştiği gösterilmiştir15. Meme,özefagus, squamöz hücreli kanserde siklin D1 lokusunda artış olduğu gözlenmiştir16-20. Kolorektal kanserlerde, siklin D2 ve E genlerinin çoklu kopya oluşturması nedeniyle mRNA ve protein düzeyinde de aşırı ifade edildiği gösterilmiştir21. Bazı meme kanseri hücre hatlarında siklin E geninde artış olduğu22,23 ve bu artışın siklin E mRNA düzeyini yaklaşık 64 kat arttırdığı gösterilmiştir24. Herhangi bir hastalığın oluşumunda ve tedavi amaçlı uygulanan ilaca verilen yanıtta çevre, yaş, beslenme, yaşam biçimi gibi faktörlere ek olarak, kişinin genetik yapı değişikliklerinin rolü yadsınamaz. Bu nedenle toplumların genom yapısındaki varyasyonların, ve kişisel gen mutasyonlarının çalışılması kanser oluşum riskinin, ilaç toksisitesi ve etkinliğinin belirlenmesinde yararlı olmaktadır. Tek nükleotit değişimlerini (varyasyonları, polimorfizmleri) içeren genler, toplumda % 1’den daha fazla sıklıkta bulunan allel genler olarak tanımlanır25. İnsan genom dizilim çalışmaları her insan genomunda DNA’nın % 99.9 benzerlik gösterdiğini kanıtlamıştır26. Geriye kalan % 0.1’lik fark, bireysel genotip ve fenotipik değişikliklerin sorumlusudur. Tek nükleotit değişimleri insan genomunda en çok bulunan (ortalama her 1000 nükleotitte bir) DNA dizi değişimleridir27. Diğer genetik polimorfizm tipleri; değişik uzunlukta ikili ya da üçlü nükleotit tekrarları ve DNA’da eksilme ya da artmaları içerir28. İster döngü düzenleyici molekül isterse yüzlerce hücresel işlevden birinden sorumlu olan herhangi bir genin kodlayıcı bölgesindeki değişiklik, genin ürünü olan fenotipi etkiler. Genin ifadesi ise çoğunlukla genin promotör ya da enhancer gibi düzenleyici bölgeleri (cis elementlerdeki) ve bu bölgelere bağlanan transkripsiyon faktörleri ve diğer yardımcı düzenleyici moleküllerle kontrol edilir29. Genin kontrol bölgesindeki nükleotit değişiklikleri ve diğer genlerden oluşturulan ve bu düzenleyici bölgeleri tanıyıp bağlanan (trans etkili) düzenleyici proteinlerin genlerinin kontrol ve kodlayıcı DNA bölgesindeki nükleotit dizi değişiklikleri genin ifade edilme düzeyini, bir başka deyişle ürün oluşumu ve miktarını etkiler. Böylece bir genin ifade edilme düzeyi,hem genin kontrol bölgesindeki DNA diziliminin hem de bu bölgeye bağlanan düzenleyici transkripsiyon faktörlerinin farklılığından dolayı kişiden kişiye değişebilir. Hücre döngüsü denetim noktasında DNA onarımından sorumlu bir kinaz geni olan CHEK2 (CHK2 olarak da bilinir), meme kanser riskinin artmasında rolü olan bir başka döngü düzenleyici gendir. CHEK2 1100delC varyantının, kadınlarda meme kanser riskinin yaklaşık 2 kat, erkeklerde ise 10 kat artmasına neden olduğu gösterilmiştir30. p53 genindeki Pro72 polimorfizminin over kanseri için moleküler belirteç olabileceği belirtilirken, bu allele sahip olmayan meme kanserli hastaların tedavisinde tamoksifenden değil diğer tedavilerden sonuç alınabileceği önerilmektedir31. Siklin D1 geninin 4. ekzonunda tanımlanan A870G tek nükleotit polimorfizmi (SNP) farklı bir mRNA ve farklı bir proteinin oluşmasına neden olabilir32. Bu polimorfizmin, protein ifade edilme düzeyini değiştirerek özefagus kanserlerinde genomu kararsızlığa götürerek agresif bir klinik sürece götürdüğü gösterilmiştir33. Bir başka çalışmada ise bu polimorfizm bakımından AA genotipine sahip olan bireylerin, kolorektal kansere yakanma riskinde artış olduğu gösterilmiştir34,35. Ayrıca, endometriyum36, özefagus ve kardiyak kökenli37,38 kanser hastalarında yapılan çalışmalarda, siklin D1 geninin A870G polimorfizmi bakımından araştırıldığında, AA genotipi ve kanser gelişim riski arasında ilişki olduğu belirlenmiştir. Bunlara ek olarak siklin D1 A870G gen polimorfizmi sigaranın indüklediği akciğer kanser riskini de etkileyebilmektedir39. Buna karşın, östrojen/progesteron reseptör negatif ve ileri evre (III ve IV) meme kanserli hastalarda ise, 870 A allelinin sağkalım ile pozitif ilişkisi olduğu gösterilmiştir40. McKay ve arkadaşları41 yüksek düzeyde siklin D1 protein ifade edilmesi ile kolorektal kanser arasında pozitif ilişkili olduğunu, ancak, A870G polimorfizminin siklin D1 protein ifadesi ve sağkalım ile ilişkisi olmadığını göstermişlerdir. CDKI ailesi üyelerinden p16INK4A (CDKN2A) geninde tanımlanan A148T varyantı erken yaşta gelişen meme42, malign melanom ve akciğer43 kanserleri ile ilişkilendirilmiştir. Cip/Kip aile üyesinden biri olan p21CIP1/WAF1 (CDKN1A) geninin 31. kodonundaki C/A transversiyonu sonucu serin yerine arjinin aminoasitinin kodlanmasıyla sonuçlanan bir polimorfizm tanımlanmıştır44. AA genotipinin akciğer45, mesane46 kanser gelişimi ile, CC genotipinin ise özeferangal kanser oluşumu ile ilişkisi gösterilmiştir47. Genin 3′translasyona uğramayan bölgesinde yer alan stop kodonunun 20 bazçift aşağısında) ve 31. kodon polimorfizmi ile bağlantı gösteren C/T polimorfizmi tanımlanmıştır48. Bir çalışmada,CC genotipi ile karşılaştırıldığında, T alleli taşıyıcılarında (CT+TT genotipleri) prostat kanseri gelişim riskinin 2 kat arttığı gösterilmiştir49. Cip/Kip aile üyesinden biri olan p27KIP1 (CDKN1B ) geninin 109. kodonunda T/G değişimi sonucu glisin amino asiti yerine valin amino asiti kodlanmasıyla sonuçlanan bir polimorfizm tanımlanmıştır50. VV (çalışmada, CDKN1B geni kesim ürünlerine göre sınıflandırılmış) genotipi ile ileri evre prostat kanseri arasındaki ilişki gösterilmiştir49. Bir başka çalışmada ise, oral kanserli erkek hastalarda VV genotipinin kanser gelişimi ile bağlantısı belirlenmiştir51. Meme kanserli hastalarda GG genotipi ile lenf nodu metastazı arasında ilişki olduğu gösterilmiş ve bu polimorfizmin tumör prognoz belirteci olabileceği önerilmiştir52. Bir başka çalışmada ise, CDKN2A, p15INK4B (CDKN2B ), CDKN1B genlerinin kontrol bölgelerinde yeni polimorfizmler tanımlanmıştır. CDKN2A -222A, CDKN2B - 593A, CDKN1B -1608A varyantları ile çocukluk çağı pre-B akut lenfoblastik lösemi (ALL) gelişimi arasındaki bağlantı gösterilmiştir53. Özetlersek, siklinler, CDK kompleksleri ve CDKI molekülleri, hücre döngüsü, farklılaşma, DNA onarımı ve apoptozis sistemlerinin düzenlenmesiyle ilgili genlerin ifade edilmesini denetlemektedir. Hücre döngüsünün denetim noktalarını oluşturan sistemler, kromozomların doğru düzenlenmeayrılmalarından ve genomun bütünlüğünün sürdürülmesinden sorumlu olduğundan bu sistemlerdeki hatalar kanser hücrelerindeki aneuploidilerin ve genomik kararsızlığın asıl nedeni olabilmekte bu nedenle de tedavide ilaç hedefleri arasında yer almaktadır. KAYNAK: 1. Engelsen IB, Stefansson IM, Beroukhim R, et al. HER-2/neu expression is associated with high tumor cell proliferation and aggressive phenotype in a population based patient series of endometrial carcinomas. Int J Oncol 2008; 32 (2): 307-316. 2. Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432: 298-306. 3. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006; 97 (2): 261-274. 4. Malumbres M. Cyclins and related kinases in cancer cells. J BUON 2007; Suppl 1: S45-52. 5. Meeran SM, Katiyar SK. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 2008; 13: 2191-2202. 6. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501-1512. 7. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 1999; 39: 295-312. 8. Bélanger H, Beaulieu P, Moreau C, Labuda D, Hudson TJ, Sinnett D. Functional promoter SNPs in cell cycle checkpoint genes. Hum Mol Genet 2005; 14: 2641-2648. 9. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39–85. 10. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54 (18) :4855-4878. 11. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75 (4): 805-816. 12. de Cárcer G, de Castro IP, Malumbres M. Targeting cell cycle kinases for cancer therapy. Curr Med Chem 2007;14 (9): 969-985. 13. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001; 2 (10): 731-737. 14. D’Andrilli G, Kumar C, Scambia G, Giordano A. Cell cycle genes in ovarian cancer. Clin Can Res 2004; 10: 8132-8141. 15. Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001; 12: 4066- 4077. 16. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB. Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 1992; 52 (10): 2980-2983. 17. Schuuring E, Verhoeven E, van Tinteren H, et al. Amplification of genes within the chromosome 11q13 region is indicative of poor prognosis in patients with operable breast cancer. Cancer Res 1992; 52 (19): 5229-5234. 18. Zhou DJ, Casey G, Cline MJ. Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 1988; 2 (3): 279-282. 19. Lammie GA, Fantl V, Smith R, et al. D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 1991; 6 (3): 439-444. 20. Proctor AJ, Coombs LM, Cairns JP, Knowles MA. Amplification at chromosome 11q13 in transitional cell tumours of the bladder. Oncogene 1991; 6 (5): 789-795. 21. Leach FS, Elledge SJ, Sherr CJ, et al. Amplification of cyclin genes in colorectal carcinomas. Cancer Res 1993; 53: 1986-1989. 22. Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 1993; 90 (3): 1112-1116. 23. Buckley MF, Sweeney KJ, Hamilton JA, et al. Expression and amplification of cyclin genes in human breast cancer. Oncogene 1993; 8 (8): 2127- 2133. 24. Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP. Deregulation of cyclin E in breast cancer. Oncogene 1995; 11 (5): 941-950. 25. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000; 405: 847-856. 26. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921. 27. Carlson CS, Eberle MA, Rieder MJ, Smith JD, Kruglyak L, Nickerson DA. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nat Genet 2003; 33: 518-521. 28. Cariou A, Chiche JD, Charpentier J, Dhainaut JF, Mira JP. The era of genomics: Impact on sepsis clinical trial design. Crit Care Med 2002; 30 (5 Suppl): S341-348. 29. Sefton BM. Overview of protein phosphorylation. Curr Protoc Cell Biol 2001; Chapter 14: Unit14.1. 30. Meijers-Heijboer H, van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations, Nat Genet 2002; 31: 55-59. 31. Wegman P, Stal O, Askmalm MS, Nordenskjöld B, Rutqvist LE, Wingren S. p53 polymorphic variants at codon 72 and the outcome of therapy in randomized breast cancer patients. Pharmacogenet Genomics 2006; 16: 347-351. 32. Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene 1995; 11: 1005- 1011. 33. Izzo JG, Wu TT, Wu X, et al. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol 2007; 25 (6): 698-707. 34. Jiang J, Wang J, Suzuki S, et al. Elevated risk of colorectal cancer associated with the AA genotype of the cyclin D1 A870G polymorphism in an Indian population. J Cancer Res Clin Oncol 2006; 132 (3): 193-199. 35. Le Marchand L, Seifried A, Lum-Jones A, Donlon T, Wilkens LR. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA 2003; 290 (21): 2843-2848. 36. Kang S, Kim JW, Park NH, Song YS, Kang SB, Lee HP. Cyclin D1 polymorphism and the risk of endometrial cancer. Gynecol Oncol 2005; 97: 431- 435. 37. Wang R, Zhang JH, Li Y, Wen DG, He M, Wei LZ. The association of cyclin D1 (A870G) polymorphism with susceptibility to esophageal and cardiac cancer in north Chinese population. Zhonghua Yi Xue Za Zhi 2003; 83 (12): 1089-1092. 38. Zhang J, Li Y, Wang R, Wen D, et al. Association of cyclin D1 (G870A) polymorphism with susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer 2003; 105: 281-284. 39. Gautschi O, Hugli B, Ziegler A, et al. Cyclin D1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients. Lung Cancer 2006; 51: 303-311. 40. Shu XO, Moore DB, Cai Q, et al. Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomarkers Prev 2005; 14: 91-97. 41. McKay JA, Douglas JJ, Ross VG, et al. Cyclin D1 protein expression and gene polymorphism in colorectal cancer. Aberdeen Colorectal Initiative. Int J Cancer 2000; 88 (1): 77-81. 42. Debniak T, Cybulski C, Górski B, et al. CDKN2Apositive breast cancers in young women from Poland. Breast Cancer Res Treat 2007; 103: 355-359. 43. Debniak T, Scott RJ, Huzarski T, et al. CDKN2A common variant and multi-organ cancer risk-a population-based study. Int J Cancer 2006; 118: 3180- 3182. 44. Li YJ, Laurent-Puig P, Salmon RJ, Thomas G, Hamelin R. Polymorphisms and probable lack of mutation in the WAF1-CIP1 gene in colorectal cancer. Oncogene 1995; 10: 599-601. 45. Själander A, Birgander R, Rannug A, Alexandrie AK, Tornling G, Beckman G. Association between the p21 codon 31 A1 (arg) allele and lung cancer. Hum Hered 1996; 46: 221-225. 46. Chen WC, Wu HC, Hsu CD, Chen HY, Tsai FJ. p21 gene codon 31 polymorphism is associated with bladder cancer. Urol Oncol 2002; 7: 63-66. 47. Wu MT, Wu DC, Hsu HK, Kao EL, Yang CH, Lee JM. Association between p21 codon 31 polymorphism and esophageal cancer risk in a Taiwanese population. Cancer Lett 2003; 201: 175- 180. 48. Mousses S, Ozcelik H, Lee PD, Malkin D, Bull SB, Andrulis IL. Two variants of the CIP1/WAF1 gene occur together and areassociated with human cancer. Hum Mol Genet 1995; 4: 1089-1092. 49. Kibel AS, Suarez BK, Belani J, et al. CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res 2003; 63: 2033-2036. 50. Cave H, Martin E, Devaux I, Grandchamp B. Identification of a polymorphism in the coding region of the p27Kip1 gene. Ann Genet 1995; 38 (2): 108. 51. Li G, Sturgis EM, Wang LE, et al. Association between the V109G polymorphism of the p27 gene and the risk and progression of oral squamous cell carcinoma. Clin Cancer Res 2004; 10: 3996-4002. 52. Naidu R, Har YC, Taib NA. P27 V109G Polymorphism is associated with lymph node metastases but not with increased risk of breast cancer. J Exp Clin Cancer Res 2007; 26: 133-140. 53. Healy J, Bélanger H, Beaulieu P, Larivière M, Labuda D, Sinnett D. Promoter SNPs in G1/S checkpoint regulators and their impact on the susceptibility to childhood leukemia. Blood 2007; 109: 683-692. 54. Zhu L, Skoutchi AI. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 2001; 11: 91-97. 55. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25: 1620-1628. 56. Burd CJ, Petre CE, Morey LM, et al. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci USA 2006; 103: 2190-2195. 57. Sturm RA, Duffy DL, Box NF, et al. The role of melanocortin 1-receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res 2003; 16: 266-272. 58. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111. 59. Signoretti S, Loda M. Prostate stem cells: from to cancer. Semin Cancer Biol 2007; 17: 219-224. 60. Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 1995; 83: 859-869. 61. Chambon P. A decade of molecular biology of retinoic acid receptors, FASEB J 1996; 10: 940–954. 62. Si J, Mueller L, Collins S. CaMKII regulates retinoic acid receptor transcriptional activity and the differentiation of myeloid leukemia cells. J Clin Invest 2007; 117: 1412-1421. 63. Wang J, Yen A. A novel retinoic acid-responsive element regulates retinoic acid-induced BLR1 expression. Mol Cell Biol 2004; 24: 2423-2443. 64. Hu L, Crowe DL, Rheinwald JG, Chambon P, Gudas LJ. Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines. Cancer Res 1991; 51: 3972–3981. 65. Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids. J Clin Endocrinol Metab 2004; 89 (1): 272-280. 66. Zhang Z, Joh K, Yatsuki H, et al. Retinoic acid receptor β2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett 2007; 247 (2): 318-327. 67. Woolcott CG, Aronson KJ, Hanna WM, et al. Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Cause Control 2001; 12 (5): 395-404. 68. Hoyer AP, Jorgensen T, Rank F, Grandjean P. Organochlorine exposures influence on breast cancer risk and survival according to estrogen receptor status: a Danish cohort-nested case-control study. BMC Cancer 2001; 1: 8. 69. Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 2002; 11:1513- 1530. 70. Imyanitov E, Hanson K, Zhivotovsky B. Polymorphic variations in apoptotic genes and cancer predisposition. Cell Death Differ 2005; 12: 1004– 1007. 71. López-Cima MF, González-Arriaga P, García-Castro L, et al. Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of Northern Spain. BMC Cancer 2007; 7: 162. 72. Bau DT, Wu HC, Chiu CF, et al. Association of XPD polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res 2007; 27 (4C): 2893-2896. 73. Naccarati A, Pardini B, Hemminki K, Vodicka P. Sporadic colorectal cancer and individual susceptibility: a review of the association studies investigating the role of DNA repair genetic polymorphisms. Mutat Res 2007; 635: 118-145. 74. Sangrajrang S, Schmezer P, Burkholder I, et al. The XRCC3 Thr241Met polymorphism and breast cancer risk: a case-control study in a Thai population. Biomarkers 2007; 12: 523-532. 75. Shao J, Gu M, Xu Z, Hu Q, Qian L. Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 2007; 177: 30-36. 76. Long XD, Ma Y, Huang HD, Yao JG, Qu DY, Lu YL. Polymorphism of XRCC1 and the frequency of mutation in codon 249 of the p53 gene in hepatocellular carcinoma among guangxi population, China. Mol Carcinog 2007; 47(4): 295-300. 77. Yang ZH, Liang WB, Jia J, Wei YS, Zhou B, Zhang L. The xeroderma pigmentosum group C gene polymorphisms and genetic susceptibility of nasopharyngeal carcinoma. Acta Oncol 2007; 47(3): 379-384. 78. Jara L, Acevedo ML, Blanco R, et al. RAD51 135G>C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 2007; 178: 65-69. 79. Gu A, Ji G, Liang J, et al. DNA repair gene XRCC1 and XPD polymorphisms and the risk of idiopathic azoospermia in a Chinese population. Int J Mol Med 2007; 20 (5): 743-747. 80. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005; 26: 263– 270. 81. Zhivotovsky B, Orrenius S. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 2006; 27: 1939-1945. 82. Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stressinduced apoptosis and degenerative diseases. Biochim Biophys Acta 2004; 1655 (1-3): 400-408. 83. Dabrowska M, Pietruczuk M, Kostecka I, et al. The rate of apoptosis and expression of Bcl-2 and Bax in leukocytes of acute myeloblastic leukemia patients. Neoplasma 2003; 50 (5): 339-344. 84. Yang X, Sit WH, Chan DK, Wan JM. The cell death process of the anticancer agent polysaccharidepeptide (PSP) in human promyelocytic leukemic HL- 60 cells. Oncol Rep 2005; 13: 1201-1210. 85. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 2002; 13: 135– 141. 86. Lai HC, Sytwu HK, Sun CA, et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 2003; 103 (2): 221–225. 87. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 2004; 96: 1030–1036. 88. Shepelev V, Fedorov A. Advances in the Exon-Intron Database (EID). Brief Bioinform 2006; 7 (2): 178- 185. 89. Brent MR. Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat Rev Genet 2008; 9 (1): 62-73. 90. Li G, Sturgis EM, Wang LE, et al. Association of a p73 exon 2 G4C14-to-A4T14 polymorphism with risk of squamous cell carcinoma of the head and neck. Carcinogenesis 2004; 25 (10): 1911–1916. 91. Hazra A, Chamberlain RM, Grossman HB, Zhu Y, Spitz MR, Wu Xl. Death receptor 4 and bladder cancer risk. Cancer Res 2003; 63: 1157–1159. 92. Shin MS, Kim HS, Kang CS, et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 2002; 99 (11): 4094–4099. 93. Park WS, Lee JH, Shin MS, et al. Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 2002; 21 (18): 2919–2925. 94. Kim HS, Lee JW, Soung YH, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology 2003; 125 (3): 708–715. 95. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin’s lymphoma. Oncogene 2001; 20 (3): 399–403. 96. MacPherson G, Healey CS, Teare MD, et al. Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J Natl Cancer Inst 2004; 96 (24): 1866–1869. 97. Seker H, Butkiewicz D, Bowman ED, et al. Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 2001; 61 (20): 7430- 7434. 98. Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol 2002; 12: 89−96. 99. Hunter KW. Host genetics and tumour metastasis. Br J Cancer 2004; 90: 752−755. 100. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997; 80 (8 Suppl): 1529-1537. 101. Ekmekci A. Gen, Genetik Değişim ve Hastalıklar, Gazi Kitabevi. Ankara, Turkiye, 1st ed., 2006; 217- 245. 102. Risau W. Mechanisms of Angiogenesis. Nature 1997; 386: 671-674. 103. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) Gene: correlation with variation in VEGF protein production. Cytokine 2000; 12: 1232-1235. 104. Claffey KP, Robinson GS. Regulation of VEGF/ VPF expression in tumour cells: consequences for tumour growth and metastasis. Cancer Metastasis Rev 1996; 15: 165-176. 105. Koch AE, Harlow LA, Haines GK, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in reumatoid arthritis, J Immunol 1994; 152 (8): 4149-4156. 106. Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Rev 1997; 13; 37-50. 107. Saaristo A, Karpanen T, Alitalo K. Mechanisms of angiogenesis and their use in the ınhibition of tumor growth and metastasis. Oncogene 2000; 19: 6122- 6129. 108. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, et al. Isolation of angiopoietin-1, a ligand for the tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87 (7): 1161-1169. 109. Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277 (5322): 55-60. 110. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. Lack of association between -460 C/T and 936 C/T of the vascular endothelial growth factor and angiopoietin-2 exon 4 G/A polymorphisms and ovarian, cervical, and endometrial cancers. DNA Cell Biol 2007; 26: 453-463. 111. Onen IH, Konac E, Eroglu M, Guneri C, Biri H, Ekmekci A. No association between polymorphism in the vascular endothelial growth factor gene at position-460 and sporadic prostate cancer in the Turkish population. Mol Biol Rep 2008; 1: 17-22. 112. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237. 113. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. An investigation of relationships between hypoxia-inducible factor-1 alpha gene polymorphisms and ovarian, cervical and endometrial cancers. Cancer Detect Prev 2007; 31: 102-109. 114. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799. 115. Hartsough MT, Steeg PS. Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 2000; 32 (3): 301-308. 116. Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043- 1050. 117. Ghilardi G, Biondi ML, Caputo M, et al. A single nucleotide polymorphism in the matrix metalloproteinase-3 promoter enhances breast cancer susceptibility. Clinical Cancer Res 2002; 8 (12): 3820-3823. 118. Ghilardi G, Biondi ML, Erario M, Guagnellini E, Scorza R. Colorectal carcinoma susceptibility and metastases are associated with matrix metalloproteinase-7 promoter polymorphisms. Clinic Chem 2003; 49: 1940-1942. 119. Eroglu A, Ulu A, Cam R, Akar N. Plasminogen activator inhibitor-1 gene 4G/5G polymorphism in patients with breast cancer. J BUON 2006; 11: 481- 484. 120. Lei H, Hemminki K, Johansson R, Altieri A, Enquist K, Henriksson R, et al. PAI-1 -675 4G/5G polymorphism as a prognostic biomarker in breast cancer, Breast Cancer Res Treat, DOI: 10.1007/s10549-007-9635-3 July 7; 2007. 121. van den Bemd GJ, Pols HA, van Leeuwen JP. Antitumor effects of 1,25-dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des 2000; 6: 717-732. 122. Haussler MR, Whitfield GK, Haussler CA. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 1: 325– 349. 123. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 2002; 277: 25125–25132. 124. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 1999; 277: F157–175. 125. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143–156. 126. Obara W, Suzuki Y, Kato K, Tanji S, Konda R, Fujioka T. Vitamin D receptor gene polymorphisms are associated with increased risk and progression of renal cell carcinoma in a Japanese population. Int J Urol 2007; 14: 483-487. 127. Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL, Bell DA. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996; 56: 4108-4110. 128. Kadiyska T, Yakulov T, Kaneva R, Nedin D, Alexandrova A, Gegova A, et al. Vitamin D and estrogen receptor gene polymorphisms and the risk of colorectal cancer in Bulgaria. Int J Colorectal Dis 2007; 22 (4): 395-400. 129. Lundin AC, Söderkvist P, Eriksson B, Bergman- Jungeström M, Wingren S. Association of breast cancer progression with a vitamin D receptor gene polymorphism. South-East Sweden Breast Cancer Group. Cancer Res 1999; 59: 2332-2334. 130. Oakley-Girvan I, Feldman D, Eccleshall TR, Gallagher RP, Wu AH, Kolonel LN, et al. Risk of early-onset prostate cancer in relation to germ line polymorphisms of the vitamin D receptor. Cancer Epidemiol Biomarkers Prev 2004; 13 (8): 1325-1330. 131. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci USA 1992; 89: 6665-6669. 132. Faraco JH, Morrison NA, Baker A, Shine J, Frossard PM. ApaI dimorphism at the human vitamin D receptor gene locus. Nucleic Acids Res 1989; 17: 2150. 133. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367 (6460): 284-287. 134. Onen HI, Ekmekci A, Eroğlu M, Konac E, Yeşil S, Biri H: Association of genetic polymorphisms in vitamin D receptor gene and susceptibility to sporadic prostate cancer. Exp Biol Med 2008; 233 (12): In Press. Abdullah Ekmekçi, Ece Konaç, H. İlke Önen Gazi Üniversitesi, Tıp Fakültesi, Tıbbi Biyoloji ve Genetik Anabilim Dalı, Ankara, Türkiye

http://www.biyologlar.com/hucre-dongusu-ve-polimorfizm

HÜCRE SİKLUSU VE KANSER

Hülya CABADAK Marmara Ün. Tıp Fakültesi, Biyofizik AD, İSTANBUL, TÜRKİYE Anahtar Kelimeler: Hücre siklusu, siklinler, siklin bağımlı kinazlar, tümör baskılayıcı gen, kanser Organizma/organ/doku gelişimi, hücrelerin büyüme ve çoğalmalarını içerdiği gibi hücre ölümlerini de sağlar. Hasarlı dokuların onarımı somatik hücrelerin ve destek dokunun çoğalması ile gerçekleşmektedir1. Hücre büyümesi, farklılaşması ve çoğalmasında rolü olan proto-onkogenlerde meydana gelen mutasyonlar tümör gelişimine, tümör baskılayıcı genlerde meydana gelen mutasyonlar ise hücre siklusunun inhibisyonunu engelleyerek anormal hücre büyümesine neden olur2. Homeostasis; hücre çoğalması, büyümenin durdurulması ve apoptozis (programlı hücre ölümü) ile sürdürülmektedir2. Hücre büyümesi ve ölüm arasındaki dengenin bozulması hiperplazi veya neoplaziye neden olur1. Pozitif veya negatif uyaranlar genetik lezyona yatkın hücrelerde, malign çoğalmaya neden olabilir. Malign gelişimi en aza indirmeye yardımcı mekanizmalardan birisi nekrozdur. Nekroz (kontrolsüz hücre ölümü) hücre şişmesi ve hızlı dejenerasyon olarak tanımlanır. Apoptozis, nekrozdan farklı olarak fizyolojik koşullarda meydana gelen ve doku homeostazisini sağlayan ölüm şeklidir. Programlı hücre ölümü apoptozisin normal hücre döngüsünde ve fizyolojik süreçlerde rolü vardır. Apoptotik hücrelerde hücre büzülmesi, kromatinin kondanse olması, sitoplazmik tomurcuklar ve apoptotik cisimciklerin oluşumu gibi morfolojik değişimler meydana gelir3. Makrofajlar apoptotik hücre ve cisimciklerini fagosite eder. Doku zedelenmesinde ilk etmen reaktif oksijen türevleridir. Reaktif oksijen türevlerinin hedefleri plazma zarında ve diğer hücre kompartmanlarında bulunan proteinler, lipidler, karbohidratlar ve nükleik asitlerdir3. Son yıllarda nekrozun da programlanmış olabileceği ve organizma homeostasis mekanizmalarının bir parçası olduğu yönünde görüş oluşmakla birlikte daha yaygın olarak nekroz indüklenmesi olası tedavi mekanizması olarak değerlendirilmektedir. Nekrozda ölen hücrelerden HMGB1 (High mobility group protein B1) ve HDGF (hepatoma derived growth factör) gibi moleküllerin salınımının immün cevabı uyardığı veya yara onarımını aktive ettiği düşünülmektedir4. Apoptozis, normal hücre ölümünün yanısıra mutant hücre çoğalmasını önleyen önemli bir yoldur. Hücre siklusu ve apoptozisde çok sayıda protein ikili rol oynar. Çevresel faktörlerle meydana gelen DNA hasarı hücre siklus kontrol mekanizmalarının bozulmasına neden olur. Pek çok kanser tipinde hücre siklus kontrol noktalarında mutasyonlar belirlenmiştir2. Büyümenin durdurulması (growth arrest), DNA onarımı ve apoptozis’in engellenmesi kanser gelişiminde kritik yolaklardır.5 Tümör baskılayıcı genlerde mutasyonlar hasarlı hücrelerin hücre sikluslarının ilerlemesine ve tümör gelişimine neden olur2,6. Genomun gardiyanı olarak da tanımlanan p53 proteini karmaşık etkinliklere sahip ve hücre siklusunu baskılayan bir proteindir2. p53, hücre döngüsünü düzenleyen bir transkripsiyon faktörüdür. Birçok organizmada kanserin baskılanmasında rolü olan çok önemli bir proteindir. p53 proteini hücre büyümesinin durdurulması, programlanmış hücre ölümü, hücre farklılaşması ve DNA tamir mekanizmasının başlatılmasında da rol alır. p53, mutant hücre çoğalmasına karşı genomun korunmasında önemli rol oynar2,6. 1.NORMAL HÜCRELERDE HÜCRE SİKLUSU Sürekli bölünen hücrelerde mitozdan sonra siklus G1-S-G2 (interfaz) ve M (mitoz) şeklinde tekrarlanır. Bu süreçte hücre uyarımı ve büyüme meydana gelmekte veya bölünme sinyali almadıkları sürece istirahat fazı G0 da durmaktadırlar2,7 . G1, S, G2 fazları (Interfaz) hücre siklusunun %90’nını kapsar ve 16-24 saat sürer. Mitoz bölünme ise 1-2 saat sürmektedir. Hücre büyümesi G1 fazında kısıtlayıcı nokta (R point) tarafından koordine edilir. Kısıtlayıcı noktada hücre duracak veya hücre siklusunu tamamlayacaktır7,8. G1 fazında hücreler kendi çevrelerini kontrol eder, sinyalleri alır ve büyümeyi indükler. Bu fazda DNA sentezi (replikasyonu) için hazırlık yapılır. RNA ve protein sentezi olur. S fazında ise DNA sentezlendikten sonra, G2 fazında hücre büyümeye devam eder aynı zamanda RNA sentezi, protein sentezi gerçekleşir ve hücre mitoza hazırlanır. Mitoz; profaz, metafaz, anafaz ve telofazdan oluşmaktadır. Telofazda sitoplazmik bölünme tamamlanır ve aynı genetik materyalli iki yeni hücre meydana gelir. Hücre siklusunda bir faz tamamlanmadan sonraki faza geçilirse genetik materyal tam ve doğru kopyalanmadığı için hücrede hasar meydana gelebilir. Hücre siklusunda G1-S geçişinde, G2-M geçişinde ve metafaz-anafaz geçişinde kontrol noktaları vardır. Bu kontrol noktalarında hücrenin siklusa devam edip etmeyeceği kararı verilir7. Radyasyon veya toksinle muamele edilen hücrelerde DNA’da meydana gelen hasara göre hücre siklusu kontrol noktaları G1 den S fazına veya G2’den mitoza geçişi engeller. DNA’da meydana gelen hasar DNA sentezini de inhibe edebilir. DNA’sı replike olmamış hücrelerde mitoza giriş kinaz komplekslerinin inaktivasyonu ile engellenir7. Hücre siklusunda iki tip gen grubunun rolü vardır: Onkogenler (Her 2, lneu, ras,c myc vb) ve tümör baskılayıcı genler p53 ve Rb (Retinoblastoma geni)9. Onkogenler, kanser gelişimini doğrudan ve dolaylı olarak etkileyen gen grubudur. Tümör baskılayıcı genler ise kanser gelişimini baskılar1. p53 geni işlevini kaybederse hücre büyümesinin kontrolü ortadan kalkar ve DNA tamiri olmadan hücre siklusu kontrolsüz devam eder. Normal hücrelerde DNA hasarı olduğunda, p53 genomik kararlılığı sağlar ve hücre siklusunu G1’de inhibe eder ve hücreye tamir için zaman kazandırır. Hasar tamir edilemiyorsa hücre apoptozise gider7,9 . Hu W ve ark. farelerde p53 ve onun düzenleyicileri Mdm2’nin embriyo implantasyonunda da rolü olduğunu ileri sürmüşlerdir10. Normal hücrelerde Rb hücre siklusunu G1 fazında inhibe eder. Retinoblastoma ve osteosarkom tümör hücrelerinde Rb gen inaktivasyonu gösterilmiştir. Büyüme uyarısı, hücreden büyüme faktörlerinin salınımı ile başlar. Büyüme faktörleri hücre zarında özgün reseptörlere bağlanır ve sinyaller sitoplazma proteinlerine iletilir. Bu sinyaller çekirdekte transkripsiyon faktörlerinin salınımına ve hücrenin hücre siklusuna girmesini sağlar4,11. Hücre siklus saati hücre siklusunun ilerleyip ilerlemeyeceğini belirler veya hücreyi ölüme yönlendirir8,9. 1-1. Hücre siklus kinazları Hücre siklusu siklinler (cyc=cln), siklin bağımlı kinazlar (cdk) ve siklin bağımlı kinaz inhibitörleri (CDI) tarafından kontrol edilir. Bu proteinlerin düzeyleri hücre siklusunun farklı fazlarında farklılıklar gösterir. Siklin bağımlı kinazlar G1-S-G2 ve mitoza geçişi kontrol eder.2,7,9 Memeli hücrelerinde hücre siklusunun düzenlenmesinde işlevleri en iyi bilinen onbir tane siklin bağımlı kinaz (cdk 1-11) ve 16 siklin (siklin D (D1, D2 ve D3); siklin E (E1, E2), siklin A (A1, A2) ve B (B1, B2) rol oynamaktadır (Tablo 1)2,7,9,11,12. Siklin D, E, G1/S fazlarının sınırında geçici olarak sentez edilir ve hücre S fazına girdiğinde hızla yıkılır, Siklin A ve B, S/G2/M faz geçişlerinde sentezlenir, siklin A1 mayoz ve embryogenesis de, siklin A2 çoğalan vücut hücrelerinde bulunur. Siklin B1’in siklin B2’nin fonksiyonlarını kontrol ettiği düşünülmektedir12. Cdk’lar protein fosforilasyonu yapan enzimlerdir. Cdk aktivitesi DNA sarmalının açılması içinde gereklidir. Replikasyon öncesi kompleks’in (PRC: Prereplicative compleks) birkaç bileşeni fosforile olur. Yeni replikasyon orijinleri mitozun sonunda cdk aktivitesi düşene kadar yeni PRC kompleksleri oluşturamaz. Bundan dolayı her hücre siklusunda DNA bir kez replike olur13,14. Cdk’lar siklin’e bağlandığında aktifleşerek aktif siklin-cdk komplekslerini oluştururlar. Siklinler bu komplekslerin düzenleyici alt birimleri, cdk’lar ise katalitik alt birimleridir15. Cdk, siklin (yapısal proteini) ve kinaz (enzim)inden oluşmaktadır9. Herbir cdk katalitik altbirimi farklı düzenleyici altbirimle biraraya gelebilir. Hücre siklusu boyunca kinaz komplekslerinin aktivite düzeyi değişir. Bu nedenle hücreler DNA’larını bir kez replike eder ve kromozomların yavru hücrelere uygun dağılımı sağlanır. Siklin-siklin bağımlı kinaz komplekslerinin (cyc-cdk) düzenlenmesi, cyc altbiriminin hücredeki konsantrasyo-nuna, fosforillenme durumuna ve inhibitör moleküllere bağlıdır. Siklinler hücre siklusunun farklı fazlarında bir taraftan sentezlenirken diğer taraftanda yıkılırlar. Memelilerde Cdk 2, Cdk 4 ve Cdk1(cdc 2)’in, siklin D, E, A ve B ile birlikte ekspresyonu olmaktadır2,9 . Siklin E ekspresyonu E2F transkripsiyon faktörlerine bağlıdır16,17. Herbir siklin özgün olarak belirli bir fazda en yüksek değere ulaşır, sonraki faza girerken hızla yıkılır. Siklinlerin düzeyleri transkripsiyon düzeyinde düzenlenir. Yıkımları ise ’ubiquitin’’ yolağı ile sağlanır Aktif cyc-cdk komplekslerinde cdk altbirimi Thr 161 amino asidinden fosforillenmişdir. Bu fosforilasyon cdk’yı aktive eden kompleks (cak)’ın aktivitesi ile meydana gelir18. Bir kez aktive olan cyc-cdk kompleksi, DNA replikasyonu ve mitozdaki birçok işlemin kontrolünde rolü olan proteinleri fosforiller. Protein kinazlarla cyc-cdk altbirimlerinin fosforilasyonu ile kinaz kompleksi inaktive olur7,9,11. Cdk’ların aktiviteleri sadece siklinlerle düzenlenmez ayrıca fosforilasyon ve defosforilasyona yol açan başka yollarla da düzenlenir. Siklin bağımlı kinaz inhibitörleri (CKI): Hücre siklus inhibitör proteinleri (CKI) cdk aktivitesini kontrol eder. Bu proteinler cyc-cdk kompleksi oluşumunu ve DNA replikasyonunu inhibe eder. CKI’lar hücre siklusunu frenlediklerinden tümör baskılayıcı genlere de adaydır. Etkiledikleri cdk ve inhibisyon mekanizmalarına göre iki farklı CKI ailesi vardır. Bunlardan ink 4 ailesinde p15, p16, p18, p19’ G1 fazındaki cdk4 ve cdk6’yı bağlayarak cyc-cdk kompleks oluşumunu inhibe eder (Şekil 2a). Cip/Kip ailesinde ise p21, p27, p57 bulunmaktadır. Cip/Kip ailesi cyc-cdk kompleksini inhibe etmektedir (Şekil 2b )2,7,9,11,12. G2 fazında siklin B cdk1(cdc-2)’in tam aktivasyonunu sağlayarak mitoza girişi tetiklemektedir (Şekil 2c)9,11,12. Genellikle, farklı kanser hücrelerinde hücre siklusunun G1-S fazını kontrol eden proteinlerin inaktif olduğu, G2-M fazlarını kontrol eden proteinlerde ise değişimin daha az olduğu belirtilmektedir1,2,19. 1-2. Normal hücrelerde G1-S geçişi Büyümeyi uyaran sinyaller G1 fazı başlangıcında siklin D düzeyini sonraki evrede ise siklin E artışına neden olur (Şekil 3)2,9,11,12,20. Kısıtlayıcı noktada (R point) büyüme inhibitör faktör (Rb, Retinoblastoma) hücrenin S fazına girip girmeyeceğini belirleyen anahtar gibi rol oynar7,4,8,9,11,21. Kısıtlayıcı nokta geçilirse hücre DNA sentezinin olduğu S fazına girer. DNA sentezi sırasında iplikçiklerin birbirinden ayrılması ile DNA hasara çok duyarlı hale gelir ve bu nedenle S fazı hızlı geçilir4. Hücre siklusunun ilerlemesi Rb proteininin fosforillenmesi ile belirlenmektedir22. Az fosforillenmiş (Hipofosforile) Rb E2F transkripsiyon faktörünü bağlıyarak inaktifleştirir11,23,24. E2F’nin inaktifleşmesi sonucu hücre S fazına ilerleyemediğinden siklus durur. İstirahat halindeki (Go fazında) hücre bölünme sinyali aldığında hipofosforile Rb G1 fazının sonuna doğru cyc’nin cdk ile birleşmesi ile cyc-cdk kompleksini oluşturur ve bu kompleks Rb proteinini fosforiller7,11,24. Fosforillenen Rb proteininden E2F salınır, E2F ‘nin siklus ilerletici etkisi ile S fazına giriş için gerekli genlerin transkripsiyonu aktive olur ve hücre S fazına girer6,9,11,12,18,19,24-26. Hücre siklusunun S fazına geçişini G1 fazında aktive olan siklinler sağlar. Go fazında bu siklinlerin çoğunun ekspresyonu olmaz. G1 cyc-cdk kompleksleri transkripsiyon faktörlerini aktive etmektedir. Büyüme faktörleri, otokrin uyarım, lektinlerle mitojenik uyarım veya Ras yolağı gibi hücre içi sinyal yollarında mutasyon, hücrelerin tekrar G1 fazından siklusa girmelerini uyarabilir9,27. İstirahat halindeki hücrelerde, başlangıçta mRNA’sı stabil olmayan siklin D az miktarda bulunur. Go’da büyüme faktörleri ile uyarım, siklin D sentezini ardından siklin E’nin birikimini uyarır.20 Büyüme faktörleri olmadığında siklin D düzeyi hemen düşer1,7,11,20. Embriyonik hücrelerde siklin E düzeyleri devamlı yüksektir28. Hücre siklusunda Rb aktivitesi ICBP90 transkripsiyon faktörü ile protein düzeyinde düzenlenebilir29. G1-S geçişinde, büyüme faktörlerine cevap olarak siklin D düzeyi artar. Siklin D artışı ile siklin D-cdk 4(cdk 6) kompleksi oluşur. Siklin D ve cdk 4‘ün ve de onların aktif komplekslerinin birikimi p16’nın inhibitör rolünü ortadan kaldırır ve Rb (retinoblastoma gen) fosforillenir24,30. Az fosforillenen Rb, E2F transkripsiyon faktörün inaktivasyonuna neden olan histon deasetilaz (HDAC) enzimine bağlanır31. Rb’nin fosforillenmesi S fazının başlaması ve ilerlemesi için gereken genlerin geçici olarak aktivasyonunda rolü olan E2F transkripsiyon faktörün baskılanmasını kaldırır. G1 de siklin E -cdk2 kompleksi (MTOC) mikrotübülleri organize eden merkezin iki sentromere dublikasyonunu aktive eder32. Siklinlerin uyarıcı etkileri CDK inhibitörleri CKI tarafından önlenmektedir. G1/S fazı geçişi için önkoşul CKI ların baskılanmasıdır. Örneğin hücre siklusuna giriş için siklin D1 düzeyinin yükselmesi yeterli değildir. ERK (extracelllular signal regulated kinase) aktivasyonu da geç G1’de cdk’ların aktivitesini artırmak için birkaç aşamada rol oynar. ERK aynı zamanda CKI’ların inhibisyonunda da rol oynamaktadır33. G1 fazı boyunca hücre çoğalmasını engelleyen birçok genin baskılanması için ERK’in sürekli aktivitesi gereklidir. Tek başına ERK aktivasyonu hücre siklusuna girişi sağlama- ya yetmez. Vücut hücrelerinde ERK, hücre siklusunun G2/M fazında aktive olur. Metafazda tutulan hücrelerde ERK fosforillenmemiş durumdadır33. Eş zamanlı çoğalan (senkronize) HeLA ve NIH 3T3 hücrelerinde ERK’in aktivasyonunun S fazının sonuna doğru meydana geldiği ve mitoz sonuna kadar aktif halde kaldığı belirlenmiştir. MEK (MAPK kinaz) inhibitörleri ile ERK aktivasyonu bloke edildiğinde mitoza girişin geciktiği ardından metafazdan anafaza gecikmeli geçişin mitoz süresinin uzamasına neden olduğu belirtilmektedir34. G2/M geçişinde ERK inhibe edildiğinde M faz süresi iki kat artar. ERK aktivasyon yolakları henüz tam olarak anlaşılamamıştır33. Genellikle normal hücrelerde p53, MDM2 proteinine bağlı olarak inaktiftir. p53 ubiquitin ligazla yıkıma uğradıktan sonra aktive olur. Aktive olan p53, p21 ekspresyonunu aktive eder. p21 G1-S (cdk) ve S (cdk) komplekslerine bağlanarak onları inhibe eder ve hücre siklusu durur. Siklusun durması hücreye tamir için zaman kazandırır. Radyasyon ve ilaç gibi hücrenin strese maruz kaldığı durumlarda DNA hasarı olursa, hücre bu uyarıya p53 düzeyini artırarak yanıt verir. p21’in aktivasyonu sağlanarak G1 kontrol noktasında Rb proteinin daha fazla fosforlanması önlenerek hücre siklusu durdurulur. p21 siklin-cdk kompleksini inhibe etmesi yanında “proliferating cell nuclear antijen (PCNA)i de inhibe eder35. Timidin ve metotoraksat (methotraxate) gibi ilaçlar hücre siklusunun ilerlemesini engeller36. 1-3. Normal hücrelerde G2-M geçişi Hücreler DNA sentezinden sonra G2 fazına girer. Siklin B-cdk1 kompleksinin aktivitesi artar, mitoza giriş uyarılır9,19,37. Siklin B-cdk1 kompleksi mitozu ilerleten faktör (MPF) olarak da isimlendirilmektedir. Geç S fazında siklin B sentezlenmeye başlar ve sentez mitoz boyunca devam eder, mitoz tamamlandığında siklin B düzeyi hızla düşer. Bu düşüş aktif MPF kompleksinin oluşmasını ve ikinci hücre bölünmesini engeller. Siklin B düzeyi sitoplazma ve çekirdek arasında aktif taşınımla düzenlenir. İnterfaz (G1,S,G2) aşamasında siklin B sitoplazmadadır. Mitoz başlangıcında siklin B cdk 1’e bağlanarak aktif MPF kompleksini oluşturur. İnhibe edici fosforillenme aynı zamanda MPF aktivitesi-ni düzenleyebilir. cdk1 altbiriminin ikinci kez fosfofosforilenmesi siklin B-cdk1 kompleksi-ni inaktive eder. Wee 1, nükleer protein kinaz, çekirdekte MPF kompleksini inaktive ederek erken mitozu engeller11,20,38. Wee1’ın cdk1 altbiriminin ATP bağlama bölgesini fosforillemesi ile MPF kompleksi inaktive olur. Myt 1, Golgi aygıtında lokalize olan protein kinazdır. Myt 1, cdk1’i fosforiller ve interfazda onun siklin B ile bağlanmasını düzenler11,20. Cdc25, cdk’lardan inhibe edici fosfat gruplarını kaldıran fosfatazdır. Cdc 25 hücre siklusunun çeşitli fazlarına ilerlemeyi kontrol eder39. Bu aşama mitoza girişte hız sınırlayıcı basamaktır. cdc25b proteininin G2 fazında birikimi ilk MPF aktivasyonunda kritik rol oynar. cdc25c protein düzeyi hücre siklusunun bütün fazları boyunca sabit kalır. G2-M geçişinde, cdc25c çekirdekte birikir ve mitoz başlangıcında MPF komleksini aktive eder. DNA’sı replike olmamış hücrelerin mitoza girişi MPF kompleksinin inaktive olması ile önlenir11,20,40. G1 fazını geçen hasarlı hücreleri ortadan kaldırmak için G2 fazı kontrol noktalarında siklin-cdk-CKI sistemi gereklidir11,20. Bu kontrol noktası sağlam olmayan kromozomların ayrılmasını önler5. G2 fazında, S fazında replike olmuş DNA ve kromatin proteinleri kondanse olur ve kardeş kromatidler olarak paketlenirler. Mitozun metafaz aşamasında kromozomlar ekvator plağına dizilir, ardından kutuplara çekildikten sonra iki yavru hücreye bölünür. Sentro-merler mikrotübüllere bağlanamazsa mitoz gecikir. Bu olaylarda siklin B-cdk1 gereklidir. Siklin B-cdk1 kompleksi aynı zamanda (MPF) M fazının ilerlemesinde de anahtar rol oynar. Marumato ve ark. siklin B-cdk1(cdc-2) aracılı fosforilasyonla indirek olarak aurora-A’nın aktive olduğunu bildirmişlerdir41. Siklin B-cdk1 (cdc-2) çekirdeğe girişte gereklidir. Aurora A’nın aktivasyonu nükleer translokasyonu sağlar ve siklin B cdk1(cdc-2)’nin tam aktivasyonu mitoza girişi tetikler. Çeşitli kanser tiplerinde Aurora A’nın fazla eksprese olduğu belirlenmiştir5,11,20,41,42. 1-3-1. DNA’sı hasarlı hücrelerin G2-M geçişi DNA hasarından sonra, G2 bloğunun olması için cdk 1 defosforillenmesinin inhibisyonu gereklidir9,43. DNA hasarı, cdc-25c’yi fosforilleyen chks1 ve 2 protein kinazların aktivasyonunu sağlar. Fosforillenen cdc-25c, 14-3-3 proteinlerine bağlanarak çekirdekten sitoplazmaya taşınır. cdc25c çekirdek içinde bulunursa, siklin B-cdk1 kompleksini aktive eder. Bunun yanısıra siklinB-cdk1 kompleksin aktivitesine gereken çekirdek içindeki cdc25c miktarının yetersiz olmasından dolayı G2 blok aktive olur. Aynı zamanda p53 de G2-M geçişinde rol oynayabilir9. DNA hasarında p53 stabil kalmakta ve 14-3-3 trans-kripsiyonel olarak aktive olmaktadır. Aktive olan 14-3-3 fosforillenmiş cdc 25c’e bağlanır ve kompleksi sitoplazma içinde tutar, böylece mitoza geçişe uygun aktif siklin B-cdk1 kompleksi azalır11. p21 ve p53 ikinci tur DNA sentezi yapmış fazla DNA’lı hücreleri G2 ve M fazında engeller5,39. p53, G2’ye girişi inhibe eden 14-3-3 gen transkripsiyonunu artırarak bu geçişi önlemektedir. 14-3-3 cdc25c fosfatazla birleşir ve bu kompleks cdc25c’nin çekirdeğe girişini inhibe ederek DNA ‘yı bloke eder9,11. 1-4. Normal hücrelerde mitoz iplikçik kontrol noktası Mitoz iplikçik kontrol noktası metafazdan anafaza geçişi düzenler.2,7,11,20,44-46 Bu kontrol noktası bütün kinetokorlara uygun mikrotübül bağlanmasını kontrol eder ve kinetokor gözetiminde uygun kromozom ayrılmasını sağlar. Mitotik siklinlerin yıkımından sonra anafaz başlar. Mitotik siklinler ubikuitinlendikten sonra proteozomal yıkım olur. Mitotik siklinlerin yıkımı siklinB-cdk1 kompleksini inaktive eder ve bu inaktivasyon mitozun normal bitmesini sağlar7,11. Mitoz iplikçik kontrol noktası olgunlaşmamış kardeş kromatidlerin ayrılmasını engeller. Bu kontrol noktasında rolü olan genler, MAD1L1, MAD2, MAD2L1, MAD2B, BUB1, BUBR1, BUB3, TTK, MPS ve CDC20’ dir. Bu genler hücre siklusunun kontroluna katılır. Mayadan insana kadar MAD ve BUB proteinleri korunmuştur. BUB ve MAD gen ürünleri kinetokor gözetimi ve anafaz düzenlenmesi için gereklidir. MAD proteinleri doğru kromozom ayrılmasını, BUB gen ürünleri ise mitozun ilerlemesini düzenler47. Drosophila Melonogaster, C.elegans ve farede mitoz iplikçik kontrol noktasının tamamen kaybolmasının embriyon ölümüne neden olduğu gösterilmiştir7,9,11,48-50. DNA sentezinden sonra kohesin protein kompleksleri kardeş kromatidleri birarada tutar ve kromozomlar oluşur11,20,51,52. Mitoz iplikçik kontrol noktası anafaz promoting kompleksi (APC) düzenler. CDC20p APC’yi aktive eder ve pds1p ubiquitinlenme ile yıkılır. Pds1p’nin yıkılması ile separin Esp 1 aktive olur ve kohesin salınır, böylece anafazda kardeş kromatidler ayrılır. CDC20p’nin APC’yi aktive etmediği durumlarda kohesin salınmaz, kardeş kromatidler ayrılamaz ve anafazda inhibisyon meydana gelir10,53. CDC20’nin MAD2, BUBR1, BUB3 ile kompleks oluşturması anafaza girişi beklemeye alır. 2- Kanser ve kontrol noktası inaktivasyonu Gen mutasyonlarından dolayı G1-S geçişindeki değişimler kansere neden olabilir. Kanser hücrelerinin karakteristik özelliklerinden biri büyüme uyarımından bağımsız olarak G1 fazına tekrar girebilmeleridir. Rb fosforillenme/defosforillenme dengesizliği olduğunda, G1-S fazları arası geçişlerde olan değişiklikler hücrelerin çoğalmasını değiş-tirebilir. Rb gen mutasyonları insan kanserlerinden bazılarında (glioblastoma ve Retino-blastoma vb) tanımlanmıştır. Tümör virüsleri HDAC ile Rb’nin bağlanmasını inhibe edebilir. Siklin D’nin fazla eksprese olduğu bazı durumlarda ise E2F aktifleşmesinden sonra Rb inhibisyonunu sağlayan defosforillenme olmadığında S fazına hatalı ilerleme olabilir11. Kusurlu G1 siklin E-cdk2 kompleksi sentriollerin hatalı replikasyonunu uyarmaktadır11. Hücrede iki veya daha fazla sentriolün varlığı anafazda hatalı kromozom ayrılmasına neden olur. Bazı insan kanserlerinde sentriollerin fazla dublikasyonu da belirlenmiştir7,11. 2-1. DNA’sı hasarlı kanser hücrelerinde G1-S geçişi: Radyasyon v.b. etkenlere maruz kalan hücrelerde hücre siklusunda hatalar olmaktadır11,54. Örneğin Gama radyasyonuna maruz kalan hücrelerde fonksiyonel p53 geninin yetersiz olmasından dolayı bu hücreler G1’de tutulamaz ve S fazında hasarlı DNA’yı dublike ederek gen mutasyonuna ve/veya hatalı kromozom dizilimine neden olur11,54-56. Hücre çoğalmasını gen delesyonu, fazla gen ekspresyonu ve nokta mutasyonlar etkilemektedir. İnsan kanserlerinde farklı genlerde nokta mutasyonlar ve delesyonlar vardır19. İnsan kanserlerinde en sık görülen mutant gen p53’tür. Normal bir hücrede DNA hasarı olduğunda, p53 düzeyi artar ve hücre siklusunu G1 fazında inhibe ederek DNA onarımı için hücreye zaman kazandırır6,43,54. Hasar tamir edilemiyorsa hücre apoptozise gider43. Hasarlı hücrenin ölümü veya hücre siklusunda kalmasının nasıl sağlandığı tam olarak bilinmemektedir. p53 mutasyonlarında hücreler bölünmeye devam eder. Bu mutasyonlar sonucunda tümör baskılayıcı fonksiyonlarında kayıp olurken diğer yandan onkojenik fonksiyon ortaya çıkabilir11,15,20. Muskarinik reseptör agonist ve antagonistler varlığında çoğaltılan K562 hücrelerinde siklin D1 transkripsiyon seviyelerinin değiştiği belirlenmiştir57. Bellamy ve ark. 5 gray gama radyasyonunun fibroblastlarda büyümenin durmasına, aynı doz radyasyonun ince bağırsak kripto hücrelerinde ise apoptozise neden olduğunu göstermişlerdir5,22. p53 aynı zamanda cdk’ların inhibitörü p21 transkripsiyonunu artıra-rak da DNA hasarına yanıt verir7,11,20. S fazında eksprese edilen siklin A erken fazda cdk2 ile sonraki fazda cdc ile birleşir. Siklin-cdk kompleksi DNA sentezinin başlamasında rol oynar, cdk ekspresyonunun inhibisyonu ise hücre siklusunun durmasına neden olur6,9. ATM ( Ataxia Telengiectasia Mutant kinaz ) tarafından p53’ün aktivasyonu DNA onarımı ve apoptozisi koordine eden DNA hasar sinyal yollarına aracılık eder59. ATM çift iplik kırıklarına cevapta ve ATR (ATM ve Rad3 related) olarak adlandırılan kinaz diğer tip DNA hasarlarına cevapta önerilmektedir60. Hücre siklusunda ATM ve CHK2 ekspresyonu nispeten devamlı olmasına rağmen ATR ve CHK1 G1 fazının başında ve ortasında düşüktür. ATR ve CHK1 G1/S geçişine yaklaştıkça önem kazanır. ATM/ATR p53 transkripsiyon faktörünü fosforiller. ubiquitin kinaz,MDM2 p53’ün hızlı sirkülasyonunu sağlamaktadır61,62. Ayırıcı hedef mekaniz-malar hala açıklanamamıştır. p53‘le uyarılan G1 fazında duraklamada p21Cip1/Waf 1’in rolü vardır65. Aynı zamanda PCNA (proliferating cell nuclear antigen) inaktive olmaktadır. PCNA, DNA sentezini katalize eden, DNA tamirinde yer alan DNA polimeraz delta’nın kofaktörüdür. Sentezi hücre siklusunun geç G1 fazında baslayarak orta-geç S fazinda en yüksek değere ulasmaktadir43,59,60. p21, cyc-cdk kompleksini inhibe etmesi yanında PCNA’i de inhibe eder. Hücre siklusunun G1/S fazında durdurulmasında yeni belirlenen nükleer protein ICBP90’un p53/p21Cip1/WAF 1 aracılı yolaklarda hedeflerden biri olarak önerilmektedir22,43. İnsan Rad 9 ve Rad 17 proteinlerinin S fazı başlangıcındaki kontrol noktasında ve kromozom kararlılığının sürdürülmesinde önemli olduğu belirlenmiştir37. Rad 9’un ATR kinazla büyük protein kompleksinin fosforillenmesine aracılık ettiği de önerilmektedir69. p53 ve Rb protein fonksiyon kaybının nedenleri mutasyon, delesyon veya diğer proteinlerle bağlanma olabilir25. Rb kontrolu kanser hücrelerinin bir çok tipinde bozulmaktadır. Rb kontrolunun bozulma nedeni Rb fosforillenmesinde rolü olan siklin ve cdk’larda onkojenik mutasyonlardır63. p53 fonksiyonu cdk 4 ve cdk 6 supressorlerinin fazla ekspresyonu ile baskılanır9,64. Genomda onkogenik lezyonlara p53 fonksiyonunun bozulması neden olur. Bunun nedeni p53’ün apoptozis öncesi düzenlenmesinin gerçekleşmemesidir25,41. Hücre siklusunda kontrolün kalkması p21, p27, p57 gibi p53’ün downstream genlerinde kusurlara neden olabilir. Cdk’ların ve siklin-cdk komplekslerinin aktivitelerini Cdk (p21, p27, p57)’nin inhibitörleri inhibe eder ve hücrenin S fazına girişini engeller4,5,6,7,11,22,25,26,65. Bazı tümörlerde cdk4 ve cdk 6’nın negatif düzenleyicileri olan p15 ve p16’nın mutant olduğu da rapor edilmiştir5,22,41,53. Tümör hücrelerinin bir kısmında cdc4 de kusurlar veya cdc4’ün ekspresyonunun fazla olmasından dolayı siklin E düzeyi normal değildir. Bazı tümör hücrelerinde siklin E-cdk2’nin negatif düzenleyicisi olan cdk inhibitörü, p27’nin kaybolduğu da belirlenmiştir56,60. 2-1-1. p53 aracılı apoptosis p53 ve Bcl 2, programlı hücre ölümünde anahtar rol oynayan genlerdir66. Normalde p53 hücre akibetini belirleyen moleküler ağı düzenler. cMyc (nükleer fosfoprotein) p53’ü seçici olarak aktive eder ve p53 apoptozisi başlatır2,5,22,43. Nükleer fosfo protein cMyc, Fas ligand ve Fas reseptörle birleşir. Bu proteinin p53 bağımlı ve bağımsız yolaklar ile sitokrom c salınımını indükleyen bax’ın transkripsiyonunu düzenlediği de düşünülmektedir6,65. Hasarlı hücrelerde fonksiyonel p53 yoksa, hücre siklusu kontrol noktaları tarafından kontrol edilmeden siklus ilerler5,9. p53’ün düzenleyici aktivitesini geçtiğini gösteren alternatif yol ise p53’un negatif düzenleyicisi Mdm 2 (murine double minute 2) dir. Mdm2 proteini, p53’ü kontrol altında tutar ve p53’ün G1/S geçişinde siklusu durdurmasını ve apoptozisi engeller. Radyasyon ve benzeri etkenlerle hücre etkilendiğinde Mdm2 proteininin p53’ bağlanma bölgesinde yapısal değişiklikler meyda-na gelir. Bu nedenle Mdm2 p53’ü bağlayamaz ve serbest p53 transkripsiyonel aktivitesi ile G1 ve G2 kontrol noktalarında siklusu durdurur ve bax genini aktive ederek apoptozise neden olur58. Mdm2, p53’ün transkripsiyonunu azaltır ya da p53’e bağlanarak aktivitesini inhibe edebilir. Lösemi, lenfoma, sarkoma glioma ve meme kanserinde Mdm2 gen amplifikasyonu gösterilmiştir2. Çok organize bir işlem olan apoptozis zararlı ve anormal hücrelerin yıkımını sağlamaktadır3,11,65. Apoptozis yolunda iki düzeyde mekanizma bozuklukları görülür: 1. Apoptozisi düzenleyen genlerde mutasyon ve bu nedenle apoptozise gitmeyen hücrelerin yaşamasıdır, 2. Apoptozise direnç geliştiren hücrelerin Darwinizm (doğal seçilim) ile seçilip yaşamaya devam etmesidir66. 2-1-2. Apoptozise karşı mekanizmalar: Bcl 2 hücre ölümünü inhibe ederek hücreyi apoptozise karşı korumaktadır21,66,67,68. Bu ailenin diğer üyelerinden Bcl-xL, mcl ve bag 1 hücre ölümünün inhibitörleri iken bad, bax ve bik apoptozisi ilerletirler3,67. GADD45 (a growth arrest and DNA damage (gadd)-induced gene) hücre siklusunun G2-M kontrol noktasında önemli rolü olan nükleer proteindir. Bu protein cdc2 proteini ile etkileşerek cdc2 kinaz aktivitesini inhibe etmektedir. cMyc, GADD45 ve cki genleri p15, p21, p27’yi baskılayarak hücre büyümesini sağlar2,7,9. Yaşam faktörleri olmadığında c-Myc onkogeni hücreleri apoptozise götürür68,69,70. Apoptozis öncesi ve sonrası olaylar tamamen açık değildir. Bcl-2 mitokondrinin dış zarında bulunur ve mitokondriden sitokrom c salınımını bloke eder56,70. Sitokrom c kaspazları aktive ederek apoptozisi indüklemektedir3,5,36,67. Bcl-2’nin ekspresyon düzeyi apoptozisi belirleyen faktörlerden birisidir. Bcl-2 ekspresyonu fazla olan hücreler hücre ölümünden kaçabilir30,65. Antiapoptotik Bcl-2 üyeleri kaspaz aktivasyonunu önleyerek antiapoptotik etki gösterirler. Bazı çalışmalarda Bcl-2 çok yüksek bulunmasına rağmen hücre ölümünün arttığı da gösterilmiştir7. NF-kB transkripsiyon faktörünün Bcl-2 ailesini up-regule ettiği bilinmektedir. Bcl-2 aynı zamanda Ras2’nin antiapoptotik aktivitesini de düzenler.2 Bcl-2’nin diğer düzenleyici mekanizması, bax gibi büyüme düzenleyicilerinin aktivitesini inhibe ederek apoptozisi engellemektedir2,7,25,43,67. 2-1-3. Apoptozis kontrol noktaları Apoptozisin olup olmayacağını Bax ve Bcl-2 dengesinin doğruluğu belirler7,62. Hücrelerin apoptozise gitmesi için Bax düzeyinin Bcl-2’den fazla olması gerekir4,5,9,25. Bu mekanizma apoptozisde kontrol noktası 1 olarak önerilmiştir 25,64 (Şekil 4). Yaban tip p53 varlığında Bcl-2 ekspresyonu az olan hücreler apoptozise gider5,71. Tersi olursa yaban tip p53 az, Bcl-2 fazla ise çok mutasyon olabilir. Bunun nedeni hücre proliferasyonunun aktive olmasıdır3,9,25. Bcl 2 ailesinin en büyük proteini Bcl-XL, Bcl-2’ ye benzer yolda hareket eder ve Bcl-2 aktivitesini baskılayan Bak apoptozise neden olur5,9,19,43,68,72,77. Apoptozis yolağında ikinci kontrol noktası çok iyi belirlenememiştir. Interlökin converting enzim (ICE) prokaspaz 1 olarak bilinmektedir. ICE DNA onarım enzimleri ile etkileşmektedir.9,25 Polyadenosin difosfat-riboz polimeraz DNA kırıklarını tanır ve DNA onarımına katılır. Nükleer membran proteini lamin A, PARP’ı parçalar ve apoptotik hücre morfolojisi meydana gelir. ICE ile PARP inaktive olursa, apoptozis başlar9,68. 2-2. Kanser hücrelerinde G2-M geçişi: Kanser gelişiminde ve/veya hastalığın ilerlemesinde G2-M geçişinde değişimlerin rol oynadığı belirlenmiştir. İyonize edici radyasyon Ku homoloğu olan protein kinazları, ataxia telegiectasia mutant (ATM) ve ATM ilişkili (ATR) genleri aktive eder74. Mayada yapılan çalışmalarda telomer idamesi ve DNA onarımı arasındaki bağlantı gösterilmiştir75. Ku, DNA kırıklarının onarımında homolog olmayan uçlar için gereklidir. Ku telomerik DNA’ya bağlanır ve G zengin dizilerin işlenmesine katılır. Telomer idamesinde rolü olan Ku, DNA’larında çift iplik kırığı olan hücrelerin G2-M geçişinde aktive olmaktadır76. Chk1 ve Chk2 protein kinazlar ilk olarak mayada gösterilmiştir. Bu kinazlar, DNA hasarı sonucu aktive olan hücre siklus kontrol noktalarında önemli rol oynamaktadır. Mutant Chk2 Li-Fraumeni sendromlu hastalarda bulunmuştur11,20,77. Chk2 tümör baskılayıcı gen olmaya adaydir. DNA hasarının ardından, Chk1 ve Chk2 yalnız G2 bloğunu uyaran cdc25c’yi fosforillemez; aynı zamanda stabilizasyon için p53 fosforilasyonunu da uyarır. Mikrotübül inhibitörlerinin yaban (wild) tip p53’lü fare embriyo fibroblastlarına verilmesi ile G2-M geçiş bloğu aktive olmaktadır bunun yanısıra mutant p53‘lü hücrelerde hücre siklusu durdurulamamıştır. Bu blok kromozomların ayrılması ve mitoz tamamlanmadan önce diğer S fazına geçişi önleyerek aneuploidiyi engellemektedir. Böylece mutant p53 uygun kromozom ayrılması olmaksızın tekrar tekrar döngüye neden olarak genomik dengesizliğe neden olmaktadır (örneğin aneuploidi). Bu cdk’ların aktivitelerinin inhibisyonu ile gerçekleşir11,20,35. Bu geçişin inhibisyonu p53’ün G2’ye girişi inhibe eden 14-3-3 geninin transkripsiyonunu artırmasıyla sağlanmaktadır. 14-3-3 cdc25c kompleksi, cdc 25c’nin çekirdeğe girişini engeller9,36. Memelilerde DNA hasarı sonucunda tetiklenen sinyal ileti kaskadında ATM ve ATR protein kinazların önemli rolleri vardır. chk1 ve chk2 bu kinazların kontrol noktası fonksiyonlarına aracılık etmektedir78. ATM ve ATR stress olmadığında aktive olmazlar, strese maruz kalınca aktive olmaktadırlar. ATM kinaz normal hücre siklusu ilerlemesinde veya hücre farklılaşmasında gerekli değildir79. 2-3. Kanser hücrelerinde mitoz iplikçik kontrol noktası Bazı araştırmacılara göre kanser gelişimini ve genomik dengesizliği mutasyon oranları ile açıklamak mümkün değildir11,12,80-82. Genomik dengesizlik somatik hücre gen mutasyonu veya aneuploidi gibi kromozom anomalileri içerebilir. Aneuploidi tümör baskılanmasında, hücre siklusunun düzenlenmesinde, sentrozom oluşumu ve fonksiyonunda, hücre büyümesi, metastaz ve metabolizmada bulunan çok sayıda genin dengesizliği olarak tanımlanabilir.11 Kanser gelişimi ve ilerlemesinde aneuploidilerde mitotik kontrol noktası içindeki MAD veya BUB genlerindeki mutasyonların rol oynayabileceği önerilmektedir7,44. Bu mutasyonlar mitotik kontrol noktası değişimine, metafazdan anafaza geçiş sırasında kromozomların yanlış ayrılmasına ve aneuploidiye neden olur. Bu tip mutasyonlar ilk olarak aneuploidi fenotipli olarak sınıflandırılan 19 kolorektum kanser hücre soyunda çalışılmıştır7,44. Ondokuz hücre soyundan ikisinde BUB1 geninde farklı mutasyonlar belirlenmiştir. Aneuplodili bireylerde hBUB1 geninde kalıtsal mutasyonlar bulunmuştur83. BUB1 üç fonksiyonel domain içerir: bunlar CD1, nükleer lokalize edici domain (NLS) ve kinaz domain (CD2)’lerdir. CD1 içinde çerçeve kayması ve anlamsız mutasyonlar bulunmuş, NLS veya CD2 domainlerinde ise mutasyon bulunamamıştır. Farklı araştırıcılar aneuploidi belirlenen kanserlerde BUB ve MAD genlerinde mutasyonlar bulmuştur7,83. Fakat bu mutasyonlar ile ilgili çalışmalar hala yetersizdir. İnsan kanserlerinde mitoz iplikçik kontrol noktaları hakkında bilinenler çok azdır. İnsan kanserlerinin çoğunda mutant MAD1’in kromozom instabilitesine neden olduğu belirlenmiştir11. Aurora kinaz ailesi hücre siklusunu G2/M kontrol noktasından sonra mitoz kontrol noktasında veya mitozun sonuna doğru rol oynar84-87. Aurora kinazlar hatasız hücre bölünmesi için gereklidir84. Aurora kinazların kromozom dizilimi, kromozom ayırımında ve sitokinesisde önemli rolleri vardır. Aneuploidi olan tümörlerde Aurora kinaz’ın fazla ekspresyonu ve sentrozom amplifikasyonu belirlenmiştir88. Aurora A kinaz p53 gibi tümör baskılayıcı proteinleri fosforilleyerek onların aktivitelerini de düzenlemektedir85. Aurora A ve B’nin ras yolağı aracılığı ile hücre transformasyonuna neden olduğu gösterilmiştir86-88. Bu nedenle Aurora kinaz inhibitörleri ile hücre siklusu bloke edilerek kanser tedavisine yönelik çalışmalar yapılmaktadır. Aurora B kinaz inhibitörü AZD1152 lösemi tedavisine yeni etken madde olarak önerilmektedir89. 2-4.Kanser hücrelerinde sentriol anomalileri Kanser hücrelerinde sentriollerin fazla duplike olduğu belirlenmiştir. Normal hücreler, hücre siklusunun G1 fazında siklinE-cdk2 kompleksleri ile sentriol kopya sayısını düzenler11,32. Anormal spindle (asp) gen ürünü mikrotübül assosiye eden proteindir. Asp proteini kutuplarda herbir mitotik iplikçiğin herbir sentrozoma bağlanmasında rol oynar. Mitozun metafazdan anafaza geçişte tutulmasının nedeni asp mutasyonu sonucu anormal iplikçik morfolojisidir. p53, sentrozom replikasyonunda rol oynayabilir11. Fonksiyonel p53 proteini olmayan fare embriyo hücrelerinde bir hücre siklusu sırasında çok sayıda sentrozom kopyası gösterilmiştir. Mitoz sırasında sentrozom sayısının çok olmasının kromozomların yanlış dağılımına ve bu nedenle aneuploidiye yol açtığı bildirilmiştir7,11. 2-5. Tedavi potansiyeli İnsan kanserlerinin %50’sinden daha fazlasında p53 mutasyonunun olduğu rapor edilmiştir84,90. Düzenleyici sinyal yollarında anahtar oyuncuların rolünün anlaşılması, bilgi artışının yanısıra tedavi hedef ve stratejilerinin belirlenmesine katkı sağlayacaktır. (7hidroksistaurosporin) UCNO1 olarak tanımlanan antikanser etkeninin cdc25c‘yi inhibe ederek G2/M kontrol noktasını bozduğu rapor edilmiştir. Kemoterapi ve radyoterapi gibi anti-kanser tedavilerine direnç, DNA hasar kontrol noktalarının değişmesi ile mümkün olabilir91. Kansere karşı ilaç tedavisinin gelişimi hücre transformasyonu içinde moleküler hedeflere daha fazla odaklanmak gereklidir. Araştırmalar hücre siklus kontrolünün düzenlenleyen kimyasal cdk inhibitörlerinin araştırılmasına dönmüştür2,84. Kanser gelişmeden önce p53 ve pRb mutasyonlarının taranması da tümör gelişiminin erken teşhisine olanak sağlayacaktır72,90. Bir grup araştırıcı siklin A veya E’nin fazla ekspresyonunu ve p53 mutasyonunu ‘’border line’' ve invasif yumurtalık kanserlerinde göstermişlerdir9,92. Check point kinase 1 (Chk 1) kanser tedavisinde yeni hedef olarak gösterilmektedir93. Kemoterapik etkenlere direnç gösteren yumuşak doku sarkomalarında G2/M kontrol noktasının korunduğunu göstermek için immunhistokimyasal analizler kullanılmıştır. Sonuç Hücre siklusunda olaylar kaskadını düzenleyen ve kontrol eden etkileşimler çok sayıda ve komplekstir. Tümör baskılayıcı fonksiyonun ve programlı hücre ölüm yolaklarının anlaşılması yönünde ilerlemeler olmasının yanısıra çözümlenmemiş çok sayıda soru vardır. Kemoterapi ve biyoterapi için hücre siklus kontrol noktaları büyük potansiyele sahip hedeflerdir. Kemoterapi ve radyoterapi sonrası kanser hücrelerinin yaşaması onarım yollarındaki hasarlara bağlı olabilir. Hücre siklus kontrol noktalarında ve DNA onarım yollarındaki moleküler bileşenlerin daha iyi anlaşılması için in vivo ve in vitro çalışmalar klinik çalışmalarla da desteklenmelidir7,9,11,33,80,93,94. 1) Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE. Molecular Cell Biology. 4th edition: WH Freeman and Co, New York, 2000. 2) Vermeulen K, VanBockstaele DR, Berneman Z N. The cell cycle : a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36: 131-49. 3) Guimaras CA, Linden R. Apoptosis and alternative deastyles. Eur J Biochem 2004; 271: 1638-50. 4) Zong WX, Thompson CB. Necrotic death as a cell fate? Genes Dev 2006; 20 : 1-15. 5) Bellamy COC. p53 and apoptosis. Br Med Bull 1996; 53(3): 522-38. 6) DeVita Jr VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncolgy. 5th edition: Lippincott-Raven, Philadelphia, 1997. 7) Vermeulen K, Berneman ZN, vanBockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003; 36: 165-75. 8) Öndağ Cabadak H. İnsan periferal kan ve fibroblast hücre kültürlerinin sinkronizasyonu ve sinkronize hücre kültürlerinden kromozom analizi ve karyotip hazırlanması. Yüksek Lisans Tezi, Ankara: Gazi Üniversitesi Tıp Fakültesi Tıbbi Biyoloji ve Genetik Anabilim Dalı, 1987. 9) Foster I. Cancer: A cell cycle defect. Radiography 2008; 14: 144-9. 10) Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature 2007; 450(7170): 721-4. 11) Kearns WG, Liu JM. Cell cycle checkpoint genes and aneuploidy: A short review. Current Genomics 2001; 2: 171-80. 12) Giacinti C, Giordano A. RB and cell cycle progression. Oncogene 2006; 25: 5220-7. 13) Kelly TJ, Brown GW. Regulation of chromosome replication. Annu Rev Biochem 2000; 69: 829-80. | 14) Prasanth SG, Mendez J, Prasanth KV, Stillman B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil Trans R Soc Lond B 2004; 359: 7-16. 15) Flatt PM, Pietenpol JA. Mechanisms of cell-cycle checkpoints: at the cross roads of carcinogenesis and drug discovery. Drug Metab Rev 2000; 32: 283-305. 16) Sears RC,Nevins JR. Signalling networks that link cell proliferation and cell fate. J Biol Chem 2002; 277: 11617-20. 17) Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14: 684-91. 18) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 19) Molinari M. Cell cycle check points and their activation in human cancer. Cell Prolif 2000; 33: 261-74. 20) Cheng M, Sexl V, Sherr C, Raussel M. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1) Proc Natal Acad Sci 1998; 95: 1091-4. 21) Hartwell LH, Kastan MB. Cell cycle and cancer. Science 1994; 266:1821-8. 22) Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol 1998; 16(9): 3158-68. 23) Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002; 14(6): 684-91. 24) Weinberg R. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323-30. 25) King RJB. Cancer biology, Longman, 1996. 26) Fearson E. Human cancer syndromes: clues to the origin and nature of cancer. Science 1997; 278: 1043-50. 27) Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57-70. 28) Murray AW. Recycling the cell cycle: cyclins revisited. Cell 2004; 116: 221-34. 29) Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase II expression. Cancer Res 2000; 60: 121-8. 30) Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigsm. Genes Dev 2000; 14: 2393-409. 31) Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53-61. 32) Hinchcliffe EH, Thompson EA, Maller JL, Sluder G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 1999; 283 (5403): 851-4. 33) Champard JC, Lefloch R, Pouyssegur J, Lenormand P. Erk implication in cell cycle regulation. Biochem Biophys Acta 2007: 1773(8): 1299-310. 34) Roberts EC, Shapiro PS, Nahreini TS, et al. Distinct cell cycle timing requirements for extracellular signal regulated kinase and phosphoinositide-3-kinase signalling pathways in somatic cell mitosis. Mol Cell Biol 2002; 22: 7226-41. 35) Harper J, Adami G, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805-16. 36) Öndağ H. Effects of excess thymidine and methotraxate on human peripheral blood and fibroblast culture, NATO-ASI The Enzyme Catalysis Process Book, 1998. 37) Pines J, Hunter T. Human cell division: the involvement of cyclins A and B1 and multiple cdc2s. Cold Spring Harb Symp Quant Biol 1991; 56: 449-63. 38) Heald R, McLoughlin M, McKeon F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell 1993: 74; 463-74. 39) Strausfeld U, Labbé JC, Fesquet D, et al. Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 1991; 351 (6323): 242-56. 40) Draetta G, Eckstein J. Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta 1997: 1332: M53-M63. 41) Marumato T, Hirota T, Morisaki T, et al. Roles of aurora -A kinase in mitotic entry and G2 check point in mammalian cells. Genes Cells 2002; 7: 1173-82. 42) Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle check points. J Cell Physiol 2006; 209: 13-20. 43) Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M . Cell survival, cell death and cell cycle pathways are inter connected: Implications for cancer therapy. Drug Resist Updat 2007; 10: 13-29. 44) Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 19: 392: 300-3. 45) Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Lengauer C. Characterization of MAD2B and Other Mitotic Spindle Checkpoint Genes. Genomicsm 1999; 58: 181-7. 46) Ouyang B, Meadows J, Fukasawa K. Human Bub1: a putative spindle checkpoint kinase closely linked to cell proliferation. Cell Growth Differ 1998; 9(10): 877-85 . 47) Sazer S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci 1997; 94(15): 7965-70. 48) Basu J, Bousbaa H, Logarinho E, Williams BC, Sunkel CE, Goldberg ML. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J Cell Biol 1999; 146(1): 13-28. 49) Kitagawa R, Rose AM. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1999; 1(8): 514-21. 50) Dobles M, Liberal V, Scott ML. Benezra R, Sorger PK. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 2000; 101(6): 635-45. 51) Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 2000; 103(3): 399-410. 52) Roberts BT, Farr KA, Hoyt MA. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 1994; 14(12): 8282-91. 53) Taylor SS, McKeon F. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol 1998; 142(1): 1-11 54) Chipuk JE, Green DR. Dissecting p53-dependent apoptosis. Cell Death Differ 2006; 13: 994-1002. 55) Katsan MB, Bartkova JK. The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 1997; 237: 1-4. 56) Sherr C, Mccormick F. The Rb and p53 pathways in cancer. Cancer Cell 2002; 2: 103-12. 57) Cabadak H, Aydın B, Kan B. Muscarinic agonist and antagonists changes muscarinic receptor and cyclin D1 expression in K562 cells. EMBO ’’ Molecular mechanisms of cell cycle control in normal and malignant cCells. Spetses Island-Greece,5-8 October 2007: 53. 58) Reifenberger G, Reifenberger J, Ichimura K, et al. Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS and MDM2. Cancer Res 1994; 54: 4299-303. 59) Arima Y, Hirota T, Bronner C, et al. Down regulation of nuclear protein ICBP 90 by 53/p21Cip1/WAF1 dependent DNA damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells 2004; 9: 131-42. 60) Dang T, Bao S, Wang X. Human Rad 9 is required forthe activation of S-phase check point and the maintenance of chromosomal stability. Genes Cells 2005; 10: 287-95. 61) Wahl GM, Carr AM. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol 2001; 3: E277-86. 62) Craig A, Scott M, Burch L, Smith G, Ball K, Hupp T. Allosteric effects mediate CHK2 phosphorylation of the p53 transactivation domain. Embo Rep 2003; 4: 787-92. 63) Massagué J. G1 cell-cycle control and cancer. Nature 2004; 432: 298-306 64) Latham K, Baker GL, Musunuru K, et al. Cell cycle control and differentiation: mechanisms of proliferative dysfunction in cancer cells. Cancer Detect Prev 1996; 20: 5. 65) Kaldis P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol Life Sci 1999; 55: 284-96. 66) Decuadin D, Geley S, Hirsch T, et al. Bcl-2 and Bcl-Xl antagonize the mitochondria dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997; 52: 62-7. 67) Story M, Kodym R. Signal transduction during apoptosis; implications for cancer therapy. Front Biosci 1998; 3: d365-75. 68) Dixon S,Soriano BJ, Lush RM, Bomer MM, Figg WD. Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. Ann Pharmacother 1997; 31: 76-82. 69) Evan G, Littlewood T. A matter of life and cell death. Science 1998; 281: 1317-21. 70) Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ, Jr Zhan Q. The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 2000; 275 (22): 16602-8. 71) Harms-Ringdahl M, Nicotera P, Radford JR. Radiation induced apoptosis. Mutat Res 1996; 366: 171-9. 72) Sattler M, Liang H, Nettesheim D, Meadows RP, et al. Structure of Bcl-xL- Bak peptide complex recognition between regulators of apoptosis. Science 1997; 275: 983-6. 73) Taya Y. Rb kinases and Rb-binding proteins: new points of view. TIBS 1997; 22: 14-7. 74) Smith GC, Divecha N, Lakin ND, Jackson SP. DNA-dependent protein kinase and related proteins. Biochem Soc Symp 1999; 64: 91-104. 75) Peterson SE, Stellwagen AE, Diede SJ, Singer MS, Haimberger ZW, Johnson CO, Tzoneva M, Gottschling DE. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet 2001; 27(1): 64-7. 76) Stellwagen AE, Haimberger ZW, Veatch JR, Gottschling DE. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev 2003; 17: 2384-95. 77) Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999; 286(5449): 2528-31. 78) Takagaki K, Katsuma S, Kaminishi Y, et al. Role of Chk1 and Chk2 in Ara-C-induced differentiation of human leukemia K562 cells. Genes to Cells 2005; 10: 97-106. 79) Shiloh Y, Kastan M B. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 2001; 83: 209-54. 80) Marusyk A, DeGregori J. Building a better model of cancer. Cell Division 2006; 1: 24. 81) Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386: 623-7. 82) Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643-9. 83) Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D, Kidd A, Mehes K, Nash R, Robin N, Shannon N, Tolmie J, Swansbury J, Irrthum A, Douglas J, Rahman N. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 2004; 36: 1159-61. 84) Carmena M, Earnshaw WC. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003: 4; 842-54. 85) Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004; 4: 927-36. 86) Kanda AH, Kawai H, Suto S, Kitajima S, Sato S, Takata T, Tatsuka M. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene 2005: 24; 7266-72. 87) Tatsuka M, Sato S, Kitajima S, et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene 2005; 24: 1122-27. 88) Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998: 58; 3974-85. 89) Yang J, Ikezoe T, Nishioka C, Tasaka T, Taniguchi A, Kuwayama Y, Komatsu N, Bandobashi K, Togitani K, Koeffler HP, Taguchi H, Yokoyama A. AZD1152, a novel and selective aurora B kinase inhibitor, induces growth arrest. Blood 2007; 110: 2034-40. 90) Golias C, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 2004; 58: 1134-41. 91) Hattori H, Kuroda M, Ishida T, Shinmura K, Nagal S, Mukal K, et al. Human DNA damage check points and their relevance to soft tissue sarcoma. Pathol Int 2004; 54: 26-31. 92) Blegen H, Einhorn N, Sjovall K, Roschke A, Ghadimi B, McShane L, et al. Prognostic significance of cell cycle proteins and genomic instability in borderline, early and advanced stage ovarian carcinomas. Int J Gynecol Cancer 2000; 10: 477-87. 93) Tse AN,Carvajal R,Schwartz GK. Targeting checkpoint kinase 1 in cancer thera-peutics. Clin Cancer Res 2007; 13(7): 1955-9. 94) Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004; 432: 316-23.

http://www.biyologlar.com/hucre-siklusu-ve-kanser

HÜCRE DÖNGÜSÜNÜN KONTROLÜ

HÜCRE DÖNGÜSÜNÜN KONTROLÜ

Dört aşamada hücre döngüsü kontrol noktaları bulunur:

http://www.biyologlar.com/hucre-dongusunun-kontrolu

Sigara ve tütün ürünleri DNA <b class=red>hasarına</b> yol açıyor.

Sigara ve tütün ürünleri DNA hasarına yol açıyor.

2015 Nobel Kimya Ödülleri hücrelerin nasıl çalıştığına ışık tutan ve yeni kanser tedavilerine çığır açacak çalışmalara verildi.  Hücrenin beyni olan DNA’nın nasıl hasar gördüğü ve doğal tamir mekanizması üç bilim adamının yaşam boyu çalıştıkları konuydu. Dün açıklanan 2015 Nobel Kimya Ödülleri’ne, Tomas Lindahl, Paul Modrich ve Aziz Sancar’ın DNA hasarının tamiri çalışmaları ile ödüle layık görüldüğünü ifade eden Sağlık Enstitüsü Derneği Başkanı Prof. Dr. Elif Dağlı şu açıklamalarda bulundu: “İnsan hücresinin alet kutusu DNA, her gün ultraviyole ışınları ve sigara gibi kanser yapıcı çeşitli etkenler ile hasara uğramaktadır. Küçük hasarlar çoğunlukla DNA onarım sistemleri tarafından onarılmakta, orta derecede hasarların birikimi mutasyonlara neden olmakta, yüksek düzeydeki hasarlar ise apoptozisi uyararak "hücre ölümüne" yol açmaktadır.  Böylelikle organizma kendini korumaya almaktadır. En önemli hasar vericilerden biri de sigaradır ve oluşturduğu DNA hasarları da ‘DNA tamir mekanizmaları’ ile tamir edilme yoluna gider. Tütün dumanı içinde bulunan 60’dan fazla kimyasal hem DNA’ya yapışarak hem de ikileşme sırasında aminosait diziliminde değişiklikler ile hücrede mutasyona ve sonuç olarak genomik kararsızlığa ve kansere neden olmaktadır.”   PROF. AZİZ SANCAR'LA BİRLİKTE ÖDÜLÜ ALAN 3 BİLİM İNSANI DNA ONARIMI ÜZERİNE ÇALIŞIYORDU İnsan genomunda her gün binlerce değişiklik olduğunu söyleyen Prof. Dr. Dağlı şöyle devam etti:  “Bununla birlikte hücreler bölünürken günde milyonlarca defa DNA kopyalanmaktadır. Bütün bu saldırılar altında hiç yanlış yapmadan DNA’nın kendisini nasıl koruyabildiği Nobel Ödülünün konusu oldu. Nobel ödülü alan Tomas Lindahl 1970’lerde DNA baz çiftlerinin tamir sistemi olduğunu buldu. Ödülün diğer sahibi Türk bilim adamı Aziz Sancar, ultraviyole ışınlarına maruz kalan hücrelerde tamir mekanizması doğuştan bozuksa cilt kanseri gelişebileceğini gösterdi. Üçüncü bilim adamı Paul Modrich ise hücrelerin bölünmesi sırasında DNA kopya hatalarının nasıl düzeltildiğini saptadı. Bu tip tamirin doğuştan yapılamamasının kolon kanserine yol açtığını gösterdi.”    NOBEL KOMİTESİ SİGARANIN DNA HASARI YARATMASINA DİKKAT ÇEKTİ Hücre DNA’sına zarar veren güneş ışınları su ve hava kirleticileri dışında tütün dumanının önde gelen etken olduğu çalışmalarda belirtilmekteydi.  Prof. Dr. Dağlı ayrıca; “Hastalıklar sadece DNA tamiri yapılmadığında değil, DNA’yı hasara uğratacak çevre etkenlerinin varlığında da ortaya çıkmaktadır. Sigara, nargile gibi her köşede yasal olarak satılan DNA zararlısına artık göz yummamalıyız” diye belirtti. Sağlık Enstitüsü Derneği Genel Sekreteri Prof. Dr. Füsun Yıldız ise “Sigaranın DNA bölünmesi sırasında mutasyona neden olan kimyasal maddeler taşıdığı uzun zamandır bilinmektedir. Akciğer kanseri oluşması için gereken değişikliklerin DNA üzerinden olduğunu hatırlamalıyız. Tütün, DNA hasarının en yaygın nedenidir” dedi.   http://www.medical-tribune.com.tr

http://www.biyologlar.com/sigara-ve-tutun-urunleri-dna-hasarina-yol-aciyor-

Sepsis Nedir ? Sepsis Neden Ölümcül Bir Hastalıktır ?

Sepsis Nedir ? Sepsis Neden Ölümcül Bir Hastalıktır ?

Sepsis vücudun bir enfeksiyona karşı gösterdiği, sistemik organaları da etkisi altına alan kompleks bir hastalıktır. Vücudun enfeksiyona verdiği yanıtta enfeksiyon bölgesi hedeflenir ancak sepsiste, immün sistem enfeksiyonla savaşmak için zincir şeklinde kombine bir reaksiyon başlatır. Vücudun yanıtı, enfeksiyon bölgesinde lokalize olmak yerine tüm vücutta sistemik belirtilerin oluşmasına neden olur. Bu sistemik cevabı müteakip ise, sepsisli hastada genelde ateş, normalden hızlı kalp atımı ve normalden hızlı nefes alma gibi belirtiler görülür. Sepsisli hastaların çoğu zaman kanında bakteri, mantar gibi mikroorganizmalar bulunur.Bu durum halk arasında kan zehirlenmesi olarak da adlandırılır. Sepsis tanısında en önemli tahlil kan kültürü testidir.Bu bakteriyolojik analiz ile kanda bulunna mikroorganizmaların tanısı koyulur ve bu etkenlere göre tedavi planlanır. Sepsisli hastalarda, enfeksiyona verilen yanıt kontrolden çıkarsa, vücudun dengesi bozulabilir.Sistemik reaksiyon sonucu bir veya daha fazla hayati organ hasar görebilir.Bu organların başlıcaları, kalp, akciğerler, böbrekler veya karaciğerdir. Oluşan bu sistemik yanıt veya enfeksiyona verilen “aşırı-reaksiyon” sonucunda oluşan organ hasarına ağır sepsis adı verilir.Bu durum hayati yönden çok tehlikeli sonuçlar doğurabilmektedir. Sepsis uygun şartlarda çok hızlı bir şekilde, bazen birkaç saat içinde ağır sepsise dönüşebilir. Ağır sepsis gelişen hastaların neredeyse yarısı, enfeksiyon sonrası meydana gelen sistemik bozukluklar nedeniyle hayatlarını kaybedebilmektedir. http://tahlil.com

http://www.biyologlar.com/sepsis-nedir-sepsis-neden-olumcul-bir-hastaliktir-

Enflamasyon Nedir

Enflamasyon, inflamasyon, yangı veya iltihaplanma, canlı dokunun her türlü canlı, cansız yabancı etkene veya içsel/dışsal doku hasarına verdiği sellüler (hücresel), humoral (sıvısal) ve vasküler (damarsal) bir seri vital yanıttır. Yangı normalde patolojik bir durum olmasına karşın, yangısal reaksiyon fizyolojik olarak vücudun gösterdiği bir tepkidir. Halk arasında iltihap tabiri yangı için kullanılmasına rağmen sık sık apseler için de iltihap denmesinden dolayı yangı terimini kullanmak daha yerinde olacaktır. Hücre dejenerasyonu ile birlikte yangı konusu, hastalıkların patolojik temelini oluşturmaktadır. Birçok hastalığın seyri sırasında yangısal bir takım reaksiyonlar meydana gelmektedir. Bunlar başlıca enfeksiyöz hastalıklar ve yangısal idiopatik otoimmun hastalıklardır. Tarih boyunca bu olgular farklı şekillerde yorumlanmış, birçok hastalık için tanrının gazabı veya bazı dengelerin bozulması sonucu (örneğin Ying ve Yang) meydana geldiği sanılmıştır. Bugün bilindiği üzere enfeksiyöz hastalıklarda veya söz konusu diğer sebeplerin bir sonucu olarak bağışıklık sistemi tarafından yangı ve yangısal reaksiyonlar indüklenmektedir. Bu sebeple yangı konusu oldukça derin ve immunoloji disiplini çerçevesinde incelenmesi gereken bir konudur. Otoimmun hastalıklarda etkenin bilinmemesinden dolayı bu gibi olguların genetik bazı defektler veya özel genler aracılığıyla gerçekleşmesinin yanında henüz bilinmeyen bir takım virusların da sebep olabileceği düşünülmektedir. Yangının tarihsel gelişimi incelenecek olursa en eski veriler antik çağa kadar dayanır. Bu dönemin hekimleri yangıyı ciddi derecede tanıyor ve tanımlıyorlardı. Bilinen en eski tıbbi kitap -Mısırlılar tarafından kaleme alınmıştır- Edwin Smith papirüsü; organizmanın yaraya verdiği tepkiye şemet adını vermişti. Bu papirüsün ortaya çıkmasından yaklaşık 1000 yıl sonra Yunan hekim Hipokrat yangı için kabaca "yanan şey" anlamına gelen flegmon terimini kullanmıştır. Milattan sonra 1. yüzyılda yine Romalı yazar Cornelius Celcus yangının bugün bile kabul görmüş tanımını yapmıştır; Rubor et tumor cum, calore et dolore, yani ateş ve ağrının eşlik ettiği kızarıklık ve şişkinlik. Milattan sonra 400-500 yılları döneminde Hipokrat'a ait literatürlerde "yangı" terimi geçmemekte ancak yangının karakteristik özellikleri ve temel özellikleri bilinmekteydi. Hipokrat, yaşamı, ışık vererek, ısıtarak kendi benliğini tüketen bir lambaya benzetmekteydi. Vücudun sıcaklığının lokal olarak ve sınırlı bir şekilde yükselmesine inflamasyon denirken, bütün vücutta meydana gelen bir sıcaklık artışı febris (ateş) olarak tanımlanmıştır. Modern anlamdaki çalışmalar ise 1860'lara dayanır. Bu dönemde patolog Julius Cohnheim canlı kurbağaların dilleri üzerine kostik (yakıcı, dağlayıcı) nitelikte maddeler vermiş ve meydana gelen değişimleri mikroskopik olarak incelemiştir. Yangının tipik beş belirtisi vardır. Bunlar: Kızarıklık (Rubor): Yangılı alanda birçok medyatörün etkisi sonucu damar geçirgenliği (vasküler permeabilite) ve damar genişliği arttığı (vazodilatasyon) için bölge daha fazla aktif olarak kanlanır, yani hiperemiktir. Rubor, yangının erken evresi ve hafif seyreden reaksiyonlarda, alerjilerde oldukça tipiktir. Isı artışı (Calor): Damar genişlemesi (vazodilatasyon) sebebiyle bölgeye daha fazla kan akımı olacaktır. Daha fazla kan akımı ile bölgedeki sürtünme artacağından dolayı bölgede ısı artışı olur. Çünkü kan aynı zamanda organizmada ısıl dengede son derece öneme sahiptir. Akut yangının en önemli bulgusu calordur. Şişkinlik (Tumor): Damar geçirgenliği (permeabilite) artması sonucu bölgeye kan plazması sızar ve bu da bölgede şişkinliğe neden olur (ödem). Ancak şişkinliğin tek sebebi ödem değildir. Proliferatif karakterde yangılarda meydana gelen granülomlar veya hiperplaziler, fibrotik değişiklikler de söz konusu şişliğe neden olabilir. Dışarıdan görülebilen oluşumlarda yangısal reaksiyonlarda şişkinlik ön plandadır. Vücudun daha iç kısımlarında bulunan organ ve dokularda; örneğin bir akciğerde bu şişkinliği dış bakıda gözlemlemek olanaksızdır. Zira bu organda meydana gelen örneğin akut bir pnömoni, akciğerlerden köpüklü sıvı gelmesine veya patolojik akciğer seslerinin duyulmasına neden olur. Ağrı (Dolor): Bölgedeki sinirler sürekli ağrı uyarımına neden olur. Ağrının şekillenmesindeki en önemli iki sebep; yangıyı tetikleyici prostaglandinlerin organizmada ağrı oluşumunda rol alması ve yangısal ödemden kaynaklanan sinir uçlarına basıdır. Kronik duruma geçen yangılarda dolor, zamanla arka planda kalmaya başlar. Ancak romatoid artrit gibi bozukluklar ne kadar kronik seyretse de böyle olaylarda ağrı ön plana çıkar. Kapsanan organlarda disfonksiyon yani işlev bozukluğu (Functio laesa): Doğal olarak yangılı organ işlevlerini yerine tam olarak getiremez. Bu beş nitelikten ilk dördü antik zamanlardan beri bilinmektedir ve Celsus'a functio laesa ise yangı tanımına 1858'de Rudolf Virchow tarafından eklenmiştir. Yangı vücudun savunma sisteminin bir sonucu olarak gelişir ve organizmayı korumaya yöneliktir. Fakat yangı oluşması her zaman istenmez. Örneğin beyinde veya kalpte oluşabilecek bir yangı hayatı tehdit edebilir. Bu sebeple yangıyı önleyici ilaçlar kullanılabilir (Antiinflamatuar droglar). Yangının çok çeşitli sebepleri vardır. Bunlar infeksiyöz etkenler, mikroorganizmalar oldukları gibi parazitler veya cansız cisimler (kıymık, silika vb) de olabilirler. Travmalar, kontüzyonlar (ezilmeler), kesikler de yangı ile sonuçlanır. Yangıya ilişkin bir önemli özellik, yangının daima interstisiyumda gerçekleşmesidir. Parankimatöz yangı olmaz, ancak yangının etkileri parankim dokuda görülebilir. Bunların dışında yangılar akut (birkaç günden bir haftaya kadar gelişen) olabildikleri gibi kronik (uzun süreli) de olabilirler. Yangının organizmada üç temel amacı vardır. Bunlar, hastalık etkenini yok etmek, etkenleri yok edemiyorsa vücuttan ayrı tutmak (demarkasyon) ve hasarlı dokuları ortadan kaldırmaktır. Örneğin nekrotik dokularda, nekrozun yayılmasını ve bu ölü dokuların intoksik etkisini engellemek amacıya nekrotik saha yangısal bir kuşakla, yani demarkasyon bölgesi ile sınırlandırılmaya çalışılır. Yangının temel 4 amacı şunlardır: Vücuda yabancı olan ve patojen nitelikte olan tüm etkenleri yok etmek. Yok edilemeyen etkenleri sınırlandırarak vücuttan ayrı tutmaya çalışmak. Yara iyileşmesinin sağlanması için gerekli uyarım ve biyoaktivite. Nekroz ve gangrenin sınırlandırılması. Yangının başlıca sebepleri aşağıda sıralanmıştır: Canlı etkenler: Yangıya sebep olan en önemli etken mikroorganizmalardır. Bakteri, virus, riketsiya, mantar, protozoon, ve helmintler bu gruba girer. Bu gibi etkenler sahip oldukları antijenler ve yüzey reseptörleri aracılığıyla nötrofilik kemotaksise neden olurlar ve sonuçta yangı gelişir. Yangısal değişikliğin karakterini özellikle canlı etkenler belirler. Birçok mikroorganizma özellikle de bakteriler (örneğin Streptokoklar, Pseudomonaslar) irin oluşumuna neden olurlar. Yangı normal olarak doğal bağışıklık sisteminin bir unsurudur. Canlı etkenlerin sebep olduğu yangıların birincil amacı etkeni yok etmektir. Bu başarılamazsa organizma bu etkenleri sınırlandırarak veya baskılayarak vücuttan uzak tutmaya çalışır. Bu da başarısız olursa enfeksiyon ve genel sistemik olaylar (örneğin toksemi veya septisemi gibi) meydana gelir. Fiziksel etkenler: Mekanik travmalar (kesici ve delici cisimler, vurma, çarpma gibi darbeler vs.) sıcak ve soğuk etkiler, elektrik, ultraviyole ışınlar, iyonizasyon yapan ışınlar, çeşitli yabancı cisimler (silika, asbest, kıymık, tel vb.). Bu tür etkilerde yangısal reaksiyon klasik olarak oluşur. Organizmaya yabancı bir durum gelişmiştir ve şekillenen yangı adeta standart bir cevaptır.Fiziksel etkiler asepsi-antisepsi özelliğine göre iki şekildedir.Bunlardan biri şirurjikal; yani cerrahi travmaya bağlı gelişen yangısal reaksiyondur. Bu tür olgular steril kabul edilirler. Ancak steril olmayan tüm fiziksel etkilerden ileri gelen sıyrık, kesi, abrazyon, laserasyon gibi olaylar septiktir ve enfekte nitelik taşırlar. Ancak laserasyonlar kas veya tendo gibi dokuda aşırı bir gerilme kaynaklı ise şekillenen yangı aseptik karakterde olur. Kimyasal nedenler: Asitler, alkaliler, dezenfektanlar, ağır metal bileşikleri (örneğin sublime), organizmada fazlaca oluşan metabolizma ürünler; örneğin üremi gibi vücutta fazla miktarda üre birikmesi. Bir başka örnek ise idrar kesesi yırtılması ve buna bağlı ortaya çıkan peritonitis'tir. İdrarın asit pH'sının etkisi olarak peritonda yangısal reaksiyon meydana gelir ve aseptiktir. Endojen ve eksojen toksinler ve bazı ilaçlar yangıya neden olan önemli sebeplerdendir. Genellikle neden oldukları doku yıkımı, dejenerasyon; immun yanıt şeklinde yangı oluşumuna neden olur ki söz konusu doku hasarı sınırlandırılsın. Ahırda yaşayan hayvanlarda en büyük kimyasal sorun üre-amonyaktır. Bu madde solunum yoluyla alındığı taktirde solunum yollarını ciddi şekilde irkilti eder. Asit maddeler hızla doku yıkımına neden olduklarından yangısal yanıt hızlı gelişir. İmmunolojik reaksiyona neden olan maddeler: Yabancı proteinler (örneğin katgüt dikiş ipliği), hipersensibilite yaratan eksojen ve endojen kaynaklı maddeleri transplantasyon'da doku ve organ reddi, immunkompleksler. Gerek homoiyoplastik, gerek heteroplastik olsun; tüm doku/organ nakilleri immun yanıta neden olur. Vücudun bir başka yerinden alınmış dahi olsa yabancı doku daima yabancıdır ve şekillenen immun yanıt da bir çeşit yangıdır. Anoksemi ve nekroz: Dokulara gelen kanın azalması veya kesilmesi bu bölgenin çevresinde yangısal reaksiyon oluşur ve bu nekrozun yayılmasını önler (demarkasyon). Örneğin infarktuslar çevresinde yangılı alan (demarkasyon zonu) görülebilir. İdiopatik (sebebi bilinmeyen) yangılar: Bazı yangısal hastalıkların sebebi tam olarak ortaya konulamamıştır. Örneğin SLE veya Sarkoidozis gibi hastalıklarda yangısal reaksiyonlara neyin neden olduğu tam olarak ortaya konulamamıştır. Doku hasarı ve iyileşme: Doku hasarının beraberinde gelişen tüm iyileşmeler birer yangısal prosestir.Örneğin bir ameliyat sonrası kesi atılan dokuların iyileşmesi yangısal bir süreci de beraberinde getirir. Kontakt yangı: Vücudun bir bölümündeki yangı sık sık yakın dokulara sirayet eder. Bu en çok idrar yolu ve üst solunum yolları enfeksiyonlarında görülür.

http://www.biyologlar.com/enflamasyon-nedir

Yapay apoptoz meydana getiren yöntemler ve yetersiz apoptozda tedavi stratejileri

a) Gen tedavisi (örneğin Bcl-2, cFLIP ve IAPS’yi hedef alanlar) b) Smac/DIABLO taklitçileri veya IAP antagonistleri[18] c) Fotodinamik tedavi d) Recombinant TRAIL (bir ölüm reseptör ligandı) e) PKB/Akt sinyalinin inhibisyonu f) p53 aktivitesinin ortaya çıkmasına neden olan MDM2 inhibisyonu Gen Tedavisi. a) Anti-apoptotik Bcl-2: Antisense mRNA kullanılarak (18 bp’lik oligonükleotid antisense Bcl-2 mRNA=G-3139) inhibe edilir. b) cFLIP ve IAPS antisensleriyle, SCID (severe combined immunodeficiency) fare modellerinde geliştirilen kanserlerde sitotoksik ilaçlarla birlikte başarılı sonuçlar alınmıştır. Fotodinamik tedavi. Bir porphyrin bileşiği olan phthalocyanine-4 tümör hücresine verilir ve tümör hücresine yoğun ışık kaynağı uygulanır. Bu şekilde ortaya çıkan serbest oksijen radikalleri tümör hücresini apoptoza götürür. Reaktif oksijen türevleri mitokondri iç mebranlarını harab ederek mitokondriyal permeabiliteyi artırır. Bu da mitokondrilerin şişmesine ve sitokom-C’nin sitozomlardan serbest hale gelmesine yol açar. Sitokrom-C kaspaz aktivasyonuna neden olarak apoptozom oluşumu sağlanır.[16] Recombinant TRAIL. Apoptozu aktive etmenin başka bir yolu da ölüm reseptörlerini stimüle etmektir. TRAIL, CD95L ve TNFa ile benzerlik gösteren bir ölüm reseptör ligandıdır. TRAIL bazı insan tümörlerinin fare modellerinde denenmiştir. TRAIL, CD95L ve TNFa kadar karaciğer toksisitesi ve kanamalara yol açmaz.[19] PKB/Akt sinyalinin inhibisyonu. PKB/Akt inhibitörlerinden biri olan ‘wortmannin’, tümör süpresör geni olan PTEN’nin azalmasına bağlı PKB/Akt sinyalindeki artışı azaltır. Böylece, sitokrom-C’nin mitokondrilerden serbestleşmesini sağlayarak apoptozu hızlandırır.[20] Aşırı apoptozun eşlik ettiği hastalıklar ve tedavi stratejileri a) Nörodejenaratif hastalıklar: Parkinson hastalığı, amyotrofik lateral skleroz, Alzheimer hastalığı, Huntington hastalığı b) AIDS (T-helper hücrelerinin aşırı apoptozu) c) İskemiler i) İnmenin neden olduğu serebral iskemi, ii) Miyokard infarktüsünü takiben görülen kardiyak iskemi örnek gösterilebilir. Parkinson hastalığı. Substantia nigrada’ki nöronlarda kayıp vardır ve mitokondrilerde hasar görülür. Bazı Parkinson hastalıkları kalıtsaldır ve anne tarafından kalıtımla geçer. PARP inhibitörleri Parkinson hastalığının tedavisinde kullanılabilir.[21] Amyotrofik lateral skleroz. Spinal motor nöronlar aşırı apoptoz nedeniyle kaybolarak azalır. Bu da hastayı paralizi ve ölüme götürür. Amyotrofik lateral skleroza olguların %25’inde Cu/Zn süperoksit dismutaz (SOD) geninde görülen mutasyon neden olur ve aşırı miktarda peroksinitrit (ONOO-) motor nöronlarda birikir (apoptozda Zn kaskadı). Bu aşırı peroksinitrit birikimi de proteinlerin nitrasyon/oksidasyonunu etkiler. Oluşan bu Zn kaskadı da kaspazları aktive eder ve motor nöronların apoptozuna yol açar.[17,22] Alzheimer hastalığı. Amiloid prekürsör protein (APP) ve presenilinde mutasyon sonucu amiloid-b oluşumu artar. Amiloid-b apoptoza, nöron kaybına ve amiloid plakları oluşumuna neden olur. Amiloid-b nörotoksiktir. Diğer taraftan APP oksidatif stresi artırarak ölüm reseptörlerini etkiler ve apoptoz yapar. Aynı zamanda TNF-R1’i aktive eder. TNF-a sekresyonunu artırır ve mikrogliaya neden olur.[17,22] Huntington hastalığı. Hip-1/Hippi heterodimeri prokaspaz-8’i uyarır. Kaspaz-8 de striatumdaki nöronların apoptozla kaybına neden olarak hastalık belirtilerini ortaya çıkarır.[23] AIDS. HIV neden olur. HIV, CD4+T hücrelerini enfekte eder ve CD4 reseptörlerine bağlanarak hücre içine girer. HIV’in ‘Tat’ proteini CD95 reseptör ekspresyonunu artırır. Bu durum, CD4+T hücrelerinin CD95’e duyarlılığını artırarak aşırı apoptozla sonuçlanır. Apoptozu azaltma AIDS için bu nedenle potansiyel bir tedavi yöntemidir.[7,24] Miyokard iskemisi. Kısmi koroner tıkanıklık angina pektorise, tam tıkanma ise akut miyokard infarktüsüne (AMİ) neden olur. Eğer kan akımı AMİ’nin başlangıcında çabuk düzeltilmezse fazla miktarda kardiyomiyosit ölümü meydana gelir. Kan akımının sağlanmasının da bazı sakıncaları vardır; bu durum da reperfüzyon hasarına neden olur. Yakın zamanlara kadar reperfüzyon hasarının nedeni bilinmiyordu ve kardiyomiyositlerin nekrozu sonucu olduğu düşünülüyordu. Şimdi reperfüzyon hasarında apoptozun rol oynadığı anlaşılmıştır. Tedavi apoptozu azaltmaya yönelmiş ve bu alanda bazı başarılar da elde edilmiştir. Akut miyokard infarktüsü sırasında iskemik miyokard dokusunda aşırı Bax ekspresyonu saptanmıştır. Antisens teknolojisiyle Bax inhibisyonu, apoptozu inhibe ederek kardiyomiyosit ölümünü azaltabilir. Diğer bir strateji ise kaspaz aktivitesini inhibe ederek apoptozu azaltmaktır. Bir kaspaz inhibitörü olan z-VAD-fmk’nin hayvan modellerinde meydana getirilen miyokard infarktüsünde miyokardiyal reperfüzyon hasarını azalttığı gösterilmiştir. Apoptoza uğrayan hücrelerden çıkan phosphatidylserine’e annexin-V’yi bağlamak suretiyle, apoptoza uğrayan hücrelere floresans gösteren bir özellik kazandırılarak kaspaz inhibisyonunun faydaları, real-time direkt floresans mikroskobunda izlenebilmiştir. Ne yazık ki z-VAD-fmk reaktif oksijen türevlerini artırır ve yaygın toksisitelere neden olur. İnsülin benzeri büyüme faktörü-1 (IGF-1) infüzyonunun miyokard iskemili hayvan modellerinde apoptozu azalttığı gösterilmiştir. IGF–1 PKB/Akt sinyalini uyararak hücre sağkalım süresini artırır.[25] Serebral iskemi. Özellikle endüstri toplumlarında ölüm ve sakatlıklara yol açar. İskemik sinir sistemi dokusundaki ölüm olaylarının sırası aşağıda tanımlanmıştır. Kan akımında azalma ve oksijen eksikliği iskemi ile sonuçlanır. Birçok hücre nekrozla ölür. Nekroza uğrayan hücrelerin lizisi doku sıvısı içine K+ iyonları ve glutamat salgılar. Aşırı K+ iyonları konsantrasyonu membran depolarizasyonuna neden olur. Glutamatlar potasyum iyonları ile kombine olur ve N-metil-D-aspartat (NMDA) reseptör aktivasyonuna, bu da nöronların içine kalsiyum iyonu akışına yol açar. Yüksek sitoplazmik kalsiyum iyon konsantrasyonları hücreler için toksiktir. Eksitotoksisite, serebral iskeminin hemen yakın çevresindeki hücrelerin ölümüne neden olur. Bu hücrelerin ölümünün bilhassa apoptoza bağlı olduğu düşünülmektedir. Serebral iskeminin tedavisi. z-VAD-fmk’nin sıçan modellerinde kullanılması serebral iskemi nedeniyle oluşan beyin hasarını ve nöron kaybını azaltır. z-VAD-fmk, NMDA reseptörü antagonistleriyle birlikte kullanıldığında sonuçların daha başarılı olduğu hayvan modellerinde gösterilmiştir.[17] Yukarıda bahsettiğimiz anti-apoptoz tedavilerin hepsi ayrı ayrı yararlı olabilir. (Kaspaz inhibisyonu, PARP inhibisyonu, miyokard iskemisi için yukarıda bahsedilen PKB/Akt yolunun stimülasyonu, antisens teknolojisiyle Bax inhibisyonu, ANT antikorları gibi yukarıda bahsettiğimiz anti-apoptoz tedavilerin hepsi ayrı ayrı yararlı olabilir. z-VAD-fmk gibi non-spesifik kaspaz inhibitörleri de geliştirilmiştir. Fakat, bunlar reaktif oksijen ürünlerinin aşırı üretimine neden olmakta ve toksisiteleri yararlarını gölgelemektedir. Kaspazların spesifik inhibitörleri, örneğin kaspaz-1 (ICE inhibitörleri) romatoid artrit tedavisinde kullanılmaktadır. Bu tedavide rasyonalite, kaspaz aktivitesinden ziyade IL-1b miktarının azaltılmasıdır.[26]

http://www.biyologlar.com/yapay-apoptoz-meydana-getiren-yontemler-ve-yetersiz-apoptozda-tedavi-stratejileri

Transaminazlar (SGOT, SGPT) Karaciğer Fonksiyon Testleri

Normal Değerler : Aspartat (AST, SGOT) : 0-35 U/L Alanin (ALT, SGPT) : 0-35 U/L Açıklama : Transaminazlar karaciğer hücrelerinde bulunan enzimlerdir. Karaciğer hasarında hücre dışına sızarlar. Artığı Durumlar : Kan seviyelerinin yükselmesi, karaciğer hasarına bağlı olarak bu iki enzimin hücre dışına sızması anlamını taşımaktadır. Genellikle bu enzimlerin kan seviyeleri karaciğer hasarının şiddetini yansıtır. ALT karaciğere daha özgül iken, AST kalp ve iskelet kası harabiyetinde de yükselmektedir. Bu nedenle AST aynı zamanda myokard enfarktüsünün izlenmesinde de kullanılmaktadır. Karaciğerin hastalıklarında alkole bağlı karaciğer hasarı hariç ALT, AST den daha yüksektir. Azaldığı Durumlar : ALT ve AST değerlerinin normalden düşük olması nadiren görülen bir durumdur. Eğer bilinen bir karaciğer hastalığı yoksa genellikle önem taşımaz.

http://www.biyologlar.com/transaminazlar-sgot-sgpt-karaciger-fonksiyon-testleri

Hepatit Nedir

Hepatit karaciğerin iltihabıdır ve insan vücudunda bir çok olumsuz bulguya yol açar. Hepatitlerin bazıları virüslere bağlı , bazıları da değildir. Bazı toksik ilaçlar ve bağışıklık sistemi ( immün sistem ) bozukluklarıda karaciğer iltihabına neden olabilir. Hepatitlerin en çok rastlanan türü, virütik olanlardır. "Hepatit" terimi ile işte bu "viral hepatit"ler söylenmek istenmektedir. Karaciğerin taze, alevli iltihabına "Akut Viral Hepatit", 6 aydan fazla sürmesi haline ise "Kronik Viral Hepatit" adı verilmektedir. Her sarılık Hepatit midir ? Türkiye'de halk arasında, viral hepatitle, sarılık özdeşleştirilir ve her sarılık "viral hepatit" zannedilir. Halbuki sarılık bir hastalık değil belirtidir. Birçok hastalık, sarılık ( belirtilerine ) neden olabilir. Örneğin, ana safra kanallarında taş olması sarılığa neden olabilir. Ancak viral hepatit'le hiçbir ilgisi yoktur ve bulaşmaz. Yeni doğanlarda rastlanan sarılığı da hepimiz biliriz. Bu tür sarılığın da "viral hepatit"le bir ilgisi yoktur ve bulaşmaz. Hepatit yapan nedenler nelerdir ? En başta; Virüsler (A,B,C,D ender rastlanan E,F,G gibi) Toksik kimyasal maddeler (Karbon tetraklorür , vinylchlorür gibi) Bazı ilaçlar ( örneğin tüberküloz tedavisinde kullanılan İNH, bazı sinir hastalığının tedavisinde kullanılan chlorpromazin gibi ) ve özellikle batı ülkelerinde daha fazla görülen alkol Bazı mikroplar (Tüberküloz, brucella) Radyasyon; Genetik olarak geçen nadir hastalıklar , demir depolama hastalığı ( Hemokromatozis ) ( irsi olarak geçen, başta karaciğerde olmak üzere demir birikmesiyle organ hasarına yol açan ender bir hastalık ), bakır depolama hastalığı ( Wilson hastalığı ) ( bakır metabolizması bozukluğu nedeniyle özellikle karaciğerde ve gözün kornea tabakasında bakır depolaması ile karaciğerde hasara neden olan ender bir hastalık ). Hepatit A Virüsü Hepatit A virüsü (HAV) fekal ve oral yollardan bulaşır. Kontamine sular sık rastlanan bir enfeksiyon kaynağıdır. HAV göl sularında 4 haftaya kadar enfeksiyöz olma özelliğini korur. Kuluçka süresi 14-15 gündür. Parenteral bulaşma istisnadır. Yaşam standardının yükselmesi ve hijyen koşullarının iyileşmesine bağlı olarak toplumun kontaminasyonu geçtiğimiz on yıllar içinde önemli ölçüde azalmıştır. Hepatit A'ya karşı antikorlar 18 yaşın altındakilerin % 5'inden azında, ve 70 yaşın üzerindekilerin % 75'inden fazlasında bulunur. TANI Antijen: Hepatit A virüsü, prodrom döneminde dışkıda gösterilebilir. Kanda genellikle gösterilemez çünkü aşikar hastalık döneminde virüs replikasyonu sona ermiştir. Bu nedenle söz konusu antijen için dışkıda veya kanda yapılan elektron optik veya immunolojik testler bilimsel çalışmalar dışında endike değildir. Antikorlar: IgM sınıfı spesifik antikorlar infeksiyon sonrasında 14 gün daha saptanabilir. IgM sınıfı antikorlar birkaç gün sonra ortaya çıkar. Bir kural olarak, IgG ve IgM sınıfı antikorlar aynı zamanda gösterilir. Bunlar mevcutsa ve hepatitin klinik kanıtları varsa, varlığı hepatit A'yı gösteren IgM sınıfı antikorlar için bir test yapılır. KLİNİK GİDİŞ Olguların % 99'dan fazlasında hepatit A 3 ay içinde spontan olarak iyileşir. Olguların % 0.1'inden azında fulminan hepatit görülür. Sarılık, olguların % 90 kadarında vardır. Yüzde 95'inden fazlasında transaminaz eğrileri bir zirve yapar ve hızla normale döner. Fulminan hepatitten sonra gürültüsüz bir karaciğer sirozu gelişebilir. TEDAVİ Spesifik tedavi yoktur. Fulminan hepatitte yoğun tıbbi tedavi endikedir. Komplike olmayan olgularda medikal zeminde kesin yatak istirahati gerekli değildir. PROFİLAKSİ Endemik bölgelere seyahat edenler için aktif aşılama ile profilaksi yapılabilir. Başlangıçta 1ml enjeksiyonu takiben 2-4 hafta ve 6-12 ayda enjeksiyonlar uygulanır. Aşılamanın başarı oranı %95'in üstündedir. Gamma globulin preparatları ile pasif inokülasyon (0.1 ml/kg vücut ağırlığı veya 5.0 ml im) bugün nadiren endikedir. Enfeksiyon ortaya çıkmış olduğundan ev koşullarında bu uygulama genellikle başarılı olmaz. Bulaşmayı önlemek için hijyen koşullarını düzeltici önlemlere derhal uyulması önerilir. Hijyen önerilerine sıkı bir şekilde uyulması ve aktif aşılama en iyi profilaksidir. Hepatit B Virüsü BULAŞMA HBV enfeksiyonu bütün dünyada hepatitin en sık nedenidir. Özellikle üçüncü dünyada bu virüsün semptomsuz taşıyıcılarının sayısı 200-300 milyon arasında olup, bunların çoğu enfeksiyonu vertikal olarak edinmiştir. Almanya'da yeni enfeksiyon insidansı yılda 100 bin kişide 35'dir. Geçmişte kan transfüzyonları en sık bulaşma nedeni iken, günümüzde transfüzyon ünitesi başına bulaşma riski % 0.4'ten düşüktür. Yeni enfeksiyonlar öncelikle yüksek risk gruplarında (ilaç bağımlılığı, çok eşlilik) görülür. HBsAG pozitif hastaların partnerleri arasında hepatit B enfeksiyonu prevalansının yüksek oluşu, cinsel yolla bulaşabileceğin göstermektedir. Kuluçka süresi 4-6(9) aydır. Çok yüksek virüs yoğunluğu durumunda az miktarda kan bile bulaşma için yeterlidir. YAPI Hepatit B virüs hepadnavirüsler ailesine dahil bir DNA virüsüdür. Çapı 42 nm'dir. Virüsün yüzeyinde 3 ayrı yüzey antijeni vardır. Nükleokapsid proteini DNA ile birliktedir. ve P geninin ürünüdür. HBe antijeni HBcAG'nin büyük parçaları ile sekansiyel homoloji gösterir. TANI Antijenlerin gösterilmesi: HBsAg enfeksiyondan sonra 2-8 hafta içinde pozitifleşir ve olguların çoğunluğunda enfeksiyondan 4 ay sonra serumda gösterilemez. Akut hepatitte e-antijenleri serumda yalnızca kısa bir süre bulunur. Kronik hepatit veya karaciğer sirozunda bu antjenler viral replikasyonun devam ettiğinin bir işaretidir. Antikorlar: Anti-HBs antikorları nomalde HBsAg serumdan kaybolduktan sonra ortaya çıkar. Birçok olguda HBsAg bulunmaz ve anti-HBs henüz üretilmemiştir. Bu olgularda serumda anti-HBc aranması önemlidir çünkü daha erken dönemde oluşur. IgM sınıfından anti-HBc-antikorları test edilerek akut enfeksiyonun kesin tanısı yapılabilir. Bu test akut enfeksiyon ile viral persistansı olan kronik aktif hepatitin ayırt edilmesini sağlar. HBeAg'nin kanıtı olarak anti-HBe'nin belirlenmesi önemlidir. HBV-DNA: Serumda veya dokuda DNA testi, rezidüel enfeksiyözitenin araştırıldığı bireysel olgularda endikedir. HBsAg-pozitif ama HBeAg-negatif ve anti-HBc-pozitif hastalarda DNA testi önemlidir. Bu gibi hastalar uzun süre non-enfeksiyöz olarak kabul edilmiştir. Spot hibridizasyon ve polimeraz zincir reaksiyonu testleri HBV-DNA içeren komple Dane partiküllerini gösterebilmiştir. KLİNİK GİDİŞ Klinik gidişe ilişkin kapsamlı araştırmalar hepatit B enfeksiyonlarının %90 ının daha sonra herhangi bir olaya yol açmadan spontan olarak iyileştiğini göstermektedir. Enfekte kişilerin % 1'den azında fulminan hepatit gelişmektedir. Olguların % 10'undan azında kronik bir form (kronik persistan veya kronik aktif hepatit) ortaya çıkmaktadır. Enfekte olanların % 1'den azında karaciğer sirozu gelişmektedir. Primer karaciğer karsinomu esasen kronik gidişli formlarda, özellikle hepatit C virüsü ile koenfeksiyon veya alkol kullanımı gibi ilave bir hasarlayıcı faktör olduğunda görülmektedir. TEDAVİHepatit B için spesifik ilaç tedavisi yoktur. Yatak istirahatinin hastalığın gidişi üzerinde bir etkisi bulunmamaktadır. Hastalara kendilerini fiziksel olarak aşırı yormamaları söylenmektedir. Hepatit B enfeksiyonlarının interferon ile tedavi endikasyonu yoktur. Kronik aktif hepatitte interferon-α olguların % 35-40'ında virüs eliminasyonu sağlar. KORUNMA Hastalığa maruz kalınmasını (örneğin enjektor iğnesi batması) takiben pasif bağışıklama için hiperimmun serumlar mevcuttur. Bunlar 0.1 ml/kg vücut ağırlığı veya toplam 5 ml dozunda ilk 12 (36) satte verilmelidir. Pasif bağışıklamadan önce potansiyel olarak enfekte kişide hepatit B tanısı yapılarak alıcının anti-HBs pozitif olmadığı veya 'donör' ün HBsAg negatif olmadığı bulunmalıdır. Ayrıca eşzamanlı olarak aktif bağışıklamada da endikedir. Aktif bağışıklama için saflaştırılmış, insan plazmasından gen teknolojisi ile üretilmiş aşılar mevcuttur. Aktif bağışıklama 4 hafta ve 6 ayda tekrarlanır. Aşılamanın sonucu anti-HBs'nin gösterilmesi ile değerlendirilir.Aşılama titresi 100 IU'nun üzerinde olmalıdır; eğer değil ise aşılamanın tekrarlanması gerekir. Hepatit C Virüsü (HCV) Hepatit C virüs antikorlarının rastlanma oranı ülkeler arasında farklılıklar göstermektedir. Bu oran % 0.4 ile % 3.8 arasında değişmektedir. Bazı çalışmalarda antikorların erkeklerde kadınlardan çok daha fazla olduğu bulunmuştur. Sosyo ekonomik şartları kötü olan toplumlarda kontaminasyon (bulaşma) çok yüksek olabilir. Eşcinseller veya HIV pozitif hastalar gibi yüksek riskli gruplarda antikor bulunma sıklığı eşdeğer ortalama popülasyona göre % 10 kadar daha fazladır. Kan ve kan ürünleri, bilinen bir bulaşma yoludur. Diğer yollar kanıtlanmamıştır. Enjeksiyonlar ile kaza sonucu bulaşma riski % 3 gibi düşük bir düzeydeir, buda kandaki Hepatit C Virüsü sayısının düşük olması ile açıklanmıştır. Cinsel temas sırasında bulaşma riski çok düşüktür. Bulaşma yolu genellikle belirgin değildir. Kuluçka süresi 2 hafta ile 6 ay arasındadır. Yapı, TanıHepatit C virüsünün elektron-optik resimleri yoktur. Bunun nedeni serumda virüs sayısının düşük olmasıdır. Hepatit C etkeni ajan, tek sarmallı RNA virüsleri grubundadır. Enfekte kişinin (mikrop taşıyan) serumunda virüs sayısının çok düşük düzeyde bulunmasından dolayı immünolojik testlerin duyarlılık sınırı altında olduğundan antijenlerin doğrudan gösterilmesi mümkün değildir. Ancak 2. ve 3. kuşak ELİSA testleri, Hepatit C virüs antijeni için spesifik antikorların gösterilmesi amacıyla kullanılmaktadır. 2. ve 3. kuşak testler kullanılarak 4-6 hafta sonra antikorlar gösterilebilir. Ancak bazı olgularda bu, 4-9 aya kadar gecikebilir. Hepatit C'nin klinik gidişi, Vakaların % 30-90'ında kronikleşme ile ve % 5-30 kadarında karaciğer sirozu ile kendini belli eder. Çeşitli kronik karaciğer hastalıklarında Hepatit C virüsünün rolü henüz açıklığa kavuşmamıştır. Birçok karaciğer sirozu tiplerinde anti-HCV (Hepatit C Virüsü) gözlenmiştir. Hatta bu oran alkolik karaciğer sirozunda bile % 27 olarak bulunmuştur. Spesifik tedavisi yoktur. Aktif bağışıklama bulunmamaktadır. Pasif bağışıklamanın ise başarı oranlarına ilişkin güvenilir çalışmalar henüz yoktur. Bu bölümde yer alan bilgiler tamamen bilgi amçlıdır, böylebir probleminiz var ise lütfen Doktorunuza danşın...

http://www.biyologlar.com/hepatit-nedir

Kandaki Demir Seviyesi Hücrelere Zarar Verebiliyor

Kandaki Demir Seviyesi Hücrelere Zarar Verebiliyor

Laboratuvar ortamında, ortalama tedavilerde kullanılan konsantrasyonlarda demir hücrelere verildiğinde, 10 dakika gibi kısa bir süre içerisinde DNA hasarına yol açacak mekanizmaları tetikleyebiliyor.

http://www.biyologlar.com/kandaki-demir-seviyesi-hucrelere-zarar-verebiliyor

Enflamasyon Nedir ?

Enflamasyon, inflamasyon, yangı veya iltihaplanma, canlı dokunun her türlü canlı, cansız yabancı etkene veya içsel/dışsal doku hasarına verdiği sellüler (hücresel), humoral (sıvısal) ve vasküler (damarsal) bir seri vital yanıttır. Yangı normalde patolojik bir durum olmasına karşın, yangısal reaksiyon fizyolojik olarak vücudun gösterdiği bir tepkidir. Halk arasında iltihap tabiri yangı için kullanılmasına rağmen sık sık apseler için de iltihap denmesinden dolayı yangı terimini kullanmak daha yerinde olacaktır. Hücre dejenerasyonu ile birlikte yangı konusu, hastalıkların patolojik temelini oluşturmaktadır. Bir çok hastalığın seyri sırasında yangısal bir takım reaksiyonlar meydana gelmektedir. Bunlar başlıca enfeksiyöz hastalıklar ve yangısal idiopatik otoimmun hastalıklardır. Tarih boyunca bu olgular farklı şekillerde yorumlanmış, bir çok hastalık için tanrının gazabı veya bazı dengelerin bozulması sonucu (örneğin Ying ve Yang) meydana geldiği sanılmıştır. Bugün bilindiği üzere enfeksiyöz hastalıklarda veya söz konusu diğer sebeplerin bir sonucu olarak bağışıklık sistemi tarafından yangı ve yangısal reaksiyonlar indüklenmektedir. Bu sebeple yangı konusu oldukça derin ve immunoloji disiplini çerçevesinde incelenmesi gereken bir konudur. Otoimmun hastalıklarda etkenin bilinmemesinden dolayı bu gibi olguların genetik bazı defektler veya özel genler aracılığıyla gerçekleşmesinin yanında henüz bilinmeyen bir takım virusların da sebep olabileceği düşünülmektedir. Yangının tarihsel gelişimi incelenecek olursa en eski veriler antik çağa kadar dayanır. Bu dönemin hekimleri yangıyı ciddi derecede tanıyor ve tanımlıyorlardı. Bilinen en eski tıbbi kitap -Mısırlılar tarafından kaleme alınmıştır- Edwin Smith papirüsü; organizmanın yaraya verdiği tepkiye şemet adını vermişti. Bu papirüsün ortaya çıkmasından yaklaşık 1000 yıl sonra Yunan hekim Hipokrat yangı için kabaca "yanan şey" anlamına gelen flegmon terimini kullanmıştır. Milattan sonra 1. yüzyılda yine Romalı yazar Cornelius Celcus yangının bugün bile kabul görmüş tanımını yapmıştır; Rubor et tumor cum, calore et dolore, yani ateş ve ağrının eşlik ettiği kızarıklık ve şişkinlik.[1] Milattan sonra 400-500 yılları döneminde Hipokrat'a ait literatürlerde "yangı" terimi geçmemekte ancak yangının karakteristik özellikleri ve temel özellikleri bilinmekteydi. Hipokrat, yaşamı, ışık vererek, ısıtarak kendi benliğini tüketen bir lambaya benzetmekteydi. Vücudun sıcaklığının lokal olarak ve sınırlı bir şekilde yükselmesine inflamasyon denirken, bütün vücutta meydana gelen bir sıcaklık artışı febris (ateş) olarak tanımlanmıştır. Modern anlamdaki çalışmalar ise 1860'lara dayanır. Bu dönemde patolog Julius Cohnheim canlı kurbağaların dilleri üzerine kostik (yakıcı, dağlayıcı) nitelikte maddeler vermiş ve meydana gelen değişimleri mikroskopik olarak incelemiştir. Yangının tipik beş belirtisi vardır.[2] Bunlar: Kızarıklık (Rubor): Yangılı alanda bir çok medyatörün etkisi sonucu damar geçirgenliği (vasküler permeabilite) ve damar genişliği arttığı (vazodilatasyon) için bölge daha fazla aktif olarak kanlanır, yani hiperemiktir. Rubor, yangının erken evresi ve hafif seyreden reaksiyonlarda, alerjilerde oldukça tipiktir.[3] Isı artışı (Calor): Damar genişlemesi (vazodilatasyon) sebebiyle bölgeye daha fazla kan akımı olacaktır. Daha fazla kan akımı ile bölgedeki sürtünme artacağından dolayı bölgede ısı artışı olur. Çünkü kan aynı zamanda organizmada ısıl dengede son derece öneme sahiptir. Akut yangının en önemli bulgusu calordur. Şişkinlik (Tumor): Damar geçirgenliği (permeabilite) artması sonucu bölgeye kan plazması sızar ve bu da bölgede şişkinliğe neden olur (ödem). Ancak şişkinliğin tek sebebi ödem değildir. Proliferatif karakterde yangılarda meydana gelen granülomlar veya hiperplaziler, fibrotik değişiklikler de söz konusu şişliğe neden olabilir. Dışarıdan görülebilen oluşumlarda yangısal reaksiyonlarda şişkinlik ön plandadır. Vücudun daha iç kısımlarında bulunan organ ve dokularda; örneğin bir akciğerde bu şişkinliği dış bakıda gözlemlemek olanaksızdır. Zira bu organda meydana gelen örneğin akut bir pnömoni, akciğerlerden köpüklü sıvı gelmesine veya patolojik akciğer seslerinin duyulmasına neden olur. Ağrı (Dolor): Bölgedeki sinirler sürekli ağrı uyarımına neden olur. Ağrının şekillenmesindeki en önemli iki sebep; yangıyı tetikleyici prostaglandinlerin organizmada ağrı oluşumunda rol alması ve yangısal ödemden kaynaklanan sinir uçlarına basıdır. Kronik duruma geçen yangılarda dolor, zamanla arka planda kalmaya başlar. Ancak romatoid artrit gibi bozukluklar ne kadar kronik seyretse de böyle olaylarda ağrı ön plana çıkar. Kapsanan organlarda disfonksiyon yani işlev bozukluğu (Functio laesa): Doğal olarak yangılı organ işlevlerini yerine tam olarak getiremez.[4] Functio laesa tanımını inflamasyona Rudolf Virchow dahil etmiştir. Bu beş nitelikten ilk dördü antik zamanlardan beri bilinmektedir ve Celsus'a [5]; functio laesa ise yangı tanımına 1858'de Rudolf Virchow tarafından eklenmiştir.[2] Yangı vücudun savunma sisteminin bir sonucu olarak gelişir ve organizmayı korumaya yöneliktir. Fakat yangı oluşması her zaman istenmez. Örneğin beyinde veya kalpte oluşabilecek bir yangı hayatı tehdit edebilir. Bu sebeple yangıyı önleyici ilaçlar kullanılabilir (Antiinflamatuar droglar). Yangının çok çeşitli sebepleri vardır. Bunlar infeksiyöz etkenler, mikroorganizmalar oldukları gibi parazitler veya cansız cisimler (kıymık, silika vb) de olabilirler. Travmalar, kontüzyonlar (ezilmeler), kesikler de yangı ile sonuçlanır. Yangıya ilişkin bir önemli özellik, yangının daima interstisiyumda gerçekleşmesidir. Parankimatöz yangı olmaz, ancak yangının etkileri parankim dokuda görülebilir.[6] Bunların dışında yangılar akut (birkaç günden bir haftaya kadar gelişen) olabildikleri gibi kronik (uzun süreli) de olabilirler. Yangının organizmada üç temel amacı vardır. Bunlar, hastalık etkenini yok etmek, etkenleri yok edemiyorsa vücuttan ayrı tutmak (demarkasyon) ve hasarlı dokuları ortadan kaldırmaktır. Örneğin nekrotik dokularda, nekrozun yayılmasını ve bu ölü dokuların intoksik etkisini engellemek amacıya nekrotik saha yangısal bir kuşakla, yani demarkasyon bölgesi ile sınırlandırılmaya çalışılır. Yangının temel 4 amacı şunlardır: 1.Vücuda yabancı olan ve patojen nitelikte olan tüm etkenleri yok etmek. 2.Yok edilemeyen etkenleri sınırlandırarak vücuttan ayrı tutmaya çalışmak. 3.Yara iyileşmesinin sağlanması için gerekli uyarım ve biyoaktivite. 4.Nekroz ve gangrenin sınırlandırılması. Yangının başlıca sebepleri aşağıda sıralanmıştır: 1.Canlı etkenler: Yangıya sebep olan en önemli etken mikroorganizmalardır. Bakteri, virus, riketsiya, mantar, protozoon, ve helmintler bu gruba girer. Bu gibi etkenler sahip oldukları antijenler ve yüzey reseptörleri aracılığıyla nötrofilik kemotaksise neden olurlar ve sonuçta yangı gelişir. Yangısal değişikliğin karakterini özellikle canlı etkenler belirler. Bir çok mikroorganizma özellikle de bakteriler (örneğin Streptokoklar, Pseudomonaslar) irin oluşumuna neden olurlar. Yangı normal olarak doğal bağışıklık sisteminin bir unsurudur. Canlı etkenlerin sebep olduğu yangıların birincil amacı etkeni yok etmektir. Bu başarılamazsa organizma bu etkenleri sınırlandırarak veya baskılayarak vücuttan uzak tutmaya çalışır. Bu da başarısız olursa enfeksiyon ve genel sistemik olaylar (örneğin toksemi veya septisemi gibi) meydana gelir. 2.Fiziksel etkenler: Mekanik travmalar (kesici ve delici cisimler, vurma, çarpma gibi darbeler vs.) sıcak ve soğuk etkiler, elektrik, ultraviyole ışınlar, iyonizasyon yapan ışınlar, çeşitli yabancı cisimler (silika, asbest, kıymık, tel vb.). Bu tür etkilerde yangısal reaksiyon klasik olarak oluşur. Organizmaya yabancı bir durum gelişmiştir ve şekillenen yangı adeta standart bir cevaptır.Fiziksel etkiler asepsi-antisepsi özelliğine göre iki şekildedir.Bunlardan biri şirurjikal; yani cerrahi travmaya bağlı gelişen yangısal reaksiyondur. Bu tür olgular steril kabul edilirler. Ancak steril olmayan tüm fiziksel etkilerden ileri gelen sıyrık, kesi, abrazyon, laserasyon gibi olaylar septiktir ve enfekte nitelik taşırlar. Ancak laserasyonlar kas veya tendo gibi dokuda aşırı bir gerilme kaynaklı ise şekillenen yangı aseptik karakterde olur. 3.Kimyasal nedenler: Asitler, alkaliler, dezenfektanlar, ağır metal bileşikleri (örneğin sublime), organizmada fazlaca oluşan metabolizma ürünler; örneğin üremi gibi vücutta fazla miktarda üre birikmesi. Bir başka örnek ise idrar kesesi yırtılması ve buna bağlı ortaya çıkan peritonitis'tir. İdrarın asit pH'sının etkisi olarak peritonda yangısal reaksiyon meydana gelir ve aseptiktir. Endojen ve eksojen toksinler ve bazı ilaçlar yangıya neden olan önemli sebeplerdendir. Genellikle neden oldukları doku yıkımı, dejenerasyon; immun yanıt şeklinde yangı oluşumuna neden olur ki söz konusu doku hasarı sınırlandırılsın. Ahırda yaşayan hayvanlarda en büyük kimyasal sorun üre-amonyaktır. Bu madde solunum yoluyla alındığı taktirde solunum yollarını ciddi şekilde irkilti eder. Asit maddeler hızla doku yıkımına neden olduklarından yangısal yanıt hızlı gelişir. 4.İmmunolojik reaksiyona neden olan maddeler: Yabancı proteinler (örneğin katgüt dikiş ipliği), hipersensibilite yaratan eksojen ve endojen kaynaklı maddeleri transplantasyon'da doku ve organ reddi, immunkompleksler. Gerek homoiyoplastik, gerek heteroplastik olsun; tüm doku/organ nakilleri immun yanıta neden olur. Vücudun bir başka yerinden alınmış dahi olsa yabancı doku daima yabancıdır ve şekillenen immun yanıt da bir çeşit yangıdır. 5.Anoksemi ve nekroz: Dokulara gelen kanın azalması veya kesilmesi bu bölgenin çevresinde yangısal reaksiyon oluşur ve bu nekrozun yayılmasını önler (demarkasyon). Örneğin infarktuslar çevresinde yangılı alan (demarkasyon zonu) görülebilir. 6.İdiopatik (sebebi bilinmeyen) yangılar: Bazı yangısal hastalıkların sebebi tam olarak ortaya konulamamıştır. Örneğin SLE veya Sarkoidozis gibi hastalıklarda yangısal reaksiyonlara neyin neden olduğu tam olarak ortaya konulamamıştır. 7.Doku hasarı ve iyileşme: Doku hasarının beraberinde gelişen tüm iyileşmeler birer yangısal prosestir.Örneğin bir ameliyat sonrası kesi atılan dokuların iyileşmesi yangısal bir süreci de beraberinde getirir. 8.Kontakt yangı: Vücudun bir bölümündeki yangı sık sık yakın dokulara sirayet eder. Bu en çok idrar yolu ve üst solunum yolları enfeksiyonlarında görülür. Patogenezi ve Yangı Hücreleri Yangıya ilişkin vasküler değişiklikleri ilk defa Cohnheim incelemiştir. Daha sonraları Lewis, damarlardaki çap değişikliklerini üçlü yanıt deneyi ile açıklamıştır. Bu deneyde Lewis bir cetvelin ince kenarı ile deriye vurmuş ve olayları şöyle incelemiştir: 1.Önce kapillarlarda daralma olur ve bölge solar. Fakat 30-60 saniye içinde çizgi halinde kırmızılık belirir. Bu kırmızılık kapillar ve venüllerin genişlemesi sonucudur ve birinci yanıt olarak bilinir. 2.1-3 dakika içinde kırmızı alan genişler. İlk oluşan kırmızı alan etrafında düzensiz kırmızı ikinci bir çeper meydana gelir. Bu da ikinci yanıttır. Bu esnada bölgede sıcaklık artar. Kapillar ve venül genişlemesine arteriel genişleme eşlik eder. 3.Birkaç dakika ile 40 dakika arasındaki sürede o bölgede şişme ile beraber solma görülür (üçüncü yanıt). Bu şişlik ve solgunluk damarlardan sıvı çıkmasına yani ödeme bağlıdır. Nötrofiller yangı sinyallerini takiben şu aşamaları izlerler: Emigrasyon: Normal kan dolaşımında lökositler merkezde, eritrositler lökositlerin etrafında kuşak şeklinde ve en dışta (damar duvarına en yakın) trombositler ile plazma konuşlanır. Yangısal uyarımın alındığı ilk andan itibaren nötrofiller merkezden perifere doğru göçe başlar. Bu olay emigrasyondur ve takibinde derhal marginasyon gerçekleşir. Marginasyon: Emigrasyona uğrayan nötrofillerin, merkezden uzaklaşarak damar duvarına yaklaşmış olması durumudur. Adherens: Marjine olan nötrofiller, damar endoteli ile yüzey molekülleri aracılığıyla (ICAM-1,2 ve VCAM-1,2 gibi) etkileşime girmesi olayına adherens denir. Diapedezis: Psödopodlara (yalancı ayak) sahip nötrofillerin aynı zamanda damar endotellerini enzimatik olarak yıkımlayarak damar dışına çıkması olayıdır. İmmun sistem hücreleri yangının patogenezinde önemli rol oynar. Yangının ilk evrelerinde damarlardaki normal akımın seyri değişir. Normal kan akımında damar lumeninin en iç yüzünde lökositler, bunların etrafında eritrositler, daha dışarıda trombositler ve damar lumenine en yakın olarak da plazma yer alır. Herhangi bir sebeple yangı reaksiyonu başlarsa öncelikle devreye giren histamin, prostoglandin, kinin-bradikinin ve diğer yangı stimule edici (proinflamatuvar) ajanlarca damar geçirgenliği artar ve yangısal ortamda lökositlerin (özellikle monositer makrofajlar ve nötrofiller) daha uygun hareket etmeleri için uygun ortamı hazırlamak üzere plazma eksudasyonu (ödem) gerçekleşir.Yangısal ödem daima hücre göçünden önce olur. Daha sonra damarlardaki normal akım bozulur ve en içteki lökositler damar lumenine yaklaşmaya başlar (marginasyon). Bunun ardından damar lumenine gelen lökositler geçirgenliği artmış damar duvarından yalancı ayaklar (pseudopodlar) vasıtasıyla ve salgıladıkları bazı litik enzimler (özellikle nötral ve asit proteazlar) aracılığı ile damar dışına sızarlar (lökodiapedesis). Artık yangı başlamış ve vücut düşmanla savaşmak için gerekli hazırlıklarını yapmıştır. Nötrofiller Yangının başlarında en öncü hücreler nötrofillerdir. Nötrofillerin bu özelliğinin kemotaksis'e olan duyarlılığının neden olduğu sanılmaktadır. Bu duyarlılıkta özellikle hücre membranı yüzeyinde bulunan komplemen proteinlerin türü ve yoğunluğu önem taşır. Akut yangısal olaylar veya bakteriyel enfeksiyonlar nötrofil yapımını ve yangısal infiltrasyonunu artırır.[7] Viruslara karşı gelişen immun yanıttan nötrofiller değil lenfositler sorumludur. Ancak bunun istisnaları vardır.(Örneğin FIP hastalığı). Nötrofillerden üretilen proteazlar, proteinleri ve hücre zarlarını tahrip eder ve komplemanların proteolitik aktivasyonundan, koagulasyondan (çökelme, pıhtılaşma) ve kinin kaskadından sorumludur. Kinin-bradikinin; tıpkı histamin benzeri bir etki göstererek yangısal reaksiyonu indükler.[8] Kemik iliğinde kök hücreye kök hücre faktörü, interleukin IL)-3, IL-6, IL-11, granulosit koloni uyarıcı faktör (G-CSF)gibi büyüme faktörleri ve sitokinlerin etkisi ile progenitor hücreler granülositler şeklinde olgunlaşır ve çoğalır.[9] Yangısal reaksiyonlar ve enfeksiyonlara bağlı olarak gelişen nötrofili, kemik iliği depo havuzundan nötrofil salınması sebebiyle ortaya çıkar.[10] Dolaşımdan nötrofil salınmasının azalmasına bağlı olarak, CR3 reseptörü olan CD11b/CD18 eksikliğine bağlı nötrofili gelişebilir. Bu durum Lökosit adhezyon eksikliği olarak bilinir ve nötrofiller kapiller endotele yapışmaz. Bundan dolayı enfeksiyon ortaya çıktığında yangı bölgesine ulaşamazlar.[11][12] Nötrofillerin yangısal yanıtta sahip oldukları önem son derece büyüktür. Bunun en önemli sebeplerinden biri de sahip oldukları granüler yapıların immunolojik özelliğidir. Primer granüller; Myeloperoksidaz, defensin [13], katepsin-G, Proteinaz 3, Lizozim, Azurosidin, gibi enzimlere sahiptir. Bunlar mikrobiyal yıkımı sağlar.[13] Sekonder granüller; Lizozim, laktoferrin, kollajenaz, sitokrom b558, alkalin fosfataz ve plazminojen gibi enzimler esahip olup migrasyon ile mikrobiyal yıkımı sağlar. Tersiyer granüller; Jelatinaz, lizozim, asetil transferaz, asit fosfataz, sitokrom b558, nramp-1 gibi moleküllere sahiptir. Bunlar da damar dışına göçten sorumludur. Sekretorik veziküller; Alkalin fosfataz, sitokrom b558, plazma proteinleri gibi bileşenleri içerir. Sekretorik veziküller adhezyondan sorumludur. Cathepsin-G, defensin ve myeloperoksidaz gibi enzimler güçlü oksidatif ve proteolitik etki göstererek fagosite edilmiş yabancı materyali veya etkeni yıkımlayan protein yapısında enzimlerdir. Cathepsin-G, Serin endopeptidaz benzeri aktivite gösterir.[14] Bunun yanı sıra heparini bağlar.[15] Cathepsin-G'nin organizmadaki asıl önemli fonksiyonları ise proteinlerin yıkımlanması, mantarlara karşı bağışıklık yanıtı ve nötrofil aracılı gram negatif bakteri yıkımıdır.[16][16] Lenfositler Bağışıklık sisteminin temel hücre gruplarından olan lenfositler kandaki çekirdekli hücrelerin (granülositler) yaklaşık olarak %25’ini oluştururlar. CD4+ T lenfositler MHC Sınıf II aracılığı ile antijen tanırken, CD8+ hücreler MHC Sınıf I aracılığı ile antijen tanımaktadırlar. Lenfositlerin bir çok alt tipi vardır. Bunlar; CD4+ helper, CD8+ sitotoksik, Treg hücreler, B hücreler, Doğal öldürücü hücreler ve NKT hücrelerdir.[17] İkili boyamada oldukça büyük çekirdeğe sahip bir lenfosit görülmekte. Yangısal CD4+ T Hücreleri: CD4+ T yardımcı hücreleri öncelikle timusta naif T hücresi olarak oluşmakta ve dolaşıma verilmektedir. Bunu izleyen süreçte bu hücreler antijenlerle karşılaştıktan sonra uygun sitokin ortamı etkisiyle belli T hücre guruplarına farklılaşmaktadırlar. Olgunlaşmış T hücreleri kendi reseptörlerine uygun yapıda olan antijeni, antijen taşıyan antijen sunucu hücrenin MHC molekülü üzerinde algılar; CD3 ve CD28 kostimülasyonu da sağlandığında ve yine ortamda IFN-Υ veya IL-12 sitokini baskın ise Th1 hücresi olarak farklılaşırlar.[18] Antijenleri tanıdığı vakit, saldırı emri alan TH1 hücreleri, IFN-Υ ve TNF sitokinlerini sentezler. Bu sitokinlerin, daha doğrusu CD4+ T Hücrelerinin temel fonksiyonu makrofaj aktivasyonudur. Seçilmiş TH1 hücreleri de sitotoksisiteye neden olabilir.[19] M Hücreleri Luminal yüzeyden aldıkları antijenleri dar yapıdaki sitoplazmalarından geçirmek suretiyle parçalı olan bazal membranından bağ dokuda bulunan lenfositlere ileterek IgA yapımını indükler.[20] Makrofaj Nötrofillerden başka en önemli yangı hücrelerinden biri de makrofajlardır. Makrofajlar, dolaşımdaki monositlerin farklılaşmasıyla gelişirler. Granülasyon dokusu oluşumunun başlamasında ve gelişiminde oldukça önemli rol oynarlar. Diğer makrofaj kaynağı ise dokulardaki makrofajlar yani histiyosit lerdir. Makrofajlar her ne kadar enfeksiyon etkenlerini fagositoz ve yok etme amacıyla görev alsa da bazı yüksek virulansa sahip hastalık etkenleri; örneğin Mycobacterium tuberculosis dolaşıma geçirerek tüm vücuda da yayabilir.Bu yüzden gerek yangıda, gerek bir hastalığın patogenezisinde oldukça önemlidirler. Makrofajlar ayrıca vazoaktif medyatörler (damar geçirgenliğini artırıcı), proteaz gibi enzimler, kemotaktik ve büyüme faktörleri gibi biyolojik olarak aktif maddeleri de üretirler. Granülasyon dokusu oluşacağı zaman veya fibrozis gibi bir nedbeleşme olaylarında bölgede yeni oluşacak kan damarları, fibroblast göçü yine makrofajların sorumluluğunda gerçekleşir.[21][22] Bunların dışında yangıların karakteristiğine göre bölgeye bir çok hücre de gelebilir. Bunların başında B ve T lenfositler yer alır. Lenfositler genellikle kronik yangılarda sayıca üstün oldukları gibi viral bir infeksiyona bağlı yangı oluşmuşsa yine sayıca üstün hücre olurlar. Şayet yangının karakteri allerjik veya parazitik ise bu defa sayıca üstün hücreler eozinofiller olurlar. Bu duruma allerjen maddelerin antikorlarla oluşturdukları kompleksler ve yine antijenin türünden dolayı üretilen ECF (Eosinophilic chemotactic factor) aracı olmaktadır. Bir başka önemli yangı hücresi ise fibroblastlardır. Aslında fibroblastların yangı bölgesinde olmasının en önemli nedeni makrofajların salgıladığı büyüme faktörleridir. Bunun sonucu olarak bağ doku ve fibrin oluşumu ile karakterize fibrozis meydana gelir. Bu durum akciğer gibi bir organda olmuş ise adı karnifikasyon olur. Pneumoconiosis ve benzeri olaylarında yangı sonucu bağ doku oluşumu görülür. Fibroblastlar proliferatif karakterde reaksiyonların ve doku kayıplarının giderildiği olayların baş aktörleridir. Bazı yangılarda teşhiste de rol oynayan spesifik hücreler bulunur. Bunlar dev hücreleri olarak adlandırılır. Bilinen dev hücreler; Langhans dev hücresi, Sternberg dev hücresi, Epulis dev hücresi, yabancı cisim dev hücresi, tümör dev hücresi, sinsityal hücrelerdir. Epulis dev hücresi dışındaki dev hücreler makrofaj veya epiteloid hücrelerden köken alırlar. Sinsityal hücrelerin oluşum mekanizması oldukça ilginçtir. Viral enfeksiyonların önemli bir mikroskopik bulgusu olan bu dev hücrelerin oluşumu, patojen virusun enfekte ettiği hücreyi terk etmeden çoğalmasını sağlar. Üretilen fizyon proteinleri hücreleri bir araya çekerek öncelikle sinsityum oluşumu sağlar. Yangı mediatörleri Bir yangısal reaksiyonda belirli süreçleri tetikleyen kimyasal maddelerdir. Kompleks olmayan bir inflamasyonda bu maddeler birbirlerini karşılıklı olarak aktive ederler veya baskılarlar; böylece,inflamasyondaki bireysel adımlar koordineli bir defansif (savunmacı) reaksiyon oluştururlar. Bunlar (kininlerde olduğu gibi) ölü dokulardan elde edilebilir ya da canlı dokulardan oluşturulabilir. Hücrelerden elde edilen mediatörler: Bunlar ya bunları aktive biçimde salgılayan belirli hücreler içinde depolanmış mediatörlerdir ya da hücreler tarafından özellikle sentezlenen mediatörlerdir. Histamin mast hücre ve bazofil granüllerinde depolanır. Bu inflamasyonun alerjik formlarında kilit bir rol oynar. Histamin; Antijen-antikor kompleksleri tarafından salgılanır ve hücrelerin membrana bağlı IgM molekülleri tarafından önceden duyarlılığı gerektirir.Serotonin trombositlerden ve ince bağırsaktaki enretokromoffin hücrelerden gelir. Etkileri histamininkine benzer. Damar geçirgenliğinde artışa neden olur. ICAM-3: İnterselüler adhezyon molekülü-3 olarak da bilinir.Lökositlerin hücre yüzeyinde bulunan bu molekül, antijen sunan hücreler ile T-lenfositlerin etkileşiminde son derece önemli rol oynar. Bu etkileşim, hem ICAM-1, ICAM-2 ve ICAM-3'ün LFA-1 molekülleri ile etkileşime girmesi hem de T hücre yüzeyinde bulunan CD2 molekülü ve APC'nin sunduğu LFA-3'ün etkileşime girmesi sayesinde gerçekleşir.[23] Sitokinler'in (lenfokinlerin) rolleri Sitokinler (lenfokinler) hücresel düzenleyici proteinlerdir. Çeşitli uyarılara karsı cevap olarak özel hücreler (T Lenfositler) tarafından salgılanır ve hedeflenen hücrelerin davranışını etkilerler. Belli bir sitokin çeşitli hücreler tarafından farklı dokularda salgılanır ancak aynı benzeri biyolojik etkinliği gösterir. Sitokinlerin etkileri sistemik veya lokaldir.[24] Lenfosit kaynaklı sitokinler; IL-2, IL-4, IL-5, IL-12, IL-15, TGF-β (transforming growth factor). IL-10 ve TGF-β immun yanıtı azaltırken, IL-2, IL-4 lenfosit gelişimini indüklemer. Yangısal olaylarda genel olarak stimulan (proinflamatuvar) veya depresif (antiinflamatuvar) etki gösterirler. Sitokinlerin temel görevleri arasında makrofajlarda kemotaksisinin başlatılması, damar permeabilitesinde (geçirgenlik) artış ve immunite (bağışıklık) sayılabilir. Makrofaj/monosit kaynaklı sitokinler ise (monokin); IL-1α ve β, TNF-α'dır. Bazı sitokinler tedavi amacıyla ilaç olarak kullanılmaktadır; IFN’ların kanser (IFN-α), hepatitis (IFN-α), kronik granülomatoz hastalık (IFN-γ) ve multipl skleroz (IFN-β) ve IL-2’nin renal kanser ve melanoma tedavisinde yer edinmiştir. Th2 hücreleri(Tip-2 Yardımcı T Lenfosit), bağışıklık sisteminde T-hücre reseptörleri aracılığıyla hem allerjen peptitleri doğrudan tanıyan hem de interlöykinlerin (IL) salınımı sağlayan tek hücre sistemidir ve bu da alerjik yangıda IgE antikoru üreten B hücreleri (IL-4, IL-13), mast hücreleri (IL-4, IL-10), ve eozinofil'ler (IL-5) ile ilişkisini ortaya koyar.Lökosit kemotaksis'i ve kemokinezis'ini etkileyen sitokinler arasında; IL-8, eotaksin ve makrofaj enflamatuvar protein-1α bulunmaktadır.[25] Sitokinleri iki başlık altında toplanabilir. Bunlar doğal immun yanıtı regüle edenler ve edinsel immun yanıtı regüle edenlerdir. Doğal immun yanıtı regüle eden sitokinler Bunlar makrofaj ve diğer mononükleer fagositlerden salınırlar. Bunların dışında T Lenfosit, NK (Natural Killer, Doğal Katil) hücreleri, endotel hücreleri ve mukozal epitel hücrelerince de salınabilirler. Doğal bağışıklık gelişmesinde önemli rol oynayan; IL-1, TNF-α, IL-6, özel olmayan yangısal cevabı başlatır; IFN tip 1 ise antiviral etkilidir.[26] TNF (Tümör Nekrozis Faktör),Gram negatif bakterilere ve diğer infeksiyöz mikroplara akut yangısal yanıtın düzenleyicileridir. TNF’ye TNF-α adı da verilir ve böylece TNF-β (lenfotoksin)’den ayrılır. Nötrofil ve monositleri uyararak infeksiyon bölgesine toplamak ve aktive ederek mikropların ortadan kaldırılmasını sağlar. Endotelyal hücreleri ve makrofajları kemokin salmak üzere uyarır. Mononüklear fagositlerden IL-1 salınımını uyarır. IL-1’nin, TNF’ye benzer bir rolü vardır. Bazı hücre tiplerinde (örneğin virus ile infekte veya tümöral hücreler) apoptozis'i indükler. TNF, hipotalamus üzerine etki ederek vücut sıcaklığının artışına, dolayısıyla ateşe neden olur. Bu nedenle endojen pirojen olarak bilinir. TNF’ye (ve IL-1’e) yanıt olarak gelişen ateş oluşumu, sitokinle uyarılan hipotalamik hücrelerden salınan prostoglandinler aracılığıyla (PG) düzenlenir. Örneğin Aspirin PG sentezini inhibe ederek TNF ve IL-1’in bu etkisini bloke ederek ateşi düşürür. Hepatositleri bazı serum proteinlerinin (örneğin serum amiloid A ve fibrinojen) sentezi için uyarır. TNF’nin uzamış üretimi, kas ve yağ dokusu hücrelerinin zayıflamasına neden olur. Bu zayıflama, TNF aracılığı ile iştahsızlıktan ve lipoprotein lipazın azalan sentezinden kaynaklanır. TNF miktarı aşırı arttığında miyokardiyal kasılabilirlik ve damar düz kas tonusu inhibe olur. Bu durumda, kan basıncı düşer. Dolaşımda fazla TNF olması kan glukoz düzeyinin azalması gibi metabolik bozukluklara neden olur. TNF trombomodulin (trombin reseptörü-pıhtılaşma inhibitörü) ekspresyonunu inhibe ederek tromboz oluşumuna neden olur. Interlöykin-1 (IL-1) Makrofajlardan salınan İnterlökin 1(IL-1), araşidonat kaskadını aktive eder, platelet aktivating faktör(PAF) oluşturur ve kinin sistemini aktive eder. Akut yangısal reaksiyonları destekler. Karaciğerden akut faz proteinlerinin salınımını artırır. Skatriks (nedbe) için gerekli olan kollagen ve kollagenaz aktiviteyi uyarır. Interlöykin-12 (IL-12) İntrasellüler etkenlere karşı gelişen erken primitif immun yanıttan sorumludur. Hücresel immunitenin tetikleyicisidir. T lenfosit ve NK'lerden Interferon-φ (IFN-Gama) sentezini uyarır. Interlöykin-6 (IL-6), IL-1'in ilk iki etkisine ek olarak B lenfosit proliferasyonunu uyarır ve nötrofil sayısında artışı destekler. Interlöykin-10 (IL-10), Aktif makrofaj ve dendritik hücreleri ile IL-12'nin etkinliğini baskılar. Bu özelliğinden dolayı antiinflamatuvar'dır. Edinsel immun yanıtı regüle eden sitokinler Interlöykin-2 (IL-2), NK ve lenfositler için gelişim faktörüdür. Diğer sitokinlerin sentezisi uyardığı gibi B lenfositlerden antikor salınımını artırır. Antijenle uyarılan T lenfositler için bir büyüme faktörüdür ve antijenle etkileştikten sonra T hücrelerinin çoğalmasından (klonal ekspansiyon) sorumludur. Interlöykin-4 (IL-4), NK hücreleri, CD4+ TH1 hücreler ve CD8+ T hücreler tarafında üretilir. Helmint ve artropod infeksiyonlarından kaynaklanan yangısal reaksiyonlarda, Immunglobulin-E (IgE) aktivasyonunu artırır. IL-4, IFN-Gama antagonistidir.Kısmen antiviral aktiviteye de sahiptir. Interlöykin-5 (IL-5), IL-4 ile ortak göreve sahip olan bu sitokin eozinofil aktivasyonunu tetikler. IFN-Gama, Makrofaj aktivasyonunun en önemli sitokinlerinden biridir. Lenfotoksin (LT), T lenfositlerinden ve diğer hücrelerden üretilir. %30 oranında makrofaj kaynaklı TNF ile homoloji gösterir ve benzer fonksiyonlara sahiptir. Bu nedenle LT, TNF-β olarak adlandırılır. Endotel hücreleri ve nötrofilleri aktive eder, bu nedenle akut inflamatör yanıtın bir mediatörü olarak görev yapar. Bu biyolojik etkinliği TNF’ninkine benzer. Interlöykin-13 (IL-13), makrofajlar gibi lenfoid olmayan hücreler üzerine etki eder ancak T ve B lenfositlere etkisi IL-4 kadar değildir. Major etkisi makrofajların aktivitesini inhibe etmektir ve IFN-gama’ya antagonisttir. Akciğer epitelyal hücrelerde mukus üretimini arttırır. Araşidonik asit metabolitleri Prostaglandinler ve lökotriyenler AA metabolizması sonucu açığa çıkan ürünler bir çok biyolojik olayları etkiler. Her hücre yaralanması, fosfalipaz A 2 yi aktive ederek araşidonik asit gibi 20 karbonlu poliansature yağ asitleri oluşturur. Bu olaylardan biri de yangıdır. AA poliansature bir yağ asididir ve hücre zarındaki fosfolipid'lerde önemli miktarlarda bulunur.İnflamatuvar etkinlik ya da C5a gibi kimyasal mediatörler aracılığıyla sellüler fosfolipaz aktivasyonu sonucu membran fosfolipid'lerinden açığa çıkar.Yangısal reaksiyon esnasında, nötrofil lizozomlarının, fosfolipaz'ların önemli düzeyde kaynağı olduğunu sanılmaktadır.Lökotriyenler özellikle allerjik reaksiyonlarda indükleyici görev görür. Reaksiyon başladıktan sonra AA metabolizması iki temel yoldan birini seçer.Bunlar; Siklooksijenaz yolu Lipooksijenaz yolu'dur. Lipooksijenaz lökotrienleri oluşturmak üzere parçalar(LT). Siklooksijenaz ise nonsterodial antiinflamatuar ajanlar tarafından inhibe edilebilen bir süreçte prostoglandinleri(birçok hücrede bulunan) oluşturur. Prostosiklin kapiller endotel ve vasküler duvar, tromboksan trombositler tarafından oluşturulur. Prostaglandinin etkileri: Yaygın vazodilatasyon. Ağrı reseptörlerinin uyarılması. Ateş yükselmesidir. Lökotienlerin etkileri: Nötrofilik ve eozinofilik granüllerin kemokinleri ve kemotaksisi. Vazokonstriksiyon. Bronkonstriksiyondur. Antiinflamatuvar etkinlik Antiinflamatuvar etki yangısal reaksiyonu diğer mediatörlerin aksine baskılar. Vücutta doğal antiinflamatuvar mediatörler olduğu gibi dışardan alınan bir çok etken maddenin de antiinflamatuvar etkisi vardır. Bir çok antiinflamatuvar mediatör etkisini prostaglandin sentezini inhibe ederek gösterir. Arachidonik asit üzerinden siklooksijenaz yolunun blokajı ve lipooksijenaz yolunun blokajı temel mekanizmalardan biridir. Doğal antiinflamatuvarlar Bunlar vücut tarafından üretilen mediatörlerdir. En bilinen antiinflamatuvar mediatörler başlıca kortizon ve diğer glikokortikoid'lerdir. Nonsteroid (yapay) antiinflamatuvarlar Kısaca NSAID olarak bilinirler. Bunların bir çoğunun analjezik ve antipiretik etkileri vardır. Yani hem ağrı kesici hem de ateş düşürücü etkilere sahiptirler. Ağrı kesici etkileri de prostoglandin sentezinin inhibisyonunun bir sonucudur. En bilinen NSAID'ler metamizol, diklofenak, naproksen sodyum ve ketoprofen türevi bileşiklerdir. Çoğu NSAİİler siklooksijenaz yolunu non-selektif olarak inhibe ederek etkirler. Siklooksijenaz-1 (COX-1) ve siklooksijenaz-2 (COX-2) izoenzimlerinin her ikisini de inhibe ederler. Siklooksijenaz araşidonik asitten tromboksan ve prostaglandin yapımında katalizör görevi görür. Prostaglandinler inflamasyon oluşum sürecinde diğer görevli maddelerle birlikte iletim molekülü olarak rol oynar.Bu etki mekanizması John Vane tarafından ortaya çıkarıldı ve bilim adamı bu şekilde Nobel ödülü sahibi oldu. Fibronektin faktörü Fibronektinler 450.000 Dalton boyutunda, genellikle dimerik yapıdaki glikoproteinlerdir. Hem plazmada çözünür formda (plazma fibronektin), hem de hücre dışı alanda çözünmez formda (sellüler fibronektin) bulunurlar[27]. Fibronektin opsonik aktivitesi nedeniyle retiküloendotelial sistemde(RES) ve pıhtı stabilizasyonunda rol oynar. Diğer fonksiyonlarının yanında hücre adhezyonu, migrasyonu, büyüme ve farklılaşmada görev alırlar. Başlıca üretim yerleri karaciğer hücreleri, endotelyal hücreler ve fibroblastlardır.[28][29][30] Yara iyileşmesi birbiriyle kompleks oluşturmuş dört fazda incelenebilir. Bunlar; koagülasyon, inflamasyon, granülasyon dokusu oluşumu ve matriks formasyonu-yeniden yapılanmadır. Fibronektin'in bu fazların hepsinde fonksiyon gördüğü bilinmektedir.[31] Yangının iyileşme sürecinde gelişen granülasyon dokusunun oluşumunda fibronektin olmazsa olmaz denilebilecek derece roller üstlenir.[32] Fibronektin, kuvvetli opsonik bir alfa-2-glikoproteindir. Aynı zamanda kanı pıhtılaşmasında primer tıkaç oluşması için gerekli hücre göçünden sorumlu mediatörleri de üretir.[33] Akut faz proteinleri Yangısal alanda nötrofil gibi granulositler ve mononüklear hücrelerin aktive edilmesiyle birlikte TNF-alfa ve İnterlökin-6 gibi proinflamatör (yangıyı tetikleyici) sitokinlerin salınımı ile birlikte akut faz proteinleri (APP) olarak bilinen glikoproteinlerin karaciğerden üretimini destekler.[34] Bunun dışında akut faz proteinlerinin üretimi için gerekli uyarımlar İnterlökin-1 tarafından da stimule edilir. Günümüzde akut faz proteinleri lökositozis ve/veya nötrofili gibi geleneksel hematolojik değerlendirmelerde kullanılan yangısal parametrelere göre daha duyarlı oldukları tespit edildiği için yangısal reaksiyonların belirlenmesinde daha etkili ve hassas bir yöntem olmuştur.[35] C-Reaktif Protein (CRP):Yangının yanı sıra enfeksiyon ve travmanın sebep olduğu doku hasarını takiben, yangısal bir olaylar zincirinde üretilen akut faz proteinlerden biri de CRP'dir.[36][37][38] Yapılan bir çok çalışmada CRP'nin yangısal cevabı takiben 24 saat içinde artış gösterdiği ve yangısal uyarımların bitiminden itibaren yavaşça azaldığı gözlenmiştir.[39][40] CRP seviyesinin gastrointestinal sistemdeki mukozal hasarının da tespitinde belirteç olarak kullanılması söz konusudur.[41] Diğer önemli akut faz proteinleri: Serum Amiloid (A-SAA): A-SAA, yangının akut fazında üretilir. Safra için üretilen kolesterolün taşınımı, yangısal alana immun sistem hücrelerinin göçü ve ekstraselüler matrikse enzimlerin girişini sağlar. Amiloidozis, romatoid artrit ve aterosklerozis gibi yaygın, kronik inflamatuvar hastalıklardan sorumlu olduğu düşünülmektedir.[42] Farelerde üç izoformu bildirilmiştir. Bunlar; SAA-1, SAA-2 ve SAA-3'tür. Yangı boyunca SAA-1 ve SAA-2 karaciğerden üretilirken, SAA-3 ise farklı dokulardan üretilmektedir. SAA-1 ve SAA-2 genlerinin kontrolü ise sitokinlerden IL-1, IL-6 ve TNF-α'dır.[43] Haptoglobin (Hp): Oksidatif aktivite sonucu ertirositlerden plazmaya salınan serbest hemoglobini bağlar, hasara uğrayan böbreklerden ileri gelen demir kaybını önler.[44] Alfa-1Asid Glikoprotein (AGP) Seruloplazmin (Cp) Fibrinojen (Fb) Adezyon, migrasyon ve diapedezde görevli yüzey molekülleri Bunlar başlıca Hücre aracılı bağlanma reseptörleri ve Soluabl (çözülebilir) yüzey molekülleri olmak üzere iki temel sınıfa ayrılır. Hücre aracılı bağlanma reseptörleri: Toll Benzeri Reseptörler: Bakteriyel lipopolisakkaritler, peptidoglikanlar, viral nükleik asitler ve bazı parazitlerin yüzey molekülleri ile etkileşime girmeyi sağlayan bu moleküller başlıca plazma membranı, dendritik hücrelerin endozomal membranı (hücre içi uyarım), fagositler, B hücreleri ve diğer bir çok hücre yüzeyinde bulunur. İmmun sistem hücrelerini uyararak yangının başlamasını sağlarlar. NOD Benzeri Reseptör: Bakteriyel hücre duvarı, flagellin, muramyl dipeptid ve hasara uğrayan hücrelerin metabolitleri ile bağlanır. Başlıca fagositlerin sitoplazmalarında bulunur. RIG Benzeri Reseptör Viral RNA ile etkileşime girer. NOD benzeri reseptörlerde olduğu gibi fagosit sitoplazmasında bulunurlar. RIG-1 ve MDA-5 bu reseptörlere başlıca örnektir. C Tipi Lektin Bağlayıcı Reseptör Bakteriyel hücre duvarı yüzeyinde bulunan mannoz ve fruktozun yanı sıra mantar hücre duvarında bulunan glukanlar ile reaksiyona girer. Fagositlerin plazma membranında bulunur. Komplement sistemin aktivasyonundan sorumludur. Bu moleküllere örnek olarak Mannoz reseptörü, Trombomodulin ve Dektin verilebilir. Soluabl yüzey molekülleri: Pentraksinler: Mikrobiyal fosforil kolin ve fosfatidil etanolamin gibi moleküllerle etkileşime girerler. Plazmada bulunurlar. Örneğin, C-Reaktif Protein. Kolektinler: Mikrobiyal yapı ürünleri ile etkileşime girerler. Mannoz bağlayıcı lektin ve Surfaktan proteinleri SP-A, SP-D gibi proteinlerdir. Başlıca plazma ve alveollerde bulunurlar. Selektinler: CD62 molekülü olarak da adlandırılmaktadır. Selektinler, tek zincirli transmembran glikoproteinleridir. Hücre adezyonlarından sorumludurlar.[3] Endotelyal hücrelerde E-selektin, lökositlerde L-selektin, plateletler ve endotel hücrelerinde ise P-selektin konuşlanmıştır. Komplement: Mikrobiyal yüzey molekülleri ile etkileşime girer. En önemli iki örneği Komplement 3 ve 5'tir. Başlıca plazmada bulunurlar. Nitrik oksit ve reaktif yanıt Nitrik oksit organizmada bir çok role sahip özel bir biyolojik moleküldür. Makrofajlarca fagosite edilmiş, sindirilmiş mikroorganizmalara karşı oldukça güçlü bir yanıt gösterir.[45] Hücre içi sinyal iletiminde de bazı fonksiyonları vardır. Nitrik oksit kısa süreli ve güçlü bir reaktif etkiye sahiptir. Böylece fagosite edilen mikroorganizmaların yıkımlanmasını sağlar. Nitrik oksitin bunların yanında ayrıca nörotransmitter bir maddedir ve dolaşımda stabilizasyonu sağlar. Nitrik oksitin tepkimeye girmesiyle bakterilerin sitrik asit siklusu engellenir. Bunun yanında viral replikasyonu, yani virusların hücre içinde üremesini, çoğalmasını da engeller. Çeşitleri Yangılar akut ve kronik olmalarının yanında eksudasyonlarına göre de bir çok şekilde sınıflandırılabilir. Bunlar eksudatif, alteratif ve proliferatif yangılardır. Akut yangı Akut yangılar hızlı bir şekilde başlar ve kısa sürede şekillenir (bir kaç saat ile bir gün arasında). Hızlıca oluştukları için yangılı alana sayıca hakim hücreler nötrofil lökositlerdir. Bunun yanında makrofajlar da sıkça görülür. Sayıca az da olsa lenfositler görülebilir. Kronik yangı Kronik yangılar uzun sürede (3-4 hafta ve daha fazla) gelişirler. Akut yangılara nispeten ağrı duyusu daha azdır. Mikroskopik incelemede yangılı alanda sayıca lenfositlerin üstün olduğu görülür. Genellikle bu tür yangılarda fibrinleşme görülür. Bunun yanında akut yangılar zamanla kronik hale de gelebilirler. Eksudatif yangı Eksudatif yangılar, yangının bir semptomu olan tumor ile karakterizedir. Yani bu tip yangılar sıvı eksudasyonu ile kendilerini belli ederler. Bundan başka genel olarak yangıların ilk evreleri de eksudatif yangı kabul edilir. Eksudatif yangılar yangı içeriğine ve eksudatın yoğunluğuna göre sınıflandırılabilir: Seröz yangılar. Bunlar en hafif yangısal reaksiyonlardır. En tipik örnekleri allerjik reaksiyonlar, böcek-sinek ısırmaları ve 1. derece yanıklar (combulsio eritematosa)'dır.Şekillenen eksudat, transudata oldukça yakın kıvamdadır.Bu tür yangısal reaksiyonlar hemen hemen tamamen rezolüsyona uğrarlar.İyileşme süreçleri kısadır.Belirgin bir eksudasyondan başka herhangi bir reaksiyon görülmez.Yangısal hiperemi ve sıcaklık artışının ardından tıpkı birer vezikül görünümünü alırlar. Fibrinli (fibrinöz) yangılar. Genellikle serozalarda veya mukozalarda oluşurlar. Eğer seroz zarlar arasında oluşursa adhezyon'lara (yapışma, sineşi) neden olabilir. Fibrinli yangılar sıklıkla fibrin ağı, nötrofiller ve ölü mikroorganizmalardan oluşan bir koleksiyonla örtülür. Bu yapıya pseudomembran adı verilir. Bir pseudomembranın yapısını nötrofil, ölü mikroorganizmalar ve fibrin parçaları içerir. Pseudomembran, altında bulunan bağ doku ile ilişki halinde değildir ve bulunduğu yerden kolaylıkla ayrılır. Bazen pseudomembranlar altlarında bulunan bağ doku ile sıkı bir organizasyona girebilirler ki bu durumda Difterik/difteroid pseudomembran adını alırlar. Pseudomembran oluşumundaki en önemli sebep yangısal bölgenin sürekli temasa maruz kalmasıdır. Örneğin ağız mukozası, sindirim kanalı mukozası sürekli içerik ile temasa maruz kaldığı için bir bakıma koruyucu mekanizma olarak pseudomembran oluşur. Kataral (serö-müköz) yangılar. Bunlar daha çok sindirim ve solunum sistemi kanallarında rastlanır.Yoğun bir eksudasyon ön plandadır. En güzel örneği enteritis catarrhalis'tir. Gastrointestinal yangısal olaylar belirgin bir ishal ile karakterizedir. Eksudat, seröz yangıya göre daha yoğundur. Akut gelişen olgularda bol miktarda nötrofil ve plazma içerir. Olay kronikleştikçe içerik daha da yoğunlaşmakla beraber lenfoplazmositik hücreler artış gösterir. Eksudat bağ doku elemanları içermeye başlar. Purulent (irinli, suppuratif) yangılar. Ölü ve canlı nötrofiller ile enfeksiyon etkenlerinin (ki söz konusu bakterilerdir) oluşturduğu asit pH'da bir yangı ürünüdür irin. Bunların en önemli komplikasyonu, irinin kana karışarak tüm vücuda yayılması, yani piyemi'dir. İrinli yangıların en önemli kaynağı piyojen mikroorganizmalardır. Bunun yanında terpentin, kroton yağı gibi yüksek derece irkiltici maddeler aseptik irin denilen yapının oluşmasına neden olur.İrinli yangılar genellikle bağ dokudan organize olmuş bir kapsül aracılığıya sınırlandırılarak apseleri oluşturur. Asit pH'ya sahip irin daima fistülleşme eğilimi gösterir. Yani bir bölgeden oluşan kanal (fistül) yardımı ile dışarı açılır. Apseye neden olan etkenlerin arasında anaerob veya mikroaerofilik streptococ'lar, bacteriodes gibi diğer anaeroblar, staphylococcus'lar, actinomyces, nocardia yer alır. Mantarların da apse yapabildiği sanılmaktadır. İçi boşlukluk organlarda irin birikebilir. Bu olaya empiyem denir. Örneğin sinusitis purulenta, sinus empiyemidir. Yine piyometra, uterus empiyemi'dir. Hemorajik yangılar. Bunlar genellikle virulensi yüksek mikroorganizmalardan ileri gelen infeksiyonların seyri sırasında ortaya çıkar.Yangısal reaksiyon çok şiddetli olduğu için artan kapiller permeabilite eritrositlerin de damar dışına sızmasına neden olur.Diapedezin bir kanama şekillenir. Bunun yanında bazı toksinler de damar geçirgenliğini aşırı derecede artırabilir veya pıhtılaşma faktörlerinin bir ya da birkaçını engelleyerek kanama eğilimini artırır. Yangısal yanıt ile birlikte kan sızması da söz konusudur. Kanamanın bir başka sebebi de şiddetli doku yıkımı ve buna bağlı gelişen kapiller hasardır. Fazla miktarda üretilen opsonin ve komplementlerin damar geçirgenliği artırması kanamalara neden olur. Alteratif (nekrotik) yangı Alteratif (nekrotik) yangı, doku kaybının ön planda olduğu yangı türüdür. Genellikle spesifik mikroorganizmalardan (özellikle Necrobacillus ve Fuscobacterium necrophorium) ileri gelir. Yangılı alanda ülserleşme de dikkati çeker. Alteratif yangılar yüzeyde veya mukozalarda oluşabilir. Sonucunda bölgede nedbe dokusu (skatix, scar) oluşabileceği gibi kavernler veya daha kötü bir sonuç olan nekroz oluşur. Proliferatif yangı Proliferatif yangılarda sonuç olarak rezolüsyon genellikle oluşmamıştır ve etkenler fibröz kapsüllerle sınırlandırılır. İşte bu kapsüller granülomlardır. Bu yüzden bu tür yangılara özel bir adlandırma olarak graülomatöz yangı da denir. Yangılı alanda yeni oluşan kapiller damarlar, bağ dokusu hücreleri ve iplikçikleri, lökositler, histiyositler ve dev hücreleri görülür. Örneğin sığırlarda çene dokusunda üreyen Actinomyces bovis'ten ileri gelen Actinomikozis bir çeşit granülamatöz yangıdır. Yabancı cisimlere karşı şekillenen yangısal reaksiyonlar da granülom oluşumları ile karakterizedir. Bunun dışında tüberküloz, paratüberküloz ve Lupus erythematosusSLE de granülomatöz yangılara en tipik örnekleri oluşturular. İrin içeren granülomlar, piyogranülom adını alır. Parazit kistleri, bazen larvaları da granülomlar içerisine hapsedilmeye çalışılır. Bunun en tipik örneği Echinococcus kistleridir. Herhangi bir etkinin sonunda iyileşme aşamasında da yangısal olaylar gelişir. Bölgeye nötrofil, makrofaj ve mononükleer hücrelerden ve kan damarlarından zengin granülasyon dokusu şekillenir. Bu da bir çeşit granülomdur. İsimlendirme Organlarda ve dokularda yangısal reaksiyonlar isimlendirilirken genel bir kural olarak -itis eki kullanılır. Beşeri hekimlikte sıklıkla isimlendirme kısaca yapılır, yani -it eki getirilir. Ancak bazı oluşumların yangıları isimlendirilirken bu sözü edilen ekler kullanılamaz. Bu durumda o yapıya özel yangı terimi kullanılır. Yangısal hücre infiltrasyonunun bulunduğu yere veya organdaki konumuna göre de yangılar isimlendirilirken belirli hususlara dikkat edilir. Örneğin tek başına pneumoni akciğerlerde alveolerde eksudat birikmesi ile karakterize bir tabloyu alveolitis ifade eder. Organın interstisiyumunda şekillenen yangılar ifade edilirken daima interstisiyel ibaresi belirtilir.Örneğin interstisiyel pneumoni, böbrek korteksine ilişkin yangıda nefritis, glomerullerde yangısal hücre infiltrasonu için glomerulonefritis veya böbrek medullasını da içine alıyorsa piyelonefritis gibi. Bunların bazı örnekleri aşağıda verilmiştir: Mide (Ventriculus, gaster): Gastritis (Gastrit) Karaciğer (Hepar): Hepatitis (Hepatit) Bağırsaklar: Enteritis (Enterit) Yumurta kanalı (Oviduct, salphinx, tuba uterina): Salpingitis (Salpingit) Sinus: Sinusitis (Sinuzit) Yutak (Pharynx): Pharyngitis (Farenjit) Kör Bağırsak (Caecum): Tiflitis (Tiflit) Böbrek (Ren): Nephritis (Nefrit) Yumuşak Damak (Palatum molle): Angina (Anjin) Sert Damak (Palatum durum): Palatitis (Palatit) Bademcik (Tonsilla): Tonsillitis (Tonsillit) Akciğer (Pulmo): Pneumonia (Pnömoni) Diyafram (Diaphragma): Phrenitis (Frenit) Yangının Klinik Patolojisi Organlarda yangısal değişikliklere bağlı olarak sözkonusu organ ve ona ilişkin sistemlerde bir takım aksaklıklar ve buna bağlı olarak gelişen klinik bulgularda söz edilmesi olasıdır. Organizmada meydana gelen yangısal değişiklikleri laboratuvar analizleri ile belirlemek klinik patoloji bakımından önem taşır. Akut yangısal olgularda kan nötrofil sayısı artarken (nötrofili), kronik olgularda lenfosit sayısında artış lenfositoz göze çarpar. Bununla birlikte yangısal reaksiyonlarda serum bakır düzeyinde artış gözlemlenmiştir. Yangısal reaksiyonun şekillendiği bölge hastalığın seyri veya ölümcül olup olmaması ile yakından ilgilidir. Beyin ve beyin zarlarının yangılarının ölüm riski son derece yüksektir. Bir periton yangısı büyük oranda ölümle sonuçlanır. İç organlarda şekillenen yangılar, organın da fonksiyonuna göre sistemik, görevsel veya bölgesel klinik belirtilerle ortaya çıkar. Yangısal reaksiyonlar sırasında açığa çıkan sitokinlerin aynı zamanda sistemik etkilerinin de göz önünde bulundurulması gerekir. Örneğin interlökin-1 vücut sıcaklığında artış, iştah azalması gibi sistemik etkilere de neden olmaktadır. Benzeri etkiler yine interlökin-1,6 ve TNF-alfa gibi sitokinlerin karaciğerden akut faz proteinlerinin üretimini indüklemesi sonucu sistemik etkileri meydana getirmektedir. Yangıya ilişkin 5. temel semptom; yani functio laesa, söz konusu organdaki fonksiyon bozuklarından bahseder. Karaciğere ait yangısal olgular: sarılık, hemoglobinuri, kusma gibi semptomlarla kendini belli eder. Hücre içi ATP konsantrasyonu, NAD/NADH2 oranı yükselir. Hücre membran geçirgenliği artar ve mitokondriyal, sitoplazmik ve lizozomal enzimlerin aktivitesinden dolayı metabolizma ürünleri ve potasyum kaybı görülür. Hasara uğray Yine organın bulunduğu bölgenin elle muayenesinde ağrıya yanıt alınır. Akut gelişen hepatit ve karaciğer an hepatositlerden açığa çıkan serbest karaciğer enzimleri; özellikle ALT(Alanin aminotransferaz), AST(Aspartat aminotransferaz) ve ALP(Alkalen fosfataz) kanda yüksek değerde görülür. Özellikle AST'nin yüksek çıkması karaciğerde akut hasarın habercisidir. yetmezliklerine sıklıkla ensefalopati de eşlik eder. Ensefalopati'nin sebebi karaciğerin fonksiyon gösteremeyerek portal ven'den gelen Amonyağı, üreye çevirememesi ve bundan dolayı bu maddenin beyin dokusuna zarar vermesidir. Kronik inflamasyonlardan farklı olarak akut olaylar genellikle geri dönüşümlüdür. Yavaş gelişen ve uzun vadede seyreden hepatitis'ler fibrozis oluşumuna neden olur. En kötü sonuç ise karaciğer sirozudur. Solunum sisteminde gelişen yangılar: Güç solunum, bazen hipoksi, öksürük gibi semptomlarla seyreder. Herhangi bir yolla solunum yollarına ulaşabilen infeksiyöz ya da non infeksiyöz etkenler gerek üst solunum yolu infeksiyonları (ÜSYE), gerek alt solunum yolları infeksiyonları (bronchitis, pneumoni gibi) meydana getirir. Yabancı cisimlerin aspirasyonu (solunum yollarına kaçması) Gangrenli pneumoni denilen ciddi bir olguya neden olur. İnfeksiyöz etkenler ise salgıladıkları toksinler vb ürünlerle akciğerlerde harabiyete neden olurlar. Pneumoni'lerin en tipik bulgusu yangısal eksudasyona bağlı balgam üretimi (viral infeksiyonlarda görülmez) ve soluma güçlükleridir. Üriner sisteme ait yangısal reaksiyonlar: disüri, anüri, hematüri, hemoglobinüri gibi semptomlarla seyreder. Yangının bulunduğu bölgeye göre de klinik belirtilerim şiddeti farklılık gösterir. Örneğin bir nefrit olayları lokalden ziyade sistemik etkilere(üremi, hiperkalemi, metabolik asidozis gibi) sahiptir. Alt üriner sistem yollarında ise daha çok hematüri ve disüri klinik bulgulardır. Eklemlerde şekillenen yangısal olaylar; örneğin arthritis yürüyüş bozuklukları, topallama gibi belirtiler gösterir. İlerleyen olaylar eklemlerde post distrofik kireçlenmeye veya ankiloz denilen hareketsiz pozisyon almasına neden olur. Bu olay yangının kronikleşmesi ve fibröz dokunun aşırı oranda üremesinden dolayıdır. Sindirim sisteminde gelişen yangılar: En temel semptomu ishaldir.Bunun nedeni sindirim kanalı duvarında gelişen eksudasyon ve epitel hücre yıkımıdır. Ancak her ishal görülen durum bir enteritis olgusuna işaret etmez.Zira ishale sebep olan ve yangısal nitelikte olmayan bir çok sebep vardır ve göz önünde bulundurulmalıdır. Merkezi sinir sisteminin yangısal reaksiyonları: Prognoz(hastalığın gidişatı) açısından sıkıntılı, hatta olumsuzdur. Çünkü bu dokuların rejenerasyon yeteneği yok kabul edilir ve geri dönüşü olmayan hasarlar meydana gelir. MSS yangısal olayları daha dramatik klinik bulgularla seyreder. Örneğin ataksi, titremeler, vücut sıcaklığında ciddi derecede artış gibi. Beyin omurilik sıvısında yangısal hücre elemanları görülür. Ancak yangı, diğer yangısal olmayan bazı semptomlarla veya bozukluklarla karıştırılabilir.Bunların ayrımı yapmak tanı ve uygulanacak tedavi açısından önemlidir.Yangısal değişiklikler başlıca şu olgularla karıştırılabilir: Tümör Hematom Fıtık Kalsinozis Exostoz Zira bunların yangısal oluşumlardan ayrımını yapmak mümkündür. Yangısal Bozukluklarla Seyreden Hastalıklar Çoğunluğu otoimmun bilinen hastalıklar güzel örnek teşkil eder. Bunların mekanizmaları büyük oranda bilinmekle birlikte çoğunun sebebi bilinmemekte ancak genetik faktörler olduğu düşünülmektedir. Özel hastalıkların yanında Tip-3 aşırı duyarlılık reaksiyonları da örnek teşkil eder. Kaynaklar 1.Veteriner Genel Patoloji - H. ERER, M.Münir KIRAN, M.Kemal ÇİFTÇİ 2.Temel Patoloji (Basic Pathology). Kumar, Kotran, Robbins 3.Veteriner Genel Cerrahi, E.SAMSAR, F. AKIN 4.Biyokimya, Prof. Dr. N. BAYŞU, Prof. Dr. N. Bayşu SÖZBİLİR. s-584 5.Gillis S, Williams DE. 1998: Cytokine therapy: lessons learned and future challenges. Current Opinion in Immunology 10,501-3. 6.Essential Immunology , Roitt, Delves, 2001 7.Immunology, Roitt, Brostoff, Male, 1996 8.Cellular and Molecular Immunology, Abbas, Lichtman, 2005 9.Immunology 5th ed. Goldsby RA, Kindt, TJ, Osborne BA, Kuby J. 2002 10.Color Atlas of Pathology (Thieme). 11.Color Atlas of Immunology (Thieme). 12.Veteriner Farmakoloji. Ed: Prof. Dr. S. KAYA 13.Rasyonel Tedavi Yönünden Tıbbi Farmakoloji. Prof.Dr. S.Oğuz Kayaalp 14.Biochemistry Microbiology Pathology Pharmacology. Francis J. CHLAPOWSKI 15.Muir's Textbook Of Pathology. J. R. ANDERSON 16.Robbins Review of Pathology. Klatt - Kumar 17.General Pathology. Martin Gwent LEWIS, Thomas K. BARTON 18.www.saglikbilimi.com 19.Harrison's Principle of Internal Medicine. 5th edition

http://www.biyologlar.com/enflamasyon-nedir-

Bitki Fizyolojisi Final 2013

Doğru-Yanlış-Boşluk Doldurma H2O girişi CO2 girişine göre daha azdır Fotosentezde aktif olan pigmentlerin tümü stoma’da bulunur. Reaksiyon merkezleri, anten pigment-protein kompleksleri ve elektron taşıyıcı enzimlerin integral zar proteinleridir. Bitki öz suyunun bitkinin en üst kısmına ulaşmasında, adhezyon, kohezyon, sürücü güç olmak üzere üç faktör etkilidir. Floem su borularına hava girişine absisyon denir ve bu su sütununu kesintiye uğratır. C4 bitkilerinde 1 mol CO2’in fiksasyonu için gereken enerji 3ATP: 2 NADPH’dır.(5ATP) Nişasta sakarozdan sentezlenir.Triozfosfat Güneş bitkilerinde ışık yoğunluğu kompenzasyon noktası gölge bitkilerininkinden daha yüksektir Oleozomlar stoplazmadan trigliseritleri ayıran tekli bir zarla çevrilmişlerdir. Şikimik asit yolu, funguslarda terpenlerin sentezlendiği yoldur..Mevalonik asit Kromofor ve apoproteinden oluşan ve bir kromoprotein olan……………………………, morfogenetik yapıları düzenler. Ebeveyne ait dokular ile ebriyonun dokuları arasında apoplastik bağlantılar yoktur. Işık enerjisi, kloroplastlarda fotosistem I-II adı verilen iki farklı işlevsel birim tarafından kimyasal enerjiye dönüştürülür. Işık enerjisi tilakoid zarda bir proton itici güç oluşturmak için de kullanılır. Bu itici güç ATP sentezinde kullanılır. Karotenoidlerin soğurduğu ışık enerjisi klorofile aktarılır ve karotenoidler proton pompaları olarak isimlendirilirler. Fotosentez yapan tüm ökaryot organizmalarda en bol bulunan anten proteinlerin bazıları…………………………………………….’dır. Azotlu bileşikler şikimik asit metabolik yolunda sentezlenen sekonder metabolit grubudur. Yaprak hareketleri dorsal ve ventral adı verilen ve pilvinus zıt yanlarında bulunan hücrelerdeki turgor değişiklikleriyle oluşur. Birçok bitkinin çiçeklenmeden önce soğuk bir periyoda ihtiyaç duyması durumuna dormansi denir. Soğuğa maruz bırakılarak kabukta biriken inhibitörlerin parçalanması işlemine skarifikasyon denir(stratofikasyon). …………………………. ve …………………………. doğal oksin, …………………………. ise sentetik oksindir. ABA ve gibberellinler sinerjistik etki göstererek etki gösterir. Stokininler proteaz sentezini baskılayarak ve RNAaz aktivitesindeki artışı engelleyerek senesensi geciktirir. Y Poliaminler, bazı gelişim olaylarında uyarıcı rol oynadıkları için bitki büyüme düzenleyicileri olarak kabul edilmektedir. Kallus floemde kalburlu boruların hasarına karşı öz su akıntısını önlemek için yarayı kapatıcı özel moleküllerdir. (P proteini veya kalloz) TESTLER(eksikler olabilir) 1-Suyun kökten yapraklara taşınması sırası(Tüy çeperi, endodermis, vasküler doku, difüzyon ………………… ) 2-Aşagıdakilerden hangisi genel olarak bir fitoaleksindir? (flavonoidler) 3-Cam bitkilerinde CO2 fiksasyonu (Malik asit-gece) 4-Hücre arası boşluklarda su kavisi oluşması neyi gösterir(Negatif basınç) 5-Metabolik yollardan hangisi doğrudur( B ) 6-Sakkaroz nasıl taşınır(Sekonder aktif taşıma) 7-Floem yüklenmesi sırası 8-Calvin döngüsünde rol oynayan bileşik (Fruktoz 1,6-difosfat) 9-Bitki büyümesini düzenleyici hormon değildir(IAA) 10-Hücre çeperi ve hücre arası boşluklar ile ilgili test (Apoplast) 11-Tropik bitki hareketini ne sağlar (IAA) 12-Yer değiştiren elementler(N, P, Cl, MG,K) 13-Kısa gün bitkisi şekilli soru 14-Uzun gün bitkisi şekilli soru Işık flaşı: …………………….. kırmızı ötesi …………………………. ……………………………… kırmızı ………………………………….. …………………………………… kırmızı ötesi kırmızı, kırmızı ötesi kırmızı ………………………………… 15-Aşagıdakilerden hangisi genel olarak bir fitoaleksindir? (flavonoidler) 16-Dormansinin uyarılması, dormansinin devamlığı…………..(ABA) 17-Bir tohum canlı olduğu halde çimlenmiyorsa bu tohumu çimlendirebilmek için ne yaparsın I-Işıkta bekletirim II-İnhibisyondan sonra birkaç ay buzdolabında bekletirim III-Tohum kabuğunu çizip soğukta bekletirim IV-Kavanoza koyup buzdolabında bekletirim A)I B)I ve IV C)II D)II ve IV 18-Vernalizasyon aşağıdaki seçeneklerin hangisinde doğru olarak tanımlanmıştır? 19-Nektar klavuzlarını hangisi oluşturur? 20-Bitkilerin yaprakları, kökleri ve çürümüş kısımlarından çevreye yaydıkları primer ve sekonder metabolitlerin diğer bitkilerin üzerine etkileri aşağıdakilerden hangisidir? A)Dormansi B)Absisyon C)Allelopati D)İnhibsyon

http://www.biyologlar.com/bitki-fizyolojisi-final-2013

Tümör baskılayıcı genler

Hücre döngüsü kontrol noktalarını düzenleyen ve apoptozis sürecini başlatan genlerdir. Tümör baskılayıcı genler tarafından kodlanan proteinler DNA hasarına ya da dış çevreden gelen büyümeyi baskılayan sinyallere yanıt olarak hücre döngüsü sürecini durdurabilmektedir. Bu genler mutasyona uğradıklarında ya da inaktive olduklarında işlevlerini kaybederler.

http://www.biyologlar.com/tumor-baskilayici-genler

Adli psikiyatrik değerlendirme ve nörosiyans

Adli psikiyatrik değerlendirme ve nörosiyans

DERLEMENİN AMACISon on yılda nörosiyans ve kanunlar arasındaki etkileşmeye ışık tutacak çeşitli çalışmalar yapılmıştır. Bunların çoğunda genel anlamda nörosiyans verilerinin adli psikiyatrik değerlendirmelerde kullanımını araştırılmıştır. Nörosiyansın klinik kullanımdaki yerine işaret eden ortak sonuçlar alınmış olmasına rağmen nörosiyansın adli psikiyatrik değerlendirmelerdeki önemi henüz tartışılmaktadır.GÜNCEL BULGULARNörosiyans verilerinin adli psikiyatrik değerlendirmelerde kullanımı, suç unsuru  taşıyan hamlelere neden olabilen psikopatolojik bozuklukları (örn. kendini kontrol kabiliyeti bozukluğu, sinirlilik) destekleyebilmektedir. Travmatik beyin hasarına bağlı olarak gelişerek kontrol bozukluğuna yol açabilen  klinik bozukluklar en çok tartışılan konular arasındadır. Geçmişteki bilimsel yayınlarda, beyin tümörleri, enfeksiyonlar ve morfolojik anormallikler gibi nadir görülen vakaların suç unsuru taşıyan hamlelere neden olabilen psikopatolojik bozukluklarla anlamlı derecede ilişkili olması beklenmekteydi.ÖZETHem yasal hem de nörosiyantifik bakış açılarına sahip güncel bilimsel yayınların taranması sonucunda, yasal olaylarda etkisi olan klinik vakaların (uyurgezerlikte bilinç bozuklukları, Parkinson hastalığında dopamin replasman tedavisi, kendiliğinden hayal görme deneyiminin yanlış yorumlanması gibi) daha geniş çaplı olduğu sonucuna varılmıştır. Görüldüğü gibi farklı klinik koşulların da ele alınması mümkündür. Bu derlemenin konusu olan, nörosiyans verilerinin adli psikiyatrik değerlendirmelerde kullanımını kanıtlayan ayrıntılı deneysel ve teorik analizlere yer verilmesi gerektiği düşünülmektedir.Curr Opin Psychiatry. 2013 Jul 9. [Epub ahead of print] Casartelli L, Chiamulera C. Çev: Uzm. Bio. Y.AYDIN

http://www.biyologlar.com/adli-psikiyatrik-degerlendirme-ve-norosiyans

Pankreas Kanserinin Tedavisinde Umut Vadeden Gelişme: Metabolizma Kontrolü

Pankreas Kanserinin Tedavisinde Umut Vadeden Gelişme: Metabolizma Kontrolü

Araştırmacılar kolesterol metabolizmasını kontrol ederek, pankreas kanser hücrelerinin metastaz yapmasının azaltılabileceğini gösterdiler.

http://www.biyologlar.com/pankreas-kanserinin-tedavisinde-umut-vadeden-gelisme-metabolizma-kontrolu


İkili ve Üçlüden Sonra, Dörtlü Sarmal Keşfedildi!

İkili ve Üçlüden Sonra, Dörtlü Sarmal Keşfedildi!

Hücrelerde Dörtlü Sarmal Yapıda DNA Bulundu!   Olağandışı nükleik asit yapısı bazı gen ifadelerin düzenlenmesinde rol oynuyor olabilir.   4 DNA sarmalı X-Işını kristalografiden alınan veri dahilinde bu modelde bir araya getiriliyor.   Biyoloji’de DNA’nın yoğun kromozomları oluşturmak için kendi üzerinde burulan ve süper burulan ikili sarmal resminden daha ikonik bir resim yoktur.   Fakat ufak bir farkla; DNA’nın kare şekilli yapısı, DNA’nın yapı taşlarından biri olan guanin bakımından zengin sentetik DNA ipliklerini katlayarak laboratuvarda üretilebilir. Bilim insanları uzunca bir süre bu sözde “G-dörtlü yapıların” yaşayan hücrelerin DNA’larında bazen oluşabileceğini düşünmüşlerdi. Bir G-dörtlü yapı, DNA sarmalını sekteye uğratan yoğun kare yapısını oluşturmak için özel tipte hidrojen bağları aracılığıyla bir araya gelen guanin bakımından zengin iplik boyunca farklı yerlerden 4 guanin içerir.   Bugün Nature Chemistry dergisinde yayınlanan makalede, Cambridge Üniversitesi’nde Shankar Balasubramanian öncülüğündeki araştırma grubu G-dörtlü yapının hücrelerde oluştuğuna ve bu olağandışı yapıların önemli biyolojik fonksiyonları olabileceğine dair güçlü kanıtlar sunuyor.     Kromozomu koruma   Telomer olarak bilinen kromozomal DNA'nin koruyucu uçları, guanin açısından zengindirler ve G-dörtlü yapıları için de olası adaydırlar. Öyle ki; kanser hücreleri ile yapılan bazı çalışmalar, G-dörtlü yapılara bağlanıp onları stabilize eden küçük moleküllerin telomerlerde DNA hasarına sebep olduklarını gösterdi.   İnsan genom verilerinde başka guanin bakımından zengin sekansların arayışından sonra bazı bilim insanları; dörtlü yapıların, genomun düzenleyici genleri ve özellikle bazı kansere sebep olan genleri kapsayan kısımlarında oluşturulabileceklerini öne sürdüler.     G-dörtlü görüntülendi   Balasubramanian ve meslektaşları , özellikle G-dörtlü yapılara sıkıca bağlanan ama çift iplikli sarmal DNA’ya bağlanmayan bir antikor ürettiler. Bu antikoru insan hücreleri ile inkübe ettiklerinde, antikorun kromozomun birçok farklı bölgesine bağlandığını ve sadece çeyreğe yakın kısmının telomerlere bağlandığını buldular.   Balasubramanian, “Henüz erken, fakat eğer bu G-dörtlü yapıların genomda tam olarak nerede ortaya çıktıklarını haritalayabilirsek, kanser gibi rahatsızlıkları etkileyen genleri ya da hücresel işleyişleri nasıl daha iyi kontrol edebileceğimizi öğrenebiliriz. Bu zaten uzun vadeli vizyonumuz.” dedi.   Çeviren ve Hazırlayan: Betül Hız (Evrim Ağacı)   Kaynaklar ve İleri Okuma: Biffi, G. et al. Nature Chemistry http://dx.doi.org/10.1038/NCHEM.1548 (2013). Rodriguez, R. et al. Nature Chem. Biol. 8, 301–310 (2012). http://www.evrimagaci.org/fotograf/27/3197

http://www.biyologlar.com/ikili-ve-ucluden-sonra-dortlu-sarmal-kesfedildi

DNA Hasar Sinyalleri Nasıl Çalışır?

DNA Hasar Sinyalleri Nasıl Çalışır?

Görsel : DNA tamiri gösteriliyor – Tom Ellenberger, Washington University School of Medicine in St. Louis

http://www.biyologlar.com/dna-hasar-sinyalleri-nasil-calisir


Beyin İstek Doğrultusunda Bilinçli ve Bilinçsiz Yapılabiliyor

Beyin İstek Doğrultusunda Bilinçli ve Bilinçsiz Yapılabiliyor

Eşsiz bir çalışma beynin uyanıklık ve kendinde olmama (bilinçsizlik) hali arasındaki geçişi nasıl yaptığını ortaya çıkardı.

http://www.biyologlar.com/beyin-istek-dogrultusunda-bilincli-ve-bilincsiz-yapilabiliyor


Parazitler konağını yönetiyor mu?

Parazitler konağını yönetiyor mu?

Görsel açıklaması: Dünya genelinde çok sık, Amerika’da ise her 4 kişiden birini enfekte eden bir mikroorganizma olan Toksoplazma gondi, beyinde astrosit denilen yapıları oluşturur.

http://www.biyologlar.com/parazitler-konagini-yonetiyor-mu

Kaşıntı, Kaşıma ve Acıdan Duyulan Haz

Kaşıntı, Kaşıma ve Acıdan Duyulan Haz

Kronik ağrıya dair kavrayışımızı geliştirdikçe, konuyla ilgili araştırmacıların kafasını kurcalayan bir başka problem daha var.

http://www.biyologlar.com/kasinti-kasima-ve-acidan-duyulan-haz

Programlanmış Hücre Ölümü Nedir?

Programlanmış Hücre Ölümü Nedir?

Çok hücreli canlılarda hücrenin hasar görerek ölmesi (nekroz) dışında, gereksiz veya canlıya zarar vermesi olası durumlarda programlanmış hücre ölümleri(PHÖ) gerçekleşebilir.

http://www.biyologlar.com/programlanmis-hucre-olumu-nedir

Travmatik Beyin Hasarı Yüzlerce Geni Değiştirebilir

Travmatik Beyin Hasarı Yüzlerce Geni Değiştirebilir

Travmatik beyin hasarı, kafanın ani ve şiddetli bir şekilde bir nesneye çarpması ya da bir nesnenin kafatasını delerek beyin dokusuna zarar vermesi sonucu ortaya çıkan beyin yaralanmalarıdır.

http://www.biyologlar.com/travmatik-beyin-hasari-yuzlerce-geni-degistirebilir

Bilimadamları İnme Kaynaklı Beyin Hasarlarını Engellemek Amacıyla Ölümcül Örümcek Zehiri Kullanmayı Planlıyor

Bilimadamları İnme Kaynaklı Beyin Hasarlarını Engellemek Amacıyla Ölümcül Örümcek Zehiri Kullanmayı Planlıyor

Avusturalyalı funnel örümceği, dünyadaki en zehirli örümceklerden biridir, ama bu zehirli avcı, inmeden kaynaklanan beyin hasarlarını engellemeye yönelik anahtarı taşıyor olabilir.

http://www.biyologlar.com/bilimadamlari-inme-kaynakli-beyin-hasarlarini-engellemek-amaciyla-olumcul-orumcek-zehiri-kullanmayi-planliyor

Bakterilerin Neden Olduğu 7 Korkunç Hastalık

Bakterilerin Neden Olduğu 7 Korkunç Hastalık

Bakteriler büyüleyici organizmalardır. Hepsi ile karşılaşmamız mümkün, birçok bakteri gündelik hayatımızda bizlere yardımcı olabilir. Streptococcus pyogenes (NIAID)/CC BY 2.0

http://www.biyologlar.com/bakterilerin-neden-oldugu-7-korkunc-hastalik

Atmaca Güveleri, Çiçek Nektarını Antioksidanlara Dönüştürüyor

Atmaca Güveleri, Çiçek Nektarını Antioksidanlara Dönüştürüyor

Atmaca güveleri çiçek nektarının üzerine gelip havada asılı kaldıklarında çok fazla enerji tüketirler. Manduca sexta (gösterilen) bu nektarın bir kısmını kas koruyucu antioksidanlar haline getirebilir.

http://www.biyologlar.com/atmaca-guveleri-cicek-nektarini-antioksidanlara-donusturuyor

Gen Terapisi Nasıl Çalışır ve Neden Bu Kadar Etkilidir?

Gen Terapisi Nasıl Çalışır ve Neden Bu Kadar Etkilidir?

Charlie Gordon’u hatırlıyor musunuz? 1966’da Daniel Keyes tarafından yazılan “Flowers for Algernon” romanının yıldızıydı.

http://www.biyologlar.com/gen-terapisi-nasil-calisir-ve-neden-bu-kadar-etkilidir

Buz Adam Ötzi aslında donarak mı öldü?

Buz Adam Ötzi aslında donarak mı öldü?

Ceset üzerinde yapılan son incelemeler, bazı kafa darbelerinin yanında saptanan ok yarasının öldürücü olmadığını gösteriyor.

http://www.biyologlar.com/buz-adam-otzi-aslinda-donarak-mi-oldu

Aziz Sancar Sigaranın DNA’ya Verdiği Zararları Haritaladı

Aziz Sancar Sigaranın DNA’ya Verdiği Zararları Haritaladı

Sürekli sigara içen biriyseniz veya etrafınızda sigara bağımlısı yakınlarınız varsa daha dikkatli okuyun. Nobel ödüllü bilim adamı Aziz Sancar önderliğinde UNC Tıp Fakültesi’nden bir ekip sigaranın neden olduğu genetik hasarları ortaya çıkardı.

http://www.biyologlar.com/aziz-sancar-sigaranin-dnaya-verdigi-zararlari-haritaladi

Zika hasara neden olabilmek için Sinirsel Kök Hücre Proteinini Tutuyor

Zika hasara neden olabilmek için Sinirsel Kök Hücre Proteinini Tutuyor

Hücre kültürü deneylerinden elde edilen yeni bulgular, gebelik sırasında bebek enfeksiyonu ile bebek mikrosefali arasındaki bağlantıyı açıklayabilir. Credit: Generated by the Gergely lab

http://www.biyologlar.com/zika-hasara-neden-olabilmek-icin-sinirsel-kok-hucre-proteinini-tutuyor

Bakterilerin Sebep Olduğu 7 Korkunç Hastalık

Bakterilerin Sebep Olduğu 7 Korkunç Hastalık

Bakteriler, büyüleyici organizmalardır. Onlar bizim yanımızdadır ve bize birçok yararı olur.

http://www.biyologlar.com/bakterilerin-sebep-oldugu-7-korkunc-hastalik

Bitki Stresi:  Abiyotik ve Biyotik Faktörler

Bitki Stresi: Abiyotik ve Biyotik Faktörler

Bir bitkinin stres altında olmasına neden olan sebep nedir? Slavina/Getty Images

http://www.biyologlar.com/bitki-stresi-abiyotik-ve-biyotik-faktorler

Kemoterapi Nedir? Amaçları Nelerdir?

Kemoterapi Nedir? Amaçları Nelerdir?

Kemoterapi, kanser hücrelerini yok etmek veya bu hücrelerin büyümesini kontrol altına almak için antikanser ilaçlar kullanılarak yapılan tedavidir. Kanser tedavisinde tek başına veya cerrahi ve radyoterapi ile birlikte uygulanabilir.

http://www.biyologlar.com/kemoterapi-nedir-amaclari-nelerdir

Hiperpotasemi Nedir ?

Hiperpotasemi Nedir ?

Hiperpotasemi (hiperkalemi), plazma potasyum düzeyinin 5.0 mmol/L’nin üzerine çıkmasıdır. Toplam vücut potasyumu artmış olabilir, ancak sıklıkla normaldir.

http://www.biyologlar.com/hiperpotasemi-nedir-

Sirkadiyen Saat Genleri

Sirkadiyen saat ile ilgili mekanizmalar hücre döngüsü, DNA hasarına cevap ve tümör baskılanması açısından son derece önemlidir.13  Moleküler düzeyde  sirkadiyen  saatler,  transkripsiyon-translasyon düzenleyici  sistemde  organize  olan  “saat  genleri” nin  ürünlerinden  oluşur.  Bazı  saat  genleri  transkripsiyonal aktivatörleri kodlarken bazıları da kendi  ekspresyonlarını  inhibe  edebilecek  proteinleri kodlar. 8,13  Moleküler ritimler transkripsiyon sonrası düzenleme, transkripsiyon sonrası değişiklikler, kromatin yeniden düzenlenmesi, hücre içi yerleşim ve saat proteinleri yoluyla hassas bir şekilde düzenlenir.13 Şekil 1. CLOCK/BMAL1 heterodimeri kendi düzenleyici  bölgelerindeki  E  kutuları  ile  hücre  döngüsü genleri ve saat genlerini transkripsiyonel olarak aktive eder.Sirkadiyen ritmin arkasındaki temel moleküler mekanizmalar da bu saat genlerinden meydana gelir. Bu genler iki transkripsiyon faktöründen (CLOCK ve BMAL1) ve bunların hedefleri olan Period (Per 1, 2, ve 3), Cryptochrome (Cry 1 ve Cry 2) genlerinden meydana gelir.4,5,9,14 CLOCK (circadian loco motor output cycles kaput) bir histon asetil transferaz olup BMAL 1 (brain and muscle arly hydrocar bon receptor nuclear antigen 1) ile heterodimerize olduğunda aktive olur. Böylece Per 1, 2, 3 ve Cry 1, Cry 2 gibi diğer saat genlerinin transkripsiyonu sağlanır. 8,10,13,14 Per proteinleri ardı ardına iki PAS bölgesi içerir ve bu bölgeler aracılığı ile bir diğeri ve diğer proteinler ile etkileşebilir (Tablo 1). Per 3 saat kontrolü altındadır fakat ritim üretimi için gerekli değildir. Bununla birlikte Per 1 ve Per 2 saatin merkezi bileşenleridir.13 PER ve CRY proteinleri sitoplazmada sentezlenir ve çekirdeğe girmeden önce birleşirler.  Burada  CLOCK/BMAL1  aktivitesini inhibe eder ve böylece kendi ekspresyonlarını inhibe etmiş olurlar (negatif feedback).4,5,8,-10,13,14 Aynı zamanda PER proteinleri BMAL1’in transkripsiyonunu ilerletmek için pozitif yönde hareket ederler. BMAL1, CLOCK-BMAL1 heterodimerizasyonunu sağlayarak  döngünün  yeniden  başlamasını  sağlar (Şekil 1, Tablo 1).13   Sirkadiyen Genler ve Düzenleyici Proteinler Sirkadiyen  zamanlama  sistemi  en  az  9  gen  içeren  birbirine  bağlı  iki  moleküler  ilmekten  oluşmaktadır. Memelilerde  beyin  ve  fare  argonot  benzer  1  (Bmal1) ve  CLOCK,  biyolojik  işlevleri  ve  sirkadiyen  gen  ekspresyonlarının  düzenlenmesinde  görev  alan  2  ana  genlerdir.  İlmeklerin   birinde   (çekirdek   ilmek)   2   transkripsiyon   faktörü   olan   CLOCK   ve   Bmal1’in   E-kutularına     bağlanır 3,7.     Yüksek     ölçüde     korunan     moleküller     arası     çinko     parmaklar     stabilizasyonda  yapının  içine  girer.  CLOCK-Bmal1  kompleksi  CRY1,CRY2,PER1  ve  PER2  gibi  hedef  genlerin  E-kutularına  bağlanır  ve  bunların  ekspresyon  seviyelerini  arttırır.  Aksine  bu  genlerin  protein  ürünleri  CLOCK-BMAL1  aktivitesine  zıt  yönde  etki  eder  ve  bunun  sonucunda  kendi   ekspresyonlarını   baskılayarak   negatif   geribildirim   ilmeği   oluşturur.   Diğer   döngüde (2.ilmek)  Bmal1,  CLOCK  ile  birlikte  transkripsiyonel  düzenleyici  olarak  hareket  eder.  CLOCK-BMAL1  kompleksi,  nükleer  reseptör  alt  ailesi  1  grup  D  üyesi  1  (NR1DR1)  ve  rar  ilişkili  öksüz  reseptör A (ROR A) genlerinin E-kutularında bulunan promotorlara bağlanır ve transkripsiyonu aktive eder. NR1DR1 ve RORA 2 nükleer reseptör kodlar ve bunlar sırasıyla REV-ERBα ve RORα. Bu   nükleer   reseptörler   Bmal1   promotoründeki   RORE   olarak   adlandırılan   DNA   bağlayıcı   elemente  sahiptir  ve  bunlar  RORE’e  bağlanmak  için  birbirleri  ile  yarışma  içindedir.  REV-ERBα, BMAL1    ve    CLOCK    genlerinin    ekspresyonlarını    baskılamaktadır    oysa    RORα    BMAL1’in    transkripsiyonunu  aktive  etmektedir.  Bu  iki  nükleer  reseptörün  periyodik  üretimi  CLOCK  ve  BMAL1’in periyodik ekspresyonlarıyla sonuçlanır 21. KAYNAKLAR1. Okamura H. Circadian and seasonal rhythms: Integration of mammalian circadian clock signals from molecule to behavior. J Endocrinol 2003; 177(1): 3-6. 2. Lévi F. Circadian chronotherapy for human cancers. Lancet Oncol. 2001;2(5):307-15.3. Ishida N. Circadian clock, cancer and lipid metabolism. Neurosci Res. 2007;57(4):483-90.4. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The  circadian  gene  per1  plays  an  important  role  in  cell growth and DNA damage control in human cancer cells. Mol Cell 2006;22(3):375-82.5. Hastings M, O’Neill JS, Maywood ES.: Circadian clocks: regulators  of  endocrine  and  metabolic  rhythms.  J  Endocrinol 2007;195(2):187-98.6. Walisser JA, Bradfield CA. A time to divide: does the circadian clock control cell cycle? Dev Cell 2006;10(5):539-40.7. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271-90.8. Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell 2007:4;129(3):461-4.9. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett 2010;584(12):2618-25.10. Kondratov RV. A role of the circadian system and circadian proteins in aging. Ageing Res Rev 2007;6(1):12-27.11. Çalıyurt O. Duygudurum bozuklukları ve biyolojik ritm. Duygudurum Dizisi 2001; (5):209-14.12. Schibler U. The daily rhythms of genes, cells and organs. EMBO reports 2005;6(S1): 9-13.13.  Beckett  M,  Roden  LC.  Mechanisms  by  which  circadian rhythm disruption may lead to cancer. South African J Sci 2009;10: 415-20.14. Lamont EW, James FO, Boivin DB, Cermakian N. From circadian clock gene expression to pathologies. Sleep Med 2007;8(6):547-56. 15. Gre ́chez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation J Biol Chem 2008; 283(8):4535–42.16. Geyfman M, Andersen B. Clock genes, hair growth and aging. Aging 2010;2(3):122-8.17. Saydam F, Degirmenci I, Gunes HV. MicroRNAs and cancer. Dicle Medical Journal 2011; 38 (1): 113-20.18. Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC. Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 2006;243(1):55-7.19. Ozturk N, Okyar A. Biyolojik saatin moleküler mekanizmaları. Türk Farmakoloji Derneği Bülteni 2010; 106(1): 16-8.20. Yang X, Wood PA, Ansell CM, et al. The circadian clock gene  Per1  suppresses  cancer  cell  proliferation  and  tumor  growth  at  specific  times  of  day.  Chronobiol  Int. 2009;26(7):1323-39. 21.Lee J. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response    element -dependent    mechanism.    Biochem    Biophys    Res    Commun.2016;469:580-6. - Dicle Tıp Derg / Dicle Med J   www.diclemedj.org  Cilt / Vol 38, No 4, 514-518 C. Özbayer ve İ. Değirmenci. Sirkadien saat ve kanser -Arşiv Kaynak Tarama Dergisi . Archives Medical Review Journal 

http://www.biyologlar.com/sirkadiyen-saat-genleri


Sirkadiyen Saat ve Hücre Döngüsü

Sirkadiyen kontrol ve hücre döngüsü farklı moleküler mekanizmalardan oluşmalarına rağmen, memelilerde bu iki döngü birbiri ile ilişkilidir. Sirkadiyen saat mutasyonları önemli hücre döngüsü düzenleyicilerinin  ekspresyonunu  değiştirebilir.  Bu  nedenle sirkadiyen saatin hücre bölünmesinin düzenlenmesi ile ilişkili olduğu belirtilmiştir.3 Hücre döngüsü ve sirkadiyen saat genellikle tüm organizmaların düzenleyici sistemleridir. Her ikisi de transkripsiyon-translasyon, protein modifikasyonu ve yıkım evrelerinden oluşan hücre içi “saatler” dir.3,8 Benzer şekilde her iki döngü de çoğu hücrelerde 24 saat için periyodik  olup  hücreye  özgündürler.  Gap1  (G1), DNA sentezi (S), Gap2 (G2), Gap1(G1) veya G0’da duran mitoz (M) aşamalarından oluşan hücre döngüsünün  aksine  sirkadiyen  döngüde  yer  alan  saat genlerinin ekspresyonu her hücrede devamlıdır ve durup yeniden başlamak için karaciğer yenilenmesi gibi belirli bir tetikleyiciye ihtiyaç duyar.3 G2/M geçişi, Cdk 2/siklin B kompleksi tarafından kontrol edilir  ve  hücre  döngüsü  için  önemli  bir  noktadır. G2’den  M  fazına  kadar  hücre  döngüsünün  diğer bir düzenleyicisi wee1’dir. Sirkadiyen saat genleri, CLOCK/BMAL1’in wee1 geninin promotöründeki E-kutusu’na direkt olarak bağlanması ile wee1 genin ekspresyonunu düzenler ve böylelikle karaciğer yenilenmesi gibi durumlarda hücre döngüsünü başlatabilir (Şekil 2).3,4,8 G1 fazının ilerlemesi bir siklin bağımlı kinaz inhibitörü olan p21’in de kontrolü altındadır. p21’i hedefleyen REV-ERB yolağının da sirkadiyen  kontrol  altında  olabileceği  belirtilmektedir.15 Rev-erb α/β bir başka saat kontrollü gendir ve protein ürünü Bmal1’in ekspresyonunu negatif olarak düzenler. REV-ERBα/β, G1-S hücre döngüsü inhibitörü p21’in ekspresyonunu direkt olarak inhibe edebilir. Bununla birlikte, saç germ hücrelerinde BMAL1’in yokluğu Rev-erb α/β’nın aşağı düzenlenmesine, p21 ekspresyonunun artmasına ve döngünün G1 de durmasına neden olur (Şekil 2).16 Wee1  kinazı  kodlayan  genin  aktivasyonu  ile Cdk2/siklin B1 kompleksi fosforilasyona uğrar ve G2-M geçişi kontrolü sağlanır. Diğer iki sirkadiyen proteini olan Tim ve Per 1, DNA hasarına cevapta görev alır çünkü her ikisi de ATM ve ATR (ATM, mutant ataksi telenjiektazi; ATR, Rad3-ilişkili ataksi telenjiektazi) kinazlar ve kontrol noktası kinazları Chk (checkpoint kinases) 1 ve 2 ile kompleks halinde bulunabilir.8 Sağlıklı bireylerde kemik iliği, barsak, cilt ve ağız mukozasındaki hücrelerin S-fazındaki sayısı her 24 saatlik dönemde % 50 veya daha fazla oranda değişir. Benzer değişiklikler insan ağız mukozasındaki p53, siklin E, siklin A ve siklin B1 ekspresyonunda da belirlenmiştir. Siklin E diğer değişkenlerden neredeyse iki kat daha fazla sirkadiyen düzenlenmeden etkilenir ve böylelikle G1-S kontrol  noktasının  sirkadiyen  olarak  düzenlenmesini sağlar.2 Per1 geni önemli bir saat faktördür ve sirkadiyen ritimler için önemli bir rol oynar. Hücre bölünmesi için kritik öneme sahip biyolojik yolaklar sirkadiyen kontrol altındadır ve Per 1, sirkadiyen sistem ile hücre döngüsü sistemi arasında önemli bir bağlantı sağlar.4,6   KAYNAKLAR1. Okamura H. Circadian and seasonal rhythms: Integration of mammalian circadian clock signals from molecule to behavior. J Endocrinol 2003; 177(1): 3-6. 2. Lévi F. Circadian chronotherapy for human cancers. Lancet Oncol. 2001;2(5):307-15.3. Ishida N. Circadian clock, cancer and lipid metabolism. Neurosci Res. 2007;57(4):483-90.4. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The  circadian  gene  per1  plays  an  important  role  in  cell growth and DNA damage control in human cancer cells. Mol Cell 2006;22(3):375-82.5. Hastings M, O’Neill JS, Maywood ES.: Circadian clocks: regulators  of  endocrine  and  metabolic  rhythms.  J  Endocrinol 2007;195(2):187-98.6. Walisser JA, Bradfield CA. A time to divide: does the circadian clock control cell cycle? Dev Cell 2006;10(5):539-40.7. Dunlap JC. Molecular bases for circadian clocks. Cell. 1999 Jan 22;96(2):271-90.8. Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell 2007:4;129(3):461-4.9. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett 2010;584(12):2618-25.10. Kondratov RV. A role of the circadian system and circadian proteins in aging. Ageing Res Rev 2007;6(1):12-27.11. Çalıyurt O. Duygudurum bozuklukları ve biyolojik ritm. Duygudurum Dizisi 2001; (5):209-14.12. Schibler U. The daily rhythms of genes, cells and organs. EMBO reports 2005;6(S1): 9-13.13.  Beckett  M,  Roden  LC.  Mechanisms  by  which  circadian rhythm disruption may lead to cancer. South African J Sci 2009;10: 415-20.14. Lamont EW, James FO, Boivin DB, Cermakian N. From circadian clock gene expression to pathologies. Sleep Med 2007;8(6):547-56. 15. Gre ́chez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation J Biol Chem 2008; 283(8):4535–42.16. Geyfman M, Andersen B. Clock genes, hair growth and aging. Aging 2010;2(3):122-8.17. Saydam F, Degirmenci I, Gunes HV. MicroRNAs and cancer. Dicle Medical Journal 2011; 38 (1): 113-20.18. Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC. Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 2006;243(1):55-7.19. Ozturk N, Okyar A. Biyolojik saatin moleküler mekanizmaları. Türk Farmakoloji Derneği Bülteni 2010; 106(1): 16-8.20. Yang X, Wood PA, Ansell CM, et al. The circadian clock gene  Per1  suppresses  cancer  cell  proliferation  and  tumor  growth  at  specific  times  of  day.  Chronobiol  Int. 2009;26(7):1323-39. Dicle Tıp Derg / Dicle Med J   www.diclemedj.org  Cilt / Vol 38, No 4, 514-518 C. Özbayer ve İ. Değirmenci. Sirkadien saat ve kanser

http://www.biyologlar.com/sirkadiyen-saat-ve-hucre-dongusu

2017 Yılında Genetik Alanında Neler Oldu ?

2017 Yılında Genetik Alanında Neler Oldu ?

2017 yılı içerisinde genetik gelişmelerin bazılarını sizler için derledik... Beğenmeniz ve bir solukta okumanız dileğimizle... Hoş geldin 2018

http://www.biyologlar.com/2017-yilinda-genetik-alaninda-neler-oldu-

Alkolün Doğrudan DNA <b class=red>Hasarına</b> Yol Açabileceğine Dair Yeni Bulgular

Alkolün Doğrudan DNA Hasarına Yol Açabileceğine Dair Yeni Bulgular

Alkol tüketimi ile DNA hasarı ve kanser riskinin artması arasında bir bağlantı olabileceğini gösteren birçok veri bulunuyor. Görsel Telif: Igor Klimov / Shutterstock

http://www.biyologlar.com/alkolun-dogrudan-dna-hasarina-yol-acabilecegine-dair-yeni-bulgular

 
3WTURK CMS v6.03WTURK CMS v6.0